

)

ULTRIX-32TM
Programmer's Manual
Sections 2, 3, 5, and 7

Order No. AA-BG54A-TE

digital equipment corporation, merrimack, new hampshire

First printing, May 1984

Copyright © 1984 by Digital Equipment Corporation.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The postage-paid READER'S COMMENTS form on the last page of this docu
ment requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECUS
MASSBUS
PDP
ULTRIX
ULTRIX-11

ULTRIX-32
UNIBUS
VAX
VMS
VT

~DmDD~DTM

UNIX is a trademark of AT&T Bell Laboratories.

Information herein is derived from copyrighted material as permitted under a
license agreement with AT&T Bell Laboratories.

This software and documentation is based in part on the Fourth Berkeley Soft
ware Distribution under license from the Regents of the University of California.
We acknowledge the Electrical Engineering and Computer Sciences Departments
at the Berkeley Campus of the University of California for their role in its
development.

iii

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California. We ack
nowledge the following individuals for their role in its development:

Eric Allman, Ken Arnold, Ozalp Babaoglu, Scott B. Baden, Jerry Berkman, John
Breedlove, Earl T. Cohen, Robert P. Corbett, Mike Curry, Steve Feldman, Tom Fer
rin, John Foderaro, Susan L. Graham, Charles Haley, Robert R. Henry, Andy
Hertzfeld, Mark Horton, S.C. Johnson, William Joy, Howard Katseff, Peter Kessler,
Jim Kleckner, J.E. Kulp, James Larus, Kevin Layer, Mike Lesk, Steve Levine, Jeff
Levinsky, Louise Madrid, M. Kirk McKusick, Colin L. McMaster, Mikey Olson,
Geoffrey Peck, Ed Pelegri-Llopart, Rob Pike, Dave Presotto, John F. Reiser, Asa
Romberger, Bill Rowan, Jeff Schreibman, Eric P. Scott, Greg Shenaut, Eric Shien
brood, Kurt Shoens, Keith Sklower, Helge Skrivervik, Al Stanberger, Ken Thompson,
Michael C. Toy, Richard Tuck, Bill Tuthill, Mike Urban, Edward Wang, David Was
ley, Joseph Weizenbaum, Jon L. White, Glenn Wichman, Niklaus Wirth.

1
/

)

)

v

ULTRIX-32 Documentation Set

1. Organization

The ULTRIX-32 documentation set is organized into four separate binders. The docu
mentation in each binder is so organized to better meet the needs of three separate
audiences in the performance of their respective tasks. The ULTRIX-32 documenta
tion set comprises:

Programmer's Manual Binder 1 - General Users

Section 1 - Commands
Documentation for all user-invoked programs (commands)

Section 6 - Games
Documentation for all user-invoked game programs

Programmer's Manual Binder 2 - Programmers

Section 2 - System Calls
Documentation for the system calls (entries into the kernel)

Section 3 - Subroutines
Documentation for the library subroutines

Section 5 - File Formats and Conventions
Documentation for the output and system file structures

Section 7 - Macro Packages and Language Conventions
Documentation for miscellaneous information

Programmer's Manual Binder 3A ... System Managers

Installation Guide
Documentation for installing an UL TRIX -32 system

Building an ULTRIX-32 System with the Config Program
Documentation for configuring .an executable kernel image

4.2BSD Line Printer Spooler
Documentation for installing the line printer spooling system

Sendmail Installation and Operations Guide
Documentation for installing and operating the sendmail system

VI

UUCP Installation and Administration
Documentation for installing and administering the uucp system

Programmer's Manual Binder 3B - System Managers

Guidelines for System Management
Documentation for maintaining an installed UL TRIX-32 system

Section 4 - Special Files
Documentation for the special files (I/O devices and drivers)

Section 8 - Maintenance Commands
Documentation for the system maintenance programs (commands)

2. Man(l) Format

Each numbered section in Binder 1, Binder 2, and Binder 3B contains an introduction
and separate entries that correspond to those created by the man (1) command. Each
entry, following the order in their respective binders, describes a user command or
game; a system call, library subroutine, file structure, or macro package; and a special
file or maintenance command.

Regardless of their respective binder, all entries have a single, consistent format.
First, the header provides information that quickly identifies the entry: name and sec
tion number (enclosed in parentheses). For example, AARDVARK(6) identifies the
aardvark (6) game (Binder 1). Then, the listed subsections provide specific informa
tion about the entry. Although each entry lists only those subsections that are appli
cable, seven main subsections may be used. Finally, the footer provides paging infor
mation: section and consecutive page number. For example, the footers for section 6
(Binder 1) are 6-1 through 6-35.

The seven main subsections are:

NAME
This subsection lists the exact name and a short description of its function.

SYNTAX
This subsection lists the complete syntax. Boldface indicates literals. A
minus sign (-) indicates command options. Ellipses (...) indicate that the
preceding argument may be repeated. Square brackets [] indicate optional
arguments.

DESCRIPTION
This subsection provides a detailed description of function and background.

FILES
This subsection lists those related files that either are part of or are used
during execution.

)

'\
j

vii

DIAGNOSTICS
This subsection lists those diagnostic messages that may be produced.
Since most self-explanatory messages are not listed, this subsection is not
comprehensive.

RESTRICTIONS
This subsection lists those restrictions that are known to apply.

SEE ALSO
This subsection lists the names of the related entries and other documenta
tion.

3. Conventions

The following conventions apply specifically to these documents:

bold

Installation Guide (Binder 3A)
Building an ULTRIX-32 System with the Config Program (Binder 3A)
UUCP Installation and Administration (Binder 3A)
Guidelines for System Management (Binder 3B)

Literals are ptinted in bold type. Literals frequently indicate a specific com
mand option and should be entered exactly as printed.

case The ULTRIX-32 system differentiates between uppercase and lowercase.
Therefore, enter uppercase only where specifically indicated by an example or
the command syntax.

color Examples are printed in color. Examples represent command sequences or
information that the user enters from the terminal.

<CTRL/X> Terminal control characters are represented by <CTRL/X>, where X is a single
character. To generate a terminal control characters, hold down the CTRL
key while entering the character.

<DELETE> The DELETE key or ERASE character is represented by <DELETE >.

italics Substitutable parameters are printed in italics.

<RETURN> The RETURN key is printed as <RETURN>. To invoke a command, enter the
command sequence and depress the RETURN key.

viii

The superuser prompt (normally a #) is displayed at the console when the
system is in single-user mode or at a terminal when the superuser is logged in.

»> The console subsystem prompt is represented by three right angle brackets,
»>. For further information about console commands, read the VAX
Hardware Manual.

)

INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNTAX
#include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible return value. This is
almost always -1; the individual descriptions specify the details.

As with normal arguments, all return codes and values from functions are of type integer
unless otherwise noted. An error number is also made available in the external variable
errno, which is not cleared on successful calls. Thus errno should be tested only after an
error has occurred.

The following is a complete list of the errors and their names as given in <errno.h>.

o Error 0
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden
except to its owner or super-user. It is also returned for attempts by ordinary
users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but
doesn't, or when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to kill and ptrace does not exist, or is
already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to
catch, occurred during a system call. If execution is resumed after processing the
signal, it will appear as if the interrupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error occurred during a read or write. This error may in some
cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits
of the device. I t may also occur when, for example, an illegal tape drive unit
number is selected or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to execve.

2-1

INTRO(2)

2-2

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permis
sions, does not start with a valid magic number, see a.out(5).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is
made to a file which is open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

11 EAGAIN No more processes
In a fork, the system's process table is full or the user is not allowed to create any
more processes.

12 ENOMEM Not enough core
During an execve or break, a program asks for more core or swap space than the
system is able to supply. A lack of swap space is normally a temporary condition,
however a lack of core is not a temporary condition; the maximum size of the text,
data, and stack segments is a system parameter.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of
a system call.

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made
to dismount a device on which there is an active file directory. (open file, current
directory, mounted-on file, active text segment).

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

18 EXDEV Cross-device link
A hard link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path
name or as an argument to chdir.

INTRO(2)

v 21 EISDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unk
nown signal in signal, reading or writing a file for which seek has generated a
negative pointer. Also set by math functions, see intro (3).

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens can be
accepted.

24 EMFILE Too many open files
Customary configuration limit is 20 per process.

25 ENOTTY Not a typewriter
The file mentioned in an ioetl is not a terminal or one of the other devices to
which these calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writ
ing (or reading!). Also an attempt to open for writing a pure-procedure program
that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum (about 109 bytes).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Illegal seek
An lseek was issued to a pipe. This error may also be issued for other non
seekable devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

32 EPIPE Broken pipe
A write on a pipe or socket for which there is no process to read the data. This
condition normally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the
function.

34 ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within
machine precision.

2-3

INTRO(2)

2-4

35 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on a object in
non-blocking mode (see ioctl (2».

36 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a connect (2» was
attempted on a non-blocking object (see ioctl (2».

37 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had an opera
tion in progress.

38 ENOTSOCK Socket operation on non-socket
Self-explanatory.

39 EDEST ADDRREQ Destination address required
A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket type
requested. For example you cannot use the ARPA Internet UDP protocol with
type SOCK.-STREAM.

42 ENOPROrrOOPT Bad protocol option
A bad option was specified in a getsockopt(2) or setsockopt(2) call.

43 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no
implementation for it exists.

45 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation
for it exists.

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn't necessarily expect to be able to use PUP Internet addresses with ARPA
Internet protocols.

48, EADDRINUSE Address already in use
. Only one usage of each address is normally permitted.

INTRO(2)

'\
\

J 49 EADDRNOTA V AIL Can't assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

50 ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

54 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer
executing a shutdown (2) call.

55 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufficient buffer space.

56 EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendto or

) sendmsg request on a connected socket specified a destination other than the con-
I nected party.

\
)

57 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not con
nected.

58 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut
down with a previous shutdown(2) call.

59 unused

60 ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond
after a period of time. (The timeout period is dependent on the communication
protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This
usually results from trying to connect to a service which is inactive on the foreign
host.

62 ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

2-5

INTRO(2)

63 ENAMETOOLONG File name too long
A component of a path name exceeded 255 characters, or an entire path name
exceeded 1023 characters.

64 ENOTEMPTY Directory not empty
A directory with entries other than "." and " .. " was supplied to a remove directory
or rename call.

DEFINITIONS
Process ID

2-6

Each active process in the system is uniquely identified by a positive integer called a
process ID. The range of this ID is from 0 to {PROC_MAX}.

Parent process ID
A new process is created by a currently active process; see fork(2). The parent pro
cess ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive
integer called the process group ID. This is the process ID of the group leader. This
grouping permits the signalling of related processes (see killpg(2» and the job control
mechanisms of csh(l).

Tty Group ID
Each active process can be a member of a terminal group that is identified by a posi
tive integer called the tty group ID. This grouping is used to arbitrate between multi
ple jobs contending for the same terminal; see csh(l), and tty(4).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is dis
tinguished from others and used in implementing accounting facilities. The positive
integer corresponding to this distinguished group is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the
equivalent attributes of the process which created it.

Effective User Id, Effective Group Id, and Access Groups
Access to system resources is governed by three values: the effective user ID, the
effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process's real user ID
and real group ID respectively. Either may be modified through execution of a set
user-ID or set-group-ID file (possibly by one its ancestors); see execve(2).

The group access list is an additional set of group ID's used only in determining
resource accessibility. Access checks are performed as described below in "File Access
Permissions" .

Super-user

(

INTRO(2)

A process is recognized as a super-user process and is granted special privileges if its
effective user ID is o.

Special Processes
The processes with a process ID's of 0, 1, and 2 are special. Process 0 is the
scheduler. Process 1 is the initialization process init, and is the ancestor of every
other process in the system. It is used to control the process structure. Process 2 is
the paging daemon.

Descriptor
An integer assigned by the system when a file is referenced by open(2), dup(2), or
pipe (2) or a socket is referenced by socket(2) or socketpair(2) which uniquely
identifies an access path to that file or socket from a given process or any of its chil
dren.

File Name
Names consisting of up to {FILENAME_MAX} characters may be used to name an
ordinary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding 0
(null) and the ASCII code for / (slash). (The parity bit, bit 8, must be 0.)

Note that it is generally unwise to use *, ?, [or] as part of file names because of the
special meaning attached to these characters by the shell.

Path Name
\ A path name is a null-terminated character string starting with an optional slash (/),
) followed by zero or more directory names separated by slashes, optionally followed by

a file name. The total length of a path name must be less than {PATHNAME.MAX}
characters.

If a path name begins with a slash, the path search begins at the root directory. Oth
erwise, the search begins from the current working directory. A slash by itself names
the root directory. A null pathname refers to the current directory.

Directory
A directory is a special type of file which contains entries which are references to
other files. Directory entries are called links. By convention, a directory contains at
least two links, . and .. , referred to as dot and dot-dot respectively. Dot refers to the
directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current work
ing directory for the purpose of resolving path name searches. A process's root direc
tory need not be the root directory of the root file system.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are
used in determining whether a process may perform a requested operation on the file
(such as opening a file for writing). Access permissions are established at the time a

2-7

INTRO(2)

file is created. They may be changed at some later time through the chmod(2) call.

File access is broken down according to whether a file may be: read, written, or exe
cuted. Directory files use the execute permission to control if the directory may be
searched.

File access permissions are interpreted by the system as they apply to three different
classes of users: the owner of the file, those users in the file's group, anyone else.
Every file has an independent set of access permissions for each of these classes.
When an access check is made, the system decides if permission should be granted by
checking the access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:

The process's effective user ID is that of the super-user.

The process's effective user ID matches the user ID of the owner of the file and the
owner permissions allow the access.

The process's effective user ID does not match the user ID of the owner of the file,
and either the process's effective group ID matches the group ID of the file, or the
group ID of the file is in the process's group access list, and the group permissions
allow the access.

Neither the effective user ID nor effective group ID and group access list of the pro
cess match the corresponding user ID and group ID of the file, but the permissions for
"other users" allow access.

Otherwise, permission is denied.

Sockets and Address Families

A socket is an endpoint for communication between processes. Each socket. has
queues for sending and receiving data.

Sockets are typed according to their communications properties. These properties
include whether messages sent and received at a socket require the name of the
partner, whether communication is reliable, the format used in naming message reci
pients, etc.

Each instance of the system supports some collection of socket types; consult
socket(2) for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications proto
cols. Each protocol set supports addresses of a certain format. An Address Family is
the set of addresses for a specific group of protocols. Each socket has an address
chosen from the address family in which the socket was created.

SEE ALSO
intro(3), perror(3)

2-8

\
) NAME

accept - accept a connection on a socket

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;
struct sockaddr *addr;
int *addrlen;

DESCRIPTION

ACCEPT(2)

The argument s is a socket which has been created with socket (2), bound to an address
with bind(2), and is listening for connections after a listen (2). Accept extracts the first
connection on the queue of pending connections, creates a new socket with the same pro
perties of s and allocates a new file descriptor, ns, for the socket. If no pending connections
are present on the queue, and the socket is not marked as non-blocking, accept blocks the
caller until a connection is present. If the socket is marked non-blocking and no pending
connections are present on the queue, accept returns an error as described below. The
accepted socket, ns, may not be used to accept more connections. The original socket s
remains open.

The argument addr is a result parameter which is filled in with the address of the connect
ing entity, as known to the communications layer. The exact format of the addr parameter
is determined by the domain in which the <;ommunication is occurring. The addrlen is a
value-result parameter; it should initially contain the amount of space pointed to by addr;
on return it will contain the actual length (in bytes) of the address returned. This call is
used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for
read.

The call returns -Ion error. If it succeeds it returns a non-negative integer which is a
descriptor for the accepted socket.

DIAGNOSTICS
The accept will fail if:

[EBADF]

[ENOTSOCK]

[EOPNOTSUPP]

[EFAULT]

The descriptor is invalid.

The descriptor references a file, not a socket.

The referenced socket is not of type SOCK_STREAM.

The addr parameter is not in a writable part of the user address
space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to
be accepted.

2-9

ACCEPT(2)

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2)

STATUS
ACCEPT (2) currently is not supported by Digital Equipment Corporation.

2-10

ACCESS(2)

'\
;' NAME

access - determine accessibility of file

SYNTAX
#include <sys/file.h>

#define ILOK 4
#define W-OK 2
#define X_OK 1
#define F_OK 0

1* test for read permission *1
1* test for write permission *1
1* test for execute (search) permission *1
1* test for .presence of file *1

accessible = access(path, mode)
int accessible;
char *path;
int mode;

DESCRIPTION
Access checks the given file path for accessibility according to mode, which is an inclusive
or of the bits R.OK, W_OK and }LOK. Specifying mode as F_OK (i.e. 0) tests whether the
directories leading to the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID) are used in verify
ing permission, so this call is useful to set-DID programs.

Notice that only access bits are checked. A directory may be indicated as writable by
access, but an attempt to open it for writing will fail (although files may be created there);
a file may look executable, but execve will fail unless it is in proper format.

If path cannot be found or if any of the desired access modes would not be granted, then a
-1 value is returned; otherwise a 0 value is returned.

DIAGNOSTICS
Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The argument path name was too long.

[ENOENT] Read, write, or execute (search) permission is requested for a null path
name or the named file does not exist.

[EPERM] The argument contains a byte with the high-order bit set.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is
being executed.

[EACCES] Permission bits of the file mode do not permit the requested access; or
search permission is denied on a component of the path prefix. The owner
of a file has permission checked with respect to the "owner" read, write,
and execute mode bits, members of the file's group other than the owner

2-11

ACCESS(2)

[EFAULT]

have permission checked with respect to the "group" mode bits, and all
others have permissions checked with respect to the "other" mode bits.

Path points outside the process's allocated address space.

SEE ALSO
chmod(2), stat(2)

STATUS
ACCESS (2) currently is not supported by Digital Equipment Corporation.

2-12

l
)

~
)

)

NAME
acct - turn accounting on or off

SYNTAX
acct(ftle)
char *ftle;

DESCRIPTION

ACCT(2)

The system is prepared to write a record in an accounting file for each process as it ter
minates. This call, with a null-terminated string naming an existing file as argument, turns
on accounting; records for each terminating process are appended to file. An argument of 0
causes accounting to be turned off.

The accounting file format is given in acct (5).

This call is permitted only to the super-user. Accounting is automatically disabled when
the file system the accounting file resides on runs out of space; it is enabled when space
once again becomes available. On error -1 is returned. The file must exist and the call
may be exercised only by the super-user. It is erroneous to try to turn on accounting when
it is already on.

DIAGNOSTICS
Acct will fail if one of the following is true:

[EPERM]

[EPERM]

[ENOTDIR]

[ENOENT]

[EISDIR]

[EROFS]

[EFAULT]

[ELOOP]

[EACCES]

SEE ALSO
acct(5), sa(8)

RESTRICTIONS

The caller is not the super-user.

The pathname contains a character with the high-order bit set.

A component of the path prefix is not a directory.

The named file does not exist.

The named file is a directory.

The named file resides on a read -only file system.

File points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

The file is a character or block special file.

No accounting is produced for programs running when a crash occurs. In particular nonter
minating programs are never accounted for.

STATUS
ACCT (2) currently is not supported by Digital Equipment Corporation.

2-13

BIND(2)

NAME
bind - bind a name to a socket

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

bind(s, name, namelen)
int S;
struct sockaddr *name;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it
exists in a name space (address family) but has no name assigned. Bind requests the name,
be assigned to the socket.

Binding a name in the UNIX domain creates a socket in the file system which must be
deleted by the caller when it is no longer needed (using unlink(2)). The file created is a
side-effect of the current implementation, and will not be created in future versions of the
UNIX ipc domain.

The rules used in name binding vary between communication domains. Consult the
manual entries in section 4 for detailed information.

If the bind is successful, a 0 value is returned. A return value of -1 indicates an error,
which is further specified in the global errno.

DIAGNOSTICS
The bind call will fail if:

[EBADF]

[ENOTSOCK]

S is not a valid descriptor.

S is not a socket.

[EADDRNOTAVAIL]

[EADDRINUSE]

[EINVAL]

[EACCESS]

The specified address is not available from the local machine.

The specified address is already in use.

The socket is already bound to an address.

The requested address is protected, and the current user has inade
quate permission to access it.

[EFAULT]

SEE ALSO

The name parameter is not in a valid part of the user address space.

connect(2), listen(2), socket(2), getsockname(2)

STATUS
BIND (2) currently is not supported by Digital Equipment Corporation.

2-14

BRK(2)

\
.;/ NAME

~\
)

brk, sbrk - change data segment size

SYNTAX
caddr_t brk(addr)
caddl:-t addr;

caddr_t sbrk(incr)
int incr;

DESCRIPTION
Brk sets the system's idea of the lowest data segment location not used by the program
(called the break) to addr (rounded up to the next multiple of the system's page size).
Locations greater than addr and below the stack pointer are not in the address space and
will thus cause a memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program's data space and a
pointer to the start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined
by the program and data storage areas. Ordinarily, therefore, only programs with growing
data areas need to use sbrk.

The getrlimit (2) system call may be used to determine the maximum permissible size of the
data segment; it will not be possible to set the break beyond the rlim_max value returned
from a call to getrlimit, e.g. "etext + rlp=>rlinunax." (See end(3) for the definition of
etext.)

Zero is returned if the brk could be set; -1 if the program requests more memory than the
system limit. Sbrk returns -1 if the break could not be set.

DIAGNOSTICS
Sbrk will fail and no additional memory will be allocated if one of the following are true:

[ENOMEM]

[ENOMEM]

[ENOMEM]

SEE ALSO

The limit, as set by setrlimit(2), was exceeded.

The maximum possible size of a data segment (compiled into the system)
was exceeded.

Insufficient space existed in the swap area to support the expansion.

execve(2), getrlimit(2), malloc(3), end(3)

RESTRICTIONS
Setting the break may fail due to a temporary lack of swap space. It is not possible to dis
tinguish this from a failure caused by exceeding the maximum size of the data segment
without consulting getrlimit.

STATUS
BRK (2) currently is not supported by Digital Equipment Corporation.

2-15

CHDIR(2)

NAME
chdir - change current working directory

SYNTAX
chdir(path)
char *path;

DESCRIPTION
Path is the pathname of a directory. Chdir causes this directory to become the current
working directory, the starting point for path names not beginning with "I".
In order for a directory to become the current directory, a process must have execute
(search) access to the directory.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
Chdir will fail and the current working directory will be unchanged if one or more of the
following are true:

[ENOTDIR]

[ENOENT]

[ENOENT]

[EPERM]

[EACCES]

[EFAULT]

[ELOOP]

SEE ALSO
chroot(2)

STATUS

A component of the pathname is not a directory.

The named directory does not exist.

The argument path name was too long.

The argument contains a byte with the high-order bit set.

Search permission is denied for any component of the path name.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

CHDIR (2) currently is not supported by Digital Equipment Corporation.

2-16

NAME
chmod - change mode of file

SYNTAX
chmod(path, mode)
char *path;
int mode;

fchmod(fd, mode)
int fd, mode;

DESCRIPTION

CHMOD(2)

The file whose name is given by path or referenced by the descriptor fd has its mode
changed to mode. Modes are constructed by or'ing together some combination of the fol
lowing:

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (this is the default) then mode 1000 prevents the
system from abandoning the swap-space image of the program-text portion of the file when
its last user terminates. Ability to set this bit is restricted to the super-user.

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-.id and set-group-id bits. This
makes the system somewhat more secure by protecting set-user-id (set-group-id) files from
remaining set-user-id (set-group-id) if they are modified, at the expense of a degree of com
patibility.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
Chmod will fail and the file mode will be unchanged if:

[EPERM]

[ENOTDIR]

[ENOENT]

[ENOENT]

[EACCES]

[EPERM]

The argument contains a byte with the high-order bit set.

A component of the path prefix is not a directory.

The pathname was too long.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective

2-17

CHMOD(2)

user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

Fchmod will fail if:

[EBADF]

[EINVAL]

[EROFS]

SEE ALSO

The descriptor is not- valid.

Fd refers to a socket, not to a file.

The file resides on a read -only file system.

open(2), chown(2)

STATUS
CHMOD (2) currently is not supported by Digital Equipment Corporation.

2-18

\

NAME
chown - change owner and group of a file

SYNTAX
chown(path, owner, group)
char *path;
int owner, group;

fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION

CHOWN(2)

The file which is named by path or referenced by fd has its owner and group changed as
specified. Only the super-user may execute this call, because if users were able to give files
away, they could defeat the file-space accounting procedures.

On some systems, chown clears the set-user-id and set-group-id bits on the file to prevent
accidental creation of set-user-id and set-group-id programs owned by the super-user.

Fchown is particularly useful when used in conjunction with the file locking primitives (see
{iock(2».

Only one of the owner and group id's may be set by specifying the other as -1.

Zero is returned if the operation was successful; -1 is returned if an error occurs, with a
more specific error code being placed in the global variable errno.

DIAGNOSTICS
Chown will fail and the file will be unchanged if:

[EINVAL]

[ENOTDIR]

[ENOENT]

[EPERM]

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

The argument path does not refer to a file.

A component of the path prefix is not a directory.

The argument pathname is too long.

The argument contains a byte with the high-order bit set.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

Fchown will fail if:

[EBADF]

[EINVAL]

Fd does not refer to a valid descriptor.

Fd refers to a socket, not a file.

2-19

CHOWN(2)

SEE ALSO
chmod(2), flock(2)

STATUS
CROWN (2) currently is not supported by Digital Equipment Corporation.

2-20

)
NAME

chroot - change root directory

SYNTAX
chroot(dirname)
char *dirname;

DESCRIPTION

CHROOT(2)

Dirname is the address of the pathname of a directory, terminated by a null byte. Chroot
causes this directory to become the root directory, the starting point for path names begin
ning with "/".

In order for a directory to become the root directory a process must have execute (search)
access to the directory.

This call is restricted to the super-user.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate an error.

DIAGNOSTICS
Chroot will fail and the root directory will be unchanged if one or more of the following are
true:

[ENOTDIR]

[ENOENT]

[EPERM]

[ENOENT]

[EACCES]

[EFAULT]

[ELOOP]

SEE ALSO
chdir(2)

STATUS

A component of the path name is not a directory.

The pathname was too long.

The argument contains a byte with the high-order bit set.

The named directory does not exist.

Search permission is denied for any component of the path name.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

CRROOT (2) currently is not supported by Digital Equipment Corporation.

2-21

CLOSE(2)

NAME
close - delete a descriptor

SYNTAX
close(d)
int d;

DESCRIPTION
The close call deletes a descriptor from the per-process object reference table. If this is the
last reference to the underlying object, then it will be deactivated. For example, on the last
close of a file the current seek pointer associated with the file is lost; on the last close of a
socket (2) associated naming information and queued data are discarded; on the last close of
a file holding an advisory lock the lock is released; see further flock (2).

A close of all of a process's descriptors is automatic on exit, but since there is a limit on the
number of active descriptors per process, close is necessary for programs which deal with
many descriptors.

When a process forks (see fork(2)), all descriptors for the new child process reference the
same objects as they did in the parent before the fork. If a new process is then to be run
using execve (2), the process would normally inherit these descriptors. Most of the descrip
tors can be rearranged with dup2(2) or deleted with close before the execve is attempted,
but if some of these descriptors will still be needed if the execve fails, it is necessary to
arrange for them to be closed if the execve succeeds. For this reason, the call "fcntl(d,
F_SETFD, 1)" is provided which arranges that a descriptor will be closed after a successful
execve; the call "fcntl(d, F2-SETFD, 0)" restores the default, which is to not close the
descriptor.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global integer variable errno is set to indicate the error.

DIAGNOSTICS
Close will fail if:

[EBADF]

SEE ALSO

iJ is not an active descriptor.

accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fcntl(2)

STATUS
CLOSE (2) currently is not supported by Digital Equipment Corporation.

2-22

NAME
connect - initiate a connection on a socket

SYNTAX
#include <Sys/types.h>
#include <sys/socket.h>

connect(s, name, namelen)
int S;
struct sockaddr *name;
int namelen;

DESCRIPTION

CONNECT(2)

The parameter s is a socket. If it is of type SOCK DGRAM, then this call permanently
specifies the peer to which datagrams are to be sent; if it is of type SOCK STREAM, then
this call attempts to make a connection to another socket. The other socket is specified by
name which is an address in the communications space of the socket. Each communica
tions space interprets the name parameter in its own way.

If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned, and
a more specific error code is stored in errno.

DIAGNOSTICS
The call fails if:

[EBADF]

[ENOTSOCK]

S is not a valid descriptor.

S is a descriptor for a file, not a socket.

[EADDRNOTAVAIL]
The specified address is not available on this machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this
socket.

The socket is already connected. [EISCONN]

[ETIMEDOUT] Connection establishment timed out without establishing a connec
tion.

[ECONNREFUSED]
The attempt to connect was forcefully rejected.

[ENETUNREACH] The network isn't reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] The name parameter specifies an area outside the process address
space.

[EWOULDBLOCK] The socket is non-blocking and the and the connection cannot be
completed immediately. It is possible to select{2} the socket while it
is connecting by selecting it for writing.

2-23

CONNECT(2)

SEE ALSO
(

accept(2), select(2), socket(2), getsockname(2)

STATUS
CONNECT (2) currently is not supported by Digital Equipment Corporation.

2-24

CREAT(2)

NAME
creat - create a new file

SYNTAX
creat(name, mode)
char *name;

DESCRIPTION
This interface is obsoleted by open(2).

Creat creates a new file or prepares to rewrite an existing file called name, given as the
address of a null-terminated string. If the file did not exist, it is given mode mode, as
modified by the process's mode mask (see umask(2)). Also see chmod(2) for the construc
tion of the mode argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature has been used in the
past by programs to construct a simple exclusive locking mechanism. It is replaced by the
O_EXCL open mode, or flock(2) facilitity.

The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative
descriptor which only permits writing.

DIAGNOSTICS
Creat will fail and the file will not be created or truncated if one of the following occur:

[EPERM] The argument contains a byte with the high-order bit set.

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[EISDIR]

[EMFILE]

[EROFS]

[ENXIO]

[ETXTBSY]

[EFAULT]

[ELOOP]

A component of the path prefix is not a directory.

A needed directory does not have search permission.

The file does not exist and the directory in which it is to be created is not
writable.

The file exists, but it is unwritable.

The file is a directory.

There are already too many files open.

The named file resides on a read -only file system.

The file is a character special or block special file, and the associated device
does not exist.

The file is a pure procedure (shared text) file that is being executed.

Name points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

[EOPNOTSUPP]
The file was a socket (not currently implemented).

2-25

CREAT(2)

SEE ALSO
open(2), write(2), close(2), chmod(2), umask(2)

STATUS
CREAT (2) currently is not supported by Digital Equipment Corporation.

2-26

NAME
dup, dup2 - duplicate a descriptor

SYNTAX
newd = dup(oldd)
int newd, oldd;

dup2(oldd, newd)
int oldd, newd;

DESCRIPTION

DUP(2)

Dup duplicates an existing object descriptor. The argument oldd is a small non-negative
integer index in the per-process descriptor table. The value must be less than the size of
the table, which is returned by getdtablesize(2). The new descriptor newd returned by the
call is the lowest numbered descriptor which is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using oldd
and newd in any way. Thus if newd and oldd are duplicate references to an open file,
read(2), write(2) and lseek(2) calls all move a single pointer into the file. If a separate
pointer into the file is desired, a different object reference to the file must be obtained by
issuing an additional open (2) call.

In the second form of the call, the value of newd desired is specified. If this descriptor is
already in use, the descriptor is first deallocated as if a close (2) call had been done first.

The value -1 is returned if an error occurs in either call. The external variable errno indi
cates the cause of the error.

DIAGNOSTICS
Dup and dup2 fail if:

[EBADF]

[EMFILE]

SEE ALSO

Oldd or newd is not a valid active descriptor

Too many descriptors are active.

accept(2), open(2), close(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

STATUS
DUP (2) currently is not supported by Digital Equipment Corporation.

2-27

EXECVE(2)

NAME
execve - execute a file

SYNTAX
execve(name, argv, envp)
char *name, *argv[], *envp[];

DESCRIPTION
Execve transforms the calling process into a new process. The new process is constructed
from an ordinary file called the new process file. This file is either an executable object
file, or a file of data for an interpreter. An executable object file consists of an identifying
header, followed by pages of data representing the initial program (text) and initialized
data pages. Additional pages may be specified by the header to be initialize with zero data.
See a.out(5).

An interpreter file begins with a line of the form "#! interpreter"; When an interpreter file
is execve'd, the system execve's the specified interpreter, giving it the name of the origi
nally exec'd file as an argument, shifting over the rest of the original arguments.

There can be no return from a successful execve because the calling core image is lost. This
is the mechanism whereby different process images become active.

The argument argv is an array of character pointers to null-terminated character strings.
These strings constitute the argument list to be made available to the new process. By con
vention, at least one argument must be present in this array, and the first element of this
array should be the name of the executed program (Le. the last component of name).

The argument envp is also an array of character pointers to null-terminated strings. These
strings pass information to the new process which are not directly arguments to the com
mand, see environ(7).

Descriptors open in the calling process remain open in the new process, except for those for
which the close-on-exec flag is set; see close (2). Descriptors which remain open are
unaffected by execve.

2-28

Ignored signals remain ignored across an execve, but signals that are caught are reset to
their default values. The signal stack is reset to be undefined; see sigvec (2) for more infor
mation.

Each process bas real user and group IDs and a effective user and group IDs. The real ID
identifies the person using the system; the effective ID determines his access privileges.
Execve changes the effective user and group ID to the owner of the executed file if the file
has the "set-user-ID" or "set-group-ID" modes. The real user ID is not affected.

The new process also inherits the following attributes from the calling process:

process ID see getpid (2)
parent process ID see getppid (2)
pro~ess group ID see getpgrp (2)
access groups seegetgroups (2)
working directory see chdir (2)

EXECVE(2)

~,

I

,; root directory see ehroot (2)

'I
)

)

control terminal see tty (4)
resource usages see getrusage (2)
interval timers see getitimer (2)
resource limits see getrlimit (2)
file mode mask see umask (2)
signal mask see sigvee (2)

When the executed program begins, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where arge is the number of elements in argu (the "arg count") and argv is the array of
character pointers to the arguments themselves.

Envp is a pointer to an array of strings that constitute the environment of the process. A
pointer to this array is also stored in the global variable "environ". Each string consists of
a name, an "=", and a null-terminated value. The array of pointers is terminated by a null
pointer. The shell sh(1) passes an environment entry for each global shell variable defined
when the program is called. See environ (7) for some conventionally used names.

If exeeve returns to the calling process an error has occurred; the return value will be -1
and the global variable errno will contain an error code.

DIAGNOSTICS
Execve will fail and return to the calling process if one or more of the following are true:

[ENOENT]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

[EFAULT]

One or more components of the new process file's path name do not exist.

A component of the new process file is not a directory.

Search permission is denied for a directory listed in the new process file's
path prefix.

The new process file is not an ordinary file.

The new process file mode denies execute permission.

The new process file has the appropriate access permission, but has an
invalid magic number in its header.

The new process file is a pure procedure (shared text) file that is currently
open for writing or reading by some process.

The new process requires more virtual memory than is allowed by the
imposed maximum (getrlimit (2».

The number of bytes in the new process's argument list is larger than the
system-imposed limit of {ARG_MAX} bytes.

The new process file is not as long as indicated by the size values in its
header.

2-29

EXECVE(2)

[EFAULT]

RESTRICTIONS

Path, argv, or envp point to an illegal address.

If a program is setuid to a non-super-user, but is executed when the real uid is "root", then
the program has the powers of a super-user as well.

SEE ALSO
exit(2), fork(2), execl(3), environ(7)

STATUS
EXECVE (2) currently is not supported by Digital Equipment Corporation.

2-30

\
J

/ NAME
_exit - terminate a process

SYNTAX
exit(status)

int status;

DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed.

EXIT(2)

If the parent process of the calling process is executing a wait or is interested in the
SIGCHLD signal, then it is notified of the calling process's termination and the low-order
eight bits of status are made available to it; see wait(2).

The parent process ID of all of the calling process's existing child processes are also set to
1. This means that the initialization process (see intro (2» inherits each of these processes
as well.

Most C programs call the library routine exit(3) which performs cleanup actions in the
standard i/o library before calling _exit.

SEE ALSO
fork(2), wait(2), exit(3)

STATUS
EXIT (2) currently is not supported by Digital Equipment Corporation.

2-31

FCNTL(2)

NAME
fcntl - file control

SYNTAX
#include <fcntl.h>

res = fcntl(fd, cmd, arg)
int res;
int fd, cmd, arg;

DESCRIPTION

2-32

Fcntl provides for control over descriptors. The argument fd is a descriptor to be operated
on by cmd as follows:

Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to argo

Same object references as the original descriptor.

New descriptor shares the same file pointer if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (Le., both file descriptors share the same file status
flags).

The close-on-exec flag associated with the new file descriptor is set to
remain open across execv (2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor fd. If the
low-order bit is 0, the file will remain open across exec, otherwise the file
will be closed upon execution of exec.

F...,SETFD Set the close-on-exec flag associated with fd to the low order bit of arg (0
or 1 as above).

F_GETFL Get descriptor status flags, as described below.

F_SETFL Set descriptor status flags.

F_GETOWN Get the process ID or process group currently receIvmg SIGIO and
SIGURG signals; process groups are returned as negative values.

F_SETOWN Set the process or process group to receive SIGIO and SIGURG signals;
process groups are specified by supplying arg as negative, otherwise arg is
interpreted as a process ID.

The flags for the F_G ETFL and E-SETFL flags are as follows:

FNDELAY Non-blocking I/O; if no data is available to a read call, or if a write opera
tion would block, the call returns -1 with the error EWOULDBLOCK.

FAPPEND Force each write to append at the end of file; corresponds to the
O_APPEND flag of open(2).

FCNTL(2)

FASYNC Enable the SIGIO signal to be sent to the process group when I/O is possi
ble, e.g. upon availability of data to be read.

Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD
F_GETFD
F_GETFL
F_GETOWN
other

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value of flags.
Value of file descriptor owner.
Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

DIAGNOSTICS
Fcntl will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] Cmd is FJ)UPFD and the maximum allowed number of file descriptors are
currently open.

[EINVAL]

SEE ALSO

Cmd is F_DUPFD and arg is negative or greater the maximum allowable
number (see getdtablesize(2».

close(2), execve(2), getdtablesize(2), open(2), sigvec(2)

RESTRICTIONS
The asynchronous I/O facilities of FNDELA Y and F ASYNC are currently available only for
tty operations. No SIGIO signal is sent upon draining of output sufficiently for non
blocking writes to occur.

STATUS
FCNTL (2) currently is not supported by Digital Equipment Corporation.

2-33

FLOCK(2)

NAME
flock - apply or remove an advisory lock on an open file

SYNTAX
#include <sys/file.h>

#define LOCI(.SH 1
#define LOCK_EX 2
#define LOCK_NB 4
#define LOCK_UN 8

f1ock(fd, operation)
int fd, operation;

DESCRIPTION

/* shared lock */
/* exclusive lock */
/* don't block when locking */
/* unlock */

Flock applies or removes an advisory lock on the file associated with the file descriptor fd.
A lock is applied by specifying an operation parameter which is the inclusive or of
LOCK_SH or LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation
should be LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do
not guarantee consistency (Le. processes may still access files without using advisory locks
possibly resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any
time multiple shared locks may be applied to a file, but at no time are multiple exclusive,
or both shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying
the appropriate lock type; this results in the previous lock being released and the new lock
applied (possibly after other processes have gained and released the lock).

Requesting a lock on an object which is already locked normally causes the caller to
blocked until the lock may be acquired. If LOC~B is included in operation, then this
will not happen; instead the call will fail and the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2)
or fork (2) do not result in multiple instances of a lock, but rather multiple references to a
single lock. If a process holding a lock on a file forks and the child explicitly unlocks the
file, the parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

Zero is returned if the operation was successful; on an error a -1 is returned and an error
code is left in the global location errno.

DIAGNOSTICS
The flock call fails if:

[EWOULDBLOCK] The file is locked and the LOCK NB option was specified.

[EBADF] The argument fd is an invalid descriptor.

2-34

[EINVAL]

SEE ALSO

The argument fd refers to an object other than a file.

open(2), close(2), dup(2), execve(2), fork(2)

STATUS
FLOCK (2) currently is not supported by Digital Equipment Corporation.

FLOCK(2)

2-35

FORK(2)

NAME
fork - create a new process

SYNTAX
pid = forkO
int pid;

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of
the calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent
process).

The child process has its own copy of the parent's descriptors. These descriptors
reference the same underlying objects, so that, for instance, file pointers in file objects
are shared between the child and the parent, so that a lseek (2) on a descriptor in the
child process can affect a subsequent read or write by the parent. This descriptor
copying is also used by the shell to establish standard input and output for newly
created processes as well as to set up pipes.

The child processes resource utilizations are set to 0; see setrlimit (2).

Upon successful completion, fork returns a value of 0 to the child process and returns the
process ID of the child process to the parent process. Otherwise, a value of -1 is returned
to the parent process, no child process is created, and the global variable errno is set to
indicate the error.

DIAGNOSTICS
Fork will fail and no child process will be created if one or more of the following are true:

[EAGAIN] The system-imposed limit {PROC_MAX} on the total number of processes
under execution would be exceeded.

[EAGAIN] The system-imposed limit {KID_MAX} on the total number of processes
under execution by a single user would be exceeded.

SEE ALSO
execve(2), wait(2)

STATUS
FORK (2) currently is not supported by Digital Equipment Corporation.

2-36

FSYNC(2)

~tl

/ NAME

~
/

)

fsync - synchronize a file's in-core state with that on disk

SYNTAX
fsync(fd)
int fd;

DESCRIPTION
Fsync causes all modified data and attributes of fd to be moved to a permanent storage
device. This normally results in all in-core modified copies of buffers for the associated file
to be written to a disk.

Fsync should be used by programs which require a file to be in a known state; for example
in building a simple transaction facility.

A 0 value is returned on success. A -1 value indicates an error.

DIAGNOSTICS
The fsync fails if:

[EBADF]

[EINVAL]

SEE ALSO

Fd is not a valid descriptor.

Fd refers to a socket, not to a file.

sync(2), sync(8), update(8)

STATUS
FSYNC (2) currently is not supported by Digital Equipment Corporation.

2-37

GETDTABLESIZE (2)

NAME
getdtablesize - get descriptor table size

SYNTAX
nds = getdtablesizeO
int nds;

DESCRIPTION
Each process has a fixed size descriptor table which is guaranteed to have at least 20 slots.
The entries in the descriptor table are numbered with small integers starting at O. The call
getdtablesize returns the size of this table.

SEE ALSO
close(2), dup(2), open(2)

STATUS
GETDTABLESIZE (2) currently is not supported by Digital Equipment Corporation.

2-38

GETGID(2)

'Ii,
I

V NAME
getgid, getegid - get group identity

SYNTAX
gid = getgidO
int gid;

egid = getegidO
int egid;

DESCRIPTION
Getgid returns the real group ID of the current process, getegid the effective group ID.

The real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permission dur
ing execution of a "set-group-ID" process, and it is for such processes that getgid is most
useful.

SEE ALSO
getuid(2), setregid(2), setgid(3)

STATUS
GETGID (2) currently is not supported by Digital Equipment Corporation.

2-39

GETGROUPS (2)

NAME
getgroups - get group access list

SYNTAX
#include <sys/param.h>

getgroups(ngroups, gidset)
int *ngroups, *gidset;

DESCRIPTION
Getgroups gets the current group access list of the user process and stores it in the array
gidset. The parameter ngroups indicates the number of entries which may be placed in
gidset and is modified on return to indicate the actual number of groups returned. No
more than NGRPS, as defined in <sys/param.h>, will ever be returned.

A value of 0 indicates that the call succeeded, and that the number of elements of gidset
and the set itself were returned. A value of -1 indicates that an error occurred, and the
error code is stored in the global variable errno.

DIAGNOSTICS
The possible errors for getgroup are:

[EFAULT]

SEE ALSO

The arguments ngroups or gidset specify invalid addresses.

setgroups(2), initgroups(3)

STATUS
GETGROUPS (2) currently is not supported by Digital Equipment Corporation.

2-40

\
/ NAME

gethostid, sethostid - get/set unique identifier of current host

SYNTAX
hostid = gethostidO
int hostid;

sethostid(hostid)
int hostid;

DESCRIPTION

GETHOSTID (2)

Sethostid establishes a 32-bit identifier for the current processor which is intended to be
unique among all UNIX systems in existence. This is normally a DARPA Internet address
for the local machine. This call is allowed only to the super-user and is normally performed
at boot time.

Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid(l), gethostname(2)

STATUS
GETHOSTID (2) currently is not supported by Digital Equipment Corporation.

2-41

GETHOSTNAME (2)

NAME
gethostname, sethostname - get/set name of current host

SYNTAX
gethostname(name, namelen)
char *name;
int namelen;

sethostname(name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter name len specifies the size of the name array. The returned
name is null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length namelen.
This call is restricted to the super-user and is normally used only when the system is
bootstrapped.

If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned
and an error code is placed int the global location errno.

DIAGNOSTICS
The following errors may be returned by these calls:

[EFAULT]

[EPERM]

SEE ALSO
gethostid(2)

RESTRICTIONS

The name or name len parameter gave an invalid address.

The caller was not the super-user.

Host names are limited to 255 characters.

STATUS
GETHOSTNAME (2) currently is not supported by Digital Equipment Corporation.

2-42

GETITIMER (2)

\
.) NAME

)

)

getitimer, setitimer - get/set value of interval timer

SYNTAX
#include <sys/time.h>

#define ITIMER_REAL
#define ITIMER_VIRTUAL
#define ITIMER_PROF

getitimer(which, value)
int which;
struct itimerval *value;

o
1
2

setitimer(which, value, ovalue)
int which;
struct itimerval *value, *ovalue;

DESCRIPTION

/* real time intervals */
/* virtual time intervals */
/* user and system virtual time */

The system provides each process with three interval timers, defined in <sys/time.h>. The
getitimer call returns the current value for the timer specified in which, while the setitimer
call sets the value of a timer (optionally returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct time val itjnterval; /* timer interval * /
struct timeval it_value; /* current value * /

};

If it_value is non-zero, it indicates the time to the next timer expiration. If iCinterval is
non-zero, it specifies a value to be used in reloading iCvalue when the timer expires. Set
ting itvalue to 0 disables a timer. Setting itinterval to 0 causes a timer to be disabled
after its next expiration (assuming itvalue is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolu
tion (on the VAX, 10 microseconds).

The ITIMER.-R,EAL timer decrements in real time. A SIGALRM signal is delivered when
this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the
process is executing. A SIG VT ALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is
running on behalf of the process. It is designed to be used by interpreters in statistically
profiling the execution of interpreted programs. Each time the ITIMER_PROF timer
expires, the SIGPROF signal is delivered. Because this signal may interrupt in-progress
system calls, programs using this timer must be prepared to restart interrupted system
calls.

2-43

GETITIMER (2)

Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a
time value to zero, timerisset tests if a time value is non-zero, and timercmp compares two
time values (beware that >= and <= do not work with this macro).

If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned,
and a more precise error code is placed in the global variable errno.

DIAGNOSTICS
The possible errors are:

[EF A UL T] The value structure specified a bad address.

[EINVAL]

SEE ALSO

A value structure specified a time was too large to be handled.

sigvec(2), gettimeofday(2)

STATUS
GETITIMER (2) currently is not supported by Digital Equipment Corporation.

2-44

GETPAGESIZE (2)

/ NAME

)

)

getpagesize - get system page size

SYNTAX
pagesize = getpagesizeO
int pagesize;

DESCRIPTION
Getpagesize returns the number of bytes in a page. Page granularity is the granularity of
many of the memory management calls.

The page size is a system page size and may not be the same as the underlying hardware
page size.

SEE ALSO
sbrk(2), pagesize(l)

STATUS
GETPAGESIZE (2) currently is not supported by Digital Equipment Corporation.

2-45

GETPEERNAME (2)

NAME
getpeername - get name of connected peer

SYNTAX
getpeername(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con
tains the actual size of the name returned (in bytes).

A 0 is returned if the call succeeds, -1 if it fails.

DIAGNOSTICS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perform the opera
tion.

[EFAULT] The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO
bind(2), socket(2), getsockname(2)

RESTRICTIONS
Names bound to sockets in the UNIX domain are inaccessible; getpeername returns a zero
length name.

STATUS
GETPEERNAME (2) currently is not supported by Digital Equipment Corporation.

2-46

GETPGRP(2)

~)
~ NAME

getpgrp - get process group

SYNTAX
pgrp = getpgrp(pid)
int prgp;
int pid;

DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the
call applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests
for their input: processes which have the same process group as the terminal are foreground
and may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csh(l) to create process groups in implementing
job control. The TIOCGPGRP and TIOCSPGRP calls described in tty(4) are used to
get/set the process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

STATUS
GETPGRP (2) currently is not supported by Digital Equipment Corporation.

2-47

GETPID(2)

NAME
getpid, getppid - get process identification

SYNTAX
pid = getpidO
long pid;

ppid = getppidO
long ppid;

DESCRIPTION
Getpid returns the process ID of the current process. Most often it is used with the host
identifier gethostid (2) to generate uniquely-named temporary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

STATUS
GETPID (2) currently is not supported by Digital Equipment Corporation.

2-48

)
y

GETPRIORITY (2)

NAME
getpriority, setpriority - get/set program scheduling priority

SYNTAX
#include <sys/resource.h>

#define PRIO_PROCESS
#define PRIO_PGRP
#define PRIO_USER

o
1
2

prio = getpriority(which, who)
int prio, which, who;

setpriority(which, who, prio)
int which, who, prio;

DESCRIPTION

1* process *1
1* process group *1
1* user id *1

The scheduling priority of the process, process group, or user, as indicated by which and
who is obtained with the getpriority call and set with the setpriority call. Which is one of
PRIOYROCESS, PRIOYGRP, or PRIO_USER, and who is interpreted relative to which (a
process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user
ID for PRIO_USER). Prio is a value in the range -20 to 20. The default priority is 0;
lower priorities cause more favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of
the specified processes. The setpriority call sets the priorities of all of the specified
processes to the specified value. Only the super-user may lower priorities.

Since getpriority can legitimately return the value -1, it is necessary to clear the external
variable errno prior to the call, then check it afterward to determine if a -1 is an error or a
legitimate value. The set priority call returns 0 if there is no error, or -1 if there is.

DIAGNOSTICS
Getpriority and setpriority may return one of the following errors:

[ESRCH] No process(es) were located using the which and who values specified.

[EINVAL] Which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, setpriority may fail with one of the following
errors returned:

[EACCES]

[EACCES]

SEE ALSO

A process was located, but neither its effective nor real user ID matched
the effective user ID of the caller.

A non super-user attempted to change a process priority to a negative
value.

nice(I), fork(2), renice(8)

2-49

GETPRIORITY (2)

STATUS
GETPRIORITY (2) currently is not supported by Digital Equipment Corporation.

2-50

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNTAX
#include <sys/time.h>
#include <sys/resource.h>

getrlimit(resource, rIp)
int resource;
struct rlimit *rIp;

setrlimit(resource, rIp)
int resource;
struct rlimit *rIp;

DESCRIPTION

GETRLlMIT(2)

Limits on the consumption of system resources by the current process and each process it
creates may be obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:

RLIMIT_CPU the maximum amount of cpu time (in milliseconds) to be used by each
process.

RLIMIT_FSIZE the largest size, in bytes, of any single file which may be created.

RLIMIT_DA T A the maximum size, in bytes, of the data segment for a process; this
defines how far a program may extend its break with the sbrk (2) system
call.

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process; this
defines how far a program's stack segment may be extended, either
automatically by the system, or explicitly by a user with the sbrk (2) sys
tem call.

RLIMIT_CORE the largest size, in bytes, of a core file which may be created.

RLIMIT_RSS the maximum size, in bytes, a process's resident set size may grow to.
This imposes a limit on the amount of physical memory to be given to a
process; if memory is tight, the system will prefer to take memory from
processes which are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded
a process may receive a signal (for example, if the cpu time is exceeded), but it will be
allowed to continue execution until it reaches the hard limit (or modifies its resource limit).
The rlimit structure is used to specify the hard and soft limits on a resource,

struct rlimit {
int
int

};

rliIlLCur;/* current (soft) limit */
rlim_max; /* hard limit */

2-51

GETRLlMIT (2)

Only the super-user may raise the maximum limits. Other users may only alter rlim cur
within the range from 0 to rlim max or (irreversibly) lower rlim max.

An "infinite" value for a limit is defined as RLIMITJNFINITY (Ox7fffffff).

Because this information is stored in the per-process information, this system call must be
executed directly by the shell if it is to affect all future processes created by the shell; limit
is thus a built-in command to csh(I).

The system refuses to extend the data or stack space when the limits would be exceeded in
the normal way: a break call fails if the data space limit is reached, or the process is killed
when the stack limit is reached (since the stack cannot be extended, there is no way to send
a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ
to be generated, this normally terminates the process, but may be caught. When the soft
cpu time limit is exceeded, a signal SIGXCPU is sent to the offending process.

A 0 return value indicates that the call succeeded, changing or returning the resource limit.
A return value of -1 indicates that an error occurred, and an error code is stored in the
global location errno.

DIAGNOSTICS
The possible errors are:

[EFAULT]

[EPERM]

SEE ALSO
csh(l), quota(2)

STATUS

The address specified for rlp is invalid.

The limit specified to setrlimit would have
raised the maximum limit value, and the caller is not the super-user.

GETRLIMIT (2) currently is not supported by Digital Equipment Corporation.

2-52

)

GETRUSAGE(2)

NAME
getrusage - get information about resource utilization

SYNTAX
#include <sys/time.h>
#include <sys/resource.h>

#define RUSAGE_SELF 0
#define RUSAGE_CHILDREN -1

getrusage(who, rusage)
int who;
struct rusage *rusage;

DESCRIPTION

1* calling process *1
1* terminated child processes *1

Getrusage returns information describing the resources utilized by the current process, or
all its terminated child processes. The who parameter is one of RUSAGE SELF and
RUSAGE CHILDREN. If rusage is non-zero, the buffer it points to will be filled in with
the following structure:

struct rusage {

};

struct timeval ru_utime;
struct timeval rU.,jltime;
int ru_maxrss;
int rujxrss;
int rujdrss;
int rujsrss;
int ru_minflt;
int ru_majflt;
int ru_nswap;
int ruJnblock;
int ru_oublock;
int ru_msgsnd;
int ru_msgrcv;
int ru_ nsignals;
int ru_nvcsw;
int r1.lJlivcsw;

/* user time used * /
/* system time used * /

/* integral shared memory size * /
/* integral unshared data size * /
/* integral unshared stack size * /
/* page reclaims * /
/* page faults * /
/* swaps */
/* block input operations * /
/* block output operations * /
/* messages sent * /
/* messages received * /
/* signals received * /
/* voluntary context switches * /
/* involuntary context switches * /

The fields are interpreted as follows:

ru_utime

ru..stime

ru_maxrss

rujxrss

the total amount of time spent executing in user mode.

the total amount of time spent in the system executing on behalf of the
process(es).

the maximum resident set size utilized (in kilobytes).

an "integral" value indicating the amount of memory used which was also
shared among other processes. This value is expressed in units of kilobytes

2-53

GETRUSAGE(2)

rujdrss

rujsrss

rujnblock

* seconds-of-execution and is calculated by summing the number of shared
memory pages in use each time the internal system clock ticks and then
averaging over 1 second intervals.

an integral value of the amount of un shared memory residing in the data
segment of a process (expressed in units of kilobytes * seconds-of
execution).

an integral value of the amount of unshared memory residing in the stack
segment of a process (expressed in units of kilobytes * seconds-of
execution).

the number of page faults serviced without any i/o activity; here i/o activity
is avoided by "reclaiming" a page frame from the list of pages awaiting
reallocation.

the number of page faults serviced which required i/o activity.

the number of times a process was "swapped" out of main memory.

the number of times the file system had to perform input.

the number of times the file system had to perform output.

the number of ipc messages sent.

the number of ipc messages received.

the number of signals delivered.

the number of times a context switch resulted due to a process voluntarily
giving up the processor before its time slice was completed (usually to
await availability of a resource).

the number of times a context switch resulted due to a higher priority pro
cess' becoming runnable or because the current process exceeded its time
slice.

The numbers ru_inblock and ru_outblock account only for real i/o; data supplied by the
cacheing mechanism is charged only to the first process to read or write the data.

SEE ALSO
gettimeofday(2), wait(2)

RESTRICTIONS
There is no way to obtain information about a child process which has not yet terminated.

STATUS
GETRUSAGE (2) currently is not supported by Digital Equipment Corporation.

2-54

NAME
getsockname - get socket name

SYNTAX
getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION

GETSOCKNAME (2)

Getsockname returns the current name for the specified socket. The name len parameter
should be initialized to indicate the amount of space pointed to by name. On return it con
tains the actual size of the name returned (in bytes).

A 0 is returned if the call succeeds, -1 if it fails.

DIAGNOSTICS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOBUFS] Insufficient resources were available in the system to perform the opera
tion.

[EFAULT] The name parameter points~to memory not in a valid part of the process
address space.

SEE ALSO
bind(2), socket(2)

RESTRICTIONS
Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero
length name.

STATUS
GETSOCKNAME (2) currently is not supported by Digital Equipment Corporation.

2-55

GETSOCKOPT (2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optvalj
int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist
at multiple protocol levels; they are always present at the uppermost "socket" level.

When manipulating socket options the level at which the option resides and the name of
the option must be specified. To manipulate options at the "socket" level, level is specified
as SOL SOCKET. To manipulate options at any other level the protocol number of the
appropriate protocol controlling the option is supplied. For example, to indicate an option
is to be interpreted by the TCP protocol, level should be set to the protocol number of
TCP; see getprotoent(3N). '

The parameters optval and optlen are used to access option values for setsockopt. For get
sockopt they identify a buffer in which the value for the requested option(s) are to be
returned. For getsockopt, optlen is a value-result parameter, initially containing the size of
the buffer pointed to by optval, and modified on return to indicate the actual size of the
value returned. If no option value is to be supplied or returned, optval may be supplied as o. ' .

Optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket.h> contains' definitions for
"socket" level options; see socket(2). Options at other protocol levels vary in format and
name, consult the appropriate entries in (4P).

A 0 is returned if the call succeeds, -1 if it fails.

DIAGNOSTICS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown.

[EFAULT] The options are not in a valid part of the process address space.

2-56

GETSOCKOPT (2)

SEE ALSO
socket(2), getprotoent(3N)

STATUS
GETSOCKOPT (2) currently is not supported by Digital Equipment Corporation.

2-57

GETTIMEOFDA Y (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNTAX
#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
Gettimeofday returns the system's notion of the current Greenwich time and the current
time zone. Time returned is expressed relative in seconds and microseconds since midnight
January 1, 1970.

The structures pointed to by tp and tzp are defined in <sys/time.h> as:

struct timeval {
uJong tv_sec;
long tv_usec;

};

struct timezone {

/* seconds since Jan. 1, 1970 * /
/* and microseconds * /

int tz_minuteswest; /* of Greenwich * /
int tz_dsttime; /* type of dst correction to apply * /

};

The timezone structure indicates the local time zone (measured in minutes of time west
ward from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time
applies locally during the appropriate part of the year.

Only the super-user may set the time of day.

A 0 return value indicates that the call succeeded. A -1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

DIAGNOSTICS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.

[EPERM]

SEE ALSO

A user other than the super-user attempted to set the time.

date(l), ctime(3)

STATUS
GETTIMEOFDA Y (2) currently is not supported by Digital Equipment Corporation.

2-58

NAME
getuid, geteuid - get user identity

SYNTAX
uid = getuidO
int uid;

euid = geteuidO
int euid;

DESCRIPTION

GETUID(2)

Getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID identifies the person who is logged in. The effective user ID gives the pro
cess additional permissions during execution of "set-user-ID" mode processes, which use
getuid to determine the real-user-id of the process which invoked them.

SEE ALSO
getgid(2), setreuid(2)

STATUS
GETUID (2) currently is not supported by Digital Equipment Corporation.

2-59

IOCTL(2)

NAME
ioctl - control device

SYNTAX
#include <sys/ioctl.h>

ioctl(d, request, argp)
int d, request;
char *argp;

DESCRIPTION
Ioctl performs a variety of functions on open descriptors. In particular, many operating
characteristics of character special files (e.g. terminals) may be controlled with ioetl
requests. The writeups of various devices in section 4 discuss how ioetl applies to them.

An ioctl request has encoded in it whether the argument is an "in" parameter or "out"
parameter, and the size of the argument argp in bytes. Macros and defines used in specify
ing an ioctl request are located in the file <sys/ioetl.h>.

If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

DIAGNOSTICS
Ioct I will fail if one or more of the following are true:

[EBADF]

[ENOTTY]

[ENOTTY]

[EINVAL]

SEE ALSO

D is not a valid descriptor.

D is not associated with a character special device.

The specified request does not apply to the kind of object which the
descriptor d references.

Request or argp is not valid.

execve(2), fcnt1(2), mt(4), tty(4), intro(4N)

STATUS
IOCTL (2) currently is not supported by Digital Equipment Corporation.

2-60

)

KILL (2)

NAME
kill - send signal to a process

SYNTAX
kill(pid, sig)
int pid, sig;

DESCRIPTION
Kill sends the signal sig to a process, specified by the process number pid. Sig may be one
of the signals specified in sigvec(2), or it may be 0, in which case error checking is per
formed but no signal is actually sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this
call is restricted to the super-user. A single exception is the signal SIGCONT which may
always be sent to any child or grandchild of the current process.

If the process number is 0, the signal is sent to all other processes in the sender's process
group; this is a variant of killpg(2).

If the process number is -1, and the user is the super-user, the signal is broadcast univer
sally except to system processes and the process sending the signal.

Processes may send signals to themselves.

Upon successful completion, a value of ° is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
Kill will fail and no signal will be sent if any of the following occur:

Sig is not a valid signal number.

No process can be found corresponding to that specified by pid.

[EINVAL]

[ESRCH]

[EPERM] The sending process is not the super-user and its effective user id does not
match the effective user-id of the receiving process.

SEE ALSO
getpid(2), getpgrp(2), killpg(2), sigvec(2)

STATUS
KILL (2) currently is not supported by Digital Equipment Corporation.

2-61

KILLPG(2)

NAME
killpg - send signal to a process group

SYNTAX
killpg(pgrp, sig)
int pgrp, sig;

DESCRIPTION
Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective user
ID, otherwise this call is restricted to the super-user. As a single special case the continue
signal SIGCONT may be sent to any process which is a descendant of the current process.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

DIAGNOSTICS
Killpg will fail and no signal will be sent if any of the following occur:

[EINVAL]

[ESRCH]

[EPERM]

Sig is not a valid signal number.

No process can be found corresponding to that specified by pid.

The sending process is not the super-user and one or more of the target
processes has an effective user ID different from that of the sending pro
cess.

SEE ALSO
kill(2), getpgrp(2), sigvec(2)

STATUS
KILLPG (2) currently is not supported by Digital Equipment Corporation.

2-62

LlNK(2)

NAME
link - make a hard link to a file

SYNTAX
link(namel, name2)
char *namel, *name2;

DESCRIPTION
A hard link to namel is created; the link has the name name2. Namel must exist.

With hard links, both namel and name2 must be in the same file system. Unless the caller
is the super-user, namel must not be a directory. Both the old and the new link share
equal access and rights to the underlying object.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
Link will fail and no link will be created if one or more of the following are true:

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[ENOENT]

[EEXIST]

[EPERM]

[EXDEV]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

Either pathname contains a byte with the high-order bit set.

Either pathname was too long.

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by namel does not exist.

The link named by name2 does exist.

The file named by namel is a directory and the effective user ID is not
super-user.

The link named by name2 and the file named by namel are on different
file systems.

The requested link requires writing in a directory with a mode that denies
write permission.

The requested link requires writing in a directory on a read-only file sys
tem.

One of the pathnames specified is outside the process's allocated address
space.

Too many symbolic links were encountered in translating the pathname.

symlink(2), unlink(2)

2-63

LlNK(2)

STATUS
LINK (2) currently is not supported by Digital Equipment Corporation.

2-64

NAME
listen - listen for connections on a socket

SYNTAX
listen(s, backlog)
int s, backlog;

DESCRIPTION

LISTEN (2)

To accept connections, a socket is first created with socket(2), a backlog for incoming con
nections is specified with listen(2) and then the connections are accepted with accept(2).
The listen call applies only to sockets of type SOCK_STREAM or SOCK_PKTSTREAM.

The backlog parameter defines the maximum length the queue of pending connections may
grow to. If a connection request arrives with the queue full the client will receive an error
with an indication of ECONNREFUSED.

A 0 return value indicates success; -1 indicates an error.

DIAGNOSTICS
The call fails if:

[EBADF]

[ENOTSOCK]

[EOPNOTSUPP]

SEE ALSO

The argument s is not a valid descriptor.

The argument s is not a socket.

The socket is not of a type that supports the operation listen.

accept(2), connect(2), socket(2)

RESTRICTIONS
The backlog is currently limited to 5.

STATUS
LISTEN (2) currently is not supported by Digital Equipment Corporation.

2-65

LSEEK(2)

NAME
lseek - move read/write pointer

SYNTAX
#define L_SET 0 /* set the seek pointer */
#define L_INCR 1 /* increment the seek pointer */

/* extend the file size */ #define L_XTND 2

pos = lseek(d, offset, whence)
int pos;
int d, offset, whence;

DESCRIPTION
The descriptor d refers to a file or device open for reading and/or writing. Lseek sets the
file pointer of d as follows:

If whence is L_SET, the pointer is set to offset bytes.

If whence is L_INCR, the pointer is set to its current location plus offset.

If whence is L_XTND, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes from begin
ning of the file is returned. Some devices are incapable of seeking. The value of the
pointer associated with such a device is undefined.

Seeking far beyond the end of a file, then writing, creates a gap or "hole", which occupies
no physical space and reads as zeros.

Upon successful completion, a non-negative integer, the current file pointer value, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

DIAGNOSTICS
Lseek will fail and the file pointer will remain unchanged if:

[EBADF]

[ESPIPE]

[EINVAL]

[EINVAL]

SEE ALSO
dup(2), open(2)

STATUS

Fildes is not an open file descriptor.

Fildes is associated with a pipe or a socket.

Whence is not a proper value.

The resulting file pointer would be negative.

LSEEK (2) currently is not supported by Digital Equipment Corporation.

2-66

NAME
mkdir - make a directory file

SYNTAX
mkdir(path, mode)
char *path;
int mode;

DESCRIPTION

MKDIR(2)

Mkdir creates a new directory file with name path. The mode of the new file is initialized
from m~de. (The protection part of the mode is modified by the process's mode mask; see
umask(2».

The directory's owner ID is set to the process's effective user ID. The directory's group ID
is set to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits
set in the process's file mode creation mask are cleared. See umask(2).

A 0 return value indicates success. A -1 return value indicates an error, and an error code
is stored in errno.

DIAGNOSTICS
Mkdir will fail and no directory will be created if:

The process's effective user ID is not super-user.

The path argument contains a byte with the high-order bit set.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

Path points outside the process's allocated address space.

[EPERM]

[EPERM]

[ENOTDIR]

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT]

[ELOOP]

[EIO]

Too many symbolic links were encountered in translating the pathname.

An I/O error occured while writing to the file system.

SEE ALSO
chmod(2), stat(2), umask(2)

STATUS
MKDIR (2) currently is not supported by Digital Equipment Corporation.

2-67

MKNOD(2)

NAME
mknod - make a special file

SYNTAX
mknod(path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
Mknod creates a new file whose name is path. The mode of the new file (including special
file bits) is initialized from mode. (The protection part of the mode is modified by the
process's mode mask; see umask(2». The first block pointer of the i-node is initialized
from dev and is used to specify which device the special file refers to.

If mode indicates a block or character special file, dev is a configuration dependent
specification of a character or block I/O device. If mode does not indicate a block special or
character special device, dev is ignored.

Mknod may be invoked only by the super-user.

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
Mknod will fail and the file mode will be unchanged if:

[EPERM]

[EPERM]

[ENOTDIR]

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT]

[ELOOP]

SEE ALSO

The process's effective user ID is not super-user.

The pathname contains a character with the high-order bit set.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read -only file system.

The named file exists.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

chmod(2), stat(2), umask(2)

STATUS
MKNOD (2) currently is not supported by Digital Equipment Corporation.

2-68

~ NAME
,; mount, umount - mount or remove file system

SYNTAX
mount(special, name, rwflag)
char *special, *name;
int rwflag;

umount(special)
char *special;

DESCRIPTION

MOUNT(2)

Mount announces to the system that a removable file system has been mounted on the
block-structured special file special; from now on, references to file name will refer to the
root file on the newly mounted file system. Special and name are pointers to null
terminated strings containing the appropriate path names.

Name must exist already. Name must be a directory. Its old contents are inaccessible while
the file system is mounted.

The rwflag argument determines whether the file system can be written on; if it is 0 writing
is allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file
systems must be mounted read-only or errors will occur when access times are updated,
whether or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to contain a removable
file system. The associated file reverts to its ordinary interpretation.

Mount returns 0 if the action occurred, -1 if special is inaccessible or not an appropriate
file, if name does not exist, if special is already mounted, if name is in use, or if there are
already too many file systems mounted.

Umount returns 0 if the action occurred; -1 if if the special file is inaccessible or does not
have a mounted file system, or if there are active files in the mounted file system.

DIAGNOSTICS
Mount will fail when one of the following occurs:

[NODEV]

[NODEV]

[ENOTBLK]

[ENXIO]

[EPERM]

[ENOTDIR]

[EROFS]

[EBUSY]

The caller is not the super-user.

Special does not exist.

Special is not a block device.

The major device number of special is out of range (this indicates no dev
ice driver exists for the associated hardware).

The pathname contains a character with the high-order bit set.

A component of the path prefix in name is not a directory.

Name resides on a read -only file system.

Name is not a directory, or another process currently holds a reference to
it.

2-69

MOUNT(2)

[EBUSY]

[EBUSY]

[EBUSY]

[EBUSY]

No space remains in the mount table.

The super block for the file system had a bad magic number or an out of
range block size.

Not enough memory was available to read the cylinder group information
for the file system.

An i/o error occurred while reading the super block or cylinder group infor
mation.

Umount may fail with one of the following errors:

[NODEV]

[NODEV]

[ENOTBLK]

[ENXIO]

[EINVAL]

[EBUSY]

SEE ALSO

The caller is not the super-user.

Special does not exist.

Special is not a block device.

The major device number of special is out of range (this indicates no dev
ice driver exists for the associated hardware).

The requested device is not in the mount table.

A process is holding a reference to a file located on the file system.

mount(8), umount(8)

STATUS
MOUNT (2) currently is not supported by Digital Equipment Corporation.

2-70

NAME
open - open a file for reading or writing, or create a new file

SYNTAX
#include <sys/file.h>

open(path, flags, mode)
char *path;
int flags, mode;

DESCRIPTION

OPEN(2)

Open opens the file path for reading and/or writing, as specified by the {lags argument and
returns a descriptor for that file. The {lags argument may indicate the file is to be created
if it does not already exist (by specifying the O_CREAT flag), in which case the file is
created with mode mode as described in chmod(2) and modified by the process' umask
value (see umask(2».

Path is the address of a string of ASCII characters representing a path name, terminated
by a null character. The flags specified are formed by or'ing the following values

O_RDONLY
O_WRONLY
O_RDWR
O_NDELAY
O_APPEND
O_CREAT
O_TRUNC
O_EXCL

open for reading only
open for writing only
open for reading and writing
do not block on open
append on each write
create file if it does not exist
truncate size to 0
error if create and file exists

Opening a file with O~PPEND set causes each write on the file to be appended to the end.
If O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL
is set with O_CREAT, then if the file already exists, the open returns an error. This can be
used to implement a simple exclusive access locking mechanism. If the O_NDELA Y flag is
specified and the open call would result in the process being blocked for some reason (e.g.
waiting for carrier on a dialup line), the open returns immediately. The first time the pro
cess attempts to perform i/o on the open file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned.
The file pointer used to mark the current position within the file is set to the beginning of
the file.

The new descriptor is set to remain open across execve system calls; see close(2).

No process may have more than {OPEN_MAX} file descriptors open simultaneously.

DIAGNOSTICS
The named file is opened unless one or more of the following are true:

[EPERM]

[ENOTDIR]

The pathname contains a character with the high-order bit set.

A component of the path prefix is not a directory.

2-71

OPEN(2)

[ENOENT]

[EACCES]

[EACCES]

[EISDIR]

[EROFS]

[EMFILE]

[ENXIO]

[ETXTBSY]

[EFAULT]

[ELOOP]

[EEXIST]

[ENXIO]

O_CREAT is not set and the named file does not exist.

A component of the path prefix denies search permission.

The required permissions (for reading and/or writing) are denied for the
named flag.

The named file is a directory, and the arguments specify it is to be opened
for writting.

The named file resides on a read -only file system, and the file is to be
modified.

{OPEN_MAX} file descriptors are currently open.

The named file is a character special or block special file, and the device
associated with this special file does not exist.

The file is a pure procedure (shared text) file that is being executed and
the open call requests write access.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

O_EXCL was specified and the file exists.

The O_NDELA Y flag is given, and the file is a communications device on
which their is no carrier present.

[EOPNOTSUPP]
An attempt was made to open a socket (not currently implemented).

SEE ALSO
chmod(2), close(2), dup(2), Iseek(2), read(2), write(2), umask(2)

STATUS
OPEN (2) currently is not supported by Digital Equipment Corporation.

2-72

PIPE(2)

NAME
pipe - create an interprocess communication channel

SYNTAX
pipe(ftldes)
int ftldes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned
can be used in read and write operations. When the pipe is written using the descriptor
fildes [1] up to 4096 bytes of data are buffered before the writing process is suspended. A
read using the descriptor fildes [0] will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes
(created by subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as
such in the system.

A signal is generated if a write on a pipe with only one end is attempted.

The function value zero is returned if the pipe was created; -1 if an error occurred.

DIAGNOSTICS
The pipe call will fail if:

[EMFILE]

[EFAULT]

SEE ALSO

Too many descriptors are active.

The fildes buffer is in an invalid area of the process's address space.

sh(1), read(2), write(2), fork(2), socketpair(2)

RESTRICTIONS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock
will occur.

STATUS
PIPE (2) currently is not supported by Digital Equipment Corporation.

2-73

PROFIL(2)

NAME
profil - execution time profile

SYNTAX
profil(buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user's program counter (pc) is examined each clock tick (10 milliseconds); offset is sub
tracted from it, and the result multiplied by scale. If the resulting number corresponds to
a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
Ox10000 gives a 1-1 mapping of pc's to words in buff; Ox8000 maps each pair of instruction
words together. Ox2 maps all instructions onto the beginning of buff (producing a non
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a buf
siz of o. Profiling is turned off when an execve is executed, but remains on in child and
parent both after a fork. Profiling is turned off if an update in buff would cause a memory
fault.

A 0, indicating success, is always returned.

SEE ALSO
gprof(1), setitimer(2), monitor(3)

STATUS
PROFIL (2) currently is not supported by Digital Equipment Corporation.

2-74

PTRACE(2)

~\

v NAME
ptrace - process trace

SYNTAX
#include <signal.h>

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child
process, and examine and change its core image. Its primary use is for the implementation
of breakpoint debugging. There are four arguments whose interpretation depends on a
request argument. Generally, pid is the process ID of the traced process, which must be a
child (no more distant descendant) of the tracing process. A process being traced behaves
normally until it encounters some signal whether internally generated like "illegal instruc
tion" or externally generated like "interrupt". See sigvec(2) for the list. Then the traced
process enters a stopped state and its parent is notified via wait (2). When the child is in
the stopped state, its core image can be examined and modified using ptrace. If desired,
another ptrace request can then cause the child either to terminate or to continue, possibly
ignoring the signal.

The value of the request argument determines the precise action of the call:

o This request is the only one used by the child process; it declares that the process is to
be traced by its parent. All the other arguments are ignored. Peculiar results will
ensue if the parent does not expect to trace the child.

1,2 The word in the child process's address space at addr is returned. If I and D space are
separated (e.g. historically on a pdp-II), request 1 indicates I space, 2 D space. Addr
must be even. The child must be stopped. The input data is ignored.

3 The word of the system's per-process data area corresponding to addr is returned.
Addr must be even and less than 512. This space contains the registers and other
information about the process; its layout corresponds to the user structure in the sys
tem.

4,5 The given data is written at the word in the process's address space corresponding to
addr, which must be even. No useful value is returned. If I and D space are
separated, request 4 indicates I space, 5 D space. Attempts to write in pure procedure
fail if another process is executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few locations
can be written in this way: the general registers, the floating point status and registers,
and certain bits of the processor status word.

7 The data argument is taken as a signal number and the child's execution continues at
location addr as if it had incurred that signal. Normally the signal number will be
either 0 to indicate that the signal that caused the stop should be ignored, or that value
fetched out of the process's image indicating which signal caused the stop. If addr is

2-75

PTRACE(2)

(int *)1 then execution continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is
SIGTRAP. (On the VAX-ll the T-bit is used and just one instruction is executed.)
This is part of the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process
has stopped. The wait call is used to determine when a process stops; in such a case the
"termination" status returned by wait has the value 0177 to indicate stoppage rather than
genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on sub
sequent execve(2) calls. If a traced process calls execve, it will stop before executing the
first instruction of the new image showing signal SIGTRAP.

On a VAX-ll, "word" also means a 32-bit integer, but the "even" restriction does not
apply.

A 0 value is returned if the call succeeds. If the call fails then a -1 is returned and the glo
bal variable errno is set to indicate the error.

DIAGNOSTICS
[EINVAL]

[EINVAL]

[EINVAL]

[EFAULT]

[EPERM]

SEE ALSO

The request code is invalid.

The specified process does not exist.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

wait(2), sigvec(2), adb(1)

STATUS
PTRACE (2) currently is not supported by Digital Equipment Corporation.

2-76

QUOTA(2)

~
/ NAME

quota - manipulate disk quotas

SYNTAX
#include <sys/quota.h>

quota(cmd, uid, arg, addr)
int cmd, uid, arg;
caddr_t addr;

DESCRIPTION
The quota call manipulates disk quotas for file systems which have had quotas enabled
with setquota (2). The cmd parameter indicates a command to be applied to the user ID
uid. Arg is a command specific argument and addr is the address of an optional, command
specific, data structure which is copied in or out of the system. The interpretation of arg
and addr is given with each command below.

(LSETDLIM
Set disc quota limits and current usage for the user with ID uid. Arg is a major
minor device indicating a particular file system. Addr is a pointer to a struct
dqblk structure (defined in <sys/quota.h». This call is restricted to the super
user.

Q_GETDLIM
Get disc quota limits and current usage for the user with ID uid. The remaining
parameters are as for (LSETDLIM.

Q_SETDUSE

Q_SYNC

Set disc usage limits for the user with ID uid. Arg is a major-minor device indi
cating a particular file system. Addr is a pointer to a struct dqusage structure
(defined in <sys/quota.h». This call is restricted to the super-user.

Update the on-disc copy of quota usages. The uid, arg, and addr parameters are
ignored.

(LSETUID
Change the calling process's quota limits to those of the user with ID uid. The arg
and addr parameters are ignored. This call is restricted to the super-user.

Q_SETWARN
Alter the disc usage warning limits for the user with ID uid. Arg is a major-minor
device indicating a particular file system. Addr is a pointer to a struct dqwarn
structure (defined in <sys/quota.h>). This call is restricted to the super-user.

Q_DOWARN
Warn the user with user ID uid about excessive disc usage. This call causes the
system to check its current disc usage information and print a message on the ter
minal of the caller for each file system on which the user is over quota. If the arg
parameter is specified as NODEV, all file systems which have disc quotas will be

2-77

QUOTA(2)

checked. Otherwise, arg indicates a specific major-minor device to be checked.
This call is restricted to the super-user.

A successful call returns 0 and, possibly, more information specific to the cmd performed;
when an error occurs, the value -1 is returned and errno is set to indicate the reason.

DIAGNOSTICS
A quota call will fail when one of the following occurs:

[EINVAL]

[ESRCH]

[EPERM]

[EINVAL]

[EFAULT]

[EUSERS]

SEE ALSO

Cmd is invalid.

No disc quota is found for the indicated user.

The call is priviledged and the caller was not the super-user.

The arg parameter is being interpreted as a major-minor device and it indi
cates an unmounted file system.

An invalid addr is supplied; the associated structure could not be copied in
or out of the kernel.

The quota table is full.

setquota(2), quotaon(8), quotacheck(8)

STATUS
QUOTA (2) currently is not supported by Digital Equipment Corporation.

2-78

NAME
read, readv - read input

SYNTAX
cc = read(d, buf, nbytes)
int cc, d;
char *buf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

cc = readv(d, iov, iovcnt)
int cc, d;
struct iovec *iov;
int iovcnt;

DESCRIPTION

READ(2)

Read attempts to read nbytes of data from the object referenced by the descriptor d into
the buffer pointed to by buf. Readv performs the same action, but scatters the input data
into the iovcnt buffers specified by the members of the iovec array: iov[O], iov[1], ... ,
iov[iovcnt -1].

For readv, the iovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov_len;

} ;

Each iovec entry specifies the base address and length of an area in memory where data
should be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated
with d, see lseek(2}. Upon return from read, the pointer is incremented by the number of
bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of
the pointer associated with such a object is undefined.

Upon successful completion, read and readv return the number of bytes actually read and
placed in the buffer. The system guarantees to read the number of bytes requested if the
descriptor references a file which has that many bytes left before the end-of-file, but in no
other cases.

If the returned value is 0, then end-of-file has been reached.

If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned
and the global variable errno is set to indicate the error.

2-79

READ(2)

DIAGNOSTICS
Read and readv will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT]

[EINTR]

But points outside the allocated address space.

A read from a slow device was interrupted before any data arrived by the
delivery of a signal.

In addition, readv may return one of the following errors:

[EINVAL]

[EINVAL]

[EINVAL]

Iovcnt was less than or equal to 0, or greater than 16.

One of the iov len values in the iov array was negative.

The sum of the iov len values in the iov array overflowed a 32-bit integer.

SEE ALSO
dup(2), open(2), pipe(2), socket(2), socketpair(2)

STATUS
READ (2) currently is not supported by Digital Equipment Corporation.

2-80

READLINK (2)

NAME
readlink - read value of a symbolic link

SYNTAX
cc = readlink(path, buf, bufsiz)
int cc;
char *path, *buf;
int bufsiz;

DESCRIPTION
Readlink places the contents of the symbolic link name in the buffer but which has size
butsiz. The contents of the link are not null terminated when returned.

The call returns the count of characters placed in the buffer if it succeeds, or a -1 if an
error occurs, placing the error code in the global variable errno.

DIAGNOSTICS
Readlink will fail and the file mode will be unchanged if:

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOENT]

[ENXIO]

[EACCES]

[EPERM]

[EINVAL]

[EFAULT]

[ELOOP]

SEE ALSO

The path argument contained a byte with the high-order bit set.

The pathname was too long.

A component of the path prefix is not a directory.

The named file does not exist.

The named file is not a symbolic link.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

The named file is not a symbolic link.

But extends outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

stat(2), Istat(2), symlink(2)

STATUS
READ LINK (2) currently is not supported by Digital Equipment Corporation.

2-81

REBOOT(2)

NAME
reboot - reboot system or halt processor

SYNTAX
#include <sys/reboot.h>

re boot(howto)
int howto;

DESCRIPTION
Reboot reboots the system, and is invoked automatically in the event of unrecoverable sys
tem failures. Howto is a mask of options passed to the bootstrap program. The system call
interface permits only RB_HALT or RB_AUTOBOOT to be passed to the reboot program;
the other flags are used in scripts stored on the console storage media, or used in manual
bootstrap procedures. When none of these options (e.g. RB_AUTOBOOT) is given, the sys
tem is rebooted from file "vmunix" in the root file system of unit ° of a disk chosen in a
processor specific way. An automatic consistency check of the disks is then normally per
formed.

The bits of howto are:

RB_HALT
the processor is simply halted; no reboot takes place. RB HALT should be used
with caution.

RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire as to what file
should be booted. Normally, the system is booted from the file "xx(O,O)vmunix"
without asking.

RB_SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and
then multi-user operations. RB SINGLE prevents the consistency check, rather
simply booting the system with a single-user shell on the console. RB SINGLE is
interpreted by the init(8) program in the newly booted system. This switch is not
available from the system call interface.

Only the super-user may reboot a machine.

If successful, this call never returns. Otherwise, a -1 is returned and an error is returned
in the global variable errno.

DIAGNOSTICS
[EPERM] The caller is not the super-user.

SEE ALSO
crash(8), halt(8), init(8), reboot(8)

STATUS
REBOOT (2) currently is not supported by Digital Equipment Corporation.

2-82

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

cc = recv(s, buf, len, flags)
int cc, s;
char *buf;
int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;
char *buf;
int len, flags;
struct sockaddr *from;
int *fromlen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msg[];
int flags;

DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a socket.

RECV(2)

The recv call may be used only on a connected socket (see connect(2», while recvfrom and
recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. Fromlen is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return
to indicate the actual size of the address stored there. The length of the message is
returned in cc. If a message is too long to fit in the supplied buffer, excess bytes may be
discarded depending on the type of socket the message is received from; see socket(2).

If no messages are available at the socket, the receive call waits for a message to arrive,
unless the socket is nonblocking (see ioctl(2» in which case a cc of -1 is returned with the
external variable errno set to EWOULDBLOCK.

The select (2) call may be used to determine when more data arrives.

The flags argument to a send call is formed by or'ing one or more of the values,

#define MSG_PEEK
#defineMSG_OOB

Ox1
Ox2

/* peek at incoming message * /
/* process out-of-band data * /

The recvmsg call uses a msghdr structure to minimize the number of directly supplied
parameters. This structure has the following form, as defined in <syslsocket.h>:

2-83

RECV(2)

struct msghdr {
caddt..t
int
struct
int
caddt-t
int

};

msg_name;
msg_namelen;
iov *msgjov;
msgjovlen;
mS{Laccrights;
msg_accrightslen;

/* optional address * /
/* size of address * /
/* scatter/gather array * /
/* # elements in msgjov * /
/* access rights sent/received * /

Here msg_name and ms~namelen specify the destination address if the socket is uncon
nected; mS{Lname may be given as a null pointer if no names are desired or required. The
msgjov and ms~iovlen describe the scatter gather locations, as de'scribed in read(2).
Access rights to be sent along with the message are specified in msg_accrights, which has
length msg_accrightslen.

These calls return the number of bytes received, or -1 if an error occurred. A

DIAGNOSTICS
The calls fail if:

[EBADF]

[ENOTSOCK]

The argument s is an invalid descriptor.

The argument s is not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would
block.

[EINTR]

[EFAULT]

The receive was interrupted by delivery of a signal before any data
was available for the receive.

The data was specified to be received into a non-existent or protected
part of the process address space.

SEE ALSO
read(2), send(2), socket(2)

STATUS
RECV (2) currently is not supported by Digital Equipment Corporation.

2-84

RENAME(2)

NAME
rename - change the name of a file

SYNTAX
rename(from, to)
char *from, *to;

DESCRIPTION
Rename causes the link named from to be renamed as to. If to exists, then it is first
removed. Both from and to must be of the same type (that is, both directories or both
non-directories), and must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash
in the middle of the operation.

A 0 value is returned if the operation succeeds, otherwise rename returns -1 and the global
variable errno indicates the reason for the failure.

DIAGNOSTICS
Rename will fail and neither of the argument files will be affected if any of the following
are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[ENOENT]

[EPERM]

[EXDEV]

[EACCES]

[EROFS]

[EFAULT]

[EINVAL]

SEE ALSO
open(2)

RESTRICTIONS

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by from does not exist.

The file named by from is a directory and the effective user ID is not
super-user.

The link named by to and the file named by from are on different logical
devices (file systems). Note that this error code will not be returned if the
implementation permits cross-device links.

The requested link requires writing in a directory with a mode that denies
write permission.

The requested link requires writing in a directory on a read-only file sys
tem.

Path points outside the process's allocated address space.

From is a parent directory of to.

The system can deadlock if a loop in the file system graph is present. This loop takes the
form of an entry in directory "a", say "a/foo", being a hard link to directory "b", and an
entry in directory "b", say "b/bar", being a hard link to directory "a". When such a loop
exists and two separate processes attempt to perform "rename a/foo bihar" and "rename

2-85

RENAME(2)

blbar a/foo", respectively, the system may deadlock attempting to lock both directories for
modification. Hard links to directories should be replaced by symbolic links by the system
administrator.

STATUS
RENAME (2) currently is not supported by Digital Equipment Corporation.

2-86

RMDIR(2)

NAME
rmdir - remove a directory file

SYNTAX
rmdir(path)
char *path;

DESCRIPTION
Rmdir removes a directory file whose name is given by path. The directory must not have
any entries other than "." and " .. ".

A 0 is returned if the remove succeeds; otherwise a -1 is returned and an error code is
stored in the global location errno.

DIAGNOSTICS
The named file is removed unless one or more of the following are true:

[ENOTEMPTY]

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

The named directory contains files other than "." and " .. " in it.

The pathname contains a character with the high-order bit set.

The pathname was too long.

A component of the path prefix is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

Write permission is denied on the directory containing the link to be
removed.

The directory to be removed is the mount point for a mounted file system.

The directory entry to be removed resides on a read -only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

mkdir(2), unlink(2)

STATUS
RMDIR (2) currently is not supported by Digital Equipment Corporation.

2-87

SELECT(2)

NAME
select - synchronous i/o multiplexing

SYNTAX
#include <sys/time.h>

nfound = select(nfds, readfds, writefds, execptfds, timeout)
int nfound, nfds, *readfds, *writefds, *execptfds;
struct timeval *timeout; .

DESCRIPTION
Select examines the i/o descriptors specified by the bit masks readfds, writefds, and
execptfds to see if they are ready for reading, writing, or have an exceptional condition
pending, respectively. File descriptor f is represented by the bit "1«f" in the mask. Nfds
desciptors are checked, i.e. the bits from 0 through nfds-1 in the masks are examined.
Select returns, in place, a mask of those descriptors which are ready. The total number of
ready descriptors is returned in nfound.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to
complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero valued timeval structure.

Any of readfds, writefds, and execptfds may be given as 0 if no descriptors are of interest.

Select returns the number of descriptors which are contained in the bit masks, or -1 if an
error occurred. If the time limit expires then select returns O.

DIAGNOSTICS
An error return from select indicates:

[EBADF]

[EINTR]

One of the bit masks specified an invalid descriptor.

An signal was delivered before any of the selected for events occurred or
the time limit expired.

SEE ALSO
accept(2), connect(2), read(2), write(2), recv(2), send(2)

RESTRICTIONS
The descriptor masks are always modified on return, even if the call returns as the result of
the timeout.

STATUS
SELECT (2) currently is not supported by Digital Equipment Corporation.

2-88

NAME
send, sendto, sendmsg - send a message from a socket

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

cc = send(s, msg, len, flags)
int cc, s;
char *msg;
int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;
char *msg;
int len, flags;
struct sockaddr *to;
int to len;

cc = sendmsg(s, msg, flags)
int cc, s;
struct msghdr msg[];
int flags;

DESCRIPTION

SEND(2)

Send, sendto, and sendmsg are used to transmit a message to another socket. Send may be
used only when the socket is in a connected state, while sendto and sendmsg may be used
at any time.

The address of the target is given by to with tolen specifying its size. The length of the
message is given by len. If the message is too long to pass atomically through the underly
ing protocol, then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some
locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then
send normally blocks, unless the socket has been placed in non-blocking i/o mode. The
select (2) call may be used to determine when it is possible to send more data.

The flags parameter may be set to SOLOOB to send "out-of-band" data on sockets which
support this notion (e.g. SOCIU'TREAM).

See recu (2) for a description of the msghdr structure.

The call returns the number of characters sent, or -1 if an error occurred.

DIAGNOSTICS
[EBADF]

[ENOTSOCK]

[EFAULT]

An invalid descriptor was specified.

The argument s is not a socket.

An invalid user space address was specified for a parameter.

2-89

SEND(2)

[EMSGSIZE] The socket requires that message be sent atomically, and the size of
the message to be sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation
would block.

SEE ALSO
recv(2), socket(2)

STATUS
SEND (2) currently is not supported by Digital Equipment Corporation.

2-90

SETGROUPS (2)

NAME
setgroups - set group access list

SYNTAX
#include <sys/param.h>

setgroups(ngroups, gidset)
int ngroups, *gidset;

DESCRIPTION
Setgroups sets the group access list of the current user process according to the array gid
set. The parameter ngroups indicates the number of entries in the array and must be no
more than NGRPS, as defined in <sys/param.h>.

Only the super-user may set new groups.

A 0 value is returned on success, -1 on error, with a error code stored in errno.

DIAGNOSTICS
The setgroups call will fail if:

[EPERM]

[EFAULT]

SEE ALSO

The caller is not the super-user.

The address specified for gidset is outside the process address space.

getgroups(2), initgroups(3X)

STATUS
SETGROUPS (2) currently is not supported by Digital Equipment Corporation.

2-91

SETPGRP(2)

NAME
setpgrp - set process group

SYNTAX
setpgrp(pid, pgrp)
int pid, pgrp;

DESCRIPTION
Setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is
zero, then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same effective
user-id as the invoker or be a descendant of the invoking process.

Setpgrp returns when the operation was successful. If the request failed, -1 is returned
and the global variable errno indicates the reason.

DIAGNOSTICS
Setpgrp will fail and the process group will not be altered if one of the following occur:

[ESRCH]

[EPERM]

SEE ALSO
getpgrp(2)

STATUS

The requested process does not exist.

The effective user ID of the requested process is different from that of the
caller and the process is not a descendent of the calling process.

SETPGRP (2) currently is not supported by Digital Equipment Corporation.

2-92

SETQUOT A (2)

NAME
setquota - enable/disable quotas on a file system

SYNTAX
setquota(special, file)
char *special, *file;

DESCRIPTION
Disc quotas are enabled or disabled with the setquota call. Special indicates a block spe
cial device on which a mounted file system exists. If file is nonzero, it specifies a file in that
file system from which to take the quotas. If file is 0, then quotas are disabled on the file
system. The quota file must exist; it is normally created with the checkquota(8) program.

Only the super-user may turn quotas on or off.

A 0 return value indicates a successful call. A value of -1 is returned when an error occurs
and errno is set to indicate the reason for failure.

DIAGNOSTICS
Setquota will fail when one of the following occurs:

The caller is not the super-user.

Special does not exist.

Special is not a block device.

[NODEV]

[NODEV]

[ENOTBLK]

[ENXIO] The major device number of special is out of range (this indicates no dev
ice driver exists for the associated hardware).

[EPERM]

[ENOTDIR]

[EROFS]

[EACCES]

[EACCES]

SEE ALSO

The pathname contains a character with the high-order bit set.

A component of the path prefix in file is not a directory.

File resides on a read-only file system.

File resides on a file system different from special.

File is not a plain file.

quota(2), quotacheck(8), quotaon(8)

STATUS
SETQUOTA (2) currently is not supported by Digital Equipment Corporation.

2-93

SETREGID (2)

NAME
setregid - set real and effective group ID

SYNTAX
setregid(rgid, egid)
int rgid, egid;

DESCRIPTION
The real and effective group ID's of the current process are set to the arguments. Only the
super-user may change the real group ID of a process. Unpriviledged users may change the
effective group ID to the real group ID, but to no other.

Supplying a value of -1 for either the real or effective group ID forces the system to substi
tute the current ID in place of the -1 parameter.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
[EPERM] The current process is not the super-user and a change other than changing

the effective group-id to the real group-id was specified.

SEE ALSO
getgid(2), setreuid(2), setgid(3)

STATUS
SETREGID (2) currently is not supported by Digital Equipment Corporation.

2-94

NAME
setreuid - set real and effective user ID's

SYNTAX
setreuid(ruid, euid)
int ruid, euid;

DESCRIPTION

SETREUID (2)

The real and effective user ID's of the current process are set according to the arguments.
If ruid or euid is -1, the current uid is filled in by the system. Only the super-user may
modify the real uid of a process. Users other than the super-user may change the effective
uid of a process only to the real uid.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
[EPERM]

SEE ALSO

The current process is not the super-user and a change other than changing
the effective user-id to the real user-id was specified.

getuid(2), setregid(2), setuid(3)

STATUS
SETREUID (2) currently is not supported by Digital Equipment Corporation.

2-95

SHUTDOWN (2)

NAME
shutdown - shut down part of a full-duplex connection

SYNTAX
shutdown(s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket associated
with s to be shut down. If how is 0, then further receives will be disallowed. If how is 1,
then further sends will be disallowed. If how is 2, then further sends and receives will be
disallowed.

A 0 is returned if the call succeeds, -1 if it fails.

DIAGNOSTICS
The call succeeds unless:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is a file, not a socket.

[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

STATUS
SHUTDOWN (2) currently is not supported by Digital Equipment Corporation.

2-96

NAME
sigblock - block signals

SYNTAX
sigblock(mask);
int mask;

DESCRIPTION

SIGBLOCK(2)

Sigblock causes the signals specified in mask to be added to the set of signals currently
being blocked from delivery. Signal i is blocked if the i-th bit in mask is a l.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently
imposed by the system.

The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigsetmask(2),

STATUS
SIGBLOCK (2) currently is not supported by Digital Equipment Corporation.

2-97

SIGPAUSE (2)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNTAX
sigpause(sigmask)
int sigmask;

DESCRIPTION
Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive;
on return the set of masked signals is restored. Sigmask is usually 0 to indicate that no
signals are now to be blocked. Sigpause always terminates by being interrupted, returning
EINTR.

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, variables
modified on the occurance of the signal are examined to determine that there is no work to
be done, and the process pauses awaiting work by using sigpause with the mask returned
by sigblock.

SEE ALSO
sigblock(2), sigvec(2)

STATUS
SIGP A USE (2) currently is not supported by Digital Equipment Corporation.

2-98

SIGSETMASK (2)

NAME
sigsetmask - set current signal mask

SYNTAX
sigsetmask(mask);
int mask;

DESCRIPTION
Sigsetmask sets the current signal mask (those signals which are blocked from delivery).
Signal i is blocked if the i-th bit in mask is a 1.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked.

The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigblock(2), sigpause(2)

STATUS
SIGSETMASK (2) currently is not supported by Digital Equipment Corporation.

2-99

SIGST ACK (2)

NAME
sigstack - set and/or get signal stack context

SYNTAX
#include <signal.h>

struct sigstack {
cadd~t ss_sp;
int ss_onstack;

};

sigstack(ss, oss);
struct sigstack *ss, *oss;

DESCRIPTION
Sigstack allows users to define an alternate stack on which signals are to be processed. If
ss is non-zero, it specifies a signal stack on which to deliver signals and tells the system if
the process is currently executing on that stack. When a signal's action indicates its
handler should execute on the signal stack (specified with a siguec(2) call), the system
checks to see if the process is currently executing on that stack. If the process is not
currently executing on the signal stack, the system arranges a switch to the signal stack for
the duration of the signal handler's execution. If oss is non-zero, the current signal stack
state is returned.

Signal stacks are not "grown" automatically, as is done for the normal stack. If the stack
overflows unpredictable results may occur.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
Sigstack will fail and the signal stack context will remain unchanged if one of the following
occurs.

[EFAULT]

SEE ALSO

Either ss or oss points to memory which is not a valid part of the process
address space.

sigvec(2), setjmp(3)

STATUS
SIGSTACK (2) currently is not supported by Digital Equipment Corporation.

2-100

) NAME
sigvec - software signal facilities

SYNTAX
#include <signal.h>

struct sigvec {
int (*sv_handler)();
int sv_mask;
int sv_onstack;

};

sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

DESCRIPTION

SIGVEC(2)

The system defines a set of signals that may be delivered to a process. Signal delivery
resembles the occurence of a hardware interrupt: the signal is blocked from further
occurrence, the current process context is saved, and a new one is built. A process may
specify a handler to which a signal is delivered, or specify that a signal is to be blocked or
ignored. A process may also specify that a default action is to be taken by the system
when a signal occurs. Normally, signal handlers execute on the current stack of the process.
This may be changed, on a per-handler basis, so that signals are taken on a special signal
stack.

All signals have the same priority. Signal routines execute with the signal that caused their
invocation blocked, but other signals may yet occur. A global signal mask defines the set of
signals currently blocked from delivery to a process. The signal mask for a process is initil
ized from that of its parent (normally 0). It may be changed with a sigblock (2) or sigset
mask (2) call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending
for the process. If the signal is not currently blocked by the process then it is delivered to
the process. When a signal is delivered, the current state of the process is saved, a new sig
nal mask is calculated (as described below), and the signal handler is invoked. The call to
the handler is arranged so that if the signal handling routine returns normally the process
will resume execution in the context from before the signal's delivery. If the process wishes
to resume in a different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of
the process' signal handler (or until a sigblock or sigsetmask call is made). This mask is
formed by taking the current signal mask, adding the signal to be delivered, and or'ing in
the signal mask associated with the handler to be invoked.

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler rou
tine and mask to be used when delivering the specified signal. Further, if sv_onstack is 1,
the system will deliver the signal to the process on a signal stack, specified with sig
stack (2). If ovec is non-zero, the previous handling information for the signal is returned to

2-101

SIGVEC(2)

the user.

The following is a list of all signals with names as in the include file <signal.h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction
SIGTRAP 5* trace trap
SIGIOT 6* lOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error
SIGSEGV 11* segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16- urgent condition present on socket
SIGSTOP 17t stop (cannot be caught, blocked, or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19- continue after stop (cannot be blocked)
SIGCHLD 20- child status has changed
SIGTTIN 2lt background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23- i/o is possible on a descriptor (see fcntl(2»
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2»
SIGXFSZ 25 file size limit exceeded (see setrlimit(2»
SIGVTALRM 26 virtual time alarm (see setitimer(2»
SIGPROF 27 profiling timer alarm (see setitimer(2»

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another siguec call is made, or
an execue(2) is performed. The default action for a signal may be reinstated by setting
su handler to SIG_DFL; this default is termination (with a core image for starred signals)
except for signals marked with - or t. Signals marked with - are discarded if the action is
SIG_DFL; signals marked with t cause the process to stop. If s'Lhandler is SIG_IGN the
signal is subsequently ignored, and pending instances of the signal are discarded.

If a caught signal occurs during certain system calls, causing the call to terminate prema
turely, the call is automatically restarted. In particular this can occur during a read or
write(2) on a slow device (such as a terminal; but not a file) and during a wait(2).

After a fork (2) or ufork (2) the child inherits all signals, the signal mask, and the signal
stack.

2-102

\
)

SIGVEC(2)

Exeeve (2) resets all caught signals to default action; ignored signals remain ignored; the sig
nal mask remains the same; the signal stack state is reset.

The mask specified in vee is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. This
is done silently by the system.

A 0 value indicated that the call succeeded. A -1 return value indicates an error occured
and errno is set to indicated the reason.

DIAGNOSTICS
Sigvee will fail and no new signal handler will be installed if one of the following occurs:

[EFAULT] Either vee or ovee points to memory which is not a valid part of the pro
cess address space.

Sig is not a valid signal number. [EINVAL]

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or SIG
STOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill(l) , ptrace(2) , kill(2), sigblock(2), sigsetmask(2), sigpause(2) sigstack(2), sigvec(2),
setjmp(3), tty(4)

NOTES (VAX-II)
The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number, into which the hardware faults and traps are mapped as
defined below. Code is a parameter which is either a constant as given below or, for compa
tibility mode faults, the code provided by the hardware (Compatibility mode faults are dis
tinguished from the other SIGILL traps by having PSL CM set in the psI). Sep is a
pointer to the sigeontext structure (defined in <signal.h», used to restore the context
from before the signal.

The following defines the mapping of hardware traps to signals and codes. All of these
symbols are defined in <signal.h>:

Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE

Code

FPEJNTOVF _TRAP
FPEJNTDIV_TRAP
FPE_FL TOVF_TRAP
FPE_FLTDIV_TRAP
FPEYLTUND_TRAP
FPE_DECOVF_TRAP

2-103

SIGVEC(2)

Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Length access control
Protection violation
Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
Chme
Chms
Chmu

STATUS

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS
SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

FPE_SUBRNG_TRAP
FPE_FLTOVF..;..FAULT
FPEYLTDIV_FAULT
FPE_FLTUND_FAULT

ILL.JtESOP_FAULT
ILL_RESADYAULT

hardware supplied code

SIGVEC (2) currently is not supported by Digital Equipment Corporation.

2-104

NAME
socket - create an endpoint for communication

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

s = socket(af, type, protocol)
int s, af, type, protocol;

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

SOCKET(2)

The at parameter specifies an address format with which addresses specified in later opera
tions using the socket should be interpreted. These formats are defined in the include file
<sys/socket.h>. The currently understood formats are

AF_UNIX
AF_INET
AF_PUP
AF_IMPLINK

(UNIX path names),
(ARPA Internet addresses),
(Xerox PUP-I Internet addresses), and
(IMP "host at IMP" addresses).

The socket has the indicated type which specifies the semantics of communication.
Currently defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK....RAW
SOCK_SEQP ACKET
SOCK....RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte
streams with an out-of-band data transmission mechanism. A SOCKJ)GRAM socket sup
ports datagrams (connectionless, unreliable messages of a fixed (typically small) maximum
length). SOCK....RA W sockets provide access to internal network interfaces. The types
SOCK_RAW, which is available only to the super-user, and SOCK...SEQPACKET and
SOCK_RDM, which are planned, but not yet implemented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a
single protocol exists to support a particular socket type using a given address format.
However, it is possible that many protocols may exist in which case a particular protocol
must be specified in this manner. The protocol number to use is particular to the "com
munication domain" in which communication is to take place; see services (3N) and
protocols (3N).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A con
nection to another socket is created with a connect (2) call. Once connected, data may be
transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2)
calls. When a session has been completed a close(2) may be performed. Out-of-band data

2-105

SOCKET(2)

may also be transmitted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is
not lost or duplicated. If a piece of data for which the peer protocol has buffer space can
not be successfully transmitted within a reasonable length of time, then the connection is
considered broken and calls will indicate an error with -1 returns and with ETIMEDOUT
as the specific code in the global variable errno. The protocols optionally keep sockets
"warm" by forcing transmissions roughly every minute in the absence of other activity. An
error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a broken
stream; this causes naive processes, which do not handle the signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents
named in send(2) calls. It is also possible to receive datagrams at such a socket with
recv(2).

An fcntl(2) call can be used to specify a process group, to receive a SIGURG signal when
the out-of-band data arrives.

The operation of sockets is controlled by socket level options. These options are defined in
the file <sys/socket.h> and explained below. Setsockopt and getsockopt(2) are used to set
and get options, respectively.

SO_DEBUG turn on recording of debugging information
SO_REUSEADDR allow local address reuse
SO_KEEP ALIVE keep connections alive
SO_DONTROUTE do no apply routing on outgoing messages
SO_LINGER linger on close if data present
SO_DONTLINGER do not linger on close

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR
indicates the rules used in validating addresses supplied in a bind (2) call should allow reuse
of local addresses. SO_KEEP ALIVE enables the periodic transmission of messages on a
connected socket. Should the connected party fail to respond to these messages, the con
nection is considered broken and processes using the socket are notified via a SIGPIPE sig
nal. SO.J)ONTROUTE indicates that outgoing messages should bypass the standard rout
ing facilities. Instead, messages are directed to the appropriate network interface according
to the network portion of the destination address. SO_LINGER and SO_DONTLINGER
control the actions taken when unsent messags are queued on socket and a close (2) is per
formed. If the socket promises reliable delivery of data and SO_LINGER is set, the system
will block the process on the close attempt until it is able to transmit the data or until it
decides it is unable to deliver the information (a timeout period, termed the linger interval,
is specified in the setsockopt call when SO_LINGER is requested). If SO_DONTLINGER is
specified and a close is issued, the system will process the close in a manner which allows
the process to continue as quickly as possible.

A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing
the socket.

2-106

SOCKET(2)

DIAGNOSTICS
The socket call fails if:

[EAFNOSUPPORT] The specified address family is not supported in this version of the
system.

[ESOCKTNOSUPPORT]
The specified socket type is not supported in this address family.

[EPROTONOSUPPORT]

[EMFILE]

[ENOBUFS]

SEE ALSO

The specified protocol is not supported.

The per-process descriptor table is full.

No buffer space is available. The socket cannot be created.

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recv(2),
select(2), send(2), shutdown(2), socketpair(2)
"A 4.2BSD Interprocess Communication Primer".

STATUS
SOCKET (2) currently is not supported by Digital Equipment Corporation.

2-107

SOCKETPAIR (2)

NAME
socketpair - create a pair of connected sockets

SYNTAX
#include <sys/types.h>
#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION
The 80cketpair call creates an unnamed pair of connected sockets in the specified domain
d, of the specified type, and using the optionally specified protocol. The descriptors used
in referencing the new sockets are returned in 8V[0] and 8v[1]. The two sockets are indis
tinguishable.

A 0 is returned if the call succeeds, -1 if it fails.

DIAGNOSTICS
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process.

[EAFNOSUPPORT] The specified address family is not supported on this machine.

[EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The specified protocol does not support creation of socket pairs.

[EFAULT]

SEE ALSO

The address sv does not specify a valid part of the process address
space.

read(2), write(2), pipe(2)

STATUS
SOCKETP AIR (2) currently is not supported by Digital Equipment Corporation.

2-108

NAME
stat, lstat, fstat - get file status

SYNTAX
#include <sys/types.h>
#include <sys/stat.h>

stat(path, buf)
char *path;
struct stat *buf;

lstat(path, buf)
char *path;
struct stat *buf;

fstat(fd, buf)
int fd;
struct stat *buf;

DESCRIPTION

STAT(2)

Stat obtains information about the file path. Read, write or execute permission of the
named file is not required, but all directories listed in the path name leading to the file
must be reachable.

Lstat is like stat except in the case where the named file is a symbolic link, in which case
lstat returns information about the link, while stat returns information about the file the
link references.

Fstat obtains the same information about an open file referenced by the argument descrip
tor, such as would be obtained by an open call.

But is a pointer to a stat structure into which information is placed concerning the file.
The contents of the structure pointed toby but

struct stat {
dev_t sCdev; /* device inode resides on * /
ino ... t st.ino; /* this inode's number * /
u ... short st_mode; /* protection * /
short st.nlink; /* number or hard links to the file * /
short st..uid; /* user-id of owner * /
short st_gid; /* group-id of owner * /
dev_t sCrdev; /~ the device type, for inode that is device * /
ofet sCsize; /* total size of file * /
time_t st.Jltime; /* file last access time * /
int st ... spare1;
time ... t st ... mtime; /* file last modify time * /
int st_spare2;
time_t st_ctime; /* file last status change time * /
int st_spare3;
long sLblksize; /* optimal blocksize for file system i/o ops * /

2-109

STAT(2)

long sCblocks; /* actual number of blocks allocated * /
long st_spare4[2];

};

sCatime Time when file data was last read or modified. Changed by the following sys
tem calls: mknod(2), utimes(2), read(2), and write(2). For reasons of
efficiency, sLatime is not set when a directory is searched, although this would
be more logical.

sCmtime Time when data was last modified. It is not set by changes of owner, group,
link count, or mode. Changed by the following system calls: mknod(2),
utimes (2), write (2).

sectime Time when file status was last changed. It is set both both by writing and
changing the i-node. Changed by the following system calls: chmod(2)
chown(2), link(2), mknod(2), unlink(2), utimes(2), write(2).

The status information word st mode has bits:
#define S_IFMT
#define S_IFDIR
#define S_IFCHR
#define S_IFBLK
#define S ..)FREG
#define S_IFLNK
#define S_IFSOCK
#define S_ISUID
#define S_ISGID
#define S_ISVTX
#define SJREAD
#define SJWRITE
#define S_IEXEC

0170000
0040000
0020000
0060000
0100000
0120000
0140000
0004000
0002000
0001000
0000400
0000200
0000100

/* type of file * /
/* directory * /
/* character special * /
/* block special * /
/* regular * /
/* symbolic link * /
/* socket */
/* set user id on execution * /
/* set group id on execution * /
/* save swapped text even after use * /
/* read permission, owner * /
/* write permission, owner * /
/* execute/search permission, owner * /

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)).

When fd is associated with a pipe, fstat reports an ordinary file with an i-node number, res
tricted permissions, and a not necessarily meaningful length.

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
Stat and lstat will fail if one or more of the following are true:

[ENOTDIR]

[EPERM]

[ENOENT]

[ENOENT]

[EACCES]

2-110

A component of the path prefix is not a directory.

The pathname contains a character with the high-order bit set.

The pathname was too long.

The named file does not exist.

Search permission is denied for a component of the path prefix.

STAT(2)

[EFAULT] Buf or name points to an invalid address.

Fstat will fail if one or both of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

Buf points to an invalid address. [EFAULT]

[ELOOP]

SEE ALSO

Too many symbolic links were encountered in translating the pathname.

chmod(2), chown(2), utimes(2)

RESTRICTIONS
Applying fstat to a socket returns a zero'd buffer.

The fields in the stat structure currently marked sLsparel, st_spare2, and sLspare3 are
present in preparation for inode time stamps expanding to 64 bits. This, however, can
break certain programs which depend on the time stamps being contiguous (in calls to
utimes(2».

STATUS
STAT (2) currently is not supported by Digital Equipment Corporation.

2-111

SWAPON(2)

NAME
swapon - add a swap device for interleaved paging/swapping

SYNTAX
swapon(special)
char *special;

DESCRIPTION
Swapon makes the block device special available to the system for allocation for paging
and swapping. The names of potentially available devices are known to the system and
defined at system configuration time. The size of the swap area on special is calculated at
the time the device is first made available for swapping.

SEE ALSO
swapon(8), config(8)

RESTRICTIONS
There is no way to stop swapping on a disk so that the pack may be dismounted.

STATUS
SW APON (2) currently is not supported by Digital Equipment Corporation.

2-112

SYMLlNK(2)

NAME
symlink - make symbolic link to a file

SYNTAX
symlink(namel, name2)
char *namel, *name2;

DESCRIPTION
A symbolic link name2 is created to namel (name2 is the name of the file created, namel
is the string used in creating the symbolic link). Either name may be an arbitrary path
name; the files need not be on the same file system.

Upon successful completion, a zero value is returned. If an error occurs, the error code is
stored in errno and a -1 value is returned.

DIAGNOSTICS
The symbolic link is made unless on or more of the following are true:

[EPERM]

[ENOENT]

[ENOTDIR]

[EEXIST]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

Either namel or name2 contains a character with the high-order bit set.

One of the pathnames specified was too long.

A component of the name2 prefix is not a directory.

Name2 already exists.

A component of the name2 path prefix denies search permission.

The file name2 would reside on a read-only file system.

Namel or name2 points outside the process's allocated address space.

Too may symbolic links were encountered in translating the pathname.

link(2), In(l), unlink(2)

STATUS
SYMLINK (2) currently is not supported by Digital Equipment Corporation.

2-113

SYNC(2)

NAME
sync - update super-block

SYNTAX
syncO

DESCRIPTION
Sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block I/O.

Sync should be used by programs which examine a file system, for example {sck, dr, etc.
Sync is mandatory before a boot. The writing, although scheduled, is not necessarily com
plete upon return from sync.

SEE ALSO
fsync(2), sync(8), update(8)

STATUS
SYNC (2) currently is not supported by Digital Equipment Corporation.

2-114

\.
j

SYSCALL(2)

NAME
syscall - indirect system call

SYNTAX
syscall(number, arg, ...) (VAX-11)

DESCRIPTION
Syscall performs the system call whose assembly language interface has the specified
number, register arguments rO and r 1 and further arguments arg.

The rO value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, syscall returns -1 and sets the external variable errno (see intro(2».

RESTRICTIONS
There is no way to simulate system calls such as pipe(2), which return values in register rl.

STATUS
SYSCALL (2) currently is not supported by Digital Equipment Corporation.

2-115

TRUNCATE(2)

NAME
truncate - truncate a file to a specified length

SYNTAX
truncate(path, length)
char *path;
int length;

ftruncate(fd, length)
int fd, length;

DESCRIPTION
Truncate causes the file named by path or referenced by fd to be truncated to at most
length bytes in size. If the file previously was larger than this size, the extra data is lost.
With ftruncate, the file must be open for writing.

A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the glo
bal variable errno specifies the error.

DIAGNOSTICS
Truncate succeeds unless:

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[EISDIR]

[EROFS]

[ETXTBSY]

[EFAULT]

The pathname contains a character with the high-order bit set.

The pathname was too long.

A component of the path prefix of path is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

The named file is a directory.

The named file resides on a read -only file system.

The file is a pure procedure (shared text) file that is being executed.

Name points outside the process's allocated address space.

Ftruncate succeeds unless:

[EBADF]

[EINVAL]

SEE ALSO
open(2)

RESTRICTIONS

The fd is not a valid descriptor.

The fd references a socket, not a file.

Partial blocks discarded as the result of truncation are not zero filled; this can result in
holes in files which do not read as zero.

STATUS
TRUNCATE (2) currently is not supported by Digital Equipment Corporation.

2-116

NAME
umask - set file creation mode mask

SYNTAX
oumask = umask(numask)
int oumask, numask;

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask to numask and returns the previous value
of the mask. The low-order 9 bits of numask are used whenever a file is created, clearing
corresponding bits in the file mode (see chmod(2». This clearing allows each user to res
trict the default access to his files.

The value is initially 022 (write access for owner only). The mask is inherited by child
processes.

The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), mknod(2), open(2)

STATUS
UMASK (2) currently is not supported by Digital Equipment Corporation.

2-117

UNLlNK(2)

NAME
unlink - remove directory entry

SYNTAX
unlink(path)
char *path;

DESCRIPTION
Unlink removes the entry for the file path from its directory. If this entry was the last link
to the file, and no process has the file open, then all resources associated with the file are
reclaimed. If, however, the file was open in any process, the actual resource reclamation is
delayed until it is closed, even though the directory entry has disappeared.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
The unlink succeeds unless:

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EPERM]

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

The path contains a character with the high-order bit set.

The path name is too long.

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to be
removed.

The named file is a directory and the effective user ID of the process is not
the super-user.

The entry to be unlinked is the mount point for a mounted file system.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

close(2), link(2), rmdir(2)

STATUS
UNLINK (2) currently is not supported by Digital Equipment Corporation.

2-118

UTIMES(2)

NAME
utimes - set file times

SYNTAX
#include <sys/time.h>

utimes(file, tvp)
char *file;
struct timeval *tvp[2];

DESCRIPTION
The utimes call uses the "accessed" and "updated" times in that order from the tup vector
to set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The "inode-changed" time of
the file is set to the current time.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

DIAGNOSTICS
Utime will fail if one or more of the following are true:

[EPERM]

[ENOENT]

[ENOENT]

[ENOTDIR]

[EACCES]

[EPERM]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO
stat(2)

STATUS

The pathname contained a character with the high-order bit set.

The pathname was too long.

The named file does not exist.

A component of the path prefix is not a directory.

A component of the path prefix denies search permission.

The process is not super-user and not the owner of the file.

The effective user ID is not super-user and not the owner of the file and
times is NULL and write access is denied.

The file system containing the file is mounted read-only.

Tup points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

UTIMES (2) currently is not supported by Digital Equipment Corporation.

2-119

VFORK(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNTAX
pid = vforkO
int pid;

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the
old process, which is horrendously inefficient in a paged environment. It is useful when the
purpose of fork(2) would have been to create a new system context for an execve. Vfork
differs from fork in that the child borrows the parent's memory and thread of control until
a call to execve(2) or an exit (either by a call to exit(2) or abnormally.) The parent process
is suspended while the child is using its resources.

Vfork returns 0 in the child's context and (later) the pid of the child in the parent's con
text.

Vfork can normally be used just like fork. It does not work, however, to return while run
ning in the childs context from the procedure which called vfork since the eventual return
from vfork would then return to a no longer existent stack frame. Be careful, also, to call
exit rather than exit if you can't execve, since exit will flush and close standard I/O chan

nels, and thereby mess up the parent processes standard I/O data structures. (Even with
fork it is wrong to call exit since buffered data would then be flushed twice.)

SEE ALSO
fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS
Same as for fork.

RESTRICTIONS
To avoid a possible deadlock situation, processes which are children in the middle of a
vfork are never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed
and input attempts result in an end-of-file indication.

STATUS
VFORK (2) currently is not supported by Digital Equipment Corporation.

2-120

NAME
vhangup - virtually "hangup" the current control terminal

SYNTAX
vhangupO

DESCRIPTION

VHANGUP(2)

Vhangup is used by the initialization process init(8) (among others) to arrange that users
are given "clean'" terminals at login, by revoking access of the previous users' processes to
the terminal. To effect this, vhangup searches the system tables for references to the con
trol terminal of the invoking process, revoking access permissions on each instance of the
terminal which it finds. Further attempts to access the terminal by the affected processes
will yield i/o errors (EBADF). Finally, a hangup signal (SIGHUP) is sent to the process
group of the control terminal.

Access to the control terminal via Idev/tty is still possible.

SEE ALSO
in it (8)

STATUS
VHANGUP (2) currently is not supported by Digital Equipment Corporation.

2-121

WAIT(2)

NAME
wait, wait3 - wait for process to terminate

SYNTAX
#include <sys/wait.h>

pid = wait(status)
int pid;
union wait *status;

pid = wait(O)
int pid;

#include <sys/time.h>
#include <sys/resource.h>

pid = wait3(status, options, rusage)
int pid;
union wait *status;
int options;
struct rusage *rusage;

DESCRIPTION
Wait causes its caller to delay until a signal is received or one of its child processes ter
minates. If any child has died since the last wait, return is immediate, returning the pro
cess id and exit status of one of the terminated children. If there are no children, return is
immediate with the value -1 returned.

On return from a successful wait call, status is nonzero, and the high byte of status con
tains the low byte of the argument to exit supplied by the child process; the low byte of
status contains the termination status of the process. A more precise definition of the
status word is given in <sys/wait.h>.

Wait3 provides an alternate interface for programs which must not block when collecting
the status of child processes. The status parameter is defined as above. The options
parameter is used to indicate the call should not block if there are no processes which wish
to report status (WNOHANG), and/or that only children of the current process which are
stopped due to a SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal should have their
status reported (WUNTRACED). If rusage is non-zero, a summary of the resources used
by the terminated process and all its children is returned (this information is currently not
available for stopped processes).

When the WNOHANG option is specified and no processes wish to report status, wait3
returns a pid of O. The WNOHANG and WUNTRACED options may be combined by
or'ing the two values.

See sigvec(2) for a list of termination statuses (signals); 0 status indicates normal termina
tion. A special status (0177) is returned for a stopped process which has not terminated
and can be restarted; see ptrace(2). If the 0200 bit of the termination status is set, a core
image of the process was produced by the system.

2-122

WAIT(2)

If the parent process terminates without waiting on its children, the initialization process
(process ID = 1) inherits the children.

Wait and wait3 are automatically restarted when a process receives a signal while awaiting
termination of a child process.

If wait returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

Wait3 returns -1 if there are no children not previously waited for; 0 is returned if
WNOHANG is specified and there are no stopped or exited children.

DIAGNOSTICS
Wait will fail and return immediately if one or more of the following are true:

[ECHILD]

[EFAULT]

SEE ALSO
exit(2)

STATUS

The calling process has no existing unwaited-for child processes.

The status or rusage arguments point to an illegal address.

WAIT (2) currently is not supported by Digital Equipment Corporation.

2-123

WRITE(2)

NAME
write, writev - write on a file

SYNTAX
write(d, buf, nbytes)
int d;
char *buf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

writev(d, iov, ioveclen)
int d;
struct iovec *iov;
int ioveclen;

DESCRIPTION
Write attempts to write nbytes of data to the object referenced by the descriptor d from
the buffer pointed to by but. Writev performs the same action, but gathers the output data
from the iovlen buffers specified by the members of the iovec array: iov[O], iov[1], etc.

On objects capable of seeking, the write starts at a position given by the pointer associated
with d, see lseek(2}. Upon return from write, the pointer is incremented by the number of
bytes actually written.

Objects that are not capable of seeking always write from the current position. The value
of the pointer associated with such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This
prevents penetration of system security by a user who "captures" a writable set-user-id file
owned by the super-user.

Upon successful completion the number of bytes actually writen is returned. Otherwise a
-1 is returned and errno is set to indicate the error.

DIAGNOSTICS
Write will fail and the file pointer will remain unchanged if one or more of the following
are true:

[EBADF]

[EPIPE]

[EPIPE]

[EFBIG]

[EFAULT]

2-124

D is not a valid descriptor open for writing.

An attempt is made to write to a pipe that is not open for reading by any
process.

An attempt is made to write to a socket of type SOCK STREAM which is
not connected to a peer socket.

An attempt was made to write a file that exceeds the process's file size
limit or the maximum file size.

Part of iov or data to be written to the file points outside the process's allo
cated address space.

WRITE(2)

SEE ALSO
Iseek(2), open(2), pipe(2)

STATUS
WRITE (2) currently is not supported by Digital Equipment Corporation.

2-125

INTRO(3)

NAME
intro - introduction to library functions

DESCRIPTION
This section describes functions that may be found in various libraries. The library func
tions are those other than the functions which directly invoke UNIX system primitives,
described in section 2. This section has the libraries physically grouped together. This is a
departure from older versions of the UNIX Programmer's Reference Manual, which did not
group functions by library. The functions described in this section are grouped into various
libraries:

(3) and (3S)
The straight "3" functions are the standard C library functions. The C library also
includes all the functions described in section 2. The 3S functions comprise the
standard I/O library. Together with the (3N), (3X), and (3C) routines, these func
tions constitute library libe, which is automatically loaded by the C compiler ee(1),
the Pascal compiler pe(I), and the Fortran compiler /77(1). The link editor Id(l)
searches this library under the '-lc' option. Declarations for some of these functions
may be obtained from include files indicated on the appropriate pages.

(3F) The 3F functions are all functions callable from FORTRAN. These functions per
form the same jobs as do the straight "3" functions.

(3M) These functions constitute the math library, libm. They are automatically loaded as
needed by the Pascal compiler pe(l) and the Fortran compiler /77(1). The link edi
tor searches this library under the '-1m' option. Declarations for these functions
may be obtained from the include file <math.h>.

(3N) These functions constitute the internet network library,

(3S) These functions constitute the 'standard I/O package', see intro(3S). These func
tions are in the library libe already mentioned. Declarations for these functions may
be obtained from the include file <stdio.h>.

(3X) Various specialized libraries have not been given distinctive captions. Files in which
such libraries are found are named on appropriate pages.

(3C) Routines included for compatibility with other systems. In particular, a number of
system call interfaces provided in previous releases of 4BSD have been included for
source code compatibility. The manual page entry for each compatibility routine
indicates the proper interface to use.

FILES
/lib/libc.a
lusr/lib/libm.a
lusr /lib/lib<u>.a
lusr /lib/libmJ>.a

3-1

INTRO(3)

SEE ALSO
intro(3C), intro(3S), intro(3F), intro(3M), intro(3N), nm(l), Id(l), cc(1), f77(1), intro(2)

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when the function is
undefined for the given arguments or when the value is not representable. In these cases
the external variable errno (see intro(2» is set to the value EDOM (domain error) or
ERANGE (range error). The values of EDOM and ERANGE are defined in the include file
<math.h>.

LIST OF FUNCTIONS
Name Appears on Page Description

abort abort.3 generate a fault
abort abort.3f terminate abruptly with memory image
abs abs.3 integer absolute value
access access.3f determine accessability of a file
acos sin. 3m trigonometric functions
alarm alarm.3c schedule signal after specified time
alarm alarm.3f execute a subroutine after a specified time
alloca malloc.3 memory allocator
arc plot.3x graphics interface
asctime ctime.3 convert date and time to ASCII
asin sin. 3m trigonometric functions
assert assert.3x program verification
atan sin. 3m trigonometric functions
atan2 sin.3m trigonometric functions
atof atof.3 convert ASCII to numbers
atoi atof.3 convert ASCII to numbers
atol atof.3 convert ASCII to numbers
bcmp bstring.3 bit and byte string operations
bcopy bstring.3 bit and byte string operations
bessel besse1.3f of two kinds for integer orders
bit bit.3f and, or, xor, not, rshift, lshift bitwise functions
bzero bstring.3 bit and byte string operations
cabs hypot.3m Euclidean distance
calloc malloc.3 memory allocator
ceil floor. 3m absolute value, floor, ceiling functions
chdir chdir.3f change default directory
chmod chmod.3f change mode of a file
circle plot.3x graphics interface
clearerr ferror.3s stream status inquiries
closedir directory.3 directory operations
closelog syslog.3 control system log
closepl plot.3x graphics interface
cont plot.3x graphics interface

3-2

INTRO(3)

cos sin.3m trigonometric functions
cosh sinh.3m hyperbolic functions
crypt crypt.3 DES encryption
ctime ctime.3 convert date and time to ASCII
ctime time.3f return system time
curses curses.3x screen functions with "optimal" cursor motion
dbminit dbm.3x data base subroutines
delete dbm.3x data base subroutines
dffrac flmin.3f return extreme values
dflmax flmin.3f return extreme values
dflmax range.3f return extreme values
dflmin flmin.3f return extreme values
dflmin range.3f return extreme values
drand rand.3f return random values
dtime etime.3f return elapsed execution time
ecvt ecvt.3 output conversion
edata end.3 last locations in program
encrypt crypt.3 DES encryption
end end.3 last locations in program
endfsent getfsent.3x get file system descriptor file entry
endgrent getgrent.3 get group file entry
endhostent gethostent.3n get network host entry
endnetent getnetent.3n get network entry
endprotoent getprotoen t. 3n get protocol entry
endpwent getpwent.3 get password file entry
endservent getservent.3n get service entry
environ exec1.3 execute a file
erase plot.3x graphics interface
etext end.3 last locations in program
etime etime.3f return elapsed execution time
exec exec1.3 execute a file
exece exec1.3 execute a file
execl exec1.3 execute a file
execle exec1.3 execute a file
execlp exec1.3 execute a file
exect exec1.3 execute a file
execv exec1.3 execute a file
execvp exec1.3 execute a file
exit exit.3 terminate a process after flushing any pending output
exit exit.3f terminate process with status
exp exp.3m exponential, logarithm, power, square root
fabs floor. 3m absolute value, floor, ceiling functions
fclose fclose.3s close or flush a stream
fcvt ecvt.3 output conversion

3-3

INTRO(3)

fdate fdate.3f return date and time in an ASCII string
feof ferror.3s stream status inquiries
ferror ferror.3s stream status inquiries
fetch dbm.3x data base subroutines
fHush fclose.3s close or flush a stream
ffrac flmin.3f return extreme values
ffs bstring.3 bit and byte string operations
fgetc getc.3f get a character from a logical unit
fgetc getc.3s get character or word from stream
fgets gets.3s get a string from a stream
fileno ferror.3s stream status inquiries
firstkey dbm.3x data base subroutines
flmax flmin.3f return extreme values
flmax range.3f return extreme values
flmin flmin.3f return extreme values
flmin range.3f return extreme values
floor floor. 3m absolute value, floor, ceiling functions
flush flush.3f flush output to a logical unit
fork fork.3f create a copy of this process
fpecnt trpfpe.3f trap and repair floating point faults
fprintf printf.3s formatted output conversion
fputc putc.3f write a character to a fortran logical unit
fputc putc.3s put character or word on a stream
fputs puts.3s put a string on a stream
fread fread.3s buffeted binary input/output
free malloc.3 memory allocator
frexp frexp.3 split into mantissa and exponent
fscanf scanf.3s formatted input conversion
fseek fseek.3f reposition a file on a logical unit
fseek fseek.3s reposition a stream
fstat stat.3f get file status
ftell fseek.3f reposition a file on a logical unit
ftell fseek.3s reposition a stream
ftime time.3c get date and time
fwrite fread.3s buffered binary input/output
gamma gamma. 3m log gamma function
gcvt ecvt.3 output conversion
gerror perror.3f get system error messages
getarg getarg.3f return command line arguments
getc getc.3f get a character from a logical unit
getc getc.3s get character or word from stream
getchar getc.3s get character or word from stream
getcwd getcwd.3f get pathname of current working directory
getdiskbyname getdisk.3x get disk description by its name

3-4

getenv
getenv
getfsent
getfsfile
getfsspec
getfstype
getgid
getgrent
getgrgid
getgrnam
gethostbyaddr
gethostbyname
gethostent
getlog
getlogin
getnetbyaddr
getnetbyname
getnetent
getpass
getpid
getprotobyname
getprotobynumber
getprotoent
getpw
getpwent
getpwnam
getpwuid
gets
getservbyname
getservbyport
getservent
getuid
getw
getwd
gmtime
gmtime
gtty
hostnm
htonl
htons
hypot
iargc
idate
ierrno

getenv.3
getenv.3f
getfsent.3x
getfsent.3x
getfsent.3x
getfsent.3x
getuid.3f
getgrent.3
getgrent.3
getgrent.3
gethostent.3n
gethostent.3n
gethosten t. 3n
getlog.3f
getlogin.3
getnetent.3n
getnetent.3n
getnetent.3n
getpass.3
getpid.3f
getprotoent.3n
getprotoent.3n
getprotoent.3n
getpw.3
getpwent.3
getpwent.3
getpwent.3
gets.3s
getservent.3n
getservent.3n
getservent.3n
getuid.3f
getc.3s
getwd.3
ctime.3
time.3f
stty.3c
hostnm.3f
byteorder.3n
byteorder.3n
hypot.3m
getarg.3f
idate.3f
perror.3f

value for environment name
get value of environment variables
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get user or group ID of the caller
get group file entry
get group file entry
get group file entry
get network host entry
get network host entry
get network host entry
get user's login name
get login name
get network entry
get network entry
get network entry
read a password
get process id
get protocol entry
get protocol entry
get protocol entry
get name from uid
get password file entry
get password file entry
get password file entry
get a string from a stream
get service entry
get service entry
get service entry
get user or group ID of the caller
get character or word from stream
get current working directory pathname
convert date and time to ASCII
return system time
set and get terminal state (defunct)
get name of current host

INTRO(3)

convert values between host and network byte order
convert values between host and network byte order
Euclidean distance
return command line arguments
return date or time in numerical form
get system error messages

3-5

INTRO(3)

index index.3f tell about character objects
index string.3 string operations
inet.Jlddr inet.3n Internet address manipulation routines
ineClnaof inet.3n Internet address manipulation routines
ineCmakeaddr inet.3n Internet address manipulation routines
inet_netof inet.3n Internet address manipulation routines
inet_network inet.3n Internet address manipulation routines
initgroups initgroups.3x initialize group access list
initstate random.3 better random number generator
inmax flmin.3f return extreme values
inmax range.3f return extreme values
insque insque.3 insert/remove element from a queue
ioinit ioinit.3f change f77 I/O initialization
irand rand.3f return random values
isalnum ctype.3 character classification macros
isalpha ctype.3 character classification macros
isascii ctype.3 character classification macros
isatty ttynam.3f find name of a terminal port
isatty ttyname.3 find name of a terminal
iscntrl ctype.3 character classification macros
isdigit ctype.3 character classification macros
islower ctype.3 character classification macros
isprint ctype.3 character classification macros
ispunct ctype.3 character classification macros
isspace ctype.3 character classification macros
isupper ctype.3 character classification macros
itime idate.3f return date or time in numerical form
jO jO.3m bessel functions
ji jO.3m bessel functions
jn jO.3m bessel functions
kill kill.3f send a signal to a process
label plot.3x graphics interface
ldexp frexp.3 split into mantissa and exponent
len index.3f tell about character objects
lib2648 lib2648.3x subroutines for the HP 2648 graphics terminal
line plot.3x graphics interface
linemod plot.3x graphics interface
link link.3f make a link to an existing file
lnblnk index.3f tell about character objects
loc loc.3f return the address of an object
localtime ctime.3 convert date and time to ASCII
log exp.3m exponential, logarithm, power, square root
loglO exp.3m exponential, logarithm, power, square root
long long.3f integer object conversion

3-6

INTRO(3)

~
~ longjmp setjmp.3 non -local goto

lstat stat.3f get file status
ltime time.3f return system time
malloc malloc.3 memory allocator
mktemp mktemp.3 make a unique file name
modf frexp.3 split into mantissa and exponent
moncontrol monitor.3 prepare execution profile
monitor monitor.3 prepare execution profile
monstartup monitor. 3 prepare execution profile
move plot.3x graphics interface
nextkey dbm.3x data base subroutines
nice nice.3c set program priority
nlist nlist.3 get entries from name list
ntohl byteorder.3n convert values between host and network byte order
ntohs byteorder.3n convert values between host and network byte order
opendir directory.3 directory operations
openlog syslog.3 control system log
pause pause.3c stop until signal
pelose popen.3 initiate I/O to/from a process
perror perror.3 system error messages
perror perror.3f get system error messages
plot: openpl plot.3x graphics interface
point plot.3x graphics interface
popen popen.3 initiate I/O to/from a process
pow exp.3m exponential, logarithm, power, square root
printf printf.3s formatted output conversion
psignal psigna1.3 system signal messages
putc putc.3f write a character to a fortran logical unit
putc putc.3s put character or word on a stream
putchar putc.3s put character or word on a stream
puts puts.3s put a string on a stream
putw putc.3s put character or word on a stream
qsort qsort.3 quicker sort
qsort qsort.3f quick sort
rand rand.3c random number generator
rand rand.3f return random values
random random.3 better random number generator
rcmd rcmd.3x routines for returning a stream to a remote command
re_comp regex.3 regular expression handler
re_exec regex.3 regular expression handler
readdir directory.3 directory operations
realloc malloc.3 memory allocator
remque insque.3 insert/remove element from a queue
rename rename.3f rename a file

3-7

INTRO(3)

rewind fseek.3s reposition a stream
rewinddir directory.3 directory operations
rexec rexec.3x return stream to a remote command
rindex index.3f tell about character objects
rindex string.3 string operations
rresvport rcmd.3x routines for returning a stream to a remote command
ruserok rcmd.3x routines for returning a stream to a remote command
scandir scandir.3 scan a directory
scanf scanf.3s formatted input conversion
seekdir directory.3 directory operations
setbuf setbuf.3s assign buffering to a stream
setbuffer setbuf.3s assign buffering to a stream
setegid setuid.3 set user and group ID
seteuid setuid.3 set user and group ID
setfsent getfsent.3x get file system descriptor file entry
setgid setuid.3 set user and group ID
setgrent getgrent.3 get group file entry
sethostent gethostent.3n get network host entry
setjmp setjmp.3 non -local goto
setkey crypt.3 DES encryption
setlinebuf setbuf.3s assign buffering to a stream
setnetent getnetent.3n get network entry
setprotoent getprotoent.3n get protocol entry
setpwent getpwent.3 get password file entry
setrgid setuid.3 set user and group ID
setruid setuid.3 set user and group ID
setservent getservent.3n get service entry
sets tate random.3 better random number generator
setuid setuid.3 set user and group ID
short long.3f integer object conversion
signal signal, 3 simplified software signal facilities
signal signal,3f change the action for a signal
sin sin. 3m trigonometric functions
sinh sinh. 3m hyperbolic functions
sleep sleep.3 suspend execution for interval
sleep sleep.3f suspend execution for an interval
space plot.3x graphics interface
sprintf printf.3s formatted output conversion
sqrt exp.3m exponential, logarithm, power, square root
srand rand.3c random number generator
srandom random.3 better random number generator
sscanf scanf.3s formatted input conversion
stat stat.3f get file status
stdio intro.3s standard buffered input/output package

3-8

INTRO(3)

store dbm.3x data base subroutines
strcat string.3 string operations
strcmp string.3 string operations
strcpy string.3 string operations
strlen string.3 string operations
strncat string.3 string operations
strncmp string. 3 string operations
strncpy string.3 string operations
stty stty.3c set and get terminal state (defunct)
swab swab.3 swap bytes
sys_errlist perror.3 system error messages
sysyerr perror.3 system error messages
sys_siglist psigna1.3 system signal messages
syslog syslog.3 control system log
system system.3 issue a shell command
system system.3f execute a UNIX command
tan sin.3m trigonometric functions
tanh sinh.3m hyperbolic functions
tclose topen.3f f77 tape I/O
telldir directory.3 directory operations
tgetent termcap.3x terminal independent operation routines
tgetflag termcap.3x terminal independent operation routines
tgetnum termcap.3x terminal independent operation routines
tgetstr termcap.3x terminal independent operation routines
tgoto termcap.3x terminal independent operation routines
time time.3c get date and time
time time.3f return system time
times times.3c get process times
timezone ctime.3 convert date and time to ASCII
topen topen.3f f77 tape I/O
tputs termcap.3x terminal independent operation routines
traper traper.3f trap arithmetic errors
trapov trapov.3f trap and repair floating point overflow
tread topen.3f f77 tape I/O
trewin topen.3f f77 tape I/O
trpfpe trpfpe.3f trap and repair floating point faults
tskipf topen.3f f77 tape I/O
tstate topen.3f f77 tape I/O
ttynam ttynam.3f find name of a terminal port
ttyname ttyname.3 find name of a terminal
ttyslot ttyname.3 find name of a terminal
twrite topen.3f f77 tape I/O
ungetc ungetc.3s push character back into input stream
unlink unlink.3f remove a directory entry

3-9

INTRO(3)

3-10

utime
valloc
varargs
vlimit
vtimes
wait
yO
yl
yn

utime.3c
valloc.3
varargs.3
vlimit.3c
vtimes.3c
wait.3f
jO.3m
jO.3m
jO.3m

set file times
aligned memory allocator
variable argument list
control maximum system resource consumption
get information about resource utilization
wait for a process to terminate
bessel functions
bessel functions
bessel functions

INTRO(3C)

NAME
intro - introduction to compatibility library functions

DESCRIPTION
These functions constitute the compatibility library portion of libc. They are a.utomatically
loaded as needed by the C compiler cc(l). The link editor searches this library under the
"-lc" option. Use of these routines should, for the most part, be avoided. Manual entries
for the functions in this library describe the proper routine to use.

LIST OF FUNCTIONS
Name Appears on Page Description

alarm alarm.3c schedule signal after specified time
ftime time.3c get date and time
getpw getpw.3c get name from uid
gtty stty.3c set and get terminal state (defunct)
nice nice.3c set program priority
pause pause.3c stop until signal
rand rand.3c random number generator
signal signa1.3c simplified software signal facilities
srand rand.3c random number generator
stty stty.3c set and get terminal state (defunct)
time time.3c get date and time
times times.3c get process times
utime utime.3c set file times
vlimit vlimit.3c control maximum system resource consumption
vtimes vtimes.3c get information about resource utilization

3-11

INTRO(3F)

NAME
intro - introduction to FORTRAN library functions

DESCRIPTION
This section describes those functions that are in the FORTRAN run time library. The
functions listed here provide an interface from {77 programs to the system in the same
manner as the e library does for e programs. They are automatically loaded as needed by
the Fortran compiler {77(1).

Most of these functions are in libU77.a. Some are in libF77.a or libI77.a. A few intrinsic
functions are described for the sake of completeness.

For efficiency, the sees ID strings are not normally included in the a.out file. To include
them, simply declare

external f77lid

in any {77 module.

LIST OF FUNCTIONS
Name Appears on Page Description

abort abort.3f terminate abruptly with memory image
access access.3f determine accessability of a file
alarm alarm.3f execute a subroutine after a specified time
bessel besse1.3f of two kinds for integer orders
bit bit.3f and, or, xor, not, rshift, lshift bitwise functions
chdir chdir.3f change default directory
chmod chmod.3f change mode of a file
ctime time.3f return system time
dffrac flmin.3f return extreme values
dflmax flmin.3f return extreme values
dflmin flmin.3f return extreme values
drand rand.3f return random values
dtime etime.3f return elapsed execution time
etime etime.3f return elapsed execution time
exit exit.3f terminate process with status
fdate fdate.3f return date and time in an ASCII string
ffrac flmin.3f return extreme values
fgetc getc.3f get a character from a logical unit
flmax flmin.3f return extreme values
flmin flmin.3f return extreme values
flush flush.3f flush output to a logical unit
fork fork.3f create a copy of this process
fpecnt trpfpe.3f trap and repair floating point faults
fputc putc.3f write a character to a fortran logical unit
fseek fseek.3f reposition a file on a logical unit

3-12

INTRO(3F)

fstat stat.3f get file status
ftell fseek.3f reposition a file on a logical unit
gerror perror.3f get system error messages
getarg getarg.3f return command line arguments
getc getc.3f get a character from a logical unit
getcwd getcwd.3f get pathname of current working directory
getenv getenv.3f get value of environment variables
getgid getuid.3f get user or group ID of the caller
getlog getlog.3f get user's login name
getpid getpid.3f get process id
getuid getuid.3f get user or group ID of the caller
gmtime time.3f return system time
hostnm hostnm.3f get name of current host
iargc getarg.3f return command line arguments
idate idate.3f return date or time in numerical form
ierrno perror.3f get system error messages
index index.3f tell about character objects
inmax fimin.3f return extreme values
intro intro.3f introduction to FORTRAN library functions
ioinit ioinit.3f change f77 I/O initialization
irand rand.3f return random values
isatty ttynam.3f find name of a terminal port
itime idate.3f return date or time in numerical form
kill kill.3f send a signal to a process
len index.3f tell about character objects
link link.3f make a link to an existing file
lnblnk index.3f tell about character objects
loc loc.3f return the address of an object
long long.3f integer object conversion
lstat stat.3f get file status
ltime time.3f return system time
perror perror.3f get system error messages
putc putc.3f write a character to a fortran logical unit
qsort qsort.3f quick sort
rand rand.3f return random values
rename rename.3f rename a· file
rindex index.3f tell about character objects
short long.3f integer object conversion
signal signa1.3f change the action for a signal
sleep sleep.3f suspend execution for an interval
stat stat.3f get file status
system system.3f execute a UNIX command
tclose topen.3f f77 tape I/O
time time.3f return system time

3-13

INTRO(3F)

topen
traper
trapov
tread
trewin
trpfpe
tskipf
tstate
ttynam
twrite
unlink
wait

3-14

topen.3f
traper.3f
trapov.3f
topen.3f
topen.3f
trpfpe.3f
topen.3f
topen.3f
ttynam.3f
topen.3f
unlink.3f
wait.3f

f77 tape I/O
trap arithmetic errors
trap and repair floating point overflow
f77 tape I/O
f77 tape I/O
trap and repair floating point faults
f77 tape I/O
f77 tape I/O
find name of a terminal port
f77 tape I/O
remove a directory entry
wait for a process to terminate

INTRO(3M)

~
! NAME

intro - introduction to mathematical library functions

DESCRIPTION
These functions constitute the math library, libm. They are automatically loaded as needed
by the Fortran compiler /77(1). The link editor searches this library under the "-1m"
option. Declarations for these functions may be obtained from the include file <math.h>.

LIST OF FUNCTIONS
Name Appears on Page

acos sin.3m
asin sin. 3m
atan sin.3m
atan2 sin.3m
cabs hypot.3m
ceil floor. 3m
cos sin. 3m
cosh sinh. 3m
exp exp.3m
fabs floor. 3m
floor floor. 3m
gamma gamma. 3m
hypot hypot.3m
jO jO.3m
j1 jO.3m
jn jO.3m
log exp.3m
log10 exp.3m
pow exp.3m
sin sin.3m
sinh sinh. 3m
sqrt exp.3m
tan sin.3m
tanh sinh.3m
yO jO.3m
y1 jO.3m
yn jO.3m

Description

trigonometric functions
trigonometric functions
trigonometric functions
trigonometric functions
Euclidean distance
absolute value, floor, ceiling functions
trigonometric functions
hyperbolic functions
exponential, logarithm, power, square root
absolute value, floor, ceiling functions
absolute value, floor, ceiling functions
log gamma function
Euclidean distance
bessel functions
bessel functions
bessel functions
exponential, logarithm, power, square root
exponential, logarithm, power, square root
exponential, logarithm, power, square root
trigonometric functions
hyperbolic functions
exponential, logarithm, power, square root
trigonometric functions
hyperbolic functions
bessel functions
bessel functions
bessel functions

3-15

INTRO(3N)

NAME
intro - introduction to network library functions

DESCRIPTION
This section describes functions that are applicable to the DARPA Internet network.

LIST OF FUNCTIONS
Name Appears on Page

endhostent gethostent.3n
endnetent getnetent.3n
endprotoent getprotoent.3n
endservent getservent.3n
gethostbyaddr gethostent.3n
gethostbyname gethostent.3n
gethostent gethostent.3n
getnetbyaddr getnetent.3n
getnetbyname getnetent.3n
getnetent getnetent.3n
getprotobyname getprotoent.3n
getprotobynumber getprotoent.3n
getprotoent getprotoent.3n
getservbyname getservent.3n
getservbyport getservent.3n
getservent getservent.3n
htonl byteorder.3n
htons byteorder.3n
inet addr inet.3n
inet lnaof inet.3n
inet makeaddr inet.3n
inet netof inet.3n
inet network inet.3n
ntohl byteorder.3n
ntohs byteorder.3n
sethostent gethostent.3n
setnetent getnetent.3n
setprotoent getprotoent.3n
setservent getservent.3n

3-16

Description

get network host entry
get network entry
get protocol entry
get service entry
get network host entry
get network host entry
get network host entry
get network entry
get network entry
get network entry
get protocol entry
get protocol entry
get protocol entry
get service entry
get service entry
get service entry
convert values between host and network byte order
convert values between host and network byte order
Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
convert values between host and network byte order
convert values between host and network byte order
get network host entry
get network entry
get protocol entry
get service entry

INTRO(3S)

i)
~I NAME

stdio - standard buffered input/output package

SYNTAX
#include <stdio.h>

FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION
The functions described in section 38 constitute a user-level buffering scheme. The in-line
macros getc and putc(38) handle characters quickly. The higher level routines gets, {gets,
scant, {scant, {read, puts, {puts, print{, {print{, {write all use getc and putc; they can be
freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a
defined type FILE. Fopen(3S) creates certain descriptive data for a stream and returns a
pointer to designate the stream in all further transactions. There are three normally open
streams with constant pointers declared in the include file and associated with the standard
open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant 'pointer' NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or error by integer functions
that deal with streams.

Any routine that uses the standard input/output package must include the header file
<stdio.h> of pertinent macro definitions. The functions and constants mentioned in sec
tions labeled 38 are declared in the include file and need no further declaration. The con
stants, and the following 'functions' are implemented as macros; redeclaration of these
names is perilous: getc, getchar, putc, putchar, {eo{, {error, fileno.

SEE ALSO
open(2), close(2), read(2), write(2), fread(3S), fseek(38), f*(38)

DIAGNOSTICS
The value EOF is returned uniformly to indicate that a FILE pointer has not been initial
ized with {open, input (output) has been attempted on an output (input) stream, or a
FILE pointer designates corrupt or otherwise unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been changed to
line buffer output to a terminal by default and attempts to do this transparently by flush
ing the output whenever a read(2) from the standard input is necessary. This is almost
always transparent, but may cause confusion or malfunctioning of programs which use stan
dard i/o routines but use read(2) themselves to read from the standard input.

3-17

INTRO(3S)

In cases where a large amount of computation is done after printing part of a line on an
output terminal, it is necessary to fflush(3S) the standard output before going off and com
puting so that the output will appear.

LIST OF FUNCTIONS
Name Appears on Page Description

clearerr ferror.3s stream status inquiries
fclose fclose.3s close or flush a stream
fdopen fopen.3s open a stream
feof ferror.3s stream status inquiries
ferror ferror.3s stream status inquiries
mush fclose.3s close or flush a stream
fgetc getc.3s get character or word from stream
fgets gets.3s get a string from a stream
fileno ferror.3s stream status inquiries
fopen fopen.3s open a stream
fprintf printf.3s formatted output conversion
fputc putc.3s put character or word on a stream
fputs puts.3s put a string on a stream
fread fread.3s buffered binary input/output
freopen fopen.3s open a stream
fscanf scanf.3s formatted input conversion
fseek fseek.3s reposition a stream
ftell fseek.3s reposition a stream
fwrite fread.3s buffered binary input/output
getc getc.3s get character or word from stream
getchar getc.3s get character or word from stream
gets gets.3s get a string from a stream
getw getc.3s get character or word from stream
printf printf.3s formatted output conversion
putc putc.3s put character or word on a stream
putchar putc.3s put character or word on a stream
puts puts.3s put a string on a stream
putw putc.3s put character or word on a stream
rewind fseek.3s reposition a stream
scanf scanf.3s formatted input conversion
setbuf setbuf.3s assign buffering to a stream
setbuffer setbuf.3s assign buffering to a stream
setlinebuf setbuf.3s assign buffering to a stream
sprintf printf.3s formatted output conversion
sscanf scanf.3s formatted input conversion
ungetc ungetc.3s push character back into input stream

3-18

INTRO(3X)

l
,I NAME

intro - introduction to miscellaneous library functions

DESCRIPTION
These functions constitute minor libraries and other miscellaneous run-time facilities. Most
are available only when programming in C. The list below includes libraries which provide
device independent plotting functions, terminal independent screen management routines
for two dimensional non-bitmap display terminals, functions for managing data bases with
inverted indexes, and sundry routines used in executing commands on remote machines.
The routines getdiskbyname, rcmd, rresvport, ruserok, and rexec reside in the standard C
run-time library "-lc". All other functions are located in separate libraries indicated in
each manual entry.

FILES
/lib/libc.a
/usr/lib/libdbm.a
/usr/lib/libtermcap.a
/usr /lib/libcurses.a
/usr /lib/lib2648.a
/usr/lib/libplot.a

LIST OF FUNCTIONS
Name Appears on Page Description

arc plot.3x graphics interface
assert assert.3x program verification
circle plot.3x graphics interface
closepl plot.3x graphics interface
cont plot.3x graphics interface
curses curses.3x screen functions with "optimal" cursor motion
dbminit dbm.3x data base subroutines
delete dbm.3x data base subroutines
endfsent getfsent.3x get file system descriptor file entry
erase plot.3x graphics interface
fetch dbm.3x data base subroutines
firstkey dbm.3x data base subroutines
getdiskbyname getdisk.3x get disk description by its name
getfsent getfsent.3x get file system descriptor file entry
getfsfile getfsent.3x get file system descriptor file entry
getfsspec getfsent.3x get file system descriptor file entry
getfstype getfsent.3x get file system descriptor file entry
initgroups initgroups.3x initialize group access list
label plot.3x graphics interface
lib2648 lib2648.3x subroutines for the HP 2648 graphics terminal
line plot.3x graphics interface
linemod plot.3x graphics interface
move plot.3x graphics interface

3-19

INTRO(3X)

nextkey
plot: openpl
point
rcmd
rexec
rresvport
ruserok
setfsent
space
store
tgetent
tgetflag
tgetnum
tgetstr
tgoto
tputs

3-20

dbm.3x
plot.3x
plot.3x
rcmd.3x
rexec.3x
rcmd.3x
rcmd.3x
getfsent.3x
plot.3x
dbm.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x

data base subroutines
graphics interface
graphics interface
routines for returning a stream to a remote command
return stream to a remote command
routines for returning a stream to a remote command
routines for returning a stream to a remote command
get file system descriptor file entry
graphics interface
data base subroutines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines

ABORT(3)

NAME
abort - generate a fault

DESCRIPTION
Abort executes an instruction which is illegal in user mode. This causes a signal that nor
mally terminates the process with a core dump, which may be used for debugging.

SEE ALSO
adb(l), sigvec(2), exit(2)

DIAGNOSTICS
Usually 'lOT trap - core dumped' from the shell.

RESTRICTIONS
The abortO function does not flush standard I/O buffers. Use fflush (38).

STATUS
ABORT (3) currently is not supported by Digital Equipment Corporation.

3-21

ABORT(3F)

NAME
abort - terminate abruptly with memory image

SYNTAX
subroutine abort (string)
character*(*) string

DESCRIPTION
Abort cleans up the I/O buffers and then aborts producing a core file in the current direc
tory. If string is given, it is written to logical unit 0 preceeded by "abort:".

FILES
lusr /lib/libF77.a

SEE-ALSO
abort(3)

STATUS
ABORT (3F) currently is not supported by Digital Equipment Corporation.

3-22

ABS(3)

~
.,v NAME

abs - integer absolute value

SYNTAX
abs(i)
int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
floor{3M) for labs

RESTRICTIONS
Applying the abs function to the most negative integer generates a result which is the most
negative integer. That is,

abs(Ox80000000)

returns Ox80000000 as a result.

STATUS
ABS (3) currently is not supported by Digital Equipment Corporation.

3-23

ACCESS(3F)

NAME
access - determine accessability of a file

SYNTAX
integer function access (name, mode)
character*(*) name, mode

DESCRIPTION
Access checks the given file, name, for accessability with respect to the caller according to
mode. Mode may include in any order and in any combination one or more of:

r
w
x

(blank)

test for read permission
test for write permission
test for execute permission
test for existence

An error code is returned if either argument is illegal, or if the file can not be accessed in
all of the specified modes. 0 is returned if the specified access would be successful.

FILES
/usr/lib/libU77.a

SEE ALSO
access(2), perror(3F)

RESTRICTIONS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

STATUS
ACCESS (3F) currently is not supported by Digital Equipment Corporation.

3-24

ALARM(3C)

NAME
alarm - schedule signal after specified time

SYNTAX
alarm(seconds)
unsigned seconds;

DESCRIPTION
This interface is obsoleted by setitimer(2).

Alarm causes signal SIGALRM, see signal (3C), to be sent to the invoking process in a
number of seconds given by the argument. Unless caught or ignored, the signal terminates
the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0,
any alarm request is canceled. Because of scheduling delays, resumption of execution of
when the signal is caught may be delayed an arbitrary amount. The longest specifiable
delay time is 2147483647 seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
sigpause(2), sigvec(2), signa1(3C), sleep(3)

STATUS
ALARM (3C) currently is not supported by Digital Equipment Corporation.

3-25

ALARM(3F)

NAME
alarm - execute a subroutine after a specified time

SYNTAX
integer function alarm (time, proc)
integer time
external proc

DESCRIPTION
This routine arranges for subroutine proc to be called after time seconds. If time is "0", the
alarm is turned off and no routine will be called. The returned value will be the time
remaining on the last alarm.

FILES
/usr/lib/lib U77.a

SEE ALSO
alarm(3C), sleep(3F), signal(3F)

RESTRICTIONS
Alarm and sleep interact. If sleep is called after alarm, the alarm process will never be
called. SIGALRM will occur at the lesser of the remaining alarm time or the sleep time.

STATUS
ALARM (3F) currently is not supported by Digital Equipment Corporation.

3-26

)

ASSERT(3X)

NAME
assert - program verification

SYNTAX
#include <assert.h>

assert(expression)

DESCRIPTION
Assert is a macro that indicates expression is expected to be true at this point in the pro
gram. It causes an exit(2) with a diagnostic comment on the standard output when expres
sion is false (0). Compiling with the cc(l) option - DNDEBUG effectively deletes assert
from the program.

DIAGNOSTICS
'Assertion failed: file f line n.' F is the source file and n the source line number of the assert
statement.

STATUS
ASSERT (3X) currently is not supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984 3-27

ATOF(3)

NAME
atof, atoi, atol - convert ASCII to numbers

SYNTAX
double atof(nptr)
char *nptr;

atoi(nptr)
char *nptr;

long atol(nptr)
char *llptr;

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and long integer
representation respectively. The first unrecognized character ends the string.

Atof recognizes an optional string of spaces, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional 'e' or 'E' followed by an optionally
signed integer.

Atoi and atol recognize an optional string of spaces, then an optional sign, then a string of
digits.

DIAGNOSTICS
If an overflow occurs, atof returns the largest value possible.

If an underflow occurs, atof returns a 0 value.

SEE ALSO
scanf(3S)

STATUS
ATOF (3) is supported by Digital Equipment Corporation.

3-28

BESSEL(3F)

l
/ NAME

bessel functions - of two kinds for integer orders

SYNTAX
function besjO (x)

function besjl (x)

function besjn (n, x)

function besyO (x)

function besyl (x)

function besyn (n, x)

double precision function dbesjO (x)
double precision x

double precision function dbesjl (x)
double precision x

double precision function dbesjn (n, x)
double precision x

double precision function dbesyO (x)
double precision x

double precision function dbesyl (x)
double precision x

double precision function dbesyn (n, x)
double precision x

DESCRIPTION
These functions calculate Bessel functions of the first and second kinds for real arguments
and integer orders.

DIAGNOSTICS
Negative arguments cause besyO, besyJ, and besyn to return a huge negative value. The
system error code will be set to ED OM (33).

FILES
/usr/lib/libF77.a

3-29

BESSEL(3F)

SEE ALSO
jO(3M), perror(3F)

STATUS
BESSEL (3F) currently is not supported by Digital Equipment Corporation.

3-30

BIT(3F)

NAME
bit - and, or, xor, not, rshift, lshift bitwise functions

SYNTAX
(intrinsic) function and (wordl, word2)

(intrinsic) function or (wordl, word2)

(intrinsic) function xor (wordl, word2)

(intrinsic) function not (word)

(intrinsic) function rshift (word, nbits)

(intrinsic) function lshift (word, nbits)

DESCRIPTION
These bitwise functions are built into the compiler and return the data type ri their
argument(s). It is recommended that their arguments be integer values; inappropriate
manipulation of real objects may cause unexpected results.

The bitwise combinatorial functions return the bitwise "and" (and), "or" (or), or
"exclusive or" (xor) of two operands. Not returns the bitwise complement of its operand.

Lshift, or rshift with a negative nbits, is a logical left shift with no end around carry.
Rshift, or lshift with a negative nbits, is an arithmatic right shift with sign extension. No
test is made for a reasonable value of nbits.

FILES
These functions are generated in-line by the f77 compiler.

STATUS
BIT (3F) currently is not supported by Digital Equipment Corporation.

3-31

BSTRING(3)

NAME
bcopy, bcmp, bzero, ffs- bit and byte string operations

SYNTAX
bcopy(bl, b2, length)
char *bl, *b2;
int length;

bcmp(bl, b2, length)
char *bl, *b2;
int length;

bzero(b, length)
char *b;
int length;

tTs(i)
int i;

DESCRIPTION
The functions bcopy, bcmp, and bzero operate on variable length strings of bytes. They do
not check for null bytes as the routines in string(3) do.

Bcopy copies length bytes from string bl to the string b2.

Bcmp compares byte string bl against byte string b2, returning zero if they are identical,
non-zero otherwise. Both strings are assumed to be length bytes long.

Bzero places length 0 bytes in the string bl.

Fis find the first bit set in the argument passed it and returns the index of that bit. Bits
are numbered starting at 1. A return value of -1 indicates the value passed is zero.

RESTRICTIONS
The bcmp and bcopy routines take parameters backwards from strcmp and strcpy.

STATUS
BSTRING (3) currently is not supported by Digital Equipment Corporation.

3-32

BYTEORDER(3N)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNTAX
#include <sys/types.h>
#include <netinet/in.h>

netlong = htonl(hostlong);
uJong netlong, hostlong;

netshort = htons(hostshort);
u_short netshort, hostshort;

hostlong = ntohl(netlong);
uJong hostlong, netlong;

hostshort = ntohs(netshort);
u_short hostshort, net short;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte
order. On machines such as the SUN these routines are defined as null macros in the
include file <netinet/in.h>.

These routines are most often used in conjunction with Internet addresses and ports as
returned by gethostent(3N) and getservent(3N).

SEE ALSO
gethostent(3N), getservent(3N)

RESTRICTIONS
The VAX handles bytes in the reverse from most everyone else.

STATUS
BYTEORDER (3N) currently is not supported by Digital Equipment Corporation.

3-33

CHDIR(3F)

NAME
chdir - change default directory

SYNTAX
integer function chdir (dirname)
character*(*) dirname

DESCRIPTION
The default directory for creating and locating files will be changed to dirname. Zero is
returned if successful; an error code otherwise.

FILES
/usr/lib/lib U77.a

SEE ALSO
chdir(2), cd(l), perror(3F)

RESTRICTIONS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Use of this function may cause inquire by unit to fail.

STATUS
CHDIR (3F) currently is not supported by Digital Equipment Corporation.

3-34

CHMOD(3F)

~
; NAME

chmod - change mode of a file

SYNTAX
integer function chmod (name, mode)
character*(*) name, mode

DESCRIPTION .
This function changes the filesystem mode of file name. Mode can be any specification
recognized by chmod(l). Name must be a single pathname.

The normal returned value is O. Any other value will be a system error number.

FILES
/usr /lib/lib U77.a
/bin/chmod

SEE ALSO
chmod(l)

RESTRICTIONS

exec'ed to change the mode.

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

STATUS
CHMOD (3F) currently is not supported by Digital Equipment Corporation.

3-35

CRYPT(3)

NAME
crypt, setkey, encrypt - DES encryption

SYNTAX
char *crypt(key, salt)
char *key, *sa1t;

encrypt(block)
char *block;

DESCRIPTION
Crypt is the password encryption routine.

The first argument to crypt is normally a user's typed password. The second is a 2-
character string chosen from the set [a-zA-ZO-9./]. The salt string is used to perturb the
hashing algorithm in one of 4096 different ways, after which the password is used as the
key to encrypt repeatedly a constant string. The returned value points to the encrypted
password, in the same alphabet as the salt. The first two characters are the salt itself.

The encrypt entry is a character array of length 64 containing O's and l's. The argument
array is modified in place to a similar array representing the bits of the argument after hav
ing been subjected to the hashing algorithm using the key set by crypt.

SEE ALSO
passwd(l), passwd(5), login(l), getpass(3)

RESTRICTIONS
The return value points to static data whose content is overwritten by each call.

STATUS
CRYPT (3) is supported by Digital Equipment Corporation.

3-36

NAME
ctime, localtime, gmtime, asctime, timezone - convert date and time to ASCII

SYNTAX
char *ctime(clock)
long *clock;

#include <sys/time.h>

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

char *timezone(zone, dst)

DESCRIPTION

CTIME(3)

Ctime converts a time pointed to by clock such as returned by time (2) into ASCII and
returns a pointer to a 26-character string in the following form. All the fields have constant
width.

Sun Sep 16 01:03:52 1973\p~

Localtime and gmtime return pointers to structures containing the broken-down time.
Localtime corrects for the time zone and possible daylight savings time; gmtime converts
directly to GMT, which is the time UNIX uses. Asctime converts a broken-down time to
ASCII and returns a pointer to a 26-character string.

The structure declaration from the include file is:

struct tm {
int tm...§ec;
int tm_min;
int tm-pour;
int tm_mday;
int tm_mon;
int tmJear;
int tm..,lVday;
int tm-yday;
int tnllsdst;

} ;

These quantities give the time on a 24-hour clock, day of month (1-31), month of year (0-
11), day of week (Sunday = 0), year - 1900, day of year (0-365), and a flag that is nonzero
if daylight saving time is in effect.

3-37

CTIME(3)

When local time is called for, the program consults the system to determine the time zone
and whether the U.S.A., Australian, Eastern European, Middle European, or Western Euro
pean daylight saving time adjustment is appropriate. The program knows about various
peculiarities in time conversion over the past 10-20 years; if necessary, this understanding
can be extended.

Timezone returns the name of the time zone associated with its first argument, which is
measured in minutes westward from Greenwich. If the second argument is 0, the standard
name is used, otherwise the Daylight Saving version. If the required name does not appear
in a table built into the routine, the difference from GMT is produced; e.g. in Afghanistan
timezone(-(60*4+30), 0) is appropriate because it is 4:30 ahead of GMT and the string
GMT+4:30 is produced.

SEE ALSO
gettimeofday(2), time(3)

RESTRICTIONS
The return values point to static data whose content is overwritten by each call.

STATUS
CTIME (3) currently is not supported by Digital Equipment Corporation.

3-38

)

CTYPE(3)

NAME
is alpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii - character
classification macros

SYNTAX
#include <ctype.h>

isalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a predicate
returning nonzero for true, zero for false. Isascii is defined on all integer values; the rest
are defined only where isascii is true and on the single non-ASCII value EOF (see
stdio(3S».

isalpha

isupper

islower

isdigit

isalnum

isspace

ispunct

isprint

iscntrl

is ascii

SEE ALSO
ascii(7)

STATUS

c is a letter

c is an upper case letter

c is a lower case letter

c is a digit

c is an alphanumeric character

c is a space, tab, carriage return, newline, or formfeed

c is a punctuation character (neither control nor alphanumeric)

c is a printing character, code 040(8) (space) through 0176 (tilde)

c is a delete character (0177) or ordinary control character (less than 040).

c is an ASCII character, code less than 0200

CTYPE (3) currently is not supported by Digital Equipment Corporation.

3-39

CURSES(3X)

NAME
curses - screen functions with "optimal" cursor motion

SYNTAX
cc [flags] files -lcurses -ltermcap [libraries]

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization.
They keep an image of the current screen, and the user sets up an image of a new one.
Then the refreshO tells the routines to make the current screen look like the new one. In
order to initialize the routines, the routine initscrO must be called before any of the other
routines that deal with windows and screens are used. The routine endwinO should be
called before exiting.

SEE ALSO
Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold,
ioctl(2), getenv(3), tty(4), termcap(5)

FUNCTIONS

3-40

addch(ch)
addstr(str)
box (win, vert,hor)
crmodeO
clearO
clearok(scr ,boolf)
clrtobotO
clrtoeolO
delchO
delete In 0
delwin(win)
echoO
endwinO
eraseO
getchO
getcap(name)
getstr(str)
gettmodeO
getyx(win,y,x)
inchO
initscrO
insch(c)
insertlnO
leaveok (win, boo If)
longname(termbuf,name)
move (y,x)
mvcur(lasty ,lastx,newy ,newx)
newwin(lines,cols,begin y,begin x)

add a character to stdscr
add a string to stdscr
draw a box around a window
set cbreak mode
clear stdscr
set clear flag for scr
clear to bottom on stdscr
clear to end of line on stdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase stdscr
get a char through stdscr
get terminal capability name
get a string through stdscr
get tty modes
get (y,x) co-ordinates
get char at current (y,x) co-ordinates
initialize screens
insert a char
insert a line
set leave flag for win
get long name from termbuf
move to (y,x) on stdscr
actually move cursor
create a new window

nlO
nocrmodeO
noechoO
nonlO
norawO
overlay(winl, win2)
overwrite (winl,win2)
printw(fmt,argl,arg2, ...)
rawO
refreshO
resettyO
savettyO
scanw(fmt,argl,arg2, ...)
scroll(win)
scrollok (win, boolf)
setterm(name)
stand end 0
standoutO
subwin(win,lines,cols,begin y,begin x)
touchwin(win)
unctrl{ch)
waddch(win,ch)
waddstr(win,str)
wclear(win)
wclrtobot(win)
wclrtoeol{win)
wdelch (win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winsch (win,c)
winsertln(win)
wmove(win,y ,x)
wprintw(win,fmt,argl,arg2, ...)
wrefresh(win)
wscanw(win,fmt,argl,arg2, ...)
wstandend(win)
wstandout(win)

STATUS

set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping
unset raw mode

CURSES(3X)

overlay winl on win2
overwrite wini on top of win2
printf on stdscr
set raw mode
make current screen look like stdscr
reset tty flags to stored value
stored current tty flags
scanf through stdscr
scroll win one line
set scroll flag
set term variables for name
end standout mode
start standout mode
create a sub window
"change" all of win
printable version of ch
add char to win
add string to win
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y,x) in win
insert char into win
insert line into win
set current (y,x) co-ordinates on win
printf on win
make screen look like win
scanfthrough win
end standout mode on win
start standout mode on win

CURSES (3X) currently is not supported by Digital Equipment Corporation.

3-41

DBM(3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey - data base subroutines

SYNTAX
typedef struct {

char *dptr;
int dsize;

} datum;

dbminit(file)
char *file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkeyO

datum nextkey(key)
datum key;

DESCRIPTION
These functions maintain key/content pairs in a data base .. The functions will handle very
large (a billion blocks) databases and will access a keyed item in one or two file system
accesses. The functions are obtained with the loader option -ldbm.

Keys and contents are described by the datum typedef. A datum specifies a string of dsize
bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings, are
allowed. The data base is stored in two files. One file is a directory containing a bit map
and has '.dir' as its suffix. The second file contains all data and has '.pag' as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call,
the files file .dir and file .pag must exist. (An empty database is created by creating zero
length' .dir' and' .pag' files.)

Once open, the data stored under a key is accessed by fetch and data is placed under a key
by store. A key (and its associated contents) is deleted by delete. A linear pass through all
keys in a database may be made, in an (apparently) random order, by use of firstkey and
nextkey. Firstkey will return the first key in the database. With any key nextkey will
return the next key in the database. This code will traverse the data base:

for (key = firstkeyO; key.dptr != NULL; key = nextkey(key»

DIAGNOSTICS

3-42

All functions that return an int indicate errors with negative values. A zero return indi
cates ok. Routines that return a datum indicate errors with a null (0) dptr.

DBM(3X)

RESTRICTIONS
The' .pag' file will contain holes so that its apparent size is about four times its actual con
tent. Older UNIX systems may create real file blocks for these holes when touched. These
files cannot be copied by normal means (cp, cat, tp, tar, ar) without filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed by
subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 1024 bytes). Moreover all key/content pairs that hash together must fit on a sin
gle block. Store will return an error in the event that a disk block fills with inseparable
data.

Delete does not physically reclaim file space, although it does make it available for reuse.

STATUS
DBM (3X) currently is not supported by Digital Equipment Corporation.

3-43

DIRECTORY (3)

NAME
opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations

SYNTAX
#include <sys/dir.h>

DIR *opendir(filename)
char *filename;

struct direct *readdir(dirp)
DIR *dirp;

long telldir(dirp)
DIR *dirp;

seekdir(dirp, loc)
DIR *dirp;
long loc;

rewinddir(dirp)
DIR *dirp;

closedir(dirp)
DIR *dirp;

DESCRIPTION

3-44

Opendir opens the directory named by filename and associates a directory stream with it.
Opendir returns a pointer to be used to identify the directory stream in subsequent opera
tions. The pointer NULL is returned if filename cannot be accessed, or if it cannot mal
loc (3) enough memory to hold the whole thing.

Readdir returns a pointer to the next directory entry. It returns NULL upon reaching the
end of the directory or detecting an invalid seekdir operation.

Telldir returns the current location associated with the named directory stream.

Seekdir sets the position of the next readdir operation on the directory stream. The new
position reverts to the one associated with the directory stream when the telldir operation
was performed. Values returned by telldir are good only for the lifetime of the DIR pointer
from which they are derived. If the directory is closed and then reopened, the telldir value
may be invalidated due to undetected directory compaction. It is safe to use a previous
telldir value immediately after a call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginning of the direc
tory.

Closedir closes the named directory stream and frees the structure associated with the DIR
pointer.

Sample code which searchs a directory for entry "name" is:

DIRECTORY (3)

SEE ALSO

len = strlen(name);
dirp = opendir(".");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp»

if (dp->d_namlen == len && !strcmp(dp->d_name, name» {
closedir(dirp);

}
closedir(dirp);

return FOUND;

return NOT_FOUND;

open(2), close(2), read(2), Iseek(2), dir(5)

STATUS
DIRECTORY (3) is supported by Digital Equipment Corporation.

3-45

ECVT(3)

NAME
ecvt, fcvt, gcvt - output conversion

SYNTAX
char *ecvt(value, ndigit, de cpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt(value, ndigit, buf)
double value;
char *buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a
pointer thereto. The position of the decimal point relative to the beginning of the string is
stored indirectly through decpt (negative means to the left of the returned digits). If the
sign of the result is negative, the word pointed to by sign is non-zero, otherwise it is zero.
The low-order digit is rounded.

Fcvt is identical to ecvt, except that the correct digit has been rounded for Fortran F
format output of the number of digits specified by ndigits.

Gcvt converts the value to a null-terminated ASCII string in but and returns a pointer to
but. It attempts to produce ndigit significant digits in Fortran F format if possible, other
wise E format, ready for printing. Trailing zeros may be suppressed.

SEE ALSO
printf(3)

RESTRICTIONS
The return values point to static data whose content is overwritten by each call.

STATUS
ECVT (3) currently is not supported by Digital Equipment Corporation.

3-46

END(3)

~
; NAME

end, etext, edata - last locations in program

SYNTAX
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The
address of etext is the first address above the program text, edata above the initialized data
region, and end above the un initialized data region.

When execution begins, the program break coincides with end, but it is reset by the rou
tines brk(2), malloc(3), standard input/output (stdio(3», the profile (-p) option of cc(l),
etc. The current value of the program break is reliably returned by 'sbrk(O)', see brk(2).

SEE ALSO
brk(2), malloc(3)

STATUS
END (3) currently is not supported by Digital Equipment Corporation.

3-47

ETIME(3F)

NAME
etime, dtime - return elapsed execution time

SYNTAX
function etime (tarray)
real tarray(2)

function dtime (tarray)
real tarray(2)

DESCRIPTION
These two routines return elapsed runtime in seconds for the calling process. Dtime
returns the elapsed time since the last call to dtime, or the start of execution on the first
call.

The argument array returns user time in the first element and system time in the second
element. The function value is the sum of user and system time.

The resolution of all timing is 11HZ sec. where HZ is currently 60.

FILES
lusr/libllibU77.a

SEE ALSO
times(2)

STATUS
ETIME (3F) currently is not supported by Digital Equipment Corporation.

3-48

NAME
execl, execv, execle, execlp, execvp, exec, exece, exect, environ - execute a file

SYNTAX
execl(name, argO, argl, ... , argn,O)
char *name, *argO, *argl, ... , *argn;

execv(name, argv)
char *name, *argv[];

execle(name, argO, argl, ... , argn, 0, envp)
char *name, *argO, *argl, ... , *argn, *envp[];

exect(name, argv, envp)
char *name, *argv[], *envp[];

extern char **environ;

DESCRIPTION

EXECL(3)

These routines provide various interfaces to the execve system call. Refer to execve (2) for
a description of their properties; only brief descriptions are provided here.

Exec in all its forms overlays the calling process with the named file, then transfers to the
entry point of the core image of the file. There can be no return from a successful exec; the
calling core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers
arg[O], arg[J] ... address null-terminated strings. Conventionally arg[O] is the name of the
file.

Two interfaces are available. execl is useful when a known file with known arguments is
being called; the arguments to execl are the character strings constituting the file and the
arguments; the first argument is conventionally the same as the file name (or its last com
ponent). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the
arguments to execv are the name of the file to be executed and a vector of strings contain
ing the arguments. The last argument string must be followed by a 0 pointer.

The exect version is used when the executed file is to be manipulated with ptrace(2). The
program is forced to single step a single instruction giving the parent an opportunity to
manipulate its state. On the VAX-ll this is done by setting the trace bit in the process
status longword.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the argu
ments themselves. As indicated, argc is conventionally at least one and the first member of
the array points to a string containing the name of the file.

3-49

EXECL(3)

Argv is directly usable in another execv because argv [argc] is O.

Envp is a pointer to an array of strings that constitute the environment of the process.
Each string consists of a name, an "=", and a null-terminated value. The array of pointers
is terminated by a null pointer. The shell sh(l) passes an environment entry for each glo
bal shell variable defined when the program is called. See environ(7) for some convention
ally used names. The C run-time start-off routine places a copy of envp in the global cell
environ, which is used by execv and execl to pass the environment to any subprograms exe':'
cuted by the current program.

Execlp and execvp are called with the same arguments as execl and execv, but duplicate
the shell's actions in searching for an executable file in a list of directories. The directory
list is obtained from the environment.

FILES
/bin/sh shell, invoked if command file found by execlp or execvp

SEE ALSO
execve(2), fork(2), environ(7), csh(l)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not start with a valid magic
number (see a.out(5», if maximum memory is exceeded, or if the arguments require too
much space, a return constitutes the diagnostic; the return value is -1. Even for the
super-user, at least one of the execute-permission bits must be set for a file to be executed.

RESTRICTIONS
If execvp is called to execute a file that turns out to be a shell command file, and if it is
impossible to execute the shell, the values of argv[O J and argv[-1] will be modified before
return.

STATUS
EXECL (3) currently is not supported by Digital Equipment Corporation.

3-50

)

EXIT(3)

NAME
exit - termin~te a process after flushing any pending output

SYNTAX
exit(status)
int status;

DESCRIPTION
Exit terminates a process after calling the Standard I/O library function ..,tleanup to flush
any buffered output. Exit never returns.

SEE ALSO
exit(2), intro(3S)

STATUS
EXIT (3) currently is not supported by Digital Equipment Corporation.

3-51

EXIT(3F)

NAME
exit - terminate process with status

SYNTAX
subroutine exit (status)
integer status

DESCRIPTION
Exit flushes and closes all the process's files, and notifies the parent process if it is execut
ing a wait. The low-order 8 bits of status are available to the parent process. (Therefore
status should be in the range 0 - 255)

This call will never return.

The C function exit may cause cleanup actions before the final 'sys exit'.

FILES
/usr/lib/libF77.a

SEE ALSO
exit(2), fork(2), fork(3F), wait(2), wait(3F)

STATUS
EXIT (3F) currently is not supported by Digital Equipment Corporation.

3-52

NAME
exp, log, log10, pow, sqrt - exponential, logarithm, power, square root

SYNTAX
#include <math.h>

double exp(x)
double X;

double log(x)
double X;

double loglO(x)
double X;

double pow(x, y)
double X, y;

double sqrt(x)
double X;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x; logiO returns the base 10 logarithm.

Pow returns xY .

Sqrt returns the square root of x.

SEE ALSO
hypot(3M), sinh(3M), intro(3M)

DIAGNOSTICS

EXP(3M)

Exp and pow return a huge value when the correct value would overflow; errno is set to
ERANGE. Pow returns 0 and sets errno to ED OM when the second argument is negative
and non-integral and when both arguments are O.

Log returns 0 when x is zero or negative; errno is set to EDOM.

Sqrt returns 0 when x is negative; errno is set to EDOM.

STATUS
EXP (3M) currently is not supported by Digital Equipment Corporation.

3-53

FCLOSE(3S)

NAME
fclose, fHush - close or flush a stream

SYNTAX
#include <stdio.h>

fclose(stream)
FILE *stream;

fBush(stream)
FILE *stream;

DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the file to be closed.
Buffers allocated by the standard input/output system are freed.

Fclose is performed automatically upon calling exit(3).

Ffiush causes any buffered data for the named output stream to be written to that file.
The stream remains open.

SEE ALSO
close(2), fopen(3S), setbuf(3S)

DIAGNOSTICS
These routines return EOF if stream is not associated with an output file, or if buffered
data cannot be transferred to that file.

STATUS
FCLOSE (3S) is supported by Digital Equipment Corporation.

3-54

FDATE(3F)

~
; NAME

fdate - return date and time in an ASCII string

SYNTAX
subroutine fdate (string)
character*(*) string

character*(*) function fdateO

DESCRIPTION
Fdate returns the current date and time as a 24 character string in the format described
under ctime(3). Neither 'newline' nor NULL will be included.

Fdate can be called either as a function or as a subroutine. If called as a function, the cal
ling routine must define its type and length. For example:

character*24 fdate
external fdate

write(* ,*) fdateO

FILES
/usr/lib/lib U77.a

SEE ALSO
ctime(3), time(3F), itime(3F), idate(3F), ltime(3F)

STATUS
FDATE (3F) currently is not supported by Digital Equipment Corporation.

3-55

FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNTAX
#include <stdio.h>

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream

clearerr(stream)
FILE *stream

fileno(stream)
FILE *stream;

DESCRIPTION
Feof returns non-zero when end of file is read on the named input stream, otherwise zero.

Ferror returns non-zero when an error has occurred reading or writing the named stream,
otherwise zero. Unless cleared by clearerr, the error indication lasts until the stream is
closed.

elrerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream, see open(2).

These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3S), open(2)

STATUS
FERROR (3S) is supported by Digital Equipment Corporation.

3-56

FLMIN(3F)

NAME
flmin, flmax, ffrac, dflmin, dflmax, dffrac, inmax - return extreme values

SYNTAX
function f1minO

function ftmaxO

function ffracO

double precision function dfiminO

double precision function dfimaxO

double precision function dffracO

function inmaxO

DESCRIPTION
Functions /lmin and /lmax return the mInImum and maximum positive floating point
values respectively. Functions d/lmin and d/lmax return the minimum and maximum posi
tive double precision floating point values. Function in max returns the maximum positive
integer value.

The functions ffrac and dffrac return the fractional accuracy of single and double precision
floating point numbers respectively. These are the smallest numbers that can be added to
1.0 without being lost.

These functions can be used by programs that must scale algorithms to the numerical range
of the processor.

FILES
/usr/lib/libF77.a

STATUS
FLMIN (3F) currently is not supported by Digital Equipment Corporation.

3-57

FLOOR(3M)

NAME
fabs, floor, ceil - absolute value, floor, ceiling functions

SYNTAX
#include <math.h>

double f1oor(x)
double X;

double ceil(x)
double X;

double fabs(x)
double X;

DESCRIPTION
Fabs returns the absolute value 1 x I.
Floor returns the largest in~eger not greater than x.

Ceil returns the smallest integer not less than x.

SEE ALSO
abs(3)

STATUS
FLOOR (3M) currently is not supported by Digital Equipment Corporation.

3-58

)

FLUSH(3F)

NAME
flush - flush output to a logical unit

SYNTAX
subroutine flush (lunit)

DESCRIPTION
Flush causes the contents of the buffer for logical unit lunit to be flushed to the associated
file. This is most useful for logical units 0 and 6 when they are both associated with the
control terminal.

FILES
/usr /lib/libI77.a

SEE ALSO
fclose(3S)

STATUS
FLUSH (3F) currently is not supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984 3-59

FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNTAX
#include <stdio.h>

FILE *fopen(filename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION
Fopen opens the file named by filename and associates a stream with it. Fopen returns a
pointer to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"r" open for reading

"w" create for writing

"a" append: open for writing at end of file, or create for writing

In addition, each type may be followed by a '+' to have the file opened for reading and
writing. "r+" positions the stream at the beginning of the file, "w+" creates or truncates it,
and "a+" positions it at the end. Both reads and writes may be used on read/write
streams, with the limitation that an fseek, rewind, or reading an end-of-file must be used
between a read and a write or vice-versa.

Freopen substitutes the namecl file in place of the open stream. It returns the original
value of stream. The original stream is closed. Freopen is typically used to attach the
preopened constant names, stdin, stdout, stderr, to specified files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or
pipe (2). The type of the stream must agree with the mode of the open file.

SEE ALSO
open(2), fclose(3)

DIAGNOSTICS
Fopen a:q.d freopen return the pointer NULL if filename cannot be accessed.

RESTRICTIONS

3-60

Fdopen is not portable to systems other than UNIX.

The read/write types do not exist on all systems. Those systems without read/write modes
will probably treat the type as if the '+' was not present. These are unreliable in any
event.

© Digital Equipment Corporation 1984

FOPEN(3S)

STATUS
FOPEN (3S) is supported by Digital Equipment Corporation.

3-61

FORK(3F)

NAME
fork - create a copy of this process

SYNTAX
integer function forkO

DESCRIPTION
Fork creates a copy of the calling process. The only distinction between the 2 processes is
that the value returned to one of them (referred to as the 'parent' process) will be the pro
cess id if the copy. The copy is usually referred to as the 'child' process. The value
returned to the 'child' process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of the con
tents of I/O buffers in the external file{s).

If the returned value is negative, it indicates an error and will be the negation of the system
error code. See perror{3F).

A corresponding exec routine has not been provided because there is no satisfactory way to
retain open logical units across the exec. However, the usual function of fork/exec can be
performed using system (3F).

FILES
/usr/lib/libU77.a

SEE ALSO
fork(2), wait{3F), kill(3F), system(3F), perror{3F)

STATUS
FORK (3F) currently is not supported by Digital Equipment Corporation.

3-62 © Digital Equipment Corporation 1984

NAME
fread, fwrite - buffered binary input/output

SYNTAX
#include <stdio.h>

fread(ptr, sizeof(*ptr), nitems, stream)
char *ptr; unsigned nitems, sizeof(*ptr)
FILE *stream;

fwrite(ptr, sizeof(*ptr), nitems, stream)
char *ptr; unsigned nitems, sizeof(*ptr)
FILE *stream;

DESCRIPTION

FREAD(3S)

Fread reads, into a block beginning at ptr, nitems of data of the type of *ptr from the
named input stream. It returns the number of items actually read.

If stream is stdin and the standard output is line buffered, then any partial output line
will be flushed before any call to read(2) to satisfy the fread.

Fwrite appends at most nitems of data of the type of *ptr beginning at ptr to the named
output stream. It returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S)

DIAGNOSTICS
Fread and fwrite return 0 upon end of file or error.

STATUS
FREAD (3S) is supported by Digital Equipment Corporation.

3-63

FREXP(3)

NAME
frexp, ldexp, modf - split into mantissa and exponent

SYNTAX
double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less
than 1 and stores an integer n such that value = x * 2n indirectly through eptr.

Ldexp returns the quantity value * 2exp.

Modi returns the positive fractional part of value and stores the integer part indirectly
through iptr.

STATUS
FREXP (3) currently is not supported by Digital Equipment Corporation.

3-64

\
')

NAME
fseek, ftell - reposition a file on a logical unit

SYNTAX
integer function fseek (lunit, o1fset, from)
integer o1fset, from

integer function ftell (lunit)

DESCRIPTION

FSEEK(3F)

lunit must refer to an open logical unit. offset is an offset in bytes relative to the position
specified by from. Valid values for from are:

o meaning 'beginning of the file'
1 meaning 'the current position'
2 meaning 'the end of the file'

The value returned by fseek will be 0 if successful, a system error code otherwise. (See
perror(3F»

Ftell returns the current position of the file associated with the specified logical unit. The
value is an offset, in bytes, from the beginning of the file. If the value returned is negative,
it indicates an error and will be the negation of the system error code. (See perror(3F»

FILES
/usr/lib/libU77.a

SEE ALSO
fseek(3S), perror(3F)

STATUS
FSEEK (3F) currently is not supported by Digital Equipment Corporation.

® Digital Equipment Corporation 1984 3-65

FSEEK(3S)

NAME
fseek, ftell, rewind - reposition a stream

SYNTAX
#include <stdio.b>

fseek(stream, offset, ptrname)
FILE *stream;
long offset;

long ftell(stream)
FILE *stream;

rewind(stream)
FILE *stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The new posi
tion is at the signed distance offset bytes from the beginning, the current position, or the
end of the file, according as ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungetc(3S).

Ftell returns the current value of the offset relative to the beginning of the file associated
with the named stream. It is measured in bytes and is the only foolproof way to obtain an
offset for {seek.

Rewind(stream) is equivalent to {seek (stream, OL, 0).

SEE ALSO
Iseek(2), fopen(3S)

DIAGNOSTICS
Fseek returns -1 for improper seeks.

STATUS
FSEEK (3S) is supported by Digital Equipment Corporation.

3-66 © Digital Equipment Corporation 1984

NAME
gamma - log gamma function

SYNTAX
#include <math.h>

double gamma(x)
double X;

DESCRIPTION

GAMMA(3M)

Gamma returns In I r(i x I) I. The sign of r(1 xl) is returned in the external integer signgam.
The following C program might be used to calculate r:

y = gamma(x);
if (y > 88.0)

errorO;
y = exp(y);
if(signgam)

y = -y;

DIAGNOSTICS
A huge value is returned for negative integer arguments.

STATUS
GAMMA (3M) currently is not supported by Digital Equipment Corporation.

3-67

GETARG(3F)

NAME
getarg, iargc - return command line arguments

SYNTAX
subroutine getarg (k, arg)
character*(*) arg

function iargc ()

DESCRIPTION
A call to getarg will return the kth command line argument in character string argo The
Oth argument is the command name.

large returns the index of the last command line argument.

FILES
lusr /lib/lib U77 .a

SEE ALSO
getenv(3F), execve(2)

STATUS
GET ARG (3F) currently is not supported by Digital Equipment Corporation.

3-68

NAME
getc, fgetc - get a character from a logical unit

SYNTAX
integer function getc (char)
character char

integer function fgetc (lunit, char)
character char

DESCRIPTION

GETC(3F)

These routines return the next character from a file associated with a fortran logical unit,
bypassing normal fortran I/O. Getc reads from logical unit 5, normally connected to the
control terminal input.

The value of each function is a system status code. Zero indicates no error occured on the
read; -1 indicates end of file was detected. A positive value will be either a UNIX system
error code or an f77 I/O error code. See perror(3F).

FILES
/usr/lib/lib U77.a

SEE ALSO
getc(3S), intro(2), perror(3F)

STATUS
GETC (3F) currently is not supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984 3-69

GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNTAX
#include <stdio.h>

int getc(stream)
FILE *stream;

int getcharO

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION
Getc returns the next character from the named input stream.

GetcharO is identical to getc(stdin).

Fgetc behaves like getc, but is a genuine function, not a macro; it may be used to save
object text.

Getw returns the next word (in a 32-bit integer on a VAX-H) from the named input
stream. It returns the constant EOF upon end of file or error, but since that is a good
integer value, feof and ferror(38) should be used to check the success of getw. Getw
assumes no special alignment in the file.

SEE ALSO
fopen(38), putc(38), gets(38), scanf(38), fread(38), ungetc(38)

DIAGNOSTICS
These functions return the integer constant EOF at end of file or upon read error.

A stop with message, 'Reading bad file', means an attempt has been made to read from a
stream that has not been opened for reading by fopen.

RESTRICTIONS
Because it is implemented as a macro, getc treats a stream argument with side effects
incorrectly. In particular, 'getc(*f++);' doesn't work as expected.

STATUS
GETC (38) is supported by Digital Equipment Corporation.

3-70

\
1

GETCWD(3F)

.; NAME
getcwd - get pathname of current working directory

SYNTAX
integer function getcwd (dirname)
character*(*) dirname

DESCRIPTION
The pathname of the default directory for creating and locating files will be returned in dir
name. The value of the function will be zero if successful; an error code otherwise.

FILES
/usr!lib/libU77.a

SEE ALSO
chdir(3F), perror(3F)

RESTRICTIONS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

STATUS
GETCWD (3F) currently is not supported by Digital Equipment Corporation.

3-71

GETDISKBYNAME (3X)

NAME
getdiskbyname - get disk description by its name

SYNTAX
#include <disktab.h>

struct disktab *
getdiskbyname (name)
char *name;

DESCRIPTION
Getdiskbyname takes a disk name (e.g. rm03) and returns a structure describing its
geometry information and the standard disk partition tables. All information obtained
from the disktab (5) file.

<disktab.h> has the following form:

/* @(#)disktab.h 4.2 (Berkeley) 2/6/83 */

/*
* Disk description table, see disktab(5)
*/

#define DISKTAB \' /etc/disktab"

struct disktab {

} ;

char
char
int
int
int
int

*d_name;
*dj;ype;
d secsize;
{~.ntracks;
<L nsectors;
d_ncylinders;

int cLrpm;
struct partition {

/* drive name * /
/* drive type * /

/* sector size in bytes * /
/* # tracks/cylinder * /
/* # sectors/track * /
/* # cylinders * /
/* revolutions/minute * /

int p-.size; /* #sectors in partition * /
short p,Jlsize; /* block size in bytes * /
short pJsize; /* frag size in bytes * /

} d partitions[8];

struct disktab *getdiskbynatneO;

SEE ALSO
disktab(5)

STATUS
GETDISKBYNAME (3X) currently is not supported by Digital Equipment Corporation.

3-72

NAME
getenv - value for environment name

SYNTAX
char *getenv(name)
char *name;

DESCRIPTION

GETENV(3)

Getenv searches the environment list (see environ(7» for a string of the form name=value
and returns a pointer to the string value if such a string is present, otherwise getenv
returns the value 0 (NULL).

SEE ALSO
environ(7), execve(2)

STATUS
GETENV (3) is supported by Digital Equipment Corporation.

3-73

GETENV(3F)

NAME
getenv - get value of environment variables

SYNTAX
subroutine getenv (ename, evalue)
character*(*) ename, evalue

DESCRIPTION
Getenv searches the environment list (see environ(7» for a string of the form ename=value
and returns value in evalue if such a string is present, otherwise fills evalue with blanks.

FILES
/usr/lib/libU77.a

SEE ALSO
environ(7), execve(2)

STATUS
GETENV (3F) currently is not supported by Digital Equipment Corporation.

3-74

GETFSENT(3X)

) NAME
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor file
entry

SYNTAX
#include <fstab.h>

struct fstab *getfsentO

struct fstab *getfsspec(spec)
char *spec;

struct fstab *getfsfile(file)
char *file;

struct fstab *getfstype(type)
char *type;

int setfsentO

int endfsentO

DESCRIPTION
Getfsent, getfsspec, getfstype, and getfsfile each return a pointer to an object with the fol
lowing structure containing the broken-out fields of a line in the file system description file,
<fstab.h>.

struct fstab {
char

};

char
char
iilt
int

*fs_spec;
*fs_file;
*fs_type;
fs_freq;
fS.J>assno;

The fields have meanings described in fstab(5).

Getfsent reads the next line of the file, opening the file if necessary.

Setfsent opens and rewinds the file.

Endfsent closes the file.

Getfsspec and getfsfile sequentially search from the beginning of the file until a matching
special file name or file system file name is found, or until EOF is encountered. Getfstype
does likewise, matching on the file system type field.

FILES
/etc/fstab

SEE ALSO
fstab(5)

3-75

GETFSENT(3X)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

RESTRICTIONS
All information is contained in a static area so it must be copied if it is to be saved.

STATUS
GETFSENT (3X) currently is not supported by Digital Equipment Corporation.

3-76

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNTAX
#include <grp.h>

struct group *getgrentO

struct group *getgrgid(gid)
int gid;

struct group *getgrnam(name)
char *name;

setgrent()

endgrent()

DESCRIPTION

GETGRENT(3)

Getgrent, getgrgid and getgrnam each return pointers to an object with the following struc
ture containing the broken-out fields of a line in the group file.

/* grp.h 4.1 83/05/03 * /

struct group { /* see getgrent(3) * /
char *gr_name;
char * gr.,.passwd;
int gr_gid;
char * * gr_mem;

};

struct group *getgrentO, *getgrgidO, *getgrnamO;

The members of this structure are:

gt.name The name of the group.
gr_passwd The encrypted password of the group.
gr_gid The numerical group-ID.
gcmem Null-terminated vector of pointers to the individual member names.

Getgrent simply reads the next line while getgrgid and getgrnam search until a matching
gid or name is found (or until EOF is encountered). Each routine picks up where the oth
ers leave off so successive calls may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated searches.
Endgrent may be called to close the group file when processing is complete.

FILES
/etc/group

SEE ALSO
getlogin(3), getpwent(3), group(5)

3-77

GETGRENT (3)

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

RESTRICTIONS
All information is contained in a static area so it must be copied if it is to be saved.

STATUS
GETGRENT (3) currently is not supported by Digital Equipment Corporation.

3-78

GETHOSTENT (3N)

~
v NAME

gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get network host entry

SYNTAX
#include <netdb.h>

struct hostent *gethostentO

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)
char *addr; int len, type;

sethostent(stayopen)
int stayopen

endhostent()

DESCRIPTION
Gethostent, gethostbyname, and gethostbyaddr each return a pointer to an object with the
following structure containing the broken-out fields of a line in the network host data base,
jete/hosts.

struct hostent {
char *h_name; /* official name of host * /
char * *h_aliases; /* alias list * /
int h_addrtype; /* address type * /
int hJength; /* length of address * /
char * h_addr; /* address * /

};

The members of this structure are:

Official name of the host.

h_aliases A zero terminated array of alternate names for the host.

h_addrtype The type of address being returned; currently always AF_INET.

The length, in bytes, of the address. hJength

h_addr A pointer to the network address for the host. Host addresses are returned in
network byte order.

Gethostent reads the next line of the file, opening the file if necessary.

Sethostent opens and rewinds the file. If the stayopen flag is non-zero, the host data base
will not be closed after each call to gethostent (either directly, or indirectly through one of
the other "gethost" calls).

Endhostent closes the file.

3-79

GETHOSTENT (3N)

Gethostbyname and gethostbyaddr sequentially search from the beginning of the file until
a matching host name or host address is found, or until EOF is encountered. Host
addresses are supplied in network order.

FILES
/etc/hosts

SEE ALSO
hosts(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

RESTRICTIONS
All information is contained in a static area so it must be copied if it is to be saved. Only
the Internet address format is currently understood.

STATUS
GETHOSTENT (3N) currently is not supported by Digital Equipment Corporation.

3-80

NAME
getlog - get user's login name

SYNTAX
subroutine getlog (name)
character*(*) name

character*(*) function getlogO

DESCRIPTION

GETLOG(3F)

Getlog will return the user's login name or all blanks if the process is running detached
from a terminal.

FILES
/usr/lib/lib U77.a

SEE ALSO
getlogin(3}

STATUS
GETLOG (3F) currently is not supported by Digital Equipment Corporation.

3-81

GETLOGIN(3)

NAME
getlogin - get login name

SYNTAX
char *getloginO

DESCRIPTION
Getlogin returns a pointer to the login name as found in /etc/utmp. It may be used in con
junction with getpwnam to locate the correct password file entry when the same userid is
shared by several login names.

If getlogin is called within a process that is not attached to a typewriter, it returns NULL.
The correct procedure for determining the login name is to first call getlogin and if it fails,
to call getpw(getuidO).

FILES
/etc/utmp

SEE ALSO
getpwent(3), getgrent(3), utmp(5), getpw(3)

DIAGNOSTICS
Returns NULL (0) if name not found.

RESTRICTIONS
The return values point to static data whose content is overwritten by each call.

STATUS
GETLOGIN (3) currently is not supported by Digital Equipment Corporation.

3-82

)
y

GETNETENT(3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

SYNTAX
#include <netdb.h>

struct netent *getnetentO

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net)
long net;

setnetent(stayopen)
int stayopen

endnetent()

DESCRIPTION
Getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with the
following structure containing the broken-out fields of a line in the network data base,
letelnetworks.

struct

};

netent {
char *n_name;
char * *ILaliases;
int n_addrtype;
long n_net;

1* official name of net * I
1* alias list *1
1* net number type * /
1* net number *1

The members of this structure are:

ILname

n_aliases

The official name of the network.

A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only AF INET.

IUlet The network number. Network numbers are returned in machine byte order.

Getnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base
will not be closed after each call to getnetent (either directly, or indirectly through one of
the other "getnet" calls).

Endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a
matching net name or net address is found, or until EOF is encountered. Network numbers
are supplied in host order.

3-83

GETNETENT(3N)

FILES
/ etc/networ ks

SEE ALSO
networks(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

RESTRICTIONS
All information is contained in a static area so it must be copied if it is to be saved. Only
Internet network numbers are currently understood.

STATUS
GETNETENT (3N) currently is not supported by Digital Equipment Corporation.

3-84

NAME
getpass - read a password

SYNTAX
char *getpass(prompt)
char *prompt;

DESCRIPTION

GETPASS(3)

Getpass reads a password from the file /dev/tty, or if that cannot be opened, from the stan
dard input, after prompting with the null-terminated string prompt and disabling echoing.
A pointer is returned to a null-terminated string of at most 8 characters.

FILES
/dev/tty

SEE ALSO
crypt(3)

RESTRICTIONS
The return value points to static data whose content is overwritten by each call.

STATUS
GETPASS (3) currently is not supported by Digital Equipment Corporation.

3-85

GETPID(3F)

NAME
getpid - get process id

SYNTAX
integer function getpidO

DESCRIPTION
Getpid returns the process ID number of the current process.

FILES
/usr/lib/libU77.a

SEE ALSO
getpid(2)

STATUS
GETPID (3F) currently is not supported by Digital Equipment Corporation.

3-86

"I,
V

)

)

GETPROTOENT (3N)

NAME
getprotoentt getprotobynumbert getprotobynamet setprotoent, endprotoent - get protocol
entry

SYNTAX
#include <netdb.h>

struct protoent *getprotoent()

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

setprotoent(stayopen)
int stayopen

endprotoent()

DESCRIPTION
Getprotoent t getprotobyname t and getprotobynumber each return a pointer to an object
with the following structure containing the broken-out fields of a line in the network proto
col data baset /etc/protocols.

struct protoent {
char *p_name; /* official name of protocol * /
char **p_aliases; /* alias list * /
long p_proto; /* protocol number * /

};

The members of this structure are:

p_name The official name of the protocol.

p aliases A zero terminated list of alternate names for the protocoL

~proto The protocol number.

Getprotoent reads the next line of the file, opening the file if necessary.

Setprotoent opens and rewinds the file. If the stayopen flag is non-zerOt the net data base
will not be closed after each call to getprotoent (either directly, or indirectly through one of
the other "getprotot' calls).

Endprotoent closes the file.

Getprotobyname and getprotobynumber sequentially search from the beginning of the file
until a matching protocol name or protocol number is found, or until EOF is encountered.

FILES
/ etc/protocols

3-87

GETPROTOENT(3N)

SEE ALSO
protocols (5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

RESTRICTIONS
All information is contained in a static area so it must be copied if it is to be saved. Only
the Internet protocols are currently understood.

STATUS
GETPROTOENT (3N) currently is not supported by Digital Equipment Corporation.

3-88

GETPW(3C)

NAME
getpw - get name from uid

SYNTAX
getpw(uid, buf)
char *buf;

DESCRIPTION
Getpw is obsoleted by getpwuid(3).

Getpw searches the password file for the (numerical) uid, and fills in but with the
corresponding line; it returns non-zero if uid could not be found. The line is null
terminated.

FILES
/ etc/passwd

SEE ALSO
getpwent(3), passwd(5)

DIAGNOSTICS
Non-zero return on error.

STATUS
GETPW (3C) currently is not supported by Digital Equipment Corporation.

3-89

GETPWENT (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry

SYNTAX
#include <pwd.h>

struct passwd *getpwent()

struct passwd *getpwuid(uid)
int uid;

struct passwd *getpwnam(name)
char *name;

int setpwentO

int endpwent()

DESCRIPTION
Getpwent, getpwuid and getpwnam each return a pointer to an object with the following
structure containing the broken-out fields of a line in the password file.

/* pwd.h 4.1 83/05/03 * /

struct passwd { /* see getpwent(3) * /
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw~id;
int pw_quota;
char *pw_comment;
char * pw_gecos;
char *p~dir;
char *pw_shell;

};

struct passwd *getpwentO, *getpwuidO, *getpwnamO;

The fields pw_quota and pw_comment are unused; the others have meanings described in
passwd(5).

Getpwent reads the next line (opening the file if necessary); setpwent rewinds the file;
endpwent closes it.

Getpwuid and getpwnam search from the beginning until a matching uid or name is found
(or until EOF is encountered).

FILES
/etc/passwd

3-90

GETPWENT (3)

SEE ALSO
getlogin(3), getgrent(3), passwd(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

RESTRICTIONS
All information is contained in a static area so it must be copied if it is to be saved.

STATUS
GETPWENT (3) currently is not supported by Digital Equipment Corporation.

3-91

GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNTAX
#include <stdio.h>

cllar *gets(s)
char *s;

char *fgets(s, n, stream)
char *s;
FILE *stream;

DESCRIPTION
Gets reads a string into s from the standard input stream stdin. The string is terminated
by a newline character, which is replaced in s by a null character. Gets returns its argu
ment.

Fgets reads n-l characters, or up to a newline character, whichever comes first, from the
stream into the string s. The last character read into s is followed by a null character.
Fgets returns its first argument.

SEE ALSO
puts(3S), getc(3S), scanf(3S), fread(3S), ferror(3S)

DIAGNOSTICS
Gets and {gets return the constant pointer NULL upon end of file or error.

RESTRICTIONS
Gets deletes a newline, while {gets keeps it.

STATUS
GETS (3S) is supported by Digital Equipment Corporation.

3-92

)

GETSERVENT(3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get service entry

SYNTAX
#include <netdb.h>

struct servent *getservent()

struct servent *getservbyname(name, proto)
char *name, *proto;

struct servent *getservbyport(port, proto)
int port; char *proto;

setservent(stayopen)
int stayopen

endservent()

DESCRIPTION
Getservent, getservbyname, and getservbyport each return a pointer to an object with the
following structure containing the broken-out fields of a line in the network services data
base, /etc/services.

struct servent {
char *s_name;!* official name of service * /
char **s_aliases; /* alias list * /
long UJort; /* port service resides at * /
char *sJ)roto;/* protocol to use * /

};

The members of this structure are:

~name The official name of the service.

s_aliases A zero terminated list of alternate names for the service.

s...port The port number at which the service resides. Port numbers are returned in net-
wor k byte order.

s...proto The name of the protocol to use when contacting the service.

Getservent reads the next line of the file, opening the file if necessary.

Setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data base
will not be closed after each call to getservent (either directly, or indirectly through one of
the other "getserv" calls).

Endservent closes the file.

Getservbyname and getservbyport sequentially search from the beginning of the file until a
matching protocol name or port number is found, or until EOF is encountered. If a proto
col name is also supplied (non-NULL), searches must also match the protocol.

3-93

GETSERVENT(3N)

FILES
jete/services

SEE ALSO
getprotoent(3N), services(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

RESTRICTIONS
All information is contained in a static area so it must be copied if it is to be saved.

STATUS
GETSERVENT (3N) currently is not supported by Digital Equipment Corporation.

3-94

)

\
)

NAME
getuid, getgid - get user or group ID of the caller

SYNTAX
integer function getuidO

integer function getgidO

DESCRIPTION
These functions return the real user or group ID of the user of the process.

FILES
/usr/lib/libU77.a

SEE ALSO
getuid(2)

STATUS
GETUID (3F) currently is not supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984

GETUID(3F)

3-95

GETWD(3)

NAME
getwd - get current working directory pathname

SYNTAX
char *getwd(pathname)
char *pathname;

DESCRIPTION
Getwd copies the absolute pathname of the current working directory to pathname and
returns a pointer to the result.

DIAGNOSTICS
Getwd returns zero and places a message in pathname if an error occurs.

RESTRICTIONS
Getwd may fail to return to the current directory if an error occurs.

Pathnames can be no longer than MAXPATHLEN as defined in <sys/parm.h>.

STATUS
GETWD (3) is supported by Digital Equipment Corporation.

3-96

NAME
hostnm - get name of current host

SYNTAX
integer function hostnm (name)
character*(*) name

DESCRIPTION

HOSTNM(3F)

This function puts the name of the current host into character string name. The return
value should be 0; any other value indicates an error.

FILES
/usr /lib/lib U77.a

SEE ALSO
gethostname(2)

STATUS
HOSTNM (3F) currently is not supported by Digital Equipment Corporation.

3-97

HYPOT(3M)

NAME
hypot, cabs - Euclidean distance

SYNTAX
#include <math.h>

double hypot(x, y)
double x, y;

double cabs(z)
struct { double x, y;} z;

DESCRIPTION
Hypot and cabs return

sqrt(x*x + y*y),

taking precautions against unwarranted overflows.

SEE ALSO
exp(3M) for sqrt

STATUS
HYPOT (3M) currently is not supported by Digital Equipment Corporation.

3-98

~
)

I' NAME
idate, itime - return date or time in numerical form

SYNTAX
subroutine idate (iarray)
integer iarray(3)

subroutine itime (iarray)
integer iarray(3)

DESCRIPTION

IDATE(3F)

[date returns the current date in iarray. The order is: day, mon, year. Month will be in the
range 1-12. Year will be ~ 1969.

[time returns the current time in iarray. The order is: hour, minute, second.

FILES
/usr/lib/lib U77.a

SEE ALSO
ctime(3F), fdate(3F)

STATUS
IDATE (3F) currently is not supported by Digital Equipment Corporation.

3-99

INDEX(3F)

NAME
index, rindex, lnblnk, len - tell about character objects

SYNTAX
(intrinsic) function index (string, substr)
character*(*) string, substr

integer function rindex (string, substr)
character*(*) string, substr

function lnblnk (string)
character*(*) string

(intrinsic) function len (string)
character*(*) string

DESCRIPTION
Index (rindex) returns the index of the first (last) occurrence of the substring substr in
string, or zero if it does not occur. Index is an f'/7 intrinsic function; rindex is a library
routine.

Lnblnk returns the index of the last non-blank character in string. This is useful since all
f'/7 character objects are fixed length, blank padded. Intrinsic function len returns the size
of the character object argument.

FILES
/usr/lib/libF77.a

STATUS
INDEX (3F) currently is not supported by Digital Equipment Corporation.

3-100

INET(3N)

~
) NAME

inet_addr, ineCnetwork, ineCntoa, ineCmakeaddr, ineUnaof, inet_netof - Internet address
manipulation routines

SYNTAX
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

struct in_addr inet_addr(cp)
char *cp;

int inet_network(cp)
char *cp;

char *inet_ntoa(in)
struct ineCaddr in;

struct in_addr ineCmakeaddr(net, Ina)
int net, Ina;

int inetJnaof(in)
struct in~ddr in;

int inet_netof(in)
struct in_addr in;

DESCRIPTION
The routines ineLaddr and ineLnetwork each interpret character strings representing
numbers expressed in the Internet standard "." notation, returning numbers suitable for
use as Internet addresses and Internet network numbers, respectively. The routine
ineCntoa takes an Internet address and returns an ASCII string representing the address in
"." notation. The routine ineCmakeaddr takes an Internet network number and a local
network address and constructs an Internet address from it. The routines ineLnetof and
ineClnaof break apart Internet host addresses, returning the network number and local net
work address part, respectively.

All Internet address are returned in network order (bytes ordered from left to right). All
network numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the "." notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left
to right, to the four bytes of an Internet address. Note that when an Internet address is
viewed as a 32-bit integer quantity on the VAX the bytes referred to above appear as
"d.c.b.a". That is, VAX bytes are ordered from right to left.

3-101

INET(3N)

When a three part address is specified, the last part is interpreted as a 16~bit quantity and
placed in the right most two bytes of the network address. This makes the three part
address format convenient for specifying Class B network addresses as "12S.net.host".

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and
placed in the right most three bytes of the network address. This makes the two part
address format convenient for specifying Class A network addresses as "net.host".

When only one part is given, the value is stored directly in the network address without
any byte rearrangement.

All numbers supplied as "parts" in a "." notation may be decimal, octal, or hexadecimal, as
specified in the C language (i.e. a leading Ox or OX implies hexadecimal; otherwise, a lead
ing 0 implies octal; otherwise, the number is interpreted as decimal).

SEE ALSO
gethostent(3N), getnetent(3N), hosts(5), networks(5),

DIAGNOSTICS
The value -1 is returned by ineLEddr and ineLlJetwork for malformed requests.

STATUS
INET (3N) currently is not supported by Digital Equipment Corporation.

3-102

NAME
initgroups - initialize group access list

SYNTAX
initgroups(name, basegid)
char *name;
int basegid;

DESCRIPTION

INITGROUPS (3X)

Initgroups reads through the group file and sets up, using the setgroups(2) call, the group
access list for the user specified in name. The basegid is automatically included in the
groups list. Typically this value is given as the group number from the password file.

FILES
/etc/group

SEE ALSO
setgroups(2)

DIAGNOSTICS
Initgroups returns -1 if it was not invoked by the super-user.

RESTRICTIONS
Initgroups uses the routines based on getgrent(3). If the invoking program uses any of
these routines, the group structure will be overwritten in the call to initgroups.

STATUS
INITGROUPS (3X) currently is not supported by Digital Equipment Corporation.

3-103

INSQUE(3)

NAME
insque, remque - insert/remove element from a queue

SYNTAX
struct qelem {

};

struct qelem *qJorw;
struct qelem *q_back;
char <Ldata[];

insque(elem, pred)
struct qelem *elem, *pred;

remque(elem)
struct qelem *elem;

DESCRIPTION
Insque and remque manipulate queues built from doubly linked lists. Each element in the
queue must in the form of "struct qelem". Insque inserts elem in a queue imediately after
pred; remque removes an entry elem from a queue.

SEE ALSO
"VAX Architecture Handbook", pp. 228-235.

STATUS
INSQUE (3) currently is not supported by Digital Equipment Corporation.

3-104

)
NAME

ioinit - change f77 I/O initialization

SYNTAX
logical function ioinit (cctl, bzro, apnd, prefix, vrbose)
logical cctl, bzro, apnd, vrbose
character*(*) prefix

DESCRIPTION

IOINIT(3F)

This routine will initialize several global parameters in the f77 I/O system, and attach
externally defined files to logical units at run time. The effect of the flag arguments applies
to logical units opened after ioinit is called. The exception is the preassigned units, 5 and
6, to which cctl and bzro will apply at any time. Ioinit is written in Fortran-77.

By default, carriage control is not recognized on any logical unit. If cctl is .true. then car
riage control will be recognized on formatted output to all logical units except unit 0, the
diagnostic channel. Otherwise the default will be restored.

By default, trailing and embedded blanks in input data fields are ignored. If bzro is .true.
then such blanks will be treated as zero's. Otherwise the default will be restored.

By default, all files opened for sequential access are positioned at their beginning. It is
sometimes necessary or convenient to open at the END-OF -FILE so that a write will
append to the existing data. If apnd is .true. then files opened subsequently on any logical
unit will be positioned at their end upon opening. A value of .false. will restore the
default behavior.

Many systems provide an automatic association of global names with fortran logical units
when a program is run. There is no such automatic association in f77. However, if the
argument prefix is a non-blank string, then names of the form prefixNN will be sought in
the program environment. The value associated with each such name found will be used to
open logical unit NN for formatted sequential access. For example, if f77 program mypro
gram included the call

call ioinit (.true., .false., .false., 'FORT', .false.)

then when the following sequence

% setenv FORT01 mydata
% setenv FORT12 myresults
% myprogram

would result in logical unit 1 opened to file mydata and logical unit 12 opened to file
myresults. Both files would be positioned at their beginning. Any formatted output would
have column 1 removed and interpreted as carriage control. Embedded and trailing blanks
would be ignored on input.

3-105

IOINIT(3F)

If the argument vrbose is .true. then ioinit will report on its activity.

The effect of

call ioinit (.true., .true., .false., ", .false.)

can be achieved without the actual call by including "-U66" on the i77 command line.
This gives carriage control on all logical units except 0, causes files to be opened at their
beginning, and causes blanks to be interpreted as zero's.

The internal flags are stored in a labeled common block with the following definition:

integer*2 ieof, ictl, ibzr
common /ioiflg/ ieof, ictl, ibzr

FILES
/usr /lib/libI77.a
/usr /lib/libI66.a

SEE ALSO

f77 I/O library
sets older fortran I/O modes

getarg(3F), getenv(3F), "Introduction to the f77 I/O Library"

RESTRICTIONS
Prefix can be no longer than 30 characters. A pathname associated with an environment
name can be no longer than 255 characters.

The "+" carriage control does not work.

STATUS
10lNIT (3F) currently is not supported by Digital Equipment Corporation.

3-106

) NAME
jO, j1, jn, yO, yl, yn - bessel functions

SYNTAX
#include <math.h>

double jO(x)
double X;

double jl(x)
double X;

double jn(n, x)
double X;

double yO(x)
double X;

double yl(x)
double X;

double yn(n, x)
double X;

DESCRIPTION

JO(3M)

These functions calculate Bessel functions of the first and second kinds for real arguments
and integer orders.

DIAGNOSTICS
Negative arguments cause yO, yJ, and yn to return a huge negative value and set errno to
EDOM.

STATUS
JO (3M) currently is not supported by Digital Equipment Corporation.

3-107

KILL (3F)

NAME
kill - send a signal to a process

SYNTAX
function kill (pid, signum)
integer pid, signum

DESCRIPTION
Pid must be the process id of one of the user's processes. Signum must be a valid signal
number (see sigvec(2». The returned value will be 0 if successful; an error code otherwise.

FILES
/usr!lib/libU77.a

SEE ALSO
kill(2), sigvec(2), signal(3F), fork(3F), perror(3F)

STATUS
KILL (3F) currently is not supported by Digital Equipment Corporation.

3-108

NAME
lib2648 - subroutines for the HP 2648 graphics terminal

SYNTAX
#include <stdio.h>

typedef char *bitmat;
FILE *trace;

cc file.c -12648

DESCRIPTION

LlB2648 (3X)

Lib2648 is a general purpose library of subroutines useful for interactive graphics on the
Hewlett-Packard 2648 graphics terminaL To use it you must call the routine ttyinitO at
the beginning of execution, and done 0 at the end of execution. All terminal input and out
put must go through the routines rawchar, readline, outchar, and outstr.

Lib2648 does the necessary E/'F handshaking if getenv(HTERM"} returns "hp2648", as it
will if set by tset(l). Any other value, including for example "2648", will disable handshak
ing.

Bit matrix routines are provided to model the graphics memory of the 2648. These rou
tines are generally useful, but are specifically useful for the update function which
efficiently changes what is on the screen to what is supposed to be on the screen. The pri
mative bit matrix routines are new mat , mat, and setmat.

The file trace, if non-null, is expected to be a file descriptor as returned by {open. If so,
lib2648 will trace the progress of the output by writing onto this file. It is provided to
make debugging output feasible for graphics programs without messing up the screen or the
escape sequences being sent. Typical use of trace will include:

switch (argv[l] [1]) {
case'T':

trace = fopen("trace", "w");
break;

if (trace)
fprintf(trace, "x is % d, y is %s \ n", x, y);

dumpmat("before update", xmat);

ROUTINES
agoto(x, y)

Move ,the alphanumeric cursor to position (x, y), measured from the upper left
corner of the screen.

aoff() Turn the alphanumeric display off.

aonO Turn the alphanumeric display on.

areaclear(rmin, cmin, rmax, cmax)

3-109

LlB2648 (3X)

Clear the area on the graphics screen bordered by the four arguments. In normal
mode the area is set to all black, in inverse video mode it is set to all white.

beepO Ring the bell on the terminal.

biteopy(dest, sre, rows, eols) bitmat dest,
Copy a rows by cols bit matrix from src to (user provided) dest.

clearaO
Clear the alphanumeric display.

eleargO

euro1f()

euronO

Clear the graphics display. Note that the 2648 will only clear the part of the
screen that is visible if zoomed in.

Turn the graphics cursor oft'.

Turn the graphics cursor on.

dispmsg(str, x, y, maxlen) ehar *str;
Display the message str in graphics text at position (x, 'y). The maximum message
length is given by max len , and is needed to for dispmsg to know how big an area
to clear before drawing the message. The lower left corner of the first character is
at (x, y).

doneO Should be called before the program exits. Restores the tty to normal, turns oft'
graphics screen, turns on alphanumeric screen, flushes the standard output, etc.

draw(x, y)
Draw a line from the pen location to (x, y). As with all graphics coordinates, (x, y)
is measured from the bottom left corner of the screen. (x, y) coordinates represent
the first quadrant of the usual Cartesian system.

drawbox(r, e, eolor, rows, eols)
Draw a rectangular box on the graphics screen. The lower left corner is at location
(r, c). The box is rows rows high and cols columns wide. The box is drawn if color
is 1, erased if color is O. (r, c) absolute coordinates represent row and column on
the screen, with the origin at the lower left. They are equivalent to (x, y) except
for being reversed in order.

dumpmat(msg, m, rows, eols) ehar *msg; bitmat m;
If trace is non-null, write a readable ASCII representation of the matrix m on
trace. Msg is a label to identify the output.

emptyrow(m, rows, eols, r) bitmat m;
Returns 1 if row r of matrix m is all zero, else returns O. This routine is provided
because it can be implemented more efficiently with a knowledge of the internal
representation than a series of calls to mat.

error(msg) ehar *msg;

3-110

LlB2648 (3X)

Default error handler. Calls message(msg) and returns. This is called by certain
routines in lib2648. It is also suitable for calling by the user program. It is prob
ably a good idea for a fancy graphics program to supply its own error procedure
which uses setjmp(3) to restart the program.

gdefault()
Set the terminal to the default graphics modes.

gotf() Turn the graphics display off'.

gonO

kotfO

Turn the graphics display on.

Turn the keypad off'.

konO Turn the keypad on. This means that most special keys on the terminal (such as
the alphanumeric arrow keys) will transmit an escape sequence instead of doing
their function locally.

line(xl, yl, x2, y2)
Draw a line in the current mode from (xl, yl) to (x2, y2). This is equivalent to
move(xl, yl); draw(x2, y2); except that a bug in the terminal involving repeated
lines from the same point is compensated for.

lowleftO
Move the alphanumeric cursor to the lower left (home down) position.

mat(m, rows, cols, r, c) bitmat m;
Used to retrieve an element from a bit matrix. Returns 1 or ° as the value of the
[r, cl element of the rows by cols matrix m. Bit matrices are numbered (r, c) from
the upper left corner of the matrix, beginning at (0, 0). R represents the row, and
c represents the column.

message(str) char *str;
Display the text message str at the bottom of the graphics screen.

minmax(g, rows, cols, rmin, cmin, rmax, cmax) bitmat g;
int *rmin, *cmin, *rmax, *cmax;

Find the smallest rectangle that contains all the 1 (on) elements in the bit matrix
g. The coordinates are returned in the variables pointed to by rmin, cmin, rmax,
cmax.

move(x, y)
Move the pen to location (x, y). Such motion is internal and will not cause output
until a subsequent syncO.

movecurs(x, y)
Move the graphics cursor to location (x, y).

bitmat newmat(rows, cols)
Create (with malloc(3» a new bit matrix of size rows by cols. The value created
(e.g. a pointer to the first location) is returned. A bit matrix can be freed directly
with free.

3-111

LlB2648 (3X)

outchar(c) char c; (
Print the character c on the standard output. All output to the terminal should go
through this routine or outstr.

outstr(str) char *str;
Print the string str on the standard output by repeated calls to outchar.

printg()
Print the graphics display on the printer. The printer must be configured as dev
ice 6 (the default) on the HPIB.

char rawcharO
Read one character from the terminal and return it. This routine or read line
should be used to get all input, rather than getchar(3).

rboffO Turn the rubber band line off.

rbon() Turn the rubber band line on.

char *rdchar(c) char c;
Return a readable representation of the character c. If c is a printing character it
returns itself, if a control character it is shown in the AX notation, if negative an
apostrophe is prepended. Space returns A', rub out returns A?

NOTE: A pointer to a static place is returned. For this reason, it will not work to
pass rdchar twice to the same fprintf/sprintf call. You must instead save one of
the values in your own buffer with strcpy.

readline(prompt, msg, maxlen) char *prompt, *msg;
Display prompt on the bottom line of the graphics display and read one line of
text from the user, terminated by a newline. The line is placed in the buffer msg,
which has size max len characters. Backspace processing is supported.

setclearO
Set the display to draw lines in erase mode. (This is reversed by inverse video
mode.)

setmat(m, rows, cols, r, c, val) bitmat m;

setsetO

The basic operation to store a value in an element of a bit matrix. The [r, cJ ele
ment of m is set to val, which should be either 0 or 1.

Set the display to draw lines in normal (solid) mode. (This is reversed by inverse
video mode.)

setxor()
Set the display to draw lines in exclusive or mode.

syncO Force all accumulated output to be displayed on the screen. This should be fol
lowed by fHush(stdout). The cursor is not affected by this function. Note that it
is normally never necessary to call sync, since rawchar and readline call sync()
and fflush(stdout) automatically.

3-112

LlB2648 (3X)

togvidO
Toggle the state of video. If in normal mode, go into inverse video mode, and vice
versa. The screen is reversed as well as the internal state of the library.

ttyinit()
Set up the terminal for processing. This routine should be called at the beginning
of execution. It places the terminal in CBREAK mode, turns off echo, sets the
proper modes in the terminal, and initializes the library.

update(mold, mnew, rows, cols, baser, basec) bitmat mold, mnew;
Make whatever changes are needed to make a window on the screen look like
mnew. Mold is what the window on the screen currently looks like. The window
has size rows by cols, and the lower left corner on the screen of the window is
[baser, basec}. Note: update was not intended to be used for the entire screen. It
would work but be very slow and take 64K bytes of memory just for mold and
mnew. It was intended for 100 by 100 windows with objects in the center of them,
and is quite fast for such windows.

vidinvO
Set inverse video mode.

vidnorm()
Set normal video mode.

zermat(m, rows, cols) bitmat m;
Set the bit matrix m to all zeros.

zoomn(size)
Set the hardware zoom to value size, which can range from 1 to 15.

zoomo1f()
Turn zoom off. This forces the screen to zoom level 1 without affecting the current
internal zoom number.

zoomonO
Turn zoom on. This restores the screen to the previously specified zoom size.

DIAGNOSTICS
The routine error is called when an error is detected. The only error currently detected is
overflow of the buffer provided to read line .

Subscripts out of bounds to setmat return without setting anything.

FILES
/usr/lib/lib2648.a

SEE ALSO
fed(l)

STATUS
LIB2648 (3X) currently is not supported by Digital Equipment Corporation.

3-113

LlNK(3F)

NAME
link - make a link to an existing file

SYNTAX
function link (namel, name2)
character*(*) namel, name2

integer function symlnk (name I, name2)
character*(*) namel, name2

DESCRIPTION
Namel must be the pathname of an existing file. Name2 is a pathname to be linked to file
namel. Name2 must not already exist. The returned value will be 0 if successful; a system
error code otherwise.

Symlnk creates a symbolic link to namel.

FILES
/usr/lib/libU77.a

SEE ALSO
link(2), symlink(2), perror(3F), unlink(3F)

RESTRICTIONS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

STATUS
LINK (3F) currently is not supported by Digital Equipment Corporation.

3-114

LOC(3F)

NAME
loc - return the address of an object

SYNTAX
function loc (arg)

DESCRIPTION
The returned value will be the address of argo

FILES
/usr/lib/IibU77.a

STATUS
LOC (3F) currently is not supported by Digital Equipment Corporation.

3-115

LONG(3F)

NAME
long, short - integer object conversion

SYNTAX
integer*4 function long (int2)
integer*2 int2

integer*2 function short (int4)
integer*4 int4

DESCRIPTION
These functions provide conversion between short and long integer objects. Long is useful
when constants are used in calls to library routines and the code is to be compiled with "
i2". Short is useful in similar context when an otherwise long object must be passed as a
short integer.

FILES
/usr/lib/libF77.a

STATUS
LONG(3F) currently isnot supported by Digital Equipment Corporation.

3-116

NAME
malloc, free, realloc, calloc, alloca - memory allocator

SYNTAX
char *malloc(size)
unsigned size;

free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

char *alloca(size)
int size;

DESCRIPTION

MALLOC(3)

Malloe and free provide a simple general-purpose memory allocation package. Malloe
returns a pointer to a block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by malloe; this space is
made available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloe is overrun or if
some random number is handed to free.

Malloe maintains multiple lists of free blocks according to size, allocating space from the
appropriate list. It calls sbrk (see brk (2» to get more memory from the system when there
is no suitable space already free.

Realloe changes the size of the block pointed to by ptr to size bytes and returns a pointer
to the (possibly moved) block. The contents will be unchanged up to the lesser of the new
and old sizes.

In order to be compatible with older versions, realloe also works if ptr points to a block
freed since the last call of malloe, realloe or ealloe; sequences of free, maUoe and realloe
were previously used to attempt storage compaction. This procedure is no longer recom
mended.

Calloe allocates space for an array of nelem elements of size elsize. The space is initialized
to zeros.

Alloea allocates size bytes of space in the stack frame of the caller. This temporary space
is automatically freed on return.

Each of the allocation routines returns a pointer to space suitably aligned (after possible
pointer coercion) for storage of any type of object.

3-117

MALLOC(3)

DIAGNOSTICS
Malloe, realloe and ealloe return a null pointer (0) if there is no available memory or if the
arena has been detectably corrupted by storing outside the bounds of a block.

RESTRICTIONS
When realloe returns 0, the block pointed to by ptr may be destroyed.

Currently, the allocator is unsuitable for direct use in a large virtual environment where
many small blocks are kept, since it keeps all allocated and freed blocks on a circular list.
Just before more memory is allocated, all allocated and freed blocks are referenced.

Alloca is machine dependent.

STATUS
MALLOC (3) is supported by Digital Equipment Corporation.

3-118

NAME
mktemp - make a unique file name

SYNTAX
char *mktemp(template)
char *template;

DESCRIPTION

MKTEMP(3)

Mktemp replaces template by a unique file name, and returns the address of the template.
The template should look like a file name with six trailing X's, which will be replaced with
the current process id and a unique letter.

SEE ALSO
getpid(2)

STATUS
MKTEMP (3) currently is not supported by Digital Equipment Corporation.

3-119

MONITOR(3)

NAME
monitor, monstartup, moncontrol - prepare execution profile

SYNTAX
monitor(lowpe, highpe, buffer, bufsize, nfune)
int (*lowpe)O, (*highpe)O;
short buffer[];

monstartup(lowpe, highpe)
int (*lowpe)O, (*highpe)O;

moneontrol(mode)

DESCRIPTION
There are two different forms of monitoring available: An executable program created by:

ee -p.o.

automatically includes calls for the prof(l) monitor and includes an initial call to its start
up routine monstartup with default parameters; monitor need not be called explicitly
except to gain fine control over profil buffer allocation. An executable program created by:

ee -pg ...

automatically includes calls for the gprof(l) monitor.

Monstartup is a high level interface to projil(2). Lowpc and highpc specify the address
range that is to be sampled; the lowest address sampled is that of lowpc and the highest is
just below highpc. Monstartup allocates space using sbrk(2) and passes it to monitor (see
below) to record a histogram of periodically sampled values of the program counter, and of
counts of calls of certain functions, in the buffer. Only calls of functions compiled with the
profiling option -p of cc (1) are recorded.

To profile the entire program, it is sufficient to use

extern etextO;

monstartup((int) 2, etext);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use

monitor(O);

then prof(l) can be used to examine the results.

Moncontrol is used to selectively control profiling within a program. This works with either
prof(l) or gprof(l) type profiling. When the program starts, profiling begins. To stop the
collection of histogram ticks and call counts use moncontrol(O); to resume the collection of
histogram ticks and call counts use moncontrol(l). This allows the cost of particular opera
tions to be measured. Note that an output file will be produced upon program exit irre
gardless of the state of moncontrol.

3-120

MONITOR(3)

Monitor is a low level interface to pro/il(2). Lowpe and highpe are the addresses of two
functions; buffer is the address of a (user supplied) array of bufsize short integers. At most
nfune call counts can be kept. For the results to be significant, especially where there are
small, heavily used routines, it is suggested that the buffer be no more than a few times
smaller than the range of locations sampled. Monitor divides the buffer into space to
record the histogram of program counter samples over the range lowpc to highpe, and space
to record call counts of functions compiled with the -p option to ee(1).

To profile the entire program, it is sufficient to use

FILES
mon.out

SEE ALSO

extern etextO;

monitor«int) 2, etext, buf, bufsize, nfunc);

cc(l), prof(l), gprof(l), profi1(2), sbrk(2)

STATUS
MONITOR (3) currently is not supported by Digital Equipment Corporation.

3-121

NICE(3C)

NAME
nice - set program priority

SYNTAX
nice(incr)

DESCRIPTION
This interface is obsoleted by setpriority(2).

The scheduling priority of the process IS augmented by incr. Positive priorities get less ser
vice than normal. Priority 10 is recommended to users who wish to execute long-running
programs without flak from the administration.

Negative increments are ignored except on behalf of the super-user. The priority is limited
to the range -20 (most urgent) to 20 (least).

The priority of a process is passed to a child process by fork (2). For a privileged process to
return to normal priority from an unknown state, nice should be called successively with
arguments -40 (goes to priority -20 because of truncation), 20 (to get to 0), then 0 (to
maintain compatibility with previous versions of this call).

SEE ALSO
nice(I), setpriority(2), fork(2), renice(8)

STATUS
NICE (3C) currently is not supported by Digital Equipment Corporation.

3-122

(

NLlST(3)

~\

) NAME
nlist - get entries from name list

SYNTAX
#include <nlist.h>

nlist(filename, nl)
char *filename;
struct nlist nl[];

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a
list of values. The name list consists of an array of structures containing names, types and
values. The list is terminated with a null name. Each name is looked up in the name list
of the file. If the name is found, the type and value of the name are inserted in the next
two fields. If the name is not found, both entries are set to O. See a.out(5) for the struc
ture declaration.

This subroutine is useful for examining the system name list kept in the file Ivmunix. In
this way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

STATUS
NLIST (3) currently is not supported by Digital Equipment Corporation.

3-123

PAUSE(3C)

NAME
pause - stop until signal

SYNTAX
pauseO

DESCRIPTION
Pause never returns normally. It is used to give up control while waiting for a signal from
kill(2) or an interval timer, see setitimer(2). Upon termination of a signal handler started
during a pause, the pause call will return.

DIAGNOSTICS
Pause always returns:

[EINTR] The call was interrupted, i.e., always returns -1.

SEE ALSO
kill(2), select(2), sigpause(2)

STATUS
PAUSE (3C) currently is not supported by Digital Equipment Corporation.

3-124

~

)
NAME

perror, sys_errlist, sys_nerr - system error messages

SYNTAX
perror(s)
char *s;

int sys_nerr;
char *sys_errIist[];

DESCRIPTION

PERROR(3)

Perror produces a short error message on the standard error file describing the last error
encountered during a call to the system from a C program. First the argument string s is
printed, then a colon, then the message and a new-line. Most usefully, the argument string
is the name of the program which incurred the error. The error number is taken from the
external variable errno (see intro(2», which is set when errors occur but not cleared when
non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sY'Lerrlist is pro
vided; errno can be used as an index in this table to get the message string without the
newline. SYB.-nerr is the number of messages provided for in the table; it should be checked
because new error codes may be added to the system before they are added to the table.

SEE ALSO
intro(2), psignal(3)

STATUS
PERROR (3) is supported by Digital Equipment Corporation.

3-125

PERROR(3F)

NAME
perror, gerror, ierrno - get system error messages

SYNTAX
subroutine perror (string)
cbaracter*(*) string

subroutine gerror (string)
cbaracter*(*) string

cbaracter*(*) function gerror()

function ierrno()

DESCRIPTION
Perror will write a message to fortran logical unit 0 appropriate to the last detected system
error. String will be written preceding the standard error message.

Gerror returns the system error message in character variable string. Gerror may be called
either as a subroutine or as a function.

Ierrno will return the error number of the last detected system error. This number is
updated only when an error actually occurs. Most routines and I/O statements that might
generate such errors return an error code after the call; that value is a more reliable indica
tor of what caused the error condition.

FILES
/usr/lib/libU77.a

SEE ALSO
intro(2), perror(3)
D. L. Wasley, Introduction to the 177 I/O Library

RESTRICTIONS
String in the call to perror can be no longer than 127 characters.

The length of the string returned by gerror is determined by the calling program.

NOTES
UNIX system error codes are described in intro(2). The f77 I/O error codes and their
meanings are:

100 "error in format"
101 "illegal unit number"
102 "formatted io not allowed"
103 "unformatted io not allowed"
104 "direct io not allowed"
105 "sequential io not allowed"
106 "can't backspace file"
107 "off beginning of record"

3-126

PERROR(3F)

108 "can't stat file"
109 "no * after repeat count"
110 "off end of record"
111 "truncation failed"
112 "incomprehensible list input"
113 "out of free space"
114 "unit not connected"
115 "read unexpected character"
116 "blank logical input field"
117 "'new' file exists"
118 "can't find 'old' file"
119 "unknown system error"
120 "requires seek ability"
121 "illegal argument"
122 "negative repeat count"
123 "illegal operation for unit"

STATUS
PERROR (3F) currently is not supported by Digital Equipment Corporation.

3-127

PLOT(3X)

NAME
plot: openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl - graph
ics interface

SYNTAX
openplO

eraseO

label(s)
char s[];

line(xl, yl, x2, y2)

circle(x, y, r)

arc(x, y, xO, yO, xl, yl)

move(x, y)

cont(x, y)

point(x, y)

linemod(s)
char s[];

space(xO,yO,xl,yl)

closeplO

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner. See
plot (5) for a description of their effect. Openpl must be used before any of the others to
open the device for writing. Closepl flushes the output.

String arguments to label and linemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different output devices. They are obtained by
the following ld (1) options:

-Iplot device-independent graphics stream on standard output for plot (1) filters
-1300 GSI 300 terminal
-1300s GSI 300S terminal
-1450 DASI 450 terminal
-14014

Tektronix 4014 terminal

SEE ALSO
plot(5), plot(lG), graph(lG)

STATUS
PLOT (3X) currently is not supported by Digital Equipment Corporation.

3-128

NAME
popen, pclose - initiate I/O to/from a process

SYNTAX
#include <stdio.h>

FILE *popen(command, type)
char *command, *type;

pclose(stream)
FILE *stream;

DESCRIPTION

POPEN(3)

The arguments to popen are pointers to null-terminated strings containing respectively a
shell command line and an I/O mode, either "r" for reading or "w" for writing. It creates a
pipe between the calling process and the command to be executed. The value returned is a
stream pointer that can be used (as appropriate) to write to the standard input of the com
mand or read from its standard output.

A stream opened by popen should be closed by pclose, which waits for the associated pro
cess to terminate and returns the exit status of the command.

Because open files are shared, a type "r" command may be used as an input filter, and a
type "w" as an output filter.

SEE ALSO
pipe(2), fopen(3S), fclose(3S), system(3), wait(2), sh(1)

DIAGNOSTICS
Popen returns a null pointer if files or processes cannot be created, or the shell cannot be
accessed.

Pc lose returns -1 if stream is not associated with a 'popened' command.

RESTRICTIONS
Buffered reading before opening an input filter may leave the standard input of that filter
mispositioned. Similar problems with an output filter may be forestalled by careful buffer
flushing, for instance, with tfl.ush, see fclose(3).

Popen always calls sh, never c{llls csh.

STATUS
POPEN (3) currently is not supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984 3-129

PRINTF(3S)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNTAX
#include <stdio.h>

printf(format [, arg] ...
char *format;

fprintf(stream, format [, arg] ...
FILE *stream;
char *format;

char *sprintf(s, format [, arg] ...
char *s, format;

#include <varargs.h>
_doprnt(format, args, stream)
char *format;
vlt..Iist *args;
FILE *stream;

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf places output on the
named output stream. Sprint! places 'output' in the string s, followed by the character ~'.
All of these routines work by calling the internal routine_doprnt, using the variable-length
argument facilities of varargs(3).

Each of these functions converts, formats, and prints its arguments after the first under
control of the first argument. The first argument is a character string which contains two
types of objects: plain characters, which are simply copied to the output stream, and
conversion specifications, each of which causes conversion and printing of the next succes
sive arg printf.

Each conversion specification is introduced by the character %. Following the %, there
may be

3-130

an optional minus sign '-' which specifies left adjustment of the converted value
in the indicated field;

an optional digit string specifying a field width; if the converted value has fewer
characters than the field width it will be bhink-padded on the left (or right, if the
left-adjustment indicator has been given) to make up the field width; if the field
width begins with a zero, zero-padding will be done instead of blank-padding;

an optional period '.' which serves to separate the field width from the next digit
string;

an optional digit string specifying a precision which specifies the number of digits
to appear after the decimal point, for e- and f-conversion, or the maximum number
of characters to be printed from a string;

<[) Digital Equipment Corporation 1984

PRINTF(3S)

an optional '#' character specifying that the value should be converted to an
"alternate form". For c, d, s, and u, conversions, this option has no effect. For 0

conversions, the precision of the number is increased to force the first character of
the output string to a zero. For x(X) conversion, a non-zero result has the string
Ox(OX) prepended to it. For e, E, f, g, and G, conversions, the result will always
contain a decimal point, even if no digits follow the point (normally, a decimal
point only appears in the results of those conversions if a digit follows the decimal
point). For g and G conversions, trailing zeros are not removed from the result as
they would otherwise be.

the character I specifying that a following d, 0, x, or u corresponds to a long
integer arg.

a character which indicates the type of conversion to be applied.

A field width or precision may be '*' instead of a digit string. In this case an integer arg
supplies the field width or precision.

The conversion characters and their meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal notation respec
tively.

f The float or double arg is converted to decimal notation in the style '[-]ddd.ddd'
where the number of d's after the decimal point is equal to the precision
specification for the argument. If the precision is missing, 6 digits are given; if the
precision is explicitly 0, no digits and no decimal point are printed.

e The float or double arg is converted in the style '[-]d.ddde ± dd' where there is
one digit before the decimal point and the number after is equal to the precision
specification for the argument; when the precision is missing, 6 digits are produced.

g The float or double arg is printed in style d, in style f, or in style e, whichever
gives full precision in minimum space.

c The character arg is printed.

s Arg is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the
precision specification is reached; however if the precision is 0 or missing all char
acters up to a null are printed.

U The unsigned integer arg is converted to decimal and printed (the result will be in
the range 0 through MAXUINT, where MAXUINT equals 4294967295 on a VAX-
11 and 65535 on a PDP-11).

% Print a '% '; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding
takes place only if the specified field width exceeds the actual width. Characters generated
by print! are printed by putc{3S).

© Digital Equipment Corporation 1984 3-131

PRINTF(3S)

Examples
To print a date and time in the form 'Sunday, July 3,10:02', where weekday and month are
pointers to null-terminated strings:

printf("%s, %8 %d, %02d:%02d", weekday, month, day, hour, min);

To print 7r to 5 decimals:

printf("pi = % .5f", 4*atan(1.0»;

SEE ALSO
putc(3S), scanf(3S), ecvt(3)

RESTRICTIONS
Very wide fields (> 128 characters) fail.

STATUS
PRINTF (3S) is supported by Digital Equipment Corporation.

3-132 © Digital Equipment Corporation 1984

NAME
psignal, sys_siglist - system signal messages

SYNTAX
psignal(sig, s)
unsigned sig;
char ·s;

char ·sys_siglist[];

DESCRIPTION

PSIGNAL(3)

Psignal produces a short message on the standard error file describing the indicated signal.
First the argument string s is printed, then a colon, then the name of the signal and a new
line. Most usefully, the argument string is the name of the program which incurred the sig
nal. The signal number should be from among those found in <signal.h>.

To simplify variant formatting of signal names, the vector of message strings sys siglist is
provided; the signal number can be used as an index in this table to get the signal name
without the newline. The define NSIG defined in <signal.h> is the number of messages.

SEE ALSO
sigvec(2), perror(3)

STATUS
PSIGNAL (3) is supported by Digital Equipment Corporation.

3-133

PUTC(3F)

NAME
putc, fputc - write a character to a fortran logical unit

SYNTAX
integer function putc (char)
character char

integer function fputc (lunit, char)
character char

DESCRIPTION
These functions write a character to the file associated with a fortran logical unit bypassing
normal fortran I/O. Putc writes to logical unit 6, normally connected to the control termi
naloutput.

The value of each function will be zero unless some error occurred; a system error code oth
erwise. See perror(3F).

FILES
/usr/lib/libU77.a

SEE ALSO
putc(3S), intro(2), perror(3F)

STATUS
PUTC (3F) currently is not supported by Digital Equipment Corporation.

3-134

) NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNTAX
#include <stdio.h>

int putc(c, stream)
char c;
FILE *stream;

putchar(c)

fputc(c, stream)
FILE *stream;

putw(w, stream)
FILE *stream;

DESCRIPTION

PUTC(3S)

Putc appends the character c to the named output stream. It returns the character writ
ten.

Putchar(c) is defined as putc(c, stdout).

Fputc behaves like putc, but is a genuine function rather than a macro.

Putw appends word (that is, int) w to the output stream. It returns the word written.
Putw neither assumes nor causes special alignment in. the file.

SEE ALSO
fopen(3S), fclose(3S), getc(3S), puts(3S), printf(3S), fread(3S)

DIAGNOSTICS
These functions return the constant EOF upon error. Since this is a good integer,
!error(3S) should be used to detect putw errors.

RESTRICTIONS
Because it is implemented as a macro, putc treats a stream argument with side effects in
correctly. In particular, 'putc(c, *f++);' doesn't work as expected.

STATUS
PUTC (3S) is supported by Digital Equipment Corporation.

3-135

PUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNTAX
#include <stdio.h>

puts(s)
char *s;

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION
Puts copies the null-terminated string s to the standard output stream stdout and appends
a newline character.

Fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminal null character.

SEE ALSO
fopen(3S), gets(3S), putc(3S), printf(3S), ferror(3S)
fread(3S) for {write

RESTRICTIONS
Puts appends a newline, while {puts does not.

STATUS
PUTS (3S) is supported by Digital Equipment Corporation.

3-136

NAME
qsort - quicker sort

SYNTAX
qsort(base, nel, width, compar)
char *base;
int (*compar)O;

DESCRIPTION

aSORT(3)

Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer
to the base of the data; the second is the number of elements; the third is the width of an
element in bytes; the last is the name of the comparison routine to be, called with two argu
ments which are pointers to the elements being compared. The routine must return an
integer less than, equal to, or greater than 0 according as the first argument is to be con
sidered less than, equal to, or greater than the second.

SEE ALSO
sort(1)

STATUS
QSORT (3) currently is not supported by Digital Equipment Corporation.

3-137

QSORT(3F)

NAME
qsort - quick sort

SYNTAX
subroutine qsort (array, len, isize, compar)
external com par
integer*2 com par

DESCRIPTION
One dimensional array contains the elements to be sorted. len is the number of elements
in the array. isize is the size of an element, typically -

4 for integer and real
8 for double precision or complex
16 for double complex
(length of character object) for character arrays

Compar is the name of a user supplied integer*2 function that will determine the sorting
order. This function will be called with 2 arguments that will be elements of array. The
function must return -

negative if arg 1 is considered to precede arg 2
zero if arg 1 is equivalent to arg 2
positive if arg 1 is considered to follow arg 2

On return, the elements of array will be sorted.

FILES
/usr lli b/lib U77.a

SEE ALSO
qsort(3)

STATUS
QSORT (3F) currently is not supported by Digital Equipment Corporation.

3-138

NAME
rand, srand - random number generator

SYNTAX
srand(seed)
int seed;

randO

DESCRIPTION

RAND(3C)

The newer random(3) should be used in new applications; rand remains for
compatibilty.

Rand uses a multipiicative congruential random number generator with period 232 to return
successive pseudo-random numbers in the range from 0 to 231_l.

The generator is reinitialized by calling srand with 1 as argument. It can be set to a ran
dom starting point by calling srand with whatever you like as argument.

SEE ALSO
random(3)

STATUS
RAND (3C) currently is not supported by Digital Equipment Corporation.

3-139

RAND(3F)

NAME
rand, drand, irand - return random values

SYNTAX
function irand (illag)

function rand (illag)

double precision function drand (illag)

DESCRIPTION
These functions use rand(3C) to generate sequences of random numbers. If ifiag is '1', the
generator is restarted and the first random value is returned. If ifiag is otherwise non-zero,
it is used as a new seed for the random number generator, and the first new random value
is returned.

[rand returns positive integers in the range 0 through 2147483647. Rand and drand return
values in the range O. through 1.0 .

FILES
/usr/lib/libF77.a

SEE ALSO
rand(3C)

RESTRICTIONS
The algorithm returns a 31 bit quanity on the VAX.

STATUS
RAND (3F) currently is not supported by Digital Equipment Corporation.

3-140

RANDOM(3)

NAME
random, srandom, initstate, setstate - better random number generator; routines for chang
ing generators

SYNTAX
long randomO

srandom(seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;
char *state;
int n;

char *setstate(state)
char *state;

DESCRIPTION
Random uses a non-linear additive feedback random number generator employing a default
table of size 31 long integers to return successive pseudo-random numbers in the range
from 0 to 231 _1. The period of this random number generator is very large,
approximately 16* (231 _1).

Random/srandom have (almost) the same calling sequence and initialization properties as
rand/srand. The difference is that rand(3) produces a much less random sequence -- in
fact, the low dozen bits generated by rand go through a cyclic pattern. All the bits gen
erated by random are usable. For example, "randomO&Ol" will produce a random binary
value.

Unlike srand, srandom does not return the old seed; the reason for this is that the amount
of state information used is much more than a single word. (Two other routines are pro
vided to deal with restarting/changing random number generators). Like rand(3), however,
random will by default produce a sequence of numbers that can be duplicated by calling
srandom with 1 as the seed.

The initstate routine allows a state array, passed in as an argument, to be initialized for
future use. The size of the state array (in bytes) is used by initstate to decide how sophis
ticated a random number generator it should use -- the more state, the better the random
numbers will be. (Current "optimal" values for the amount of state information are 8, 32,
64, 128, and 256 bytes; other amounts will be rounded down to the nearest known amount.
Using less than 8 bytes will cause an error). The seed for the initialization (which specifies
a starting point for the random number sequence, and provides for restarting at the same
point) is also an argument. Initstate returns a pointer to the previous state information
array.

Once a state has been initialized, the sets tate routine provides for rapid switching between
states. Setstate returns a pointer to the argument state array is used for further random
number generation until the next call to initstate or setstate.

3-141

RANDOM(3)

Once a state array has been initialized, it may be restarted at a different point either by
calling initstate (with the desired seed, the state array, and its size) or by calling both set
state (with the state array) and srandom (with the desired seed). The advantage of calling
both setstate and srandom is that the size of the state array does not have to be remem
bered after it is initialized.

With 256 bytes of state information, the period of the random number generator is greater
than 269

, which should be sufficient for most purposes.

AUTHOR
Earl T. Cohen

DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if sets tate detects that
the state information has been garbled, error messages are printed on the standard error
output.

SEE ALSO
rand(3)

STATUS
RANDOM (3) currently is not supported by Digital Equipment Corporation.

3-142

RCMD(3X)

~ NAME
~' rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNTAX
rem = rcmd(ahost, inport, locuser, remuser, cmd, fd2p);
char **ahost;
u short inport;
char *locuser, *remuser, *cmd;
int *fd2p;

s = rresvport(port);
int *port;

ruserok(rhost, superuser, ruser, luser);
char *rhost;
int superuser;
char *ruser, *luser;

DESCRIPTION
Rcmd is a routine used by the super-user to execute a command on a remote machine using
an authentication scheme based on reserved port numbers. Rresvport is a routine which
returns a descriptor to a socket with an address in the privileged port space. Ruserok is a
routine used by servers to authenticate clients requesting service with rcmd. All three
functions are present in the same file and are used by the rshd(8C) server (among others).

Rcmd looks up the host *ahost using gethostbyname (3N), returning -1 if the host does not
exist. Otherwise *ahost is set to the standard name of the host and a connection is esta
blished to a server residing at the well-known Internet port inport.

If the call succeeds, a socket of type SOCK STREAM is returned to the caller, and given to
the remote command as stdin and stdout. If fd2p is non-zero, then an auxiliary channel
to a control process will be set up, and a descriptor for it will be placed in *fd2p. The con
trol process will return diagnostic output from the command (unit 2) on this channel, and
will also accept bytes on this channel as being UNIX signal numbers, to be forwarded to
the process group of the command. If fd2p is 0, then the stderr (unit 2 of the remote
command) will be made the same as the stdout and no provision is made for sending arbi
trary signals to the remote process, although you may be able to get its attention by using
out-of-band data.

The protocol is described in detail in rshd(8C).

The rresvport routine is used to obtain a socket with a privileged address bound to it. This
socket is suitable for use by rcmd and sevral other routines. Privileged addresses consist of
a port in the range 0 to 1023. Only the super-user is allowed to bind an address of this sort
to a socket.

Ruserok takes a remote host's name, as returned by a gethostent (3N) routine, two user
names and a flag indicating if the local user's name is the super-user. It then checks the
files letclhosts.equiv and, possibly, .rhosts in the current working directory (normally the
local user's home directory) to see if the request for service is allowed. A 1 is returned if

3-143

RCMD(3X)

the machine name is listed in the "hosts.equiv" file, or the host and remote user name are
found in the ".rhosts" file; otherwise ruserok returns O. If the superuser flag is 1, the
checking of the "host.equiv" file is bypassed.

SEE ALSO
rlogin(1C), rsh(1C), rexec(3X), rexecd(8C), rlogind(8C), rshd(8C)

STATUS
RCMD (3X) currently is not supported by Digital Equipment Corporation.

3-144

NAME
r~comp, rEL.exec - regular expression handler

SYNTAX
char *re_comp(s)
char *s;

r~xec(s)

char *s;

DESCRIPTION

REGEX(3)

Re...somp compiles a string into an internal form suitable for pattern matching. Ruxec
checks the argument string against the last string passed to rfLcomp.

RfLcomp returns 0 if the string s was compiled successfully; otherwise a string containing
an error message is returned. If ruomp is passed 0 or a null string, it returns without
changing the currently compiled regular expression.

Re.3xec returns 1 if the string s matches the last compiled regular expression, 0 if the string
s failed to match the last compiled regular expression, and -1 if the compiled regular
expression was invalid (indicating an internal error).

The strings passed to both r~comp and ruxec may have trailing or embedded newline
characters; they are terminated by nulls. The regular expressions recognized are described
in the manual entry for ed (1), given the above difference.

SEE A:t.SO
ed(l), ex(l), egrep(l), fgrep(l), grep(l)

DIAGNOSTICS
Ruxec returns -1 for an internal error.

Ruomp returns one of the following strings if an error occurs:

STATUS

No previous regular expression,
Regular expression too long,
unmatched \ (,
missing],
too many\ (\) pairs,
unmatched \).

REGEX (3) currently is not supported by Digital Equipment Corporation.

3-145

RENAME(3F)

NAME
rename - rename a file

SYNTAX
integer function rename (from, to)
character*(*) from, to

DESCRIPTION
From must be the pathname of an existing file. To will become the new pathname for the
file. If to exists, then both from and to must be the same type of file, and must reside on
the same filesystem. If to exists, it will be removed first.

The returned value will be 0 if successful; a system error code otherwise.

FILES
/usr /lib/lib U77.a

SEE ALSO
rename(2), perror(3F)

RESTRICTIONS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

STATUS
RENAME (3F) currently is not supported by Digital Equipment Corporation.

3-146

NAME
rexec - return stream to a remote command

SYNTAX
rem = rexec(ahost, inport, user, passwd, cmd, fd2p);
char **ahost;
u short inport;
char *user, *passwd, *cmd;
int *fd2p;

DESCRIPTION

REXEC(3X)

Rexec looks up the host *ahost using gethostbyname(3N), returning -1 if the host does not
exist. Otherwise *ahost is set to the standard name of the host. If a username and pass
word are both specified, then these are used to authenticate to the foreign host. If all this
fails, the user is prompted for the information.

The port inport specifies which well-known DARPA Internet port to use for the connection;
it will normally be the value returned from the call "getservbyname("exec", "tcp")" (see
getservent(3N». The protocol for connection is described in detail in rexecd(8C).

If the call succeeds, a socket of type SOCK STREAM is returned to the caller, and given to
the remote command as stdin and stdout-:-If fd2p is non-zero, then a auxiliary channel to
a control process will be setup, and a descriptor for it will be placed in *fd2p. The control
process will return diagnostic output from the command (unit 2) on this channel, and will
also accept bytes on this channel as being UNIX signal numbers, to be forwarded to the
process group of the command. If fd2p is 0, then the stderr (unit 2 of the remote com
mand) will be made the same as the stdout and no provision is made for sending arbitrary
signals to the remote process, although you may be able to get its attention by using out
of-band data.

SEE ALSO
rcmd(3X), rexecd(8C)

STATUS
REXEC (3X) currently is not supported by Digital Equipment Corporation.

3-147

SCANDIR(3)

NAME
scandir - scan a directory

SYNTAX
#include <sys/types.h>
#include <sys/dir.h>

scandir(dirname, namelist, select, compar)
char *dirname;
struct direct *(*namelist[]);
int (*select)();
int (*compar)();

alphasort(dl, d2)
struct direct **dl, **d2;

DESCRIPTION
Scandir reads the directory dirname and builds an array of pointers to directory entries
using malloc(3). It returns the number of entries in the array and a pointer to the array
through name list .

The select parameter is a pointer to a user supplied subroutine which is called by scandir
to select which entries are to be included in the array. The select routine is passed a
pointer to a directory entry and should return a non-zero value if the directory entry is to
be included in the array. If select is null, then all the directory entries will be included.

The compar parameter is a pointer to a user supplied subroutine which is passed to
qsort(3) to sort the completed array. If this pointer is null, the array is not sorted.
Alphasort is a routine which can be used for the compar parameter to sort the array alpha
betically.

The memory allocated for the array can be deallocated with free (see malloc(3» by freeing
each pointer in the array and the array itself.

SEE ALSO
directory(3), malloc(3), qsort(3), dir(5)

DIAGNOSTICS
Returns -1 if the directory cannot be opened for reading or if malloc(3) cannot allocate
enough memory to hold all the data structures.

STATUS
SCANDIR (3) currently is not supported by Digital Equipment Corporation.

3-148

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNTAX
#include <stdio.h>

scanf(format [, pointer] ...
char *format;

fscanf(stream, format [, pointer] ...
FILE *stream;
char *format;

sscanf(s, format [, pointer] ...
char *s, *format;

DESCRIPTION

SCANF(3S)

Scanf reads from the standard input stream stdin. Fscanf reads from the named input
stream. Sscanf reads from the character string s. Each function reads characters, inter
prets them according to a format, and stores the results in its arguments. Each expects as
arguments a control string format, described below, and a set of pointer arguments indicat
ing where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct
interpretation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.

2. An ordinary character (not %) which must match the next character of the input
stream.

3. Conversion specifications, consisting of the character %, an optional assignment
suppressing character *, an optional numerical maximum field width, and a conversion
character.

A conversion specification directs the conversion of the next input field; the result is placed
in the variable pointed to by the corresponding argument, unless assignment suppression
was indicated by *. An input field is defined as a string of non-space characters; it extends
to the next inappropriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a restricted type. The following conversion characters
are legal:

% a single '%' is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

o an octal integer is expected; the corresponding argument should be a integer pointer.

x a hexadecimal integer is expected; the corresponding argument should be an integer
pointer.

s a character string is expected; the corresponding argument should be a character

3-149

SCANF(3S)

pointer pointing to an array of characters large enough to accept the string and a ter
minating ')()', which will be added. The input field is terminated by a space character
or a newline.

c a character is expected; the corresponding argument should be a character pointer.
The normal skip over space characters is suppressed in this case; to read the next non
space character, try' % 1s'. If a field width is given, the corresponding argument should
refer to a character array, and the indicated number of characters is read.

e a floating point number is expected; the next field is converted accordingly and stored
f through the corresponding argument, which should be a pointer to a float. The input

format for floating point numbers is an optionally signed string of digits possibly con
taining a decimal point, followed by an optional exponent field consisting of an E or e
followed by an optionally signed integer.

indicates a string not to be delimited by space characters. The left bracket is followed
by a set of characters and a right bracket; the characters between the brackets define a
set of characters making up the string. If the first character is not circumflex ("), the
input field is all characters until the first character not in the set between the brackets;
if the first character after the left bracket is "', the input field is all characters until the
first character which is in the remaining set of characters between the brackets. The
corresponding argument must point to a character array.

The conversion characters d, 0 and x may be capitalized or preceded by I to indicate that a
pointer to long rather than to int is in the argument list. Similarly, the conversion charac
ters e or f may be capitalized or preceded by I to indicate a pointer to double rather than
to float. The conversion characters d, 0 and x may be preceded by h to indicate a pointer
to short rather than to into

The scanf functions return the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. The constant EOF is
returned upon end of input; note that this is different from 0, which means that no conver
sion was done; if conversion was intended, it was frustrated by an inappropriate character
in the input.

For example, the call

int i; float x; char name[50];
scanf("%d%f%s", &i, &x, name);

with the input line

25 54.32E-1 thompson

will assign to i the value 25, x the value 5.432, and name will contain 'thompson \ 0'. Or,

int i; float x; char name[50];
scanf("%2d%f%*d% [1234567890]", &i, &x, name);

with input

56789 0123 56a72

3-150

SCANF(3S)

will assign 56 to i, 789.0 to x, skip '0123', and place the string '56 \ 0' in name. The next call
to getchar will return 'a'.

SEE ALSO
atof(3), getc(3S), printf(3S)

DIAGNOSTICS
The scanf functions return EOF on end of input, and a short count for missing or illegal
data items.

RESTRICTIONS
The success of literal matches and suppressed assignments is not directly determinable.

STATUS
SCANF (3S) is supported by Digital Equipment Corporation.

3-151

SETBUF(3S)

NAME
setbuf, setbuffer, setlinebuf - assign buffering to a stream

SYNTAX
#include <stdio.h>

setbuf(stream, buf)
FILE *stream;
char *buf;

setbuifer(stream, buf, size)
FILE *stream;
char *buf;
int size;

setlinebuf(stream)
FILE *stream;

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buffered.
When an output stream is unbuffered, information appears on the destination file or termi
nal as soon as written; when it is block buffered many characters are saved up and written
as a block; when it is line buffered characters are saved up until a newline is encountered or
input is read from stdin. Ffiush (see fclose(3S)) may be used to force the block out early.
Normally all files are block buffered. A buffer is obtained from malloc(3) upon the first
getc or putc(3S) on the file. If the standard stream stdout refers to a terminal it is line
buffered. The standard stream stderr is always unbuffered.

Setbuf is used after a stream has been opened but before it is read or written. The charac
ter array buf is used instead of an automatically allocated buffer. If buf is the constant
pointer NULL, input/output will be completely unbuffered. A manifest constant BUFSIZ
tells how big an array is needed:

char buf[BUFSIZ];

Setbuffer, an alternate form of setbuf, is used after a stream has been opened but before it
is read or written. The character array buf whose size is determined by the size argument
is used instead of an automatically allocated buffer. If buf is the constant pointer NULL,
input/output will be completely unbuffered.

Setlinebuf is used to change stdout or stderr from block buffered or unbuffered to line
buffered. Unlike setbuf and set buffer it can be used at any time that the file descriptor is
active.

A file can be changed from unbuffered or line buffered to block buffered by using freopen
(see fopen(3S)). A file can be changed from block buffered or line buffered to unbuffered
by using freopen followed by setbuf with a buffer argument of NULL.

SEE ALSO
fopen(3S), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3S), fread(3S)

3-152

SETBUF(3S)

~ RESTRICTIONS
The standard error stream should be line buffered by default.

The setbuffer and setlinebuf functions are not portable to non 4.2 BSD versions of UNIX.

STATUS
SETBUF (3S) is supported by Digital Equipment Corporation.

3-153

SET JMP(3)

NAME
setjmp, longjmp - non-Ioc~l goto

SYNTAX
#include <setjmp.h>

setjmp(env)
jmp buf env;

longjmp(env, val)
jmp buf env;

_setjmp(env)
jmp_buf env;

_longjmp(env, val)
jmp_buf env;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

Setjmp saves its stack environment in env for later use by longjmp. It returns value o.
Longjmp restores the environment saved by the last call of setjmp. It then returns in such
a way that execution continues as if the call of setjmp had just returned the value val to
the function that invoked setjmp, which must not itself have returned in the interim. All
accessible data have values as of the time longjmp was called.

Setjmp and longjmp save and restore the signal mask sigmask(2), while _setjmp and
_longjmp manipulate only the C stack and registers.

SEE ALSO
sigvec(2), sigstack(2), signal(3)

RESTRICTIONS
Setjmp does not save current notion of whether the process is executing on the signal stack.
The result is that a longjmp to some place on the signal stack leaves the signal stack state
incorrect.

STATUS
SET JMP (3) currently is not supported by Digital Equipment Corporation.

3-154

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID

SYNTAX
setuid(uid)
seteuid(euid)
setruid(ruid)

setgid(gid)
setegid(egid)
setrgid(rgid)

DESCRIPTION

SETUID(3)

. Setuid (setgid) sets both the real and effective user ID (group ID) of the current process to
as specified.

Seteuid (setegid) sets the effective user ID (group ID) of the current process.

Setruid (setruid) sets the real user ID (group ID) of the current process.

These calls are only permitted to the super-user or if the argument is the real or effective
ID.

SEE ALSO
setreuid(2), setregid(2), getuid(2), getgid(2)

DIAGNOSTICS
Zero is returned if the user (group) ID is set; -1 is returned otherwise.

STATUS
SETUID (3) currently is not supported by Digital Equipment Corporation.

© Digital Equipment Corporation 1984 3-155

SIGNAL(3C)

NAME
signal - simplified software signal facilities

SYNTAX
#include <signal.h>

(*signal(sig, func»o
void (*func)o;

DESCRIPTION
Signal is a simplified interface to the more general sigvec(2) facility.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, inter
rupt, stop), by a program error (bus error, etc.), by request of another program (kill), or
when a process is stopped because it wishes to access its control terminal while in the back
ground (see tty(4». Signals are optionally generated when a process resumes after being
stopped, when the status of child processes changes, or when input is ready at the control
terminal. Most signals cause termination of the receiving process if no action is taken;
some signals instead cause the process receiving them to be stopped, or are simply dis
carded if the process has not requested otherwise. Except for the SIGKILL and SIGSTOP
signals, the signal call allows signals either to be ignored or to cause an interrupt to a
specified location. The following is a list of all signals with names as in the include file
<signal.h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction
SIGTRAP 5* trace trap
SIGIOT 6* lOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV 11* segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16- urgent condition present on socket
SIGSTOP 17t stop (cannot be caught or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19- continue after stop
SIGCHLD 20- child status has changed
SIGTTIN 21t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23- i/o is possible on a descriptor (see fcntl(2»

3-156 © Digital Equipment Corporation 1984

SIGNAL(3C)

SIGXCPU 24
SIGXFSZ 25
SIGVTALRM 26
SIGPROF 27

cpu time limit exceeded (see setrlimit(2»
file size limit exceeded (see setrlimit(2»
virtual time alarm (see setitimer(2»
profiling timer alarm (see setitimer(2»

The starred signals in the list above cause a core image if not caught or ignored.

If func is SIG DFL, the default action for signal sig is reinstated; this default is termination
(with a core image for starred signals) except for signals marked with • or t. Signals
marked with • are discarded if the action is SIG DFL; signals marked with t cause the pro
cess to stop. If func is SIG IGN the signal is subsequently ignored and pending instances
of the signal are discarded. 'Otherwise, when the signal occurs further occurences of the sig
nal are automatically blocked and func is called.

A return from the function unblocks the handled signal and continues the process at the
point it was interrupted. Unlike previous signal facilities, the handler func
remains installed after a signal has been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate prema
turely, the call is automatically restarted. In particular this can occur during a read or
write(2) on a slow device (such as a terminal; but not a file) and during a wait(2).

The value of signal is the previous (or initial) value of func for the particular signal.

After a fork (2) or ufork (2) the child inherits all signals. Execue (2) resets all caught signals
to the default action; ignored signals remain ignored.

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is returned and errno is
set to indicate the error.

ERRORS
Signal will fail and no action will take place if one of the following occur:

Sig is not a valid signal number. [EINVAL]

[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or SIG
STOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill(1), ptrace(2) , ki1l(2), sigvec(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2),
setjmp(3), tty(4)

NOTES (VAX-II)
The handler routine can be declared:

handler(sig, code, scp)

Here sig is the signal number, into which the hardware faults and traps are mapped as
defined below. Code is a parameter which is either a constant as given below or, for compa
tibility mode faults, the code provided by the hardware. Scp is a pointer to the struct

~) Digital Equipment Corporation 1984 3-157

SIGNAL(3C)

sigcontext used by the system to restore the process context from before the signal. Com
patibility mode faults are distinguished from the other SIGILL traps by having PSL_ CM
set in the psL

The following defines the mapping of hardware traps to signals and codes. All of these
symbols are defined in <signal.h>:

Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Length access control
Protection violation
Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility -mode
Chme
Chms
Chmu

STATUS

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS
SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

Code

FPE j:NTOV~ TRAP
FPE .1NTDIVJ'RAP
FPEJL TOV1LTRAP
FPEJLTDIV_TRAP
FPEJLTUND_TRAP
FPE_DECOVF_TRAP
FPE_SUBRNG_TRAP
FPEYLTOVFJAULT
FPE_FLTDIV_FAULT
FPE FLTUND FAULT

ILL PRIVIN FAULT

ILL RESOP FAULT
ILLRESAD FAULT

hardware supplied code

SIGNAL (3C) is supported by Digital Equipment Corporation.

3-158

NAME
signal - change the action for a signal

SYNTAX
integer function signal(signum, proc, flag)
integer signum, flag
external proc

DESCRIPTION

SIGNAL(3F)

When a process incurs a signal (see signal (3C» the default action is usually to clean up and
abort. The user may choose to write an alternative signal handling routine. A call to sig
nal is the way this alternate action is specified to the system.

Signum is the signal number (see signal(3C». If flag is negative, then proc must be the
name of the user signal handling routine. If flag is zero or positive, then proc is ignored
and the value of flag is passed to the system as the signal action definition. In particular,
this is how previously saved signal actions can be restored. Two possible values for flag
have specific meanings: 0 means "use the default action" (See NOTES below), 1 means
"ignore this signal".

A positive returned value is the previous action definition. A value greater than 1 is the
address of a routine that was to have been called on occurrence of the given signal. The
returned value can be used in subsequent calls to signal in order to restore a previous
action definition. A negative returned value is the negation of a system error code. (See
perror(3F))

FILES
/usr /lib/lib U77.a

SEE ALSO
signal(3C), kill(3F), kill(l)

NOTES
f77 arranges to trap certain signals when a process is started. The only way to restore the
default f77 action is to save the returned value from the first call to signal.

If the user signal handler is called, it will be passed the signal number as an integer argu
ment.

STATUS
SIGNAL(3F) currently is not supported by Digital Equipment Corporation.

3-159

SIN(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNTAX
#include <math.h>

double sin(x)
double X;

double cos (x)
double X;

double asin(x)
double X;

double acos(x)
double X;

double atan(x)
double X;

double atan2(x, y)
double X, y;

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments. The magnitude of the
argument should be checked by the caller to make sure the result is meaningful.

Asin returns the arc sin in the range -7r/2 to 7r/2.

Acos returns the arc cosine in the range 0 to 7r.

Atan returns the arc tangent of x in the range -7r/2 to 7r/2.

Atan2 returns the arc tangent of x/y in the range -7r to 7r.

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asin and acos to return value 0; errno is set
to EDOM. The value of tan at its singular points is a huge number, and errno is set to
ERANGE.

RESTRICTIONS
The value of tan for arguments greater than about 2**31 is unreliable.

STATUS
SIN (3M) currently is not supported by Digital Equipment Corporation.

3-160

NAME
sinh, cosh, tanh - hyperbolic functions

SYNTAX
#include <math.h>

double sinh(x)

double cosh(x)
double X;

double tanh(x)
double X;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS

SINH(3M)

Sinh and cosh return a huge value of appropriate sign when the correct value would
overflow.

STATUS
SINH (3M) currently is not supported by Digital Equipment Corporation.

3-161

SLEEP(3)

NAME
sleep - suspend execution for interval

SYNTAX
sleep(seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the
argument. The actual suspension time may be up to 1 second less than that requested,
because scheduled wakeups occur at fixed I-second intervals, and an arbitrary amount
longer because of other activity in the system.

The routine is implemented by setting an interval timer and pausing until it occurs. The
previous state of this timer is saved and restored. If the sleep time exceeds the time to the
expiration of the previous timer, the process sleeps only until the signal would have
occurred, and the signal is sent 1 second later.

SEE ALSO
setitimer(2), sigpause(2)

STATUS
SLEEP (3) currently is not supported by Digital Equipment Corporation.

3-162

SLEEP(3F)

NAME
sleep - suspend execution for an interval

SYNTAX
subroutine sleep (itime)

DESCRIPTION
Sleep causes the calling process to be suspended for itime seconds. The actual time can be
up to 1 second less than itime due to granularity in system timekeeping.

FILES
/usr/lib/libU77.a

SEE ALSO
sleep(3)

STATUS
SLEEP (3F) currently is not supported by Digital Equipment Corporation.

3-163

STAT(3F)

NAME
stat, lstat, fstat - get file status

SYNTAX
integer function stat (name, statb)
cbaracter*(*) name
integer statb(12)

integer function lstat (name, statb)
cbaracter*(*) name
integer statb(12)

integer function fstat (lunit, statb)
integer statb(12)

DESCRIPTION
These routines return detailed information about a file. Stat and lstat return information
about file name; {stat returns information about the file associated with fortran logical uriit
lunit. The order and meaning of the information returned in array statb is as described for
the structure stat under stat(2). The "spare" values are not included.

The value of either function will be zero if successful; an error code otherwise.

FJLES
/usr/lib/lib U77.a

SEE ALSO
stat(2), access(3F), perror(3F), time(3F)

RESTRICTIONS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

STATUS
STAT(3F) currently is not supported by Digital Equipment Corporation.

3-164 © Digital Equipment Corporation 1984

STRING(3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex - string operations

SYNTAX
#include <strings.h>

char *strcat(sl, s2)
char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;

strcmp(sl, s2)
char *sl, *s2;

strncmp(sl, s2, n)
char *sl, *s2;

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;

strlen(s)
char *s;

char *index(s, c)
char *s, c;

char *rindex(s, c)
char *s, c;

DESCRIPTION
These functions operate on null-terminated strings. They do not check for overflow of any
receiving string.

Strcat appends a copy of string 82 to the end of string 81. Strncat copies at most n charac
ters. Both return a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal to, or less than
0, according as 81 is lexicographically greater than, equal to, or less than 82. Strncmp
makes the same comparison but looks at most n characters.

Strcpy copies string 82 to 81, stopping after the null character has been moved. Strncpy
copies exactly n characters, truncating or null-padding 82; the target may not be null
terminated if the length of 82 is n or more. Both return 81.

Strlen returns the number of non-null characters in 8.

Index (rindex) returns a pointer to the first (last) occurrence of character c in string 8, or
zero if c does not occur in the string.

© Digital Equipment Corporation 1984 3-165

STRING (3)

STATUS
STRING (3) is supported by Digital Equipment Corporation.

3-166

STTY(3C)

~ r NAME
stty, gtty - set and get terminal state (defunct)

SYNTAX
#include <sgtty.h>

stty(fd, buf)
int fd;
struct sgttyb *buf;

gtty(fd, buf)
int fd;
struct sgttyb *buf;

DESCRIPTION
This interface is obsoleted by ioctl(2).

Stty sets the state of the terminal associated with [d. Gtty retrieves the state of the termi
nal associated with [d. To set the state of a terminal the call must have write permission.

The stty call is actually "ioctl(fd, TIOCSETP, buf),', while the gtty call is "ioctl(fd,
TIOCGETP, buf)". See ioctl(2) and tty(4) for an explanation.

DIAGNOSTICS
If the call is successful 0 is returned, otherwise -1 is returned and the global variable errno
contaIns the reason for the failure.

SEE ALSO
ioctl(2), tty(4)

STATUS
STTY (3C) currently is not supported by Digital Equipment Corporation.

3-167

SWAB(3)

NAME
swab - swap bytes

SYNTAX
swab(from, to, nbytes)
char *from, *to;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging
adjacent even and odd bytes. It is useful for carrying binary data between PDPll's and
other machines. Nbytes should be even.

STATUS
SW AB (3) currently is not supported by Digital Equipment Corporation.

3-168

NAME
syslog, openlog, closelog - control system log

SYNTAX
#include <syslog.h>

openlog(ident, logstat)
char *ident;

syslog(priority, message, parameters ...)
char *message;

closelog()

DESCRIPTION

SYSLOG(3)

Syslog arranges to write the message onto the system log maintained by syslog(8). The
message is tagged with priority. The message looks like a printf(3) string except that %m
is replaced by the current error message (collected from errno). A trailing newline is added
if needed. This message will be read by syslog(8) and output to the system console or files
as appropriate.

If special processing is needed, openlog can be called to initialize the log file. Parameters
are ident which is prepended to every message, and logstat which is a bit field indicating
special status; current values are:

LOG PID log the process id with each message: useful for identifying instantiations of
- daemons.

Openlog returns zero on success. If it cannot open the file /dev/log, it writes on
/dev/console instead and returns -1.

Closelog can be used to close the log file.

EXAMPLES
syslog(LOG SALERT, "who: internal error 23");

openlog("serverftp", LOGYID);
syslog(LOG....!NFO, "Connection from host %d", CallingHost);

SEE ALSO
syslog(8)

STATUS
SYSLOG (3) currently is not supported by Digital Equipment Corporation.

3-169

SYSTEM(3)

NAME
system - issue a shell command

SYNTAX
system(string)
char *string;

DESCRIPTION
System causes the string to be given to sh (1) as input as if the string had been typed as a
command at a terminal. The current process waits until the shell has completed, then
returns the exit status of the shell.

SEE ALSO
popen(3S), execve(2), wait(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn't be executed.

STATUS
SYSTEM (3) is supported by Digital Equipment Corporation.

3-170

NAME
system - execute a UNIX command

SYNTAX
integer function system (string)
character*(*) string

DESCRIPTION

SYSTEM(3F)

System causes string to be given to your shell as input as if the string had been typed as a
command. If environment variable SHELL is found, its value will be used as the com
mand interpreter (shell); otherwise sh(1) is used.

The current process waits until the command terminates. The returned value will be the
exit status of the shell. See wait (2) for an explanation of this value.

FILES
/usr/lib/libU77.a

SEE ALSO
exec(2), wait(2), system(3)

RESTRICTIONS
String can not be longer than NCARGS-50 characters, as defined in <sys/param.h>.

STATUS
SYSTEM (3F) currently is not supported by Digital Equipment Corporation.

3-171

TERMCAP (3X)

NAME
tgetent, tgetnum, tgetfiag, tgetstr, tgoto, tputs - terminal independent operation routines

SYNTAX
char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto(cm, destcol, destline)
char *cm;

tputs(cp, a:ffcnt, outc)
register char *cp;
int a:ffcnt;
int (*outc)();

DESCRIPTION
These functions extract and use capabilities from the terminal capability data base
termcap(5). These are low level routines; see curses(3X) for a higher level package.

Tgetent extracts the entry for terminal name into the buffer at bp. Bp should be a charac
ter buffer of size 1024 and must be retained through all subsequent calls to tgetnum,
tget/lag, and tgetstr. Tgetent returns -1 if it cannot open the termcap file, 0 if the termi
nal name given does not have an entry, and 1 if all goes welL It will look in the environ
ment for a TERMCAP variable. If found, and the value does not begin with a slash, and
the terminal type name is the same as the environment string TERM, the TERMCAP
string is used instead of reading the termcap file. If it does begin with a slash, the string is
used as a path name rather than /etc/termcap. This can speed up entry into programs that
call tgetent, as well as to help debug new terminal descriptions or to make one for your ter
minal if you can't write the file /etc/termcap.

Tgetnum gets the numeric value of capability id, returning -1 if is not given for the termi
nal. Tget/lag returns 1 if the specified capability is present in the terminal's entry, 0 if it is
not. Tgetstr gets the string value of capability id, placing it in the buffer at area, advanc
ing the area pointer. It decodes the abbreviations for this field described in termcap(5),

3-172

)

TERMCAP(3X)

except for cursor addressing and padding information.

Tgoto returns a cursor addressing string decoded from em to go to column desteol in line
destline. It uses the external variables UP (from the up capability) and BC (if be is given
rather than bs) if necessary to avoid placing\ n, AD or A@ in the returned string. (Pro
grams which call tgoto should be sure to turn off the XTABS bit(s), since tgoto may now
output a tab. Note that programs using termcap should in general turn off XTABS anyway
since some terminals use control I for other functions, such as nondestructive space.) If a %
sequence is given which is not understood, then tgoto returns "OOPS".

Tputs decodes the leading padding information of the string ep; affent gives the number of
lines affected by the operation, or 1 if this is not applicable, oute is a routine which is called
with each character in turn. The external variable ospeed should contain the output speed
of the terminal as encoded by stty(3). The external variable PC should contain a pad
character to be used (from the pc capability) if a null r @) is inappropriate.

FILES
/usr /lib/libtermcap.a -ltermcap library
/etc/termcap data base

SEE ALSO
ex(1), curses(3X), termcap(5)

STATUS
TERM CAP (3X) currently is not supported by Digital Equipment Corporation.

3-173

TIME(3C)

NAME
time, ftime - get date and time

SYNTAX
long time(O)

long time(tloc)
long *tloc;

#include <sys/types.h>
#include <sys/timeb.h>
ftime(tp)
struct timeb *tp;

DESCRIPTION
These interfaces are obsoleted by gettimeofday(2).

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If tloe is nonnull, the return value is also stored in the place to which tloe points.

The {time entry fills in a structure pointed to by its argument, as defined by
<sys/timeb.h>:

/* timeb.h 6.183/07/29*/

/*
* Structure returned by ftime system call
*/

struct time b
{

timELt time;
unsigned short millitm;
short timezone;
short dstflag;

};

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of
more-precise interval, the local time zone (measured in minutes of time westward from
Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year.

SEE ALSO
date(1), gettimeofday(2), settimeofday(2), ctime(3)

STATUS
TIME (3C) currently is not supported by Digital Equipment Corporation.

3-174

l\1

NAME
time, ctime, ltime, gmtime - return system time

SYNTAX
integer function timeO

character*(*) function ctime (stime)
integer stime

subroutine ltime (stime, tarray)
integer stime, tarray(9)

subroutine gmtime (stime, tarray)
integer stime, tarray(9)

DESCRIPTION

TIME(3F)

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. This is the
value of the UNIX system clock.

Ctime converts a system time to a 24 character ASCII string. The format is described
under ctime(3). No 'newline' or NULL will be included.

Ltime and gmtime disect a UNIX time into month, day, etc., either for the local time zone
or as GMT. The order and meaning of each element returned in tarray is described under
ctime(3).

FILES
/usr /lib/lib U77.a

SEE ALSO
ctime(3), itime(3F), idate(3F), fdate(3F)

STATUS
TIME (3F) currently is not supported by Digital Equipment Corporation.

3-175

TIMES(3C)

NAME
times - get process times

SYNTAX
#include <sys/types.h>
#include <sys/times.h>

times(bu:ffer)
struct tms *bu:ffer;

DESCRIPTION
This interface is obsoleted by getrusage(2).

Times returns time-accounting information for the current process and for the terminated
child processes of the current process. All times are in 11HZ seconds, where HZ is 60.

This is the structure returned by times:

1* times.h 6.1 83/07/29 */

1*
* Structure returned by timesO
*1

struct tms {
time_t

};

time_t
time_t
time_t

tms_utime;
tms_stime;
tms_cutime;
tms_cstime;

/* user time * /
/* system time * /
/* user time, children *1
1* system time, children *1

The children times are the sum of the children's process times and their children's times.

SEE ALSO
time(l), getrusage(2), wait3(2), time(3)

STATUS
TIMES (3C) currently is not supported by Digital Equipment Corporation.

3-176

TOPEN(3F)

~)
if NAME

topen, tc1ose, tread, twrite, trewin, tskipf, tstate - f77 tape I/O

SYNTAX
integer function topen (tIu, devnam, label)
integer tlu
character*(*) devnam
logical label

integer function tclose (tIu)
integer tlu

integer function tread (tlu, buffer)
integer tlu
character*(*) buffer

integer function twrite (tIu, buffer)
integer tlu
character*(*) buffer

integer function trewin (tIu)
integer tIu

integer function tskipf (tlu, nfiles, nrecs)
integer tlu, nfiles, nrecs

integer function tstate (tIu, fileno, recno, errf, eoff, eotf, tcsr)
integer tIu, fileno, recno, tcsr
logical errf, eoff, eotf

DESCRIPTION
These functions provide a simple interface between f77 and magnetic tape devices. A "tape
logical unit", tlu, is "topen"ed in much the same way as a normal f77 logical unit is
"open"ed. All other operations are performed via the tlu. The tlu has no relationship at
all to any normal f77 logical unit.

Topen associates a device name with a tlu. Tlu must be in the range 0 to 3. The logical
argument label should indicate whether the tape includes a tape label. This is used by
trewin below. Topen does not move the tape. The normal returned value is o. If the value
of the function is negative, an error has occured. See perror(3F) for details.

Tclose closes the tape device channel and removes its association with tlu. The normal
returned value is o. A negative value indicates an error.

Tread reads the next physical record from tape to buffer. Buffer must be of type charac
ter. The size of buffer should be large enough to hold the largest physical record to be
read. The actual number of bytes read will be returned as the value of the function. If the

3-177

TOPEN(3F)

value is 0, the end-of-file has been detected. A negative value indicates an error.

Twrite writes a physical record to tape from buffer. The physical record length will be the
size of buffer. Buffer must be of type character. The number of bytes written will be
returned. A value of 0 or negative indicates an error.

Trewin rewinds the tape associated with tlu to the beginning of the first data file. If the
tape is a labelled tape (see topen above) then the label is skipped over after rewinding.
The normal returned value is o. A negative value indicates an error.

Tskipf allows the user to skip over files and/or records. First, nfiles end-of-file marks are
skipped. If the current file is at EOF, this counts as 1 file to skip. (Note: This is the way to
reset the EOF status for a tlu.) Next, nrecs physical records are skipped over. The normal
returned value is o. A negative value indicates an error.

Finally, tstate allows the user to determine the logical state of the tape I/O channel and to
see the tape drive control status register. The values of fileno and recno will be returned
and indicate the current file and record number. The logical values errf, eoff, and eotf indi
cate an error has occurred, the current file is at EOF, or the tape has reached logical end
of-tape. End-of-tape (EOT) is indicated by an empty file, often referred to as a double
EOF mark. It is not allowed to read past EOT although it is allowed to write. The value
of tcsr will reflect the tape drive control status register. See ht(4) for details.

FILES
/usr/lib/lib U77.a

SEE ALSO
ht(4), perror(3F), rewind(l)

STATUS
TOPEN (3F) currently is not supported by Digital Equipment Corporation.

3-178

TRAPER(3F)

NAME
traper - trap arithmetic errors

SYNTAX
integer function traper (mask)

DESCRIPTION
Integer overflow and floating point underflow are not normally trapped during execution.
This routine enables these traps by setting status bits in the process status word. These
bits are reset on entry to a subprogram, and the previous state is restored on return.
Therefore, this routine must be called inside each subprogram in which these conditions
should be trapped. If the condition occurs and trapping is enabled, signal SIGFPE is sent
to the process. (See signal(3C»

The argument has the following meaning:

value meaning
o do not trap either condition
1 trap integer overflow only
2 trap floating underflow only
3 trap both the above

The previous value of these bits is returned.

FILES
/usr /lib/libF77.a

SEE ALSO
signal{3C), signal{3F)

STATUS
TRAPER (3F) currently is not supported by Digital Equipment Corporation.

3-179

TRAPOV(3F)

NAME
trapov - trap and repair floating point overflow

SYNTAX
subroutine trapov (numesg, rtnval)
double precision rtnval

DESCRIPTION
NOTE: This routine applies only to the older VAX 111780's. VAX computers
made or upgraded since spring 1983 (REV 7) handle errors differently. See
trpfpe(3F) for the newer error handler. This routine has always been ineffective on the
VAX 11/750. It is a null routin~ on the PDP11.

This call sets up signal handlers to trap arithmetic exceptions and the use of illegal
operands. Trapping arithmetic exceptions allows the user's program to proceed from
instances of floating point overflow or divide by zero. The result of such operations will be
an illegal floating point value. The subsequent use of the illegal operand will be trapped
and the operand replaced by the specified value.

The first numesg occurrences of a floating point arithmetic error will cause a message to be
written to the standard error file. If the resulting value is used, the value given for rtnval
will replace the illegal operand generated by the arithmetic error. Rtrwal must be a double
precision value. For example, "OdO" or "dflmaxO".

FILES
/usr/lib/libF77.a

SEE ALSO
trpfpe(3F), signal(3F), range(3F)

RESTRICTIONS
Other arithmetic exceptions can be trapped but not repaired.

There is no way to distinguish between an integer value of 32768 and the illegal floating
point form. Therefore such an integer value may get replaced while repairing the use of an
illegal operand.

STATUS
TRAPOV (3F) currently is not supported by Digital Equipment Corporation.

3-180

NAME
trpfpe, fpecnt - trap and repair floating point faults

SYNTAX
subroutine trpfpe (numesg, rtnval)
double precision rtnval

integer function fpecnt 0

common Ifpefltl fperr
logical fperr

DESCRIPTION

TRPFPE(3F)

Trpfpe sets up a signal handler to trap arithmetic exceptions. If the exception is due to a
floating point arithmetic fault, the result of the operation is replaced with the rtnval
specified. Rtnval must be a double precision value. For example, "OdO" or "dflmaxO".

The first numesg occurrences of a floating point arithmetic error will cause a message to be
written to the standard error file. Any exception that can't be repaired will result in the
default action, typically an abort with core image.

Fpecnt returns the number of faults since the last call to trpfpe.

The logical value in the common block labelled fpetit will be set to .true. each time a fault
occurs.

FILES
/usr /lib/libF77.a

SEE ALSO
signal(3F), range(3F)

RESTRICTIONS
This routine works only for faults, not traps. This is primarily due to the Vax architec
ture.

If the operation involves changing the stack pointer, it can't be repaired. This seldom
should be a problem with the f77 compiler, but such an operation might be produced by the
optimizer.

The POLY and EMOD opcodes are not dealt with.

STATUS
TRPFPE (3F) currently is not supported by Digital Equipment Corporation.

3-181

TTYNAM(3F)

NAME
ttynam, isatty - find name of a terminal port

SYNTAX
character*(*) function ttynam (lunit)

logical function isatty (lunit)

DESCRIPTION
Ttynam returns a blank padded path name of the terminal device associated with logical
unit lunit.

[satty returns .true. if lunit is associated with a terminal device, .false. otherwise.

FILES
/dev/*
/usr/lib/HbU77.a

DIAGNOSTICS
Ttynam returns an empty string (all blanks) if lunit is not associated with a terminal dev
ice in directory '/dev'.

STATUS
TTYNAM (3F) currently is not supported by Digital Equipment Corporation.

3-182

TTYNAME(3)

NAME
ttyname, isatty, ttyslot - find name of a terminal

SYNTAX
char *ttyname(filedes)

isatty(filedes)

ttyslotO

DESCRIPTION
Ttyname returns a pointer to the null-terminated path name of the terminal device associ
ated with file descriptor filedes (this is a system file descriptor and has nothing to do with
the standard I/O FILE typedef).

Isatty returns 1 if filedes is associated with a terminal device, 0 otherwise.

Ttyslot returns the number of the entry in the ttys (5) file for the control terminal of the
current process.

FILES
/dev/*
/etc/ttys

SEE ALSO
ioct1(2), ttys(5)

DIAGNOSTICS
Ttyname returns a null pointer (0) if filedes does not describe a terminal device in direc
tory '/ dev'.

Ttyslot returns 0 if '/etc/ttys' is inaccessible or if it cannot determine the control terminal.

RESTRICTIONS
The return value points to static data whose content is overwritten by each call.

STATUS
TTY NAME (3) currently is not supported by Digital Equipment Corporation.

3-183

UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNTAX
#include <stdio.h>

ungetc(c, stream)
FILE *stream;

DESCRIPTION
Ungetc pushes the character c back on an input stream. That character will be returned by
the next getc call on that stream. Ungetc returns c.

One character of pushback is guaranteed provided something has been read from the
stream and the stream is actually buffered. Attempts to push EOF are rejected.

Fseek(3S) erases all memory of pushed back characters.

SEE ALSO
getc(3S), setbuf(3S), fseek(3S)

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

STATUS
UNGETC (3S) is supported by Digital Equipment Corporation.

3-184

NAME
unlink - remove a directory entry

SYNTAX
integer function unlink (name)
character*(*) name

DESCRIPTION

UNLlNK(3F)

Unlink causes the directory entry specified by pathname name to be removed. If this was
the last link to the file, the contents of the file are lost. The returned value will be zero if
successful; a system error code otherwise.

FILES
/usr /lib/lib U77.a

SEE ALSO
unlink(2), link(3F), filsys(5), perror(3F)

RESTRICTIONS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

STATUS
UNLINK (3F) currently is not supported by Digital Equipment Corporation.

3-185

UTIME(3C)

NAME
utime - set file times

SYNTAX
#include <sys/types.h>

utime(ftle, timep)
char *ftle;
time_t timep[2];

DESCRIPTION
This interface is obsoleted by utimes(2).

The utime call uses the 'accessed' and 'updated' times in that order from the timep vector
to set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The 'inode-changed' time of the
file is set to the current time.

SEE ALSO
utimes(2), stat(2)

STATUS
UTIME (3C) currently is not supported by Digital Equipment Corporation.

3-186

NAME
valloc - aligned memory allocator

SYNTAX
char *valloc(size)
unsigned size;

DESCRIPTION

VALLOC(3)

Valloc allocates size bytes aligned on a page boundary. It is implemented by calling mal
loc(3) with a slightly larger request, saving the true beginning of the block allocated, and
returning a properly aligned pointer.

DIAGNOSTICS
Valloc returns a null pointer (0) if there is no available memory or if the arena has been
detectably corrupted by storing outside the bounds of a block.

RESTRICTIONS
Vfree isn't implemented.

STATUS
V ALLOC (3) currently is not supported by Digital Equipment Corporation.

3-187

VARARGS(3)

NAME
varargs - variable argument list

SYNTAX
#include <varargs.h>

function(va_alist)
va_del
vaJist pvar;
va...start(pvar);
f = va_arg(pvar, type);
vaJ'nd(pvar);

DESCRIPTION
This set of macros provides a means of writing portable p:rocedures that accept variable
argument lists. Routines having variable argument lists (such as printf(3» that do not use
varargs are inherently nonportable, since different machines use different argument passing
conventions.

va_alist is used in a function header to declare a variable argument list.

va_del is a declaration for va_alist. Note that there is no semicolon after va.Jlcl.

vaJist is a type which can be used for the variable pvar, which is used to traverse the list.
One such variable must always be declared.

va_start(pvar) is called to initialize pvar to the beginning of the list.

va...Arg(pvar, type) will return the next argument in the list pointed to by pvar. Type is
the type the argument is expected to be. Different types can be mixed, but it is up to the
routine to know what type of argument is expected, since it cannot be determined at run
time.

va_end(pvar) is used to finish up.

Multiple traversals, each bracketed by va start ... va end, are possible.

EXAMPL~

3-188

#include <varargs.h>
execl(va..Jllis t)
va_del
{

va_list ap;
char. *file;
char *args[lOO];
int argno = 0;

va_start(ap);
file = va_arg(ap, char *);
while (args[argno++] = va_arg(ap, char *»

VARARGS(3)

va'pnd(ap);
return execv(file, args);

RESTRICTIONS
It is up to the calling routine to determine how many arguments there are, since it is not
possible to determine this from the stack frame. For example, execl passes a 0 to signal the
end of the list. Print! can tell how many arguments are supposed to be there by the for
mat.

STATUS
V ARARGS (3) currently is not supported by Digital Equipment Corporation.

3-189

VLlMIT(3C)

NAME
vlimit - control maximum system resource consumption

SYNTAX
#include <sys/vlimit.h>

vlimit(resource, value)

DESCRIPTION
This facility is superseded by getrlimit(2).

Limits the consumption by the current process and each process it creates to not individu
ally exceed value on the specified resource. If value is specified as -1, then the current
limit is returned and the limit is unchanged. The resources which are currently controllable
are:

A pseudo-limit; if set non-zero then the limits may not be raised. Only the
super-user may remove the noraise restriction.

LIM_CPU the maximum number of cpu-seconds to be used by each process

LIM_FSIZE the largest single file which can be created

LIM_DATA the maximum growth of the data+stack region via sbrk(2) beyond the end
of the program text

LIM_STACK the maximum size of the automatically-extended stack region

LIM_CORE the size of the largest core dump that will be created.

LIM_MAXRSS a soft limit for the amount of physical memory (in bytes) to be given to the
program. If memory is tight, the system will prefer to take memory from
processes which are exceeding their declared LIM_MAXRSS.

Because this information is stored in the per-process information this system call must be
executed directly by the shell if it is to affect all future processes created by the shell; limit
is thus a built-in command to csh(l).

The system refuses to extend the data or stack space when the limits would be exceeded in
the normal way; a break call fails if the data space limit is reached, or the process is killed
when the stack limit is reached (since the stack cannot be extended, there is no way to send
a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ
to be generated, this normally terminates the process, but may be caught. When the cpu
time limit is exceeded, a signal SIGXCPU is sent to the offending process; to allow it time
to process the signal it is given 5 seconds grace by raising the cpu time limit.

SEE ALSO
csh(l)

3-190

VLlMIT(3C)

RESTRICTIONS
If LIM_NORAISE is set, then no grace should be given when the cpu time limit is
exceeded.

STATUS
VLIMIT (3C) currently is not supported by Digital Equipment Corporation.

3-191

VTIMES(3C)

NAME
vtimes - get information about resource utilization

SYNTAX
vtimes(par_vm, ch ym)
struct vtimes *par_vm, *ch_vm;

DESCRIPTION
This facility is superseded by getrusa,ge(2).

Vtimes returns accounting information for the current process and for the terminated child
processes of the current process. Either pac-um or cfLum or both may be 0, in which case
only the information for the pointers which are non-zero is returned.

After the call, each buffer contains information as defined by the contents of the include
file /usr/include/sys/utimes.h:

struct vtimes {
int vm_utime; /* user time (*HZ) */
int vm_stime; /* system time (*HZ) * /
/* divide next two by utime+stime to get averages * /
unsigned vm idsrss; /* integral of d +s rss * /
unsigned vmJxrss; /* integral of text rss * /
int vm_maxrss; /* maximum rss */
int vm_majflt; /* major page faults * /
int vm_minflt; /* minor page faults * /
int vm_nswap; /* number of swaps * /
int vm.Jnblk; /* block reads * /
int vm_oublk; /* block writes * /

};

The vm_utime and vm_stime fields give the user and system time respectively in 60ths of a
second (or 50ths if that is the frequency of wall current in your locality.) The vm..idrss and
vm_ixrss measure memory usage. They are computed by integrating the number of memory
pages in use each over cpu time. They are reported as though computed discretely, adding
the current memory usage (in 512 byte pages) each time the clock ticks. If a process used 5
core pages over 1 cpu-second for its data and stack, then vm.Jdsrss would have the value
5*60, where um_utime+vm..§time would be the 60. Vm_idsrss integrates data and stack seg
ment usage, while vm_ixrss integrates text segment usage. Vm_maxrss reports the max
imum instantaneous sum of the text+data+stack core-resident page count.

The v"Lmajjlt field gives the number of page faults which resulted in disk activity; the
vm_minjlt field gives the number of page faults incurred in simulation of reference bits;
VTrLnswap is the number of swaps which occurred. The number of file system input/output
events are reported in vm_inblk and vm_oublk These numbers account only for real i/o;
data supplied by the caching mechanism is charged only to the first process to read or write
the data.

3-192

SEE ALSO
time(2), wait3(2)

STATUS
VTIMES (3C) currently is not supported by Digital Equipment Corporation.

VTIMES(3C)

3-193

WAIT(3F)

NAME
wait - wait for a process to terminate

SYNTAX
integer function wait (status)
integer status

DESCRIPTION
Wait causes its caller to be suspended until a signal is received or one of its child processes
terminates. If any child has terminated since the last wait, return is immediate; if there are
no children, return is immediate with an error code.

If the returned value is positive, it is the process ID of the child and status is its termina
tion status (see wait(2». If the returned value is negative, it is the negation of a system
error code.

FILES
/usr /lib/lib U77.a

SEE ALSO
wait(2), signal(3F), kill(3F), perror(3F)

STATUS
WAIT (3F) currently is not supported by Digital Equipment Corporation.

3-194

A.OUT(5)

NAME
a.out - assembler and link editor output

SYNTAX
#include <a.out.h>

DESCRIPTION
A.out is the output file of the assembler a8(1) and the link editor ld(1). Both programs
make a.out executable if there were no errors and no unresolved external references. Lay
out information as given in the include file for the VAX-ll is:

/*
* Header prepended to each a.out file.
*/

struct exec {

};

long
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unagic;
E!Jext;
~data;
~bss;
a.1lyms;
~entry;

a~rsize;
a_drsize;

#define OMAGIC 0407
#define NMAGIC 0410
#define ZMAGIC 0413

/*

/* magic number * /
/* size of text segment * /
/* size of initialized data * /
/* size of un initialized data * /
/* size of symbol table * /
/* entry point * /
/* size of text relocation * /
/* size of data relocation * /

/* old impure format * /
/* read -only text * /
/* demand load format * /

* Macros which take exec structures as arguments and tell whether
* the file has a reasonable magic number or offsets to textlsymbolslstrings.
*/

#define N BADMAG(x) \
«(x).a_magic)!=OMAGIC && «x).a_magic)!=NMAGIC && «x).a_magic)!=ZMAGIC)

#define N TXTOFF(x) \
«x).a magic==ZMAGIC ? 1024 : sizeof (struct exec»

#define N SYMOFF(x) \
(N TXTOFF(x) + (x).a text+(x).a data + (x).a trsize+(x).a drsize)

#define N STROFF(x) \ - - - -
(N SYMOFF(x) + (x).a2lyms)

The file has five sections: a header, the program text and data, relocation information, a
symbol table and a string table (in that order). The last three may be omitted if the pro
gram was loaded with the '-s' option of ld or if the symbols and relocation have been
removed by strip(l).

5-1

A.OUT(5)

5-2

In the header the sizes of each section are given in bytes. The size of the header is not
included in any of the other sizes.

When an a.out file is executed, three logical segments are set up: the text segment, the data
segment (with un initialized data, which starts off as all 0, following initialized), and a stack.
The text segment begins at 0 in the core image; the header is not loaded. If the magic
number in the header is OMAGIC (0407), it indicates that the text segment is not to be
write-protected and shared, so the data segment is immediately contiguous with the text
segment. This is the oldest kind of executable program and is rarely used. If the magic
number is NMAGIC (0410) or ZMAGIC (0413), the data segment begins at the first 0 mod
1024 byte boundary following the text segment, and the text segment is not writable by the
program; if other processes are executing the same file, they will share the text segment.
For ZMAGIC format, the text segment begins at a 0 mod 1024 byte boundary in the a.out
file, the remaining bytes after the header in the first block are reserved and should be zero.
In this case the text and data sizes must both be multiples of 1024 bytes, and the pages of
the file will be brought into the running image as needed, and not pre-loaded as with the
other formats. This is especially suitable for very large programs and is the default format
produced by ld (1).

The stack will occupy the highest possible locations in the core image: growing downwards
from Ox7ffffOOO. The stack is automatically extended as required. The data segment is
only extended as requested by brk(2).

After the header in the file follow the text, data, text relocation data relocation, symbol
table and string table in that order. The text begins at the byte 1024 in the file for
ZMAGIC format or just after the header for the other formats. The N TXTOFF macro
returns this absolute file position when given the name of an exec structure as argument.
The data segment is contiguous with the text and immediately followed by the text reloca
tion and then the data relocation information. The symbol table follows all this; its posi
tion is computed by the N SYMOFF macro. Finally, the string table immediately follows
the symbol table at a position which can be gotten easily using N STROFF. The first 4
bytes of the string table are not used for string storage, but rather contain the size of the
string table; this size INCLUDES the 4 bytes, the minimum string table size is thus 4.

The layout of a symbol table entry and the principal flag values that distinguish symbol
types are given in the include file as follows:

/*
* Format of a symbol table entry.
*/

struct nlist {
union {

char
long

} n_un;

nJlame; / for use when in-core * /
n_strx; /* index into file string table * /

unsigned char n_type; /* type flag, i.e. N_TEXT etc; see below * /
char n.J>ther;

short ILdesc; /* see <stab.h> * /
unsigned n_value; /* value of this symbol (or offset) * /

};
#define n_hash n_desc /* used internally by ld * /

/*
* Simple values for n type.
*/

#define N_UNDF OxO /* undefined * /
#define N_ABS Ox2 /* absolute * /
#define N_TEXT Ox4 /* text */
#define ~DATA Ox6 /* data */
#define N_BSS Ox8 /* bss */
#define ~COMM Ox12 /* common (internal to ld) * /
#define NYN Oxlf /* file name symbol * /

#define N_EXT 01 /* external bit, or'ed in * /
#define NTYPE Ox1e /* mask for all the type bits * /

/*
* Other permanent symbol table entries have some of the ~ST AB bits set.
* These are given in <stab.h>
*/

#define N_STAB OxeO /* if any of these bits set, don't discard */

/*
* Format for namelist values.
*/

#define N_FORMAT "% 08x"

A.OUTeS)

In the a.out file a symbol's n un.n strx field gives an index into the string table. A n strx
value of 0 indicates that no name is associated with a particular symbol table entry. The
field n un.n name can be used to refer to the symbol name only if the program sets this up
using n strx and appropriate data from the string table.

If a symbol's type is undefined external, and the value field is non-zero, the symbol is inter
preted by the loader ld as the name of a common region whose size is indicated by the
value of the symbol.

The value of a byte in the text or data which is not a portion of a reference to an undefined
external symbol is exactly that value which will appear in memory when the file is exe
cuted. If a byte in the text or data involves a reference to an undefined external symbol, as
indicated by the relocation information, then the value stored in the file is an offset from
the associated external symbol. When the file is processed by the link editor and the exter
nal symbol becomes defined, the value of the symbol will be added to the bytes in the file.

5-3

A.OUT(5)

If relocation information is present, it amounts to eight bytes per relocatable datum as in
the following structure:

/*
* Format of a relocation datum.
*/

struct relocatioqjnfo {

};

int :r:...address;
unsigned Lsymbolnum:24,

r pcrel:l,
r-Iength:2,
r}xtern:l,
:4;

/* address which is relocated * /
/* local symbol ordinal * /
/* was relocated pc relative already * /
/* O=byte, l=word, 2=long */
/* does not include value of sym referenced * /
/* nothing, yet * /

There is no relocation information if a trsize+a drsize= =0. If J;...extern is 0, then
r symbolnum is actually a n type for the relocation (i.e. N TEXT meaning relative to seg-
~ent text origin.) - -

SEE ALSO
adb(l), as(l), ld(l), nm(l), dbx(l), stab(5), strip(l)

STATUS
A.OUT (5) currently is not supported by Digital Equipment Corporation.

5-4

ACCT(5)

J NAME
acct - execution accounting file

SYNTAX
#include <sys/acct.h>

DESCRIPTION
The acct (2) system call makes entries in an accounting file for each process that terminates.
The accounting file is a sequence of entries whose layout, as defined by the include file is:

1* acct.h 6.1 83/07/29* 1

1*
* Accounting structures;
* these use a comp_t type which is a 3 bits base 8
* exponent, 13 bit fraction "floating point" number.
*1

typedef u_short comp_t;

struct acct

};

char
comp_t
comp_t
comp_t
time_t
short
short
short
comp_t
dey-t
char

#define AFORK
#define ASU
#define ACOMPAT
#define ACORE
#define AXSIG

#ifdef KERNEL
struct acct
struct inode
#endif

ac_comm[10];
ac_utime;
ac_stime;
ac_etime;
ac_btime;
ac_uid;
aCJid;
ac_mem;
acjo;
acj;ty;
ac_flag;

0001
0002
0004
0010
0020

acctbuf;
*acctp;

1* Accounting command name *1
1* Accounting user time *1
1* Accounting system time *1
1* Accounting elapsed time *1
1* Beginning time * 1
1* Accounting user ID *1
1* Accounting group ID *1
1* average memory usage *1
1* number of disk 10 blocks *1
1* control typewriter *1
1* Accounting flag *1

1* has executed fork, but no exec *1
1* used super-user privileges *1
1* used compatibility mode *1
1* dumped core *1
1* killed by a signal * 1

5-5

ACCT(5)

If the process does an execue(2), the first 10 characters of the filename appear in ac comm.
The accounting flag contains bits indicating whether execue (2) was ever accomplished, and
whether the process ever had super-user privileges.

SEE ALSO
acct(2), execve(2), sa(8)

STATUS
ACCT (5) currently is not supported by Digital Equipment Corporation.

5-6

ALiASES(5)

~
f NAME

aliases - aliases file for sendmail

SYNTAX
lusr/libl aliases

DESCRIPTION
This file describes user id aliases used by /usr/lib/sendmail. It is formatted as a series of
lines of the form

name: nam~ .. J, name2, name_3, ...
The name is the name to alias, and the name_n are the aliases for that name. Lines begin
ning with white space are continuation lines. Lines beginning with' #' are comments.

Aliasing occurs only on local names. Loops can not occur, since no message will be sent to
any person more than once.

After aliasing has been done, local and valid recipients who have a ".forward" file in their
home directory have messages forwarded to the list of users defined in that file.

This is only the raw data file; the actual aliasing information is placed into a binary format
in the files /usr/lib/aliases.dir and /usr/lib/aliases.pag using the program newaliases(l). A
newaliases command should be executed each time the aliases file is changed for the change
to take effect.

SEE ALSO
newaliases(l), dbm(3X), sendmail(8)
SEND MAIL Installation and Operation Guide.
SENDMAIL An Internetwork Mail Router.

RESTRICTIONS
Because of restrictions in dbm(3X) a single alias cannot contain more than about 1000
bytes of information. You can get longer aliases by "chaining"; that is, make the last name
in the alias be a dummy name which is a continuation alias.

STATUS
ALIASES (5) currently is not supported by Digital Equipment Corporation.

5-7

AR(5)

NAME
ar - archive (library) file format

SYNTAX
#include <ar.h>

DESCRIPTION
The archive command ar combines several files into one. Archives are used mainly as
libraries to be searched by the link-editor ld.

A file produced by ar has a magic string at the start, followed by the constituent files, each
preceded by a file header. The magic number and header layout as described in the include
file are:

/* ar.h 4.183/05/03* /

#define ARMAG "karch>\n"
#define SARMAG 8

#define ARFMAG "'\n"

struct ar hdr {
char
char
char
char
char
char
char

} ;

aL!lame[16];
at.9ate[12];
aUlid[6];
ar gid[6];
a;-mode[8];
auize[10];
aLfmag[2];

The name is a blank-padded string. The ar..fmag field contains ARFMAG to help verify
the presence of a header. The other fields are left-adjusted, blank-padded numbers. They
are decimal except for aL,.mode, which is octal. The date is the modification date of the file
at the time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if neces
sary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains printable
files, the archive itself is printable.

SEE ALSO
ar(l), Id(l), nm(l)

RESTRICTIONS
File names lose trailing blanks.

5-8

AR(S)

STATUS
AR(5) currently is not supported by Digital Equipment Corporation.

5-9

CORE(5)

NAME
core - format of memory image file

SYNTAX
#include <machine/param.h>

DESCRIPTION
The UNIX System writes out a memory image of a terminated process when any of various
errors occur. See sigvec (2) for the list of reasons; the most common are memory violations,
illegal instructions, bus errors, and user-generated quit signals. The memory image is called
'core' and is written in the process's working directory (provided it can be; normal access
controls apply).

The maximum size of a core file is limited by setrlimit(2). Files which would be larger
than the limit are not created.

The core file consists of the u. area, whose size (in pages) is defined by the UPAGES mani
fest in the <machine/param.h> file. The u. area starts with a user structure as given in
<sys/user.h>. The remainder of the core file consists first of the data pages and then the
stack pages of the process image. The amount of data space image in the core file is given
(in pages) by the variable u_dsize in the u. area. The amount of stack image in the core file
is given (in pages) by the variable uJsize in the u. area.

In general the debugger adb(l) is sufficient to deal with core images.

SEE ALSO
adb(l), dbx(l), sigvec(2), setrlimit(2)

STATUS
CORE (5) currently is not supported by Digital Equipment Corporation.

5-10

DIR (5)

~
I NAME

dir - format of directories

SYNTAX
#include <sys/types.h>
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a direc
tory. The fact that a file is a directory is indicated by a bit in the flag word of its i-node
entry; see Is(5). The structure of a directory entry as given in the include file is:

/*
* A directory consists of some number of blocks of DIRBLKSIZ
* bytes, where DIRBLKSIZ is chosen such that it can be transferred
* to disk in a single atomic operation (e.g. 512 bytes on most machines).
*
* Each DIRBLKSIZ byte block contains some number of directory entry
* structures, which are of variable length. Each directory entry has
* a struct direct at the front of it, containing its inode number,
* the length of the entry, and the length of the name contained in
* the entry. These are followed by the name padded to a 4 byte boundary
* with null bytes. All names are guaranteed null terminated.
* The maximum length of a name in a directory is MAXNAMLEN.
*
* The macro DIRSIZ(dp) gives the amount of space required to represent
* a directory entry. Free space in a directory is represented by
* entries which have dp->d..reclen > DIRSIZ(dp). All DIRBLKSIZ bytes
* in a directory block are claimed by the directory entries. This
* usually results in the last entry in a directory having a large
* dp->dJeclen. When entries are deleted from a directory, the
* space is returned to the previous entry in the same directory
* block by increasing its dp->d-Ieclen. If the first entry of
* a directory block is free, then its dp->djno is set to O.
* Entries other than the first in a directory do not normally have
* dp->djno set to o.
*/

#ifdef KERNEL
#define DIRBLKSIZ DEY-BSIZE
#else
#define DIRBLKSIZ 512
#endif

#define MAXNAMLEN 255

/*

5-11

DIR (5)

* The DIRSIZ macro gives the minimum record length which will hold
* the directory entry. This requires the amount of space in struct direct
* without the d_name field, plus enough space for the name with a terminating
* null byte (dp->d_namlen+ 1), rounded up to a 4 byte boundary.
*1

#undef DIRSIZ
#define DIRSIZ(dp) ,

«sizeof (struct direct) - (MAXNAMLEN+1» + «(dp)-><Lnamlen+1 + 3) &- 3»

struct direct {
u.Jong d.lno;
short dJeclen;
short d namlen;
char d-name[MAXNAMLEN + 1];
1* typically ~orter *1

};

strucLdirdesc {
int
long
long
char

};

dd fd;
ddloc;
dd~ize;
dd J>uf[D IRBLKSIZ];

By convention, the first two entries in each directory are for '.' and ' .. '. The first is an entry
for the directory itself. The second is for the parent directory. The meaning of ' .. ' is
modified for the root directory of the master file system ("I"), where ' .. ' has the same mean
ing as '.'.

SEE ALSO
fs(5)

STATUS
DIR (5) currently is not supported by Digital Equipment Corporation.

5-12

DISKTAB(5)

~
v NAME

disktab - disk description file

SYNTAX
#include <disktab.h>

DESCRIPTION
Disktab is a simple date base which describes disk geometries and disk partition charac
teristics. The format is patterned after the termcap(5) terminal data base. Entries in disk
tab consist of a number of ':' separated fields. The first entry for each disk gives the names
which are known for the disk, separated by 'I' characters. The last name given should be a
long name fully identifying the disk.

The following list indicates the normal values stored for each disk entry.

N arne Type Description
ns num Number of sectors per track
nt num Number of tracks per cylinder
nc num Total number of cylinders on the disk
ba num Block size for partition 'a' (bytes)
bd num Block size for partition 'd' (bytes)
be num Block size for partition 'e' (bytes)
bf num Block size for partition 'f (bytes)
bg num Block size for partition 'g' (bytes)
bh num Block size for partition 'h' (bytes)
fa num Fragment size for partition 'a' (bytes)
fd num Fragment size for partition 'd' (bytes)
fe num Fragment size for partition 'e' (bytes)
ff num Fragment size for partition 'f (bytes)
fg num Fragment size for partition 'g' (bytes)
fh num Fragment size for partition 'h' (bytes)
pa num Size of partition 'a' in sectors
pb num Size of partition 'b' in sectors
pc num Size of partition 'c' in sectors
pd num Size of partition 'd' in sectors
pe num Size of partition 'e' in sectors
pf num Size of partition 'f in sectors
pg num Size of partition 'g' in sectors
ph num Size of partition 'h' in sectors
se num Sector size in bytes
ty str Type of disk (e.g. removable, winchester)

Disktab entries may be automatically generated with the diskpart program.

FILES
/etc/disktab

5-13

DISKTAB(5)

SEE ALSO
newfs(8), diskpart(8)

STATUS
DISKTAB (5) currently is not supported by Digital Equipment Corporation.

5-14

DUMP(5)

~
'" NAME

dump, dump dates - incremental dump format

SYNTAX
#include <sys/types.h>
#include <sYs/inode.h>
#include <dumprestor.h>

DESCRIPTION
Tapes used by dump and restore(8) contain:

a header record
two groups of bit map records
a group of records describing directories
a group of records describing files

The format of the header record and of the first record of each description as given in the
include file <dumprestor.h> is:

#define NTREC 10
#define MLEN 16
#define MSIZ 4096

#define TS_TAPE 1
#define TS_INODE 2
#define TS_BITS 3
#define TS_ADDR 4
#define TS_END 5
#define TS_CLRI 6
#define MAGIC (int) 60011
#define CHECKSUM (int) 84446

struct spcl {
int c_type;
time_t c_date;
time_t c_ddate;
int c_volume;
daddr_t c_tapea;
ino_t cjnumber;
int c_magic;
int c_checksum;
struct dinode c_dinode;
int c_count;
char c.llddr[BSIZE];

} spcl;

struct idates {

5-15

DUMP(5)

5-16

char
char
timU

i<iPame[16];
id incno;
id...ddate;

};

#define DUMPOUTFMT"%-16s %c %s" /* for printf * /

#define DUMPINFMT "% 16s % c % [,,\n] \n"
/* name, incno, ctime(date) * /
/* inverse for scanf * /

NTREC is the number of 1024 byte records in a physical tape block. MLEN is the number
of bits in a bit map word. MSIZ is the number of bit map words.

The TLentries are used in the Cl}ype field to indicate what sort of header this is. The
types and their meanings are as follows:

T~TAPE Tape volume label
TSj:NODE A file or directory follows. The £..9inode field is a copy of the disk inode and

contains bits telling what sort of file this is.
T~ITS A bit map follows. This bit map has a one bit for each inode that was

dumped.
T[1\.DDR A sub record of a file description. See £...gddr below.
T~ND End of tape record.
T~LRI A bit map follows. This bit map contains a zero bit for all in odes that were

empty on the file system when dumped.
MAG-IC All header records have this number in £...!!lagic.

CHECKSUM
Header records checksum to this value.

The fields of the header structure are as follows:

£.j;ype
£,Jiate
£,Jidate
£...Yolume
£.j;apea
unumber
Lmagic
c checksum

~inode
£..fount
U ddr

The type of the header.
The date the dump was taken.
The date the file system was dumped from.
The current volume number of the dump.
The current number of this (1024-byte) record.
The number of the inode being dumped if this is of type T~NODE.
This contains the value MAGIC above, truncated as needed.
This contains whatever value is needed to make the record sum to CHECK
SUM.
This is a copy of the inode as it appears on the file system; see {8(5).
The count of characters in Laddr.
An array of characters describing the blocks of the dumped file. A character
is zero if the block associated with that character was not present on the file
system, otherwise the character is non-zero. If the block was not present on
the file system, no block was dumped; the block will be restored as a hole in
the file. If there is not sufficient space in this record to describe all of the
blocks in a file, T~ADDR records will be scattered through the file, each one

DUMP(5)

picking up where the last left off.

Each volume except the last ends with a tapemark (read as an end of file). The last volume
ends with a TS END record and then the tapemark.

The structure idates describes an entry in the file /etc/dumpdates where dump history is
kept. The fields of the structure are:

icl,name
id incno
id=ddate

FILES

The dumped filesystem is '/dev/id_nam'.
The level number of the dump tape; see dump(8).
The date of the incremental dump in system format see types(5).

/etc/ dumpdates

SEE ALSO
dump(8), restore(8), fs(5), types(5)

STATUS
DUMP (5) currently is not supported by Digital Equipment Corporation.

5-17

FS(5)

NAME
fs, inode - format of file system volume

SYNTAX
#include <sys/types.h>
#include <sys/fs.h>
#include <sys/inode.h>

DESCRIPTION
Every file system storage volume (disk, nine-track tape, for instance) has a common format
for certain vital information. Every such volume is divided into a certain number of blocks.
The block size is a paramet~r of the file system. Sectors 0 to 15 on a file system are used to
contain primary and secondary bootstrapping programs.

The actual file system begins at sector 16 with the super block. The layout of the super
block as defined by the include file <sys/fs.h> is:

#define FS MAGIC Ox011954
struct fs {

struct fs *fs_link; /* linked list of file systems * /
struct fs *fs_rlink; /* used for incore super blocks * /
daddt..t fs~blkno; /* addr of super-block in filesys * /
daddr t fs cblkno; /* offset of cyl-block in filesys * /
dadd~t fsJblkno; /* offset of inode-blocks in filesys * /
dadd:t:.,.t fs_dblkno; /* offset of first data after cg * /
long fs_cgoffset; /* cylinder group offset in cylinder * /
long fs_cgmask; /* used to calc mod fs_ntrak * /
time_t fs_time; /* last time written * /
long fs_size; /* number of blocks in fs * /
long fILdsize; /* number of data blocks in fs * /
long fs_ncg; /* number of cylinder groups * /
long fs_bsize; /* size of basic blocks in fs * /
long fsjsize; /* size of frag blocks in fs * /
long fsJrag; /* number of frags in a block in fs * /

/* these are configuration parameters * /
long fs_minfree; /* minimum percentage of free blocks * /
long fs_rotdelay; /* num of ms for optimal next block * /
long f~rps; /* disk revolutions per second * /

/* these fields can be computed from the others * /
long fs_bmask; /* "blkoff" calc of blk offsets * /
long ffLfmask; /* "fragoff" calc of frag offsets * /
long fs_bshift; /* "lblkno" calc of logical blkno * /
long fsJshift; /* "numfrags" calc number of frags * /

/* these are configuration parameters * /
long fs_maxcontig; /* max number of contiguous blks * /
long fs_maxbpg; /* max number of blks per cyl group * /

/* these fields can be computed from the others */

5-18

FS(5)

long fsJragshift; /* block to frag shift * /
long fsJsbtodb; /* fsbtodb and dbtofsb shift constant * /
long flLsbsize; /* actual size of super block * /
long f~csmask; /* csum block offset * /
long fS.2sshift; /* csum block number * /
long fs_nindir; /* value of NINDIR */
long fsjnopb; /* value of INOPB * /
long fs_nspf; /* value of NSPF * /
long fs spare con [6]; /* reserved for future constants * /

/* sizes determined-by number of cylinder groups and their sizes * /
dadd!:.,..t fs_csaddr; /* blk addr of cyl grp summary area * /
long fs cssize; /* size of cyl grp summary area * /
long fUgsize; /* cylinder group size * /

/* these fields should be derived from the hardware * /
long fs_ntrak; /* tracks per cylinder * /
long fs_nsect; /* sectors per track * /
long fs_spc; /* sectors per cylinder * /

/* this comes from the disk driver partitioning * /
long fs ncyl; /* cylinders in file system * /

/* these fields can be computed from the others * /
long fs cpg; /* cylinders per group * /
long fsJpg; /* inodes per group * /
long fsJpg; /* blocks per group * furag * /

/* this data must be re-computed after crashes * /
struct csum fssstotal; /* cylinder summary information * /

/* these fields are cleared at mount time * /
char fsjmod; /* super block modified flag * /
char fs_clean; /* file system is clean flag * /
char fSJonly; /* mounted read-only flag * /
char f§...flags; /* currently unused flag * /
char fs fsmnt[MAXMNTLEN]; /* name mounted on */

/* these fields retaG~ the current block allocation info * /
long fs_cgrotor; /* last cg searched * /
struct csum *fs csp[MAXCSBUFS];/* list of fLCS info buffers */
long fs cpc; /* cyl per cycle in postbl * /
short f~ostbl[MAXCPG][NRPOS];/* head of blocks for each rotation */
long fs_magic; /* magic number * /
u char fuotbl[l]; /* list of blocks for each rotation */

/* actually longer * /
} ;

Each disk drive contains some number of file systems. A file system consists of a number
of cylinder groups. Each cylinder group has inodes and data.

5-19

FS(5)

A file system is described by its super-block, which in turn describes the cylinder groups.
The super-block is critical data and is replicated in each cylinder group to protect against
catastrophic loss. This is done at file system creation time and the critical super-block data
does not change, so the copies need not be referenced further unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of 'blocks'. File system
blocks of at most size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of
which is addressable; these pieces may be DEV~SIZE, or some multiple of a DEV_BSIZE
unit.

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the
last data block of a small file is allocated as only as many fragments of a large block as are
necessary. The file system format retains only a single pointer to such a fragment, which is
a piece of a single large block that has been divided. The size of such a fragment is deter
minable from information in the inode, using the "blksize(fs, ip, Ibn)" macro.

The file system records space availability at the fragment level; to determine block availa
bility, aligned fragments are examined.

The root inode is the root of the file system. Inode 0 can't be used for normal purposes
and historically bad blocks were linked to inode 1, thus the root in ode is 2 (inode 1 is no
longer used for this purpose, however numerous dump tapes make this assumption, so we
are stuck with it). The lost+found directory is given the next available inode when it is
initially created by mkfs.

fs_minfree gives the minimum acceptable percentage of file system blocks which may be
free. If the freelist drops below this level only the super-user may continue to allocate
blocks. This may be set to 0 if no reserve of free blocks is deemed necessary, however
severe performance degradations will be observed if the file system is run at greater than
90% full; thus the default value of fs_minfree is 10%.

5-20

Empirically the best trade-off between block fragmentation and overall disk utilization at a
loading of 90 % comes with a fragmentation of 4, thus the default fragment size is a fourth
of the block size.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at
different rotational positions, so that sequential blocks can be laid out with minimum rota
tionallatency. NRPOS is the number of rotational positions which are distinguished. With
NRPOS 8 the resolution of the summary information is 2ms for a typical 3600 rpm drive.

fs rotdelay gives the minimum number of milliseconds to initiate another disk transfer on
the same cylinder. It is used in determining the rotationally optimal layout for disk blocks
within a file; the default value for fSJotdelay is 2ms.

Each file system has a statically allocated number of inodes. An in ode is allocated for each
NBPI bytes of disk space. The inode allocation strategy is extremely conservative.

MAXIPG bounds the number of in odes per cylinder group, and is needed only to keep the
structure simpler by having the only a single variable size element (the free bit map).
MAXIPG must be a multiple of INOPB(fs).

FS(5)

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to
create files of size 2"32 with only two levels of indirection. MINBSIZE must be big enough
to hold a cylinder group block, thus changes to (struct cg) must keep its size within
MINBSIZE. MAXCPG is limited only to dimension an array in (struct cg); it can be made
larger as long as that structure's size remains within the bounds dictated by MINBSIZE.
Note that super blocks are never more than size SBSIZE.

The path name on which the file system is mounted is maintained in ftLfsmnt.
MAXMNTLEN defines the amount of space allocated in the super block for this name.
The limit on the amount of summary information per file system is defined by
MAXCSBUFS. It is currently parameterized for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder
group's data blocks. These blocks are read in from fs_csaddr (size fs_cssize) in addition to
the super block. sizeof (struct csum) must be a power of two in order for the "f!Lcs" macro
to work.

Super block for a file system: MAXBPC bounds the size of the rotational layout tables and
is limited by the fact that the super block is of size SBSIZE. The size of these tables is
inversely proportional to the block size of the file system. The size of the tables is
increased when sector sizes are not powers of two, as this increases the number of cylinders
included before the rotational pattern repeats (fs cpc). The size of the rotational layout
tables is derived from the number of bytes remaini;g in (structj's).

MAXBPG bounds the number of blocks of data per cylinder group, and is limited by the
fact that cylinder groups are at most one block. The size of the free block table is derived
from the size of blocks and the number of remaining bytes in the cylinder group structure
(struct~g).

[node: The inode is the focus of all file activity in the UNIX file system. There is a unique
inode allocated for each active file, each current directory, each mounted-on file, text file,
and the root. An inode is 'named' by its device/i-number pair. For further information, see
the include file <sys/inode.h>.

STATUS
FS (5) currently is not supported by Digital Equipment Corporation.

5-21

FSTAB(5)

NAME
fstab - static information about the filesystems

SYNTAX
#include <fstab.h>

DESCRIPTION

5-22

The file /etc/fstab contains descriptive information about the various file systems.
/etc/fstab is only read by programs, and not written; it is the duty of the system adminis
trator to properly create and maintain this file. The order of records in /etc/fstab is impor
tant because fsck, mount, and umount sequentially iterate through /etc/fstab doing their
thing.

The special file name is the block special file name, and not the character special file
name. If a program needs the character special file name, the program must create it by
appending a "r" after the last "I" in the special file name.

If fs type is "rw" or "ro" then the file system whose name is given in the fs file field is nor
mally mounted read-write or read-only on the specified special file. If fS.JYpe is "rq", then
the file system is normally mounted read-write with disk quotas enabled. The fs_freq field
is used for these file systems by the dump(8) command to determine which file systems
need to be dumped. The f~passno field is used by the fsck(8) program to determine the
order in which file system checks are done at reboot time. The root file system should be
specified with a f~passno of 1, and other file systems should have larger numbers. File sys
tems within a drive should have distinct numbers, but file systems on different drives can
be checked on the same pass to utilize parallelism available in the hardware.

If Is type is "sw" then the special file is made available as a piece of swap space by the
swapon(8) command at the end of the system reboot procedure. The fields other than
fs_spec and f~type are not used in this case.

If fs_type is "rq"then at boot time the file system is automatically processed by the quota
check(8) command and disk quotas are then enabled with quotaon(8). File system quotas
are maintained in a file "quotas", which is located at the root of the associated file system.

If I~type is specified as "xx" the entry is ignored. This is useful to show disk partitions
which are currently not used.

#define FSTAB_RW
#define FSTAB_RO
#define FSTAB_RQ
#define FSTAB_SW
#define FSTAB_XX

struct fstab {
char *fs_spec;
char *fs_file;
char *fs_type;
int fs.Jreq;

"rw"
"ro"
"rq"
"sw"
"xx"

/* read-write device * /
/* read-only device * /
/* read-write with quotas */
/* swap device * /
/* ignore totally * /

/* block special device name * /
/* file system path prefix * /
/* rW,ro,sw or xx */
/* dump frequency, in days */

FSTAB(5)

int f~assno; /* pass number on parallel dump * /
};

The proper way to read records from /etc/fstab is to use the routines getfsentO, getfsspecO,
getfstypeO, and getfsfileO.

FILES
/etc/fstab

SEE ALSO
getfsent(3X)

STATUS
FSTAB (5) currently is not supported by Digital Equipment Corporation.

5-23

GETTYTAB(5)

NAME
gettytab - terminal configuration data base

SYNTAX
/ etc! gettytab

DESCRIPTION
Gettytab is a simplified version of the termcap(5) data base used to describe terminal lines.
The initial terminal login process getty(8) accesses the gettytab file each time it starts,
allowing simpler reconfiguration of terminal characteristics. Each entry in the data base is
used to describe one class of terminals.

There is a default terminal class, default, that is used to set global defaults for all other
classes. (That is, the default entry is read, then the entry for the class required is used to
override particular settings.)

CAP ABILITIES

5-24

Refer to termcap(5) for a description of the file layout. The default column below lists
defaults obtained if there is no entry in the table obtained, nor one in the special default
table.

Name Type Default Description
ap bool false terminal uses any parity
bd num 0 backspace delay
bk str 0377 alternate end of line character (input break)
cb bool false use crt backspace mode
cd num 0 carriage-return delay
ce bool false use crt erase algorithm
ck bool false use crt kill algorithm
cl str NULL screen clear sequence
co bool false console - add \ n after login prompt
ds str ''Y delayed suspend character
ec bool false leave echo OFF

ep bool false terminal uses even parity
er str "? erase character
et str "D end of text (EOF) character
ev str NULL initial enviroment
fO num unused tty mode flags to write messages
f1 num unused tty mode flags to read login name
f2 num unused tty mode flags to leave terminal as
fd num 0 form-feed (vertical motion) delay
fl str "0 output flush character
hc bool false do NOT hangup line on last close
he str NULL hostname editing string
hn str hostname hostname
ht bool false terminal has real tabs
ig bool false ignore garbage characters in login name

GETTYTAB(5)

im str NULL initial (banner) message
in str "C interrupt character
is num unused input speed
kl str "U kill character
lc bool false terminal has lower case
1m str login: login prompt
In str "V "literal next" character
10 str /bin/login program to exec when name obtained
nd num 0 newline (line-feed) delay
nl bool false terminal has (or might have) a newline character
nx str default next table (for auto speed selection)
op bool false terminal uses odd parity
os num unused output speed
pc str \0 pad character
pe bool false use printer (hard copy) erase algorithm
pf num 0 delay between first prompt and following flush (seconds)
ps bool false line connected to a MICOM port selector
qu str "\ quit character
rp str "R line retype character
rw bool false do NOT use raw for input, use cbreak
sp num unused line speed (input and output)
su str "z suspend character
tc str none table continuation
to num 0 timeout (seconds)
tt str NULL terminal type (for enviroment)
ub bool false do unbuffered output (of prompts etc)
uc bool false terminal is known upper case only
we str "W word erase character
xc bool false do NOT echo control chars as "X
xf str "S XOFF (stop output) character
xn str "Q XON (start output) character

If no line speed is specified, speed will not be altered from that which prevails when getty is
entered. Specifying an input or output speed will override line speed for stated direction
only.

Terminal modes to be used for the output of the message, for input of the login name, and
to leave the terminal set as upon completion, are derived from the boolean flags specified.
If the derivation should prove inadequate, any (or all) of these three may be overriden with
one of the fO, fI, or f2 numeric specifications, which can be used to specify (usually in
octal, with a leading '0') the exact values of the flags. Local (new tty) flags are set in the
top 16 bits of this (32 bit) value.

Should getty receive a null character (presumed to indicate a line break) it will restart
using the table indicated by the nx entry. If there is none, it will re-use its original table.

5-2ti

GETTYTAB(5)

Delays are specified in milliseconds, the nearest possible delay available in the tty driver
will be used. Should greater certainty be desired, delays with values 0, 1, 2, and 3 are inter
preted as choosing that particular delay algorithm from the driver.

The cl screen clear st.ring may be preceded by a (decimal) number of milliseconds of delay
required (a la termcap). This delay is simulated by repeated use of the pad character pc.

The initial message, and login message, im and 1m may include the character sequence %h
to obtain the hostname. (% % obtains a single '%' character.) The hostname is normally
obtained from the system, but may be set by the hn table entry. In either case it may be
edited with he. The he string is a sequence of characters, each character that is neither
'@' nor '#' is copied into the final hostname. A '@' in the he string, causes one character
from the real hostname to be copied to the final hostname. A '#' in the he string, causes
the next character of the real hostname to be skipped. Surplus '@' and '#' characters are
ignored.

When getty execs the login process, given in the 10 string (usually" /bin/login"), it will have
set the enviroment to include the terminal type, as indicated by the tt string (if it exists).
The ev string, can be used to enter additional data into the environment. It is a list of
comma separated strings, each of which will presumably be of the form name = value.

If a non-zero timeout is specified, with to, then getty will exit within the indicated number
of seconds, either having received a login name and passed control to login, or having
received an alarm signal, and exited. This may be useful to hangup dial in lines.

Output from getty is even parity unless op is specified. Op may be specified with ap to
allow any parity on input, but generate odd parity output. Note: this only applies while
getty is being run, terminal driver limitations prevent a more complete implementation.
Getty does not check parity of input characters in RA W mode.

SEE ALSO
termcap(5), getty(8).

RESTRICTIONS
Since some users insist on changing their default special characters, it is wise to define at
least the erase, kill, and interrupt characters in the default table. In all cases, '#' or '''H'
typed in a login name will be treated as an erase character, and '@' will be treated as a kill
character.

Currently login(l) destroys the environment, so there is no point setting it in gettytab.

STATUS
GETTYTAB (5) currently is not supported by Digital Equipment Corporation.

5-26

)
NAME

group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

GROUP (5)

This is an ASCII file. The fields are separated by colons; Each group is separated from the
next by a new-line. If the password field is null, no password is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it can and does
have general read permission and can be used, for example, to map numerical group ID's to
names.

FILES
/etc/group

SEE ALSO
setgroups(2), initgroups(3X), crypt(3), passwd(l), passwd(5)

RESTRICTIONS
The passwd(l) command won't change the passwords.

STATUS
GROUP (5) currently is not supported by Digital Equipment Corporation.

5-27

HOSTS(5)

NAME
hosts - host name data base

DESCRIPTION
The hosts file contains information regarding the known hosts on the DARPA Internet.
For each host a single line should be present with the following information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by rou
tines which search the file. This file is normally created from the official host data base
maintained at the Network Information Control Center (NIC), though local changes may be
required to bring it up to date regarding unofficial aliases and/or unknown hosts.

Network addresses are specified in the conventional "." notation using the inet addrO rou
tine from the Internet address manipulation library, inet(3N). Host names may contain
any printable character other than a field delimiter, newline, or comment character.

FILES
/etc/hosts

SEE ALSO
gethostent(3N)

STATUS
HOSTS (5) currently is not supported by Digital Equipment Corporation.

5-28

NAME
mtab - mounted file system table

SYNTAX
#include <fstab.h>
#include <mtab.h>

DESCRIPTION

MTAB(5)

Mtab resides in directory fete and contains a table of devices mounted by the mount com
mand. Umount removes entries.

The table is a series of mtab structures, as defined in <mtab.h>. Each entry contains the
null-padded name of the place where the special file is mounted, the null-padded name of
the special file, and a type field, one of those defined in <fstab.h>. The special file has all
its directories stripped away; that is, everything through the last '/' is thrown away. The
type field indicates if the file system is mounted read-only, read-write, or read-write with
disk quotas enabled.

This table is present only so people can look at it. It does not matter to mount if there are
duplicated entries nor to umount if a name cannot be found.

FILES
/etc/mtab

SEE ALSO
mount(8)

STATUS
MTAB (5) currently is not supported by Digital Equipment Corporation.

5-29

NETWORKS (5)

NAME
networks - network name data base

DESCRIPTION
The networks file contains information regarding the known networks which comprise the
DARPA Internet. For each network a single line should be present with the following
information:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by rou
tines which search the file. This file is normally created from the official network data base
maintained at the Network Information Control Center (NIC), though local changes may be
required to bring it up to date regarding unofficial aliases and/or unknown networks.

Network number may be specified in the conventional "." notation using the inet networkO
routine from the Internet address manipulation library, inet(3N). Network names may
contain any printable character other than a field delimiter, newline, or comment character.

FILES
/etc/networks

SEE ALSO
getnetent(3N)

STATUS
NETWORKS (5) currently is not supported by Digital Equipment Corporation.

5-30

NAME
passwd - password file

DESCRIPTION
Passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
numerical group ID
user's real name, office, extension, home phone.
initial working directory
program to use as Shell

PASSWD(5)

The name may contain '&', meaning insert the login name. This information is set by the
chln(1) command and used by the {inger(l) command.

This is an ASCII file. Each field within each user's entry is separated from the next by a
colon. Each user is separated from the next by a new-line. If the password field is null, no
password is demanded; if the Shell field is null, then Ibinlsh is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does
have general read permission and can be used, for example, to map numerical user ID's to
names.

Appropriate precautions must be taken to lock the file against changes if it is to be edited
with a text editor; vipw(8) does the necessary locking.

FILES
/ etc/passwd

SEE ALSO
getpwent(3), login(l), crypt(3), passwd(l), group(5), chfn(l), finger(l), vipw(8), adduser(8)

STATUS
PASSWD (5) currently is not supported by Digital Equipment Corporation.

5-31

PHONES(5)

NAME
phones - remote host phone number data base

DESCRIPTION
The file /etc/phones contains the system-wide private phone numbers for the tip(lC) pro
gram. This file is normally unreadable, and so may contain privileged information. The
format of the file is a series of lines of the form: <system-name> [\t] * <phone-number>.
The system name is one of those defined in the remote(5) file and the phone number is
constructed from [0123456789-=* %]. The "=" and "*,, characters are indicators to the
auto call units to pause and wait for a second dial tone (when going through an exchange).
The "=" is required by the DF02-AC and the "*,, is required by the BIZCOMP 1030.

Only one phone number per line is permitted. However, if more than one line in the file
contains the same system name tip(lC) will attempt to dial each one in turn, until it estab
lishes a connection.

FILES
/etc/phones

SEE ALSO
tip(lC), remote(5)

STATUS
PHONES (5) currently is not supported by Digital Equipment Corporation.

5-32

PLOT(5)

~
/ NAME

plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X}, and are interpreted for
various devices by commands described in plot(1G}. A graphics file is a stream of plotting
instructions. Each instruction consists of an ASCII letter usually followed by bytes of
binary information. The instructions are executed in order. A point is designated by four
bytes representing the x and y values; each value is a signed integer. The last designated
point in an I, m, n, or p instruction becomes the 'current point' for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine in
plot (3X).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next four bytes. See
plot(1G}.

p point: Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next four bytes to the point given by the
following four bytes.

t label: Place the following ASCII string so that its first character falls on the current
point. The string is terminated by a newline.

a arc: The first four bytes give the center, the next four give the starting point, and the
last four give the end point of a circular arc. The least significant coordinate of the end
point is used only to determine the quadrant. The arc is drawn counter-clockwise.

c circle: The first four bytes give the center of the circle, the next two the radius.

e erase: Start another frame of output.

f linemod: Take the following string, up to a newline, as the style for drawing further
lines. The styles are 'dotted,' 'solid,' 'longdashed,' 'shortdashed,' and 'dotdashed.'
Effective only in plot 4014 and plot ver.

s space: The next four bytes give the lower left corner of the plotting area; the following
four give the upper right corner. The plot will be magnified or reduced to fit the device
as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below for dev
ices supported by the filters of plot(1G}. The upper limit is just outside the plotting
area. In every case the plotting area is taken to be square; points outside may be
displayable on devices whose face isn't square.

4014 space(O, 0, 3120, 3120};
ver space(O, 0, 2048, 2048};
300, 300s space(O, 0, 4096, 4096};
450 space(O, 0, 4096, 4096};

5-33

PLOT(5)

SEE ALSO
plot(lG), plot(3X), graph(lG)

STATUS
PLOT (5) currently is not supported by Digital Equipment Corporation.

5-34

PRINTCAP (5)

) NAME
printcap - printer capability data base

SYNTAX
/ etc/printcap

DESCRIPTION
Printcap is a simplified version of the termcap(5) data base used to describe line printers.
The spooling system accesses the printcap file every time it is used, allowing dynamic addi
tion and deletion of printers. Each entry in the data base is used to describe one printer.
This data base may not be substituted for, as is possible for termcap, because it may allow
accounting to be bypassed.

The default printer is normally lp, though the environment variable PRINTER may be
used to override this. Each spooling utility supports an option, - Pprinter, to allow explicit
naming of a destination printer.

Refer to the 4.2BSD Line Printer Spooler Manual for a complete discussion on how setup
the database for a given printer.

CAPABILITIES
Refer to termcap for a description of the file layout.

NameType Default Description
af str NULL name of accounting file
br num none if lp is a tty, set the baud rate (ioctl call)
cf str NULL cifplot data filter
df str NULL tex data filter (DVI format)
fc num 0 if Ip is a tty, clear flag bits (sgtty.h)
ff str " \f" string to send for a form feed
fo bool false print a form feed when device is opened
fs num 0 like 'fc' but set bits
gf str NULL graph data filter (plot (3X) format)
ic bool false driver supports (non standard) ioctl to indent printout
if str NULL name of text filter which does accounting
If str " / dev / console" error logging file name
10 str "lock" name of lock file
Ip str "/dev/lp" device name to open for output
mx num 1000 maximum file size (in BUFSIZ blocks), zero = unlimited
nd str NULL next directory for list of queues (unimplemented)
nf str NULL ditroff data filter (device independent troff)
of str NULL name of output filtering program
pI num 66 page length (in lines)
pw num 132 page width (in characters)
px num 0 page width in pixels (horizontal)
py num 0 page length in pixels (vertical)
rf str NULL filter for printing FORTRAN style text files

5-35

PRINTCAP (5)

rm str NULL machine name for remote printer
rp str "lp" remote printer name argument
rs bool false restrict remote users to those with local accounts
rw bool false open the printer device for reading and writing
sb bool false short banner (one line only)
sc bool false suppress multiple copies
sd str "/usr/spool/lpd" spool directory
sf bool false suppress form feeds
sh bool false suppress printing of burst page header
st str "status" status file name
tf str NULL troff data filter (cat phototypesetter)
tr str NULL trailer string to print when queue empties
vf str NULL raster image filter
xc num 0 if lp is a tty, clear local mode bits (tty (4»
xs num 0 like 'xc' but set bits

Error messages sent to the console have a carriage return and a line feed appended to them,
rather than just a line feed.

If the local line printer driver supports indentation, the daemon must understand how to
invoke it.

SEE ALSO
termcap(5), Ipc(8), Ipd(8), pac(8), lpr(l), lpq(l), lprm(l)
4.2BSD Line Printer Spooler Manual

STATUS
PRINTCAP (5) currently is not supported by Digital Equipment Corporation.

5-36

PROTOCOLS (5)

~
v NAME

protocols - protocol name data base

DESCRIPTION
The protocols file contains information regarding the known protocols used in the DARPA
Internet. For each protocol a single line should be present with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by rou
tines which search the file.

Protocol names may contain any printable character other than a field delimiter, newline,
or comment character.

FILES
/ etc/protocols

SEE ALSO
getprotoent(3N)

STATUS
PROTOCOLS (5) currently is not supported by Digital Equipment Corporation.

5-37

REMOTE(5)

NAME
remote - remote host description file

DESCRIPTION
The systems known by tip(lC) and their attributes are stored in an ASCII file which is
structured somewhat like the termcap(5) file. Each line in the file provides a description
for a single system. Fields are separated by a colon (":"). Lines ending in a x character
with an immediately following newline are continued on the next line.

The first entry is the name(s) of the host system. If there is more than one name for a sys
tem, the names are separated by vertical bars. After the name of the system comes the
fields of the description. A field name followed by an '=' sign indicates a string value fol
lows. A field name followed by a '#' sign indicates a following numeric value.

Entries named "tip*" and "cu*" are used as default entries by tip, and the cu interface to
tip, as follows. When tip is invoked with only a phone number, it looks for an entry of the
form "tip300", where 300 is the baud rate with which the connection is to be made. When
the cu interface is used, entries of the form "cu300" are used.

CAPABILITIES
Capabilities are either strings (str), numbers (num), or boolean flags (bool). A string capa
bility is specified by capability=value; e.g. "dv=/dev/harris". A numeric capability is
specified by capability#value; e.g. "xa#99". A boolean capability is specified by simply
listing the capability.

at (str) Auto call unit type.

br (num) The baud rate used in establishing a connection to the remote host. This is
a decimal number. The default baud rate is 300 baud.

em (str) An initial connection message to be sent to the remote host. For example, if
a host is reached through port selector, this might be set to the appropriate
sequence required to switch to the host.

eu (str) Call unit if making a phone call. Default is the same as the 'dv' field.

5-38

di (str) Disconnect message sent to the host when a disconnect is requested by the
user.

du (bool) This host is on a dial-up line.

dv (str) UNIX device(s) to open to establish a connection. If this file refers to a termi
nal line, tip(lC) attempts to perform an exclusive open on the device to insure
only one user at a time has access to the port.

el (str) Characters marking an end-of-line. The default is NULL. ,-, escapes are only
recognized by tip after one of the characters in 'el', or after a carriage-return.

fs (str) Frame size for transfers. The default frame size is equal to BUFSIZ.

hd (bool) The host uses half-duplex communication, local echo should be performed.

ie (str) Input end-of-file marks. The default is NULL.

REMOTE(5)

oe (str) Output end-of-file string. The default is NULL. When tip is transferring a
file, this string is sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. This may be one of
"even", "odd", "none", "zero" (always set bit 8 to zero), "one" (always set bit 8 to
1). The default is even parity.

pn (str) Telephone number(s) for this host. If the telephone number field contains an
@ sign, tip searches the file jete/phones file for a list of telephone numbers; c.f.
phones (5).

tc (str) Indicates that the list of capabilities is continued in the named description.
This is used primarily to share common capability information.

Here is a short example showing the use of the capability continuation feature:

UNIX-1200:\
:dv= / dev / cauO:el ="D"U'C"S"Q"O@:du:at=ventel:ie=#$ % :oe="D: br#1200:

arpavaxlax:. \
:pn=7654321 %:tc=UNIX-1200

FILES
/ etc/remote

SEE ALSO
tip(lC), phones(5)

STATUS
REMOTE (5) currently is not supported by Digital Equipment Corporation.

5-39

SERVICES (5)

NAME
services - service name data base

DESCRIPTION
The services file contains information regarding the known services available in the DARPA
Internet. For each service a single line should be present with the following information:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The port number and
protocol name are considered a single item; a "I" is used to separate the port and protocol
(e.g. "512/tcp"). A "#" indicates the beginning of a comment; characters up to the end of
the line are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter, newline, or
comment character.

FILES
/ etc/services

SEE ALSO
getservent(3N)

STATUS
SERVICES (5) currently is not supported by Digital Equipment Corporation.

5-40

STAB(5)

NAME
stab - symbol table types

SYNTAX
#include <stab.h>

DESCRIPTION
Stab.h defines some values of the n type field of the symbol table of a.out files. These are
the types for permanent symbols (i.e. not local labels, etc.) used by the old debugger sdb
and the Berkeley Pascal compiler pc(1). Symbol table entries can be produced by the
.stabs assembler directive. This allows one to specify a double-quote delimited name, a
symbol type, one char and one short of information about the symbol, and an unsigned long
(usually an address). To avoid having to produce an explicit label for the address field, the
.stabd directive can be used to implicitly address the current location. If no name is
needed, symbol table entries can be generated using the .stabn directive. The loader prom
ises to preserve the order of symbol table entries produced by .stab directives. As described
in a.out (5), an element of the symbol table consists of the following structure:

/*
* Format of a symbol table entry.
*/

struct nlist {
union {

char *n_name; /* for use when in-core * /

};

long n_strx; /* index into file string table * /
} n_un;
unsigned char n-..!ype;
char n-.9ther;
short n-.9.esc;
unsigned n.....Yalue;

/* type flag * /
/* unused */
/* se~ struct desc, below * /
/* address or offset or line * /

The low bits of the ILtype field are used to place a symbol into at most one segment,
according to the following masks, defined in <a.out.h>. A symbol can be in none of these
segments by having none of these segment bits set.

/*
* Simple values for n.J;ype.
*/

#define N..!JNDF OxO
#define N_ABS Ox2
#define N....TEXT Ox4
#define N.J)ATA Ox6
#define N_BSS Ox8

/* undefined * /
/* absolute * /
/* text */
/* data */
/* bss */

#define ~EXT 01 /* external bit, or'ed in * /

5-41

STAB(5)

5-42

The nsalue field of a symbol is relocated by the linker, ld(l) as an address within the
appropriate segment. NJalue fields of symbols not in any segment are unchanged by the
linker. In addition, the linker will discard certain symbols, according to rules of its own,
unless the n type field has one of the following bits set:

/*
* Other permanent symbol table entries have some of the ~TAB bits set.
* These are given in <stab.h>
*/

#define ~STAB OxeO/* if any of these bits set, don't discard * /

This allows up to 112 (7 * 16) symbol types, split between the various segments. Some of
these have already been claimed. The old symbolic debugger, sdb, uses the following n type
values:

#define N GSYM Ox20 /* global symbol: name"O,type,O * /
#define N}'NAME Ox22 /* procedure name (f77 kludge): name"O * /
#define NyUN Ox24 /* procedure: name"O,linenumber,address * /
#define :rLSTSYM Ox26 /* static symbol: name"O,type,address * /
#define ~LCSYM Ox28 /* .lcomm symbol: name"O,type,address * /
#define ~RSYM Ox40 /* register sym: name"O,type,register */
#define ~SLINE Ox44 /* src line: O"O,linenumber,address * /
#define N_SSYM Ox60 /* structure elt: name"O,type,struct offset * /
#define N_SO Ox64 /* source file name: name"O,O,address * /
#define N.J..SYM Ox 80 /* local sym: name"O,type,offset * /
#define N_SOL Ox84 /* #included file name: name"O,O,address * /
#define ~PSYM OxaO /* parameter: name"O,type,offset * /
#define !'LENTRY Oxa4 /* alternate entry: name,linenumber,address */
#define ~LBRAC Ox cO /* left bracket: O"O,nesting level,address * /
#define N ..,BBRAC OxeO /* right bracket: O"O,nesting level, address * /
#define ~BCOMMOxe2 /* begin common: name" */
#define ~ECOMM Oxe4 /* end common: name" * /
#define N~COML Oxe8 /* end common (local name): "address */
#define ~LENG Oxfe /* second stab entry with length information * /

where the comments give sdb conventional use for .stabs and the n_name, n.,.9ther, n_desc,
and nsalue fields of the given n type. Sdb uses the rulesc field to hold a type specifier in
the form used by the Portable C Compiler, cc(I), in which a base type is qualified in the
following structure:

struct desc {
short q6:2,

q5:2,
q4:2,
q3:2,
q2:2,

STAB(5)

};

ql:2,
basic:4;

There are four qualifications, with ql the most significant and q6 the least significant: ° none
1 pointer
2 function
3 array

The sixteen basic types are assigned as follows: ° undefined
1 function argument
2 character
3 short
4 int
5 long
6 float
7 double
8 structure
9 union
10 enumeration
11 member of enumeration
12 unsigned character
13 unsigned short
14 unsigned int
15 unsigned long

The Berkeley Pascal compiler, pc(I), uses the following n_type value:

#define NYC Ox30 /* global pascal symbol: name"O,subtype,line * /

and uses the following subtypes to do type checking across separately compiled files:
1 source file name
2 included file name
3 global label
4 global constant
5 global type
6 global variable
7 global function
8 global procedure
9 external function
10 external procedure
11 library variable
12 library routine

5-43

STAB(5)

SEE ALSO
as(1), ld(l), dbx(l), a.out(5)

RESTRICTIONS
Sdb assumes that a symbol of type N_GSYM with name name is located at address _name.

STATUS
STAB (5) currently is not supported by Digital Equipment Corporation.

5-44

TAR(5)

NAME
tar - tape archive file format

DESCRIPTION
Tar, (the tape archive command) dumps several files into one, in a medium suitable for
transportation.

A "tar tape" or file is a series of blocks. Each block is of size TBLOCK. A file on the tape
is represented by a header block which describes the file, followed by zero or more blocks
which give the contents of the file. At the end of the tape are two blocks filled with binary
zeros, as an end-of-file indicator.

The blocks are grouped for physical I/O operations. Each group of n blocks (where n is set
by the b keyletter on the tar(l) command line - default is 20 blocks) is written with a sin
gle system call; on nine-track tapes, the result of this write is a single tape record. The last
group is always written at the full size, so blocks after the two zero blocks contain random
data. On reading, the specified or default group size is used for the first read, but if that
read returns less than a full tape block, the reduced block size is used for further reads.

The header block looks like:

#define TBLOCK 512
#define NAMSIZ 100

union hblock {

};

char dummy[TBLOCK];
struct header {

} dbuf;

char name[NAMSIZ];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char linkfiag;
char linkname[NAMSIZ];

Name is a null-terminated string. The other fields are zero-filled octal numbers in ASCII.
Each field (of width w) contains w-2 digits, a space, and a null, except size and mtime,
which do not contain the trailing null. Name is the name of the file, as specified on the tar
command line. Files dumped because they were in a directory which was named in the
command line have the directory name as prefix and /filename as suffix. Mode is the file
mode, with the top bit masked off. Uid and gid are the user and group numbers which own
the file. Size is the size of the file in bytes. Links and symbolic links are dumped with this
field specified as zero. Mtime is the modification time of the file at the time it was
dumped. Chksum is a decimal ASCII value which represents the sum of all the bytes in

5-45

TAR(5)

the header block. When calculating the checksum, the chksum field is treated as if it were
all blanks. Link/lag is ASCII '0' if the file is "normal" or a special file, ASCII '1' if it is an
hard link, and ASCII '2' if it is a symbolic link. The name linked-to, if any, is in linkname,
with a trailing null. Unused fields of the header are binary zeros (and are included in the
checksum).

The first time a given i-node number is dumped, it is dumped as a regular file. The second
and subsequent times, it is dumped as a link instead. Upon retrieval, if a link entry is
retrieved, but not the file it was linked to, an error message is printed and the tape must be
manually re-scanned to retrieve the linked-to file.

The encoding of the header is designed to be portable across machines.

SEE ALSO
tar(l)

RESTRICTIONS
Names or linknames longer than NAMSIZ produce error reports and cannot be dumped.

STATUS
TAR (5) currently is not supported by Digital Equipment Corporation.

5-46

TERMCAP(5)

NAME
term cap - terminal capability data base

SYNTAX
/etc/termcap

DESCRIPTION
Termcap is a data base describing terminals, used, e.g., by vi(1) and curses(3X). Terminals
are described in termcap by giving a set of capabilities which they have, and by describing
how operations are performed. Padding requirements and initialization sequences are
included in termcap.

Entries in termcap consist of a number of ':' separated fields. The first entry for each ter
minal gives the names which are known for the terminal, separated by 'I' characters. The
first name is always 2 characters long and is used by older version 6 systems which store
the terminal type in a 16 bit word in a systemwide data base. The second name given is
the most common abbreviation for the terminal, and the last name given should be a long
name fully identifying the terminal. The second name should contain no blanks; the last
name may well contain blanks for readability.

CAP ABILITIES
(P) indicates padding may be specified
(P*) indicates that padding may be based on no. lines affected

Name Type Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
bc str Backspace if not AH
bs bool Terminal can backspace with AH
bt str (P) Back tab
bw bool Backspace wraps from column 0 to last column
CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
cr str (P*) Carriage return, (default AM)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Like ch but vertical only.
da bool Display may be retained above
dB num Number of millisec of bs delay needed
db bool Display may be retained below
dC num Number of millisec of cr delay needed

5-47

TERMCAP(5)

dc str (P*) Delete character
dF num Number of millisec of ff delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give ":ei=:" if ie
eo str Can erase overstrikes with a blank
ff str (P*) Hardcopy terminal page eject (default "L)
hc bool Hardcopy terminal
hd str Half-line down (forward 1/2 linefeed)
ho str Home cursor (if no em)
hu str Half-line up (reverse 1/2 linefeed)
hz str Hazeltine; can't print -'s
ic str (P) Insert character
if str Name of file containing is
im bool Insert mode (enter); give ":im=:" if ie
in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
kO-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of "keypad transmit" mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of "other" keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in "keypad transmit" mode
ku str Sent by terminal up arrow key
10-19 str Labels on "other" function keys
Ii num Number of lines on screen or page
II str Last line, first column (if no em)
rna str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor.
ms bool Safe to move while in standout and underline mode
mu str Memory unlock (turn off memory lock).
nc bool No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default \n)

5-48

TERMCAP(5)

ns boo I Terminal is a CRT but doesn't scroll.
os bool Terminal overstrikes
pc str Pad character (rather than null)
pt bool Has hardware tabs (may need to be set with is)
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than AI or with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use em
ti str String to begin programs that use em
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue
ul bool Terminal underlines even though it doesn't overstrike
up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (may not move cursor)
ve str Sequence to end open/visual mode
vs str Sequence to start open/visual mode
xb bool Beehive (£1 =escape, f2=ctrl C)
xn bool A newline is ignored after a wrap (Concept)
xr bool Return acts like ee \ r \ n (Delta Data)
xs bool Standout not erased by writing over it (HP 264?)
xt bool Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry

The following entry, which describes the Concept-lOO, is among the more complex entries
in the termcap file as of this writing. (This particular concept entry is outdated, and is
used as an example only.)

cll c1001 conceptlOO:is= \ EU \ Ef \ E7 \ E5 \ E8 \ El \ ENH \ EK \E \ 200 \ Eo& \ 200:\
:al=3* \ E R:am:bs:cd=16* \ E C:ce=16 \ E S:c1 =2* L:cm= \ Ea%+%+:co#80:\
:dc=16 \ E A:dl=3* \ E B:ei= \ E\ 200:eo:im= \ E P:in:ip=16*:li#24:mi:nd= \E=:\
:se= \ Ed \ Ee:so= \ ED\ EE:ta=8 \ t:ul:up= \ E;:vb= \ Ek \EK:xn:

Entries may continue onto multiple lines by giving a \ as the last character of a line, and
that empty fields may be included for readability (here between the last field on a line and
the first field on the next). Capabilities in termcap are of three types: Boolean capabilities
which indicate that the terminal has some particular feature, numeric capabilities giving the
size of the terminal or the size of particular delays, and string capabilities, which give a
sequence which can be used to perform particular terminal operations.

5-49

TERMCAP(5)

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the Concept has
"automatic margins" (i.e. an automatic return and linefeed when the end of a line is
reached) is indicated by the capability am. Hence the description of the Concept includes
am. Numeric capabilities are followed by the character '#' and then the value. Thus co
which indicates the number of columns the terminal has gives the value '80' for the Con
cept.

Finally, string valued capabilities, such as ce (clear to end of line sequence) are given by
the two character code, an '=', and then a string ending at the next following ':'. A delay in
milliseconds may appear after the '=' in such a capability, and padding characters are sup
plied by the editor after the remainder of the string is sent to provide this delay. The
delay can be either a integer, e.g. '20', or an integer followed by an '*', i.e. '3*'. A '*' indi
cates that the padding required is proportional to the number of lines affected by the
operation, and the amount given is the per-affected-unit padding required. When a '*' is
specified, it is sometimes useful to give a delay of the form '3.5' specify a delay per unit to
tenths of milliseconds.

A number of escape sequences are provided in the string valued capabilities for easy encod
ing of characters there. A \E maps to an ESCAPE character, AX maps to a control-x for any
appropriate \, and the sequences \n \r \t \b \f give a newline, return, tab, backspace and
formfeed. Finally, characters may be given as three octal digits after a \, and the characters
A and \ may be given as \A and\ \. If it is necessary to place a : in a capability it must be
escaped in octal as \072. If it is necessary to place a null character in a string capability it
must be encoded as \ 200. The routines which deal with termcap use C strings, and strip
the high bits of the output very late so that a \200 comes out as a \000 would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to
prepare a terminal description is by imitating the description of a similar terminal in
termcap and to build up a description gradually, using partial descriptions with ex to check
that they are correct. Be aware that a very unusual terminal may expose deficiencies in the
ability of the termcap file to describe it or bugs in ex. To easily test a new terminal
description you can set the environment variable TERMCAP to a pathname of a file con
taining the description you are working on and the editor will look there rather than in
/etc/termcap. TERMCAP can also be set to the termcap entry itself to avoid reading the
file when starting up the editor. (This only works on version 7 systems.)

Basic capabilities

The number of columns on each line for the terminal is given by the co numeric capability.
If the terminal is a CRT, then the number of lines on the screen is given by the Ii capability.
If the terminal wraps around to the beginning of the next line when it reaches the right
margin, then it should have the am capability. If the terminal can clear its screen, then
this is given by the cl string capability. If the terminal can backspace, then it should have
the bs capability, unless a backspace is accomplished by a character other than AH (ugh) in
which case you should give this character as the bc string capability. If it overstrikes

5-50

l
/

TERMCAP(5)

(rather than clearing a position when a character is struck over) then it should have the os
capability.

A very important point here is that the local cursor motions encoded in termcap are
undefined at the left and top edges of a CRT terminal. The editor will never attempt to
backspace around the left edge, nor will it attempt to go up locally off the top. The editor
assumes that feeding off the bottom of the screen will cause the screen to scroll up, and the
am capability tells whether the cursor sticks at the right edge of the screen. If the terminal
has switch selectable automatic margins, the termcap file usually assumes that this is on,
i.e. am.

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the model
33 teletype is described as

t3133Itty33:co#72:os

while the Lear Siegler ADM-3 is described as

clladm3131lsi adm3:am: bs:cl =AZ:li#24:co#80

Cursor addressing

Cursor addressing in the terminal is described by a em string capability, with print!(3S)
like escapes %x in it. These substitute to encodings of the current line or column position,
while other characters are passed through unchanged. If the em string is thought of as
being a function, then its arguments are the line and then the column to which motion is
desired, and the % encodings have the following meanings:

%d
%2
%3
%.
%+x
%>xy
%r
%i
%%
%n
%B
%D

as in print!, 0 origin
like %2d
like %3d
like %c
adds x to value, then %.
if value > x adds y, no output.
reverses order of line and column, no output
increments line/column (for 1 origin)
gives a single %
exclusive or row and column with 0140 (DM2500)
BCD (16*(x/10» + (x% 10), no output.
Reverse coding (x-2*(x% 16», no output. (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here,
and that the row and column are printed as two digits. Thus its em capability is
"cm=6\E&%r%2c%2Y". The Microterm ACT-IV needs the current row and column sent
preceded by a AT, with the row and column simply encoded in binary, "cm=AT%. % .". Ter
minals which use" %." need to be able to backspace the cursor (bs or be), and to move the
cursor up one line on the screen (up introduced below). This is necessary because it is not
always safe to transmit \t, \n AD and \r, as the system may change or discard them.

5-51

TERMCAP(5)

A final example is the LSI ADM-3a, which uses row and column offset by a blank character,
thus "cm=\E= % + % + ".
Cursor motions

If the terminal can move the cursor one position to the right, leaving the character at the
current position unchanged, then this sequence should be given as nd (non-destructive
space). If it can move the cursor up a line on the screen in the same column, this should be
given as up. If the terminal has no cursor addressing capability, but can home the cursor
(to very upper left corner of screen) then this can be given as ho; similarly a fast way of
getting to the lower left hand corner can be given as 11; this may involve going up with up
from the home position, but the editor will never do this itself (unless 11 does) because it
makes no assumption about the effect of moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line, leaving the cursor
where it is, this should be given as ceo If the terminal can clear from the current position
to the end of the display, then this should be given as cd. The editor only uses cd from
the first column of a line.

5-52

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be
given as al; this is done only from the first position of a line. The cursor must then appear
on the newly blank line. If the terminal can delete the line which the cursor is on, then this
should be given as dl; this is done only from the first position on the line to be deleted. If
the terminal can scroll the screen backwards, then this can be given as sb, but just al
suffices. If the terminal can retain display memory above then the da capability should be
given; if display memory can be retained below then db should be given. These let the edi
tor understand that deleting a line on the screen may bring non-blank lines up from below
or that scrolling back with sb may bring down non-blank lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to insert/delete character
which can be described using termcap. The most common insert/delete character operations
affect only the characters on the current line and shift characters off the end of the line
rigidly. Other terminals, such as the Concept 100 and the Perkin Elmer Owl, make a dis
tinction between typed and untyped blanks on the screen, shifting upon an insert or delete
only to an untyped blank on the screen which is either eliminated, or expanded to two
untyped blanks. You can find out which kind of terminal you have by clearing the screen
and then typing text separated by cursor motions. Type "abc def" using local cursor
motions (not spaces) between the "abc" and the "def". Then position the cursor before the
"abc" and put the terminal in insert mode. If typing characters causes the rest of the line
to shift rigidly and characters to fall off the end, then your terminal does not distinguish
between blanks and untyped positions. If the "abc" shifts over to the "def" which then
move together around the end of the current line and onto the next as you insert, you have
the second type of terminal, and should give the capability in, which stands for "insert

TERMCAP(5)

null".
If your terminal does something different and unusual then you may have to modify the

editor to get it to use the insert mode your terminal defines. We have seen no terminals
which have an insert mode not not falling into one of these two classes.

The editor can handle both terminals which have an insert mode, and terminals which send
a simple sequence to open a blank position on the current line. Give as im the sequence to
get into insert mode, or give it an empty value if your terminal uses a sequence to insert a
blank position. Give as ei the sequence to leave insert mode (give this, with an empty
value also if you gave im so). Now give as ic any sequence needed to be sent just before
sending the character to be inserted. Most terminals with a true insert mode will not give
ic, terminals which send a sequence to open a screen position should give it here. (Insert
mode is preferable to the sequence to open a position on the screen if your terminal has
both.) If post insert padding is needed, give this as a number of milliseconds in ip (a string
option). Any other sequence which may need to be sent after an insert of a single character
may also be given in ip.

It is occasionally necessary to move around while in insert mode to delete characters on the
same line (e.g. if there is a tab after the insertion position). If your terminal allows motion
while in insert mode you can give the capability mi to speed up inserting in this case.
Omitting mi will affect only speed. Some terminals (notably Datamedia's) must not have
mi because of the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and exit delete mode,
and dc to delete a single character while in delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can be given as so
and se respectively. If there are several flavors of standout mode (such as inverse video,
blinking, or underlining - half bright is not usually an acceptable "standout" mode unless
the terminal is in inverse video mode constantly) the preferred mode is inverse video by
itself. If the code to change into or out of standout mode leaves one or even two blank
spaces on the screen, as the TVI 912 and Teleray 1061 do, then ug should be given to tell
how many spaces are left.

Codes to begin underlining and end underlining can be given as us and ue respectively. If
the terminal has a code to underline the current character and move the cursor one space
to the right, such as the Microterm Mime, this can be given as uc. (If the underline code
does not move the cursor to the right, give the code followed by a nondestructive space.)

Many terminals, such as the HP 2621, automatically leave standout mode when they move
to a new line or the cursor is addressed. Programs using standout mode should exit stan
dout mode before moving the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replace
ment) then this can be given as vb; it must not move the cursor. If the terminal should be
placed in a different mode during open and visual modes of ex, this can be given as vs and
ve, sent at the start and end of these modes respectively. These can be used to change,

5-53

TERMCAP(5)

5-54

e.g., from a underline to a block cursor and back.

If the terminal needs to be in a special mode when running a program that addresses the
cursor, the codes to enter and exit this mode can be given as ti and teo This arises, for
example, from terminals like the Concept with more than one page of memory. If the ter
minal has only memory relative cursor addressing and not screen relative cursor addressing,
a one screen-sized window must be fixed into the terminal for cursor addressing to work
properly.

If your terminal correctly generates underlined characters (with no special codes needed)
even though it does not overstrike, then you should give the capability ul. If overstrikes
are erasable with a blank, then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this informa
tion can be given. Note that it is not possible to handle terminals where the keypad only
works in local (this applies, for example, to the unshifted HP 2621 keys). If the keypad can
be set to transmit or not transmit, give these codes as ks and ke. Otherwise the keypad is
assumed to always transmit. The codes sent by the left arrow, right arrow, up arrow, down
arrow, and home keys can be given as kl, kr, ku, kd, and kh respectively. If there are
function keys such as fO, f1, ... , f9, the codes they send can be given as kO, kl, •.. , k9. If
these keys have labels other than the default fO through f9, the labels can be given as 10,
11, ... , 19. If there are other keys that transmit the same code as the terminal expects for
the corresponding function, such as clear screen, the termcap 2 letter codes can be given in
the ko capability, for example, ":ko=cl,ll,sf,sb:", which says that the terminal has clear,
home down, scroll down, and scroll up keys that transmit the same thing as the cl, 11, sf,
and sb entries.

The rna entry is also used to indicate arrow keys on terminals which have single character
arrow keys. It is obsolete but still in use in version 2 of vi, which must be run on some
minicomputers due to memory limitations. This field is redundant with kl, kr, ku, kd,
and kh. It consists of groups of two characters. In each group, the first character is what
an arrow key sends, the second character is the corresponding vi command. These com
mands are h for kl, j for kd, k for ku, I for kr, and H for kh~ For example, the mime
would be :ma=AKj"Zk"XI: indicating arrow keys left ("H), down ("K), up rZ), and right
("X). (There is no home key on the mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given
as pc.

If tabs on the terminal require padding, or if the terminal uses a character other than AI to
tab, then this can be given as tao

Hazeltine terminals, which don't allow ,~, characters to be printed should indicate hz.
Datamedia terminals, which echo carriage-return linefeed for carriage return and then
ignore a following linefeed should indicate nco Early Concept terminals, which ignore a
linefeed immediately after an am wrap, should indicate xn. If an erase-eol is required to

TERMCAP(5)

get rid of standout (instead of merely writing on top of it), xs should be given. Teleray ter
minals, where tabs turn all characters moved over to blanks, should indicate xt. Other
specific terminal problems may be corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and if, the name of a
file containing long initialization strings. These strings are expected to properly clear and
then set the tabs on the terminal, if the terminal has settable tabs. If both are given, is
will be printed before if. This is useful where if is lusrllibltabsetlstd but is clears the tabs
first.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with
certain exceptions. The string capability tc can be given with the name of the similar ter
minal. This capability must be last and the combined length of the two entries must not
exceed 1024. Since termlib routines search the entry from left to right, and since the tc
capability is replaced by the corresponding entry, the capabilities given at the left override
the ones in the similar terminal. A capability can be canceled with xx @ where xx is the
capability. For example, the entry

hn 12621nl:ks@:ke@:tc=2621:

defines a 2621nl that does not have the ks or ke capabilities, and hence does not turn on
the function key labels when in visual mode. This is useful for different modes for a termi
nal, or for different user preferences.

FILES
I etc/termcap

SEE ALSO

file containing terminal descriptions

ex(l), curses(3X), termcap(3X), tset(l), vi(l), ul(l), more(l)

RESTRICTIONS
Ex allows only 256 characters for string capabilities, and the routines in termcap(3X) do
not check for overflow of this buffer. The total length of a single entry (excluding only
escaped newlines) may not exceed 1024.

The rna, vs, and ve entries are specific to the vi program.

STATUS
TERMCAP (5) currently is not supported by Digital Equipment Corporation.

5-55

TP(5)

NAME
tp - DEC/mag tape formats

DESCRIPTION
Tp dumps files to and extracts files from DECtape and magtape. The formats of these
tapes are the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See reboot(8).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the
tape. There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per
entry. Each entry has the following format:

struct {

};

char
unsigned short
char
char
char
char
long
unsigned short
char
unsigned short

pathname[32];
mode;
uid;
gid;
unused1;
size[3];
modtime;
tapeaddr;
unused2[16];
checksum;

The path name entry is the path name of the file when put on the tape. If the pathname
starts with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null
byte. Mode, uid, gid, size and time modified are the same as described under i-nodes (see
file system {8(5». The tape address is the tape block number of the start of the contents of
the file. Every file starts on a block boundary. The file occupies (size+511)/512 blocks of
continuous tape. The checksum entry has a value such that the sum of the 32 words of the
directory entry is zero.

Blocks above 25 (resp. 63) are available for file storage.

A fake entry has a size of zero.

SEE ALSO
fs(5), tp(1)

STATUS
TP (5) currently is not supported by Digital Equipment Corporation.

5-56

TTYS(5)

NAME
ttys - terminal initialization data

DESCRIPTION
The ttys file is read by the init program and specifies which terminal special files are to
have a process created for them so that people can log in. There is one line in the ttys file
per special file.

The first character of a line in the ttys file is either '0' or '1'. If the first character on the
line is a '0', the init program ignores that line. If the first character on the line is a '1', the
init program creates a login process for that line. The second character on each line is used
as an argument to getty (8), which performs such tasks as baud-rate recognition, reading the
login name, and calling login. For normal lines, the character is '0'; other characters can be
used, for example, with hard-wired terminals where speed recognition is unnecessary or
which have special characteristics. (Getty will have to be fixed in such cases.) The
remainder of the line is the terminal's entry in the device directory, /dev.

FILES
/etc/ttys

SEE ALSO
gettytab(5), init(8), getty(8), login(1}

STATUS
TTYS (5) currently is not supported by Digital Equipment Corporation.

5-57

TTYTYPE(5)

NAME
ttytype - data base of terminal types by port

SYNTAX
/ etc/ttytype

DESCRIPTION
Ttytype is a database containing, for each tty port on the system, the kind of terminal that
is attached to it. There is one line per port, containing the terminal kind (as a name listed
in termcap (5», a space, and the name of the tty, minus /dev/.

This information is read by tset(l) and by login(l) to initialize the TERM variable at login
time.

SEE ALSO
tset(l), login(l)

RESTRICTIONS
Some lines are merely known as "dialup" or "plugboard."

STATUS
TTYTYPE (5) currently is not supported by Digital Equipment Corporation.

5-58

TYPES(5)

NAME
types - primitive system data types

SYNTAX
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system code; some data of
these types are accessible to user code:

/* types.h 6.1 83/07/29*/

/*
* Basic system types and major/minor device constructing/busting macros.
*/

/* major part of a device * /
#define major(x) «int)«(unsigned)(x»>8)&0377»

/* minor part of a device * /
#define minor(x) «int) «x)&0377»

/* make a device number * /
#define makedev(x,y) «deyJ)«(x)«8) I (y»)

typedef unsigned char
typedef unsigned short
typedef unsigned int
typedef unsigned long
typedef unsigned short

u..£har;
u~hort;
ujnt;
uJong;
ushort;/* sys III compat * /

#ifdef vax
typedef struct
typedef struct

} labelj;;
#endif

int

typedef struct
typedef long
typedef char *
typedef u long
typedef long
typedef int
typedef int
typedef short
typedef int

_physadr { int r[l]; } *physadr;
labeU {
val[14];

_quad { long val[2]; } quad;
daddt...t;
caddLt;
inoj;
swblk_t;
sizeJ;
time_t;
deU;
off'j;

5-59

TYPES(5)

typedef struct fd.J!et { int fds_bits[l]; } fd.J;et;

The form daddl:J is used for disk addresses except in an i-node on disk, see fs(5). Times
are encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts
of a device code specify kind and unit number of a device and are installation-dependent.
Offsets are measured in bytes from the beginning of a file. The labeLt variables are used to
save the processor state while another process is running.

SEE ALSO
fs(5), time(3), Iseek(2), adb(l)

STATUS
TYPES (5) currently is not supported by Digital Equipment Corporation.

5-60

UTMP(5)

NAME
utmp, wtmp - login records

SYNTAX
#include <utrnp.h>

DESCRIPTION
The utmp file records information about who is currently using the system. The file is a
sequence of entries with the following structure declared in the include file:

/* utmp.h 4.2 83/05/22*/

/*
* Structure of utmp and wtmp files.
*
* Assuming the number 8 is unwise.
*/

/* tty name * /
/* user id */

struct utmp {
char
char
char
long

ut_Iine[8];
uCname[8];
ut_host[16];
utj;ime;

/* host name, if remote * /
/* time on */

};

This structure gives the name of the special file associated with the user's terminal, the
user's login name, and the time of the login in the form of time(3C).

The wtmp file records all logins and logouts. A null user name indicates a logout on the
associated terminal. Furthermore, the terminal name ,-, indicates that the system was
rebooted at the indicated time; the adjacent pair of entries with terminal names 'I' and '}'
indicate the system-maintained time just before and just after a date command has
changed the system's idea of the time.

Wtmp is maintained by login(l) and init(8). Neither of these programs creates the file, so
if it is removed record-keeping is turned off. It is summarized by ac(S).

FILES
/etc/utmp
/usr/adm/wtmp

SEE ALSO
10gin(1), init(8), who(l), ac(8)

STATUS
UTMP (5) currently is not supported by Digital Equipment Corporation.

5-61

UUENCODE (5)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode(1 C) consist of a header line, followed by a number of body lines,
and a trailer line. Uudecode(1C) will ignore any lines preceding the header or following the
trailer. Lines preceding a header must not, of course, look like a header.

The header line is distinguished by having the first 6 characters "begin". The word begin
is followed by a mode (in octal), and a string which names the remote file. A space
separates the three items in the header line.

The body consists of a number of lines, each at most 62 characters long (including the trail
ing newline). These consist of a character count, followed by encoded characters, followed
by a newline. The character count is a single printing character, and represents an integer,
the number of bytes the rest of the line represents. Such integers are always in the range
from 0 to 63 and can be determined by subtracting the character space (octal 40) from the
character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space
to make the characters printing. The last line may be shorter than the normal 45 bytes. If
the size is not a multiple of 3, this fact can be determined by the value of the count on the
last line. Extra garbage will be included to make the character count a multiple of 4. The
body is terminated by a line with a count of zero. This line consists of one ASCII space.

The trailer 1in~ consists of "end" on a line by itself.

SEE ALSO
uuencode(lC), uudecode(lC), uusend(lC), uucp(lC), mail(l)

STATUS
UUENCODE (5) currently is not supported by Digital Equipment Corporation.

5-62

) NAME
vfont - font formats for the Benson-Varian or Versatec

SYNTAX
lusr/lib/vfont/*

DESCRIPTION

VFONT(5)

The fonts for the printer/plotters have the following format. Each file contains a header,
an array of 256 character description structures, and then the bit maps for the characters
themselves. The header has the following format:

struct header {
short magic;
unsigned short size;
short maxx;
short maxy;
short xtnd;

} header;

The magic number is 0436 (octal). The maxx, maxy, and xtnd fields are not used at the
current time. Maxx and maxy are intended to be the maximum horizontal and vertical size
of any glyph in the font, in raster lines. The size is the size of the bit maps for the charac
ters in bytes. Before the maps for the characters is an array of 256 structures for each of
the possible characters in the font. Each element of the array has the form:

struct dispatch {

};

unsigned short addr;
short nbytes;
char
char
char
char
short

up;
down;
left;
right;
width;

The nbytes field is nonzero for characters which actually exist. For such characters, the
addr field is an offset into the rest of the file where the data for that character begins.
There are up+down rows of data for each character, each of which has left+right bits,
rounded up to a number of bytes. The width field is not used by vcat, although it is to
make width tables for troff. It represents the logical width of the glyph, in raster lines, and
shows where the base point of the next glyph would be.

FILES
/usr/lib/vfont/*

SEE ALSO
troff(1), pti(l), vpr(l), vtroff(l), vfontinfo(l)

5-63

VFONT(5)

STATUS
VFONT (5) currently is not supported by Digital Equipment Corporation.

5-64

VGRINDEFS (5)

NAME
vgrindefs - vgrind's language definition data base

SYNTAX
/usr/lib/vgrindefs

DESCRIPTION
Vgrindefs contains all language definitions for vgrind. The data base is very similar to
termcap(5).

FIELDS
The following table names and describes each field.

N arne Type Description
pb str regular expression for start of a procedure
bb str regular expression for start of a lexical block
be str regular expression for the end of a lexical block
cb str regular expression for the start of a comment
ce str regular expression for the end of a comment
sb str regular expression for the start of a string
se str regular expression for the end of a string
lb str regular expression for the start of a character constant
Ie str regular expression for the end of a character constant
tl bool present means procedures are only defined at the top

lexical level
oc bool present means upper and lower case are equivalent
kw str a list of keywords separated by spaces

Example

The following entry, which describes the C language, is typical of a language entry.

clc: :pb=A\d?*? \d? \p \d??):bb= {:be=} :cb=/*:ce=*/:sb=":se= \e":\
:lb=':le= \ e':tl:\
:kw=asm auto break case char continue default do double else enum\
extern float for fortran goto if int long register return short \
sizeof static struct switch typedef union unsigned while #define \
#else #endif #if #ifdef #ifndef #include #undef # define else endif\
if ifdef ifndef include undef:

Note that the first field is just the language name (and any variants of it). Thus the C
language could be specified to vgrind(l) as "c" or "C".

Entries may continue onto multiple lines by giving a \ as the last character of a line. Capa
bilities in vgrindefs are of two types: Boolean capabilities which indicate that the language
has some particular feature and string capabilities which give a regular expression or key
word list.

5-65

VGRINDEFS (5)

REGULAR EXPRESSIONS

Vgrindefs uses regular expression which are very similar to those of ex (1) and lex (1). The
characters 'A', '$', ':' and ,\, are reserved characters and must be "quoted" with a preceding x
if they are to be included as normal characters. The metasymbols and their meanings are:

$ the end of a line

the beginning of a line

\d a delimiter (space, tab, newline, start of line)

\a matches any string of symbols (like. * in lex)

\p matches any alphanumeric name. In a procedure definition (pb) the string that
matches this symbol is used as the procedure name.

() grouping

I alternation

? last item is optional

\e preceding any string means that the string will not match an input string if the
input string is preceded by an escape character (\). This is typically used for
languages (like C) which can include the string delimiter in a string b escaping it.

Unlike other regular expressions in the system, these match words and not characters.
Hence something like" (tramp\steamer)flies?" would match "tramp", "steamer", "trampflies",
or "steamerflies".

KEYWORD LIST

The keyword list is just a list of keywords in the language separated by spaces. If the "oc"
boolean is specified, indicating that upper and lower case are equivalent, then all the key
words should be specified in lower case.

FILES
/usr/lib/vgrindefsfile containing terminal descriptions

SEE ALSO
vgrind(l), troff(l)

STATUS
VGRINDEFS (5) currently is not supported by Digital Equipment Corporation.

5-66

INTRO(7)

NAME
miscellaneous - miscellaneous useful information pages

DESCRIPTION
This section contains miscellaneous documentation, mostly in the area of text processing
macro packages for troff(l).

ascii
environ
eqnchar
hier
mailaddr
man
me
ms
term

map of ASCII character set
user environment
special character definitions for eqn
file system hierarchy
mail addressing description
macros to typeset manual pages
macros for formatting papers
macros for formatting manuscripts
conventional names for terminals

7-1

ASCII(7)

NAME
ascii - map of ASCII character set

SYNTAX
cat /usr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, to be printed as needed. It contains:

1000 nul 1001 sohl002 stxl003 etxl004 eotl005 enq l006 ackl007 bell
1010 bs 1011 ht 1012 nl 1013 vt 1014 np 1015 cr 1016 so 1017 si I
1020 dlel021 dc11022 dc21023 dc31024 dc41025 nakl026 synl027 etbl
1030 canl031 an 1032 subl033 escl034 fs 1035 gs 1036 rs 1037 us
1040 sp 1041 ! 1042 " 1043 # 1044 $ 1045 % 1046 & 1047 '
1050 (1051) 1052 * 1053 + 1054 , 1055 - 1056 . 1057 /
1060 o 1061 1 1062 2 1063 3 1064 4 1065 5 1066 6 1067 7
1070 8 1071 9 1072 1073 ; 1074 < 1075 1076 > 1077 ?
1100 @ 1101 A 1102 B 1103 C 1104 D 1105 E 1106 F 1107 G
1110 H 1111 I 1112 J 1113 K 1114 L 1115 M 1116 N 1117 0
1120 P 1121 Q 1122 R 1123 S 1124 T 1125 U 1126 V 1127 W
1130 X 1131 y 1132 Z 1133 [1134 \ 1135] 1136 " 1137
1140 ' 1141 a 1142 b 1143 c 1144 d 1145 e 1146 f 1147 g
1150 h 1151 1152 1153 k 1154 1 1155 m 1156 n 1157 0

1160 p 1161 q 1162 r 1163 s 1164 t 1165 u 1166 v 1167 w
1170 x 1171 y 1172 z 1173 1174 I 1175 } 1176 - 1177 del

00 nul 01 soh 02 stxl 03 etx 04 eot 05 enq 06 ackl 07 be 11
08 bs 09 ht Oa nl I Ob vt Oc np Od cr Oe so I Of s i I
10 dIe 11 dc1 12 dc21 13 dc3 14 dc4 15 nak 16 synl 17 etbl
18 can 19 an 1a subl 1b esc 1c fs 1d gs 1e rs 1f us
20 sp 21 22 " 23 # 24 $ 25 % 26 & 27

,

28 (29) 2a * 2b + 2c 2d - 2e. 2f / ,
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3a 3b ; 3c < 3d 3e > 3f ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f 0
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5a Z 5b [5c \ 5d] 5e " 5f
60

,
61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 6a 6b k 6c I 6d m 6e n 6f 0

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7a z 7b 7c I 7d 7e - 7f del

7-2

FILES
/usr/pub/ascii

STATUS
ASCII (7) currently is not supported by Digital Equipment Corporation.

ASCII (7)

7-3

ENVIRON(?)

NAME
environ - user environment

SYNTAX
extern char **environ;

DESCRIPTION
An array of strings called the 'environment' is made available by execve(2) when a process
begins. By convention these strings have the form 'name=value'. The following names are
used by various commands:

PATH The sequence of directory prefixes that sh, time, nice(l), etc., apply in search
ing for a file known by an incomplete path name. The prefixes are separated
by':'. Login(l) sets PATH=:/usr/ucb:/bin:/usr/bin.

HOME

TERM

SHELL

TERMCAP

A user's login directory, set by login(l) from the password file passwd(5).

The kind of terminal for which output is to be prepared. This information is
used by commands, such as nroff or plot(lG), which may exploit special termi
nal capabilities. See /etc/termcap (termcap(5» for a list of terminal types.

The file name of the users login shell.

The string describing the terminal in TERM, or the name of the termcap file,
see termcap(5),termcap(3X).

EXINIT A startup list of commands read by ex(l), edit(l), and vi(l).

USER The login name of the user.

PRINTER The name of the default printer to be used by lpr(l), lpq(l), and lprm(l).

Further names may be placed in the environment by the export command and
'name=value' arguments in sh(l), or by the setenv command if you use csh(l). Arguments
may also be placed in the environment at the point of an execve(2). It is unwise to conflict
with certain sh(l) variables that are frequently exported by '.profile' files: MAIL, PSl, PS2,
IFS.

SEE ALSO
csh(l), ex(l), login(l), sh(1), execve(2), system(3), termcap(3X), termcap(5)

STATUS
ENVIRON (7) currently is not supported by Digital Equipment Corporation.

7-4

EQNCHAR(7)

NAME
eqnchar - special character definitions for eqn

SYNTAX
eqn lusr/pub/eqnchar [files] I troff [options]

neqn lusr/pub/eqnchar [files] I nroff [options]

DESCRIPTION
Eqnchar contains troft and nroft character definitions for constructing characters that are
not available on the Graphic Systems typesetter. These definitions are primarily intended
for use with eqn and neqn. It contains definitions for the following characters

Ciplus e II II square 0
citimes ~ /angle / circle 0
wig rangle ~ blot •
-wig - hbar 1i bullet •
> wig ~ ppd 1- prop a:

<wig ~ <-> empty ~

-wig ;; <-> .. member E
star • 1< -t nomem ~
bigstar * I> :> cup U
-dot .:. ang L cap n
orsign V rang L incl t:
andsign /\ Jdot subset C
-del A thf supset ::> -oppA 'r/ quarter If. fsubset ~
oppE i 3quarter 3/. fsupset ~
angstrom A degree 0

FILES
/usr/pub/eqnchar

SEE ALSO
troff(l), eqn(l)

STATUS
EQNCHAR (7) currently is not supported by Digital Equipment Corporation.

7-5

HIER (7)

NAME
hier - file system hierarchy

DESCRIPTION

7-6

The following gives a quick tour through the root file system. Listed are the major
directory hierarchy and representative files.

/ root directory for root file system

/hin directory for utility programs (see also /usr/bin)

as
assembler

cc
C compiler executive (see also /lib/ccom, /lib/cpp, /lib/c2)

csh
C shell

/dev directory for devices (4)

MAKEDEV
shell script to create special files

MAKEDEV.local
site specific part of MAKEDEV

console
main console, tty (4)

hp*
disks, hp(4)

rhp*
raw disks, hp (4)

ra*
UNIBUS disks ra(4)

tty*
terminals, tty (4)

fete directory for maintenance utilities and data

cron
clock daemon, cron(8)

disktah
disk characteristics and partition tables, disktab(5)

dump
dump program, dump (8)

© Digital Equipment Corporation 1984

dumpdates
dump history for dump(8)

fstab
file system configuration table, fstab(5)

getty
part of login, getty(8)

group
group file, group (5)

hosts
host name to network address mapping file, hosts(5)

init
parent of all processes, init (8)

motd
message-of-the-day file, login(l)

mount
mount program, mount(8)

mtab
mounted file table, mtab(5)

networks
network name to network number mapping file, networks(5)

passwd
password file, passwd (5)

phones
phone numbers for remote hosts, phones (5)

protocols
name to number mapping file, protocols(5}

rc
shell script to bring the system to multi-user mode

rc.local
site dependent portion of rc

remote
names and description of remote hosts for tip(lC), remote(5)

services
network services definition file, services(5}

termcap
description of terminal capabilities, termcap(5}

ttys
properties of terminals, ttys(5)

ttytype
terminal type table, ttytype(5)

tlib directory object libraries (see also /usr/lib)

¢) Digital Equipment Corporation 1984

HIER(7)

7-7

HIER (7)

7-8

ccom
C compiler proper

cpp
C preprocessor

c2
C code improver

lihc.a
system calls and standard I/O (2,3,38)

Ilost+found

Isys

Itmp

directory for connecting detached files for fsck (8)

symbolic link, normally to /usr/sys

directory for temporary files (see also /usr/tmp)

e*
used by ed(l)

ctm*
used by cc(l)

lusr general purpose directory, normally on which the /usr file system is mounted
(see description below)

Ivmunix kernel image

The following gives a quick tour through the lusr file system. Listed are the major
directory hierarchy and representative files.

lusr root directory for /usr file system

lusr/adm
directory for administrative information

crash
directory for crash dumps

vmcore.?,vmunix.?
crash dump files

lpacct
line printer accounting, Ipr(l)

messages
hardware error messages

tracct

© Digital Equipment Corporation 1984

phototypesetter accounting, troff(l)
vaacct, vpacct

varian and versatec accounting: vpr(l), vtroff(l), pac(8)
wtmp

login history, utmp(5)

lusr/bin directory for utility programs (keeps /bin small)

lusr/dict directory for word lists

spellhist
history file, spell(l)

words
word list, look(l)

lusr/doc directories containing files for the Vo1.2 documentation

as
assembler manual

c C manual

lusr/games
directory for games

hangman
hangman game

lib
library directory for games

lusr/guest
directory for guest accounts

lusr/include
directory for standard #include files

a.out.h
object file layout, a.out(5)

math.h

© Digital Equipment Corporation 1984

HIER(7)

7-9

HIER(7)

math (3M)
stdio.h

standard I/O, intro(3S)
sys

symbolic link to /sys/h (system generation #include files)

/usr/lib directory for object libraries (keeps /lib small)

atrun

/usr/man

7-10

system scheduler, at(l)
crontab

system clock daemon table
font

directory for nroff(l) and troff(l) fonts
lint

directory for utility files for lint(l)
tmac

directory for troff(l) macros
units

directory of conversion tables for units (1)
uucp

directory for uucp(lC) programs and data

directory for unformatted and preformatted man pages

manl
directory for section 1 (unformatted)

man2
directory for section 2 (unformatted)

man3
directory for section 3 (unformatted)

catl
directory for section 1 (preformatted)

cat2
directory for section 2 (preformatted)

cat3
directory for section 3 (preformatted)

It) Digital Equipment Corporation 1984

lusr/mdec
directory for ULTRIX-32 boot files

lusr/msgs
directory for messages, msgs (1)

lusr/new directory for binaries of new versions of programs

lusr/preserve
directory for editor temp files preserved after crashes/hangups

lusr/pub directory for binaries of user programs

lusrlskel
directory for sample user startup files

.cshrc
startup file for csh(l)

.Iogin
login startup file for csh (1)

.mailrc
startup file for mail(l)

.profile
startup file for sh (1)

.project
lists information used by finger{l)

lusrlspool
directory for delayed execution files

at
directory used by at (1)

Ipd
directory used by lpr(l)

lock
present when line printer is active

cf*
copy of file to be printed, if necessary

df*
daemon control file, lpd(8)

tf*
transient control file (exists while lpr is working)

mail
directory of mailboxes for mail(l)

name

© Digital Equipment Corporation 1984

HIER(7)

7-11

HIER(7)

7-12

mail file for user name
name. lock

lock file (exists while name is receiving mail)
uucp

directory for work files and staging area for uucp(1C)
LOGFILE

summary log

lusrlsrc directory for generic sources

usr.bin
directory for user sources

troW
directory for nroff and troff sources

term
directory of description files for new printers

lusrlsys directory for system files

BINARY
directory for system object files, make(1)

cassette
directory of files for boot cassette

conf
directory of configuration files, config(8)

data
directory for drive partition tables

floppy
directory of files for floppy disk

h
directory for system #include files

mdec
directory of headers for 11/750 boot blocks

net
directory for general network files

netimp
directory for IMP network files

netinet
directory for DARPA internet network files

netpup
directory for PUP network files

stand
directory for standalone boot binaries

sys
directory for machine dependent system files

vax
directory for V AX specific system files

© Digital Equipment Corporation 1984

vaxif
directory of network interface drivers for the V AX

vaxmba
directory of drivers for devices on the MASSBUS

vaxuba
directory of drivers for devices on the UNIBUS

lusr/tmp symbolic link to /tmp

SEE ALSO

HIER(7)

apropos(l), finger(l), find(l), grep(l), Is(l), ncheck(8), whatis(l), whereis(l), which(l)

STATUS
HIER (7) is supported by Digital Equipment Corporation.

7-13

MAILADDR (7)

NAME
mailaddr - mail addressing description

DESCRIPTION

7-14

Mail addresses are based on the ARPANET protocol listed at the end of this manual page.
These addresses are in the general format

user@domain

where a domain is a hierarchical dot separated list of subdomains. For example, the
address

eric@monet.Berkeley.ARPA

is normally interpreted from right to left: the message should go to the ARPA name tables
(which do not correspond exactly to the physical ARPANET), then to the Berkeley
gateway, after which it should go to the local host monet. When the message reaches
monet it is delivered to the user "eric".

Unlike some other forms of addressing, this does not imply any routing. Thus, although
this address is specified as an ARPA address, it might travel by an alternate route if that
was more convenient or efficient. For example, at Berkeley the associated message would
probably go directly to monet over the Ethernet rather than going via the Berkeley
ARP ANET gateway.

Abbreviation. Under certain circumstances it may not be necessary to type the entire
domain name. In general anything following the first dot may be omitted if it is the same
as the domain from which you are sending the message. For example, a user on
"calder.Berkeley.ARPA" could send to "eric@monet" without adding the
".Berkeley.ARPA" since it is the same on both sending and receiving hosts.

Certain other abbreviations may be permitted as special cases. For example, at Berkeley
ARP ANET hosts can be referenced without adding the" .ARP A" as long as their names do
not conflict with a local host name.

Compatibility. Certain old address formats are converted to the new format to provide
compatibility with the previous mail system. In particular,

host:user

is converted to

user@host

to be consistent with the rcp(lC) command.

Also, the syntax:

host!user

is converted to:

user@host.UUCP

MAILADDR (7)

This is normally converted back to the "host!user" form before being sent on for
compatibility with older UUCP hosts.

The current implementation is not able to route messages automatically through the UUCP
network. Until that time you must explicitly tell the mail system which hosts to send your
message through to get to your final destination.

Case Distinctions. Domain names (i.e., anything after the "@" sign) may be given in any
mixture of upper and lower case with the exception of UUCP hostnames. Most hosts
accept any mixture of case in user names, with the notable exception of MULTICS sites.

Differences with ARPA Protocols. Although the UNIX addressing scheme is based on the
ARP A mail addressing protocols, there are some significant differences.

At the time of this writing the only "top level" domain defined by ARPA is the" .ARP A"
domain itself. This is further restricted to having only one level of host specifier. That is,
the only addresses that ARPA accepts at this time must be in the format
"user@host.ARPA" (where "host" is one word). In particular, addresses such as:

eric@monet.Berkeley.ARPA

are not currently legal under the ARPA protocols. For this reason, these addresses are
converted to a different format on output to the ARPANET, typically:

eric % monet@Berkeley.ARPA

Route-addrs. Under some circumstances it may be necessary to route a message through
several hosts to get it to the final destination. Normally this routing is done automatically,
but sometimes it is desirable to route the message manually. An address that shows these
relays are termed "route-addrs." These use the syntax:

<@hosta,@hostb:user@hostc>

This specifies that the message should be sent to hosta, from there to hostb, and finally to
hostc. This path is forced even if there is a more efficient path to hoste.

Route-addrs occur frequently on return addresses, since these are generally augmented by
the software at each host. It is generally possible to ignore all but the "user@host" part of
the address to determine the actual sender.

Postmaster. Every site is required to have a user or user alias designated "postmaster" to
which problems with the mail system may be addressed.

CSNET. Messages to CSNET sites can be sent to "user.host@UDel-Relay".

SEE ALSO
mail(1), sendmail(8); Crocker, D. H., Standard for the Format of Arpa Internet Text
Messages, RFC822.

STATUS
MAILADDR (7) currently is not supported by Digital Equipment Corporation.

7-15

MAN(7)

NAME
man - macros to typeset manual

SYNTAX
nroff -man file .. .

troW -man file .. .

DESCRIPTION
These macros are used to layout pages of this manual. A skeleton page may be found in
the file /usr/man/manO/xx.

Any text argument t may be zero to six words. Quotes may be used to include blanks in a
'word'. If text is empty, the special treatment is applied to the next input line with text to
be printed. In this way .1 may be used to italicize a whole line, or .SM followed by .B to
make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and is
reset to default value upon reaching a non-indented paragraph. Default units for indents i
are ens.

Type font and size ate reset to default values before each paragraph, and after processing
font and size setting macros.

These strings are predefined by -man:

*R '@', '(Reg)' in nroff.

\ *S Change to default type size.

FILES
/usr/lib/tmac/tmac.an
/usr/man/manO/xx

SEE ALSO
troff(l), man(1)

RESTRICTIONS
Relative indents don't nest.

REQUESTS
Request Causes

Break
.B t no
. BI t no
. BR t no
.DT no
.HP i no

.It no

.IB t no

7-16

If no
Argument
t=n.t.l.*
t=n.t.l.
t=n.t.l.
.5i li ...
i=p.i.

t = n.t.l. *
t = n.t.I.

Explanation

Text t is bold.
Join words of t alternating bold and italic .
Join words of t alternating bold and Roman .
Restore default tabs
Set prevailing indent to i. Begin paragraph with
hanging indent .
Text t is italic.
Join words of t alternating italic and bold .

.IP x i yes

.IR t no

.LP yes

.PD d no

. PP yes

.RE yes

.RB t no

. RI t no

. RS i no

. SH t yes

.SM t no

.TH n c s v m yes

x=""
t=n.t.L

d=.4v

t=n.t.l.
t=n.t.L
i=p.i.

t=n.t.L
t=n.t.1.

MAN(?)

Same as .TP with tag x .
Join words of t alternating italic and Roman.
Same as .PP
Interparagraph distance is d.
Begin paragraph. Set prevailing indent to .5i .
End of relative indent. Set prevailing indent to
amount of starting .RS
Join words of t alternating Roman and bold.
Join words of t alternating Roman and italic .
Start relative indent, move left margin distance i .
Set prevailing indent to .5i for nested indents .
Subhead
Text t is small.
Begin page named n of chapter c; x is extra
commentary, e.g., 'local', for page foot center; v
alters page foot left, e.g. '4th Berkeley Distribution;
m alters page head center, e.g., 'Brand X
Programmer's Manual'. Set prevailing indent and
tabs to .5i .

. TP i yes i = p.i. Set prevailing indent to i. Begin indented paragraph
with hanging tag given by next test line. If tag
doesn't fit, place it on separate line.

* n. t.l. = next text line; p.i. = prevailing indent

STATUS
MAN (7) currently is not supported by Digital Equipment Corporation.

7-17

ME(7)

NAME·
me - macros for formatting papers

SYNTAX
nroff -me [options] file ...
trotf -me [options] file ...

DESCRIPTION
This package of nrolf and troft macro definitions provides a canned formatting facility for
technical papers in various formats. When producing 2-column output on a terminal, filter
the output through col (1).

The macro requests are defined below. Many nrolf and trolf requests are unsafe in
conjunction with this package, however these requests may be used with impunity after the
first .pp:

. bp begin new page

. br break output line here

.sp n insert n spacing lines

.Is n (line spacing) n=l single, n=2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of the eqn, neqn, refer, and tbl (1) preprocessors for equations and tables is
acceptable as input.

FILES
/usr/lib/tmac/tmac.e
/usr /lib/me/*

SEE ALSO
eqn(1), troff(l), refer(l), tbl(l)
-me Reference Manual, Eric P. Allman
Writing Papers with Nroff Using -me

REQUESTS
In the following list, "initialization" refers to the first .pp, .Ip, .ip, .np, .sh, or .uh macro.
This list is incomplete; see The -me Reference Manual for interesting details.

Request Initial Cause Explanation
Value Break

.(c yes Begin centered block

.(d no Begin delayed text

.(f no Begin footnote

.(1 yes Begin list

.(q yes Begin major quote

.(x x no Begin indexed item in index x

.(z no Begin floating keep

7-18

ME(?)

.)c yes End centered block

.)d yes End delayed text

.)f yes End footnote

.)1 yes End list

.)q yes End major quote

.)x yes End index item

.)z yes End floating keep

.++ m H - no Define paper section. m defines the part of the paper, and can be C
(chapter), A (appendix), P (preliminary, e.g., abstract, table of contents,
etc.), B (bibliography), RC (chapters renumbered from page one each
chapter), or RA (appendix renumbered from page one).

. +c T yes Begin chapter (or appendix, etc., as set by .++) . T is the chapter title.

. 1c 1 yes One column format on a new page .

. 2c 1 yes Two column format .

. EN yes Space after equation produced by eqn or neqn .

.EQxy yes Precede equation; break out and add space. Equation number is y.
The optional argument x may be I to indent equation (default), L to
left-adjust the equation, or C to center the equation.

. TE yes End table .

. TH yes End heading section of table .

. TS x yes Begin table; if x is H table has repeated heading .

.acAN no Set up for ACM style output. A is the Author's name(s), N is the total
number of pages. Must be given before the first initialization .

. b x no no Print x in boldface; if no argument switch to boldface.

.ba +n 0 yes Augments the base indent by n. This indent is used to set the indent on
regular text (like paragraphs) .

. bc no yes Begin new column

.bi x no no Print x in bold italics (nofill only)

.bx x no no Print x in a box (nofill only).

.ef 'x'y'z' no Set even footer to x y z

.eh 'x'y'z' no Set even header to x y z

.fo 'x'y'z' no Set footer to x y z

. hx no Suppress headers and footers on next page .

.he 'x'y'z' no Set header to x y z

.hl yes Draw a horizontal line

.ix no no Italicize x; if x missing, italic text follows .

.ip x y no yes Start indented paragraph, with hanging tag x . Indentation is yens
(default 5).

.lp yes yes Start left-blocked paragraph .

.10 no Read in a file of local macros of the form .*x. Must be given before
initialization.

.np 1 yes Start numbered paragraph.

.of 'x'y'z' no Set odd footer to x y z

.oh 'x'y'z' no Set odd header to x y z

7-19

ME(7)

.pd

. pp no

. r yes

. re

.sc no

.sh n x

. sk no

.sz +n lOp

.th no

. tp no

. u x

.uh

. xp x

STATUS

yes
yes
no
no
no

yes

no
no
no
yes
no
yes
no

Print delayed text.
Begin paragraph. First line indented .
Roman text follows .
Reset tabs to default values .
Read in a file of special characters and diacritical marks. Must be given
before initialization.
Section head follows, font automatically bold. n is level of section, x is
title of section .
Leave the next page blank. Only one page is remembered ahead.
Augment the point size by n points.
Produce the paper in thesis format. Must be given before initialization.
Begin title page .
Underline argument (even in troff). (Nofill only) .
Like .sh but unnumbered.
Print index x .

ME (7) currently is not supported by Digital Equipment Corporation.

7-20

NAME
ms - text formatting macros

SYNTAX
nroW -ms [options] file
troW -ins [options] file ...

DESCRIPTioN

MS(7)

This package of nroff and troff macro definitions provides a formatting facility for various
styles of articles, theses, and books. When producing 2-column output on a terminal or
lineprinter, or when reverse line motions are needed, filter the output through col (1). All
external -ms niacros are defined below. Many nroff and troff requests are unsafe in
conjunction with this package. However, the first four requests below may be used with
impunity after initialization, and the last two may be used even before initialization:

. bp begin new page

.br break output line

.sp n insert n spacing lines

.ce n center next n lines

.Is n line spacing: n=1 single, n=2 double space

.na no alignment of right margin

Font and point size changes with \fand \s are also allowed; for example, "\f Iword \fR" will
italicize word. Output of the tbl, eqn, and refer(l) preprocessors for equations, tables, and
references is acceptable as input.

FILES
/usr/lib/tmac/tmac.x
/usr/lib/ms/x.???

SEE ALSO
eqn(l), refer(l), tbl(l), troff(l)

REQUESTS
Macro
Name

.ABx

.AE

.AI

.AM

.AU

.B x

.Bl

.B2

.BT

.BXx

.CM

.CT

.DAx

Initial Break? Explanation
Value Reset?

y begin abstract; if x =no don't label abstract
y end abstract
y author's institution
n better accent mark definitions
y author's name
n embolden x; if no x, switch to boldface
y begin text to be enclosed in a box
y end boxed text and print it

date n bottom title, printed at foot of page
n print word x in a box

if t n cut mark between pages
y,y chapter title: page number moved to CF (TM only)

if n n force date x at bottom of page; today if no x

7-21

MS(7)

.DE y end display (unfilled text) of any kind

.DSxy I y begin display with keep; x =I,L,C,B; y = indent

.ID y 8n,.5i y indented display with no keep; y = indent

.LD y left display with no keep

.CD y centered display with no keep

.BD y block display; center entire block

.EFx n even page footer x (3 part as for .tl)

.EHx n even page header x (3 part as for .tl)

.EN y end displayed equation produced by eqn

.EQxy y break out equation; x =L,I,C; y =equation number

.FE n end footnote to be placed at bottom of page

.FP n numbered footnote paragraph; may be redefined

.F8 x n start footnote; x is optional footnote label

.HD undef n optional page header below header margin

.Ix n italicize x; if no x, switch to italics

.IP x y y,y indented paragraph, with hanging tag x; y = indent

.IX x y y index words x y and so on (up to 5 levels)

.KE n end keep of any kind

.KF n begin floating keep; text fills remainder of page

.KS y begin keep; unit kept together on a single page

.LG n larger; increase point size by 2

. LP y,y left (block) paragraph .

.MCx y,y multiple columns; x =column width

.NDx if t n no date in page footer; x is date on cover

.NHxy y,y numbered header; x =level, x =0 resets, x =8 sets to y

.NL lOp n set point size back to normal

.OFx n odd page footer x (3 part as for .tl)

.OHx n odd page header x (3 part as for .tl)

.Pl ifTM n print header on 1st page

.PP y,y paragraph with first line indented

.PT n page title, printed a~ head of page

.PXx y print index (table of contents); x =no suppresses title

.QP y,y quote paragraph (indented and shorter)

.R on n return to Roman font

.RE 5n y,y retreat: end level of relative indentation

.RPx n released paper format; x =no stops title on 1st page

.R8 5n y,y right shift: start level of relative indentation

.8H y,y section header, in boldface

.8M n smaller; decrease point size by 2

.TA 8n,5n n set tabs to 8n I6n ... (nroff) 5n IOn ... (troff)

.TCx y print table of coritents at end; x =no suppresses title

.TE y end of table processed by tbl

.TH y end multi-page header of table

.TL y title in boldface and two points larger

7-22

MS(7)

.TM off n UC Berkeley thesis mode

.TS x y,y begin table; if x =H table has multi-page header

.ULx n underline x, even in troff

.UXx n UNIX; trademark message first time; x appended

.XAxy y another index entry; x =page or no for rione; y =indent

.XE y end index entry (or series of .IX entries)

.XP y,y paragraph with first line exdented, others indented

.XSx y y begin index entry; x =page or no for none; y = indent

.le on y,y one column format, on a new page

.2C y,y begin two column format

.] - n beginning of refer reference

.[0 n end of unclassifiable type of reference

.[N n N= l:journal-article, 2:book, 3:book-article, 4:report

/

7-23

MS(7)

REGISTERS

7-24

Formatting distances can be controlled in -ms by means of built-in number registers. For
example, this sets the line length to 6.5 inches:

.nr LL 6.5i

Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default

PS point size paragraph 10
VS vertical spacing paragraph 12
LL line length paragraph 6i
L T title length next page same as LL
FL footnote length next .FS 5.5i
PD paragraph distance paragraph Iv (if n), .3v (if t)
DD display distance displays 1 v (if n), .5v (if t)
PI paragraph indent paragraph 5n
QI quote indent next .QP 5n
FI footnote indent next .FS 2n
PO page offset next page 0 (if n), --Ii (if t)
HM header margin next page Ii
FM footer margin next page Ii
FF footnote format next .FS 0 (1, 2, 3 available)

When resetting these values, make sure to specify the appropriate units. Setting the line
length to 7, for example, will result in output with one character per line. Setting FF to 1
suppresses footnote superscripting; setting it to 2 also suppresses indentation of the first
line; and setting it to 3 produces an .IP-like footnote paragraph.

Here is a list of string registers available in -ms; they may be used anywhere in the text:

Name

*Q
*U

\ *-
\ *(MO
\ *(DY
\ **
\ *'
\ *'
\ *
\ *,
\ *:

\ *

String's Function

quote (" in nroff, " in troff)
unquote (" in nroff, "in troff)
dash (-- in nroff, - in troff)
month (month of the year)
day (current date)
automatically numbered footnote
acute accent (before letter)
grave accent (before letter)
circumflex (before letter)
cedilla (before letter)
umlaut (before letter)
tilde (before letter)

When using the extended accent mark definitions available with .AM, these strings should
come after, rather than before, the letter to be accented.

MS(7)

RESTRICTIONS
Floating keeps and regular keeps are diverted to the same space, so they cannot be mixed
together with predictable results.

STATUS
MS (7) currently is not supported by Digital Equipment Corporation.

7-25

TERM(7)

NAME
term - conventional names for terminals

DESCRIPTION
Certain commands use these terminal names. They are maintained as part of the shell
environment (see sh(1),environ(7».

adm3a Lear Seigler Adm-3a
2621 Hewlett-Packard HP262? series terminals
hp Hewlett-Packard HP264? series terminals
clOD Human Designed Systems Concept 100
h19 Heathkit H19
mime
1620
300
33
37
43
735
745
dumb
dialup
network
4014
vt52

Microterm mime in enhanced ACT IV mode
DIABLO 1620 (and others using HyType II)
DASI/DTC/GSI300 (and others using HyType I)
TELETYPE@ Model 33
TELETYPE Model 37
TELETYPE Model 43
Texas Instruments TI735 (and TI725)
Texas Instruments TI745
terminals with no special features
a terminal on a phone line with no known characteristics
a terminal on a network connection with no known characteristics
Tektronix 4014
Digital Equipment Corp. VT52

The list goes on and on. Consult /etc/termcap (see termcap(5» for an up-to-date and
locally correct list.

Commands whose behavior may depend on the terminal either consult TERM in the
environment, or accept arguments of the form -Tterm, where term is one of the names
given above.

SEE ALSO
stty(I), tabs(I), plot(IG), sh(I), environ(7) ex(l), clear(I), more(I), ul(l), tset(l),
termcap(5), termcap(3X), ttytype(5)
troff(l) for nroff

STATUS
TERM (7) currently is not supported by Digital Equipment Corporation.

7-26

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and Puerto Rico
call 800-258-1710

In Canada
call 800-267-6146

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager

c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

* Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575

Reader's Comments

ULTRIX - 32
Programmer's Manual

AA-BG54A-TE

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a writ
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please
make suggestions for improvement. __________________ _

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer
o Other (please specify) _________________ _

Name Date ___________ _

Organization ___________________________ _

Street ______________________________ _

City ________________ State ___ Zipo~ode-----
Country

I
I
I

·-----Do Not Tear - Fold Here and Tape ------ ---------- ----------------------'

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

Documentation Manager
ULTRIX-32TM Documentation Group
MK02-1IH10
Continental Blvd.
Merrimack, N.H.

03054

No Postage

Necessary

if Mailed in the

United States

·-----Do Not Tear· Fold Here and Tape -------------------------------------

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

Notes:

