
OEM MICRONOTES

mamDDma

mamaala

Enclosed is the new set of MicroNotes.
twenty-one new documents relating
component products from Digital.

This set
to some of

consists of
the latest

The original set of 111 MicroNotes has been superseded by this
new edition. The titles in the original set can be found in
Appendix A of the enclosed document. The original MicroNotes
(if- you do not have them) can still be obtained by wri ting to
the OEM Technical Support Group at:

OEM Micros Technical Support Group
Digital Equipment Corporation
2 Iron Way MR03-3/G20
Marlboro, MA 01752

Attn: Cindy Dorval

Be sure to ask for the original MicroNotes.

If there is someone you know that would like to be added to the
MicroNote Distribution List have them fill out the enclosed
MicroNote Reservation Form and return it to the address listed
above.

The group would appreciate any feedback or suggestions on future
MicroNotes these comments can also directed to the above
address.

Sincerely,

OEM Micros Technical Support Group

DIGITAL EQUIPMENT CORPORATION, TWO IRON WAY, BOX 1003, MARLBORO, MASSACHUSETIS, 01752
(617) 467·5111

Digital Equipment Corporation
Two Iron Way .
Box 1003
Marlboro, Massachusetts 01752-9103
617.467.5111

Your name is on our mailing list. Enclosed is an updated set
of MicroNotes which consists of the twenty-one previously
published documents plus twenty NEW MicroNotes. The
information contained in this set relates to some of the
latest component and small system products from Digital.

If someone would like to be added to the MicroNote
Distribution List, have them fill out the enclosed MicroNote
Reservation Form and return it to the address listed below;
attention Cindy Dorval. This form can also be used to make
address corrections, noting the date your location changed.

The group would appreciate any feedback or suggestions for
future MicroNotes. These comments can also be directed to the
address below.

Thank you for your continuing interest.

OEM Technical Support Group
Digital Equipment Corporation
2 Iron Way (MR03-3/G20)
Marlboro, MA. 01752-9103

MicroNote Reservation Form
_______ ~-------------------______ I ______ --------------________ _

Please fill out this form and return it to:

OEM Micros Technical Support Group
Digital Equipment Corporation
2 Iron Way MR03-3/G20
Marlboro, MA 0172
Attn: Cindy Dorval

This will add you to the MicroNote Di~tribution List.
MicroNotes are short technical articles written about Digital's
component level products. Product highlights, technical
descriptions, technical hints-and-kinks not found in the regular
documentation, and recent product changes and announcements are
discussed in the MicroNotes.

Name:

Company:

Title:

Address:

City:

State: Zip:

Questionnaire

1. I am:
o an OEM
o a Distributor
o an End-User
o Other

2. The Industry I Service is (e.g.
Instrumentation, Education):

Medical,

3. The Application(s) within that Industry is/are
machine control, IC testers, general purpose computing):

4. I'd like future MicroNotes to Discuss:

Control,

(e.g.

TABLE OF CONTENTS

uNOTE NO. TITLE

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

MUL, DIV, & ASH Instruction for the
FALCON and the FALCON-PLUS

Block Mode DMA

Compatible Bootstrap for the LSI-11/73

LSI-11/73 Upgrade Paths

Q22 Compatible Options

Differences Between the LSI-ll/73
and LSI-11/23

User Defined Memory Maps for the FALCON
and the FALCON-PLUS

Memory Management and the LSI-l1/73

Cache Concepts and the LSI-l1/73

MicroVAX I/O Programming

LSI-11/73 Advanced Memory Management

OMA on the Q-bus

Run-time System Performance Evaluation
Using MicroPower/Pascal V 1.5

Using Fortran Routines In A
VAXELN/pascal Environment

Q-bus Hardware Bootstrap

KXTI1-CA Software Development Tools

LSI-11/23 ECO History

Programming the KXTII-CA DM.~ Controller

Disabling RAM on the MXV11-iBF

I

DATE

13-Apr-82

01-Jun-83

28-Nov-83

28-Nov-83

23-Apr-84

23-Apr-84

01-May-84

22-Jun-84

02-Jul-84

27-Jul-84

04-0ct-84

09-0ct-84

09-0ct-84

16-0ct-84

16-0ct-84

16-0ct-84

19-Nov-84

28-Dec-84

10-Jan-85

PAGE NO.

1

5

25

27

33

39

47

61

73

79

85

97

101

107

111

115

123

131

155

uNOTE NO. TITLE

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

Differences between the Mxv11-A
and MXV11-B

Floating Point Consideration
on MicroVAX I

Differences Between the MicroVAX I and
MicroVAX II CPUs

MicroVAX I to MicroVAX II Upgrade Issues

MicroVAX Instruction Set Differences

FPJ11-AA Compatibility with the
LSI-11/73 (KDJ11-A)

The MicroVAX Multicomputing Capability

Using Messages with VAXELN

MSV11-Q/M/J Memory Comparisons

Q-bus Expansion Concepts

The Private Memory Interconnect between
the KDJ11-B and the MSV11-J

MSV11-QA Revision Differences

KXT11-C Parallel I/O Programming

System Configuration of DL-type Devices

Programming the KXT11-C Multiprotocal SLU

Backplane Expansion/Termination

MicroVMS Revealed

In Search of NanoVMS

DECnet Downline Loading

Differences between KDJ11-A and KDJ11-B

FPJ11 Theory of Operation

Device Ordering Chart for Q-bus Systems

II

DATE

10-Jan-85

10-Jan-85

28-Apr-85

28-Apr-85

28-Apr-85

28-Jun-85

28-Jun-85

28-Jun-85

28-Jun-85

28-Jun-85

28-Jun-85

28-Jun-85

28-Jun-85

28-Jun-85

19-Jul-85

19-Jul-85

19-Jul-85

19-Jul-85

26-Jul-85

08-Aug-85

17-Sep-85

17-Sep-85

PAGE NO.

159

161

163

177

183

195

197

211

217

221

227

237

247

289

303

327

335

361

369

379

385

389

APPENDIX A

ORIGINAL MICRONOTES - TABLE OF CONTENTS

APPENDIX B

SUBJECT INDEX

III

A1

B1

· I uNOTE # 001

Title: MUL,DIV and ASH Instruction for the FALCON Date: 13-APR-82
and the FALCON-PLUS

Originator: Charlie Giorgetti Page 1 of 4

There is no hardware support for the EIS, FIS, or FPP instruction sets.
For FALCON SBC-ll/21 applications that need the ability to perform the
EIS instructions MUL, DIV, and ASH, equivalent software routines can be
substituted. These callable routines do not do any form of error
checking. A user should be aWarE! that extensive use of these software
routines for hardware instructi()ns will have impact on system
performance. These routines can bE! incorporated into an application and
called as a subroutine. The calling sequence for the subroutines can be
set-up in a macro. The followin9 is a list of each of the subroutines
and the macros that are used to set-up and call the software MUL, DIV,
and ASH routines.

1

uNOTE # 001
Page 2 of 4

The following macro and subroutine can be used to perform the MUL
instruction in software:

• MACRO

MOV
MOV
JSR
MOV

MOV

.ENDM

$MUL: : MOV
MOV
MOV
MOV
CLR

10$: ROR
ROR
BCC
ADD
CLC

20$: DEC
BNE
TST
MOV
MOV
MOV
MOV
RTS

SMUL A,B,HI,LO

A,-(SP)
B,-(SP)
PC,$MUL
(SP)+,HI

(SP)+,LO

RO,-(SP)
R1,-(SP)
10(SP),R1
#21,-(SP)
RO
RO
Rl
20$
10(SP),RO

(SP)
10$
(SP)+
R1,10(SP)
RO,6(SP)
(SP)+,Rl
(SP)+,RO
PC

Push a multiplier onto the stack
Push the other multiplier as well
Call the MUL subroutine
Get the most significant part of
the result
Get the least significant part of
the result

Save some work registers

Obtain the value of A from the stack
Initialize the shift counter

; Initialize the high 16-bit accumulator
Perform multiplication

2

Bump the shift counter
Not done ?
Romove the counter from the stack
Save the low 16-bit value on the stack
Save the high 16-bit value on the stack
Restore the work registers

Return

uNOTE # 001
page 3 of 4

The following macro and subroutine can be used to perform the DIV
instruction in software:

.MACRO SDIV DIVSOR,DIVHI,DIVLO,REM,QUO

MOV
MOV
MOV
JSR
MOV
MOV

.ENDM

$DIV:: MOV
MOV
MOV
MOV
MOV
MOV
MOV
CLR
MOV

1$: ASL
ROL
ROL
CMP
BLO
SUB
I~C

2$: DEC
BNE
TST
MOV
MOV
MOV
MOV
MOV
MOV
MOV
RTS

DIVSOR,-(SP);
DIVHI ,-(SP) i
DIVLO ;-(SP) i
PC,$DIV ;
(SP)+,REM
(SP)+,QUO

Push the divisor onto the stack
Push the upper 16-bits of the dividend
Push the lower 16-bits of the dividend
Call the DIV subroutine
Get the remainder
Get the quotient

.RS ,-(SP)
R4,-(SP)
R3,-(SP)
RO,-(SP)
14.(SP),R3
12.(SP),R4
10. (SP) , RS
RO
#32.,-(SP)
RS
R4
RO
RO,R3
2$
R3,RO
RS
(SP)
1$
(SP)+
RO,12.(SP)
RS,14.(SP)
(SP)+,RO
(SP)+,R3
(SP)+,R4
(SP)+,RS
(SP)+,(SP)
PC

3

; Get some work registers

Get the divisor from the stack
i Get the high 16-bits of the dividend

as well as low 16-bits
i Clear an accumulator
; Shi :Et counte r

Perform the division

Not done ?
; Remove the counter from the stack

Store the remainder on the stack
; store the quotient as well

Restore the work registers

Update the return PC
Return

uNOTE .# 001
Page 4 of 4

The following macro and subroutine can be used to perform the ASH
instruction in software:

. MACRO

MOV
MOV
JSR
MOV

.ENDM

$SASH: : MOV
MOV
MOV
MOV
BIC
BEQ
CMP

~ BGT
5$: ASL

DEC
BNE
BR

10$: NEG
BIC

11$: ASR
DEC
BNE

20$: MOV
MOV
MOV
MOV
RTS

SASH COUNT,VAL

COUNT,-(SP)
VAL,-(SP)
PC,$ASH
(SP)+,VAL

RO,-(SP)
R1,-(SP)
6(SP),RO
8.(SP),R1
#"C<77>,R1
20$
R1,#31.
10$
RO
R1
5$
20$
R1
#"C<77>,R1
RO
R1
11$
RO,8.(SP)
(SP)+,R1
(SP)+,RO
(SP)+,(SP)
PC

; Push the shift count
Push what is to be shifted
Call the ASH subroutine
Get the results of the shift

Get a couple of work registers

RO - value to be shifted
R1 - direction and shift count

Get out if no shifting
; What direction is the shift

4

go to the corection direction shift

Store the shifted result on the stack
Restore the work registers

update the return PC
Return

uNOTE # 002

Title: Block Mode DMA Date: 01-JUN-83

Originator: Scott Tincher and Mike Collins Page 1 of 20

What is Block Mode DMA?

Block Mode DMA is a method of data transfer which increases throughput
due to the reduced handshaking necessary over the Q-bus. In order to
implement Block Mode DMA both the master and slave devices must
understand the block Mode protocol. If either device does not have
Block Mode capability the transfers proceed via standard DATI or DATO
cycles.

Conventional Direct Memory Access on the Q-bus

Under conventional DMA operations, after a DMA device has become bus
master, it begins the data transfers. This is accomplished by gating an
address onto the bus followed by the data being transferred to or from
the memory device. If more than one transfer is performed by the
temporary bus master, the address portiort of the cycle must be repeated
for each data transfer.

Block Mode Direct Memory Access on the Q-bus

Under block Mode DMA operations an address cycle is followed by multiple
word transfers to sequential addresses. Therefore data throughput is
increased due to the elimination of the address portion of each transfer
after the initial transfer.

5

uNOTE :1 002
Page 2 of 20

There are two types of block Mode transfer, DATBI (input) and DATBO
(output). An overview of what occurs during each type of block Mode
transfer is outlined in figures 1 (DATBI, Block Mode input.) and 2
(DATBO, block mode output).

In the following discussion the signal prefix
bus driver input and the signal prefix
receiver output.

DATBI Bus Cycle

T(Transmit) indicates a
R(Receive) indicates a bus

Before a DATBI block mode transfer can occur the DMA bus master device
must request control of the bus. This occurs under conventional Q-bus
protocol ..

o REQUEST BUS

The bus master device requests control of the bus by asserting
TDMR ..

o GRANT BUS CONTROL

The bus arbitration logic in the CPU asserts the DMA grant
signal TDMGO 0 nsec minimum after TDMR is received and 0 nsec
minimum after RSACK negates (if a DMA device was previous bus
master) .

o ACKNOWLEDGE BUS MASTERSHIP

The DMA bus master device asserts TSACK 0 nsec minimum after
receivin~ ,RDMGI, 0 nsec minimum after the negation of RSYNC and
o nsec mlnlmum after the negation of RRPLY. The DMA bus master
device negates TDMR 0 nsec minimum after the assertion of TSACK.

o TERMINATE GRANT SEQUENCE

The bus arbitration logic in the CPU negates TDMGO 0 nsec
minimum after receiving RSACK. The bus arbitration logic will
also negate TDMGO if RDMR negates or if RSACK fails to assert
within 10 usec ('no SACK timeout').

6

o EXECUTE A BLOCK MODE DATBI T~ANSFER

o ADDRESS DEVICE MEMORY

uNOTE # 002
Page 3 of 20

a) The address is asserted by the bus master on TADDR<21:00>
along with the negation of TWTBT.

b) The bus master asserts TSYNC 150 nsec minimum after
gating the address onto the bus.

o DECODE ADDRESS

The appropriate memory device recognizes that it must
respond to the address on the bus.

o REQUEST DATA

a) The address is removed by the bus master from
TADDR<21:00> 100 nsec minim,um after the assertion of TSYNC.

b) The bus master asserts the first TDIN 100 nsec minimum
after asserting TSYNC.

c) The bus master asserts TBS7 50 nsec maximum after
asserting TDIN for the first time. TBS7 remains asserted
until 50 nsec maximum after the assertion of TDIN for the
last time. In each case, TBS7 can be asserted or negated as
soon as the conditions for asserting TDIN are met.

The assertion of TBS7 indicates the bus master is requesting
another read cycle after the current read cycle.

o SEND DATA

a) The bus slave asserts TRPLY 0 nsec m~n~mum (8000 nsec
maximum to avoid a bus timeout) after receiving RDIN.

b) The bus slave asserts TREF concurrent with TRPLY if, and
only if, it is a block mode device which can support another
RDIN after the current RDIN.

NOTE

Block mode transfers must not cross
boundaries

7

16 word

uNOTE # 002
Page 4 of 20

c) The bus slave gates TDATA<15:00> onto the bus 0 nsec
minimum after receiving RDIN and 125 nsec maximum after the
assertion of TRPLY.

o TERMINATE INPUT TRANSFER

a) The bus master receives stable RDATA<15:00> from 200 nsec
maximum after recelvlng RRPLY until 20 nsec minimum after
the negation of RDIN. (The 20 nsec minimum represents total
minimum receiver delays for RDIN at the slave and
RDATA<15:00> at the master.)

b) The bus master negates TDIN 200 nsec minimum after
receiving RRPLY.

o OPERATION COMPLETED

a) The bus slave negates TRPLY 0 nsec minimum after
receiving the negation of RDIN.

b) If RBS7 and TREF are both asserted when TRPLY negates,
the bus slave prepares for another DIN cycle. RBS7 is
stable from 125 nsec after RDIN is received until 150 nsec
after TRPLY negates.

c) If TBS7 and RREF were both asserted when TDIN neg~t~d,
the bus master asserts TDIN 150 nsec minimum after recelvlng
the negation of RRPLY and continues with timing relationship
'SEND DATA' above. RREF is stable from 75 nsec after RRPLY
asserts until 20 nsee minimum after TDIN negates. (The 0
nsee mlnlmum represents total minimum receiver delays for
RDIN at the slave and RREF at the master.)

NOTE

The bus master must limit itself to not more than
eight transfers unless it monitors RDMR. If it
monitors RDMR, it may perform up to 16 transfers as
long as RDMR is not asserted at the end of the
seventh transfer.

8

o TERMINATE BUS CYCLE

uNOTE # 002
Page 5 of 20

a) Ie RBS? and TREF were not both asserted when TRPLY
negated, the bus slave removes TDATA<15:00> from the bus 0
nsec minimum and 100 nsec maximum after negating TRPLY.

b) If TBS? and RREF were not both asserted when TDIN negated
the bus master negates TSYNC 250 nsec minimum after
receiving the last assertion of RRPLY and 0 nsec minimum
after the negation of that RRPLY.

o RELEASE THE BUS

a) The DMA bus master negates TSACK 0 nsec after negation of
the last RRPLY.

b) The DMA bus master negates TSYNC 300 nsec maximum after
it negates TSACK.

c) The DMA bus master must remove RDATA<15:00>, TBS?, and
TWTBT from the bus 100 nsec maximum after clearing TSYNC.

o RESUME PROCESSOR OPERATION The bus arbitration logic in the CPU
enables processor-generated TSYNC or will issue another bus
grant (TDMGO) if RDMR is asserted.

9

uNOTE # 002
Page 6 of 20

PROCESSOR

Figure 1 - DATSI CYCLE

I/O DEVICE

5
Request Bus

Assert TDMR
Grant Bus Control <

. Near end of the current bus
cycle (RRPLY is negated) assert
TDMGO and inhibit new processor
generated TSYNC for the duration

MEMORY

of the DMA ope~: Acknowledge Bus Mastership

I
V

· Receive RDMGO
· Wait for negation of RSYNC and RRPLY
· Assert TSACK

Negate TDMR

Terminate Grant Sequence

DMA

(DATSI) Data Transfer

Address Device Memory

· Assert address on TADDR<21:00>
· Assert TSYNC
· Negate TWTBT ~

10

~> Decode Address

. Store "Device
Selected" operation

PROCESSOR

uNOTE # 002
Page 7 of 20

Figure 1 - DATSI CYCLE (continued)

I/O DEVICE MEMORY

r---> Request Data

· Remove address from TADDR<21:00>
· Assert TDIN
· Assert TBS7 (request for an

additional DIN cycle after
the curre!nt one

L _____ > Send Data

· Data on TDATA<15:00>
· Assert TRPLY
· Assert TREF (to

indicates block
mode capability)

Terminate' Input <--------'1

Transfer

· Accept data and respond
by nega,ting TDIN

L ______ > Operation Completed

. Negate TRPLY

1

yes are
~----------------------~RBS7 & TREF

Asserted
?

I no ,------'
V

11

uNOTE # 002
Page 8 of 20

Figure 1 - DATBl CYCLE (continued)

PROCESSOR

I
V

I/O DEVICE

Terminate Bus Cycle

and Release the Bus

· Negate TSACK
· Negate TSYNC
· Remove TDAL, TBS?, and,

TWTBT from the Bus

Resume Processor Operation

. Enable processor generated TSYNC or
issue another grant if RDMR is asserted

12

MEMORY

T

R DMG

T SAO: _--,-""""
T/R D.AL __________ -J

R/T

100 ns

T O:N

~ RE:
--------------~------~~

I
' ~

\
:15 \

ns ::tax

uNOTE #002
Page 9 of 20

,.,. 35_7 __ "-----'r
~ ~-.~\ \\\)\\~ 10 \ \ \ \ " \ \ \ \ \ \ \ \\\\\S\\S\\\\\\
~iminq at slave device.
- • bus driver input
~ • Bus rece~ver ou:~~~ DA,7SI

13

uNOTE #002
Page 10 of 20

THIS PAGE INTENTIONALLY LEFT BLANK

14

R ADDR

uNOTE #002
page 11 of 20

'!' DATA

ns :nax ____ 1

~----~--~--~----------------------~--~ R SYNC

R D!~

t
!

R 857 /

~~:n~ng a~ slave dev~ce.
7 • bus driver in~ut
~ • Sus rece~ver OU~?~:

\ / \

'L
\

D ATE

15

uNOTE #002
page 12 of 20

THIS PAGE INTENTIONALLY LEFT BLANK

16

DATBO Bus Cycle

uNOTE # 002
Page 13 of 20

DATBO Bus cycles Before a block mode transfer can occur the DMA bus
master device must request control of the bus. This occurs under
conventional Q-bus protocol.

o REQUEST BUS The bus master device requests control of the bus by
asserting TDMR.

o GRANT BUS CONTROL The bus arbItration logic in the CPU asserts
the DMA grant signal TDMGO 0 nsec minimum after RDMR is received
and 0 nsec minimum after TSACK negates (if a DMA device was
previous bus master).

o ACKNOWLEDGE BUS MASTERSHIP The DMA bus master device asserts
TSACK 0 nsec minimum after receiving RDMSI, 0 nsec minimum after
the negation of RSYNC and 0 nsec minimum after the negation of
RRPLY., The DMA bus master device negates TDMR 0 nsec minimum
after the assertion of TSACK.

o TERMINATE GRANT SEQUENCE The bus arbitration logic in the CPU
negates TDMGO 0 nsec minimum after receiving RSACK. The bus
arbitration logic will also ne9ate TDMGO if RDMR negates or if
RSACK fails to assert within 10 usec ('no SACK timeout').

o EXECUTE A BLOCK MODE DATBO TRANSFER

o ADDRESS DEVICE MEMORY

a) The address is asserted by the bus master on TADDR<21:00>
along wi th the assertion of T'WTBT.

b) The bus master asserts TSYNC 150 nsec minimum after
gating the address onto the bus.

o DECODE ADDRESS The appropriate memory device recognizes that
it must respond to the address on the bus.

o SEND DATA

a) The bus master gates TDATA<15:00> along with TWTBT 100
nsee minimum after the assertion of TSYNC. TWTBT is
negated.

b) The bus master asserts the first TDOUT 100 nsec minimum
after gating TDATA<15,: 00>.

NOTE

During DATBO cycles TBS7 is undefined

17

uNOTE # 002
Page 14 of 20

o RECEIVE DATA

a) The bus slave receives stable data on RDATA<15:00> from
25 nsec minimum before receiving RDOUT until 25 nsec minimum
after receiving t~e negation of RDOUT.

b) The bus slave asserts TRPLY 0 nsec minimum after
receiving RDOUT.

c) The bus slave asserts TREF concurrent with TRPLY if, and
only if, it is a block mode device which can support another
RDOUT after the current RDOUT.

NOTE

Blockmode transfers must
boundaries

not cross 16 word

o TERMINATE OUTPUT TRANSFER The bus master negates TDOUT 150
nsec minimum after receiving RRPLY.

o OPERATION COMPLETED

a) The bus slave negates TRPLY 0 nsec minimum after
receiving the negation of RDOUT.

b) If RREF was asserted when TDOUT negated and if the bus
master wants to transfer another word, the bus master gates
the new data on TDATA<15:00> 100 nsec minimum after negating
TDOUT. RREF is stable from 75 nsec maximum afterRRPLY
asserts until 20 nsec minimum after RDOUT negates. (The 20
nsee minimum represents minimum receiver delays for RDOUT at
the slave and RREF at the master).

c) The bus master asserts TDOUT 100 nsec minimum after
gating new data on TDATA<15:00> and 150 nsec minimum after
receiving the negation of RRPLY. The cycle continues with
the timing relationship in 'RECEIVE DATA' above.

NOTE

The bus master must limit itself to not more than
eight transfers unless it monitors RDMR. If it
monitors RDMR, it may perform up to 16 transfers, as
long as RDMR is not asserted at the end of the
seventh transfer.

o TERMINATE BUS CYCLE

a). If RREF was not asserted when RRPLY negated or if the bus
master has no additional data to transfer, the bus master
removes data on TDATA<15:00> from the bus 100 nsec minimum
after negating TDOUT.

18

uNOTE # 002
Page 15 of 20

b) If RREF was not asserted when TDOUT negated the bus
master negates TSYNC 275 nsec minimum after receiving the
last RRPLY and 0 nsec minimum after the the negation of the
last RRPLY.

o RELEASE THE BUS

a) The DMA bus master negates TSACK 0 nsec after negation of
the last RRPLY.

b) The DMA bus master negate!s TSYNC 300 nsec maximum after
it negates TSACK.

c) The DMA bus master must remove TDATA, TBS7, and TWTBT
from the bus 100 nsec maximum after clearing TSYNC.

o RESUME PROCESSOR OPERATION The! bus arbitration logic in the CPU
enables processor-generated TSYNC or will issue another bus
grant (TDMGO) if RDMR is asserted.

19

uNOTE # 002
Page 16 of 20

Figure 2 - DATBO CYCLE

PROCESSOR I/O DEVICE

Request Bus

. Assert TDMR
Grant Bus Control

. Near the end of the current bus
cycle (RRPLY is negated) assert
TDMGO and inhibit new processor
generated TSYNC for the duration
of the DMA operation.

~> Acknowledge Bus Mastership

I
V

· Receive RDMG
· Wait for negation

and RRPLY
· Assert TSACK

Negate TDMR

Terminate Grant Sequence

. Negate TDMGO and wait for DMA
operation to be completed.

of RSYNC

~I--------_> Execute A Block Mode DMA

(DATBO) Data Transfer

Address Memory

MEMORY

· Assert Address on TADDR<21:00>
· Assert TWTBT
· Assert TSYNC ~

20

L-> Decode Address

. Address match
selects device

PROCESSOR

uNOTE i 002
Page 17 of 20

Figure 2 - DATBO CYCLE (continued)

I/O DEVICE MEMORY

r----> Send Da ta

· Assert TDATA <15:00>
· Negate TWTBT
· Assert TDOUT ~

L> Receive Data

· Accept data and
RWTBT

• Assert TRPLY
• Assert TREF

(Indicates block

Terminate Output Transfer

mO<de carability)

• Negate TDOUT L>
Operation Completed

. Negate TRPLY

I
yes Does Master yes is RREF

- Wish to Transfer < Asserted ?
More Data ?

I
Terminate Bus Cycle and <------~

Release the Bus

. Negate TSACK

. Negate TSYNC

no

,. Remove TDAL, TDAL,TBS7, and TWTBT
from the Bus

Resume Processor Operation

. Enable processor generated TSYNC
(processor is bus master) or issue
another grant if RDMR is asserted

21

uNOTE #002
Page 18 of 20

THIS PAGE INTENTIONALLY LEFT BLANK

22

uNOTE #002
Page 19 of 20

: :::~ ~~~~~----------.----------------------------------
~~-.r-'~---rc~~~~~~~ __

T SACK \ _

TD~ ~ :~3 ~~-~-~~~7~A---~X~ __ -_:_A_T_A __ ~(~~~ __

------------ ~5JnS~'1~J~O~ns~----·------------~--------------r_tt::J
R/T SYNC \'..\ ... \ ____ -+_m.:. __ " ",,-n ~OOns --.J1oons) \loon'l H\(,:

~ \ '---~\\ T JOt~ ~. ________ _

-----~r__-~~) 15~. ~~ I -, ----- / \
R R?:'Y 1 '-___ -

~------------_t----------~----.
!

~ ?-':":.? ______ -t---__ -t ___ • f

T fITET /
_______ 1

~~~ng at master =eVl:e. 
T • Sus driver in;:u": . 
R a Bus receiver out;:u~ 

23 

\L-__________________ -

CArBO 



uNOTE i002 
Page 20 of 20 

R ~R AJ:)OA 

R SYNC ! -
R DOur -
T RPLY 

.... REF .I. 

R aS1 L -
R WTB~r / -

X 

\ 
':'illlinq at slave devic:: •• 
T n Bus driver input 
R n Bus rec::eiver output 

R DATA X R DATA A 
\ 

:""NDEFIm::J " 

DATIO 

24 



uNOTE #003 

Title: Compatible Bootstraps for the LSI-11/73 Date: 28-NOV-83 

Originator: Mike Collins Page 1 of 2 

The LSI-l1/73 (KDJ11-AA) is a high performance CPU for the Q-Bus. It is 
a CPU only, which means that there is no boot capability on the module 
itself. Therefore a boot module must be selected to work with the 
LSI-11/73. 

This uNOTE will discuss the bootstrap modules which can be used with the 
11/73. 

There are 4 possible modules which can be used for bootstrap. 
They are : MXV11-BF w/MXV11-B2 boot ROMs 

MRV11-D w/MXV11-B2 boot ROMs 
MXV11-AA or -AC w/MXV11-A2 boot ROMs 
BDV11 

For an LSI-l1/73 based system to be Field Serviceable the bootstrap code 
must execute a cache memory diagnostic on power-up. The only boot code 
which satisfies this requirement is found in the MXV11-B2 boot ROMs. 
Therefore an LSI-11/73 based, Field Serviceable system must use either 
the MXV11-BF w/MXVII-B2 ROMs or the MRVII-D w/MXVII-B2 ROMs. 

NOTE 

The MXVII-B2 ROMs will not work on the MXVII-A module. 

MXVII-BF or MRVII-D w/MXVII-B2 ROft1:s 

The Mxvl1-BF w/MXVI1-B2 ROMs is the preferred choice since this module 
has 2 asynchronous serial lines as well as 128Kb of dynamic RAM in 
addition to the boot capability. However, if your application does not 
need the extra serial lines and RAM, an alternate choice would be the 
MRV11-D w/MXV11-B2 ROMs. 

The MXVI1-B2 ROMs will boot the following devices : 
RL01 / RL02 (DL) 
RX01 / RX02 (DX,DY) 
TU58 (DD) 
TSV05 (MS) 
MSCP type Devices e.g. RD51, RXSO (DU) 
DECnet via DPVll, DLV11-E, DLV11-F, DUVl1 

25 



uNOTE # 003 
Page 2 of 2 

NOTE 

The MXV11-BF is not supported by RSTS due to its 
non-parity memory. An alternative configuration would 
be to use the MRV11-D with the MXV11-B2 boot ROMs, and a 
DLV11-J or other DLV11 serial line device. 

The remaining 2 boot modules do NOT have the necessary cache memory 
diagnostic code to make an 11/73 based system Field Serviceable. 

Below is a list of all of the KNOWN WORKING bootstraps for the 2 
remaining boot modules. 

MXV11-A w/MXV11-A2 ROMs 

working bootstraps RLOl / RL02 
RX01 / RX02 

BDV11 

TUS8 conventional boot 
TUS8 standalone boot 

WARNING 

If the MXV11-A is used in a 22 bit system the on-board 
RAM must be disabled. Refer to uNOTE #106. 

Working bootstraps RL01 / RL02 
RX02 
RKOS 

WARNING 

Disable the processor and memory tests since an odd 
address trap does occur in each of them. See NOTE 
below. To disable the CPU test, set swit~h E1S-1 to 
OFF. To disable the memory test, set switch E1S-2 to 
OFF. (Refer to the Microcomputer and Interfaces 
Handbook for complete configuration information.) 

The 11/73 has an on-board Line Time Clock Register, 
therefore the BDV11 BEVNT switch E21-S should be set to 
the OPEN position. This disables software control of 
the BEVNT signal via the BDV11 LTC register and allows 
software control of this signal via the 11/73 LTC 
register. 

If the BDV11 is used in a 22 bit system, it must be CS 
REV E or later or ECO M8012-MLOOOS must be installed. 

NOTE 

ODD ADDRESS TRAPS. The 11/23 ignores an odd address 
reference whereas the KDJ11-A will trap to address 4. 

26 



r= uNOTE 1004 

Title: LSI-11/73 upgrade Paths Date: 28-NOV-83 

Originator: Mike Collins Page 1 of 6 

With the announcement of the KDJ11-A cpu module, there will be numerous 
questions regarding configuring the module into a current system. The 
purpose of this MicroNote is to address all possible configuration 
upgrade paths (within reason). 

Generally a KDJ11-A will be installed as an upgrade to a system built 
from components or DEC packaged system. 

In the case of a component upgrade it is assumed the processor is a 
KDF11-A and the boot mechanism is an MXV11-A with the MXV11-A2 Boot 
ROMs. 

System upgrades fall into 2 categories: 
1. KDF11-A based systems and 
2. KDF11-B based systems (11/23+ and Micro/PDP-11) 

There are 3 issues which must be addressed when considering a KDJ11-A 
upgrade. They are: 

1. The Boot mechanism 
2. 18 or 22 bit system 
3. Single or multiple box system 

NOTE 

1. In the following upgrade scenarios, the systems have 
been labeled as being Field Serviceable or not. A 
system which is Field Serviceable has a bootstrap which 
meets Field Service requirements. The requirement is 
that the bootstrap must execute an 11/73 cache memory 
diagnostic on power-up. There is no guarantee that the 
overall system will be Field Serviceable or that it will 
be FCC compliant. 

2. Systems using cpu's other than the KDF11-A or 
KDF11-B (i.e. 11/03 systems) are not considered for 
upgrade. 

CAUTION: It is recommended that the AC and DC loading for the final 
configuration be checked for conformance with the Q-BuS loading rules. 

27 



uNOTE # 004 
Page 2 of 6 

It is also recommended to check for.overloading on the +5 Volt and +12. 
volt Power Supplies. 

For each system upgrade the following parameters are listed for both the 
'Current' system and the 'Upgraded' system: 

1. CPU 
2. Boot Mechanism 
3. System Size 
4. Number of Boxes 
5. Field Serviceable or not 
6. Special Conditions 

COMPONENT UPGRADE PATHS: 

1. Current System 

KDF11-A 
MXV11-A 
18 Bit System 
1 Box 

2. Current System 

KDF11-A 
MXV11-A 
18 Bit System 
More than 1 box 

3. Current System 

KDF11-A 
MXV11-A (Memory Disabled) 
22 Bit System 
1 Box 

Upgrade 1 

KDJ11-A 
MXV11-B/MRV11-D with MXV11-B2 Boot ROMs 
18 Bit System 
1 Box 
Field Serviceable 

Upgrade 2 

KDJ11-A 
MXV11-A 
18 Bit System 
1 Box 
NOT Field Serviceable 

Upgrade 

See upgrades for category #1 

upgrade 

See upgrades for category #1 

28 



4. Current System 

KDF11-A 
MXV11-A (Memory Disabled) 
22 Bit System 
More than 1 box 

UP9 rade 

uNOTE # 004 
Page 3 of 6 

Not currently configureable with 
DEC equipment. 

This system is not currently configureable with DEC equipment. 

PDP 11/23A SYSTEM UPGRADE PATHS: 

5. Current System 

KDF11-A 
BDV11 
18 Bit System 
1 Box 

6. Current System 

KDF11-A 
BDV11 
18 Bit System 
More than 1 Box 

29 

UP9rade 1 

KD~Jl1-A 
MXV11-B/MRV11-D with MXV11-B2 Boot ROMs 
18 Bit System 
1 130x 
Field Serviceable 

Upc;rade 2 

KD,J11-A 
BDV11 
18 Bit System 
1 160x 
NOT Field Serviceable 
Disable the Processor and Memory tests 
and also the BEVNT register on the 
BDV11. 

Uptgrade 3 

KDIJ11-A 
MXV11-A (with MXV11-A2 boot ROMs) 
18 Bit System 
1 :Box System 
NOT Field Serviceable 
Check AC loading since termination was 
removed when the BDV11 was removed from 
th!e system. 

UP'9rade 1 

KD,J11-A 
MXV11-B/MRV11-D with MXV11-B2 Boot ROMs 
18 Bit System 
More than 1 box 
Field Serviceable 
Use Bcv1A and BCV1B expansion cables. 



uNOTE # 004 
:I?age 4 of 6 

7. Current System 

KDF11-A 
BDV11 
22 Bit System 
1 Box 

upgrade 2 

KDJ11-A 
BDV11 
18 Bit System 
More than 1 Box 
NOT Field Serviceable 
Disable the Processor and Memory tests 
and also the BEVNT register on the 
BDV11. 

Use BCV1B cable set between 1st and 2nd 
box and the BCV1A cable set between the 
2nd and 3rd box. Note: If in a 3 box 
system the expansion cable set lengths 
must differ by 4 ft. 

Upgrade 3 

KDJ11-A 
MXV11-A (with MXV11-A2 boot ROMs) 
18 Bit System 
More than 1 Box 
NOT Field Serviceable 
Use BCV1A and BCV1B expansion cables. 

Systems with this configuration were never shipped by DEC. 

PDP 11/23 PLUS SYSTEM UPGRADE PATHS: 

8. Current System 

KDF11-B 
Boot is on CPU 
22 Bit System 
1 Box System 

upgrade 1 

KDJ11-A 
MXV11-B/MRV11-D with MXV11-B2 Boot ROMs 
22 Bit System 
1 Box 
Field Serviceable 
Upgrade 2 

KDJ11-A 
MXV11-A (with MXV11-A2 boot ROMs) 
22 Bit System 
1 Box 
NOT Field Serviceable 
Must disable RAM on MXV11-A. 

30 



9. ·Current System 

KDFI1-B 
Boot is on CPU 
22 Bit System 
More than 1 Box 

Upgrade 3 

KDJII-A 
BDVl1 
22 Bit System 
1 Box System 
NOT Field Serviceable 

uNOTE # 004 
Page 5 of 6 

Must have BDV11 ECO M8012-MLOOS 
installed. Disable the Processor and 
Memory tests and also the BEVNT register 
on the BDV11. 

Upgrade 1 

Not currently configureable with 
DEC equipment. 

Upgrade 2 

Not currently configureable with 
DEC equipment. 

upgrade 3 

Not currently configureable with 
DEC equipment. 

MICRO/PDP-11 SYSTEM UPGRADE PATHS: 

10. Current System 

Micro/PDP-11 
KDF11-BE 
Boot is on CPU 
22 Bit System 
1 Box system 

11. Current System 

Micro/PDP-11 
KDF11-BE 
Boot is on CPU 
22 Bit System 
More than 1 box 

31 

upgrade 

Same as 11/23+ rules, see category 
#8, Upgrade 1. upgrades 2 and 
3 are not recommended since the 
MXV11-A and BDV11 cannot boot the 
5 1/4" media in the Micro/PDP-II. 

Upgrade 

Same as 11/23+ rules, see upgrades 
for category #9. 



uNOTE # 004 
Page 6 of 6 

NOTE 

It is not currently possible to expand out of the 
Micro/PDP-11 while maintaining FCC compliance. 

11/23 PLUS and Micro/PDP-11 system upgrades will require 
an EXTRA backplane slot to accomodate the additional 
boot module (i.e. MXV11-A,-B or BDV11). 

11/23-S SYSTEM UPGRADE SOLUTIONS: 

12. Current System 

KDF11-BA 
Boot is on CPU 
18 Bit System 
1 Box system 

13. Current System 

KDF11-BA 
Boot is on CPU 
18 Bit system 
More than 1 box 

upgrade 

See upgrades for category #5. 

Upgrade 

See upgrades for category #6. 

NOTE 

It is not currently possible to expand out of the 
11/23-8 while maintainin9 FCC compliance. 

32 



uNOTE # 005 

Title: Q22 Compatible Options Date: 23-Apr-84 

Originator: Charlie Giorgetti page 1 of 6 

This is a list of Q22 compatible options. A Q22 compatible option is 
defined as a Q-bus option that will work without restriction in an 
extended Q-bus system, that is a 22-bit Q-bus system. This list also 
includes options that are not compatible in Q22 systems and the reason 
for the restriction. 

The requirements for a device to be Q22 compatible are the following: 

1. Processors, memories, and OM. devices must all be capable of 22-bi t 
addressing. 

2. Devices must use backplane pins BC1, BD1, BEl, BF1 and DC1, 001, 
DEl, DF1, for BDAL18-21 only. 

Processors, memories, or DMA devices which are not capable of 22-bit 
~ddressing may generate or decode erroneous addresses if they are used 
ln systems which implement 22-bit addressing. Memory and 
memory-addressing devices which implement only 16 or 18-bit addressing 
may be used in a 22-bit backplane, but the size of the system memory 
must be restricted to the address range of those devices (64 KB for 
systems with 16-bit devices and 256 KB for systems with an lS-bit 
devices). 

Any device which uses backplane pins BC1, BD1, BEl, BF1 or DC1, 001, 
DEl, OF!, for purposes other than BDAL18-21 is electrically incompatible 
with the 22-bit bus and may not be used without modification. 

NOTE 
Eighteen or sixteen bit DMA devices can potenitially work in 
Q22 systems by buffering I/O in the 18- or 16-bit address 
space. 

I. Fully Compatible Options 

Options in this category meet both of the requirements mentioned above 
and may be used in any Q-bus configuration. 

A. Processors 

KD32-A M7135/M7136 MicroVAX I CPU Module 

33 



uNOTE # 005 
Page 2 of 6 

KDFll-A M8186 

KDFll-B M8l89 

KDJll-A M8l92 

KDJll-B M8l90 

KXTll-C M8377 

KMV11-A M7500 

B. Backplanes/Boxes 

H9270-Q 

H928l-QA 
H9281-QB 
H928l-QC 

H9275 

BA11-S H9276 

Micro/PDP-ll H9278 

C. Memory 

MCVll-D 

MSV11-L 

MSVll-P 

MSVll-Q 

MXVll-B 

MRVll-D 

D. options 

AAVll-C 

ADVll-C 

AXVll-C 

BDVll 

M8631 

M8059 

M8067 

M7551 

M7195 

M8578 

A6006 

ABOOO 

A0026 

MB012 

LSI-ll/23 CPU 
(Etch Rev. C or later) 

LSI-l1/23B CPU 

LSI-l1/73 CPU 

MicroPDP-ll/73 CPU 

Q-bus Perpherial I/O Processor 

Q-bus Perpherial Communication Processor 

4 X 4 Q22/Q22 Backplane 

2 X 4 Q22 Dual-height Backplane 
2 X 8 Q22 Dual-height Backplane 
2 X 12 Q22 Dual-height Backplane 

4 X 9 Q22/Q22 Backplane 

4 X 9 Q22/CD Backplane 

4 X 3 Q22/CD and 4 X 5 Q22/Q22 Backplane 

CMOS Non-volatile Memory 

MOS Memory (either 128 KB or 256 KB) 

MOS Memory (either 256 KB or 512 KB) 

MOS Memory ( 1 MB) 

Multifunction Module 

PROM/ROM Module 

D/A Converter 

A/D Converter 

D/A and A/D Combination Converter 

Bootstrap, Terminator, Diagnostic 
(CS Rev. E or later, ECO M8012-ML005 
installed) 

34 



DEQNA 

DLVll 

DLVll-E 

DLVll-F 

DLVll-J 

DHVll 

DMVll-AD 

DMVll-AF 

DPVll 

DRVll 

DRVll-J 

DRVll-w 

DUVll 

DZQll 

DZVll 

FPFll 

IBV11-A 

IEQll 

KLESI-QA 

KPVll-A 

KWVll-C 

LAVll 

LPVll 

RLV12 

RQDXl 

M7504 

M7940 

M80l7 

M8028 

M8043 

M3l04 

M8053-MA 

M8064-MA 

M8020 

M794l 

M8049 

M765l 

M795l 

M3l06 

M7957 

M8l88 

M7954 

M8634 

M7740 

M80l6 

A4002 

M7949 

M8027 

M806l 

M8639 

Ethernet Controller 

uNOTE # 005 
Page 3 of 6 

Asynchronous Serial Line Interface 

Asynchronous Serial Line Interface 

Asynchronous Serial Line Interface 

Four Asynchronous Serial Line Interfaces 
(CS Rev. E or later, ECO M8043-MR002 
installed) 

8-line Asynchrono~s EIA Multiplexer 

Synchronous Communications Interface 

Synchronous Communications Interface 

programmable Synchronous EIA Line 

32 line Parallel Interface 

64 line Parallel Interface 

General Purpose DMA Interface (dual) 

programmable Synchronous EIA Line 

4-line Asynchronous EIA Multiplexer (dual) 

4-line Asynchronous EIA Multiplexer (quad) 

Floating Point Processor 

IEEE Instrument Bus Interface 

DMA IE:EE Instrument Bus Interface 

LESI Bus Adaptor (RC25 Interface) 

Power-fail and LTC Generator 
(KPV11-B and -C are not compatible) 

Programmable Real-time Clock 

LA180 Line Printer Interface 

LA180/LP05 Printer Interface 

RL01/2 Controller 

Controller for 5.25" Floppy and Winchester 

35 



uNOTE # 005 
Page 4 of .6 

RXVll 

TQK25 

TSv05 

M7946 

M7605 

M7l96 

E. Bus Cable-Cards 

M9404 

M9404-YA 

M9405 

M9405-YA 

RXOl Floppy Disk Interface 

Streaming Cartridge Tape Controller 

Magnetic Tape Controller 

Cable Connector 

Cable Connector with 240-0hm Terminators 

Cable Connector 

Cable Connector with l20-0hm Terminators 

II. Restricted Compatibility Options 

Options in this category do not meet one or both of the requirements for 
use in a 22-bit system. These options are incompatible with some ~r all 
22-bit systems. 

A. Processors 

KDFll-A M8l86 

KDll-HA M7270 

KDll-F M7264 

KXTll-A M8063 

B. Backplanes/Boxes 

DDVll-B 

BAll-M H9270 

BAll-N H9273-A 

LSI-ll/23 CPU 
(Prior to etch rev. C, l8-bit addressing only, 
and use of BC1,BD1,BE1,BFl for purposes other' 
than BDAL18-2l) 

LSI-ll/2 CPU 
(16-bit addressing only, and use of BC1,BD1, 
BE1,BFl for purposes other than BDAL18-2l) 

LSI-ll CPU 
(16-bit addressing only, and use of DC1,DB1, 
DE1,DFl for purposes other than BDAL18-2l) 

SBC-ll/2l CPU 
(16-bit addressing only) 

6 X 9 Backplane 
(18-bit addressing only) 

4 X 4 Backplane 
(18-bit addressing only) 

4 X~9 Backplane 
(18-bit addressing only) 

36 



BAll-VA H92S1-A,B,C 

VT103 

C. Memories 

MMV11-A G653 

MRV11-AA M7942 

MRV11-BA MS021 

MRV11-C MS04S 

MSV11-B M7944 

MSV11-C M7955 

MSV11-D,E MS044/MS045 

MXV11-A MS047 

D. Options 

AAV11 A6001 

ADV11 A012 

BDV11 MS012 

DLV11-J MS043 

DRV11-B M7950 

uNOTE # 005 
Page 5 of 6 

2 X n Dual-height Backplane n - 4, S, and 12 
BAll-VA used the H92S1-A 
(lS-bit addressing only) 

4 X 4 Backplane (part number: 54-1400S) 
(18-bit addressing only) 

S KB Core Memory 
(16-bit addressing only, Q-bus required on C/D 
backplane connectors) 

ROM Module 
(16-bit addressing only) 

UV PROM--RAM 
(16-bit addressing only) 

PROM/ROt1 Modul e 
(lS-bit addressing only) 

S KB bus refreshed RAM 
(16-bit addressing only) 

32 KB Rl\M 
(lS-bit addressing only) 

S KB, 16 KB, 32 KB, 64 KB RAM 
(lS-bit addressing only) 

Multifunction Module 
(lS-bit addressing only on memory, the memory 
can be disabled) 

D/A Converter 
(Use of BC1 for purposes other than BDAL1S) 

A/D Converter 
(Use of BC1 for purposes other than BDAL1S) 

Bootstrap/Terminator 
(CS Revision E or earlier lS bits only) 

Serial Line Interface 
(CS Rev. E or earlier incompatible with 

KDF11-A and KDF11-B) 

General Purpose DMA Interface (quad) 
(lS-bit DMA only) 

37 



uNO'!'E # 005 
page 6 of 6 

KPVll-B,C M80l6-YB,YC 

KUVll MS01S 

KWVll-A M7952 

REVll M9400 

RKVll-D M7269 

RLVll M80l3 
M80l4 

RXV2l M8029 

TEVll M9400-YB 

VSVll M7064 

E. Bus Cable-Cards 

M9400-YD 

M9400-YE 

M940l 

Power-fail/line-time clock/terminator 
(Termination for l8-bits only) 

writable Control Store 
(For use with KDll-F processor only) 

Programmable real-time clock 
(Use of BCl for purposes other than BDAL18) 

Terminator, DMA refresh, bootstrap 
(Bootstrap for use with KDll-F and KDll-HA 
processors only. 
Termination for l8-bits only. 
DMA refresh may be used in any system.) 

RK05 Controller Interface 
(l6-bit DMA only) 

RL01,2 Controller 
(18-bit DMA only, use of BCl and BDl for 
purposes other than BDALl8 and BDALl9) 

RX02 Floppy Disk Interface 
(lS-bit DMA only) 

l20-0hm Bus Terminator 
(Termination for l8-bits 

Graphics Display 
(lS-bit DMA only) 

Cable Connector 
(lS-bit bus only) 

only) 

Cable Connector with 240-0hm Terminators 
(18-bit bus only) 

Cable Connector 
(lS-bit bus only) 

38 



uNOTE #006 

Title: Differences Between Date: 23-APR-84 
the LSI-11/73 and LSI-11/23 

Originator: Mike Collins Page 1 of 8 

This uNOTE identifies and discusses the differences between the 
LSI-11/23 (KDF11-AA) and the LSI-11/73 (KDJ11-AA). The following table 
lists these differences. Following the table are individual discussions 
on these differences. 

Some of these differences are discussed from the point of view of an 
11/23 to 11/73 upgrade. 

Table 1 LSI-11/73 versus LSI-11/23 

FEATURE 11/73 11/23 

Odd Address Traps Yes No 

Micro ODT 22 Bit 18 Bit 

Illegal Halt Traps to 4 Traps to 10 

Processor Modes 3 2 

I & D Space Yes No 

General Purpose Reg Sets 2 1 

Floating Point Inst. Set Standard Option 

Line Time Clock Reg. Yes No 

On-board Cache Memory Yes No 

Pipelined Processing Yes No 

UBMap Signal on the Q-bus Not Available Available 

Additional Instructions CSM, TSTSET, Not 
Available WRTLCK Available 

cont'd 

39 



uNOTE # 006 
Page 2 of 8 

Table 1 cont'd LSI-11/73 versus LSI-11/23 

FEATURE 11/73 11/23 

Additional CPU Registers 

CPU Error Register 
Memory System Error Reg 
Cache Control Reg 
Hit/Miss Reg 

Not 
Available 

Processor Speed 

Program Interrupt Req Reg 
Line Time Clock Reg 
Maintenance Reg 

A discussion of processor speed can 
be found in the respective user guides 

User Guide Part # 
EK-KDJ1A-UG 

ODD ADDRESS TRAPS 

User Guide Part # 
EK-KDF11-UG 

The 11/73 processor will trap to 4 when it encounters an odd address 
reference. i.e. whenever an address begins on an odd byte boundary 
(least significant bit - 1). The 11/23 ignores odd address references 
and simply treats the LSB as a zero, effectively 'forcing' all addresses 
to begin on even byte boundaries. Odd address traps do not occur 
freque~tly, however it is possible for code to run on an 11/23 and NOT 
run on an 11/73 because of them. Fixes for these errors are 
straightforward. 

MICRO ODT (Octal Debugging Technique) 

Both the 11/23 and the 11/73 implement ODT in their microcode. The 
11/23 can use ODT to examine main memory locations from 0 to 256 Kbytes, 
but no further. On the other hand, the 11/73 ODT can examine the full 4 
Mbyte range of main memory. When accessing addresses in the I/O page 
with an 11/73, a full 22 bit address must be specified. 

Example: To look at the first instruction of the bootstrap code with 
an 11/73 it is necessary to type: 

@17773000/ 
or @7777777777773000/ 

NOT @773000/ 

40 

This is NOT enough because only 
18 bits have been specified. 



ILLEGAL HALT 

uNOTE # 006 
Page 3 of 8 

The 11/23 and the 11/73 respond differently when detecting a halt 
instruction in user or supervisor mode. The 11/23 traps to address 10 
whereas the 11/73 traps to address 4. The 11/73 also sets the Illegal 
Halt Bit in the CPU ERROR Register to indicate an Illegal Halt occurred. 

PROCESSOR MODES 

The 11/23 has two processor modes, KERNEL and USER. The 11/73 has three 
KERNEL, SUPERVISOR and USER. 

I and D SPACE 

The concept of I and D space is used in mapping information into 
separate physical memory segments, depending on whether the information 
is considered instructions (I) or data (D). The use of I and D space 
allows programs to exist in two virtual segments and effectively doubles 
the address available to the user from 64 Kbytes to 128 Kbytes. 

The 11/73 has the capability for I and D space whereas the 11/23 does 
not. To implement this feature, many more PAR/PDR pairs are necessary. 
The 11/73 has 48 PAR/PDR pairs, the 11/23 has only 16 PAR/PDR pairs. 

GENERAL PURPOSE REGISTER SETS 

The 11/23 and all previous LSI-11 processors have 1 set of general 
purpose registers, RO thru R7. Some of these are used for special 
purposes. R7 is used as the progri~m counter and R6 is used as the stack 
pointer. Internal to the 11/23 are 2 registers used for stack pointers, 
one for each processor mode). There are 5 additional registers RO thru 
RS. 

The 11/73 has two sets of general purpose registers, listed in the table 
below. Only eight are visible to the user at any given time. There are 
two groups of six registers (RO thru RS and RO' thru RS'). The group 
currently being used is selected by bit 11 in the Processor Status Word 
(PSW). Only one stack pointer is visible to the user at anyone time 
and is determined by bits 14 and 15 in the PSW. 

Register Number 
o 

Designation 
RO RO' 

1 
2 
3 
4 
5 
6 
7 

R1 R1' 
R2 R2' 
R3 R3' 
R4 R4' 
RS RS' 
KS]? SSP 
PC 

KSP - Kernel Stack Pointer 
SSP - Supervisor Stack Pointer 
USP = User Stack Pointer 

41 

USP 



uNOTE # 006 
Page 4 of 8 

FLOATING POINT INSTRUCTION SET 

Both the 11/23 and the 11/73 use the FP11 Floating Point Instruction 
Set., The FP11 Instruction Set is an option for the 11/23 (choice of 
either the KEF11 chip or the FPF11 floating point accelerator). The 
FP11 instruction set is part of the J11 microprocessor microcode and is 
therefore a standard feature of the 11/73. 

LINE TIME CLOCK REGISTER 

The original dual height 11/23 CPU does not have an LTC (Line Time 
Clock) register on the board. In 11/23 based systems the BDV11 boot 
module contains the LTC reg. In order to enable or disable LTC 
interrupts under software control, the 11/23 must write to this register 
over the Q-bus. 

11/23 

1 

7 546 Q-bus 

LTC 
REG 

The 11/73 has an LTC register on the CPU board. This means that 
whenever the 11/73 wants to enable or disable LTC interrupts under 
software control it writes to this on-board register. The address of 
the LTC register (location 177546) is 'trapped' on the board and NEVER 
goes out onto the Q-bus. When the 11/73 is used in a system with a 
BDV11, it is recommended that software control over the LTC interrupts 
be disabled on the BDV11 (see uNOTE #114). 

11/73 

177546 

I 
Q-bus 

ON-BOARD CACHE MEMORY 

Cache memory systems are designed to increase CPU performance. The 

42 



uNOTE # 006 
Page 5 of 8 

cache maintains copies of portions of main memory in very high-speed RAM 
and thus reduces access times significantly. 

The 11/73 is the first Q-bus processor to implement a cache memory 
system. The cache is automatically enabled on power-up and its 
operation is transparent to software. However software can enable or 
disable the cache by writing to the Cache Control Register (CCR). 

When the cache is enabled, any information fetched from main memory will 
be 'cached' i.e. placed in the high-speed RAM. Information fetched 
from an I/O device will NOT be 'cached' (i.e. information fetched from 
an address in the I/O page). 

CAUTION: Digital Equipment Corporation does not support a system which 
uses shared or dual-ported memory on the Q-bus. However there are 
applications and non-DEC add-on hardware which do support such 
configurations. Consider the following: 

The system below uses an 11/73, has a certain amount of main memory as 
well as dual-ported memory. The cache is enabled and the following 
sequence of events occur: 

1. The 11/73 reads a word from the dual-ported RAM at 
address A which contains the value X. The value is 
'cached'. 

11/73 

I 
A: 

A: X <------

X 

RAM 

<l 
Dual-Ported 

EXTERNAL 
DEVICE 

RAM 

2. The external device writes a new value, Y, into location A. 

11/73 
A: 

A: X 

Y 

RAM 

<-----------
EXTERNAL 
DEVICE 

3. The 11/73 references location A again, but finds that it 

43 



uNOTE # 006 
Page 6 of 8 

is in the cache and therefore uses the 'old' value of X. 
But this is incorrect since the external device updated 
location A with the new value Y. 

This anomaly can be corrected in a number of ways. 

A. Put the dual ported RAM somewhere in the I/O page since any I/O page 
reference always bypasses cache. If the amount of dual-ported RAM is 
large this may not be practical. 

B. The memory management unit contains several page Descriptor 
Registers (PDRs). The PDRs contain information relative to page 
expansion, page length and access control. Bit 15 of each PDR is the 
Bypass Cache bit. If the PDR accessed during a relocation operation has 
this bit set the reference will go directly to main memory. Hits on 
reads or writes will result in invalidation of the accessed cache 
location. 

Enabling this bit in each PDR associated with the dual-ported memory 
will force these references to bypass cache. 

C. Whenever the processor reads from the dual-ported RAM, add extra 
code which will simply turn off the cache prior to the read and turn the 
cache back on after the read is complete. Turning the cache on and off 
can be done by setting the appropriate bits in the Cache Control 
Register. 

PIPELINED PROCESSING 

The 11/73 gets much of its performance by implementing a prefetch and 
predecode mechanism. The major benefit of this is that memory 
references are overlapped with internal operations which results in 
faster program execution. The 11/23 does not implement such a 
mechanism. 

CAUTION This implementation is completely compatible with DEC 
hardware and software. However there are applications and non-DEC 
add-on hardware which may be confused. Such situations are easily 
corrected. 

The prefetch mechanism assumes sequential program flow; one instruction 
immediately follows the next. Whenever the program flow is not 
sequential (i.e. the PSW, CCR, PC or any memory management register is 
written) the pipeline is 'flushed'. If a non-DEC device does its own 
'macro' memory management, the instruction flow may be confused. 

For example : 

A non-DEC device utilizes 2 ROM sets for boot code. Both ROM sets map 
over the same addresses but only 1 set is enabled at any instant in 

44 



uNOTE * 006 
Page 7 of 8 

time. This is done via a ROM set enable CSR. Assume the boot code in 
ROM set X is executing. Instruction X + 1 is a MOV instruction to the 
ROM enable CSR to transfer program control to ROM set Y. The intent of 
the ROM code is for statement Y + 2 in ROM set 2 to be executed next. 
This will work OK with an 11/23. However because of the prefetch 
mechanism of the 11/73, the 11/73 '~ill execute instruction X + 2 of ROM 
set 1, NOT ROM set 2. 

This particular boot method effectively does its own memory mapping and 
since it is done at the 'macro' level and external to the J11 cpu, the 
pipeline is not 'flushed'. A simple solution is to include a NOP 
instruction after the instruction which updates the ROM enable CSR, or 
to use a branch instruction which effectively changes the PC and causes 
the pipeline to be 'flushed'. 

11/73 

Sequence of events : 
1. ROM X is enabled. 

2. Instruction X + 1 enables 
ROM Y. 

3. Next instruction to be 
executed is Y + 2. 

User Boot 

ROM X 

X 
X + 1 
X + 2 

X + n 

~OM Enable CSR 

Device 

Y 
Y + 1 
Y + 2 

Y + n 

MAP SIGNAL ON THE Q-BUS (UBMAP L) 

ROM Y 

The 11/23 outputs the signal UBMAP onto the Q-bus. Some non-DEC add-on 
equipment may use this signal for special purposes. This signal is not 
defined by the Q-bus specification and for design reasons was not 
included on the 11/73. Therefore, the 11/73 may not work with non-DEC 
devices which expect to see this signal. 

ADDITIONAL INSTRUCTIONS AVAILABLE 

These 3 instructions are part of the 11/73 instruction set but are NOT 
found in the 11/23: 

CSM 
TSTSET 
WRTLCK 

Call to Supervisor Mode 
Test Destination and Set Low Bit 
Read/Lock Destination Write/Unlock RO into 
Destination 

45 



~NOTE # 006 
Page 8 of 8 

ADDITIONAL CPU REGISTERS AVAILABLE 

ThE~ following CPU registers are part of the DCJ11 chip or implemented on 
the 11/73 module and are not found on the 11/23. 

CPU Error Register 
Memory System Error Register 
Cache Control Register 
Hit/Miss Register 
Additional PAR/PDR's necessary to implement I & D Space 
Program Interrupt Request Register 
Line Time Clock Register (previously discussed) 
Maintenance Register 

PROCESSOR SPEED 

The 11/73 executes instructions significantly faster than the 11/23. 
So1:tware which bases delays on instruction loops may not work on the 
11/73 because the instructions, and therefore the delay loop, are 
completed much faster than they were when executed on the 11/23. 
Software which uses this method of implementin9 delays produces code 
which is not processor independent. However instances do appear every 
so often and it is important to be aware of this possibility. 

46 



uNOTE * 007 

Title: User Defined Memory Maps For The Falcon Date: 01-MAY-84 
And The Falcon plus 

Originator: Jack Toto Page 1 of 13 

The memory maps on the Falcon, and E~alcon Plus are defined by the FPLA 
(Field Programmable Logic Array) that is located on board in socket 
XE41. This micronote explains how to redefine the existing maps. 

The equipment needed to custom build the FPLA is as follows: 

1. Signetics NS82S100N FPLA. 
2. Signetics NS82S100N FPLA worksheet. 
3. PROM programmer that supports Si9netics NS82S100N FPLA. 
4. User written routine to convert binary into hex form, 

needed for the PROM programmer. 

The Falcon or Falcon Plus can be configured to anyone of four standard 
memory maps. When you custom build the memory map FPLA, you may keep 
this ability to select anyone of four memory map schemes, however it is 
not nessecary to build in the four maps, you may build an FPLA with only 
one map for the Falcon. Further thE! addresses of the SLUs and Parallel 
I/O Port can be be changed to some other addresses on the module, or 
they can be relocated off the modulE! to some other device such as an 
MXV11-A/B, DLV11-J, DRV11-J, etc. 

The memory map is defined by: 

1. Selecting a range of addresses, for example addresses 077777 - 037777. 
This includes selecting the addrE!SSeS of the boards SLUs and PIO. 

2. Asserting or deasserting the bits which define that range. 
3. Defining which one of four memor)' maps the selected range of 

addresses will respond. 
4. Selecting an enable bit (A7 -AO), which tells the T-11 where to 

find that range of addresses: on the Q-bus, on board the Falcon plus 
in one of the two sockets, or i.n the local RAM. 

When mapping an FPLA to be used with the KXT11-A2 or KXT11-AS ODT ROMs, 
you must map addresses 177600 - 1.77777 to the local RAM that comes on 
board the Falcon or Falcon plus. This space is used for a scratch pad 
area by Macro ODT. If Macro CDT is not going to be used than this 
address range can be left to be selected by the user. Beyond this all 
addresses and functions can be mapped off board. 

47 



uNOTE i 007 
Page 2 of 13 

Below is an example of an FPLA worksheet that was completed specifying 
one map (map 0) which maps all of memory to the O-bus, and changes the 
address of SLU2 from 176540 - 176547, to 176500 - 176507. This format 
is simalar to the Signetics FPLA worksheet. For each address range 
shown, the combination of bits set (H), cleared (L), or in the don't 
care state (-) define that range. Further each address range has 
associated with it an output enable bit (A) that identifies the location 
of the memory containing that range. It is possible to define larger or 
smaller ranges then the ones shown here, if needed. More examples are 
provided in the Falcon Plus User's Guide Appendix H. 

THIS IS AN FPLA MAP FOR 
COMPANY: XYZ 

ADDRESS 
RANGE 

177600-177777 
177570-177577 
.177560-177567 
.177540-177557 
177500-177537 
.177400-177477 
177000-177377 
.176600-176777 
.176560-176577 
.176550-176557 
176540-176547 
.176510-176537 
.176500-176507 
.176400-176477 
176300-176377 
176240-176277 
176220-176237 
176210-176217 
176200-176207 
176000-176177 
.174000-175777 
170000-173777 
160000-167777 
140000-157777 
100000-137777 
000000-077777 

x 
X 

RAM 
OS 
OLO 
OS 
OB 
OB 
OB 
OB 
OB 
OS 
OB 
OS 
OL1 
OB 
OB 
OB 
OB 
OS 
PIO 
OS 
OS 
OS 
OS 
OS 
OS 
OB 

I I I I I I I I I I I I I I I I 

000 001 0 1 0 1 010 101 
7 8 6 9 5 0 4 1 322 3 1 504 

1 1 1 1 1 1 0 0 0 0 0 0 0 000 
5 4 321 0 9 8 7 6 543 210 

- - - H H H H H H - - - -
- - - H H H H H L H H H H 
- - - H H H H H L H H H L 

- H H H H H L H H L -
- - - H H H H H L H L 
- - - H H H H H L L -
- - - H H H H L - - - - -

- H H H L H H - -
- - - H H H L H L H H H -
- - - H H H L H L H H L H 
- - - H H H L H L H H L L 
- - - H H H L H L H L - H 
- - - H H H L H L H L L L 
- - - H H H L H L L -
- - - H H H L L H H - - -
- - - H H H L L H L H 

- H H H L L H L L H -
- - - H H H L L H L L L H 
- - - H H H L L H L L L L 
- - - H H H L L L - - - -
- - - H H L - - - - -

- H L 
- - - L -- - - - - - - -
H H L - - - - - - - -
H L - - - - - - -
L - - - - - - - - - - - -

48 

L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 

H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
L 
L 
L 

F F F F F F F 

7 6 5 4 321 0 

A 

A 

A 

A 

A 
A 
A 
A 
A 
A 
A 
A 
A 

A 
A 
A 
A 
A 

A 
A 
A 
A 
A 
A 
A 

A 

7 6 5 4 321 0 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 



uNOTE # 007 
Page 3 of 13 

Once the address ranges have been coded, they need to be converted into 
the formatted file shown directly below. This file will be used as the 
input file to a program (see end of Micronote) that will output the FPLA 
terms in a format that is usable by the PROM Programmer itself. When 
converting the above worksheet to FPLA terms, the following should be 
considered: 

1. The area at the beginning of the file may be used as a comment area 
as long as the word "START" is not used in the comments. "START" is 
the key word to begin'the formatting process while the word "END" is 
the key word used to signal the formatter that the processing must be 
terminated. Both words MUST appear in capital letters. 

2. The layout of the map must be as follows: 

115 114 113 112 III 110 109 lOa 107 106 105 104 103 102 101 100 
07 06 05 04 03 02 01 00 

TERM1 

115 114 113 112 III 110 109 loa 107 106 105 104 103 102 101 100 I TERM2 
07 06 05 04 03 02 01 00 

Where 115 is input 15 on the FPLA ,114 is input 14 on the PLA etc. 
further 07 is output 7 on the FPLA and 06 is output 6 on the PLA. 

3 II "-" indicates a "DON'T CARE ON 'I'HAT INPUT" AND * indicates a "DON'T 
CARE ON THIS OUTPUT". 

The following is the formatted FPLP.. map for the worksheet shown above. 
Notice that bus address bit 00 is translated to FPLA bit 114, that bus 
address 01 is translated to FPLA bit 100, that is, the bus address bits 
are not directly translated to the FPLA bits, however the worksheet 
activity (output) bits F7 - FO translate directly to FPLA bits A7 - AO. 

START 
LH--HHH---HHH--L 
A******* 
LHHHHHH---HHLHHL 
*****A** 
LHHHHHH---HHLHLL 
**A***** 
LHLHHHH---HHLH-L 
*****A** 
LH-HHHH---HHLL-L 
*****A** 
LH-LHHH---HHL--L 
*****A** 
LH--LHH---HH---L 
*****A** 
LH--HHH---HLH-L 

49 



uNOTE ~~ 007 
Page 4 of 13 

* * *,~ *A* * 
LHHlIHHH--HLLH-L 
*****A** 
LHLHHHH--HLLHHL 
*****A** 
LHLHHHH--HLLHLL 
*****A** 
I"H-HHHH--HLLLHL 
*****A** 
I"HLHHHH--HLL;LLL 
******A* 
I"H-I.,HHH--HLL-L 
***"*A** 
I"H-HLHH--HLH-L 
*****A** 
LH-LLHH--HLHH-L 
*****A** 
LHHLLHH---HLHL-L 
*****A** 
I"HLI,LHH--HLHLHL 
*****A** 
I"HLI~LHH--HLHLLL 

***A·**** 
I"H--LHH--HLL-L 
***'~*A** 
LH--LH--H--L 
***"*A** 
LH---H---L-----L 
***'~*A** 
LH--L L 
*****A** 
I"L---HHL L 
***"*A** 
LL---LH L 
*****A** 
LL L L 
*****A** 

Translation: The following is a translation of FPLA terms and FPLA 
activity outputs, and the actual pin name on the FPAL chip. 

115 ..... 015 (02 on worksheet above) used for high order bit of map decode. 
114o ••• LBS7 (00 on worksheet above) asserted for all I/O page addresses. 
113 to ••• AD04 
112 ..... AD06 
Ill ..... ADOS 
110 ..... AD10 
109" ••• AD12 
lOS" ••• AD14 
107 ..••• AD15 

50 



I 06 .... AD13 
lOS •..• AD11 
I 04 •.•• AD09 
I 03 .... AD07 
I 02 •... ADOS 
I 01 .•.. AD03 

uNOTE i 007 
Page S of 13 

IOO ••.. DO(Ol on worksheet above) used for the low order bit of map decode. 

A7 .••.. F7 on worksheet above, used for local RAM enable. 
A6 •...• F6 on worksheet above, used for socket A enable. 
AS ••••• FS on worksheet above, used for DLO enable. 
A4 ••... F4 on worksheet above, used for PIO enable. 
A3 .•..• F3 on worksheet above, not used. 
A2 ••..• F2 on worksheet above, used for all Q-bus enables. 
A1 ...•• F1 on worksheet above, used for DL1 enable. 
AO ....• FO on worksheet above, used for socket B enable. 

The output file shown below is an example of one that would be loadable 
into a PROM Programmer in order to blast the FPLA chip. An example of a 
program that will produce the formatted output file shown below can be 
found at the end of this micronote. 

START 
$AOOOO, 
FF 
$A100, 
FF 
00 
FD 
FB 
F1 
EF 
7E 
C1 
80 
7F 
00 
FF 
FF 
FF 
FF 
FF 
FF 
FF 

. 
$A200 

ADDRESS ) 
FIRST 8 BITS 
ADDRESS ) 

OTHER TERMS IN HEX BYTES 

NEXT ADDRESS BOUNDARY ) 

TERMS ) 

51 



uNOTE # 007 
Page 6 of 13 

$.A300 

. 
$A400 

ETC. 

ADDRESS ) 

TERMS ) 

ADRESSS 

TERMS ) 

Once the FPLA is built, it is placed into socket XE41, the memory will 
be configured to whatever the FPLA terms look like. The Falcon plus 
needs to be strapped for a start address, a memory map (1 of 4) that 
matches the one called out in the FPLA, and other user configurable 
options. 

FPLA FORMAT PROGRAM ********** 

1 REM THIS PROGRAM IS FOR NORMAL PLA MAP INPUTS 
2 PRINT "INPUT DEVICE AND FILE NAME";H1$ 
4 INPUT H1$ 
5 OPEN H1$ FOR INPUT AS FILE #1 
7 PRINT "DO YOU WISH OUTPUT COMPARE FILE ON LINE PRINTER,DEVICE,BOTH OR 

NONE ? " 
8 PRINT "DEFAULT IS NONE (LP,DEV,B,N) ";N1$ 
10 INPUT N1$ 
12 IF N1$-"LP" THEN GO TO 30 
16 IF N1$-"DEV" THEN GO TO 36 
20 IF N1$-"B" THEN GO TO 42 
22 LET N$-"N" 
23 LET K1$-"N" 
2·4 GO TO 50 
30 OPEN "LP:" FOR OUTPUT AS FILE #2 
33 LET N$-"Y" 
3·4 LET K1$-"N" 
3S GO TO 50 
36 PRINT "WHAT IS DEVICE AND FILE NAME";U1$ \ INPUT U1$ 
37 OPEN U1$ FOR OUTPUT AS FILE #3 
38 LET N$-"N" 
39 LET K1$-"yn 
40 GO TO 50 
42 OPEN "LP:" FOR OUTPUT AS FILE #2 
4!5 LET N$-"Y" 
46 PRINT "WHAT IS DEVICE AND FILE NAME";U1$ \ INPUT U1$ 
47 OPEN U1$ FOR OUTPUT AS FILE #3 
48 LET K1$-"Y" 
50 PRINT "WHAT DEVICE AND FILE NAME FOR OUTPUT PROM PROGRAMMER FILE";W$ 
52 INPUT W$ 
55 OPEN W$ FOR OUTPUT AS FILE #4 
60 LET Y1-1 
62 LET H1$-CHR$(2) 
64 LET H2$-CHR$(3) 

52 



66 
68 
70 
71 
72 
73 
74 
75 
76 
78 
80 
82 
84 
86 
88 
90 
91 
93 
92 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
117 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 

LET Z$-CHR$(10)+CHR$(13) 
LET L1$-" " 
INPUT #l,A$ 
IF N$- t1 N" THEN GO TO 73 
PRINT #2,A$ 
IF K1$-"N tl THEN GO TO 76 
PRINT #3,A$ 
PRINT #4,A$ 
IF A$-"5TART" THEN GO TO 80 
GO TO 70 
LET 51$-"$AOOOO," 
PRINT #4,H1$;51$ 
PRINT #4,"FF " 
LET 51$-"$A100," 
PRINT #4,51$ 
GO TO 92 
PRINT #4,51$ 
INPUT #1,11$ 
IF I1$-"END" THEN GO TO 120 
INPUT #1,01$ 
INPUT #1,12$ 
IF I2$-"END" THEN GO TO 130 
INPUT #1,02$ 
INPUT #1,13$ 

IF I3$- t1 END" THEN GO TO 140 
INPUT #1,03$ 
INPUT #1,14$ 
IF I4$-nENDn THEN GO TO 150 
INPUT #1,04$ 
INPUT #1,15$ 
IF I5$_nEND" THEN GO TO 160 
INPUT #1,05$ 
INPUT #1,16$ 
IF I6$-"END" THEN GO TO 170 
INPUT #1,06$ 
INPUT #1,17$ 
IF I7$-"END" THEN GO TO 180 
INPUT #1,07$ 
INPUT #1,18$ 
IF I8$-"END" THEN GO TO 190 
INPUT #1,08$ 
GO TO 200 
LET 11$-"0000000000000000 \ 
LET 12$-"0000000000000000 \ 
LET 13$-"0000000000000000 \ 
LET 14$-"0000000000000000 \ 
LET 15$-"0000000000000000 \ 
LET 16$-"0000000000000000 \ 
LET 17$-"0000000000000000 \ 
LET 18$-"0000000000000000" \ 
LET E1-1 
GO TO 200 

S3 

LET 
LET 
LET 
LET 
LET 
LET 
LET 
LET 

01$-"AAAAAAAA" 
02$-"AAAAAAAA" 
03$-"AAAAAAAA n 
04$-"AAAAAAAA" 
05 $-" AAAAAAAA " 
06$-"AAAAAAAA" 
07 $-" AAAAAAAA " 
08 $-" AAAAAAAA " 

uNOTEI: 007 
Page 7 of 13 



uNOTE * 007 
Page 8 of 13 

130 LET 12$-"0000000000000000 \ LET 02$-"AAAAAAAA" 
132 LET 13$-"0000000000000000 \ LET 03$-"AAAAAAAA" 
133 LET 14$-"0000000000000000 \ LET 04 $-" AAAAAAAA" 
134 LET 15$-"0000000000000000 \ LET 05 $-" AAAAAAAA " 
135 LET 16$-"0000000000000000 \ LET 06 $-" AAAAAAAA" 
136 LET 17$-"0000000000000000 \ LET 07 $-" AAAAAAAA" 
137 LET 18$-"0000000000000000 \ LET 08 $-" AAAAAAAA " 
138 LET E1-1 
139 GO TO 200 
140 LET 13$-"0000000000000000" \ LET 03 $-" AAAAAAAA " 
143 LET 14$-"0000000000000000" \ LET 04 $-" AAAAAAAA ,t 
144 LET 15$-"0000000000000000" \ LET 05 $-" AAAAAAAA " 
145 LET 16$-"0000000000000000" \ LET 06 $-" AAAAAAAA " 
146 LET 17$-"0000000000000000" \ LET 07 $-" AAAAAAAA" 
147 LET 18$-"0000000000000000" \ LET 08 $- 'f AAAAAAAA" 
148 LET E1-1 
149 GO TO 200 
150 LET 14$-"0000000000000000" \ LET 04$-"AAAAAAAA" 
154 LET 15$-"0000000000000000" \ LET 05 $-"AAAAAAAA " 
155 LET 16$-"0000000000000000" \ LET 06$-"AAAAAAAA" 
156 LET 17$-"0000000000000000" \ LET 07$-"AAAAAAAA" 
157 LET 18$-"0000000000000000" \ LET 08$-"AAAAAAAA" 
158 LET E1-1 
159 GO TO 200 
160 LET 15$-"0000000000000000" \ LET 05$-"AAAAAAAA" 
165 LET 16$-"0000000000000000" \ LET 06 $-" AAAAAAAA " 
166 LET 17$-"0000000000000000" \ LET 07 $- ff AAAAAAAA " 
167 LET 18$-"0000000000000000" \ LET 08 $-" AAAAAAAA" 
168 LET E1-1 
169 GO TO 200 
170 LET 16$-"0000000000000000" \ LET 06 $-" AAAAAAAA " 
176 LET 17$-"0000000000000000" \ LET 07 $- 'f AAAAAAAA f' 
177 LET 18$-"0000000000000000" \ LET 08 $-" AAAAAAAA" 
178 LET E1-1 
179 GO TO 200 
180 LET 17$-"0000000000000000" \ LET 07 $-" AAAAAAAA " 
187 LET 18$-"0000000000000000" \ LET 08$-"AAAAAAAA" 
188 LET E1-1 
189 GO TO 200 
190 LET 18$-"0000000000000000" \ LET 08 $-" AAAAAAAA " 
198 LET E1-1 
200 PRINT 11$,01$,Z$,I2$,02$,Z$,13$,03$,Z$,14$,04$ 
210 PRINT 15$,05$,Z$,I6$,06$,Z$,I7$,07$,Z$,18$,08$ 
215 IF N$-"N" THEN GO TO 218 
216 PRINT #2,Il$,Ol$,Z$,I2$,02$,Z$,I3$,03$,Z$,I4$,04$ 
217 PRINT #2,I5$,05$,Z$,16$,06$,Z$,I7$,07$,Z$,18$,08$ 
218 IF K1$-"N" THEN GO TO 221 
219 PRINT #3,I1$,01$,Z$,I2$,02$,z$,13$,03$,Z$,I4$,04$ 
220 PRINT #3,15$,05$,Z$,16$,06$,Z$,17$,07$,Z$,18$,08$ 
221 LET X-16 
235 LET Dl$-SEG$(I1$,X~X) 
240 IF D1$-"H" GO TO 260 

54 



245 IF 01$-"L" GO TO 270 
250 IF 01$-"-" GO TO 280 
252 IF 01$-"0" GO TO 256 
255 GO TO 1340 
256 LET A(1,0)-1 \ LET A(1,1)m1 
257 GO TO 285 
260 LET A(1,0)-1 \ LET A(1,1)mO 
265 GO TO 285 
270 LET A(1,0)-0 \ LET A(1,1)m1 
275 GO TO 285 
280 LET A(1,0)-0 \ LET A(1,1).0 
285 LET 02$-SEG$(I2$,X,X) 
290 IF 02$-"H" GO TO 315 
300 IF 02$-"L" GO TO 325 
305 IF 02$-"-" GO TO 335 
306 IF 02$-"0" GO TO 309 
307 GO TO 1340 
309 LET A(1,2)-1 \ LET A(1,3)-1 
310 GO TO 340 
315 LET A(1,2)-1 \ LET A(1,3)-0 
320 GO TO 340 
325 LET A(1,2)-0 \ LET A(1,3)-1 
3-30 GO TO 340 
335 LET A(1,2)-0 \ LET A(1,3)-0 
340 LET 03$-SEG$(I3$,X,X) 
345 IF 03$-"H" GO TO 365 
350 IF 03$-"L" GO TO 375 
355 IF 03$-"-" GO TO 385 
357 IF 03$-"0" GO TO 359 
358 GO TO 1340 
359 LET A(1,4)-1 \ LET A(1,5)-1 
360 GO TO 390 
365 LET A(1,4)-1 \ LET A(1,5)-0 
370 GO TO 390 
375 LET A(1,4)-0 \ LET A(1,5)-1 
380 GO TO 390 
385 LET A(1,4)-0 \ LET A(1,5)-O 
390 LET 04$-SEG$(I4$,X,X) 
400 IF 04$-"H" GO TO 420 
405 IF 04$-"L" GO TO 430 
410 IF 04$_"_" GO TO 440 
412 IF 04$-"0" GO TO 414 
413 GO TO 1340 
414 LET A(1,6)-1 \ LET A(1,7)-1 
415 GO TO 445 
420 LET A(1,6)-1 \ LET A(1,7)-O 
425 GO TO 445 
430 LET A(1,6)-0 \ LET A(1,7)-1 
435 GO TO 445 
440 LET A(1,6)-0 \ LET A(1,7)-O 
445 LET A8-A(1,0)*1+A(1,2)*2+A(1,4)*4+A(1,6)*8 
450 LET A9-A(1,1)*1+A(1,3)*2+A(1,5)*4+A(1,7)*8 

55 

uNOTE # 007 
Page 9 of 13 



uNOTE # 007 
Page 10 of 13 

455 LET A8-15-A8 \ LET A9-15-A9 
460 LET 05$-SEG$(I5$,X,X) 
465 IF 05$-"H" GO TO 485 
470 IF 05$-"L" GO TO 495 
475 IF 05$-"-" GO TO 505 
476 IF 05$-"0" GO TO 479 
477 GO TO 1340 
479 LET B(1,0)-1 \ LET B(1,1)=1 
480 GO TO 510 
485 LET B(1,0)-1 \ LET B(1,1)-0 
490 GO TO 510 
495 LET B(1,0)-0 \ LET B(1,1)-1 
500 GO TO 510 
505 LET B(1,0)-0 \ LE~ B(1,1)-0 
510 LET 06$-SEG$(I6$,X,X) 
515 IF 06$-"H" GO TO 535 
520 IF 06$-"L" GO TO 545 
525 IF 06$-"-" GO TO 555 
526 IF 06$-"0" GO TO 529 
527 GO TO 1340 
529 LET B(1,2)-1 \ LET B(1,3)-1 
530 GO TO 560 
535 LET B(1,2)-1 \ LET B(1,3)-0 
540 GO TO 560 
545 LET B(1,2)-0 \ LET B(1,3)-1 
550 GO TO 560 
555 LET B(1,2)-0 \ LET B(1,3)-0 
560 LET 07$-SEG$(I7$,X,X) 
565 IF 07$-"H" GO TO 585 
570 IF 07$-"L" GO TO 595 
575 IF 07$-"-" GO TO 605 
576 IF 07$-"0" GO TO 579 
577 GO TO 1340 
579 LET B(1,4)-1 \ LET B(1,5)-1 
580 GO TO 610 
585 LET B(1,4)-1 \ LET B(1,5)-0 
590 GO TO 610 
595 LET B(1,4)=0 \ LET B(1,5)=1 
600 GO TO 610 
605 LET B(1,4)-0 \ LET B(1,5)-0 
610 LET 08$-SEG$(I8$,X,X) 
615 IF 08$-"H" GO TO 635 
620 IF 08$-"L" GO TO 645 
625 IF 08$-"-" GO TO 655 
626 IF 08$-"0" GO TO 629 
627 GO TO 1340 
629 LET B(1,6)-1 \ LET B(1,7)=1 
630 GO TO 660 
635 LET B(1,6)=1 \ LET B(1,7)=0 
640 GO TO 660 
645 LET B(1,6)-0 \ LET B(1,7)-1 
650 GO TO 660 

56 



uUO!'E i 007 
Page 11 of 13 

655 LET B(1,6)-0 \ LET B(1,7)=0 
660 LET B8-B(1,0)*1+B(1,2)*2+5(1,4)*4+B(1,6)*8 
665 LET B9-B(1,1)*1+B(1,3)*2+5(1,5)*4+B(1,7)*8 
670 LET B8-15-B8 \ LET B9-15-59 
675 IF B8<10 THEN LET P1-0 
680 IF B8<10 THEN GO TO 720 
685 IF B8-10 THEN LET B8$-nAn 
690 IF B8-11 THEN LET B8$-"B" 
695 IF B8-12 THEN LET B8$-"C" 
700 IF B8-13 THEN LET B8$-"0" 
705 IF B8-14 THEN LET B8$-"E n 
710 IF B8-15 THEN LET B8$-nFn 
715 LET P1-1 
720 IF A8<10 THEN LET PO-O 
725 IF A8<10 THEN GO TO 765 
730 IF A8-10 THEN LET A8$_nA n 
735 IF A8-11 THEN LET A8$_nB n 
740 IF A8-12 THEN LET A8$-"C" 
745 IF A8-13 THEN LET A8$_nO" 
750 IF A8-14 THEN LET A8$-"E" 
755 IF A8-15 THEN LET A8$-"F" 
760 LET PO-1 
765 IF P1-0 THEN GO TO 780 
770 IF PO-O THEN GO TO 805 
775 GO TO 795 
780 IF PO-1 THEN GO TO 815 
785 PRINT #4,STR$(B8);STR$(A8);L1$ 
790 GO TO 820 
795 PRINT #4,B8$iA8$;L1$ 
800 GO TO 820 
805 PRINT #4,B8$;STR$(A8);L1$-
810 GO TO 820 
815 PRINT #4,STR$(B8);A8$;L1$ 
820 IF B9<10 THEN LET P3-0 
825 IF B9<10 THEN GO TO 865 
830 IF B9-10 THEN LET B9$_nA" 
835 IF B9-11 THEN LET B9$-"B" 
840 IF B9-12 THEN LET B9$-"C~ 
845 IF B9-13 THEN LET B9$-"On 
850 IF B9=14 THEN LET B9$-"E" 
855 IF B9-15 THEN LET B9$-"F" 
860 LET P3-1 
865 IF A9<10 THEN LET P2=0 
870 IF A9<10 THEN GO TO 910 
875 IF A9-10 THEN LET A9$_nA" 
880 IF A9-11 THEN LET A9$-"B" 
885 IF A9-12 THEN LET A9$-"C" 
890 IF A9-13 THEN LET A9$-"0" 
895 IF A9-14 THEN LET A9$-nEn 
900 IF A9-15 THEN LET A9$-"F" 
905 LET P2-1 
910 IF P3-0 THEN GO TO 925 

57 



uNOTE # 007 
Page 12 of 13 

915 IF P2-0 THEN GO TO 945 
920 GO TO 937 
925 IF P2-1 THEN GO TO 955 
930 PRINT #4,STR$(B9);STR$(A9);L1$ 
935 GO TO 960 
937 PRINT #4,B9$;A9$;L1$ 
940 GO TO 960 
945 PRINT #4,B9$;STR$(A9);L1$ 
950 GO TO 960 
955 PRINT #4,STR$(B9);A9$;L1$ 
960 LET X-X-1 
965 IF X>O THEN GO TO 235 
970 LET Y-B 
975 LET C1$-SEG$(01$,Y,Y) 
980 IF C1$-"A" THEN LET A1-1 
985 IF C1$-"*" THEN LET A1-0 
990 LET C2$-SEG$(02$,Y,Y) 
995 IF C2$-"A" THEN LET A2-1 
1000 IF C2$-"*" THEN LET A2-0 
1005 LET C3$-SEG$(03$,Y,Y) 
1010 IF C3$-"A" THEN LET A3-1 
1015 IF C3$-"*" THEN LET A3-0 
1020 LET C4$-SEG$(04$,Y,Y) 
1025 IF C4$-"A" THEN LET A4-1 
1030 IF C4$-"*" THEN LET A4-0 
1035 LET C5$=SEG$(05$,Y,Y) 
1040 IF C5$-"A" THEN LET A5-1 
1045 IF C5$-"*" THEN LET A5-0 
1050 LET C6$=SEG$(06$,Y,Y) 
1055 IF C6$-"A" THEN LET A6-1 
1060 IF C6$_n*n THEN LET A6-0 
1065 LET C7$-SEG$(07$,Y,Y) 
1070 IF C7$-nAn THEN LET A7-1 
1075 IF C7$_n*n THEN LET A7-0 
lOBO LET CB$-SEG$(OB$,Y,Y) 
lOBS IF CB$_nA n THEN LET FB-1 
1090 IF CB$_n*n THEN LET FB-O 
1095 LET 09-(A1*1)+(A2*2)+(A3*4)+(A4*B) 
1100 LET P9-(A5*1)+(A6*2)+(A7*4)+(FB*B) 
1105 LET 09-15-09 \ LET P9-15-P9 
1110 IF P9<10 THEN LET T1-0 
1115 IF P9<10 THEN GO TO 1155 
1120 IF P9-10 THEN LET P9$_nAn 
1125 IF P9-11 THEN LET P9$_nBn 
1130 IF P9-12 THEN LET P9$-nC n 
1135 IF P9-13 THEN LET P9$_nDn 
1140 IF P9-14 THEN LET P9$-nEn 
1145 IF P9-15 THEN LET P9$-nFn 
1150 LET T1-1 
1155 IF 09<10 THEN LET TO-O 
1160 IF 09<10 THEN GO TO 1200 
1165 IF 09-10 THEN LET 09$-nAn 

5B 



uNOTE i 007 
Page 13 of 13 

1170 IF 09-11 THEN LET 09$-nBn 
1175 IF 09-12 THEN LET 09$-nC n 
1180 IF 09-13 THEN LET 09$-"0" 
1185 IF 09-14 THEN LET 09$-nEn 
1190 IF 09-15 THEN LET 09$-"F" 
1195 LET TO-1 
1200 IF T1=0 THEN GO TO 1215 
1205 IF TO=O THEN GO TO 1240 
1210 GO TO 1230 
1215 IF TO-1 THEN GO TO 1255 
1220 PRINT i4,STR$(P9);STR$(09);L1$ 
1225 GO TO 1260 
1230 PRINT i4,P9$;09$;L1$ 
1235 GO TO 1260 
1240 PRINT i4,P9$;STR$(09);L1$ 
1250 GO TO 1260 
1255 PRINT i4,STR$(P9);09$;L1$ 
1260 I,ET Y-Y-1 
1265 IF Y>O THEN GO TO 975 
1270 PRINT i4,Z$ 
1275 LET Y1-Y1+1 
1280 IF Yl-2 THEN LET Sl$-n$A200," 
1285 IF Yl-3 THEN LET Sl$-"$A300," 
1290 IF Y1=4 THEN LET Sl$-n$A400," 
1295 IF Y1=5 THEN LET Sl$-"$A500," 
1300 IF Yl-6 THEN LET Sl$-"$A600," 
1305 PRINT i4,Z$ 
1310 IF Y1=7 THEN GO TO 1320 
1315 IF E1=0 THEN GO TO 91 
1320 PRINT i4,H2$ 
1330 CLOSE 
1335 GO TO 1345 
1340 PRINT "INPUT LINE IN ERROR" 
1345 END 

59 



60 



uNOTE # 008 

Title: Memory Management and the LSI-11/73 Date: 22-Jun-84 

Originator: Dave Smith Page 1 of 11 

This micronote explains memory management as it applies to the 
LSI-11/73. It includes descriptions of what memory management is, what 
it does, and how it works. 

Simply stated, memory management is a method of mappi~g virtual 
addresses to physical addresses. The virtual address space 1S the view 
of memory as seen by a process running. The physical address space is 
the actual physical memory as seen by the entire system. Since ALL 
memory references must be mapped, this translation is done in hardware 
by using a Memory Management Unit (MMU). Various schemes (dependent 
upon the architecture) have been df~veloped to accomplish this, but most 
memory management systems provide the following services: 

1) Protection 
2) Relocation 
3) Segmentation 

The first two are of great importance in a multiprogramming system since 
memory management provides the mf~chanism for assigning memory areas to 
user programs and for preventing users from accessing areas that have 
been assigned to other users. This protects the operating system 
executive as well as users from accidental or willful memory accesses 
outside of a user's assigned memory. Relocation is also important in a 
multiprogramming environment since the executive must be able to 
relocate the user's program to a free area in physical memory. 

The LSI-11/73 Memory Management Unit provides the hardware for complete 
memory management by providing all of the above services. It is 
software compatible with the largl~r UNIBUS PDP-11s and other Q-bus 
processors. Since the LSI-11/73 has the PDP-11 architecture and a 
16-bit program counter, all 16-bit addresses access a 64Kb virtual 
address space. On the LSI-11/73 this addressing limitation can be eased 
by using separate sets of memory management registers for instructions 
(I-space) and for data (D-space). By utilizing separate I- and D
space, the address space can be segmented into two 64Kb segments, 
effectively doubling the virtual address space. The LSI-11/73 and the 
Q-bus allow 4 Mb of memory to be rl~ferenced. The MMU is necessary to 
provide the mapping from the 64Kb virtual address space to the 4 Mb 
physical address space. 

61 



uNOTE # OOS 
Page 2 of 11 

When the MMU is activated, a 16-bit virtual address is mapped to an 
lS-bit or 22-bit physical address. Th~ MMU uses registers known as 
Active Page Registers (APRs). An APR consists of two 16-bit registers 
which are called the Page Address Register (PAR) and the Page Descriptor 
Register (PDR). PARs are used in the actual address translation while 
PDRs contain access and other information. Since the LSI-11/73 is 
functionally equivalent to the PDP-11/70, it can operate in one of three 
modes: Kernel, Supervisor, or User and it can use 1- and D- space. 
This means that the MMU must provide separate sets of registers for each 
mode and within each mode, sets of registers for I-space and for 
D-space. A set of registers consists of eight pairs of PDRs and PARs. 
Thus the LSI-11/73 MMU has a total of three sets of 32 16-bit registers. 

Mapping is always done in pages of 8Kb (4K words) in length or less. In 
order to map the largest possible virtual address space (64 Kb), the 
address space is divided into eight pages of 8Kb each. One APR is used 
fo[, each of the eight pages, numbered 0 to 7. The uppermost page in 
physical memory is called the I/O page and is usually mapped by a Kernel 
Mode APR since it is a privileged area. 

4 Mb 

USER MODE > 

APRs 

PAR7 

PAR6 

PARS ~ > 

PAR4 

PAR3 

PAR2 

PAR1 > 

PARO 
o 

PHYSICAL 
ADDRESS 

SPACE 

I/O page < 

page 7 

< 

< 

62 

-----

KERNEL MODE 

APRs 

PAR7 

PAR6 

PARS 

PAR4 

PAR3 

----- PAR2 

PAR1 

PARO 



uNOTE # 008 
Page 3 of 11 

The Page Address Register consists solely of the Page Address Field 
(PAF). If 22-bit addressing is enabled, then all 16 bits of the PAR are 
used as the PAF. If only 18-bit addressing is desired then the 12 lower 
order bits are the PAF and the 4 higher order bits are unused. It may 
be thought of as a base register containing a base address or as a 
relocation register containing a relocation constant. 

PAGE ADDRESS REGISTER (PAR) 
15 o 

[+--+-;~GE+AD;RE;;-;IE~~~PA;-)-+--+--+--+--+J 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

The Page Descriptor Register contains information about access, page 
length, and expansion direction: 

PDR <15> 

PAGE DESCRIPTOR REGISTER (PDR) 

15 14 08 07 06 05 04 03 02 01 00 

~
+--+--+--+--+--+ 

Be PAGE LENGTH FIELD 
+--+--+--+--+--+ 

I 01 wi 01 olEol A~~ 

BC (Bypass Cache) 

Set if memory accessing is wished to be 
without utilizing the cache. Useful with 
dual-ported memories. 

PDR <08:14> PLF (Page Length Field) 

Specifies the authorized length of the page 
in 32 word (or 64 byte) groups. 

o <--> 32 word page 

. 
177 (8) <--> 4096 word page 

63 



uNOTE # 008 
Page 4 of 11 

PDR <06> 

PDR <03> 

W (Written Into) 

Useful in determining whether or not a page can 
simply be erased or must be saved to be brought 
back into memory. 

0 <-> Page has NOT been written into 
1 <-> Page has been written into 

ED (Expansion Direction) 

0 <-> Expands to higher addresses 
(Normally used) 

1 <-> Expands to lower address-es 
(Can be used for stack segments) 

PDR <01:02> ACF (Access Control Field) 

00 <-> Nonresident 
01 <-> Resident - Read Only 
10 <-> Not Used 
11 <-> Resident - Read/Write 

The 16-bit virtual address is divided into three fields: 

15 13 12 

APF 

VIRTUAL ADDRESS (VA) 

6 5 

BN DIB 

o 

<------DISPLACEMENT FIELD (DF)----> 

o APF or Active Page Field 
These three bits determine which of the eight 
APRs are selected. 

o BN or Block Number 
The PAF determines an 8 Kb page in memory. 
The BN is that offset that is added to the base 
of ,the page determined by the PAF to obtain the 
block within the page to map. 

64 



o DIB or Displacement In the Block 

uNOTE # 008 
Page 5 of 11 

Tells exactly which one of the 32 words is being 
mapped to. The low order 6 bits (DIB) are never 
relocated. 

The BN and DIB fields are collectively referred to as the 
Displacement Field (OF). 

If the MMU is not activated then 16-bit virtual addresses are also 
16-bit physical addresses and linearly map the 64Kb address space. When 
the MMU is activated the 16-bit virtual address (VA) is no longer 
interpreted as a physical address Instead, the physical address (PA) is 
constructed using the VA and the PAF (Page Address Field) of the 
selected PAR. 

The translation of virtual addresses to 22-bit physical addresses is 
accomplished as follows: 

1) A set of registers is selected. This is determined by 
the space being referenced (Instructions or Data) and by 
the mode bits of the Processor status Word (PSW <15:14». 

2) The APF field of the virtual address determines which of the 
eight pairs in the selected set will be used for the mapping. 

3) The PAF of the selected register pair contains the starting 
address of the currently active page as a block number. 

4) The block number from the virtual address and the block number 
from the PAF are added together. The block number from the PAF 
is shifted left by six bits in order to perform this addition. 
The result is the actual physical block number (bits <21:06> 
of the physical address). 

5) The DIB of the virtual address is carried along unchanged as 
bits <05:00> of the translated address. 

65 



uNOTE # 008 
Page 6 of 11 

VIRTUAL TO PHYSICAL ADDRESS TRANSLATION 

16-BIT VIRTUAL ADDRESS 
15 o 

[
+-+I+-+-+-+-+-+I+-+-+-+--+] 

APF BN DIB 
+-r--+ +-+-+ +-+-+ +-+_.+-+ + 

15 

Selects 
APR 

PAGE ADDRESS REGISTER 
o 

[
+--+--+--+--+-+-+-+--+-+-+-+-+-+-+] 

+--+--+--+--+--+--+~+-+-+-+-:+-+--+<--+--------~ 

21 6 5 o 

[
+--+--+-+-+-+-+ +-+-+-+-+-+-+] 

BLOCK NUMBER IN PHYSICAL MEMORY 
+--+--+--+-+--+--+--+--+--+-+-+-+-+-+ 

[+--+~+--+ +] 
DIB 

. +--+-+--+-+ 

<---------------- 22-BIT PHYSICAL ADDRESS (PA) ------------------------> 

66 



uNOTE # 008 
Page 7 of 11 

There are four memory management registers that are used for memory 
fault recovery and abort and status information as well as control of 
the MMU. They are called MMRO, MMR1, MMR2, and MMR3. 

Memory Management Register 0 (MMRO) is the main control and status 
register. 

MEMORY MANAGEMEN'T REGISTER 0 (MMRO) 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

1 1 1 1 01 01 01 01 o~: 1 1 :=:IJ 
MMRO <15> 

MMRO <14> 

MMRO <13> 

MMRO <06:05> 

MMRO <04> 

MMRO <03:01> 

NONRESIDENT ABORT 

Set if an attempt is made to access a page 
with an ACF of 0 or 2 or if the PSW indicates 
mode 2. 

PAGE LENGTH ABORT 

Set if an attempt is made to access a location 
whose block numbE!r is outside the area authorized 
by the PLF of the PDR for that page. 

READ ONLY ABORT 

Set if an attempt is made to write to a page with 
an ACF of 1 (Read Only). 

PROCESSOR MODE 

Copy of the PSW <15:14> when abort occurred. 

PAGE SPACE 

1 
o 

<-> 
<-> 

PAGE NUMBER 

I)-space 
I-space 

page Number of page causing the abort. 
Copy of APF of virtual address. 

67 



uNOTE ~~ 008 
Page 8 of 11 

MMRO <00> ENABLE RELOCATION 

1 

o 
<-> 

<-> 

ALL addresses are relocated 
(MMU activated) 
NO addresses are relocated 
(MMU disabled) 

Memory Management Register 1 (MMR1) is called the Instruction Backup 
Register. It records any autoincrement or autodecrement of any general 
purpose register. The lower byte is used for source operands and the 
destination operand may be in either byte, dependent upon the 
instruction. 

MEMORY MANAGEMENT REGISTER 1 (MMR1) 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

[
+--+-+-+--r--+-+--r--+-+--+-+--r--+--+] 

+-+--+-+~+--+~+--+--+--+~+-.-+ 

MMR1 <15:11> 

MMR1 <10:08> 

MMR1 <07:03> 

MMR1 <02:01> 

AMOUNT CHANGED (2's complement) 

REGISTER NUMBER 

AMOUNT CHANGED (2's complement) 

REGISTER NUMBER 

Memory Management Register 2 (MMR2) is known as the Last Virtual program 
Counter. It is loaded with the value of the program Counter at the 
beginning of each instruction fetch and is used in instruction fault 
recovery_ 

68 



uNOTE # 008 
Page 9 of 11 

Memory Management Register 3 (MMlt3) is used to select 1S-bit or 22-bit 
address mapping and is used to onable/disable the data space for any of 
the processor modes. 

MEMORY MANAGEMl~NT REGI STER 3 (MMR3) 

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

/ 0/ 0/ 0/ 01 0/ 0/ 0/ 0/ 0/ 0/ 1 1 1 :=:J 
MMR3 <05> 

MMR3 <04> 

MMR3 <03> 

MMR3 <02> 

MMR3 <01> 

MMR3 <00> 

UNINTERPRETED 

May be set or cleared but is not interpreted. 

ENABLE 22-BIT ]~PPING 

1 
o 

<-> 
<-> 

Mapping is to 22-bit space. 
Mapping is to 1S-bit space. 

ENABLE CSM (Call Supervisor Mode) INSTRUCTION 

1 
o 

<-> 
<-> 

CSM is recognized. 
CSM is ·not recognized. 

KERNEL DATA SPJ~CE 

1 

o 
<-> 

<-> 

SUPERVISOR DAT.A 

1 <-> 

0 <-> 

USER DATA SPACE 

1 <-> 

0 <-> 

69 

Enable data space mapping in 
Kernel Mode 
Disable data space mapping in 
Kernel Mode 

SPACE 

Enable data space mapping in 
Supervisor Mode 
Disable data space mapping in 
Supervisor Mode 

Enable data space mapping in 
User Mode 
Disable data space mapping in 
User Mode 



uNOTE # 008 
Page 10 of 11 

Summary: 

The LSI-11/73 Memory Management unit provides a powerful, general 
purpose tool for memory management~ It can be used to expand memory in 
a simple way and it can be used in a multiprogramming system to provide 
all the services necessary for an efficient and secure environment. 

The following is a simple MACRO-11 program which illustrates the method 
of setting up the registers and performing some mappings. It writes a 
known value to an unmapped location and sets up the MMU registers and 
turns on the unit. It then writes another known value to the same 
virtual address which is now mapped. Then it turns the MMU off. At 
this point the two known valuas are in different memory locations . 

. TITLE MMU 

; 
; Program to demonstrate setting up MMU registers 
; and to illustrate the mapping that takes place 
; 

PSW = 177776 Processor status Word 
MMRO =- 177572 Memory Management Register 0 
PDRO - 172300 Page Descriptor Register 0 
PARO =- 172340 Page Address Register 0 
PAR1 - 172342 Page Address Register 1 
PAR7 - 172356 Page Address Register 7 

; INSURE THAT MMU IS NOT ACTIVATED 

START:: CLR @#MMRO CLEAR MMRO 

; STORE A KNOWN VALUE (152152) IN UNMAPPED LOCATION 20000 

MOV #152152,@#20000 

SET PSW TO KERNEL MODE 

BIC #140000,@#PSW 

; SET THE PARS SO THAT EACH PAGE MAPS TO ITSELF 

MOV #PARO,R5 SET UP PAR POINTER 
MOV #10,R4 SET UP PAR COUNTER 
CLR R3 i SET UP PAR OFFSET VALUE 

LOOPl: MOV R3, ( R5 ) + SET EACH RELOCATION CONSTANT TO 
MAP TO ITSELF 

ADD #200,R3 UPDATE OFFSET 
SOB R4,LOOPl DO ALL OF THEM 

70 



uNOTE 
Page 11 

; SET PAR1 TO MAP PAGE 1 TO PAGE 2 

MOV #400,@#PAR1 

SET PAR7 TO MAP THE I/O PAGE TO THE TOP OF MEMORY 

MOV #7600,@#PAR7 172356 POINTS TO 760000 

SET UP THE PDRS 
; 
; 77406 (8) - 0 111 111 100 000 110 (2) 

. , 
; 
; 
; 
; 
; 

RESIDENT - READ/WRITE 
UPWARD EXPANDING 
NOT WRITTEN INTO 
8KB PAGE SIZE 
DON'T BYPASS CACHE 

MOV 
MOV 

#PDRO,R5 
#10,R4 

LOOP2: MOV 
SOB 

#77406,(R5)+ 
R4,LOOP2 

; ENABLE THE MMU 

INC @#MMRO 

SET UP PDR POINTER 
SET UP PDR COUNTER 

SET EACH PDR 
DO THEM ALL 

; SET BIT 0 OF MMRO 

; WRITE A VALUE TO LOCATION 20000. THIS SHOULD BE MAPPED. 

# 008 
of 11 

MOV #107010,@#20000; WRITE 107010 TO MAPPED 2000 

DISABLE THE MMU 

DEC @#MMRO ; CLEAR BIT 0 OF MMRO 

; AT THIS POINT IN THE PROGRAM, ;E:XAMINING PHYSICAL 
ADDRESS 20000 SHOWS THE VALUE OF 152152 WHICH WAS PLACED THERE 

; ADDRESS 40000 (WHICH 20000 MAPPED TO) HOLDS THE VALUE 107010 

HALT 
.END START 

71 



72 



uNOTE # 009 

Title: Cache Concepts and the LSI-ll/73 Date: 02-JUL-84 

Originator: Charlie Giorgetti Page 1 of 6 

The goal is to introduce the concept of cache and its particular 
implementation on the LSI-ll/73 (KDJll-A). This is not a detailed 
discussion of the different cache organizations and their impact on 
system performance. 

What Is A Cache ? 

The purpose of having a cache is to simulate a system having a large 
amount of moderately fast memory. To do this the cache system relies on 
a small amount of very fast, easily' accessed memory (the cache), a 
larger amount of slower, less expensive memory (the backing store), and 
the statistics of program behavior. 

The goal is to store some of the data and its associated addresses in 
the cache and all of the data at its usual addresses (including the 
currently cached data) in the backing store. If it can be arranged that 
most of the time when the proces.sor needs dat, it is located in fast 
memory, then the program will execute more quickly, slowing down only 
occasionally for main memory operations.. The placement of data in the 
cache should not be a concern to the programmer but is a consequence of 
how the cache functions. 

Figure 1 is an example of a memory organization showing a cache with 
backing store. If the data needed by the microprocessor (uP) can be 
found in the cache then it is accessed much faster due to the local data 
path and faster cache memory than by having to access the backing store 
on the slower system bus. 

c::J 
CPU Internal Buses C]yrstem 

< > Bus 
uP Interface 

< 
Fast Path 
to Cache 

Cache 

System Bus 
For Memory and I/O Options 

< > 

System Memory 
(Backing Store) 

Figure 1 - An Example Memory System with Cache 

73 



uNOTE # 009 
Page 2 of 6 

A cache memory system can only work if it can successfully predict most 
of the time what memory locations the program will require. If a 
program accessed data from memory in a completely random fashion, it 
would be impossible to predict what data would be needed next. If this 
was the case a cache would operate no better then a conventional memory 
system. 

Pr()grams rarely generate random addresses. In many cases the subsequent 
memory address referenced is often very near the current address 
accessed. This is the principle of program locality. The next address 
generated is in the neighborhood of the current address. This behavior 
helps makes cache systems feasible. 

Th~! concept of program locality is not always adhered to, but is a 
statement of how many programs behave. Many programs execute code in a 
linear fashion or in loops with predictable results in next address 
generation. Jumps and context switching give the appearance of random 
address generation. The ability to determine what word a program will 
reference next is never completely successful and therefore the correct 
"guesses" are a statistical measure of the size and organization of the 
cache, and the behavior of the program being executed. 

The measure of a cache performance is a statistical evaluation of the 
number of memory references found versus not found in cache. When 
memory is referenced and the address is found in the cache this is known 
as a hit. When it is not it is termed a miss. Cache performance is 
usually stated in terms of the hit ratio or the miss ratio where these 
are defined as: 

Number of Cache Hits 
Hit Ratio = 

Total Number of Memory References 

Miss Ratio = I - Hit Ratio 

The LSI-11/73 Cache Impl~mentation 

ThE~ cache organization chosen must be one that can be implemented within 
the physical and cost constraints of the design. 

ThE~ LSI-11/73 implements a direct map cache. A direct map organization 
has a single unique cache location for a given address and this is where 
thE! associated data from backing store are maintained. This means an 
access to cache requires one address comparison to determine if there is 
a hit. The significance of this is that a small amount of circuitry is 

74 



uNOTE # 009 
Page 3 of 6 

required to perform the comparison operation. The LSI-11/73 has an 8 
KByte cache. This means that therle are 4096 unique address locations 
each of which stores two bytes of information. 

The cache not only maintains the d.ata from backing store but it also 
includes other information that is needed to determine if its content is 
valid. These are parity detection and valid entry checking. The 
following diagram shows the logical layout of the cache and what each 
field and its associated address in the cache is used for. 

Binary Cache 
Entry Address 

000000000000 

000000000001 

000000000010 

111111111101 

111111111110 

111111111111 

P v P1 B1 

Figure 2 ~ LSI-11/73 Cache Layout 

PO BO 

The Cache Entry Address is the address of one of 4096 entries within the 
cache. This value has a one-to-one relationship with a field in each 
address that is generated by the processor (described in the next 
section on how the physical address accesses cache). 

Each field has the following meaning: 

Tag (TAG) - This nine bit field contains information that is 
compared to the address label, described in the next section on 
how the physical address accesses cache. When the physical 
address is generated, the address label is compared to the tag 
field. If there is a match it can be considered a hit provided 
that there is entry validation and no parity errors. 

Cache Data (BO and B1) - These two bytes are the actual data 
stored in cache. 

75 



uNOTE # 009 
Page 4 of 6 

Valid Bit (V) - The valid bit indicates whether the information 
in BO and B1 is usable as data if a cache hit occurs. The valid 
bit is set when the entry is allocated during a cache update 
which occurs as a result of a miss. 

Tag Parity Bit - (P) - Even parity calculated for the value 
stored in the tag field. 

parity Bits (PO and P1) - pO is even parity calculated for the 
data byte BO and P1 is odd parity calculated for the data byte 
B1. 

When the processor generates a physical address, the on-board cache 
control logic must determine if there is a hit by looking at the unique 
location in cache. To determine what location to check, the cache 
control logic considers each address generated as being made up of three 
unique parts. The following are the three fields of a 22-bit address 
(in an unmapped or lS-bit environment the label field is six or four 
bits less respectfully): 

21 20 19 18 17 16 15 14 13 12 11 10 09 OS 07 06 05 04 03 02 01 00 

1< LABEL -------->1 1<------------- INDEX ----------->1 BYTE, 
SELEC~ 

Figure 2 - Components of a 22-bit Address For Cache Address Selection 

Each field has the following meaning: 

Index - This twelve bit field determines which one of the 4096 
cache data entries to compare with for a cache hit. The index 
field is the displacement into the cache and corresponds to the 
Cache Entry Address. 

Label - Once the location in the cache is selected, the nine bit 
label field is compared to the tag field stored in the cache 
entry under consideration. If the address label and the tag 
field match, the valid bit is set, and there is no parity error, 
then a hit has occurred. 

Byte Select Bit - This bit determines if the reference is on an 
odd or even byte boundary. All Q-bus reads are word only so 
this bit has no effect on a cache read. Q-bus writes can access 
either words or bytes. If there is a word write the cache will 
be updated if there is a hit. If there is a miss a new cache 
entry will be made. If there is a byte write, the cache will 
only be updated if there is a hit. A miss will not create a new 
entry on a byte write. 

76 



uNOTE # 009 
Page 5 of 6 

The LSI-ll/73 direct map cache mu:;t update the backing store on a memory 
write. The LSI-ll/73 uses the write through method. With this 
technique, writes to backing store occurs concurrently with cache 
writes. The result is that the backing store always contains the same 
data as the cache. 

Features Of The LSI-ll/73 Cache 

The LSI-l1/73 direct map cache has a number of features that assist in 
the performance of the overall system in addition to the speed 
enhancement as a result of faster memory access. These features consist 
of the following: 

o Q-bus OMA monitoring 
o I/O page reference monitoring 
o Memory management control of cache access 
o Program control of cache parameters 
o Statistical monitoring of cache performance 

The LSI-ll/73 cache control logic monitors the Q-bus during OMA 
transactions. When an address that has its data stored in cache is 
accessed during OMA, the cache a:nd backing store contents might no 
longer be the same. This is an unacceptable situation. The cache 
control logic invalidates a cache entry if the address is used during 
OMA. This also includes addresses used during Q-bus Block Mode OMA 
transfers. 

Memory referen7es to the I/O page are not cached since that data is 
volatile, meanlng its contents can change without a Q-bus access. Since 
the cache could end up with stale data, I/O references are not cached. 

There are situations for which using the cache to store information for 
faster access is not desirable. An example is a device that resides in 
the I/O page, and is true in other instances as well. One situation is 
a device that does not reside in the I/O page but can change its 
contents without a bus reference, such as dual ported memory. 

Another situation is partitioning and tuning an application for 
instruction code execution versus data being manipulated. In this case 
the instruction stream may execute many times over for different data 
values. Speed enhancement can be obtained if the instructions are 
cached while the data is not cached. By forcing the data never to be 
cached it cannot replace instructions in the cache. 

The memory management unit (MMU) of the LSI-l1/73 can assist in this 
situation. Pages of memory allocated for data can be marked to bypass 
the cache and therefore not effect instructions that loop many times. 
The cache and the MMU work together to achieve the goal of increased 
system performance. 

The dynamics of cache operation are under program control through use of 
the Cache Control Register (CCR), an LSI-ll/73 on-board register. This 

77 



uNOTE # 009 
Page 6 of 6 

register can "turn" the cache on or off, force cache parity errors for 
diagnostic testing, and invalidate all cache entries. The details of 
the CCR are described in the KDJll-A CPU Module User's Guide (part 
number EK-KDJ1A-UG-001). 

During system design or at run-time the performance enhancements 
provided by the cache system can be monitored under program control. 
This is accomplished by using another LSI-ll/73 on-board register the 
Hit/Miss Register (H~R). This register tracks the last six memory 
references and indicates if a hit or miss took place. The details of 
the HMR are also described in the KDJll-A CPU Module User's Guide. 

Summary 

Caches are a mechanism that can help improve overall system performance. 
The dynamics of a given cache are dictated by the organization and the 
behavior of the programs running on the machine. The LSI-ll/73 cache is 
designed to be flexible in its use, simple in implementation, and 
enhance application performance. 

More detailed discussions on how caches work and other cache 
organizations can be found in computer architecture texts that have a 
discussion of memory hierarchy. 

78 



uNOTE * 010 

Title: MicroVAX I/O Programming Date: 27-JUL-84 

Originator: Peter Jonhson Page 1 of 5 

The Qbus MicroVax implements the full Vax memory management, so virtual 
addresses are translated to physical addresses - just as they are for 
the Vax minicomputers. When memory management is enabled, system and 
process space virtual addresses ,are translated into physical addresses 
and sent onto the Qbus. Normally, the programmmer need not concern 
himself with this translation ,as this is completely handled by the 
operating system; however, when accessing locations in the I/O space 
directly the programmer must concern himself with the mapping since 
specific information must be supplied by the programmer to MicroVMS in 
order for it to successfully map the user's virtual addresses into the 
I/O space. The process of mapping a virtual address to a physical 
address must start by determining the physical address that you wish to 
access. In our case this means that we must calculate a Qbus MicroVax 
physical address given that we know the address that the Qbus board is 
configured to. In order to do this we must know a few key facts about 
the Qbus MicroVax architecture. 

1) The Qbus MicroVax I/O space begins at physical 20000000 (hex) 

2) The I/O space of a Qbus MicroVax is largely empty containing 
only Q22 bus I/O space which is SK bytes long 

Given these two pieces of information we now know that the I/O space for 
the Qbus MicroVax starts at physical 20000000 (hex) and extends to 
20001FFF (hex). This I/O space directly corresponds to the configurable 
addresses on Qbus option boards 160000-177777 (oct). In order to 
convert any Qbus option address to a Qbus MicroVax address one simply 
subtracts 160000 from the boards configured address to get its offset 
into the I/O space and then add this value to the base of the Qbus 
MicroVax I/O space. For example, let us consider a board which has been 
configured to-166540. In order to calculate its equivalent Qbus 
MicroVax address we would do the following: 

79 



uNOTE # 010 
Page 2 of 5 

1) Subtract. off the I/O base address for this board (160000) 

166540 (oct) 
160000 (oct) 

6540 (oct) --> 060 (hex) 

2) Add the board's address offset to the Qbus MicroVax I/O space 
base address 

20000000 (hex) 
+ 060 (hex) 

20000060 (hex) 

This addition results in the physical address on the Qbus MicroVax 
system that this board would answer to. 

Now we have calculated the physical address for the board in the Qbus 
MicroVax environment. This value, however, is in the raw state and is 
still not usable by the uVMS software to perform virtual to physical 
address translation. In order for this address to be useful to the 
software it must now be converted from a physical address to a page 
frame number. The page is the basic unit of memory mapping and 
protection. A page is 512 contiguous byte locations. A page frame 
number (PFN) is the address of the first byte of a page in physical 
memory. This means that the lsb ofa PFN has the resolution of 1 page 
or 512 bytes. It is a simple matter now to convert a physical address 
to a PFN. Since the lsb of a PFN is 1 page to convert a physical 
address to PFN just shift right the physical address 9 bits, i.e. shift 
off the 9 least significant bits. 

physcial 20000060 (hex) shift right 9 --> PFN 100006 (hex) 

The PFN value which we have calculated is sufficient to allow the system 
to map a physcial page of addresses into your virtual address space. 
The address of the Qbus option resides somewhere in the page which we 
have mapped. It is the responsibility of the programmer to correctly 
offset from the beginning of the page in order to access the board i.e. 
the programmer _must displace from the base of the mapped page with the 
correct virtual address offset. To determine the offset from the 
beginning of the mapped page look to bits 0-9 of the configured address 
of the Qbus option board - this is the offset. In our example the 
offset would be: 

80 



166540 (oct) 
I I 
\ I 
I 540 

uNOTE # 010 
page 3 of 5 

bits 9-0 are the offset 

This offset would be used by thE! programmer to access the device 
registers on the board. Failure to use the offset will usually result 
in an attempt to access non-esxistE!nt locations (analagous to memory 
time-outs) which will result in an access violation error being returned 
to the user. A sample program follows which illustrates the principles 
which have been discussed. It uses the same board address discussed 
earlier so that one can see the code needed to acutally implement the 
previous example. 

The following program illustrates, in a raw fashion, how one might 
actually access the I/O space with software. It is not meant to 
illustrate good or recommended pro9ramming practice but rather to show 
the mechanics of accessing the I/O space of a Qbus on MicroVax I. 

81 



uNOTE # 010 
Page 4 of 5 

iThis program will allow a user with suitable privilege to access 
idevice registers in the I/O space of a uVax. This example shows 
icode which is used to extract data from a DRV11 - a general purpose 
iparallel interface which resides in I/O space. It is sufficiently 
igeneral to allow the concept to be used in other situations where 
iaccess to the I/O space from a user process is desireable. 

iThis portion of the program is responsible for creating the 
ivirtual to physical mapping required to access registers in 
ithe I/O space. For this example the device registers are assumed to 
istart at 166540. In order for virtual to physical mapping to occur 
ithe user must calculate the physcial page frame that the device 
iregisters overlap into. (See accompanying text for how to do this) 

iCreate and map section directive does the actual work of mapping. 
iln order for this system service to work correctly the 
iuse must have PFNMAP privilege 

.entry start,Am<> 

$crmpsc s -
inadr .-maprange, -
retadr - actadr, -

pagcnt • #1, -

ilnput virtual address range 
iVirtual address range acutally 
imapped 
iNon zero required for page frame 
isection 

flags 
vbn -

-#<sec$m expreglsec$m pfnmap!sec$m wrt>, -
pfn number - iActual page frame of I/O space 

blbs 

pushl 
calls 

- ipage which contains device registers 

rO,continue 

rO 
#l,g"'lib$stop 

82 

icheck the return status of create 
iand map - if successful branch 

iput status onto stack 
itell him what happened and 
istop program 



uNOTE # 010 
Page 5 of 5 

iAt this point one page of virtual addresses in the user's process 
ispace is now mapped into one page of the I/O space. Now the user 
ican access device registers by using move instructions. 
i •••••• ** Please note that only certain instructions are allowed when 
idoing physical I/O to the bus. For example a MOVL instruction is 
iNOT legal to the I/O space. 

continue: 

movl actadr, r6 

addl # .... x160, r6 

;Get starting virtual address from 

;system service and put into R6 
;Add the displacement into this page 
ito access the device registers 

iAccess data from the parallel interface 

(r6) 
10$ 

tstb 
bgew 
movw 4(r6), data in buffer 

10$: 
$exit s -
code ;; #1 

;data for program •••.•. 

maprange: .long 
.long 

control status .word 
data in-buffer .word 

actadr: .blkl 

.long 

.end start 

"'x4.00 
"'x800 

o 
o 
2 

"'x100006 

83 

;Test for data transfer request 
;If no data exit 
;Data is present - store it 

;exit gracefully 

;holds returned virtual 
; address range 
;actual pfn of I/O page to 
;be mapped 



84 



uNOTE # 011 

Title: LSI-11/73 ADVANCED MEMORY MANAGEMENT Date: 04-Sep-S4 

Originator: Art Bigler Page 1 of 11 

This micronote examines the advanced memory management features 
available on the DCJ11 based LSI-11/73 series processors (KDJ11-A, 
KDJ11-B). These features include the standard virtual address 
relocation within the physical address space and the kernel and user 
execution modes, all of which are currently available as options on the 
mid-range LSI-11/23 (KDF11-A, KDF11-B) processors. In addition to these 
features, the DCJ11 based processors also provide instruction and data 
space (I/O space) memory management and the supervisor execution mode. 
The following discussion is intended to further clarify these features. 
For information pertaining to address relocation the reader is referred 
to micronote OOS, MEMORY MANAGEMENT AND THE LSI-11/73. 

1.0 INSTRUCTION/DATA SPACE M:EMORY MANAGEMENT 

I/O space memory management is utilized in the DCJ11 based processors IN 
ADDITION TO the relocation of virtual addresses within the physical 
address space. This provides the ability to place multiple program 
images in physical memory while at the same time providing an increased 
virtual address space of 128 kb OI' 64 kw by mapping instructions and 
data to separate areas of physical memory. The means by which I/O space 
memory management is attained involves both hardware and software as 
described in the following paragraphs. 

1.1 I/O SPACE HARDWARE 

The hardware required to implement: I/O space addressing is integrated 
into the memory management uni.t and is standard on all DCJ11 based 
processors. This includes the following: 

1. Eight (8) additional active page registers (APR'S) per 
execution mode (more about execution modes later). These APR's 
are used to map to the data space when I/O space memory 
management is enabled. 

1. Additional control and status bits in memory management 
registers 0 and 3 (MMRO, MMR3) which are used to control the 
enabling and disabling of data space addressing. INSTRUCTION 
SPACE ADDRESSING IS ALWAYS ENABLED. 

85 



uNOTE # 011 
Page 2: of 11 

1.1.1 ACTIVE PAGE REGISTERS 

The hardware provides a total of sixteen (16) APR's per execution mode, 
eight (8) instruction space registers and eight (8) data space registers. 
THE APR's are further divided into page descriptor registers (POR'S) and 
page address registers (PAR's) as described in micronote 008. The 
physical addresses for these registers are contained in the I/O page and 
are as follows: 

MODE 

-

-
.. 

KERNEL 
- I 

SPACE 
-

I-

-
I-

KERNEL 
I- 0 

SPACE 
f-

I-

-

PAR's POR's 

17772340 17772300 

17772342 17772302 

17772344 17772304 

17772346 17772306 

17772350 17772310 

17772352 17772312 

17772354 17772314 

17772356 17772316 

17772360 17772320 

17772362 17772322 

17772364 17772324 

17772366 17772326 

17772370 17772330 

17772372 17772332 

17772374 17772334 

17772376 17772336 

TABLE 1a 
KERNEL MODE APR'S 

86 

PAGE 

0 

1 

2 

3 

4 

5 

6 

7 

0 

1 

2 

3 

4 

5 

6 

7 



MODE 

-
-
-

SPVSR 
I 

SPACE 
-
-
-

-

SPVSR 
I- D 

SPACE 
I-

I-

PAR's PDR's 

17772240 17772200 

17772242 17772202 

17772244 17772204 

17772246 17772206 

17772250 17772210 

17772252 17772212 

17772254 17772214 

17772256 17772216 

17772260 17772220 

17772262 17772222 

17772264 17772224 

17772266 17772226 

17772270 17772230 

17772272 17772232 

17772274 17772234 

17772276 17772236 

TABLE 1b 
SUPERVISOR MODE APR'S 

87 

uNOTE # 011 
Page 3 of 11 

PAGE 

0 

1 

2 

3 

4 

5 

6 

7 

0 

1 

2 

3 

4 

5 

6 

7 



uNOTE # 011 
Page 4 of 11 

1.1.2 

MODE 

~ 

~ 

~ 

USER 
~ I 

SPACE 
~ 

~ 

~ 

~ 

~ 

USER 
~ 0 

SPACE 
~ 

~ 

~ 

PAR's POR's 

17777640 17777600 

17777642 17777602 

17777644 17777604 

17777646 17777606 

17777650 17777610 

17777652 17777612 

17777654 17777614 

17777656 17777616 

17777660 17777620 

17777662 17777622 

17777664 17777624 

17777666 17777626 

-17777670 17777630 

17777672 17777632 

17777674 17777634 

17777676 17777636 

TABLE 1c 
USER MODE APR'S 

MEMORY MANAGEMENT REGISTER 0 

PAGE 

0 

1 

2 

3 

4 

5 

6 

7 

0 

1 

2 

3 

4 

5 

6 

7 

Memory management register 0 (MMRO) contains control and status 
information for the memory management unit (MMU). This register is 
discussed complete~y in micronote 008, to which the reader is again 
refferred for information on those functions which are not directly 
applicable to I/O space and supervisor mode. 

MMRO contains three (3) status bits which are used in the implementation 
of I/O space memory addressing. These bits, 04 through 06, yield MMU 
status information whenever a MMU abort occurs and are used in 

88 



uNOTE • all 
page 5 of 11 

conjunction with MMRO bits 01 t:hrough 03 and 13 through 15 to provide 
complete execution mode and I/O spcLce status for the page causing the 
abort. See figure 1. 

Bit 04, the page address space status bit, 
associated with the aborted page and 
instruction space page and a one (1) for a 
space addressing is enabled. If I/O space 
bit always reflects a zero (0). 

indicates the address space 
is equal to a zero (0) for an 
data space page whenever I/O 
addressing is not enabled this 

Bits 05 and 06, the processor mode status bits, indicate the processor 
execution mode associated with 1:he page causing the abort. These bits 
are coded as follows: 

BIT 
06 05 

o 0 

o 1 

1 0 

1 1 

EXECUTION MODE 

KERNEL 

SUPERVISOR 

ILLEGAL (causes an abort with bit 15 set) 

USER 

For more information on MMU aborts see micronote 008. 

89 



uNOTE # 011 
Page 6 of 11 

1 
5 

1 
4 

MMRO ADDRESS: 17777572 

1 
3 

1 
2 

1 
1 

1 
o 

o 
9 

o 
8 

~--ABORT READ-ONLY 
ACCESS VrOLATION 

o 
7 

o 
6 

o 
5 

o 
4 

o 
3 

o 
2 

o 
1 

o 
o 

~-------ABORT PAGE LENGTH ERROR PAGE ENABLE 
ADDRESS RELOCATION 

~-----------ABORT NON-RESIDENT SPACE (I/D) 

BIT # 

<15> 
<14> 
<13> 
<12:07> -
<06:05> -
<04> 
<03:01> -
<00> 

DESCRIPTION 

ABORT READ-ONLY ACCESS VIOLATION (R ONLY) 
ABORT PAGE LENGTH ERROR (R ONLY) 
ABORT NON-RESIDENT (R ONLY) 
NOT USED (R ONLY) 
PAGE MODE (R ONLY) 
PAGE ADDRESS SPACE (I/D) (R ONLY) 
PAGE NUMBER (R ONLY) 
ENABLE RELOCATION (R/W) 

FIGURE 1 
MEMORY MANAGEMENT REGISTER 0 (MMRO) 

MEMORY MANAGEMENT REGISTER 3 

Memory management register 3 (MMR3) contains control and status 
information for data space addressing, 22 bit mapping, and the call to 
supervisor mode (CSM) instruction. This register, once again, is 
discussed in detail in micronote 008. 

MMR3 contains three (3) control bits which are used in the implementation 
of I/D space addressing. These bits, 00 through 02, individually enable 
data space addressing for each of the execution modes. Bit 00 enables 
data space addres$ing for the USER mode, bit 01 enables it for SUPERVISOR 
mode, and bit 02 enables it for KERNEL mode. The desired bits are set to 
a one (1) whenever data space addressing is desired. MMR3 is cleared 
during power-up, console restart, and the execution of the RESET 
instruction. See figure 2. 

90 



uNOTE # 011 
Page 7 of 11 

MMR3 REGISTER ADDRESS: 17772516 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 

0 I 0 0 0 0 0 0 0 

UNINTERPRETED------------~ 

ENABLE 22 BIT MAPPIN~------~ 

ENABLE CSM INSTRUCTION-------~ 

KERNEL------------------------------~ 

SUPERVISOR------------------------------~ 

USER--------------------------------------~-~ 

BIT # 

<15:06> -
<05> 
<04> 
<03> 
<02> 
<01> 
<00> 

DESCRIPTION 

NOT USED (R ONLY) 
UNINTERPRETED (R/W) 
ENABLE 22 BIT MAPPING (R/W) 
ENABLE CSM INSTRUCTION (R/W) 
KERNEL DATA SPACE (R/W) 
SUPERVISOR "DATA SPACE (R/W) 
USER DATA SPACE (R/W) 

FIGURE 2 
MEMORY MANAGEMENT REGISTER 3 

1.1.4 I/O SPACE ADDRESS MAPPING 

When I/O space addressing has been enabled the MMU hardware performs the 
address mapping (IN ADDITION TO ADDRESS RELOCATION WHICH IS PERFORMED 
USING THE APPROPRIATE SET OF APR'S) as follows: 

1. The ~urrent instruction is ALWAYS fetched from the instruction 
. space. 

2. The operands are mapped according to table 2. 

91 



uNOTE # 011 
Page 8 of 11 

OPERAND REGISTER TYPE 
ADDRESSING USED OF 
MODE ADDRESSING 

000 ANY REGISTER 

001 ANY REGISTER 
DEFERRED 

010 0 THROUGH 6 AUTOINCREMENT 

7 IMMEDIATE 

011 0 THROUGH 6 AUTOINCREMENT 
DEFERRED 

7 ABSOLUTE 

100 0 THROUGH 6 AUTODECREMENT 

7 DO NOT USE 11 

101 0 THROUGH 6 AUTODECREMENT 
DEFERRED 

7 DO NOT USE 11 

110 ANY INDEX 

111 ANY INDEX 
DEFERRED 

(A) - INDIRECT OR INDEX ADDRESS 
(D) =- DATA 

TABLE 2 
OPERAND ADDRESSING WITH DATA SPACE ENABLED 

I OR D 
SPACE 
USED 

I 

D 

D 

I 

D (A) 
D (D) 

I (A) 
D (D) 

D 

D (A) 
D (D) 

I ( A) 
D (D) 

I (A) 
D (A) 
D (D) 

All address mapping is performed using the I space APR's when data space 
addressing is not enabled. 

The most difficult example showing data space addressing is the index 
deferred type of addressing. 

92 



1.2 

CLR @1000(R3) 

uNOTE # 011 
Page 9 of 11 

1. The instruction is fetched from the instruction space at 
location pc. 

2. The base address 1000 is fetched from the instruction space at 
location PC+2. The index in R3 is added to the base address 
forming the address of the indirect address. 

3. The indirect address is fetched from the data space using the 
address calculated in step 2. 

4. The data is fetched from the data space using the address 
calculated in step 3. 

I/O SPACE SOFTWARE 

At the present time I/O space addressing is supported by two (2) Digital 
supplied operating systems, RSX-llM-PLUS and ULTRIX-l1. 

RSX-11M-PLUS provides linking of tasks which utilize I/O space addressing 
via the task builder (TKB) utility. Those programs which include the 
data PSECTs in their object files may be task built using the /ID switch. 
It should be noted that the task may not make use of the entire 32kw data 
space because RSX-llM-PLUS requires that the stack and the task header be 
placed in data space. Other restrictions may apply, consult the task 
builder manual for further information. 

When using I/O space with other operating systems or in standalone 
programs, the user must do all the mapping within the program. This 
implies that the mapping of the operating system must be attended to by 
the user program if operating system features are to be utilized. 

To make use of data space addressing the program must: 

1. Separate the instruction space from the data space. (ie. 
create different regions in memory for instructions and data) 

2. Load the instruction space and data space APR's with the 
appropriate relocation information. 

3. Enable I/O space mapping by setting the MMR3 bit associated 
with the execution mode under which the program will run. 

The following ~estrictions apply to I/O space programs: 

1. The instruction space can only contain instructions, immediate 
operands, absolute addresses, and index words. This is 
reflected in table 2. 

2. The stack page must be mapped into both instruction and data 

93 



uNOTE # 011 
Page 10 of 11 

space if the MARK instruction is used because it is executed 
off the stack. 

3. Instruction space-only pages cannot contain subroutine 
parameters which are data. This precludes the mapping of any 
pages containing standard PDP-11 calling sequences entirely 
into an instruction space page. 

4. The trap catcher technique of putting .+2 in the trap vector 
followed by a halt must be mapped into both instruction and 
data space. 

For further information on I/O space addressing under RSX-11M-PLUS and 
ULTRIX-11 consult the appropriate documentation set. 

2.0 SUPERVISOR MODE 

'The DCJ11 based processors provide three (3) execution modes: KERNEL, 
SUPERVISOR, and USER. They provide for various forms of memory and 
processor protection and permit additional features to be implemented in 
:multiprogramming environments. Each mode has its own set of mapping 
registers. 

KERNEL mode is the most privileged of the modes, allowing the execution 
of any instruction and the modification of any area in memory including 
the I/O page. 

USER mode prohibits the execution of privileged instructions such as HALT 
and RESET and the modification of areas in memory that the KERNEL program 
does not provide access to. 

SUPERVISOR mode has the same privileges as USER mode with its awn set of 
mapping registers, thus providing another level of protection. 
SUPERVISOR mode is intended for use in the mapping and execution of 
programs to be shared by users while still providing protection from 
them. Examples of this are command line processors which are required 
for use by all users on a system, while necessitating write protection 
from them. 

The execution mode is controlled by the state of bits 14 and 15 in the 
processor status word (PSW). These bits are changed by the execution of 
traps and interrupts, pushing and popping of old PSW's to and from the 
stack, and, when in KERNEL mode, the direct manipulation by the program. 
Bits 12 and 13 re(lect the execution mode which existed prior to the 
event which placed the processor in the current mode. See figure 3. 

94 



The 

uNOTE 41: 011 
Page 11 of 11 

current and previous mode PSW bits are coded as follows: 

BIT 
15 14 
13 12 EXECU~rION MODE 

0 0 KERNE1~ 

0 1 SUPERVISOR 
1 0 ILLEG1~L 

1 1 USER 

PROCESSOR STATUS WORD (PSW) ADDRESS: 17777776 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 

CURRENT PREVIOUS PRIORITY CONDITION 
MODE MODE 

BIT 41: 

<15: 14> -
<13:12> -
<11> 
<10:09> -
<08> 
<07:05> -
<04> 
<03> 
<02> 
<01> 
<00> 

GPR 
GROUP 

LEVEL CODES 

SUSPENDED TRACE 
INFORMATION BIT 

DESCRIPTION 

CURRENT MODE (R/W) 
PREVIOUS MODE (R/W) 
GENERAL PURPOSE REGISTER SET (R/W) 
NOT USED (R ONLY) 
SUSPENDED INFORMATION (R/W) 
PROCESSOR PRIORITY LEVEL (R/W) 
TRACE BIT (R/W) 
NEGATIVE CONDITION CODE (R/W) 
ZERO CONDITION CODE (R/W) 
OVERFLOW COND:ITION CODE (R/W) 
CARRY CONDITION CODE (R/W) 

:rIGURE 3 
PROCESSOR STATUS WORD 

95 

0 
0 



96 



uNOTE * 012 

Title: DMA on The Q-bus Date: 06-SEP-84 

Originator: Jack Toto Page 1 of 4 

This Micronote explains the various, types of DMA on the Q-bus; Single 
Cycle Mode, Burst Mode and Block Mode. 

SINGLE CYCLE MODE: 

Single cycle mode DMA like all DMA on ~he Q-bus requires that the DMA 
device gain control of the bus through an arbitration cycle. During the 
arbitration cycle the DMA device be!comes bus master by first asserting a 
DMA request (BDMR). When the arbiter acknowledges this request it 
issues a DMA grant (BDMGO). In the' event that there is more than one 
DMA device in the backplane the grant signal is daisy chained from 
device to device. Eventually the device that issued the DMA request 
will latch the grant signal and take control of the bus, and proceed 
with the DMA transfer. 

Once becoming bus master the device asserts BSACK and is allowed to do 
one word tranfer to or from memoI'y, during which time the CPU is idle. 
Certain processors such as the KCJ1.1-B have a cache memory with dual tag 
store which allows it to process dSlta while DMA transfers are occurring. 
Regardless of which processor type is used only one transfer is allowed 
in single cycle mode. If the device must perform additional transfers, 
it must go through the bus arbitration cycle again. 

SACK 

BDAL 

~~----------~ 
ADRS/DATA 

1 
ADRS/DATA 

2 

In single cycle mode, the theoretic:al transfer rate across the Q-bus is 
1.66 Mbytes/sec (833Kw/sec) A dE!vice such as the DRVll-B or the newer 
22-bit compattble DRV11-W can trane;fer data at a rate of 250KW/sec while 
in single cycle mode. 

97 



uNOTE # 012 
Page 2 of 4 

BURST MODE: 

Burst mode DMA can be performed by certain devices such as the DRV11-B. 
Once the DMA controller becomes bus master (through the arbitration 
routine described in the single cycle section and it has asserted BSACK, 
the DMA tranfers can begin. Each data word that is transfered is 
accompanied by an address that the data word is targeted for. In burst 
mode loading an octal value into the 16 bit word count register (WCR) 
allows for that number of words (64Kb max) to be transfered under one 
sack. This differs from single mode, in that the word count register 
can be loaded with the same value, but each single word transfer will 
require a new arbitraion cycle, i.e in order to transfer 64Kb of data it 
would require 65,536 arbitration cycles. 

SACK 

BDAL --~IADRS/DATA ADRS/DATA ADRS/DATA .........••..... (N)~I----

N :- word count; 

The theoretical transfer rate across the Q-bus in burst mode remains at 
1.66 Mbytes/sec, however a device such as the DRV11-B operating in burst 
mode can transfer data at a rate twice that of a DRV11-B operating in 
single mode, or 500Kw/sec. In burst mode the DMA bus master maintains 
control of the bus until it has transferred all of the required data. 
Burst mode has the advantage of moving large blocks of memory across the 
bus with no delay. The caution here is that no other device (including 
the CPU) has access to the bus during that time. This can have severe 
impact on system performance. 

DMA COMPROMISE: 

Since Single Cycle Mode requires a rearbitration for every data transfer 
and Burst Mode can adverseley impact system performance in some cases 
DIGITAL EQUIPMENT CORP. has made some compromises with certain DMA 
controllers. Most DIGITAL devices will do a limited Burst Mode 
operation. Thes~controllers (for example the RXV21 and RLV12) are 

98 



uNOTE # 012 
Pag·e 3 of 4 

~llowed up to do four words of data tranfer. Each word of transfer is 
preceeded on the bus by an address that the data word is targeted for. 
This allows data to move across the bus with a minimum of rearbitraton. 
However, when a group of four t,ransfers is finished, the DMA devices 
must again go through the arbitration cycle in order to allow other 
devices the opportunity to use the bus. If no other bus requests are 
pending at a higher priority, then bus mastership will be returned to 
the device for the next set of data transfers. 

SACK 
____ ----Ir 

BDAL --------1' ADRS/DATA P..DRS/DATA ARDS/DATA ADRS/DATA .... ' ---
123 4 

BLOCK MODE: 

For increased throughput, Block Mode DMA may be implemented on a device 
for use with memories that support this type of transfer. Block Mode 
DMA devices are only block mode when operating. They may not operate as 
a Single or Burst Mode device. They may, however, appear to operate 
dike a single mode device if they are only doing a single word transfer, 
and they will always look like a Single Cycle Mode DMA device when used 
with non-Block Mode memory. 

Once a Block Mode device has arbitrated for the bus, the starting memory 
address is asserted, then data for that address, followed by data for 
consecuetive addresses. By eliminating the assertion of the address for 
each data word, the transfer ratE~ is almost doubled. The DMA device 
should monitor the BDMR line. If thE~ line is not asserted after the 
seventh transfer than the device can continue. This allows a maximum of 
16 data transfers for one abitration cylce. If the BDMR line is not 
monitored by the DMA device than a maximum data tranfer of 8 words is 
allowed after completing one bus arbitration cycle. Block Mode DMA 
transactions can be described as two types, a DATBI (block mode data in) 
and DATBO (block mode data out). Both of these cycles are explained in 
depth in Micronote #002. When reading the appropriate micronote 
special attention should be paid to the use of BREF and BBS7 signals 
when performi~g a DATBO. 

99 



uNOTI~ # 012 
:~age 4 of 4 

BOAL----l AORS/OATA/ ......... DEPENDS ON STATE OF BOMR L-_ 
(1) * (7) (16) 

I BDMR~---------------------*-----------------------/\/\/ 

Block Mode devices such as the DEQNA, RQOXl and the MSV11-P memories can 
transfer data across the bus at rates that approach twice that of OMA 
devices in Burst Mode. The actual rate is dependent upon the device 
itself. The technical manuals for each of these devices should be 
checked for actual performance figures. 

100 



uNOTE * 013 

Title: Run-time System Performance Evaluation Date: 09-0ct-84 
Using MicroPower/Pascal V 1.5 

Originator: Herbert Maehner Page 1 of 5 

In real-time programming, the performance of the run-time system and the 
compiler together govern the overall power of the application. The 
performance of the MicroPower/Pascal compiler has been extensively 
discussed by R.Billig/R.Cronk [1]. 

The performance of the run-time executive of MicroPower/pascal is 
measured in this MicroNote using different LSI-11 CPU-boards and the 
KXT11-CA I/O processor. Data was obtained using Micropower/Pascal 
version 1.5. 

Test Conditions 

Results obtained through a lab experiment are only 
test environment and may only be referenced 
conditions. 

as precise as the 
giving the exact test 

The goal was to measure the elapsed time of a given primitive execution 
on the Pascal process level, i.e. how long it takes to call/execute a 
kernel primitive from a Pascal program. 

Generally, the following procedure was used to obtain the elapsed time, 
where in some cases more than one output bit has been used to obtain the 
desired pulse-width. 

WHILE Condition - TRUE DO 
BEGIN 

out_port.bitO := TRUE; 

{ here call/execute given primitive } 

Out port.bitO :- FALSE; 
END; -

The whole test was done in a loop as long as the condition was true. 
Here, Condit~n is a boolean variable, which is set FALSE by a high 
priorty process waiting on a terminal input (READLN). 

The Outport.bitO is bitO of a parallel device. The parallel device was 

101 



uNOTE # 013 
Pac.;re 2 of 5 

either a DRV11 (using LSI 11/23 and LSI 11/73) or the on-board parallel 
devi~e (using the FALCON plus SBC 11/21 and KXTI1-CA). 

The bitO pulse is used as the input to an oscilloscope which has the 
capabilities to measure and display time differences and frequencies. 
The elapsed time required to execute the various primitives was 
obtained. In addition to the primitive requests some math-functions 
times were obtained. The results are shown in Table 1 at the of this 
MicroNote. 

Interrupt-Test Conditions 

A pascal-program with an embedded interrupt service routine needs DRIVER 
privileges in a mapped environment. The test program either connects to 
a "normal" ISR or to a prio7 ISR. The program executed a simple loop 
like: 

WHILE TRUE DO 
BEGIN 

Out port.Bit1 := TRUE; 
Out-port.Bit1 :- FALSE; 

ENDi-

The Outport is the parallel device of the type mentioned above. This is 
used to monitor process execution behavior. Testing the interrupt 
response time, we used a square wave generator which triggered an 
interrupt on that parallel device. The ISR was coded as 

PPIINT: : 

TEMP: 

.ENABL 

. MCALL 

.MCALL 

.GLOBL 

MACDF$ 
PURE$ 

. DSABL 

BlSB 
MOVB 
MOVB 
BICa 
RTS 
RTS 

IMPUR$ 
.WORD 0 
.END 

GBL 
MACDF$,PURE$ 
IMPUR$ 

lNPORT,OUTPRT 

AMA 

#l,@#OUTPRT 
@#INPORT,@#Temp 
@#INPORT,@#Temp 
#l,@#OUTPRT 
PC 
R4 

102 

Enable global symbols 
Set-up pure/impure area 

port A,B of PPl 

MACDF$ must be called before the 
two assembly directives 

set bit 0 output port 
dummy read 
dummy read 
set bit 0 output port 
normal lSR return 
prio 7 lSR return 

reserve one word 

1]; ISR time 
measured 



uNOTE # 013 
Page 3 of 5 

Depending upon the ISR-type either the RTS PC or the RTS R4 must be used 
to exit the ISR. The first MACRO-statement within the ISR signaled bitO 
of the parallel port. The resultinq interrupt dispatch time was defined 
as the pulse width given by the square wave generator edge and the 
signaled output port. This includes the hardware ISR dispatch time as 
well. The ISR execution time was given by the pulse width indicated 
within ISR source above. Again, all pulses were measured using an 
oscilloscope. The maximum interrupt rate was determined by increasing 
the square frequency (whi.ch in turn increases the outpt square wave of 
the ISR) until the system lost interrupts. 

Using CONNECT SEMAPHORE 
measured. In this case 
semaphore to be signaled. 

References 

the interrupt performance was similarly 
only a dynamic process was waiting on the 

The results are shown in table 2. 

1. Rich Billig and Randy Cronk,. A System/Architecture Approach to 
Microcomputer Benchmarking, DIGITAL Equipment Corporation, 
Sept. 1982, EZ-12053-03/82 

2. MicroPower/Pascal Newsletter, Volume 1, No.1, March 1984, p. 23, 
DIGITAL Equipment Corporation, Order Number AV-B067A-TK 

103 



uNOTE # 013 
Page 4 of 5 

Operation 

Process 
creation 
deletion 

Schedule + 
context Switch 

Ring buffer 
1 cnaracter 

get 
put 

2 characters 
get 
put 

4 characters 
get 
put 

Signal Semaphr 
by descriptor 
by name 
fast named 

Get status -

Send + Receive 
(by value) 

- 1 Byte 
- 34 Bytes 

Send + Receive 
(by reference) 

- 10 Bytes 
- 100 Bytes 
- 500 Bytes 

TAN 

SIN 

COS 

EXP -
LN 

LSI-11/23 
w/o FPU 
u m 

3.1 5.48 
2.4 4.19 

0.56 0.97 

0.55 0.96 
0.50 0.93 

0.61 1.05 
0.58 1.01 

0.73 1.20 
0.71 1.17 

0.35 0.64 
0.61 0.93 
0.36 0.65 

0.42 0.84 

1.17 2.18 
1.46 2.50 

1.26 2.28 
1.59 2.64 
3.09 4.32 

6.84 7.74 

5.13 5.82 

6.19 7.00 

5.04 5.69 

5.34 6.01 

LSI-11/23 
w/ FPU LSI-11/73 SBC KXT11 
u m u m 11/21+ -CA 

3.56 5.93 1.84 2.64 3.96 2.71 
2.55 4.35 1.14 1.92 2.96 2.06 

0.82 1.27 0.38 0.57 0.69 0.49 

0.55 0.99 0.27 0.42 0.67 0.47 
0.51 0.95 0.25 0.39 0.63 0.43 

0.61 1.05 0.29 0.43 0.72 0.51 
0.58 1.02 0.28 0.42 0.70 0.49 

0.73 1.18 0.36 0.50 0.88 0.62 
0.71 1.15 0.35 0.49 0.86 0.60 

0.35 0.65 0.16 0.25 0.44 0.30 
0.61 0.94 0.27 0.37 0.75 0.52 
0.36 0.66 0.17 0.29 0.44 0.30 

0.42 0.85 0.20 0.33 0.50 0.35 

1.18 2.20 0.59 0.89 1.45 1.01 
1.46 2.51 0.73 1.11 1.79 1.24 

1.26 2.31 0.67 0.96 1.54 1.08 
1.59 2.67 0.84 1.14 1.94 1.35 
3.09 4.35 1.74 2.11 3.78 2.63 

I 

1.64 1.68 0.35 0.36 9.00 6.24 

1.75 1.78 0.33 0.34 6.80 4.69 

1.94 1.98 0.39 0.39 8.15 5.64 

1.45 1.48 0.32 0.33 6.55 4.59 

1.27 1.31 0.28 0.29 6.95 4.86 

Table 1: Micropower/Pascal V1.5 Runtime System (millisE~c) 

104 



Notes for Table 1 

uNOTE # 013 
Page 5 of 5 

o u - without MMU and m - with MMU 
o FPU = with floating point unit (KEF11) 
o Send/Receive without context-switch 
o SBC-ll/21+ using on-board memory only 

Operation LSI-l1/23 LSI-11/73 sac 
u m u m 11/21+ 

ISR: 

Interrupt dispatch-
time (usec) 62 91 42 54 81 

ISR execution 
time (usec) 20 23 13.4 21 

Maximal interrupt-
frequency (kHz) 7.0 5.1 12.9 10.9 4.8 

PRI07 ISR: 

Interrupt dispatch-
time (usec) 28.5 60 22 38 32 

ISR execution 
time (usec) 20 24 13.4 21 

Maximal interrupt-
frequency (kHz) 17.8 9.3 26 16 12.8 

KXT11 
-CA 

61 

16 

7.5 

28 

16 

16.5 

CONNECT SEMAPHORE: (one process waiting on that semaphore) 

Interrupt dispatch + 
context-switch time 

(msec) 0.88 1.36 0.49 0.63 

Maximal interrupt-
frequency (kHz) 0.67 0.39 1.20 0.83 

Table 2: Interrupt Performance 

Note for Table 2 

1.15 0.82 

0.41 0.75 

Additionally, the system had to service the clock interrupt 
at a rate of 50 Hz without the clock driver implemented, i.e. 
the interrupt dispatcher discarded the interrupt. The clock 
interrupt was enabled because realistically most systems have 
the clock enabled. 

105 



106 



uNOTE # 014 

Title: Using Fortran Routines In A Date: 16-0ct-84 
VAXELN-Pascal Environment 

Originator: Herbert F. Maehner Page 1 of 4 

This Micronote discusses the VAXELN interface to VAX-11 Fortran. The 
following topics are covered are discussed: 

1. The VAX-11 Procedure Calling Standard 

2. Establishing a COMMON-datal area between a VAXELN program 
and Fortran routines 

VAXELN Procedure Ccllling Standard 

VAXELN Pascal (EPascal) does conf:orm to the VAX Procedure Calling 
Standard. The standard allows for three methods of parameter passing : 
value, reference, and descriptor, and requires that values be no longer 
than a longword. EPascal does not explicitly support descriptors as 
parameters, and other languages may not treat conformant parameters as 
EPascal does, but EPascal does nothing to violate the calling standard. 

All routines can be described according to the conventions described in 
the summary of run-time library E~ntry points [1]. There are principle 
differences in passing parameters in Pascal and Fortran: 

In pascal, you may pass parameters as 

- values, e.g PROCEDURE pass_it (What: INTEGER); 

or as 

i.e. the value of the parameter will be copied into the 
procedure's stack frame with no implications for the source 
variable. This is termed pass by value. 

- variable, e.g. PROCEDURE pass_it (VAR What: INTEGER); 

i.e. the parameter will be rE~ferenced through its address. 
An assignment to the parameter within the procedure will 
directly~ffect the source variable. This is termed pass by 
reference. 

107 



uNOTE # 014 
Page 2 of 4 

In Fortran, you pass parameters as 

- values, e.g. SUBROUTINE passit( What) 
INTEGER*4 What 

i.e. with no implications for the source. It uses a common 
data area to pass variables to the main program. The main 
difference to Pascal is, that Fortran use~ pass by reference, 
although it is actually a value. 

Calling a Fortran routine with parameter passing from a Pascal 
environment, you have to declare the parameters as VAR parameters in 
Pascal ( Figure 1 and Figure 2). 

COMMON Data Area 

As mentioned before, Fortran uses a COMMON data area to pass variables 
from procedures to the main part of the program. In VAX-11 Pascal the 
[COMMON] attribute enables the linker to establish the common data 
section. VAXELN- Pascal has no such attribute and wouldn't overlay data 
sections for common areas. To overcome this restriction you must use 
the [EXTERNAL] attribute in VAXELN-Pascal to declare the prospective 
data as externally declared and use a MACRO-32 declaration to assign the 
Fortran common part to the "global" data area (Figure 3). 

References: 

1. VMS RUN TIME LIBRARY USER'S GUIDE (Summary of Run Time 
Library Entry Points) 

2. VAXELN Encyclopedia, Procedures and Functions, 

3. VMS MACRO Language Reference Manual 

108 



MODULE Fortran_TO_pascal; 

uNOTE # 014 
Page 3 of 4 

{ This module is a simple example on, how to use Fortran 
routines in VAXELN. } 

CONST 
Max - 50; 

TYPE 
Array_type - ARRAY[l .. Max] OF INTEGER; 

VAR 
AA: [EXTERNAL] Array_type; 

PROCEDURE Valaccess (VAR What:INTEGER); EXTERNAL; 

FUNCTION Double_it (VAR What: INTEGER):INTEGER; EXTERNAL; 

PROGRAM FORTEST(INPUT,OUTPUT); 

VAR 
what,I,J,K: INTEGER; 
Twenty: [READONLY] INTEGER:-20; 

BEGIN 
WRITELN('Program start '); 
FOR I:-1 TO Max DO AA[I] :== 
valaccess(Twenty); 
FOR I:-21 TO Max DO 
BEGIN 

What :- I; 
AA [ I] : - Doubl e i. t (Wha t ) ; 

END; 

{ formated output to screen 

K : - 1; 
FOR I:-1 TO 10 DO 
BEGIN 

FOR J:-l TO 5 DO 
BEGIN 

WRITE(AA[K):4,' '); 
K :- K+1 

END; 
WRITELN; 

END;-
END; 

0; { initialize array} 
call Fortran routine Valaccess } 

} 

{ use Fortran Function to 
double array value } 

END; { Bend of module Fortran_to_pascal } 

Figure 1 : VAXELN main pl:ogram module 

109 



uNOTE i 014 
Page 4 of 4 

C 
C Fortran SUBROUTINE TO SET THE INDEXED ARRAY VALUE 
C THE MAXIMAL INDEX IS PASSED AS A PARAMETER 
C 

C 

C 
C 

SUBROUTINE VALACCESS(WHAT) 
IMPLICIT INTEGER*4 (A-Z) 

COMMON /XX$AA/ AA(SO) 

DO 10 I-1,What 
AA(I) - What-I 

10 CONTINUE 
C 

C 

C 
C 
C 

RETURN 

END 

C INTEGER FUNCTION TO DOUBLE THE VALUE PASSED AS A PARAMETER 
C 

C 

INTEGER FUNCTION DOUBLE IT(WHAT) 
IMPLICIT INTEGER*4 (A-Z) 
DOUBLE IT - WHAT + WHAT 
RETURN 

END 

Figure 2: External Fortran routines used 

; definition file for common array AA to be accessed by Fortran 
subroutine VALACCESS 
the P-section name XX$AA must be the same as the one used in the 
Fortran routine 

.TITLE COMDAT 

.PSECT XX$AA,LONG,PIC,USR,OVR,REL,GBL,SHR,NOEXE,RD,WRT,NOVEC 
AA:: • LONG 50 

.END 

Figure 3: MACRO definition module to define the common array 

110 



uNOTE # 015 

Title: Q-Bus Hardware Bootstraps Date: I6-0ct-84 

Originator: Dave Smith Page 1 of 4 

The purpose of this micronote is to provide a comprehensive list of 
Q-Bus hardware bootstraps and the devices they support. 

The tables on the next two pages are organized as follows. There is a 
row for each of the currently supported bootable devices. There is a 
column for each hardware bootstrap. The columns span both pages. In 
the heading for each bootstrap w'ill be found any ordering information 
and/or references to notes which follow the tables. When two order 
numbers are given, both must be ordered since the boot code is divided 
into high byte and low byte ROMs. 

The bootstrap devices listed are: 

BOOT DESCRIPTION 
DEVICE 

BDV11 Bus Terminator, Bootstrap & Diagnostic ROM 
used primarily with older LSI-1I configurations 

MXV11-A2 Bootstrap ROM set designed for MXV11-A board 

MXVI1-B2 Bootstrap ROM set designed for MXV11-BF & MRV1I-D 

KDF11-BA Bootstrap ROM on board PDP-11/23+ systems 

KDF11-BE Bootstrap ROM on board MicroPDP-11/23 systems 

KDF11-BF New Bootstrap ROM for PDP-I1/23+ and MicroPDP-II/23 

KXT11-A2 Bootstrap ROM on board Falcon 

KXTI1-A5 Bootstrap ROM on board Falcon-Plus 

KDJll-S Bootstrap ROM on board MicroPDP-11/73 CPU 

uVAX I Bootstrap ROM on board MicroVAX I CPU 

111 



uNOTE it 015 
Page 2 of 4 

DEVICE 

RX01 

RX02 

TUs8 

RL01/2 

MRV11-C 

MRV11-D 

RKOs 

RXsO 

RDs1 

RDs2 

TSVOs 

TK2s 

RC2s 

DEONA 

DLV11-E 

DLV11-F 

DUVl1 

DPV11 

BOOTSTRAP DEVICE SUPPORT 

BDV11 MXV11-A2 MXV11-B2 KDF11-BA KDF11-BE 

Rev A see Note 2 part no part no. 
23-339E2 23-1s7E4 

see Note 1 23-340E2 23-1s8E4 

X X X X X 

X X X X X 

see Note 1 X X X X 

X X X X X 

X X 

X X 

X X 

X X 

X 

X X X 

X X X 

X X X 

X 

112 



BOOTSTRAP DEVICE SUPPORT 

DEVICE KDF11-BF KXT11-A2 KXT11-AS 

part no 
23-183E4 
23-184E4 

RX01 X X X 

Rx02 X X X 

TUSS X X X 

RL01/2 X X 

MRV11-C 

MRV11-D 

RKOS 

RXSO X X 

RDS1 X X 

RDS2 X 

TSVOS X 

TK2S X 

RC2S X 

DEQNA X 

DLV11-E 

DLV11-F 

DUV11 

DPV11 

113 

uNOTE # 015 
page 3 of 4 

KDJ11-B uVAX I 

available available 
on CPU on CPU 

board only board only 

X 

X 

X 

X 

X 

X 

X X 

X X 

X X 

X 

See note 3 See note 3 

X X 

X 

X 

X 



uNOTE # 015 
page 4 of 4 

NOTES: 

(1) The information in the BDVII column refers to the Rev A 
chips. There were also Rev 0 chips and an additional TU58 
chip that can be added to the board: 

Rev 0: 

Part numbers 23-010E2, 23-011E2 

Does NOT support: 
DLVII-F, RX02 as bootable devices 

TU58 ROM: 

Part number 23-126F3 

Inserted into socket XE40. Other ROM must be 
Rev A. Allows use of the TU58 DEC tape II as 
a bootable device. 

(2) The MXVII-B2 Bootstrap ROMs can be used with the MXV11-BF 
multifunction module as well as the MRV11-D ROM module. 
It will not work with the MXVI1-A module. 

(3) The RC25 adapter board must be configured at the the DEC 
standard base address for the first MSCP controller 
(772150). Other MSCP controllers may also reside but 
may not be booted. 

114 



uNOTE # 016 

Title: KXT11-CA Software Development Tools Date: 16-0CT-84 

Originator: Scott Tincher Page 1 of 8 

The KXT11-CA is a single board computer (SSC) which executes the PDP-11 
instruction set. It may be utilized as a stand-alone SSC or interfaced 
to the Q-bus as a peripheral processor or as an intelligent I/O 
processor (lOP). This article will describe the software tools 
available to develop applications in either the stand-alone mode or the 
lOP mode. 

The KXT11-CA features: 

o T11 Microprocessor which implements the PDP-11 
instruction set 

o 32K bytes of on-board static RAM 

o Two 28-pin sockets for up to 16K bytes of 
additional RAM or 32K bytes of ROM 

o Three serial line units: 

o One asynchronous DL compatible line (RS232) 
o One synch/asynch line with modem control 

(RS449) 
o One synch/asynch with data and timing only 

(RS449) . 

o 20 programmable parallel I/O lines 

o Three 16-bit programmable interval timers 

o 2-channel DMA controller 

o Q-bus interface 

o Four diagnostic LEDs 

The Q-bus interface of the KXTI1-CA allows up to 14 KXT11-CAs to be 
added to a traditional Q-bus system. AS a slave device the KXT11-CA 
offloads the arbiter CPU's processing activities by providing real-time 
I/O data buffering, preprocessing, and high speed communications. 

115 



uNOTE i 016 
Page 2. of 8 

ThE! KXT11-CA is especially suited for applications with critical 
interrupt latency requirements or applications that must service a high 
frequency of interrupts. The KXT11-CA may also be used as a 
computational engine in applications where it is possible to partition 
the application to run in parallel. 

The software development environment for systems which utilize 
KX1~11-CAs is slightly different from that of the traditional Q-bus 
sysltem~ The system programmer must develop application programs for 
each KXT11-CA in the system in addition to the application code which 
runs on the arbiter cpu. Different software application tools are 
available for the arbiter and "onboard" environments. (When used in 
stand-alone mode only the onboard environment need be considered.) 

THE ARBITER ENVIRONMENT 

The- arbiter system may run under any of the following operating 
systems: 

o MicroPower/Pascal 

o RT-11 

o RSX-11M 

o RSX-11M-PLUS 

Each of these operating systems offers a device handler for the 
two-port RAM of the KXT11-CA as well as a utility for loading 
application programs across the Q-bus into the KXT11-CA. A 
MicroPower/Pascal application may be coded in Pascal and MACRO-ll. 
RT-ll and RSX-ll applications will be coded in MACRO-ll or a high level 
language, such as FORTRAN, which is capable of issuing programmed 
requests {RT-ll) or QIO directives (RSX-ll). 

USING A MICROPOWER/PASCAL ARBITER SYSTEM 

If the arbiter system controlling the application is running in a 
MicroPower/pascal environment there are KXTll-CA specific functions 
available to aid in program development. The first component is the KX 
device handler. This handler provides the arbiter-side interface to 
the two-port RAM of the KXTll-CA. The KX handler supports up to 14 
KXTll-CAs on the Q-bus. Two functions are supplied which simplify the 
interface between the application program and the KX handler. These 
functions are: 

o KX write data: Transfer data from an arbiter 
butfer to a KXTll-CA process and return a 
completion-status value. 

116 



o KX read data: Transfer data from a KXTII-CA 
proc~ss to an arbiter buffer and return a 
completion-status value. 

uNOTE # 016 
page 3 of 8 

Micropower/pascal also provides a function which transfers a 
MicroPower/Pascal .MIM file from the arbiter to a KXT11-CA. This 
function, KXT LOAD, reads a .MIM file from the arbiter and initiates a 
DMA transfer using the DTC of the KXT11-CA to transfer the file to the 
KXT11-CA's local memory. This procedure may be called at any time by 
the arbiter's application program - not necessarily at system startup 
time. 

MicroPower/pascal also supplies the symbolic debugger PASDBG. PASDBG 
supplies the following features: 

o A set of debugger commands and qualifiers that 
allow for control of an executing program. 

o Access to the symbol table generated by the 
Pascal compiler, providing symbolic (Pascal 
language) referencing and variable access. 

o Access to 
structures. 

process control variables and 

o Control of an application system not configured 
for terminal I/O. 

o A method for user control after an execution 
error. 

o A method for loading a program on the application 
system while PASDBG is running on a host 
computer. 

USING AN RT-11 OR RSX-11 ARBITER SYSTEM 

If the arbiter system controlling the application is running in a RT-11 
or RSX-11 environment there are tool kits available to aid in program 
development. They are the KXTII-C/RT-11 Peripheral Processor Tool Kit 
(QJV51) and the KXT11-C/RSX-11 Peripheral Processor Tool Kit (QJV52). 

There are two major components in each of these tool kits. They are 
the KX device handler and the KUI utility program. 

The KX device handler manipulates the two-port RAM of the KXT11-CA so 
that it appears to be a standard Q-bus I/O device. The KUI utility 
program allows programs to be load~ed into a peripheral processor from 
the arbiter, performs debugging operations, starts execution of KXT11-C 
programs, and initiates KXT11-CA self tests. 

117 



UNOTE # 016 
Page 4 of 8 

The KX handler supplied with the RT-11 tool kit supports up to four 
KXT11-CAs where each KXT11-CA appears as two logical units. More than 
four KXT11-CAs may be supported by editing, renaming, and rf~building 
the KX handler. 

The following RT-11 programmed requests are supported by the KX 
handler: 

o .OPEN associates a user-specified channel 
number with a logical unit number of the 
KXT11-CA. 

o .CLOSE frees a previously opened channel for 
use with another device or file. 

o . READ transfers data from a peripheral 
processor to an arbiter buffer. (.READ, .READW, 
.READC) 

o .WRITE - transfers data from an arbiter buffer to 
a peripheral processor. (.WRITE, .WRITEW, 
. WRITEC) . 

The KX handler supplied with the RSX-11 tool kit supports up to 14 
KXT11-CAs. The KX handler assigns a unit number for each data channel 
in each KXT11-CA two-port RAM. This handler supplies the following 
RSX-11 I/O requests: 

o IO.RVB Read a virtual block of data from the 
device unit unit specified in the macro call. 

o IO.WVB write a virtual block of data to a 
physical device unit. 

o IO.ATT - Attach a physical device to the control 
of the task which issued the request. 

o IO.DET Detach a physical device from the 
control of the task which issued the request. 

Included in the RT-11 and RSX-11 tool kits is the KUI (KXT11-CA User 
Interface) utility program. The KUI program has several commands which 
supply the following functions: 

o @ - Process commands from the specified indirect 
command file. 

o CLOSE Close the file specified in the LOG 
command. 

118 



o EXECUTE 
KXT11-CA. 

start a program on the specified 

o EXIT Exit the KUI utility and return to the 
operating system. 

o LOAD Load a program from the arbiter's mass 
storage to arbiter memory. Then perform a DMA 
operation to transfer the image to the specified 
peripheral prQcessor's memory. KUI under RT-11 
supports the transfer of .SAV, .LDA, and .MIM 
files. KUI under RSX-11 supports the transfer of 
.TSK and .MIM files. 

o LOG Record all commands, status information, 
and messages during this terminal session in the 
specified file. The CLOSE command terminates the 
logging session. 

o ODT Executes the octal debugging tool (ODT). 
This tool allows the arbiter system to examine 
and modify the contents of registers and memory 
local to a KXT11-CA. ODT may also be used to 
start or halt a program. 

o REINIT Reinitialize the specified peripheral 
processor and reboot it's application. 

o RESUME Causes a SUSPENDed command file to 
continue execution. 

o SELFTEST Causes one or more of several 
diagnostic programs to execute. 

o SET Specifies a peripheral processor as the 
target for subsequent commands. 

o SHOW Displays information about the state of 
the peripheral processor. 

o SUSPEND Used in an indirect command file to 
halt execution of the file. The RESUME command 
can return control to the command file. 

o TRAP performs a trap emulation so that a trap 
handling routine can be tested. 

119 

uNOTE # 016 
Page 5 of 8 



uNOTft~ # 016 
Page 6 of 8 

THE ONBOARD PROGRAMMING ENVIRONMENT 

The KXTll-CA may be programmed in ei ther MACRO-l1 or MicroPOWEtr/Pascal. 
MicroPower/Pascal provides the ability to program the onboard devices 
in a high-level language, pascal. In particular Micropower/pascal 
provides the following device handlers: 

o DO: This handler supports the TU58 tape drive. 
It allows the TU58 to be interfaced to any of the 
asynchronous I/O channels. 

o KK: This handler manipulates the two-port RAM 
from the KXTll-CA side in the KX/KK protocol. 
This protocol allows the KK handler to pass 
variable length messages to the arbiter system by 
emulating a traditional Q-bus slave device. Two 
functions are supplied which simplify the 
interface between the user's application code 
and the KK handler. These functions are: 

0 KK read data: transfer data from the arbiter 
to a KXTll-CA buffer and return a 
completion-status value. 

0 KK write data: transfer data from a KXTll-CA 
burfer to the arbiter and return a 
completion-status value. 

o QD: This handler supports the two-channel DMA 
transfer controller (DTC). The QD handler 
enables the DTC to move data from source to 
destination without the aid of the cpu. One 
location, source or destination, must be local to 
the KXTll-CA. The QD handler may be used for the 
following functions: 

0 Transfer data to and from Q-bus memory. 

0 Transfer data to and from local memory. 

0 Search for data. 

0 Transfer to and from local I/O devices. 

0 Access the Q-bus I/O page. 

0 Assure access to a DMA Channel. 

o XL: Supports asynchronous communications on the 
three serial ports of the KXT11-CA. The first 
port is a standard DL device. The second port is 
channel A of the multiprotocol chip. This 

120 



channel is supported \{ith full modem controls. 
The third port is channel B of the multiprotocol 
chip. This channel is supported as though it 
were a standard OL devicE~. All three channels 
may be operated simultaneously. 

o XS: Supports synchronous operation of channel A 
of the multiprotocol chip. The handler provides 
the following bit-()riented communication 
procedures: 

o Synchronization (Flag detection) 

o Transparency (Bit stuffing) 

o Invalid frame detection 

o Frame abortion detection 

o Frame check sequence (rcs) 
checking/calculation 

The handler can be used by user-written software as 
a component in performing bit-oriented protocols 
such as X.25, HOLC, SOLC, and others. 

o YK: Supports the parallel I/O port and the three 
counter-timers. The handler provides the 
functions of read, write, pattern recognition, 
OMA read, OMA write, counter-timer set, 
counter-timer read, and counter-timer clear. 
Typical parallel port operations are: 

o Transferring a series of bytes or words 
through a port with handshake protocol. 

o Setting or reading the bits of external state 
lines. 

o Generating a time base to software. 

o Generating a waveform for external output. 

o Counting pulses from an external input. 

uNOTE * 016 
Page 7 of 8 

These Micropower/Pascal device handlers do not support all of the 
functions of ehe onboard devices of the KXT11-CA. For this reason, or 
because of preference, the application code for the KXT11-CA may also 
be written in MACRO-11. 

121 



uNOTE # 016 
:f?age 8 of 8 

RELATED DOCUMENTS 

For further information pertaining to the KXT11-CA and it's software 
dE!velopment tools please reference the following materials: 

KXT11-CA Single-Board Computer User's Guide 

KXT11-C Peripheral Processor Software User's Guide 

122 

EK-KXTCA-UG 

AA-Y61SA-TK 



uNOTE # 017 

Title: LSI 11/23 ECO History Date: 19-NOV-84 

Originator: Bob Hessinger Page 1 of 8 

This micronote documents the ECO and etch revision history of the 
KOF11-A (LSI 11/23) module. A quick verify has been included so that 
the status of a module may be determined by a visual check. 

For the M8186, the revision identifier is a two field alphanumeric 
designation stamped on the reverse side of the module handle. The first 
field indicates the etch revision. The second field indicates the' 
modifications to this etch. 

Hardware revision notation : 

A 0 
Identifies etch level Identifies modifications 

The M8186 began as hardware revision "AO", as shown above. That is, 
etch revision "A" with no modifications or rework. As ECO's were 
released calling for rework, the hardware revision level was updated to 
"A1", then "A2", etc. Periodically new etch revisions were released, 
incorporating previous modifications. When these occurred the etch 
revision field was updated from "A" to "C", and later from "e" to "0". 
For the M8186, no etch revision "B" was released. 

123 



uNOTE # 017 
Page 2 of S 

The hardware revision history of the MS1S6 is shown below: 

NOTE: All modules 
shipped are at 
rev A3 or greater 

NOTE : New etch 
rev C created. No 
rev B boards were 
built 

Release 

Rework 
ECO #1 

Rework 
ECO #2 

Rework 
ECO #3 

Relayout 
ECO #4 

Rework 
ECO #5 

Rework 
ECO #6 

Rework 
ECO #7 

Rework 
ECO #S 

Rework 
ECO #9 

Rework and 
Relayout 
ECO #10 

Rework 
ECO #11 

124 

AO 
I 
A1 

I 
A2 

I 
A3 

A4 

I 
AS 

I 
A6 

I 
A6 

I 
.A7 

I 
.AS 

AS 

co 

CO 

I 
C1 

I 
C2 

I 
C2 

I 
C3 

I 
C4 

C4 

NOTE: Rev C layout 
incorporates changes 
for ECO #5 

NOTE: This was a 
documentation change 
only 

- DO 

DO NOTE: This was a 
documentation 
change only 



uNOTE # 017 
Page 3 of 8 

,Jumper Functions on Etch Revision "A", "C" and "D" Modules 

Jumper Function Description Shipped 

W1 Master Clock In - Enabled, do not remove In 

W2,W3 DEC Reserved Factory configured, do not W2-0ut 
change (see note 1 ) W3-In 

W4 BEVENT Out - Enabled In 

W5,W6 Power-up Mode Mode W5 W6 Mode 1 
0 - PC-24,PS-26 Out Out W5-In 
1 - Console ODT In Out W6-0ut 
2 - Bootstrap Out In 
3 - Reserved In In 

W7 Halt/Trap In - Trap to 10 on Halt Out 
Option Out - Enter Console ODT 

on Halt 

W8 Bootstrap In - Boot to 17773000 In 
Address Out - Bootstrap address 

specified by jumpers W9-W15 

W9-W15 Use r Bo,otstrap W9-W1S correspond to address In 
Address bits 9-15 respectively. 

In - logic 1, Out - logic 0 

W16,W17 DEC Reserved Factory configured, do not In 

W18 

W19 

w18 

note 1 

change 

Etch A only 

DEC Reserved Factory configured, do not In 
change 

wake-up Circuit Out - enabled In 
This jumper is a red wire 
across diode D1 

Etch C and D only 

Wake-up Circuit Out - enabled In 
This jumper is a red wire 
across diode D1 

W3 on etch A modules consists of a jumper from E2 pin 5 to 
E2 pin 15. 

125 



uNOTE # 017 
Page 4 of 8 

W18 

01 
(W19 - see text) 

W17 -

W16 I 
i 

W15 
W14 
W13 
W12 
W11 
W10 
W9 
W8 
W6 
W7 
w6 
w5 W4 -

I 
KOF11-A REV A Jumper Layout 

126 

W1 I 

W2 -



W16 
W17 

01-
(W18 - see text) 

W15 
W14 
W13 
W12 
W11 
W10 
W9 
W8 
W6 
W7 
w6 
W5 

W4 -

uNOTE # 017 
Page 5 of 8 

W1-

W3 

W2 

KOF11-A REV C Jumper Layout 

127 



uNOTE # 017 
Page 6 of 8 

W16 
W17 

W18 ·1 

W15 
W14 
W13 
W12 
Wll 
W10 
w9 
w8 
w6 
W7 
w6 
wS 

W4 -

KDF11-A REV D Jumper Layout 

128 

Wl --

W3 

W2 



uNOTE # 017 
page 7 of 8 

The following table details the ECOI'S issued since the M8186 began to 
ship to the field. These ECO's are coded "M8186-MLOXX", where "XX" is 
the ECO number shown below : 

ECO # 

04 

05 

06 

07 

08 

Problem 

Too many wires and etch cuts, new etch 
needed. Note that the jumper locations 

change for etch Revision C. 
Note also that etch A boards bring only 
18 bits of addressing from the MMU to the 
Q-BUS, while etch C boards bring all 22 
bits of addressing from the MMU to the 
Q-BUS. 

I/O page addressing scheme differs from 
LSI-11/2 processor. 

The internal wake-up circuit defeats the 
power sequencing provided by standard 
DEC power supplies. 

CTL/DAT hybrid (57-00000-00) and MMU IC 
(21-15542-00) were not compatible with 
KEFI1-AA floating point option. The FP 
registers in the MMU were inaccessible, 
and the CTL/DAT data path caused 
intermittent errors in floating point 
instructions. 

MMU (21-15542-01) was in.cluded as part of 
the M8186 module. This documentation 
change removes the MMU and makes it an 
option which is ordered separately. 

129 

Quick Verify 

Module handle will be 
stamped "Cn" where n 

indicates 
modifications. 

Check for etch cut 
to E7 pins 16 and 18 
(rev A boards only) 

Red jumper wire is 
installed in parallel 
with 01. 

CTL/DAT should be 
57-00000-01 or higher 
and,MMU should be 
21-15542-01 or higher 
for floating point 
compatibility. 
Coordinate with ECO 
M8186-ML009 

Some modules mayor 
not have MMUs, 
depending on the 
options ordered. 



uNOTE # 017 
Page 8 lof 8 

ECO :i 

09 

10 

11 

Problem 

1) No jumper table in print set (doc only) 
2) Crystal oscillator may short to adjacent 

components 

3) Possibility of worst case MMU timing 
violations. Chang~ configuration 
of W2 and W3 to adjust timing. This 
ECO must be installed : 
A) When ECO m8186-ML007 is installed 
B) When the KEF11 or FPF11 is installed 
C) When one of the F-11 chips is replaced 
D) Whenever unexplained system crashes 

occur 

1) Heavily loaded systems lock up during 
worst case timing between DMA and 
interrupt arbitration. Symptoms 
usually occur with DMA options not 
manufactured by DEC. 

2) Too many wires and etch cuts, new etch 
needed. Note W18 now uses jumper posts. 

Documentation updated. 

130 

Quick Verify 

1) Table added 
2) Manufacturing 

includes nylon 
spacer 

3) Module will have 
W2 removed and W3 
in. On rev A 
modules w3 is a 
wire from E2 pin 
5 to E2' pin 15. 

1) Rev A and Rev C 
modules will have 
wires on E2 pins 
2 and 4. Rework 
included in Rev D. 

2) Module handle will 
be stamped "Dn" 
where n indicates 
modifications. 

Documentation only. 



uNOTE 41: 018 

Title: programming the KXT11-CA DMA controller Date: 28-DEC-84 

Originator: Scott Tincher Page 1 of 24 

The KXT11-CA intelligent I/O processor contains several user 
pr'ogrammable devices. One of these devices is a DMA transfer controller 
(DTC). This article will describe the features of the DTC and provide 
some programming examples. This article is intended for use by 
individuals interested in programming the DTC using MACRO-11. DIGITAL 
supplies a DTC device driver for those programmers using 
MicroPower/pascal. A working knowledge of MACRO-11 and of the KXT11-CA 
is assumed. 

FEATURES/CAPABILITIES 

The DTC is addressable by the local T-11 microprocessor as an I/O 
device. It is capable of performing DMA transfers between any of the 
following addresses: 

1 ) A 16-bit local address to a 16-bit local address 

2) A 16-bit local address to a 22-bit global address 

3 ) A 22-bit global address to a 16-bit local address 

4 ) A 22-bit global address to a 22-bit global address 

5) To/From channel A of the multiprotocol SLU 

6) To/From the PIO chip 

Word, high byte, and low byte transfers are supported locally. 
word transfers are supported across the Q-bus. 

Only 

The operations of the DTC are controlled by several internal registers. 
It was designed with the capabilty of loading these registers directly 
from memory thereby minimizing the amount of processor intervention 
necessary to perform a DMA transaction. The area of memory where the 
parameters for the DTC are stored is referred to as the chain table. 
The local microprocessor need only load the address of the chain table 
into the DTC a-nd give a "start" command to initiate a DMA transfer. 

131 



uNOTE # 018 
Page 2 of 24 

Dru~ transactions may be initiated locally by the T11 or by the arbiter 
cpu. If the transfer is initiated by the arbiter the command words and 
transfer parameters are placed in the command registers of the two-port 
RA~~ file. The local CPU will then initiate the DMA transaction using 
the parameters supplied by the arbiter. 

ThE~ DTC consists of two identical channels. DMA transfers may be 
interleaved between these two channels or interleaved between the DTC 
and the T-11. It is also possible to select a "hog mode" that allows 
thE! DMA transfer to run to completion without interruption. 

The DTC supports three types of operations: Transfer, Search, and 
Transfer-and-Search. As the name implies, Transfer operations move data 
from a source to a destination. Search operations read data from a 
source and compare the data to the pattern register. A mask register 
allows the user to declare "don't care" bits. The Transfer-and-Search 
operation combines the features of the Transfer and Search functions. 
In this type of operation data is transferred between a source and 
destination until the data transferred meets the match condition 
specified in the Channel Mode register. 

ThE~ DTC is capable of performing multiple DMA transactions without 
processor intervention. This can be accomplished in two ways: 
base-to-current reloading or chaining. Base-to-current reloading allows 
thE~ DTC to reload a portion of its registers before initiating a DMA 
transfer. The reload operation occurs between internal registers so 
there are no memory access related delays. This type of operation is 
only practical in applications where data is continuously transferred 
between the same addresses. Chaining allows all of the applicable 
registers of the DTC to be reloaded from a new chain table. Therefore 
this is a slower but more flexible alternative. 

Upc)n completion of a DMA transfer the DTC may perform any combi.nation of 
thE! following options: Interrupt the local processor, perform 
base-to-current reloading, or perform a chain reload. It may also 
choose to take no action. 

DTC REGISTERS 

Among the internal registers of the DTC are two chip-level registers, 
thE! Master Mode register and the Command register. These registers 
control both channels of the DTC. In addition, each channel of the DTC 
is controlled by several channel-level registers. For the sake of 
completeness a brief description of these registers will be included 
here. For a detailed description refer to the KXTII-CA Single Board 
computer User's Guide (EK-KXTCA-UG-OOl). 

132 



CHIP-LEVEL REGISTERS 

Master Mode Register 

uNOTE * 018 
Page 3 of 24 

The Master Mode register controls the chip-level interfaces. It is used 
to: 

- Enable/disable the DTC 
- Select DTC/CPU interleaving 
- Enable/disable asynch operation 
- Enable/disable countet/timer interrupt request 
- Enable/disable interrupt save vector 

Command Register 

The command register is used to issue commands to the DTC channels such 
as: Reset, Start Chain, etc. 

CHANNEL-LEVEL REGISTERS 

(Each of the following registers is present in each channel of the DTC) 

Current Address Registers A and B (CARA, CARB) 

CARA and CARB consist of two words, the segment/tag and the offset. The 
segment/tag is used to indicate: 

- Address bits <21:16> of the source (or destination) 

- If the source (or destination) resides on the a-bus 

- Whether the source (or destination) address should be 
incremented, decremented, or held constant 

- Whether wait states should be included 

The offset is used to indicate: 

- Address bits <15:00> 

Base Address Registers A and B (BA.RA, BARB) 

BARA and BARB are identical to CA~A and CARB. They are used to reload 
CARA and CARS if base-to-current reloading is selected after a DMA 
operation has terminated. 

13:3 



uNOTE # 018 
Page 4 of 24 

Current Operation Count Register (COPC) 

This 16-bit register is used to specify the number of words (or bytes) 
to be transferred during a DMA operation. The maximum word count is 
obtained by programming this register with a zero. 

Base Operation Count Register (SOPC) 

This register is identical to the COPC register. It is used to reload 
the COPC register when base-to-current reloading is selected. 

Pattern and Mask Registers 

The Pattern and Mask registers are used during Search and 
Transfer-and-Search operations. The contents of the Pattern register 
are compared to the read data to generate a "match" condition. The Mask 
register is used to generate "don't care" bits. Setting a bit to '1' in 
thE! Mask register specifies that the bit always matches. 

Status Register 

ThE! status register is a 16-bit read-only register which returns the 
status of the following fields: Interrupts status, DTC status, Hardware 
interface status, and Completion status. 

Interrupt vector and Interrupt Save Registers 

The Interrupt vector register contains the vector that is output during 
an interrupt acknowledge cycle. When an interrupt occurs the contents 
of the Interrupt vector register and a part of the Status register are 
stored in the Interrupt Save register. This allows a new vector to be 
loaded during chaining so that a new DMA operation can be performed 
before an interrupt acknowledge cycle occurs. 

Channel Mode Register 

ThE! Channel Mode register consists of two words, channel mode high and 
channel mode low. Channel mode low is used to indicate: 

- The operation type (transfer, search, 
transfer-and-search,bytes,words) 

- Whether CARA (or CARS) defines the source (or destination) 

- Transfer type (single, hog mode, interleaved) 

134 



uNOTE # 018 
Page 5 of 24 

- Completion options (interrupt CPU, base-to-current reload, 
chain reload) 

Channel mode high is used to: 

- indicate match conditions 

- mask the hardware requests for DMA operations 

- cause the channel to request the bus for a DMA operation 

Chain Address Register 

The chain address register consists of two words, the segment/tag and 
the offset. This register is used to point to the reload word, the 
first word in a chain table. The sE~gment/tag is used to indicate: 

whether the reload word resides in Q-bus memory 

Whether the reload word resides in the Q-bus I/O page 

- Address bits <21:16> 

The offset is used to indicate: 

- Address bits <15:00> 

PROGRAMMING THE DTC 

programming the DTC consists of three phases: Chip Initialization, Data 
Transfer (or Search), and Termination. This section will provide a 
general description of these phases. 

CHIP INITIALIZATION 

The Reset instruction is used to place the DTC in a known state. A 
reset will clear the CIE, IP, SIP and WFB bits and set the CA and NAC 
bits in the Channel Status registers. The Master Mode register will 
also be cleared. Before a DMA operation is initiated the local CPU 
loads the Master Mode register and the Chain Address register of the 
appropriate channel of the DTC. The DTC fetchs any other parameters 
that are necessary from a table located in system memory referred to as 
the chain t~ble. This minimizes the amount of CPU intervention 
necessary to perform a DMA operation. ·The relationship of the Chain 
Address register to the chain table is shown in Figure 1. 

135 



uNOTE # 018 
page 6 of 24 

DTC 
Channel 0/1 

Chain 

,....------> 

System 
Memory 

Reload Word 

DTC 
Register 

Data 

Address - - - - - - - - - -
Reg. New Chain Address 

~> Reload Word 

- Figure 1 -

DTC 
Register 

Data 

The first word in the chain table is the reload word. The reload word 
is used to specify which registers are to be loaded for the pending DMA 
operation. Bits <9:0> of the reload word correspond to the re9isters of 
the DTC as shown in figure 2. Bits <15:10> are not used. 

Reload Word 

I x x I x I x I x I x I 9 8 7 6 

Current ARA I I 
Current ARB 
Current Op-Count --------------' 
Base ARA ---------------------------~. 
Base ARB 
Base Op-Count 
Pattern and Mask 
Interrupt Vector 

5 4 3 

Channel Mode -------------------------------------------~ 
Chain Address 

Figure 2 -

136 



uNOTE i 018 
page 7 of 24 

Therefore if a bit in the reload word is set then the corresponding 
register is to be reloaded from the chain table. Since all of the 
registers are not applicable to each DMA operation the chain table may 
be of variable length. (i.e. The pattern and mask registers would not 
be used in DMA operations that do not search the data.) It is NOT 
correct to select a register in the reload word and subsequently load 
that register with a dummy argument such as zero. The following are 
examples of the relationship between th~ reload word and the chain 
table. 

9 8 7 6 5 4 3 2 1 0 

x I x I x I x I x I x I 1 I 1 
Ii 

1 I 0 I 0 I 0 I 0 I 0 I 1 I 0 

Current ARA Segment/Tag 

Current ARA Offset 

Current ARB Segment/Tag 

Current ARB Offset 

Current Op-Count 

Channel Mode High 

Channel Mode Low 

9 8 7 6 5 4 3 2 1 0 

x I x I xl x J x 1 x 1 1 l 0 1 1 I 0 I 0 I 0 1 1 1 0 1 1 I 1 

Current ARA Segment/Tag 

Current ARA Offset 

Current Op-Count 

Pattern Register 

Mask Register 

Channel Mode High 

Channel Mode Low 

Chain Address Segment/Ta9 

Chain Address Offset 

137 



uNOTE # 018 
Page 8 of 24 

The DTC has been properly initialized once the chain table(s) have been 
created and the Master Mode register and Chain Address Register for the 
selected channel have been loaded. 

DATA TRANSFER 

The DTC may perform a DMA operation once it has been properly 
initialized. A DMA operation may be initiated in one of four ways: by 
so1:tware request, by hardware request, by loading a set software request 
bit: in the Channel Mode register during chaining, or as the result of a 
command from the arbiter. 

Software Request: The local CPU may initiate a DMA operation by writing 
a 'software request' command followed by a 'start chain' command to the 
Command register. The 'software request' command sets the software 
request bit in the channel's Mode register. If either the SIP (second 
interrupt pending) bit or the NAC (no auto-reload or chain) bit is set 
in the channel's status register the DMA operation will not begin. The 
SIP bit will be cleared when the channel receives an interrupt 
acknowledge. The NAC bit will be cleared when the channel receives a 
'start chain' command. The 'start chain' command initiates the DMA 
operation after the registers of the selected channel are loaded from 
the chain table. The 'start chain' command is ignored if the SIP bit or 
the CA (Chain Abort) bit are set in the channel's status register. The 
SIP bit was described above. The CA bit is cleared when the channel's 
chain address register is reloaded. 

Hardware Request: DMA operations may be started by applying a 'low' on 
the channel's DREQ input. No details about this type of request will be 
provided since they fall beyond the scope of this note. 

Starting After Chaining: If the software request bit of the channel's 
Mode register is loaded during chaining the channel will perform the DMA 
operation at the end of chaining. 

Arbiter Request: The arbiter may interrupt the local CPU to request a 
DMA operation. This is accomplished by passing parameters to load the 
chain address register of channel 0 via the two-port RAM. The arbiter 
loads register 2 of the TPR with the offset of the chain address 
register and register 3 of the TPR with the segment/tag of the chain 
address register. The DMA operation is then initiated by setting the 
DMA Loa d bit (b i t 1) in the T P R comma nd reg i s t e r ( reg i s t e r 0 ) ., Err 0 r 
conditions will be returned in TPR register 1. 

Information in tAe channel's Mode register determines what type of DMA 
operation will be performed. The Channel Mode register consists of two 
\iords, Channel Mode High and Channel Mode Low. 

Bits <3:0> of the Channel Mode Low register select the type of DMA 
operation. These bits determine whether the data should be transferred, 

138 



uNOTE * 018 
Page 9 of 24 

searched, or transferred-and-searched. Bit 4 is the flip bit. It is 
used to determine which set of current address registers (CARA, CARB) 
points to the source. 

Bits <6:5> determine the transfer type. The types of DTC transfers are: 
single transfer, demand dedicated with bus hold, demand dedicated with 
bus release, and channel-to-channel demand interleave. Single transfer 
is used with devices which transfer data at irregular intervals. A 
single DMA transaction will occur e.ach time a 'software request' command 
is issued or the DREQ input is asserted. Demand dedicated with bus hold 
is a software hog mode. This mode allows the DMA transaction to run to 
completion as long as there is a valid op count and the DREQ input is 
asserted. If the DREQ input is not asserted no DMA operations will 
occur but the channel will retain bus control. Demand dedicated with 
bus release is similar to demand dedicated with bus hold in that a DMA 
transaction is allowed to run to completion if DREQ is asserted. If 
DREQ is not asserted the DTC must rlelease the bus thus allowing other 
devices to obtain the bus. The operation performed by a 
channel-to-channel demand interleavle request depends on the state of bit 
2 in the Master Mode register. If MM bit 2 is clear then control may be 
passed between each channel of the lDTC without the need to release the 
bus. If MM bit 2 is set then the DTC must share the bus with the local 
processor. The DTC will release the bus and then re-request it after 
every DMA iteration. 

Bits <1:0> of the Channel Mode High register are used to determine the 
type of match control in Search and Transfer-and-Search. operations. The 
DTC is capable of generating a termination condition based on 'No 
Match', 'Word Match', and 'Byte Match'. 

Bit <4> of the Channel Mode High re9ister causes the channel to request 
the bus and perform transfers l~hen it is set by a 'Software Request 
Command' or a chain reload. 

TERMINATION OPTIONS 

Bits <15:7> of the Channel Mode Low register control the termination 
options. A DTC operbtion may be terminated in a number of ways. If the 
Current Operation Count Register gOles to zero then a Terminal Count (TC) 
termination is generated. External logic may assert the End Of Process 
(EOP) input of the DTC to generate an EOP termination at any time. In 
addition, during a Search or Transfer-and-Search operation a match 
condition may occur which generates a MC termination. Bits <15:7> allow 
the DTC to perform a chain reload, a base-to-current reload, or to 
interrupt the local processor if a Irc, EOP, or MC termination condition 
is encountered. If bits <15:7> are cleared then no special action is 
initiated whe& a TC, EOP, or MC condition is encountered. 

139 



uNOTEI: 018 
Page 10 of 24 

EXl\MPLES 

ThE~ following example programs were developed 
with 256KB of memory using the RT-11 (version 
the KXT11-C Peripheral Processor Software 
assume the programmer is familiar with 
Peripheral Processor Toolkit. 

140 

on a PDP-11/23+ system 
5.1) operating system with 
Toolkit. These examples 

MACRO-II and the KXTII-C 



.TITLE EXAM1.MAC 

uNOTE # 018 
Page 11 of 24 

; This program transfers data from local KXT11-C addresses to other 
local KXT11-C addresses. This program should be compiled and linked 

on the development system and then downloaded into the KXT11-C using 

the KXT11-C Software Toolkit. Once the program has been compiled and 

linked use the following KUI commands to execute it and verify its 
; successfullness. 
; 

; 
; 

; 

.KUI 
KUI>SET n 
KUI>LOAD EXAM1 
KUI>ODT 

. 
ODT>AC 
KUI>EXECUTE 
KUI>ODT 

. 
ODT>AC 
KUI>EXIT 

Where n is the appropriate KXT11-C 

Use KUI ODT to verify that the destination 
addresses are cleared 

Execute EXAM1 
Use KUI ODT to verify that the transfer was 
success:Eul 

SET UP REGISTER ASSIGNMENTS 

MMREG -
CMDREG -
CASTFO == 
CAOFO == 

174470 
174454 
174446 
174442 

MASTER MODE REGISTER 
COMMAND REGISTER 
CHAN 0 CHAIN ADDRESS SEG/TAG FIELD 
CHAN 0 CHAIN ADDRESS OFFSET FIELD 

START: MOVB #130,MMREG 

CMDREG 

#O,CASTFO 
#RELOAD,CAOFO 

LOAD MASTER MODE REG TO DISABLE DTC 

CLRB 

MOV 
MOV 

MOVB 

MOVB 

MOVe-

BR 

#131,MMREG 

#102,CMDREG 

#240,CMDREG 

RESET THE DTC 

LOAD THE CHAIN ADDRESS REG SEG/TAG 
LOAD THE CHAIN ADDRESS REG OFFSET 

LOAD MASTER MODE REG TO ENABLE DTC 

SET SOFTWARE REQUEST CHANNEL 0 

START CHAIN CHANNEL 0 

STAY HERE WHILE THE USER VERIFIES 
THAT THE PROGRAM WAS SUCCESSFUL 

; CHAIN LOAD REGION 

RELOAD: .WORD 001602 ; RELOAD ~qORD <Select CARA, CARB, COPC, CM> 

141 



uNOTE # 018 
Page 1.2 of 24 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

SOURCE: .WORD 

000000 CURRENT ADDRESS REGISTER A SEG/TAG 
SOURCE CURRENT ADDRESS REGISTER A OFFSET 

<This local address is the source> 

000000 CURRENT ADDRESS REGISTER B SEG/TAG 
DESTNT CURRENT ADDRESS REGISTER B OFFSET 

; <This local address is the destination> 

000013. CURRENT OPERATION COUNT <Transfer 1.3 words> 

000000 CHANNEL MODE REGISTER HIGH 
000040 CHANNEL MODE REGISTER LOW 

<No match conditions, do nothing upon 
completion, tran~fer type - Demand Dedicated 
w/Bus Hold, CARA - source, word transfers> 

1,2,3,4,5,6,7,6,5,4,3,2,1 

DESTNT: .BLKW 13 . 

. END START 

142 



.TITLE EXAM2.MAC 

uNOTE * 018 
Page 13 of 24 

This program transfers data from local KXT11-C addresses to 
global Q-bus addresses. This program should be compiled and linked on 

the development system and then downloaded into the KXT11-C using the 

KXT11-C Software Toolkit. Once, the program has been compiled and 
linked use the following commands to execute it and verify its 
successfullness. 

<HALT the development machine so that locations may be examined 
with Q-bus ODT> 

@600000/xxxxxx Examine the destination locations and clear 
them if necessary . 

@600030/xxxxxx 
@P Use the 'P' command to return to the 

system prompt 

.KUI 
KUI>SET n 
KUI>LOAD EXAM2 
KUI>EXECUTE 
KUI>EXIT 

Where n is the appropriate KXT11-C 

<HALT the development machine so that locations may be examined 
; with Q-bus ODT> 

@600000/xxxxxx Examine the destination locations to verify 
the success of the transfer . 

@600030/xxxxxx 

SET UP REGISTER ASSIGNMENTS 

MMREG = 
CMDREG = 
CASTFO = 
CAOFO = 

174470 
174454 
174446 
174442 

START: MOVB 

CLRB 

MOV 
MOV 

MOVB 

MOVB 

MOVB 

#130,MMREG 

CMDREG 

#O,CASTFO 
#RELOAD,CAOFO 

#131,MMREG 

#102,CMDREG 

#240,CMDREG 

143 

MASTER MODE REGISTER 
COMMAND REGISTER 
CHAN 0 CHAIN ADDRESS SEG/TAG FIELD 
CHAN 0 CHAIN ADDRESS OFFSET FIELD 

LOAD MASTER MODE REG TO DISABLE DTC 

RESET THE DTC 

LOAD THE CHAIN ADDRESS REG SEG/TAG 
LOAD THE CHAIN ADDRESS REG OFFSET 

LOAD MASTER MODE REG TO ENABLE DTC 

SET SOFTWARE REQUEST CHANNEL 0 

START CHAIN CHANNEL 0 



uNOTE # 018 
Page 14 of 24 

BR STAY HERE WHILE THE USER VERIFIES 
THAT THE PROGRAM WAS SUCCESSFUL 

; CHAIN LOAD REGION 

RELOAD: .WORD 

.WORD 

.WORD 

.WORD 

.WORD 

• WORD 

.WORD 

.WORD 

SOURCE: .WORD 

001602 RELOAD WORD <Select CARA,CARB,COPC,CM> 

000000 CURRENT ADDRESS REGISTER A SEG/TAG 
SOURCE CURRENT ADDRESS REGISTER A OFFSET 

<This local address is the source> 

101400 CURRENT ADDRESS REGISTER B SEG/TAG 
000000 CURRENT ADDRESS REGISTER B OFFSET 

<This global Q-bus address is the destination> 
<This corresponds to address 600000 on the 
Q-bus - the DTC uses physical addresses only> 

000013. ; CURRENT OPERATION COUNT <Transfer 13 words> 

000000 CHANNEL MODE REGISTER HIGH 
000040 CHANNEL MODE REGISTER LOW 

<No match conditions, do nothing upon 
; completion, transfer type - Demand Dedicated 

w/Bus Hold, CARA = source, word transfers> 

1,2,3,4,5,6,7,6,5,4,3,2,1 

.END START 

144 



; 

uNOTE i 018 
Page 15 of 24 

·TITLE EXAM3.MAC 

This program transfers data from global Q-bus addresses to local 
KXT11-C addresses. This program should be compiled and linked on 
the development system and then downloaded into the KXT11-C using the 

KXT11-C Software Toolkit. Once the program has been compiled and 
linked use the following commands to execute it and verify its 
successfullness. 

<Use Q-bus ODT to deposit values in locations 600000(8) --> 600030(8). 

These values will be the source for this operation> 

@600000/000001 1 Deposit source values 

. 
@600030/000001 
@P Use the 'P' command to return to the system prompt 

.KUI 
KUI>SET n 
KUI>LOAD EXAM3 
KUI>EXECUTE 
KUI>ODT 

ODT> . 

•. 
ODT>"C 
KUI>EXIT 

Where n is the appropriate KXT11-C 

Use KUI ODT to examine the destination locations to 
verify the transfer was successful 

SET UP REGISTER ASSIGNMENTS 

MMREG = 
CMDREG = 
CASTFO == 
CAOFO == 

174470 
174454 
174446 
174442 

MASTER MODE REGISTER 
COMMAND REGISTER 
CHAN 0 CHAIN ADDRESS SEG/TAG FIELD 
CHAN 0 CHAIN ADDRESS OFFSET FIELD 

START: MOVB i130,MMREG LOAD MASTER MODE REG TO DISABLE DTC 

CLRB 

MOV -
MOV 

MOVB 

MOVB 

MOVB 

CMDREG 

iO,CASTFO 
#RELOAD,CAOFO 

#131,MMREG 

i102,CMDREG 

i240,CMDREG 

145 

RESET THE DTC 

LOAD THE CHAIN ADDRESS REG SEG/TAG 
LOAD THE CHAIN ADDRESS REG OFFSET 

LOAD MASTER MODE REG TO ENABLE DTC 

SET SOFTWARE REQUEST CHANNEL 0 

START CHAIN CHANNEL 0 



uNOTE # 018 
Page 16 of 24 

BR STAY HERE WHILE THE USER VERIFIES 
THAT THE PROGRAM WAS SUCCESSFUL 

; CHAIN LOAD REGION 

RgLOAD: .WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

001602 

000000 
DES TNT 

101400 
000000 

000013. 

000000 
000060 

DESTNT: .BLKW 13 . 

• END START 

RELOAD WORD <Select CARA,CARB,COPC,CM> 

CURRENT ADDRESS REGISTER A SEG/TAG 
CURRENT ADDRESS REGISTER A OFFSET 
<This local address is the destination> 

CURRENT ADDRESS REGISTER B SEG/TAG 
CURRENT ADDRESS REGISTER B OFFSET 
<This global Q-bus address is the source> 
<This corresponds to address 600000 on the 
Q-bus - the DTC uses physical addresses only> 

CURRENT OPERATION COUNT <Transfer 13 words> 

CHANNEL MODE REGISTER HIGH 
CHANNEL MODE REGISTER LOW 
<No match conditions, do nothing upon 
completion, transfer type = Demand Dedicated 
w/Bus Hold, CARB = source, word transfers> 

<Notice how similar this reload table is to 
the one in EXAM2. By utilizing the flip bit 
in the eM Reg Low no further changes were 
necessary to use this table in this example> 

146 



·TITLE EXAM4.MAC 

uNOTE # 018 
Page 17 of 24 

This program transfers data from global Q-bus addres~es to other 
global Q-bus addresses. This program should be compiled and linked 

; on the development system and then downloaded into the KXT11-C using 
the KXT11-C Software Toolkit. Once the program has been compiled and 

; 

linked use the following commands to execute it and verify its 
successfullness. 

<Use Q-bus ODT to deposit values in locations 600000(8) --> 600030(8). 

These values will be the source for this operation> 

; @600000/000001 ! Deposit source values 
; 
; . 
; @600030/000001 
; @P Use the 'P' command to return to the system prompt 

; 

.KUI 
KUI>SET n Where n is the appropriate KXT11-C 
KUI>LOAD EXAM4 
KUI>EXECUTE 
KUI>EXIT 

<Use Q-bus ODT to examine the destination locations to verify that 
the operation was sucessful> 

@610000/xxxxxx 

. 
@610030/xxxxxx 
@P Return to system prompt 

SET UP REGISTER ASSIGNMENTS 

MMREG =
CMDREG =
CASTFO = 
CAOFO = 

174470 
174454 
174446 
174442 

MASTER MODE REGISTER 
COMMAND REGISTER 
CHAN 0 CHAIN ADDRESS SEG/TAG FIELD 
CHAN 0 CHAIN ADDRESS OFFSET FIELD 

START: MOVB #130,MMREG LOAD MASTER MODE REG TO DISABLE DTC 

CLRB 

MOV
MOV 

MOVB 

MOVB 

MOVB 

CMDREG 

#O,CASTFO 
#RELOAD,CAOFO 

#131,MMREG 

#102,CMDREG 

#240,CMDREG 

147 

RESET THE DTC 

LOAD THE CHAIN ADDRESS REG SEG/TAG 
LOAD THE CHAIN ADDRESS REG OFFSET 

LOAD MASTER MODE REG TO ENABLE DTC 

SET SOFTWARE REQUEST CHANNEL 0 

START CHAIN CHANNEL 0 



uNOTE # 018 
Page 18 of 24 

BR STAY HERE WHILE THE USER VERIFIES 
THAT THE PROGRAM WAS SUCCESSFUL 

; CHAIN LOAD REGION 

RELOAD: . WORD 

.WORD 

.WORD 

.WORD 

.WORD 

. WORD 

.WORD 

.WORD 

001602 

101400 
000000 

101400 
010000 

000013 . 

000000 
000040 

.END START 

RELOAD WORD <Select CARA,CARB,COPC,CM> 

CURRENT ADDRESS REGISTER A SEG/TAG 
CURRENT ADDRESS REGISTER A OFFSET 
<This global Q-bus address is the source> 
<This corresponds to Q-bus address 600000(8» 

CURRENT ADDRESS REGISTER B SEG/TAG 
CURRENT ADDRESS REGISTER B OFFSET 
<This global Q-bus address is the destination> 
<This corresponds to Q-bus address 610000(8» 

CURRENT OPERATION COUNT <Transfer 13 words> 

CHANNEL MODE REGISTER HIGH 
CHANNEL MODE REGISTER LOW 
<No match conditions, do nothing upon 
completion, transfer type - Demand Dedicated 
w/Bus Hold, CARA = source, word transfers> 

148 



; 

.TITLE EXAMS.MAC 

uNOTE # 018 
Page 19 of 24 

This program demonstrates how chaining is implemented using the 
DTC. A local to local transfer will be initiated under program 
control. Then, using the chaining feature of the DTC, a local to 
global transfer will be performed followed by a global to global 
transfer and finally a global to local transfer. The following 
diagram illustrates these transfers. 

KXT11-C Memory Q-bus-Memory 

iTransfer #1 

----> 
Transfer #2 
-------> 

Transfer #4 
< <-

Xfer 
#3 

This program should be compiled and linked on the development system 

and then downloaded into the KXT11-C using the KXT11-C Software 
Toolkit. Once the program has been compiled and linked use the 
following commands to execute it and verify its successfullness. 

<Use Q-bus ODT to clear the memory locations 600000(8) --> 600030(8) 

and 6100000(8) --> 610030(8) before executing the program> 

.KUI 
KUI>SET n Where n is the appropriate KXT11-C 
KUI>LOAD EXAMS 
KUI>EXECUTE 
KUI>ODT Use KUI ODT to verify that the destination contents 
ODT> . are accurate 
ODT> . 
ODT>"C 
KUI>EXIT 

<Use Q-bus ODT to examine the cont~nts of the intermediate 
destinations to verify their accuracy> 

SET UP REGISTER ASSIGNMENTS 

MMREG = 
CMDREG = 
CASTFO = 
CAOFO = 

174470 
174454 
174446 
174442 

149 

MASTER MODE REGISTER 
COMMAND REGISTER 
CHAN 0 CHAIN ADDRESS SEG/TAG FIELD 
CHAN 0 CHAIN ADDRESS OFFSET FIELD 



uNOTE # 018 
Page 20 of 24 

ST,ART: MOVB 

CLRB 

MOV 
MOV 

MOVB 

MOVB 

MOVB 

BR 

#130,MMREG 

CMDREG 

#O,CASTFO 
#LOAD1,CAOFO 

#131,MMREG 

#102,CMDREG 

#240,CMDREG 

LOAD MASTER MODE REG TO DISABLE DTC 

RESET THE DTC 

LOAD THE CHAIN ADDRESS REG SEG/TAG 
LOAD THE CHAIN ADDRESS REG OFFSET 

LOAD MASTER MODE REG TO ENABLE DTC 

SET SOFTWARE REQUEST CHANNEL 0 

START CHAIN CHANNEL 0 

STAY HERE WHILE THE USER VERIFIES 
THAT THE PROGRAM WAS SUCCESSFUL 

; CHAIN LOAD REGION 

LOAD1 

LOAD2 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

. WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

001603 

000000 
AREAl 

000000 
AREA2 

000013 . 

000000 
100040 

000000 
LOAD2 

001603 

000000 
- AREA2 

101400 
000000 

RELOAD WORD <Select CARA,CARB,COPC,CM,CA> 

CURRENT ADDRESS REGISTER A SEG/TAG 
CURRENT ADDRESS REGISTER A OFFSET 
<This local address is the source of transfer 

#1> 

CURRENT ADDRESS REGISTER B SEG/TAG 
CURRENT ADDRESS REGISTER B OFFSET 
<This local address is the destination of 
transfer #1> 

CURRENT OPERATION COUNT <Transfer 13 words> 

CHANNEL MODE REGISTER HIGH 
CHANNEL MODE REGISTER LOW 
<No match conditions, chain reload upon 
completion, transfer type = Demand Dedicated 
w/Bus Hold, CARA = source, word transfers> 

CHAIN ADDRESS REGISTER SEG/TAG 
CHAIN ADDRESS REGISTER OFFSET 
<This address points to the new chain table> 

RELOAD WORD <Select CARA,CARB,COPC,CM,CA> 

CURRENT ADDRESS REGISTER A SEG/TAG 
CURRENT ADDRESS REGISTER A OFFSET 
<This local address is the source of xfer #2> 

CURRENT ADDRESS REGISTER B SEG/TAG 
CURRENT ADDRESS REGISTER B OFFSET 
<This global address is the destination of 

150 



LOAD3 

LOAD4 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

. WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

. WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

transfer #2 - 600000(8» 

uNOTE i 018 
Page 21 of 24 

000013. ; CURRENT OPERATION COUNT <Transfer 13 words> 

000000 CHANNEL MODE REGISTER HIGH 
100040 CHANNEL MODE REGISTER LOW' 

000000 
LOAD3 

001603 

101400 
000000 

101400 
010000 

000013. 

000000 
100040 

000000 
LOAD4 

001602 

<No match conditions, chain reload upon 
completion, transfer type - Demand Dedicated 

w/BUS Hold, CARA = source, word transfers> 

CHAIN ADDRESS REGISTER SEG/TAG 
CHAIN ADDRESS REGISTER OFFSET 
<This address points to the new chain table> 

RELOAD WORD <Select CARA,CARB,COPC,CM,CA> 

CURRENT ADDRESS REGISTER A SEG/TAG 
CURRENT ADDRESS REGISTER A OFFSET 
<This global address is the source of xfer #3> 

<600000(0» 

CURRENT ADDRESS REGISTER B SEG/TAG 
CURRENT ADDRESS REGISTER B OFFSET 
<This global address is the destination of 
transfer #3 - 610000(8» 

CURRENT OPERATION COUNT <Transfer 13 words> 

CHANNEL MODE REGISTER HIGH 
CHANNEL MODE REGISTER LOW 
<No match conditions, chain reload upon 
completion, transfer type = Demand Dedicated 

w/BuS Hold, CARA = source, word transfers> 

CHAIN ADDRESS REGISTER SEG/TAG 
CHAIN ADDRESS REGISTER OFFSET 
<This address points to the new chain table> 

RELOAD WORD <Select CARA,CARB,COPC,CM> 

101400 CURRENT ADDRESS REGISTER A SEG/TAG 
010000 ; CURRENT ADDRESS REGISTER A OFFSET 

<This global address is the source of sfer #4> 
<610000(8» 

000000 CURRENT ADDRESS REGISTER B SEG/TAG 
AREA3 CURRENT ADDRESS REGISTER B OFFSET 

<This local address is the destination of 
transfer #4> 

000013. CURRENT OPERATION COUNT <Transfer 13 words> 

151 



u.NOTE '# 018 
Page 22 of 24 

AREAl 

,PtoREA2 

AREA3 

.WORD 

.WORD 
000000 
000040 

CHANNEL MODE REGISTER HIGH 
CHANNEL MODE REGISTER LOW 
<No match conditions, do nothing upon 
completion, transfer type - Demand Dedicated 
w/Bus Hold, CARA - source, word transfers> 

.WORD 1,2,3,4,5,6,7,6,5,4,3,2,1 

. BLKW 

.BLKW 

13 . 

13. 

.END START 

152 



. TITLE EXAM6. MAC ~ 

uNOTE # 018 
Page 23 of 24 

This program demonstrates how to initiate a DTC operation from the 
; arbiter cpu. This program will tranfer a block of data from Q-bus 
; memory to KXT11-C memory. All of the information necessary for the 

transfer will reside in Q-bus memory (chain table, source data) 
This program should be compiled, linked, and run on the arbiter 
development system. After the program executes use the following 
KUI commands to verify the transfer 

.KUI 
KUI>SET n Where n is the appropriate KXT11-C 

; KUI>ODT 
ODT>5000/xxxxxx Examine locations 5000 --> 5030 to verify that 

the data was transfered correctly . , 
. 

ODT>5030/xxxxxx 
ODT>"C 
KUI>EXIT 

Two-port RAM register definitions 

TPRO-160100 
TPRl-160102 
TPR2-160104 
TPR3-160106 

.MCALL .EXIT 

START: MOV #100000,TPR3 place Chain Address Reg Seg/Tag in TPR3 

Place Chain Address Reg Offset in TPR2 MOV #LOAD,TPR2 

; * NOTE!! * 

LOAD 

The KXT11-C User's Guide contains an error which instructs the 

programmer to place the CA register Seg/Tag in TPR2 and the CA 

register Offset in TPR3. This information is reversed and is 
correct as stated above. 

BIS #2,TPRO ; Issue DMA Load cmd to the command register 

.EXIT 

. WORD 

. WORD 

.WORD 

. WORD 

.WORD 

.WORD 

001602 RELOAD WORD <Select CARA,CARB,COPC,CM> 

100000 CARA SEG/TAG <Select Q-bus address as source> 
SOURCE CARA OFFSET 

000000 ;CARB SEG/TAG <Select KXT address 5000 as dest • 
005000 ;CARB OFFSET 

000013. ; COPC <Op-count - 13 words> 

15.3 



uNOTE # 018 
Page 24 of 24 

CM High 
• 

.WORD 

.WORD 
000000 
000040 CM Low <select no termination options, 

software hog-mode, CARA = source, 
word transfers> 

SOURCE: .WORD 1,2,3,4,5,6,7,6,5,4,3,2,1 

.END START 

RELATED DOCUMENTS 

For further information concerning the KXT11-CA and the DTC please 
consult the following sources: 

KXT11-CA Single-Board Computer User's Guide 
AmZ8016 DMA Transfer Controller User's Guide 

EK-KXTCA-UG-OOl 
01924C 

For further information concerning the KXTI1-CA Peripheral Processor 
Software Toolkit please consult: 

KXT11-C Peripheral Processor Software User's Guide 
KXT11-CA Software Toolkit/RT Reference Manual 
KXT11-CA Software Toolkit/RSX Reference Manual 

154 

AA-Y615A-TK 
AA-AU63A-TC 
AA-AU64A-TC 



uNOTE # 019 

Title: Disabling RAM on the MXV11-BF Date: 10-JAN-85 

Originator: Mike Collins Page 1 of 3 

This uNOTE describes how to disable the on-board memory of the MXV11-BF 
multifunction module. There is also a comparison of features between 
the MXV11-BF (with RAM disabled) and the combination of the MRV11-D and 
DLV11-J modules. 

DISABLING RAM ON THE MXV11-BF MODULE 

WARNING 1 

The procedure outlined below for disabling the RAM 
requires physical changes to the circuit board. 
Implementing this change will void the warranty of the 
MXV11-BF as well as voiding any field service contract 
for the board. 

The procedure requires cutting one etch and adding one wire. 

PROCEDURE (see figure below) 

1. The etch cut can be achieved two ways. 

Cut and bend up pin 13 of chip E17. 

OR 

On side 2 of module (the non-component side), cut etch 
which connects E17 pin 13 to E26 pin 2. 

2. Add wire between E17 pin 13 and E17 pin 14 (+5 volts). 

3. The on-board RAM is now disabled. 

155 



uNOTE # 019 
Pag1e 2 of 3 

MXV11-BF (M7195) 

Pin 1 

Pin 14 

v V 
Pin 1 

-: DO 0 E26 

I 
E17 

COMPARISON OF THE MXV11-BF VERSUS THE COMBINATION OF MRV11-D AND DLV11-J 

The following table lists several features common to both the MXVI1-BF 
with the RAM disabled and the MRV11-D / DLV11-J combination. 

FEATURE 

RAM 

Boot ROMs 

SlGU's 

Miscellaneous 
features 

Cabinet kit 

+S V 

Heat diss. 

MXV11-BF w/o RAM MRV11-D and DLV11-J 

None None 

Mxvl1-B2 MXV11-B2 

2 DLARTs 4 UARTs 
4 baud rates 9 baud rates 
No format options Many format options 
(Start, stop bits, parity, # of bits, etc.) 

4 Red LED's 
1 Green LED 

Ctrrrently N/A 

3.4A 

16.65W 

156 

14 unused ROM/RAM sockets 

Available 

2.6A 

16W 



FEATURE 

Slots 

AC loads 

DC loads 

+12 V 

MXV11-BF w/o RAM 

1 dual 

2.3 

0.5 

0.1A 

uNOTE # 019 
Page 3 of 3 

MRV11-D and DLV11-J 

2 duals 

4.0 

1.5 

0.25A 

When comparing the features on page 2, the MRV11-D/DLV11-J combination 
works out better than the MXV11-BF. All of the features on page 3 show 
the advantages of the Mxv11-BF. 

The MXVI1-BF is the best choice in situations where backplane space and 
loading is a primary concern. In terms of backplane space, if the 
number of slots available is limited, the MXV11-BF is preferable since 
it takes up one dual slot whereas the MRV11-D/DLV11-J combination 
requires two dual slots. 

In a large system where AC loading may be a concern, the MXV11-BF also 
has an advantage over the MRV11-D/DLV11-J combination. The number of AC 
loads the MXV11-BF presents to the bus is fewer than the two board 
combination. 

The most attractive use for the MxV11-BF is in a minimal yet powerful 
two-board system i.e. KDJ11-A and the MXV11-BF. The advantages of such 
a system are the size or form factor (only two dual height modules) 
128Kb of RAM, 2 serial lines, bootstrap capability and the high 
performance 11/73 CPU. 

157 



158 



uNOTE # 020 

Title: Differences between the MXV11-A and Mxv11-B Date: 10-JAN-85 

Originator: Dave Smith Page 1 of 2 

This MicroNote illustrates the features to consider when upgrading from 
MXV11-AA/-AC to MXV11-BF multifunction boards or when choosing one in a 
new configuration. 

Mxv11-A 

o Dual height form factor 

o 18-bit compatible only 

o 2 SLU's (DLV11-J type) 

o RAM: 
8 KB non-parity (MXV11-AA) 
32 KB non-parity (MXV11-AC) 

o ROM: 2 sockets (24-pin) 
(for MXv11-A2 boot ROMS 
- cannot use MXV11-B2 ROMS) 

Notes: 

MXV11-BF 

o Dual height form factor 

o 18 or 22-bit compatible 

o 2 SLU's (DLARTs) 

o RAM: 
128 KB non-parity 

o ROM: 2 sockets (28-pin) 
(for MXV11-B2 boot ROMS 
- cannot use MXV11-A2 ROMS) 

The MXV11-B2 Boot ROMs are required for an LSI-11/73 based system to be 
maintained under a DEC Field ServicE~ contract because these ROMs contain 
cache diagnostics. 

For a comprehensive list of Bootstraps and device support, refer to 
MicroNote #15, entitled "Q-bus Hardware Bootstraps" 

159 



uNOTE * 020 
Page 2 of 2 

Since the ROM sockets on these boards may be used for user-written 
application code as well as boot code, it is important to note what is 
different on the two boards. Besides the sockets being of different 
size, the ROM on the two boards has another difference. The ROM on the 
MXV11-BF is window mapped and may be used under application control to 
address up to 8 KB. The MXV11-A ROM is direct mapped and can only 
address 256 bytes. Thus, an upgrade would require new ROMs and possible 
application recoding. 

For more detailed information concerning MXV11-BF issues, refer to 
MicroNote 19. 

For more detailed informabion concerning MXV11-A issues, refer to the 
archived MicroNotes listed in appendix A. 

Summary: 

When upgrading from the MXV11-A to the MXV11-BF or choosing the MXV11-BF 
over the MXV11-A, three important features are obtained: 

1) 22-bit compatibility - allows use in large memory systems 
(The MXV11-BF memory can only be configured to start in the 
lower 512 KB. It does, however, decode all 22 lines of 
address which makes it usable in" systems with up to 4 MB.) 

2) More memory (although its non-parity feature creates some software 
support issues if used with RSX or RSTS) 

3) Support for boot ROMs that will boot MSCP devices such as the Rx50 
and Ro51 and will provide cache diagnostics for the LSI-11/73. 

160 



uNOTE # 021 

Title: Floating Point Considerations on MicroVAX I Date: 10-Jan-85 

Originator: Christopher DeMers page 1 of 2 

The MicroVAX architecture implements a subset of VAX data types. Four 
that are part of the VAX architecture but not part of the MicroVAX 
architecture are the D floating, F floating, G floating and H floating 
data types. Floating point instructions that use these data types are 
likewise not part of the architecture. 

The MicroVAX I system implements a proper superset 
architecture; that is, MicroVAX I uses the MicroVAX 
implements a few items that are not defined as part 
architecture. Even though the architecture specifies 
for floating point, the following data types and 
supported in the MicroVAX I microcode: 

- F float 
- D-float 
- G-float 

of the MicroVAX 
architecture, but 
of the MicroVAX 
emulation support 
instructions are 

The F float data type and instructions are standard on the MicroVAX I. 
In aQdition, the user may specify EITHER D float or G float as the 
double precision instruction set. The decision to use D float or 
G_float depends on the application. 

Both D float and G float are double preclslon floating point data 
types/lnstructions.- D float is compatible with the PDP-11 format and is 
the double precision floating point default for many of Digital's 
compilers including FORTRAN, PLII, BASIC and Pascal. Therefore, if the 
application has been compiled, say, on a VAX-11/780, with the default 
(D float) and is not to be re-compiled before being run on the MicroVAX 
I,-then choose the D float option. The compilers mentioned above have a 
switch that allows the generation of G float instructions. If you wish 
to choose the G float option for your MlcroVAX I, the program needs to 
be re-compiled with the G float switch set. 

If Macro programs use a specific data type such as G float, then the 
MicroVAX I will need to have the G float option unless the program is 
modified so that the floating point instructions match the option chosen 
for the MicroVAX I. 

161 



uNo'rE * 021 
Page 2 of 2 

Note that even though a program uses one type of double preclslon 
floc!ting point and the MicroVAX I has the other as an option, the 
program will run. A feature of the MicroVAX architecture is that all 
instructions are executed. The floating point instructions not chosen 
as a microcode option are emulated in software. An instruction/data 
type mismatch could result in severe performance degradation. 

Another reason for choosing one double precision format over another is 
the size and accuracy of the data. Both formats are 64 bits long. The 
D float range is 2.9E-37 to 1.7E38. This type gives approximately 
sIxteen decimal digits precision. G float "steals" three bits from the 
fraction to give the exponent a large~ range. The G float range is 
.S6E-308 to .9E308 and gives approximately fifteen decimal digits 
preclslon. The range of the number is increased significantly while 
only reducing the precision by one decimal digit. 

H float, the only other floating data type in the VAX architecture, is 
1~8 bits long with a range of close to 10ESOOO and a precision of 
thirty-three decimal digits. H'float is not implemented as part of the 
MicroVAX architecture. It is, nowever, emulated in software. 

15 

sl 

63 

Data Type Representations 

D Floating 

7 6 

15 7 6 o 

sl Exponent I Fraction 

Fraction 

31 16 

o 15 

Exponent f Fraction sJ 
Fraction 

Fraction -

Fraction 

48 63 

162 

4 3 o 

Exponent I Fraction 

Fraction 

Fraction 

Fraction 

48 



uNOTE it 022 

Title: Differences between the z.1licroVAX I and the Date: 28-APR-85 
MicroVAX II CPUs 

Originator: Mike Collins Page 1 of 13 

This MicroNote identifies the differences between the MicroVAX I 
processor and the MicroVAX II processor. The term 'MicroVAX 630' is 
sometimes used in this and other documentation when referring to the CPU 
module of the MicroVAX II system. Table 1 below contains a summary of 
these differences and following the table are detailed discussions of 
each. 

Table 1 - MicroVAX II versus the z.1licroVAX I 

FEATURE MicroVAX II MicroVAX I 

CPU Technology MicroVAX 78032 Custom VLSI 

Memory System Local Memory Uses Q-bus Memory 
System 

Floating Point MicroVAX 78132 Microcode 

Q-bus I/O Map YES NO 

Addressable Physical Memory 16 MBytes 4 MBytes 

On-Board Memory 256KB or 1MB Non~ 

Performance See Performance Section 

Console Serial Line YES YES 

Boot & Diagnostic ROMs YES YES 
--

Form Factor 1 Quad 2 Quads 

Configuration set via Cabinet Kit Cabinet Kit & 
On-board Switches 

RQDX Contro!ler Type RQDX2 RQDX1 or RQDX2 

163 



uNOTE # 022 
page 2 of 13 

Table 1 - MicroVAX II versus the MicroVAX I (cont'd) 

TOY Clock wi Battery Backup YES NO 

Multicomputing Hooks YES NO 

Instruction Set Differences See MicroNote #24 

Power Requirements +SV - 6.2 Amps +SV - 14 Amps 
+12V - 0.14 Amps +12V - 0.5 Amps 

AC Loads 2.7 2 

DC Loads 1 1 

Termination 240 Ohms 240 Ohms 

The MicroVAX II is both faster and smaller than the MicroVAX I. Two 
major features of the MicroVAX II are responsible :for these 
enhancements: the MicroVAX 78032 microprocessor and the memory system. 

CPU TECHNOLOGY 

The technologies used to design the two processors are different. This 
is why the MicroVAX II CPU is half the size and three times the speed of 
the MicroVAX I. 

The MicroVAX I CPU was designed using a custom VLSI chip, several ROMs 
and off-the-shelf parts to implement the ALU, memory management unit and 
the microcode. In contrast, these same features are implemented in the 
MicroVAX 78032 microprocessor. The MicroVAX 78032 is the first VAX on a 
chip. Two custom gate arrays were also designed to reduce the size of 
the MicroVAX II CPU to one quad module: the Q-bus interface gate array 
and the MicroVAX 78032 interface gate array. 

MEMORY SYSTEM 

The significant difference in performance is due in part to the 
different memory systems used by the two processors. The MicroVAX II 
memory system uses a high speed interconnect between the MicroVAX 78032 
microprocessor and RAM. The MicroVAX I uses standard Q-bus memories 
which are not as-fast but are also less expensive and usable by both the 
MicroVAX I and other 16-bit processors (such as the MicroPDP-11). The 
MicroVAX I also uses a cache memory scheme. 

164 



uNOTE # 022 
Page 3 of 13 

The MicroVAX II CPU communicate!s to memory over a local memory 
interconnect. This was done to increase the performance of the system 
in two ways. First, the local memory system provides a fast connection 
between the processor and memory (400 nsec read and write cycles). 
Second, since memory fetches occur over the local memory system, the 
Q-bus is now a dedicated I/O bus. The diagrams below contrast previous 
Q-bus processors and the MicroVAX II. 

The local memory system allows for 2 expansion memory boards. (See next 
section on Addressable Physical Memory) 

Configuration Used by Previous ~-bus Processors: 
This approach is used by most Q-bus processors such as the 11/23, 
LSI-ll/73 and the MicroVAX I. In this design, the Q-bus bandwidth is 
shared by th~ processor and I/d devices when accessing memory. 

Processor .MeDlory 

Q--bus 

I/O 
Device 

Figure 1 - Memory Design Used by Previous Q-bus Processors 

MicroVAX II Design: 
The MicroVAX II uses a local memory system for all memory references, 
allowing the Q-bus to be a dedicated I/O bus. The local memory system 
is implemented using the C-D intE!rconnect of the backplane and an 
over-the-top cable. The memory system has a bandwidth of 10 MBytes/sec 
which will support the MicroVAX 78032 microprocessor running at full 
speed (approx. 6 MB/sec) with simultaneous Q-bus DMA transfers (3.3 
MB/sec) . 

165 



uNOTE: # 022 
Page 4 of 13 

I 
Processor 

6 MB/sec 

10 MBytes/sec 
< - o ver- th T e-.op C bl a e 

I < C-D Interconnect in B ackplane 

Expansion I/O 
Memory Device 

(max. of 
2 ) 

Q-bus (3.3 MBytes/sec) 

Q-bus is a dedicated I/O bus 

Figure 2 - MicroVAX II Memory Design 

FLOATING POINT 

The MicroVAX architecture specifies that the floating point instruction 
set need not be implemented in the hardware of a MicroVAX processor. 
For those processors that fall into this category, there is an emulator 
in the software which guarantees that the instructions are still 
executable. However the MicroVAX architecture does not restrict a 
MicroVAX design from having floating point instructions implemented in 
hardware. 

This is what was done on the MicroVAX I. The MicroVAX I does have the 
F floating and D floating or the F floating and G floating instructions 
i~ microcode. (s~e MicroNote #21 -"Floating Poi~t Considerations on 
MicroVAX Itt) 

Th,e M i c r 0 VAX I Ius e s the M i c r oVAX 78132 flo at i n g poi n t un itt 0 i mpl eme n t 
floating point instructions. It is a high performance coprocessor for 
the MicroVAX 78032 and eliminates the need to emulate floating-point 
instructions in software. 

Thle MicroVAX 78132 handles the F floating (single precision), D floating 
(double-precision) and the G floating (extended range double-precision) 
floating point data types and-instructions. The FPU also accelerates 
the execution of integer multiply and divide operations. 

The H floating instructions are emulated in both the MicroVAX :r and the 
MicroVAX II. 

166 



uNOTE i 022 
Page 5 of 13 

Q-bus I/O MAP (SCATTER/GATHER MAP) 

The concept of a scatter/gather map has been used on the large UNIBUS 
VAXes since the VAX 11/780. ThE~ same concept is used on the MicroVAX 
II. Simply stated, the scatter/ga1:her mechanism maps addresses from one 
bus to another bus. This mapping is necessary because the address 
length is not the same for the two buses. 

The term 'scatter/gather' is a description of what operations are 
performed through the scatter/gathE~r map. A VAX with mapping enabled is 
a virtual machine and manages data in 512-byte pages which may be 
discontiguous in physical memor~r. When a DMA write operation occurs, 
pages of data may be 'scattered' into physical memory. During a DMA 
read operation from memory to an I/O device, such as a disk, -these pages 
of data must be 'gathered' from thl:oughout memory and transferred to the 
device. 

The MicroVAX I does not requi re a ()-bus I/O map. Since all I/O devices 
and memory share the same bus, the Q-bus, there is no mismatch in 
address lengths and no I/O map is necessary. Reading and writing data 
to and from memory in 512 byte pages becomes the responsibility of the 
I/O device or the system software. 

In the case of the MicroVAX II CPU" the scatter/gather map provides the 
mapping mechanism to allow DMA devices on the Q-bus, with a 4 MByte 
physical address range, to gain access to all of main memory on the 
local memory system, a 16 MByte physical address range. 

Figure 3 below illustrates the mapping process. 

The high order 13 bits of the Q-bulS address select one of 8192 mapping 
registers. Each register translatf!s an address for a range covering one 
page of 512 bytes; thus the mappin<} registers cover the entire Q-bus 
address space of 4MB. 

The lower 15 bits of the mapping r~gister will have been previously 
loaded with the correct information, which when appended to the lower 9 
bits of the Q-bus address selects the appropriate byte in main memory. 

The high order 15 bits of the physical address select which pag~ in main 
memory has the correct address and the low order 9 bits select the byte 
within a page. 

167 



uNOTE # 022 
Page 6 of 13 

Q-bus Address 

9 8 o 
13 bits 

~-----------------------> 

Selected Mapping Register 
I 

31 15 14 0 

Physical Addr. 
in local 
memory 

15 bits I <------------~ 

24 bits 

~-------------------> 

Q-bus I/O Map 
8K Mapping Registers 

Local Memory 

Figure 3 - Q-bus to Private Memory Mapping Process 

168 



uNOTE * 022 
Page 7 of 13 

ADDRESSABLE PHYSICAL MEMORY 

The total amount of addressable physical memory for each CPU is 
different because of the memory system designs. 

The MicroVAX I uses standard Q-bus memories for main memory and 
therefore has a lower physical addressing limit than the MicroVAX II. 
This limit is constrained by the number of address lines on the Q-bus. 
There are 22 address lines on the Q-bus, limiting maximum memory to 4 
MB. 

The MicroVAX II uses a 24 bit address when accessing the 
system. Therefore the maximum amount of addressable 
MBytes. 

local memory 
memory is 16 

When the system is first available, 9 Mbytes will be the maximum because 
the 16 MByte total depends on the availability of 1 Mbit RAM parts. The 
9 MByte total includes a MicroVAX II CPU (KA630-AA) which includes 1 
MByte on-board plus two 4 MByte expansion modules. 

The memory module capacities are listed in the table 3 below. 

Table 3 - Expansion Memory Options 

MEMORY MEMORY SIZE FORM FACTOR 

MS630-AA 1 Mbyte Dual 

MS630-BA 2 Mbytes Quad 

MS630-BB 4 Mbytes Quad 

PERFORMANCE 

The relative performance between thl~ processors is of course application 
dependent. However, as a generi~l rule of thumb, the MicroVAX II CPU 
will be approximately 3 times faster than the MicroVAX I. The results 
of standard, compute bound floating point benchmarks indicate that the 
MicroVAX II (with the MicroVAX 78132 FPU) will run 4 to 6.6 times faster 
than the MicroVAX I. 

CONSOLE SERIAL LINE 

The MicroVAX II and the MicroVAX I processors both have one dedicated 
serial line for the console terminal. There are two differences between 
the two serial line units. First, the number of selectable baud rates 
is different. The possible baud rates are listed in table 4. 

169 



uNOTE # 022 
Page 8 of 13 

Table 4 - Baud Rate Selections 

M:icroVAX II MicroVAX I 

300 300 
600 1200 

1200 9600 
2400 19200 
4800 
9600 

19200 
38400 

Second, the console device connector on the patch panel for the MicroVAX 
I is an RS232 25-pin D-subminiature connector~ The connector on the 
lVIicroVAX II patch panel is a 9-pin D-subminiature connector. Because 
the connectors are different, different cables will be used to connect 
to the console terminal. 

FORM FACTOR 

All of the features and functions of the MicroVAX II processor are 
contained on one quad module. The MicroVAX I processor is made up of 
two quad modules, a data path module ('DAP'), and a memory controller 
('MeT'). The two modules of the MicroVAX I communicate over the C-D 
backplane interconnect and an over-the-top ribbon cable. 

BOOT AND DIAGNOSTIC ROMs 

Both processors have boot/diagnostic ROMs. The ROMs on the MicroVAX I 
are NOT the same as those on the MicroVAX II CPU, therefore there are 
differences in their operation. 

Both ROMs perform the following functions : 
Initialize the machine into a known state. 
Perform diagnostic tests. 
Allow for the automatic restart or bootstrap of the system following 
a processor halt or initial power-up. 
Provide bootstrap capability from a variety of devices. 
Provide the VAX console command language. 

Perform diagnostic tests. 
When either machine is powered on, their respective diagnostic tests are 
executed. 

Microverify is the name given to the diagnostics 
MicroVAX I system. There are three LEDs on the DAP 
segment display on the patch panel which will isolate 
of the two CPU modules. Error codes are defined in 
10-4 of the MicroVAX I Owner's Manual. 

170 

executed by the 
module and a seven 
the problem to one 
table 10-1 on page 



uNOTE # 022 
Page 9 of 13 

A similar function is performed by the MicroVAX II CPU diagnostics. As 
each test is run, a code is displayed on the processor LEDs, the patch 
panel and the console terminal. Th1ese codes count down in hexadecimal 
from F to O. There are potentially 16 steps which may be executed, 
therefore the MicroVAX 630 has 4 LEDs. The definitions for these codes 
may be found in the MicroVAX 630 CPU Module User's Guide (PIN 
CK-KA6 30-UG) . 

Power-up modes. 
A major difference between the two processors is what occurs at 
power-up. The MicroVAX I will ei th,er attempt to do a restart, bootstrap 
or halt and enter console mode (the appropriate option is selected via 
two switches on the DAP module). 

The MicroVAX II can also be configured to try a restart, perform a 
bootstrap or halt. Before it attempts these options however, it does a 
language inquiry. All console messages may be output in one of eleven 
different languages; one must be selected. There are options such as 
defaulting to English or defaulting to the language which was selected 
previously for unassisted bootstrap or always prompting for the language 
at power-up. These options are described in the MicroVAX 630 CPU Module 
User's Guide. 
Bootstrap Devices. 
The list of devices which each processor can boot from is slightly 
different. Table 5 lists the supported boot devices for each processor. 
The devices are listed in the order by which they are searched by the 
processor~ 

Table 5 - Bootstrap Devices 

MicroVAX II MicroVAX I 

RODX, KDA50 or RQDX 
RC25 

TKSO 

MRV11-D MRV11-D 

DEONA DEONA 

VAX Console Command Language. 
Both processors implement the VAX console command language in their boot 
ROMs. Most of the frequently used commands are implemented by both 
machines. However, there are a few commands which are only implemented 
by one or the other. Table 6 lists the commands and indicates which are 
available on each processor. 

171 



uNOTE # 022 
Page 10 of 13 

Table 6 - VAX Console Commands 

COMMAND MicroVAX II 

BREAK X 
INITIALIZE X 
START X 
CONTINUE X 
HALT X 
BOOT X 
UN JAM X 
EXAMINE X 
DEPOSIT X 
X X 
FIND X 
REPEAT X 
TEST X 
1 (Comment) X 
N (Next) 
CTRL/U X 
CTRL/S X 
CTRL/O X 
CTRL/O X 
CTRL/R X 
CTRL/C X 

MicroVAX I 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 

X 
X 

CONFIGURATION 

Both CPUs have a cabinet kit through which certain features are 
configured. However the cabinet kits are different. The cabinet kit 
for the MicroVAX I will not work with the MicroVAX II CPU and vice 
versa. 

In addition to the cabinet kit are eight switches on one of the MicroVAX 
I CPU boards used for setting such functions as the recovery action, 
break detect enable and the baud rate selection. The cabinet kit for 
the MicroVAX I is a set of two cables and a patch panel insert for FCC 
system integration. It performs three functions: 

1. Console terminal connector 
2. Baud rate rotary switch 
3. Two digit LED display 

172 



uNOTE # 022 
Page 11 of 13 

The MicroVAX II CPU has no switches or jumpers on the module itself. 
All options are set via the patch panel insert of the cabinet kit or an 
optional configuration card used in place of the cabinet kit. The patch 
panel insert has the following functions 

1. Halt enable switch 
2. Power-Up mode rotary switch 
3. Baud rate rotary switch 
4. Hexadecimal display 
5. Console terminal connector 
6. Batteries for battery backup 

For MicroVAX II applications which do not need the cabinet kit, Digital 
designed a special configuration card. This card allows the user to 
configure the same functions as the cabinet kit but it is much smaller 
and requires no cables. The configuration card is 1.5" x 2.5" and plugs 
into two connectors on the CPU module. Simple DIP switches are used to 
select the appropriate functions. 

TIME-OF-YEAR CLOCK WITH BATTERY BACKUP 

The MicroVAX I does not have the capability for keeping time after a 
system power-down or power fai.lure. Each time the system is brought 
back up the time must be reentered manually (This limitation can be 
bypassed under MicroVMS for example, but the system time will be 
incorrect until set at a later time). 

The MicroVAX II has the capabili t~r for a battery backed up 
(TOY) clock. A low-power TOY clock chip was designed 
module. After a system power-down the chip keeps track of 
time and the system can reboot without needing an operator 
time and date. 

time-of-year 
onto the CPU 
the correct 
to enter the 

During normal operation the system keeps track of time using a 10 msec 
interval timer internal to the MicroVAX 78032. When power is lost this 
interval timer will stop but the TOY clock chip will continue to 
operate. The TOY clock chip has a resolution of 1 second. 

The batteries for the time-of-year clock chip are located on the patch 
panel insert of the cabinet kit. 

The battery backup capability is not present if a system is using the 
configuration card instead of thE~ cabinet kit in order to configure the 
system. However there are pins on the configuration card which can be 
used to connect external batteries to provide the same capability. It 
is the user's-responsibility to pl:ovide the batteries and cabling for 
battery backup when using the configuration card. 

173 



uNOTE # 022 
Page 12 of 13 

RQDX CONTROLLER TYPE 

Initial MicroVAX I systems use the RQDXl disk controller for the RX50 
floppy disks and the RD51 / RD52 winchester disks. This controller is 
required to be the last module in a system because it does not pass 
interrupt acknowledge (lACK) nor the DMA grant (BDMG) signals to options 
which come after it in the backplane. 

The RQDX2 disk controller was designed to work with and is shipped with 
initial MicroVAX II systems. The RQDX2 will also work with other Q-bus 
processors such as the MicroVAX I and MicroPDP-ll/73. 

IMPORTANT! The RQDXl is incompatible with the MicroVAX II CPU therefore 
the two should never be configured into the same system. 

MULTICOMPUTING HOOKS 

The MicroVAX II CPU has been designed to allow a maximum of four 
processors to coexist in the same system. There will always be an 
arbiter and up to 3 auxiliaries. This feature is NOT supported by any 
Digital operating system and is not an off-the-shelf multiprocessing 
solution. For more information on the specifics of the multicomputing 
feature, reference MicroNote #26 and the MicroVAX 630 CPU Module User's 
Guide. 

INSTRUCTION SET DIFFERENCES 

The MicroVAX architecture specifies which instructions must be 
implemented in the hardware/microcode, all other instructions will then 
be emulated in software. Depending on the particular instruction, the 
emulation is either entirely in software or in software with a hardware 
assist. Any specific MicroVAX implementation will meet this minimum 
requirement but may choose to include in its microcode some instructions 
which would otherwise be emulated. MicroNote #24 contains a table which 
lists all of the instructions in the VAX architecture and indicates for 
each MicroVAX processor whether or not the instruction is in the 
hardware or emulated. 

POWER REQUIREMENTS, AC LOADS, DC LOADS AND TERMINATION 

Table 7 below summarizes the pertinent information necessary to 
configure one of these processors into a system. 

Since the MicroV~X II CPU is only one quad module it is not 
that the amount of current drawn from the +5 volt 
substantially less than that required by the MicroVAX I CPU. 

174 

surprising 
supply is 



Table 7 - Specifications 

SPECIFICATION 

Power Requirements 
+5 volt (amps) 
+12 Volt (amps) 

AC loads 

DC loads 

Termination (ohms) 

MicroVJ~X II 

6.2 
0.14 

2 ~/ • I 

1.0 

240 

17!5 

MicroVAX I 

14.0 
0.5 

2 

1 

240 

uNOTE # 022 
page 13 of 13 



176 



uNOTE # 023 

Title: MicroVAX I to MicroVAX II Upgrade Issues Date: 28-APR-85 

Originator: Mike Collins Page 1 of 5 

This MicroNote describes the hardware issues in upgrading from a 
MicroVAX I to a MicroVAX II. 

The Add-On and Upgrades group within Digital Equipment Corporation 
announced a formal upgrade kit at the time of the MicroVAX II 
announcement. For more information about this program contact a local 
DEC sales representative. This f1icroNote is intended for those users 
who wish understand the issues in an upgrade. 

Reference MicroNote #22 for a detailed description of the differences 
between the processors of the MicroVAX I and MicroVAX II systems. 

Upgrading a MicroVAX I to a MicroVAX II is straightforward because the 
two systems share many common components. First of all the BA23 
enclosure is used by both systems, this includes the backplane, power 
supply, control panel, and I/O patch panel. The 5 1/4" disk devices 
used on a MicroVAX I are also compatible with the MicroVAX II. Since 
I/O devices for both machines are Q-bus devices they are directly 
compatible with the new processor. The upgrade process does however 
involve replacing the processor, the memory, the 5 1/4" disk controller 
and the processor cabinet kit. Each of these upgrade issues is 
addressed in detail. 

An upgrade example is shown at the end of this MicroNote. 

THE PROCESSOR UPGRADE: 
The MicroVAX I CPU is made up of tW() quad modules, the memory controller 
('MCT') and the data path ('DAP'). These two modules occupy slots 1 and 
2 in the backplane. Both of these modules are replaced with a single 
quad module, the MicroVAX II CPU which must be placed in slot 1. The 
MicroVAX II CPU module includes 1 MB of memory and the MicroVAX 78132 
floating point unit. Slot 2 previously used by the MicroVAX I is now 
available for expansion memory or other options. 

THE MEMORY UPGRADE: 
The memory system designed for tht~ MicroVAX I lis unique to that 
processor, therefore the Q-bus memories used in the MicroVAX I must be 
removed and replaced by the new type. 

177 



uNOTE # 023 
Page 2 of 5 

If the MicroVAX I being upgraded has only 1 MB of main memory then the 
processor and memory can both be replaced with the MicroVAX II CPU 
module. Additional memory may be added to a MicroVAX II CPU if 
necessary. Besides the 1 MB of on-board memory, the MicroVAX II CPU 
will support a maximum of 2 memory expansion boards. These additional 
boards must be placed immediately after the processor in slots 2 and 3 
of the backplane. The memory modules communicate with the CPU over the 
C-D interconnect of the backplane and an over-the-top cable. A cable is 
shipped with each memory module. 

Figure 1 is an example of how the processor and memory boards are 
configured into a system. If the dual height memory expansion module is 
used (MS630-AA) it must be placed in the C-D side of the backplane. The 
memory modules may be placed in any order in slots 2 and 3~ Table 2 
lists the memory expansion options. 

WARNING 

Both the MicroVAX II CPU and MS630 memory expansion 
modules must be placed in backplane slots with the C-D 
interconnect. Damage may result if these modules are 
placed in backplanes with Q-bus signals on both the A/B 
and C/o sides. 

Table 2 - MS630 Memory Expansion Modules 

MEMORY MEMORY SIZE FORM FACTOR 

MS630-AA 1 Mbyte Dual 

MS630-BA 2 Mbytes Quad 

MS630-BB 4 Mbytes Quad 

Figure 1 - Processor and Memory Configuration 

1 I 

2 I 

3 

4 

. 
8 

MicroVAX II CPU 

MS630-B 

MS63'0-AA--> I 

Additional slots 

178 

I 

I 
< 

I 
Memory Expansion 

Cable 



i THE RQDX DI SK CONTROLLER UPGRADE: 

uNOTE # 023 
page 3 of S 

The RQDX1 S 1/4" disk controller used in MicroVAX I systems must be 
removed and replaced with the HQDX2 controller. This upgrade is 
necessary because the RQDX2 provide:; features not available on the RQDX! 
and because the RQDX1 is incompatible with the MicroVAX II. 

The RQDX1 does not pass the interrupt acknowledge (lACK) or DMA grant 
signal (DMGO) to other modules which may be located after it in the 
backplane. Therefore it must always be the last module in a system. 
This restriction has been removed with the RQDX2, which does pass both 
of those signals. 

Both RQDX modules are capable of controlling 4 logical units. However 
the RQDX1 can only control a maximum of 2 fixed winchesters (RDSn type 
drives). Therefore the largest amount of storage that can be connected 
to an RQDX1 would be a combination of 2 RDSn type drives and an RXSO, 
which counts as two logical units bf!cause it actually handles two 400KB 
floppies. The RQDX2 also control:; 4 logical units but it knows how to 
control any combination of RDs and HXSOs. Therefore the maximum amount 
of storage that can be connected to an RQDX2 would be four RDSn type 
drives. 

The RQDX1 is compatible with RXSO floppies (SOOKB), RDS1 (11MB) and RDS2 
(31MB) disk drives. The RQDX2 is compatible with those drives but is 
also capable of controlling RDS3 (71MB) drives. 

THE CABINET KIT UPGRADE: 
The MicroVAX I cabinet kit is incompatible with the MicroVAX II, 
therefore the cabinet kit used in the MicroVAX II, BA23 based system 
must be used. The part number is CK-KA630-AB. 

Both cabinet kits have one serial line connector in order to communicate 
with the VAX console device. 'rhe MicroVAX I cabinet kit uses the 
standard 2S-pin, D-subminiature lRS232 connector~ The MicroVAX II 
cabinet kit uses a different type of connector. It is a 9-pin 
D-subminiature connector and will therefore require a different cable 
from the patch panel to the consl)le device. The appropriate cable is 
part number BCCOS. 

OPERATING SYSTEM UPGRADE: 
Once the hardware has been upgraded it is also necessary to have the 
appropriate system software which will support the MicroVAX II. Table 3 
lists the initial versions of MicroVMS, ULTRIX-32m and VAXELN which 
support the MicroVAX II. 

179 



uNOTE # 023 
Page 4 of 5 

Table 3 - System Software Support 

System Software Version with MicroVAX II Support 

MicroVMS V4.1m or later 
ULTRIX-32m V1.1 or later 
VAXELN V2.0 or later 

Many software layered products support the MicroVAX II. Consult the 
appropriate Software Product Description (SPD) to verify if the current 
version of the layered product is supported. 

UPGRADE EXAMPLE: 
Th~! following example illustrates the changes made to a MicroVAX I 
~ystem to upgrade it to a MicroVAX II system. The diagrams represent 
the modules placed in the BA23 backplane. 

Both systems have a CPU, 2MB of 
multiplexer, a DEQNA Ethernet 
controller. 

1 

2 

3 

4 

5 

6 

7 

8 

MicroVAX I System 

KD32 CPU - MCT 

KD32 CPU - DAP 

MSV11-QA (1MB) 

MSV11-QA (1MB) 

DHV11 

DEQNA I G7272 

RQDX1 

Comments: 

memory, a 
controller 

DHV11 
and 

1 

2 

3 

4 

5 

6 

7 

8 

8-line 
an RQDX 

asynchronous 
5 1/4" disk 

MicroVAX II System 

KA630-AA 

DEQNA I MS630-AA 

RQDX2 

DHV11 

The 2 modules of the MicroVAX I CPU and the two quad memory boards 
(MSV11-QAS) were-replaced by the KA630-AA and one MS630-AA. 

Th.! DHV11 and DEQNA are compatible with both processors, therefore they 
were not replaced and remained in the system. 

180 



uNOTE * 023 
Page S of S 

The ROOX1 controller is incompatible with the MicroVAX II, therefore it 
is replaced with the ROOX2. Any S 1/4" disk (RXSO, ROS1 and ROS2) used 
on the MicroVAX I is compatible with the ROOX2 on the MicroVAX II. 

The ROOX1 controller must occupy the last slot in a system. The ROOX2 
controller is located before the OHV11 in the upgraded system to 
emphasize the point that it is not, required to be the last module in the 
system. 

The MicroVAX I system required a G7272 grant continuity card in slot 6 
in order to make the system work properly. This was not necessary in 
the upgraded MicroVAX I I system be'cause there was an empty dual-height 
slot next to the MS630-AA memc1ry module. This illustrates the point 
that the dual height slot next to an MS630-AA is a valid O-bus slot and 
can be occupied by any compatible, dual-height option. 

The cabinet kits for the two systems are not shown in the diagrams, but 
the one used for the MicroVAX I rnust be replaced by the cabinet ki t for 
the MicroVAX II, part number CK-K~.630-AB. The serial line cable from 
the patch panel to the terminal must also change. The cable of the 
MicroVAX I system must be replaced by a BCC08 cable. 

181 



182 



uNOTE # 024 

Title: MicroVAX Instruction set Differences Date: 28-APR-85 

Originator: Mike Collins Page 1 of 11 

The MicroVAX architecture specifies that the full VAX instruction set 
need not be implemented in the hardware of a MicroVAX processor. For 
those processors that fall into this category, there is a software 
emulator which guarantees that the instructions are still executable. 

This MicroNote lists all of the instructions of the VAX architecture and 
for each MicroVAX processor indicates which instructions are implemented 
in hardware/microcode, those that are emulated and those that are 
present in a floating point unit. 

The instructions are listed in alphabetical order by instruction 
mnemonic. The following designations are used to indicate where an 
instruction will be executed. 

CPU Instructions marked with 'CPU' are implemented in the hardware of 
the particular MicroVAX processor. 

EMA - Instructions marked with 'EMA' are emulated with microcode assist. 

E - Instructions marked with an 'E' are emulated entirely in software. 

Processor specific designations: 
MicroVAX II 
FPU - Instructions marked with 'FPU' are implemented in the hardware 

only if an external floating point unit is present, otherwise they 
are emulated. 

MicroVAX I 
Hx - Instructions marked with 'H', 'HF', 'HD' or 'HG' are implemented 

in hardware even though the MicroVAX architecture specifies that 
these instructions are emulated. 

There are two versions of the MicroVAX I, one with F and 
o floating and the pther with F and G floating instructi~ns in 
mIcrocode. There are no MicroVAX I processors with all 3 of 
these floating point instruction types in the hardware. The 
F floating instructions are identified by 'HF', the D floating 
by 'Ha' and the G_floating by 'HG'. -

183 



uNOTE # 024 
Page 2 of 11 

Reference MicroNote #21, 'Floating Point Considerations on 
M i era VAX I'. 

The following table lists statistics about the distribution of 
instructions based on where they are executed. There are 304 
instructions in the VAX instruction set. 

Table 1 - MicroVAX Instruction Distribution 

Description MicroVAX MicroVAX I MicroVA:K II 
Architecture 

Percentage executed 57.6 74.3 57.6 
in CPU 

Percentage executed N/A N/A 23.0 
in FPU 

Percentage emulated 8.9 7.3 8.9 
'wi th microcode assist 

Percentage emulated 33.5 18.4 10.5 
entirely in software 

'rable 2 - Instruction Set Differences 

Mnemonic Description MicroVAX MicroVAXI Mi c roVAXI 1-
Architecture 

ACB:B Add compare and branch byte CPU CPU CPU 
ACBD Add compare and branch E HD FPU 

ACBF 
D floating 
ACId compare and branch E HF FPU 

ACBG 
F floating 
ACId compare and branch E HG FPU 

ACBH 
G floating 
ACId compare and branch E E E 
H_floating 

ACB:L Add compare and branch CPU CPU CPU 
longword 

ACBW Add compare and branch word CPU CPU CPU 
ADAWI Add aligned word interlocked CPU CPU CPU 
ADDB2 Add byte 2-operand CPU CPU CPU 
ADDB3 Add byte 3-operand CPU CPU CPU 

184 



Mnemonic Description 

ADDD2 
ADDD3 
ADDF2 
ADDF3 
ADDG2 

ADDG3 
ADDH2 
ADDH3 
ADDL2 
ADDL3 

ADDP4 
ADDP6 
ADDW2 
ADDW3 
ADWC 

AOBLEQ 

AOBLSS 
ASHL 
ASHP 

ASHQ 

BBC 
BBCC 
BaCCI 

Bacs 
BBS 

BBSC 
BBSS 
BBSSI 

Bec 
BCS 

BEQL 
BEQLU 
BGEQ 
BGEQU 

BGTR 

Add D floating 2-operand 
Add D-floating 3 operand 
Add F-floating 2-operand 
Add F-floating 3-operand 
Add G=floating 2=operand 

Add G floating 3 operand 
Add H=floating 2-operand 
Add H floating 3=operand 
Add l~ngword 2-operand 
Add longword 3-operand 

Add packed 4-operand 
Add packed 6-operand 
Add word 2-operand 
Add word 3-operand 
Add with carry 

Add one and branch on 
less or equal 
Add one and branch on less 
Arithmetic shift longword 
Arithmetic shift and 
round packed 
Arithmetic shift quad 

Branch on bit clear 
Branch on bit clear and clear 
Branch on bit clear and clear 
interlocked 
Branch on bit cl~ar and set 
Branch on bit set 

Branch on bit set and clear 
Branch on bit set and set 
Branch on bit set and set 
interlocked 
Branch on carry clear 
Branch on carry set 

Branch on equal 
(-BEQL) Branch on equal unsigned 

Branch on greater or equal 
(-BCC) -Branch on greater or equal 

unsigned 
Branch on greater 

185 

uNOTE # 024 
Page 3 of 11 

MicroVAX MicroVAXI MicroVAXII 
Architecture 

E 
E 
E 
E 
E 

E 
E 
E 

CPU 
CPU 

E 
E 

CPU 
CPU 
CPU 

CPU 

CPU 
CPU 

E 

CPU 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 
CPU 

CPU 

HD 
HD 
HF 
HF 
HG 

HG 
E 
E 

CPU 
CPU 

EMA 
EMA 
CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
EMA 

CPU 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 
CPU 

CPU 

FPU 
FPU 
FPU 
FPU 
FPU 

FPU 
E 
E 

CPU 
CPU 

EMA 
EMA 
CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
EMA 

CPU 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 
CPU 

CPU 



uNOTE: i 024 
Page 4 of 11 

Mnemonic Description MicroVAX MicroVAXI MicroVAX. 
Architecture 

BGTRU 
BI:CB2 
BI:CB3 
BICL2 
BICL3 

BICPSW 

BICW2 
BICW3 
BISB2 
BISB3 

BISL2 
BISL3 
BISPSW 

BISW2 
BISW3 

BITB 
BITL 
BITW 
BI~BC 

BI~BS 

BI~EQ 

BI~EQU 

BI~SS 

B]~SSU 

BNEQ 

BNEQU 
Bl?T 
BUB 
BRW 
BSBB 

BSBW 

BVC 
BVS 
C1~LLG 

C1~LLS 

Branch on greater unsigned 
Bit clear byte 2-operand 
Bit clear byte 3-operand 
Bit clear longword 2-operand 
Bit clear longword 3-operand 

Bit clear processor status 
word 
Bit clear word 2-operand 
Bit clear word 3-operand 
Bit set byte 2-operand 
Bit set byte 3-operand 

Bit set longword 2-operand 
Bit set longword 3-operand 
Bit set processor status 
word 
Bit set word 2-operand 
Bit set word 3-operand 

Bit test byte 
Bit test longword 
Bit test word 
Branch on low bit clear 
Branch on low bit set 

Branch on less or equal 
Branch on less or equal 
unsigned 
Branch on less 

(-BCS) Branch on less unsigned 
Branch on not equal 

(-BNEQ) Branch on not equal unsigned 
Break point fault 
Branch with byte displacement 
Branch with word displacement 
Branch to subroutine with 
byte displacement 

Branch to ~ubroutine with 
word displacement 
Branch on overflow clear 
Branch-on overflow set 
Call with general argument 
list 
Call with argument list on 
stack 

186 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 

CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
CPU 

CPU 



Mnemonic Description 

CASEB 
CASEL 
CASEW 
CHME 
CHMK 

CHMS 
CHMU 
CLRB 
CLRD 
CLRF 

Case byte 
Case longword 
Case word 
Change mode to executive 
Change mode to kernel 

Change mode to supervisor 
Change mode to user 
Clear byte 

(-CLRQ) Clear D floating 
(-CLRL) Clear F=floating 

CLRG (-CLRQ) Clear G floating 
CLRH (-CLRO) Clear H-floating 
CLRL Clear longword 
CLRO Clear ocatword 
CLRQ Clear quadword 

CLRW 
CMPB 
CMPC3 
CMPCS 
CMPD 

CMPF 
CMPG 
CMPH 
CMPL 
CMPP3 

CMPP4 
CMPV 
CMPW 
CMPZV 
CRC 

CVTBD 
CVTBF 
CVTBG 
CVTBH 
CVTBL 

Clear word 
Compare byte 
Compare character 3-operand 
Compare character 5-operand 
Compare D_floating 

Compare F floating 
Compare G-floating 
Compare H-floating 
Compare longword 
Compare packed 3-operand 

Compare packed 4-operand 
Compare field 
Compare word 
Compare zero-extended field 
Calculate cyclic redundancy 
check 

Convert byte to 0 floating 
Convert byte to F-floating 
Convert byte to G-floating 
Convert byte to H-floating 
Convert byte to longword 

187 

uNOTE * 024 
Page 5 of 11 

MicroVAX MicroVAXI MicroVAXII 
Architecture 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 

E 
CPU 

CPU 
CPU 

E 
E 
E 

E 
E 
E 

CPU 
E 

E 
CPU 
CPU 
CPU 

E 

E 
E 
E 
E 

CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 

E 
CPU 

CPU 
CPU 

H 
EMA 

HD 

HF 
HG 
E 

CPU 
EMA 

EMA 
CPU 
CPU 
CPU 
EMA 

HD 
HF 
HG 
E 

CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 

E 
CPU 

CPU 
CPU 
EMA 
EMA 
FPU 

FPU 
FPU 

E 
CPU 
EMA 

EMA 
CPU 
CPU 
CPU 
EMA 

FPU 
FPU 
FPU 

E 
CPU 



uNOTE # 024 
Page 6 of 11 

Mnemonic 

CV'l'BW 
CV'l'DB 
CVTDF 

CV,]~DH 

CV,]~DL 

CV,]~DW 

CV,]~FB 

CV,]~FD 

CV,]~FG 

CV,]~FH 

CVTFL 

CVTFW 
CVTGB 
CVTGF 

CVTGH 

CVTGL 

CVTGW 
CV~rHB 

CVTHD 

CVTHF 

CVTHG 

CVTHL 

CVTHW 
CVTLB 
CVTLD 

cv~rLF 

CVTLG 
CV~rLH 
CV~rLP 

CV~rLW 

Description 

" Convert byte to word 
Convert D floating to byte 
Convert D-floating to 
F floating 
Convert D floating to 
H floating 
Convert D floating to 
longw~rd -

Convert D floating to word 
Convert F-floating to byte 
Convert F-floating to 
D floating 
Convert F floating to 
G floating 
Convert F floating to 
H_floating 

Convert F floating to 
longword -
Convert F floating to word 
convert G-floating to byte 
Convert G-floating to 
F floating 
convert G floating to 
H floating 

Convert G floating to 
longword -
Convert G floating to word 
Convert H-floating to byte 
Convert H-floating to 
D floating 
convert H floating to 
F_floating 

Convert H floating to 
G floating 
Convert H floating to 
longword -
Convert H floating to word 
Convert longword to byte 
Convert longword to D_floating 

Convert longword to F floating 
Convert longword to G-floating 
Convert longword to H-floating 
Convert longword to packed 
Convert longword to word 

188 

MicroVAX MicroVAXI MicroVAXI~ 
Architecture 

CPU 
E 
E 

E 

E 

E 
E 
E 

E 

E 

E 

E 
E 
E 

E 

E 

E 
E 
E 

E 

E 

E 

E 
CPU 

E 

E 
E 
E 
E 

CPU 

CPU 
HD 
HD 

E 

HD 

HD 
HF 
HF 

HG 

E 

HF 

HF 
HG 
HG 

E 

HG 

HG 
E 
E 

E 

E 

E 

E 
CPU 

HD 

HF 
HG 
E 

EMA 
CPU 

CPU 
FPU 
FPU 

E 

FPU 

FPU 
FPU 
FPU 

FPU 

E 

FPU 

FPU 
FPU 
FPU 

E 

FPU 

FPU 
E 
E 

E 

E 

E 

E 
CPU 
FPU 

FPU 
FPU 

E 
EMA 
CPU 



uNOTE # 024 
Page 7 of 11 

Mnemonic Description MicroVAX MicroVAXI MicroVAXII 
Architecture 

CVTPL Convert packed to longworcl E EMA EMA 
CVTPS convert packed to leading E EMA EMA 

separate 
CVTPT Convert packed to trailin9 E EMA EMA 
CVTRDL Convert rounded D_floatin9 E HD FPU 

to longword 
CVTRFL Convert rounded F_floatinq E HF FPU 

to longword 

CVTRGL Convert rounded G_floatinq E HG FPU 
to longword 

CVTRHL Convert rounded H_floatinq E E E 
to longword 

CVTSP Convert leading separate E EMA EMA 
to packed 

CVTTP Convert trailing to packed E EMA EMA 
CVTWB Convert word to byte CPU CPU CPU 

CVTWD Convert word to o floatin9 E HD FPU 
CVTWF Convert word to F-floatin9 E HF FPU 
CVTWG Convert word to G-floatin9 E HG FPU 
CVTWH Convert word to H-floatin9 E E E 
CVTWL Convert word to longword CPU CPU CPU 

DECB Decrement byte CPU CPU CPU 
DECL Decrement longword CPU CPU CPU 
DECW Decrement word CPU CPU CPU 
DIVB2 Divide byte 2-operand CPU CPU CPU 
DIVB3 Divide byte 3-operand CPU CPU CPU 

DIVD2 Divide D floating 2-operand E HD FPU 
DIVD3 Divide D-floating 3-operand E HD FPU 
DIVF2 Divide F-floating 2-operand E HF FPU 
DIVF3 Divide F-floating 3-operand E HF FPU 
DIVG2 Divide G=floating 2-operand E HG FPU 

DIVG3 Divide G floating 3-operand E HG FPU 
DIVH2 Divide H=floating 2-operand E E E 
DIVH3 Divide H-floating 3-operand E E E 
DIVL2 Divide longword 2-operand CPU CPU CPU 
DIVL3 Divide longword 3-operand CPU CPU CPU 

DIVP Divide packed E EMA EMA 
DIVW2 Divlde word 2-operand CPU CPU CPU 
DIVW3 Divide word 3-operand CPU CPU CPU 
EDITPC Edit packed to character E EMA EMA 

string 
EDIV Extended divide CPU CPU CPU 

189 



uNOTE # 024 
Page B of 11 

Mnemonic 

EMODD 
EMODF 
EMODG 
EMC>DH 
EMtJL 

EX~~V 

Ex'rzv 
FFC 
FFS 
HAI,T 

INCB 
INCL 
INCW 
INDEX 
INSQHI 

INSQTI 

INSQUE 
INSV 
JMP 
JSB 

LDPCTX 

LOCC 
MATCHC 
MCOMB 
MCOML 

MCOMW 
MFPR 

MNEGB 
MNEGD 
MNEGF 

MNEGG 
MNEGH 
.MNEGL 
.MNEGW 
:MOV,AB 

Description 

Extended modulus D floating 
Extended modulus F-floating 
Extended modulus G-floating 
Extended modulus H-floating 
Extended multiply -

Extract field 
Extract zero extended field 
Find first cIear bit 
Find first set bit 
Halt (kernel mode only) 

Increment byte 
Increment longword 
Increment word 
Index calculation 
Insert at head of queue, 
interlocked 

Insert at tail of queue, 
interlocked 
Insert into queue 
Insert field 
Jump 
Jump to subroutine 

Load process context (only 
legal on interrupt stack) 
Locate character 
Match characters 
Move complemented byte 
Move complemented longword 

Move complemented word 
Move from processor register 
(kernel mode only) 
Move negated byte 
Move negated D floating 
Move negated F=floating 

Move negated G floating 
Move negated H-floating 
Move negated longword 
Move negated word 
Move address of byte 

190 

MicroVAX MicroVAXI MicroVAXI! 
Architecture 

E 
E 
E 
E 

CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
CPU 
CPU 

CPU 

E 
E 

CPU 
CPU 

CPU 
CPU 

CPU 
E 
E 

E 
E 

CPU 
CPU 
CPU 

HD 
HF 
HG 
E 

CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
CPU 
CPU 

CPU 

H 
EMA 
CPU 
CPU 

CPU 
CPU 

CPU 
HD 
HF 

HG 
E 

CPU 
CPU 
CPU 

FPU 
FPU 
FPU 

E 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 

CPU 
CPU 
CPU 
CPU 

CPU 

EMA 
EMA 
CPU 
CPU 

CPU 
CPU 

CPU 
FPU 
FPU 

FPU 
E 

CPU 
CPU 
CPU 



;Mnemonic Description 

uNOTE # 024 
Page 9 of 11 

MicroVAX MicroVAXI MicroVAXII 
" Architecture 

MOVAD (-MOVAQ) Move address of D floating 
MOVAF (-MOVAL) Move address of F-floating 
MOVAG (-MOVAQ) Move address of G-floating 
MOVAH (-MOVAO) Move address of H-floating 
MOVAL Move address of longword 

MOVAO 
MOVAQ 
MOVAW 
MOVB 
MOVC3 

MOVCS 
MOVD 
MOVF 
MOVG 
MOVH 

MOVL 
MOVO 
MOVP 
MOVPSL 

MOVQ 

MOVTC 
MOVTUC 

MOVW 
MOVZBL 

MOVZBW 

MOVZWL 

MTPR 

MULB2 
MULB3 
MULD2 

MULD3 
MULF2 
MULF3 
MULG2 
MULG3 

Move address of ocatword 
Move address of quadword 
Move address of word 
Move byte 
Move character 3-operand 

Move character 5-operand 
Move D floating 
Move F-floating 
Move G-floating 
Move H:=floating 

Move longword 
Move octaword 
Move packed 
Move processor status 
longword 
Move quadword 

Move translated characters 
Move translated until 
character 
Move word 
Move zero-extended byte to 
longword 
Move zero-extended byte to 
word 

Move zero-extended word to 
longword 
Move to processor register 
(kernel mode only) 
Multiply byte 2-operand 
Multiply byte 3-operand 
Multiply D_floating 2-operand 

Multiply D floating 3-operand 
Multiply F-floating 2-operand 
Multiply F-floating 3-operand 
Multiply G-floating 2-operand 
Multiply G:=floating 3-operand 

191 

CPU 
CPU 
CPU 
CPU 
CPU 

E 
CPU 
CPU 
CPU 
CPU 

CPU 
E 
E 
E 
E 

CPU 
E 
E 

CPU 

CPU 

E 
E 

CPU 
CPU 

CPU 

CPU 

CPU 

CPU 
CPU 

E 

E 
E 
E 
E 
E 

CPU 
CPU 
CPU 
CPU 
CPU 

E 
CPU 
CPU 
CPU 
CPU 

CPU 
HD 
HF 
HG 
E 

CPU 
E 

EMA 
CPU 

CPU 

EMA 
EMA 

CPU 
CPU 

CPU 

CPU 

CPU 

CPU 
CPU 

HD 

HD 
HF 
HF 
HG 
HG 

CPU 
CPU 
CPU 
CPU 
CPU 

E 
CPU 
CPU 
CPU 
CPU 

CPU 
FPU 
FPU 
FPU 

E 

CPU 
E 

EMA 
CPU 

CPU 

EMA 
EMA 

CPU 
CPU 

CPU 

CPU 

CPU 

CPU 
CPU 
FPU 

FPU 
FPU 
FPU 
FPU 
FPU 



uNOTE # 024 
Page 1.0 of 11 

Description MicroVAX MicroVAX:r MicroVAXI 
Architecture 

MULH2 
MUI,H3 
MUI,L2 
MUI,L3 
MUI,P 

MUI,w2 
MULW3 
NOP 
POLYD 
POLYF 

POI,YG 
POI,YH 
POPR 
PROBER 
PROBEW 

Multiply H_floating 2-operand 
Multiply H floating 3-operand 
Multiply longword 2-operand 
Multiply longword 3-operand 
Multiply packed 

Multiply word 2-operand 
Multiply word 3-operand 
No operation 
Evaluate polynomial D floating 
Evaluate polynomial F=floating 

Evaluate polynomial G floating 
Evaluate polynomial H=floating 
Pop registers 
Probe read access 
Probe write access 

PUSHAB Push address of byte 
PUSHAD (-PUSHAQ) Push address of 0 floating 
PUSHAF (=PUSHAL) Push address of F-floating 
PUSHAG (=PUSHAQ) Push address of G-floating 
PUSHAH (=PUSHAO) Push address of H=floating 

PUSHAL 
PUSHAO 
PUSHAQ 
PUS HAW 
PUSHL 

PUSHR 
REI 

REMQHI 

REZVIQTI 

REZVIQUE 

RE'l~ 

RO'l~L 

RSB 
SBWC 
SCANC 

Push address of longword 
Push address of ocatword 
Push address of quadword 
Push address of word 
Push longword 

Push registers 
Return from exception or 
interrupt 
Remove from head of queue, 
interlocked 
Remove from tail of queue, 
interlocked 
Remove from queue 

Return from procedure 
Rotate longword . 
Return from subroutine 
Subtract with carry 
Scan for character 

192 

E 
E 

CPU 
CPU 

E 

CPU 
CPU 
CPU 

E 
E 

E 
E 

CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
E 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 

CPU 

CPU 

CPU 
CPU 
CPU 
CPU 

E 

E 
E 

CPU 
CPU 
EM 

CPU 
CPU 
CPU 

HD 
HF 

HG 
E 

CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
E 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 

CPU 

CPU 

CPU 
CPU 
CPU 
CPU 

H 

E 
E 

CPU 
CPU 
EM 

CPU 
CPU 
CPU 
FPU 
FPU 

FPU 
E 

CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

CPU 
E 

CPU 
CPU 
CPU 

CPU 
CPU 

CPU 

CPU 

CPU 

CPU 
CPU 
CPU 
CPU 
EMA 



Mnemonic 

SKPC 
SOBGEQ 

SOBGTR 

SPANC 
SUBB2 

SUBB3 
SUBD2 
SUBD3 
SUBF2 
SUBF3 

SUBG2 
SUBG3 
SUBH2 
SUBH3 
SUBL2 

SUBL3 
SUBP4 
SUBP6 
SUBW2 
SUBW3 

SVPCTX 

TSTB 
TSTD 
TSTF 
TSTG 

TSTH 
TSTL 
TSTW 
XFC 
XORB2 

XORB3 
XORL2 
XORL3 
XORW2 
XORW3 

Description 

uNOTE i 024 
Page 11 of 11 

MicroVAX MicroVAXI MicroVAXII 
Architecture 

Skip character 
Subtract one and branch 
on greater or equal 
Subtract one and branch 
on greater 
Span characters 
Subtract byte 2-operand 

Subtract byte 3-operand 
Subtract D floating 2-operand 
Subtract D-floating 3-operand 
Subtract F-floating 2-operand 
Subtract F=floating 3-operand 

Subtract G floating 2-operand 
Subtract G-floating 3-operand 
Subtract H=floating 2-operand 
Subtract H floating 3-operand 
Subtract longword 2-operand 

Subtract longword 3-operand 
Subtract packed 4-operand 
Subtract packed 6-operand 
Subtract word 2-operand 
Subtract word 3-operand 

Save process context (kernel 
mode only) 
Test byte 
Test D floating 
Test F-floating 
Test G=floating 

Test H floating 
Test longword 
Test word 
Extended function call 
Exclusive OR byte 2-operand 

Exclusive O~ byte 3-operand 
Exclusive OR longword 2-operand 
Exclusive OR longword 3-operand 
Exclusive OR word 2-operand 
ExcThsive OR word 3-oper'and 

193 

E 
CPU 

CPU 

E 
CPU 

CPU 
E 
E 
E 
E 

E 
E 
E 
E 

CPU 

CPU 
E 
E 

CPU 
CPU 

CPU 

CPU 
E 
E 
E 

E 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

H 
CPU 

CPU 

H 
CPU 

CPU 
HD 
HD 
HF 
HF 

HG 
HG 
E 
E 

CPU 

CPU 
EMA 
EMA 
CPU 
CPU 

CPU 

CPU 
HD 
HF 
HG 

E 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 

EMA 
CPU 

CPU 

EMA 
CPU 

CPU 
FPU 
FPU 
FPU 
FJ?U 

FPU 
FPU 

E 
E 

CPU 

CPU 
EMA 
EMA 
CPU 
CPU 

CPU 

CPU 
FPU 
FPU 
FPU 

E 
CPU 
CPU 
CPU 
CPU 

CPU 
CPU 
CPU 
CPU 
CPU 



194 



uNOTE # 025 

Title: FPJ11-AA Compatibility with the Date: 28-APR-85 
LSI-11/73 (KlDJ11-A) 

1---' 

Originator: Mike Collins Page 1 of 2 

Early LSI-11/73 (KDJ11-A) modules are incompatible with the FPJ11-AA 
floating point accelerator. This MicroNote describes how to identify 
those modules which are compatiblf~ and those which are not compatible 
with the FPJ11-AA. 

The following information refers to two identifying numbers. 
the module variation and the module revision. 

They are 

The module variation number is stamped onto the end of the plastic 
handles. It will be 'M8192', 'M8192-YB' or 'M8192-YC'. 

The module revision number can be found on side two of the module 
(noncomponent side) stamped int:o the plastic handle, or written with 
indelible ink. This number is updated as the board is ECO'd. The 
designation is a number followed by the module revision. e.g. 441 C1, 
indicates module revision C1. 

The first LSI-11/73 module is called a KDJ11-AA and is incompatible with 
the FPJ11-AA. The module variation for the KDJ11-AA is M8192, and the 
module revision number is C1. The KDJ11-AA can be upgraded to be 
FPJ11-AA compatible. contact thE~ local DEC office for more information 
concerning the upgrade procedure. 

Two new options have been created. The KDJ11-AB is a module which is 
fully compatible with the FPJl1-AA. The module variation for the 
KDJ11-AB is M8192-YB, and the module revision number is A1 or A2. 

The third option is called a KDJ11-AC and is used for fully compatible 
modules which have FPJ11-AAs installed onto the board by Digital. It 
has a module variation of M8192-YC and the module revision number is A1 
or A2. Therefore a KDJ11-AB becomes a KDJ11-AC by simply installing an 
FPJ11-AA. 

195 



uNOTE 41: 025 
Page 2 of 2 

The following table summarizes the above information and should be 
used as a 'quick check' for FPJ11-AA compatibility. 

OPTION MODULE MODULE FPJ11 COMPATIBLE? 
VARIATION REVISION 

KDJ1l-AA M8192 C1 NO (But upgradeable) 

KDJll-AB M8192-YB A1 or A2 YES 

KDJ1l-AC M8192-YC A1 or A2 YES (FPJll-AA Installed) 
L....--. 

CAUTION 

An FPJ1l-AA installed on a KDJll-AA may APPEAR to work 
but cache errors and parity errors may occur. 

An MXV11-BF must be REV C to be compatible with a 
KDJ1l-A with an FPJll-AA (KDJ1l-AC). Earlier versions 
of the MXV11-BF are incompatible with KDJ11-ACs. 
KDJ11-As without FPJ11-AAs are compatible with all 
versions of the MXV11-BF. 

The MCV11-D is incompatible with KDJ1l-ACs. KDJll-As 
without FPJll-AAs are compatible with all versions of 
the MCV1l-D. 

196 



uNOTE # 026 

Title: The MicroVAX II CPU Multicomputing Date: 28-JUN-85 
Capability 

Originator: Mike Collins Page 1 of 14 

The MicroVAX II CPU may be configured as an arbiter CPU or as one of 
three auxiliary CPU's. Therefore it is possible to configure a Q-bus 
system with multiple MicroVAX II CPUs. This 'multicomputing' capability 
is the topic of this MicroNote. 

Multicomputing Introduction 

The multi computing capability is a hardware design feature of the 
MicroVAX II. It allows a maximum of four MicroVAX II CPUs to reside on 
the same O-bus. Figure 1 below is a block diagram which shows how 2 of 
a possible 4 CPUs may be configured on the bus. One of the processors 
will be the arbiter and the others will be auxiliaries. 

NOTE 

There is no shared memory between processors, therefore 
this system should not be considered as symmetrical 
multiprocessing. 

Each processor may use expansion memory modules provided that there are 
sufficient O/CO slots in the backplane. See the configuration section 
for more detail on the configuration rules. 

I I I I 
Arbiter 

[ Memory 
Auxiliary 

Processor Processor Memory 
#1 

Q-bus 

Figure 1 - Multicomputirtg Configuration 

197 



uNOTE # 026 
Page 2 of 14 

CAUTION 

Digital's 32-bit operating systems DO NOT support the 
multicomputing feature. Users who wish to customize 
their systems to take advantage of the multicomputing 
capability may do so but are responsible for designing 
the software system. 

The following topics which are pertinent to the mUlticomputing design 
will be described in detail: 

1. MicroVAX II Memory System 

2. Interprocessor Communications Register 

3. Arbiter/auxiliary Processor Differences 

4. Bootstrapping an Auxiliary Processor 

5. Configuration Rules 

REFERENCES 

The MicroVAX 630 CPU Module User's Guide (PIN 
EK-KA630-UG) and MicroNote #22 have more detailed 
information on all aspects of the MicroVAX II CPU and 
memory system. 

MicroVAX II Memory System 

Before describing the details of the multi computing feature it is 
:necessary to understand the memory system of a MicroVAX II. 

'The memory system of the MicroVAX II is unique. Unlike previous Q-bus 
processors, the memory modules do not communicate to the CPU over the 
Q-bus. Instead, the communication and transfers occur over a dedicated, 
closely coupled interconnect. This design allows for very fast reads 
and writes to memory (400 nsec). Not only are the transfers very fast, 
but none of this CPU-memory activity appears on the Q-bus. Therefore 
the Q-bus is strictly for I/O. 

Since memory is not directly on the Q-bus it is necessary to allow DMA 
devices on the Q-bus to access memory. This feature is called the Q-bus 
I/O map. It is a mechanism which maps Q-bus addresses (22-bit physical 
address) to th~ local memory system of a MicroVAX II (24-bit physical 
address). This same concept is used on larger UNIBUS based VAXes. 

When one. or more auxiliary processors are added to a system, remember 
that each has its own local memory system. Therefore it is intended 
that they will each operate out of their own memory. This design is 

198 



uNOTE # 026 
Page 3 of 14 

well suited for applications which can be easily partitioned between 
multiple processors such that only messages are passed between them. 

It would be possible for a process()r to operate out of memory on the 
Q-bus but this would be unconvE~ntional from a systems standpoint and 
would decrease system performance significantly. Digital's operating 
systems do not support the use of standard Q-bus memories in a MicroVAX 
II. 

With only one processor on the Q-bus, the system software has complete 
control over DMA transfers. The software controls the contents of the 
Q-bus map registers. First, it determines whether the register is 
enabled and second, if it is enabled, where the DMA transfers are 
directed in the local memory system. 

In a multiple processor configuration (since each has its own set of 
Q-bus I/O map registers) it is now possible for multiple map registers 
to respond to a single a-bus addrel;s. It is the responsibility of the 
system software running on each processor to cooperate and assure that 
one and only one map register will respond to any Q-bus address. 
Otherwise multiple memory locations may respond and the results are 
indeterminate (i.e. multiple BRPLYs on the Q-bus for a single address). 

A similar situation occurs if standard Q-bus memories are added to a 
MicroVAX II system. The system software is again responsible for 
assuring that for any address on the Q-bus which is 'shared' by a Q-bus 
memory board and a a-bus I/O map register, the map register is disabled 
to allow only a Q-bus memory reply. 

Q-bus memories would not be added to 'typical' systems. However there 
are some special applications which may req~ire this capability. For 
example, a graphics system where the Q-bus memory is the bit map of a 
graphics display. 

On power-up, the MicroVAX II boot :ROM will check for the presence of 
Q-bus memory and clear the valid bits of the corresponding mapping 
registers. This will prevent the ,above situation from occurring as long 
as the system software does not alter the state of these valid bits at a 
later time. 

Interprocessor Communications Register 

The interprocessor communications register (ICR) is the primary 
mechanism of the MicroVAX II CPU which enables multiple processors to 
cooperate and reside on the same Q-bus. Figure 3 describes the ICR and 
the bit definitions. 

199 



uNOT!= # 026 
Page 4 of 14 

The ICR provides the following four functions: 

1. Any processor on the bus may interrupt another without using 
the Q-bus interrupt lines. This is done by setting the 
appropriate bit in the ICR of the second processor. The CPU 
will then interrupt at IPL 14 (HEX) with an interrupt vector of 
204 (HEX). 

2. The ICR also has a bit which controls external access to local 
memory via the Q-bus map. When set this bit allows external 
devices to access the local memory system. When reset, this 
bit prevents the local memory system from responding to any 
Q-bus address references. 

3. If a processor 
mechanism which 
feature is used 
process. 

is an auxiliary then the ICR provides a 
allows it to be halted by other CPUs. This 
at power-up to coordinate the bootstrap 

4. Parity errors are identified when one occurs during accesses to 
the MicroVAX II's local memory. 

The address for the ICR is located in the Q-bus I/O page address space 
and may be accessed by any device which can become Q-bus master. The 
ICR is byte-addressable. 

Si.nce it is possible to put a maximum of 4 MicroVAX II CPUs on one Q-bus 
they each have their own unique ICR. Table 1 lists each processor and 
the associated ICR address. 

Table 1 - Interprocessor Communication Register Address Assignments 

Processor 22-bit Octal Address 32-bit Hexadecimal Address 

Arbiter 17 777 500 2000 1F40 

Auxiliary #1 17 777 502 2000 1F42 

Auxiliary #2 17 777 504 2000 1F44 

Auxiliary #3 17 777 506 2000 1F46 

200 



DMA QPE 

AUX HLT 

OBI IE 
LM EAE 

OBI RO 

I 

111 1 1 1 

uNOTE # 026 
Page 5 of 14 

5 4 321 0 9 8 7 6 5 4 321 0 

I 000 0 0 0 I I I I I o 0 0 0 I 
I 

I 

Figure 3 - Interprocessor Communications Register 

Bit(s) Mnemonic 

<15> 

<14:09> 

<08> 

<07> 

<06> 

<05> 

DMA OPE 

AUX HLT 

OBI IE 

LM EAE 

201 

Meaning 

DMA 022-Bus Address Space Parity Error. 
This read-only bit is set if Memory System 
Error Register bit <04> (DMA OPE) is set. 
The DMA QPE bit indicates that a parity 
error occurred when an external device (or 
CPU) was accessing the MicroVAX II CPU 
local memory. 

Unused. Read as zeros. 

Auxiliary Halt. On an auxiliary MicroVAX, 
AUX HLT is a read-write bit. When set, 
typically by the arbiter CPU, it causes 
the on-board CPU to transfer program 
control to the Halt Mode ROM Code. On 
an 'arbiter MicroVAX II, AUX HLT is a 
read-only bit which always reads as zero. 
It has no effect on arbiter CPU operation. 

Unused. Read as zero. 

Doorbell Interrupt Enable. This bit, when 
set, enables interprocessor doorbell 
interrupt requests via ICR <00>. When the 
on-board CPU is Q22-Bus master, OBI IE 
is a read-write bit. When an external 
device (or CPU) is bus master, OBI IE 
is a read-only bit. OBI IE is cleared 
by power up, by the negation of DCOK and 
by writes to the Bus Initialize Register. 
Local Memory External Ac.cess Enable. This 
bit, when set, enables external access to 



uNOTE # 026 
page 6 of 14 

<04:01> 

<00> OBI RQ 

local memory (via the Q22-BUS map). When 
the on-board CPU is Q22-Bus master, LM EAE 
is a read-write bit. When an external 
device (or CPU) is bus master, LM EAE is 
a read-only bit. LM EAE is cleared by 
power up, by the negation of DCOK and 
by writes to the Bus Initialize Register. 

Unused. Read as zeros. 

Doorbell Interrupt Request. If ICR <06> 
(OBI IE) is set, writing a "1" to OBI RQ 
sets OBI RQ, thus requesting a doorbell 
interrupt. If ICR <06> is clear, writing 
a "1" to OBI RQ has no effect. Writing a 
"0" to OBI RQ has no effect. OBI RQ is 
cleared when the CPU grants the doorbell 
interrupt request. OBI RQ is held clear 
whenever OBI IE is clear. 

When a processor is interrupted via its ICR the interrupt vector is 204 
(He,). This vector is used when the interrupting device is the arbiter, 
auxiliary #1, auxiliary #2, auxiliary #3, or any device which may become 
Q-bus master. Therefore it is the responsibility of the interrupt 
service routine to determine which device caused the interrupt since the 
same vector is used no matter what device set the OBI RQ bit. This 
interrupt occurs at the same interrupt priority level (IPL) as IRQ4 on 
the Q-bus. 

NOTE 

Following such an interrupt, the MicroVAX II sets the 
IPL to 14 (Hex). This is different from what happens 
after a standard Q-bus interrupt. When a Q-bus 
interrupt occurs on IRQ4, the processor raises the IPL 
to 17 (Hex) and it is the responsibility of the 
interrupt service routine to lower the IPL later on. 

Arbiter/Auxiliary Processor Differences 

There are several differences between arbiter and auxiliary processors. 
It is important to understand these differences when configuring 
multiple process~rs into a system. 

1. The arbiter MicroVAX II arbitrates bus mastership in accordance 
with the Q22-Bus DMA protocol. The arbitration logic is 
disabled on an auxiliary MicroVAX II. 

202 



uNOTE # 026 
Page 7 of 14 

2. Bot.h the arbiter and aux:iliary MicroVAX II request bus 
mastership via the Q22-BuS DMA Request protocol. 

a. They both assert BDMR on the Q22-Bus. 

b. The arbiter MicroVAX II receives DMGI from its arbitration 
logic. But an auxiliary receives DMGI from its Q22-Bus 
BDMGI pin. 

c. Only the auxiliary MicroVAX II actually asserts BSACK on 
the Q22-Bus. 

3. The arbiter MicroVAX II asserts the Q22-Bus BINIT signal when 
DCOK is negated and when its CPU software writes to its Bus 
Initialize Register. An auxiliary MicroVAX II never asserts 
Q22-Bus BINIT, but receives BINIT and uses it to initialize the 
MicroVAX chip and to clear all internal registers which are 
cleared by the negation of DeOK. 

4. The physical address of the Interprocessor Communication 
Register is different for each of the four MicroVAX II 
arbiter/auxiliary configurations. 

s. An auxiliary MicroVAX II can be halted by setting bit <08> (AUX 
HLT) of its Interprocessor Communication Register. On an 
arbiter MicroVAX II this feature is disabled and AUX HLT is a 
read-only bit which always reads as zero. 

6. The CPU halts are controlled by the external connector HLT ENB 
input. However, the external halts which are affected differ 
somewhat for the arbiter and auxiliary MicroVAX II modules. If 
the HLT ENB signal is assert'ed (low) the a MicroVAX II CPU will 
halt and enter the console program if: 

a. The program executes a halt instruction in kernel mode. 

b. The console detects a break character. 

c. Arbiter CPU only - the Q-bus halt line is asserted. 

d. Auxiliary CPU only the Interprocessor Communication 
Register AUX HLT bit is set. 

If the HLT ENB signal is negated then: 

a. ~he halt line and break character are ignored and the ROM 
program responds to a halt instruction by restarting or 
rebooting the system. 

203 



uNOTE # 026 
Page 8 of 14 

7 . 

b. If the MicroVAX CPU is an 
responds to the assertion 
rebooting. 

auxiliary, the ROM program 
of the ICR AUX HLT bit by 

The state of the HLT ENB bit can be read by software via the 
Boot and Diagnostic Register. 

Each arbiter or auxiliary MicroVAX II module can field 
interrupt requests from its interval time r, from its console 
device, and from its interprocessor doorbell. Only the arbiter 
MicroVAX II can field interrupts from Q22-Bus interrupt request 
lines IRQ7-4. 

8. The arbiter asserts BIAKO on the Q22-Bus when it responds to a 
Q22-Bus interrupt request. An auxiliary asserts BIAKO on the 
Q22-Bus when it receives the assertion of BIAKI in order to 
pass it through to devices after it. 

9. Although both the arbiter and auxiliary MicroVAX II modules 
contain the same time-of-year clock and battery back-up 
circuitry, it is assumed that the auxiliary will be configured 
without batteries and that its clock will never actually be 
enabled. This configuration will ensure a single time base for 
the system. If an auxiliary needs to set its time-of-year 
clock it can do so by referencing the arbiter's clock. 

10. An arbiter processor can bootstrap from a variety of devices 
but an auxili~ry will always boot using the ROM bootstrap 
protocol. See the following section for a detailed description 
of the bootstrap process. 

Bootstrapping an Auxiliary Processor 

Since there are distinct differences between the operation and 
capabilities of arbiter and auxiliary processors, it is necessary to 
bootstrap them differently. An arbiter processor bootstraps in the 
conventional manner from one of several devices but an auxiliary boots 
using only one method. 

204 



uNOTE # 026 
Page 9 of 14 

On power-up both processors initialize themselves and perform some self 
tests. At this point the primary bootstrap (VMB) begins to execute. An 
arbiter processor may bootstrap from anyone of the following devices: 

1. DU type device (RX50, RDxx, RC25 or RAxx) 

2. TK50 tape 

3. ROM bootstrap protocol 

4. Ethernet (DEQNA) 

An auxiliary processor will not attempt to boot from disk, tape or 
ethernet. It will always boot via the ROM bootstrap protocol, which is 
described below. 

In order to synchronize the bootstrap process, after power-up and 
initialization an auxiliary process,or will not boot until it is allowed 
to do so by the arbiter. The contrclliing device is not required to be 
the arbiter, it could be another auxiliary or DMA device which is bus 
master, but it is the most logical point of control. 

The following steps summarize the bootstrap procedure for a system with 
an arbiter and one (or more) auxiliaries: 

1. Both types of processors initialize themselves after power-up. 

2. Self-diagnostics execute tC) check out major sections of the 
cpu. 

3. The arbiter boots from one of the four device types listed 
above. 

a. While the arbiter is booting the auxiliary completes its 
diagnostics and waits to start its bootstrap process. 

b. The auxiliary clears the valid bit in each of its Q-bus map 
registers to prevent accidental transfers to or from its 
local memory. 

c. The auxiliary loops doing nothing until the AUX HLT bit in 
its ICR is cleared. When this bit is finally cleared, the 
auxiliary boots via the ROM bootstrap protocol. 

4. Some~here in the system thE! appropriate data structure has been 
created to allow the au~(iliary to boot via the ROM bootstrap 
protocol. This can be done several ways: 

205 



uNOTE # 026 
Page 10 of 14 

a. The bootstrap code is actually in ROM on an MRV11-D module. 

b. The bootstrap code is loaded into non-volatile RAM. 

c. The arbiter ·CPU loads the bootstrap code into its own local 
memory then sets up some Q-bus map registers so that this 
data can be seen by the auxiliary CPU over the Q-bus. This 
method is the most flexible since the bootstrap code can be 
changed easily. 

5. 'When the arbiter is ready and knows auxiliary boot code is 
available, it allows the auxiliary CPU to bootstrap by clearing 
the AUX HLT bit in its ICR. 

ROM Bootstrap Protocol. 
To locate a PROM bootstrap, VMB searches the Q22-bus address range from 
high to low addresses by page (512 bytes per page) looking for readable 
memory. If the first six longwords of any such page contains a valid 
PROM "signature block" (see figure 4), VMB passes control directly to 
the bootstrap code in the PROM, it does not copy the PROM code to local 
memory for execution as it does for all other secondary bootstraps. 

Note that while defined as an MRV11 PROM or equivalent bootstrap, VMB 
does not actually require that the signature block or the bootstrap code 
be in PROM. It could be in ROM, nonvolatile RAM or it could be loaded 
into another MicroVAX II's RAM and mapped to the Q22-bus thus enabling 
an auxiliary to see it. 

RB: 

+ 0: check 

+ 4: 

+ 8: 

+ 12: 

+ 16: 

+ 20: 

RB + 0: 

RB + 1: 

RB + 2: 

byte I any value 0 

any value 1 

size of PROM in pages 

must be zero 

offset into PROM to start execution 

sum of previous three longwords 

Figure 4: PROM Bootstrap Memory Format 

This byte must be 18 (hex). 

This byte must be O. 

This byte may be any value. 

206 

18 (hex) 

0 



RB + 3: 

RB + 4 : 

RB + 5: 

RB + 6: 

RB + 8: 

RB + 12: 

RB + 16: 

RB + 20: 

uNOTE # 026 
Page 11 of 14 

This byte must be the ones complement of the sum 
of the previous three bytes. 

This byte must be zero. 

This byte must be 1. 

These two bytes may be any value. 

This longword contains the size in pages of the 
PROM. 

This longword must be zero. 

This longword contains the byte offset into the 
PROM where execution is to begin. 

This entry is a longword containing the sum of 
the previous three longwords. 

Configuration Rules 

In order to configure multiple Micro,VAX II CPUs onto one bus, 4 issues 
must be addressed: 

1. Q-bus slot requirements for the CPU and MS630 memory boards. 

2. Compatible enclosures or boxes. 

3. Bus termination. 

4. Using a POP-11 CPU as the Arbiter. 

1. Q-bus slot requirements. 

To operate properly both the MicroVJl~X II CPU and all versions of the 
MS630 memory modules MUST be insertE!d in Q-bus slots which feature Q-bus 
signals on the A/B side and the CO interconnect on the C/O side. The 
MicroVAX II CPU and any expansion mE!mory modules must all be adjacent in 
the backplane. 

WARNING 

The MicroVAX II CPU WILL be damaged if inserted into a 
slot tAhich has Q-bus signals on the C/O side. 

207 



uNOTE # 026 
Page 12 of 14 

2. Compatible enclosures or boxes. 

Since O/CD slots are required, there are only 4 enclosures which are 
compatible with these modules. They are: 

a. BA23 (8 slots total, first 3 are O/CD) 

b. BA123 (12 slots total, first 4 are O/CD) 

c. BA11-S (9 slots total, all 9 are Q/CD) 

d. BA11-N (9 slots total, all 9 are Q/CD) This enclosure is 
electrically compatible but since it is older it is only 1S-bit 
compatible and has not been tested for FCC compliance in a 
system package. Since the BA11-S is the 22-bit, updated 
version, the BA11-N enclosure is not recommended. 

3. Bus termination. 

Each MicroVAX II processor has 240 ohm termination. When multiple 
are placed into one system, take care to abide by the 
specification regarding termination and configuring multiple 
systems. 

REFERENCE 

Reference MicroNote #29, entitled 'Q-bus Expansion 
Concepts' and appendix A of the Microsystems Handbook 
(P/N EB-26085-41) for more information concerning Q-bus 
configuration rules. 

CPUs 
Q-bus 

box 

The BA11-S enclosures are best suited for multiple CPUs because they 
have backplanes with the Q22/CD configuration in all slots. Therefore 
multiple CPUs and expansion memory can be accommodated most easily. The 
other potential boxes, the BA23 and BA123, are not as flexible because 
they only have 3 and 4 Q22/CD slots respectively. 

When using multiple MicroVAX II CPUs in one system the goal should be to 
configure each backplane with 120 ohm termination if the number of 
backplanes used is one or two. In the three backplane case, only the 
first and third backplanes should have 120 ohm termination. This 
implies that no MicroVAX II CPUs should be configured into the middle 
backplane of a three backplane system (three backplanes is the maximum 
number allowed for the Q-bus). 

'rhe following configurations assume the BA11-S enclosures will be used. 

Two CPU System: 

A two CPU system is the easiest case to configure. As mentioned 
earlier, each CPU has 240 ohm termination. With two CPUs in the same 

208 



uNOTE # 026 
Page 13 of 14 

backplane, the proper overall termination of 120 ohms is achieved. The 
first CPU has 240 ohms in parallel ~7ith 240 ohms on the second CPU which 
is 120 ohms, assuming there is no tE!rmination on the backplane (which is 
true for the BA11-S enclosure). 

Three CPU System: 

A three CPU system should be configured in 2 backplanes to maintain 120 
ohm termination in each. The first 2 CPUs should be configured in the 
first box which terminates that backplane properly as in the case above. 
The third CPU should be· placed in the second backplane. The modules of 
the expansion cable set must be terminated differently. The module of 
the expansion cable set in the first backplane should add no additional 
termination to the system while thE! module in the second backplane 
should be terminated with 240 ohms. Therefore the second backplane is 
also terminated in 120 ohm (240 on the processor in parallel with 240 on 
the expansion module). 

Four CPU System: 

A four CPU system should also be configured in 2 backplanes. The first 
backplane will have 2 CPUs for 120 ohm termination and the second 
backplane will also have 2 CPUs fc)r 120 ohm termination. But the 
expansion cable set connecting thE! two backplanes will not be the same 
as in the three CPU system. In this case there should be no termination 
on either of the expansion modules. 

These same basic rules should be followed if the BA23 enclosure is used. 
However the configurations beCOmE! more constrained because of the 
relatively few number of Q/CD slots. The configuration also becomes 
more complicated because the BA23 has built in termination on the 
backplane (termination resistors arE! socketed and therefore removable). 

4. Using a PDP-11 CPU as the Arbiter. 

The arbi ter can be a Q-bus PDP-11 CE)U as well as a MicroVAX II CPU. In 
this configuration only the 3 auxiliary MicroVAXes could be added to the 
system. Although there are tremendous architectural differences between 
a PDP-11 and MicroVAX CPU, they both perform the arbiter function on the 
Q-bus and therefore such a configuration is possible. Two issues arise 
from this 'mixed' configuration. 

1. All Q-bus PDP-11s to-date have their main memory on the Q-bus. In 
order to talk to an auxiliary MicroVAX CPU's local memory, part of 
the Q-bus physical address spacE~ must be reserved for mapping to 
that local memory. 

2. The PDP-11 processor will not have an interprocessor communication 
register because that featurE~ is unique to the MicroVAX II CPU. 
Therefore, if it is necessary to have the capability for an 
auxiliary CPU to interrupt the arbiter, an additional device must be 
added to the system. This device will look like the interprocessor 

209 



uNOTE i 026 
Page 14 of 14 

communication register for an arbiter and will convert and ICR 
interrupt into a conventional Q-bus interrupt (there is no 
capability which allows an auxiliary to interrupt the arbiter via 
the standard Q-bus interrupt protocol). 

210 



uNOTE # 027 

Title: USING MESSAGES WITH VAXELN Date: 28-JUN-85 

Originator: Christopher DeMers Page 1 of 5 

This Micronote discusses how VP .. XELN uses messages for inter-job 
communication. Included is an overview of the message architecture, 
benchmark data from MicroVAX II configurations and a sample program 
illustrating the m~ssage handling technique. 

In a VAXELN application, every job(Pascal,C or Macro-32 program) has a 
unique and protected virtual addrE~ss space. Within a single processor, 
the kernel separates each job's virtual address space using the VAX 
memory management hardware. Within a network, each job's virtual 
address space is separated by virtue of the fact that the jobs may exist 
in the memories of different computer systems. 

One of the principal reasons for dividing an application into separate 
jobs is to aid the migration and distribution of the jobs within the 
network. In order for the jobs to work together on the same 
application, they must be able to share data, but the only way of moving 
data from the memory of one processor to another in a network is by 
packaging the data in a message and directing the network hardware to 
move the message to the destination memory. 

To make the network movement of data between jobs the same as in the 
non-network case, messa~e passing is the principal means of inter-job 
communication. The kernel provides a number of facilities to make an 
efficient and transparent means of communication. 

The VAXELN MESSAGE object describes a block of memory that can be moved 
from one job's virtual address space to another's. The block of memory 
is called 'message data' and is allocated dynamically by the kernel from 
physically contiguous, page-alignE~d blocks of memory. A MESSAGE object 
and its associated message data are both created by calling the 
CREATE MESSAGE kernel service. 

Message data is mapped into a job's PO virtual address space, so it is 
potentially accessible to all the processes in the job. If a message is 
sent to a job on the sending job's local node, the kernel unmaps the 

211 



uNOTE # 027 
Page 2 of 5 

message data from the sending job's virtual address space and remaps it 
into the receiver's space. Instead of moving the data, page Table 
Entries are remapped, resulting in very fast message transmission time. 
If a message is sent to a remote node, the kernel again unmaps the 
message data, but it remaps it into the appropriate network device 
driver job to send the message to the remote system. The reverse 
operations then cause the message data to be remapped in the receiver's 
space. 

The code necessary to send a message local to a machine or over the 
network is identical in both cases. A port name table parameter 
(NAME$LOCAL or NAME$UNIVERSAL) allows the programmer to define local or 
remote ports. The kernel maintains the local name list, while the name 
table for network-wide names is maintained by the name server. Names 
known throughout the network are guaranteed to be unique. Thus, jobs 
can initially be executed on one processor and later be segmented to run 
on multiple processors without modification of the program. 

Datagrams and Circuits 

Messages can be used two ways to transmit data: 

- One process can obtain the value of a port anywhere in the system 
(including other jobs) or in a different system running on a different 
Ethernet node. The process can send the port a message with the SEND 
procedure. This is called the datagram method. 

- Any two ports (usually in different jobs) can be bound together to 
form a circuit. In this case, having established the circuit, the 
sending process has one port of its own bound to another port, which 
usually is in a different job or on a different network node. The 
sender sends the message to its own port, and it is routed automatically 
to the other port in the circuit. Processes can both send to and 
receive from a circuit port. 

In the datagram method, as well as in the circuit method, a process can 
uSle the WAIT procedures to wai t for the receipt of a message on the 
specified port. 

The datagram method requires no connection sequence as in circuits, but 
cannot guarantee that a message is actually received at the destination. 
However, it does guarantee that received messages are correct. 

At the cost of setting up and handling a circuit connection, circuits 
offer several advantages over the basic datagram method: 

- Guaranteed delivery. The circuit method guarantees that either the 
message arrives at the destination port regardless of its location, or 
that the sender is notified that the message could not be delivered. 

212 



uNOTE # 027 
Page 3 of 5 

- Flow control. You can prevent a sending process from sending too many 
messages to a slower rece1v1ng process. If a port is connected in a 
circuit and is full, the sender is put into the waiting state until the 
port is no longer full (you can override this default). The implicit 
waiting performed by the SEND procedure evens the flow of messages 
between the transmitting process and the receiving process without 
having to explicitly program for the condition. Furthermore, circuits 
guarantee the sequence of message delivery as no other unconnected port 
can send a message to a connected port. 

- Segmentation. Message can have any length (datagrams are limited to 
approx. 1500 bytes), and, if the transmission is across the network, 
the network services will divide the message into segments of the proper 
length, transmit the segments and reassemble them at the destination 
node. 

- User interface via Pascal I/O routines. The OPEN procedure permits 
you to 'open' a circuit as if it were a file and to use the I/O routines 
such as READ and WRITE to transmit messages. 

There is no performance penalty with circuits for messages transmitted 
over the same network node and very little over the network. For full 
generality, programs should assume that the sending and receiving jobs 
may be distributed on different nodes in a network. Circuits are the 
preferred means of sending message in almost every practical case. 

Expedited Messages 

An expedited message bypasses the normal flow-control mechanism and can 
be sent even if the receiving port already has its maximum number of 
messages. The message is received by the port before any normal data 
messages. The size of an expedited message is limited to a maximum of 
16 bytes. 

Monitoring Network Integrity 

Circuits can be used as a method for monitoring the status of a network 
connection. In addition to the circuit used to send data, another 
process could establish a secondslry circuit with a process in a remote 
node. Neither process sends data, they only WAIT on their respective 
ports. When a node fails, the circuit is broken and the WAIT is 
satisfied. At this point exception handling routines could be invoked 
to handle this condition. This clllows the programmer to separate the 
error handling code from the ~essage transmission code. 

213 



uNOTE # 027 
Page 4 of 5 

Connecting with VAX/VMS nodes 

The VAXELN procedure CONNECT CIRCUIT can be used to request a 
with a VAX/VMS program on the same DECnet network. Instead 
port as the destination for the connection, a VMS node and 
name (program name on the VMS node) is used. The program 
node completes the connection by opening the "file" SYS$NET. 

connection 
of using a 
an object 
on the VMS 

A 'VAX/VMS node may also request a connection by specifying a node name 
and port name in the file portion of an OPEN statement. The VAXELN node 
complete the connection by issuing an ACCEPT CIRCUIT statement. 

Performance Data 

MicroVAX II, 5MB memory, connection via circuit 
All times in microseconds (us). 
Throughput in thousand bytes/second(KB/s). 

Me 
( 

5 
20 
81 

ssage Size 
bytes) 

0 
12 
48 
92 

Create Delete 
Time Time 

131 144 
361 255 
450 274 
481 394 

Delivery 
One Machine Two 

Time Throughput Time 

1094 N/A 4479 
1611 318 5271 
1885 1087 8675 
2139 3830 27538 

214 

Machines 
Throughput 

N/A 
97 

236 
298 



PROGRAM msgsend(INPUT,OUTPUT)i 
{++ 

uNOTE # 027 
Page 5 of 5 

{ This program connects a circuit to the global name 'msgrecv', 
{ sends a message to the receiver and waits for a reply. 
{-} 
VAR 

BEGIN 

send port,reply port: PORTi 
msg,~eply: - MESSAGE; 
msg data ptr: "'VARYING STRING(20); 
repTy_data_ptr: "'VARYING=STRING(10); 

CREATE PORT(send port); 
CONNECT CIRCUIT(send port, destination name := 'msgrecv'); 
CREATE MESSAGE(msg,msg data ptr); 
msg data ptr'" := 'messige f~om msgsend'; 
SEND(msg~send port); 
WAIT ANY(send-port); 
RECEIVE(reply~reply data ptr,send port); 
DELETE(reply); - - -
DISCONNECT CIRCUIT(send port); 

END; { progrim msgsend } -

PROGRAM msgrecv (INPUT,OUTPUT); 
{++ 
{ This module runs a receive program that accepts a circuit,receives 
{ a message and sends back a reply. 
{-} 

VAR 

BEGIN 

reply_port: 
nam: 
msg,reply: 
msg data ptr: 
repl"y_data_ptr: 

PORT; 
NAME; 
MESSAGE; 
"'VARYING STRING(20); 
"'VARYING=STRING(20); 

CREATE PORT(reply port); 
CREATE-NAME(nam,'msgrecv',reply port,table :- name$universal); 
INITIALIZATION DONE; -
ACCEPT CIRCUITTreply port); 
WAIT ANY(reply port); 
RECEIVE(msg,msg data ptr,reply port); 
DELETE(msg); - - -
CREATE MESSAGE(reply, reply data ptr); 
reply aata ptr'" := 'reply'; -
SEND(~eply~reply port); 

END; { program msg~ecv } 

215 



216 



uNOTE # 028 

Title: MSV11-Q/M/J MEMORY COMPARISONS Date: 28-JUN-85 

Originator: JACK TOTO Page 1 of 3 

This MicroNote will compare three of Digital Equipment Corporation's 
newest memory modules. Following the description of each memory module, 
is a chart which, list the differences between these memories. 

MSV11-Q 

The MSV11-Q has three versions, the MSV11-QA, the MSV11-QB and the 
MSV11-QC. The MSV11-QA (M7551-A) is a quad size Q-bus memory module and 
contains 1MB of MOS RAM using 64K bit parts. The MSV11-QA has two etch 
revisions which must be checked when configuring the module into a 
system. The two revisions are the C rev and the A rev, both of these 
revisions are discussed in the Users Guide (EK-MSVIO-UG) and in 
Micronote # 030. The second version of the MSV11-Q is the MSV11-0B 
(M7551-B) which is a half populated quad size O-bus memory module 
containing 2MB of MOS RAM using 256K bit parts. The last version of the 
MSV11-Q is the MSV11-QC which is a fully populated MSV11-QB quad size 
Q-bus memory module containing 4MB of MOS RAM using 256K bit parts. 
Both the MSV11-QB and the MSV11-QC use the MSV11-QA printed circuit 
board, however that board is ECOed to etch level C. 

MSVII-J 

The MSV11-J has four versions, the MSV11-JB and MSV11-JC which are used 
in the PDP-11/84 UNIBUS systems and the MSV11-JD and MSV11-JE are used 
in either the MicroPDP-11/83 Q-bus systems, or the PDP-l1/84 UNIBUS 
systems. All four modules use ECC memory for error correction, as well 
as using 256K bit MOS RAM parts on either a half or fully populated quad 
size module. 

NOTE: 

NONE OF THE FOUR MSV11-J MODULES CAN BE PLACED IN A 0/0 
BACKPLANE SLOT. IF THIS IS ATTEMPTED PERMANENT DAMAGE WILL 
BE DONE TO THE BOARDS AND TO THE SYSTEM. 

The MSVII-JB (M8637-BA) is a half populated quad size PMI memory module 
containing 1MB of memory. The second version of the MSV11-J is the 
MSVI1-JC (M8639-CA), this is a fully populated MSVI1-JB quad size PMI 
memory module containing 2MB of memory. These two modules can not be 
used in a Q-bus system due to gate array incompatibilities, and can only 

217 



uNOTE # 028 
PClge 2 of 3 

be used in PDP-11/84 systems which use the UNIBUS/PMI bus interface 
(KTJ11-A). The third version of the MSV11-J is the MSV11-JD (M8639-DA) 
which is a half populated quad size PMI memory module containing 1MB of 
memory. The last version of the MSV11-J is the MSV11-JE, (M8639-EA) 
which is a fully populated MSV11-JD quad size PMI memory module 
containing 2MB of memory. These last two modules can be used with 
either the MicroPDP-11/83 system which uses the Q-bus/PMI bus interface 
or the PDP-11/84 system which was mentioned above. For details 
reference the PMI protocol Micronote # xxx . 

. Although the MSV11-JD and Msv11-JE are PMI memories they can be used in 
two other Q-bus configurations. 

1. If either of these two memories are used in slots 1 and/or 2 of 
a Q/eD backplane such as the H9276 (BAll-S box) or in the 
MicroPDP-11 BA23 backplane, and with the standard 15MHZ KDJ11-B 
cpu (non-fpj compatible) in slot 3, the system will perform PMI 
memory cycles. In the case of BA23 backplanes, a maximum of two 
memory modules may be used in slots ahead of the processor, with 
a minimum of one memory module in front of the processor still 
functioning as PMI memory. In the case of the H9276 backplane 
a number of MSV11-JD/JE memory modules may be used ahead of the 
processor bringing the system to a full 4MB of PMI memory. 

2. If in a Q/eD or BA23 backplane the memories reside in slots 2&3 
with either of the KDF11 or KDJ11 processors in the slot 1 
the MSVll-J memories will respond as standard Q-bus memories, 
performing normal Q-bus and block mode memory cycles. This use 
of the MSV11-J memories is also true for the MicroVAX :r cpu. 
However the fact that the MicroVAX I cpu is a two board set 
requires a slightly different configuration. Slots 1&2 will be 
used for the MicroVAX I cpu boards with only one memory card 
used, that being located in slot 3 for the BA23 backplane and 
one or more memory cards being used for other Q/eD backplanes. 
The only constraint with either of the second configurations is 
that in the BA23 or other Q/eD backplanes no module may be 
placed adjacent to the MSV11-J that uses pins in the eD 
connector. Instead leave an empty slot between the MSV11-~J and 
this option. An option which does not use the eD interconnect 
may be placed adjacent to the MSV11-J. 

MSV11-M 

The MSV11-M has two versions; the MSV11-MA and the MSV11-MB. The 
MSV11-MA (M7506-AA) is a half populated dual sized Q-bus memory module 
which contairts 0.5MB of MOS RAM using 256K parts. The second version 
the MSV11-MB (M7506-BA) is a fully populated dual size Q-bus memory 
module containing 1MB of MOS RAM using 256K parts. 

218 



MEMORY COMPARISON TABLE 

ATTRIBUTE MSVll-QA/QB/QC MSVll-MA/MB 
,... 

MEMORY SIZE 1MB, 2MB, 4MB 0.5MB, 1MB 

FORM FACTOR QUAD DUAL 

SYSTEM SIZE Q18/Q22 Q18/Q22 

BLOCK MODE YES YES 
1'"-. 

BLOCK MODE YES FOR REV-A NO 
CONFIGURABLE NO FOR REV-C (DEFAULT OPTION) 

AC BUS LOADS 2.4 2.0 

DC BUS LOADS 1.0 1.0 

AMPS @ +5 VDC TYP MAX TYP MAX 
QA 2.4 3.99 MA 2.19 3.11 

(ACTIVE ONLY) QB 2.3 3.59 MB 2.22 3.34 
QC 2.5 4.30 

AMPS @ +12VDC NO +12v SUPPLY NEEDED 

WATTS TYP MAX TYP MAX 
QA 12.0 20.95 MA 11.0 16.3 

(ACTIVE ONLY) QB 11.5 18.85 MB 11.1 17.5 
QC 12.5 22.58 

MEMORY ERROR PARITY PARITY 
CORERECTION 
1--. 

BATTERY BACKUP YES FOR REV-C YES 
SUPPORT NO FOR REV-A 

DIAGNOSTICS CVMSAA FOR PDPlls SAME 
EHXMS FOR MICROVAX SAME _. 

MAINTENANCE MP01931 MP02053 
PRINTSET 

USER GUIDE EK-MSV1Q-UG EK-MSV1M-UG 

219 

uNOTE # 028 
Page 3 of 3 

MSVll-JB/JC/JD/JE 

1MB, 2MB 

QUAD 

PMI/CD ONLY 

YES (JD/JE ONLY) 

NO 
(DEFAULT OPTION) 

2.5 

0.5 

TYP MAX 
JB/JD 1.5 3.94 
JC/JE 1.7 4.29 

TYP MAX 
JB/JD 7.5 19.7 
JC/JE 8.5 21.5 

ECC 

YES 

CVMJAO 

MP02056 

EK-MSV1J-UG 



220 



uNOTE # 029 

Title: Q-bus Expansion Concepts Date: 28-Jun-85 

Originator: Charlie Giorgetti Page 1 of 5 

This MicroNote discusses the expansion (multiple backplanes) 
characteristics of a Q-bus system. Understanding this topic is critical 
when configuring a system. The loading, impedance, and single backplane 
characteristics of the Q-bus and some assumptions and definitions are 
discussed prior to defining the expansion rules. The specific products 
used in expansion are not discussed here. 

Viewing the Q-bus for Electrical Analysis 

When analyzing the Q-bus from a configuration rule standpoint the bus is 
treated as a transmission line. The reasons for this: 

o The Q-bus has voltage sources at both ends of a conductor. 

o When one of these voltage sources (typically a processor) changes 
state (a control/data signal transitioning) its effect is not seen 
instantaneously at the other end, but after some propagation delay. 
The propagation delay could result in signal reflections on the bus 
if it is not properly terminated or expanded. 

Loading Definitions 

The Q-bus specification defines two loading parameters used when 
configuring a system. These parameters, AC and DC loading, indicate the 
load presented to the system by individual elements on the Q-bus. A 
system element is either a Q-bus module or a backplane. The definition 
of AC and DC loads are: 

o AC loading is the capacitive loading added to a Q-bus system by a 
Q-bus module or by the backplane itself. Capacitive loading will 
cause bus reflections and impact signal rise and fall times. This 
is measured at the time the module or backplane is being designed. 
An AC load is 9.35 pf/signal line. 

a DC loading is the amount of leakage current presented to the Q-bus 
by an undriven signal line on a Q-bus module. This information is 
obtained from the specification data for Q-bus drivers and 
receivers. A DC load is defined as 210 uA. 

221 



uNOTE # 029 
Page 2 of 5 

The number of AC and DC loads allowed in a configuration is dictated by 
the number of backplanes and the termination used. This will be 
discussed in later sections of this MicroNote. 

The AC and DC values for Q-bus modules and backplanes can be found in 
either the Microcomputer Products Handbook (#EB-26078-41) or the 
Microcomponents Configuration Guide (#EB-27318-68). 

Backplane Configurations 

The rules that govern Q-bus system implementation must be viewed in 
light of the backplane arrangement used. The two supported Q-bus 
configurations are: single backplane or multiple backplanes. How the 
Q-bus is treated as a transmission line varies for these two 
configurations and is the foundation for the implementation rules. 

Impedance and Termination Characteristics 

ThE~ characteristic impedance of the Q-bus is approximately 120 Ohms. 
Therefore, when implementing a system (single or multiple backplane) the 
basic configuration is: 

Transmission Line Impedance = 120 Ohms 

Source Backplane 

Destination Backplane 

Source (usually the processor) Far-end termination 

Z - Bus Termination with 120 Ohms Characteristic Impedance 
S - voltage Source 

The transmission line in this diagram could be a single 
backplane or multiple backplanes connected with expansion 
cables. 

Figure 1 - General Q-bus Configuration 

222 



uNOTE # 029 
Page 3 of 5 

a-bus Configuration - Single Backplane 

For the single backplane case the transmission line is the length of the 
etch runs on the a-bus connector blocks and the backplane printed 
circuit board. This orientation has a signal generator at one end (the 
processor) and potentially a terminator at the far end of the bus. The 
length of the etch runs cannot exceed 14 inches (35.56 cm). In figure 1 
the transmi~sion line is the backplane itself. 

A single backplane system does not require termination if there are less 
than 20 AC loads. In this case the signals do not lose their integrity 
because the reflections, caused by the mismatched impedances, are not 
significant enough to disrupt bus activity. However, in a high ambient 
electrical noise environment, system integrity may be further insured by 
proper termination. 

The single backplane configuration requires termination if the number of 
AC loads is 20 or greater. The number of allowable AC loads in this 
case is dictated by the termination on the processor. A 120 Ohm 
processor can have up to 45 AC loads. A 240 Ohm processor can have up 
to 35 AC loads. 

Q-bus Configuration - Multiple Backplanes 

For the multiple backplane case (where the multiples are two or three 
backplanes), the transmission line is the cables used to interconnect the 
multiple backplanes. The expansion cable set consists of: 

o A module in the source backplane 

o A module in the destination backplane 

o Cables to connect the two modules 

The maximum length of the cables is 16.0 feet (4.88 meters). The length 
of these cables is by comparison significantly longer then the length of 
the a-bus connector blocks and the backplane etch used in the single 
backplane case. Therefore, onl~r the interconnect cables are considered 
for configuration purposes. This arrangement has a signal generator at 
one end and requires termination at the far end. 

The far end termination must reside in' the last backplane of the 
configuration. The location of the far end termination can be any place 
in the last backplane, since the backplane etch runs do not enter into 
transmission line considerations. The lump sum termination must be 120 
Ohms. 

The termination in the source box must also be 120 Ohms. If the 
processor is 240 Ohms then the expansion cable set module or the 
backplane printed circuit board must have 240 Ohm termination to achieve 
the 120 Ohms for the lump sum load. 

223 



uNOTE: # 029 
Page 4 of 5 

Lump s~m implies that the 120 Ohms can be achieved by one or more 
expans10n module or backplane printed circuit board mounted terminators 
and its location is position independent in a given backplane. Figure 2 
shows an example of how such a lump sum load can be accomplished. 

Backpla 
Slot 

1 

2 

3 

n 

ne 
# 

< 

< 

D <-.-> D 

< 

< 

Expansion Cable from 
Source Backplane 

Expansion Module 
with'Termination (Z1) 

Printed Circuit Board 

Backplane 

Lump Sum Termination -
Z1 * Z2 

Z1 + Z2 

Printed Circuit Board 
Mounted Termination (Z2) 

Figure 2 - Example of Lump Sum Termination in an Expanded Backplane 

Figure 1 shows the double backplane configuration where the expansion 
cable set is considered the transmission line. The far end termination 
is required. Figure 3 shows the three backplane configuration. 
Backplane #2 in figure 3 for all practical purposes is part of the 
expansion cable set when looking at it from an expansion point of view. 

The lengths of the expansion cables in multiple box configurations are 
strictly specified. As mentioned the maximum length of the overall 
cable is 16.0 feet. The minimum length is 2.0 feet (0.61 meters). 
Therefore, in a two backplane configuration the expansion cable must be 
between 2.0 and 16.0 feet. 

In the three backplane configuration the maximum cable length is still 
16.0 feet. One of the two interconnect cables must be between 2.0 feet 
and 6.0 feet (1.83 meters) in length. The other interconnect cable must 
be at least 4.0 feet (1.22 meters) but not longer than 10 feet (3.05 
meters). The difference in the two cable lengths must be 4.0 feet. 

224 



uNOTE # 029 
Page 5 of 5 

The cable lengths are specified to insure that any reflections occur in 
the expansion cables and not in the backplane (if they happen). 

The etch runs vn the backplane printed circuit board used in a multiple 
backplane cortfiguration must be no longer than 10 inches (25.4 cm). Not 
all backplanes used in single configurations can be used in multiple 
backplane configurations. 

I s I 

Expansion Cable 
#1 to #2 

I 

Expansion Cable 
#2 to #3 

I z I 

I z I I S I 

I 
Backplane #1 Backplane #2 Backplane #3 

Z - Bus Termination with a Characteristic Impedance 
S - voltage Source 

Figure 3 - Three Backplane Q-bus Configuration 

Multiple backplane configurations allow 22 AC loads/backplane. 
Therefore, it is 44 AC loads in a two or 66 AC loads in a three 
backplane configuration. To avoid lumping too many AC loads together 
the total number of AC loads should be distributed as evenly as possible 
over the two or three backplanes. The entire configuration cannot 
exceed 20 DC loads. 

In summary, following the expansion rules insures proper system 
operation. The set of rules to be followed are dictated by the single 
or multiple configuration chosen and the arrangement of the termination 
in the system. 

225 



226 



uNOTE # 030 

Title: The Private Memory Interconnect Date: 28-Jun-85 
between the KDJ11-B and the MSV11-J 

Originator: Peter Kent Page 1 of 9 

Purpose 

This MicroNote describes the Private Memory Interconnect on the 
MicroPDP-11/83 system. It is not intended to be a design guide for PMI, 
since no devices other than the CPU and memory will make use of it. 

General Description 

A MicroPDP-11/83 system consists of the KDJ11-B CPU and one or more 
MSV11-J memories in a Q-bus backplane. The slots used for the CPU and 
memory use the CD interconnect. In a MicroPDP-11/83 configuration, the 
first 1 or 2 slots in a BA23 backplane (an 8 slot backplane with the 
first 3 slots Q/CD) are reserved for MSV11-J memory. The CPU is put in 
the third slot. The mechanical design of the signal pathways between 
the CPU and memory were designed to prevent accidental interference 
between the PMI and other device's that might be placed adjacent to the 
CPU and memory. It is possible to have a single 2 Mb board in slot 1 
followed by the CPU in slot 2. putting the CPU after the memory ends 
the PMI because the PMI signals from the CD side of the CPU board are 
only on the component side of the CPU board. 

"Private Memory Interconnect" is the addition of 14 unique signals to 
the Q-bus. These new signals use the CD part of the backplane in a 
Q-bus system for communications between the KDJ11-B CPU and one or two 
MSV11-J memories. Only the CPU and memory may communicate over this bus 
(hence PRIVATE). The Q-bus Data/P.~ddress lines are used for passsing 
data and addresses between the CPU and memory. All other Q-bus 
transactions proceed as before. 

The PDP-ll/84 Unibus system uses the KTJ11-B Unibus Adaptor, KDJ11-B 
CPU, and one or two MSVll-J memories. No Q-bus devices may be 
configured with the PDP-11/84 system. Five of the PMI signals are used 
only with Unibus systems. All communications between Unibus devices and 
the KTJ11-B occur according to the Unibus protocol. The KTJ11-B 
provides the interface between PMJ: and Unibus protocols. This MicroNote 
does not explain the details of the Unibus and PMI interaction. 

227 



uNOTE I 030 
Page 2 of 9 

What is PMI? 

To understand PMI it is necessary to describe some of the bus cycles 
used by PMI and compare them with ordinary Q-bus cycles. There are 4 
PMI cycles used in the MicroPDP-ll/83 system: 

DATI - Data word input. This cycle is used to read one or more 16 
bit words from memory by the cpu. 

DATIP - Data word input pause. This cycle is used to read one or 
more 16 bit words from memory by the cpu. It is often used to 
perform a read/modify/write cycle. 

DATO - Data word ouput. This cycle is used to write a 16 bit word 
to memory by the cpu. 

DATOB - Data byte output. This cycle is used to write a byte to 
memory by the cpu. 

The KDJ11-B does not perform Block Mode reads or writes with memory. 
Certain other Q-bus devices (such as the RDRX1 and RQDX2 controllers and 
RQC25) perform Block Mode DMA with MSV11-P,MSV11-Q,AND MSV11-M memories. 
The CPU monitors Block Mode transactions to keep its cache in order, but 
it has no control over such transfers once it has relinquished control 
of the bus to those devices. 

REFERENCES 

PMI signal definitions are listed at the end of this 
MicroNote. All other signal definitions are as given in 
the Microcomputer Products Handbook (EB 26078-41) or 
Microsystems Handbook (EB 26085-41). 

TWTBT, a Q-bus signal, is used somewhat differently during a PMI 
transaction than during a normal Q-bus transaction. See the definitions 
section for an explanation of this signal. 

NOTE 

Few timing relationships are given here because it is 
not necessary for a basic understanding of PMI. The 
relationships that are given are a comparison to Q-bus 
only. The prefix "T" refers to bus driver input and "R" 
refers to bus receiver output. This helps to 
distinguish between the device which issues a particular 
signal and that of the receiver of the signal. If the 
prefix "B" is used, it denotes a general term for the 
signal on the bus without regard for its timing relation 
with respect to sender or receiver (i.e. BSYNCH). 

228 



Address part of cycle 

uNOTE # 030 
Page 3 of 9 

The address portion of the MicroPDP-11/83 PMI cycles is the same for all 
4 PMI cycles. It is listed here first and the description of the other 
cycles follow. 

1. For the first part of the cycle, the CPU gates ADDR, BBS7 (if the 
I/O page is referenced), TWTBT, and TPBYT onto the Q-bus. The 
combination of TWTBT and TPBYT (PMI signal) determine what type of 
PMI transaction will take place - see Table 1 below. These signals 
are asserted for a brief period after the assertion of TPBCYC. 

BWTBT L 

H 
H 
L 
L 

Table 1 

PBYT L 

H 
L 
H 
L 

Description 

. DATI or DATBI Cycle 
DATIP Cycle 
DATO Cycle 
DATOB Cycle 

As noted above, Q-bus signals such as TWTBT are used differently 
during a PMI cycle. TWTBT is not normally used during a DATI cycle, 
for example. 

2. Next, memory issues TPSSEL after receiving RADDR and RBS7. The CPU 
receives RPSSEL. This part of the cycle indicates that the memory 
is responding. 

3. If the CPU was the previous bus master and the previous cycle was a 
Q-bus cycle, then the CPU must not assert TPBCYC or TSYNC until 
after the negation of TSYNC and after the negation of RRPLY. If the 
cycle was an interrupt service cycle, then the CPU must wait until 
after the negation of RRPLY. This stipulation allows for other 
Q-bus devices equal access to the bus. Also, if another Q-bus 
device was previously bus master, then the CPU must not asssert 
TPBCYC or TSYNC until after the negation of RSYNC - this is to make 
sure RRPLY is negated long enough as per Q-bus protocol. 

4. Now, if RPSSEL is asse~ted and if RPUBMEM is negated, the PMI master 
proceeds with a PMI cycle. The negation of RPUBMEM indicates no 
that no Unibus memory is responding - in other words a Q-bus PMI 
cycle. Here is where the diffe- rence between Q-bus cycles and PMI 
cycles becomes visible. 

229 



uNOTE # 030 
Page 4 of 9 

5. The CPU asserts TPBCYC after gating TADDR, TBS7, TPBYT, and TWTBT 
onto the bus. The PMI master continues to gate TADDR, TBS7, and 
TWTBT after the assertion of TPBCYC. 

6. If at this point RPSSEL is negated, the system will revert to a 
normal Q-bus cycle. 

This describes the address portion of the PMI cycle for Q-bus only 
systems. 

DATI 

When the CPU (KDJ11-B) is accessing memory for a PMI Data In Cycle, it 
transfers 2 words. This takes advantage of the KDJ11-B restart overhead 
to load a second 16-bit word into the cache on the CPU module. Listed 
below equivalent Q-bus cycles are compared with PMI cycles under "Timimg 
Comparisons". For the read cycle, 2 data words (one after another) are 
latched into the MSV11-J data gate array and both words are placed on 
thf~ bus. Interestingly enough, either word may be selected to be placed 
on the bus first. If the odd wo~d is placed on the bus first, it is 
followed by the preceding even word. For example, if a word at address 
17362 is selected to be placed on the bus first, the next word 
transferred will be from address 17360. If the even word is selected to 
be placed on the bus first, the next odd word is then transferred 
second. For example, if a word at address 17360 is selected to be 
placed on the bus first, the next odd word is then transferred second. 
For example, if a word at address 17360 is selected to be placed on the 
bus, the next word transferred will be at address 17362. 

Using the MSV11-J memory as a normal Q-bus memory (disabling the PMI by 
putting it after the CPU in the bus) and performing a read cycle, 2 
words will be latched into the data gate array. However, only one word 
is placed on the Q-bus. 

1. At this point the address portion of the cycle is over. The memory 
gates TDATA onto the bus after the assertion of RPBCYC. 

2. Immediately after RPBCYC the memory enables the parity signals 
TPHBPAR and TPLBPAR. 

3. Memory asserts TPRDSTB immediately after the reception of RPBCYC. 

4. The strobe signal TPRDSTB is negated by memory after the reception 
of RPBCYC. 

5. The memory gates the second data word onto the bus after TPRDSTB is 
negated. Shortly after the parity in- formation is sent. Another 
advantage is realized here: the second data word is transmitted 
without the need of any further signals between the CPU and memory. 

230 



uNOTE # 030 
Page 5 of 9 

6. If the CPU has read 2 words, it negates TPBCYC after latching the 
second data word. 

? After the negation of RPBCYC memory removes TDAT from the bus. 

It becomes evident that there is an essential difference between normal 
Q-bus transactions and PMI transactions. Q-bus transactions are all 
based on handshaking. During a DATI Q-bus transaction, the memory 
responds with BRPLY after BDIN from the processor. There must be the 
signal between each device that the transaction has taken place. During 
a PMI DATI transaction, there is only a strobe signal from the memory 
saying that it is ready for the data. The only further communication 
between the memory and CPU is the actual data transfer. Only upon the 
transmission of the second possible data word is parity information sent 
along with the second data word. No other memory-CPU signalling occurs. 

KDJ11-B 

Address Memory 

o Gate Address 
onto Address Lines 

o Combination of 
TPBYT and TWTBT 
result in DATI Cycle 

o Assert BBS? if Address 
is in I/O page ~-------

PMI Cycle Assertion <--------~ 

MSV11-J 

Decode Address 

o TPSSEL asserted shows 
Memory is Selected 

o TPBCYC Indicates PMI Cycle 
deasserts Address, BBS? -----l 
TPBYT,TWTBT Signals 
Address part of ~------> Data 
cycle is finished 

PMI Cycle End < __ J 
o CPU deasserts TPBCYC 

to end PMI Cycle 

231 

lL.....--_> 

o TDATA, TPHBPAR, TPLBPAR 
(Data and Parity) is 
asserted onto Data Lines 

o Memory strobes CPU by 
Asserting TPRDSTB to tell 
CPU Data is on the Bus 

o The strobe signal 
TPRDSTB is deasserted 

o The 'second data word and 
parity info are put on 
the Data Lines 

Data 

o Memory removes 
data from Bus 



uNOTE # 030 
Page 6 of 9 

Timing Comparisons 

At this point it would be interesting to make some timing comparisons 
between Q-bus and PMI DATI transactions. Considering a Q-bus DATI 
transaction, the cycle time (timing from BSYNCH to TRPLY ignoring 
addressing time) is 510 ns for MSV11-M. The MSV11-M was chosen because 
its cycle time does not include the ECC overhead of the MSV11-J. Add to 
this 320 ns access time and this totals 830 ns to transfer 1 word from 
memory to cpu. Now, if 2 words are to be transferred in this manner, 
add another 300 ns due to delay between RRPLY and TSYNCH in order for 
other Q-bus devices access to the bus. This results in 1130 ns total 
for a 2 word transfer using MSV11-M parity memory. 

Th.~ MSV11-J memory access time is 417 ns. This is the time from RPBCYC 
to PRDSTB. Fifty eight ns later, at the trailing edge of PROSTB, the 
cpu receives the second data word. This means that PMI is approx. 2.5 
times faster than Q-bus on 2 word reads from memory to cpu. Remember, 
this also accounts for the time the ECC requires to do its modified 
Hamming code versus the MSV11-M parity check. For each 18 bits of 
MSV11-J memory there are 6 bits used for ECC. This accounts for the 
space needed on the MSV11-J for 2 Mb of memory whereas 4 Mb is possible 
on the MSV11-Q on the same size board. 

DATO (DATOB) 

The CPU uses DATO to transfer a single word (or byte for a DATOB cycle) 
to memory. The address portion of the cycle is the same as for the DATI 
and is described above. 

1. The CPU determines what type of cycle (DATO or DATOB) by logically 
combining TWTBT and TPBYT. During the address portion of the cycle, 
these signals were used to indicate which type of PMI cycle was 
selected. 

2. Memory asserts TRPLY after RPBCYC. 

3. After the assertion of TPBCYC, data is gated onto the bus by the 
cpu. 

4. The CPU asserts TPWTSTB after data is gated onto the bus. 

5. Memory asserts TPSBFUL after RPWTSTB. 

6. The CPU deasserts TPBCYC after negating TWTSTB. 

7. The memory waits before it can accept another PMI cycle (or Q-bus 
cycle) - then it deasserts TRPLY. 

8. Memory negates TPSBFUL before it can accept another PMI (or Q-bus 
cycle). 

232 



KDJll-B 

Address Memory 

o Gate Addresses onto 
Address Lines 

o Combination of TPBYT 
and TWTBT Result in 
DATO Cycle 

o Assert BBS7 if Address 
is in the I/O page lll---_> 

PMI Cycle Assertion 

o Assertion of TPBCYC <------~ 
indicates PMI Cycle 

o CPU deasserts Address, BBS7, 
TPBYT, TWTBT Signals -
Address Portion of Cycle --l 
is finished 

'-----> 

Data 

o TDATA, TPHBPAR, TPLBPAR 
(Data and Parity) is put 
onto the Data Lines 

o CPU then strobes the 
Memory by asserting TPWTSTB -,'------> 

PMI Cycle End <---------~ 
o CPU deasserts TPBCYC 

to indicate current 
PMI Cycle is finished 

233 

1 ...... ___ > 

uNOTE .. 030 
page 7 of 9 

MSVll-J 

Decode Address 

o TPSSEL Shows 
Memory is address 
selected 

Memory Responding 

o After reception of 
RPBCYC, memory sends 
TRPLY to CPU 

Reception of Data 

o Memory asserts TPSBFUL 
after reception of 
RPWTSTB 

Memory Cycle End 

o Memory waits for other 
devices to claim Bus 
before it can accept 
another PMI Cycle - then 
deasserts TRPLY 

o Memory must negate 
TPSBFUL before another 
PMI Cycle can begin 



uNOTE # 030 
Page 8 of 9 

Timing Comparisons 

Here is a comparison of a Q-bus DATO cycle with a PMI DATO cycle. 
Looking at a Q-bus DATO transaction, the cycle time (timing from RSYNCH 
to TRPLY) for MSV11-M is 550 ns. Comparing this to the MSV11-J DATO 
cycle, the result of 223 ns is obtained. This figure is arrived at as 
follows: 38 ns access time for the memory + 80 ns TPBCYC to TDATA + 75 
ns TPWTSTB after data is on the bus + 30 ns to hold TPWTSB. Again the 
speed advantage of PMI transactions over normal Q-bus transactions is 
about 2.5 to 1. 

DATIP 

The PMI Data In Pause cycle is identical to the DATI cycle except that 
TPBYT is asserted with TADDR to indicate that the next cycle 
(immediately following the current cycle) will-be a data out cycle to 
the same address. 

PMI and Q-bus signal definitions 

Eight of the PMI signals are used in an MicroPDP-11/83 system, therefore 
only those will be defined here. One Q-bus signal, BWTBT, is defined 
h.~re because it is used differently than during normal Q-bus 
transactions. 

PBYT L PMI Byte. When the CPU gates address onto the bus, it asserts 
this signal with BWTBT to indicate the type of bus cycle (see 
Table 1 above). 

PBCYC L PMI bus cycle. The CPU asserts this signal at the start of 
a PMI cycle and negates it at the end of that cycle. 

PRDSTB L PMI read strobe. Memory asserts and negates this signal to 
control data transfers during DATI cycles. The CPU latches 
the received first word data on the negating edge of this 
signal. The second word is latched after that without further 
signalling. 

PWTSTB L PMI Write Strobe. The CPU asserts this signal after gating 
data onto the bus. The memory latches the data into its 
write buffer after the leading edge of this pulse. 

PSSEL L PMI slave selected. Memory asserts this signal whenever it 
decodes its address on the Q-bus. 

234 



PHBPAR L 

PLBPAR L 

PSBFUL L 

uNOTE # 030 
Page 9 of 9 

PMI high byte data parity. This signal is generated by PMI 
memory during DATI cycles and provides odd parity for the high 
byte data on the Q-bus. 

PMI low byte data parity. This signal is generated by PMI 
memory during DATI cycles and provides even parity for the low 
byte data. 

PMI memory buffer full. Memory asserts this signal during a 
write cycle indicating that its write buffer is full and that 
it cannot respond to another cycle request. 

Q-bus signal 

BWTBT L write byte (PMI write indication). In Q-bus systems, 
signal is used for Q-bus write cycles. For PMI transactions, 

this 
the 

cycle. CPU gates this signal with PBYT to indicate the type of PMI 
See Table 1 above. 

References 

Microcomputer Products Handbook 
Microsystems Handbook 
MSVll-M User Guide 
MSVll-Q User Guide 
MSVll-J User Guide 

235 

EB-26078-41 
EB-26085-41 
EK-MSV1M-UG-OOl 
EK-MSV1Q-UG-002 
EK-MSV1J-UG-OOl 



236 



uNOTE # 031 

Title: MSV11-QA Revision Differences Date: 28-JUN-85 

Originator: Jack Toto Page 1 of 9 

Digital Equipment Corporation recently announce the addition of three 
memories for the Q-bus space; the MSV11-QA quad module at 1MB, the 
MSV11-QB quad module at 2MB, and the MSV11-QC quad module at 4MB. 

Earlier versions of the MSV11-QA were shipped using a revision A etch 
and the documentation correctly showed the jumper configurations. 
However early in 1985 the MSV11-QA/QB/QC started shipping with revision 
C etch. The documentation at that point did not show how to properly 
configure the C etch. It is the intent of this MicroNote to point out 
the differences between the two modules and to explain the configuration 
of both the etch revisions. 

The two modules can be identified in anyone of the three ways listed 
in the table below; 

1. The location and value of the modules serial number. 
2. The location of CSR and address jumpers and switches. 
3. The module's designation number, stamped on the insertion 

handles will be different. 
3A. Revision A modules will be labeled M7551-AA. 
3B. Revision C modules will be labeled M7551-AA. 

SERIAL NUMBER LOCATION 

The two modules can be identified by the location of its serial number. 
The revision A module will have its serial number located in the upper 
right hand corner of the module as you hold it with the fingers pointing 

down or at you and the component side facing you or up as it would lay 
on a work bench. This serial number will be 5017547A1. The location of 

the serial number for revision C module will be on the component side 
also, but in the upper left hand corner. This serial number will 
be 5017547-01-C1. The attached diagrams of the revision A and revision 
C modules show the location of these numbers. 

237 



uNOTE # 031 
Pag 2 of 9 

JUMPER LOCATION 

The MSV11-QA revision A module allows for the selection of Block Mode 
DMA transfers, parity detection, and extended address parity error 
detection as well as CSR and address selection. The address selection 
includes two switches, one for the modules starting address and one 
for the modules ending address. The ending address switch is used to 
control the decode logic on the module as the same etch is used for 2MB 
and 4MB boards as well, each with different value memory chips to reach 
there designed capacity. The location and function of these switches 
and jumpers if detailed in the diagrams and configuration tables 
attached to the end of this MicroNote. 

The MSV11-QA revision C module does not allow for the selection of Block 
Mode DMA or for the selection of parity detection, these features 
are built into the module itself and can be used or not used through 
hardware/software compatibility. When used in a system that supports 
Block Mode the MSV11-QA will perform as a Block Mode device, when used 
in a non Block Mode system it will perform as a normal memory module 
without any decrease in that system's performance. When used with 
software such as RSX11 and using mixed parity/non-parity memories 
parity detection can be disabled through sysgen. The only functions 
that a user is required to configure to use the MSVll-QA revision C is 
CSR selection and starting and ending address. It should be pointed out 
that the two switches for starting and ending addresses. have been flip 
flopped from the positions in which they were located on the revision A 
module. Once again refer to the diagrams and configuration tables 
attached to this MicroNote for location and function of these switches 
and jumpers. 

The following pages contain diagrams and tables for configuring the two 
versions of the MSVll-QA 

238 



MSV11-QA revision A Module Identification 

uNOTE # 031 
Page 3 of 9 

5017547A1 <--------+- PRINTED CIRCUIT 
BOARD NO. 

(COMPONENT SIDE) 

(A) MSV11-QA (ETCH revision A ONLY) 

MSV11-QA revision A CSR SELECTION 

NUMBER OF JUMPER POSITION CSR REGISTER 
MEMORY MODULE R P N M ADDRESS 

1ST IN IN IN IN 17772100 
2ND OUT IN IN IN 17772102 
3RD IN OUT IN IN 17772104 
4TH OUT OUT IN IN 17772106 
5TH IN IN OUT IN 17772110 
6TH OUT IN OUT IN 17772112 
7TH IN OUT OUT IN 17772114 
8TH OUT OUT OUT IN 17772116 
9TH IN IN IN OUT 17772120 

10TH OUT IN IN OUT 17772122 
11TH IN OUT IN OUT 17772124 
12TH OUT OUT IN OUT 17772126 
13TH IN IN OUT OUT 17772130 
14TH OUT IN OUT OUT 17772132 
15TH IN OUT OUT OUT 17772134 
16TH OUT OUT OUT OUT 17772136 

239 



uNOTE =I 031 
Page 4 of 9 

MSV11-QA revision A STARTING AND ENDING ADDRESS 

DESIRED 
STARTING 
ADDRESS 

IN KBYTE 

o 
128 
256 
384 
S12 
640 
768 
896 

11024 (1MB) 
1152 
1280 
1408 
lS36 
1664 
1792 
1920 
21048 (2MB) 
2176 
2.304 
2432 
2S60 
2688 
2816 
2944 
3072 (3MB) 
3200 
3.328 
3456 
3!584 
3712 
3840 
3968 

SW1 
SWITCH 
POSITION 

12345 

00000 
11111 
01111 
10111 
00111 
11011 
01011 
10011 
00011 
11101 
01101 
10101 
00101 
11001 
01001 
10001 
00001 
11110 
01110 
10110 
00110 
11010 
01010 
10010 
00010 
11100 
01100 
10100 
00100 
11000 
00010 
10000 

1 = off position (open) 
o = on position (closed) 

SW2 
SWITCH 
POSITION 

6 

o 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

STARTING 
ENDING 
ADDRESS 

IN KBYTE 

128 
256 
384 
512 
640 
768 
896 

1024 (1MB) 
1152 
1280 
1408 
1536 
1664 
1792 
1920 
2048 (2MB) 
2176 
2304 
2432 
2560 
2688 
2816 
2944 
3072 (3MB) 
3200 
3328 
3456 
3584 
3712 
3840 
3968 
4096 (4MB) 

ENDING 
SWITCH 
POSITION 

12345 

11111 
01111 
10111 
00111 
11011 
01011 
10011 
00011 
11101 
01101 
10101 
00101 
11001 
01001 
10001 
00001 
11110 
01110 
10110 
00110 
11010 
01010 
10010 
00010 
11100 
01100 
10100 
00100 
11000 
01000 
10000 
00000 

NOTE: Switch S6 of SW1 is not used. For a memory starting address of 
0, switch S6 of SW2 should be set to 0 (on). For all other 
starting addresses S6 of SW2 should be off (1). 

240 



MSV11-QA revision A 

D 

PARITY ---) D 
LED D 

th 

(COMPONENT SIDE) 

C 

5017547A1 

~; < 

1 <--------+_ 
2 
3 
4 
5 
6 

OFF ON 

1 <---+-
2 
3 
4 
5 
6 

OFF ON 

[]JJ < 
+5V 

B <_J_H __ +-

+5VB 

A 

Jumper and Switch Locations 
(Drawing not to scale) 

24·1 

uNOTEI: 031 
Page 5 of 9 

CSR REGISTER 
SELECTION 

ENABLE/DISABLE 
CSR SELECTION 

STARTING ADDRESS 
SWITCHES 
(S6 NOT USED) 
ENABLE/DISABLE 
BLOCK MODE 

ENABLE/DISABLE 
EXTENDED 
ERROR ADDRESS 

ENDING ADDRESS 
SWITCHES 

ENABLE PARITY 
ERROR DETECTION 

NOT USED, MODULE 
DOES NOT SUPPORT 
BATTERY BACKUP 



uNOTE # 031 
Page 6 of 9 

MSV11-QA revision C Module Identification 

PRINTED CIRCUIT 
BOARD NO. 

-+--------> 5017547-01-C1 

(COMPONENT SIDE) 

• 

( B ) MSV11-QA (ETCH revision C OR LATER) 
MSV11-QB AND MSV11-QC 

(Drawings not to scale) 

MSVI1-QA revision C CSR SELECTION 

NUMBER OF JUMPER POSITION CSR REGISTER 
MEMORY MODULE J5 J7 J9 J11 ADDRESS 

1ST IN IN IN IN 17772100 
2ND OUT IN IN IN 17772102 
3RD IN OUT IN IN 17772104 
4TH OUT OUT IN IN 17772106 
5TH IN IN OUT IN 17772110 
6TH OUT IN OUT IN 17772112 
7TH IN OUT OUT IN 17772114 
8TH OUT OUT OUT IN 17772116 
9TH IN IN IN OUT 17772120 

10TH OUT IN IN OUT 17772122 
11TH IN OUT IN OUT 17772124 
12TH OUT OUT IN OUT 17772126 
13TH IN IN OUT OUT 17772130 
14TH OUT IN OUT OUT 17772132 
15TH IN OUT OUT OUT 17772134 
16TH OUT OUT OUT OUT 17772136 

242 



uNOTE # 031 
Page 7 of 9 

MSV11-QA revision C STARTING AND ENDING ADDRESS 

DESIRED SW2 SW1 STARTING ENDING 
STARTING SWITCH SWITCH ENDING SWITCH 
ADDRESS POSITION POSITION ADDRESS POSITION 

IN KBYTE 12345 6 IN KBYTE 12345 

0 00000 0 128 11111 
1,,~8 11111 1 256 01111 
2'~,6 01111 1 384 10111 
384 10111 1 512 00111 
512 00111 1 640 11011 
640 11011 1 768 01011 
768 01011 1 896 10011 
896 10011 1 1024 (1MB) 00011 

1024 (1MB) 00011 1 1152 11101 
1152 11101 1 1280 01101 
1280 01101 1 1408 10101 
1408 10101 1 1536 00101 
1536 00101 1 1664 11001 
1664 11001 1 1792 01001 
1792 01001 1 1920 10001 
1920 10001 1 2048 (2MB) 00001 
2048 (2MB) 00001 1 2176 11110 
2176 11110 1 2304 01110 
2304 01110 1 2432 10110 
2432 10110 1 2560 00110 
2560 00110 1 2688 11010 
2688 11010 1 2816 01010 
2816 01010 1 2944 10010 
2944 10010 1 3072 (3MB) 00010 
3072 (3MB) 00010 1 3200 11100 
3200 11100 1 3328 01100 
3328 01100 1 3456 10100 
3456 10100 1 3584 00100 
3584 00100 1 3712 11000 
3712 11000 1 3840 01000 
3840 00010 1 3968 10000 
3968 10000 1 4096 (4MB) 00000 

1 - off position (open) 
o =- on position (closed) 

NOTE: 5witch 56 of 5W2 is not used. For a memory starting address 
of 0, switch S6 of SW1 should be set to 0 (on) . For all other 
starting addresses 56 of 5Wl should be off (1). 

243 



uNOTE # 031 
Pa<:re 8 of 9 

MSVI1-QA revision C 

L_ 

5017547-01~Cl 

(COMPONENT SIDE) 

Jumpers and Switches 
(Drawing not to scale) 

244 

SWI 

1 
2 
3 
4 
5 
6 

0 

0 
W2 0 

0 

SW2 

< 

CSR REGISTER 
SELECTION 

1 < STARTING ADDRESS 
2 SWITCHES 
3 (S6 NOT USED) 
4 
5 
6 

ENDING ADDRESS 
SWITCHES 

o < BATTERY BACKUP 
JUMPERS 0 

0 wI 
0 



COMPARISON OF SIMILAR FUNCTION JUMPERS 

JUMPER 
FUNCTION 

DISABLE 
BLOCK MODE 

DISABLE 
PARITY 
MEMORY 

DISABLE 
PARITY 
DETECTION 

DISABLE 
22-BIT 
ADDRESSING 

BATTERY' 
BACKUP 
SUPPORT 

BATTERY BACKUP 

SELECTABILITY 
REV-A REV-A 

YES NO 

YES NO 

YES NO 

YES NO 

NO YES 

ENABLED 
CONFIGURATION 

Wi IN (Jii TO J12) 
W2 OUT 

JUMPER B IN 
(J14 TO 13) 
JUMPER A OUT 

JUMPER H IN 
(J2 TO J3) 
JUMPER GOUT 

JUMPER L IN 
(J8 TO J7) 
JUMPER K OUT 

W3 AND Wl IN 
WITH 

W4 AND Wl OUT 
(revision CONLY) 

uNOTE # 031 
Page 9 of 9 

DISABLED 
CONFIGURATION 

W2 IN (Jii TO J10) 
W1 OUT 

JUMPER A IN 
(J14 TO J5) 
JUMPER BOUT 

JUMPER G IN 
(J1 TO J2) 
JUMPER H OUT 

JUMPER K IN 
(J8 TO J9) 
JUMPER LOUT 

W4 AND Wl IN 
WITH 

W3 AND W1 OUT 
(revision CONLY) 

CONFIGURATION NOTE: JUMPERS W4 AND W2 ARE LOCATED BETWEEN E21 AND 
E13 IN THE LOWER RIGHT HAND CORNER OF THE 
COMPONENT SIDE OF THE MODULE. FOR THE ACTUAL 
LOCATION OF THESE AND ALL OTHER JUMPERS PLEASE 
REFER TO THE USERS GUIDE. 

245 



246 



uNOTE, * 032 

Title: KXTll-C Parallel I/O Programming Date: 28-JUN-85 

Originator: Scott Tincher Page 1 of 42 

The KXT11-CA is a single board computer that provides the user with 
flexible I/O programming options. One of the onboard programmable 
devices is a 20 line parallel I/O port (PIa). This note will describe 
the operation of the PIa and will provide some programming examples. 
Since the DIGITAL operating system MicroPower/Pascal provides a device 
handler for the PIa, the programming examples included in this note will 
be written in MACRO-ll for the user who wishes to program the PIa in 
MACRO-ll. The example programs assume the user is familiar with the 
KXT11-C Software Toolkit for RT-ll or RSX. 

FEATURES/CAPABILITIES 

The PIO of the KXTll-C supplies the following features: 

o Two 8-bit, double buffered, bidirectional I/O ports 

o A 4-bit special purpose I/O port 

o Four handshake modes 

o REQUEST signal for utilizing the DMA controller 

o Pattern recognition logic 

o Three independent l6-bit counter/timers 

The two 8-bit ports (A and B) are identical except that Port B can 
provide external access to Counter/Timers 1 and 2. Each port may be 
configured under program control as a single or double buffered port 
with handshake logic or as a bit port for control applications. Pattern 
recognition logic is also included in each port. This logic allows 
interrupt generation whenever a specific pattern is recognized. Ports A 
and B may be linked to form a l6-bit port with handshake. 

When Port A o~ B is used as a port with handshake the control lines are 
supplied by a special 4-bit port (Port C). If no handshake lines are 
required then Port C may be used as a bit port. Port C also provides 
external access to Counter/Timer 3 and a REQUEST line that allows the 
PIO to utilize the DMA controller when transfering data. 

247 



uNOTE # 032 
Page 2 of 42 

Th4! PIO supplies three identical 16-bit Counter/Timers. These 
Counter/Timers operate at a frequency of 2 MHz which provides a 
resolution of 500 ns. Each Counter/Timer may operate with one of three 
output duty cycles: pulse, one-shot, or square-wave. In addition, each 
unit may operate as retriggerable or non-retriggerable. 

• REGISTER DESCRIPTION 

The following section provides a brief description of the registers of 
tht:r! PIO. 

MASTER CONTROL REGISTERS 

Tht:r!re are two registers that control the overall function of the PIO, 
the Master Interrupt Control Register and the Master Configuration 
Control Register. 

Master Interrupt Control Register 

7 2 1 o 

Address - 177000 

Bit 7: Master Interrupt Enable (MIE) 

o - Inhibits this device from requesting an interrupt or 
responding to an interrupt acknowledge. 

1 - Allows interrupt logic to operate normally. 

Bits 6,5,4,3,2,1: These bits must be programmed to zero. 

Bit 0: Reset 

o - Clears the reset bit and allows the other registers to 
function properly. 

1 - Resets the device. While this bit is 1 reads of other 
registers will be 0 and writes to other registers will be 
ignored. This bit is cleared only by writing a 0 to the 
RESET bit. 

248 



Master Configuration Control Register 

7 2 

Address - 177002 

Bit 7: Port B Enable (PBE) 

1 o 

uNOTE # 032 
Page 3 of 42 

o Inhibits Port B from issuing an interrupt request and forces 
tth Port B I/O lines into a high impedance state. 

1 - Allows Port B to operate normally. 

Bit 6: Counter/Timer 1 Enable (CT1E) 

o Inhibits Counter/Timer 1 from issuing an interrupt request 
and clears the Count In Progress (CIP) flag. All trigger 
inputs are ignored. 

1 - Allows Counter/Timer 1 to operate normally. 

Bit 5: Counter/Timer 2 Enable (CT2E) 

Provides the same functions for Counter/Timer 2 that CT1E does 
for Counter/Timer 1. 

Bit 4: Port C and Counter/Timer 3 Enable (PCE) and (CT3E) 

Provides the same functions for Port C that PBE does for Port B 
and the same functions for Counter/Timer 3 that CT1E does for 
Counter/Timer 1. 

Bit 3: Port Link Control (PLC) 

o - Allows Ports A and B to operate independently. 
1 - Links Ports A and B to form a 16-bit port. In this mode 

Port A's handshake and command and status registers are 
used. Port B is specified as a bit port. This bit must be 
set before the ports are enabled. 

Bit 2: Port A Enable (PAE) 

Provides the same functions for Port A that PBE provides for 
Port B. 

Bits 1,0: Counter/Timer Link Controls 

These two bits specify how Counter/Timers 1 and 2 are linked 
according to the following table: 

249 



uNOTE # 032 
page 4 of 42 

Bit 1 
o 

Bit 0 
o Counter/Timers are independent 

o 1 
1 o 
1 1 

CIT l's output (inverted) gates CIT 2 
CIT l's output (inverted) triggers CIT 2 
CIT l's output (inverted) is CIT 2's count input 

The Counter/Timers must be linked before they are enabled. 

PORT SPECIFICATION REGISTERS 

Ports A and B both utilize the following port specification registers: 

Port Mode Specification Register 

7 3 2 

Port A = 177100 
Port B = 177120 

1 o 

A RESET forces all of these bits to O. All bits are read/write. 

Bits 7,6: Port Type Select 

These two bits specify the port type as defined by the 
following table: 

Bit 7 
o 
o 
1 
1 

Bit 6 
o 
1 
o 
1 

Bit port (No handshake) 
Input port with handshake 
output port with handshake 
Bidirectional port with handshake 

Bit 5: Interrupt on Two Bytes (ITB) 

o - Indicates that Interrupt Pending (IP) should be set when 
one byte of data is available for transfer. For an input 
port IP is set when the Input Data Register is full. For an 
output port IP is set when the Output Data Register is 
empty. 

1 - Indicates that IP should be set when two bytes of data are 
available for transfer. For an input port IP is set when 
both the Input Data Register and the Input Buffer Register 
are full. For an output port IP is set when both the Output 
Data Register and the Output Data Buffer are empty. 

This bit must be set to zero for ports specified as bit 
ports, single-buffered ports, or bidirectional ports. 

250 



Bit 4: Single Buffered (SB) 

uNOTE # 032 
Page 5 of 42 

o - Indicates that the port is double-buffered. 
1 - Indicates the the port is single-buffered. 

This bit is always 0 for bit ports. 

Bit 3: Interrupt on Match Only (IMO) 

o - Port operates normally. 
1 - An interrupt is generated when the data moved into the Input 

Data Register or out of the Output Data Register matches the 
pattern specification. 

Bits 2,1: Pattern Mode Specification Bits 

These bits define the operation of the pattern recognition logic 
as shown by the following table: 

Bit 2 
o 
o 
1 

Bit 1 
o 
1 
o 

Disable Pattern Match 
AND Mode 
OR Mode 

1 1 OR-Priority Encoded vector Mode 

Bit 0: Latch on Pattern Match (LPM) or Deskew Timer Enable (DTE) 

When a port is used as a bit port the LPM function is used. 
When a port with handshake is used the DTE function is used. 

LPM: 
o - Pattern matches are detected but the data read from the port 

follows the port pins. 
1 - When a pattern match is detected the input data at the port 

is latched. 

DTE: 
o - The deskew timer is not activated. 
1 - The deskew timer is activated to perform delay functions as 

set in the Port Handshake Specification Register. 

Port Handshake Specification Register 

7 3 2 

Port A == 1 77102 
Port B -- 177122 

251 

1 o 



uNOTE :I 032 
Page 6 of 42 

These bits are ignored if the port is a bit port. A RESET forces all 
bits to O. All bits are read/write. 

Rits 7,6: Handshake Type Specification Bits 

These bits define the type of handshake a port will use as shown 
by the following table: 

Bit 7 
o 
o 
1 
1 

Bit 6 
o 
1 
o 
1 

Interlocked Handshake 
Strobed Handshake 
Pulsed Handshake 
3-Wire Handshake 

The Pulsed and 3-Wire Handshakes must not be specified for 
bidirectional ports. Only one port at a time may use the Pulsed 
Handshake. If one port uses the 3-Wire Handshake the other port 

must be specified as a bit port. 

Bits 5,4,3: REQUEST/WAIT Specification Bits (RWS) 

Bits 

The WAIT function is not implemented on the KXT11-C. These bits 
define the utilization of the REQUEST line as shown by the 
following table: 

Bit 5 Bit 4 Bit 3 
0 0 0 REQUEST disabled 
0 0 1 Not supported 
0 1 1 Not supported 
1 0 0 Special REQUEST 
1 0 1 Output REQUEST 
1 1 1 Input REQUEST 

Only Port A may use the REQUEST capability - Port B must be 
programmed as a bit port. 

2,1,0: Deskew Time Specification Bits 

These bits specify the amount of deskew time to be provided for 
output data. They define the minimum number of Peripheral Clock 
(PCLK) cycles of delay between the output of a new byte of data 
and the handshake logic indicating that new data is available. 
PCLK - 250 ns. 0 PCLK cycles are chosen by setting DTE-O in the 
Port Mode Specification Register. 

252 



Bit 2 Bit 1 
0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

Port Command and status Register 

7 6 I 5 I 
Port 
Port 

Bit 0 
0 
1 
0 
1 
0 
1 
0 
1 

4 3 2 

A - 177020 
B - 177022 

1 0 

uNOTE # 032 
Page 7 of 42 

PCLK cycles 
2 
4 
6 
8 

10 
12 
14 
16 

A RESET forces ORE to 1 and all other bits to O. All bits are 
readable and four are writeable. 

Bit 7: Interrupt Under Service (IUS) 

o - Cleared to indicate that the port is not servicing an 
interrupt. 

1 - Indicates that that the port has been recognized by an 
interrupt acknowledge sequence. 

Bit 6: Interrupt Enable (IE) 

o - Interrupt logic disabled. The port is unable to request an 
interrupt or to respond to an interrupt acknowledge. 

1 - Interrupt logic operates normally. 

Bit 5: Interrupt Pending (IP) 

o - Cleared to indicate that the port does not require service. 
1 - Set to indicate the port needs service because of a pattern 

match, a handshake, or an error. 

Bits 7, 6, and 5 are written using the following codes: 

253 



uNOTE # 032 
Page 8 of 42 

Bit 

Bit 

7 Bit 6 Bit 5 
0 0 0 Null code 
0 0 1 Clear IP and IUS 
0 1 0 Set IUS 
0 1 1 Clea r IUS 
1 0 0 Set IP 
1 0 1 Clear IP 
1 1 0 Set IE 
1 1 1 Clear IE 

4 : Interrupt Error (ERR) 

This bit is set to 1 when using a a bit port with pattern match 
enabled if a second match occurs before the previous match is 
acknowledged. This is a read-only bit. 

Bit 3: Output Data Register Empty (ORE) 

A status bit that indicates when an output port's Output Data 
Register is empty. This bit can only be cleared by writing to 
the data register. This is a read-only bit. 

Bit 2: Input Data Register Full (IRF) 

A status bit that indicates if an input port's Input Data 
Register is full. This bit can only be cleared by reading the 
Input Data Register. This is a read-only bit. 

Bit 1: Pattern Match Flag (PMF) 

If the port pattern match logic is enabled this bit will 
indicate when a match is detected. This bit is read-only. 

Bit 0: Interrupt on Error (IOE) 

o - Disables the generation of an interrupt if an error occurs 
within the pattern match logic. 

1 - Enables the generation of an interrupt if an error occurs 
within the pattern match logic. 

This bit is valid only for bit ports with pattern match logic 
enabled. It is ignored by ports with handshake and should be 
programmed to O. 

BIT PATH DEFINIT~N REGISTERS 

Each port has a set of these registers. Only the four least significant 
bits are valid in the port C registers. 

254 



Data Path Polarity Registers 

uNOTE * 032 
Page 9 of 42 

These registers define whether the bits in a port are inverting or 
non-inverting. These bits are cleared by a RESET and are read/write. 

7 

Date Direction Registers 

Port A = 177104 
Port B = 177124 
Port C = 177012 

o - Non-inverting 
1 =- Inverting 

o 

These registers are ignored by ports with handshake. For bit ports 
they define the data direction for each bit. These bits are cleared 
by a RESET and are read/write. 

7 3 2 

Port A =- 177106 
Port B = 177126 
Port C =- 177014 

o =- Output bit 
1 == Input bit 

Special I/O Control Registers 

1 o 

These registers supply special characteristics to the port's data 
paths. A RESET clears all bits to O. All bits are read/write. 

7 6 I 5 I 4 I 3 I 2 I 1 0 

Port A = 177110 
Port B = 177130 
Port C = 177016 

0 = Normal Input or Output 
1 = Input with l's catcher 

255 



uNOTE: # 032 
Page 10 of 42 

PATTERN DEFINITION REGISTERS 

These registers are used collectively to specify the match pattern for a 
port. A RESET clears all bits to O. All bits are read/write .. 

Pattern Polarity Registers (PPR) 

7 3 2 

Port A - 177112 
Port B - 177132 

1 o 

Pattern Transition Registers (PTR) 

7 3 2 

Port A - 177114 
Port B = 177134 

1 o 

Pattern Mask Registers (PMR) 

Port A = 177116 
Port"B -= 177136 

The pattern specification for each bit is shown in the following 
table: 

PPR 
o 

PORT DATA REGISTERS 

o 
1 
1 
1 
1 

PTR 
o 
1 
o 
o 
1 
1 

PMR 
o 
o 
o 
1 
o 
1 

Bit masked off 
Any transition 
Zero 
One 
One to zero transition 
Zero to one transition 

Ports A and B have a data path that consists of three registers: an 
Input Data Register, and Output Data Register, and a Buffer Reqister. 
The Buffer Register is used to buffer the input or output data of a port 
with handshake. It is also used by bit ports to latch data whE~n pattern 

matching is enabled. 

256 



Port A and B Data Registers 

7 6 5 4 3 2 

Port J\. == 177114 
Port B == 177134 

1 o 

uNOTE # 032 
Page 11 of 42 

The Port C data register consists of two registers: an Input Data 
register and an Output Data register. Because Port C is only 4 bits 
wide the least significant four bits of the data register are used for 
the data path. The four most si9nificant bits are used as a write
protect mask for the four least significant bits. 

Port C Data Register 

I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I 
,.. ,. ,. ,.. 

;j I 
I I 

Bits 7,6,5,4: 0 == writing of corresponding LSB enabled 
1 - writing of corresponding LSB inhibited 

Port C = 177036 

COUNTER/TIMER CONTROL REGISTERS 

Each counter/timer has a set of Counter/Timer Control registers to 
specify the operation of the counter/timers. 

Counter/Timer Mode Specification Registers 

These registers define the modE~ of operation for the counter/timers 
and specify the external contr()l and status lines to provide for it. 
A RESET clears all bits to O. All bits are read/write. 

7 I 6 I 5 I 4 I 3 2 I 1 I 0 

Counter/Timer 1 = 177070 
Counter/Timer 2 = 177072 
Counter/Timer 3 = 177074 

257 



uNOTE # 032 
Page 12 of 42 

Bit 7: Continuous/Single Cycle 

o - When the counter reaches 0 the countdown sequence is 
terminated. 

1 - When the counter reaches 0 the time constant value is 
reloaded and the countdown sequence is repeated. 

Bit 6: External Output Enable (EOE) 

o - No external access. 
1 - The output of the counter/timer is available on the I/O pin 

associated with that counter/timer. (See table 2 for pin 
assignments.) 

Bit 5: External Count Enable (ECE) 

o - No external access. 
1 - The I/O line of the port associated with the counter/timer 

is used as an external counter input. (See table 2 for pin 
assignments.) 

Bit 4: External Trigger Enable (ETE) 

o - No external access 
1 - The I/O line of the port associated with the counter/timer 

is used as a trigger input to the counter/timer. (See 
table 2 for pin assignments.) 

Bit 3: External Gate Enable (EGE) 

o - No external access 
1 - The I/O line of the port associated with the counter/timer 

is used as an external gate input to the counter/timer. 
This allows the external line to suspend/continue the 
countdown in progress by toggling the line. (See table 
2 for pin assignments.) 

Bit 2: Retrigger Enable Bit (REB) 

o - Triggers (external or internal) that occur during a 
countdown sequence are ignored. 

1 - Triggers that occur during a countdown sequence cause a 
new countdown to begin. 

Bits 1,0: Output Duty Cycle Selects 

These two bits select the output duty cycle as shown in the 
following table: 

258 



Bit 1 
o 
o 
1 
1 

Bit 0 
o 
1 
o 
1 

Pulse Output 
One-Shot Output 
Square Wave Output 
Do not uf;e 

uNOTE # 032 
Page 13 of 42 

See figure 2 for a description of each output duty cycle. 

Counter/Timer Command and Status Registers 

Each counter/timer contains a command and status register for 
controlling the operation of thl~ counter/timer. A RESET clears all 
bits to O. 

7 6 5 4 3 2 1 

Counter/Timer 1 - 177024 
Counter/Timer 2 - 177026 
Counter/Timer 3 = 177030 

Bit 7: Interrupt Under Service (IUS) 

o 

The'operation of the this bit is the same as the IUS bit 
described on page *. 

Bit 6: Interrupt Enable (IE) 

The operation of the this bit is the same as the IE bit 
described on page * 

Bit 5: Interrupt Pending (IP) 

This bit is set to 1 to indicate that the counter/timer needs 
to be serviced. It is automatically set to 1 each time the 
counter/timer reaches its terminal count. 

The IUS, IE, IP bits are written by using the codes shown in the 
following table: 

Bit 7 Bit 6 Bit 5 
0 0 0 Null code 
0 0 1 Clear IP and IUS 
0 1 0 Set IUS 
0 1 1 Clear IUS 
1 0 0 Set IP 
1 0 1 Clear IP 
1 1 0 Set IE 
1 1 1 Clear IE 

259 



llNOTE # 032 
PagE~ 14 of 42 

Bit 4: Interrupt Error (ERR) 

This bit is set to indicate that the counter/timer has reached 
a terminal count before the previous terminal count has been 
serviced. 

Bit 3: Read Counter Control (RCC) 

Writing this bit to a 1 causes the contents of the Counter/Timer 
Current Count Register (CCR), which normally follows the down
counter, to be frozen until the least-significant byte of the 
CCR is read. 

Bit 2: Gate Command Bit (GCB) 

o - Halts the countdown sequence. 
1 - starts or resumes the countdown sequence. 

Bit 1: Trigger Command Bit (TCB) 

When written with a 1, this bit causes the down-counter to be 
loaded with the time constant value and a countdown sequence 
to be initiated. 

Bit 0: Count in Progress (CIP) 

This status bit is set to 1 to indicate that a countdown 
sequence is in progress. It is automatically set to 0 when 
the down-counter reaches o. 

Counter/Timer Time Constant Registers 

These registers contain the time constant value that is loaded into 
the down-counter when a trigger is detected. These registers are 16 
bits wide and are accessed as two a-bit registers. (Bit 7 of the 
most-significant byte is bit 15 of the Time Constant register). A 
RESET does not effect these registers. 

Bit 15 Bit 0 
< MSB > < LSB > 

I 7 I 6 5 I 4 I 3 2 1 0 I I 7 6 5 4 3 2 1 I 0 I 
Counter/Timer.. 1 MSB = 177054 Counter/Timer 1 LSB - 177056 
Counter/Timer 2 MSB = 177060 Counter/Timer 2 LSB - 177062 
Counter/Timer 3 MSB = 177064 Counter/Timer 3 LSB - 177066 

260 



Counter/Timer Current Count Registers 

uNOTE # 032 
Page 15 of 42 

These 16-bit registers follow the contents of the appropriate down
counter until a 1 is written into the RCC register. At that time the 
contents of the CCR are frozen until the least-significant byte of the 
CCR is read. A RESET forces the CCR to follow the down-counter again. 

Bit 15 Bit 0 
< MSB > < LSB > 

I 7 I 6 5 4 3 2 1 0 I I 7 6 5 4 3 2 1 I 0 I 
Counter/Timer 1 MSB == 177040 Counter/Timer 1 LSB - 177042 
Counter/Timer 2 MSB - 177044 Counter/Timer 2 LSB - 177046 
Counter/Timer 3 MSB - 177050 Counter/Timer 3 LSB - 177052 

INTERRUPT RELATED REGISTERS 

These registers contain the interrupt vectors output during an interrupt 
acknowledge sequence. Registers are provided for Port A, Port B, one to 
be shared by the Counter/Timers. Another register is provided to 
indicate which devices need service in a polled environment. 

Interrupt vector Registers 

These vectors contain the vector output when the source of an 
interrupt is acknowledged. If Master Interrupt Enable - 1 then the 
vector register returns status when read according to the following 
table: 

Port vector Status 
OR-Priority Encoded vector Mode: 

Bit 3 
x 

Bit 2 
x 

All other modes: 

Bit 3 
ORE 
o 

Bit 2 
IRF 
o 

Bit 1 
x 

Bit 1 
PMF 
o 

Encodes the number of the highest-priority 
bit with Cl match 

Normal 
Error 

Counter/Timer Status 

Bit 2 Bit 1 
0 0 Counter/Timer 3 
O. 1 Counter/Timer 2 
1 0 Counter/Timer 1 
1 1 Error 

261 



uNOTE # 032 
Page 16 of 42 

7 6 5 4 3 2 1 

Port A = 177004 
Port B = 177006 

Counter/Timers = 177010 

o 

The native firmware of the KXT11-C initializes these interrupt vectors 
to the following values: 

Port A - 200 
l?ort B - 204 
Counter/Timers - 210 

Current Vector Register 

When read) this register returns the interrupt vector that would have 
been output by the device during an interrupt acknowledge cycle if its 
lEI input had been high. The vector returned corresponds to the 
highest priority IP independent of IUS. The order of priority is: 
Counter/Timer 3, Port A, Counter/Timer 2, Port B, Counter/Timer 1" If 
no enabled iriterrupts are pending, a pattern of ones is returned. 
This is useful in a polled environment. 

7 o 

Address = 177076 

I/O BUFFER CONTROL REGISTER 

The PIO chip is protected from the connector by a set of buffers. These 
buffers comply with the IEEE 488 electrical standards. The buffers 
allow the ports to configured as inputs or outputs. They also allow the 
ports to be configured as open collectors or active pull-ups. 

[ 15 I 14 I 13 I 12 I 11 10 I 9 I 8 I 7 I 6 5 4 3 

Address = 177140 

Bit 15: PCTT (Cleared on RESET) 

o - Configures the Port C drivers for open collector 
1 - Configures the Port C drivers for active pull-up 

262 

2 1 o 



Bit 14: PABTT (Cleared on RESET) 

uNOTE i 032 
Page 17 of 42 

o - Configures the Port A and B drivers for open collector 
1 - Configures the Port A and B drivers for active pull-up 

Bits 13:10: PC DIR (Cleared on RESET) 

0 - Port C bit is a receiver 
1 - Port C bit is a drivE~r 

Bit 9: PAHN DIR (Cleared on RESE:T) 

0 - Port A high nibble bits ( 4 : 7 ) are receivers 
1 - Port A high nibble bits are drivers 

Bit 8: PALN DIR (Cleared on RESET) 

0 - Port A low nibble bits ( 0: 3 ) are receivers 
1 - Port A low nibble bits are drivers 

Bits 7 : 0: PB DIR (Cleared on RESET) 

0 - Port B bit is a receiver 
1 - Port B bit is a driver 

PROGRAMMING THE I/O PORTS 

This section will describe how to program the I/O ports and provide 
example programs. In particular this section will describe how to use 
the I/O ports in the following modes: as bit ports, as ports with 
handshake, in 16-bit linked mode, and with the DMA controller. The use 
of the pattern recognition logic will also be discussed. 

programming the I/O Ports as Bit Ports 

Using the I/O ports as bit ports provides up to 20 lines for control and 
status. Each bit in ports Band C may be independently configured to be 
an input or an output. Port A must be configured on a nibble (4-bit) 
basis. 

programming the PIO as a bit port is straight-forward. First, the Port 
Mode Specification Register is used to select the port as a bit port 
with/without pattern matching. 'I'hen the Bit Path Definition Registers 
are used to determine the polarity, direction, and special 
characteristics of the bits of the port. If pattern recognition is 
enabled the Pattern Definition Registers must also be initialized. It 
is then a simple matter to write to the output data buffer to provide 
the correct control signals and to read the input data buffer to monitor 
status. 

263 



uNOTE # 032 
Page 18 of 42 

The following program provides an example for using the PIO in the bit 
mode: 

.TITLE PI01.MAC 
j: + 

This program provides an example of how to program the PIO's 
I/O ports as bit ports. This program utilizes the PIO 

; loopback connector (Part #H3021 or 54-16227) which makes the 
following connections: 

AO BO 
A1 B1 

; 

A7 B7 
CO C3 
C1 C2 

; After this program has been assembled and linked on the 
development machine use, the KUI utility of the KXT11-C Software 

; Toolkit to load the program into the KXT11-C to execute as 
; shown in this example: 

SET 2 
LOAD PI01.SAV 
EXECUTE 

; lOOT 

; '001152 
; R2/000000 
; 1154/041101 

001156/042103 
001160/043105 
001162/177507 
001164/041101 
001166/042103 
001170/043105 

.001172/000107 
; 1001174/000000 

. , 
EXIT 

i A non-zero result in R2 indicates that an error has occurred. (Try 
; running the test without the loopback connector). Location 1154 is 

the beginning of the output buffer. Location 1164 is the beginning 
of the input. buffer. 

; .-
Register Assignments 

MIC 
MCC 

177000 
177002 

264 



START: : 

PAMODE 
PAPOL 
PADDIR 
PASIO 
PADATA 

PBMODE 
PBPOL 
PBDDIR 
PBSIO 
PBDATA 

IOCNTL 

MTPS #340 

177100 
177104 
177106 
177110 
177032 

177120 
177124 
177126 
177130 
177034 

177140 

; Initialize PIO 
MOVB #1,MIC 

CLRB MIC 

; Set-up Port A 
CLRB PAMODE 
CLRB PAPOL 
CLRB PADDIR 
CLRB PASIO 

; Set-up Port B 
CLRB PBMODE 
CLRB PBPOL 
MOVB #377,PBDDIR 
CLRB PBSIO 

; Set-up the PIO buffers 
MOV #1400,IOCNTL 

; Initialize GPRs 
MOV #OUTBUF,RO 
MOV #INBUF,R1 
CLR R2 

; ~ush input buffer 
TSTB PBDATA 

uNOT! # 032 
Page 19 of 42 

Inhibit recognition of 
interrupts 

Reset device and inhibit interrupt 
requests 

Enable device (interrupts still 
inhibited) 

Port A: bit port, no pattern match 
Port A bits are non-inverting 
Port A bits are output bits 
Normal output 

Port B: bit port, no pattern match 
Port B bits are non-inverting 
Port B bits are input bits 
Normal input 

configure the PIO buffers for 
A-output and B-input 

Point to data to be output 
Point to input data buffer 
R2 will indicate error status 

; Enable Ports A and B and send the data 
MOVB #204,MCC ; Enable ports A and B 

265 



uNOTE # 032 
Page 20 of 42 

1$: 

2$: 

3$: 

MOVB 
NOP 

MOVB 

(RO)+,PADATA 

PBDATA, (R1 ) + 

; Test to see if done 
TSTB (RO ) 
BPL 1$ 

Move data out of Port A 

. 
and into Port B 

IF (RO) is positive 
THEN transfer another byte 
ELSE check if data is valid 

; Compare original data with received data 
MOV #OUTBUF,RO Point to output data buffer 
MOV #INBUF,R1 Point to input data buffer 

; Test to see if done 
TSTB (RO ) 
BMI 3$ 

CMPB 
BEQ 

INC 

BR 

( RO ) + , ( R1 ) + 
2$ 

R2 

IF (RO) is negative 
THEN done comparing 
ELSE do another compare 

Compare bytes 
IF bytes are equal 

THEN test another pair 
ELSE indicate error 

A non-zero value of R2 indicates 
an error 

Branch here upon completion 

OUTBUF: .BYTE 
. EVEN 

INBUF: .BLKB 

101,102,103,104,105,106,107,-1 

7 

.END START 

266 



uNOTE # 032 
Page 21 of 42 

programming the I/O Ports as Ports with Handshake 

Ports A and B may be configured as ports with handshake to facilitate 
transferring data on a byte-by-byte basis. Port C is used to provide 
the handshake lines. In addition, Port C may use the REQUEST line to 
utilize a DMA controller to transfer the data. See table 1 for a 
description of the Port C handshake lines. Figure 1 shows how two PIOs 
can be connected directly together to transfer data and the handshake 
lines that are utilized. 

PIO Handshake Lines 

OUTPUT INPUT 

\ 
PIO DATA \ PIO 

/ 
/ 

DAV > ACKIN 
ACKIN (----------------- RFD 

- Figure 1 -

The handshakes that are available are: Interlocked, Strobed, Pulsed, 
and 3-Wire. A short description of each handshake type follows: 

When using the Interlocked Handshake any action by the PIO must be 
acknowledged by the external device before the next action can take 
place. In other words, an output port does not indicate that it has new 
data available until the external device indicates that it is ready for 
data. Likewise, and input port does not indicate that it is ready for 
new data until the external device indicates that the previous byte of 
data is no longer available, thereby acknowledging the input port's 
acceptance of the last byte. 

The Strobed Handshake uses external logic to "strobe" data into or out 
of a port. In contrast to the Interlocked handshake, the signal 
indicating that the port is ready for another data transfer operates 
independently of the ACKIN input. External logic must ensure the data 
transfers at the appropriate speed. 

The Pulsed Handshake is used to interface to mechanical devices which 
require data to be held for relatively long periods of time in order to 
be gated in or out of the device. The logic is the same as the 
Interlocked Handshake except that Counter/Timer 3 is linked to the 
handshake logic to add the appropriate delays to the handshake lines. 

267 



uNOTE # 032 
Page 22 of 42 

The 3-Wire Handshake may be used so that one -output port can communicate 
to several input ports simultaneously. This is essentially the same as 
the Interlocked Handshake except that two individual lines are used to 
indicate when an input port is ready for data (RFD) and when it has 
accepted data (DAC). Because this handshake requires three lines only 
one port can use the 3-Wire Handshake at a time. 

Port C Handshake Lines 

Port C Bits 

Port A/B Configuration Pin C3 Pin C2 Pin Cl Pin CO 

Ports A & B - Bit Ports Bit I/O Bit I/O Bit I/O Bit I/O 

Port A - Input or Output RFD or DAV ACKIN REQUEST Bit I/O 
(Interlocked, Strobed, or Bit I/O 
or Pulsed Handshake)* 

Port B - Input or Output REQUEST Bit I/O RFD or DAV ACKIN 
(Interlocked, Strobed, or Bit I/O 
or Pulsed Handshake)* 

Port A or B = Input Port RFD DAV REQUEST DAC 
(3-Wire Handshake) (Output) (Input) or Bit I/O (Output) 

Port A or B = Output Port DAV DAC REQUEST RFD 
(3-Wire Handshake) (Output) (Input) or Bit I/O (Input) 

Port A or B = Bidirectional RFD or DAV ACKIN REQUEST IN/OUT 
(Interlocked or Strobed ' or Bit I/O 
Handshake) 

* Both Ports A & B may be specified as input or output ports with 
the Interlocked, Strobed, or Pulsed Handshakes at the same time 
if neither uses REQUEST. Only one port can use the Pulsed 
Handshake at a time. 

- Table 1 -

When Ports A and B are configured as ports with handshake they must also 
be configured as single- or double-buffered. Double-buffering a port 
allows more time for the interrupt service routine ,to respond to a data 
transfer. A s~cond byte of data is input to or output from the port 
before the interrupt for the first byte is serviced. A single-buffered 
port is used whe~ it is important to have byte-by-byte control over the 
transfer or where it is important to enter the interrupt service routine 
in a fixed amount of time after the data has been accepted/output. 

The REQUEST line may also be used by ports with handshake. This control 
line enables the PIa to signal the DMA controller of the KXTll-C that 
the port wishes to transfer data without CPU intervention. The 
operation of the REQUEST line is dependent on the Interrupt on Two Bytes 

268 



uNOTE # 032 
Page 23 of 42 

(ITS) bit in the Port Mode Specification Register. If ITS - 0 then the 
REQUEST line goes active anytime a byte is available to transfer. If 
ITB - 1 then the REQUEST line does not assert until two bytes are 
available to transfer. The implementation'of the PIO on the KXT11-C 
requires that only Port A be used for DMA transfers. Since the REQUEST 
line utilizes one of the Port C bits Port B must be programmed as a bit 
port when Port A uses the REQUEST facility. 

The following example programs display the capabilities of the PIO used 
as a port with handshake: 

.TITLE PI02.MAC 

; This program demonstrates the ability of the PIO to transfer data 
; on a byte-by-byte basis. The program uses the Interlocked 
; Handshake to transfer data from Port A to Port B. Both ports are 

configured as single-buffered. The PIO loopback connector (part 
; #H3022 or 54-16227) or a functional equivalent is required to 
; successfully run this program. 

; After this program has been assembled and linked on the 
; development machine use the KUI utility of the KXT11-C Software 

Toolkit to load the program into the KXT11-C to execute as 
; shown in this example: 

SET 2 
; LOAD PI02.SAV 

EXECUTE 
'ODT 

; 
001214 

; 1262/065151 
; 001264/066153 

001266/067155 
; 001270/070157 

!001272/000377 
!001274/065151 
1001276/066153 
!001300/067155 

; 1001302/070157 
; 1001304/000000 

; EXIT 

This veri~ies that the contents of the output buffer (location 1262 
; were successfully transferred to the input buffer (location 1274). 

; Register Assignments 

MIC 177000 

269 



uNOTE # 032 
Page 24 of 42 

STAR'r: : 

MCC 

PAVEC 
PASTAT 
PADATA 
PAMODE 
PAHDSH 
PAPOL 
PASIO 

PBVEC 
PBSTAT 
PBDATA 
PBMODE 
PBHDSH 
PBPOL 
PBSIO 

PCPOL 
PCDDIR 

IOCNTL 

MTPS 

MOVB 

CLRB 

MOVB 
MOV 
MOV 

MOVB 
MOV 
MOV 

177002 

177004 
177020 
177032 
177100 
177102 
177104 
177110 

177006 
177022 
177034 
177120 
177122 
177124 
177130 

177012 
177014 

177140 

#340 

#l,MIC 

MIC 

#200,PAVEC 
#OUT,@#200 
#340,@#202 

#204,PBVEC 
#IN,@#204 
#340,@#206 

; set-up Port A 
MOVB #220,PAMODE 
CLRB PAHDSH 
CLRB PAPOL 
CLRB PASIO 
MOVB #300,PASTAT 

; Set-up Port B 
MOVB #120,PBMODE 
CLRB PBHDSH 
CLRB PBPOL 
CLRB PBSIO 
MOVB #300,PBSTAT 

270 

Inhibit recognition of interrupts 

Reset device and inhibit interrupt 
requests from the PIO 

Enable device (interrupts still 
inhibited) 

Set up Port A interrupt vector 
and PSW 

Set up Port B interrupt vector 
and PSW 

Port A: Output Port, single-buffered 
Use interlock handshake 
Port A bits are non-inverting 
Normal output 
Enable Port A interrupts 

Port B: Input Port, single-buffered 
Use interlock handshake 
Port B bits are non-inverting 
Normal input 
Enable Port B interrupts 



OUT: : 

1$: 
2$: 

IN: : 

OUTBUF: 

INBUF: 

uNOTE # 032 
Page 25 of 42 

; Set-up the Port C handshake lines. 
; All handshake lines are configured as inputs - even 
; if they aren~tl 
MOVB #377,PCDDIR Port C bits are inputs 

; Set-up the PIa buffers 
MOV #165400,IOCNTL; configure the PIO buffers for A-out 

; Set-up data areas 
MOV #OUTBUF,RO 
MOV #INBUF,R1 

; Enable Interrupts 
MOVB #224,MCC 
MOVB #200,MIC 
MTPS #0 

B-input, CO,C2-input, C1,C3-output 

Point to Output Buffer 
; Point to Input Buffer 

Enable ports A, S, and C 
Enable MIC 
Enable recognition of interrupts 

; Start the first transfer 
MOVB #200,PASTAT Set IP to initiate a transfer 

BR 

~STB 
BMI 

MOVB 

BR 
MOVB 
MOVB 
RTI 

MOVB 

MOVB 
RTI 

.BYTE 
• EVEN 
.BLKB 

.. END 

(RO) 
1$ 

(RO)+,PADATA 

2$ 
#240, PASTAT' 
#140,PASTAT 

PBDATA, (R1) + 

#140,PBSTAT 

; Wait here for the interrupts 

IF (RO) are negative 
THEN transfers are complete 
ELSE transfer another byte 

Move byte to the Port A output data 
register 

Clear IP when done 
Clear IUS on each pass 

Move byte from Port B input data 
register 

Clear IUS on each pass 

151,152,153,154,155,156,157,160,-1 

10 

START 

271 



uNOTE i 032 
Page 26 of 42 

.TITLE PI03.MAC 

This program is basically the same as PI02.MAC with the 
with the exception that the ports are double-buffered. 

; The PIO loopback connector (part #83022 or S4-16227) or a 
functional equivalent is required to successfully run this program. 

After this program has been assembled and linked on the 
development machine use the KUI utility of the KXT11-C Software 
Toolkit to load the program into the KXT11-C to execute as 
shown in this example: 

,; 
; SET 2 
; LOAD PI03.SAV 

EXECUTE 
; ! OOT 

1001214 
; 11272/065151 
; '001274/066153 
; 001276/067155 

001300/070157 
001302/000377 
001304/065151 

; 001306/066153 
001310/067155 

1001312/070157 
; 1001314/000000 

EXIT 

This verifies that the contents of the output buffer (location 1272 
were successfully transferred to the input buffer (location 1304). 

; Register Assignments 

MIC 177000 
MCC 177002 

PAVEC 177004 
PASTAT 171"020 
PADATA 177032 
PAMODE 177100 
PAHDSH 177102 
PAPOL 177104 
PASIO 177110 

PBVEC 177006 
PBSTAT 177022 
PBDATA 177034 
PBMODE 177120 

272 



START: : 

PBHDSH 
PBPOL 
PBSIO 

PCPOL 
PCDDIR 

IOCNTL 

MTPS 

MOVB 

CLRB 

MOVB 
MOV 
MOV 

MOVB 
MOV 
MOV 

#340 

177122 
177124 
177130 

177012 
177014 

177140 

#l,MIC 

MIC 

#200,PAVEC 
#OUT,@#200 
#340,@#202 

#204,PBVEC 
#IN,@#204 
#340,@#206 

; Set-up Port A 
MOVB #240,PAMODE 
CLRB PAHDSH 
CLRB PAPOL 
CLRB PASIO 
MOVB #300,PASTAT 

; Set-up Port B 
MOVB #140,PBMODE 
CLRB PBHDSH 
CLRB PBPOL 
CLRB PBSIO 
MOVB #300,PBSTAT 

uNOTE # 032 
Page 27 of 42 

Inhibit recognition of interrupts 

; Reset device and inhibit interrupt 
requests from the PIO 

Enable device (interrupts still 
; inhibited) 

; Set up Port A interrupt vecto~ 
and PSW 

Set up Port B interrupt vector 
and PSW 

Port A: Output Port, double-buffered 
Use interlock handshake 

; Port A bits are non-inverting 
Normal output 
Enable Port A interrupts 

Port B: Input Port, double-buffered 
Use interlock handshake 
Port B bits are non~inverting 
Normal input 
Enable Port B interrupts 

; set-up the Port C handshake lines. 
All handshake lines are configured as inputs - even 

; if they aren'tl 
Mova #377,PCDDIR Port C bits are inputs 

; Set-up the PIO buffers 
MOV - #165400, IOCNTL 

; set-up data areas 
MOV #OUTBUF,RO 
MOV #INBUF,R1 

273 

configure the PIO buffers for A-out 
B=input, CO,C2-input, Cl,C3-output 

Point to Output Buffer 
; Point to Input Buffer 



uNOTE # 032 
page 28 of 42 

OUT: : 

1$: 
2$: 

IN: : 

OUTBUF: 

INBUF: 

; Enable Interrupts 
MOVB #224,MCC 
MOVB #200,MIC 
MTPS #0 

; start the first transfer 

Enable ports A, B, and C 
Enable MIC 
Enable recognition of interrupts 

MOVB #200,PASTAT Set IP to initiate a transfer 

SR 

TSTB 
BMI 

MOVB 

MOVB 

BR 
MOVB 
MOVB 
RTI 

MOVB 

MOVB 

MOVB 
RTI 

.BYTE 

. EVEN 

.BLKB 

.END 

(RO) 
1$ 

(RO)+,PADATA 

(RO)+,PADATA 

2$ 
#240,PASTAT 
#140,PASTAT 

PBDATA, (R1)+ 

PBDATA, (R1) + 

#140,PBSTAT 

wait here for the interrupts 

IF (RO) are negative 
THEN transfers are complete 
ELSE transfer another byte 

Move 1st byte to the Port A output 
data register 

Move 2nd byte to the Port A buffer 
register 

Clear IP when done 
Clear IUS on each pass 

Move 1st byte from Port 
register 

Move 2nd byte from Port 
register 

Clear IUS on each pass 

B input data 

B buffer 

151,152,153,154,155,156,157,160,-1 

10 

START 

274 



uNOTE # 032 
Page 29 of 42 

This example shows something a little more practical - one 
; KXT11-C transferring data to another. Two programs follow: 
; one accepts data through Port B using the double-buffered 
; mode (PI04I.MAC); the second one sends data out of Port A 

using the double buffered mode (PI040 .. MAC). In order to 
successfully run these programs the KXT11-Cs must be connected 
by a "straight-thru" ribbon cable which is given a half twist. 
In other words, it should make the same connections that the 

; PIO loopback connector does. (AI-B1,A2-B2, ... A7-B7,CO-C3,C1-C2). 
; 
; Each program should be assembled and linked separately on the 

development machine. Then use the KUI utility of the KXT11-C 
Software Toolkit to load the programs into the KXT11-Cs to execute 

; as shown in this example: 
; 
; SET 3 
; LOAD PI04I.SAV 
; EXECUTE 
; SET 2 

LOAD PI040.SAV 
EXECUTE 
SET 3 

; lOOT 
; 

00113,0 
1152/065151 
001154/066153 

; 001156/067155 
001160/070157 

; 001162/000000 

EXIT 
; 

This verifies that the data was successfully transferred to 
the input buffer of KXT11-C #3. 

; 

;-------------------------;-----------------------------------------------------------------------
.TITLE PI04I.MAC 

; Register Assignments 

MIC 177000 
MCC 177002 

PBVEC 177006 
PBSTAT 177022 
PBDATA 177034 
PBMODE 177120 
PBHDSH 177122 
PBPOL 177124 
PBDDIR 177126 

275 



uNOTE # 032 
Page 30 of 42 

START: : 

IN: : 

PBSIO 

PCDOIR 

IOCNTL 

MTPS 
MOVB 

eLRB 

MOVB 
MOV 
MOV 

MOVB 
eLRB 
eLR 
eLR 
MOVB 

MOVB 

MOV 

MOV 

MOVB 
MOVB 

MTPS 
BR 

MOVB 

MOVB 

MOVB 
RTI 

177130 

177014 

177140 

#340 
#l,MIC 

MIC 

#204,PBVEC 
#IN,@#204 
#340,@#206 

#140,PBMODE 
PBHDSH 
PBPOL 
PBSIO 
#300,PBSTAT 

#377,PCDDIR 

#165400,IOCNTL 

#INBUF,R1 

#220,MCC 
#200,MIC 

#0 

PBDATA, (Rl)+ 

PBDATA, (R1) + 

#140,PBSTAT 

INBUF: .BLKB 10 

.END START 

276 

Inhibit recognition of interrupts 
Reset device and inhibit interrupt 

requests from the PIO 
Enable device (interrupts still 
inhibited) 

Set up Port B interrupt vector 
... and PSW 

Port B: Input Port, double-buffered 
Use interlock handshake 
Port B bits are non-inverting 
Normal input 
Enable Port B interrupts 

Port C bits are inputs 

configure the PIO buffers for A-out 
B=input, CO,C2-input, Cl,C3-output 

Point to input data buffer 

Enable ports Band C 
Enable MIC 

Enable recognition of interrupts 
Wait here for the interrupts 

Move 1st byte from Port B input data 
register 

Move 2nd byte from Port B buffer 
register 

Clear IUS on each pass 



.TITLE PI040.MAC 

; Register Assignments 

MIC 177000 
MCC 177002 

PAVEC 177004 
PASTAT 177020 
PADATA 177032 
PAMODE 177100 
PAHDSH 177102 
PAPOL 177104 
P~~DDIR 177106 
PASIO 177110 

PCPOL 177012 
PCDDIR 177014 

IOCNTL 177140 

START: : 
MTPS #340 
MOVB #1,MIC 

CLRB MIC 

MOVB #200,PAVEC 
MOV #OUT,@#200 
MOV #340,@#202 

MOVB #240,PAMODE 
CLRB PAHDSH 
CLR PAPOL 
CLR PASIO 
MOVB #300,PASTAT 

MOVB #377,PCDDIR 

MOV #165400,IOCNTL 

MOV #OUTBUF,RO 

MOVB #24,MCC 
MOVB #200,MIC 
MTPS #0 

277 

uNOTE # 032 
Page 31 of 42 

Inhibit recognition of interrupts 
Reset device and inhibit interrupt 

requests from the PIO 
Enable device (interrupts still 
inhibited) 

Set up Port A interrupt vector 
... and PSW 

Port A: Output Port, double-buffered 
Use interlock handshake 
Port A bits are non-inverting 
Normal output 
Enable Port A interrupts 

Port C bits are inputs 

configure the PIO buffers for A-out 
B=input, CO,C2=input, C1,C3-output 

Point to output data buffer 

Enable ports A and C 
Enable MIC 
Enable recogn~tion of interrupts 



uNOTE i 032 
Page 32 of 42 

MOVB 
BR 

OUT: : 
TSTB 
BMI 

MOVB 

MOVB 

BR 
1$: MOVB 
2$: MOVB 

RTI 

OUTBUF::.BYTE 

.END 

i200,PASTAT 

(RO) 
1$ 

(RO)+,PADATA 

(RO)+,PADATA 

2$ 
i240,PASTAT 
i140,PASTAT 

Set IP to initiate a transfer 
wait here for the interrupts 

IF (RO) are negative 
THEN all data has been transferred 
ELSE do another transfer 

Move 1st byte to. the Port A output 
data register 

Move 2nd byte to the Port A buffer 
register 

Clear IP when done 
Clear IUS on each pass 

151,152,153,154,155,156,157,160,-1 

START 

278 



uNOTE # 032 
Page 33 of 42 

; The following two programs demonstrate how the DTC may be used 
; to transfer data from the PIO to KXTII-C local memory~ DTC 

transfers may only be accomplished using Port A of the PIO. 
It is not possible to properly eonnect two PIOs with a ribbon 

; cable because the handshake lines will not align correctly when 
; connecting Port A to Port A. Therefore it is necessary to build 
; a caple that makes the following connections: 
; 

; 

; 
; 
; 
; 
; 
; 
; 

Input Port A 
AO (----> 
Al (----> 

A7 

C2 
C3 

(--

(-

(--

> 

> 
> 

output Port A 
AO 
Al 

A7 

C3 
C2 

; It is also necessary to place a jumper between posts M48 and M49 
so that the REQUEST line from the PIO may signal th~ DTC. For more 

; information about 'programming the DTC please refer to Micronote 18. 
; 

After each program has been assembled and linked on the 
development machine use the KUI utility of the KXTII-C Software 
Toolkit to load the programs into a KXT11-C to execute as 

; shown in this example: 
; 
; SET 3 
; LOAD PI05I.SAV 

EXECUTE 
SET 2 

; LOAD PI050.SAV 
EXECUTE 
SET 3 

; ODT 
; 
; 001140 
; 1140/000777 
i 001142/065151 
; 001144/066153 

001146/067155 
; 1001150/070157 
; 1001152/001602 
; ! 
; 

Examinin~the contents of the input buffer (location 1142) 
verifies that the data was successfully transferred. 

; 
;------~--------------------------------------------------------

.TITLE PI05I.MAC 

279 



uNO'l'E # 032 
Page 34 of 42 

START: : 

This program transfers data from Port A of the PIO 
to local memory by utilizing the DTC 

Register Assignments 

MMREG 174470 
CMDREG 174454 
CASTF1 174444 
CAOF1 174440 

MIC 177000 
MCC 177002 

PAVEC 177004 
PASTAT 177020 
PADATA 177032 
PAMODE 177100 
PAHDSH 177102 
PAPOL 177104 
PADDIR 177106 
PASIO 177110 

PCPOL 177012 
PCDDIR 177014 

IOCNTL 177140 

MTPS #340 ; Inhibit recognition of interrupts 

; Initialize the DTC - for more information on the DTC 
; refer to Micronote #18. 
MOVB #154,MMREG 
CLRB CMDREG 
MOV #O,CASTFl 
MOV #RELOAD,CAOF1 
MOVB #l55,MMREG 
MOVB #241,CMDREG 

; Initialize the PIO 
MOVB #l,MIC 

CLRB MIC 

; Set-l::tp Port A 
MOVB #l20,PAMODE 
MOVB #70,PAHDSH 

CLR PAPOL 
CLR PASIO 

280 

Load Master Mode Reg to Disable DTC 
Reset the DTC 
Load the CH1 Register SEG/TAG 
Load the CHl Register Offset 
Load Master Mode Reg to Enable DTC 
Start Chain Channel 1 

Reset device and inhibit interrupt 
requests from the PIO 

Enable device (interrupts still 
inhibited) 

Port A: Input Port, single-buffered 
Use interlock handshake, input 

REQUEST 
Port A bits are non-inverting 
Normal input 



MOVB 

MOVB 

MOV 

MOV 

MOVB 

BR 

#2,PCPOL 

#377,PCDDIR 

#164377,IOCNTL 

#INBUF,R1 

#24,MCC 

uNOTE # 032 
page 35 of 42 

Invert pin C1 - this is the line 
that is used for the REQUEST signal 

Port C bits are inputs 

configure the PIa buffers for A-in 
B=output, CO,C2-input, C1,C3-output 

Point to input data buffer 

Enable ports A and C 

Wait here while the DMA transfers 
take place 

INBUF: .BLKB 10 

; Chain Load Region 

RELOAD: .WORD 001602 Reload Word <Select CARA,CARB,COPC,CM> 

; 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

000020 ; Current Address Register A Seg/Tag 
padata+1; Current Address Register A Offset 

<This local address is the source, 
its address is held constant, since 
the DTC is doing byte transfers specify 
the source address high byte> 

000000 Current Address Register B Seg/Tag 
inbuf Current Address Register B Offset 

<This local address is the destination> 

000010 Current Operation Count <Transfer 8 words> 

000000 Channel Mode Register High 
000001 Channel Mode Register Low 

<No match conditions, do nothing upon 
completion, transfer type - Single Transfer 
CARA = source, byte transfers> 

.END START 

.TI~LE PIOSO.MAC 

; This program transfers data out of Port A of the PIO 
utilizing the DTC 

Register Assignments 

281 



uNO'l?E # 032 
page 36 of 42 

START: : 

MMREG 174470 
CMDREG 174454 
CASTFI 174444 
CAOFI 174440 

MIC 177000 
MCC 177002 

PAVEC 177004 
PASTAT 177020 
PADATA 177032 
PAMODE 177100 
PAHDSH 177102 
PAPaL 177104 
PADDIR 177106 
PASIO 177110 

PCPOL 177012 
PCDDIR 177014 

rOCNTL 177140 

MTPS #340 

; Initialize the DTC 
MOVB #154,MMREG 
CLRB CMDREG 
MOV #O,CASTFI 
MOV #RELOAD,CAOFI 
MOVB #155,MMREG 
MOVB #241,CMDREG 

; Initialize the PIO 
MOVB #l,MIC 

CLRB MIC 

; set-up Port A 
MOVB #220,PAMODE 
MOVB #050,PAHDSH 

CLR PAPOL 
CLR PASIO 

'-MOVB #2,PCPOL 

MOVB #377,PCDDIR 

MOV #165400,IOCNTL 

282 

Inhibit recognition of interrupts 

Load Master Mode Reg to Disable DTC 
Reset the DTC 
Load the CHI Register SEG/TAG 
Load the CHI Register Offset 
Load Master Mode Reg to Enable DTC 
Start Chain Channel 1 

Reset device and inhibit interrupt 
requests from PIO 

Enable device (interrupts still 
inhibited) 

Port A: Output Port, single-buffered 
Use interlock handshake, output 

REQUEST 
Port A bits are non-inverting 
Normal output 

Pin Cl must be inverted - this is 
the line used to signal the DTC 

Port C bits are inputs 

configure the PIO buffers for A-out 
B=input, CO,C2=input, Cl,C3=output 



MOV 

MOVB 

BR 

OUTBUF::.BYTE 
. EVEN 

iOUTBUF,RO 

i24,MCC 

uNOTE i 032 
page 37 of 42 

Point to output data buffer 

Enable ports A and C 

Wait here while the DMA transfers 
complete 

151,152,153,154,155,156,157,160,-1 

; CHAIN LOAD REGION 

RELOAD: .WORD 

. WORD 

.WORD 

.WORD 

.. WORD 

. WORD 

.WORD 

.WORD 

001602 Reload word <Select CARA,CARB,COPC,CM> 

000000 Current Address Register A Seg/Tag 
outbuf Current Address Register A Offset 

; <This local address is the source> 

000020 ; 
padata+l; 

; 

000010 

000000 
000001 

Current Address Register B Seg/Tag 
Current Address Register B Offset 
<This local address is the destination, 

Hold the address, must specify high byte 
for byte transfer> 

Current Operation Count <Transfer 8 words> 

Channel Mode Register High 
Channel Mode Register Low 
<No match conditions, do nothing upon 
completion, transfer type - Single Transfer 
CARA = source, byte transfers> 

.END START 

283 



uNOTE # 032 
page 38 of 42 

PROGRAMMING THE COUNTER/TIMERS 

This section will describe how to program the Counter/Timers and provide 
example programs demonstrating their capabilities. 

Each of the three Counter/Timers provides up to four lines for external 
access. If these external lines are used the corresponding port pins 
must be available and programmed in the proper direction. The following 
table displays which port pins correspond to the Counter/Timer external 
access lines: 

Counter/Timer External Access Lines 

Function CIT 1 CIT 2 CIT 3 

Counter/Timer Output Port B4 Port BO Port CO 
Counter Input Port as Port B1 Port C1 
Trigger Inp\lt Port B6 Port 52 Port C2 
Gate Input Port B7 Port 53 Port C3 

- Table 2 -

The first step in programming a Counter/Timer is to specify which (if 
any) external lines are to be used, the output duty cycle, and whether 
the cycle is continuous or single-cycle. The following figures display 
the available output duty cycles: 

Output Duty Cycles 

If Time Constant Value = 5 

Pulse Output Mode 
-) 500 nS <-

I I I I I I I I I 
T 5 4 3 2 1 T 5 4 

One-Shot Mode ,-
I I I I I I I I I 
T 5 4 3 2 1 T 5 4 

284 



uNOTE # 032 
Page 39 of 42 

If Time Constant Value = 8 

Square Wave Mode 

~ 
I I I I I I I I I I I 
T 8 7 6 5 4 3 2 1 T 8 

- Figure 2 -

Next, the Time Constant Registers must be loaded. Each Counter/Timer 
contains two of these registers which are used to form the 16-bit value 
that is loaded into the down-counter when the Counter/Timer is 
triggered. 

If external lines are to be used then the corresponding port pins should 
be programmed as bit ports with the correct data direction. Finally, 
the Counter/Timer enable bit for that port must be enabled in the Master 
Configuration Control Register. 

The down-counter is loaded and the countdown sequence is initiated when 
the Counter/Timer is triggered. This trigger may occur because the 
Trigger Command Bit (TCB) in the Command and Status Register is set or 
because an external trigger input was asserted. Once the countdown is 
initiated it will continue towards the terminal count as long as the 
Gate Command Bit (GCB) in the Command and status Register is set and the 
Gate Input is held asserted (if it is enabled). If a trigger occurs 
during a countdown sequence the action taken is determined by the 
Retrigger Enable Bit (REB). If REB = 0 then the trigger is ignored, but 
if REB = 1 then the down-counter is reloaded and a new countdown is 
initiated. 

When the terminal count is reached the state of the Continuous/Single 
Cycle bit (C/SC) in the Mode Specification Register is examined. If 
C/SC - 0 then the countdown sequence stops. If C/SC - 1 then the time 
constant is reloaded and a new countdown is initiated. If the Interrupt 
Enable Bit (IE) is set an interrupt request is generated when the 
down-counter reaches its terminal count. If a terminal count occurs 
while the Interrupt Pending Bit (IP) then an error is indicated by the 
Interrupt Error (ERR) bit. 

The following program provides an example of how to program the 
Counter/Timers: 

285 



uNOTE # 032 
Page 40 of 42 

.TITLE CT1.MAC 

This program demonstrates how to utilize one of the Counter/Timers 
; on the KXT11-C. Counter/Timer 1 will be used in this program. 
; This counteritimer is clocked at a 500 ns rate. The time constant 

used for the counter is 50,000. Therefore the countdown sequence 
; will take 25 ms. (500 ns x 50,000 - 25,000,000 ns - 25 ms). The 

interrupt service routine waits until the countdown sequence has 
completed 40 times and then outputs an 'A' out of the console 
port. This should happen approximately one time a second. (25 ms 
x 40 - 1 s). 

; 
; After this program has been assembled and linked on the 
; development machine use the KUI utility of the KXT11-C Software 
; Toolkit to load the program into the KXT11-C to execute as 
; shown in this example: . , 
; SET 2 
; LOAD CT1.SAV 
; EXECUTE 

EXIT 
; 
; Notice that the 'A's keep on coming after you exit KUI~ 

; Register Assignments 

MIC 177000 
MCC 177002 
CTVEC 177010 
CT1CON 177024 
CT1HI 177054 
CT1LO 177056 
CT1MOD 177070 

START: : 
MTPS #340 Disable recognition of interrupts 

MOVB #l,MIC ; Reset PIO 
CLRB MIC Enable PIO (Interrupts disabled) 

MOVB #210,CTVEC 
MOV #ISR,@#210 Initialize Counter/Timer vector 
MOV #340,@#212 ; and ISR address 

CLR R1 Used as a counter 

MOVB -#200, CT1MOD Select continuous mode, no external 
access, pulse output 

MOVB #203,CT1HI CT1HI and CT1LO combine ,to form 
MOVB #120,CT1LO 141520(8) = 50000(10) 

MOVB #100,MCC Enable Counter/Timer 1 

286 



MOVB #200,MIC 
MTPS #0 

BISB #306,CT1CON 

BR 

ISR: 
INC Rl 
CMP Rl,#40. 
BNE 2$ 
CLR Rl 
MOVB #101,@#177566 

;+ 
; The console in this case is 
; development system console. 
; terminal up to SLUl to see 
e_ , 
2$: MOVB #44,CT1CON 

RTI 

.END START 

287 

the 

uNOTE # 032 
page 41 of 42 

Enable PIO interrupts 
Enable recognition of interrupts 

Set IE,GCB,TCB - this starts the 
countdown 

wait here for the interrupts 

Increment the counter 
IF this is not the 40th time 

THEN count again 
ELSE clear the counter and ... 

send an 'A' to the console 

KXTll-C console - NOT the 
Therefore you'll have to hook a 

the ' A's pop out. 

Clear IUS and IP but don't bother 
GCB 



uNOTE i 032 
Page 42 of 42 

RELATED DOCUMENTS 

For further information about the KXTll-C and the PIO please consult the 
following sources: 

KXT11-C Single-Board Computer User's Guide (EK-KXTCA-UG) 

AmZ8036 Counter/Timer, Parallel I/O Technical Manual* 

* This manual may be obtained from Advanced Micro Devices 

288 



uNOTE # 033 

Title: System Configuration of DL-type Devices Date: 28-Jun-85 

Originator: Art Bigler Page 1 of 14 

DL-type devices are single, asynchronous serial line unit (SLU) 
interfaces used on Digital's Q·-bus and UNIBUS processors. On PDP-lIs 
the OL-type SLU is required as thf~ console terminal interface for use 
with console octal debugging technique (ODT), diagnostics, and operating 
system consoles. They are also used to provide interfacing to a wide 
variety of peripherals on both POP-II and VAX processors. 

This MicroNote examines the proper use and configuration of DL-type SLUs 
in system environments. It first discvsses their characteristics, and 
then, some of the applications in which they are used. Lastly, the 
configuration of OL-type SLUs in the system environment is discussed and 
a number of recommendations for their use are presented. 

It should be noted that the examination of a system configuration and 
any resulting recommendations are' based upon the particular application 
of the system. The configuration guidelines presented here are not 
necessarily suitable for all application environments. The system 
designer must determine the extent to which this information is 
a.ppropriate. 

1.0 CHARACTERISTICS OF THE OL-TYPE SLU 

The DL-type SLU is an interface to asynchronous serial peripherals (e.g. 
terminals) consisting of a host bus interface (to the Q-bus or UNIBUS), 
a receiver and transmitter (usually an industry-standard UART), and an 
electrical interface to the peripheral (20 rna. current loop, EIA 
RS-232-C, RS-422, etc.). Additional features (e.g. the line time clock 
register on the UNIBUS DL11 or modem control on the Q-bus OLVE1) mayor 
may not be present on a oL-type SLUe These features have nothing to do 
with the basic function of the SLU which is transmit and receive 
asynchronous serial data (i.e. Modem control is a extension of the 
capabilities of the interface, not a basic function). A block diagram 
of a oL-type SLU is presented in figure 1. 

289 



uNOTE # 033 
Page 2 of 14 

v 

HOST 
BUS 
INTF 

~---) 

<------f 

Q-BUS OR UNIBUS 

ASYNC 
TRANS 
/REC 

1-----) 

<---

Figure 1 

ELECT 
INTF 
TO 
SERIAL 
LINE 

Block Diagram, DL-type SLU 

1.1 DL-TYPE SLU REGISTERS 

TO/FROM 
SERIAL 
LINE 

All DL-type SLUs must implement four registers: two control and status 
registers (CSRs), and two data buffer registers (BUFs). The same base 
configuration of bits within these registers must also be implemented. 
These registers and their functions are listed below: 

1. The receiver control and status register (RCSR) provides a 
minimum of control and status of the receive interrupt 
enable (bit 06) and status of the receiver done flag (bit 
07). The receiver done flag is set by the SLU whenever a 
character is received. It may be polled by software or it 
may generate an interrupt if the receive interrupt enable 
has been set. The receiver done flag is reset by an 
initialization from the host bus or by reading the character 
from the receiver data buffer register. 

2. The receiver data buffer register (RBUF) provides a minimum 
of received character data (bits 00 through 07) and received 
data error information (bits 12 through 15). The received 
data isvalid whenever the receiver done flag is set in the 
RCSR. The error bits are implemented in all DL- type SLUs 
except the DLV11 and provide status information for the 
received data. All DL-type SLUs implement framing error 
(bit 13), overrun error (bit 14), and error summary (bit 
15). Additionally, all DL- type SLUs, except those 

290 



uNOTE # 033 
Page 3 of 14 

implemented with the DC319-1\A DLART, implement parity error 
status (bit 12). Error summary is set whenever any of the 
other error bits are set. Overrun error is set when a newly 
received character is received before the receiver done flag 
is reset. Framing error is set whenever a character is 
received without a valid stop bit, usually by a break 
character. Parity error is set whenever a character is 
received with the incorrect parity, if the interface has 
been configured to check parity. 

3. The transmitter control and status register (TCSR) provides 
a minimum of control and status of the transmit interrupt 
enable (bit 06) and the transmit break enable (bit 00), and 
status of the transmitter ready flag (bit 07). The 
transmitter ready flag is set by the SLU whenever the 
transmitter is ready to transmit another character, or by an 
initialization from the host bus. It may be polled by a 
program or it may generate an interrupt if the transmit 
interrupt enable has been set. The transmitter ready flag 
is res.t by transferring another character to the 
transmitter data buffer register. The transmit break enable 
forces the transmitter to generate a continuous break 
character (continuous space level) while it is set. 

4. The transmitter data buffer register (TBUF) holds a minimum 
of the last character to be transmitted (bits 00 through 
07). Transferring a character to this register resets the 
transmitter ready flag in the TCSR. 

Transfers to these registers are performed by programmed I/O, the result 
of the execution of an instruction by the host processor. The only 
other bus operation a DL-type SLU may initiate is an interrupt from the 
transmitter or receiver. 

Figure 2 provides graphic representations of these registers. 

1 
5 

1 
4 

1 
3 

1 
2 

1 
1 

1 
o 

o 
9 

o 
8 

o 
7 

o 
6 

o 
5 

o 
4 

o 
3 

o 
2 

o 
1 

o 
o 

RC SR [L----'---~--!.-----L.---'----'---.L.-..---iIL----.....l.I----L.I---J....----'------'------A..-~--' 

RECEIVER DONE FLAG .~ L 
Figure 2 

DL-type SLU registers 

291 

RECEIVE INTERRUPT 
ENABLE 



uNOTE # 033 
Page 4 of 14 

RBUF 

TCSR 

1 
5 

1 
5 

1 
5 

1 
4 

1 
4 

1 
4 

1 
3 

1 
2 

1 
1 

1 
o 

o 
9 

o 
8 

o 
7 

o 
6 

o 
5 

o 
4 

o 
3 

o 
2 

o 
1 

o 
o 

LL PARITY ERROR 

FRAMING ERROR 

+------~I-------+ 

RECEIVED 

OVERRUN ERROR 

ERROR SUMMARY 

1 
3 

1 
2 

1 
1 

1 
o 

o 
9 

o 
8 

o 
7 

o 
6 

TRANSMITTER READY FLAG ~J 
TRANSMIT INTERRUPT ENABLE 

1 
3 

1 
2 

1 
1 

1 
o 

o 
9 

o 
8 

o 
7 

o 
6 

Figure 2, continued 
DL-type SLU registers 

292 

o 
5 

o 
5 

CHARACTER 
DATA 

o 
4 

o 
3 

o 
2 

TRANSMIT BREAK 
ENABLE 

o 
4 

I 

o 
3 

TRANSMIT 
CHARACTER 
DATA 

o 
2 

o 
1 

o 
1 

o 
o 

o 
o 



1.2 DL-TYPE SLU ADDRESSES AND VECTORS 

uNOTE # 033 
Page 5 of 14 

DL-type SLUs must implement their addresses and vectors in the following 
manner: 

1. The four registers, RCSR, RBUF, TCSR, and TBUF, occupy four 
contiguous word addresses in the I/O page. The first 
address is called the base address. 

A. RCSR is assigned base address +00. 

B. RBUF is assigned base address +02. 

C. TCSR is assigned base address +04. 

D. TBUF is assigned base address +06 

2. The receive and transmit. interrupt vectors occupy two 
contiguous vectors with the' receive vector always first. 

For the console SLU on a PDP-11 processor the base address is always 
17777560 (octal) and the receive vector is at 60 (octal). DL-type SLUs 
used for applications other than the console SLU are usually assigned 
address and vectors in the floatin9 address and vector spaces. 

1.3 DL-TYPE SLU PROGRAMMING CONSIDERATIONS 

There are two methods of programming DL-type SLUS; polled I/O and 
interrupt driven I/O. 

1. In polled I/O the host software polls, or tests, the 
receiver done flag in the ReSR or the transmitter ready flag 
in the TCSR to determine if a character has been received or 
is ready to be transmitted. If the flag is set the software 
executes an instruction to move the character from the RBUF 
or to the TBUF. The polling is then resumed. Polled I/O is 
used by PDP-11 diagnostics because it is the simplest method 
and requires the least amount of hardware working in a 
system, a definite advantage when attempting to service a 
system which is operating improperly. 

2. In interrupt driven I/O the software sets the receive 
interrupt enable in the RCSR or the transmit interrupt 
enable in the TCSR. If the receiver done flag or the 
transmitter ready flag is set, an interrupt is generated 
through the appropriate vector. Execution is transferred to 
an interrupt service routine (ISR) and an instruction is 

293 



uNOTE # 033 
Page 6 of 14 

executed to move the character from the RBUF or to the TBUF. 
A return from interrupt (RTI) instruction then returns 
control back to the main program. All Digital operating 
systems and most user software utilize interrupt driven I/O 
because processor time is optimized. 

When programming a DL-type SLU, several restrictions must be taken into 
account. Most of these are due to the design of the asynchronous 
receiver and transmitter and its implementation in the SLUe The 
important restrictions are detailed below. 

1. There is only a one character buffer in the receive side of 
the SLUe Therefore, any character which has been received 
must be moved from the RBUF prior to the next character 
being assembled in the receiver. If characters are actually 
being received at the maximum character rate as defined by 
the bit data rate of the serial line, the RBUF must be read 
within one character time or an overflow error will occur on 
the SLU and data will be lost. 

2. The transmitter also has only a one character buffer. 
However, while this restriction may result in the 
transmission of characters at a rate lower than the maximum 
character rate, the transmitter can wait a theoretically 
infinite time for the next character. No data will be lost 
and no errors will occur. 

3. Direct memory access (DMA) I/O has precedence over interrupt 
I/O. Therefore, if a DMA device and DL-type SLU wishing to 
interrupt the processor are both requesting use of the bus, 
the DMA device will be granted it. This does not normally 
cause problems in systems which make use of single-cycle DMA 
transfers. An exception to this is when the system is 
heavily loaded with a number of active DMA devices. 
However, the use of burst-mode DMA or, on the Q-bus, 
block-mode DMA could conceivably lock out the interrupts 
from the SLU for an appreciable length of time. This should 
have little effect on the transmitter since it can wait 
indefinitely for interrupts, but it could have a disastrous 
effect on the receiver, resulting in the loss of data and 
the generation of overrun errors. 

294 



uNOTE # 033 
Page 7 of 14 

1.4 DIGITAL'S DL-TYPE SLUs 

Digital manufactures a variety of DL-type SLUs for both the Q-bus and 
the UNIBUS. The following list is compilation of those currently 
available. 

1. Q-bus compatible, DL-type SLUs 

A. DLV11 - a single 
height module. 
per second, full 
modem control). 
loop serial line 

line, DL-type SLU on one dual 
Data rate from 50 to 9,600 bits 
duplex, data leads only (no 

RS-232-C and 20 mae current 
interfaces. 

B. DLVE1 (formerly DLV11-E) a single line, 
DL-type SLU on one dual height module. Data 
rate from 50 to 19,200 bits per second, full 
duplex with limited modem control. RS-232-C 
serial line interface. 

C. DLVJ1 (formerly DLV11-J) four individual, 
DL-type SLUs on one dual height module. Data 
rate from 150 to 38,400 bits per second, full 
duplex, data leads only (no modem control). 
RS-232-C serial line interface. 

2. UNIBUS compatible, DL-type SLUs 

A. DL11 - single line, DL-type SLU on one quad 
height small peripheral controller (SPC) module. 
Data rate from 50 to 9600 bits per second, full 
duplex. A number of variations are available 
some including modem control and line time clock 
interfaces. RS-232-C and 20 mae current loop 
available. 

3. Digital produces two multifunction modules for the Q-bus, 
the MXV11-A and the MXVI1-B, which contain DL-type SLUs. 
These are intended for the board-level applications where 
RAM and ROM memory and SI,Us in a single compact board are 
required. 

4. Addit~onally, Digital manufeLctures a DL-type SLU on a chip, 
the DC319-AA DLART. The DLART is used in several of 
Digital's systems as the console terminal SLU for processor 
modules such as the KDJ11-B. 

295 



uNOTE # 033 
Page 8 of 14 

2.0 DL-TYPE SLU APPLICATIONS 

The following are examples of the potential uses for DL-type SLUs in 
systems. 

1. In general, DL-type serial line units are required for the 
console device interface on all POP-II processors for three 
functions: 

2. 

A. Console ODT - the console ODT routines in these 
processors can communicate with DL-type 
interfaces only. 

B. Diagnostics - diagnostics which run under XXDP 
and DEC/XII assume the use of a DL-type console 
interface. 

C. Operating system console - the operating systems 
which run on PDP-11 processors require DL-type 
SLUs for the system console. Even if the 
console interface device can be redirected to 
another serial line, as is possible in the RSX 
family of operating systems, the crash and panic 
dumps routines usually require the use of a 
DL-type SLUe 

The reason DL-type interfaces are used for these functions 
is that they are the simplest, most reliable serial line 
unit available. If a system is down, having a DL-type SLU 
as the console interface will almost always eliminate the 
possibility that the problem is with the console interface. 

DL-type SLUs are also used in 
interactive terminal support. 
application is not recommended 
discussed later in this document. 

some systems 
Their use 

for reasons 

to provide 
for this 

which are 

3. Applications requiring the use of a serial hardcopy terminal 
as a low-cost system printer may use the DL-type SLU as the 
interface. 

4. Applications which require immediate attention to a serial 
data stream may require a DL-type SLU as the interface. The 
serial data stream is most often from an instrumentation 
device, ~uch as a thermocouple, in a process control 
environment. 

The next sections examine the configuration of DL-type SLUs in system 
environments. 

296 



3. 0 SYSTEM CONFIGURATION OF DL-TYP:e: SLUS 

uNOTE # 033 
Page 9 of 14 

There are several items which must be considered when configuring 
DL-type SLUs into systems. 

1. The data rate at which the SLU is expected to transfer data 
to and from the serial line, and the impact on the host 
processor's I/O bus. 

2. The aggregate data rate expected from all dev~ces on the 
host processor's I/O bus. This includes the amount and mode 
of DMA activity on the bus and its potential effect on the 
processor's response to the DL-type SLU. 

3. The interrupt priority of the SLU on the host processor's 
bus. 

In the following discussions, ,~e use an example based upon the 
configuration of a DLVJ1 quad SLU in a Q-bus system. with the except~on 
of block-mode DMA (which does not exist on the UNIBUS) the example 1S, 
in general, valid for both Q-bus and UNIBUS PDP-11 and VAX processors. 
It must be remembered, however, that the configuration is largely 
dependent upon the system application which may alter some of the rules 
presented. 

3.1 DLVJ1 DESCRIPTION AND CONSIDEru\TIONS FOR USE 

The DLVJ1 is a dual height Q-bus module consisting of four individually 
programmed RS-232-C/RS-449/RS-423 compatible DL-type SLUs. Although 
they share common Q-bus transceivE~rs and device selection and data 
gating logic, the four SLUs each have their own sets of serial line 
interfaces circuits, Universal Asynchronous Receiver Transmitter (UART) 
circuits, and DC003 interrupt controller circuits. This, in effect, 
gives the system·designer four individual DL-type serial line units each 
with its own set of CSRs and data buffer registers and data rates to 
38.4K bits per second per channel. 

The four DC003 interrupt controllers are configured and wired. in Q-bus 
compatible fashion for bus request level four Only (BR4) devices. That 
is, BIAKI comes in from the bus, through the first DC003, and out as 
BIAKO which then goes to the BIAKI input of the second DC003. The 
second De003 then routes the BIAK signal to the third De003 and the 
third to the-fourth which then routes its BIAKO signal out to the Q-bus 
for continuation of the daisy chain. The Q-bus specification provides 
for two methods of establishing device priority: 

297 



uNOTE • 033 
Page 10 of 14 

1. Distributed arbitration - priority levels are implemented in 
hardware on the device. Devices must monitor all interrupt 
requests with higher priority than their own and pass 
through the interrupt acknowledge if one exists. When 
devices of equal priority request an interrupt 
simultaneously , priority is given to the device 
electrically closest to the processor. 

2. Position-defined arbitration - priority is determined solely 
by electrical position on the bus. The closer a device is 
to the processor, the higher its priority is. Devices which 
use position-defined arbitration must be placed in 
descending bus request order after any devices which 
implement distributed arbitration. 

Digital has produced only one Q-bus device with multiple interrupt 
request levels, the TSV05. All other devices produced to date have 
implemented BR4 only, and depend upon position-defined arbitration for 
their priority. This is largely due to the standard Q-bus interface 
chips' lack of circuitry required to perform the higher level bus 
request monitoring. Due to the implementation of the bus, UNIBUS 
devices do not have this restriction. For further information on the 
subjects of interrupt priorities and device placement consult the PDP-11 
Architecture Handbook (EB-23657) and the Microcomputer Products Handbook 
(EB-26078). 

Receiver done and transmitter done interrupt requests are wired to the 
DC003's so that the four receiver done interrupts have higher priority 
than the four transmitter done interrupts. Elevating the receivers' 
done interrupt priorities over the transmitters' done interrupts helps 
reduce the potential for lost input characters due to receiver data 
overrun errors. Transmitter operation is essentially unaffected, except 
potentially in throughput, since the transmitters will hold their 
interrupt requests indefinitely. This configuration i~ actually 
preferable to that of four individual DL-type interfaces (DLVE1, etc. 
on the Q-bus or DL11 on the UNIBUS) which would have the transmitter 
done interrupts placed between the receiver done interrupts. 

The device address selection and vector address generation circuits 
allow the DLVJ1 to be configured at a number of different base addresses 
and vectors, Channel three may be configured for use as the system 
console device interface and it is this capability, not its cost, that 
has made the DLVJ1 an extremely popular option. 

The serial interfaces are capable of data-Ieads-only interfacing (i.e. 
transmit data, receive data and ground) to external equipment. That is, 
there is no modem control capability in the DLVJ1. This is usually of 
no consequence since the largest use of this device is for local console 
device and terminal interfacing. If the user requires modem control, 
the DLVE1 is available. If the interface is not being used for the 
console terminal, asynchronous multiplexers with modem control such as 
thE~ DzV11 and DHV11 are available and are preferable in almost all 
applications. 

298 



3.2 SLU DATA RATE CONSIDERATIONS 

UNOTE # 033 
page 11,of 14 

The UART used in the DLVJl is the 6402 which is a member of a generic 
UART family in wide use in a large number of Digital and third party 
vendor products, including the DLVE1 and DLV11 Q-bus options and the 
OL11 UNIBUS option. They are very similar to Digital's DLART interface 
chip which is used on the MXV11-B multifunction module, the 
MicroPDP-l1/23 and PDP-l1/23-PLUS processor board (KDF11-Bx), and the 
MicroPDP-11/73 processor board (KDJ11-Bx). 

The 6402 provides one level of buffering on input and output data with 
the implementation of a receiver data holding register and a transmitter 
data holding register respectively. While the level of buffering is 
relatively unimportant to the transmitter due to its ability to wait 
indefinitely for additional characters, it is extremely important to the 
receiver. To illustrate this the following example is used: 

The 6402 provides a receiver register which holds the current, 
incoming character. The data is transferred into thi~ register 
at the bit data rate at which the serial line is runnIng. The 
time required to fill the receiver register can be calculated as 
follows: 

t =·1 / (bit data rate) * (number of bits per character) 

Where t is the character time and the number of bits per 
character includes the start bit, all data bits, parity 
bit if used, and all stop bits. 

picking some common numbers for this example: 

Bit data rate = 9600. bits per second. 
Number of data bits = 8. 
Number of parity bits = O. 
Number of stop bits = 1. 

The character time is therefore: 

t = 1/9600*(1+8+0+1) 

t - 1.041 msec. per character 

Therefore, at a 9600 bits per second data rate, the time from 
the start of transmission of the character to the time the 
character is loaded into the receiver buffer register is 
approximately one millisecond. 

299 



uNOTE # 033 
Page 12 of 14 

If the next character starts transmission immediately, the 
processor has at least one character time before the receiver 
buffer register must be emptied so that it can accept the 
current input character, in this case one millisecond. This 
implies that the receiver done interrupt must be serviced within 
that time also. Provided that the combination of software and 
hardware is capable of servlclng the interrupt within a 
character time the receive data should never overrun. 

Therefore, limiting the serial data rate will help reduce the amount of 
system resources required to service the SLU and optimize processor 
time. Specifically it increases the allowable interrupt response 
latency before data overrun would occur. 

3.3 HOST PROCESSOR AGGREGATE DATA RATE CONSIDERATIONS 

ThE~ above example does not take into account any other bus interrupt or 
D~\ activity which will impact the speed at which the DLVJ1 interrupt is 
serviced. To minimize the effects of the host processor's aggregate 
data rate two configuration rules should be followed: 

1 . The data rate on the DLVJ1 devices should be kept to a 
reasonable limit which is usually considered to be at or 
below 1200 bits per second. This allows additional time for 
the processor to service the receiver done interrupt and 
will keep the the amount of bus activity due to serial line 
interrupts reasonable. 

2. Careful attention should be given to the amount and mode 
(i.e. single cycle, burst, or block) of DMA activity on the 
host processor's bus. Large quantities of DMA traffic mean 
that the processor has less time to service interrupts which 
have a lower priority than DMA operations. Devices doing 
burst and block mode DMA operations may hold the bus for 
long periods of time, causing interrupts to be blocked for 
the duration of the DMA operation. This results in data 
from the receiver being lost or data to the transmitter 
being postponed. 

3.4 INTERRUPT PRLORITY OF THE DL-TYPE SLU 

The DL-type SLU should be configured as the highest priority 
interrupting device on the bus if at all possible. In most cases this 
will result in the SLU being the first device on the bus, with the 
possible exception of the line time clock or BEVNT line. This is 

300 



uNOTE # 033 
Page 13 of 14 

consistent with the MicroPDP-ll's, PDP-ll/23-PLUS's , and the UNIBUS 
processors, which have their console device interfaces very close to the 
beginning of the bus. 

By placing the 
possible, the 
devices on the 
the rest of 
resulting in a 

DL-type SLUs as close .to the beginning of the bus as 
interrupt priority is elevated above that of the other 

bus. This allows interrupt requests to serviced before 
the devices and immediately after the DMA activity, 
reduced possibility of data loss. 

4.0 SUMMARY AND RECOMMENDATIONS 

The DL-type SLUs are required by PDP-II systems as their console 
interface. There are several options which may be used to provide this 
function. Theses include theDLVxx series options on the Q-bus and DLxx 
series options on the UNIBUS. Additionally, several multifunction 
options and processors have DL-type interfaces integrated into them. 
These include the MXVII-A, MXVII-B, KDFII-B and KDJII-B. 

The use of all DL-type SLUs should be limited in most systems (special 
applications may have valid uses of DL-type devices). They should, in 
most circumstances, be used only for the console device interface and 
serial printer applications. The use of an asynchronous multiplexer is 
recommended for all other serial line requirements, excepting special 
applications. 

The use of any DL-type SLU for an interactive terminal on a multiuser 
system is indicative of a poor system configuration. In this case, the 
proper configuration would include asynchronous multiplexers such as 
DZVll's, DZQll's, or DHVll's (or their UNIBUS counterparts) to provide 
efficient handling of terminal interfaces with the minimum of bus 
activity and operating system overhead. 

The use of a DL-type SLU as a low cost printer port is exempt from the 
above statement because it incurs approximately the same overhead as the 
LPVll or LPll-type line printer controller. However, the use of an 
asynchronous multiplexer with DMA output, such as the DHVll, may provide 
a more efficient method of handling printers, depending upon the 
implementation. 

The data rate at which any DL-type SLU operates should be kept to a 
minimum, particularly when receiving data, to ensure that the amount of 
bus activity is as low as possible since these interfaces are interrupt 
intensive. This holds for any inte'rrupt intensive device (parallel I/O 
devices such as DRVlls, etc.) in general. The problem is not that of 
interface limitations but of the amount of bus bandwidth available to 
support the aggregate bus data rate. 

301 



uNOTE # 033 
Page 14 of 14 

The DL-type SLU should be p~aced in as high an interrupt priority 
position as possible to lnsure adequate servicing by software. This 
will not affect DMA activity since it holds priority over bus 
interrupts. The performance of most systems will not be affected by the 
increased priority level of the maximum one or two DL-type interfaces 
which are recommended to be active at one time. 

NeVE!r place any device, including a DL-type interface, on the bus after 
a FtQDX1 disk controller. The RQDX1 does not pass through the DMA and 
interrupt grant lines properly, thus producing unpredictable results and 
often times "hung" devices. 

Recommendations for the DL-type SLUs, and any other interrupt intensive 
devices, are: 

1. Limit their use whenever possible. Use asynchronous 
multiplexers or other more advanced interfaces whenever 
possible. The cost savings of a DLVJ1 over a DZQ11 must not 
overshadow the performance issues. 

2. Limit the rate at which they operate. For DL-type 
interfaces a good limit appears to be 1200 bits per second 
or less although in some applications a higher rate may be 
possible. 

3. Place them so that they have as high an interrupt priority 
as possible, in most cases the highest priority. 

4. If a DL-type SLU is chosen for use, perform the calculations 
as in section 3.2. Make a rational decision as to whether 
the configuration can handle the data rates imposed. 

Following these few recommendations will result in improvE~d system 
performance when configuring DL-type SLUs into systems. For additional 
information consult the appropriate technical manuals, user guides, and 
systems manuals for the specific devices under consideration. 

302 



[ uNOTE. 034 

Title: programming the KXT11-C Multiprotocol SLU Date: 19-Jul-85 

Originator: Scott Tincher Page 1 of 24 

The KXT11-CA single board computer provides a two-channel multiprotocol 
serial line unit. The SLU is implemented with an NEC uPD7201 chip. 
This Micronote will explain the operation of this SLU and provide 
example programs which display its capabilities. The example programs 
will be written in Macro-11 so it is assumed that the programmer is 
familiar with Macro-11 and either the RT-11 or RSX KXT11-C Software 
Toolkits. It should be noted that the DIGITAL operating system 
Micropower/pascal provides a device handler for the uPD7201 chip. 

FEATURES/CAPABILITIES 

The multiprotocol SLU supplies the KXT11-C with the following features 
and capabilities: 

o Two full duplex channels 

Channel A provides full modem control 

Channel B provides data and timing leads only 

o Each channel may be operated in one of three modes: 

Asynchronous 

o 5, 6, 7, or 8 Data bits 

o 1, 1-1/2, or 2 stop bits 

o Odd, Even, or No parity 

o Break gen~ration and detection 

o Interrupt on parity, Overun, or Framing Errors 

Charaster-oriented synchronous 

303 



uNOTE i 034 
Page 2 of 24 

o Monosync, Bisync, and External Sync Operations 

o Software Selectable Sync Characters 

o Automatic Sync Insertion 

o CRC Generation and Checking 

Bit-oriented synchronous 

o HDLC and SDLC Operations 

o Abort Sequence Generation and Detection 

o Automatic Zero Insertion and Detection 

o Address Field Recognition 

o CRC Generation and Checking 

o I-Field Residue Handling 

o Programmable Baud Rates 

o Double Buffered Transmitted Data 

o Quadruply Buffered Received Data 

o Programmable CRC Algorithm 

a Channel A may utilize the DMA controller to transfer data 

REGISTER DESCRIPTION 

The multiprotocol SLU is controlled by manipulating the registers of the 
uPD7201 chip as well as registers in support chips that provide access 
to the baud rate generator and the modem control signals. This section 
will provide a brief description of the registers necessary to program 
the multiprotocol SLU. 

uPD7201 Registers 

This section will describe the registers found in the uPD7201 itself. 
~rhese registers are found in both channels of the uPD7201 unless 
otherwise indicated. 

Control Register 0 

7 6 5 4 3 2 1 o 

304 



Bits 0,1,2: Register Pointer 

uNOTE * 034 
Page 3 of 24 

These bits are used to specify which register will be 
affected by the next Control Register Write or status 
Register Read. After a reset the register pointer is set 
to o. When the register pointer is set to a value other 
than 0 the next control or status access is to the 
specified register, then the pointer is reset to O. 

Bits 3,4,5: Command 

These bits are used to select the command to be sent to 
the uPD7201. A list of these commands follows: 

NULL (000) 
This command has no effect and is used when 
register pointer or issuing a CRC command. 

SEND ABORT (001) 
When operating in the SOLe mod~, this command 
uPD7201 to transmit the SOLC abort code. 

RESET EXTERNAL/STATUS INTERRUPTS (010) 

setting the 

causes the 

Clears any pending external interrupts and reenables the 
latches so that new interrupts may be detected. 

CHANNEL RESET (011) 
After issuing a reset command the receivers and 
transmitters are disabled, the transmitters are set in the 
marking (high) state, and the modem control outputs are 
set high. In addition, all interrupts are disabled, and 
all interrupt and DMA requests are cleared. All control 
registers must be rewritten after a reset. One NOP 
instruction must be issued before writing a new command. 

ENABLE INTERRUPT ON NEXT CHARACTER (100) 
When operating in Interrupt on First Character mode this 
command is issued to re-enable the interrupt logic for the 
next received character. 

RESET PENDING TRANSMITTER INTERRUPT/DMA REQUEST (101.) 
Issue this command to reset a pending Transmitter Buffer 
Becoming Empty interrupt or DMA request without sending 
another character. 

ERROR RESET (110) 
This command resets a Special Receive Condition interrupt. 
It also re-enables the Parity and Overrun Error latches 
that allow you to check for these errors at the end of a 
m.essage. 

END OF INTERRUPT (111) (Channel A only) 

305 



uNOTE # 034 
Page 4 of 24 

When an interrupt request has been issued by the uPD7201 
all lower priority interrupts are blocked to permit the 
current interrupt to be serviced. At some point in the 
interrupt service routine this command must be issued to 
re-enable the daisy chain and permit any pending lower 
priority interrupt requests to occur. 

Bits 6,7: CRC Control Commands 

These commands control the 
generator/checker logic. 

NULL (00) 

operation of the eRC 

This command has no effect and is used when issuing other 
commands or setting the register pointer. 

RESET RECEIVER CRC CHECKER (01) 
This command resets the CRC checker to 0 when the channel 
is in a synchronous mode and resets to all ones when is 
SDLC mode. 

RESET TRANSMITTER CRC GENERATOR (10) 
This command resets the CRC generator to 0 when the 
channel is in a synchronous mode and resets to all ones 
when is SOLC mode. 

RESET IOLE/CRC LATCH (11) 
This command resets the Idle/CRC latch so that when a 
transmitter underrun condition occurs, the transmitter 
enters the CRC phase of operation and begins to send the 
16-bit CRC character calculated up to that point. The 
latch is then set so that if the underrun conition 
persists, idle characters are sent following the CRC. 
After a hardware or software reset, the latch is in the 
set state. 

Control Register 1 

7 6 5 4 3 2 1 o 

Bit 0: External/Status Interrupt Enable 

When this bit is set to one, the uPD7201 issues an 
interrupt-whenever any of the following occur: 

o transition of OCO input 

306 



uNOTE i 034 
Page 5 of 24 

o transition of CTS input 

o transition of synch input 

o entering or leaving synchronous Hunt phase 
break detection or termination 

o SDLC abort detection or termination 

o Idle/CRC la~ch becoming set (CRC being sent) 

Bit 1: Transmitter Interrupt Enable 

When this bit is set to one, the uPD7201 issues an 
interrupt when: 

o The character currently in the transmitter buffer is 
transferred to the shift register (Transmitter Buffer 
Becoming Empty) 

o The transmitter enters Idle Phase 
transmitting sync or flag characters 

Bit 2: Status Affects vector (Channel B only) 

and begins 

This bit must always be programmed to one so that the 
fixed vector programmed into Control Register 2B is 
modified to indicate the cause of the interrupt. 

Bits 3,4: Receiver Interrup~ Mode 

This field determines how the uPD7201 
character receive conditions. 

handles 

RECEIVER INTERRUPTS/DMA REQUEST DISABLED (00) 

the 

The uPD7201 does not issue an interrupt or DMA 
request when a character has been received. 
(Polled Mode). 

INTERRUPT ON FIRST RECEIVED CHARACTER ONLY (01) 
The uPD7201 issues an interrupt for the first 
character received after an Enable Interrupt on 
First Character Command (CRO) has been given. If 
the channel is in DMA mode then a DMA request is 
issued for each character received including the 
first. 

INTERRUPT ON ALL RECEIVED CHARACTERS (10) 
An interrupt is issued whenever a character is 
present in the receive buffer. A DMA request is 
issued if the chclnnel is in DMA mode. A parity 
error is considered a special receive condition. 

307 



uNOTE # 034 
Page 6 of 24 

INTERRUPT ON ALL RECEIVED CHARACTERS (11) 
This mode is the same as above except that a parity 
error is not treated as a special receive 
condition. 

The following are always considered special 
conditions: 

o Receiver Overrun Error 

o Asynchronous Framing Error 

o SOLe End of Message 

receive 

Bits 5,6,7: These bits should always be programmed to O. 

Control Register 2 (Channel A) 

4 3 2 1 o 
Bits 0,1: DMA Mode Select 

Bit 2: 

These bits det~rmine the mode in which channels A and B 
operate. If a channel operates in a non-OMA mode it my 
perform transfers in either polled or interrupt mode. 

Bit 1 Bit 0 Channel A Channel B 

0 0 Non-DMA Non-DMA 
0 1 DMA Non-DMA 
1 0 Illegal Illegal 
1 1 Illegal Illegal 

Priority 

This bit is used to select the appropriate internal 
priorities for interrupts. The Channel A receiver always 
has a higher priority than the Channel A transmitter when 
Channel A is in DMA mode. 

If Channels A and B are both in Interrupt Mode: 

o - RxA > TxA > RxB > TxB > extA > extB 
1 - RxA >-RXB > TxA > TxB > extA > extB 

If Channel A is in DMA mode and Channel B is in Interrupt 
Mode: 

308 



0,1 - RxA > RxB > TxB > extA > extB 

Bits 3,5,6,7: These bits must be programmed to O. 

Bit 4: This bit must always be programmed to 1. 

uNOTE # 034 
Page 7 of 24 

control Register 2 (Programmed in Channel B for both channels) 

[ 7 6 5 4 3 2 1 o 

Bits 0 .. 7: Interrupt vector 

The native firmware of the KXT11-C initializes the uPD7201 
interrupt vector to 70(8). All interrupts use this 
vector. In order to determine the cause of the interrupt 
the uPD7201 must be operated with Condition Affects vector 
enabled. (Control Register 1 - Bit 2). When this bit is 
set the vector is modified to reflect the cause of the 
interrupt. This modified vector is read from status 
Register 2. 

control Register 3 

[ 7 6 5 

Bit 0: Receiver Enable 

o - Disables the receiver 
1 - Enables the receiver 

4 

Bit 1: Sync Character Load Inhibit 

3 2 1 o 

In a synchronous mode, this bit inhibits the transfer of 
sync characters to the receiver buffer. When using the 
uPD7201's CRC checking capabilities this feature should 
only be used to strip leading sync characters preceding a 
message since the load inhibit does not exclude sync 
characters embedded in the message from the CRC 
calculations. Synchronous protocols using other types of 
block checking such as checksum or LRC are free to strip 
embedded sync characters with this bit. 

309 



uNOTE I 034 
Page a of 24 

Bit 2: Address Search Mode 

In SOLC mode, setting this bit places the uP07201 in 
Address Search mode where character assembly does not 
begin until the a-bit character (secondary address field) 
following the starting flag of a message matches either 
the address programmed into CR6 or the global address 
11111111. 

Bit 3: Receiver CRC Enable 

This bit enables (enable - 1) the CRC checker in COP mode 
to allow the selective inclusion or exclusion of 
characters form the CRC calculation. 

Bit 4: Enter Hunt Phase 

The uPD7201 automatically enters Hunt Phase after a reset. 
Setting this bit to 1 causes the uP07201 to re-enter the 
Hunt Phase. 

Bit 5: Auto Enables 

Setting this bit to 1 causes the OCO and CTS inputs to act 
as enable inputs to the receiver and transmitter, 
respectively. 

Bits 6,7: Number of Received Bits/Character 

This field specifies the number of data bits per received 
character: 

Bit 7 Bit 6 Bits/Character 

0 0 5 
0 1 7 
1 0 6 
1 1 a 

Control Register 4 

7 6 5 4 3 2 1 o 

Bit 0: Parity Enable 

Setting this bit to 1 adds an extra data bit containing 
parity information to each transmitted cahracter. Each 
received character is expected to contain this extra bit 
and the receiver parity checker is enabled. 

310 



uNOTE # 034 
Page 9 of 24 

Bit 1: Parity Even/Odd 

o - Odd parity generation and checking 
1 - Even parity generation and checking 

Bits 2,3: Number of stop Bits/Sync Mode 

This field specifies whether the channel is used in a 
synchronous mode or in asynchronous mode. In asynchronous 
mode, this field also specifies the number of stop bits 
used by the transmitter. The receiver always checks for 
one stop bit. 

Bit 3 Bit 

0 0 
0 1 
1 0 
1 1 

2 Mode 

Synchronous mode 
Asynch Mode, 1 stop bit 
Asynch Mode, 1-1/2 stop bits 
Asynch Mode, 2 stop bits 

Bits 4,5: Sync Mode 

These bits select the synchronous protocol to use if the 
channel has been programmed in a synchronous mode. 

Bit 5 Bit 4 Mode 

0 0 Monosync 
0 1 Bisync 
1 0 SDLC 
1 1 External Synchronization 

Bits 6,7: Clock Rate 

Control 

Bit 0: 

These bits specify the relationship between the 
transmitter and receiver clock inputs and the actual data 
rate. When operating in synchronous mode the clock rate 
must be specified as 1X the data rate. 

Bit 7 Bit 6 Clock Rate 

0 0 Clock Rate == 1X Data Rate 
0 1 Clock Rate = 16X Data Rate 
1 0 Clock Rate = 32X Data Rate 
1 1 Clock Rate = 64X Data Rate 

Register 5 

Li I 6 5 4 3 2 1 0 

Transmitter CRC Enable 

311 



uNOTE # 034 
Page 10 of 24 

A 1 enables the CRC generator calculation. By setting or 
resetting this bit just before loading the next character, 
it and subsequent characters are included or excluded from 
the calculation. 

Bit 1: RTS 

In synchronous and SOLC modes, setting this bit to 1 
causes the RTS pin to go low while a 0 causes it to go 
high. In asynchronous mode, setting this bit to 0 does 
not cause RTS to go high until the transmitter is 
completely empty. 

Bit 2: CRC polynomial Select 

A 0 selects the CRC-CCITT Polynomial (X**16 + X**12 + x**5 
+ 1). A 1 selects the CRC-16 polynomial (X**16 + X**15 + 
X**2 +1). The CRC-CCITT polynomial must be selected when 
in SOLC mode. 

Bit 3: Transmitter Enable 

After a reset the transmitted data output is held high 
(marking) and the transmitter is disabled until this bit 
is set. 

Bit 4: Send Break 

Setting this bit to 1 forces the transmitter output low 
(spacing). 

Bits 5,6: Transmitted Bits/Character 

These bits specify the number of data bits per transmitted 
character. 

Bit 7: OTR 

Bit 6 
o 
o 
1 
1 

Bit 5 
o 
1 
o 
1 

Bits/Character 
5 (or less) 
7 
6 
8 

When this bit is 1, the OTR output is active. 

Control Register 6 

7 6 5 4 3 2 1 o 

312 



Bits 0.~7: Sync Byte 1 

uNOTE # 034 
Page 11 of 24 

Sync byte 1 is used in the following modes: 

Monosync: The a-bit character transmitted during 
the Idle Phase. 

Bisync: The least significant a bits of the 16-bit 
transmit and receive sync character. 

External Sync: Sync character transmitted during 
the Idle Phase. 

SOLC: Secondary address value matched to the 
Secondary Address field of the 

Control Register 7 

7 6 5 

Bits 0 .. 7: Sync Byte 2 

SOLC frame when the uP07201 is in Address 
Search Mode. 

4 3 2 1 o 

Sync Byte 2 is used in the following modes: 

Monosync: 
Bisync: 

SOLC: 

Status Register 0 

7 6 

a-bit sync character matched by the receiver. 
Most significant a bits of the 16-bit transmit 
and receive sync characters. 
Must contain the flag value, 01111110, for flag 
matching by the uP07201 receiver. 

5 4 3 2 1 o 

Bit 0: Received Character Available 

When this bit is set, it indicates that one or more 
characters are available in the receiver buffer. Once all 
of the available characters have been read, the uP07201 
resets this bit until a new character is received. By 
utilizing this bit the programmer my run at higher data 
rates than normal because it will be possible to capture 
more that one character per interrupt service routine. 

Bit 1: Interrupt Pending (Channel A only) 

The interrupt pending bit is used with the interrupt 
vector register (status register 2) to make it easier to 
determine the uP07201's interrupt status. In Non-vectored 

313 



uNOTE # 034 
Page 12 of 24 

Interrupt mode, interrupt pending is set when status 
register 2B is read. If status affects vector is enabled 
and interrupt pending is set, the vector read from SR2 
contains valid condition information. 

Bit 2: Transmitter Buffer Empty 

This bit is set whenever the transmitter buffer is empty, 
except during the transmission of the CRC. After a reset, 
the buffer is considered empty and transmitter buffer 
empty is set. 

Bit 3: DCD (Data Carrier Detect) 

This bit reflects the inverted state of the DCD input. 
When DCD is low, the DCD status bit is high. Any 
transition of this bit causes an External/status Interrupt 
request. 

Bit 4: Sync Status 

The bit assumes different meanings depending on the 
operating mode of the uPD7201. 

Asynch mode: Sync Status reflects the inverted state fo 
the Sync input. Any transition· of this bit causes an 
External/Status interrupt request. 

External Sync mode: Sync Status operates in the same 
manner as asynch mode. A low-to-high transition indicates 
that synchronization has been achieved and character 
assembly begins. 

Monosync, Bisync, SDLC modes: Sync Status indicates 
whether the receiver is in the Sync Hunt (bit -1) or the 
Receive Data phase (bit - 0) of operation. 

Bit 5: CTS (Clear to Send) 

This bit reflects the inverted state of the CTS input. 
Any transition of this bit causes an External/Status 
interrupt request. 

Bit 6: Idle/CRC 

This bit i~dicates the state of the Idle/CRC latch used in 
synchronous and SDLC modes. 

Bit 7: Break/Abort 

In async mode, this bit indicates that the detection of a 
break sequence that occurs when the input is held low 

314 



uNOTE # 034 
Page 13 of 24 

(spacing) for more than one character time. This bit is 
reset when the input returns high (marking). 

In SOLC mode, Break/Abort indicates the 
abort sequence when 7 or more ones 
sequence. 

detection of an 
are received in 

Any transition of the Break/Abort 
External/Status interrupt. 

status Register 1 

Bit 0: All Sent 

In async mode, this bit is set when 
empty and reset when a character 
transmitter buffer or shift register. 
SOLC modes, this bit is always 1. 

Bits 1,2,3: SOLC Residue Code 

bit causes an 

the transmitter is 
is present in the 
In synchronous and 

The data portion of an SOLC message can consist of any 
number of bits and not necessarily an integral number of 
characters. Special logic determines and reports when the 
End of Frame flag has been received, the boundary between 
the data field, and the eRC character in the last few data 
characters that were read. 

Bit 4: parity Error 

This bit is set when parity is enabled and the received 
parity bit does not match the sense calculated from the 
data bits. 

Bit 5: Receiver Overrun Error 

This error occurs when the receiver buffer already 
contains three characters and a fourth character is 
completely received, overwriting the last character in the 
buffer. 

Bit 6: eRC/Framing Error 

In Async modem a framing error is flagged when no sop bit 
is detected at the end of a character. 

315 



uNOTE # 034 
Page 14 of 24 

In sync and SOLC modes, this bit indicates the result of 
the comparison between the current CRC result and the 
appropriate check value. 

Bit 7: End of SOLC Frame 

This flag is used in SOLC mode to indicate that the End of 
FRame flag has been received and that the CRe error flag 
and residue code is valid. 

status Register 2 

7 6 5 4 3 2 1 o 

Bits 0 .. 7: Interrupt Vector (Channel B only) 

Reading Status Register 2B returns the 
that was programmed into Control 
Condition Affects Vector is enabled 
vector is modified as follows: 

interrupt vector 
Register 2B. If 

the value of the 

Condition Affects Vector Modifications 

Bit 2 Bit 1 Bit 0 Condition 

1 1 1 No interrupt pending 
0 0 0 Channel B Transmitter Buffer Empty 
0 0 1 Channel B External/Status Change 
0 1 0 Channel B Received Character Available 
0 1 1 Channel B Special Receive Condition 
1 0 0 Channel A Transmitter Buffer Empty 
1 0 1 Channel A External/Status Change 
1 1 0 Channel A Received Character Available 
1 1 1 Channel A Special Receive Condition 

- Table 1 -

Code 111 has two meanings: either Channel 
Receive Condition or no interrupt pending. 
distinguish between the two, the Interrupt 
(SRO) must be examined. 

A Special 
In order to 

Pending bit 

Baud Rate Generator Registers 

Programmable baud rates for channels A and B are supplied by an 
Intel 8254-2 timing controller chip with two counters operating 
at 9.8304 MHz. A third counter that operates at 800 Hz is 
available for general use. This general purpose counter issues a 
level 6 interrupt request to the T-11 via vector 104. 

316 



uNOTE # 034 
Page 15 of 24 

Programming these counters is straightforward. First, 
Control register is initialized to provide the proper 
mode. Then a divider ratio is loaded into a Timer Data 
to obtain the desired baud rate. The divider ratio is 
from the following calculations: 

For synchronous transmission, 

Synchronous bit rate - 9830.4K / divider ratio 

Therefore, 

divider ratio = 9830.4K / synchronous bit rate 

A few examples, 

Bit Rate 

1200 
9600 
38.4K 
76.8K 

Ratio 

8192 
1024 

256 
128 

a Timer 
counting 
register 
obtained 

For asynchronous transmission (assuming that the clock rate is 
divided by 16), 

Asynchronous bit rate = 9830.4K (1/16) / divider ratio 

Therefore, 

divider ratio = 614.4K / asynchronous bit rate 

A few examples, 

Bit Rate 

1200 
9600 
38.4K 
76.8K 

Timer Control Register 

7 6 

Ratio 

5 

512 
64 
16 

8 

317 

4 3 2 1 o 



uNOTE # 034 
Page 16 of 24 

Bit 0: BCD or Binary 

o - Use 16-bit binary counter 
1 - Use BCD counter with four decades 

Bits 1,2,3: Mode Select 

Bits 

The mode of the counter is selected with these bits: 

Bit 3 Bit 2 Bit 1 Mode 

0 0 0 Interrupt on Terminal Count 
0 0 1 Not supported 
0 1 0 Rate Generator 
0 1 1 Square Wave Generator 
1 0 0 Software Triggered Strobe 
1 0 1 Not supported 
1 1 0 Reserved 
1 1 1 Reserved 

4,5: Read/Write Sequence Selection 

The Timer Data registers are programmed on a byte basis. 
These bits determine the sequence in which the Timer Data 
registers interpret the data. 

Bit 5 

o 
o 
1 
1 

Bit 4 

o 
1 
o 
1 

Sequence 

Counter Latch Command 
Read/Write least significant byte only 
Read/Write most significant byte only 
Read/Write least significant byte first, 
then most significant byte 

Bits 6,7: Counter Select 

These bits select which counter is being programmed. 

Bit 7 Bit 6 Counter 

0 0 Counter 0 
0 1 Counter 1 
1 0 Counter 2 
1 1 Read-back command 

KXT Control/Statcrs Register A 

4 3 2 1 o 

This register contains some of the control lines for the uPD7201. 

318 



Bit 0: SYNCM B 

uNOTE i 034 
Page 17 of 24 

o - Channel B receives its clock ~rom the onboard baud 
rate generator 
1 - Channel B receives its clock from an external source 

Bit 1: SLU2B R EN 

o - Party line receive data enabled (Board must be 
properly configured) 
1 - party line receive data disabled 

Bit 2: SYNCM A 

o - Channel A receives its clock from the onboard baud 
rate generator 
1 - Channel A receives its clock from an external source 

Bit 3: Data Terminal Ready (DTR) 

o - DTR is not asserted 
1 - DTR is asserted 

Bit 4: Terminal in Service (Busy) 

o - Terminal in Service is not asserted 
1 - Terminal in Service is asserted 

Bit 5: Diagnostic Prom Enable 

This bit allows two different 1K portions of the onboard 
firmware to be visible at addresses 160000-163777. 

Bit 6: Real Time Clock Enable 

o - The RTC interrupt is inhibited 
1 - The RTC interrupt is enabled 

Bit 7: Counter 2 Interrupt Enable 

o - Counter 2 interrupts are inhibited 
1 - Counter 2 interrupts are enabled 

The following table lists the registers that have been described 
and their add~esses: 

KXT Control/Status Register A 

Timer Control Register 
Timer 2 Data Register 
Timer 1 Data Register 

319 

177520 

175736 
175734 
175732 

Read;Write 

Write only 
Write only 
Write only 



uNOTE # 034 
Page 18 of 24 

Timer 0 Data Register 175730 Write only 
Timer 2 Data Register 175724 Read only 
Timer 1 Data Register 175722 Read only 
Timer 0 Data Register 175720 Read only 

Channel B Transmitter 175716 write only 
Channel B Control Register 175714 Write only 
Channel B Receiver 175712 Read only 
Channel B status Register 175710 Read only 
Channel A Transmitter 175706 Write only 
Channel A Control Register ·175704 Write only 
Channel A Receiver 175702 Read only 
Channel A status Register 175700 Read only 

- Table 2 -

;E»ROGRAMMING EXAMPLES 

'rhe following programs provide 'skeletons' on which to base user 
application programs • 

• TITLE SLU1.MAC 

This program utilizes the uPD7201 to transfer serial data. The 
data will be transfered out of Channel A and received by Channel 
A so a loopback connector is required (Part #H3022 or 54-16229-01) 
This example transfers the data in asynchronous mode using 
interrupts. 

; After this program has been assembled and linked on the 
development machine use the KUI utility of the KXT11-C Software 
Toolkit to load the program into the KXT11-C to execute as 

; shown in this example: 
; 

SET 2 
LOAD SLU1.SAV 
EXECUTE 

; lOOT 
; 

; 

; 

; 

; 

1001206 
'001302/041101 
001304/042103 
001306/043105 
001310/044107 
001312/041101 
001314/042103 
001316/043105 
001320/044107 
001322/000000 
R4/000000 

320 



EXIT 

uNOTE * 034 
Page 19 of 24 

This verifies that the data was successfully transfered. 1302 is 
the address of the transmit buffer and 1312 is the address of the 

; receive buffer. R4.0 verifies that no external or special 
condition interrupts were received. 

. Register Definitions , 

STATA 
RBUFA 
CNTRLA 
TBUFA 

STATB 
CNTRLB 

TIMREG 
TIMERO 

START: : 

This section 

MTPS 

MOV 
MOV 

CLR 

MOV 
MOV 

CLR 

This section 

MOVB 

MOVB 

; This section 

MOVB 
NOP 

MOVB 
NOP 

175700 
175702 
175704 
175706 

175710 
175714 

175736 
175730 

initializes 

#340 

#ISR,@#70 
#340,@#72 

RO 

#TBUF,R2 
#RBUF,R3 

R4 

initializes 

#26,TIMREG 

#64.,TIMERO 

initializes 

#30,CNTRLA 

#30,CNTRLB 

the 

the 

the 

321 

Channel A status register 
Channel A receiver 
Channel A Control register 
Channel A transmitter 

Channel B status register 
Channel B control register 

Timer control register 
Timer o data register 

KXT11-C system environment 

Disable recognition of interrupts 

SLU2 interrupts at location 70 
Let the ISR run at priority 7 

This is the transmit char counter 

R2 points to the transmit buffer 
R3 points to the receive buffer 

This counter keeps track of external 
status changes and special receive 
receive conditions 

bit rate generator 

; Select timer 0, low byte only, 
; mode 3, binary 

This divider selects 9600 bps 

7201 for asynch operation 

Reset Channel A 
; Wait for reset to complete 

Reset Channel B 
Wait for reset to complete 



uNOTE # 034 
Page 20 of 24 

MAIN: : 

ISR: : 

XMIT: : 

MOVB 
MOVB 

MOVB 
MOVB 

MOVB 
MOVB 

MOVB 
MOVB 

CLRB 
MOVB 

MOVB 
MOVB 

MTPS 
MOVB 
BR 

MOVB 
MOVB 

#2,CNTRLA 
#24,CNTRLA 

#4,CNTRLA 
#104,CNTRLA 

#3,CNTRLA 
#301,CNTRLA 

#5,CNTRLA 
#152,CNTRLA 

CNTRLA 
#20,CNTRLA 

#l,CNTRLA 
#36,CNTRLA 

#0 
(R2)+,TBUFA 

#2,CNTRLB 
STATB,-(SP) 

Point to CR2A 
setup bus interface options: 
No DMA, RxA>RxB>TxA ... , Non-Vectored 

Point to CR4 
Set operation mode: 
No parity, asynch mode, 1 stop bit, 

clock rate = 16x data rate 

Point to CR3 
Enable receiver, char length - 8 

Point to CR5 
Enable transmitter, Char length - 8 

Point to CRO 
Reset External/Status Interrupts 

Point to CRl 
Transmit IE, Interrupt on all 

received chars, enable condition 
affects vector 

Enable recognition of interrupts 
Send first character 
Stay here while the interrupts occur 

Point to SR2B 
Store the condition affects vector 

on the stack 

This section inspects the condition affects vector to 
; determine the cause of the interrupt 

ROR 
BCS 

ROR 
BeS 

(SP) 
EXT 

(SP) 
RCV 

i+ 

Rotate bit 0 into the carry bit 
If this bit was set then the 
interrupt was caused by a special 
receive condition or an external/ 
status change 

Rotate bit 1 into the carry bit 
If this bit was set then the 
interrupt was caused by a received 
character 

If neither of the above conditions was 
satisfied then the interrupt must have 
been caused by the transmitter buffer 
going empty 

;-

322 



INC 
CMP 
BEQ 
MOVB 
BR 

1$: MOVB 
BR 

RO 
RO,#8. 
1$ 
(R2)+,TBUFA 
IDONE 
#50,CNTRLA 
IDONE 

uNOTE # 034 
Page 21 of 24 

Increment the xmit char counter 
IF this is the eight char 

THEN branch to 1$ 
ELSE send another char 

and return 
reset pending xmit interrupt 
request - then return 

RCV: : MOVB RBUFA,(R3)+ Store this character 
and return BR IDONE 

EXT: : This program does not take any special action if an 
External/Status interrupt or Special Receive Condition 
occurs. Just note that it occurred (there shouldn't be 
any) and continue. 

INC 

IDONE:: TST 
MOVB 
RTI 

R4 

(SP)+ 
#70,CNTRLA 

Increment the counter 
and return 

Fix the stack 
Issue end of interrupt command 

and return to main program 

TBUF:: .BYTE 
RBUF:: .BLKB 

101,102,103,104,105,106,107,110 
8. 

.END START 

.TITLE SLU2.MAC 

This example program for the uPD7201 transfers serial data via 
a loopback connector (part #H3022 or 54-16229) between Channel 
A's transmit and receive using the DMA controller. No ISR is 
included in this example as it is meant to show how the uPD7201 

; and the DTC may work together. A 'real-life' program should 
; include an ISR which monitors any External or Special Receive 

condition interrupts. For more information regarding the 
programming of the DTC please refer to MicroNote #018. 

After this program has been assembled and linked on the 
; development machine use the KUI utility of the KXT11-C Software 

Toolkit to load the program into the KXT11-C to execute as 
; shown in this example: 

SET 2 
LOAD SLU2.SAV 
EXECUTE 

; .10DT 
; 

1001234 

323 



uNOTE # 034 
Page 22 of 24 

; 

11276/041101 
1001300/042103 
1001302/043105 
001304/044107 
001306/041101 
001310/042103 
001312/043105 
001314/044107 
001316/000000 

EXIT 

This verifies that the data was tranfered successfully.. The 
transmit buffer begins at address 1276 and the receive buffer 
begins at address 1306. 

Register Assignments 

MMREG 
CMDREG 
CASTFO 
CAOFO 
CASTF1 
CAOF1 

STATA 
RBUFA 
CNTRLA 
TBUFA 

STATB 
CNTRLB 

TIMREG 
TIMERO 

174470 
174454 
174446 
174442 
174444 
174440 

175700 
175702 
175704 
175706 

175710 
175714 

175736 
175730 

Master Mode Register 
Command Register 
Chan 0 Chain Address Seg/Tag Field 
Chan 0 Chain Address Offset Field 
Chan 1 Chain Address Seg/Tag Field 
Chan 1 Chain Address Offset Field 

Channel A status register 
Channel A receiver 
Channel A Control register 
Channel A transmitter 

Channel B status register 
Channel B control register 

Timer Control register 
Timer 0 Data register 

START: : 

; This section initializes the KXT11-C system environment 

MTPS 

MOV 
MOV 

#340 

#TBUF,R2 
#RBUF,R3 

Disable recognition of interrupts 

R2 points to the transmit buffer 
; R3 points to the receive buffer 

This section initializes the bit rate generator 

MOVB 

MOVB 

#26,TIMREG 

#64.,TIMERO 

Select timer 0, low byte only, 
mode 3, binary 

This divider selects 9600 bps 

This section initializes the 7201 for asynch operation 

324 



MOVB 
NOP 

MOVB 
NOP 

MOVB 
MOVB 

MOVB 
MOVB 

MOVB 
MOVB 

MOVB 
MOVB 

CLRB 
MOVB 

MOVB 
MOVB 

#30,CNTRLA 

#30,CNTRLB 

#2,CNTRLA 
#2S,CNTRLA 

#4,CNTRLA 
#104,CNTRLA 

#3,CNTRLA 
#301,CNTRLA 

#5,CNTRLA 
#152,CNTRLA 

CNTRLA 
#20,CNTRLA 

#l,CNTRLA 
#16,CNTRLA 

Reset Channel A 

uNOTE # 034 
Page 23 of 24 

Wait for reset to complete 

Reset Channel B 
; Wait for reset to complete 

Point to CR2A 
setup bus interface options: 
Chan A DMA, RxA>RxB>TxA ... , 
Non-Vectored 

; Point to CR4 
Set operation mode: 
No parity, asynch mode, 1 stop bit, 

clock rate - 16x data rate 

Point to CR3 
; Enable receiver, char length - 8 

Point to CRS 
Enable transmitter, Char length - 8 

l?oint to CRO 
Reset External/Status Interrupts 

Point to CR1 
Transmit IE, Interrupt on 1st 

received char and issue DMA request 
enable condition affects vector 

This section initializes the DMA controller 

MAIN: : 

CLRB 

MOV 
MOV 
MOV 
MOV 

MOVB 

MOVB 
MOVB 

BR 

CMDREG 

#O,CASTFO 
#LOADO,CAOFO 
#0,CASTF1 
#LOAD1,CAOF1 

#115,MMREG 

#240,CMDREG 
#241,CMDREG 

Reset the DTC 

Load Chain Address Register Seg/Tag 
Load Chain Address Register Offset 

; Load Chain Address Register Seg/Tag 
Load Chain Address Register Offset 

Load Master Mode Reg to Enable DTC 

start Chain Channel 0 
Start Chain Channel 1 

stay here while the DMA transfers 
; occur 

; Chain Load Region 

LOAD1: .WORD 001602 ; Reload Word <Select CARA,CARB,COPC,CM) 

325 



uNOTE # 034 
Page 24 of 24 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

.WORD 

LOADO: .. WORD 

.WORD 

.WORD 

.WORD 

. WORD 

.WORD 

.WORD 

.WORD 

TBUF:: .BYTE 
RBUF: : • BLKB 

000000 
TBUF 

000020 
TBUFA+1 

000010 

000020 
000001 

001602 

Current Address Regist~r A Seg/Tag 
Current Address Register A Offset 
<This local address is the source> 

Current Address Register B Seg/Tag 
Current Address Register B Offset 
<This local address is the destination> 

Current Operation Count <Transfer 8 bytes> 

Channel Mode Register High 
Channel Mode Register Low 
<No match conditions, do nothing upon 
completion, transfer type - single transfer 
CARA - source, byte transfers> 

Reload Word <Select CARA,CARB,COPC,CM> 

000020 Current Address Register A Seg/Tag 
RBUFA+l ; Current Address Register A Offset 

<This local address is the source> 

000000 Current Address Register B Seg/Tag 
RBUF Current Address Register B Offset 

<This local address is the destination> 

000010 Current Operation Count <Transfer 8 bytes> 

000000 Channel Mode Register High 
000001 Channel Mode Register Low 

<No match conditions, do nothing upon 
completion, transfer type - single transfer 
CARA = source, byte transfers> 

101,102,103,104,105,106,107,110 
10 

.END START 

RELATED DOCUMENTS 

For further information about the KXT11-C and the uPD7201 please 
consult the following sources: 

KXT11-C Single-Board Computer User's Guide (EK-KXTCA-UG) 

uPD7201 Technical Manual * 

* This manual may be obtained from NEC 

326 



uNOTE # 035 

Title: Backplane Expansion/Termination Date: 19-Jul-85 

Originator: Jack Toto Page 1 of 8 

The following MicroNote discusses the termination and expansion 
configurations. These configurations will deal with 18 and 22-bit Q-bus 
processors, backplanes and enclosure!s. Not all cases presented in this 
MicroNote meet FCC regulations, and only those that do are so marked. 
The MicroNote is partitioned as follows: 

1. System configurations 
2. Single Box expansion/termination rules. 
3. Multiple box expansion/termination rules. 
4. Configuration/case reference chart. 
5. Supported single box configuration cases. 
6. Supported multiple box configuration cases. 

1. SYSTEM CONFIGURATION 

The following is a list of single and multiple backplane termination 
rules which must be followed when termination is required. Further 
explanation of these rules can be found in MicroNote # 029, the 
Microcomputers Products Handbook (EB-26078-41), the Microcomputer 
Products Configuration Guide (EB-27318-68), and generally the user guide 
for any of the CPUs. 

The LSI-11 Bus system can be divided into two types: 

1. Systems containing one backplane. 
2. Systems containing multiple backplanes 

Before configuring any system, module/system characteristics must be 
known. These characteristics are: 

1. Power consumption. 
requirements. 

2. AC bus loading. The 
pres~ts to a bus 
terms of ac loads 
capacitance. 

The +5 Vdc and +12 Vdc current 

amount of capacitance that a module 
signal line. AC loading is expressed in 

where one ac load equals 9.35 pf of 

327 



uNOTE # 035 
Page 2 of 8 

3. DC bus loading. The amount of dc leakage current a module j 

presents to a bus signal when the line is high (undriven). DC 
loading is expressed in terms of dc loads where one dc load 
equals 210 rna nominal. 

4. Total backplane loading must include ac and dc loads and the 
power consumption of the processor, modules, terminator module, 
and backplane. 

5. Processor termination, class as either 120 ohms or 240 ohms, as 
follows: 

OPTION 

A. KDF11-A 
B. KDF11-B 
C. KDJ11-A 
D. KDJ11-B 
E. MicroVAX I 
F. MicroVax II 

TERMINATION 

240 OHMS 
120 OHMS 
240 OHMS 
120 OHMS 
240 OHMS 
240 OHMS 

MODEL NAME 

LSI 11/23 
LSI 11/23 + 
LSI 11/73 
PDP 11/73 
MicroVax I CPU 
MicroVax II CPU 

Power consumption, ac loading, and dc loading specifications for each 
module can be found in sources mentioned earlier. 

2. SINGLE BACKPLANE TERMINATION RULES 

1. When using a processor with 240 ohms termination, the bus can 
accommodate up to 20. ac loads (total) before addi tional 
termination is required. If more than 20 ac loads are 
included, the far end of the bus must be terminated with 120 
ohms, although termination of 240 ohms is optimum. Following 
the addition of at least the minimum termination up to 35 ac 
loads may be present in a single backplane. 

2. When using a processor with 120 ohms termination, up to 35 ac 
loads (total) may be present before additional termination is 
required. If more than 35 ac loads are included, the far end 
of the bus must be terminated with 120 ohms. When this has 
been done up to 45 ac loads may be present. 

3. The bus can accommodate up to 20 (total) dc loads. 
true in all cases. 

This is 

4. The bus signal lines on the backplane can be up to 35.6 cm (14 
in) long. 

328 



3. MULTIPLE BACKPLANE TERMINATION RULES 

uNOTE i 035 
page 3 of 8 

1. Up to three backplanes maximum can be configured in a multiple 
backplane system. 

2. The signal lines on each backplane can be up to 25.4 cm (10 in) 
in length. 

3. Terminated multiple backplane systems can accommodate up to 44 
ac loads, for two backplane systems, and 66 ac loads for three 
backplane systems. In multiple backplane systems no more than 
22 ac loads may be present in anyone backplane, nor may any 
unused ac loads from one backplane be added to the next 
backplaneo It is best to load each backplane equally, but if 
not possible, then the first and second backplanes should have 
the highest number of ac loads. 

4. OC loading for all modules in all backplanes cannot exceed 20 
loads (total). 

5. Both ends of the bus must be terminated with 120 ohms. This 
means that the first and last backplanes must have an impedance 
of 120 ohms. To achieve this, each backplane must be lumped 
together as a single point. The resistive termination may be 
provided by combining two of the modules in the backplane; the 
processor providing 240 ohms to ground in parallel with an 
expansion module providing 240 ohms to give the needed 120 ohms 
termination. Alternately a processor with 120 ohms termination 
would require no additional termination on the expansion module 
to provide 120 ohms in the first box. The 120 ohms termination 
in the last box may be provided in three ways. The termination 
resistors may reside either on the bus expansion module, or on 
a bus terminator module such as a BOVl1, or on the backplane 
itself as in the case of the H9275 and H9278 (BA23-A enclosure) 
backplanes. 

6. The cable lengths connecting the first and second backplane are 
61 cm (2 ft) or greater. 

7. The cables connecting the second and third backplane are 122 cm 
(4 ·ft) longer or shorter than the cables connecting the first 
and second backplanes. 

8. The combined length of the cables can not exceed 4.88 m or 16 
feet __ 

9. The cables must have a characteristic impedance of 120 ohms. 

329 



uNOTE ~~ 035 
Page 4 of S 

4. CONFIGURATION/CASE REFERENCE CHART 

rrhe chart below is designed to be a quick reference to a specific CPU 
and system combination. The actual configurations are listed after the 
chart. 

To use the chart below, find the CPU that is in the system and the 
number of backplanes or enclosures that you will be using. The 
intersection of the two parameters will give you the case/variation 
number that is valid for that configuration. Ex. case 1.2 represents 
case 1, with variation 2. 

SYSTEM CONFIGURATION CHART 

PROCESSOR SINGLE BOX TWO BOX THREE BOX 

KDF11-A 240 OHMS CASE 1 CASE 4.1 1S-BIT SYSTEMS 
CASE 2 CASE 4.2 ONLY 

CASE 4.3 

KDFll·-B 120 OHMS CASE 1 CASE 3.1 1S-BIT SYSTEMS 
CASE 2 CASE 3.2 ONLY 

CASE 3.3 
CASE 3.4 

KDJ11-A 240 OHMS CASE 1 CASE 4.1 1S-BIT SYSTEMS 
CASE 2 CASE 4.2 ONLY 

CASE 4.3 

KDJ1l-B 120 OHMS CASE 1 CASE 3.1 lS-BIT SYSTEMS 
CASE 2 CASE 3.2 ONLY 

CASE 3.3 
CASE 3.4· 

MICROVAX I 240 OHMS CASE 2 CASE 3.1 NOT 
CASE 3.2 APPLICABLE 
CASE 3 . 3 
CASE 3.4 

MICROVAX II 240 OHMS CASE 2 CASE 4.1 NOT 
CASE 4.2 APPLICABLE 
CASE 4. 3 

330 



5. SINGLE BOX SYSTEM CONFIGURATION CASES 

uNOTE # 035 
Page 5 of 8 

Single box 18 or 22 bit system configurations can be terminated the 
following two ways. The two configuration cases presented in this 
section will give optimum bus termi.nation respectively to 120 ohm and 
240 ohm processor based systems. 

CASE 1. Use an unterminated enclosure/backplane with a termination 
card such as the BDV11 in the first unused slot. This card should 
be ECO'd to etch revision E, when used in 22-bit systems . This 
card should also have the on board processor and memory diagnostics 
disabled if it is going to be used to terminate a system with the 
KDJ11-A or as the CPU. (refer to MicroNote # 003) The following 
enclosures and backplanes are unterminated: 

OPTION SYSTEM SIZE 

A. BAll-SA 18/22 BIT 
B. BA11-M 18 BIT 
C. BA11-N 18 BIT 
D. H9270-Q 18/22 BIT 

'E. H9281-QA 18/22 BIT 
F. H9273-A 18 BIT 

CASE 2. Use an enclosure/backplane which is already terminated. 
All but one of Digital's backplanes are terminated with 120 ohms, 
and will meet the minimum termination required for additional ac 
loading beyond the capabilitiE!s of an unterminated backplane. The 
one backplane ,that is not terminated at 120 ohms is the one found 
inside of the BA23-A enclosure. This option is terminated at 240 
ohms. This enclosure is the only option that will provide optimum 
termination for 240 ohm CPUs. The following table list all of the, 
terminated enclosures and backplanes available from Digital 
Equipment Corporation: 

OPTION 

A. BA23-A 
B. H9275-A 
C. H9281-QB 
D. H9281-QC 

SYSTEM SIZE 

18/22 bit 
22 BIT, 
18/22 BIT 
18/22 BIT 

6. MULTIPLE BOX SYSTEM CONFIGURATION CASES 

TERMINATION 

240 OHMS 
(not expandable) 120 OHMS 
(not expandable) 120 OHMS 
(not expandable) 120 OHMS 

Multiple box configurations can be up to three boxes maximum. However 
currently only 18-bit three box systE~ms can be configured and terminated 
properly. Therefore cases 3 and 4 dE~scribed below will deal only with 
two box 22-bit system configurations using CPUs of either impedance as 

331 



uNOTE # 035 
Page 6 of 8 

l8-bit systems are sufficiently documented as noted below. 

NOTE 

FOR 18-BIT MULTIPLE BOX SYSTEMS USING A CPU CONTAINING 
EITHER 120 OR 240 OHMS OF IMPEDANCE THE PROCEDURE FOR 
EXPANDING FROM A ONE BOX SYSTEM TO A TWO BOX .SYSTEM IS 
DOCUMENTED IN SEVERAL TECHNICAL RESOURCES, SUCH AS THE 
EXPANSION PRODUCTS HANDBOOK (EB24836-75/68) AND THE 
BA11-N TECHNICAL MANUAL (EK-BA11N-TM-001). A 
PARTICULARLY GOOD RESOURCE FOR 18-BIT MULTIPLE BACKPLANE 
EXPANSION AND TERMINATION GUIDELINES IS THE LSI SYSTEM 
SERVICES MANUAL (EK-LSIFS-SV-005). 

CASE 3. This case deals with a 120 ohm CPU. The 120 ohms of 
impedance on the CPU does not have to matched in the first box, but 
does have to be matched at the far end of the bus which will be 
located in the second box. This will generate four variations to 
the case dealing with 120 ohm CPUs. All four of these variations 
will have in common the BCV2A expansion assembly. This option 
contains two paddle cards (M9404-00 at 0 ohms and the M9405-YA at 
120 ohms) and the BC02D-03 interconnect cable. The card for 
expanding the bus out of the first box (M9404) will be installed in 
the first unused slot of the first backplane, with the cable 
connected to it the bus will be carried to the second backplane. 
Here the bus is terminated by installing the termination card 
(M9405) in the first slot of the second backplane. 

VARIATION 1: Use two unterminated enclosures such as the 
BAll-SA master box and the BA11-SE expansion box, connected 
with the BCV2A. This configuration is not FCC compliant and 
places the task of FCC compliance on the user. FCC compliance 
can be obtained by rack mounting these two enclosures in an 
H9642 cabinet and using the H349 distribution panel to make 
connections from the system to the outside environment, using 
the appropriate option cabinet kits. This cabinet system has 
been tested by Digital Equipment Corporation for FCC 
compliance. 

NOTE 

THE NEXT TWO VARIATIONS MAY BE MADE FCC 
COMPLIANT BY RACK MOUNTING BOTH BOXES IN AN 
H9642 CABINET THAT HAS THE H9544-AJ SIDE 
PANELS. THESE SIDE PANELS ALLOW FOR THE SIDE 
TO SIDE AIR FLOW FOR THE BA23 ENCLOSURE. ALSO 

-INCLUDED IN THIS CABINET CONFIGURATION IS THE 
H3490 PATCH PANEL WHICH IS USED FOR MAKING 
CONNECTIONS FROM THE SYSTEM TO THE OUTSIDE 
ENVIRONMENT VIA THE APPROPRIATE OPTION MODULE 
CABINET KITS. 

332 



uNOTE # 035 
page 7 of 8 

VARIATION 2: Use the BA23 enclosure as the primary enclosure 
and the BA11-SE as the expansion chassis, again using the BCV2A 
as the interconnect for the two enclosures. The termination 
that exists on the BA23 backplane must be removed because the 
that the' CPU has 120 ohms of impedance in the first box and 
does not require any additional termination at this point. The 
BA11-SE has not been tested in this configuration for FCC 
compliance, however using the information in the above NOTE MAY 
produce FCC compliance. 

VARIATION 3: Use two BA23 enclosures. When using two BA23-A 
enclosures and the BCV2A expansion assembly option the 
termination from both backplanes must be removed. This is due 
to the fact that the 120 ohms of CPU impedance does not have to 
matched in the first backplane of a multiple backplane system 
and that the BCV2A will put the required termination into the' 
last backplane of this configuration. 

VARIATION 4: A final variation to the 120 ohm CPU system would 
be to follow the same scenario as in the first three 
variations, but using a mix of some terminated and untermiriated 
backplanes as opposed to system enclosures. These backplanes 
and their termination states are~ listed in cases one and two. 

CASE 4. This case deals with the 240 ohm CPUs. As stated in the 
termination rules for 240 ohms CPUs, the processors impedance must 
be matched in the first box. This would bring the total impedance 
in the first box to 120 ohms which is the ideal impedance. This 
120 ohms from the first box, would be matched at the far end of the 
bus which will be located in the second box. Configurations with 
240 ohm CPUs have three variations. All of the case 4 variations 
will have in common the BCV2A expansion assembly. The installation 
of this option is explained above, in the section introducing two 
box systems. 

VARIATION 1: This case variation uses the BA23 enclosure as 
the primary box and expands into a BA11-SE. Using this 
configuration requires that the termination on the backplane of 
the BA23 be left in. This will provide for an optimum 
impedance match in the first box. The bus will be terminated 
at the far end in the second box via the expansion assembly 
termination card (M940S-YA). This configuration as is will not 
be FCC compliant however following the guide lines from the 
CASE 3 variations FCC compliance MAY possibly be achieved. 

VARIATION 2: The two enclosures used here will be the BA23 
system box and the BA23 expansion box. While this 
configuration resembles case 4 with variation 1, the only 
change will be the removal of any termination from the second 
(expansion) backplane. Interconnect between the two boxes and 
FCC compliance can be achieved as described. 

333 



uNOTE # 035 
Page 8 of 8 

NOTE 

WHEN CONFIGURING MULTIPLE BACKPLANE SYSTEMS 
USING THE BA23-A BOX WITH THE RQDXl RD/RX 
CONTROLLER,INSTALLED, CONSIDERATION SHOULD BE 
GIVEN TO THE PLACEMENT OF THE CONTROLLER AND 
ITS RELATIONSHIP TO THE DEVICES THEMSELVES. 
FURTHER WHEN USING MULTIPLE BA23-A ENCLOSURES 
IT BECOMES POSSIBLE TO HAVE THE BEVNT LINE FROM 
BOTH OF THE POWER SUPPLIES TO BE ACTIVE AT THE 
SAME TIME. THERE SHOULD ALWAYS BE ONLY ONE 
BEVNT LINE ACTIVE AT ANYTIME, THEREFORE CARE 
MUST TAKEN TO AVOID THIS CONFLICT. THIS 
PROBLEM IS AVOIDED WHEN USING A BA23-C AS THE 
SECOND BOX. 

VARIATION 3: This final case 4 variation deals with the use of 
terminated and unterminated backplanes rather than enclosures. 
Using a mix of these products the configurations would resemble 
the first two for case 4, and would follow the same rules for 
proper termination. 

334 



uNOTE # 036 

Title: MicroVMS Revealed Date: 19-Jul-85 

Originator: Edward P. Luwish Page 1 of 25 

ABSTRACT 

This MicroNote explains the contents of the MicroVMS 
distribution kit as well as listing the "Full" VMS files 
not included in said kit. The description is of 
MicroVMS V4.1M and VAX/V]~S V4.1, but will apply, with 
minor changes, to later revisions of VMS V4. 

DESCRIPTION OF THE COMPONENTS OF THE MICROVMS KIT 

The MicroVMS kit comes in three parts a standalone BACKUP piece 
(currently three diskettes), the BASE system (which is copied to a 
blank, formatted hard disk by the standalone BACKUP) and a collection of 
additional pieces which are addE~d to the system (using VMSINSTAL) as 
though they were layered products. These pieces are labeled UTIL, USER, 
PROG and SYSP. Another piece, described here but purchasable 
separately, is NET (DECnet). Note that the tape distribution contains 
all these components (except DECnE~t) on a single volume - even so, the 
partitioning is the same. 

The installation procedure for MicroVMS is simple first boot the 
standalone BACKUP volume, use it to copy the BASE system to the hard 
disk, then boot and log into the system thus built. In many cases, no 
other files need be included on the hard disk. If necessary, additional 
options can be added to the system using VMS INSTAL and the remaining 
pieces of the distribution kit. The following sections describe the 
components, starting with the Base system. 

The files are divided into classes according to their usefulness in a 
turnkey runtime environment. Class I was established experimentally, as 
described in MicroNote # 37 - "In Search of NanoVMS". The remaining 
classes represent the author's opinion, rather than defining a 
hierarchy, and were based on the author's experiences with minimum 
runtime environments. Your environment may be somewhat different. 

335 



uNOTE # 036 
Page 2 of 25 

FILES INCLUDED IN THE BASE SYSTEM KIT 

Class I files -
The following BASE SYSTEM files are required if a system is to boot up 
at all. The assumption is that the boot disk is an RQDX or other MSCP 
device. 

sys$system:DCL.EXE 

sys$system:DUDRIVER.EXE 
sys$system:FI1BXQP.EXE 

sys$system:FPEMUL.EXE 
sys$system:INSTALL.EXE 
sys$system:JOBCTL.EXE 

sys$system:LOGINOUT.EXE 

sys$system:MTAAACP.EXE 

sys$system:PDDRIVER.EXE 

sys$system:PUDRIVER.EXE 
sys$system:RMS.EXE 
sys$system:RUNDET.EXE 

sys$system:SCSLOA.EXE 

sys$system:SET.EXE 

sys$system:SETPO.EXE 

sys$system:STARTUP.COM 

sys$system:SYS.EXE 
sys$system:SYSBOOT.EXE 

sys$system:SYSGEN.EXE 

sys$system:SYSINIT.EXE 
sys$system:SYSLOAUV1.EXE 
sys$system:SYSLOAUV2.EXE 

sys$system:TTDRI~ER.EXE 
sys$system:TUDRIVER.EXE 

sys$system:VAXEMUL.EXE 
sys$system:VAXVMSSYS.PAR 

- Command language interpreter 
(Executes startup command file) 

- Class (protocol) driver for MSCP devices 
- File ·structure and volume structure 

(Extended QIO Processor) 
- Emulate floating point instructions 
- utility that installs known images 
- Job controller/symbiont manager 

(Creates detached process for LOGINOUT) 
- Login/logout utility 

(Needed for response to unsolicited 
input from non-logged-in terminals) 

- Magnetic tape ancillary control process 
(Required if system is booted from TK50) 

- Pseudo-disk driver for bootstrap 
(Required if system is booted from TK50) 

- Port (physical) driver for MSCP devices 
- Record Management Services 
- Runs detached images 

(Needed to run JOBCTL.EXE) 
- Loadable routines used by System 

Communication Services 
(needed by MSCP, etc .. ) 

- Processes many SET commands 
(Needed frequently by STARTUP. COM) 

- Processes SET MESSAGE command 
(Needed frequently by STARTUP. COM) 

- System-startup DCL command procedure 
(Creates a standard VMS environment) 

- Operating System image file 
- System bootstrap utility 

(Sets up system parameters prior to 
invocation of STARTUP.COM) 

- System customization utility 
(Loads drivers, sets system parameters) 

- Operating System Initialization image 
- MicroVAX I-specific initialization 
- MicroVAX II-specific initialization 

(Pick only one of the above two files) 
- Terminal driver (including console) 
- Class (protocol) driver for TMSCP tapes 

(Required if system is booted from TK50) 
- Emulate VAX instructions not in uVAX arch. 
- System parameter file 

(Used by SYSGEN.EXE and SYSBOOT.EXE) 

336 



Class I files - (continued) 

uNOTE # 036 
Page 3 of 25 

sys$system:VMOUNT.EXE - Volume mount utility 
(Needed to mount system and user disks) 

sys$library:DCLTABLES.EXE - Command-parsing tables 
(Required by DCL.EXE) 

sys$library:LBRSHR.EXE - Runtime shareable library for Librarian 
(Required by INSTALL.EXE) 

sys$library:LIBRTL.EXE - Runtime shareable library of common 
system support routines 
(Required by Job Controller) 

sys$library:LIBRTL2.EXE - Runtime shareable library of common 
system support routines (Part 2) 
(Required by Job Controller) 

sys$library:MOUNTSHR.EXE - MOUNT shareable image 
(Required by VMOUNT) 

sys$library:SCRSHR.EXE - V3.x screen management package 
(Required by SYSGEN.EXE) 

sys$manager:VMSIMAGES.DAT Data file for installing known images 

sys$message:SYSMSG.EXE - System error messages 
(required for boot up) 

sys$message:SYSMGTMSG.EXE - ACC, EDIT/ACL, BACKUP, INSTALL, 
MONITOR and AUTHORIZE error message file 
(required for boot up) 

337 



uNOTE # 036 
Page 4 of 25 

Class IA files -
These files are required for proper system initialization and orde~ly 
shutdown, but will not prevent a system from booting if absent: 

sys$system:DISMOUNT.EXE - Volume dismount utility 
(Required for orderly system shutdown 
or disk changing) 

sys$system:OPCCRASH.EXE - System shutdown utility 
(Required for orderly system shutdown) 

sys$system:SHUTDOWN.COM - System shutdown DCL command procedure 
(Required for orderly system shutdown) 

sys$system~UVSTARTUP.COM - Processor-specific startup commands 
(Required for orderly system startup) 

sys$library:DISMNTSHR.EXE - DISMOUNT shareable image 
sys$library:MTHRTL.EXE - Math support runtime shareable library 

(required by an image invoked by 
SHUTDOWN. COM) 

sys$library:UVMTHRTL.EXE - MicroVAX version of MTHRTL 

sys$manager:SYSTARTUP.COM - Site-specific startup commands 
(Required for Qrderly system startup) 

sys$manager:SYCONFIG.COM - Required for orderly system startup 
sys$manager:SYSHUTDWN.COM - Site-specific shutdown commands 

(Required for orderly system shutdown) 

338 



Class IB Files -

uNOTE # 036 
Page 5 of 25 

These files are required by optional hardware: 

sys$system:ANALYZBAD.EXE 

sys$system:BADBLOCK.EXE 

sys$system:DLDRIVER.EXE 
sys$system:DZDRIVER.EXE 
sys$system:MTAAACP.EXE 

sys$system:SMGMAPTRM.EXE 

sys$system:SYSLOAWS1.EXE 

sys$system:SYSLOAWS2.EXE 

sys$system:TERMTABLE.EXE 

sys$system:TUDRIVER.EXE 

sys$system:YFDRIVER.EXE 

- ANALYZE/MEDIA image 
(Required only for non-MSCP disk support) 

- Dynamic bad block Files-11 ACP subprocess 
(Required only for non-MSCP disk support) 

- RL02 Disk Driver 
- DZV11 Serial Interface Driver 
- Magnetic tape ancillary control process 

(Required for tape support) 
- TERMTABLE global section - runs at 

system startup. (Required for video 
terminal support using VMS screen 
management package) 

- Graphics display initialization 
(RequirE~d for VAXstation I support only) 

- Graphics display initialization 
(RequirE~d for VAXstation II support only) 

- Compiled terminal definitions file 
(Required for te~minal support) 

- Class (protocol) driver for TMSCP tapes 
(Required for TK50 support only) 

- DHVll Serial Interface Driver 

339 



uNOTE # 036 
Page 6 of 25 

Class II files -
These files MAY be required by user applications or layered products, 
since they depend on which high-level language or operating system 
features are used: [Note that C and ADA are absent their runtime 
licenses are separate from, and in addition to, that of VMS] 

sys$library:BASRTL.EXE 
sys$library:BASRTL2.EXE 
sys$library:CDDSHR.EXE 

- Runtime shareable library - BASIC 
- Runtime shareable library - BASIC 
- Required by layered products using the 

Common Data Dictionary - such as 
Datatrieve 

sys$library:COBRTL.EXE - Runtime shareable library - COBOL 
sys$library:ENCRYPSHR.EXE - Dummy encryption module 

sys$library:FORRTL.EXE 
sys$library:PASRTL.EXE 
sys$library:PLIRTL.EXE 
sys$library:RPGRTL.EXE 
sys$library:SMGSHR.EXE 
sys$library:VMSRTL.EXE 

(Required by layered products that can 
optionally use DES data encryption) 

- Runtime shareable library - FORTRAN 
- Runtime shareable library - PASCAL 
- Runtime shareable library - PL/I 
- Runtime shareable library - RPG II 
- VMS screen management package 
- Old-f~rmat VMS runtime library 

(Required by V3.x applications) 

sys$message:CLIUTLMSG.EXE - ANALYZE/MEDIA, EXCHANGE, MAIL, PHONE, 
PRINT, SUBMIT, RUN, SET, SHOW and 
SEARCH error messages. 

sys$message:FILMNTMSG.EXE - ANALYZE/OBJECT, ANALYZE/IMAGE, 
EDIT/FDL, ANALYZE/DISK error messages 

sys$message:PASMSG.EXE - PASCAL language error messages 
sys$message:PLIMSG.EXE - PL/I language error messages 
sys$message:RPGMSG.EXE - RPG language error messages 
sys$message:SHRIMGMSG.EXE - CONVERT, DCX (library de/compression 

utility), FDL, SORT, SMGSHR and EDT 
error messages 

340 



Class IIA files -

uNOTE # 036 
Page 7 of 2S 

These are use.r utilities that can be called by application programs even 
though there may exist no way to invoke them from the terminal by DeL 
command: 

sys$library:CRFSHR.EXE 

sys$iibrary:DCXSHR.EXE 
sys$library:EDTSHR.EXE 

sys$library:FDLSHR.EXE 

sys$library:SORTSHR.EXE 

Class III files -

- Cross-Reference shareable image 
(Required by compilers & linker if 
cross-reference option is invoked) 

- Data de/compression support 
- Callable editor 

(Required by EDT.EXE) 
File Description Language parsing 
shareable image 
(Required by CREATEFDL.EXE and EDF.EXE) 

- VAX Sort/Merge Runtime library 
(Required by SORTMERGE.EXE) 

These are often used to diagnose or maintain systems in the field. They 
can be used to adapt systems to changing user need on an interactive 
basis. Some applications call these as part of their operation. 

sys$system:BACKUP.EXE 
sys$system:CHECKSUM.EXE 

sys$system:ERRFMT.EXE 
sys$system:LINK.EXE 

sys$system:MODPARAMS.DAT 

sys$system:PATCH.EXE 

sys$system:SUMSLP.EXE 

- Backup utility 
- Used during installation of 

VAX/VMS updates 
- Error logging facility 
- Linker 

(Development/upgrade utility) 
- Site modifactions to sysgen 

parameters - Used by AUTOGEN.COM 
- Image patching utility 

(Required for system updates/bug fixes) 
- Batch-oriented source file editor 

(Required for system updates/bug fixes) 

sys$library:SECURESHR.EXE - Rights database (RIGHTSLIST.DAT) 
service routines. 
(Required by BACKUP.EXE) 

sys$library:SUMSHR.EXE - ShareablE~ image required by SUMSLP 

sys$update:AUTOGEN.COM 
sys$update:LIBDECOMP.COM 
sys$update:REMOVE.COM 
sys$update:SWAPFILES.COM 
sys$update:VM~INSTAL.COM 

- System tuning utility 
- Library decompression utility 
- Update utility 
- System Tuning utility 
- Update utility 

Optional files for disk support: 
sys$system:INIT.EXE - Volume initialization utility 
sys$system:UNLOCK.EXE - For reopening improperly closed files 
sys$system:VERIFY.EXE- For error-correction of disks 



uNOTE # 036 
Page 8 of 25 

Class IV files -
These set up and maintain a multi-user environment even if interactive 
DCL is not supported by the turnkey system: 

sys$system:AUTHORIZE.EXE 

sys$system:CVTNAF.EXE 

sys$system:CVTUAF.EXE 

sys$system:NOTICE.TXT 
sys$system:OPCOM.EXE 

sys$system:REPLY.EXE 

sys$system:SETSHOACL.EXE 

sys$system:SYSALF.DAT 

sys$system:SYSUAF.DAT 

- User authorization utility 
(Required only for login passwQrd support) 

- Convert NETUAF.DAT utility 
(Required only for V3.5+ system upgrades) 

- convert SYSUAF.DAT utility 
(Required only for V3.5+ system upgrades) 

- Announcement file for logged-in users 
- Operator communications facility 

(For systems with a human operator) 
- Message broadcasting utility 

(For systems with a human operator 
/multi-user/secure. Required by OPCOM) 

- SET and SHOW ACCESS CONTROL LIST commands 
(For secure systems) 

- Automatically logged-in terminal data file 
(Required only if this feature is used) 

- User authorization data file 
(Required only for login password support) 

sys$library:SECURESHR.EXE - Rights database (RIGHTSLIST.DAT) 

sys$manager:ADDUSER.COM 
sys$manager:ALFMAINT.COM 

sys$manager:EDTINI.EDT 

sys$manager:LOGIN.COM 

sys$manager:SUCCESS.TXT 
sys$manager:SYLOGIN.COM 

sys$manager:WELCOME.TXT 

sys$update:BACKUSER.COM 

sys$update:CVTNAF.COM 

sys$update:CVTUA~.COM 

sys$update:RESTUSER.COM 

service routines. 
(Required for multi-user systems) 

- For maintaining multi-user systems 
- For managing automatically 

logged-in terminals 
- Editor initialization script for 

system manager's account 
- Command file executed when system 

manager logs into account 
- Not required 
- Command file executed when any user 

logs in (prior to user's own LOGIN.COM) 
(Required for multi-user systems) 

- Not required 

- Back up user directories before 
performing system update 
Update utility (multi-user systems) 

- Convert NETUAF.DAT utility 
(Required only for V3.S+ system upgrades) 

- Convert SYSUAF.DAT utility 
(Required only for V3.5+ system upgrades) 

- Restore user directories after 
performing system update 
Update utility (multi-user systems) 

342 



Class V files -

uNOTE # 036 
Page 9 of 25 

These are user utilities that exist for the convenience of interactive 
users. Some of these are of interE!st primarily to programmers. None of 
the Class V files normally become part of a turnkey application. 

sys$system:CDU.EXE 

sys$system:CONVERT.EXE 

sys$system:COPY.EXE 
sys$system:CREATE.EXE 

sys$system:CREATEFDL.EXE 
sys$system:DELETE.EXE 
sys$system:DIRECTORY.EXE 
sys$system:EDT.EXE 
sys$system:LIBRARIAN.EXE 
sys$system:RECLAIM.EXE 

sys$system:RENAME.EXE 
sys$system:SHOW.EXE 
sys$system:SORTMERGE.EXE 
sys$system:TYPE.EXE 

sys$system:VMSHELP.EXE 

- For defining new DCL commands 
(User-oriented utility) 

- Converts RMS files to 
new formats and organizations 
(User-oriented utility) 

- User-oriented file copying utility 
- User-oriented file and directory 

creation utility 
- CREATE/FDL image 
- User-oriented file deletion/purge utility 
- User-oriented directory utility 
- Interactive text editor 
- Librarian (Development utility) 
- Used to recover free space in 

ISAM RMS files 
(User-oriented utility) 

- User-oriented file renaming utility 
- SHOW command processor 
- SORT and MERGE command processor 
- Utility for typing text files on terminal 

(User-oriented utility) 
- Interactive help utility 

sys$library:CONVSHR.EXE - Shareable image required by CONVERT.EXE 
and RECLAIM.EXE 

sys$library:DBGSSISHR.EXE - DEBUG system service intercept handler 
(Development utility) 

sys$library:TRACE.EXE - Error traceback facility 

sys$help:EDTHELP.HLB 
sys$help:HELPLIB.HLB 
sys$help:UAFHELP.HLB 

(Development utility) 

- Help library for EDT 
- Main help library (small version) 
- Help library for AUTHORIZE 

sys$message:DBGTBKMSG.EXE - DEBUG, TRACE messages 
(Development utility) 

sys$message:PRGDEVMSG.EXE - CDU, DIFF, DUMP, Librarian, Linker, 
MACRO, MESSAGE, PATCH, ANALYZE/SYSTEM, 
and ANALYZE/CRASH messages 
(Development utility) 

sys$update:SP~ITBLD.COM - utility :for building software kits 
(Development utility) 

sys$update:VMSKITBLD.DAT - Data for VMSKITBLD.COM - for building 
MicroVMS binary distribution kits 
(Development utility) 

343 



uNOTE # 036 
Page 10 of 25 

Class VI files -

These are files required by options which are not included in the BASE 
System: 

sys$message:NETWRKMSG.EXE - DECnet error messages 

FILES INCLUDED IN THE OPTIONAL KITS 

'The optional kits include UTIL, USER, PROG, SYSP and (at additional 
cost) NET. The files of these kits are described in the next sections 
of the MicroNote. First, a word of explanation about the format: These 
kits are in VMSINSTAL format - this means they consist of a number of 
BACKUP savesets. Thus the UTIL option consists of the UTILxxx.A, 
UTILxxx.B, etc. savesets, where IIXXX" is a number giving the version 
and revision level. Each saveset is listed separately, and denoted as 
"UTIL A", "UTIL B", etc. The savesets are described individually 
becauie they can-be added to your system (or not) depending on your 
replies to the interactive VMSINSTAL.COM procedure. The" A" saveset 
contains the installation data tables and any default files- (if any) 
needed by ALL the other savesets, so it will often appear empty in the 
tables below. 

NETWORK DEVICE DRIVERS 

In order to permit the use of DECnet communication 
devices as synchronous serial lines, the hardware 
drivers are included in the UTIL option, and do not 
require a DECnet license. These same files are also 
included in the DECnet kit so as to simplify network 
installation. 

344 



uNOTE # 036 
Page 11 of 25 

This section lists the files of the UTIL option: 

UTIL A KITINSTAL.COM 

UTIL B MAIL utility 

sys$system:MAIL.COM 
sys$system:MAIL.EXE 
sys$system:MAILEDIT.COM 
sys$help:MAILHELP.HLB 

UTIL_C -- SEARCH utility 

sys$system:SEARCH.EXE 

UTIL_D -- DIFF utility 

sys$system:DIFF.EXE 

UTIL_E -- DUMP utility 

sys$system:DUMP.EXE 

UTIL_F -- RUNOFF utility 

sys$system:DSRTOC.EXE 
sys$system:DSRINDEX.EXE 
sys$system:RUNOFF.EXE 

UTIL_G -- PHONE utility 

sys$system:PHONE.COM 
sys$system:PHONE.EXE 
sys$help:PHONEHELP.HLB 

Command procedure used by DECnet mail 
Mail Utility 
Default MAIL editing command procedure 
Mail Utility help file 

- File search utility 

- File compare utility 

-- File dump utility 

RUNOFF/CONTENTS image 
RUNOFF/INDEX image 
Text formatting utility 

PHONE startup procedure 
Phone utility 
phone utility help file 

UTIL_H -- MicroVMS HELP library 

sys$help:HELPLIB.HLB Full default (DCL) help file 

UTIL I -- Remote terminal support via SET HOST/DTE 

sys$system:RTPAD.EXE 
sys$library:DTE_DF03.EXE 

Remote terminal command interface 
-- SET HOST/DTE support for 

DFO] dialer 

UTIL J -- Drivers for netw'ork communication devices 

sys$system:NODRIVER.EXE 
sys$system:XDDRIVER.EXE 
sys$system:XQDRIVER.EXE 

345 

Asynchronous DECnet driver 
DECnet DMV11 datalink driver 
DEQNA Ethernet interface driver 



uNOTE i 036 1 

Page 12 of 25 

(UTIL option, continued) 

UTIL K -- LAT-11 terminal server support (via Ethernet) 

sys$system:LATCP.EXE 
sys$system:LTDRIVER.EXE 
sys$system:XQDRIVER.EXE 
sys$help:LATCP.HLB 
sys$manager:LTLOAD.COM 

LAT-l1 Control Program 
LAT-ll Driver 
DEQNA Ethernet interface driver 
LAT-11 Control Program help file 
Command procedure to load and start LAT 

UTIL_L - Stand-alone backup on system disk support 

sys$system:STABACCOP.EXE 

sys$system:STABACKUP.EXE 
sys$system:STANDCONF.EXE 
sys$system:STASYSGEN.EXE 
sys$update:STABACKIT.COM 

Copy program for building 
standa16ne BACKUP kit 
Standalone BACKUP utility 
Standalone BACKUP configure image 
Standalone SYSGEN utility 
Command procedure that builds 
standalone BACKUP to media 

UTIL_M -- MicroVAX-I bootstrap that works for any MSCP system device 

sys$system:VMBUVAXlP.EXE 

sys$update:VMBUVAXl.COM 

Image which boots disks inaccessible 
from boot ROM or console command 
Command procedure to build Rx50 
console floppy to boot other disks 

UTIL_N -- Error Log Report Generator utility 

sys$system:ERF.EXE 
sys$system:ERFBRIEF.EXE 
sys$system:ERFBUS.EXE 
sys$system:ERFDISK.EXE 
sys$system:ERFINICOM.EXE 
sys$system:ERFPROCl.EXE 
sys$system:ERFPROC2.EXE 
sys$system:ERFPROC3.EXE 
sys$system:ERFPROC5.EXE 
sys$system:ERFSUMM.EXE 
sys$system:ERFUVAX.EXE 
sys$library:ERFCOMMON.EXE 
sys$library:ERFCTLSHR.EXE 
sys$library:ERFLIB.TLB 
sys$library:ERFSHR.EXE 

ANALYZE/ERROR image 
ANALYZE/ERROR brief report generator 
ANALYZE/ERROR bus display ge:nerator 
ANALYZE/ERROR disk display generator 
ANALYZE/ERROR initialize routines 
ANALYZE/ERROR processing routines 
ANALYZE/ERROR processing routines 
ANALYZE/ERROR processing routines 
ANALYZE/ERROR processing routines 
ANALYZE/ERROR summary display routines 
ANALYZE/ERROR uVAx-specific routines 
ANALYZE/ERROR common data structures 
ANALYZE/ERROR shareable image 
ANALYZE/ERROR device descriptions 
ANALYZE/ERROR common routines 

346 



uNOTE * 036 
Page 13 of 25 

This section lists the files of the USER option: 

USER A Default files 

USER B File Access Control List utilities 

sys$system:ACLEDT.EXE 
sys$library:ACLEDIT.INI 
sys$help:ACLEDT.HLB 

USER_C -- Disk Quota utility 

sys$system:DISKQUOTA.EXE 
sys$help:DISKQUOTA.HLB 

Access Control List (ACL) Editor 
ACL Editor initialization file 
ACL Editor help file 

--- Disk Quota utility 
------ Disk Quota utility help file 

USER_D -- Print and Batch Queu(~ utilities 

sys$system:LPDRIVER.EXE 
sys$system:PRTSMB.EXE 
sys$system:QUEMAN.EXE 
sys$system:REQUEST.EXE 
sys$system:SUBMIT.EXE 
sys$library:SMBSRVSHR.EXE 

USER_E --- Input Queue Symbiont 

sys$system:INPSMB.EXE 

Line printer driver 
Print symbiont 
Queue managing utility 
Operator request facility 
Batch job submission utility 
Print symbiont service routines 

Card reader input symbiont 

USER_F --- Accounting Log Report Generator utility 

sys$system:ACC.EXE -- Accounting Utility 

347 



uNOT1!: # 036 
Page 14 of 25 

This section lists the files of the PROG option: 

PROG A KITINSTAL.COM 

PROG B Debugger utility 

sys$library:DEBUG.EXE 
sys$help:DEBUGHLP.HLB 

PROG_C -- Image Dump utility 

sys$system:ANALIMDMP.EXE 
sys$library:IMGDMP.EXE 

Symbolic debugger 
Debugger help file 

-- ANALYZE/PROCESS DUMP image 
-- Image dump procedures 

P'ROG_D -- RMS Analyze and FDL Editor utilities 

sys$system:ANALYZRMS.EXE 
sys$system:EDF.EXE 
sys$help:ANLRMSHLP.HLB 
sys$help:EDFHLP.HLB 

PROG_E -- Message utility 

sys$system:MESSAGE.EXE 

ANALYZE/RMS FILE image 
File Definition Language editor 
ANALYZE/RMS FILE help file 
FDL Editor help file 

-- Message compiler 

348 



(PROG option, continued) 

uNOTE # 036 
Page 15 of 25 

PROG_F -- Object and Shareable ImagE~ libraries 

sys$library:IMAGELIB.OLB 
sys$library:STARLET.OLB 

System default shareable image library 
-- System object and runtime library 

PROG G -- Macro libraries 

sys$library:LIB.MLB 
sys$library:STARLET.MLB 

PROG H -- Macro assembler 

Operating system macro library 
System macro library 

sys$system:MACR032.EXE -- VAX MACRO assembler 

PROG_I -- SDL intermediary form of STARLET.MLB 

sys$system:SDLNPARSE.EXE 

sys$library:STARLETSD.TLB 

PROG J -- FORTRAN require files 

sys$library:FORDEF.FOR 
sys$library:FORIOSDEF.FOR 
sys$library:LIBDEF.FOR 
sys$library:MTHDEF.FOR 
sys$library:SIGDEF.FOR 
sys$library:XFDEF.FOR 

349 

SDL compiler (for installing 
optional software) 
Text library of STARLET definitions 
Used during layered product installations 

FORTRAN INCLUDE file: FOR$ sysmbols 
FORTRAN INCLUDE file: IOSTAT error codes 
FORTRAN program utility INCLUDE files 
FORTRAN INCLUDE file: MATH$ symbols 
FORTRAN program utility INCLUDE files 
Definitions available for programs 
using DR780 support routines 



uNOTE # 036 
Page 16 of 25 

This section lists the files of the SYSP option: 

SYSP A -- Default files 

sys$help:INSTALHLP.HLB 
sys$help:PATCHHELP.HLB 
sys$help:SYSGEN.HLB 

Install utility help file 
Patch utility help file 
Sysgen utility help file 

SYSP_B -- Files-11.0DS1 ACP and EXCHANGE utility 

sys$system: EXCHANGE. EXE 
sys$system:F11AACP.EXE 
sys$help:EXCHNGHLP.HLB 

SYSP_C -- Monitor utility 

sys$system:MONITOR.EXE 
sys$help:MNRHELP.HLB 

RT-11/DOS file transfer utility 
Files-l1 Structure Level 1 ACP 
Exchange utility help file 

-- Monitor utility 
-- Monitor utility help file 

SYSP_D - Analyze Object File utility 

sys$system:ANALYZOBJ.EXE -- ANALYZE/IMAGE and ANALYZE/OBJECT image 

SYSP_E -- Delta debugger (for drivers and other privileged code) 

sys$library:DELTA.EXE 
sys$library:DELTA.OBJ 

-- DELTA multimode debugging tool image 
-- Alternate debugging tool 

SYSP_F -- System Dump Analyzer utility 

sys$system:SDA.EXE 
sys$help:SDA.HLB 

-- System Dump Analyzer 
-- System Dump Analyzer help file 

SYSP_G -- System Symbol Table file 

sys$system:SYS.STB -- Global symbol table of operating system 

SYSP_H -- Misc Symbol Table files 

sys$~y~tem:SYSDEF.STB 

SYSP_I -- System map 

sys$system:SYS.MAP 

Global definitions for 
executive structures 

-- Map of the operating system 

SYSP_J - ConnecE-to-Interrupt Driver 

sys$system:CONINTERR.EXE -- Connect-to-Interrupt Driver 

350 



uNOTE # 036 
Page 17 of 25 

This section consists of the files included in the DECnet Kit. In 
addition to these, a license disk is included, which unlocks the 
end-node or the full routing node functionality in these files: 

NET A -- Default files 

sys$system:EVL.COM 

sys$system:EVL.EXE 
sys$system:NCP.EXE 
sys$system:NDDRIVER.EXE 
sys$system:NETACP.EXE 
sys$system:NETDRIVER.EXE 
sys$system:NETSERVER.COM 
sys$system:NETSERVER.EXE 
sys$system:NICONFIG.COM 

sys$system:NICONFIG.EXE 
sys$system:NML.COM 
sys$system:NML.EXE 
sys$system:NODRIVER.EXE 
sys$system:XDDRIVER.EXE 
sys$system:XQDRIVER.EXE 
sys$library:NMLSHR.EXE 

sys$help:NCPHELP.HLB 
sys$manager:LOADNET.COM 

sys$manager:NETCONFIG.COM 

sys$manager:STARTNET.COM 

Command file used by DECnet 
error logging 
DECnet event logging program 
Network control program 
DECnet pseudo-datal ink driver 
DECnet ancillary control process 
DECnet logical link driver 
Network server DECnet command procedure 
Network server image 
Ethernet configurator DECnet 
command procedure 
Ethernet configurator image 
NML server startup procedure 
DECnet network manager listener 
Asynchronous DECnet driver 
DECnet DMV11 datalink driver 
DEQNA Ethernet interface driver 
DECnet management listener 
shareable image 
Network Command Program help file 
DCL procedure to create 
network ACP process 
DCL procedure to configure 
network database 
DECnet startup procedure 

NET_B -- Incoming Remote File Access files 

sys$system:FAL.COM 
sys$system:FAL.EXE 

-- FAr. startup procedure 
-- DECnet File Access Listener 

NET C -- Incoming Remote Terminal files 

sys$system:CTDRIVER.EXE 
sys$system:REMACP.EXE 
sys$system:RTTDRIVER.EXE 
sys$system:STOPREM.EXE 
sys$manager:RTTLOAD.COM 

351 

CTERM Driver 
Remote device ACP 
Remote terminal driver 
stop REMACP utility 
Remote terminal loader 



uNOTE # 036 
Page 18 of 25 

(NET option, continued) 

NET_D -- Outgoing Remote Terminal files 

sys$system:RTPAD.EXE 
sys$library:DTE_DF03.EXE 

NET E -- Network Test files 

sys$system:DTR.COM 
sys$system:DTRECV.EXE 
sys$system:DTSEND.EXE 
sys$system:MIRROR.COM 
sys$system:MIRROR.EXE 
sys$system:MOM.COM 

sys$system:MOM.EXE 

NET_F -- Remote Task Loading 

sys$system:HLD.COM 
sys$system:HLD.EXE 

Remote terminal command interface 
-- SET HOST/DTE support for DF03 dialer 

DTRECV.EXE server initiating procedure 
DTSEND server 
DECnet logical links test program 
MIRROR startup procedure 
DECnet node loopback server 
Maintenance operations module 
DECnet command procedure 
Maintenance operations module image 

Command procedure used by HLD.EXE 
Downline task loading program 

352 



uNOTE # 036 
Page 19 of 25 

FILES WHICH ARE INCLUDED IN VMS DISTRIBUTIONS BUT NOT IN MicroVMS: 

Files which are specific to larger CPUs: 

Console-device files for 730, 750, 780: 

VMB.EXE 
BOOTBLDR.COM 
DXCOPY.COM 
730CNSL.DAT 

BOOT58.EXE 
BOOTUPD.COM 
SETDEFBOO.COM 
CONSOLBLD.COM 

BOOTBLOCK.EXE 
R~rB. EXE 
7HOCNSL.DAT 

CONSCOPY.COM 
WRITEBOOT.EXE 
750CNSL.OAT 

Part of system startup: 

SYSLOA730.EXE 
SYSLOA750.EXE 
SYSLOA780.EXE 
SYSLOA790.EXE 
CONFIGURE.EXE 

CPU-specific initialization (11/730) 
CPU-specific initialization (11/750) 
CPU-specific initialization (11/780,782,785) 
CPU-specific initialization (VAX 8600) 
Dynamic device configure process 

System-bus attachments: 

CVDRIVER.EXE 
DQDRIVER.EXE 
PADRIVER.EXE 
STACONFIG.EXE 
XFDRIVER.EXE 
XFLOADER.EXE 

8600 Console Disk Controller (RL02) 
RB730 11/730 Integrated Disk Controller (R80/RL02) 
CI780 Port Driver 
HSC System Disk Configurator 
DR7S0, DR780 Ultra-high-speed Parallel Interface 
DR750, DR780 Microcode loader 

omitted from MicroVMS for reasons of size or performance: 

DES Encryption: 

ENCRYPFAC.EXE -- ENCRYPT command image 

Related to new Screen Management handler for terminals: 

SMGBLDTRMeEXE 
SMGTERMS.TXT 
TERMTABLE.TXT 

Compiler for TERMTABLE definition file 
ASCII source file for DEC terminal definitions 
Terminal definitions source file 

Related to SORT/MERGE: 

SRTTRN.EXE SORT specification file translator image 

353 



uNOTE # 036 
Page 20 of 25 

VAXCluster support: 

FILESERV.EXE 
CLUSTRLOA.EXE 
CSP.EXE 
MSCP.EXE 
CNDRIVER.EXE 
MAKEROOT.COM 
CLUSTRLOA.MAP 
SHWCLSTR.EXE 
SHWCLHELP.HLB 

File system cache flush server 
Loadable VAXcluster support code 
Cluster server process image 
MSCP server 
CI DECnet Protocol Driver 
Add new roots to cluster common system disk 
Link map of loadable VAXcluster support code 
SHOW CLUSTER command 
SHOW CLUSTER help file 

11/782 Shared Memory support: 

MP.EXE 
MP.MAP 
MPSHWPFM.EXE 
MPCLRPFM.EXE 
MBXDRIVER.EXE 

VAX 11-782 multiprocessing code 
Link map of multiprocessing code 
Multiprocessing utility 
Multiprocessing utility 
Shared memory mailbox driver 

PDP-11 Compatibility-mode images: 

TEeO.EXE 
TECO.HLB 

MASSBUS drivers: 

DBDRIVER.EXE 
DRDRIVER.EXE 

TEeo text editor and programming language 
TEeo help file 

RPOS, RP06 Disks 
RM03, RMOS, RM80, RP07 Disks 

LPA11-K Laboratory Peripheral Accelerator support: 

LADRIVER.EXE 
LALOAD.EXE 
LALOADER.EXE 
LPA11STRT.COM 

LPA11 Laboratory Peripheral Accelerator driver 
Sends requests to LALOADER.EXE 
Loads LPA11 microcode 
LPA11 site-specific startup command file 

354 



UNIBUS drivers: 

CRDRIVER.EXE 
DDDRIVER.EXE 
DMDRIVER.EXE 
DXDRIVER.EXE 
DYDRIVER.EXE 
DZDRIVER.EXE 

LCDRIVER.EXE 
TFDRIVER.EXE 
TMDRIVER.EXE 
TSDRIVER.EXE 

TUDRIVER.EXE 

XADRIVER.EXE 
XEDRIVER.EXE 
XGDRIVER.EXE 
XMDRIVER.EXE 
XWDRIVER.E,XE 
YCDRIVER.EXE 

CR11 Card Reader 
Tu58 Cartridge Tape 
RK611 (RK06, RK07) Disks 
RX01 Floppy Diskette 
RX02 Floppy Diskette 

uNOTE # 036 
Page 21 of 25 

DZ11 Asynchronous Serial Multiplexer 
(NOT the same as MicroVMS DZDRIVER.EXE) 
DMF32 Line Printer Port 
TU78 Magnetic Tape 
TE16, TU45, TU77 Magnetic Tape 
TS11, TS05, TUBO Magnetic Tape 
(TSV05 will be supported) 
TAB1, TUBI Magnetic Tape 
(NOT the same as MicroVMS TUDRIVER.EXE) 
DRI1-W High-speed Parallel Interface 
DEUNA Ethernet Interface 
DMF32 Synchronous Port 
DMCll Synchronous Communications Adapter 
DUP11 Synchronous Serial Line Interface 
DMF32, DMZ32, CPI32 Asynchronous Serial Multiplexers 

355 



uNOTE # 036 
Page 22 of 25 

Files from sys$examples: 

ADDRIVER.MAR 
CONNECT.COM 

DOI> ERAPAT.MAR -
DRCOPY.PRM 
DRCOPYBLD.COM 
DRMAST.MAR 
DRMASTER.FOR 
DRSLAVE.FOR 
DRSLV.MAR 
DTE DF03.MAR 
GBLSECUFO.MAR 
LABCHNDEF.FOR 

LABIO.OPT 

LABIOACQ.FOR 
LABIOCIN.MAR 
LA.BIOCIN. OPT 
LABIOCOM.FOR 

LABIOCOMP.COM 

LABIOCON.FOR 

LABIOLINK.COM 
LABIOPEAK.FOR 
LABIOSAMP.FOR 

LABIOSEC.FOR 
L1\BIOSTAT. FOR 
LABIOSTRT.COM 
LABMBXDEF.FOR 
LBRDEMO.COM 
LBRDEMO.FOR 
LBRMAC.MAR 
LPATEST.FOR 
LPMULT.B32 
MAILCOMPRESS.COM 
MAILCVT.COM 
MAILUAF.COM 

Example device driver for ADII-K 
Command procedure that connects device for 
LABIO system 
Example loadable erase pattern generator 
Parameter file for DRCOPY routines 
Command procedure to build DRCOPY.EXE 
VAX RMS interface for DRMASTER.FOR 
Master subroutines for DRCOPY 
Slave subroutines for DRCOPY 
VAX RMS interface for DRSLAVE.FOR 
SET HOST/DTE dialer support 
Opens file used as global section for LABIO system 
Defines information associated with each AID 
for LABIO system 
Linker options file for linking modules 
to be used in LABIO 
Acquires data for LABIO system 
Contains connect-to-interrupt call for LABIO system 
Linker options file for linking LABIO DATA ACQ 
Attaches a LABIO user program to the LABIO-
system modules of the LABIO system 
Command procedure to compile and assemble 
the modules of the LABIO system 
Handles user requests and modifies the 
database for LABIO system 
Command procedure to link LABIO system 
Samples channel for peak data in LABIO system 
Samples channel in intervals, reporting date, time 
and average value on logical device for LABIO system 
places LABIO SECTION on page boundary 
Displays AID-channel status for LABIO system 
Command procedure to start LABIO system 
Defines mailbox block for LABIO system 
Command procedure to create Librarian DEMO.EXE 
Librarian demo (first part) 
Librarian demo (second part) 
LPAII-K test program 
Example program for line printer 
Sample procedure to compress mail files 
Sample procedure to convert V3.x mail files 
Sample procedure to manipulate sys$system:VMSMAIL.DAT 

356 



uNOTE # 036 
Page 23 of 25 

Files from sys$examples, continued: 

MSCPMOUNT.COM 
PEAK. FOR 
SCRFT.MAR 

SYSGTTSTR.MSG 
TDRIVER.MAR 
TESTLABIO .. FOR 
USSDISP.MAR 

USSLNK.COM 
USSTEST.MAR 

USSTSTLNK.COM 
XADRIVER.MAR 
XALINK.MAR 
XAMESSAGE.MAR 
XATEST.COM 
XATEST.FOR 
XIDRIVER.MAR 

Example cluster disk mount procedure 
Peak selection routine in LABIO system 
Optional screen package (SCR$ ... in RTL) extension 
to handle foreign terminals 
Sample SYSGEN TERMINAL/ECHO message file 
Template for user-written driver 
Tests LABIO system 
Sample user system service dispatch and 
service examples 
Link command procedure for USSDISP 
Sample program to invoke one of the example 
user services implemented in USSDISP 
Link command procedure for USSTEST 
DR11-W driver 
Sample DR11-W to DR11-w link program 
DR11-W test program 
Used to set up XA[,INK. MAR 
Companion program for XAMESSAGE 
Example driver for parallel port on DMF32 

11/730 Dual RL02 Tailoring Files: 

VMSTAILOR.COM 
EXAMPLES.TLR 
MANAGER.TLR 
TEXTTOOLS.TLR 

BLISSREQ.TLR 
FILETOOLS.TLR 
MISCTOOLS.TLR 
UETP.TLR 

357 

DE:CNET. TLR 
HE:LP. TLR 
QUEUES.TLR 
VMSTLRHLP.HLB 

DEVELOP.TLR 
LIBRARY.TLR 
REQUIRED.TLR 



uNOTE # 036 
Paqe 24 of 25 

User Environment Test package files: 

TCNTRL.CLD 
UETPGCOM 
UETCLIGOO.COM 
UETCLIGOO.DAT 
UETCLIGOO.EXE 
UETCOMSOO.EXE 
UETDISKOO.EXE 
UETDMPFOO.EXE 
UETDNETOO.COM 
UETDNETOO.DAT 
UETDR1WOO.EXE 
UETDR7800.EXE 
UETFORT01.DAT 
UETFORT01.EXE 
UETFORT02.EXE 
UETFORT03.EXE 
UETINITOO.EXE 
UETINIT01.EXE 
UETLOADOO.DAT 
UETLOAD02.COM 
UETLOAD03.COM 
UETLOAD04.COM 
UETLOAD05.COM 
UETLOAD06.COM 
UETLOAD07.COM 
UETLOAD08.COM 
UETLOAD09.COM 
UETLOAD10.COM 
UETLOADll.COM 
UETLPAKOO.EXE 
UETMA7800.EXE 
UETMEMY01.EXE 
UETNETSOO.EXE 
UETPHASOO.EXE 
UETRSXFOR.EXE 
UETSUPDEV.DAT 
UETTAPEOO.EXE 
UETTTYSOO.EXE 
UETUNASOO.EXE 

Defines UETP DCL commands 
Main command procedure 
For cluster-integration phase 
For cluster-integration phase 
For cluster-integration phase 
DMC and DMR device test 
Disk device test 
DMP and DMF32 device test 
For DECnet phase 
For DECnet phase 
DRII-W device test 
DR780 and DR750 device test 
Used by load test 
Used by load test 
Used by load test 
Used by load test 
Initializes UETP environment 
Initializes UETP environment 
Used by load test 
User script for load test 
User script for load test 
User script for load test 
User script for load test 
User script for load test 
User script for load test 
User script for load test 
User script for load test 
User script for load test 
User script f~r load test 
LPAII-K device test 
MA780 device test 
Artificial load for load test 
Used by DECnet phase 
Test controller 
Artificial load for load test 
Supported device data file 
Magnetic tape device test 
Terminal and line printer device test 
DEUNA device test 

358 



uNOTE # 036 
Page 25 of 25 

Unsupported files for linking against system images: 

RMS.STB 
CLUSTRLOA.STB 
MP.STB 
SCSDEF.STB 
RMSDEF.STB 
IMGDEF.STB 
DCLDEF.STB 
NETDEF.STB 

RMS symbol table 
Symbol table for loadable VAXcluster routines 
Symbol table for MP.EXE 
Symbol table for loadable SCS routines 
Global definitions for VAX RMS structures 
Global definitions for image activator structures 
Global definitions for DCL structures 
Symbol table for network definition 

BLISS Require Files: 

LIB.REQ Structure definitions of executive internals 
for use by BLISS programs 

STARLET.REQ 
TPAMAC.REQ 

User interface structures for use by BLISS programs 
Structure definitions for BLISS programs using TPARSE 

Superceded or obsolete: 

VMSUPDATE.COM For updating VMS or adding layered products 

SUMMARY 

This MicroNote details the contents of the MicroVMS system, as well as 
the portion of VAX/VMS not supplied with MicroVMS. The reader can use 
this information to determine whether any unnecessary files can be 
omitted from a turnkey system. Additional information can be found in 
MicroNote # 37 ("In Search of NanoVMS") which describes a working 
minimal VMS subset. Further information about the structure of VMS can 
be found in the full VMS document set (Order # QL001-GZ-V4.0 and update 
QL001-WZ-V4.1), "VAX/VMS Internals and Data Structures" (Digital Press, 
1984) and the VAX/VMS source listings on microfiche (source license 
required - see sales representative). 

NOTE 

DIGITAL does not recommend the deletion of any component 
files of the MicroVMS or VAX/VMS operating systems 
except where explicitly stated in the respective 
document sets (of which this is NOT a part). A subset 
operating system cannot be warranted or supported by 
DIGITAL in any way. This MicroNote is to be used for 
informational purposes only, and represents the 
research, conclusions and opinions of the author, not 
those of DIGITAL or OEM Technical Support. 

359 



360 



uNOTE # 037 

Ti tIe: In Search of "NanoVMS Date:. 19-Jul-85 

Originator: Edward P. Luwish Page 1 of 8 

ABSTRACT 

This MicroNote describes the results of ongoing research 
into the size and composition of a minimal VMS system. 

A WORD ABOUT NOTATION 

Where command lines, prompts and messages are discussed, 
text printed by the computer is indicated by normal 
type, text entered by the user is indicated by 
boldface type. 
Unless explicitly stated otherwise, all user entries are 
to be terminated by the "return" character. 

WHY "NanoVMS" 

MicroVMS as currently packaged a.nd supported by Digital Equipment 
Corporation is not always an ideal solution for customers who would like 
to use it as a realtime application bed (rather than a multi-user 
timesharing system). For this reason, research has been done for over a 
year on minimal VMS systems. Also, the number of floppy diskettes 
required to bring up the system hals been found excessive by some users. 
Currently three floppies for standallone backup are followed by thirteen 
for the base system. This incurs user inconvenience and a greater 
likelihood of failure in the process. The TKSO cartridge tape is not 
yet a universal solution to this problem. 

HOW WAS "NanoVMS" BUILT? 

The problem was approached by building a VMS system, component by 
component, on the second winchester of a two-disk MicroVAX. This system 
could be tested simply by shutting the system down and booting the 
second disk. If unsuccessful, the full system disk would be rebooted, 
some files added to the minimal sys;tem, and it would be tried again, 
guided by the error messages produced in the previous attempt. 

361 



uNOTE # 037 
Page 2 of 8 

HOW WAS "NanoVMS BUILT? (continued) 

The first cut at a solution was derived from the "Reboot Consistency 
Check" offered by sys$system: SHUTDOWN. COM. Notably absent from the list 
of files was the disk driver! A number of other missing files were 
disclosed, and success was eventually achieved through repeated 
attempts. Often the proper functioning of an image depended on the 
presence of another (such as a library file). The dependencies are 
shown in the attached directory listing. 

HOW DOES ONE GENERATE A "NanoVMS" SYSTEM? 

1. Make some choices 

There are a number of choices which affect how you generate a "NanoVMS" 
system. You can create a backup set that can be loaded onto a MicroVAX 
processor using standalone backup [Note - floppies only. TKSO bootable 
Mic:roVMS distributions cannot be created without access to a source 
kit]. The other choice is to create "NanoVMS" on a winchester and 
physically install it in to another MicroVAX. This choice a:Efects the 
thi.rd and fourth steps in the process, "Creating the distribution" and 
"Loading the distribution". Another up-front choice that affects your 
work is the list of target CPU's you intend to be able to run "NanoVMS" 
on currently this includes MicroVAX I, MicroVAX II, VAXstation I and 
VAXstation II. The work on the latter two has not yet been done 
special graphics font files and server files need to be added to the 
list. Read "Copy the files" below for details. 

2. Create the directories 

If you have a single-winchester system, create [sysl]. If you have a 
two-disk system, create [sysO] on the non-system disk instead. In 
either case, create the subdirectories [.sysexe], [.syslib], [.sysmgr] 
and [.sysmsg] in the [sysO] or [sysl] directories you just created. 

If you have chosen the distribution option of physically installing 
a bootable winchester, and your non-system disk's data is expendable, 
then you will want to initialize it. Study the section "Creating the 
Distribution", below, with respect to initialization options. After 
initializing the disk, create the previously mentioned directories. 

3 .. Copy the files 

Copy all of the files listed on pages 7 and 8 from the cbrresponding 
directories of your MicroVMS V4.1M system. Note that a MicroVAX I CPU 
requires the file SYSLOAUV1.EXE and a MicroVAX II CPU requires 
SYSLOAUV2.EXE. Make sure to include the correct one (or both) as 
required by the t~rget CPU. Also be sure to use the /CONTIGUOUS option 
when copying SYSBOOT.EXE. 

362 



4. Create the distribution 

uNOTE # 037 
Page 3 of 8 

You will fir s twa n t to dec ide w he t h Ie r you r dis t r i bu t ion will inc 1 ud e all 
of the files (including your own application files) of the final system, 
or merely a basic "NanoVMS" skeleton to which additional files are added 
from separate disk volumes. If the former, at least list and count all 
the additional files you need. Note that VMS utilities occasionally 
need runtime library files, and your application files may need 
language-related runtime libraries not part of the basic "NanoVMS" 
system. Be sure to include some extra files in your count. Remember 
that there are nine files that are part of any VMS volume, and that each 
directory and subdirectory you create is a file as well. 

The nine files that are part of every VMS volume 

INDEXF.SYS 
oOOOaO.DIR 
CONTIN.SYS 

BITMAP.SYS 
CORIMG.SYS 
BACKUP.SYS 

BADBLK.SYS 
VOLSET.SYS 
BADLOG.SYS 

If you chose to create a backup set, simply issue the appropriate 
mount and backup commands, and insert the floppies into the RXSO drive 
(n :if floppy unit number, x = "NanoVMS" disk unit number, r - root 
number) : 

$ MOUNT/FOREIGN DUAn: 

If you wish to merge your own software into the backup set: 
$ BACKUP/INITIALIZE/LOG/VERIFY -m 
$ DUAx:[SYSr •.. ]*.*i*,[yourdirectorY···]*·*i*-m $= DUAn:MICROVMS./SAVE_SET 

If you wish to separate your own software from the backup set: 
$ BACKUP/INITIALIZE/LOG/VERIFY -m 
$ DUAx:[SYSr .•• ]*.*i*-m $= DUAn:MICROVMS./SAVE_SET 

The backup set created will then install exactly as described in the 
Installation chapter of the MicroVMS User's Manual. 

with standalone backup, you lose flexibility in initializing your 
system disk - it uses all the default values, which may be unsuitable or 
wasteful in a bounded system. It is therefore recommended to use the 
"walking winchester" as a way to transport bounded systems. You would 
not be considering "NanoVMS" unless you have a legitimate need to save 
disk space, and standalone backup will often waste space. The index 
file on an RD-volume is greater than 1000 blocks in allocated size, in 
order to accomodate a large number of files on the disk. If you can put 
an upper bound on the number of files you expect to have, you can 
realize considerable savings in index file size. The two parameters 
which most affect disk usage, Clustf~r Factor and Maximum File Count, are 
explained in the next two paragraphs. 

363 



uNOTE # 037 
Page 4 of 8 

4. Create the distribution (continued) 

The cluster factor is the number of disk blocks allocated every 
time a new file is created, or if additional blocks are needed when 
editing, etc. If you issue the DCL command 

$ DIRECTORY/SIZE-ALLOCATION 

you will notice that all the sizes are divisible by 3 (the default 
cluster size for "large" disks). If you have many small files, this can 
be wasteful. Unless you add the /CLUSTER SIZE-n option to the 
INITIALIZE command, this number will be 3 for-disks larger than 50,000 
blocks, or 1 for smaller disks. Small cluster sizes will adversely 
affect disk performance since files may be stored as many small pieces 
sCclttered widely over the disk surface. On the other hand large cluster 
sizes will waste disk space, since only one or two of the three (or 
more) allocat~d blocks may have data in them. 

The maximum number of files contained on a disk is determined at 
initialization time by the number of empty file headers allocated 
contiguously in the index file. The DCL command 

$ INITIALIZE/MAXIMUM_FILES-x DUAn: label 

initializes a disk with an index file capable of storing x file headers, 
no more. The largest value of x is derived from the formula 

volume size in blocks 
maximum number of files -

cluster factor + 1 

The default (when the /MAXIMUM_FILES switch is omitted, or when 

$ BACKUP/INITIALIZE 

is issued) is equal to one-half the number derived by the above formula. 
If the default is much larger than the actual largest number of files 
you anticipate storing, then you can gain many free blocks by specifying 
/ru~XIMUM FILES-x, where x is an upper bound on the number of files you 
expect on the disk. In fact, you get exactly (default maxfiles)-x free 
blocks, since each file header occupies a full block. The potential 
disadvantage is that the disk will have to be reinitialized (i.e. 
erased) if you need to store x+1 or more files. 

The following table can be compared with your overall needs, so 
that the appropriate initialization command line can be given: 

Volume Size 
Cluster Factor 
Maximum Files 

RD51 

19530 
1 

4880 

RD52 

60480 
3 

7560 

364 

RD53 

138649 blocks 
3 blocks 

17331 files 



5. Load the distribution 

uNOTE # 037 
Page 5 of 8 

If the distribution is the "walking winchester", then loading it 
consists of installing the disk in the MicroVAX enclosure, removing the 
existing one if necessary. Instructions for the installation and 
removal of hard disk drives can be found in the system's Owner's Manual. 

If the distribution is a backup set stored on a number of RX50 
floppy diskettes, follow the instructions in the Installation chapter of 
the MicroVMS User's Guide. 

6. Boot "NanoVMS" 

This procedu~e departs from the normal process, since "NanoVMS" does not 
have a paglng file or a system-parameter file, nor can it execute the 
full system startup command procedure since many of the commands in it 
try to invoke image (.EXE) files and libraries that are not on the disk. 
A number of error messages (shown below) will be displayed on the 
console terminal. These are normal for "NanoVMS". To boot the system, 
you must use the conversational boot by typing the commands 

»> B/1 DUAn 

2 •• 1 •• 0 •• 

%SYSBOOT-E-Unable to locate file 
SYSBOOT> SET STARTUP PI "MIN" 
SYSBOOT> SET VAXCLUSTER 0 
SYSBOOT> CONTINUE 

Note 

If your system i.s a MicroVAX I, 
you will be prompted for the time 
and date before the "MicroVMS 
Version 4.1M" text appears. 

MicroVMS Version 4.1M 13-MAY-1985 22:29 

%SYSINIT-E- lookup failure on paging file, status - 00000000 
%DCL-W-ACTIMAGE, error activating image SETPO 
-CLI-E-IMGNAME, imagefile DUAr.t:[SYSO.SYSCOMMON.][SYSEXE]SETPO.EXE; 
-RMS-E-DNF, directory not found 
-SYSTEM-W-NOSUCHFILE, no such file 
%RMS-E-FNF, file not found 
%SET-I-N9MSG, Message number 007781B3 
SYSTEM job terminated at 8-AUG-1985 09:39:05.01 

365 



uNOTE i 037 
Page 6 of 8 

6. Boot "NanoVMS" (continued) 

At this point, press carriage return and you will be prompted with 
"Username:". Type any non-null alphabetic string, followed by a 
carriage return. You will then be prompted twice with "Password:". 
R&Spond both times with a carriage return. The familiar "$" DCL prompt 
will then appear. The default directory is SYS$SYSTEM. 

7. Further steps ... 

The only DCL commands available at this point are COPY, BACKUP, RUN, 
MOUNT and DISMOUNT, and a very small subset of the SET commands. If you 
have access to a second winchester with a full MicroVMS systl~m on it, 
you can mount it and copy additional files to your "NanoVMS" disk. You 
can also use BACKUP/SELECT to copy selected files from the MicroVMS 
di.stribution floppies. Remember to try the commands first before 
walking away, since sometimes additional files (primarily in sys$library 
and sys$message) are needed. 

A paging file is often needed, particularly for applications which 
set up large arrays or data buffers, especially when the system has 
limited physical memory. DECnet requires a 1000 block paging file just 
to initialize itself. The file can be created by the following 
commands: 

$ RUN SYSGEN 
SYSGEN> CREATE PAGEFILE.SYS /SIZE=lOOO /NOCONTIGUOUS 
SYSGEN> EXIT 

To make it less painful to reboot, and to allow you to save any 
system tuning work, create a parameter file with the following commands: 

$ RUN SYSGEN 
SYSGEN> SET STARTUP Pl "MIN" 
SYSGEN> SET VAXCLUSTER 0 
SYSGEN> WRITE CURRENT 
SYSGEN> EXIT 

The next time you reboot, you need only type "»> B DUAn". 
In order to have a secure system, or to have incoming DECnet 

access, or to support login command files or to run turnkey 
applications, you will probably want a user authorization file. To 
support this, copy the following files from the MicroVMS distribution or 
from a MicroVMS system disk: sys$system:AUTHORIZE.EXE, 
sys$library:MTHRTL.EXE and sys$library:PLIRTL.EXE and INSTALL 
sys$library:SECURESHR.EXE with the /prot/shar/open options. When 
running AUTHORIZE for the first time, you will create the authorization 
file SYSUAF.DAT._ You will have to reboot before you can log in 
successfully. 

366 



uNOTE i 037 
Page 7 of 8 

DIRECTORIES OF FILES NEEDED FOR "NanoVMS" 

Directory DUAl: [SYSO.SYSEXE] 

BACKUP.EXEi1 

COPY.EXEil 

DCL.EXE;l 

DISMOUNT.EXE;l 
DUDRIVER.EXEi1 
F11BXQP.EXE;1 
FPEMUL.EXEi1 
INSTALL.EXEi1 
JOBCTL.EXEi1 
LOGINOUT. EXE i 2 
PUDRIVER.EXE;l 
RMS.EXEi1 
RUNDET.EXE;l 
SCSLOA.EXE i1 
SET.EXEi1 
STARTUP.COM;l 
SYS.EXE;l 

SYSBOOT.EXE;l 
SYSGEN.EXEi1 
SYSINIT.EXE;l 
SYSLOAUV2.EXEi 1 
TTDRIVER.EXEi 1 
VAXEMUL.EXEi1 
VMOUNT.EXEi1 

189 

58 

132 

8 
27 

107 
20 
46 

102 
103 

13 
211 

14 
8 

167 
17 

344 

87 
115 

87 
15 
45 
23 
16 

Required for adding additional files 
to basic "NanoVMS" from backup sets 
Required for adding additional files 
to basic "NanoVMS" from VMS volumes 
Required by STARTUP.COM and subsequent 
user command execution 
Required to remove auxiliary volumes 
Disk controller protocol driver 
Files-11 server 
Floating-point emulator 
VMOUNT.EXE must be INSTALLed to be run 
Required to create LOGINOUT as detached process 
Permits logins·after STARTUP.COM exits 
Disk controller port driver 
RMS-32 server - required to find and open files 
Required to run JOBCTL as detached process 
Required when using MSCP system disks 
Required to enable interactive logins 
Sets up LOGINOUT and system logical symbols 
The operating system image (except for 
device and file support, instruction emulation) 
The primary bootstrap 
Required to alter and save system parameters 
The first image to be run as a process 
MicroVAX II processor-specific initialization code 
The terminal driver 
Emulates non--floating-point VAX instructions 
Required to mount auxiliary volumes 

Total of 24 files, 1954 blocks. 

Directory DUAl: [SYSO.SYSLIB] 

DCLTABLES.EXE;3 248 
DISMNTSHR.EXE;l 11 
ENCRYPSHR.EXE;l 18 
LBRSHR.EXE;l 76 
LIBRTL.EXEi1 128 
LIBRTL2.EXE;1 39 
MOUNTSHR.EXE;l 120 
SCRSHR.EXE;l 21 
SECURESHR.EXE;l 58 

Required by sys$system:DCL.EXE 
Required by sys$system:DISMOUNT.EXE 
Required by sys$system:BACKUP.EXE 
Required by sys$system:INSTALL.EXE 
Required by sys$system:JOBCTL.EXE 
Required by sys$system:JOBCTL.EXE 
Required by sys$system:VMOUNT.EXE 
Required by sys$system:SYSGEN.EXE 
Required by sys$system:BACKUP.EXE 

Total of 9 files, 719 blocks. 

367 



uNOTE # 037 
Page 8 of 8 

DIRECTORIES OF FILES NEEDED FOR ~NanoVMS" (continued) 

Directory DUAl: [SYSO.SYSMGR] 

ACCOUNTNG.DATi1 5 ! This file is created by LOGINOUT.EXE 

Total of 1 file, 5 blocks. 

Directory DUAl: [SYSO.SYSMSG] 

SYSMGTMSG.EXEi1 
SYSMSG.EXEi1 

49 ! Required for intelligible error messages 
268 ! Required for intelligible error messages 

Total of 2 files, 317 blocks. 

Grand total of 4 directories, 36 files, 2995 blocks. 

Not shown: 
Index file (see text) 
Other files produced by volume initialization 
Directory files (average 5 blocks each) 
Page file (see text) 
Sysgen parameter files (15 blocks each) 

NOTE 

This MicroNote describes a minimal VAX/VMS system which 
is not in any way warranted or supported by Digital 
Equipment Corporation - it reports ongoing research by 
the author, and repr~sents solely his conclusions and 
opinions, not those of Digital Equipment Corporation. 
The minimal VAX/VMS system described here can only be 
used on MicroVAX computer systems which are licensed to 
run MicroVMS. It is composed of files which are normal 
components of MicroVMS V4.1M. Earlier or later versions 
of MicroVMS may not successfully execute in the 
described subset environment. 

368 



uNOTE. # 038 

Title: DECnet Down-line Loading Date: 26-Jul-85 

Originator: Scott D. Blessley Page 1 of 9 

This article overviews the downline load process used by DECnet for 
remote loading of PDP-11 and VAX processors. Downline loading is a 
versatile and complicated process. This article is intended as an 
introduction/aid to the process, not a tutorial. An extensive reference 
list appears at the end of the article for readers interested in 
pursuing the subject further. 

1 OVERVIEW OF THE DOWNLINE LOAD PROCESS 

DECnet downline load is the set of hardware and software features which 
allow complete systems (RSX-11S and VAXELN) to be loaded into remote, 
potentially unattended processors. In addition, RSX-llS offers the 
capability to: dynamically load tasks over comm lines, checkpoint tasks 
out of memory over the line, and upline dump a failed operating system. 
RSX-11S functionality is a subset of those features found in RSX-11M. 
VAXELN also features a symbolic debugger that allows debug of the target 
from the host processor. 

2 DEFINITIONS 

2.1 HOST 

The host [node] (for this discussion) refers to both the machine which 
originates the load, as well as the machine which loads the software. 
In actuality, these need not be the same machine. 

2.2 TARGET 

The target [node] ,is the machine being loaded with new software. It 
must be powered up, but mayor may not have to be awaiting primary 
bootstrap, de~nding on its communications bootstrap device and boot 
options. 

369 



uNOTE # 038 
Page 2 of 9 

2.3 EXECUTOR 

The executor [node] is the node which initiates the commands to downline 
load a target. It need not be the same as the host. 

TARGET <----------~ 
(HOBSON: : ) 

Operating System Load request 

NCP)TRIGGER NODE HOBSON 
v v 

HOST EXECUTOR 
(FURILO::) (FURILO::) 

( " same CPU or 
different) 

Relationship between host, target, and executor nodes 

3 PREPARING FOR DOWNLINE LOAD 

There are three overall steps: 

o Configuring the communications hardware 
target systems 

both on the host and 

o Configuring the DECnet software and the operating system image that 
will be loaded. 

o Verification and testing. 

The most frequent problem is the failure to correctly configure the host 
and/or target hardware. There are two principal places for error: 

setting DIP awitches inappropriately resulting in incorrect line 
speeds, wrong power-up boot options (BSEL switches), etc. 

Skew between hardware configuration and software (for example 
mis-specifying the vector/CSR or the Ethernet address for the target 
device). Be sure to have the latest version of the hardware 
manuals. 

370 



Specific points to be careful about: 

1. Vector/CSR 

uNOTE # 038 
Page 3 of 9 

2. B[oot]SEL[ect] switches - these specify under what conditions the 
comm interface will force a bootstrap. 

3. Service password - this is a protection feature to lessen the 
likelihood of an inadvertent or malicious downline load. 

4. Ethernet address (Ethernet circuits only) - the unique address that 
the target Ethernet device will respond to. 

5. Service circuit - this identifiE~s at the end of which wire to expect 
the target. 

6. Enable SERVICE for the circuit being downline loaded. This enables 
the DECnet software to start thE~ downline load process on the host. 

7. Make sure event logging is enabled, or you'll miss error messages. 

8. It may seem obvious, but make sure that the target comm device 
you're using, and the processor bootstrap are *capable* of doing' 
what you ask. For details, see uNote 1015, "Q-bus Hardware 
Bootstraps" 

4 RSx-11S OVERVIEW 

Configure the RSX-11S image on a VAX/VMS, RSX-11M or RSX-11M+ system, 
us i ng the no rmal tool s (SYSGEN, M.l-\C, TKB, VMR). P repa re and bui ld the 
host loader table. (Refer to the References section for documentation 
on RSX downline load procedures) 

5 VAXELN OVERVIEW 

The program/VAXELN image development sequence is: 

1. Develop the source modules 

2. LINK the source modules with the RTLSHARE.OLB and RTL.OLB libraries 

3. EBUILD the LINKed image to produce a bootable VAXELN system. To be 
able to downline load the VAXELN image, you must select Boot Method 
DOWNLINE in the VAXELN System Characteristics portion of EBUILD. 

371 



uNOTI~ # 038 
Page 4 of 9 

40 Downline load the target over Ethernet (this is not the only method 
of loading a VAXELN target). The target can be loaded through 
EDEBUG commands, or via NCP LOAD/TRIGGER commands. 

5~ Debug the application and repeat steps 1-4. 

~)ASCAL or C 
L:tource prog. .OBJ>I~ ~~AS or I·EXE>~I_$ __ E_B_U_I_L_D __ ~I .SYS>~~_r_E_~_~_~_U_G __ ~ 

Other VAXELN 
modules 

VAXELN Program development sequence 

6 OBSERVING & DEBUGGING 

There are a variety of error indications, and diagnostic aids available. 
Some are at the hardware level (comm device diagnostic LEDs), some from 
the host software (upline dump for RSX-11S, EDEBUG for VAXELN). Others 
are provided by the DECnet components that handle downline load, through 
the EVL (EVent logger) capability. Some diagnostic facilities: 

1. Device status LEDs give a numeric indication as to potential 
hardware, or hardware configuration problems with the interface or 
its connections~ 

2. Event logging messages: 

Event code 0.3 - Auto service: indication that a portion of a 
DLL is taking place. 

Event code 0.7 - Aborted service request: indication that a 
portion of a DLL load request is failing. This is not always 
bad. For example, it is an acceptable "error" when multiple 
hosts (on an Ethernet) offer service and the target accepts only 
one. The remaining systems report event 0.7. EVL messages come 
with varying amounts of diagnostic information. A 0.3 or 0.7 
event in~ludes the type of load being requested, from where it 
is requested, to whom it is requested, etc. 

372 



uNOTE # 038 
Page 5 of 9 

3. Failure message from NCP on LOAD/TRIGGER commands - may give some 
insight as to the source of the problem 

40 Line/circuit counters - indicate how much data has been transmitted 
and received , and what errors have occurred. 

Remember: Enable event logging: NCP SET LOGGING <facility> KNOWN 
EVENTS STATE ON. Otherwise, EVL will not display this diagnostic 
information! 

7 EXAMPLES 

One the next three pages are examples showing the successful load of a 
terminal server and a VAXELN target. The appearance of the output will 
be approximately the same for your targets, only with different node 
names and files. 

373 



uNOTE # 038 
Page 6 of 9 

$ reply/enable-network 

%%%%%%%%%%% OPCOM 26-JUL-1985 13:09:11.96 %%%%%%%%%%% 
Operator FURILO$RTA1: has been enabled, username BLESSLEY 
%%%%%%%%%%% OPCOM 26-JUL-1985 13:09:11.99 %%%%%%%%%%% 
Operator status for operator FURILO$RTA1: 
NETWORK 

$ run sys$system:ncp 
NCP>show node hobson characteristics !Hobson is a DECserver 100 

Node Volatile Characteristics as of 26-JUL-1985 13:10:49 

Remote node - 13.102 (HOBSON) 

Service circuit 
Hardware address 
Load file 
Dump file 

NCP>trigger node hobson 
NCP>~Z 

= UNA-O 
= 08-00-2B-02-0F-5F 
= SYS$SYSROOT:[DECSERVER]PS0801ENG.SYS 
= SYS$SYSROOT:[DECSERVER]PSDMPOF5F.SYS 

%%%%%%%%%%% OPCOM 26-JUL-1985 13:10:13.16 %%%%%%%%%%% 
Message from user DECNET on FURILO 
DECnet event 0.3, automatic line service 
From node 7.272 (FURILO), 26-JUL-1985 13:10:13.04 
Circuit UNA-O, Load, Requested, Node = 13.102 (HOBSON) 
File = MOM$LOAD:PS0801ENG, Operating system, Ethernet address· 
= 08-00-2B-02-0F-SF 

%%%%%%%%%%% OPCOM 26-JUL-1985 13:10:18.08 %%%%%%%%%%% 
Message from user DECNET on FURILO 
DECnet event 0.3, automatic line service 
From node 7.272 (FURILO), 26-JUL-198S 13:10:16.40 
Circuit UNA-O, Load, Successful, Node = 13.102 (HOBSON) 
File - MOM$LOAD:PS0801ENG, Operating system, 
Ethernet address - 08-00-2B-02-0F-SF 

DECserver-100 Downline Load Example 

374 



uNOTE i 038 
Page 7 of 9 

Below is an example of down-line load of a MicroVAX II system using 
EDEBUG. The first part of the illustration shows the DECnet volatile 
database entries for the target, as seen from the system that ultimately 
boots the target, and from another that fails to boot the target. 

[This command is issued on system "BELKER"] 

BELKER> NCP SHOW NODE TUBBS CHARACTERISTICS 

Node Volatile Characteristics as of 7-AUG-1985 10:38:59 

Remote node - 7.453 (TUBBS) 

Service circuit 
Hardware address 
Load file 

= UNA-O 
= 08-00-2B-02-1C-63 
= DISK$USER:[SAMPLE.ELN]CHER.SYS; 

[This command is issued from system "FURILO"] 

FURILO> NCP SHOW NODE TUBBS CHARACTERISTICS 

Node Volatile Characteristics as of 7-AUG-1985 10:40:52 

Remote node = 7.453 (TUBBS) 

Load file = DISK$USER:[SAMPLE.ELN]CHER.SYS; 

Command to downline load the VAXELN image from EDEBUG: 

[This command and related output is from system "BELKER"] 

$ EDEBUG/LOAD=PROG1 TUBBS 

Edebug V2.0-00 
Loading "TUBBS" 
Connecting to "TUBBS" 

(screen mode debugger) 

Event log messages resulting from the EDEBUG command: 

DECnet event ()".7, aborted service request 
From node 7.272 (FURILO), 6-AUG-1985 16:13:14.46 
Circuit UNA-O, Line open error, unrecognized component, Node 
Ethernet address = 08-00-2B-02-1c-63 

A FURILO:: didn't nave this address defined in its 
volatile database so it couldn't service the request 

375 



uNOTE # 038 
Page 8 of 9 

DECnet event 0.3, automatic line service 
From node 7.190 (BELKER), 6-AUG-1985 16:12:51.34 
Circuit UNA-O, Load, Requested, Node = 7.453 (TUBBS) 
File = DISK$USER:[SAMPLE.ELN]CHER.SYS;, Operating system 
Ethernet address - 08-00-2B-02-1C-63 

A BELKER:: did have the address, corresponding to an 
entry for "TUBBS::" Here, the target system is 
requesting an operating system load. BELKER's DECnet 
software is acknowledging the request. 

DECnet event 0.3, automatic line service 
From node 7.190 (BELKER), 6-AUG-198516:12:57.62 
Ci.rcuit UNA-O, Load, Successful, Node - 7.453 (TUBBS) 
File - DISK$USER:[SAMPLE.ELN]CHER.SYS;, Operating system 
Ethernet address - 08-00-2B-02-1C-63 

8 SUMMARY 

BELKER responds with packet(s) containing the 
requested O.S. code for the target 

This Micronote has presented an overview of the downline loading 
process8 Many "components" are involved in the process - at least two 
CPUs and at least two communication interfaces, target operati.ng system 
and images plus host, target, and executor DECnet software. The 
procedure is akin to bringing up a complex, customized operati.ng system 
up on a remote processor, without a local load device. Once configured, 
it offers the benefits of not requiring any mass storage devices 
(resulting in higher MTBF and lower cost), plus the ability to bootstrap 
a processor which my be physically inaccessible. There is a great 
amount of information on DECnet downline load. There is no single 
compendium, although each of the supported operating systems, plus 
VAXELN have a chapter on the subject. 

376 



9 REFERENCES 

uNOTE # 038 
Page 9 of 9 

All of the following references are to Digital publications. 

DECnet-RSX Volume IV - System Ma.nager's Guide AA-H224C-TC 

Guide to Networking VAX/VMS - AP..-Y512A-TE (chapter 4) 

QMA DMV11 Synchronous Controller Technical Manual EK-DMVQM-TM 

DEQNA User's Guide EK-DEQNA-UG 

DECnet Digital Network Architecture (Phase IV) General Description 
AA-N149A- TC 

DECnet Digital Network Architecture (Phase IV) Maintenance 
Operations Functional Specification AA-X436A-TC 

Networks and Communications BUyt~r's Guide ED-26347 

"VAXELN Installation and Programming" AA-Z454A-TE 

"MicroVax I Owner's Manual" EK-KD32-0M 

"MicroVAX I Owner's Manual" (Release Notes) EK-KD32A-OM-CNl 

Micronote #015, "Q-Bus Hardware Bootstraps" 

Software Product Descriptions: 

DECnet-11S #10.74 

DECnet-11M #10.75 

DECnet-11M+ #10.66 

DECnet-VAX #25.03 

377 



378 



uNOTE' # 039 

Title: Differences between KDJll-A and KDJll-B Date: 8-Aug-85 

Originator: Peter Kent Page 1 of 5 

Purpose 

The purpose of this MicroNote is to identify and discuss the differences 
between the KDJll-A and KDJll-B CPU modules. 

The table that follows lists the differences between the CPU modules. 
Differences that require explanation follow the table and are marked * 

FEATURE KDJll-A KDJll-B 

Cache * Single tag Dual tag 

PMI support * No Yes 

On-board bootstrap * No Yes 
and diagnostic ROM 

Boot/diagnostics * No Yes 
control status reg. 

Boot page * No Yes 
control register 

Boot configuration * No Yes 
and display register 

Instruction implementation differences * 
DCJ-ll speed/FPJll differences * 
Backplane compatibility * 
Maintenance register differences * 

cont'd 

379 



uNOTE # 039 
Page 2 of 5 

The differences between the CPU modules. cont'd: 

FEATURE KDJ11-A 

Module I .0. M8192 

Size Dual 

Power: 5 volt (12 Volt) 4.5 

AC loading 3.4 

Console serial line No 

Cache 

KDJ11-B 

M8190 

Quad 

5.5 ( 0 .2) 

2.3 

One 

For a full discussion of cache memory as used on the KJD11-A and KDJ11-B 
refer to MicroNote #9 and the KDJI1-A and KDJ11-B User's Guides. Both 
CPU modules have a similar cache organization using a nine bit tag. 
This nine bit field contains information that is compared to the address 
label, which is part of the physical address. When the physical address 
is generated, the address label is compared to the tag field. If there 
is a match it can be considered a hit provided that there is entry 
validation and no parity errors. The KDJ11-B has an additional tag 
store called the DMA tag. The OMA tag is an identical copy of the cache 
tag store and is used to monitor the main memory DMA updates while the 
cache tag store monitors the DCJ11 requirements. The presence of the 
second tag store - DMA tag - allows the J-11 microprocessor to continue 
processing after it has relinquished the system bus to a OMA device. 
When the DMA tag detects a hit (main memory location written to by the 
O~~ device), the microprocessor stops and relinquishes the internal bus 
to the cache controller to allow it to monitor further OMA activity on 
the bus. The KDJ11-A, however, has only one tag store and stops 
processing as soon as it relinquishes the system bus to a DMA device. 

PMI support 

ThE~ PMI or Private Memory Interconnect is described in MicroNote #30. 
ThE! PMI consists of 14 unique signals which use the CD interconnect side 
of the backplane of certain Q-bus backplanes. PMI is used only with the 
KDJ11-8 and MSVII-J. PMI DATI and DATO bus transactions between the 
KDJ11-B and MSV11-J are more than twice as fast as those between non-PMI 
CPU and memory configurations. The KOJ11-A does not offer a PMI 
capability. 

ThE~ Unibus adaptor used with PDP11/84 systems enables the Unibus map if 
a particular PMI signal - PMAPE (Unibus map enable) - is asserted and 
disables the Unibus map when PMAPE is negated. The memory modules 
associated with PMI (MSV11-J) do not use this signal. PMAPE is asserted 
if Memory Management Register 3, bit 05 is set, and negates this signal 

380 



uNOTE # 039 
page 3 of S 

if MMR3 is clear. If there are ~evices which require this signal to 
work, the KDJ11-A will not and cannot (without warranty violating 
modifications) be made to issue this signal. 

KDJ11-B boot/diagnostic ROM 

The are basically 3 parts to the ROM code. The first part is the 
diagnostic tests which are run at power up or at the initiation of the 
operator. These tests perform checks on the CPU module, the memory 
module(s), and the Unibus adaptor for Unibus systems. The second part 
of the ROM is the boot code. The following devices can be booted from 
the KDJ11-B: RA80/81/60, RDS1/S2, RXSO, RC2S, RL01/02, RX01/02, TUSS, 
RKOS, TK2S/S0, TSOS, TU81, DEQNA, DECnet DUV11, DECnet DLV11-E, DECnet 
and DLV11-F. The boot code can also start programs stored in the EEPROM 
or programs stored in M9312 type boot ROMs located on the KTJ11 Unibus 
adaptor module. The third part of the the code allows the storing and 
modification of parameters for the CPU, the Unibus adaptor, and the 
system.. This portion of the boot code also provides support for the 
EEPROM itself. The user can also create (using a machine code editor) 
his own custom boot code and save this code in the EEPROM. 

Boot and diagnostic controller status register 

The boot and diagnostic controller status register (BCSR) is both word 
and byte addressable. The BCSR allows the boot and diagnostic ROM 
programs to test battery backup and reboot status, to set parameters for 
the PMG (processor mastership grant) counter and the line clock, to 
enable the console halt on break feature and to enter or exit from stand 
alone mode. 

Boot page control register 

The page control register is a read/write register which is both byte 
and word addressable. The PCR high byte provides the most significant 
ROM address bits when the 16 bit RO~[ sockets are accessed by bus address 
1777300-17773776. The PCR low byte provides ·the most significant ROM 
(or EEPROM) address bits when the 16 bit or 8 bit ROM sockets are 
accessed by addresses 17765000-17765776. 

Configuration and display register 

The configuration and display register reflects the status of the eight 
switches edge mounted at the top of the ~odule. It also allows boot and 
diagnostic programs to update the 8 bit LED display located at the top 
of the KDJ11-B module. 

Instruction set differences 

Instructions which are 
implemented differently 
instructions which are 
uninterruptible during 

required to do a read-modify-write are 
on the KDJ11-A and KDJ11-B. There are only 3 
defined by the PDP11 architecture to be 

its read- modify-write. They are the TSTSET, 

381 



uNOTE # 039 
Page 4 of 5 

WRTLCK, and ASRB instructions. The KDJII-A will implement these 
read-modify-write instructions differently than a KDJI1-B. The KDJ11-A 
processor uses the AIO signal outputs of the J11 to determine whether it 
performs either a 1) DATIO cycle or 2) a DATI cycle followed by a DATa 
cycle. The KDJ11-A will ONLY do a DATIO Q-bus cycle when it executes a 
TSTSET, WRTLCK or ASRB instruction. Past implementations of the PDP-II 
architecture have also implemented other instructions doing a 
read-modify-write cycle as being uniterruptable. The BIS (Bit Set) 
instruction will be used as an example. This instruction requires the 
CPU to READ a word from memory, possibly MODIFY that word, then WRITE 
the word back to memory. A KDJ11-B uses a Q-bus DATIO cycle to 
implement this instruction. Therefore, the instruction is not 
interruptable between doing the READ and the WRITE. When it executes 
other instructions which want to do a read-modify-write operation like 
the BIS instruction, it will use two separate Q-bus cycles. This 
implementation allows for an interrupt or DMA request to be granted 
between the DATI and the DATa (case 2 above). There are third party 
vendors whose equipment assume that a BIS instruction will use a DATIO 
bus cycle. Those devices will work fine in a system with a KDJ11-B, but 
will work intermittently in a system with a KDJ11-A because what they 
assume to be uninterruptible is now interruptible and affects their 
on-board firmware. 

Speed and the FPA 

15 MHz 18 MHz FPA compatible FPA on board system 

~ 
KDJ11-AA Yes No No No Q18/Q22 

KDJ11-AB Yes No Yes No Q18/022 

KDJ11-AC Yes No Yes Yes Q18/Q22 

KDJI1-BB Yes No Yes No 11/73 

KDJ11-BC Yes No No No 11/73 

KDJ11-BF No Yes Yes Yes 11/83 

Notes on the above table 

The 15 MHz or 18 MHz refers to the crystal frequency at which the DCJ-11 
will run. FPA-means the FPJ11 floating point accelerator chip. Refer 
to MicroNote #25 for more information on upgrading with the FPJ11. The 
KDJ11-A is a CPU module that is not sold as part of a package system. 
The reference to Q18/Q22 refers to the fact that the KDJ11-A can be used 
in any 18 or 22 bit Q-bus backplane. The notation 11/73 means that the 
indicated KDJ11-B CPUs are used with the MicroPDP-11/73 systems and the 
indicated KDJ11-B CPU are used with the MicroPDP-11/83 system. 

382 



Backplanes 

uNOTE # 039 
Page 5 of 5 

The KDJll-A CPU may be used in any C~18/Q22 slot. The KDJll-B, being a 
quad module must be accomodated in a backplane which has Q-bus in AB 
slots and the CD interconnect in thE! CD slots. The KDJll-B cannot be 
used in a backplane (or that part of the backplane) where there is Q-bus 
in both AB and CD slots. 

Maintenance register differences 

The maintenance register contains the following information in both the 
KJDll-A and KDJll-B: POK (power ok), power up mode selected, HALT 
status, Module ID, FPA available, and Boot address. The module ID 
number is a 4 bit code that difj:ers between the KDJll-A and KDJll-B. 
The ID number for the KDJll-A is 0001 and 0002 for the KDJll-B. 

383 



384 



uNOTE # 040 

Title: FPJll Theory of Operation Date: 17-SEP-85 

Originator: Bill Jackson Page 1 of 4 

The goal of this MicroNote is to introduce the FPJll, a floating point 
coprocessor to the DCJll, and to explain the interprocessor 
communication between the FPJll and DCJll. Figure 1 shows a typical 
DCJll based system which includes the FPJll. For a discussion of FPJl1 
support on the KDJI1-A processor, see MicroNote #025. 

OCJll 

DATA BUS 

IDMR 

V FPJll BUS 
CACHE INTER-

DMR <- - 51 r--- ACK FACE 
~ 5TL 

DV 
OP 
ROY 

FPE < FPE 

AIO > AIO<3:07 
ALE 

> 5TRB 
> PRDC 

ABORT 

ADDR<2:0> 
L 

I I A 
- T 

C ADDRESS BUS 
H 

Figure 1 - Typical DCJll/FPJll Application 

385 



uNOTE # 040 
Page 2 of 4 

The FPJ11 is a single chip floating point accelerator for the DCJ11 
microprocessor. Its coprocessor interface, along with optimizations 
within the chip allow for 5 to 8 times acceleration over the DCJ11 
microcoded floating point performance. The FPJ11 provides 

o Complete FP11 floating point instructions (46) 

o Two FP11 floating point data types (F and D) 

o Six 64-bit floating point accumulators 

o FEC floating exception code register 

The FPJ11 interfaces as a true Co-processor. The Bus Interface Unit or 
BIU) inputs all instruction stream data and decodes instructions in 
parallel with the DCJ11. Support microcode in the DCJll initiates all 
I/O cycles required by the FPJ11. This Co-processor interface allows 
overlap of floating point instruction executing in the FPJ11 and integer 
instructions executing in the DCJ11. This allows for reduced execution 
time by interleaving floating point and integer instructions. 

The interface to the FPJ11 involves several DCJll signals which indicate 
the state of the DCJ11 processor, and synchronize the two processors. 
Table 1 lists the signals and their use in the FPJ11 interface, Figure 1 
shows their use. 

DCJ11 signal 

AIO<3:0> 
PRDC 
STRB 
DMR 
FPE 
ALE 
DV 
DAL<2:0> 
FPA-OP 
FPA-STL 

FPA-RDY 
FPA-ACK 

TABLE 1 
DCJll/FPJll signals 

Use 

Indicate to FPJ11 current DCJ11 cycle type 
signal instruction decode to FPJ11 
signal beginning of bus cycle to FPJll 
used by FPJ11 to stall the DCJ11 
indicate to DCJ11 a floating point exception 
used to latch cache hit data (trailing edge) 
used to latch non-cache data (trailing edge) 
indicate GPREAD and GPWRITE information 
signal to SI that writes come from FPA 
used to stall DCJ11 during multiple FPA 
instructions 
indicates FPA data will be ready in 125ns 
enable FPA output drivers 

The DCJ11 supports several types of bus operations in communicating with 
the external system. Since the FPJ11 relies on the DCJ11 to initiate 

386 



uNOTE # 040 
Page 3 of 4 

all I/O cycles, the FPJ11 will monitor DCJ11 I/O cycles for activity. 
'When specific I/O cycles occur, the FPJ11 will 'wake up' and start 
processing. A subset of the DCJll bus cycles are used by the FPJ11 in 
communicating with the DCJ11 and the system interface (51). These bus 
cycles are listed in Table 2~ The bus read and write cycles are used to 
read/write data to/from memory (or cache). The GP transactions are used 
for interprocessor communications between the DCJ11 and FPJ11. 

Cycle 

IREAD 
DREAD 
WRITE 
GPREAD 
GPWRITE 

Table 2 
DCJ11 bus operations 

Description 

latched to search for FP instruction 
used for data fetches for FP instructions 
used to write FP data back to memory 
used to read FP data to DCJ11 internal registers 
used to write FP data to DCJ11 internal 
registers 

The DCJ11 divides all bus reads into 3 categories: Instruction stream 
Demand READ (IDREAD), Instruction stream Request READ (IRREAD), and Data 
stream READ (DREAD). Instruction stream reads are used by the DCJll to 
fetch instruction stream data such as PDP-11 instructions, immediate 
data and absolute data. All other DCJ11 reads are classified as Data 
stream reads (for more information on DCJ11 bus cycles and data 
classification see the DCJ11 data sheet EK-26921-00) 

Request reads are reads that the DCJll will attempt when doing internal 
cycles such as register transfers. This is an attempt at filling the 
DCJ11 4 stage pipeline. Demand reads are reads that must be completed 
in order to finish an instruction. The DCJ11 will always try to keep 
the pipeline full by doing request reads, but will do demand reads as 
necessary. 

The most typical FPJll operation is the common FP11 instruction that 
reads some data from memory, operates on it, then writes the result back 
to memory. In this operation, the FPJ11 monitors the DCJll bus cycles 
for either type of instruction stream read. When the FPJ11 sees any 
type of Instruction stream read, it latches the data from the 
data/address lines (DAL) and holds it in its instruction register. The 
FPJ11 keeps doing this until it sees the DCJ11 indicate that it is now 
doing a ins~ruction decode by the assertion of the DCJ11 signal PRDC. 
The FPJ11 then does a parallel decode of the instruction and checks if 
it is a floating point instruction. If the instruction is not a 
floating point instruction, the FPJ1l 'goes to sleep' and continues to 
latch. all I-stream read data. If the instruction is a floating point 
instruction, the DCJ11 will initiate all bus cycles while the FPJ11 will 
remove data from the bus. The FPJ11 will then do the floating point 

387 



uNOTE # 040 
Page 4 of 4 

operation. If the operation is a store type operation the DCJll will 
initiate the bus write operation signaling to the FPJll to write data to 
memory~ 

When either the sourca or destination of the floating point instruction 
is a DCJll general purpose register, a GP cycle will be used to access 
the DCJll register. Load type operations would use the GPWRITE bus 
cycle to write the contents of the DCJ11 register to the FPJ11. GPREAD 
operations are used to read data from the FPJll and deposit it into the 
DCJ11 general purpose registers. 

Because of the overlapping instruction capability, the DCJll/FPJ11 
combination can start to fetch operands for a next floating point 
operation while one is executing. Because there is a single datapath 
internal to the FPJ11, this prefetched data must not get to the 
execution unit until the current operation is finished. The FPJll will 
output FPA-STL to the DCJll if the current operation will not be 
completed before all of the data is ready. This mechanism guarantees 
that the datapath will only be used by one floating point operation at a 
time. When the FPJ11 is done with the current operation the DCJ11 is 
continued, and the floating point operation proceeds. 

388 



uNOTE # 041 

Title: Device Ordering Chart for Q-bus Systems Date: 16-Sep-85 

Originator: Jack Howes and Peter Kent Page 1 of 6 
----. 

Primary Device Ordering Determination 

DMA devices as well as interrupt devices on the Q-bus are position 
dependant. That means that the order in which devices are placed in the 
bus relative to the CPU determines in what order their DMA (or 
interrupt) requests will be serviced. 

The primary factor in determining the device sequencing order is the 
length of time that each device can wait to become bus master without 
error. These errors normally occur when a controller's data buffer 
fills to capacity before the device connected to it has finished its 
transfer. Generally, the cause of this is a higher priority device (or 
devices) transferring data over the Q-bus, and the controller that gets 
the error is blocked from becoming bus master. Characteristics that 
influence whether a device will fail in this way are: the on board 
buffer size that a controller/device has, the intelligence of the 
controller/device, and the transfer speed of the device connected to the 
controller. 

Methodology 

There has been an in-house test instrument developed which can detect 
the failure of Q-bus devices when they cannot get bus service. This 
measurement is the length of time a device can wait before getting a 
data late or device timeout error. The test instrument can be 
programmed to hold the Q-bus, per acquisition, for any time between 1 
microsecond and 3.9 milliseconds., It runs in conjunction with the 
device under test. During the test process the length of time the test 
instrument holds the Q-bus is variE~d until the device under test fails. 
This measurement is called "latency tolerance". Holding the Q-bus for 
3.9 milliseconds is equivalent to the test instrument transferring 4095 
words (non-block mode DMA) per assertion of BSACK. 

389 



uNOTE # 041 
Page 2 of 6 

Secondary Device Ordering Determination 

The large buffer sizes and intelligence built into some of the newer 
controllers make them less susceptible to data late or device time out 
errors. These devices do not get an error waiting for the Q-bus up to 
3.9 milliseconds and consequently are ordered by other criteria: 

1. The type of Q-bus transfer they do (block mode, burst mode or single 
cycle). See MicroNote #12 for a description of Q-bus DMA 
transaction types. 

2. If interrupted by a lower priority DMA device will they pass the 
Q-bus (DMG) grant signal, when they are doing a blockmode transfer. 

3. The effect the ordering has on device and system performance. 

4. The power consumption and/or cabling requirements of the device. 

Examples: 

o A magtape advertise~ as a "streaming" tape drive may not stream if 
it is assigned a lower priority than a device that utilizes a 
significant amount of bus time. In this instance the tape drive 
will be ordered ahead of a device that it would normally follow 
according to its latency tolerance. 

o A device that consumes a substantial amount of power may have to be 
configured in an expander box with another power supply for 
practical reasons, even though this device would normally precede 
other devices. 

The following pages contain the recommendations for the order of devices 
on the Q-bus. Also contained in these pages are the measurements taken 
and the reasons for suggesting the guidelines. This ordering table is 
only a guideline for Q-bus system configurations, and it should be noted 
that a system will work satisfactorily in many other configurations as 
well. Additionally, customers may alter the configurations to better 
meet their specific application needs. 

The measurement process to determine the device sequence chart has been 
an evolving one and as such not all the devices on the chart contain the 
same data. The measurements on this chart were only true for the system 
that they were measured on. These measurements will vary from system to 
system dependent upon the memory type, system architecture (mapped or 
unmapped. DMA) and the speed of each CPU's arbitrator logic. The 
variations in measurements that can occur between CPU's should not 
theoretically effect the bus placement of each device. 

390 



uNOTE # 041 
Page 3 of 6 

Table 1 lists the order in which devices should be placed in the Q-bus. 
please refer to the detailed information about each device that follows 
the table. 

Table 1 

1. T5V05 9 track magtape controller 
2. DMV11 Microprocessor controlled DECnet communications interface 
3. TQK25 Controller for 8 inch magtape drive 
4. DHV11 Microprocessor controlled communications multiplexor 
5. DEQNA Ethernet controller 
6. TQK50 Controller for single spindle cartridge magtape 
7. RLV12 Controller for 14 inch RL series disk drives 
8. RQDX3 Controller for 5 1/4 inch RD/RX drives 
9. KDA50 Controller for 14 inch ~\ series disk drives 

10. RQC25 Controller for 8 inch RC25 series disk drives 
11. RQDX2 Controller for 5 1/4 inch RD/RX drives 
12. DRV11-WA General purpose 22 bit: DMA interface 

Table 2 lists the transfer time and time between requests for DATI and 
DATO cycles and latency tolerance. All times are microseconds. 

391 



uNOTE # 041 
Page 4 of 6 

Device 

TSV05 

DMV11 

TQK25 

DHV11 

DEQNA 

TQK50 

RLV12 

RQDX3 

KDA50 

RQC25 

RQDX2 

DRV11-WA 

No. words 
transferred 

1 word 

1 word 

4 word 
block mode 

4 W single 
& burst mode 

1 word 

16 word 
block mode 

4 word 
burst 

4 word 
burst 

16 word 
block mode 

8 word 
block mode 

2 X 8 word 
block mode 

16 word 
block mode 

4 word 
burst 

-* for DEC/X11 only 

Table 2 

Transfer time 
DATI DATO 

2.8 2.8 

3.1 3.1 

5.1 

7.25 

2.15 2.15 

11.78 13.87 

9.49 10.7 

7.09 7.8 

13.5 12.7 

9.0 8.9 

14.84 16.52 

15.23 15.48 

6.6 7.0 

392 

Time between Latency 
requests tolerance 

DATI I DATO 

8.7 12 

280 @ 56 Kbits 175 

280 

1200 

5.1 5.1 - or > 
3900 

24.35 20.63 - or > 
3900 

5.92 5.7 - or > 
3900 

4.48 4.48 - or > 
3900 

6.68 6.68 - or > 
3900 

15.41 14.41 - or > 
3900 

1.7 1.7 - or > 
3900 

0.17 0.17 - or > 
3900 * 



Additional device information 

TSVOS 

uNOTE # 041 
Page 5 of 6 

This device does not do 16 word block transfer so it doesn't monitor the 
Q-bus BDMR (DMA request line) signal. 

DMV11 

This device does not do 16 word block transfers, so it doesn't monitor 
the Q-bus BDMR signal. 

Latency Tolerance was determined while running DECNET on a uVAX-I. The 
following error occurred when the DMV11 was held off the bus for more 
than 17Sus: "COPYEOPENIN RMS-F-SYS, QIO Request Failed, SYSTEM-F-LINK 
exit". 

TQK25 

This device does not do 16 word block transfers, so it doesn't monitor 
the Q-bus BDMR signal. 

DHV11 

This device does not do 16 word block transfers, so it doesn't monitor 
the Q-bus BDMR signal. It performs DMA on output to the controller, 
however is interrupt driven when accepting data from the attached 
asynchronous lines. 

DEQNA 

This device monitors Q-bus BDMR signal and passes grant when interrupted 
by a lower priority device. This device is placed relatively close to 
the CPU because it cannot quickly recover from bus latency conditions. 
Re-transfers over the ethernet are costly in system resources. 

TQK50 

This device d~es not do 16 word block transfers, so it doesn't monitor 
the Q-bus BDMR signal. 

While this tape drive has a high latency tolerance, it should be placed 
in front of the other devices that utilize a significant amount of bus 
time. Doing this enhances its ability to stream data. 

393 



uNOTE # 041 
Page 6 of 6 

RLV12 

This device does not do 16 word block transfers so it doesn't monitor 
the Q-bus "BOMR" signal. It is configured in this position because of 
its ability to avoid bus latency conditions even though it doesn't do 
block mode transfers. 

RQOX3 

This device monitors BOMR and passes grant when interrupted by a lower 
priority device. This device may have to be placed as the last device 
in the CPU box because of cabling requirements. 

KDA50 

Instead of monitoring BDMR, the KDA50 does an eight word block transfer 
and releases the bus between transfers to allow other devices access. 
Although this device works more efficiently before the RQOX2 and RC25, 
it may have to be configured in an expansion box due to its high power 
consumption. 

RQC25 

This device does not monitor BDMR. It performs two consecutive eight 
word block transfers, during which it will not pass the grant to a lower 
priority device. 

RQDX2 

This device monitors BDMR however it does not pass grant to a lower 
priority device when interrupted. It holds the Q-bus from a lower 
priority device for 288us average. In a dual expander box system this 
device may have to be configured in the first expansion box due to 
cabling requirements. 

DRV11-WA 

This device does not do 16 word block transfers so it doesn't monitor 
the Q-bus BOMR signal. The DRV11-WA may "monopolize" the bus if traffic 
to/from the devi~e is sufficiently high. The placement of this device 
is very dependent upon the customers application. For DEC/X11 and 
diagnostic testing it should be configured as the last device on the 
Q-bus. 

394 



APPENDIX A 

TABLE OF CONTENTS 
ORIGINAL MICRONOTES 

001 BATTERY BACKUP 
002 REV11 PROM CHIPS 
003 MACRO & ASSEMBL ON THE 11V03 
004 4K RAM IN BANK 0 
005 IEEE BUS SUB-SPECS 
006 CORRECT MU BASIC LANGUAGE MANUAL 
007 MEMORY IN LSI-11 AND 11/03 SYSTEMS 
008 DMA DEVICES IN LSI-11 SYSTEMS 
009 HEX AND QUAD HOLD-DOWN BRA.CKET FOR LSI-11 SYSTEMS 
010A POWER SUPPLY FOR H909C 
011 LSI-11 HALTING DURING INTERRUPT CYCLE 
012 LSI-11 BUS THEORY OF OPERATION 
013 INSTALLING APL-11 ON 11V03 AND 11T03 
014 CORRECT INPUT PARAMETERS FOR THE QJV11 PROM 

FORMATTING PROGRAM 
015 POWER SEQUENCING FOR THE KD11-HA MODULE 
017 LSI-11/2 PROCESSOR CLOCK 
018 DR11-C VS. DRV11 
019 EIA RS-422 AND RS-423 
020 9 X 6 SLOT BACKPLANE DOCU~ENTATION ERROR 
021 COMPARISON OF DATA TRANSMISSION TECHNIQUES 
022 MRV11-BA NEW FEATURE 
023 USING THE MSV11-D 30K OPTION 
024 ASYNC., SERIAL LINE UNIT COMPARISONS 
025 CONFIGURING MEMORY SYSTEMS WITH MSV11-D RAM & PROM 
026 MICRO BACKPLANE MECHANICAL MOUNTING GUIDELINES 
027A PROM CHIPS AVAILABLE UNDER PART #MRV11-AC 
028 EXTENDED MEMORY FOR THE LSI-11 
029 USING THE MRV11-AA FOR A BOOTSTRAP ROM 
030 SRUN SIGNAL 
032 EXTENDED BUS TIME-OUT LOGIC 
033 CABLES FOR DLV11, DLV11-E, DLV11-F 
034 CONFIGURING A 3-BOX 11/03 SYSTEM 
035 PROM PROGRAMMING 
036 CORE MEMORY IN 11/03-L BACKPLANE 
037 C-D INTERCONNECT SCHEME 
038 DIAGNOSTICS FOR 30K MEMORIES ON LSI-11'S 
039 DMA REQUEST/GRANT TIMING 
040 PARCHES FOR BASIC/PITS ON LSI-11 
041 NEW FUNCTIONS FOR BDV11-AA BOOT 
042 REMOVING MODULES FROM "LIVE" BACKPLANES 
043 BACKPLANES FOR THE RLV11 (RL01) 
044 CONS"OLE ODT "L" COMMAND ON 30K SYSTEMS 
045 MOUNTING LSI-11/2 MODULES ON THE EUROtARD 
046A DLV11-F REPLACEMENT FOR THE DLV11 
047 INCOMPATIBILITY BETWEEN THE REV11 AND THE LSI-11/23 
048 LSI-11/23 INSTRUCTION TIMING (PRELIMINARY) 
049 SYSTEM DIFFERENCES - LSI-11 VS. LSI-11/23 
050 MICRO ODT DIFFERENCES - LSI-11 VS. LSI-11/23 
051 DIGITAL SUPPORTED PROM'S 

A1 



052 PARITY MEMORY IN LSI-11/23 SYSTEMS 
053 PDP-11 FAMILY DIFFERENCES 
054 MXV11 CONFIGURATION 
055 LSI-11 VS. LSI-l1/23 BUS TIMING 
056 DLV11-J CABLING 
057 LOCATION OF W13 ON THE BDV11 
058 CONFIGURING MEMORY FOR LSI-11 SYSTEMS WITH MORE THAN 

64K BYTES 
060 MAXIMUM CONFIGURATION OF DLV11-J MODULES 
061 PROGRAMMING THE MRV11-C 
062A BOOTSTRAPS FOR TU58, RL01, RK05, RX02, RX01 
063A RL01 TYPE-IN BOOTSTRAP 
064A DLV11-J I/O PAGE ADDRESS PROBLEM REPORT 
065A BOOTSTRAP FOR RX02 
066 11/123 FLOATING POINT COMPATIBILITY 
067B DLV11-J RECEIVER CHIP PROBLEM 
068 MICROCOMPUTER MODULE ENVIRONMENTAL CONSIDERATIONS 
069 18-BIT DMA WITH CHIPKITS 
070 LSI-11 VS. LSI-11/23 TRANSACTION DIFFERENCES 
071 EXPANDING BA11-MA AND BA11-NC BASED SYSTEMS 
072 PERIPHERAL COMPATIBILITY WITH 11/23 SYSTEMS 
073 TU58 CABLING 
074 MXV11-AA, -AC CABLING 
075 MXV11-A2 BOOTSTRAP ERROR HALTS 
076 DLV11-F CURRENT LOOP PROBLEM 
077 SUMMARY OF BOOTSTRAP SOURCES 
078 LSI-11/23 PROCESSOR DIFFERENCES 
079 THE LSI-11/23 AND THE LSI-11/2BUSES ARE THE SAME 
080A LSI-11/23 I/O PAGE ADDRESSING 
081 USE OF RECOMMENDED DISKETTES 
082 HANDLERS FOR SERIAL LINE PRINTERS 
083 ALTERNATE CLOCK FREQUENCIES FOR THE MXV11 
084 IMPROVED DLV11-F 
085 WAKE-UP CIRCUIT IMPLEMENTATIONS 
086 INTERFACING TO THE TU58 W/O BREAK 
087 TYPE-IN BOOTSTRAP FOR TU58 
088 RT-11 V3B FB MONITOR AND TUS8'S 
089 STANDALONE PROBLEM LOADER 
090 USING THE BAll-VA IN SMALL SYSTEMS 
091 USING THE MXV11-A2 BOOTSTRAP ON THE MRV11-C 
092 TWO POTENTIAL PROBLEMS WITH THE RXV21 
093 USER WRITTEN SYSTEM TASKS UNDER RT-11 V4 
094A RL02 SUPPORT BY DIGITAL SOFTWARE 
095 VTI03 APPLICATIONS FOR UNUSUAL BAUD RATES 
096 TU58 TIPS 
097 TUS8 TAPE FORMAT AND ADD.RESSING MODES 
098 11/23 & 11/03 RL01 BASED PACKAGED SYSTEM EXPANSION 
099 RL02 BOOTSTRAP FAILURES USING BDV11 
100 UPG~DES FOR PB11 
101 TU58 SYSTEM POWER PROBLEM 
102 MMU CONFIGURATION JUMPERS 
103 CREATING A DIAGNOSTICS DECTAPE II UNDER XXDP+ 
104 11/23 ECO STATUS 
105 MXV11 BOOTSTRAP PROBLEMS 
106 MXV11 FUNCTIONALITY 

A2 



107 22-BIT ADDRESSING FOR DMA CHIPKIT USERS 
108 ADV11-A,AAV11-A,KWV11-A vs. ADV11-C,KWV11-C,AAV11-C 

DIFFERENCES 
109 USING THE FALCON SBC-11/21 IN A STANDALONE ENVIRONMENT 
110 MUL, DIV, AND ASH INSTRUC~rION FOR THE FALCON SBC-l1/21 
111 DIFFERENCES BETWEEN MSVI1-L AND MSV11-p MEMORIES 

A3 



APPENDIX B 
Subject Index - By MicroNote Number 

BDV11 
Backplanes 
Block Mode DMA 
Bootstrap 
C 
Cache 
DCJ11 
DECnet 
DL-type devices 
DLV11-J 
DM 
Disabling RAM 
Down-line loading 
ECO 
EIS extended instruction 
FPJ11-A 
Falcon 
Falcon-Plus 
Floating point 
I/D space 
I/O programming 
J-11 see DCJ11 
KA630 see MicroVAX II 
KDJ11-A see LSI-11/73 

3 
35 

2,12 
3,15 

27 
9 

40 
38 
33 
19 

12,41 
19 
38 
17 

set 1 
25,40 

1,7 
1,7 

21,25 
11 
10 

30,39 KDJ11-B 
KXT11-C 16,18,32 

34 
18 
34 
32 

KXT11-C DMA controller 
KXT11-C multiprotocol SLU 
KXT11-C parallel port 
LSI-11/23 4,6,17 

3,4,6 
8,9,11 

25,39,40 
bootstrap options 3 

18,32,34 
19 

28,30 
28 

28,31 
20 

3,4 
19, 20 

LSI-11/73 

LSI-11/73 
MACRO-11 
MRVI1-D 
MSV11-J 
MSV11-M 
MSV11-Q 
Mxv11-A 
MXv11-A2 
MXV11-B 
MXV11-B2 3, 4 

28,31 
8,11 

7 
8,9,11 

Memory differences 
Memory management 
Memory maps 
Memory systems 
MictoPDP-11/23 
MicroPower/Pascal 
MicroVAX 

4 
13,16 

10 
21,22,23 
22,23,26 

36,37 
description 36 

MicroVAX I 
MicroVAX II 
MicroVMS 
MicroVMS files 

-, 

B1 

Minimum MicroVMS system 37 
Module differences 20 
Multicomputing 26 
NanoVMS 37 
PDP-11/23 Plus 4 
PDP-11/84 30 
Pascal 14,27 
Performance evaluation/data 13 
Private Memory Interconnect 30 
Processor differences 4,22,23 

Processor upgrades 
Q-bus expansion 
Q-bus memory 
Q-bus operation 

24,39 
4,23 

29,35 
28,30 

2,5,10 
12,26,29 

35,41 
Q22 5 
RSX-11s 38 
SBC-11/21-Plus see Falcon-Plus 
Software development 16,18,27 

System configuration 

VAX-11 Fortran 
VAX-11 instruction set 
VAXELN 

32,34 
29,33,35 

41 
14 

21,24 
14,27,38 


	00001
	00002
	00003
	00004
	0001
	0002
	0003
	01_01
	01_02
	01_03
	01_04
	02_01
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	02_09
	02_10
	02_11
	02_12
	02_13
	02_14
	02_15
	02_16
	02_17
	02_18
	02_19
	02_20
	03_01
	03_02
	04_01
	04_02
	04_03
	04_04
	04_05
	04_06
	05_01
	05_02
	05_03
	05_04
	05_05
	05_06
	06_01
	06_02
	06_03
	06_04
	06_05
	06_06
	06_07
	06_08
	07_01
	07_02
	07_03
	07_04
	07_05
	07_06
	07_07
	07_08
	07_09
	07_10
	07_11
	07_12
	07_13
	07_14
	08_01
	08_02
	08_03
	08_04
	08_05
	08_06
	08_07
	08_08
	08_09
	08_10
	08_11
	08_12
	09_01
	09_02
	09_03
	09_04
	09_05
	09_06
	10_01
	10_02
	10_03
	10_04
	10_05
	10_06
	11_01
	11_02
	11_03
	11_04
	11_05
	11_06
	11_07
	11_08
	11_09
	11_10
	11_11
	11_12
	12_01
	12_02
	12_03
	12_04
	13_01
	13_02
	13_03
	13_04
	13_05
	13_06
	14_01
	14_02
	14_03
	14_04
	15_01
	15_02
	15_03
	15_04
	16_01
	16_02
	16_03
	16_04
	16_05
	16_06
	16_07
	16_08
	17_01
	17_02
	17_03
	17_04
	17_05
	17_06
	17_07
	17_08
	18_01
	18_02
	18_03
	18_04
	18_05
	18_06
	18_07
	18_08
	18_09
	18_10
	18_11
	18_12
	18_13
	18_14
	18_15
	18_16
	18_17
	18_18
	18_19
	18_20
	18_21
	18_22
	18_23
	18_24
	19_01
	19_02
	19_03
	19_04
	20_01
	20_02
	21_01
	21_02
	22_01
	22_02
	22_03
	22_04
	22_05
	22_06
	22_07
	22_08
	22_09
	22_10
	22_11
	22_12
	22_13
	22_14
	23_01
	23_02
	23_03
	23_04
	23_05
	23_06
	24_01
	24_02
	24_03
	24_04
	24_05
	24_06
	24_07
	24_08
	24_09
	24_10
	24_11
	24_12
	25_01
	25_02
	26_01
	26_02
	26_03
	26_04
	26_05
	26_06
	26_07
	26_08
	26_09
	26_10
	26_11
	26_12
	26_13
	26_14
	27_01
	27_02
	27_03
	27_04
	27_05
	27_06
	28_01
	28_02
	28_03
	28_04
	29_01
	29_02
	29_03
	29_04
	29_05
	29_06
	30_01
	30_02
	30_03
	30_04
	30_05
	30_06
	30_07
	30_08
	30_09
	30_10
	31_01
	31_02
	31_03
	31_04
	31_05
	31_06
	31_07
	31_08
	31_09
	31_10
	32_01
	32_02
	32_03
	32_04
	32_05
	32_06
	32_07
	32_08
	32_09
	32_10
	32_11
	32_12
	32_13
	32_14
	32_15
	32_16
	32_17
	32_18
	32_19
	32_20
	32_21
	32_22
	32_23
	32_24
	32_25
	32_26
	32_27
	32_28
	32_29
	32_30
	32_31
	32_32
	32_33
	32_34
	32_35
	32_36
	32_37
	32_38
	32_39
	32_40
	32_41
	32_42
	33_01
	33_02
	33_03
	33_04
	33_05
	33_06
	33_07
	33_08
	33_09
	33_10
	33_11
	33_12
	33_13
	33_14
	34_01
	34_02
	34_03
	34_04
	34_05
	34_06
	34_07
	34_08
	34_09
	34_10
	34_11
	34_12
	34_13
	34_14
	34_15
	34_16
	34_17
	34_18
	34_19
	34_20
	34_21
	34_22
	34_23
	34_24
	35_01
	35_02
	35_03
	35_04
	35_05
	35_06
	35_07
	35_08
	36_01
	36_02
	36_03
	36_04
	36_05
	36_06
	36_07
	36_08
	36_09
	36_10
	36_11
	36_12
	36_13
	36_14
	36_15
	36_16
	36_17
	36_18
	36_19
	36_20
	36_21
	36_22
	36_23
	36_24
	36_25
	36_26
	37_01
	37_02
	37_03
	37_04
	37_05
	37_06
	37_07
	37_08
	38_01
	38_02
	38_03
	38_04
	38_05
	38_06
	38_07
	38_08
	38_09
	38_10
	39_01
	39_02
	39_03
	39_04
	39_05
	39_06
	40_01
	40_02
	40_03
	40_04
	41_01
	41_02
	41_03
	41_04
	41_05
	41_06
	A1
	A2
	A3
	B1

