
BASIC CONVERSATIONAL

LANGUAGE MANUAL

This manual reflects the software as of version 170.

Additional copies of this manual may be ordered from: Software Distribution Center, Digital Equipment
Corporation, Maynard, Massachusetts 01754 Order code: DEC-10-LBLMA-A-D

digital equipment corporation · maynard. massach lSettS

1st Printing December 1968
2nd Printing (Rev) May 1969
3rd Printing September 1969
4th Printing (Rev) January 1970
5th Printing (Rev) September 1970
6th Printing (Rev) August 1971
7th Printing (Rev) February 1972
Update Pages May 1972
Update Pages September 1972
Update Pages January 1974
Update Pages March 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchasar
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright(S)l968,l969,l970,197l,1972,l973,l974 by Digital Equip. Corp.

The pcqtage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

COP DIGITAL INDAC PS/8
COMPUTER LAB DNC KA10 QUICKPOINT
COMSYST EOGRIN LAB-8 RAe-8
COMTEX EDUSYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 OS/8 RT-ll
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

CONTENTS

Page

CHAPTER 1 I NTRODUCT ION

1 .1 Example of a BASIC Program 1-1

1 .2 Discussion of the Program 1-2

1 .3 Fundamental Concepts of BASIC 1-5

1 .3.1 Arithmetic Operations 1-5

1 .3.2 Mathematical Functions 1-6

1 .3.3 Numbers 1-7

1 .3.4 Variables 1-7

1 .3.5 Relational Symbols 1-8

1 .4 Summary 1-8

1 .4.1 LET Statement 1-8

1 .4.2 READ and DATA Statements 1-9

1 .4.3 PRIN T Statement 1-10

1 .4.4 GO TO Statement 1-11

1 .4.5 IF - TH EN Statement 1-11

1 .4.6 ON - GO TO Statement 1-11

1 .4.7 EN D Statement 1-12

CHAPTER 2 LOOPS

2.1 FOR and NEXT Statements 2-2

2.2 Nested Loops 2-4

CHAPTER 3 LISTS AND TABLES

3.1 The Dimension Statement (DIM) 3-2

3.2 Example 3-3

3.3 Summary 3-4

3.3.1 The DIM Statement 3-4

CHAPTER 4 HOW TO RUN BASIC

4.1 Gaining Access to BASIC 4-1

I
4.1 .1 Contacting the DECsystem-10 Computer 4-1

4.1 .2 Completing the LOG IN Procedure 4-1

iii January 1 974

CONTENTS (Cont)

Page

I 4.1.3 Accessing BASIC 4-2

4.2 Entering the Program 4-3

4.3 Executing the Program 4-4

4.4 Correcting the Program 4-4

4.5 Interrupting the Execution of the Program 4-4

4.5.1 Returning to Monitor Level 4-4

4.6 Leaving the Computer 4-5

4.7 Example of BASIC Run 4-5

4.8 Errors and Debugging 4-7

4.8.1 Example of Finding and Correcting Errors 4-7

CHAPTER 5 FUNCTIONS AND SUBROUTINES

5.1 Functions 5-1

5.1 .1 The Integer Function (lNT) 5-1

5.1 .2 The Random Number Generating Function (RND) 5-2

5.1 .3 The RANDOMIZE Statement 5-3

5.1 .4 The Sign Function (SGN) 5-4

5.1 .5 The Time Function (rIM) 5-4

5.1 .6 The Define User Function (DEF) and
Function End Statement (FN EN D) 5-4

5.2 Subroutines 5-5

5.2.1 GOSUB and RETURN Statements 5-5

5.2.2 Example 5-6

CHAPTER 6 MORE SOPH ISTICATED TECHNIQUES

6.1 More About the PRINT Statement 6-1

6.2 INPUT Statement 6-4

6.3 STOP Statement 6-5

6.4 Remarks Statement (REM) 6-5

6.5 RESTORE Statement 6-6

6.6 CHAIN Statement 6-6

6.7 MARG IN Statement 6-8

6.8 PAG E Statement 6-8

6.9 NOPAG E Statement 6-9

iv January 1 974

CHAPTER 7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

CHAPTER 8

8.1

8.2

8.3

8.4

8.5

8.6

8.6.1

8.6.2

8.6.3

8.6.4

8.6.5

CHAPTER 9

9.1

9.2

9.3

9.3.1

9.3.2

CONTENTS (Cont)

VECTORS AND MATRICES

MAT Instruction Conventions

MAT C = ZER, MAT C = CON, MAT C = ION

MAT PRINT A, B, C

MAT INPUT V and the NUM Function

MAT B = A

MAT C = A + B and MAT C == A - B

MAT C = A * B

MAT C = TRN(A)

MAT C = (K) * A

MAT C = INV(A) and the DET Function

Examples of Matrix Programs

Simulation of N-Dimensional Arrays

ALPHANUMERIC INFORMATION (STRINGS)

Reading and Printing Strings

String Conventions

Numeric and String Dota Blocks

The Change Statement

String Concatenation

String Manipulation Functions

The LEN Function

The ASC and CHRS Functions

The VAL and STRS Functions

The LEFTS, RIGHTS, and MIDS Functions

The SPACES Function

EDIT AND CONTROL

Creating the File in Core Memory

Listing Fi les

Editing a File in Core Memory

Replacing Complete Lines

Deleting Lines

v

Page

7-2

7-2

7-3

7-4

7-5

7-5

7-5

7-5

7-5

7-6

7-6

7-7

8-1

8-2

8-3

8-3

8-7

8-7

8-7

8-8

8-9

8-10

8-11

9-1

9-5

9-7

9-7

9-7

January 1974

CONTENTS (Cont)

Page

9.3.3 Renumbering lines in the Core File 9-8

9.3.4 Clearing the Entire File 9-8

9.3.5 Merging Another File into the File 9-9

9.4 Transferring Fi les 9-10

9.4.1 Transferring Files From the Userls Core Storage 9-10

9.4.2 Transferring Files From One Storage Device to Another 9-11

9.4.3 Destroyi ng Files 9-11

9.5 Compiling and Executing a BASIC Program in
Core Memory 9-12

9.6 Entering Monitor Mode From BASIC 9-13

9.6.1 What is Monitor Mode? 9-13

9.6.2 Returning to BASIC From Monitor Mode 9-14

9.6.2.1 User I s Core Preserved 9 .. 15

9.6.2.2 Userl s Core Destroyed 9-15

9.7 Obtaining Information 9-16

9.8 Setting the Input Mode 9-18

9.9 Leaving BASIC 9-19

CHAPTER 10 DATA FILE CAPABILITY

10.1 Types of Data Files 10-1

10.1.1 Sequential Access Fi les 10-1

1 v.l .2 Random Access F i I es 10-3

10.2 The FILE and FILES Statements 10-4

10.3 The SCRATCH and RESTORE Statements 10-6

10.4 The READ and INPUT Statements 10-7

10.5 The WRITE and PRINT Statements 10-9

10.5.1 WRITE and PRINT Statements for Sequential Access Fi les 10-9

10.5.2 WRITE and PRINT Statements for Random Access Files 10-11

10.6 The SET Statement and the LOC and LOF Functions 10-11

10.7 The QUOTE, QUOTE ALL, NOQUOTE, and
NOQUOTE ALL Statements 10-13

10.8 The MARGIN and MARGIN ALL Statements 10-15

10.9 The PAGE, PAGE ALL, NOPAGE, and NOPAGE ALL
Statements 10-16

10.10 The IF EN D Statement 10-18

vi January 1974

CONTENTS (Cont)

Page

CHAPTER 11 FORMATTED OUTPUT

11 .1 The USING Statements 11-1

11.2 Image Specifications 11-3

11 .2.1 Numeric Image Specifications 11-4

11.2.1.1 Integer Image Specifications 11-4

11 .2.1 .2 Decimal Image Specifications l1-S

11 .2.2 Edited Numeric Image Specification 11-6

11 .2.3 String Image Specifications 11-8

11 .2.4 Printing Characters 11-10

APPENDIX A SUMMARY OF BASIC STATEMENTS

A.l Elementary BASIC Statements A-I

A.2 Advanced BAS IC Statements A-2

A.3 Matrix Instructions A-3

A.4 Data File Statements A-3

A.5 Functions A-S

APPENDIX B BASIC DIAGNOSTIC MESSAGES

APPENDIX C TAPE AND KEY COMMANDS

C .1 KEY and TAPE Modes C-2

C.2 Preparing and Input Tape In Local Mode C-2

C.3 Saving an Existing Program on Tape C-3

C.4 Inputting to BASIC From the Reader C-4

C.S listing an Input Tape C-4

vii January 1974

ILLUSTRATION

Page

LT33B Teletype C-1

TABLES

8 ... 1 ASC II Numbers and Equivalent Characters 8-4

I
9-1 Commands That Enter Monitor Mode From BASIC 9-14

9-2 Usefu I Mon i tor Commands 9-15

9-3 Commands That Reenter BASIC When Core is Preserved 9-16

9 ... 4 Input Mode Commands 9-19

8-1 Command Error Messages B-1

8-2 Compilation Error Messages B-2

B-3 Execution Error Messages B-4

viii January 1 974

PREFACE

WHY BAS IC? BAS IC is a probl em-solving language that is easy to I earn and conversational, and has

wide application in the scientific, business, and educational communities. It can be used to solve

both simple and complex mathematical problems from the user's Teletype®anc:l is particularly suited for

time-sharing •

In writing a computer program, it is necellCJrY to use a language or vocabulary that the comput ..

recognizes. Many computer languages are currently in use, but BASIC is one of the simplest of these

because of the small number of clearly understandable and readily learned commands that are required,

its easy application in solving problems, and its practicality in an evolving educational environment.

BASIC is similar to other programming languages in many respects; and is aimed at facilitating com

munication between the user and the computer in a time-!haring system. As with most programming

languages, BASIC is divided into two sections:

a. Elementary statements that the user must know to write simple programs, and

b. Advanced techniques needed to efficiently organize complicated problems.

As a BAS IC user, you type in a computational procedure as a series of numbered statements by using

common English syntax and familiar mathematical notation. You can solve almost any problem by

spending an hour or so learning the necessary elementary commands. After becoming more experienced,

you can add the advanced techniques needed to perform more intricate manipulations and to express

your problem more efficiently and concisely. Once you have entered your statements via the Teletype,

simply type in RUN or RUNNH. These commands initiate the execution of your program and return

your resul ts 01 most instantaneously.

5 PECIAL FEATURES OF BAS IC - BAS IC incorporates the following special features:

a. Matrix Computations - A special set of 13 commands designed exclusively for per
forming matrix computations.

®Teletype is the registered trademark of Teletype Corporation.

;x

b. Alphanum .. ic Information Handling - Single alphabetic or alphanumeric strings or
vectors can be read, printed, and defined in lET and IF ••• THEN statements.
Individual characters within these strings can be easily accessed by the user. Con
version can be performed between characters and their ASCII equivalents. Tests can
be made for alphabetic order.

c. Program Control and Storage Facilities - Programs or data files can be stored on or
retrieved from various devices (disk, DECtape, card reader, card punch, high
speed paper-tape reader, high-speed paper-tape punch and line printer). The user
can also input programs or data files from the low-speed Teletype paper-tape reader,
and output them to the low-speed Teletype paper-tape punch.

d. Program Editing Facilities - An existing program or data file can be edited by adding
or deleting lines, by r.,aming it, or by resequencing the line numbers. The user
can combine two programs or data files into one and request either a listing of all
or part of it on the Teletype or a listing of all of it on the high-speed line printer.

e. Formatting of Output - Controlled formatting of Teletype output includes tabbing,
spacing, and printing columncr headings.

f. Docum.,tation and Debugging Aids - Docum.,ting programs by the insertion of
remarks within procedures enables recall of needed information at some later date
and is invaluable in situations in which the program is shared by other U5a'S. De
bugging of programs is aided by the typeout of meaningful diagnostic messages
which pinpoint syntactical and logical 8m)n detected during execution.

x

CHAPTER 1

INTRODUCTION

This chapt .. introduces the user to PDP-l0 BASIC and to its restrictions and characteristics. The best

introduction lies in beginning with a BASIC program and discussing each step completely.

1.1 EXAMPLE OF A BASIC PROGRAM

The following example is a complete BASIC program, nomed LINEAR, that can be used to solve a sys

tem of two simul tana:»us I inear equations in two variabl es

ax + by = c

dx+ey=f

and then used to solve two different systems, each differing from the above system only in the constants

c and f. If ae - bd is not equal to 0, this system can be solved to find that

ce - bf
x=

ae - bd
and

af - cd
y = ae - bd

If ae ... bd = 0, there is either no solution or there are many, but there is no unique solution. Study

this example carefully and then read the commentary and explanation. (In most cases the purpose of

each line in the program is self-evident.)

1~ kFAD A,~,n,F)
15 LET G=A*E-B*O)
?~ J ,. G =O! THE' N 65)
3~ REA f) C,,.)
37 LET X=<C*E-H*,.>/G)
42 LET Y=(A.F-C.D>/G~
55 PkINT X,y)
6~ GO T0 3~)
65 PkINT "NO UNI~lIF' SOLUTION',)
7'" DATA 1,2,4)
A'" DATA 2,-7,5)
85 DATA 1,3,4.-7)
~ END)

1-1

NOTE

All statements are terminated by pressing the REruRN
key (represented in this text by the symbol)). The
RETURN key echoes as a carriage return, line feed.

1.2 DISCUSSION OF THE PROGRAM

Each line of the program begins with a line number of 1 to 5 digits that serves to identify the line as a

statement. A program is made up of statements. Line numbers serve to specify the order in which

these statements are to be performed. Before the program is run, BASIC sorts out and edits the program,

putting the statements into the orders specified by their line numbers; thus, the program statements can

be typed in any order, as long as each statement is prefixed with a I ine number indicating its proper

sequence in the order of execution. Each statement starts after its line number with on Enolish word

which denotes the type of statement. Unlike statements, commands are not preceded by line numbers

and ore executed immediately after they are typed in. (Refer to Chapter 9 for a further description of

commands.) Spaces and tabs hove no significance in BASIC programs or commands, except in messages

which are printed out, os in line number 65 above. Thus, spaces or tabs may, but need not be, used

to modify a program and make it more readable.

With this preface, the above example can be followed through step-by-step.

The first statement, 10, is a READ statement and must be accompanied by one or more DATA statements.

When the computer encounters a READ statement while executing a program, it causes the variables

I isted after the READ to be given values according to the next available numbers in the DATA state

ments. In .. L.is example, we read A in statement 10 and assign the value 1 to it from statement 70 and,

Similarly, wi th Bond 2, and wi th D and 4. At this point, the avail obi e data in statement 70 has been

exhausted, but there is more in statement 80, and we pick up from it the value 2 to be assigned to E.

Next, in statement 15, which is a LET statement, a formula is to be evaluated. [The asterisk (*) is

used to denote mul tipl ication.J In th is statement, we compute the vol ue of AE - BD, and call the

result G. In general, a LET c:tatement directs the computer to set a variable equal to the formula on

the right side of the equal sign.

2~ IF G=~ THEN 65

If G is equal to zero, the system has no unique sol ution. Therefore, we next ask, in line 20, if G is

equal to zero.

1-2

1,5 PRINT "NO UNIQUE SOLUTION"
7~ DATA 1 .. 2 ...

~'" DATA 2 .. -7 .. 5
85 DATA 1 .. 3 .. .tI .. -7
Wl fND

If the computer discovers a "yes" answ .. to the qu.tion, it is directed to go to line 65, wh .. e it prints

NO UNIQUE SOLUTION. Sinee DATA statem.," are not executable statlments, t+o.e eomput .. t+o.en

goes to line 90 which tells it to END t+o.e program.

30 to(E AD C .. F'

If t+o.e answer is "no" to the question "ls G equal to z.ro 1", t+o.e eomput .. go .. to line 30. Th. eom

puter is now directed to read the next two .. tri., -7 and 5, fr'8m t+o.. DATA statements (bot+o. are in

statement 80) and to assign them to C and F, r .. ectively. Th. comput. is now ready to IDlv. t+o..

system

x + 2y =-7
4x + 2y = 5

37 LET X=CC*E-S*F')/G
42 LET V=CA*F'-C*O)/G

In statements 37 and 42, we instruet t+o.e eomput .. to compute t+o.e value of X and Y aeeording to the

formul as prov i ded, usi ng parenthes. to i ndi eate t+o.at C *E - B *F is ealeulat4ld b.for. the reILIl tis

divided by G.

55 PRINT X .. V
6'" GO TO 30

The computer prints the two val ues X and Y in line 55. Having done this, it moves on to line 60 wh .. e

it is reverted It> line 30. With additional numb.., in the DATA statements, the eomputer is told in

line 30 to take the next one and assign it to C, and the on. aft .. t+o.at to F. Thus,

x + 2y = 1
4x + 2y = 3

As before, it finds the sol utions in 37 and 42, prints them out in 55, and then is directed in 60 to re

vert to 30.

In line 30, the computer reads two more values, 4 and -7, which it finds in line 85. It then proceeds

to solve the system

x + 2y = 4
4x + 2y =-7

1-3

and print out the solutions. Since there are no more pain of numb.., in the DATA statement available

for C and F, the computer prints OUT OF DATA IN 30 and stops.

If line number 55 (PRINT X, Y) had been omitted, the computer would have solved the three systems

and then told us when it was out of data. If we had omitted line 20, and G were equal to zero, the

computer would print DIVISION BY ZERO IN 37 and DIVISION BY ZERO IN 42. Had we omitted

statement 60 (GO TO 30), the computer would have solved the first system, printed out the val Uel of

X and Y, and then gone to line 65, where it would be directed to print NO UNIQUE SOLUTION.

The particular choice of line numbers is arbitrary as long as the statements are numbered in the ord ..

the machine is to follow. We would normally number the statements 10, 20, 30, ••• , 130, so that

later we can insert additional statements. Thus, if we find that we have omitted two statements

between those numbered 40 and 50, we can give them any two numbers between 40 and 50 -- my 44-

and 46. Regarding DATA statements, we need only put the numbers in the ord .. that we want them

read (the first for A, the second for B, the third for D, the fourth for E, the fifth for C I the sixth for

F I the seventh for the next C I etc.). In place of the three statements numb.-ed 70, 80, and 85, we

could have written the statement:

or I more naturally I

70 DATA 1.2.4.2
15 DATA -7.5
~ DATA 1 .. 3
~5 DATA 4.-7

to indicate that the coefficients appear in the first data statement and the various pain of right-hand

constants appear in the subsequent statements.

The program and the resulting run is shown below as it appears on the Teletype.

1~ READ A.B.D.~
15 LET G=A*E-B*O
2~ IF G=~ THEN 65
3~ READ C.F
31 LET X=<C*E-R*F)/G
42 LET Y=CA*F-C*D)/G
55 PR I NT X. Y
60 GO TO 30
65 PRINT "NO UNIQUE SOLUTION"
7~ DATA 1,2.4
R0 DATA 2,-1.5
85 DATA 1,3,4.-7
~ END
RUN

(continued on next page)

1-4

LINF'Ak

LI

'''.666667
-3.66661

-5.500(1''')
(,1 • 1 66 f- 61
3.P3333

01'T ("IF' f)~TA I N 3~
TI~E: ~.1~ SEes.

19-0CT-69

NOTE

Remember to terminate all statements by pressing the
REruRN key.

After typing the program, we type the command RUN and press the RETURN key to direct the computer

to execute the program. Note that the computer, before printing out the answ.." printed the name

LINEAR which we gave to the problem (refer to Paragraph 4.1) and the time and date of the computa-.
tion. The message OUT OF DATA IN 30, may be ignored here. However, in some instances, it indi

cates an error in the program. The TIME message, printed out at the end of execution, indicates the

compile and execute time used by the program; this time is slightly dependent upon oth .. iobs being

proc...t by the comput .. and consequently will not be exactly the same each time the same program

is run.

1.3 FUNDAMENTAL CONCEPlS OF BASIC

BAS IC can perform many operations such as adding, subtracting, mul tiplying, dividing, extracting

square roots, raising a number to a power, and finding the sine of an angle measured in radians.

1 .3.1 Arithmetic Operations

The computer performs its primary function (that of computation) by evaluating formulas similar to those

used in standard mathematical calculation, with the exception that all BASIC formulas must be written

on a single line. The following operators can be used to write a formula.

Operator

+
+

*
/

**

Example

A + B
+A
A - B
-A
A * B
A/a
x t2
X**2

add a to A
A itself

Meaning

subtract B from A
make A negative
multiply a by A
divide A by a
find X2 {the symbols t and ** have
find X2 the same meaning

If we type A + B * C to, the computer first raises C to the power 0, mul tipl i es this result by B, and

then adds the resulting product to A. We must use parentheses to indicate any other order. For

1-5

example, if it is the product of Band C that we want roised to the power D, we must write

A + (8 '* C) t D; or if we want to multiply A + B by C to the power D, we write (A + B) '* C t D. We

could add A to B, mul tiply their sum by C, and raise the product to the power D by writing

((A + B) '* C) t D. The order of precedence is summarized in the following rul es.

a. The formula inside parentheses is evaluated before the parenthesized quantity is
used in computations.

b. Normally two operators cannot be contiguous. However the operators + and -
can follow the operators '*, I, '*'*, or t (e.g., *-). In such a case, the +or
- takes precedence ova' its leading *, I, '*'*, or t. Otherwise:

c. In the absence of parentheses in a formula, '*'* and t take precedence over '*
and I, which take precedence over + and -.

d. In the absence of parentheses in a formula whose only operators are '* and I,
BAS IC performs the operations from I eft to right, in the order that they are
read.

e. In the absence of parentheses in a formula whose only operators are + and -,
BASIC performs the operations from left to right, in the order that they are
read.

The rules tell us that the computer, faced with A - B - C, (as usual) subtracts B from A, and then C

fmm their difference; faced with A/BiC, it divides A by B, and that quotient by C. Given A t B t C,

the computer raises the number A to the power B and takes the resulting number and raises it to the

power C. If there is any question about the precedence, put in more parentheses to eliminate possible

ambiguities.

1.3.2 Mathematical Functions

In addition to these five arithmetic operations, BASIC c~n evaluate certain mathematical functions.

These functic,:1s are given special three-letter English names.

Function

SIN (X)
COS (X)
TAN (X)
COT (X)
ATN (X)
EXP (X)
LOG (X), or LN(X),

or LOGE(X)
ASS (X)
SQR (X) or SQRT(X)
CLOG (X) or LOG 1 O(X)

Interpretation

Find the sine of X
Find the cosine of X
Find the tangent of X
Find the cotangent of X
Find the arctangent of X X
Find e raised to the X power (e)

{

Xi n terpreted as
an ang Ie measured
in radians

Find the natural logarithm of X (log to the base e) {
X interpreted

Fi"d the absolute value of X (I X I) as a
Find the square root of X (--viX) number
Find the common logarithm of X (log to the base 10)

Other functions are also available in BASIC. They are described in Chapters 5 (INT, RND, SGN, TIM),

7 (NUM, DET), 8 (string functions), and 10 (LaC, LOF). In place of X, we may substitute any formula

or number in parentheses following any of these functions. For example, we may ask the computer to find

1-6 January 1 974

~ 4 + X3 by writing SQR (4 + X t 3), or the arctangent of 3X -2eX + 8 by writing

ATN (3 * X - 2 * EXP (X) + 8). If the above value Of(~y 7 i, needed, the two-line program can

be written:

I~ PRINTCS/6)'17
2~ END

and tne computer finds the decimal form of this number and prints it out.

1 .3.3 Numbers

A numb .. may be positive or negative and it may contain up to eight digits, but it must be expr-.d

in decimal form (i .e., 2, -3.675,12345678, -.98765432, and 483.4156). The following are not

numbers in BASIC: 14/3 and SQR('n. The comput .. can find the decimal expansion of 14/3 or SQR(7),

but we may not include either in a list of DATA. We gain further flexibility by using the lett .. E,

which stands for: times ten to the pow.. Thus, we may write .0012345678 as • 12345678E-2 or

12345678E-10 or 1234.5678E-6. We do not write E7 as a number, but write 1E7 to indicate that it is

1 that is multiplied by 10
7

•

1 .3.4 Vari'Obles

A simple (i .e., unsubscripted) numeric variable in BASIC is denoted by any letter or by any letter

followed by a single digit. (Refer to Chapter 3 for a discussion of subscripted numeric variables and to

Chapter 8 for a discussion of subscripted and unsubscripted string variables.) Thul, the computer inter

prets E7 as a variable, along with A, X, N5, 10, and 01. A numeric variable in BASIC stands for a

number, usually one that is not known to the programmer at the time the program is written. Variables

are given or assigned values by LET and READ statements. The value so assigned does not change until

the next time a LET or READ statement is encountered with a value for that variable. However, all

numeric variables are set equal to 0 before a RUN. Consequently, it is only necessary to assign a value

to a numeric variable when a value other than 0 is required.

Although the computer does little in the way of correcting during computation, it sometimes helps if an

absolute value hasn't been indicated. For example, if you ask for the square root of -7 or the logarithm

of -5, tne computer gives the square root of 7 along with an error message stating that you have asked

for tne square root of a negative numb .. , or it gives the logarithm of 5 along with the error message

that you have asked for the logarithm of a negative number.

1-7

I

1 .3.S Relational Symbols

Six other mathematical symbols of relation are used in IF-TliEN statements where it is neceaary to

compare values. An example of the use of these relation symbols was given in the sample program

LINEAR.

Any of the following six standard relations may be used:

Symbol Example Meaning

= A =B A is equal to B
< A <B A is less than B
<= A <=B A is 1_ than or equal to B
> A >B A is greater than B
>= A >=B A is greater than or equal to B
<> A <>B A is not equal to B

Note that while BASIC outputs its answers with only six places of accuracy, variables and formulas

may have values accurate to more than six places. If it is desired that result X b. checked to only

N places, the function

INT O(*tV"~+.5)/l(,~'N

should be used.

1.4 SUMMARY

Several elementary BASIC statements have been introduced in our discussions. In delCribing each of

these statements, a line number is assumed, and brackets are used to denote a general type. For

example, [variable] refers to any variable.

1 .4.1 LET Statement

The lET statement is used when computations must be performed. This command is not of algebraic

equality, but a command to the computer to perform the indicated computations and assign the answer

to a certain variable. Each LET statement is of the fo"":

LET [variable] = [formula]
or

[variable] = [formula]

Genera"y, several variables may be assigned the same value by a single LET statement. Examples of

assigning a value to a single variable are given in the following two statements:

]!.I"-l LFT X=X+ I
259 W7=(W-X~'3)*(Z-A/(A-~)-17)

Version 17A BASIC 1-8 May 1972

Examples of assigning a value to more tnan one variable are given in tne following statements:

S0 x = Y3 =A (31 1) = 1

1 .4.2 READ and DATA Statements

The variables X, Y3, and A(3, 1) are
assigned the value 1 •

The variables Wand Z are assigned the
value 3X-4X2

READ and DATA stateme~ts are used to enter information into the computer. We use a READ statement

to assign to the listed variables tnose values which are obtained from a DATA statement. Neither

statement is used witho~t the other. A READ statement causes the variables listed in it to be given in

order, the next (JVailable numbers in the collection of DATA statements. Before the program is run,

the computer takes all of the DATA statements in the order they appear and creates a large data block.

Each time a READ statement is encountered anywhere in the program, the data block suppl ies the next

available numbor or numbers. If the data block runs out of data, the program is assumed to be finished

and we get an OUT OF DATA message.

Since we have to read in data before we can work with it, READ statements nonnally occur near the

beginning of a program. The location of DATA statements is arbitrary, as long as they occur in the

correct order. A common practice is to collect all DATA statements and place them iust before the

END statement.

Each READ statement is of the form:

READ [sequence of variabl es]

Each DATA statement is of the form:

DATA [sequence of numbers]

15" READ XIYIZIX1IY21t19
330 DATA 41211.7
340 DATA ~.734E-31-174.32113.1415927

23L1 kEAD AUO
263 DATA 213151719111110181614

1(11 READ k(IIJ)
44C?1 DATA -3151-912.3712.98761-Ll37.234E-5
4S0 DATA 2.7651 5.55761 2.3789E2

Remember that numbers, not formulas, are put in a DATA statement, and that 15/7 and SQR(3) are

formulas. Refer to Chapter 3 for a discussion of the subscripted variables.

1-9

1 A.3 PRINT Statement

The common uses of tne PRIN T statement are:

a. to print out the results of tome computations

b. to print out verbatim a message included in tne program

c. a combination of tne two

d . to sk i p a lin e .

The following are exampl es of a type a.:

10~ PRINT X,SQRCX)
135 PRINT X,Y,Z, B*B-4*A*C, EXPCA-R>

The first exampl e prints X, and a ff!IW spaces to tne right, tne square root of X. The second prints

five different numbers:

2 A-B
X, Y, Z, B , -4AC, and e

The computer computes tne two formulas and prints up to five numbers per I ine in tnis format.

The following are exampl es of type b.:

10A PRINT "NO UNIQUE SOLUTION"
430 PRINT "X VALUE", "SINE", "kESOLlITION"
50~ PRINT X,~#D

line 100 prints tne sample statement, and line 430 prints tne three labels with spaces between them.

The labels in 430 automatically line up with tne three numbers called for in PRINT statement 500.

The folk .. ving is an example of type c.:

15~ PRINT "THE VALLIE OF X IS" X
3~ PRINT "THE SQUARE ROCT OF" X "IS" SbikCX)

If the first has computed tne value of X to be 3, it prints out: 'THE VALUE OF X IS 3. If the second

has computed the value of X to be 625, it prints out: THE SQUARE ROOT OF 625 IS 25.

The following is an example of type d.:

25~1 PRINT

The computer advances the paper one line when it encounters this command.

1-10

1 .4.4 GO TO Statement

The GO TO statement is used when we want the computer to unconditionally transfer to some statement

other than the next sequential statement. In the LINEAR probl em, we direct the computer to go

through !'he same process for different values of C and F with a GO TO statement. This statement is in

the form of GO TO [line number] •

15~ GO TO 75

1 .4.5 IF - THEN Statement

The IF - THEN statement is used to tramfer conditionally from the sequential order of statements

according to the truth of some relation. It is sometimes called a conditional GO TO statement. Each

IF - THEN statement is of the fo.",:

I IF [formula] [relation] [formula], THEN [line number]

The comma preceding THEN is optional and can b. omitted.

I

The following are two examples of this statement:

IF SIN(X)<=~ THEN 80
IF G=0 .. THEN 65

The first asks if the sine of X is less than or equal to M, and skips to line 80 if so. The second asks

if G is equal to 0, and skips to line 65 if so. In each case, if the answer to the question is no, the

computer goes to the next line.

1 .4.6 0 N - GO TO Statement

The IF - THEN statement allows a two-way fork in a program; the ON - GO TO statement allows a

many-way switch. The ON - GO TO statement has the form:

I
ON [formula], GO TO [line number], [line number], ••• [line number]

The comma preceding the GO TO ~an be omitted. For example:

This condition causes the following to occur:

If X = 1, the program goes to line 100,
If X = 2, the program goes to line 200,
If X = 3, the program goes to line 150

Version 17 BASIC 1-11 August 1971

In other words, any formula may occur in place of X, and the instruction may contain any number of

line numbers, as long as it fits on a single line. The value of the formula is computed and its integ ..

part is taken. If this is 1, the program transfers to the line whose numb .. is first on the list; if its

integer part is 2, the program transfers to the I ine whose number is the second one, etc. If the integ ..

part of the formula is below 1, or Img .. than the number of line numbers listed, an error message is

printed. To increase the similarity between the ON - GO TO and IF - THEN instructions, the instruc

tion

75 IF X>5 THEN 200

may also be written as:

75 IF X>5 GO TO 200

Conversely, THEN may b. used in an ON - GO TO statement.

1 .4.7 END Statement

Every program must have an END statement, and it must be the statement with the highest line numb ..

in the program.

999 END

1-12

CHAPTER 2

LOOPS

We are frequently interested in writing a program in which one or more portions are executed a number

I
of times, usually with slight variations each time. To write a program in such a way that the portions

of the program to be repeated are written lust once, we use loops. A loop is a block of instructions

that the computer executes repeatedly until a specified terminal condition is met.

I
The use of loops is illustrated and explained by using two versions of a program that performs the

simple task of printing out the positive integers 1 through 100 together with the square root of

each. The first version, which does not use a loop, is 101 statements long and reads

10 PR INT 1 .. SGfd 1)
20 PRINT 2 .. S0R(2)
3(11 PRINT 3 .. SQFd3)
990 PRINT 99 .. SQR(99)
1000 PF< I NT 100 .. SQfd100)
1010 END

The second version, which uses one type of loop, obtains the same results with far fewer instruc

tions (5 instead of 101):

10 LFT X=l
20 PRINT X .. S0RCX)
30 LET X=X+l
4(11 IF' X<=100 THEN 20
50 END

Statement 10 gives the value of 1 to X and initial izes the loop. In line 20, both 1 and its square root

are printed. Then, in line 30, X is increased by 1, to a value of 2. Line 40 asks whether X is less

than or equal to 100; an affirmative answer directs the computer back to line 20, where it prints 2

and ..f2and goes to 30. Again, X is increased by 1, this time to 3, and at 40 it goes back to ~O.

This process is repeated -- line 20 (print 3 and ~, line 30 (X = 4), line 40 (since 4 < 100, go back

to line 20), etc. -- until the loop has been traversed 100 times. Then, after it has printed 100 and its

square root, X becomes 101. The computer now receives a negative answer to the question in line 40

(X is greater than 100, not I ess than or equal to it), does not return to 20 but moves on to line 50, and

ends the program. All loops contain four characteristics:

Version 17A BASIC 2-1 May 1972

a. initialization (line 10)

b. the body (line 20)

rnnrH fi cati on (I i ne 30)

d. an exit test (line 40)

2.1 FOR AND NEXT STATEMENTS

BAS Ie provides two statements to specify a loop: the FOR statement and the NEXT statement.

10 FOR X=1 TO 100
20 PRINT X#SQRCX)
30 NEXT X
50 END

In line 10, X is set equal to 1, and a test is executed, like that of line 40 above. Line 30 carries

out two tasks: X is increased by 1, and control transfers back to the test in line 10. There the test

is carried out to determine whether to execute the body of the loop again or to go on to the state

ment following line 30. Thus, lines 10 and 30 take the place of lines 10,30, and 40 in the pre

vious program.

Note that the value of X is increased by 1 each time BASIC goes through the loop. If we want a

different increase, e.g., 5, we could specify it by writing the following:

10 ~OR X=I TO 100 STEP 5

and then the value of X on the first time through the loop would be 1, on the second time 6, on

the third 11, and on the last time 96. The step of 5 which would take X beyond 100 to 101 causes

control to transfer to line 50, which ends the program. The STEP may be positive, negative, or

zero. We could have caused the original results to be printed in reverse order by writing line 10

as follows:

10 ~OR X=100 TO 1 STEP-J

In the absence of a STEP instruction, a step-size of +1 is assumed.

The word BY may be substituted for the word STEP; FOR TO BY and FOR TO STEP statements are com

pletely equivalent.

More complicated FOR statements are allowed. The initial value, the final value, and the step-size

may all be formulas of any c~",plexity. For example, we could write the following:

~OR X=N+7*Z TO CZ-N)/3 BYCN-4*Z)/10

Version 17A BASIC 2-2 May 1972

For a positive or zero step-size, the loop continues as long as the control variable is less than or equal

to the final value. For a negative step-size, the loop continues as long as the control variable is

greater than or equal to the final val ue.

If the initial value is greater than the final value (less than the final value for negative step-size),

the body of the loop is not performed at all, but the computer immediately passes to the statement

following the NEXT. The following program for adding up the first n integers gives the correct result

o when n is O.

J0 READ N
20 LET 5=0
30 rOR K=l TO N
410 LET 5 =5 +K
50 NEXT K
60 PR INT 5
7~ GO TO J 0
~ DATA 3~10~0
99 END

In the following description of the instructions used to specify a loop, a I ine number is assumed and

brackets are used to denote a general type.

A FOR statement has one of two forms:

FOR [~~::il:] = [formula] TO [fonnula] STEP [formula]

or

FOR [~~~::I:] = [formula] TO [fonnula] BY [formula]

Most commonly, the expressions are integers and the STEP or BY is omitted. In the latter case a step

size of +1 is assumed. The accompanying NEXT statement has one of two forms.

NEXT [variable1

NEXT [variable, variable, ... variable]

The first form contains one variable that must be the same as that following FOR in the FOR statement.

The second form of the NEXT statement contains two or more variables separated by commas. These

variables must also match the variables in their accompanying FOR statements.

When the second form of NEXT is used, the variables must be written in the same order as they would

be written in separate NEXT statement!. That is, the variable that matches the last FOR statement is

first, that which matches the next-to-Iast FOR is second, and the variable that matches the first FOR

Version 178 BASIC 2-3 September 1972

I

statement is last. This causes the loops to be nested properly (refer to section 2.2). For example:

FORX

FOR Y

FOR Z is equivalent to

NEXT Z

NEXTY

NEXT X

FOR X

FOR Y

FOR Z

NEXT Z, Y, X

Note that for each FOR statement there is one and only one variable in a NEXT statement,

and vice versa. Some examples of FOR and NEXT statements are:

3A rO~ X=~ TO 3 STEP 0
~ NFXT X

12~ rO~ X~=(17+C0S(Z»/3 TO 3* S~~(Je) BY 1/4
?35 NEXT X~

rO~ x.~ TO 3 STEP -I
F~k Ja-3 T0 I~ H~ 2
"'Ii XT ~I,.,.

Line 120 specifies that the successive values of X4 are. 25 apart, in increasing order. Line 240 speci

fie. that the succe.sive value. of X will be 8, 7, 6, 5, 4, 3. Line 456 specifies that J will take on

values -3, -1, 1, 3, 5, 7, 9, and 11. If the initial, final, or step-size index values are given as

formulas, these formulas are evaluated only upon entering the FOR statement; therefore, if after this

evaluation we change the value of a variable in one of these formulas, we do not affect the index

value.

The control variable can be changed in the body of the loop; it should be noted that the exit test

always use. the latest value of this variable.

The following difficulty can occur with loop., both FOR -NEXT loops and loops explicitly written with

LET and IF statements (as in the example on page 2-1). The calculation of the index value. (initial,

final, and step-size) is subiect to precision limitations inherent in the computer. These values are

represented in the computer as binary numbers. When the values are integer, they can be represented

exactly in binary; however, it is not always possible to represent decimal values e~actly in binary

when they contain a fractional part. For example, a loop of the form:

~ rOR X=0 TO 10 STEP 0 ••
95 NEXT X

executes 1 ()() times instead of 101 times because the internal value for 0. 1 is not exactly 0. 1 After

the hundredth execution of the loop, X is not exactly equal to 10, it is slightly larger than 10, so the

loop stops. Whenever possible, it is advisable to use indices that have integer values because then

the loop will always execute the correct number of times.

Version 17B BAS Ie 2-4 September 1972

2.2 NESTED LOOfS

Nested loops (loops within loops) can be expressed with FOR and NEXT statements. They must be

nested and not crossed as the following skeleton examples illustrate:

Allowed Allowed Not Allowed

~FORX FOR X ~FORX FORY ~FORY FORY
[NEXT Y C FORZ NEXT X

NEXT X NEXTZ NEXTY
FORW

LNEXTW
NEXTY

CFORZ
NEXTZ
NEXT X

2-5

I

I

I

I

CHAPTER 3

LISTS AND TABLES

In addition to the ordinary variables used by BASIC, variables can be used to designate the elements

of a list or a table. Many occasions arise where a list or a table of numbers is used over and over,

and, since it is inconvenient to use a separate variable for each number, BASIC allows the program

mer to designate the name of a list or table by a single letteror a single letter followed byasingledigit.

Lists are used when we might ordinc:rily use a single subscript, as in writing the coefficients of a

polynomial (a
O

' a
1

, a2 , ••• , an). Tables are used when a double subscript is to be used, as in writing

the elements of a matrix (b ••). The variables used in BASIC consist of a single letter or a letter
I, I

and a digit which is the name of the list or table, followed by the subscript in parentheses. Thus,

A (0) , A(1), A(2), ••• , A(N)

represents the coefficients of a polynomial, and

B7(1,1), B7(1, 2), .•• , B7(N,N)

represents the elements of a matrix. (Refer to Chapter 8 for a discussion of string variables.)

The single letter or the letter and digit denoting a list or a table name may also be used without con

fusion to denote a simple variable. However, the same name may not be used to denote both a list and

a table in the same program because BAS IC recognizes a list as a special kind of table having only one

column. The form of the subscript is flexible: A list item B(I + K) may be used, or a table item

Q(A(3,7), B-C) may be used. The value of the subscript must not be less than zero.

We can enter the list A(O) , A(l), ••• , A(10) into a program by the following lines:

1~ FOR 1=0 TO 1'"
20 READ A (I)
30 NEXT I
4~ DATA 0#2#3#-5#2.2#~#-9#123#4#-4#3

Version 17B BAS IC 3-1 September 1972

3.1 THE DIMENSION STATEMENT (DIM)

BASIC automatically r....ves room for any list or table with subscripn of 10 or ffIWer. Howev., if we ..
want larger subscripts, w. must use a DIM statement. This statement indlcat8s to the computer that

I the .. cifled space is to be allowed for the list or table. DIM can 0110 be written 01 DIMENSION.

For _ampl., the instruction

10 DIM ACIS)

reNNeI 16 spaces for list A (14.(0), 14.(1), 14.(2), .•• , 14.(15». The inltruction

I 20 DI~ENSION YS<10,IS)

I reserves 176 spaces for matrix Y5 (10 + 1 rows • 15 + 1 colurms). Space may be reserved for more than

one lilt and/or table with a single DIM statement by separatIng the entries with commen, as shown in

the following example:

I 30

I A DIM (or DIMENSION) Itatement II not .x.cuted; th fcn, It may appear on any II". before the

END ltatement. How.v.r, the best place to put It il at the beginning 10 that It II not forgotten. If

w. enter a tab I. with a lubJcript greater than 10, without a DIM statement, BASIC gives an.rror

rneaage, telling UI that we have a lublcript en"Ol'. This condition can be rectified by .nterlng a DIM

statement with a line number I .. than the line number of the END ltatement.

I A DIM (or DIMENSION) statement is normally used to,.,. additional space, but in a long progIan.

that requirel many small tabl .. , it may be used to re .. rve I .. lpace for tabl •• in ~r to have more

space for the program. When in doubt, d.clare a larger dlmention than you .xpect to u .. , but not one

10 large that th.,. fl no room for the program. For .xampl., If w. want a I fit of 15 numbers .n_Nd,

we may write the following:

10 DIM AC2S)
2'" READ N
30 rOR I-I TO N
40 READ A < I)
50 NEXT I
60 DATA IS
70 DATA 2,3,S,7,11,13,17,19,23,29,3t,37,~1'43'47

Statements 20 and 60 could have been eliminated by writing 30 as FOR I = 1 TO 15 but the program as

typed allows for the lengthening of the list by changing only statement 60, as long as the lilt do .. not

exceed 25 and th.e is sufficient data.

Venion 178 BAS IC 3-2 Sept.mber 1972

We could enter a 3-by-5 table into a program by writing the following:

l~ FOR 1=1 TO 3
2V' FOR J=t TO 5

I 30 I"<FAf) F<?(I"J)
..:WI NEXT J
50 NEXT
~ DATA 2,3,-5,-9,2
70 DATA 4,-7,3,4,-2
00 DATA 3,-3 .. 5 .. 7 .. 8

I Again, we may enter a tabl,e with no DIM (or DIMENSION) statement: BASIC then handles all the

entries from 8(0,0) to 8(10,10).

3.2 EXAMPLE

Below are the statements and run of a problem which' uses both a list and a table. The program com

putes the total sales of five salesmen, all of whom sell the same three products. The list, P, gives the

price per item of the three products and the table, S, tells how many items of each product each man

so I d. Produc t 1 se" s for S 1 .25 per item, product 2, for $4.30 per i tern, and produc t 3, for $2 .50 per

item; also, salesman 1 sold 40 j terns of the Ant product, 10 of the second, 35 of the third, and so on.

The program reads in the price list in lines 40 through 80, using data in lines 910 through 930. The

same program could be used again, modifying only line 900 if the prices change, and only lines 910

through 930 to enter the sal es in another month. This sample program does not need a DIM statement,

because the computer automatically reserves enough space to allow all subscripts to run from 0 to 10.

NOTE

Since spaces are ignored, statements may be indented for
visual identity of the various loops within the program.

10 FOR 1=1 TO 3
20 READ P(I)
30 NEXT I
40 FOR 1=1 TO 3
~ lOOk J=1 TO 5
6V'J READ S(I .. J>
70 NEXT J
Rc;'! NEXT I
9(i'I FOR J= 1 TO 5
lc;'!c;'! LFT S=0
110 FOR 1=1 TO 3
120 LET S=S+P(I >*S< I,J)
130 ~~EXT I
140 PR INT "TOTAL SALES FOR SALESfv.AN"J,"$"S
150 NEXT J
900 DATA 1.25,4.30,2.50
910 DATA 40,20,37 .. 29 .. 42
920 DATA 10,.16 .. 3,21,8
930 DATA 35,47,29,16,33
999 E'\JD

(continued on next page)

Version 17B BASIC 3-3 September 1972

foUl,.,'
SAl~SI 11:~6 20-0CT-69
TOTAL SALES tiCk SALES,.,·AN 1 $ 1 A0. 500
TOTAL SALFS FOk SAlFS~AN 2 $ 211.300
TOTAL SALES FOR SALFS~AN 3 $ 131.650
TOTAL SALFS fiOk SALFS~AN 4 $ 166.500
TOTAL SALES FOR SALES~AN 5 $ 169.~~~

T t ~[I "'. 1 6 SEC 5 •

3.3 SUMMARY

BeCGUle the "umber of .Impl. variable names is limited, BASIC aliowl a -programmer to use Ults and

tabl .. to , the number of problems that can be programmed easily and concisely. A single

I I.ttw or a .fngl. I.tter followed by a single digit is used for the name of the list or table, and the

sublc::rfpt that follows i. enclCMCI in parentheses. A subscript may be a number or any legal expreaion.

Lilts and tabl. cre called subsc:ript.:f variables, and simple variables are called unsubscripted variables.

U,....,lIy, you can u .. CI subscripted variable anywhere that you use an unsubscripted variable.

HoweY., the variable mentioned immediately aft .. FOR in the FOR statement and after NEXT in the

NEXT .tat."...,t mu.t be an unsubscrfpted variable. The initial, terminal, and step values may be any

I IVClI .,.,.Ion.

I 3.3.1 The DIM (or DIMENSION) Statement

I To en .. a Ii,t or a table with a subscript greater than 10, a DIM statement, which has DIMENSION

as on altwnaht form, is used to retain sufficent space, as in the following examples:

I OI~ENSION H(3S)
n,,.,. QF«S.?5)

The fi"t excunple enables us to ent .. list H with 36 items (H(O), H(1), ••• , H(3S». The second reserves

$pOc. for a table of 156 i terns (S + 1 rows * 2S + 1 co I umns) .

Venio" 178 BAS Ie 3-4 September 1972

CHAPTER 4

HOW TO RUN BASIC

After learning how to write a BASIC program, we must learn how to gain access to BASIC via the

Teletype so that we can type in a program and have the computer solve it. Steps required to

communicate with the monitor must first be performed. These steps are fully explained in DECsys

tem-10 Usen Handbook and the DECsystem- 1 0 Operati ng System Commands manual.

4.1 GAINING ACCESS TO BASIC

After arriving at a terminal, follow three steps in order to enter BASIC

1 • Contact the DECsystem-10 computer,

2. Complete the LOG IN procedure, and

3. Access BAS IC •

4.1 .1 Contacting the DECsystem-10 Computer

Turn the terminal knob to LINE. Next, the terminal must be connected to the computer, either

directly, by means of a cable that leads from the terminal to the computer, or indirectly, using the

telephone system to I ink the terminal to the computer.

For direct connections, the IJser is not required to do anything more to contact the system than to

turn the knob to LIN E.

Since the procedure for obtaining a telephone system connection differs from one installation to

another, the user shou Id obtain the instructions from the operations staff at h is particular installation.

4.1.2 Completing the LOG I N Procedure

Three steps comprise the LOG IN procedure:

1 • Depress tC and type LOG IN. This signals the computer that you want to use it.
After you type LOGIN, the monitor types your job number, the version of the monitor,
and your terminal number. It then types a # •

4-1 January 1 974

2. Type your project-programmer number. This number is assigned to you by the computer
administration staff. Next, the moni tor asks for your password by typing PASSWORD:.

3. Type your password (also assigned by the computer administrations staff). It is not
printed.

If your password ond project-progrommer number are both vol id, the monitor types the time, date and

doy of the week. Refer to Paragraph 4.7 for on example of the LOGIN procedure.

4.1.3 Accessing BASIC

When the DECsystem-10 is ready to occept commands, the monitor responds with a period. Type

R BASIC to clear the user's core memory area and establish contact with the BASIC program. When

BASIC is reody to accept commands it types READY, FOR HELP TYPE HELP.

NOTE

In some cases the system automatically executes
the R BASIC command for the user. If READY,
FOR HELP TYPE HELP appears immediately
after the LOGIN procedure, this option has
been enac ted.

You can either type HELP to get a list of commands that you can give to BASIC or type any command

or statement thot you wish.

If you are going to create 0 new program, type in:

I\£~

BASIC responds with the following:

NEW F"ILE NAto'IF'--

Type in the name of your new program. If you wont to work with a previously created program that

you saved on 0 storoge device, type in the following:

OLD

BASIC then osks for the nome of the old progrom I as follows:

OL D F I LEN A ~ t::: - -

4-2 January 1974

Respond by typing in the nome of your old file. If your old file is stored on a device other than the

disk, you must type in the device name as in the following example:

OLD ~ILE NAME--DTA6:SA~PLE

BASIC retrieves the file named SAMPLE from DECtape 6 and replaces the current contents of user core

with the file SAMPLE. The disk may be specified as the device on which the old program is stored,

but this is not necessary because the disk is the device used when no device is specified. For example,

the fol lowing statements are equivalent:

OLD ~ILE NA~E--DS~:TESTI

OLD ~ILE NA~E--TEST 1

Device names are as follows:

DSK
DTAO through DTA7
DTBO through DTB 7
TTY
TTYO through TTYl77
LPT
MTAO through MfA7
PTP
PTR
COP
CDR
SYS
BAS or *"'*1

the disk
DECtapes number 0 through 7 on the first control unit
DEC tapes number 0 through 7 on the second control unit
your Teletype
Teletypes number 0 through 177
the I ine printer
magnetic tapes number 0 through 7
the high-speed paper-tape punch
the high -speed paper-tape reader
the card punch
the card reader
the system device where system programs are stored
the library where your installation stores BASIC programs
for all BASIC users

Not all installations have all of these devices; if you specify a device that does not exist or that is not

available for your use, BASIC returns an error message. Also, while it is possible to store a file on

the card punch, for example, the file cannot be retrieved from this device but must be retrieved from

the 'card reader. If you specify for OLD a device that can only do output, an error message will be

retumed •.

Program names can be any combination of letters and digits up to and including six characters in length.

In addition to specifying a program name, you may also specify an extension. The extension follows

the name and is separated from it by a period. An extension is any combination of I etten and digits

up to and including three characters in length. In previous chapters we have used program names such

as LIN EAR and SALES 1. If you reca II an old program from storage, you must use exactly the same

name and extension you assigned to it when it was saved.

1
When the asterisk is used, it follows the filename and extension rather than preceding them as with

the other devices.

4-20 January 1 974

You can also type the name of your file (and the device .on which it is located) on the same line as

the NEW or OLD command. In this case, BASIC will not ask for the name of the file. For example:

1\£ I:, T !: S T

The NEW OR OLD -- request can be answered not only by NEW or OLD, but also by any other com

mand (refer to Chapter 9 for a description of the commands) or statement. If NEW OR OLD -- is

answered by a NEW, OLD, or RENAME command, the current device, filename, and extension are

establ ished by the arguments specified with the command; if a device is not specified expl icitly, the

disk is assumed; if a filename is specified without an extension, the extension BAS is assumed; it is

illegal to specify an extension without specifying a filename.

If NEW OR OLD -- is answered by anything other than a NEW, OLD, or RENAME command, the Clor

rent device, filename, and extension are established as DSK, NONAME, and BAS, respectively. For

example, the following sequence creates a disk file called NONAME.BAS •

• R BAS Ie
NEW OR OLD -- 5 PRINT "TESTING"
10 END
SAVE

A new current device, filename, and extension are established whenever a NEW, OLD, or RENAME

command is given.

To indicate that you wish to use the library BAS, you can type either of the following:

filename .ext***

BAS:filename .ext

When BAS IC reads either of these forms, it looks for "device II BAS. If BASIC cannot find BAS, it

assumes that you mean the disk area with the project-programmer number [5,1} where BAS normolly

resides.

4.2 ENTERING THE PROGRAM

After you type in your filename (whether it is old or new), BASIC responds with the following:

READY

You can begin to type in your program. Make sure that each line begins with a line number contain

ing no more than five digits and containing no spaces or nondigit characters. Also, be sure to start

Version 17B BAS IC 4-3 September 1972

I

at the beginning of the Teletype line for each new line. Press the RETURN key upon completion of

each line.

If, in the process of typing a statement, you make a typing error.and notice it before you terminate

the line, you can correct it by pressing the RUBOUT key once for each character to be erased, going

backward until the character in error is reached. Then contfnue typing, beginning with the character

in erTOr. 1Me following is an example of this correcting process:

10 PRNIT\TIN\INT 2,3

NOTE

The RUBOUT key echoes as a backslash (\), followed by
the d.leted characters and a second backslash.

4.3 EXECUTING THE PROGRAM

After typf"g the complete program (do not forget to end wfth an END statement), type RUN or RUNNH,

followed by the RETURN key. BAS IC typ. the name of the program, the tfme of day, the current date

(unl. RUNNH il specified), and then it analyzes the program. If the program can be run, BASIC

executes it and, via PRINT statements, types out any results that were requested. The typeout of re

sults does not guarantee that the program is correct (the results could be wrong), but it does indicate

that no grammatical arran exist (e.g., missing line numbers, misspelled words, or illegal syntax). If

errors of this type do exist, BASIC types a message (or several messages) to you. A list of these diag

nostic messages, with their meanings, is given in Appendix B.

4.4 CORRECTING THE PROGRAM

If you receive an error message typeout informing you, for example, that line 60 is in error, the line

can be corrected by typing in a new line 60 to replace the erroneous one. If the statement on line 110

is to be eliminated from your program, it is accomplished by typing the following:

110

If you wish to insert a statement between lines 60 and 70, type a line number between 60 and 70 (e.g.,

65), followed by the statement.

4.5 INTERRUPTING THE EXECUTION OF THE PROGRAM

If the results being typed out seem to be incorrect and you want to stop the execution of your program

or suppress its typeout, type to (hold down CTRL key and at the same time type 0) to suppress the

typeout, or type tc twice to stop execution, as indicated in the following example:

Version 17B BAS IC 4-4 September 1972

I
'C
tC I

Stops execution of your program, closes any files that
are open in the program (refer to Chapter 10), and

Returns to BASIC command level.

If you typed tc, BASIC responds with the following:

READY

I whereupon you can modify or add statements and/or type RUN or any other command.

4.5.1 Returning to Monitor Level

If you wish to leave BAS IC and return to monitor level, type:

~(\[\' IT0k

the monitor responds with a period and waits for you to type a monitor command. If you wish to

return to BASIC, you must not type a command that will change what you have in core (i.e., the

ASSIGN command does not change what is in core, but the DIRECT command does change core).

To return to BASIC, type the following: • START or .REENTER or .CONT

.STAKT or .kFF~~TFk or .CONT

BASIC responds with

KEAD'r

and you can continue working in BAS IC.

4.6 LEAVING n-tE COMPUTER

When you wish to I eave the compu'ter, type the BYE or GOODBYE command.

No files created on the disk by BASIC commands or program statements are deleted by this

procedure.

The system monitor responds to the BYE or GOODBYE command by logging you off the

system completely, unless your files stored on the disk take up so much room that you

are over the logged-out quota set by the system administrator. In that case, the fol

lowing message is typed out (n and m are the appropriate integers):

ill.., I.< I (,r:r~~I\ (,I'T "I ('fw n Fi\CFFIJr;-f) I,Y m ~'IJCr\!:,

r:r~~J,,",~ :

If you then type

H)

instructions for deleting files at logout time are typed on your Teletype.

Version 17B BASIC 4-5 September 1972

I

4.7 EXAMPLE OF BASIC RUN

Th. following is a simpl. _ampl. of the use of BASIC und .. a timesharing monitor:

.tC

.LOG IN
JOP 7 SS031RA TTY34

'27.120

PASSWORD:

.R BAS Ie

GO TO MONITOR LEVEL
REQUEST LOGIN
MO NITOR TYPES OUT YOUR ASSIGNED
JOB NUMBER, THE CURRENT VERSION
NUMBER OF THE MONITOR, AND YOUR
TELETYPE NUMBER

MONITOR REQUESTS YOUR PROJECT
PROGRAMMER NUMBER; TYPE IT IN

MONITOR REQUESTS YOUR PASSWORD;
TYPE IT IN; IT WILL NOT EC HO BACK

MONITOR TYPES OUT THE TIME OF
DAY, THE CURRENT DATE, THE DAY OF
THE WEEK, AND A PERIOD

INSTRUCT MONITOR TO BRING BASIC
INTO CORE AND START ITS EXECUTION

RF'~ny.I F'('I" HELP TYPE HELP BASIC INDICATES THAT IT IS READY
TO RECEIVE A COMMAND OR STA TE
MENT

NE'~ TYPE THE COMMAND NEW

NFW F'ILE NA~F--SA~PLE

READY

10 F'CR N=t TO 7

2~ PRINT N.I SQR(N)

3&'1 NF XT '"

A~ PRINT "OQI\:E"

BASIC ASKS FOR NEW FILENAME

BASIC IS NOW READY TO RECEIVE
STATEMENTS

TYPE IN STATEMENTS

RIIN RUN PROGRAM

SA~PLF' 11 : I 4 2 9-0CT -69

1 .41421

3

2

5 2.23('(1'7

(continued on next page)

Version 17B BAS IC 4-6 September 1972

I

7 2.64575

DONE

Tlr-'E: 0.20 SEes.

READ'1'

f-<YF

JOB 7 ~ lISER [27 ~ 20] LOGGED OF"F" TT'1'34 0930 29-0CT-69

SAVF:D ALL F"ILF (5 DIS~ 8LOC~S)

RtlNTI~fi 0 to"IN~ 01 SEC

4.8 ERRORS AND DEBUGGING

Occasionally, the first run of a new problem is free of errors and gives the correct answers, but, more

commonly, errors are present and have to be corrected. Errors are of two types: errors of form (gram

matical errors) which prevent the running of the program, and logical errors in the program which cause

the computer to produce wrong answers or no answers at all •

Errors of form cause error messages to be printed, and the various types of error messages are listed and

explained in Appendix B. Logical errors are more difficult to uncover, particularly when the program

gives answers which seem to be nearly cOn"ect. In either case, after the errors are discovered, they

can be corrected by changing lines, by inserting new lines, or by deleting lines from the program. As

indicated previously, a line is changed by typing it correctly with the same line number; a line is in

serted by typing it with a line number between those of two existing lines; and a line is deleted by

typing its line number and pressing the REruRN key. Note that you can insert a line only if the orig

inal I ine numbers are not consecutive integers. For this reason I most programmers begin by using

arbitrory line numbers that are multiples of five or ten.

These corrections can be made either before or after a run. Since BASIC sorts out lines and arranges

them in order, a I ine may be retyped out of sequence. S imply retype the offending I ine with its orig

inal line number.

4.8.1 Example of Finding and Correcting Errors

We can best illustrate the process of finding the errors (bugs) in a program and correcting (debugging)

them by an example. Consider the problem of finding that value of X between 0 and 3 for which the

sine of X is a maximum, and ask the machine to print out this value of X and the value of its sine.

Version 17B BAS IC 4-7 September 1972

I

Although we know that ./2 is the correct value, we use the comput .. to test successive values of X

from 0 to 3, first using int.-vals of .1, then of .01, and finally of .001. Thus, we ask the comput.

to find the sine of 0, of .1, of .2, of .3 ... , of 2.8, of 2.9, and of 3, and to determine which of

these 31 values is the largest. It does SO by testing SIN(O) and SIN(.1) to see which is larger, and

calling the larger of these two numbers M. It then picks the larger of M and SIN (.2) and calls it M.

This nurre. is checked against SIN (.3). Each time a larg .. value of M is found, the value of X is

"remembered" in XO. When it finishes, M will have be." a.igned to the largest value. It then repeats

the Narch, this time checking the 301 num,.,. 0, .01, .02, .03, ••• , 2.98, 2.99, and 3, finding

the sine of each, and checking to .. e which has the largest sine. At the end of each of these three

searches, we want the computer to print three numbers: the value XO which has the largest sine, the

sine of that number, and the inta-val of search.

Before going to the reletype, we write a program suc" as the following:

10 READ D
20 LET X0-0
30 ~OR X-A TO 3 STEP 0
~ I' SIN(X)c=M THEN 100
50 LET X0=)(
60 LET M-SINCX0)
70 PR I NT)(0. X • D
80 NEXT X0
90 GO TO 20
100 DATA .1 •• 01 •• 001
110 END

The following is a list of the entire sequence on the Teletype with explanatory comments on the right

side:
RFAD~. FOR HELP T~PE HFLP
f\f:W
NEW ~ILE NAME--MAXSIN
READY
10
20
30
4Vi)

50
60
70
R0
90
20
100
110
RUN

READ D
LWR X0-0
run A:~ 10 ~ ~l~P U
I' SINE'E'CX)c-M THEN 100
LET X0=X
LET M=SIN(X)
PR I NT 1\0 .. X.I)

NEXT T'T'X0
GO TO 20
LET X0=0
DATA .1 •• 01 •• 001
END

4-8

Note the use of the RUBOUT key
(echoes as a \) to erase a chcracter
in line 40 (which should have stcrted
IF S IN (X), etc.) and in line 80.

We discover that LET was mistyped
in line 20, and we correct it after
90.

January 1 974

I

I

MA XS IN 1) : 35

ILLEGAL VARIABLE IN 70
NEXT WITHOUT FOR IN 80
FOR W ITHOllT NEXT IN 30
TIfIIIE: ~.05 SECS.
READY

70 PRINT X0 ~ X ~D
iI0 IF SIN (X) <=M
80 NEXT X
RUN

MAXS IN 11 : 36

'" .) 0.1
0.2 (11.2
0.3 TC TC

RF:AOY

20
RUN

2~-OCT-69

THFN 80

20-0CT-69

0. 1
0.1

MAXSIN 11:37 20-0CT-69
'~OEFINED LINE NUMBER 20 IN 90
TIME: 0.03 SEes.

90 GO TO 10
RUN

MAXS IN 1 1 : 43 20-0CT-69

0. 1 0.1 0.1
0.2 0.2 0.1
0.3 TC TC

READY

70
85 PRINT X0~M,D
5 PRINT "X VALUE" SIN .. ~RESOLUTION ..
RUN

IV'AXS IN 11 : 44

ILLEGAL VARIABLE IN 5
TIIV'F: 0.0R SECS.
READY

2Yl-OCT-69

5 PRINT "X VALUE"~"SIN",,"HESOLLJTION"
RUN

Version 17B BAS IC 4-9

After receiving the first error mes
sage, we inspect line 70 and find
that we used XO for a '1ariabl e in
stead of XO. The next two error
messages relate to lines 30 and 80
having mixed variables. These are
corrected by changing line 80.

Both of these changes are made by
retyping lines 70 and 80. In looking
over the program, we also discover
that the IF - THEN statement in 40
directed the computer to a DATA
statement and not to line 80 where
it should go. This is obviously in
correct. We are having every value
of X printed, so we direct the
machine to cease operations by
typing tC twice even while it is
running. We notice that SIN(O) is
compared wi th M on the first time
through the loop, but we had assign
ed a value to XO but not to M.
However, we recall that all variabl es
are set equal to zero before a RUN;
therefore, line 20 is unnecessary.

Line 90, of course, sent us back to
line 20 to repeat the operation and
not back to line 10 to pick up a
new value for D. We retype line 90
and then type RUN again.

We are about to print out the same
table as before. Each time that it
goes through the loop, it is printing
out XO, the current value of X, and
the interval size.

We rectify this condition by moving
the PRIN T statement outside the loop.
Typing 70 deletes that line, and
line 85 is outside of the loop. We
also real ize that we want M printed,
not X. We also decide to put in
headings for the columns by a
PRINT statement.

There is an error in our PRINT state
ment: no I eft quotation mark for the
third item.

(continued on next page)

September 1972

I"AXSIN 11:47
X VALUE SINE
1.60 0.999574
1 .57 1 •
1.57099 1.

OUT OF DATA IN 10
TIME: 0.96 SECS.
HEADY

LIST

~XSIN 11148 20-0CT-69

20 -OCT -69
RESOLUTION

0.1
0.01
0.001

5 PRINT "X VALUE S INE·· RESOLUT ION"
10 READ D
30 FOR x-e TO 3 STEP 0
~ I' SINCX)c-M THEN 80
59 LET X0=X
60 LET M=SIN(X)
ae NEXT X
~ PRINT X0 .. M .. D
~ GO TO 10
100 DATA .1 ... 01 ... 001
110 END

Retype line 5, with all of the re
quired quotation markl.

These are the d.ired results. Of
the 31 numben (0, • 1, .2, .3, ••• ,
2 .8, 2. 9, 3), it is 1 .6 wh i ch has
the largest sine, namely .999574;
this is true for fin .. subdivisions.

Having changed so many parts of the
program, we ask for a list of the cor
rected program.

READY
SAVE Th. pmgram is laVed for lot .. use.
READY

A PRINT stQtement could have been inserted '" check on the machine computations. For example, if

M were checked, we could have inserted 65 PRINT M, and seen the values.

4-10

I

CHAPTER 5

FUNCTIONS AND SUBROUTINES

5.1 FUNCTIONS

Occasionally, you may want to calculate a function, for example, the square of a number. Instead

of writing a small program to calculate this function, BASIC provides functions as part of the language,

some of which are described in Chapter 1. The remaining functions are described here, in Chapter 7,

and in Chapters 8 and 10.

The desired function is called by a three-letter name. The value to be used is expressed explicitly or

implicitly in parentheses and follows the function name. The expression enclosed in parentheses is

the crgument of the function, and it is evaluated and 'used as indicated by the function name. For

example:

15 LET B=SQRC~+Xt3)

indicates that the expression (4 + X t3) is to be evaluated and then the square root taken.

5.1 .1 The Integer Function (INn

The INT function appean in algebraic notation as [X] and returns the greatest integer of X fttat is less

fttan or equal to X. For example:

INT (2.35) = 2
INT (-2.35) = -3
IN T (12) = 12

One use of this function is to round numbers to the nearest integer by asking for INT (X + .5). For

example:

INT (2.9 + .5) = INT (3.4) = 3

rounds 2.9 to 3. Another use is to round to any specific number of decimal places. For example:

IN T (X * lOt 2 + .5) / 10 f 2

Version 17B BAS IC 5-1 September 1972

rounds X correct to two decimal plac .. and

INT (X * 10 t 0 + .5) /10 t 0

rounds X correct to 0 decimal places.

5.1.2 The Random Numb .. Generating Function (RND)

The RNO function produces random numb ... between 0 and 1. Thll function il Uled to simulate events

that happen In a somewhat random way. RND do .. not nHd an argument.

If we want the first 20 random numbers, we can write the program .hown below and get 20 Ihc-dlgit

decimals.

10 FOR La, TO 20
2A PRINT RND~
30 NEXT L
4PJ END
RUN

RANDOM

o .~06S33
0.863799
A.863799
5.0"'5~8!:-2

'312~

0.88445
0.880238
0.897931
0.393226

20-0CT-69

0.681969
0.638311
0.628126
0.680219

NOTE

0.939~62

0.602898
0.613262
0.632246

This is a sample run of random numb... The format of the
PRIN T statement is di leu.ad in Chapter 6.

RUN

RANDOM

0.406533
0.863199

13:25 20-0CT-69

0.681969 0.939462

0.253358
0.990032
0.303211
0.668218

0.253358

A second RUN gives exactly the same random numbers as the first RUN; this is done to facilitate the

debugging of programs. If we want 20 random one-digit integers, we could change line 20 to read as

follows:

2~ PRINT INT C1A*RNO),
RUN

5-2

We would obtain the following:

RA1\.'nrrv 13:?A ?Vl-OCT-f,9

9
f,

(,

6

~

9
3
6

To vary the type of random numbers (20 random numbers ranging from 1 to 9, inclusive), change line

20 as follows:

20 P KIN TIN T (q * k 1\1 D + 1);
RI'N

RANDOM 13:2R 2c-j -OCT -6 9

4 r 7 9 3 p 8 6 6 9 6 6 3 4 7 6 7

To obtain random numbers which are integers from 5 to 24, inclusive, change line 20 to the following:

20 PkINT I~T(20*RND +5);
RUN

RANDOtv' 13:30 2~.1-0CT -69

13 22 lR 23 10 22 22 17 17 24 16 22 17 17 11 6
12 18 17 1 R

If random numbers are to be chosen from the A integers of which B is the smallest, call for

INT (A *RND+B).

5.1.3 The RANDOMIZE 5 tatement

As noted when we ran the first program of this chapter twice, we got the same numbers in the same

order each time. However, we get a different set with the RANDOMIZE statement, as in the follow

ing program:

5 kANDOfV'I ZE
10 FOR L=1 TO 20
20 PRINT I NT (1 (-1 *1-< ND) ;
30 NFXT L
40 El'm
RI'1\'

RNDNOS 13:32 20.-0CT-69

9 4 2 6 6 3 R 4 9 8 6 5 8 6 2 6 0

RIJN

RNDNOS 13:33 20-0CT-69

4 6 6 6 ~J 5 3 8 4 0 8 0 5 8 0

5-3

RANDOMIZE (RANDOM) resets the numbers in a random way. For example, if this is the first instruc

tion in a program using random numbers, then repeated RUNs of the program produce different resul ts.

If the instruction is absent, then the offic ial I ist of random numbers is obtained in the usual order. It

is suggested that a simulated model should be debugged without this instruction so that one always ob

tains the same random numbers in test runs. After the program is debugged, and before starting produc

tion runs, you insert the following:

RANOOrv-

5.104 The Sign Function (SGN)

The SGN function is one which assigns the value 1 to any positive number, 0 to zero, and -1 to any

negative number. Thus, SGN (7.23) = 1, SGN (0) = 0, and SGN (-.2387) = -1. For example, the

following statement:

50 ON SGN(X)+2 GO TO 10171,,200,,300

transfers to 100 if X < 0, to 200 if X = 0, and to 300 if X > O.

5.1.5 The Time Function (TIM)

The TIM function returns the elapsed execution time, in seconds, of a program from the beginning of

execution. This time does not include compile and load time when a single program is run. However,

when programs are chained together (refer to 6.6 for a description of chaining), TIM returns the total

of the elapsed execution time since the start of execution of the first program plus the compile, load

and execution times of each subsequent program. The TIM function does not accept an argument.

For example:

11 c:; r F T T r-. 1 f- TH~'\' 1 S('

I c,(, ~ \i l)

5.1.6 The Define User Function (DEF) and Function End Statement (FNEND)

I n addition to the functions BAS IC provides, you may define up to 26 functions of your own with the

DEF statement. The name of the defined function must be three letters, the first two of which are FN,

e. g., F NA, F NB, ... , F NZ. Each DEF statement introduces a single function. For example, if you

Version 17B BAS IC 5-4 September 1972

repeatedly use the function e _X2 + 5, introduce the function by the following:

30 DE~ ~NECX)=EXP(-Xt2)+5

and call for various values of the function by FNE (.1), FNE (3.45), FNE (A+2), etc. This statement

saves a great deal of time when you need values of the function for a number of different values of the

variable.

The OEF statement may occur anywhere in the program, and the expression to the right of the equal

sign may be any formula that fits on one line. It may include any combination of other functions,

such CII thc.t defined by different OEF stat.ments; it also can involve other vcriabl. besides thme de

noting the argument of the function.

As in the following example each defined function may have zero, one, two, or more numeric

variables; string vorlables (refer to Ch 8) are not allowed:

18 DE~ ~NB(X.Y).3*X*Y-Y'3
105 DE~ ~NC(X.Y.Z.W).FNB(X.Y)/~NB(Z.W)
538 DE~ ~NA.3 .10416*R '2

5-40

In the definition of FNA, the current value of R ,is used when FNA occurs. Similarly, if FNR is de

fined by the following:

70 DEF FNR(X)=SQR(2+LOG(X)-EXP(Y*Z):(X+SIN(2*Z»)

you can ask for FNR(2.7), and give new values to Y and Z before the next use of FNR.

The method of having multiple line DEFs is illustrated by the "max •• function shown below. Using this

method, the possibility of using IF ... THEN as part of the definition is a great help as shown in the

following example:

10 DEF FNM(X~Y)

20 LET F Nfv;=X
30 IF Y<=X THEN 50
40 LET FNfV=Y
50 FNEND

The absence of the equals sign (=) in line 10 indicates that this is a multiple line DEF. In line 50,

FNEND terminates the definition. The expression FNM, without an argument, serves as a tempQrory

variable for the computation of the function value. The following example defines N-factorial:

10 DEF FNFCN)
20 LET FNF=l
30 FOR K=1 TO N
40 LET FNF=K*FNF
50 NEXT K
60 FNEND

Any variable which is not an argument of FN _ in a DEF loop has its current value in the progrom.

Mul tiple line DEFs may not be nested and there must not be a transfer from insid~ the D~F to outside

its range, or vice versa. GOSUB and RETURN statements (refer to Section 5.2) are not allowed in

multiple line DEFs.

5.2 SUBROUTINES

When you have a procedure that is to be followed in several places in your program, the procedure

may be written as a subroutine. A subroutine is a self-contained program which is incorporated into

the main program at specified points. A subroutine differs from other control techniques in that the

computer remembers where it was before it entered the subroutine, and it returns to the appropriate

place in the main program after executing the subroutine.

5.2.1 GOSUB and RETURN Statements

Two new statements, GOSUB and RETURN, are required with subroutines. The subroutine is entered

with a GOSUB statement which can appear at any place in the main program except within a multiple

5-5

line OEF. The GOSUB statement is similar to a GO TO statement; however, with a GOSU8 statement,

the computer remembers where it was prior to the transfer. Following is an example of the GOSUB

statement:

90 GOSUB 210

where 210 is the I ine number of the first statement in the subroutine. The lost I ine in the subroutine is

a RETURN statement which directs the computer to the statement following the GOSU8 from which it

transferred. For example:

350 RETURN

returns to the next highest line number greater than the GOSUB call.

Subroutines may appear anywhere in the main program except within the range of a multiple line OEF.

Care should be taken to make certain that the computer enters a subroutine only through a GOSUB

statement and exits via a RETURN statement.

5.2.2 Example

A program for determining the greatest common divisor (GCO) of three integers, using the Euclidean

Algorithm, illustrates the use of a subroutine. The first two numbers are selected in lines 30 and 40,

and their GCO is determined in the subroutine, lines 200 through 310. The GCO just found is called

X in line 60; the third number is called Y, in line 70; and the subroutine is entered from line 80 to

find the GCD of these two numbers. This number is, of course, the greatest common divisor of the

three given numbers and is printed out with them in line 90.

A GOSUB inside a subroutine to perform another subroutine is called 0 nested GOSUB. It is necessary

to exit from a subroutine only with a RETURN statement. You may have several RETURNs in the sub

routine, as long as exactly one of them will be used.

10 PRINT "A"# "S", "C", "GCD"
20 READ A, B, C
30 LET X=A
40 LET Y=B
50 GOSUB 200
60 LET X=G
70 LET Y=C
R~ GOSIIA 200
~ PRINT A,8,C,G
100 GO TO 20
110 DATA 60,90,120
120 DATA 38456,64872,9R765
130 DATA 32,384,72
200 LET Q=INT<X/Y)

(continued on next page)

5-6

2&A-B is illegal

A storage word may be relocatable in the left half as well a! in the right half. For example:

XWD A,B

5-7

CHAPTER 6
MORE SOPHISTICATED TECHNIQUES

The preceding chapters hove cov.eeI th., essential elements of BASIC. At this point, you are in a

position to write BASIC programs and to input th .. programs to the computer via your Teletype. The

commands and techniqves discu$sed SO far are sufficient for most programs. This chapter and remaining

ones are for a programmer who wishes to perform more intricate manipulations and to express programs

in a more sophisticated manner.

6.1 MORE ABOUT THE PRINT STATEMENT

The PRINT statement permits a greater flexibility for the more advanced programmer who wishes to

have a different format for his output. BASIC normally outputs items from PRINT statements in the forms

described in this chapter * • Numeric ite"", ore printed in the format:

Snn ••• nb

l'---"L L one space

num.ie vol ue

sign: space if positive; - if negative

String items (refer to Chapter 8) are printed exactly as they appear but without the enclosing quotes.

The Teletype line is divided into zones of 14 spaces each. A comma in a PRINT statement is a signal

to the Teletype to move to the next print zone on the current I ine or, if necessary, to the beginning of

the first print zone of the next lin.. A semicolon in a PRINT statement causes no motion of the

Teletype. <PA> (page) in a PRINT statement moves the Teletype to the beginning of the first print

I
zone of the first line on the m~xt page of output. Commas, semicolons, and <PA> delimiters can

appear in PRINT statements without intervening data items. Each delimiter causes Teletype movement

as previously described. For exampl e, PRIN T A, ,B causes the va I ue of A to be printed in the first zone,

*This chapter describes the noquote mode of output. The user can explicitly change the mode to quote
mode by using a QUOTE statement. Refer to Chapter 10 for the description of quote and noquote
modes and their associated statements.

Version 17 BASIC August 1971

I
the Teletype to be rmved to the third zone, and the value of B to be printed in the third zone. If two

items in a PRINT statement are clearly distinct, the separating commas, semicolons, or <PA> d.limit..,

can be omitted and the items are treated as though they were separated by one semicolon.

When you type in the following program:

10 rOR 1=1 TO 15
20 PR INT I
3eI NEXT I
., END

the reletype prints 1 at the beginning of a line, 2 at the beginning of the next line, and, finally, 15

on the fiFteenth line. But, by changing line 20 to read. as follows:

20 PR INT I ...

the numb., are printed in the zones, reading as follows:

J
6
1 I

2
7
12

3
8
13

4
9
14

5
10
IS

If you wont the numbers print" in this fashion, but compressed, change line 20 by replacing the

comma with a semicolon as in the following example:

20 PR INT I J

The following results are printed:

2 3 4 5 6 7 8 9 10 11 12 13 1~ 15

The end of a PRINT statement signals a new line, unleu a comma or semicolon is the last symbol. Thus,

the following instruction:

~ PRINT X ... Y

prints two numbers and then returns to the next line, while the instruction:

~ PRINT X ... Y ...

prints these two values and does not return. The next nurmer to be printed appean in the third zone,

after the val ues of X and Y in the first two zones.

Since the end of a PRINT statement signals a new line,

250 PRINT

Version 17 BASIC 6-2 August 1971

causes the Teletype to advance the paper one line, to put a blank line for vertical spacing of your

results, or to complete a partially filled line.

50 F"OR M=I TO N
110 F"OR J=0 TO M
120 PRINT 8(M6J)J
130 NEXT J
140 PRINT
150 NEXT M

This program prints 8(1,0) and next to it 8(1,1). Without line 140, the Teletype would go on printing

8(2,0), 8(2,1), and 8(2,2) on the same line, and then B(3,0), 8(3,1), etc. After the Teletype prints

the 8(1,1) value corresponding to M = 1, line 140 directs it to start a new line; after printing the value

of 8(2,2) corresponding to M = 2, line 140 directs it to start another new line, etc.

The following instructions:

50 PR INT liT IME-" J "SHAR" J ,. ING";
51 PR I NT .. ON"; .. THE .. J "PDP -10"

cause the printing of the following:

TIME-SHARING ON THE PDP-10

(The items enclosed in quotes in statements 50 and 51 are strings.)

The following instructions:

10 N=5
20 PR INT "END OF' PAGE" N cPA>
30 PRINT "ITEM",,"NO. ORDEREO",,"TOTAL PRICE"

cause the pri nti ng of

END OF' PAGE 5

followed by a form-feed to position the Teletype paper at the top of a new page, where the following

is printed:

ITEM NO. ORDERED TOTAL PRICE

Formatting of output CC:'1 be controlled even further by means of the TA8 function, in the form TAB{n),

where n is the desired print position. TA8 can contain any numeric formula as its argument. The value

of the numeric formula is computed and then truncated to an integer. This integer is treated modulo

the current output right margin. Setting the output right margin is described in Section 6.7. For

example, if the output right margin is 72, which is the default margin, a value in the range 0 through

71 is obtained. The first print position on the line is column 0. Thus, TA8(17) causes the Teletype to

6-3

move to colurm 17 (unless it has already po'" this position, in which case the TAl is ignored). For

example, inserting the following line in a loop

S5 PRINT XJ TABCI2)J YJ TAB(27)JZ

Causel the X values to start in column 0, the Y values in column 12, and the Z valu. in column 27.

The following rul. are used It) interpret the printed results:

a. If a nurraer isan integ.-, the decimal point is not printed. If the integ" contains
more than eight digits, it is prJ"'" in the fonnat as follows.

sn .nnnnnEsp'

I TL E (Expon .. t) followed by the sign of the expon .. t.
followed by p (power of 10)

next five digiti

fint digit

sign: space if positive; - if negative

For example, 32,437,580,259 is wrItten as 3.24376E+l0.

b. For any decimal number, no more than six slgnlflcant digIts cr. printed.

c. For a numb .. 1_ than 0.1, the E notatIon is used, unl_ the entlr.sfgnlflcant
pert of the numb. can be printed as a 6-dfgit decimal nurnb.r. n.UI,O.03456
indlcat. that the number is ecactly .0:u5600000, whil. 3.45600E-2 Inclicat.
that the numb. has been ",unded to .O~.

d. Trailing Za'OS after the decimal point cre not printed.

111. following program, in which powers of 2 are printed out, demonstrat. how numb .. cr. printed.

10 FOR N=-5 TO 30
20 PRINT 2tNJ
30 NF.XT N
40 END

POWERS I I : 5~ 20-0CT-69

0.03125 A.0625 A.125 0.25 0.5
512 102~ 20~8 4096 8192 16384
524288 1048576 2091152 ~19~304

6710886~ 1.32~218E+8 2.68.35E+8

6.2 INPUT STATEMENT

1 2 ~ 8 16 32 6~ 128 2~6
32768 65536 131072 2621~4

8388608 16777216 33S5~432
5.36871E+8 1.01374E+9

At times, during the running of a program, it is desirable to have data entered. This is particularly

true when one person writes the program and saves it on the storage device as a library program (ref.

ta SAVE command, Chapt .. 9), and other persons use the program and supply their own data. Data

may be entered by an INPUT statement, which acts as a READ but accepts numb.-s of alphanum.-ic

data from the Teletype keyboard. For example, to supply values for X and Y into a program, type the

following:

6-4

40 INPUT X .. Y

prior to the first statement which uses either of these numbers. When BASIC encounters this statement,

it types a question mark. The user types two numbers, separated by a comma, and presses the REruRN

key, and BASIC continues the program. No number can be longer than 8 digits.

Frequently, an INPUT statement is combined with a PRINT statement to make sure that the user knows

what the question mark is asking for. You might type in the following statement:

20 PRINT "YOUR VALUES OF X,Y .. AND Z ARE")
30 INPUT X .. V .. Z

and BASIC types out the following:

YOUR VALUE OF X.V .. AND Z ARE?

Without the semicolon at the end of line 20, the question mark would have been printed on the next

line. Data entered via an INPUT statement is not saved with the program. Therefore, INPUT should

be used only when small amounts of data are to be entered, or when necessary during the running of

the program.

6.3 STOP STATEMENT

S TOP is equivalent to GO TO xxxxx, where xxxxx is the line number of the END statement in the pro

gram. For example, the following two program portions are exactly equivalent:

250 GO TO 999 250 STOP

3~0 GO TO 999 340 STOP
999 END 999 END

6.4 REMARKS STATEMENT (REM)

REM provides a means for inserting explanatory remarks in the program. BASIC completely ignores the

remainder of that line, allowing you to follow the REM with directions for using the program, with

identifications of the parts of a long program, or with any other information. Although what follows

REM is ignored, its line number may be used in a GO TO or IF-THEN statement as in the following:

100 REM INSERT IN LINES 900-998. THE FIRST
110 REM NUMBER IS N .. THE NUMBER Of POINTS. THEN
120 REM THE DATA POINTS THEMSELVES ARE ENTERED .. BY
200 REM THIS IS A SUB~OUTINE fOR SOLVING EQUATIONS

300 RETURN

520 GOSUB 200

6-5

A second method for adding comments ft) a program consist! of placing an apostrophe (') at the end of

I
the Ii"., c.'1d following it by a remark. Everything following the apostrophe is ignored. This method

Cc.'1not be used in an image statement. Image statement's are described in Chapter 11. Apostrophes

within stTing constants are not treated as remark characten.

6.5 RES TORE 5 TATEMENT

Th. RESTORE statement permit's READing the data in the DATA statem.,ts of a program more than once.

Whencwer RESTORE is encountered in a program, BASIC restores the data block point .. to the Ant num

ber. A subsequent READ statement then starts reading the data allover again. However, if the desired

data i~s preceded by code numben or pcrameters, superfluous READ statements should b. used to pass

over riot.e numbers. As an exampl e, the following program portion reads the data, restores r..e data

block to its original state, and reads the data again. Note the use of line 570 (READ X) to pass over

the value of N, which is already known.

100 READ N
110 fOR 1=1 TO N
120 READ X ·
200 NEXT I ·
560 RESTORE
570 READ X
580 fOR 1=1 TO N
590 READ X ·
700 DATA
710 DATA

6.6 CHAIN 5 TA TEMENT

The CHAIN statement provides a means for one program to call another program so that programs can

be written separately and executed together in a chain. The CHAIN statement has one of the forms:

CHAIN [alphabetic string]
or CHAIN [alphabetic string], [numeric formula]

The alphabetic string is either: a) the name of the program being chained to, in the form

device:fi I ename .ext (optional iy enclosed in quotes), or b) a string variable * that has as its value the

name of the program being chained to, in the form device:filename.ext. The device and the extension

*A string variCible is a variable that is used to store an alphabetic string. A string variable is composed
ofa letter and a dollar sign (S) or a letter, a number, and a dollar sign (S)' e.g., AS or B2$. String
variables are described in Chapter 8.

Version 17 BASIC 6-6 August 1971

can be omitted, but the filename must be present. If the dN ce is omitted, DSK: is assumed; if the

extension is omitted, .BAS is assumed.

The numeric formula specifies a line number in the program being chained to; its value is truncated to

an integer.

A few examples of the CHAIN statement are:

CHAIN AS
CHAIN B2S, N *EXPM')
CHAIN PTR:MAIN, 50

When BASIC encounters a CHAIN statement in a program, it stops execution of that program, retrieves

the program named in the CHAIN statement from the specified device, compiles the ch:Jined program,

and begins execution either at the line numb. specified in the CHAIN statem ... t or at the beginning

of the program if no I ine number was specified. Only the heading of the first program in the chain is

printed, and the TIME: message is printed only aft. the last program in the chain has be ... executed.

Error messages for the programs in the chain, excluding the first program, have the name of the program

appended. For exampl e:

OVERFLOW IN 1100 IN TEST~.BA~

indicates that an ovaflow error occurred in line 1100 in the chained program TEST4.BAK. Programs

that run individually, or the first program in a chain will not have the program name appended.

The following i. an example of program chaining.

LIST

PROG3 12:05 25-JAN-11

10 PR INT 10
11 STOP
20 PR INT 20
21 END

READY
SAVE
~W

NEW FILENAME PROG2
READY
10 INPUT N
20 CHAIN PROG31 N
30 END
RUNNH
?10

10
TIME: 0.02 SECS

6-7

6.7 MARGIN S TA TEMENT

Normally, the right margin for output to the Teletype is n charact.-s. The MARGIN statement allows

the user to specify a right margin of 1 to 132 characters. This margin becomes effective on the first

new line of output after the MARG IN statement, and remains in effect until the next time the margin

is set by a MARGIN statement or until the end of the program's execution, whichev .. is lOOfter. At

the .,d of program execution, the output margin is r_t to n charact

Th. farm of the margin stat.ment is:

MARG IN [numeric formulal

lhe numeric formula i. a numeric cantftlnt, variable, or expr on that !peelfl. the right margin; it

;s tnmcated to an Integ .. before the marvin i. set. Some exampl .. of the MARGIN stat..,.,t are:

MARGIN
MARGIN

75
132*N

lhe right margin for input from the Teletype i. not affected by MARGIN statements; it is always loG

characters. Lin. of input that are longer than 142 charact .. will r..,1t in .-n:»r m

Th. monitor, as well a. BASIC, comid .. the normal Teletype output margin to be 72 charact ...

Therefore, when a margin gr .. ter than 72 charact ... is needed, the monitor command SET TTY WIDTH

must be used in addition to the BASIC MARGIN statement. Oth.wl .. , the monitor will output a lead

ing carriage retum-line feed if an attempt is made to output a seventy-third chcracter on a Ifne.

I
Before the program i. run, the user must i.ue the command:

j\I!(lN IT0k

to BASIC and then type:

SET TTY WIDTH 132
REENTER

to reenter BASIC. The monitor will not output its carriage return-line feed until after the 132nd

character on a line; consequently, BASIC can contml the margin as the MARGIN statements specify

without interference from the monitor. The SET TTY WIDTH monitor command is implemented in 5.02

and later monitors.

6.8 PAGE STATEMENT

Normally, output to the Teletype is not divided into pages. The PAGE statement allows the user to

set a page size of any positive number of lines. This page size remains in effect until the page size is

set again by a PAGE statement, or until the Teletype is set back into nopage mode by a NOPAGE

statement (described in Section 6.9), or until the end of the program's execution. At the end of Pft)

gram execution, the Teletype is reset to nopage mode.

Version 178 BASIC 6-8 September 1972

The form of the PAGE statement is:

PAGE [numeric formula]

The numeric formula specifies the page size; it is truncated to an integer before the page size is set.

When a PAGE statement is executed, BASIC ends the current output I ine (if necessary) , outputs a form

feed to posi tion the Teletype paper at the top of the next page, and starts counting I ines beginning

with the next line of output. As soon as a new page is necessary, a form-feed is output. Whenever a

PRINT statement containing <PA> is executed, the line count for the Teletype page is set back to zero.

6.9 NO PAGE STATEMENT

The NOPAGE statement sets the Teletype back to nopage mode (i .e., the output to the Teletype is no

longer automatically divided into pages). The NOPAGE statement need only be used to change the

mode back from page mode (set by a PAGE statement) because the default is nopage mode for all

Tel etype output. The form of the statement is:

NO PAGE

The NOPAGE statement has no effect on the execution of <PA> delimiters in PRINT statements; they

are executed as usual.

6-9

CHAPTER 7

VECTORS AND MATRICES

Operations on I ists and tables occur frequently; therefore, a special set of 13 instructions for matrix

computations, all of which are identified by the starting word MAT, is used. These instructions are

not necessary and can be replaced by combinations of other BASIC instructions, but use of the MAT in

structions resul ts in shorter programs that run much faster.

The MAT instructions are as follows:

MAT READ a, b, c

MATc =ZER

MATc =CON

MATc = ION

MAT PRINT a, b, c

MAT INPUT v

MAT b =a

MATc=a+b

MATc=a-b

MATc =a *b

MAT c = TRN(a)

MAT c = (k) * a

MAT c = INV (a)

Read the three matrices, their dimensions
having been previously specified.

Fill out c with zeros.

Fill out c with ones.

Set up c as an identity matrix.

Print the three matrices. (Semicolons can
be used immediately following any matrix
which you wish to have printed in a close
I y pack eel format.)

Call for the input of a vector.

Set the matrix b equal to the matrix a.

Add the two matrices a and b.

Subtract the matrix b from the matrix a.

Multiply the matrix a by the matrix b.

Transpose the matrix IJ.

Mul tiply the matrix a by the number k. The
number, which must be in a parentheses, may
also be given by a formula.

Invert the matrix a.

7-1

7.1 MAT INS TRUCTJON CONVENTIONS

The following convention has been adopted for MAT illstTuctions: while every vector has a component

0, and fNtry matrix has a row 0 and a column 0, the MAT instructions ignore these. Thus, if we have

a matrix of dimension M-by-N in a MAT instruction, the rows are numbered 1 , 2, .•• , M, and the

col umns 1 , 2, ... , N.

If a numeric array is referenced in a MAT statement other than MAT INPUT, BASIC sets up the array

I as a matrix with two dimensions unless the user has specifically declared in a DIM (or DIMENSION)

statement that the array is a vector.

The DIM statement may simply indicate what the maximum dimension is to be. Thus, if we write the

following:

DIM MC20,35)

M may have up to 20 rows and up to 35 columns. This statement is written to re.rve enough space for

the matrix; con.quently, the only concem at this point is that the dimensions declared are large

I enough to accomodate the matrix. However, in the absence of DIM (or DIMENSION) statements, all

vectors may have up to 10 components and matrices up to 10 rows and 10 columns. This Is to say that

I in the absence of DIM (or DIMENSION) statements, this much space is automatically relerVed for vec

ton and matrices on their appearance in the program. The actual dimension of a matrix may be deter

mined either when it is first set up (by a DIM statement) or when it is computed. Thus the following

I

10 DIM MC20,7)

50 MAT READ M

reads a 20-by-7 matTix for M, while the following:

50 MAT READ MC17,30)

reads a 17-by-30 matrix for M, provided sufficient space has been saved for it by writing

10

7.2 MATC =ZER, MATC =CON, MATC -=ION

The following three instructions:

MAT M := ZER
MAT M= CON
MAT M = ION

Version 178 BAS Ie

(sets up matrix M wi th all components equal to zero)
(sets up matrix M wi th al! components equal to one)
(sets up matrix M as an identity matrix)

7-2 September 1972

act like MAT READ as for as the dimension of the resulting matrix is concerned. For example,

MA T M -= CON (7,3)

sets up a 7-by-3 matrix with 1 in every component, while in the following:

MATM=CON

sets up a matrix, with ones in every component, and a 10-by-10 dimension (unless previously given

other dimensions). It should be noted, however, that these instructions have no effect on row and

column zero. Thus, the following instructions:

10 DI~ M(20~7)

20 MAT READ M(7~3)

35 MAT M=CON
70 MAT M=ZER (15,7)

~ MAT M=ZER(16,10)

first read in a 7-by-3 matrix for M. Then they set up a 7-by-3 matrix of all 1s for M (the actual

dimension having been set up as 7-by-3 in line 20). Next they set up M as a 15-by-7 all-zero matrix.

(Note that although this is larger than the previous M, it is within the limits set in 10.) An error mes

sage results because of line 90. The limit set in line 10 is (20 + 1) x (7 + 1) = 168 components, and in

90 we are calling for (16 + 1) x (10 + 1) = 187 components. Thus, although the zero rows and columns

are ignored in MAT instructions, they playa role in determining dimension limits. For example,

~ MAT M=ZER(25.5)

would not yi eld an error message.

Perhaps it should be noted that an instruction such as MAT READ M(2,2) which sets up a matrix and

which, as previously mentioned, ignores the zero row and column, does, however, affect the zero row

and column. The redimensioning which may be implicit in an instruction causes the relocation of some

numbers; therefore, they may not appear subsequently in the some place. Thus, even if we have first

LET M(l ,0) = M(2 ,0) = 1 , and then MAT READ M(2 ,2), the values of M(l ,0) and M(2,0) now are O.

Thus when using MAT instruc tions, it is best not to use row and column zero.

7.3 MATPRINTA,B,C

The following instruction:

MAT PRINT A, B; C

7-3

caUHI the thr. metric. 10 b. printed with A and C in the normal format (i .e., with flv. components

to a lin. and each new row starting on a new line) and B closely packed.

Vectors may be used in place of matrices, as long as the above rules are observed. Since a vector lik.

V(O is treated as a column vector by BASIC, a row vector has to be introduced as a matrix that has

onl y one row, namel y row 1. Thus,

DIM X (7) , YeO,S)

introduces a 7-compon.,t column vector and a 5-eomponent row vector.

If V is a vector, th.,

MAT PRINT V

prints the vector Vasa eolurm vector.

MAT PRINTV,

prints Vasa row vector, five numb ... to the lin., while

MAT PRINT Vi

prints V as a row vector, closely packed.

7.4 MAT INPUT V AND Tl-IE NUM FUNCnON

The following instruction:

MAT INPUT V

calls 'for the input of a vector. The number of components in the vector need not be sp.-cified. Nor

mally, the input is limited by its having to be typed on one line. Howev .. , by ending the line of

input with an ampersand (&) before the carriage return, the machine asks for more input on the next

line. There must be at least one data item preceding the ampersand on the line or an error mellClge

will be issued. Note that, although the number of components need not be specified, if we wish to

input more than 10 numbers, we must save sufficient space with a DIM statement. After the input,

the function NUM equals the number of components, and V(1), V(2), ••• , V(NUM) become the num

bers that are input, allowing variable length input. For example,

5 LET S='"
10 MAT INPllT V
20 LET N=NUIV
3'" IF" N=0 THEN 99
40 F'OR I = I TO N
45 LET S=S+VCI>
50 NEXT I
6(iIJ PRINT S/N
70 GO TO 5
99 fiND

7-4

allows the user to type in sets of numbers, which are averaged. The program takes advantage of the

fact that zero numbers may be input, and it uses ·this as a signal to stop. Thus, the user can stop by

simply pushing REnJRN on an input request. If an ampenand is used, it need only be preceded by a

comma when the item immediately preceding it is an unquoted string.

7.5 MAT B =A

This instruction sets up B to be the same as A and, in doing so, dimensions B to be the same as A, pro

vided that sufficient space has been saved for B.

7 .6 MAT C = A + BAND MA T C = A - B

For these instructions to be legal, A and B must have the same dimensions, and enough space must be

saved for C. These statements cause C to assume the same dimensions as A and B. Instructions such as

MAT A = A ± B are legal; the indicated operation is performed and the answer stored in A. Only a

single arithmetic operation is allowed; therefore, MAT D = A + B - C is illegal but may be achieved

with two MAT instructions.

7.7 MAT C = A * B

For this instruction to be legal, it is necessary that the number of columns in A be equal to the numb ..

of rows in B. For example, if matrix A has dimension L-by-M and matrix B has dimension M-by-N,

then C = A * B has dimension L-by-N. It should be noted that while MAT A = A + B may be legal,

MA T A = A * B is self-destructive because, in mul tiplying two matrices, we destroy components which

would be needed to complete the computation. MAT B = A * A is, of course, legal provided that A

is a "square" matrix.

7.8 MAT C = TRN(A)

This instruction lets C be the transpose of the matrix A. Thus, if matrix A is an M-by-N matrix, C is

an N-by-M matrix. The instruction MAT C = TRN (C) is legal.

7 .9 MA T C = (K) * A

This instruction allows C to be the matrix A multiplied by the number K (i .e., each component of A

is multiplied by K to form the components of C). The number K, which must be in parentheses, may

be replaced by a formula. MAT A = (K) * A is legal.

7-5

7.10 MAT C = INV(A) AND THE DET FUNCTION

lMis instruction allows C to be the inv..,e of A. (A must be a IIsquare" matrix.) The function DET is

available after the execution of the invenion, and it will equal the determinant of A. Consequently,

the user can obtain the detenninant of a matrix by inverting the matrix and then noting what value

DET has. If the determinant of a matrix is zero, the matrix is singular and its inverse is meaningless.

I
When an attempt is made to invert a matrix whose determinant is zero, the warning message is printed,

__ 1. SIN(;!lLAk ~ATRrx INVEkTED IN nn

DET is set equal to zero, and the program execution conti nues.

7.11 EXAMPlfS OF MA TRIX PROGRAMS

The first example reads in A and B in line 30 and, in SO doing, sets up the correct dimension •• Then,

in I in. 40, A + A is computed al'lCf the anlW" is called C. This automatically dimensions C to b. the

sam. as A. Note that the data in line 90 results in A being 2-by-30nd in B being 3-by-3. Both

MAT PRINT formats are illustrated, and one method of lab.ling a matrix print is shown.

10 DIM A(20#20), 8(20,20), C(20,20)
20 READ fw4, N
30 MAT READ ACM,N),8CN,N)
40 ~AT C=A+A
50 ~A T P R I NT C J
60 MAT C =A.S
70 PR INT
75 PR I NT .. A.8 =" ,
80 MAT PR INT C
90 DATA 2,3
91 DATA 1#2,3
92 DATA tb5#6
~ DATA 1,0#-1
9~ DATA ~,-1,-1
95 DATA -:,0,0
99 END
RUN

~TR IX 08:31 09-MAR-71

2 4 (:,

" I~ I?

A*8=

-2 -2 -3

-2 -5 -9

Tlr-'E: ~')3 SEeS.

Venion 17 BASTC 7-6 February 1972

The second example inverts an n-by-n Hi Ibert matrix:

1
1/2
1/3

l/n

1/2
1/3
1/4

1 In + 1

1/3 .
1/4 .
1/5

l/n + 2

l/n
l/n + 1
l/n + 2

l~n-l

Ordinary BASIC instructions are used to set up the matrix in lines 50 to 90. Note that this occun after

correct dimensions have been declared. A single instruction then results in the computation of the in

verse, and one more instruction prints it. Because the function DET is available after an invenion,

it is taken advantage of in line 130, and is used to print the value of the detenninant of A. In this

example, we have supplied 4 for N in the DATA statement and have made a run for this case:

5 REM THIS PROGRAM INVERTS AN N-BY-N HILBERT MATRIX
10 DIM AC20,20), BC20,20)
20 READ N
30 MAT A=CONCN,N)
~ ~OR 1=1 TO N
60 F'OR J= 1 TO N
70 LET ACI,J)=I/(I+J-l)
80 NEXT J
90 NEXT I
100 MAT B=INV(A)
115 PRINT "INV<A)="
120 MAT PRINT B
125 PR INT
J30 PRINT "DETERMINANT OF' A=" OET
J90 DATA 4
199 END
RUN

HI LMAT

INVCA)=

16.000J
-120.001
2L!0.003

-1L!0.002

13:52

-120.001
1200.01

-2700.03
1680.02

DETER~INANT OF A=) .65342E-7

20 -OCT-69

240.003
-2700.03
6480.08

"-4200.05

-140.002
1680.02

-4200.05
2800.03

A 20-by-20 matrix is inverted in about 0.5 seconds. However, the reader is warned that beyond

n = 7, the Hi Ibert matrix cannot be inverted because of severe round-off errors.

7.12 SIMULATION OF N-DIMENSIONAL ARRAYS

Although it is not possible to create n-dimensional arrays in BASIC, the method outlined below does

simulate them. The example is of a three-dimensional array, but it has been written in such a way

7-7

I

that it could b ... lIy changed tt» four dImensions or high ... W the fact that functions cc:wt hew.

any numb .. of veriabl .. , and w. set up a 1-10-1 coft'eIpOftdenc. b.tw ... the components of the array

and the components of a vector which equals the product of the dimensions of the crroy. For example,

if the array has dImensions 2, 3, 5, th., the vector has 30 components. A multiple line OEF could be

used in place of the simple OEF in line 30 if the us. wished to include aTOr meaag... The printout

is in the form of two 3-by-5 matric ••

11
20
31
58
55
60
88
98
118
III
112
115
121
981
'99
RUN

3ARRAY
4
6
8

5
7
9

DJM V(1010)
MAT READ D(3)
OEF FNA(I,J,K):«l-1)*O(2)+(Jool»*O(3)+K
rrOR I-I TO DCI)
F'OR J-I TO 0 (2)
F' OR t< -I TO D C 3)
LET VC'NACI,J,t<»-1+2*J+t<t2
PRINT VCF"NACI,J,t(».
NEXT t(
NEXT J
PRINT
PRINT
NEXT I
DATA 2,3,5
END

08111 21-OCT-69
7 12
9 104
I 1 16

8 13
If) 15
12 17

7--8

.9
21
23

20
22
24

28
31
32

29
31
33

January 1 974

CHAPTER 8
ALPHANUMERIC INFORMATION (STRINGS)

In previous chapten, we have dealt onlyrwith numerical information. However, BASIC also processes

alphanumeric information in the form of strings. A string is a sequence of characters, each of which is

a letter, a digit, a space, or some other character. A string, however, cannot contain a character

that is a line terminator (i .e., a line feed, form feed, or vertical tab), or a carriage return.

String" constants are normally enclosed in quotes (e.g., "TOTAL VALUE"). In some cases in some

statements, the quotes can be omitted. Where this is allowed, it is explicitly stated in the description

of the particular type of statement found elsewhere in this manual.

Variables may be introduced for simple strings and string vectors, but not for string matrices. Any

simple vcriable, followed by a dollar sign ($), stands for a string; e.g., A$ and C7$. A vector vcri

able, followed by $, denotes a list of strings; e.g., V$(n) or A2$(n) , where n is the nth string in the

list. For example, V$(7) is the seventh string in the list V.

8.1 READING AND PRINTING STRINGS

Strings may be read and printed. For example:

10 READ A$, 8$, C$
20 PRINT C$; 8$) A$
30 DATA ING,SHAR,TIME-
40 END

causes TIME-SHARING to be printed. The effect of the semicolon in the PRIN T statement is consistent

with that discussed in Chapter 6; i.e., it causes output of the alphanumeric items in a close-packed

form. Commas, <PA> delimiters, and TABs may be used as in any other PRIN T statement. The loop:

10 FOR 1=1 TO 12
80 READ M$(I)
90 NEXT I

reads a I ist of 12 strings.

Version 17A BASIC 8-1 May 1972

I

In place of the READ and PRINT, corresponding MAT instructions may be used for lists. For example,

MAT PRINT M$; causes the memben of the list to be printed without spaces between them. We may

also use INPUT or MAT INPUT. After a MAT INPUT, the function NUM equals the number of strings

inputted. When using the MAT IN PUT statement, you can continue inputting strings on the next line

by typing an ampenand (&) on the current I ine immediately before pressing the RETURN key. A comma

must precede the arnpencmd if the string immediately before the ampenand is unquoted. If the string

is unquoted and a comma does not sepcrot. the string from the amp.-sand, the ampersand will be

treated as part of the string. Thus, either MARY,& or "MARY"& is legal input.

As usual, lists are assumed to have no more than 10 elements; otherwise, a DIM (or DIMENSION)

statement is required. The following statement:

10 DIM ~$(2e)

saves space for 20 stri ngs in the M$ list.

In the DATA stotements, numbers and strings may b. intermixed. Numb ... cre CIIIigned only to num.

ical variables, and strings only to string variabl •• Strings in DATA statements or. recognized by the
!

fact that they start wi th a letter. If they do not, they must be enclosed in quotes. The same require-

ment holds for a string containing a comma. For example:

DATA 10,ABC,5,"4FG-,-SEPT. 22, 1968",2

The only convention on INPUT and MAT INPUT is that a string containing a comma must be enclosed

in quotes. The following example shows the correct format for a response to a MAT INPUT:

MR. JONES, "146 MAIN ST., MAYNARD, MASS."

8.2 STRING CONVENTIONS

In every method of inputting string information inta a program (DATA, INPUT, MAT INPUT, etc.),

leading blanks are ignored unless the string, inclUding the blanks, is enclosed in quotes. String con

stants (which must be enclosed in qootes) or string variables may occur in LET and IF-THEN statements.

The following two examples are self-explanatory:

J~ LET Y$="YES"
20 r F" A 7 'f .::" '! F S .. THE" ? V1 v'

8-2 January 1974

I

The relation "<" is interpreted 05 "earlier in alphabetic order. II The other relational symbols work In

a similar manner. In any comparison, trailing blanks in a string are ignored, as in the following:

"YES II = IIYES II

We illustrate these possibilities by the following program, which reads a list of strings and alphabetizes

them:

10 DIM L!(50)
20 READ N
30 MAT READ L!(N)
40 FOR 1=1 TO N
50 FOR J=1 TO N-I
60 IF L!(J) < L!<J+1) THEN 10A
70 LET A!=L$(J)
80 LET L$(J)=L!(J+l>
~ LET L$(J+l>:A$
H'l0 NEXT J
110 NEXT I
120 MAT PRINT L!
900 DATA 5.0NE.TWO.THREE.FOUR.FIVE
999 END

Omitting the S signs in this program serves to read a list of numbers and to print them in increasing

order .

A rather common use is illustrated by the following:

330
340
350
360

PRINT "DO YOU WISH TO CONTINUE"J
INPUT A$
IF A$:"YES" THEN 10
STOP

8 .3 NUMERIC AND STRING DATA BlOCKS

Numeric and string data are kept in two separate blocks, and these act indepa"tdently of each oth ...

The RES TORE statement resets both the data pointers for the numerical data and string data back to the

beginning of their blocks. RES TORE· resets the pointer only for the numerical data and RES TORE $

onl y for the string data.

8.4 THE CHANGE STATEMENT

In BAS IC, it is very easy to obtain the individual digits in a number by using the function INT. One

way to obtain the individual characters in a string is with the instruction CHANGE. The use of

CHANGE is best illustrated with the following examples.

Version 17A BASIC 8-3 May 1972

5 DIM A(65)
10 READ AS
15 CHANGE AS TO A
20 , OR I -0 TO A C 0)
25 P~INT ACI)J
35 NEXT I
~ DATA ABCDE'GHIJ~LMNOPQRSTUVWXYZ
45 END
RUN

CHANGE 13.55 20-0CT-69

26 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
80 AI 82 83 84 85 86 87 88 89 90

In lin. 15, the instruction CHANGE AS TO A has caused the vector A to have as its zero component

the nu of charac:t .. in the string AS and, also, to have caiain numb .. in the oth .. compon .. ts.

Th ... nUMbers are the Am.-ican Standard Code for Information Int.-change (ASCII) numbaos for the

chanxtaos appearing in the string (e.g., 14.(1) is 65 - the ASCII numb .. for A).

Table 8-1 lists the ASCII numbers for printing and nonprinting characta's. Note that the nonprinting

characters are shown in the tabl. as cod. containing two or thr .. lett... lh .. codes are not output;

the actual meaning of the ASCII numb. is output (e.g., 7 cau .. the b.1I to ring, it do. not print

BEL) •

Tabl.8-1
ASCII Nurnb.s and Equivalent Charact ..

ASCII ASCII
Decimal Charact. Meaning Decimal Charact.- Meaning
Number Number

0 NUL Null 14 SO Shift out
1 SOH Start of headi", 15 SI Shift in
2 STX Start of tax t 16 OLE Data Ii nk escape
3 ETX End of text 17 DCl Device control 1
4 EaT End of transmi ilion 18 DC2 Device control 2
5 ENQ Enquiry 19 DC3 Device control 3
6 ACK Acknowl edge 20 DC4 Device control 4
7 BEL Bell 21 NAK Negative acknowl edgement
8 BS Backspace 22 SVN Synchronous idle
9 HT Hori zon tal tab 23 ETB End of transmission block

10 IF Line feed 24 CAN Cancel
11 VT V erti cal tab 25 EM End of medi um
12 FF Form feed 26 SUB Substitute
13 CR Can-iage return 27 ESC Escape

Note: Recall that line feed (IF), form feed (FF), vertical tab (VT), and carriage return (CR) are
;illegal in strings.

(continued on next page)

Version 17A BASIC 8-4 tv1ay 1972

Table 8-1 (Cont)
ASCII Numben and Equivalent Characters

J:.SCII ASCII
Decimal Character Meaning Decimal Character . Meaning
Number Number

28 FS Fi 'e separator 72 H Upper case H
29 GS Group separator 73 I Upper case I
30 RS Record separa tor 74 J Upper case J
31 US Un i t separa tor 75 K Upper case K
32 SP Space or blank 76 l Upper case l
33 I Exclamation mark n M Upper case M
34 .. Quotation mark 78 N Upper case N
35 /I Number sign 79 0 Upper case 0
36 S Dollar sign 80 P Upper case P
37 0/0 Percent sign 81 Q Upper case Q
38 & Ampersand 82 R Upper case R
39 I Apostrophe 83 S Upper case S
40 (left parenthesis- 84 T Upper case T
41) Right parenthesis 85 U Upper case U
42 * Asterisk 86 V Upp. case V
43 + Plus sign 87 W Upper case W
44- , Comma 88 X Upper case X
45 - Minus sign or hyphen 89 y Upper case Y
46 Period or decimal point 90 Z Upper case Z
47 / Slash 91 [left square bracket
48 0 Zero 92 \ Back slash
49 1 One 93] Right square bracket
50 2 Two 94 A or t Circumflex or up arrow
51 3 Three 95 ·or Back a now or und.-score
52 4 Four 96 - Grave accent
53 5 Five 97 a lower case a
54 6 Six 98 b lower case b
55 7 Seven 99 c lower case c
56 8 Eight 100 d lower case d
57 9 Nine 101 e lower case e
58 : Colon 102 f lower case f
59 ; Semicolon 103 g lower case g
60 < left angl e bracket 104 h lower case h
61 = Equal sign 105 i lower case i
62 > Right angle bracket 106 i lower case i
63 ? Question mark 107 k lower case k
64 'q) At sign 108 I Lower case I
65 A Upper case A 109 m lower case m
66 B Upper case B 110 n lower case n
67 C Upper case C 111 0 lower case 0

68 0 Upper case D 112 p Lower case p
69 E Upper case E 113 q lower case q
70 F Upper case F 114 r lower case r
71 G Upper case G 115 s lower case s

(continued on next page)

Version 17 BASIC 8-5 August 1971

Tabl e 8-1 (Cant)
ASCII Numbers and Equivalent Characters

ASCII
I

ASCII
Decimal Character Meaning Decimal Character Meaning
Number

I
Number

I

116 t Lower case t I 122 z Low .. case z I
117 u Lower case u 123 { Left brace
118 v Lower case v 124 , Vertical line
119 w Lower case w 125 } Right brace
120 x Lower case x 126 - Tilde
121 y Lower case y 127 DEL Delete

The other use of CHANGE is ill ustrated by the following:

10 ~OR 1=0 TO 5
15 READ A C I)
20 NEXT I
25 DATA 5~65~66~67~68~69

30 CHANGE A TO A$
35 PRINT A$
Jt0 END

This program prints ABCDE because the numba'! 65 through 69 are the code numb..s for A through E.

Before CHANGE is used in the vector-to-string direction, we must give the numb .. of charact ...

which are to be in the string as the zero component of the vector. In line 15, A(O) is read as 5. The

following is a Anal example:

5 DI~ V(128)
10 PRINT "WHAT DO YOU WANT THE VECTOR V TO BE"J
20 MAT INPUT V
30 LET V(0)=NUM
35 I~ NUM=0 THEN 70
~ CHANGE V TO A$
50 PRINT A$
60 GO TO 10
70 END
RUN

EXA~PL E 13: 59 20-0CT-69

WHAT DC YOU WANT THE V TO BE? 40,A5~60,45~89~90
(-<-YZ
WHAT DO YOU WANT THE VECTOR V TO 8E? 33,34,35,36,37,38,39,40,41,42 &
? 43,44,45,46,47~48,49,50
!.OI1 $ % & ' C) * +, - • /0 1 2
WHAT DO YOU WANT THE VECTOR V TO BE?
Tlf'o'IE: 3.10 SECS.

8-6

Note that in this example we have used the availability of the function NUM after a MAT INPUT to

find the number of characters in the string which is to resul t from line 40.

8.5 STRING CONCATENATION

Strings can be concatenated by means of the plus sign operator (+). The plus sign can be used to con

catenate string formulas wherever a string formula is legal, with the exception that information cannot

be stored by means of LET or CHANGE statements in concatenated string variables. That is, concate

nated string variables cannot appear to the left of the equal sign in a LET statement or as the right

hand argument in a CHANGE statement. For example, LET A$=8$+C$ is legal, but LET A$-f-!$=C$ is

not; and similarly, CHANGE A$-f-!$ TO X is legal, but CHANGE X TO A$-f-!$ is not. An example

of string concatenation is:

10 INPUT A$
20 CHAIN A$+"MAIN.PRG"
30 END
RUNNH

?DTA4 :

The program causes chaining to DTA4:MAIN. PRG, which is the program MAIN. PRG on DECtape

drive 4.

8.6 STRING MANIPULA nON FUNCTIONS

A number of functions have been implemented that perform manipulations on strings. These functions

are LEN, ASC, CHR$, VAL, STR$, LEFTS, RIGHTS, MIDS, SPACES, and INSTR. Functions that

return strings have names that end in a dollar sign ($); those functions that return numbers have names

that do not end in a dollar sign.

8.6.1 The LEN Function

The LEN function returns the number of characters in a string. It has the form:

LEN (string formula)

Version 17 BASIC 8-7 August 1971

Examples:

10 READ A$, B$
20 PR I NT LE N C A$ +8$ +"AkOUND")
30 DATA "UP, ", "DOWN, AND"
40 END
RUNNH
20

10 IF LE~ (A$)<>0 THEN 30
20 PR I NT "A$ I S A NULL STk I NG"
30 FI',JO

8.6.2 The ASC and CHR$ Functions

The ASC and CHR$ functions perform conversion of ASCII numbers in the same manner as the CHANGE

statement. The ASC function converts one character to its ASCII decimal equivalent, and the CHR$

function converts an ASCII decimal number to its equivalent character.

The ASC function has the form:

ASC {argument}

The argument can be either one character or the two- or three-letter code that represents a nonprinting

character (refer to Table 8-1 for these codes). ASC returns the equivalent ASCII decimal number for

the charac ter .

The CHR$ function has the form:

CH R$ {numeric formula}

The value of the numeric formula is truncated to an integer that must be in the range 0 through 127

I and cannot be the numbers 10 through 13. If the integer is less than 0 or greater than 127 or one of

the numbers 10 through 13, an error message is issued. This integer is then interpreted as an ASCII

decimal number that is converted to its equivalent character (refer to Table 8-1 for the ASCII numbers

and the equivalent characters).

An example of the ASC and CHR$ functions follows.

5 FOR T=ASCCA) TO ASC(A)+3
10 PRINT "THIS IS TEST" + CHR$CT)

This is the beginning of a FOR loop that successively prints:

Version 17A BASIC 8-8 May 1972

THIS IS TEST A

THIS IS TEST B

TH I SIS T EST C

THIS IS TEST D

8.6.3 The VAL and S TRS Functions

The VAL and STRS functions perform conversions from numbers to strings and strings to numbers. The

form of the VAL function is:

VAL (string formula)

The string formula must look like a number; if it does not, an error message is issued. VAL returns the

actual number that the string represents. The VAL function does not return the ASCII value of the

number that the string represents, it returns the number. For example, VAL ("25") returns the numb ..

25. The 25 that is the argument to VAL is a string, the 25 that VAL returns is a number.

If the string argument represents a number that is greater than about 1 .7E38 in magnitude or non-zero,

but less than about 1.4E-39 in magnitude, the appropriate overflow or underflow message is issued and

the val ue returned is about 1 .7E38, about -1 .7E38, or zero, whichever is appropriate.

Example:

10 INPUT A$
20 PRINT VAL (A$)*2

J0~ END
RUNI\lH

12.4611121
4.92222

The S TRS function returns the string representation (as a number) of its argument. The form of S TRS is:

S TR$ (numeric fonnula)

The string that is returned is in the form in which numbers are output in BAS IC (see Section 6.1). For

example, PRINT STR$ (1 .76111124) prints the string 1.76111.

Version 17 BASIC 8-9 August 1971

Exampl.:

10 A=2561
2'" R$=STR$CA)
30 PRINT BS
40 END
RllNNH

2561

10 A=25
20 R$=STR$(A)
30 CHANGE B$ TO X
4fI! PR INT X (0); X (1); X(2)

50 END
RUNNH

2 50 53

8.6.4 The LEFTS, RIGHTS, and MID$ Functions

The LEFTS, RIGHTS, and MID$ functions r.tum substrings of their string arguments.

Th. LEFTS function returns a substring of a specified numb .. of characters stcrting with the leftmost

charcx:t .. of its string Cl"glA'nent. The LEFTS function has the fa"":

LEFTS (string formula, num .. ic fonnula)

The value of the num .. ic formula is truncated to an integer that specifies the numb .. of characters in

the substring. If the specified nlA'nber of chcracters is great .. than the Iqth of the string argument,

the entire string is retumed. If the specified numb. of characters is less than or equal to zero, an

error m.-age is issued. For _ample,

10 PRINT LEF"TS("THIS IS A TEST".7)

pri nts the substri ng

TH IS IS

The RIGHTS function retums a substring of specified length ending at the rightmost character of its

string argument. The form of the RIGHTS function is:

RIGHTS (string formula, numeric formula)

The value of the numeric formula is truncated to an integer that specifies the number of characters in

the substring to be returned. If the number of characters is greater than the length of the string argu

ment, the entire string is retln1ed. If the specifi ed number of characters is I ess than or equal to zero,

an error meaage is i SlUed. For examp Ie,

Version 17 BASIC 8-10 August 1971

5 A$="HEnE AND THERE"
10 PRINT RIGHT$(A$,S)

prints the substring

THERE

The MIDS function returns a substring of its string argument starting a specified number of characters

from the I eftmost character of the string argument. The number of characters in the substTing can also

be specified. The form of the MIDS function is:

MIDS (string formula, numeric formula-1 , numeric formula-2)

The second numeric formula, which is h"uncated to an integer that specifies the number of characters

in the substring, is optional and can be omitted. If thiscrgument is omitted, the substTing includes all

the remaining characters in the string argument. The first numeric formula is truncated to an integer

that specifies the I eftmost character at which the substTing is to start. MIDS returns a null string if the

first numeric formula when truncated to an integer is greater than the number of characters in the

string argument; if it is less than or equal to zero, an error message is issued. If the number of charac

ters in the substring is specified o"y the second numeric formula} and is greater than the number of

characters in the string argument beginning at the specified character, MIDS retums the string argu

ment starting at the specified character. If the number of characters is less than or equal to z.-o, an

error message is issued.

Examples:

1~ PRINT MID$ ("TOTAL OUTPUT IN fI.1ARCW·,17)

RUNNH

~RCH

10 PRINT ~IO$ ("ABCOEF",3,1)

RIJNNH

c

8.6.5 The S PACES Function

The S PACES function returns a stTing of spaces. The form of the S PACES function is:

S PACES (numeric formula)

Version 17 BASIC 8-11 August 1971

The value of the numeric formula is truncated to an integ. that specifies the numb. of spaces in the

string to be returned. If the integer is I.,. than or equal to z.o or gr .. t .. than 132, an «TOr m.-ag.

is isaeed.

Examp~e:

10 AS=BS="HERE"
20 F'OR T-l TO 3
3A PRINT ASI SPACES(T', BS

RlINNH

HERE HERE
HERE HERE
HF:RF.: HF;RE

8.6.6 The INS TR Function

The INS TR function searches for a specified substring within a string and returns the poIition of the fint

charact. of that substring within the string. n,. positions are numb .. ed from the leftmost character

in the string. The us .. can optionally specify that the sean:h for the substring begin at a chCI"GCt ..

position other than the first. The form of the INS TR function is:

INSTR (numeric formula, string formula-l, string formula-2)

The numeric formula, which is truncated to an integer that specifies the starting charact .. position, is

optional and can be omitted. If the num.ic argument is omitted, the 'Search begins at the first charac

ter position. The first string argument is the string searched; the second string argument is the sub

string searched for. If the value of the num.ic formula (if specified) is gr .. ter than the numb .. of

characters in the string or if the substring cannot be found in the string, INSTR returns a value of

zero. If the value of the numeric formula is less than or equal to zero, an error message is iuued.

If the second string argument is a null string, INS TR returns the charact .. position at which the search

started If unless that position is past the last character in the string. In that case, INS TR returns a

val ue of zero.

Venion 17 BASIC 8-12 August 1971

Examples:
PRINT INSTk ("ABCDCFF", "C")

RL'NNH

3

10 PRI"'T INSTk (4,"ABCDCEF", "C")

RUNNH

5

Note that if the second string argument occurs more than once within that part of the first string argu-

ment that is searched, the first occurrence found is used.

Version 17 BASIC 8-13 August 1971

CHAPTER 9

EDIT AND CONTROL

There are BASIC commands which:

1 • Create, edit and manipulate files,

2. Run BASIC programs,

3. Cause the user to enter monitor mode,

4. Obtain information, and

5. Set the input mode.

These commands operate on an entire BASIC program, and therefore are functionally different from the

BASIC statements which comprise the program. For example; typing the LENGTH command causes

BASIC to output the length (in characters) of the current program in the user's core memory. If,

however, the user includes the LENGTH command as a statement in his BASIC program, an error is

generated and the program cannot run.

9.1 CREATING THE FILE IN CORE MEMORY

A file is a collection of data. This data may be BASIC statements, thereby comprising a BASIC

program; it may be data for a BASIC program, or it may be a combination of a program and data.

Seven media are used to store files. They are:

1. Core memory,

2. Disk pack and drum,

3. DECtape and magnetic tape, and

4. Paper tape -:!I'"ld punch cards.

At the time the user types R BASIC, a core memory area is allocated for his use and cleared of any

previous user's files. Core memory may be thought of as a working storage area. Any work done on a

file is performed in core memory, however, the user may not keep files in core memory for a prolonged

period of time. Permanent storage of that nature is reserved for storage devices such as disk, magnetic

tape, DEC tape, paper tape and punch cards.

9-1 January 1 974

In order to create a new file, edit an existing file or run a file containing a BASIC program, the file

mus t fi rst be estab I i shed in the user's core memory. Th e NEW command, the 0 LD command and the

default to NONAME provide the means by which a file is established in core memory. Refer to the

WEAVE command in Paragraph 9.3 for an'additional method of moving files into,core memory.

The user gives the NEW command to establish a new file in core memory. This file is given

t'he name filename.ext. Before establishing the '1ew file, BASIC clears the user's core memory.

Thus, the file previously in user core (if any) is destroyed. (To retain the file, a SAVE

command should be issued before the NEW command is given. Refer to Paragraph 9.3.)

When issuing the NEW command, filename.ext may be omitted. In this case BASIC asks for

the filename.ext by typing:

NEW FILE IANE--

The user types the filename.ext.

If the extension is not included (i .e., .ext is left out) BASIC assumes it is .BAS. If a carriage

return is substituted for filename.ext, BASIC types ?WHAT? and disregards the NEW command.

Once the NEW command is given, BASIC establishes the file by clearing the user's core and

assigning the filename. When it is ready to accept the contents of the fi Ie, BASIC types

READY. The user then inputs the file simply by typing it on the terminal.

When the user is finished inputting the new file; he types tC to return to the BASIC user

mode (he was in i npu t mode).

The user should be aware that at this point the new file is only in core memory and not in

permanent storage. This means that a command which clears the user's core memory (for

example; a BYE, NEW or 0 LD command) destroys the file the user just input. The SAVE and

REPLACE commands (described in Paragraph 9.4) store a file on the disk.

9-2 January 1974

READY
NEW RESIS. BAS Establish a new file called RESIS .BAS.

READY
10 INPUT Rl, R2, R3 Type the file.
2~ R: (Rl*R2*R3) I CCR2*R3) +- RI*CR2+-R3»
30 PRINT "'tHE PARALLEL RESISTA~CE = .. , R
40 END
SAVE Put RESIS .BAS on disk storage.

READY

OLD dev:filename.ext

By using the 0 LD command, the user replaces the fi Ie in core memory with one from a storage

device. As with the NEW command, the contents of the user's core memory are cleared

before the designated file is brought in. The storage device on which the file is located is

given by dev:. Omitting dev: causes the default device (i.e., disk) to be selected. The fi Ie

is identified by filename.ext. If omitted, BASIC requests the filename.ext by typing:

OLD FILE NAME--

The user should then type the filename.ext. If he presses carriage return, the command

aborts and returns to BASIC user level. If the extension is omitted .BAS is assumed. The file

obtained from the device must have line numbers. The indicated filename is now the current

filename.

Retrieving a file from a device in this manner does not delete the file on the source storage

device. However, if the user modifies the fi Ie in core memory, thereby creating a new

version of that file, the new version is not retained on a permanent storage device until a

SAVE, REPLACE or COpy command is executed. (Refer to Paragraph 9.4.)

READY
OLD DTAI: SOS.OUT

READY

Default to NONAME

Bring a copy of the file 50S .OUT, which is
presently on DTA 1:, into user core.

There is a third way to establish a file in core memory. After BASIC responds with READY,

the user may start typing the contents of his file. By this action the user is adding to the

material in core memory without assigning a new name to core memory and without initially

9-3 January 1 974

clearing the contents of core. If no filename is assigned to core memory (as is the case after

issuing R BASIC), it takes the default name NONAME. Any action the user takes with the

file should use NONAME unless a RENAME command is given •

• R BASIC

READY, FOR HELP TYPE HELP
15 INPUT Ea
18 INPUT R
25 I:EI/R

Type in contents of
file.

35 'RINT -1ME EQUIVALENT CURRENT IS", I, - A,.PERES"
41 END
LIST

NONAME . ,
10
25

INPUT £1
INPUT R
I: EIIR

14 •• ' 12-5EPT-73

Request output of
file in user core.

Fi lename is called
NONAME since no
filename was speci fied •

3'
41

PRINT -1M! EQUIVALENT CURRENT IS-,I, - A"PERES"
END

READY

The RENAME command alters the name of the file in core memory. This function is useful

especially after a default to NONAME.

rENAME dev:fi lename .extl

The name of the userls file in core memory is chonged to dev:filename.ext when the user

issues the RENAME command.

If dey: and/or .ext are left out when the command is given, the original dey: and/or .ext

are kept.

READY
RENAME EQUI V. SAS

READY

9-4 January 1 V7 4

•

•

9.2 LISTING FILES

Often the contents of a file in the user's core memory or of a file in permanent storage must be ex

amined. The LIST, QUEUE and to commands produce a printed copy of the desired file. In

addition, refer to the COPY command in Paragraph 9.4.

LI ST range, range, •••
L1STNH range, range, •••

The LIST and L1STNH commands, given without any range arguments, print the entire contents

of a file in the user's core memory area. LIST prints a one-line heading which includes the

name of the file, the time and the date. L1STNH prints the specified lines without the

heading.

If only part of the core storage file is desired, range arguments are used to identify the

desired lines. If more than one part is needed, additional range arguments can be added

provided that each succeeding range specification is separated by a comma.

Range arguments are permitted in one of two forms:

n A single line is printed when its line-number, n, is used as a range argument.

x-y A group of lines is output when the range argument is put in the form x-y, where x is
the line-number of the first line in the group, and y is the line-number of the last line
in the group.

The lines are printed on the user's terminal in order of ascending line-numbers.

LlSTREVERSE
L1STNH REVERSE

L1STREVERSE and LlSTNH REVERSE print the contents of the user's core memory area in order of

descending line numbers. LlSTREVERSE precedes the output with a heading, LlSTNHREVERSE

el iminates the heading •

9-5 March 1974

LI STREVERSE

EQUIV.9AS 1 ~ t 15 12- SEPT-7!

4e END
35 PRINT" lME EQUIVALENT CURRENT IS", I, " AMPERES"
25 I=£/R
Ie INPUT R
05 INPUT EI

READY

to suppresses the output of a fi Ie. BASIC responds with READY after termination.

QUEUE filename.ext/UNSAVE/nCOPIES/L1MITm

The QUEUE command causes the specified file to be printed on the line printer. This file

must have been previously stored on disk by a SAVE, REPLACE or COpy command. The file

in core storage is not affected by th is command.

If the extension of the filename is omitted, .BAS is assumed.

The three optional switches /UNSAVE, /nCOPIES, and /LIMITm can be included in any order.

UNSAVE and LIMIT can be abbreviated to as little as U and L respectively while the word

COPIES can be omitted entirely. For example, QUEUE RETURN/U/L12/2 tells BASIC to list

two copies of the file RETURN .BAS, but not exceed 12 pages in doing so. The file is deleted

(unsaved) •

When the /UNSAVE switch is given, the file is immediately removed from the user's permanent

(disk) storage area, then it is listed. Without this switch the file is retained. The n/COPIES

switch causes n copies of the fi Ie to be printed to a maximum of 63 copies. Without this

switch, one copy is printed. The /LiMITm switch indicates the maximum number of line

printer pages that can be printed. Without this switch 200 pages is the limit. The arguments

nand m must be integers.

More than one fi Ie I isting can be requested by placing a comma between each succeeding

filename and its associated switches.

9-6 January 1 974

QUEUE EQUIV.BAS/2COPIES

FILES ~UEUEDI
EQUIV.BAS

READY

9.3 EDITING A FILE IN CORE MEMORY

Request 2 copies of the fi Ie EQU IV .BAS
be output on the I ine printer.

After a fi Ie has been entered into the user's core memory by aNEW command, OLD command or 0

default to NONAME, the user may want to edit the file to eliminate any errors.

9.3.1 Replacing Complete Lines

The user inserts new I ines and replaces existing I ines by first typing the appropriate line-number and

following it with a I ine of text.

Type Line Number

When BASIC is in user mode, typing a line number followed by text can have one of two

consequences.

1 • If there is no existing line associated with that line-number, BASIC enten both the
new line-number and the line into the file in the user's core memory.

2. If there is already a I ine in the core file with the specified I ine-number, that line is
deleted and the new I ine is inserted in its place.

Simply typing a I ine number without any text establ ishes a blank line.

9.3.2 Deleting Lines

IDELETE range, range, ___ I
The DELETE command eliminates lines from the user's file in core memory. The range

arguments specify which line(s) are to be eliminated.

9-7 Jonuary 1974

Range argument. are permitted in one of two forms:

n A single I ine is deleted when its lin_-number, n, is used as a range argument.

x-y A group of lines is deleted when the range argument is put in the form x-y, where x is
the line-number of the first line in the group, and y is the line-number of the last line
in the group.

DELETE 12', 2,.-42', 911

READY

9.3.3 . Renumbering Lin .. in the Cor. FHe

~ES!QUENCE n,f,kl

Delete line 125, lines 250 thru 425
inclusive and line 900.

RESEQUENCE modifi .. the IIne-nu"'", of the file in user core. Line-numb.r f is changed

to line-number n. Succeeding lines are then Incremented by k. f must be I ... thQl'l n.

When f is omitted entirely the first line of the file takes line-number n, and succeeding

lines take line-numbers n+k, n+2k, and 50 forth. Even though f is omitted, both commas

are retained.

In cases where a single argument, n, is given, the first line-number is changed to nand

succeeding line-numbers are produced, incrementing by 10.

RESEQUENCE 100,2',188

READY

9.3.4 Clearing the Entire File

ISCRATC?i]

Renumber line 25 to 1 00 and number
succeeding lines incrementing by 100.

The SCRATCH command deletes all line-numbers and their associated lines from user core.

The name associated with the file in core is kept the some.

SCRATCH

READY

9-8 Janvary 1 974

9.3.5 Merging Another File Into the File

WEAVE dev:filename .ext

The WEAVE command locates a file with the name filename.ext on dey:. This file is then

merged into the file in user core. If two lines have the same line-number, the line in the

file named in the WEAVE command replaces the line in the file in user core. Otherwise, the

lines from the file are merged in sequential line-number order into the file in user core.

OLD RESIS. BAS

READY

Take a copy of file RES!S .BAS from disk storage and
put it in user core.

LISTNH List RESIS .BAS

10 INPUT RI, R2. R3
20 R: CRI*R2*R3) I CCR2It1R3) + Rl*CR2+R3»
30 PRI NT .. lHE PARALLEL RESISTANCE: ", R
40 END

READY
OLD EQUI V. BAS Take EQUIV.BAS and put it in user core. (RESIS .BAS

is c I eared from user core.)
READY
LISTNH

05 I NPU T El
10 INPUT R
25 I=EI/R

List EQUIV.BAS

35 PRI NT .. lHE EQUI VALENT CURRENT IS". I. .. AMPERES"
40 END

READY
WEAVE RESIS.BAS MERGE RESIS .BAS into the file in user core

(EQUIV .BAS).
READY
LIST

EQUIV.8AS 15125 12- SEPT-73

05
10
20
25
30
35

40

INPUT EI
INPUT RI, R2, R3
R: (Rl*R2*R3) I «R2*R3) + Rl*(R2+R3»
1= El IR
PRINT" 1HE PARALLEL RESISTANCE: "; R
PRINT "'DiE EQUIVALENT CURRENT IS",I, ..

END

READY

9-9

Line 05 is inserted.
Line lOis replaced.
Line 20 is inserted.
line 25 is retained.
Line 30 is inserted.

AMPERES"
line 35 is retained.
Line 40 is replaced.

January 1974

9.4 TRANSFERRING FILES

Once a user has prepared a fi Ie in his portion of core memory, he wi II want to move the modified file

to permanent storage such as, disk, DECtape, or papertape. In addition, the user may want to move

files from one starage device to another, especially from disk to DECtape.

9.4.1 Transferring Files From the User's Core Storage

Upon creating, weaving and editing a file in core storage, a user wants to retain a copy of the file

for future use. The SAVE and REPLACE commands are then used.

I SAVE dev:filename.extl

TI,e SAVE command puts the file currently in user core on the storage device dev:, under the

name of filename .ext.

If dev: is omitted DSK: is assumed. If .ext is omitted .BAS is assumed. The filename.ext may

be omitted, in which case the current filename.ext is used. The extension cannot be specified

if the filename is omitted.

The SAVE command does not overwrite an existing file of the same name. REPLACE should be

used if that result is desired.

SAVE

READY

I REPLACE dev:filename.extl

Instruct BASIC to SAVE the present file on disk storage.

The REPLACE command deletes an existing fi Ie called fi lename .ext which is on the device

dev: and inserts a new file from user core in its place, keeping the same name.

If the device is DSK: or DEC tape, the old fi Ie must be present on the device or an error

message will be issued.

9-10 January 1 974

The arguments deY:, filename, and .ext can be omitted with the same conditions described

for the SAVE command.

A I so, refer to th e 0 LD command (Paragraph 9. 1) and The W EA VE command (Paragraph 9.3.5),

both of which transfer I ines into core memory.

REPLACE

READY

9.4.2 Transferring Fi les From One Storage Device to Another

COPY devl :filename1 .ext >dev2:filename2.ext

The COpy command reads filenamel .ext on devl: and transfers a copy of it to dev2: where it

is given the name filename2 .ext.

If the device is omit~ed, DSK: is assumed. If the device is not a disk or DECtape, the filename

and extension can be omitted. Note, when the filename is omitted, the extension must also be

omitted. Should the device be a disk or DECtape, the filename must be specified, but the

extension can be omitted, and then the extension .BAS is used.

The filenamel .ext need not have I ine-numbers to be acceptable to COPY. The program

currently in core is not disturbed by a COpy command.

COpy RESIS.BAS > DTA3:24RES.BAS

READY

9.4.3 Destroying Files

UNSAVE dev:filename.ext, dev:filename.ext, •••

Make a copy of RESIS .BAS
(which is on disk storage) on
DECtape 3, and call it 24RES .BAS.

The UNSAVE command deletes the named files from the indicated devices.

The arguments deY:, filename, and .ext can be omitted. If dey: is omitted, DSK: is assumed.

If .ext is omitted, .BAS is assumed. If fi lename .ext is omitted, the current filename .ext is

used.

9-11 January 1 974

In specifying more than one file to be UNSAVEd, the user must separate the filenames with

rnrn",os •

UNSAVE RESIS.BAS

FILES UNSAVED,
RESIS

READY

9.5 COMPILING AND EXECUTING A BASIC PROGRAM IN CORE MEMORY

If the user's core file is a BASIC program and it has been created, edited, and saved, it is ready to

be compiled and executed. Note: A BASIC file does not have to be a BASIC program. The Edit and

Control Commands discussed in this chapter are also used in creating files containing data and files

containing text. The user does not want to compile and execute a data file or a text file. The RUN,

CHAIN and tC commands aid the user in procesaing his BASIC program.

RUN n
RUNNH n

CHAIN

The RUN commands compi Ie the entire program residing in user core. The RUN command

generates a heading upon running the program; while RUNNH deletes the heading. After

compilation, the program is executed starting at statement number n. If n is omitted,

execution starts at the very beginning of the program.

The CHAIN statement can be included in a BASIC program to cause one program to run

another program. For further information refer to Paragraph 6.6.

Two tC's stop a running program and return the user to the BASIC command mode. All files

that were opened by the program are closed. 1

lin monitors prior to 5.05 (and in 1040 monitors), two CTRL-C's (tC tC) may return the user to
monitor mode, which is indicated when a period is typed. If this occurs, type REENTER to return to
BASIC command mode.

9-12 January 1 974

I

9.6 ENTERING MONITOR MODE FROM BASIC

While in BASIC, the user may desire to use additional I/O devices, obtain system information or

request a special service. In order to accompl ish these and other simi lar tasks, the user must put his

terminal in monitor mode.

9.6.1 What Is Monitor Mode?

Once BASIC has printed "READY, FOR HELP TYPE HELP", the user knows that he has successfully

entered BASIC and he can now type BASIC commands. In the DECsystem-l0 environment, there can

be many people using a large variety of system programs (of which BASIC is one), running their own

programs, or performing other functions. The monitor is the supervisory program which schedules and

controls those operations requested by each user, so that the system can better serve all users.

To issue a request to the monitor (a monitor command) after entering BASIC, the user must leave

BASIC and enter monitor mode. He may then use the appropriate monitor command (5) •

When the user is finished and desires to reenter BASIC, he must type certain monitor command(s} to

leave monitor mode and enter BASIC.

Refer to the DECs~stem-l 0 Operating System Commands in the DECsystem-10 User's Handbook

(DEC-1 O-NGZB-D) or to the DECsystem-10 Software Notebooks.

"Operating system commands" is another name for "monitor commands".

Command

MONITOR

SYSTEM

Table 9-1

Commands That Enter Monitor Mode From BASIC

Result

Causes the user to leave BASIC and enter monitor mode. The process is
complete when the monitor types a period, indicating that the user may
type any mon i tor command.

Caution -- All Monitor Commands which run a program in performing their
function, destroy the contents of the user's core. This means that all work
done in BASIC that has not been permanently stored somewhere else (e.g.,
papertape, DECtape, or disk) by using a BASIC command will be lost.
Refer to Paragraph 9.4.

Is almost identical to the MONITOR command in function. Unlike
MONITOR, however, it does not allow the user to reenter BASIC by
typing CONTINUE; only REENTER or START will succeed.

9-13 March 1974

Command

.ASSIGN dev:

• DAYTIME

.DEASSIGN dev:

.DIRECTORY

.01 SMOUNT dev:

.R GRIPE

.MOUNT dev:

.PLEASE

• REWIND dev:

.SEND

.SYSTAT

• TlME

.UN LOA D dev:

Tobie 9-2

Usefu I Mon j tor Commands

Function

Allocates an I/O device to the user's job for the duration of the job or
until a DEASSIGN command is given. No operator intervention is
required (preserves user core).

Types the date followed by the time of day (preserves user core) •

Releases a device the user has previously assigned to his job (preserves
user core).

Lists the names of all user fi les currently on disk storage (destroys user
care) •

Releases a device the user has previously requested through a MOUNT
command. This command requires operator intervention (destroys user
core) •

Records user comments for later review by the operations staff (destroys
user core).

Requests an I/O device be allocated to the user's job. This command
requires operator intervention (destroys user core).

Allows the user uninterrupted communications with the operator
(destroys user core).

Rewinds a magnetiC tope or a DECtape (destroys user core) •

Transmits a one-way message to a designated station (preserves user core).

Runs a program which prints status information about the system (destroys
user core).

Types out the total running time of the whole job (preserves user core) •

Rewinds and DEASSIGNs or DISMOUNTs a DECtape or magnetic tope
(destroys user core).

dev: can be DTAn:, DSKa:, LPTn:, etc. n==numeric, CFalphanumeric

9.6.2 Returning to BASIC From Monitor Mode

There are two different methods of returning to BASIC from monitor mode. The method the user

employs depends upon whether he preserved or destroyed his core memory area.

9-14 January 1 974

I

9.6.2.1 User's Core Preserved - If the user has entered monitor mode and has not issued a monitor

command which destroys the contents of his core memory, he may use one of the following commands

to reenter BASIC.

Command

.REENTER or

. START

.CONTINUE

Table 9-3

Commands That Reenter BASIC When Core is Preserved

Function

The user can exit from the monitor and reenter BASIC by typing either
REENTER or START. If, whi Ie in the monitor, the user has issued a
monitor command which destroys user core, neither the REENTER nor the
START command causes the user to reenter BASIC. In this case het must
type R BASIC.

The CONTINUE command serves exactly the same purpose as REENTER or
START as for as BASIC is concerned. However, it will only be successful
in reentering BASIC after a BASIC MONITOR command; it will not work
after a SYSTEM command has been used.

READY
SYSTEM Enter Monitor Mode.

• ASSl GN DTA31

Dt A3 ASS I GNED
• CONTI NUE

7CAN·t CONTINUE
• STARt

READY

Request DECtape 3 be allocated to the job.

Monitor assigns DTA3:
Try to reenter to BASIC.

Cannot type CONTINUE after a SYSTEM c;ommand.
Alternative request to return to BASIC.

o . K. BAS IC responds.

9.6.2.2 User's Core Destroyed - When the user desires to return to BASIC after he has destroyed

his core storage area he does so by typing R BASIC. BASIC responds with "READY, FOR HELP TYPE

HELP" when it is ready to accept commands.

9-15 March 1974

READY
Enter Monitor Mode. r-tO~I TOR

• DIRECTORY Request listing of user files •

HEADGS BAS 2 c ",,> 23- APR-13 DSJ(C: [21,23)
BASE2 BAS 3 c155~ I '-JUl-13
BTPlSR RNO 1 c"'5> I'· AUG-13

TOTAL OF 12 BLOCKS IN 3 FILES ON DSKC: [21,23)

• REENTER
7NO START ADR

Try to get back to BASIC •
No starting address exists since. DIRECTORY destroyed
user core •

• R BAS I C BASIC must be recalled.
READY, FOR HELP TYPE HELP

9.7 OBTAINING INFORMATION

Three commands, CATALOG, HELP and LENGTH, retrieve important information from the system

concerning available I/O devices, commands and program size.

I CATALOG device: I
After the CATALOG device: command is entered, the system I ists on the user's terminal the

names and extensions of the user's files residing on the named device. When device: is

omitted, DSK: is assumed.

device: can be

BAS:

SYS:

DSKn:

DrAn:

Typing BAS: as the device outputs the library programs residing on the storage
area BAS.

Typing SYS: as the device lists the system programs stored on the system device
SYS.

n (a number or letter) specifies a particular disk when more than one is available.
If n is omitted, fi les on all disks are listed.

n (usually a number 0,1,2, •••) identifies a particular DECtape when more than
one is avai lable. If the operating system command, ASSIGN, has been used to
assign a DECtape or DECtapes, n may be omitted. The files on the DECtape
with the lowest logical number will be listed. Should n be omitted and no
DECtapes are assigned the user, logical unit 0 is assumed. Errors may result
from omitting n in this situation. Refer to ASSIGN in Paragraph 9.2 for more
guidance in using DECtapes.

9-16 Jal'tUary 1 974

READY
CATALOG DSKC:

HEADGS. BAS
BASE2. BAS
POPUL.BAS

READY

REAOY
CATALOG DTAI

OPERI ACTION REQUEST~D

READY
MONITOR
• ASS I GN DTAII

DTAI ASSI GNED
REENTER

READY
CATALOG OTAI

FILA.REL
UPPER. CAS
50S. OUT

READY

Type the names of all files on disk DSKC:

Fi les on DSKC: are listed.

Type the names of files on the DEC tape with
the lowest logical unit number which is
assigned to the user.
In this case no DEC tape was assigned to the
user so DTAO: was assumed, but this DECtape
was assigned to another user.

Assign DT A 1 : to your job •

Type the names of files on DTA 1 :

After the user types the HELP command BASIC types a list of BASIC commands and a brief

explanation of each on the user's terminal.

READY
HELP Request BASIC to output a brief description

of its commands.

THIS IS THE HELP FILE FOR DECSYSTEM-10 BASIC VERSION 178

THE FOLLOWING IS A SHORT <TWO PAGE) DESCRIPTION OF
SOME OF THE MOST COMMONLY USED COMMANDS. FOR MORE
INFuRMATION SEE THE BASIC MANUAL IN THE DECSY5TEM-J0
SOFTWARE NOTEBOOKS.

BYE

LOGS THE USER'S JOB OFF THE SYSTEM •
•

READY

9-17 January 1 974

(LENGTH I
The LENG TH command instructs the system to output the approximate length of the source

program (stored in the user's core memory) expressed as the number of c~aracters.

READY
LEN GTH
295 CHARACTERS
READY

ADDITIONAL INFORMA liON

Information about the system is avai lable via the use of operating system commands. Refer

to Paragraph 9.6.

9.8 SEITING THE INPUT MODE

The two input mode commands (TAPE and KEY) are useful only to users whose terminals are equipped

with paper tope apparatus. One common I y used mach i ne of th is type is the L T33B (Fi gure C -1) •

Table 9-4

Input Mode Commands

By specifying: Input Mode

KEY The system is set to accept input from the
termi nal keyboard.

TAPE The user is aided in inputting information
stored on paper tope.

When neither command is input, KEY is assumed. Refer to Appendix C for more information. TAPE

and KEY apply only to input mode, and do not affect output to the terminal.

READY
TAPE

READY

9-18 January 1974

9.9 LEAVING BASIC

When the user has finished all his work, he wants to use BYE or GOODBYE.

BYE
GOODBYE

BYE and GOODBYE exit the user from BASIC and log him off the DECsystem-l0. Refer to

Section 4.6.

9-19 January 1 974

CHAPTER 10

DATA FILE CAPABILITY

The data file capability allows a program to write information into and read information from data files

that are on the disk.

Nine input/output channels are reserved for handling data files from a program. A data file must be

assigned to a channel before it can be referenced in the program. At any given time, a program can

have one and only one fi Ie on each channel and one and only one channel assigned to each fi Ie. Con

sequently, a maximum of nine files can be open simultaneously. However, because it is possible for

a program to change or establish file/channel assignments while it is running, there is no limit to the

number of data files that can be referenced in one program.

10.1 TYPES OF DATA FILES

There are two types of data files acceptable to BASIC: sequential access files and random access files.

10.1.1 Sequential Access Files

Sequential access fi les are those fi les that contain information that must be read or written sequentially,

one item after another, from the beginning of the file. A sequential access file is either in write mode

or read mode, but cannot be in both modes at the same time. When read mode is established, reading

starts at the beginning of the file. When write mode is established, the file is erased and writing starts

at the beginning of the file.

An important distinction to note about sequential access files is that they can be listed in readable form

on the user's Teletype or the line printer. Sequential access files consist of lines that contain data

items. A sequential access file is either a line-numbered file or a nonline-numbered file, depending

upon whether or not its lines begin with line numbers. line-numbered files are like BASIC programs in

that they can be manipulated by any of the commands described in Chapter 9 (e.g., OLD, LIST,

DELETE) except the RUN(NH) and CHAIN commands. Nonline-numbered files cannot be handled by

any of the commands that expect a file to have line numbers; they can only be manipulated by the

Version 17 BASIC 10-1 August 1971

COPY, QUEUE, and UNSAVE commands. They can be listed on the user's Teletype by means of the

COpy command; for example:

COPY TEST~ > TTY:

Sequential access files do not necessarily have to b. created by a program; they can be created at the

editing level in BASIC. Line-numbered files can be created or modified just as a BASIC program is

created or modified. Nonline-numbered files can be created at the Teletype and then transferred to a

storage device such as the disk by means of the COpy command. The following conventions must be

observed when dealing with a sequential access fi Ie at the editing level:

a. In line-numbered files, each line number must be followed immediately by at
least one space, a tab, or the letter D.

b. A line can contain any number of data items separated from one another by at
I east one space, a comma, or a tab. However, the line must not be longer than
142 characters (counting the line number and its following delimiter, but not
the carriage return and line feed that terminate the line). It is not necessary
to have a space, comma, or tab after the last data item on the line. Note that
blanks and tabs are not ignored in a data file as they are in a program.

c. A data item is any numeric constant (refer to Section 1.3.3) or string constant
(refer to Chapter 8). Numeric constants must not contain blanks or tabs. If a
string is to contain a blank, comma, or tab, the user must enclose the string
in quotes; otherwise it will be read as more than one data item by the statements
that read data.

Section 10.4 contains an example of the use of a line-numbered data file created at the editing level.

Section 10.5. 1 contains an example of a program that creates both a line-numbered data file and a

nonline-numbered data file and shows what these files look like when they are copied to the Teletype.

I Because it requires execution time for a program to read and write I ine numbers in a data file, a

nonline'lumbered data file should be used in preference to a line-numbered data file unless the user

specifically wishes to edit the data fi Ie with commands such as DELETE.

Another distinction between sequential access files is whether the file is a pure data file or a text file.

A pure data file is used primari Iy for the storage of data. A text fi Ie contains data that is probably

destined for output to the line printer, because it is a report, a financial statement, or the like. The

user must follow slightly different procedures in his program depending on the type of file he wishes to

handle. For example, a string that contains a blank must be enclosed in quotes when it is written into

a pure data file, otherwise it will be seen as more than one string when data is read from the file.

However, such a string should not be enclosed in quotes when it is written into a text file because text

files are not normally read back into a program, and the superfluous quotes would spoil the appearance

of the file when it is printed. The procedures to follow when handling each type of file are explained

in Sections 10.5.1 and 10.7.

Version 17A BASIC 10-2 May 1972

10. 1 .2 Random Aeeess Fi I es

Random aeeess files are data files thot are not necessarily read or written sequentially. The user can

read items from or write items into a random access file without having the items follow one after the

other. The items in a random ac:;cess file are not recorded in a form suitable for listing, and therefore

cannot be output to the user's Teletype or the I ine printer. Random access fi les cannot be handled by

any of the BASIC commands other thon COpy and UNSAVE. A random access file can be copied to

the disk, DECtape, or magnetic tape, but not to any other device (Teletype, paper-tape punch, card

punch, or line printer). Copying a random access file to a device other than disk, o ECtape , or mag

netic tope will cause errors to be introduc::ed into the file. If the system program PIP is used to transfer

a random access file to disk, D~Ctape, or magnetic tape, the file must be transferred in binary mode.

Refer to the PIP manual for information on how to use PIP.

Random aceess files, unlike sequential access files, do not distinguish between read mode and write

mode. The user can r8(Jd or write any item in a random access file at any time by first setting a

pointer to that item. A random access fi Ie contains either string data or numeric data, but not both.

Each data item in a random access file takes up the same amount of storage space, called a record,

on the disk. BASIC must know the recard size for the random aecess file in order to correctly move

the pointer for that fi Ie from on. data item to another. The reeord size for a random aecess numeric

file is set by BASIC because the storage space required for a number in sueh a file is always the same.

The storage spc:aee required for a string, however, is dependent upon the number of characters in the

string. Thus, for a random aecess string file the user must specify the number of characten in the

longe$f' string in the file so that BASIC can set the record size accordingly. This specification takes

place when the file i$ assigned to a channel. Refer to the description of the FILES and FILE statements

in Section 10.2. When creating a new random access string file, if the user specifies too few charac

ters an error message is issued when a string too long to fit into a record is written. If too many

charaeters are specified for a record, the strings wi II always fit, but space will be wasted on the disk.

When he is deal ing with an existing file, the user does not have to speeify a record size. If he does

specify a record size for an existing file, the record size must match that with which the file was

written.

BASIC processes random access files more quickly thon it processes sequential access files. Consequent

Iy, if the user wishes to rt:IJd or write large amounts of data in sequential order, but does not require

that the data be in listable form, he should consider using a random access file to take advantage of its

speed. A random access file can easi Iy be read or written in sequential order.

Version 17 BASIC 10-3 February 1972

10.2 THE FILE AND FILES STATEMENTS

The FILE and FILES statements perform identical functions. They both assign a file to a channel and

establish the type of the fi Ie (sequential, random access string, or random access numeric). The

difference between FILE and FILES is that FILE is an executable statement while FILES is not. Before

execution of the program begins, BASIC collects all of the FILES statements in the program, makes the

channel assignments, and sets the file types as they were declared in the FILES statements. The FILES

statements are not used again during that execution of the program. GO TO and GOSUB statements

to FILES statements wonc just as they do to REM statements; i.e., execution will transfer to the first

I
executable statement foil owi ng the FILES statement. The FILE statement, on the other hand, assigns

channels and establishes file types during program execution, thereby allowing the user to change

file/channel assignments during the running of his program.

The FILE and FILES statements accept filename arguments of the fann:

fi I enm • ext type

where filenm and .ext are the filename and extension of the file in the form described in Chapter 4.

The filename must be specified, but the extension can be omitted. If the extension is omitted, .BAS

is assumed. Type can be a percent sign (%); a dollar sign (S) optionally followed by one, two, or

three digits; or omitted. If type is omitted, the file is assumed to be a sequential access file. If a

percent sign is specified, the file is assumed to be a random access numeric file. A dollar sign option

ally followed by a one- to three-digit number indicates a random access string file. The number follow

ing the dollar sign specifies the number of characten in the longest string that the file will contain.

A maximum of 132 characters and a minimum of one character can be specified. If the number is

omitted from the dollar sign type and the file does not presently exist; a default length of 34 characters

is establi$hed. If the number is omitted from the dollar sign type and the file does exist, the length

with which the file was previously written is established.

The FILES statement has the form:

FILES fj lenm • ext type, fi lenm • ext type, ••• fi lenm • ext type

where the arguments can be separated by a comma or a semicolon. Channels are assigned consecutively

to the arguments of all the FILES statements in the program. If an argument is omitted, the channel for

the missong argument is skipped. For example, if a proQram contains only these FILES statements:

10 FILES " AJ,8
20 FILES C,D,
30 FILES E

file A will be assigned to chonnel 3, file B to chonnel 5, file C to chonnel 6, file D to channel 7, and

fi Ie E to channel 9.

Version 17 BASIC 10-4 August 1971

The FILE statement has the form:

FILE argl, arg2, ••• argn

where the arguments can be separated by a comma or a semi colon. At least one argument must be

present in a FILE statement. Each argument that assigns a sequential access file to a channel is of the

form:

'N, string formula
or 'N: string formula

Each argument that assigns a random access file to a channel is of the form:

:N, string formula
or :N: string formula

I N is a numeric formula having a value from 1 to 9 that specifies the channel; the value is truncated to

an integer if necetlClr'Y. The string formula is of the form:

I

fil enm. ext type

Note that the channel specifier for a random access file is preceded by a colon (:) while the channel

specifier for a sequential access file is preceded by a number sign (,). This is true of all data file

statements and functions that include channel specifien. Some data file statements and functions do

not require the number sign or colon to be specified explicitly, but default to one or the other. See

the description of the various statements and functions in the following sections for details. An attempt

to reference a file with a channel specifier of the wrong type causes an error message.

The FILE statement does not permit the enclosing quotes to be omitted when its string formula argument

is a constant. This is because a statement of the form FILE: 1, BS would cause an ambiguity. The BS

could be taken as a variable (B$) or as a random access string file named B.

Before the FILE statement assigns a file to a channel, it checks to see if a file already exists on that

channel; if so, the old file is closed and removed from the channel before the new file is assigned.

The type of the old file is immaterial; it is permissible, for example, to close an Qld sequential access

file on a channel and then open a random access file on that channel. Any file open on a channel at

the end of program execution or whenever BASIC is reentered is automatically closed and removed from

that channel.

Examp'es of FILES and FILE statements are:

10
20
30
40

Venion 17B BAS IC

F'ILE , 1, "ONEDAT": #4,"OUTDAT"
F'ILE '9: "CHt<DAT.4", :4, B$+"%"
F'ILES F'OUR.QUT$, MAIN.S;;; PROG$16
F'TlF' NR*2, "RASF'Il."

.10-5 September 1972

10.3 THE SCRATCH AND RESTORE STATEMENTS

The SCRATC H statement has the form:

SCRATC H arg 1, arg2, ••. argn

The RESTORE statement has the form:

RESTO RE arg 1, arg2, ••• argn

where the arguments can be separated by a comma or a semicolon. An argument is of the form:

For sequential access files:
IN

For random access files:

:N

I where N is a numeric formula having a value from 1 through 9 that specifies the channel. If necessc:ry,

the value is truncated to an integer. If neither a number sign nor a colon is present in front of the N,

the nUlnber sign is assumed. At least one argument must be present in a SCRATCH or RESTORE statement.

I

I

Scratchong a sequential access file erases it and sets it in write mode. Writing will start at the begin

ning of the file. Referencing a sequential access file with a statement that does input (READ, INPUT,

or IF END, described in Sections 10.4 and 10.10) while it is in write mode results in a fatal error.

Scratching a random access file simply erases it and sets the pointer for the file to the first record in

the file.

Restoring a sequential access file sets the file in read mode. Reading will start at the beginning of the

file. Referencing a sequential access fi Ie with a statement that does output (WRITE or PRINT, described

in Section 10.5) while it is in read mode results in a fatal error. When a sequential access file is

opened by a FILES or FILE statement and the file exists at that time, it is automatically set in read

mode; it is not necessary to restore it. It is only necessary to restore a sequential access file if it has

been set in write mode and the user wishes to set it to read mode in the same program.

Restoring a random access file simply sets the pointer for the file to the first record in the file. When

a random access fi Ie is opened on a channel by a FILE or FILES statement, its pointer is automatically

set to point to the first record of the file.

Examples of the SCRATCH and RESTORE statements are:

10
20
80
90

Versionl7B BASIC

SCRATCH #41 :21 liT-II I
SCRATCH #11 21 31 4
RESTORE :2 $91 1
1\ F S T r K F ~ lJ K (X), ~, 3, 7

10-6 September 1 V72

10.4 THE READ AND INPUT STATEMENTS

The READ and INPUT statements read data items from files. The READ statement has the following

forms:

For sequential access fi les:
READ *N, variable, variable, ••• variable

For random access fi I es:
READ :N, variable, variable, •.• variable

The INPUT statement has the following forms:

For sequential access fi les:
INPUT *N, variable, variable, ••• variable

For random access files:
INPUT :N, variable, variable, ••• variable

,
N is a numeric fonnula having a value from 1 through 9 that specifies the channel. The value is trun

cated to an integer if necessary. At least one variable must be present in each READ or I NPUT state

ment. The del imiter following N can be a comma or a colon. The variables are separated from one

another by a comma or semicolon.

The variables in a READ or INPUT statement for a sequential access file can be string or numeric or a

mixture of both. The variables in a READ or INPUT statement for a random access file can be string

or numeric, but not both, because a given random access file cannot contain both string and numeric

data items.

READ and INPUT statements for sequential access files differ from one another in the following way.

The READ statement expects each line of data in the file to begin with a line number, which it then

skips. That is, the line number is not treated as data. If a line number is not present, an error mes

sage is issued. The I N PUT statement, on the other hand, does not expect a line number on eac h line

of data. If one is present, it is read as data. It is illegal to use both INPUT and READ statements to

read from the same sequential access fi Ie unless the fi Ie has been restored between the two types of

statements. An attempt to mix READ and INPUT statements for sequential access files results in a fatal

error message.

Examples of the READ and INPUT statements for sequential access files are:

10 REAO #2, ACI), L, B$
30 READ #6, Z$
105 INPUT #4, RCK)
1212l Ir'-..'PlIT #7, W$, M

READ and INPUT statements for random access fi les are completely equivalent. They both begin read

ing at the item that the pointer for the file specifies, and continue reading sequentially until all of

Version 178 BAS Ie 10-7 September 1972

the variables have been fi lied. It is legal to use both READ and INPUT statements to input from the

same random access fi Ie.

If the user attempts to read beyond the last item in either a sequential access or a random access file,

a fatal error message is issued. In a random access fi Ie, it is possible to have items that have not been

written but that are within the file (because some subsequent item has been written). If such an item

is in a numeric file and is read, a value of zero is input. If such an item is in a string file, a string

containing no characters is returned.

Examples d READ and INPUT statements for random access files are:

20 REA 0 : 2, A , B (I), C J F 2
50 READ :~ , F $, G $ (8)
21 0 I NP UT : 1, Q (2)
2~0 INPUT :5: NIJ N2J N3

The fe)l/owing example shows a sequential access file being created at the editing level and then read

by a program.

NEW
NEW FILE NAME--TEST2

READY
10 "LANTHANIDE SER IES··
20 LA,CE,PR,ND,PM,SM,EU,GD,TB,DY,HO,ER
25 TMIYBILUI57,71
SAVE

READY
OLD
OLD FILE NAME--TABLE

READY
LISNH
I DIM ASCl5)
5 FILES TEST2
12 READ #1,8S
15 FOR X=1 TO 15
2~ READ #1,AS(X)
25 NEXT X
30 READ Il,Nl,N2
35 P R I NT "T HIS 1ST H E Of; B $

40 PR I NT
42 PRINT "ELEMENT", "ATOMIC NUf'V18ER"
44 PR I NT
~5 FOR Y=l TO 15
50 PRINT A$(Y),N1-1+ Y
55 NEXT Y -
100 END

Version 17 BASIC 10-8

T he user types in and then
SA VEs the data fi I e
"TEST2" 0

The old file "TABLE" is re
tri eved and listed 0

(continued on next page)

August 1971

I

READ\,
RUN

TA8LE 13 :31 15-JUL-70

THIS IS THE LANTHANIDE SEkIES

ELEMENT ~ IUltjl~ '" U.'AD Et<

LA 57
CE 58
PR 59
~ 60
PM 61
SM 62
EO 63
GO 64
T8 6S
DY 66
HO 67
ER 68
TM 69
't'8 70
LU 71

TIME: 0.18 SECS.
kEADY

An example of reading from a random access file is given in Section 10.6.

10.5 THE WRITE AND PRINT STATEMENTS

The WRITE and PRINT statements write data items into fi 181.

10.5.1 WRITE and PRINT Statements for Sequential Access Files

The WRITE and PRINT statements for sequential access files have the following forms:

WRITE 'N, list of formulas and delimiters
PRINT 'N, list of formulas and delimiters

where N is the channel specifier. The delimiter following N can be a comma or a colon; it can be

omitted if the list is omitted. The formulas in the I ist can be string or numeric or both. The TAB

function can be used. The delimiters can be commas, semicolons, or <PA> delimiters; they have the

same meanings that they have in the PRINT statement for the Teletype (refer to Chapter 6).

WRITE and PRINT statements for sequential access files differ from one another in the following way.

The WRITE statement begins each line of output with a line number followed by a tab. The first line

in the file is numbered 1000 and subsequent line numbers are incremented by 10. The PRINT statement,

on the other hand, does not begin lines with I ine numbers. It is illegal to use both WRITE and PRINT

10-9 January 1 rn 4

statements to write to the same sequential access file unless the file has been erased (by means of the

SCRATCH command) between the two types of statement. An attempt to mix WRITE and PRINT state-

ments resu Its ina fata I error message.

Files cl'eated by WRITE statements are normally read by READ statements. Files created by PRINT

statements are normally read by INPUT statements.

Examples of the WRITE and PRINT statements for sequential access files are:

50 WRITE '2. SQR(A)+EXPCG); Q(I)
75 PRINT '7. cPA> BCI) •• C(I) •• DCI)
110 WR ITE '3

The normal mode of output for WRITE and PRINT statements for sequential access data fi les is nequote

mode. In nequote mode, strings are not enclosed il1 quotes even if they contain characten that the

READ and INPUT statements see as delimiters. Also, strings are concatenated if they are output with

a semicolon separating them. Nequote mode is the mode used when writing a text file (refer to

Section 10.1.1 for a description of text files and pure data files). Noquote is the default mode; a

sequential access file is automatically set in nequote mode when it is assigned to a channel by a FILE

or FILES statement. However, noquote mode is not suitable when writing pure data files because the

integrity of the data is not maintained. In order to write a pure data file, the file must be set in quote

mode. This can be done by the QUOTE or QUOTE ALL statement, both of which are described in

Section 10.7. When a file is in quote mode, BASIC accepts WRITE and PRINT statements that are in

the usual form, but it makes whatever small changes that are necessary to the formatting in order to

preserve the integrity of the data items. Refer to Section 10.7 for details about the changes that are

made.

An example of the actions performed by the WRITE and PRINT statements follows.

10 F'ILES A. B
20 SCRATCH'I,,2
30 WRITE # 1 "
40 PRINT '2.
50 END

RUNNH

TIME: 0.02 SECS.

READY

COpy A > TTY:

010(110 1 2
01010 3

1 J 2.
"A" ;

TAB(70). 3
4

(continued on next page)

10-10

READY
COpy B > TTY:

A <4

READY

10.5.2 WRITE and PRINT Statements for Random Access Files

The WRITE and PRI NT statements for random access fi les have the forms:

WRITE :N, formula, formula, ••• formula
PRINT :N, formula, formula, ••• formula

where N is the channel specifier. The delimiter following the channel specifier can be a comma or a

colon. At least one formula must be present in each statement. The formulas are separated from one

another by a comma or semicolon. In a given statement, all of the formulas must be string or all of

them must be numeric because a random access file is either string or numeric but not both.

WRITE and PRINT statements for random access files are exactly equivalent; they both begin writing

into the record that the pointer for the file specifies, and continue writing sequentially until all of

their arguments have been written. It is legal to use both WRITE and PRINT statements to write to the

same random access fi Ie.

Examples of WRITE and PRINT statements for random access files are:

2S WRITE :21 NI LJ M
35 PRINT :4: A$, B$+Q$CI)

An example of writing to a random access file is shown below in Section 10.6.

10.6 THE SET STATEMENT AND THE LOC AND LOF FUNCTIONS

The SET statement has the form:

SET arg 1, arg2, ••• argn

where the arguments can be separated by commas or semicolons. Each argument has the form:

:N, numeric formula
or :N: numeric formula

where N is the channel specifier. The colon preceding the channel specifier can be omitted because

SET is only used for random access files; the colon is therefore redundant. Each SET statement must

have at least one argument. When a SET statement is executed, the pointer for the file on the speci

fied channel is moved so that it points to the item in the file that is specified by the numeric formula,

which has been truncated to an integer. If the numeric formula after truncation is less than or equal to

Versi on 17 BASIC 10-11 August 1971

zero, an error m..age is issued. The items in the file are numbered sequentially; the first item in the

file is 1, the second 2, and so forth. The next statement in the program that reads from or writes to

the random access file will read or write the item towhich the pointer was set, provided that the

pointer has not been moved again by a subsequent SET statement or another statement.

Examples cA SET statements are:

55 5 £T :3" 1 00" : .. " 1 50
85 SET: 1 , 1 J : 4 ,,2 1 5

An exampl. of a program using the SET statement follows.

10 rILES TEST~I
20 rOR T-. TO 10
30 WRITE 11" T
.. NEXT T
50 rOR T-l TO 10 BY 2
6Ia SET 11" T
70 READ 11" X
80 PR INT X
9@ NEXT T
100 END

RUNNH

1
.3
5
7
9

T I ME: 0 .01 SEC S •

Two functions, lOC and lOF, return information about random access files. lOC returns the number

of the record to which the pointer for the file currently points, and lOF returns the number of the

last record in the fi Ie.

The forms of lOC are:

lOC(N)
lOC(:N)

The forms of lOF are:

lOF(N)
lOF(:N)

where N is the channel specifier. An error message is issued if a random access file is not assigned to

the specified channel when the function is executed.

10-12 January 1 974

An example of these functions is:

10 IF LOC (2) <=LOF (2) THEN 30
20 PRINT "FINISHED FILE ON CHANNEL 2"

10.7 THE QUOTE, QUOTE ALL, NOQUOTE, AND NOQUOTE ALL STATEMENTS

As was discussed in Section 10.5.1, the default mode for output to sequential access data files or to

the TELETYPE is noquote mode. The QUOTE and QUOTE ALL statements allow the user to change the

mode of the Teletype and sequential access files to quote mode. Quote mode changes the way that

the data items are written into the files or onto the Teletype. In quote mode, strings Qre enclosed in

I
double quotes by BASIC if they contain blanks, tabs, or commas; a leading blonk is output immediately

before strings and negative numbers; and a double quote character cannot be output by the user. If such

an attempt is made to output a double quote character, an error message is issued. Also a data item

cannot be longer than the maximum amount of space avai lab Ie on a new Ii ne. If an attempt is made to

output a data item longer than this, a fatal error message results. In noquote mode, the dato item

would be split across two or more lines. These modifications to the normal formotting are sufficient to

insure that the integrity of the dota is maintained, as was discussed in Section 10.5.1.

The opposite of quote mode is noquote mode, which can be set by the NOQUOTE and NOQUOTE ALL

statements. Noquote mode is the default mode for the Teletype and sequential access files. Whenever

a sequential access fi Ie is assigned to a channel by a FILES or a FILE statement, it is outomatically set

in noquate mode. NOQUOTE and NOQUOTE ALL statements are only necessary if the user wishes to

change a file from quote to noquote mode.

When creating a pure data file, in addition to setting the file in quote mode, it is good practice to

separate the formulas in the WRITE or PRINT statements with semicolons to pack the data items c\O$e

together. Although separating the formulas with commas is permissible, it will waste space on the

disk.

The form of the QUOTE statement is:

QUOTE arg1, arg2, •.• argn

where each argument has the form:

*N
or N

where N is the channel specifier. If an argument is omitted, the Teletype is specified; for example,

30 QUOTE, 1, 4

refers to the Teletype and the fi les on channels 1 and 4.

Version 17A BASIC 10-13 May 1972

Since QUOTE is assumed to have at least one argument, the statement

50 QUOTE

speci fj es the Tel etype •

The form of the QUOTE ALL statement is:

QUOTE ALL

QUOTE ALL refers to channels 1 through 9, but not to the Teletype.

When a channel is referenced in a QUOTE or QUOTE ALL statement and that channel has a sequential

access file currently assigned to it, output to the file is done in quote mode. If a sequential access

file is not presently assigned to the channel, nothing is done and no error message is returned.

The form of the NOQUOTE statement is the same as that of the QUOTE statement, except that the

word NOQUOTE is substituted for the word QUOTE. Examples of NOQUOTE statements are:

10 NOQUOTE #7112
20 NOQUOTE

The first example specifies the files on channels 7 and 2 and the Teletype. The second example speci

fies the Teletype.

The form of the NOQUOTE ALL statement is:

NOQUOTE ALL

When a channel is referenced by a NOQUOTE or NOQUOTE ALL statement and that channel has a

sequential access file currently assigned to it, output to the file will be written in noquote mode. If

a sequential access file is not presently assigned to the channel, nothing is done and no error message

is returned.

The use of the QUOTE ALL or NOQUOTE ALL statement is a convenient way to set all sequential

access files currently assigned to channels into the appropriate mode, since the statements will not

return error messages about or affect unassigned channels or the Teletype, and will not damage any of

the random access files currently assigned to channels.

Quote or noquote mode can be set even if the file is in read mode because these modes have no effect

on input. They will affect the output if the fi Ie is subsequently put into write mode.

If the mode is changed from quote to noquote or vice versa, the change takes effect immediately.

Version 17 BASIC 10-14 August 1971

10.8 THE MARGIN AND MARGIN ALL STATEMENTS

Norma Ily, the right output margin for the Teletype and sequential access fi les is 72 characters.

I Whenever a sequential access file is assigned to a channel by a FILES or a FILE statement, the file's

output margin is automatically set to 72 characters. At the beginning of and also at the end of program

I execution, the Teletype output margin is set to 72 characters. There is no margin in a random access

file.

I

The MARGIN and MARGIN ALL statements allow the user to set the right output margin for the Tele

type or any sequential access file from 1 to 132 characters.
1

The form of the MARGIN statement is:

MARGIN arg 1, arg2, •.• argn

where each argument has the form:

#N, numeric formula

The arguments can be separated by commas or semicolons. N is the channel specifier. The numeric

formula specifies the margin size; it is truncated to an integer. Either a comma or a colon can be used

to separate the channel number from the margin size.

If only the margin size is present in the argument, that argument refers to the Teletype. For example:

35 ~ARGIN 75, #8:132

sets a margin of 75 characters for the Teletype and a margin of 132 characters for the fi Ie on channel

8.

The form of the MARGIN ALL statement is:

MARGIN ALL numeric formula

This statement sets the sequential access fi les on channels 1 through 9 to the margin specified by the

numeric formula, the value of which is truncated to an integer before the margin is set. The Teletype

is not affected by the MARGIN ALL statement. Examples of the MARGIN ALL statement are:

60 MARGIN ALL 132
65 ~ARGIN ALL N*A8S(K(I»

I Neither the MARGIN nor MARGIN ALL statement has any effect on random access files or on chan

nels that have no files assigned to them. Consequently, the MARGIN ALL statement is a convenient

way to set a margin for all sequential access files currently assigned to channels.

1
1The monitor command SET TTY WIDTH must be used in addition to the BASIC MARGIN statement if
the user wishes to set the output margin for the Teletype to any size greater than 72 characters. Refer
to Section 6.7 for details.

Version 17 BASIC 10-15 February 1972

The margins set by the MARGIN and MARGIN ALL statements apply only to output. The margin for

input lines for both the Teletype and sequential access files is not affected by these statements; it is

I always 142 characters. An attempt to input a line longer than 142 characters results in an error

message.

A margin set by a MARGIN or MARGIN ALL statement takes effect as soon as a new line of output is

begun for the Teletype or the sequential access file.

Although the right margin can be set to any number between 1 and 132 characters, the margin for lines

output by WRITE statements must be at least 7 characters to allow for the line number and its following

tab. If the margin is less than 7 characters for a line-numbered file, an error message is issued by the

first WRITE statement referencing the file.

10.9 THE PAGE, PAGE ALL, NOPAGE, AND NO PAGE ALL STATEMENTS

Normally, output to the Teletype or to sequential access files is not divided into pages; that is, it is

I in nopage mode. Whenever a sequential access file is assigned to a channel by a FILES or a FILE

statement, it is automatically set in nopage mode. At the beginning and also at the end of program

execution, the Teletype is set to nopage mode. The PAGE and PAGE ALL statements allow the user

to set a page size of any positive number of lines for the Teletype and sequential access files. The

NOPAGE and NO PAGE ALL statements allow the user to set the Teletype and sequential access files

I to nopage mode. Nopage and page modes are meaningless for random access files.

The form of the PAGE statement is:

PAGE arg 1, arg2, ... argn

where each argument has the form:

IN, numeric formula

The arguments can be separated by commas or semi colons. N is the channel specifier. The numeric

formula is truncated to an integer and used to specify the page size. Either a comma or a colon can

be used to separate the channel number from the page size.

If only a page size is present in an argument, that argument refers to the Teletype; for example:

sets the files on channels 1 and 7 to page sizes of 66 and 62 lines respectively, and the Teletype to a

page size of 50 lines.

Version 17 BASIC 10-16 August 1971

The form of the PAGE ALL statement is:

PAGE ALL numeric formula

This statement sets the sequential access files on channels' 1 through 9 to a page size specified by the

numeric formula; however, the Teletype is not affected. The value of the numeric formula is truncated

to an integer before the page size is set. An example of the PAGE ALL statement is:

~ PAGE ALL Q(2)*B

I Neither the PAGE nor PAGE ALL statement has any effect on random access files or on channels that

have no files assigned to them. Consequently, the PAGE ALL statement is a convenient way to set a

page size for all of the sequential access files currently assigned to channels. If a PAGE or PAGE ALL

statement specifies a page size of zero or less than zero, an error message is issued.

When a PAGE or PAGE ALL statement is executed for a sequential access file that is in write mode or

for the Teletype, BASIC ends the current line of output (if necessary), outputs a leading form feed,

and starts counting I ines beginning with the next I ine output. Subsequently, whenever a new page

becomes necessary, a form feed is output and the line count is set back to zero. Execution of a <PA>

delimiter sets the line count to zero. PAGE and PAGE ALL statements can be executed for sequential

access files in read mode; in this case, the leading form feed is not output. A page size remains in

effect until another PAGE or PAGE ALL statement changes it, until a NOPAGE or NO PAGE ALL

statement is executed for that file or the Teletype, or until the end of program execution. Setting the

page size for the Teletype is further described in Chapter 6.

The form of the NOPAGE statement is:

NO PAGE arg 1, arg2, .•• argn

where each argument has the form:

*N
or N

where N is the channel specifier. If an argument is omitted, the Teletype is specified; for example:

10 NOPAGE #3## 2

refers to the Teletype and the fi les on channels 2 and 3.

Since the NOPAGE statement is assumed to have at least one argument, the statement

70 NOPAGE

refers to the Teletype.

Version 17 BASIC 10-17 August 1971

The form of the NOPAGE ALL statement is:

NO PAGE ALL

The NO PAGE ALL statement sets all of the sequential access files on channels 1 through 9 in nopage

mode, but does not affect the Teletype.

Like the PAGE and PAGE ALL statements, NO PAGE and NOPAGE ALL statements have no effect on

channels that have random access files or no files assigned to them. Consequently, the NOPAGE All

statement is a convenient way to set all of the sequential access files currently assigned to channels

into nopage mode.

10.10 THE IF END STATEMENT

The IF END statement allows the user to determine whether or not there is any data left in a file

between the current position in the file and the end of the file.

The statement forms are:

For sequential access files:
(GO TO~ .

IF END IN'lTHEN J line number

For random access files:
[GO TO~.

IF END :N, lTHEN)llne number

where N is the channel specifier. The line number must refer to a line in the program and must follow

the rules for line numbers discussed in Chapter 1. Either THEN or GO TO must be used in the state

I ment. The comma preceding THEN or GO TO is optional.

The IF END statement will execute for a sequential access file only if the file is in read mode; an error

message will be issued if the file is in write mode or if it does not exist. The IF END statement will

always execute for a random access fj Ie that exists because such a fi Ie does not distinguish between

read and wri te modes. For the purposes of the IF E NO statement, the end of a random access fi Ie is

considered to be just beyond the final record in the file. The LOC and lOF functions described in

Section 10.6 can also be used to determine whether or not there is any data between the current pointer

position in a random access file and the end of the file.

If an IF END statement is executed for a sequential access fi I e that is in read mode but that has not yet

been referenced by a READ or INPUT statement, the IF END statement will assume that the file does

not have line numbers. Thus, if an IF END statement is executed for a line-numbered file that has not

been referenced by a READ statement, the IF END statement will treat line numbers as data items and

Version 17 BASIC 10-18 August 1971

wi II erroneously report that there is data in the fi Ie if only I ine numbers remain in the file. As soon

as a READ or INPUT statement is executed for a file, the IF END statement correctly interprets the

kind of file {line-numbered or nonline-numbered) and can distinguish between line numbers and data.

The following example shows how the IF END statement works for sequential access files.

10 FILES TEST
20 SCkATCH '1
30 FOh X=I TO 5
40 READ A
50 WR ITE I I ~ A
60 NEXT X
70 RESTORE '1
80 FOr< 1=1 TO I~
90 PR I NT ,. T = .. J I,
100 IF END II THEN 170
110 READ II~ BCI)
120 PRINT BCI)
130 NEXT I
1~0 PRINT "FAILED"
150 STOP
160 DATA -1~-2~-3~-~~-5~-6~-7,-8,-9,-10

170 END

RUNNH

I = 1 -I
I = 2 -2
I = 3 -3
1 = 4 -4
I = 5 -5
I = 6

TIME: 0.10 SEeS.

If the final record written into a random access file is record number 1~, for example, the IF END

statement will cause a transfer when it is execut~ only if the pointer for that file has a value of 1805

or greater at that ti me •

10-19 January 1 974

CHAPTER 11

FORMA TTED OUTPUT

The user who wishes to control the format of his output more than is permitted by the PRINT, PRINT',

and WRITE' statements described in Chapters 6 and 10 can use the statements described in this chapter.

These statements are PRINT USING, PRINT USING', and WRITE USING'. They all use a special

formatti ng stri ng, ca 1\ eel an image, to format thei r output.

11.1 THE USING STATEMENTS

The PRINT USING statement allows formatting of string and numeric output to the Teletype. The forms

of the PRINT USING statement are:

PRINT USING line number, list
PRINT USING string formula, list

The PRINT USING' and WRITE USING* statements allow formatting of output to data files.

PRINT USING' formats output to data files without line numbers; WRITE USING' formats output to

line-numbered data files. The forms of the PRINT USING' statement are:

PRINT USING 'N, line number, list
PRINT USING 'N, string formula, list
PRINT 'N, USING line number, list
PRINT *N, USING string formula, list

The forms of the WRITE USING' statement are:

WRITE USING 'N, line number, list
WRITE USING *N, string formula, list
WRITE 'N, USING line number, list
WRITE 'N, USING string formula, list

'I N is a numeric formula having a value from 1 through 9 that specifies the channel that the file is on.

The comma following N can be omitted in the forms in which N precedes the word USING. The list

has the form:

formula delimiter formula delimiter •.• formula

Version 178 BAS IC 11-1 September 1972

The formulas are either string or numeric and the delimiters are commas or semicolons. At least one

formula must be present in the list.

The USING statements output each formula in their lists under the control of an image that specifies

the forn1Ot. The image is a string of characters that describe the form of the output (integer, decimal,

string, etc.) and the placement of the output on the output line. If the USING statement contains a

line number as its argument, the image is on the line specified by that line number. Such a line is

called an image statement and has the form:

line number: string of chorocter"!

The string of choroeter"! in an image statement is not eneloted in quotes. For example:

1~ PRINT USING 20, A
20 : THE ANSWER IS ••••

Image statements cannot be terminated by the apostrophe remarks indicator because an apostrophe can

be used as a format control character in an image.

If the USING statement contains a string formula as its argument, the image is the value of the string

formula. If the string formula is a string constant, it must be enclosed in quotes. An example of the

image in the USING statement is:

10 PRINT USING "THE ANSWER IS ,,,,,,", A

When a USING statement is executed, BASIC begins a new line of output, and the first argument in

the USING statement is output into the first specification in the image. If there are more arguments

in the USING statement than specifications in the image, a new output line is begun and the specifi

cations in tn~ image are used again. USING statements always write complete lines. The current

margin set for the Teletype or the data file referenced does not affect USING statements; however,

an attempt to create a line longer than 132 characters results in an error message. Quote and naquote

modes do not affect USING statements; USI NG statements ignore both modes.

The WRITE USING' statement performs the same functions as the PRINT USING' statement except that

WRITE USING' places a line number and a tab at the beginning of each line. Neither the line num

ber nor the tab are specified in the image. WRITE USING' statements must be used for files that have

line numbers, and PRINT USING' statements must be used for files that do not have line numbers. If

an attempt is made to use a WRITE' or WRITE USING' statement for a file that was previously written

by PRINT' or PRINT USING' statements, an error messoge will be issued unless an intervening

SCRATC H' statement erased the fi Ie. Simi larly, an attempt to use PRINT' or PRINT USING' state

ments for a file that was previously referenced by WRITE' or WRITE USING' statements results in an

error message un I ess an i nterven i ng SC RA TC HI statement erased the fi Ie.

Venion 17 BASIC 11-2 February 1972

An example of PRINT USING' and WRITE USING' is shown below.

10 fILES TESTI, TEST2
2" SCRATCH '1, '2
30 A! = "THE INDEX
4t'J fOR T = I TO 3
50 PRINT USING
6A ~ITE USING
7'" NEXT T
80 END
RUNNH

TIME: ".01 SECS.

READY
COPy'TESTI > TTY:
TH E' I NO E X I S J
THE I NOEX IS 2
THE INDEX IS 3

READY
COpy TEST2 > TTY:
1000 THE INDEX IS I
1010 THE INDEX IS 2
1020 THE INDEX IS 3

REAOV

11.2 IMAGE SPECIFICATIONS

, I ,

'2,

IS

A!,
A!,

" ..
T
T

An image is a string that contains format characters and printing characters. The format characters

form specifications that describe how the val of the arguments of the USING statement will be

arranged on an output line. More than one .-cification can be present in an image, but to avoid

ambiguities when outputting numbers, the user should sepaaale numeric specifications by string specifi

cations, printing characters, or spaces. Note that spaces are printing chcracters anel, therefore, as

many spaces as are inserted between specifications will be inserted between the output items. That is,

if two spaces separate a numeric specification from the preceding specification, two spaces will sepa

rate the numbers that are output according to t specifications. If numeric specifications are not

separated from one another, ambiguities will generally exist and BASIC wi II make arbitrary decisions

about the specifications. In general, it will accept as much of the specifications as it can, stopping

when a character is seen that clearly delimits a specification because it considers thot it has reached

the end of the specification. String specifications need not be separated from one another because

they are not ambiguous. Printing characters are output exactly as they appear in the image.

Image specifications can be divided into three major kinds:

a. Numeric image specifications

b. Edited numeric image specifications

c. String image specifications

Version 17 BASIC 11-3 August 1971

I

I

I

11.2.1 Numeric Image Specifications

Numeric il'l'lClge specifications are used to describe the formats of integer and decimal numbers. Format

characters within the image specification indicate the digits, sign, decimal point, and exponent of the

number. Numbers in BASIC normally contain eight significant digits, and never contain more than

nine significant digits. If a numeric image specification would cause a number to be output with more

than nine significant digits, zeroes are substituted for all digits after the ninth. The format characters

in all numeric image specifications must be contiguous.

The format characters used in numeric image specifications are:

, (number sign)
• (decimal point)
t t ttl (four up-arrows)

Number signs in the specification indicate the digits in the number and a minus sign if the number

is negative. At least two number signs must be present at the beginning of the image specification;

an isolated number sign is treated as a printing character. A number sign is written in the image

specification for each digit in the number to be output plus one additional number sign to indicate

e minus sign if the number to be output is negative. For example, to output a negative four-digit

inte98r, at least five number signs should be written in the image specification; a non-negative

number containing four digits requires only four number signs.

11.2.1. 1 Integer Image Specifications - Numbers can be output 01 integers by mean. of an image

specification containing only number signs. As stated above, an additional number sign must be in

cluded in the image specification for a minus sign if the number is negative. If the number is positive

or zero, no sign is output; if the number is negative, a minus sign is output. If insufficient characters

are present in the image specification, an ampersand (~ is placed in the first position of the output

field and the field is widened to the right to accommodate the number. If the image specification

width is larger than necessary to accommodate the number, the number is right;ustified in the output

field. The number to be output is truncated to an integer if it is not an integer. An example showing

integer image specifications follows.

1

J 0

F U~NH

F EA D ~,3, C, D, t:..
~A T A 2 5 • (, , - 1 4 • 7, 4, - Q • 1, - 4 1 ~ 7 ~ • 3
PR I ~H US I NG .. II' If * I * I", A, ~, C
A$ =""","
PF I ~ T US I ~G to $, D , E
END

Q5 -14
4

~-41376

On some Teletypes, the circumflex (A) is used instead of th., up-orrow (t).

11-1. January 1 974

I

I

11.2.1.2 Decimal Image Specifications - Decimal image specifications must contain number signs, as

in integer image specifications, and a single decimal point. Optionally, the user can include four

up-arrows (t f f t) at the end of a decimal specification to indicate that the number is to be output with

an explicit exponent. A number output under control of a decimal image specification always contains

an explicit decimal point.

When four up-arrows are present in the image specification, an explicit exponent is output in the form

E ±nn. The sign of the exponent is always output, a plus sign for positive or zero exponents, a minus

sign for negative exponents (e.g., E+01).

The decimal point in the image specification causes the decimal point to be fixed in the output field.

Thus number signs that precede the decimal point in the image specification reserve space in the output

field for the digits before the decimal point and a minus sign if the number is negative. At least one

digit is always output before the decimal point, even if the digit is zero. The number signs that follow

the decimal point in the image specification reserve space for the digits after the decimal point in the

output field.

If the number is to be output with an expl icit exponent, a position must be reserved for· the sign of the

number even if the number is positive (a space is output for the sign of a positive number). When the

number with the exponent is output all of the positions before the decimal point in the output field are

used and the exponent is adiusted accordingly. If the number is not to be output with an explicit

exponent, and more spaces are reserved before the decimal point than are necessary, the number is

right;ustified in the output field and leading spaces are appended. If insufficient spaces are reserved

before the decimal point, an ampersand (~ is placed in the first position of the output field and the

field is widened to the right to accommodate the number.

Whether or not the number is output with an explicit exponent, as many digits are output following

the decimal point as there are number signs following the decimal point in the image specification.

The number is rounded or tro iii ng zeros are added if necessary.

An example of the use of decimal image specifications follows_

;: U"'J NH

P EA D A., 9 , C , D , E , F
:**,*." ". ".",,
PPINT USING 20, A,B,C,D,E,r
DA TAl 0 0 • '2 5 6, 3. 6, ? 1 g .2 4 3 1 ~
DA TA - 4 .6, 3, 0.01 256
?F I ~T
PF I NT US I NG 80, 1 00.2, 1 4
:***.*11~1 *'*.ffff
E~n

1 e eo • ? 6 4. &2 1 8. 2 432
-4.60 3. 0.~126

11-5 January 1 974

11.2.2 Edited Numeric Image Specification

For those users who wish to output numbers in a form suitable for accounting reports, payrolls, and the

like, additional format characters can be included in numeric image specifications to cause the numbers

to be edited. The format characters used for edited numeric specifications are:

'*
s

Comma

(comma)
(minus sign)
(asterisk)
(dollar sign)

One or more commas in the integer part of a numeric image specification causes the digits in the t)Ut

put number to be grouped into hundreds, thousands, etc., and separated by commas (e.g., 1,000,000).

The commas, however, cannot be in the first two places in the specification. Only one comma need

be present in the image specification for the number to be output with commas in the required places,

but Q pound sign or a comma must be present in the image specification to reserve space for each comma

to b. output. For example, to print the number 1,365 ,072, the image specification must contain one

I comma and at least eight pound signs and/or cammas. It is useful, however, to position commas in the

specifi cati on where they wi II appear when they ant output, e.g., ", '" , "'. A comma that is not

part of a numeric image specification is treated as a printing character.

I

I

Example:

10
20
30
40
50

RUNNH

PRINT USING" ", .. " .. ,IE"',lE5,lF6
PRINT
PRINT USING ~0. -1~1516_8

:"',1111111111_'
END

10,000
100.000

.tl.000.000

Trailing Minus Sign

A trailing minus sign in a numeric image specification causes the number to have its sign printed at

its end, rather than at its beginning (e.g., 27-). A trailing minus sign in a number is often used in a

report to indicate a debit. When a trailing minus sign is present in the image specification, a position

need not be saved at the beginning of the image specification for the sign of the number, since the

minus sign reserves a place for the sign. When the trailing minus sign is present in the image specifi

cation and the output number is positive or zet'o, the sign field on output is blank. A minus sign that

does not end a numeric image specification is treated as a printing character.

Version 17A BASIC 11-6 May 1972

Example:

J ~ PR I NT US I NG _to .10. -1 4.137.8
20 PR INT
30 PRINT USING 40. -141516.8. -14
40 : .. #.#, .. ##.#- ##.tttt-

50 ENO

RUNNH

10
14-

137

leading Asterisk

If a numeric image specification begins with two « mont asterisks instead of number signs, the number

is output with leading asterisks filling any unused poIitions in the output field. Leading asterisks are

often used when printing checks « in any application that requires that the numbers be protected (i .e.,

so that no additional digits can be added).

Within an image specification, an asterisk can replace one« all of the number sigN. In il1'lDptpeei

fications with leading asterisks, negative numbers can be output only if t is a trailing minus sign

in the image specification. If a trailing minus sign is not present in the image specification and an

attempt is made to output a negative number, an error m..-ge will be issued. Thus, an acWitional

position need not be saved for a leading sign. Four up-arrows cannot be present in an image specifi

cation that contains leading asterisks. Thus, numbers with explicit exponents cannot be output with

leading asterisks. An isolated asterisk in an image is treated as a printing character.

An example showing image specifications with leading asterisks follows.

10 A$=to
20 READ X.V.Z.W.U
25 DATA 13.56. 4.577. 3.1. 19.612. 100.50
30 PRINT USING AS. X.V.Z.W.U
35 PR INT
40 PRINT USING •• tI#_to. lE6.-1E3
50 END

RUNNH

.13.56
**4.58
**3.10
*19.61
100.50

1.000.000 1000-

Version 17 BASIC n-7 August 1971

FloatIng Dollar SIgn

If a nUrMrlc Image specIfication begins wIth two or more dollar signs instead of number signs, the num

ber is output wIth a floating dollar sign. That is, a dollar sign is always output in the pOlition immedi

ately preceding the fint digit of the number, even if there are fewer digits in the number than there

pOlitions specified in the image specification. This capability is often used to protect checks so that

there are never any spaces left between the dollar sign and the number.

The dollar sign can replace any or all of the number signs in the image specification (i .e., SSSS.SS is

exactly the same as SS".">. An additional position at the beginning of the image specification must

be indicated to save a place for the dollar sign in the output field.

Wh.n the floating dollar sign is used in the image specification, negative numbers can be output only

if t Is a traIling minus Ilgn. If a trailing minus lign I. not present in the image .-=Ification and

an atteenpt i. made to output a negatIve number, an error mIJlClge I. llIUed. Thus, a space need not be

....ved for a leadIng Ilgn in the output field. Four up=arrows cannot be ~ In a numerIc image

.-=ificatfon that contaIns dollar .igns. Thus, numbers with expllcft exponenh cannot be output with

floatIng dollar signs. An isolated dollar sIgn in an image I. tNClted as a printing charact

An example showing floating dollar sign specifications follows. Note that the image in line 10 con

tains a decimal numeric image specification that is preceded by a dollar sign. This single dollar sign

is treated as a printing character and, as shown in the example, is flxed in the output field.

10 ISSSS.SS 5""."
20 R£AD A.B.C
25 DATA 100.43. 19.678. 0.97
30 PRINT USING 10. A.A.8.8.C.C
3S PRINT
40 PRINT USING .. 55 •••• ··.1000
50 E:NO

RUNNH

$100.43
519.68
50.97

51.000

$ 100.43
$ 19.68
$ 0.97

11.2.3 String Image Specifications

The string image specifications allow the user to right-justify, left-justify, or center strings in the

output field. In addition, the user can specify an image that causes the width of the output field to be

extended if the string is larger than the image specifies. The format characten used for string output

are:

Venion 17 BASIC 11-8 August 1971

(apostrophe)
C (center)
L (left-justify)
R (right-justify)
E (extend)

A string image specification contains one apostrophe (') and as many of the format characters C, L, R,

or E as are necessary to output the string. The ap.ostrophe is counted with the format characters when

BASIC determines the length of the output field. The format characters cannot be mixed within an

image specification. If the image specification contains only the apostrophe, only the first character

in the string is output. The characters in a string image specification must be contiguous.

C Format Character

C format characters following the apostrophe in a string image specification cause the string to be

centered in the output field. If a string cannot be exactly centered (e.g., a two-character string in a

three-character field) I it will be off-center one character position to the left. If the string to be out

put is longer than the image specification, the string is left-justified in the output field and the right

most characters that overflow are truncated.

L Format Character

L format characters following the apostrophe in a string image specification cause the string to be left

justified in the output field. If the string to be output is longer than the image specification, the string

is left-justified in the field and the rightmost characters that overflow are truncated.

R Format Character

R format characters following the apostrophe in a string image specification cause the string to be

right-justified in the output field. If the string to be output is longer than the image specification, the

string is left-justified in the field and the rightmost characters that overflow are truncated.

E Format Character

E format characters following the apostrophe in a string image specification cause the string to be left

justified in the output field. If the string to be output is longer than the image specification, the out

put field is widened (extended) to the right to accommodate all the characters in the string.

The following example shows the use of string image specifications.

Version 17 BASIC 11-9 August 1971

I

1~~ : 'CCCC '~fF'E 'LLLL 'kkkk

1 I ~ I NP LIT A!·
12~ IF" A$:"STOP" GO TO 15'"
13~ PR INT US ING 1"'0. A$.A$.A$.A$.A$
I~~ GO TO 110
15~ END

RUNNH

?ABCD
ABCD A8CD AACD A8CD A
?ABCDEF"
AACDE ARCDEF" AACDE A8CDE A
?A

A A A A A

?STOP

Note that the last three fields in the second line printed are displaced' one position because of the field

extension necessary in the second field of the line.

11.2.4 Printing Characten

All characten in an image that are not format control characten are printing characters. Printing

characten are output exactly as they appear in the image. Format control characten only appear as

part of image specifications; if a character used as a format control character (e.g., $, E, *) does

not appear as part of an image specification, it is treated as a printing character. If the USING

statement does not use all of the specifications in an image, all of the printing characten except those

following the unused specifications are printed . Similarly, if the USING statement uses the specifica

tions in an image more than once, the printing characters in the image will be output as many times as

the image is used. An example showing the u. of printing characters in images follows.

: 'F: TRUNCATF:D 'RRRR ROUNDED
: THF: DATE IS: 'RRRRRRR1972
:A= ••• AND THE SQUARE ROOT OF A=*.
PRINT USING ?C1 1-JULY- ..
PRI~T

1;1
20
30
4~

50
fie"
7:1
HCl

PRI~T USII\JG 1:1 .. "ALL NJMERIC OUTPUT FHO~ THIS PHOGRAM IS"
PRI~T

C) ;1

1:"!~

~EADY

:U\!:\ H

A=25
PhI \i T fJ S I l\J G 1 (l .. .t... .. S (.) FH A)
F:!\,;D

T:.JF: Jf'1T~ IS: I-JULY-1972

ALL 'J'JME~IC ':JIJTprJT FtWVJ THIS pPOGnA~ IS T;;UNCATF.D

A= 25 A~D THE SCIJAHF. HeOT OF A= 5

Venion 178 BAS IC 11-10 September 1972

APPENDIX A

SUMMARY OF BASIC STATEMENTS

A.l ELEMENTARY BASIC STATEMENTS

The following subset of the BASIC command repertoire includes the most commonly used commands and

is sufficient for solving most problems.

DATA [data list]

READ [sequence of variables]

PRINT [sequence d formulos and
format control characters]

LET [variable] = [formula] or
[variable] = [formula]

GO TO [line r'lJmberJ

IF [formula] [relation] [fo""ula],

[THEN J . \.. GO TO [I.,,. number]

FOR [:~7''::I:] = [formula,] TO
[formula

2
] {S~P} [formula3]

NEXT [:~:~I:] or

DATA statements are used to supply one or more
numbers or alphanumeric strings to be accessed by
READ statements. READ statements, in tum, assign
the next available data, numeric or string as appro
priate, in the DATA statement to the variables
listed.

Types the values of the specified formulas, which
may be separated by format control characters. If
two formulas are not separated by one or more for
mot control characters, they are treated as though
they were separated by a semicolon.

Assigns the value of the formula to the specified
variable.

Transfers control to the line number specified and
continues execution from that point.

If the stated relationship is true, then transfers con
trol to the line number specified; if not, continues
in sequence. The comma preceding THEN and GO
TO is optional.

Used for looping repetitively through a series of
steps. The FOR statement initializes the variable
to the value of formula 1 and then performs the fol
lowing steps until the NEXT statement is encountered.
The NEXT statement increments the variable by the
value of formula3' (If omitted, the increment value

NEXT
[

numeri c numeri c
variable, variable I

numericl is assumed to be + 1.) The resultant value is then
... variableJ compared to the value of formula2' If variable

<formula2' control is sent back to the step following
the FOR statement and the sequence of steps is re
peated; eventually, when variable> formu la2' con
trol continues in sequence at the step following the
current NEXT argument.

Version 178 BASIC 1\-1 September 1972

I

ON [xl , (~H~~O) [Ii ... number! ,]

[lin. numb_2,l •••• [line mber nl

DIM [varlabl.] (subecript) or
DIMENSION [variable] (sublcript)

END

A.2 ADVANCED BASIC STATEMENTS

GOSUI [Ii,.. number]

[If,. numb_]

or

Subrautfne

INPUT [varfabl.(s)]

STOP

REM

RESTORE

CHANGE I-tring ::fTfIJla l
L I'IJmeric vectoJ

TO r numeric vector 1
lstring C:riableJ

CHAIN [string formulal
CHAIN [string formulal ,
[num_ic formula]

MARGIN [numa-ic formulal

PAGE [numa-ic fonnulal

NOPAGE

QUOTE

NOQUOTE

Version 178 BASIC

.
REruRN

If the integer portion of x = 1, transfers control to
lin. number 1 ' if x = 2, to line numb_2 , etc. [xl
may be a formula. The comma preceding GO TO
and THEN is optional.

Enabl. the user to enter a table or array with a
subscript greater than 10 (i .e., more than 10 items)_

Last statement to be executed in the program, and
must be present.

Simplifies the execution of a subroutine at .veral
diff.rent points in the program by providIng an auto
matic RETURN from the .. broutfne to the next .
quential statement following the appraprlate GOSUI
(the GOSUI which sent control to the subroutin.) •

Causes typeout of a ? to the user and waits for u ...
to respond by typing the value(s) of the wriable(s).

Equivalent to GO TO [line numb_ of END state
ment] •

Permits typing of remarks within the program. The
insertion of .hort comments following any IASIC
statem.nt (except an image statement) is accom
pli.hed by preceding such comments with an apos
trophe (I).

Sets pointer back to beginning of string of DATA
values.

Changes a string formula to a num_ic vector, or
chang. a num_ic vector to a string variable.

Stops execution of the current program and begins
execution of the new program at the beginning or
at the spec i fi ed Ii ne _

Sets the Teletype to the specified output margin_

Output to the Teletype is divided into pages of the
specified length_

Output to the Teletype is nat divide~ into pages.

The Teletype is set to quote mode (see Chapter 10).

The Teletype is set to noquate mode (see Chapter 10).

A-2 September 1972

I [

I i ne number J
PRINT USING or

stri ng formu I a ,
[sequence of formulasl

A.3 MATRIX INSTRUCTIONS

Types the values of the formulas in the format de
termined by the image specified by the line number
orstri ng formula.

. NOTE

The word "vector" may be substi tuted for the word
"matrix" in the following explanations.

MAT READ a, b, c

MAT c = ZER

MATc:: = CON

MAT c = ION

MAT PRINT a, b, c

MAT INPUT v

MAT b:c a

MAT c = a + b

MAT c = a ... b

MAT c:: a * b

MAT c ;: TRN(a)

MAT c:; (k) * a

MAT c = INV(a)

Read the three matrices, their dimensions having
been previously specified.

Fi II out c with zeros.

Fi II out c with ones.

Set up c as an identity matrix.

Print the three matrices.

Input a vector.

Set matrix b = matrix a.

Add the two matrices, a and b.

Subtract matrix b from matrix a.

Multiply matrix a by matrix b.

Transpose matrix a.

Multiply matrix a by the number k. (k, which
must be in parentheses, may also be given by a,
numeric formula.)

Invert matrix a.

(Refer to Section A.S for the special matrix functions NUM and DET.)

A.4 DATA FILE STATEMENTS

FILE [seqvence of [channel specifier]
[fi lename argumentsl]

FILES [sequence of fi lename argumentsl

seRA TCH [sequence of channel
spec:: i fi ersl

RESTORE [sequence of channel
specifiers]

Version 17 BASIC

Assigns files to channels during program execution.

Assigns files to channels before program execution
begins.

Erases a sequenticJ access file and puts it in write
mode; or erases a random access fi I e and sets the
record poi nter to the begi nni ng of the file.

Puts a sequential access file in read mode or sets
the record pointer for a random access file to the
beginning of the file.

A-3 August 1971

WRITE [channel specifier]
[sequence of formulas.l

READ [channel specifierJ
[sequence of variables]

PRINT [channel specifier]
[sequence of formulas]

INPUT [channel specifier]
[sequence of variables]

IF END [channel specifier] ,
{THEN l . l GO TO J [l,ne number]

MARGIN [sequence of [channel
specifier] [numwic formula]]

MARGIN ALL [numeric formula]

PAGE [sequence of [channel
specifier] [numeric formula]]

PAGE ALL [numeric formula]

NOPAGE [sequence of channel
spec i fi ersJ

NOPAGE ALL

QUOTE [se~ence of channel
spec i fi ersJ

OIJ~TE ALL

NOQUOTE [sequence of channel
spec i fi ers.l

NOQUOTE ALL

SET [sequence of [channel specifierJ
[numeric formula]]

PRINT [channel specifier] , USING

[

I i ne number J r sequence of

st
. or

f
I 'formu I asJ

ring ormu a
or

PRINT USING [channel specifier] , r line number 1 [sequence of
Lstr i ng formu I ~ , formu I asJ

Version 17 BASIC

Causes data to be output to a file on the specified
channel. Used for se~ential access files with line
numbers, or for random access files.

Causes data to be input from a fi Ie on the specified
channel. Used for se~ential access fi les with line
numbers or for random access files.

Causes data to be output to a file on the specified
channel. Used for sequential access fi les without
line numbers or for random access files.

Causes data to be input from a file on the specified
channel. Used for se~ential access fi les without
line numbers or for random access files.

Determines whether or not there is data in a file
between the current position and the end of the file.
The comma preceding THEN or GO TO is optional.

Sets the specified output margins for the sequential
access fi les on the specified channels.

Sets the specified output margin for the sequential
access fi les on channel s 1 through 9.

Sets the specified output page sizes for the sequential
access files on the specified channels.

Sets the specified output page size for the sequential
access files on channels 1 through 9.

Output to the sequential access files on the spec
ified channels is not divided into pages.

Output to the sequential access files on channels
1 through 9 is not divided into pages.

Puts the sequential access files on the specified
channels into quote mode (see Chapter 10).

Puts the sequential access files on channels 1
through 9 into quote mode (see Chapter 10).

Puts the sequential access files on the specified
channel s into nequote mode (see Chapter 10).

Puts the sequential access files on channels 1
through 9 into noquote mode (see Chapter 10).

Moves the record pointers for random access files.

Causes data to be output to a sequential access file
without I ine numbers on the specified channel.
The data is output in the format determined by the
image specified by the line number or string for
mula. In the first form, the comma following the
channel specifier can be omitted.

A-4 August 1971

1:!! ="l~(i~.S;G
btring ~,~ , formulasl

or
WRITE USING [channel specifier] I

fline n~mber J ' [=~ of

Lstring formula

Causes data to be output to a I ine-numbered se
quential access file on the specified channel. The
data is output in the format determined by the image
specified by the line rumber or string formula. In
the first form, the comma following the channel
specifier can be omitted.

A.S FUNCTIONS

In addition to the common arithmetic operators of addition (+), subtraction (-), multiplication (*),

division (/), and _pouentlation (t or **), BASIC includes the following elementary numeric functions:

SIN (numeric formula) COT (numeric formula) LOG, or LN, or LOGE (numeric formula)

COS (numeric formuia) ATN (numeric formula) ABS (numeric formula)

TAN (numeric formula) EXP (numeric formula) SQR or SQRT (numeric formula)

CLOG or LOG1O (numeric formula)

Some adwnced num .. ic functiOnl include the following:

INT (num .. ic formula)

RND

SGN (numeric formula)

TIM

Finds the greatest integer not greater than its argu
ment.

Generates random numb.-s betw.-n 0 and 1. The
lame .t of random numb ... can be generated re
peatedly for purpo.s of program testing and debug
ging. The statement

RANDOMIZE

can be used to cause the ge,.ration of new sets of
random numbers.

Assigns a va lue of 1 if its argument is positive, 0
if its argument is 0, or -1 if its argument is negative.

Returns the elapsed execution time, in seconds,
since the program started execution. The time does
not include compile and load time except when
programs are chained. In such a case, the compile
and load times of the programs after the fint are in
cluded in the time returned.

Two functions UI8d with matrix computations are as follows:

NUM

DET

Two functions for use with random OCC811 files are:

LOC (channel specifier)

LOF (channel specifier)

Equals number of components following an INPUT.

Equals the detenninant of a matrix after invenion.

Returns the number of the cUrl"l!nt record in the file
on the specified channel.

Returns the number of the last record in the file on
the specified channel.

Version 178 BASIC A-5 September 1972

FunctioN for manipulating strin91 are:

ASC (one character or a 2- or
3-1 code)

CHR$ (numerIc formula)

INSTR (num .. lc fonnula, .tring
formula, .tring formula)

or
INSTR (string formula, string

formula)

LEFTS (string farmula, num .. ic
formula)

LEN (string fomatla)

MIDS (string formula, numeric
formula, num c formula)

or
MID$ (string fonnula, numeric

formula)

RIGHTS (string fo."., la, numeric
formula)

SPACES (numeric formula)

STRS (numeric fOl'lftlla)

VAL (string fo.".,la)

Returns the decimal ASCII code for its argument.
The two- or thr_-Ietter code. are listed in Table
8-1.

Th. 0ppollt. function to ASC. Th. argum.nt is
truncated to an integ" that is Interpreted as an
ASCn d.clmal rLlmber; a one-character string is
r.turned.

Searches for the second ing within the fint string
argument. In the first form, the search starts at the
character position specifi.d by the numeric fonnula,
truncated to an integ ... In the second form, the
search starts at the begtmtng of the string. Retum.
zero if the substring not found; returns the position
of the first character in the .. bstring if it is found.

Returns a substring of the string formula, starting
from the left. The substring contain. the number of
characters specified by the rlJmeric formula trun
cated to an int

Returns the rlJrnber of charact.rs in its argument.

Returns a substring of the string formula, starting at
the character palition specified by the first numeric
formu la tn.,"c:ated to an i nteg., • In the fi rst form,
the substring contain. the number of characters
specified by the second rlJmeric formula truncated
to an integer. In the second form, the substri ng
continues to the end of the string.

Returns a IUbstring of the string fonnula, starting
from the right, containing the rlJmber of characten
specified by the numeric fonnula truncated to an
integ ...

Returns a string of the numb .. of spaces specified
by the numeric formula tNncated to an integer.

Returns a string repre.ntation of its argument.

The opposite function to STRS. Retums the numb ..
that the stri ng argument represents.

The user can also define his own functions by use of the DEFine statement. For example,

[line number] DEF FNC(x) = SIN (x) + TAN(x) - 10

wh)(is a dummy variable. (Define the user function FNC as the formula SIN(x) + TAN(x) - 10.)

Version 17 BASIC

NOTE

o EFi ne statements may be extended onto more than one
line; all other statements are restricted to a single line
(refer to Section 5.1.5).

A-6 August 1971

.APPENDIX B

BASIC DIAGNOSTIC MESSAGES

Most menages typed out by BASIC are sel f-explanatory. BASIC diagnostic meS!ages are divided into

three categorie! and listed in the three tables below:

a. Command errors in Table B-1

b. Compilation error'! in Table B-2

c. Execution errors in Table B-3

Table B-1
Command Error Menage!

Message

I
?CANNOT INPUT FROM THIS DEVICE

?CANNOT OUTPUT TO THIS DEVICE

?CANNOT OUTPUT filenm.ext

?CATALOG DEVICE MUST BE DISK OR
DECtape

?COMMAND ERROR (YOU MAY NOT OVER
WRITE LINES OR CHANGE THEIR ORDER)

?COMMAND ERROR (LINE NUMBERS MAY
NOT EXCEED 99999)

?DELETE COMMAND MUST SPECIFY 'MilCH
LINES TO DELETE

?DUPLICATE FILENAME, REPLACE OR
RENAME

I
?DUPLICATE SWITCH IN QUeuE ARGUMENT

?FILE dev:filenm.ext COULD NOT BE
UNSAVED

?FILE dev:filenm.ext NOT FOUND

Version 17 BASIC

Explanation

An attempt has been made to input to a device that
can only do output, or vice ver'!a.

A COPY, SAVE, or REPLACE command could not
enter a file to output it. The actual name of the
file is typed, not filenm .ext.

A device other than disk or DECtape was !pacified
in a CATALOG command.

The given RESEQUENCE command would have
changed t+.e order of lines in the file. The com
mand is ignored.

The given RESEQUENCE command is not executed
for that reason.

A DELETE command has no argumenh.

User tried to SAVE a file that already exists.

Two switches of the same type have been specified
for one QUeuE argument.

A file that wos reque4!1'ed did not exist.

B-1 February 1972

Table B-1 (Cont)
Command Error M~ge!

I
Explanation 1

?lINE TOO LONG

I ?LOGOUT FAILED -- TRY AGAIN

?MISSING LINE NUMBER FOLLOWING
LINE nn*

?NO SUCH DEVICE, device

?PAGE LIMIT > 9999 OR < 1 IN auBJE
ARGUMENT

?QUOTA EXCEEDED OR BLOCK NO. TOO
LARGE ON OOTPUT DEVICE

?THIS COMMAND IS NOT IMPlEMENTED FOR
THIS MONITOR

?U NDEFINED LINE NUMBER mm IN UNE nn

A line of input is greater than 142 chorocter~, r'l':lt I
counting the terminating cOrT'ioge returr'l, 17"1e fee--:.

A BYE or GOODBYE com""ond could not t-ror"l~fer
control to the LOGOUT 5')'~tem progro!"'1.

During a WEAVE 0If' OLD command, 0 line 'Nit+.ou~

a line number wen found in the file. The line i~
thrown away.

The device it not available.

A LIMIT switch for a QUEUE argument 'NO! OlJt 0'

bounds.

Normally, thi! indicate! f'hat all of the ~ee allow
ed on the outpuf' device her! been u!ed; no more c~n
be output f'o f'hi! device unl8!! tome of the ufer',
files ore deleted from it. Thi! can 01,0 meetn that
the bloclc numer it too large for the outJJut device.

?UNSAVE DEVICE MUST BE DISK OR DECTAPE, A clevice other than di.k or DIECtape 'Ala! !P8cir.ed
FILE dev:fil.nm.ed in an UNSAVE command.

?WHAT?

I
?>63 OR < 1 COPIES REQUESTED IN QUEUE
ARGUMENT

Catchal I command error.

A COPIES tWitch for a QUBJE a~ment WO! out of
bounds.

*If the cu"..nt program was cal led by a CHAIN statement, the name of the cumtnt program is appended
to the error message.

Version 17 BASIC B-2

I

Table B-2
Compilation Error Messages

Message

?8AD DATA INTO LINE n

?DATA IS NOT IN CORRECT FORM

?END IS NOT LAST IN nn

?EOF IN LINE nn

?FAILURE ON ENTRY IN LINE nn

?FNEND BEFORE DEF IN LINE nn

?FNEND BEFORE NEXT IN LINE nn

?FOR WITHOUT NEXT IN LINE nn

?GOSUB WITHIN DEF IN LINE nn

?FUNCTION DEFINED TWICE IN LINE nn

?ILLEGAL ARGUMENT FOR ASC FUNCTION

IN LINE nn

?ILLEGAL CHARACTER IN LINE nn

?ILLEGAL CONSTANT IN LINE nn

?ILLEGAL FORMAT IN LINE nn

?ILLEGAL FORMAT WHERE THE WORDS

THEN OR GO TO WERE EXPECTED IN

LINE nn

?ILLEGAL FORMULA IN LINE nn

?ILLEGAL INSTRUCTION IN LINE nn

?ILLEGAL LINE REFERENCE IN LINE nn

?ILLEGAL LINE REFERENCE mm IN LINE nn

?ILLEGAL RELATION IN LINE nn

? ILLEGAL VARIABLE IN LINE nn

Explanation

Input data is not in correct form.

Incorrect number or string data in a DATA state
ment.

An attempt was mode to read data from a file after
all data hod been read.

Channel is not available for SCRATCH command.

FNEND occun, but not in a function DEF.

A FOR occurred in a DEF ,but its NEXT did not.

A GOSUB statement is within a multiple line DEF.

A mean i ngless character; e. g., DIM' (1).

Catchall for other syntax erron.

Syntax error in arithmetic fonnula.

The fint three non-blank, non-tab characten of
the statement do not match the fint three charac
ten of any legal statement.

BASIC syntax required an integer, but user typed
something else; e.g., GO TO A.

In line nn, line mm was referred to illegally
because:

a. line mm is a REM
b. The first character in line mm is an

apostrophe (I).
c. One of the lines nn or mm is inside

a function; the other is not inside
that function.

Incorrect IF relation.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all compilation error messages. For example, NO DATA IN TEST.BAK.

Version 178 BAS Ie B-3 September 1972

I

Tabl. B-2 (Cont)
Compilation Error Mellagn

Message

?INCORRECT NUMBER OF ARGUMENTS IN
LINE nn

?INITIAL PART OF STATEMENT NEITHER
MATCHES A STATEMENT KEYWORD NOR
HAS A FORM LEGAL FOR AN IMPLIED LET-
CHECK FOR MISSPELLING IN LINE nn

'?MIXED STRINGS AND NUMBERS IN LINE nn

?NESTED DEF IN LINE nn

?NEXT WITHOUT FOR IN LINE nn

1nn IS NOT AN IMAGE IN LINE nn

?NO CHARACTERS IN IMAGE IN LINE nn

?NO DATA

?NO END INSTRUCTION

?NO FNEND FOR DEF FNx

?OUT OF ROOM

?RETURN WITHIN DEF IN LINE nn

?SPECIFIED LINE IS NOT AN IMAGE IN
LINE nn

?STRING RECORD LENGTH> 132 OR< 1 IN
LINE nn

?STRING VECTOR IS 2-DIM ARRAY

Explanation

A function used wit~ the wrong number of argu
ments.

Line nn illegally contains a string variable or lit
eral because:

a. No.lement of this statement may be a
string.

b. All elements must be strings but some
were not.

DEF within multiline DEF.

Th. specified line was referenced by a USING
statement as an Image, but it is not an image state
ment.

Program contains READ but not DATA.

The multiline DEF for FNx (the actual function
name, not F Nx Is typed) hal no F NE NO •

Cannot get more core to make room for:

a. More cornpi lation space.

b. Maximum space for all the vecton
and arrays

c. Space to store another string during
execution.

A RETURN statement is within a multiple line DEF.

The length of a record in a string random access
file was specified as greater than 132 or less than 1.

The user managed to do this error despite many
other checks.

NOTE: If the current program was called by a CHAI N statement, the name of the current program is
appended to all compilation error messages. For example, NO DATA IN TEST. BAK.

Version 178 BASIC B-4 September 19n

I

Table B-2 (Cant)
Compilation Error Messages

Message

?SYSTEM ERROR

?TOO MANY FILES IN LINE nn

?UNDEFINED FUNCTION -- FNx

?UNDEFINED LINE NUMBER mm IN LINE nn

?USE VECTOR, NOT ARRAY IN LINE nn

?VARIABLE DIMENSIONED TWICE IN LINE nn

?VECTOR CAN NOT BE ARRAY IN LI NE nn

?Chara~l:tS SEEN WHERE character2 WAS EXPE IN LINE nn

Explanation

An I/O error, or the 'UUO mechanism drops a bit,
or something similar to thaN errors.

A maximum of nine files can be open at one time
ina program.

The actual function name, not FNx, is typed.

In line nn, mm is used as a line number. line num
ber mm does not exist.

A variable previously defined as a two-dimensional
array is now used in MAT input or CHANGE.

A variable previously used in a MAT INPUT or
CHANGE statement is now defined as a 2-dimen
sional array in a DIM statement.

An erroneous chcracter was used in place of the
correct character. ChCW'Octer 1 and character 2 ere
replaced by the appropriate 'characten or a
phrase describing the characten when the rneSIOge
is issued.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all compilation error messages. For example, NO DATA IN TEST. BAK.

Table B-3
Execution Error Messages

Message

%ABSOLUTE VALUE RA ISED TO POWER IN
LINE nn

?ATTEMPT TO OUTPUT A NEGATIVE NUMBER
TO A $ OR * FIELD IN LINE nn

?AmMPT TO OUTPUT A NUMBER TO A
STRING FIELD OR A STRING TO A NUMERIC
FIELD IN LINE nn

?ATTEMPT TO READ* OR INPUT* FROM A
FILE WHICH DOES NOT EXIST IN LINE nn

?ATTEMPT TO READ* OR INPUT* FROM A
FILE WHICH IS IN WRITE* OR PRINT* MODE
IN LINE nn

Explanation

A US I NG statement attempted to output a negative
number to a floating dollar sign or leading asterisk
field that did not end in a minus sign.

A USING statement attempted to output a number
to a string field or a string to a numeric field.

An attempt was made to read from a file that does
not exist on the user's disk area.

An attempt was made to read from a sequential
access file that is not in read mode.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST. BAK.

Version 178 BASIC 8-5 September 1972

Table &-3 (Cont)
Execution Error Messages

Message

?A mMPT TO WRITE A LINE NUMBER
>99,999 IN LINE nn

?ATTEMPT TO WRITE' OR PRINT' TO A
FILE WHICH HAS NOT BEEN SCRA TCH'ED
IN LINE nn

?ATTEMPT TO WRITE' OR PRINT' TO A
FILE WHICH IS IN READ' OR INPUT*
MODE IN LINE nn

?CHR$ ARGUMENT OUT OF BOUNDS IN
LINE nn

?DATA FILE LINE TOO LONG IN LINE nn

?DIMENSION ERROR IN LINE nn

%DIVISION BY ZERO IN II NE nn

?EXPONENT REQUESTED FOR" OR $ FIELD
IN LINE nn

?FILE IS NOT RANDOM ACCESS IN LINE nn

?FILE NEVER ESTABLISHED -- REFERENCED
IN LINE nn

?FlLE NOT FOUND BY RESTORE COMMAND
IN LINE nn

?FILE filenm.ext ON MORE THAN ONE
CHANNEL IN LINE nn

?FILE NOT IN CORRECT FORM IN LINE nn

?FILE RECORD LENGTH OR TYPE DOES NOT
MATCH IN LINE nn

?rF END ASKED FOR UNREADABLE FILE IN
LINE nn

Explanation

An attempt was mode to write to a sequential
access file that is not in writ. mode.

An attempt was mode to wri te to a sequential
access file that is not in write mode.

The argument to the CHRS function was I .. than
zero or greater than 1 Xl .

An attempt has been made to read from a data file
a line which is greater than 142 characters long.

t

The u.r tried to establ ish the same file on more
than one channel. The actual fi lenarne and ex
teNion are typed, not filenrn. ext.

A data error has been detected ina stri n9 random
access fi Ie •

An ex isti ng random accell fil. does match the type
or record length specified for it in a FILE statement.

t An OVERFLOW error message means that an attempt has been mode to create a number larger in mag
nitude than the largest number representable in the computer (approximately 1. 7E + 38); when this
occurs, the largest represer.t~hle number is returned (with the correct sign) and execution continues.
An UNDERFLOW error message rneans that an attempt has been made to create a nonzero number I
smaller in magnitude than the smallest representable positive number (approximately 1.4E .39); in this I
case, zero is returned and execution continues. Division by zero is considered overflow; the lorgest
representable positive number is returned.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to alt execution error messages. For example, LOG OF ZERO IN 20 IN TEST. BAK.

B-6

I

Table ~3 (Cont)
Execution Error Messages

Meaage

?ILLEGAL CHARACTER IN STRING IN LINE nn

?ILLEGAL CHARACTER SEEN IN LINE nn

?ILLEGAL FILENAME IN LINE nn

?ILLEGAL LINE REFERENCE IN RUN (NH) OR
CHAIN

?IMPOSSIBLE VECTOR LENGTH IN LINE nn

?INPUT DATA NOT IN CORRECT FORM -
RETYPE LINE

?INSTR ARGUMENT OUT OF BOUNDS IN
LINE nn

?LEFT$ ARGUMENT OUT OF BOUNDS IN
LINE nn

?LlNE NUMBER OUT OF BOUNDS IN LINE
nn

%LOG OF NEGATIVE NUMBER IN LINE nn

%LOG OF ZERO IN LINE nn

%MAGNITUDE OF SIN OR COS ARG TOO
LARGE TO BE SIGNIFICANT IN LINE nn

?MARGIN OUT OF BOUNDS IN LINE nn

?MARGIN TOO SMALL IN LINE nn

?MID$ ARGUMENT OUT OF BOUNDS IN
LINE nn

?MIXED RANDOM & SEQUENTIAL ACCESS
IN LINE nn

Explanation

An attempt has been made to wri te onto a data
file a string containing an embedded line termina
tor or quote.

An attempt has been made to create an illegal
character in a CHANGE statement.

The string argument is not in the correct form. If
the argument is variable, check that it has been
defined.

The line at which execution is to begin is inside a
multiline DEF.

In a CHANGE (to string) statement, the zero ele
ment of the number vector was negative or exceeded
its maximum dimension.

The line number argument is I .. than zero or .
greater than 99,999. The RUN (NH) COI""tuhds
return a ?WHA T? rnellage in this situation.

When the argument for COS or SIN is too Iarv- to
be significant, this mesage is issued and on answer
of 0 returned.

A MARGIN or MARGIN ALL statement specified a
margi n greater than 132 characten or Ie. than 1
character.

A WRITE* statement referenced a file that has a
margi n of fewer than seven characters.

A random access statement or functio~ referenced
a sequential access file, or vice versa.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN LINE 20 IN TEST. BAK.

Version 17B BAS Ie B-7 September 1972

Table 8-3 (Cont)
execution Error Mellaget

?MIXED READ' /I NPUT' IN LINE nn

?MIXEO WRITE' /PRfNT' IN LINE nn

?NEGATIVE STRING LENGTH IN LINE nn

?NO FIELDS IN IMAGE IN LINE nn

?NO ROOM FOR STRING IN LINE nn

?NO SUCH LINE IN RUN (NH) OR CHAIN

?NOT ENOUGH -- ADD MORE

?ON EVALUATED OUT OF RANGE IN LINE nn

?OUT OF DATA IN LINE nn

?OUTPUT ITEM TOO LONG FOR LINE IN
LINE nn

?OUTPUT LINE 132 CHARACTERS IN
LINE nn

?OUTPUT STRING LENGTH RECORD
LENGTH IN LINE nn

%OVERFLON IN LINE nn

%OVERFLOW IN EXP IN LINE nn

Explanation

An attempt WOl made to reference a file with both
a READ' and an INPUT' statement without an inter
vening RESTORE' statement.

An attempt was made to reference a file with both
a WRITE' and a PRINT' stotement without an inter
ven'ng SCRATCH' statement.

In a MIDS, LEFTS, or RIGHTS function, a negative
number of characten WCII .. clfled for a subitring.

An Image contains "., Itrlng nor numer'c flelds.

In a CHANGE AS TO A, the number of charactwn
in AS exc:eecll the maximum II. 01 A. A DIM
stat...,.nt appwopr'ately Inentallng the lize of A
will cover thil.

The specified II". does not ex ilt in the progi Gli •

The value of the ON index wOI<l or> the num
ber of branches.

I n quote mode, an attempt was made to .wri te a
string or number that is too long to flt on one line.

A line of output created by a USING statement
il greater than 132 characters.

An attempt has been made to output to a random
accea file a string which is too long to flt in one
record.

t

An exponent greater than 88.028 has been speci
fied for the EXP function. An answer of the largest
representable number is returned and execution con
tinues. t

t An OVERFLOW error message means that an attempt has been made to creote a number larger in mag
nitude than the largest number representable in the computer (approximately 1. 7E + 38); when this
occun, the largest representable number is returned (with the correct sign) and execution continues.
An U NDERFLO'N error message means that an attempt has been made to create a nonzero number
smaller in magnitude than the smallest representable positive number (approximately 1. 4E - 39); in
this case, zero is returned and execution continues. Division by zero is considered overflow; the
largest representable positive number is returned.

NOTE: If the current progaGil was called by a CHAIN statement, the name of the current progrtm is
appended to all execution error rnetlages. For example, lOG OF ZERO IN 20 IN TEST .BAK.

8-8

I

Table B-3 (Cont)
Execution Error Messages

Message Explanation

?PAGE LENGTH OUT OF BOUNDS IN LINE nn A PAGE or PAGE ALL statement specified a page
length of less than one line.

?QUOTA EXCEEDED OR BLOCK NO. TOO Nonnally, this indicates that all of the space
LARGE ON OUTPUT DEVICE allowed on the output device has been used; no

more can be output to this device unless some of
the user's files are deleted from it. It may also
mean that the block number is too large for the
output device.

?RETURN BEFORE GOSUB IN LINE nn

?RIGHT$ ARGUMENT OUT OF BOUNDS IN
LINE nn

?SET ARGUMENT OUT OF BOUNDS IN
LINE nn

% SINGULAR MATRIX INVERTED IN LINE nn

?SPACE$ ARGUMENT OUT OF BOUNDS IN
LINE nn

%SQRT OF NEGATIVE NUMBER IN LINE nn

?STRING FORMULA 132 CHARACTERS IN
LINE nn

?STRING RECORD LENGTH 132 OR 1 IN
LINE nn

?SUBROUTINE OR FUNCTION CALLS ITSElf
IN LINE nn

% TAN OF Pl/2 OR COTAN OF ZERO IN
LINE nn

?TOO MANY ELEMENTS -- RETYPE LINE

The user attempted to set the value of the pointer
to zero or to a negative number.

The SPACES function was requested to retum a
stri ng that was less than or equal to zero or gre,....,vu -
than 132 characten.

A string fonnula contains more than 132 characten.

The record I ength for a stri ng random accell fi Ie
was specified as less than one or greater than 132
characten.

FNA is defined in tenns of FNB which is defined
in tenns of FNA, or a similar situation with FUNC
TIONS or GOSUBS.

NOTE: If the current program was called by a CHAIN statement, the name of the current program is
appended to all execution error messages. For example, LOG OF ZERO IN 20 IN TEST. BAK.

Version 178 BASIC 8-9 September 1972

Table 8-3 (Co~t)
Execution Error Messages

Message

O/OUNDERFLON IN EXP IN LINE nn

% UNDERFLOYY IN LINE nn

?VAL ARGUMENT NOT IN CORRECT FORM
IN LINE nn

O/OZERO TO A NEGATIVE PONER IN LINE nn

Explanation

An exponent less than -88.028 has been specified
for the EXP function. An answer of zero is re
turned and the execution continues .• t

t

The stri n9 argument to the VA L function does not
represent a legal number.

tAn OVERFLo\v elTOf meIICI~ mea,. that an attempt hal been made to create a number larger in mag
nitude than the largest number reprwtentable in the computer (approximately 1.7E + 38); when this
occun, the ICII"gIIIt re".....ntable number i, retumed (with the correct lign) and execution continues.
An U NDERFLOYI error me •• means that an attempt has been made to create a nonzero number
Imall., in magnitude than the 1mCI1I reprnentable positive number (approximately 1.4E - 39); in
thil ~, zero is returned and execution continues. Division by zero is considered overflow; the
largest repnttentable positive number is returned.

NOTE: If the current program was called by a CHAIN statement, the name of the current pI'Ogiam is
appended to all execution error meSICIges. For example, LOG OF ZERO IN 20 I N TEST. BAK.

8-10

APPENDIX C

TAPE AND KEY COMMANDS

The TAPE and KEY commands are designed for user Teletypes with attached paper-tape readers; for

example, the LT338 shown in Figure C-1.

UNLOCK

REL

B. SP.

LOCK "ON"

START

STOP

FREE

OFF
LINE 0 LOCAL

Figure C-l LT338 Teletype

C-l

C.1 KEY AND TAPE MODES

KEY mode is produced by typing the KEY command to BASIC. In this mode, the user types input to

BASIC on the keyboard in the normal manner. KEY mode isalso the default mode.

TAPE mode is produced by typing the TAPE command to BASIC. The user initiates this mode whenever

he wonts to input from the paper tape reader while the Teletype is in LINE mode.

C.2 PREPARING AN INPUT TAPE IN LOCAL MODE

The following procedure should be followed for preparing an input tape.

Step Procedure

Turn the Teletype control to LOCAL (see Figure C-l).

2 Feed blank tape into the punch.

3 Depress the LOCK liON II control.

4 Generate the leader tape by doing the following:

a. Depress the SPACE bar several times.
b. Depress the RETURN key once.
c. Depress the LINE FEED key once.

5 Type on the keyboard the commands and statements to be punched on the
tape.

a. At the end of each line, type both the RETURN and LINE
FEED keys.

b. If an incorrect character is typed, do the following:

(1) Depress the BACKSPACE control
(2) Depress the RUBOUT key.
(3) Type the correct character.

c. A TAB is received correctly when typed, even though the
Teletype typewheel moves only one position to the right
when TAB is typed.

d. Any normal input to BASIC can be punched on the tape.
A typica I example is as fol lows:

NEW
TEST4
5 PRI NT ''THIS IS A TEST II
10 END
LIS
RUNNH

6 Generate a trailer tape by doing the following:

a. Depress the SPACE bar several times.
b. Depress the RETURN key once.
c. Depress the LI NE FEED key once.

C-2

Step Procedure

7 Depre!S the UNLOCK control.

S Remove the tape from the punch.

9 Depress the CTRL and T keys simultaneously.

C.3 SAVING AN EXISTING PROGRAM ON TAPE

The following procedure should be performed to sav.e an existing program on tape.

Step Procedure

Tum the Teletype control to LINE.

2 Depress the LOCK "ON" control.

3 Generate a leader tape by doing the following:

a • Depress the SP AC E bar severa I times.
b. Depress the RETURN key once.

4 Tum the Teletype control to LOCAL.

5 Depress the UNLOCK control.

6 Depress the CTRL and T keys simultaneously.

7 Tum the Teletype control to LINE.

S Type the LISTNH command, but do not depress the RETURN key.

~ Depress the LOCK "ON" control.

1 0 Depress the RETU R N key.

11 Wait until the program has been listed and the READY message has been
typed.

NOTE

The tape will contain not only your program but also on
extra line at the end with the READY message on it.
This is not important. Since READY is not a legal com
mand, it wi" simply produce a WHAT? error message
when the tape is input to BASIC, and then it will be
ignored •

12 Generate a trailer tape by doing the following:

a. Depress the SPACE bar several times.
b. Depress the RETU R N key once.

13 Tum the Teletype control to LOCAl.

14 Depress the UNLOCK control.

15 Remove the tape from the punch.

16 Depres.1 the CTRL and T keys simu!taneously.

17 Tum the Teletype control to LINE; now you are back in BASIC.

C-3

I

I

Procedure Step

18 To stop the tape output while the program is being listed, do the following:

a. Depress the UNLOCK control.
b. Depre. the CTRL and T keys simultaneously.
c. Tw i ce deprell the CTR Land C keys s imu Itaneously •

C.4 INPUTTING TO BASIC FROM THE READER

The following procedure should be followed for inputting to BASIC from the reader.

Step Procedure

1 Turn the Teletype control to LINE.

2 With the reader control on STOP (see Figure C-l), position the tape on
the sprocket wheel and cia. the tape retainer cover.

3 Type the command TAPE to BAS IC.

4 Depress the RETURN key.

S When BASIC arwwen READY, set the reader control to START.

6 When the tape has been read in, set the reader control to STOP.

7 Type KEY.

8 DeprelS the R ETUR N key.

9 Depress the LI NE FEED key. (The Key mode is now restored.)

10 To stop the tape input while it is in progress, do the following:

a. Switch the reader control to STOP.
b. Twice deprelS the CTRL and C keys simultaneously.
c. Type KEY.
d. Depress RETURN.
e. Depress LI NE FE ED.

NOTE

Do not type on the keyboard without first
stopping the tape.

C.S LISTING AN INPUT TAPE

An »nput tape is. listed in the following manner:

Step Procedure

1 Turn the Teletype control to LOCAL. {In LOCAL mode the tape is not in-
putted to the computer.) ,

Version 17B BASIC C-4 September 1972

Step Procedure

2 Set the read ... to STOP.'

3 Put the tape in the reader.

4 Set the reader to START. (The contents of the tape is then printed on the
console.)

C-5

A

ABS, 1-6, A-5

Absolute value, 1-6, A-5

Access to BASIC, 4-1

American Standard Code for Information Inter
change (ASCI!), 8-4

Apostrophe,
Format character, 11-9
Remarks indicator, 6-6

Arithmetic operations, 1-5

ASC function, 8-8, A-6

ASCII numbers, 8-4

ATN, 1-6, A-5

B

BAS (library), 4-2a, 9-16

Bugs, 4-7

BY, 2-2

BYE, 4-5, 9-19

C

C format character, 11-9

CATALOG, 9-16

CHAIN, 6-6, A-2

CHANGE, 8-3, A-5

CHR$ function, 8-8, A-6

CLOG, 1-6, A-5

Comma,
In image specification, 11-6
In PRINT statement, 6-1

Concatenati on operator (+), 8-7

Conditional GO TO
see IF-THEN

Constants
see numbers

Control commands, 9-1

COPIES Switch (QUEUE), 9-6

COPY, 9-11

INDEX

C (Cont)

Correcting a BASIC program, 4-3, 4-4

COS, 1-6, A-5

COT, 1-6, A-5

Creating a file, 9-1

tC, 4-4, 9-12

o

DATA, 1-2,1-9,8-2, A-1

Data block, 1-8, 8-3

Data file capability, 10-1, A-3

Debugging, 4-7

Decimal image specification, 11-5

DEF, 5-4, A-6

Defined function, 5-4, A-6

DELETE, 9-7

DET, 7-6, A-5

Define names, 4-2a

Diagnostic messages, B-1

DIM, 3-2, 3-4, 7-2, A-2

DIMENSION, 3-2, 3-4, 7-2, A-2

Dimensioning, 3-2, 3-4, 7-2, 7-3

E

E format character, 11-9

Edit commands, 9-1, 9-7

Edited numeric image specifications, 11-6

END, 1-3,1-12, A-2

Entering a BASIC program, 4-3, 4-5, 9-1

Errors
grammatical, 4-6
logical, 4-6

Executing a BASIC program, 4-4, 9-12

EXP, 1-6, A-5

Extensions (filename), 4-20

INDEX-1

FILE, 10 , A-3

Fil.name, 4-20

FILES, 10-4, A-3

Creating, 9-1
Editing, 9-7
lilting, 9-5
Saving, 9-10
Tranlf.rrlng, 9-10

F

F looting dollar sign, 11-8

FNENO, 5

FOR, 2.,.2, A-1

Format characters, 11-3

G

Gaining Access to BASIC, 4-1

GOODBYE, 4-5, 9-19

GOSUB, 5-5, A-2

GO TO, 1-3, 1-11, A-l

HELP I 4· .. 1, 9-17

Hilbert matrix, 7-7

H

Identity matrix, 7-2, A-3

IF END, 10-18, A-4

IF-THEN, 1-2, 1-11, 8 ... 2, 8-3, A-l

Image specifications, 11 ... 3

Image statement, 11-2

INPUT, 6-4, A-2
data file, 10-7, A-4

Input/output channels, 10-1

Input Tape, C-2
listing an, C-4

INDEX (Cont)

I (Cont)

Inputting from Paper-Tape R~ad.r I C-4

INSTR function, 8-12, A-6

INT, 5-1, A-5

Integer function, 5-1, A-5

Integer image specification, 11-4

IntemJpting execution of a BASIC program,
4

KEY, 9-18, C-1

KEY Mode, C-2

K

L

L format character, 11-9

Leading asterisk, 11-7

Leavi ng the computer, 4-5

LEFTS function, 8-10, A-6

LEN function, 8-7, A-6

LENGTH, 9-18

LET, 1-2, 1-8, A-l

LIMIT Switch (QUEUE), 9-6

Line-numbered file, 10-1, 9-3

Line numbers, 1-2, 1-4, 4-3, 9-7, 9-8

LIST, 9-5

LIST REVERSE, 9-5

Lists, 3-1, 3-4

LN,1-6,A-5

LOC function, 10-11, A-5

LOF function, 10-11, A-5

LOG, 1-6, A-5

LOGE, 1-6, A-5

LOG 10, 1-6, A-5

Loops, 2-1
nested, 2-5

INDEX-2

INDEX (Cant)

L (Cant)

LT33B Teletype, C-1

M

MARG IN, 6-8, 10-15, A-2, A-4

MARGIN ALL, 10-15, A-4

Mathematical Functions, 1-6, A-5

Matrices, 7-1
MAT B = A, 7-5, A-3
MAT C = A + B, 7-5, A-3
MAT C = A - B, 7-5, A-3
MA T C = A * B, 7-5, A-3
MAT C = CON, 7-2, A-3
MAT C = ION, 7-2, A-3
MAT C = INV(A), 7-6, A-3
MAT C = (K) * A, 7-5, A-3
MAT C ::; TRN(A), 7-5, A-3
MAT C ::; ZER, 7-2, A-3
MAT INPUT, 7-4, 8-2, A-3
MAT PRINT, 7-3, 8-2, A-3
MAT READ, 7-1, 8-2, A-3

MID$ function, 8-10, A-6

MONITOR, 4-5, 9-13
Mon i tor commands, 9-14
Monitor mode, 9-13

N

Natural logarithm, 1-6, A-5

N-dimensional arrays, simulation of, 7-7

Nested Loops, 2-4

NEW, 4-1, 9-2

NEXT, 2-2, 2-3, A-I

Nonline-numbered files, 10-1

NONAME, default to, 9-3

NOPAGE, 6-8, 10-16, A-2, A-4

NOPAGE ALL, 10-16, A-2

NOQUOTE, 10-13, A-2, A-4

NOQUOTE ALL, 10-13, A-4

NUM, 7-4, 8-2, A-5

N (Cant)

Numbers, 1-7

Numeric image specifications, 11-4

a

OLD, 4-2, 9-3

ON-GO TO, 1-11, A-2

to, 4-4, 9-6

P

< PA> delimiter, 6;..1

PAGE, 6-8, 10-16, A-2, A-4

PAGE ALL, 10-16, A-4

PRINT, 1-3,1-10,6-1,8-1,8-2,10-9,
10-11, A-l, A-4

PRINT USING, 11-1, A-3, A-4

Printing characters in images, 11-10

Program names, 4-2a

Pure data file, 10-2

Q

QUEUE, 9-6

QUOTE, 10-13, A-2, A-4

QUOTE ALL, 10-13, A-4

R

R f(')rmat character, 11-9

R BASIC, 4-2

Random access files, 10-3

Random numbers, 5-2, A-5

RANDOMIZE, 5-3, A-5

READ, 1-2, 1-9,8-1,8-2,10-7, A-l, A-4

Reading and Printing strings, 8-1

INDEX-3

INDEX (Cant)

R (Cant)

Record size for random aCcelS fi les, 10-3

Relational symbols, 1-8

REM, 6-5, A-2

RENAME, 9-4

REPLACE, 9-10

RESEQUENCE, 9-8

RESTORE, 6-6, 8-3, A-2
data fi Ie, 10-16, A-3

RETURN, 5-5, A-2

Returning to monitor level, 4-5

RIGHTS functions, 8-10, A-6

RND, 5-2, A-5

RUBOUT Key, 4-2a, 4-7

RUN, 1-5, 4-4, 9-12

RUNNH, 1-5, 4.-4, 9-12

SAVE, 4-8, 9-10

SCRATCH, 9-8

S

data file, 10-6, A-3

Semicolons (in PRINT), 6-1

Sequentoal access files, 10-1

SET, 10-11, A-4

SGN, 5-4, A-5

Sign function, 5-4, A-5

SIN, 1-6, A-5

SPACES functions, 8-11, A-6

Spaces, 1-2

SQR, 1-6, A-5

SQRT, 1-6, A-5

Statements, 1-2

STEP, 2··2, 2-4

STOP, 6-5, A-2

String concatenation, 8-7

S (Cant)

String constants, 8-1

String conventions, 8-2

String image specifications, 11-9

String manipulation functions, 8-7, A-6
ASC, 8-8, A-6
CHRS, 8-8, A-.6
INSTR, 8-12, A-6
LEFTS, 8-10, A-6
LEN, 8-7, A-6
MIDS, 8-10, A-6
RIGHTS, 8-10, A-6
SPACES, 8-11, A-6
STRS, 8-9, A-6
VAL, 8-9, A-6

String vectors, 8-1

Strings, 6-3, 8-1

Subroutines, 5-5
nested, 5-6

Subscripts, 3-1, 3-4

SYS (system device), 4-20, 9-16

SYSTEM, 9-1 3

TAB, 6-3

TtJbles, 3-1, 3 ... 4

Tabs, 1-2

TAN, 1-.6, A-5

TAPE, 9-18, C-2

TAPE Mode, C-2

Text data file, 10-2

TIM, 5-4, A-5

T

Trailing minds sign, 11-6

Transferring files, 9-10

U

UNSAVE, 9-11

UNSAVE Switch (QUEUE), 9-6

INDEX··4

v

VAL function I 8-9 , A-6

Variables
alphanumeric, 8-1
numeric, 1-7
5Ubscripted, 3-1

Vectors, 7-1

W

WEAVE, 9-9

WRITE, 10-9, 10-11, A-4

WRITE USING, 11-1, A-5

IN DEX (Cant)

INDEX-5

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-02a
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-04a
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	index-1
	index-2
	index-3
	index-4
	index-5

