RSX-11
Utilities Manual
Order No. AA-H268A-TC

RSX-11M Version 3.2
RSX-11M-PLUS Version 1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, June 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment

Corporation.

Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
‘and may only be used or copied in accordance with the terms of such

license.

No respon51b111ty is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1979 by Digital Equipment Corporation

The postage-prepaid READER'S
document regquests the user's
paring future documentation.

The following are trademarks

DIGITAL
DEC

PDP

DECUS
UNIBUS
COMPUTER LABS
COMTEX

DDT
DECCOMM
ASSIST-11
VAX

DECnet
DATATRIEVE

COMMENTS form on the last page of this
critical evaluation to assist us in pre-

of Digital Equipment Corporation:

DECsystem~10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL

INDAC

LAB-8
DECSYSTEM-20
RTS-8

VMS

IAS

TRAX

10/79-14

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI

PDT

CONTENTS

SUMMARY OF TECHNICAL CHANGES

PREFACE
PART 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 RSX-11 UTILITY PROGRAMS

1.1.1 Editing Utilities

1.1.2 File Manipulation Utilities

1.1.3 File Spooling Utilities

1.1.4 Volume Maintenance Utilities

1.1.5 Programming Utilities

1.1.6 Program Maintenance Utilities

1.2 ENTERING RSX-11 COMMAND LINES

1.3 ENTERING FILE SPECIFICATIONS

1.4 INVOKING RSX-11l UTILITIES

1.4.1 Installing Utilities on Your System

1.4.2 Invoking Installed Utilities

1.4.3 Invoking Uninstalled Utilities

1.4.4 Using Indirect Command Files

PART 2 EDITING UTILITIES

CHAPTER 2 DEC EDITOR (EDT)

2.1 INVOKING EDT

2.2 THE EDT COMMAND STRING

2.2.1 EDT Commands

2.2.2 Range Specification

2,2.3 Options ‘

2.3 DETAILED COMMAND DESCRIPTIONS

2,3.1 CHANGE

2.3.2 CcoPY

2,3.3 DELETE

2.3.4 EXIT

2.3.5 FIND

2.3.6 INCLUDE

2,3.7 INSERT

2,3.8 MOVE

2.3.9 PRINT

2.3.10 QUIT

2.3.11 REPLACE

2.3.12 RESEQUENCE

2,3.13 RESTORE

2.3.14 SAVE

2.3.15 SET

2.3.16 SHOW

2.3.17 SUBSTITUTE

2,3.18 TYPE

2.3.19 WRITE

iii

| L UL U N O U T T I I |
VOUIJonda&aWNNDNER =

FEPRRHERPRREERRRE B

CONTENTS
Page M
2.3.20 XEQ (Execute) 2-46
2.4 CHARACTER MODE 2-48
2.4.1 Editing Subcommands 2-49
2.4.2 Cursor Manipulation 2-55
2.4.3 Subcommand Concatenation 2-58
2.4.4 Subcommands to Terminate Character Mode 2-59
2.5 SUMMARY OF EDT COMMAND MODE COMMANDS 2-60
2.6 ERROR REPORTING AND ERROR MESSAGES 2-62
CHAPTER 3 LINE TEXT EDITOR (EDI) 3-1
3.1 USING EDI 3-1
3.1.1 Invoking EDI 3-1
3.1.2 Control Modes: Input and Edit 3-3
3.1.3 Text Access Modes 3-3
3.1.4 Text Files 3-6
3.1.5 Terminal Conventions 3-7
3.1.6 EDI Command Conventions 3-8 %‘!5
3.2 BASIC EDI COMMANDS 3-10
3.2.1 ADD 3~-11
3.2.2 ADD & PRINT 3-12
3.2.3 BOTTOM 3-12
3.2.4 CHANGE 3-13
3.2.5 <CTRL/Z> 3-13
3.2.6 DELETE 3-13
3.2.7 DELETE & PRINT 3-14
3.2.8 <ESCape> 3-14
3.2.9 EXIT 3-15
3.2.10 INSERT 3~15
3.2.11 LOCATE 3-15
3.2.12 NEXT 3-16
3.2.13 NEXT & PRINT 3-16
3.2.14 PRINT 3-17
3.2.15 RENEW 3-18
3.2.16 <RETURN> 3-19
3.2.17 RETYPE 3-19
3.2.18 TOP 3-19
3.2.19 TOP OF FILE (TOF) 3=-20
3.3 EDI COMMANDS: FUNCTION SUMMARY 3-20
3.3.1 Setup Commands 3-20 4555
3.3.2 Locator Commands {(Line-Pointer Control) 3-21 E
3.3.3 Text Modification and Manipulation Commands 3-23
3.3.4 Macro Commands 3-24
3.3.5 File Input/Output Commands 3-25
3.3.6 Device Output Commands 3-25
3.3.7 CLOSE and EXIT commands 3-25
3.4 EDI COMMANDS: DETAILED REFERENCE SUMMARY 3-27
3.4.1 ADD 3-27
3.4.2 ADD & PRINT (AP) 3-27
3.4.3 BEGIN 3-27
3.4.4 BLOCK ON/OFF 3-28
3.4.5 BOTTOM 3-28
3.4.6 CHANGE 3-28
3.4.7 CLOSE 3-28
3.4.8 CLOSE SECONDARY (CLOSES) 3=-29
3.4.9 CLOSE & DELETE (CD) 3-29
3.4.10 CONCATENATION CHARACTER (CC) 3-29
3.4.11 CTRL/Z 3-30

iv

e s & o o o &

#b#h#bhhhhb-bhh&hhbéhk&bhhbbu&hhbb&&&oﬁn&

e o & 8 6 6 ® 8 e ® e e e e & 8 e 9 e e 6 e s e & 6 s ° + 0 e s 0+ s+ o & ¢

UUUOITTVOIAUIESELEDDLLLDDRWWWWWWWWWWNNNNNNNNNNNMNNNERRERHEEFRF

WWWWWWWWWwWwWwWwWwWwWwWwwwwwwwwwwwwwwwwwwwwwww
OdOANMBRWNHOOVONOVBWNHFOWVWONOAUIEWNHFHFOWVWONONUIAWNHFOWYVOIOAULEWN

e @ 8 @ & o & ® o e o e a ® 8 & T s e e e ° & s * s & o 0.

WWWWwLwWwwbwWwwwwwwww
e o o s e e s s o

e & ® o o * o & & 8 ° o & o o o

AT YO Ul > > b & bbb

e e o o
W N

CHAPTER 4

PART 3

CONTENTS

DELETE

DELETE & PRINT (DP)
END

ERASE

<ESCape>

EXIT

EXIT & DELETE (ED)
FILE

FIND

FORM FEED (FF)
INSERT

KILL

LINE CHANGE (LC)
LIST ON TERMINAL (LI)
LIST ON PSEUDO-DEVICE (LP)
LOCATE

MACRO

MACRO CALIL (MC)
MACRO EXECUTE
MACRO IMMEDIATE
NEXT

NEXT & PRINT

OPEN SECONDARY
OUTPUT ON/OFF
OVERLAY

PAGE

PAGE FIND

PAGE LOCATE

PASTE

PRINT

READ

RENEW

<RETURN>

RETYPE

SAVE

SEARCH & CHANGE
SELECT PRIMARY
SELECT SECONDARY
SIZE

TAB ON/OFF

TOP

TOP OF FILE (TOF)
TYPE

UNSAVE

UPPER CASE ON/OFF
VERIFY ON/OFF
WRITE

EDI USAGE NOTES
EDI ERROR MESSAGES
Command Level Information Messages

File Access Error Messages

Error Messages Requiring EDI Restart

Fatal Error Messages

PERIPHERAL INTERCHANGE PROGRAM (PIP)

FILE MANIPULATION UTILITIES

Page

3-30
3-30
3-31
3-31
3-31
3-31
3-32
3-32
3-32
3-33
3-33
3-33
3-34
3-34
3-35
3-35
3-35
3-36
3-37

CONTENTS

Page =
4.1 PIP COMMAND STRING 4-1
4.1.1 PIP Defaults for File Specification
Elements 4-1
4,1.2 PIP Switches and Subswitches 4-3
4.1.3 Wildcards 4-4
4.2 PIP COMMAND FUNCTIONS 4-5
4.2.1 Copying Files-11 Files 4-5
4.2.2 Performing File Control Functions 4-9
4.3 PIP ERROR MESSAGES 4-38
4.4 PIP ERROR CODES 4-46
CHAPTER 5 FILE TRANSFER PROGRAM (FLX) 5-1
5.1 FLX COMMAND STRING 5-2
5.2 FLX SWITCHES 5-3
5.2.1 Volume Format Switches 5-3
5.2.2 Transfer Mode Switches 5-4 ".5
5.2.3 Control Switches 5-6 T
5.3 DOS-~11 VOLUME DIRECTORY MANIPULATION 5-8
5.3.1 Displaying DOS-11 Directory Listings 5-8
5.3.2 Deleting DOS=11 Files 5-10
5.3.3 Initializing DOS-11 Volumes 5-10
5.4 RT-11 VOLUME DIRECTORY MANIPULATION 5-10
5.4.1 Displaying RT-11 Directory Listings 5=10
5.4.2 Deleting RT-11 Files 5-11
5.4.3 Initializing RT-11 Volumes 5-11
5.5 FLX TAll/TU60 CASSETTE SUPPORT 5=-12
5.5.1 Multivolume Cassette Support 5=-13 ‘l!!
5.5.2 FLX Cassette Output Files 5-13 T
5.5.3 FLX Cassette Input Files 5-14 '
5.6 FLX PAPER TAPE SUPPORT 5-15
5.7 FLX ERROR MESSAGES 5-16
PART 4 FILE SPOOLING UTILITIES
CHAPTER 6 PRINT AND QUEUE UTILITY 6-1
6.1 INTRODUCTION TO THE PRINT COMMAND AND
QUEUE MANAGER 6-1 m
6.2 PRINT COMMAND FORMAT 6-3 S
6.3 PRINT COMMAND DESCRIPTION 6-4
6.4 QUEUE MANAGER COMMAND FORMAT 6-9
6.4.1 QUEUE /LIST Command 6-9
6.4.2 QUE /MOD Command 6-13
6.4.3 QUEUE /HOLD Command 6-14
6.4.4 QUEUE /RELEASE Command 6-15
6.4.5 QUEUE /DELETE Command 6-16
6.5 PRINT JOBS QUEUED BY USER TASKS - OUTPUT
SPOOLING 6-17
6.5.1 Opening A File On Disk and Using FCS 6-18
6.5.2 Opening A File On Disk and Using the
Print Command 6-18
6.6 ERROR MESSAGES 6-18
CHAPTER 7 THE QUEUE MANAGER 7-1
7.1 NARRATIVE INTRODUCTION AND REVIEW 7=2
7.2 REFERENCE EXAMPLE 7-4 m

| vi

CONTENTS

QUEUE MANAGER COMMAND DESCRIPTIONS
STOP
START
SPOOL
UNSPOOL
ASSIGN
DEASSIGN
ERROR MESSAGES

s e o o o e e o
BWwwwbbwwww
e o s o o

aUldwNPE

NN

PART 5 VOLUME MAINTENANCE UTILITIES

[o0]

CHAPTER DISK VOLUME FORMATTER (FMT)
INITIATING AND TERMINATING FMT
MODES OF FMT OPERATION
1 Normal Operating Mode
2 Manual Operating Mode
FMT-SUPPORTED DEVICES
.1 DB: Devices (RP04/RP05/RP06 Disk Packs)
.2 DK: Devices (RK05 Disk Cartridge or
RKOSF Fixed Media Disks)
DM: Devices (RK06/RK07 Disk Cartridges)
DP: Devices (RPR02/RP02/RP03 Disk Packs)
DR: Devices (RM02/RMO03 Disk Packs)
DY: Devices (RX02 Floppy Diskettes)
FMT SWITCHES
/BAD
/DENS
/ERL
/MAN
/OVR
/VE
/WLT
/ey
FMT MESSAGES

o000 02 00 00 Q0 00
e o o o & s o
WwwhdhdNEe

« s e
OO W ()8 B ¥V}

e o e o o o o s s e o s o =
bSO LBLOOWWW
« e s o o o s o

Lt [s oo ol oo lee oo oo o oTleolioefoe oo Jvs oo

CHAPTER BAD BLOCK LOCATOR UTILITY (BAD)
INTRODUCTION TO BAD
INVOKING BAD

BAD Switches

BAD And Indirect Files
PROCESSING BAD BLOCK DATA
1 Verifying Devices
2 Format of Bad Block Descriptor Entries
3 The INI Command and BAD
USING THE BAD UTILITY
.1 Programming Considerations
1
2
3

. .
N =

BAD SWITCH DESCRIPTIONS
Switches for both Task and Stand-Alone
System Versions Of BAD
The Manual and Update Switches
Switches for Stand-Alone System Version
Only
DEVICES SUPPORTED BY THE STAND-ALONE
VERSION
BAD MESSAGES

VPO VOVOTCTOOOOY
« e e e e e e e e e e
ol VTR EWWWWNNNE

(e} O
. .« .

DN o)

vii

g
o
Q
o

NN
HFHEHEOOMNGD
H-OO

[oe]

Q0 00 00 O O ©
[L L U LU
adwhhNEFE =

0 00 0 O W

L O L I |
DS IEN No e We o WE; NS

| I T N T O O T A A |
co o ~ (o3 W &2 beddWwwdhRFEFHR [aad [eoJNoolNeelNoo o JEN LN |

OO (o] [Xe i\ WWOWWWWOVWYWOLOOOY (<} 0 00 00 €O OO 00 O O

CHAPTER 10

CHAPTER

10.1
10.1.1

10.1.2
10.1.3
10.1.4
10.1.5

10.1.6
10.2

10.2.1
10.2.2
10.2.3
10.3

10.3.1
10.3.2
10.3.3
10.3.4
10.4

10.4.1

10.4.2
10.4.3

10.4.4
10.4.5

10.4.6
10.5

10.5.1
10.5.2
10.5.3

10.6
11

11.1
11.2
11.3
11.4
11.5
11.5.1
11.5.2
11.5.3
11.5.4
11.5.5
11.5.6
11.5.7
11.5.8
11.6

CONTENTS

BACKUP AND RESTORE UTILITY (BRU)

OVERVIEW OF COMMAND QUALIFIERS AND DEFAULTS
Command Qualifiers For Selective Backup
And Restore
Command Qualifiers for Controlling Disk
Processing
Command Qualifiers for Controlling Tape
Processing
Command Qualifiers for Verifying the
Accuracy of Data Transferred
Command Qualifiers for Displaying
Information About Files Transferred
Command Qualifiers for Initializing Disks

DISK AND TAPE DEVICE INFORMATION
Files-11 Structures
Disk Volume Labels and Backup Set Names
Devices Supported for Backup and Restore

BACKUP AND RESTORE COMMAND LINE DESCRIPTIONS
Command Line Syntax Definition
Descriptions of Prompts
Description of Command Line Parameters
Description of Command Qualifiers

USING BACKUP AND RESTORE
Using the Format Utility with Backup and
Restore
Using the Bad Block Utility with Backup
and Restore
Using Backup and Restore to Initialize
Disks
Selective Transfer of Data
Backup and Restore to Disks of Different
Size
BRU and File Characteristics

TAPE FORMAT INFORMATION FOR BACKUP AND

RESTORE OPERATIONS
Backup Sets
Tape Sets
Multivolume Tape Operations

BACKUP AND RESTORE ERROR PROCESSING

DISK SAVE AND COMPRESS (DSC)

DSC-SUPPORTED VOLUMES
INITIATING AND TERMINATING ONLINE DSC
INITIATING AND TERMINATING STAND-ALONE DSC
DSC COMMAND FORMAT
DSC FILE LABELS, SWITCHES, AND OPTIONS
File Label
Append Switch
Bad Block Switch
Block Factor Switch
Compare Switch
Density Switch
Rewind Switch
Verify Switch
DSC OPERATION OVERVIEW

viii

Page
10-1
10-1
10-3
10-5
10-5
10-6

10-6
10-7
10-7
10-7
10-9
10-9
10-10
10-10
10-10
10-11
10-13
10-21

10-22
10-22

10-23
10-24

10-24
10-25

10-26
10-27
10-27
10-27
10-28

11-1

11-4
11-6
11-6
11-7
11-8
11-9
11-10
11-10
11-13
11-14
11-15
l1-1e6
11-18
11-19

CHAPTER

CHAPTER

CHAPTER

11.7

11.7.1
11.7.2
11.7.3
11.7.4
11.8

11.8.1
11.8.2
11.8.3
11.804
11.9

11.9.1

11.9.2
11.9.3

12

12.1

12.1.1
12.1.2
12.1.3
12.2

12.2.1
12.2.2
12.2.3
12.3

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.4

12.5
13

13.1
13.2
13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5
13.3.6
13.3.7
13.3.8
13.4
13.5

14

14.1
14.2

CONTENTS

STAND-ALONE DSC
Control Status Register Switch
TM0O2 Switch

Unit Switch
Vector Address Switch (/VEC=)

DSC OPERATION
Data Transfer from Disk
Data Transfer to Tape
Data Transfer from Tape
Data Transfer to Disk
DSC MESSAGES
DSC Messages: Text, Explanation, and
Corrective Action
DSC I/0 Messages
Stand-Alone DSC Messages

VOLUME PRESERVATION UTILITY (PRESRV)

INTRODUCTION TO PRESRV
Files-11l Format
Logical Tape Format
Image Format
PRESRV OPERATING PROCEDURES
Bootstrap Procedure
Tape Handling
Disk and DECtape Handling
PRESRV COMMAND LINE AND SWITCHES
List Switches (/HE and /LI)
Format and Blocking Switches
Administrative Switches
Magnetic Tape Switches
Stand-Alone PRESRV Switches
COMPUTING THE NUMBER OF BLOCKS REQUIRED
FOR BUFFERING
PRESRV ERROR MESSAGES

FILE STRUCTURE VERIFICATION UTILITY (VFY)

INTRODUCTION TO VFY
VFY COMMAND STRING
VFY SWITCHES
Validity Check
Delete Switch (/DE)
Free Switch (/FR)
List Switch (/LI)
Lost Switch (/LO)
Read Check Switch (/RC)
Rebuild Switch (/RE)
Update Switch (/UP)
VFY ERROR MESSAGES
VFY ERROR CODES (IAS SYSTEM ONLY)

PART 6 PROGRAMMING UTILITIES
LIBRARIAN UTILITY PROGRAM (LBR)

INTRODUCTION TO LBR
LBR COMMAND STRING

ix

Page

11-19
11-20
11-21
11-22
11-22
11-23
11-23
11-23
11-25
11-25
11-26

11-27
11-39
11-41

12-1

12-1
12-1
12-2
12-3
12-4
12-6
12-7
12-9
12-10
12-13
12-13
12-18
12-20
12-21

12-25
12-27

13-1

13-1
13-2

13-9
13-9
13-10
13-11
13-11
13-14

14-1

l4-1
14-1

CONTENTS

Page m
14.3 DEFAULTS IN LBR FILE SPECIFIERS 14-2
14.4 LBR SWITCHES 14-3
14.5 FORMAT OF LIBRARY FILES 1l4-4
14.5.1 Library Header 14~4
14.5.2 Entry Point Table 14-4
14.5.3 Module Name Table 14-5
14.5.4 Module Header 14-5
14.6 LBR SWITCHES 14-10
14.6.1 Compress Switch (/CO) 14-10
14.6.2 Create Switch (/CR) 14-11
14.6.3 Delete Switch (/DE) 14-12
14.6.4 Default Switch (/DF) 14-13
14.6.5 Delete Global Switch (/DG) 14-15
14.6.6 Entry Point Switch (/EP) l4-16
14.6.7 Extract Switch (/EX) 14-17
14.6.8 Insert Switch (/IN) for Object and Macro
Libraries 14-18
14.6.9 List Switches (/LI, /LE, /FU) 14-20 #5@5
14.6.10 Modify Header Switch (/MH) 14-21
14.6.11 Replace Switch (/RP) 14-22
14.6.12 Spool Switch (/SP) 14-27
14.6.13 Selective Search Switch (/SS) 14-28
14.6.14 Squeeze Switch (/SZ) 14-29
14.7 COMBINING LIBRARY FUNCTIONS 14-31
14.8 LBR RESTRICTIONS 14-32
14.9 LBR ERROR MESSAGES 14-32
14.9.1 Effect of Fatal Errors on Library Files . 14-33
14.9.2 LBR Error Messages 14-33 “!Q
CHAPTER 15 FILE DUMP UTILITY (DMP) 15-1
15.1 INTRODUCTION TO DMP 15-1
15.1.1 File Mode 15-1
15.1.2 Device Mode 15-1
15.2 DMP COMMAND STRING 15-2
15.3 DMP SWITCHES 15-2
15.4 DMP ERROR MESSAGES 15-6
PART 7 PROGRAM MAINTENANCE UTILITIES A‘.ﬁ
CHAPTER 16 THE FILE COMPARE UTILITY (CMP) 1l6-1
16.1 CMP SWITCHES 16-2
16.2 FORMATS OF CMP OUTPUT FILES 16-4
16.2.1 Differences Format 16-4
16.2.2 Change Bar Format 16-5
16.2.3 SLP Command Input Format 16-6
16.3 CMP MESSAGES 16-6
CHAPTER 17 SOURCE LANGUAGE INPUT PROGRAM (SLP) 17-1
17.1 SLP INPUT AND OUTPUT FILES 17-2
17.1.1 The Input File 17-2
17.1.2 Command Input 17-2
17.1.3 The SLP Listing File 17-3
17.1.4 The SLP Output File 17-3
17.2 HOW SLP PROCESSES FILES 17-4

CHAPTER

CHAPTER

17.3

17.3.1
17.3.2
17.3.3
17.3.4
17.4

17.4.1
17.4.2
17.4.3

17.4.4
17.4.5
17.4.6
17.5

17.5.1
17.5.2

18

18.1

18.2

18.2.1
18.2.2
18.2.3

18.2.4

18.3

18.3.1
18.3.2
18.3.3
18.3.4
18.3.5
18.3.6
18.3.7

19

19.1
19.2
19.3
19.3.1
19.3.2

19.4

19.4.1
19.4.2
19.4.3
19.4.4
19.4.5
19.4.6

19.5

19.5.1
19.5.2
19.5.3

CONTENTS

USING SLP
Specifying SLP Edit Commands
Entering SLP Edit Commands
Updating Source Files Using SLP
Creating Source Files Using SLP
CONTROLLING SLP
SLP Switches
Controlling the Audit Trail
Setting the Position and Length of the
Audit Trail
Changing the Value of the Audit Trail
Temporarily Suppressing the Audit Trail
Deleting the Audit Trail
SLP MESSAGES
SLP Information Message
SLP Error Messages

OBJECT MODULE PATCH UTILITY (PAT)

SPECIFYING THE PAT COMMAND STRING
HOW PAT APPLIES UPDATES
The Input File
The Correction File
How PAT and the Task Builder Update
Object Modules '
Determining and Validating the Contents
of a File
PATCH MESSAGES
Information Messages
Command Line Errors
File Specification Errors
Input/Output Errors
Errors in File Contents or Format
Internal Software Error
Storage Allocation Error

TASK/FILE PATCH PROGRAM (ZAP)

INVOKING AND TERMINATING ZAP
ZAP SWITCHES
ADDRESSING LOCATIONS IN A TASK IMAGE
Relocation Biases
ZAP Addressing Modes: Absolute and Task
Image
THE ZAP COMMAND LINE AND COMMAND LINE
ELEMENTS
ZAP Commands
ZAP Internal Registers
ZAP Arithmetic Operators
ZAP Command Line Element Separators
The Current Location Symbol
ZAP Command Line Location-Specifier
Formats
USING ZAP OPEN/CLOSE COMMANDS
Opening Locations in a Task Image File
Changing the Contents of a Location
Closing Task Image Locations

xi

APPENDIX

APPENDIX

19.6
19.6.1
19.6.2

19.6.3

19.6.4
19.6.5
19.6.6
19.7

.
HHEFRFRPHERHFEFEFOONOAO B WNE

Lo WNNEHO

. P
. . .
> w [\

. .
N =

PUUWE W W W W W W W SRR PIpPERRIPIRIP P

e o s s »

WWwwLww NN V] [aad [[l [l

. e
W N

CONTENTS

USING ZAP GENERAL-PURPOSE COMMANDS
Exit from ZAP
Compute an Offset and Store It in the
Quantity Register
Display the Branch and Jump Displacements
from the Current Location
Display the Value of an Expression
Verify the Contents of a Location
Set The Value For A Relocation Register
ZAP ERROR MESSAGES

APPENDIXES
COMMANDS AND SWITCHES

INTRODUCTION

EDT COMMAND SUMMARY

EDI COMMAND SUMMARY

PIP COMMAND SUMMARY

FLX COMMAND SUMMARY

PRINT AND QUE COMMAND SUMMARY
QUEUE MANAGER COMMAND SUMMARY
FMT COMMAND SUMMARY

BAD COMMAND SUMMARY

BRU COMMAND SUMMARY

DSC COMMAND SUMMARY

PRESRV COMMAND SUMMARY

VFY COMMAND SUMMARY

LBR COMMAND SUMMARY

DMP COMMAND SUMMARY

CMP COMMAND SUMMARY

SLP COMMAND SUMMARY

PAT COMMAND SUMMARY

ZAP COMMAND SUMMARY

LBR, EDI AND DMP EXAMPLES

SAMPLE LISTINGS FOR LBR LIST SWITCHES
(OBJECT LIBRARY)
List Module Names
List Module Names and Full Module
Information
List Module Names, Full Module Information
and Module Entry Points (Global Symbols)
List Module Names and Module Entry Points
(Global Symbols)
SAMPLE LISTING FOR LBR LIST SWITCHES
(MACRO LIBRARY)
List Module Names
List Module Names and Full Module
Information
SAMPLE EDITING OPERATIONS
File Editing Sample
SAVE and UNSAVE Example
Use of Immediate Macro Command
Use of Macro Commands

xii

Page

19-13
19-13

19-13

19-14
19-15
19-15
19-16
19-16

A-1

A-1

A-1

A-3

A-8

A-10
A-12
A-15
A-17
A-18
A-18
A-22
A-23
A-24
A-25
A-26
A-28
A-29
A-30
A-30

B-1

APPENDIX

APPENDIX

FIGURE

oQoQUgoo g QOO0 mozzgw

CONTENTS

SAMPLE DMP LISTINGS
Use of /LB Switch
"Standard" Command Line
Dump Only the Header from SYSGEN.CMD
Use of /BA Switch

RSX-11M SERIAL DESPOOLER TASK
RECEIVE QUEUE OPERATION

TEXT REQUIREMENTS

TASK-BUILD INFORMATION

PRT ERROR MESSAGES

CRF--THE RSX-1ll1 CROSS-REFERENCE PROCESSOR

HOW CRF PROCESSES DATA
MACRO-11/Task Builder Processing
CRF Processing

THE CRF SYMBOL TABLE FILE

THE CRF SEND PACKET

CRF ERROR MESSAGES

FIGURES

Input Line Number Sequencing

Results of Copy Command With and Without
/NV Specified

Sample Directories Before and After
Execution of /EN

Directory Listing Examples

Format of Protection Word

Use of the Purge Switch

Results of Rename Switch With and Without
/NV Specified

DOS-11 Directory Listings

RT-11 RKO5 Cartridge Disk Directory Listing

Job Flag Page and File Flag Page
Standard Tape Format for Magnetic Tapes
Data Transfer for DSC Copy Operation
Data Transfer for DSC Compare Operation
Logical Tape Format

VFY Listing Sample Using the /LI Switch

General Format for Object and Macro Library

Files

Universal Library File Format

Contents of Library Header

Format of Entry Point Table Element
Format of Module Name Table Element
Module Header Format for Object and Macro
Libraries

Module Header Format for Universal Libraries

Sample Files Used in LBR Examples 1-4
Output Library File After Execution of
Example 1

Output Library File After Execution of
Example 2

xiii

Page

B-26
B-26
B-26
B-28
B~-28

c-1
c-1

c-1
Cc-2

D-1
D-1
D-3
D-3
D-4
D-5

FIGURE

TABLE

L I T I I | | L LU
SWNFRFONOUTE WNE

WWWWWNNNNDNNNDNDNDND
1

UL L U | J
WNhHFPFPWNODHO AdWhhHFEFFRYON aG;

[eeMe Mo JES NE MO WS I bbb WWWW w
!

CONTENTS

FIGURES (Cont.)

Output Library File After Execution of
Example 3

Sample Files for Universal Library Replace
Example

Output Library File After Execution of
Universal Library Replace Example

MACRO Listing Before and After Running LBR
with /SZ Switch

Input Files and Output Files Used During SLP
Processing

Processing Steps Required to Update a
Module Using PAT

PRT Send Data Buffer Format

How MACRO-11, Task Builder, and CRF
Generate Cross-Reference Listings

Format of the CRF Symbol Table File

Format of the CRF SEND Packet

TABLES

EDT File Specification Defaults

EDT Commands

Single Line Specifications

Variable Line Specifications

Compound Line Specifications

Inclusive Line Specifications

Command Options

Cursor Manipulation Subcommands

EDI Default File Specifications
Line-by-Line vs. Block Mode

Basic EDI Commands

EDI Setup Commands

EDI Locator Commands

EDI Text Modification and Manipulation
Commands

EDI Macro Commands

EDI Input/Output Commands

EDI Device Output Commands

EDI Close Operation Commands

PIP Default File Specifications

PIP Copy Command and Merge Subswitches
PIP Switches and Subswitches

List Switches

Response Choices for the Selective Delete
(/SD) Switch

PIP Error Codes

FLX Volume Format Switches

FLX Transfer Mode Switches

FLX Control Switches

Demonstration Forms Settings

Valid Ranges for Manual FMT Operations
FMT-Supported Devices

FMT Device Status

xXiv

Page

14-26
14-27
14-27
14-31
17-4

18-2
Cc-2

U?O
V1N

WWWWWONNDNNNDNNN

| At T T LU A T M B I |

NIV UTLWOANEFERRPRFEOS
SHowNIn

NHO

3-26

! 1
NN

1111 !
VDO DWDSW
] NWw o

000 0~ 01U1UL D E
1

TABLE

CONTENTS

TABLES (Cont.)

BAD Switches

Summary of BRU Command Qualifiers

Command Qualifiers That Perform Selective
Backup and Restore Operations

Command Qualifiers That Control Disk
Processing

Command Qualifiers That Control Tape
Processing

Command Qualifiers That Verify the Accuracy
of Data Transfers

Command Qualifiers That Provide Information
Initialization Qualifiers

Devices Supported by BRU

DSC-Supported Devices

DSC Device Status

DSC Switches and Options

Operating System Limits for DSC Block Factor
Commands Using DSC Rewind Switch
Stand-Alone DSC Switches

System-Generated CSR and Vector Addresses
General Error and I/O Error Messadge Codes
Legal Multifile/Volume Format in Logical
Tape

Summary of PRESRV Switches

Default Blocking Factors

CSR and Vector Addresses

VFY Default File Specifiers

VFY Functions and Switches

VFY Error Codes

Defaults in LBR File Specifiers

LBR Switches

DMP Switches

SLP Operators

SLP Switches

ZAP Arithmetic Operators

ZAP Command Line Element Separators

ZAP Open/Close Commands

ZAP General-Purpose Commands

XV

SUMMARY OF TECHNICAL CHANGES

Utilities can now be used from the DIGITAL Command Language (DCL)
environment (on RSX-11M-PLUS) as well as from the Monitor Console
Routine (MCR) environment (on RSX-11lM and RSX-11M-PLUS).

The RSX-11M Print Spooler Task (PRT) 1is now <called the Serial
Despooler Task. The new name distinguishes it from another task named
PRT that is part of the Queue Manager (see below). The choice of
Serial Despooler or Queue Manager is made at system generation. All
switches or commands that despool output operate the same way with
either task.

The following lists the technical changes (such as new functionality,

new and revised switches, and new utilities) by utility, in the order
in which the utility appears in this manual.

Peripheral Interchange Program (PIP)

/CD - Creation Date (new) - allows the output file to take the
creation date of the input file rather than the date of transfer.

/EOF - End-of-file (new) - specifies the end-of-file pointer for
a file.

/FR - Free blocks (revised) - displays the amount of free space
on the specified volume and the largest contiguous free space on
that volume.

/LD - List Deleted files (new) - lists the files that have been
deleted.

/NM - No Message (new) - suppresses certain PIP error messages.
/TR - Truncate (new) - truncates file(s) to logical end-of-file.

/SD - Selective Delete (new) - deletes files selectively by
prompting for user response before deleting them.

/SR - Shared Reading (new) - allows shared reading of a file that
has already been opened for writing by another user or task.

/SU - Supersede (revised) - allows you to copy one or more input

files to a file whose file name, file type, and version number
already exist in a User File Directory.

xvii

File Transfer Program (FLX)

FLX now supports RK06/RK07, RLOl, and RX02 disks, and the TUS8
data cartridge. All devices are RT-1ll1l compatible only. 4‘!&

/DNS:n - Density (new) - specifies the density of the magnetic
tape; n is 800 or 1600 bpi.

/RW - Rewind (new) - rewinds the magnetic tape before beginning
the file transfer.

The Queue Manager

The Queue Manager is a collection of programs that provides for
the orderly processing of queued files., The Queue Manager allows
you to specify how, when, and where a file will be despooled.
You can also display information about the queue. On
RSX-11M-PLUS only, the Queue Manager supports batch processing.

This manual describes the Queue Manager for RSX~1lM VO03.2 only.
For information on the Queue Manager for RSX-11M-PLUS, see the
RSX-11M-PLUS Batch and Queue Operations Manual.

Disk Volume Formatter (FMT)

FMT is a new wutility that formats disk volumes (cartridges,

packs, and flexible disks) and, optionally, spawns the Bad Block

Locator Utility (BAD) if your system supports spawned tasks. FMT

allows you to format an entire volume or, where permitted,)
individual tracks or sectors of a volume. gugg

Bad Block Locator Utility (BAD)

/MAN - Manual (new) - prompts you for bad block information and
enters the blocks you specify in the bad block descriptor file.

/UP - Update (new) - allows you to update the bad block
descriptor £file by entering additional bad block information in
response to prompts.

Back-Up and Restore Utility (BRU)
BRU is a new fast back-up and restore utility that features:
e Disk-to-tape back-up
e Tape—-to-disk restore
e Disk-to-disk copying
e Incremental back-up or restore
e Copying from an unmounted disk

e Copying to a disk that is either wunmounted (BRU initializes
the disk) or mounted (using the file system)

xviii

-’

Disk

Save and Compress Program (DSC)
DSC now supports TS04 magnetic tape drives.
Specifying a label name for an output volume is now permitted.

/BAD - Bad Block Locator Utility (revised) - agrees with the
syntax for the current version of the BAD utility.

/BL - Blocking Factor (new) - sets the blocking factor at which
DSC accesses blocks of data by enabling the user to change the
number of 512(10)~byte blocks in each of DSC's internal buffers.

Librarian Utility Program (LBR)

File

LBR can now create and maintain universal 1libraries. Any file
can be installed as a module into a universal library.

/MH - Modify Header (new) - allows you to add information to a
universal library header.

Dump Utility (DMP)

/FI - File Identification (new) - allows you to enter a file
number as a file identifier instead of a file name.

/HF - Header Format (new) - formats blocks that have Files-11
header structures. Other blocks are output as an unformatted
octal dump.

/RW - Rewind (new) - issues a rewind command before it refers to
a specific tape.

Source Language Input Program (SLP)

SLP and its audit trail switch (/AU) have been modified to allow
a maximum line-length of 132(10) characters.

/CS - Checksum (new) - calculates the checksum value for the edit
commands.

/TR - Truncate (new) - reports lines that have been truncated by
the audit trail.

xix

PREFACE

MANUAL OBJECTIVES
The RSX-1l Utilities Manual is a reference manual describing the use

of the 17 utilities supported by DIGITAL on the RSX-1lM and
RSX-11M-PLUS operating systems.

INTENDED AUDIENCE

This manual is for all users of the RSX-11lM and RSX-11M-PLUS operating
systems.,

STRUCTURE OF THIS DOCUMENT

Chapter 1 describes briefly each of the utilities, and explains how to
enter command lines and how to invoke and use the utilities.

Chapter 2 describes the DEC Standard Editor (EDT).

Chapter 3 describes the Line Text Editor (EDI).

Chapter 4 describes the Peripheral Interchange Program (PIP).
Chapter 5 describes the File Transfer Program (FLX) .

Chapter 6 describes the Print and Queue Utility (PRI and QUE).
Chapter 7 describes the Queue Manager.

Chapter 8 describes the Disk Volume Formatter (FMT) .

Chapter 9 describes the Bad Block Locator Utility (BAD) .
Chapter 10 describes the Back-Up and Restore Utility (BRU).
Chaptér 11 describes the Disk Save and Compress Program (DSC).
Chapter 12 descfibes the Preservation Utility (PRESRV).
Chapter 13 describes the File Structure Verification Utility (VFY).
Chapter 14 describes the Librarian Utility Program (LBR) .
Chapter 15 describes the File Dump Utility (DMP).

Chapter 16 describes the File Compare Program (CMP) .

xxi

Chapter 17 describes the Source Language Input Program (SLP).
Chapter 18 describes the Object Module Patch Utility (PAT).
Chapter 19 describes the Task/File Patch Program (ZAP).

Appendix A is a summary of the commands and switches for the
utilities.

Appendix B contains examples of the LBR, EDI, and DMP utilities.,

Appendix C describes the RSX-11M Serial Despooler Task (see the
Summary of Technical Changes).

Appendix D describes the Cross-~Reference Processor (CRF).

ASSOCIATED DOCUMENTS

The RSX-11M/RSX-11S Documentation Directory and the RSX-1lM-PLUS

Documentation Directory briefly describe the manuals in the
documentation set for each system. With them, you can f£ind out where
to obtain more information.

The RSX-11M/M-PLUS MCR Operations Manual describes the Monitor Console
Routine (MCR) environment and 1its commands. The utilities can be
invoked from the MCR environment. This manual provides background
information about MCR.

The RSX-11M-PLUS Command Language Manual describes the DIGITAL Command
Language routine (DCL) and its commands. The utilities can be invoked
from the DCL environment. This manual provides background information
about DCL.

CONVENTIONS USED IN THIS DOCUMENT
Use of Second Color

User (operator) input appears in red.

Use of Uppercase Characters

Uppercase characters in a command line indicate characters that must
be entered as they are shown. For example, utility switches must
always be entered as they are shown in format specifications. An
exception is the <CR> symbol, which denotes a carriage return.

Use of Lowercase Characters

Lowercase letters, words, or symbols 1in command line format
specifications represent variables for which the user substitutes
values. For example:

filename.filetype;version

The line represents the values that comprise a file specification;
values are substituted for each of these variables as appropriate.

xxii

Command Abbreviations
Where short forms of commands are allowed, the shortest form
acceptable is represented by uppercase characters. The following
example shows the minimum abbreviation allowed for the EDI WRITE
command:

Write
This notation means that W, WR, WRI, WRIT, and WRITE are all valid
specifications for the WRITE command.
Use of Brackets ([])
Brackets denote optional entries in a specification. Brackets also
are a part of the User File Directory portion of file specifications,
that is, [group,member]. When this portion of a file specification is
entered explicitly, brackets are required syntax elements; that is,
they do not indicate optional entries. Note that when an option |is
entered, the brackets are not included in the command line.
Use of commas (,)
Commas are used as separators for command line parameters and indicate
positional entries on a command line.
Use of At Sign (@)
The at sign (@) invokes an indirect command file. The at sign
immediately precedes the file specification for the indirect command
file:

@filename.filetype;version

Use of Periods (.)

Periods in the file specification separate the file name and file
type. When only the file name is used as the file specification, the
period need not be specified.

Use of Semicolons (;)

Semicolons in the file specification separate the file type from the
file wversion, If the version is not specified, the semicolon may be
omitted from the file specification.

Use of Slashes (/)

Slashes precede switches in the file specification. When shown in the
command line format, they must be specified as shown.

Carriage Return

Command lines are ' terminated by typing the RETURN key (carriage

return) unless otherwise indicated in the text. Two forms used to
denote the RETURN key are <CR> and (rr).

xxiii

R

PART 1
INTRODUCTION

-’

CHAPTER 1

INTRODUCTION

The RSX-11M and RSX-11M-PLUS operating systems provide several kinds
of wutilities for your use. Utilities are programs that allow you to
work with different kinds of files and the contents of those £files,
and also with different kinds of media (such as disks, magnetic tapes,
and cassettes). The RSX~1l utility programs are listed and described
briefly in Section 1.1; reference information for each utility is
presented in a separate chapter of this manual. Four appendixes are
also included to provide you with information related to the utilities
and to describe the Cross-Reference Processor (CRF), which 1is wused
with the MACRO-11 assembler and the Task Builder.

In addition to summarizing the RSX-11l utilities, this introduction:

o Describes how to enter RSX-11 command lines and file
specifications (Sections 1.2 and 1.3)

e Describes how to invoke utilities (Section 1.4)

1.1 RSX-1) UTILITY PROGRAMS

This manual provides reference information for the following RSX-11
utilities:

Editing Utilities
DEC Editor (EDT)
Line Text Editor (EDI)

File Manipulation Utilities
Peripheral Interchange Program (PIP)
File Transfer Program (FLX)

File Spooling Utilities
Print and Queue Utility (PRI and QUE)
The Queue Manager

Volume Maintenance Utilities
Disk Volume Formatter (FMT)
Bad Block Locator Utility (BAD)
Back-Up and Restore Utility (BRU)
Disk Save and Compress Program (DSC)
Preservation Utility (PRESRV)
File Structure Verification Utility (VFY)

Programming Utilities
Librarian Utility Program (LBR)
File Dump Utility (DMP)

INTRODUCTION

Program Maintenance Utilities
File Compare Utility (CMP)
Source Language Input Program (SLP)
Object Module Patch Program (PAT)
Task/File Patch Program (ZAP)

The following sections briefly describe each utility.

1.1.1 Editing Utilities

DIGITAL supports two editing programs for creating and maintaining
text and source files.

1.1.1.1 DEC Editor (EDT) - EDT is an interactive text editor that is
partlcularly useful for creating and maintaining text files. EDT has
two features that distinguish it from EDI:

e Provides unlimited access to an entire file at one time,
making it unnecessary to work with most files in smaller
sections. (However, a file can be too large for EDT.)

e Provides character-mode editing for users with video
terminals. Character mode allows you to edit at the character
and word levels as well as at line level.

1.1.1.2 Line Text Editor (EDI) - EDI is a line-oriented, interactive
editor used to create and maintain text and source files.

1.1.2 File Manipulation Utilities

DIGITAL provides two £file manipulation wutilities. With these
utilities, you can, among other Jjobs, copy and spool files and
transfer files between volumes.

1.1.2.1 Peripheral Interchange Program (PIP) - PIP copies files and
performs several file control functions, such as concatenating,
renaming, spooling, listing, deleting, and unlocking.

1.1.2.2 File Transfer Program (FLX) - FLX is a file transfer and
format conversion program that transfers files between pDos-11, RT-11,
and Files-11 volumes, with some restrictions.

1.1.3 File Spooling Utilities

File spooling is handled differently on RSX-11M and RSX-11lM-PLUS. For
RSX-11M-PLUS, see the RSX-11M-PLUS Batch and Queue Operations Manual.

RSX-11M systems can include either the Queue Manager or the Print
Spooler task, ...PRT. PRT is described in Appendix C.

INTRODUCTION

1.1.3.1 Print Command and the Queue Manager (PRI and QUE) - This
chapter describes how the user interfaces with the Queue Manager.
With the Queue Manager, files can be spooled with the Print command.
Files spooled by tasks will also be queued automatically. You can set
many attributes of the Jjob with the Print command or with the
QUE /MODIFY commands. You can also display the queues and you can
alter, hold, or release a job after it has been placed in the queue.

1.1.3.2 The Queue Manager - This chapter describes the privileged
commands for setting up and running the Queue Manager.

1.1.4 Volume Maintenance Utilities

Volume maintenance includes backing up files onto the volumes,
locating bad blocks on the volumes, and verifying the contents of the
volumes. DIGITAL provides six volume maintenance programs.

1.1.4.,1 Disk Volume Formatter (FMT) - FMT formats and verifies
RP02/RP03, RP0O4, RP05, RPO6, RM02, and RM03 pack disks, RK05, RKO6,
and RK07 cartridge disks, and RX02 flexible disks. FMT can:

e Write complete headers for each sector of a disk
e Verify the headers it writes
e Set the density for RX02 flexible disks

e Set the maximum error limit for a disk pack and terminate
processing when the limit is reached

e Allow spawning of the Bad Block Locator Utility (if vyour
system allows spawned tasks)

1.1.4.2 Bad Block Locator Utility (BAD) - BAD determines the number
and location of bad blocks on a volume (including magnetic tape). The
information gathered from running BAD on a volume can be used in
different ways when that volume is initialized.

1.1.4.3 Back-Up and Restore Utility (BRU) - BRU transfers files from
a Files-11l volume to one or more back-up volumes (including
non-Files-11 volumes) and retrieves files from the back-up volume(s).
BRU 1is faster than DSC or PRESRV (described below) in most areas.
Also, BRU compresses data, the volumes do not have to be initialized,
and incremental back-ups are possible,

1.1,4.4 Disk Save and Compress Program (DSC) - DSC copies Files-11
disk files to disk or tape and from DSC-created tape back to disk.
While copying the files, DSC also consolidates the data storage area
and writes files in contiguous blocks unless it encounters a bad
block. DSC can be run either online or stand-alone.

INTRODUCTION

1.1.4.5 Preservation Utility (PRESRV) - PRESRV is a stand-alone
program that allows you to create copies of volumes. Unlike DSC,
PRESRV does not flag bad blocks or compress volumes.

1.1.4.6 File Structure Verification Utility (VFY) - VFY 1is a disk
verification program that verifies the consistency and validity of the
file structure on a Files-11 volume.

1.1.5 Programming Utilities

DIGITAL supports two programming utilities. The utilities allow you
to.work with library files and to examine file contents.

1.1.5.1 Librarian Utility Program (LBR) - LBR is a library
maintenance program that creates and modifies library files. LBR can
process macro, object, and universal libraries.

1.1.5.2 File Dump Utility (DMP) - DMP is a file listing program that
allows you to examine file contents. DMP also provides options that
control the format of the contents. '

1.1.6 Program Maintenance Utilities

Program maintenance includes modifying, patching, and comparing files.
DIGITAL provides four program maintenance utilities.

1.1.6.1 File Compare Utility (CMP) - CMP compares two text files,
record by record, and lists the differences between the two files.

1.1.6.2 Source Language Input Program (SLP) - SLP is a noninteractive
editing program that is used to maintain and audit source files.

1.1.6.3 Object Module Patch Program (PAT) - PAT is an object module
patch wutility that updates, or patches, a relocatable binary object
module.

1.1.6.4 Task/File Patch Program (ZAP) - ZAP is a patch wutility that
examines and directly modifies locations in a task image or data file.

1.2 ENTERING RSX-1l COMMAND LINES

The general format for entering command lines to RSX-11l utilities is:

outfile,...outfile=infile,...infile<CR>

INTRODUCTION

where outfile and infile are file specifications for the output and
input files to be operated on by the utility.

This general format varies from utility to wutility. Some use the
entire command 1line and others use abbreviated forms of the command
line, For some other wutilities (such as BRU), the format |Iis
different. The syntax for each utility is described in the chapter
that describes that utility. The utilities also accept indirect
command files containing command lines, as described in Section 1.4.4.

1.3 ENTERING FILE SPECIFICATIONS

In the command line format described in Section 1.2, outfile and
infile represent file specifications. The number of file
specifications you can enter depends on the utility. The maximum
terminal line length depends on the size of the output buffer for your
terminal.

The format for entering file specifications is:
dev: [group,member]filename,filetype;version/sw.../subsw...<CR>
dev:

The physical device containing the desired volume. The name
consists of two or three ASCII characters followed by an optional
1-, 2-, or 3-digit octal unit number and a colon, for example,
DKO:, TT100:, or DBAO:. For RSX-11M, device names are limited to
two ASCII characters,

The default is the system device, SYO:.
[group,member]

The group number and member number associated with the User File
Directory (UFD) containing the desired file. Both numbers are
octal.

The default is the current UIC.
filename

The name of the file. RSX~1l1l file names can be null or consist
of up to nine alphanumeric characters.

There is no default.
filetype

The file type of the file. The file type provides a convenient
means for distinguishing different forms of the same file. For
example, a FORTRAN source program file might be named COMP.FTN
and the object file for the same program might be named COMP.OBJ.
File type and file name are separated by a period. The file type
can be Zero to three alphanumeric characters. See the
RSX-11M/M-PLUS MCR Operations Manual for a list of standard file
types.

There is no default.

INTRODUCTION

version

An octal number that specifies different versions of the same
file. For example, when a file is created, it is assigned a
version number of 1 by default. Thereafter, each time the file
is opened and unless you specify otherwise, the file system
creates a new file with the same file name and file type, but
with a version number incremented by l. Version numbers can
range from 0 through 77777(8). Version number and file type are
separated by a semicolon.

The default is the latest version.

/sw

An ASCII name specifying a switch associated with a function to
be executed by the wutility. Most utility functions are
implemented by means of switches and subswitches. Switches can
take one of three forms:

/sw invokes the switch function

/—sw negates the switch function

/NOsw negates the switch function
Switches can take values in the form of ASCII strings and numeric
strings.
Most numeric values are octal by default, To specify a decimal
number, terminate the number with a decimal point. Values
preceded by a pound sign (#) are octal; this optional notation
provides explicit documentation of octal values. Any number can
be preceded by either a plus (+) or minus (-) sign; plus is the
default. Where explicit octal notation (#) is used, the sign, if
specified, must precede the pound sign.
The following are valid switch specifications:

/SW:27.:MAP: 29,

/—SW

/NOSW: -#50: SWITCH

/subsw

An ASCII name specifying a subswitch associated with a switch.
Subswitches provide a subset of functions related to the main

switch function. The following is an example of a subswitch
specification:

PIP> [200,200]*. *;*/PR/FO<KCR>
In this example, /FO is a subswitch applied to the PR switch.

Syntactically, subswitches are identical to switches. The rules
for entering switches also apply for entering subswitches.

1.4 INVOKING RSX-1ll UTILITIES

You can invoke a utility from the Monitor Console Routine (MCR) or
DIGITAL Command Language (DCL) environment, MCR is on both the
RSX-11M and RSX-11M-PLUS systems. DCL is on RSX-11M-PLUS only. Both
MCR and DCL monitor your terminal activity; that is, they accept or
reject commands you enter and they display messages. (For more

1-6

INTRODUCTION

information on MCR, see the RSX-11M/M-PLUS MCR Operations Manual. For
more information on DCL, see the RSX-11M-PLUS Command Language
Manual.)

To determine whether you are using MCR or DCL, type CTRL/C, which
returns the explicit monitor prompt: either MCR> or DCL>.

You invoke a utility and then work with it directly or by means of
indirect command files. For systems in which all utilities are
installed, you can use any of three methods to invoke a utility.
Sections 1.4.1 and 1.4.2 describe these methods. For systems in which
not all utilities are installed, you can use two methods for invoking
a utility. Section 1.4.3 describes these methods.

Section 1.4.4 describes how to invoke a utility that can then accept
commands from an indirect command file.

You invoke a utility when the RSX~-11M/M-PLUS MCR or RSX-11M-PLUS DCL
routine prompts you,

For RSX-11M/M-PLUS, the MCR prompts are:

> or (if you type CTRL/C first) MCR>
For RSX-11M-PLUS, the DCL prompts are:

> or (if you type CTRL/C first) DCL>

DCL has commands that access utilities transparently to the user, that
is, you do not have to explicitly specify the utility in order to use
It. For example, the DCL command DIFFERENCES invokes the File Compare
Utility (CMP); and the DCL commands COPY, DELETE, and PURGE invoke
the Peripheral Interchange Program (PIP). This transparent access to
utilities covers most common instances of utility needs for DCL users.
If you use these DCL commands, the general format for specifying files
is:

>command [/qualifiers] infile outfile

DCL users can also use any MCR command forms by wusing the DCL MCR
command. However, 1if vyou are wusing DCL and you want to have full
access to the utilities as detailed in this manual, you must invoke
the wutility using the RUN command. Sections 1.4.2.3 and 1.4.3
describe this procedure.

1.4.1 Installing Utilities on Your System

RSX~1l systems provided in distribution kits require the wuse of the
MCR RUN or DCL RUN command to invoke a utility. Utilities must be
installed on your system before you can invoke a utility by its name.
To install wutilities on your system, use the MCR command INSTALL or
the DCL command INSTALL.

1.4.2 Invoking Installed Utilities

You can use three primary methods for invoking installed wutilities.
Sections 1.4.2.1, 1.4.2.2, and 1.4.2.3 describe the methods.

INTRODUCTION

1.4.2.1 Invoking a Utility and Returning Control to MCR - Use one of
the following forms of command lines to invoke a utility to execute a
function and then return control directly to MCR:

>utilityname commandstring<CR>
or
MCR>utilityname commandstring<CR>

Using this method to invoke the utility allows you to enter a single
command for execution. The utility is 1loaded, the command is
executed, and control returns to MCR. (The method described in
Section 1.4.2.3 allows you to enter more than one command line because
control returns to the utility rather than to MCR,)

Two exceptions to this command format are the SLP and ZAP utilities.
You must first invoke these utilities and then enter the command lines
as described in Section 1.4.2.3. (However, you can specify SLP
@indirectcommandfile; see Section 1.4.4.)

1.4.2.2 1Invoking a Utility and Returning Control to DCL - Use the
following form of command line to invoke a utility to execute a
function and return control directly to DCL:

>command<CR>

Using this method to invoke the utility allows you to enter a single
command €for execution. The DCL command transparently accesses the
utility (see Section 1.4), the wutility 1is 1loaded, the command is
executed, and control returns to DCL.

Two exceptions to this command format are the SLP and ZAP utilities.
You must first invoke these utilities and then enter the command lines

as described in Section 1.4.2.3. (However, you can specify SLP
@indirectcommandfile; see Section 1.4.4.)

1.4.2.3 1Invoking and Passing Control to a Utility - Use one of the
following forms of command lines to invoke a utility and pass control
to it:
e For MCR:
>utilityname<CR>
e For DCL:
>RUN $utilityname<CR>
or
>MCR utilityname<CR>
These commands do not execute a function; rather, they make a utility
available for execution of more than one function without returning
control to MCR or DCL. When invoked using one of these forms, the
utility responds with the prompt:

utilityname>

1-8

INTRODUCTION

You may then enter the command string that specifies the function vyou
want executed. For example, if you are executing a PIP function, PIP
displays the prompt:

PIP>

To terminate the utility and return to MCR or DCL, type CTRL/Z.

1.4.3 1Invoking Uninstalled Utilities

There are two methods for invoking uninstalled utilities, These
methods are useful for smaller systems in which not all utilities are
installed. Both methods use either the MCR command RUN or the DCL
command RUN (depending on which monitor you are using) to invoke the
utility.

The first method invokes the wutility by means of the following
command:

>RUN S$Sutilityname<CR>
RUN is the MCR command RUN or the DCL command RUN; the dollar sign
($) directs MCR or DCL to search the system directory for the utility
and to bring it into storage. On RSX-11M-PLUS, if the utility is not
in the system directory, MCR or DCL then searches in the library
directory and invokes the utility from there.
When the utility gains control, it displays the prompt:

utilityname>
Then it waits for you to enter a command line. The utility continues
to prompt you after each command is executed. To terminate the
utility, enter CTRL/Z.
The second method for invoking an uninstalled utility is the same as
the first except that it allows the utility to run under a UIC other
than the current UIC:

e For MCR:

>RUN S$utilityname/UIC=[group,member]<CR>

e For DCL:

>RUN/UIC: [group, member] $utilityname<CR>

When the utility gains control, it prémpts for functions to execute
until you enter CTRL/Z.

1.4.4 Using Indirect Command Files

An indirect command file contains a sequence of command lines that can
be interpreted by a single task (usually a system-supplied task such
as a utility, the MACRO-1l1 assembler, or the Task Builder). These
command lines appear in the indirect command file exactly as you would
enter them from your terminal.

1-9

INTRODUCTION

The commands contained in the indirect command file are executed when
the indirect command £file 1is invoked. For example, an indirect
command f£ile might contain a series of PIP command lines. To invoke
such an indirect command file, enter one of the following sets of
commands: -

e For MCR:
>PIP @PIPCMDS.CMDLCR>
e For DCL:

>RUN SPIP<CR>
PIP>@PIPCMDS<KCR>

or

>MCR PIP @PIPCMDS<CR>

or

>MCR PIP<CR>
PIP>@PIPCMDSLCR>

In this example, PIP is invoked and accesses the file PIPCMDS.CMD,
which contains the sequence of PIP commands. PIP executes the
commands and returns control to MCR, DCL, or PIP, depending on which
commands you use.

RSX~-11M and RSX-11M-PLUS also allow you to use indirect command files
that contain MCR commands. The indirect command file contains both
the commands for invoking the utility and the commands that you want
the utility to execute. An indirect command file can contain command
lines for more than one utility.

You invoke the indirect command file by entering only the file
specification preceded by the at sign (@) in response to the MCR
prompt:

>@indirectcommandfile<CR>

The default values for indirect command file specifications are:

e Device -- 5Y0:
o [group,member] -- the current UIC
e File name -~- no default; must be specified

e File type -- .CMD

e Version -~ the latest version of the file

For complete information on how to use MCR indirect command files,
refer to the RSX-11M/M-PLUS MCR Operations Manual.

PART 2
EDITING UTILITIES

CHAPTER 2

DEC EDITOR (EDT)

The DEC Editor (EDT) provides a means of creating and editing text
files. While editing a file using EDT, you always have access to the
entire file. It is not necessary to deal with the file 1in pages or
buffers of fixed size.

Within EDT, there are two basic modes of operation: Command Mode and
Character Mode.

e Command Mode allows you to use EDT as a line-oriented editor.
In Command Mode, each line has a line number assigned by EDT.
By 1issuing commands that refer to these numbers or to
character strings within a line, you can manipulate lines or
groups of lines. You <can also replace character strings
within a line or a group of lines. While in Command Mode, EDT
maintains a line pointer that points to one line, called the
current line.

e Character Mode can only be used on video terminals. It allows
you to maneuver the cursor from character to character within
a line, or from line to line within a file. Using the cursor
as a pointer, you can manipulate individual characters, words,
lines, and groups of lines,

You gain access to Character Mode through the Change command, which
you issue at Command Mode. It is not possible to go directly from the
monitor to Character Mode without passing through Command Mode. In
this respect, Character Mode can be viewed as one function of Command
Mode. However, you should treat Character Mode as a separate editor
from Command Mode. Character Mode and Command Mode complement each
other to provide a complete editing system.

EDT offers several other features. Among them:

e Main and alternate text buffers. A buffer is a text storage
area. The editing commands that you issue affect text in
buffers; they do not affect files directly. By default, EDT
maintains a single text buffer, called the main buffer.
However, you can create alternate buffers to contain text
which, for some reason, you wish to hold apart from the main
body of text. EDT commands allow you to move lines and groups
of lines back and forth between buffers.

e Editing session backup commands. You can save the current
state of your editing session, including alternate buffer
contents and line pointer location, in a specially formatted
file. At a later time, you can restore the state of your
editing session and take up exactly where you left off, This
feature allows you to pause during a complicated editing
session and also to protect yourself against the accidental
loss of text generated during the session.

2-1 -

DEC EDITOR (EDT)

e File and buffer I/0 commands. While working in Command Mode,
you can create a file from a text buffer or part of a text
buffer. You can also copy the contents of an existing file
into a text buffer. This feature allows you to incorporate
material from several different files into one buffer during a
single editing session.

This chapter is organized into six sections:

e Section 2.1 describes the procedures used to invoke EDT, and
discusses EDT input and output files.

® Section 2.2 describes the elements of an EDT Command Mode
command string, provides a functionally organized list of EDT
commands, and explains range and option specification in EDT.

e Section 2.3 lists Command Mode commands alphabetically, and
provides a detailed description of each.

e Section 2.4 contains a complete guide to EDT's Character Mode,
including the special Character Mode subcommands.

e Section 2.5 contains a summary, in tabular form, of the EDT
Command Mode commands.

e Finally, Section 2.6 lists EDT error messages, and provides
explanations and corrective actions for them.

2.1 INVOKING EDT
You can use most of the methods described in Chapter 1 to invoke EDT.
However, there is one major difference, which occurs if you invoke EDT
using the form

>utilityname commandstring
In this situation, EDT replies with its Command Mode prompt (*). Most
utilities, when invoked in this manner, perform the function specified
in the command string and return to the monitor.
To invoke EDT, follow one of these two sequences:

>EDT [outfile=][infile]<RET>
*

or
>EDT<KRET>
EDT> [outfile=][infile]<RET>
*

outfile

Specifies the output f£ile that EDT creates at the end of the
editing session. When you exit EDT at the end of the session,
EDT creates the output file and fills it with the contents of the
main text buffer.

If you do not specify the output file, the output file name and
type default to the input file name and type. The output file
version number defaults to the version number of the input file,
plus one.

DEC EDITOR (EDT)

infile

Specifies the file that EDT uses as an input file; or, if infile
names a file that does not exist, sets the default file name and
type for the output file that EDT creates when you exit at the
end of the wediting session. If you specify an existing input
file, EDT loads its main text buffer from that file. If you do
not specify an input file, or specify an input file that does not
exist, EDT does not load the main text buffer; this means that
you begin the editing session with an empty buffer.

EDT's Command Mode prompt, indicating that EDT is in Command Mode
and ready to accept editing commands.

Note that you do not have to specify either an input file or an output
file, If you specify neither one, you begin the EDT session with an
empty main text buffer; furthermore, you must specify an output file
when exiting EDT if vyou wish to save the text generated during the
session. If you specify an output file only, you begin the session
with an empty buffer, but you will not need to specify the output file
when you exit., For example:

>EDT BILBO.TXT=
*

or

>EDT
EDT>BILBO.TXT=
*

both cause EDT to create the output file BILBO.TXT upon exit. (This
example illustrates two principal methods of invoking EDT; the two
methods are equivalent.) By default, the version number of the output
file is 1, if the file did not exist previously; or, if the file
already exists, n+l, where n is the highest current version number.
(See Table 2-1 for a complete 1list of EDT file specification
defaults.)

If you specify only the input file, there are two possibilities: the
input file that you specify exists, or it does not exist. If the file
exists, EDT loads its main text buffer from the contents of the file
and also sets the default output file to match the input file, with a
version number one higher than that of the input file. If the input
file does not exist, EDT does not load the text buffer; it simply
sets the default output file to match the input file. For example:

>EDT FRODO.TXT
*

is equivalent to
>EDT FRODO.TXT=FRODO.TXT

if the file FRODO.TXT currently exists, and equivalent to
>EDT FRODO.TXT=

if the file FRODO.TXT does not currently exist.

DEC EDITOR (EDT)

Table 2-1
EDT File Specification Defaults

Default Value Default Value
Element for Input File for Output Filel
dev: SYO: Same as input device
[ufd] UFD under which EDT Same as input [ufd]
is currently running
filename No default~--must Same as input file name
be specified
.filetype Null Same as input file type
;version Latest version Latest version+l

1 output file defaults take effect only when no output file
is specified. If you specify an output file name and type,
the output file device and UFD default to your current SYO:
and UFD, even if the device and/or UFD of the input file are
different.

In the normal situation of editing an existing file with the intention
of creating a new version of the file, you need only specify an input
file. If you are creating a new file, you also need only specify an
input file in order to set EDT's default output file. Note, however,
that EDT does not explicitly distinguish between these two situations;
you do not receive a message that tells you whether your input file
existed or not. It is possible to mistype the name of an existing
file and then begin your editing session in the belief that EDT has
loaded the text buffer. You usually find out that ' the buffer is empty
as soon as you issue an editing command. In these cases, issue the
Quit command to leave EDT without creating an output file, and start
over again.

2.2 THE EDT COMMAND STRING

EDT makes changes to the text in response to commands that you enter
at your terminal. You can issue commands only when you receive the
asterisk prompt that indicates Command Mode.

When you enter a command, you have to specify the action you want EDT
to take, and you have to specify the buffer and buffer portion you
want to affect. The buffer and buffer portion, taken together, are
called the range. Finally, you can modify the action of the command
by specifying an option or options to the command. Thus, the entire
command string can consist of:

e Command name
e Range specification

e Options

e Carriage return

DEC EDITOR (EDT)

The command name tells EDT which command to execute. The range
specification tells EDT which buffer or buffer portion is to be
affected by the command. The options let you control the command
execution or specify actions for EDT to perform during execution.

In one command or another, all of the above command string components
are optional except the carriage return, Most commands provide a
default range specification if you do not specify a range explicitly.
If you do not specify a command explicitly, EDT defaults to the Type
command. However, EDT takes no action on any command string until you
terminate it with a carriage return.

2.2.1 EDT Commands

EDT commands are English words that tell EDT what action to take. In
each case, the full command name suggests the intended action.
However, you need not type the full command name; you can type an
abbreviation for the command. Most of these command abbreviations are
one or two letters long.

Table 2-2 lists the commands by category; a brief description of each
category follows. Section 2.3 contains complete descriptions of each
command, presented in alphabetical order.

Table 2-2
EDT Commands
Section
Command Function Reference
Commands to Locate and Display Lines

Find Repositions the 1line pointer to the 2.3.5
specified line

Type Displays lines of the text buffer on the 2,3.18
terminal

Commands to Input and Modify Text

Copy Copies one or more lines from one buffer 2.3.2
location to another

Move Moves one or more lines from one buffer 2.3.8
location to another, and deletes the
lines from the original location

Delete Deletes one or more lines from the text 2.3.3
buffer

Insert Inserts terminal input into the text 2.3.7
buffer

Replace Deletes one or more lines, and replaces 2.3.11
the deleted lines with terminal input

Substitute Changes characters within 1lines of the 2.3.17
text buffer

(continued on next page)

DEC EDITOR (EDT)

Table 2-2 (Cont.)
EDT Commands

Section
Command Function Reference
Commands to Leave EDT

Exit Outputs the main text buffer contents to 2.3.4

a file, and then returns to the monitor
Quit Returns to the monitor without creating 2.3.10

an output file

Commands to Back Up and Restore Editing Sessions

Save Creates a file containing the contents of 2.3.14

all text buffers currently in use
Restore Recreates all text buffer contents from a 2.3.13 A!!Q

temporary £file created by the Save ’

command

Commands to Output To and Input From Files

Write Creates a file from text buffer contents 2.3.19
Print Creates a file from text buffer contents, 2.3.9

including the 1line numbers that EDT Alﬁg

assigns !
Include Copies a file into a text buffer 2.3.6

Commands to Establish and Display Parameters

Set Specifies display and match «criteria to 2.3.15

be used by EDT for character searches
Show Displays current match and display 2.3.16

criteria and buffer status

Miscellaneous Commands

Change Invokes Character Mode 2,3.1
Resequence Renumbers the 1lines in the text buffer 2.3.12
XEQ Executes a group of previously entered 2.3.20
(Execute) EDT commands

DEC EDITOR (EDT)

Commands to Locate and Display Lines

The two commands in this group both cause EDT's line pointer to point
to a new line, but they do not modify any text. The Find command
positions the line pointer at the line that you specify. You can
specify the line in any of a variety of ways, as explained in Section
2.2.2. The Type command also repositions the line pointer, but Type
additionally prints the line or lines you specify on your terminal.

Commands to Input and Modify Text

Use the commands in this group to modify existing text or create new
text. All of these commands, with the exception of Substitute, work
on a line basis; that is, the smallest unit of text they can handle
is a complete line.

The Copy and Move commands are similar in that they direct EDT to move
a line or group of lines from one location to another. However, the
Copy command does not delete the lines from the original 1location,
while the Move command does. Both the Copy and Move commands cah
affect the position of the line pointer.

The Copy and Move operations can take place within a buffer or between
buffers; in fact, it is possible to Copy or Move an entire buffer to
a specified location within another buffer., This is useful 1in cases
where you wish to take text from a file, modify it, and insert it into
your main text buffer, Typically, you might first wuse the Include
command to place the file into an alternate text buffer; then issue
various editing commands to modify the text in the alternate buffer;
and finally Copy the text to the desired location in the main buffer.

The Delete command allows you to delete a single 1line of text; a
block of 1lines in a text buffer; all lines in a text buffer that
contain a specified character string; or an entire buffer.

The Insert and Replace commands are similar in that both allow you to
insert one or more lines of text in a text buffer. However, Replace
deletes the line or lines that you specify before you insert the text;
in other words, Replace replaces specified lines with text that you
supply. Insert and Replace are unusual in that they do not return
directly to the Command Mode asterisk prompt when you enter them.
Instead, there is no prompt; EDT waits for you to supply input. You
then insert one or more lines of text until you type a <RET> at the
end of a line, followed by a <CTRL/Z>. At this point, EDT recognizes
that the insert is finished and returns the asterisk prompt; you can
then issue more Command Mode commands.

The Substitute command is the only Command Mode command that can
affect text within a line, instead of affecting the entire line. It
allows you to replace a specified character string with another
character string. The strings need not match in length. You can
replace a string in a single line; in each of a group of lines; or
in all 1lines in a buffer. If you wish, you can substitute
selectively: you specify a substitution to be made in all lines, and
EDT prompts you at each substitution opportunity, allowing you to
accept or reject each substitution as appropriate.

All the commands in this group can affect the position of the 1line
pointer as part of their function. See the individual command
descriptions in Section 2.3 for detailed information.

DEC EDITOR (EDT)

Commands to Leave EDT

The Exit and Quit commands both direct EDT to terminate the current
editing session and return to the monitor. The Quit command does this
without creating an output file; in other words, EDT does not output
the contents of 1its main text buffer into a file when you issue the
Quit command. Note, however, that you can direct EDT to create a file
during the editing session by issuing a Write command.

The Exit command terminates the editing session and does direct EDT to
output the contents of its main text buffer into an output file.
There are two ways to specify the name of this file:

e When you first invoke EDT, you can specify the output file as
described in Section 2.1, that is, explicitly, or implicitly,
by specifying only the input file.

e When you issue the Exit command to leave EDT, you can use the
/Rename option to specify the output file. The output file
specification that you provide with the /Rename option
overrides the output file specification that you provide when
you invoke EDT. 1If you specify neither an input file nor an
output file when you invoke EDT, you must use the /Rename
option with the Exit command; otherwise, EDT cannot create an

output file because it has no output file specification
available.

Note that the Exit command automatically outputs the entire contents
of the main text buffer to the output file. You cannot specify that
an alternate text buffer be output instead of the main text buffer,
and you cannot specify that only a portion of the main buffer be
output. If you wish to create a file from a buffer other than the
main buffer, you can wuse the Write command. The Write command
provides greater flexibility than the Exit command, because it allows
you to specify the buffer, and lines within the buffer, to be output.

Commands to Back Up and Restore Sessions

The Save and Restore commands work as a pair to provide a means of
backing up the work that you do during an editing session. You can
issue the Save command at any time during an editing session. This
directs EDT to create a file containing the following information:

e Contents of main and alternate text buffers
e Current line pointer location

e Input and/or output file specifications

e EDT parameters

After EDT creates the file, you can continue your editing session as
if you had never paused to issue the command. If you want, you can
create an output file by issuing the Exit command. However, at a
later time, you might want to recreate the editing session as it was
when you issued the Save command. To do this, 1invoke EDT without
specifying either an input or an output file, and issue the Restore
command, specifying the same file that you specified when you issued
the Save command. EDT will reconstruct its buffers, its line pointer,
its file specifications, and its parameters from the contents of the

file that you specify. It will be as if you had never left the Saved
session.

2-8

DEC EDITOR (EDT)

There are two principal uses for the Save and Restore commands:

e In the middle of a long, complicated editing project involving
several text buffers, you can use the Save command to save all
text buffers. This allows you to spread your work over
several sessions.

e If you fear the accidental 1loss of text that you have
generated during a session, you can use the Save command to
create a backup file at any time during the session. Later,
after you have issued the Exit command and successfully
created the output file, you can delete these backup files,

The file that EDT creates as a result of a Save command is in a
special format and is useful only as input to EDT's Restore command.
For this reason, you should be sure to provide a file specification
with the Save command that 1is different from your output file
specification. Typically, you might want to reserve a special file
type to be used only with the Save command.

Commands to Output To and Input From Files

The Write and Print commands allow you to create an output file while
your editing session is in progress, in contrast to the Exit command,
which creates the output file and then returns control to the monitor.
Additionally, Write and Print offer you more flexibility in creating
an output file than the Exit command, since Write and Print allow you
to specify the text buffer and the lines within the buffer that you
want to output.

The Write and Print commands differ in that Print creates a file that
contains the line numbers assigned by EDT, while Write creates a file
without the line numbers. The format of a file created by the Write
command is identical to that of a file created by the Exit command.

The Include command allows you to bring the contents of a file into a
text buffer during an editing session. You can insert the file's
contents into a buffer that already contains text, or you can create a
new buffer to hold the file's contents. The Include command is
particularly useful in situations where you need to prepare a file
using parts of several existing files,

Commands to Establish and Display Parameters

The Set and Show commands work as a pair to provide a means of
examining and altering several EDT parameters. These parameters
include:

e String match criteria. When searching for strings, EDT can
require that both the characters and the cases of the
characters match, or that only the characters match. The
strings ABC and abc are a match in the second instance, but
not in the first.

e Case display criteria. EDT can flag either upper- or
lower-case characters with an apostrophe while displaying
text, or can display text "as is." If you are working at a
terminal that displays only upper-case characters, you may
want EDT to flag those characters that are upper case in the
text buffer, in order +to distinguish them from lower-case
characters.

DEC EDITOR (EDT)

e Terminal type. When EDT is in Character Mode, it requires
information about what kind of terminal is in use. Before
using Character Mode, you should be sure that the terminal
type is set correctly.

You can use the Set and Show commands to establish and examine each of
these parameters. In addition, you <can use Show to display
information about the current state of EDT's text buffers and the
version of EDT in use.

Miscellaneous Commands

The Change command invokes EDT's Character Mode. You should only
issue it from a video terminal. Although many Character Mode
operations are analogous to the Command Mode operations discussed 1in
this section, you should treat Character Mode as a separate editor.
Section 2.4 contains a complete description of Character Mode.

The Resequence command directs EDT to renumber the 1lines in a
specified text Dbuffer, EDT initially numbers the lines in a text
buffer by tens; that is, the first line is line 10, the second line
is line 20, and so on. Following any one of several text modification
commands, there may not be enough line numbers available to number all
the 1lines in an area of the buffer. For example, if you insert 15
lines between lines 10 and 20, there will be six 1lines without 1line
numbers. By 1issuing a Resequence command, you can restore orderly
line numbering to the buffer.

The Resequence operation is available to several Command Mode commands
as an option. See the individual command descriptions in Section 2.3
for details.

The Execute command directs EDT to execute a series of commands that
you have previously placed in a text buffer. The Execute command is
particularly useful when you need to repeat a series of operations
several times. E

2.2.2 Range Specification

When you issue an EDT editing command, you must also specify what
portion of the text buffer you wish that command to affect. The
portion of the buffer is called the range; the information that vyou
give EDT to allow it to find the range 1is <called the range
specification.

A range can be as small as a single line, or as 1large as an entire
buffer. It can consist of a contiguous group of lines within a
buffer, or all lines in a buffer that contain a certain string.

Most commands allow you to omit an explicit range specification.
These commands provide default range specifications when you do not
specify the range explicitly. The individual command descriptions in
Section 2.3 provide details.

A complete range specification contains two broad elements:

1. A buffer specification. The buffer specification tells EDT
which buffer contains the range. The buffer can be the main
text buffer or one of the alternate text buffers.

‘.’5

DEC EDITOR (EDT)

2. A line specification. The line specification tells EDT which
lines within the buffer make up the range. There are four
general types of line specification:

e Single line specifications. Single 1line specifications
allow you to specify one line of text.

e Variable line specifications. Variable line
specifications allow you to specify an indeterminate
number of contiguous lines. Examples are: all lines in
the <current text buffer, all lines between the current
line in the text buffer and the end of the buffer.

e Compound line specifications. Compound line
specifications combine single line specifications,
operators, and integers to allow you to strictly define
groups of lines within the buffer. Examples are: all the
lines between two specified lines, a group consisting of a
specified number of lines following a specified line.

e Inclusive line specifications. Inclusive line
specifications allow you to specify a string that each
line in the range must contain. The range consists of all
lines containing the specified string.

You can combine these different types of line specifications
to produce the desired effect. For example, by combining
compound and inclusive line specifications, you can specify a
range consisting of all lines between lines 70 and 180 that
contain the string ABC.

The remainder of this section discusses each of the elements that make
up a range specification. Also presented are three concepts common to
all forms of line specification:

e The line pointer
e Line numbers and line sequencing

e String searches

2.2.2.1 Buffer Specification - When you invoke EDT, EDT creates a
text buffer, or storage area, called MAIN, If you specify the name of
an existing file as an input file when you invoke EDT, EDT copies the
contents of that file into the main text buffer. However, if you
specify the name of a new file, EDT creates MAIN with no data stored
in it. EDT performs the editing commands you issue on the contents of
the text buffer. Commands can add to or take away from the contents
of a buffer, move text from one buffer to another, or simply change
EDT's position within a buffer.

If you are working your way through an EDT text buffer and you reach
the end of the buffer, EDT prints the following message:

[EOB]

In effect, the [EOB] designation is a line that follows the final text
line of the buffer and tells you that you have passed that final line.
Since EDT inserts lines in front of a specified line, you must specify
the [EOB] line 1if you want to insert text at the end of the buffer.
(See Section 2.2.2.5 for a discussion of single line range
specifications, and Section 2.3.7 for a description of the Insert
command.)

DEC EDITOR (EDT)

EDT can create text buffers other than MAIN. For example, you can
access other files using the Include command to copy their contents
into an alternate text buffer. EDT allows you to name the alternate
text buffers you use, and to make edits to the buffer contents in the
same way you edit the main text buffer.

There is no limit to the size of text buffers other than the limits of
the system that vyou are using; however, EDT does not assign line
numbers above 65535.

EDT creates a text buffer when you give it a name and then wuse the
buffer name as part of a command. Buffer names can be up to six
alphanumeric characters long. Each time you refer to a buffer, you
must precede the buffer name with either an equal sign (=) or a $%BUF
notation. Thus, the following are all legal buffer references:

$BUF MAIN
=MAIN

$BUF ALT1
=ALT1

$BUF 10SNE1l
=10SNEl

The first two examples above both refer to the main text buffer.

The number of text buffers available during an editing session is
determined when EDT is installed in your system. You will always be
able to use the main buffer and at least two alternate buffers, but
you should check with your system manager to find out the maximum
number of buffers available on your system.

EDT does not save the contents of any alternate buffers when you
terminate the editing session. You can save the contents of alternate
text buffers either by using the Write command to directly create a
file from the buffer, or by using the Move or Copy command to place
the alternate buffer's contents in the main text buffer.

EDT maintains an internal record of which buffer is currently in use.
This buffer 1is called the current buffer. A buffer becomes current
when an EDT command moves the line pointer into the buffer and leaves
it there. (Section 2.2.2.2 describes the line pointer; the command
descriptions in Section 2.3 provide information on each command's
effect on the line pointer.) You can use the Show command (Section
2.3.16) to f£ind out which buffer is the current buffer.

The current buffer can serve as an implied range specifier. Several
commands take the current buffer as their range argument if you do not
specify range explicitly.

2.2.2.2 The Line Pointer - The 1line pointer 1is an internal EDT
mechanism that keeps track of EDT's position within text buffers. As
you issue commands, EDT moves from line to line and from buffer to
buffer, using the 1line pointer to keep track of its position. The
line pointer does not point at any part of the 1line; rather it
indicates an entire 1line. The current position of the line pointer
(the current line) can be displayed by typing a period followed by a
carriage return in response to the Command Level asterisk prompt. A
carriage return immediately following the asterisk prompt advances the
line pointer to the next line and displays that line.

)

o'

DEC EDITOR (EDT)

The position of the line pointer changes as EDT executes commands.
Each command's effect on the 1line pointer 1is documented in the
detailed command descriptions in Section 2.3.

The line pointer can serve as an implied range specifier. Several
commands take the current 1line as the range argument if you do not
specify a range explicitly.

2.2.2.3 Line Numbers and Line Number Sequencing - EDT automatically
assigns a line number to each line in a text buffer to help you locate
and reference the lines in the buffer. Line numbers are integers in
ascending order from 1 to 65535. They appear at the left margin of
the terminal display, separated from the text by a tab. Line numbers
can be changed or completely removed from the buffer, but are not part
of the text.

By default, EDT assigns 10 as the number of the first 1line and
increments by 10 for each additional line. Thus, the default system
line numbers are 10, 20, 30, 40, and so on, However, you can use the
Resequence command (Section 2.3.12) to override this default and
specify the line numbers you want assigned.

Many commands that transpose, insert, or delete lines have an option,
/Sequence, that allows you to specify numbers for the transferred or
inserted text. Often the line numbers that result after one of these
commands have varying increments between them, and some lines may not
have numbers at all. If this occurs, you can use the Resequence
command to reassign uniform line number increments to all the lines in
your buffer. '

The Move, Replace, Include, and Insert commands, among others, put
lines 1into text buffers., The following example shows how EDT assigns
line numbers to new lines in buffers. If the lines in the buffer are
numbered 10, 20, 30, and so on up to 80, and if 12 lines are inserted
between lines 50 and 60, EDT assigns line numbers to the group as
shown in Figure 2-1.

10 THIS
20 EXAMPLE
30 SHOWS
40 HOW
50 EDT
1 PUTS 51 PUTS
2 NEW 10 THIS 52 NEW
3 LINES 20 EXAMPLE 53 LINES
4 OF 30 SHOWS 54 OF
5 TEXT 40 HOW 55 TEXT
6 INTO - 50 EDT [:> 56 INTO
7 A 60 HANDLES 57 A
8 TEXT 70 LINE 58 TEXT
9 BUFFER 80 NUMBERING 59 BUFFER
10 AND AND
11 HOW HOW
12 1T IT
60 HANDLES
70 LINE
80 NUMBERING
Lines Being Original Resulting
Inserted Buffer Buffer

Figure 2-1 1Input Line Number Sequencing

DEC EDITOR (EDT)

As Figure 2-1 shows, EDT numbers as many of the new lines as possible
without reassigning or changing any line numbers already in use. EDT
then puts the remaining 1lines in their proper position without
assigning them any numbers.

The Move, Replace, and Delete commands take lines out of text buffers.
When you use these commands, EDT removes the lines you specify, as
well as their line numbers, from the buffer. The numbers of the lines
that remain in the text buffer do not change. If a line number is no
longer assigned to a line, it is available for either EDT or you to
assign to a new line or to reassign to an existing line.

2.2.2.4 String Searches - Line numbers are not the only way for you
to specify a line in a buffer. You can direct EDT to search the
buffer contents for a string, which consists of a specific word or
combination of letters. When you specify such a character string, you
give EDT an object string to search for, and EDT examines the text
buffer looking for an equivalent or match string.

In its search, EDT normally examines the current line first to see if
it contains a match of the object string. If no match is found in the
current line, EDT then examines the next line, and the next, and so on
until it either finds a match or reaches the end of the buffer.

An exception to this arises if EDT located the current line through a
previous string search or through a Substitute command (see Section
2.3.17). 1In these cases, the search proceeds from a point in the line
immediately following the string that was searched or substituted for.

For example, you search for the string ILLUSTRATES, and EDT locates
the line:

120 THIS LINE ILLUSTRATES STRING SEARCHES

You can now successfully search forward for STRING or SEARCHES, but
not for THIS, LINE, or ILLUSTRATES. You could, however, successfully
search backward for THIS, LINE, or ILLUSTRATES.

This mechanism allows you to search through a file for repeated
occurrences of a string without having to move the line pointer
forward each time you search.

Once you determine the object string and the action you want to
perform, you must:

e Specify the string
e Dictate the direction of the search
e Determine what constitutes a match

EDT treats characters enclosed in apostrophes or quotation marks as
object strings. If you enclose a character or group of characters in
two apostrophes (') or two quotation marks ("), you direct EDT to
search for the first occurrence of an identical string of characters
(without the delimiters) contained in the text buffer. Apostrophes
and quotation marks are the only character string delimiters that EDT
accepts as part of a range specification.

The way you specify the object string determines the direction of
EDT's search. If you enter "ABC", EDT searches from the current line
toward the bottom of the buffer looking for the £first occurrence of

DEC EDITOR (EDT)

ABC. If you precede the object string with a minus sign (-), that is,
-"ABC", EDT searches from the current 1line toward the top of the
buffer looking for the first occurrence of ABC.

EDT lets you specify whether or not a match occurs when the case of
the characters in the match string differs from the case of the
characters in the object string. For example, if you are searching
your text buffer for an occurrence of BASIC, do you want EDT to return
a match when it encounters the string basic?

The Set command (see Section 2.3.15) allows you to specify whether
match strings must correspond to the cases specified in the object
string. If you issue the Set Exact Case command, EDT returns as a
match only those strings that are identical in both case and content
to the object string. If you issue the Set Exact None command, EDT
returns any occurrence of the characters in the object string as a
match, regardless of case., Exact None is the default setting.

2.2.2.5 8Single Line Specifications - Single line specifications
identify one 1line of a text buffer, Single line specifications and
the lines they specify are listed in Table 2-3. Square brackets
enclose optional portions of the specifications.

All of the single line specifications, with the exception of %L, can
be preceded by a buffer specification (see Section 2.2.2.1). A space
must separate the buffer specification from the 1line specification.
If you do not provide a buffer specification, EDT locates the single
line in the current text buffer.

Table 2-3
Single Line Specifications
Line
Specification Meaning
nn Line number nn
. (period) The current line
"object string" or Starting with the current line, the first
'object string' line located that contains an acceptable
match of the object string
-"object string" or The first preceding line that contains
~'object string' acceptable match of the object string
$BE [GIN] The first line of the text buffer
$E[ND] The [EOB] designation that follows the
last line of the text buffer
$L.[AST] The line in a previous text buffer at
which the 1line pointer was positioned
when the command to enter the current
buffer was issued

DEC EDITOR (EDT)

Examples
*40
Locates and displays line 40 in the current text buffer, If line
40 currently does not exist, locates and displays the first line
with a number higher than 40.
*=X 130

Locates and displays line 130 in buffer X.

* YTHIS HOUSE'
Locates and displays the first line of the current buffer that
contains the string THIS HOUSE.

*=NEWBUF "FOR SALE"
Locates and displays the first line in buffer NEWBUF containing
the string FOR SALE.

* "FIND THIS STRING'

Missing string quote,
In this example, the string delimiters were mismatched; EDT
returned an error message.

*:3BE

Locates and displays the first line in the current text buffer.

* =MORDOR $%E

Locates and displays the [EOB] designation that follows the last
line in buffer MORDOR.

*=MAIN %L
Buffer Specification Conflict.

In this example, %L specifies a line in a previous text buffer.
Since %L already provides a text buffer specification, you cannot
explicitly specify a buffer with %L. EDT returned an error
message indicating a conflict in buffer specifications.

2.2.2.6 Variable Line Specifications - Variable 1line specifications
identify an indeterminate number of lines in the text buffer. The
specifications and the lines they identify are listed in Table 2-4.
Square brackets enclose optional portions of the specifications.

As indicated in Table 2-4, a buffer specification used by itself is a
variable 1line specification, because it implies all lines in the
buffer. The remaining variable line specifications (%BEF, %R, and

DEC EDITOR (EDT)

$WH) imply the current text buffer; therefore, you cannot use them in
combination with an explicit buffer specification. If you attempt to
do so, EDT returns the error message:

Buffer Specification Conflict.

Table 2-4
Variable Line Specifications
Line

Specification Meaning

=bufname or All 1lines contained in the text buffer

$BUF [FER] bufname bufname

$BEF[ORE] All lines in the current text buffer
from the first 1line in the buffer
through the current line

SR[EST] All lines in the current text buffer
from the current line through the last
line in the buffer

$WH [OLE] All lines in the current text buffer

2.2.2.7 Compound Line Specifications - Compound 1line specifications
identify a specific number of lines in the buffer and consist of
single line specifications, operators, and integers. Table 2-5 lists
the forms that compound line specifications may take. 1In the table,
sl stands for any of the single line specifications from Table 2-3.

Table 2-5
Compound Line Specifications
Line
Specification Meaning
sll:sl2 The lines between and including the
or first single line (sll) and the second
sll $THRU sl2 single line (s12) where sll must precede
sl2
sl;i The total number of lines specified by
or the positive integer i that begins with
sl $FOR i the line specified by the single line sl
sll,sl2,s13,... The individual 1lines identified by the
or single line specifications
s1ll %AND sl2 $AND sl13
sl+i The single line that is i 1lines after
the single line specified by sl
sl-i The single line that is i 1lines before
the single line specified by sl

DEC EDITOR (EDT)

Any of the compound line specifications can be preceded by a buffer
specification (see Section 2.2.2.1). A space must separate the buffer
specification from the line specification. If you do not provide a
buffer specification, EDT locates the lines in the current buffer.

Examples

*40:80

Locates and displays lines 40 through 80 of the current text
buffer.

*=ALT] 'ABC' S$THRU S$E

Locates and displays the block of lines beginning with the first
line in buffer ALT1 that contains the string ABC, and ending with
the last line in the buffer.

*150;20

Locates and displays a block of lines in the current text buffer
that begins with line 150 and extends for 20 lines.

*=MAIN "STARTLINE" %FOR 35

Locates and displays a block of lines in the main text buffer
that begins with the first 1line that «contains the string
STARTLINE and extends for 35 lines,

*$BUF GHORT 10,30, 'KLATAAU',$E

Locates and displays the following lines from buffer GHORT: line
10, line 30, the first line following line 30 that contains the
string KLATAAU, and the [EOB] designation following the last line
of the buffer.

* "WORLD" +6

Locates and displays the sixth 1line following the 1line that
contains the string WORLD in the current buffer.

2.2,2,8 Inclusive Line Specifications - The inclusive line
specifications identify 1lines of a buffer that contain a specific
string. You can find all lines in the buffer that contain the string,
or you can limit the 1lines that are checked for the string by
qualifying the inclusive 1line specification with another line
specification. Table 2-6 illustrates inclusive line specifications.

You can precede an inclusive 1line specification with a buffer
specification (see Section 2.2.2.1). A space must separate the buffer
specification from the line specification. If you do not include a
buffer specification, EDT locates the lines in the current buffer.

2-18

DEC EDITOR (EDT)

Table 2-6
Inclusive Line Specifications
Line -
Specification Meaning

%ALL 'string' All lines in the text buffer that

or contain acceptable matches of the
$ALL "string" specified object string
ls $ALL 'string' All lines that contain acceptable

or matches of the object string
ls $ALL "string" within the line specification ls

Examples

*$ALL 'VAN GOGH'

Locates and displays all lines containing the string VAN GOGH in
the current text buffer.

*%R SALL 'MONET'

Locates and displays all lines in the current text buffer between
the current 1line and the end of the buffer that contain the
string MONET.

*=PAINT 50:300 $ALL 'PICASSO'

Locates and displays all lines between lines 50 and 300 of buffer
PAINT that contain the string PICASSO.

2.2.3 Options

Command line options either allow you to control the command execution
or specify actions that EDT is to take when the execution has been
completed. Each detailed command description in Section 2.3 includes
a description of each option that is allowed with the command. Table
2-7 shows options with their functions and associated commands.

Each option has an abbreviation that you can use instead of the full
option name. Table 2-7 shows the abbreviation outside of brackets;
the remainder of the option name is inside the brackets. When you
specify an option, you can use either the abbreviation or the full
name.

2-19

DEC EDITOR (EDT)

Table 2-7
Command Options

Option Meaning Commands
/BRI[IEF] Displays first ten Type,
characters of lines Substitute
in range
/FI[LE] Specifies a file Write, Save,
that is either Include, Print,
accessed or created Restore
/NL Allows deletion of Change
line terminators
/Q[UERY] Prompts you to con- Substitute,
trol execution of Move, Copy,
command Delete
/RE[NAME] Specifies an output Exit
file
/SEQ[UENCE] Specifies sequence Include,
numbers Insert, Copy,
Move, Replace,
Resequence
/-T[YPE] Inhibits display of Substitute

lines affected by
the command

/UN[SEQUENCED] Inhibits renumbering Include,
of lines Insert, Copy
Move, Replace,
Resequence

2.3 DETAILED COMMAND DESCRIPTIONS

This section lists the EDT Command Mode commands alphabetically. Each
command description includes the format of the command, a description
of each of the options available with the command, examples of the
command in typical editing situations, and usage notes.

In the command format descriptions, the command abbreviation is shown
outside of brackets, while the remainder of the command name is shown
in brackets. When issuing a command, you can use either the
abbreviation or the full command name. Thus,

REST[ORE]

in the format description for the Restore command indicates that you
can type either REST or RESTORE when you issue the command.

2-20

2.3.1

DEC EDITOR (EDT)

CHANGE

Use the Change command to invoke EDT's Character Mode. (Section 2.4
contains a complete description of Character Mode.)

Format

C [HANGE] [range] [/NL]

CHANGE

range

Specifies the Change command.

Specifies the lines that you will be able to access while in
Character Mode. If you do not specify a range, the entire
contents of the current text buffer can be accessed.

/NL
Specifies that, while in Character Mode, you can delete line
terminators such as form feeds, line feeds, and carriage returns.
Examples

Notes

C

This command invokes Character Mode and gives you access to all
of the current text buffer.

C =X 50:200/NL

This command invokes Character Mode, giving you access to lines
50 through 200 of the text buffer named X. While in Character
Mode, you will be able to delete line terminators.

e You can use the Change command only if you are using a video
display terminal. You must use the Set Terminal command to
correctly establish your terminal type before you can edit in
Character Mode. Section 2.3.15 contains a description of the
Set command.

e While in Character Mode, you only can edit the contents of the
range you specified in the Change command. If you want to
edit lines that are outside the range, you first must issue an
EX (Exit) subcommand and then re-enter the Change command
specifying the new range.

e When you invoke Character Mode and specify the /NL option, EDT
treats end-of-line characters as single characters that may be
inserted or deleted. EDT displays these characters as

follows:
<FF> indicates an ASCII form feed
<LF> indicates an ASCII line feed
<VT> indicates an ASCII vertical tab character

2-21

DEC EDITOR (EDT)

Character Mode does not give any special representation to a
carriage return, but allows you to delete it as well., When
you delete an end-of-line character, EDT concatenates the
following 1line to the 1line whose end-of-line character was
deleted.

If you attempt to delete a 1line terminator without having
specified the /NL option, EDT takes no action in response to
the subcommand you enter.

e Two Character Mode subcommands, EX (Exit) and Quit, terminate
Character Mode. Typing EX returns EDT to Command Level from
Character Mode. Typing EX does not terminate EDT if issued
from Character Mode, Typing QUIT terminates both Character
Mode and EDT. The Quit subcommand does not create or update
any files.

2.3.2 copy
Use the Copy command to transfer lines from one 1location to another
without deleting them from their original location,
Format
CO[PY] range-l1l $TO range-2 [/Q[UERY]]
[/SEQ[UENCE]) :initial-number: 1ncrement]
[/UN[SEQUENCED]]
COPY ... %TO
Specifies the Copy command.
range-1

Specifies the lines that are to be copied. If you specify more
than one line in range-1, all the lines you specify are copied.

range-2
Specifies the line ahead of which the 1lines in range-l are
copied. If you specify more than one line in range-2, the lines
in range-1 are copied ahead of the first line in range-2.

/QUERY

Allows you to specify how each line in range-l is to be treated.
Before EDT transfers each line, it prints the line and waits
until you type one of the following responses:

Response Result

Y or YES Copies the line

N or NO Does not copy the line

Q or QUIT Stops copying lines and displays the asterisk
prompt

A or ALL Copies the remaining 1lines in the range

without printing them first

/SEQU

/UNSE

DEC EDITOR (EDT)

ENCE:initial~number: increment

Assigns specific 1line numbers to the copied lines. The
initial-number argument specifies the number of the first line
that was copied, and the increment argument specifies the
increment between numbers. For example, /SEQ:100:100 creates the
copied lines with line numbers of 100, 200, 300, 400, and so on.

QUENCED

Causes EDT to copy the lines without assigning them line numbers.

Examples

Notes

2.3.3

Use t

CO.:".MAC"$TO=X 40

This command copies all lines, beginning with the current line
and continuing through the first 1line containing .MAC, to a
position preceding line 40 in buffer X.

C0.; 20 3%TO %BE

This command copies 20 lines, starting with the current line, to
the beginning of the current text buffer.

e After a line or group of lines has been copied, EDT positions
the 1line pointer at the first line of the copied lines in
their new position preceding the first line in range-2.

e You cannot overlap ranges: range-l1 and range-2 cannot contain
any of the same lines.

e If you do not use either the /Sequence or /Unsequenced option
to specify line numbers, EDT numbers the new lines in the
following manner:

- If EDT can number the new 1lines by incrementing the
existing line numbers in steps of 10, it does so as long
as the resulting line numbers do not duplicate existing
line numbers or violate the ascending order of line
numbers.

- If incrementing by 10 would result in an 1illegal 1line
number, EDT begins incrementing subsequent new lines in
steps of 1.

- If incrementing the new lines in steps of 1 would result
in illegal or duplicate 1line numbers, EDT places all

further lines in the correct order, but does not assign
them any line numbers.

DELETE

he Delete command to delete lines from a text buffer.

2-23

DEC EDITOR (EDT)

Format

D(ELETE] [range] [/Q[UERY]]

DELETE

range

Specifies the Delete command.

Specifies a range of lines to be deleted, If you do not specify
a range, the current line is deleted.

/QUERY

Specifies that you want to control the Delete operation using EDT
prompts and responses. EDT prompts you by displaying the line to
be deleted; you can then enter any one of the following
responses:

Response Result

Y or YES Deletes the prompt line

N or NO Does not delete the prompt line

Q or QUIT Stops deleting lines and returns to Command
Mode

A or ALL Deletes all remaining lines in the range; does

not display the deleted lines

Examples

Notes

D 20:40

This command deletes lines 20 through 40, inclusive, from the
current text buffer.

D %ALL 'ABC'/Q

This command finds all the 1lines 1in the current text buffer
containing the string ABC, displays each line, and then waits for
you to enter a Y, N, Q, or A response,

D =BUF2 %ALL '438'

This command deletes all lines containing the string 438 from
text buffer BUF2.

e After a line or a group of 1lines has been deleted, EDT
positions the 1line pointer at the line immediately following
the last line deleted.

e The /Query option allows you to delete specific 1lines at
random from the specified range of lines. After you delete
lines using the /Query option, EDT positions the line pointer
at the undeleted line nearest the beginning of the range.

e If you enter nonexistent line numbers in a range
specification, EDT rejects the specification and displays an
error message.

2-24

'

2.3.4

DEC EDITOR (EDT)

EXIT

Use the Exit command to terminate EDT; return control to the system

monitor,

Format

and save the contents of the main text buffer.

EX[IT] [/RE[NAME]:filespec]

EXIT
Specifies the Exit command.
/RENAME: filespec
Specifies the output file to which the contents of the main text
buffer are written. The /Rename option overrides the output file
specified when EDT was invoked. Section 1.3 contains a complete
description of file specifications.
Example
EX/RE:SYS.MAC
This command causes EDT to write the contents of the main text
buffer to the file SYS.MAC, then terminate.
Notes
e The Exit command only saves the contents of the text buffer
named MAIN. The contents of all other text buffers are lost
if they are not incorporated into MAIN or written to permanent
files through the Write command. (See Section 2.3.19.)
e The /Rename option allows you to specify an output file
whether or not an output file was originally specified in the
EDT invocation command.
2.3.,5 FIND

Use the Find command to move the line pointer.

Format

F[IND] range

FIND

Specifies the Find command.

range

Specifies the line to which the line pointer is positioned. If
you specify a range of more than one line, EDT positions the line
pointer at the first line in the range.

2-25

DEC EDITOR (EDT)

Examples

F =X 20

This command causes EDT to position the 1line pointer at line
number 20 in text buffer X.

F-'ABC'

This command causes EDT to search upward and position the 1line
pointer at the first line encountered that contains ABC.

F 20:40
This command causes EDT to position the line pointer at line 20,
the first line of the range.

Notes

e The Find command does not generate any terminal output.

2.3.6 INCLUDE

Use the Include command to locate a file and to copy it 1into a text
buffer.

Format

/FIl:filespec
INC{LUDE] [range] [/SEQ[UENCE] :initial-number: increment]
[/UN[SEQUENCED]]

INCLUDE

Specifies the Include command.

range

Specifies the line ahead of which the contents of the file are to

be inserted. If you specify a range of more than one line, EDT
inserts the file ahead of the first line in the range. If you do

not specify a range, EDT inserts the file ahead of the current
line.
/FIl:filespec

Specifies the file that is to be copied. (See Section 1.3 for a
complete description of file specifications.)

/SEQUENCE:initial-number:increment

Assigns specific 1line numbers to the included 1lines. The
initial-number argument speciifes the number assigned to the
first line, and the increment argument specifies the increment
between numbers. For example, /SEQ:100:100 creates the new lines
with line numbers of 100, 200, 300, 400, and so on.

/UNSE

DEC EDITOR (EDT)

QUENCED

Causes EDT to include the lines without assigning line numbers.

Examples

Notes

INC =ADD /FI:SY¥S.MAC

This command causes EDT to copy the contents of file SYS,MAC into
text buffer ADD. If ADD contains some data, EDT inserts the new
lines at the beginning of the buffer.

INC 'ABC' /SEQ:100:2/FI:EDT.FTN

In this example, EDT first copies the contents of file EDT.FTN,
then inserts them before the next line in the current buffer that
contains the character string ABC, and finally numbers the new
lines as 100, 102, 104, 106, and so on.

e After a file has been included into a text buffer, EDT
positions the 1line pointer at the first line following the
newly included text.

e The Include command copies a file into your current text
buffer or to an alternate text buffer, allowing access to any
portion of that file during your editing session. Once the
file 1is copied, you can use other EDT commands to manipulate
its contents.

For example, to access a portion of a file other than the one
you are currently editing, perform the following steps:

l. Issue the Include command to copy the file into an
alternate text buffer,

2. Issue the Move command to transfer the desired
portion of the file from the alternate text buffer to
the main buffer.

e If more lines exist in the file being included than there are
line numbers available, EDT correctly inserts the extra lines
into the text buffer but does not assign them any 1line
numbers.

If you use the /Sequence option to specify line numbers that
conflict with other 1line numbers in the file, the new lines
are included without line numbers. .

If you do not use either the /Sequence or /Unsequenced option
to specify line numbers, EDT numbers the new lines in the
following manner:

- If EDT can number the new lines by incrementing the
existing 1line numbers in steps of 10, it does so as
long as the resulting line numbers do not duplicate
existing 1line numbers or violate the ascending order
of line numbers.

- If incrementing by 10 would result in an illegal 1line

number, EDT begins incrementing subsequent new lines
in steps of 1. :

2-27

DEC EDITOR (EDT)

- If incrementing the new lines in steps of 1 would
result in 1illegal or duplicate 1line numbers, EDT
places all further lines in the <correct order, but
does not assign them any line numbers.

When you use the Include command to insert a file into a text
buffer that already contains some data, you may want to use

the Resequence command to establish wuniform 1line number
increments throughout that buffer.

2.3.7 INSERT

Use the Insert command to place text you type at your terminal into a
text buffer.

Format

I [NSERT] [range] [/SEQ[UENCE] :initial-number: increment])
[/UN [SEQUENCED]]

text
<CTRL/Z>

INSERT
Specifies the Insert command.

range
Specifies the line ahead of which the text you type is to be
inserted. If you specify more than one line in the range, the
text is inserted ahead of the first line in the range. If you do
not specify a range, the text is inserted ahead of the current
line.

/SEQUENCE: initial-number: increment
Assigns specific line numbers to the newly inserted 1lines. The
initial-number argument specifies the number assigned to the
first new line and the increment argument specifies the increment

between numbers, For example, /SEQ:100:100 creates new lines
with line numbers of 100, 200, 300, 400, and so on.

/UNSEQUENCED
Causes EDT to insert the new lines without assigning them 1line
numbers.

text
Represents one or more complete lines of text. The last 1line
must end with a carriage return.

<CTRL/Z>

Causes EDT to stop accepting insert text and display the asterisk
prompt.,

DEC EDITOR (EDT)

Examples

Notes

*I <RET>

LINE 1 <RET>
LINE 2 <RET>
LINE 3 <RET>

<CTRL/Z>
*

This example illustrates the entire Insert command sequence. The
command, I, which is issued while EDT is displaying the asterisk
prompt, directs EDT to insert the text that follows above the
current line. EDT then accepts three lines of input from the
terminal, 1inserting them above the current line. Finally,
<CTRL/Z> causes EDT to terminate the insert and display the
asterisk prompt.

I =B 40

This command causes EDT to insert all the lines you enter ahead
of line 40 in buffer B.

I ".OR"

This command causes EDT to insert the lines you enter ahead of
the next line encountered that contains the string .OR.

I %E

This command causes EDT to insert the lines you enter at the end
of the buffer (that is, between the last line of the buffer and
the [EOB] designation).

e After a line or group of lines has been inserted into a text
buffer, EDT positions the line pointer at the line following
the last inserted line.

e When you issue an Insert command, EDT first positions the line
pointer ahead of the first 1line in the range. Without
prompting you, EDT begins to accept lines of text you enter at
the terminal. When all the lines have been entered from the
terminal, terminate the insert by typing <CTRL/Z>. EDT
inserts the 1lines you typed ahead of the first line in the
specified range.

It is important to remember that EDT does not prompt you for
input following an Insert command. Type the command line and
a carriage return, and then the lines you want to insert.

e If you specify line numbers with the /Sequence option that

conflict with other line numbers in the file, EDT inserts the
new lines without line numbers.

2-29

DEC EDITOR (EDT)

If you do not use the /Sequence or /Unsequenced option to
specify 1line numbers, EDT numbers the new lines in the
following manner: ‘w

- If EDT can number the new lines by incrementing the
existing 1line numbers in steps of 10, it does so as
long as the resulting line numbers do not duplicate
existing 1line numbers or violate the ascending order
of line numbers.

- If incrementing by 10 would result in an illegal line
number, EDT begins incrementing subsequent new lines
in steps of 1.

- If incrementing the new lines in steps of 1 would
result in illegal or duplicate 1line numbers, EDT
places all further lines in the correct order, but
does not assign them any line numbers.

If you insert a large number of lines, you may want to enter a
Resequence command to wuniformly renumber the lines in the
buffer. (See Section 2.3.12.) 41!%

e After you type all the lines to be inserted, type a line that
contains only <CTRL/Z>. This <CTRL/Z> causes EDT to terminate
the insert and display the asterisk prompt, allowing you to
enter further commands.

2.3.8 MOVE
Use the Move command to transfer lines from one 1location to another gﬂ!g
and to delete them from their original location. e

Format
M([OVE] range-1l %TO range-2 [/Q[UERY]]
[/SEQ[UENCE] :initial-number:increment]
[/UN[SEQUENCED]]
MOVE ... $TO
Specifies the Move command. 4 J*

range~-1

Specifies the lines that are to be moved. If you specify more
than one line in range-1, all the lines you specify are moved.

range-2

Specifies the line ahead of which the lines in range-l are moved.
If you specify more than one 1line 1in range-2, the lines in
range-1 are moved ahead of the first line in range-2,.

DEC EDITOR (EDT)

/QUERY

Allows you to specify how each line in range-1 is to be treated.
Before EDT transfers each 1l1line, it prints the line and waits
until you type any one of the following responses:

Response Result

Y or YES Moves the line

N or NO Does not move the line

Q or QUIT Stops moving lines and displays the asterisk
prompt

A or ALL Moves the remaining 1lines in the range

without printing them first
/SEQUENCE:initial-number: increment

Assigns specific line numbers to the transferred lines. The
initial-number argument specifies the number of the first line
that was moved, and the increment argument specifies the
increment between numbers. For example, /SEQ:100:100 creates the
transferred lines with line numbers of 100, 200, 300, 400, and so
on.

/UNSEQUENCED

Causes EDT to transfer the lines without assigning them 1line
numbers.

Examples

M.:"MAC" %TO =X 40

This command moves all lines, beginning with the current line and
continuing through the first line containing the string MAC, to a
position preceding line 40 in buffer X.

M.;20 %TO $BE

This command moves 20 lines, starting with the current 1line, to
the beginning of the current text buffer.

M =X $TO =MAIN 3E

This example appends the contents of text buffer X to the end of
buffer MAIN.

Notes

e After a line or group of lines has been moved, EDT positions
the line pointer at the first line of the transferred lines in
their new position preceding the first line in range-2.

e You cannot overlap ranges: range-l and range-2 cannot contain
any of the same lines.

e If you use the Move command to transfer a large number of
lines, you can issue a Resequence command to establish uniform
line number increments. (See Section 2.3.12.)

DEC EDITOR (EDT)

If you do not use either the /Sequence or /Unsequenced option
to specify line numbers, EDT attempts to number the new lines
in the following manner:

- If EDT can number the new lines by incrementing the
existing 1line numbers in steps of 10, it does so as
long as the resulting line numbers do not duplicate
existing 1line numbers or violate the ascending order
of line numbers,

- If incrementing by 10 would result in an illegal line
number, EDT begins incrementing subsequent new lines
in steps of 1.

- 1If incrementing the new lines 1in steps of 1 would
result in 1illegal or duplicate 1line numbers, EDT

places all further lines in the correct order, but
does not assign them any line numbers.

2.3.9 PRINT
Use the Print command to create a file from the contents of a text
buffer. The file that you create in this way contains as part of the
text the EDT line numbers assigned to the lines in the range.
Format
PR[INT] [range] /FI:filespec
PRINT
Specifies the Print command.
range
Specifies the buffer contents that you want placed in the
permanent storage file you create. If you do not specify a
range, EDT uses the entire current text buffer as the range.
/FIl:filespec
Specifies the output file that you create. You must specify the

filespec using the /FI option. Section 1.3 contains a complete
description of file specifications.

Examples

PR =B 10:70/FIL:INT.FOR

This command creates a file called INT.FOR that contains lines 10
through 70, inclusive, of buffer B.

PR =MAIN/FI:SY.MAC

This command creates a file called SY.MAC from the contents of
the main text buffer. The file SY.MAC has as part of the text of
the file the line numbers that existed in the MAIN buffer at the
time the Print command was issued.

2-32

DEC EDITOR (EDT)

Notes

® EDT does not reposition the 1line pointer after the Print
command generates on output file.

2.3.10 QUIT

Use the Quit command to terminate EDT and to return control to the
system monitor without saving the contents of any text buffers.

Format
QUIT
QuUIT

Specifies the Quit command.

Example

QUIT

This command erases all text buffer contents and returns control
to the system monitor.

Notes

e The Quit command does not modify any buffers. It does not
write out the contents of the main buffer or any other buffer,
nor does it generate any files.

e If you invoke EDT with only an input file, you must either
issue a Quit command to return to the system monitor or issue
an Exit command with the /Rename option to specify an output
file. You <can also use the Write command to generate a file
from the contents of the main text buffer or an alternate text
buffer. See Section 2.3.,19 for a description of the Write
command.

If you use the Write command to generate a file before you
issue the Quit command, that file is not affected by Quit or
any other subsequent EDT command.

e The Quit command is especially useful if you have made an
error that results in the loss of all or part of a buffer you
are editing. If you make a mistake that results in a loss of
your buffer's contents, issuing a Quit command negates all
changes made since EDT was invoked.

DEC EDITOR (EDT)

2.3.11 REPLACE

Use the Replace command to delete one or more lines of text in a text
buffer and replace them with new lines.

Format
R[EPLACE] [range] [/SEQ[UENCE] :initial-number:increment]
[/UN[SEQUENCED]]
text
<CTRL/Z>
REPLACE

Specifies the Replace command.
range

Specifies those lines that are to be deleted. The replacement
lines begin with the first 1line in the range. If you do not
specify a range, the Replace command deletes the current line and
inserts the replacement lines in its place.

/SEQUENCE:initial-number: increment

Assigns specific line numbers to the replacement lines. The
initial-number argument specifies the number of the first line,
and the increment argument specifies the increment between
numbers. For example, /SEQ:100:100 creates replacement lines
with line numbers of 100, 200, 300, 400, and so on.

/UNSEQUENCED

Causes EDT to create the replacement lines without assigning them
line numbers.

text

Represents one or more complete lines of text. The last line
must end with a carriage return.

<CTRL/Z>

Causes EDT to stop accepting replacement text and display the
asterisk prompt.

Examples

R <RET>
GOTO 40 <RET>
<CTRL/Z>

This example deletes the current line, replaces it with GOTO 40,
and terminates the replacement text with <CTRL/Z>.

R '"ABC'+20 <RET>
IF XY¥Z THEN DEF <RET>
<CTRL/Z>

This example deletes the twentieth 1line after the first
occurrence of ABC, replaces it with the "IF...THEN..." statement,
and terminates the replacement text with <CTRL/Z>.

Notes

.

°

°

°
2.3.12
Use the
text buf
Format

RES
RESEQUEN

Spe
range

Spe

not

tex

DEC EDITOR (EDT)

After a line or group of 1lines has been replaced, EDT
positions the 1line pointer at the line following the last
replacement line,

If you replace a single line with several lines, you can issue
a Resequence command to assign uniform line number increments
to all lines in the text buffer. (See Section 2.3.12).

If you specify line numbers with the /Sequence option that
conflict with other line numbers in the file, EDT inserts the
replacement lines without line numbers.

If you do not use the /Sequence or /Unsequenced option to
specify 1line numbers, EDT numbers the new 1lines in the
following manner:

- If EDT can number the new lines by incrementing the
existing 1line numbers in steps of 10, it does so as
long as the resulting line numbers do not duplicate
existing 1line numbers or violate the ascending order
of line numbers.

- If incrementing by 10 would result in an illegal 1line
number, EDT begins incrementing subsequent new lines
in steps of 1.

- If incrementing the new lines in steps of 1 would
result in 1illegal or duplicate 1line numbers, EDT
places all further lines in the correct order, but
does not assign them any line numbers.

When you issue the Replace command, EDT does not prompt you to
begin entering the replacement lines of text. You should type
the Replace command line, a carriage return, and then type the
lines you want to insert.

After you type the replacement 1lines, type a 1line that
contains only <CTRL/Z>., <CTRL/Z> causes EDT to terminate the

replacement and display the asterisk prompt, allowing you to
issue further commands.

RESEQUENCE

Resequence command to assign new line numbers to the lines in
fers.

[EQUENCE] [range] [/SEQ[UENCE]:initial-number:increment]
[/UN{SEQUENCED]]

CE

cifies the Resequence command.

cifies the lines and text buffer to be renumbered. If you do
specify a vrange, EDT resequences all lines in the current
t buffer.

2-35

DEC EDITOR (EDT)

/SEQUENCE:initial~-number: increment

Assigns specific line numbers to the lines in the range, The
initial-number argument specifies the number of the first line in
the range, and the increment argument specifies the increment
between numbers. For example, /SEQ:100:100 renumbers the range
with line numbers of 100, 200, 300, 400, and so on.

/UNSEQUENCED

Causes EDT to remove line numbers from the range.

Examples
RES

This command causes EDT to renumber the current text buffer's
lines at 10, 20, 30, and so on.,

RES =A /SEQ:l:1

This command causes EDT to renumber the lines of buffer A as 1,
2, 3, 4, and so on.

Notes

e After a buffer or a group of lines has been resequenced, EDT
positions the 1line pointer at the first 1line that was
resequenced. '

e If you do not specify the /Sequence or /Unsequenced option,
EDT assigns to the lines in the text buffer the default line
numbers 10, 20, 30, and so on.

e As a general practice, resequence the entire text buffer
instead of a portion of it. This ensures that uniform line
number increments exist for your convenience.

When you renumber only part of the text buffer, none of the
line numbers you assign can match those in the part of the
buffer not being renumbered. If you specify a line number for
the resequenced range that 1is 1less than the line numbers
before it, all lines in the range are written without numbers.
The highest sequence number that you can use is 65535; the
lowest is 1.

e After you insert or delete a large number of lines, the line
numbers of the remaining lines may be difficult to work with.
Use the Resequence command to restore uniform 1line number
increments to the text buffer.

e Use the Type command (Section 2.3.18) to display on your
terminal the 1line numbers that are currently assigned to the
contents of the buffer., Use the Print command (Section 2.3.9)
to create a file that contains the new line numbers as part of
the text.

2-36

-’

| -

DEC EDITOR (EDT)

2.3.13 RESTORE

Use the Restore command first to locate a file created by a Save
command and then to use the file to recreate the status of all files

and the contents of all text buffers as they were preserved 1in the
file,

Format
REST[ORE] /FIl:filespec
RESTORE

Specifies the Restore command.
/Fl:filespec

Specifies the file that was created by previously issuing a Save
command. That file, when accessed by the Restore command,
recreates the contents of all text buffers in use at the time the
Save command was entered.

EDT does not provide defaults for either the file name or the
file type in the Restore and Save commands. See Section 1.3 for
a complete description of file specifications.

Example

>EDT <RET>
EDT> <RET>
:REST /FI:TXT.SAV

This example illustrates the sequence you must follow if you want
to use the Restore command. Restore must be the first command
you issue after invoking EDT without specifying either an input
or an output file. EDT then locates the file TXT.SAV, and uses
that file to recreate the contents of all text buffers in use at
the time the Save command created TXT.SAV.

Notes

e In order to issue a Restore command, Restore must be the first
command that you issue after you invoke EDT. Therefore you
must:

1. Invoke EDT without specifying either an input or
output file.

2, Have all text buffers empty.

3. Issue the Restore command, and specify the file
created by a Save command in a previous editing
session.

After your text buffer contents have been restored, EDT

positions the 1line pointer at the line that was the current
line when the Save command created the input file.

2-37

DEC EDITOR (EDT)

2.3.14 SAVE

Use the Save command to preserve in a file that vyou specify the
contents of the text buffers and the status of all files you use
during your editing session. You can later use the Restore command to
recreate your editing session as it was when you issued the Save
command.

Format
SA[VE] /FI:filespec

SAVE
Specifies the Save command.

/Fl:filespec
Specifies the file that EDT creates. This file contains the
current status of all the buffers in use. You must use the /FI
option to specify the name of the file.
EDT does not provide defaults for either the file name or the

file type in the Restore and Save commands. See Section 1.3 for
a complete description of file specifications.

~Example
SA /FI:TXT.SAV

This command saves all text buffer contents by creating the file
TXT.SAV. The file TXT.SAV contains the contents of all the text
buffers in use at the time the Save command was issued., You can
use the TXT.SAV file only by 1issuing a Restore command to
recreate the contents of the text buffers.

Notes

e EDT does not reposition the 1line pointer after the Save
command generates the file, nor does the Save command alter
the contents of text buffers. After a Save command, you can
continue to edit as if you had never issued the command.

e The file created by a Save command is in a special format and
is useful only as input to the Restore command (see Section
2.3.13). Do not try to use the file created by a Save command
as a normal EDT input file.

2.3.15 BSET

Use the Set command to establish criteria that are used by other EDT
commands to flag upper-case or lower-case characters, to determine if
two strings match, and to establish the correct parameters for the
terminal you use.

DEC EDITOR (EDT)

Format

SET

CASE

CA[SE] LOWER
EXACT CA[SE]
SET [HCPY

TE [RMINAL] VT52

Specifies the Set command.

Specifies that characters of the case you specify, either Upper,
Lower, or None, are to be preceded by an apostrophe when they are
displayed on the terminal. If you specify Case Upper, all
upper-case characters are flagged. If you specify Case Lower,
all lower-case characters are flagged. If you specify Case None
(the default setting), no characters are flagged, and any
previously entered Case specifications are terminated. EDT does
not flag characters while in Character Mode.

EXACT

Specifies whether object string matches must conform to the cases
specified in the object string. If Exact Case is specified,
match strings must conform to the cases of characters specified
in the object string. If Exact None (the default setting) is
specified, only the characters must match; case matches are not
required.

TERMINAL

Specifies the terminal type that you are using. The valid
terminal types are listed above in the command format. Enter the
terminal type that corresponds to the terminal you are wusing.
The default setting for the Terminal parameter is established
when EDT is installed.

Examples

*SET CASE LOWER <RET>
*40 <RET>
40 IF ABC 'L'T 'X'Y'Z GOTO 'X'X'X
Text of line 40 actually exists in the buffer as:
40 IF ABC 1t xyz GOTO xxx

This example illustrates that Set Case Lower displays all
lower-case characters with a leading apostrophe.

2-39

DEC EDITOR (EDT)

*SET EXACT CASE <RET>

*1ABC' <RET>

No such line found. ﬂ
*SET EXACT NONE <RET> i3
* 'ABC'<RET>

130 IF abc, GOTO x

This example illustrates that, when Set Exact Case has been
specified, EDT accepts only exact case matches.
Notes

Using the Set Case Command

e The Set Case Upper and Set Case Lower commands do not alter
the characters in the text buffer; they only change the way
the characters are displayed on the terminal.
You should generally use the Set Case Lower command when you

have an upper-case-only terminal. All characters that
subsequently appear with a preceding apostrophe are lower-case

characters. Lower-case characters cannot be changed or
inserted from an upper-case-only terminal, but they can be
deleted.

e EDT does not flag characters while 1in Character Mode. You
therefore cannot distinqguish between upper-case and lower-case
while 1in Character Mode if you have an upper-case-only
terminal.

Using the Set Exact Command

e The Set Exact commands do not cause any changes in the text “15
buffer. These commands only control the criteria that EDT :
uses to evaluate a string match.

Using the Set Terminal Command

® Setting the correct terminal type is mandatory only when you
edit in Character Mode. Generally, however, you should always
have the correct terminal type set.

The default setting for the Terminal parameter is established '
when EDT 1is installed in the system. Use the Show Terminal 4!!5
command (Section 2.3.16) to find out what default terminal

type 1is in effect, then use the Set Terminal command to alter

the Terminal parameter if necessary. '

2.3.16 SHOW

Use the Show command to display buffer and software version
information, and EDT parameters established by the Set command.

Format
SH[OW] BU[FFERS]
CA[SE]
EXACT

TE [RMINAL]

VE[RSION] ﬂ

2-40

DEC EDITOR (EDT)

SHOW
Specifies the Show command.
BUFFERS
Specifies that EDT display the name and summarized contents of
each buffer you have used since invoking EDT, and indicate the
current buffer with a leading equal sign (=).
CASE
Specifies that EDT display the Case parameter currently in effect
as established by the Set command.
EXACT
Specifies that EDT display the Exact parameter currently in
effect as established by the Set command.
TERMINAL
Specifies that EDT display the Terminal parameter currently in
effect as established by the Set command.
VERSION
Specifies that EDT display the version number of the current EDT
program.
Examples
*SH CASE
UPPER
*
This example shows that the Case Upper parameter is in effect.
*SH BU
MAIN 14 LINES
A 0 LINES
BUF2 143 LINES
=BUF 390 LINES
*
This example displays the buffers referenced since EDT was
invoked, the order in which they were created, and a summary of
their contents. The current buffer is shown with a leading equal
sign (=).
Notes

e The Show command, except for the Buffers and Version options,
displays only those options that have been specified, or that
can be specified, through the Set command (see Section
2,3.15).

DEC EDITOR (EDT)

2.3.17 SUBSTITUTE

Use the Substitute command to change characters within lines of the ~
text buffer. 7

Format

[/BRLIEF]] [:n]
S[UBSTITUTE] /object-string/replacement-string/[range}l {/Q[UERY]]
[/-T[YPE]]
or
'S[UBSTITUTE] N[EXT]
SUBSTITUTE

Specifies the Substitute command.

Represents a string delimiter., String delimiters can be slashes
or any other printing, nonalphanumeric character. The delimiters
in a given Substitute command must match each other.

M
,;’

object-string

Specifies the characters in the text buffer that you want to
locate and to change. See Section 2.2.2.4 for more information
about object strings.

replacement-string

Specifies the characters with which you want to replace the E “%
object string characters.

range

Specifies the range of lines within which all occurrences of the
object string are changed to the replacement string. If you do
not specify a range, EDT changes only the first occurrence of the
object string that it locates.

/BRIEF ﬂ

Specifies that EDT display the first n characters of each line in
which it makes a substitution. If you omit the n argument, EDT
displays the first 10 characters.

/QUERY

Specifies that you want to control the operation by using EDT
prompts and responses. EDT prompts you by displaying the
substitution about to be made and waits for you to enter any one
of the following responses:

Response Result

Y or YES Makes the substitution

N or NO Does not make the substitution

Q or QUIT Stops substituting and displays the asterisk
prompt

A or ALL Makes substitutions in the rest of the
appropriate lines in the range without printing ‘.!ﬁ
them first P

2-42

¢

DEC EDITOR (EDT)

/-TYPE

NEXT

Inhibits EDT's automatic display of each line after a
substitution is made in that line.

Repeats the operation of the Substitute command that 1t must
immediately follow.

Examples

S/ABC/XYZ

This command causes EDT to change the next occurrence of ABC to
XYz. If ABC exists on the current line, it is changed. If not,
the contents of the buffer are searched, and the first occurrence
is changed.

Sl/l\l
This command causes EDT to change the first slash (/) to a
backslash (\), and uses an apostrophe (') as the string
delimiter.

S/A/B/.

This command changes every occurrence of A to B in the current
line only.

Note that the final slash (/) string delimiter must be included
here since the current line range is specified by the period (.).

S/001/100/%WH/Q

In this example, EDT attempts to change every occurrence of 001
to 100 in the entire text buffer but queries you before making
each substitution.

S/.AND/.OR/&REST/-T

In this example, EDT changes every occurrence of .AND to .OR from
the current line through the end of the text buffer but does not
display any of the resulting lines.

*S/.MAC/.BAS//-T
*S N
150 IF THE FILE TYPE IS .BAS, THE COMPILER MAKES

In this example, EDT changes the first occurrence of .MAC to
.BAS, but does not display the changed line. The S N command
then changes the next occurrence of .MAC to .BAS and
automatically displays the line.

Note in the first command line that two consecutive slashes (/)
are used. The first of these indicates the end of the
replacement string and the second that an option follows.

DEC EDITOR (EDT)

Notes

e EDT displays each line that contains a substitution on the
terminal after it makes the substitution. If you specify a
range that requires substitutions in more lines than you wish
to have displayed, specify the /-Type option to inhibit the
display.

e The 8 N or Substitute Next command format must immediately
follow another Substitute command. When entered, S N repeats
a single substitution as performed by the command it follows.
The S N command format does not accept a range or any options.
It allows you to perform one more substitution that has
already been defined without requiring you to retype the
command string.

e After EDT makes substitutions, it positions the 1line pointer
at the last line in which a substitution was made.

You can replace the slash (/) string delimiter with any
printing character except a letter or number, for example, a
question mark (?), semicolon (;), apostrophe ('), and so on.

You can omit the final string delimiter if no range or options

follow and if the omitted delimiter is the last character in
the command line.

2.3.18 TYPE

Use the Type command to display lines of text at your terminal.

Formats
[(T[YPE])] [range]l
or
T[YPE] [range] [/BR[IEF]][:n]
TYPE

Specifies the Type command. Note that this field is optional |if
you do not specify the /Brief option.

range
Specifies the lines that you want displayed at your terminal. 1If
you omit the range argument, the range defaults to the line
following the current line (see Notes).

/BRIEF

Specifies that EDT display only the first n characters of each
line 1in the range. If you omit the n argument, EDT displays the
first 10 characters.

DEC EDITOR (EDT)

Examples

'ABC' : "DEF"

This command displays all lines of text from the first line that
contains ABC through the first line that contains DEF, inclusive.

T 10:100/BR:5

This command displays the first five characters of each line with
line numbers between 10 and 100, inclusive.

3WH

This command displays the entire text buffer contents.

*<RET>
120 DID GYRE AND GIMBLE IN THE WABE
*

This command, consisting only of a carriage return, advances the
line pointer to the next line and prints the line. Line 120
becomes the new current line.

Notes

e You can issue a Type command that consists of only a range.
The contents of that range are displayed on the terminal.
However, if you issue this format of the Type command, you
cannot include any command options.

e After EDT displays the lines in the range on your terminal, it
positions the line pointer at the first line in the range.

e A special case of the Type command occurs when you omit both
the command and the range; that is, when you enter a command
line that consists only of a carriage return. EDT first
advances the line pointer to the next line, then types that
line. The line just typed becomes the current line. This
variation of the Type command allows you to step through the
lines in a file simply by pressing <RET> repeatedly.

2.3.19 WRITE

Use

the Write command to create a file from the contents of a text

buffer.

Format

WR[ITE] ([range] /FI:filespec

WRITE

Specifies the Write command.

DEC EDITOR (EDT)

range
Specifies the buffer contents that you want to store in the file.
If you do not specify a range, EDT uses the entire contents of
the current text buffer as a range.

/FIl:filespec
Specifies the output file that EDT creates. You must use the /FI
option to specify vyour output file. Section 1.3 contains a
complete description of file specifications.

Example

WR =B 10:70/FI:INT.FOR

This command creates a file named INT.FOR that contains lines 10

through 70, inclusive, of buffer B,

Notes

e EDT does not reposition the 1line pointer after a Write
command, nor does the Write command alter the contents of the
range or buffer.

e Use the Write command to generate a file that contains the
contents of alternate text buffers that you want to save.
When you issue the Exit command, EDT saves only the contents
of the main text buffer; all other buffers are erased. (See
Section 2.3.4 for a description of the Exit command.)

You can also use the Write command to save the contents of the

main buffer if you did not specify an output file when you
invoked EDT.

2.3.20 XEQ (Execute)
Use the Execute command to execute a previously entered sequence of
EDT commands.
Format
X[EQ] range
XEQ
Specifies the Execute command.

range

Specifies the lines of text that contain the EDT commands to be
executed.

)

(

DEC EDITOR (EDT)

Examples

Notes

X 10:30

where lines 10 through 30 contain:

10 'ABC'
20 s/40/70/.
30 <RET>

In this example, EDT searches for the next 1line that contains
ABC, and attempts to change all occurrences of 40 to 70 within
the line. The blank line implied by the <RET> symbol advances
the line pointer past the now current line that contains ABC so
that further X 10:30 commands locate the next succeeding 1line
that contains ABC.

X =B
where buffer B contains:

=MAIN %BE
'ABC'

R

XYz

"z

This example returns the line pointer to the first 1line of the
main buffer, locates and deletes the first line that contains an
occurrence of ABC, 1inserts a 1line consisting of XYZ, and
terminates the insert with the circumflex-~Z ("Z) combination.

e Use the Execute command if you have identical or complex edits
to perform, or if you have an established series of commands
that are often issued.

e EDT positions the line pointer as directed by the commands
contained in the range specified with the Execute command.

e The Execute command cannot alter the contents of the range
containing the commands in any way.

e If the range specified with the Execute command contains an
Insert or Replace command, use the following steps to
terminate the Insert or Replace command properly:

1. Create the sequence of commands that will be excuted
by the Execute command, including the 1Insert or
Replace command.

2. Enter the new or replacement lines as part of the
sequence of commands contained in the range.

3. When all new or replacement lines are entered, enter
a circumflex-2Z ("Z) combination as part of the
sequence of commands, When EDT executes the sequence
of commands, the “Z is interpreted as <CTRL/Z>.

e When the commands in the range have been executed, EDT
displays the asterisk prompt.

DEC EDITOR (EDT)

2.4 CHARACTER MODE

When you issue the Change command from EDT's Command Mode, you ‘invoke
Character Mode., Character Mode allows video terminal users to work at
the character and word levels, in addition to the line level provided
by Command Mode, Character Mode does this by wusing the video
terminal's cursor as a pointer to the current position in the buffer.

All Character Mode editing operations use the position of the cursor
as a reference point. Unlike Command Mode's line pointer, which
points to an entire line, the cursor in Character Mode points to one
character within a 1line. Similarly, where Command Mode commands
generally operate on no unit smaller than an entire 1line of text,
Character Mode subcommands can operate on the single character
indicated by the cursor. Character Mode can also operate on multiple
characters, words, and lines.

Character Mode differs from Command Mode in several other respects.
The most obvious difference is the lack of line numbers in Character
Mode. A second difference is that Character Mode only operates in one
buffer at a time. As a result of these two differences, Character
Mode is not useful for moving lines of text from place to place and
especially from buffer to buffer. You should use Command Mode for
these operations. Character Mode is at its best when you must perform
extensive editing operations within a 1line.

When you are working in Character Mode, the video terminal screen
always displays the exact contents of the buffer. After each edit,
Character Mode updates the display to reflect the current text.

When you issue the Change command, the video terminal screen goes
blank, except for the current line of the buffer, which appears at the
top of the screen. The cursor is positioned at the first character of
the line. Although there is no indication on the screen, Character
Mode is waiting for a subcommand (so called because Character Mode |is
a subfunction of the Change command). If you type something, whatever
you type appears at the bottom of the screen, in a zone reserved for
subcommands. Depending on the subcommands you issue, you can perform
some editing operation within the line at the top of the screen, or
cause Character Mode to display more lines of the buffer.

When Character Mode is in use, you have access to the entire range
specified in the Change command. However, since your screen can only
display a certain number of lines of text, the screen is like a window
on the text buffer. If you direct the cursor to a line that is not in
the current display, Character Mode scrolls the display up or down, as
appropriate, to bring the specified line into view. (If you move the
cursor a large number of lines, the display does not scroll; it
vanishes, and the specified 1line 1is displayed at the top of the
screen.)

Once the cursor is positioned at the beginning of the line you wish to
change, you direct the <cursor to the desired character within the
line. You do this either by issuing subcommands or by using the arrow
keys on vyour terminal's keypad (if your terminal is so equipped) to
move the cursor. You can then perform any of these actions:

e Delete a specified number of characters, words, or lines

e Replace a specified number of characters, words, or lines with
new text

2-48

-

DEC EDITOR (EDT)

e Insert text in front of the cursor

e Substitute the next (or previous) occurrence of a specified
string with another string

At the end of the Character Mode session, you issue the Exit
subcommand to terminate Character Mode and return to Command Mode.

When you use Character Mode, it is important that EDT's Terminal
parameter matches the type of terminal you are working on. Sections
2.3.15 and 2.3.16 describe the Set and Show commands, which allow you
to establish and display the value of the Terminal parameter.

In addition, you should be sure that your terminal 1is correctly
described in the operating system's list of devices. Use the MCR Set
command or (for R8X-11M-PLUS users) the DCL Show command to make sure
your terminal is set correctly (see the RSX-11M/M-PLUS MCR Operations
Manual or the RSX-11M-PLUS Command Language Manual, respectively).

The remainder of this section describes:

e Editing subcommands, which allow you to position the cursor
and perform editing operations

e Methods of cursor manipulation other than those available with
the editing subcommands

e Subcommand concatenation, which allows you to enter several
subcommands on one line

e Two subcommands to terminate Character Mode

2.4.1 Editing Subcommands
Editing subcommands are divided into three basic groups:

e Subcommands that move the cursor, delete, or replace a
specified number of characters, words, or lines

e The Insert subcommand, which allows you to insert text in
front of the cursor position

e The Substitute subcommand, which allows you to substitute for
the next (or previous) occurrence of a string

Each of these groups is treated 1individually 1in the sections that
follow.

2.4.1.1 Subcommands That Move the Cursor, Delete, or
Replace - Subcommands in this group are made up of three fields:
action, repetition count, and unit. The action field specifies what
you want to do; the repetition count field specifies how many times
you want to do it, and in which direction; and the unit field
specifies whether you want to do it to characters, words, or lines.
The action and repetition count fields are optional, but you must
specify a unit. You cannot separate the fields with spaces or tabs.

Format

[action] [~] [repcount]unit<RET>

DEC EDITOR (EDT)

action

Represents a 1l-letter abbreviation (or a null field) that
specifies the editing operation that you wish to perform.

If this field is null, Character Mode moves the cursor the
specified number of units in the buffer, and displays the text if
it has not already been displayed.

If this field is a D (for Delete), Character Mode deletes the
specified number of wunits, starting at the current cursor
position.

If this field is an R (for Replace), Character Mode first deletes
the specified number of units, then waits for you to insert text
in place of the deleted units, When you finish inserting the
replacement text, enter a <CTRL/Z>. This directs Character Mode
to terminate the insert operation and wait for another
subcommand. (See Section 2.4.1.2 for a full description of the
Insert subcommand.)

repcount

unit

Represents an integer that specifies the repetition count. The
repetition count tells Character Mode how many times to perform
the action. If the repetition count 1is positive, the action
takes place for the specified number of units following the
cursor, including the unit at which the cursor 1is currently
positioned. If the repetition count is negative, the action
takes place for the specified number of units preceding the
cursor, not 1including the unit at which the cursor is currently
positioned.

If you leave this field null, the repetition count defaults to 1,
and the action takes place on the unit at which the cursor is
currently positioned. If you do not enter a minus sign (=) with
the repetition count, the sign defaults to positive.

Represents a l-letter abbreviation that specifies the unit on
which the action 1is to take place, The unit can be C (for
character), W (for word), or L (for line).

A character is a single ASCII character, including spaces and
tabs. If you specify the /NL option with the Change command,
line terminators are also considered single characters and can be
deleted. (See Section 2.3.1 for a description of the Change
command.)

A word is any string of printing characters and trailing word
terminators. A word begins at its first character and includes
all characters in the word and all word terminators (spaces
and/or tabs) up to the first character of the next word.

A line begins at the first character of the line and includes all
characters in the line up to (and including) the line terminator.
The line terminator can be a carriage return, 1line feed, form
feed, or vertical tab.

2-50

"‘,x

‘,/‘

DEC EDITOR (EDT)

Examples

D3w
This subcommand deletes three words, beginning with the word at
which the cursor is currently positioned.

DW
In this subcommand, the repetition count defaults to 1;
therefore, the subcommand deletes the single word at which the
cursor is positioned.

-4W
In this subcommand, the action field is 1left null; therefore,
the cursor moves backwards in the buffer by four words, coming to
rest on the first character of the fourth word preceding its
starting position.

DC
This subcommand deletes the single character at which the cursor
is currently positioned.

D5C
This subcommand deletes the character at which the cursor |is
currently positioned and the four characters following that
position, for a total of five characters.

D--5C
This subcommand deletes the character immediately preceding the
cursor position and the four characters preceding that one, for a
total of five. Note that this subcommand does not delete the
character at which the cursor is positioned.

D--3W
This subcommand deletes the three words immediately preceding the
word in which the cursor is positioned. Note that the word in
which the cursor is positioned is not deleted if the repetition
count is negative.

D2L

This subcommand deletes the 1line in which the cursor is
positioned and the following line, for a total of two lines.

2-51

DEC EDITOR (EDT)

D-3L

This subcommand deletes the three lines immediately preceding the
line in which the cursor is positioned. Following the operation,
the cursor comes to rest at the beginning of the line in which it
was originally positioned, that is, the first line following the
deleted lines.

R2C

This subcommand first deletes two characters starting at the
current cursor position, then waits for you to input replacement
text. When you enter <CTRL/Z>, the replacement operation
terminates and Character Mode waits for another subcommand.

In practice, when you issue a Replace subcommand, the specified
characters and the remainder of the affected line vanish. You
can then enter the replacement text, including carriage returns
if necessary. When you enter <CTRL/Z>, the remainder of the
affected line reappears in 1its proper position following the
replacement text.

R3W

This subcommand first deletes three words, starting with the word
in which the cursor is currently located, then waits for you to
input replacement text. When you enter <CTRL/Z>, the replacement
operation terminates and Character Mode waits for another
subcommand.

When replacing words, it is important to remember that you must
also replace the word terminator(s). A word includes all spaces
or tabs until the first character of the next word, or the first
line terminator.

2W3C

This subcommand string first moves the cursor two words £forward
from the current position, to the first character of the second
word. It then moves the cursor three characters further, to the
fourth character of the word.

This example and the following one illustrate subcommand
concatenation. For more information on subcommand concatenation,
see Section 2.4.3.

2L3WD2W

This subcommand string first moves the cursor down two lines to
the beginning of the second line following its original position.
It then moves the cursor three words into the 1line, to the
beginning of the fourth word. Finally, it deletes two words,
starting at the current cursor position; that is, the fourth and
fifth words of the line.

J

Notes

DEC EDITOR (EDT)

When you are deleting or replacing characters or words,
normally you cannot delete beyond the end or beginning of the
current line, For example, the cursor is two words from the
end of the line, and you issue the subcommand:

DSW

In this situation, Character Mode does not delete the last two
words on the current 1line and the first three on the next
line, as you might expect. Only the last two words on the
current line are deleted. The situation is the same if you
try to delete or replace characters beyond the end or
beginning of the current line.

The situation changes, however, if you specify the /NL option
when vyou 1issue the Change command. The /NL option directs
Character Mode to treat line terminators as single characters
that can be deleted. If you specified /NL, and you try to
delete beyond the end or beginning of a 1line, you will
succeed; Character Mode deletes the line terminator and joins
the two lines that the line terminator used to separate.

This distinction becomes important if you wish to delete or
replace all the words or characters between the current cursor
position and the end or beginning of the current line. If you
issued the Change command without the /NL option, you can
simply specify a repetition count that 1is larger than the
number of words or characters you wish to delete. Character
Mode will delete only to the end or beginning of the line,
depending on whether the repetition count 1is positive or
negative. If, however, you specified the /NL option, you must
specify a repetition count that exactly matches the number of
words or characters you wish to delete. If the repetition
count vyou specify 1is too large, you will delete the line
terminator and possibly some words in the following or
preceding 1line.

If you specified the /NL option and you delete or replace
characters beyond the end or beginning of a line, remember
that the line terminator counts as a single character and must
be accounted for when you calculate the repetition count.
However, if you are deleting words, you do not have to include
the 1line terminator in the repetition count, because the line
terminator is treated as part of the last word in the line,

Spaces are not allowed between the elements of a subcommand.
If, for example, you attempt to issue the subcommand

D5W
Character Mode returns the error message

Illegal subcommand
The DELETE key on your terminal can be used directly to delete
characters from the text buffer. deletes the character
directly to the left of the cursor. Thus, a single
keystroke is equivalent to the subcommand:

D-C

2-53

DEC EDITOR (EDT)

Use care when deleting a subcommand that you have entered
incorrectly. If you inadvertently delete more characters than
are in the subcommand, you will also delete some characters
from the text buffer.

2.4.1.2 The Insert Subcommand - The Insert subcommand allows you to
insert text at any point in the text buffer. The text can consist of
any combination of characters, including carriage returns and other
line terminators. When you want to terminate the insert operation, a
<CTRL/Z> directs Character Mode to stop accepting text for insertion
and wait for another subcommand.

Format
[loc]IKRET>
loc

Represents a Character Mode subcommand or combination of
subcommands that results in a new cursor position. (Note,
however, that a string search operation must be the last element
entered in a subcommand string; see Section 2.4.3.)

Specifies that the text you enter following the <RET> be inserted
immediately preceding the current cursor position. Character
Mode continues to insert text until you enter a <CTRL/Z>.

Notes

e In practice, the Insert subcommand causes the remainder of the
line in which the cursor is currently positioned to vanish,
leaving the cursor at the position where the insert will
occur,

When you finish typing the insert text and enter a <CTRL/Z>,
the remainder of the line reappears in the proper position.
It is not necessary to type a <RET> before the <CTRL/Z>, as is
the case when inserting in Command Mode. Any carriage returns
that you enter while inserting become part of the insert.

If you position the cursor under the first character of a line
and issue the 1Insert subcommand, the entire line vanishes.
You can then insert one or more complete lines, including line
terminators. These lines will go into the text buffer above
the line in which the cursor was originally positioned. When
you enter a <CTRL/Z>, the line above which the new lines have
been inserted reappears.

If you position the cursor at the end of a line and issue the
Insert subcommand, the resulting insert occurs between the
last character of the line and the line terminator.

e A long insert in a long line can result in text disappearing
off the right edge of the screen. The text is still in the
buffer, however, and can be recovered by inserting a carriage
return in the line.

2-54

DEC EDITOR (EDT)

2.4.1.3 The Substitute Subcommand - The Substitute subcommand works
in much the same way as the Substitute command works in Command Mode,
and follows similar format rules. It allows you to substitute a
specified string with another string.

Format

[-]1S/objstring/repstring[/]

Specifies that the direction of search for the object string
should be toward the top of the buffer, rather than toward the
bottom. If this field is null, the search is toward the bottom
of the buffer,

S
Specifies the Substitute subcommand.

/
Represents the string delimiter. The delimiters can be slashes
or any other printing, nonalphanumeric characters; however, the
delimiters used in a given Substitute operation must match. Note
that the final terminator 1is optional, as long as you do not
place additional subcommands at the end of the Substitute
subcommand. (For a complete description of subcommand
concatenation, see Section 2.4.3.)

objstring
Specifies the object string that is to be replaced with the
replacement string. The c¢riteria that Character Mode uses to
determine whether two strings match are those established by the
Command Mode Set command (see Section 2.3.15).

repstring
Specifies the replacement string that is to replace the object
string.

Notes

e When you issue the Substitute subcommand, the object string
you specify becomes the last-specified object string. This
means that you can later locate the next (or preceding)
occurrence of the object string by entering paired quote marks
("") or apostrophes (''). See Section 2.4.2.2 for a full
description of Character Mode string searches.

2.4.2 Cursor Manipulation

You can use the editing subcommands presented in Section 2.4.1.1 to
move the cursor in the text buffer. There are three additional
methods of moving the cursor:

e Subcommands that move the cursor to the beginning or end of a
specified unit of text

2-55

DEC EDITOR (EDT)

e String searches, which move the cursor to the beginning of a
specified object string

e Keypad arrows, on terminals that are equipped with them

2.4.2.,1 Cursor Subcommands - The cursor manipulation subcommands
consist of two letters. The first letter is B or E, and specifies the
beginning or end of the unit specified by the second letter. The
second letter can be W, for word; L, for line; or R, for range. The
range is equivalent to the range that you specified when you issued
the Command Mode Change command. Table 2-8 summarizes the cursor
manipulation subcommands.

Table 2-8
Cursor Manipulation Subcommands

Subcommand Function
BL Moves the cursor to the beginning of the current line
BW Moves the cursor to the beginning of the current word
BR Moves the cursor to the first character in the range
specified in the Change command
EL Moves the cursor to the end of the current line
EW Moves the cursor to the end of the current word
ER Moves the cursor to the end of the range that was

specified in the Change command

2.4,2.2 8tring Searches - String searches move the cursor to a
specified object string, either before or after the beginning cursor
position. The format of a string search request is as follows:

(-1[n]'[objstring] [']

Specifies that the search should proceed toward the top of the
text Dbuffer. If you leave this field null, the search proceeds
toward the bottom of the text buffer.

Specifies which occurrence of the object string to locate. The
value of n defaults to 1.

Represents the string delimiter. For string searches, the
apostrophe (") and the dquote mark (") are 1legal string
delimiters. The delimiter that you use at the beginning of the
string must match the one you use at the end of the string.

‘.'!

-

objst

DEC EDITOR (EDT)

ring

Specifies the object string. Following a successful search, the
cursor is positioned at the first character in the object string.
If the objstring field is left null, the search is made for the
object string that was specified in the most recent string search
operation or Substitute subcommand.

Examples

Notes

2‘4.2
keypa
arrow
verti

'BOMBARD'

This example moves the cursor to the first letter of the first
occurrence of the word BOMBARD. If the cursor is already
positioned at the first letter of BOMBARD, it moves toward the
end of the buffer searching for another occurrence of BOMBARD.

~2'FLUGELHORN'

This example moves the cursor to the second occurrence of
FLUGELHORN preceding the starting cursor position. If the
starting cursor position is on the first letter of an occurrence
of FLUGELHORN, that occurrence does not count in the total.
However, if the cursor is in the middle of an occurrence of
FLUGELHORN, that occurrence is counted.

This example moves the cursor to the first occurrence of the last
string specified as the object string in a search or substitute
operation. Repeated executions of the same subcommand will move
the cursor to subsequent occurrences of the string in the buffer.
This feature allows you to step through repeated occurrences of a
given object string without reentering the string each time.

e To determine whether two strings match, Character Mode uses
the criteria specified in a Command Mode Set command.
Specifically, if Exact Case is in effect, both the characters
and their cases must match before a match is declared. If
Exact None (the default) is in effect, only the characters in
the two strings must match. Sections 2.3.15 and 2.3.16
describe the Set and Show commands, which allow you to
establish and examine the Exact parameter.

e When Character Mode carries out a string search operation, it
always moves the cursor one character in the direction of the
search before beginning. This means that a search operation
does not find a particular object string if it starts from the
first letter of that object string.

.3 Keypad Arrows - Many terminals are equipped with a numeric
d, and some keypads have a set of four directional arrows. These
s provide yet another means of moving the cursor. The two
cal arrows move the cursor up or down a line each time you press

2-57

DEC EDITOR (EDT)

them, while the two horizontal arrows move the cursor one character to
the 1left or right, The four arrows are therefore equivalent to the
following cursor manipulation subcommands:

Arrow Equivalent Subcommand

| L

t -L

2.4.3 Subcommand Concatenation

You can enter two or more subcommands on a single line. This is
called subcommand concatenation; a group of concatenated subcommands
is called a subcommand string. Subcommand concatenation allows you to
direct Character Mode to perform a series of editing operations
without waiting for each operation to complete before entering the
next subcommand.

When you concatenate subcommands, Character Mode carries out each
subcommand in the order that you enter it. When Character Mode
finishes a given operation, it checks to see if there are nmore
characters on the subcommand line. If there are, Character Mode scans
the characters until it assembles a complete subcommand or encounters
an error. If it finds a complete subcommand, it carries it out; if
it finds an error, it returns an error message and ignores the rest of
the subcommand line.

You may, 1f you wish, separate concatenated subcommands with a space.
However, because the syntax of Character Mode subcommands is so
tightly defined, Character Mode does not require that subcommands be
delimited with spaces or other characters.

There are two limitations on the concatenation of subcommands:

e You cannot enter a subcommand string longer than 67
characters.

e If your string of subcommands includes a string search, the
string search must be the last subcommand entered. Character
Mode ignores any subcommands entered on a line after a string
search,

There are no other limitations on the subcommands you can string
together. You can even embed Insert and Replace subcommands in a
subcommand string. If you do so, the <CTRL/Z> you enter to terminate
the insert or replacement sends Character Mode looking for another
subcommand.

In practical terms, however, subcommand concatenation is useful only
up to the point at which it becomes difficult to think that many moves
ahead. Too much subcommand concatenation defeats one of the goals of
Character Mode, which is to provide a fast, intuitive means of editing
within lines. How much concatenation you do will depend on vyour
expertise in Character Mode and your ability to think ahead.

2-58

W

DEC EDITOR (EDT)

The following examples illustrate some subcommand strings that are
often useful, Some of the examples separate their subcommands with
spaces in order to clarify the example; others do not.

Examples
EL I

This subcommand string directs Character Mode to go to the end of
the current line and insert text.

EL DW

This subcommand string directs Character Mode to go to the end of
the current line and delete the last word on the line.

ERL I

This subcommand string directs Character Mode to go to the end of
the range (that 1is, to the last line of the range specified in
the Change command); go down an additional line, to the [EOB]
(End of Buffer) position; and insert text above the [EOB]. Use
this subcommand string to insert text at the end of the range.
If you do not include the L, directing Character Mode to the
{EOB] marking, you insert text above the last line in the range,
instead of below it.

-2LEL~- 2WRW

This subcommand string directs Character Mode to move the cursor
two lines above its current position; to move to the end of that
line; to back up two words to the third word from the end; and
to replace that word. It is often easier to count from the end
of the line to a word than from the beginning of the line,

3WEWRC

This subcommand string directs Character Mode to move the cursor
three words beyond the current word; to go to the end of the new
current word; and to replace the last character of that word.

2.4.4 Subcommands to Terminate Character Mode

If you wish to terminate Character Mode and return to Command Mode,
issue the subcommand:

EX stands for Exit, It terminates Character Mode and returns the
Command Mode asterisk prompt (*). The range that you specified with
the Change command will contain the edits you made while in Character
Mode. When you start editing in Command Mode, your current line will
be the same as it was when you issued the Exit subcommand.

2-59

DEC EDITOR (EDT)

If you wish to terminate Character Mode and return directly to the
monitor, issue the subcommand:

QUIT

Quit behaves like its Command Mode counterpart (see Section 2.3.10).
No output files are generated when you issue the Quit subcommand.

2.5 BSUMMARY OF EDT COMMAND MODE COMMANDS

Command Format Description
C[HANGE] ([range] [/NL] Invokes Character Mode.
CO[PY] range-1 $TO range-2 (/Q] Copies the lines in range-l

[/SEQ] to a position ahead of the
[/UN] first line in range-2.

D{ELETE] [range] [/Q] Deletes lines from the
buffer. M
EX[IT] [/RE:filespec] Terminates EDT; writes)

contents of the main text
buffer to specified out-

put file.
F[IND] range Moves the line pointer to
the first line in the range.
INC[LUDE] ([range] /FI:filespec Locates a file and copies
[/SEQ] it into a text buffer.
[/UN] -~
I[NSERT] [range] [/SEQ] Inserts text typed at the
. [/UN] terminal in the buffer
. ahead of the first line in
<CTRL/Z> the range.
M[OVE] range-1 %TO range-2 [/Q] Transfers the lines in

[/SEQ] range-1 to a position
[/UN] ahead of the first line in
range—-2.

PR[INT] [range] /Fl:filespec Generates an output file
from the contents of the
range. The output file
contains EDT line num-
bers as part of the text.

QUIT Terminates EDT; saves ho
edits or text buffers; gen-
erates no files.

[REPLACE] [range] [/SEQ] First deletes the lines in
. [/UN] the range, then inserts
. text typed at terminal into
. buffer in place of deleted
<CTRL/Z> text.

2-60

-

DEC EDITOR (EDT)

Command Format

RES[EQUENCE] ([range] [/SEQ]
[/UN]

REST[ORE] /FI:filespec

SA[VE] /FI:filespec

UPPER
CA[SE] LOWER
NONE
L—
EXACT CA[SE]
NONE
SE[T] Hcpyj
VTO05
VT50
TE [RMINAL]| VT52
VT55
VT61
LA30
| LA36
-
SH[OW] [BU[FFERS]
CA[SE]
EXACT
TE [RMINAL]
VE[RSION]

S[UBSTITUTE] /str=-1/str~2/[range]
[/BR]
[/Q]
[/-T]

S[UBSTITUTE] N[EXT]

[T[YPE]] [range]
or
T[YPE] [range] [/BRief]

WR[ITE] [range] /FI:filespec

X[EQ] range

2-61

Description

Assigns new line numbers
to the lines in the range.

Locates specified file cre-
ated by a Save command;
uses the file's contents to
restore the status and
contents of the text buff-
ers.

Creates a file that con-

tains the status and con-
tents of the text buffers
currently in use.

Establishes criteria that
other EDT commands

use in their operation;
flags upper—-case or lower-
case characters; and es-
tablishes proper terminal
parameters.

Displays the values
established by the Set
command, as well as
current buffer status
and software version
information.

Changes str-1 to str-2.
If range is specified,
changes all str-1ls in the
range. If no range,
changes only the first
str-1 encountered.

Repeats the operation of
the substitute command
that it must immediately
follow.

Displays the contents of
the range on your terminal.

Creates an output file from
the contents of the range.

Executes the EDT com-
mands contained in the
range.

DEC EDITOR (EDT)

2.6 ERROR REPORTING AND ERROR MESSAGES

As you use EDT, you may from time to time make errors in your use of
the commands. EDT provides a set of error messages that inform you of
the nature of the error you have made.

If you are unfamiliar with the operation of EDT, and you need more
information than you get from a single error message, you can type a
question mark (?) in response to the Command Mode prompt that appears
following the error message. In many cases, EDT replies with further
information about the error you have made. In some cases, even more
information can be obtained by typing another question mark. This
feature is available in Command Mode only.

The EDT error messages are listed below alphabetically. Those
messages that provide further information in response to a question
mark contain that information as well. These messages appear in the
list below as they would on your terminal.

Most of EDT error messages are self-explanatory. Those that are not
are followed by a brief explanation,

An argument is required.
*
?
You must specify a valid argument for this command.

Bad option format.
*?
An editor option is of the form /xx.

Bad option value in this context.
*2

The switch option value specified is invalid in context of its
usage.

Bad Range Format.
*2

The range you specified is not legal.
Explanation: You attempted to specify a range in an unacceptable

format. This error message can often result from mistyping of
commands.,

Buffer Specification Conflict.

*
?

The command you typed implied more than one buffer
specification.

*?
For instance, this may occur by using "N:M" in the same 1line
as "sL".

Cannot mix "-" and value in option.

*o

An option cannot have a modifier as well as a value.

2

62

DEC EDITOR (EDT)

Cannot recognize terminal type.

*?
The terminal type you specified was unrecognizable.

*?
The legal terminal types are HCPY, LA30, LA36, VTO5, VvT50,
VT2, VT55, VT61l.

Cannot yet be performed on hard copy devices.
*?
The CHANGE command will not work on hard copy devices.

Command I/0 error.
Explanation: An I/0 error occurred while EDT was trying to read

a command line.

Destination range must be contiguous.
*?
A MOVE or COPY command can have only one destination.

FATAL - Editor consistency error.
Explanation: An internal EDT error occurred. The input file 1is
not affected, but no output file is created. EDT terminates.
FATAL - I/0 error on work file.
Explanation: EDT encountered an I/0 error while trying to read
from or write to 1its internal work file. The input file is
unaffected, but no output file is generated. EDT terminates.
FATAL - Open error on work file.
Explanation: EDT was unable to open its internal work file. The
input file 1is unaffected, but no output file is generated. EDT
terminates.,
FATAL - Work file consistency error.
Explanation: The editor detected an inconsistency in its
internal work file. This condition can result from a system
problem or an internal EDT error. The input file is unaffected,
but no output file is generated. EDT terminates.
FATAL - work file memory error.
Explanation: While trying to read from or write to a work file,

EDT encountered a system memory error.

File name syntax error.
*?
The file name you specified does not have the correct format.

2-63

DEC EDITOR (EDT)

File name table exhausted.
*?
You have explicitly referenced more £files than the editor 4!!5
tables can accommodate. £
*2
The INCLUDE or RESTORE has exhausted tables internal to the
editor.

File name wild cards not allowed.
*?
An explicit file must be specified to the editor.

File open error.
*?
The editor is unable to correctly open the requested file,

Illegal command option.

Explanation: VYou specified a command option that was not legal
for the command you issued.

Illegal form for N:M.

Explanation: You gave a range specification in the form N:M that
did not follow syntax rules. :

Illegal line number.
*2
A line number must be in the range 1 to 65535, Qﬁ%g

Illegal option name modifier.
*
?
An option name modifier can consist only of a "-" preceding
the option.

Illegal string delimiters.
*?
The string delimiter may not be an alphanumeric character. %‘E%

Illegal subcommand.

Explanation: This error message appears in Character Mode. The
subcommand you issued was not in the correct format.

Illegal termination of command line.
*
?
A line was terminated by other than an end of line or comment.

Illegal text buffer name.
*
?
A text buffer name may consist only of from one to six
alphanumeric characters.
*2
A text buffer name must be preceded by either '=' or '%BUF'.

2-64

-/

DEC EDITOR (EDT)

Input record too big.

*?
The editor was unable to read the input record because of its
size.

*?
The input record is longer than 255 characters in length.

*?

The editor treats this condition as an EOF condition on the
input file.

I/0 error on source file.

Explanation: EDT encountered a system I/O error while attempting
to read from a file.

"$LAST" has no meaning in this context.

Missing string quote.

*?
A legal string must be surrounded by a pair of matching quote
marks.

* 2
A quoted string consists of one or more characters delimited
by " or '. PFor instance, "ABC" or 'DEF',

Nested XEQ not yet implemented.
* P

This version of the editor allows no XEQ command nesting.

No destination range.
*
In MOVE or COPY, a destination range must always exist.

No input file specified.

* 7?2
"INCLUDE" or "RESTORE" requires the /FI switch to specify the
input file,

Non~contiguous range not allowed.

*?
The CHANGE command will work only on a contiguous range of
lines.

No output file specified.
* 2
The command you specified requires an output file.
No previous string entered.
* P

'* or "" cannot be used unless a previous string was
specified.

2-65

DEC EDITOR (EDT)

No range specification allowed.
* 2

A range speciflication is not meaningful in SAVE or RESTORE.
* ?
SAVE and RESTORE only work on the entire state of the edit.

No repetition count allowed.

Explanation: This error message occurs in Character Mode, You
attempted to specify a repetition count in a subcommand that does
not accept a repetition count, for example, EL.

No room for buffer.
* ?
The number of buffers allowed by the editor has been exceeded.

No room in output file.

* 2
The device is full, the editor 1is wunable to generate the
output file. '

No string-type allowed.

No such file.
* 2
The input £file you requested does not exist.

No such line found.

The line referenced in the range specification could not be
found.

The line may exist but could not be found in the range
specified.

No such string in this range.

The string referenced in the range specification could not be
found.

The string may exist but could not be found in the range
specified.

Not a SAVE file.

* ?
Cannot RESTORE a non-SAVEed file.

* ?
RESTORE can only be used on a file which was generated by the
SAVE command.

No value allowed.
* ?
A value has no meaning for this option.

2-66

DEC EDITOR (EDT)

No value specified.
* 2

This option requires a value.
* 2

An option value consists of a colon followed by the value.

Object-string required with "SALL",
* 2
When typing "SALL", a string must be specified as a search
object.

The string specification must follow "SALL",

Offset must be non-zero.
* 2

A range offset must be non-zero i.e. - it may be +1 or -1, but
not +0 or -0.

Only one value allowed.
* 2

This option only allows one value to be specified.

Output file error.

* ?
The editor was unable to generate the output file without
error,

Range must have at least one line,
* 2
Zero lines cannot be moved or copied.

Range not allowed here.
* 2
The command you typed does not allow a range specification.
Range required.
* 2 :
The XEQ command always requires an explicit range
specification.
Ranges overlap.
* 2

The range specifications in the MOVE or COPY command cannot
overlap.

The source and destination ranges must have no 1lines in
common,
Repetition count cannot be zero or negative.

Explanation: In a range specification of the form n;i, i cannot
be zero or a negative number.

DEC EDITOR (EDT)

RESTORE must be first command issued.
*?

No editing is allowed preceding a RESTORE command.

*?
The RESTORE must be the first command of an editing session,
nothing may precede it.

String search cannot have a modifier.

Explanation: This error message occurs in Character Mode. A
string search in Character Mode cannot be combined with or
modified by a command.

Sstring too long.

Explanation: This error message occurs in Character Mode. The
string specified 1in a string search cannot exceed 62 characters
in length,

"SUBSTITUTE NEXT" is not legal here.

*7
"SUBSTITUTE NEXT" can be used only after "SUBSTITUTE".

*?
"SUBSTITUTE NEXT" has no meaning unless a prior "SUBSTITUTE"
command has been executed to establish the object and
replacement strings.

The memory internal to the editor has overflowed.

* 2
The editor's memory is full., No additional text will fit,
Use WRITE if you desire to save what already exits.

The /QUERY switch cannot be used here.

* ?

The XEQ command and /QUERY are incompatible.

The RESTORE command is not allowed in this context.

When you invoked the editor, you gave a file specification.
This specification prohibits subsequent usage of RESTORE,

*?
Input the QUIT command and then invoke the editor again
without any file specification. You can then use the RESTORE
command.

The /SEQ and /UN options are not supported for this command.

These switches are not implemented for EXIT, PRINT, and WRITE.
This feature is not implementéd yet,
* 2

You are using a feature which is not supported by this version
of EDT.

2-68

w

DEC EDITOR (EDT)

Unrecognized command.
*o

The command you typed is not a legal editor command.

Unrecognized option name.
*

The option name you specified could not be recognized.

XEQ range non-contiguous.
*
?
A range specification in XEQ must always be a contiguous block
of lines. ,

You must specify a source range.

*o
The MOVE or COPY command requires a source range
specification.

CHAPTER 3

LINE TEXT EDITOR (EDI)

EDI is a line-oriented editor that allows you to create and modify
text files. EDI operates on most ASCII text files; it is frequently
used to create and maintain FORTRAN or MACRO source files.

EDI accepts over 50 commands that determine its mode of operation and
control its actions on input files, output files, and working text
buffers. The commands fall into the following seven categories:

e Setup commands ~ select operating conditions, close and open
files, select data modes.

e Locator commands ~ control the position of the current line
pointer and thus determine which text line is acted upon.

e Text modification command - change text lines.

e Macro commands - define, store, recall, and use sequences of
EDI commands.

e File input/output commands - transfer text to and from input,
output, and save files.

e Device output commands - send output to terminal or printer.
e Close and exit commands - terminate editing operations.

Commands are categorized in this chapter as Basic EDI Commands
(Section 3.2), EDI Commands: Function Summary (Section 3.3), EDI
Commands: Detailed Reference Summary (Section 3.4). Restrictions,
system device considerations, and error messages for these commands
are discussed in Sections 3.5 and 3.6,

3.1 USING EDI
This section gives background information about the RSX-11M/M-PLUS

Line Text Editor that is important for you to know before you read the
command descriptions.

3.1.1 Invoking EDI

You can invoke EDI using any of the methods for 1invoking a utility
described in Chapter 1. If any format except ">EDI filespec" is used,
EDI issues the following prompting message:

EDI>

LINE TEXT eDITOR (EDI)

At this point, you must enter a file specification for the file to be
edited.

Entering File Specifications
Enter file specifications in the following format:
dev: [ufd]filename,filetype;version

The abbreviation "filespec" is used throughout this chapter to denote
a file specification that you supply.

If the file specification is a new file (that is, the file specified
cannot be found on the specified device), EDI assumes that you wish to
create a new file with the given file name. EDI then prints the
following comment lines:

{CREATING NEW FILE]
INPUT

and enters input mode. (EDI control modes are described in Section
3.1.2.)

If the message FILE DOES NOT EXIST is displayed, it means that the
user file directory corresponding to the specified UIC is nonexistent.

EDI does not accept indirect command file specifications.
If you specify an existing file name, EDI prints:

[(000nn LINES READ IN]
PAGE 0]
*

and waits in edit mode for you to issue the first command.

If the ">EDI filespec" format is used, the prompt message (EDI>) is
not issued and EDI starts up in either input or edit mode, depending
on the file name specified -- input mode if the file name is new, and
edit mode if the file name already exists.

At program startup, after EDI has identified the input file and
created the output file, the program is ready for commands. In edit
mode, the first line available for editing is one line above the top
of the input file or the block buffer., Therefore, you can insert text
at the beginning of the input file or the block buffer by issuing an
INSERT command. To manipulate the first line of text, on the other
hand, you must perform a NEXT operation to make that line available.

Defaults in File Specifications

EDI uses a default if any of the elements of the file specification,
except input filename, is omitted. 1In general, EDI processing creates
an output file. When you are modifying an existing file, EDI |uses
that file and your modifications to create an output file. When the
edit session is complete, the output file usually has the same €£file
specification as the input file, except the file system renumbers the
version to one greater than the previous version. The default values
for input and output files are listed in Table 3-1.

LINE TEXT EDITOR (EDI)

Table 3-1
EDI Default File Specifications

Default Value Default Value
Element for Input File for Output File
dev: SYO0: Same as input device
[ufd] UFD under which EDI Same as input [ufd]
is currently running
filename No default--must Same as input filename
be specified
.filetype Null Same as input filetype
;version Latest version Latest version+l

3.1.2 Control Modes: Input and Edit
EDI runs in two control modes:
e Edit mode (command mode)
e Input mode (text mode)
Edit mode is invoked automatically when you invoke an existing file.

In edit mode, EDI issues an asterisk (*) as a prompt. EDI accepts and
acts upon commands and data strings to open and close files; to bring
in lines of text from an open file; to change, delete, or replace
information in an open file; or to insert single or multiple lines
anywhere in a file.

Input mode is invoked automatically at program startup if you specify
a nonexistent file.

When in input mode, EDI does not issue an explicit prompt. Lines that
you enter at the terminal are treated as text and are inserted into
the output file. When you complete each input line with a carriage
return, EDI outputs a line feed to the terminal.

To switch from edit mode to input mode, enter the INSERT command
followed by a carriage return. To return to edit mode, enter a
carriage return as the only character on an input 1line. EDI will
issue the * prompt, signifying edit mode.

3.1.3 Text Access Modes

EDI provides two modes you can use to access and manipulate 1lines of
text in the input file. (A line is defined as a string of characters
terminated by a carriage return.) The two modes are:

e Line-by-Line Mode -- Allows access to one line of text at a
time; backing up is not allowed.

e Block Mode -- Allows free access within a block of lines, on a

line~by-line basis. Backing up within a block is allowed;
backing up to the previous block is not allowed.

3-3

LINE TEXT EDITOR (EDI)

Block mode is the default text access mode.

In addition to these two text access modes, EDI provides a way to

process text in terms of "pages." This feature is described under the
heading Processing Text in Pages, in this section.

Line-by-Line Mode

In this mode, a single line is the unit of the input file available
for modification. Line-by-line mode is entered by issuing a BLOCK OFF
command and is terminated by issuing a BLOCK ON command.

The single available line -- the "current" line -- is specified by a
pointer, which you can move sequentially through the file, starting
just before the first line in the file. You can manipulate the line
pointer using the locator commands and the text modification and
manipulation commands listed in Tables 3-5 and 3-6. However, you
cannot easily direct the pointer backward within the file.

When you open a file at the beginning’of an editing session, you can
specify that the first line be brought into memory and made available
for modification. This line remains in memory until you request that
a new line be brought in. The pointer then moves down the file until
the line you requested is encountered. That 1line 1is brought into
memory and, as the current line, can be modified. When a new line is
brought in, the previous line is written into the output file, as are
all lines that may be passed over in reaching the new current line.

Once the pointer moves past a given 1line, that line is no longer
accessible unless you enter a TOF or TOP command (described in Section
3.4). TOF causes the input and output files to be closed, and the
output file to become the new input file. TOF also has the effect of
ending line-by-line mode.

Block Mode

In this mode, a portion of the input file is held in a buffer for
editing until you request that the contents of the buffer be added to
the output file.

In block mode you can access lines of text backward as well as forward
within the buffer. Thus, you can back up to a previously edited line
without having to reprocess the entire block or £file, and without
having to issue a TOF command.

When you finish editing a block, you can write it out and read in the
next block with the RENEW command. However, you cannot access a
previously edited block except by using TOF.

EDI buffer space is computed dynamically.at run time. The number of
lines initially read into the buffer is computed by using the formula:

buffersize/132

ﬂ"i

LINE TEXT EDITOR (EDI)

A block is the number of lines read into the buffer by a RENEW or READ
command. This number is either:

1. specified by the user by means of the SIZE command (default
is 38 lines if the SIZE command is not issued),

or

2. determined by the presence of a form feed at a point in the
text where the number of lines is less than that specified in
the SIZE command (or its default value, if SIZE was not
issued).

When the current 1line pointer reaches End-Of-Block, the message
[*EOB*] is displayed and the current line pointer points to the last
line in the block. To move the current line pointer to the top of the
block, use TOP.

Table 3-2 provides a brief summary of the differences between
line~-by-line and block mode.

Table 3-2
Line-by-Line vs. Block Mode

Line-by-Line Mode Block Mode

One line available for Entire block of lines available

modification at a time. for modification at a time, on
a line-by-line basis.

Lines can only be Lines can be accessed forward

accessed forward through and backward within a block.

the file.

Search commands can be Search commands search only

applied to search the the block in memory.

entire file. To search more data, you must

read in another block.

Regardless of editing mode the line pointer always points to the first
character in the line.

Processing Text in Pages

EDI provides features that allow you to access portions of a text file
by page. A "page" is a segment of text delimited by form feed
characters (the last page in a file is terminated by the end-of-file
marker).

Two commands are provided to handle paged text -- FF, which defines a
page boundary by inserting a form feed; and PAGE, which accesses a
page of text. (The commands PAGE FIND and PAGE LOCATE do not refer to
form feed-delimited pages -- they are actually global searches.)

EDI handles paged text in block mode. If block mode is not already in
effect, it is entered when you issue a PAGE command.

LINE TEXT EDITOR (EDI)

If a form feed is encountered in text during a READ or RENEW
operation, the page thus delimited, for purposes of the READ or RENEW,

is interpreted as a block.
The message [PAGE n], issued after a READ or RENEW operation, gives
the value of EDI's page counter. If your text contains no form-feed

characters, the count is zero until the last block in the file is read

into the buffer. Upon encountering the end-of-file, EDI increments
the page count to 1.

3.1.4 Text Files

The following sections describe how data may be added to files, and
the operations performed on output files.

Input and Secondary Files
EDI accepts input from:
e The input terminal (that is, commands and text entries)
e Files-1l1 volumes that contain any of the following:
1. The file to be edited
2. A secondary file
3. A save file
4, A macro file
The input file is always preserved.l Any system failure, EDI failure,
or lack of space on the output volume does not cause the loss of the
input file. Only the output file is affected. 1In cases of failure,
the output file is not completely destroyed; it becomes a truncated

version of the input file containing all of the edits to the point of
failure,

In general, the current block buffer is not written to disk when an
error of this type occurs.

Output Files

The output device defaults to the input device, as do the directory,
filename, and filetype, with the version number incremented by one.

If you wish to change any of these parameters (except device and
directory), specify a completely new file specification when closing a
file or exiting at the end of an EDI session.

1 To delete the input file, use the CLOSE-AND-DELETE command or the
EXIT-AND-DELETE command; or use PIP.

LINE TEXT EDITOR (EDI)

3.1.5 Terminal Conventions

RSX-11 and EDI provide terminal keyboard functions that provide the
means to:

e Delete characters on an input line (MCR function)
e Delete an entire input line (MCR function)
e Move the current line pointer forward in a file (EDI function)

e Move the current 1line pointer backward in a file (EDI
function)

e Terminate an edit session and pass control to MCR (EDI
function)

Character Erase (RUBOUT or DELETE; CTRL/R)

Typing the RUBOUT key (marked DELETE on some terminals) deletes
individual characters if used before carriage return is pressed.
During editing operations, RUBOUT does not affect previously prepared
text.

When the RUBOUT key is typed it is echoed first as a backslash (\),
and 1is followed by the previously typed character. Each successive
RUBOUT typed results in the echo of an earlier typed character. When
the first non-RUBOUT character is typed, it is echoed as a backslash
(closing the RUBOUT sequence) followed by the typed character. For
example: .

First RUBOUT typed
Second RUBOUT
Third RUBOUT

First non-RUBOUT

MISTKAE\EAK\AKE

For some CRT terminals, RUBOUT (or DELETE) works in a more obvious
way. Each RUBOUT typed causes the cursor to backspace, erasing the
previous character. Your CRT terminal may work this way if a certain
option was selected when your system was generated.

Another useful system generation option is CTRL/R. If this option was
selected, your system responds to CTRL/R by printing the incomplete
input line. For example, at a hardcopy terminal you enter:

MISTKAE rubout rubout rubout CTRL/R

The echoed result is:

MISTKAE\EAK
MIST

Line Erase (CTRL/U)

CTRL/U deletes the line being input, if typed before the 1line Iis
terminated with a «carriage return., It is typed by holding down the
CTRL key and pressing U. CTRL/U echoes as “"U followed by carriage
return and line feed.

LINE TEXT EDITOR (EDI)

Carriage Return

The carriage return has the following effects, depending on how it is
used:

e When issued in place of an input file specification, carriage
return causes EDI to terminate.

e When issued in edit mode, carriage return causes the next line
to be printed. That line becomes the current line.

® When issued in input mode as the only character in an input
line, carriage return causes a return to edit mode.

e When issued alone after an INSERT command, carriage return
invokes input mode.
ESCape or Altmode
When EDI is in edit mode, typing ESCape (or Altmode) causes the

previous text line to be printed. That line becomes the current line.
ESC can be used this way only in block mode, not in line-by-line mode.

CTRL/Z

CTRL/Z causes EDI to terminate. EDI writes the remainder of the input
file into the output file and closes both files before terminating.
Use CTRL/Z to terminate EDI in edit mode, input mode, or in the middle

of an incomplete input line. CTRL/Z erases your last input line if
you enter the command as a line terminator.

3.1.6 EDI Command Conventions
EDI uses asterisks (*) and ellipses (...) in special ways described in

the following paragraphs. Also described below is the notation
convention used to define EDI command abbreviations.

Use of Asterisk (*)

The asterisk character, *, can be used 1in place of any numeric
argument. It evaluates to 32767 (decimal),

Example

The following command results in the printing of the remainder of
the block buffer or file.

PRINT *

Use of Ellipsis (...) in Search Strings

In a number of the EDI commands, you must identify a string of
characters to be located and/or changed. To reduce the necessary
terminal entries, the more advanced user can employ the following
special string constructs. In these special cases, the ellipsis (...)
represents any number of intervening characters.

LINE TEXT EDITOR (EDI)

Case 1. stringl...string2 Any string that starts with stringl,
continues with any number of intervening
characters, and ends with the first
occurrence of string2.

Case 2. ...string Any string that starts at the beginning
of the current 1line and ends with the
first occurrence of string.

Case 3. string... The first string that starts with string
and ends at the end of the current line.

Case 4. ... The entire current line.

Examples

In the following examples, the CHANGE command is used with the
four cases of special string constructs given above. In each
case the current line reads:
THIS IS A SAMPLE OF SPECIAL STRING CONSTRUCTS.
Case 1. c /S A...E 0/S AN EXAMPLE O
results in
THIS IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS.
Case 2. C /...SPEC/THIS IS AN EXAMPLE OF SPEC
results in
THIS IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS.
Case 3. C /STRING.../EDI STRING CONSTRUCTS.
results in
THIS IS A SAMPLE OF SPECIAL EDI STRING CONSTRUCTS.
Case 4. C /.../EXAMPLES OF SPECIAL EDI CONSTRUCTS.

results in

EXAMPLES OF SPECIAL EDI CONSTRUCTS.

Command Abbreviations

EDI permits the use of abbreviated commands. Where these shorter
forms are allowed, the command format specifications represent the
shortest acceptable form in upper-case letters. Lower-case letters
may be entered optionally. The following example shows the
abbreviations allowed for the VERIFY command. The command format
specification is:

Verify

The following abbreviations are valid for the VERIFY command:

\'

VE

VER
VERI
VERIF
VERIFY

3-9

LINE TEXT EDITOR (EDI)

3.2 BASIC EDI COMMANDS

The basic EDI commands listed in Table 3-3 allow you to create a file,
to modify a file by adding, deleting, or changing its contents, and to
exit after the desired operations have, been completed. More detailed
description of each command follows the table. These commands are the
most important EDI commands. AS you become more familiar with EDI
operations, the additional commands 1listed in Section 3.3 and
described in Section 3.4 will allow you to wuse all of EDI's
capabilities.

Table 3-3
Basic EDI Commands
Command Command Format Description
ADD Add string Append string to current line.
ADD & PRINT AP string Append string to current line,

and print resultant line.

BOTTOM BOttom Move the current line pointer
to the bottom of the current
block (in block mode) and to
the bottom of the file (in
line-by-line mode).

CHANGE [n]Change /stringl/ Replace stringl with string2

string2(/] n times in the current line.

CTRL/Z Type a control Z Close files and terminate
editing session.

DELETE Delete [n] Delete current 1line and n-l

or lines if n is (+); delete n
Delete [-n] lines preceding current line if
n is (=). [-n] operates in

block mode only.

DELETE & DP [n] or DP [-n] Same as DELETE, except new

PRINT current line is printed.

<ESCape> Type the ESC (or ALT) | Print previous line, and make

key it new current line (block mode
only). Same as NP-1,

EXIT EXit [filespec] Close files, rename output
file, and terminate editing
session.

INSERT INsert [string] Enter the string immediately

following the current line. 1If
no string 1is specified, EDI
enters input mode.

LOCATE [n]Locate string Locate nth occurrence of
string. In block mode, search
stops at end of current block.

(continued on next page)

W

LINE TEXT EDITOR (EDI)

Table 3-3 (Cont.)
Basic EDI Commands

Command

Command Format

Description

NEXT

NEXT & PRINT

PRINT

RENEW

<RETURN>

RETYPE

TOP

TOP OF FILE

Next [n] or
Next [-n]

NP [n] or NP [-n]

Print[n]

RENew [n]

Carriage return

Retype string

Top

TOF

Establish new current line n
lines away from current line.

Establish and print new current
line.

Print current line and the next
n-1 lines, The last printed
line is the new current line.

Write current block to output
file and read new block from
input file (block mode only).

Print the next line, make it
new current line; exit from
input mode. Same as NP+1.

Replace current line with
string; or delete current line
if string is null,

Move the current 1line pointer
to the top of the current block
(in block mode) or top of file
(in 1line-by-line mode). TOP
creates. a new version of the
file each time it is invoked in
line~by~line mode.

Return to top of input file and
save all pages previously
edited. TOF creates a new
version of the file each time
it is invoked. TOF reads in a
new block after writing the
previous block to the output
file.

3.2.1 ADD

This command causes the specified string to be appended to the current

line.
Format

Add string

LINE TEXT EDITOR (EDI)

Example

The following command completes the line HAPPY DAYS ARE HERE
*A AGAIN.

Note that the space after the A is the command terminator. EDI
will not insert the space into the 1line, If a space is to
precede AGAIN., the command should be:

A<space><{space> AGAIN.

3.2.2 ADD & PRINT

This command performs the same function as the ADD command, except
that the new line is printed.

Format
AP string
Example

Using the same line as the ADD command, the following command
causes the new line to be printed as follows:

*AP AGAIN.
HAPPY DAYS ARE HERE AGAIN.

3.2.3 BOTTOM

BOTTOM moves the current line pointer to the beginning of the last
line of the current block (in block mode), or to the beginning of the
last line of the file (in line-by-line mode)., In block mode, the only
processing EDI performs is line pointer positioning. In line-by-line
mode, all the lines are copied from the input file to the output file
until EOF is reached. 1If VERIFY ON is specified, the last line of the
file block is displayed. Note, however, that if you deleted the last
line before you 1issued BOTTOM, the pointer will be located past the
text, and thus the last line will not be printed. BOTTOM performs the
same function as END (see Section 3.4.14).

Format
BOttom
Example
*V ON

*BO
THIS IS THE LAST LINE

In this example, the current line pointer is moved to the bottom
of the block buffer and the last line is displayed.

LINE TEXT EDITOR (EDI)

3.2.4 CHANGE

This command searches for stringl in the current line and, if found,
replaces it with string2, If stringl is given but cannot be located
in the current line, EDI prints [NO MATCH] and returns an * prompt.
If stringl 1is null (not given), string2 is inserted at the beginning
of the line. If string2 is null, stringl is deleted from the current
line.

The search for stringl begins at the beginning of the current line and
proceeds across the line until a match is found.

The characters that delimit stringl and string2 are normally slashes
/). However, any matching characters not contained in the specified
string may be used. The first character following the command is the
beginning delimiter; the next matching character ends the string.
Thus, characters used as delimiters must not appear in the string
itself. The closing delimiter is optional.

If you precede the command with a number n, the first n occurrences of
stringl are changed to string2. After each replacement of stringl
with string2, scanning restarts at the first character in the line.
This allows vyou to generate a string of characters as shown in the
example below.

If no match occurs, a [NO MATCH] message is displayed.
Format

[n]lChange /stringl/string2[/]
Example

TO SEPERATE THE THOUGHTS, USE SEPERATE SENTENCES.

2C/SEPE/SEPA/

TO SEPARATE THE THOUGHTS, USE SEPARATE SENTENCES.

3.2.5 <CTRL/Z>

Typing CTRL/Z (holding the CTRL key down while typing the letter 2)
terminates the editing session, If an output file is open when CTRL/Z
is typed, all remaining lines in the block buffer and the input file
are transferred (in that order) into the output file, all files are
closed, and EDI exits. These actions occur whether EDI is in edit or
input mode. If EDI is prompting for another file specification when
CTRL/Z is entered, all files are closed (including any open secondary
input file), and EDI exits. If you enter CTRL/Z as an input line
terminator, that line is erased.

3.2.6 DELETE

This command causes lines of text to be deleted in the following
manner:

1. If n is given and is a positive number, the current line and
n-1 following lines are deleted. The new current line is the
line following the last deleted line.

LINE TEXT EDITOR (EDI)

2. If n is given and is a negative number, the current 1line |is
not deleted, but the specified number of lines that precede
it are deleted. The line pointer remains unchanged. A
negative value for n can be used only in block mode.

3. If n is null, the current line is deleted, and the next line
becomes the new current line.

Format
Delete [n]
or
Delete [-n]
Example

To delete the previous five lines in the block buffer, type the
following command:

*D -5

3.2.7 DELETE & PRINT

This command performs the same function as the DELETE command, except
that the new current line 1s printed when all lines have been deleted.

Format
DP [n]
or
DP [-n]

If n is not specified, +1 is assumed. A negative value for n can
be used only in block mode.

Example

If the following lines are contained in a file:
THIS IS LINE 1
THIS IS LINE 2

THIS IS LINE 3
THIS IS LINE 4

and the line pointer is at the first line, the following command
obtains the results shown below:

*DP 2
THIS IS LINE 3

3.2.8 <EsCape>

This command prints the previous line in the block (block mode only).
That 1line becomes the current line. Thus, you can back up through a
block, one line at a time, by typing a series of ESCapes. Typing
ESCape is equivalent to typing NP-1 (NEXT & PRINT command).

o/

LINE TEXT EDITOR (EDI)

3.2,9 EXIT
This command transfers all remaining lines in the block buffer and
input file (in that order) into the output file, closes the files, and
terminates the editing session. If a file specification is used, the
output file is renamed to the specified filename.
Format

EXit [filespec]
Example

The command:

*EX

terminates the editing session without renaming the output file.
It causes EDI to display:

[EXIT]
The output filename.filetype is the same as the input

filename.filetype, with a version number one greater than that of
the input file.

3.2.10 INSERT

This command inserts string immediately following the current line.
The string becomes the new current line., If string is not specified,
EDI enters input mode,.

Format

Insert [string]

Example

*1 TEXT INSERT IN EDIT MODE Insert a line of text
immediately after the current
line.

*1 An I followed by a carriage

TEXT INSERT 1 IN INPUT MODE return causes EDI to switch

TEXT INSERT 2 IN INPUT MODE to input mode. A series

ETC. of new 1lines may be input
following the current line.

* A carriage return as the only

character in an input line
causes EDI to return to edit
mode and to prompt for a new
command.

3.2.11 LOCATE

This command causes a search for the pattern string, beginning at the
line following the current line. The string may occur anywhere in the
line sought. The line pointer is positioned to the 1line containing
the match. When the line is located, it is printed if VERIFY ON is in
effect.

3-15

LINE TEXT EDITOR (EDI)
LOCATE applies to the block buffer if EDI is in block mode and to the
input file if in line-by-line mode.
Format
[n] Locate string
Example

The following command can be used to locate the line HAPPY DAYS
ARE HERE AGAIN.

*I, PPY
EDI searches the file or block buffer and (if VERIFY ON is
specified) prints the line when it is located. The current line
pointer is set to the located line.
If string is not specified, the line following the current line

is considered a match, and the line pointer is positioned there.
If "n" is specified, the nth occurrence of string is located.

3.2.12 NEXT
This command moves the current lire pointer backward and forward in
the file. A positive number moves the current line pointer n lines
beyond the current line; a negative number moves the current line
pointer backward n lines.
Format

Next [n]

or
Next [-n]

If n is not specified, a value of +1 is assumed. A negative n
can be used only in the block mode.

Example

In the block mode, the following command moves the current line
pointer back five lines:

*N -5

3.2.13 NEXT & PRINT

This command has the same effect as the NEXT command, except that the
new current line is printed.

Format
NP [n]
or
NP [=n]

The following conventions can be used in place of issuing a
complete NP command:

Pressing the carriage return key is the same as an NP+l command.

3-16

| —

Pressing the ESCape (or ALTmode) key while in the block
the same as an NP-1 command.

LINE TEXT EDITOR (EDI)

If n is not specified, then a value of +1 is assumed.

Example

mode

is

Assume the following four lines are contained in the file and the

line pointer is at the first line.

LINE 1 OF THE
LINE 2 OF THE
LINE 3 OF THE
LINE 4 OF THE

If the following
printout:

*NP 2
LINE 3 OF THE
*

LINE 4 OF THE

* (ESC>
LINE 3 OF THE

* <ESC>
LINE 2 OF THE

3.2.14 PRINT

FILE
FILE
FILE
FILE

command is issued,

FILE
FILE
FILE

FILE

returns

the

following

This command prints out the current line and the next n-1 lines on the

terminal;

Format
Print ([n]

Example

The following example illustrates both the

commands:

PRINT

and

the last line printed becomes the new current line.
is not specified, a value of 1 is assumed.

the

If it

TYPE

LINE TEXT EDITOR (EDI)

Before
File A File B
()3 Line A E> Line V
- [Dis the :
Line B Line W
Line Pointer
Line C Line X
Line D Line Y
Line E Line 2
*TYPE 5 *PRINT 5
Line A Line V
Line B Line W
Line C Line X
Line D Line Y
Line E) Line 2
* *
After
File A File B
E$> Line A Line V
Line B Line W
Line C Line X
Line D Line Y
Line E [:> Line 2

3.2.15 RENEW

This command writes the current block buffer into the output file and
reads a new block from the input file. The optional value n is a
repetition count: 1if you specify n, the process is repeated n times.
The intermediate blocks are written into the output file, and the last
block is left in the block buffer. If n is not specified, a single
RENEW 1is performed. This command may be used only in block mode.
Refer to Section 3.1.3 for information on how EDI block buffers are
processed.

Format

RENew [n]

3-18

LINE TEXT EDITOR (EDI)

Example

*RENEW 10

Ten consecutive blocks are transferred from the input file to the
block buffer. The initial contents of the block buffer and the
next nine blocks are transferred to the output file. The current
line pointer points to the first line in the tenth block, which
is currently in the block buffer.

3.2.16 <RETURN>

In edit mode, this command prints the next line in the file or block
buffer. That line becomes the current 1line. Thus, you can scan
through a file or block, one line at a time, by typing a series of
RETURNS. This command is equivalent to NP+1 (NEXT & PRINT command).

In input mode, a single carriage return causes EDI to return from
input mode to edit mode.

3.2.17 RETYPE

This command replaces the current line with string. If string is not
specified, the line is deleted.

Format
Retype [string]’
Example

*R THIS IS A NEW LINE

The string THIS IS A NEW LINE replaces the current line.

3.2,18 TOP

TOP sets the current line pointer to the top of the current block (in
block mode) or to the top of the file (in line-by-line mode). When
the current line pointer is positioned via TOP, you can enter lines
preceding the first line in the block or file.

TOpP differs from TOF in the following ways:

e In line-by-line mode, TOP creates a new file and moves the
current 1line pointer to the top of the file. Unlike TOF, it
does not cause EDI to return to block mode.

e In block mode, TOP moves the current line pointer to the top
of the «current block and does not create a new output file,
TOF moves the current line pointer to the top of the file and
creates a new output file.

Format

Top

LINE TEXT EDITOR (EDI)

Example
*TOP

This command directs the current line pointer to the top of the
current block in block mode.

3.2,19 TOP OF FILE (TOF)
This command creates a new version of the file and returns the current
line pointer to the first line of the file. TOF processing copies the
input file into the output file, closes both, then opens the latest
version of the file as the input file. 1If you issue this command when
in line-by-line mode, EDI switches to block mode after saving the
edited data. The first block is read into the block buffer.
Format

TOF
Example

*TOF

This command writes the previously edited pages into the output
file, resets the current 1line pointer to the top of the input
file, and reads the first block into the block buffer.

3.3 EDI COMMANDS: FUNCTION SUMMARY
EDI commands can be arranged by functional similarity; for example,
all the commands you use to locate a string can be grouped under the
function heading "Locator Commands." This section contains summaries
of the following command categories:

e Setup commands - select operating conditions, close and open
files, select data modes.

e Locator commands - control the position of the current 1line
pointer, and thus determine which text line is acted upon.

e Text modification commands - change text lines.

e Macro commands - define, store, recall, and use sequences of
EDI commands.

e File input/output commands - transfer text to and from
input/output, and save files.

e Device output commands -~ send output to terminal or printer.

e Close and exit commands - terminate editing operations.

3.3.1 Setup Commands

The setup commands allow you to enable or disable certain special
features of EDI. Among these features are the block and line-by-line
text access modes, already mentioned, and the automatic verification
of LOCATE commands., Setup commands are listed in Table 3-4.

3-20

LINE TEXT EDITOR (EDI)

Table 3-4
EDI Setup Commands

Command Format Description
BLOCK ON/OFF BLock [ON] or Switch text access modes.
BLock OFF
CONCATENATION CC [letter] Change concatenation character
CHARACTER to specified character (default
is &).
OPEN SECONDARY OPens filespec Open specified secondary file.
OUTPUT ON/OFF OUtput ON or Continue or discontinue
OUtput OFF transfer to output file
(line-by-line mode).
SELECT PRIMARY SP Reestablish primary €£file as
input file.
SELECT SECONDARY ss Select opened secondary file as
input file.
SIZE SIZE n Specify maximum number of lines
to be read into block buffer.
TAB TAb [ON] or Turn automatic tabbing on or
TAb OFF off.
UPPER CASE UC [ON] or Enable or disable conversion of
ON/OFF ucC OFF lower-case characters entered
from terminal to wupper-case
characters.
VERIFY ON/OFF Verify [ON] or Select whether 1locator and
verify OFF change commands are verified.

3.3.2 Locator Commands (Line-Pointer Control)

During editing operations, EDI maintains a pointer that identifies the
current line (that is, the 1line to which any subsequent editing
operations refer). Commands that modify the line pointer's 1location
are called locator commands; they are listed in Table 3-5.

The locator commands allow you to:

e Set the line pointer to either the top or bottom of the input
file or block buffer.

e Move the line pointer a specified number of 1lines away from
its current position.

e Move the line pointer to a 1line containing a given text
string.

In edit mode, the carriage return and ESCape (or ALTmode) keys act to
relocate the line pointer. A single carriage return moves the pointer
to the next line. A single ESCape moves the line pointer back one
line (in block mode only). 1In each case the line is printed.

If VERIFY ON is in effect, the located line is printed after a BOTTOM,
END, FIND, PAGE FIND, PAGE LOCATE,

LINE TEXT EDITOR (EDI)

or SEARCH & CHANGE command.

Table 3-5
EDI Locator Commands
Command Format Description

BEGIN or Begin Set <current 1line to the line

TOP Top preceding top 1line in file
(line-by-line mode) or block
buffer (block mode). Both
commands create copies of the
file each time they are invoked
in line~by=-line mode. The
commands are equivalent.

BOTTOM or BOttom Set current 1line to last line

END End in file or block buffer. The
commands are equivalent,

<ESCape> Type ESC (or ALT) Print previous line and make it

(or ALTmode)

FIND

LOCATE

NEXT

NEXT & PRINT

PAGE
(Block
Mode Only)

PAGE FIND
(Block
Mode Only)

PAGE LOCATE

(Block
Mode Only)

<RETURN>

SEARCH &
CHANGE

key

[n]Find [string]

[n]Locate string

Next ([n]
Next [-n]

NP [n] or NP [-n]

PAGe n

[n]PFind string

[n] PLocate string

Carriage return

SC /stringl/string2[/]

new current line. (Block Mode
only.)

Search current block or input
file, beginning at line

following current line for the
‘nth occurrence of string.
String must begin in column 1.

Set 1line pointer to located
line.
Locate nth occurrence of

string. In block mode, search
stops at end of block.

Establish new current 1line n
lines away from current line.

Establish and print new current
line.

Enter block mode. Read page n
into block buffer. If n is less
than current page number, do
TOF first. Pages are delimited
by form feed characters.

Search successive blocks for
the nth occurrence of string.
String must start in column 1.

Search successive blocks for
the nth occurrence of string.
String may occur anywhere in
line.

make it
exit from

Print the next
the current
input mode.

line,
line;

Locate stringl and replace it

with string2.

LINE TEXT EDITOR (EDI)

3.3.3 Text Modification and Manipulation Commands

The text modification and manipulation commands enable you to modify
ﬁ-; text. Table 3-6 lists these commands.

Table 3-6
EDI Text Modification and Manipulation Commands

Command Format Description
ADD Add string Append string to current
line.
ADD & PRINT AP string Append string to the

current line and print
resultant line.

CHANGE [n]Change/stringl/ Replace stringl with
string2(/} string2 in the current
N’ ~line n times.
DELETE Delete [n] or Delete current line and
Delete [-n] n-1l lines if n is (+);

delete n lines preceding
current line if n is (-).
[-n] operates in block
mode only.

DELETE & PRINT | DP [n] or DP [-n] Same as DELETE except new
current line is printed.

‘h" ERASE ERASE [n] Erase the current line if
in line-by-line mode.

Erase the current block
buffer and the next (n-1)
blocks, if in block mode.

FORM FEED FF Insert form feed into
block buffer (used to
delimit a page).

\.'1 INSERT Insert string Enter string following
current 1line, or enter
input mode if string is
not specified.

LINE CHANGE [n]JLC /stringl/ Change all occurrences of
string2[/] stringl in current line
(and n-1 lines) to
string2.
OVERLAY Overlay [n] Delete n 1lines, enter

input mode, and insert
new line(s) as typed, in
place of original
line(s).

(continued on next page)

LINE TEXT EDITOR (EDI)

Table 3-6 (Cont.)
EDI Text Modification and Manipulation Commands

Command Format Description
PASTE PAste /string 1/ Search all remaining
string2[/] lines in fiel or Dblock

buffer for stringl and
replace with string2.

RETYPE Retype Replace the current line
with string; or delete
the current line if
string is null.

TOP OF FILE TOF Return to the top of the
input file and save all
pages previously edited.

UNSAVE UNSave [filespec] Insert all 1lines from

specified £file following
current line. If
filespec is not
specified, SAVE.TMP is
used.

3.3.4 Macro Commands

These commands allow you to define, store, recall, and use macros. A
macro 1is a series of EDI commands that, once defined, can be executed

repeatedly using just a few keystrokes., Table 3-7 1lists the macro
commands.

Table 3-7
EDI Macro Commands

Command Format Description
MACRO MACRO x definition Define macro number x. Up to
three macros can be defined.
MACRO CALL MCall Retrieve macro definitions
stored in file MCALL;n.
MACRO EXECUTE [nIMx [a] Execute macro x [n] times,
while passing numeric

argument f[a]. The value X
may be 1, 2, or 3.

MACRO [n] <definition> Define and execute a macro n
IMMEDIATE times. Store it as macro
number 1.

LINE TEXT EDITOR (EDI)

3.3.5 File Input/Output Commands

Input/output commands control the

input/output,

and save files.

Table 3-

movement of text to and from
Table 3-8 lists these commands.

8

EDI Input/Output Commands

Command

Format

Description

FILE

READ

RENEW

SAVE

WRITE

FILe filespec

REA4 [n]

RENew [n]

SAve [n] [filespec]

Write

Transfer lines from input file
to both the output file and the
specified file wuntil a form
feed or end-of-file is
encountered. (Line~-by-1line
mode only.)

Read next n blocks of text into
block buffer. If buffer
contains text, new text is
appended to it.

Write the current block to the
output £file and read new block
from the input file.

Save current line and the next
n-1 lines in the specified
file. If filespec is not
given, 1lines are saved in file
SAVE,TMP. SAVE puts the
temporary file in the UFD and
on the device of the file you
are editing. You can override
the default by specifying a
different device and UFD.

Write contents of block buffer
to output file and erase block
buffer.

3.3.6 Device Output Commands

These commands direct output to your terminal or to a pseudo-device
(CL:). They are listed in Table 3-9,

3.3.7 CLOSE and EXIT Commands

The CLOSE and EXIT commands terminate EDI operations and write the

remainder
commands.

of the input file into output file. Table 3-10 lists these

LINE TEXT EDITOR (EDI)

Table 3-9
EDI Device Output Commands
Command Format Description

LIST ON TERMINAL LIst Print on the terminal all lines
remaining in block buffer (block
mode) or input file
(line-by-line mode), beginning
at current line.

LIST ON PSEUDO- LP Same as LI, except that printing

DEVICE is performed on pseudo-device
CL:.

PRINT Print [n] Print the current line and the
next n-1 lines. The 1last
printed line is the new current
line,

TYPE TYpe [n] Print next n lines., In
line-by-line mode, identical to
PRINT command. In block mode,
line polnter remains at current
line, unless end-of-block was
reached.

Table 3-10
EDI Close Operation Commands
Command Format Description
CLOSE CLose [filespec] | Transfer remaining lines in

CLOSE SECONDARY

CLOSE & DELETE

CTRL/Z

EXIT

EXIT & DELETE

KILL

CLOSES

CD1 [filespec]

Type a control 2

EXit [filespec]

EDx [filespec]

KILL

block buffer and input file, to
output file and <close files.
If file specification is used,
output file is renamed. EDI>
prompt is issued.

Close secondary file.

Same as CLOSE, except that
input file is deleted. EDI>
prompt is issued.

Close files, and terminate edit
session.,

Close files, rename output
file, . and terminate edit
session.

Transfer remaining lines in
block buffer and input file to
output file, and close file.
Rename file if file
specification is given, Delete
input file and terminate EDI.

Close input and output files,
delete output file. EDI> prompt
is issued.

3-26

LINE TEXT EDITOR (EDI)

3.4 EDI COMMANDS: DETAILED REFERENCE SUMMARY

This section lists each EDI command in alphabetical order. Each
command description comprises the function of the command and the
command format. Most descriptions include examples and usage
information. The exceptions are the basic commands, which are

described in detail in the preceding section. 1In this section, only
the function and format of basic commands are described.

3.4.1 ADD
ADD causes the specified string to be appended to the current line.
Format

Add string

For examples and information describing how to wuse ADD, refer to
Section 3.2.1.

3.4.2 ADD & PRINT (AP)

ADD & PRINT performs the same function as ADD, except that the new
line is printed.

Format
AP string

For examples and information describing how to use ADD & PRINT, refer
to Section 3.2.2,

3.4.3 BEGIN

BEGIN sets the current line pointer to the beginning of the £file in
line-by-line mode, or to the beginning of the block buffer in block
mode. The current line is one line preceding the top line in the file

or block buffer. Thus, you can insert text at the beginning of a file
or block.

If EDI is in line-by-line mode, BEGIN copies the input file 1into the
output file, closes both, then opens the latest version of the file.
BEGIN performs the same function as TOP.
Format
Begin
Example
*B

In this example, the current line pointer is moved to the top of
the block buffer (block mode is assumed).

3-27

LINE TEXT EDITOR (EDI)

3.4.4 BLOCK ON/OFF

This command allows you to switch between block mode and line-by-line
mode. When you enter BLOCK ON, block mode becomes active, and the
next block of text is brought into the block buffer. When you enter
BLOCK OFF, the current block being processed is written to the output
file, and line-by-line mode becomes active. The first line from the
next sequential block in the input file becomes the current line.

If you enter an unnecessary BLOCK command (for example, BLOCK ON when
EDI is already in block mode), the command is ignored.

BLOCK ON is the default text access mode. It is assumed when neither
ON nor OFF is specified.

Format
BLock [ON]
or
BLock OFF
Example

*BLOCK ON

This command causes EDI to switch to block mode. The next block
of text is read into the block buffer.

3.4.5 BOTTOM
BOTTOM sets the current line pointer to the beginning of the last line
of the block (in block mode) or of the input file (in line-by=-line
mode) .
Format

BOttom

For examples and information on how to use BOTTOM, refer to Section
3.2.3.

3.4.6 CHANGE

CHANGE searches for stringl in the current 1line and, if found,
replaces it with string2.

Format
[n}] Change /stringl/string2[/]

For examples and information on how to use CHANGE, refer to Section
3.2.4.

3.4.7 CLOSE

This command transfers all remaining lines in the block buffer and
input file (in that order) into the output file, and closes both
files. If a file specification 1is included, the output file |is

LINE TEXT EDITOR (EDI)

renamed to the specified file. EDI then returns to its initial

command sequence, prompts with EDI>, and waits for you to type another
file specification.

If a secondary file was opened during the editing session and was not
closed, it remains open.

Format
CLose [filespec]
Example

*CL
EDI>

This command closes both input and output files, and EDI returns
to the initial command sequence.

3.4.8 CLOSE SECONDARY (CLOSES)

Use this command when you have finished extracting text from a
secondary input file. You must enter CLOSES before you can use
another secondary file as input.

Format

CLOSES

3.4,9 CLOSE & DELETE (CD)

This command transfers all remaining lines in the block buffer and the
input file (in that order) into the output file, and closes both
files. The input file is then deleted. If a file specification Iis
included, the output file 1is renamed to the specified file. This
command acts like CLOSE, except that the input file is deleted.

If a secondary file was opened during the editing session and was not
closed, it remains open.

Format

CD1l (filespec]

3.4.10 CONCATENATION CHARACTER (CC)

The concatenation character allows you to give commands on one input
line. By default, the concatenation character is &. To reference
text containing an & (for example in LOCATE or CHANGE commands), Yyou
must change the concatenation character to some other character.

If the CC command is used without an argument, the concatenation
character is changed to &.

Format

CC [letter]

LINE TEXT EDITOR (EDI)
Example

*cc . . o~
*L AsB:C_/A&B/ABC/ il
CONCATENATION TEST CONTAINING A&B. :

CONCATENATION TEST CONTAINING ABC.

*cc

In this example, the string to be located contains an ampersand.
Therefore, the concatenation character must be changed to a
different character before EDI can locate the line.

The first command line changes the default concatenation
character from & to :.

The second command line instructs EDI to locate the string A&B
and change that string A&B to ABC, (Note: this line contains
two commands that are concatenated by the new concatenation
character, :.)

The third command line changes the concatenation character back
to the normal default value, &. d!'\

3.4.11 CTRL/Z

CTRL/Z is an MCR function that terminates the edit session. You enter
CTRL/Z by pressing the CTRL key and the Z character key at the same
time. For usage information on CTRL/Z, refer to Section 3.2.5.

3.4.12 DELETE
DELETE deletes a specified number of lines from a file.
Format

Delete n

For examples and information on how to use DELETE, refer to Section
3.2.6.

3.4.13 DELETE & PRINT (DP)

DELETE & PRINT performs the same function as DELETE, except that it
displays the new current line after the specified lines are deleted.

Format

DP n

For examples and information on how to use DELETE & PRINT, refer to
Section 3.2.7.

LINE TEXT EDITOR (EDI)

3.4.14 END

END sets the current line pointer to the beginning of the last line of
the block or input file. If EDI is in block mode, only line pointer
positioning occurs. In line-by-line mode, all lines are copied from
the input file to the output file until EOF is reached. The last line
in the block or file is displayed if VERIFY ON is in effect. Note,
however, that if the last line was deleted before issuance of END, the
pointer will be located past the text, and thus the last line will not
be printed. END performs the same function as BOTTOM.

Format
End
Example
*V ON
*END
THIS IS THE LAST LINE

This command moves the current line pointer to the bottom of the
block buffer (block mode is assumed).

3.4.15 ERASE
In line-by-line mode, this command erases the current line. In this
mode n may only be 1. In block mode, this command erases the current
block buffer and the next n-1 blocks. If n is not specified, +1 |is
assumed.
Format

ERASE [n]
Example

*ERASE 5
This command causes the contents of the current block buffer and

the next 4 blocks to be erased. These blocks are not written
into the output file.

3.4.16 <ESCape>
This command prints the previous line in the block (block mode only).
That line becomes the current line., Thus, you can back up through a

block, one line at a time, by typing a series of ESCapes. Typing
ESCape is equivalent to typing NP-1 (NEXT & PRINT command) .

3.4.17 EXIT

EXIT writes all remaining records to the output file, closes the
files, and terminates the edit session.

Format

EXIT (filespec]

3-31

LINE TEXT EDITOR (EDI)

For examples and information on how to use EXIT, refer to Section
3.2.9.

3.4.18 EXIT & DELETE (ED)

This command functions in the same way as the CLOSE & DELETE command,
except that EDI exits when finished.

Format
EDx [filespec]
Example

*EDX NEWFILE.DOC
[EXIT]
>

3.4.19 FILE

This command -- legal in 1line-by-line mode only -- transfers 1lines
from the input file to both the output file and a specified file,
beginning with the current 1line, until a form feed character |is
encountered as the first character in a line or until end-of-file is
reached. At that time the specified file is closed. The form feed
character is not included in the specified file. During the transfer,
the original file remains intact (i.e., all 1lines written to the
specified file are also written to the normal output file, including
the form feed). When the command is complete, the current line in the
input file is one line beyond the form feed.

BLOCK OFF must be in effect for FILE to work properly.

If the specified file does not already exist, a new file is created.
If the specified file does exist, the latest version of the file
contains the new data.

Format
FILe filespec
Example
*FIL SEC.DAT

EDI writes the contents of the input file, from the current 1line
to the end, into both the output file and the file SEC,DAT.

3.4.20 FIND

This command searches the block buffer or input file for a string,
beginning at the 1line following the current line. The string must
begin in column 1 of the line matched. The line pointer is positioned
at the line containing the match. When the line containing the string
is found, it is printed if VERIFY ON is in effect.

FIND applies to the block buffer if EDI is in block mode and to the
input file if EDI is in line-by-line mode.

3-32

LINE TEXT EDITOR (EDI)

If a string is not specified, the line following the current 1line Iis
considered a match. If n 1is specified, the nth occurrence of the
string is found.
Format

[n]Find [string]

Example

*V ON
*F LOOK

LOOK AT THE FIRST CHARACTER IN THE LINE.

In this example, EDI searches the block buffer (or file) for a
line that begins with LOOK and prints the line when it is found.

3.4.21 FORM FEED (FF)
This command allows you to insert form feeds into the text, in order
to delimit EDI pages. The form feed is inserted after the current
line, and the new current line becomes the line containing the form
feed.
Format
FF

Example

*p

THIS IS THE LAST LINE ON THE PAGE

*FF

In this example, a form feed is inserted into the text following
the current line.

3.4.22 INSERT

INSERT inserts a string immediately following the current line. The
string becomes the current line.

Format
Insert [string]

For examples and information on how to use INSERT, refer to Section
3.2.10.

3.4.23 KILL

This command returns EDI to the initial command sequence without
retaining the output file. When this command is executed, the input
file is closed, and the output file is deleted.

Format

KILL

LINE TEXT EDITOR (EDI)

Example

*KILL
EDI>

In this example, the output file is deleted, and EDI displays the
prompt: .

EDI>

At this point, you can return control to MCR by means of CTRL/Z
or enter a file specification for a file to be edited.

3.4.24 LINE CHANGE (LC)

This command is similar to CHANGE, except that all occurrences of
stringl in the current line are changed to string2. A numeric value n
preceding the command changes the current line and the next n-1 lines.
If string2 is null, all occurrences of stringl are deleted., New lines
are printed if the VERIFY ON command is in effect.

If stringl is given but EDI cannot locate the string in the current
line, EDI prints [NO MATCH] and returns an * prompt.

Format
[n]LC /stringl/string2[/]
Example
If the current line is:
THES ES THE LINE TO BE ESSUED.
The following command would correct the errors:
*V ON

*LC /ES/IS
THIS IS THE LINE TO BE ISSUED

3.4,25 LIST ON TERMINAL (LI)

This command prints on your terminal all remaining lines in the block
buffer (block mode) or all remaining 1lines in the input file
(line-by-line mode), beginning at the current line. At the end of the
listing, the current line pointer is repositioned to the top of the
input file or block buffer.

If terminal host synchronization is installed at system generation,
you can control printing functions using CTRL/0, CTRL/S, and CTRL/Q.
To suppress printing at any point, type CTRL/O. Printing can be
suspended temporarily with CTRL/S, and resumed with CTRL/Q.

Format

LIst

3-34

LINE TEXT EDITOR (EDI)

Example

*LI

This command causes all remaining lines in the block buffer or
all remaining 1lines in the input file to be printed on the
terminal.

3.4.26 LIST ON PSEUDO-DEVICE (LP)

This command functions .in the same manner as the LIST ON TERMINAL
command, except that the remaining lines in the block buffer (block
mode) or the remaining lines of the input file (lLine~by-line mode) are
listed on the pseudo-device CL:. In most systems, CL: 1is set to the
system line printer.

Format
LP

Example

*LP

This command causes all remaining lines in the block buffer or
all remaining lines in the input file to be printed on the
pseudo-device CL:.

3.4.27 LOCATE

LOCATE searches for a string beginning at the 1line following the
current line. The string can occur anywhere in the lines searched.

Format
[n] Locate string

For examples and information on how to use LOCATE, refer to Section
3.2,11.

3.4,28 MACRO

This command is used to define macros. Space is available for three
macro definitions. The definition portion can be any legal EDI
command or string of legal EDI commands connected by the concatenation
character.

If a numeric argument is to be passed to the macro at execution time,
a percent sign (%) must be inserted in the macro definition at the
point where the numeric argument is to be substituted. Then the value
passed via the MACRO EXECUTE command replaces the percent sign when
the macro is executed.

A MACRO definition may contain more than one percent sign. If it
does, the single numeric value given in a MACRO EXECUTE command
replaces each percent sign. However, a macro may nhot have two or more
independent arguments.

LINE TEXT EDITOR (EDI)

Format

MACRO x definition m

Specifies the macro number (1, 2, or 3).
Examples

To find the nth occurrence of the string ABC in the current block
and replace that occurrence and all remaining occurrences within
the block with the string DEF, the following macro could be used:

*MACRO 1 %L ABCs&PA /ABC/DEF

The following command executes the macro and searches for the
tenth and succeeding occurrence of ABC,

*M 1 10

The following macro definition and subsequent invocation could be ,'éj
used to change all occurrences of the strings ABC and GHI to DEF

and JKL, respectively. The substitution is made in the current

block and the next four blocks (five blocks in all).

*MACRO 1 PA /ABC/DEF/&PA /GHI/JKL/&RENEW (MACRO command)
*5M 1 (MACRO EXECUTE command)

3.4.29 MACRO CALL (MC) ﬂ

This command allows you to retrieve up to three macro definitions
previously stored in a file. The macro definitions must contain only
the "definition" portion of the MACRO command. The macro definitions
are stored 1in successively numbered macros: the first definition
becomes macro 1, etc.

The file used to store the macro definitions must be the latest

version of file MCALL -- that is, MCALL;n. The filetype must be null

or blank. If the macro definitions to be loaded are in a file of

another name, you can use the PIP COPY command, with the /NV switch,

to rename the file., Refer to Chapter 4 for descriptions of PIP 4‘!%
commands.

Format

MCall
Strings of concatenated EDI commands can be written as EDI macro
definitions, and up to three EDI macro definitions can be stored in
file MCALL;n. The MC command is used to call the latest version of
file MCALL and move the three definitions into the macro storage area.
Then you can execute the desired macro without having to type the
complete command.
Macro calls may not be nested.

The concatenation character may precede, but not follow, a macro call.

3-36

LINE TEXT EDITOR (EDI)

Example

*MC

This command retrieves the macro definitions stored in file MCALL;n,
where n represents the latest version of the file MCALL.

3.4.30 MACRO EXECUTE

This command executes macro x n times, while passing it the optional
numeric argument a. If a macro numeric argument is defined via the
percent sign (%) in the macro definition, the numeric argument
contained in this command is passed for each execution of the macro.
Before a macro can be executed, it must either have been defined via a
MACRO command, or called via a MACRO CALL command.

Using this command, any one of the three macro definitions stored in
the EDI macro storage area can be executed any number of times.

Format

[nIMx [al

Specifies the number of times the macro is to be executed.

X
Specifies the macro number (1, 2, or 3).

a
Specifies the numeric argument to be passed when the macro is
executed (ignored if % argument is not present in macro
definition).

Examples

*2M1

Execute macro number 1 twice.

*3M2 5

Execute macro number 2 three times, passing the numeric argument
5 each time the macro is executed.

The example in Section B.3.4 illustrates how to use the EDI macro
commands in editing a file.

3.4.31 MACRO IMMEDIATE

This command defines and executes a macro in one step. The definition
is enclosed within angle brackets and is identical to that of the
MACRO command. The definition is copied into the macro 1 storage area

w
1

37

LINE TEXT EDITOR (EDI)

and immediately executed n times. The macro may also be subsequently
executed by entering an Ml command. The command is equivalent to the
two macro commands:

MACRO 1 definition
nMl

Format
n<definition>
Example
*<L ABC&C /ABC/DEF>
This command causes EDI to search the current block buffer for
the string ABC and, when it locates ABC, to change the string to

DEF. This macro is stored as macro number 1.

The example in Section B.3.3 illustrates the use of the MACRO
IMMEDIATE command.

3.4.32 NEXT

NEXT moves the current line pointer backward and forward in the file.
A positive number moves the current line pointer forward; a negative
current line number moves it backward.
Format
Next [n]
or
Next [-n]

For examples and information on how to use NEXT, refer to Section
3.2.12,

3.4.33 NEXT & PRINT

NEXT & PRINT performs the same function NEXT performs, except that the
new current line is displayed.

Format
NP [n]
or
NP [-n]

For examples and information on how to use NEXT & PRINT, refer to
Section 3.2.13,

3.4.34 OPEN SECONDARY

This command opens the specified secondary input file. The primary
input file, if any, remains open. Subsequent text is read from the
primary input file until the secondary input file is selected via the
SELECT SECONDARY command (SS) for input.

LINE TEXT EDITOR (EDI)

Format
OPens filespec
Example

*OPENS RICKS.MAC
*3S5
*READ 1

The file RICKS.MAC is opened as a secondary input file and,
selected for input; then the first block is read in.

3.4.35 OUTPUT ON/OFF

This command, used only .in the 1line-by-line mode, allows you to
continue or discontinue the transfer of text to the output file.
OUTPUT ON is the default condition; it is automatically reestablished
each time a CLOSE command is issued.

Format
OUtput ON

or
OUtput OFF

If neither ON or OFF is specified, ON is assumed.

Example

*BLOCK OFF
*OUTPUT OFF
*N 5
*OUTPUT ON

This example shows how to bypass five lines of text in the input
file so that these lines are now written into the output file.

The first command sets line-by-~line mode.

The second command disables the transfer of text to the output
file.

The third command bypasses five consecutive lines of text from
the input file.

The fourth command reenables the transfer of text to the output
file.

3.4.36 OVERLAY

This command deletes n lines and replaces them with any number of
lines that you type. If n is not specified, the current line is
deleted and replaced with the lines typed. When you enter the OVERLAY
command, EDI enters input mode. All text that you type goes into the
file until you enter a carriage return as the only character in an
input 1line.

Format

Overlay {n]

LINE TEXT EDITOR (EDI)

Example
*0 2

This command deletes two lines and causes EDI to enter input
mode.

3.4.37 PAGE

This command causes EDI to enter block mode, if not already 1in block
mode, and read page n into the block buffer. A page is delimited by
form feeds. If n is less than the current page number, a TOF command
is performed first. TOF processing writes the input file to the
output file, closes both files, then opens the latest version of the
file.

If n is greater than the current page number, the necessary number of
RENEW commands is executed to read page n into the block buffer.

Format

Example

*PAG 1

[00050 LINES READ IN]
[00050 LINES READ IN]
[00050 LINES READ IN]
[00050 LINES READ IN]
[00017 LINES READ IN]
[PAGE 1]

*

This example shows a quick way to get to the last block in a file
that contains no form feed page delimiters. EDI's page count is
not incremented unless it encounters form feed characters or an
end-of-file mark. Thus, in a file without form feeds (i.e., most
files), EDI renews the block buffer wuntil it encounters an

end-of~-file mark. Note that the final block contains 17 lines of
text.

3.4.38 PAGE FIND

This command performs the same function as the FIND command, except
that successive blocks are searched until the nth occurrence of the
string has been found. The contents of the block buffer and the
blocks between the current block and the block in which the nth
occurrence of the string is located are copied into the output file.

The string must begin in column 1 of the matched line. The 1line is
printed if VERIFY ON is in effect. This command may be used only in
block mode.

Format

(n]PFind string

w
1

40

LINE TEXT EDITOR (EDI)

3.4.39 PAGE LOCATE
This command causes a search of the current block, starting at the
line following the «current line, and of successive blocks until the
nth occurrence of the string has been located. Text from the current
block buffer 1is written into the output file. The string can occur
any place in the lines checked. The line is printed if the VERIFY ON
command is in effect. This command may be used only in block mode.
Format
[n]PLocate string
This command is used in the same manner as the LOCATE command,
except that the specified string can be in a block other than the
current block.

PL leaves the current line pointer at end-of-file if it cannot
locate string.

3.4.40 PASTE
This command is identical to the LINE CHANGE command, except that all
lines remaining in the input file or block buffer are searched, and
all occurrences of stringl are replaced with string2. Modified lines
are printed if the VERIFY ON command is in effect., If stringl is
given, but no match is found, then EDI returns an * prompt. When the
command completes, the line pointer is at the top of the buffer or
input file.
Format

PAste /stringl/string2{/]
Example

If the lines remaining in the block buffer contain the following
text:

YIGER, YIGER, BURNING BRIGHY
IN YHE FORESYS OF YHE NIGHY

they can be corrected with the following command:
*PA/Y/T

If the VERIFY ON command is in effect, all corrected 1lines are
printed. To discontinue printing, type CTRL/O.

3.4.41 PRINT

PRINT displays the current 1line and the next n-1 1lines at the
terminal; the last line printed becomes the current line,

Format
Print [n]

For examples and information on how to use PRINT, refer to Section
3.2.14,

LINE TEXT EDITOR (EDI)

3.4.42 READ

This command reads the next n blocks of text into the block buffer.
If a block is already 1in the buffer, the new block(s) is (are)
appended to it.
EDI must be in block mode before this command can be executed.
A READ command may hot exceed the buffer capacity. If you issue a
READ that is too large, EDI fills its buffer and then issues the
following message:

[BUFFER CAPACITY EXCEEDED BY]

<offending line>
[LINE DELETED]

You may get this message after issuing a READ n command, where n is 2
or larger, unless you have used the SIZE command to reduce the number
of lines per block below its initial number.

Format

REAd [n]

If n is not specified, a value of 1 is assumed. The value of n
must be positive,

Example

*SIZE 15
*READ 4

This example reads four 15-line blocks of the input file into the
block buffer.

3.4.43 RENEW

RENEW writes the current block buffer into the output file and reads a
new block from the input file., Renew is used only in block mode.

Format
RENew [n]

For examples and information on how to use RENEW, refer to Section
3.2.15.

3.4.44 <RETURN>

In edit mode, <RETURN> represents the carriage return that displays
the next 1line 1in the file or block buffer. In input mode, entering
the carriage return returns EDI to edit mode. For information on EDI
command modes, refer to Section 3.1.2. For information on <RETURN>,
refer to Section 3.2.16,

LINE TEXT EDITOR (EDI)

3.4.45 RETYPE
RETYPE replaces the current line with string.
Format

Retype [string]

For information on how to use RETYPE, refer to Section 3.2.17.

3.4.46 SAVE

This command causes the current line, and the next n-l1 lines, to be
saved in the specified file. If the file already exists, a new
version is created.

If no file 1is specified, the save file generated has the name
SAVE.TMP. SAVE puts the temporary file in the UFD and on the device
of the file you are editing.

The input file or buffer information that is transferred to the SAVE
file remains intact. The new current line is the last line saved.
The SAVE command does not delete lines in the block buffer or input
file.
Format
SAve[n] [filespec]
Example
You can save and later insert small groups of lines 1in several
places in an output file by using the SAVE and UNSAVE commands.
For example, a file called EDIT.MAC contains six lines that you
want to insert at several points in another file called HELP.MAC,
The procedure is:

1. Start an editing session using EDIT.MAC as the input
file.

2, Locate the lines to be inserted into HELP.MAC.

3. Issue a SAVE 6 command. (This copies the six 1lines to
be saved into the file SAVE.TMP.)

4, 1Issue a KILL command to terminate the editing session.

5. Start a new editing session using HELP.MAC as the input
file,

6. Locate each place the six lines are to be inserted and
issue the UNSAVE command.

~
.

Make further edits to the input file, as desired, or
EXIT.

EDI does not delete the save file; the save file remains on the
specified volume until deleted.

LINE TEXT EDITOR (EDI)

3.4.47 SEARCH & CHANGE

This command causes a search for stringl in the block buffer (block
mode) or input file (line-by-line mode), beginning at the current
line. The string may occur anywhere in the line. When stringl is
located, it is replaced by string2. The located line becomes the
current line.

If stringl is not specified, EDI prints the error message for illegal
string construction., The new current line is printed if the VERIFY ON
command is in effect. If stringl is given but EDI cannot 1locate the
string, EDI returns an * prompt, and the line pointer is positioned at
the end-of-file or the bottom of the block buffer.

Format

SC /stringl/string2[/]
Example

If the following incorrect 1line 1is contained in the current
block:

THES IS THE LINE TO BE ISSUED.
the following command can correct the error:
*V ON

*SC /THES/THIS/
THIS IS THE LINE TO BE ISSUED.

The corrected line is printed since the VERIFY ON command is in
effect.

3.4.48 SELECT PRIMARY
This command selects the primary file for input. It allows you to
reestablish the primary input file as the file from which text is
read.
Format
SP
Example
*OPENS SECOND.MAC
*SS
*RENEW 10
*CLOSES
*SP
This example directs EDI to:
1. Open the secondary file SECOND.MAC.
2. Select SECOND.MAC as the secondary input file.
3. Read ten consecutive block buffers £from the secondary

input file into the block buffer. The first nine blocks
are automatically transferred to the output file.

3-44

LINE TEXT EDITOR (EDI)

4. Close the secondary input file SECOND.MAC. The
secondary file need not be closed before the primary
file is reselected for input.

5. Reselect the primary input file for input.

3.4.49 SELECT SECONDARY
With this command you select the secondary file as‘the input file.
Format
SSs
Example

To add text to the output file from a secondary input file, you
must first open the secondary input file and select it for input.
The use of the SS command is illustrated in the example presented
in the previous section.

3.4.50 SIZE

This command allows you to specify the maximum number of lines to be
read into the block buffer on a single READ or RENEW command. The
default value for SIZE is dependent on your exact system
configuration. Initially EDI determines how much buffer space it has
and divides that by 132(10), the maximum line size, to set the number
of 1lines read in. In no case can it be less than 38 lines. (See
discussion of Block Mode in Section 3.1.3.)

Format
SIZE n
Example
*SIZE 50

This command conditions EDI to read 50 lines into the block
buffer during a single READ or RENEW command.

3.4.51 TAB ON/OFF

This command turns automatic tabbing on or off. The automatic tab
feature is useful for MACRO-11l language input. TAB OFF is the default
at the start of an editing session., When TAB ON is in effect, a tab
(equivalent to eight spaces) is automatically inserted at the
beginning of each input line unless the 1line either begins with a
label followed by a colon, or <contains a semicolon in the first
column.

LINE TEXT EDITOR (EDI)

Format

TAb [ON]
or
TAb OFF

If neither ON nor OFF is specified when a TAB command is issued,
ON is assumed.

Example

*TAB ON

*1I

; THIS IS A SAMPLE OF TABBING.
THIS LINE GETS A TAB

1l: THIS ONE DOESN'T

END

*TAB OFF
*N -3
*p 4
; THIS IS A SAMPLE OF TABBING.
THIS LINE GETS A TAB
l: THIS ONE DOESN'T
END

3.4.52 TOP

TOP sets the current line pointer to the top of the block buffer (in
block mode) or to the top of the file (in line-by-line mode). 1In
line-by-line mode, TOP creates a new version of the file., When the
current line pointer 1is positioned via TOP, you can insert lines
preceding the first line in the file,

Format
Top

For examples and information on how to wuse TOP, refer to Section
3.2.18.

3.4.53 TOP OF FILE (TOF)

TOF returns the current line pointer to the first line of the file and
leaves you 1in block mode. TOF copies the input file to the output
file, closes both, and opens the latest version of the file as the
input file.

Format

TOF

For examples and information on how to use TOF, refer to Section
3.2.19.

LINE TEXT EDITOR (EDI)

3.4.54 TYPE

This command is similar to the PRINT command (Section 3.2.14). In
line~-by-line mode, the two are identical. 1In block mode, TYPE does
not move the line pointer after displaying the requested text, except
if the end-of-block 1is encountered. In this case the line pointer
remains at the last line before the end-of-block.

If n is not specified, a value of 1 is assumed.
Format

TYpe [n]
Example

See the example of the PRINT command (Section 3.2.14).

3.4.55 UNSAVE

This command retrieves all the lines in a specified file and copies
them after the <current line. If no file is specified, the file
defaults to SAVE.TMP. The new current line pointer is positioned at
the last line retrieved from the file. The file used in this command
can be any text file; it is often the file created with a SAVE
command.

Format
UNSave [filespec]
Example

File SEC.DAT;1 contains a group of lines to be inserted after the
current line. The following command performs the desired
operation.

*UNS SEC.DAT;1

Section B.3.2 contains an example wusing the SAVE and UNSAVE
commands.

3.4.56 UPPER CASE ON/OFF

This command allows you to enter lower-case characters from a terminal
and have them converted to upper-case characters. If UPPER CASE OFF
is issued, all input characters are accepted as they are entered (no
conversion is performed), except that all EDI commands are converted
to upper-case characters. (If entered as lower-case characters, EDI
commands are still echoed in lower case.)

Format
UC [ON]
or
UC OFF

If neither ON nor OFF is specified, then ON is assumed. UC ON is
the default when EDI is started.

3-47

LINE TEXT EDITOR (EDI)

Example

*UC OFF

*I this line is entered in lower case
*UC ON

*I this line is converted to upper case

Assuming that the input terminal 1is capable of generating
lower-case input, the command in the example above would create
the following lines in the output file.

this line is entered in lower case
THIS LINE IS CONVERTED TO UPPER CASE

However, in both instances, the characters are converted to upper
case before the file is closed.

To create a file containing lower-case characters, use the MCR
SET /LOWER-=TI: command and the EDI UC OFF command.

3.4.57 VERIFY ON/OFF

This command controls the display of lines specified by the LOCATE and
CHANGE commands. Use VERIFY ON to display a line located by the
LOCATE command or to display a line changed by the CHANGE command.
Use VERIFY OFF to inhibit the display of these lines. EDI is in the
VERIFY ON mode at the start of editing.

Format

Verify [ON]
or
Verify OFF

If neither ON nor OFF is specified, ON is assumed
Example

*V OFF

*L VERIFY

*p

LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON
*N -2

*V ON

*I, VERIFY

LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON

In this example, the PRINT command is issued to demonstrate that
the desired 1line has been located when VERIFY is OFF, but when
the LOCATE command is reissued with VERIFY ON, EDI automatically
prints the line.

3.4.58 WRITE

This command causes the entire contents of the block buffer to be
written into the output file. The block buffer is then erased.

EDI must be in block mode before this command can be executed.

Format

LINE TEXT EDITOR (EDI)

Write

Example

In

*W
*REA 2

this example, the block buffer is written into the output file

and the block buffer is erased. Then, the next two blocks are
read into the block buffer.

3.5 EDI USAGE NOTES

The following points contain general information involving
restrictions on use of EDI, system device considerations, and general
usage rules.

EDI can operate only on Files-11 format files and rejects all
other file formats.

The output file generated by EDI always resides on the same
device as the input file. The output file cannot be directed
to another device. For example:

To edit a file on DECtape and store the resulting file on
disk, do one of the following:

1. Transfer the file to disk and perform the editing there.

2. Edit the file on DECtape and then use PIP to transfer the
file to disk.,.

To use a device other than SY0:, mount it via the MCR MOUNT
command.

To edit a version of a file other than the latest one,
explicitly state the desired version number in the file
specification. This file is opened as the input file; the
version number of the output file is one greater than the
latest version of the file.

Some EDI commands (such as TOF, and TOP when it 1is wused in
line-by~line mode) implicitly generate multiple versions of a
file. In the execution of such commands, EDI copies the
remainder of the input file into the output file and closes
both of them. It then opens the latest version of the file
and uses it as input. This ensures the editing of the latest
version of the file and provides periodic backup. To delete
any unwanted versions, use PIP with the /PURGE switch.

EDI accepts variable-length input lines up to 132 characters
long.

The record type of output files edited by EDI is always
variable-length.

EDI preserves the record attributes of the input file. For

example, the FORTRAN carriage control attribute is preserved
in the output file.

3-49

LINE TEXT EDITOR (EDI)

e Line feed characters may be entered in files but are
interpreted by EDI as termination characters. You should
avoid using them since they cause unpredictable results when
the file is edited a second time.

e EDI cannot process a file that contains embedded carriage
control characters, such as PIP directory listings and TKB map
files. To reformat such a file for EDI processing, copy the
file to a DOS-1l1l volume and then back to your original volume
using FLX. EDI can then process the file.

3.6 EDI ERROR MESSAGES

The four classes of EDI error messages are:
¢ Command level information messages
e File access error messages
® Error messages requiring EDI restart

e Fatal error messages.

The following sections describe all the messages that may be displayed
in each class. If the recovery procedure is not evident, a suggested
user action is given.

3.6.1 Command Level Information Messages

Messages in this class indicate information that is designed to be
helpful to you or to identify errors that were encountered in the
previous command. All messages in this <c¢lass are enclosed within
square brackets and followed by a prompt for a new command. For
example, the following output occurs if a DELETE command encounters an
end-of-buffer in block mode:

[*EOB*]
*

The messages in this class follow.

[BUFFER CAPACITY EXCEEDED BY])
offending line
[LINE DELETED]

Explanation: A READ, UNSAVE, INSERT, or OVERLAY command has
exceeded the capacity of the block buffer, The line that caused
the overflow is displayed and deleted.

User Action: If a new file is being created, empty the buffer
with a WRITE command and continue the editing session.

If an existing file is being edited, it may be possible to
continue via a RENEW or WRITE command. Otherwise, use the CLOSE
command to close the output file and save all edits. Reopen the
output file as the input file and, using the SIZE command, reduce
the number of lines read into each buffer; then, using the PAGE
LOCATE command, search to the position in the file where editing
is to continue.

LINE TEXT EDITOR (EDI)

Occasionally, this message results when you try to open a file
that was not created by EDI. You can overcome this difficulty
via the SIZE command procedures that follow:

1. Type KILL.

2. When EDI prompts for a new file specification, enter a
nonexistent filename. EDI <creates a new file and enters
input mode.

3. Type carriage return to enter edit mode.

4. Using the SIZE command, reduce the number of lines read into
each buffer.

5. Use the KILL command to abandon the file.

6. When EDI prompts for a new file specification, enter the name
of the desired file.

[CREATING NEW FILE]
INPUT

[ILL

[ILL

[ILL

Explanation: The input file specified in the command does not
exist and EDI has created a new file., EDI automatically enters
input mode and waits for the input of text lines.

User Action: If you intend to create a new file, continue
entering new lines as required. Otherwise, enter edit mode by
typing carriage return; use the KILL command to delete the
undesired new file. When EDI prompts for a new file
specification, enter the correct file specification.

CMD]
Explanation: Either EDI does not recognize the command, or Yyou

have entered a command that is not compatible with the current
mode (e.g., a READ command in line-by-line mode).

NUM]

Explanation: Either you have supplied a non-numeric character
when a numeric is required, or you have given a negative number
when a positive number is required.

STRING CONST]

Explanation: A search string specified in a CHANGE, LC, PASTE,
or SC command does not contain a matching string termination
character (e.g., PASTE /ALPHABETA, instead of PASTE /ALPHA/BETA).

[ILLEGAL IN BLOCK ON MODE]

Explanation: You have tried to execute a command that is illegal
in block mode, such as FILE or OUTPUT ON/OFF.

LINE TEXT EDITOR (EDI)

[ILLEGAL FILE NAME GIVEN IN CLOSE OR EXIT]
or

[FILE WAS NOT RENAMED]
Explanation:. A syntactically incorrect file specification was
given in a CLOSE or EXIT command, the attempt to rename the

output file failed, or the attempt to EXit or Close to rename the
file to another device failed.

User Action: Use PIP to rename the file, if desired.

[MACRO NOT DEFINED]

Explanation: You have tried to execute a macro with the M
command, but the specified macro has not been defined.

User Action: Use the MACRO command to define the desired macro
and then execute it with the M command.

[MACRO NUMERIC ARG UNDEFINED]
Explanation: You have tried to execute a macro without supplying
a numeric argument., The macro definition, however, contains the
% character and thus demands a numeric argument.

User Action: Retype the command, specifying the appropriate
numeric argument.

[MCALL FILE DOES NOT EXIST]

Explanation: An MCALL command has been executed to define a set
of macros, but the file MCALL cannot be found.

User Action: The desired set of macro definitions may exist
under another User File Directory. If this is the case, use PIP
to copy or rename the MCALL file into the current directory.

[NO INPUT FILE OPEN]
Explanation: A PAGE, READ, or RENEW command has been attempted
while a new file is being created (that is, while there is no

input file). These commands can be executed only when an
existing file is being edited.

[NO MATCH]

Explanation: A CHANGE command has specified a string to be
changed that is not in the current line.

[OVERLAYING PREVIOUSLY DEFINED MACRO]

Explanation: A MACRO command has resulted in the redefinition of
a previously defined macro. This message lets you know that the
previous definition is no longer in effect.

LINE TEXT EDITOR (EDI)

[SAVE FILE DOES NOT EXIST]

Explanation: The file specified in an UNSAVE command cannot be
located.

User Action: If you provided a file specification, make sure it
is correct. If you did not give a file specification, this
message means that no previous SAVE command (without £file
specification) was issued.

[SECONDARY FILE ALREADY OPEN]

Explanation: You may have tried to open a secondary input file
while another secondary file is still open. Or you may have a
secondary file open when you issue a CLOSE or KILL command, or
when EDI encounters an error and is forced to restart. The
former case represents an error: the latter informs you that you
still have a secondary file open.

User Action: Close the secondary input file using the CLOSES
command, and then open the desired secondary file with the OPENS
command.

[SECONDARY FILE CURRENTLY SELECTED FOR INPUT]

Explanation: A CLOSE or KILL command has been issued, or an

error has caused EDI to restart, when a secondary input file is
open and selected for input.

User Action: Issue an SP command, then a CLOSES command.

[SYNTAX ERROR]

Explanation: A command has been entered that is syntactically
incorrect.

[TOO MANY CHARS]

Explanation: A CHANGE, LC, PASTE, SC, or ADD command has
resulted in a line that contains too many characters. EDI limits
the length of a line to 132 characters.

User Action: Retype the line to ensure that the line is valid.

[*BOB*]

Explanation: The beginning-of-buffer has been reached. The
current line pointer is positioned just before the first line in
the buffer. Thus, new text lines can be entered before the first
line.

[*EOB*])

Explanation: The end-of-buffer has been reached. The current
line pointer now points to the end of the buffer. Thus, if new
lines are inserted, they appear after the last text in the
buffer.

LINE TEXT EDITOR (EDI)

[*EOF*]
Explanation: The end-of-file has been reached on the input file.
User Action: If the editing session is complete, use the CLOSE

or EXIT command to close the output file. Otherwise, use the TOF
command to return to the first block in the file.

3.6.2 Pile Access Error Messages
hessages in this class mean that you have tried to access directories,
files, or devices that are not present in the host system. Each
message is prefixed with:

EDI --

After the message is displayed, EDI returns to command level and
prints an asterisk to request input.

The messages in this class follow.

EDI -- BAD FILE NAME

Explanation: The file name was not accepted by EDI. The most
common error is a file name containing embedded blanks.

User Action: Make sure that the file name 1is correct, and
reenter it.

EDI -- DEVICE NOT IN SYSTEM
Explanation: You have given a FILE, OPENS, SAVE, or UNSAVE
command, specifying a device that does not exist in the host
systemn.
User Action: Reenter the command line, specifying only devices
available in the system.

EDI -- FILE DOES NOT EXIST
Explanation: You have given a FILE or SAVE command, specifying a
user file directory that does not exist on the specified volume.

NOTE

The remaining error messages in this
class should not occur and represent

failures in EDI. If such errors
persist, submit a Software Performance
Report.

EDI -- BAD DEVICE NAME

EDI -- DEVICE NOT READY

3-54

LINE TEXT EDITOR (EDI)

EDI -- FILE ALREADY OPEN
EDI -- RENAME NAME ALREADY IN USE
EDI -- RENAME ON TWO DIFFERENT DEVICES

EDI -- WRITE ATTEMPT TO LOCKED UNIT

3.6.3 Error Messages Requiring EDI Restart

The error messages described in this section are caused by conditions
that make it impossible for EDI to continue the current editing
session. EDI closes all open files (with the exception of any open
secondary input file), reinitializes, and then prompts for the next
file to be edited.

As with file access warning messages, each message in this class |is
prefixed with:

EDI --

After the appropriate message has been displayed, EDI prompts with:

EDI>

You may terminate the editing session at this point by typing carriage
return or CTRL/Z, or you may continue by entering another file
specification. If a secondary file was open when the error condition
was encountered, it remains open.

The messages in this class follow.

EDI -- BAD RECORD TYPE - FILE NO LONGER USABLE

Explanation: The record type defined in the header block of the
input file (primary input, secondary input, UNSAVE, or MCALL) is
not supported by File Control Services (FCS); thus, the file
cannot be used for input to EDI.

User Action: The referenced file has been created without using
FCS, or the file structure on the volume is damaged. In the
latter case, verify the file structure with the verification
utility (VFY) to determine the extent of the damage. VFY is
described in Chapter 13.

EDI -- FILE IS ACCESSED FOR WRITE

Explanation: The input file (primary input, secondary input,
UNSAVE, or MCALL) is currently being written by another task.

User Action: Wait for the write to complete, then reenter the
" command line.

LINE TEXT EDITOR (EDI)

EDI -- FILE IS LOCKED TO WRITE ACCESS

Explanation: The output file (text output, FILE, or SAVE) Iis
currently accessed for read by one or more tasks and is locked
against all writers, ’

User Action: Wait for all readers of the file to £finish, then
reenter the command line.

EDI -- ILLEGAL RECORD ATTRIBUTES - FILE NOT USABLE

Explanation: The record attributes defined in the header block
of the input file (primary input, secondary input, UNSAVE, or
MCALL) are not supported by FCS; thus, the file cannot be used
for input to EDI.

User Action: The referenced file has been created without using
FCS, or the file structure on the volume is damaged. 1In the
latter case, run the file structure verification utility (VFY) to
determine the extent of the damage. VFY is described in Chapter
130

EDI -- PRIMARY FILE NOT PROPERLY CLOSED

Explanation: When the primary input file was 1last written, a
close check was specified, and the writing task did not properly
close the file (e.g., the task was aborted). Thus, the file
attributes were not written, and the file may contain
inconsistent data.

User Action: Exit from EDI by typing carriage return or CTRL/Z.
Run the Peripheral 1Interchange Program (PIP) and use the /UN
switch to unlock the file. Reinitiate EDI and try to recover the
data in the file.

EDI -- PRIVILEGE VIOLATION

Explanation: A privilege violation occurred during a file access
for one of the following reasons:

1. The specified volume is not mounted.

2, The UIC under which EDI is running does not possess the
necessary privileges to access the specified directory.

3. The UIC is not privileged to access the specified file.
User Action: If the volume is not mounted, then mount it using

the MCR MOUNT command. Otherwise, reinitiate EDI under a UIC

that has appropriate access privileges to both the specified
directory and file.

EDI -- RECORD IS TOO LARGE FOR USER BUFFER

Explanation: The input file (primary input, secondary input,
UNSAVE, or MCALL) being accessed was not created by EDI (or SLP)
and contains records that are too large. The maximum record
length supported by EDI is 132 bytes.

LINE TEXT EDITOR (EDI)

EDI -- SECONDARY FILE NOT PROPERLY CLOSED - NOT USABLE
Explanation: When the secondary input file was last written, a
close check was specified, and the writing task did not properly
close the file (e.g., the task was aborted). Thus, the file
attributes were not written, and the file may contain
inconsistent data.
User Action: Run PIP and use the /UN switch to unlock the file.
Reinitiate EDI and try to recover the data in the file.

EDI ~-- BAD DIRECTORY SYNTAX

Explanation: Directory field ([g,m]) is in improper format.

NOTE

The remaining error messages in this
class should not occur and represent

failures in EDI. If such errors
persist, submit a Software Performance
Report.

EDI -- DUPLICATE ENTRY IN DIRECTORY

EDI -- END OF FILE

EDI -- ILLEGAL RECORD ACCESS BITS - FILE NOT USABLE

EDI -- ILLEGAL RECORD NUMBER - FILE NOT USABLE

3.6.4 Fatal Error Messages
The fatal error messages represent system and/or hardware conditions
that make it impossible for EDI to continue execution. All files are
closed and EDI terminates its execution. The output £file may be
truncated. Each error message is prefixed with:

EDI --
and followed by the exit message:

[EXIT]
on the next line.
The advanced user may work with the following procedures on the
truncated version of an output file to save the editing performed
before the fatal error occurred.

1. Use PIP to rename the truncated version of the output file to
avoid confusion,

2. Restart the editing session to the original input file.

LINE TEXT EDITOR (EDI)

3. 1Issue an OPENS command, specifying the renamed file as the
secondary file.

4. - Issue an SS command to select the secondary file for input, : ;’

5. 1Issue an ERASE command to erase the first block of the input
‘ file (unless the truncated output file did not contain the
; entire first block).

6. Issue as many READ 1 and WRITE commands as necessary to reach
the EOF on the secondary file.

7. Issue an SP command to select the primary file for input.
8. Issue a CLOSES command to close the secondary file.

9. Issue a WRITE command to ensure that the last block was
written into the output file.

10. Issue as many READ 1 and ERASE commands as necessary to
bypass all input file blocks that are complete in the renamed

file. -~

11. Continue the normal editing session.

The messages in this class follow.

EDI -- CALLER'S NODES EXHAUSTED

Explanation: System dynamic storage has been depleted, and
insufficient space 1is available to allocate the control blocks
necessary to open, close, read, or wxite a file, Q.R$

User Action: This probably is a system failure, but it could
also represent a transient overload condition. Wait until system
load has diminished and reinitiate EDI.

EDI -- DEVICE FULL

Explanation: Insufficient space exists on the output volume to
extend an output file (text output FILE, or SAVE).

User, Action: Determine which volume is being written. If it is ””@}
required that the specified file be written on this volume, then E
space must be made available. Use PIP to purge (/PU) or delete

(/DE) unwanted files.

EDI -- FILE HEADER CHECKSUM ERROR

Explanation: An input file (primary input, secondary input,
UNSAVE, or MCALL) has a header block that does not contain a
proper checksum.

User Action: The file structure on the specified volume is
damaged. Run the file structure verification utility (VFY) to
determine the extent of the damage. VFY is described in Chapter
13.

3-58

LINE TEXT EDITOR (EDI)

EDI -- FILE HEADER FULL
Explanation: Insufficient retrieval pointer space exists in the
header block to extend an output file (text output, FILE, or
SAVE),
User Action: Split the file into two or more files and process
them separately.

EDI -- FILE PROCESSOR DEVICE WRITE ERROR

Explanation: This error message may indicate that the device
specified for an output file is write-locked.

User Action: Unlock the device if it is write-locked.
Otherwise, a hardware problem may exist. Consult the DIGITAL
field service representative.
EDI -~ INDEX FILE FULL
Explanation: The file header block is not available to create an
output file (text output, FILE, or SAVE). When a volume is
initialized, the maximum number of files that may be created on
the wvolume is established. Your write request would have
exceeded this maximum,
User Action: Determine which volume is being referenced. If it
is required that the specified file be created on this volunme,
then space must be made available. Use PIP to purge (/PU) or
delete (/DE) unwanted files.
NOTE
The following error messages signify

hardware problems. If possible, remove
all important files from the volume.

EDI -- BAD BLOCK ON DEVICE
EDI -- FILE PROCESSOR DEVICE READ ERROR
EDI -- HARDWARE ERROR ON DEVICE
EDI -- PARITY ERROR ON DEVICE
NOTE
The remaining error messages in this

class should not occur and represent
failures in EDI.

EDI -- BAD DIRECTORY FILE

EDI -~ BAD PARAMETERS ON A QIO

LINE TEXT EDITOR (EDI)

EDI -- INVALID FUNCTION CODE ON A QIO
EDI -- NO BLOCKS LEFT ~
| |
| EDI ~- REQUEST TERMINATED
|
| EDI -- UNEXPECTED ERROR - EDITOR WILL ABORT
EDI -- WRITE ATTRIBUTE DATA FORMAT ERROR

TASK "...EDI" TERMINATED

3-60

PART 3
FILE MANIPULATION UTILITIES

CHAPTER 4

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Peripheral Interchange Program (PIP) is an RSX-1l1 file wutility
program that transfers data files from one standard Files-1ll device to
another. PIP also performs file control functions. Some of the
functions PIP performs are:

e Copy files from one device to another

e Delete files

® Rename files

e List file directories

e Set the default device and UIC for PIP operations

e Unlock files

e Spool files
You invoke the PIP utility using any of the methods for invoking a

utility described in Chapter 1. You invoke PIP file control functions
by means of switches and subswitches.,

4.1 PIP COMMAND STRING

You request PIP functions by entering PIP command strings through the
initiating terminal or by means of an indirect command file. (Using
indirect command files is described in Chapter 1.) The format of PIP

-command strings differs for each function. Therefore, the command

string formats are described in separate sections.

4.1.1 PIP Defaults for File Specification Elements

With the exception of the version number, PIP generally uses the last
value encountered 1in the command line as the default. That is, PIP
uses values you enter to set defaults, and changes the default when
you change the value. Exceptions to this are noted in the
descriptions of each switch.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The following command string sets a new default value for each file
specified on the command file:

>PIP TI.MAC;5,T2,.TSK,;6/LI ‘”!Q
T1.MAC;5
T2.MAC;5
T2.TSK;5
T2.TSK; 6

Table 4-1 summarizes the rules PIP uses to set defaults.

Table 4-1
PIP Default File Specifications
Element Default Value
dev: For the first file specification, the unit on which

the system disk is mounted (SY:) or the default that
you specify with /DF (see Section 4.2.2.5). For
subsequent file specifications, either you M
explicitly specify a new device or PIP assumes the b
device from the previous specification.

[ufd] For the first file specification, your current UIC,
that is, the UIC under which you log on, the UIC you
specify with the MCR SET command, or the default you
specify with /DF (see Section 4.2.2.5). For

subsequent file specifications, either you
explicitly specify a new ufd or PIP assumes the ufd
from the previous specification. An asterisk
(wildcard) specification is wvalid (see Section
4,1.3).

filename No default for the first file specification. For
subsequent file specifications, the last filename
that you explicitly specified. An asterisk
(wildcard) specification 1is wvalid (see Section
40103)0

.filetype No default for the first file specification. For
subsequent file specifications, the last file type
that you explicitly specified. An asterisk AQQ%
(wildcard) specification 1is wvalid (see Section ’
4.1.3).

;version The default for input files is the most recent

version number. The default for output files is the
next higher version number, or version 1 if the file
does not already exist in the output directory. An
exception is the PIP file delete funciton, which
requires an explicit version number or a wildcard

specification. An explicit wversion number is
defined to be of the form ;n where n is greater than
0 (n>0).

A version number of ;-1 may be used to specify the
oldest version of a file. A version number of ;0 or
; may be specified to signify the most recent
version. In certain cases, the asterisk (or
wildcard) may be specified, as described in Section

4.1.3. %

PERIPHERAL INTERCHANGE PROGRAM (PIP)

4,1.2 PIP Switches and Subswitches

PIP provides several file control switches and subswitches. A switch
specification consists of a slash (/) followed by a 2- or 3-character
switch name. The switch specification is optionally followed by a
subswitch name separated from the switch name by a slash. The
subswitch name can have arguments that are separated from the
subswitch name by a colon (:). Each is preceded by a slash.

All but one of the PIP switches operate on lists of file
specifications. The exception 1is the 1ID switch, which is used by
itself.

Section 431.2.1 describes switches and Section 4.1.2.2 describes
subswitches.

4.1.2.1 sSwitches -~ PIP accepts some switches with no file
specification. However, when you use a switch in a command line, it
must follow the file or UFD specification. It cannot come before the
file name, file type, version, or UFD of the file on which it is to
operate.

You may specify switches once for an entire list of file
specifications. For example:

stringl,string2,string3/DE

The DE switch applies to all of the strings. PIP deletes every
specified file from its User File Directory.

You specify switch arguments as octal (default), decimal, or
alphabetic characters, depending on the switch. The sections that
explain the individual PIP switches discuss these values.

4.1.2.2 Subswitches - Subswitches are local. They apply only to the
file specification which immediately precedes them. In the following
example, the New Version subswitch (/NV) is applied to the file
ASDG.MAC. (The NV subswitch is used with the Rename switch, RE.)

PIP>*.SMP=PRT2.QRT,ASDG.MAC/NV,KG.BAC/RE
PIP renames the files PRT2.QRT and KG.BAC, but they maintain their
associated version numbers. File ASDG.MAC is also renamed, but the
version number is forced to a number one dgreater than the latest
version of file ASDG.SMP.
When you explicitly apply a subswitch to a file specification, you
implicitly apply the switch with which the subswitch is associated.
On a command line with more than one file specification, the explicit
subswitch affects only the file to which it is applied. The implicit
switch affects all the files on the command line.
Example

PIP>FILE1l/GR:R/WO,FILE2/GR:RW

This command is equivalent to:

PIP>FILEl/GR:R/WO,FILE2/GR:RW/PR

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The command results in the following file protection:

a. FILEl SYSTEM -- Unchanged
MEMBER -- Unchanged
GROUP -~ Read access

WORLD -—- No access

b. FILE2 SYSTEM -- Unchanged
MEMBER =-- Unchanged
GROUP -- Read/write access

WORLD -- Unchanged

(For more information on altering the protection level of a file, see
Section 4.2.2.14).

4.1.3 Wildcards

PIP allows you to specify wildcards by means of an asterisk (*)
character 1in the file specification. The asterisk (*) character in
one or more fields of a file specification stands for "all"; for
example, all files, file types, or versions. However, using wildcards
is restricted in some cases. The following sections describe the uses
of wildcards for input and output files.

4.1.3.1 Wildcards in Output File Specifications - Using wildcards in
the output file specifications is restricted. For the following PIP
functions, the output file specification cannot have any wildcards:

e Copying a single file

e Concatenating files to a specified file

e Appending to an existing file

e Updating (rewriting) an existing file

e Listing a directory
If you use wildcards in the output file specification for any of the
above functions, the meaning of the command line would be ambiguous or

imply an infinite number of output files. For example:

PIP>[200,200]*,*;*=TEST.DAT

PIP would try to create an infinite number of files in (200,200] from
one single file.

When you make copies of several files, the output specification must
be *,*;* or default.

For the Rename (/RE) and Enter (/EN) switches, the output
specification may have wildcards mixed with specified fields. For
either switch, the equivalent field of the input file specification is
used.

For all cases in which wildcards are allowed in the output file
specification, the wildcard UFD form [*,*] (but not [n,*] or [*,n]) is
used to indicate that the output UFD is to be the same as the input
UFD.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

4.1.3.2 Wildcards in Input Specifications - PIP provides the
following wildcard features for input file specifications:

e *,%;* means all versions of all files.

e *,DAT;* means all versions of all files of file type DAT.

e TEST.*;* means all versions and all types of files named TEST.

e TEST.DAT;* means all versions of file TEST.DAT.

e *,* means the most recent version of all files.

e *,DAT means the most recent version of all files of file type
.DAT,

e TEST.* means the most recent version of all file types for
files named TEST.

PIP also provides the following wildcard UFD features:

o [*, %] means all group, member number combinations from 1 to
377 octal.

e [nl,*] means all member humbers under group nl.

e [*,n2] means all group numbers for member n2.

4.2 PIP COMMAND FUNCTIONS

PIP copies Files-11 files and performs file control functions.
Section 4.2.1 describes the copying function and Section 4.2.2
describes the file control functions.

4.2.1 Copying Files-11 Files

To copy Files-11 files, you can enter the PIP command 1line without
specifying any switches.

The simplest format for the PIP command line is:
outfile=infile
outfile

The output file specification. If the output file name, file
type, and version are either null or *.*;*, the input file name,
file type, and version are preserved (see NV and SU subswitches).
If you enter any portion of the output file specification (file
name, file type, or version), wildcards cannot be wused in this
specification. Similarly, for a copy command, if you enter any
portion of the output specification, you can enter only one file
as the input file.

infile

The input file specification. If the file name, file type, and
version fields are all null, then *.*;* is the default.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

One switch that you can specify when copying Files-11 files 1is the
Merge switch. The Merge switch (/ME) creates a new file from two or
more existing files. PIP assumes /ME when you explicitly specify an
output file, two or more input files, and no switches. Because the
basic copy function and the Merge switch are 1logically related, the

Merge switch is described here rather than below with the other
switches.

The most general format of the PIP command line is:

outfile=infilel[,infile2,...infilen] [[/ME] [/subswitch]]

outfile
The output file specification.
infile

The input file specification,

/ME
Specifies the Merge switch.

/subswitch
Specifies any of the subswitches that you can enter as part of
the basic command 1line or with the Merge switch., Table 4-2
describes these subswitches. Subswitches can appear in either
the output or input file specification. If you place the
subswitch in an input file specification, it applies only to that
file. If you place the subswitch in the output file
specification, it applies to the entire list of input
specifications.

Examples

1. PIP>DK1:SAMP.DAT=DK2:TEST.DAT

Copies the latest version of file TEST.DAT (in the current
UFD) from DK2: to DK1l: as SAMP.DAT.

2. PIP>DKl:[*,*]=DKO0:[11,%*]

Copies all files from all members in group number 11 of DKO:

to DKl:. The files are in the same UFD on DKl: that they
were in on DKO:.

3. PIP>LP:=*_,LST

Copies the latest version of all files with a type of .LST in
the current UFD to the line printer. If the Print Spooler is
installed on your system, use the SP switch instead of this
command. The command line using /SP is in the format:

PIP>*.LST/SP

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Note: Transparent spooling (that is, PIP>LP:=files) is
implemented on RSX-11M-PLUS only. When you specify LP: as
your output device, the data to be printed is written into an
intermediate file and then the file is given to the Queue
Manager, which handles the spooling. Making intermediate
files allows vyou to dismount the volume the files are on
without having to wait until after they have been printed.

4. PIP>DK1:SAMP.DAT=DK2:TEST.DAT;1,NEW.DAT;2/ME

Concatenates version 1 of file TEST.DAT and version 2 of file
NEW.DAT from DK2:, generating file SAMP.DAT on DKl:, using
the current UFD.

5. PIP>DKl:=SY:TESTPROG.MAC,.OBJ
Copies the latest versions of TESTPROG.MAC and TESTPROG.OBJ
from the system device (SY:) to DKl:, using the current UFD
for both SY: and DKl:. '

6. PIP>DK1:=DK0:*.DAT;?*

Copies all versions of all of the files of file type .DAT in
the current UFD from DKO: to DKl:.

7. PIP>DT0:=[200,10]%*,%;%*

Copies all files under [200,10] from the default device to
DT0:, using the current UFD.

8. PIP>DP0:[200,10]=DTO:*.*

Copies all files from DTO: in the current UFD to
DPO:[200,10]. Note that the user must have write access to
[200,10].

Table 4-2
PIP Copy Command and Merge Subswitches

Subswitch Description

/BL:n[.] Blocks Allocated -- This subswitch specifies the
number of contiguous blocks (n) to allocate
initially to the output file. You can specify n as
either an octal or decimal value (decimal values
must be followed by a decimal point). You wuse the
/BL:n subswitch when you are copying a contiguous
file and changing its size.

/CO Contiguous Output -- This subswitch specifies that
the output file be contiguous. When you are copying
contiguous files from magnetic tape (for example,
task images), specify both /CO and /BL:n. You must
specify /BL:n because PIP cannot determine the
length of the input file when it allocates a file.
(PIP allocates file space before the copy operation
is executed. The length of magnetic tape input
files is on the trailing label of such tapes.)

(continued on next page)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 4-2 (Cont.)
PIP Copy Command and Merge Subswitches

Subswitch Description

/-C0 Noncontiguous output -- This subswitch specifies
that the output file does not have to be contiguous.
If you do not specify any of the above switches, PIP
defaults to the size and attributes of the input
file.

/FO Set File Ownership -- This subswitch specifies that
the owner of the input file also owns the output
file. If you do not specify /FO, the owning UIC of
all new files is the UIC under which PIP is running,
regardless of which directory the files belong to.
You can use this subswitch with both copy and merge
commands.

Examples
l. If PIP is running under the UIC [1,1], the
command:

DK0:[200,200]=DK1:{200,220] TEST.DAT
creates a new file in the [200,200] directory on
DKO:, but the file is owned by UIC [1,1].
However, the command:

DK0:[200,200]=DK1:[200,220] TEST.DAT/FO
creates a file owned by UIC [200,200). When you
specify /FO, PIP must be running under a UIC
that has write-access to all output directories.

2, DKl:[*,*]/FO=DP0:[13,10],([32,10],[34,10]
Copies all the files from the specified input
directories to the corresponding directories on
DK1l:. The file owners are the output
directories.

3. DKl:[*,*]=DKO0:[*,10]*,.MAC/FO
Copies all the .MAC files from all group numbers
with member 10 to DKl:, preserving the UFD and
setting the file owner for each file to that
UFD.

/Su Supersede -- This subswitch allows you to copy one

or more input files to a file whose file name, file
type, and version already exist in a User File
Directory. The existing file is deleted and a new
one is created with the data from the input file(s).

(continued on next page)

4-8

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 4-2 (Cont.)
PIP Copy Command and Merge Subswitches

Subswitch Description

/SU (Cont,) The output file's name, type, and version number
remain the same, but its file identification number
(File~-ID) is different. Also, the attributes for
the output file are taken from the first input file
and the number of blocks allocated to the output
file can be different (less than or more than) the
number of blocks allocated to the existing file.

/NV New Version —-- This subswitch forces the output
version number of the file being copied to become
one greater than the latest version of the file
already in the output directory. If the file does
not already exist in the output directory, a version
number of 1 is assigned. Figure 4-1 shows the
results when you specify /NV. (Specifying /NV is
not necessary when both the input and output files
are under the same file directory.)

4.2.2 Performing File Control Functions

PIP provides several switches and subswitches for file control
processing. These switches and subswitches perform such functions as
deleting files, displaying the contents of a User File Directory, and
specifying file protection values.

You can specify two PIP switches, /ID and /LI, on a command line with
no file specifications (that is, they may be entered by themselves).

You can specify only one switch in a command line. However, more than
one subswitch can be specified.

The values that you specify with the switches and subswitches default
to octal. You <can specify decimal values by adding a decimal point
after the value.

Table 4~3 lists PIP switches and subswitches and summarizes the
functions performed by them. The subswitches are listed with their
respective switches. (The switches and subswitches are described in
detail following the table.)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Directories Before COPY

INPUT DIRECTORY OUTPUT DIRECTORY
(201,241} L1g9,100]
RICK.DAT;1 RICK.DAT; 2

RICK.DAT; 4

Directories After COPY Without /NV Switch Set
(version number preserved)

INPUT DIRECTORY OUTPUT DIRECTORY
[2p1,2p1] (12p9.1pp]
RICK.DAT;1 RICK.DAT;2
RICK.DAT; 4
RICK.DAT;1

The command used was:
DK1:(16p,1p9] = DK2:[281,2¢1)RICK.DAT; 1

Directories After COPY With /NV Switch Set

INPUT DIRECTORY OUTPUT DIRECTORY
{291,201] (199,180
RICK.DAT;1 RICK.DAT;2
RICK.DAT; 4
RICK.DAT;5

The command used was:
DK1:[18¢,1080) =DK1:[20¢1,2@1)RICK.DAT;1/NV

NOTE

The version specified with the /NV sub-
switch must be explicit or default; no
wild cards allowed.

Figure 4-1 Results of Copy Command With and Without /NV Specified "!%
Table 4-3
PIP Switches and Subswitches
Switch Subswitch Function
/AP Appends file(s) to the end of an existing
file.
/FO Specifies the file ownership for a file.
/BR Lists a directory file in brief format (an
alternate mode for the LI switch).
/BS:nl[.] Defines the blocksize for magnetic tape.
(continued on next page) #!5&

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 4-3 (Cont.)

PIP Switches and Subswitches

Switch Subswitch Function
/CD Allows the output file to take the «creation
date of the input file rather than the date
of transfer.
/DE Deletes one or more files.
/LD Lists the deleted files.
/DF Changes PIP's default device and/or UFD.
/EN Enters a synonym for a file in a directory
file.
/NV Forces the version number of a file to one

/EOF[:block:byte]

/FI:filenum: seqnum

/FR

/FU[:n[.]]

/1D
/LI

/ME

/NM

/BL:n[.]

/CO

/FO

/NV

/su

greater than the latest version.

Specifies the end-of-file pointer for a
file,

Accesses a file by its file identification
number (File-ID).

Displays the amount of free space on the
specified volume and the largest contiguous
free space on that volume.

Lists a directory file in full format (an
alternate mode for the LI switch).

Identifies the version of PIP being used.
Lists directory files.

Concatenates two or more files into onhe
file.

Allocates a number (n) of contiguous blocks.

Specifies that the output file(s) be
contiguous.

Specifies the file ownership for a file.

Forces the version number of a file to one
greater than the latest version.

Supersedes (replaces) an existing file.

Suppresses certain PIP error messages.

(continued on next page)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 4-3 (Cont.)

PIP Switches and Subswitches

Switch Subswitch Function
/PR Changes the protection status of a file.
/FO Specifies the ownership for a file.

/PUl:n[.]]

/RE
/RM
/RW

/SB

/SD

/sP[:n[.]]

/SR

/TB

/TR

/UF

/UN

/UP

/GR[:RWED]
/OW[:RWED]
/SY [:RWED]

/WO [:RWED]

/LD

/FO

Sets the read/write/extend/delete protection
at the group level.

Sets the read/write/extend/delete protection
at the owner level.

Sets the read/write/extend/delete protection
at the system level.

Sets the read/write/extend/delete protection
at the world level.

Deletes obsolete version(s) of a file.
Lists the deleted files.

Renames a file,

Removes a file entry from a directory.
Rewinds a magnetic tape.

Spans the block boundaries of records when
copying from magnetic tape to disk.

Selectively deletes files by prompting for
your response before deleting.

Spools file(s) to the 1line
printing.

printer for

Allows shared reading of a file that has
already been opened for writing by another
user or task.

Lists the total number of blocks used for a
directory, along with the total number of
blocks allocated and the number of files in
that directory (an alternate mode for the LI
switch).

Truncates file(s) to logical end-of-file.

Creates a User File Directory entry on the
volume to which a file is being transferred.

Unlocks a file.
Updates (rewrites) an existing file.

Specifies the ownership for a file.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

4.2.2.1 /AP -- Append Switch - The Append switch (/AP) opens an

existing file and appends the input file(s) to the end of it. Specify

the Append switch in the following format:
outfile=infilel([,infile2,...infilen)/AP[/F0O]

outfile

The output file specification, Wildcard specifications are not
allowed 1in the output file specification. The file type and the
record attributes for the output file remain the same after the
input file or files have been appended to it. The file name and
file type for the output file must be specified explicitly.

infile

The input file specification. If the file name, file type, and
version are null, then *,%;*% is the default.
/AP

The Append switch.

/F0

The Set File Ownership subswitch, which specifies that the owning
UIC of the output file is the same directory to which the input
file belongs. If you do not specify /FO, the owning UIC of the
output file is unchanged, regardless of which directory the input
files belong to. See Section 4.2.1 for examples of using /FO.

Example

pip>DK1:FILEl.DAT; 1=FILE2.DAT;1,FILE3.DAT;1FILE4.DAT; 1/AP

Opens FILE1.DAT;l1 on DKl: and appends the contents of
FILE2.DAT;l, FILE3.DAT;1 and FILE4.DAT;1 to it.

Note: If the output file is contiguous before the appending, it
may not be contiguous afterwards.

4,2.2.2 /BS:n —-- Block Size Switch - The Block 8Size switch defines
the block size for magnetic tapes. This switch allows you to read or
write bigger blocks onto magnetic tape, thereby saving some of the
space taken by interrecord gaps. Specify /BS using the following
format:

outfile/BS:n=infile

or

outfile=infile/BS:n

outfile

The output file specification.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

infile
The input file specification.
/BS:nl[.]

Specifies the Block Size switch where n is an octal or decimal
number specifying the number of bytes in a block.

In the output specification, /BS specifies the block size of the
output file. 1In the input specification, /BS specifies the block size

of the input file. If the block size specified is smaller than the
actual block size, an I/0 error occurs.

4.2.2.3 /CD =~ Creation Date Switch - The Creation Date switch (/CD),
used in a file transfer command, allows the output file to take the
date on which the input file was created rather than the date of
transfer. You cannot use this switch with the Merge switch (/ME).
Specify the CD switch in the following format:

outfile/CD=infile
outfile

The output file specification.
infile

The input file specification.
/CD

The Creation Date switch.

Example

DIRECTORY DB1l:[200,200]
21-NOV-78 14:02

FILE.DAT;7 l2. 6-0CT-78 16:13

PIP>TEST.DAT/CD=FILE.DAT

DIRECTORY DB1:([200,200]
21-NOV-78 14:05

FILE.DAT;7 12. 6-0CT-78 16:13
TEST.DAT;1 12, 6-0CT-78 16:13

The command creates a new file, TEST,.DAT, from FILE.DAT and gives
it the creation date of FILE.DAT rather than the transfer date.

4.2.2.4 /DB -- Delete Switch - The Delete switch (/DE) deletes files
from a User File Directory. Optionally, you can specify that the
deleted files be 1listed on your terminal. Specify /DE in the
following format:

infilel[,infile2,...infilen]}/DE[/LD]

infile

The
/DE

The
/LD

The

You must
using the

Use a ver
Use a ver

Examples

l.

Wildcards

version of ;-1,

You must issue the file specification because a null file

type, and
The input
wildcards
requireme
Examples

l.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

input file specification.

Delete switch.

List Deleted files subswitch,

specify a version number or a wildcard in

Delete switch.

sion number of ;-1 to specify the oldest version of a

sion number of ;0 or ;
PIP>TEST.DAT;-1/DE
Deletes the oldest version of file TEST.DAT.
PIP>TEST1.DAT;O,TESTZ.DAT;/DE

Deletes the latest version of files TEST1.DAT

in the file name or file type fields are

30, or ; 1s specified.
version do not default to *.,%*;*,

file specification can take all the usual
(even in the group, member number ([ufd]).

its place

illegal

forms,
The only special

when

file.

to specify the most recent version.

and TEST2.DAT.

when a
file

name,

including

nt is that the version field must always be explicit or *.

PIP>TEST.DAT;5/DE

Deletes version S of file TEST.DAT in the
directory on the default device.

PIP>TEST.DAT; 1,; 2/DE

Deletes versions 1 and 2 of file TEST.DAT
default directory on the default device.

PIP>* OBJ;*, *,TMP;*/DE/LD

Deletes all versions of all files of the file
«.TMP from the current default directory
device. Lists all deleted files of file type

PIP>* OBJ;*/LD,*.TMP;*/DE

Deletes all versions of all files of the file
.TMP from the current default directory
device, Lists all deleted files of both file

current default
in the current
type .0OBJ and

on the default
.TMP.

type .OBJ and
on the default
types.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

4.2.2,5 /DF -- Default Switch - The Default switch (/DF) changes the
default device and/or UFD.
The usual default device of PIP is SY0:.
The normal default UFD 1is the UIC wunder which PIP 1is currently
running. /DF alters only the default UFD. It does not affect the UIC
under which PIP is running, nor does it circumvent file protection.
Specify /DF in one of the following formats:

dev: [group, member]/DF

or
dev: /DF
or

[group, member]/DF
dev:

If specified, the new default device to be applied to subsequent

PIP command strings. You must specify the device if you do not

specify a UFD.
[group, member]

If specified, the new default UFD to be applied to subsequent PIP

command strings. You must specify a UFD if you do not specify a

device.

/DF

The Default switch.

Examples

1. PIP>[27,27]/DF
Sets the default UFD to [27,27].

2. PIP>DKl:/DF
Sets the default device to DKl:.

3. PIP>DK1l:[27,27)/DF
%g?szg?e default device to DKl: and the default UFD to

' .

4.2.2.6 /EN =-- Enter Switch - The Enter switch (/EN) lets you enter a
synonym for a file in a directory or directories on the same device.
This allows the file to be accessed by more than one name. Also
provided 1is a subswitch, New Version (/NV), which forces the version
number of the file being entered into the directory to a number one
greater than the latest version of the file. Specify the Enter switch
in the following format:

outfile=infilel([,infile2,...infilen}/EN[/NV]

4-16

PERIPHERAL INTERCHANGE PROGRAM (PIP)

outfile

The file specification of the new directory entry. The output
file specification has a special property in that the file name,
file type, or version may be explicit, wildcard (*), or defaulted
(null). A filename, filetype, or version field that is either
wildcard (*) or default (null) means that the corresponding field
of the input file is to be used.

infile

/EN

/NV

The file specification for the input file in the format:
dev: [ufd]filename.filetype;version/sw[/subsw]

If you specify a device in either the input or output file
specification, that device sets the default for the other side.
If you do not specify a device on either the input or output
side, the current default device is assumed to be the default
device., If both the input side and the output side explicitly
reference different devices, PIP signals an error and requests
that the line be reentered.

The default input file specification is *, *%;*,

The Enter switch.

The New Version subswitch. The NV subswitch may appear on either
side of the equal sign. 1If it appears on the output side, all of
the files being entered are forced to a version number one
greater than the latest version of the file. If it appears on
the input side, only files that have the NV subswitch appended to
them are forced to a number one greater than the latest version.

Example (see Figure 4-2)

PIP>[101,101] TWIG/EN=[200,200] RICK.DAT; 1

Before

DIRECTORY [200,200] DIRECTORY [101,101]

RICK.DAT;1 JEN.OBJ;2
LAU.OBJ; 3

Figure 4-2 Sample Directories Before and After Execution of /EN

PERIPHERAL INTERCHANGE PROGRAM (PIP)

After
DIRECTORY [200,200] DIRECTORY [101,101]

RICK.DAT;1 JEN.OBJ; 2
LAU.OBJ; 3
TWIG.DAT;1

NOTE
The directory items for RICK.DAT;l1 and
TWIG.DAT;1 both reference the same file.

Figure 4~-2 (Cont.) Sample Directories Before and After Execution

4.2.2,7 /EOF -- End-of-File Switch - The End-of-File switch (/EOF)
allows you to specify where the file's end-of-file will be., This
helps in certain situations (for example, system crashes) when a file
contains useful information but its EOF pointers are wrong, preventing
you from obtaining the information.

EOF is an unprotected file attribute. If you are the file owner or
have a system-level UIC, you do not need read- or write-access to read
or change this attribute. If you are group or world to the file
owner's uIc, you need read-access to read the attribute and
write-access to change it.

Specify /EOF in the following format:
infilel/EOF[:block:bytel[,...infilen/EOF[:block:byte]]
infile

The input file specification.

The file specification must be issued because a null file name,
file type, and version do not default to *,*%;%,

block

The block number where the EOF pointer is to be placed. The EOF
pointer cannot be placed beyond the highest number of blocks
allocated to the file. The block number can be octal or decimal.

by te

The byte location of EOF or the first unused byte of the block.
The byte number can be octal or decimal. The maximum value for
byte is 777(8).

If you do not enter either of the wvalues for block and byte, PIP
places EOF at the last byte of the last block allocated to the file.
If you specify a value for either block or byte that is greater than
the maximum value allowed, PIP signals an error.

Note that /EOF is local to each file specification and therefore does
not default from left to right.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Example
PIP>A.TMP/EOF:17:253 ,AA.TMP/EOF
is equivalent to
PIP>A.TMP/EOQOF:17:253 ,AA,TMP/EOF:22:777

where the file AA.TMP has 22 blocks allocated.

4.2,2.8 /FI == File Identification Switch - The File Identification
switch (/FI) allows you to access an existing €file by its file
identification number (File-ID). Specify /FI in the following format:

outfile=/FI:filenum:segnum

/FI

The File Identification switch.
filenum

The file number of the file.
segnum

The sequence number of the file.
The file identification number of the file is assigned by RSX-11 when
the file 1is created. To find the file identification number of a
file, use the Full List switch (/FU). /FU displays the file
identification number and other information describing the file.
You can use /FI to create a directory entry for a file. For example:
FOO.TSK=/FI1:301:27/EN
Also, you can copy a file using /FI:
A.B=/FI:301:27

To list the directory file whose identification number is 301,27, use
/FI in the format:

/FI:301:27/LI

4.2,2,9 /FR —-- Free Switch - The Free switch (/FR) displays the

amount of available space on a specified volume and the largest

contiguous space on that volume. Specify /FR in the following format:
[dev:]/FR

If you do not specify dev:, PIP defaults to SYO:.

The format of the information from /FR is shown below.

dev: HAS xxxx. BLOCKS FREE, yyyy. BLOCKS USED OUT OF zzzz.
LARGEST CONTIGUOUS SPACE = nnnn., BLOCKS

PERIPHERAL INTERCHANGE PROGRAM (PIP)

4.2.2.10 /ID ~-- 1Identify Switch - The Identify switch (/1ID)
identifies the version of PIP being used. Specify /ID in the
following format:

/ID

When you specify this switch, the version number is 1listed on the
input terminal as follows:

PIP VERSION Mvvee

Vv

The version number.
ee

The edit number.
Example

PIP>/ID

PIP VERSION M1332

4.2.2.11 /LI -- List Switch - The List switch (/LI) lists one or more
files contained in a User File Directory, along with their status
information. Three alternate mode switches (/BR, /FU, and /TB) allow
you a choice of directory listing formats. Table 4-4 describes these
switches. Specify /LI in the format:

[listfile=]infilel({,infile2,...infilen)/LI[/switch]
listfile

The listing file specification in the format:

dev: [ufd]filename.filetype;version .

If listfile is not specified, it defaults to TI:.
infile

The input file specification in the format:

dev:[ufd]filename.filetype;version

The default for infile is *,%;%,

/LI

The List switch. This switch lists the following information:
1., filename.filetype;version
2. number of blocks used (decimal)

3. file code:

(null) = noncontiguous
C = contiguous
L = locked

PERIPHERAL INTERCHANGE PROGRAM (PIP)

4. creation date and time

5. summary line, which includes the number of blocks
used/allocated and files printed

/switch
The alternate mode switches of the List switch described in Table
4-4.
Table 4-4
List Switches
Switch Description
/BR This switch specifies the brief form of directory
listing. This switch lists only the file name, file
type, and version,
/FUl:n[.]] This switch specifies the full directory format.

Because the /FU format involves protected file
attributes, you may need read-access to get a full
directory listing of a file. If you are the file
owner or have a system-level UIC, you do not need
read-access. If you are group or world to the file
owner's UIC, you need read-access to read the
protected attributes of the file. (To change the
protection level attribute, see Section 4.2.2.14,
below.)

If specified, n is the number of characters per
line. If not specified, the number defaults to the
buffer size of the output device. This switch lists
the following information:
l. filename,filetype;version
2. file identification number in the format:

(file number, file sequence number)

3. number of blocks used/allocated (decimal)

4, file code:

(null) = noncontiguous
C = contiguous
L = locked

5. creation date and time
6. owner UIC and file protection in the format:

[group, member]

[system, owner,group,world]

(continued on next page)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 4-4 (Cont.)
List Switches

Switch Description
/FUl:n[.1] These protection fields can contain the values
(Cont.) R, W, E, or D.
where:

R = Read access permitted

W = Write access permitted

E = Extend privilege permitted

D = Delete privilege permitted

7. date and time of the last update plus the number
of revisions.

8. summary line, which contains the number of
blocks used, the number of blocks allocated, and
the number of files printed. s !%

/TB This switch specifies the summary 1line in the
following format:

TOTAL OF nnnn./mmmm. BLOCKS IN xxxx. Files

where:
nnnn = blocks used
mmmm = blocks allocated
Xxxxx = number of files

Figure 4-3 contains sample directory listings in the various formats.
Examples
1. PIP>/LI

Lists the directory of the current default device and UIC.
(This is equivalent to TI:=*, *;*/LI,)

2. PIP>LP:=[*,*]/FU:132
Lists on the 1line printer in full format (132=column
listing), all of the directories on the current default
device.

Note: Only RSX-11M-PLUS has transparent spooling (see
Section 4.2.1).

3. PIP>TI:=TEST.DAT/FU
Lists on TI: the full directory 1listing for the latest
version of TEST.DAT in the «current default device and
directory.

4, PIP>JUL13.DIR=[200,200]*.%*/LI
Lists the latest version of all files in directory [200,200]

on the current default device to file JUL13.DIR in the ggga
default directory on the default device. o

4-22

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Total Blocks (/TB) Format

S8TORAGE USEDN/ALLOCATED FOR DIRECTORY DK23L200+2701
15-JUL-73 15246

TOTAL OF 145./150. BLOCKS IN 5. FILES

Brief (/BR) Format

DIRECTORY DK2:L200+2703]

CRTST . MACH S
10TST MAC4
I0TST.T8K#1
CRKTST.TSK#1
CRTST MACH?

Standard (/LI) Format

DIRECTORY DK2:L200y2701
19-JUL-78 15246

CRKTST.MACHS 3. 15-JUL-75 15839
IOTST.MACH4 4, 15-JUL-73 15139
I10T8T.TBK$1 69, C 15-JUL-75 15139
CRTST.T8K$1 69, C 15-JUL-75 15%40
CKTST.MACH? 0. L 15-JUL-7% 15840

TOTAL OF 145. BLOCKS IN S. FILES

Full (/FU) Format

DIRECTORY DK2:L200,2701
185-JUL-75 15346

CKTST MACHE (10+10) 3473, 15-JUL-75 15139
L200+2703LRWEDyRWED»RWEDYR]

IOTBT.MACS4 (11s11) 4./74. 15-JUL-75 15339
£20092701LRWED» RWEDy RWED YR

I0TST.TEK$L (7912) 69,769 C 15-JUL-75 15139
£200y2701CRWEDyRWED s RWEDYRJ

CKT8T.T8K#1 (12+13) 694769, € 15~-JUL-75 15%40
£200y2701CRWEDRWED ¢ RWEDYR]

CKTST.MACH7 (13y14) 0./5, L 15-JUL-75 15140

£200y27031CLRWEDyRWEDyRWED»R]
TOTAL OF 14%5,/150. BLOCKS IN S. FILES

Figure 4-3 Directory Listing Examples

PERIPHERAL INTERCHANGE PROGRAM (PIP)

5. PIP>LP:=[11,*]*.CMD;*/LI

Lists on the line printer all versions of all files with the
file type .CMD in all directories in group 1l1.

Note: Only RSX-11M-PLUS has transparent spooling (see
Section 4.2.1).

6. PIP>LP:/BR=[11,11]1*.CMD;*,*.DAT;*,*.MAC;1
Lists on the line printer in brief format all versions of all
files with a file type of .CMD; all versions of all files
with a file type of .DAT; and all files of file type .MAC
with a wversion number of 1. These files all reside in the
directory [11,11] on the current default device.

Note: Only RSX-11M-PLUS has transparent spooling (see
Section 4.2.1).

4.2.2.12 /ME -- Merge Switch - The Merge switch (/ME) creates a
single file from two or more existing files. Merge is used in copying
Files-11 files and is described in Section 4.2.1.

4.2.2.13 /NM -- No Message Switch - The No Message switch (/NM)

suppresses the PIP error message, NO SUCH FILES(S), when you are

manipulating files. Specify the NM switch in the following format:
infilel[,infile2,...infilen][/sw]/NM

infile

The input file specification.

/sw

Any combination of appropriate switches and subswitches, for
example, the LI, DE, or PU switches and any of their respective
subswitches.

/NM

The No Message switch.

Example

PIP>* MAC;*,TEST.DAT;1,FILES.OBJ;*/DE/NM

If none of these files exists in the default directory, you will
not get the error message, NO SUCH FILE(S), when PIP tries to
delete them.

W/

PERIPHERAL INTERCHANGE PROGRAM (PIP)

4.2.2.14 /PR -- Protect Switch - The Protect switch (/PR) provides
the facility to set the protection status of a file. File protection
is provided for four categories:
System
Specifies which categories of access the system UICs are allowed
to the file (that is, UICs with group numbers less than or equal
to 10 octal).
Oowner
Specifies which categories of access the owner has allowed
himself.
Group
Specifies which categories of access other members in the same
group have.
World
Specifies categories of access given all other UICs.
For each category, you can specify whether that category can read,
write, extend, or delete the file. To alter the protection level of a
file, you can use either /PR subswitches (/sYy, /OW, /GR, /WO) or octal
representations (PR:n). For either method, if you are the file owner
or have a system-level UIC, you can alter the protection level without
having read- or write-access. However, because the protection level
of a file is a protected attribute, you cannot alter the protection
level if you are group or world to the file owner's UIC. (You can
read protected attributes if you have read-access.)
Specify the PR switch in the following format:

infile/PR[/SY[:RWED]] [/OW[:RWED]] [/GR[:RWED]] [/WO[:RWED]] [/FO]

infile

The file specification for the file whose protection is being
changed, in the format:

dev: [ufd]filename.filetype;version/switch
File specification must be issued because a null file name, file
type, and version do not default to * ke k,
/PR

The Protect switch.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

/sY,/OW,/GR, and /WO

/FO

The subswitches which specify protection level for a file. These
subswitches specify which protection 1level is to be altered
(others are left intact). The values which follow the switch are
any of the four letters, R, W, E, and D (for read, write, extend,
and delete), in any order., They specify which privileges the
respective categories can have. If you enter the subswitch and

do not specify a wvalue, no privileges are granted for that
category.

The subswitches are identified as follows:

/SY is the System subswitch.
/OW is the Owner subswitch.
/GR is the Group subswitch

/WO is the World subswitch.

Protection can also be specified by an optional octal value on
the PR switch itself, in the format:

/PR:n

where n is the octal representation of the protection to be
assigned to the file. This octal number is taken as the new
protection word. (See the RSX-1lM Mini-Reference for the list of
octal codes.) The format of the protection word is shown in
Figure 4-4.

The Set File Ownership subswitch, which provides the facility to
set the ownership of a file to that of the UIC of the directory
in which it is entered. (You can change the file ownership at
the same time you set the protection value.) If there are files
in the [200,200] directory which are owned by another UIC, the
command:

PIP>[200,200]*. *;*/PR/FO

causes all files to be owned by [200,200].

15 12 11 8 7 4 3 0
Protection { _ WORLD | GROUP | OWNER | SYSTEM |
word s e
// //
3210 _.-7
[D[E[w][R]
(bit set means NO access permitted.)
Example
TEST.DAT;5/PR:3
(bits 0 & 1 set)
deny write and read access to the system
for file TEST.DAT;5.

Figure 4-4 Format of Protection Word

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Examples

1. PIP>TEST.DAT;5/PR/OW:RWE/GR:RWE: /WO
Sets the protection level so that the owner and group have
RWE privileges (not delete), world has no access privileges,
and system privileges are unchanged.

2. PIP>[*,*])* *;*/PR:0

Sets the protection level of all files so that all categories
are granted all access privileges.

3. PIP>DKO:[*,*]*.%*;*/PR/FO

Causes all file owners to be the same UIC as the UFD in which
the files are entered.

4.2.2.15 /PU -- Purge Switch - The Purge switch (/PU) deletes a
specified range of obsolete versions of a file. Optionally, you can
specify that the deleted files be listed on your terminal,

Specify the Purge switch in the following format:

infilel(,infile2,...infilen]/PU[:n] [/LD]

infile

The file specification for the file to be deleted. The file
specification takes the form:

dev: [ufd)filename.filetype

/PU[:n[.]]

/LD

The Purge switch. If you specify the optional value n and the
latest version of the file is m, then all existing versions less
than or equal to m-n are deleted (see Figure 4-5). Although it
is useful to think of this command as deleting all but the n most
recent versions, it 1is important to understand that if any
versions are already deleted between m-n and m, fewer than n
versions will be retained. The most recent version of the file
is always retained.

If you omit the value n, PIP defaults to 1, and all but the
latest version of the file are deleted. If n is greater than the
number of versions of the specified files, no files are deleted.

The value n is local and defaults from left to right. This means
that if you specify n at the end of the command line, it only
applies to the infile immediately preceding it. All other
infiles default to one. However, n applies to all following
infiles until you make a new specification for n.

A version number is not required when using the Purge switch. If
specified, it is ignored.

The List Deleted files subswitch.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Examples

1. PIP>*,0BJ,*.MAC/PU:2/LD

Deletes all but the highest version of all files with a file
type of .OBJ, and all but the two highest versions of all
files with a file type of .MAC. Lists all of the deleted
files having a file type of .MAC.

2. PIP>*, 0BJ/PU:2/LD,*.MAC

Deletes all but the two highest versions of all files with
file types of .OBJ and .MAC. Lists all deleted files.

Directory Before Purge Directory After Purge

GARY; 1 GARY; 3

GARY; 2 GARY; 4

GARY; 3 GARY ;5

GARY; 4 RICK;7

GARY: 5 (D GARY/PU:3,RICK/PU:2 [

RICK; 4

RICK;5

RICK;7

In the case of the files named GARY, the 3 latest versions
(3, 4, and 5) are retained; versions 1 and 2 are deleted.

In the case of the files named RICK, since version 6 did not
exist, only version 7 is retained; and all existing versions
less than or equal to 5, i.e., versions 4 and 5, are deleted.

Figure 4-5 Use of the Purge Switch

4.2.2.16 /RE -- Rename Switch - The Rename switch (/RE) changes the
name of a file. There 1is also a New Version subswitch (/NV) that
forces the renamed file to have a version number one greater than the
latest version of the previously existing file with the same name.
Specify the Rename switch in the following format:

outfile=infilel([,infile2,...infilen)/RE[/NV]

outfile

The file specification to be given to the new file. The output
file specification has a special property in that the file name,
file type, and version are each allowed to be explicit, wildcard
(*), or defaulted (null). A UFD, filename, filetype, or version
field that is either wildcard (*) or defaulted (null) means that
the corresponding field of the input file is to be used. Thus,
the Rename switch can change one or more fields while preserving
the others. Enter the output specification in the following
format:

dev: [ufd]filename.filetype;version

PERIPHERAL INTERCHANGE PROGRAM (PIP)

infile

/RE

/NV

The file specification of the file to be renamed. The input file
specifications are standard and allow wildcards in all fields,
including UFD. Enter this specification in the following format:

dev: [ufd]lfilename.filetype;version
A null file name, file type, and version defaults to *,*;*,

/RE does not transfer data. The file 1is entered in the new
directory and deleted from the old directory. The directories
must be on the same device because data is not transferred. You
can move files out of one directory into another, preserving the
file name, file type, and version, or changing them 1if desired.
(This is permitted only if PIP is running under a UIC with write
privileges for each of the directories involved.)

If you specify a device on either the input or output side, that
device sets the default for the other side. If both the input
side and the output side explicitly reference different devices,
PIP signals an error and requests that you reenter the line.

The Rename switch.

The New Version subswitch. The NV subswitch forces the version
number of the renamed file to a number one greater than the
latest version for the file.

The NV subswitch may appear on either side of the equal sign. If
it appears on the output side, all of the version numbers of
files being renamed are forced to a number one greater than the
latest version for the file. If it appears on the input side,
only the file that has the subswitch appended to it has its
version number forced to one greater than the latest version of
the file.

Examples

1. PIP>TESTFILE.DAT;1=TEST.DAT;5/RE
Renames TEST.DAT;5 to TESTFILE.DAT;1l.
2. PIP>BACKUP.*;*=TESTl.l;*,TEST2.2;*,TEST3.3;*/RE
Renames all versions of all files with the file names TESTI1,
TEST2, and TEST3 to BACKUP, preserving the file type and
version of each file.
3. PIP>*.*;l=% *%;*/RE
Renames all copies of all files to version 1.
NOTE
There should be only one version of each
of these files before renaming.

Otherwise, PIP continues to rename files
until you abort the task.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

4. PIP>[200,220]=[200,200]/RE

Renames all files from [200,200] to [200,220], preserving the
file name, file type, and version of each file.

5. PIP>EXAMPLE.*;*=TEST,*;*/RE

Renames all versions of all files with the file name TEST to
the file name EXAMPLE, preserving the file type and version
of each file.

6. PIP>SAVE.DAT/RE/NV=OUTPUT.DAT;l
Renames OUTPUT.DAT;1 and forces the version number to one

greater than the latest version of SAVE.,DAT. Figure 4-6
illustrates the results with and without the NV switch.

Directory Before Rename

SAVE.DAT;2
SAVE.DAT;3
SAVE.DAT; 4
OUTPUT.DAT; 1
OUTPUT.DAT; 2

Directory After Rename Without /NV Switch Set

SAVE.DAT; 2
SAVE.DAT; 3
SAVE.DAT; 4
SAVE.DAT;1
OUTPUT.DAT; 2

Directory After Rename With /NV Switch Set

SAVE.DAT; 2
SAVE.DAT;3
SAVE.DAT; 4
SAVE.DAT;5
OUTPUT.DAT; 2

Figure 4-6 Results of Rename Switch With and Without /NV Specified

4.2.2.17 /RM -- Remove Switch - The Remove switch (/RM) removes an
entry from a User File Directory, but does not delete the file
associated with that entry. Remove is particularly useful for
deleting directory entries which, for whatever reason, point to
nonexistent files. It 1iIs also used to delete synonyms generated by
the Enter switch. If the last entry for an existing file is removed,
that file can be located only by using the VFY wutility with its LO
switch (see Chapter 13). Specify the Remove switch in the format:

infilel[,infile2,...infilen]/RM

PERIPHERAL INTERCHANGE PROGRAM (PIP)

infile

The file specification for the directory £file entry to be
removed. The file specification takes the form:

dev: [ufdlfilename.filetype;version

The file specification must be issued because a null file name,
file type, and version do not default to *, *;*,

/RM

The Remove switch.

Example
PIP>DK1:[10,10]RICKSFILE.DAT; 1/RM

Removes the file entry RICKSFILE.DAT;1l from the directory [10,10]
on DKl:.

4,2,2.18 /RW -- Rewind Switch - The Rewind switch (/RW) directs PIP
to rewind magnetic tape. (/RW cannot be used for DECtapes.) You can
apply this switch to both input and output specifications. When you
specify /RW with the output specification, it erases the tape. You
can use this technique to erase a tape before writing files on it.
Specify the Rewind switch in the following format:

outfile/RW=infile

or

outfile=infile/RW
outfile

The output file specification.
infile

The input file specification.
/RW

The Rewind switch.
When you apply /RW to the input specification, it rewinds the tape
before opening the input file. The magnetic tape processor performs
the following process when it searches for a file to open:

1. Searches from the current position to end of tape

2. Rewinds the tape

3. Searches from the beginning of tape to the point where search
processing began

You can use /RW with the input specification to save search time. If
you know a file is behind the tape's current position, /RW rewinds the
tape before searching for the file to open. This saves the time that

PERIPHERAL INTERCHANGE PROGRAM (PIP)

otherwise would have been taken to search for the file between the
current position and the end of the tape.

4,2.2,19 /SB -- Span Blocks Switch - The Span Blocks switch (/SB)
allows you to control whether records copied from disk to magnetic
tape or vice versa will cross block boundaries. If you omit this
switch, the file 1is «copled with records possibly crossing block
boundaries. If you specify /-SB, the records will not cross block
boundaries.
Specify the Span Blocks switch in the following format:

outfile/SB = infile
outfile

The disk output file.
infile

The magnetic tape input file.
/SB

The Span Blocks switch.
Example

PIP>DK1:T3/-SB=MMO0O:T3

Copies T3 records to the disk from magnetic tape and does not
cross block boundaries,

4,2.2.20 /SD -- Selective Delete Switch - The Selective Delete switch
(/SD) prompts for your response before deleting a file that you have
specified in the command 1line as a candidate for deletion. The
response choices are carriage return (<CR>) or control-Z (°2), or ¥,
N, G, or Q, each followed by either a carriage return (<KCR>) or
control-Z ("Z). Table 4-5 describes the effect of each combination of
letter and terminator.
Specify the SD switch in the following format:

infilel[,infile2,...infilen]/SD
infile

The input file specification in the form:

dev: [ufd]lfilename.filetype;version

The file specification must be issued because a null file name,

file type, and version do not default to *,*;*,
/8D

The Selective Delete switch.

4-32

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 4-5
Response Choices for the Selective Delete (/SD) Switch
Letter Terminator Operation
Y (<CR>) Delete this file and continue
Y ("2) Delete this file and exit from PIP
N (<CR>) Save this file and continue
N (°2) Save this file and exit from PIP
(<CR>) Save this file and continue
(°2) Save this file and exit from PIP
Q (<CR>) Save this file and return to command mode
Q ("z) Save this file and exit from PIP
G (<CR>) Delete this and all remaining candidates,
list deleted files, and return to PIP
command mode
G ("Z) Delete this and all remaining candidates,
list deleted files, and exit from PIP

Examples
1. PIP>MYFILE.DAT;*/SD

DELETE FILE DB1:[200,200]MYFILE.DAT;1 [Y/N/G/Q]? Y(<CR>)
DELETE FILE DBl:[200,200]MYFILE.DAT;2 [Y/N/G/Q]1? G(<CR>)

THE FOLLOWING FILES HAVE BEEN DELETED:
DB1:[200,200]MYFILE.DAT; 2
DB1:[200,200) MYFILE.DAT; 3

PIP>

Deletes MYFILE.DAT;1l and PIP goes to the next candidate,
MYFILE.DAT; 2. Deletes this file and all remaining versions
of MYFILE.DAT. Lists the deleted files and returns you to
PIP command mode.

2. PIP>TEST.*;*/SD

DELETE FILE DB1:[200,200] TEST.DAT;1 [Y¥/N/G/Q]? N(<KCR>)
DELETE FILE DB1:[200,200] TEST.TXT;3 [Y/N/G/Q]? Q("Z)

Saves TEST.DAT;1. PIP goes on to the next candidate,
TEST.TXT; 3. Saves this file and all remaining files with
file name TEST. Returns you to monitor control mode.

4.2.2.21 /sp -- Spool Switch - The Spool switch (/SP) directs a file
to a line printer for printing. This switch applies only if you have
the Print Spooler task (RSX-11M) or the Queue Manager (RSX-11M/M-PLUS)
installed. (See Chapter 6 for an explanation on using the Queue
Manager and Appendix C for a description of the Print Spooler.)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Specify the Spool switch in the following format:
infilel(,infile2,...infilen}/SP[:n)
infile
The file specification of the file to be spooled for printing.
The file specification takes the form:
dev: [ufdlfilename.filetype;version

The file specification must be issued because a null file name,
file type, and version do not default to *.*;*,

In RSX-11M and RSX-11M-PLUS only, if the file is specified by its
file identification number (File-ID), it will be printed. File
identification numbers are discussed in Section 4.2.2.8.

/SP
The Spool switch.

n
The number of copies you want spooled. (If a deleting spooler
was specified during SYSGEN, only one copy of a file is printed,
regardless of the value of n, The file 1is deleted after the
first copy has been printed.) If n is omitted, a value of 1 is
assumed.

Example

PIP>RICK1,.LST;1,KATHY.LST;1,/FI1:12:22/SP

Spools the files RICK1.LST;l, KATHY.LST;l, and the £file whose
file identification number (File-ID) is 12:22 for asynchronous
printing.

4.2,2.22 /SR -- shared Reading Switch - The Shared Reading switch
(/SR) allows you to read a file that has already been opened for
writing by another task. You have no guarantee that you will get the
information you want since the EOF pointer may be incorrect at the
time you open the file. Specify the SR switch in the following
format:

outfile=infile/SR
outfile

The output file specification.
infile

The input file specification.
/SR

The Shared Reading switch.
Example

PIP»TI:=[210,20] FILES.DAT/SR

Enables you to read FILES.,DAT even though another task may have
already opened it for writing.

4-34

PERIPHERAL INTERCHANGE PROGRAM (PIP)

4.2.2.23 /TR -- Truncate Switch - The Truncate switch (/TR) allows
you to truncate files back to their logical end-of-file point. Note
that RMS-11 files other than those that are fixed-length,
variable-length, or sequenced cannot be truncated. Specify /TR in the
following format:

infilel([,infile2,...infilen]/TR
infile

The input file specification.

The file specification must be issued because a null file name,

file type, and version do not default to *,%*;*,

/TR

The Truncate switch.

Example

pIp>*.MAC/TR

Directory before TRUNCATE

A.MAC; 1 3. 20-SEP-78 14:02
B.MAC;1 2. 20-SEP-78 15:38
C.MAC; 2 5. 28-SEP-78 09:54

TOTAL OF 10/15. BLOCKS IN 3. FILES

Directory after TRUNCATE

A.MAC;1 3. 20-SEP-78 14:02
B.MAC;1 2. 20-SEP-78 15:38
C.MAC; 2 S. 28-SEP-78 09:54

TOTAL OF 10./10. BLOCKS IN 3. FILES

4.2.2.24 JUF -- User File Directory Switch - The User File Directory
switch (/UF) creates a UFD entry in the Master File Directory (MFD) on
the volume to which you are transferring a file. You must also
transfer ownership of the file in order to access the file. Use the
FO subswitch to transfer file ownership, and use [*,*] as the UFD in
the output file specification if you want to assign the UIC under
which you are running to all the files being transferred.

Specify the UF switch in the following format:
outfile/UF[/FO]=infile,...infilen
outfile
The file specification for the output file.
infile

The file specification for the input file.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

/UF
The User File Directory switch,
/FO

The File Ownership subswitch. /FO is described above in the
section, /AP -- Append Switch.

To use /UF, you must have write-access to the Master File Directory of
the wvolume on which the files are being written. If that volume is a
system volume, you must have a system-level UIC to use /UF. If the
volume to which you are writing files is your own private volume, use
the following procedure to change your UIC so that you can write to
it.

l. Log onto the system under your UIC.
2. Reset your UIC to a privileged class using the SET command:
SET /UIC=[group,member]
where group and member specify a privileged class.
A typical use of /UF is creation of a backup volume. 1In the following
command, you are writing all files with file types .OBJ and .MAC in

UFD [104,20] to a backup volume called DK6:.

PIP>DK6:[*,*]/UF/FO=SY:[104,20]*.MAC, [104,20]*.0BJ

4,2.2.25 JUN -- Unlock Switch - The Unlock switch (/UN) unlocks
(gives permission to open) a file that was locked because it was
improperly closed. If a program using File Control Services (FCS) has
a file open with write~access and exits without first closing the
file, the file is locked against further access as a warning that it
may not contain proper information. Typically, the £following
information is not written to the file:

1. The current block buffer being altered

2. The record attributes which contain the end-of-file
information

Using the Unlock switch, you can access the file, determine the extent
of the damage, and, if possible, take corrective action. Specify the
Unlock switch in the following format:

infilel[,infile2,...infilen]/UN
infile

The file specification for the file to be wunlocked. The file
specification takes the form:

dev: [ufd]filename.filetype;version

The file specification must be given because a null file name,
file type, and version do not default to *.%*;*,

You must run PIP under the UIC of the file owner or under a
system-level UIC.

O

PERIPHERAL INTERCHANGE PROGRAM (PIP)

/UN
The Unlock switch.

Example
PIP>DK1:[100,100]RICK1.0BJ; 3/UN

Unlocks a file RICK1.0BJ;3 in directory [100,100} on device DKl:.

4,2.2.26 /UP =-- Update Switch - The Update switch (/UP) is similar to
the basic PIP copy function or the Merge switch except that an
existing file is opened and new data is written into it from the
beginning. Existing data in the output file is destroyed and replaced
by the data that constitutes the input file(s). Unlike the Supersede
switch (/SU, Section 4.2.1), /UP does not delete the existing file
before rewriting the data and its file identification number (File-1D)
remains the same. Also, the number of blocks allocated to the output
file can be the same or greater, but never less than the number of
blocks allocated to the existing file. However, as with /SU, the
file's name, type, and version number remain the same.

Specify the Update switch in the format:
outfile=infilel[,infile2,...infilen]/UP[/FO]
outfile

The file specification for the file to be rewritten. The file
specification takes the form:

dev: [ufd]filename.filetype;version
As in the Merge and the Append switches, the output file
specification must be explicit, that is, no wildcards are
allowed.

The characteristics and record attributes of the output file are
taken from the first input file.

infile

The file specification for the file to be copied into the file
that is being rewritten., Specify infile in the format:

dev: [ufd]lfilename.filetype;version

A null file name, file type, and version default to *,*;*

/Up
The Update switch,

/FO
The Set File Ownership subswitch which specifies that the owning
UIC of the output file corresponds to the directory into which
the file was entered. If you do not specify /FO, the owning UIC
of all new files 1is the UIC under which PIP is running,

regardless of the directory into which the file was entered.
Refer to Section 4.2.1 for examples on using the FO subswitch.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Example

PIP>DK1:SAMPLE.DAT; 1=TEST1 .DAT;1,TEST2.DAT;1,TEST3.DAT; 1/UP
Opens SAMPLE.DAT;l on DKl: and replaces the data currently in

the file with the contents of files TEST1.DAT;l, TEST2.DAT;1 and
TEST3.DAT; 1.

4.3 PIP ERROR MESSAGES

Errors encountered by PIP during processing are displayed in the
following format:

PIP -- <main error message>

<filename or filespec> - <secondary error message>
The file name or file specification, if present, identifies the file
or set of files being processed when the error occurred. If the error
was detected by the operating system, file system, or device driver,
the secondary error message is included to explain the cause of the
error.,
PIP error messages are contained in message files on the system
device. If PIP cannot access the message files, errors are reported
in the following format:

PIP -- ERROR CODE nn.

<filename or filespec> - <Driver Code -mm.>

or

<QIO0 Error Code =-qdq.>

nn
One of the PIP error codes contained in Table 4-6.

-mm
One of the standard system, file primitive, or file control
service codes listed in the IAS/RSX-11 I/0 Operations Reference
Manual.

-qq

One of the directive error codes 1listed in IAS/RSX-11 1I/0
Operations Reference Manual.

The PIP error messages, their descriptions and suggested user actions
are as follows: ,

PIP -- ALLOCATION FAILURE - NO CONTIGUOUS SPACE

Explanation: Not enough contiguous space was available on the
output volume for the file being copied.

User Action: Delete all files that are no longer required on the
output volume, and reenter the command line. Also, use the BRU
or DSC utilities to compress the files on your disk. BRU is
described in Chapter 10 and DSC is described in Chapter 1l.

PIP

PIP

PIP

PIP

PIP

PIP

PIP

PERIPHERAL INTERCHANGE PROGRAM (PIP)

~- ALLOCATION FAILURE ON OUTPUT FILE
or
~- ALLOCATION FAILURE ~ NO SPACE AVAILABLE

Explanation: Not enough space was available on the output volume
for the file being copied.

User Action: Delete all files that are no longer required on the
output volume, and reenter the command line. Also, use the BRU
or DSC utilities to compress the files on your disk. BRU 1is
described in Chapter 10 and DSC is described in Chapter 11.

-— BAD USE OF WILD CARDS IN DESTINATION FILE NAME

Explanation: A wildcard * was specified for an output file name
when use of a wildcard was explicitly disallowed.

User Action: Reenter the command line with the proper output
file explicitly specified.
—— CANNOT FIND DIRECTORY FILE

Explanation: Specified UFD does not exist on this volunme.

User Action: Reenter the command line specifying the correct
UFD or the correct volume. :
—= CANNOT FIND FILE(S)

Explanation: The file(s) specified in the command were not found
in the designated directory.

User Action: Check the file specification and reenter the
command line.

—~— CANNOT RENAME FROM ONE DEVICE TO ANOTHER
Explanation: You attempted to rename a file across devices.
User Action: Reenter the command line, renaming the file on the
input volume, then enter another command to transfer the file to
the intended volume.

~— CANNOT TRUNCATE THIS FILETYPE

Explanation: PIP can only - truncate files containing
fixed-length, variable-length, and sequenced records.

User Action: Check the file specification and reenter the
command line.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- CLOSE FAILURE ON INPUT FILE
or
PIP -- CLOSE FAILURE ON OUTPUT FILE

Explanation: The input or output file could not be properly
closed. The file is then locked to indicate possible corruption.

User Action: Reenter the command line. If the error recurs, run
a validity check of the file structure using the Verify utility
(VFY) on the volume in question to determine if it is corrupted.
VFY is described in Chapter 13.

PIP -- COMMAND SYNTAX ERROR
Explanation: Command did not conform to syntax rules.

User Action: Reenter the command line with the correct syntax.

PIP ~- DEVICE NOT MOUNTED/ALLOCATED

Explanation: The device was not mounted, or another user had
mounted the device.

User Action: Mount the device, and reenter the command line.

PIP -- DIRECTORY WRITE PROTECTED
Explanation: PIP could not remove an entry from a directory
because the device was write-protected, or because of a privilege
violation.
User Action: Enable the unit for write operations or have the
owner of the directory change its protection.

PIP -- ERROR FROM PARSE
Explanation: The specified directory file does not exist.
User Action: Reenter the command 1line with the correct UIC
specified.

PIP —- EXPLICIT OUTPUT FILENAME REQUIRED

Explanation: Self-explanatory.

User Action: Reenter the command line with the output filename
explicitly specified.

PIP

PIP

PIP

PIP

PIP

PIP

PIP

PIP

PERIPHERAL INTERCHANGE PROGRAM (PIP)

~-- FAILED TO ATTACH OUTPUT DEVICE
or

-- FAILED TO DETACH OUTPUT DEVICE

Explanation: An attempt to attach/detach a record~oriented
output device failed. This is usually caused by the device being

offline or non-resident.

User Action: Ensure that the device is online and reenter the

command line.

-- FAILED TO CREATE OUTPUT UFD

Explanation: PIP could not create an

entry in a directory

because the device was write-protected or because of a privilege

violation.

User Action: Enable the unit for write operations or have the
owner of the directory change its protection.

-- FAILED TO DELETE FILE
or

~—- FAILED TO MARK FILE FOR DELETE

Explanation: You attempted to delete a protected file,

User Action: Request PIP under the correct UIC and reenter the

command line.

~- FAILED TO ENTER NEW FILE NAME

Explanation: You specified a file that

already exists in the

directory file, or you did not have the necessary privileges to
make entries in the specified directory file.

User Action: Reenter the command line, ensuring that the file

name and UFD are specified correctly,
correct UIC and reenter the command line.

-—- FAILED TO FIND FILE(S)

or request PIP under the

Explanation: The file(s) specified in the command line were not

found in the designated directory.

User Action: Check the file specification and reenter the

command line.

-~ FAILED TO GET TIME PARAMETERS

Explanation: An internal system failure

occurred while PIP was

trying to obtain the current date and time.

User Action: Reenter the command line.
submit a Software Performance Report.

If the problem persists,

PERIPHERAL INTERCHANGE PROGRAM (PIP)
PIP -- FAILED TO OPEN STORAGE BITMAP FILE

Explanation: PIP could not read the specified volume's storage
bit map, probably because of a privilege violation. 4”7%
User Action: Retry by running PIP under a system UIC, or have

the system manager change the protection on the storage bit map.

PIP -- FAILED TO READ ATTRIBUTES

Explanation: The volume you specified was corrupted or you did
not have the necessary privileges to access the file,

User Action: Ensure that PIP is running under the correct UIC.
If the UIC 1is correct, then run the validity check of the file
structure Verification wutility (VFY) against the wvolume in
question to determine where and to what extent the volume is
corrupted. VFY is described in Chapter 13.

PIP -- FAILED TO REMOVE DIRECTORY ENTRY
Explanation: PIP could not remove an entry from a directory |
because the unit was write-protected or because of a privilege
violation.

User Action: Enable the unit for write operations or have the
owner of the directory change its protection.

PIP -- FAILED TO RESTORE ORIGINAL DIRECTORY ENTRY - FILE IS LOST
Explanation: PIP has removed a file from a directory, failed to

enter it into another directory (using /RE), and failed to
replace the original directory entry.

User Action: Run the 1lost check of the file structure
Verification wutility (VFY) to recover the filename. VFY is
described in Chapter 13.

PIP -- FAILED TO SPOOL FILE FOR PRINTING

Explanation: Not enough system dynamic memory was available, or
the spooler task is not installed.

User Action: Wait for spooler queue to empty, or install the
spooler task and reenter the command line.

PIP -- FAILED TO TRUNCATE FILE

Explanation: The volume you specified is corrupted or you did
not have the necessary privileges (write, extend) to truncate
this file.

User Action: Ensure that PIP is running under the correct UIC.
If the UIC is correct, then run the validity check of the file
structure Verification utility (VFY) against the Volume in
question to determine where and to what extent the volume is
corrupted. VFY is described in Chapter 13.

PIP

PIP

PIP

PIP

PIP

PIP

PERIPHERAL INTERCHANGE PROGRAM (PIP)

-~ FAILED TO WRITE ATTRIBUTES

Explanation: Volume is corrupted or you did not have the
necessary privileges to write the file attributes.

User Action: Ensure that PIP is running under the correct UIC.
If the UIC 1is correct, then run the validity check of the file
structure Verification wutility (VFY) against the volume in
question to determine where and to what extent the volume is
corrupted. VFY is described in Chapter 13.

~-—- FILE IS LOST

Explanation: PIP has removed a file from its directory, failed
to delete it, and failed to restore the directory entry.

User Action: Run the lost check of the file structure
Verification wutility (VFY) to recover the filename. VFY is
described in Chapter 13.

~— FILE NOT LOCKED

Explanation: The UN switch was entered for a file that was not
locked.

User Action: Reenter the command line, specifying the <correct
file.
~= GET COMMAND LINE - BAD @ FILE NAME

Explanation: An illegal indirect command file name was
specified.

User Action: Reenter the command line, specifying the correct
name for the indirect command file.
~ GET COMMAND LINE - FAILED TO OPEN @ FILE

Explanation: PIP could not find the specified indirect command
file.

User Action: Check the specification for the indirect command
file and reenter the command line.
-— GET COMMAND LINE - I/0 ERROR

Explanation: An I/0 error occurred during an attempt to read a
command line.

User Action: Check the command to ensure that you entered it
correctly, then retry the command. If the error persists, submit
a Software Performance Report.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- GET COMMAND LINE - MAX @ FILE DEPTH EXCEEDED

Explanation: The maximum level of nesting for indirect command
files (4) was exceeded,

User Action: Reduce the level of nesting.

PIP -- ILLEGAL COMMAND
Explanation: Command was not recognized by PIP.
User Action: Reenter the command 1line with the PIP command
correctly specified.

PIP -- ILLEGAL SWITCH
Explanation: Specified switch was not a legal PIP switch.
User Action: Reenter the command line with the correct switch
specification.

PIP -- ILLEGAL "*" COPY TO SAME DEVICE AND DIRECTORY
Explanation: You attempted to copy all versions of a file into
the same directory that is being scanned for input files. This
would result in an infinite number of versions of the same file
so is not allowed.
User Action: Reenter the command line, renaming the files or
copying them into a different directory.

PIP -- ILLEGAL USE OF WILDCARD VERSION
Explanation: The wuse of a wildcard version number in the
attempted operation would result in inconsistent or unpredictable
output.
User Action: Reenter the command line with different options or
with an explicit or default version number.

PIP -- INPUT FILES HAVE CONFLICTING ATTRIBUTES
Explanation: The input files specified in a Merge, Update, or
Supersede command had conflicting attributes or the attributes of

the input file(s) specified in an Append command conflicted with
those of the output file,

User Action: The message 1is a warning only. The specified
action was completed despite the conflict. In a Merge, Update,
or Supersede command, the attributes of the output file will be
those of the first input file. In an Append command, the
attributes of the output file are unchanged. The resulting £file
should, however, be suspect because its attributes may not
correctly represent all the records in the file.

"

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -~ I/0 ERROR ON INPUT FILE
or
PIP -~- I/0 ERROR ON OUTPUT FILE
Explanation: One of the following conditions may exist;
e The device is not online
e The device is not mounted
e The hardware has failed
e The volume is full (output only)
e Input file is corrupted
User Action: Determine which condition caused the message and
correct that condition. Reenter the command line.
PIP -~ NOT A DIRECTORY DEVICE

Explanation: A directory-oriented command was issued to a device
that does not have directories (such as a printer).

User Action: Reenter the command line without specifying a UFD.

PIP --- NOT ENOUGH BUFFER SPACE AVAILABLE

Explanation: PIP did not have enough I/O buffer space to perform
the requested command.

User Action: Have the system manager install PIP in a larger
partition or increase the size specified by the INC switch on the
MCR INSTALL command. See the RSX-11M/M-PLUS MCR Operations
Manual,

PIP -~ NO SUCH FILE(S)

Explanation: The file(s) specified in the command were not found
in the designated directory.

User Action: Check the file specification and reenter the
command line.
PIP -- ONLY [*,*] IS LEGAL AS DESTINATION UIC

Explanation: A UFD other than [*,*] was specified as the output
file UFD for a copy operation.

User Action: Reenter the command line with [*,*] specified as
the output UFD.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- OPEN FAILURE ON INPUT FILE
or
PIP -~ OPEN FAILURE ON OUTPUT FILE

Explanation: The specified file could not be opened. One of the
following conditions may exist:

e The file is protected against access
e A problem on the physical device (for example, device down)
e The volume is not mounted
e The specified file directory does not exist
e The named file does not exist in the specified directory
User Action: Determine which condition caused the messaée and
correct that condition. Reenter the command line.
PIP ~-- OUTPUT FILE ALREADY EXISTS -- NOT SUPERSEDED

Explanation: An output file of the same name, type, and version
as the file specified already exists.

User Action: Retry the copy with /NV to assign a new version
number of /SU to supersede the output file.
PIP -- TOO MANY COMMAND SWITCHES - AMBIGUOUS

Explanation: Too many switches were specified, or the switches
conflict.

User Action: Reenter the command line, specifying the correct
set of switches.

PIP -~ VERSION MUST BE EXPLICIT OR "*"

Explanation: The version number of the specified file must be
expressed explicitly or as a wildcard *.

User Action: Reenter the command line with the version number
correctly expressed.

4.4 PIP ERROR CODES

Table 4-6 identifies the error codes PIP issues when it does not have
access to the message files. The descriptions and suggested user
actions for these error codes are 1identical to those described in
Section 4.3.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 4-6
PIP Error Codes
Error Code Error Message
1 COMMAND SYNTAX ERROR
2 ILLEGAL SWITCH
3 TOO MANY COMMAND SWITCHES - AMBIGUOUS
4 ONLY [*,*] IS LEGAL AS DESTINATION UIC
5 ILLEGAL COMMAND
6 ILLEGAL "*" COPY TO SAME DEVICE AND DIRECTORY
7 BAD USE OF WILDCARDS IN DESTINATION FILE NAME
8 EXPLICIT OUTPUT FILE NAME REQUIRED
9 ALLOCATION FAILURE .- NO CONTIGUOUS SPACE
10 ALLOCATION FAILURE - NO SPACE AVAILABLE
11 ALLOCATION FAILURE ON OUTPUT FILE
12 I/0 ERROR ON INPUT FILE
13 I/0 ERROR ON OUTPUT FILE
14 ILLEGAL USE OF WILDCARD VERSION
15 FAILED TO CREATE OUTPUT UFD
16 INPUT FILES HAVE CONFLICTING ATTRIBUTES
17 OPEN FAILURE ON INPUT FILE
18 OPEN FAILURE ON OUTPUT FILE
19 CLOSE FAILURE ON INPUT FILE
20 CLOSE FAILURE ON OUTPUT FILE
21 FAILED TO DETACH OUTPUT DEVICE
22 DEVICE NOT MOUNTED/ALLOCATED
23 OUTPUT FILE ALREADY EXISTS - NOT SUPERSEDED
24 FAILED TO MARK FILE FOR DELETE
25 FILE IS LOST
26 VERSION MUST BE EXPLICIT OR "*"
27 ERROR FROM PARSE
28 FAILED TO DELETE FILE
29 CANNOT FIND DIRECTORY FILE
30 FAILED TO ATTACH OUTPUT DEVICE
31 FAILED TO GET TIME PARAMETERS
32 NOT A DIRECTORY DEVICE
33 FAILED TO WRITE ATTRIBUTES
34 FAILED TO READ ATTRIBUTES
35 FILE NOT LOCKED
36 FAILED TO ENTER NEW FILE NAME
37 FAILED TO RESTORE ORIGINAL DIRECTORY ENTRY -
FILE IS LOST
38 CANNOT RENAME FROM ONE DEVICE TO ANOTHER
39 FAILED TO SPOOL FILE FOR PRINTING
40 CANNOT SPOOL BY FILE ID (RSX-11lD only)
41 FAILED TO OPEN STORAGE BITMAP FILE
42 FAILED TO FIND FILE(S)
43 CANNOT FIND FILE(S)
44 NO SUCH FILE(S)
45 FAILED TO REMOVE DIRECTORY ENTRY
46 DIRECTORY WRITE PROTECTED
47 NOT ENOUGH BUFFER SPACE AVAILABLE
48 FAILED TO TRUNCATE FILE
49 CANNOT TRUNCATE THIS FILETYPE

CHAPTER 5

FILE TRANSFER PROGRAM (FLX)

The File Transfer Program (FLX) is a file utility program that
transfers files from one volume to another. In addition, when a file
is being transferred from a volume with a different format than the

one the file is going to, FLX converts the format of the file to
conform to the format of the volume to which the file is transferred.
FLX allows you to:

@ List directories of cassettes, RT-11, or DOS-1l1 volumes
@ Delete files from DOS-11 and RT-11 file-structured volumes
e Initialize cassettes, RT-11l, or DOS-11l volumes

FLX performs file transfers (and format conversions, as appropriate)
from:

e DOS-11 to Files-1l1l volumes

e Files-11 to DOS-11 volumes

e DOS-11 to DOS-11 volumes

e Files-11 to Files-1l1l volumes
® Files-11 to RT-11 volumes

e RT-11 to RT-11 volumes

e RT-11 to Files-11 volumes

Valid DOS~1l1l devices are:

Device
Abbreviation Device
CT TU60 tape cassette
DK RK05 cartridge disk
DT TU56 DECtape
MM TE16, TUl6, TU45, or TU77 magnetic tape
MS TS04 magnetic tape
MT TUl10 or TS03 magnetic tape
PP PCll paper tape punch
PR PCll or PR11l paper tape reader

FILE TRANSFER PROGRAM (FLX)

Valid RT~1ll1l devices are:

Device
Abbreviation Device
DD TU58 DECtape II data cartridge
DK RK05 cartridge disk
DL RLO1 cartridge disk
DM RK06 or RKO7 cartridge disk
DT TU56 DECtape
DX RX01 flexible disk
DY RX02 flexible disk

FLX supports all Files-11 devices, including RSX-format cassettes.
Files-11 volumes are the default volumes. They are volumes that you
have initialized using the MCR command, INITVOL, DOS-11 and RT-11
volumes are initialized using FLX. On RSX-11M-PLUS only, DOS-11 and

RT-11 volumes must be mounted with foreign characteristics before vyou
can use FLX,

The switches for the three formats are: /RS for Files-1l1l format, /DO
for DOS-11 format, and /RT for RT-1ll format. These switches are
described in Section 5.2.

You can use FLX interactively or by means of an indirect command file.
FLX allows only one level of indirect command file specification.

You can invoke FLX in two ways: by specifying FLX or by specifying
FLX and a command string. If you only specify FLX, the utility
responds with the prompt:

FLX>

5.1 FLX COMMAND STRING

Although formats for specifying FLX functions vary, the general format
for entering FLX command strings is:

devicespec/sw=infile/sw,...,infilen/sw

devicename

The device specification for the FLX output device, which takes
the form:

dev: [ufd]

The [ufd] field is optional; if it is not specified, FLX uses
the current UIC,

If you explicitly enter the output device specification, you must
enter the egual sign.

FLX does not permit output file specifications. The output files
take the names of the input files.

infilen

The input file specifications, which are entered as described in
Chapter 1.

5-2

FILE TRANSFER PROGRAM (FLX)

/sw

One of three types of FLX switches described below in Section
5.2,

FLX now supports 9-character file names for DOS-ll-format magnetic
tapes.

Wildcards are valid only for input file specifications.
Version numbers are valid only for Files-11 files and cannot be

specified as wildcards. The standard rules for updating version
numbers apply (see the RSX~11M/M-PLUS MCR Operations Manual).

5.2 FLX SWITCHES

FLX provides three types of switches for file transfers:
e Volume format switches
e Transfer mode switches
e Control switches

Volume format switches specify the format of the volume on which files
are stored; that is, Files-11, DOS-11, or RT-11 volumes.

Transfer mode switches provide the means for specifying the format of

a fFfile on a non-Files-1ll volume. Files can be in formatted ASCII,
formatted binary, or file image format.

Control switches provide control functions useful during file
transfers. Using file control switches, you can specify, for example,
the number of blocks to be allocated to an output file or the UFD for
an output file.

5.2.1 Volume Format Switches

FLX has three volume format switches that define the format of the
specified volumes. Table 5-1 describes these switches.

Table 5-1
FLX Volume Format Switches
Switch Description
/DO Identifies the volume as a DOS-11 formatted volume.
/RS Identifies the volume as a Files-11 formatted volume.
/RT Identifies the volume as an RT-11 formatted volume,.

Initially, input volumes default to DOS-11 format and output volumes
default to Files-1ll format. FLX assumes these default volume formats
if you do not specify switches in the command string.

5-3

FILE TRANSFER PROGRAM (FLX)

You can change the initial default by entering /RS or /DO on a command
line by itself. /RS sets the default for input volumes to Files-11
format and output volumes to DOS-11 format. /DO sets the default for
input volumes to DOS-11 format and output volumes to Files-11 format.

For example, to specify the default transfer direction from Files-11
to DOS-11, type:

FLX>/RS

To specify the default transfer direction £from DOS-11 to Files-1ll1,
type:

FLX>/DO

If /RT is specified on one side of a command string, the default entry
for the other side is /RS.

Examples
1. FLX>DK0:=DT0:SYS1.MAC/RT

The output is defaulted to /RS.
2. FLX>DKO:/RT=DK0:SYS1.MAC

The input is defaulted to /RS.

5.2.2 Transfer Mode Switches

FLX has three transfer mode switches, one for each type of file
format. Files can be in formatted ASCII, formatted binary, or file
image format. Format conversions can be in either direction, and are
between DOS-11 files and Files-11 files or between RT-11 files and
Files~1ll files. Specifying a transfer mode switch determines which
format the output file will be in after the conversion of the file.
Table 5-2 describes the transfer mode switches,

Table 5-2
FLX Transfer Mode Switches

Switch Description

/FA:n Formatted ASCII

The DOS~11 or RT-11l output file is to be formatted
ASCII, Formatted ASCII is defined as ASCII data
records terminated by carriage return/line feed
(CR-LF), form feed (FF), or vertical tab (VT). 1In
transfers from DOS-11 or RT-11 files to Files-11
files, CR-LF pairs are removed from the end of
records. In transfers from Files-11 files to DOS-11
or RT-11 files, CR-LF pairs are added to the end of
each record that does not already end with LF or FF.
In both directions, all nulls, rubouts, and vertical
tabs are removed from input records.

If vyou specify /FA:n with Files-11 output,
fixed-length records of size n are generated. Output
records are padded with nulls, if necessary.

(continued on next page)

FILE TRANSFER PROGRAM (FLX)

Table 5-2 (Cont.)
FLX Transfer Mode Switches

Switch

Description

/FB:n

/IM:n

If you do not specify /FA:n with Files-11 output, FLX
generates variable-length records. The output record
size equals the input record size.

ASCII data is transferred as 7-bit values. Bit 8 of
each byte is masked off before transfer. CTRL/Z
(ASCII 032 octal) is treated as the logical end of
input file for formatted ASCII transfers from pDOS-11
cassette or paper tape to Files-1l.

Formatted Binary

The DOS-11 or RT-11 output file is to be formatted
binary. In this mode, formatted binary headers and
checksums are added to records output to DOS-11 or
RT-11 files, and removed when transferred to Files-11
files.

If vyou specify /FB:n with Files-11 output,
fixed-length records of size /FB:n are output (512
decimal bytes is the maximum). FLX pads records with
nulls to create the specified length.

If you do not specify /FB:n with Files-11 output, FLX
generates variable-length records. The output record
size equals the input record size.

Image Mode

to indicate the desired
bytes) for Files-11
maximum). If you do not
record length of 512(10)

The transfer is to be 1in
forces fixed-length records.

image mode. Image mode
You can use the value n
record length (in decimal
output (512 decimal bytes
specify n, FLX assumes a
bytes.

FLX assumes the following default transfer modes for these file
(with the exception of paper tape transfers;

types
see Section 5.6).

Mode Switch File Type
Image /IM:n .TSK, .OLB, .MLB, .SY¥S, .SML, .ULB
Formatted Binary /FB:n .0OBJ, .STB, .BIN, .LDA
Formatted ASCII /FA:n All others

If you specify n with /FA, /FB, or /IM when the output file is not a

Files-11 file, FLX ignores n.

See the RSX-11M/M-PLUS MCR Operations Manual for the

definitions of

the above file types.

FILE TRANSFER PROGRAM (FLX)

5.2.3 Control Switches

FLX provides a number of control switches to control file processing.
Table 5-3 describes these switches. 5‘7%

Table 5-3
FLX Control Switches

Switch Description

/BL:n Indicates the number of contiguous blocks (n) to be
allocated to the output file,

This switch is normally used with /CO (described
below).

If you do not specify /BL, the input file size is
used as the output file size.

The file allocation scheme used for RT-11 volumes A‘?%
normally allocates the largest available space on the P
volume for a new file. Using /BL:n with the RT
switch for the output file causes the output file to
be allocated the first unused space of size n.
However, when the RT-11 file is closed, the input
file size is used as the output file size, If the
input file 1is not n, an error results. Because all
RT-11 files are contiguous, the CO switch 1is not
required with the BL:n switch for RT-11 output.

/BS:n Specifies the block size (n) in bytes for cassette QQM%
tape output. |

If you do not specify /BS, a block size of 128(10) is
assumed. /BS is only valid in a cassette tape (CT)
output file specification with /RS specified.

/CO Indicates that the output file is to be contiguous.
The /CO switch is used only with disks and DECtapes.

If the input file is paper tape, cassette, or DOS-11
magnetic tape, /BL is also required. FLX transfers
the file types .TSK, .SYS, and .OLB to PFiles-11
volumes with /CO implied when the input is a Files-11
volume, or a DOS-11 or RT-11 DECtape or disk.

/DE Deletes files from a DOS-11 DECtape or disk. It 1is
used also with /RT to delete files from an RT-1l
DECtape or disk. When vyou specify /DE, the FLX
command string has no output specification.

(continued on next page)

FILE TRANSFER PROGRAM (FLX)

Table 5-3 (Cont.)
FLX Control Switches

Switch

Description

/DI

/DNS:n

/FC

/1D

/LI

/NU:n

Causes a directory listing of cassettes or DOS
volumes to be listed on a specified output file. It
is used also with /RT to generate a directory listing
of RT-11 volumes in a specified output file.

You cannot list Files-11 volume directories using
FLX.

If you do not specify an output device, the directory
is sent to TI:.

If you do not specify file name and file type on the
input file specification, *.,* is assumed.

See Section 5.3 for information on DOS-volume
directory manipulation, See Section 5.4 for
information on RT-1l~volume directory manipulation.

Specifies the density of the magnetic tape; n is
either 800 or 1600, If n is any other value or not
specified at all, FLX prints an error message. If
you do not specify /DNS:n, the magnetic tape density
defaults to 800 bpi. If you specify /DNS with a
non-magnetic-tape device, FLX ignores the switch.

When using FORTRAN files, indicates that FORTRAN
carriage control conventions are to be used, that is,
FORTRAN interprets certain characters in the FORTRAN
files as carriage control characters. The FC switch
applies only to Files-11l output files. (If you have
the PDP-11 FORTRAN Language Reference Manual, refer
to it for more information on FORTRAN carriage
control conventions. Otherwise, refer to the
IAS/RSX-11 I/0 Operations Reference Manual for a
discussion of the file data block and record
attributes, of which setting carriage control is a
part.)

Requests the current version number of FLX to be
printed. You can specify /ID as part of an output or
input specification or type it in response to the FLX
prompt (FLX>).

Same as /DI.

Used with the /ZE and /RT switches to specify the
number of directory blocks (n) to allocate when
initializing an RT-11 disk or DECtape. If you do not
specify /NU:n, four directory blocks are allocated.

The maximum number of blocks which can be allocated
is 37(8) (31 decimal).

(continued on next page)

FILE TRANSFER PROGRAM (FLX)

Table 5-3 (Cont.)
FLX Control Switches

Switch Description

/RW Rewinds the magnetic tape before beginning the file
transfer. Specifying /-RW causes FLX to begin the
transfer without first rewinding the magnetic tape.
If you do not specify either rewind option, the
switch defaults to /RW. If you specify the rewind
switch with a non-magnetic-tape device, or with /LI,
/DI, or /ZE, FLX ignores the switch.

/SP Indicates that the converted file is to be spooled by
means of the o0ld print spooler task or the gueue
management system. The SP switch applies only to
Files-11 output files. The print spooler is
described in Appendix C and the gqgueue management
system is described in Chapter 7.

/U1 Indicates that the output file is to have the same
UFD as the input file. FLX ignores the UI switch if
the output specification contains an explicit UFD.
/UI is wvalid only for output files in DOS-11 or
Files-11 format.

/VE Causes each record written to the cassette to be read
and verified. The VE switch is only valid with a CT
output file specification.

/ZE Initializes cassettes or DOS-11 volumes., It is also
used with /RT (and /NU) to initialize RT-11 volumes.
Initializing erases any files already on the device.

For DOS-11 DECtape, /ZE creates an entry for the
current UIC.

The ZE switch does not require a file specification.

5.3 DOS-11 VOLUME DIRECTORY MANIPULATION

This section contains examples that show how to display DOS-11
directory listings, delete DOS-11 files, and initialize DOS-1l volumes
using the FLX switches.

On RSX-11M-PLUS only, DOS-11 volumes must be mounted with foreign
characteristics before you can use FLX.

5.3.1 Displaying DOS~11 Directory Listings

The LI or the DI switch instructs FLX to send the directory of the
cassette or DOS-11 volume specified in the input specification to the
Files-1l file specified in the output specification. If you do not

enter an output specification, FLX sends the directory to TI:. For
example:

FLX>DT0:[100,100]*.MAC/LI

|

o

FILE TRANSFER PROGRAM (FLX)
This command lists on your terminal the directory of all .MAC files
under UIC [100,100] on the DOS-11 DECtape on DTO:.

Figure 5-1 shows sample directory listings for a DOS-11 DECtape and a
TU60 cassette.

DECtape Directory Listing

© pirecrory @ pr: (200,200 ©

19-SEP-78

© rix.Tsk OQ104. @19-sEp-78 <233>@
UFD.TSK 8. 19-SEP-78 <233>
TKN . TSK 6. 19-SEP-78 <233>
MOU . TSK 14. 19-SEP-78 <233>

@) ToraL OF 132. BLOCKS IN 4. FILES
Cassette Directory Listing

© prrecrory O cr:(200,200] ©

19-SEP-78

© urp.TSK-0 Q2. @19-ser-78 128.Q
TKN.TSK=-0 20. 19-SEP-78 128,
MOU.TSK-0 52. 19-SEP-78 128.

@' TOTAL OF 100, BLOCKS IN 3. FILES

Figure 5-1 DOS-1l1 Directory Listings

Notes on Figure 5-1:

This line identifies the listing as a directory listing.
The device name and unit number.

The User File Directory.

The date the directory was listed.

The file name, file type, version number, and seguence number
(cassettes only).

The file size in decimal blocks.
The file creation date.

The record size in decimal bytes for the file (cassettes
only).

A total of the actual file sizes and the total number of
files in the directory.

The protection code (disk and DECtape only). A protection
code of 233 is the default code provided by the system. This
code allows read, run, write, and delete access to the owner,
and read and run (but not delete or write) access to the
group and world. See the DOS/Batch Handbook for more
information on protection codes.

FILE TRANSFER PROGRAM (FLX)

5.3.2 Deleting DOS-11 Files
You can delete files from DOS-11 disks or DECtapes using the Delete
switch (/DE). The command string on which you specify /DE requires
only the file specification for the £file you are deleting. For
example:

FLX>DK1:[100,100]SYS1.MAC/DE

This command deletes SYS1.MAC under UFD [100,100] from the DOS-11 disk
on DKl:.

5.3.3 1Initializing DOS-11l Volumes
You can initialize cassettes and D0OS-1l1 volumes using the ZE switch.
This switch requires only the device specification for the volume you
are initializing. For example:

FLX>DT1:/ZE

This command initializes the DECtape on DT1l: in DOS-11 format.

5.4 RT-1l VOLUME DIRECTORY MANIPULATION

You can display RT-11l directory 1listings, delete RT-11 files, and
initialize RT-11 volumes using the FLX switches described in this
section.

On RSX-11M-PLUS only, RT-1ll volumes must be mounted with foreign
characteristics before you can use FLX.

5.4.1 Displaying RT-11 Directory Listings

The LI or the DI switch, when combined with the RT switch, instructs
FLX to send the directory of the RT-11 volume in the input
specifications to the Files-11 file in the output specification. If
you do not enter an output specification, FLX sends the directory to
TI:. For example:

FLX>DTO:*.MAC/LI/RT

This command lists on your terminal all .MAC files on the RT-1ll volume
on DTO:.

Figure 5-2 shows a sample directory listing of an RT-11 disk,

bj

FILE TRANSFER PROGRAM (FLX)

o DIRECTORY o DK:
4~JUN-78

s1pp00.MaCc @ 29. @ 2-gun-78
< UNUSED > 6.
SIP .MAC 10, 4-JUN-78
SIPCD .MAC 7. 4-JUN-78
< UNUSED > 21.
SIPQIO.MAC 7. 4-JUN-78
< UNUSED > 4686.

° 4713. FREE BLOCKS

0 TOTAL OF 73. BLOCKS IN 4. FILES

Figure 5-2 RT-11 RKO5 Cartridge Disk Directory Listing

Notes on Figure 5-2:

This line identifies the listing as a directory listing.

The device name and unit number.

The date the directory was listed.

The file name and file type; <UNUSED> indicates free space.
The number of blocks in the file or free space.

The file creation date, or blank for free space.

The total number of free blocks on the volume.

The total number of blocks allocated to files on the volume.

5.4.2 Deleting RT-11 Files

You can delete files from RT-11 disks or DECtapes using the Delete
switch (/DE) with the RT-11 switch (/RT). The command string on which
you specify /DE/RT requires only the file specification for the file
you are deleting. For example:

FLX>DK1:SYS1.MAC/DE/RT
This command deletes SYS1.MAC from the RT-11 volume on DKl:.

5.4.3 1Initializing RT-11 Volumes

You can initialize RT-11 volumes using the ZE switch with the RT
switch. /ZE requires only the device specification for the volume you
are initializing. For example:

FLX>pT1:/ZE/RT

This command initializes the DECtape on DTl: in RT-11 format.

FILE TRANSFER PROGRAM (FLX)

When you initialize RT-11 volumes, /ZE takes an optional argument in
the form:

/ZE:n

The value n specifies the number of extra words per dictionary entry.
A directory segment consists of two disk blocks with a total of
512(10) words. The directory header uses five words, leaving 507(10)
words for directory entries.

Normally, each directory entry is seven words long; two directory
entries within each directory segment are allocated to the file
system. Therefore, the number of entries in each segment (when no
extra words are specified) is determined as follows:

(507/7)-2

Directory entries

72-2=70 entries

Some RT-11 applications require extra words in the directory entries.
(The default is no extra words.) When you specify extra words for
directory entries (by means of /ZE:n), the number of directory entries
is determined as follows:

Directory entries = [507/(n+7)]-2

For example, 61(10) entries can be made per directory segment if vyou
specify /ZE:l.

Use of /NU with /ZE and /RT specifies the number of directory segments
to allocate to the RT-11 volume. The NU switch has the following
form:

/NU:n

The value n specifies the number of directory segments to allocate.
Four directory segments are allocated by default. The maximum number
of segments that can be allocated is 37(8) or 31(10). For example:

FLX>DT0:/%ZE:2/NU:6/RT

This command initializes the DECtape on DTO: in RT-11 format,
allocates two extra words per directory entry, and allocates six
directory segments. This results in a total of 54(10) directory
entries, each of which is 9 words long.

5.5 FLX TAll/TU60 CASSETTE SUPPORT

FLX supports the DIGITAL standard cassette file structure. Files can
be transferred to and from cassettes in either Files-11 format (/RS)
or DOS-11 format (/DO). The transfer mode selected depends on the
file format requirements.

5-12

FILE TRANSFER PROGRAM (FLX)

The file formats for Files-11l or DOS-1l1 cassette files are almost the
same; that 1is, they both conform to the DIGITAL standard cassette

file format, The differences between the Files-11 and DOS-11 cassette
file formats are as follows:

Files-11 Format DOS-11 Format
Standard level 2 Standard level 0
12-character file name (9- 9-character file name (6-
character file name and 3- character file name and 3-
character extension) character extension)
Blocks of any size up to 512(10) 128(10)-byte blocks

bytes (128 decimal bytes default)

Version numbers No version numbers
Files-11 cassette file format (level 2) is a superset of the DOS-11
cassette file format (level 0). Therefore, any cassette written in
DOS-11 format can be read in Files~11 format. The reverse of this,
however, is true only when:

@ The Files~1l file is written with 128(10)-byte blocks

® The extra file header data (such as version number), which
does not appear in DOS-11 files, can be ignored

Files-11 files and DOS-11 files can be mixed on a given cassette as
long as you use a proper retrieval mode when you access the file.

Files of various blocksizes can also share a given cassette. FLX uses
the block size contained in the file label data when reading a file.

5.5.1 Multivolume Cassette Support
FLX supports multivolume cassettes in both Files-11 and DOS-11

formats. No special switches are required to notify FLX that a
multivolume file is being accessed.

5.5.2 FLX Cassette Output Files

When FLX detects the physical end-of-tape for an output cassette, the
following sequence of events occurs.

1. FLX issues the following message:

FLX -- END OF VOLUME ON CASSETTE
CTn: [g,m]

where n, g, and m specify the unit number, group number, and
member number.

2. The cassette is rewound.
3. FLX issues an additional message:

MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY) OR CR)
FLX>

(%]
!

13

FILE TRANSFER PROGRAM (FLX)

4. At this point, you have three alternatives:

a. Mount the next output cassette volume and type Y,
followed by a carriage return. If vyou select this
alternative, the new cassette is rewound, FLX searches
for the logical end-of-tape (end of the last file), and
then continues transferring data onto the tape. If FLX,
while searching for logical end-of-tape, encounters a
file with the same file name as the current input file,

it displays the following message:
FLX -- FILE ALREADY EXISTS
FLX then returns to step 3 above.

b. Mount the next output cassette volume and type Z,
followed by a carriage return, The new cassette is
rewound, and FLX continues by transferring data onto it.
Thus, the tape 1is effectively zeroed before data is
transferred to it.

c. Enter a carriage return to terminate the transfer.

If you choose alternative 4c, FLX assumes that EOF is desired, and
issues the following message:

FLX -- REQUEST TERMINATED -- LAST BLOCK NOT WRITTEN

This message indicates that the last input file block processed was
not written onto the tape.

5.5.3 FLX Cassette Input Files

When FLX detects the physical end-of-tape for an input cassette, the
following seguence of events occurs:

1. FLX issues the following message, including the input file
specification on which the end-of-tape was detected:

FLX -- END OF VOLUME ON CASSETTE
CTn: [g,m]filename. type

where n, g, and m specify the unit number, group number and
member number.

2. The cassette is rewound.
3. FLX issues an additional message:

MOUNT NEW CASSETTE: (Y, Z (OUTPUT ONLY) OR CR)
FLX>

4. At this point you have two alternatives:

a. Mount the next input cassette volume and type Y, followed
by a carriage return to continue.

b. Type a carriage return to terminate the transfer.

FILE TRANSFER PROGRAM (FLX)

If you choose alternative 4a, the new input cassette is rewound, and a
validity check is performed on the file label and sequence number. If
the file label and seguence number are correct, FLX begins processing
data from the volume. If, however, the file label and seguence number
are not correct, FLX issues the following message:

FLX -- FILE NOT FOUND
The process then returns to step 3 above.

If you choose alternative 4b, FLX assumes that EOF is desired, and the
transfer 1is terminated. If the input file is being processed as a
Formatted binary or an ASCII file, a format error may occur.

If you enter %2, FLX prints the message:
FLX -- BAD RESPONSE

The process then returns to step 3 above.

5.6 FLX PAPER TAPE SUPPORT

FLX supports the standard DIGITAL paper tape devices, such as the
PC-11 Paper Tape Reader/Punch and the PR-11 Paper Tape Reader, as
DOS-11 devices.

FLX provides the ability to delimit records on paper tape for files in
formatted binary mode or in formatted ASCII mode. Formatted binary
records are delimited by standard DOS-11 4-byte headers and a trailina
checksum. Formatted ASCII records that do not already end with line
feeds or form feeds are delimited by carriage return-line feed pairs.

FLX gives special treatment to files that normally default to image
mode transfers, that is, .TSK, .OLB, .MLB, .SYS, .SML, and .ULB files.
On output to paper tape, these files are written, by default, in
formatted binary. When read back from paper tape to a Files-11
volume, the file is written with fixed-length, 512(10)-byte records as
the default.

These defaults ensure that when the files are read back from paper
tape they are in the same format as they were before being punched.
However, the new files are not contiguous unless you specify /CO/BL:n
with the output file specification. You must know an appropriate
value for n (the number of contiguous blocks to allocate) before
issuing the command. You can use PIP to create a contiguous file (see
Chapter 4).

The use of explicit transfer mode switches when transferring .TSK,
.OLE, .MLB, .SYS, .SML and .ULB files between paper tape and Files-11
volumes can cause files read back in from paper tape to be different
from the files that were originally written out.

FILE TRANSFER PROGRAM (FLX)

For FLX paper tape transfer commands, you cannot specify file names in
the output specification. The file name entered for the input file
specification is used as the file name for the output file. For
example:

FLX>DK1:/RS=PR:CRTMAC.DAT/DO
This command writes a file whose file name is DK1:CRTMAC.DAT,

If you do not specify a file name on the input file specification, the
default file name is .;n where n represents the latest version number.

RSX-11M and RSX~-11lM-PLUS systems support paper tapes only as DOS-11
devices: you should specify /DO with paper tape file specifications.
RSX-11D supports all formats. The examples below show paper tape
specifications for input and output file specifications:

FLX>PP:/DO=CRTMAC.DAT/RS
FLX>DK: /RS=PR:CRTMAC.DAT/DO

To copy paper tapes from one paper tape to another, use the image-mode
switch (/IM) regardless of the format of the paper tapes. For
example:

FLX>PP:/DO/IM=PR: /DO

5.7 FLX ERROR MESSAGES
Errors encountered by FLX during processing are reported on the

initiating terminal. The FLX error messages, their descriptions, and
suggested user actions are described below.

FLX -- BAD LIST FILE SPEC
Explanation: One of the following was specified:
1. More than one output file for an /LI or /DI operation

2. Wildcards in the output file for an /LI or /DI operation

User Action: Reenter the command line correctly.

FLX -- BAD RESPONSE
Explanation: 7Z was entered in response to the message:

MOUNT NEW CASSETTE (Y, Z (OUTPUT ONLY) OR CR)
FLX>

The cassette in guestion is an input volume.

User Action: Respond with Y or CR after the message is
redisplayed.

FILE TRANSFER PROGRAM (FLX)

FLX -~ CAN'T OPEN @ FILE

Explanation: The specified indirect command file could not
opened for one of the following reasons:

e The file is protected against access.

e A problem exists on the physical device (for example, disk
not spinning).

e The volume is not mounted or is allocated to another user.
e The specified file directory does not exist.

® The named file does not exist in the specified directory.
e The volume is not online.

User Action: Correct the condition and reenter the command 1

FLX -- CO FILES TO OUTPUT DEVICE NOT ALLOWED

Explanation: An illegal output device (for example, MT, CT,
PP) was entered with the CO switch,

User Action: Reenter the command line without /CO specified.

FLX -- CASSETTE ERROR I/0 TERMINATED
Explanation: An unexpected hardware error occurred during
end~-of-volume seguence on a cassette volume. The transfer
aborted.

User Action: Reenter the command line using a new cassette.

FLX -- COMMAND SYNTAX ERROR

Explanation: The command was entered in a format that does
conform to syntax rules.

User Action: Reenter the command line with the correct synta

FLX -- CONFLICTING TRANSFER MODES SPECIFIED

Explanation: Conflicting transfer mode switches were ente
For example:

SY:=DT:FO0.0BJ/IM/FB

User Action: Reenter the command line with only one tran
mode switch specified.

FLX -- DOS-11 OR RT-11 DEVICE NOT VALID FORMAT
Explanation: The device specified with /DO has an incor
DOS-11 file structure, or the device specified with /RT ha
incorrect RT-11 file structure.
User Action: Correctly identify the file structure on

volume, and reenter the command line.

5~17

be

is

ine.

or

the
was

not

X

red.

sfer

rect
S an

each

FILE TRANSFER PROGRAM (FLX)

FLX -- DT: UFD FULL

Explanation: The DECtape directory is full.

User Action: Clean up the directory by deleting all unnecessary
files.

FLX -~ END OF VOLUME ON CASSETTE
MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY) OR CR)

Explanation: Physical end-of-tape was encountered during a
cassette transfer. The tape 1is rewound, and you are asked to
mount the next cassette.

User Action: See Section
performed; or Section
performed.

if an output transfer 1is being

5.2
5.3 if an input transfer is beina

5.
5.
FLX -- ERROR DURING DIRECTORY I/0
Explanation: One of the following conditions may exist:

1. The volume is not write-enabled.
. The DO, RT or RS switches were incorrectly specified.

2
3. The volume is not of the proper format.
4

. A hardware error occurred during a directory 1I/0O operation
(that is, bad tape).

User Action: The following responses correspond (by number) to
the conditions listed above.

l. Write-enable the volume.

2, Respecify /DO, /RT, or /RS correctly.

3. No recovery is possible with the volume currently mounted.
Mount a volume that is in the proper format, and retry the

operation.

4. Retry the operation.

FLX -- FILE ALREADY EXISTS

Explanation: The specified output file already exists on the
output device.

User Action: Reenter the file specification using a new or
corrected file name,
FLX -- FILE NOT FOUND

Explanation: The named file does not appear, as specified, 1in
the reqguested directory.

User Action: Retry the operation with the file name and
directory correctly specified.

5-18

FLX

FLX

FLX

FLX

FLX

FLX

FLX

FLX

FILE TRANSFER PROGRAM (FLX)

== WARNING -- INPUT FILE OUT OF SEQUENCE

Explanation: A cassette multivolume file is being accessed out
of sequence.

User Action: This is a warning message. The transfer will
continue unless you terminate it by means of the ABORT command.

-~ @ FILE NESTING EXCEEDED

Explanation: More than one level of indirect command file was
specified.

User Action: Retry the operation with only one level of indirect
command file specified.
-- @ FILE SYNTAX ERROR

Explanation: A syntax error occurred in the indirect command
file specification.

User Action: Edit the indirect command file. Rerun FLX using
the corrected indirect command file,
-- FMTD ASCII RECORD FORMAT BAD
or
~= FMTD BINARY RECORD FORMAT BAD

Explanation: Either the file is corrupted, or the file is not of
the specified type.

User Action: If the file is corrupted, no recovery is possible.
If the file type is incorrect, retry the operation specifying the
correct transfer mode switch.

-- ILLEGAL /BS SIZE -- USE 0<N<=512, AND EVEN

Explanation: An illegal block size was specified with /BS on
cassette output.

User Action: Reenter the command line with a legal block size.

-— INCORRECT # IN/OUT SPECS

Explanation: More than one input or output specification in a
command was entered where only one is allowed.

User Action: Reenter the command line with the proper syntax.

== INVALID DEVICE

Explanation: A device was specified that cannot be used as an
input or output device, for example, trying to read from a line
printer.

User Action: Reenter the command 1line with a legal device
specified.

FILE TRANSFER PROGRAM (FLX)

FLX ~- INVALID DOS OR RT-1ll FILE SPEC
or
FLX -- INVALID RSX FILE SPEC L
Explanation: The file specification does not conform to proper
syntax, or the specified operation could not be performed on the
specified device.
User Action: Reenter the file specification with the proper
syntax.

FLX =-- INVALID SYNTAX

Explanation: A switch was entered that is not a valid FLX switch
or does not conform to proper syntax.

User Action: Reenter the command 1line with a correct switch
specification,

FLX == I/0O ERROR %
Explanation: One of the following conditions may exist:
® The specified device is offline.
e A hardware error occurred (for example, bad tape).
User Action: Ensure that the device 1is online. Reenter the

commqnd line. If a hardware error occurred, recovery may not be
possible.

FLX —-- I/O ERROR DELETING LINKED FILE

Explanation: An uncorrectable error occurred while a DOS 1linked
file was being deleted.

User Action: No action required; the file 1is effectively
deleted, but the volume may be corrupted.

FLX =- I/O ERROR INITIALIZING DIRECTORY

J

Explanation: One of the following conditions may exist:
e The specified directory is not online.
e The specified volume is not mounted.

e A hardware error occurred (for example, bad tape).

User Action: Ensure that the device is online and 1is operable.
Reenter the command line with the required switch specified.

FLX

FLX

FLX

FLX

FLX

FLX

FILE TRANSFER PROGRAM (FLX)

-- I/0 ERROR ON COMMAND INPUT

Explanation: An unexpected error in command input was
encountered from either an indirect command file, or TI:; FLX
exits.

User Action: Restart FLX.

-~ I/0 ERROR ON FLX TEMPORARY FILE

Explanation: FLX encountered an error condition with its
temporary £file, FLX creates a temporary file on 8SY: for
operations involving DOS~-11 CT, DT, or MT. This error occurs
when one of the following conditions exists:

e SY: is not online and mounted.

e SY: is write-locked.

e A protection violation occurred.

e A hardware error was encountered.

User Action: Correct the error condition and reenter the command
line.

~-— I/0 ERROR ON LIST FILE

Explanation: An error occurred on the output device during a /DI
or /LI sequence. There is a hardware problem with the output
device (for example, device powered down).

User Action: Correct the condition. Reenter the command line.

-= OUTPUT DEVICE FULL

Explanation: The DOS-11 or RT-11 output volume does not contain
enough space for the output file.

User Action: Delete all unnecessary files and reenter the
command line.

-- OUTPUT FILE SPEC NOT ALLOWED

Explanation: An output file specification was entered for a
command that does not allow one.

User Action: Reenter the command without an output file
specification.

-~ RECORD TOO LARGE
Explanation: FLX detected an input record in a Files-11 transfer
that is larger than the specified or implied record size for the
file, that is, the file is corrupted.

User Action: The file in question is unusable.

FILE TRANSFER PROGRAM (FLX)

FLX -- REQUEST TERMINATED =~ LAST BLOCK NOT WRITTEN
Explanation: The <CR> reply was given to indicate that no new
volume would be mounted when an end-of-volume was encountered on
cassette output. The block that FLX was attempting to write when
it encountered the end of the cassette has not been written; the
output file is incomplete.
User Action: This message 1s informational; no action is
required.

FLX -- WARNING -- SPECIFIED RECORD SIZE BAD, 512. USED

Explanation: The record size specified with /FA, /FB, or /IM is
not acceptable. A record size of 512(10) bytes is assumed.

User Action: This is a warning message. No action is required.

FLX --UNABLE TO ALLOCATE FILE

Explanation: No space is available on the DOS-11 or Files-11
volume for the specified file.

User Action: Delete all unnecessary files and reenter the
command line.
FLX -- UNABLE TO OPEN FILE

Explanation: A specified input or output Files-11 file could not
be opened. Possible reasons are:

® The input file does not exist.
® The volume is not mounted.
® A protection violation occurred.

User Action: Correct the condition and reenter the command line.

FLX -- UNABLE TO OPEN LIST FILE
Explanation: The list file cannot be opened under the specified
file name and UFD, or the specified device may not be a valid
Files-11 volume.

User Action: Reenter the command 1line specifying the correct
file name and UFD.

FLX -- UNDIAGNOSABLE REQUEST

Explanation: FLX does not recognize the command line syntax.

User Action: Reenter the command line with the proper syntax.

5-22

FILE TRANSFER PROGRAM (FLX)

FLX -- /CO FILES FROM INPUT DEVICE NOT ALLOWED UNLESS BL: SPEC

Explanation: When transferring files from MT, PR, or CT, /CO can
only be specified when /BL is also specified.

User Action: Reenter the command line, specifying /BL.

FLX -- * IN VERSION NUMBER NOT ALLOWED

Explanation: A wildcard was detected in the version number field
of a file specification.

User Action: Reenter the command line with all version numbers
explicitly specified.

5-23

-~ PART 4
FILE SPOOLING UTILITIES

CHAPTER 6

PRINT AND QUEUE UTILITY

This chapter is for RSX-11lM only. Users of RSX-11M-PLUS should see
the RSX-11M-PLUS Batch and Queue Operations Manual for corresponding
information.

6.1 INTRODUCTION TO THE PRINT COMMAND AND QUEUE MANAGER

The Print command spools print jobs and places them in a queue
controlled by the Queue Manager for despooling.

The most common use of this command is printing files on the systenm's
line printer. Some systems may use a high-speed terminal as a line
printer. There may be more than one output device receiving jobs from
the Queue Manager.

Other likely output devices include paper-tape punches, electrostatic
plotters, or magtapes. Jobs sent to such devices are still called
print jobs because they are sent by the Print command.

In general, in this chapter, "to print" and "to despool," and
"printer" and "output device," are synonyms.

"Spool" is an acronym for Shared Peripheral Operations On-Line.
Spoocling on RSX-11M is gathering output sent to an output device on a
mass-storage device - usually a disk - to be passed in an orderly
fashion to the output device. Despooling is the orderly transfer of
this output from the mass-storage device to the output device.

The Print command requires the presence of the Queue Manager. Not all
installations have the Queue Manager.

To be sure, check the list of installed tasks (issue the TAL command)
to see 1if both QMG... and PRT... are installed. If both are
installed, your system includes the Queue Manager. If only PRT... |is
installed, your system has the serial print despooler. In this case,
you can only use the PIP /SP switch to send files to the line printer.
If neither 1is installed, you must use PIP to send files directly to
the line printer with a command in the form PIP LPO:=filespec. If you
use this command, you have no protection against another user issuing"
the same command at the same time, in which case your output and the
other user's may be interspersed on the line printer.

If you have any doubts about the situation at your installation, see
your system management for information. Documentation on the serial
despooler appears in Appendix C of this manual. For further
information on PIP, see Chapter 4 of this manual. -

PRINT AND QUEUE UTILITY

The Print command, in its simplest form,

>PRI filespec

places an entry in the file SY:[1,7]QUEUE.SYS. This queue entry has a
unique number and a name based on the first six characters of the file
name. The entry is placed in the default queue PRINT. When the 1line
printer is free, the file 1is despooled by the print processor and
passed by the processor to the 1line printer and printed. After
printing, the entry disappears from the queue file in [1,7]. Some or
all of the contents of the queue file can be displayed by using QUE
commands discussed later in this chapter.

The Print command accepts multiple file specifications and wildcards.
Files are despooled in the order given, without interruption, on the
same print processor. With wildcards, the files are despooled in the
order they appear in the UFD, as displayed by a PIP /LI command.

The Print command defines a print job for the Queue Manager. A print
job can have one or more files in it.

Switches on the Print command can specify many attributes of the print
job. These attributes include the following:

e Time the spooling is to be done

e Device to accept spooled output

® Queue priority of the job

® Restartability of the job

e Forms the job is to be printed on

e Number of lines per page

e Number of copies of each file to be printed
e Choice of deletion after spooling

Commands to the Queue Manager permit the user to display the queues or
an individual job in a queue or to modify most attributes of a job in
a queue. Users can also hold a job in a queue, release it, or remove
it from a queue.

You do not have to invoke the Queue Manager to get access to it. The
Print command does this automatically. Commands directly to the Queue
Manager are on one line and start with QUE. Unlike other RSX-11M
utilities, the Queue Manager does not issue a QUE> prompt. The Queue
Manager can only be accessed through the one-line format. User
commands to the Queue Manager are described in this chapter. For full
details see Chapter 7 of this manual.

A number of system tasks can create printable output. The output
includes Task Builder maps, MACRO-11 assembly listings, and listings
from the high-level language compilers. These tasks are accessible
directly from MCR. These tasks follow their own rules for spooling
output, but when you request that such output be spooled, it will be
handled by the Queue Manager.

You cannot control the despooling of such output directly, as you can
through the Print command, but once the jobs appear in a queue, you
can alter their attributes through the QUE /MOD commands.

PRINT AND QUEUE UTILITY

If the Queue Manager is not installed and the serial despooler Iis
installed, system tasks that create printable output work as usual.
1f neither the Queue Manager nor the serial despooler is installed,
the map or listing file is created and written on the disk, but is not
printed on the line printer.

You can also use PIP, the Peripheral Interchange Program, to dueue
print jobs.

The following PIP command:
PIP> NAME.TYP /SP

causes the file NAME.TYP to be queued for despooling. The print Job
has a name derived from the name of the first file in the job.

You cannot control the despooling of such jobs directly, as you can
through the Print command, but once the jobs appear in a queue, you
can alter their attributes through the QUE /MOD command. -

For information on writing user tasks to spool output, see Section
6.5.

6.2 PRINT COMMAND FORMAT

The format of the Print command is:

>PRINT [[ddnn:]jobname [/jswl=filespec [/fsw [/fsw]][,filespec [/fsw]]

ddnn:
Specifies the despool device to be used.
jobname

Specifies the name to be given to the print job.

/jsw

Specifies one or more job-related switches
filespec

Specifies the file to be spooled, in standard RSX-11lM format.-
fsw

Specifies one or more file-related switches.
There are defaults for most of these fields:
e ddnn: defaults to the PRINT queue.

e Jjobname defaults to a name derived from the first six
characters of the file name.

° filéspec defaults are SY: for the device, current UFD, and
.LST for the file type.

e Switch defaults are included in the command descriptions in
Section 6.3.

6.3

The

PRINT AND QUEUE UTILITY

PRINT COMMAND DESCRIPTION

Print command passes print 3jobs to the Queue Manager for

despooling, as described in Section 6.1.

Multiple filespecs, separated by commas, are acceptable. Wildcards

(*)

are also acceptable.

A detailed description of each field of the Print command is provided
below.

ddnn:

Each output device is served by a device-specific queue. This
queue is named after the device it serves. Thus, LP0: has the
device-specific queue LPQO, TT2l: (if set spooled) has the
device-specific queue TTQ2l. To send a print job to a specific
device, include the device name in this field. The Queue Manager
directs the job to the proper queue for that device. If the file
does not exist, the command is rejected.

The device named must be set spooled or the job will not run,

I1f no device is named, jobs are sent to the default queue PRINT.

jobname

/jsw

Job names can be from one to six alphanumeric characters. The
job 1is displayed in the queue under this name. The name also
appears on the job flag page. See Figure 6-1 for the 1layout of
the job and file flag pages.

If no job name is supplied, the name is derived £from the first
six characters of the first file name in the job. If the first
file name in the job is *, then the name PRINT is given to the
job.

Each job also has a queue entry number that is displayed in the
QUEUE /LI display.

Job-related switches must be placed to the 1left of the equals
(=). The = is required syntax if you include any job-related
switches.

All switches can be abbreviated to two characters, not counting
any preceding NO or minus (-) if permitted. Switches can be
listed in any order.

A blank before the slash (/) is accepted but not required.

A description of each of the job-related switches is provided
below.

/AFter:hh:mm

The job is time-blocked in its queue until after the stated time;
hh can be from 0 to 23; mm can be from 0 to 59.

If this switch is not specified, the job is enqueued after 0:00
on the present day, that is, immediately.

PRINT AND QUEUE UTILITY

This switch does not set the time the job will be printed. It
sets the time after which the job is eligible to be printed. If
there are other jobs in the queue ahead of it when the specified
time arrives, these jobs are printed before your job.

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

/ [NO]FLag

If the /FL switch is applied, each file in the job is preceded by
one or more file flag pages (depending on how the printer is set
up) in addition to the one or more job flag pages that precede
the entire job.

The default for files is /NOFLAG. Only 3job flag pages are
printed. Files are printed sequentially, separated only by form
feeds.

A SYSGEN option permits overriding the default and forcing flag
pages. If this option has been applied, it can be overridden by
setting /NOFLAG.

The job flag pages have the UIC the Print command was issued
under and the job name printed on them in large banner
characters.

The file flag pages have the file name and type printed on them
in large banner characters. See Figure 6~1 for the layout of the
job and file flag pages.

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

/PRiority:n

This switch sets the priority of the job in its queue. Priority
can be from 0 through 250.

The default priority is 50.

The Queue Manager places jobs in the queue according to priority.
Jobs of equal priority appear in the queue in the order they were
submitted. The highest priority job is the first Jjob processed
when the printer becomes available. Within a group of Jjobs of
the same priority, the one that has been waiting the 1longest |is
processed first.

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

/HOld
This switch holds the job in its queue until it is released by

the QUE jobname /RElease command. See the examples at the end of
this section.

#1234567894123456789
B423456789:3123456789
01234567899123456789
01234567890123456789

reeeee 333133

reeeee 333333

{L 33

48 33

1

1

it 33

1 3

I

t

(L 33

o 33

L 333333

ceeeee 333333
FPFFFFEFFF 111111
FFEFFFFFFF 1398334
FF 11
Fr 11
rr 1
FF 11
FFFFEFEF 11
FEFEFRFF 11
(44 11
FF 11
FF 11
Fr 11
FF el
FF 122238
01234567890123456789
91234567890123456789
01234567899123456789
@123456789a123u56789
@L234567899123456789
91234567893123456789
01234567892123u56789
FPFFPFFFFF 111118
FFPPEEFPFF 1388844
r 11
Fr 11
rr 11
Fr 11
FPFEFFFF 11
FRFPEFFF 11
44 I
Fr 1
44 I1
Fr 11
Fr 11111
re bR R2 244

88838338 WW
8883888y ww

88 Wi
88 LT}
838 L]
88 wh
88383888 L1
888388s W

33 WH W
83 WW WW
88 WHNW WH
88 wWWWW Wi
88883388 Ww
83888888 LL]

24234367090123456789
@1234567890123456789
B1234567891123456789

Ww
W
W
wH
W

PRINT AND QUEUE UTILITY

Wk R8Xwif¥ V3,2 we 134
#x REXwyIM V3,2 wu FO
«% R$Xmi{M V3,2 ww ng
¢ RGXwm (M VI, 2 wi VRp

400209 333333
“vaoey 333333
e 33 33
(L ae 33 33
av eovy 33
"2 ouve 33
8¢ 29 @y 33
UICLENCTY 33
qgue (1] 33
3300 ¢e 33
02 2 33 33
¢ 80 33 33
wegpey 333333
LI 333333
85888888 HH HA
885383888 HH HH
38 HH HHK
§s HH HH
88 HH MM
88 HH #
888388 HHHHHHHNHN
838888 HHNHHHHHHR
88 HH HH
88 HH HH
88 HH HH
88 HH HH
88855888 HH HH
88888538 HH HH

ik RSXwiiM V3,2 we (1)
w% RSXwiiM V3, 2 %w FOR
wn REXmiiM V3,2 ww NO

wd RSX={{M VI, D ww [il:7']

3¢SIFISH e NO PAGE [IHIT

HH Ny = NORMAL HAWDAARE FURMS

IMPLIED FORM FEED
103a3,51FI8H,SaMyy

8555555555
5;55555555

" ! 555555
, 555559

3,35)F I8k e NO PAGE LINIT?

M ¥p « NORMAL HARDWARE FORMS
IMPLIED FORM FEED
1(303,3)F18K,8unyy

Wk RSX=1iM V3,2 #w vae
wk RSXw{]M V3,2 ww coP
wh REXw{|M VI, 2 #w DEL.

88588888 HH HH
$8838889 HH HH
83 HH HH
a8 HH MH
83 HH HH
88 HH HH
388888 HHHHHKHHHM
888338 HHHHHHHHHK
88 HH L]
§8 HH HH
§8 MM HH
88 L HH
59888888 L HH
83888388 HH HH
HH [118
M M 119
MMMM MMMM T
HMMM MMMM 1"
HM MM NM
MM MM MM
MM L] 1"
MM MM 1"
g HH 1
MM MM (N
L] MM "
MM MM I
MM MM ’
“H MM '

waw RSXeiiM VI, 2 ww L8
ek ASXm{IM VI, 2 we cop
ww RSXmifM V3,2 ww VEL!

Figure 6-1

$(323,5)FISH.SWH Y
Y { OF |
ETION NOT SPECIFIED

eree
tene

1{303,5]F18H, SuM 1
Y 1 0F g
ETION NOT SPECIFIED

Job Flag Page

25eHAY=79 131411482 012345678901 23456789
25=MAYeT9 13144032 01230567892123485789
25~MAYe79 13141832 21234567890123456769
25eMAYeT9 13141032 03123486789p123456789
mn
11

n

1

n

1

1

1]

1

N

1

1

1

1
25=HAY=79 13184132 012345678991 23450709
29%HAY=T9 131641032 912345678901 23155789
25eHAY«T79 13141132 @123456789912345878¢
25MAY=T9 13141432 2123U56T99123854764
25=HAY#T9 13141338 01234567899123456789
25=MAY=79 13844135 0123d56789012345478¢
25%MAY=79 13041038 01234S56789012345578¢
25aMAYeT9 13441435 ©123456789012345678¢
25=MAY«T9 131641138 012345678901233867489
25=MAY=T9 13141138 21234567890123456789

and File Flag Page

PRINT AND QUEUE UTILITY

/LEngth:n

This switch sets the number of lines per page. Length can be set
from 1 through 65535. When this switch is applied, the print
processor issues a form feed if one is not encountered within n
lines. A form feed causes the line printer to move the paper
down to the beginning of the next form. Form length is
determined by the hardware and the print processor software.

The default is a page of infinite length.

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

/FOrm:n

This switch sets the forms setting that an output device must
have to accept the job. Your system manager has information on
which forms used in your installation take which numbers. If
this switch is set, the 3job waits wuntil a printer with the
matching forms setting is available.

The default n is 0, which is the standard line-printer setup in
most installations.

This switch is used to print Jjobs on special forms, such as
checks, invoices, or other special forms wused in your
installation.

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

/I[NO]REstart

This switch makes the Jjob restartable [or not]. If /RE s
specified and the job does not complete its run for some reason,
when the system, or print processor, or Queue Manager is
restarted, the Jjob is restarted from the beginning of the first
file in the job.

/NOREstart is the default. If the job's run is interrupted, it
is restarted at the top of the file that was being despooled at
the time the job was interrupted.

In no case is any job or part of a job lost, but if you set the
switch, the job will be all in one piece.

This switch setting can be changed after the job is placed in its
queue by the QUE /MOD command.

filespec|s]
Users can print any file to which they have Read access.

The usual rules on wildcards and defaults apply, except that the
default file type is .LST.

Multiple filespecs must be separated by commas.

Files cannot be renamed or deleted before they are printed.
Files must have the same name and type, be on the same volume,
and reside in the same directory from the time they are placed in
the queue until they are despooled.

PRINT AND QUEUE UTILITY

If the files are on a volume on a medium mounted on a private
device, the volume cannot be removed or dismounted before the
files are despooled. If the volume is dismounted, the print job
remains in the queue and the flag pages are printed, with an
error message noting a failure to open the file.

/Esw
File-related switches can follow any filespec in the c¢ommand
line.
File~related switches are applied to all filespecs that follow
the filespec to which they are attached unless overridden. See
the examples at the end of this section.
All switches can be abbreviated as indicated, not counting any NO
or minus (-) if permitted. Switches can be listed in any
order.

/COpies:n
This switch sets the number of copies of the file to be
despooled. ﬂ
If applied to multiple filespecs, each file is printed n times
before any copies of the next file are printed. That is, this
switch does not queue up two copies of the entire Jjob, it only
determines how many copies of each file are to be made.
If you do not specify this switch, the default n is 1.

/[NO)DELete
This switch directs the Queue Manager to delete the file from its
UFD after it is despooled.
NODELete is the default,

Examples

>PRINT JAM

The most recent version of JAM.LST from the default device and
UFD goes in the default queue PRINT taking all defaults.

>PRINT /FLAG=PAUL,MAC,ALAN,MAC,TOM,MAC

The files named go to the default queue PRINT as one print Jjob.
They are printed in the order listed. The job name is PAUL. The
name appears on the first flag page along with the UIC the Print
command was issued under. Each individual file is preceded by
file flag pages with the file name, file type, and version
number. Any command including a Jjob-related switch, such as
FLAG, must include the equals (=).

>PRI /FL=PAUL,MAC,ALAN,MAC /CO:2,TOM.MAC

The Print command defines a single print job consisting of one
copy of PAUL.MAC, followed by two copies of ALAN.MAC, and two
copies of TOM.MAC. Each copy of each file is preceded by flag
pages.

PRINT AND QUEUE UTILITY

>PRI /FORM:2 /PRIORITY:75=PAYROLL
The job name is PAYROL. It has a priority of 75, but it will not
be despooled until an output device with the proper
forms - paychecks in this case - 1is available. The file is
PAYROLL.LST.

>PRI INDEX /AFTER:16:00=CHAPl.NDX,CHAP2.NDX,CHAP3.NDX,CHAP4 .NDX
The job is named INDEX. It is time-blocked in the PRINT queue
until after 4:00 pm. At that time, it is placed in contention
for the printer, but the time it will be printed depends on what

else is in the queue when INDEX is released. This is the
equivalent of issuing the same Print command at exactly 16:00.

6.4 QUEUE MANAGER COMMAND FORMAT
The format of commands to the Queue Manager is
>QUE job-id /switch[:option]
The job identification (job-id) can be either the name assigned to the
job at the time of submission or the unique entry number assigned the

job by the Queue Manager and displayed by the QUE /LI command.

The entry number is displayed in the form (nl,n2). It is wused in
commands in the form JOB:nl:n2.

Queue Manager commands allow the nonprivileged user to
e List queue entries in various formats
e Modify attributes of jobs after submission
e Hold jobs in a queue
e Release held jgbs
e Delete jobs from a queue

All Queue Manager commands are in single-line format.

6.4.1 QUEUE /LIST Command

This command is used to list the queue entries. Unless you specify
options, or name an output device, only jobs in the default queue
PRINT are displayed.

The display also shows which output devices queues are assigned to.

Format

>QUE job-id /sw(:option]

Switches Options
/BRief :QUE
/LIst ¢tALLQUE
/FUll :DEV
sALLDEV

PRINT AND QUEUE UTILITY

Job Identification Field

There are three ways you can specify the contents of this field.
Details on each are provided below.

[ddnn: [uic]] jobname

The job name alone is sufficient identification if the Jjob |is
from the same UIC you are logged in to and if you have not
specified a device in your Print command. Although the UIC Iis
optional, the brackets around the UIC must be included if you
include the UIC in the command line. If you wish to display only
entries queued to a particular output device, name the output
device in the command. Each output device has a gqueue named
after it (device LPO: has queue LPQO). When you name the

device, you are specifying the queue whose contents you wish to
display.

/JO0B:nl:n2

Note that the display format and the command format for this
entry number are different. Display: (nl,n2). Command:

/JOB:nl:n2. ﬂ

[uic]
This form of job identification displays all jobs in queues from
a particular UIC.

Switches

/BRief

The brief format displays only the job names, the UIC from which
the Print command was issued, the queue entry number, and the
status of the job. Jobs can be ACTIVE, HELD, PRINT AFTER

(time-blocked), or waiting. A blank status field indicates a
waiting job.

/LIst

The standard format displays job names, the UIC from which the
Print command was issued, the queue entry number, the status of
the job, and the filespecs of all files necessary to complete the

job. ﬂ

If you have not specified restartability in the Print command,
only the file being printed and any remaining files are
displayed.

If you have specified restartability, then all files in the job
are displayed.

/Full

The full format displays job names, the UIC from which the Print
command was issued, the queue entry number, the status of the
job, the filespecs of all files necessary to complete the job,

and all attributes of the job, whether set explicitly or by
default.

PRINT AND QUEUE UTILITY

Options
tQUE

This is the default. Displays entries in the default queue
PRINT.)

sALLQUE

Displays all entries in all queues.

:DEV
Displays characteristics of a device. If you have not specified
a device in the job-identification field of the command line, you
will get an error message.

s ALLDEV
Displays characteristics of all spooled devices.

Examples

>QUE /LIST

*% PRINT QUEUES **
PRINT => LPO:
{304,303] SCNDIR (20000,126) ACTIVE ON LPO:
DB0:[304,303)SCNDIR.LST; 174
{7,372] RELABE (2100,130)
DBO:[7,372]RELABEL.FLO; 2

This example displays all the jobs in the default queue PRINT.

The display shows the 1line printer to which the queue is
assigned.

For each job in the queue, the display shows the UIC from which
the Print command was issued, the job name (based on the name of
the first file in the job), a unique gueue entry number, the
status of the job, and the filespecs for all files in the job.

The job named SCNDIR is active, as shown. The job named RELABE
is waiting, as indicated by a blank status field. Status field
may also show HELD jobs and PRINT AFTER (time-blocked) jobs.

>QUE /LIST:QUE

** PRINT QUEUES **
PRINT => LPO:
[304,303] SCNDIR (2000,126) ACTIVE ON LPO:
DB0:[304,303]SCNDIR.LST; 174
[7,372] RELABE (2100,130)
DBO:[7,372)RELABEL.FLO; 2

This example is the equivalent of the previous example. The
option :QUE is the default option. Only jobs in the default
queue PRINT are displayed. :

PRINT AND QUEUE UTILITY

>QUE LPl: /LIST

** PRINT QUEUES **
LPQl => LPl: ACTIVE ON LP1l: ﬁ
[303,5] Izzy (2400,132) I
DB0:[303,5]IZ2ZY.TXT;1

This example displays queue LPQl, which is assigned to printer
LPl:. The user specified this queue by naming the printer in the
QUE /LI command.

>QUE PRTJOB /LIST /FU

** PRINT QUEUES **
PRINT => (LPl:)
[301,370] PRTIJOB (2140,162) FORM:0
PRI:50 LEN:0 PAGE:0 NORESTART NOFLAG
DB0:[301,370] PRTJOB.TXT; 22 COP:1 NODELETE

This example displays in full mode information about the job
named PRTJOB from the default queue PRINT.

The display shows all attributes of the job, either explicitly
set or set by default.

NOTE

Parentheses around the line printer name
mean that the printer has been stopped
by the Queue Manager at the operator's
request.

>QUE [301,370 /BR

*% PRINT QUEUES **

PRINT => LPO:
[301,370] DUNGEO (2200,116) ACTIVE ON LPO:
[301,370)] RUNOFF (1320,660) HELD

This example displays in brief mode all the jobs created under
[301,370] in the default gqueue PRINT, No filespecs are

displayed. w
, |
>QUE /LI:ALL

*% PRINT QUEUES **
PRINT => LPO:

[7,372] RELABE (2100,130) ACTIVE ON LPO:
DBO:[7,372)RELABEL.FLO; 2
{7,372} LPDRV (2000,134) HELD

DB0:[7,372] LPDRV.MAC; 2
LPQO => LPO:)
[222,333] CORFIL (2200,136) PRINT AFTER 18-DEC-78 17:00
DB0:{222,333]CORFIL.COR; 4

This example displays all the jobs in all the queues. All Jjobs
are displayed because there is no job identification given. All
queues are displayed because :ALL is specified.

6-

12

PRINT AND QUEUE UTILITY

>QUE /FU:ALL

*% PRINT QUEUES **
PRINT => LPO:
[7,372] RELABE (2100,130) FORM:0 ACTIVE ON LPO:
PRI:50 LEN:0 NORESTART FLAG
DBO:(7,372] RELABEL.FLO; 2 COP:1 NODELETE
[7,372) LPDRV (2000,134) FORM:0 HELD
PRI:50 LEN:55 PAGE:0 NORESTART NOFLAG
DB0:[7,372]LPDRV.MAC; 2 COP:50 NODELETE
LPQO => LPO:

[222,333] CORFIL (2200,136) FORM:1 PRINT AFTER 18-DEC-78 17:00

PRI:100 LEN:0 PAGE:0 RESTART NOFLAG
DB0:[222,333]CORFIL.COR;4 COP:1 DELETE

This example displays in full format all the Jjobs 1in all the

qgueues. All jobs are displayed because there 1is no job
identification given. All queues are displayed because :ALL is
specified.

>QUE LP: /LI:DEV
*% SPOOLED DEVICES **

LPO: = PRINT LPQO
FORM:0 FLAG:1
CURRENT JOB: [7,2]SYSXTN (2000,127)
This example displays all spooled devices, shows queue

assignments to them, and shows the attributes of the devices.

If there is no current job on a device, the current-job line does
not appear.

6.4.2 QUE /MOD Command

This command is used to modify the attributes given to queue entries
by the Print command. Only the attributes 1listed here can be
modified.

Format

>QUE job-id /MODify /sw

Switches

/AFTER: hh:mm
/ [NO] FLAG
/LEngth:n
/PRiority:n
/FOrm:n
/[NO]REstart

PRINT AND QUEUE UTILITY

Job Identification Field

There are two ways you can specify the contents of this field.
Details on each are provided below.

[ddnn: {uic]]jobname

The job name alone is sufficient identification if the Jjob |is
from the same UIC you are 1logged in to and if you have not
specified a device in your Print command. Although the UIC is
optional, the brackets around the UIC must be included if you
include the UIC in the command line.

/JOB:nl:n2
Note that the display format and the command format for this
entry number are different. Display: (nl,n2). Command:
/JOB:nl:n2.

Switches

Switches name the attribute to be modified. All switches can be
abbreviated as indicated, not counting any NO or - if permitted.

The QUE /FU commands display attribute information. The Print
command description includes a discussion of the meaning of each
attribute.

/AFter:hh:mm
Modifies the time after which the job is to be despooled.

/ [NO]FLag
Modifies the FLAG attributes of the job.

/LEngth:n

Modifies the LENGTH attribute of the job, which is the number of
lines to the page.

/PRiority:n

Modifies the queue priority ot the job.
/FOrm:n

Modifies the FORM attribute of the job.

/[NO]REStart

Modifies the RESTART attribute of the job.

6.4.3 QUEUE /HOLD Command

This command holds a job in its queue. The job will not be despooled.

Format

>QUE job-id /HOLD

PRINT AND QUEUE UTILITY

Job Identification Field

There are two ways you can specify the contents of this field.
Details on each are provided below.

[ddnn: [uic]]jobname
The job name alone is sufficient identification if the job is
from the same UIC you are 1logged in to and if you have not
specified a device in your Print command. Although the UIC Iis
optional, the brackets around the UIC must be included if you
include the UIC in the commmand line.

/JOB:nl:n2
Note that the display format and the command format for this
entry number are different. Display: (nl,n2).
Command: /JOB:nl:n2.

Switch

/HOLD
The job is held in its queue. The job remains in its queue, but
is not eligible for processing., The effect is the same as the
/HOLD qualifier to the Print command.

You cannot hold an active job. An active job is a job currently
being printed.

Examples
>QUE BIGJOB /HOLD
The job named BIGJOB from the default device and UIC is held in
the PRINT queue.
>QUE LP1:[303,5]LILJOB /HOLD

The job named LILJOB from UIC [303,5] is held in the queue for
LPl:. This queue is named LPQl.

6.4.4 QUEUE /RELEASE Command

This command releases held jobs from their queues. The Jjob to be
released must be marked HELD. You cannot release PRINT AFTER jobs
with this command. You must use QUE /MOD /AFTER to release such
time=-blocked jobs,

Format

>QUE job-id /RELease

PRINT AND QUEUE UTILITY

Job Identification Field

There are two ways you can specify the contents of this field.
Details on each are provided below.

{ddnn: [uic]]jobname
The job name alone is sufficient identification if the job is
from the same UIC you are logged 1in to and if you have not
specified a device in your Print command. Although the UIC is
optional, the brackets around the UIC must be included if you
include the UIC in the command line.

/JOB:nl:n2

Note that the display format and the command format for this
entry number are different. Display: (nl,n2).
Command: /JOB:nl:n2.

Switch

/RELease

Releases a held job making it eligible for processing. This 1is
equivalent to placing the job in its queue. The job must still
wait its turn to be despooled.
Example

>QUE READY /REL
The job némed READY from the default device and UIC is released
from the held state and is eligible for processing.

>QUE LATER /REL

QUE -- JOB DOES NOT EXIST

The user attempted to release a PRINT AFTER (time-blocked) job.
The job exists, but no HELD job of that name exists.

6.4.5 QUEUE /DELETE Command
This command deletes print jobs from queues.

It does not delete files from directories. It has no connection to
the PIP /DE or PRINT /DE command switches.

Format

>QUE job-id /DELETE

PRINT AND QUEUE UTILITY

Job Identification Field

There are two ways you can specify the contents of this field.
Details on each are provided below.

[ddnn: [uic]]jobname

The job name alone is sufficient identification if the job |is
from the same UIC you are 1logged in to and if you have not
specified a device in your Print command. Although the UIC is
optional, the brackets around the UIC must be included if you
include the UIC in the command line.

/JOB:nl:n2

Note that the display format and the command format for this
entry number are different. Display: (nl,/n2).
Command: /JOB:nl:n2.

Switch
/DELETE

Deletes the specified queue entry. If the job is active at the
time the command is issued, the output ceases and the queue entry
is deleted.

Example
>QUE BADJOB /DELETE

The job named BADJOB from the default device and UIC is deleted
from the default queue PRINT.

6.5 PRINT JOBS QUEUED BY USER TASKS - OUTPUT SPOOLING

There are two means of spooling output from user-wrltten tasks. The
first is from within the task:

e Open a file on disk and use PRINTS macro or .PRINT subroutine
using FCS.

Because the line printer (or other output device) 1is attached and
owned by its despooling task (print processor), you cannot attach and
write 1logical blocks to the device. The Write Logical Blocks
operation fails and an Attach operation does not complete. Thus, you
cannot in your user program issue an ALUNS$ directive and expect QIOs
to that LUN to work. If you wish to use this procedure, you must set
the device unspooled by deleting the processor. An unspooled device
is not accessible by the Queue Manager.

You cannot control the despooling of jobs queued with the PRINTS macro
or JPRINT subroutine directly, as you can through the Print command.
Once the jobs appear in a queue, however, you can alter their
attributes through the QUE /MOD command.
The alternate method of spooling output is from outside the task:

e Open a file on disk and use the Print command on task exit.

This is the only means of spooling output that gives you full control
over how, when and where your output is despooled.

6-17

PRINT AND QUEUE UTILITY

6.5.1 Opening A File On Disk and Using FCS

Your task should open a file on disk and output to it. The task can
then 1issue the PRINTS macro call or call the .PRINT subroutine to
close the file and spool the output.

The file is placed in the default queue PRINT.

In FORTRAN, the equivalent is to use DISP= 'PRINT' in your OPEN or
CLOSE statement.

You cannot control the despooling of such output directly, as you can
through the Print command, but once the jobs appear in a queue, you
can alter their attributes through the QUE /MOD commands.

See Chapter 8 of the IAS/RSX-11l I/0 Operations Reference Manual for
more information on PRINTS and .PRINT.

6.5.2 Opening A File On Disk and Using the Print Command

Your task should open a file on disk, output to 1it, and close it.
Once your task exits, despool the file with the Print command.

While this is not the simplest method of spooling, it 1is the only
method that gives you access to the qualifiers on the Print command.
You can accomplish much the same thing wusing the other method by
waiting until the job is in the queue and then altering its attributes
with the QUE /MOD command.

If you run your task from an indirect command £file that includes a
Print command after task exit, the difference between spooling from
within the task or from outside it will probably not be noticeable.

6.6 ERROR MESSAGES

Error messages from the Queue Manager may be preceded by the letters
PRI or QUE, depending on where within the software the error detection
takes place. Here is how they appear on your terminal:

PRI -- NO SUCH FILE
QUE -- NO FUNCTION SPECIFIED

The PRI and QUE identifiers are not used in this section. When you
receive an error message such as those above, look for the message
portion (NO SUCH FILE or NO FUNCTION SPECIFIED in the examples above).
The message portion of each error message appears in alphabetical
order in this section along with a description of the error that
produced the message and a suggested correction.

If you issue a QUE /LI (or /BR or /FU) and only a prompt is returned,
this means no queue file exists on your system.

In most cases, the error will be a typing mistake or other syntax
error. In a few cases, you will be directed to inform your system
manager of the error.

BAD

BAD

BAD

BAD

BAD

BAD

BAD

COMMAND LINE

Explanation:
command.

User Action:

PRINT AND QUEUE UTILITY

Invalid MCR 1line, or invalid syntax in Pr

Retype command line.

FILE SPEC SWITCH VALUE

Explanation:

User Action:

Bad value for file switch (/CO).

Retype command line after checking switch

JOB SWITCH VALUE

Explanation:

User Action:

MODIFY VALUE
Explanation:

User Action:

SWITCH TYPE
Explanation:

User Action:

SWITCH VALUE
Explanation:

User Action:

Bad value for job switch (/AF, /FO, /LE,

Retype command line after checking switch

Bad Modify switch value.

Retype command line after checking switch

Bad ASCII switch value (QMG, EOF, etc.).

Retype command line after checking switch

Bad numeric switch value.

Retype command line after checking switch

SWITCH FOR FUNCTION

Explanation:
function.

User Action:

DEVICE/QUEUE DOES

Explanation:
by QMG.

User Action:

The switch specified 1is not allowed

Retype command line after checking switch

NOT EXIST

Command directed to device or queue not

QUE /LI:ALLDEV lists all devices. QUE

lists all queues.

DIRECTORY NOT ALLOWED

Explanation:

User Action:

UIC not allowed on this command.

Retype command line without UIC.

6-19

int or QUE

value.

/PR).

value..

value.

type.

value.

for this

type.

controlled

/LI :ALLQUE

PRINT AND QUEUE UTILITY

ILLEGAL ARGUMENT VALUE

Explanation: The argument value is not valid. !gﬂa

User Action: Retype command after checking syntax.

QMG ERROR (n)
Explanation: Command in error or QMG task in error.

User Action: Look up n on list. If QMG task is in error, n will
help pinpoint error. See your system manager. Retype command.

n Code Meaning

63. QE.BSN BAD PROCESSOR NAME

68. QE.QMD QUEUE MARKED FOR DELETE

69. QE.SMD PROCESSOR MARKED FOR DELETE

71. QE.SDF PROCESSOR DIRECTORY FULL

72, QE.TYP QUEUE AND PROCESSOR NOT SAME TYPE

73. QE.JEA JOB EXISTS ALREADY. @
84. QE.RED SPOOLED DEVICE REDIRECTED T3
91. QE.IDB INTERMEDIATE DEVICE BUSY - TRY AGAIN !
92. QE.BQN BAD QUEUE NAME

100. QE.NVT VIRTUAL TERMINALS NOT SUPPORTED
104. QE.IID ILLEGAL OR NON-EXISTENT INTERMEDIATE DEVICE
105, QE.INM INTERMEDIATE DEVICE NOT MOUNTED

INVALID FILE SPEC SYNTAX
Explanation: 1Invalid syntax in a filespec. !.FQ

User Action: Retype command line after correcting filespec. L

INVALID ENTRY NUMBER
Explanation: 1Invalid syntax for entry number.
User Action: Retype command after correcting entry number. The

display format and the command format for entry number are
different., Display: (nl,n2). Command: /JOB:nl:n2. AHT%

INVALID JOB SYNTAX
Preceded by PRI --

Explanation:

e Invalid syntax in the job field
e Wildcards in job name

e Multiple job fields

e UIC present

e Bad terminator for job name (= or / are the only legal
terminators)

User Action: Retype command line after checking proper syntax.

PRINT AND QUEUE UTILITY

Preceded by QUE --

Explanation:

e 1Invalid syntax in the command

e Invalid job name

e Both job name and entry number specified

e Neither job name nor entry number specified

User Action: Retype command line after checking proper syntax.

I/0 ERROR ON SY:QUEUE.SYS
Explanation: Error encountered reading the queue file.

User Action: See your system manager.

JOB DOES NOT EXIST

Explanation: Specified job does not exist in queue under the
current UIC and the status (example, HELD) that you supplied in
command.

User Action: Retype command after checking job status and job
identification with QUE /LI.

JOB NAME NOT ALLOWED

Explanation: Job name or other form of Jjob identification not
allowed on this command.

User Action: Retype command line after checking proper syntax.

MULTIPLE FUNCTIONS DETECTED
Explanation: More than one function specified.

User Action: Retype command line after checking proper syntax.

MUTUALLY EXCLUSIVE SWITCH/VALUE
Explanation: Function value and switch mutually exclusive,

User Action: Retype command line after checking proper syntax.

NO FILE NAME GIVEN
Explanation: No file name given in a file spec.

User Action: Retype command including file name.

6-21

PRINT AND QUEUE UTILITY

NO JOB FIELD GIVEN
Explanation: The command syntax requires a job field.

User Action: Retype command line after checking proper syntax. N

NO FUNCTION SPECIFIED
Explanation: No function specified in command line.

User Action: Retype command line after checking proper syntax.

NO POOL SPACE

Explanation: Dynamic storage region has been exhausted; the
system is either heavily loaded or there is a system problem.

User Action: See your system manager.

NO SWITCH(ES) ALLOWED %
Explanation: The command syntax does not allow switches.

User Action: Retype command line after checking proper syntax.

NO SUCH COMMAND
Explanation: (QMGCLI installed and run under wrong name.

User Action: See your system manager.

NO SUCH FILE filespec

Explanation: Print command named nonexistent file, Error
message displays filespec given.

User Action: Retype command 1line after correcting filespec.
Default file type for Print command is .LST.

NO SWITCHES ALLOWED %
Explanation: Switches not allowed with this command.

User Action: Retype command line after checking proper syntax.

PRIVILEGED COMMAND

Explanation: Command reserved for privileged users:
/START, /sTopP, /SPOOL, /PUBLIC, /NOSPOOL, /NOPUBLIC,
/MODIFY, /HOLD, /RELEASE, /DELETE on another UIC.

User Action: See your system manager.

PRINT AND QUEUE UTILITY

QUEUE DIRECTORY FULL
Explanation:

User Action: See your syste

QUEUE FULL

Explanation:
queued.

The queue file

User Action:

All devices and queue slots full in queue.

m mahager.

is saturated; your Jjob cannot

QUE /LI, and see your system manhager.

QUEUE/DEVICE NOT ALLOWED

Explanation:
be named.

Command syntax

User Action: Retype command

QUEUE/DEVICE NOT SPECIFIED

Explanation:
named.

Command syntax

User Action: Retype command

QMG MARKED FOR EXIT
Explanation:

User Action: Wait or see yo

REQUEST FAILURE ON PROCESSOR TASK
Explanation: Device despool

User Action: See your syste

UIC NOT ALLOWED
Explanation: The command sy

User Action: Retype after c¢

does not allow a queue or device

after checking proper syntax.

requires a queue or device to

after checking proper syntax.

Attempt to spool after /STOP:QMG issued.

ur system manager.

task failed to start.

m manager.

ntax does not include a UIC.

hecking proper syntax.

be

Enter the command agéin later, check the queue with

to

be

CHAPTER 7

THE QUEUE MANAGER

This chapter is directed to the system manager or operator who is
setting up and running the Queue Manager on an RSX-11lM system. (For
RSX-11M-PLUS systems, see the RSX-11M-PLUS Batch and Queue Operations
Manual.) Except where noted, all commands in this chapter are
sand.

privileged.

Most systems include the Queue Manager for the convenience of
multistream line printer spooling. If not, the serial despooler,
PRT..., can be installed instead. Note that the Queue Manager
includes OQMGPRT, which installs as PRT..., to intercept output from
the PIP /SP switch and other utilities and system tasks.

The RSX-11M V3.2 Queue Manager consists of three components:

1. A command line interpreter (CLI) which processes both print
requests and queue access commands as described in Chapter 6
of this manual. CLI communicates with the Queue Manager by
sending data packets to it describing the print job.

2. The Queue Manager (QMG), which controls the queueing and
dequeueing of print jobs. QMG communicates with CLI and the
despooler tasks to process print jobs.

3. The despool prototype task (LPP). This task attaches a
device and despools print Jjobs to it. A task must be
installed for each device to be used as a despool device with
the task name ddPn, where dd is the generic device name and n
is the unit number. A despool device is a device under the
control of QMG.

"Spool" is an acronym of Shared Peripheral Operations On-Line.
"Spooling™ on RSX-11M is gathering output sent to the line printer on
a mass storage device - usually a disk - to be passed in an orderly
fashion to the 1line printer. "Despooling" is the orderly transfer
from the mass storage device to the line printer.

CLI takes a Print command and interprets the print request it
specifies. The information is sent to QMG which creates a print job
consisting of the names of the files to be printed and the attributes
of the job. The print job entry is placed in a print queue kept in
the disk file SY0:{1,7]QUEUE.SYS. Queues are assigned to despool
devices which are controlled by despool tasks. When a despool device
is idle the Queue Manager selects the next Jjob in the queue(s)
assigned to its device and processes it. Finally the queue entry is
deleted.

THE QUEUE MANAGER

This chapter consists of a narrative introduction and review of the
process of setting up the Queue Manager, detailed descriptions of all
commands to the Queue Manager, and a listing of an indirect command
file to be included 1in the system STARTUP procedure as a reference
example.

7.1 NARRATIVE INTRODUCTION AND REVIEW
Here is the procedure for bringing the Queue Manager into the system.

This can be done interactively, but in most cases it 1is more
convenient to include it in an indirect command file invoked as part
of the system's STARTUP procedures.

Note that this procedure must be adapted for each installation. The
example 1is based on the procedure used for the RSX-11M development
system. QUE setup commands allow considerable flexibility in setting
up the Queue Manager system. Dynamic alteration of the Queue Manager
is also permitted.

l. Install the Queue Manager. It is found with the privileged
utility tasks.

>INS DBO0:QMG /PRI=70
2. Install the output despooler task.

>INS DSO:LPP /PRI=70

This task installs automatically as LPPO. You must install
this task for each physical device under the direction of the
Queue Manager. This task "owns" the output device and must
have a name based on the name of the device. Thus, the
output despooler for LPl: must be installed under the name
LPPl, using the /TASK= option. There can be up to 15 output
devices controlled by the Queue Manager.

3. Install PRT...

>INS QMGPRT

This task installs automatically as PRT... and 1is the
interface to PIP and other tasks that use PRINTS or .PRINT.
The Queue Manager can then accept jobs from the PIP /SP
switch. (Although this task has the same name as the Serial
Despooler used on previous versions of RSX-11M (and available

on RSX-11M V3.2), it is not the same task. It replaces this
task.)

4. Install the Print Command Line Interpreter and the Queue
Command Line Interpreter.

>INS QMGCLI /TASK=...PRI

>INS QMGCLI /TASK=...QUE

The same task parses both the PRI and QUE commands and
therefore must be installed twice, once under each name.

THE QUEUE MANAGER

Start the Queue Manager.
>QUE /START:QMG

This command starts the Queue Manager and initializes the
default queue PRINT. It creates the queue file QUEUE.SYS on
8Y:[1,7] if it is not there. The command also clears all
assignments previously recorded. If the queue file was
intact, all queues will still contain their jobs, but are not
assigned to processors. (Processors will have to be spooled
again,)

Spool the processor.
>OUE LP: /SPOOL /FLAG:l1 /FORM:0

This command creates a queue LPQO and starts the previously
installed despool task LPPO. This task attaches device LPO:
for despooling. Queue LPQO is assigned to processor LPPO.
Repeat this step for each output device under control of the
Queue Manhager.

The /FORM switch establishes this attribute of the despooler.
This means the despooler accepts Jjobs initiated by Print
commands with the same FORM attribute given. Jobs with other
FORM attributes remain in the queue until a despooler with
the proper FORM attribute is available.

The /FLAG switch sets the number of flag pages that precede
each job. If users specify /FLag in their Print commands,
each file in the job will be preceded by this many file flag
pages as well.

Assign queues to processors.
>QUE LP: /ASSIGN:PRINT

This command assigns the default queue PRINT to processor
LPPO. Normally, only the PRINT queue has to be assigned.
Device-specific queues are assigned to their device
despoolers by /SPOOL. This assignment of device-specific
queues is a default, however, and not a requirement. A
device-specific queue must exist for every spooled device,
but these queues can be assigned to other devices.

You can assign a queue to more than one processor and you can
assign more than one queue to a processor. You can assign a
device-specific queue to another device 1f necessary. For
example, if printer LPO: is temporarily unavailable, you
could assign LPQO to LPl:.

THE QUEUE MANAGER

7.2 REFERENCE EXAMPLE

Here is a listing of SY:[1,2)OMGSTART.CMD from the RSX-11M development

system: _ﬁ o

INS DBO:QMG /PRI=70

INS DSO:LPP /PRI=70

INS DSO:QMGPRT

INS DSO:QMGCLI /TASK=...PRI
INS DSO:QMGCLI /TASK=...QUE
QUE /START:QMG

QUE LP: /SPOOL /FLAG:1 /FORM:0
QUE LP: /ASSIGN:PRINT

~

-

7.3 QUEUE MANAGER COMMAND DESCRIPTIONS

The configuration of the Queue Manager can be controlled through a f‘T%
number of special functions applied to the QUE command.

The format of‘the Queue Manager setup commands is:
>QUE ddnn: /function[:option[s]][/sw[s]]
ddnn:
Specifies the name of the device affected by the command.

/function %

Specifies the function performed by the command.
toption(s])

Specifies one or more options for a function.
/sw(s]

Specifies one or more switches for a function or option.

These commands allow a privileged user to attach or detach devices for ;
spooling, start and stop devices, assign the default queue to devices
and start and stop the Queue Manager.

THE QUEUE MANAGER

7.3.1 STOP
) This function suspends a device or stops the Queue Manager.
bi Format
>QUE ddnn: /STOP[:option]
Options

:EOF
tEOJ

>QUE /STOP:QMG
ddnn:

The device name is required with all options except /STO:QMG.
You cannot include a device when stopping the Queue Manager.

Options
e If you do not enter an option (null option) the device stops
| immediately. This is a pause.

: EOF

The device stops at the end of the current file.
:EOJ

The device stops at the end of the current job.

_ /STO:QMG
|

The Queue Manager stops at the end of the current Jjob. All
assignments of queues to devices are broken (deassigned). All
despocler tasks are detached from their devices. The Queue
Manager stops.

Examples

>QUE LPO: /STOP

i _ This example stops printing on LP0O:. No Jjobs will be taken from
‘lﬂ' queues assigned to the device, but jobs can still be added to
queues.,

>IQUE LP2: /STO:EO0J
This example stops printing on LP2: at the end of the active
job.

>QUE /STOP:QMG

This example stops the Queue Manager. QMG is marked for stop and
the current job is allowed to finish,

THE QUEUE MANAGER

7.3.2 START

This command starts printing on a previously stopped device or starts
the Queue Manager after a STOP. This command counteracts STOP.

Format

>QUE ddnn: /STArt[:option] [/sw]

Options Switches
:NExt /FOrm:n
: TOP /FLag:n
:PAge:n

tBAck:n

:FOrward:n
>QUE /STArt:QMG
ddnn:

A device name is required with all options except /STA:QMG. You
cannot include a device when starting the Queue Manager.

options

Option and switch are mutually exclusive fields. Use one or the
other.

If you enter nothing (null option), the device starts printing
from the point at which printing stopped. This, in effect,
resumes printing after a pause.

:NExt
Printing starts at the top of the next job.

s TOP
Printing starts at the top of the current file.

tPAge:n
Printing starts at page n of the current file.

:BAck:n

Printing starts n pages back from the point at which it was
stopped.

:FOrward:n

Printing starts n pages forward from the point at which it was
stopped.

/STA:QMG

This option is entered without ddnn: as it starts Queue Manager
and initializes the default queue PRINT. It creates the file
SY:[1,7]QUEUE.SYS if it is not there. The command also clears
all assignments previously recorded. If the queue file was
intact, all queues still contain their jobs, but are not assigned
to processors. (Processors will have to be spooled again.)

THE QUEUE MANAGER

Switches

The switch and option fields are mutually exclusive. Use one or
the other. You can enter more than one switch, however.

/FOrm:n

This switch resets the forms type of the despooler task from the
type set with the SPOOL function

/FLag:n
This switch resets the flag setting of the despooler task from
the number of flag pages set with the SPOOL function. Print jobs
have n job flag pages preceding the job. If users specify /FLA
in their Print command, each £file 1in the Jjob will also be
preceded by n file flag pages in addition to the job flag pages.
n can be 0, 1, 2, or 3.

If you are using special forms in your printer, you should set
n=0 so that no flag pages are printed on your special forms.

Examples
>QUE LPO: /STA
This example starts LPO:; printing proceeds from where it was
stopped.
>QUE LP2: /START:NE

This example starts printing with the next job queued to LP2:.

>QUE LP: /STA /FO:ll

This example starts printing on LPO: with the FORMS attribute
reset to 1l.

Notes

Page-related options have no effect unless the user specified a
/LEngth:n quantity in the Print command.

If you are restarting a processor to handle Special forms types,
you may want to set /FL to 0 to avoid printing banner pages on
your special forms.

THE QUEUE MANAGER

7.3.3 SPOOL

starts a despool task and a queue named after it, and assigns the

This function attaches a device for despooling. The command names and Agrg
queue to the despool task.

Format
>QUE ddnn: /SPool [/sw]
Switches

/FOrm:n
/FLag:n
/EXternal

ddnn: /SPOOL

ddnn: /SPOOL creates queue ddQn and starts the despool task ddPn
which must be installed previously for device ddn:. This
attaches device ddnn: for despooling by the despool task ddPn
open to jobs from queue ddQn. A‘r%

Switches

More than one switch can be used with this function.
/FOrm:n

Sets the device despooler to accept jobs with forms type n.

You can set a despooler to accept more than one forms type, but
the forms definition must be duplicated.

The number n can be anything from 0 to 255. The default is 0. v

These numbers are to be specified by your users in their Print
commands. If the right forms are not in an available printer,
then their jobs will be waiting until the printer has been
stopped, the proper forms put in place, and the printer restarted
using the /FORMS: qualifier and the proper value for n in the
START command.

Forms differ by their length and width. Both values can be set

in the forms table. Q!FQ

Setting width is simply a matter of how many columns are needed
to £ill in the form. There are no standard widths for forms, but
80. and 132, are the most common.

Setting length requires you to determine whether your forms are
of a standard length.

"Standard length" is any form length that can be set on vyour
printing hardware. If the hardware can handle the form by
setting a response to a form-feed character <FF>, then it is a
standard 1length form, and the form feed is a "real," that is,
hardware, form feed.

If the form length cannot be set on the hardware, then it 1is a
non-standard length. In this case, the form feed <FF> must be
replaced by an appropriate number of line feeds <LF>. This is
called a "simulated," that is, software, form feed.

T

THE QUEUE MANAGER

You should determine which forms are used on your system and
assign each a number. This number points to a table of form
definitions. The form definitions consist of a single 16-bit
word. The length is the 1low-order byte and the width is the
high-order byte. The high bit of the length byte is set when
simulated forms (forms whose 1length cannot be set on your
hardware) are needed. This form definition word can be changed
by editing the Task Builder command file for the despooler task.
You must add a global patch statement of the following form:

TKB>GBLPAT=INIT+FRMTBL+n*2:value

where n is the assigned form number and value is the form
definition word.

Table 7-1 shows the forms requirements for a hypothetical
installation. The form names describe different uses that
special forms might be put to, but have no significance
otherwise.

Table 7-1
Demonstration Forms Settings

Form Assigned n Width Length Standard?
Accordion 0 132 66 Y
Paychecks 1 40 10 Y
Invoices 2 80 66 Y
Stationery 3 80 66 Y
Moon Diary 4 22 43 N
Star Log 5 112 113 N

NOTE

As shipped, FORMS:0 is 66 lines long by
132 columns with real form feeds.
FORMS:1 is 1 line long by 132 columns
with simulated form feeds; FORMS:2 is 2
lines long by 132 columns with simulated
form feeds; and so on through FORMS:66
which is 66 lines long by 132 columns
with simulated form feeds. The
remaining FORMS:n entries are set to 1
line 1long by 132 columns with simulated
form feeds. Thus, if you specify
FORMS:43, when the printer encounters a
form feed, it counts the number of lines
on the page and subtracts that number
from 43. The printer then outputs a
number of 1line feeds equal to the
difference. You may find this
arrangement satisfactory if your
installation rarely uses forms other
than standard line-printer paper, but if
you have more than one standard form,
you will probably want to make the
changes in the forms table entries.

THE QUEUE MANAGER

/FLag:n
Sets the number of flag pages to precede all jobs printed on the
device, Note that if you are using special forms, you may want
to set this attribute to 0 to avoid printing banner pages on your
special forms. This also sets the number of file flag pages to
be printed when users specify the /FLAGS switch in their Printer
commands. The default value of n is 0.

/EXternal
Specifies that a device is being set spooled that 1is not
currently part of the 1local system configuration. Use this
switch when you wish to despool to an applications task, or a
network, or in some other instance of using the Queue Manager for
down-line loading.

Examples

>QUE LPO: /SPOOL

This example attaches LPO: for despooling.

>QUE LP3: /SP /FO:2

This example attaches LP3: for despooling with forms set to 2.

7.3.4 UNSPOOL
This function removes a device from despooling. The device is no
longer assigned to the queue. The despooler task exits. The
associated device-specific queue is deleted.
Format
>QUE ddnn: /UNSPool
ddnn: /UNSPool
ddnn:/ UNSPOOL frees a device used in despooling for general use.
The despool task for the device exits but its entries in queues
assigned to it remain in the queue file.
Example

>QUE LPO: /UNSP

This example removes the device LPO: from active use by the
despooler LPPO and the Queue Manager.

7.3.5 ASSIGN
This function creates a path between a queue and despooler.
Format

>QUE ddnn: /ASsign:queuename

ASSIGN is normally used to assign the default queue PRINT to one or
more despooler tasks, but you can assign any queue to any despooler.

7-10

THE QUEUE MANAGER

Example
>QUE LPO: /AS:PRINT
This example assigns the PRINT queue to LPO:.
Note
Remember that SPOOL automatically assigns a device-specific queue

to its related device. For example, LPQl 1is automatically
assigned to LPl:.

7.3.6 DEASSIGN
This function breaks the assignment ¢f a queue to a despooler.
Format
>QUE ddnn: /DEAssign:queuename
DEASSIGN eliminates the path between a queue and a despooler, but the

quene still exists with all its jobs. Jobs can be added to the queue,
but none will be dequeued while the queue is not assigned. ’

7.4 ERROR MESSAGES
Error messages from the Queue Manager may be preceded by the letters
PRI or QUE, depending on where within the software the error detection
takes place. Here is how they appear on your terminal:

PRI -- NO SUCH COMMAND

QUE -~ DIRECTORY NOT ALLOWED
The PRI and QUE identifiers are not used in this section. When vyou
get an error message such as those above, look for the message portion
(NO SUCH COMMAND or DIRECTORY NOT ALLOWED in the examples above). The
message portion of each error message appears in alphabetical order in
this section, along with a description of the error that produced the
message and a suggested correction.

If you issue a QUE /LI (or /BR or /FU) and only a prompt is returned,
this means no queue file exists on your system.

In most cases, the error will be a typing mistake or other syntax
error.

BAD COMMAND LINE
Explanation: 1Invalid MCR line or invalid syntax.

User Action: Retype command line after checking proper syntax.

BAD SPOOL DEVICE TYPE
Explanation: Only record-oriented devices can be spooled.

User Action: Check device type.

THE QUEUE MANAGER

BAD SWITCH TYPE
Explanation: Bad ASCII switch value.

User Action: Retype command line after checking proper switch
value,

DEVICE ALREADY SPOOLED

Explanation: Specified device already spooled by a previous
command.

User Action: 1Issue QUE /LI:ALLDEV to check 1list of spooled
devices.

DIRECTIVE FAILURE
Description: Program error. Executive directive failed.

User Action: Detect and correct error.

DIRECTORY NOT ALLOWED
Explanation: UIC included in command that does not accept it.

User Action: Retype command line after checking proper syntax.

ILLEGAL ARGUMENT VALUE
Explanation: Bad switch value.

User Action: Retype command line after checking proper switch
value.

INVALID JOB SYNTAX
Explanation:
e Invalid syntax in the command
e Invalid job name
e Included both job name and job identification
e Omitted both job name and job identification

User Action: Retype command line after checking proper syntax.

I/0 ERROR ON SYO:QUEUE.SYS
Explanation: Error encountered in reading queue file.

User Action: Check SY0:{1,7]) for presence of QUEUE.SYS.

THE QUEUE MANAGER

JOB DOES NOT EXIST
Explanation: Specified job not found in queue under current UIC.
User Action: Retype command line, including correct UIC in job
identification.

JOB NAME NOT ALLOWED

Explanation: Job name or other form of Jjob identification not
accepted in this command.

User Action: Retype command line after checking proper syntax.

MULTIPLE FUNCTIONS DETECTED
Explanation: More than one function specified.

User Action: Retype command line after checking proper syntax.

MUTUALLY EXCLUSIVE SWITCH/VALUE

Explanation: Command line specified mutually exclusive function
value and switch.

User Action: Retype command line after checking proper syntax.

NO FUNCTION SPECIFIED
Explanation: Command line did not include required function.

User Action: Retype command line after checking proper syntax.

NO SUCH COMMAND
Explanation: QMGCLI installed and run under wrong name.
User Action: 1Install and run QMGCLI under proper hame: .+ PRI,
or ..,.QUE.
NO SWITCHES ALLOWED
Explanation: No switches allowed with this command.

User Action: Retype command line after checking proper syntax.

PRIVILEGED COMMAND
Explanation: The following functions are privileged: /START,
/STOP, /SPOOL, /UNSPOOL, /ASSIGN, /DEASSIGN, /MODIFY, /HOLD,
RELEASE, /DELETE Jjobs from another UIC.

User Action: Enter command from a privileged terminal.

THE QUEUE MANAGER

QUEUE/DEVICE NOT ALLOWED

Explanation: /STOP:QMG or START:QMG command issued with device g!?yg
name. :

User Action: Retype command without device name.

QUEUE/DEVICE NOT SPECIFIED

Explanation: /START, /STOP, /UNSPOOL, /ASSIGN, and /DEASSIGN
require device name.

User Action: Retype command with device name.

OMG DID NOT START
Explanation: /START:QMG did not work.

User Action:

e Check to see if QMG is installed under name QMG... - @

e Check to see if pool is low.

PART 5
VOLUME MAINTENANCE UTILITIES

CHAPTER 8

DISK VOLUME FORMATTER (FMT)

The Disk Volume Formatter (FMT) utility formats and verifies DB:, DK:,
DM:, DP:, DR: and DY: disk volumes under any RSX-1lM, RSX-11M-PLUS,
or IAS operating system which includes diagnostic support in the
Executive. (Check with your system manager to determine whether your
system includes this feature.)

The disks can be completely formatted (in normal operating mode) or
formatted on an individual sector (or track for DM: volumes) basis
(in manual operating mode).

Formatting in manual operating mode sometimes allows you to recover
use of a bad sector or track.

In general, FMT performs the following tasks:

e Writes a complete header for each sector of the disk it is
formatting.

e Verifies the address contents of each sector header.

e Sets the density for DY: floppy diskettes.

e Lets you specify a maximum pack error 1limit for the disk
volume being formatted. FMT terminates processing when the

error limit is reached.

) Allows‘the Bad Block Locator (BAD) task to be run (spawned) if
your system permits spawned tasks.

8.1 INITIATING AND TERMINATING FMT

To initiate FMT, enter the appropriate command following the system
monitor prompt, as explained in Chapter 1 of this manual.

The general form of the FMT command line is:
>FMT ddn:/([switch l...switch m]

where dd: 1is the abbreviation for the volume you are formatting, n is
the unit number of the volume, and the possible switches are:

/BAD Runs the Bad Block Locator task (BAD) if it is installed
on the system.

Note that this switch can only be used with operating
systems that allow spawning of tasks. RSX~-11M and
RSX~-11M-PLUS provide spawned tasks as a System Generation
option,

DISK VOLUME FORMATTER (FMT)

/DENS Selects high (double) or low (single) density for RX02
floppy diskettes.

/ERL Determines the maximum number of errors FMT will allow on
the volume.

/MAN Enters manual operating mode and formats the sector or
track you specify.

/OVR Overrides or 1ignores the Manufacturer's Defined Bad
Sector File (MDBSF).

/WLT Rewrites the MDBSF to add bad sectors found during FMT
operation,

/VE Verifies that a FMT operation was successfully completed.

/ey Informs FMT that it is executing from an indirect command

file, An FMT command in this form does not allow
operator intervention in the process.

These swilitches are described in detail in Section 8.4.

8.2 MODES OF FMT OPERATION

FMT allows you to format volumes in two ways: normal operating mode,
which formats an entire volume, and manual operating mode, which
formats the sector (or track on DM: volumes) you specify in response
to FMT prompts. FMT uses normal operating mode unless you specify
manual mode with a /MAN in the command line.

FMT normally retries an operation twice when it encounters an error.
If the operation still fails, FMT flags the sector as bad and displays
the following message:

ERROR WRITING HEADER

If you specify the Verify switch with an FMT operation, and FMT

encounters an error, it prints one of the following messages on your
terminal:

ERROR READING HEADER
or
HEADER COMPARE ERROR

" FMT then continues the verification operation.

8.2.1 Normal Operating Mode

When you invoke FMT in normal operating mode (without the Manual
switch), it prints the following message:

*% WARNING - DATA WILL BE LOST ON ddn: *%*
CONTINUE [Y OR NJ]

After a Y (yes) response, FMT returns the message:

START FORMATTING

DISK VOLUME FORMATTER (FMT)

It then performs the formatting functions you specify with switches in
the FMT command. After an N (no) response or a carriage return <CR>,
FMT returns control to the system monitor.

Normal FMT operation varies slightly according to the volume you are
formatting (see Section 8.3).

8.2.2 Manual Operating Mode
If you specify manual operating mode (/MAN), FMT prints:

** WARNING - DATA WILL BE LOST ON ddn: **
CONTINUE [Y OR NI]

After a Y (yes) response, FMT returns the message:
ENTERING MANUAL MODE

It then displays the following prompts:
CYLINDER=

TRACK
SECTOR

After you enter your response to the prompts, FMT formats the sector
or track you specify. FMT assumes the responses are in decimal unless
they are preceded by a number sign (#). If you enter a parameter that
is out of range of the volume FMT returns an error message and exits,
Table 8-1 lists the valid ranges for FMT manual mode operations.

FMT manual operating mode works the same on all disk volumes, with one
exception: Oon DM: volumes (RK0O6 and RK07) FMT formats a specific
track of the volume.

For example:
FMT>DMO : /MAN
This command causes FMT to prompt:

*% WARNING - DATA WILL BE LOST ON DMQO: **
CONTINUE [Y OR N] Y

ENTERING MANUAL MODE
CYLINDER=
TRACK =

\

FMT then formats the entire track you specified.

DISK VOLUME FORMATTER (FMT)

Table 8-1
valid Ranges for Manual FMT Operations

Disk Volumel Sectors Tracks Cylinders
RP02/RPR0O2 0-9 0-19 0-199
RPO3 0-9 0-19 0-399
RP04 0-21 0~-18 0-410
RPOS 0~-21 0-18 0-410
RP0O6 0-21 0-18 0-814
RKO5/RKO5F 0-11 0-1 0-199
RKO06 0-21 0-2 0-410
RKO7 0-21 0-2 0-814 Aﬁﬁ
RMO 2 0-31 0-4 0-822 |
RMO3 0-31 0-4 0-822
1l Note that FMT manual operating mode cannot be used with RX02 floppy
diskettes.
8.3 FMT-SUPPORTED DEVICES
The following sections describe normal FMT operating mode. Table 8-2 ‘.Fh

lists the devices that allow formatting and their abbreviations.

Table 8-2
FMT-Supported Devices
Device Abbreviation
RP04 disk pack DB:
RP05 disk pack DB:
RP06 disk pack DB:
RK0O5 disk cartridge DK:
RKOSF fixed media disk DK:
RK06 disk cartridge DM:
RK07 disk cartridge DM:
RPR02 disk pack DP:
RP02 disk pack DP:
RP03 disk pack DP:
RM02 disk pack DR:
RM03 disk pack DR:
RX02 floppy diskette DY:

O

DISK VOLUME FORMATTER (FMT)

The status FMT requires for the devices varies with the operating
system. Table 8-3 lists the status required for devices with RSX~-11M,
RSX-11M~-Plus, or IAS.

Table 8-3
FMT Device Status

Operating System Device Status Required
for FMT Operation
$X-11M~-PLUS Mounted with Foreign
Characteristics
RSX-11M V3.2 ~ Unmounted
IAS Mounted with Foreign

Characteristics

8.3.1 DB: Devices (RP04/RP05/RP06 Disk Packs)

When FMT formats a DB: volume, it tries to write 22 headers at a time
until it has formatted the entire volume. If FMT encounters an error,
it attempts to write each header individually and designates which
headers are bad.

If you specify the Verify switch (/VE), FMT verifies 11 headers at a
time until it has verified the entire volume. If FMT encounters an
error, it attempts to verify the headers individually to determine
where the error occurred. It then reports any bad headers and
continues the operation.

8.3.2 DK: Devices (RKO5 Disk Cartridge or RKOSF Fixed Media Disks)

When FMT formats a DK: volume, it tries to write each header
individually until it has formatted the entire volume. If FMT
encounters an error, it retries each header twice before reporting the
header as bad.

If you specify the Verify switch (/VE), FMT verifies the headers 12 at
a time, until it has verified the entire volume. If FMT encounters an
error, it attempts to verify the headers individually to determine
where the error occurred. It then reports any bad headers and
continues the operation.

8.3.3 DM: Devices (RK06/RK07 Disk Cartridges)

FMT writes DM: headers one track (22 sectors) at a time and sets the
header flags of those sectors marked bad in the MDBSF. If FMT
encounters errors, it retries the operation twice before it designates
which headers are bad.

If you specify the Verify switch (/VE), FMT verifies that each sector
from O to 21 is addressable. It does this by issuing a full 256-word
write, made up of the 2-word address pattern (the sector number and
its complement) into each sector. Once the entire track has been
written, each sector is read and the full 256 words of data are

DISK VOLUME FORMATTER (FMT)

compared with the expected data pattern. If an error occurs during
this operation, FMT reports that sector as bad and continues the
operation,

When FMT writes headers on DM: devices, it sets bad sector flags in
the headers already marked as bad in the MDBSF. If you also specify
the Verify switch, FMT indicates whether the bad sector was flagged in
the MDBSF.

8.3.4 DP: Devices (RPR02/RP02/RP03 Disk Packs)

When FMT formats a DP: volume, it tries to write 10 headers at a time
until it has formatted the entire volume. If FMT encounters an error,
it attempts to write each header 1individually and designates which
headers are bad.

If you specify the Verify switch (/VE), FMT verifies the headers 10 at
a time, until it has verified the entire volume. If FMT encounters an
error, it attempts to verify the headers individually to determine
where the error occurred. FMT reports that sector as bad and
continues the operation.

8.3.5 DR: Devices (RM02/RM03 Disk Packs)

When FMT formats a DR: volume, it tries to write 32 headers at a time
until it has formatted the entire volume. 1If FMT encounters an error,
it attempts to write each header individually and designates which
headers are bad.

If you specify the Verify switch (/VE), FMT verifies the headers 16 at
a time, until it has verified the entire volume. If FMT encounters an
error, it attempts to verify the headers individually to determine
where the error occurred. It then reports any bad sectors and
continues the operation.

When FMT writes headers on DR: volumes, it sets bad sector flags in
headers already designated as bad by the MDBSF. If the command also

specifies the Verify switch, FMT indicates whether the sector was
marked in the MDBSF.

8.3.6 DY: Devices (RX02 Floppy Diskettes)

You can use FMT to set an RX02 floppy diskette to either high (double)
or low (single) density. If you specify the Verify switch, FMT writes
and reads block 0 and the last block on the diskette to determine that
the density is correct.

Note that manual operating mode cannot be used with DY: devices.

8.4 FMT SWITCHES

The following sections describe the switches - you can use with FMT
commands. The descriptions include information on restrictions for
formatting specific devices and default values for the switches, where
appropriate.

DISK VOLUME FORMATTER (FMT)

8.4.1 /BAD

The Bad switch spawns the Bad Block Locator task (BAD) after FMT
completes an operation. If BAD is not installed on the system, FMT
prints a warning message on your terminal and exits.

The format for an FMT command, using the BAD switch, is:

FMT>dev:/BAD

8.4.2 /DENS

The Density switch sets DY: floppy diskettes to either high or 1low
density. The default 1is 1low density. (This switch can also use
single and double density as options.)

The formats for an FMT command, using the DENS switch, is:

FMT>DYn:/DENS=HIGH (or DOUBLE)
FMT>DYn:/DENS=LOW (or SINGLE)

8.4.3 /ERL

The Error Limit Switch sets an error limit £for the volume you are
formatting. If the error count reaches this limit, FMT generates an
appropriate message and terminates operation. The default error limit
is 256 errors. Any value greater than 0 or less than or equal to 256
is valid.

The format for an FMT command, using the ERL switch, is:

FMT>dev:/ERL=n

8.4.4 /MAN

The Manual switch puts FMT in manual operating mode and permits you to
format an individual sector (or track for DM: disk cartridges). FMT
assumes cylinder, track, and sector numbers are decimal values unless
they are preceded with a number sign (#).

In manual operating mode, FMT displays the following prompts:

** WARNING -~ DATA WILL BE LOST ON DKl: **

CONTINUE [Y OR N]?
ENTERING MANUAL MODE
CYLINDER=

TRACK
SECTOR

OPERATION COMPLETE
The format for an FMT command, using the MAN switch, is:

FMT>dev:/MAN

DISK VOLUME FORMATTER (FMT)

8.,4.5 /OVR

The override switch causes FMT to ignore the Manufacturer's Detected
Bad Sector File (MDBSF) on DM: and DR: disk volumes. When FMT
writes headers on these disks, it normally sets bad sector flags in
those headers marked bad in the MDBSF. When the verification process
discovers a bad sector, it reports that the sector was marked 1in the
MDBSF. The Override switch inhibits this operation.

The format for an FMT command, using the OVR switch, is:

FMT>dev:/0VR

8.4.6 /VE

The Verify switch confirms that an FMT operation was successful. It
does this by reading back the headers and determining that they were
written correctly.

The format for an FMT command, using the VE switch, is:

FMT>dev:/VE

8.4.7 /WLT

The Write Last Track switch, when used with the Verify switch on DM:
and DR: volumes, rewrites the MDBSF after an FMT operation to add the
bad sectors that FMT found to the bad sectors already in the MDBSF.
FMT also rewrites each bad sector's header to flag it as a bad sector.

The WLT switch requires a decimal number (n below) which 1is used as
the volume's pack serial number.

The format for an FMT command, using the WLT switch, is:

FMT>dev:/WLT:n

8.4.8 /ey

If you specify the @Y switch, FMT executes from an indirect command
file. In this method of operation, FMT will not generate any
operational messages or warnings to your terminal until the operation
is complete and no operator intervention is possible.

The format for an FMT command, using the @Y switch, is:

FMT>dev: /@Y

8.5 FMT MESSAGES

This section describes the messages FMT generates, along with possible
user action in response to the messages.

8-8

DISK VOLUME FORMATTER (FMT)

COMMAND I/O ERROR

Explanation: A hardware transmission error occurred from the
keyboard.

User Action: Reenter the command.

COMMAND TOO LONG
Explanation: The command was longer than 80 (10) characters.

User Action: Enter a shorter command.

DEVICE DOES NOT SUPPORT FORMATTING

Explanation: A device was specified that does not allow the use
of FMT.

User Action: Determine the correct device and, if FMT operation
is legal, reenter the command.

DEVICE DRIVER MISSING
Explanation: The disk device driver is not loaded.
User Action: Load the driver (if it is loadable) and reenter the
command, or use a different device in the command line.

DEVICE NOT IN SYSTEM

Explanation: The specified device was not identified as part of

the system during system generation, or the device does not exist
on the system configuration.

User Action: Determine the correct command line with the correct
device abbreviation, and reenter the command.

DEVICE NOT READY

Explanation: The disk volume was not at operating speed when FMT
attempted to access it.

User Action: Allow the volume to reach operating speed and
reenter the FMT command.

DEVICE OFFLINE
Explanation: The device is not in the hardware configuration.
User Action: Determine the correct command line with the correct
device abbreviation and reenter the command.

DEVICE WRITE LOCKED

Explanation: The volume is write-locked; any write access |is
prohibited.

User Action: Write-enable the unit and reenter the FMT command.

8-9

DISK VOLUME FORMATTER (FMT)

DISK IS AN ALIGNMENT CARTRIDGE
Explanation: The device is a factory-created disk used to align
the heads in a disk drive and should not be used for other
purposes.
User Action: Use a disk that is not an alignment cartridge and
reenter the FMT command.

ERROR LIMIT EXCEEDED
Explanation: The number of errors FMT found on the disk pack
exceeded either the number of errors specified with the ERL
switch, or the default 256 error limit that FMT sets.
User Action: Set a higher error limit, if the ERL switch was
used.

ERROR READING DATA

Explanation: FMT encountered an error in reading data from a
disk.

User Action: None required; FMT retries the operation twice and
continues the verification.
ERROR READING HEADER

Explanation: FMT encountered an error when it tried to read a
header during a verification operation.

User Action: None required; FMT retries the operation twice and
continues the verification,
ERROR SETTING DISKETTE DENSITY

Explanation: FMT tried to format a DY: floppy diskette and the
operation failed.

User Action: Check the syntax and reenter the command, resetting
the density.
ERROR WRITING DATA

Explanation: FMT encountered an error when it attempted to write
sector headers.

User Action: None required; FMT retries the operation twice and
continues the verification.

ERROR WRITING HEADER

Explanation: FMT encountered an error when it tried to write a
header.

User Action: None required; FMT retries the operation twice.

DISK VOLUME FORMATTER (FMT)

FAILED TO ATTACH DEVICE
Explanation: FMT could not attach the device to be formatted.
User Action: Determine whether another task has attached the
device. 1f so, wait until the task exits, or abort the task and
run FMT again.

FAILED TO READ MANUFACTURER'S BAD SECTOR FILE
Explanation: A disk hardware error occurred while FMT attempted
to read the MDBSF on the 1last track on the last track of a

device.

User Action: Reenter the command, including the Override switch.

FATAL HARDWARE ERROR

Explanation: A fatal error occurred somewhere in the system
hardware configuration., '

User Action: Contact the DIGITAL Field Service representative.

HEADER COMPARE ERROR

Explanation: FMT found an error in comparing headers with the
expected value during a verification error.

User Action: None required; FMT retries the operation twice.

INVALID SWITCH

Explanation: An illegal switch or a switch not valid for the
specified device was used in an FMT command.

User Action: Check the syntax and reenter the command.

MANUFACTURER'S BAD SECTOR FILE CORRUPT

Explanation: The factory-written bad block data (MDBSF) on the
last track of the disk is in an unusable format.

User Action: Reenter command with the Override switch (/OVR) to
prevent FMT from trying to use the corrupt bad block data.

MARKED BAD IN MANUFACTURER'S BAD SECTOR FILE

Explanation: Indicates that bad block information is recorded in
the MDBSF on the disk.

User Action: None required. This message is for information
only.

DISK VOLUME FORMATTER (FMT)

PRIVILEGE VIOLATION

Explanation: FMT attempted an operation on a device that was
mounted or allocated to another user.

User Action: Reenter the FMT command, using a device that is not
allocated to another user.

RESPONSE OUT OF RANGE

Explanation: Parameters entered for manual formaﬁting of an
individual sector or track were out of the range of the volume.

User Action: Check Table 8~1 for legal parameters and reenter
the command.

SYNTAX ERROR

Explanation: FMT detected a syntax error in the command line.

User Action: Determine the correct command syntax and reenter
the command.

UNABLE TO RUN BADBLOCK UTILITY
Explanation: A FMT command specified the Bad switch (/BAD), but
BAD could not be spawned. Either the operating system does not
spawn tasks or BAD was not installed.

User Action: Run the BAD utility separately.

UNRECOVERABLE ERROR - n

Explanation: An I/0 error (number n) caused FMT to terminate.

User Action: Reenter the FMT command and if the error occurs
again, try the command, specifying a different device.

CHAPTER 9

BAD BLOCK LOCATOR UTILITY (BAD)

9.1 INTRODUCTION TO BAD

The Bad Block Locator Utility (BAD) tests disks and DECtapes for the
location and number of bad blocks. BAD then records this bad-block
information on the device. When you use the MCR Initialize Volume
command (INI) the bad blocks are marked as in-use; - that is, INI
allocates the bad blocks to the file [0,0]BADBLK.SYS. Thus, the bad
blocks cannot be allocated to other files. BAD supports any last
track device, as well as vendor-supplied cartridges that do not have a
prerecorded manufacturer's bad-sector file on the last track. You can
use BAD in its task version, which runs at the same time as other
tasks, or 1in its stand-alone version, which runs by itself on the
computer. The stand-alone version is preferable if you have a system
with a single disk drive.

9.2 INVOKING BAD
You can invoke the BAD utility as follows:

>BAD dev:[/sw]...

dev:

Specifies a physical device. The specification consists of two
alphanumeric characters followed by a 2- or 3-digit octal unit
number and colon.

/sw

Specifies an optional switch that qualifies the BAD command line.
Multiple BAD switches for a device must be specified on one line.
If you do not specify any switch, BAD begins its pattern checking
of individual blocks.

9.2.1 BAD Switches

Table 9-1 contains a reference list of BAD switches along with a brief
description of each. For a detailed description of BAD switches see
Sect.ion 9.5.

BAD BLOCK LOCATOR UTILITY (BAD)

Table 9-1
BAD Switches

Switch Function

BAD switches for Task and Stand-Alone Versions

/LI Lists bad blocks as they are located

/MAN Prompts you for additional bad blocks

/OVR Creates bad block descriptor file on a
last—-track device

/RETRY Recovers soft errors

/UPDATE Reads the bad block descriptor file and

prompts for input

BAD Switches for Stand-Alone Version Only

/CSR=nnnnnn Alters the CSR address of the device

/VEC=nnn Alters interrupt vector address of the device
/WCHK Causes a write check

/NOCHK Negates /WCHK

9.2.2 BAD And Indirect Files

BAD can access an indirect file that contain a series of BAD command
strings in the following manner:

>BAD @BADCMDS.CMD

In this example, BAD is invoked and accesses the file BADCMDS.CMD,
which contains a sequence of BAD command strings. BAD executes the
commands and returns control to MCR. The BAD utility allows nested
command files; one command file can invoke another to a maximum depth
of three.

BAD can also be invoked by an indirect file. Such an indirect file
can contain command strings for more than one utility and is accessed
by entering only the file specification preceded by the at sign:

>@INDIRECT.CMD
The default values for indirect file specifications are:

dev ~ SYO0:

uic - The current UIC

file name No default

file type - .CMD

version ~ The latest version of the file

i

For complete information on how to use indirect files, refer to the
RSX-11M/M-PLUS MCR Operations Manual,

(

BAD BLOCK LOCATOR UTILITY (BAD)

9.3 PROCESSING BAD BLOCK DATA

This section contains information on how BAD tests the reliability of
disks and DECtapes, formats bad block descriptor entries, and how the
INI command uses bad block information.

9.3.1 Verifying Devices

BAD verifies disks and DECtapes by writing a test pattern onto each of
the blocks on the device, reading the pattern back into a buffer in
storage, and comparing the blocks in the buffer with those on the
device, When BAD processes a disk or DECtape, all existing data is
destroyed.

BAD writes the test pattern to several blocks in a single write
operation, If an error occurs in writing, reading, or comparing any
of these blocks, BAD tests each of the blocks individually. The test
pattern, 165555 and 133333(octal), is replicated 128 (decimal) per
block. If BAD finds no bad blocks during individual testing, the
error-logging subsystem may still 1log errors due to 1long data
transfers.

9.3.1.1 BAD and Non-Last Track Devices - As BAD locates bad blocks,
it stores their addresses in a memory buffer. After locating all bad
blocks on a device, BAD records the addresses of the bad blocks on the
last good block of the device. Consecutive bad blocks are recorded as
single entries. There must be at least one good block in the last 256
(decimal) blocks of the volume for BAD to create this file, called the
bad block descriptor file,

9.3.1.2 BAD and Last-Track Devices - BAD records bad block
information differently on last-track devices, such as the RK06/07,
RL01/02, and the RM02/03. The last track is divided into two areas,
the Manufacturer's Detected Bad Sector File (MDBSF) and the Software
Detected Bad Sector File (SDBSF). The MDBSF is created when the
hardware servo/header writer formats the pack. This operation also
sets bits in any header that is marked bad in the MDBSF, and sets the
SDBSF to be empty. When you run BAD, entries are made in the SDBSF.
The information contained in the two last-track files is combined to
form [0,0] BADBLK.SYS when you issue the INI command.

9.3.2 Format of Bad Block Descriptor Entries

For non-last track devices, BAD uses the last good block as a
descriptor file for bad blocks. The address of a bad block, or the
first address in a sequence of consecutive bad blocks, is stored as a
double-word entry in the bad block descriptor file. The first word of
this double-word contains two entries: the high-order byte contains
the number of bad blocks minus 1 and the low order byte contains bits
16 through 23 of the logical block number of a bad block or a range of
bad blocks. The second word of the double-word contains bits 0
through 15 of that block number.

BAD BLOCK LOCATOR UTILITY (BAD)

For last~-track devices, bad block descriptor entries are also recorded
as a double-word in the SDBSF. Word 1 of the double word contains the
address of the cylinder on which the bad block exists, The high-order
and low-order bytes of word 2 contain, respectively, the track and
sector addresses of the bad block.

9.3.3 The INI Command and BAD

Use BAD with the MCR INI Command to produce a Files-=11 volume. The
INI command uses the bad block information to create the file [0,0]
BADBLK.SYS. The BADBLK.SYS file has allocated to it those blocks
found to be bad, thus ensuring that file system does not allocate a
known bad block to a file.

For information on how to use the INI, refer to the RSX-11M/M-PLUS MCR

Operations Manual.

9.4 USING THE BAD UTILITY

Before BAD can validate a device, that device must be formatted by the
manufacturer, by the FMT utility, or by one of the diagnostic programs
supplied in your distribution kit. These programs are described in
the RSX~-11 Utilities Manual and the RSX~11M/M-PLUS User Mode
Diagnostics Reference Manual, respectively.

In the RSX-11M system, the volume must not be mounted. Issue the MCR
dismount command if the device contains a mounted volume.

In an RSX-11M-PLUS system, the volume must be mounted as foreign.

The following example illustrates a typical sequence of steps for
introducing the disk DK1l: to an RSX-11lM or RSX-11M-PLUS system.

System Command

M/M+ ALL DK1l:<CR>

M+ MOU DK1l:/FOR<KCR>

M/M+ FMT DK1l:[/sw]<CR>

M/M+ BAD DK1l:[/sw]<CR>

M/M+ INI DKl:[label] [/sw]<CR>
M+ DMOU DK1:<CR>

M/M+ MOU DK1l:[labell [/sw]<CR>

You may execute BAD while other RSX-1l1l tasks are executing.

9.4.1 Programming Considerations

This section contains information you should know before you use the
BAD utility.

9.4.1.1 Use of Block Zero - On bootable disks, block zero contains
the bootstrap block. If block 2zero 1is bad, BAD prints a message
warning the operator not to use the disk for a bootable system image.

BAD BLOCK LOCATOR UTILITY (BAD)

9.4,1.2 Device Controller Errors - The error-logging subsystem may
record errors even though BAD is not reporting bad blocks. These
errors may be encountered during long data transfers and may originate
with the device controller,

9.4.1.3 Maximum Entries in the BAD Block Descriptor - On non-last
track devices BAD storage allows 102.(decimal) entries of bad block
addresses. On last-track devices BAD allows 126. entries. On
non-last track devices, a single BAD entry can address one bad block
or several consecutive bad blocks. If more than the maximum number of
entries is recorded, BAD terminates with an error message.

9.5 BAD SWITCH DESCRIPTIONS

9.5.1 Switches for both Task and Stand-Alone System Versions Of BAD
/LI

Causes all bad blocks to be printed by number in decimal on your
terminal. This switch causes bad blocks to be listed as BAD
performs a data pattern check on each block. Blocks entered
manually which BAD tests as reliable are not listed. This switch
is valid for all devices.

/MAN

Causes BAD to first prompt you for bad block information and to
then perform data pattern checking. Any block that you enter is
included in the bad block descriptor file.

/OVR

Causes BAD to ignore last track information and write a bad block
descriptor file on the last good block before the last track. 1In
other words, the override switch causes BAD to treat a last-track
device as a non-last track device. If your device has no bad
block file on the last track, or if you suspect the reliability
of the last track, use the override switch before using the MCR
INI command. The override switch is valid only for last-track
devices.

NOTE

If you use this switch, the /BAD=[OVR]
option for initializing a volume must
also be used to construct the bad block
file [0,0] BADBLK.SYS, See the
RSX-11M/M-PLUS MCR Operations Manual for
a description of the MCR INI command.

9-5

BAD BLOCK LOCATOR UTILITY (BAD)

/RETRY
Causes BAD to attempt a recovery of hardware errors via the
device driver. This also means that soft errors, such as an ECC

correctable error, will be recovered and the block will be marked
as good.

/UPDATE
Causes BAD to immediately read the bad block descriptor file and
prompt vyou for additional bad block input. This switch does not
cause BAD to write pattern checks.
NOTE
Updating the bad block descriptor file
on file structured volumes does not

cause the file [0,0]BADBLK.SYS to be
updated.

9.5.2 The Manual and Update Switches

If you wish to enter bad blocks in manual or update mode, BAD will
prompt you as follows:

BAD>LBN (S) =
You may then enter bad blocks in the format:

blocknum: number
Where number specifies the number of sequential bad blocks beginning
at the specified block number blocknum. The colon is required when
you specify a sequence of bad blocks in this form. Both blocknum and
number default to decimal values, unless preceded by a number sign (#)
to indicate an octal value. For example:

BAD LBN(S)=70.3

enters the block numbers 70,71, and 72 in the bad block descriptor
file.

You can also specify a single bad block. For example:
BAD>LBN(S)=3
enters block 3 in the bad block file.

You can use both of these forms on the same command 1line. For
example:

BAD>LBN(S)= 100:2,3, 200:100 45:1

enters blocks 100, 101, 3, 200 through 299, and 45 in the bad block
file, You can separate bad block sequences with a space, tab, or
comma.

BAD BLOCK LOCATOR UTILITY (BAD)

When you enter a carriage return in response to the prompt, BAD will
list all the sequences in the bad block descriptor file. For example:

BAD>LBN (S) =
000100:002
000003:001
000200:100
000045:001

BAD>LBN (S) =

The first number in the display represents the beginning block of the
sequence; the second number represents the number of bad blocks. Bad
block numbers are listed in decimal.

When a bad block sequence is entered, BAD determines 1if these bad
blocks are adjacent to an already existing sequence. If you are using
a non-last track device, BAD appends your bad block entry to the
existing sequence. If you are using a last track device, BAD records
individual bad blocks in core memory but 1lists entries at your
terminal as part of existing bad block sequences.

When you have finished supplying information in manual or update mode,
enter ESCAPE, ALTMODE, or <CTRL/Z> in response to the prompt. The bad
block will then either be rewritten with the new bad block information
if in wupdate mode or pattern checking will start if in manual mode.

Blocks entered manually which BAD tests as reliable are 1included in
the bad block descriptor file.

9.5.3 Switches for Stand-Alone System Version Only
/CSR=nnnnnn
nnnnnn is a new CSR address
This switch alters the CSR address of the device so that it
conforms to that of the device in te user's system. /CSR remains
in effect and need not be repeated if more commands are issued.
/VEC=nnn
nnn is a new interrupt vector address
This switch alters the interrupt vector address so that it
conforms to the vector address of the device in the user's
system. /VEC remains in effect if more commands are issued.
/WCHK
This switch causes a write check operation to occur after each
write operation. The switch is not available for devices DT, DX,
or DY.
/NOCHK

This switch negates /WCHK. This switch returns you to the
default.

BAD BLOCK LOCATOR UTILITY (BAD)

Unlike PRESRV and DSC, BAD expects to see all switches on a single
command line. For example:

BAD> DM3: /OVR/LI/VEC=300/CSR=174406

locates all bad blocks on DM3, ignores the last track data, lists all
bad blocks, changes the interrupt vector to 300, and changes the CSRss
to 174406. All switches are validated for prop syntax before the
actual bad block detection takes place.

9.6 DEVICES SUPPORTED BY THE STAND-ALONE VERSION

The following devices are supported by the stand-alone version of BAD.
If you have a task version of BAD, your executive will support any
device suitable to your system's configuration,

Mnemonic Type CSR Vector
DB RH11-RP04/05/06 and RH70-RP04/05/06 176700 254
Disk Pack
DD TU58 DECtape II 175600 300
DF RF11/RS11 Fixed-Head Disk 177460 204
DK RK11-RK03/05/05F Cartridge Disk 177404 220
DL RL11/RLO1/RL02 Cartridge Disk Pack 174400 160
DM RK611~-RK06/07 Cartridge Disk Pack 177440 210
DP RP11-C/E RPR0O2/RP02/03 Disk Pack 176714 3201
DR RH70/RMO3 and RH11/RMO2 Disk Pack 176700 3401
DS RH11-~-RS03/04 and RH70-RS03/04 172040 310t
DT TC1l1/TU56 DECtape 177342 214
DX RX11/RX01 Floppy Disk 177170 264
DY RX211/RX02 Floppy Disk 177170 3501

1 Nonstandard Vector Address

9.7 BAD MESSAGES

This section lists the BAD messages, gives a brief description of the
condition that causes each message, and suggests a response to the
condition. BAD error messages are arranged alphabetically beginning
with the text following after the device symbol, [ddu:].

BAD -- ddu: BAD BLOCK FILE NOT FOUND

Explanation: The bad block descriptor file could not be read in
update mode.

User Action: You must use the device without updating the bad
block file, or reformat the device and destroy all data.

BAD BLOCK LOCATOR UTILITY (BAD)

BAD --- ddu: BAD BLOCK FILE OVERFLOW

BAD

BAD

BAD

BAD

BAD

BAD

Explanation: BAD detected more than 102 sets of bad blocks. For
last~track devices, the maximum number of bad blocks that can be
recorded is 126. This message usually indicates a device unit
failure.

User Action: Either the volume is bad or the drive requires
maintainance; contact your DIGITAL Field Service Representative.
~~ ddu: BAD BLOCK FOUND - LBN= nnnnnn.

Explanation: Bad blocks are reported in this format, where LBN
is the Logical Block Number (decimal).

User Action: None. This message is informational and applies to
the /LI switch only.
== ddus: BLOCK 0 BAD - DO NOT USE AS SYSTEM DISK
Explanation: This is a warning message. When block zero is bad,
a bootstrap block cannot be written on the disk, making it
useless as a system disk.
User Action: Label the disk to ensure that no one attempts to
use it as a system disk.

-~ COMMAND I/0O ERROR

Explanation: There was a hardware transmission error from the
keyboard.

User Action: Retype the command.

-— COMMAND TOO LONG
Explanation: The command was longer than 80. characters.

User Action: Retype the command,

~=- ddu: CSR ADDRESS NOT IN SYSTEM

Explanation: Self-explanatory. This message occurs only in the
stand~alone system version of BAD,

User Action: Retype the command including the /CSR switch with
the proper value.
~= ddu: DEVICE OFFLINE

Explanation: 1In the stand-alone version of BAD, the specified
device is not 1in the hardware configuration, or the Control

Status Register switch (/CSR) is improperly set.

User Action: Retype the command, setting the /CSR and /VEC
addresses for the device to the proper addresses.

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD BLOCK LOCATOR UTILITY (BAD)

~- DUPLICATE BLOCK NUMBER - ([numb]

Explanation: The block number sequence you entered is already
present in the bad block file. The value [numb] is the sequence
you entered.

User Action: Reenter the command line with another value. This
message applies to the /MAN or /UP switch only.
-~ ddu: FAILED TO ATTACH

Explanation: BAD could not gain control of the unit to be
tested.

User Action: Determine if another task has attached the unit,

If so, wait until the task exists, or abort the task to gain
control of the unit for BAD.

~< ddu: FAILED TO READ MANUFACTURER'S BAD SECTOR FILE
Explanation: A disk-read hardware error occured while attempting
to read the factory-written bad block data on the last-track
device cartridge,.

User Action: Reenter the command with the /OVR switch included.

—= ddu: FAILED TO READ SOFTWARE BAD SECTOR FILE

Explanation: The software~detected bad sector file could not be
read in update mode.

User Action: Reenter the command with the /OVR switch included.

—= ddu: FAILED TO WRITE BAD BLOCK FILE

Explanation: BAD could not write the bad block file. This
condition usually results from a disk write error,

User Action: Reenter the command. If the problem persists the
disk pack should be discarded.

-- ddu: FATAL HARDWARE ERROR
Explanation: Self-explanatory.

User Action: Contact your DIGITAL Field Service Representative.

~= ddu: HANDLER/DRIVER MISSING
Explanation: The disk driver is not loaded.

User Action: Load the disk driver and reenter the command.

9-10

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD BLOCK LOCATOR UTILITY (BAD)

-~ ddu: ILLEGAL DEVICE

Explanation: The device to which bad block processing s
directed does not support a Files-11 structure.

User Action: You must re-format your device before running BAD.

~=- INVALID BLOCK NUMBER - [numb]

Explanation: You entered an invalid block number sequence. The
value [numb] is the sequence.

User Action: Type another value and reenter the command line.
This message applies to the /MAN or /UP switch only.

-~= INVALID SWITCH
Explanation: Self-explanatory

User Action: Reenter the command with a proper switch,

-- ddu: IS AN ALIGNMENT CARTRIDGE

Explanation: The factory written label on the last track of a
last-track device cartridge indicates an alignment cartridge.

User Action: Mount and process another cartridge.

~= ddu: NOT IN SYSTEM
Explanation: The requested device was not made part of the
system during system generation, or the device does not exist on
the host configuration.

User Action: Ensure that you entered the command line correctly.

-— ddu: NOT READY

Explanation: The unit had not reached operating speed when BAD
attempted to access it.

User Action: Allow the unit to reach operating speed and reenter
the command line.
-~ ddu: MANUFACTURER'S BAD SECTOR FILE CORRUPT

Explanation: The factory-written bad block data in the last
track of a last-track device is in an inconsistent format.

User Action: Reenter the command with the /OVR switch included.

-- ddu: PRIVILEGE VIOLATION

Explanation: An operation was attempted for a device that was
mounted or allocated to another user.

User Action: Mount another device and reenter the command line.

BAD

BAD

BAD

BAD

BAD

BAD BLOCK LOCATOR UTILITY (BAD)

-= SYNTAX ERROR
Explanation: BAD detected a syntax error on the command line.

User Action: Determine the correct syntax and reenter the
command line.

-~ ddu: TOTAL BAD BLOCKS = [n].

Explanation: This is an information message indicating the total
number (in decimal) of bad blocks on the disk.

User Action: Write the bad blocks count on the disk label.

-~ ddu: UNRECOVERABLE ERROR [n]

Explanation: An I/0 error caused BAD to terminate. The value
[n] is number of the I/0 error returned by the driver.

User Action: If the same error persists, contact your 1local
Digital field representative,

~= ddu: VECTOR NOT MULTIPLE OF FOUR
Explanation: Self-explanatory.

User Action: Retype the command including the /VEC switch with
the proper value.

== ddu: WRITE LOCKED

Explanation: The unit is write-locked.

User Action: Write-enable the unit and reenter the command line.

CHAPTER 10

BACKUP AND RESTORE UTILITY (BRU)

The RSX-11 Backup and Restore Utility (BRU) provides functions that
allow you to back up and restore Files-1l volumes. BRU transfers
files from a volume to a backup volume or volumes to ensure that a
copy of the files 1is available in case the original files are
destroyed. If the original files are destroyed, or if for any other
reason the copy needs to be retrieved, you can restore the back-up
files with the BRU command.
Backup and restore operations take place on disk and tape volumes:

e Disk to tape -~ for backup operations

e Tape to disk -~ for restore operations

e Disk to disk for either backup or restore operations

In addition to these basic data transfer functions, the Backup and
Restore Utility provides command qualifiers to:

e Perform backup and restore operations by file specification,
date, and time

e Control disk processing, which provides disk initialization
features that allow you to enter the locations of bad blocks

on a disk and initialize the disk before a backup or restore
operation

e Control tape processing such as density, 1length, ANSI tape
labeling, rewind, and append

e Verify accurate data transfers

e Display information such as backup set names and file names

10.1 OVERVIEW OF COMMAND QUALIFIERS AND DEFAULTS

Table 10-1 summarizes the command qualifiers available for backup and
restore operations,

10-1

BACKUP AND RESTORE UTILITY (BRU)

Table 10-1

Summary of BRU Command Qualifiers

Command Qualifiers Options Default
/APPEND None
/BACKUP_SET:name None

/BAD: [MANUAL] BAD:AUTOMATIC

[AUTOMATIC]
[OVERRIDE]

/BUFFERS: humber Number of
buffers from
the input
disk

/COMPARE

/CREATED: [BEFORE:dd~-mmm~yy hh:mm:ss]| Current date

[AFTER:dd~mmm-yy hh:mm:ss]

/DENSITY : number DENSITY:800.

/DIRECTORY None

/DISPLAY None

/ERRORS : number ERRORS:25.

/EXCLUDE None

/EXTEND: number Number of
blocks from
the input
disk

/HEADERS : number Number of
headers from
the input
disk

/INITIALIZE None

/INVOLUME : name None

/LENGTH: number The length of
the output
tape

/MAXIMUM: number Maximum
number of
files from
the input
disk

" /MOUNTED None

10-2

(continued

on next page)

-~

BACKUP AND RESTORE UTILITY (BRU)

Table 10-1 {(Cont.)

Summary of BRU Command Qualifiers

Command Qualifiers Options Default
/NEW_VERSION None
/NOINITIALIZE None
/NOPRESERVE None
/NOSUPERSEDE None
/OUTVOLUME : name Input disk
volume name
/POSITION: [BEGINNING]
[MIDDLE 1 Index file
[END] position on
[block:number] the input
disk
/PROTECTION: (protection value) Protection of
the input
disk
SYSTEM:value
OWNER:value
GROUP:value
WORLD:value
/REVISED: [BEFORE:dd-mmm~yy hh:mm:ss] | Current date
[AFTER:dd-mmm-yy hh:mm:ss]
/REWIND None
/SUPERSEDE /NOSUPERSEDE
/TAPE_LABEL: label None
/VERIFY None
/WINDOWS :value Number of
mapping
pointers on
input disk

10.1.1 Command Qualifiers For Selective Backup And Restore

The command qualifiers described in Table 10-2 allow you to backup or
restore data, using one of the following criteria for file selection:

e File specification

e Date and time of creation

e Date and time of revision

10-3

Command Qualifiers That Perform Selective Backup and Restore Operations

BACKUP AND RESTORE UTILITY (BRU)

Table 10-2

Qualifier

Options

Explanation

/CREATED

/EXCLUDE

/NEWVERSION

/NOSUPERSEDE

/REVISED

/SUPERSEDE

BEFORE: (dd-mmm~-yy [hh:mm:ss])
AFTER: (dd-mmm-yy [hh:mm:ss])

BEFORE: (dd:mmm: yy [hh:mm:ss])
AFTER: (dd:mmm:yy [hh:mm:ss])

Directs BRU to
process files created
before or after a
specified date and/or
time.

Selectively excludes
from a backup or
restore operation all
files specified on
the command line.

Directs BRU to
resolve conflicts
resulting from files
with identical file
specifications by
creating a new
version of the file.
Both versions of the
file are kept on the
output volume.

When files on the
output volume have
file specifications
identical with files
on the input volume,
resolves the conflict
by keeping the file
on the output volume
rather than that on
the input volume.

Directs BRU to
process files revised
before or after a
specified date and/or
time.

In restore
operations, restores
files to an existing
disk; resolves file
specification
conflicts by deleting
the old file on the
output disk and
replacing it with the
file being restored
from the input disk.

10-4

BACKUP AND RESTORE UTILITY (BRU)

The following qualifiers resolve file specification conflicts when,
during a restore to an existing disk, a file specification on the
output volume is identical to one for a file being transferred from
the input volume:

e /NEWVERSION

® /SUPERSEDE

e /NOSUPERSEDE

10.1.2 Command Qualifiers for Controlling Disk Processing
The command qualifiers described in Table 10-3 allow you to control
the way the operating system manages disk data transfer operations.

Table 10-3
Command Qualifiers that Control Disk Processing

Qualifier Options Explanation

/INITIALIZE Directs BRU to 1initialize
a disk before proceeding
with the data transfer.

/INVOLUME name .Specifies the volume label
of the input disk.

/NOINITIALIZE Specifies that you do not
want to initialize the
output disk; it already
has a Files~1l structure

and is mounted as
Files~11.
/MOUNTED Allows you to Dback up

files from a disk that is
mounted as a Files~1l1
volume (via the MCR MOUNT
command) .

/NOPRESERVE Specifies that you do not
want BRU to preserve file
identifiers.

/OUTVOLUME name Specifies the volume label
of the output disk.

10.1.3 Command Qualifiers for Controlling Tape Processing

The qualifiers in Table 10-4 allow you to control backup and restore
tape processing.

10-5

BACKUP AND RESTORE UTILITY (BRU)

Table 10-4
Command Qualifiers That Control Tape Processing

Qualifier Options Explanation

/APPEND Appends new backup data to a tape
’ with one or more backup sets.

/BACKUP_SET name Specifies the name of the backup
set to be placed on tape. Refer
.to Section 10.5.1.

/DENSITY number Specifies the data density at
which BACKUP writes to tape.

/ERRORS number ' Specifies the number of nonfatal
I/0 errors BRU tolerates on tape
reads before automatically
terminating execution.

/LENGTH number Specifies the length of the output G “%
tape in decimal feet.

/REWIND Rewinds the first tape of a tape

set before execution of a command
line.

/TAPE_LABEL label Specifies a 6-character ANSI tape
label.

10.1.4 Command Qualifiers for Verifying the Accuracy of Data Transferred L
The command qualifiers in Table 10-5 allow you to detect differences
between data on the input volume and data on the output volume,

Table 10-5
Command Qualifiers That Verify the Accuracy of Data Transfers

Qualifier Explanation !!T%
/COMPARE Compares the data on the output volume to the data

on the input volume and reports any differences.
/VERIFY Copies data from the input volume to the output

volume, performs a compare operation, and reports

differences.

10.1.5 Command Qualifiers for Displaying Information About Files Transferred

The command qualifiers listed in Table 10-6 display information about
the data being transferred.

10-6

BACKUP AND RESTORE UTILITY (BRU)

Table 10-6
Command Qualifiers That Provide Information

Qualifier Explanation

/DISPLAY Displays at your terminal the UFD
and filename of each file being
backed up.

/DIRECTORY Display information (such as
backup set names, file names, or
volume number of a tape) on a
specified tape volume.

10.1.6 Command Qualifiers for Initializing Disks

When you are initializing a disk using the BRU /INITIALIZE qualifier,
you may want to specify various characteristics for the output disk.
The qualifiers in Table 10-7 allow you to set the characteristics.

10.2 DISK AND TAPE DEVICE INFORMATION

You can use the Fast Backup and Restore Utility only on Files~ll
volumes. The following sections give a brief overview of the Files-11
format and also present some general disk device information.

For more detailed information on Files-ll, refer to the IAS/RSX-1l1 I/0
Operations Reference Manual.

10.2.1 Files-1ll1l Structures

BRU requires that an input disk be a Files~-1ll volume. Also, when you
initialize a volume for Files~1l, five control files are created.
These five files are catalogued in the Master File Directory ([0,0]
also called the MFD):

e The Index File -- identifies the volume to the operating
system as a Files~ll structure contains control data for
accessing all files on the volume. The index file 1is listed
in the Master File Directory as INDEXF.SYS.

e The Storage Bit Map File -- controls the available space on
the volume. This file is listed in the MFD as BITMAP.SYS. It
contains a storage control file, which consists of summary
information for optimizing the allocation of storage. It also
contains the bit map itself, which lists available blocks of
storage.

e The Bad Block File =-- is listed in the MFD as BADBLK.SYS. It
contains all of the bad blocks on the volume. Bad block
processing is discussed in more detail in Section 10.4.2.

e The Master File Directory (MFD) =-- listed in the MFD as
000000.DIR. The MFD is the root of the volume directory
structure., It lists both the reserved files that control the
volume structure and user file directories.

10-7

e The Core Image File -~ listed in the MFD as CORIMG.SYS.

BACKUP AND RESTORE UTILITY (BRU)

file contains the system checkpoint file.

The following sections give you background

efficiently use

system disk processing operations.

information you need to
the BRU command qualifiers for controlling operating

This

Table 10~-7
Initialization Qualifiers
Qualifier Options Explanation
/BAD MANUAL Enters the locations of
AUTOMATIC bad blocks on volumes.
OVERRIDE

/BUFFERS number Specifies the number of
directory File Control
Blocks (FCBs) per
volume kept in memory
by the ACP.

/EXTEND number Specifies the number of
blocks to extend a file
when that file has
exhausted its allocated
space.

/HEADERS number Specifies the number of
file headers to
allocate 1initially to
the index file.

/MAXIMUM number Specifies the maximum
number of files that
can be placed on a
volume.

/POSITION BEGINNING Specifies the location

MIDDLE of the index file,

END Master File Directory,

BLOCK : number and the storage
allocation file on a
disk.

/PROTECTION protection value Specifies the global

SYSTEM:value protection status of
OWNER:value the disk.
GROUP:value

WORLD:value

/WINDOWS number Specifies the number of
retrieval pointers
allocated for use with
file windows.

10-8

BACKUP AND RESTORE UTILITY (BRU)

Table 10-6
Command Qualifiers That Provide Information
Qualifier Explanation
/DISPLAY Displays at your terminal the UFD
and filename of each file being
backed up.
/DIRECTORY Display information (such as
backup set names, file names, or
volume number of a tape) on a
specified tape volunme,

10.1.6 Command Qualifiers for Initializing Disks

When you are initializing a disk using the BRU /INITIALIZE qualifier,
you may want to specify various characteristics for the output disk.
The qualifiers in Table 10-7 allow you to set the characteristics.

10.2 DISK AND TAPE DEVICE INFORMATION .

You can use the Fast Backup and Restore Utility only on Files-ll
volumes. The following sections give a brief overview of the Files-ll
format and also present some general disk device information.

For more detailed information on Files-1l, refer to the IAS/RSX-11] I/0
Operations Reference Manual.

10.2.1 Files-1ll Structures

BRU requires that an input disk be a Files-ll volume. Also, when you
initialize a volume for Files-11, five control files are created.
These five files are catalogued in the Master File Directory ([0,0]
also called the MFD):

e The Index File -~ identifies the wvolume to the operating
system as a Files~ll structure contains control data for
accessing all files on the volume. The index file 1is 1listed
in the Master File Directory as INDEXF.SYS,

e The Storage Bit Map File -~ controls the available space on
the volume. This file is listed in the MFD as BITMAP.SYS. It
contains a storage control file, which consists of summary
information for optimizing the allocation of storage. It also
contains the bit map itself, which lists available blocks of
storage. ‘

e The Bad Block File -~ is listed in the MFD as BADBLK.SYS. It
contains all of the bad blocks on the volume. Bad block
processing is discussed in more detail in Section 10.4.2.

e The Master File Directory (MFD) -- listed in the MFD as
000000.DIR. The MFD 1is the root of the volume directory
structure. It lists both the reserved files that control the
volume structure and user file directories.

e The Core Image File -~ listed in the MFD as CORIMG.SYS.

BACKUP AND RESTORE UTILITY (BRU)

file contains the system checkpoint file.

The following sections give you background

efficiently use

system disk processing operations.

information you need to
the BRU command qualifiers for controlling operating

This

Table 10-7
Initialization Qualifiers
Qualifier Options Explanation
/BAD MANUAL Enters the locations of
AUTOMATIC bad blocks on volumes.
OVERRIDE

/BUFFERS number Specifies the number of
directory File Control
Blocks (FCBs) per
volume kept in memory
by the ACP.

/EXTEND number Specifies the number of
blocks to extend a file
when that file has
exhausted its allocated
space.

/HEADERS number Specifies the number of
file headers to
allocate 1initially to
the index file.

/MAX IMUM number Specifies the maximum
number of files that
can be placed on a
volume,

/POSITION BEGINNING Specifies the location

MIDDLE of the index file,

END Master File Directory,

BLOCK : number and the storage
allocation file on a
disk.

/PROTECTION protection value Specifies the global

SYSTEM:value protection status of
OWNER:value the disk.
GROUP:value

WORLD:value

/WINDOWS number Specifies the number of
retrieval pointers
allocated for use with
file windows.

10.2.1.1

BACKUP AND RESTORE UTILITY (BRU)

The Index File - The index file contains the following

information:

10.2.2

Bootstrap Block =~ is virtual block number 1 of the index
file. If the volume is a PDP-11 system device, this block
contains a bootstrap program that loads the operating system
into memory.

If the volume is not a system device, this block contains a
program that displays a message indicating that the volume
does not have a hardware-bootable system.

Home Block -- establishes the specific identity of the volume,
providing such information as the volume name and protection,
maximum number of files allowed on the volume, and volume
ownership information. The home block is virtual block number
2 of the index file.

Index File Bit Map ~- controls the allocation of file headers
and thus the number of files on the volume. The bit map
contains a bit for each file header allowed on the volume.
The index file bit map starts at virtual block number 3 of the
index file and continues for the number of blocks necessary to
contain the bit map.

File Headers -- comprise the largest part of the index file.
Each file on the volume has a file header, which describes
such attributes as file ownership, creation date and time, and
file protection. The file header contains all the information
necessary for accessing the file.

Disk Volume Labels and Backup Set Names

If you omit the backup set name in a backup operation, BRU uses the

volume
tape.

label of the input disk as the backup set name of the output

10.2.3 Devices Supported for Backup and Restore

Table 10~-8 lists all the devices that BRU supports.

Table 10-8
Devices Supported By BRU
Mnemonic Type Class

DD TU58 cassette (DECtape II) Block=structured
DM RK611/RK06/RK07 cartridge disk Block=structured
DB RH11/RP04/RP05/RP06 and

RH70/RP04/RP05/RP06 disk

pack Block-structured
DK RKli/RKOS/RKOSF cartridge Block=-structured

pac

(continued on next page)

10-9

BACKUP AND RESTORE UTILITY (BRU)

Table 10-8 (Cont.)
Devices Supported By BRU

Mnemonic Type ’ Class
DF RF11/RS11 fixed head disk Block-structured
DL RL11/RLO1l cartridge disk Block=-structured
DP RP11/RP02/RP03 disk pack Block=-structured
DR RH70/RMO 3 Block=structured

RH11/RM02 disk pack
DS RH11/RS03/RS504 and RH70/RS03 Block-structured
RS04 fixed head disk

DT TCl11/TU56 DECtape Block=-structured
DX RX11/RX01 Floppy Disk Block=structured
DY RX211/RX02 Floppy Disk Block=-structured
MM RH11/TM02-03/TE16/TU16/TU45/TU77 | Tape

and RH70/TM02-03/TE16/TU16/TU45
and TU77 9-track magnetic tape

MT TM11/TUl0/TE10 7~ or 9=-track Tape
magnetic tape and TS03 9-track
magnetic tape

MS TS04 magnetic tape Tape

10.3 BACKUP AND RESTORE COMMAND LINE DESCRIPTIONS
This section describes the rules for entering command lines for the
Backup and Restore utility. The section includes the definition of

the command line syntax and descriptions of command line parameters,
command qualifiers, and prompts,

10.3.1 Command Line Syntax Definition
The general syntax of the BRU command line is:

BRU /qualifiers indevicel:,...[filespec,...] outdevicel:,...[filespec,...]

10.3.2 Descriptions of Prompts
Prompts

FROM:

TO:

INITIALIZE [Y/N]:

10-10

FROM

TO

BACKUP AND RESTORE UTILITY (BRU)

Requests that you enter the name(s) of the devices on which the
input volume(s) reside in the form specified in the description
below of the command parameters.

Requests that you enter the name(s) of the output devices in the
form specified in the description below of the command
parameters.

INITIALIZE [Y/N]

10.3.

Issued as a precaution to ensure that you want to erase the
output volume. Enter Y (for YES) if you want to initialize the
volume.

3 Description of Command Line Parameters

qualifiers

When

Specifies any of the command qualifiers specified above. If more
than one qualifier is specified, they must be contiguous; that
is, you may not separate the qualifiers with blanks or any other
delimiters. The qualifiers may appear in any order.

You may abbreviate a qualifier as 1long as you use a unique
abbreviation. For example:

BRU>/REW/INI/OUT:BACKUP MMO: DKO:
BRU - STARTING TAPE 1 ON MMO:

BRU -~ *WARNING* -- THIS DISK WILL NOT CONTAIN A HARDWARE
BOOTABLE SYSTEM

BRU - END OF TAPE 1 ON MMO:
BRU - COMPLETED

a qualifier has options, you must separate the qualifier from the

option by a colon in the form:

/qualifigr:option

indevice

Specifies the physical device or devices from which data is
transferred. For tapes, you may specify more than one input
device. Devices are specified in the form:

DD[uu] ¢

where DD represents the device mnemonic and uu represents the
octal unit number associated with that device. The unit number
may be specified as one or two digits; the default unit number
is 0. For example, a TU77 tape drive can be referenced as MM0O:,
MMO:, MM:, MMOl:, MMl:, and so forth, depending on your
configuration. The colon is a required delimiter.

When more than one device is specified, the device mnemonics must
be separated by commas.

10-11

BACKUP AND RESTORE UTILITY (BRU)

filespec

Indicates the file specification used to select particular files

or categories of files to be backed up or restored. The filespec
takes the form:

[n,m]filename.filetype;version
You may specify up to 16 filespecs per command line.

Files can be backed up or restored selectively by UFD, filename,
filetype, or version number. When backing up or restoring
selectively by version number, you must specify either an
explicit version number or no version number at all or a wildcard
(*), which has the same effect as no version number. BRU does
not support 0 or -1 as version numbers.

outdevice

Specifies the output device to which data is being transferred.

For tapes, you may specify more than one output device. The
rules are the same as for the "indevice" above.

10.3.3.1 Entering Command Lines with No File Specifications - When
you enter a command line with no file specification, all the files on
the input volume are copied to the output volume.

10.3.3.2 Wildcards in Input Specifications - The following wildcard
features are provided for file specifications:

[*,*] means all group,member combinations.
(nl,*] means all member numbers under group nl.
[*,n2] means all group numbers for member n2,

BRU supports the wildcard (*) in all the elements of a file
specification: file name, £file type, and version number. BRU
generally follows the RSX-11M rules for use of wildcards, except in
the following two instances:

e When you omit a file specification element, BRU treats the
omitted element as if it were a wildcard. That is, when you
specify only file name and file type in a file specification,
all version numbers are transferred in the backup or restore
operation. :

e When you specify particular UFDs on a command 1line, all the
files in those UFDs are transferred in the backup or restore
operation.

10.3.3.3 Continuation Lines ~ BRU allows you to continue a command
line onto more than one line by using a hyphen (-) as the continuation
character.

On RSX~-11M Version 3.2 systems, BRU supports continuation 1lines only
when invoked as BRU>. BRU does not support continuation lines when
run from an indirect command file or when the command line is entered
on the same line as the one on which BRU is invoked.

10-12

BACKUP AND RESTORE UTILITY (BRU)

On RSX-11M-PLUS systems BRU supports
circumstances.

The following examples show continued
RSX~11M-PLUS.

RSX~-11M

>RUN BRU

BRU>/REWIND~
BRU>/INVOLUME : BACKUP~
BRU>/BACKUP_SET:25MAY79-
BRU>/TAPE_LABEL:BRU123

FROM: DKO ¢

TO: MMO ¢

BRU - STARTING TAPE 1 ON MMO:

BRU - END OF TAPE 1 ON MMO:
BRU - COMPLETED

BRU>"Z

RSX~-11M-PLUS

>BRU /REWIND-

MCR> /INVOLUME :BACKUP-
MCR> /BACKUP_SET:25MAY79-

continuation lines wunder all

BRU command lines on RSX-11lM and

MCR> /TAPE_LKBEL:BRU123 DKO: MMO:

>

10.3.4 Description of Command Qualifiers

/APPEND

Directs BRU to append a backup set from the input volume to the
last backup set on the output tape.

The output tape may not be a continuation tape in a backup set;

it cannot contain a backup
volume.,

set that is continued on another

/APPEND causes BRU to skip to the logical end-of-tape before it

writes the new backup set,

if the tape was positioned at the

beginning. BRU searches the output volume for the last 1logical
end-of-file, If the tape is a continuation tape, i.e., not the
first tape of a tape set, BRU displays an error message.

If the last backup set does not end on the tape, BRU displays an

error message.

If the tape is not positioned at

cause BRU to start writing

the beginning, /APPEND will
where the tape 1is ' currently

positioned. /APPEND/REWIND will cause BRU to rewind the tape and
then space forward until the end of the volume.

/BACKUP_SET:name

Specifies the name of the backup set (refer to Section 10.5.2) to
be placed on tape. Default is the volume name of the disk being
backed up. This name may be up to 12 characters long.

10-13

BACKUP AND RESTORE UTILITY (BRU)

When applied to an output tape volume, the backup set name
assigns the name of the backup set being placed on the volume.
BRU supports multiple backup sets on a single volume.

If you specify no backup set name for the output volume, BRU uses R
the volume name of the input disk to name the backup set.

When applied to an input tape volume, BRU searches the first tape
for the specified backup set name, If you specify no backup set
name with the input volume, BRU restores the first backup set it
finds on the tape.

BRU does not rewind the first tape in a backup set unless you
specify /REWIND.

/BAD:[AUTOMATIC 1
[OVERRIDE
[MANUAL 1

The /BAD qualifier is used with the /INITIALIZE qualifier during
tape to disk or disk to disk operations.

For complete information on how to use the /BAD qualifiers, refer A
to Section 10.4.2, "Using the Bad Block Utility with Backup and :
Restore." The following are summary descriptions only.

For last-track devices, AUTOMATIC causes BRU to use the
manufacturer-written bad block information and the
software-detected bad sector file to create BADBLK.SYS. For
nonlast-track devices, it uses the software bad block descriptor
block to create BADBLK.SYS.

OVERRIDE applies only to last-track devices, causing the
last-track device to appear to be a nonlast-track device. When
OVERRIDE is specified, BRU uses the software bad block descriptor
block to create BADBLK.SYS.

MANUAL specifies that BRU use both the manufacturer-written bad
block information and either the software-detected bad sector
file (for last-track devices) or the bad block descriptor block
(for nonlast~-track devices) to create BADBLK.SYS. Also, MANUAL

accepts the addresses of bad blocks entered manually from the
terminal.

/BUFFERS: fcbcount %

It specifies the default number of directory File Control Blocks
(FCBs) per volume kept in memory by the ACP when the volume is
mounted., The more FCBs that are kept in memory, the faster that
files contained in heavily used directories are found. The
default value for fcbcount is the same as the default for the
input disk.

The /BUFFERS qualifier is used with the /INITIALIZE qualifier
during tape-to-disk or disk-to-disk operations.

| /COMPARE

| Compares the data on the output device with the data on the input
! device and reports any differences. No data transfer takes place
during a COMPARE operation. The command string specifying the
COMPARE operation must be identical to that entered when the data
on the output disk or tape was created, with the exception of the
/INITIALIZE and /NOINITIALIZE qualifiers. 41!5

10-14

BACKUP AND RESTORE UTILITY (BRU)

/COMPARE Output: When /COMPARE detects differences, it displays
a warning message at your terminal. /COMPARE always displays the
device mnemonic on which the difference was detected and the type

ﬁuuf of record in which the difference 1is encountered (a control
record, a header record, or a data record).

If the file is a header file, /COMPARE displays the file-ID for
the file. If the file 1is a data file, /COMPARE displays the
file~ID, the retrieval pointer for the file, and the name of the
file if it is available.

/CREATED: [BEFORE: (dd~mmm~-yy [hh:mm:ss])]
[AFTER: (dd-mmm-yy [hh:mm:ss])]

Backs up or restores files created on or before or after the
specified date and/or time.

If you specify both a date and a time, the date and time must be
enclosed 1in parentheses. If you specify only a date or only a
time, the parentheses are not necessary. If you specify only a
time, BRU uses today's date as the default.

(- /DENSITY:number

Specifies the density at which BRU writes to tape. The following
table shows legal values you can specify.

Drive Default Density Optional Density
TU1l0 800 None
TUl6 800 1600
TU45 800 1600
TU77 800 1600
- TS04 1600 None

If you specify /DENSITY with /APPEND, you must specify the
density at which the old tape data was written. For example, if
the tape was first written at a density of 800, you must specify
a density of 800. If you specify a density other than the
original density, BRU displays a warning message and continues
processing at the correct density.

If you enter an incorrect density for a restore operation, BRU
displays an error message and terminates the operation.

/DIRECTORY

Lists backup set names or files on the specified tape volume.

Using /DIRECTORY to Display Backup Set Names: When specified
with no backup set name, /DIRECTORY lists all the backup sets on
the volume:

BRU /DIRECTORY MMO:

VoLl BACKUP1l LABEL1l 12-MAY-79
VOL1 BACKUP2 LABELl 13-MAY-79

If a continuation tape is mounted when you enter the /DIR
qualifier, BRU 1lists the backup sets on that volume, not the
backup sets on the first or previous volumes. Also, /DIRECTORY
displays continuation tape number.

10-15

BACKUP AND RESTORE UTILITY (BRU)

Using /DIRECTORY to Display Files: To display the files in a
backup set, enter the backup set name with /DIRECTORY in the
form:

> -

>RUN BRU
BRU)/BACKUP_SET:23MAY79A/DIRECTORY MM1:
VOL1l. 23MAY79A CDADOC 23-MAY-79 23:37:11
[000,000]

[303,013]

27DECE.LST; 1

2JANA.LST; 1

18JANC.LST; 1

4JANA.LST; 2

ASTCRSH.MAC; 1

9DECA.LST; 2

X.MAC;1

X.0BJ;1

X.TSK;1l

APNDXC.TXT; 1

X.MAP;1

[001,054]

RSX11M.STB; 45 é‘T%
[002,054]
RSX11M.STB; 36

[003,054]

27DECE.CDA; 1

2JANA.CDA; 1

18JANC.CDA; 1

4JANA,.CDA; 1

5JANZ.CDA; 1

19JANB.CDA; 1

4JANB.CDA; 1

6JAN79.CDA; 1 !NFQ
9DECA.CDA; 1 e
11JANA.CDA; 1

15JANB.CDA; 2

15JANC.CDA; 2

11JAND.CDA; 1

11JANA.CDA; 2

15JANA,.CDA; 1

16JANA,CDA; 1

12JANE.CDA; 1

RSX11M.STB; 3

[005,054) gﬂg
[306,006] 7
APNDXB.MAC; 1

BRU - COMPLETED ON MM1:

BRU>"Z

>BYE

>

HAVE A GOOD MORNING

If the backup set is not on the tape, BRU halts execution and
displays a message at your terminal.

/DISPLAY

Prints at your terminal the file name and UFD of each file as the
header for that file is being transferred by BRU.

10~-16

BACKUP AND RESTORE UTILITY (BRU)

/ERRORS : number

Requests termination of a restore operation after the specified
number of nonfatal tape read errors. The default number of
errors before termination is 25.

/EXCLUDE

Selectively excludes from a backup or restore operation the files
specified on the command line.

/EXTEND: number

Specifies the default number of blocks by which a file can be
extended when that file has exhausted its allocated space. This
value is used by an ACP when the volume is mounted.

The /EXTEND qualifier is wused with the /INITIALIZE qualifier
during tape to disk or disk to disk operations.

/HEADERS : number

Specifies the number of file headers to allocate initially to the
index file. The primary reason for preallocating file headers is
to locate them near the storage bit map file. (The storage bit
map file is generally located in the middle of the disk.) Proper
placement of file headers can help reduce head motion during I/0
operations.

The /HEADERS qualifier is used with the /INITIALIZE qualifier
during tape to disk or disk to disk operations.

/INITIALIZE

Specifies that you want to initialize the output volume during a
tape to disk or disk to disk operation. Initialization places a
Files-11 structure on the disk, including the boot block (in some
cases), the home block, and such files as INDEXF.SYS,
BADBLKS.SYS, and 000000.DIR.

Along with the INITIALIZE qualifier, you. can specify the
following qualifiers when you are initializing a disk: BAD,
BUFFERS, EXTEND, MAXIMUM, POSITION, PROTECTION, HEADERS, and
WINDOWS . If you do not specify any of these qualifiers, BRU
defaults to the characteristics of the input disk.

/NOINITIALIZE specifies that you do not want a Files~1l disk
structure placed on the disk (one already exists). If you
specify neither /INITIALIZE nor /NOINITIALIZE, BRU prompts at
your terminal to ask whether you want to initialize the disk
being processed.

When restoring a volume containing a disk boot block and a system
that you want to be bootable, ensure that the volume to which you
are restoring is the same as or greater than the size of the
original volume. Also, the disk controller for the device on
which the output device resides must be compatible with the
device controller on which the original volume was created.

/INVOLUME : name

Specifies the volume label of the input disk or tape. This name
can be up to 12 characters long.

10-17

BACKUP AND RESTORE UTILITY (BRU)

For backup or disk-to-disk operations, /INVOLUME directs BRU to
look for the volume label of the input volume in order to verify
that the disk has the correct label. This check ensures that you
do not back up the wrong volume.

For restore operations, /INVOLUME directs BRU to 1look on the
input tape for the volume label in order to locate the correct
backup set. If BRU cannot locate the 1label, it displays a
message and terminates the operation.

/LENGTH: number

Specifies the length of the output tape in decimal feet. If the
length specified exceeds the length of the tape, the entire
length of the output tape will be used. 1In cases where you Kknow
the end of a tape must not be used, you can specify a shorter
length to ensure that you do not write on that part of the tape.

/MAXIMUM: number

Specifies the maximum number of files that can be placed on a
volume as determined by the number of file headers on the
volume's index file, The default maximum is the maximum number
of files on the input disk. The /MAXIMUM qualifier and the
/HEADERS qualifier are particularly useful when you are
initializing an output disk which is different in size from the
input disk. Refer to section 10.4.5 for more detailed
information about wusing the initialization qualifiers when you
are transferring data between disks of different sizes.

/MOUNTED

Backs up or restores files on volumes that are mounted as
Files~11 volumes (via the MCR MOUNT command). gﬂ?%

BRU does not use F11ACP (Files=1l) to access files on an input
disk; rather, it uses 1logical I/0 (QIO functions such as
I0.RLB). BRU first backs up groups of headers, then backs up the
files to which those headers point.

When backing up files from a mounted volume, disk activity
(changes to or deletions of files) at while BRU is running causes
the following results:

e If the file is being changed while BRU is backing up the 4
disk, BRU copies only the data that comprises the file at i
the time of the transfer; any changes made to the file

after the transfer will not appear on the volume to which
you are backing up.

e If the file is deleted while BRU is backing wup the disk,
the data that comprises the file may be corrupted.

If the file-ID from the deleted file is reused in a UFD
that BRU has not yet backed up, BRU will back up the new
file (with the previously allocated file~ID) when that file
is encountered. When restored, this new file (with the
duplicate file-ID) will appear as a synonym for the old
file with the same file~ID.

10-18

W

BACKUP AND RESTORE UTILITY (BRU)

e If the disk is changed (files are deleted or changed) after
BRU generates the directory, the directory on the first
tape of the tape set will not be accurate. Because BRU
generates the directory for the backup set as its first
processing step, changes to the disk after the directory is
generated will not be reflected in the directory.

In order to back-up and restore files on mounted volumes, BRU
must be built as a privileged task. For operations on unmounted
volumes, BRU need not be a privileged task.

BRU will back up from both mounted and unmounted volumes. On
RSX-11M-PLUS systems BRU treats a disk that is mounted foreign as
an unmounted disk. BRU does not use the file system in either
case. However, when you are doing a backup operation from a
mounted volume BRU checks read access privileges of both UFDs and
files against the UIC under which BRU is running.

BRU will restore to both mounted and unmounted volumes. To
restore to an unmounted volume (or one mounted foreign on an
RSX~11M-PLUS system), specify the /INITIALIZE qualifier to
initialize the disk to a Files~ll structure. To restore to a
mounted volume, specify /NOINITIALIZE to indicate to BRU that the
disk is mounted and already has a Files~1l structure on it.

/NEWVERSION

Resolves filespec conflicts that occur during restore operations
to an existing disk by creating new versions of the duplicate
files.

/NOINITIALIZE

Specifies that you do not want to initialize the disk; it
already has a Files-11 structure. The output disk must be
mounted as a Files-11 volume. You cannot enter any of the
initialization qualifiers listed above when you specify
/NOINITIALIZE. If you enter any of these qualifiers, BRU issues
an error message.

When you are restoring to a mounted volume (when you have
specified /NOINITIALIZE), BRU uses the file system to access the
output device. Therefore, a restore operation to a mounted
volume is slower than a restore to an unmounted volume.

/NOPRESERVE

Specifies that you do not want to preserve file-IDs. If you
specify /NOPRESERVE, BRU suppresses the warning message that
file-IDs are not being preserved.

When file~IDs are not preserved BRU assigns new file-IDs starting
at 6 and incrementing them sequentially.

/NOSUPERSEDE

When you are restoring to a mounted disk, specifies that when
file specifications on the output disk are identical to those on
the input disk, the file on the input disk is not transferred.
That 1is, the file on the output disk is not superseded by the
file on the input disk. NOSUPERSEDE is the default.

10-19

BACKUP AND RESTORE UTILITY (BRU)

/OUTVOLUME : name

Specifies the volume label of the output disk. This label can be
up to 12 characters long. Q!T%

For backup operations, the name of the disk volume stored on the
output tape volume 1is changed to the name specified with the
/OUTVOLUME qualifier.

For restore operations or for disk-to-disk transfers, the name of
the output disk volume is changed to the name specified with the
/OUTVOLUME qualifier.

When you omit /OUTVOLUME, BRU provides the following defaults:

e When you omit /OUTVOLUME in backup operations, the input disk
volume name is used as the volume name stored on tape.

e When you omit /OUTVOLUME in restore operations, the volume
name stored on tape 1is used as the name of the output disk
volume.

e When you omit /OUTVOLUME in disk-to-disk transfers, the volume £
name of the input volume is used as the volume name of the
output volume. '

T
i

/POSITION: [BEGINNING]

[MIDDLE]

[END]

[BLOCK:number]
When initializing an output disk, specifies the location of the
index file on the volume, usually to minimize access time.
BEGINNING, MIDDLE, and END specify the beginning, middle, and end
of a volume, BLOCK:number specifies a block number where the
index file is to be placed. The BEGINNING position is generally

used only when a disk contains predominently large contiguous
files.

When you do not use the /POSITION qualifier, BRU places the index
file in the same location as that on the input volume.

/PROTECTION: ([protection value])
protection values:
SYSTEM: RWED
OWNER:RWED
GROUP:RWED
WORLD:RWED

When initializing an output disk, specifies the default
protection status for all files created on the volume being
initialized. This protection value does not apply to files being
transferred by BRU, but rather to subsequent files created on
that volume by an ACP when the volume is mounted. The protection
values .above are standard for RSX-11M files; however if not
specified, the values are defaulted to the protection values of
the input disk.

/REVISED: [BEFORE: (dd-mmm~-yy [hh:mm:ss])]
[AFTER: (dd-mmm-yy [hh:mm:ss])]

Backs up or restores files revised or created on, before, or
after the specified date and time.

10~-20

BACKUP AND RESTORE UTILITY (BRU)

/REWIND

Rewinds the first magnetic tape of a tape set before executing a
backup or restore operation.

When specified with an input tape, BRU rewinds the first tape of
the tape set before searching for backup sets.

When specified with /APPEND, BRU rewinds the first set of the
tape set and then searches for the logical end of the last backup
set on the tape before executing the backup operation.

/SUPERSEDE

Specifies that when file specifications on the output volume are
identical to file specifications on the input volume, the file on
the output volume is deleted and replaced with the file from the
input volume. NOSUPERSEDE is the default.

/TAPE _LABEL

Specifies the 6-character volume identifier on the ANSI VOL1
label to be placed on a tape during a backup operation or to be
compared with the label on the tape on append and restore
operations. This allows you to check that you have mounted the
correct tape.

/VERIFY

Copies data from the input volume, performs a compare operation
after the transfer, and reports any differences.

/WINDOWS : value

When initializing an output disk, specifies the default number of
mapping pointers to be allocated for file windows. This value is
used by an ACP when the volume 1is mounted. A file window
consists of a number of pointers and is stored in memory when the
file is opened. The default number of mapping pointers 1is the
same as the default for the input disk.

Choosing a large number of mapping pointers may speed up file
access; however, a large file window uses up system dynamic
memory (pool space). If pool space is more critical than file
access time, choose a smaller number of pointers.

Refer to Appendix F of the IAS/RSX-11 I/0 Operations Reference
Manual for further information,

10.4 USING BACKUP AND RESTORE

This section contains information on how to wuse the following BRU
functions:

e Using the Bad Block Utility (BAD) with BACKUP and RESTORE
e Using the Format Utility (FMT) with BACKUP and RESTORE
e Using BRU to Initialize Disks

e Restoring Data Selectively

10-21

BACKUP AND RESTORE UTILITY (BRU)

e Transferring Data Between Disks of Different Size

e BRU and File Characteristics

10.4.1 Using the Format Utility with Backup and Restore

The Format (FMT) utility places magnetic sector and timing marks on
disks. In general, disks need to be formatted only once. However,
you may want to run FMT to ensure that the sector and timing marks are
accurate,

The format for invoking FMT is:
>FMT disk:

Where disk: is the logical name of the disk drive on which your pack
resides, for example:

>FMT DBO:

10.4.2 Using the Bad Block Utility with Backup and Restore

Once the disk has been formatted, use the Bad Block (BAD) wutility to
locate bad blocks on the disk you are initializing.

BAD uses two types of processes for disks: one for last-track devices
and the other for nonlast-track devices. Last-track devices have
manufacturer~-written bad block information on the 1last half of the
last track. Nonlast-track devices have no such information.

BAD does pattern checking on the disk being formatted. That 1is, BAD
writes a pattern on the tracks of the disk being formatted, reads the
pattern from the disk, and then checks to ensure that the pattern was
read correctly.

For last-track devices, BAD uses the results of this checking, along
with the manufacturer-written bad block information, to create the
software-detected bad sector file, which is also placed on the last
track of the device.

For nonlast-track devices, BAD uses only the results of its pattern
checking to create the bad block descriptor block. This block is then
placed on the last good block on the disk.

BRU uses this bad block information to create BADBLK.SYS, a file
occupying the bad blocks on a disk so that they cannot be used by the
file system.

10.4.2.1 BRU Bad Block Processing - Once you have formatted the disk
with the FMT utility and located the bad blocks using the BAD utility,
you can run BRU to complete initialization of the disk.

If you specify /BAD with the INITIALIZE qualifier, you can use one of
three options: AUTOMATIC (the default), MANUAL, or OVERRIDE. The
following sections describe how to use these options.

10-22

L -

BACKUP AND RESTORE UTILITY (BRU)

10.4.2.2 Using the AUTOMATIC Qualifier - The AUTOMATIC qualifier
speclifies that BRU use the existing bad block information on the disk
to create the file BADBLK.SYS. For last~track devices BRU uses the
manufacturer-written bad block information and the software bad sector
file. For nonlast~track devices BRU uses the bad block descriptor
block.

10.4.2.3 Using the OVERRIDE Qualifier - OVERRIDE applies only to
last-~track devices. It makes the disk appear to be a nonlast-track
device.

When you use OVERRIDE with BRU, ensure that the disk you are
processing has previously been processed by the BAD utility with the
BAD /OVR switch specified.

Using /OVR with BAD makes last-track devices look 1like nonlast-track
devices by using the last good block before the last track as the bad
block descriptor block. /OVR processing includes that last track as
bad data when it creates the bad block descriptor block.

OVERRIDE processing for BRU assumes that the bad block descriptor
block written by BAD exists on the disk being processed.

10.4,2.4 Using the MANUAL Qualifier - The MANUAL qualifier uses the
manufacturer-written bad block information written on the last track
and either the software-detected bad sector file or the bad block
descriptor block to create BADBLK.SYS. 1In addition, it accepts the
addresses of bad blocks you enter interactively at your terminal. If
there 1is no software-written bad block information, a message will be
displayed warning that BAD has not processed the disk.

When you specify /BAD:MANUAL, BRU will issue a prompt at your
terminal. To enter bad blocks, respond to the prompt with the
starting logical block number followed by a count of how many
consecutive blocks are bad, in the following format:

LBN:COUNT

This format is compatible with both the BAD and INI utilities. BRU
interprets both the LBN and the count as decimal numbers. You can
specify the LBN in octal, but you must specify the count in decimal.
To specify an octal value for the LBN, precede it with a #.

When you have finished entering bad blocks, type <RET> to return to
BRU command level.

10.4.3 Using Backup and Restore to Initialize Disks

You can use BRU commands in conjunction with the FMT and BAD utilities
to initialize (format a Files~1l structure on) a disk. The BRU
initialization qualifiers provide the same capabilities as those of
the INI utility. Selecting appropriate values for the initialization
qualifiers requires an in-depth knowledge of Files-11. Refer to the
IAS/RSX-11 I/0 Operations Reference Manual for details of the Files-ll
disk structure. The following example shows the steps involved in
initializing a disk using BRU.

10-23

BACKUP AND RESTORE. UTILITY (BRU)

RUN $FMT
FMT>DK2:

** WARNING - DATA WILL BE LOST ON DK2: ** A‘T%
CONTINUE? [Y OR N]: Y

START FORMATTING

OPERATION COMPLETE

FMT>"2Z

>BAD DK2:

BAD == DK2: TOTAL BAD BLOCKS= 0.

>RUN BRU

BRU>/INITIALIZE/OUTVOLUME :BACKUP/HEADERS:24/MAXIMUM: 45/BAD:~
BRU>AUTOMATIC/POSITION:END/WINDOWS : 3

FROM: DK1:

TO: DK2:

BRU == *WARNING* ==~ THIS DISK WILL NOT CONTAIN A HARDWARE BOOTABLE SYSTEM
BRU - COMPLETED ‘m
BRU>"Z)
>

10.4.4 Selective Transfer of Data

BRU provides functions that allow you to transfer data selectively.
That is, you can select categories of files to be backed up using file
specification elements, date, and time. For example, you can specify
that only files with the file type .0BJ or with UICs [1,54] be backed
up; similarly, you can specify that only files created before August
4, 1978 at 2:00 PM be backed up.

10.4.5 Backup and Restore to Disks of Different Size

BRU allows you to transfer data between disks of different sizes.
However, when you restore a volume containing a boot block, the new
volume is not bootable if the controller for the output device is not
compatible with the device controller on which the volume was created.
BRU prints a warning message,

NOTE

When restoring to an existing volume,
BRU will not issue the warning message.

If the new disk is smaller than the original, you may have problems
with the preservation of file-IDs. 1In this event you should use some
of the qualifiers described in Section 10.3.3 wunder the /INITIALIZE
qualifier. If you make the index file smaller, BRU does not preserve
the file-IDs and a message is printed.

10-24

BACKUP AND RESTORE UTILITY (BRU)

If you are transferring to a larger disk than the original, you must
use the /MAXIMUM and /HEADERS qualifiers to make full use of the
larger disk. If you do not specify a maximum number of files or file
headers, BRU uses the values of the original disk and you will end up
with a large disk that can contain only a small number of files.

Once you have initialized a disk with a maximum number of files, that
maximum cannot be extended. So the value for the /MAXIMUM qualifier
should be carefully chosen.

Refer to the IAS/RSX-11 I/0O Operations Reference Manual for a detailed
description of Files-11 structure before choosing values for the
initialization qualifiers.

10.4.6 BRU and File Characteristics

This section explains in detail how BRU treats the following file
characteristics:

e Creation and revision dates
e File headers
e File synonyms

e Lost files

10.4.6.,1 Creation and Revision Dates of Files - BRU always preserves
the creation and revision dates of files that it transfers. However,
since BRU creates UFDs during a restore operation to an unmounted
volume the creation date of the UFD is the date on which BRU created
it.

10.4.6.2 File Headers - BRU preserves all characteristics of a file,
if possible. There are three exceptions:

e If there is insufficient room on the output volume to restore
the file contiguously, it is restored noncontiguously.

e The file name is updated on the file's header to match the UFD
entry.

e The physical end-of-file in the user attribute area is updated
to reflect correctly the file's size.

10.4.6.3 File Synonyms - BRU copies file synonyms to tape as separate
files.

If you restore files with synonyms to an unmounted volume and you
preserve file 1ids, the file synonyms are restored as synonyms.
However, if you do not preserve file ids or you restore to a mounted
volume, file synonyms are restored as separate files.

10-25

BACKUP AND RESTORE UTILITY (BRU)

10.4.6.4 Lost Files - A file that is not contained in any UFD |is
known as a lost file. BRU does not find lost files. To find lost
files, use the VFY utility with the /LO qualifier before using BRU to
back up the disk.

10.5 TAPE FORMAT INFORMATION FOR BACKUP AND RESTORE OPERATIONS

Magnetic tapes have ANSI standard tape label formats, as shown in
Figure 10-1, The items at the beginning of the tape tell the tape
drive what it is reading: BOT means beginning of tape; VOL1 means
beginning of tape information; and HDR1 and HDR2 indicate the
beginning of a backup set.

BOT

VOL1

BOOT

HDR1

HDR2

Control
Record

Boot
Block

Home
Block

- Directory

Headers

Headers

Data

.

Data

Headers

EOF2

EOT

Figure 10-1 Standard Tape Format for Magnetic Tapes

10-26

-’

BACKUP AND RESTORE UTILITY (BRU)

10.5.1 Backup Sets

A backup set consists of all the data directed to a volume (or
volumes) during a backup or restore operation. A backup set includes
tape control data (one for each tape volume required), header records,
and data records. Physically, more than one backup set may be
contained on a tape, or a backup set can extend over several tapes.

The tape control data is written at the beginning of each backup set.
It contains a control record and on the first tape of a backup set,
the contents of the home block and boot block for the disk volume
being backed up. Directory records are interspersed with UFD records
to identify the owning UFD of the following directory records. Each
entry in a directory record represents a file to be backed up and is
identical to the file's entry in the UFD that contains it.

The header data consists of an identifying record, UFD records, and
file header records. The UFD identifier record identifies the UFD
containing the file headers following it.

Data records consist of an 80-byte data identification record
indicating that the records following are data records, and 1 to 10

data blocks preceded by a 48-byte area containing file identifiers and
retrieval pointers.

10.5.2 Tape Sets
More than one backup set may be contained on a tape, or a backup set
can extend over several tapes. In either case the resulting output is
called a tape set.

A tape set consists of the tape volume or volumes to which data is
transferred during a backup operation.

10.5.3 Multivolume Tape Operations

When you specify a magnetic tape drive as the output device in a BRU
operation, BRU writes the data contents of the input disk to the tape
on the drive. This data transfer often involves more than one reel of
tape and may utilize more than one tape drive.

You may specify multiple on-line tape drives in the following format:

BRU>/BACKUP_SET:23MAY79A DMO: MMO: ,MM1:
BRU - STARTING TAPE 1 ON MMO:

BRU - END OF TAPE 1 ON MMO:

BRU ~ STARTING TAPE 2 ON MMl:

BRU - END OF TAPE 2 ON MMl:

BRU - COMPLETED
You can specify only one type of drive, either MM or MT, in a single
BRU command. Although you can specify up to eight drives per command,
you can specify an individual tape drive only once.
If the number of tape volumes required exceeds the number of tape

drives available, BRU lets you replace tapes on the specified drive in
round-robin fashion.

10-27

BACKUP AND RESTORE UTILITY (BRU)

10.6 BACKUP AND RESTORE ERROR PROCESSING

This section lists BRU error messages, describes the meaning of the

message, and suggests actions to correct the errors.

BRU =- *FATAL* -- ALLOCATION FOR SYS FILE EXCEEDS VOLUME LIMIT

Explanation: A system file (one of the following files:
INDEXF.SYS, BITMAP.SYS, BADBLK.SYS, 000000.DIR) requires more
space than is available on the output disk. This will usually
occur if the output disk is smaller than the input disk.
User Action: You <can use the POSITION qualifier to force
allocation to start at the beginning of the disk and/or use the
MAXIMUM and HEADERS qualifiers to reduce the size of INDEXF.SYS.

BRU -~ *FATAL* -- AMBIGUOUS KEYWORD

Explanation: A keyword specified with a qualifier is not unique.
For example /POSITION:B could mean either BEGINNING or BLOCK.

User Action: You can abbreviate keywords to the shortest unique
abbreviation.
BRU -- *FATAL* -- AMBIGUOUS QUALIFIER

Explanation: A qualifier is not unique. For example, /RE could
mean either REVISED or REWIND.

User Action: You can abbreviate qualifiers to the shortest
unique abbreviation.

BRU -- *WARNING* -- APPENDING AT 800 BPI on device:
or
BRU -~ *WARNING* -- APPENDING AT 1600 BPI on device:

Explanation: The wrong tape density was specified with the
/APPEND switch. BRU will perform an APPEND only at the density
at which the tape is written.

User Action: None. BRU will continue at the correct density.

BRU ~- *FATAL* -- ATTACH FAILED on device:
Explanation: BRU could not attach the specified device.

/

User Action: Check to see if another task has the device
attached, or if the device has a volume mounted on it.

BRU =-- *WARNING* ~- BAD BLOCK DATA ERROR

Explanation: A manually entered bad block location, count, or
syntax was incorrect.

User Action: Enter the correct information.

10-28

BRU

BRU

BRU

BRU

BRU

BRU

BRU

BACKUP AND RESTORE UTILITY (BRU)

-— *WARNING* -- BAD BLOCK FILE CORRUPT. DATA IGNORED
Explanation: The bad block file created by BAD contains 1invalid
data. Unless you enter the bad blocks manually, BRU will assume
there are no bad blocks.

User Action: Use the /OVERRIDE qualifier to ignore the file.

-— *WARNING* -- BAD BLOCK FILE FULL

Explanation: The manual addition of bad blocks has resulted in
more than 102 sets of contiguous bad blocks.

User Action: None., You cannot enter more bad blocks. than the
file will hold.
- *WARNING* -~ BLOCK EXCEEDS VOLUME SIZE

Explanation: You have manually entered a bad block that is
larger than the size of the output disk.

User Action: Enter the correct block.

~=~ *WARNING* --- BOOT BLOCK IS BAD

Explanation: BRU cannot write to the output boot block.
Therefore the disk will not be hardware bootable.

User Action: None. BRU will continue the operation.

-- *WARNING* - BOOT BLOCK IS CORRUPT

Explanation: The input disk does not contain a valid boot block.
The output disk will not be hardware bootable.

User Action: None. BRU will continue the operation.

-- *WARNING* ~- BOOT BLOCK READ ERROR

Explanation: An error occurred while BRU was reading the boot
block.

User Action: None. BRU will continue the operation.

i

-— *WARNING* -- BOOT BLOCK VERIFY ERROR on device:

Explanation: During a backup operation, the boot block on the
output device did not match the boot block on the input device.

User Action: None. BRU will continue with the operation.

10-29

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- CANNOT RESTORE CONTIGUOUSLY
Explanation: The output device does not contain enough
contiguous blocks to restore the indicated contiguous file. The
file will be restored noncontiguously.
User Action: You can use the PIP utility to make the £file
contiguous again. Use the PIP qualifiers /DE and /TR to reclaim
disk space by deletion or truncation.

BRU -- COMPLETED
Explanation: The BRU operation is complete.

User Action: Enter another BRU command or exit.

BRU -~ *FATAL* —- CONFLICTING QUALIFIERS

Explanation: Two or more of the specified qualifiers are
mutually exclusive: for example, /SUPERSEDE and /NOSUPERSEDE.

User Action: Retype the command line.

BRU -- *WARNING* -- DATA ID RECORD VERIFY ERROR

Explanation: There was an error while BRU was verifying an
80-byte DATA ID record.

User Action: None. BRU will continue the operation.

BRU -—- *WARNING* -- DATA RECORD VERIFY ERROR [UFD]filename.type;version
FILE ID number LBN number
Explanation: There was a difference in a data block on input and
output devices. The file id of the file with the error and the
lbn of the block follow the message.

If a [UFD] is printed with a file name, the UFD is the owner UFD

from the file's header, not the UFD in which the file is

contained.

User Action: None. BRU will continue the operation.
BRU =-- *WARNING* -- DATA WAS LOST DUE TO IO ERRORS [UFD]

filename.type;version

Explanation: A tape read error resulted in missed data. The
files will be restored but may contain erroneous data.

If a [UFD] is printed with a file name, the UFD is the owner UFD
from the file's header, not the UFD in which the file is
contained.

User Action: None. BRU will continue the operation.

10-30

BRU

BRU

BRU

BRU

BRU

BRU

BRU

BRU

BACKUP AND RESTORE UTILITY (BRU)

~— *FATAL* -~ DEVICE CONFLICT
Explanation: Both a tape and a disk drive were specified as part
of the input or output device specification.
User Action: The device must be either a disk or a tape but not
both., This applies to both input and output specifications.
—-— %FATAL* -- DEVICE NOT IN SYSTEM
Explanation: A device was specified that does not exist on the
system.
User Action: Correct the device specification.
-~ *FATAL* -- DEVICE NOT SUPPORTED
Explanation: The specified device was not a tape or a disk.
User Action: BRU supports only magnetic tape and disk devices.
—-—- *FPATAL* -- DIRECTIVE ERROR
Explanation: An internal error has occurred in BRU.
User Action: Retry the operation.
—~— *WARNING* -- DIRECTORY VERIFY ERROR
Explanation: There was a difference in a directory record on
input and output devices.
User Action: None. BRU will continue the operation.
—— *PATAL* —- DISK IS AN ALIGNMENT CARTRIDGE
Explanation: The last track identified the disk as an alignment
cartridge, which cannot be initialized as a Files-1l volume.
User Action: BRU can be used only on Files-11 volumes.
-— *FATAL* --- DISK READ ERROR
Explanation: An unrecoverable read error occurred on the output
disk. This could be caused by an undetected bad block.
User Action: Use the BAD utility to locate all bad blocks. Then
use BRU with the /BAD:AUTOMATIC qualifier.
—-— *FATAL* -~ DISK WRITE ERROR

Explanation: An unrecoverable write error occurred on the output
disk. This could be caused by an undetected bad block.

User Action: Use the BAD utility to locate all bad blocks. Then
use BRU with the /BAD:AUTOMATIC qualifier.

10-31

BRU

BRU

BRU

BRU

BRU

BRU

BRU

BACKUP AND RESTORE UTILITY (BRU)

-- *FATAL* -- DOUBLY DEFINED QUALIFIER

Explanation: The same qualifier was specified more than once on
the command line.

User Action: Retype the command line correctly.

—= *WARNING* -- DUPLICATE BLOCKS FOUND

Explanation: A manually entered bad block was already in the bad
block file.

User Action: None. BRU will continue the operation.

—-- END OF tape number ON device:

Explanation: BRU has finished transferring data or verifying a
tape.

User Action: None. This is an informational message.

== *FATAL* -~ END OF VOLUME ENCOUNTERED. BACKUP SET NOT FOUND

Explanation: The backup set specified for a restore operation is
not on the tape volume.

User Action: Mount the correct tape volume and retry the
operation.

—= *FATAL* -- ERROR READING COMMAND FILE

Explanation: An I/O error occurred while BRU was reading the
indirect command file.

User Action: Retry the operation.

~— *WARNING* -- ERROR READING DATA BLOCKS
I/0 ERROR CODE-number
FILE ID number LBN number
or
RECOVERED

Explanation: An I/O0 error occurred while BRU was reading a data
block from the disk., The file id of the file which contains the
block and the lbn of the block are displayed as well as the 1I/0
error code. If RECOVERED is printed after the message, the block
was recovered by issuing l-block reads from the disk.

User Action: None. BRU will continue the operation.

—--~ *WARNING* -- ERROR READING UFD [group,number]

Explanation: An I/0 error occurred while BRU was reading a block
from the specified UFD. Any files contained in this block of the
UFD will not be backed up.

User Action: You may retry the operation. If the error still
occurs, you can find the files by using the VFY utiltity.

10-32

BACKUP AND RESTORE UTILITY (BRU)

BRU —- *WARNING* -- ERROR READING UFD HEADER [group,number]

Explanation: An error occurred while BRU was reading the header
of the specified UFD. Files in this UFD will not be backed up.

User Action: Retry the operation., If the error still occurs,
use the VFY utility to find the file.
BRU —-- *WARNING* ~-- EOT MARKER ERROR

ixplanation: An error occurred while BRU was writing or
verifying the end of tape labels on the output tape.

User Action: On a write error, BRU will rewind the current tape
and put it off-line., BRU will request that a new tape be mounted
and will rewrite the tape.

On a verify error, BRU will continue.

BRU -~ *FATAL* -- ERROR LIMIT EXCEEDED

Explanation: BRU has reached the specified number of tape read
errors and terminated execution.

User Action: Retry the operation, using a different tape drive,
or after cleaning the tape drive heads.

BRU -- *WARNING* -~ EXTENDING INDEX FILE
Explanation: The initial number of file headers was too small.
Either 256 or 16 more headers will be allocated depending on the
number of blocks on the output disk.

User Action: None. BRU will continue the operation.

BRU =-- *FATAL* -~ FAILED TO READ BAD BLOCK FILE

Explanation: BRU was unable to read the bad block information
from a last-track output disk.

User Action: Retry the operation, wusing the /BAD:OVERRIDE
qualifier.

BRU —— *WARNING* -- FILE HEADER READ ERROR [group,number] filename.type;version
1/0 ERROR CODE-number

Explanation: An I/0 error occurred while BRU was reading a file
header. That file will not be backed up.

User Action: None. BRU will continue the operation.

BRU -- *WARNING* -~ FILE HEADER VERIFY ERROR [group,number] filename.type;version

Explanation: The file header of the specified file on the output
device is not the same as that on the input device.

User Action: None. BRU will continue the operation.

10-33

BACKUP AND RESTORE UTILITY (BRU)
BRU -- *WARNING* -- FILE ID AREA VERIFY ERROR

Explanation: The BRU-generated file 1d area of a data record was
different on the input and output devices. !!7%

User Action: None. BRU will continue the operation.

BRU -- *FATAL* -- FILE ID EXCEEDS MAXIMUM NUMBER OF FILES

Explanation: You specified a maximum number of files with the
MAXIMUM qualifier, which was too small to perserve file ids.

User Action: Specify a larger value with the MAXIMUM qualifier,
or use a larger output disk.
BRU -- *WARNING* -- FILE ID SEQUENCE NUMBER ERROR [UFD] filename.type;version
Explanation: There are two possible sources of this error:
1. The sequence number in the file id of a file does not
match the sequence number of the file's entry in the fﬂTQ
UFD. ;

2. The sequence number of a UFD does not match the sequence
number of the UFD's entry in the MFD.

Therefore, the file or UFD is not valid and will not be copied.

User Action: None. BRU will continue the operation,

BRU =-- *WARNING* -~ FILE IDS WILL NOT BE PRESERVED Q!P%
Explanation: File ids cannot be preserved because the bitmap on
the output disk 1is too small. This 1s because the value
specified with the MAXIMUM qualifier was too small,

User Action: None, BRU will <continue the operation, not
preserving file ids.

BRU -- *WARNING* ~- FILE MARKED FOR DELETE [UFD] filename.type;version
Explanation: The marked-for-delete bit (SC.MDL) of the system L i
controlled characteristics in the file header was set, indicating
that the file was partially deleted. The file will not be
copied.

User Action: None. BRU will continue the operation.

BRU —- *WARNING* —- FILE NOT FOUND [UFD] filename.type;version

Explanation: During a backup operation, the specified file does
not have a header in the index file. The file is not copied.

During a restore operation, BRU cannot £find the file being
verified on the output disk.

User Action: BRU will continue the operation.

10-34

BACKUP AND RESTORE UTILITY (BRU)

BRU —- *FATAL* ~- HANDLER NOT RESIDENT

Explanation: The device driver for the specified device 1is not
loaded.

User Action: Load the driver for the specified device, or retype
-he command line specifying the correct device name.
BRU -+~ *WARNING* -~ HEADER ID RECORD VERIFY ERROR

Explanation: The header id record on the output device |is
different from the one on the input device.

User Action: None. BRU will continue the operation.
BRU -~ *WARNING* --- HEADER READ ERROR [UFD]filename.type;version
I/0 ERROR CODE-number

Explanation: An I/0 error occurred while BRU was reading a file
header in the index file during a backup operation.

If this error occurs during a restore operation, it is fatal.
User Action: None.

BRU ~- *FATAL* -- HOME BLOCK READ ERROR
I/0 ERROR CODE~number

Explanation: An I/0 error occurred while BRU was reading the
home block on the input device.

User Action: Retry the operation.

BRU -~- *WARNING* -- HOME BLOCK VERIFY ERROR

Explanation: The home block on the output device is different
from the home block on the input device.

User Action: BRU will continue, but it 1is suggested that you
retry the operation.

BRU -- *FATAL* -- HOME BLOCK WRITE ERROR

Explanation: An unrecoverable I/0 error occurred while BRU was
writing the home block on the output device.

User Action: Use BAD.

10-35

BRU

BRU

BRU

BRU

BRU

BRU

BACKUP AND RESTORE UTILITY (BRU)

-- *FATAL* -- ILLEGAL USE OF DIRECTORY QUALIFIER
Explanation:

1. The DIRECTORY qualifier was specified with an output
device.

2. The DIRECTORY qualifier was specified with a device
other than tape.

3. Initialization qualifiers were specified with the
directory qualifiers.

User Action: Refer to Section 10.3.3 for a description of valid
uses of the DIRECTORY qualifier.
—-— *FATAL* -- INCONSISTENT INITIALIZE QUALIFIERS

Explanation: Qualifiers that initialize the output disk were
specified, but the NOINITIALIZE qualifier was used.

User Action: Retype the command line.
-—- *FATAL* -- INDEX FILE HEADER READ ERROR
I/0 ERROR CODE-number

Explanation: An I/O error occurred while BRU was reading the
header of the index file on the input disk.

User Action: Retry the operation.

—— *FATAL* -- INDEX FILE WRITE ERROR

Explanation: An unrecoverable I1/0 error occurred while BRU was
writing the index file to the output disk.

User Action: Use BAD to identify the bad blocks on the output
disk., Then initialize the disk and retry the operation.

-- *FATAL* -- INDEXF.SYS IS FULL
Explanation: The index file cannot map any more file headers.
User Action: Retry the operation, using a larger value with the
/MAXIMUM qualifier.

-— *PATAL* -~ INIT QUALIFIERS INVALID WHEN OUTPUT IS TAPE

Explanation: The initialize qualifiers may be used only when the
output device is a disk.

User Action: Retype the command line.

10-36

'WmMMlllIHlIlll"Il'-'lIlIllIlI-lllHl!!IllIHlllﬂIlnluu-nlI!HIIIllHlllIlIlllllllllllllllﬂllﬂlﬂ”ﬂl!

BRU

BRU

BRU

BRU

BRU

BRU

BRU

BACKUP AND RESTORE UTILITY (BRU)

-- *FATAL* —-- INPUT DEVICE EQUALS QUTPUT DEVICE

Explanation: The input and output devices must be different.
User Action: Retype the command 1line, specifying different
devices for input and output,

-— *PFATAL* -- INPUT LINE TOO LONG
Explanation: The maximum length of a command line is 256
characters.
User Action: You may abbreviate qualifiers and keywords as long
as the abbreviations are unambiguous.

-— *FATAL* -- INTERNAL ERROR IN BRU
Explanation: BRU has detected an error within itself. This
should not normally occur.
User Action: Please submit an SPR with all pertinent
information.

-= *FATAL* -- INVALID DATE

Explanation: A date was specified 1incorrectly or is out of
range.
User Action: Specify the correct date.

-— *FATAL* -- INVALID DENSITY

Explanation: A density was specified that was neither 800 nor
1600 BPI.
User Action: Retype the command 1line, specifying the correct
density.

-=- *FATAL* —-- INVALID FILENAME
Explanation: The name of the indirect command file 1is not
syntactically correct.
User Action: Retype the command line.

-= *WARNING* -- INVALID TAPE FORMAT

Explanation: An invalid tape record was read during a restore
operation.

User Action: None. The invalid record will not be restored.

10-37

BRU

BRU

BRU

BRU

BRU

BRU

BRU

BACKUP AND RESTORE UTILITY (BRU)
-— *PATAL* -- INVALID VALUE

Explanation: A value specified for a qualifier has illegal -
syntax or is out of range.)

User Action: Refer to Section 10.3.3 to determine the wvalid
values for the particular qualifier.
——- *WARNING* -- INVALID DATE ON FILE HEADER [UFD] filename.type;version

Explanation: An invalid date was encountered on a file header
during an incremental backup. The file 1s copied.

User Action: None. BRU will continue the operation.

-- *FATAL* -- MANUFACTURER BAD BLOCK SECTOR FILE IS CORRUPT

Explanation: BRU was unable to read the bad block information
from a last track output disk.

User Action: Retry the operation, using the /BAD:OVERRIDE - %
qualifier.
-— *FATAL* -- MFD HEADER READ ERROR

Explanation: An I/0 error occurred while BRU was reading the
header of the Master File Directory.

User Action: Retry the operation. 1If the header still cannot be
read, the files on the disk are lost and may be recovered using
the VFY utility.

—— *WARNING* -~ MFD READ ERROR

Explanation: An I/0 error occurred while BRU was reading a block
of the MFD. BRU cannot copy the UFDs in that block of the MFD.

User Action: Retry the operation. If the block cannot be read,
use the VFY utility to recover the lost files.

~- *FATAL* -- MISSING COLON

Explanation: A qualifier keyword that accepts a value was not
followed by a colon.

User Action: Retype the command line.

-— *FATAL* -- MORE THAN 1 LEVEL OF INDIRECTION

Explanation: BRU does not support more than one level of
indirect command files.

User Action: Retype the command 1line.

10-38

BACKUP AND RESTORE UTILITY (BRU)

BRU —-- MOUNT TAPE n ON ddn:
Explanation: There is no tape on the specified drive or the tape
- is not at load point. This message will print every two minutes
until the tape is mounted.

User Action: Mount the tape specified on thé drive specified.

BRU --— MOUNT ANOTHER TAPE

Explanation: BRU is requesting that a new tape be mounted after
encountering a fatal tape write error.

User Action: Mount a new tape on the drive.

BRU -- *FATAL* -- NAME MORE THAN 12 CHARACTERS

Explanation: A name, such as a backup set name, is 1longer than
12 characters.

w ‘ User Action: Specify a name not greater than 12 characters.

BRU -~ *WARNING* -- NO BAD BLOCK DATA FILE FOUND

Explanation: The BAD utility has not been run on the output disk
to produce a file of the disk's bad blocks.

User Action: None. BRU will continue the operation. Refer to
Section 10.4 for information on bad block processing by BRU.
\h.f BRU —- *WARNING* -- NO FILES FOUND [UIC] filename.type;version

Explanation: During a backup operation, BRU found an entry in
the UFD or MFD that had no corresponding header in the index
file.

During a restore, compare, or verify operation, BRU cannot £find
the specified file on the output device.

User Action: BRU ignores the entry.

BRU —-- *WARNING* -- NON FATAL QUALIFIER CONFLICTS BEING IGNORED
Explanation: You entered a qualifier that conflicts with the
rest of the command 1line and is nonfatal 1if ignored. For
example, /REWIND on a disk-to-disk operation.

User Action: None. BRU will continue the operation.

BRU -- *FATAL* -- NON OCTAL NUMBER

Explanation: A decimal number was used where an octal number was
expected,

User Action: Retry the operation, using the correct octal
number.

10-39

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- NUMBER OF HEADERS EXCEED MAXIMUM NUMBER OF FILES

Explanation: The number of initial file headers must be at least

five 1less than the maximum number of files in order to account
for the system files.

User Action: Use the /HEADERS qualifier to specify the number of
initial file headers.

BRU -- *FATAL* -- OUTPUT DISK TOO FRAGMENTED TO RESTORE

Explanation: Internal tables in BRU have overflowed due to
extreme fragmentation of the output disk. If the output disk was
initialized, then it has an unacceptable number of bad blocks and
should not be used as a backup medium.

User Action: Use a new disk as the output device.

BRU -- *FATAL* -- OUTPUT VOLUME IS FULL

Explanations There are no free blocks on the output disk. This £ %
can occur when the output disk is smaller than the input disk, or
during an append to a tape that is already full.

User Action: If the output disk is too small, do an incremental
backup of only the files you want, If you were doing an append
to a tape that is already full, repeat the operation using a new

tape.
BRU ~- *FATAL* —- OVERRIDE INVALID WITH NON LAST TRACK DEVICE
Explanation: The OVERRIDE keyword may be used only when the i

output disk is a last-track device.

User Action: Refer to Section 10.4.

BRU -- PLEASE ANSWER YES OR NO
Explanation: BRU requires a response.

User Action: Enter YES or NO at your terminal.

BRU -- *FATAL* -- PRIVILEGE VIOLATION

Explanation: The input volume is mounted as a Files-1ll structure
but the /MOUNTED qualifier was not entered on the command line,

In copying from a mounted volume, the wuser did not have read
access to the specified UFD or file.

User Action: Either dismount the disk or specify the /MOUNTED
qualifier on the command line.

10-40

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- RAN OUT OF SPARE FILE IDS

Explanation: The output disk is too fragmented to preserve file
ids.

User Action: Retry the operation using the /NOPRESERVE
qualifier. You may want to use a different output disk.
BRU == *WARNING* -- RECORD NOT EXPECTED SIZE

Explanation: The record read on the output device during a
verify or compare operation was not the expected size.

User Action: None. BRU will continue the operation.

BRU -- *FATAL* -- REQUIRED INPUT DEVICE MISSING

Explanation: The input device was not specified on the command
line or in response to the prompt.

User Action: Retype the command line.

BRU --- *FATAL* -- REQUIRED OUTPUT DEVICE MISSING

Explanation: The output device was not specified on the command
line or in response to the prompt.

User Action: Retype the command line.

BRU --- REWIND ERROR ON ddn:
Explanation: An I/O error occurred during a tape rewind. This
error is fatal if it occurs on the first tape of a tape set or
during a rewind for verify. The error is not fatal if BRU s
rewinding a tape it is finished with.

User Action: None.

BRU -- *FATAL* -- SEARCH FOR HOME BLOCK FAILED

Explanation: The home block could not be found on the input
disk. Either the home block is bad or the disk is not Files-1l.

User Action: Check to see that you have the correct disk.

BRU --- *FATAL* -- STACK OVERFLOW IN SORT ROUTINE

Explanation: A stack internal to BRU has overflowed. This
should not normally occur.

User Action: Please submit an SPR with all pertinent
information.

10-41

BACKUP AND RESTORE UTILITY (BRU)

BRU -- STARTING TAPE n ON ddn:

Explanation: This message tells you which tape is being copied
to on which drive.

User Action: None. This is an informational message.

BRU -- STARTING VERIFY PASS

Explanation: This message tells you which tape is being
verified.

User Action: None. This is an informational message.

BRU —-- *FATAL* -- SYNTAX ERROR
Explanation: The command line is invalid.
User Action: Retype the command line.

BRU -- TAPE LABEL ERROR ON ddn:
I/0 ERROR CODE -number
Explanation: An I/0 error occurred wh