
BLISS
Language Guide
Order No. AA-H27SC-TK

and Update Notice No. 1

(AD-H27SC-T1)

April 1983

This document is a combined tutorial and reference manual for BLISS
programming language, which consists of the dialects BLlSS-16,
BLlSS-32, and BLlSS-36. This language, designed for transportable
system-level programming, is primarily intended for knowledgeable
users of its target systems: the PDP-11, VAX-11, DECsystem-10, and
DECSYSTEM-20.

SUPERSESSION/UPDATE INFORMATION: This document includes
Update Notice No. 1
(AD-H275C-T1)

OPERATING SYSTEMS AND VERSIONS: VAX/VMS V3.2 or higher
TOPS-10 V7.01
TOPS-20 V5.1

SOFTWARE VERSIONS: BLlSS-16 V4.0
BLlSS-32 V4.0
BLlSS-36 V4(160)

digital equipment corporation · maynard, massachusetts

First Printing, October 1978
Revised, ,January 1980
Revised, January 1982

Updated, April 1983

The information in this document is subject to change without notice and should not be con­
strued as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

~o responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1978, 1980, 1982, 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

A postpaid READER'S Co.MMENTS form is included on the last page of this document. Your
comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-lO
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
lAS
MASSBUS
PDP
PDT
RSTS

RSX
UNIBUS
VAX
VMS
VT

~DmDD~D

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire. Alaska. and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: A&SG Business Manager

ZK2274

DIRECT MAIL ORDERS (USA & PUERTO RICO)·

Digital Equipment Corporation

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
P.O. Box CS2008
Nashua. New Hampshire 03061

* Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

Contents

Preface
Acknowledgement

Chapters

1. Introduction
2. Lexical Definitions and Syntax Notation
3. BLISS Values and Data Representations
4. Primary Expressions
5. Computational Expressions

6. Control Expressions
7. Constant Expressions
8. Blocks and Declarations
9. Attributes

10. Data Declarations

11. Data Structures
12. Routines
13. Linkages
14. Binding
15. Lexical Processing

16. Macros
17. Condition Handling
18. Special Features
19. Modules and Programs
20. Character Handling Functions

Appendices

A. Predefined Identifiers
B. String Encodings
C. Transportability Checking
D. Builtin Functions

Index

NOTE: Each chapter is preceded by a detailed table of contents for that chapter.

iii

Preface

Manual Objectives

The objective of this manual is to provide (1) a complete description of the
BLISS programming language and (2) tutorial information on its use. This
manual documents the three dialects of the language: BLISS-I6, BLISS-32,
and BLISS-36. It is intended as a self-teaching manual for experienced high­
level language users, and as a reference tool. It does not describe the BLISS
compilers (except in overview fashion) or their operation; this is done in
separate User's Guides.

Intended Audience

This manual is primarily intended for system programmers, including those
whose programming tasks would traditionally imply the use of assembly lan­
guage. It is also addressed to other programmers for whom the transportabil­
ity of programs between several BLISS target systems is of prime concern.
Familiarity with the basic architecture of one or more of the target systems is
assumed; familiarity with the relevant assembly language is not assumed,
however. The BLISS target systems are the VAX-II, PDP-II, DECsys­
tern-10, and DECSYSTEM-20.

Structure of this Document

The manual begins with three chapters that lay, the foundation for the defini­
tion of BLISS. Chapter 1 discusses the BLISS dialects, introduces fundamen­
tal concepts, and illustrates the main features of the language. (It is an essen­
tial part of the manual.) Chapter 2 discusses the organization of the language
definition and describes the syntax notation used in this manual. Chapter 3 is
an introduction to the data and program structure of BLISS.

The next seventeen chapters of the manual, Chapters 4 through 20, provide a
complete description of the language. This description includes not only the
rules for interpreting BLISS programs, but also examples, explanations, and
programming guidelines.

v

The manual has four appendices. Appendix A is a list of the identifiers that
have predefined meanings in BLISS. Appendix B defines the several string
encodings available in BLISS. Appendix C describes the transportability
checking that is optionally provided by the BLISS compilers. Appendix D is a
list of the builtin machine-specific-.functions associated with each BLISS dia­
lect.

Associated Documentation

The following documents relate specifically to BLISS and the use of its
compilers:

• BLISS Pocket Guide

A syntax and command summary for all dialects and host systems

• BLISS-16 User's Guide

For BLISS-16 compiler usage on the VAX-II, DECsystem-l0, or DEC­
SYSTEM-20
Target system - PDP-II

• BLISS-32 User's Guide

For BLISS-32 compiler usage on the VAX-II
Target system - VAX-II

• BLISS-36 User's Guide

For BLISS-36 compiler usage on the DECsystem-l0 or DECSYSTEM-20
Target system - DECsystem-l0 or DECSYSTEM-20

Each User's Guide provides machine-specific programming information as
well as basic information about linking and executing BLISS programs on the
target system.

For VAX -11 users: The following documents provide additional information
relating to the linking, execution, and debugging of BLISS-32 programs under
the V AXNMS operating system:

• VAX -11 Linker Reference Manual

• VAX/VMS Command Language User's Guide

• VAX -11 Symbolic Debugger Reference Manual

The VAX -11 Information Directory lists and describes all other documents
that you may need to refer to in the course of building and executing a
BLISS-32 program.

vi

ACKNOWLEDGEMENT

The BLISS system described in this manual is based on
concepts and experience drawn from earlier versions of
BLISS, known as BLISS-IO and BLISS-I1. These earlier
versions were conceived and developed by members of the
Department of Computer Science at Carnegie-Mellon
University. Digital Equipment Corporation gratefully ac­
knowledges the significant contribution provided by these
prior developments.

vii

Chapter 1 Introduction

1.1 BLISS Dialects · 1-1
1.2 Language Objectives and Characteristics · 1-2

1.2.1 Design Objectives. · 1-2
1.2.2 Language Overview. · 1-2

1.3 Program Development . · 1-3
1.4 The Main Features of BLISS. · 1-4

1.4.1 Data. · 1-4
1.4.2 Memory Addressing. · 1-5
1.4.3 Fetching Values · 1-5
1.4.4 Assigning Values · 1-6
1.4.5 Expressions. · 1-6
1.4.6 Blocks. · 1-7
1.4.7 Declarations · 1-9
1.4.8 Structures 1-10
1.4.9 Flow of Control. 1-10
1.4.10 Loops 1-11
1.4.11 Binding of Names 1-12

1.5 Program Transportability. 1-12
1.6 Effects of Optimization 1-14
1.7 The BLISS Programming System. 1-14

1.7.1 System Components 1-14
1.7.2 Constant Expressions. 1-15

1.8 A Complete Program. 1-16

Chapter 1
Introduction

BLISS is a system implementation language for three DIGITAL computer
families:

• The I6-bit PDP-II line,

• The 32-bit VAX-II line, and

• The 36-bit DECsystem-I0 and DECSYSTEM-20 lines.

Because of the dissimilarities among these target systems, BLISS has three
dialects: BLISS-16, BLISS-32, and BLISS-36. The numeric suffix indicates
the word length, in bits, of the respective target system.

BLISS is classified as a system implementation language - rather than an
application-oriented language - because BLISS is primarily intended for
building system software, such as operating systems, compilers, utilities, and
real-time processors. Such software is often large and complicated, is often
close to the hardware, and is usually very sensitive to efficiency. In addition,
most system software is very frequently used by many individuals (in some
cases with an unpredictable variety of input data), and therefore must be
highly dependable.

1.1 BLISS Dialects

Each BLISS dialect is supported by a separate compiler. The BLISS-16 com­
piler is a cross-compiler, that is, it executes on a VAX-II, a DECsystem-I0,
or a DECSYSTEM-20 but compiles code for its target system, the PDP-I1.
The BLISS-32 and BLISS-36 compilers are native: they execute on their own
target system. Each BLISS compiler is described in a BLISS User's Guide for
that dialect.

BLISS-16, BLISS-32, and BLISS-36 are dialects of a single language. Each
dialect consists of a body of identical language features called Common
BLISS (which forms the bulk of each dialect), plus a number of features
either unique to one dialect or shared by only two of the three. Common
BLISS constitutes the transportable language base.

1-1

The dialect-specific features reflect architectural characteristics of one target
system that are not found in each of the others, for instance byte-addressing
capability, found in the 16- and 32-bit target systems but not in the 36-bit
systems. While it is possible to implement most programs in Common BLISS
only, without reference to system-specific functions or characteristics, it is not
always desirable to do so. This point is discussed further under the topic of
transportability.

1.2 Language Objectives and Characteristics

1.2.1 Design Objectives

Because of the system-software orientation of BLISS, a number of its primary
objectives differ from those of application-oriented languages such as
COBOL, FORTRAN, and PL/I. Foremost among those objectives are:

1. Highly optimizable object code.

2. Simple and consistent facilities for operating on addresses.

3. Control constructs which encourage well structured source code, in the
interests of program reliability, clarity, and maintainability.

4. Facilities for defining both the representation of a user-designed data
structure and the manner of accessing the data in that structure.

5. Optional access to specific features of the target-system hardware or
operating system.

6. Facilities for defining, at an appropriately high level, the linkage con-
ventions used in calling routines or procedures.

Because the language supports three different computer systems, an addi­
tional objective is program transportability across the target systems. BLISS,
therefore, includes many features specifically designed to facilitate trans­
portable programming. These features are discussed later in this chapter
(Section 1.5).

1.2.2 Language Overview

BLISS has many of the features of other modern high-level languages. It has
block structure, an automatic stack, and mechanisms for defining and calling
(recursive) routines. lIt uses algebraic notation for calculations and has opera­
tions for arithmetic, shifting, comparison, and logic. It provides a variety of
predefined data structures and permits the programmer to define additional
data structures. It has facilities for testing and iteration that support clear
and reliable programming. (These same facilities also allow the compiler to
perform extensive flow optimizations.)

On the other hand, BLISS omits certain features of other high-level lan­
guages. It does not have built-in facilities for input/output, because a system­
software project usually develops its own input/output or builds upon basic
monitor I/O services. It avoids certain kinds of automation of the program-

1-2 Introduction

ming process which introduce inefficiency for the sake of convenience. It is
machine dependent to the extent that it permits access to machine-specific
features, since system software often requires this.

BLISS has characteristics that are unusual among high level languages. A
name representing a data segment (that is, a storage location) is uniformly
interpreted as the address of that segment rather than the value of the seg­
ment, and the language includes an explicit fetch operator that denotes "con­
tents of".

Also, BLISS is an 'expression language' rather than a 'statement language'.
This means that every construct of the language that is not a declaration is an
expression. Expressions produce a value as well as possibly causing an action
such as modification of storage, transfer of control, or execution of a program
loop. For example, the counterpart of an assignment "statement" in BLISS is,
strictly speaking, an expression that itself has a value. The value of an expres­
sion can either be used or discarded in BLISS. When the value of an expres­
sion is discarded, the expression is said to be used in a "statement like" way,
i.e., used solely for the action or side-effect that it produces. (See Section 1.4.5
for further discussion.)

Finally, BLISS includes a macro facility that provides a level of capability
usually found only in macro-assemblers.

The remainder of this introduction provides a first look at some specifics of
the language. The several steps involved in the development of a BLISS
program are outlined, the main features of BLISS are described, the compo­
nents of the BLISS software system are discussed, and finally a simple but
complete BLISS program is given.

1.3 Program Development

The typical development of a BLISS program, from inception to successful
execution, is outlined below in order to introduce certain concepts and terms
used later in this manual:

1. Design. To provide a logical structure for the program, it is organized
into a set of routines and associated data structures. In general, each
routine corresponds to a clearly identified, relatively independent func­
tion or sub function of the program. One of the routines is the main
routine. Later, when the program is executed, this routine is called by
the operating system. The main routine controls the overall flow of the
program, calling other routines which may in turn call yet other
routines, and so on, until every routine has done its assigned job.

2. Programming. Once the routines and data structures have been de­
signed, they are programmed in the BLISS language. The routines are
grouped into modules for the purposes of compilation. The routines
grouped into a given module might, for example, consist of those pro­
grammed by one member of a project team. They might also reflect a
logical grouping that aids overall system understanding and facilitates
structured testing. Each module is a text file that is called a BLISS
source file.

Introduction 1-3

3. Compilation. Once the modules have been programmed, each module
is compiled. Each module can be compiled individually, and this is one
practical advantage of dividing a large program into several modules.
The result of each compilation is an object file. An object file is a
sequence of encoded machine instructions and linker. directives that is
equivalent to the corresponding source module.

4. Linking. When all the modules of a program have been compiled,
they are linked. The linker effectively "binds together" the various
object modules, supplies any routines requested from a comrnon-routine
library, and converts the compiler-encoded relative addresses to actual
machine addresses. (Section 1.7.1 gives further details.) The result of
linking is a single file that contains the executable program image.

5. Execution. The program image is executed. The first executions are
normally done with the assistance of a debugging package. As bugs are
found, the development process cycles back to compilation, program­
ming, or, most unfortunately, to design. Eventually, the program is
ready for useful execution.

This manual provides the information necessary for the second step in the
development process, programming. The BLISS user's guides (one for each
dialect) provide complete information about the third step, compilation, plus
guidelines for linking, executing, and debugging.

The user's guides also contain detailed information about certain dialect­
specific features, such as machine-specific functions and module switches
that describe the target-system environment, and about transportable pro­
gramming.

1.4 The Main Features of BLISS

This section contains a brief description of BLISS. Those aspects of BLISS
that are different from other high level programming languages are empha­
sized. The description is informal and omits many details; its purpose is to
provide the reader with an intuitive understanding of BLISS that will be
useful in further study of the language.

1.4.1 Data

All BLISS calculations are performed on values that correspond, in size, to
the largest efficiently-accessible unit of memory in each target system. This
value, called a BLISS fullword, is 16 bits long for BLISS-16 (PDP-II word),
32 bits long for BLISS-32 (VAX-II longword) , and 36 bits long for BLISS-36
(DECSYSTEM-I0/20 word). A fullword can be viewed as a sequence of sin­
gle-bit logical values (true or false), as a sequence of ASCII character codes, or
as a unitary value. As a unitary value, it can be interpreted as a signed
integer, an unsigned integer, or a memory address.

In many high level languages, a specific interpretation or "type" is perma­
nently associated with each program variable. For example, .one variable
might be declared as containing an address value while another contains an
unsigned integer. In BLISS, however, an interpretation is not associated with

1-4 Introduction

a variable. Instead, the interpretation of the value is specified by the operator
that is applied to it. For example, BLISS has three operators for equality:
EQL, EQLU, and EQLA. These operators interpret their operands as signed
integers, unsigned integers, and memory addresses, respectively.

In order to conserve storage, data is often stored in fields, which are units of
data that are less than a full word in length. One field of special importance in
all three dialects is the bit, which can be used to store a single logical value. In
both BLISS-16 and BLISS-32, the 8-bit byte can be efficiently accessed and
manipulated, and used for instance to store an ASCII character. In BLISS-32,
the 16-bit word (which is the fullword of BLISS-16) can also be manipulated
efficiently by the target hardware. No matter what field size is involved,
however, a field value is always extended to a fullword value whenever it is
fetched from memory.

1.4.2 Memory Addressing

Although calculations are always performed on full words, memory is ad­
dressed in full word units only in the case of BLISS-36, where the target
system's addressable unit is the full machine word. In both BLISS-16 and
BLISS-32, the basic addressable unit is the byte. That is to say, if a memory
address is incremented by 1 in either of these dialects, the location pointed to
by the resulting address value is the next byte, not the next fullword.

Therefore, in order to precisely describe the interpretation of an address ex­
pression such as X+8 in a dialect-specific fashion, several different formula­
tions would be required for the same expression. For example, assuming a
fullword-reference context, the interpretation of the expression X+8 for
BLISS-16 or BLISS-32 would be: "Locate the fullword of memory that begins
eight bytes after the byte whose address is X"; whereas the interpretation for
BLISS-36 would be: "Locate the fullword of memory that is eight fullwords
after the fullword whose address is X".

In the interest of both generality and brevity, the non-specific term "address­
able unit" is used instead of "byte" or "fullword" in such descriptions, so that
the two formulations given above reduce to the equivalent one: "Locate the
fullword that begins eight addressable units after the unit whose address
is X".

1.4.3 Fetching Values

In many programming languages, the interpretation of the name of a storage
location depends on its context. Consider FORTRAN, for example. If the
name appears as the left-hand side of an assignment, it represents the address
of the storage location. If the name appears within an expression, it represents
the contents of the storage location.

In BLISS, however, the interpretation of the name of a storage location does
not depend on the context. Instead, the name always represents the address of
the storage location. For example,

is evaluated by adding 3 to the address that is associated with X.

Introduction 1-5

I

t-6

When the content of a storage location is needed, the fetch operator.
used. For example:

•)<+3

"" . . , IS

This expression is evaluated by adding 8 to the content of storage-unit X.
More exactly, the value of the expression is obtained as follows: Locate and
fetch the fullword of memory that hegins with the addressable unit whose
address is X, and add 3 to the fetched value.

The fetch operator is an unusual feature of BLISS; it is not present in such
languages as ALGOL, COBOL, FORTRAN, and PL/I. The omission of a fetch
operator here and there is a frequent error a':long Inost beginning BLISS
programmers. On the other hand, because BLISS always interprets a name as
an address, it is easy to treat addresses as data, and address arithmetic can be
performed in a simple and consistent way.

1.4.4 Assigning Values

A value is assigned to storage by an assignment operator, "=". An example of
an assignment is:

)-(= 2

This assignment means "form a fullword value that represents 2, and then
store that value in the fullword of memory whose address is X."

In BLISS, an assignment can be viewed as just another expression. Its first
operand (left-hand-side) provides a value that is interpreted as the address of
a data segment. Its second operand (right-hand-side) provides a value that is
stored at the given address. The assignment expression itself has a value,
namely the value of its second operand; more is said of this in the next
section.

Often the left-hand-side of an assignment is just a name. However, in BLISS
there is no restriction on the expression that appears on the left-hand-side of
an assignment. Whatever that expression is, it is evaluated and the resulting
value is interpreted as an address. For example,

assigns 2 to the fullword of memory that begins six addressable units after the
unit whose address is X. The example just presented is valid and illustrates
an important feature of BLISS. However, such an assignment would not
appear in a well-designed program, and especially not in a transportable one.
Instead, an address computation, such as X+6 in the example, would be
performed through a structure-reference (see Chapter 11).

1.4.5 Expressions

Many high level programming languages classify each construct of the lan­
guage either as a statement, which perfonns an action without producing a
value, or as an expression, which calculates a value. For example, such lan-

Introduction April 1983

guages classify the assignment construct as a statement, and do not permit its
use in a context requiring a value.

In BLISS, any construct except a declaration can be used as an expression.
For constructs that are statement-like, BLISS defines a value. For example,
the value of an assignment is the value of the right-hand side of the assign­
ment. The expression

2*(B = .c + 1)

contains an assignment. When the expression is evaluated, it calculates
2*(.C+l). At the same time, without performing any additional calculation, it
stores the value of .C+l in location B.

The absence of statements from BLISS does not require a new approach to
programming. Whenever a construct is used in a statement-like way, it is
terminated by a semicolon and its value is discarded. The expression

is a terminated expression. It assigns the value of 2*.R to Q and then, having
no further use for the value, discards it. Such constructs as this, ending with a
semicolon, play the role of statements in BLISS.

1.4.6 Blocks

A block is a syntactic feature of BLISS that is used to gather together a
portion of a program and make it into a single unit (in fact, into a form of
expression). In its most familiar form, a block is the keyword BEGIN followed
by a sequence of declarations followed by a sequence of terminated expres­
sions followed by the keyword END. An example is:

BEGIN
LOCAL TEMP;
tEMP = .}-{;

.Y = .TEMP;
END

This block contains one declaration and three terminated expressions. The
declaration specifies that TEMP designates a storage location that will be
used only during execution of the block. Each of the three terminated expres­
sions is an assignment and, together, they exchange the contents of X and Y.
'The entire block is, itself, a primary expression. Sometimes it is useful to
provide a value for a block. In that case, an expression without the terminal
semicolon is placed at the end of the block. An example is:

Z = BEGIN
LOCAL TEMP;
TEMP = .)(;
\/ - \/ .
1\ - • I ,

Y = .TEMP;
.)-{ EQL • Y
END

This block exchanges the contents of X and Y just as the previous example of
a block did. In addition, the contents of X and Yare compared and the value

Introduction 1-7

of the block is 1 or 0, depending on whether or not the values are equal. When
execution of the block is complete, its value is assigned to Z.

In the first example, if the semicolon following the final expression
(Y = .TEMP) were omitted, the block would have as its value the contents of
location TEMP, according to the evaluation rule given for assignments in
Section 1.2.4. (Chapter 8 gives a full description of the semantics and use of
the semicolon in the context of expressions and blocks.)

A block that does not contain declarations is called a compound expression.
An example that uses such a block is:

IF .A NEQ 0
THEN

5EGIN
5 = .P + .A;
C = .Q + .A;
END

In this example, the compound expression gathers two separate assignments
into a single construct. Both assignments are performed if the content of A is
not ° and both are skipped otherwise.

In BLISS, a parenthesis pair and a BEGIN-END pair can be used inter­
changeably. For example, the preceding example can be written equivalently
as:

IF • A NEQ (I

THEN
(

5 • P + • A;
C • Q + • A;

or, more compactly, as:

IF. A NEQ (I THEN (5 = • P + • A; C = • Q + • A ;)

A block that uses a parenthesis pair and contains just one expression is a
parenthesized expression; it is the ultimate specialization of a block. An ex­
ample of the use of some parenthesized expressions is:

.(A + 1)*(5 - 1)

Because the parentheses are present, the addition is performed before the
fetch operation, and the multiplication is performed last of alL When the
parentheses are removed, the expression is:

.A + 1*5 - 1

This expression has a different meaning because the operators refer to differ­
ent operands. According to the priority rules given in Chapter 5, the fetch
operation is performed before the addition, and the multiplication is per­
formed before the addition or subtraction. Thus parenthesized expressions are
used to override the priority rules.

1-8 Introduction

1.4.7 Declarations

Every name in a BLISS program must be declared. The purpQse of the decla­
ration is to provide the BLISS compiler with information about the name. A
simple example of a declaration is:

OWN
\I •
1\ ,

This declaration says that X designates a storage location that is permanently
allocated (in the OWN program section) before program execution begins.
(Note that, in the context of declarations, the semicolon is simply a manda­
tory terminator.)

A more complicated example of a declaration is:

OWN
ALPHA: VECTOR[100] INITIAL(REP 100 OF (0»;

This declaration not only specifies that ALPHA is an OWN name, but also
gives two attributes, which begin with the keywords VECTOR and INITIAL.
The VECTOR attribute describes the structure of the storage designated by
ALPHA. The INITIAL attribute provides initial values for the storage.

The preceding examples are declarations of names of data addresses. An
example of the declaration of a name of a routine address is:

ROUTINE EXCHANGE(AtB): NOVALUE =
BEGIN
LOCAL

TEMP;
TEMP = •• A;
• A = •• B;
.B = .TEMP;
END;

This routine exchanges the contents of the two locations that are given
through the formal names, A and B. The extra fetch operator used with these
formal names reflects the fact that a formal name is the address of a storage
location that contains a parameter; it is not the parameter itself.

The attribute NOVALUE indicates that this routine does not return a value,
since the last expression within the routine body is a terminated expression.
Therefore, a call on th~s routine must appear in a context that does not require
a value. For example, the call could be used in a statement-like way. The
semicolon following the keyword END is simply the required declaration ter­
minator, and as such has nothing to do with whether or not the routine returns
a value.

Some names do not represent addresses. For example,

MACRO
Q = 0 t3 'X,;

declares the name of a macro, Q. During compilation, every occurrence of Q in
the scope of this declaration is replaced by the text "0,3".

Introduction 1-9

Declarations are scoped by the block structure of a program. The same name
can be used in different blocks for different purposes. Thus it is not necessary
to use an awkward name because the appropriate name has been used in some
other part of the same program.

1.4.8 Structures

The most commonly used forms of data structures are defined as part of
BLISS. An example of a use of such a structure was given in the preceding
discussion of declarations; it is:

OWN
ALPHA: I.JECTOR[100J INITIAL(REP 100 OF (0»;

In this declaration, VECTOR[lOO] is the structure-attribute. It specifies that
ALPHA designates a data-segment in storage that is not a single fullword, but
rather is a sequence of 100 fullwords. The first of the fullwords is referenced by
ALPHA[O], the second by ALPHA[l], and so on up to ALPHA[99]. An example
of a reference to this vector is:

ALPHA[.I-1J = 5

Suppose that, for a given execution of this assignment, the content of I is 8.
Then the assignment is equivalent to

ALPHA[7J = 5

and its effect is to set the eighth element of the vector to 5.

In addition to VECTOR, three other kinds of data structures (BITVECTOR,
BLOCK, BLOCKVECTOR) are defined as part of BLISS. Beyond that, how­
ever, is the capacity of BLISS to accept programmed definitions of data
structures. This feature permits the programmer to define data structures
that are designed precisely for a given application. A part of the data-struc­
ture definition is the 'algorithm' for accessing the structure. For example, a
structure can be programmed to pack data in a way that saves storage or to
include special checks for illegal accesses.

1.4.9 Flow of Control

Alternative actions to be taken by a program can be controlled by a condi­
tional-expression. An example is:

IF t >{ GTR 0
THEN

y • ><
ELSE

Y \I •
- .1\ ,

This example sets Y to the absolute value of the contents of X. It ends with a
semicolon, and is therefore a statement-like use of a conditional-expression.
Another example is:

Y = (IF .X GTR 0 THEN .X ELSE -.X);

This example also sets Y to the absolute value of the contents of X. However,
in this example the value of the conditional-expression is used. Its value is .X

1-10 Introduction

or -.X, depending on whether or not' the test is satisfied. Once the value of the
conditional-expression is calculated, it is assigned to Y.

A more specialized construct for alternative flow of control is the case-expres­
sion. An example is:

CASE .X FROM 1 TO 8 OF
SET
[1]: REPORT1(.Z);
[2]: REPORT2(.Z);
[4t7]: Q = .Z+l;
[I NRANGE] : ERROR 1 (• Z) ;
[OUTRANGE]: ERROR2(.Z);
TES;

The interpretation of this expression begins with the evaluation of .X; then,
depending on the value of .X-, one offive actions is taken. If the value is 1, the
routine REPORT1 is called. If the value is 2, the routine REPORT2 is called.
If the value is 4 or 7, the assignment Q = .Z+1 is performed. If the value is in
the range from 1 to 8 but is none of the previous cases, then the routine
ERROR1 is called. If the value is outside of the range 1 to 8, then the routine
ERROR2 is called.

A third construct for alternative flow of control is the select-expression, which
lies between the conditional-expression and the case-expression in its degree
of specialization.

1.4.10 Loops

Iterative actions are controlled by loop-expressions. An example of the use of a
loop-expression is:

OWN
SUMt
LIST: VECTOR[21];

SUM = 0;
INCR I FROM 0 TO 20 00

SUM = .SUM + .LIST[.I];

The loop-expression in this example forms the sum of the 21 elements of the
vector LIST. It does so by executing the assignment 21 times, once each for .1
equal to 0, 1, 2, and so on through 20. In this example, the loop-expression is
followed by a semicolon and is therefore used in a statement-like way. Note
that the 'control parameters' (0 and 20 in this case) can be any form of
expression that has a value.

A second example of the use of a loop-expression is:

OWN
\I
1\ t

LIST: VECTOR[21];

x = (INCR I FROM 0 TO 20 DO
IF .LIST[.I] EQL 0 THEN EXITLOOP .I);

The loop-expression in this example searches the vector LIST for an element
that is O. If a 0 is found, the value of the loop-expression is .1; that is, a value

Introduction 1-11

between 0 and 20 that shows where the 0 was found. If a 0 is not found, the
loop runs to completion and the value of the loop-expression is (by definition)
-1. In this example, the value of the loop-expression is used-toprovide, in a
convenient way, for the case that there is no 0 in LIST.

1.4.11 Binding of Names

Most of the names in a BLISS program represent addresses - either data
addresses or routine addresses. The operation of associating an address with a
name is called binding. Once the name is bound, the use of the name becomes
equivalent to the use of the address to which it is bound.

As an example of binding, consider the following use of the name BETA:

OWN
BETA;

BETA = 4;

Suppose that BETA is bound to the address 1203. Then the assignment in the
example is equivalent to:

1203 = 4;

In nearly all cases, the programmer does not know or care to know the address
to which a name is bound. Storage is allocated by the compiler, the linker,
and the operating system, and the programmer simply wants references to
storage to be consistent.

Occasionally, a programmer does want to access a particular location. Sup­
pose, for example, that a full word used for communication with a certain
input/output device is in location 80. Then that location can be set as follows:

BIND
lOW = 80;

row = 0;

In this case, the assignment is entirely equivalent to

80 = 0;

The use of the BIND declaration nlakes the intentions of the programmer
clear, not only to the reader but also to the compiler.

1.5 Program Transportability

Transportability of software is the use of the same source program in more
than one system environment. The basis for transportable programming in
BLISS is the extensive language base referred to as Common BLISS. In addi­
tion, BLISS provides many specific facilities that aid in achieving transporta­
bility along with efficiency, either through (1) parameterization of Common
BLISS constructs, or (2) conditional or compartmented use of dialect-specific
code.

1-12 Introduction

The major facilities that support transportable programming are the follow­
ing:

• Predefined data structures, e.g. VECTOR, BITVECTOR, BLOCK, that
allow commonly used data structures to be allocated and accessed effi­
ciently in each target environment.

• Predefined literals, that reflect the parameters of the target architectures
in terms of bits. These literals can be used, for example, to parameterize
data declarations and storage references for greatest efficiency on each
intended target system.

A listing of the predefined literals and their values for each target system
follows.

Value in:
Name Meaning BLISS-16 BLISS-32 BLISS-36

%BPVAL Bits per
BLISS value 16 32 36

%BPUNIT Bits per
addressable unit 8 8 36

%BPADDR Bits per
address value 16 32 18 or 30 I

%UPVAL Units per
BLISS value 2 4 1

(1. Depending on the target-system CPU.)

• User-definable data structures and named fields. The structure definition
is a representation of the accessing algorithm, and it can make use of the
predefined literals to provide field packing that is optimal for each target
architecture.

• Character string functions, that permit efficient manipulation of string
data regardless of the representation on the target architecture. Exam­
ples: CH$PTR creates a character-string pointer, CH$MOVE moves a
character string, and CH$COMPARE compares the value of two strings.
There are approximately 25 such functions.

• Compile time conditionals, that allow compiled code to be explicitly dif­
ferent for different target architectures.

• Powerful macro facility, that allows for different expansions for different
target systems, e.g. %BLISS32(BYTE) expands to its parameters (BYTE
in this case) only if being compiled by the BLISS-32 compiler. Macros
can also be used to segregate code sequences that differ for each architec­
ture.

Introduction 1-13

• REQUIRE and LIBRARY files. Sets of common definitions can be kept in
files that are selectively included in compilations through use of the RE­
QUIRE or LIBRARY declarations. This is a simple and efficient method
of sharing common data structures and definitions between modules in a
conditional fashion. It also permits compile-time conditionals and
parameterized definitions to be maintained separately from the code in
the modules.

1.6 Effects of Optimization

The semantic definitions of the BLISS language in this manual describe the
useful, perceptible results of program execution as if those results were
achieved without optimization of the object code. Wherever possible, then,
the manual avoids discussion of how the results are actually obtained. The
only exceptions are where a discussion of object code enables the programmer
to make a more efficient choice between several alternative constructs, for
example, between two types of control expressions. In particular, the opti­
mization strategies employed by the compiler are not described. The opti­
mizations reduce the cost of program execution, by eliminating some of the
actions defined by the language semantics, but they never affect the final
results.

In some cases, however, the optimizations can be so extensive (global flow
optimizations) that the object code generated does not show any obvious
correlation to the corresponding sequence of source code. The degree of opti­
mization performed by the compiler can be controlled by optimization
switches, either in the module head (Chapter 19) or in the compiler command
line. The BLISS user's guides describe the kinds of optimizations performed
and the effect of the various optimization switches.

1.7 The BLISS Programming System

The BLISS programming system is the collection of software programs that
supports the development of BLISS programs. Some of the components of the
BLISS system are used only for BLISS programs; the compiler is an example.
Other components are shared with other programming language systems; the
linker is shared in this way.

Operating instructions for the compiler or the linker are not given here. Such
instructions are essential (and are given in the appropriate BLISS user's
guide), but they never, or almost never, affect the results of program execu­
tion as described in this manual.

This section describes the components of the BLISS system and then goes on
to talk about the evaluation of constant expressions by two components of the
system, the compiler and the linker.

1.7.1 System Components

The BLISS system has five main components: the compiler, the linker, the
operating system, a debugging package, and a set of utilities. These compo­
nents are briefly described in the following paragraphs.

1-14 Introduction

The compiler is especially written for the BLISS system (one for each dialect).
It accepts a BLISS module as its input or source file. It produces an unlinked
target-system program as its object file (although the compiler used for a
given dialect may itself actually execute on another computer system, i.e.,
may be a cross-compiler). Because, as discussed above, the compiler performs
complicated and large-scale optimizations, the relationship between the
source file and the object file is sometimes difficult to perceive; that is, it can
be difficult to find the specific instructions that implement a particular
BLISS expression. Therefore, a plan for developing a BLISS program should
involve as little reference to the object file as possible.

The compiler takes only one module at a time as its input. Therefore, the
compiler cannot determine addresses that are used in the given module but
declared in other modules; such addresses are external and must be left blank
(unlinked in the object file). Furthermore, the compiler does not determine
the absolute addresses of routines and data. Instead, the compiler expresses
addresses as offsets relative to certain base addresses.

The linker is a target-system utility program that is shared by all of the
programming languages for the target system. It accepts an unlinked object
program, produced by the compiler, for each module of a program. It produces
an executable program image as its output.

The linker takes up where the compiler leaves off, and finishes the job of
preparing the program for execution. It has access to all modules of the pro­
gram and can therefore fill in the external addresses. It can determine the
required base addresses for routines and data and can therefore replace static
offset addresses with absolute addresses.

The operating system is a collection of target-system utility programs that are
essential to any programming job. It includes a command that executes a
program. This command loads the program image and starts execution.
Thereafter, the operating system manages input/output, handles interrupts,
and generally oversees program execution.

The debugging package is a program that assists a programmer in checking
out a program. The package includes features for dumping data in convenient
representations and formats, for tracing data through the execution of the
program, for establishing break points to halt program execution, and so on.

The BLISS utilities are a collection of programs especially written to support
the BLISS programming process. One such utility, for example, is the BLISS
source-program formatter. The utilities are described in the BLISS User's
Guides and in on-line documentation files available with each BLISS system.

1.7.2 Constant Expressions

When the value of an expression cannot change throughout program execu­
tion, it is a constant expression. Many important techniques for optimizing a
program depend on the recognition and evaluation of constant expressions.

Some constant expressions can be evaluated as soon as they are written down.
For example, the value of the numeric-literal 52 is obviously fifty-two. Other
constant-expressions depend on addresses that are determined either by the

Introduction 1-15

compiler or by the linker. For example, the value of the expression X+6
depends on the address that is associated with X.

When the value of a constant expression is determined, the expression is
bound. The process of associating values with constant expressions is a form
of binding. These terms are most often applied to names; however, in BLISS a
name is just a special case of an expression, and a bound name is just a special
case of a bound expression. The main activity of the linker is to bind the
names used in a program to appropriate addresses.

In certain contexts, BLISS requires a compile-time-constant-expression; that
is, an expression that can be bound by the compiler. For example, when a
VECTOR data segment is declared, its size must be given as a compile-time­
constant-expression; this restriction permits the compiler to allocate storage
for the data segment and thus avoid the expense of dynamic storage alloca­
tion.

Since the compiler does not determine absolute addresses, a compile-time­
constant-expression usually cannot depend on a name that represents an ad­
dress. The exception occurs in expressions such as X-Y or X EQLA Y; in
these expressions, the offset addresses for X and Y (which are determined by
the compiler) are sufficient to determine the values of the expressions.

In certain other contexts, BLISS requires a link-time-constant-expression;
that is, an expression that can be bound by the linker. Since all addresses are
determined by the linker, a link-time-constant-expression can depend on a
name that represents an address. Further details about both compile- and
link-time-constant-expressions are given in Chapter 7.

Much of BLISS programming can be done without regard for the fact that a
program goes through compilation and linking before it can be executed. The
compile- and link-time-constant-expressions are important exceptions to this
rule.

1.8 A Complete Program

An example of a complete program follows. The purpose of the example is to
illustrate the overall structure of a BLISS program. The example is not a
realistic program, although it is executable. A realistic program would require
many pages for its listing as well as many pages of explanation. Instead, the
example is a short program that reads a number from the terminal, adds one
to it, and prints out the result.

The program is composed of two modules, TIO and El. The first module,
TIO, is assumed to be a general-purpose library module that performs
input/output at the user's terminal. It includes an input routine, GETNUM,
that reads a number that has been entered at the terminal, and an output
routine, PUTNUM, that prints a given number at the terminal. The module
TIO is not listed here.

1-16 Introduction

The second module, E1, is the specialized portion of the example program. It
controls the entire process and performs the specified operation (the addition
of 1) on the given data. This module is presented here.

MODULE E 1 (MA I N = CTRL)
BEGIN

FORWARD ROUTINE
CTRL t

STEP;

ROUTINE CTRL

!+
This routine inputs a valuet operates on itt and
then outputs the result.

!-

BEGIN
E}-{TERNAL ROUT I NE

GETNUMt Input a nUMber froM terMinal
PUTNUM; Output a nUMber to terMinal

LOCAL
\I
1\ t
\I •

I'
GETNUM 00 ;
Y = STEP(.}O;
PUTNUM(.Y)
END;

ROUTINE STEP(A)

!+

Storase for input value
Storase for output value

! This routine adds 1 to the Siven value.
!-

END
ELUDOM

An informal discussion of this module follows. Only the main features are
mentioned, and some new terminology is introduced. The purpose is to give a
general idea of how a module is constructed and how it works.

The module includes comments, each of which begins with an exclamation
mark. Not included, however, is a long comment that normally appears at the
beginning of a module and provides information about copyright, authorship,
revisions, and so on.

The outer structure of the module is:
MODULE El (MAIN = CTRL) =
BEGIN

END
ELUDOM

Introduction 1-17

The first line gives the name of the module, El. It also specifies that the main
routine for the entire program is CTRL; therefore, when the program is exe­
cuted, the operating system will call CTRL. The three dots represent the body
of the module.

The body of the module begins with a forward-routine-declaration, which lists
the names of the routines that are declared in the module. The remainder of
the body is devoted to the declarations of the routines.

The first routine-declaration begins with the line:

ROUTINE CTRL =

This line gives the name of the routine, CTRL. Because CTRL is not followed
by a parenthesized list of names, the routine is not called with parameters.
The purpose of the routine is to control program execution and to call other
routines.

The body of the routine CTRL is given after the comment that describes the
routine. It contains two declarations followed by three expressions. The decla­
rations do not cause actions directly; instead, they describe the names that
are used in the routine. The first declaration describes GETNUM and
PUTNUM as names of routines that are declared in another module. The
second declaration describes X and Y as the addresses of storage segments
that are used during execution of this routine.

The three expressions are:
GETNUM (){) ;
Y = STEP(.)-();
PUTNUM(.Y)

The first two expressions are terminated (followed by a semicolon), the third
is not. These expressions specify separate actions, and are executed (or more
precisely, evaluated) one after another, in the order written. The first expres­
sion calls upon the routine GETNUM to read a number from the user's
terminal and store it at address X. The second expression calls upon the
routine STEP to add 1 to the contents of X and then assigns the result to Y.
(The values of the first two expressions are discarded; thus these expressions
are used in a statement-like way, solely for their side effects.)

The third, non-terminated expression calls upon the routine PUTNUM to
print the contents of location Y at the user's terminal, but also provide a value
for the routine as a whole. This is the value of the routine call, presumably a
completion code returned by PUTNUM. (One target operating system,
V AXNMS, requires such a value to be returned by the main routine. In the
case of other target operating systems, the main-routine return value, if pro­
vided, is simply ignored.)

The second routine-declaration begins with the line:
ROUTINE STEP(A) =

This line gives the name of the routine STEP. It also gives a formal name, A,
that represents the parameter of the routine. Because there is no NOVALUE
attribute, this routine also returns a value.

1-18 Introduction

The body of the routine STEP is given after the comment that describes the
routine. It is a single line, as follows:

(• A+ 1) ;

This line specifies that when this routine is called, the value it returns is
calculated by adding 1 to the contents of formal location A, the value of the
parameter. Observe that the semicolon here is simply the terminator of the
routine declaration, and as such does not terminate the expression. It has no
effect upon whether or not the routine returns a value.

The expression that constitutes the routine body is enclosed in parentheses for
added clarity; the effect would be exactly the same without the parentheses in
this case. An equivalent way of expressing this routine declaration, which
shows more clearly the role of the semicolon, is the following:

ROUTINE STEP(A) =

!+

!-
This routine adds 1 to the liven value.

BEGIN
.A+l
END;

Section 1.4.6 discusses the equivalence of the parenthesis pair and the
BEGIN-END pair as used in these examples.

Introduction 1-19

Chapter 2 Lexical Definitions and Syntax Notation

2.1

2.2

Characters and Linemarks .

2.1.1 Characters ..
2.1.2 Linemarks ..

Lexemes and Spaces. .

2.2.1 Lexemes
2.2.2 Spaces and Comments

2.2.2.1 Guidelines on the Use of Comments.

2.3 The Separation Rules .
2.4 The Syntax Notation.

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6

Syntactic Rules.
Syntactic Names and Syntactic Literals .
Concatenations.
Disjunctions
Replications
Dialectal Differences

· 2-1

· 2-2
· 2-2

· 2-2

.2-3

.2-3

.2-4

.2-4

.2-5

.2-5

.2-6

.2-6

.2-7

.2-8
.. 2-8

Chapter 2
Lexical Definitions and Syntax Notation

This chapter defines lexemes (the basic syntactic elements of BLISS), and the
rules for the formation of valid BLISS source text. It also describes the syntax
notation used in later chapters to define the larger constructs of the BLISS
language.

The basic elements and rules defined here are the following:

• Characters and linemarks. Characters are the indivisible units of pro­
gram text. Linemarks serve to divide a character sequence into separate
"lines" of source text. Together they constitute the lowest-level elements
of syntactic structure.

• Lexemes and spaces. The lexemes of BLISS are analogous to the words
and punctuation marks of ordinary English text. The spaces are used to
separate lexemes where necessary and, optionally, to arrange the program
text in a clear and attractive way. Together they constitute the next
higher level of syntactic structure.

Note that a comment in BLISS is simply a special form of a space from
the lexical viewpoint.

• The separation rules, which govern the mandatory and optional use of
spaces to separate lexemes.

The syntax notation, described in the last section of this chapter, is used to
formulate the syntactic rules that define the many constructs of the BLISS
language. Each such construct consists of one or more lexemes. Thus these
higher-level syntactic rules fundamentally depend upon the separation rules
for their formal interpretation, although the separations required and allowed
by the syntactic rules are usually intuitively obvious without recourse to the
separation rules.

2.1 Characters and Linemarks

At the lowest level of syntactic structure a BLISS module consists of a se­
quence of characters and linemarks. They are the smallest recognizable ele­
ments of the source text.

2-1

2.1.1 Characters

The characters that can appear in a module are listed and classified in the
following table:,

Characters

Printing Characters

Letters: ABC ... Z abc ... z

Digits: 0 1 2 ... 9

Delimiters: . A * / + _ = , ; : () [] < >

Special Characters: $ _ % ! '

Free Characters: "# & ? @ \ ' { I } -

Nonprinting Characters: blank tab vertical-tab form-feed

All of the characters in this table are members of the ASCII character set.
However, the table does not include all of the ASCII characters. Specifically,
30 of the 34 nonprinting ASCII characters do not appear in the table and must
not be used in a BLISS module.

Note that this table shows which characters can be used in a BLISS program,
and does not impose a restriction on data. BLISS data can use any ASCII
characters. (The characters that cannot be represented literally in the pro­
gram text can, however, be entered indirectly, using numeric codes, via the
%CHAR lexical-function described in Chapter 15.)

2.1.2 Linemarks

The linemark is the separation between the end of one source line and the
beginning of the next in a program-text file. On most terminals, it is entered
into the program text by pushing the RETURN, CARRIAGE RETURN, or
NEWLINE key.

The linemark is represented in different ways in different target systems. On
the PDP-II and VAX-II systems, where a text file is a sequence of records,
the linemark is represented by the division between two successive records.
On the DECsystem-l0 and DECSYSTEM-20, where a text file is a single
character string, the linemark is represented by a line-feed, vertical-tab, or
form-feed character; if any of these characters is immediately preceded by a
carriage-return character, then that character is also part of the linemark.

2.2 Lexemes and Spaces

At the next higher level of syntactic structure a BLISS module consists of a
sequence of lexemes and spaces. A lexeme is the smallest meaningful unit of
the source text. Spaces are used to separate certain kinds of lexenles according
to the separation rules, and are optionally used to separate other lexemes for

2-2 Lexical Definitions and Syntax Notation

greater readability and general formatting purposes. The division of a module
into lexemes and spaces is especially important for the interpretation of
macros, as described in Chapter 15.

2.2.1 Lexemes

The various types of lexemes that can appear in a module are listed and
classified in the following table, with examples for each type except delimiters
(single characters that are completely enumerated):

Lexemes

Keywords: ROUTINE %ASCIZ AND

Names

Predeclared: VECTOR MAX

Explicitly Declared: X BETA26 INITIAL-SIZE

Decimal Literals: 0 23000

Quoted Strings: 'ABC' 'He said, "Go!'" '77700'

Delimiters

Operators: " * / + -

Punctuation Marks: , , () [] < >

A delimiter serves either as an operator or as a punctuation mark. These
lexemes are called delimiters because they never "run into" a neighboring
lexeme. For example, the delimiter "+" can be used to form the expression
"ALPHA+l" (consisting of three lexemes) without using blanks. But an at­
tempt to use the keyword "AND" without adjacent blanks results in "ALP­
HAANDl", interpreted as a single lexeme.

2.2.2 Spaces and Comments

When two lexemes would otherwise "run together" to make a single lexeme,
they must be separated by a space. A description of spaces is given in the
following table:

Spaces

Linemark

Nonprinting Characters:

Comments

Trailing Comment::

Embedded Comment:

blank tab vertical-tab form-feed

This is a program for entomologists.

%(Insert new routine here)%

Lexical Definitions and Syntax Notation 2-3

The preceding table describes spaces informally, using two examples for the
comments. A more precise definition is:

1. A space is a linemark, a nonprinting character (as listed in the table) or
a comment.

2. A comment is a trailing comment or an embedded comment.

3. A trailing comment is an exclamation character followed by the remain­
der of the line on which the comment begins.

4. An embedded comment begins with the two characters "%(", followed
by the text of the comment, followed by the two characters ")%". The
text must not contain the sequence") %", since that would prematurely
end the comment; see guidelines below. An embedded comment can
begin after any lexeme of a module and can extend to any later position
in the module. However, an embedded comment must end in the same
source file in which it began.

When a module is written by the programmer, spaces are commonly used to
arrange the module ,in a clear and attractive format and to insert comments
on the workings of the program. However, when a module is translated by the
compiler, the only role of spaces is to separate the lexemes of the module.
From the point of view of the compiler, for example, a lengthy comment is
equivalent to a single blank character.

2.2.2.1 Guidelines on the Use of Comments - A trailing comment, beginning
with the "!" character anywhere in a source line, is terminated by the next
linemark, i.e., by the 'end of the line' in which it occurs. Thus it is a generally
safe and unambiguous form of commment and can be used, for example, to
"comment out" any line of source text whatever its content.

An embedded comment, beginning with the character sequence "%(", is ter­
minated by the very next occurence of the sequence ")%". This means that
the embedded comment cannot be nested. Also, the sequence ")%" is a valid
though ill-advised form of ending of a macro definition (see Section 15.2).
Thus an extensive embedded comment could be inadvertently terminated by
the occurence of ")%" in a macro declaration where the "%" character was
intended to terminate a macro definition. For these reasons the embedded
comment should be used with care. Also, its use to "comment out" a body of
code is discouraged.

2.3 The Separation Rules

The use of spaces between the lexe.n.es of a module is governed by the separa­
tion rules. The rules are:

1. One or more spaces must appear between two lexemes if each lexeme is
anyone of the following:

• A name,

• A keyword, or

• A decimal-literal.

2-4 Lexical Definitions and Syntax Notation

This rule requires the use of spaces wherever two lexemes would other­
wise merge to form a single, longer lexeme.

2. One or more spaces may appear between any two lexemes. This rule
permits the use of spaces to control format and provide comments.

3. A space must not be inserted into a lexente. This rule prevents a lexeme
from being broken into two lexemes. Some apparent exceptions arise in
the case of a quoted-string lexeme, as described in Sections 4.3.2.

2.4 The Syntax Notation

The syntax of BLISS is a collection of syntactic rules that describe the con­
struction of a module (the unit of compilation). The special notation used for
the syntactic rules is defined in this section.

Each syntactic rule defines a syntactic name. The syntactic rules are interde­
pendent; that is, many of the rules define a syntactic name in terms of other
syntactic names. However, the rules do not form a vicious circle of definitions
because some of the rules define syntactic names directly in terms of syntactic
literals, i.e., without reference to other syntactic names.

The ultimate syntactic name is module, which is defined in the syntactic rules
given in Chapter 19. The description of the language begins with the q.efini­
tion of the syntactic name expression, in Chapter 4.

2.4.1 Syntactic Rules

A syntactic rule is divided into two parts by a vertical line. To the left of the
line is the syntactic name that is defined by the rule; to the right, a string
definition. In the simplest rules, the string definition is a single character or a
single syntactic name.

In more complicated rules, string definitions are combined to make larger
string definitions as follows: by concatenation (the joining of strings), by
disjunction (the choice between two strings), or by iteration (the joining of
several copies of a string).

An example of the simplest possible kind of rule is:

I qollar

In English, this rule reads: 'The syntactic name dollar designates the single
character "$".' Note that the character "$" is a syntactic literal, as defined in
the following section; thus this rule completely defines the syntactic name
dollar, without reference to any other rules.

Lexical Definitions and Syntax Notation 2-5

Sometimes it is useful to give the same definition for several syntactic names.
In such a case, the several names are written one above another and are joined
by a brace.

I p.osition J
SIze I expression

In English, this rule reads: 'The syntactic names position and size each desig­
nate an expression.'

2.4.2 Syntactic Names and Syntactic Literals

A syntactic name is one or more English words composed of lower case letters
and connected by hyphens. Four examples of syntactic names are given in the
two syntactic rules above, namely: dollar, position, size, and expression.

Further examples of syntactic names are:

module
own-item
forward -rou tine-declara tion
com pile-time-constant-expression

Every syntactic name has at least two characters.

A syntactic literal is a printing character that is interpreted as itself when it
occurs in a string definition. All printing characters are syntactic literals
except:

1. A character that is part of a syntactic name.

2. A brace character, { or J, or a vertical bar, I.

3. A period or comma that is part of the sequence " ... " or the sequence
" " ,

In practice, it is easy to distinguish a syntactic name from a syntactic literal
because syntactic names are always in lower case and BLISS keywords appear
in this manual (by convention) in upper case.

2.4.3 Concatenations

A concatenation is a string definition composed of a sequence of two or more
string definitions. If the definitions are adjacent (without intervening spaces),
then the strings they define must also be adjacent. If the definitions are
separated (by spaces), then the strings they define mayor may not require
separation, depending on the separation rules given in Section 2.3.

An example of a syntactic rule that uses adjacent concatenations is:

volatile-attribute VOLATILE

2-6 Lexical Definitions and Syntax Notation

In English, this rule reads: 'The syntactic name volatile-attribute designates
the following string: the keyword "VOLATILE".' Because the eight letters
"VOLATILE" (each one a syntactic literal) are adjacent in the rule, they
must also be adjacent in the program.

An example of a rule that uses both adjacent and separated concatenations is:

exitloop-expression EXITLOOP exit-value

In English, this rule reads: 'The syntactic name exitloop-expression desig­
nates the following string: the keyword "EXITLOOP", followed by an exit-
value.' '

In the English reading of any syntactic rule, the phrase "followed by" is an
abbreviation for "followed by the spaces (if any) that are required by the
separation rules, followed by".

2.4.4 Disjunctions

A disjunction is a string definition that permits a choice of one string defini­
tion from a set of several string definitions. The set of definitions is enclosed in
braces. Each definition is separated from the preceding one by being onla new
line or by a vertical-bar character.

An example of a disjunction in which each choice is written on a separate line
is:

case-label
{

single-value }
low-value TO high-value
INRANGE
OUTRANGE

In English, this reads: 'The syntactic name case-label designates one of the
following strings: (1) a single-value, (2) a low-value followed by the keyword
"TO" followed by a high-value, (3) the keyword "INRANGE", (4) the key­
word "OUTRANGE".'

An example of a disjunction in which the choices are separated by vertical-bar
characters is: .

I octal-digit I {OI1121---171

In English, this reads: 'The syntactic name octal-digit designates one of the
following characters: "0", "I", "2", and so on to "7".' Observe that once the
set of choices is clearly implied, the ellipsis symbol "---" is used to indicate
other choices. In some disjunctions, one of the choices may be the omission of
a construct; in such a case, the word "nothing" is included in the braces.

Lexical Definitions and Syntax Notation 2-7

An example of a disjunction that uses the word "nothing" as one of the
choices is:

leave-expression

2.4.5 Replications

LEA VE label { WIT!! exit-value}
nothIng

A replication is a string definition that represents a sequence of one or more
copies of a given string definition. The replication is indicated by writing the
symbol" ... " after the given definition. The separation between the defined
strings is determined by the separation rules, just as for concatenation.

An example of a replication is:

own-time own-name { : own-attribute ... }
nothing

In English, this rule reads: 'The syntactic name own-item designates the
following string: an own-name followed by an optional own-attribute-list. An
own-attribute-list is a colon followed by a sequence of one or more own­
attributes.' (The extra syntactic name, own-attribute-list, is introduced only
for the sake of the English reading.)

A special kind of replication is indicated by writing the symbol", ... " after the
definition. The symbol means that each copy of the given definition is sepa­
rated from the preceding one by a comma.

An example of a replication that uses the symbol ", ... " is:

routine-call routine-designator ({ actu~l , ... }
nothIng

In English, the rule reads: 'The syntactic name routine-call designates the
following string: a routine-designator, followed by the character "(", followed
by an optional actual-list, followed by the character ")". An actual-list is a
sequence of actuals that are separated from one another by commas.' (The
extra syntactic name, actual-list, is introduced only for the sake of the English
reading.)

Note that in either case (" ... " or ", ... "), the optional replication applies only
to the string definition that immediately precedes the replication symbol.

2.4.6 Dialectal Differences

Some of the syntactic rules given in this manual apply to only one or two of
the three BLISS dialects. That is, some of the rules are not part of Common

2-8 Lexical Definitions and Syntax Notation

BLISS. Further, certain of the string definitions given within some rules are
dialect specific. .

These dialect-specific features are indicated in the syntax diagrams by 'flags'
of the form

nn Only => or mm/nn Only = >

preceding a rule (or group of rules) for the former case; or a flag of the form

<= nn Only or <= mm/nn

following a string definition for the latter case. In each case, mm and nn
identify the dialect(s) to which the syntactic feature applies, i.e., 16, 32, or 36.

An example of an entire syntactic rule that is dialect-specific is:

16/32 Only =>

extension -attribute {
SIGNED }
UNSIGNED

In English, the dialect flag means: 'The following syntactic rule applies to the
BLISS-16 and BLISS-32 dialects only.'

An example of both a syntactic rule and a string definition within the rule
that are dialect-specific is:

16/32 Only =>

alloca tion -uni t
{

LONG
WORD
BYTE

} <= 32 Only

In English, the left-pointing dialect flag" <= 32 Only" means: 'The string
definition LONG is valid only in BLISS-32 as an alternative within the rule
for allocation-unit (which itself applies only to the BLISS-16 and BLISS-32
dialects) . '

Lexical Definitions and Syntax Notation 2-9

Chapter 3 BLISS Values and Data Representations

3.1 BLISS Values. · 3-1

3.1.1 Fullword Values · 3-2
3.1.2 Field Values . .3-4
3.1.3 The Extension of Values .3-4

3.2 Data Segments · 3-5

3.2.1 Addressable Units and Units per BLISS Value. .3-6
3.2.2 Scalars. · 3-7
3.2.3 VECTOR Structures .3-8
3.2.4 BITVECTOR Structures 3-10
3.2.5 BLOCK Structures . 3-10
3.2.6 BLOCKVECTOR Structures 3-11
3.2.7 Programmed Structures. 3-12

3.3 Character Sequence Data. 3-12

3.3.1 General Character Representation. 3-13
3.3.2 Character Sequence Operations . 3-14
3.3.3 BLISS-16 Character Representation . 3-14
3.3.4 BLISS-32 Character Representation . 3-15
3.3.5 BLISS-36 Character Representation. 3-15

3.4 Storage Organization. 3-16

3.4.1 The Stack. 3-16
3.4.2 The Registers. 3-17
3.4.3 Storage for a Program Module. 3-17

Chapter 3
BLISS Values and Data Representations

The range of data values permitted and the kinds of data representations
available are important characteristics of a programming language. Because
the BLISS language is a systems implementation language, its value and data
representations are closely related to those directly provided or efficiently
handled by the machine architecture of each target system.

This chapter describes the values and data representations provided by each
BLISS compiler/dialect. Because the three BLISS target systems (or system
families) have substantially different architectures - word sizes, addressable
units, character string representations, etc. - certain portions of this chapter
are, necessarily, quite system specific.

3.1 BLISS Values

BLISS provides a variety of written (source program) representations for val­
ues (binary, octal, hexadecimal, and so on). These are described in Chapter 4.
The norma] representation is decimal; that is, any number in a BLISS pro­
gram and in this manual, is interpreted as decimal notation unless otherwise
indicated.

The values on which the object program operates, however, are represented as
bit strings. The maximum-length bit string that is efficiently accessable by a
given target system (i.e., a "word" or "longword" depending on the system) is
called a fullword in BLISS terminology. The length of a fullword, in bits, for
each target system is indicated by the numeric portion of the name of the
respective dialect: 16, 32, or 36.

A bit string that is shorter than a fullword is called a field value. Several field
value sizes are of particular importance in BLISS, depending upon the dialect
in question:

• For All Dialects - The bit, which is the smallest unit of storage.

• For BLISS-16 - The byte (8 bits), which is the basic addressable unit in
PDP-II and VAX-II systems.

3-1

• For BLISS-32 - The byte, as above, and the word (16 bits), which is the
'intermediate size' addressable unit in VAX-II systems.

Fullword values and field values play contrasting roles in BLISS. Fullword
values are used as the basis for all calculations. Fields are used to achieve
compact storage for values that do not require the maximum-length bit string
for their representation. The two kinds of values are discussed separately in
the following sections.

3.1.1 Fullword Values

The fullword value (formerly called "a BLISS value") is the fundamental
data type of BLISS. Specifically, the result of evaluating any BLISS expres­
sion is a full word value.

In some cases, a fullword value can be viewed as a bit string without a specific
interpretation, as when a value is moved from one storage location to another
without modification. In other contexts, the bits of a fullword value are given
a specific interpretation. A fullword value can be interpreted as:

• A signed integer, represented in two's complement notation.

• An unsigned integer.

• A sequence of character positions, each of which contains a code for an
ASCII character.

• A sequence of logical values, each of which represents "true" or "false".

• A memory address.

Other interpretations for a fullword value can be devised, but these are the
interpretations that are built into the operations of BLISS.

The length of a fullword, in bits, is given in each BLISS dialect by the
predeclared literal %BPVAL (bits per value), i.e., 16, 32, or 36 for BLISS-16,
BLISS-32 and BLISS-36, respectively. Using this literal, the range of a full­
word value for each of the interpretations listed above can be expressed for all
dialects as follows:

• Signed integer, i:
-(2**%BPVAL-l) ~ i ~ (2**%BPVAL-l)-1

In BLISS-16, for instance: - (2** 15) ~

• Unsigned integer, i:

o ~ i ~ (2**%BPVAL)-1

• ASCII character positions:

2 in BLISS-16
4 in BLISS-32
5 in BLISS-36

3-2 BLISS Values and Data Representations

• Sequence of logical (boolean) values:
i"BPI.,lAL

• Memory address:

Full address space of each target system

A fundamental rule of BLISS is the following:

The interpretation of a full word value is supplied by the context in which
the full word value is used. A given fullword value can have one interpreta­
tion in one context and a different interpretation in another context.

In this respect, the BLISS language is similar to machine language and is
different from most high level languages. Both BLISS and the target-system
hardware interpret a value according to the operation applied to it. In con­
trast, most high level languages associate a specific interpretation (or "type")
with each value, independent of its context.

The BLISS rule for interpreting fullword values allows programmers to stay
close to the hardware and, accordingly, to write more efficient programs. At
the same time, however, this rule permits programming errors to arise as a
result of the misinterpretation of values.

As a basis for an example of the interpretation of a fullword value, consider
the following assignment:

}{ = -1

This assignment sets the contents of X to the two's complement representa­
tion of minus one; that is, a sequence of %BPV AL ones. The two expressions
that follow interpret the contents of X in different ways:

.}{ LSS a

.}{ LSSU a

Both of these expressions use a less-than operator to compare the contents of
X to 4. They yield 1 or 0 depending on whether or not the contents of X is less
than 4. However, according to the definitions given in Chapter 5, the opera­
tors interpret their operands in different ways, as follows:

• The LSS operator interprets its operands as signed integer values. It finds
that the contents of X is -1 and is therefore less than 4. Accordingly, the
value of the expre$sion is 1.

• The LSSU operator interprets its operands as unsigned integer values. It
finds that the contents of X is a large positive integer (namely,
(2**%BPVAL)-1) and is therefore not less than 4. Accordingly, the value
of the expression is o.

Since the negative number was assigned to X, it might be assumed that the
user of the LSSU operator is incorrect. In fact, however, both expressions are
valid. The question of which is correct depends entirely on the intentions of
the programmer.

BLISS Values and Data Representations 3-3

3.1.2 Field Values

According to the definition already given, a field value is a bit string that is
shorter than a fullword. Field values arise in two ways, as follows:

• Some stored values are "packed" and occupy only part of a fullword.

~ Some BLISS operators and literals have values that can be represented in
less than %BPV AL bits.

Whenever a field value arises during program execution, it is extended to
become a fullword and then the appropriate interpretation is applied to the
fullword. The rules for the extension of values follow.

3.1.3 The Extension of Values

A field value is extended to a fullword value by placing a sufficient number of
bits at the left end of the given value to provide a total of %BPV AL bits.

The following discussion of value extension is largely oriented toward
BLISS-16 and BLISS-32, since the target systems for these two dialects allow
allocation of scalar data segments in smaller-than-fullword units. Hence these
dialects have an allocation-unit and an extension-attribute that can be used
in data declarations. As will be seen in Chapters 5 and 11, however, these
syntactic features are closely related to field-selectors, which are common to
all three dialects. To the extent, then, that field values can arise in BLISS-36
as well as in BLISS-16 and BLISS-32, the following discussion is equally
applicable to all dialects.

A value can be extended in two ways, as follows:

• Unsigned extension uses a zero bit for each additional bit.

• Signed extension uses a copy of the sign bit (leftmost bit) of the given
value for each additional bit.

The kind of extension is determined in either of two ways. First, in
BLISS-16/32, an extension-attribute (UNSIGNED or'SIGNED) can be in­
cluded in the declaration of a data segment name (see Section 9.2). Second, a
sign-extension-flag can be used in a field-selector (see Section 11.2). When the
kind of extension is not explicitly given by an extension-attribute or a sign­
extension-flag, unsigned extension is assumed as the default.

BLISS-16/32 ONLY

As the basis for some examples of value extension, consider the following
declaration which is valid in BLISS-16 or BLISS-32:

OWN
}-(: BYTE SIGNEOt
Y: BYTE;

Suppose the contents of both X and Yare:

11111111 (binary)

The declaration of X as SIGNED implies that this value is -1; that is, the
two's complement interpretation of the given bit string. On the other hand,

3-4 BLISS Values and Data Representations

the declaration of Y as UNSIGNED (by default, since no extension-attrib­
ute is given) implies that its contents is 255; that is, the unsigned interpre­
tation of the given bit string.

(These declarations are invalid for BLISS-36 simply because the target­
system architecture does not permit storage allocation in units of less than
%BPVAL bits, i.e., less than a 36-bit machine word. Fetching and storing of
field values can be performed, however, through the use of explicit field­
selectors, as illustrated in a later example.)

The sign interpretations come into play when the contents of X and Yare
fetched. The evaluation of .X uses signed extension to produce the following
bit string:

11111. .. 1111111111 (binary)

which is the two's complement representation of -1 represented in 16 bits
for BLISS-16 or 32 bits for BLISS-32. In contrast, the evaluation of .Y uses
unsigned extension to produce the following bit string:

00000 ... 0011111111 (binary)

which is the unsigned representation of 255. Therefore, the two results are
different, and the expression

.H EQL .Y

would be false (that is, the low bit would have the value 0).

In BLISS-36 as well as BLISS-16 and BLISS-32, identical results would be
obtained using the following, analogous set of declarations and fetch opera­
tions:

OWN

\I •

I'

declares X and Y as the names of fullword, scalar data segments. Assume that
the low-order eight bits of both these fullwords are one-bits. Then the fetch
operation

.H<Ot8t1>

specifies a fetch of the low-order eight bits of location X with signed exten­
sion, upon evaluation produces the value -1, as in the example above, repre­
sented in %BPVAL bits. In contrast, the fetch operation

• Y<O t8 to>

specifies a fetch of the low-order eight bits of location Y with unsigned exten­
sion, which produces the value 255 in %BPV AL bits.

3.2 Data Segments

During the execution of a BLISS program, values are stored in data segments.
A data segment consists of one or more addressable units of memory. In its
simplest form, a data segment contains a single value. In its more complicated
forms, a data segment can contain many values of various lengths.

BLISS Values and Data Representations 3-5

The different kinds of data segments can be classified as follows:

Data Segments
Scalars
Structures

Predeclared Structures
VECTOR Structures
BITVECTOR Structures
BLOCK Structures
BLOCKVECTOR Structures

Programmed Structures

A scalar segment contains a single value, whereas a structure may contain any
number of values. Each predeclared structure is a part of the definition of
BLISS, and it is invoked by using one of the predeclared structure names
(VECTOR, BITVECTOR, BLOCK, or BLOCKVECTOR) in the declaration
of a data segment. A programmed structure is defined by the programmer and
can be used to organize the contents of a data segment in any way.

3.2.1 Addressable Units and Units per BLISS Value

The three target-system families supported by BLISS differ in four respects
having to do with their storage organization that affect the source-language
syntax and semantics to some degree. These differences are as follows:

1. Maximum (or only) "word" size, already described as the BLISS full-
word consisting of %BPV AL bits.

2. Smallest directly addressable unit of storage.

3. Number of addressable units per BLISS value (Le., per fullword).

4. Size of an address value.

The size of the smallest addressable unit, in bits, is given by the predeclared
literal %BPUNIT (bits per unit.) Its value is 8 for both BLISS-16 and
BLISS-32 - byte oriented target systems; and 36 for BLISS-:36 - a word
oriented target system.

The number of addressable units per BLISS value is the quotient of %BPV AL
over %BPUNIT. This value is given by the predeclared literal %UPVAL
(units per value). Its value is 2 for BLISS-16 (two bytes per PDP-11 word), 4
for BLISS-32 (four bytes per VAX-I1 longword), and 1 for BLISS-36.

The final difference is the number of bits required for a maximum address
value, given by the predeclared literal %BPADDR. Its value is 16 for
BLISS-16, 32 for BLISS-32, and 18 or 30 for BLISS-36, depending on the
setting of the EXTEND module-switch. (This value is usually less significant
than the others, as its utility is limited to certain kinds of operations on
addresses that are not commonly required.)

The literals just described are used in the subsequent discussions of data­
segment types.

3-6 BLISS Values and Data Representations

3.2.2 Scalars

In BLISS-16 and BLISS-32, the storage occupied by a scalar segment de­
pends on the allocation-unit that is associated with the segment. The alloca­
tion-unit is given in the declaration of the name of the segment and is one of
the following keywords:

LONG
WORD
BYTE

(for 32 bits)
(for 16 bits)
(for 8 bits)

<= BLISS-32 only
<= BLISS-16/32 only
<= BLISS-16/32 only

When no allocation-unit is given, WORD is assumed in BLISS-16 and LONG
is assumed in BLISS-32. In BLISS-36, only fullword scalar segments can be
allocated.

The kind of extension used when the value of a data segment is fetched
depends on the extension-attribute (BLISS-16/32 only) that is associated with
the segment or the field-selector associated with the fetch operation. The
extension-attribute is one of the following keywords:

UNSIGNED
SIGNED

(for unsigned extension)
(for signed extension)

When no extension-attribute or field-selector is given, unsigned extension is
assumed.

The extension-attribute does not affect the amount of storage used for a data
segment. Its only effect is on the way the value is extended to %BPVAL bits
when it is fetched. It is valid to give an extension-attribute with a fullword
data segment, but the attribute has no effect since the value is already
%BPV AL bits long.

An example of the declaration of a scalar segment is:
OWN }-(;

This declaration describes a segment that is allocated permanently before
execution begins (because it is OWN), that is named X, that is a scalar
(because no structure-attribute is given), that occupies a fullword (because no
allocation-unit is given), and that uses unsigned extension (because no exten­
sion-attribute is given).

The features of a data segment can be illustrated in a diagram. In the follow­
ing, the declaration of X is given together with the diagram for the corre­
sponding data segment:

Declaration Diagram

OWN }-(; 2360 X / 15 I (%BPVAL)

This diagram represents a data segment in a simple and abstract way; that is,
it does not show the specific layout of the data in terms of the byte boundaries
(where applicable), bit sequences, and addresses of storage. A more detailed
notation is introduced in Chapter 11.

BLISS Values and Data Representations 3-7

The diagram represents the data segment as follows:

1. The address of the data segment is given in two forms. The first form is
an (arbitrarily chosen) integer, 2360, used by the hardware to locate the
segment. The second form is the name, X, that is used by the program
to designate the segment.

2. The storage is represented by a box followed by a parenthesized expres­
sion. The expression shows how many bits of storage the box represents.

3. The contents of the data segnlent is given as a literal, 15, written inside
the box. It is this part of the diagram that changes as program execution
proceeds.

In this example, the value of X is 2360 (the address of the data segment),
whereas the value of .X is 15 (the contents of the data segment).

BLISS-16/32 ONLY

The preceding example describes a scalar that occupies a fullword. Exam­
ples of scalars that, in BLISS-16 or BLISS-32, occupy a word and a ,byte
are:

Declaration

OWN Y: WORO;

OWN Z: BYTE;

Diagram

1000 Y I 28

2440 Z I 18

I (16)

I (8)

In these examples, each data segment has the UNSIGNED extension-at­
tribute by default. Thus the values fetched from Yare in the range from 0
to (2**16)-1 and the values fetched from Z are in the range from 0 to
(2**8)-1.

An example of a scalar that has the SIGNED extension-attribute is:

Declaration Diagram

OWN R: SIGNED BYTE; 3002 R I -5 I (8)

The values fetched from R range from -(2**7) through (2**7)-1. Thus al­
though Rand Z (in the preceding paragraph) both occupy eight bits of
storage, their values are interpreted differently when they are fetched.

For the purposes of the following discussions, in BLISS-36 scalar data-seg­
ment declarations can be thought of as having an implicit allocation-unit of
%UPVAL value (i.e., one addressable unit per segment), and an implicit
UNSIGNED extension attribute.

3.2.3 VECTOR Structures

A vector structure is a sequence of scalar elements. The number of elements is
the extent of the vector, and is given as part of the declaration of the segment
name. The elements are numbered, with 0 for the first element, 1 for the
second, and so on.

Each element of a vector has the same allocation-unit and extension-attrib­
ute. This information can be given as part of the declaration of the vector. If

3-8 BLISS Values and Data Representatibns

the allocation-unit is not given, the default is the same as for scalar segments
(fullword allocation). If the extension-attribute is not given, unsigned exten­
sion is assumed (where applicable).

An example of a vector is:

Declaration Diagram

OWN A: VECTORC31; 5440 A[O] I 28 7 (%BPVAL)

A[1] I 5 7 (%BPVAL)

A[2] I 133 7 (%BPVAL)

This declaration describes a segment that starts at address 5440 and is named
A. The declaration gives the extent of the vector as 3 and so the vector has
three elements. The declaration does not give an allocation-unit, so each
element occupies a fullword.

A particular element is selected by a bracketed subscript expression. Suppose
that the contents of a data segment named IND is 3, and consider the contrast
between the following expressions:

Expression Value

At.IND-21 5440+%UPVAL

.AC.IND-21 5

BLISS-16/32 ONLY

(the address of the second element)

(the contents of the second element)

An example of a declaration that gives both allocation-unit and extension­
attribute is:

Declaration Diagram

OWN B: 1.IECTOR C 3 t WORD t SIGNED 1 ; 46046 B[O] I 15 I (16)

B[1] I 3 I (16)

B[2] I 4 7 (16)

This declaration describes a segment that starts at address 46046 and is
named B. It is similar to the segment named A, described in the preceding
paragraph. However, the allocation-unit is given explicitly as WORD, and
therefore each element of the vector occupies 16 bits. It follows that the
vector occupies only six bytes of memory. Furthermore, the extension-at­
tribute is given explicitly as SIGNED, and therefore, the fetched contents
of an element of B is subject to signed extension.

An example of a vector of bytes is:

Declaration Diagram

OWN C: 1.IECTORca tBYTE1; 221 C[O] I 7 7 (8)

C[I] I 7 7 (8)

C[2] I 2 I (8)

C[3] I 4 I (8)

BLISS Values and Data Representations 3-9

This data segment is a vector of four elements and occupies four bytes of
memory. Since an extention-attribute is not given, UNSIGNED is assumed
by default.

3.2.4 BITVECTOR Structures

A bitvector structure is similar to a vector structure. However, bitvector struc­
tures are designed especially to handle bit strings, and each element of a
bitvector structure is a single bit.

An example of a bitvector structure is:

Declaration

OWN STATUS: B I TI.JECTOR [15] ;

Diagram

1604 STATUS [0] <--.1 _1=-----"1 (1)

STATUS [1] 1 1 1 (1)

... (and so on, until)

STATUS[14] 1 0 7 (1)

(not used) 1 1 1 7 7 1 1 (n)

This declaration describes a segment that has 15 elements and thus makes use
of 15 bits of memory. The number of unused bits, n, in the data segment
allocated for this structure would be one in BLISS-16 and BLISS-32 (byte
allocation), and 21 in BLISS-36.

A bitvector starts at the low-order (rightmost) bit of its first addressable unit
of storage. Thus in BLISS-16 or BLISS-32, STATUS [0] designates the low­
order bit of the byte whose address is 1604, STATUS [7] designates the high­
order bit of that byte, STATUS[8] designates the low-order bit of byte 1605,
and so on.

In BLISS-36, where the structure is entirely contained in one word, the refer­
ences STATUS[O] and STATUS[8] designate the low-order bit and the ninth
bit "from the right", respectively, of word 1604. (Note that bit-position
numbering in BLISS is consistent across dialects: bit numbers increase from
low order to high order, "right to left", regardless of the target-system hard­
ware convention.)

Neither an allocation-unit nor an extension-attribute can be used with
BITVECTOR. (The number of addressable units allocated is the smallest
number of units that can accomodate the given number of bits.) When the
contents of an element of a bit vector is fetched, unsigned extension is always
used.

3.2.5 BLOCK Structures

A block structure is a sequence of components. The block as a whole has a
name, which is declared using the BLOCK structure-attribute. In addition,
each component of a block has its own name.

3-10 BLISS Values and Data Representations

A block is declared with a size and, in BLISS-16 and BLISS-32, an alloca­
tion-unit. The size specifies the amount of storage required for the entire
block. The allocation-unit determines the units in which the size is measured.
The default allocation-unit is the same as for a scalar segment declaration
(full word allocation).

The individual components of a block can have different sizes. The way in
which the size of each component is specified is given in Chapter 11. For
purposes of the pres.ent discussion, it is sufficient to state that the size is
determined when the program is written and cannot change during program
execution.

Observe that a block differs from a vector in two ways. A block is less flexible
than a vector because, in normal usage, the name of a block component is
given explicitly when the program is written, whereas the subscript of a vector
element can be calculated during program execution. On the other hand, a
block is more flexible than a vector because the components of a block can
have various sizes, whereas the elements of a vector must all have the same
size.

An example of a BLOCK structure, using BLISS-32, is:

Declaration Diagram

OWN I T EM: B L 0 C K [I T EMS I Z E t BY T E]; 33300 ITEM [FLG] I 0

ITEM[Nl] I 235

ITEM[LOC] I 17

I (2)

I (14)

I (32)

This declaration describes a segment that starts at address 33300 and is
named ITEM. The declaration gives the size of the block as ITEMSIZE. The
diagram shows that the individual components are FLG (two bits), Nl (four­
teen bits), and LOC (32 bits). Since ITEMSIZE must be the total number of
bytes used, the diagram implies that the value of ITEMSIZE should be 6.

The address of a component of the block is written exactly as it appears in the
diagram. Consider the contrast between the following expressions:

Expression

ITEM[LOC]

.ITEM[LOC]

Value

33302

17

(the address of the third component)

(the contents of the third component)

3.2.6 BLOCKVECTOR Structures

A blockvector structure is a sequence of elements (as is a vector structure),
but each element consists of a block. The number of elements is the extent of
the blockvector, and is given as part of the declaration of the segment name.
The elements are numbered, with 0 for the first element, 1 for the second, and
so on.

Each element of a blockvector is a sequence of components (as is a block).
Each component is a scalar and has its own name. Therefore, the combination

BLISS Values and Data Representations 3-11

of the blockvector name, the subscript of an element, and the name of a
component is used to designate a single value.

In addition to the extent, an element-size and, if BLISS-16 or BLISS-32, an
allocation-unit are given in the declaration of a blockvector. The element-size
~ecifies the amount of storage for each element (i.e., the block size), and the
allocation-unit determines the units in which the element-size is measured.
The default allocation-unit is the same as for a scalar segment (fullword
allocation). The storage required for a blockvector is the product of its extent
and its element-size.

An exarnple of a BLOCKVECTOR structure, using BLISS-36, is:

Declaration Diagram

OWN Q: BLOCK 1,lECTOR [2 ,QS] ; 6000 Q[O,FLAG] I 5 I (8)

Q[O,VAL] L 62 7 (28)

Q[O,PTR] L 0 I (36)

Q[I,FLAG] L 25 I (8)

Q[I,VAL] L 78 I (28)

Q[I,PTR] L 23 I (36)

The declaration of Q gives the extent as 2 and the element size as QS. Accord­
ing to the diagram, each element has three components, FLAG, VAL, and
PTR. Since QS must be the total number of fullwords used by each element,
the diagram implies that the value of QS should be 2.

Suppose that the contents of a data segment named I is 0, and consider the
contrast between the following expressions:

Expressions

Q[. I+l ,FLAG]

.Q[. I+l ,FLAG]

Value

6002

25

(address of component)

(contents of component)

3.2.7 Programmed Structures

The predeclared structures discussed in the preceding sections provide the
data structures usually required for system programming. To provide for other
data structures, BLISS has a feature, the STRUCTURE declaration, that
permits a programmer to design and use his own data structures. This feature
of BLISS is described in Chapter 11 where, in addition, each predeclared
structure is defined in terms of a STRUCTURE declaration.

3.3 Character Sequence Data

The representation of character data differs among the three BLISS dialects
due to basic architectural differences. Character data is represented in a very
different way in BLISS-36 target systems than in BLISS-16 and BLISS-32
target systems. In spite of this difference, it is possible to think about charac-

3-12 BLISS Values and Data Representations

ter data in a single, uniform way that applies to all BLISS target systems and,
more importantly, to code BLISS programs that behave the same way and
give the same results on all ,BLISS systems, even though the results are
achieved in significantly different ways at object level.

The BLISS features for handling character data in this common (i.e., trans­
portable) way involve some new terminology and a set of special character­
handling functions; these features are described in detail in Chapter 20.

The representation of character data and, in particular, sequences of charac­
ters is descrrbed here in two ways. First, character sequences are described in
a general way that includes only the aspects that are common to all BLISS
target systems. Second, the representation of character sequences is described
specifically for each BLISS target system.

3.3.1 General Character Representation

Loosely speaking, a character sequence is like a vector of character data
elements. This analogy may be useful in understanding the following descrip­
tion of BLISS character sequences. (Fuller detail is given in Chapter 20.)

A character code is a sequence of bits that represents a character. Usually the
ASCII encoding of characters is used in BLISS.

A character position is the storage for a single character code. For a given
implementation of BLISS, the size of a character position is determined by
two factors: the requirements of the character code and the organization of
storage.

A character position sequence is a portion of storage that is used for one or
more character positions. Such a sequence has a first and last position. For
each position except the first, there is a previous position, and for each posi­
tion except the last, there is a next position.

A character data segment is a character position sequence that is allocated as
a single portion of storage. In the simpler applications of character handling,
it is possible to treat each character data segment as a separate unit, contain­
ing a complete character position sequence and allocated in the same way as
other data segments.

A character pointer is a value that designates a character position. Sometimes
a character pointer is set to the first character position of a sequence and
remains there, providing access to the entire sequence. In other cases, a char­
acter pointer is used to scan back and forth in a sequence, selecting one
position after another. A character pointer can be correctly interpreted only
by a character handling function. It occupies a fullword.

The length of a character position sequence is the number of character posi­
tions in the sequence. The length of a sequence is not included as part of the
sequence itself. In order to fully specify a character position sequence, both its
length and a pointer to its first position must be given. Typically, the parame­
ters of the character handling functions occur in pairs, a length followed by a
pointer.

BLISS Values and Data Representations 3-13

3.3.2 Character Sequence Operations

The basic operations of character handling are the allocation of storage, crea­
tion of a pointer, moving of a pointer, fetching or storing of a character code,
and the comparison of character sequences. All of these operations must be
performed by means of the specific character handling functions provided for
this purpose. For example, the contents of a character position lnust always
be fetched or stored by means of a character pointer that designates the
character position. In contrast, a character pointer can be fetched or stored
like any other fullword value (by means of the fetch-operator, ".", or the
assignment operator, "=").

Returning to the analogy with a vector of character data elements, the follow­
ing correspondences can be established:

• A character code corresponds to the contents of an element of the vector.

• A character position corresponds to the storage for an element of the
vector.

• A character position sequence corresponds to a contiguous sequence of
elements of a vector (possibly but not necessarily the entire vector).

• A character data segment is the complete vector.

• A character pointer corresponds to the address of an element of the
vector.

The ways in which this analogy is inexact are:

• A character position need not correspond to an addressable unit of
storage.

• A character pointer is not simply an address value.

(These considerations apply specifically to BLISS-36 as will be seen below.)

3.3.3 BLISS-16 Character Representation

In BLISS-16 there are two character positions per fullword. Characters are
allocated in storage with the leftmost character of the source string in the low­
order (or "rightmost") character position of the first or only fullword. Addi­
tional fullwords or bytes are allocated in ascending address order. For exam­
ple, the source character string 'ABCDEFGH' would be allocated as follows:

Diagram

7000
7002
7004
7006

/BA/
/DC/
/FE/
/HG/

(16)
(16)
(16)
(16)

Note that the eight-character string 'ABCDEFGH' can only appear in the
context of a PLIT (a type of primary expression) since a string literal itself, as
a primary expression, cannot exceed the capacity of a fUllword: two character
positions in BLISS-16. (See Chapter 4, "Primary Expressions".)

3-14 BLISS Values and Data Representations

The BLISS-16 representation is related to the general BLISS representation
of character sequences as follows:

• A character code consists of 8 bits.

• A character position is a Qyte of storage.

• A character position sequence is a contiguous sequence of bytes of storage
with successive characters, considered from left to right, contained in
successive bytes from lower to higher addresses.

• A character data segment is also a contiguous sequence of bytes of stor­
age.

• A character pointer is the address of a byte.

3.3.4 BLISS-32 Character Representation

In BLISS-32 there are four character positions per fullword. Characters are
allocated in storage with the leftmost character of the source string in the
low-order (or "rightmost") character position of the first or only fullword.
Additional full words or bytes are allocated in ascending address order. For
example, the source character string 'ABCDEFGH' would be allocated as
follows:

Diagram

36014
36018

/DCBA/
/HGFE/

(32)
(32)

Note that the eight-character string 'ABCDEFGH' can only appear in the
context of a PLIT (a type of primary expression) since a string literal itself, as
a primary expression, cannot exceed the capacity of a fullword: four character
positions in BLISS-32. (See Chapter 4, "Primary Expressions".)

The BLISS-32 representation is related to the general BLISS representation
in the same way as in BLISS-16.

3.3.5 BLISS-36 Character Representation

In BLISS-36 there are five ASCII character positions per fullword or six
SIXBIT character positions. Characters are allocated in storage with the left­
most character of the source string in the high-order (or "leftmost") character
position of the first or only fullword. Additional fullwords are allocated in
ascending address order. For example, the ASCII string 'ABCDEFGH' would
be allocated as follows:

Diagram

21005
21006

/ABCDE/
/FGH /

(36)
(36)

Note that the eight-character string 'ABCDEFGH' can only appear in the
context of a PLIT (a type of primary expression) since a string literal itself, as
a primary expression, cannot exceed the capacity of a fullword: five character
positions in BLISS-3B. (See Chapter 4, "Primary Expressions".)

BLISS Values and Data Representations 3-15

The BLISS-36 representation is related to the general BLISS representation
of character sequences as follows:

• A character code consists of 7 bits.

• A character position is a 7-bit field of a 36-bit word of memory.

• A character position sequence is a contiguous sequence of character posi­
tions with successive character codes, considered from left to right, con­
tained in adjacent 7 -bit fields beginning at. any of the five character
positions in a word and continuing toward positions in the lower order
part of the word and then to the high order 7 bits of the next word, and
so on.

• A character data segment is a contiguous sequence of 36-bit words.

• A character pointer is a special 36-bit value that consists of both address
and position and size information describing the character position.

(In DECsystem-lO terminology, a character pointer is a byte pointer
that, when used as the operand of an ILDB (increment and load byte)
instruction, will fetch the character code value from the indicated charac­
ter position.)

3.4 Storage Organization

During the execution of a BLISS-compiled object program, storage consists of
the following:

Storage
Storage for the given program

The Stack
The Registers
Storage for the First Module
Storage for the Second Module

Storage for the Last Module
Other Storage

The other storage includes the routines and data of the operating system, the
run-time routines for BLISS, and the storage for programs other than the
given program.

The stack, the registers, and the storage for each module are described in the
following sections.

3.4.1 The Stack

The stack is used to store temporary data associated with the execution of the
routines in a BLISS program. The stack is composed of frames. Upon entry to
a routine, a frame is pushed on the stack for use in executing that routine.
Upon return from the routine, the frame is popped from the stack.

3-16 BLISS Values and Data Representations

A stack frame contains data segments of two kinds. Some of the data seg­
ments are declared as LOCAL or ST ACKLOCAL. Such segments are directly
accessible from the program and are used for values that are needed only
during the execution of the routine in which they are declared. The other data
segments are allocated by the compiler and are not accessible from the pro­
gram. These segments are used for such values as the return address of the
routine or the intermediate results that are produced during the evaluation of
an expression.

The declaration of LOCAL and ST ACKLOCAL names is described in Chap­
ter 10. The relation between a routine and the stack is further described in
Chapter 12.

3.4.2 The Registers

The registers of BLISS correspond to the general registers of the target-system
hardware. Each register contains one fullword value. Each of the registers is
considered to be a single data segment.

The use of registers is normally determined by the compiler, not the program.
Access to a register uses less time than access to ordinary storage; therefore,
registers are often used to store the intermediate results and addressing in­
dices of a calculation. Under special circumstances, registers can be accessed
by the program.

The deplaration of register names is described in Section 10.7.

3.4.3 Storage for a Program Module

A module uses four kinds of program sections. Each kind of program section
has a special purpose, as follows:

• An OWN program section contains a data segment for each name that is
declared OWN in the module. Such a data segment is permanently allo­
cated. It can be accessed only from the module in which it is declared.

• A GLOBAL program section contains a data segment for each name that
is declared GLOBAL in the module. Such a data segment is permanently
allocated. It can be accessed from the module in which it is declared and
in any module in which its name is declared EXTERNAL.

• A PLIT program section contains a data segment for each PLIT used in
the module.

• A CODE program section contains a code segment for each routine that is
declared in the module.

The programmer can leave the management of program sections to the com­
piler; and in that case each module will have no more than one of each kind of
program section. On the other hand, the programmer can specify several
program sections of the same kind for a module and can determine which data
segments or routines are allocated in which program sections.

BLISS Values and Data Representations 3-17

The division of storage for a module into sections permits the operating sys­
tem to manage storage effectively. For example, an OWN section need be
present only when its associated module is being executed, whereas a
GLOBAL section must be present more frequently. For another example, the
PLIT and CODE sections are not modified during program execution and can
therefore be regarded as read-only storage.

The declarations of OWN and GLOBAL segment names are described in
Sections 10.1 and 10.2. The definition of plits is given in Section 4.4. The
declaration of routines is described in section 12.3.

3-18 BLISS Values and Data Representations

Chapter 4 Primary Expressions

4.1 Primaries. .4-1

4.1.1 Syntax. .4-2
4.1.2 Semantics . 4-2

4.2 Numeric-Literals. .4-2

4.2.1 Syntax. .4-3
4.2.2 Restrictions .4-5
4.2.3 Defaults .4-6
4.2.4 Semantics .4-6

4.2.4.1 Limitations on Float-Literals. .4-6 I
4.3 String Literals. .4-7

4.3.1 Syntax. .4-8
4.3.2 Res tri cti ons .4-8
4.3.3 Defaults. .4-9
4.3.4 Semantics 4-10

4.4 Plits 4-12

4.4.1 Syntax. 4-13
4.4.2 - Restrictions 4-13
4.4.3 Defaults. 4-14
4.4.4 Semantics 4-14
4.4.5 Pragmatics. 4-15

4.5 Names 4-15

4.5.1 Syntax. 4-16
4.5.2 Restrictions 4-16
4.5.3 Semantics 4-16

4.6 Blocks. 4-17
4.7 Structure-References. 4-17
4.8 Routine-Calls 4-17
4.9 Field-References. 4-18
4.10 Codecomments 4-18

4.10.1 Syntax. 4-18
4.10.2 Semantics 4-18

April 1983

Chapter 4
Primary Expressions

In most high level languages, the term expression refers to the kinds of con­
struct that perform calculation, such as the addition of two numbers or,
perhaps, the concatenation of two strings. Such expressions obviously have
values; in fact, their sole purpose is to calculate values.

In BLISS, the term expression applies to all constructs of the language except
declarations. For example, the construct that assigns a value to a data seg­
ment is an expression and has a value. As another example, the construct that
controls an execution loop is also an expression and has a value. Thus it is
possible, although unusual, to add the value of an assignment-expression to
the value of a loop-expression.

There are four kinds of expression, as shown in the following syntax diagram:

expression
{

primary }
opera tor-expression
executa b Ie -function
control-expression

This chapter describes primary expressions. It is the first of four chapters that
describe the various kinds of expressions.

The first section of this chapter discusses primaries in a general way. Each of
the remaining sections of this chapter describes one kind of primary in more
detail.

4.1 Primaries

Every expression is built up from one or more primaries. The simplest form of
expression is a single primary. More complicated expressions are constructed
of primaries in combination with operators.

There is considerable variety among the primaries. A primary can be simply a
numeric-literal, such as 4, or it can be a block of considerable length and
complexity. A primary can specify a very elementary operation, such as the
formation of a storage address, or it can call a long and complicated routine.

4-1

Examples of primary expressions are:

5 A numeric-literal whose value is 5

'Enter data:' A string-literal composed of 11 ASCII characters

PL I T (5 t a) A pointer to a pair of literals

TOP_OF_LIST A name

F () A call to routine F with no parameters

G (5 t PL I T (5 , a» A call to routine G with two parameters

>~ [ACCESS_LEI.JEL] A structure-reference to a field of a data structure
named X

BET A < 2 , G :> A field -reference to the six high -order bits of the byte
at BETA

(• >< + • Y) A simple kind of block, called a parenthesized expres­
SIOn

BEGIN

LOCAL T;

T=O;

G (T,5) ;

END

4.1.1 Syntax

primary

4.1.2 Semantics

A more complicated block, which contains declaration
and two expressions

/ numeric-literal ,
string-literal
plit

I name I
block

I structure-reference
routine-call
field -reference
codecomrnent I

The semantics of primaries is given in the following sections, where each kind
of primary is considered individually.

4.2 Numeric-Literals

A numeric-literal is used to represent a specific number. An integer value can
be written in anyone of four radices: binary, octal, decimal, or hexadecimal.
A special-purpose way of representing an integer is the character-code literal,
which represents the ASCII code for a given character as a transportable,
fullword value. A floating-point value can be written in single or double preci­
SIOn.

4-2 Primary Expressions

\Vherever the radix for a BLISS literal is not given, the radix is assumed to be
decinlal. This manual follows the same convention; that is, wherever a num­
ber appears in the text without an explicit radix, the number is assunled to he
decirnal.

The following exmnples show five different ways to write a numeric literal for
the value 15.

15

'X, B ' 111 i I

'X,D 117 ,.

:;',DEC I ~1AL .' 1,5 ,.

Standard decimal-literal
Binary integer-literal
Octal integer-literal
Decimal integer-literal
Hexadecimal integer-literal

The character-code-literal is used to express, in a transportable way, the
numeric value of the ASCII code for a character. For example,

'X,C I A I

has the value 65 (decimal), which is the ASCII code for "A".

Certain literal names are predeclared by the compilers and have specific
numeric values. The values reflect various aspects of the target system archi­
tecture. For example, C(BPADDR is predeclared with a value that is the
number of bits required for an address value, which varies for each target
system. Therefore the predeclared name ('(BPADDR has a different value for
each BLISS compiler: 16 in BLISS-16, 32 in BLISS-32, and 18 or :30 (depend­
ing on the target-system environment) in BLISS-:36. The predeclared literal
names are described in Section 14.1.5.

4.2.1 Syntax

numeric-literal

decimal-literal

decimal-digit
~~ _.

in teger-Ii teral

opt-sign
..

{

decimal-literal }
integer-literal
character-code-literal
float-literal

decimal-digit ...

{OI11213141516171819}

! %8 1 ClO

~~DECIMAL l opt-sign integer-digit ...
%X

{ + I - I nothing I

Primary Expressions 4-3

I

I
I

4-4

integer-digit

character-code-
literal

quoted-character

float-literal

single-precision­
float-literal

dou ble-precision­
float-literal

extended -exponent­
dou ble-precision­

float-literal

extended -exponent­
extended -precision­

float-literal

mantissa

exponent

digits

opt-sign

Primary Expressions

{
(A) 11121:3141516171819}

IBI CIDIEIF

'rC ' quoted-character

{ printing-character -ex cept -apostrophe }
blank
tab

/ sing le-precision -float-Ii teral
dou ble-precision -float-Ii teral
extended -exponent-dou ble-precision-

< float-literal
extended -exponent-extended -precision-

float-literal

(:, E ' mantissa {E ex~onent }
nothIng

(';D ' mantissa {D exponent}
nothIng

I
I
>

I

{

G exponent}
(:cG ' mantissa Q exponent

nothing

<= 36 Only
<= 32 Only
~= ;32/36

OrR ' mantissa {Q exponent}
nothIng

opt-sign
{

digits }
digits .
. digits
digits . digits

opt-sign digits

decimal-digit ...

I + I - I nothing I

<= 32 Only

April 198:~

April 1983

SOlne of the numeric-literals are composed of two lexemes. Specifically. in em
integer-literal, the radix indicator (r:;B, ~'iO, r:(DECIMAL, or (:; X) is a lexemf'
and the remainder is another; and in a float-literal, the precision indicator
(Ii E, ((D, ((G or (i H) is a lexeme and the remainder is another.

The quoted-string in a nunleric-literal can be supplied by certain lexical­
functions (see Section 15.5).

A printing-character is any ASCII character whose code, i, is in the range :{:~ <­

i :s 126 (decimal). A printing-character-except-apostrophe is any printing
character except an apostrophe. The apostrophe is the ASCII character with
code :39 (decimal).

The blank is the ASCII character with code 32 (decimal). The tab is the
ASCII character with code 9 (decimal).

4.2.2 Restrictions

The digits in an integer-literal must conform to the radix specified by the
keyword at the beginning of the literal. Depending on whether the keyword is
Ii- B, Ii 0, (;;DECIMAL, or (,'eX, the digits must be binary, octal, decimal, or
hexadecimal.

A space must not appear in a numeric-literal except between the lexemes of a
two-Iexeme numeric-literal (see Section 4.2.1).

When a numeric-literal (other than a float-literal) is evaluated, its value, 1,

must fit in a fullword; that is, it must lie in the range

-(2**(I.·;BPVAL-l)):s i:s (2**«(;'i:BPVAL-1))-1

See Section 3.1.1 for the definition of (!e,BPVAL for each target system.

When a float-literal is evaluated its value, x, must fit in the target system'~
machine representation of a floating-point value. The maximum approximate
value range of x for each target-system family is as follows:

• For BLISS-16:

• For BLISS-32:

• For BLISS-36:

0.29*(10**-38) s abs(x) s 1.7*(10**38)

0.84*(10**-4932) :s abs(x) :s 0.59(10**4932)

0.56*(10**-308) s; abs(x) :s 0.9*(10**308)

The listed value ranges of x reflect S·c)D for BLISS-16, %H for BLISS-32. and
eiG for BLISS-36.

Depending on the compiler used, float-literals can produce values that occupy
up to four full words; therefore, float-literals producing values that occupy
more than one fullword must appear in either a plit (see Section 4.4) or an
initial-attribute (see Section 9.6).

Primary Expressions

I

I

•

I

4-6

The relationship, by compiler, of float-literals to fullwords is:

Float-literal

keyword

(ID

(rH

4.2.3 Defaults

Size (fullwords)

4

16

:2

4

The default for the sign of a numeric-literal is '+'. For example, the numeric­
literal (,O'Til' is equivalent to 1(0'+777'.

The default radix is decimal; that is, when a sequence of digits appears
without a radix keyword and without quotes. it is assumed to be a decimal­
literal.

4.2.4 Semantics

A decimal-literal is interpreted as the decinlal representation of an integer
value.

An integer-literal begins with a keyword that determines its interpretation by
giving the radix of the literal. Depending on whether the keyword is (iB, (iO,
((DECIMAL, or C(X, the sequence of digits within the quotes are interpreted
as a binary, octal, decimal, or hexadecimal representation, respectively, of an
integer value.

The value of a character-code-literal is the integer that is the ASCII character
code for the quoted-character. When two apostrophes are used as the quoted­
character, the value of the literal is the character code for a single apostrophe;
that is, the character-code-literal (; C ' , , , has the value 39 (decimal).

The evaluation of a numeric-literal produces an integer value. If the literal
has a minus sign, then its value is represented as a negative number in two's
complement forn1. The evaluation of a ('; E float-literal in :32 and 36 produces a
dialect-specific fullword value.

4.2.4.1 Limitations on Float-Literals - Referring to the chart in Section 4.2.2,
which defines the float-literal sizes (in full words) needed by the compiler,
note that values requiring lllore than Ci BPVAL bits for their representation
cannot be stored in a fullword and cannot be directly operated upon by any of
the BLISS operators or executable-functions.

Except for a few builtin machine-specific-functions, BLISS does not provide
facilities for operating upon any f1oat-literal as such. Float-literals are pro­
vided in BLISS in order to facilitate the development of special data segments
and special routines for performing high-precision arithmetic.

Primary Expressions April 1983

4.3 String Literals

A string-literal contains a sequence of ASCII characters. The value of the
string-literal is obtained by encoding the sequence of characters in one of
several different ways, depending on the string-type of the literal (e.g ..
(;(,ASCII, ~;(ASCIZ, ~'cRAD50_II, S'c·P).

A string-literal whose value occupies one fullword or less can be used as a
primary, that is, can appear anywhere that a primary expression is allowed.
The number of characters that can be encoded in a fullword varies with both
the target system and the string-type (Section 4.~3.2). Examples are:

'X,ASCI I lAB I

'X,ASC I I I ABCD I

'X,RADSO_ll I ABC I

%RADSO_ll / ABCDEF '
%RADSO_l0 / ABCDEF '

in any dialect
in BLISS-32 or BLISS-:36
in BLISS-16 or BLISS-32
in BLISS-32 only
in BLISS-36 only

In each of these examples, the quoted string is encoded into one fullword or
less in each of the dialects specified.

A string-literal whose value occupies more than a fullword is not a primary
expression and can be used only within a plit expression (see Section 4.4) or in
an initial-attribute (see Section 9.6). An example is:

'A com plete list of errors follows:'

The encoded value of this string-literal, consisting of 34 character positions,
occupies much more than a fullword on any target system.

Primary Expressions 4-7

4.3.1 Syntax

string-literal { strin?"-type }
nothIng

quoted -string

I (;'cASCII \

~~(,ASCIZ
I

(;'oASCIC <= 16/32
L~(ASCID

string-type S'oRAD50_11 , <= 16/32
(),iRAD50_10 <= 36 Only
(5cBIXBIT

I <= 36 Only
%P <= 16/32

quoted-string { quot~d-character ... }
nothIng

{
printing -character-except-a postrophe }

quoted-character blank
tab

A printing character is any ASCII character whose code, i, is in the range 33 ::;
i s 126 (decimal). A printing-character-except-apostrophe is any printing
character except an apostrophe. The apostrophe is the ASCII character with
code 39 (decimal).

The blank is the ASCII character with code 32 (decimal). The tab is the
ASCII character with code 9 (decinlal).

Some of the string-literals are composed of two lexemes, the string-type and a
quoted-string. Spaces are permitted between the two lexemes.

The quoted-string in a string-literal can be constructed by certain lexical­
functions, which are described in Chapter 15. A quoted-string constructed in
that way can be composed of any sequence of ASCII characters and therefore
is not restricted to printing characters, blanks, and tabs.

The quoted-string in a string-literal can also be supplied by another string­
literal. This feature is mainly useful in the design of macros and is discussed
in Section 15.3.2.2.

4.3.2 Restrictions

A quoted-string is a single lexeme. As the syntax shows, the quoted-string can
contain blanks and tabs. These characters are interpreted as characters in the
string, not as characters that divide the quoted-string into several lexen1es.

4--8 Primary Expressions

Aside from blanks and tabs, no other spaces (as defined in Section 2.2.2) can
appear in the source text for a quoted-string.

A string-literal that is not a plit-string in a plit or initial-attribute must fit in
one fullword. With %ASCID excepted, specific limitations on string length are
given in the following table, by dialect and string-type:

Dialect Max. Number of Characters in Fullword

ASCII ASCIZ ASCIC RAD50_11 SIXBIT RAD50_10 P

BLISS-16

BLISS-32

BLISS-36

2

4

5

1

3

4

* Plus optional sign character.

BLISS-16/32 ONLY

1

3

3

6

6 6

3*

7*

A %ASCIC string-literal must contain no more than 255 quoted-characters.

A %RAD50_11 string-literal may contain only the characters A through Z,
o through 9, blank, period (.), and dollar ($) in the quoted-string. Lowercase
letters appearing in the quoted-string are encoded as the corresponding
uppercase letters.

A %P string-literal must contain only the decimal digits (0 through 9)
except for an optional initial sign (+ or -). There must not be more than 31
digits in the quoted-string.

BLISS-36 ONLY

A %RAD50_10 string-literal may contain only the characters A through Z,
o through 9, blank, period (.), dollar ($), and percent (%) in the quoted­
string. Lowercase letters appearing in the quoted-string are encoded as the
corresponding uppercase letters.

A %SIXBIT string-literal may contain any quoted-characters except the
following: tab (9), ' (96), { (123), I (124), I (125), and - (126). (The paren­
thesized ASCII codes are in decimal.) Lowercase letters appearing in the
quoted-string are encoded as the corresponding uppercase letters.

Other restrictions on the length of string-literals (if any) are given in the
appropriate BLISS user's guide.

4.3.3 Defaults

The default for the string-type is %ASCII. For example, the string-literal
, abc' is equivalent to %ASCII' abc' .

The default for the sign in a %P string-literal is "+". For example, the string­
literal %P'2' is equivalent to %P' +2'.

Primary Expressions 4-9

•

I

•

4-10

4.3.4 Semantics

Each quoted-character in a string-literal represents one character code in the
value. A printing-character-except-apost rophe. a blank, or a tab represents
itself. A sequence of two apostI'llphes represents a single apostrophe.

A ((ASCID string-type i~ similar to a ((ASCII type; hov;ever, (r ASCID differs
in that it creates a string descriptor for the quoted-string, and expands to the
address of the dat a segment that contains the descript or. The st ring and its
descriptor are allocated in a PLIT PSECT (see Chapter 18), and just as the
value of a PLIT is the address of the plit-hody. the value of I r ASCII) is the
address of the descriptor.

The r; ASCID string creates the following descriptor formats:

For BLISS-:12:

31 24 23 16 15 o

I 14 I string length

character pOinter

Note that only the BLISS-;32 implementation of II ASCII) is compatible with
XPORT strings.

For HLISS-;16:

35 18 17 o

character pOinter

o I string length

For BLISS-I6:

15 o

string length

character pOinter

This format follows the PDP--Il Extended Instruction Set guidelines. Note
that the "string length" must be an unsigned 16-bit quantity in the range 0 to
65535 decimal.

The rernaining semantic description uses the generalized tenns character
position and charactrr position 8Pquence. The machine specific equivalents of

Primary Expn'ssion:-; April 1983

these terms are given in Section 3.3. (See also Chapter 20, on "Character
Handling Functions".)

The value of a string-literal is determined in several steps, as follows:

1. For string-types %ASCIZ and %ASCIC, augment the string of quoted­
characters as follows:

a. If %ASCIZ, add a trailing null character (ASCII code 0) to the
string.

b. If %ASCIC (16/32 only), count the characters in the quoted-string
and use this (8-bit integer) count as the initial 'character' of the
string, preceding the first quoted-character.

2. Encode the character string, augmented as required by Step 1, accord­
ing to the string-type and dialect, as follows:

a. For string types %ASCII, %ASCID, and %ASCIZ, form a charac­
ter position sequence that has one character position for each
character in the string. For BLISS-16 and -32, use the 8-bit ASCII
code of the i'th character as the value of the i'th character posi­
tion. For BLISS-36, use the corresponding 7-bit ASCII code. For
rules governing the filling of the last unit of storage refer to Sec­
tion 4.4.4.

b. For string-type %ASCIC (16/32 only), form a character position
sequence as in Step 2.a, but use the initial count 'character' value
as is for the first character position.

c. For string-type %RAD50_11 (16/32 only), extend the original
quoted-string with enough trailing blank characters to make up a
multiple of three characters, if necessary. Then use Radix-50 en­
coding to form a character position sequence that has two charac­
ter positions for each group of three characters in the string. If
necessary, extend the resulting character position sequence with
enough trailing, zero-valued positions to fill the final (or only)
fullword occupied by the sequence.

d. For string-type %RAD50_10 (36 only), use Radix-50 encoding to
form a fullword for each group of six (or fewer) quoted-characters
in the string. This encoding always produces one or more complete
fullwords.

e. For string type %SIXBIT (36 only), form a character position
sequence that has one (6-bit) character position for each character
in the string. Use the SIXBIT code equivalent of the ASCII code
of the i'th character as the value of the i'th character position. If
necessary, extend the resulting character position sequence with
enough trailing, zero-valued positions to fill the final (or only)
fullword occupied by the sequence.

Primary Expressions 4-11

4.4 Plits

f. For string-type %P (16/32 only), use the PDP-11NAX-11 packed
decimal string encoding to form a sequence that has one byte for
each two digits of the quoted-string, and that provides a position
for the sign in the last byte. Leading zero characters are not dis­
carded in forming this sequence. (The packed decimal encoding is
described in the VAX -11/780 Architecture Handbook, Section
4.11.)

Note: The ordering of character positions in storage is system depen­
dent, and is described in Chapter 3. The ASCII, Radix-50, and
SIXBIT string encodings are described in Appendix B.

3. Use the character position sequence obtained in Step 2 as follows:

a. If the given literal appears in a plit or initial-attribute, use the
sequence as the value of the literal.

b. If the given literal does not appear in a pi it or initial-attribute and
the sequence is contained in a single fullword, the fullword is the
required literal value.

c. Otherwise, the sequence is invalid as a string-literal and the literal
value is undefined.

The interpretation of a string-literal is performed entirely by the compiler. If
the string-literal is a plit-string, then the compiler uses the value in forming a
literal in PLIT storage, as described in Section 4.4. If the string·-literal is an
initial-value, then the compiler uses the value to initialize the contents of a
data segment, as described in Section 9.6. Otherwise, the compiler incorpo­
rates the value of the string-literal in the object code it is generating.

A constant value that requires no more than a fullword of storage can be
represented by a numeric-literal or string-literal that stands alone (that is, is
not contained in a plit). A constant value that requires more storage must be
represented by a plit.

The value of a plit is not the value of the given constant but rather the address
of a data segment that contains the given constant. The data segment for a
plit is allocated in a PLIT program section, and it is initialized to the given
constant value before program execution begins.

There are two kinds of plits. The counted plit begins with the keyword PLIT,
which stands for "pointer to literal". The data segment for this kind of plit
begins with an extra fullword that contains the count for the plit. The count is
the number of fullwords in the plit excluding the fullword used for the count.
The second kind of plit, the uncounted plit, begins with the keyword UPLIT,
which stands for "uncounted pointer to literal". The data segnlent for this
kind of plit does not include a fullword for the count.

4-12 Primary Expressions

4.4.1 Syntax

{PLIT }
UPLIT

{ allocation-unit } <= 16/32

pi it psect-alloca tion
psect-allocation allocation-unit <= 16/32
nothing

(plit-item , ...)

psect-alloca tion PSECT (psect-name)

psect-name name

{ plit-group }
plit-item pli t-expression

plit-string

{ allocation-unit } <= 16/32
plit-group REP replicator OF

REP replicator OF allocation-unit <= 16/32

(plit-item , ...)

16/32 Only =>

{ LONG} <= 32 Only
allocation-unit WORD

BYTE

replicator compile-time-constant-expression

plit-expression link-time-constant-expression

plit-string string-literal

4.4.2 Restrictions

An appropriate psect-declaration (see Section 18.1) must be made before a
psect-allocation attribute (see Section 9.8) can be used in a plit.

The value of a replicator must not be less than zero.

Primary Expressions 4-13

BLISS-16/32 ONLY

The value of a plit-expression allocated as BYTE must lie in the range
-(2**7) through (2**8)-1. The value of a pI it-expression allocated as
WORD must lie in the range -(2**15) through (2**16)-1.

4.4.3 Defaults

When no "REP replicator OF" construct is given, a replicator value of 1 is
assumed.

4.4.4 Semantics

A plit causes constant data to be allocated. The value of the pI it is the address
of the first addressable unit of the data specified by the plit-items. The com­
piler determines an address offset for the plit and the linker binds this offset
to an absolute address.

If the pI it has the keyword PLIT and therefore is a counted plit, then the
count is located in the fullword preceding the data specified by the plit-items.
The count indicates the number of fUllwords occupied by the plit data.

In the simplest case, a plit is just the keyword PLIT or UP LIT followed by a
parenthesized list of plit-expressions or plit-strings. In this case, values of the
items are laid out in storage, starting at the plit address and continuing in the
direction of increasing addresses. The value of each plit-expression occupies a
fullword. The value of each string-literal occupies as many character positions
as the string requires, with unused character positions added, if necessary, to
fill out the final full word.

BLISS-16/32 ONLY

When an allocation-unit is present, it specifies explicitly the unit of storage
to be used. Depending on whether the allocation-unit is LONG, WORD, or
BYTE, the value of each plit-expression occupies a longword, a word, or a
byte, respectively. Similarly, the value of each string-literal occupies as
many bytes as the string requires, with unused bytes added, if necessary, to
fill out the last unit of storage. (The allocation-unit LONG and the long­
word storage unit apply to BLISS-32 only.)

When an allocation-unit is given, the item or items to which it applies are
enclosed in parentheses. Several allocation-units can be used in a single
plit; for any given item, the innermost allocation-unit is the one that
applies.

When both a psect-allocation attribute and an allocation-unit of storage are
used in a plit they may appear in any order. For example:

PLIT PSECT(SOWNS) BYTE(7)

The psect-name (OWN in the example) specified in the attribute m11st be
either predeclared, a default program-section name, or explicitly declared in a
preceding psect-declara tion.

4-14 Primary Expressions

The psect-allocation attribute provides a more convenient way of making
program-section assignments for a plit than is possible using the psect-decla­
ration alone (see Section 9.8).

When a "replicator OF" construct is present, it specifies the repetition of the
plit-group that follows it. The plit-group is evaluated before it is repeated.
Thus, if the plit-group contains an embedded plit, the embedded plit is allo­
cated once, and its address is used in each repetition of the plit-group.

The evaluation of plits is performed by the compiler, the linker, and the
operating system before program execution. Thus during program execution,
a plit represents the constant address of a sequence of constant values.

When the values specified by a plit do not completely fill the last full word of
the plit, the values of the unused character positions are undefined. A pro­
gram that attempts to access the unused character positions is invalid.

Plits are not necessarily allocated in the order in which they are written, and
unused storage may be left between the storage for one plit and that for the
next. Therefore, the relative positions of two plits is undefined. A program
that depends on the relative positions of two plits is invalid.

4.4.5 Pragmatics

A plit-expression is not restricted to numeric-literals. It can be any link-time­
constant-expression, and can therefore include address-valued names whose
value is established at link time. Suppose the following declarations are
given:

OWN
A: I.JECTOR[10] t

EHTERNAL
V' 1\ ,

Then, within the scope of these declarations, the following plit can be used:
UPLIT(A[ll] t 5+2 t }O

This plit occupies three fullwords. The first contains the address of the fifth
element of A. The second contains the address B plus 2. The third fullword
contains the address X.

4.5 Names

A name usually designates the address of a routine or a data segment. The
value of such a name is determined by the compiler, linker, and operating
system together. Within the scope of a given declaration of a name (as defined
in Section 8.2), the value of a name does not change during program execu­
tion.

Primary Expressions 4-15

4.5.1 Syntax

/

I···

'I j letter

{ letter } digi t
name dollar < dollar >

underline t underline
nothing

) ,

letter {AI B I C I --- I Z } al b I c I --- I z

digit { 0 I 1 I 2 I --- I 9 }

dollar $

underline -

A name can be constructed by the %NAME lexical-function, described in
Section 15.5.4. A name constructed in that way can be composed of any
sequence of ASCII characters and therefore need not satisfy the syntax given
above.

4.5.2 Restrictions

A name must not be more than 31 characters long in any case.

The reserved keywords, listed in Appendix A, must not be used as names.

A name is a single lexeme and must not contain a space.

The dollar character is reserved for use in software supplied by Digital.

BLISS-16/36 ONLY

N ames declared as global or external must be unique within their first six
characters (throughout a program), to assure correct linking.

4.5.3 Semantics

When two names are compared, the distinction between uppercase and lower­
case letters is ignored. Thus the following items are considered to be four
instances of the same name:

BETA beta Beta bEta

This equivalence also applies to keywords. The only place where an uppercase
letter is distinguished from a lowercase letter is in a quoted-string.

The interpretation of a name depends on its declaration. Declarations are
described in Chapter 8.

4-16 Primary Expressions

4.6 Blocks

In its simplest form, a block is a means to gather together one or more expres­
sions to form a single primary expression. In its more complicated forms, a
block contains declarations and determines the scope of those declarations. It
provides the fundamental large-scale unit of BLISS program structure.

In the example

5 * (.A + .B)

the block (,A + .B) serves to specify that the value of .A + .B is one of the
operands of the multiply operator. ,

The block

>-(= BEGIN
LOCAL T;
T=2+F();
T = .T * G(.T);
• T
END

contains a declaration of a local data segment T which is used within the
block as a temporary variable. When the block is completed, the contents of T
becomes the value of the block, and is assigned to X.

The complete description of blocks is given in Chapter 8.

4.7 Structure-References

When a data segment consists of "a structure of several values, a structure­
reference is used to fetch or store the individual values. A structure-reference
can also be used to designate the address of a contained value.

Examples of expressions containing structure-references are:

TABLE[Q(.X+2)+3J = 5

F(ALPHA[FIELDNAMEt.J-1J)

The complete description of structure-references· is given in Chapter 11.

4.8 Routine-Calls

A routine-call causes the execution of a routine. The called routine may be a
part of the same module that calls it or it may be part of another module in
the same program. The routine may be written in BLISS or in some other
language that is supported by the target system.

The execution of a routine can have two kinds of effects. First, it can calculate
a value that is returned as the value of the routine-call. Second, it can have
side effects; that is, it can perform actions other than returning a calculated
value, such as modifying data, performing input/output, and so on.

Primary Expressions 4-17

The expression "X = FO" calls the routine named F but does not pass any
arguments. The value returned by F is assigned to location X.

The expression

P,St .){t UPLIT('MESSAGE'»;

calls the routine named P and passes three arguments: the value 5, the con­
tents of location X and the address of an ASCII string. The value returne<i by
routine P, if any, is not used.

The complete description of routine-calls is given in Chapter 12.

4.9 Field-References

A field-reference can designate any portion of storage of up to %BPVAL bits
in length. That is, it designates a field value that can range in size from one
bit to a fullword. In BLISS-32, for example, the field can be a sequence of up
to 32 bits. Normally, a field-reference is used only within a structure-declara­
tion.

The full description of field-references is given in Chapter 11.

4.10 Codecomments

A codecomment places a comment in the object part of the compilation listing
of the module in which it appears. Thus codecomments permit annotation of
the object code.

In addition, a codecomment acts as a barrier to optimizations that are nor­
mally performed by the compiler, in that such optimizations do not cross the
codecomment. Thus it divides the source listing and the object listing into
portions that contain mutually corresponding source and object code.

4.10.1 Syntax

codecomment CODECOMMENT quoted-string ,... block

4.10.2 Semantics

The value of a codecomment expression is the value of the block.

A codecomment places the given quoted-string in the object code listing in the
form of an assembly language comment.

A codecomment expression prevents code motion. That is, expressions in the
source that appear before the codecomment expression are compiled into
instructions in the object code that precede the generated comment, and
source expressions that follow the codecomment expression are compiled into
instructions that follow the generated comment.

4-18 Primary Expressions

A codecomment has other effects on optimization. For example, the compiler
will not place a value in temporary storage (such as a register) prior to a
codecomment and then fetch the value after the codecomment. Instead, the
compiler recalculates the value.

A general description of optimization is given in the user's guide for each
BLISS compiler.

Primary Expressions 4-19

Chapter 5 Computational Expressions

5.1 Operator-Expressions.

5.2

5.1.1 Syntax...
5.1.2 Restrictions
5.1.3 Defaults..
5.1.4 Semantics.

5.1.4.1 Fetch Expressions
5.1.4.2 Prefix Sign Expressions
5.1.4.3 Shift Expression. . . .
5.1.4.4 Arithmetic Expressions.
5.1.4.5 Relational Expressions .
5.1.4.6 Boolean Expressions . .
5.1.4.7 Assignment Expressions

5.1.5 Pragmatics...........

5.1.5.1
5.1.5.2
5.1.5.3

Explicit Parenthesization.
The Order of Evaluation.
Operations on Field Values in BLISS-16/32

Executa ble-Functions

5.2.1 Syntax
5.2.2 Semantics..

5.2.2.1
5.2.2.2
5.2.2.3

SIG Nand ABS Functions
MAX and MIN Functions
The %REF Function .

5.2.3 Pragmatics............

· 5-1

· 5-2
· 5-3
· 5-3
.5-4

.5-5

.5-6

.5-6
· 5-7
.5-8
.5-9
5-10

5-11

5-11
5-12
5-13

5-14

5-15
5-15

5-15
5~16

5-17

5-18

Chapter 5
Computational Expressions

The computational expressions of BLISS provide the operations of the lan­
guage. A single computational expression performs a single basic operation,
like addition or the fetching of a value. A combination of computational
expressions, nested one within another, can perform a long and complicated
sequence of operations.

Computational expressions are classified as either operator-expressions or exe­
cutable-functions. A typical operator-expression is A=O; it assigns a value,
that is, places a value in storage. It is identified by the "=" operator that
appears between the two operands, A and o. A typical executable-function is
MAX(.X,.Y,.Z); it selects the maximum of several values, and it is identified
by the keyword MAX that precedes the parameters .X, .Y, and .Z. All compu­
tational expressions, regardless of their syntax, perform a predefined opera­
tion on given values to produce a result value.

5.1 Operator-Expressions

The notation used for the operator-expressions of BLISS is similar to the
notation of mathematics. The terms "operator", "operand", and "associa­
tivity" that are used in describing BLISS expressions are all drawn from the
terminology of mathematics.

5-1

5.1.1 Syntax

The following syntax diagram gives the many forms of the operator-expres­
sion. The forms are divided by broken lines into priority levels, and an associ­
ativity is given for each priority level. This information is used in Section
5.1.3.

operator- e2
expression

{ ~} e2

•
el

A

e2

decreasing { MOD } priority el * e2
/

el { :} e2

f

/EQL I EQLU I EQLA\
NEQ I NEQU I NEQA

el ~ LSS I LSSU I LSSA
LEQ I LEQU I LEQA
GTR I GTRU I GTRA
GEQ I GEQU I GEQA)

NOT e2

el AND e2

el OR e2

el { EQV}
XOR

e2

el = e2

el} { primary }
e2 operator-expression

executable-function

5-2 Computational Expressions

> e2

Associates
from

right to left

right to left

left to right

left to right

left to right

left to right

right to left

left to right

left to right

left to right

right to left

Every operator-expression has one' of the following general forms:

prefix -operator

left-operand

right-operand

infix-operator right-operand

The operands must be expressions and the operator is either a keyword or a
single delimiter character.

5.1.2 Restrictions

An operator-expression must not have an operand that is a control-expression.
This restriction is expressed in the syntax (in the rule that defines el and e2,)
but is repeated here for emphasis. For example, the operator-expression

x = IF .ALPHA EQL 0 THEN .Xl ELSE .X2

is not valid. (Parentheses can be used to avoid this restriction, by converting
the right-operand to a compound-expression; see Sections 8.1 and 5.1.5.1.)

A prefix-operator must not immediately follow an infix or prefix operator that
has a higher priority. For example,

.A EQL NOT .5

is not valid. (Parentheses can be used to avoid this restriction, as above; see
Sections 8.1 and 5.1.5.1.)

The result of an arithmetic operation ("*", "I", "MOD", "+", and "-") must
not exceed the capacity of a signed fullword; if it does so, the result is unde­
fined.

The value of the right operand of a "MOD" or "I" operator must not be zero.

5.1.3 Defaults

The default parenthesization for operator-expressions is determined by the
priority levels and associativities given in the syntax diagram for operator­
expressions. The following rules apply:

1. Parenthesize the operators of a given expression in order of descending
priority. That is, first parenthesize all fetch operators (highest priority),
then parenthesize all prefix "+" and "-" operators (second highest
priority), then continue in this manner through operators of decrc3s­
ing priority, and finally parenthesize all assignment operators {lowest
priority).

2. If an expression contains several occurrences of operators that have a
given priority, then parenthesize those operators in the order indicated
by the associativity. If the associativity for a given priority level is "left
to right", then parenthesize operators with that priority from left to
right; if the associativity is "right to left", then parenthesize from right
to left.

When an operator is parenthesized, the parentheses surround the operator
and the one or two operands required by the operator.

Computational Expressions 5-3

As an example of the application of these rules, consider the following expres­
sion:

This expression contains four operators, and there are many ways in which it
could be explicitly parenthesized. The default parenthesization is obtained as
follows:

1. The fetch operator has the highest priority and is parenthesized first,
giving:

2. Of the remaining operators in the expression, the two "*,, operators
have the highest priority and are parenthesized next, giving:

(3*R(B»-(2*(.A»+12

3. The remaining operators are "-" and "+" used as infix operators. These
operators have the same priority level and so associativity must be
taken into account. Since associativity is "left to right" for these opera­
tors, the "-" is parenthesized first, giving:

«3*R(B))-(2*(.A»)+12

4. Finally, the remaining operator, "+" is parenthesized, giving:

« (3*R(B» - (2*(.A»)+12)

This fully-parenthesized expression is equivalent to the original, unparen­
thesized expression.

Observe that, in the example just given, the routine-call is treated as a single
construct because it is a complete primary. That is, 3*R(B) is parenthesized
as (3*R(B)) rather than (3*R)(B). Structure-references and field-references
are treated as a singl~ construct in a similar way.

Explicit parenthesization is discussed in Section 5.1.5.1.

5.1.4 Semantics

An operator-expression is evaluated as follows:

1. Evaluate the operand(s) of the expression.

2. Calculate a value according to the specific rules for the given operator.

The value obtained in Step 2 is the value of the expression.

In general, the order in which the operands of an operator-expression are
evaluated is not defined. (See Section 5.1.5.2.)

The order in which assignment expressions, routine-calls, and control-expres­
sions are evaluated is, however, defined as follows:

Every evaluation of an assignment expression, routine-call, or control-ex­
pression in the left operand of an operator-expression is completed before
any evaluation of an assignment expression, routine-call, or control-expres­
sion in the right operand of the operator-expression is begun.

5-4 Computational Expressions

(The consequences of this ordering rule are discussed in Section 5.1.5.2.)

The value of every BLISS expression is a fullword value. It follows that the
value of the operands of an operator-expression are fullword values and that
the value of the operator-expression itself is a fullword value.

In some cases, an operator-expression produces a value that cannot be repre­
sented as a fullword value. In such cases, the value of the expression is unde­
fined and the program is invalid. There is no guarantee that such an overflow
is detected or signaled.

The remainder of this description of semantics is devoted to specific rules for
the various operator-expressions. The operator expressions are grouped ac­
cording to function, but they are nevertheless described in the order in which
they appear in the syntax diagram; that is, in order of decreasing priority.

5.1.4.1 Fetch Expressions - A fetch expression obtains the value that is
stored at a given address. The expression has the form:

+ e2

The operand of a fetch expression can be a field-reference that has a field­
selector; in that case the fetch expression has a special interpretation. How­
ever, the use of a field-selector outside of a structure-declaration is not recom­
mended. For that reason, the effect of a field-selector on a fetch expression is
described later, in Section 11.2.

A fetch expression without a field-selector is evaluated as follows:

BLISS-16/32 ONLY

1. If e2 is the name of a data-segment, then determine its allocation-unit
and extension-attribute from its declaration. If e2 is any other expres­
sion, then use the default allocation-unit (WORD for BLISS-16, LONG
for BLISS-32) and use UNSIGNED as its extension-attribute.

2. Interpret the value of e2 as an address. Depending on whether the
allocation-unit of e2 is LONG, WORD, or BYTE, fetch the contents of
the longword, word, or byte at that address. (LONG and longword
apply to BLISS-32 only.)

3. If the value fetched in Step 2 is a field value (less than %BPVAL bits
long), interpret it as a signed or unsigned value depending on the exten­
sion-attribute. If the attribute is UNSIGNED, then extend it to a full­
word value by placing O's at the left end. If the attribute is SIGNED,
extend it to a fullword value by placing copies of the left-most (sign) bit
at the left end.

4. Use the fullword value obtained in Step 3 as the value of the fetch
expression.

BLISS-36 ONLY

1. Interpret the value of e2 as an address and fetch the contents of the
fullword at that address.

Computational Expressions 5-5

2. Use the fullword value obtained In Step 1 as the value of the fetch
expression.

5.1.4.2 Prefix Sign Expressions - A prefix sign supplies the algebraic sign for
a given value. The expression has the following forms:

{ ~ } e2

The expression is evaluated as follows:

• If the operator is "+", then the value of the expression is the value of e2.

• If the operator is "-", then the value of the expression is the negative
(two's complement) of the value of e2.

5.1.4.3 Shift Expression - This expression performs operations based on the
arithmetic shift instruction of the target system. The expression has the fol­
lowing form:

e 1 .'. e 2

This operation can be explained in terms of a hypothetical shift register that
is valid for all BLISS dialects. The register has n bit positions, where n is 16,
32 or 36 depending upon the target system (%BPVAL). The positions are
numbered starting at the right with position ° (the low-order position) and
ending with position n-I (the sign position), referred to below as position m.

To evaluate an arithmetic shift expression, place the value of ei in the shift
register and let the value of e2 be called v2. Proceed as follows:

a. If v2 is positive, move each bit v2 positions to the left. When a bit is
moved out of the sign position, m, discard it. When a bit is moved out of
position 0, put a zero-bit in position 0.

b. If v2 is zero, do not move any bits.

c. If v2 is negative, move each bit ABS(v2) positions to the right. However,
do not modify the bit in position m (the sign position). When a bit is
moved out of position m-I, put a copy of the sign bit in position m-1.
When a bit is moved out of position 0, discard it.

When the shift is complete, use the contents of the shift register as the value
of the shift expression.

Sometimes an arithmetic shift is used for scaling; that is, to multiply a value
by a power of two. For that application, the following interpretation of an
arithmetic shift is more appropriate:

1. Let vi and v2 be the signed values of the operands and calculate the
following value:

vI *(2**v2)

In this expression, 2**v2 means "2 to the power v2".

2. If the result of Step 1 is not an integer, reduce it to the next smallest
integer. For example, reduce 2.5 to 2 and reduce -2.5 to -3.

5-6 Computational Expressions

3. Represent the result of Step 2 as a signed, two's complement binary
integer. If the result requires more than %BPVAL bits for its represen­
tation, some of the high-order bits of the representation are lost.

This interpretation is entirely equivalent to the interpretation in terms of a
shift register; it is just another way of looking at the same operator.

Examples of arithmetic shift operations are given in the following table:

vi v2 2**v2 vI *(2**v2) vI"v2
10 2 4 40 40

-10 2 4 -40 -40
10 -2 0.25 2.5 2

-10 -2 0.25 -2.5 -3

Ail the values in this table are decimal numbers. Observe that when v2 is
positive, the arithmetic shift performs multiplication by a power of 2. When
v2 is negative and vi is positive, the shift performs division by a power of 2.
When v2 and v 1 are both negative, the shift performs something close to, but
not quite the same as, division by a power of 2.

5.1.4.4 Arithmetic Expressions - The multiplication, division, addition, and
subtraction expressions perform the operations of ordinary arithmetic. The
modulus (MOD) expression obtains the remainder of a division. The expres­
sion has the following form:

The values of the operands are interpreted as signed values, and the result is
represented as a signed value. If the result is outside the range provided by a
signed fullword, then the expression is invalid and the value of the expression
is undefined.

Let vi and v2 be the values of the operands. The expression is evaluated as
follows:

• If the operator is "*,, (multiplication), then multiply vi by v2 and use the
result as the value of the expression.

• If the operator is "I" (division), then proceed as follows:

a. If v2 is zero, the expression is invalid and the value of the expression is
undefined.

b. Otherwise, divide vi by v2. If the result is not an integer, drop its
fractional part without rounding (so that 2.8 becomes 2 and -2.8 be­
comes -2). Use the result as the value of the expression.

• If the operator is "MOD" (modulus), then proceed as follows:

a. If v2 is zero, the expression is invalid and the value of the expression is
undefined.

Computational Expressions 5-7

b. Otherwise, divide vI by v2. Drop the fractional part of the value (so
that 2.8 becomes 2.0 and -2.8 becomes -2.0).

c. Multiply the value obtained in Step b by v2.

d. Subtract the value obtained in Step c from v I and use the result as the
value of the expression.

• If the operator is "+" (addition), then add v2 to vI and use the result as
the value of the expression.

• If the operator is "-" (subtraction), then subtract v2 from vI and use the
result as the value of the expression.

The MOD operator is the remainder of the division of vI by v2. An aid to
understanding the MOD operator is the identity:

(vI MOD v2) EQL (vl-v2*(vl/v2))

Some examples of the "I" and MOD operations are:

vI v2 vI/v2 vI MOD v2
10 3 3 1
10 -3 -3 1
-19 7 -2 -5
-19 -7 2 -5

13 2 6 1
13 8 1 5
13 10 1 3
13 16 0 13

The last four examples show how the MOD operator is used to obtain the last
digit of the binary, octal, decimal, and hexadecimal representations of 13.

5.1.4.5 Relational Expressions - A relational expression is used to compare
two values. The expression has the following form:

EQL EQLU EQLA
NEQ NEQU NEQA
LSS LSSU LSSA

el LEQ LEQU LEQA e2

GTR GTRU GTRA
GEQ GEQU GEQA

The interpretation of the operator itself is determined by the first three letters
of the operator, as follows:

EQL is equal to
NEQ is not equal to
LSS is less than
LEQ is less than or equal to
GTR is greater than
GEQ is greater than or equal to

5-8 Computational Expressions

The interpretation of the operands is determined by the fourth letter of the
operator as follows:

No fourth letter: Interpret operand values as signed values.

Fourth letter is U: Interpret operand values as unsigned values.

Fourth letter is A: Interpret operand values as address values.

If the values of the operand satisfy the relation specified by the operator, then
the value of the relational expression is "I"; otherwise, it is "0". In both cases,
the value is represented as.a full word value.

In both BLISS-16 and BLISS-32, the operators LSSU and LSSA are equiva­
lent, as are GTRU and GTRA, LEQU and LEQA, and GEQU and GEQA.
That is, the unsigned and address forms of the 'magnitude sensitive' rela­
tional operators are equivalent. In BLISS-36, however, the operators LSS
(signed) and LSSA are equivalent, as are GTR and GTRA, and so on. This
reflects a difference in the range of valid address values allowed by the corre­
sponding systems. The distinction between the signed/unsigned and the ad­
dress forms of the operators is provided so that programmers can specify the
desired interpretation of the values being operated on, in a both explicit and
transportable fashion.

Note that all forms of the EQL and NEQ operators are by nature equivalent
in all dialects; the unsigned and address forms are provided for symmetry
with the other relational operators discussed above. Use of the alternate forms
is encouraged for the sake of clarity.

Two examples of the use of relational expressions are:

Expression

-1 LSS 0
-1 LSSU 0

Value

1 (true)
o (false)

As another example, consider the following program fragment:

OWN

\I •

I'

)-(LSSA Y

The value of the relational-expression in this example is 1 (true) because X is
allocated at a smaller address than Y.

5.1.4.6 Boolean Expressions - A Boolean expression is used to apply a
Boolean operation to given values. The expression has the following forms:

NOT e2

el { ~~D} e2
XOR
EQV

Computational Expressions 5-9

Each of these expressions operate on the individual bits of the operands to
produce the individual bits of the result. The specific rules are:

• If the operator is NOT, then the i'th bit of the result is obtained from the
i'th bit of the value of e2 according to the following table:

e2 NOT
o 1
1 0

• If the expression has two operands, then the i'th bit of the result is
obtained from the i'th bit of the value of el and the i'th bit of the value of
e2 according to the following table:

el e2 AND OR XOR EQV
0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 1

The appropriate rule is applied %BPV AL times, once for each bit in the
result.

Boolean logic applies to single bits while BLISS always operates on fullwords.
Therefore special precautions are sometimes required in programming Bool­
ean logic in BLISS.

Suppose, for example, that A is thought of as the name of a Boolean variable;
that is, a variable whose value is always 0 or 1. Suppose, further, that the
negation of the contents of A must be assigned to another Boolean variable,
which is named B. The following assignment might be tried out:

B = (NOT .A);

However, this assignment does not produce a Boolean value. Instead, its effect
(assuming a BLISS-32 fullword, for example) is:

Contents of A
o
1

Contents of B
11111111111111111111111111111111 (binary)
11111111111111111111111111111110 (binary)

The low-order bit is the desired Boolean result, but the other bits clutter up
the result. To assign a Boolean value to B, the high-order bits can be masked
out as follows:

B = ((NOT .A) AND 1); or B = .A XOR 1;

5.1.4.7 Assignment Expressions - An assignment expression is used to store
a given value at a given address. The form of the expression is:

e1 = e2

The left operand of an assignment expression can be a field-reference that has
a field-selector; in that case the assignment expression has a special interpre­
tation. However, the use of a field-selector is not recommended outside of a
structure-declaration. For that reason, the effect of a field-selector on an
assignment expression is described later, in Section 11.2.

5-10 Computational Expressions

An assignment-expression without a field-selector is evaluated as follows:

BLISS-16/32 ONLY

1. If el is the name of a data segment, then determine its allocation-unit
from its declaration. If el is any other expression, then use the default
allocation-unit (WORD for BLISS-16, LONG for BLISS-32).

2. Interpret the value of el as an address. Depending on whether the
allocation-unit of el is LONG, WORD, or BYTE, store the correspond­
ing number of rightmost bits of the value of e2 in the longword, word, or
byte at the given address. (LONG and longword apply to BLISS-32
only.)

3. Use the original value of e2 (that is, the fullword value) as the value of
the assignment expression.

BLISS-36 ONLY

. 1. Interpret the value of el as an address and store the value of e2 in the
fullword at the given address.

2. Use the value of e2 as the value of the assignment expression.

5.1.5 Pragmatics

Two aspects of the interpretation of operator-expressions are discussed here:
the effect of explicit parenthesization, and the order of expression evaluation.

5.1.5.1 Explicit Parenthesization - Any expression can be placed in
parentheses. The value of the parenthesized expression is the value of the
expression within the parentheses. The effect of the parentheses is to delimit
the operands of the expression. Consider the following expressions:

(• A) + 1

.(A+ 1)

The two different placements of the parentheses produce two expressions that
are not equivalent. In the first example, the operand of the fetch operator is
just A, while in the second example, it is A+1.

Every expression is fully parenthesized, if necessary, by the compiler to deter­
mine which operands go with each operator, according to the default rules
given in Section 5.1.3. For example, the default parenthesization of the ex­
pression .A+1 is:

(• A) + 1

This parenthesization follows from the fact that the fetch operator has higher
priority than the addition operator. The expression could be explicitly paren­
thesized, however, as

• (A+ 1)

to specify the interpretation required.

Computational Expressions 5-11

Sometimes an operator-expression must be explicitly parenthesized because
of restrictions that prohibit the use of certain operands (see Section 5.1.2).
Any operand can, itself, be a parenthesized expression because a paren­
thesized expression is a form of block (as defined in Section 8.1), which is a
primary (as defined in Section 4.1). For example, the expression

x = (IF .ALPHA EQL 0 THEN .Xl ELSE .X2)

is valid but the unparenthesized form is not. Again, the expression

.A EQL (NOT .B)

is valid, but the unparenthesized form is not.

5.1.5.2 The Order of Evaluation - As stated in Section 5.1.4, the order in
which operator-expressions are evaluated is largely undefined. By leaving the
order undefined, the language definition permits the compiler to choose an
order of evaluation that is efficient.

In most cases, the results of programs are not affected by the absence of a
defined order of evaluation. Consider, for example, the following expression:

The absence of a defined order of evaluation does not affect the value assigned
to X because all possible orders of evaluation of this assignment (after the
operands are delimited by default parenthesization) produce the same value.

The rule near the beginning of Section 5.1.4, however, states that assignment
expressions, routine-calls, and control-expressions are evaluated in left-to­
right order. In some cases where the order of evaluation is important, this
rule provides the necessary ordering. Consider, for example, the following
example:

BETA = 2*R(.Y) + Q(.Z)

Suppose that Rand Q are names of routines, and that the routines they
designate use the same data (for example, R sets a data segment that Q
fetches). Then it is important that the routines be called in the indicated
order. They are.

It must be said, however, that the example just given is not good program­
ming. It is legitimate for a routine-call to set or use data that is not mentioned
in the routine-call, but a dependence between two routine-calls in the same
expression is dangerously obscure.

Some expressions are invalid because they depend on an ordering that is
undefined. An example is the expression:

It is not valid to assume that the contents of X will be fetched before it is set.
The value assigned to Q could be either the value of .X+.Y or the value of
2* .Y. Assuming that it was the first of the two values that was intended, the
example can be revised by breaking it into two assignments, as follows:

Q
\/ _ \/ .
i\ - • I ,

\I • . I'

5-12 Computational Expressions

This version is valid because expressions that are separated by a semicolon
are always evaluated in sequence, one at a time.

The example just given was quite obviously bad programming. However, the
same problem can arise with certain routine-calls, and then the problem is
less obvious. As an example, suppose that the routine R contains, among
other things, the assignment expression:

\1 _ \/ •
1\ - • I ,

Now consider the expression:
Q= .}(+R();

This statement has the saine problem as the earlier one; there is no rule that
specifies whether the operator that fetches X or the call on the routine R is
evaluated first.

5.1.5.3 Operations on Field Values in BLlSS-16/32 - When all data segments
involved in a calculation occupy fullwords, the calculation is relatively easy to
program. Fullwords accomodate large values and assignment from one full­
word to another never modifies a value.

When a data segment that is smaller than a fullword is involved in a calcula­
tion, problems can arise, either through the assignment of a large value to the
small data segment or through the incorrect extension of the contents of the
small data segment. An example of the latter problem is:

OWN
}-{ : BYTE t
\I •

I'

}.{ = - 1 ;
Y = .>{ + 1 ;

For purposes of discussion, assume that the programmer has a good reason for
restricting X to one byte. Since X does not occupy a fullword, it is extended
before being incremented and assigned to Y. And since X is UNSIGNED by
default, the extended value is 255 rather than -1. Thus the value of Y be­
comes, surprisingly, 256 rather than O.

The program fragment under discussion does not violate any rules of
BLISS-16 or BLISS-32; it is valid. However, since it assigns a negative num­
ber, -1, to a name that is declared UNSIGNED by default, the program
fragment is certainly inconsistent.

The program can be fixed in either of the following ways:

• Change the numeric literal from -1 to 255. This change does not affect the
value assigned to Y, but it does make it clear that the programmer ex­
pects that result.

• Insert the SIGNED attribute to the declaration of X. This change causes
o to be assigned to Y.

The choice between these changes depends entirely on the intentions of the
programmer and cannot be made by looking at this small part of the program.

Computational Expressions 5-13

Related problems can arise (in any dialect) from the use of field-references for
fields that are smaller than a fullword. These are discussed in Section
11.2.5.4.

5.2 Executable-Functions

The executable-functions are called "executable" to distinguish them from
the lexical-functions, which are described in Chapter 15. There are five kinds
of executable-functions, as follows:

standard -functions
su pplementary -functions
condi tion -handling -functions (BLISS-16/32 only)
linkage-functions
machine-specific-functions

Each of these kinds of function is characterized in the following paragraphs.

The standard-functions are general-purpose functions; that is, they are re­
stricted to neither a specific area of system programming nor a specific com­
puter system. The standard-functions are just as fundamental to BLISS as
the operator-expressions. An example of a call on a standard-function is:

MA>{(.){, .Y, 0)

The value of this function is the contents of X, the contents of Y, or 0,
whichever is greatest. The name MAX is predeclared as an executable-func­
tion, so the example just given can appear where MAX is undeclared. The
standard-functions are defined in this chapter (Section 5.2.2).

The supplementary-functions are designed for particular areas of system pro­
gramming. These functions are usually defined and documented in "pack­
ages". One such package consists of the character handling functions. An
example of a call on such a function is:

){ = CH$RCHAR (• PTR3) ;

This assignment reads a character from the position selected by the contents
of PTR3 and assigns it to X. The character handling functions are the only
supplementary-functions defined in this manual. However, it is anticipated
that other packages of supplementary-functions will be added to the language
in the future.

The condition-handLing-functions are used for generating signals for unusual
events or conditions and for controlling the subsequent processing of a signal
(BLISS-16/32 only). These functions are defined in Chapter 17.

The linkage-functions are used in combination with some linkages (calling
sequences) to code routines in a more general way; for example, to code a
routine that can be called with different numbers of parameters in different
calls. The linkage-functions are defined in Section 13.6.

The machine-specific-functions are designed for specific computer systems.
Usually a machine-specific-function represents a single hardware instruction.
Such a function permits the use of the hardware instruction without a "break
out" to assembly language. The use of a machine-specific-function makes a

5-14 Computational Expressions

program machine-dependent. An example of the use of a machine-specific­
function is not given here. Such an example would be misleading without a
detailed description of the context in which it appeared. The use of machine­
specific-functions requires knowledge of both the hardware instruction set and
the optimization strategies of the compiler. Machine-specific-functions are
described in the respective BLISS User's Guides.

5.2.1 Syntax

execu table-function executable-function -name

({ actu~l-parameter, ... }
nothIng

)

executable-
function -name { name}

% name

actual-parameter expression

5.2.2 Semantics

The semantics of the executable-functions is nearly identical to that for oper­
ator-expressions (see Section 5.1). The only difference is that the operation to
be performed is specified by a name at the beginning of the executable­
function (for example, "MAX") instead of by an operator.

The semantics of the standard-functions are given in the following subsec­
tions. The semantics of some supplementary-functions, the character han­
dling functions, are given in Chapter 20. The semantics of the machine­
specific-functions are defined in the User's Guide for each dialect.

5.2.2.1 SIGN and ABS Functions - The SIGN and ABS functions are used to
extract the sign and the absolute value, respectively, from a value. The func­
tions have the form:

{
SIGN}
ABS (e1)

Either of these functions is a compile-time-constant-expression if its actual­
parameter is a compile-time-constant-expression. The values returned by
these functions are:

Function
SIGN(x)

ABS(x)

Value
+1

0
-1

x
-(x)

if x > 0
if x = 0
if x < 0

if x ~ 0
if x < 0

Computational Expressions 5-15

Examples of the use of the SIGN and ABS functions are:

Example Value
SIGN(5) +1
ABS(5) +5

SIGN(-5) -1
ABS(-5) +5

SIGN(O) 0
ABS(O) 0

Observe that, in each of these examples,

SIGN(x)* ABS(x) EQL x

5.2.2.2 MAX and MIN Functions - The MAX and MIN functions are used to
select the largest and the smallest, respectively, from a set of values. The
functions have the form:

{
MAX I MAXU I MAXA}
MIN I MINU IMINA (e1, e2 , ...)

The interpretation of the function itself is determined by the first three letters
of its name, as follows:

MAX
MIN

select the largest value
select the smallest value

The interpretation of the operands is determined by the fourth letter of the
function name as follows:

No fourth letter: Interpret operand values as signed values.

Fourth letter is U: Interpret operand values as unsigned values.

Fourth letter is A: Interpret operand values as addresses.

The value of the function is the largest or smallest of the values of the
operands, depending on the function name.

In both BLISS-16 and BLISS-32, the functions MAXU and MAXA are
equivalent, as are MINU and MINA. That is, the unsigned and address forms
of the MAX and MIN functions are equivalent. In BLISS-36, however, the
functions MAX (signed) and MAXA are equivalent, as are MIN and MINA.
This reflects a difference in the range of valid address values allowed by the
corresponding systems.

The distinction between the signed/unsigned and the address forms of the
functions is provided so that programmers can specify the desired interpreta­
tion of the values being operated on, in a both explicit and transportable
fashion.

5-16 Computational Expressions

Examples of the use of the signed and unsigned maximum and minimum
functions are: -

Example
MAX(-l,O,l)
MAXU(-l,O,l)

MIN(-l,O,l)
MINU(-l,O,l)

Value
1

-1

-1

°
These examples show the difference between the signed and unsigned func­
tions. The signed functions treat -1 (which is represented as a fullword of l's)
as a negative value, whereas the unsigned functions treat -1 as a large positive
value.

An example of the use of the address maximum and minimum functions is:

OWN
}-(: I.'ECTOR[10] t

Y t
z;

Z = MA}{AO{[S] tY)

The assignment sets Z to the value of Y because OWN data segments are
allocated at increasing addresses.

5.2.2.3 The %REF Function - The %REF function provides temporary stor­
age for the value of an actual-parameter in a routine-call or executable-func­
tion. The function has the form:

%REF (el)

The function can be used only as an actual-parameter in a routine- call or
execu ta b le-function.

The function is evaluated as follows:

1. Allocate a temporary fullword and place the value of el in that fullword.

2. Use the address of the temporary full word as the value of the function.

For purposes of discussion, suppose that a programmer has declared a routine
called RHO. The details of the declaration are not given here. All that matters
is that the routine has one parameter, which is the address of a given value,
and returns a result which, presumably, depends on the given value.

Suppose, now, that the value to be passed is not stored in a data segment but
must, instead, be calculated. Specifically, it is the value of the expression:
.X+1. It would not be correct to write:

Y = RHO (+}-(+ 1) ;

In this version, .X+1 would not be used as the given value (which was in­
tended), but rather as the address of the given value.

Computational Expressions 5-17

A correct solution to the problem is to declare and use a temporary data
segment name. However, the use of a temporary just to deal with a calculated
parameter is inconvenient. The %REF function provides a better solution, as
follows:

OWN
\I
1\ t

y;

Y = RHO('X,REF(t>~+1»;

Observe that %REF is not an "undot" operation. The following calls are not
equivalent:

F ('X,REF (t)O)

The routine-call F(X) passes the address of X as the actual-parameter of the
routine F, while the second call passes the address of a temporary data seg­
ment that contains a copy of the contents of X.

5.2.3 Pragmatics

The cost of evaluating a typical executable function is much less than the cost
of evaluating a typical routine-call. The use of an executable-function usually
does not produce a routine call; instead, it is compiled into a few instructions
that are often designed precisely for the required operation. In contrast, a
routine-call usually requires the passing of parameters, the creation of a stack
frame, and the return of a result as well as the inevitable subroutine jump. In
fact, the similarity between an executable-function and a routine-call does
not extend much beyond the similarities in their syntax.

5-18 Computational Expressions

Chapter 6 Control Expressions

6.1 Conditional-Expressions

6.1.1 Syntax...
6.1.2 Restrictions
6.1.3 Semantics.
6.1.4 Pragmatics.

6.1.4.1 Nesting of Conditional Expressions .
6.1.4.2 Used vs. Discarded Values
6.1.4.3 Complete vs. Incomplete Test Evaluation .

6.2 Case-Expressions .

6.2.1 Syntax ...
6.2.2 Restrictions
6.2.3 Semantics.
6.2.4 Pragmatics.

6.3 Select-Expressions.

6.3.1 Syntax ...
6.3.2 Restrictions
6.3.3 Semantics.

6.4 Indexed-Loop-Expressions

6.4.1 Syntax ...
6.4.2 Restrictions
6.4.3 Defaults..
6.4.4 Semantics.
6.4.5 Pragmatics..

6.5 Tested-Loop-Expressions.

6.5.1 Syntax...
6.5.2 Restrictions
6.5.3 Semantics.
6.5.4 Pragmatics.

6.6 Exit-Expressions..

6.6.1 Syntax...
6.6.2 Restrictions
6.6.3 Semantics..

6.6.3.1
6.6.3.2

Leave-Expressions .
Exitloop-Expressions.

6.6.4 Pragmatics.

6.7 Return-Expressions

6.7.1 Syntax ...
6.7.2 Restrictions
6.7.3 Semantics.

.6-2

. .6-2
.6-2
.6-2
.6-3

.6-3

.6-3

.6-4

.6-4

.6-5

.6-5

.6-6

.6-7

.6-7

.6-8

.6-9

.6-9

6-10

6-10
6-11
6-11
6-11
6-12

6-12

6-13
6-13
6-13
6-13

6-14

6-14
6-14
6-15

6-15
6-15

6-15

6-16

6-16
6-17
6-17

Chapter 6
Control Expressions

Early programming languages permitted unrestricted patterns of control flow,
and the logic of many programs was very difficult to follow. More recent
languages have introduced specialized and restricted patterns of flow, and
thus encourage the construction of programs that are better organized.

There are five fundamental kinds of control flow in BLISS: sequential, condi­
tional, iterative, subroutine, and condition handling. Sequential flow, a sim­
ple notion, is defined in Section 8.1.3 as part of the description of blocks.
Conditional and iterative flow is described in this chapter. Subroutine flow is
described in Chapter 12, and condition handling in Chapter 17.

Notable by its absence in BLISS is the familiar GO TO construct. Its absence
prevents the use of arbitrary patterns of flow. Programming without the GO
TO frequently requires more analysis of the problem, but usually results in a
clearer and more reliable program.

In BLISS, the constructs for conditional and iterative flow control are called
control-expressions. Because they are expressions, these constructs can have
values and can be nested within larger expressions.

The syntax diagram for control-expressions is:

con trol-expression

/ condi tional-expression
case-expression
select-expression

-< I . I oop-expreSSlOn
t exi t-expression

return -expression

I
t
>

Loop-expressions are described under two categories: indexed-loops and
tested loops.

6-1

6.1 Conditional-Expressions

A conditional-expression performs a given test and then, depending on
whether or not the test is satisfied, evaluates the first or second of two given
expressions.

An example of a conditional-expression is:

IF .X GTR XMAX THEN F(.X) ELSE G(.X);

In this example the contents of X is compared with a value XMAX. If .X is
greater than XMAX, then the routine F is called; otherwise, routine G is
called.

6.1.1 Syntax

conditional- { IF test THEN consequence ELSE alternatiVe}
expression

IF test THEN consequence

test }
consequence expression
alternative

In addition to the syntactic rules just given, the following syntactic rule is
required:

An "ELSE alternative" that could be part of several conditional-expres­
sions is, in fact, part of the innermost of them.

An example of an expression to which this rule applies is:

IF .A EQL 0 THEN IF .5 EQL 0 THEN X = 5 ELSE X = s;

This expression is interpreted as:

IF .A EQL 0 THEN (IF .5 EQL 0 THEN X 5 ELSE)(S) ;

6.1.2 Restrictions

A conditional-expression that lacks an "ELSE alternative" must not be used
in a context that requires a value.

6.1.3 Semantics

The satisfaction of a test depends on the low-order (rightmost) bit of the value
of the test. If the low-order bit is 1, the test is satisfied; otherwise, the test is
not satisfied.

Expressions used as test expressions are subject to an evaluation rule that is
more flexible (for optimization purposes) than the rule applied in other con­
texts. Specifically, the test-expression evaluation rule is:

Within a test expression, an expression that is not needed to determine the
value of the test expression is not necessarily evaluated.

6-2 Control Expressions

A test expression that is subject to this rule appears in the following condi­
tional-expression:

IF .A OR F(.B) THEN X = 0

If the contents of A is 1 (true), then the value of the entire test expression is 1
(true) regardless of the value of F(.B). Consequently, the call on routine F
may not be evaluated. Writing the test in the reverse order does not change
the situation. (See Section 6.1.4.3.)

Given the preceding description of test evaluation, the interpretation for an
entire conditional-expression can be presented. It is:

1. Evaluate the test.

2. If the test is satisfied, evaluate the consequence and use that value as
the value of the conditional-expression.

3. If the test is not satisfied and if an alternative is present, evaluate the
alternative and use that value as the value of the conditional-expres­
sion. If an alternative is not present, the value of the expression is
undefined.

6.1.4 Pragmatics

6.1.4.1 Nesting of Conditional Expressions - Conditional expressions provide
a way to choose one of two mutually exclusive actions, depending on a speci­
fied test condition. The test, consequence or alternative may be any expres­
sion. It is common, for example, for the consequence or alternative to be a
sequence of expressions (written as a block) as in:

IF .)(EOL 0
THEN (Y = .Y+l; F(.Y); G(»
ELSE (G(); Y = .Y-l);

Control expressions can also be included in these expressions. For example:

IF (IF .X EOL 0 THEN .Y ELSE F(.Y»
THEN

Z = G() + 5;

In this example, the following conditional-expression:

IF .X EOL 0 THEN .Y ELSE F(.Y)

appears as the test expression of another, larger conditional-expression. The
inner test, ".X EQL 0", determines which of the two expressions, ". Y" or
"F(.Y)", is used as the test for the outer conditional.

6.1.4.2 Used vs. Discarded Values - Every BLISS expression has a value;
however, in some contexts that value is used and in others it is discarded. This
aspect of BLISS is discussed here because the conditional-expression is a good
example of an expression that is at home in both contexts. However, the
following discussion applies to the value of any kind of BLISS expression.

An example of a conditional-expression whose value is used is:

D = (IF .1 EOL .J THEN 20 ELSE 30);

Control Expressions 6-3

Suppose that .I and .J are equal; then 20, which is the value of the conse­
quence, becomes the value of the conditional-expression and is assigned to D.
Observe that, because the assignment expression is followed by a semicolon,
its value is discarded, but only after the assignment has been performed.

An example of a conditional-expression whose value is discarded is:

IF .1 EQL .J THEN D = 20 ELSE D = 30;

Suppose, again, that .I and .J are equal; then the evaluation of the conse­
quence causes 20 to be assigned to D and also causes 20 to be the value of the
conditional-expression. Since the conditional-expression is followed by a
semicolon, its value is discarded.

The two expressions just given are equivalent in function, and are close
enough in their cost that the choice between the two examples is ordinarily a
matter of programming style.

6.1.4.3 Complete vs. Incomplete Test Evaluation - As Section 6.1.3 stated, a
test may not be fully evaluated. Furthermore, different occurrences of the
same test may be evaluated in different ways. These variations reflect the fact
that the BLISS compiler performs a far-reaching analysis of the context in
which a test appears and then produces code that is optimized for that con­
text. For this reason, an expression that must be evaluated (because it sets
values or has other side effects) must not be part of a test.

If an assignment or routine-call must be evaluated, its value should be as­
signed to a temporary variable. Then the value of the temporary variable can
be used in the test expression. For example:

IF .A OR F(.5) THEN }{ = 0;

can be rewritten as follows:
T = F (.5) ;
IF .A OR .T THEN X = 0;

6.2 Case-Expressions

A case-expression evaluates an index and then uses the value of that index to
choose one expression to be evaluated from a set of expressions.

An example of a case-expression is:

CASE .X+l FROM -1 TO 8 OF
SET
[lJ: F1();
[2 TO LtJ: F2();
[S, 7, -·lJ: F3();
[INRANGEJ: FLt();
[OUTRANGEJ: FS();
TES

6-4 Control Expressions

In this example, the value of .X+1 is used to choose one of five routines to be
called as follows: '

Value of .X+l

-1
o
1
2
3
4
5
6
7
8

(all other values)

6.2.1 Syntax

case-expression

case-line

case-label

case-index }
case-action

" low-bound I
high-bound
single-value
low-value
high-value I

)

6.2.2 Restrictions

Routine Called

F3
F4
F1
F2
F2
F2
F3
F4
F3
F4
F5

CASE case-index
FROM low-bound TO high-bound OF
SET
case-line ...
TES

[case-label , ...] case-action ,

{

single-value }
low-value TO high-value
INRANGE
OUTRANGE

expression

com pile-time-constant-expression

Every value within the range specified by the low-bound and high-bound
expressions must be accounted for exactly once in a case-expression. If an

Control Expressions 6-5

integer value in the range is not explicitly given, a case-action must be speci­
fied for INRAN GE.

If the case-index can assume a value outside the specified range, a case-action
must be specified for OUTRANGE.

If the INRANGE case-label is used, it must appear after all case-labels of the
form:

single-val ue
or

low-value TO high-value

Thus the only case-label that can follow INRANGE is OUTRANGE.

6.2.3 Semantics

The matching of the case-index to a case-label determines the case-action to
be evaluated. The syntax provides four kinds of case-label. The following list
gives, for each kind of case-label, the condition under which a match occurs.

Case-Label

single-value

low-value TO high-value

INRANGE

OUTRANGE

Condition for a Match

A match occurs if the values of the case-index
and the single-value are equal.

A match occurs if the value of the case-index
is in the range specified by the values of the
low-value and high-value expressions (that is,
the following signed comparisons hold: low­
value::; case-index::; high-value).

A match occurs if the value of the case-index
is in the range specified by the values of the
low-bound and high-bound expressions (that
is, the following signed comparisons hold: low­
bound ::; case-index ::; high-bound) and the
case-index does not match any other case-la­
bel.

A match occurs if the value of the case-index
is outside the range specified by the values of
the low-bound and high-bound expressions.

Given the preceding definition of matching, the interpretation of an entire
case-expression can be presented. It is:

1. Evaluate the case-index.

2. Evaluate the case-action in the case-line that contains the case-label
matched by the case-index.

3. Use the value of the case-action as the value of the case-expression.

The case-expression is designed for a special, very efficient implementation.
In order to make a decision about using a case-expression, a programmer
needs to understand its implementation. A brief discussion follows.

6-6 Control Expressions

The bounds and case-labels of a case-expression are all compile-time-con­
stant-expressions and can therefore be evaluated by the compiler. For this
reason, the compiler can prepare a transfer vector for use in the evaluation of
a case-expression. The transfer vector has one element for each value of the
case-index in the range from low-bound to high-bound. The first element of
the vector provides the address of the object code for the case-action that is
performed when the case-index is equal to low-bound. The second element
provides the address of the object code for the case-action that is performed
when the case-index is equal to low-bound plus one. And so on.

When a case-expression is evaluated during program execution, only a single
operation is required to get to the appropriate case-action. That is, the case­
index is used as an index into the transfer vector. Thus a case-expression does
not require a search through the case-labels.

6.2.4 Pragmatics

A case-expression is most useful when the case-index assumes values in a
small range. An example of the effective use of a case-expression is:

CASE .TYPECODE FROM 0 TO 3 OF
SET
[0]: lITERAl();
[1]: IDENTIFIER();
[2]: KEYWORD();
[3]: PREDCl () ;
TES;

This case-expression is used to choose the routine to be evaluated based on
the value of .TYPECODE. The data segment named TYPECODE contains a
code that is set earlier in the program. Since TYPECODE cannot assume a
value outside the specified range, a case-action is not given for OUTRANGE
and since each of the values within the range is associated with a specific case­
action, a case-action is not given for INRANGE.

Another example of a case-expression is:

CASE .NUMBER FROM 1 TO 10 OF
SET
[lt2t3t5t7]: PRIME = .PRIME + 1;
[INRANGE]: NONPRIME = .NONPRIME + 1;
[OUTRANGE]: ERROR () ;
TES;

This case-expression increments the counter PRIME if the contents of NUM­
BER is 1, 2, 3, 5, or 7. If the contents of NUMBER is 4, 6, 8, 9 or 10, the
counter NONPRIME is incremented. If the contents of NUMBER is outside
the specified range, an error routine is called.

6.3 Select-Expressions

A select-expression evaluates an index and then uses the value of that index to
choose one or more expressions to be evaluated. Two kinds of select-expres­
sions are defined for BLISS: one evaluates all expressions chosen by the index,
and the other only evaluates the first such expression.

Control Expressions 6-7

A select-expression differs from a case-expression in several important ways:

• Select-labels are evaluated at execution time.

• A range of values is not specified for the select-index.

• The select-index and select-labels can be interpreted as signed, unsigned,
or address values depending on the form of the select expression used.

An example of a select-expression, assuming the VAX-II/780 target system
for purposes of illustration, is:

SIZE=(SELECTONE .VALUE OF
SET
[-128 TO 127]:
[-32768 TO 32767]:
[OTHERWISE]:
TES) ;

1 ;

In this example, the contents of VALUE is used to determine the number of
bytes of storage needed for its representation.

If the select-expression in this example is reprogrammed as a case-expression,
it requires a range from -32768 to 32767, and its transfer vector occupies 65536
I6-bit words. For this reason, the case-expression is decidedly impractical for
this example. (The particular example used and the transfer-vector size cited
are not appropriate for all target systems, of course, but do convey the essen­
tial differences between select~ and case-expression usage.)

6.3.1 Syntax

select-expression { SELECT I SELECTU I SELECTA }
SELECTONEISELECTONEUISELECTONEA

select-index OF
SET
select-line ...
TES

select-line [select-label , ...] select-action ;

{ selector }
select-Ia bel low-selector TO high-selector

OTHERWISE
ALWAYS

'I

select-index I
select-action
selector > expression
low-selector
high -selector

)

6-8 Control Expressions

6.3.2 Restrictions

The select-label ALWAYS cannot be used in an expression that begins with
SELECTONE, SELECTONEU, or SELECTONEA.

6.3.3 Semantics

The matching of the select-index to a select-label determines whether or not
the select-action in the select-line containing the select-label is evaluated.
The syntax provides four kinds of select-label. The following list gives, for
each kind of select-label, the condition under which a match occurs.

Select-Label

selector

low-selector TO
high -selector

OTHERWISE

ALWAYS

Condition for a Match

A match occurs if the values of the select-index and
selector are equal.

A match occurs if the value of the select-index is in the
range specified by the values of the low-selector and
high-selector expressions (that is, low-selector s select­
index s high -selector).

A match occurs if a match has not previously occurred.

A match always occurs.

The keyword at the beginning of a select-expression consists of SELECT or
SELECTONE, followed by an optional added letter, U or A. The added letter
affects the matching of the select-index to a particular select-label. Specifi­
cally, it determines the kind of comparison, as follows:

No added letter: Use signed comparison.

Last letter is U: Use unsigned comparison.

Last letter is A: Use address comparison.

Given the preceding discussion of matching and keywords, the interpretation
for an entire select-expression can be presented. It is:

1. Evaluate the select-index.

2. Let the first select-line of the select-expression be the current select­
line.

3. Evaluate the select-labels on the current select-line to determine
whether at least one of them matches the select-index.

4. If a match is found, then evaluate the select-action of the current select-
line. Otherwise, go to Step 6.

5. If the select-expression is a form of SELECTONE, then go to Step 8.

6. If the current select-line is the last select-line, then go to Step 8.

7. Let the select-line that follows the current select-line be the new current
select-line and go to Step 3.

8. Use the value of the most recently evaluated select-action as the value
of the select-expression. If no select-action has been evaluated during

Control Expressions 6-9

this evaluation of the select- expression, use -1 as the value of the select­
expression.

In Step 3 of this interpretation, the select-labels in a single select-line may be
evaluated in any order. Furthermore, they are subject to partial evaluation in
the same way as a test in a conditional-expression (see Section 6.1.3). There­
fore, a select-label must not contain assignments or routine-calls that must be
evaluated because they have important side-effects.

6.4 Indexed-Loop-Expressions

A loop-expression repeatedly evaluates a given expression, the loop-body.
Loop-expressions are classified as indexed-loops (described in this section)
and tested-loops (described in the next section).

An indexed-loop has a loop-index that starts at a given value and is stepped
each time the loop cycles until a final value is reached. The loop-index not
only determines the number of cycles performed by the loop, but can also be
used as data in the calculations performed in the loop-body. An example of an
indexed-loop is:

OWN
1,1: I,IECTOR [10] t

SUM;

SUM = 0;
lNCR I FROM 0 TO 9 DO

SUM = .SUM + .V[.I];

In this loop-expression, the loop-body is a single assignment-expression. The
assignment-expression is evaluated ten times, for the sequence of values of .I
as follows: 0, 1, 2, ... , 9. The effect of the loop is to place the sum of the
elements of the vector V in the data segment named SUM.

6.4.1 Syntax

loop-expression { indexed-loop-expression }
tested -loop-expression

indexed-loop-
{INCR I INCRU I INCRA } expression

DECR I DECRU I DECRA loop-index

{ FROM initial}
nothing

{ TO ~inal }
nothIng

{ BY step }
nothing

DO loop-body

loop-index name

lOOP-bOdY}
initial expression
final
step

6-10 Control Expressions

6.4.2 Restrictions

The value of the step expression in an indexed-loop-expression must be posi­
tive.

6.4.3 Defaults

The initial, final, and step expressions can be omitted in an indexed-Ioop­
expression. The following defaults apply:

Keyword Defaults

INCR FROM 0 TO +infinity BY 1
INCRU FROM 0 TO +infinity BY 1
INCRA FROM 0 TO +infinity BY 1

DECR FROM largest-signed-value TO 0 BY 1
DECRU FROM largest-unsigned-value TO 0 BY 1
DECRA FROM largest-address-value TO 0 BY 1

The default "+infinity" for INCR, INCRU, and INCRA loop-expressions
means that no end test is made if no final expression is given. The "largest
values" referred to are the maximum values accommodated by a signed or
unsigned fullword, or the maximum address value provided, respectively, on
the target system.

6.4.4 Semantics

The loop-index is implicitly declared to be a LOCAL name for the scope of the
loop-body. This implicit declaration supersedes any previous declaration for
that name throughout the indexed-loop. The MAP declaration, described in
Section 10.10, can be used to provide a structure attribute for the loop-index.

The keyword at the beginning of an indexed-loop-expression is INCR or
DECR, followed by an optional added letter, U or A. The added letter affects
the comparison of the index to the first and final expressions. Specifically,

No added letter: Use signed comparison.

Last letter is U: Use unsigned comparison.

Last letter is A: Use address comparison.

Given the preceding discussion of indexes and keywords, the interpretation for
an entire indexed-loop-expression can be presented. It is:

1. Set the value of the loop-index to the value of the initial expression.

2. Evaluate the step and final expressions and save the values of these
expressions.

3. If there is no final expression (so that" + infinity" is assumed by de­
fault), skip to Step 5. Otherwise, perform the end test. The end test is
satisfied if:

a. The keyword is INCR, INCRU, or INCRA, and the value of the loop­
index is greater than the saved value of the final expression; or,

Control Expressions 6-11

b. The keyword is DECR, DECRU, or DECRA and the value of the
loop-index is less than the saved value of the final expression.

4. If the end test is satisfied, evaluation of the loop-expression is complete.
Use -1 as the value of the loop-expression.

5. Evaluate the loop-body.

6. If the keyword is a form of INCR, add the saved value of the step
expression to the loop-index. If the keyword is a form of DECR, subtract
the saved value of the step expression from the loop-index. Go to Step 3.

6.4.5 Pragmatics

The improper declaration of a loop-index is a common programming error. An
example is:

SUM = 0;
INCR I FROM 0 TO 9 00

BEGIN
LOCAL

I ;
SUM = • SUM + • t,) [• I] ;
END;

The preceding program fragment is incorrect because I is used as a loop-index
and then "blocked off" from use in the loop-body by an explicit declaration of
I as LOCAL. The name I in .V[.I] refers to a data segment that is allocated by
the explicit declaration, not to the implicit data segment that contains the
loop-index. The correct version of this example appears at the beginning of
this section (Section 6.4).

6.5 Tested-Loop-Expressions

A tested-loop-expression contains a test expression that is evaluated once
during each loop cycle. The test expression determines whether or not re­
peated evaluation of the loop-body continues.

In a pre-tested loop, the test is made at the beginning of each cycle. If the test
is satisfied, then the loop-body is evaluated and a new cycle begins; otherwise,
evaluation of the loop-expression is complete. An example of a pre··tested-Ioop
IS:

WHILE .PTR NEQ 0 DO
BEGIN
SUM = LIST[.PTR,CONT];
PTR = LIST[.PTR,LINK];
END;

In this example, the loop-body is the BEGIN-END block, with its two assign­
ment-expressions. Each cycle of the loop begins with a test of the contents of
PTR. If the value is not 0, then the block is evaluated and a new cycle begins;
otherwise, evaluation of the loop-expression is complete.

A post-tested-Ioop differs from a pre-tested-Ioop only in the position of the
test. In a post-tested-Ioop, the test is evaluated at the end of each cycle.

6-12 Control Expressions

6.5.1 Syntax

tested-Ioop-
{pre-tested-Ioop } expression

post-tested -loop

pre -tested -loop { WHILE} test DO loop-body
UNTIL

post-tested-Ioop DO loop-body { WHILE }
UNTIL

test

6.5.2 Restrictions

The test in a pre-tested-Ioop or post-tested-Ioop is subject to the same evalua­
tion rules as the test in a conditional-expression, described in Section 6.1.3.
Assignments or routine-calls that must be evaluated because they set values
or have other side effects must not be included as part of a test.

6.5.3 Semantics

The interpretation of a pre-tested-Ioop is:

1. Evaluate the test."

2. Examine the test clause (that is, the "WHILE test" or "UNTIL test").
The test clause is satisfied if the keyword is WHILE and the low-order
bit of the test is 1 or if the keyword is UNTIL and the low-order bit of
the test is O.

3. If the test clause is satisfied, evaluate the loop-body and return to
Step 1.

4. If the test clause is not satisfied, use the value -1 as the value of the
loop-expression.

The interpretation of a post-tested loop is:

1. Evaluate the loop-body.

2. Evaluate the test.

3. Examine the test clause. If the test clause is satisfied, as defined in Step
2 of the interpretation of the pre-tested-Ioop, return to Step 1.

4. If the test clause is not satisfied, use the value -1 as the value of the
loop-expression.

6.5.4 Pragmatics

The keywords WHILE and UNTIL are used to determine the continuation of
a loop. If WHILE is used, then the loop continues if the low bit of the test

Control Expressions 6-13

expression value is 1. If UNTIL is used, the loop continues if the low bit of the
test expression is O. Thus:

WHILE test is equivalent to UNTIL NOT (test)

The most fundamental form of loop is one that begins with:

WHILE 1 DO

Such a loop could cycle indefinitely since the loop test is always satisfied.
Evaluation of the loop can be ended by an exit-expression (see Section 6.6) or
a return-expression (see Section 6.7) that is executed within the loop-body.

6.6 Exit-Expressions

An exit-expression gives three items of information: a command to end the
evaluation of a block, the label of the block to which the command applies,
and optionally a value for the designated block. An example of an exit-expres­
sion is:

LEAVE ALPHA WITH .X-l;

This expression must occur in a block that is labeled ALPHA. It causes
evaluation of that block to end and provides the value of .X-1 as the value of
that block. The labeling of blocks is described in Section 8.1.

6.6.1 Syntax

exit-expression {leave-expression }
exi tloop-expression

leave-expression LEA VE label { WIT!! exit-value}
nothIng

exi tloop-expression EXITLOOP { exit-value}
nothing

label name

exit-value expression

6.6.2 Restrictions

A leave-expression must be contained in a block labeled by the same label
that appears in the leave-expression.

An exitloop-expression must be contained in a loop-expression.

6-14 Control Expressions

Apri11983

If an exit-expression applies to an expression whose value is used, then the
exit-expression must contain an exit-value.

6.6.3 Semantics

The semantics of the two kinds of exit-expression is presented in the following
sections.

6.6.3.1 Leave-Expressions - The interpretation of a leave-expression is:

1. If an exit-value is given, evaluate the exit-value and use that value as
the value of the labeled-block. •

2. If an exit-value is not given, the value of the labeled-block is undefined. •

3. End the evaluation of the labeled-block designated by the label of the
leave-expression.

6.6.3.2 Exitloop-Expressions - The interpretation of an exitloop-expression
IS:

1. If an exit-value is given, evaluate the exit-value and use that value as
the value of the loop-expression.

2. If an exit-value is not given, the value of the loop-expression is unde­
fined.

3. End the evaluation of the innermost loop.

6.6.4 Pragmatics

An exitloop-expression is a special case of a leave-expression that leaves the
innermost containing loop-expression. An exitloop-expression is convenient
because it does not require the use of a label.

An example of an exitloop-expression appears in the following program frag­
ment:

OWN
><: 1.IECTOR[10] ,
ZEROFLAG;

ZEROFLAG = 0;
INCR I FROM 0 TO 9 DO

IF .>H.I] EQL 0
THEN (ZEROFLAG = 1; EXITLOOP);

The elements of the vector X are examined to determine if there is an element
whose contents is O. If an element containing 0 is found, then ZEROFLAG is
set to 1 and evaluation of the loop-expression is ended by the EXITLOOP.
Evaluation of the loop ends when the first zero is found; the elements of the
vector following the first element containing 0 are not examined.

Control Expressions 6-15

An example of a leave-expression appears in the following program fragment:

OWN
/YZ: ARRA,([10,20J,
ZEROFLAG;

LABEL
L;

ZEROFLAG 0; I Initialize to no zeros found
L: BEGIN

INCR I FROM 0 TO 9 DO
INCR J FROM 0 TO 19 DO

IF .)-(YZ[.I,.JJ EOL 0
THEN (ZEROFLAG

END;
1; LEAI,IE l_);

When the leave-expression is evaluated, it ends evaluation of two loops: the
inner loop with index J and the outer loop with index I.

The value of an exit-expression can be used to give a value to a loop. An
example of this use of an exit-expression appears in the following program
fragment:

OWN
VALBUF: VECTOR[10],
BUFLEN;

BUFLEN = 1 +
BEGIN
DECR J FROM 9 TO 0 _DO

IF .VALBUF[.JJ NEO 0 THEN EXITLOOP .J
END;

Assume that the initial elements of VALBUF contain non-zero values, and the
remaining elements contain zero. BUFLEN is the number of non-zero values
in VALBUF. Observe that if a non-zero value is found then the exitloop­
expression ends the evaluation of the loop. If the buffer is all zeros, the
evaluation of the loop runs to completion and the loop value is -1. In both
cases, the value returned is 1 less than the desired number of values.

\

6.7 Return-Expressions

A return-expression is used to end the evaluation of a routine and send control
back to the point at which the routine was called.

6.7.1 Syntax

return-expression

returned-value

6-16 Control Expressions

RETURN { retu~ned-value }
nothIng

expression

6.7.2 Restrictions

A return-expression in a routine that does not have the NOV ALUE attribute
must have a returned-value.

6.7.3 Semantics

The interpretation of the return-expression is:

1. If the return-expression has a returned-value, evaluate the returned­
value and use that value as the value of the routine-body.

2. End the evaluation of the routine-body.

Discussion of return-expressions is presented in the sections on the NO­
VALUE attribute (Section 9.10) and routine-declarations (Section 12.2).

Control Expressions 6-17

Chapter 7 Constant Expressions

7.1 Compile-Time Constant Expressions

7.1.1 Syntax ...
7.1.2 Restrictions
7.1.3 Semantics........

7.2 Link-Time Constant Expressions

7.2.1 Syntax ...
7.2.2 Restrictions
7.2.3 Semantics.

· 7-1

· 7-3
· 7-3
· 7-4

· 7-4

· 7-5
· 7-5
.7-6

Chapter 7
Constant Expressions

A constant expression is an expression that can be evaluated before program
execution begins. The practical and efficient implementation of BLISS re­
quires that constant expressions be used in certain contexts, as specified in
the syntax diagrams. An expression is a constant expression if certain restric­
tions are met, and those restrictions are given in this chapter.

There are two kinds of constant expression. The compile-time constant ex­
pression is the more heavily restricted of the two, and can be evaluated during
the compilation of the module in which it appears. The link-time constant
expression includes the compile-time constant expression as a special case,
and can be evaluated by the compiler, the linker, and the operating system
working together.

This chapter has two sections, one for each kind of constant expression.

7 .1 Compile-Time Const~nt Expressions

This section defines compile-time-constant-expressions. The definition as­
sumes the definition of expressions given in the previous chapters and then
imposes restrictions. The restrictions are designed to permit a compile-time
constant expression to be evaluated during the compilation of the module in
which it appears. When the compiler encounters a compile-time constant
expression, it evaluates that expression and makes use of its value in compil­
ing efficient object code.

Constant values known to the compiler are required in several places in
BLISS in order to give a reasonable interpretation to another language fea­
ture. For example, in order for the compiler to allocate static storage for plits,
the actual sizes of all components must be known - including any repetition
counts. The same consideration applies to the sizes of other static storage
declarations, such as an own-declaration.

In other cases, requiring constant values assures that an efficient implementa­
tion can be provided by the compiler. For example, requiring that all LOCAL
(and STACKLOCAL) storage allocation is of constant size and therefore

7-1

known to the compiler assures that storage allocation can be done efficiently
and that LOCAL data segments can be addressed efficiently.

Some simple examples of compile-time constant expressions are:

5
3 * 15 - 4
7 + ·X.C'A'
MAXC3, 7, 3*15-4)

Compile-time constant expressions often involve names that are declared
LITERAL; for example:

LITERAL
REG 5,
SIZE 47;

BEGIN
OWN X: VECTOR[MAXCSIZE,3)+1];
REGISTER A = REG;

END

Wherever the definition of BLISS requires a compile-time constant expres­
sion, the syntactic name

com pile-time-constant-expression

is used in the appropriate syntax diagram. There are quite a few contexts that
require compile-time constant expressions, and they are scattered through the
language. For convenience, a complete list follows.

A compile-time constant expression must be used as

• The replicator in a plit (Chapter 4)

• The low-bound, high-bound, single-value, low-value, and high-value ex­
pressions in a case-expression (Chapter 6)

• The boundary expression in an alignment-attribute (Chapter 9)

• The ctce-access-actual in a preset-attribute of a data-declaration (Chap­
ter 9)

• The bit-count in a range-attribute of a literal- or external-literal-declara-
tion (Chapter 9)

• The register-number in a register-declaration (Chapter 10)

• The sign-extension-flag in a field-selector (Chapter 11)

• The structure-size in the declaration of a structure-name (Chapter 11)

• The allocation-actual parameter in a structure-attribute (Chapter 11)

• The field-component in a field-declaration (Chapter 11)

• The register-number in a linkage-option (Chapter 13)

• The literal-value in a literal-declaration (Chapter 14)

• Certain parameters in lexical-functions (Chapter 15)

• The lexical-test in a lexical-conditional (Chapter 15)

7 -2 Constant Expressions

• The compiletime-value in a compiIetime-declaration (Chapter 15)

• The level value in an OPTLEVEL module-switch (Chapter 19).

7.1.1 Syntax

com pile-time-constant-expression expression

7.1.2 Restrictions

These restrictions apply to an expression after any macro-calls in the expres­
sion have been expanded.

A compile-time-constant-expression must be one of the following expressions:

1. A numeric-literal.

2. A string-literal.

3. A name that

a. Is declared in any bound-declaration except an EXTERNAL literal­
declaration (as described in Chapter 14), and

b. Is bound to a value that is given by a compile-time-constant-expres­
SlOn.

4. A structure-reference that yields a compile-time-constant-expression
when it is expanded (as described in Chapter 11).

5. A block that has a compile-time-constant-expression (and nothing else)
as its body.

6. An operator-expression that

a. Is not a fetch-expression or an assignment-expression and

b. Has a compile-time-constant-expression as each of its operands.

7. An operator-expression that has the form:

el { r~la} e2

In these forms, rela is one of the relational operators for addresses
(EQLA, NEQA, and so on). Both el and e2 must be link-time-constant­
expressions; furthermore, their values must be addresses that are rela­
tive to the same program section, external data segment, or external
routine name.

8. An executable-function that

a. Is the ABS function, the SIGN function, or one of the max or min
functions, and

b. Has a compile-time-constant-expression as each of its parameters.

Constant Expressions 7-3

9. A supplementary-function that satisfies certain restrictions. Those re­
strictions are not given here but instead appear as part of the definition
of each supplementary-function. (For example, Section 20.2.1.1 states
that the CH$ALLOCATION function is a compile-time-constant-ex­
pression if its parameters are compile-time-constant-expressions.)

10. A conditional-expression that

a. Has a test that is a compile-time-constant-expression, and

b. Has a consequence or alternative that is a compile-time-constant­
expression, depending on whether the test is satisfied or fails.

11. A case-expression that

a. Has a case-index that is a compile-time-constant-expression, and

b. Has at least one case-action that is a compile-time-constant-expres­
sion; namely, that case-action that is chosen by the value of the
case-index.

7.1.3 Semantics

A compile-time-constant-expression is evaluated during the compilation of
the module in which it appears. In all other respects, its interpretation is the
same as that for an unrestricted expression (see Chapters 4, 5, and 6).

7.2 Link-Time Constant Expressions

This section defines link-time-constant-expressions. The definition assumes
the definition of expressions given in the previous chapters, and then imposes
restrictions. The definition of link-time constant expressions includes the
compile-time constant expressions as a special case. The restrictions on a
link-time constant expression are designed to permit the expression to be
evaluated by the compiler, the linker, and the operating system before the
value is needed for program execution.

The need for link-time constant expressions arises in two ways:

• A name that designates storage in a program section is specified as an
offset, not a full, absolute address, by the compiler. The absolute address
cannot be determined until link time, when the program sections are
allocated and their base addresses are determined.

• A name that is declared EXTERNAL is entirely undetermined at com­
pile time because its original declaration is in another module. Its offset,
to say nothing of its absolute address, cannot be determined until link
time, when the module in which the GLOBAL declaration of the name
appears is present.

A simple example of the use of a link-time constant expression is contained in
the following program fragment:

OWN X: VECTOR[10J;

OWN ALPHA: INITIAL ()-([2]) ;

7 -4 Constant Expressions

During compilation, the final value of X is not known; it is expressed as an
offset in the OWN program section. Only at link time is it possible to deter­
mine the absolute address of X, to evaluate X[2] (the address of the third
element of X), and, finally, to supply the initial value for ALPHA.

Wherever the definition of BLISS requires a link-time constant expression,
the syntactic name

link-time-constant-expression

is used in the appropriate syntax diagram. There are five contexts in which a
link-time constant expression is required; they are:

• The plit-expression in a plit (Chapter 4)

• The plit-expression in an initial-attribute of an own- or global-declaration
(Chapter 9)

• The preset-value in a preset-attribute of an own- or global-declaration
(Chapter 9)

• The data-name-value in a GLOBAL bind-data-declaration (Chapter 14)

• The routine-name-value in a GLOBAL bind-routine-declaration (Chap­
ter 14).

7.2.1 Syntax

link -time-constant-expression expression

7.2.2 Restrictions

These restrictions apply to an expression after any macro-calls in the expres­
sion have been expanded.

A link-time-constant-expression must be one of the following expressions:

1. A compile-time-constant-expression.

2. A plit.

3. A name that is declared as one of the following:

a. OWN, GLOBAL, EXTERNAL, or FORWARD. (These are used for
names of permanently allocated data segments.)

b. ROUTINE, GLOBAL ROUTINE, EXTERNAL ROUTINE or FOR­
WARD ROUTINE. (These are used for names of routine segments.)

c. EXTERNAL LITERAL. (This is used for names of literals that are
bound in other modules.)

4. A name that

a. Is declared by a bound-declaration (as described in Chapter 14), and

b. Is bound to a value that is given by a link-time-constant-expression.

Constant Expressions 7-5

5. A structure-reference that yields a link-time-constant-expression when
it is expanded (as described in Chapter 11).

6. A block that has a link-time-constant-expression (and nothing else) as
its body.

7. An operator-expression that has the form:

In these forms, el must be a link-time-constant-expression and e2 must
-be a compile-time-constant-expression.

8. An operator-expression that has the form:

el { r~la} e2

In these forms, rela is one of the relational operators for addresses
(EQLA, NEQA, and so on). Both el and e2 must be link-time-constant­
expressions; furthermore, their values must be addresses that are rela­
tive to the same program section, external data segment, or external
routine name.

9. A supplementary-function that satisfies certain restrictions. Those re­
strictions are not given here but appear as part of the definition of each
supplementary function. (For example, Section 20.2.2.1 states that the
CH$PTR function is a link-time-constant-expression if its first parame­
ter is a link-time-constant-expression and its remaining parameters are
compile-time-constant-expressions.)

7.2.3 Semantics

A link-time-constant-expression is evaluated during the compilation, linking,
and loading of the module in which it appears. In all other respects, its
interpretation is the same as that for an unrestricted expression (see Chapters
4, 5, and 6).

The restrictions presented above seem complicated, but they express the fol­
lowing simple idea:

A link-time-constant-expression is

• Any compile-time-constant-expression,

• A data segment name or external name,

• A data segment name or external name modified by adding or subtracting
a constant value (using + and -), or

• The result of comparing or taking the difference of two link-time-con­
stant-expressions that represent addresses in the same program section or
relative to the same external name (using the relational operators for
addresses) .

7 -6 Constant Expressions

Chapter 8 Blocks and Declarations

8.1 Blocks. . 8-1

8.1.1 Syntax. .8-2
8.1.2 Restrictions .8-2
8.1.3 Semantics . 8-3
8.1.4 Discussion .8-3

8.2 Declarations. .8-4

8.2.1 Syntax. .8-5
8.2.2 Restrictions .8-5
8.2.3 Semantics .8-6
8.2.4 Discussion .8-6

Chapter 8
Blocks and Declarations

8.1 Blocks

Blocks and declarations are the fundamental structural features of BLISS.
They are interdependent and complementary. A block is used to gather a
sequence of declarations and expressions into a single construct. In contrast, a
declaration is used to distribute a single set of information to many places in a
block: To each place where the declared name is used.

This chapter has two sections. One describes blocks, and the other describes
declarations at the most general level. Later chapters describe the specific
types of declarations in detail.

On the inside, a block can contain a long and complicated sequence of decla­
rations and expressions. From the outside, that same block is a single syntac­
tic unit that has a single value. In this way, blocks provide for the large-scale
structuring of a program.

Blocks need not be complicated. They are often used to specify the order in
which operators are to be evaluated; for example:

In this expression, "(.A-I)" is a block. It is used to show that the difference of
.A and 1 should be calculated before multiplication by 2. This block is the
simplest kind of block, a parenthesized-expression.

In some cases, a block is used to gather several expressions together so that
they are evaluated as a unit; for example:

IF .ALPHA NEQ 0
THEN

BEGIN
Q1 = .ALPHA*.S1;
Q2 = .ALPHA*.S2;
END;

An equivalent way of writing this block is:

IF .ALPHA NEQ 0 THEN (Q1 = .ALPHA*.S1; Q2

8-1

The block in these examples is a compound-expression; that is, a block that
contains one or more expressions but does not contain a declaration. The
choice between parentheses and the BEGIN-END pair is entirely a matter of
appearance and readability.

Finally, a block can be used to gather together a sequence of declarations and
expressions of arbitrary length and complexity.

8.1.1 Syntax

block {labeled-block }
unlabeled-block

la beled -block {label: } ... unlabeled-block

label name

unlabeled-block { BEGIN block-body END}
(block-body)

block-body { declaration ... }
nothing

{ bloc~-action ... }
nothIng

{ block-value}
nothing

block-action expression ,

block-value expression

A block immediately contains a given construct (such as a name or a declara­
tion) if it is the smallest block that contains the given construct.

A compound-expression is a block that does not immediately contain any
de clara tions.

A parenthesized-expression is a block that has the form:

(expression)

8.1.2 Restrictions

The label in a labeled-block must be declared by a label-declaration (see
Section 18.4).

A block that appears in a context that requires a value must contain a block­
value expression.

A block must not be empty; that is, it must contain at least one declaration,
block-action, or block-value.

8-2 Blocks and Declarations

8.1.3 Semantics

Consider, first, a block whose evaluation runs to completion without being
prematurely ended by, for example, a leave-expression. The block is evalu­
ated in three steps, as follows:

1. Process the declarations (if any).

2. Evaluate the block-actions (if any) In the order In which they are
written.

3. Evaluate the block-value expression (if any).

If the block has a block-value expression, then the value of that expression is
the value of the block; otherwise, the value of the block is undefined and an
attempt to use that value is invalid.

Most of the processing of declarations is performed before program execution
begins. For example, the information in an OWN declaration is used by the
compiler and linker to allocate storage, provide an initial value, and so on. In
a few cases, the processing of a declaration requires run-time calculations. For
example, the value in a BIND declaration can be given by an expression that
must be evaluated each time the block is entered.

The evaluation of block-actions in order, one after another, is the basis for
sequential flow of control. It is valid to assume that the evaluation of a block­
action is completed before the evaluation of the next block-action begins. In
the course of optimization, the compiler alters the order of some calculations,
but never in a way that affects the results.

In BLISS the block-action plays a role similar to the role of the "statement"
in other high level languages. The semicolon at the end of a block-action has
the syntactic role of separating the block-action from the next component of
the block. In addition, it has the semantic effect of discarding the value of the
expression. Thus it is valid to use an expression whose value is undefined as
the expression in a block-action.

Consider, next, a block that does not run to completion. Such a situation
arises because of a return-expression, leave-expression, or exitloop-expression
that is contained in the block. In this situation, the value of the block is the
value supplied by the return.:expression, leave-expression, or exitloop-expres­
sion. If no value is supplied, then the value of the block is undefined.

8.1.4 Discussion

An example of a block is contained in the following conditional-expression:

IF .0 EOL 0
THEN

BEGIN
LOCAL

TEMP;
TEMP = .)<;
}-< ::: t 'I' ;
Y = .TEMP;
END;

The block is evaluated if the contents of Q is o.

Blocks and Declarations 8-3

The block in this example begins with one declaration, continues with three
block-actions, and does not contain a block-value expression. The declaration
describes a data segment named TEMP, which is allocated for use in this
block only. The block actions are all assignments; they exchange the contents
of X and Y. Clearly, it is important, in this example, that the assignments are
performed in the order written.

The entire example is an expression (a conditional-expression) followed by a
semicolon. Therefore it is a block-action and is part of some larger block (not
shown).

8.2 Declarations

A declaration provides information about the block that contains it. Usually,
the information affects the interpretation of one or more names that are used
in the block. Thus, although the declaration does not directly cause any
action, it does affect the in'terpretation of the block by specifying information
about the names that are declared.

In the simplest case, the information provided by a declaration is just a single
keyword; for example,

OWN
\(.
1\ ,

specifies that X is an OWN name.

Sometimes a declaration gives some of the attributes that are described in
Chapter 9. For example,

GLOBAL
DEL T A: 1.J E C TOR [1 2 0] I NIT I A L (REP 1 2 <) 0 F (- 1)) ;

specifies that DELTA is a GLOBAL name and that it has the given structure­
and initial-attributes.

In other cases, a declaration can give even more information. For example,

GLOBAL ROUTINE EXCH(X,Y): NOVALUE =
BEGIN
LOCAL TEMP;
TEMP = .t}";
•)(= \(. .. "

.Y = .TEMP;
END;

specifies that EXCH is a global routine-name, that it has the novalue-attrib­
ute, that it has the formal-name list (X, V), and that it designates the routine
given in the BEGIN-END block.

A declaration applies to those occurrences of a name that are within its scope.
In the example just given, the declaration

LOCAL TEMP;

applies only to the occurrences of TEMP within the BEGIN-END block. The
example is part of a module (not shown) but any other use of TEMP in that
module lies outside the scope of the local-declaration in the example.

8-4 Blocks and Declarations

8.2.1 Syntax

declaration

data-declaration
structure-declaration
field -declaration
routine-declaration
linkage-declaration
enable-declaration

I bound-declaration t
compiletime-declaration
macro-declaration

I require-declaration
library-declaration
psect-declaration
swi tches-declara tion
label-declaration
buil tin -declaration

\ undeclare-declaration I

The syntax diagrams for the specific kinds of declarations are given in later
chapters. With few exceptions, however, each kind of declaration declares a
user-chosen symbol as a specific kind of name (data-segment name, structure­
definition name, routine name, etc.), and generally provides additional infor­
mation about that name.

A given name can be used more than once in a module and can have different
declarations in different places. The declaration that applies to a given use of
a name governs that name. To find the declaration that governs a given use of
a name, proceed as follows:

Start at the given use of the name and scan backwards through the module.
If the end of a block is encountered, skip over everything contained in that
block. The first declaration of the given name that is encountered during
this scan is the desired declaration.

One declaration of a name can govern many uses of the name. The part of a
module that is governed by a declaration is the scope of that declaration.

8.2.2 Restrictions

Every use of a name must be governed by an explicit declaration. The prede­
clared names (see Appendix A) are an exception to this rule; they can be used
without being explicitly declared.

Two declarations of the same name must not be immediately contained in the
same block.

The two restrictions just given are subject to some exceptions when UNDE­
CLARE declarations are used (see Chapter 18).

A name is declared as global when its declaration begins with the keyword
GLOBAL. A name must not be declared global more than once in a program.

Blocks and Declarations 8-5

8.2.3 Semantics

A declaration supplies the following information about each occurrence of a
name that it governs:

1. The one or more keywords with which the declaration begins.

2. The attributes that appear in the declaration of the name.

3. Other, specialized, iriformation that is included in certain kinds of dec­
laration, such as the routine-body in a routine-declaration, or the
bound-value in a bind-declaration.

Most of the information supplied by the declaration is processed by the com­
piler. For most declarations, part of the processing defines a value for the
declared name. For example, when an own-declaration is processed, an ad­
dress offset is associated with the name, and that address-offset is bound (by
the linker) to the address of a data segment.

8.2.4 Discussion

As defined in Section 8.2.1, the scope of a declaration is the part of a module
that is governed by the declaration. An example of scopes is given in the
following diagram:

BEGIN

OWN ~ Block A
\I
1\ ,

y,
..., .
i- ,

ROUTINE 51 =

BEGIN
LOCAL .,

\I
1\ t

Block B

A;

• + + (Calculation # 1)

END;

••• (Calculation #2)

BEGIN
MACRO Y = 0 'X. ;

• + + (Calculation #3) .. Block C

END

• + + (C,alculation #4)

END

8-6 Blocks and Declarations

The three blocks in this example are enclosed in boxes that are identified as
A, B, and C for convenience of discussion. Block A designates the entire
example (including the contents of Block B and Block C). The details of the
calculations performed by the example block are not important, so they are
omitted. The places where names could be used in calculations are called
Calculation #1, Calculation #2, and so on.

The example contains seven declarations of names. The scopes of the declara­
tions are:

Declaration

X (in Block A)
Y (in Block A)
Z (in Block A)
S1 (in Block A)
X (in Block B)
A (in Block B)
Y (in Block C)

Scope of Declaration

Block A except Block B
Block A except Block C
Block A
Block A
Block B
Block B
Block C

Another way to express this information is to show the declaration that
governs each name in each of the calculations, as follows:

Use of Name Declaration of Name

In Calculation #1
X LOCAL (Block B)
Y OWN (Block A)
Z OWN (Block A)
S1 ROUTINE (Block A)
A LOCAL (Block B)

In Calculation #2
X OWN (Block A)
Y OWN (Block A)
Z OWN (Block A)
S1 ROUTINE (Block A)
A (undeclared)

In Calculation #3
X OWN (Block A)
Y MACRO (Block C)
Z OWN (Block A)
S1 ROUTINE (Block A)
A (undeclared)

In Calculation #4 (Same as in Calculation #2)

Blocks and Declarations 8-7

A second example of scope is:

BEGIN - Block A

OWN
\I
1\ t
\I • I'

ROUTINE S2 I ()O = + >{ + 1. I , 1- Block B

ROUTINE S3 I 0< tY tN) = .. Block C

BEGIN - Block 0
MAP

\{ : REF I.)ECTOR;
• >{ = 0;
DECR I FROM • N TO 0 DO

l + >{ = \I
+ • 1\ + • Y [• I] ; L.

I
Block E

END;

...
END

The blocks in this example are labeled in the same way as in the previous
example. Three of the blocks are implicit; that is, they are assumed to exist
even though a BEGIN-END or parenthesis pair is not used. Specifically,
Blocks Band C are the implicit blocks that each surround the formal-names
and the routine-body of a routine-declaration. Block E is the implicit block
that surrounds the body of a loop.

This example contains ten declarations. Five of the declarations are implicit.
Specifically, the formal-name X is implicitly declared in Block B; the formal­
names X, Y, and N are implicitly declared in Block C; and the loop-index I is
implicitly declared in Block E. The scopes of the declarations are:

Declara tion Scope of Declaration

X (in Block A) Block A except Blocks Band C
Y (in Block A) Block A except Block C
S2 (in Block A) Block A
X (in Block B) Block B
S3 (in Block A) Block A
X (in Block C) Block C
Y (in Block C) Block C except Block D
N (in Block C) Block C
Y (in Block D) Block D
I (in Block E) Block E

Unlike all other declarations, the MAP declaration redeclares a name; that is,
it establishes a new set of attributes to be used with a previously declared
data segment name. Thus, the two declarations of Y in Blocks C and D refer
to the same data segment.

8-8 Blocks and Declarations

Chapter 9 Attributes

9.1 The Allocation-Unit - B~ISS-16/32 Only. . 9-1

9.1.1 Syntax. .9-2
9.1.2 Default. .9-2
9.1.3 Restriction . .9-2
9.1.4 Semantics .9-2

9.2 The Extension-Attribute - BLISS-16/32 Only .9-3

9.2.1 Syntax. .9-3
9.2.2 Restriction . .9-3
9.2.3 Default. .9-3
9.2.4 Semantics .9-3

9.3 The Structure-Attribute .9-3
9.4 The Field-Attribute .9-4

9.4.1 . Syntax. .9-5
9.4.2 Default. .9-5
9.4.3 Semantics .9-5

9.5 The Alignment-Attribute - BLISS-16/32 Only .9-5

9.5.1 Syntax. .9-6
9.5.2 Restrictions .9-6
9.5.3 Default. .9-6
9.5.4 Semantics .9-6
9.5.5 Discussion . .9-6

9.6 The Initial-Attribute. .9-7

9.6.1 Syntax. .9-8
9.6.2 Restriction . .9-8
9.6.3 Default. .9-8
9.6.4 Semantics. .9-9

I 9.7 The Preset-Attribute. .9-9

9.7.1 Syntax. 9-10
9.7.2 Restriction . 9-10
9.7.3 Default. 9-10
9.7.4 Semantics 9-10
9.7.5 Pragmatics. 9-10.1 I

April 1983

9.8 The Psect-Allocation Attribute . 9-11

9.8.1 Syntax. ,. 9-11
9.8.2 Restrictions 9-11
9.8.3 Defaults 9-12
9.8.4 Semantics 9-12
9.8.5 Pragmatics. 9-12

9.9 The Volatile-Attribute. 9-12

9.9.1 Syntax. 9-13
9.9.2 Semantics 9-13

9.10 The Novalue-Attribute . 9-13

9.10.1 Syntax. 9-14
9.10.2 Restrictions 9-14
9.10.3 Semantics 9-14

9.11 The Linkage-Attribute . 9-14

9.11.1 Syntax. 9-15
9.11.2 Restrictions 9-15
9.11.3 Defaults. 9-15
9.11.4 Semantics 9-15

9.12 The Range-Attribute. 9-15

9.12.1 Syntax. 9-16
9.12.2 Restriction . 9-16
9.12.3 Default. 9-16
9.12.4 Semantics 9-17

I 9.13 The Addressing-Mode-Attribute - BLISS-16/32 Only. 9-17

9.13.1 Syntax. 9-17
9.13.2 Default. 9-18
9.13.3 Semantics 9-18

9.14 The Weak-Attribute - BLISS-32 Only. 9-19

9.14.1 Syntax. 9-19
I 9.14.2 Semantics 9-20

9.15 A Summary of Attribute Usage. 9-20

April 1983

Chapter 9
Attributes

Many declarations are used to associate attributes with a declared name, as
well as declaring the name to be of a specific kind. Some attributes are
common to many forms of decla.rations, and some apply to only a few forms.
This chapter describes the attributes themselves.

The following syntax diagram lists the attributes:

attribute

allocation-unit
--extension-attribute
structure-attribute
field-attribute
alignment-attribute
initial-attribute
preset-attribute
psect-allocation
volatile-attribute
novalue-attribute
linkage-attribute
range-attribute
address-Inode-attribute
weak-attribute

\ <= 16/32
<= 16/32

<= 16/32

<= 16/32 Only
<= 32 Only

Each attribute is described in a section of this chapter. A final section sum­
marizes the usage of attributes by showing which attribute can be used with
which kind of declaration.

9.1 The Allocation-Unit - BLISS-16/32 Only

April 1983

An allocation-unit can be used in a data-declaration or a bind-data-declara­
tion. An allocation-unit can appear either as an independent attribute or as
an allocation-actual parameter within a structure-attribute (as described in
Chapter 11).

An allocation-unit is used wherever the "granularity" of storage allocation
must be specified.

9-1

•

Examples of the use of allocation-units in the declaration of nallleS are:

DWN

A: WORD;

GLOBAL

A is a scalar data segment composed of one
word (16 bits).

B: VECTOR[10,BYTE];
B is a vector data segment composed of ten
one-byte elements.

9.1.1 Syntax

16/32 Only = >

allocation-unit

9.1.2 Default

C is a scalar data segment composed (by
default) of one fullword.

{

LONG } <= 32 Only
WORD
BYTE

The default allocation-unit IS WORD for BLISS-16, and LONG for
BLISS-32.

9.1.3 Restriction

As shown in the syntax diagram, the allocation-unit LONG is valid for
BLISS-32 only.

An allocation-unit (used as an attribute) must not be used in the same decla­
ration as a structure-attribute.

If a declaration contains both an allocation-unit (used as an attribute) and an
initial-attribute, then the allocation-unit must precede the initial-attribute.

9.1.4 Semantics

An allocation-unit specifies a quantity of storage, as follows:

LONG
WORD
BYTE

32 bits
16 bits
8 bits

If the declaration of a name does not contain a structure-attribute (and is
therefore a scalar declaration), the allocation-unit determines the quantity of
storage allocated for the entire data segment. If the declaration has a struc­
ture-attribute, the attribute can include an allocation-unit as one of its alloca­
tion-actuals.

9-2 Attributes

9.2 The Extension-Attribute - BLISS-16/32 Only

Like an allocation-unit, an extension-unit can be used in a data-declaration or
a bind-data-declaration. An extension-attribute can appear either as an inde­
pendent attribute or as an allocation-actual within a structure-attribute (as
described in Chapter 11).

I!

Examples of the use of an extensIon-attribute are:

OWN

A: SIGNED WORD;

A is a scalar data segment composed
of one signed word.

GLOBAL B is a vector data segment composed
B: 1.IECTOR [10 ,B YTE ,S I GNED] ; of 10 signed bytes.

LOCAL C is a scalar segment composed of
C: UNS I GNED BYTE; one unsigned byte.

9.2.1 Syntax

16/32 Only =>
extension-attribute

9.2.2 Restriction

{
SIGNED }
UNSIGNED

An extension-attribute (used as an attribute) must not appear in the same
declaration as a structure-attribute.

9.2.3 Default

The default extension-attribute is UNSIGNED.

9.2.4 Semantics

An extension-attribute specifies the value extension rule to use when fetching
the contents of a scalar field value. SIGNED specifies that the high order bit
of the fetched value (the sign bit) is to be used. UNSIGNED specifies that
zero bits are to be used.

The extension-attribute is normally specified in combination with the alloca­
tion-unit BYTE in BLISS-16, and with BYTE or WORD in BLISS-32.

9.3 The Structure-Attribute

A structure-attribute can be used in a data-declaration or a bind-data-dec1a­
ration. It associates the declared data-segment name to a separately declared

Attributes 9-3

structure-definition, causing the allocation of the data-segment to be con­
trolled by that structure-definition. Subsequent access to the data-segment is
also controlled by the associated structure-definition. (A structure-definition
is declared in a structure-declaration. BLISS provides several predeclared
structure-definitions, as described in Chapter 11.)

An example of the use of a structure-attribute is:

OWN
)<: I,JECTOR [8] ;

The structure-attribute here is VECTOR[8]. The attribute specifies that X is
a data-segment with a VECTOR structure. The predeclared structure-defini­
tion named VECTOR is described in Section 11.9. In accordance with that
definition plus the allocation-actual, 8, specified in the attribute, X is allo­
cated as a sequence of eight fullword elements that are designated X[O]
through X[7]. (In BLISS-16 or BLISS-32, an allocation-unit can be used as an
additional allocation-actual, e.g., VECTOR[8,BYTE], to specify the size of
the elements allocated.)

A structure-attribute can name a user declared structure-definition as well as
one of the standard, predeclared structures described in Chapter 11. In any
case, the interpretation of the structure-attribute depends entirely on the
structure-declaration that governs the given structure-name.

As an example:

GLOBAL
Y: MATRI)<[10];

The structure-attribute here is MATRIX[10]. The attribute specifies that Y is
a MATRIX structure. BLISS does not have a predeclaration for the name
MATRIX; therefore, this example must occur in the scope of an explicit
STRUCTURE declaration of MATRIX. The interpretation of the example
depends entirely on that STRUCTURE declaration.

The structure-attribute is fully described in Chapter 11, together with the
structure-declaration.

9.4 The Field-Attribute

A field-attribute can be used in data-declarations and bind-data-declarations.
It specifies one or more field-names that are to,be associated with the declared
data-segment-name. This association allows the field-names to be used in
structure-references to the data segment, as described in Chapter 11. (The
field-attribute is meaningful only in declarations of structured data seg­
ments.)

The definition of a field-name, in terms of field-component values, is given in
a field-declaration that governs the use of that name. Field-declarations are
also described in Chapter 11.

As a "shorthand" notational convenience, a group of field-name definitions
can be identified (in the field-declaration) by a field-set-name and can then
be referred to in a field-attribute by that single name.

9-4 Attributes

9.4.1 Syntax

field-attribute FIELD ({ field-name }
field -set-name

, ...)

field-name } name
field-set-name

9.4.2 Default

If a field-attribute is not specified for a data-segment-name, no field-names
may appear in an ordinary-structure-reference to the corresponding data seg­
ment.

9.4.3 Semantics

A field-attribute specifies the set of field-names that can validly appear in an
ordinary-structure-reference to a data segment declared with the given field­
attribute. A field-set-name in a field-attribute specifies a set of field-names
that can so appear. If no field-attribute is given, then no field-name is valid in
such a reference.

9.5 The Alignment-Attribute - BLISS-16/32 Only

An alignment-attribute can be used in an OWN, GLOBAL, LOCAL, or
STACKLOCAL data-declaration. In BLISS-32, an alignment-attribute can
also be used in a psect-declaration, as described in Section 1B.1.1. This attrib­
ute indicates the address alignment required for a data segment relative to the
different levels of address boundaries (e.g., byte, word, longword, quadword).

The purpose of the alignment-attribute is to specify the 'smallest' boundary
at which the data segment may be allocated, generally a 'larger' boundary
than the default one. For example, an alignment-attribute might be used to
specify that a particular byte-scalar segment is to start at a word boundary
only, rather than at any byte boundary which is the default. Use of this
attribute can result in unused storage left between tlie previously allocated
data segment and the data segment to which the attribute applies.

The alignment-attribute indicates a particular address boundary by means of
a boundary value, n, which specifies that the binary address of the data
segment must end in at least nO's. For example:

OWN
A:BYTE ALIGN(1);

The alignment-attribute, ALIGN(l), specifies that data-segment A is to be
allocated at an address that ends with at least one 0; which is to say that it is
to be aligned to a word boundary.

An example of BLISS-32 usage of the alignment-attribute is given in Section
9.5.5.

Attributes 9-5

9.5.1 Syntax

16/32 Only =>

alignment-attribute ALIGN (boundary)

boundary compile-time-constant-expression

9.5.2 Restrictions

The value of boundary must be a positive integer.

BI __ ISS-16 ONLY

The value of boundary must be either 0 or 1, corresponding to byte- or
word-boundary alignment respectively.

The value of boundary must not exceed the value of the program-section
alignment boundary for the storage class being allocated.

The value of boundary in a LOCAL or STACKLOCAL declaration must not
exceed 2.

9.5.3 Default

The default alignment depends on the kind of data that is declared, as fol­
lows:

Kind of Data

BYTE scalar
WORD scalar
LONG scalar
Any structure
Any structure

9.5.4 Semantics

Default Alignment

ALIGN(O)
ALIGN(l)
ALIGN(2)
ALIGN(l)
ALIGN(2)

<= 32 Only
<= 16 Only
<= 32 Only

Suppose the value of the boundary expression is n. The compiler allocates the
declared data segment in the unused portion of the appropriate program
section at the smallest possible address offset that ends with at least n zero
bits.

9.5.5 Discussion

The alignment-attribute is a nontransportable feature, is not required for
most purposes, and should only be used with a thorough knowledge of the
target system's storage organization and accessing mechanisms.

A data segment declared as OWN or GLOBAL is allocated in the appropriate
OWN or GLOBAL program section. Its location is defined in terms of an
address offset, that is, an address relative to the beginning of the program
section. In BLISS-16 and BLISS-32, any address constitutes the boundary of

9-6 Attributes

one or more allocation units: Thus all addresses are byte boundaries, every
other address (relative to zero) is a word boundary as well, and in BLISS-:32
every fourth address is also a longword boundary, and so on.

By default, a data segment is allocated at an address offset that is "natural"
for either its size or type, e.g., a word-size scalar is aligned to a word bound­
ary, and a structured segment is alwa'ys fullword aligned, whatever its alloca­
tion unit.

In BLISS-16, where the value of boundary may be 0 or 1, the only meaningful
use of the alignment-attribute is to force byte-size scalar items to a word
boundary, presumably for reasons of execution efficiency in special situations.

In BLISS-32 the boundary value for OWN and GLOBAL data segments is
limited only by physical-storage considerations. Further, the alignment­
attribute can be used to specify a smaller as well as a larger boundary than
the default (except for byte items, obviously), essentially for purposes of stor­
age compaction versus execution efficiency.

A data segment declared in a LOCAL or STACKLOCAL declaration is allo­
cated in the current stackframe. The stack handling mechanism imposes
certain restrictions such that the alignment specified for a LOCAL or
ST ACKLOCAL data segment cannot exceed a longword boundary in
BLISS-32.

An example of the use of an alignment-attribute in BLISS-32 is:

OWN
>(: ALIGN(3);

In this example the alignment-attribute, ALIGN(3), directs the compiler to
allocate data-segment X in such a way that its binary address offset ends in at
least three O's. That is to say, it directs the compiler to align the segment to a
quadword boundary. Depending on where availa.ble storage begins, the com­
piler must leave from zero to seven bytes of unused storage in order to satisfy
this alignment attribute.

9.6 The Initial-Attribute

An initial-attribute can be used in an OWN, LOCAL, STACKLOCAL,
REGISTER, GLOBAL-REGISTER, EXTERNAL-REGISTER, or GLOBAL
data -declara tion.

An initial-attribute supplies one or more initialization values, which are as­
signed to the data segment before program execution begins.

Examples of the use of initial-attributes are:

OWN)-(: INITIAL(2);

GLOBAL Y: VECTOR[GJ

INITIAL(REP G OF (-1»;

16/32 Only =>

X is initialized to 2.

Each element of Y is initialized
to -1.

GLOBAL Z: I.JECTOR [20 ,B YTE J The first 4 bytes of Z are initial-
INITIAL(BYTE('STOP', ized to S, T, 0, and P; the last

REP 1 G 0 F (0»); 16 bytes to O.

Attributes 9-7

I

I

9.6.1 Syntax

ini t ial-a t tri bu te INITIAL (initial-itenl , ...)

{ initial-group }
initial-item ini tial-expression

initial-string

{ allocation-unit } <= 1G/32
ini tial-grou p REP replicator OF

REP replicator OF allocation-unit <:::::.. 16/:32

(initial-item , ...)

16/:32 Only =:>

{ LONG} <= 32 Only
allocation-unit \VORD

BYTE

replicator com pile- time-constant-expression

ini tial-expression expression *

initial-string string-literal

* The initial-item may be an executable expression; but it is restricted in use
to a link-time-constant-expression for OWN and GLOBAL declarations. For
LOCAL, STACKLOCAL, REGISTER, GLOBAL REGISTER, and
EXTERNAL REGISTER declarations, the initial-item may be an executable
expression.

9.6.2 Restriction

The initial-item value(s) must not occupy more storage than is allocated for
the data segment.

If a declaration contains both a structure-attribute and an initial-attribute,
then the structure-attribute must precede the initial-attribute.

If a declaration contains both an allocation-unit (used as an attribute) and an
initial-attribute, then the allocation-unit must precede the initial-attribute.
(BLISS-16/32 only.)

9.6.3 Default

BLISS-16/32 ONLY

If an initial-attribute appears in the declaration of a scalar name without a
structure-at tribute being present, the default allocation-unit for the initial-

9-8 Attributes April 1983

items in the initial-attribute is the allocation-unit of the scalar name. Oth­
erwise (without a structure-attribute), the default allocation-unit is WORD
for BLISS-H) and LONG for BLISS--:~:2.

9.6.4 Semantics

\Vith the exception of the case where a LOCAL declaration is handling a non­
plit item, the list of initial··items is evaluated as it would be in a plit. The
resulting value(s) is placed in the data segment at the time it is allocated. If
the initial-itenl(s) occupies less storage than 1 he data segment. the trailing
bits of the data segment are initialized to zeros.

9.6.5 Pragmatics

I
I

The use of the INITIAL attribute is the preferred method for initializing I
scalar data segments, \Yhile the use of the PRESET attribute (as described in
Section 9.7) is the best method for initializing structured storage.

9.7 The Preset-Attribute

April 1983

A preset-attribute can be used in an OWN, LOCAL, STACKLOCAL, REGIS­
TER, GLOBAL-REGISTER, EXTERNAL-REGISTER, or GLOBAL data­
declaration that declares a structured data-segment. It allows static initializa­
tion of individual fields of a structured data-segment.

A preset-attribute supplies an initialization value for one or more fields of a
data structure, one value per specified field. These values are assigned to the
data segment before program execution begins. Unspecified portions of the
data segment are set to zero.

An example of the use of PRESET is given in the following program fragment,
involving a block structure defined with field-narnes:

FIELD lINK_lIST_ITEMS =
SET
ll_I.JAlUE
ll_TYPE
ll_lAST
ll_NE)<T
TES;

[OtOt%BPVAl/2tO] ,
[Ot%BPVAl/2,%BPVAl/2,OJ I

[1 to ,'X,BPI.!AL ,r)] t

[2 t <) t 'X, B P 1.J A l t 0 J

GLOBAL llIST_HEAD : BlOCK[3] FIElD(lINK_lIST_ITEMS)
PRESET(ell_NEXT] llIST_HEADt

ell_LAST] = llIST_HEAD,
Cll_VAlUE] = -1) ;

In this example the origin block of a l,inked list is initialized with suitable
values; note that the list of preset values is order independent. The LL­
TYPE field is set to zero by default. (The predeclared literal (,'.;,BPVAL used in
the example is defined in Section 14.1.5.)

Attributes 9-9

I

I

•
I

9.7.1 Syntax

preset-attribute PRESET (preset-item, ...)

preset-item [ctce-access-actual , ...] = preset-value

ctce-access-actual { compile-time-constant-expression }
field-name

preset-value expression *

* For OWN and GLOBAL declarations the preset-value must be a link-time­
constant-expression. For LOCAL, STACKLOCAL, REGISTER, GLOBAL
REGISTER, and EXTERNAL REGISTER declarations the preset-value may
be an executable expression.

The field-name is defined in Chapter 11.

9.7.2 Restriction

Within the declaration (OWN, LOCAL, etc.), the preset-attribute must be
preceded by a structure-attribute.

If any preset-item contains a field-name, the preset-attribute must be pre­
ceded by a field-attribute designating that field-name.

The preset-attribute and initial-attribute may not be used in the same decla­
ration.

A declaration may not contain mdre than one preset-attribute.

The preset value(s) must not occupy more storage than is allocated for the
data segment, and the fields described by the preset-items may not overlap.

When expanded, the structure-reference formed by concatenating the declara­
tion name with the bracketed access-actual list of a preset-item must only
yield a link-time-constant-expression for an OWN or GLOBAL declaration.
The value of that expression must be within the range of addresses allocated
to the data-segment. Also, if that expression is a field-reference, it must
conform to the dialect-specific restrictions on field-references used in an as­
signment context, as specified in Section 11.2. (See the Pragmatics subsection
below.)

9.7.3 Default

When a preset-attribute appears in one of the declarations, any portion of the
segment not described by a preset-item is set to zeros upon allocation.

9.7.4 Semantics

The declaration name (OWN, LOCAL, etc.) is concatenated with each preset­
item, in turn, and the expression(s) so formed are evaluated as if they were
assignment expressions. The resulting value(s) are placed in the data segment

9-10 Attributes April 1983

April 1983

at the time it is allocated. Any portions of the data-segment not explicitly
initialized by preset-items are set to zeros.

9.7.5 Pragmatics

The use of the PRESET attribute is the preferred method for initializing •
nonscalar data-segments, although some simple VECTOR-type structures
can be initialized conveniently with the INITIAL attribute. Initialization of
most heterogenous structures with the INITIAL attribute is, however, imprac- •
tical or at least an error-prone practice.

Note that a psect-allocation attribute can be used to conveniently assign an
initialized data-segment to write-protected storage; see Section 9.8.

The restrictions placed on the access-actual list of the preset-item (Section
9.7.2) seem complicated, but they simply reflect the fact that assignment­
expressions involving a structure-reference as their left operand are, in effect,
evaluated during the initialization process and must meet the following condi­
tions:

1. Must be resolvable at link time for an OWN or GLOBAL declaration. I

2. Must result only in stores to locations allocated to the named data­
segment (with no spillover), and

3. Must result in assignments that are valid for the intended target sys­
tem(s), in terms of field size and word-boundary constraints (if any).
For example, in all dialects a field to be stored into (or fetched from)
may not be longer than a fullword.

The specific restrictions on field-references (the typical result of structure­
reference expansions) are fully described in Chapter 11.

These restriction come into play only in the case of a relatively complicated or
'tricky' structure, such as one whose definition contains a routine call or
performs bounds checking, for example. They pose no problem for the initiali­
zation of predeclared structures and other comparably straightforward user­
declared structures.

Attributes 9-10.1

9.8 The Psect-Allocation Attribute

The psect-allocation attribute can be used in declarations of permanent data­
segments and in declarations of routines. It specifies the name of the program
section in which the declared data-segment or routine (code segment) is to be
allocated. Program sections and the psect-declaration are described in Chap­
ter 18.

The psect-allocation attribute provides a more convenient means of making
program-section assignments for OWN, GLOBAL, and code segments than is
possible using the psect-declaration alone. A major use of the psect-allocation
attribute is for assigning an OWN or GLOBAL data-segment to write-pro­
tected storage. For example:

GLOBAL LITERAL
MAIN_POWER:::: 0, AW<_POWER :::: i, PRIMARY._BYPASS :::: Z,
VALVE_i :::: 3, VALVE_Z :::: a, SECOND_BYPASS:::: 5, DUMPER 5,
OFF:::: 0, ON :::: i ;

GLOBAL STARTUP_STATE: BITVECTOR[7] PSECT($PLIT$)
PRESET([MAIN_POWER] ON ,

[AUX_POWER] OFF ,
[VALVE_i] ON ,
[VALVE_Z] OFF ,
[PRIMARY_BYPASS] OFF,
[SECOND_BYPASS] ON,
[DUMPER] OFF)

This fragment of a supposed process-control program establishes a control
table of symbolically-named binary values for use by several modules and,
since its content should never be modified, it is allocated in the $PLIT$
program-section, by means of the PSECT attribute. "$PLIT$" names the
default program section for plit storage, which is given read-only access pro­
tection (if available on a given target system).

9.8.1 Syntax

psect-allocation PSECT (psect-name)

psect-name name

9.8.2 Restrictions

The psect-allocation attribute may appear in the following data- and routine­
declarations only:

FORWARD, OWN, GLOBAL, EXTERNAL,
FORWARD ROUTINE, ROUTINE, GLOBAL ROUTINE, EXTERNAL
ROUTINE

The psect-name specified in the attribute must either be a predeclared, de­
fault program-section name or be explicitly declared in a psect-declaration
prior to its use. See Section 18.1.

Attributes 9-11

If specified in a FORWARD or FORWARD ROUTINE declaration, the psect­
name must match the psect-name explicitly or implicitly associated with the
controlling declaration of the data-segment or routine.

9.8.3 Defaults

If no psect-allocation attribute is specified, then the declared data-or code­
segment is allocated in the prograln section established by the most recent
psect-declaration for the segment's storage class (OWN, GLOBAL, or
CODE), or in the appropriate default program section.

9.8.4 Semantics

In declarations other than EXTERNAL or EXTERNAL ROUTINE, the
psect-allocation attribute causes the declared data-segment or code-segment
to be allocated in the named program section.

In EXTERNAL and EXTERNAL ROUTINE declarations, the psect-alloca­
tion attribute informs the compiler that the declared segment is allocated in
the named program section of another module (presumably), and any attrib­
utes defined for that program section in the current module are to apply.

9.8.5 Pragmatics

While the psect-allocation attribute need not appear in a FORWARD or
FORWARD ROUTINE declaration, its specification in those declarations
can favorably affect the quality of code generated for the segment in
question, particularly in the case of FORWARD ROUTINE. (Note that
there is no default program-section name associated with a FORWARD or
FORWARD ROUTINE declaration.)

The psect-allocation attribute is essentially a convenience, allowing the pro­
grammer to more easily achieve what would otherwise require repeated uses of
the PSECT declaration.

9.9 The Volatile-Attribute

A volatile-attribute can be used in any data-declaration other than a REGIS­
TER declaration. It can also be used in a bind-data-declaration.

For purposes of optimization, the compiler assumes that the contents of a
data segment will be changed during execution in either of two ways: by an
assignment or by a routine-call. The volatile-attribute specifies that the con­
tents of the declared data segment can change in a third way: by an action
that is not directly specified in the module being compiled. This attribute
causes the compiler to assume that the value in the declared data segment

9-12 Attributes

can change at any time. Consequently the compiled code must fetch the
contents of that data segment anew for each fetch in the BLISS program and
must store a value for each assignment.

An example of the use of a volatile-attribute is:

GLOBAL INPUT_PORT: VOLATILE;

In this example, it is assumed that INPUT_PORT designates a data segment
that is set, through an interrupt routine, whenever a fullword of input arrives.

9.9.1 Syntax

volatile-attribute VOLATILE

9.9.2 Semantics

A volatile attribute is a warning to the compiler that the contents of a data
segment can change at any time. A module that does not declare each such
data segment as VOLATILE is invalid.

If the volatile-attribute appears in the declaration of the name of a REF
structure (as described in Sections 11.1.3.5 and 11.4), then the volatile attrib­
ute applies both to the storage for the address of the structure and to the
storage for the structure itself.

9.10 The Novalue-Attribute

The novalue-attribute can be used in a routine-declaration or a bind-routine­
declaration. It specifies that the declared routine does not return a value.

It is usually possible to determine by inspection whether or not a routine
returns a value. However, in order to facilitate optimization and to provide
clear documentation, this information must be given as part of the declaration
of the routine-name. Specifically, the novalue-attribute must or must not be
used depending on whether the routine does not or does return a value.

An example of a routine that does not return a value is:

ROUT I NE E><CH (>< t Y) ~ NOl.JALUE::: There is a NOVALUE attribute, so the
BEG I N routine does not return a value; in-
LOCAL TEMP; stead, its effect is to exchange the val-
TEMP ::: +. ><; ues of X and Y.
+ >< =
• Y :::

END;

\I •
•• I'
.TEMP;

Attributes 9-13

This routine, having no RETURN expression, returns control after complete
evaluation of the routine-body. Since the routine-body is a block that consists
solely of block-actions (expressions terminated by a semicolon) and has no
block-value, no value is returned. The NOV ALUE attribute affirms this pro­
cedure-like characteristic. See Section 8.1 for a discussion of block-actions
and block-values.

Note carefully that if routine EXCH did not contain the NOV ALUE attrib­
ute, the compiler would assume that a null expression (namely the block­
value expression) exists between the last expression shown and the block
terminator. This in turn would cause the compilation diagnostic "Null expres­
sion appears in value-required context". When such a routine is called, it may
appear to return a value, but that value is unpredictable.

Alternatively, if the last assignment expression were not terminated by a
semicolon (and NOVALUE was specified), the routine would indeed have a
block-value - the value of that assignment expression. However, that value
would be discarded prior to return of control because of the NOVALUE attrib­
ute. Thus a routine with the NOV ALUE attribute never has a return value, no
matter what value-implying expressions appear in its body.

9.10.1 Syntax

novalue-attribute NOVALUE

9.10.2 Restrictions

A routine that is declared with a novalue-attribute must not be called in a
context that requires a value.

9.10.3 Semantics

The value of a routine that is declared with the novalue-attribute is unde­
fined.

9.11 The Linkage-Attribute

The linkage-attribute can be used in a routine-declaration or a bind-routine­
declaration. It specifies a linkage-name that is associated with the declared
routine-name. This, in turn, causes the routine-name to be associated with
the linkage-declaration that governs that linkage-name. The linkage-defini­
tion identified by the linkage-name controls both the code generated for the
given routine and the code generated for any call to that routine.

9-14 Attributes

A linkage is the machanism used to call a routine; it saves registers, passes
parameters, and controls other aspects of communication between a routine­
call and the called routine. The default linkage-name BLISS in BLISS-16/32,
or BLISS36C in BLISS-36, identifies the standard linkage convention for
BLISS-compiled routines.

The linkage-attribute is simply a name; it is the declaration of that name that
specifies the linkage to be used. BLISS includes several predeclared linkage­
names. Linkage-declarations and predeclared linkage-names are described in
Chapter 13.

9.11.1 Syntax

linkage-attribute linkage-name

linkage-name name

9.11.2 Restrictions

A linkage-name must be one of the predeclared linkage-names or must be
governed by a linkage-declaration.

A linkage-attribute given for a routine-name in an EXTERNAL ROUTINE,
FORWARD ROUTINE, BIND ROUTINE, or GLOBAL BIND ROUTINE
declaration must be the same as the linkage-attribute given in the correspond­
ing ROUTINE or GLOBAL ROUTINE declaration.

9.11.3 Defaults

The default linkage-attribute is the predeclared linkage-name BLISS for
BLISS-16 or BLISS-32, and the linkage-name BLISS36C for BLISS-36.

9.11.4 Semantics

A linkage-attribute associates a linkage-name with a routine-name. Thus, the
linkage-attribute indirectly controls the linkage-related code generated for a
ROUTINE or GLOBAL ROUTINE DECLARATION, and the code generated
for all calls to the routine, according to the definition of the specified linkage­
name.

9.12 The Range-Attribute

The range-attribute can be used in a literal-declaration or external-literal­
declaration. These declarations are described in Chapter 14.

Attributes 9-15

A literal-name designates a constant value that is used as data but is stored in
the object code rather than in a data segment. When the compiler is provided
with sufficient information and the literal value is small enough, a short field
can be generated for the value rather than a fullword.

The range-attribute specifies the quantity of storage required for a literal and
indicates whether the field is to be interpreted as a signed or unsigned repre­
sentation.

An example of the use of the range-attribute is:

EXTERNAL LITERAL X: UNSIGNED(4);

The effect of this attribute in a BLISS-32N AX-II context is as follows.
(Analogous effects would be obtained on other target systems.) At the time
the module containing this declaration is compiled, it is assumed that the
value of X can be accomodated in a VAX-II literal-operand specifier, and
code is generated on that assumption. Then, when the modules are linked, a
check is made for agreement of the range-attribute with the external value
and the value of X is then placed in the empty fields provided for it.

Suppose the following declaration appears in another module of the same
program:

GLOBAL LITERAL X = 12: UNSIGNED(4);

This declaration not only specifies that X designates the value 12, but also
that it can be stored as an unsigned integer in four bits. This attribute both
documents that a range-attribute assumption exists in another module of the
program and allows the compiler to verify that the assumption is satisfied.

9.12.1 Syntax

range-attribute { SIGNED }
UNSIGNED

(bit-count)

bit-count com pile-time-constant-expression

9.12.2 Restriction

The value, n, of bit-count must be in the range 1 s n s %BPVAL. That is, the
field specified may not be longer than a fullword.

9.12.3 Default

The default range-attribute is SIGNED(%BPVAL).

9-16 Attributes

9.12.4 Semantics

The range-attribute specifies the maximum number of bits required for a
given literal value, and indicates whether the value is to be interpreted as a
signed or unsigned integer.

9.13 The Addressing-Mode-Attribute - BLISS-16/32 Only I

April 1983

Each data or routine name has, as its value, an address. As the compiler
translates a BLISS module into an object module, it replaces each use of a
data or routine name with an offset address value. The final address value is
supplied later by the linker and the operating system. But the compiler does
provide a sequence of bytes in the object code to accommodate the final
address value.

A VAX-II address can be encoded as either absolute or relative, and in either
a short or long form, and a PDP-II address can be encoded as either absolute I
or relative. The addressing-mode-attribute determines the way in which the
address is encoded. For every use of a data or routine name, the default rules
specify an addressing-mode-attribute (if one is not given explicitly).

An addressing-mode-attribute can be given in an OWN, GLOBAL,
FORWARD or EXTERNAL declaration, described in Chapter 10, or in
a ROUTINE, GLOBAL ROUTINE, FORWARD ROUTINE or
EXTERNAL ROUTINE declaration, described in Chapter 12. This attribute
can also be used in a PSECT declaration (Section 18.1), and in a SWITCHES
declaration or a module-head switch (Sections 18.2 and 19.2 respectively).
The latter two uses indirectly control a number of individual data- and/or
routine-declarations.

9.13.1 Syntax

16/32 Only =>

addressing -mode-
attribute ADDRESSING_MODE { mode-16}

mode-32

mode-16 { ABSOLUTE}
RELATIVE

{ GENERAL }
mode-32 ABSOLUTE

LONG-RELATIVE
WORD-RELATIVE

Attributes 9-17

I

I
I

•

I

I

9.13.2 Default

Consider a name that is declared by one of the following declarations:

own-declaration
global-declaration
forward -declara tion
external-declaration
routine-declaration
global-routine-declaration
forward -routine-declaration
external-routine-declaration
psect-declaration

For a name so declared, the addressing-mode-attribute is obtained by the
following rules (in the order of their application):

1. If a default PSECT is associated with one of these declarations, the mode
declared in the psect is used. Thus OWN, GLOBAL, and ROUTINE
declarations would use psect addressing modes of OWN, GLOBAL, and
CODE, respectively (as described in Section 1B.1).

2. If the dedaration type is FORWARD or FORWARD ROUTINE, the mode
established by the ADDRESSING_MODE (NONEXTERNAL= ...) mod­
ule-head switch or the switches declaration is used (as described in Sec­
tions 1B.2 and 19.2).

3. If the declaration type is EXTERNAL or EXTERNAL ROUTINE, the
mode established by the ADDRESSING_MODE (EXTERNAL= ...)
module-head switch or the switches declaration is used (as described in
Sections 1B.2 and 19.2).

If a PSECT attribute is given, the addressing mode specified in the psect is
used (as shown in the following example):

OWN
X: PSECT(GEN)

ADDRESSING_MODE(WORD RELATIVE);

If an ADDRESSING_MODE attribute is given, the addressing mode speci­
fied by the switch is used. If both PSECT and ADDRESSING_MODE are
used, then the last attribute encountered determines the addressing mode.

9.13.3 Semantics

The compiler translates each use of a data or routine name into an encoded
address. An encoded address consists of an encoding-type followed by a dis­
placement. The encoding-type specifies the addressing-mode-attribute and
other information, while the displacement is an address specification. The
encoding-type always occupies one byte, while the displacement occupies a
number of bytes that is determined by the addressing-mode-attribute.

9-18 Attributes April 1983

The addressing-mode-attribute instructs the compiler in the preparation of an
encoded address, as follows: .

Attribute Instruction to Compiler

GENERAL Let the linker make the choice between using a
relative displacement or an absolute value. Provide
four bytes for the displacement, or value, and one
byte for the addressing mode descriptor.

ABSOLUTE Use an absolute value. If BLISS-32 put in four
bytes. If BLISS-16 put in two bytes.

LONG-RELATIVE Use a. relative displacement, and put it in four
bytes.

WORD-RELATIVE Use a relative displacement, and put it in two
bytes.

RELATIVE Use a relative displacement, and put in two bytes.

The RELATIVE and WORD-RELATIVE attributes apply to most names
(each is the ultimate default for its mode), and are appropriate for references
within executable images that are not unusually large. The LONG-RELA­
TIVE attribute is used in the infrequent situation where 16 bits is not suffi­
cient to represent a relative address. The ABSOLUTE attribute is used for
names that designate addresses that are fixed in the address space, such as
system service routines, device register addresses, and data. The GENERAL
attribute is used when the choice between an absolute or relative address
cannot be made at compile time.

9.14 The Weak-Attribute - BLISS-32 Only

Apri11983

The weak-attribute can be used in a declaration that has either GLOBAL or
EXTERNAL in its keyword phrase. Such declarations are described in many
places in the following chapters.

The weak-attribute affects the way in which the VAX-II linker and librarian
programs handle global names. (This is discussed further under EXTERNAL
declarations, in Section 10.4.3.)

9.14.1 Syntax

32 Only =>

weak-attribute WEAK

Attributes 9-19

I
•
I

I

9.14.2 Semantics

The \veak-attrihute specifies a property of fl nanle for use by the linker and
librarian programs, as descrihed in thp manuals for those programs.

9.15 A Summary of Attribute Usage

9-20

Each attribute description in this chapter includes a list of the declarations in
which the attribute can be used. That information is gathered together in the
following table, where an "x" marks each attribute that can he used in each
kind of declaration.

Allocation-Unit
Extension

Structure
Field

Alignment

OWN
GLOBAL
FORWARD
EXTERNAL

LOCAL
STACKLOCAL
REGISTER
GLOBAL REG.
EXTERNAL REG.

MAP

BIND
GLOBAL BIND

ROUTINE
GLOBAL RTN.
FORWARD RTN.
EXTERNAL RTN.

X
X
X
X

X
X
X
X
X

X

X
X

BIND ROUTINE
GLOBAL BIND RTN ..

LITERAL
GLOBAL LIT.
EXTERNAL LIT.

Attribute~

X X X X
X X X X
X X X
X X X

X X X X
X X X X
X X X
X X X
X X X

X X X

X X X
X X X

Initial
Preset

Psect-Allocation
Volatile

Novalue

I
Linkage

X X X
X X X

X
X

X X
X X
X X
X X
X X

X
X
X
X

X
X
X
X

X
X

X

X
X

X
X
X
X

X
X

1

X
X
X
X

X
X

Range

! Addressing-Mode

+
Weak

• X
X X
X
X X

X

X
X X
X
X X

X

X
X X
X X

April 198a

Chapter 10 Data Declarations

10.1 Own-Declarations .

10.1.1 Syntax. . .
10.1.2 Restrictions
10.1.3 Semantics .

10.2 Global-Declarations

10.2.1 Syntax. . .
10.2.2 Restrictions
10.2.3 Semantics .

10.3 Forward-Declarations

10.3.1 Syntax ...
10.3.2 Restrictions .
10.3.3 Semantics . .

10.4 External-Declarations

10.4.1 Syntax. . .
10.4.2 Restrictions
10.4.3 Semantics .

10.5 Local-Declarations.

10.5.1 Syntax ...
10.5.2 Restrictions
10.5.3 Semantics .
10.5.4 Pragmatics.

10.6 Stacklocal-Declarations

10.6.1 Syntax. . .
10.6.2 Restrictions .
10.6.3 Semantics . .

10.7 Register-Declarations.

10.7.1 Syntax ...
10.7.2 Restrictions
10.7.3 Semantics .
10.7.4 Pragmatics.

10.8 Global-Register-Declarations

10.8.1 Syntax. . .
10.8.2 Restrictions
10.8.3 Semantics

10.9 External-Register-Declarations

10.9.1 Syntax ...
10.9.2 Restrictions
10.9.3 Defaults .
10.9.4 Semantics

10.10 Map-Declarations

10.10.1 Syntax ..
10.10.2 Restrictions
10.10.3 Semantics .

10-2

10-2
10-3
10-3

10-4

10-4
10-4
10-4

10-5

10-5
10-6
10-6

10-6

10-6
10-7
10-7

10-7

10-8
10-8
10-8
10-9

10-9

10-9
10-9
10-9

10-9

· 10-10
· 10-10
· 10-11
· 10-11

· 10-12

· 10-12
· 10-13
· 10-13

· 10-14

· 10-14
· 10-14
· 10-15
· 10-15

· 10-15

· 10-16
· 10-16
· 10-16

Chapter 10
Data Declarations

A data-declaration describes one or more data segments. Taken together, the
data declarations of a program specify the storage required for the data on
which that program operates.

The data-declarations can be divided into three categories, as follows:

• A permanent declaration begins with OWN, GLOBAL, or EXTERNAL.
It describes a data segment that remains allocated throughout the execu­
tion of the program.

• A temporary declaration begins with LOCAL, STACKLOCAL, REGIS­
TER, GLOBAL REGISTER, or EXTERNAL REGISTER. It describes a
data segment that exists only during each execution of a given block.

• An overlay declaration begins with MAP. It describes a data segment
that has been declared elsewhere, but that is given new attributes by this
declaration.

A data-declaration provides some or all of the following information about
each data segment it declares:

• The name of the data segment.

• The address of the data segment, which is determined by the kind of
declaration and by some of the attributes. The address of the data seg­
ment becomes the value of the declared name.

• The scope of the name of the data segment, which depends on the posi­
tion of the declaration within the program and on the kind of declaration.

• The longevity of the data segment, which is determined by the kind of
declaration (permanent or temporary).

• The attributes of the data segment, which are given as part of the decla-
ration and by the default rules for attributes.

The attributes applicable to data-declarations are described in Chapter 9
except for the structure-attribute which is described in Chapter 11 along with
other aspects of data structures.

10-1

The syntax diagram for data-declarations is:

data-declaration

10.1 Own-Declarations

/ own-declaration \

I global-declaration

I

forward '. dec lara tion
external-declaration
local-declara tion

I stacklocal-declaration I

\

register-declaration
map-declaration

I

The storage for an OWN data segment is permanent; that is, it is created
before program execution begins and exists throughout program execution.
The scope of an own-declaration is its immediately containing block (includ­
ing any lower-level blocks contained therein). That is to say, the name of an
OWN data segment can be used only within the block in which it is declared.

An example of an own-declaration in a routine-declaration context is:

ROUTINE KILO =
BEGIN
OWN

){: INITIAL(O);
)-(= .)-(+1;
IF .X LEQ 1000 THEN 1 ELSE 0
END;

The data segment named X is allocated and initialized only once, before
prograrn execution begins. It can be referred to by the name X only within the
routine KILO.

10.1.1 Syntax

own -declara tion OWN own-item , ... ;

own-item own-name { : own-attribute ... }
nothing

own-name name

/ allocation-unit , < = 16/32 Only
extension -a ttri bu te < = 16/32 Only
structure-a ttri bute

I field-attribute
own -attribute < alignment-attribute <= 16/32 Only

I initial-attribute
preset-attribute
psect-al1ocation
volatile-attribute

10-2 Data Declarations

10.1.2 Restrictions

BLISS-16/32 only: A structure-attribute must not appear in the same decla­
ration as an allocation-unit or an extension-attribute. If the declaration con­
tains both an allocation-unit attribute and an initial attribute, the allocation­
unit must precede the initial-attribute.

A field-attribute can appear only in a declaration that has a structure­
attribute.

If the declaration contains both a structure-attribute and an initial-attribute,
the structure-attribute must precede the initial-attribute.

If the declaration contains both a structure-attribute and a preset-attribute,
the structure-attribute must precede the preset-attribute.

An initial- and a preset-attribute must not appear together in the declaration.

The declaration must not contain more than one initial- or preset-attribute.

If the preset-attribute contains a field-name, the preset-attribute must be
preceded by a field-attribute that designates the field-name.

10.1.3 Semantics

The data segment designated by a name that is declared OWN is allocated in
the current program section for the storage class OWN, as described in Sec­
tion 18.1. Program sections for· the storage class OWN are created before
program execution begins and are not discarded until after program execution
is complete.

The data segment for an OWN name is always allocated at the lowest possible
address within the unused portion of the current OWN program section, after
allowing for address-alignment requirements (if any).

In BLISS-16, data segments larger than one byte are allocated at even ad­
dresses, which may leave an unused byte preceeding the data segment. One­
byte data segments are allocated at the next available byte.

In BLISS-32 the address must be consistent with the alignment-attribute,
which is either given explicitly or determined by default. The alignment­
attribute may dictate some unused bytes, as described in Section 9.5.

In BLISS-36 there are no special alignment rules; each data segment is allo­
cated at the next available word.

Because OWN data segments are allocated in this way, the address of one
OWN data segment can be calculated relative to that of another, provided
that both segments are declared in the same module and allocated in the
same program section.

When the storage for an OWN data segment is created by the linker, it is set
to O's. If the data segment is given an initial value in the declaration, it is
ini tialized by the linker.

Data Declarations 10-3

10.2 Global-Declarations

Like an OWN data segment, the storage for a GLOBAL data segment is
permanent; that is, it exists throughout program execution. In contrast to an
OWN data segment, the' name of a GLOBAL data segment can be used in
several separate blocks; that is, in the block in which it is declared GLOBAL
and in each block in which it is declared EXTERNAL.

Usually the block in which a name is declared GLOBAL is in one module and
the blocks in which it is declared EXTERNAL are in other modules. In this
way, a data segment can be shared among several modules.

Aside from the initial keyword, the syntax of the own-declaration and global­
declaration is identical, except that in BLISS-32 the weak-attribute is per­
mitted in a global-declaration.

10.2.1 Syntax

global-declaration GLOBAL global-item , ... ;

global-item global-name { : glo?al-attribute ... }
nothIng

global-name name

j allocation-unit < = 16/32 Only
, extension-attribute I <= 16/32 Only

structure-attribute
} field-attribute

global-attribute alignment-attribute <= 16/32 Only
initial-attribute
preset-attribute

I psect-alloca tion) volatile-attribute
weak-attribute <= 32 Only

10.2.2 Restrictions

A name is declared as global when the declaration begins with the keyword
GLOBAL (except for GLOBAL REGISTER, Section 10.8). A name must not
be declared as global more than once in a program.

All the attribute restrictions given in Section 10.1.2 also apply to GLOBAL
declarations.

10.2.3 Semantics

The data segment designated by a name that is declared GLOBAL is allo­
cated in the current program section for the storage class GLOBAL, as de­
scribed in Section 18.1. Program sections for the storage class GLOBAL are

10-4 Data Declarations

created before program execution begins and are not discarded until after
program execution is complete.

The data segment for a GLOBAL name is allocated in the same predictable
way as the data segment for an OWN name. Therefore, a programmer can
determine the relative addresses of any two GLOBAL data segments that are
declared in the same module and are allocated in the same program section.

A GLOBAL data segment can be accessed by name within the scope of the
declaration of its name. In addition, it can be accessed within the scope of any
external-declaration of its name.

10.3 Forward-Declarations

A forward-declaration is used to give the attributes of a name before storage is
allocated for the name. A forward-declaration is always used in conjunction
with an own-declaration or a global-declaration; it is used to avoid what
would otherwise be a vicious circle of definitions. Such situations are unusual,
but they do arise.

As an example, suppose that X and Yare pointers; that is, X and Yare each
the name of a data segment that contains the address of another data seg­
ment. Suppose, also, that X and Y must be initialized to point to each other.
The required declarations are:

FORWARD

OWN
Y;

}<: INITIAL(Y) t

Y: INITIAL(}-();

The forward-declaration declares Y so that it can be used to initialize X
which, in turn, is used to initialize Y.

10.3.1 Syntax

forward -de clara tion FORW ARD forward-item, ... ;

forward-item forward-name { : forward-attribute ... }
nothing

forward -name name

allocation-unit " <= 16/32 Only
t extension-attribute I <= 16/32 Only
I structure-attribute I

forward-attribute < field-attribute
I psect-alloca tion I

I volatile-attribute
addressing-mode-attribute <= 32 Only

Data Declarations 10-5

10.3.2 Restrictions

Each name that is declared by a forward-declaration must also be declared, a
second time, by an own-declaration or a global-declaration that is in the same
block.

After the default attributes have been filled in, a forward-declaration of a
name and the associated own-declaration or global-declaration of the same
name must be identical with respect to all of the attributes allowed in the
forward -declaration.

All of the attribute restrictions given in Section 10.1.2 also apply to FOR­
WARD declarations.

10.3.3 Semantics

The forward-declaration associates attributes with a name without allocating
the storage for that name.

10.4 External-Declarations

A name that is declared EXTERNAL is assumed to be declared GLOBAL
somewhere else in the same program. The linker treats each occurrence of the
name governed by an external-declaration as if it were governed by the global­
declaration of the same name. Thus the external declaration does not cause
the allocation of a data segment but rather extends the accessibility of a data
segment that is allocated elsewhere.

10.4.1 Syntax

external-declara tion EXTERNAL external-item , ... ;

external-item external-name { : external-attribute ... }
nothing

external-name name

allocation-unit \ <= 16/32 Only
extension-attribute I <= 16/32 Only

I
structure-attribute

t field-attribute
external-attribute < psect-allocation I volatile-attribute

addressing-mode-attribute <= 32 Only
weak-attribute <= 32 Only

\

10-6 Data Declarations

10.4.2 Restrictions

A name that is declared EXTERNAL must also be declared GLOBAL some­
where else in the same program. In BLISS-32, this restriction does not apply
if the EXTERNAL name has the weak-attribute.

All of the attribute restrictions given in Section 10.1.2 also apply to EXTER­
N AL de clara tions.

After default attributes have been filled in, the following attributes of the
EXTERNAL and GLOBAL declarations of a given name must be identical:

allocation-unit
extension-attribute
structure-attribute
field-attribute
volatile-attribute

10.4.3 Semantics

The linker generates and uses a list of all names that are declared GLOBAL in
the entire program. For each such name, the list shows the value of the name
and some of the attributes of the name. This list is used in determining the
value of a given EXTERNAL name as follows:

• The list is searched for an entry for the given name. If such an entry is
found, then it supplies the value of the given EXTERNAL name.

• In BLISS-32 only, if no entry for the given name is found and the given
name has the weak-attribute, then 0 is used as the value of the given
name.

• If no entry for the given-name is found and the given name does not have
the weak-attribute, then the program is not valid.

In BLISS-32 only, when an EXTERNAL name has the value 0 (determined
because no entry was found and the weak-attribute was present), the program
can be executed provided an attempt is not made to use the given name as an
address.

An EXTERNAL name already declared can be encountered in a GLOBAL or
FORWARD declaration. If such a case arises, the following is done: First,
parse the declaration. Then compare the attributes of the EXTERNAL decla­
ration with those of the GLOBAL or FORWARD declaration; if there is a
mismatch, generate a warning message.

10.5 Local-Declarations

The storage for a LOCAL data segment is temporary; that is, it exists only
during the execution of the block in which it is declared. The data segment is

Data Declarations 10-7

allocated either in the stackframe for the block in which it is declared, or in a
general register that is free.

The scope of a LOCAL data-declaration is its immediately containing block
excluding any lower-level contained routines. That is, unlike OWN data seg­
ments, "up-level" references to a LOCAL data segment from a lower-level
routine are not permitted.

10.5.1 Syntax

local-declaration LOCAL local-item , ... ;

local-item local-name { : local-attribute ... }
nothing

local-name name

allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only
structure-attribute

local-attribute field-attribute
align men t-attribu te <= 16/32 Only
initial-attribute
preset-attribute
volatile-attribute

10.5.2 Restrictions

A local-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the declara­
tion of another routine, routine B. If a name is declared LOCAL in routine A
and is not declared in routine B, then the name cannot be used in routine B.
(Such usage would be an "up-level" reference, which is prohibited for local­
names.)

A program must not depend on the relative positions of two LOCAL data
segments in storage.

All of the attribute restrictions given in Section 10.1.2 also apply to LOCAL
declarations.

BLISS-32 only: An alignment-attribute used in the declaration of a LOCAL
name must not have a boundary expression whose value is greater than 2.

10.5.3 Semantics

The data segment for a LOCAL name is allocated either in the current stack
frame or in a general regi"ster. In either of the following situations, a given
LOCAL data segment is always allocated in the current stack frame:

• The given data segment occupies more than a fullword.

10-8 Data Declarations

• The name of the given data segment is used as an independent address;
that is, its use is not confined to a fetch expression or to the left-hand-side
of an assignment expression.

In other situations, the choic~ between stack frame and register is based on
strategies that the compiler uses for code optimization.

10.5.4 Pragmatics

A temporary data segment (such as a LOCAL data segment) must be used for
a recursive variable in a recursive routine.

10.6 Stacklocal-Declarations

A STACKLOCAL data segment is always allocated in the current stack
frame. In all other respects, it is the same as a LOCAL data segment.

10.6.1 Syntax

stacklocal-declaration STACKLOCAL local-item , ...

The local-item is as defined in Section 10.5.1.

10.6.2 Restrictions

All of the attribute restrictions given in Section 10.1.2, and all the restrictions
given in Section 10.5.2 for LOCAL data segments also apply to STACK­
LOCAL declarations.

10.6.3 Semantics

The semantics given in Section 10.5.3 for LOCAL data segments apply to
STACKLOCAL data segments except that a STACKLOCAL data segment is
always allocated in the current stack frame.

10.7 Register-Declarations

A register data segment is a data segment that is always allocated in a general
register. In most other respects, it is the same as a LOCAL data segment. If
the declaration specifies a register-number, the data segment is allocated in
the specified register. Otherwise, the data segment is allocated in a register
chosen by the compiler.

An example of a register-declaration is:

REGISTER
STATUS = 5: BITVECTOR[10] t

BETA;

This declaration associates the names STATUS and BETA with two general
registers. The register number for STATUS is given explicitly as 5 and only 10

Data Declarations 10-9

bits of that register are used. The register number for BETA is left to be
chosen by the compiler, and the full register is used.

10.7.1 Syntax

register-declara tion REGISTER register-item , ... ,

register-item register-name

{ = register-number}
nothing

{ : register-attribute ... }
nothing

register-name name

register-number compile-time-constant-expression

/ allocation-unit " < = 16/32 Only
extension-attribute I <= 16/32 Only

register-attribute structure-attribute
,

< field-attribute >
I
I initial-attribute I

preset-attribute)

10.7.2 Restrictiong

The value of the register-number, if specified, must be in the range given
below for each dialect:

For BLISS-16: 0 through 5

For BLISS-32: 0 through 11

For BLISS-36: 0 through 12, if the governing linkage-attribute is
BLISS36C (the default), FORTRAN_FUNC, or FOR­
TRAN_SUB.

1 and 3 through 15, if the governing linkage-attribute is
BLISSI0

The general rule for BLISS-36 is that the register-num­
ber must not specify a register in use as the stack pointer,
the frame pointer, or the argument pointer (if applica­
ble). The linkage-definition that governs the routine con­
taining the register-declaration controls the assignment
of registers for these uses.

A register specified by register-number must be PRESERVED or NOTUSED
in the linkage of any routine called in the containing block if the call occurs

10-10 Data Declarations

within the 'useful lifetime' of the register data segment. (That is, if the call
occurs between the first and last possible references to that segment.)

A register data segment must not occupy more than a fullword.

A register-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the declara­
tion of another routine, routine B. If a name is declared REGISTER in routine
A and is not declared in routine B, then the name cannot be used in routine B.
Such usage would be an "up-level" reference and is not permitted for register
data segments.

All the attribute restrictions given in Section 10.1.2 also apply to REGISTER
declarations.

A name declared in a register-declaration must be used only as the operand of
a fetch expression or as the first operand of an assignment expression. (This
restriction does not apply to certain machine-specific-function parameters;
see the applicable BLISS User's Guide.)

10.7.3 Semantics

If a register-number is given in the declaration of a register data segment,
then the data segment is allocated in that register. During execution of the
routine that contains the declaration, the register may be used for other pur­
poses, but none that conflict with the valid use of the allocated data segment.

A register data segment is similar to a local data segment in that it is created
on entry to the block in which it is declared and released on exit from that
block, and cannot be referenced from any lower-level contained rou tine-body.

10.7.4 Pragmatics

Standard register-names with appropriate predefined values are provided, as
builtin-names, for each BLISS dialect. In order to use these names with their
predefined values, they may be declared in a BUILTIN declaration (Section
18.3). The builtin register-names and values are as follows:

FOR BLISS-16

Name

RO
Rl
R2
R3
H4
H5
SP
PC

Value

o
1
2
3
4
5
6
7

FOR BLISS-32

Name

RO
Rl
R2

Rll
AP
FP
SP
PC

Value

o
1
2

11
12
13
14
15

Data Declarations 10-11

FOR BLISS-36

The builtin register-names SP, FP, and AP are provided. The value defined
for each name depends upon the linkage-definition associated with the
routine in which the name is declared BUILTIN. See Chapter 13, on "Link­
ages".

10.8 Global-Register-Declarations

A global register data segment is a data segment that is created and allocated
in a given register in one routine, and may be made available for use in other
routines that are called by the declaring routine. Global register data seg­
ments are identified by name, and both the calling and called routine must
agree (through a matching set of register- and linkage-declarations) that a
particular global register data segment is available.

A global register data segment is the same as an ordinary register data seg­
ment with respect to its use within the declaring routine.

A GLOBAL REGISTER declaration establishes the name and actual register
assignment of a global register data segment and creates the storage (that is,
allocates the register). In order for the data segment to be available to a called
routine, that routine must specify the same name in an EXTERNAL REGIS­
TER declaration and must specify both the name and register-number in the
GLOBAL linkage-option of its governing linkage-definition.

10.8.1 Syntax

global-register- GLOBAL REGISTER register-item , ...
de clara tion

,

register- item register-name

= register-number

{ : reg~ster-attribute ... }
nothIng

register-name name

register-number com pile-time-constant-expression

/ alloca tion -uni t < = 16/32 Only
extension-attribute I < = 16/32 Only

register-attribute structure-attribute ~
< field-attribute >

I initial-attribute I
preset-attribute I

10-12 Data Declarations

10.8.2 Restrictions

The register-number is constrained by the containing routine's linkage as
described for ordinary register data segments in the first paragraph of Section
10.7.2, but is also constrained by the linkage-definition governing any called
routine that refers to the declared global register data segment. The inter­
routine requirements are described in Chapter 13, on "Linkage Declarations."

A register data segment must not occupy more than a fullword.

A global-register-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the declara­
tion of another routine, routine B. If a name is declared GLOBAL REGISTER
in routine A and is not declared in routine B, then the name cannot be used in
routine B. Such usage would be an "up-level" reference and is not permitted
for register data segments.

All the attribute restrictions given in Section 10.1.2 also apply to GLOBAL­
REGISTER declarations.

A name declared in a global-register-declaration must be used only as the
operand of a fetch expression or as the first operand of an assignment expres­
sion. (This restriction does not apply to certain machine-specific-function
parameters; see the applicable BLISS User's Guide.)

If the linkage definition of a called routine specifies a global register data
segment, then the routine call must be in the scope of a global- or external­
register-declaration of the data segment.

BLISS-I6/36 ONLY

If a call to a routine occurs in the scope of a global register data segment,
then the register-number of the data segment must be given in either the
GLOBAL or PRESERVE linkage-option of the called routine's linkage defi­
nition.

BLISS-32 ONLY

If a call to a routine with CALL linkage-type occurs in the scope of a global
register data segment, then the register-number of the data segment must
be given in either the GLOBAL or PRESERVE linkage-option of the called
routine's linkage definition.

If a call to a routine with JSB linkage-type occurs in the scope of a global
register data segment, then the register-number of the data segment must
be given in either the GLOBAL or NOTUSED linkage-option of the called
routine's linkage definition.

10.8.3 Semantics

A global-register-declaration causes a register data segment to be allocated. A
global register data segment is a local data segment just like an ordinary
register data segment - it is created on entry to the block in which it is

Data Declarations 10-13

contained and released on exit from that block. However, unlike an ordinary
register data segment, a global register data segment is available in called
routines under certain conditions, described briefly below and more fully in
Chapter 13, "Linkages".

In order to pass a global register data segment to a called routine, the linkage­
definition of the called routine must contain the name and register-number of
the data segment in its GLOBAL linkage-option. There may be more global
register data segments available at a call than are specified in the linkage for
the call; however, every global register data segment specified in the linkage
must be available at the call. Only those global register data segments speci­
fied in the linkage are available in the called routine.

10.9 External-Register-Declarations

An EXTERNAL REGISTER declaration specifies that a global register data
segment created in a calling routine is used in the routine containing the
declaration. This declaration must be used in combination with linkage defi­
nitions that include appropriate GLOBAL linkage-options.

10.9.1 Syntax

external-register­
declaration

register- item

register-name

register-number

register-attribute

10.9.2 Restrictions

EXTERNAL REGISTER register-item , ... ,

register-name

{
= register-number}
nothing

{
: register-attribute ... }
nothing

name

compile-time-constant-expression

/ allocation-unit "
I extension-attribute I

structure-attribute
~I field-attribute ~
I initial-attribute

preset-attribute)

< = 16/32 Only
<= 16/32 Only

The register-number, if given, must be the same as that specified in the
GLOBAL linkage-option of the containing routine's linkage definition.

10-14 Data Declarations

A register data segment must not occupy more than a fullword.

An external-register-declaration must be contained within a routine declara­
tion whose linkage definition specifies the named global-register-segment.

Suppose the routine-body of a given routine, routine A, contains the declara­
tion of another routine, routine B. If a name is declared EXTERNAL REGIS­
TER in routine A and is not declared in routine B, then the name cannot be
used in routine B. Such usage would be an "up-level" reference and is not
permitted for register data segments.

All or the attribute restrictions given in Section 10.1.2 also apply to EXTER­
NAL-REGISTER declarations.

A name declared in an external-register-declaration must be used only as the
operand of a fetch expression or as the first operand of an assignment expres­
sion. (This restriction does not apply to certain machine-specific-function
parameters; see the applicable BLISS User's Guide.)

10.9.3 Defaults

If an external-register-declaration does not specify a register-number, the reg­
ister-number given for that external-register-name in the GLOBAL linkage­
option is assumed.

10.9.4 Semantics

An external-register-declaration specifies that a global register data segment
created in a calling routine is available for use. The declared name must also
be specified in the called routine's linkage definition; however, not all of the
global register data segments specified in the linkage need be declared in an
external-register-declaration.

BLISS-16/36 ONLY

If a global-register-segment is specified in the routine's linkage but is not
declared EXTERNAL REGISTER, then the contents of the register are
preserved by the called routine and the register is available for other pur­
poses.

BLISS-32 ONLY

If a global-register-segment is specified in the routine's linkage but is not
declared EXTERNAL REGISTER, then in a routine with CALL linkage­
type the contents of the register are preserved by the called routine and the
register is available for other purposes. In a routine with JSB linkage-type,
however, the contents of such a register cannot be preserved and the regis­
ter is not usable in any way.

10.10 Map-Declarations.

A map-declaration is used to supply new attributes in the current block to a
name that is already declared.

Data Declarations 10-15

The most common use of a map-declaration is in the declaration of the for­
mal-names of a routine-declaration. Each formal-name is considered to be
declared as a fullword, unsigned scalar data segment in an imaginary block
that surrounds the routine-body. When those attributes are not suitable, a
MAP declaration is used to override these defaults. This use of a map-declara­
tion is discussed in Chapter 12, on "Routines".

1 0.1 0.1 Syntax

ma p-declara tion MAP map-item , ... ;

map-item map-name : map-attribute ...

map-name name

!
alloca tion -uni t

}
< = 16/32 Only

extension -a ttri bu te < = 16/32 Only
map-attribute structure-attribute

field-attribute
volatile-attribute

10.10.2 Restrictions

A :rpap-declaration must lie within the scope of another declaration of the
same name. The latter declaration must be a data-declaration or a bind-data­
declaration.

BLISS-16/32 only: A structure-attribute must not appear in the same decla­
ration as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a structure-attrib­
ute.

10.10.3 Semantics

The declaration of a name as MAP changes neither the value of the name nor
the contents of the data segment designated by the name. Instead, the storage
whose address is given by the declared name is re-interpreted in accordance
with the attributes given in the map-declaration.

10-16 Data Declarations

Chapter 11 Data Structures

11.1 Introduction to Data Structures.

11.1.1 The Abstract Definition of Data Structures . .
11.1.2 The Concrete Representation of Data Structures
11.1.3 The Programmed Description of Data Structures.

11.1.3.1 Field-References. . . .
11.1.3.2 Structure-Declarations.
11.1.3.3 Structure Allocation .
11.1.3.4 Structure-References. .
11.1.3.5 REF Structures
11.1.3.6 Interchangeable Structure-Declarations
11.1.3.7 Decimal Digit Arrays in BLISS-16 and BLISS-36 .

11.1.4 Conclusion.

11.2 Field-References. .

11.2.1 Syntax. . .
11.2.2 Restrictions
11.2.3 Default. .
11.2.4 Semantics .
11.2.5 Discussion .

11.2.5.1 Examples
11.2.5.2 Field-References in Structure-Declarations
11.2.5.3 Field-References and Expressions in General.
11.2.5.4 Operations on Scalar Field Values

11.3 Structure-Declarations.

11.3.1 Syntax. . .
11.3.2 Restrictions . .
11.3.3 Semantics . . .

11.4 Structure-Attributes and Storage Allocation.

11.4.1 Syntax. . .
11.4.2 Restrictions
11.4.3 Semantics .

11.5 Field-Declarations.

11.5.1 Syntax. . .
11.5.2 Restrictions
11.5.3 Semantics .

11-1

11-2
11-3
11-5

11-5
11-6
11-7
11-7
11-7
11-8

· 11-10

· 11-11

· 11-11

· 11-12
· 11-13
· 11-14
· 11-14
.11-17

· 11-17
· 11-18
· 11-19
· 11-20

· 11-21

· 11-22
· 11-22
· 11-23

· 11-23

· 11-24
· 11-24
· 11-25

· 11-25

· 11-26
· 11-26
· 11-27

11.6 Field-Attributes . .

11.6.1 Syntax. . . .
11.6.2 Restrictions
11.6.3 Semantics .

11. 7 Ordinary-Structure-References

11.7.1 Syntax ...
11.7.2 Restrictions
11.7.3 Semantics .
11. 7.4 Discussion .

11.8 Default-Structure-References.

11.8.1 Syntax. . .
11.8.2 Restrictions
11.8.3 Semantics .
11.8.4 Discussion .

11.9 General-Structure-References.

11.9.1 Syntax. . .
11.9.2 Restrictions
11.9.3 Semantics .
11.9.4 Discussion .

11.10 Predeclared Structures.

11.10.1 VECTOR Structures
11.10.2 BITVECTOR Structures
11.10.3 BLOCK Structures. . .

11.10.3.1 A Typical Byte-Oriented BLOCK Structure.
11.10.3.2 BLOCK Field-References. . .
11.10.3.3 BLOCK Allocation
11.10.3.4 BLOCK Structure-References.
11.10.3.5 BLOCK Field-Declarations.

11.10.4 BLOCKVECTOR Structures

11.11 Other Structures.

11.11.1 "One-Origin" Vector Structures.
11.11.2 "Bounds Checking" Vector Structures.
11.11.3 Two-Dimensional Array Structures
11.11.4 Symmetric Array Structures. . .
11.11.5 Non-Continuous Block Structures .
11.11.6 Partially Overlayed Structures. . .
11.11.7 General Purpose Structures for Default Structure References

· 11-27

· 11-27
· 11-28
· 11-28

· 11-28

· 11-29
· 11-29
· 11-30
· 11-30

· 11-31

· 11-31
· 11-32
· 11-32
· 11-32

· 11-34

· 11-35
· 11-35
· 11-36
· 11-37

· 11-38

· 11-38
· 11-39
· 11-40

· 11-41
· 11-42
· 11-42
· 11-43
· 11-44

· 11-45

· 11-46

· 11-46
· 11-46
· 11-47
· 11-47
· 11-48
· 11-50
· 11-52

Chapter 11
Data Structures

A data structure is the framework for a collection of values that are stored
under a single name. Certain frequently-used data structures are predefined
in BLISS; they are the vector, the bit vector, the block, and the blockvector.
The use of these data structures is described in Chapter 3 on "Values and
Data Representations".

This chapter describes the features of BLISS that permit a programmer to go
beyond the predefined data structures and design special data structures that
fit a particular application.

The first section of this chapter discusses the concepts of data structures and
provides a detailed example of a specific data structure.

The next section describes the field-reference, which is the fundamental
BLISS mechanism for accessing an element of a data structure.

The next seven sections describe the features of BLISS that are used to define
and use a data structure; they are structure-declarations, structure-attrib­
utes, field-declarations, field-attributes, ordinary-structure-references, de­
fault-structure-references, and general-structure-references.

The final two sections return to the description of specific data structures.
One section gives the full definition of each of the BLISS predefined struc­
tures. The remaining section gives several examples of programmer-defined
structures.

11.1 Introduction to Data Structures

The BLISS facilities for programmer-defined data structures have the follow­
ing benefits:

1. Generality, If a specific application requires a data structure that is
different from any predefined data structure, the programmer can de­
fine a new data structure that fills the need.

11-1

2. Flexibility. If a specific application requires a different representation
for an existing kind of data structure (for example, one that requires less
space), the programmer can provide a new data structure that provides
the required representation.

3. Machine-Independence. If a program must depend on the architecture
of the computer in order to save space or execution time, that depen­
dence can be localized and concealed within the appropri~te data struc­
ture definition.

4. Checking. If references must be checked for validity (for example, vec­
tor subscript in range), an appropriate check can be built into a pro­
grammer-defined structure definition.

The design for a new data structure has three parts: the abstract definition,
the concrete representation, and the programmed description. The abstract
definition and concrete representation are part of the design of a program;
although they may be written down as part of the documentation, they are not
a part of the BLISS program. On the other hand, the programmed description
of a data structure is part of the BLISS program in which the structure is
used.

This introductory discussion of data structures requires a specific example;
therefore, a data structure called a "decimal digit array" is carried through
each section of this discussion. The concrete representation and programmed
description for the example structure is first worked out for the VAX-ll and
BLISS-32. Further on, concrete representations and programmed descriptions
are given for the PDP-ll and BLISS-16, and the DECSYSTEM-l0/20 and
BLISS-36.

11.1.1 The Abstract [)efinition of Data Structures

An abstract definition of a data structure specifies the structure, content, and
usage of a particular collection of data in terms of its application, not in terms
of a particular computer implementation. Indeed, the definition is abstract
only if it applies equally to all possible representations of the data.

The abstract definition of the decimal digit array might he:

A decimal digit array is a compact storage representation of a sequence of
decimal digits that permits reasonably quick access to individual digits.

The decimal digit array is not a predefined structure in BLISS and it is not
even an especially important structure. However, it is typical of the sort of
data structure that can be readily defined by a BLISS programmer.

The abstract definition of the decimal digit array establishes four characteris­
tics of the desired structure:

1. The word "compact" asserts that the representation cannot waste
space, presumably because there will be many decimal digit arrays or
because some of them will have many elements.

2. The word "sequence", as well as the word "array" in the name of the
structure, indicates that the elements of the structure are ordered.

11-2 Data Structures

3. The words "decimal digit" indicate that each element can have ten
distinct values, and these values are associated with the characters "0",
"I", and so on, through "9".

4. The phrase "permits reasonably quick access to individual digits" pro-
vides important information about the usage of the data structure.

Observe the cautious wording of the third fact: it asserts that each element
accommodates a range of ten values (which requires somewhat less than four
bits), not that each element accommodates a decimal digit character code
(which would require seven or eight bits in ASCII).

11.1.2 The Concrete Representation of Data Structures

The concrete representation of a data structure determines which bits of
memory are occupied by the data and how these bits are interpreted. The
design of the representation depends on the following considerations:

1. The amount of storage available for the structure. If the structure is big,
it should not contain a large proportion of unused storage.

2. The amount of time available for access to the fields of the structure. If
the structure is accessed frequently, each access should be fast.

3. The effect of the representation on program development. If the ele­
ments must be accessed during debugging, that access should be con­
venient.

4. Compatibility with other representations of the same data. If a commit­
ment to a given representation has already been made, it may be neces­
sary to accept that representation even if it is not optimal.

The design of a concrete representation is difficult, especially at the beginning
of a project. The facilities of BLISS permit a programmer to change concrete
representations easily, even after the project is under way.

The possible representations for a data structure can be ranked according to
time and space requirements. The ranking can begin with those that have
compact storage but slow access and proceed to those that have fast access
but excessive storage.

As an example, such a ranking for the decimal-digit-array data structure on
the VAX-II target system would be:

1. Since 32 bits can accommodate any nine-digit decimal number, the
array can be stored nine digits per fullword. In this representation,
however,- access to a single digit requires considerable computation
(conversion of a thirty-two-bit binary integer to a nine-digit decimal
integer).

2. Since 4 bits can accommodate ten distinct values, the array can be
stored eight digits per fullword. This representation requires a conver­
sion to get from the element value to an ASCII character but the con­
version is a simple addition or OR operation.

Data Structures 11-3

3. Since the ASCII codes for decimal digits normally occupy eight bits
each, and since the byte is a natural unit of storage on VAX-II, the
array can be stored four digits per fullword. In this representation,
about half the storage is wasted, but access is quicker.

4. Since VAX-II works best on full word values, the array could be stored
one digit per fullword. This representation wastes a lot. of storage, but
provides the most rapid access.

Ranking representations in this way is useful, but sometimes difficult. Many
considerations can affect the ranking, for example, both virtual and physical
memory management strategies. The ranking might even be different for
different models of the VAX-II.

Each of these concrete representations is correct for certain situations. For the
example under consideration, the representation in item 2 is chosen. That
choice is interesting because it leads to a data structure that is not predefined
in BLISS.

The representation just chosen for a decimal digit array can be diagrammed
for the VAX-II as follows:

DDA

X[1],4 X[O],4 :X

... X[2],4

.

This diagram differs from those given in Section 3.2. In Chapter 3, the intent
was to represent data structures in a machine-independent way. Here, the
intent is to represent the specific layout of the data structure in VAX-II
storage.

The diagram depicts a sequence of bytes in VAX-II storage. The first line of
the diagram (X[I] and X[O]) is the first byte allocated for the array. The
second line C .. and X[2]) is the second byte. The third line suggests successive
bytes.

The diagram represents a specific instance of a decimal digit array. The name
of the array is X; that is, the value of X is the address of the first byte of the
array. The name X is written to the right of the diagram because of the
VAX-II convention of indexing bits and bytes from right (low order) to left
(high order).

The diagram shows that the first element of the vector is called X[O] and
contains 4 bits. That element occupies the four low-order bits of the byte
whose address is X. The second element is called X[1] and occupies the four
high-order bits of the byte whose address is X. The third element is called
X[2] and occupies the four low-order bits of the byte whose address is X+I.
The remaining elements of the structure are designated in a similar way.

11-4 Data Structures

The name DDA (for decimal digit array) at the top of the diagram refers to
the layout of the fields relative to the starting address of the structure. There
could be more than one DDA structure in storage at a given time, one at X
and others at other addresses.

11.1.3 The Programmed Description of Data Structures

Once the abstract definition and concrete representation of a structure have
been designed, the facilities of BLISS can be used to describe and use the
structure. The principal facilities are structure-declarations, structure-attrib­
utes, and structure-references. However, before these facilities can be de­
scribed, field-references must be considered.

11.1.3.1 Field-References - A field-reference is a BLISS construct that can
designate any portion of storage that is %BPVAL bits or less in size. For
example, a field-reference can designate a sequence of 15 bits starting with the
second bit of the addressable unit whose address is 3116.

A field-reference has the form:

addr < pos, size, ext>

where:

addr is interpreted as an addressable-unit address.

pas is the number of (least significant) bits skipped before the field
begins.

size is the number of bits in the field.

ext is 0 or 1 depending on whether unsigned or signed extension is used
in fetching the contents of the field.

The ext parameter can be omitted if unsigned extension is suitable. Sign
extension is described in Section 3.1.3, and a full description of field-refer­
ences is given in Section 11.2.

Restrictions on the values of addr, pas, and size are different in each BLISS
dialect because of differing capabilities of the respective target architectures.
Briefly stated, field-references in BLISS-32 can designate any field of up to
%BPVAL bits without regard to address boundaries; while field-references in
BLISS-16 and BLISS-36 must designate fields that are completely contained
within one fullword.

The BLISS-32 field-references for the decimal digit array X (diagrammed in
Section 11.1.2) are:

}-« 1),4 >
H<4,4>

}.{< 8,4>

(first element, X[O])
(second element, X[I])
(third element, X[2])

Data Structures 11-5

The field-reference for the third element is typical; it is interpreted as follows:

Find the addressable unit (VAX-II byte) whose address is X. Start at the
low-order bit of that unit of storage and skip forward across 8 bits. Use the
next 4 bits as the field.

In this definition, "skip forward" means proceed toward higher order bits and
toward higher storage addresses.

Field-references can handle any memory access required in BLISS. However,
they are very dependent on the concrete representation of data structures.
The features described in the following sections are designed to confine the
use of field-references to a special place, the structure-declaration, and thus
localize the dependence of a program on representation.

11.1.3.2 Structure-Declarations - The following program fragment contains
the structure-declaration for BLISS-32 decimal digit arrays (DDAs).

STRUCTURE

OWN

DDA[I; N] =
[(N+i)/Z]

DDA<ll*I tll>;

>{= DDA[10];

}<CS] = .>{[8];

The first four lines of the example are the structure-declaration. Each line has
a different purpose, as follows:

1. "STRUCTURE" is the keyword for the declaration.

2. "DDA[I; N] =" gives the structure-name, DDA, and the formal names I
and N. The name I before the semicolon is an access-formal, and is used
when an instance of the structure is referenced. The name N after the
semicolon is an allocation-formal, and is used when an instance of the
structure is allocated.

3. "(N +1)/2" is the structure-size and determines the number of address­
able units (bytes in this case) allocated for each instance of the struc­
ture.

4. "DDA<4*1,4>" is the structure-body and provides a field-reference for
each reference to the structure in the program. (Note that, because of
dialect-specific differences in field-reference limitations noted above,
this particular structure-body definition is valid in the general case only
in BLISS-32.)

Observe that in the structure-size and structure-body a fetch operator, ".", is
not used before a formal name to refer to the value of an actual parameter. In
this sense structure formal names are like macro formal names (see Chapter
16) and unlike routine formal names (see Chapter 12).

11-6 Data Structures

11.1.3.3 Structure Allocation - A structure-declaration does not allocate any
particular instance of a data structure; it just associates a name with a de­
scription of a structure.

An instance of a given structure is allocated when its name is used in a
structure-attribute in the declaration of a data segment name. The following
declaration allocates a 10-element instance, named X, of a decimal digit
array:

OWN
X: DDA[10J;

The compiler determines how much storage to allocate for X by making a
copy of the structure-size, "(N+l)/2", replacing N, the allocation-formal, by
10, and evaluating the expression. The result is 5 and thus five bytes are
allocated.

The example structure-size expression is also valid for BLISS-16 (assuming
an identical concrete representation for DDA), since the addressable-unit size
is the same. The structure-size expression required for BLISS-36, assuming a
similar concrete representation for DDA, is given in Section 11.1.3.7.

11.1.3.4 Structure-References - The following assignment contains two ex­
amples of references to the decimal digit array named X:

}O{[5J = .}-([GJ;

When the program is compiled, the first structure-reference is replaced by a
copy of the structure-body from- the declaration of DDA. Then, within the
structure-body, DDA is replaced by X and I is replaced by 5. The second
structure-reference is compiled in the same way, except that I is replaced by
6. The result is:

The actual-parameter of a structure-reference need not be a numeric-literal as
in this example; it can be any expression. For example, the assignment

}H.J3J = .}-([.J3+1J;

is expanded by the compiler into:

In this case, the fields selected depend on the contents of J3 each time the
assignment is executed.

Similar examples of the structure-body expression for BLISS-16 and
BLISS-36, assuming an identical or similar concrete representation for DDA,
are given in Section 11.1.3.7.

11.1.3.5 REF Structures - It is sometimes useful to manipulate the addresses
of data structures. It is easy to manipulate addresses in BLISS, but the
compiler needs information about the structures to which the addresses refer.
This information is supplied with the help of the REF keyword and an appro­
priate structure-attribute in the declaration of storage for a structure address.

Data Structures 11-7

As an example of the use of REF, consider the following program fragment:

STRUCTURE

OWN

OWN

DDACI; N] =
C(N+l)/Z]
DDA<a*I ta>;

}<: DDAC10]t
Y: DDAC10];

ALPHAt
PDDA: REF DDAC10];

IF .ALPHA EQL 0 THEN PDDA=X ELSE PDDA=Y;
PDDACS] = .PDDACG];

The interpretation of the final assignment depends on the value of PDDA and
the value of PDDA is determined, at run time, by the contents of ALPHA. If
ALPHA contains zero, the assignment is equivalent to:

}HS] = .XCG];

Otherwise it is equivalent to:
YCS] = • YCG];

A name that is declared with REF designates a data segment that contains
the address of a structure. Since an address always occupies a fullword, a
fullword is always allocated for such a name. In the example above, PDDA is
the address of a fullword that contains either the address X or the address Y.

When a name that is declared REF is used in a structure-reference (and is
therefore followed by a list of parameters in brackets), an extra level of in­
direction is automatically supplied. Thus in the assignment

PDDACS] = .PDDACG];

the address of the structure to which a value is assigned is not PDDA but is
rather the contents of PDDA. Similarly, the address of the structure from
which a value is fetched is not PDDA but is rather the contents of PDDA.

When a name that is declared REF is not used in a structure reference, it is
interpreted without the extra level of indirection. (If this were not the case,
then the contents of a data segment used as a pointer to a structure could not
be changed.) Thus in the assignment:

PDDA = }{;

the address of the data segment to which a value is assigned is PDDA.

11.1.3.6 Interchangeable Structure-Declarations - It is quite natural to use
different structure-declarations for the same abstract structure at different
stages in the development of a program. Three possible declarations for deci­
mal digit arrays are:

• The declaration already considered in the preceding sections is:
STRUCTURE

11-8 Data Structures

DDACI; N] =
[(N+1)/Z]
DDA<a*I ta>;

This declaration was presented as the one that implements the chosen
concrete representation for decimal digit arrays.

• A second declaration of DDA is:

STRUCTURE
DDA[I; N] =

[N]
DDA<8*I ,8>;

This declaration provides for, faster access to the elements but uses twice
as much storage.

• A third declaration of DDA is:

STRUCTURE
DDA[I; N] =

[N]
BEGIN
IF I LSS 0 DR I GTR N-l THEN ERROR(DDA, I);
DDA
END<8*I ,8>;

This declaration is oriented toward debugging. Specifically,

1. It uses a full byte (instead of 4 bits) for each element of the array.
Thus the examination of memory is easier.

2. It includes a check on the value of the subscript I to make sure that it
is in the range from 0 to N -1. Thus this class of errors is detected
automatically.

Thus this declaration can be used during the development of a program
and one of the previous declarations of DDA can be used for the produc­
tion version of the same program.

The debugging declaration just given illustrates an interesting feature of
structures. Suppose the following program fragment lies within the scope of
the debugging declaration:

OWN
>(: DDA[10],
Y: DDA[20];

The compiler expands the assignment on the last line into the following as­
signment:

BEGIN
IF .J LSS 0 OR .J GTR 8 THEN ERRORCDDA, .J);
DDA
END<8*.J,8>

BEGIN
IF .K LSS 0 OR .K GTR 18 THEN ERROR(DDA, .K);
DDA
END<8*.K,8>;

This example shows that the compiler saves the value of the allocation-pa­
rameter, N, each time the structure is allocated. For X this value is 10, for Y it
is 20. Thus this value can be used in the structure-body and, eventually, in
each structure-reference.

Data Structures 11-9

11.1.3.7 Decimal Digit Arrays In BLISS-16 and BLlSS-36 - For a packed 4-
bits-per-digit representation of a decimal digit array in BLISS-36, a different
structure-size definition is required for the following reasons:

• The smallest (and only) addressable unit in BLISS-36 is the fullword~
rather that the byte as in BLISS-16 and BLISS-32.

• The 36-bit fullword of BLISS-36 can nicely accomodate nine 4-bit digits.

Instead of the BLISS-16/32 structure-size expression "(N+I)/2", which allo­
cates one 8-bit addressable unit for each two elements required plus one unit
for an odd final element, the following expression is appropriate for
BLISS-36:

(N+8)/9

This structure-size expression allocates one 36-bit word for each nine ele­
ments required plus one word for a final (or only) group of less than nine.

As noted above, the BLISS-32 structure-size expression is also valid for
BLISS-16, since the respective target systems have the same basic storage
allocation unit (i.e., the byte).

The structure-body definition given for DDA in BLISS-32 needs to be modi­
fied in both BLISS-16 and BLISS-36 because neither of these dialects allows
the position value of a field-reference to exceed %BPVAL (as it can in
BLISS-32). In BLISS-16 the DDA structure-body can be defined as:

(DDA+I/Z)«I MOD Z)*4,4>

Alternatives to this expression, which are logically equivalent but better in
terms of object-code efficiency, are the following:

(DDA+I/Z)(IF I THEN 4 ELSE 0,4>

or

(DDA+I/Z)«I AND 1)*4,4>

or
(DDA+I/Z) «I~Z) AND 4,4>

These alternatives are listed in order of increasing space efficiency, although
the first alternative results in the fastest code sequence.

In BLISS-36 the DDA structure-body can be defined as:

(DDA+I/9)«I MOD 9)*4,4>

To summarize, the BLISS-16 and BLISS-36 forms of the DDA structure­
declaration are the following:

• For BLISS-16-
STRUCTURE

11-10 Data Structures

DDA[I; NJ
[(N+1)/ZJ
(DDA+I/Z)«I"'Z) AND 4,4:::-;

• For BLISS-36-
STRUCTURE

DDA[I; NJ
[(N+8)/8J
(DDA+I/8)«I MOD 8)*4,4>

The user's guide for each BLISS dialect describes, under "Transportability
Guidelines", the development of generalized, fully transportable structure­
declarations. In particular, it describes a general packed-vector data structure
called GEN_ VECTOR which produces the same concrete representation de­
scribed here as DDA on any target system.

11.1.4 Conclusion

All high level languages provide the programmer with a set of predefined data
structures. Some programming languages provide facilities for the definition
of new abstract data structures based on predefined data structures. BLISS
goes beyond such facilities and provides for the definition of new concrete
data structures.

Thus, when the need arises, a BLISS programmer can access storage just as
freely as an assembly language programmer can. The programmer can desig­
nate any addresses, any fields, any bits in storage.

The structure-declaration is the interface between the implementation of a
given data structure and its use in the program. On one side of the interface
lies the specific layout of the structure, with machine-specific details and an
appropriate concern for efficiency. On the other side of the interface are the
many references to the structure, each treating it as an abstract, machine­
independent entity. For each data structure, communication between the two
sides is by a single name, such as DDA used for the example in this section.

Because the predefined structures of BLISS use the same facilities of BLISS
as programmer-defined structures, they provide a point of departure for data
description rather than presenting a restrictive barrier.

The BLISS facilities for data structures are unusual and relatively compli­
cated. They depend on the combination of the various declarations, attrib­
utes, and references described in this chapter. The concluding sections of this
chapter, Section 11.10 on predeclared structures and Section 11.11 on typical
programmer defined structures, show how these facilities are combined to
define and use specific structures.

11.2 Field-References

A field-reference designates a sequence of up to %BPVAL bits of storage. It is
normally used as the operand of a fetch operator or the left operand of an
assignment operator. With certain restrictions, however, a field-reference can
be used in any context that requires an address value.

Data Structures 11-11

Structure-declarations use field-references to map abstract, machine-inde­
pendent structures into concrete, machine-specific storage units. Thus, when
suitably parameterized, they support the writing of programs that are effi­
cient and yet transportable from one target system to another.

Field-references should be used only in structure-declarations. The use of
field-references in any other context introduces machine-dependence in a
confusing and disorganized way.

Examples of field-references are given in Section 11.1.3.1.

11.2.1 Syntax

field -reference address { field -selector }
nothing

address { primary }
executable-function

field -selector < position , size { , sign-extension-flag }
nothing >

P?sition }
SIze

expression

sign -extension -flag com pile-time-constant-expression

In addition to the syntactic rules just given, the following syntactic rules are
required:

1. A field-selector that could be part of several fetch expressions is, in fact,
part of the innermost of them.

2. A field-selector that could be part of either an assignment expression or
a fetch expression is part of the fetch expression.

An example of an expression to which Rule 1 applies is:

•• BETA<8t8>

This expression is interpreted as:

• (• BETA<8 t8»

rather than as:
• (.BETA)<8 t8>

In this example, the given expression is composed of one fetch expression
within another, and Rule 1 is needed because one of the fetch expressions does

11-12 Data Structures

not have a field-selector. In the first interpretation, the field-selector is part of
the inner fetch expression, and is, therefore, applied to the data segment
whose address is BETA. In the second (nondefault) interpretation, the field­
selector is part of the outer fetch expression and, therefore, is applied to the
data segment whose address is .BET A.

An example of an expression to which Rule 2 applies is:

.Q<OtS> = .A+l

This expression is interpreted as:

(.Q<OtS» = .A+l

rather than as:
(.Q)<OtS> = .A+l

In the first interpretation, the field-selector is part of the fetch expression and
the assignment is made, by default, to a fullword. In the second (nondefault)
interpretation, the field-selector is part of the assignment expression, and the
fetch is made, by default, from a fullword.

11.2.2 Restrictions

The restrictions on the address, position, and size expression values in a field­
selector are different for each BLISS dialect, as follows:

BLISS-16 ONLY

The size of a field may range from 0 to 16 bits, inclusive, but a field must
not cross a machine-word boundary. This implies two sets of specific re­
strictions on the position (p) and size (s) values, as follows:

(a) If the field-selector is applied to a even-numbered byte (Le., word-
aligned) address, then

o s p
o s s s 16
o s p+s S 16

(b) If the field-selector is applied to an odd-numbered byte address, then

o s p
o s s s 8
o s p+s S 8

BLISS-32 ONLY

The value of the size expression may range from 0 to 32, inclusive, and the
field so specified may cross a longword boundary. More specifically, there is
no restriction on the position expression relative to storage-address bounda­
ries, and the restriction on size (s) is

o s s s 32

Data Structures 11-13

BLISS-36 ONLY

The value of the size expression may range from 0 to 36, inclusive, but the
field so specified may not cross a machine-word boundary. More specifi­
cally, the restrictions on position (p) and size (s) are

o ~ p
o :::; s ~ 36
o ~ p+s :::; 36

The value of the sign-extension-flag must be 0 or 1.

A field-selector must not be ilnmediately followed by another field-selector.
For exam pIe,

.Z<OtlG><8t2> = .BETA

is not valid. (Parentheses can be used to avoid this restriction. For example,

(.Z<OtlG»<8t2> = .BETA

is a valid expression.)

Normally a field-reference is the operand of a fetch operator or the left oper­
and of an assignment operator. When a field-reference is used in any other
way, it must specify a field that begins on an addressable-unit boundary; that
IS:

• The value of the position expression must be 0 or 8 in BLISS-16, must be
o or a multiple of 8 in BLISS-32, and must be 0 in BLISS-36.

• The address expression must not be a register-name.

• The position and size expressions must be compile-time-constant-expres­
sions.

When the address in a field-n{erence is a register-name, the field-reference
must specify a field that lies entirely within the designated register; that is,
the position expression must be greater than or equal to 0 and the sum of the
position and size expressions nlust be less than or equal to %BPVAL.

11.2.3 Default

The default value for the sign-extension-flag is O.

11.2.4 Semantics

A field-reference specifies a field of up to a fullword (%BPVAL bits) in size
relative to a given storage address. Certain aspects of the field-selector seman­
tics are dialect dependent, as described in the following three paragraphs.

In BLISS-16, the field is specified relative to a byte address, and the field
must be completely contained in the machine word containing the given byte.

In BLISS-32, the field is specified relative to a byte address, and the field
may occur anywhere in storage relative to the given byte.

In BLISS-36, the field is specified relative to a word address, and the field
must be completely contained in the given machine word.

11-14 Data Structures

Depending on the context in which it appears, a field-reference has one of the
interpretation given below. (These rules do not apply to field-references in the
structure-body of a structure-declaration, because the structure-body is not
interpreted as part of the declaration of a structure; rather, these rules apply
when the structure-body is used in the interpretation of a structure-reference,
as described in Sections 11.7, 11.8, and 11.9.)

• Fetch Context. If the field-reference is the operand of a fetch expression
(defined in Section 5-.1), having the form:

. e2 field-selector

then evaluate the fetch expression as follows:

1. Interpret the address expression, e2, as follows:

a. If the address is a register-name, then call the register the selected
unit.

b. Otherwise, let a be the value of the address expression. Locate the
addressable-unit in storage whose address is a. Call this address­
able-unit the selected unit.

2. Let p be the value of the position expression. Locate the sequence of p
bits that starts with the low-order bit of the selected unit. Call these
bits the offset field.

3. Let s be the value of the size expression. Locate the sequence of s bits
that immediately follows the offset field. Call these bits the selected
field.

4. Obtain a fullword value as follows:

a. If s = %BPV AL, fetch the contents of the selected field.

b. If ° < s < %BPVAL, fetch the contents of the selected field and
extend it to a fullword as follows:

1) If the value of the sign-extension-flag is 0, then extend the
selected field by adding zero-bits at the left.

2) Otherwise, extend the selected field by adding copies of the sign
bit (leftmost bit) of the selected field at the left.

c. If s = 0, use the fullword representation of zero.

5. Use the value just obtained as the value of the fetch expression.

• Assignment Context. If the field-reference is the left operand of an as­
signment expression (defined in Section 5.1), having the form:

e1 field-selector = e2

then evaluate the assignment expression as follows:

1. Locate the selected field of storage, relative to e1, as In Steps 1
through 3 for the fetch context.

Data Structures 11-15

2. Let s be the value of the size expression and let v2 be the value of the
right operand, e2, of the assignment expression. Store a value as
follows:

a. If s = %BPV AL, store v2 in the selected field.

b. If ° < s < %BPVAL, store the rightmost s bits of v2 in the se­
lected field.

c. If s = 0, do not store a value.

3. Use the fullword value of e2 as the value of the assignment expression.

• Other Contexts. If a field-reference appears in some other context, then
evaluate the field-reference as follows:

1. Let a be the value of the address expression and let p be the value of
the position. Compute

a + p/%BPUNIT

Observe that a restriction in Section 11.2.2 requires that the address
must not be a register-name, and the value of p must be zero or, in the
case of BLISS-16/32, a multiple of 8, so that the value of p/%BPUNIT
is an integer. Also observe that the values of the size and sign-exten­
sion-flag expressions are not used, but the restrictions on these values
still apply.

2. Use the value just computed as the value of the field-reference.

The following considerations apply to the interpretation of field-references:

• The order in which the address, position, size, and sign-extension-flag
expressions are evaluated is not defined (see Section 5.1.4).

• The sign-extension-flag is ignored in all contexts except a fetch expres­
sion.

• The description of the field-reference just given uses phrases like "se­
quence of p bits that starts with ... " and "sequence s of bits that immedi­
ately follows ... ". Thus it assumes an ordering of bits in storage. That
ordering, based on numeric significance, is:

Bit °

Bit 7
Bit 8

Bit 15

11-16 Data Structures

For BLISS-16 and BLISS-32

The low-order bit of byte n

The high -order bit of byte n
The lo~-order bit of byte n+l

The high -order bit of byte n + 1

BLISS-32 ONLY

Bit 16 The low-order bit of byte n+2

Bit 23
Bit 24

Bit 0

Bit 35

The high-order bit of byte n+2
The low-order bit of byte n+3

For BLISS-36

The low-order bit of word n

The high -order bit of word n

• Observe that in BLISS-32, although the selected field cannot be longer
than 32 bits, it can occur anywhere in storage, crossing boundaries be­
tween bytes, words, or longwords.

11.2.5 Discussion

The BLISS bit numbering convention, defined above, is consistent across the
BLISS dialects: bit-position 0 is always the "rightmost" or least significant
bit of the specified addressable unit, for all target systems.

Several aspects of field-references are discussed in the following subsections.
First, some examples are given to illustrate various cases. Second, the place­
ment of a field-selector in the definition of a structure is discussed. And third,
the general and fundamental relationship of field-references to expressions is
discussed.

11.2.5.1 Examples - Field-references used in fetch and assignment contexts
are illustrated throughout this chapter and do not require further elaboration
here. However, field-references used in other contexts involve some special
considerations.

As stated in Section 11.2.4, a field-reference that is not in a fetch or assign­
ment context computes a value according to the formula

b + p/%BPUNIT

In BLISS-32 and to a limited extent in BLISS-16, such field-references allow
the programmer to compute the address at which a field begins. Such address
values might be assigned to another data segment for later use or passed as
actual-parameters of a routine-call. Observe that the restrictions in such cases
(the byte-address is not a register name, position and size are compile-time

Data Structures 11-17

constant values, and the position is zero or a multiple of 8) assure that the
compiler can verify that the field does begin at a byte address and hence, that
the above formula can be computed.

Consider the following examples:

Example Comment

A}-{ The address of the data segment X is assigned to A.

A }-{ < (I ,8 > The address of the data segment X is assigned to A (as in
the previous exam pIe).

A }-{< 1 (I ,12> Invalid. The field-reference does not designate a field
that begins at a byte address.

A }.{ -::: 8 ,8> Invalid in BLIS8-36; valid in BLISS-16/32. The address
of the data segment X plus 1 is assigned to A. This field­
reference is equivalent to the field-reference (X+1)<O,8>.

A }-{< • Y ,1> Invalid. The ·position expression is not a compile-time
constant value and, therefore, the field might not begin at
a byte address.

Observe that in BLISS-16 the effective range of p/8 is simply ° or 1; in
BLISS-32 the range of p/8 is unrestricted; and in BLISS-36 the range of p/36
is (only) 0. Consequently, the value of a field-reference in BLISS-36 is effec­
tively the same as the address part of the field-reference and the term
"p/%BPUNIT" in the formula for the value has no practical utility.

11.2.5.2 Field-References In Structure-Declarations - The definition of a
structure-name can include a field-reference as the structure-body (see Sec­
tion 11.3), but when the structure-body involves a block, a common error is to
place the field-selector inside the block instead of following the block.

An example of correct placement of the field-selector following the block was
given in Section 11.1.3.6; it is repeated here:

STRUCTURE
DDA[I ;N] =

[N]
BEGIN
IF I LSS (I OR I GTR N-1 THEN ERROR(DDA, I);
DDA
END<:8*I ,8>;

Suppose the last two lines of this example are coded as follows:

DDA<8*I,8>
END;

This coding has a quite different meaning than the one intended. Because the
field-reference is contained inside the block, the rule for a field-reference in a

11-18 I>ata Structures

context other than a fetch or assignment context always applies. When the
structure-reference is used in a fetch or assignment, a fullword fetch or assign­
ment results according to the rules in Section 5.1 (assuming that the restric­
tions on field-references do not result in an error).

As can be seen in this example, the placement of the field-selector following
the block is essential for the desired meaning.

11.2.5.3 Field-References and Expressions in General - Consider again the
first two examples in Section 11.2.5.1. They are:

A }<

A }«Ot8>

In both cases, the address of the data segment X is assigned to A. These
examples are especially interesting because they hint at a BLISS language
design principle that ties together field-references and expressions in a very
general way.

The BLISS rules regarding expressions and data segments given elsewhere in
this manual can be restated (in part) in the following way:

1. The declaration of a data segment name associates an implicit, default
field-selector with the name, which is determined as follows:

a. If the data segment is a scalar, then the default field-selector is <0,
size, sign> "here:

i. The size VE le is, in BLISS-16 and BLISS-32, a multiple of
%BPUNIT determined by the explicit or default allocation-unit,
and in BLISS-36 is simply %BPUNIT, that is, 36.

ii. The sign value is, in BLISS-16 and BLISS-32, ° or 1 according to
the explicit or default extension-attribute, and in BLISS-36 is
always 0.

b. If the data segment is structured, then the default field-selector is
<0, %BPVAL, 0>. (This default applies only when the data segment
name does not appear in a structure-reference.)

2. For any expression other than a data segment name, the default field­
selector is <0, %BPVAL, 0>. (This default applies only when the ex­
pression does not appear as the address-:-expression of a default-struc-
ture-reference.) .

According to these rules, every expression in a BLISS program can be thought
of as having a default field-selector.

When the semantics for field-references given in Section 11.2.4 is applied to
expressions with default field-selectors as described here, the resulting inter­
pretation is equivalent to the semantics given in Chapter 5. The description

Data Structures 11-19

given there is used because it is silnpler and more intuitive for the common
cases. The description given here presents an important part of the conceptual
foundation of BLISS.

11.2.5.4 Operations on Scalar Field Values - When all values involved in a
calculation occupy fullwords, the programming involved is relatively straight­
forward. Fullwords accomodate maximum-size BLISS values and assignment
from one fullword to another never modifies a value.

When a scalar field value - a value smaller than a fullword and not part of a
data structure - is involved in a calculation, however, problems can arise.
They can arise either through assignment of a large value to the small field, or
through incorrect extensfon of the contents of the field. An example of the
former type of problem is the inadvertent assignment of a fullword value to a
field that is not large enough to accomodate the significant portion of the
fullword. Obviously some significance will be lost in the stored result.

The latter type of problem can be more subtle; for example:

OWN
\I •
1\ ,

\I •

I'

}«Ot8> = -1;
Y = .}«Ot8> + 1;

For purposes of discussion, assume that there is some good reason for using an
8-bit field relative to address X (which cannot be determined from inspection
of the program fragment). Since this field occupies less than a fullword, when
fetched it is extended before being incremented and assigned to Y. And since
the extension for the field is unsigned by default, the extended field value
becomes 255 rather than -1. Thus the value of Y becomes 256 rather than 0,
presumably not the intended result.

The program fragment does not violate any rules of BLISS; it is valid. How­
ever, since it assigns a negative number, -1, to a field that is by implication
unsigned, the program fragment is at least ambiguous in its intent, if not
incorrect.

Depending on whether the result obtained was or was not the one intended,
the program fragment can be altered in one of the following ways:

• Change the numeric-literal from -1 to 255. This change does not affect
the value assigned to Y, but does make clear that the result is the ex­
pected one.

• Replace the field-selectors shown with <0,8,1>, indicating signed value
extension. This change causes ° to be assigned to Y.

In BLISS-16 or BLISS-32, the problems just described can also arise through
the use of an allocation-unit that causes field allocation of a scalar data

11-20 Data Structures

segment; that is, through the use of BYTE in BLISS-16, or BYTE or WORD
in BLISS-32, as an attribute in a data declaration. This is due to the implicit
relationship between allocation-units and field-selectors. An equivalent pro­
gram fragment that uses the BYTE allocation-unit rather than explicit field­
references to produce results identical to those described above is given in
Section 5.1.5.3.

11.3 Structure-Declarations

A structure-declaration describes the organization of a data structure. It spec­
ifies (or implies) a field-reference for every possible reference to the structure
and thus defines the layout of the structure in storage. It also specifies an
expression to be used to determine the amount of storage to be allocated when
a structure is associated with a name in a data-declaration.

An example of a structure-declaration in each of the BLISS dialects is:

• In BLISS-16-
STRUCTURE

VECTOR[I; Nt UNIT=2t EXT=OJ =
[N*UNITJ
(VECTOR+I*UNIT)(Ot8*UNITtEXT>;

• In BLISS-32 -
STRUCTURE

VECTOR[I; Nt UNIT=at EXT=OJ =
[N*UNITJ
(VECTOR + I*UNIT)(Ot8*UNITtEXT>;

• In BLISS-36-
STRUCTURE

I)ECTOR[I; NJ =
[NJ
(VECTOR+I)(Ot3G>;

These are equivalent declarations of the BLISS predeclared structure named
VECTOR, but they do not differ in any significant way from structure decla­
rations written by the programmer.

The access-formal in this declaration is I and the allocation-formals are N
and, in BLISS-16/32, UNIT and EXT. UNIT and EXT have default values of
% UPV AL and 0, respectively. If in BLISS-16 or BLISS-32 a VECTOR struc­
ture-attribute does not specify allocation-actuals for UNIT and EXT, then
these default values are used. The structure-size expression is N*UNIT and
the structure-body is (VECTOR + I*UNIT) <0, %BPUNIT*UNIT,EXT>.

Observe that in the BLISS-36 VECTOR declaration, the allocation-formals
UNIT and EXT are not included. This is so because BLISS-36 does not have
the corresponding allocation-unit and extension-attribute (used in data-decla­
rations in the other two dialects), and therefore these formal parameters are of

Data Structures 11-21

no practical use. If, however, these formal parameters were expressed in the
BLISS-36 declaration and given their default values of %UPVAL (1 in
BLISS-36) and 0 (unsigned-extension), respectively, the BLISS-36 declara­
tion would be not only explicitly equivalent - varying only in the dialect­
specific values of %UPVAL and %BPUNIT - but also operationally valid.

11.3.1 Syntax

structure-declaration STRUCTURE structure-definition , ... ,

structure-definition structure··name

alloca tion -formal

structure-size }
structure-body

structure-name }
access-formal
allocation -name

alloca tion -default

11.3.2 Restrictions

[{acCeSs-formal, ... }
nothing

{
; allocation-formal, ... }
nothing]

= { [structure-size] }
nothing

structure-body

allocation-name { = all~cation-default }
nothIng

expression

name

com pile-time-constant-expression

A primary of a structure-size expression must be either an allocation-name or
a compile-time-constant-expression. When a compile-time-constant-expres­
sion is substituted for each allocation-name in the expression, the resulting
expression must be a compile-time-constant-expression.

11-22 Data Structures

If the structure-body expression contains a block, only the following declara­
tions can appear in the b~ock: .

LOCAL
STACKLOCAL
REGISTER
EXTERNAL

11.3.3 Semantics

- EXTERNAL LITERAL
EXTERNAL ROUTINE
LITERAL

The structure-size expression of a structure-declaration is utilized by the com­
piler when the structure name appears in a structure-attribute of a data­
declaration. It specifies the number of addressable units to allocate for the
declared data segment.

The structure-body is utilized each time a structure-reference appears in an
expression. It specifies a replacement for the structure-reference that consists
of an expression. Observe that a field-reference is one form of expression.

The use of these portions of the structure-definition is described in the follow­
ing sections on structure-attributes and storage allocation (Section 11.4) and
structure-references (Sections 11.7, 11.8, and 11.9).

11.4 Structure-Attributes and Storage Allocation

The form of a data segment is determined when its name is declared. If a
structure-attribute appears in the declaration, then that structure-attribute
determines the structure of the data segment both for purposes of storage
allocation and access. If no structure-attribute appears, then the data seg­
ment is assumed to be a scalar.

A structure-attribute in the declaration of a name provides two kinds of infor­
mation. First, it provides a structure-name and thus associates a structure­
definition with the name of the data segment. Second, it provides the alloca­
tion-actual parameters for the structure-definition, and thus specifies the
number of addressable units of storage to be allocated for the data segment.

Observe that the parameters in a structure-attribute are positional; that is,
the formal names given in the structure-declaration are not used as keywords
in a structure-attribute.

The complete syntax and semantics of the declarations in which a structure­
attribute can appear are given in the chapters on data declarations (Chapter
10) and on binding (Chapter 14). This section describes only the structure­
attribute itself and how it is used to determine the size of a structured data
segment.

Data Structures 11-23

11.4.1 Syntax

structure-attribute

structure-name

allocation-actual

16/32 Only

alloca tion -uni t

16/32 Only

extension -attribute

11.4.2 Restrictions

BLISS-16/32 ONLY

{REF }
nothing

structure-name

{ [allocation-actual, ...] }
nothing

name

{ com pile-time-constant-expression }
allocation-unit <= 16/32
extension-attribute <= 16/32
nothing

{ LONG r= 32 Only
WORD
BYTE

{ SIGNED }
UNSIGNED

An allocation-unit used directly as an attribute cannot appear in the same
declaration as a structure-attribute. Similarly, an extension-attribute used
directly as an attribute cannot appear in the same declaration as a struc­
ture-attribute.

Unless the structure-attribute begins with REF or is in an EXTERNAL,
MAP, or BIND declaration:

1. A structure-size expression must appear in the definition of the struc­
ture-name, and

2. A non-null allocation-actual paral1)eter must be given for each alloca­
tion-name that appears in the structure-size expression and does not
have an allocation-default.

A non-null allocation-actual parameter must be given for each allocation­
name that appears in the structure-body and does not have an allocation­
default.

11-24 Data Structures

11.4.3 Semantics

The allocation of a structure is performed by the compiler as follows:

1. If in BLISS-16 or BLISS-32 an allocation-unit or extension-attribute
keyword appears as an allocation-actual, it is replaced by a constant
value as follows:·

Keyword

LONG
WORD
BYTE

SIGNED
UNSIGNED

Replaced by

4 <= 32 Only
2
1

1
o

2. The allocation-actual parameters are evaluated and the values are asso­
ciated with the corresponding allocation-names in the specified struc­
ture-definition.

3. Any allocation-name that does not have a value already associated with
it from Step 2, but does have an allocation-default value, is associated
with its default value.

4. The amount of storage to allocate for the declared name is determined
as follows:

a. If the structure-attribute appears in an EXTERNAL, MAP, or
BIND declaration, then no storage is allocated.

b. If the structure-attribute begins with the keyword REF, then one
fullword of storage is allocated.

c. Otherwise, the structure-size expression is evaluated using the val­
ues that are associated with each of the allocation-formal names.
The resulting value specifies the number of addressable units of
storage that are allocated.

5. The structure-name and the values associated with each allocation­
name are recorded with the data-segment name being declared, for use
when the data-segment is referenced.

11.5 Field-Declarations

The FIELD declaration is used to define names of fields in BLOCK and
BLOCKVECTOR predeclared structures, and in programmer-defined struc­
tures that ,are similar to BLOCK.

Data Structures 11-25

A BLISS-36 example of a field-declaration is:

FIELD
DCB_FIELDS =

SET
DCB_A
DCB_B
DCB_C
DCB_D
DCB_E
TES;

[0,0,36,0],
[1,0,6,0],
[1,6d2,O],
[1 d8d8,O],
[2,0,36,0]

The field-names declared here are DCB--A, DCB_B, and so on. Each name
can be used as a parameter in a structure-reference to represent a sequence of
four access-actuals. For example, DCB--A can be used to represent
"0,0,36,0". (In other examples, the field-names might represent more or less
than four access-actuals.)

The example field-declaration just given also provides a field-set-name,
DCB_FIELDS. That name is used to refer to the field-names collectively as
when, for example, they must be mentioned in a field-attribute.

The field-declaration is a special-purpose facility that can best be explained
in the context of a complete example of structure declaration and use. Such
an example is given in section 11.10.3.

11.5.1 Syntax

field-declaration FIELD { field-set-definition}
, field-definition

, ... ,

field -set-defini tion field-set-name =
SET
field-definition , ...
TES

field -definition field-name = [field-component , ...]

field -set-name }
field-name name

field-component com pile-time-constant-expression

11.5.2 Restrictions

A field-name can only be used as an access-actual parameter of a structure­
reference, a parameter of a field-attribute, or in the %FIELDEXPAND lexi­
cal-function.

A field-set-name can only be used as a parameter of a field-attribute.

11-26 Data Structures

11.5.3 Semantics

The field-declaration defines names for use as access-actual parameters of
structure-references to designate fixed fields in fixed data structures. As a
notational convenience, a set of such field-names can be declared and referred
to by a single name. Observe that both field-names and field-set-names follow
the normal rules concerning scope and uniqueness of names; there is no con­
cept like the "qualified names" of COBOL or PL/I.

When a field-name appears as an access-actual parameter of a structure­
reference, it is replaced by the list of field-component values from the field­
definition. (See example in Section 11.10.3.5.) These values provide one or
more of the access-actual parameters used in the evaluation of the structure­
reference. A field-name need not itself supply all of the actual parameters
required for the reference. (While this replacement has some of the character­
istics of a macro expansion, field-names are not macro-names; in particular, a
field-name is not valid in contexts other than a structure-reference.)

The field-attribute specifies the set of field-names that can appear in ordi­
nary-structure-references for the indicated data segment. If no field-attribute
is given, then no field-name is valid.

Any field-name can be used in a general-structure-reference.

11.6 Field-Attributes

A field-attribute is used in the declaration of a structured data segment name;
that is, in the same declaration with a structure-attribute. The field-attribute
supplies field-names for some or all of the fields in the structured data seg­
ment, either directly by listing field-names or indirectly by giving one or more
field-set-names, or both.

An example of the use of a field-attribute is:

OWN
ALPHA: BLOCK[DCB_SIZEJ FIELD(DCB_FIELDS);

In this example, the field-attribute associates the field-set-name DCB_
FIELDS with the data segment name ALPHA.

Like the field-declaration, the field-attribute can best be explained in the
context of a complete example of structure declaration and use. Such an
example is given in Section 11.10.3.

11.6.1 Syntax

field-attribute { field -name }
FIELD (field -set-name " ..)

field -name }
field -set-name name

Data Structures 11-27

11.6.2 Restrictions

Although a field-set-name can appear as a field-attribute parameter in a data
segment declaration (as the syntax shows), it cannot be used in a structure­
reference to the data segment. The individual field-names associated with the
field-set-name must be used instead.

A field-attribute can be used only in a declaration that also has a structure­
attribute.

11.6.3 Semantics

A field-attribute specifies the set of field-names that may appear in an ordi­
nary-structure-reference to t,h,e data segment declared with the given field­
attribute. A field-set-name in a field-attribute implies a defined set of field­
names that may so appear. If no field-attribute is given, then no field-name is
valid in such a reference.

11.7 Ordinary-Structure-References

A structure-reference is used to access a part of a structured data segment.
The part of the segment that is accessed is determined by the access-actual
parameters in the structure-reference. For example, a structure-reference for a
vector has one access-actual parameter that specifies the element of the vector
to be accessed.

Three kinds of structure-reference are provided: ordinary, default and general.
The ordinary-structure-reference is by far the most commonly used form. It
gives the name of a data segment and relies on the compiler to determine the
appropriate structure from the declaration of the segment name. A default­
structure-reference is similar, but the address of the data segment is given by
an expression, often a preceding ordinary- or default-structure-reference, and
relies on the compiler to determine the structure from the default structure
specification given in a switches-declaration or module-switch. A general­
structure-reference is self contained. It gives all the information necessary for
the access.

Suppose the declaration of A is:

OWN A: VECTOR[10];

An example of an ordinary-structure-reference is:
A [• J]

The compiler uses the declaration of A to find the kind of structure that is
being accessed. This ordinary-structure-reference is a reference to a VECTOR
that consists of 10 elements. The structure-body that is declared for VECTOR
is used in combination with the allocation-actuals in the declaration of A and
the access-actuals in the structure-reference to determine the field-reference
for the appropriate element of the vector.

11-28 Data Structures

Suppose the following set of declarations are given:

OWN A: VECTOR[10];
SWITCHES STRUCTURE (BLOCK [1]);
FIELD FL = [0,0t'X,Bpl.JAL/2,O.lt

FR = [Ot%BPVAL/2,%BPVAL/2,0];

An example of a default-structure-reference is:
A[.J][FL]

The compiler processes the initial ordinary-structure-reference, A[.J], as de­
scribed in the preceding example. The field-reference that results is then used
as the address part of a subsequent structure-reference. The compiler uses the
specification of the default structure in the switches-declaration to find the
kind of structure that is being accessed. In this example the default-structure­
reference is a BLOCK that consists of one fullword. The structure-body that is
declared for BLOCK is used in combination with the allocation-actuals in the
default structure specification in the SWITCHES declaration to determine
the field-reference for the appropriate field in the j'th element of segment A.

An example of a general-structure-reference is:

VECTOR[At .J; 10]

This general-structure-reference is equivalent to the ordinary-structure-refer­
ence given above.

Ordinary-structure-references are described in this section. Default- and gen­
eral-structure-references are described in the next two sections.

11.7.1 Syntax

{ ordinary -structure-reference } structure-reference defa ul t-structure-reference
general-structure-reference

ordinary-structure-
reference segment-name [access-actual ,...]

segmen t-name name

access-actual
{ field-n~me } expreSSIon

nothing

11.7.2 Restrictions

A structure-attribute must be associated with the segment-name.

If field-names are used as access-actuals in the structure-reference, then a
field-attribute designating those field-names must be associated with the seg­
ment-name.

Data Structures 11-29

An access-actual parameter must be given for each access-formal name that
appears in the structure-body of the associated structure-definition.

11.7.3 Semantics

The interpretation of an ordinary-structure-reference is:

1. Use the segment-name to get the structure-body of the associated struc­
ture-definition and to get the values associated with each of the alloca­
tion-names for that segment-name.

2. If the structure-attribute for the segment did not include the keyword
REF, then determine the value of the data segment name (which is the
address of the data segment) and associate that value with the structure
name.

If the structure attribute did include the keyword REF, then fetch the
fullword contents of the segment-name and associate that value with
the structure name.

3. If one or more access-actuals is a field-name, replace each field-name
with its defined sequence of field-component values. This replacement
may increase the number of access-actual expressions in the resulting
structure-reference.

4. Evaluate the access-actual expressions and associate the i'th access­
actual value with the i'th access-formal name in the structure defini­
tion. The order of evaluation of the access-actual expressions is not
defined (see Section 5.1.4).

5. Evaluate the structure-body using the values associated with each of
the allocation-formal names, the access-formal names, and the struc­
ture-name.

6. Use the resulting expression (which is typically a field-reference) in
place of the structure-reference.

11.7.4 Discussion

An important characteristic of structure-references is that the access-actual
expressions in a structure-reference are each evaluated exactly once. The
resulting value is used in the structure-body evaluation in each place that the
access-formal appears.

Consider the following declarations:

E}-(TERNAL ROUT I NE
\(

1\ t

Y t

F;
STRUCTURE

}-(YZ [A; B]
[B]
(}-(YZ+}-«A)+Y(A» ;

OWN ABC: }-(YZ[LI];

11-30 Data Structures

Given these declarations, the structure-reference
ABC[F()]

is logically equivalent to

BEGIN
LOCAL TEMP;
TEMP = F () ;
X(.TEMP) + Y(.TEMP)
END

The routine F is called once In the structure-reference ABC[FO] and the
resulting value is used twice.

Since structure-references are handled by the compiler in a manner similar to
macro expansions and they are, in fact, compiled to in-line code, it is natural
to think of structure-references as macro calls; however, the preceding discus­
sion shows that the interpretation of the actual parameters is more similar to
that for routine-calls.

11.8 Default-Structure-References

A default-structure-reference is used when an ordinary-structure-reference
cannot provide the required field-reference. This usage arises when the ad­
dress of the accessed data segment is an expression, so that the name of the
data (which is part of an ordinary-structure-reference) is not known. When
this occurs frequently in a block or module, it can be convenient to give a
default structure-attribute in a switches-declaration or module-switch to pro­
vide the structure information to be .used for all such occurrences.

An example of a default-structure-reference has already been given in the
introduction of Section 11.7. A more extensive example is given in Section
11.11.7.

11.8.1 Syntax

default-structure- address [access-actual ,...]
reference

address { primary }
executable-function

{ field-name } access-actual expression
nothing

Data Structures 11-31

11.8.2 Restrictions

The address of a default-structure-reference must not be the narne of a data
segment declared with a structure-attribute. (If the address is the name of a
data segment declared with a structure-attribute, then the structure-reference
is an ordinary-structure-reference and is interpreted as described in Section
11.7.)

A default-structure-reference must only occur in the scope of a non-empty
STRUCTURE switch-item (see Section 18.2).

An access-actual parameter must be given for each access-formal name that
appears in the structure-body of the definition of the default structure.

11.8.3 Semantics

The interpretation of a default-structure-reference is:

1. Use the default structure-attribute to get the structure-body of the asso­
ciated structure-definition and to get the allocation-actual values asso­
ciated with each of the allocation-names of the structure.

2. If the default structure-attribute does not include the keyword REF,
then associate the value of the address of the structure reference with
the structure-name. If the default structure-attribute does include the
keyword REF, then fetch the fullword contents of the address value,
and associate the result with the structure-name.

3. If one or more access-actuals is a field-name, replace each field-name
with its defined sequence of field-component values. This replacement
may increase the number of access-actual expressions in the resulting
structure-reference.

4. Evaluate the access-actual expressions and associate the i'th access­
actual value with the i'th access-formal name in the structure-defini­
tion. The order of evaluation of the access-actuals is not defined (see
Section 5.1.4).

5. Evaluate the structure-body using the values associated with each of
the allocation-formal names, the access-formal names, and the struc­
ture-name.

6. Use the resulting expression (which is typically a field-reference) in
place of the structure-reference.

11.8.4 Discussion

Default-structure-references are very similar to ordinary-structure-references.
The differences are:

1. A default-structure-reference uses the structure information established
in a default structure-attribute, and hence, must occur in the scope of a

11-32 Data Structures

non-empty STRUCTURE switch-item. In contrast, an ordinary-struc­
ture-reference uses the structure information associated with the decla­
ration of a data segment n~me and is independent of whether or not a
default structure-attribute is established.

2. A default-structure-reference permits any field-name to be used as an
access-actual parameter. (In this respect it is like a general-structure­
reference, see Section 11.9.) There is no way to specify a default field­
attribute to go with the default structure-attribute. In contrast, an ordi­
nary-structure-reference permits only those field-names that are given
in the field-attribute of the data segment declaration.

Observe that when an ordinary- or default-structure-reference occurs as the
address part of another default-structure-reference, the interpretation occurs
from left to right. That is, a structure-reference of the form

exp [actuals ,...] [actuals, . . .]

is equivalent to

(exp [actuals ,...]) [actuals, . ..]

Also observe that such a structure-reference is a primary and is interpreted
before any operators are applied. For example,

}{ = • 'I' [1 J [2 J is equivalent to)-{ = • ('I' [1 J) [2 J

and

)-{ = •• '1'[1 J [2J [3J IS equivalent to)< •• «Y[lJ)[2J)[3J

Consider the following block:

BEGIN
SWITCHES STRUCTURE(VECTOR[10J);
OWN }{;

)-{[OJ = 1;

BEGIN
SWITCHES STRUCTURE ();

}{[OJ = 1;

END

END

The declaration of X in this example does not associate the structure-attrib­
ute VECTOR[10] with X. Segment X is a scalar by default and is allocated a
single full word.

The first occurrence of X[O], in the fifth line of the example, is a valid default­
structure-reference. It cannot be an ordinary-structure-reference because no
structure-attribute is associated with X. The second occurrence of X[O], in the
tenth line of the example, is invalid because the default structure-attribute is
empty and, as before, there is no structure-attribute associated with X.

Data Structures 11-33

As another example, consider the block

BEGIN
SWITCHES STRUCTURE(VECTOR[100]);
OWN X: BITVECTOR[20];

(}O[.I] = 1;
END

In this example, the structure-reference X[.I] is an ordinary-structure-refer­
ence because the structure-attribute BITVECTOR[20] i.s given in the declara­
tion of X. Thus, the interpretation of the structure-reference uses the
BITVECTOR structure (and not the VECTOR structure).

The structure-reference (X)[.I] is a default-structure-reference because (X),
the base address of the reference, is not a data segment name. The value of
the expression (X) is, of course, the same as the value of X, but the BITVEC­
TOR structure-attribute associated with X is lost in the evaluation of the
expression (X), just as it is in the evaluation of the expressions (X+4) or even
(X+O). Thus, the interpretation of the structure-reference (X)[.I] uses the
VECTOR structure (and not the BITVECTOR structure).

The above examples are not realistic examples of the use of default-structure­
references; rather they emphasize certain fine points in the distinction be­
tween ordinary- and default-structure-references. More realistic examples are
given in the last part of this chapter, Section 11.11.7.

The above examples also illustrate how it is possible to be confused about
whether a structure-reference is ordinary or default when the add:ress is a data
segment name. For this reason, default-structure-references should be used
cautiously and only when there is a very good reason.

A default-structure-reference provides no capability that cannot also be
achieved with a general-structure-:reference. It is strictly a notational and
stylistic convenience.

11.9 General-Structure-References

A general-structure-reference is used when an ordinary-structure-reference
cannot provide the required field-reference. This usage arises in two ways.
First, a general-structure-reference must be used when the address of the
accessed data segment is an expression, so that the name of the data segment
(which is part of an ordinary-structure-reference) is not known. Second, a
general-structure-reference can be used to access a given data segment using a
different structure-definition than that which is associated with the name of
the data segment.

11-34 Data Structures

An example of the second use of a general-structure-reference is given in the
following block:

BEGIN
STRUCTURE

ARRAY[It J; Mt N] =
[M*N*'X,U pl.IAL]
(ARRAY+(I*N+J)*XUPVAL) ;

OWN ALPHA: VECTOR[200];

ARRAY[ALPHA t. It. J ;50 ta] = 0;

END

The general-structure-reference interprets the vector ALPHA as a two-dimen­
sional array according to the structure-declaration for ARRAY. (The declara­
tion of this two-dimensional array structure is discussed in Section 11.11.3.)

11.9.1 Syntax

general-structure- structure-name
reference

[access-part

{ ; allocation-actual , ... }
nothing

]

access-part segment-expression

{ , access-actual , ... }
nothing

segment-expression { expression }
nothing

The syntactic names structure-name, access-actual and allocation-actual are
defined in Sections 11.3 and 11.4.

11.9.2 Restrictions

If the structure-name appears in the structure-body of the definition of the
structure-name, then the segment-expression must be non-empty.

An access-actual parameter must be given for each access-formal name that
appears in the structure-body of the definition of the structure-name.

An allocation-actual must be given for each allocation-name that appears in
the structure-body and that does not have an allocation-default.

Data Structures 11-35

11.9.3 Semantics

The interpretation of a general-structure-reference is:

1. Use the structure-name to get the structure-body for the declaration of
that name.

2. If one or more of the access-actuals is a field-name, replace each field­
name with its defined sequence of field-component values. This replace­
ment may increase the number of access-actual expressions in the re­
sulting structure-reference.

3. Evaluate the segment-expression and associate the value with the struc­
ture-name in the structure definition.

4. Evaluate the access-actual expressions and associate the i'th access­
actual value with the i'th access-formal name in the structure defini­
tion.

5. In BLISS-16 or BLISS-32, if an allocation-unit or extension-attribute
keyword appears as an allocation-actual, replace it by a constant value
as follows:

Keyword

LONG
WORD
BYTE

SIGNED
UNSIGNED

Replaced by

4
2
1

1
o

<= 32 only

6. Evaluate the allocation-actual expressions and associate the i'th alloca­
tion-actual value with the i'th allocation-formal name in the structure
definition. (Observe that each allocation-actual is a compile-time con­
stant value.)

7. Any allocation-formal that does not have a value already associated
with it from the previous step, but does have an allocation-default value
specified, is associated with that default value.

8. Evaluate the structure-body using the values associated with each of
the access-formals, allocation-formals and the structure-name.

9. Use the resulting expression (which is typically a field-reference) in
place of the structure-reference.

The order of evaluation of the segment-expression and access-actual expres­
sions is not defined (see Section 5.1.4).

The interpretation of a general-structure-reference combines the relevant
parts of the rules for interpretation of an ordinary-structure-reference and the
structure-attribute for a given data segment.

11-36 Data Structures

11.9.4 Discussion

A general-structure-reference of the form

structure-name [segment, access ,... ; allocation , ...

is equivalent to the following field-reference:

BEGIN
BIND base = address

: structure-natrle [allocation , •••];
base [access , •••]
END field-selector

where:

base is an arbitrary unique name created for the purpose of this
discussion.

address is the address part of the field-reference in the structure­
body of the declaration of the structure-name.

field-selector is the field-selector part of the field-reference in the struc­
ture-body of the declaration of the structure-name. (As the
syntax of Sections 11.2 and 11.3 show, a field-selector is
optional.)

The BIND declaration is described in Section 14.3.

As with an ordinary-structure-reference, the parameters of a general-struc­
ture-reference are evaluated once, and the resulting values can be used more
than once (see Section 11.7.4).

Unlike an ordinary-structure-reference, however, any field-name can be used
as an access-actual of a general-structure-reference. There is no way to desig­
nate a specific set of field-names that are valid; that is, there is nothing
analogous to the field-attribute for general-structure-references.

A general-structure-reference does not include (or need) anything analogous
to the REF keyword in a structure-attribute. The same effect is accomplished
by explicitly indicating the extra fetch in coding the segment-expression.
Consider the following:

OWN
A: 1.IECTOR[10],
B: REF VECTOR INITIAL(A);

A[l] = 1;
1.IECTOR[A t1; 10] = 1;
B[l] = 1;
1.IECTOR[.B,1;10] = 1;

All four assignments have the same effect; namely, they assign one to the
second element of A. The first two assignments show the corresponding ordi­
nary- and general-structure-references for the non-REF structure A. The sec­
ond two assignments show the corresponding ordinary- and general-structure­
references for the REF structure B.

Data Structures 11-37

11.10 Predeclared Structures

The structures most commonly used in system programming are predeclared
in BLISS. The use and interpretation of each of these structures has already
been introduced in Chapter 3 and used in examples. This section prp-sents the
definition of each of these structures.

The four predeclared structures provide no capability that is not available by
explicitly coding the structure-declarations given in the following sections.
They are predeclared in BLISS as a convenience and to foster the use of
uniform names for these common structures.

The predeclared structures are the following:

Structure-N arne Usage

VECTOR A vector of signed or unsigned elements of uniform size
(bytes or words in BLISS-16; bytes, words, or long­
words in BLISS-32; and words in BLISS-36)

BITVECTOR A vector of one-bit elements

BLOCK A sequence of varying-sized fields

BLOCKVECTOR A vector of blocks.

The declaration and use of the predeclared BLOCK structure is discussed
here in detail because of its fundamental nature (along with VECTOR, dis­
cussed previously). The BITVECTOR and BLOCKVECTOR structures are
discussed more briefly because they are straightforward variations of the
VECTOR and BLOCK structures.

11.10.1 VECTOR Structures

A VECTOR structure is a sequence of elements of the same size. The number
of elements, n, is the extent of the vector. The elements are numbered from 0
to n-l. The generalized form of the structure-declaration is:

STRUCTURE
VECTOR[I; N, UNIT=%UPVAL, EXT=OJ =

[N*UNITJ
(VECTOR+I*UNIT)(O,%BPUNIT*UNIT,EXT>;

When this generalized declaration is made dialect specific, the resulting (ac­
tual) structure-declaration of VECTOR in each dialect is as follows:

• In BLISS-16-
STRUCTURE

VECTOR[I; N, UNIT=2, EXT=OJ =
[N*UNITJ
(VECTOR+I*UNIT)(O,8*UNIT,EXT>;

• In BLISS-32 -
STRUCTURE
VECTOR[I; N, UNIT=4, EXT=OJ =

11-38 Data Structures

[N*UNITJ
(VECTOR+I*UNIT)(O,8*UNIT,EXT>;

• In BLISS-36-

STRUCTURE
I.'ECTOR [I; N]

[N]
(VECTOR+I)(Ot3G);

The formal names of the structure-declaration have the following meanings:

Formal-Name Meaning

I The number of the element to be referenced

N The number of elements in the vector

UNIT

EXT

The number of addressable-units in each element. The
valid values vary with the target system: 1 or 2 for
BLISS-16, and 1 through 4 for BLISS-32. (Since the only
valid value would be 1 in BLISS-36, the formal-name
UNIT is omitted in that dialect.) The default value,
%UPVAL, implies a fullword.

The sign-extension rule to be used for fetching elements.
The vaiid values are 0 and 1. The default is 0, that is,
unsigned. (Note that sign-extension of a fullword is not
meaningful, thus the formal-name EXT is omitted in
BLISS-36.)

Example uses of this structure as structure-attributes in declarations are:

Example Interpretation
I.'ECTOR [10] A vector of 10 fullwords

v E C TOR [lOt W 0 R D] A vector of 10 unsigned words in BLISS-16/32

VECTOR[20 tBYTE tSIGNED] A vector of 20 signed bytes in BLISS-16/32

REF V E C TOR [5] A reference to a vector of 5 full words

1.'ECTOR[20 t3] A vector of 20 three-byte elements, in
BLISS-32 only.

11.10.2 BITVECTOR Structures

A BITVECTOR is a sequence of one-bit elements that are densely packed in
storage. The number of elements, n, is the extent of the bitvector. The ele­
ments are numbered from 0 to n-1. The generalized form of the structure­
declaration is:

STRUCTURE
BITVECTOR[I; N] =

[(N+(%BPUNIT-l»/%BPUNIT]
(BITl.'ECTOR+I/%BPUNIT)<I MOD 'J..BPUNITd to>;

The actual, dialect-specific forms of this structure-declaration are as follows:

• In BLISS-16-
STRUCTURE

BITVECTOR[I; N] =
[«N+7)/S)]
(BITI.'ECTOR+(I"'-3))(I AND 7 d to>;

Data Structures 11-39

• In BLISS-32 the following variation is used to take advantage of the less
restrictive field-references for better code quality-

STRUCTURE
BITVECTOR[I; NJ =

[(N+7)/SJ
B I TI,JECTOR< I t 1> ;

• In BLISS-36-

STRUCTURE
BITVECTOR[I; NJ =

[(N+35)/3GJ
(BITI,JECTOR+I/3G)< I MOD 3G t1 to>;

The formal names of this structure have the following meaning:

Formal-Name Meaning

I The number of the element to be referenced

N The number of elements in the vector

Example uses of this structure as structure-attributes in declarations are:

Example Interpretation
REF B I TI,JECTOR [S J A reference to a vector of 8 one-bit elements

B I TI,lECTOR [GO J A vector of 60 one-bit elements

Observe that the second data segment would occupy 8 bytes of PDP-II or
VAX-II storage, and would leave the four high order bits of the last byte
unused. On the DECSYSTEM-I0/20 the first data segment would occupy one
word with 28 high order bits unused; the second would occupy two words with
12 high order bits of the second word unused.

11.10.3 BLOCK Structures

A BLOCK structure is a sequence of components. The individual components
of a block can be of various sizes. The generalized form of the structure­
declaration is:

STRUCTURE
BLOCK[Ot Pt St E; BSt UNIT=%UPVALJ

[BS*UNITJ
(BLOCK+O*UNIT)<PtStE>;

The actual, dialect-specific forms of this structure-declaration are as follows:

• In BLISS-16-
STRUCTURE

BLOCK[Ot Pt St E; BSt UNIT=2J
[BS*UNITJ
(BLOCK+O*UNIT)<PtStE>;

• In BLISS-32 -
STRUCTURE

11-40 Data Structures

BLOCK[Ot Pt St E; BSt UNIT=aJ
[BS*UNITJ
(BLOCK+O*UNIT)<PtStE>;

• In BLISS-36-
STRUCTURE

BLOCK[Ot Pt St E; BS]
[BS]
(BLOCK+O)(PtStE>;

The formal names of this structure have the following meanings:

Formal-Name Meaning

o

P

S

E

BS

UNIT

The offset to the addressable-unit in which the field be­
gins

The bit offset from the addressable-unit to the field be­
ginning

The size of the field in bits. Valid values are 0 to
%BPVAL

The extension flag. Valid values are 0 for zero-extension
and 1 for sign-extension

The number of allocation units needed to represent the
block, i.e., the block size

The size of the allocation-unit and offset in terms of ad­
dressable units. Valid values vary with the target system:
1 or 2 for BLISS-16, 1 through 4 for BLISS-32, and 1 only
in BLISS-36 (the formal-name UNIT is omitted in that
dialect). The default is %UPVAL, that is, a fullword.

Blocks are conventionally allocated in fullword units for most efficient opera­
tion of the hardware. (Using default fullword allocation also facilitates tran­
sportability of BLISS programs.)

11.10.3.1 A Typical Byte-Oriented BLOCK Structure - An example of a typi­
cal block on a byte-oriented target system (PDP-II or VAX-II) is considered
in detail in the following paragraphs. The block is named ALPHA and has five
components, named A, B, C, D, and E. The VAX-II target system and
BLISS-32 dialect are assumed for the purposes of this example as they pro­
vide the richest basis for explanation of the underlying BLISS structure mech­
anisms. (A BLISS-36 example would be somewhat simpler since 'addressable
byte boundaries are not considered. Analogous code fragments for BLISS-36
are shown in this discus~ion where appropriate.)

The layout of the example block in VAX-II storage is:

DCB

A,32. :ALPHA

0,19 I C,5 I B,8

E,32

Data Structures 11-41

This diagram uses the notation introduced at the beginning of this chapter, in
Section 11.1.2.

The name DCB refers to .the layout of the fields relative to the starting ad­
dress of the block. Thus there could be more than one DCB block in storage at
a given time, one at ALPHA and others at other addresses.

The block is divided into five components, and the name and size are given for
each component. Component A contains 32 bits and occupies the four bytes
whose addresses are ALPHA through ALPHA+3. Component B contains 8
bits and occupies the byte at ALPHA+4. Component C contains 5 bits and
occupies the 5 low-order bits of the byte at ALPHA+5. Component D contains
19 bits and occupies the remaining bits of the byte at ALPHA+5 as well as the
next two bytes. Component E occupies the next longword.

11.10.3.2 BLOCK Field-References - Each component of a block has a field­
reference. The field-references for DCB are:

Component

A of ALPHA
B of ALPHA
C of ALPHA
D of ALPHA
E of ALPHA

Field -Reference

(ALPHA+O)(O,32,O)

(ALPHA+1I)(O,8,O)

(ALPHA+1I)(8,5,O)

(ALPHA+1I)(13,19,O)

(ALPHA+8)(O,32,O)

Analogue For BLISS-36

(ALPHA+O)(O,3G,O)

(ALPHA+l)<O,8,O)

(ALPHA+l)<8,S,O)

(ALPHA+l)(13,23,O)

(ALPHA+2)(O,3G,O)

As a specific example of access to DCB, consider the field-reference for com­
ponent D of ALPHA. This expression is interpreted by locating the byte whose
address is (ALPHA+4) and then applying the field-selector <13,19,0> at that
position in memory. The field-selector starts at the low-order (rightmost) bit
of the designated byte, then skips 13 bits (first parameter) to the left, then
selects the next 19 bits (second parameter), and, finally, applies unsigned
extension (third parameter) if the access is a fetch.

The field-references given in the table reflect a bias towards fullwords. That
is, if ALPHA is a full word address, then the expressions (ALPHA+4) and
(ALPHA+8) are also full word addresses. This bias is natural for VAX-II, but
it is not essential. An alternative field-reference for component D that does
not show this bias is:

(ALPHA+S)(S,19,O) [No analogue in BLISS-36]

This field-reference is different from that given previously for D, but it selects
the same bits of storage.

Any of the field-references can be used for either a fetch or a store operation.
For example, to place the value 7 in component D of ALPHA, write:

(ALPHA+1I)(13,19,O) = 7

11.10.3.3 BLOCK Allocation - A specific block data segment is allocated by
means of a BLOCK structure-attribute. The attribute provides values for the
allocation-formals of the BLOCK structure-declaration.

11-42 Data Structures

The following declaration allocates storage for the DCB block named ALPHA:

OWN
ALPHA: BLOCKC3,4J;

The structure-attribute in this example is BLOCK[3,4], and it provides the
values 3 and 4 for the allocation-formals N and UNIT, respectively. When
storage is allocated for ALPHA, the structure-size expression in the declara­
tion of BLOCK is evaluated. That expression is N*UNIT and its value is
therefore 12. Thus 12 bytes of storage (3 fullwords) are allocated for ALPHA.

An equivalent declaration of ALPHA is:

OWN
ALPHA: BLOCKC3J; [Also valid in BLISS-36]

In this declaration, the structure-attribute does not give a value for UNIT, so
the default value is used. (This declaration results in the allocation of three
fullwords in BLISS-36 also, whereas the prior version would not be valid in
that dialect.)

Yet another equivalent declaration is:

LITERAL
DCB_SIZE = 3;

OWN
ALPHA: BLOCKCDCB_SIZEJ;

This example uses a literal-name instead of a numeric-literal to provide the
value of the allocation-formal N. This practice is always desirable, and is
especially so when ALPHA is one of several data segments of the same form.
The use of the name-DCB_SIZE tells the reader explicitly that ALPHA will
eventually be used for the block diagrammed at the beginning of this section.

11.10.3.4 BLOCK Structure-References - A specific component of a data
block is accessed by means of a structure-reference. The structure-reference
begins with the name of the data segment and then gives values for the four
access-formals of the BLOCK structure declaration.

The following example ends by assigning 7 to component D of ALPHA:

LITERAL

OWN
ALPHA: BLOCKCDCB_SIZEJ;

ALPHAC1,13,19,OJ = 7;

The structure-reference in this example is interpreted as follows. First, make
a copy of the structure-body of the declaration of BLOCK. That structure­
body is:

(BLOCK+O*UNIT)(P,S,E>

Next, replace the "zero'th formal-name", BLOCK, with ALPHA, giving:

(ALPHA+O*UNIT)(P,S,E>

Data Structures 11-43

Next, replace the allocation-formal UNIT with 4, giving:

(ALPHA+O*4)(P,S,E)

Finally, replace the four access-formals, 0, P, S, and E, with the correspond­
ing access-actual parameters, 1, 13, 19, and 0, giving:

(ALPHA+4)(13,19,0)

This is the same as the field-reference given for component D in Section
11.10.3.2.

11.10.3.5 BLOCK Field-Declarations - The reference to component D of AL­
PHA is improved by the use of the BLOCK structure-name, but it still re­
quires a list of integer parameters, [1,13,19,0], that bears no obvious relation to
the description "component D of DCB".

This problem could be solved by defining a macro, such as:

MACRO
DCB_D = 1,13,19,0 'X,;

However, BLISS provides a special feature, the field-declaration, for this
purpose.

The following program fragment shows the complete mechanism for handling
the block ALPHA:

LITERAL
DCB_SIZE = 3;

FIELD
DCB_FIELDS

SET

MACRO

DCB_A
DCB_B
DCB_C
DCB_D
DCB_E
TES;

[0,0,32 ,OJ ,
[1,0,8,OJ,
[1,8,5,OJ,
[1 ,13,19,OJ,
[2,0,32,OJ

DCB = BLOCK[DCB_SIZEJ FIELD(DCB_FIELDS) %;
OWN

ALPHA: DCB;

ALPHA[DCB_DJ = 7;

The field-declaration defines the four-integer code for each component and
also gives a name, DCB_FIELDS,' to the five field-names thus declared.

The declaration of the macro-name DCB is the final convenience; it permits
the block layout that is associated with ALPHA to be designated by a single
name, DCB.

When the macro-call on DCB is expanded, the declaration of ALPHA be­
comes:

OWN
ALPHA: BLOCK[DCB_SIZEJ FIELD(DCB_FIELDS);

The field-attribute allows the five field-names associated with DCB_
FIELDS to be used in structure-references for ALPHA.

11-44 Data Structures

11.10.4 BLOCKVECTOR Structures

A BLOCKVECTOR structure is a vector of blocks. The number of elements,
n, is the extent of the vector and the size of each element is the size of a single
block. The elements are numbered from 0 to n-1. The structure-declaration
for BLOCKVECTOR in each dialect is:

• In BLISS-16-

STRUCTURE
BLOCKl,lECTOR[It Ot Pt St E; Nt BSt UNIT=2J

[N*BS*UNITJ
(BLOCKl,lECTOR+(I*BS+O)*UNIT)(PtStE);

• In BLISS-32 -

STRUCTURE
BLOCKl,lECTOR[I t Ot Pt St E; Nt BSt UNIT=QJ

[N*BS*UNITJ
(BLOCKl,lECTOR+(I*BS+O)*UNIT)(PtStE);

• In BLISS-36-

STRUCTURE
BLOCKl,lECTOR[I t Ot Pt St E; Nt BSJ =

[N*BSJ
(BLOCKl,lECTOR+(I*BS+O»(PtStE);

The formal names of the structure-declaration have the following meanings:

Formal-Name Meaning

I The number of the block element. Valid values are 0
through N-1

o The offset to a field. Valid values are 0 through BS-1

P Bit offset from the addressable-unit to the beginning of
the field

S Size of the field in bits. Valid values are 0 through
%BPVAL

E Extension rule. Valid values are 0 for zero-extension and
1 for sign -extension

N

BS

UNIT

The number of block elements in the vector

The number of allocation-units in each block element

The number of addressable-units in the allocation-unit

The BLOCKVECTOR structure is a combination of the allocation and access
definitions from the BLOCK and VECTOR structures.

Using this structure, a declaration of a vector of DCB blocks (used as an
example of the BLOCK structure in section 11.10.3) is written:

OWN XXX: BLOCKl,lECTOR[100tDCB_SIZEJ FIELD(DCB_FIELDS);

This declaration allocates storage for 100 DCB blocks, each of which is three
fullwords in size.

Data Structures 11-45

If the contents of a variable J is 2 then

fetches the value of the D field of the third block in the vector.

Observe that the field-declaration used with the block discussed in Section
11.10.3 is used with the blockvector discussed here.

11.11 Other Structures

The predeclared structures described in the previous section are included in
BLISS because they occur frequently in many types of programs. However,
they are only a sample of the wide range of structures that can be defined
using the structure declaration. This section sketches some additional struc­
tures that illustrate some of the other possibilities.

To minimize the complexity of the example structures presented, only full­
word versions of the structures are defined. These examples could be aug­
mented in a variety of ways to be more flexible. Also, the structure-declara­
tions are written in parameterized, transportable form (using the predeclared
literal %UPVAL) such that they are valid in all dialects.

11.11.1 "One-Origin" Vector Structures

The definition of vector presented previously numbered the elements of the
vector from 0 to n-1, where n is the number of elements of the vector. In some
applications, it is more natural to number the elements from 1 to n instead.

A structure that accomplishes this is:

STRUCTURE
l.lECTOR1[I; N] =

[N*'X,U Pl.lAL]
(VECTOR1+(I-l)*%UPVAL) ;

This structure differs from the VECTOR structure previously presented in
that 1 is subtracted from the element number before the offset relative to the
base of the vector is computed.

11.11.2 "Bounds Checking" Vector Structures

On occasion, particularly during debugging, it is desirable to perform validity
checking of the access-actuals of a structure-reference. For the VECTOR1
structure just given, bounds checking can be accomplished as follows:

STRUCTURE
l.'ECTOR 1 CHK [I; N]

[N*'X,Upl.'AL]
BEGIN

11-46 Data Structures

LOCAL T;
T = I;
IF .T LSS 1 OR .T GTR N
THEN

BEGIN
ERROR(.T);
T = 1;
END;

VECTOR1CHK+(.T-l)*%UPVAL
END;

This structure calls a routine ERROR for those cases in which the value of I is
not in the valid range of 1 through N inclusive.

11.11.3 Two-Dimensional Array Structures

A zero-origin two dimensional array structure can be defined as follows:

STRUCTURE
ARRAY[I t J; Mt N] ::

[M*N*i.,U Pl.IAL]
(ARRAY+(I*N+J)*ZUPVAL) ;

This structure stores elements in "row-order" as in PL/I.

A similar structure that stores elements in one-origin "column-order", as in
FORTRAN, can be defined as follows:

STRUCTURE
ARRAYBYCOL[I t J; Mt N] ::

[M*N*'X,Upl.JAL]
(ARRAY+«J-l)*M+(I-l»*ZUPVAL) ;

This structure differs from the previous example in the following ways:

• I is replaced by 1-1 and J is replaced by J-1 to get one-origin numbering
of the elements.

• I and J are interchanged in the structure-body, as are M and N, to get
column-ordering instead of row-ordering.

11.11.4 Symmetric Array Structures

A symmetric array is a square array in which the contents of A[I,J] is equal to
the contents of A[J,I). For such an array, it is not necessary to allocate storage
for the entire array.

A symmetric 3-by-3 array can be diagramed as follows:

J

I I
(1,1) (1,2) (1,3)

(2,2) (2,3)

(3,3)

The number of elements needed to represent a symmetric array is:

n * (n+1)/2

where n is the number of elements in each dimension. In the 3-by-3 example
above this gives 3*4/2, or 6, elements.

The storage for such an array can be allocated with the elements in the
following order:

Data Structures 11-47

If j is greater than or equal to i then the linear position of the (i,j) element in
the storage sequence is given by the formula

J*(J-l)/2+i

In the 3-by-3 example above, the position of the (2,3) element is

3*(3-1)/2+2 = 5

That is, element (2,3) is the fifth element of the linear sequence.

This analysis can be incorporated into a structure declaration for symmetric
arrays as follows:

STRUCTURE
SYMARRAYC I t J; MJ =

[(M*(M+1)/2)*%UPVALJ
(SYMARRAY-%UPVAL+

(IF J GTR I

) ;

THEN
J*(J-1)/2+I

ELSE
I*(I-1)/2+J

) *'7"UPI,IAL

Declaration and use of this structure is the same as for an ordinary two­
dimensional one-origin array. For example,

OWN SYMX: SYMARRAY[1dt10J;

declares and allocates a 10-by-lO symmetric array named SYMX. It occupies
55 full words of storage.

The sum of the 100 "logical" elements of the array can be computed as shown
in the following:

SUM = 0;
INCR I FROM 1 TO 10 DO

INCR J FROM 1 TO 10 DO
SUM = • SUM + • SYM}{[• It. J J ;

11.11.5 Non-Continuous Block Structures

The predeclared definition of the BLOCK structure given previously assumes
that all of the fields of the block are contiguous in memory. In some cases this
might not be possible or desirable. For example, a storage management sub­
system might be in use that provides only a fixed-size block of memory. In
such a circumstance it may still be desirable to reference a "logical block" as
an entity even though it might be represented using more than one physical
block of memory.

The following structure illustrates a way to achieve this:

STRUCTURE
LBLOCK [0 t P t S t E t I J =

11-48 Data Structures

(CASE I FROM 0 TO 1 OF
SET
[0 J: (LBLOCK +O*'X,U PI,IAL) ;
[1 J: (. LBLOCK+O*'X,Upl,IAL) ;
TES

)<PtStE>;

Since this structure is only intended to be used with dynamically allocated
memory, the definition does not contain a structure-size expression.

A typical declaration of a data segment that points to an instance of this
structure is:

OWN XPTR: REF LBLOCK;

To understand this structure, consider the following diagram:

i : XPTR
I

T ~

B I A

C

D

E ----
F

H I G

I

.. %BPVAL bits ...

LBLOCK Organization

The diagram illustrates a logical block consisting of 9 fields named A through
I. The logical block is represented as two physical blocks. Each physical block
consists of four full words , the assumed fixed-size storage management unit.
The arrows indicate fields that contain the address of the first block and of the
remainder of the logical block.

The first physical block is like the BLOCK structure described in Section
11.10.3. However, the access formal list for the LBLOCK structure includes
an additional formal name, I, that the BLOCK structure did not have. This
formal name is used in the structure-body to choose one of two expressions as
the structure address expression.

The field-name for A is defined as follows:

FIELD A = [1 to t'X,BP I.JAL/2 t1 to];

Data Structures 11-49

When used in a structure-reference to XPTR, the last 0 in this definition
causes the first case-line of the structure-body to be used, and thus the refer­
ence

}{PTRCAJ

is like a BLOCK reference.

A field in the second physical block, such as F, is defined using a 1 as the last
value, as in:

FIELD F = C 1,0 , 'y',BPI.'AL t1 t1];

The last 1 in this definition causes the second case-line to be used. Examina­
tion of the second case-line shows that it is just like the first except that the
contents of the first fullword of the first physical block is used as the base for
applying the offset, position, size and extension values.

A reference to this field is written in the same way as a reference to the A field,
that is, as:

}'{PTRCFJ

The "extra indirection" used to reference this field is "hidden" in the struc­
ture and field definitions used to define the logical structure.

11.11.6 Partially Overlayed Structures

Some programming applications require data structures that are similar with
respect to some, but not all, of their fields.

For example, consider the symbol table of a compiler. The table must accom­
modate different kinds of identifiers (symbols), and has a different kind of
block for each kind of identifier. However, in order to make the table useful,
some fields will appear in all blocks of the table. One such common field will
be the "type field", which specifies which kind of identifier a given block
represents.

As another example, consider the table of device control blocks in an opera­
ting system. Once again, the table must have different kinds of blocks, one
kind for each kind of device; and, once again, some fields will appear in all
blocks of the table. In this example, the common fields might be the priority
level, a pointer to a queue of operations, and a device type code.

As a basis for illustration, consider the following diagram:

F I TYP I LEN LEN

NAME_PTR

VALUE Q Z

LINK

BLOCK Type 1 BLOCK Type 2

n -50 Data Structures

The diagram shows two different blocks that share some common fields,
namely: LEN, TYP, and NAME--PTR. Each block also has fields that are
not common with the other block; indeed, the blocks are not even the same
size.

The following declarations illustrate one way to code the definitions of these
two blocks, using BLISS-36 as the sample dialect:

FIELD
COM_FLDS =

SET
LEN = [(JtOt1ZtO]t
TYP = [0 t1Z t1Z to] t

NAME_PTR = [ltOt38tO]
TESt

TYP1_FLDS =
SET
F = [OtZ4t1ZtO]t
VALUE = [ZtOt38tO]
TES t

TYPZ_FLDS
SET

MACRO

Z = [Z,0t18tO] t

Q = [Zt18t18t1]t
LINK = [3tOt38tO]
TES;

TYP1_BLOCK = BLOCK[3] FIELD(COM_FLDStTYP1_FLDS) It
TYPZ_BLOCK = BLOCK[4] FIELD(COM_FLDStTYPZ_FLDS) I;

The field-declaration defines three sets of fields:

COM_FLDS, for fields that are common to both types of block,

TYPl_FLDS, for fields that are specific to the first type of block, and

TYP2_FLDS, for fields that are specific to the second type of block.

The macro-declaration defines two macros, one for each kind of block; the
expansions give the attributes appropriate for each kind of block.

These macro-names can be used in data declarations such as:

OWN
STARTUP: TYP1_BLOCK;

LOCAL
PTR: REF TYPZ_BLOCK;

Observe that in the declaration of PTR (as LOCAL) the structure-attribute is
REF BLOCK[4], where REF is given explicitly and BLOCK[4] results from
the expansion of TYP2_BLOCK. If BLOCK[4] and FIELD (COM_
FLDS,TYP2_FLDS) had been given in the opposite order in the macro defi­
nition of TYP2-BLOCK, then additional macro definitions would be needed
in order to declare data segments with REF structure-attributes.

Data Structures 11-51

The definition technique shown above has two advantages:

1. The common definition information is given only once, thereby avoiding
the possibility of clerical errors in giving the same information in multi­
ple field-set definitions.

2. Depending on specific details, changes or additions to the common
fields can be made in one place, which is easier and more reliable than
making corresponding changes in many places.

11.11.7 General Purpose Structures for Default Structure
References

Some programming applications involve complicated data structures using
blocks of various types connected together by pointers. If the nature of the
application involves frequent access to blocks related to a given block by
"following pointers", there may well be notational advantages to using a
default structure (see Sections 11.8 and 18.2).

To illustrate this, first consider how an example might be coded without using
default structures. Suppose the following block is being used to represent a
node in a tree structure, such as might be used for expressions in a compiler.

OP

LEFT_OPND

RIGHT_OPND

The op field is used to contain a code for the kind of arithmetic operator
represented, and the LEFT_OPND and RIGHT_OPND fields are used to
contain addresses of other such nodes.

A routine to compare the OP fields of the two subnodes of a given node for
equality might be coded as follows:

ROUTINE COMPARE_SUBOPS(NODE) =
BEGIN
MAP NODE: REF TREE FIELD(TREE_FIELDS);
LOCAL

L_PTR: REF TREE FIELD(TREE_FIELDS) t

R_PTR: REF TREE FIELD(TREE_FIELDS);
L_PTR = .NODE[LEFT_OPND];
R_PTR = .NODE[RIGHT_OPND];
IF .L_PTR[OP] EQL .R_PTR[OP]
THEN

••• , ! Actions if subnodes have saMe OP value
END;

The structure and field name definitions assumed in this example should be
obvious from earlier examples and are not shown.

11-52 Data Structures

The same effect can be achieved using. a default structure as follows:

ROUTINE COMPARE_SUBOPS1(NODE) =
BEGIN
SWITCHES STRUCTURE(REF TREE);
IF .NODE[LEFT_OPND][OP] EQL .NODE[RIGHT_OPND][OP]
THEN ... , ! Actions if subnodes have saMe OP value
END;

This second version is slightly shorter. It is also more suggestive of the "logi­
cal" access being performed because intermedIate assignments are not needed
simply to obtain a data segment name (such as L-PTR in the first version)
that is declared with the appropriate structure properties for each step along
the path of access.

Observe that the default structure in this example is a REF structure. This
means that each step in the access path necessarily makes a fetch to obtain
the base address for the next field access.

Data Structures 11-53

Chapter 12 Routines

12.1 Ordinary-Routine-Calls.

12.1.1 Syntax. . .
12.1.2 Restrictions
12.1.3 Semantics .
12.1.4 Pragmatics.

12.2 General-Routine-Calls

12.2.1 Syntax ...
12.2.2 Restrictions .
12.2.3 Semantics . .

12.3 Routine-Declarations.

12.3.1 Syntax
12.3.2 Semantics ..

12.4 Ordinary-Routine-Declarations

12.4.1 Syntax. . .
12.4.2 Restrictions
12.4.3 Defaults . .
12.4.4 Semantics .
12.4.5 Pragmatics.

12.4.5.1 Parameter Passing.
12.4.5.2 Allocation of Formal-Name Data Segments
12.4.5.3 Attributes for Formal-Names.
12.4.5.4 Computed Routine Addresses.

12.5 Global-Routine-Declarations

12.5.1 Syntax ...
12.5.2 Restrictions
12.5.3 Defaults . . .
12.5.4 Semantics .

12.6 Forward-Routine-Declarations

12.6.1 Syntax. . .
12.6.2 Restrictions
12.6.3 Semantics

12.7 External-Routine-Declarations

12.7.1 Syntax ...
12.7.2 Restrictions
12.7.3 Semantics .

12-1

12-3
12-3
12-4
12-4

12-5

12-5
12-6
12-6

12-6

12-7
12-7

12-7

12-9
· 12-10
· 12-10
· 12-10
· 12-11

· 12-11
· 12-13
· 12-13
· 12-13

· 12-14

· 12-15
· 12-15
· 12-15
· 12-16

· 12-16

· 12-16
· 12-17
· 12-17

· 12-17

· 12-17
· 12-18
· 12-18

Chapter 12
Routines

RoutinEls are the logical units from which a program is built. Each routine
describes a portion of the program that is relatively complete and independ­
ent. The design of BLISS permits a routine to have its own block structure
and local data.

A program has a single main routine (see MAIN module-switch, Section 19.2).
The main routine controls the computation, but it can delegate parts of the
computation to subordinate routines. Each subordinate routine can, in turn,
delegate part of its computation to its own subordinate routines. A routine can
also call an external routine (one defined outside of its own block or module)
to perform a commonly needed function, for example.

The use of routines has two sides: the calling of routines and the declaration of
routines. The first two sections of this chapter describe routine-calls. The
remaining five sections describe routine-declarations.

The linkage-declaration, which controls the instruction sequence generated
for a call on a given routine, and the register-management discipline used
within the routine, is described in Chapter 13 along with other linkage-related
declarations.

12.1 Ordinary-Routine-Calls

A routine-call causes the execution of a routine that has been declared as part
of the same module or some other BLISS module, or of a program written in
another language.

12-1

Two kinds of routine-calls are provided: ordinary and general. The ordinary­
routine-call is by far the most commonly used form: it gives the name of a
routine and relies on the compiler to determine, from the declaration of the
named routine, the appropriate linkage (or calling sequence).

A general-routine-call is self-contained. It gives all of the information needed
for calling the routine.

An example of an ordinary-routine-call is given in the following program
fragment:

OWN
At
B;

E><TERNAL ROUT I NE
RFACT;

A = RFACT(.B)
END

The RF ACT routine is declared in another module. The function of the rou­
tine is to determine the factorial of a given parameter. The result is the value
of the routine; therefore, the routine does not have a NOV ALUE attribute.
The routine-call RFACT(.B) causes the contents of input-actual-parameter B
to be passed to the factorial routine and the returned result to be assigned to
location A. (The routine RFACT declaration is given in Section 12.4.)

In the example, the routine-call is used to pass an input-parameter; however,
output-parameters may also be passed. When this is done, each output-ac­
tual-parameter is treated like .the left-hand side of an assignment expression
defining where an output-register value (from the called routine) is to be
stored.

Output-parameters permit a routine to return results that are larger than a
BLISS value or to return several values at ·once. For example, a double­
precision floating point value can be returned in RO and Rl.

In the routine-call syntax, output~parameters follow input-parameters and
are separated by a semicolon (;).

12-2 Routines

12.1.1 Syntax

routine-call { ordinary-routine-call }
general-routine-call

ordinary-
routine-call routine-designator

({ inpu~-actual-parameter , ... }
nothIng .

{ ; output-actual-parameter , ... }
nothing

)

rou tine-designa tor primary

input-
{ expression } actual-parameter

nothing

output-
{ expression } actual-parameter

nothing

12.1.2 Restrictions

The number of input-actual-parameters in a routine-call must agree with the
number of input-formal-parameters in the routine-declaration. (This restric­
tion can be relaxed through use of the linkage-functions described in Section
13.6.)

The value of each input-actual-parameter must be consistent with the context
in which the corresponding input-formal-parameter is used in the routine
declaration.

An output-actual-parameter may be any expression, including an undotted
register-name qualified by position, size, and sign-extension information (i.e.
field -reference).

The number of output-actual-parameters must be less than or equal to the
number of output-formal-parameters specified in the routine declaration.

An output-actual-parameter must not be specified if a corresponding output­
parameter-location register is not specified in the linkage.

Routines 12-3

The evaluation of the routine-designator must yield the value of a name that
has been declared ROUTINE.

The linkage of the routine-designator (determined as described in Section
12.1.3) must be the same as the linkage-attribute in the declaration of the
routine that is called.

A linkage-name defined with the linkage-type INTERRUPT or RSX-AST
may not be used in a general-routine-call.

The order in which the routine-designator and actual-parameters are evalu­
ated is as follows: Input-actual-parameters are evaluated prior to the routine
call, and output-actual-parameters are evaluated when the routine returns to
the caller.

12.1.3 Semantics

An ordinary-routine-call is interpreted as follows:

1. Evaluate the routine-designator and the actual-parameters.

2. Determine the linkage to be used with the routine-designator. If the
routine-designator is a routine-name, then the linkage is given by the
linkage-attribute (explicit or default) in the declaration of the routine­
name. Otherwise, the linkage is given by the linkage-name established
in a LINKAGE switch or, if no LINKAGE switch applies, the linkage is
the default linkage-name for the dialect in use (BLISS for BLISS-16/32;
BLISS36C for BLISS-36).

3. Associate the actual-parameters with the formal-parameters of the rou­
tine called. The value of the i'th actual-parameter becomes the content
of the i'th formal-parameter.

4. Create a stack frame. The kind of stack frame and the details of its
organization depend on the linkage of the routine.

5. Evaluate the routine-body.

6. Delete the stack frame.

7. Evaluate the output-actual-parameter expressions and assign the
returned output-register values to the appropriate output-actual­
parameters.

8. If a value is returned, use that value as the value of the routine-call.

The linkage used in a routine-call does not affect the semantics of the call, but
instead affects the details of how the call is carried out. Linkages are de­
scribed in Chapter 13.

12.1.4 Pragmatics

An input-actual-parameter in a routine-call can be a %REF standard func­
tion. This function is especially designed for use in routine-calls. It is de­
scribed and illustrated in Section 5.2.2.3

12-4 Routines

12.2 General-Routine-Calls

A routine whose address is computed during execution can be called with a
linkage other than the default linkage using a general-routine-call. An exam­
ple of a general-routine-call is given in the following program fragment:

EHTERNAL ROUTINE

BIND

Fl: FORTRAN_SUB NOVALUEt
F2: FORTRAN_SUB NOVALUEt
F3: FORTRAN_SUB NOVALUE;

TABLE = UPLITCFl tF2tF3) VECTOR;

FORTRAN_SUB C • TABLE [• I] t P 1 t P2)

The address of the FORTRAN routine to be called is computed by fetching an
element of a vector. Because the routine has linkage-type FORTRAN_SUB,
the general-routine-call must be used to give the compiler the information
necessary to generate the correct form of routine-call.

12.2.1 Syntax

general-rou tine-
linkage-name call

(routine-address

~ { • input-actual-parameter •... }
I nothing I
I t

{ ; output-actual-parameter, ... })

I nothing I

t nothing I

linkage-name name

routine-address expression

input-
{ expr~ssion } actual-parameter

nothIng

output-
{ expression } actual-parameter

nothing

Routines 12-5

12.2.2 Restrictions
I

For BLISS-16, a linkage-name defined with the linkage-type INTERRUPT or
RSX-AST may not be used in a general-routine-call.

The evaluation of the routine-address expression must yield the address of
a routine that is declared with the specified linkage-name as its linkage­
attribute.

The number of input-actual-parameters in a routine-call must agree with the
number of input-formal-parameters in the routine-declaration. (This restric­
tion can be relaxed through use of the linkage-functions described in Section
13.6.)

The value of each input-actual-parameter must be consistent with the context
in which the corresponding input-formal-parameter is used in the routine­
declaration.

An output-actual-parameter may be any expression, including an un dotted
register-name qualified by position, size, and sign-extension information (i.e.
field -reference) .

The number of output-actual-parameters must be less than or equal to the
number of output-formal-parameters specified in the routine declaration.

An output-actual-parameter must not be specified if a corresponding output­
parameter-location register is not specified in the linkage.

The order in which the routine-address expression and actual-parameters are
evaluated is as follows: Input-actual-parameters are evaluated prior to the
routine call, and output-actual-parameters are evaluated when the routine
returns to the caller.

12.2.3 Semantics

In a general-routine-call, the routine-address expression is interpreted as the
address of the routine to be called and the remaining expressions are inter­
preted as the actual parameters of the call. The linkage to be used is given by
the linkage-name. In all other respects, the semantics is the same as for an
ordinary-routine-call.

12.3 Routine-Declarations

A routine-name can be declared in five different ways in BLISS. An ordinary­
routine-declaration is used to give the definition of a routine that is used only
in the block in which it is declared. A global-routine-declaration is used to

12-6 Routines

give the definition of a routine that is used in other modules as well as in the
module in which it is declared. A forward-routine-declaration declares the
name of a routine so that it can be called from a point in the block that
precedes its complete definition, which is given by an ordinary- or global­
routine-declaration. An external-routine-declaration declares the name of a
routine whose definition is given as a global-routine-declaration in another
module. A bind-routine-declaration gives the definition of the address of a
routine in terms of an expression.

The first four ways of declaring a routine-name are described in the following
sections. The bind-routine-declaration is described in Section 14.4.

12.3.1 Syntax

routine -declaration

12.3.2 Semantics

{

ordinary-routine-declaratiOn}
global-routine-declaration
forward -rou tine-declara tion
external-routine-declaration

The semantics of the routine-declaration is given in the following sections
where each kind of routine-declaration is considered separately.

12.4 Ordinary-Routine-Declarations

An ordinary-routine-declaration defines a routine. The scope of the declared
routine-name is the immediately containing block (including all contained
blocks). The declaration includes an expression, the routine-body, which is
evaluated each time the routine is called. The declaration also includes a list
of formal-names. When the routine is called, the value of each actual-parame­
ter in the routine-call is assigned to the corresponding formal-name. The
formal-names can be accessed in the routine-body as if they were LOCAL
data segment names, except that values must not be assigned to them.

A BLISS routine can be recursive. A routine is recursive if it can be called
while a previous call is still active. Recursion can be direct or indirect. Direct
recursion occurs when the routine contains a call on itself; for example, the
routine-body for the routine A contains a call on the routine A. Indirect

Routines 12-7

recursion occurs when the routine contains a call on another routine, which
ultimately results in a call on the routine being declared; for example, the
routine-body for the routine A contains a call on the routine B, which contains
a call on the routine A.

An example of an ordinary-routine-declaration is:

ROUTINE AI.JERAGE3(F1 ,F2,F3) = (.F1 + .F2 + .F3)/3;

The routine A VERAGE3 has three formal-names Fl, F2, and F3. An example
of a call on this routine is:

Another example of an ordinary·-routine-declaration is the declaration of
a factorial routine. This routine computes the mathematical function
factorial(n) :

ROUTINE IFACT (N)
BEGIN
LOCAL

RESULT;
RESULT = 1;
INCR I FROM 2 TO .N DO

RESULT = .RESULT*.I;
.RESULT
END;

When the routine IFACT is called it computes the factorial of the actual­
parameter specified. Observe that if the content of N is less than 2, the
indexed-loop is not executed and the value of the routine is 1. An example of a
call in this routine is:

IFACT(.A * .B)

In this example, if the content of A is assumed to be 2 and the content of B is
assumed to be 3, the result returned by the call is 720.

The factorial routine could be rewritten as a directly recursive routine, as
follows:

ROUTINE RFACT (N) =
IF. N GTR 1

THEN
.N * RFACT (.N - 1)

ELSE
1 ;

(For the computation of a factorial the first version, IFACT, is more efficient
than the recursive version, RFACT. Recursion is used when it is the most
natural and/or efficient method.)

12-8 Routines

April 1983

12.4.1 Syntax

ordinary-routine­
declaration

routine-definition

routine-name

input-list

output-list

input- }
fonnal- parameter

output­
formal-parameter

formal-item

formal-name

formal­
attribute-list

map-declaration­
attribute

routine-a ttri bute

routine-hody

HOUTINE fnut ine-definit ion , ... ,

routine-name

{

(input-list
(; output-list
(input-list; output-list
nothing

{
: rouyine-:attribute ... }
nothing

:= routine-body

name

input-fonnal-parameter , ...

output-formal-parameter , ...

formal-item

{
: f'ormal-attribute-list } formal-name
nothing

name

I map-declaration-attribute ... I

(allocation-unit)
) extension-attribute (

l
structure-attribute)
field-attribute
volatile-attribute

<= 16/32 Only
<= 16/32 Only

(novalue-attribute)
) linkage-attribute (

l
psect-allocation)
addressing-mode-attribute
weak-attribute

<= 16/32 Only
<= 32 Only

expression

Routines 12-9

I

12.4.2 Restrictions

The number of input-formal-parameters in the routine-declaration must agree
with the number of input-actual-parameters in the routine-call. (This restric­
tion can be relaxed through use of the linkage-functions described in Section
1:3.6.)

The number of output-formal-parameters in the routine-declaration must be
less than or equal to the number of output-parameter-Iocations specified in
the linkage-declaration.

An output-formal-parameter must not be specified if a corresponding output­
parameter-location is not specified in the linkage.

The value of an output-formal-parameter is undefined until it is assigned a
value within the routine-body.

An input-formal-name must not be assigned °a value.

Both the value of a formal-name and its content are undefined except during
the evaluation of the routine-body.

If the routine is declared with the NOV ALUE attribute, it must not be called
in a context' that requires a value and if any RETURN expression in the
routine-body has a returned-value, the expression is evaluated but its value is
not used. If the routine does not have the NOV ALUE attribute, any RETURN
expression in the routine-body as well as the routine-body itself must have a
returned-value.

Suppose the routine-body of a given routine, routine A, contains the declara­
tion of another routine, routine B. If a name is a formal-name for routine A,
then that name cannot be used as such within routine B. Such usage would be
an "up-level" reference, which is prohibited for formal-names just as for local­
names (see Section 10.5).

12.4.3 Defaults

Each formal-name is implicitly declared by a routine-declaration. Each decla­
ration is assumed to be a scalar, with a default allocation-unit and extension­
attribute (BLISS-16/32 only). If this assumption is not appropriate, other
map-declaration-attributes can be specified (see Section 12.4.5.3).

If a linkage-attribute is not given and the routine is in the scope of a LINK­
AGE switch, then the default linkage-attribute is the linkage-name given by
the LINKAGE switch (see Section 18.2 and 19.2). Otherwise, the default is
the predeclared linkage-name BLISS for BLISS-16/32, or BLISS36C for
BLISS-36.

12.4.4 Semantics

The compiler makes use of the information in an ordinary-routine-declaration
as follows:

1. The attributes and keywords are processed.

12-10 Routines

2. The routine-body is processed. Input- and output-formal-names are
treated as LOCAL variable names that are declared in an implicit block
enclosing the routine~body. The input-formal-names are then initial­
ized with the values of the corresponding input-actual-parameters from
a routine-call; however, output-formal-names are not initialized with
corresponding output-actual values.

3. When the routine returns to the caller, the contents of the data-segment
associated with each output-formal-parameter, are moved to the regis­
ters specified in the associated linkage-declaration.

4. If the routine is declared with the NOVALUE attribute, the mechanism
for returning a value is suppressed.

12.4.5 Pragmatics

The following sections give examples that illustrate various aspects of the
routine facility of BLISS.

12.4.5.1 Parameter Passing - The value of each actual-parameter of a rou­
tine-call is passed to the routine by means of the corresponding formal-name.
However, the value of the formal-name is not the value of the actual-parame­
ter. Instead, each formal-name designates a data segment that contains the
value of the actual parameter. The data segment designated by the formal­
name is defined only during evaluation of the routine-body, and it is "tempo­
rary" in that sense.

Since it is the value of an actual-parameter that is normally of interest (rather
than the address of the temporary data segment that contains that value), a
use of a formal-name without a preceding fetch-operator is often an error.

For example, consider the following routine-declaration:

ROUTINE AVERAGE3(F1 tF2tF3) =
(.F1 + .~2 + .F3)/3;

This routine is called with three actual-parameters whose values are to be
averaged. An example of a call on the routine is:

AI.JERAGE3(5 t .A t .B*.C)

Each formal-name of the routine can be thought of as a special kind of
LOCAL name that is declared in the implicit block that surrounds the rou­
tine-body. Therefore, the routine-body for AVERAGE3 can be thought of as
the following block:

BEGIN
LOCAL

F 1 t

F2 t

F3;
F1 5;
F2 .A;
F3 .B*.C;
(.F1 + .F2 + .F3)/3
END

Routines 12-11

This interpretation shows that it is .F1, .F2, and .F3 that represent the values
to be averaged, not F1, F2, and F3.

In the preceding example, the routine-call supplied values that were intended
for calculation. It is also possible for a routine-call to supply values that are
intended for use as addresses. For example, consider the following routine­
declaration:

ROUTINE EXCHANGE(XtY): NOVALUE =
BEGIN
LOCAL TEMP;
TEMP = •• }<;
t}-{ = t. \(;
.Y = .TEMP;
END;

This routine is called with two actual-parameters whose values are the
addresses of data segments. An example of a call on the routine is:

E}<CHANGE (Q tR)

When this call is evaluated, the contents of Q and R are interchanged. Once
again, each formal-name can be thought of as a special kind of LOCAL name.
Thus the given parameters Q and R are represented by .X and .Y, respec­
tively, not by X and Y.

Note that routines coded to be called from FORTRAN must assume that
actual-parameter values are always the addresses of data segments. This is so
because FORTRAN routines pass parameters by address, not by value.

As an example, consider the following modification of AVERAGE3:

ROUTINE Al,JERAGE3A(Fl tF2 tF3) =
(•• Fl + •• F2 + •• F3)/3;

This routine requires that the actual-parameters be the addresses of the val­
ues to be averaged. Thus a BLISS call on this routine might be:

Al,JERAGE3A(UPLIT(S) t At 'X,REF(.B*.C»

This call on AVERAGE3A gives the same value as the call, given earlier, on
AVERAGE3. The first actual-parameter uses a UP LIT (see Section 4.4) to
supply the address of the numeric-literal 5. The second actual-parameter
simply uses the name A (without a fetch operator) to get the address of the
value. The third actual-parameter uses the %REF standard function (see
Section 5.2.) to supply an address for the value of the expression .B* .C.

The routine AVERAGE3A uses addresses of values where values would have
been sufficient for, e.g., interaction with other BLISS routines. That is to say,
it does not minimize indirection. However, the routine is valid and, coded in
this way, can be made callable from programs written in the FORTRAN
language by the addition of the FORTRAN_FUNC linkage-attribute (see
Section 13.5).

12-12 Routines

12.4.5.2 Allocation of Formal-Name Data Segments - While data segments
for formal-names are like local data segments in most respects (as discussed in
Section 12.4.5.1), they are not necessarily allocated in the same way as local
data segments. Formal data segments are allocated and assigned values by
the routine making a call, rather than by the routine that is called. The
calling routine may arrange to allocate formals in static memory that is pro­
tected from write access rather than, for example, in a temporary segment in a
stack frame. This is an optimization because, under suitable conditions, the
calling routine does not need to allocate and assign values for the formals each
time the call is made. Moreover, the calling routine may even be able to use
the same formal data segments for different routine calls if they have the
same number and sequence of actual parameter values. A restriction given in
Section 12.4.2, namely, that a formal name must not be assigned a value,
assures that it is valid for a calling routine to use such optimizations.

12.4.5.3 Attributes for Formal-Names - If the default attributes
(UNSIGNED WORD in BLISS-16, UNSIGNED LONG in BLISS-32, none in
BLISS-36) are not appropriate for a formal-name, an appropriate attribute
can be selected from the map-declaration-attributes. An example of the use of
a structure-attribute in an ordinary routine declaration is:

ROUT I NE ZEROB I T (A : REF B I Tl.JECTOR [12] t B t C): NOI.JALUE =
BEGIN
IF .A[.B]
THEN

END;

BEGIN
A[.B] = 0;
.C = •• C + 1;
END;

The structure-attribute REF BITVECTOR[12] is provided for the first formal­
name, A. Assuming the content of B is i, the routine ZEROBIT tests the i'th
bit of the bitvector structure A. If that bit is 1, it is set to 0 and the content of
the location pointed to by .C is incremented.

12.4.5.4 Computed Routine Addresses - A routine-call usually begins with a
routine-name, which designates the routine in an explicit and constant way.
However, a routine-call can begin with any expression that yields a valid
routine address. As the basis for an example, consider the following sketch of a
routine-declaration:

ROUTINE ENTVAL(AtERR): NOVALUE =
BEGIN
••• (TrY to enter .A in LIST1)
IF .FILLED THEN <'ERR) (1 t .A);
••• (TrY to enter .A in LIST2)
IF. FILLED THEN (. ERR) (2 t • A) ;
END;

Routines 12-13

The details are omitted, but assume that this routine tries to put the content
of A into two lists, LISTl and LIST2. If the list is filled up, an error message
must be printed. However, ENTVAL does not print a message and does not
even call a specific routine to print an error message. Instead, ENTVAL calls
a routine whose address is given as one of the formal-names.

An example of the use of ENTV AL is:

ROUTINE ERRX(N,VAL): NOVALUE
BEGIN

(Print error MessaSe for invalid .X)
END

ENTI.JAL (.)< , ERR)<)

In this example, ENTVAL is called in order to enter the contents of X in the
lists. The second parameter of the call is ERRX, which is the name of a
routine designed especially to report an invalid value of .X. Observe that the
name ERRX in this call does not call the routine ERRX because there are no
parentheses following it. Thus, ERRX is not a routine call. Presumably, the
same program contains other calls on ENTVAL, and different calls use differ­
ent routines to report an invalid value.

12.5 Global-Routine-Declarations

A global-routine-declaration provides the same information as the ordinary­
routine-declaration. The only difference between these two declarations is
their scope. A routine that is declared in an ordinary-routine-declaration can
only be called in the block in which the declaration is given (Section 8.2.4). A
routine that is declared in a global-routine-declaration can be called outside
the block in which it is declared. The scope of the routine-name is extended
beyond the block by means of one or more external-routine-declarations in
other blocks or modules.

The only differences between the syntax of the ordinary-routine- declaration
and the global-routine-declaration are that the GLOBAL keyword is required
in the latter and, in BLISS-32 only, the weak-attribute is permitted in a
global-routine-declaration.

12-14 Routines

April 1983

12.5.1 Syntax

global-routine-
declaration GLOBAL ROUTINE global-routine-definition

""
,

glo baI-rou tine-
definition routine-name

~(
{ inpu~-formal-parameter " .. }

) I nothIng

{ { ; output-formal-parameter , ... }
nothIng

{ : glo?al-routine-attribute ... }
nothIng

= routine-body

routine-name name

~ novalue-attribute I
global-routine- linkage-attribute

attribute psect-allocation t addressing -mode-a ttribute <= 16/32 Only
weak-attribute <= 32 Only

routine-body expression

12.5.2 Restrictions

The restrictions given in Section 12.4.2 for ordinary-routine-declarations also
apply to global-routine-declarations.

BLISS-16 and BLISS-36 restrictions on names declared as global are given in
Section 4.5.2,

12.5.3 Defaults

The defaults given in Section 12.4.3 for ordinary-routine-declarations also
apply to global-routine-declarations.

Routines 12-15

I

12.5.4 Semantics

The compiler makeR use of t he information in a global-routine-declaration as
follows:

1. The global nature of the routine is recorded. An indicator is set for the
linker to show that this is a global-declaration. If the routine-declara­
tion has the weak-attribute, another indicator is Ret for the linker.

2. The semantics are then the same as the semantics for an ordinary­
routine-declaration, given in Section 12.4.4.

12.6 Forward-Routine-Declarations

Every routine must be declared by an ordinary- or global-routine declaration.
Sometimes. however, it is necessary to use the routine-name before its full
definition is given. Prior to such a "forward" use of the name, a forward­
routine-declaration must be used to declare the name as a routine-name and
to associate a linlited set of attributes with it.

As an example of the use of a forward-routine-declaration, consider the two
routines A and B. The routine A calls the routine B and the routine B calls the
routine A. If the ordinary-routine-declaration for A is given first, a forward­
routine-declaration must be given for B. If the ordinary routine-declaration
for B is given first, a forward-routine-declaration must be given for A.

In general, the use of a forward-routine declaration (at the beginning of a
block) to specify all of the routine-names that are declared in the remainder of
the block serves as a useful "table of contents" and allows the routines to be
written in an order that is independent of their caller/callee relationships.

12.6.1 Syntax

forward-routine-
declaration FORWARD ROUTINE forward-routine-item , ... ,

forward-routine-
routine-name { : fw~-routine-attribute ... } item

nothIng

fwd-routine- { novalue-attribute }
attribute linkage-attribute

psect-allocation
addressing-mode-attribute <= 16/32 Only

routine-name name

12-16 Routines

12.6.2 Restrictions

A routine-name declared in a J'orward-routine-declaration ll1ust appear in an
ordinary- or global-routine-declarat ion later in the same block.

After any default attributes are filled in, a forward-routine-declaration must
agree with its corresponding ordinary- or global-routine- declaration with re­
spect to the set of attributes allowed in bot h declarations.

12.6.3 Semantics

A forward-routine-declaration declares a name to be a routine-name whose
definition is given later in the same block, and associates with that name the
set of attributes needed for generation of calls to the named routine. The
semantics of the BLISS 32 addressing-mode-attribute (which is not one of the
ordinary or global routine-attributes) is described in Section 9.13.

12.7 External-Routine-Declarations

April 1983

Often a routine must be defined in one block of a program and called in other
blocks of the same prograrn. Usually this situation arises from the organiza­
tion of the program into separately compiled modules, but this need not be
the case.

In order to provide for the linkage between routine-calls and routine defini­
tions that occur in different scopes (e.g., different modules), external-routine­
declarations must be used. Specifically, the routine-name is declared in one
block by a global-declaration (which defines the routine) and is declared in
the other blocks by external-declarations.

12.7.1 Syntax

external-
routine-
declaration EXTERNAL ROUTINE external-routine-item , ... ,

external-
routine-item routine-name { : ext~routine-attribute ... }

nothIng

routine-name name I novalue-attribute I
ext-routine- linkage-attribute

attribute psect-alloca tion
addressing-mode-attribute <= 16/32 Only
weak-attribute <= 32 Only

Routines 12-17

I

12.7.2 Restrictions

A name must not be declared EXTERNAL ROUTINE unless it is declared
GLOBAL ROUTINE or GLOBAL BIND ROUTINE in some other block of
the same program. This restriction does not apply, however, to an EXTER­
NAL name that is declared with the weak-attribute (BLISS-32 only; see
Section 9.14).

12.7.3 Semantics

An external-routine-declaration informs the compiler that the definition of
the routine-name is not in the current block. The compiler takes note of the
attributes given in the external-routine-declaration. Then, each time a use of
the declared routine-name is encountered, the compiler leaves a blank space
in the object code for the routine-address. Later, the linker fills in the blank
with a specific address.

The attributes in an external-routine-declaration provides the information the
compiler and linker need to proceed in the absence of a full routine-declara­
tion in the same module. The linkage attribute gives the compiler information
about the type of call to generate for the routine and the availability and uses
of registers within the routine. In particular, the novalue-attribute permits the
compiler to detect an invalid call on the routine (a call that expects a value).
The addressing-mode-attribute and weak-attribute (BLISS-32 only) are de­
scribed in Chapter 9.

12-18 Routines

Chapter 13 Linkages

13.1 Introduction to Linkage-Declarations

13.1.1 Register Usage

13.1.1.1 Special Purposes.
13.1.1.2 General Purposes
13.1.1.3 Other Purposes .
13.1.1.4 Multiple Purposes.

13.1.2 Typical Syntax.
13.1.3 Restrictions
13.1.4 Semantics

13.1.4.1 Linkage-Types.
13.1.4.2 Parameter-Locations.

13.1.4.2.1 Argument Pointer Method.
13.1.4.2.2 Implicit Stack Location Method
13.1.4.2.3 Register Parameters.

13.1.5 Linkage-Options .

13.2 BLISS--16 Linkage-Declarations.

13.2.1 Syntax. . .
13.2.2 Restrictions
13.2.3 Defaults . .
13.2.4 Semantics .

13.2.4.1 INTERRUPT Linkage-Type
13.2.4.2 EMT, TRAP, and lOT Linkage-Types
13.2.4.3 RSX-AST Linkage-Type . .

13.2.5 BLISS-16 Predeclared Linkage-Names.

13.3 BLISS-32 Linkage-Declarations.

13.3.1 Syntax. . .
13.3.2 Restrictions
13.3.3 Defaults . .
13.3.4 Semantics .

13.3.4.1 .JSB Linkage-Type.
13.3.4.2 INTERRUPT Linkage-Type

13.3.5 BLISS-32 Predeclared Linkage-Names.

13-2

13-2

13-3
13-4
13-4
13-4

13-5
13-6
13-6

13-6
13-7

13-7
13-7
13-7

13-R

13-9

· 13-10
· 13-11
· 13-11
· 13-12

· 13-13
· 13-14
· 13-14.

· 13-14

· 13-14

· 13-15
· 13-15
· 13-17
· 13-17

· 13-18
· 13-19

· 13-20

13.4 BLISS-36 Linkage-Declarations. · 13-21

13.4.1 Syntax. · 13-21
13.4.2 Restrictions · 13-22
13.4.3 Defaults · 13-23
13.4.4 Semantics · 1:3-25

1:3.4.4.1 PUSHJ Linkage-Type · 13-25
13.4.4.2 JSYS Linkage-Type · 13-26

I
13.4.4.3 FlO Linkage-Type. 1:3-26.1
13.4.4.4 PS-INTERRUPT Linkage-Type . 13-26.1

13.4.5 BLISS-36 Predeclared Linkage-Names. 13-26.2

13.5 Common Predeclared Linkage-Names. · 13-27

13.5.1 The BLISS Linkages · 1:3-27
13.5.2 The FORTRAN Linkages. · 13-27

13.6 Linkage-Functions. · 13-28

13.6.1 Common Linkage-Functions. · 1:3-28

13.6.1.1 Definition. · 13-29
13.6.1.2 Examples. · 13-29

13.6.2 BLISS-16 and BLISS-32 Linkage-Functions . · 13-:31

13.7 Global Register Data Segments and Linkages · 13-31

13.7.1 Discussion · 13-:35
13.7.2 Guidelines for BLISS-I6 · 1:3-36
13.7.3 Guidelines for BLISS-32 · 13-36
13.7.4 Guidelines for BLISS-36 · 1:3-37

April 1983

Chapter 13
Linkages

A linkage is the particular calling-sequence convention used in calling a rou­
tine, and th~ register-management discipline used during execution of the
routine that is called. The type of object code generated by the compiler for a
routine-call is determined by the linkage-definition associated with the called
routine. The linkage-definition also controls the object code generated for the
entry and exit sequences of the routine with which it is associated. Thus, a
linkage serves as the bridge between a routine and any routines that call it.

A linkage-definition may be explicitly declared in a linkage-declaration. Each
BLISS dialect also provides several predefined linkages: one designed for
standardized calls between BLISS-compiled routines (used as the default
linkage), and others for calls between BLISS-compiled routines and FOR­
TRAN-compiled routines. In the case of BLISS-36, a predefined linkage is
also provided for compatibility with BLISS-IO.

Each linkage-definition, whether predefined or explicitly declared, is identi­
fied by a linkage-name. Every routine, in turn, has a linkage-name associated
with it, either by default or by explicit specification of a linkage-attribute in
the routine's declaration.

The BLISS linkage facility consists of the following features:

• Linkage-declarations

• Predeclared linkage-names

• Linkage-functions (a class of executable-functions)

• Global-register-declarations

• External-register-declarations

This chapter describes the first three language features, and then discusses
their use in conjunction with the global- and external-register-declarations.
Primary descriptions of the register declarations are given in Chapter 10.

In general, the BLISS linkage facility provides a type of control over the
compiled code that is quite unusual in high-level languages, but which is often

13-1

needed for efficiency-sensitive system applications. It allows, when necessary,
a high degree of control over the kind of calling sequence generated by the
compiler, and the register-usage conventions that are observed by related
routines. This control might be exercised, for example, in order to optimize a
given routine or group of routines (e.g., a subsystem) in terms of either size or
execution time, or to produce a BLISS routine suitable for use with software
wri tten in other languages.

13.1 Introduction to Linkage-Declarations

A linkage-declaration declares a linkage-name that is defined by a particular
combination of linkage characteristics. These characteristics include:

• Linkage-type - The general type of calling sequence, in terms of the
specific transfer-of-control instructions and/or the software calling con­
vention.

• Parameter-location options - The method by which actual-parameters
are passed.

• Register-usage options - Specification of the registers that are saved and
restored across a call, and of those that will not be used in a called
routine.

• Global-register options - Specification of register data segments that are
shared between routines.

The linkage-declarations of each BLISS dialect are quite systern-specific;
they are tailored to the particular hardware capabilities of each system and to
the major software calling conventions in use on those systems. Nonetheless,
there are many aspects of linkage-declarations that apply to two or more of
the BLISS dialects.

This introduction to linkage-declarations explains the common aspects in
three sections. The first discusses the many ways that registers can be used.
This section is especially important because it establishes much of the vocab­
ulary and many of the concepts used throughout this chapter. The second
section presents a partial syntax for linkage-declarations that includes con­
structs common to at least two of the BLISS dialects. The third section
describes the parts of the linkage-declaration and further develops the con­
cepts introduced in the first section.

13.1.1 Register Usage

During the execution of a routine, some temporary storage is usually needed
for holding values until they are used. The stack frame associated with the
execution of the routine is one place to hold such values and the general
registers are another. The general registers are more often preferable to the
stack frame because they can be accessed more quickly and/or with shorter
instructions. However, when one routine calls another, some consistent rules
regarding register usage must be observed in order for both to use the machine
registers correctly.

13-2 Linkages

The different uses of these registers can be broadly classified as special pur­
pose and general purpose. Special purpose registers are dedicated for the same
particular purpose among a group of routines; frequently that group is all of
the routines of a program. General purpose registers are used for a variety of
purposes by different routines and even within a single routine. This classifi­
cation is hardly precise and does not even consider certain other kinds of
usage that are described later; but it does provide a basis for discussion.

13.1.1.1 Special Purposes - In BLISS there are five types of special pur­
poses to consider for register usage: program counter, stack pointer, frame
pointer, argument pointer, and value-return register. (As will be seen, regis­
ters are not dedicated for all of these purposes in every routine.)

The program counter register is used to contain the address of the next in­
struction to be executed. In BLISS-16, the program counter is always register
7 and in BLISS-32 it is always register 15. In BLISS-36, the program counter
is a special, not generally accessible part of the machine architecture, and
thus does not figure in BLISS-36 register assignments ..

The stack pointer register is used to contain the address of a portion of mem­
ory used for temporary storage during the execution of each routine. When a
routine is called, the stack pointer is adjusted to point to a new area and when
the routine returns the previous address is put back. The stack pointer may be
adjusted many times during the execution of the routine as the need for
temporary storage grows and diminishes in different parts of the routine. The
portion of storage between the original address in the stack pointer and the
current value at any particular point in time is known as the stack frame for
that call of the routine.

Stack frames can vary greatly in size and complexity. A stack frame might be
as small as a single fullword containing the program counter for returning to
the calling routine or it might be very large, containing many values, fields,
addresses, preserved register values, and so on.

The frame pointer register is used to contain the address of a fixed part of the
stack frame of a routine. In contrast with the stack pointer, which may be
adjusted many times during the execution of a routine, the frame pointer is
generally set once at the beginning of routine execution and only changes
when another routine is called and when the routine completes and returns.
The utility of a frame pointer comes from this "stable" characteristic; the
frame pointer makes access to fixed parts of the stack frame simple and
efficient.

The argument pointer register is used to contain the address of a block of
storage that contains the values of the actual-parameters of a routine-call.

The value return register is a register used to contain the value of a routine
during the process of completion and returning.

The value return register, unlike the other special registers, is used as such
only briefly during the completion of one routine and the resumption of the
calling routine. Consequently, this register can also be used for general pur­
poses during the execution of a routine.

Linkages 13-3

13.1.1.2 General Purposes - A register that is not dedicated to one of the
special purposes described in the preceding section can be used in a variety of
ways. These uses are divided as follows:

Locally usable
Preserved
Non -preserved

Globally usable
Not used

A preserved register contains the same value after returning from a routine­
call as it contained at the time the routine was called.

A non-preserved register does not (necessarily) contain the same value after
returning from a routine-call as it contained at the time the routine was
called.

Preserved and non-preserved registers are together called locally usable regis­
ters. This combined designation is convenient because many of the rules
concerning register usage apply equally to both preserved and non-preserved
registers.

Locally usable registers are used by the compiler according to its optimization
strategies. The compiler determines how many of them to use, which to use
for evaluating expressions, which to allocate for local data segments, and
so on.

A globally usable register is used to contain a global register data segment,
that is, a register data segment that is accessible in more than one routine.
Global register data segments are governed by special rules involving LINK­
AGE declarations in combination with GLOBAL REGISTER and EXTER­
NAL REGISTER declarations. See Section 13.7 for complete details.

A not used register is simply not used in any way (applicable to BLISS-32
only).

13.1.1.3 Other Purposes - Registers can also be used to pass the values of
actual-parameters of a routine-call to the routine that is called. (These regis­
ters must be among the locally usable registers of the called routine.) When
such an actual-parameter is evaluated, the value is assigned to a given regis­
ter instead of to a position in an argument block or the stack. The routine that
is called can efficiently fetch such a parameter value because it is already
available in a register at the beginning of the routine execution.

One or more of the locally usable registers can be allocated for a data segment
established by a REGISTER declaration (see Section 10.7).

13.1.1.4 Multiple Purposes - Most registers are not limited to a single pur­
pose or class of purpose. The program counter and stack pointer in both
BLISS-16 and BLISS-32, as well as the frame pointer in BLISS-32, are truly
dedicated by the hardware for these purposes; but these are the only cases.

Registers can be used for multiple purposes so long as those uses do not
conflict. Because of the many different kinds of use, the rules for compatible
use are complicated and lengthy. Even so, BLISS still does not always allow

13-4 Linkages

every imaginable combination; that would get even more complicated and
lengthy. But, by and large, BLISS does allow nearly all of the register uses
and combinations of uses that playa significant role in system software on
each of the target systems.

13.1.2 Typical Syntax

linkage-declara tion

linkage -definition

linkage-type

in pu t-parameter­
location

ou tput-parameter­
location

linkage-option

global-register­
segment

global- }
register-name

linkage-name

register-number

LINKAGE linkage-definition , ... ,

linkage-name = linkage-type

/ ({ inpu~-parameter-location , ... })
nothIng (

<I {; out,put-parameter-location , ... }) j
I nothing
, nothing

{
: linkage-option ... }
nothing

{

REGISTER = register-nUmber}
STANDARD
nothing

{ REGISTER = register-number }

{

GLOBAL (global-register-segment , ...) }
{PRESERVE }
{NOPRESERVE } (register-number , ...)

global-register-name = register-number

name

compile-time-constant-expression

The notation "---" in the above diagram indicates that there are additional
alternatives in some of the dialects that are not shown.

Linkages 13-5

This syntax diagram does not apply completely to all of the BLISS dialects,
but it is representative. (e.g. The CALL linkage-type is part of BLISS-I6 and
BLISS-32, but not BLISS-36.)

13.1.3 Restrictions

In BLISS-I6, the CALL linkage type is valid with input-parameter-locations,
but not with output-parameter-locations.

The general-registers referenced by output-parameter-locations are implicitly
NOPRESERVE, and cannot appear in NOTUSED, PRESERVE, or
GLOBAL linkage modifiers; however, they may appear in NOPRESERVE
modifiers, but this is not required.

A register-number value must not be given as both a parameter-location and a
global-register-segment, and must not be given in more than one parameter­
location or global-register-segment.

A register-number value must not be given in more than one linkage option.

13.1.4 Semantics

The same register may be both an input- and an output-parameter-location.

Each output-para meter-location specifies that a result from the evaluation of \
the routine-body will be returned in that register.

The output-actual expressions in the routine-call are associated with the out­
put-para meter-location registers specified by the linkage-declaration. When
the routine returns to the caller, the contents of each output-parameter-loca­
tion register is assigned to the output-actual field reference.

If fewer output-actual expressions are present than were specified by the
linkage, the remaining output-para meter-location registers are treated as
NOPRESERVE's. If an empty element (identified by a null expression) ap­
pears in the list, it will (when output-actuals are bound to the appropriate
output-para meter-location registers) be treated as a "place holder".

The linkage-declaration defines a name for a particular combination of calling
sequence characteristics. A name so declared can be used as a linkage-attrib­
ute in any kind of routine-declaration. The several parts of a linkage-defini­
tion are described in the following sections.

13.1.4.1 Linkage-Types - The linkage-type selects the principal characteris­
tics of the calling sequence to be used. Each linkage-type generally establishes
the following:

I :1-6 Linkages

• The specific machine instructions to be used to transfer control to a
routine and to return from the routine.

• Whether or not an argument pointer is used to address actual-parameter
values.

• Which linkage-options are applicable.

• The defaults for linkage-options.

The CALL keyword occurs as a linkage-type in BLISS-I6 and BLISS-32;
however, the only common characteristic that CALL implies is the use of an
argument pointer to access actual-parameters (i.e., input- and output-actuals
for BLISS-32, and input~actuals only for BLISS-I6). CALL is not the only
linkage-type that implies use of an argument pointer; the FlO linkage-type in
BLISS-36 also implies use of an argument pointer.

13.1.4.2 Parameter-Locations - An input-actual-parameter of a routine-call
can be passed to the called routine in one of two ways: it can be passed in a
standard, or default, method or it can be assigned to one of the general
registers; however, an output-actual-parameter must be assigned to one of the
general registers.

There are two major variations on the standard method; the linkage-type
determines which one is used. The two methods are:

• by argument pointer

• by implicit stack location

13.1.4.2.1 Argument Pointer Method - In the argument pointer method, all
of the input-actual-parameters of the routine-call are assigned to successive
positions in a block called the argument block. The address of this block is
passed to the called routine using one of the general registers. A register used
in this way is called an argument pointer register. The called routine fetches
an input-actual-parameter value from the argument block, using the argu­
ment pointer value in combination with an offset determined from the formal­
name that corresponds to that input-actual-parameter position.

In addition to the input-actual-parameter values, an argument block can
contain additional information concerning the parameter values. In each
BLISS dialect, the argument block contains the number of input-actual-pa­
rameter values in the block. In BLISS-36 other information may also be
contained in the argument block.

An argument block may be located anywhere in storage at the option of the
compiler. It might be part of the stack frame of the routine containing the
routine-call or it might be in permanently allocated storage. A restriction
against assigning to a formal-name assures that an argument block can be
allocated in storage protected against writing and/or reused in the calling
routine for other routine-calls.

13.1.4.2.2 Implicit Stack Location Method - In the implicit stack location
method, the input-actual-parameters of the routine-call are assigned to suc­
cessive positions in the stack frame of the routine containing the call. No
explicit value giving the location of the parameters is passed to the routine
that is called. The called routine fetches an input-actual-parameter value
using implicit information about where the value is located in the stack
frame.

13.1.4.2.3 Register Parameters - In addition to the standard method of
passing input-actual-parameter values, some or all of the parameters can be
passed, by assigning them to specified general registers. This method can be

Linkages] 3-7

used in combination with the standard method; for example, one parameter
can be passed in a register, and the others in the standard way. However, all
output-actual-parameters must be passed by the general-register method.

The general-registers referenced by output-parameter-Iocations are implicitly
NOPRESERVE, and cannot appear in NOTUSED, PRESERVE or GLOBAL
linkage modifiers. The registers may appear in a NOPRESERVE linkage­
option, but such specification is unnecessary.

13.1.5 Linkage-Options

Linkage-options supplement and modify the basic calling sequence conven­
tions established by the linkage-type. For example, in BLISS-36 the LINK­
AGE-REGS option can be used in combination with the PUSHJ linkage­
type to specify the registers to be use.d as the stack pointer, frame pointer, and
value-return register, respecti~ely, if the default choices for the PUSHJ link­
age-type are not suitable.

In some cases, a particular linkage-option must only be used in combination
with a specific linkage-type. The LINKAGE-REGS option just rnentioned is
an example; it must only be used with the PUSHJ linkage-type in BLISS-36.

In a few cases, linkage-options can be used with several linkage-types and in
more than one BLISS dialect. The PRESERVE, NOPRESERVE, and
GLOBAL linkage-options are examples. They can be used in all dialects with
at least two different linkage-types.

In the object code generated for a given routine, each register's use is governed
by one of three usage conventions, each corresponding to one of the following
linkage-option keywords:

PRESERVE A preserved register can be used during the execution of
the routine, but the original contents at the time of the
routine call must be restored at the time the routine
completes and returns.

NOPRESERVE A non-preserved register can be used during the execu­
tion of the routine (without restoring its original con­
tents) .

GLOBAL A globally usable register is used only as determined by
its corresponding GLOBAL REGISTER and EXTER­
NAL REGISTER declarations, and by explicit source­
code references to such a register.

A register that is given in a PRESERVE linkage-option contains the same
value after returning froJ;l1 a routine as it contained at the time the routine was
called. The called routine mayor may not use the register. If it does, then
special action is taken to save the contents of the register (push it onto the
stack) before the register is used and restore it (pop it from the stack) after­
ward. If the register is not used, then no special action is needed. In either

I :l-S Linkages

case, a calling routine is able to leave useful information in a register pre­
served by the routine being called - the information is still available after the
call.

A register that is given in a NOPRESERVE linkage-option does not necessar­
ily contain the same value after returning from a routine as it contained at the
time the routine was called. The called routine mayor may not use the
register, but in either case no special action is taken to preserve its contents. A
calling routine must not leave needed information in a register that is not
preserved by the routine being called - the information may not be available
after the call.

Registers that are given in a GLOBAL linkage-option are used to contain
global register data segments by both calling and called routines. Globally
usable registers are not managed by the compiler; they are used only as
explicitly directed by the source program. In certain special cases, depending
on the linkage-type and other details, a register given in a GLOBAL linkage­
option may be treated as a preserved register, rather than as globally usable.
These cases are described later in the sections for each BLISS dialect.

Globally usable registers are described fully in Section 13.7 where the
GLOBAL linkage-option and the related GLOBAL REGISTER and EXTER­
NAL REGISTER declarations are considered together.

13.2 BLISS-16 Linkage-Declarations

The linkage capabilities provided by the linkage-declaration in BLISS-16 are
the following:

• The JSR, CALL, EMT, TRAP, lOT, INTERRUPT, and RSX-i\ST
linkage-types

• Standard or register parameter-locations for input-actuals and register
parameter-locations for output-actuals.

• Globally used and locally used registers

• The CLEARSTACK, RTT, and VALUECBIT exit sequence linkage-op­
tions

As an example of a linkage-declaration, consider the following:

LINKAGE
PAR2REG3 = CALL(STANDARDt REGISTER = 3);

The declaration indicates that the CALL linkage-type is to be used and that
the second input-actual-parameter is to be passed using register 3. The first
input-actual-parameter and any parameters after the second parameter are to
be passed in the standard way.

Linkages 13-9

13.2.1 Syntax

linkage-declaration LINKAGE linkage-definition, ... ,

linkage-definition linkage-name = linkage-type

16 Only =>

linkage-type

input-para meter­
location

output-parameter­
location

16 Only =>

({ inpu~-parameter-Iocation , ... }
nothIng

I

<
I {

; output-para meter-location , ... }) /
nothing

nothing

{
: lin~age-option ... }
nothIng

/'JSR "
I CALL I *

EMT j
< TRAP
I lOT
I INTERRUPT I *

RSX-AST *

{

REGISTER = register-nUmber}
STANDARD
nothing

{ REGISTER = register-number }

/ CLEARSTACK
RTT

)

...

I

linkage-option
VALUECBIT >

< GLOBAL (global-register-segment , ...) I

global-register­
segment

global- }
register-name

linkage-name

register-n urn ber

I { PRESERVE }
{NOPRESERVE } (register-number, ...)

global-register-name = register-number

name

com pile-tinle-constant-expression

* Linkage-type is invalid with output-parameter-Iocations.

13-10 Linkages

13.2.2 Restrictions

Linkage-names defined with EMT, TRAP, or lOT linkage-types may only be
used as a linkage-attribute in BIND, GLOBAL BIND, and EXTERNAL
ROUTINE declarations (or in a general-routine-call as described in Section
13.2.4.2). .

I
The register-number value must be in the range 0 to 5.

A register-number value must nqt be given as both a parameter-location and a
global-register-segment, and must not be given in more than one parameter­
location or global-register .. segment.

A register-number value must not be given in more than one linkage-option.

If the CALL linkage-type is given, then the register-number of a REGISTER
parameter-location must be in the range 0 to 4.

The GLOBAL, PRESERVE, NOPRESERVE, CLEARSTACK, and
V ALUECBIT linkage-options must not be specified with the CALL linkage­
type.

If OTS (runtime library) routines are called, register 0 must not be specified
as a global-register-segment in the calling routine's linkage-definition.

If the CLEARSTACK linkage-option is given, the number of actual-parame­
ters in a (general) routine-call must be equal to the number of parameter­
locations given.

The VALUECBIT linkage-option may not be specified in a linkage-definition
for a routine written in BLISS.

If the VALUECBIT linkage-option is given, toe CLEARSTACK linkage-op­
tion must also be given.

The RTT linkage-option must only be given with the INTERRUPT linkage­
type.

No linkage-option may be given with the RS~ST linkage-type.

13.2.3 Defaults

If a parameter-location is not given, then STANDARD is assumed. If a rou­
tine-call or routine-declaration contains more parameters than are given in
the associated linkage-definition, then STANDARD is assumed as the param­
eter-location for each of the additional parameters.

For the JSR linkage-type, the registers are used as follows, by default:

Registers Default Usage

o
1-5
6
7

Value return register, non-preserved
Preserved
Stack pointer
Program counter

Linkages 13-11

For the CALL linkage-type, the registers are used as follows:

Registers

o
1-4
5
6
7

Usage

Value return register, non-preserved
Preserved
Argument pointer
Stack pointer
Program counter

(The 'default' usage cannot be modified for the CALL linkage-type.)

For the EMT, TRAP, lOT, INTERRUPT, and RSX-AST linkage-types, the
registers are used as follows, by default:

Registers Default Usage

0-5
6
7

Preserved
Stack po~nter
Program counter

13.2.4 Semantics

A linkage-definition defines a name that designates a particular combination
of calling sequence options. Generally, such a name may be used as a linkage­
attribute in any kind of routine-declaration; however, this is not true of all
linkage-names.

The linkage-type JSR specifies that the PDP-II JSR and RTS instructions
are used by the compiled code, and that the parameters with STANDARD
parameter-locations are placed on the stack (without a parameter count) and
accessed by the called routine relative to the stack pointer (SP) register.

The linkage-type CALL specifies that the PDP-II JSR and RTS instructions
are used by the compiled code, and that the parameters with STANDARD
parameter-locations are passed using register 5 (R5) as the argument pointer.

The linkage-types INTERRUPT and RSX_AST specify that a routine will
be "called" only by a PDP-II hardware or software interrupt. These linkages
are further described in Sections 13.2.4.1 and 13.2.4.3.

If REGISTER is specified for a parameter-location, the given register will be
used as the location to which the actual-parameter value is be assigned, and
correspondingly, is the location where the called routine expects to find the
value. This use of a register location to transmit an actual-parameter value to
a called routine does not affect the semantics associated with the use of the
corresponding formal-parameter name.

The CLEARSTACK linkage-option (which may be used only with the JSR,
EMT, TRAP, lOT, or INTERRUPT linkage-type) specifies that the actual­
parameters that are placed on the stack for a routine-call are removed from
the stack by the called routine (instead of by the calling routine). If CLEAR­
STACK is not specified, they will not be removed by the called routine (and
are the responsibility of the caller).

13-12 Linkages

The VALUECBIT linkage-option (which may be used only with the JSR,
EMT, TRAP, lOT, or INTERRUPT linkage-type, and only in combination
with CLEARSTACK) specifies that an external routine declared with this
linkage-option returns its value in the C bit, and that the value of register 0 is
undefined on return from such a routine. (This linkage-option is used to
interface with non-BLISS routines having this value-return characteristic.)

The RTT linkage-option (which may be used only with the INTERRUPT
linkage-type) specifies that the PDP-II RTT intruction should be used to exit
from the interrupt routine instead of the normal RTI instruction.

The GLOBAL, PRESERVE, and NOPRESERVE linkage-options specify the
usage conventions that apply to each PDP-II machine register at the time a
routine is called and during the execution of the routine. There are three
conventions, one corresponding to each of the three linkage-option keywords.
A usage convention is specified for a register by giving its number in the
appropriate linkage-option. The description of these linkage-options is given
in Section 13.1.

Register usage conventions can be specified only for registers 0 through 5; the
remaining registers (the stack pointer and program counter) are used only as
specified in the PDP-II hardware and software architecture.

Globally usable registers are not managed by the compiler; they are used only
as explicitly given in the source program.

13.2.4.1 INTERRUPT Linkage-Type - A linkage-name defined with the IN­
TERRUPT linkage-type may only be used as a linkage-attribute in a for­
ward-, ordinary-, or global-routine declaration. It specifies that the routine to
which it is applied will only be invoked by a PDP-II hardware interrupt or
software simulation of an interrupt (such as an RSX-ll Synchronous System
Trap). Interrupts may occur as a result of certain 'external' events, such as
I/O device completion, or as a result of programmed events, such as execution
of certain instructions: EMT, lOT, and so on. (See Section 13.2.4.3 concern­
ing the related linkage-type RSX_AST.)

The number of formal-names given for the routine must equal the number of
values pushed on the stack by the "call". In most cases this is exactly two.
However, interrupt routines that are called by general-routine-calls using a
linkage-name defined with a EMT, TRAP, or lOT linkage-type can have more
than two formal parameters.

The formal parameters of the routine correspond to the hardware values in the
order pushed; that is, the first formal parameter corresponds to the first value
pushed, the second forma.! parameter corresponds to the second value pushed,
and so on. Consequently, the last formal parameter corresponds to the pushed
program counter (PC) and the next to last formal parameter corresponds to
the pushed processor status (PS).

Linkages 13-13

13.2.4.2 EMT, TRAP, and lOT Linkage-Types - In a general-routine-call that
uses a linkage-name defined with an EMT, TRAP, or lOT linkage-type, the
following special rules apply:

• For EMT and TRAP, the first value in the actual-parameter list is not
interpreted as a routine-address. Instead it is interpreted as a value that
is incorporated into the low byte of the EMT or TRAP instruction itself.
It must be a compile-time-constant-expression in the range 0 to 255.

• For lOT, all of the values in the parameter list are actual-parameters.
There is no routine-address parameter.

13.2.4.3 RSX_AST Linkage-Type - Similar to the INTERRUPT linkage­
type, the RSX-AST linkage-type specifies that the routine to which it is
applied will be invoked only by an RSX-II Asynchronous System Trap
(AST). The first four formal parameters of such a routine are mandatory and
correspond to the following context information: (1) the event-flag mask word,
(2) program-status word, (3) program counter, and (4) Directive Status Word
of the interrupted task, respectively. Additional formal parameters must be
specified if the kind of AST that invokes the routine pushes supplemental
information onto the stack. At the routine's return point, any such supple­
mental information is removed from the stack and an RSX-II AST SERVICE
EXIT directive (rather than an RTS instruction) is executed.

13.2.5 BLISS-16 Predeclared Linkage-Names

Four linkage-names are predeclared in every BLISS-I6 module. The linkages
are provided for compatible and transportable usage among the several
BLISS dialects. See Section 13.5 concerning such usage.

The predeclared linkage-names are defined as shown in the following declara­
tion:

LINKAGE
BLISS: JSR,
FORTRAN: CALL,
FORTRAN_SUB: CALL,
FORTRAN_FUNC : CALL;

13.3 BLISS-32 Linkage-Declarations

A linkage-declaration in BLISS-32 can be used to specify a CALL, JSB, or
INTERRUPT linkage-type, to designate registers for passing parameters, and
to identify registers as globally used, locally used, or not used. As an example
of a linkage-declaration, consider the following:

LINKAGE
DBL_PREC : CALL(; REGISTER:O, REGISTER:::1);

The declaration indicates that the CALL linkage-type is to be used and that
output-actual-parameters are to be passed using registers 0 and 1 for a dou­
ble-precision result. Since the registers are treated as output-parameter loca­
tions the called routine (DBL_PREC) should be declared as NOVALUE.

13-14 Linkages

13.3.1 Syntax

linkage-declaration LINKAGE linkage-definition , ... ,

linkage-definition linkage-name = linkage-type

32 Only =>
linkage-type

in put-parameter­
location

output­
parameter­
location

32 Only =>

linkage-option

global-register­
segment

global- }
register-name

linkage-name

register-number

13.3.2 Restrictions

({ inpu~-parameter-location , ... }
nothIng

I
I

>
I {; output-para meter-location , ... })
I nothing

nothing

.{ : linkage-option ... }
nothing

{CALL I JSB I INTERRUPT }

{

REGISTER = register-nUmber}
STANDARD
nothing

{REGISTER = register-number }

{

G{L~::sLE~~iOBA}L-register-segment , ...) }

NOPRESERVE (register-number , ...)
NOTUSED

global-register-name = register-number

name

com pile-time-constant-expression

A NOTUSED linkage-option must only be given with the JSB and INTER­
RUPT linkage-types. It must not be given in combination with the CALL
linkage-type.

Linkages 13-15

The register-number in a REGISTER parameter-location or a linkage-option
must be in the range 0 to 11.

A register-number value must not be given as both a parameter-location and a
global-register-segment, must not be given as both a parameter-location and
in a NOTUSED linkage-option, and must not be given in more than one
parameter-location or global-register-segment.

A register-number value must not'pe given in more than one linkage-option.

Some of the character-handling and machine-specific functions require the
use of particular machine registers because they result in VAX-II instruc­
tions that use specified registers; such functions must not be used if the
required registers are not locally usable. Observe that at most the set of
registers 0 through 5 inclusive must be locally usable to satisfy this require­
ment.

The VAX-II calling standard requires that register 0 or registers 0 and 1
together be used to return routine values. This requirement, combined with
the preceding general restriction," leads to the following two special case re­
strictions:

• If a routine-call is in the scope of a global register data segment that is
allocated in either register 0 or 1, then the routine that is called must not
return a value; that is, must be declared with the NOV ALUE attribute.

• If the linkage-attribute of a routine-declaration specifies registers 0 or 1 as
PRESERVE, GLOBAL, or NOTUSED, then that routine nlust also have
the NOV ALUE attribute.

The VAX-II calling standard also requires that registers 0 and 1 be usable as
temporary registers by the condition handling software during processing of a
signal (see Chapter 17). Further, only routine stack frames associated with the
CALL linkage-type are used for restoring register contents during unwinding.
These requirements, together with the above restrictions on linkages, lead to
the following special case restrictions:

• A routine-body must not immediately contain an ENABLE declaration if
the linkage-attribute of the routine is defined with linkage-type JSB, or
INTERRUPT, or with registers 0 or 1 as either PRESERVE, GLOBAL, or
NOTUSED.

• A routine whose linkage-attribute is defined with registers 0 or 1 as PRE­
SERVE, GLOBAL, or NOTUSED must not be terminated by unwinding.

• If a routine-call to a routine with JSB linkage-type occurs in a routine
with JSB linkage-type, all of the locally usable registers of the called
routine must also be given as locally usable registers of the routine con­
taining the call. That is, the outermost JSB routine in a nest of JSB
routines must specify all the registers that are locally usable. (This re­
striction assures that the CALL routine that calls the outermost JSB
routine can preserve all the necessary registers.)

The VAX-II calling standard is described in Appendix C of the VAX-ll/7BO
Architecture Handbook, Vol. 1. Condition handling, and its interaction with
linkages, is described in Chapter 17 of this manual.

13-16 Linkages

13.3.3 Defaults

If a parameter-location is not given, then STANDARD is assumed. If a rou­
tine-call or routine-declaration contaJns more parameters than are given in
the associated linkage-definition, then STANDARD is assumed as the param­
eter-location for each of the additional parameters.

For the CALL linkage-type, the registers are used as follows, by default:

Registers Default Usage

o Value return register, non-preserved
1 Non-preserved
2-11 Preserved
12 Argument pointer
13 Frame pointer
14 Stack pointer
15 Program counter

For the JSB linkage-type, the registers are used as follows, by default:

Registers Default Usage

o
1
2-11
12-13
14
15

Val ue return register, non-preserved
Non -preserved
Preserved
Not used
Stack pointer
Program counter

Observe that, for both CALL and JSB linkage-types, registers 0 to 11 are
locally usable by default.

For the INTERRUPT linkage-type, the registers are used as follows, by de­
fault:

Registers

0-13
14
15

Default Usage

Preserved
Stack pointer
Program counter

13.3.4 Semantics

A linkage-declaration defines a name for a particular combination of calling
sequence options. A name so declared can be used as a linkage-attribute in
any kind of routine-declaration.

The linkage-type CALL specifies that the VAX-II CALLS/CALLG and RET
instructions are used. Further, the parameters with STANDARD parameter­
locations are passed using register 12 (AP) as the argument pointer.

The linkage-type JSB specifies that the VAX-II JSB/BSBW /BSBB and RSB
instructions are used by the compiled code. Further, the parameters with
STANDARD parameter-locations are placed on the stack (without a count)
and accessed by the called routine relative to the stack pointer (SP) register.

Linkages 13-17

If REGISTER is given as a parameter-location, then the given register is used
,as the location to which the actual-parameter value is assigned in performing
a routine-call, and correspondingly, is the location where the called routine
expects to find the actual-parameter value. This use of a register location to
transmit an actual-parameter value to a called routine does not affect the
semantics associated with the use of the corresponding formal-parameter
name.

The linkage-options specify the usage conventions that apply to each VAX-II
machine register at the time a routine is called and during the execution of the
routine. There are four conventions, one corresponding to each of the four
linkage-option keywords, namely: GLOBAL, PRESERVE, NOPRESERVE,
and NOTUSED. A usage convention is specified for a register by giving its
number in the appropriate linkage-option. The description of these linkage­
options is given in Section 13.1.

Register usage conventions can be specified only for registers 0 through 11; the
remaining registers (the argument pointer, frame pointer, stack pointer, and
program counter) are used only as specified in the VAX-II hardware and
software architecture.

Globally usable registers are not managed by the compiler; they are used only
as explicitly given in the source program, with the following exception:

In a routine with a linkage that specifies CALL linkage-type and a globally­
usable register (in a GLOBAL linkage-option), if the global-register-seg­
ment is not declared as a global register data segment (using an EXTER­
NAL REGISTER declaration) within the body of the routine, then the
compiler can choose to consider the register preserved (and hence, locally
usable).

However, in a routine with a linkage that specifies JSB linkage-type, the
compiler cannot preserve and use such registers. The reason for the difference
has to do with the requirements for condition handling. Briefly, the CALL
linkage-type provides the information needed for the condition handling soft­
ware to properly recover register values when doing unwinding; the JSB link­
age-type does not.

Registers that are given in a NOTUSED linkage-option are not used in any
way. Only routines with a linkage that specifies the JSB linkage-type can
have registers that are not usable"

Some guidelines concerning the choice of registers to specify in a NOTUSED
linkage-option are discussed in Section 13.7.2.

13.3.4.1 JSB Linkage-Type - The routine EXCHANGE in Section 12.4.5 is
an example of a routine that can be made significantly smaller and faster by
the use of a linkage-declaration such as:

LINKAGE
FAST = JSB(REGISTER = Ot REGISTER 1);

13-18 Linkages

When the linkage-attribute FAsT is given for the routine EXCHANGE, the
JSB linkage-type is used instead of the CALL linkage-type and the parame­
ters are passed in registers 0 and 1.

When a set of routines with JSB linkage-type call one another, care must be
taken to ensure that the locally usable registers of the calling routine include
all the locally usable registers of any routine that it calls. For example, con­
sider the following linkage-declarations:

LINKAGE
JSB_ALL :: JSB,
JSB_N011 :: JSB: NOTUSED(11);

The linkage JSB--ALL specifies a JSB linkage-type. Because no linkage­
options are given, the locally usable registers are registers 0 to 11. The linkage
JSB_N011 also specifies a JSB linkage-type. Because the linkage-option
indicates that register 11 is not used, the locally usable registers are registers 0
to 10.

Suppose the following routines are declared:

FORWARD ROUTINE
ALPHA: JSB_ALL,
BETA: JSB_N011;

Then routine ALPHA can legitimately call routine BETA. But routine BETA
must not call routine ALPHA because the set of locally usable registers of
ALPHA is not a subset of the locally usable registers of BETA.

13.3.4.2 INTERRUPT Linkage-Type - The INTERRUPT linkage-type for
BLISS-32 is used for the same purposes and provides the same functionality
as that described for BLISS-16, and is similar to the JSB linkage-type. When
used in a routine-declaration, a linkage-name defined with the INTERRUPT
linkage-type affects the following:

• All registers are PRESERVE(d).

• As necessary, registers are explicitly saved with PUSHL or PUSHR in­
structions.

• All references to formal-parameters are via the stack pointer (SP).

• At routine exit, all but the last two arguments are removed from the
stack; these are assumed to be a valid program counter (PC) and proces­
sor status longword (PSL).

• A Return from Exception or Interrupt (REI) instruction is executed.

Input- or output-parameter-Iocation REGISTER assignments are not permit­
ted with INTERRUPT linkages.

The correct number of formal-parameters must be declared with an INTER­
RUPT linkage routine to ensure that the compiler cleans the stack on exiting
the routine; a routine with less than two parameters is invalid.

An INTERRUPT linkage routine is implicitly declared NOV ALUE.

Linkages 13-19

An example of an INTERRUPT linkage routine in BLISS-32 follows:

LINKAGE
ARITH_EXCP= INTERRUPT: NOTUSED(3,Q,5,G,7,9,9,10,11);

ROUTINE ARITH_EXCP_HDLR(CODEyPC,PSL): ARITH_EXCP=
BEGIN
CASE .CODE FROM SRM$K_INT_OVF_T TO SRM$K_FLT_UND_F OF
SET

TES
END

The code in the example is expanded as follows:

ARITH_TRAP_HDLR:
PUSHL RO
CASEL Q(SP) ,:1:1:1,:1:1:9
.WORD

MOI.JL (SP) + ,RO
ADDL2 :l:l:Q,SP
REI

Notice in the first line of the expanded code that only one register (RO) is
needed. In the second line the exception is dispatched via the exception code.
The register is then restored (MOVL), and the trap code is eliminated
(ADDL2) before a return (REI) is executed.

Explicit calls are also permitted to routines declared with interrupt linkage.
The caller treats such a call as if it was declared with a JSB linkage attribute;
an exception being that the parameters are automatically removed from the
stack by the called routine and not the caller. The parameter order is such
that the caller's PC is always the first formal-parameter and will not appear
as an actual-parameter in the explicit routine-call.

If an interrupt linkage routine exists (e.g. SETPSL), that is invoked with only
the PC and PSL as actual-parameters, the routine can be explicitly called
with the following BLISS expression:

SETPSL (• NEWPSL):

13.3.5 BLISS-32 Predeclared Linkage-Names

Four linkage-names are predeclared in every BLISS-32 module. These link­
ages are provided for compatible and transportable usage among the several
BLISS dialects. See Section 13.5 concerning such usage.

The predeclared linkage-names are defined as shown in the following declara­
tion:

LINKAGE

13-20 Linkages

BLISS = CALL,
FORTRAN = CALL,
FORTRAN_SUB = CALL,
FORTRAN_FUNC = CALL;

13.4 BLISS-3S Linkage-Declarations

April 1983

A linkage-declaration in BLISS-36 can be used to specify a PUSHJ, JSYS,
FlO, or PS--.lNTERRUPT linkage-type, to identify globally used registers, to •
specify the use of a PORTAL instruction in the entry sequence of a routine,
and to specify other linkage capabilities.

As an example of a linkage declaration, consider the following:

LINKAGE
PAR2REG4 = PUSHJ(STANDARD, REGISTER = 4);

The declaration indicates that the PUSHJ linkage-type is used and that the
second actual-parameter is passed using register 4. The first actual-parameter
and any parameters after the second parameter are passed in the standard
way.

13.4.1 Syntax

linkage-declaration LINKAGE linkage-definition , ... ,

linkage-definition linkage-name = linkage-type

/ ({ inpu~-parameter-Iocation , ... }
nothIng

<
I {

; output-parameter-Iocation , ... }
nothIng

nothing

{
: linkage-option ... }
nothing

'\

I >
)

I

36 Only =>
linkage-type { PUSHJ I JSYS I FlO I PS--.lNTERRUPT I

input-para meter­
location

output­
parameter­
location

36 Only =>

linkage-option

{

REGISTER = register-nUmber}
STANDARD
nothing

{ REGISTER = register-number I

pushj -linkage-option

•

{

general-linkage-option }

ps_interrupt-linkage-option •

Linkages 13-21

I

general-linkage­
option

pushj-linkage­
option

ps_interrupt­
linkage-option

/ GLOBAL (global-register-segment , ...)
PORTAL

{

PRESERVE }
I NOPRESERVE (register-number, ...)
I SKIP(value)
" CLEARSTACK

LINKAGE_REGS (stack-pointer-reg ,
frame-pointer-reg , return-value-reg)

PORTAL }
LINKAGE_REGS (stack-pointer-reg,

{ frame-pointer-reg, return -val ue-reg

I
I

stack-pointer-reg }
frame-pointer-reg register-number
return-value-reg

global-regi~ter­

segment

global- }
register-name

linkage-name

register-number

global-register-name = register-number

name

compile-time-constant-expression
~----------------+--------------------------------------.-----

skip-value -1 I 0 I 1 I 2

13.4.2 Restrictions

A REGISTER parameter-location (input or output) may only be specified
with a PUSHJ or JSYS linkage-type.

Input- and output-para meter-locations may not be specified with a
PS-INTERRUPT linkage-type.

The registers referenced by output-parameter-Iocations are implicitly
NOPRESERVE and cannot appear in PRESERVE or GLOBAL linkage mod­
ifiers.

The register-number in a REGISTER parameter-location must be in the
range 0 to 15 (JSYS excepted) and must not specify a register given as either
the stack-pointer-reg or the frame-pointer-reg. (It may be the same as the
register given as the value-return-reg.).

The register-numbers for the JSYS linkage must be in the range 1 to 4 (physi­
cal registers ACI through AC4).

13-22 Linkages April 1983

April 1983

The LINKAGE-REGS linkage-option may not be given in combination with
a JSYS or FlO linkage-type.

NOTE

The JSYS built-in function is obsolete and should be avoided;
instead, use the JSYSlinkage. I

When using a LINKAGE-REGS option with the PS-INTERRUPT linkage- I
type all three register numbers are required, although the return-value-regis-
ter is un used.

The stack-pointer-reg and the value-return-reg in the LINKAGE-REGS op­
tion must be in the range 0 to 15, and the frame-pointer-reg must be in the
range 1 to 15. The register-number in a linkage-option other than the
LINKAGE_REGS option must be in the range 0 to 15 and must not specify a
register used as a stack pointer, frame pointer, or argument pointer (if appli­
cable).

All of the routines in a given program must use the same stack-pointer regis­
ter, including any implicitly called OTS routines. (This restriction assures
that a single object-time-system library can satisfy all of the requirements of a
program.)

The same register-number value may not be given as both a parameter-loca­
tion and a global-register-segment, and may not be given more than once as a
parameter-location or a linkage-option register-number. There is one excep­
tion: the register specified as the value return register in a LINKAGE--REGS
option can also be specified as preserved, non-preserved, or global.

If the value return register is also specified as preserved or global then the
linkage-name so defined must only be used as a linkage-attribute in the decla­
ration of a routine that also has the NOVALUE attribute or in a general­
routine-call in a context that does not require a value.

The skip-values for the PUSHJ linkage-type are restricted to 0 through 2.

Some executable-functions impose "hidden" restrictions on the linkage-defi­
nition and explicit register usage of the containing routine. More specifically,
some of the character-handling-functions and each of the condition-handling­
functions result in calls to Object Time System (OTS) routines.

These implicit routine calls are made with the governing OTS linkage for the
program (BLISS36C by default). Therefore, any routine containing such func­
tions must also be able to call a routine having the governing OTS linkage. In
particular, the containing routine's use of register data segments declared by
register-number, whether local or global, must be consistent with the register
conventions of the OTS linkage. (See the restrictions in Sections 10.7, 10.8,
and 10.9.)

13.4.3 Defaults

The defaults for each of the linkage-options depend on the linkage-type that is
given.

Linkages 13-23

I
•

13-24

Defaults for the PUSHJ Linkage-type: If a parameter-location is not given,
then ST ANDAHD is asstUl1ed. If a routine-call or routine-declaration contains
more parameters than are given in the associated linkage-definition, then
STANDAHD is assumed as the parameter-location for each of the additional
parameters.

Default register usage for the PLJSH,J linkage-type is determined in two steps:
First, the defaults for the LINKAGE_REGS option are applied if the
LINKAGE_REGS option is not given; second, the defaults for all remaining
registers are determined .

The default for the LI~KAGE_REGS option is LINKAGE_REGS(O,2,3),
that is:

Register

o
2
:3

Default Usage

Stack pointer
Frame pointer
Value return register, non-preserved

For any register not specified by the explicit or default LINKAGE_REGS
option, the default usage is:

Registers Default Usage

0-10
11-15

Non -preserved
Preserved

As an example, if the PUSH,] linkage-type is given without any linkage­
option, then the resulting register usage is the following:

Registers Usage

o
1
2
:3
4-10
11-15

Stack pointer
Non-preserved
Frame pointer
Value return register, non-preserved
Non -preserved
Preserved

Defaults for the JSYS linkage-type: For JSYS, the registers are used as
follows, by default:

Registers

° 5-15
1-4

Default Usage

Preserved
Preserved
Non -preserved

Defaults for the FlO linkage-type: For FlO, the registers are used as follows,
by default:

Registers

o
1-13
14
If)

Default Usage

Value return register, non-preserved
Non -preserved
Argument pointer
Stack pointer

Observe that a frame pointer is not used.

Linkages April 1983

April 1983

Defaults for the PS_INTERRUPT linkage type: For PS-INTERRUPT,
the default register usage is determiof'led ~n two steps: First, the defaults for the
LINKAGE_REGS option are applied if the LINKAGE_REGS option is not
given; second, the defaults for all remaining registers are determined. The
registers are used as follows, by default:

Registers

o
1
2-12
13
14
15

Default Usage

Preserved
Value return register, preserved
Preserved
Frame pointer
Preserved
Stack Po"inter

Note that the value return register is specified but unused.

13.4.4 Semantics

The GLOBAL linkage-option can be used with both PUSH~J and FlO linkage­
types. It is introduced in Section 13.1 and is discussed in detail in Section
13.7.

The PORTAL linkage-option is used with the PUSHJ, FlO, and
PS-INTERRUPT linkage-types. When used in the definition of the linkage­
attribute of a ROUTINE or GLOBAL ROUTINE declaration, it causes the
first instruction of the code compiled for the routine to be a PORTAL instruc­
tion ("JRST 1,.+1"). The PORTAL instruction is used in the construction of
certain kinds of execute-only programs. See the system hardware manuals for
details.

The PRESERVE and NOPRESERVE linkage-options are described in Sec­
tion 13.1.

The LINKAGE-REGS option, used only with the PUSHJ and
PS-INTERRUPT linkage-types, specifies the registers to be used for the
stack pointer, frame pointer, and the value return register.

13.4.4.1 PUSHJ Linkage-Type - The PUSHJ linkage-type specifies a calling
sequence in which the actual-parameters are passed on the stack without the
use of an argument pointer. Unlike the FlO linkage-type, actual-parameters
can also be passed in registers (as described in 13.1.3.2.3) and the
LINKAGE-REGS option can be used to specify which registers are used for
the stack pointer, frame pointer, and value return registers. For example,
consider the following:

LINKAGE
DBL_PREC = PUSHJ(; REGISTER=l t REGISTER=2):

LINKAGE_REGS(15t13tl)
NOPRESERVE(2t3t4t5)
PRESERI.JE(OtGt7tB,9t10t11 t12t14);

The example defines linkage for a double-precision result in AC1 and AC2,
with STANDARD locations (i.e., the stack) reserved for an arbitrary number

Linkages 13-25

I

I

13-26

of inputs. Since AC1 is treated as an output-para meter-location, the routine
should be NOVALUE.

The SKIP linkage modifier determines how the PUSHJ returns to the calling­
location. The following describes the skip-values used:

o The routine returns to the calling-location plus one (this is the default
skip-value).

1 The routine may return to the calling-location plus one or plus two. The
call value is zero (no skip) or one (skip).

2 The routine may return to the calling-location plus one, two, or three.
The call value is then zero, one, or two respectively.

A non-zero skip-value must only appear in a valued routine, and a value­
return register must be NOPRESERVE.

For ROUTINE declarations, the return-value is added to the "saved PC
value"; therefore, the routine must not be NOVALUE.

The CLEARSTACK linkage modifier may be used only with PUSHJ. This
option specifies that the actual-parameters (placed on the stack by a routine­
call) will be· removed from the stack by the called routine, instead of the
calling routine. If the modifier is not specified, the parameters will not be
removed from the stack by the called routine and become the responsibility of
the caller. Be aware, however, that the number of actual-parameters used in
the call must be exactly equal to the number of formal-parameters declared.

13.4.4.2 JSYS Linkage-Type - The JSYS linkage-type specifies a calling
sequence in which actual-parameters are passed by register to TOPS-20 JSYS
functions. For example, consider the following:

LINKAGE
SIN_LNKG = JSYS(REGISTER=l, REGISTER=2, REGISTER=3,

REGISTER=Lt;

BIND ROUTINE

REGISTER=l, REGISTER=2, REGISTER=3)
:SKIP(-l) ;

SIN = 'X.O'52' :SIN_LNKG;

The SIN routine reads a string from a specified source to the caller's address
space using an in line JSYS instruction; parameters are passed via ACI-AC4.

The SKIP linkage modifier determines how the JSYS will return to the call­
ing-location. The following describes the skip-values used:

Linkages

-1 The instruction after the JSYS will be an ERJMP. The value of the
call is zero if an error occurs, otherwise the value is a one.

o Control is returned to the next instruction; the value of the call is zero.

1 Control returns to the calling-location plus one or plus two. The value
of the call is zero (no skip) or one (skip).

2 Same as 1, except control also can return to the calling-location plus
three (in which case, the value of the function is two).

April 1983

April 1983

13.4.4.3 F10 Linkage-Type - The FlO linkage-type specifies a calling se­
quence in which input-actual-parameters are passed using an argument block
(see Section 13.1.1.1) whose address is contained in register 14. Register 15 is
the stack pointer and register 0 is the value return register.

13.4.4.4 PS_INTERRUPT Linkage-Type - The PS.-1NTERRUPT linkage­
type is similar to the PUSHJ and compatible with TOPS-10 and TOPS-20
software interrupt (PSI) mechanisms; as such, a PS-INTERRUPT makes
use of the DEBRK(lo JSYS and DEBRK. UUO exit mechanisms for TOPS-20
and TOPS-10. For example, consider the following:

LINKAGE
INTERRUPT = PS-INTERRUPT;

ROUTINE PSI: INTERRUPT =
BEGIN

END;

Assuming a TOPS-20 compilation, the code expansion would be as follows:

PS I : PUSH SP, [PSI3G'1.,] H a~~ e return PC to ~~ e e P

;stac~~ adjusted
PUSH SP, FP ;[OPT] set UP f r alTl e
MOI,IE FP, SP ; [OPT]
PUSH SP, HOPT] s a 1.1 e necessary ACs

POP SP, ;[OPT] restore saved ACs
POP SP, FP ;[OPT] reCOI,ler old FP
ADJSP SP, 1 ; RelTlo 1.1 e f a ~~ e return PC
DEBRK'1., ;Return to ITlonitor

Notice that the expansion is exactly like that of a PUSHJ routine; the excep­
tion being that at routine entry the called routine places a dummy PC on the
stack, and at routine exit the dummy PC is removed before the DEBRK%
JSYS is executed. The environment is the same for TOPS-10, the only exe­
ception being that DEBRK. UUO is used to exit the routine.

A routine declared as a PS-INTERRUPT type must adhere to the following
rules:

1. The routine must only be called by the PSI system.

2. The routine must only fetch from or assign to data segments which satisfy
one of the following requirements:

• A data-segment whose scope is limited to the body of the routine

• A data-segment declared with a VOLATILE attribute

3. If an UNWIND can occur within the scope of the routine, a condition
handler must be established via an ENABLE declaration within the rou­
tine.

When an UNWIND occurs, it is necessary that a DEBRK% JSYS, or
DEBRK. UUO be executed to allow subsequent software interrupts to occur.
To guarantee future interrupts the user must establish a condition handler in

Linkages 13-26.1

I the PS-.lNTERRUPT linked routine. The BLISS-36 OTS uses this handler
to ensure that the software interrupt system is re-enabled.

13.4.5 BLISS-36 Predeclared Linkage-Names

Four linkage-names are predeclared in every BLISS-36 module. These link­
ages are provided for compatible and transportable usage among the several
BLISS dialects. See Section 13.5 concerning such usage. The default linkage­
name is BLISS36C.

13-26.2 Linkages Apri11983

The predeclared linkage-names are defined as shown in the following declara­
tion:

LINKAGE
BLISS10 = PUSHJ,
BLISS3GC =

PUSHJ:
LINKAGE_REGS(lS,13,1)
NOPRESERVE(2,3,a,S)
PRESER 1.JE(O,G,"7,8,8,10,11 ,12tla) t

FORTRAN_SUB = FlO,
FORTRAN_FUNC =

FlO: PRESERI.'E(2 ,3 ,a ,S ,G t7 ,8 ,8 dO dl t12 t13);

The BLISS10 linkage is provided for convenient interfacing with routines
compiled by the BLISS-10 compiler. (BLISS-10 is an older dialect of BLISS
which is becoming obsolete.) The definition of the BLISS10 linkage given here
assumes that default register options are used by the BLISS-10 module.

The BLISS36C linkage is the default linkage for BLISS-36. (The name comes
from a preliminary bootstrapping version of BLISS-36 that was known as
BLISS-36C. BLISS-36C is now obsolete.)

The BLISS36C linkage can also be used for interfacing with BLISS-I0
routines that are compiled using the "/Z" compilation option of the BLISS-10
compiler.

13.5 Common Predeclared Linkage-Names

Two linkage-names are predeclared in all BLISS dialects, namely: FOR­
TRAN_SUB and FORTRAN~FUNC. In addition, the linkage-names
BLISS and FORTRAN are predeclared in BLISS-16 and BLISS-32.

The complete semantics for these linkage-names is given in the earlier sec­
tions on the linkage-declaration for each dialect (see Section 13.2.5 for
BLISS-16, Section 13.3.6 for BLISS-32, and Section 13.4.5 for BLISS-36).
This section summarizes the common characteristics that apply across di­
alects.

13.5.1 The BLISS Linkages

In BLISS-16 and BLISS-32, the BLISS linkage is the default linkage in the
absence of any other specification. In BLISS-36, the default linkage is
BLISS36C. The semantics associated with these linkages are given in Sections
12.4 through 12.7.

In light of the above, the way to obtain a compatible and transportable BLISS
linkage in all dialects is to use no explicit linkage specification at all.

13.5.2 The FORTRAN Linkages

The FORTRAN -related linkages provide a compatible and transportable
means to interface with FORTRAN compiled routines on each of the target
systems.

Linkages 13-27

Use of the FORTRAN linkages is quite similar to use of the BLISS linkages
with these exceptions:

• Each formal parameter must be assumed to contain a value that is an
address. The body of the routine must be coded appropriately. (In
BLISS-32, this restriction can be relaxed through use of the % VAL built­
in function of VAX-II FORTRAN IV-PLUS.)

• Each actual-parameter must be a value that is an address.

There are several FORTRAN linkages because, in the case of FORTRAN-I0
on the DECsystem-l0/-20, FORTRAN-I0 compiled SUBROUTINE subpro­
grams use the machine-registers in a different way than FORTRAN-I0 com­
piled FUNCTION subprograms. (This difference is reflected in the declara­
tions for the FORTRAN_SUB and FORTRAN_FUNC linkage-names given
for BLISS-36 in Section 13.4.5.) There is no such difference for PDP-II and
VAX-II FORTRAN systems.

In light of the above, the way to obtain compatible and transportable interfac­
ing to FORTRAN with all three BLISS dialects is:

• Use the FORTRAN_SUB linkage-name in the declaration of any routine
which is to be used as a FORTRAN SUBROUTINE subprogram.

This applies to all EXTERNAL ROUTINE declarations, for example,
regardless of whether the routine is actually coded in BLISS or FOR­
TRAN. This also applies, obviously, to the ROUTINE or GLOBAL ROU­
TINE declaration if the routine is coded in BLISS. In both cases, it is also
highly desirable to use the NOV ALUE attribute as well.

• Use the FORTRAN_FUNC linkage-name in the declaration of any rou­
tine which is to be used as a FORTRAN FUNCTION subprogram.

As with the FORTRAN_SUB linkage, this applies to EXTERNAL
ROUTINE declarations as well as to ROUTINE and GLOBAL ROU­
TINE declarations.

If compatible and transportable interfacing to only PDP-II and VAX-II
FORTRAN systems is desired, then the FORTRAN linkage-name can be used
for both SUBROUTINE and FUNCTION subprograms in BLISS-16 and
BLISS-32.

13.6 Linkage-Functions

Linkage-functions are executable-functions (see Section 5.2) that provide spe­
cialized information about the actual-parameters used to call a routine. For
example, linkage-functions can be used to code a routine that can be called
with different numbers of actual-parameters in different routine-calls.

13.6.1 Common Linkage-Functions

There are three common BLISS linkage-functions: ACTUALCOUNT,
ACTUALPARAMETER and ARGPTR. These functions can be used with all
of the FORTRAN-related predeclared linkages in all BLISS dialects. They
can also be used with some of the BLISS-related predeclared linkages.

13-28 Linkages

13.6.1.1 Definition - The common linkage-functions are defined as follows:

ACTUALCOUNT()

Restriction. Must be declared BUILTIN within the body of a routine
whose linkage-attribute is defined with certain linkage-types. The link­
age-types, and the predeclared linkages that are consequently permitted,
are:

Dialect

BLISS-16

BLISS-32

BLISS-36

Linkage-Type

CALL

CALL

FlO

Predeclared Linkages

FORTRAN
FORTRAN_SUB
FORTRAN_FUNC

BLISS
FORTRAN
FORTRAN_SUB
FORTRAN_FUNC

FORTRAN_SUB
FORTRAN_FUNC

Value. Return the number of actual-parameters passed to the routine
using STANDARD parameter-locations; parameters passed using REG­
ISTER parameter-locations are not included in the returned value.

For the predeclared linkages in all dialects, all parameters are passed
using STANDARD parameter-locations and, consequently, ACTUAL­
COUNT returns the number of actual-parameters.

ACTUALPARAMETER(i)

Restrictions. The first restriction for ACTUALPARAMETER IS the
same as for ACTUALCOUNT above.

The value of i must be in the range I to ACTUALCOUNTO.

Value. Return the value of the i'th actual-parameter that was passed
using STANDARD parameter-locations; parameters passed using REG­
ISTER parameter-locations are not obtainable with this function.

For the predeclared linkages in all dialects, all actual-parameters are
passed using STANDARD parameter-locations, and, consequently, AC­
TUALPARAMETER(i) returns the value of the i'th actual-parameter.

ARGPTR()

Restriction. The restriction for ARGPTR is the same as for ACTUAL­
COUNT above.

Value. Return the address of the argument block.

13.6.1.2 Examples - The use of the linkage-functions permits routines to be
written in a more general way. Consider, for example, a generalization of the

Linkages 13-29

routine AVERAGE3 (Section 12.4.5), which accepts three parameters, to the
routine AVERAGE, which accepts any number of parameters:

ROUTINE AVERAGE =
BEGIN
BUILTIN

ACTUALCOUNT,
ACTUALPARAMETER;

LOCAL

L = 0;
INCR I FROM 1 TO ACTUALCOUNT() DO

L = • L + ACTUAL PARAMETER (• I) ;
.L/ACTUALCOUNT()
END;

Some calls on the routine AVERAGE and the value of these calls are given in
the following list:

Call

AI.IERAGE (1 ,2,3)
AVERAGE(2,4,G,8,10)
AI.IERAGE (8)
AI.IERAGE ()

Value

2
6
8

??? (Invalid)

In some cases a routine has a fixed and variable set of parameters. For exam­
ple, consider the following routine, which calculates the difference between an
expected value (the fixed part) and the average of a set of values (the variable
part):

ROUTINE DELTA_AVERAGE(EXPECTED)
BEGIN
BUILTIN

ACTUALCOUNT,
ACTUALPARAMETER;

LOCAL

L = 0;
INCR I FROM 2 TO ACTUALCOUNT() DO

L = .L + ACTUALPARAMETER(.I);
.EXPECTED - .L/(ACTUALCOUNT()-l)
END;

Some calls on the routine DELT A-A VERAGE are:

Call

DELTA_AVERAGE(3,1,2,3)
DELTA_AVERAGE(G,2,4,G,8,10)
DEL TA_AI.IERAGE (7)
DEL TA_AI.IERAGE ()

Value

1
o

??? (Invalid)
??? (Invalid)

Observe in this example that explicit formal-parameters are not distinct from
the parameters accessed by the linkage-functions. Specifically, .EXPECTED
is equivalent to ACTUALPARAMETER(1). Consequently, the loop initial

13-30 Linkages

value is 2, not 1, and the divisor in the next to last line is ACTUAL­
COUNTO-I, not ACTUALCOUNTO.

The ARGPTR linkage-function returns the address of the argument block of a
routine-call. In some cases the argument block address passed in the argu­
ment pointer register may not be left in that sanle register throughout the
execution of the called routine. For example, in BLISS-36 this is usually done
in the code compiled for a routine with the FlO linkage-type that calls another
routine which also has the FlO linkage-type. The ARGPTR function provides
a compatible means to obtain the address of the argument block in all
dialects.

13.6.2 BLISS-16 and BLISS-32 Linkage-Functions

The NULLPARAMETER linkage-function (in BLISS-I6 and BLISS-32 only)
tests a parameter position of a call from a FORTRAN routine and returns true
if the actual-parameter is a null or omitted parameter. See the PDP-II and
VAX-II FORTRAN manuals for a description of null and omitted parame­
ters.

The NULLPARAMETER linkage-function is defined as follows:

NULLP ARAMETER(i)

Restriction. If i is not a formal-name then it is interpreted as an expres­
sion and the value of i must then be greater than or equal to one. The
linkage-type and predeclared linkages that are permitted are:

Dialect Linkage-Type Predeclared Linkages

BLISS-I6 CALL

BLISS-32 CALL

FORTRAN
FORTRAN_SUB
FORTRAN_FUNC

BLISS
FORTRAN
FORTRAN_SUB
FORTRAN_FUNC

Value. If i is a formal-name and the corresponding actual-parameter
tested is null or omitted a value of one is returned; otherwise, a zero is
returned. If i is an expression, a value of one is returned when: (a) i is
greater than the number of actual-parameters or (b) i is not greater than
the number, but the i'th actual-parameter has the value -1 in BLISS-I6
or 0 in BLISS-32; otherwise, a zero is returned.

13.7 Global Register Data Segments and Linkages

Apri11983

A global register data segment is a data segment that is created and allocated
in a given register in one routine and may be made available for use in other
routines that it calls. Global register data segments are identified by name
and both the calling and called routine must agree that a particular data
segment is available.

Linkages 13-31

I

A GLOBAL REGISTER declaration (Section 10.8) causes a global register
data segment to be allocated. A global register data segment is a local data
segment just like an ordinary register data segment - it is created on entry to
the block in which it is contained and released on exit from that block.
However, unlike an ordinary register data segment, a global data segment is
available in called routines under certain circumstances.

In order to pass a global register data segment to a called routine, the linkage­
attribute for the called routine must contain the name of the data segment
and its register assignment in its GLOBAL linkage-option. There may be
more global register data segments available at a call than are given in the
linkage for the call; however, every global register data segment given in the
linkage must be available at the call. Only those global register data segments
given in the linkage are available in the called routine.

An EXTERNAL REGISTER declaration (Section 10.9) specifies that a global
register data segment created in a calling routine is available for use. The
declared name must be given in the linkage; however, not all global register
data segments given in the linkage need be declared in an EXTERNAL
REGISTER declaration.

The linkage-attribute forms a bridge between calling and called routines.
Consider the use of the global register data segment GRDS in the following
example:

13-32 Linkages

%IF %BLISS(BLISS1G) OR %BLISS(BLISS32)
'X,THEN

'X,F I

LITERAL
GROS_REG = 1 ;

LINKAGE
BRIDGE =

%BLISS1GCJSR: GLOBALCGROS = GROS_REG»
%BLISS32CCALL: GLOBAL(GROS = GROS_REG»;

%ELSE ! For BLISS-3G
LITERAL

GROS_REG = G ;
LINKAGE

BRIDGE = PUSHJ:
LINKAGE_REGS(1St13t1)
NOPRESERVEC2t3t4tS)
PRESERI.'E (0 t 7 t 8 t 8 t 10 t 11 t 12 t 14)
GLOBALCGROS = GROS_REG);

FORWARD ROUTINE
ROUT2: BRIDGE NOVALUE;

ROUTINE ROUT1 =
BEGIN
GLOBAL REGISTER

GROS = GROS_REG;
GROS = 0;
ROUT2 C) ;
.GROS
END;

ROUTINE ROUT2: BRIDGE NOVALUE
BEGIN
EXTERNAL REGISTER

GRDS;
GRDS = + GRDS + 1;
END;

First, the literal-name GRDS_REG is bound to either the value 1 or the
value 6, depending upon the compiler used for the compilation. This literal
value is used to specify a register-number in several subsequent declarations.
(The conditional-compilation constructs used in this example are described in
Chapters 15 and 16.)

Linkages 13-32.1

Next, the name BRIDGE is defined as a linkage-name with the global register
data segment GRDS. This declaration also depends upon the compiler used
for the compilation. (Note that the definition of BRIDGE for BLISS-36
matches the default BLISS36C linkage except for the GLOBAL option, and
thus is compatible with the default linkage.) Then, the forward-routine-decla­
ration for ROUT2 uses the linkage-attribute BRIDGE. The calling routine
ROUTl allocates the global register data segment GRDS and sets it to o.
(Observe that ROUTl does not need any special linkage-attribute in order to
create the global register data segment.) ROUTl then calls the routine
ROUT2. ROUT2 increments the value of the global register data segment,
and returns. The value of routine ROUTl is the value of the global register
data segment, l.

Because the information about the global register data segment is supplied by
the linkage-attribute BRIDGE, the compiler can perform several consistency
checks to verify that the global register data segment is being used correctly.
In the above example, the compiler knows that ROUT2 uses a global register
data segment and can, therefore, check that a call on that routine occurs
within the scope of the global register declaration. Further, the compiler can
check that the external register declaration for GRDS is within a routine with
a linkage-attribute for the global register data segment GRDS.

A global register data segment is a register that is, by convention, reserved for
a particular use by a set of routines that function together as a package. For
example, consider a file maintenance package. Typically, such a package
consists of interface routines and internal routines. The interface routines
establish the function to be performed by the file maintenance package (i.e.,
open, insert, and so on) and set up the appropriate environment. The internal
routines perform the basic processing within the environment established by
the interface. Part of that environment is often the establishment of one or
more global register data segments.

A file maintenance package is far too complex to illustrate here. Instead
consider the following much smaller - and somewhat contrived - system.
The module consists of a system of two global routines, VECMAXMIN and
VECMAXMINA VG, each of which uses two other routines which are internal
to the module. Both VECMAXMIN and VECMAXMINAVG are written to
be callable from FORTRAN. Each actual-parameter to these routines must
be the address of the desired FORTRAN variable or array.

The first routine, VECMAXMIN, is called with the first parameter giving the
base of an integer vector, and the second parameter giving the number of
elements in the vector. The maximum value encountered in the vector is
returned via the third parameter, while the minimum value is returned via
the fourth parameter. The value of the routine is the difference between the
maximum and minimum.

The second routine, VECMAXMINAVG, is called with two parameters which
are the same as the first two parameters of VECMAXMIN. Its value is the
average of the maximum and minimum elements of the array.

Linkages 13-33

13-34

The internal routine VECMAXl searches a vector and returns the maximum
value; and similarly, the internal routine VECMINl returns the minimum
value. Routines VECMINl and VECMAXl each receive their two parameters
as global register data segments, in registers that are appropriate for the
respective, dialect-specific linkage definitions. (See the guidelines given fur­
ther on concerning the preferred choice of registers for each target system.)

Linkages

MODULE VECOPS(IDENT='03')
BEGIN

LITERAL
I.lECREG /..BLISS1G(1)

'X.BL I SS32 (11)
'X.BLISS3G(12) ,
'X.BLISS1G(2)
/..BLISS32(10)
/..BLISS3G(11>;

LENREG

LINKAGE
BLISSTWOREG =

/..BLISS1G(JSR:)
ZBLISS32(CALL:)
ZBLISS3G(PUSHJ: LINKAGE_REGS(lS,13,1)

NOPRESERVE(2,3,a,S)
PRESERI.lE (0 ,7 ,8 ,9 ,10 ,1 a))

GLOBAL(VEC = VECREG, LEN = LENREG);

FORWARD ROUTINE
VECMAXMIN: FORTRAN_FUNC,
VECMAXMINAVG: FORTRAN_FUNC,
VECMAX1: BLISSTWOREG,
VECMIN1: BLISSTWOREG;

GLOBAL ROUTINE
VECMAXMIN(VECADR,LENADR,MAXADR,MINADR): FORTRAN_FUNC
f3EGIN

GLOBAL REGISTER
VEC VECREG REF VECTOR,
LEN = LENREG;

I Initialize Slobal reSisters

1.IEC • 1.IECADR ;
LEN •• LENADR;

! Main code
!
.MAXADR = VECMAX1();
.MINADR = 1.IECMINl ();
•• MAXADR- •• MINADR
END;

GLOBAL ROUTINE VECMAXMINAVG(VECADR,LENA~R) ~ FORTRAN_FUNC
BEGIN

GLOBAL REGISTER
VEC = VECREG REF VECTOR,
LEN = LENREG;

1.IEC = • I.lECADR ;
L.EN = + .LENADR;

(VECMAX1() - VECMIN1())/2
END;

ROUTINE VECMAX1: BLISSTWOREG
BEGIN

EXTERNAL REGISTER
1,IEC: REF I.lECTOR t

LEN;

LOCAL
MAXX;

MA}-O(= .1,IEC[OJ;
DECR J FROM .LEN-l TO 1 DO

MAXX MAX(.MAXXt.VEC[.JJ);

• MA}-O(

ROUTINE VECMIN1: BLISSTWOREG
BEGIN

EXTERNAL REGISTER
I.lEC: REF I.lECTOR t

LEN;

LOCAL
MINN;

MINN = .I.lEC[OJ;
DECR J FROM .LEN-l TO 1 DO

MINN = MIN<'t1INN t .I.lEC[.JJ);

.MINN
END;

END
ELUDOM

13.7.1 Discussion

GLOBAL REGISTER and EXTERNAL REGISTER declarations in combi­
nation with linkage-definitions that include a GLOBAL linkage-option pro­
vide a controlled means to extend the scope of a register data segment from
one routine into another routine. The restrictions help assure that this unu­
sual dynamic extension of register scope is clearly documented and unlikely to
be a source of error because of hidden effects.

The optimization benefits from the use of global register data segments come
about in two distinct ways. First, both the called and calling routines benefit
from code efficiency that results from the use of a register instead of a tempo­
rary (stack) location to hold the parameter value during the call. Second, the
calling routine benefits from the fact that the global register value is still
available in the same register after return from the called routine. No save
and restore of the register contents is required around the call.

The same conventions can (and must) be used to share register data segments
between nested routine definitions. In this case, the convention allows the
inner routine to access a "local" data segment of the 9uter routine in an
efficient manner. (This capability is sometimes called "up-level addressing"
in other languages and often requires complex and inefficient code.) Observe,

Linkages 13-35

however, that there is no particular advantage to coding the called routine as
a nested routine. Indeed, the convention works equally well between routines
in separately compiled modules.

The use of global registers is a useful and sometimes important optimization
technique. Care must be taken, however, to assure that two independently
developed parts of a program that use the technique do not inadvertently use
register assignments that conflict when the parts are brought together. Global
registers are not subject to the normal optimization strategies of the compiler
and, consequently, may lead to worse, rather than better, code quality if too
many are used.

13.7.2 Guidelines for BLISS-16

The many restrictions concerning the use of LINKAGE declarations and
global register data segments are necessary to assure proper management of
the machine registers at all times.

Two guidelines are particularly recommended:

1. The value return register should always be specified as non-preserved
(which is the default). This will avoid the special restrictions related to
this register.

2. When planning the allocation of global register data segments, use con­
tiguous registers beginning with register 1; for example, registers 1 and 2
if two are needed.

Note carefully that, because the PDP-II has very few locally usable registers
(relative to other target systems), the allocation of even one register as global
over a large span of code will very likely decrease overall code quality.

13.7.3 Guidelines for BLISS-32

The many restrictions concerning the use of LINKAGE declarations and
global register data segments are necessary to assure proper management of
the rnachine registers at all times, especially during condition handling (see
Chapter 17). One restriction in particular deserves special consideration when
JSB routines and global register data segments are used together, namely:

If a call to a routine with JSB linkage-type occurs in the scope of a global
register data segment, then the given register-number of the data segment
must be given in either a GLOBAL linkage-option or a NOTUSED linkage­
option of the linkage of the called routine.

That is, if a global register data segment is active at the point of a call to a
JSB routine, the only permitted use of the register in the JSB routine is as a
global register data segment; if not used that way, it must not be used at all.

Some service routines in the VAX--ll Run-Time Library use JSB linkage. By
convention, these routines use a contiguous group of registers, none of which

13-36 Linkages

are preserved, starting at register number 0. In light of this convention, and
the above restrictions, the following two guidelines are suggested:

1. When specifying the linkage of a routine with JSB linkage, give the
locally usable registers as contiguous lower numbered registers starting
at zero. Keep the set of locally usable registers as small as possible
consistent with acceptable code quality.

2. When planning the allocation of global register data segments, use con-
tiguous higher numbered registers, that is, 11, 10, 9, and so on.

A reasonable strategy is to divide the registers into groups so that JSB
routines never locally use more than, say, registers ° through 7 and global
register data segments are always specified in registers 8 through 11. This
guarantees that no conflicts will arise in using JSB routines and global regis­
ter data segments together.

One additional guideline is strongly recommended, namely: registers ° and 1
should always be specified as nonpreserved (which is the default). This will
avoid the error prone special restrictions related to condition handling (see
Section 13.3.2).

13.7.4 Guidelines for BLISS-36

The many restrictions concerning the use of LINKAGE declarations and
global register data segments are necessary to assure proper management of
the machine registers at all times.

Two guidelines are particularly recommended:

1. The value return register should always be specified as non-preserved
(which is the default). This will avoid the special restrictions related to
this register.

2. When planning the allocation of global register data segments, use the
highest-numbered contiguous set of registers available; for example, 12,
11, 10,9, and so on when using the BLISS36C type register conventions.

Linkages 13-37

Chapter 14 Binding

14.1 Li teral-Declarations 14-1

14.1.1 Syntax. 14-2
14.1.2 Restrictions 14-2
14.1.3 Defaults. 14-2
14.1.4 Semantics 14-3
14.1.5 Predeclared Literals. 14-3

14.2 External-Li teral-Declara tions . 14-3

14.2.1 Syntax. 14-4
14.2.2 Restrictions 14-4
14.2.3 Defaults. 14-4
14.2.4 Semantics 14-4

14.3 Bind-Data-Declarations 14-4

14.3.1 Syntax. 14-5
14.3.2 Restrictions 14-6
14.3.3 Defaults. 14-6
14.3.4 Semantics 14-6

14.4 Bind -Routine-Declarations . 14-6

14.4.1 Syntax. 14-7
14.4.2 Restrictions 14-7
14.4.3 Default. 14-8
14.4.4 Semantics 14-8

Chapter 14
Binding

Bound-declarations are different from most of the declarations discussed thus
far because a bound-declaration defines a name in terms of other names and
values. Bound-declarations do not involve the allocation of storage. Instead,
they provide a name for a constant value, or an additional name and some­
times a different interpretation for existing storage.

A bound-declaration defines a name. The definition of a name consists of its
scope, its value, and its attributes. The scope and attributes are determined
in the usual way. However, the value of the name defined in the bound­
declaration is determined from the value of an expression.

A name can be defined by a bound-declaration to be a literal-name, a data­
name, or a routine-name. The syntax diagram for bound-declarations is:

bound -declara tion
{

literal-declaration }
external-Ii teral-declaration
bind-data-declaration
bind-routine-declaration

The syntax and semantics for each kind of bound-declaration are given in the
following sections.

14.1 Literal-Declarations

A literal-declaration is used to define a name whose value is determined by a
constant expression. After a name is defined in this way, it can be used to
designate the constant expression.

A literal-declaration can contribute to readability of a program. An example
of this usage is

LITERAL
CAPACITY = 25;

This declaration allows the following assignment to be written:

STUDENTS = .RDOMS * CAPACITY

14-1

In this expression, STUDENTS and ROOMS are data segment names and
CAPACITY is the literal name declared above. The use of the literal-declara­
tion makes clear the significance of the value 25.

A literal-declaration is especially useful for defining a constant value that is
used at several different places in a program. In the event that a different
version of the program requires a different value for the constant value, the
change can be made in just one place; namely, in the literal-declaration. An
example of this usage is:

LITERAL
BUFFERSIZE = 266;

It is assumed that the size of the buffer changes from time to time and that
this value is involved in computations throughout the program. A change in
the value of BUFFERSIZE in this declaration automatically changes the
value of all the occurrences of BUFFERSIZE within the program.

14.1.1 Syntax

literal-declaration { LITERAL }
GLOBAL LITERAL

literal-item, ... ;

literal-item literal-name = literal-value

{ : lite:al-attribute ... }
nothIng

literal-name name

literal-value com pile-time-constant-expression

literal-attribute { range-attribute}
weak-attribute <= 32 Only

14.1.2 Restrictions

The value, n, of the bit-count expression in the range-attribute must lie in the
range 1 ~ n ~ %BPV AL.

The literal-value must be representable in the given number of bits.

BLISS-32 ONLY

The WEAK attribute may be specified only in a GLOBAL LITERAL decla­
ration.

14.1.3 Defaults

If a range-attribute is not specified, then SIGNED(%BPVAL) is assumed.

14-2 Binding

14.1.4 Semantics

A literal-declaration is processed by. the compiler as follows:

1. The literal-value expression is evaluated.

2. The range-attribute is used to validate the representation of the literal­
value. The bit-count expresE!ion is evaluated and the value obtained in
Step 1 is checked to verify that it can be represented as a SIGNED or
UNSIGNED value in the number of bits specified.

3. If the literal-declaration is GLOBAL or GLOBAL with the weak-attrib­
ute (BLISS-32 only), then the appropriate indicators are set for the
linker.

4. The literal-name is associated with the value represented in Step 2.
Wherever the literal-name appears in the module, it is replaced by its
associated value.

14.1.5 Predeclared Literals

Certain literal-names are predeclared in BLISS, as follows:

Value in
Name BLISS-16 BLISS-32 BLISS-36 Significance

%BPVAL 16 32 36 Bits per BLISS value
(fullword)

%BPUNIT 8 8 36 Bits per smallest ad-
dressable unit

%BPADDR 16 32 18 or 30 Bits per address value

%UPVAL 2 4 1 Addressable units per
BLISS value (%BPVAL
divided by %BPUNIT)

The value of %BPADDR in BLISS-36 is determined by the cpu-option setting
of the ENVIRONMENT module-switch (Section 19.2); see the BLISS-36
User's Guide for target-system environment information.

The predeclared names just described can be used to enhance the transporta­
bility of a program from one target system to another. See the appropriate
BLISS user's guide, under "Transportability Guidelines", for further informa­
tion.

14.2 External-literal-Declarations

An external-literal-declaration gives a list of literal-names that are declared in
other, separately compiled, modules. When the program that contains these
modules is linked, the value of the external-literal-names is determined.

External-literal-declarations are useful for providing mnemonic names for
constant expressions that are common to the modules of a program.

Binding 14-3

An example of an external-literal declaration is:

E){TERNAL LITERAL
BLKSIZ: SIGNED(8);

14.2.1 Syntax

external-Ii teral-
declaration EXTERNAL LITERAL external-literal-item , ...

external-literal-
literal-name { : lite:al-attribute ... } item

nothIng

Ii teral-name name

literal-attribute { range-attribute}
weak-attribute <= 32 Only

14.2.2 Restrictions

,

A name must not be declared EXTERNAL LITERAL unless it is declared
GLOBAL LITERAL in some other block or module of the same program. This
restriction does not apply, however, to a name that is declared with the weak­
attribute in BLISS-32 (see Section 9.12).

The range-attribute for an EXTERNAL literal-name must accommodate the
value given for the literal in its GLOBAL literal-declaration. For further dis­
cussion, see Section 9.10.

14.2.3 Defaults

If a range-attribute is not given, then SIGNED(%BPVAL) is assumed.

14.2.4 Semantics

An external-literal-declaration is processed by the compiler as follows:

1. Each name in the list is identified as an EXTERNAL literal-name.

2. If the WEAK attribute is specified, an indicator is provided for the
linker (BLISS-32 only).

14.3 Bind-Data-Declarations

A bind-data-declaration is used to define another name for a data segment, or
part of a data segment, that already exists. The bound name can have differ­
ent attributes and can therefore depart from the original interpretation of the
data segment.

14-4 Binding

An example of a bind-data-declaration appears in the following program frag­
ment:

OWN
ALPHA: VECTOR[20J;

BIND
A :: ALPHA[SJ;

INCR I FROM 0 TO 20 DO
ALPHA[.IJ :: .ALPHA[.IJ * .A;

The name A is defined by the bind-data-declaration to be a fullword scalar
with the same address as the ninth element of the vector ALPHA. A reference
to A, therefore, is equivalent to, but more concise than, a reference to
ALPHA[8].

In the example just given, the value of A can be determined at the time the
program is linked since the address of the ninth element of the vector ALPHA
is known at link time. An example of a binding that cannot be determined at
link time is:

BIND B :: ALPHA[2*.J-1J

The contents of J is not known at link time and so the binding of B is deferred
to execution time. Specifically, the binding occurs just before the evaluation
of the block in which the declaration appears. The introduction of the name B
can be efficient because no matter how often B is used during the evaluation
of the block, the expression 2* .J-1 is evaluated only once.

14.3.1 Syntax

bind-data-
{ BIND } declaration bind-data-item , ... ;

GLOBAL BIND

bind-data-item bind~data-name = data-name-value

{ : bind-data-attribute ... }
nothing

bind-data-name name

data-name-value expression

/ allocation-unit <= 16/32
extension-attribute <= 16/32

< I structure-attribute t
bind-data-attribute >

I field-attribute
volatile-attribute
weak-attribute <= 32 Only

Binding 14-5

14.3.2 Restrictions

The data-name-value expression must be the address of a data segment that
can be accessed within the scope of the declaration.

The data-name-value expression must be a link-time-constant-expression if
(1) the declaration begins with GLOBAL or (2) the declaration is at the
outermost level of a module (and is not, therefore, contained in a routine­
declaration) .

The data-name-value expression in a GLOBAL bind-data-declaration is lim­
ited to a restricted subset of link-time-constant-expressions, in that it must
not contain a name declared EXTERNAL, EXTERNAL ROUTINE or EX­
TERNAL LITERAL unless that name is an operand of a compile-time-con­
stant-expression (see Section 7.1.2, item 7). Furthermore, the data-name­
value expression must not contain a name declared BIND, GLOBAL BIND,
BIND ROUTINE or GLOBAL BIND ROUTINE unless the definition of that
name satisfies this same restriction.

A structure-attribute must not appear in a declaration that has an allocation­
unit or an extension-attribute (BLISS-16/32 only).

A field-attribute can appear only in a declaration that has a structure-attrib­
ute.

A weak-attribute can appear only in a GLOBAL bind-data-declaration
(BLISS-32 only).

14.3.3 Defaults

If an allocation-unit is not given, fullword allocation is assumed (BLISS-16/32
only).

If a structure-attribute is not given, the name is assumed to be a scalar.

14.3.4 Semantics

A bind-data-declaration is processed as follows:

1. The bind-data-name is associated with the attributes given either expli­
citly or by default iIi the declaration.

2. The value of the bind-data-name is determined. The time of evaluation
depends on the kind of data-name-value expression given. If the expres­
sion is not a link-time-constant-expression, it is evaluated just prior to
the evaluation of the immediately containing block.

14.4 Bind-Routine-Declarations

A bind-routine-declaration is used to define another name for an existing
routine. After a routine-name is defined in this way, it can be used in the
scope of the bind-routine-declaration either by itself to designate the value of
the routine-name or with a parenthesized list of parameters to indicate a call
on the routine.

14-6 Binding

An example of a bind-routine-declaration is:

BIND ROUTINE CALC = CALCULATIONa;

It is assumed that CALCULATION4 is the name of a routine that is declared
elsewhere, and under this assumption, the value of CALC can be determined
at link time.

Another example of a bind-routine-declaration is:

BIND ROUTINE SR = (IF .A LSS 0 THEN SNEG ELSE SPOS);

It is assumed that SNEG and SPOS are names of routines that are declared
elsewhere. Because the expression to the right of the "=" operator is not a
link-time-constant-expression, the value of SR is determined just before each
evaluation of the block that contains the declaration.

14.4.1 Syntax

bind-routine-
{ BIND ROUTINE } declaration

. GLOBAL BIND ROUTINE

bind-routine-item , ... ;

bind-routine-item bind-routine-name = routine-name-value

{ : bind-routine-attribute ... }
nothing

bind-routine-name name

routine-name-value expression

bind-routine- { novalue-attribute}
attribute linkage-attribute

weak-attribute <= 32 Only

14.4.2 Restrictions

The value of the routine-name-value expression must be the address of a
routine that can be called within the scope of the bind-routine-declaration.

The routine-name-value expression must be a link-time-constant-expression
if (1) the declaration begins with GLOBAL or (2) the declaration is at the
outermost level of a module (and is not, therefore, contained in a routine­
declaration) .

The routine-name-value expression in a GLOBAL bind-routine-declaration is
limited to a restricted subset of link-time-constant-expressions, in that it
must not contain a name declared EXTERNAL, EXTERNAL ROUTINE or

Binding 14-7

EXTERNAL LITERAL unless that name is an operand of a compile-time­
constant-expression (see Section 7.1.2, item 7). Furthermore, the routine­
name-value expression must not contain a name declared BIND, GLOBAL
BIND, BIND ROUTINE or GLOBAL BIND ROUTINE unless the definition
of that name satisfies this same restriction.

The WEAK attribute must be given only with a GLOBAL bind-routine-decla­
ration (BLISS-32 only).

14.4.3 Default

If a linkage-attribute is not given and the bind-routine-declaration is in the
scope of a LINKAGE switch, then the default linkage-attribute is the linkage­
name given in the linkage-switch (see Sections 18.2 and 19.2). Otherwise, the
default linkage-attribute is the predeclared linkage-name BLISS in BLISS-16
and BLISS-32, or BLISS36C in BLISS-36.

14.4.4 Semantics

A bind-routine-declaration is processed as follows:

14-8 Binding

1. The bind-routine-name is associated with the attributes given either
explicitly or by default in the declaration.

2. The value of the bind-routine-name is determined. The time of evalua­
tion depends on the kind of routine-name-value expression given. If the
expression is not a link-time-constant-expression, it is evaluated just
prior to the evaluation of the immediately containing block.

Chapter 15 Lexical Functions

15.1 Introduction to Lexical Processing

15.1.1 From Characters to Lexemes .
15.1.2 Lexeme-by-Lexeme Processing.
15.1.3 Binding
15.1.4 Expansion
15.1.5 An Example of Lexical Processing.

15.2 Quotation

15.2.1 Quote Levels. .
15.2.2 Quotation Rules

15.3 Lexical-Expressions

15.3.1 Syntax ...
15.3.2 Semantics .

15.3.2.1 Types of Numeric-Literals
15.3.2.2 Types of String-Literals .
15.3.2.3 Numeric- and String-Literals.

15.3.3 Discussion
15.3.4 Pragmatics.

15.4 Lexical-Functions in General.

15.4.1 Syntax. . .
15.4.2 Restrictions . . .
15.4.3 Semantics

15.5 Specific Lexical-Functions

15.5.1 Quote Levels for Lexical-Actual-Parameters
15.5.2 String-Functions . .

15.5.2.1 Definition.
15.5.2.2 Examples.

15.5.3 Delimiter-Functions.

15.5.3.1 Definition.
15.5.3.2 Examples

15.5.4 Name-Functions . .

15.5.4.1 Definition.
15.5.4.2 Examples.

15-1

15-2
15-2
15-3
15-4
15-5

15-8

· 15-10
· 15-10

· 15-11

· 15-12
· 15-13

· 15-13
· 15-14
· 15-15

· 15-15
· 15-16

· 15-17

· 15-18
· 15-18
· 15-19

· 15-20

· 15-20
· 15-21

· 15-22
· 15-24

· 15-25

· 15-26
· 15-26

· 15-27

· 15-27
· 15-28

15.5.5 Sequence-Test-Functions · 15-29

15.5.5.1 Definition. · 15-29
15.5.5.2 Examples. · 15-29

15.5.6 Expression -Test-Functions · 15-30

15.5.6.1 Definition. · 15-30
15.5.6.2 Examples · 15-31

15.5.7 Bi ts-Functions · 15-31

15.5.7.1 Defini tion . · 15-31
15.5.7.2 Examples. · 15-33

15.5.8 Allocation-Functions · 15-33

15.5.8.1 Definition. · 15-33
15.5.8.2 Examples. · 15-34

15.5.9 Fieldexpand-Function. · 15-34

15.5.9.1 Defini tion . · 15-34
15.5.9.2 Examples. · 15-35

15.5.10 Calculation-Functions. · 15-35

15.5.10.1 Definition. · 15-36
15.5.10.2 Example · 15-36

15.5.11 Compiler-State-Functions . · 15-37

15.5.11.1 Definitions · 15-37
15.5.11.2 Examples . · 15-38

15.5.12 Advisory-Functions. · 15-39

15.5.12.1 Definitions · 15-39
15.5.12.2 Examples · 15-40

15.5.13 Titling-Functions. · 15-40

15.5.13.1 Definition. · 15-40
15.5.13.2 Examples · 15-41

15.5.14 Quote-Functions · 15-41

15.5.14.1 Definitions · 15-41
15.5.14.2 Examples · 15-42

15.5.15 Macro-Functions . · 15-45

15.5.15.1 Definition. · 15-45
15.5.15.2 Examples · 15-46

15.5.16 Require-Function. · 15-46

15.5.16.1 Definition. · 15-46
15.5.16.2 Examples. · 15-47

15.5.17 Summary of Lexical-Functions · 15-48

15.6 Lexical-Conditionals. · 15-49

15.6.1 Syntax. · 15-49
15.6.2 Restrictions · 15-49
15.6.3 Semantics · 15-50

15.7 Compiletime Declarations · 15-50

15.7.1 Syntax. · 15-50
15.7.2 Semantics · 15-50

Chapter 15
Lexical Functions

BLISS provides two groups of features that are concerned with the compile­
time processing of a module: lexical-functions, described in this chapter, and
macros, described in Chapter 16. Lexical functions and macros are closely
related and share many common concepts and mechanisms. Consequently,
the introduction to this chapter considers both together in an integrated way
and lays the foundation for the description of macros in the next chapter.

The lexical-functions perform basic operations on the text of the module; for
example, the %STRING lexical-function gathers severallexemes into a single
quoted-string lexeme, and the %CHARCOUNT lexical-function counts the
characters in a given quoted-string. The example material in this chapter
includes both lexical-functions and macros, since in practical use these two
features are usually intertwined.

Closely related to the lexical-functions is the lexical-conditional, which per­
mits a programmer to indicate that a portion of a program is to be included or
omitted depending on the outcome of a given compile-time test. Another
related facility is the compiletime-declaration, which declares names whose
values can be changed during compilation and which can control macro­
expansion.

All of these facilities depend on lexical processing, which is the first step in
the compilation of a module. During lexical processing, lexemes are formed
and interpreted, names are associated with their declarations, and the various
kinds of lexical constructs are processed.

This chapter is devoted to the lexical facilities of BLISS. The first section
introduces lexical processing and the second section gives the quotation con­
ventions. The next four sections describe lexical-expressions, lexical-functions
(in general and in particular), and lexical-conditionals. The final section de­
scribes the compiletime-declaration.

15.1 Introduction to Lexical Processing

The compilation of a module begins with lexical processing, which divides the
module into lexemes, binds names to their associated declarations, and ex­
pands macro-calls.

15-1

15.1.1 From Characters to Lexemes

A module is supplied to the compiler as a sequence of characters and
linemarks. As the module is processed, the characters and line marks are
collected to form lexemes. The various kinds of lexemes are described in
Chapter 2.

As an example of conversion to lexemes, consider the following module:

MODULE E)-(=
BEGIN
GLOBAL

)-(: I.lECTOR [1 02Lt] ;
END
ELUDOM

This module is presented to the compiler as a source file composed of the
following characters:

M, 0, D, U, L, E, blank, E, X, blank, =, linemark,
B, E, G, I, N, linemark,
G, L, 0, B, A, L, linemark,
blank, blank, blank, blank, X, .,

blank, V, E, C, T, 0, R, [, 1, 0, 2, 4,], ;, linemark,
E, N, D, linemark,
E, L, U, D, 0, M, linemark

As the module is read by the compiler, it is converted into the following list of
14lexemes:

MODULE, E)-(, =,
BEGIN,
GLOBAL,
)-(,:, I.lECTOR, [, 102Lt,], i,
END ~

ELUDOM

It is the lexemes that are important in BLISS, not the individual characters,
and in the remainder of this chapter, modules are discussed as sequences of
lexemes. That is, the division of modules into lexemes is taken for granted.

15.1.2 Lexeme-by-Lexeme Processing

The compiler works on one lexeme at a time. That is, the compiler does not
read a new lexeme until it has done everything it can with the portion of the
module it has already seen. This lexeme-by-Iexeme processing is a fundamen­
tal characteristic of BLISS.

As an example of lexeme-by-Iexeme processing, consider the following pro­
gram fragment:

OWN
ALPHA;

ALPHA = 2;

When the compiler encounters this fragment, it is already in the midst of a
module. For purposes of discussion, assume that the compiler has already
encountered, in an outer block, a declaration of ALPHA as a literal-name.

15-2 Lexical Functions

The first lexeme in the fragment is OWN. When the compiler reads this
lexeme, it recognizes that the next lexeme will be a new declaration of some
name, and it prepares for that situation.

The second lexeme is ALPHA. Although ALPHA is already declared (accord­
ing to the assumption made above), the compiler treats this occurrence of
ALPHA as a new, overriding declaration of ALPHA.

The third lexeme is a semicolon. When the compiler reads this lexeme, it
knows that the declaration is complete. Therefore, the compiler fills in the
various defaults for ALPHA, providing a complete declaration for the name.

The fourth lexeme is another occurrence of ALPHA. Because of the context,
the compiler knows that this occurrence of ALPHA is a use of the name rather
than another declaration. Because the compiler is working on one lexeme at a
time, it has the full declaration of ALPHA ready to apply to this use of
ALPHA. And that is the main point of this example.

The lexeme-by-Iexeme processing of a BLISS program is quite natural and
obvious for simple modules, such as the, example just given. However, in more
complicated cases, there may be more than one "obvious" way to interpret a
module, and the lexeme-by-Iexeme rule must be invoked to determine what
actually happens.

15.1.3 Binding

Every identifier that is not a reserved keyword can be used as a name. When
an identifier is used as a name, it must be declared; that is, it must be
associated with a declaration. Declarations can be implicit (supplied by the
compiler) or explicit (written by the programmer). The process of associating
a given use of a name with a declaration is called lexical binding. (The process
of associating a declaration of a name with a storage address is also called
binding, as discussed in Section 1.4. Binding in this sense, however, is not a
concern of this chapter.)

In some cases, there is more than one way to lexically bind a name. Consider
the following example:

LITERAL
ABS = 0;

ROUTINE ALPHA(X): NOVALUE
BEGIN
LOCAL

ABS;
ABS = •• }{+1;
.}{ = .ABS* •• x;
END;

In this example, there are three declarations of ABS. First, ABS is implicitly
declared as the name of the absolute value executable function, as described
in Chapter 5. Second, ABS is explicitly declared as LITERAL on the second
line. Third, ABS is explicitly declared as LOCAL within the routine-declara­
tion. According to the rules for scoping given in Section 8.2, the use of ABS in
the assignment to .X is bound to the third (and most recent) declaration of
ABS. '

Lexical Functions 15-3

15.1.4 Expansion

BLISS includes a facility for defining and using macros. Macros have names
and the names are defined and given by declarations, just like other BLISS
names. Thus the macro facility is an integral part of the BLISS language.

A macro-declaration associates a sequence of lexemes, a macro-body, with a
macro-name. Within the scope of the macro-declaration the macro-name can
be used in a macro-call. During compilation, each macro-call is replaced by a
copy of the macro-body.

A macro can be parameterized; that is, each macro-call can supply actual­
parameters that are substituted for formal-names in the macro-body.

When the compiler encounters a macro-call, it first reads through the call
itself, collecting and processing the actual-parameters. Then the compiler
replaces the macro-call by its expansion. The expansion is a modified copy of
the macro-body that is given in the declaration of the macro.

A simple example is: •
MACRO

PRODO():= ((()O+l)*(()O--l)) 'X,;

B := PROD(2*A);

Here, the macro-call is "PROD(2* A)" and the macro-body is
"(((X)+I)*((X)-I))". After the macro-call is expanded, the assignment to B
becomes:

The term "expansion" reflects the fact that macros are often used by a pro­
grammer as a short way to express a long construct. Indeed, in the example
above, the expansion is considerably longer than the macro-call that it re­
placed.

In general, however, "expansion" refers to the replacement of one sequence of
lexemes by another during compilation. There are four kinds of expansion in
BLISS:

• A lexical-function is replaced by its expansion, as described in Sections
15.4 and 15.5.

• A lexical-conditional is replaced by its lexical-consequence or lexical­
alternative, as described in Section 15.6.

• A macro-call is replaced by the corresponding macro-body, and the for­
mal-parameters in the macro-body are replaced by the corresponding
actual-parameters, as described in Sections 16.2 and 16.3.

• A require-declaration or library-declaration is replaced by the file it des-
ignates, as described in Sections 16.5 and 16.6.

The idea of expansion is a simple one, except for one problem: how is the idea
of replacing one entire sequence of lexemes with another, all at once, consist­
ent with the lexeme-by-Iexeme processing described in Section 15.1.2? The
answer to this question requires a brief consideration of the organization of the
compiler.

15-4 Lexical Functions

The compiler processes a module in several stages; lexical processing is the
first stage. The lexical processing stage of the compiler reads lexemes from the
source file, collects lexemes until it can perform some lexical processing,
passes the resulting lexemes to the next stage of the compiler, and, once
again, reads lexemes from the source file.

The compiler can be thought of as working from a single sequence of lexemes,
the input stream as follows:

• At the beginning of compilation, the input stream is the given module.

• Each time the compiler can do nothing more without another lexeme, it
takes a lexeme from the head of the input stream.

• Whenever the compiler has accumulated a construct that can be ex­
panded (such as a lexical-function or a macro-call), it processes that
construct and places the resulting sequence of lexemes at the head of the
input stream.

• Whenever the lexical-processing stage of the compiler has accumulated a
construct that cannot be further expanded (such as a keyword or a plus
symbol), it passes that construct on to the next stage of the compiler.

• When the input stream is empty, compilation is complete.

The method of lexical processing just described is simplified, but only in the
following way: it suppresses those details of the BLISS compiler that, while
they are important for efficient operation of the compiler, do not affect the
meaning of the program or the object code produced by the compiler.

15.1.5 An Example of Lexical Processing

The following module will be used as an example of lexical processing:

MODULE S1 ::
BEGIN
REQUIRE

'STDMAC' ;
GLOBAL BIND

P1 STR8('ABC')t
P2 :: STR8('ABCDEFGHIJKLM');

END
ELUDOM

The fourth line of this module references the file named STDMAC. The
contents of that file is assumed to be:

MACRO
STR8(S) ::

'X, ;

IIF ICHARCOUNT(S) GTR 10
'X,THEN 'X,WARN ('STR8 PARAM TOO LONG') 'X,F I
PLIT(/',E}-(ACTSTRING(10t/',C' 'tS))

A detailed trace of the lexical processing of the module follows. The binding of
names is described, expansions are performed, and the state of the compila­
tion is given after each expansion.

The compiler starts with MODULE and reads lexemes from the input stream.
The identifier S1 is treated in a special way because it is the module name; it

Lexical Functions 15-5

does not affect the meaning of the program. When the compiler reads the
semicolon on the fourth line, it knows that it has reached the end of a com­
plete require-declaration. In accordance with the definition of require-declara­
tions (Section 16.5), the compiler expands the require-declaration by placing
the contents of the designated file at the head of the input stream.

At this point, the state of compilation is:

MODULE S 1 =
BEGIN

==> MACRO
STRB(S)

%IF %CHARCoUNT(S) GTR 10
'X,THEN 'X,WARN ('STRB PARAM TOO LONG') 'X,F I
PLIT('X,E>U:~CTSTRING(10 ,'X,C' ',S))

'X, ;
GLOBAL BIND

Pi STRB('ABC'),
P2 = STRB ('ABCDEFGH I JKLM') ;

END
ELUDoM

The arrow "==>" at the beginning of the third line is a marker used in this
explanation of lexical processing. Everything from the beginning of the mod­
ule up to the arrow has passed through lexical processing and everything from
the arrow through the end of the module is the input stream. The lexeme that
immediately follows the arrow is the head of the stream.

The compiler continues processing lexemes, starting with MACRO. The oc­
currence of STR8 declares that name as a macro-name. The first occurrence of
S declares that name to be the first (and only) formal parameter of STRB. The
second and third occurrences of S are bound to this declaration. When the
compiler reads the percent lexeme, it knows that it has read a complete
macro-definition. It associates the macro-body with the name STR8.

The compiler continues, starting with GLOBAL. The occurrence of P1 de­
clares that name to be a GLOBAL BIND name with a given value. The
occurrence of STR8 is bound to the macro-declaration of the same name.
When the compiler reads the right parenthesis that follows 'ABC', it knows
that it has read a complete macro-call. In accordance with the definition of
ordinary macros (Section 16.3), the compiler expands the macro-call by plac­
ing a copy of the macro-body at the head of the input stream and replacing
each formal-parameter in the copy by the corresponding actual-parameter.

At this point, the state of compilation is:

MODULE Sl =
BEGIN
MACRO

STRB(S)
%IF %CHARCoUNT(S) GTR 10
%THEN 'X,WARN ('STRB PAR AM TOO LONG') 'X,F I
PLIT('X,E)<ACTSTRING(10,'X,C' 'IS))

'X, ;
GLOBAL BIND

Pi
= =:> 'X, I F 'X,CHARCoUNT ('ABC') GTR 10

'X, THEN 'X,WARN ('STRB PARAM TOO LONG') 'X,F I
PLIT('X,E)<ACTSTRING(10,'X,C' ','ABC'» ,

P2 = STRB('ABCDEFGHIJKLM');
END
ELUDoM

15-6 Lexical Functions

The compiler continues, starting with the first lexeme, %IF, of the lexical­
conditional. When the co"mpiler reads the right parenthesis that immediately
follows 'ABC', it knows that it has read a complete %CHARCOUNT lexical
function. In accordance with the definition of that function (Section 15.5.2),
the compiler expands the function by counting the number of characters in
the actual-parameter 'ABC' and placing a numeric-literal that represents the
count at the head of the input stream. Now the state of compilation is:

GLOBAL BIND
Pi

'X,IF ==> 3 GTR 10
'X, THEN 'X,WARN ('STRB PARAM TOO LONG') 'X,F I
PLIT('X,E)-(ACTSTRING(10 t'X,C' ','ABC')) ,

P2 = STRB ('ABCDEFGH I JKLM') ;

When the compiler reaches %THEN, it has evaluated the lexical-test of a
lexical-conditional; because 3 is not greater than 10, the test is not satisfied.
In accordance with the definition of lexical-conditionals (see Section 15.6), the
compiler skips the remainder of the lexical-conditional. The state of compila­
tion is:

GLOBAL BIND
Pi ==> PLIT('X,E)-(ACTSTRING(10,'X,C' ','ABC')) ,
P2 = STRB('ABCDEFGHIJKLM');

The compiler continues, starting with PLIT. The occurrence of %EXACT­
STRING is recognized as a lexical-function name, and when the compiler
reads the right parenthesis that follows, it knows it has a complete %EXACT­
STRING lexical function. In accordance with the definition of that function
(Section 15.5.2), the compiler makes 'ABC' into a ten-character quoted-string
by filling at the right with blanks, and places this expansion at the head of the
input stream.

The state of compilation is:

GLOBAL BIND
Pi PLIT(==> 'ABC '),
P2 = STRS ('ABCDEFGH I JK LM ') ;

The compiler continues, and reaches the declaration of P2. This declaration is
treated similarly to that of P1; however, because the string given for P2
contains more than 10 characters~ the test in the compilation-expression is
satisfied and the compilation arrives at the following state:

GLOBAL BIND
Pi = PLIT('ABC '),
P2 =
= = > 'X.WARN ('STRB PAR AM TOO LONG') 'X.F I

PLIT('X,E><ACTSTRING(10 ,'X,C' ','ABCDEFGHIJKLM'));

The compiler expands the %WARN lexical-function by generating the warn­
ing message "STR8 PARAM TOO LONG", incrementing the warning count,

Lexical Functions 15-7

and then placing the empty sequence (that is, nothing at all) at the head of
the input stream. The compiler skips the %FI, which is the end of the lexical­
conditional. Now the state of compilation is:

GLOBAL BIND
Pi = PLIT('ABC '),
P2 =
==> PLIT('X,E;{ACTSTRING(iO,'7,',C' ','ABCDEFGHIJKLM'));

The compiler continues to the %EXACTSTRING lexical-function, which it
expands as follows:

GLOBAL BIND
Pi PLIT('ABC '),
P2 = PLIT('ABCDEFGHIJ' ==>);

The compiler continues to the end of the input stream without performing any
further binding or expansion. The result is the same as the result of compiling
the following module:

MODULE S i =
BEGIN
GLOBAL BIND

Pi = PLIT('ABC '),
'X,WARN ('STR8 PAR AM TOO Lol\IG')
P2 = PLIT('ABCDEFGHIJ');

END
ELUDoM

15.2 Quotation

(This section presents material that is difficult to understand. One approach
to this section is to read it casually before reading the rest of the chapter and
then to read it again carefully.)

BLISS has facilities for quotation. Quotation postpones until a later lexical
scan the binding of a name and the expansion of a lexical-function or macro­
call.

The need for quotation in BLISS is not obvious. The argument in favor of
being able to quote a name is as follows:

1. Some names are processed more than once. For example, a name in a
macro-body is processed once as part of the macro-declaration and
then, a second time, as part of the expansion of a macro-call.

2. A particular use of a name can only be bound to one declaration. There­
fore, a name that is processed twice could be bound in two different
ways, and a choice must be made.

3. A simple rule for choosing anlong bindings, such as "always bind a
name the first time it is processed", is not flexible enough.

4. Therefore, some mechanism is necessary to specify when binding shall
occur. This mechanism is the quotation facility.

15-8 Lexical Functions

The BLISS quotation facility has two parts: the quotation rules, and the
quote-functions. Each quotation rule states that in a particular context cer­
tain kinds of names are bound or not bound. The quote-functions override the
quotation rules and tell the compiler, for example, to quote a particular name
regardless of the applicable quotation rules. The quotation rules are given
later in this section.

A preliminary example of the BLISS quotation facility is:

OWN
\I •
i\ ,

LITERAL
MARK = tl;

MACRO
M = MARK + %UNQUOTE MARK %;

BEGIN
LITERAL

MARK 5;
)(= M;

END

The interesting part of the example is the binding of the uses of MARK. A
detailed discussion follows.

The name MARK is declared twice, both times as LITERAL, but with differ­
ent values. Each use of MARK must be bound to one or the other of these
declarations.

The only uses of MARK are in the declaration of the macro M. There are two
uses and they are handled in two different ways. The first occurrence is not
bound because one of the BLISS quotation rules (defined in Section 15.2.2)
states that in the macro-body of a macro-declaration only a macro formal­
name is bound. The second occurrence is bound because the %UNQUOTE
function (defined in Section 15.5.13) overrides the rule just stated and forces
binding. After processing, the macro-body is:

MARK (not bound yet) + MARK (bound to LITERAL 4)

This macro-body is associated with the macro-name M.

Later in the processing of the example, the compiler replaces the macro-call
on M with its expansion, and begins to process the expansion. This time
around, the first MARK is bound because the quotation rules permit it. The
second MARK is already bound and, because a name is never bound for a
second time, is left as it is. After processing, the expansion is:

MARK (bound to LITERAL 5) + MARK (bound to LITERAL 4)

Thus the assignment statement is compiled as assigning 9 to X.

In this example, the application of the quotation rules to the binding of names
has been illustrated. They also apply to the expansion of lexical-functions and
macro-calls.

Lexical Functions 15-9

15.2.1 Quote Levels

The quotation rules of BLISS are organized around three quote levels. At any
given time during compilation of a module, a particular quote level applies to
the lexemes being read from the input stream. As compilation proceeds, the
quote level changes depending on the language construct that is being com­
piled.

The quote levels are numbered from 1 to 3. They are:

1. Normal-Quote. This level applies to any portion of a module not cov­
ered by the following quote levels.

2. Name-Quote. This level applies to lexical contexts in which it is "natu­
ral" to ignore most applicable declarations. The portions of a module
processed at name-quote level are:

a. A name that is about to be declared (explicitly or implicitly). Specif­
ically, (1) a name that begins a definition within a declaration, or (2)
a name that appears in the formal-name-list of a routine, structure,
or macro declaration.

b. A name that appears in (1) a name-quote actual-parameter of a
lexical-function or (2) any actual-parameter of a macro-call.

c. An unreserved keyword in a context in which an unreserved keyword
is required. An example is a module-switch in a module-head (de­
scribed in Section 18.1.1), where the context makes it clear that a
keyword is being used as a switch. (The BLISS keywords are listed
in Appendix B.)

3. Macro-Quote. This level applies primarily to a macro-body in a macro­
declaration. It also applies to a keyword-default-actual-parameter (Sec­
tion 16.2.1).

If more than one of the preceding levels could apply to a given context, the
quote level with the highest number is chosen.

15.2.2 Quotation Rules

The quotation rules determine the binding of names and the expansion of
both macro-calls and lexical functions. There are three quotation rules, one
for each quote level, as follows:

1. At normal-quote level, bind every name.

At this level, expand every macro-call and lexical-function.

2. At name-quote level, bind macro-names. That is, bind a name only if
the binding, performed in the usual way, associates the name with a
macro-declaration. At this level, expand every macro-call and lexical­
function.

15-10 Lexical Functions

3. At macro-quote level, bind macro-formal-names. That is, bind a name
only if the binding, performed in the usual way, associates the name
with the (implicit) declaration of a macro-formal-name.

At this level, expand only the quote lexical-functions; that is,
%QUOTE, %UNQUOTE, and %EXPAND.

The quote-functions, described in Section 15.5.13 are specifically designed to
override the rules above. However, a quote-function only applies at a specific
place in a program. For example, the %QUOTE function postpones applica­
tion of the bind operation to a name that immediately follows the function,
even though the quotation rules may call for binding of that name.

15.3 Lexical-Expressions

A module is presented to the compiler as a source file composed of characters
and linemarks. During lexical processing, the characters are grouped into
lexemes and then the lexemes are grouped into lexical-expressions.

A lexical-expression can be a single lexeme. Examples are:

+ The pI us symbol

MOD U LEThe keyword that begins a module

ALPHA A name (not declared MACRO)

329 A decimal-literal

'ABC' A quoted-string

Each of these examples is not only a single lexeme but is also primitive; that
is, it is not expanded into some other sequence of lexemes during lexical
processing.

Some examples of lexical-expressions that are more complicated are:

'X,A8C I C 'ABC'

%CHARCDUNT('ABC')

%IF %8WITCHE8(DEBUG)
%THEN %WARN('BANG') %FI

BETA(3t'ABC')

REQUIRE 'TB8';

A string-literal

A lexical-function

A lexical-conditional with two nested lexi­
cal-functions

A macro-call (assume BETA is declared
MACRO)

A require-declaration

LIBRARY 'X,8TR I NG ('HYZ ' t Q); A library-declaration with a nested lexi-
cal-function

All of these lexical-expressions are composed of two or more lexemes. The first
example is a %ASCIC string-literal and is primitive. The second example is a
%CHARCOUNT lexical-function and is nonprimitive; it is expanded to 3,

Lexical Functions 15-11

which is a primitive lexical-expression. The remaining examples are all non­
primitive, but their expansion requires contextual information not given here.

An example of a sequence of lexical-expressions that constitutes a complete
module is:

MODULE Q =
E~EGIN

MACRO
PACK(>{)

GLOBAL BIND
MESSAGE

END
ELUDOM

U PL I T ('X,CHARCOUNT (>0 ,>() ;

PACK ('HELLO') ;

This module is mainly composed of primitive, single-lexeme lexical-expres­
sions. The two exceptions are %CHARCOUNT(X) on the fourth line and
PACK('HELLO') on the sixth line. The first nonprimitive lexical-expression,
%CHARCOUNT(X), occurs within a macro-body and, therefore, is processed
at macro-quote level; it is not expanded during macro definition, but is
treated simply as a single-lexeme sequence. The PACK('HELLO') lexical­
expression is a macro-call, and its expansion is:

U PL I T ('X,CHARCOUNT ('HELLO') , 'HELLO')

This expansion includes the nonprimitive lexical-expression
%CHARCOUNT('HELLO'). This is a lexical-function at normal-quote level
and its expansion is 5.

This section introduces the various kinds of lexical-expressions in BLISS and
thus prepares for detailed descriptions in the remaining sections of this chap­
ter.

15.3.1 Syntax

lexical-expression { primitive }
nonprimitive

/ ~

I delimiter
keyword I

primitive < name ">

numeric-literal I
I string -Ii teral ,)

/ " I lexical-function
lexical-condi tional

nonprimitive < macro-call >
I require-declaration
I Ii brary -declara tion ,

~

15-12 Lexical Functions

The primitive lexical-expressions are described in other parts of this manual;
specifically, the delimiters are listed in Section 2.2.1, the keywords are listed
in Appendix A, and the names, numeric-literals, and string-literals are de­
scribed in Chapter 4.

Under certain conditions, a name, by itself, is also a macro-call; in that case,
the name is nonprimitive.

15.3.2 Semantics

The fundamental lexical rule of BLISS is:

A given sequence of lexemes is a valid BLISS module if and only if the
expansion of nonprimitive lexical-expressions produces a sequence of lex­
emes that satisfies the definition of module given in Chapter 19.

This rule joins together the description of lexical-expressions given in this
chapter and the definition of a module given in Chapter 19. (That definition
of a module includes, by reference, most of the other chapters of this manual.)

The semantics of the various nonprimitive lexical-expressions are given in
later sections of this chapter.

A few remarks about numeric- and string-literals as lexical-expressions are
necessary. These remarks are presented here rather than in Chapter 4 because
they are closely related to the concepts of lexical processing.

15.3.2.1 Types of Numeric-Literals - The numeric-literals, as defined in
Section 4.~, can be classified as follows:

Full word Type:
Unsigned Decimal-Literal
Integer-Literal
Character-Code-Literal

Single-Precision-Float Type:
Single-Precision-Float-Literal

Double-Precision-Float Type:
Double-Precision-Float-Literal

Different numeric-literals of the same type can be used interchangeably, but
numeric-literals of different types cannot. For example, if a decimal-literal is
called for in the syntax, then an integer-literal can be used instead, but a
single-precision-float-literal cannot.

This rule about interchange.ability of numeric-literals does not say anything
new about BLISS, but draws together assertions that are made in several
different places in this manual.

Lexical Functions 15-13

15.3.2.2 Types of String-Literals - The string-literals, as described in Section
4.3, can be classified as follows:

Uncounted ASCII Type:
Quoted-String (without preceding string-type)
%ASCII String-Literal
%ASCIZ String-Literal

Counted ASCII Type:
%ASCIC String-Literal (BLISS-16/32 only)

Radix-50 Type:
%RAD50_II String-Literal (BLISS-16/32 only)
%RAD50_I0 String-Literal (BLISS-36 only)

Sixbit Type:
%SIXBIT String-Literal (BLISS-36 only)

Packed Decimal Type:
%P String-Literal (BLISS-16/32 only)

Different string-literals of the same type can be used interchangeably, but
string-literals of different types cannot. For example, if a quoted-string is
called for, then a %ASCII string-literal can be used but a %ASCIC string­
literal cannot.

BLISS permits this interchange of uncounted string-literals because each of
them represents a sequence of ASCII characters. (The 0 at the end of a
%ASCIZ literal is thought of as the ASCII character called "null", which has
code 0.)

The interchangeability of uncounted ASCII literals does make a slight addi­
tion to the language. Consider the definition of the %ASCIC string-literal
(BLISS-16/32 only) given in Section 4.3:

%ASCIC quoted-strins

Because of the interchangeability of uncounted ASCII literals, the quoted­
string can be replaced by an ASCIZ string-literal, and the result is:

%ASCIC %ASCIZ quoted-strins

Thus the following construct is a valid %ASCIC string-literal in BLISS-16 or
BLISS-32:

f.,ASC I C /',ASC I Z 'ABC'

This literal has a different interpretation than either %ASCIC'ABC' or
%ASCIZ'ABC'. It is encoded in five bytes. The first byte contains the number
of characters, 4, in the character sequence. The next three bytes contain the
ASCII codes for A, B, and C. The final byte contains 0, which is the ASCII
code for the null character.

Some further applications of interchangeability of uncounted ASCII literals
are:

f.,B 'X,ASCII'11011'
/"C 'X,ASCII'Q'
%ASCII %ASCIZ %ASCII'ABC'

15-14 Lexical Functions

15.3.2.3 Numeric- and String-Literals - Except for the decimal-literal and
quoted-string, the numeric- and string-literals are all composed of two lex­
emes. Each of those lexemes can be produced by nonprimitive lexical-expres­
sions. An example is the following program fragment:

MACRO
oCT(N) = %0 %STRING(N) %;

oCT(23)

When the macro-call OCT(23) is expanded, the result is:
'/,',0 '/,',STR I NG (23)

Then the %STRING lexical-function is evaluated and the result is:

/.,0 '23'

Thus the final value is 19 (decimal).

15.3.3 Discussion

Some nonprimitive lexical-expressions have an 'empty' expansion, that is,
they do not produce any lexemes. They are used for their side-effects in
controlling the compilation process. Two examples are the %UNQUOTE and
%WARN lexical-functions discussed previously.

Other nonprimitive lexical-expressions have non-empty expansions, as do
most of the lexical-expressions introduced so far. Almost all instances of this
"expanding" type of nonprimitive lexical-expression can, in principle, be re­
placed by an equivalent sequence of primitive lexical-expressions. Such 're­
placeable' lexical-expressions do not produce any results that (again, theoreti­
cally) could not be obtained without them. Their purpose is to facilitate both
conditional compilation and the writing of macros. Also, they often radically
reduce the effort required to achieve a given result, and can be used to en­
hance the clarity of a module.

It is useful to examine those few cases in which a nonprimitive lexical-expres­
sion cannot in any way be replaced by an equivalent primitive lexical-expres­
sion sequence. There are three such cases. Each of them is rather specialized,
and all of them involve lexical-functions. They are: internal-only character
sequences, excessively-long character sequences, and internal-only names.

An internal-only character sequence is a character sequence that is not com­
posed entirely of printing characters, blanks, and tabs. Such character
sequences can be represented by means of the %STRING and %CHAR lexi­
cal-functions, but cannot, according to Section 4.3, be represented by a
quoted -string.

As an example, consider the character sequence

A, carriage-return, line-feed, B

This sequence can be represented as follows:

%STRING('A' t'/,',CHAR(13) t/.,CHAR(10) t/B')

Lexical Functions 15-15

The lexical-functions %STRING and %CHAR are defined later, in Section
15.5.2. In this example, %CHAR(13) and %CHAR(10) represent the trouble­
some characters, and the %STRING function joins the four characters into a
single sequence. That sequence cannot be represented by a quoted-string
because a quoted-string cannot include a carriage-return or a line-feed. Thus
the uses of the %STRING and %CHAR functions are essential in this exam­
ple.

An excessively-long character sequence is one that contains more characters
than can be represented on one line by a quoted-string. Such a character
sequence can be represented on several lines by means of %STRING as fol­
lows:

%STRING('A line of many characters',
'Another line of characters')

Again, %STRING is essential in this example.

An internal-only name is a character sequence that must be used as a BLISS
name but that does not satisfy the syntax for a BLISS name. An example is
XYZ.A, which is a valid assembler name but not a valid BLISS name. In
BLISS, this name can be represented only as:

'X,NAME(')-(YZ.A')

The lexical-function %NAME is defined later, in Section 15.5.4.

15.3.4 Pragmatics

The description of the lexical-processing stage of the compiler given in this
chapter is correct with respect to the results of compilation, but does not
reflect techniques that make the compiler itself more efficient. One such
technique involves the use of internal encoding of lexemes, and another the
use of multiple input streams for the expansion of lexical-expressions.

The latter technique merits some discussion, since it pertains to the scanning
of lexemes. The compiler does not, in fact, maintain a single input stream into
which the expansion of every lexical-expression is inserted. Instead, the com­
piler maintains several input streams. The principal input stream is, of
course, the file for the module that is being compiled. However, a new input
stream is introduced each time an expansion occurs. For example, after a
macro-call has been processed, the corresponding macro-body becomes a new
input stream. Even the replacement of a formal-name in a macro-body by the
associated macro actual-parameter is done by treating the actual-parameter
as a new input stream.

When a new input stream is introduced, input from the old input stream is
suspended. Lexemes are taken from the new input stream until it terminates.
This new stream can itself contain lexical-expressions whose expansion may
introduce further new streams. When the end of an input stream is reached,

15-16 Lexical Functions

the previous input stream is restored. Thus the input streams are nested, and
the initial input stream (the module .file) is always the final input stream.

15.4 Lexical-Functions in General

A lexical-function is processed by the compiler. The result is a sequence of
lexemes that is the expansion of the lexical-function. The expansion then
becomes input to the compiler and is processed in its turn.

It is important to distinguish between the evaluation of a computational
expression and the expansion of a lexical-function. A computational expres­
sion yields a value, and that value can be used in the evaluation of other
expressions. In contrast, a lexical-fu-nction yields a sequence of lexemes, and
that sequence can be used as input to the compiler.

It is also useful to distinguish between lexical-functions and macro-calls. Both
return a sequence of lexemes, but a lexical-function invokes an operation that
is built into BLISS, whereas a macro-call invokes an operation that must be
defined in a macro-declaration. Thus lexical-functions and macro-calls are
related in the same way that executable-functions and routine-calls are re­
lated.

Certain parameters of lexical-functions can be expressions, but every such
expression must be a compile-time-constant-expression. This restriction re­
flects the fact that all lexical-functions must be fully processed during" compi­
lation.

Each lexical-function begins with a keyword that, in turn, begins with a
percent character; for example, %STRING and %CHAR.

A few examples of lexical-functions follow:

Lexical-Function Expansion

'lSTR I NG ('A' , 'B' , 'C') 'ABC'
·X.STRING('H' ,2LJ) 'X24'
'lCHARCOUNT('ABC') 3
·X.NUMBER ('- 00082') -62 (coded internally as one lexeme)

These are simple examples: the expansion of each of these lexical-functions is
a single lexeme.

Some lexical-functions can return a sequence that is more than one lexeme in
length. A simple example is:

Lexical-Function Expansion

'lE}{PLOOE ('ABC') 'A','B','C'

In this case, the expansion consists of five lexemes (three quoted-strings and
two commas).

Lexical Functions 15-17

Some lexical-functions are replaced by nothing (that is, an empty sequence of
lexemes). For example,

Y = .A+'X,PRINT('CHECK POINT 20')FO{);

produces the same object code as

Y = • A+F OC) ;

However, the first version causes the informational message 'CHECK POINT
20' to be included in the output listing of the compiler.

Lexical functions can be nested. An example is:

'J"STR I NG ('A' ,'J"CHARCOUNT (')<'1'2') , 'B ')

Expansion of the %STRING function begins with expansion of the nested
function, %CHARCOUNT giving:

'X,STRING ('A' ,3, 'B')

then the %STRING function itself is expanded, giving:

'A3fj'

This quoted-string is the final expansion of the nested lexical functions.

This section gives the general definition of lexical functions, without defining
any particular function. Specific definitions are given in the next section.

15.4.1 Syntax

lexical-function lexical-function -name

{ (Iexical-actual-parameter , ...) } lexeme
nothing

lexical-
function -name %name

lexical-actual-
parameter { lexeme ... }

nothing

15.4.2 Restrictions

A lexical-function must conform syntactically to one of the specific lexical­
function definitions given in the next section, Section 15.5. For example, the
%DECLARED function requires just one parenthesized parameter, and that
parameter must be a single lexeme, specifically a name.

15-18 Lexical Functions

Each lexical-function-name is a reserved keyword. It must not be declared
and cannot be used for any other purpose.

15.4.3 Semantics

The processing of a lexical-function is performed as part of the compilation of
a module. Processing begins when the compiler calls for the next lexeme of the
input stream and that lexeme is recognized as a lexical-function-name. Pro­
cessing continues until the last lexeme of a valid lexical-function has been
processed. When processing is complete, the lexical-function is replaced by a
sequence of lexemes that is its expansion.

The processing of a lexical-function can be prevented by placing %QUOTE in
front of it.

When processing of a lexical-function is complete and the lexical-function has
been replaced by its expansion, the compiler takes its next lexeme from the
beginning of the expansion. If the expansion is the empty sequence, the com­
piler takes its next lexeme from the stream that follows the lexical-function.

Most lexical-functions require a parenthesized list of actual-parameters. That
parameter list can, itself, contain lexical-functions or macro-calls; it is no
different in that respect than other portions of a BLISS module.

Each actual-parameter of a lexical-function is processed at either name-quote
level or normal-quote level. For example, the first two actual-parameters of
the %EXACTSTRING function are at normal-quote level, while the remain­
ing actual-parameters are at name-quote level. In the individual definitions in
Section 15.5, this distinction is indicated by placing a # character before each
parameter that is processed at name-quote level.

Once the actual-parameters have been processed, they must satisfy certain
restrictions. The definition of each lexical-function gives restrictions that ap­
ply to its parameters. But one restriction applies to all lexical-functions: when
a parameter can be an expression, it must be a compile-time-constant-expres­
sion. This restriction is necessary because lexical-functionS' are always ex­
panded during compilation.

A few lexical-functions cause the compiler to skip over a lexeme sequence that
could otherwise be compiled. For example, %ERRORMACRO will, under
certain circumstances, abort every macro-call expansion that is in progress.
However, such lexical-functions never cause a portion of the unparsed input
stream to be skipped; instead, they discard secondary sources of lexemes
(macro-bodies) and proceed as if each of those macro-bodies had ended. Such
lexical-functions are defined in Section 15.5.11 (%ERRORMACRO) and Sec­
tion 15.5.14 (%EXITITERATION and %EXITMACRO).

Lexical Functions 15-19

15.5 Specific Lexical-Functions

For purposes of this presentation, the lexical-functions are grouped as follows:

String-Functions

Delimiter-Functions
Name-Function
Sequence-Test-Functions
Expression -Test-Functions
Bits-Functions
Allocation -Functions
Fieldexpand -Function
Calculation -Functions
Compiler-State-Functions

Ad visory -Functions

Title-Functions
Quote-Functions
Macro-Functions

Require-Function

%STRING, %EXACTSTRING, %CHAR,
%CHARCOUNT
%EXPLODE,%REMOVE
%NAME
%NULL, %IDENTICAL
%ISSTRING, %CTCE, %LTCE
%NBITSU, %NBITS
%ALLOCATION, %SIZE
%FIELDEXPAND
%ASSIGN, %NUMBER
%DECLARED, %SWITCHES, %BLISS,
%VARIANT
%ERROR, %WARN, %INFORM,
%PRINT, %MESSAGE, %ERRORMACRO
%TITLE, %SBTTL
%QUOTE,%UNQUOTE,%EXPAND
%REMAINING, %LENGTH, %COUNT,
%EXITITERATION, %EXITMACRO
%REQUIRE

A description of these lexical-functions follows. The description begins with a
brief discussion of quotation within lexical-functions. Then each class of lexi­
cal functions is described in its own section. Finally, all the lexical-functions
are summarized in a single table.

15.5.1 Quote Levels for Lexical-Actual-Parameters

If a lexical-function appears in a context that is at macro-quote level, then the
lexical-function is not expanded and its parameters are processed at macro­
quote level. Otherwise, each parameter is processed at a quote level that is
specified in the definition of the lexical-function.

In the definitions of lexical-functions that follow, a # character sometimes
appears before a parameter; in that case, the parameter is processed at name­
quote level and is called a "name-quote parameter". Otherwise, the parame­
ter is processed at normal-quote level.

For example, the definition of %EXACTSTRING in Section 15.5.2 begins
with

%EXACTSTRING(n , fill, #P , ...)

15-20 Lexical Functions

Therefore, the first two paranleters of (; EXACTS'1TUl\IG are processed at
normal-quote level and the remaining parameters are processed at nalne­
quote level.

Note that the character # is part of the definition of BLISS; it never actually
appears before a parameter in a pro{.;ram.

15.5.2 String-Functions

The string-functions operate on or produce quoted-string lexemes. They are
important because they facilitate the compile-time manipulation of quoted­
strings, and provide a useful basis for the definition of new macros by the
programmer. The string-functions als6 support the run-time functions for
character handling that are described in Chapter 20.

Most of these functions convert a given sequence of lexemes into a different
but essentially equivalent sequence of lexemes. The ('(STRING function con­
verts a sequence of lexemes into a single quoted-string lexeme. The c;EX­
ACTSTRING function is like C(STRING except that it adjusts the resulting
quoted-string to a specified length. The c(CHAR function takes a sequence of
numeric values and converts it into a quoted-string lexeme.

The only string-function that does not perform a lexical conversion (as infor­
mally defined in the preceding paragraph) is ccCHARCOUNT. This function
forms a quoted-string and then yields a numeric-literal equal to the number of
quoted-characters in the string.

The ccSTRING function plays a leading role among the lexical-functions be­
cause several lexical-functions are based on it. It accepts parameters that are
each a quoted-string, numeric-literal, name, or elnpty sequence, and it puts
these parameters together into a single quoted-string lexelne. Examples are.

Function

'X,STRING('ABC', '0')

'X,STRING(23,'X,B'-111')

/.,STRING(ALPHA" ,9)

Expansion

'ABCD'
'23-7'
'ALPHA9'

The following lexical functions are all based on the C(STRING function:

String-Functions
Delimi ter-Function
N ame-Function
Advisory-Functions

Require-Function

(;(:EXACTSTRING, c(CHARCOUNT
(;'c:EXPLODE
((,NAME
c;(ERROR, crW ARN, C(INFORM, ('(PRINT,
(rMESSAG E, Ci: ERRORl\IIACRO
(jrREQUIRE

Each of these lexical-functions begins by using the c':,STRING function to
gather its parameters into a single quoted-string. Then the function performs
an action on the quoted-string that is different for each function.

Lexical Functions 15-21

I

15-22

15.5.2.1 Definition - The string-functions are expanded as follows:

~:rSTRING(#p , ...)

Restriction. Each parameter must be one of the following:

Fullword numeric-literal, that is:
unsigned decimal-literal
integer-literal
character-code-literal

ASCII string-literal, that is:
quoted-string
ScASCII string-literal
%ASCIZ string-literal
SoASCIC string-literal

Identifier except for reserved keyword
Empty sequence

Expansion. Modify each parameter, depending on what kind of lexeme it
is, as follows:

• If the parameter is a quoted-string, then remove the initial and final
quote characters.

• If the parameter is a string-literal with a string-type, then process the
string-type (Section 4.3), adding a leading or trailing character position
as required, and remove the initial and final quote characters.

• If the parameter is a numeric-literal, then represent its value as a
standard numeric-literal. A standard numeric-literal represents a posi­
tive value as a sequence of decimal digits that does not begin with 0,
and represents a negative value as a minus sign followed by a sequence
of digits that does not begin with 0.

• If the parameter is a name, change any lower-case letters to upper­
case.

• If the parameter is an empty sequence, leave it as is.

Concatenate the modified parameters in the order given to form a single
character sequence. Place the sequence in quotes, forming a quoted­
string. Return the quoted-string.

%EXACTSTRING(n , fill , #P , ...)
%EXACTSTRING(n , fill)

Restrictions. The parameter n must be a compile-time-constant-expres­
sion, and its value must satisfy implementation restrictions, given else­
where, on the length of a character sequence.

The parameter fill must be a compile-time-constant-expression, and its
value must be in the range ° through 255. (Use of a simple string-literal

Lexical Functions April 1983

April 1983

to represent a fill character is strongly discouraged since it will produce
differing results in different dialects; see Section 3.3. Use of the charac­
ter-code-literal- (/()C'character' - however, is fully transportable.)

Each of the remaining parameters must satisfy the restrictions on
~:i,STRING parameters.

Expansion. Evaluate the first two parameters. Then proceed as for the
(,"cSTRING function, obtaining a single quoted-string from the third
through last actual-parameters. If the function has only two parameters,
form the empty quoted string, ".

Modify the resulting quoted-string as follows:

• If the quoted-string represents n characters, leave it unchanged.

• If the quoted-string represents more than n characters, remove quoted­
characters from the right end until it represents n characters.

• If the quoted-string represents less than n characters, add quoted­
characters at the right end until it represents n characters. Use the
character whose ASCII code is given by the value of fill.

Return the resulting quoted-string.

Sc,CHAR(code ,...)

Restrictions. Each parameter must be a compile-time-constant-expres­
sion. The value of each parameter must be in the range 0 through 255. I
Expansion. Evaluate each parameter and interpret its value as the code
for an ASCII character. Concatenate the resulting characters to form a
single character sequence. Return the quoted-string that represents that
character sequence.

C;'oCHARCOUNT(#p , ...)

Restriction. The parameters must satisfy the restrictions on %STRING
parameters.

Expansion. Proceed as for the %STRING function, obtaining a single
quoted-string. Determine the number of quoted-characters (see Section
4.3.1) in the quoted-string. Represent this number as a numeric-literal.
Return the numeric-literal.

The result of a %STRING, %EXACTSTRING, or %CHAR function is a
quoted-string, However, unlike the quoted-strings written by BLISS pro­
grammers, this quoted-string is not restricted to printing characters, blanks,
and tabs; instead, it can represent any sequence of ASCII characters. This
quoted-string is processed by the compiler as if it were an ordinary quoted­
string.

Lexical Functions 15-23

15.5.2.2 Examples - The examples that follow are designed to illustrate the
definition of the various string-functions, not to show how they should be
used. Thus they are simple and, in some cases, unrealistic.

Examples of the (:nSTRING function are:

Function

'X.STRING('ABC')

·X.STRING('ABC' ,'0')

·X.STRING(·X.C'A')

·X.STRING('ABC' ,·X.C'A')

·X.STR I NG (23)

·X.STR I NG (00023)

'X.STR I NG ('00023 ')

'X.STR I NG (20+3)

'X.STRING('20+3')

%STRING(%B'-1111 ')

'X.STR I NG ('1.'.0' 77 ' ,'1.'.)< '77')

%STRING(%E'1.125E-02')

%STRING(beta,'beta')

·X.STRING(,)<, ,Y)

%STRING(OWN,MODULE)

'X.STRING('OWN' ,'MODULE')

·X.STRING(Q d8)

%STRING(Q,%DECIMAL'-18')

'X.STRING(Q ,-18)

Expansion

'ABC'
'ABCD'
'65'
'ABC65'

'23'
'23'
'00023'
(INVALID: Operator not allowed)
'20+3'

'-15'
'63119'
(INVALID: Float-literal not allowed)

'BETAbeta'
'XY'
(INVALID: Reserved-keywords not
allowed)
'OWNMODULE'

'Q18'
'Q-18'
(INVALID: Leading sign not allowed)

It is assumed in these examples that beta, X, Y, and Q are not macro-names.
As 9fSTRING parameters, non-macro names are treated literally (except for
possible case conversion), whereas a macro-name is expanded.

In most programming situations~ at least some of the parameters of the
(loSTRING function (or any other lexical-function) are variable. Consider, for
example:

'X.STRING(U, '=' ,I,J()< ,Y»

Assume that U and V are declared as macros. The %STRING function will
put the expansions of the two macros into a single quoted-string separated by
an '=' sign. If the expansions of U and V are 'ALPHA' and 'X+ Y', respec­
tively, then the final expansion of the %STRING function is the quoted-string
'ALPHA=X + Y'.

15-24 Lexical Functions

Examples of the %EXACTSTRING function are:

Function Expansion

'ABCXXX'
'ABC'
'AB'
"

·X.E}<ACTSTR I NG (8 t ·X.C '}-(, t 'ABC')

i..EHACTSTR I NG (3 t i..C '}-(, t 'ABC')

%EHACTSTRING(Zt%C'X't'ABC')

%E}-(ACTSTR I NG (0 t%C'}-(' t 'ABC')

i..E}<ACTSTR I NG (- Z t %C '}(, t 'ABC') (INVALID: Negative count)

%EHACTSTRING(a,%C'-')

i..E}<ACTSTR I NG (8 t i..C '* ' t 38 t ' - 8 ') '38-6**'

%E}<ACTSTR I NG (a t'X.C 'Y , t i..C '}< ') '88YY'
i..E}(ACTSTR I NG (a t 'Y , t '}< ') 'X' in BLISS-36 only!
'X,E}<ACTSTR I NG (a t 'Y , t '}-(,) 'XYYY' in BLISS-16/32 only!
i..E}<ACTSTR I NG (a t i..C 'Y , t '}-(,) 'XYYY' in all dialects
i..E}<ACTSTR I NG (a t89 t 'X') 'XYYY'

Examples of the %CHAR function follow. They are assumed to lie in the scope
of these declarations:

LITERAL
ACODE = 85t
BCODE = 88t
APOSTROPHE 39t
CR = 13 t

LF = 10;

The exam pIes are:

Function Expansion

i..CHAR (85 t 88) 'AB'
·X.CHAR (ACODE tBCODE) 'AB'
%CHAR(ACODE+3Z) 'a'
'X.CHAR (ACODE t A POSTRO PHE t BCODE) 'A"B' (3 characters)
'X,CHAR (CR tLF) (new line)

Examples of the %CHARCOUNT function are:

Function Expansion

%CHARCOUNT('ABC') 3
i..CHARCOUNT (t t ' , t) 0
%CHARCOUNT('A"C') 3

15.5.3 Delimiter-Functions

The delimiter-functions insert or delete delimiters within a given string.

Lexical Functions 15-25

The %EXPLODE function forms a quoted-string and then "explodes" it into
a list of single-character quoted-strings. It can be used to take a given string
apart. The %REMOVE function deletes parentheses, brackets, or angle
brackets that enclose a given actual-parameter.

15.5.3.1 Definition - The delimiter-functions are expanded as follows:

%EXPLODE(#p , ...)

Restriction. Each parameter must satisfy the restriction on %STRING
parameters.

Expansion. Proceed as for the %STRING function, obtaining a single
quoted -string.

Remove the quotes from the ends of the resulting quoted-string, place
each quoted-character in its own pair of quotes, and insert a comma
between each quoted-string and the next.

Return the resulting sequence of quoted-strings and commas.

%REMOVE(#p)

Expansion. If the parameter begins and ends with a matched pair of
parentheses, (. ..), brackets, [...], or angle brackets, < ... >, then remove
these lexemes from the parameter. Otherwise, leave the parameter un­
changed.

Return the resulting sequence of lexemes.

The result of a %EXPLODE function is a sequence of one or more one­
character quoted-strings. As with the %STRING, %EXACTSTRING, and
%CHAR lexical-functions, these quoted-strings can represent any ASCII char­
acters.

15.5.3.2 Examples - Examples of the %EXPLODE function are:

Function

/.,E)-(PLODE ('ABC')

/.,E)-(PLODE ('A ')

'l"E)-(PLODE ()

'l"E)-(PLODE ('A' ,'B')

/.,E)-(PLODE ('1.,0' 77')

'l"E)-(PLODE('A' ,'1.,0'-77')

Expansion

'A','B','C'
'A'
"
'A','B'
'6','3'
'A','-','6','3'

The following example is especially interesting:
'l"STR I NG ('l"E)-(PLODE ('ABC'))

15-26 Lexical Functions

(5 lexemes)
(1 lexeme)
(llexeme)
(3 lexemes)
(3 lexemes)
(7 lexemes)

April 1983

In this example, %STRING acts as the inverse of %EXPLODE, and the final
expansion of the nested functions is just 'ABC'.

Examples of the %REMOVE function follow.

Function

/.,REMOI.'E ((A tB tC))

/.,REMOI.lE (<: A+ 1 :>)

%REMOVE([R(A+1)])

'/:,REMOI.'E ((A+B))

'/:,REMOI.'E ((A) + (B))

Expansion·

A,B,C
A+l
R(A+l)
A+B
(A)+(B)

This function is usually applied to macro-formal-names. A simple example of
this application is:

MACRO
A(X) = RRR(%REMOVE(X))+1 %;

A (1) ;

A«1,2,3»;

The extra parentheses in the second macro-call are required to keep its pa­
rameter from being treated as three parameters. The %REMOVE function
deletes the extra parentheses, and the two macro-calls expand to:

RRR(1)+1;
RRR(1,2t3)+1;

Assuming that RRR is a conditional or iterative macro (as defined in Section
16.3) and thus accepts a parameter list of variable length, this is a useful
result.

15.5.4 Name-Functions

Sometimes it is necessary to put together a name during program compila­
tion. This need arises either because the name cannot be written (conven­
iently) in advance or because it is a sequence of characters that would not
normally be accepted as a name.

15.5.4.1 Definition - The name-functions are expanded as follows:

%NAME(#p , ...)
%QUOTENAME (#p , ...)

Restriction. Each parameter must satisfy the restriction on %STRING
parameters.

Expansion. Proceed as for the %STRING function, obtaining a single
quoted -string.

Treat the sequence of quoted-characters in the quoted-string as a name.
Return the resulting name.

Lexical Functions 15-27

I

I

I

I

I

15-28

The result of a %NAME and %QUOTENAME lexical-function is a name.
Unlike the names written by BLISS programmers, this name is not restricted
to the syntax for a BLISS name; instead, it can be any sequence of ASCII
characters. It is accepted by the compiler as a name.

The SOQUOTENAME lexical-function is similar to the %NAME function, the
exception being that the resultant name is implicitly %QUOTED to prevent
macro-expansion of the name.

15.5.4.2 Examples - The %NAME function permits the fornlation of a name
out of parts that are compile-time variables. An example is:

MACRO
BLOCKOP(A) =

OWN A: BLOCK[10];
ROUTINE 'X,NAME(A ,"_INIT'): NOl'!ALUE

BEGIN

END;
'X, ;

Suppose this macro is called as follows:

f3LOCKOP (BETA)

The expansion is:

OWN BETA: BLOCK[10];
ROUTINE BETA_INIT: NO VALUE

BEGIN

END;

The macro BLOCKOP uses the given name, BETA, for an OWN data seg­
ment. It uses %NAME to generate a related but distinct name, BETA-INIT,
for the routine that initializes BETA.

The %NAME function also can be used to force the compiler to accept any
character sequence as a name. That can be useful when something entirely
new is needed. An example is:

/',NAME ('+302 I)

Each time this construct appears, it is equivalent to writing just +302 and
having those four characters accepted by the compiler as a valid name.

The %NAME function should not be used casually. Sometimes its use can
cause an unexpected conflict with names generated by the compiler. For
example, one compiler uses names like P.AAA, P.AAB, and so on, for plit
storage. Furthermore, some operating systems restrict global names to the
characters that are in the RAD50 character set; in that situation,
%NAME(+302) would be invalid as a global name.

The %NAME function cannot be used to produce the "name" of a macro that
is already declared; it will, however, always produce the macro expansion and
may be used to invoke and expand a legitimately produced macro, as follows:

MACRO 'X,NAME (I A. 5 I) = OWN >{; /" ;
/',NAME('A.5') !expands to "OWN }-{;"

Lexical Functions April 1983

April 1983

There are also cases in which Ci NAME is essential. For example. the period I
character is used for global nanles in SOlne software. Since period cannot 1)(>
used in an ordinary BLISS name, ('i NAME nlust be used to form such a
global name.

As an example of the use of the ~'(QUOTENAME function. consider the
following:

MACRO FOOBAR = •)<'1'2 * 5 'X,;'

UNOECLARE 'X,NAME (I FOO I , I BAR ') ;

This would produce an error, because the compiler would interpret the UN­
DECLARE declaration as:

UNDECLARE .XY2 * 5

Moreover, inserting a ScQUOTE before the Ci NAME would again result in an
incorrect compiler interpretation of:

UNDECLARE 'X,QUOTE /',NAME (I FOD I , I BAR ')

However, using the %QUOTENAME function as follows:

UNDECLARE /',QUOTENAME (I FOO t I BAR ')

results in a correct expansion to the following equivalent:

UNDECLARE %QUOTE FOOBAR;

Lexical Functions 15-28.1

15.5.5 Sequence-Test-Functions

A sequence-test-function expands to 1 or 0, depending on whether or not a
certain condition is met. Since a test-function is expanded during compila­
tion, it can be used within other lexical constructs. In particular, a sequence­
test-function can be used as a compile-time-test in a lexical-conditional, as
described in Section 15.6.

The two test-functions, %NULL and %IDENTICAL, are applied to lexeme
sequences. The %NULL function determines whether a sequence is empty;
that is, contains nothing. The %IDENTICAL function compares two
sequences to determine if they contain the same lexemes in the same order.

15.5.5.1 Definition - The sequence-test-functions are expanded as follows:

%NULL(#seq ,...)

Expansion. Process the actual-parameters as for an ordinary macro-call,
as defined in Section 16.3.3.1. Return the numeric-literal 1 or 0, depend­
ing on whether or not all the parameters expand to the empty sequence.

%IDENTICAL(#seq1 , #seq2)

Expansion. Process the actual-parameters, seq1 and seq2, as for an ordi­
nary macro-call, as defined in Section 16.3.3.1. Return the numeric-lit­
eral 1 or 0, depending on whether or not the two resulting lexeme
sequences are the same.

When two identifiers are compared, all letters are considered to be upper­
case, so that case is effectively ignored. When two numeric-literals are
compared, the numeric values of the numeric-literals are compared
rather than the numeric-literals themselves.

15.5.5.2 Examples - Examples of the %NULL and %IDENTICAL functions
are:

Function Expansion

I.,NULL () 1
'X,NULL(tt) 1
%NULL(%EXACTSTRING(OtOt'ABC'» °
I.,NULL (tAL PHA) °
%IDENTICAL(A+BtA+B) 1
'X,IDENTICAL(t> 1
I., I DENT I CAL (3 t 'X,CHARCOUNT ('ABC')) 1
'X,IDENTICAL('X,O'77' tG3) 1
%IDENTICAL(ALPHAtalpha) 1
'X,IDENTICAL('ALPHA' t'alpha') °
%IDENTICAL(A+BtA+C) °
%IDENTICAL(32t'32') °

Lexical Functions 15-29

The third example of %NULL is interesting, since it might be thought that a
character sequence of length 0 would be a lexical sequence of length O. How­
ever, the value of

%EXACTSTRINGCOtOt'ABC')

is the string-literal that represents the empty character sequence, ", and that
string-literal constitutes one lexeme.

15.5.6 Expression-Test-Functions

An expression-test-function expands to 1 or 0, depending on whether or not
each of its parameters constitute a particular form of expression. Since a test­
function is expanded during compilation, it can be used within other lexical
constructs. In particular, an expression-test-function can be used as a com­
pile-time-test in a lexical-conditional, as described in Section 15.6.

The functions %ISSTRING, %CTCE, and %LTCE are applied to expressions.
The %ISSTRING function determines whether or not each of its parameters is
a string-literal. The %CTCE function determines whether or not each of its
parameters is a compile-time-constant-expression. The %LTCE function de­
termines whether or not each of its parameters is a link-time-constant-expres­
SlOn.

15.5.6.1 Definition - The expression-test-functions are expanded as follows:

%ISSTRING(exp , ...)

Restriction. Each parameter must be a valid expression.

Expansion. Process each parameter, expanding all macro-calls and lexi­
cal-functions. Return the numeric-literal 1 if each of the resulting expres­
sions is a quoted-string; return the numeric-literal 0 if any of the result­
ing expressions is not a quoted-string.

%CTCE(exp , ...)

Restriction. Each parameter must be a valid expression.

Expansion. Process each parameter, expanding all macro-calls and lexi­
cal-functions. Return the numeric-literal 1 if each of the resulting expres­
sions is a compile-time-constant-expression; return the numeric-literal 0
if any of the resulting expressions is not a compile-time-constant-expres­
SlOn.

%LTCE(exp , ...)

Restriction. Each parameter must be a valid expression.

Expansion. Process each parameter, expanding all macro-calls and lexi­
cal-functions. Return the numeric-literal 1 if each of the resulting expres­
sions is a link-time-constant-expression; return the numeric-literal 0 if
any of the resulting expressions is not a link-time-constant-expression.

15-30 Lexical Functions

15.5.6.2 Examples - Examples of the expression-test-functions are:

Function
%ISSTRING('ALPHA' t 'BETA' t 'GAMMA')

/.,ISSTRING ('ALPHA' t 'BETA' tGAMMA)

%ISSTRING(%ASCIC 'ALPHA')

'X, I SSTR I NG (/.,RADSO_11 'AB + 99' t'X,P' 372')

%ISSTRING(GET_STRING_RTN(BUF+I»

'X, I SSTR I NG (/.,CHARCDUNT ('GAMMA'))

%ISSTRING(%STRING(%ASCIC'BETA'»

'X, I SSTR I NG ('ABCDEFGH I J ')

/.,ISSTRING(PLIT('ABCDEFGHIJ'»

(Context for the following examples:

/.,CTCE

'X,CTCE

/.,CTCE

/.,CTCE

'X,L TCE

'X,L TCE

'X,L TCE

/.,L TCE

/.,L TCE

15.5.7

OWN X: REF VECTOR,

Y: 1.IECTOR[iO];

EXTERNAL LITERAL A;

LITERAL V = 100;)

(){ , Y)

(A)

(In

(A,ln

O(,Y)

(){+A)

0([0])

(Y [9])

(In

Bits-Functions

Expansion
1
o
1 <= 16/32 Only
1 <= 16/32 Only

o
o
1

1
o

0
0
1
0

1
1
0
1

1

A bits-function determines the smallest number of bits required for the BLISS
encoding of a given value. The %NBITSU function determines the number of
bits required for an unsigned encoding, and the %NBITS function does the
same for a signed encoding.

15.5.7.1 Definition - The bits-functions are expanded as follows:

%NBITSU(n , ...)

Restriction. Each parameter must be a compile-time-constant-expres­
sion.

Expansion. This function calculates a bit count for each of its parame­
ters. The bit count is the smallest number of bits required to represent

Lexical Functions 15-31

the parameter as an unsigned binary integer. The following algorithm is
used:

• If the function has just one parameter, evaluate that parameter.

- If the value of the parameter is negative, then the desired bit count
is %BPVAL (which, in BLISS-32 for example, is 32).

- Otherwise, the desired bit count is the smallest integer, i, that satis­
fies the following relation:

o ::; vp ~ (2**i)-1

where vp is the value of the given parameter, and 2**i means "2 to
the i'th power".

• If the given %NBITSU function has several parameters, then the de­
sired bit count is the value of the following expression:

MAX(%NBITSU(n1), %NBITSU(n2), ...)

where n1, n2, and so on, are the given parameters.

Represent the bit count thus obtained as a numeric-literal. Return the
numeric-literal.

%NBITS(n , ...)

Restriction. Each parameter Inust be a compile-time-constant-expres­
SIon.

Expansion. This function calculates a bit count for each of its parame­
ters. The bit count is the smallest number of bits required to represent
the parameter as a signed (two's complement) binary integer. The follow­
ing algorithm is used:

• If the function has just one parameter, evaluate that parameter. The
desired bit count is the smallest integer, i, that satisfies the following
relation:

- (2 * * (i - 1)) ~ vp ~ (2 * * (i -1))-1

where vp is the value of the given parameter and 2**(i-1) means "2 to
the (i-1)'th power".

• If the given %NBITS function has several parameters, then the desired
bit count is the value of the following expression:

MAX(%NBITS(n1), %NBITS(n2), ...)

where n1, n2, and so on, are the given parameters.

Represent the bit count thus obtained as a numeric-literal. Return the
numeric-literal.

15-32 Lexical Functions

15.5.7.2 Examples - Examples of the %NBITSU and %NBITS functions
are:

Parameter List

-8
-1

° 1
2

255

1,7
-8,7
0,1,255,2,3

Expansion of
%NBITSU

%BPVAL
%BPVAL

° 1
2
8

3
%BPVAL
8

15.5.8 Allocation-Functions

Expansion of
%NBITS

4
1
1
2
3
9

4
4
9

An allocation-function determines the amount of storage required for a given
kind of data. Allocation-functions are useful in laying out storage and calcu­
lating address offsets.

The %ALLOCATION function determines how many addressible units have
been allocated for a given data name. The %SIZE function determines how
many addressible units would be allocated for a given structure-attribute if
that attribute were used in a data declaration.

15.5.8.1 Definition - The allocation-functions are expanded as follows:

%ALLOCATION(name)

Restriction. The parameter must be a name that is declared as one of the
following:

OWN
GLOBAL
FORWARD
LOCAL
STACKLOCAL
REGISTER
GLOBAL REGISTER
EXTERNAL REGISTER

Expansion. Determine the number of addressible units allocated in the
data segment for the given name. Represent the number just obtained as
a numeric-literal. Return the numeric-literal.

%SIZE(structure-attribute)

Restriction. The parameter must be a structure-attribute, as described in
Chapter 11.

Lexical Functions 15-33

Expansion. Determine the number of addressible units that would be
allocated for a data structure if the given structure-attribute appeared in
a data-declaration at this point in the program. (A full description of
structure-attributes is given in Section 11.4.) Represent the number just
obtained as a numeric-literal. Return the numeric-literal.

15.5.8.2 Examples - The examples that follow are assumed to lie in the
scope of these declarations:

GLOBAL
\I
1\ ,

Y: BYTE, (= BLISS-1S/32 only
Z: 1.IECTOR[10J ;

STRUCTURE
ARRAY[I tJ iM ,NJ

[M*N*LlJ
(ARRAY+(I*N+J)*LI);

Examples of the %ALLOCATION and %SIZE functions are:

Function Expansion

I.,ALLOCAT I ON ()<) %UPVAL (for example, 1
BLISS-36)

I.,ALLOCAT I ON (Y) 1 (in BLIS S-16/32 only)
I.,ALLOCAT I ON (Z) %UPVAL*10 (for example, 40

BLISS-16))

%SIZE(VECTOR[10J) %UPVAL*10 (for example, 20
BLISS-16)

%SIZE(VECTOR[10,WOROJ) 20 (in BLIS S-16/32 only)
%SIZE(REF VECTOR) %UPVAL (for example, 1

BLISS-36)
%SIZE(ARRAY[3,3]) %UPVAL*9 (for example, 36

BLISS-32)

15.5.9 Fieldexpand-Function

In

In

In

In

In

The fieldexpand-function plays a specialized role in the declaration of data­
structures. The function is used in conjunction with field-names, which are
described in Chapter 11.

The %FIELDEXPAND function replaces a given field-name with its associ­
ated list of field-components. When an additional parameter is given, that
parameter selects one of the field-components.

15.5.9.1 Definition - The field-functions are defined as follows:

%FIELDEXPAND(field)
%FIELDEXPAND(field, n)

Restrictions. The first parameter must be a field-name declared in a
field-declaration.

15-34 Lexical Functions

The second parameter, if present, must be a compile-time-constant-ex­
pression, and its value, v, must lie in the range ° through k-1, where k is
the number of field-components associated with field.

Expansion. Determine the list of field-components associated with the
given field-name (see Chapter 11).

Represent each field-component as a standard numeric-literal (see the
definition of %STRING); use a comma to separate each field-component
in the list from the next.

If a second parameter is not given, return the entire list of field-compo­
nents. Otherwise, return the v-th field-component, where v is the value of
the second parameter.

15.5.9.2 Examples - The examples that follow are assumed to lie in the
scope of this declaration:

FIELD
DCB_FIELDS ::

SET
DCB_A
DCB_B
DCB_C
DCB_D
DCB_E
TES;

[0,0,0 ,OJ,
[0,8,3,OJ,
[Otl1,5tlJ,
[OdGdGtlJ,
[1 ,0 ,'X,BPI.JAL ,OJ

(This declaration is taken from Chapter 12, where field-declarations are de­
scribed and illustrated.)

Examples of the %FIELDEXPAND function are:

Function

%FIELDEXPAND(DCB_A)
%FIELDEXPAND(DCB_C)
%FIELDEXPAND(DCB_C,O)
%FIELDEXPAND(DCB_C,3)

Expansion

0,0,0,0
0,11,5,1

° 1

(7 lexemes)
(7 lexemes)
(1 lexeme)
(1 lexeme)

A field-name in a structure-reference is expanded without application of the
%FIELDEXPAND function. Elsewhere, the %FIELDEXPAND function is
necessary to force expansion.

15.5.10 Calculation-Functions

The calculation-functions provide a compile-time facility for calculating a
value, saving it, and using it later in the compilation.

The %ASSIGN function assigns a value during program compilation. The
value is obtained from a compile-time-constant-expression and is assigned to
a COMPILETIME name. The %NUMBER function produces a numeric­
literal from another numeric-literal, a quoted-string, or a name. When the
%NUMBER function is applied to a name, the name must be a COMPILE­
TIME, LITERAL, or GLOBAL LITERAL name.

Lexical Functions 15-35

15.5.10.1 Definition - The calculation-functions are expanded as follows:

%ASSIGN(#name , n)

Restrictions. The first parameter must be a name that is declared COM­
PILETIME.

The second parameter must be a compile-time-constant-expression.

Expansion. Evaluate the second parameter and associate the resulting
value with the first parameter. Return the empty sequence.

%NUMBER(p)

Restrictions. The parameter must be a quoted-string, a numeric-literal,
or a name.

If the parameter is a quoted-string, its quoted-characters must consist of
an optional sign followed by a sequence of decimal digits. If the parame­
ter is a numeric-literal, it must not be a float-literal. If the parameter is a
name, it must be declared as one of the following:

LITERAL
GLOBAL LITERAL
COMPILETIME

Expansion. First determine the value of the parameter, as follows:

• If the parameter is a quoted-string, then remove the quotes and inter­
pret the remainder as a decimal integer.

• If the parameter is a numeric-.}iteral, use the value it represents.

• If the value is a name, use the value associated with the name by its
declaration or, in the case of a COMPILETIME name, the most re­
cently processed %ASSIGN function.

Once the value of the parameter has been determined, represent that
value as a numeric-literal. Return the numeric-literal.

15.5.10.2 Example - An example of a macro that uses the %ASSIGN func­
tion appears in the following progranl fragment:

BEGIN

COMPILETIME
ERRS = 0;

MACRO
COUNT_ERROR

END

%ASSIGN(ERRStERRS+l) %;

The first declaration in this block declares ERRS as a COMPILETIME name.
The second declaration declares COUNT-ERROR as a macro name. Wher­
ever COUNT-ERROR is called, it will expand to:

%ASSIGN(ERRSt ERRS+l)

Wherever the compiler encounters this expansion, it will increase ERRS by
one. Thus the macro can be used to keep a count of a particular kind of error.

15-36 Lexical Functions

The combined use of the %ASSIGN and %NUMBER function is the only way
the value of a compile-time-constant-expression can be incorporated in a
compile-time character sequence. An example is:

COMPILETIME
N = 0 t

Q = a;

·X.ASSIGN(N t2*Q-1)
·X.INFORM("HERE IS AN INTEGER: 'tl..NUMBER(N»

The use of %ASSIGN is essential because 2*Q-1 is not a valid parameter for
either %INFORM or %NUMBER.

More examples of the %NUMBER function fgllow. They are assumed to lie in
the scope of the following declaration:

LITERAL
Q = -18;

The examples are:

Function

I..NUMBER('-180')

·X.NUMBER (83)

·X.NUMBER (·X.O ' 100 ')

I..NUMBER (Q)

Expansion

-180 (coded internally as one lexeme)
83
64
-16 (coded internally as one lexeme)

15.5.11 Compiler-State-Functions

Like the sequence-test-functions, a compiler-state-function expands to ° or 1,
depending on whether or not a certain condition is met. Since the function is
expanded during compilation, it can be used within other lexical constructs.
In particular, a compiler-state-function can be used as a lexical-test in a
lexical-conditional, described in Section 15.6.

The compiler-state-functions refer to tables that are maintained by the com­
piler. The %DECLARED function determines whether a given name has been
explicitly declared. The %SWITCHES function determines the settings of one
or more compilation switches. The %BLISS function determines which com­
piler (BLISS-16, BLISS-32, or BLISS-36) is in use. The %VARIANT func­
tion determines the integer value given in the IV ARIANT qualifier switch (if
any) in the compiler command line.

15.5.11.1 Definitions - The test-functions are expanded as follows:

%DECLARED(#name)

Restriction. The parameter must be a name.

Expansion. Return the numeric-literal 1 or 0, depending on whether or
not it is explicitly declared at this point in the compilation of the pro­
gram.

Lexical Functions 15-37

%SWITCHES(#switch-name , ...)

Restriction. Each parameter must be one of the following on-off­
switches:

ERRS I NOERRS
OPTIMIZE I NOOPTIMIZE
UNAMES I NOUNAMES
SAFE I NOSAFE
ZIP I NOZIP
CODE I NOCODE
DEBUG I NODEBUG

Expansion. Return the numeric-literal 1 or 0, depending on whether or
not every parameter designates the current setting of an on-off-switch.

%BLISS(#language-name)

Restriction. The parameter must be one of the following compiler names:

BLISS16
BLISS32
BLISS36

Expansion. Return the numeric-literal 1 or 0, depending on whether or
not the parameter designates the compiler that is compiling this pro­
gram.

%VARIANT

Expansion. One of the following must apply:

• If the compiler command line contained a qualifier switch of the form:

/VARIANT:n or NARIANT=n

where n is an unsigned decimal-literal, then return n.

• If the compiler command line contained a qualifier switch of the form:

NARIANT

then return the decimal-literal 1.

• If the compiler command line did not contain a N ARIANT qualifier
switch, then return the decimal-literal 0.

15.5.11.2 Examples - The examples that follow are assumed to lie in the
scope of these, and only these, declarations:

OWN
A,
B;

SWITCHES
OPTIMIZE,
NOCODE;

UNDECLARE B;

It is further assumed that the compiler being used is a BLISS-32 compiler.

15-38 Lexical Functions

Examples of the %DECLARED, %SWITCHES, and %BLISS functions are:

Function

i.,DECLARED (A)

i.,DECLARED (B)

i.,DECLARED (C)

%5WITCHE5(OPTIMIZE)

%5WITCHE5(OPTIMIZEtNOCODE)

%5WITCHE5(OPTIMIZEtCODE)

'X,BL I 55 (BL I 55 1 G)

'X,BLI55(BLI5532)

'X,BL I 55 (BL I 553G)

15.5.12 Advisory-Functions

Expansion

1
o
o
1
1
o
o
1
o

The advisory-functions generate. compile-time output. The kind of advisory
function determines the form of output: it may be an error message, a warning
message, an informational message, or just a line in the program listing.

Two of the advisory functions do more than generate compile-time output:
%ERRORMACRO also aborts any current macro-expansion, and %ERROR
inhibits most subsequent expression evaluations and causes the object module
to be discarded. (See the appropriate BLISS User's Guide for further informa­
tion on the side-effects of %ERROR.)

15.5.12.1 Definitions - The advisory-functions are expanded as follows:

%ERROR(#p , ...)

Restriction. Parameters of an advIsory-function must satisfy the restric­
tion on parameters of the %STRING function.

Expansion. Proceed as for the %STRING function, obtaining a single
quoted-string. Use the quoted-string as the text of a compiler error mes­
sage, transmit the message as if it were a standard diagnostic, and add 1
to the compiler error count. Return the empty sequence.

%WARN(#p , ...)

Restriction. Parameters of an advisory-function must satisfy the restric­
tion on parameters of the %STRING function.

Expansion. Proceed as for the %STRING function, obtaining a single
quoted-string. Use the quoted-string as the text of a compiler warning
message, transmit the message as if it were a standard diagnostic, and
add 1 to the compiler warning count. Return the empty sequence.

%INFORM(#p , ...)

Restriction. Parameters of an advisory-function must satisfy the restric­
tion on parameters of the %STRING function.

Lexical Functions 15-39

Expansion. Proceed as for the %STRING function, obtaining a single
quoted-string. Use the quoted-string as the text of a compiler information
message, and transmit the message as if it were a standard diagnostic.
(Do not increment either the compiler error or warning count.) Return
the empty sequence.

%PRINT(#p ,...)-

Restriction. Parameters of an advisory-function must satisfy the restric­
tion on parameters of the %STRING function.

Expansion. Proceed as for the %STRING function, obtaining a single
quoted-string. Insert the character sequence directly into the compilation
listing as the next line of that listing. Return the empty sequence.

%MESSAGE(#p , ...)

Restriction. Parameters of an advisory-function must satisfy the restric­
tion on parameters of the %STRING function.

Expansion. Proceed as for the %STRING function, obtaining a single
quoted-string. Write the character sequence directly to the user's termi­
nal (or other standard output device for the compilation). Return the
empty sequence.

%ERRORMACRO(#p , ...)

Restriction. Parameters of an advisory-function must satisfy the restric­
tion on parameters of the %STHING function.

Expansion. Proceed as for the %STRING function, obtaining a single
quoted-string. Use the quoted-string as the text of a compiler error mes­
sage, transmit the message as if it were a standard diagnostic, and add 1
to the compiler error count. Then, in addition, abort every macro-call
expansion that is currently in progress. Resume compilation of the pro­
gram with the lexeme that follows the outermost of the aborted macro­
calls.

15.5.12.2 Examples - Examples of the form of message produced by the
advisory-functions appear in the BLISS User's Guides.

15.5.13 Titling-Functions

Each page of a compilation listing begins with a header. The header may vary
from one implementation to another, but, typically, it includes the page num­
ber, compilation date, and other identifying information. By means of the
titling-functions, a programmer can specify a title and a subtitle for inclusion
in the header.

15.5.13.1 Definition - The titling-functions are expanded as follows:

%TITLE qs

Restriction. The lexeme qs must be a quoted-string. (Note that qs is not
enclosed in parentheses.)

15-40 Lexical Functions

Expansion. Use the value of qs as the title in subsequent headers of the
compilation listing. Return the empty sequence.

%SBTTL qs

Restriction. The lexeme qs must be a quoted-string. (Note that qs is not
enclosed in parentheses.)

Expansion. Use the value of qs as the subtitle in subsequent headers of
the compilation listing. Return the empty sequence.

These functions can be used repeatedly throughout a module, thus changing
the title and/or subtitle from page to page of the listing.

15.5.13.2 Examples - Listing titles and subtitles appear in the BLISS User's
Guides.

15.5.14 Quote-Functions

The quotation-functions are used to override the quotation rules given earlier,
in Section 15.2.2. Each function applies to the name or lexical-function-name
that immediately follows it. The %QUOTE function can also be applied to a
comma or percent lexeme.

The %QUOTE function prevents a name from being bound and prevents
expansion of a lexical-function or macro-call. The %UNQUOTE function
causes a name to be bound but does not cause any expansion. The %EX­
PAND function causes both binding and expansion.

15.5.14.1 Definitions - The quote-functions are expanded as follows:

%QUOTE

Restrictions. The next lexeme must be a name, a lexical-function-name,
a comma, or a percent sign.

Use of this function is restricted to macro-bodies or to the actual-parame­
ters of a macro-call or lexical-function. That is, it applies only to lexemes
encountered at macro-quote or name-quote level.

Expansion. Temporarily change the quotation rules so that binding of
the next lexeme is deferred to a subsequent scan of the lexeme stream in
which it occurs. More specifically, this means that:

• If the next lexeme is an unbound name, an attempt to bind it will not
occur when it is read.

• If the next lexeme is the beginning of a macro-call or lexical-function,
an attempt to expand the macro-call or lexical-function will not occur
when it is read.

• If the next lexeme is itself a quote-function in a macro-definition, that
quote-function will be interpreted as a lexeme in the macro-body and
thus will not, at that point, affect the binding of the lexeme which
follows it.

Lexical Functions 15-41

• If the next lex erne is a comma in a list of actual-parameters in a
lexical-function or macro-call, it will be interpreted as a lexeme in the
current actual-parameter rather than as the separation between two
actual-parameters.

• If the next lexeme is a percent in a macro-definition, it will be inter­
preted as a lexeme in the macro-body rather than as the termination of
the macro-body.

Return the empty sequence.

%UNQUOTE

Restriction. The next lexeme must be a name or lexical-function-name.

Use of this function is restricted to macro-bodies or to the actual-parame­
ters of a macro-call or lexical-function. That is, it applies only to lexemes
encountered at macro-quote or name-quote level.

Expansion. Attempt to bind the next lexeme.

(Forced binding of a macro-name or lexical-function-name does not also
force expansion of the corresponding call or function.)

Return the empty sequence.

%EXPAND

Restriction. The sequence of lexemes that follow %EXPAND must begin
with a lexical-function or macro-call.

Use of this function is restricted to macro-bodies. That is, it applies only
to lexemes encountered at macro-quote level.

Expansion. Temporarily change the quotation rules so that the lexical­
function or macro-call that follows %EXPAND is expanded. (Any macro­
calls or lexical-functions contained in the expansion are not themselves
automatically expanded.)

Return the empty sequence.

15.5.14.2 Examples - A simple example of the use of the %UNQUOTE
function is given earlier (in Section 15.2). A series of more complex examples
is given here. They are each based on the following program fragment:

MACRO
Ql(P) = ltP ·X.t
Q2 = 2 ·X. t

)-(= Ql(Q2) ·X.;

ROUTINE R =
BEGIN
MACRO

BIND

15-42 Lexical Functions

'X.QUOTE Ql(><) = 10t>< ·X.t
%QUOTE Q2 = 20 %;

Y = UPLIT(%STRING(X»;

When Ql(Q2) in the declaration of X is processed, neither Q1 nor Q2 is bound
because they are names at macro-quote level (see Section 15.2.1).

The %QUOTE functions are necessary in the second macro-declaration be­
cause Q1 and Q2 would otherwise be interpreted as macro-calls, and the
declaration would become:

MACRO

2 ::: 20 I.,;

which is nonsense. This expansion would occur because Q1 and Q2 are macro­
names at name-quote level.

A call on the macro X appears in the bind-declaration. When X is expanded
and processed, it is

10t20

This result reflects the fact that Q1 and Q2 are both bound in the scope of the
second declarations of Q1 and Q2.

The following table shows the affect of using various quote-functions in the
macro-body of the declaration of X:

If Ql(Q2) is replaced with:

Q 1 ('X,UNQUOTE Q2)

'X,UNQUOTE Q 1 (Q2)

%UNQUOTE Ql(%UNQUOTE Q2)

Then the processed expansion is:

10,2
1,20
1,2

'X,EHPAND Ql(Q2) 1,2
'X,E}-(PAND Q 1 ('X,QUOTE Q2) 1,20

Q 1 ('X,QUOTE Q2) 10,20
Ql(%QUOTE %QUOTE %QUOTE %QUOTE %QUOTE %QUOTE Q2) 10,Q2

The last two examples are especially interesting. In Q1(%QUOTE Q2), the
%QUOTE has no effect because Q2 is at macro quote level and would not be
bound or expanded anyhow.

In the final example, the many occurrences of %QUOTE have the effect of
keeping Q2 from ever being expanded. The processed macro-body for this
example is:

Ql(%QUOTE %QUOTE %QUOTE Q2)

This macro-body becomes the expansion of X and must be processed as such;
the result is:

Q 1 ('X,QUOTE Q2)

Next, this macro-call is expanded. Before processing, the expansion is:

10t'X,QUOTE Q2

Finally, this expansion is processed, giving the result shown, 10,Q2.

The preceding example is largely concerned with macro-names. That is not
intended to imply that quote-functions are not important for lexical-functions
or for names other than macro-names.

Lexical Functions 15-43

An example of %QUOTE applied to a comma and a percent is:

MACRO

\I •
l' ,

BIND

}-(=
MACRO

Q (A) UPLIT(A) %QUOTE %
/" ;

Y Q(Q %QUOTE, 5 %QUOTE, G);

When the declaration of X is processed, the following macro-body is associ­
ated with X:

MACRO
Q(A) = UPLIT(A) %;

The terminal percent gets into the macro-body because it was quoted in the
declaration. The expansion of the macro-call X is exactly this same macro­
body, and when it is processed, i,t establishes a declaration for Q.

The macro-call of Q has just one actual-parameter, as follows:

4,5, G

The commas get into the actual-parameter because they are quoted. The net
effect of this example is to produce the declaration:

BIND
Y = UPLITUI,5,G);

An example of the use of %EXPAND is contained in the following program
fragment:

MACRO
B = C 'x.,
A = B 'X"
)< = A 'X"

xx = %EXPAND A %;

UNDECLARE
/',QUOTE A,
'X,QUOTE B;

OWN)(;
OWN \/\/ .

/\ l' ,

The macro-call X in the first OWN declaration is expanded to the name A
with no further expansion since the macro-name A has been undeclared.

The macro definition of XX is B since the %EXPAND function forces expan­
sion of the macro-call A within the macro-body for XX (prior to the 'undec­
laration' of macro-name A). Thus the macro-call XX in the second OWN
declaration is expanded to B, again with no further expansion since the
macro-name B has been undeclared.

Note that the expansion of the function %EXPAND A within the macro-body
for XX is not carried through to the name C. The following macro can be used
to obtain this effect when desired:

MACRO
FORCE [] = %QUOTE %EXPAND %REMAINING %;

15-44 Lexical Functions

The previous example could theft be extended as follows:

MACRO
5 = C /",
A = 5 '7., t

)-(= A 'X, t

XX = IEXPAND A It
XXX = IEXPAND FORCECA) I;

UNDECLARE
'X,QUOTE A t
'X,QUOTE 5;

OWN }-{ t

\/ \1
/\ 1\ t
\/ \1 'I II
J\ 1\ 1\ ,

The internally stored definition of FORCE is %EXPAND %REMAINING.
When the macro-declaration of XXX is processed, the %EXP AND function
causes the macro-call FORCE(A) to be expanded. Whenever a macro-call is
expanded, all actual-parameters of the call are completely expanded. r1-'here­
fore the actual-parameter A becomes C. That is, the body of FORCE expands
simply to its fully expanded argument list.

The %EXPAND function has several practical applications:

• Compilation time can be reduced by forcing a one-time expansion of
embedded macro-calls at macro-declaration time, rather than at every
occurrence of the 'containing' macro-call.

• The memory used during compilation for storing macro-bodies can be
reduced by forcing expansion of macros involving complicated r,ondi­
tional-compilation syntax.

• Further efficiencies in the use of library files can be gained by forcing as
much expansion as possible during the library pre-compilation.

• Macro-names declared for use within a library precompilation can be
undeclared and thus freed for different uses in modules that refer to the
library, if all instances of the macro-names are expanded within the li­
brary file.

15.5.15 Macro-Functions

The macro-functions are especially designed for use within macro-definitions;
they are not useful in any other context. Complete definitions of the macro­
functions are given in this section. However, these definitions are difficult to
understand without a discussion of macros. Examples and motivation for the
macro-functions are given later, in Section 16.3 on macro-calls and Section
16.4 on examples of macros.

15.5.15.1 Definition - The macro-functions are expanded as follows:

%REMAINING

Expansion. Concatenate the actual-parameters not associated with for­
mal-parameters, separating them by commas. Return the resulting se­
quence of lexemes.

Lexical Functions 15-45

%LENGTH

Expansion. Determine the number of actual-parameters for the current
macro-call. Represent this number as a numeric-literal. Return the nu­
meric-literal.

%COUNT

Expansion. Determine the recursion depth in a conditional-macro or the
number of cOlnpleted iterations in an iterative-macro. Represent this
number as a numeric-literal. Return the numeric-literal.

%EXITITERATION

Expansion. Terminate the expansion of the current iteration of an itera­
tive macro call. If a default separator or closing grouper (as specified in
Section 16.3.3.4) is required at normal termination of an iteration, in­
clude it.

%EXITMACRO

Expansion. Terminate the expansion of the smallest macro-body in
which this lexical-function is contained, just as if the terminal % lexeme
appeared here.

15.5.15.2 Examples - Some examples of these functions are given as part of
the discussion of macros in Section 16.4.

15.5.16 Require-Function

The require-function is the functional equivalent of the require-declaration
(see Section 16.5); however, since it is not a declaration %REQUIRE can
appear in any context.

15.5.16.1 Definition - The require-function is defined as follows:

%REQUIRE(#P , ...)

Restrictions. Parameters must satisfy the restrictions of the %STRING
function (see Section 15.5.2).

The resulting quoted-string must be a valid file-spec for the host opera­
ting system.

If the required file contains a %IF lexeme, it must also contain the
matching %THEN, %ELSE (if used), and %FI of the same lexical condi­
tion.

During the expansion of a required file (function or declaration) a fatal
error will occur if the end of the file is found while a macro is still being
declared.

A required file (function or declaration) must not appear during the
expansion of a macro.

15-46 Lexical Functions

Expansion. Proceed as for the c;'f,STRING function, obtaining a single
quoted-string for the required file. The specified file is then placed at the
head of the input stream as the following actions are performed:

1. The file-name default rules for the host system and the compiler are
applied.

2. Input from the current lexeme source is suspended.

3. The specified file is adopted as the current lexeme source.

4. Input from the suspended lexeme source is resumed when the speci­
fied file is empty.

15.5.16.2 Examples - The following depicts a required file named
ADDMOD:

%IF %BLISS(BLISS32)
'X,THEN

,ADDRESSING_MODE(
EXTERNAL = LONG_RELATIVE)

'7"ELSE

'7"F I

%IF %BLISS(BLISS1G)
'7"THEN

" ADDRESS lNG_MODE (RELAT I l.lE)
'7"F I

And the following depicts how the file may be required:

MODULE A('X.TITLE 'SETMODES' IDENT = '1-1'
'7"REQU I RE ('ADDMOD ')

BEGIN

END
ELUDOM

) =

Note that unlike a require-declaration the require-function can appear con­
veniently as a module-head-switch.

The following example shows a macro-declaration that produces a fatal error
when called:

MACRO REQ = '7"REQU I RE ('ERRMSG ') 'X,;

The error occurs because the %REQUIRE is encountered during the expan­
sion of the macro.

The following example shows a macro-declaration that is allowed:

MACRO REQ = %EXPAND
'X,REQU I RE ('ERRMSG ')

In the above example, the %EXPAND function expands the %REQUIRE
function during the declaration of MACRO REQ. Notice that the percent
lexeme, required for the termination of the macro-body, does not appear and
is contained within the required file.

Lexical Functions 15-47

I

15-48

15.5.17 Summary of Lexical-Functions

The following table gives one example of each lexical-function:

Function

/" S T R I N G ('A Be' ,23 ,'X, B ' .- 1 1 1 1 ' , ,p hi)

/" E >(ACT S T R I N G (8 ,'X, C ' }(, , ' ABC ' ,2 3)

%CHAR(G5IGGIG7,39197,98,99)

'X,CHARCOUNT ('ABC' ,23)

'X,E)<PLODE ('ABC; ,23)

%REMOVE(Q) [where Q is (A+1l]

'X,NAME('+302' ,beta)

:f.,QUOTENAME ('FOO' , 'BAR')

'X,NULL('abc' I")

'X,IDENTICAL(ABC 5,ABC 'X,B'101')

%I55TRING(BETA,'BETA')

'X,CTCE (ALPHA[1])

:f.,L TCE (• AL PHA [1])

/',NBIT5U(7,2)

:~, N BIT 5 (7 ,2)

Expansion

, ABC23-15PHI'
'ABC23XXX'
'ABC"abc'
5

'A', 'B', 'C', '2', 'if
A+l

+ :302BET A (as a name)

FOOBAR (as a quoted
name)

° (not a null sequence)
1 (sequences are identical)

° (one not a string) ° (not a c-t-c-e) ° (not an l-t-c-e)

3
4

/" ALL 0 CAT ION <>() [s cal a r to y de f a IJ 1 t] (;(UPV AL
'X,512E(l.'ECTOR[10 ,WORD]) 20 (BLISS-16/32 only)

%~IELDEXPAND(DCB_E)

%A55IGN(X,2+3) [X is COMPILETIME]

%NUMBER(Y) [Y declared LITERAL G]

/',DECLARED (A)

%5WITCHE5(OPTIMI2E,NOCODE)

'X,BL I 55 (BL I 5532)

'i,',ERROR('error Illessage')

/',WARN('rArarning ITlessaSe')

%INFORM('inforlllation Illessage')

'X,PRINT('text in listing')

%ME55AGE('text for terlllinal ')

'X, ERR 0 R MAC R 0 (, err 0 r ITI e s sag e ')

%TITLE 'On Top Line of Page'

%5BTTL 'On 5econd Line of PaSe'

%QUOTE lexellle, COlllllla, or percent

%UNQUOTE (Binds followins nallle)

/',E>-{PAND (Binds and expands)

/.,REMA I N I NG

'X,LENGTH

'X,COUNT

Lexical Functions

1,0, ccBPV AL,O

empty (associates 5 with X)
6

1 (A is declared)
1 (these switches are on)
1 (under BLISS-32 compiler)

empty (steps error count)
empty (steps warning count)
empty
empty
enlpty
empty (aborts all macros)

empty
empty

empty
empty
empty

unmatched actual-parameters
number of actual-parameters
recursion or iteration count

April 1983

Function

'X, E)< I T 1. T ERA TID t'l

',::, E }< J T M ?'i C r.;; CJ

April 198:3

Expansion

empty (abort iteration)
ernpty (abort snlallest
macro)
include specified file
return decimal-literal I

Lexical Functions 15-48.1

15.6 Lexical-Conditionals

A lexical-conditional evaluates a compile-time-constant-expression and then,
depending on the value of that expression, skips one or the other of two given
lexeme sequences. In some other programming languages, this kind of facility
is called "conditional compilation".

Like the lexical-functions, a lexical-conditional is fully processed at compile­
time. However, the lexical-conditional differs from a lexical-function in two
respects. First, its syntax is different; that is just a matter of programming
convenience. Second, and more important, it can be used to skip over a
sequence of lexemes.

An example of a lexical-conditional is given in Section 15.1.5.

15.6.1 Syntax

lexical-condi tional %IF lexical-test

%THEN lexical-consequence

{ %ELSE lexical-alternative}
nothing

%FI

lexical-test compile-time-constant-expression

lexical-consequence}
lexical-alternative

{ lexe~e ... }
nothIng

The syntactic name lexeme is defined in Section 2.2.

15.6.2 Restrictions

If a macro-body contains the lexeme %IF, then it must also contain the
matching %THEN, %ELSE (if present), and %FI of the same lexical-condi­
tional. This restriction must be satisfied by the source file before any lexical
processing has been performed.

The restriction just given applies not only to a macro-body, but also to an
actual-parameter in a macro-call or lexical-function, to the file that is desig­
nated by a require-declaration, or to the lexical-consequence or lexical-alter­
native within another lexical-conditional.

The keywords %IF, %THEN, %ELSE, or %FI must not be preceded by a
quote-function.

Lexical Functions 15-49

15.6.3 Semantics

The expansion of a lexical-conditional begins with the evaluation of the lexi­
cal-test. If the low-order bit of the value of the lexical-test is 1, then the test is
satisfied; otherwise, the test is not satisfied.

If the test is satisfied, the lexical-consequence is subjected to lexical process­
ing and the lexical-alternative (if present) is skipped.

If the test is not satisfied, the lexical-consequence is skipped, and the lexical­
alternative (if present) is subjected to lexical processing.

When a lexical-consequence or lexical-consequence is skipped, it is not pro­
cessed in any way; the compiler scans through, looking for the terminating
%ELSE or %FI and ignoring everything else.

A lexical-conditional in the macro-body of a macro-definition is not ex­
panded; instead, it is included in the macro-body that is associated with the
macro-name. Later, when the macro-body is used to expand a macro-call, the
lexical-conditional is expanded.

15.7 Compiletime Declarations

Compile time variables provide a means to compute and assign values during
compilation, particularly for use in combination with lexical-conditionals.

15.7.1 Syntax

compiletime-declaration COMPILETIME compiletime-item , ... ;

com piletime-item compiletime-name = compiletime-value

compiletime-name name

compiletime-value compile-time-constant-expression

15.7.2 Semantics

The compiletime-declaration establishes a name who~e value can be changed
during compilation of the source module. In all other respects a compiletime­
name is the same as a (non-GLOBAL) LITERAL name and can be used in all
of the same ways that a literal name can be used.

Observe that a compiletime-name must be given an initial value when the
name is declared.

The value of a compiletime-name can be changed by the %ASSIGN lexical­
function as described in Section 15.5.9.

15-50 Lexical Functions

Chapter 16 Macros

16.1 Introduction to Macros.

16.1.1 Macro Declarations and Calls.
16.1.2 Macros with Parameters . .
16.1.3 Parenthesization of Macros . .
16.1.4 Quotation Rules and Macros .
16.1.5 A Survey of Macros and Related Facilities.

16.2 Macro-Declarations

16.2.1 Syntax ...
16.2.2 Restrictions
16.2.3 Semantics .

16.2.3.1 Lexical Processing of Macro-Definitions.
16.2.3.2 Interpretation of Macro-Definitions .

16.2.4 Predeclared Macros.

16.3 Macro-Calls. . . .

16.3.1 Syntax ...
16.3.2 Restrictions
16.3.3 Semantics .

16.3.3.1 Lexical Processing of Macro-Calls.
16.3.3.2 Expansion of Simple Macros . . .
16.3.3.3 Expansion of Conditional Macros.
16.3.3.4 Expansion of Iterative-Macros
16.3.3.5 Expansion of Keyword-Macros

16.3.4 Discussion

16.3.4.1 Introductory Examples.
16.3.4.2 Default Punctuation.

16.4 Examples of Macros

16.4.1 Macros for Initializing a BLOCK Structure
16.4.2 A Complicated Macro. . . .
16.4.3 Nested Macro Definition . .
16.4.4 Declarations within Macros.

16.5 Require-Declarations.

16.5.1 Syntax. . .
16.5.2 Restrictions .
16.5.3 Semantics . .

16.6 Library-Declarations.

16.6.1 Syntax ...
16.6.2 Restrictions
16.6.3 Semantics .

16-1

16-2
16-2
16-3
16-4
16-5

16-6

16-8
· 16-10
· 16-10

· 16-10
· 16-11

· 16-11

· 16-12

· 16-13
· 16-13
· 16-14

· 16-14
· 16-15
· 16-16
· 16-17
· 16-20

· 16-20

· 16-21
· 16-22

· 16-24

· 16-24
· 16-25
· 16-26
· 16-26

· 16-27

· 16-27
· 16-27
· 16-27

· 16-28

· 16-28
· 16-28
· 16-29

Chapter 16
Macros

Macros can make programs short and clear. When a certain construct is used
often, a macro can be defined that gives the construct a name, and the name
can then be used wherever the construct is required. By this means, a con­
struct that is either large or unclear can be given a short, intuitive representa­
tion.

The idea of using the name of a construct instead of the construct itself can be
extended in several ways, and BLISS has a variety of macro facilities. A
programmer who wishes to use simple macros in an obvious and intuitive way
can do so; but a programmer who wishes to use complicated macros to gen­
erate large and intricate tables, for example, can also do that.

This chapter is devoted to the macros and related facilities for user-defined
expansion of source text. The first section introduces the various kinds of
macros. The next two sections describe the declaration and call of macros.
The final two sections describe the require- and library-declarations.

16.1 Introduction to Macros

The macro facilities of BLISS are important but, in some ways, difficult to
learn. Macros are important because they can be used to add new notations to
BLISS and thus greatly improve the organization and clarity of a program.
The macro facilities are difficult to learn because they are innovative; most
high level programming languages provide very limited macro facilities or
have none at all.

The expansion of macros is a part of lexical processing, and therefore macros
are initially discussed at the beginning of the previous chapter. Specifically,
the basic principles of macro expansion are presented in Section 15.1.4, and
an example is given in Section 15.1.5. An understanding of lexical processing
is a prerequisite for the discussion of macros in this chapter.

This section is an informal description of a particular kind of macro, the
simple macro. Simple macros are a good place to begin the study of macros for
several reasons: first, they are relatively simple, as the name suggests; second,

16-1

they are sufficient for most programming applications; and, finally, most of
the general techniques of macro usage can be illustrated with simple macros.
Thus a reader who does not have a strong interest in macros can read this
section and skip the remainder of the description of macros.

16.1.1 Macro Declarations and Calls

A macro has two parts: the macro-declaration and the macro-call. A macro­
declaration contains one or more macro-definitions, and each macro-defini­
tion associates a name, the macro-name, with a sequence of lexemes, the
macro-body. Once a macro-name has been declared, it can be used in macro­
calls.

An example of a macro-declaration is:

MACRO
CLA = PLIT(S02 ,-1,3) ·X.,
ADD = PLIT(402,O,3) %;

This declaration contains two macro-definitions. The first macro-definition
associates the name CLA with the macro-body PLIT(502,-1,3), and the sec­
ond associates ADD with PLIT(402,O,3). Each macro-body is terminated by a
percent lexeme.

Two examples of macro-calls appear in the following example:

IF USED(REG)
THEN CODE = CLA
ELSE CODE = ADD;

The macro-calls here are CLA and ADD. If this conditional-expression is
within the scope of the macro-declaration in the preceding paragraph, then it
is equivalent to:

IF USED(REG)
THEN CODE = PLIT(S02,-1 ,3)
ELSE CODE = PLIT(402,O,3);

Assuming that the names CLA and ADD have some mnemonic significance in
the program from which this example is drawn, their use in the conditional­
expression is certainly more clear than the use of the plits.

A macro-body is processed twice. The first processing occurs when it is en­
countered as part of a macro-definition. During that processing, no object
code is generated by the compiler; instead, the macro-body is saved by the
compiler as a sequence of lexemes and that sequence is associated with the
macro-name. The second processing occurs when the macro-body is used as
the expansion of a macro-call. During that processing, the macro-body is
compiled in the normal way.

16.1.2 Macros with Parameters

A macro-definition can have a list of formal-name parameters, and these
formal-name parameters can appear in the macro-body. When a macro-call is
expanded, each appearance of a formal-name parameter in the macro-body is
replaced by the corresponding actual-parameter from the macro-call. The use
of parameters in macros can greatly increase their power and generality.

16-2 Macros

An example of a macro with parameters is:

MACRO
GET5YTE(NtI) = «N)~(-(I» AND %5'11111111') %;

)-{ = GET5YTE(tY+l t12)-2;

In this example, the list of formal-names is (N,I) and the list of actual­
parameters is (.Y +1,12). When the macro-call on GETBYTE is expanded, a
copy of the macro-body associated with GETBYTE is made, and then N is
replaced by .Y +1 and I is replaced by 12. The resulting expansion is:

«.Y+1)···(-(12» AND ·X.5'llllllll')

This expansion is placed at the head of the input stream (as described in
Section 15.1.4) and is then compiled. Incidentally, the expansion of GET­
BYTE(N,I) is an expression whose value is the eight-bit field (one byte) of N
that is I bits from the right (low order) end of N.

Just as a macro-body is processed twice, so also is an actual-parameter pro­
cessed twice. The first processing of the actual-parameter occurs when the
macro-body is encountered as part of a macro-call. During that processing, no
object-code is generated, just as for a macro-body. However, macro-calls,
lexical-functions, or lexical-conditionals encountered within the actual-pa­
rameter are expanded during this first processing, and in this respect an
actual-parameter differs from a macro-body. The second processing of the
actual-parameter occurs during "the expansion of a macro-call. During that
processing, the actual-parameter is compiled like an ordinary sequence of
lexemes.

16.1.3 Parenthesization of Macros

If a macro-body is an operator-expression, then it should be parenthesized;
otherwise, a conflict of priority between the macro-body and' its context may
produce an unwanted interpretation. For similar reasons, each formal-name
that is an operand of an operator-expression should be enclosed in
paren theses.

The definition of GETBYTE, given above, follows the parenthesization guide­
lines just given. Suppose that it did not; that is, suppose the "extra"
parentheses were not included. Then the macro-declaration would be

MACRO
GET5YTE(NtI) = N"'(-I) AND ·X.5'llllllll' I..;

and the assignment would become:

x = +Y+l~(-12) AND %5'11111111 '-2;

After insertion of default parentheses in accordance with operator priorities
given in Section 6.1.1, the assignment becomes:

x = (.Y)+(1~(-12» AND (%5'11111111 '-2);

This result is very different from that obtained previously, and the expression
does not extract the desired byte value from N.

Macros 16-3

16.1.4 Quotation Rules and Macros

The quotation rules, described in Section 15.2, have an important impact on
macro usage. The following paragraphs present two examples of some of the
less obvious effects of the quotation rules. The examples are concerned with
the interpretation of constructs at the name-quote level.

Because the declaration of a name is at name-quote level, and because macros
are expanded at that level, special measures are required to redeclare a
macro-name. An example is:

MACRO
ALPHA = BETA 'x,;

ROUTINE R =
BEGIN
LITERAL

ALPHA = 1,
I.,QUOTE ALPHA

END

,.., .
L'

In this example, the first use of ALPHA in the LITERAL declaration is
expanded before being declared, so that BETA is declared as a literal with
value 1. The second use of ALPHA is quoted and therefore ALPHA is rede­
clared as a literal with value 2. Thus, within the routine R, BETA represents 1
and ALPHA represents 2.

Because a name in the formal-name list of a structure, routine, or macro­
declaration is also at name-quote level, the consideration just illustrated ap­
plies to it.

Because an actual-parameter is processed at name-quote level, and because
only macro-names are bound at that level, some unexpected results can occur.
An example is:

MACRO
A(Pl,P2)

BEGIN
MACRO

MACRO

'X,QUOTE I.,QUOTE M
LITERAL

N = 2;
OUTPUT(P1 ,P2);
END 'X,;

M 10 'X,;
LITERAL

N = 20;

1 I.,QUOTE 'X,;

The macro-body for A is stored internally as:

16-4 Macros

BEGIN
MACRO

'X,QUOTE M = 1 'X,;
LITERAL

N = 2;
OUTPUT(P1 ,P2);
END

When the macro-call A(M,N) is expanded, its first actual-parameter, a
macro-name, is bound and expanded but the second actual-parameter, a
literal-name, is not bound (quotation rule 2). Thus the call is equivalent to:

A (1 (I tN)

The expansion of this macro-call is:

BEGIN
MACRO

M = 1 /,,;
LITERAL

N = 2;
OUT PUT (1 (I t N) ;
END

Observe that the %QUOTE before the first occurrence of M prevents the
replacement of that occurrence of M by 10, and thus keeps the macro-declara­
tion valid. Observe, also, that that the %QUOTE before the first % (percent)
lexeme prevents the premature termination of the macro-body of A. The final
result of lexical-processing is equivalent to:

OUTPUT(l(1t2)

Thus N is finally bound to 2, not 20.

This discussion of the quotation rules shows that macros must be used care­
fully. However, in the majority of cases the result will be what was expected.
Much of the need for the quote-functions arises from the use of duplicate
names within a given scope of your program. Such usage should be avoided
wherever possible; the quote-functions add a level of complexity that can
increase the chances of error.

16.1.5 A Survey of Macros and Related Facilities

The macros discussed in the preceding sections are simple positional macros.
That kind of macro is of central importance in BLISS, but there are other
kinds. Furthermore, BLISS has other facilities that are not called macros, but
are closely related to macros. Macros and related facilities are surveyed in this
section.

BLISS has two main kinds of macros: positional and keyword. The difference
between the two is in the way the actual-parameters of a macro-call are
associated with the formal-names of the designated macro-declaration.

In a positional macro, the order of the actual-parameters is important; that is,
the first actual-parameter is associated with the first formal-name, the second
actual-parameter is associated with the second formal-name, and so on.

In a keyword macro, however, the order of the actual-parameters does not
matter; instead, each actual-parameter is explicitly assigned to a formal­
name. (BLISS uses the word "keyword" in two ways. In classifying macros,
the word designates a way of handling actual-parameters; elsewhere, it desig­
nates an identifier with a built-in meaning.)

Positional macros are further classified as simple, conditional, and iterative.
Simple macros are not only the simplest kind of macro but also the most

Macros 16-5

commonly used. Conditional-macros and iterative-macros provide two ways
of handling macros with a variable number of parameters.

The BLISS facilties that are related to macros are compiletime-declarations,
require-declarations, library-declarations, and bound-declarations.

The compiletime-declarations are described in Section 15.7. They are used to
support macros. For example, a name that has been declared COMPILE­
TIME can be used to designate a counter that is incremented each time a
gi ven macro is expanded.

The require-declarations are described in Section 16.5. Each require-declara­
tion designates a file of BLISS declarations. When the require-declaration is
processed, it is replaced by the designated file. A require-declaration can be
viewed as a specialized form of macro that, in contrast to a true macro, can go
to another file for its body.

The library-declarations are described in Section 16.6. A library-declaration is
similar to a require-declaration except that it designates a file that has been
preprocessed and thus requires minimal compilation. Library-declarations re­
duce compilation costs.

The bound-declarations are described in Chapter 14. They are used to associ­
ate a value with a name. Sometimes, a programmer has a choice between a
macro and a bound-declaration. In that situation, the bound-declaration is
preferred. A bound-declaration not only makes the programmer's intentions
more specific, but also is compiled more efficiently.

The BLISS macros and related facilities can be listed in outline form as
follows:

Macros and Related Facilities
Macros

Positional Macros
Simple Macros
Conditional Macros
Iterative Macros

Keyword Macros
Related Facilities

Com piletime-Declarations
Require-Declarations
Li brary -Declarations
Bound -Declarations

All of these facilities can be used to give a name to a programming construct
and then use that name instead of the construct. The construct may be an
entire file of declarations as with a require-declaration or a single integer, as
with a literal-declaration. In any case, they can greatly improve the organiza­
tion and clarity of a program.

16.2 Macro-Declarations

As the previous section states, every use of a macro has two parts:: declaration
and call. This section describes the macro-declarations for all kinds of BLISS
macros.

16-6 Macros

A positional-macro-declaration consists of the reserved keyword MACRO, fol­
lowed by a list of one or more macro-definitions. As with other declarations,
the definitions are separated by commas and the declaration ends with a
semicolon. Each macro-definition can be a simple-macro-definition, an itera­
ti ve-macro-defini tion, or a condi tional-macro-defini tion.

A simple-macro-definition consists primarily of a macro-name and a macro­
body. The name is separated from the body by an equals sign, and the body is
terminated by a percent lexeme. The macro-name can, optionally, be followed
by a parenthesized list of formal-names. The following macro-declaration con­
tains a simple-macro-definition:

MACRO
SM1(Fl tF2tF3) ::

«Fl(F2)+Fl(F3»/2) Z;

In this example, the name being declared is 8Ml, the formal-names are Fl,
F2, and F3, and the macro-body is:

((Fl(F2)+Fl(F3»/2)

The percent lexeme after the macro-body is essential. Omission of the percent
lexeme (a common programming error) causes the compiler to run wild, in­
cluding in the macro-body everything it sees until it reaches either a subse­
quent percent lexeme or the end of the module.

A conditional-macro-definition is distinguished from a simple-macro-defini­
tion by an empty pair of square brackets inserted just before the equals sign.
An example is:

MACRO
CM1(FltF2)[]

«Fl)~-(F2) + CM1(ZREMAINING» Z;

In this example, the empty brackets, [], identify the definition as a condi­
tional-macro-defini tion.

An iterative-macro-definition is distinguished from a simple-macro-definition
by an additional list of one or more formal-names that is enclosed in square
brackets and inserted just before the equals sign. An example is:

MACRO
IM1(Fl)[F2] ::

Fl+F2 'X,;

In this example, the bracketed list of formal-names (just one, in this exam­
ple), [F2], identifies the definition as an iterative-macro-definition.

A keyword-macro-declaration consists of the keyword KEYWORDMACRO
followed by a list of one or more keyword-macro-definitions. A keyword­
macro-definition is the same as a simple-macro-definition except that each
formal-name can, optionally, have an explicit default-actual-parameter as­
signed to it. The default parameter is used when a call on the macro does not
give the corresponding actual-parameter. As example is:

KEYWOROMACRO
COPYVECTOR(OESTtSOURCEtN::l) ::

INCR I FROM 1 TO N 00
OEST[.I] :: .SOURCE[.I] Z;

Macros 16-7

16-8 Macros

In this example, the default-actual-parameter 1 is associated with the formal­
name N. Defaults are not given for the other formal-names, DEST and
SOURCE, so the empty lexeme sequence is the implicit default-actual-pa­
rameter for these formal-names. (For this example, the macro-call must give
actual-parameters for DEST and SOURCE, since the use of an empty lexeme
sequence for either of these formal-names would yield an invalid macro ex­
pansion.)

When a macro-definition is processed, the given macro-name is associated
with the given macro-body. Aside from the recognition of formal-names
within the macro-body, very little is done to the macro-body; it remains a
lexeme sequence. No object code is generated during the processing of a
macro-declaration.

In fact, the processing of a macro-declaration is a relatively small part of the
processing of a macro. Only when macro-expansion is described, in Section
16.3, can motivation for different kinds of macro-declarations be provided.

16.2.1 Syntax

macro-declara tion

posi tional-macro-
declaration

posi tional-macro-
definition

sim ple-macro-
definition

conditional-macro-
definition

{
positional-macro-declaratiOn}
keyword -macro-declaration

MA CRO posi tional-macro-defini tion , ...

{ simple-macro-definition }
condi tional-macro-defini tion
i terative-macro-defini tion

,

macro-name { (ma~ro-formal-name , ...) }
nothIng

= macro-body %

macro-name { (macro-formal-name , ...) }
nothing

[]

= macro-body %

iterative-macro-
macro-name { (fix~d-formal-name , ...) } definition

nothIng

[iterative-formal-name , ...]

= macro-body %

macro-name }
macro-formal-name name
fixed -formal-name
iterative-formal-name

macro-body { lexe~e ... }
nothIng

keyword -macro-
declaration KEYWORDMACRO

keyword -macro-defini tion , ... ,

keyword -macro-
definition macro-name

(keyword -pair ,...)

= macro-body %

keyword -pair keyword-formal-name { = de~ault-actual }
nothIng

macro-name }
keyword -formal-name

name

macro-body }
defa ul t-actual

{ lexe~e ... }
nothIng

The syntactic name lexeme is defined in Section 2.2.

Macros 16-9

16.2.2 Restrictions

Only a conditional-macro with one or more macro-formal-names can be used
recursively. That is, the macro-body of any other macro must not contain a
call on itself or a call on another macro that ultimately results in a call on the
macro being defined.

A % (percent) in a macro-body must be quoted. It is quoted if it immediately
follows an odd number of %QUOTE functions; that is,

%QUOTE, or
%QUOTE %QUOTE %QUOTE, or so on.

(Otherwise, the % would terminate the macro-body.)

A macro-body must not end with an odd number of %QUOTE functions.
(Otherwise, the % (percent) that terminates a macro-body would become part
of the macro-body.)

A default-actual in a keyword-macro-declaration must satisfy the restrictions
on an actual-parameter in a macro-call. (Literal commas must be quoted,
parentheses must be balanced, and an odd number of quotes must not occur
at the end; see Section 16.3.2.)

16.2.3 Semantics

When the compiler encounters a macro-declaration, it processes the macro­
definitions in the declaration one by one in the order in which they appear.

This section describes both the lexical processing and final interpretation of a
macro-definition.

16.2.3.1 Lexical Processing of Macro-Definitions - Lexical processing of a
macro-definition is performed at two quote levels, neither of which is the so­
called "normal" quote level. Indeed, the main reason BLISS has special quote
levels is to properly support macro-definitions.

The following paragraphs specify the quote level for each part of a macro­
definition. The definitions of the quote levels, given in Section 15.2.1, are
reviewed here.

The macro-body of a macro-definition is processed at macro-quote level. At
this level, the compiler

16-10 Macros

• Binds any occurrence of a name that is a formal-name in the macro­
definition.

• Expands any quote-function, namely: %QUOTE, %UNQUOTE, or
%EXPAND.

These actions are the minimum lexical processing. They leave most of the
processing of a macro-body to later, when the macro is expanded at the point
of call.

Each default-actual-parameter in a keyword-macro-definition is also pro­
cessed at macro-quote level.

The macro-name and the formal-names (if any) are processed at name-quote
level. At this level, the compiler

• Binds macro-names only.

• Expands lexical-functions and macro-calls.

These actions can produce unexpected results, as illustrated in Section 15.6.4.

16.2.3.2 Interpretation of Macro-Definitions - As lexical-processing of a
macro-definition is performed, the compiler forms the definition of a macro,
which it retains for use when a call on the macro is encountered. The defini­
tion contains the following information:

• The kind of macro; that is, simple, iterative, conditional, or keyword.

• The number of formal-names. For iterative macros, the distinction be­
tween fixed- and iterative-formal-names. For a keyword-macro, a list of
the formal-names and the default-actual-parameters (if any) for each.

• A copy of the macro-body, with each formal-name properly identified as
such.

16.2.4 Predeclared Macros

Three macro-names are predeclared in each BLISS dialect, %BLISS16,
%BLISS32, and %BLISS36. The definition of these macro-names in
BLISS-32, for example is as follows:

MACRO
/',BLI8816[]
'X,BL I 8836 []
'X,BL I 8832 []

'X, t

/" t

'X,REMAINING 'X, ;

(In each of the other dialects the %REMAININ G lexical function occurs in
the definition of the appropriate name). This is not a valid declaration to give
in a program because the "names" in the declaration begin with "%" and are,
in fact, reserved keywords rather than names (see Appendix A). However, the
declaration does convey the interpretation given these identifiers.

The example declaration causes the BLISS-32 compiler to replace each call
on %BLISS16 and %BLISS36 by the nulllexeme and to replace each call on

~acros 16-11

%BLISS32 by the actual-parameter sequence in the call. Each BLISS com­
piler predeclares these macro-names so that only the macro-name associated
with the applicable language (BLISS-16, BLISS-32, or BLISS-36) expands to
a non-null sequence.

By means of calls on these predeclared macros, a programmer can specify
processor dependencies. Then, when the program is compiled, only the actions
relevant to the given processor are retained.

16.3 Macro-Calls

Once a macro has been defined, it can be invoked by a macro-call. BLISS has
two kinds of macro-call, corresponding to the two main kinds of macro-decla­
ration, positional and keyword. This section describes both kinds of macro­
call.

A positional-macro-call consists of a macro-name followed by an optional list
of actual-parameters. The list of parameters is normally enclosed in
parentheses; however, square brackets or angle brackets can be used instead,
without changing the interpretation of the call. An actual-parameter can be
nearly any sequence of lexemes.

An example of a positional-macro-call is:

ALPHA(At.B+3t'qrs' 16 MODULE)

In this example, the macro-name is ALPHA. The first and second actual­
parameters are A and .B+3, which happen to be valid BLISS expressions;
however, they are not compiled as such until after the call has been expanded.
The third actual-parameter is a sequence of three lexemes that does not
appear to make sense in BLISS; however, there is nothing inherently wrong
with the use of this sequence as a macro actual-parameter. In order for this
example to be a valid macro-call, it must lie within the scope of a declaration
of ALPHA as a positional macro; and that declaration must make some valid
use of the given actual-parameters.

A keyword-macro-call is similar to a positional-macro-call except that a name
must be associated with each actual-parameter. The name and actual-param­
eter are separated by an equals sign. The name must be one of the keyword­
formal-names in the definition of the given macro.

An example of a keyword-macro-call is:

GAMMA(}-{=Q(R t1) tY=3)

It is assumed that this call occurs in the scope of a declaration of GAMMA as
a keyword-macro name. That declaration must have X and Y as formal­
names.

16-12 Macros

16.3.1 Syntax

macro-call { positional-macro-call }
keyword -macro-call

positional- { (macro-actuals) }
macro-call macro-name [macro-actuals]

< macro-actuals >
nothing

macro-actuals { macro-actual-parameter , ... }
nothing

keyword-
macro-name {

(keyword-assignments) } macro-call [keyword-assignments]
< keyword-assignments >

keyword-
{ keyword-assignment , ... } assignments

nothing

keyword-
assignment keyword -formal-name = macro-actual-parameter

macro-actual-
{ lexeme ... } parameter

nothing

macro-name }
keyword- name

formal-name

The syntactic name lexeme is defined in Section 2.2.

The characters < and > are usually called less than and greater than. In this
section, they are called left angle bracket and right angle bracket.

16.3.2 Restrictions

The macro-name in a positional-macro-call must be declared in a positional­
macro-declaration. Similarly, the macro-name in a keyword-macro-call must
be declared in a keyword-macro-declaration.

~acros 16-13

Each keyword-assignment in a keyword-macro-call must begin with a formal­
name from the declaration of the designated keyword-macro. No formal-name
can be used more than once in a keyword -macro-call.

A macro-actual-parameter must not contain unbalanced parentheses or
brackets. That is, every left parenthesis must be followed (somewhere in the
same macro-actual-parameter) by a matching right parenthesis; every left
square bracket, by a matching right square bracket; and every left angle
bracket by a matching right angle bracket.

A , (comma) in a macro-actual-parameter must be quoted or parenthesized. It
is quoted if it immediately follows an odd number of %QUOTE functions. It is
parenthesized if it is enclosed in a balanced pair of parentheses or brackets
that is, itself, contained in the macro-actual-parameter.

A macro-actual-parameter must not end with an odd number of %QUOTE
functions. (Otherwise, the following comma would be quoted).

If the macro-name of a macro-call is declared as a simple macro with no
formal-names, then the macro-call must consist of just the macro-name. (This
does not say that the macro-name cannot be followed by something that looks
like a parenthesized list of actuals; it only says that the cOlnpiler will not
process that construct as part of the macro-call.)

If the macro-name of a macro-call is declared other than as a simple macro­
call with no formal-names, then the macro-call must have a parenthesized (or
bracketed) list of actual-parameters. (The list can be empty, but the pair of
parentheses or brackets must be there.)

16.3.3 Semantics

A macro-call is first subjected to lexical-processing and then expanded. Lexi­
cal-processing is the same for all macro-calls, and is described in the next
section. Expansion is different for the different kinds of macros, and is de­
scribed in four separate sections.

The expansion of a macro-call can be cut short by a %EXITITERATION or
%EXITMACRO lexical-function; these functions are described in Section
15.5.14.

16.3.3.1 Lexical Processing of Macro-Calls - The processing of a macro-call
begins when a macro-name is bound to a macro-declaration.

Once a macro-name has been bound, the actual-parameters (if any) are pro­
cessed at name-quote level. At this level, the compiler:

• Binds macro-names only.

• Expands lexical-functions and macro-calls.

Because the compiler expands lexical-functions and macro-calls at this level,
an expansion can occur within another expansion. The actual-parameters of a
macro-call are separated by commas. However, a comma that is quoted or

16-14 ~acros

parenthesized is treated literally. (See "Restrictions", Section 16.3.2, for the
definition of a quoted or parenthesized comma.)

The list of actual-parameters is terminated by the right parenthesis or bracket
that matches the left parenthesis or bracket that begins the list.

The following list gives some macro-calls and identifies the actual-parameters
in these calls. Because some macro-calls are included in the actual-parame­
ters, the following macro-definitions are given first:

MACRO
Ml(Fl,F2) :: Fl, Fl/F2, Fl*F2 ·X.t
M2 :: A, 5, C, o~ ·X. ;

The identification of the actual-parameters al, a2, ... is given in the following
list:

Macro-Call al a2 a3 a4

M30(,Y,Z) >< y Z

M3 (>< ,Y ·X.QUOTE , Z ,W))-(Y,Z W

M3(Ml(}<,Y»)()-(1'1' ><*'1'

M3(M2) A 5 C o

M3 (>< ,·X.QUOTE M 1 (}< ,Y) ,Z))-(M 1 (}< tY) Z

M3 (H ,(Y ,Z) ,W))-((Y ,Z) W

M30<,F[M2] ,Y) >(F[A ,5 ,C ,0] 'I'

16.3.3.2 Expansion of Simple Macros - The compiler uses the following
algorithm for expanding a simple macro-call:

1. Associate Actuals with Formals. Associate the first actual-parameter
with the first formal-name of the corresponding definition, the second
actual-parameter with the second formal-name, and so on.

a. If there are too many l actual-parameters, save the extra actual­
parameters for use in the value of %REMAINING.

b. If there are too few actual-parameters, associate the empty lexeme
sequence with each formal-name that does not have an actual-pa­
rameter.

2. Prepare Macro-Body. Make a copy of the macro-body of the corre­
sponding definition. In the copy, replace each unquoted occurrence of a
formal-name with the corresponding actual-parameter.

3. Expand Macro-Functions. Replace certain lexical-functions in the copy
of the macro-body as follows:

a. %LENGTH becomes an unsigned integer-literal that repre­
sents the number of parameters in the list of ac­
tual-parameters.

Macros 16-15

b. %REMAINING becomes a list of the extra actual-parameters.

c. %COUNT

If the macro-definition has n formal-names, then
%REMAINING is replaced by the following lex­
eme sequence: the (n+l)'th actual-parameter, a
comma, the (n+2)'th actual-parameter, a comma,
and so on, ending with the last actual-parameter.

If there are no extra actual-parameters, %RE­
MAINING is replaced by the empty lexeme se­
quence.

becomes o.
4. Place Expansion in Stream. Place the modified copy of the macro­

body at the head of the input stream.

16.3.3.3 Expansion of Conditional"Macros - The compiler uses the following
algorithm for expanding a conditional macro-call:

(The semantics of conditional-macros is quite similar to those of simple­
macros. In the following, each item that differs from simple-macros is marked
with a star (*).)

16-16 Macros

1. Associate Actuals with Formals. Associate the first actual-parameter
with the first formal-name of the corresponding definition, the second
actual-parameter with the second formal-name, and so on.

a. If there are too many actual-parameters, save the extra actual­
parameters for use in the value of %REMAINING.

*b. If there are too few actual-parameters, use the empty lexeme se­
quence as the expansion of the macro-call and exit from this algo­
rithm.

*c. If there are no actual-parameters in the call and no formal-names in
the macro-definition, use the empty lexeme sequence as the expan­
sion of the macro-call and exit from this algorithm.

2. Prepare Macro-Body. Make a copy of the macro-body of the corre­
sponding definition. In the copy, replace each un quoted occurrence of a
formal-name with the corresponding actual-parameter.

3. Expand Macro-Functions. Replace certain lexical-functions in the copy
as follows:

a. %LENGTH becomes an unsigned integer-literal that repre­
sents the number of parameters in the list of
actual-parameters.

b. %REMAINING becomes a list of the extra actual-parameters.

*c. %COUNT

If the macro-definition has n formal-names, then
%REMAININ G is replaced by the following lex­
eme sequence: the (n+l),th actual-parameter, a
comma, the (n+2)'th actual-parameter, a comma,
and so on, ending with the last actual-parameter.

If there are no extra actual-para,meters, %RE­
MAINING becomes the empty lexeme sequence.

becomes an unsigned integer-literal that repre­
sents the depth of recursion for this macro.

If the macro-definition has no formal-names, then
recursion is not permitted, and %COUNT always
becomes O.

The depth of recursion is the number of calls on the same macro that
occurred prior to the current call and are still in the process of being
expanded.

4. Place Expansion in Stream. Place the modified copy of the macro­
body at the head of the input stream.

16.3.3.4 Expansion of Iterative-Macros - The compiler uses the following
algorithm for expanding an iterative macro-call:

1. Associate Actuals with Fixed-Formals. Associate the first actual-pa­
rameter with the first fixed-formal-name of the macro-definition, asso­
ciate the second actual-parameter with the second fixed-formal-name,
and so on.

a. If there are one or more extra actual-parameters, call them the
remaining-actuals-list, and go to Step 2.

b. Otherwise, use the empty lexeme sequence as the expansion of the
macro-call and exit from this algorithm.

2. Prepare Fixed-Macro-Body. Make a copy of the macro-body of the des­
ignated macro-definition. In that copy, replace each unquoted occur­
rence of a fixed-formal-name by the corresponding actual-parameter.
Call the result the fixed-macro-body.

3. Expand %LENGTH Macro-Function. Replace any %LENGTH lexi­
cal-function in the macro-body with its expansion, as follows:

%LENGTH becomes an unsigned integer-literal that repre­
sents the number of parameters in the list of ac-
tual-parameters.

(The next four steps, Step 4 through Step 7, are a loop. Each pass through
the loop generates a new copy of the macro-body. These copies are placed
on the input stream in Step 8.)

Macros 16-17

4. Associate Actuals with Iterative-Formals. Associate the first actual­
parameter of the remaining-actuals-list with the first iterative-formal­
name of the macro-definition, associate the second actual-parameter
with the second iterative-formal-name, and so on.

As each actual-parameter is associated with an iterative-formal-name,
remove it from the remaining-actuals-list. If there are too few actual­
parameters, associate the empty lexeme sequence with each iterative­
formal-name that does not have an actual-parameter.

Steps la and 7 of this algorithm guarantee that there will always be at
least one remaining actual-parameter at the beginning of this step.

5. Prepare Iterative-Macro-Bodies. Make a copy of the fixed-macro-body
(obtained in Steps 2 and 3). In that copy, replace each unquoted occur­
rence of an iterative-formal-name by its associated actual-parameter
(obtained in Step 4).

6. Expand Other Functions. Replace any occurrences of the %COUNT or
%REMAINING function in the iterative-macro-body as follows:

a. %COUNT becomes an unsigned numeric-integer that repre­
sents the iteration count for this iteration.

The iteration count is the number of completed
iterations; thus the count is 0 the first time this
step is e~ecuted, 1 the second time, and so on.

b. %REMAINING becomes the remaining-actuals-list.

7. End Test. If the remaining-actuals-list is not empty, go back to Step 4.

S. Place Expansion in Stream. Place the following sequence of lexemes at
the head of the input stream:

a. The default left grouper, if any.

b. The copies of the macro-body prepared in Step 4 through Step 6.
Place a default separator between each pair of copies.

c. The default right grouper, if any.

The final step of the algorithm just given requires default punctuation.
Specifically, Step Sb requires a default separator, and Step Sa and Step Sc
require default groupers.

The selection of default punctuation for a given macro-call depends on the one
or two lexemes that immediately precede the macro-call. Those lexemes are
called the left context, and they are examined only after their lexical process-
ing is complete. .

BLISS has five combinations of default separator and default groupers. The
first three use a comma, a semicolon, or an operator as the separator and do
not use groupers. The fourth uses a semicolon as a separator and parentheses
as groupers. The fifth uses a semicolon as a separator and SET and TES as
groupers.

16-18 ~acros

The'left context for each of the five combinations is given in the following list,
together with remarks that show why those defaults are appropriate.

1. Comma Separators, No Groupers. In the following cases, the default
separator is a comma and default groupers are not used:

Left Context

<
The keyword phrase
at the beginning
of a declaration

, (comma)

Remarks

The expansion serves as a list of actual­
parameters, formal-names, or plit-items.

The expansion serves as a list of declaration­
items.

The expansion serves as the continuation of a
list of actual-parameters, formal-names, plit­
items, or declaration-items.

This case does not apply to a "(" that is first lexeme of a block or an
expression.

2. Semicolon Separators, No Groupers. In the following cases, the default
separator is a semicolon and default groupers are not used:

Left Context

BEGIN
(

SET

Leading keyword of
con trol-expression

CODECOMMENT

Remarks

The expansion serves as the contents of a
block as defined in Section 8.1.1.

The expansion serves as a sequence of case­
lines in a case-expression or select-lines in a
select-expression.

(not a useful default)

(not a useful default)

The expansion serves as the continuation of a
sequence of declarations, block-actions, case­
lines, select-lines.

This case applies to a "(" only if it is the first lexeme of a block or an
expression.

3. Operator Separator, No Groupers. In the following cases, the default
separator is a copy of the specific operator that precedes the macro-call
and default groupers are not used.

Left Context

operator

Remarks

The expansion serves as the continuation of
the operator- expression that begins in the
left context.

This case applies to all operators (both delimiters and keywords) in the
table in Section 5.1.1.

~acros 16-19

4. Semicolon Separator, SET ... TES Groupers. In the following cases,
the default separator is a semicolon and default groupers are "SET"
and "TES".

Left Context

OF

Remarks

The expansion serves as the body of a case­
expression or a select-expression.

This case applies to the keyword "OF" when it appears in a case­
expression or a select-expression.

5. Comma Separator, Parenthesis Groupers. In the following cases, the
default separator is a comma and the default groupers are parentheses.

Left Context

name
literal
attribute
psect-attribute
switch
list-option
linkage-type
linkage-modifier
)
]

>
END
TES

OF

Remarks

The expansion serves as a parenthesized list
of actual-parameters or formal-names. (This
default is based on the assumption that the
left context gives the address of a routine or a
data segment; the usefulness of that assump­
tion varies from one situation to another.)

(not a useful default)

The expansion serves as a repeated group of
plit-items.

This case applies to the keyword "OF" when it appears in a plit-group.

16.3.3.5 Expansion of Keyword-Macros - The compiler uses the following
algorithm for expanding a keyword macro-call:

1. Associate Actuals with Formals. Associate actual-parameters with for­
mal-names as indicated by the keyword-assignments in the macro-call.

If the macro-call does not include a keyword-assignment for a particular
formal-name, then use the corresponding default-actual from the decla­
ration of the macro. If the declaration does not have such a default­
actual, then use the empty lexeme sequence.

2. Complete Expansion. Complete the expansion of the macro-call as if it
were a simple-macro-call (starting with Step 2 of Section 16.3.3.2).

16.3.4 Discussion

The following discussion of macros begins with easy examples and continues
with a section on the default punctuation of iterative macros.

16-20 Macros

16.3.4.1 Introductory Examples -:- Four examples of macro-declarations were
given in the preceding section on macro-declarations. In the following para­
graphs, each of those declarations is given again with an accompanying call
and the expansion of the call.

The example of a simple-macro is:

MACRO
SM1<Fl tF2tF3) =

«Fl(F2)+Fl(F3»/2) %;

SM1(ROUT,Ot.A+.8)

The expansion of the call on SMl is:

«ROUT(O)+ROUT(.A+.8» 12)

In this and subsequent examples, it is assumed that the macro-call appears in
a context in which it plays a valid and useful role; space does not permit the
presentation of such a context here.

The example of a conditional-macro is:

MACRO
CM1(FltF2)[] =

Fl = .Fl .'. -F2 ;
CM1(%REMAINING) X;

CMl (A to t8 t8 tC t2)

The expansion of the call on CMl proceeds recursively, as follows. The origi­
nal call yields:

A = .A .'. -CH
CM1(8t8tCt2)

Next, the new call is expanded, and the accumulated result is:
A = .A .'. -0;
8 = .8 .'. -8;
CM1(Ct2)

Once more the new call is expanded, giving:

A = • A'"
8 = • 8
C = • C,"
CM ()

-0;
-8;

,.., .
-,:;.. .,

This time, the new call has insufficient parameters, and its expansion is the
null lexeme sequence, so the final result is:

A • A -0;
8 = .8 .'. -8;
C = .C .'. -2;

The significant feature of this macro is that it can accept any number of pairs
of actual-parameters, and produces an assignm~nt for each.

An example of an iterative-macro is:

MACRO
IMl (Fl) [F2] =

Fl+F2 /.,;

PL I T (1M 1 (2 t A ,8 t C t D t))

~acros 16-21

The expansion of the call on IM1 is:

2+A,2+B,2+C,2+0

Thus the macro-call provides (in this example) four plit-items for the plit.

The example just given illustrates two of the special features of iterative­
macros. First, it shows how some parameters (just the first one in this exam­
ple) can be used in each iteration of the expansion while the remaining
parameters are used up (one at at time in this example) by the individual
iterations. Second, the example shows that the iterations are separated by a
lexeme (comma in this example) that depends on the context (a plit in this
example).

An example of a keyword macro is:

KEYWOROMACRO
COPYVECTOR(OEST,SOURCE,N=l)

INCR I FROM 1 TO N DO
OEST[.IJ :: .SOURCEC.IJ %;

COPYVECTOR(N=10,DEST::V2,SOURCE::V1) ;

The expansion of the call on COPYVECTOR is:

INCR I FROM 1 TO 10 DO
1.l2[.IJ:: .I.l1[.IJ;

The main advantage of keyword macros over simple macros is that the actual­
parameters need not be given in the same order as the formal-nanles. That is
useful when the order of the formal names is hard to remember; that is, when
there are many parameters or when there is no natural order. This example
illustrates such a situation.

16.3.4.2 Default Punctuation - Section 16.3.3.4 defines the default punctua­
tion for iterative-macros. This section further discusses that aspect of BLISS
and gives some examples.

The default punctuation of an iterative macro-call is based on an examination
of the context in which the macro-call appears. The context used by the
compiler is minimal (the one or two lexemes that precede the call), but it
usually provides the result the programmer wants.

Some examples of default punctuation arise in the processing of the following
program fragment:

MACRO
SHIFTCA,BJ :: A~B %;

BIND
PTR :: PLIT(

SHIFT(1,2,3 ,a ,5 ,6),
O+SHIFT(1,2,3 ,a»;

In this example, the macro SHIFT is called twice. After expansion of these
macro-calls, the BIND expression is:

BIND

16-22 Macros

PTR :: PLIT(
1···2 ,3'"·a ,5···6,
0+1···2+3···a);

The first macro-call appears after the lexemes "PLIT(", and quite obviously
should supply one or more plit-items; therefore, commas, which are the
separators in a list of plit-items, are supplied as default punctuation. The
second macro-call appears after the lexeme "+", and (perhaps not so obvi­
ously) should supply a sequence of operands; therefore, the operator, "+" in
this case, is supplied as the default punctuation.

The default punctuation is not always the punctuation that the programmer
wants. A programmer who wants something else can either avoid the use of an
iterative macro or else change the context. The second macro-call in the
preceding example is an example of a change of context: the "0+" before the
call changes its context without changing the value of the plit-item provided
by the call.

Consider an iterative-macro-call that occurs at the beginning of a macro­
actual-parameter in a larger macro-call. The iterative-macro-call is expanded
prior to the containing macro-call; therefore, its context is just the left paren­
thesis, left bracket, or comma that precedes it in the actual-parameter list.
Later, the actual-parameter replaces a formal-name in a macro-body, but
that is too late to affect the expansion of the embedded iterative-macro. This
aspect of macro-expansion limits the usefulness of iterative-macro-calls.

An example of default punctuation that uses default brackets arises in the
processing of the following block.

BEGIN
MACRO

CASEGEN (I NOE}-() [] :::
BEGIN
MACRO

CASELINE[ACTION]
[%COUNT]: ACTION %QUOTE %;

CASE INDEX FROM 0 TO %LENGTH-2 OF
CASELINE(%REMAINING)

END'X, ;

CASEGEN (• I t Q 1 t Q2 t Q3);

END;

After macro expansion, this block is:

BEGIN

END;

BEGIN
CASE .1 FROM 0 TO 4-2 OF

SET

END

[0]: Q1;
[1J: Q2;
[2]: Q3
TES

The default brackets, SET and TES, were supplied by the compiler because
the macro-call on CASELINE was expanded in the left context of "OF" in a
case-expression.

Macros 16-23

Observe that a containing block is generated by the macro CASEGEN be­
cause it contains a nested macro-definition. The generation of a containing
block is advisable for two reasons. First, the macro CASEGEN can then be
called in any context, not just at the end of the declarations in a block.
Second, the name of the nested macro is then confined to the scope of the
generated block and is, therefore, not known at the same block level as the
name CASEGEN.

16.4 Examples of Macros

This section provides some relatively advanced examples of the use of macros.
It gives some idea of the variety of tasks that macros can handle. However,
space does not permit a complete or detailed exploration of macros.

16.4.1 Macros for Initializing a BLOCK Structure

When a BLOCK structure is used in a program, its fields can be initialized
conveniently by means of a macro. An example of this application of macros
follows.

Suppose a BLISS-32 block structure that has the following layout is required:

CNT OFFSET

VAL

Let this structure be called a QVAL block, and suppose that its fields have the
following properties:

Field

OFFSET
F
CNT
VAL

Size (in bits) and Extension

16 UNSIGNED
3 UNSIGNED

13 SIGNED
32 SIGNED

The fields are laid out in the order of increasing byte addresses, with OFFSET
first, then F, and so on. Thus OFFSET occupies the first word, F occupies the
low-order 3 bits of the second word, CNT occupies the remaining bits of that
word, and VAL occupies the third and fourth 16-bit words (that is, the entire
second fullword).

The following simple-macro provides for initialization of a QVAL block:

16-24 Macros

MAcr-?o
INIT_QVAL(oFFSETtFtCNTtVAL)

INITIAL(WoRD(oFFSETt
((F) AND 'X,D /7/) OR « CNT) .'. 3 AND 'X,D / 177770 /)) t

LONG (1,IAL» 'X,;

This macro "packs" four values, one for each field, into the correct layout for
a QVAL block. Consider the following use of the macro:

OWN

When the macro is expanded, the declaration becomes:

OWN
)-(: BLOCK[Q~JAL_SIZE] INITIAL(WORD(0,'/,',0'177773'), LONG(2»;

Observe that the values for F and CNT are packed into the second word by
masking their values, shifting the CNT value three bits left, and then combin­
ing the values with an OR operator.

The use of macros described here supports the declaration and referencing of
the BLOCK structures described in Chapter 11.

16.4.2 A Complicated Macro

Sometimes it is appropriate to use a macro for a relatively specialized and
complicated purpose. An example of such an application is:

MACRO
BLOCK SETUP (A) [] ::

OWN A: BLOCK[10];
ROUTINE %NAME (A,'_INIT'): NOVALUE

BEGIN

/" ,

INCR I FROM ° TO 8 DO
/',NAME (A) [.I,O,32,O]

FILL (A, %REMAINING)
END;

FILL (A)[B] :: A B %;

° ;
Zero the block

Set fields

These macros declare a given name (represented by the formal-parameter A)
as an OWN BLOCK composed of ten longwords. In addition, they declare a
routine that, when called, initializes the block. The routine begins by setting
all ten longwords to zero and then initializing any number of specified fields
within the block.

Suppose that two of the fields within the block are given names as follows:

MACRO
ALPHA:: 0,8,8,0%,
BETA:: 5,0,18,1%;

It is assumed that ALPHA and BETA are the only fields that require initiali­
zation. Then an example of a call on the macro BLOCKSETUP is:

BLOCKSETUP(QQ, [ALPHA] :: 25, [BETA] :: 32);

Macros 16-25

The expansion is:

OWN
QQ: BLOCK [10] ;

ROUTINE
QQ_ I NIT: NOl,JALUE

BEGIN
INCR I FROM 0 TO 8 DD

(~Q[.I ,0,32,0] = 0;
QQ[O ,8 ,8 ,0] = 25;
QQ[5,OtlGd] = 32;
END;

Given these declarations, a call on QQ-INIT (without any actual-parame­
ters) will zero QQ and set two of its fields.

16.4.3 Nested Macro Definition

A macro definition can be given within a macro definition, as follows:

MACRO
M1(F1,F2)[] =

OWN F 1, F2;
MACRO NM1[F3,F4]

LOCAL ·X.NAME (F3 , 1." .. 1 I), ·X.NAME (F 4 , I _ .. 1 I); ·X.QUOTE ·x.;
NM1 (F1 ,F2 ,·X.REMAINING)
·X. ;

The %QUOTE lexical-function prevents the % lexeme from being lexically
bound and thus from being interpreted as the termination lexeme for the
macro body of Ml. An example of a call on the macro Ml is:

M1(A, B, C, D, E, F)

The result of this call is the following expansion:

OWN A,B;
LOCAL A_1 ,B_1 ;
LOCAL C_1, D_1 ;
LOCAL E_1, F _1 ;

16.4.4 Declarations within MacrOs

Declarations within macros can lead to problems. For example:

16-26 Macros

BEGIN
MACRO

G (A ,B)

s (C ,}O ;

BEGIN
LOCAL C;
C = .A + .5;
• C
END ·x.;

S (·X.UNQUOTE C ,}() ;
END

In the first call on S, the substitution of the actual-parameter C in the macro
body causes it to be interpreted as the local variable declared in the macro
body. The second call on S avoids this problem by the use of the %UN­
QUOTE lexical-function.

16.5 Require-Declarations

A require-declaration specifies the name of a file. When the module is com­
piled, the require-declaration is replaced by the contents of the file. Text that
is common to a number of separate modules can be made into a single file
and, in this way, included in each module (also see Section 15.5.16).

The most common use of a require-declaration is in connection with a file that
contains structure-declarations, field-declarations, macro-declarations, and
literal-declarations common to several related modules of a program.

16.5.1 Syntax

require-declaration REQUIRE file-designator .. ,

file-designator quoted-string

The syntactic name quoted-string is defined in Section 4.3.

16.5.2 Restrictions

The file-designator given in a require-declaration must be a valid file name on
the system on which the compiler is running.

The result of replacing the require-declaration with the specified file must be
a valid module.

If the required file contains a %IF lexeme, it must also contain the matching
%THEN, %ELSE (if used), and %FI of the same lexical condition.

During the expansion of a required file (declaration or function) a fatal error
will occur if the end of the file is found while a macro is still being declared.

A required file (declaration or function) must not appear during the expansion
of a macro.

16.5.3 Semantics

The specified file is placed at the head of the input stream. More precisely,
the following actions are performed:

1. Locate the file specified by the file-designator. File name default rules
are given in the appropriate BLISS user's guide.

~acros 16-27

2. Suspend input from the current lexeme source.

3. Adopt the specified file as the current lexeme source.

4. When the specified file is empty, resume input from the lexeme source
that was suspended in Step 2. '

16.6 Library-Declarations

A library-declaration calls upon a file that has been precompiled. The effect is
to introduce a set of declarations into a module without compiling them.

Before a library declaration can be compiled, a separate compilation activity
must be performed. That is, a library source file must be created by the
programmer, compiled as described in the appropriate BLISS user's guide,
and saved as a library binary file. It is the latter file that is used when the
library-declaration is compiled as part of a module.

A library-declaration (and the associated precompilation) is chosen over a
require-declaration entirely for reasons of efficiency: it can reduce compilation
costs. Most of the cost associated with compiling a library file is done during
precompilation. Therefore a saving results if the library file is used in several
modules or if it is revised less often than the modules in which it is used.

Aside from efficiency, a given library-declaration has the same effect as an
analogous require-declaration.

16.6.1 Syntax

library-declaration LIBRARY file-designator ,
r---

file-designator quoted-string

The syntactic name quoted-string is defined in Section 4.3.

16.6.2 Restrictions

The file specified by the library-declaration must be a library binary file
produced by the same compiler that is compiling the library-declaration.

The result of replacing the library-declaration with the associated library
binary file must be a valid module. (The compiler does,not actually perform
this replacement, but such a replacement is easy to imagine).

The associated library source file must not contain any use of a name that is
not declared in that file.

16-28 ~acros

April 1983

The associated library source file must consist of a sequence of declarations.
Only certain kinds of declarations can be used. These declarations, listed
according to the chapters in which they are described, are:

external-declara tions

structure-declara tions
field -declara tions

external-routine-declarations

linkage-declarations

external-literal-declarations
Ii teral-declara tions
(Specifically, LITERAL
is permitted, but
G LO BAL LITERAL is not)
bind-data-declarations
(only if data-name-value
is ctce)
bind -rou tine-declarations
(only if routine-name-value
is ctce)

compiletime-declarations
macro-declarations
keyword -macro-declarations
require-declarations
library-declarations

swi tches-declara tions
undeclare-declarations
buil tin -declarations

16.6.3 Semantics

(Chapter 10)

(Chapter 11)

(Chapter 12)

(Chapter 13)

(Chapter 14)

(Chapters 15 and 16)

(Chapter 18)

The declarations encoded in the specified library binary file are incorporated
into the module being compiled. More precisely, the following actions are
performed:

1. Locate the file specified by the file-designator. File name default rules
are described in the appropriate BLISS user's guide.

2. Verify that the specified file is a library binary file and that the com­
piler that generated the file is compatible with the compiler that is
compiling the library-declaration.

3. Add the precompiled tables that make up the specified file to the tables
already formed by the compiler.

The result is to establish a set of declarations with a minimum of compiler
activity.

Switches-declarations in the library source file affect the precompilation of
the file but have no effect on the module that uses the file in a library­
declaration.

Macros 16-29

I

Lexical-expressions are expanded at the time a library source file is compiled
to produce the library binary file, not when the library binary file is incorpo­
rated into another module.

The undeclare-declaration can be used at the end of a library source file to
prevent declarations from being output to the library binary file. In this way,
the effect of a declaration can be confined to the compilation of the library file
itself. This approach is essential when the same name is declared in several
library files that are used together in the same module.

Observe that a library source file can include both a require-declaration and a
library-declaration.

Library declarations are permitted in a library precompilation to allow data­
structuring packages (such as XPORT) to be used both in library construction
and within any individual modules that refer to the library.

All symbols defined by the nested library, will be implicitly undeclared at the
end of precompilation; this prevents the generation of error messages due to
names being declared in two libraries. However, if it is necessary to retain the
symbols from the declared library, the library can be referenced by a require­
declaration using the source file as file-designator.

As an example, assume library COMLIB is being built to contain a common
set of data structures for a project; moreover, the structures use XPORT
$FIELD macros, while the project uses the XPORT I/O package. Thus,
COMLIB.REQ will contain lines such as:

LIBRARY 'SYS$LIBRARY:XPORT';

$FIELD
LINKED _LIST=

SET
NE)-(T =
LAST=
I,JALU=
TES;

[$ADDRESSJ
[$ADDRESSJ'
[$INTEGERJ

When COMLIB.REQ is being precompiled, the $FIELD, $ADDRESS, and
$INTEGER definitions are defined by the XPORT library; however, at the
end of the precompilation process the definitions are deleted.

When a module that uses XPORT I/O is compiled it can contain the following
lines:

LIBRARY 'SYS$LIBRARY:XPORT';
LIBRARY'LIB$:COMLIB';

Note that if the COMLIB library contained a macro declaration such as:
MACRO DOLLAR_FIELD = $FIELD z;

The macro would not be expanded at declaration time and $FIELD would be
unbound. Thus, if a source module (that did not have a library XPORT

16-30 Macros April 1983

April 1983

declaration) referenced the DOLLAR-FIELD macro, $FIELD would be
treated as an undefined name.

Another example of a library-declaration within a library compilation follows.
This example emphasizes the sometimes unexpected behavior that can occur
during the compilation of nested libraries.

For the example, assume that two file's are separately compiled as follows:

$ BLISS/LIBRARY INNER

$ BLISS/LIBRARY OUTER

The first compilation produces INNER.L32 as follows:

0001 0 FIELD
0002 0 CAB_FIELDS =
0003 0 SET
0004 0 CAB$W_BLN = [1 ,.., ,3] t.::...

0005 0 TES;

The second compilation produces OUTER.L32 as follows:

0001 <) LIBr-i'ARY"INNER";
0002 0
0003 0 EXTERNAL ZDT : BLOCK[100J FIELD(CAB_FIELDSI;

WARN 201
Illesal occurrence of bound name CAB_FIELDS in library source

;(Tlodule

The error message occurs because symbols from the INNER library are not
included in the OUTER library. The symbol ZOT, declared in the OUTER
library, refers to the symbol CAB_FIELDS, declared in the INNER library;
if, in a subsequent compilation, the OUTER library is used without the
INNER library the declaration of CAB_FIELDS will not be available.

Macros 16-31

Chapter 17 Condition Handling

17.1 Introduction to Condition Handling.

17.1.1 Routines.
17.1.2 Signals. . .
17.1.3 Processing .

17.2 Enable-Declarations

17.2.1 Syntax
17.2.2 Restrictions
17.2.3 Semantics

17.3 Signaling

17.3.1 Condition Values.
17.3.2 Explicit Signals.
17.3.3 Implicit Signals. .
17.3.4 Unwind Signals ..

17.4 Condition Handling Routines.

17.4.1 Restrictions
17.4.2 Parameters.

17.4.2.1 The Signal Parameter
17.4.2.2 The Mechanism Parameter.
17.4.2.3 The Enable Parameter.

17.4.3 Handler Options . . .

17.4.3.1 Continuation
17.4.3.2 Resignaling .
17.4.3.3 Unwinding .

17.5 Condition Handling Flow of Control

17.5.1 Definition

17.5.1.1 Normal Flow of Control
17.5.1.2 Modified Flow of Control for Nested Signals.

17.5.2 Discussion

17.5.2.1 Examples of Flow of Control
17.5.2.2 Recursive Handlers
17.5.2.3 Condition Handling and Linkage Interactions

17.6 Examples ...

17.6.1 Accessing and Defining Condition Values

17.6.1.1 Condition Values in BLISS-16
17.6.1.2 Condition Values in BLISS-32
17.6.1.3 Condition Values in BLISS-36

17.6.2 A Recursive Descent Parser.
17.6.3 Performance Measurement
17.6.4 Target Operating Systems and Condition Handling.

17.6.4.1 PDP-II Operating Systems
17.6.4.2 The VAX/VMS Operating System
17.6.4.3 TOPS-I0 and TOPS-20 Operating Systems.

17-1

17-1
17-2
17-2

17-3

17-3
17-4
17-4

17-5

17-5
17-5
17-6
17-6

17-6

17-7
17-8

17-8
17-9
17-9

· 17-10

· 17-10
.17-11
.17-11

.17-12

· 17-12

· 17-12
· 17-13

· 17-14

.17-14

.17-18

.17-19

.17-19

.17-19

· 17-19
· 17-21
· 17-23

· 17-26
· 17-29
· 17-29

· 17-29
· 17-29
· 17-30

Chapter 17
Condition Handling

Condition handling is the response to an unusual event that is signaled during
execution of a program. The "unusual" event is often the detection of an
error, but need not be; it could for example be part of a scheme to measure the
performance of a program. This chapter describes the features of BLISS that
support condition handling.

Condition handling involves the BLISS language together with the target
hardware and software system. For additional system details, see the respec­
tive hardware and operating system reference manuals, as well as the respec­
tive BLISS User's Guides.

17.1 Introduction to Condition Handling

Condition handling begins when an event or situation is signaled by a call on
one of the executable-functions SIGNAL or SIGNAL_STOP. The signal is
directed to a part of the system called the Condition Handling Facility
(CHF). The CHF retains control until the unusual event has been dealt with;
but the CHF can, and usually does, call upon user routines for assistance.
Then, depending on the outcome, program execution continues or is termi­
nated.

17.1.1 Routines

Condition handling involves the interaction of three kinds of routines. First is
a signaler routine, which contains code that generates the signal, either expli­
citly or implicitily. Second are handler routines, which are called upon by the
CHF to provide the desired response to a signal. Third are establisher routines
that contain a special declaration, the enable-declaration, that associates a
handler routine with the establisher routine.

The three kinds of routines just described are not new kinds of routines; they
are routines that are used in a new way, to play special roles in condition
handling. A single routine can play two or three of these roles at the same
time; in fact, a routine can even establish itself as its own condition handler.

17-1

Furthermore, a single routine can be used in many places; for example, a
single routine can be established as the handler routine by many establisher
routines.

17.1.2 Signals

A signal can be generated in three ways. First, a signal can be explicitly
generated by a call on the executable,·function SIGNAL or SIGNAL_STOP.
Second, a signal can be implicitly generated by the hardware or the software
system as a result of a condition detected during program execution. Third, a
special kind of signal, the unwind signal, can be indirectly generated by a
handler routine by means of a call on the executable-function SETUNWIND.

When a signal is generated, a data segment termed the signal vector is used to
describe the condition. This vector contains a condition value, which is an
encoding of the primary description of the condition that caused the signal.
The encoding of the condition value is defined by software conventions and is
the same for all conditions. The remaining elements of the signal vector pro­
vide suplementary information about the condition; this information can vary
from one condition to another.

17.1.3 Processing

When condition handling is initiated1 the CHF searches the stack of routine
calls for the most recently established handler. The handler is called by the
CHF with three parameters giving, respectively, values from the signaler (one
of which is a condition value), values from the CHF itself, and values from the
establisher of the handler. The handler uses this information to determine
what action to take in response to the condition.

The handler indicates to the CHF how condition handling for the signal
should proceed after the handler returns to the CHF. In the simplest case, the
handler requests the CHF to return to the signaler. This completes condition
handling for that signal.

The handler can also request resignaling. In this case, CHF searches for the
next handler in the stack of routine calls and calls it. The search for and
calling of successive handlers continues as long as each handler in turn re­
quests resignaling.

Finally, the handler can request unwinding. Unwinding causes the execution
of various routines to be terminated by removing each routine's stack frame
from the stack of routine calls as though the routine had returned normally.

During unwinding, the handler of any routine that is being terminated is
called (a second time) to give each handler an opportunity to perform any
actions necessary on behalf of the establisher in order for the establisher to
complete properly. Examples of such actions are closing files opened by the
establisher, releasing dynamically allocated storage, adjusting counters and
flags, and so on. Normal execution resumes after the call to the establisher of
the handler that requested unwinding. This completes condition handling for
that signal.

17-2 Condition Handling

The description of condition handling is given in five parts. The first three
parts present the BLISS language features relevant to the three kinds of
routines involved in condition handling. First, enable-declarations, used in
establisher routines, are ~escribed. Second, signals and the means by which a
signaler routine initiates condition handling are described. Third, handler
routines, their parameters and the means by which a handler directs CHF
processing are described. The fourth part describes the flow of control during
condition handling among the three kinds of routines. The fifth part gives
examples of the application of condition handling.

17.2 Enable-Declarations

An enable-declaration is the means by which one routine, an establisher,
identifies another routine as a handler routine. The association is established
at the beginning of the establisher's execution and lasts throughout the execu­
tion of that routine and any routines that it calls. The association is automati­
cally broken when the establisher routine returns.

In addition to specifying the handler routine, the establisher may also specify
parameters that will be passed to the handler when, and if, the handler is
actually called. The following example illustrates this:

ROUTINE >«Y,2) ::
BEGIN
E}-(TERNAL ROUT I NE

LOCAL
L: 1,IOLAT I LE ;

ENABLE
}-(H (L) ;

Routine X establishes the routine XH as its handler and specifies the address
of a local data segment, L, to be passed to the handler when the handler is
called.

17.2.1 Syntax

enable- ENABLE routine-name
declaration

{ (enable-actual , ...) }
nothing

{ own-name }
ena ble-actual global-name

forward -name
local-name

routine-name

~ own-name
global-name

f
name

forward -name
local-name

Condition Handling 17-3

17.2.2 Restrictions

An enable-declaration must appear only in the outermost block of a routine­
definition.

Only one enable-declaration can appear in the outermost block of a routine­
definition. (This does not prohibit a nested routine, as well as the outer
routine, from containing an enable-declaration.)

In BLISS-16 and BLISS-32, a routine that contains an enable-declaration
must be declared with a linkage-attribute that is itself declared with a link­
age-type as follows: the JSR linkage-type in BLISS-16, or the CALL link­
age-type in BLISS-32; observe that the predeclared default linkage satisfies
this restriction in each case. Further, no EXTERNAL REGISTERs or output­
registers are permitted.

The routine-name given in an enable-declaration must be the name of a
routine declared in a routine- or bind-routine-declaration.

In BLISS-16 and BLISS-32, the linkage-attribute of the handler routine­
name given in the enable-declaration must be the predefined linkage-attri­
bute BLISS.

Each data segment name that appears as an enable-actual parameter in an
enable-declaration must have the volatile-attribute specified in its declara­
tion.

If the handler routine can potentially modify any data segment other than an
enable-actual data segment (for example, a data segment whose address is
given by the contents of an enable-actual parameter), that data segment must
be declared with the volatile-attribute.

17.2.3 Semantics

The enable-declaration establishes a given routine as the routine to handle
any software- or hardware-detected conditions that are signaled during the
execution of the routine containing the enable-declaration. The execution of
the establisher includes the execution of any routines that it calls, directly or
indirectly. However, it mayor may not include the execution of any handlers
as described in Condition Handling Flow of Control (see Section 17.5).

The enable-actual parameters given in the declaration are the names of data
segments whose address values are passed to the handler when and if it is
called.

An enable-actual parameter can be the name of a local data segment (de­
clared LOCAL or STACKLOCAL) and if so, that data segment is implicitly
initialized to all zero bits before the handler routine is established.

The enable-declaration does not, of itself, call the given handler routine.

17 -4 Condition Handling

17.3 Signaling

Signaling initiates condition handling and thereby indicates that a particular
event or condition has occurred. A signal can be explicitly generated by call­
ing one of the executable-functions SIGNAL or SIGNAL_STOP, can be
implicitly generated by hardware detected error conditions (such as an access
violation or arithmetic overflow) and can be indirectly generated by a handler
routine request for unwinding.

All signals identify a condition by means of a vector that contains a condition
value. The vector can also contain additional values that provide auxiliary
information about the condition.

17.3.1 Condition Values

A condition value is a single fullword value that encodes the identity and
severity of the condition. The severity field is encoded in the low-order three
bits and the identity field in the remaining high-order bits. In BLISS-16, the
identity field consists of all 13 of the high order bits of the 16-bit word. In
BLISS-32 the identity field consists of the next 25 bits (above the severity
field), and in BLISS-36 consists of the next 29 bits, leaving the high-order
four bits for other purposes in both dialects.

When accessing a condition value to determine which condition is being re­
ported, it is necessary to examine only the identity field, excluding the re­
mainder. The same condition identity value may be signaled with different
severity values at different times.

A more detailed description of condition value representation is given in Sec­
tion 17.6.1, along with example declarations for conveniently creating and
accessing condition values.

17.3.2 Explicit Signals

BLISS programs can explicitly generate a signal by calling one of the execut­
able-functions SIGNAL or SIGNAL_STOP. These functions are defined as
follows:

SIGNAL(condition-value)
SIGNAL(condition-value, parameter , ...

Initiates condition handling for the condition indicated by the given
condition-value. If parameters are given in addition to the condition­
value, these values are included in the signal vector (see Section 17.4.2.1)
passed to each handler that is called.

The function returns if and only if a handler for the condition requests
continuation. (In BLISS-32, the V AXNMS system establishes a default
"catch-all" handler for all signals; see Section 17.6.4.2.)

Condition Handling 17-5

The function returns a value if and only if a handler assigns a returned­
value to the mechanism vector (see Section 17.4.2.2); otherwise, the
value is undefined.

SIGNAL_STOP(condition-value)
SIGNAL-STOP(condition-value, parameter , ...

Initiates condition handling for the condition indicated by the given
condition-value. A condition-value with the severity field replaced by the
code for severe error (STS$K_SEVERE, see Section 17.6.1) is included
in the signal vector passed to each handler that is called. If parameters
are given in addition to the condition-value, these values are also in­
cluded in the signal vector passed to each handler.

The function does not return.

SIGNAL and SIGNAL_STOP are identical in their actions, with two excep­
tions. First, if SIGNAL is called control may eventually return to the caller
depending on the actions of the handler, while if SIGNAL_STOP is called
control will not return to the caller. Second, the condition-value of a SIG­
NAL_STOP call is changed to indicate severe error while the condition-value
of a SIGNAL call is used without modification.

Information can be returned from a handler to a signaler if the signaler in­
cludes a parameter in the call to SIGNAL that gives the address of a data /
segment where the information should be assigned by the handler.

17.3.3 Implicit Signals

Signals may be generated by the system in response to a hardware detected
condition or an operating system detected condition. For hardware conditions,
the system uses the information available from the hardware and simulates a
call to SIGNAL as though SIGNAL were called at the instruction that caused
the error (either before or after the instruction, depending on the target sys­
tem and the type of hardware condition). Thereafter, processing is the same
as for explicitly generated signals.

17.3.4 Unwind Signals

The handler of a condition may cause the routine that generated a signal to be
terminated. In fact, many routines may be terminated in this "abnormal"
way, termed unwinding. During unwinding, the handler of each routine that is
being terminated is called with a condition value indicating that the estab­
lisher routine is being terminated. This particular condition is termed the
unwind signal and some special rules apply.

Unwind signals are further discussed in the next section.

17.4 Condition Handling Routines

A condition handling routine is a routine that is declared by some other
routine to be a handler. The purpose of a condition handling routine is to
accept and deal appropriately with some set of signaled conditions that may

17 -6 Condition Handling

April 1983

occur during the execution of the establisher. In nearly all respects, a handler
routine is like any other routine: it can call other routines, call the operating
system for service, and so on. It can establish a handler for itself and in some
cases that handler nlight even be itself.

A handler is special in that it is called in response to conditions that are
signaled by other routines. It is unlikely that a routine coded for use as a
handler would ever be called directly. Because handlers are called by system
software, and not directly by user written calls, they must conform to system
defined restrictions and conventions.

A handler is called by the CHF with three actual parameters. The first pa- •
rameter is the address of a vector, termed the signal vector, that contains the
parameter values specified in the call to SIGNAL or SIGNAL_STOP that
generated the signal. (In BLISS-32, additional values are supplied as well.)
The second parameter is the address of a (second) vector, termed the mecha­
nism vector, that contains values provided by the CHF software. The third
parameter is the address of a '(third) vector, termed the enable vector, that
contains the enable-actual parameter values specified in the enable-declara-
tion of the routine that established the handler. Thus, a handler has available
information from both the routine generating the signal and the routine that
established the handler, as well as certain system information, to determine
how to deal with the condition.

A handler is called as a result of every signal that occurs during the execution
of its establisher and that is not dealt with by another handler. The first
responsibility of every handler is to examine the condition value of each signal
to determine whet her the signal is to be dealt with at all. It is quite unusual
for a specific handler to be relevant to every possible signal that can occur.

If a signal is not the unwind signal, a handler m lIst request the CHF to further
process the signal in one of the following ways:

• Continue t he routine that generated the signal.

• Resignal the same, or possibly a modified, signal to some other handler.

• Unwind.

The next three sections discuss condition handling routines in detail. The first
specifies the restrictions that must be met by every handler routine. The
second describes the parameters to a handler routine. The third specifies how
a handler routine requests each of the three options.

17.4.1 Restrictions

In BLISS-16 and BLISS-32, a condition handling routine must be declared
with the predeclared linkage-attribute BLISS (see Section 13.5). Observe that
this will be the default unless another default is established by a LINKAGE
switch-item (see Section 18.2) or module-switch (see Section 19.2).

A condition handling routine must be declared with three formal parameters.

A condition handling routine must not have the NOVALUE attribute unless
it always requests unwinding for every signal.

Condition Handling 17-7

A condition handling routine must fetch from or assign to only data segments
that satisfy one of the following requirements:

• A data segment whose scope is limited to the body of the condition
handling routine itself.

• An element of one of the vectors whose addresses are passed to the han­
dler as parameters.

• Any data segment that is declared with the volatile-attribute.

17.4.2 Parameters

A condition handling routine is called with three parameters. Each parameter
is the address of a counted vector containing the relevant information. A
counted vector is a vector of fuUwords in which the first element (with index
value 0) contains the number of additional elements in the vector. The first
element is always present and contains the value 0 if there are no additional
elements in the vector.

The following BLISS code fragment shows a template for the declaration of a
handler routine. This template is used in the remainder of this section in the
discussion ot each parameter of a handler routine. The template is:

ROUTINE HANDLER(SIG. MECH, ENBL) =
BEGIN
MAP

BIND

END;

SIG: REF VECTOR, I Sisnal vector
MECH: REF VECTOR, I Mechanism vector
E N B L: REF t.) E C TOR j lEn a b 1 e ' .. ' e c tor

COND = SIGel]: CONDITION_VALUE,
RETURN_VALUE ~ MECH

[

',I"BLISS1G(l)
'X.BL I SS3G (1)
/',BLISS32(3)
] j

In this template, the map-declaration (see Section 10.10) associates the REF
VECTOR structure-attribute (see Section 11.9.1) with each of the routine
formal names for convenient referencing of each vector whose address is
passed to the handler. The bind-declaration (see Section 14.3) defines mne­
monic names to two of the most commonly accessed elements of the passed
vectors. CONDITION_VALUE is the name of a macro whose expansion
gives the attributes appropriate for accessing a condition value. Its definition
is presented in Section 17.6.1. The predeclared macros %BLISS16,
~cBLISS32, and %BLISS36 are described in Section 16.2.4.

17.4.2.1 The Signal Parameter - The first parameter, SIG, contains the
address of a signal vector, which is a counted vector that contains the value(s)
of the actual parameters of the call to SIGNAL or SIGNAL-STOP. In
BLISS-32, the CHF adds two values following those given in the SIGNAL or
SIGNAL_STOP call: the hardware program counter (PC) and the program

17-8 Condition Handling

April 1983

status longword (PSI.) of the ~exf instruction to execute in the case that the
handler requests continuation of the signaler. In the context of the above
template:

.SIG[n]

.SIG[1]

.SIG[O]

COND

is the n'th actual parameter value, where, in particular

is the condition value,

is the nurnher of actual parameters, and

is the address of the condition value.

For explicit signals, the actual parameter values are given by the parameters
of the call to SIGNAL or SIGNAL_STOP.

For implicit signals and the unwind signal, the actual parameter values are
defined by the system. These values and their encodings are not described in
this manual.

17.4.2.2 The Mechanism Parameter - The second parameter, MECH, con­
tains the address of a mechanism vector, which is a counted vector that
contains the values of parameters provided by the CHF. These values provide I
specialized software status information about the signal being processed. Of
the several values that may be present, only one is described in this manual.

The element of the mechanism vector with address

MECH[l] in BLISS-l6 and BLISS-:36, or
MECH[3] in BLISS-32

in the preceding template, is a data segment to which a handler routine can
assign a value to be used as a returned-value. A handler can assign a value to
this location in two situations.

When a handler requests continuation of the signaler routine, the CHF uses
the contents of this location as the return value of the SIGNAL call. By
assigning to this location, the handler can determine the return value. If the
handler does not assign to this location, the returned value is undefined.

After unwind processing, the CHF uses the contents of the return value loca­
tion in the mechanism vector as the return value of the last routine to be
terminated. By assigning to this location, the handler can determine the
establisher's return value. By this means, the establisher routine returns a
meaningful value to its caller even though it is terminated by the CHF. A
handler for any establisher that returns a value (that is, does not have the
NOVALUE attribute) must assign an appropriate return value to the return
value location in the mechanism vector during unwinding.

17.4.2.3 The Enable Parameter - The third parameter, ENBL, contains the
address of an enable vector, which is a counted vector that contains the values
of the enable-actual parameters of the ENABLE declaration of the establisher
routine. In the context of the earlier template, the expression

.ENBL[n]

.ENBL[O]

is the n'th enable-actual parameter value, and

is the number of enable-actual parameters.

Condition Handling 17-9

The enable-declaration requires that each enable-actual parameter must be
the address of a data segment. Consequently, within the handler routine it
may frequently be convenient to bind (Section 14.:3) mnemonic names to
these address values, as in:

BIND
PARAMl = .ENBL[l],
)<YZZY = .ENBL[2J;

Enable-actual parameters can be the names of local data segments declared
in the establisher routine. If a recursive routine establishes a handler, the
same handler will be used for all active calls of the recursive routine. If the
handler is called and resignals the condition, the same handler is repeatedly
called for each active call of the establisher routine. In each case, the address
of a local data segment name passed to the handler is the appropriate address
in the respective active call of the establisher.

17.4.3 Handler Options

For every condition other than the unwind signal, a handler must request one
of three subsequent actions for the CHF to perform after the handler returns.

1. The handler can deal appropriately with the condition and then cause
the routine that initiated the signal to continue.

Continuing the routine that initiated the signal completes processing of
the condition.

2. The handler can resignal using the same, or possibly a modified, condi­
tion value.

Resignaling with the same condition value is the normal response for a
condition that the handler does not deal with. Resignaling causes the
CHF to resume searching for a handler that will deal with the condition.

3. The handler can deal appropriately with the condition and then termi­
nate the execution of the routine that generated the signal as well as the
other routines called by the establisher by unwinding.

Unwinding causes a special unwind signal to be generated. The han­
dlers of all routines that are being terminated will be called with this
condition. Unwinding also completes processing of the condition.

These options are not available when a handler is called for the unwind signal.

The means of requesting these actions are presented in the following sections.

17.4.3.1 Continuation - A handler requests continuation of the routine that
generated the signal by returning a true value (low bit set to 1) to the CHF.
The handler must not also call SETUNWIND, as described in Section
17.4.3.3.

17-10 Condition Handling

April 1983

After the handler returns to the CHF, the CHF returns from the call to I
SIGNAL in the routine that generated the signal.

A handler must not request continuation for a signal that was generated by
calling SIGNAL_STOP. That is, a handler must not request continuation if
the severity field of the condition-value indicates severe error.

17.4.3.2 Resignaling - A handler requests resignaling by returning a false
value (low bit set to 0) to the CHF. The handler must not also call
SETUNWIND, as described in 17.4.3.3.

After the handler returns to the CHF, the CHF searches for another handler I
routine to call as described in Section 17.5.

When resignaling is requested, the same signal vector is passed to subsequent
condition handlers that are called. Thus, the severity and/or the condition
identification can be changed by the handler by assigning new values to the
condition value element of the signal vector. If condition handling is initiated
by a SIGNAL_STOP call, however, the severity field is set to severe error by
the CHF each time a handler is called. Consequently, the severity field cannot
be changed by a handler in this case.

Changing the condition value and resignaling is quite different than generat­
ing a new signal by calling SIGNAL or SIGNAL_STOP in the handler. In the
latter case, processing of the first signal is suspended until processing of the
second signal is completed; then processing of the first signal resumes.

17.4.3.3 Unwinding - A handler requests unwinding by calling the execut­
able-function SETUNWIND. The function is defined as follows:

SETUNWIND()
SETUNWIND(parameter) _ <= 32 Only
SETUNWIND(parameter , parameter) <= 32 Only

Requests the CHF to initiate unwind processing after the currently exe- I
cuting handler returns to the CHF. (In BLISS-32, the two optional
parameters can be used to specify the routine level at which the unwind
will stop and the address where normal execution is to resume. These
parameters are not described in this manual.) The function does not
return a value in BLISS-16 or BLISS-36, and returns a V AXNMS de­
fined status value in BLISS-32:

When a handler requests unwinding the returned-value of the handler is
ignored.

The handler specifies the value to be used as the returned-value of the
establisher by assigning the appropriate value in the mechanism parame­
ter vector (see Section 17.4.2.2.) when the handler is called for the
unwind signal.

Condition Handling 17-11

I

In the default case, that is, when no parameters are given in the call to
SETUNWIND, all routines between and including the routine that gen­
erated the signal and the establisher of the handler are terminated. Exe­
cution resumes after the call to the establisher as though the establisher
had returned in the normal way.

Unwinding does not start immediately when SETUNWIND is called. The call
simply advises the CHF that unwinding is requested. When the handler even­
tually returns to the CHF, unwinding begins.

During unwind processing, the handler, if any, of each routine being termi­
nated is called with a condition value indicating an unwind is in progress. In
the default case, where the establisher is one of the routines being terminated,
the handler requesting the unwind will itself be called a second time to pro­
cess the unwind signal.

A condition handling routine can call other routines as part of its processing
and the request for unwinding can be made from any such routine. The call to
SETUNWIND need not be made in the topmost routine directly called by the
CHF.

It is invalid ~o request unwinding in any of the following cases:

• Condition handling is not in progress.

• An unwind request has already been made.

• Unwind signal processing is in progress.

17.5 Condition Handling Flow of Control

Condition handling flow of control refers to the order in which condition
handling routines are called during condition handling. The order is defined
in terms of the stack of routine calls that are active at the time a signal is
generated in combination with subsequent handler requests.

17.5.1 Definition

The definition of condition handling flow of control is given in two parts. The
first defines the flow of control for a signal that is generated when condition
handling is not in progress. The second defines the modified flow of control
that results for a signal that is generated while condition handling for a
previous signal is still in progress.

17.5.1.1 Normal Flow of Control - The generation of a signal begins a se­
quence of events that is carried out under the control of the CHF.

First, the CHF creates the signal vector and mechanism vector for use in
calling a handler. If the signal is generated by a SIGNAL_STOP call, the

17 -12 Condition Handling April 1983

severity field of the condition value in the signal vector is assigned the code for
severe error.

Next, the stack of routine calls is searched, beginning with the routine that
generated the signal. If that routine did not establish a handler, then the
routine that called it is considered and so on, until the most recently called
routine is found that did establish a handler. This handler is called with three
parameters as described in Section 17.4.2.

Following the return from the handler, processing depends upon which option
is requested by the handler.

If continuation is requested, then the CHF returns to the signaler and condi­
tion handling for that signal is completed.

If resignaling is requested, then the CHF continues searching the stack prior
to the establisher of the handler just called. If another handler is found, then
it is called in the same way as the previous handler. This process of searching
for and calling successive handlers continues as long as each handler requests
resignaling. If every handler indicates resignaling, that is, no handler is found
that causes completion of the signal, then system defined error processing
takes place.

In BLISS-16, if no handler is found the program exits. In BLISS-36, if no
handler is found a message is displayed on the user's terminal and the pro­
gram exits.

In BLISS-32, the VAX/VMS system establishes a "catch-all" handler to pro­
vide default handling for all signals. Consequently, this handler will be called
if no user handler is found or if every user handler requests resignaling. The
action of this handler is described in Section 17.6.4.2.

If unwinding is requested, then the handler just called and its establisher are
remembered and a new search is started. This search starts over at the sig­
naler routine just as in the first search. This time, however, each routine is
terminated by removing its stack frame from the stack of routine calls. If the
routine has a handler, the routine is terminated after the handler is called
with a condition value that indicates that unwinding is in progress. The
handler does not have the three options that are available during the first
search: SETUNWIND must not be called and the value of the handler is
ignored. This second search completes after the handler that initiated
unwinding is called the second time. When that handler returns, the estab­
lisher is terminated and normal execution resumes immediately following the
call to the establisher.

17.5.1.2 Modified Flow of Control for Nested Signals - A nested signal is a
signal that is generated while condition handling for a previous signal is in
progress. A nested signal occurs, for example, if a handler routine calls SIG­
N AL. When a nested signal is generated, condition handling for the previous

Condition Handling 17-13

signal is suspended until condition handling for the nested signal is com­
pleted. Then processing resumes for (he previous signal.

Processing of a nested signal is the same as for a non-nested signal with one
exception: the search for handlers is modified to exclude any handlers that
have been called for the previous signal. Observe that the handler that is
active when the nested signal is generated is excluded by this rule. However,
this handler can itself have a handler and if so, this (second) handler is
included in the modified search.

If the handler of a previous signal is terminated (so that it cannot request
CHF processing), because of an unwind request for a nested signal, then all of
the routines considered during condition handling of the previous signal are
also terminated. The handlers of the combined set of routines being termi­
nated are all called with the unwind signal in the inverse order to which they
were established. Observe that more than one previous signal can be affected
in this way. Completion of unwinding completes condition handling for all of
the affected signals.

17.5.2 Discussion

Several aspects of condition handling flow of control are discussed. First,
examples of the detailed sequence of events are illustrated. Second, recursive
handlers are considered. Finally, interactions between condition handling and
routine linkages are discussed.

17.5.2.1 Examples of Flow of Control- Example sequences of flow of control
during signal processing are illustrated using the following diagram:

\
A

\
B - - - - - - - - - - - BH

\ \
C - - - - - - - CH F

\ \ \
D E SETUNWIND

\
SIGNAL

In this diagram, a diagonal line indicates that the upper routine calls the
lower routine, e.g., A calls B, B calls C, and so on. A horizontal line indicates

17 -14 Condition Handling

that the left routine establishes the right routine as a handler, e.g., routine C
establishes routine CH as its handler.

The example begins by assuming that routine A is executing, that is, A has
been called by some other routine not shown in the diagram.

Routine A does not establish a handler. At some point in its execution A calls
routine B. B establishes routine BH as a handler; BH is not called when it is
established. B calls routine C. Routine C establishes handler CH and then
calls D. D does not establish a handler but does generate a signal.

At this point the stack of routine calls consists of A, B, C and D with D being
the most recently called (the call to SIGNAL does not count). Routines Band
C have established handlers, but A and D do not.

The CHF searches for a handler. First routine D is considered, but no 'handler
is established. Next, routine C is considered. A handler is established and,
thus, CH is called. CH calls another routine E which returns to CH which
returns to the CHF. What happens next depends on the option requested by
CH.

First, suppose that CH requests continuation. In this case, the CHF returns
to D and D continues. The complete sequence of events is summarized as
follows:

A calls B
B establishes handler BH
B calls C
C establishes handler CH
C calls D
D calls SIGNAL
CHF calls CH
CH calls E
E returns to CH
CH returns to CHF requesting continuation
CHF returns to D
D continues

Next, suppose that CH requests resignaling (instead of continuation). In this
case, the CHF continues searching for a handler by considering routine B. B
has a handler, and, thus, BH is called. BH calls F and F calls SETUNWIND.
The CHF records the fact that an unwind is requested and returns to F. F
returns to BH and BH returns to CHF. The value of BH is not used by CHF
because unwinding has been requested. At this point, the second search

Condition Handling 17-15

starts. D does not have a handler and is terminated. CHF calls CH which
returns to CHF. C is terminated. CHF calls BH which returns to CHF. This
completes the second search. B is terminated. Finally, CHF "returns" to A
using the returned-value obtained from the mechanism vector as though B
had returned in normal fashion and A continues.

The sequence of events is summarized as follows (the first nine events are the
same as the preceeding summary):

A calls B
B establishes handler BH
B calls C
C establishes handler CH
C calls D
D calls SIGNAL
CHF calls CH
CH calls E
E returns to CH
CH returns to CHF requesting resignaling
CHF calls BH
BH calls F
F calls SETUNWIND
CHF records the unwind request
CHF returns to F
F returns to BH
BH returns to CHF
D is terminated
CHF calls CH with the unwind signal
CH returns to CHF
C is terminated
CHF calls BH with the unwind signal
BH returns to CHF
B is terminated
CHF "returns" to A as though B had returned
A continues

Observe in this example that handler BH must assign the return value of B for
the call from A when BH is called for the unwind signal. If BH assigned the
return value the first time it was called, there is the possibility that some
other handler, such as CH in this example, will assign a return value when it
is called with the unwind signal. Thus, the returned value intended by BH
would be lost.

17-16 Condition Handling

For an example of nested signal processing, the following diagram is used:

\
A---AH

\
B - - - - - - - BH - - - BHH

\ \
C D - - - DH

\ \
SIGNAL SIGNAL

The initial sequence of events is apparent from the previous examples and is
summarized by:

A establishes handler AH
A calls B
B establishes handler BH
B calls C
C calls SIGNAL
CHF calls BH
BH establishes handler BHH
BH calls D
D establishes handler DH

At this point D generat"es a nested signal. The modified search in this case
considers, as potential establishers, only routines D, BH, A and so on.
Routines C and B are excluded from consideration. Assume that DH and
BHH request resignaling and AH requests continuation. Events proceed as
follows:

D calls SIGNAL
CHF calls DH
DH returns to CHF requesting resignaling
CHF calls BHH
BHH returns to CHF requesting resignaling
CHF calls AH
AH returns to CHF requesting continuation
CHF returns to D

At this point processing of the nested signal is complete and processing of the
first signal resumes. The subsequent sequence of events is apparent and not
filled out here.

As a final possibility, assume that for the nested signal just illustrated that
DH and BHH request resignaling (as before) and AH requests unwinding

Condition Handling 17 -17

(instead of continuation). In this case, control will not return to D or BH
because they will be terminated. Consequently, BH cannot request an option
for the first signal. Processing of the first signal must, consequently, be termi­
nated as well. In effect, the unwind requested by AH for the nested signal also
applies to the previous signal. (This can apply to yet a third signal if the
previous signal was itself a nested qignal, and so on.) The second search of the
stack considers all of the routines that are being terminated including those so
far considered by the first signal. In this example, the order of consideration is
D, BH, C, Band A. Events procei'd as follows (starting when AH is called):

AH calls SETUNWIND
CHF records unwind request
CHF returns to AH
AH returns to CHF .
CHF calls DH with the unwind signal
DH returns to CHF
D is terminated
CHF calls BHH with the unwind signal
BHH returns to CHF
BH is terminated
C is terminated
CHF calls BH with the unwind signal
BH returns to CHF
B is terminated
CHF calls AH with the unwind. signal
AH returns to CHF
A is terminated
CHF "returns" to A's caller (not shown)
A's caller continues

17.5.2.2 Recursive Handlers - A recursive handler routine is a handler rou­
tine that establishes itself as a handler or that calls (directly or indirectly)
another routine that establishes it as a handler. Consequently, it is possible
during the execution of such a handler that it will be recursively called to
handle a nested signal.

Programming a recursive handler can be more difficult than programming a
non-recursive handler, just as programming any recursive routine can be more
difficult than a non-recursive routine. It is necessary to carefully consider the
sequence of events that may result from the combination of the two (or more)
calls of the same routine.

Observe that each call of the handler will be caused by a different signal.

17 -18 Condition Handling

17.5.2.3 Condition Handling and Linkage Interactions - The flow of control
during the processing of a signal causes various routines to be called in an
order that may not be apparent when examining a program. The CHF soft­
ware depends on calling sequence conventions to assure proper accounting for
the machine registers and other machine status values during this process.

The linkage-declaration (see Section 13.3) provides the ability to choose many
calling sequence variations other than the predefined linkages BLISS and
FORTRAN. When using such "non-standard" linkages there are various com­
plex rules and restrictions that must be followed. Some of these would not be
necessary if condition handling facilities were not part of the BLISS language.

In BLISS-32, observe that a routine whose linkage-attribute is defined with
JSB linkage-type must not contain an enable-declaration and must not be
declared as a handler. Such routines cannot directly interact with the CHF
software, except to call the functions SIGNAL, SIGNAL_STOP, or
SETUNWIND.

17.6 Examples

The following sections give examples of applying various aspects of condition
handling. Because condition handling involves the interaction of several
routines, complete examples are necessarily quite lengthy. The examples
given below leave out many details in order to be as brief as possible.

The first section presents declarations that are suitable for accessing and
creating condition values. Then following sections illustrate applications of
condition handling.

17.6.1 Accessing and Defining Condition Values

Condition values have similar but not identical encodings in BLISS-16 and
BLISS-32. The following two sections give the encodings used, and declara­
tions for conveniently accessing and defining condition values, in BLISS-16
and BLISS-32, respectively.

17.6.1.1 Condition Values in BLlSS-16 - In BLISS-16, a condition value is a
single fullword value that is encoded with two primary fields: a severity field
in the low-order 3 bits, and an identity field in the high-order 13 bits.

The identity field is itself divided into two fields: the condition identification
field and the customer definition flag.

Condition Handling 17 -19

The twelve low-order bits of the identity field (bits 3 through 14 of the condi­
tion value) are the condition identification field. This field encodes the spe­
cific condition for the signal.

The high-order bit of the identity field (bit 15 of the condition value) is the
customer definition flag. It distinguishes condition identification values for
Digital supplied software (bit set to 0) and non-Digital supplied software (bit
set to 1).

Condition values defined for application use must always have bit 15 set to 1
in order to avoid conflict with Digital defined values.

A condition value is a BLOCK data structure (see Section 11.9.3). The follow­
ing declarations can be used to describe this structure:

FIELD
CONDIT_FIELDS =

SET

MACRO

STS$I,J_SEI,JER I TY
STS$I.J_SUCCESS
STS$I.J_COND_ I 0
STS$I.J_CODE

STS$I.J_CUST _DEF
TES;

[OtOt3t(l] t

[OtOtltO]t

[Ot3t13tO]t

[0 t3 tl2 to] t

[0t15t1tO]

Severity field
Success field
Identity field
Code for condition
only

Customer definition flag

CONDITION_VALUE = BLOCK[lJ FIELD(CONDIT_FIELDS) %;

The following literal-declaration can be used to declare names for the codes
used for the severity field of a condition value:

LITERAL
STS$K_WARNING o t Warning
STS$K_SUCCESS 1 t Successful Completion
STS$K_ERROR 2 t Error
STS$K_INFO 3 t Information
STS$K _SEI,JERE a; Severe Error

Observe that these codes are chosen so that testing of the low order bit of the
severity field will distinguish a successful condition (low bit equal to 1) from
an unsuccessful condition (low bit equal to 0).

In the above declarations, the names used are the same as the names used in
BLISS-32 (see Section 17.6.1.2), which are based on names used in the
VAXNMS operating system.

17 -20 Condition Handling

As an aid to creating a condition value, the following keyword-macro-declara­
tion is useful:

KEVWORDMACRO

STS$I.JALUE (

SE1.JER I TV

CODE,

CUST_DEF

(SEI.JER I TV AND 7) OR

(CODE AND '7,,0/7777/) .'. 3 OR

IF CUST _DEF NEO 0

THEN 1 .'. 15

ELSE 0)

'7" ;

default is severe error
no default
default is user definition

Comparing two condition values to determine if they represent the same
condition must exclude the severity field. The following macro is useful for
this purpose:

MACRO
STS$MATCH(A,B)

(((A) AND '7,,0/177770/) EOL « B) AND '7,,0 J 177770 J » '7,,;

The macro returns true if two given condition values are equal and false
otherwise.

The CHF -defined condition value needed in order to test for an unwind signal
is provided as a global literal value. The following declaration can be used to
declare the name of this literal:

EHTERNAL LITERAL
SS$UNW;

17.6.1.2 Condition Values in BLISS-32 - In BLISS-32, a condition value is a
single fullword value that is encoded with three primary fields (proceeding
from low-order to high-order): a severity field of three bits, an identity field of
25 bits, and a field of four bits that is reserved for system use.

The identity field is itself divided into two major fields: the message number
field and the facility code field.

The 13 low-order bits of the identity field (bits 3 through 15 of the condition
value) are the message number field. This field identifies the specific condi­
tion for the signal. The high-order bit (bit 15) distinguishes system wide codes
(bit set to 0) that are common to all software (including user programs) and
facility specific (component) codes (bit set to 1).

Condition Handling 17 -21

The 12 high-order bits of the identity field (bits 16 through 27 of the condition
value) are the facility code. This field identifies the specific software compo­
nent in which the signal is generated. The high-order bit (bit 27) distinguishes
Digital supplied software facilities (bit set to 0) and non-Digital supplied
facilities (bit set to 1).

Condition values defined for application use must always have both bits 15
and 27 set to 1 in order to avoid conflict with Digital defined values. Applica­
tion programs can use system wide message number values provided they are
used as defined for the V AXNMS system.

A condition value is a BLOCK data structure (see Section 11.9.3). The follow­
ing declarations can be used to describe this structure:

FIELD

CDNDIT_FIELDS =
SET

STS$l.I_SEl.lER I TY

STS$l.l_SUCCESS

MACRO

STS$l.l_COND_ I D

STS$l.I_MSG_NO

STS$l.I_FAC_S P

STS$l.l_CODE

STS$l.l_FAC_NO

ST-S$l.I_CUST _DEF

TES;

[0 tOt 3 to] t ! Severity field
[0 tOt 1 to] t ! Success field

! (subfield of severity)
[0 t:3 t25 to] t ! Identity field
[0 t:3 t 13 to] t ! Message number field
[0 t 15 t 1 to] t Facility-specific flag
[0 t:3 t 12 to] t Code for condition

only
[0 dB t12 to] t Facility code
[0 t 27 tit 0] Customer

definition flag

CONDITION_VALUE = BLOCK[l] FIELD(CONDIT_FIELDS) %;

The following literal-declaration can be used to declare names for the codes
used for the severity field of a condition value:

LITERAL

STS$K_WARNING

STS$K_SUCCESS

STS$K_ERROR

STS$K_INFO

STS$K_SEl.lERE

o t

1 t

2 t

3 t

LI ;

Warning
Successful Completion
Error
Information
Severe Error

Observe that these codes are chosen so that testing of the low order bit of the
severity field will distinguish a successful condition (low bit equal to 1) from
an unsuccessful condition (low bit equal to 0).

17-22 Condition Handling

As an aid to creating a condition value, the following keyword-macro-declara­
tion is useful:

KEYWORDMACRO
STS$I.JALUE

SEVERITY = STS$K_SEVEREt
CODEt
FAC_SP

o t

CUST_DEF = 1···27)
(SEI.IER I TY AND 7) OR
(CODE AND (1···13-1» ···3 OR
(IF FAC_SP NEQ 0

THEN 1 ... 15

ELSE 0) OR
(FAC_NO AND (1···12-1>)···16 OR
(IF CUST _DEF NEQ 0

THEN 1···27
ELSE 0)

/" ;

default is severe error
no default
default is facility
specific
arbitrary default
default is user definition

Comparing two condition values to determine if they represent the same
condition takes several steps. The following macro serves this purpose:

MACRO
STS$MATCH(AtB):i:

BEGIN
LOCAL

QQQQA: CONDITION_VALUEt
QQQQB: CONDITION_VALUE;

QQQQA = (A);
QQQQB = (B);
IF NOT (.QQQQACSTS$V_FAC_SPJ OR .QQQQBCSTS$V_FAC_SPJ)
THEN

.QQQQACSTS$V_CODEJ EQL .QQQQBCSTS$V_CODEJ
ELSE

.QQQQACSTS$V_COND_IDJ EQL .QQQQBCSTS$V_COND_IDJ
END 'X,;

This macro returns true if two given condition values are equal and false
otherwise.

The CHF -defined condition value needed in order to test for an unwind signal
is provided as a global literal value. The following declaration can be used to
declare the name of this literal:

E>-(TERNAL LITERAL
SS$_UNWIND;

17.6.1.3 Condition Values in BLISS-36 - In BLISS-36, a condition value is a
single fullword value that is encoded with three primary fields (proceeding
from low-order to high-order): a severity field of three bits, an identity field of
29 bits, and a field of four bits that is reserved for future use.

Condition Handling 17 -23

(Note that, in the following descriptions, bit positions are expressed in accor­
dance with the BLISS bit-numbering convention, i.e., bit 0 is the low-order or
"rightmost" bit and bit 35 is the high-order or "leftmost" bit.)

The identity field is itself divided into two major fields: the message number
field and the facility code field.

The 15 low-order bits of the identity field (bits 3 through 17 of the condition
value) are the message number field. This field identifies the specific condi­
tion for the signal. Message numbers with the high-order bit (bit 17) clear are
reserved for Digital supplied software.

The 14 high-order bits of the identity field (bits 18 through 31 of the condition
value) are the facility code. This field identifies the specific software compo­
nent in which the signal is generated. The high-order bit (bit 31) distinguishes
Digital supplied software facilities (bit set to 0) and non-Digital supplied
facilities (bit set to 1). •

Condition values defined for application use must always have both bits 17
and 31 set to 1 in order to avoid conflict with Digital defined values.

The four high-order bits (bits 32 through 35) are reserved for future use and
should be set to zero.

The following declarations may be used to access the various fields of the
BLISS-36 condition value:

F I EL.D

CONDIT_FIELDS

t1ACRO

SET

STS$l.J_SEl,JER I TY

S T S $l,J _ S U C CESS

STS$l.J_COND_ I D

STS$l.J_MSG_NO

STS$l,J _FAC_S P

STS$l,J_CODE

STS$l,J _FAC_NO

STS$l,J_CUST _DEF

[0,0,3,0],

[O,Otl,O],

[0,:3,29,0] ,

[0,3,15,0],

[0117tl ,0],

[0,3114,0] ,

[0,18,14,0] ,

[0,31 t1 ,0]

Severi ty field
Success field
(subfield of severity)
Identity field
Message number field
Facility specific flag
Code for condition

only
Facility code
Customer

definition flag

CONDITION_VALUE = BLOCK[l] FIELD(CONDIT_FIELDS) %;

The following literal-declaration can be used to declare names for the codes
used for the severity field of a condition value:

LITERAL

STS$K_WARNING

STS$K_SUCCESS

STS$K_ERROR

STS$K_INFO

STS$K _SEl,JERE

17 -24 Condi tion Handling

° ,
1 ,

2 t

3

Warning
Successful Completion
Error
Information
Severe Error

April 1983

Observe that these codes are chosen so that testing of the low order bit of the
severity field will distinguish a successful condition (low bit equal to 1) from
an unsuccessful condition (lo\y bit equ;ll to 0).

As an aid to creating a condition value, the following keyword-macro-declara­
tion is useful:

KEYWORDMACRO
STS$l,lALUE (

SEVERITY STS$K_SEVERE,
CODE,
FAC_SP 1" 17 ,

FAC_NO 0,

default is severe error
no default
default is facility

specific
arbitrary default

CUST_DEF = 1"'31) default is user definition

/., ;

(SEl.)ERITY AND $0 '7') OR
(CODE AND '7,,0' 37777 ') ,. 3 OR
(IF FAC_SP NEQ 0

THEN 1"17

ELSE 0) OR
(FAC_NO AND '7,,0' 37777') .. 18 OR
(IF CUST _DEF NEQ (>

THEN 1"31

ELSE 0)

Comparing two condition values to determine if they represent the same
condition takes several steps. The following macro is useful for this purpose:

MACRO
STS$MATCH(A,B)=

BEGIN
LOCAL

QQQQA: CONDITION_VALUE,
QQQQB: CONDITION_VALUE;

QQQQA = (A);
QQQQB = (B);
IF NOT (,QQQQA[STS$V_FAC_SPJ OR ,QQQQB[STS$V_FAC_SPJI
THEN

,QQQQA[STS$V_CODEJ EQL ,QQQQB[STS$V_CODEJ
ELSE

,QQQQA[STS$V_COND_IDJ EQL ,QQQQB[STS$V_COND_IDJ
END '7,,;

The macro returns true if two given condition values are equal and false
otherwise.

The CHF -defined condition value needed in order to test for an unwind signal
is provided as a global literal value. The following declaration can be used to
declare the name of this literal:

E)-{TERNAL LITERAL
SS$UNW;

Condition Handling 17-25

I

17.6.2 A Recursive Descent Parser

A recursive descent parser is a parser in which there is generally a one-to-one
correspondence between the syntactic rules of the language and routines that
parse constructs of the language. Each routine is designed to process one
syntactic name and calls other routines to parse non-literal parts of the syn­
tactic rule. The BLISS language is an example of a language that is suitable
for this kind of parsing technique.

To begin this example, assume tpat the following two syntactic rules are part
of a language to be parsed.

if-statement IF expression THEN statement

expression
{

name }
name + expreSSIOn
(expression)

Further, assume that a routine named READ_LEX is available that reads
the input for the parser, identifies the next lexeme, and assigns a code for the
kind of lexenle to a data segment named LEXTYPE. (This data segment
must be declared with the VOLATILE attribute because, as will be seen later,
its contents may be changed by a handler routine.) The following names of
lexical codes are used in the example:

Name of Code

LE)-(_ I F

LE)-(_ THEN

LE;CNAME

LE>(_PLUS

LE;<_LPAREN

LE)-(_RPAREN

Used For

Keyword IF
Keyword THEN
A name
PI us opera tor "+"
Left parenthesis "("
Right parenthesis ")"

The actual values for the codes are not important so long as they are distinct.

A routine to parse an if-statement can be coded as follows:

ROUTINE SIF: NOVALUE
BEGIN
READ_LE>(() ;
SE~< PRESS I ON () ;
IF .LEXTYPE NEQ LEX_THEN
THEN

BEGIN
ERROR ('Missins THEN');
RETURN
END;

READ_LE>(() ;
SSTATE'MENT() ;
END;

In this routine, the IF lexeme is recognized by some other parse routine which
then calls SIF. SIF calls READ_LEX to get the next lexeme in the input

17-26 Condition Handling

stream and then calls SEXPRESSION to parse an expression. When SEX­
PRESSION returns, the code for the first lexeme not accepted as part of an
expression is still contained in LEXTYPE. Next SIF determines whether that
lexeme is the keyword THEN. If not, an error is reported and SIF returns.
Otherwise, READ-LEX is again called to get a new lexeme, SSTATEMENT
is called to parse a statement, and SIF returns.

The routine SIF clearly illustrates the close correspondence between the syn­
tactic rule for the if-statement and the code that performs the parsing.

The code to parse an expression is more complicated, but is based on the same
kind of correspondence. However, the name of the routine given next, which
does the parsing for an expression, is SEXPRESSIONI instead of SEXPRES­
SION. The reason for this is discussed later. The code is:

LITERAL
EXP_ERROR = STS$VALUE(CODE = 1);

ROUTINE SEXPRESSION1: NOVALUE
BEGIN
SELECTONE .LEXTYPE OF

SET
[LE}<_LPAREN] ~

BEGIN
READ_LE)-{ () ;
SE)-{PRESSION1 () ;

IF .LEXTYPE NEQ LEX_RPAREN
THEN

BEGIN
ERROR('Missins ")"');
SIGNAL(EXP_ERROR)
END;

END;
[LE}<_NAME] :

BEGIN

IF .LEXTYPE EQL LEX_PLUS
THEN

BEGIN
READ_LE}< () ;
SE}<PRESS I ON 1 () ;
END;

END;
[OTHERWISE]:

ERROR('Missins expression');
TES;

END;

An important aspect of this routine is that it recursively calls itself.

Consider what might happen if SEXPRESSIONI has recursed several levels
when an error is detected. This would happen, for example, for the following
invalid input for an expression:

(+Y+((Z(+Q»

The left parenthesis marked by A is the point of error - a left parenthesis
where there should be a right parenthesis. At this point SEXPRESSIONI has
called itself three times. The problem is how to proceed after the error in a

Condition Handling 17 -27

reasonable way. One simple strategy is to stop expression parsing, discard any
subsequent lexemes that could be part of an expression, and then return to
the routine that called for expression parsing in the first place.

A means to do this using condition handling (and the point of this whole
example) is shown in the following pair of routines. The first routine, SEX­
PRESSION, is the establisher routine. The only purpose of SEXPRESSION
is to establish the second routine, SEXP --ERROR, as a handler and then call
SEXPRESSION1 to do the actual expression parsing. The routines are coded
as follows:

ROUTINE SEXPRESSION: NOVALUE
BEGIN
ENABLE SEXP_ERROR;
SE><PRESSIONl ();
END;

ROUTINE SEXP_ERROR(SIG, MECH, ENAB)
BEGIN
MAP

S I G: REF l.JECTOR;
BIND

COND SIGel): CONDITION_VALUE;

! ResiSnal all but EXP_ERROR, iSnore unwind

IF NOT STS$MATCH(.COND, EXP_ERROR)
THEN RETURN 0;

I Skip all lexemes that can be part of an expression,
! Stop on any other lexeme.
WHILE

DO

(SELECTONE .LEXTYPE OF
SET
[LEX_LPAREN, LEX_RPAREN, LEX_NAME, LEX_PLUSJ~ 1;
[OTHERWISE): 0;
TES)

READ._LE>< () ;
SETUNWIND();
RETURN 0
END;

The coding for SEXP _ERROR follows the template for condition handlers
given in Section 17.4.2, but is simplified because not all of the parameters are
used. The coding also assumes the declarations given in 17.6.1 for accessing
condition values.

If SEXPRESSION1 calls SIGNAL, then CHF skips over all of the calls to
SEXPRESSION1 since no handler is established, and calls SEXP _ERROR.

SEXP _ERROR first tests whether the condition value is the one for an
expression error. If not, then resignaling is requested. The same coding also
causes an unwind signal to be ignored. It is valid in this case to not assign a
return value for the establisher routine in the mechanism vector during
unwinding because the establisher routine, SEXPRESSION, does not return
a value. If the condition value does indicate an expression error then the
WHILE loop causes lexemes that could be part of the erroneous expression to
be read and ignored. (Recall that calling READ_LEX changes the contents

17 -28 Condition Handling

of LEXTYPE. Because this change results from execution of a handler rou­
tine, LEXTYPE must be declared with the VOLATILE attribute.) Finally,
SETUNWIND is called to cause all of the calls to SEXPRESSIONI and the
call to SEXPRESSION to be terminated.

17.6.3 Performance Measurement

In some cases condition handling is convenient for conducting certain kinds of
performance measurement. This is particularly true when the analysis to be
performed involves the dynamic calling relationship between routines.

For example, suppose the desired information is the relative number of times
that a certain routine, say R, is called directly or indirectly by each of two
other routines, say CI and C2. This can be accomplished by the following:

1. Modify routine R to call SIGNAL at some appropriate point in its
execution.

2. Modify routines CI and C2 to establish handlers, say CIH and C2H.

3. Code CIH and C2H to increment counters each time a signal is received
from R and then request continuation.

4. Execute the modified program to collect the frequency data and analyze
the results.

It may also be prudent to modify the main routine to have a handler for the
signal from R as well. This handler will be called if R signals when CI or C2
are not in the stack of executing routine calls.

Observe that with this arrangement if CI calls C2 calls R then the handler for
C2 will be the one called.

It is, of course, possible to get the same frequency data by modifying the
routines to set and test various counters and flags directly. But, in cases such
as this one, condition handling may well be simpler and more convenient.

17.6.4 Target Operating Systems and Condition Handling

Target operating system support and use of condition handling is discussed
briefly in the following sections.

17.6.4.1 PDP-11 Operating Systems - In BLISS-16, PDP-II operating sys­
tems generally do not support condition handling as described in this manual
nor do they use condition handling in their internal operation. Condition
handling for BLISS-16 is supported by software (the "CHF") in the
BLISS-16 runtime library.

17.6.4.2 The VAX/VMS Operating System - In BLISS-32, condition handling
is directly supported by the condition handling facilities of the VAXNMS
operating system. The V AXNMS system uses condition handling in several
ways to achieve modular software components that can be flexibly used.

Condition Handling 17 -29

Condition handling plays a central role in reporting error messages. All error
conditions are signaled using condition values and additional parameters that
encode the error message to be reported. When the V AXNMS command
language processor starts up a user's program, it establishes its own handler,
termed the catch-all handler, in a stack frame prior to the stack frame for the
main routine. Consequently, the catch-all handler will be called for any sig­
nals that are not handled by the user's program.

The catch-all handler is programmed to interpret the system's condition val­
ues and output the appropriate error messages. In addition, the catch-all
handler interprets the severity field as follows: If severe error is given, then
the user program image is terminated; otherwise, the handler returns to CHF
requesting continuation. Observe that if the signal was generated using SIG­
NAL_STOP, the severity will necessarily be severe error (see Sections 17.3.2
and 17.4.3.2).

This design provides considerable flexibility in adapting system software to
various applications. On the one hand, a program that does not establish any
handlers will get standard system error messages. On the other hand, a pro­
gram can establish a handler that will modify some or all of the system
condition values in order to provide messages that are more appropriate to
particular groups of users. For example, in a data base inquiry application
used by non-technical personnel, a condition value for a subtle disk allocation
problem can be replaced by a condition value for a message such as "System
malfunction. Please call computer operations for assistance."

The V AXNMS system provides exception vectors that provide a means to
establish handlers that will be called before CHF begins searching the stack of
routine calls for handlers and for certain cases where CHF encounters an
invalid stack frame. The DEBUG module uses an exception vector to estab­
lish a handler to intercept signals for analysis and program testing purposes.

In certain special cases, the FORTRAN Run Time Library establishes a han­
dler between the command processor catch-all handler and the user's main
program to deal with various conditions specific to itself.

When reading the V AXNMS manuals concerning condition handling, ob­
serve that the VAXNMS software calls a handle'r with two parameters, the
signal vector and mechanism vector, rather than three parameters as de­
scribed in Section 17.4.2. The BLISS system itself provides the enable vector
parameter in addition to the two provided directly by VAXNMS.

17.6.4.3 TOPS-10 and TOPS-20 Operating Systems - In BLISS-36, the
TOPS-10 and TOPS-20 operating systems generally do not support condition
handling as described in this manual nor do they use condition handling in
their internal operation. Condition handling for BLISS-36 is supported by
software (the "CHF") in the BLISS-36 runtime library.

17-30 Condition Handling

Chapter 18 Special Features

18.1

18.2

18.3

Psect-Declarations .

18.1.1 Syntax.
18.1.2 Restrictions
18.1.3 Defaults
18.1.4 Semantics

18.1.4.1 Storage-Classes
18.1.4.2 Psect-Attributes .
18.1.4.3 Psect-Names
18.1.4.4 In terpreta tion

18.1.5 Discussion .

Switches-Declarations

18.2.1 Syntax.
18.2.2 Restrictions
18.2.3 Defaults.
18.2.4 Semantics

18.2.4.1 On-Off-Switch-Items.
18.2.4.2 Special-Switch-Items.
18.2.4.3 List-Options.

18.2.5 Discussion .

B uil tin -Declara tions

18.3.1 Syntax ...
18.3.2 Restrictions
18.3.3 Semantics .

18.4 Label-Declarations.

18.4.1 Syntax. . .
18.4.2 Semantics .

18.5 Undeclare-Declarations.

18.5.1 Syntax. . .
18.5.2 Semantics .
18.5.3 Pragmatics.

18-1

18-3
18-4
18-4
18-6

18-6
18-7
18-8
18-9

18-9

· 18-10

· 18-11
· 18-12
· 18-12
· 18-13

· 18-13
· 18-14
· 18-14

· 18-15

· 18-16

· 18-17
· 18-17
· 18-17

· 18-17

· 18-17
· 18-17

· 18-18

· 18-18
· 18-18
· 18-18

Chapter 18
Special Features

The preceding chapters describe declarations for the names of data, struc­
tures, routines, conditions, bound values, lexical functions, and macros. This
chapter describes the remaining declarations of BLISS. These declarations
make use of the general declaration mechanism of BLISS for some rather
specialized purposes. They are:

• The psect-declaration, which specifies the required properties of the pro­
gram sections used in a program.

• The switch-declaration, which permits the specification of compiler
switches for any block of a program.

• The builtin-declaration, which makes available certain names that are
predefined but not predeclared.

• The label-declaration, which is used in connection with the exit-expres­
sions.

• The undeclare-declaration, which cancels the effect of any other kind of
declaration for a given name.

18.1 Psect-Declarations

The psect-declaration allows the programmer to inform the linker about the
storage characteristics required for different sections of his program, and al­
lows him to group various kinds of object code in an efficient manner.

He can, for example, request that a given program section be write-protected
(which it normally might not be), or request that a given section be allocated
in the same memory space as a section by the same name from another
module. Also on some target systems he can request that a given section be
shareable by several different processes.

18-1

Most of the program-section characteristics, called psect-attributes, are very
target-system specific. Therefore the psect-declaration is in general not trans­
portable, although it can be used transportably in a limited fashion.

A psect-declaration can be used to allow a BLISS program to share data with
a program written in another language. In the VAX-II environment, for ex­
ample, another use of the psect-declaration allows a set of modules to share a
workspace whose size is determine4 by the linker, based on the needs of the
particular set of modules present. f

A psect-declaration can also be used to provide a second level of control over
program organization. The first level of control is specified by the division of a
program into modules. A second level of control is sometimes necessary if the
division into modules (and the default program sections, where supplied) does
not by itself provide the best organization of storage for efficient execution or
debugging.

Examples of psect-declarations are given in the following block:

OWN
A,
B;

PSECT OWN
OWN

C,
D,
E;

ALPHA(NOWRITE) ;

PSECT OWN = BETA(EXECUTE);
OWN F: VECTOR[10];

The data segments for the OWN variables A and B are allocated in the
default program section for the storage-class OWN. The data segments for C,
D, and E are allocated in the program section ALPHA, which cannot be
written into. The data segment for F is allocated in the program section
BETA, which can be executed.

BLISS is unusual if not unique among higher-level languages in providing the
kind of storage-allocation control permitted by the psect-declaration. As
stated above, however, its usage is for the most part nontransportable.

18-2 Special Features

18.1.1 Syntax

psect-declaration PSECT psect-item , ... ;

psect-item storage-class = psect-name

{ (pse~t-attribute , ...) }
nothIng

{ OWN

1
GLOBAL

storage-class PLIT
CODE
NODEFAULT

psect-name name

/ WRITE I NOWRITE
EXECUTE I NOEXECUTE

psect-attribute OVERLAY I CONCATENATE I
>

I b16-psect-attribute <=16 Only

I b32-psect-attribute <=32 Only
b36-psect-attribute <=36 Only

160nly=>

b16-psect-attribute { LOCAL I GLOBAL}

320nly=>

I READ I NOREAD '\
t SHARE I NOSHARE I
t PIC I NOPIC I

b32-psect-attribute LOCAL I GLOBAL >
t VECTOR I
I alignment-attribute I

addressing-mode-attribute

360nly=>

b36-psect-attribute { READ I NOREAD }
ORIGIN(address-expression)

address-expression com pile-time-constant-expression

Special Features 18-3

The alignment-attribute is described in Section 9.5 and the addressing-mode­
attribute is described in Section 9.13.

18.1.2 Restrictions

In the definition of the psect-attribute, most attributes are given in mutually
exclusive pairs: WRITE and NOWRITE, OVERLAY and CONCATENATE,
and so on. Both members of such a pair may not be used in declaring a single
psect-name. The alignment-attribute, the addressing-mode-attribute, and the
ORIGIN attribute are not members of such pairs.

All declarations of a given psect-name in a program must provide the same set
of psect-attributes for the name. This restriction is applied after any missing
attributes have been supplied by the default rules.

BLISS-32 ONLY

The value of the boundary expression in an alignment-attribute for a pro­
gram section must be in the range 0 through 9.

The value of that boundary expression must not be exceeded by the value of
the boundary expression in an alignment-attribute for any data segment
that is allocated in the program section.

BLISS-36 ONLY

A psect-name must be unique among all other psect-names within its first
six characters, due to linker restrictions.

If a declaration of a psect-name other than LOW or $HIGH$ appears in a
module, the first (or only) such declaration must appear before any data- or
routine-declarations (other than the external or forward forms), and before
any expression containing a plit. That is, it must appear before the first
declaration that causes storage to be allocated or object code to be gener­
ated.

The value of the address-expression in the ORIGIN attribute must be in the
range 0 to (2**18)-1 inclusive.

18.1.3 Defaults

BLISS-16 ONLY

The following psect-declaration is assumed to appear in an imaginary block
that surrounds each module:

PSECT
OWN
GLOBAL
PLIT
CODE

OWN (WRITE,NOEXECUTE,CONCATENATE,LOCAL) ,
$GLOBAL$ (WRITE,NOEXECUTE,CONCATENATE,LOCAL) ,
$PLIT$ lNOWRITE,NOEXECUTE,CONCATENATE,LOCAL) ,
$CODE$ (NOWRITE,EXECUTE,CONCATENATE,LOCAL);

This declaration provides a dE!fault program section name for each of the
four storage-classes. The psect-attributes used are exactly the default
psect-attributes that are given in the following paragraph.

18-4 Special Features

If a psect-item contains. a parenthesized list of psect-attributes, then any
missing attributes are filled in by default. The defaults are:

Attribute Default Exception

WRITE I NOWRITE WRITE
EXECUTE I NOEXECUTE NOEXECUTE EXECUTE for CODE
OVERLAYICONCATENATE CONCATENATE
LOCAL I GLOBAL LOCAL

BLISS-32 ONLY

The following psect-declaration is assumed to appear in an imaginary block
that surrounds each module:

PSECT
OWN

GLOBAL

PLIT

CODE

tOWNS (REAO,WRITE,NOEXECUTE,NOSHARE,
NOPIC,CONCATENATE,LOCAL,ALIGN(2) ,
ADDRESSING_MODE(WORD_RELATIVE» ,

$GLOBAL$ (READ,WRITE,NOEXECUTE,NOSHARE,
NOPIC,CONCATENATE,LOCAL,ALIGN(2) ,
ADDRESSING_MODE(WORD_RELATIVE» ,

$PLIT$ (READ,NOWRITE,NOEXECUTE,NOSHARE,
NOPIC,CONCATENATE,LOCAL,ALIGN(2) t

ADDRESSING_MODE(WORD_RELATIVE» t

$CODE$ (READ,NOWRITEtEXECUTEtNOSHAREt
NOPICtCONCATENATEtLOCALtALIGN(2) t

ADDRESSING_MODE(WORD_RELATIVE» ;

This declaration provides a default program section name for each of the
four storage-classes. The psect-attributes used are exactly the default
psect-attributes that are given in the following paragraph.

If a psect-item contains a parenthesized list of psect-attributes, then any
missing attributes are filled in by default. The defaults are:

Attribute Default Exception

READ I NOREAD READ
WRITE I NOWRITE WRITE NOWRITE for PLIT or CODE
EXECUTE I NOEXECUTE NOEXECUTE EXECUTE for CODE
SHARE I NOSHARE NOSHARE
flCINOflC NOflC
OVERLAY I CONCATENATE CONCATENATE
LOCAL I GLOBAL LOCAL
alignment-attribute ALIGN(2)
addressing-mode-attribute ADDRESSING_MODE(WORD_

RELATIVE)

BLISS-36 ONLY

The following psect-declaration is assumed to appear in an imaginary block
that surrounds each module:

PSECT
OWN

GLOBAL

PLIT

CODE

LOW

LOW

$HIGH$

$HIGH$

(READ,WRITEtEXECUTEtCONCATENATEt
ORIGIN(O» ,
(READ,WRITE,EXECUTEtCONCATENATEt
ORIGIN(O» t

(READtNOWRITEtEXECUTEtCONCATENATEt
ORIGIN(%O'aOOOOO'» t

(READtNOWRITEtEXECUTEtCONCATENATEt
ORIGIN('X,O'aOOOO(l'» ;

Special Features 18-5

This declaration provides a default program-section name for each of the
four storage-classes. The psect-attributes used are exactly the default
psect-attributes that are given in the following paragraph.

If a psect-item contains a parenthesized list of psect-attributes, then any
missing attributes are filled in 'by default. The defaults are:

Attribute Default Exception

READ I NOREAD , '"
WRITE I NOWRITE
EXECUTE I NOEXECUTE
OVERLAY I CONCATENATE

READ
WRITE NOWRITE for PLIT or CODE
EXECUTE
CONCATENATE

There is no default for the ORIGIN attribute: if it is not specified, then the
corresponding program-section origin must be specified at link time (lSET
switch of the LINK command). Further, there is no default for the address­
expression of this attribute.

If a psect-item does not contain a parenthesized list of psect-attributes and if
a previous declaration of the psect-name is given in the module, then the
psect-attributes are taken from the first declaration of the same psect-name.

18.1.4 Semantics

NODEFAULT is a special storage-class which allows the declaration of a
psect without overriding current defaults for OWN, GLOBAL, PLIT, or
CODE data; thus, the current defaults need not be either known or restored.
For example, the following declarations allow a longword to be shared be­
tween BLISS-32 and VAX-II PL/l:

PSECT
NOOEFAULT = PL1_0ATA(ABSOLUTE,OVERLAY,REAO,WRITEl;

OWN

With the last declaration, PL/l will expect global and external symbols to be
declared in an overlayed psect of the same name; moreover, note that it has
not been necessary to again declare the defaults. In the following sections, the
semantics of the psect-declaration are given in four parts. First, the storage­
classes are described. Next, the program section attributes are given. Then,
psect-names and their scope are discussed. Finally, the interpretation of a
psect-declaration is given.

18.1.4.1 Storage-Classes - The storage-class in a psect-item determines the
kind of data that is allocated in the corresponding program section. The
following list indicates the declarations or primaries that are associated with
each storage-class.

Declara tion or Primary Storage-Class

OWN declarations OWN
GLOBAL declarations GLOBAL
plits PLIT
ROUTINE and GLOBAL ROUTINE declarations CODE

18-6 Special Features

In other words, any data segments allocated by the compiler in processing
OWN declarations are allocated in program sections declared for the storage­
class OWN; any data segments allocated in processing GLOBAL data decla­
rations, are allocated in program sections for the storage-class GLOBAL; and
so on.

18.1.4.2 Psect-Attributes - The att:cibutes of a program section provide infor­
mation to the linker about the way the program section should be allocated in
storage. After the default psect-attributes have been filled in, a psect-name
has four attributes in BLISS-1S, nine attributes in BLISS-32, or five attri­
butes in BLISS-36 (assuming program-section generation), one from each of
the following lines:

READ NOREAD
WRITE NOWRITE
EXECUTE NOEXECUTE
OVERLAY CONCATENATE
SHARE NOSHARE
PIC NOPIC
LOCAL GLOBAL
ALIGN(boundary)
ADDRESSING_MODE(mode)
ORIGIN(address)

< =32/36 Only

<=32 Only
<=32 Only
<=16/32 Only
<=32 Only
<=32 Only
<=36 Only

(The ORIGIN address-value has no_default.) In addition to the above, the
VECTOR psect-attribute may be specified in BLISS-32.

The READ, WRITE, and EXECUTE attributes determine which kinds of
access to the program section are permitted. Based on these attributes, the
linker establishes the hardware memory-management access control needed
for the storage of the program section, assuming that a target system's
hardware/software environment does in fact provide the required facilities.
(Some attributes have no effective meaning for a given target system, but are
allowed in the corresponding dialect because of transportability considera­
tions.)

The OVERLAY attribute causes program sections that have the same name
but come from different modules to be allocated in the same storage (like
FORTRAN COMMON blocks, for example). The CONCATENATE attribute
causes program sections with the same name from different modules to be
allocated contiguously, each in its own storage.

BLISS-16/32 ONLY

The LOCAL and GLOBAL attributes provide indicators for the target­
system linker, which uses them in the allocation and management of physi­
cal memory for a program. In BLISS-16, these indicators direct the con­
struction of program overlays. In BLISS-32, these indicators direct the
grouping of pages within a program image so as to optimize performance.

BLISS-32 ONLY

The SHARE attribute specifies that the program section can be accessed by
more than one process.

Special Features 18-7

The PIC (Position Independent Code) attribute indicates that the program
section can be relocated without affecting its validity.

The alignment-attribute causes the storage for the program section to begin
with a byte whose address ends with at least n zero bits, where n is the
value of the boundary expression in the alignment-attribute. This attribute
also causes the storage for the program section to be extended, if necessary,
with unused bytes until its last byte is just before a byte whose address ends
with at least n zero bits. Thus, for~example, an ALIGN(I) attribute causes a
program section to begin and end at word boundaries, an ALIGN(2) at
longword boundaries, and so on. The alignment-attribute is further de­
scribed in Section 9.5.

The addressing-mode-attribute determines the addressing mode for each
data segment allocated in the program section. The significance of the
addressing mode is given in Section 9.13.

The VECTOR psect-attribute causes generation of an indication to the
linker that the program section contains 'entry-point vector' information for
a VAXNMS privileged shared image, used in the construction of shared
run-time libraries. (Analogous to the VEC attribute in VAX-II MACRO.)

BLISS-36 ONLY

The ORIGIN attribute specifies the machine address at which a program
section is to start. For example, ORIGIN(%O' 400000 ') will cause the corre­
sponding program section to start at the standard high-segment beginning
address, 400000 octal. Note that the use of this attribute can result in
unallocated storage left between two program sections, or in overlapping
program sections. Proper use of this attribute must be guided by familiarity
with the linker for the target system in question.

A complete understanding of the program-section attributes requires knowl­
edge of the way storage is or can be laid out by the linker. Information on the
allocation of storage can be found in the appropriate linker (or task-builder)
reference manual for the target system. See also the appropriate BLISS User's
Guide for additional information.

18.1.4.3 Psect-Names - A psect-name is interpreted by the linker and is,
necessarily, global to a module. The first declaration of a given psect-name
within a module serves two purposes. First, it establishes the name and de­
fines the attributes for the program section associated with that name for the
scope of the module. Second, the first declaration of a given name establishes
the program section associated with that name as the current program section
for the storage class in the scope in which it is declared. Thus, unless a
NODEFAULT storage class is used to prevent an override of the default
attributes (see Section 18.1.4), subsequent declarations of the psect-name will
serve only the second purpose, which is: to establish the current program

18-8 Special Features

section for a storage-class. All declarations of a particular psect-name within a
module must be equivalent. Psect-declarations are equivalent if one of the
following applies:

• The declarations are identical.

• The declarations have the same set of attributes after the missing attrib­
utes have been filled in by default.

• The second of the two declarations has no parenthesized list of attributes.
(In this case, the attributes from the first declaration apply to the second
declaration.)

18.1.4.4 Interpretation - Every use of the same psect-name in a program
refers to the same program section. A psect-declaration not only states (or
restates) the psect-attributes for a given program section, but also selects that
program section for use within the scope of the declaration for a given storage­
class.

18.1.5 Discussion

The simplest way to ensure that all declarations of a psect-name in a given
module are equivalent is to use the simple form of a psect-declaration, in
which no parenthesized list of attributes is given, for all psect-declarations
except the first one. Consider the following program segment:

BEGIN
ROUTINE S=

BEGIN
PSECT OWN ALPHA (NOWRITE);
OWN S 1 ;

END
OWN A.t B;
PSECT OWN
OWN C;

PSECT OWN
OWN D;

END

BETA;

ALPHA;

The first declaration of the psect-name ALPHA defines the name and estab­
lishes its attributes; in BLISS-32, for example:

READt NOWRITEt NOEXECUTEt NOSHAREt NOPICt CONCATENATEt LOCALt
AL I GN (2) t ADDRESS lNG_MODE (WORD_RELAT I l.lE)

The NOWRITE attribute is given explicitly in the psect-declaration and the
other attributes are determined by default. The subsequent declaration of the
psect-name ALPHA does not have a parenthesized list of attributes; there­
fore, the list associated with the previous declaration is assumed. Note that
giving these declarations in the opposite order results in an error.

Special Features 18-9

Data and routines from different storage-classes can be allocated in the same
program section by means of the appropriate psect-declarations. For example,
suppose that all plits for a given module must be allocated in the same
program section that is used for the object code for routines. Then the follow­
ing declaration can be written in the outer block of the module:

PSECT
PLIT = $CODE$;

This declaration overrides the default psect-declaration for the PLIT storage­
class, which allocates plits in the program section named $PLIT$.

C~nsider, again, the module described in the previous paragraph. Suppose the
following declaration appears in an inner block of that module:

PSECT
PLIT = $PLIT$;

Within the block in which this declaration appear, plits are allocated in the
default program section for plits, just as if the declaration mentioned in the
preceding paragraph was not present.

18.2 Switches-Declarations

A switches-declaration allows a programmer to give the compiler additional
information about the desired interpretation of a block. In this way, each
block can be given individual treatment by the compiler.

For example, a block that is still in the debugging process can have a
switches-declaration that causes the compiler to provide listings, error mes­
sages and macro expansion traces for that block. Or, a block in an inner loop
can have a switches-declaration that causes the compiler to perform special
optimizations.

An example of a switches-declaration is given in the following block:

BEGIN

BEGIN
SWITCHES NOERRS;

END;

END

The inner block has a switches-declaration that specifies that no warning or
error messages are to be displayed for that block.

Some switch-items, such as ADDRESSING_MODE, simply set attribute
defaults for the remainder of the block, and thus have only an indirect
effect - that is, through other declarations later in the block that take those
defaults.

In general, the actions or interpretations requested by a switches-declaration
only take effect subsequent to the occurrence of the declaration (from the
viewpoint of code generation). Therefore, in the normal case where the effect

18-10 Special Features

is desired throughout the block in question, the correct positioning of the
switches-declaration is at the very beginning of the block (i.e., prior to any
code-producing declaration).

18.2.1 Syntax

swi tches-declara tion

switch-item

on-off-switch-item

special-swi tch -item

language -list

language-name

linkage-name

list-option

SWITCHES switch-item, ... ;

{
on-off-switch-item }
special-switch-item

{

ERRS I NOERRS }
OPTIMIZE I NOOPTIMIZE
SAFE I NOSAFE
UNAMES I NOUNAMES
ZIP I NOZIP

/ ADDRESSING_MODE
\

<=32 Only
(mode-spec , ...)

I LANGUAGE (language-list) I
< LINKAGE (linkage-name)

LIST (list-option , ...) I
STRUCTURE

({ structure-attribute})
{nothing }

{ ~~~~~~ame , ... }
nothing

{BLISS16 I BLISS32 I BLISS36}

name

J SOURCE I NOSOURCE
t REQUIRE I NOREQUIRE
, EXPAND I NOEXPAND

TRACE I NOTRACE
LIBRARY I NOLIBRARY
OBJECT I NOOBJECT
ASSEMBLY I NOASSEMBLY

I SYMBOLIC I NOSYMBOLIC
BINARY I NOBINARY
COMMENTARY I NOCOMMENTARY

\

)
(

I

Special Features 18-11

32 Only =>
mode-spec { EXTERNAL = mode }

NONEXTERNAL = mode

32 Only =>
{ GENERAL }

mode ABSOLUTE
LONG-RELATIVE
WORD-RELATIVE

The structure-attribute is defined in Section 11.4.

18.2.2 Restrictions

An ADDRESSING_MODE switch may have no more than one EXTERNAL
mode-spec and no more than one NONEXTERNAL mode-spec (BLISS-32
only).

The linkage-name in a LINKAGE switch must either be explicitly declared as
a linkage-name in a containing block or must be a predeclared linkage-name.

The structure-name in the structure-attribute of a STRUCTURE switch must
either be explicitly declared as a structure-name in a containing block or must
be a predefined structure-name.

18.2.3 Defaults

If a switch-item is not specified, the setting established by the compilation
command specification, by the module-head or by a switches-declaration in
an outer block is assumed.

18-12 Special Features

If a null language-list appears in a LANGUAGE switch (i.e,
LANGUAGE 0), the single language-name corresponding to the compiler in
use is assumed. This implies that no transportability checking is to be per­
formed within the scope of the containing block.

If the keyword COMMON appears in the language-list of the LANGUAGE
switch, it is equivalent to the explicit specification of all three language­
names.

18.2.4 Semantics

The switch-items specify actions to be taken by the compiler in processing a
block.

In addition to the following description, additional discussion of the compiler
actions for these switches can be found in the BLISS User's Guide for the
appropriate compiler.

18.2.4.1 On-Off-Swltch-Items - Each on-off-switch-item has a negation,
which consists of the switch-item prefixed by the characters "NO". The nega­
tion of a switch-item indicates that the associated action should not be taken.
The action associated with each switch-item is given in the following list:

Switch-Item

ERRS

OPTIMIZE

SAFE

UNAMES

ZIP

Action

Print warnings and error messages from the compiler on
the terminal.

Perform optimization across mark points.

Ignore computed addresses in doing optimization.

Generate unique names for OWN variables, non-global
ROUTINE names, and LABELs when producing a listing
that is to be assembled.

Optimize time at the expense of space.

Special Features 18-13

18.2.4.2 Special-Switch-Items - The special-switch-items provide additional
information about the block being compiled. The action associated with each
special-switch-item is given in the following list:

Switch-Item Action

ADDRESSING_MODE <= BLISS-32 Only
(mode-spec, ...) Establish the given addressing modes as the ad­

dressing-mode defaults for subsequent declara­
tions in the current block. An EXTERNAL
mode-spec supplies the default for EXTERNAL
and EXTERNAL ROUTINE declarations. A
NONEXTERNAL mode-spec supplies the de­
fault for FORWARD, FORWARD ROUTINE,
and PSECT declarations. (This default is inef­
fective unless a program section is declared
within the block.) The addressing-mode attrib­
ute is described in Section 9.1l.

LANGUAGE Establish the given list of language-names for
(language-list) the remainder of the current block. Perform

transport-ability checking, if applicable, for the
combination of dialects specified or implied in
the list. See Section 18.2.5 and Appendix C for
further information.

LINKAGE Establish the given linkage-name as the linkage-
(linkage-name) , name default for the remainder of the current

block. This linkage-name is used as the linkage­
attribute of any subsequent routine declaration
in the current block that does not specify a link­
age-attribute.

LIST Establish the given list-options for the output
(list-option, ...) listing of the remainder of the current block. The

list-options are described in the following sub­
section.

STRUCTURE Establish the given structure-attribute as the de-
(structure-attribute) fault structure-attribute to be used in subse­

quent default-structure-references within the
current block (see Sections 1l.4 and 1l.8). If the
given structure-attribute is null, then all subse­
quent default-structure-references in the block
are invalid.

18.2.4.3 List-Options - The output listing produced as a result of a BLISS
compilation can contain several separate parts, namely:

source listing
macro expansions and traces
library usage traces
object code listing

18-14 Special Features

The LIST switch-item controls the parts of the output listing to be produced
according to the settings specified by the list-options. The first two list-op­
tions, SOURCE and REQUIRE, operate on a special counter, the source
listing counter. The counter is initially set to 1, and source text is listed when,
and only when, the value of the counter is greater than zero. Thus the
SOURCE and REQUIRE list-options control the listing of the source text
from files specified in the compilation command and by REQUIRE declara­
tions.

The action associated with each list-option is given in the following list.

List-Option

SOURCE

REQUIRE

EXPAND

TRACE

LIBRARY

OBJECT

ASSEMBLY

SYMBOLIC

BINARY

COMMENTARY

18.2.5 Discussion

Action

Increments the source listing counter. NOSOURCE
decrements the source listing counter.

Causes the source listing counter to be left unchanged
when a file specified by a REQUIRE declaration is
opened or closed. NOREQUIRE causes the source list­
ing counter to be decremented when a file specified by
a REQUIRE declaration is opened, and incremented
when the file is closed.

List the lexeme stream that is the result of each macro
expansion.

Trace the expansion of macros, printing each lexeme
stream produced during the expansion and the final
lexeme stream produced as as result of the expansion.

Trace the usage of names whose declarations are ob­
tained from library binary files.

List the object code. The format of the listing is deter­
mined by the settings of the following four switches.

List the object code instructions in a form suitable for
assembly.

List the object code instructions in a form suitable for
interpretation by the programmer. This format uses
source program symbols wherever possible in the ob­
ject code instructions.

List the binary text of the object code.

List commentary produced by the compiler concerning
the object code generated. At present, commentary is
limited to a line-number cross reference.

The LANGUAGE switch is an aid in the development of transportable pro­
grams. As a module-switch, it declares the programmer's intention to compile
the module under several different compilers, for use on the corresponding

Special Features 18-15

target systems. It requests that the compiler analyze the module from the
standpoint of transportability. For example, with two compiler names speci­
fied in the LANGUAGE switch, both compilers will check for and report the
occurrence of certain machine-sensitive language features that may pose
problems when the module is processed by the other compiler.

Used in a SWITCHES declaration, this switch essentially allows the program­
mer to "turn off' transportability checking within the block immediately
containing the declaration. The need for this capability arises, for example,
where a given block is not coded transportably, e.g., is inherently machine- or
system-dependent, and must be modified for each target system.

The specific language constructs that are checked for a given set of target
systems are described in Appendix C. Briefly, these constructs fall into the
following categories:

• All syntactic features that are not common to the target set. For example,
if all three target systems are specified, then the occurrence of any dia­
lect-specific feature is reported.

• Most syntactic features that, although common to the target set, are
likely in certain forms to cause transportability problems. For example,
string-literals used as primary expressions.

• Certain dialect-sensitive elements that may occur in otherwise valid con­
structs; for example, field-selector values that are compile-time-constant­
expressions are checked at compile time for conformance to the restric­
tions imposed by the most restrictive target system.

In general, the checks performed in response to the LANGUAGE switch alert
the user to language features that most often require special attention when
transporting programs. Such checking cannot, however, identify or resolve all
of the problems that may be encountered. In particular, the functional equiv­
alence of a program in several different environments cannot be assured (at
compile time) in all cases, even though the program compiles sucessfully in
each environment.

Each BLISS User's Guide contains a section on "Transportability Guide­
lines". A study of this section and frequent, parallel compilations of the mod­
ule to be transported are strongly recommended.

18.3 Builtin-Declarations

Certain names are predefined in BLISS. Some of the predefined names are
predeclared, so that they can be used without being declared explicitly; an
example is the name ABS, which is the name of the absolute-value function.
Other predefined names are not predeclared, but must, instead, be declared
BUILTIN before they can be used.

The classification of a given predefined name as predeclared or builtin is part
of the BLISS language definition; it is given in Appendix A. Narnes that are
frequently used and that apply to all dialects of BLISS are predeclared.
Names that are predefined only in certain dialects of BLISS are builtin. In
particular, all names of machine-specific-functions are builtin; these are
listed in Appendix D.

18-16 Special Features

18.3.1 Syntax

buil tin -declaration BUILTIN builtin-name , ... ,

builtin-name name

18.3.2 Restrictions

Each name in a builtin-declaration must be listed in Appendix A under the
classification "builtin name".

A builtin-declaration containing a predefined register-name (see Section
10.7.4) or a predefined name of a linkage-function (see Section 13.6) must be
contained in a routine-declaration.

18.3.3 Semantics

A builtin-declaration informs the compiler that the names listed are used as
builtin-names in the current block.

The full definition of each builtin-name is given elsewhere in the definition of
BLISS. For example, in BLISS-16 the builtin-name PC is a register-name
and is defined in Section 10.7.4. For another example, the builtin-name
BICPSW is a VAX-II machine-specific-function name and is defined in the
BLISS-32 User's Guide.

18.4 Label-Declarations

The use of labels is very restricted in BLISS. Labels are used only to identify a
block so that a LEAVE expression can be used to terminate the evaluation of
the block. When a label is used, it must be declared by a label-declaration.

18.4.1 Syntax

la bel-declaration LABEL label-name , ... ,

label-name name

18.4.2 Semantics

A label declaration informs the compiler that the names listed are used as
labels in the current block.

The use of labels is discussed in connection with exit-expressions in Section
6.6.

Special Features 18-17

18.5 Undeclare-Declarations

An undeclare-declaration is used to limit the scope of a declaration. An unde­
clare-declaration in an inner block prevents references to names declared in
outer blocks. An undeclare-declaration may also be used in a library source
file to prevent a name from being entered into the precompiled library binary
file (see Section 16.6).

An example of an undeclare-declaration is given in the following block:

BEGIN
OWN AtBtC;

END

BEGIN
UNDECLARE A,C;

END

....

In the inner block, the name B designates the OWN variable declared in the
outer block, but the names A and C have no meaning.

18.5.1 Syntax

undeclare -declara tion UNDECLARE undeclared-name , ... ,

undeclared -name name

18.5.2 Semantics

An undeclare-declaration informs the compiler that each undeclared-name in
the list has no declared meaning for the scope of the current block.

A name that is undeclared may be subsequently declared for some other use
within the scope of the declaration.

A name that is undeclared at the end of a library compilation is not entered in
the library binary file produced by the compiler.

18.5.3 Pragmatics

In order to redeclare a macro-name it must be "quoted" using the lexical
function %QUOTE (see Section 15.5.13). Effectively this inhibits expansion of
the macro-name at the point of redeclaration. For example, to undeclare the
name ZYX declared as a macro-name elsewhere in the same module, the
following form of declaration is required:

UNDECLARE %QUOTE ZYX

This requirement applies to any other redeclaration of a macro-name as well.

18-18 Special Features

Chapter 19 Modules and Programs

19.1 Modules.

19.1.1 Syntax. . .
19.1.2 Restrictions
19.1.3 Semantics

19.2 Module-Switches. .

19.2.1 Syntax ...
19.2.2 Restrictions
19.2.3 Defaults . .
19.2.4 Semantics . .

19.2.4.1 Special-Switches.
19.2.4.2 On-Off-Switches.

19.3 Predefined Names.
19.4 Programs

19-1

19-2
19-3
19-3

19-3

19-4
19-6
19-7
19-9

19-9
· 19-11

· 19-11
· 19-13

Chapter 19
Modules and Programs

This chapter concludes the description of BLISS by describing modules and
programs. No new functional capability is introduced here; instead, the way
in which a program interfaces with the compiler in particular and the target
system in general is described.

This chapter has four sections. The first section describes modules in a gen­
eral way. The second section completes the description of modules by defining
the module-switches. The third section describes the predefined names, which
provide one form of connection between programs and the system. The fourth
section describes programs.

19.1 Modules

The module is the compilation unit of BLISS. Each module is complete for
purposes of compilation. However, a module is usually incomplete for pur­
poses of execution because it often depends on information supplied by the
other modules with which it is linked to form a program. The use of GLOBAL
and EXTERNAL declarations allows these points of communication to be
identified so that their resolution can occur at link time.

The division of a program into modules helps define the fundamental organi­
zation of the program. Declarations that have some property in common can
be grouped into a single module. For example, if two routine-declarations are
always used together, then grouping them in a module ensures that they are
allocated together. For another example, if some declarations are subject to
change when a new version of the program is produced, then grouping them
together in a module makes it possible to change the program by only recom­
piling a single module.

19-1

An example of a module is:

MODULE COM POOL (IDENT
BEGIN
GLOBAL LITERAL

BUFSIZ = 22Gt
PAGES I Z = 132 t

'000015')

FACTOR = 33: SIGNED(8);
GLOBAL BIND)(= PLIT (0 tl t2 t3 ta t5 tG t7 t8 t8 tlO tll tl2)

: '.'ECTOR[13];
END
ELUDOM

This module contains the constant declarations that are used in other mod­
ules of the program.

Another example of a module is:

MODULE STK (I DENT = 1000001 I)

BEGIN
OWN STK: VECTOR[1000];
OWN STKPTR: INITIAL(O);
E)-(TERNAL ROUT I NE

STKERRl t

STKERR2;
GLOBAL ROUTINE PUSH(X): NOVALUE =

BEGIN
IF .STKPTR GEQ 1000 THEN STKERRl ();
STKPTR = .STKPTR + 1;
STK[.STKPTR] = .X;
END;

GLOBAL ROUTINE POP(X): NOVALUE
BEGIN
IF .STKPTR LSS 0 THEN STKERR2();
.)-(= .STK[.STKPTR];
STKPTR = .STKPTR-l;

END
ELUDOM

This module contains both data-declarations and routine-declarations.

19.1.1 Syntax

module MODULE module-head =
module-body
ELUDOM

module-head module-name { (module-switch , ...) }
nothing

module-name name

module-body block

19-2 Modules and Programs

19.1.2 Restrictions

A module-body can contain only declarations at its outermost level; that is, it
must be a sequence of declarations within a BEGIN-END or parenthesis pair.
Some of these declarations can be routine-declarations, and these define the
actions that can be performed by the module.

Some declarations must not be given at the outermost level of a module,
namely, declarations of temporary data segments and linkage-functions.
These are: local-declarations (Section 10.5), stacklocal-declarations (Section
10.6), register-declarations (Section 10.7), and builtin-declarations (Section
18.3) that give any of the predefined register names (Section 10.7.4) or any of
the names of linkage-functions (Section 13.6).

19.1.3 Semantics

A module provides the compiler with three items:

• The module-name, which is used in some contexts (by the compiler) to
identify the object code for the module.

• The module-switches, which select various options offered by the com­
piler.

• The module-body, which is translated by the compiler from BLISS into
an object code file.

19.2 Module-Switches

The module-switches allow a programmer to control some aspects of the com­
piler's treatment of the module. The programmer knows the module's stage of
development and its intended use; he can, therefore, use switches to cause
additional operations to be performed and to suppress other operations. Con­
sider the development of a typical module from syntax checking through
debugging into production. At the beginning, the module is:

MODULE M 1 (I DENT = 10001 I, NOCODE, LIST (TRACE) ,
LANGUAGE(BLISS16,BLISS32» =

BEGIN ...
END
ELUDOM

In this example, the module-switches direct the compiler to perform only a
syntax check (NOCODE) and to trace the expansion of macros
(LIST(TRACE)). The LANGUAGE switch signifies the programmer's intent
to compile the module with both the BLISS-16 and BLISS-32 compilers. It
requests that the compiler currently in use check for and report the appear­
ance of dialect-sensitive language features that might cause problems in
transporting the module across the specified systems. Switches that are not
given explicitly are determined by the default rules. For example, the switch
ERRS is assumed by default and therefore the compiler prints warnings and
error messages at the programmer's terminal.

Modules and Programs 19-3

Later, when the module is being debugged, the switches are changed and the
module becomes:

MODULE Ml (IDENT = '0005' t DEBUG t NOOPTIMIZE) =
BEGIN

END
ELUDOM

In this version, the module-switches direct the compiler to prepare the symbol
table and the linkages required for use by a debugging package (DEBUG) and
to omit certain kinds of optimization by the compiler of the generated object
code (NOOPTIMIZE). When the module is ready for production, the switches
are changed again and the module becomes:

MODULE M 1 (I DENT = '0203') =
BEGIN

END
ELUDOM

In this version, all the switches except the identification switch are omitted
since the default rules are oriented toward a production module.

19.2.1 Syntax

module-switch { on-off-switch I special-switch }

/ CODE I NOCODE " I DEBUG I NODEBUG I
I ERRS I NOERRS I

on-off-switch OPTIMIZE I NOOPTIMIZE >
I SAFE I NOSAFE I

t
UNAMES I NOUNAMES
ZIP I NOZIP

I

{
common -swi tch

} special-swi tch bliss-16-switch <= 16 Only
bliss-32-swi tch <= 32 Only
bliss-36-swi tch <= 36 Only

19-4 Modules and Programs

I IDENT = quoted-string

I
LANGUAGE (language-list , ...)) LINKAGE (linkage-name)

) LIST (list-option ,...) (
common-switch STRUCTURE

({ structure-attribute })
~ { nothing }

I MAIN = routine-name I OPTLEVEL = { 0 I 1 I 2 I 3 }
\ VERSION = quoted-string

{ COMMON }
language-list language-name , ...

nothing

language-name { BLISS16 I BLISS32 I BLISS36 }

, SOURCE I NOSOURCE

I REQUIRE I NOREQUIRE I EXPAND I NOEXPAND

) TRACE I NOTRACE

list-option LIBRARY I NOLIBRARY
OBJECT I NOOBJECT (ASSEMBLY I NOASSEMBLY

t
SYMBOLIC I NOSYMBOLIC I BINARY I NOBINARY
COMMENTARY I NOCOMMENTARY

linkage-name } name
routine-name

16 Only =>
bliss-16-switch {ADDRESSING_MODE (mode-16) }

ENVIRONMENT (environ-16-option ,...)

mode-16 { ABSOLUTE I RELATIVE}

en viron -16-option { EIS I NOElS I LSl11 I T11 I PIC I ODT }

Modules and Programs 19-5

32 Only =>

bliss-32-switch ADDRESSING_MODE (mode-spec , ...)

mode-spec { EXTERNAL = mode-32 }
NONEXTERNAL = mode-32

{
GENERAL

} mode-32 ABSOLUTE
LONG-RELATIVE
WORD-RELATIVE

36 Only =>
ADDRESSING_MODE (mode-36)
ENTRY (global-name , ...)

bliss-36-switch ENVIRONMENT (environ-36-option , ...)
OTS = quoted -string
OTS--LINKAGE = linkage-name

mode-36 { INDIRECT I NOINDIRECT I

{ cpu -option } environ -36-option moni tor-option
ots-option
stack -option

cpu-option { KA10 I KIlO I KL10 I KS10 I EXTENDED I

moni tor-option { TOPS10 I TOPS20 I

ots-option { BLISS10_0TS
BLISS36C_OTS }

stack-option STACK = segment-name

global-name }
linkage-name name
segment-name

The structure-attribute is defined in Section 11.4.

19.2.2 Restrictions

The MAIN switch must appear once and only once in a program.

The routine-name specified in the MAIN switch must be declared in a
ROUTINE or GLOBAL ROUTINE declaration in the same module.

19-6 Modules and Programs

The VERSION switch may appear only in a module that also contains the
MAIN switch.

The name specified in the structure-attribute of a STRUCTURE switch must
be a predeclared structure-name.

BLISS-36 ONLY

Each name specified in the ENTRY switch must be declared GLOBAL,
GLOBAL ROUTINE, GLOBAL BIND, GLOBAL BIND ROUTINE, or
GLOBAL LITERAL in the same module.

The ots-option of the ENVIRONMENT switch must not appear together
with either the OTS switch or the OTS_LINKAGE switch.

The stack-option of the ENVIRONMENT switch may appear only in a
module that also contains the MAIN switch.

The quoted-string given in the VERSION switch must conform to the
TOPS-lO/20 version-number format, which is:

oooa(000000)-0

where 0 represents an octal digit and a represents an alphabetic character.
Leading zeros are not required.

The linkage-name in the OTS_LINKAGE switch must either be prede­
clared or must appear in a linkage-declaration preceding the first routine­
declaration in the module. The named linkage-definition must not specify
register parameter-locations or global-registers.

19.2.3 Defaults

If a setting for an on-off-switch is not given, the default setting for that switch,
which is given in the following list, is assumed:

CODE
NODEBUG
ERRS
OPTIMIZE
SAFE
NOUNAMES
NOZIP

Generate object code
Do not build table and linkages for DEBUG package
Print compiler diagnostic messages on terminal
Optimize across mark points
Ignore computed addresses in performing optimization
Do not generate unique names
Do not optimize time at the expense of space.

If a setting for a special-switch is not given, the following defaults are
assumed:

ADDRESSING_MODE(RELATIVE) <= BLISS-l6 Only

Use the relative addressing mode for all generated instructions.

ADDRESSING_MODE(EXTERNAL = WORD-RELATIVE ,
NONEXTERNAL = WORD-RELATIVE) <= BLISS-32 Only

Use the short/relative form of address encoding as the ultimate address­
ing-mode default.

Modules and Programs 19-7

ADDRESSING_MODE(NOINDIRECT) <= BLISS-36 Only

Do not use the indirect addressing mode for any generated instructions.

ENVIRONMENT(EIS) <= BLISS-16 Only

Produce the object module using instructions from the Extended Instruc­
tion Set (ASH, ASHC, DIV, MUL, SOB, SXT) wherever appropriate.

LANGUAGE(%BLISSI6(BLISSI6) %BLISS32(BLISS32)
%BLISS36(BLISS36))

The module is intended for compilation only by the compiler currently in
use, and no transportability checking is to be performed. (See Section
16.2.4 for a description of the predeclared macros shown above.)

LINKAGE(BLISS) <= BLISS-16/32
LINKAGE(BLISS36C) <= BLISS-36 Only

Use the predefined linkage BLISS in BLISS-16 and -32, or the prede­
fined linkage BLISS36C in BLISS-36, for any routine that does not spec­
ify a linkage-attribute.

LIST(SOURCE, NOREQUIRE, NOEXPAND, NOTRACE,
NOLIBRARY, OBJECT, NOASSEMBLY, SYMBOLIC,
BINARY, COMMENTARY)

List the source text, but not the text contributed by files specified in
require-declarations. Do not list macro expansions or traces. Do not list
library usage traces. List the object code instructions using symbolic
names, the binary text, and commentary produced by the compiler.

STRUCTURE 0

That is, the default structure-attribute is empty, and default-structure­
references are invalid (see Section 11.7).

OPTLEVEL = 2

Perform all optimizations that can be invoked without making any
special assumptions about the program.

The BLISS-36 ENVIRONMENT switch defaults, except for the ots-option
and stack-option, are established when a given BLISS-36 compiler is gener­
ated. See the BLISS-36 User's Guide for details.

The default for the ots-option is BLISS36C_OTS. This implies the standard
BLISS36C Object Time System filename for a given target environment, and
implies the standard BLISS36C linkage for generating OTS routine calls.

If the stack-option is not specified in a module that contains the MAIN
switch, a 2048-word stack is established by default.

The defaults for the OTS and OTS-LINKAGE switches are, respectively,
the standard OTS filename and the standard OTS linkage established by the
(explicit or default) ENVIRONMENT switch ots-option. More specifically,
the OTS_LINKAGE default can be either BLISS36C or BLISSI0, depending
upon the ots-option setting.

19-8 Modules and Programs

If a null language-list appears in a LANGUAGE switch (i.e,
LANGUAGE 0), the single language-name corresponding to the compiler in
use is assumed. (This is equivalent to the default for the entire LANGUAGE
switch, as described above.)

19.2.4 Semantics

The module-switches inform the compiler either to take an action or to sup­
press an action. The actions associated with the special-switches and on-off­
switches are described in the following sections.

19.2.4.1 Special-Switches - The special-switches ADDRESSING_MODE
(in BLISS-32), LANGUAGE, LINKAGE, LIST, and STRUCTURE can be
used in a switches-declaration as well as in a module-head; those switches are
described in Section 18.2. (See Appendix C also for further information on the
LANGUAGE switch and transportability checking.)

The special-switches that can be used only as module-switches are defined as
follows:

Special-Switch Action

ADDRESSING_MODE (mode-16) <= BLISS-16 Only
Generate instructions using absolute or rel­
ative addressing mode as indicated.

ADDRESSING_MODE (mode-36) <= BLISS-36 Only
Generate instructions using indirect or
noindirect addressing mode as indicated.

ENTRY (name , ...) <= BLISS-36 Only
Produce an object-module record that con­
tains the specified global (i.e. entry) names,
for use by the linker when forming a library
of object modules.

ENVIRONMENT (environ-16-option) <= BLISS-16 Only
EIS: Generate object code employing in­
structions from the PDP-II Extended In­
struction Set.

NOElS: Generate object code employing
only the instructions available to all
PDP-II models.

LSl11: Generate object code employing
only the instructions available to th~
LSI-II processor.

TIl: Generate object code employing only
the instructions available to the TIl proces­
sor.

PIC: Generate Position Independent Code.

ODT: Facilitate debugging with ODT.

Modules and Programs 19-9

ENVIRONMENT (environ-36-options) <= BLISS-36 Only
Cpu-option: Specifies the processor model
of the target system for which code is to be
generated.

IDENT = 'xxx'

MAIN = routine-name

OPTLEVEL = level

Monitor-option: Specifies the operating
system of the target system fo:r which code
is to be generated.

Ots-option: Specifies which of the standard
object-time systems is to be used (at link­
time) to satisfy outstanding external refer­
ences, and implies the corresponding stand­
ard linkage to be used for OTS calls (which
may differ from the default linkage for non­
OTS calls).

Stack-option: Specifies the name of an
OWN or GLOBAL data-segment declared
in the same (main) module to be used as
the control stack for the program, in place
of a default compiler-generated segment.

Include the quoted-string as an identifica­
tion in the object module generated from
the compilation of the module. (Currently
effective in BLISS-16 and BLISS-32 only;
see the appropriate BLISS user's guide for
any applicable restrictions.)

Save the routine-name. Program execution
will begin with a routine-call on the routine
designated by this routine-name.

Use the value of level as a guide for the
kind of optimizations performed, as follows:

Level

o
I
2
3

Meaning

Minimum Optimization
Low Optimization
Normal Optimization
Maximum Optimization

The level value 0 produces the most read­
able object code.

OTS = 'ots-file-spec' <= BLISS-36 Only

19-10 Modules and Programs

Use the specified object-module library file
when searching for object-time-system
routines instead of the standard OTS file
implied by the ots-option (see ENVIRON­
MENT).

Note that LINK-20 requires that the
quoted file-spec conform to the TOPS-IO
style (i.e. DEV:[PPN]filnam).

OTS-LINKAGE = linkage-name <= BLISS-36 Only

VERSION = 'version-number'

BLISS-32 ONLY

Use the named linkage-definition when
generating calls to the object-time-system
identified in the OTS switch.

Include the quoted-string as an identifica­
tion in the executable image of the program
generated by linking the "main" module
containing this switch. (Currently effective
in BLISS-36 only.)

The quoted-string given with the IDENT special-switch is printed by the
linker in the map it produces as a result of linking the modules of a pro­
gram. This quoted-string usually contains an identifier that is used to
determine which version of an object module is present in a program.

BLISS-36 ONLY

The quoted-string given with the VERSION special-switch is placed in the
"version number" location of the executable image produced as a result of
linking the modules of a program. (Note that the module containing the
VERSION switch must also contain the MAIN switch.) This quoted-string
must contain a conventional version number that is used to identify the
version level of a program.

19.2.4.2 On-Off-Switches - The on-off-switches ERRS, OPTIMIZE, SAFE,
UNAMES, and ZIP can be used in a switches-declaration as well as in a
module-head; those switches are described in Section 18.2. The on-off­
switches that can be used only as module-switches are defined as follows:

On-Off-Switch Action

CODE Generate the object code for the module.

DEBUG Build the symbol table and the linkages required for use
of the debugging package.

Each of these switches has a negation, formed by prefixing the switch name
with NO. The negated switch means that the indicated action should not be
taken.

19.3 Predefined Names

Some names have a predefined, specific meaning that is part of the definition
of BLISS. For example, ABS is the name of the absolute value function, and
VECTOR is the name of a predefined vector structure.

There are two kinds of predefined names: predeclared and builtin. The prede­
clared names can be used without any declaration; indeed, a predeclared
name must not be declared wherever it is used in its predefined sense. On the
other hand, a builtin name must be declared BUILTIN wherever it is used in
its predefined sense.

Modules and Programs 19-11

It is important to note that predefined names are not reserved. A predefined
name can be declared for some user purpose (for example, as the name of a
data segment or a macro or a routine). Within the scope of such a declaration,
the predefined meaning of the name is lost; but if that meaning is not re­
quired, no damage is done.

The names that are predefined in the versions of BLISS that are described in
this manual are listed in the following paragraphs. Additional predefined
words will be added to BLISS as the language grows.

Predeclared Standard-Function-Names - The following names are prede­
clared as standard-function-names:

SIGN, ABS
MAX, MAXU, MAXA
MIN, MINU, MINA
%REF

The description for each of these standard-function names is given in Section
5.2.

Builtin Register-Names - The predefined register-names must be declared
BUILTIN wherever they are used as such. The register-names that are prede­
fined for each dialect are described in Section 10.7.4.

Predeclared Structure-Names - The following names are predeclared as
names for predefined structures:

BITVECTOR
BLOCK
BLOCKVECTOR
VECTOR

The structure-declaration for each of these structure-names is given in Sec­
tion 11.9.

Predeclared Linkage-Names - The following names are predeclared as link­
age-names:

BLISS
FORTRAN
FORTRAN_FUNC
FORTRAN_SUB
BLISS36C
BLISS10

< = 16/32 only
<= 16/32 only

<= 36 only
<= 36 only

The description of these linkage-names is given in Section 13.5.

Builtin Linkage-Functions - The following predefined names of linkage-func­
tions must be declared BUILTIN wherever they are used as such:

ACTUALCOUNT
ACTUALPARAMETER
ARGPTR
NULLPARAMETER <= 16/32 only

The description of these linkage-functions is given in Section 13.6.

19-12 Modules and Programs

Predeclared Condition-Handling-Functions - The following names are
predeclared as names of condition-handling-functions:

SETUNWIND
SIGNAL
SIGNAL_STOP

The description of these condition-handling-functions is given in Chapter 17.

Predec lared M acro-N ames - The following names are predeclared as macro­
names:

%BLISS16
%BLISS32
%BLISS36

The description for each of these macro-names is given in Section 16.2.4.

Predeclared Supplementary-Function-Names - The following names are
predeclared as supplementary-function-names:

CH$ALLOCATION, CH$SIZE
CHPTR, CHPLUS, CH$DIFF
CH$RCHAR, CH$A-RCHAR, CH$RCHAR-A
CH$WCHAR, CH$A-WCHAR, CH$WCHAR-A
CH$MOVE, CH$FILL, CH$COPY
CH$COMPARE
CHEQL,CHNEQ,CHLSS, CHLEQ,CHGTR, CHGEQ
CH$FIND_CH, CH$FIND_NOT_CH, CH$FIND_SUB, CH$FAIL
CH$TRANSTABLE,CH$TRANSLATE

All of these are names of functions in the character-handling package, which
is described in Chapter 20.

Builtin Machine-Specific-Function Names - Each BLISS dialect provides a
set of predefined machine-specific-function names that must be individually
declared BUILTIN wherever they are used as such. The machine-specific­
functions defined for each dialect are described in the appropriate BLISS
user's guide. The function names (for all dialects) are included in the listing of
predefined identifiers given in Appendix A of this manual.

19.4 Programs

A program is made up of object modules that have been linked together to
form a single executable unit. The object modules that make up the program
are produced as a result of the translation of a source module by one of the
translators in the system. For example, the BLISS compiler translates BLISS
modules into object modules and the FORTRAN compiler translates FOR­
TRAN programs into object modules. Each translator produces an object
module with a uniform set of indicators for the linker. The linker uses these
indicators to allocate the modules and resolve points of communication
among them.

Modules and Programs 19-13

Consider a program that inputs values, sorts them, and then outputs the same
values in sorted order. This program could consist of a FORTRAN program to
do input/output and the following BLISS modules:

MODULE TREESORT (I DENT = '0002 I)

BEGIN
ROUT I NE E){CHANGE (F 1 ,F2) =

• t + ;

GLOBAL ROUT I NE TREESORT (F 1 ,F2)
+ + + ,

END
ELUDOM

MODULE PROCESS (IDENT
BEGIN
E)·(TERNAL ROUT I NE

INPUT: FORTRAN,
OUTPUT: FORTRAN,
TREESORT;

ROUTINE PROCESS =
BEGIN
PSECT OWN = ALPHA;
OWN A: VECTOR[100];
INPUT(A) ;
TREESORT(A,100) ;
OUTPUT(A)
END;

END
ELUDOM

'0002' ,MAIN PROCESS)

The linker links the two object modules produced by a BLISS compiler and
the FORTRAN object module produced by the FORTRAN compiler to form a
single unit. Then, execution begins at the specified point. In this case, execu­
tion begins with the routine PROCESS.

19-14 Modules and Programs

Chapter 20 Character Handling Functions

20.1 Fundamental Concepts. 20-1

20.1.1 Character Sequence Data . 20-2
20.1.2 Character Sequence Operations 20-2.1 I

20.2 Functions. 20-3

20.2.1 Allocation Functions 20-3

20.2.1.1 Definition. 20-4
20.2.1.2 Examples. 20-4

20.2.2 Pointer Functions. 20-5

20.2.2.1 Definition . 20-5
20.2.2.2 Examples. 20-6

20.2.3 Character-Reading Functions 20-7

20.2.3.1 Definition. 20-8
20.2.3.2 Examples. 20-8

20.2.4 Character-Writing Functions 20-8

20.2.4.1 Definition. 20-8
20.2.4.2 Examples. " . 20-9

20.2.5 Sequence-Writing Functions. 20-9

20.2.5.1 Definition. 20-9
20.2.5.2 Examples. · 20-10

20.2.6 Sequence-Comparing Functions · 20-12

20.2.6.1 Definition . · 20-12
20.2.6.2 Examples. · 20-13

20.2.7 Sequence-Searching Functions. · 20-14

20.2.7.1 Definition. · 20-14
20.2.7.2 Examples. · 20-15

20.2.8 Sequence-Translating Functions. · 20-15

20.2.8.1 Definition. · 20-16
20.2.8.2 Examples. · 20-17

April 1983

Chapter 20
Character Handling Functions

A major part of computing is devoted to character handling; that is, the
manipulation of sequences of characters. Character handling is required for
the interpretation of user commands, for the preparation of output listings, for
the management of symbol tables, for the editing of text, and for the Inainte­
nance of files.

This chapter describes the BLISS functions that are designed for character
handling. Some of these functions perform a basic operation, such as allocat­
ing storage for a character sequence, or creating a pointer that can move back
and forth through a character sequence, or writing (or reading) a character at
a given position in a character sequence. Other functions perform an opera­
tion on an entire character sequence, such as moving, copying, comparing, or
searching the sequence.

The functions described in this chapter are part of the set of supplementary­
functions that was introduced in Chapter 5. A call on one of these functions
usually does not produce a subroutine call; instead, it is compiled into a few
hardware instructions that are especially designed for character handling.
These functions provide a way of using these hardware instructions without
causing a program to be machine-dependent. A program that uses these func­
tions correctly (and that does not have machine dependence elsewhere) can be
transported without change to another BLISS target system.

The first section of this chapter presents the concepts that are necessary for a
discussion of character handling. The second section defines the character
handling functions.

20.1 Fundamental Concepts

A discussion of the fundamental concepts of character handling follows. First
character data is described, and then the operations that are applied to char­
acter data are summarized.

20-1

I

20-2

20.1.1 Character Sequence Data

A character cod(1 is a Hequence of bits that represents a character. Usually the
ASCII encoding of characters is used in BLISS. However, as long as a program
makes consistent use of a given character encoding, it does not matter \vhat
that encoding is.

A character p08itiorl is the storage for a single character code. For a given
implementat ion of BLISS, the size of a character position is determined by
two factors: the requirements of the character set and the organization of the
computer memory. A program can be written in a way that does not depend
on the specific character size used by a specific implementation.

A character po ition sequence is a portion of storage that is used for one or
more character positions. Such a sequence has a first and last position. For
each position except the first, there is a previous position, and for each posi­
tion except the last, there is a next position.

A character data segment is a character position sequence that is allocated as
a single portion of storage. In the simpler applications of character handling,
it is possible to treat each character data segment as a separate unit, allocated
in the same way other data segments are. In more advanced applications, a
single character position sequence may extend across several data segments
and may be reorganized as program execution proceeds.

A character pointer is a value that designates a character position. Sometirnes
a character pointer is set to the first character position of a sequence and
remains there, providing access to the entire sequence. In other cases, a char­
acter pointer is used to scan back and forth in a sequence, selecting one
position after another. ·A character pointer occupies a fullword. It can be
moved from one full word to another or can be passed as a parameter of a
routine, like any other fullword value. However, a character pointer can be
correctly interpreted only by a character handling function. For exanlple, a
character pointer must be advanced by the CH$PLUS function, not by the
.. +" operator.

A null pointer is a returned value that indicates the absence of a valid charac­
ter pointer. A null pointer results from the unsuccessful search for one or more
characters within a sequence. The presence of a null pointer can only be
tested for by a CH$FAIL function, and a null pointer must not be passed to
any other character function.

"The lenuth of a character position sequence is the number of character posi­
tions in the sequence. The length of a sequence is not included as part of t.he
sequence itself. In order to fully specify a character position sequence, both its
length and a pointer to its first position must be given. Typically, the parame­
ters of the character handling functions occur in pairs, a length followed by a
pointer.

Character handling can be programmed on two levels. On the simpler level,
all the data is divided into independent character data segments, and the
segments are allocated in the usual way for OWN or LOCAL segments. In
more advanced applications, data may be allocated dynamically, under pro­
gram control.

Character Handling Functions April 1983

20.1.2 Character Sequence Operations

The basic operations of character handling are summarized here. Thesp oper­
ations are the allocating of storage, creating of a pointer, moving a puinter,
fetching or storing a character code, and comparing of character sequences.

Character Handling Functionf' 20-2.1

A character data segment is allocated in a special way. Specifically, the
amount of storage required is expressed in terms of character positions rather
than longwords, words, or bytes ..

A character pointer is created from a given data segment address. The data
segment must be one that was allocated as a character sequence segment. The
character pointer designates the first character position of the sequence.

A character pointer that designates a given character position is moved for­
ward by changing it to designate the next character position of the sequence.
Similarly, a character pointer is moved backward by changing it to designate
the previous character position of the sequence. A character pointer should
not be moved beyond the character data segment in which it originated unless
(1) the programmer is quite sure what lies beyond that segment or (2) the
programmer intends to move it back into the same segment before using it.

The contents of a character position must always be fetched or stored by
means of a character pointer that designates the character position. In con­
trast, a character pointer can be fetched or stored like any other fullword
value (by means of the fetch-operator, ".", or the assignment operator, "=").

Character sequences and character pointers must be compared only by means
of the character handling functions designed for that purpose.

20.2 Functions

For the purpose of definition, the character handling functions are arranged in
eight classes, as follows:

Allocation Functions
Pointer Functions
Character-Reading Functions
Character-Writing Functions
Sequence-Writing Functions
Sequence-Comparing Functions
Sequence-Searching Functions
Sequence-Translating Functions

Each class of functions is described in one of the following sections.

The name of each character handling function consists of the prefix "CH$"
followed by a mnemonic name; for example, "CH$ALLOCATION" is the
name of the function that computes the storage that must be allocated for a
sequence.

20.2.1 Allocation Functions

The allocation functions determine the amount of storage required for charac­
ter data. The function CH$ALLOCATION returns the number of full words
required for a given number of characters. The function CH$SIZE returns the
number of bits required for a single chatacter.

Character Handling Functions 20-3

20.2.1.1 Definition - The allocation functions are defined as follows:

CH$ALLOCATION(n, cs)

Interpret n as an unsigned integer (the length of the allocated sequence).
Interpret cs as an unsigned integer (the character size.) Imagine a char­
acter position sequence composed of n character positions, each of which
occupies cs bits. Return the number of fullwords that would be required
for storage of such a chara~ter position sequence.

Default character size. The character-size parameter can be omitted;
that is, the form CH$ALLOCATION(n) is permitted. In this case, the
system default for the character size is used for cs. In BLISS-16 and
BLISS-32 this default is 8; in BLISS-36, the default is 7.

CH$SIZE(ptr)

Interpret ptr as a pointer to a character position sequence. Return the
character size for the sequence; that is, return the number of bits occu­
pied by each character position of the sequence.

Default character size. The pointer parameter can be omitted; that is,
the form CH$SIZEO is permitted. In this case, the system default for
character size is returned.

The character size, cs, must be a compile-time-constant-expression.

The CH$ALLOCATION function is a compile-time-constant-expression if the
length parameter, n, is a compile;-time-constant-expression.

The CH$SIZE function is a compile-time-constant-expression if the pointer
parameter, ptr, is omitted.

In BLISS-16 and BLISS-32, a function that specifies a character size, other
than 8 is invalid. Thus the character size is a constant in BLISS-16 and
BLISS-32. While the character size in BLISS-36 variable, with a range of 1
through 36 bits, any departure from the default 7 -bit character size for ASCII
encodings or the 6-bit character size for the SIXBIT encoding must be used
with caution.

20.2.1.2 Examples - The CH$ALLOCATION function is normally used
within the VECTOR attribute. An example of this usage is:

OWN
53: VECTOR[CH$ALLOCATION(BO)];

This declaration allocates a character data segment for S3 that is composed of
80 character positions.

The use of CH$ALLOCATION within the VECTOR attribute is a way of
extending the BLISS language to handle character data without making ma­
jor changes in the design of the language. Specifically, the use of the VEC­
TOR attribute is a way of allocating storage for a character position sequence.
It follows that storage allocated in this way should not be accessed as a vector,

20-4 Character Handling Functions

April 1983

even though that is technically possible. Instead, the storage should always be
accessed by the character-handling functions in this chapter.

In fact, the combination of the VECTOR attribute with CH$ALLOCATION
should be thought of as a single language construct. This point of view can be
expressed by means of the follpwing macro:

MACRO
CH$5EQUENCE(N) = VECTORCCH$ALLOCATION(Nl] %;

Within the scope of this declaration, CH$SEQUENCE can be used as if it
were a character-sequence attribute. For example, the declaration of S3, given
several paragraphs earlier, can be written as follows:

OWN
53: CH$5EQUENCEC80];

The CH$SEQUENCE macro just given is not a predeclared part of the BLISS
language. It is given here as a suggested user-declared macro. If it is used in a •
program, then it must be explicitly declared in that program.

When the CH$ALLOCATION function is used in the VECTOR attribute (as
is normally the case), the parameters of CH$ALLOCATION must be compile­
time-constant-expressions. This restriction follows from the definition of the
VECTOR attribute (given in Section 11.4.1), which requires that an expres­
sion that is an actual parameter of the VECTOR attribute be a compile-time­
cons tan t-expression.

The declaration of S3, given above, satisfies this requirement because its
length parameter is 80 and its character-size parameter is absent.

In advanced programming applications, CH$ALLOCATION is used with a
non-constant length. For example, in a program that performs dynamic allo­
cation of storage for character sequences, CH$ALLOCATION is used to deter­
mine the amount of storage required.

20.2.2 Pointer Functions

The pointer functions create or manipulate character pointers. The CH$PTR
function returns a character pointer that designates a character position. The
CH$PLUS function creates a character pointer that is offset by a given num­
ber of character positions from another character pointer. The CH$DIFF func­
tion determines the offset between two given character pointers.

20.2.2.1 Definition - The pointer functions are defined as follows:

CH$PTR(addr, i, cs)

Interpret addr as the address of a data segment (the base address). Inter­
pret i as a signed integer (the index). Interpret cs as an unsigned integer
(the character size). Assume that the given segment is a character posi­
tion sequence that uses cs bits for each character position. Return a
character pointer to the (i+1),th character position of the sequence con­
tained in the segment at addr.

Character Handling Functions 20-5

I

Default character size. The character-size parameter can be omitted;
that is, the form CH$PTR(addr,i) is permitted. In this case, the system
default is used for the character size. In BLISS-16 and BLISS-32, this
default is 8; in BLISS-36, the default is 7.

Default index. When the character-size parameter is omitted, the index
parameter can also be omitted; that is, the form CH$PTH(addr) is per­
mitted. In this case, the system default is used for the character size and
o is used for the index.

CH$PLUS(ptr, i)

Interpret ptr as a pointer into a character position sequence. Interpret i
as a signed integer (the index.) Suppose that ptr designates the k'th
character position of the given sequence. Return a pointer that desig­
nates the (i+k)'th character position of the given sequence.

CH$DIFF(ptrl, ptr2)

Interpret ptr 1 and ptr2 as character pointers of the same character size
(bits per character) pointing into the same character position sequence.
Suppose the pointers designate the nl'th and n2'th character positions,
respectively, of the given sequence. Return (nl-n2).

The character size, cs, in a CH$PTR function must be a compile-time-con­
stant-expression, and in BLISS-16 and BLISS-32 its value must be 8.

The CH$PTR function is a link-time-constant-expression if addr is a link­
time-constant-expression and i and cs are, if given, each a compile-time­
constan t-expression.

In BLISS-16 and BLISS-32 a function that specifies a character size other
than eight bits is not valid.

20.2.2.2 Examples - A character data segment is allocated with a name
whose value is an address. Since a character position sequence must be ac­
cessed through a character pointer, some means for creating a pointer is
required. The CH$PTR fills this need.

An example of the use of the CH$PTR function is:

LITERAL

OWN
BUFFSIZE = 80;

QADDR: CH$SEQUENCE[BUFFSIZEJ,
QBEGIN,
QEND;

QBEGIN = CH$PTR(QADDR);
QEND = CH$PTR(QADDR,BUFFSIZE-l);

The two assignments set the contents of QBEGIN and QEND to pointers to
the first and last character positions of the segment QADDR. (Note that
CH$SEQUENCE is a user-declared macro that was described in Section
20.2.1.2.) •

20-6 Character Handling Functions April 1983

Given a pointer to a character position, the CH$PLUS function can produce a
modified pointer that designates a character position that is a certain number
of positions before or after the original position. An example is:

LITERAL

OWN
BUFFSIZE = 80;

X: CH$SEQUENCECBUFFSIZE] t
PTR 1 ;

PTR 1 = CH$PTR 00; .
INCR I FROM 0 TO BUFFSIZE-1 DO

BEGIN
••• (Operation #1)
PTR1 = CH$PLUS(. PTR1 t1) ;

END;

This loop evaluates Operation #1 (which is not specified here) BUFFSIZE
times. During each evaluation, PTR1 designates a different character position
within X, starting at the first position and advancing by one position each
time.

Given two pointers, the number of characters between them can be obtained
by means of the CH$DIFF function. An example is:

OWN
M: CH$SEQUENCEC100];
PTR 1 t
PTR2 t

PTR1 = CH$PTR(Mt25);
PTR2 = CH$PTR(Mt75);

N = CH$DIFF(.PTR2t.PTR1);

This program fragment sets N to 50, which is the offset of PTR2 relative to
PTR1.

The CH$DIFF function is the only valid way to compare two character
pointers. Suppose, for example, it is necessary to call the routine REX if the
pointer contained in X is the same as the pointer contained in Y. This action
can be programmed as follows:

IF CH$D I FF (.)(t • Y) EQL 0 THEN RE>{ () ;

20.2.3 Character-Reading Functions

Each of the character-reading functions returns a character code. Specifically,
each function uses a given character pointer to locate a character position,
and then fetches the character code that is contained in that character posi­
tion. The functions operate on the given character pointer in different ways:
CH$RCHAR does not change the pointer, CH$A-RCHAR advances the
pointer by one character position before fetching a character code, and
CH$RCHAR-A advances the pointer after fetching.

Character Handling Functions 20-7

20.2.3.1 Definition - The character-reading functions are defined as follows:

CH$RCHAR(ptr)

Interpret ptr as a character pointer. Fetch the contents of the character
position that is designated by the character pointer. Return the fetched
value. '

CH$A-RCHAR(addr)

Interpret addr as the address of a character pointer. Advance the charac­
ter pointer to the next character position and then fetch the contents of
the character position designated by the character pointer. Return the
fetched value.

CH$RCHAR-A(addr)

Interpret addr as the address of a character pointer. Fetch the contents of
the character position designated by the character pointer and then ad­
vance the character pointer to the next character position. Return the
fetched value.

It is important to note that the parameter of CH$RCHAR is a character
pointer, whereas the parameter of CH$A-RCHAR and CH$RCHAR-A is
the address of a character pointer.

20.2.3.2 Examples - For some examples of these functions, consider the
following program fragment:

CP = CH$PTR(UPLIT('ABCD'));
CVl = CH$RCHAR(.CP);
CV2 = CH$A-RCHAR(CP);
CV3 = CH$RCHAR-A(CP);
CV4 = CH$RCHAR(.CP);

20.2.4 Character-Writing Functions

Creates pointer to sequence.
Sets CVl to %C'A'.
Sets CV2 to %C'B'.
Sets CV3 to %C'B'.
Sets CV4 to %C'C'.

Each of the character-writing functions stores a character code. Specifically,
each function uses a given character pointer to locate a character position,
and then stores a given character-code in that character position. Like the
character-reading functions, these functions operate on the given character
pointer in different ways: CH$WCHAR does not change the pointer, CH$A­
WCHAR advances the pointer by one position before storing the character
code, and CH$WCHAR-A advances the pointer after storing.

20.2.4.1 Definition - The character-writing functions are defined as follows:

CH$WCHAR(c, ptr)

Interpret c as a character code and interpret ptr as a character pointer.
Store c in the character position designated by the character pointer. Do
not return a value.

20-8 Character Handling Functions

CH$A-WCHAR(c, addr)

Interpret c as a character code and interpret acdr as the address of a
character pointer. Advance the character pointer to the next character
position, then store c in the character position designated by the charac­
ter pointer. Do not return a value.

CH$WCHAR-A(c, addr)

Interpret c as a character code and interpret addr as the address of a
character pointer. Store c in the character position designated by the
character pointer, then advance the character pointer to the next charac­
ter position. Do not return a value.

In each of these functions, c must be in a range suitable for use as a character
code. Since none of these functions return a value, they must not be used in
contexts that require a value. As with the character-reading functions, the
parameter of CH$WCHAR is a character pointer, whereas the parameter of
CH$A-WCHAR and CH$WCHAR-A is the address of a character pointer.

20.2.4.2 Examples - An example of the use of these functions is the following
program fragment:

OWN
54: CH$5EQUENCE[S],
P: INITIAL(CH$PTR(54»;

CH$WCHAR(%C'P' ,.P);
INCR I FROM 1 TO 4 DO

CH$A_WCHAR (·X.C 'Q ' ,P) ;

This example fills S4 up with 'PQQQQ'.

20.2.5 Sequence-Writing Functions

Each of the sequence-writing functions sets the contents of a character posi­
tion sequence. The CH$MOVE function copies a specified number of charac­
ters from one character position sequence into another. The CH$FILL func­
tion sets all of the character positions of a sequence to a given character code;
for example, it can initialize a sequence to all blanks. The CH$COPY function
is relatively complex; it can copy several separate character sequences into a
given character position sequence and then fill in any remaining positions
with a given fill character. Thus a single CH$COPY function acts like a series
of CH$MOVE functions followed by a CH$FILL function.

20.2.5.1 Definition - The sequence-writing functions are defined as follows:

CH$MOVE(n, sptr, dptr)

Interpret n as an unsigned integer (the length of both source and destina­
tion). Interpret sptr and dptr as pointers. Use these pointers to locate two
character position sequences (the source and the destination, respec­
tively).

Character Handling Functions 20-9

20-10

Copy n characters from the source into the destination. That is, copy the
contents of the first character position of the source into the first charac­
ter position of the destination, copy the contents of the second character
position of the source into the second character position of the destina­
tion, and so on, until n characters have been copied. Return a pointer to
the (n+l)'th character position of the destination.

CH$FILL(fill, dn, dptr)

Interpret fill as a character code. Interpret dn as an unsigned integer (the
length of the destination). Interpret dptr as a character pointer. Use the
pointer to locate the beginning position of a character position sequence
(the destination).

Copy fill into the first n character positions of the destination. Return a
pointer to the (dn+l),th character position of the destination.

CH$COPY(snl, sptrl, sn2, sptr2, ... , fill, dn, dptr)

Interpret snl, sn2, ... , and dn as unsigned integers (the lengths of the
sources and the destination). Interpret sptrl, sptr2, ... , and dptr as char­
acter pointers. Use sptrl, sptr2, ... , and dptr to locate the beginning
positions of some character position sequences (the first source, the sec­
ond source, ... , and the destination, respectively). Interpret fill as a char­
acter code.

Copy snl character codes from the first source into the first snl character
positions of the destination, copy sn2 character codes from the second
source into the next sn2 character positions of the destination, and so on.
If less than dn characters have been copied, copy the character code fill
into the remaining character positions of the destination. Return a
pointer to the (dn+l)'th character position of the destination.

If the source lengths, snl, sn2, and so on, are all compile-time-constant­
expressions, then snl +sn2+ ... must not be greater than dn. If the lengths of
the sources are not all compile-time-expressions, then the snl +sn2+ ... can
exceed dn, but any character code that would be stored in a character position
beyond the end of the destination is discarded.

The destination of a CH$MOVE function must not overlap the source; that is,
the two sequences must not have i:,.ny character positions in common. Simi­
larly, the destination of the CH$COPY function must not overlap any of its
sources.

20.2.5.2 Examples - The sequence-writing functions are a convenience be­
cause they combine in a single function what would require many
CH$WCHAR functions. More important, perhaps, they contribute to effi­
ciency by making use of the special hardware instructions especially designed
for moving character sequences.

Character Handling Functions

An example of the use of the CH$MOVE and CH$FILL functions is:

OWN
X: CH$SEQUENCE[20] t

P;
BIND

S = UPLIT('ABCD');

P = CH$PTR()-{);
INCR I FROM 1 TO a DO

BEGIN
P = CH$MOI.'E (• I t CH$ PTR (S) t • P) ;
P = CH$FILL('X,C'-'t 5-.It .P);
END;

At the end of this fragment, the contents of X is:

'A----AB---ABC--ABCD-'

The final value of P is a pointer to the twenty-first character position of X;
that is, the unspecified character position that follows the last character posi­
tion of X.

An example of the use of the CH$COPY function is:

OWN
ALPHA: CH$SEQUENCE[10];

BIND
Q = UPLIT ('ABCDEFGH') ;

CH$COPY(
3t CH$PTR(Qt5) t

5t CH$PTR(Q) t

';(,C' 't

1 (I t CH$ PTR (AL PHA)) ;

At the end of this program fragment, the contents of ALPHA is:

'FGHABCDE

This example assigns a relatively complicated value to ALPHA by means of a
single function call.

The CH$COPY function does not do anything that cannot be done by a
combination of the CH$MOVE and CH$FILL functions. For example, the
previous program fragment could be replaced by:

OWN
ALPHA: CH$SEQUENCE[l(1] t

PAj
BIND

Q = UPLIT('ABCDEFGH');

PA = CH$PTR(ALPHA);
PA = CH$MOI.'E (3 t CH$ PTR (Q t 5) t • PA) ;
PA = CH$MOI.'E(5 t CH$PTR(Q) t .PA);
CH$FILL('X,C' 't 2t .PA);

Character Handling Functions 20-11

This version is less compact and less efficient than the version that uses
CH$COPY. The use of PA as temporary storage for the pointer could be
eliminated by a nesting of function calls; nevertheless, this version would
require three function calls to replace the single call on CH$COPY.

20.2.6 Sequence-Comparing Functions

Each of the sequence-comparing functions compares the contents of one char­
acter position sequence to another. With the exception of CH$COMPARE,
these functions return 1 if the comparison is satisfied and return 0 otherwise;
thus they serve character sequences in the same way relational operators serve
integer and address values (see Section 5.1.4.5). If one of the character
sequences is shorter than the other, it is (for purposes of the comparison only)
extended by adding "fill characters" at the end.

The CH$EQL function determines whether or not the two given sequences are
identical, and the CH$NEQ function is the negation of CH$EQL. The re­
maining-sequence comparing functions depend on the ordering of character
sequences. That ordering is determined by rules similar to those for arranging
the words and phrases in a dictionary. The CH$LSS function determines
whether or not the first parameter occurs before the second parameter in the
ordering of sequences. The CHLEQ, CHGTR, and CH$GEQ functions are
similarly defined.

The CH$COMPARE function determines whether the first parameter occurs
before, is equal to, or occurs after the second parameter. The function returns
-1, 0, or 1, respectively. This function can be used as a case-index in a case­
expression to provide, in a clear and efficient way, an action for each of the
three possible relations between two sequences.

20.2.6.1 Definition - The sequence-comparing functions are defined as
follows:

CH$xxx(nl, ptrl, n2, ptr2, fill)

In this definition, "CH$xxx" stands for anyone of the seven function
names given in the table below. Interpret nl and n2 as unsigned integers
(the lengths of the given sequences). Interpret ptrl and ptr2 as character
pointers. Use these pointers to locate the beginning positions of two char­
acter position sequences. Interpret fill as a character code.

If nl is not equal to n2 (so that the sequences are of different lengths),
treat the shorter one as if it had sufficient additional character positions
and each additional character position contained fill.

Look through the two sequences in parallel, one character position at a
time. That is, select the first position of each sequence, then select the
second position of each sequence, and so on. Proceed in this manner until
a position is selected that contains one character code for one sequence
and a different character code for the other. If no such position is found
(because the sequences are identical), proceed to the last position of the
sequences.

20-12 Character Handling Functions

Call the character codes in the selected positions of the first and second
sequence c 1 and c2, respectively. These character codes are integers, and
are subject to arithmetic comparison. On the basis of the function name
and the charact~r codes cl and c2, obtain a value from the following
table:

Function cl less cl equal cl greater
Name than c2 to c2 than c2

CH$EQL 0 1 0
CH$NEQ 1 0 1

CH$LSS 1 0 0
CH$LEQ 1 1 0

CH$GTR 0 0 1
CH$GEQ 0 1 1

CH$COMPARE -1 0 1

Return the value thus obtained.

Default fill character. The last parameter can be omitted; that is, the
form CH$(nl,ptrl,n2,ptr2) is permitted. In this case, 0 is used as the
value of fill.

20.2.6.2 Examples - As the basis for some examples, consider the following
declarations:

BIND
P_ALPHA
P_BETA
P_BEAR
P_BE

The examples are:

CH$PTR(UPLIT('ALPHA'» t

CH$PTR(UPLIT('BETA'»,
CH$PTR(UPLIT('BEAR'» t

CH$PTR(UPLIT('BE'»;

1. CH$LSS(5, P-ALPHA, 4, P-BETA)

The evaluation of this example is especially simple. When correspond­
ing characters are compared, it is determined that the first characters of
the parameters, 'A' and 'B', are different. Since the ASCII code for 'A' is
less than the ASCII code for 'B', the value of the function is 1.

2. CH$GTR(4, P-BETA, 4, P-BEAR)

In the evaluation of this example, it is determined that the third char­
acters of the parameters 'T' and' A' are different. Since the ASCII code
for 'T' comes after the ASCII code for' A', the value of ~he function is 1.

3. CH$GTR(4, P-BEAR, 2, P-BE)

In the evaluation of this example, the fill character added to the second
parameter plays a decisive role. That is, the first two characters of the
parameters are the same, so it is 'A' and the fill character that are
different. The default fill character is O. Since the ASCII code for 'A' is
greater than 0, the value of the function is 1.

Character Handling Functions 20-13

I

20-14

"t. CH$(;TH(4~ P _BEAR. 2, P _BE, 127)

In this example, the fill character is given explicitly as 127, which is
equal to the highest ASCII code. Since the ASCII code for 'A' is less
than 127, t he value of t he function is O.

;). CHSCO}VIPAHE(5, P_ALPHA, 4, P _BETA)

Since the value of the ASCII code for 'A' is less than the ASCII code for
'1-3', the value of the function is -1.

20.2.7 Sequence-Searching Functions

The sequence-searching functions are used to find a single character or a
sequence of characters within a larger character sequence. Searching is always
done from from left to right (from the first character position to the last).

The CH$FI~D_CH function looks for a character position that contains a
given character, whereas the CH$FIND_NOT _CH looks for a character
position that contains anything but a given character. The CH$FIND_SUB
function looks for a given sequence of characters.

If the desired character or character sequence cannot be found by these func­
tions a nu II p()inter is returned. A CH$F AIL function then determines whether
the returned pointer is or is not a null pointer; also, be aware that a null
pointer must not be passed to any CH$ function except CH$FAIL.

20.2.7.1 Definition
follows:

The sequence-searching functions are defined as

CH$FIND_CH(n, ptr, char)

Interpret n as an unsigned integer (the length of the context). Interpret
ptr as a character pointer. Interpret char as a character code. Use ptr to
locate a character sequence, the context.

Search the first n character positions of the context for a position that
contains char, and return a pointer to that position. If no such character
position is found, return the null pointer.

CH$FIND_NOT_CH(n, ptr, char)

Proceed as for CH$FIND_CH, above. However, search the given se­
quence for a position whose contents are not equal to char.

CH$FIND_SUB(en, cptr, pn, pptr)

Interpret en and pn as unsigned integers (the lengths of the context and
pattern, respectively). Interpret cptr and pptr as character pointers. Use
these pointers to locate two character position sequences, the context and
the pattern.

Start at the first character position of the context and search for a se­
quence of positions that contains the pattern. If such a sequence is found,
return a character pointer to the first position of the sequence. Otherwise,
return the null pointer.

Character Handlin?: Functions April 1983

CH$F AIL(ptr)

Interpret ptr as a pointer. If the pointer is the null pointer, then ret urn I;
otherwise, return O.

20.2.7.2 Examples - As an example of the use of the CH$FIND_CHAR and
CH$FIND_NOT_CHAR functions, consider the following routine:

ROUTINE FIND_WORD(Nt LINE): NOVALUE ~

BEGIN
E)-(TERNAL ROUT I NE

OWN
LE t

REi
LE = CH$FIND_NOT_CH(,N, ,LINE, 'X,C' I);

R E = C H $ FIN D _ C H (, N -- C H $ D IFF (, L E , , LIn E), ,l.. E, 'X, c: / ');
PROCESS_WORD (CH$D I FF (,RE , ,LE), ,LE);
END;

This routine finds the first full "word" in a given line of text. For purposes of
this routine, a "word" is any sequence of characters that does not contain a
space.

The two parameters of the routine are defined as follows:

.N is the number of positions in the character position sequence that
contains the given text .

. LINE is a pointer to the first position of the character position sequence
that contains the given text.

The first assignment in the routine sets .LE to point to the first character of
the word. The second assignment sets .RE to point to the first space after
the word. Finally, a routine that processes the word is called; that routine,
PROCESS_WORD, is not specified here.

20.2.8 Sequence-Translating Functions

The sequence-translating functions are used to translate a character sequence
from one encoding to another. The CH$TRANSTABLE function builds a
table that controls the translation. The CH$TRANSLATE function uses the
table to translate a given sequence into the new encoding.

These functions make use of a character translation table. The table is, itself,
a character position sequence. Suppose, for example, the contents of the first
character position of such a table is 7; that means that a character code whose
value is 0 will be translated to 7 by the table.

The table contains one position for each character-code value in the source
character-code set. For example, if the source character sequence is ASCII
encoded, then the translation table must contain 128 positions, one for each
value in the (7-bit) ASCII character-code set. The CH$TRANSLATE func­
tion essentially uses the value of a given source character position as a zero­
based index into the table, from which it obtains the corresponding destina­
tion code value.

Character Handling Functions 20-15

I

20-16

20.2.8.1 Definition - The contents of a character translation table is given as
a parameter of the CH$TRANSTABLE function. The syntax of this parame­
ter is:

translation-string translation-item , ...

translation-item { translation-code
REP l'eplicatol' OF (translation-string) }

replicator compile-time-constant-expression

translation-code single -character-Ii teral

The sequence-translating functions are defined as follows:

CH$TRANSTABLE(ts)

(The symbol ts represents a translation-string, which is described
above.) Create the translation table specified by ts and place it in the
current PLIT program section. Return the address of the translation
table.

CH$TRANSLATE(tab, sn, sptr, fill, dn, dptl')

Interpret tab as an address and use it to locate a character translation
table. Interpret sn and dn as unsigned integers (the lengths of the source
and the destination, respectively). Interpret sptr and dptr as pointers
and use them to locate the beginning positions of two character position
sequences (the source and the destination.) Interpret fill as a character
code.

Let n be sn or dn (the length of the source or the destination), whichever
is smaller. Perform the following steps for i = 1, 2, ... , n: fetch the
contents of the i'th character position of the source, and call its value c.
Fetch the contents of character position c of the character translation
table (whose first position is numbered 'zero'), and call the value tc.
Store tc in the i'th character position of the destination.

If sn is greater than dn (that is, the source is longer than the destination),
then ignore the last sn-dn positions of the source. If sn is less than dn,
then set the last (dn-sn) character positions of the destination to fill.
Observe that the fill character code is not translated.

Return a pointer to the (dn+1)'th character position of the destination.

The CH$TRANSTABLE function is always a compile-time-constant- expres­
sion. In fact, the table is created and allocated by the compiler in the same
way a PLIT is created and allocated. The destination of a call on the
CH$TRANSLATE function must not overlap the source; that is, the two
sequences must not have any character positions in comnlOn.

Character Handling Functions April lm~;{

20.2.8.2 Examples - As an example of the use of the sequence-translating
functions, consider the following routine:

ROUTINE R(Nt LINEt WORK_BUF): NOVALUE =
BEGIN
BIND

CH$TRANSLATE(

TAB

TAB t

CH$TRANSTABLE(
RE P 32 OF ('X,C' * ') t

'X,C' 't

REP 10 OF (%C'*') t
/.,C' +' t

RE P 1 OF (/.,C' * ') t

'X,C' - ' t

REP 2 OF ('x'C'*') t
'X,C '0 't /.,C' 1 't 'X,C' 2' t 'X,C' 3 't 'X,C' 4' t
'X,C'5' t 'X,C'G' t 'X,C'7' t /.,C'8' t 'X,C'S' t
REP 70 OF (%C'*'»;

.Nt .LINEt
o t

.Nt .WORK_BUF);
STAR = CH$FIND_CH(.Nt .WORK_BUFt 'X,C'*');
IF CH$FAIL(.STAR)

THEN PROCESS(.Nt .LINE)
ELSE ERROR(.Nt .LINEt CH$DIFF(.STARt .WORK_BUF»;

END;

This routine performs a preliminary check of a given line of text that is
expected to represent one or more integers. For purposes of this routine, the
presence of any character other than a space, a sign, or a digit makes the line
invalid. If the line is valid, then a routine to further process the line if called;
that routine, PROCESS, is not specified here. Otherwise, a routine to handle
an invalid line, ERROR, also not specified here, is called.

The three parameters of the routine are defined as follows:

.N

.LINE

is the number of positions in the character position se­
quence that contains the given text.

is a pointer to the first position of the character position
sequence that contains the given text.

is a pointer to the first character position of a work area
that is to receive the translated sequence.

A step-by-step description of the routine R follows:

1. A translation table is defined and its address is bound to TAB. The
table is designed to leave unchanged any space, sign, or decimal digit,
but to replace any other character with a '*'.

2. The given character position sequence is translated. If it is valid, it is
unchanged. If it is invalid, each invalid character is replaced by an
asterisk.

3. The translated sequence is searched for an asterisk, and the resulting
pointer is assigned to STAR.

Character Handling Functions 20-17

4. The pointer in STAR is checked by means of CH$FAIL. If it is null,
then no asterisk was found and the text is passed to the routine PRO­
CESS. If the pointer is not null, the line is passed to the error routine
together with the index of the first invalid character.

This program fragment is relatively complicated, but it is very efficient. With­
out the translating functions, some method of checking individually for each
of the valid characters would be required.

20-18 Character Handling Functions

Appendix A Predefined Identifiers

Appendix A
Predefined Identifiers

A predefined identifier is an identifier that has a special meaning in one or
more dialects of BLISS. For example, "IF" indicates the beginning of a condi­
tional-expression, and "MAXU" designates the "unsigned maximum" stan­
dard -function.

The predefined identifiers are classified as keywords and predefined names.
Each keyword is either reserved or unreserved, and each predefined name is
either predeclared or builtin. Thus there are four kinds of predefined identi­
fiers.

The use of a predefined identifier as an explicitly-declared name is more or
less restricted, depending on the classification of the identifier. The restric­
tions are:

• A reserved keyword must not be used as an explicitly-declared name
under any circumstances.

• An unreserved keyword can be used freely as an explicitly-declared name,
just as if it were not a predefined identifier. The only disadvantage is that
a human reader may be confused to see a familiar BLISS keyword (such
as MAIN, for example) being used as an explicitly-declared name.

• A predeclared name can be used as an explicitly-declared name. How­
ever, such a use makes it impossible to use the name in its predefined
sense within the scope of the explicit declaration. For example, wherever
ABS is explicitly declared (for exam.ple, as a data segment name), it
cannot be used as the name of the absolute value standard-function.

• A builtin name must always appear in an explicit declaration. If it is
declared by a builtin-declaration, then it has its predefined meaning;
otherwise, it has the meaning given it by the explicit declaration, just as
if it were not a predefined identifier.

These restrictions can be summarized as follows: In choosing a name, never
use a reserved keyword and avoid the use of any predefined name if its use
could cause confusion.

A-l

• •

•

As the BLISS language grows, new predefined identifiers will be added to the
language. In fact, the list given on the following pages includes not only those
identifiers that are predefined in the versions of BLISS described in this
manual, but also a number of identifiers that will be predefined in later
versions of BLISS.

A complete list of the BLISS keywords and predeclared names follows. The
applicable dialects are indicated by parenthesized numbers in the classifica­
tion column:

Identifier Classification Usage

ABS predeclared name standard -function
ABSOLUTE unreserved keyword(16,32) addr.-mode, object-option
ACTUALCOUNT builtin name linkage-function
ACTUALPARAMETER builtin name linkage-function
ADDRESSING_MODE reserved keyword addr.-mode-attr., -switch
ALIGN reserved keyword alignment-attribute
ALWAYS reserved keyword select-Ia bel
AND reserved keyword opera tor-expression
AP builtin name(32,36) register-name
ARGPTR builtin name linkage-function
ASSEMBLY unreserved keyword list-option

BEGIN reserved keyword block
BINARY unreserved keyword list-option
BIND reserved keyword bind-declaration
BIT reserved keyword (Future BLISS)
BITVECTOR predeclared name structure-name
BLISS predeclared name linkage-name
BLISS10 predeclared name(36) environment-option
BLISS10_0TS unreserved keyword(36) environment-option
BLISS16 unreserved keyword language-name
BLISS32 unreserved keyword language-name
BLISS36 unreserved keyword language-name
BLISS36C predeclared name(36) linkage-name
BLISS36C_OTS unreserved keyword(36) environment-option
BLOCK predeclared name structure-name
BLOCKVECTOR predeclared name structure-name
BUILTIN reserved keyword buB tin -declara tion
BY reserved keyword indexed -loop
BYTE reserved keyword allocation-unit

CALL unreserved keyword (16,32) linkage-type
CASE reserved keyword case-expression
CH$~CHAR predeclared name supplementary-function
CH$A-WCHAR predeclared name supplementary-function
CH$ALLOCATION predeclared name su pplementary -function
CH$COMPARE predeclared name su pplemen tary -function
CH$COPY predeclared name supplementary-function
CH$DIFF predeclared name supple men tary -function
CH$EQL predeclared name supplementary-function

A-2 Predefined Identifiers April 1983

Identifier Classifiea tion Usage

CH$FAIL predeclared name supplementary-function
CH$FILL predeclared name supplementary-function
CH$FIND_CH predeclared name su pplemen tary -function
CH$FIND_NOT_CH predeclared name su pplemen tary -function
CH$FIND_SUB predeclared name su pplemen tary -function
CH$GEQ predeclared name supplementary-function
CH$GTR predeclared name supplementary-function
CH$LEQ predeclared name supplementary-function
CH$LSS predeclared name supplementary-function
CH$MOVE predeclared name supplementary-function
CH$NEQ predeclared name supplementary-function
CH$PLUS predeclared name supplementary-function
CH$PTR predeclared name supplementary-function
CH$RCHAR predeclared name su pplemen tary -function
CH$RCHAILA predeclared name supplementary-function
CH$SIZE predeclared name supplemen tary -function
CH$TRANSLATE predeclared name supplementary-function
CH$TRANSTABLE predeclared name su pplemen tary -function
CH$WCHAR predeclared name supplementary-function
CH$WCHAILA predeclared name su pplementary -function
CLEARSTACK unreserved keyword(16,36) linkage-option •
CODE unreserved keyword module-switch
CODECOMMENT reserved keyword codecomment block
COMMENTARY unreserved keyword list -option
COMPILETIME reserved keyword compiletime-declaration
CONCATENATE unreserved keyword psect-attribute

DEBUG unreserved keyword module-switch
DECR reserved keyword indexed -loop
DECRA reserved keyword indexed -loop
DECRU reserved keyword indexed-loop
DO reserved keyword loop-expression

ELSE reserved keyword conditional-expression
ELUDOM reserved keyword module
EMT unreserved keyword(16) linkage-option
ENABLE reserved keyword enable-declaration
END reserved keyword block
ENTRY unreserved keyword(36) module-switch
ENVIRONMENT unreserved keyword(36) mod ule-swi tch
EQL reserved keyword operator-expression
EQLA reserved keyword operator-expression
EQLU reserved keyword operator-expression
EQV reserved keyword operator-expression
ERRS unreserved keyword switch-item, module-switch
EXECUTE unreserved keyword psect-attribute
EXITLOOP reserved keyword exitloop-expression
EXPAND unreserved keyword list-option
EXTENDED unreserved keyword(36) environment-option

April 1983 Predefined Identifiers A-3

Identifier Classifiea tion Usage

EXTEHNAL reserved keyword decl.; addr.-mode-switch

FIELD reserved keyword field-decl., -attribute
FOHTHAN predeclared name(16,32) linkage-name
FORTRAN_FUNC predeclared name linkage-name
FORTHAN_SUB predeclared name linkage-name
FORWARD reserved keyword data-, routine-declaration

• FP builtin name(32,36) register-name
FROM reserved keyword indexed-loop, case-expo
FlO predeclared name(36) linkage-name

GENERAL unreserved keyword(32) addressing -mode
GEQ reserved keyword operator-expression
GEQA reserved keyword operator-expression
GEQU reserved keyword operator-expression
GLOBAL reserved keyword decl., linkage-opt., psect-attribute
GTR reserved keyword operator-expression
GTRA reserved keyword operator-expression
GTRU reserved keyword opera tor-expression

IDENT unreserved keyword module-switch
IF reserved keyword cond i tional-expression
INCR reserved keyword indexed-loop
INeRA reserved keyword indexed-loop
INCRU reserved keyword indexed -loop

• INDIRECT unreserved keyword(36) addressing-mode
INITIAL reserved keyword initial-attribute
INRANGE reserved keyword case-label

• INTERRUPT unreserved keyword (16,32) linkage-type·
LOPAGE reserved keyword (Future BLISS)
lOT unreserved keyword(16) linkage-type

.1SB unreserved keyword(32) linkage-type

.1SR unreserved keyword(16) linkage-type
,JSYS unreserved keyword(36) linkage-type

KEYWORDMACRO reserved keyword keyword -macro-declaration
KAIO unreserved keyword(36) environment-option
KilO unreserved keyword(36) environment-option
KLIO unreserved keyword (36) environment-option

• KSIO unreserved keyword(36) environment-option

LABEL reserved keyword label-declaration
LANGUAGE unreserved keyword switch-item, module-switch
LEAVE reserved keyword leave-expression
LEQ reserved keyword operator-expression
LEQA reserved keyword operator-expression
LEQU reserved keyword opera tor-expression
LIBRARY reserved keyword list-option, library-decl.
LINKAGE reserved keyword switch, linkage-declaration

A-4 Predefined Identifiers April 1983

Identifier Classifica tion Usage

LINKAGE_REGS unreserved keyword(36) linkage-option
LIST unreserved keyword switch-item, module-switch
LITERAL reserved keyword Ii teral-dec lara tion
LOCAL reserved keyword local-decl., psect-attr.
LONG reserved keyword allocation-unit
LONG-RELATIVE unreserved keyword(32) addrel;lsing-mode
LSI11 unr~served keyword(16) environment-option I
LSS reserved keyword operator-expression
LSSA reserved keyword operator-expression
LSSU reserved keyword operator-expression

MACRO reserved keyword macro-declaration
MAIN unreserved keyword mod ule-swi tch
MAP reserved keyword map-declaration
MAX predeclared name standard -function
MAXA predeclared name standard -function
MAXU predeclared name standard -function
MIN predeclared name standard -function
MINA predeclared name standard-function
MINU predeclared name standard -function
MOD reserved keyword operator-expression
MODULE reserved. keyword module

NEQ reserved keyword operator-expression
NEQA reserved keyword operator-expression
NEQU reserved keyword operator-expression
NOASSEMBLY unreserved keyword list-option
NOBINARY utueserved keyword list-option
NOCODE unreserved keyword mod ule-swi tch
NOCOMMENTARY unres~rved keyword list-option
NODEBUG unreserved keyword module-switch
NODEFAULT unreserved keyword psect-attribute
NOERRS unreserved keyword switch-item, module-switch
NOEXECUTE unreserved keyword psect-attribute
NOEXPAND unreserved keyword list-option
NOINDIRECT unreserved keyword(36) addressing -mode • NOLIBRARY unreserved keyword list-option
NONEXTERNAL unreserved keyword(32) addressing-mode-swi tch
NOOBJECT unreserved keyword list-option
NOOPTIMIZE unreserved keyword switch-item, module-switch
NOPIC unreserved keyword psect-attribute
NOPRESERVE unreserved keyword linkage-option
NOREAD unreserved keyword psect-attribute
NOREQUIRE unreserv~d keyword list-option
NOSAFE unreserved keyword switch-item, module-switch
NOSHARE unreserved keyword psect-attribute
NOSOURCE unreserved keyword list-option
NOSYMBOLIC unreserved keyword list-option
NOT reserved keyword operator-expression

April 1983 Predefined Identifiers A-5

Identifier Classifica tion Usage

l\OTHACE unreserved keyword list-option
NOTUSED unreserved keyword(32) linkage-option
:'\ () UN Al'vl ES unreserved keyword switch-item, module-switch
NOVALUE reserved keyword novalue-attribute
~O\VHITE unreserved keyword psect-attribute
~OZIP unreserved keyword switch-item, module-switch
NULLPARAlVIETER builtin name(l6,~~2) linkage-funct ion

OR.IEe'!' unreserved key word list-option, module-switch
OF reserved keyword case-, select-exp; plit
OPTI~1IZE unreserved keyword switch-item, module-switch
OPTLEVEL unreserved keyword mod ule-swi tch
OR reserved keyword operator-expression
ORIGIN unreserved keyword(:36) psect-attribute
OTHERVvTISE reserved keyword select -Ia be I
OTS unreserved keyword(:36) module-switch
OTS __ LINKAGE unreserved keyword(36) module-switch
OUTRANGE reserved keyword case-label
OVERLAY unreserved keyword psect-attribute
O\VN reserved keyword own-declaration

PC builtin name(16,:32) register-name
PIC unreserved keyword psect-attribute
PLIT reserved keyword plit
PORTAL unreserved keyword(36) linkage-option
PRESERVE unreserved keyword linkage-option
PRESET reserved keyword preset-attribute
PSECT reserved keyword psect-decl., -allocation

I PS_INTERRUPT unreserved keyword (36) linkage-type
PUSH.) unreserved keyword(36) linkage-type

READ unreserved keyword psect-attribute
RECORD reserved keyword (Future BLISS)
HEF reserved keyword structure-attribute
REGISTER reserved keyword register-, linkage-declo
RELATIVE unreserved keyword(16) addressing-mode
HELOCATABLE unreserved keyword(16) object-option
REP reserved keyword plit

• REQlJIRE reserved keyword list-opt., require-decl.
RETURN reserved keyword return -expression
ROUTINE reserved keyword routine-declaration

I RSX-AST unreserved keyword (16) linkage-type
RTT unreserved keyword(16) linkage-option
RO builtin name(16,32) register-name
Rl builtin name(16,32) register-name
R2 builtin name(16,32) register-name
Ra builtin name(16,32) register-name
R4 builtin name(16,32) register-name
R5 builtin name(16,32) register-name
R6 builtin name(32) register-name

A-6 Predefinerl Identifiers April 1983

Identifier Classification Usage

R7 builtin name(32) register-name
HR builtin name(32) register-name
RH builtin name(32) register-name
RIO builtin name(32) register-name
Rll builtin name(32) register-name

SAFE unreserved keyword switch-item, module-switch
SELECT reserved keyword select-expression
SELECTA reserved keyword select-expression
SELECTONE reserved keyword select-expression
SELECTONEA reserved keyword select-expression
SELECTONEU reserved keyword select-expression
SELECTU reserved keyword select-expression
SET reserved keyword case-, select-expression; field-declaration
SETUNWIND predeclared name condition -handling -function
SHARE unreserved keyword psect-attribute
SHOW reserved keyword (Future BLISS)
SIGN predeclared name standard-function
SIGNAL predeclared name condition-handling-function
SIGNAL_STOP predeclared name condi tion -handling-function
SIGNED reserved keyword extension-, range-attribute
SKIP unreserved keyword(36) linkage-option •
SOURCE unreserved keyword list-option
SP builtin name register-name
STACK unreserved keyword(36) environ men t-option
STACKLOCAL reserved keyword stacklocal-declaration
STANDARD unreserved keyword linkage-declaration
STANDARD_OTS unreserved keyword(36)- environment-option
STRUCTURE reserved keyword structure-decl., switch
S\VITCHES reserved keyword swi tchesdeclaration
SYMBOLIC unreserved keyword list-option

•
T11 unreserved -keyword (16) environment-option • TES reserved keyword case-, select-expression; field -declaration
THEN reserved keyword condi tional-expression
TO reserved keyword loop, case-expression, select-label
TOPSIO unreserved keyword(36) environment-option
TOPS20 unreserved keyword(36) environment-option
TRACE unreserved keyword list-option
TRAP unreserved keyword(16) linkage-type
TYPEPRESENT builtin name (Future BLISS)

UNAMES unreserved keyword switch-item, module-switch
UNDECLARE reserved keyword undeclare-declaration • UNSIGNED reserved keyword extension-, range-attribute
UNTIL reserved keyword loop-expression
UPLIT reserved keyword plit

VALUECBIT unreserved keyword (16) linkage-option
VECTOR predeclared name structure-name, psect-attr.

April 1983 Predefined Identifiers A-7

Identifier Classifica tion Usage

VERSION unreserved keyword switch-item, module-switch
VOLATILE reserved keyword volatile-attribute

WEAK reserved keyword weak-attribute
WHILE reserved keyword loop-expression
WITH reserved keyword leave-expression
WORD reserved keyword allocation-unit
WORD-RELATIVE unreserved keyword addressing -mode
WRITE unreserved keyword psect-attribute

XOR reserved keyword operator-expression

ZIP unreserved keyword switch-item, module-switch

$CODE$ predeclared name psect-name
$GLOBAL$ predeclared name psect-name
$HIGH$ predeclared name(36) psect-name
LOW predeclared name(36) psect-name
OWN predeclared name psect-name
$PLIT$ predeclared name psect-name

',ALLOCATION reserved keyword allocation -function
(,ASCIC reserved keyword(16,32) string-literal

• (,ASCID reserved keyword string-literal
(iASCII reserved keyword string-literal
, ,ASCIZ reserved keyword string -Ii teral
(;ASSIGN reserved keyword calculation -function

(iB reserved keyword integer-literal
"iBLISS reserved keyword compiler-state-function
ciBLISS16 reserved keyword predeclared macro
c,BLISS32 reserved keyword predeclared macro
(,BLISS36 reserved keyword predeclared macro
(;,BPADDR reserved keyword predeclared literal
('iBPUNIT reserved keyword predeclared literal
('iBPVAL reserved keyword predeclared literal

~,,.C reserved keyword integer-literal
'iCHAR reserved keyword string -function
c,CHARCOUNT reserved keyword string-function
('iCOUNT reserved keyword macro-function
(;,.,CTCE reserved keyword exp-test-function

~:(D reserved keyword float-literal
(:cDECIMAL reserved keyword in teger-li teral
(,:()DECLARED reserved keyword compiler-state-function

(;,.,E reserved keyword floa t-li teral
(',-ELSE reserved keyword lexical-conditional
(:i:ERROR reserved keyword advisory-function
~'rERRORMACRO reserved keyword advisory-function

A-8 Predefined Identifiers April 1983

Identifier Classifiea tion Usage

ciEXACTSTRING reserved keyvvord string -function
('i,EXITITERATION reserved keyvvord macro-function
(:; EXITMACRO reserved keyvvord macro-function
(,:iEXPAND reserved keyvvord quote-function
('i,EXPLODE reserved keyvvord delimiter-function

(iFI reserved keyvvord lexical-condi tional
(;c,FIELDEXPAND reserved keyvvord fieldexpand -function

eiG reserved keyvvord float-literal

(,.'i!H reserved keyvvord floa t-li teral

(;iIDENTICAL reserved keyvvord sequence-test-function
(;i,IF reserved keyvvord lexical-conditional
~'iJNFORM reserved keyvvord advisory -function
c(.JSSTRING reserved keyvvord exp-test-function

~'(LENGTH reserved keyvvord macro-function
ciLTCE reserved keyvvord exp-test-function

(',MESSAGE reserved keyvvord ad visory -function

('iNAME reserved keyvvord name-function
(:iNBITS reserved keyvvord hi ts-function
(;iNBITSU reserved keyvvord hi ts-function
(",NULL reserved keyvvord sequence-test-function
(:(!NUMBER reserved keyvvord calculation -function

(;(.0 reserved keyvvord integer-literal

Si:P reserved keyvvord string -Ii teral
~'~,PRINT reserved keyvvord advisory -function

~!'i)QUOTE reserved keyvvord quote-function
(:cQUOTENAME reserved keyvvord macro-name function

(;i:RAD50_10 reserved keyvvord(36) string-literal
cfRAD50_11 reserved keyvvord (16,32) string-literal
%REF reserved keyvvord standard -function
%REMAINING reserved keyvvord rna cro-function
c;~(REMOVE reserved keyvvord deli mi ter-function
('i;REQ UIRE reserved keyvvord require-function

%SBTTL reserved keyvvord title-function
S'6SIXBIT reserved keyvvord(36) string -Ii teral
~($IZE reserved keyvvord allocation -function
S'oSTRING reserved keyvvord string -function
%SWITCHES reserved keyvvord compiler-state-function

%THEN reserved keyvvord lexical-condi tional
(H)TITLE reserved keyvvord title-function

April 1983 Predefined Identifiers A-9

Identifier Classification Usage

c(,UNQUOTE reserved keyword quote-function
S:(iUPVAL reserved keyword predeclared literal

seVARIANT reserved keyword com piler-sta te-function

rrWARN reserved keyword advisory -function

C:"X reserved keyword integer-literal

A-lO Predefined Identifiers

Appendix B String Encodings

B.1 ASCII Encoding.
B.2 RADIX-50 Encoding.

B.2.1 RAD50_11 Encoding.
B.2.2 RAD50_10 Encoding.

B.3 SIXBIT Encoding

. B-1

. B-3

. B-3

.B-5

.B-8

Appendix B
String Encodings

This appendix describes the several types of character-string encodings used
in the BLISS dialects:

• In BLISS-16 and BLISS-32 - ASCII and RAD50_II

• In BLISS-36 - ASCII, RAD50_I0, and SIXBIT

B.1 ASCII Encoding

An ASCII string-literal is a common way of encoding a character sequence.
The size of an ASCII character position varies with the dialect as (ollows: In
BLISS-16 and BLISS-32, one character occupies an 8-bit byte; in BLISS-36,
each 36-bit word contains five ASCII character positions, each of which occu­
pies seven bits.

The code value for each ASCII character can be found in the accompanying
"ASCII Code Table", both in octal and hexadecimal representation.

B-1

ASCII Code Table

Octal Hex ASCII Octal Hex ASCII Octal Hex ASCII
Code Code Char. Code Code Char. Code Code Char.

000 00 NUL 053 2B + 126 56 V
001 01 SOH 054 '2C 127 57 W
002 02 STX 055 2D 130 58 X
003 03 ETX 056 2E 131 59 Y
004 04 EOT 057 2F / 132 5A Z
005 05 ENQ 060 30 0 133 5B [

006 06 ACK 061 31 1 134 5C \
007 07 BEL 062 32 2 135 5D 1
010 08 BS 063 33 3 136 5E
011 09 HT 064 34 4 137 5F
012 OA LF 065 35 5 140 60
013 OB VT 066 36 6 141 61 a
014 OC FF 067 37 7 142 62 b
015 OD CR 070 38 8 143 63 c
016 OE SO 071 39 9 144 64 d
017 OF SI 072 3A 145 65 e
020 10 DLE 073 3B 146 66 f
021 11 DC1 074 3C < 147 67 g
022 12 DC2 075 3D 150 68 h
023 13 DC3 ,076 3E > 151 69
024 14 DC4 077 3F ? 152 6A j
025 15 NAK 100 40 @ 153 6B k
026 16 SYN 101 41 A 154 6C 1
027 17 ETB 102 42 B 155 6D m
030 18 CAN 103 43 C 156 6E n
031 19 EM 104 44 D 157 6F 0

032 1A SUB 105 45 E 160 70 p
033 1B ESC 106 46 F 161 71 q
034 1C FS 107 47 G 162 72 r
035 1D GS 110 48 H 163 73 s
036 IE RS 111 49 I 164 74 t
037 IF US 112 4A J 165 75 u
040 20 space 113 4B K 166 76 v
041 21 ! 114 4C L 167 77 w
042 22 115 4D M 170 78 x
043 23 # 116 4E N 171 79 y
044 24 $ 117 4F 0 172 7A z
045 25 % 120 50 P 173 7B
046 26 & 121 51 Q 174 7C
047 27 122 52 R 175 7D
050 28 123 53 S 176 7E
051 29 124 54 T 177 7F DEL
052 2A * 125 55 U

B-2 String Encodings

B.2 RADIX-50 Encoding

A Radix-50 string-literal specifies a particular way of t:ncoding and packing a
sequence of characters. The characters in the string-literal must be members
of the Radix-50 character set, which is a 40-character subset of the ASCII
graphic characters. This subset is the same for all three BLISS dialects, but
the details of encoding and packing vary between BLISS-16 and BLISS-32 on
one hand (RAD50_11) and BLISS-36 on the other (RAD50_10). These two
variations of Radix-50 encoding are described in the following two subsec­
tions.

8.2.1 RAOSO_11 Encoding

In BLISS-16 and BLISS-32, Radix-50 encoding is invoked using the
%RAD50_11 string function (see Section 4.3). A sequence of Radix-50 char­
acters is packed three characters per 16-bit word, as described below.

If necessary, trailing blanks are added so that the number of characters in the
sequence is a multiple of three. Then the sequence is divided into groups of
three characters. The code for each character is obtained from the accompa­
nying "RAD50_11 Code Table", based on both the character and its position
in its group. Then the octal codes for each character in a group are added
together to obtain a 16-bit value.

As an example, suppose the string-literal %RAD50_11'AB' must be evalu­
ated. First, a trailing blank is added, giving %RAD50_11'AB '. Then the
literal is encoded and packed as follows:

A (as first character)
B (as second character)
Blank (as third character)

= 003100
= 000120
= 000000

%RAD50_11'AB '.= 003220 (octal)

The character encoding table is derived as follows. The Radix-50 character set
is composed of 50 (octsl) characters. These characters are treated as the
"digits" of a radix-50 number system. Suppose the i'th character of the set
must be encoded. Dep .mding on whether it is the first (leftmost), second, or
third character of a sequence, the character is encoded as 50*50*i, 50*i, or i
(all octal). The value 50 (octal) was chosen as the radix because it is the
largest value that permits the packing of three characters into a 16-bit word.

String Encodings B-3

RAD50_11 Code Table

First Second Third
Character Character Character

Blank 000000, Blank 000000 Blank 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
V 104600 V 001560 V 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z 121200 Z 002020 Z 000032
$ 124300 $ 002070 $ 000033

127400 002140 000034
Unused 132500 Unused 002210 Unused 000035

0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

B-4 String Encodings

8.2.2 RADSO_10 Encoding

In BLISS-36, Radix-50 encoding is invoked using the %RAD50_10 string
function (see Section 4.3). A sequence of Radix-50 characters are encoded and
packed six characters per 36 ... bit word, as described below.

The sequence is divided into groups of six characters. If the last (or only)
group contains less than six characters, leading blanks are added to the group
in order to extend it to six characters. For each of these groups, the code for
each character is obtained from the accompanying "RAD50_10 Code Table"
which lists codes starting with the righthand character. (Note that this table
has several differences from the RAD50_11 table.) Then these octal codes are
added to obtain a 36-bit value. As an example, suppose the string-literal
%RAD50_11 'ABCD' must be evaluated. First, two leading blanks are added,
giving %RAD50-11' ABCD'. Then the literal is encoded and packed as
follows:

D (as rightmost character)
C (as second character from right)
B (as third character from right)
A (as fourth character from right)
Blank (as fifth character from right)
Blank (as sixth character from right)

= 000000000016
= 000000001010
= 000000045400
= 000002537000
= 000000000000
= 000000000000

%RAD50_10' ABCD' = 000002605426 (octal)

The RAD50_10 character encoding table is derived as follows. The Radix-50
character set is composed of 50 (octal) characters. These characters are
treated as the "digits" of a Radix-50 number system. If the i'th character of
the set which is located as the n'th character from the right in a group must be
encoded it is represented as (50**(n-1))*i (where numbers are octal and **
denotes exponentiation). Thus if six characters are numbered from right to
left in the form:

C(6) C(5) C(4) C(3) C(2) C(l)

where C(n) is the octal code for the n'th character, the RAD50_10 representa­
tion of the character string can be generated by:

«««C(G)*50)+C(5»*50+C(a» *50+C(3»*50+C(2» *50+C(1)

where all numbers are octal.

String Encodings B-5

RADSO_IO Code Table

Rightmost Second Third
Character Character Character

Code From Right From Right

Blank 000000000000 Blank 000000000000 Blank 000000000000
0 000000000001 0 000000000050 0 000000003100
1 000000000002 1 000000000120 1 000000006200
2 000000000003 2 000000000170 2 000000011300
3 000000000004 3 000000000240 3 000000014400
4 000000000005 4 000000000310 4 000000017500
5 000000000006 5 000000000360 5 000000022600
6 000000000007 6 000000000430 6 000000025700
7 000000000010 7 000000000500 7 000000031000
8 000000000011 8 000000000550 8 000000034100
9 000000000012 9 000000000620 9 000000037200
A 000000000013 A 000000000670 A 000000042300
B 000000000014 B 000000000740 B 000000045400
C 000000000015 C 000000001010 C 000000050500
D 000000000016 D 000000001060 D 000000053600
E 000000000017 E 000000001130 E 000000056700
F 000000000020 F 000000001200 F 000000062000
G 000000000021 G 000000001250 G 000000065100
H 000000000022 H 000000001320 H 000000070200
I 000000000023 I 000000001370 I 000000073300
J 000000000024 J 000000001440 J 000000076400
K 000000000025 K 000000001510 K 000000101500
L 000000000026 L 000000001560 L 000000104600
M 000000000027 M 000000001630 M 000000107700
N 000000000030 N 000000001700 N 000000113000
0 000000000031 0 000000001750 0 000000116100
P 000000000032 P 000000002020 P 000000121200
Q 000000000033 Q 000000002070 Q 000000124300
R 000000000034 R 000000002140 R 000000127400
S 000000000035 S 000000002210 S 000000132500
T 000000000036 T 000000002260 T 000000135600
U 000000000037 U 000000002330 U 000000140700
V 000000000040 V 000000002400 V 000000144000
W 000000000041 W 0(000000002450 W 000000147100
X 000000000042 X 000000002520 X 000000152200
Y 000000000043 Y 000000002570 Y 000000155300
Z 000000000044 Z 000000002640 Z 000000160400

000000000045 000000002710 000000163500
$ 000000000046 $ 000000002760 $ 000000166600
% 000000000047 % 000000003030 % 000000171700

B-6 String Encodings

RAD50_10 Code Table

Fourth Fifth Sixth
Character Character Character

From Right From Right From Right

Blank 000000000000 Blank 000000000000 Blank 000000000000
0 000000175000 0 000011610000 0 000606500000
1 000000372000 1 000023420000 1 001415200000
2 000000567000 2 000035230000 2 002223700000
3 000000764000 3 000047040000 3 003032400000
4 000001161000 4 000060650000 4 003641100000
5 000001356000 5 000072460000 5 004447600000
6 000001553000 6 000104270000 6 005256300000
7 000001750000 7 000116100000 7 006065000000
8 000002145000 8 000127710000 8 006673500000
9 000002342000 9 000141520000 9 007502200000
A 000002537000 A 000153330000 A 010310700000
B 000002734000 B 000165140000 B 011117400000
C 000003131000 C 000176750000 C 011726100000
D 000003326000 D 000210560000 D 012534600000
E 000003523000 E 000222370000 E 013343300000
F 000003720000 F 000234200000 F 014152000000
G 000004115000 G 000246010000 G 014760500000
H 000004312000 H 000257620000 H 015567200000
I 000004507000 I 000271430000 I 016375700000
J 000004704000 J 000303240000 J 017204400000
K 000005101000 K 000315050000 K 020013100000
L 000005276000 L 000326660000 L 020621600000
M 000005473000 M 000340470000 M 021430300000
N 000005670000 N 000352300000 N 022237000000
0 000006065000 0 000364110000 0 023045500000
P 000006262000 P 000375720000 P 023654200000
Q 000006457000 Q 000407530000 Q 024462700000
R 000006654000 R 000421340000 R 025271400000
S 000007051000 S 000433150000 S 026100100000
T 000007246000 T 000444760000 T 026706600000
U 000007443000 U 000456570000 U 027515300000
V 000007640000 V 000470400000 V 030324000000
W 000010035000 W 000502210000 W 031132500000
X 000010232000 X 000514020000 X 031741200000
Y 000010427000 Y 000525630000 Y 032547700000
Z 000010624000 Z 000537440000 Z 033356400000

000011021000 000551250000 034165100000
$ 000011216000 $ 000563060000 $ 034773600000
% 000011413000 % 000574670000 % 035602300000

String Encodings B-7

B.3 SIXBIT Encoding

In BLISS-36, SIXBIT encoding is invoked using the %SIXBIT string function
(see Section 4.3). SIXBIT encoding applies to the 64-character graphic subset
of the ASCII characters. A sequence of SIXBIT characters are encoded as
follows.

A character-sequence is divided into groups of six characters, with trailing
blanks added to fill the final (or only) group of six, if necessary. Lowercase
letters are converted to uppercase and then the 6-bit character code found in
the accompanying "SIXBIT Code Table" is obtained for each character.
These six 6-bit codes form a fullword (36-bits).

SIXBIT Code Table

Octal SIXBIT Octal SIXBIT Octal SIXBIT
Code Char Code Char Code Char

00 space 25 5 53 K
01 ! 26 6 54 L
02 27 7 55 M
03 # 30 8 56 N
04 $ 31 9 57 0
05 % 32 60 P
06 & 33 61 Q
07 34 < 62 R
10 35 63 S
11 36 > 64 T
12 * 37 ? 65 U
13 + 40 @ 66 V
14 41 A 67 W
15 42 B 70 X
16 43 C 71 Y
17 / 44 D 72 Z
20 0 45 E 73 [

21 1 46 F 74 \
22 2 47 G 75 1
23 3 50 I 76
24 4 51 J 77
25 5 52 K

B-8 String Encodings

Appendix C Transportability Checking

C.l Full Transportability Checking.
C.2 BLISS-l6/BLISS-32 Subset Checking.

. C-2

. C-3

Appendix C
Transportability Checking

This appendix describes the transportability checking that is performed by
each compiler in response to the LANGUAGE special-switch. See Sections
18.2 and 19.2 for the description of the LANGUAGE switch, and particularly
Section 18.2.5 for a general discussion of its use.

When transportability checking is performed, the compiler scans the source
input for any of the language features described below, and issues a warning
message reporting any occurrence of such features. Two classes of transporta­
bility checking are currently provided, depending on how the language-list is
specified in the LANGUAGE switch. The two classes are:

1. Full Transportability Checking - Performed if anyone of the specifica­
tions

COMMON
BLISSI6,BLISS36
BLISS32,BLISS36
BLISS 16,BLISS32,BLISS36

appears in the language-list. All dialectal constructs are checked for, as
well as any other construct likely to cause problems in transporting a
program between any two target systems.

2. BLISS-16/BLISS-32 Subset Checking - Performed if the specification

BLISSI6,BLISS32

appears in the language list. Essentially this is a somewhat relaxed form
of full (i.e., Common BLISS) checking. Certain dialectal features that
are valid in both BLISS-16 and BLISS-32 are not checked for in this
case.

When no LANGUAGE switch appears in the module-head, or when a switch
that specifies or implies only one language-name appears in either the mod­
ule-head or a SWITCHES declaration, no transportability checking is done

C-l

within the module or within the scope of the declaration, respectively. (Ex­
cept that the switch specification, if explicit, is checked for validity.) If speci­
fied, the LANGUAGE switch must include (or imply) the language-name
corresponding to the compiler in use.

The specific language constructs involved in full checking and in
BLISS-16/BLISS-32 subset checking are described in separate sections be­
low.

C.1 Full Transportability Checking

The dialectal or problematic language features checked for and reported on
under full checking are categorized below in alphabetical order.

Attributes - The dialectal attributes are:

• Addressing-mode attribute

• Alignment-attribute

• Allocation-units BYTE, WORD, and LONG

• Extension-attributes SIGNED and UNSIGNED (when used as exten­
sion-attributes, see note below)

• Weak-attribute

NOTE: The keyword SIGNED or UNSIGNED when used as part of a range­
attribute in a literal-declaration is a Common BLISS construct.

Builtin Names and Declarations - The occurrence, in a BUILTIN declara­
tion, of any builtin-name except ACTUALCOUNT or ACTUAL- PARAME­
TER (common linkage-functions) is reported.

Condition Handling Features - Any use of an ENABLE declaration or SIG­
NAL expression is reported.

Field Selectors - Any field-selector that specifies a field not entirely con­
tained within a fullword is reported. (That is, the position and size values
must not exceed %BPVAL, and neither must their sum.) Also, any field­
reference that does not modify a fetch or store operation and whose position
value is not zero is reported. Note that the field-selector parameters must be
compile-time-constant-expressions in order for the compiler to perform this
checking.

GLOBAL and EXTERNAL Names - The occurrence of any global- or ex­
ternal-name that is not unique (throughout the module) within its first six
characters is reported.

Linkage Declarations - Any use of a linkage-declaration is reported.

Linkage Switches and Linkage Attributes - The use of any linkage-name
other than FORTRAN_FUNC or FORTRAN_SUB in a linkage-switch or
linkage- attribute is reported.

C-2 Transportability Checking

Literals - Occurrences of the following kinds of literals are reported:

• %E, %D, %G, and %H numeric-literals (floating point) and %P string­
literals (packed decimal)

• Any string-literal used as a primary expression (i.e., not a plit-item)

• An "alphanumeric" string-literal with a string-type other than %ASCII or
%ASCIZ.

PSECT Declarations - Any use of a PSECT declaration is reported.

Switches - The occurrences of any of the following module-switches is re­
ported:

ADDRESSING_MODE OTS

C.2 BLISS-16/BLISS-32 Subset Checking

The slightly less restrictive set of language features (relative to full checking)
checked for and reported on under BLISS-16/BLISS-32 subset checking is
categorized below in alphabetical order.

(Briefly, the allocation-units BYTE and WORD, the extension-units SIGNED
and UNSIGNED, and the string-type %RAD50_11 are considered transport­
able constructs in this case.)

Attributes - The attributes checked on are:

• Addressing-mode attribute

• Alignment-attribute

• Allocation-unit LONG

• Weak-attribute

Builtin Names and Declarations - The occurrence, in a BUILTIN declara­
tion, of any builtin-name except ACTUALCOUNT or ACTUAL-PARAME­
TER (common linkage-functions) is reported.

Condition Handling Features - Any use of an ENABLE declaration or SIG­
NAL expression is reported.

Field Selectors - Any field-selector that specifies a field not entirely con­
tained within a fullword is reported. (That is, the position and size values
must not exceed %BPVAL, and neither must their sum.) Also, any field­
reference that does not modify a fetch or store operation and whose position
value is not zero is reported. Note that the field-selector parameters must be
compile-time-constant-expressions in order for the compiler to perform this
checking.

GLOBAL and EXTERNAL Names - The occurrence of any global- or ex­
ternal-name that is not unique (throughout the module) within its first six
characters is reported.

Linkage Declarations - Any use of a linkage-declaration is reported.

Transportability Checking C-3

Linkage Switches and Linkage Attributes - The use of any linkage-name
other than FORTRAN_FUNC or FORTRAN_SUB in a linkage-switch or
linkage-attribute is reported.

Literals - Occurrences of the following kinds of literals are reported:

• %E, %D, %G, and %H numeric-literals (floating point) and %P string­
literals (packed decimal)

• Any string-literal used as a primary expression (i.e., not a plit-item)

• An "alphanumeric" string-literal with a string-type other than %ASCII,
%ASCIZ, or %RAD50_11.

PSECT Declarations - Any use of a PSECT declaration is reported.

Switches - The occurrences of any of the following module-switches is re­
ported:

ADDRESSING_MODE OTS OTS-LINKAGE

C-4 Transportability Checking

Appendix 0 Builtin Functions

D.1 BLISS-16 Machine Specific Functions .D-1

D.1.1 Memory Management Operations .D-1
D.1.2 Processor Status Operations. .D-1
D.1.3 Bit Manipulation Operations .D-1
D.1.4 Arithmetic Operations .D-1
D.1.5 Arithmetic Comparison Operations .D-2
D.1.6 Arithmetic Conversion Operations. .D-2
D.1.7 Processor Action Operations. .D-2
D.1.8 Miscellaneous Operations . .D-2

D.2 BLISS-32 Machine Specific Functions .D-2

D.2.1 Processor Register Operations. .D-2
D.2.2 Parameter Validation Operations .D-2
D.2.3 Program Status Operations .D-3
D.2.4 Queue Operations. .D-3
D.2.5 Bit Operations . .D-3
D.2.6 Arithmetic Operations .D-3
D.2.7 Arithmetic Comparison Operations .D-4
D.2.8 Arithmetic Conversion Operations . .D-4
D.2.9 Character String Operations. .D-4
D.2.10 Decimal String Operations .D-5
D.2.11 Processor Action Operations. .D-5
D.2.12 Miscellaneous Operations. .D-5

D.3 BLISS-36 Machine Specific Functions .D-6

D.3.1 Logical Functions. .D-6
D.3.2 Byte Manipulation Functions. .D-6
D.3.3 Arithmetic Functions . .D-6
D.3.4 Arithmetic Comparison Functions. .D-7
D.3.5 Arithmetic Conversion Functions .D-7
D.3.6 Machine Code Insertion Functions. .D-7
D.3.7 System Interface Functions . .D-7

Appendix D
Builtin Functions

This appendix lists the names of the builtin machine-specific-functions prede­
fined for each BLISS dialect. Detailed descriptions of these functions may be
found in the user's guide associated with each BLISS dialect.

0.1 BLISS-16 Machine Specific Functions

0.1.1 Memory Management Operations

MFPD
MTPD

MFPI
MTPI

Move from previous data space
Move to previous data space

Move. from previous instruction space
Move to previous instruction space

0.1.2 Processor Status Operations

MFPS
MTPS

SPL

Move byte from processor status word
Move byte to processor status word

Set priority level

0.1.3 Bit Manipulation Operations

ROT

SWAB

Rotate

Swap bytes

0.1.4 Arithmetic Operations

ADDD
ADDF
ADDM

DIVD
DIVF

Add double operands
Add float operands
Add multiword operands

Divide double operands
Divide float operands

D-l

EDIV
EMUL

MULD
MULF

SUBD
SUBF
SUBM

Extended -precision divide
Extended -precision multiply

Multiply double operands
Multiply float operands

Subtract double operands
Subtract float operands
Subtract multiword operands

0.1.5 Arithmetic Comparison Operations

CMPD
CMPF
CMPM

Compare double operands
Compare float operands
Compare multiword operands

0.1.6 Arithmetic Conversion Operations

CVTDF
CVTFD

CVTDI
CVTID

CVTFI
CVTIF

Convert double to float
Convert float to double

Convert double to integer
Convert integer to double

Convert float to integer
Convert integer to float

0.1.7 Processor Action Operations

BPT

HALT

NOP

RESET

WAIT

Breakpoint trap

Hal t processor

No operation

Reset hardware

Processor wait

0.1.8 Miscellaneous Operations

DECX Specialized routine call

0.2 BLISS-32 Machine Specific Functions

0.2.1 Processor Register Operations

MFPR
MTPR

Move from a processor register
Move to a processor register

0.2.2 Parameter Validation Operations

PROBER
PROBEW

D-2 Builtin Functions

Probe read accessibility
Probe write accessibility

0.2.3 Program Status Operations

BICPSW
BISPSW

MOVEPSL

Bit clear processor status word
Bit set processor status word

Move from processor status longword

0.2.4 Queue Operations

INSQHI
REMQHI

INSQTI
REMQTI

Insert entry in queue head, interlocked
Remove entry from queue head, interlocked

Insert entry in queue tail, interlocked
Remove entry from queue tail, interlocked

0.2.5 Bit Operations

FFC
FFS

TESTBITCC
TESTBITCS

TESTBITSC
TESTBITSS

TESTBITCCI
TESTBITSSI

Find first clear bit
Find first set bit

Test for bit clear, then clear bit
Test for bit clear, then set bit

Test for bit set, then clear bit
Test for bit set, then set bit

Test for bit clear, then clear bit interlocked
Test for bit set, then set bit interlocked

0.2.6 Arithmetic Operations

ADAWI

ADDD
ADDF
ADDG
ADDH
ADDM

ASHQ

DIVD
DIVF
DIVG
DIVH

EDIV
EMUL

MULD
MULF
MULG
MULH

SUBD
SUBF

Add aligned word interlocked

Add double operands
Add float operands
Add float-G operands
Add float-H operands
Add multiword operands

Arithmetic shift quad

Divide double operands
Divide float operands
Divide float-G operands
Divide float-H operands

Extended-precision divide
Extended-precision multiply

Multiply double operands
Multiply float operands
Multiply float-G operands
Multiply float-H operands

Subtract double operands
Subtract float operands

Builtin Functions D-3

SUBG
SUBH
SUBM

Subtract float-G operands
Subtract float-H operands
Subtract multiword operands

0.2.7 Arithmetic Comparison Operations

CMPD
CMPF
CMPG
CMPH
CMPM

Compare double operands
Compare float operands
Compare float-G operands
Compare float-H operands
Compare- multiword operands

0.2.8 Arithmetic Conversion Operations

CVTDF Convert double to float
CVTFD Convert float to double

CVTDI Convert double to integer
CVTID Convert integer to double

CVTDL Convert double to long
CVTLD Convert long to double

CVTFG Convert float to float-G
CVTGF Convert float-G to float

CVTFH Convert float to float-H
CVTHF Convert float-H to float

CVTFI Convert float to integer
CVTIF Convert integer to float

CVTFL Convert float to long
CVTLF Convert long to float

CVTLG Convert long to float-G
CVTGL Convert float-G to long

CVTLH Convert long to float-H
CVTHL Convert float-H to long

CVTRDH Convert rounded double to float-H
CVTRDL Convert rounded double to long
CVTRFL Convert rounded float to long
CVTRGH Convert rounded float-G to float-H
CVTRGL Convert rounded float-G to long
CVTRHL Convert rounded float-H to long

0.2.9 Character String Operations

CMPC3
CMPC5

CRC

D-4 Builtin Functions

Compare characters 3 operand
Compare characters 5 operand

Calculate cyclic redundancy check

LOCC
SKPC

MOVC3
MOVC5
MOVTC
MOVTUC

MATCHC
SCANC
SPANC

Locate character
Skip character

Move character 3 operand
Move character 5 operand
Move translated characters
Move translated until character

Match characters
Scan characters
Span characters

0.2.10 Oecimal String Operations

ASHP

CMPP

CVTLP
CVTPL

CVTPS
CVTSP

CVTPT
CVTTP

EDITPC

MOVP

Arithmetic shift and round packed

Compare packed

Convert long to packed
Convert packed to long

Convert packed to leading separate numeric
Convert leading separate numeric to packed

Convert packed to trailing numeric
Convert trailing numeric to packed

Edit packed to character string

Move packed

0.2.11 Processor Action Operations

BPT

CHM(x)

HALT

NOP

Breakpoint

Change mode

Hal t processor

No operation

0.2.12 Miscellaneous Operations

BUGL
BUGW

CALLG

INDEX

ROT

XFC

Bugcheck with long operand
Bugcheck with word operand

Call with general argument list

Compute index

Rotate

Extended function call

Builtin Functions D-5

I

I

I

0.3 BLISS-36 Machine Specific Functions

0.3.1 Logical Operations

ASH

FIRSTONE

LSH

ROT

Arithmetically shift a value

Find the leftmost non-zero list in a value

Logically shift a value

Rotate a value

0.3.2 Byte Manipulation Operations

COPYII Increment both source and destination byte
pointers and copy a byte

COPYIN

COPTNI

COPYNN

DPB

INCP

LDB

POINT

REPLACEI

REPLACEN

SCANI

SCANN

Increment a source byte pointer and copy a
byte

Increment a destination byte pointer and copy
a byte

Copy a byte

Deposi t a byte

Increment a byte pointer

Load a byte

Build a DEC-IO/-20 byte pointer

Increment a byte pointer and store a byte

Store a byte given a byte pointer

Increment a byte pointer and fetch a byte

Fetch a byte given a byte pointer

0.3.3 Arithmetic Operations

ADDD Add double operands
ADDF Add float operands
ADDG Add float-G operands

DIVD
DIVF
DIVG

MULD
MULF
MULG

SUBD
SUBF
SUBG

D-6 Builtin Functions

Divide double operands
Divide float operands
Divide float-G operands

Multiply double operands
Multiply float operands
Multiply float-G operands

Subtract double operands
Subtract float operands
Subtract float-G operands

Apri11983

April 1983

0.3.4 Arithmetic Comparison Operations

CMPD
CMPF
CMPG

Compare double operands
Compare float operands
Compare float-G operands

0.3.5 Arithmetic Conversion Operations

CVTDF
CVTFD

CVTDI
CVTID

CVTFI
CVTIF

CVTGF
CVTFG

CVTGI
CVTIG

Convert double to float
Convert float to double

Convert double to integer
Convert integer to double

Convert float to integer
Convert integer to float

Convert float-G to float
Convert float to float-G

Convert float-G to integer
Convert integer to float-G

0.3.6 Machine Code Insertion Operations

MACHOP

MACHSKIP

Execute a DEC-IO/-20 instruction

Execute a DEC-IO/-20 instruction and record any
skip

0.3.7 System Interface Operations

JSYS

UUO
Perform a TOPS-20 monitor call

Perform a TOPS-IO monitor call

Builtin Functions D-7

I

I

I

I

Index
An asterisk (*) indicates the syntax description for the entry.

A

ABS standard function, 5-15
ABSOLUTE

in addressing-mode-attribute, 9-17
in module-switch(16), 19-5
in module-switch(32), 19-6
in switch, 18-12

Access-actual *
in default-structure-reference,

11-31
in general-structure-reference,

11-35
in ordinary-structure-reference,

11-29
in preset-attribute, 9-10

Access-formal *, 11-22
ACTUALCOUNT linkage-function, 13-29
ACTUALPARAMETER linkage-function,

13-29
ADAWI(32), D-3
ADDD(16,32,36), D-1
ADDF(16,32,36), D-1
ADDG(32,36), D-3
ADDH(32), D-3
Addition operator, 5-8
ADDM'(16,32), D-l
Address offset

in alignment-attribute, 9-6
Address*

in default-structure-reference,
11-31

in field-reference, 11-12
Address, encoded, 9-18
Addressable unit, 3-6

usage of, 1-5
Addressing

dialectal differences in, 1-5
introduction to, 1-5

Addressing-mode-attribute*, 9-17
as psect-attribute, 18-3
in external-routine-decl, 12-17
in forward-routine-decl, 12-16

ADDRESSING_MODE
in attribute, 9-17
in module-switch(16}, 19-5
in module-switch(32), 19-6
in module-switch(36), 19-6
in switch, 18-11

Alignment-attribute*, 9-6
as psect-attribute, 18-3

%ALLOCATION function, 15-33
Allocation functions

for character handling, 20-3
Allocation-actual *

in general-structure-reference,
11-35

in structure-attribute, 11-24
Allocation -default *, 11-22
Allocation-formal*, 11-22
Allocation-unit*

as attribute, 9-2
in general-structure-reference,

11-35
in plit, 4-13
in structure-attribute, 11-24

Alternative*, 6-2
AL WAYS in select-expression, 6-8
AND as infix operator, 5-9
Apostrophe

in character-code-literal, 4-4
in float-literal, 4-4
in integer-literal, 4-3
in string-literal, 4-8

ARGPTR linkage-function, 13-29
Argument (see Parameter)
Argument block, 13-7
Argument passing, 12-11

Index-l

Argument pointer (AP) register, 13-3,
13-7

Arithmetic comparison operations
builtin

double(16,32,36), D-2, D-4, D-7
f1oat(16,32,36), D-2, D-4, D-7
f1oat-G(32,36), D-4, D-7
f1oat-H(32), D-4
multiword(16,32), D-2, D-4

infix
address, 5-8
signed integer, 5-8
unsigned integer, 5-8

Arithmetic conversion operations
builtin(16,32,36), D-2, D-4, D-7

Arithmetic expression, 5-7
Arithmetic operations

builtin
double(16,32,36), D-1, D-3, D-6
f1oat(16,32,36), D-1, D-3, D-6
f1oat-G(32,36), D-3, D-6
f1oat-H(32), D-3
multiword(16,32), D-1, D-3

signed integer, 5-7
Arithmetic shift operations

ASH(36), D-6
packed(32), D-5
quad(32), D-3
signed, 5-6

Array
(see VECTOR structure), 11-38

%ASCIC in string-literal, 4-8
ASCIC literal (see %ASCIC)
%ASCID in string-literal, 4-8
ASCII

literal (see SoASCII)
code table, B-2
encoding, B-1

%ASCII in string-literal, 4-8
%ASCIZ in string-literal, 4-8
ASCIZ literal (see %ASCIZ)
ASH(36), D-6
ASHP(32), D-5
ASHQ(32), D-3
ASSEMBLY

in module-switch, 19-5
in switch, 18-11

%ASSIGN function, 15-36
Assignment expression, 5-10

introduction to, 1-6
Associativity, 5-2
Asterisk as operator, 5-7

2-Index

Attribute*, 9-1

B

for formal-name, 12-13
in a declaration, 8-6
introduction to, 1-9
summary of usage, 9-20

%B in integer-literal, 4-3
BEGIN in block, 8-2
BEGIN-END block (see Block)
BICPSW(32), D-3
BINARY

in module-switch, 19-5
in switch, 18-11

Binary operators, 5-2
Bind-data-declaration*, 14-5
Bind -routine-declaration *, 14-7
Binding

in constant expressions, 1-16
in lexical processing, 15-3
introduction to, 1-12

BISPSW(32), D-3
Bit manipulation operations

builtin(16,32), D-l, D-3
Bit operations, 5-9
Bit-count*

in range-attribute, 9-16
Bit-position numbering, 11-16, 11-17
bit-position numbering, 3-10
Bits per value, 14-3
BITVECTOR structure, 11-39

example of, 3-10
Blank character, 4-8

%BLISS function, 15-38
BLISS System, 1-14
BLISS value, 3-2
BLISSI0C

in module-switch(36), 19-6
BLISS16

in module-switch, 19-5
in switch, 18-11

%BLISSI6 macro name, 16-11
BLISS32

in module-switch, 19-5
in switch, 18-11

%BLISS32 macro name, 16-11
BLISS36

in module-switch, 19-5
in switch, 18-11

%BLISS36 macro name, 16-11

BLISS36C_OTS
in module-switch(36}, 19-6

BLOCK structure, 11-40
example of, 3-10
macros for, 16-24

Block*, 8-2
as primary, 4-17
example of, 8-3
introduction to, 1-7
purpose of, 8-1

BLOCKVECTOR structure, 11-45
example of, 3-11

Boolean expression, 5-9
Bound -declara tion *, 14-1
Boundary*

in alignment-attribute, 9-6
Bounds-checking structure, 11-46
(i()BP ADDR literal-name, 14-3
BPT(16,32), D-2
%BPUNIT literal-name, 14-3
C:(:BPVAL literal-name, 14-3
Brace character

in syntax rules, 2-7
. Bracket

as default punctuation, 16-23
in macro-actual-parameter, 16-14
in macro-call, 16-13
in macro-declaration, 16-8, 16-9

BUGL(32), D-5
BUGW(32), D-5
Builtin names

machine-specific-functions, D-l
predefined identifiers, A-I

Builtin-declaration*, 18-17
BY in loop-expression, 6-10
BYTE allocation-unit, 9-2
Byte manipulation operations

builtin(36), D-6
Byte pointer, 3-16, D-6

c
S·oC in character-code-literal, 4-4
CALL linkage-typeU6,32), 13-5, 13-10,

13-12, 13-15, 13-17
CALLG(32), D-5
Calling sequence

control over, 13-2
VAX-II standard, 13-16

Carriage return character, 2-2
Case (of letters), 4-16
Case analysis, 6-4

Case-expression*, 6-5
introduction to, 1-11

Case-label *
in case-expression, 6-5

Case-line*
incase-expression, 6-5

CH$A-RCHAR function, 20-8
CH$A-WCHAR function, 20-9
CH$ALLOCATION function, 20-4
CH$COMPARE function, 20-12
CH$COPY function, 20-10
CH$DIFF function, 20-6
C:H$EQL function, 20-12
CH$F AIL function, 20-15
CH$FILL function, 20-10
CH$FIND_CH function, 20-14
CH$FIND_NOT_CH function, 20-14
CH$FIND_SUB function, 20-14
CH$GEQ function, 20-12
CH$GTR function, 20-12
CH$LEQ function, 20-12
CH$LSS function, 20-12
CH$MOVE function, 20-9
CH$NEQ function, 20-12
CH$PLUS function, 20-6
CH$PTR function, 20-5
CH$RCHAR function, 20-8
CH$RCHAR-A function, 20-8
CH$SEQUENCE macro, 20-5
CH$SIZE function, 20-4
CH$TRANSLATE function, 20-16
CH$TRANSTABLE function, 20-16
CH$WCHAR function, 20-8
CH$WCHAR-A function, 20-9
%CHAR function, 15-23
Character, 2-2
Character data, 20-2

representations of, 3-12
Character handling, 20-1

functions, 20-3
operations, 20-2
character pointer
description, 3-13
representation, 3-15, 3-16

Character sequence
excessively-long, 15-16
internal-only, 15-15

Character string operations
builtin(32}, D-4

Character-code-literal*, 4-4
Character-reading functions, 20-7
Character-writing functions, 20-8

Index-3

S(CHARCOUNT function, 15-23
CHMx(32), D-5
CLEARST ACK linkage-option, 13-10,

13-12, 13-22
CMPC3(32), D-4
CMPC5(32), D-4
CMPD(16,32,36), D-2
CMPF(16,32,36), D-2
CMPG(32,36), D-4
CMPH(32), D-4
CMPM(16,32), D-2
CMPP(32), D-5
CODE

in module-switch, 19-4
in psect-declaration, 18-3

$CODE$ default psect, 18-5
CODECOMMENT*, 4-18
Colon

in labeled-block, 8-2
Comma

in macro-actual-parameter, 16-14
Comment, 2-4
COMMENTARY

in module-switch, 19-5
in switch, 18-11

COMMON
in module-switch, 19-5
in switch, 18-11

Comparing character sequences, 20-12
Comparison operator

(see arithmetic comparison
operations), 5-8

Compilation
introduction to, 1-15
of library source file, 16-28
role of, 1-4

Com pile-time-constant-expression *
defini tion of, 7-3
discussion of, 7-4
introduction to, 1-16
motivation for, 7-1

Compiletime-declaration *, 15-50
use with %ASSIGN, 15-36

Compound-expression, 8-2
introduction to, 1-8

Computational expressions, 5-1
Computed routine addresses, 12-13
CONCATENATE

psect-attribute, 18-3
Concatenation

in syntax notation, 2-6
Condition handling, 17-1

examples of, 17-19
flow of control, 6-1

4-Index

Condition handling, (Cont.)
flow of control in, 17-12

examples of, 17-14
function

SETUNWIND, 17-11
SIGNAL, 17-5
SIGNAL_STOP, 17-6

in VAXNMS, 17-29
introduction to, 17-1

Condition value, 17-5
as SIGNAL parameter, 17-5
as SIGNAL_STOP parameter, 17-6
comparison of, 17-23, 17-25
declarations for, 17-22, 17-24
element of signal vector, 17-9
structure of, 17-19

Conditional compilation, 15-49
Conditional flow of control, 6-1
Conditional-expression*, 6-2

introduction to, 1-10
Conditional-macro-call, 16-13

expansion of, 16-16
Conditional-macro-defini tion *, 16-8
Consequence*, 6-2
constant

character, 4-3
floating-point, 4-3
integer, 4-3
string, 4-7, 4-13

Constant-expression
compile-time, 7-3
introduction to, 1-15
link-time, 7-5

Continuation
in condition handling, 17-10

Control-expression *, 6-1
COPTNI(36), D-6
COPYII(36), D-6
COPYIN(36), D-6
COPYNN(36), D-6
%COUNT function, 15-46

in conditional-macro expansion,
16-17

in iterative-macro expansion, 16-18
in simple-macro expansion, 16-16

Counted plit, 4-12
Counted vector

definition of, 17-8
CRC(32), D-4
%CTCE function, 15-30
CVTDF(16,32,36), D-2
CVTDI(16,32,36), D-2
CVTDL(32), D-4
CVTFD(16,32,36), D-2

CVTFG(32,36), D-4
CVTFH(32), D-4
CVTFI(16,32,36), D-2
CVTFI(32,36), D-4
CVTFL(32), D-4
CVTGF(32,36), D-4
CVTGL(32), D-4
CVTHF(32), D-4
CVTHL(32), D-4
CVTID(16,32,36), D-2
CVTIF(16,32,36), D-2
CVTIF(32,36), D-4
CVTLD(32), D-4
CVTLF(32), D-4
CVTLG(32), D-4
CVTLH(32), D-4
CVTLP(32), D-5
CVTPL(32), D-5
CVTPS(32), D-5
CVTPT(32), D-5
CVTRDH(32), D-4
CVTRDL(32), D-4
CVTRFL(32), D-4
CVTRGH(32), D-4
CVTRGL(32), D-4
CVTRHL(32), D-4
CVTSP(32), D-5
CVTTP(32), D-5

o
%D in float-literal, 4-4
Dangling ELSE, 6-4
Data segments

introduction to, 3-5
Data structures, 11-1

(see also Structure)
abstract definition of, 11-2
concrete representation of, 11-3
introduction to, 1-10
predeclared, 11-38
programmed description of,

11-5
user-defined, 11-46

Data values
representation of, 3-1

Data, introduction to, 1-4
Data-declaration *, 10-2
DEBUG

in module-switch, 19-4
%DECIMAL in integer-literal,

4-3
Decimal string literal

(see also %P), 4-9

Decimal string operations
builtin(32), D-5
literal, 4-9

Decimal-digit*, 4-3
Decimal-literal*, 4-3

. Declaration *, 8-5
examples of, 8-6
governs name, 8-5
introduction to, 1-9
of loop-index, 6-12
scope of, 8-5

%DECLARED function, 15-37
DECR in loop-expression, 6-10
DECRA in loop-expression, 6-10
DECRU in loop-expression, 6-10
DECX(16), D-2
Default punctuation

examples of, 16-22
in iterative-macro expansion, 16-18

Default-structure-reference * , 11-31
compared to ordinary-str-ref, 11-32
examples of, 11-29, 11-33, 11-52

Delimiter
as character, 2-2
as lexeme, 2-3

Descriptor
%ASCID, 4-10

Design objectives of BLISS, 1-2
Dialectal distinctions

in syntax rules, 2-8
Dialects of BLISS

introduction to, 1-1
Direct recursion, 12-7
Discarded value, 6-4
Disjunction

in syntax notation, 2-7
Displacement, 9-18
DIVD(16,32,36), D-l
DIVF(16,32,36), D-l
DIVG(32,36), D-3
DIVH(32), D-3
Division operator, 5-7
DO in loop-expression, 6-10, 6-13

double-precision
floa t-li teral, 4-3

DPB(36), D-6

E
%E in float-literal, 4-4
EDITPC(32), D-5
EDIV(16,32), D-2
EIS

in module-switch(16), 19-5

Index-5

Ellipsis
in syntax notation, 2-7

ELSE in conditional-expression, 6-2
)-cELSE in lexical-conditional, 15-49
ELUDOM in module, 19-2
Embedded comment, 2-4
Empty block

restriction of, 8-2
EMT linkage-type(16), 13-10, 13-14
EMUL(16,32), D-2
Enable vector, 17-9

in VAXNMS, 17-30
Enable-actual*, 17-3
Enable-declaration*, 17-3

examples of, 17-3, 17-28
Encoded address, 9-18
Encoding-type, 9-18
END in block, 8-2
ENTRY

in module-switch(36), 19-6
ENVIRONMENT

in module-switch(16), 19-5
in module-switch(36), 19-6

EQL as infix operator, 5-8
EQLA as infix operator, 5-8
EQLU as infix operator, 5-8
Equals

as infix operator, 5-10
in keyword-assignment, 16-13
in macro-declaration, 16-8, 16-9

EQV as infix operator, 5-9
%ERROR function, 15-39
%ERRORMACRO function, 15-40
ERRS

in module-switch, 19-4
in switch, 18-11

Establisher routine, 17-3
examples of, 17-3
introduction to, 17-1

Evaluation rules
discussion of, 5-12
for blocks, 8-3
for operator-expressions, 5-4

%EXACTSTRING function, 15-22
Exception handling, 17-1
Executable-function*, 5-15

SETUNWIND, 17-11
SIGNAL, 17-5
SIGNA~STOP, 17-6

EXECUTE
psect-attribute, 18-3

Execution of programs, 1-4
Exi t-expression *, 6-14
%EXITITERATION function, 15-46

6-Index

Exitloop-expression*, 6-14
%EXITMACRO function, 15-46
EXPAND

in module-switch, 19-5
in switch, 18-11

%EXP AND function, 15-42
Expansion

in lexical processing, 15-4
of conditional-maero-call, 16-16
of iterative-macro-call, 16-17
of keyword-macro-call, 16-20
of simple-macro-call, 16-15

%EXPLODE function, 15-26
Exponent*, 4-4
Expression *, 4-1

con trol-expression, 6-1
in relation to field-referenees 9

11-19
introduction to, 1-6
operator-expression, 5-2

EXTENDED
in module-switch(36), 19-6

Extension -attribute*
as attribute, 9-3
in general-structure-reference,

11-35
in structure-attribute, 11-24

EXTERNAL
in switch, 18-12

External-declaration*, 10-6
External-literal-declaration*, 14-4
External-name*, 10-6

introduction to, 1-15
External-register-declaration*, 10-14
External-routine-attribute*, 12-17
External-routine-declaration *, 12-17
Externals*

in library source file, 10-7

F

FlO linkage-type(36), 13-21, 13-26.1
Fetch expression, 5-5

introduction to, 1-5
FFC(32), D-3
FFS(32), D-3
%FI in lexical-conditional, 15-49
Field value

definition of, 3-1, 3-4
extension of, 3-4

Field-attribute*, 9-5, 11-27
Field-component*, 11-26
Field-declaration *, 11-26

examples of, 11-44, 17-22, 17-24

Field-definition*, 11-26
Field-name*

in data-declarations, 9-4
in field-attribute, 9-5, 11-27
in field-declaration, 11-26
in general-structure-reference,

11-35
in ordinary -structure-reference,

11-29
Field-reference*, 11-12

as primary, 4-18
examples of, 11-18
in assignment context, 11-15
in fetch context, 11-15
in other contexts, 11-16
in relation to expressions, 11-19
in structure-declarations, 11-18
introduction to, 11-5

Field -selector*, 11-12
default, 11-19
placement in structure-decl, 11-18

Field -set-defini tion *, 11-26
Field-set-name*

in field-attribute, 9-5, 11-27
in field -declaration, 11-26

(/(,FIELDEXP AND function, 15-34
FIRSTONE(36), D-6
Fixed -macro-body

in iterative-macro-call, 16-17
Float-literal*, 4-4
Flow of control, 6-1

introduction to, 1-10
Formal-name*

in ordinary-routine-decl, 12-9
FORTRAN linkages, 13-27
Forward-declaration*, 10-5
Forward-routine-attribute*, 12-16
Forward-routine-declaration*, 12-16
Frame pointer (FP) register, 13-3
Free character, 2-2
FROM

in case-expression, 6-5
in loop-expression, 6-10

Fullword
definition of, 3-1

Fullword values, 3-2
Function (see

G

Execu ta b le-function
Lexical-function)

%G in float-literal, 4-4
GENERAL

in addressing-mode-attribute, 9-17

GENERAL (Cont.)
in module-switch(32), 19-6
in switch, 18-12

General purpose structure, 11-52
General register

(see Register)
General-structure-reference *, 11-35

compared to ordinary-str-ref,
11-37

examples of, 11-29, 11-35, 11-37
GEQ as infix operator, 5-8
GEQA as infix operator, 5-8
GEQU as infix operator, 5-8
GLOBAL

as psect storage-class, 18-3
as psect-attribute, 18-3
in data-declaration, 10-4
in literal-declaration, 14-2

GLOBAL linkage-option, 13-5, 13-8,
13-10, 13-15, 13-22, 13-25

Global register segments
interaction with linkages, 13-31

$GLOBAL$ default psect, 18-5
Global-declaration*, 10-4
Global-name*, 10-4
Global-register-declaration*, 10-12
Global-routine-attribute*, 12-15
Global-routine-declaration *, 12-15
GO TO construct, 6-1
Govern

declaration governs name,
8-5

Greater than
in macro-call, 16-13

GTR as infix operator, 5-8
GTRA as infix operator, 5-8
GTRU as infix operator, 5-8

H

%H in float-literal, 4-4
HALT(16,32), D-2
Handler routine, 17-6

examples of, 17-8, 17-28
introduction to, 17-1
options of, 17-10

Handler routine
options of (Cont.)

continuation, 17-10
resignaling, 17-11
unwinding, 17-11

parameters, 17-8
recursive, 17-18

HIG default psect, 18-5

Index-7

IDENT
in module-switch, 19-5

%IDENTICAL function, 15-29
Identifier

(see Name or Keyword)
%IF function, 15-49
IF in conditional-expression, 6-2
Imaginary block

(see Implicit block)
Immediately contains, 8-2
Implicit block

exam pIe of, 8-8
Implicit declaration

of formal name, 8-8
of loop-index name, 8-8

INCP(36), D-6
INCR in loop-expression, 6-10
INCRA in loop-expression, 6-10
INCRU in loop-expression, 6-10
INDEX(32), D-5
Indexed-loop-expression *, 6-10
INDIRECT

in module-switch(36), 19-6
Indirect recursion, 12-8
Infix-operator, 5-3
%INFORM function, 15-39
Initial-attribute*, 9-8
Initial-item *

in initial-attribute, 9-8
In put-actual-parameter*

in routine-call, 12-3
Input-formal-parameter

in ordinary-routine-decl, 12-9
INRANGE in case-expression, 6-5
INSQHI(32), D-3
INSQTI, D-3
Integer-literal*, 4-3
Internal-only

character sequence, 15-15
name, 15-16

INTERRUPT linkage-type(16,32), 13-10,
13-12, 13-15

lOT linkage-type(16), 13-10, 13-14
%ISSTRING function, 15-30
Iteration count

in iterative-macro-call, 16-18
Iterative flow, 6-1
Iterative-macro-call, 16-13

default punctuation, 16-18
expansion of, 16-17

Iterative-macro-definition*, 16-9
examples of, 16-7

8-Index

J

JSB linkage(32)
examples, 13-18

JSB linkage-type(32), 13-15, 13-17
JSR linkage-type(16), 13-10, 13-12
JSYS linkage-type(36), 13-21
JSYS(36), D-7

K

KA10
in module-switch(36), 19-6

Keyword
complete list of, A-I
in a declaration, 8-6

Keyword-macro-call*, 16-13
expansion of, 16-20

Keyword-macro-declaration*, 16-9
examples of, 16-7, 17-23, 17-25

KilO
in module-switch(36), 19-6

KL10
in module-switch(36), 19-6

KS10
in module-switch(36), 19-6

L

Label*, 8-2
in exit-expression, 6-14

Label-declaration*, 18-17
Labeled-block*, 8-2
LANGUAGE

in module-switch, 19-5
in switch, 18-11

checking performed for, C-1
meaning of, 18-15

Language-list *
in module switch, 19-5
in switch, 18-11

LDB(36), D-6
Leave-expression*, 6-14
Left-operand, 5-3
%LENGTH function, 15-46

in conditional-macro expansion,
16-16

in iterative-macro expansion, 16-17
in simple-macro expansion, 16-15

LEQ as infix operator, 5-8
LEQA as infix operator, 5-8
LEQU as infix operator, 5-8

Less than
in macro-call, 16-13

Letter*, 4-16
Lexeme, 2-3

processing of, 15-2
Lexical processing

examples of, 15-5
introduction to, 15-1
of lexical-functions, 15-17
of library source file, 16-29
of macro calls, 16-14
of numeric-literals, 15-13
of string-literals, 15-14

Lexical-alternative*, 15-49
Lexical-conditional *, 15-49
Lexical-consequence*, 15-49
Lexical-expression*, 15-12
Lexical-function

(;cALLOCATION, 15-33
(XASSIGN, 15-36
S'cBLISS, 15-38
ScCHAR, 15-23
(;rCHARCOUNT, 15-23
SCCOUNT, 15-46
l;(,CTCE, 15-30
~'(DECLARED, 15-37
l,~cERROR, 15-39
%ERRORMACRO, 15-40
%EXA~TSTRING, 15-22
%EXITITERATION, 15-46
%EXITMACRO, 15-46
ScEXPAND, 15-42
%EXPLODE, 15-26
S'()FIELDEXP AND, 15-34
%IDENTICAL, 15-29
S'ClF, 15-49
%INFORM, 15-39
SClSSTRING, 15-30
%LENGTH, 15-46
%L TCE, 15-30
%MESSAGE, 15-40
%NAME, 15-27
S'iJNBITS, 15-32
C)c:NBITSU, 15-31
S'C) NULL, 15-29
%NUMBER, 15-36
%PRINT, 15-40
(loQUOTE, 15-41
%QUOTENAME, 15-27
%REMAINING, 15-45
%REMOVE, 15-26
%SBTTL, 15-41
%SIZE, 15-33
t;ic)STRING, 15-22

Lexical-function (Cont.)
summary of, 15-48
Ci SWITCHES, 15-38
('iTITLE, 15-40

• (··i UN QUOTE, 15-42
('iVARIANT, 15-38
('(WARN, 15-39

Lexical-function*, 15-18
general rules for, 15-17
quote-levels for, 15-20

Lexical-function-name*, 15-18
Lexical-test*, 15-49
LIBRARY

in module-switch, 19-5
in switch, 18-11

Library binary file, 16-28
Library source file, 16-28

declarations allowed in, 16-29
lexical processing of, 16-29

Library-declaration*, 16-28
Linemark, 2-2
Link -ti me-constant-expression *

definition of, 7-5
discussion of, 7-6
introduction to, 1-16
motivation for, 7-4

LINKAGE
in linkage-declaration, 13-5
in module-switch, 19-5
in switch, 18-11

Linkage
general definition of, 13-1

Linkage-attribute*, 9-15
Linkage-declara tion *

for BLISS-16, 13-10
for BLISS-32, 13-15
for BLISS-36, 13-21
introduction to, 13-2
typical syntax, 13-5

Linkage-defini tion
introduction to, 13-1

Linkage-functions
common, 13-28
for BLISS-16 and -32, 13-31

Linkage-name*, 13-5
in switch, 18-11
predeclared

common, 13-27
for BLISS-16, 13-14
for BLISS-32, 13-20
for BLISS-36, 13-26.2

Linkage-option *, 13-5
for BLISS-16, 13-10
for BLISS-32, 13-15

Index-9

Linkage-option*, (Cont.)
for BLISS-36, 13-21
introduction to, 13-8

Linkage-type*, 13-5
for BLISS-16, 13-10
for BLISS-32, 13-15
for BLISS-36, 13-21
introduction to, 13-6

LINKAGE-REGS linkage-option, 13-22,
13-25

Linkages
BLISS, 13-27
FORTRAN-related, 13-27
FORTRAN_FUNC, 13-28
FORTRAN_SUB, 13-28

Linker
external names, 10-7
handling of psects, 18-1
role of, 1-4, 1-15
use of IDENT switch, 19-11
use of VERSION switch, 19-11

LIST
in module-switch, 19-5
in switch, 18-11

List-option *, 18-11
Literal-attribute*, 14-2
Literal-declaration*, 14-2
LOCAL

psect-attribute, 18-3
Local-declaration*, 10-8
LOCC(32), D-5
Logical operations

builtin(36), D-6
LONG allocation-unit, 9-2
LONG-RELATIVE

in addressing-mode-attribute,
9-17

in module-switch(32), 19-6
in switch, 18-12

Longevity of data segment, 10-1
Loop-expression*, 6-10

introduction to, 1-11
Loop-index*

declaration of, 6-12
implicit declaration of, 8-8
loop-index*, 6-10

LOW default psect, 18-5
LSH(36), D-6
LSI11

in module-switch(16), 19-5
LSS as infix operator, 5-8
LSSA as infix operator, 5-8
LSSU as infix operator, 5-8
%L TCE function, 15-30

lO-Index

M

Machine code insertion operations
builtin(36), D-7

Machine-specific function, 5-14
MACHOP(36), D-7
MACHSKIP(36), D-7
Macro-call*, 16-13

lexical processing of, 16-14
Macro-declaration*, 16-8

for BLOCK structure, 16-24
introduction to, 16-6
nested, 16-26

Macro-formal-name*, 16-8
Macro-quote level, 15-10
MAIN

in module-switch, 19-5
Main routine, 1-3
Mantissa *, 4-4
Map-declaration*, 10-16
MATCHC(32), D-5
Matching

of case-index, 6-6
of select-index, 6-9

MAX standard function, 5-16
MAXA standard function, 5-16
MAXU standard function, 5-16
Mechanism vector, 17-9
Memory management operations

builtin(16), D-l
%MESSAGE function, 15-40
MFPD(16), D-l
MFPI(16), D-l
MFPR(32), D-2
MFPS(16), D-l
MIN standard function, 5-16
MINA standard function, 5-16
MINU standard function, 5-16
Minus

as infix operator, 5-7
as prefix operator, 5-6
in float-literal, 4-4

Miscellaneous operations
builtin(16,32), D-2, D-5

MOD as infix operator, 5-7
Mode*

as switch, 18-12
in addressing-mode-attribute, 9-17

Module*, 19-2
role of, 1-3
small example of, 1-17

Module-body*, 19-2
Module-head*, 19-2
Module-switch*, 19-4

MOVC3(32), 0-5
MOVC5(32), 0-5
MOVEPSL(32), 0-3
MOVP(32), 0-5
MOVTC(32), 0-5
MOVTUC(32), D-5
MTPO(16),0-1
MTPI(16), 0-1
MTPR(32),0-2
MTPS(16),0-1
MUL0(16,32,36), 0-2
MULO(32), 0-3
MULF(16,32,36), 0-2
MULF(32), 0-3
MULG(32,36), 0-3
MULH(32),0-3
Multiplication operator, 5-7

N

Sf NAME function, 15-27
examples of, 16-25

Name*, 4-16
declaration of, 8-4
internal-only, 15-16
value of, S-6

Name-quote level, 15-10
~'(NBITS function, 15-32
Cit NBITSU function, 15-31
NEQ as infix operator, 5-S
NEQA as infix operator, 5-S
NEQU as infix operator, 5-S
Nested macro definition,

16-26
Nested signal, 17-13

examples of, 17-17
Newline character, 2-2
NOASSEMBLY

in module-switch, 19-5
in switch, IS-II

NOBINARY
in module-switch, 19-5
in switch, IS-II

NOCOOE
in module-switch, 19-4

NOCOMMENTARY
in module-switch, 19-5
in switch, IS-II

NOOEBUG
in module-switch, 19-4

NOOEFAULT
in psect-declaration, IS-3

NOElS .
in module-switch(16), 19-5

NOERRS
in module-switch, 19-4
in switch, IS-II

NOEXECUTE
psect-attribute, 18-3

NOEXPANO
in module-switch, 19-5
in switch, 18-11

NOINOIRECT
in module-switch(36), 19-6

NOLIBRARY
in module-switch, 19-5
in switch, IS-II

Non-contiguous structure, 11-48
(N on -letters)

, (see Apostrophe)
* (see Asterisk)

(see Brace)
(see Brace)
(see Bracket)
(see Bracket)
(see Colon)
(see Comma)
(see Equals)

> (see Greater than)
< (see Less than)
- (see Minus)

(see Parenthesis)
(see Parenthesis)

% (see Percent)
(see Period)

+ (see Plus)
, (see Semicolon)
/ (see Slash)

A (see Up arrow)
(see Vertical bar)

(Non-words)
, ... (see Syntax notation)
--- (see Syntax notation)
... (see Syntax notation)

NONEXTERNAL
in switch, IS-12

Nonprimitive lexical-expression, 15-12
N onprinting-character

representation of, 4-8
NOOBJECT

in module-switch, 19-5
in switch, IS-II

NOOPTIMIZE
in module-switch, 19-4
in switch, IS-II

NOP(16,32), 0-2
NOPIC

psect-attribute, IS-3

Index-II

NOPRESERVE linkage-option, 13-5, 13-8,
13-10, 13-15, 13-22

NOREAD
psect-attribute, 18-3

NOREQUIRE
in module-switch, 19-5
in switch, 18-11

Normal-quote level, 15-10
NOSAFE

in module-switch, 19-4
in switch, 18-11

NOSHARE
psect-attribute, 18-3

NOSOURCE
in module-switch, 19-5
in switch, 18-11

NOSYMBOLIC
in module-switch, 19-5
in switch, 18-11

NOT as prefix operator, 5-9
Notation for syntax, 2-5
NOTRACE

in module-switch, 19-5
in switch, 18-11

NOTUSED linkage-option, 13-15, 13-18
NOUNAMES

in module-switch, 19-4
in switch, 18-11

Novalue-attribute*, 9-14
example of, 1-9, 9-13

NOWRITE
psect-attribute, 18-3

NOZIP
in module-switch, 19-4
in switch, 18-11

%NULL function, 15-29
NULLPARAMETER linkage-function, 13-31
%NUMBER function, 15-36
Number-sign

in lexical-function def., 15-20
N umeric-li teral *, 4-3

lexical processing of, 15-13

o
%0 in integer-literal, 4-3
OBJECT

in module-switch, 19-5
in switch, 18-11

Object file, 1-15
ODT

in module-switch(16), 19-5
OF

in case-expression, 6-5

12-Index

OF (Cont.)
in plit, 4-13
in select-expression, 6-8

Offset
as value of name, 8-6
in alignment-attribute, 9-6

On-off-switch*, 18-11, 19-4
One-origin vector structure, 11-46
Operand, 5-3
Operator-expression *, 5-2
Opt-sign *, 4-3
Optimization, effects of, 1-14, 8-3
OPTIMIZE

in module-switch, 19-4
in switch, 18-11

OPTLEVEL
in module-switch, 19-5

OR as infix operator, 5-9
Ordinary-routine-declaration*, 12-9
Ordinary-structure-reference*, 11-29

compared to general-str-ref, 11-37
examples of, 11-28

ORIGIN
psect-attribute, 18-3

OTHERWISE in select-expression, 6-8
OTS

in module-switch(36), 19-6
OTS_LINKAGE

in module-switch(36), 19-6
Output-actual-parameter*

in routine-call, 12-3
Output-formal-parameter

in ordinary-routine-decl, 12-9
OUTRANGE in case-expression, 6-5
OVERLAY

psect-attribute, 18-3
Overlay data, 10-1
OWN

in psect-declaration, 18-3
OWN default psect, 18-5
Own-declaration*, 10-2

p

%P in string-literal, 4-8
Packed decimal string

(see also
(see also

Decimal string literal
Decimal string operations)
%P

Parameter
enable-actual, 17-3
of handler routine

Parameter
of handler routine (Cont.)

enable vector, 17-9
mechanism vector, 17-9
signal vector, 17-8

(see also
Actual-parameter
Formal-name
Lexical-actual-param
Macro-actual-parameter
Macro-formal-name)

Parameter passing, 12-11
methods of, 13-7

by argument pointer, 13-7
by register, 13-7
implicit stack location, 13-7

Parameter validation operations
builtin(32), D-2

Parameter-location *, 13-5, 13-10,
13-15, 13-21

discussion of, 13-7
Parenthesis

in macro-actual-parameter, 16-14
Parenthesization

default rules, 5-3
discussion of, 5-11

Parenthesized expression, 8-2
introduction to, 1-8

Partially overlayed structure, 11-50
Percent

before name, 5-15, 15-18
in macro-declaration, 16-8, 16-9

Performance measurement
using condition handling, 17-29

Period
in fetch expression, 5-5
in float-literal, 4-4

Permanent data, 10-1
PIC

in module-switch(16), 19-5
psect-attribute, 18-3

PLIT
in plit, 4-13
in psect-declaration, 18-3
$PLIT$ default psect, 18-5
Plit*, 4-13
Plit-item*, 4-13
Plus

as infix operator, 5-7
as prefix operator, 5-6
in float-literal, 4-4

POINT(36), D-6
Pointer functions

for character handling, 20-5

PORTAL linkage-option, 13-22, 13-25
Position* in field-selector, 11-12
Positional-macro-call*, 16-13
Positional-macro-declaration*, 16-8

examples of, 16-7
Pos~-tested-Ioop*, 6-13
Pre-tested-Ioop*, 6-13
Precedence of operators, 5-2
Predeclared name

complete list of, A-I
declara tion of, 8-5
for literal, 14-3
for macro, 16-11
for structure, 11-38
summary of, 19-11

Predefined identifiers, 19-11
classification of, A-I
complete list of, A-I

Prefix sign expression, 5-6
Prefix-operator, 5-3
PRESERVE linkage-option, 13-5, 13-8,

13-10, 13-15, 13-22
Preset-attribute * , 9-10
Preset-item*

in preset-attribute, 9-10
Preset-val ue *

in preset-attribute, 9-10
Primary*, 4-2
Primitive lexical-expression,

15-12
%PRINT function, 15-40
Printing-character, 4-8
Priority levels, 5-2

discussion of, 5-11
PROBER(32), D-2
PROBEW(32), D-2
Procedures

(see routines), 12-1
Processor action operations

builtin(16,32), D-2, D-5
Processor register operations

builtin(32), D-2
Processor status operations

builtin(16), D-1
Program, 19-13

development of, 1-3
execution of, 1-4
small example of, 1-16

Program counter (PC) register,
13-3

Program stack, 3-16
Program status operations

builtin(32), D-3
Program storage, 3-16

Index-13

PS-INTERRUPT linkage-type(36), 13-21,
13-26.1

Psect-allocation attribute*, 9-11
Psect -all oca tion *

in plit, 4-13
Psect-attribute*, 18-3, 18-7
Psect-declaration*, 18-3
Psect-name*

in psect-allocation attribute, 9-11
in psect-declaration, 18-3

Punctuation mark, 2-3
PUSHJ linkage-type(36), 13-21, 13-25

a
Quantity of storage, 9-2
Queue operations

builtin(32), D-3
Quotation, 15-8

in macro-calls, 16-14
in macros, 16-4
levels of, 15-10
lexical-functions for, 15-41
rules for, 15-10

(;oQUOTE function, 15-41
examples of, 16-4, 16-26
in macro-actual-parameter, 16-14

Quote-level, 15-10
examples of, 15-42
in lexical-functions, 15-20

Quoted -string*, 4-8
~'('QUOTENAME function, 15-27

R

RAD50_10
code table, B-6
encoding, B-5

%RAD50_10 in string-literal, 4-8
RAD50_11

code table, B-4
encoding, B-3

%RAD50_11 in string-literal, 4-8
Radix-50 encoding, B-3

(see also
%RAD50_10
%RAD50_11)
Range-attribute*, 9-16
READ

psect-attribute, 18-3
Reading characters, 20-7
Record

(see BLOCK structure), 11-38

14-Index

Record (Cont.)
(see FIELD declaration), 11-38

Recursive routine, 12-7
Redeclaration

by map-declaration, 8-8
%REF

(see also REF)
standard function, 5-17

REF
(see also %REF)
effect on structure-reference, 11-30

introduction to, 11-7
equivalent in general-str-ref, 11-37
in structure-attribute, 11-24

Register
argument pointer (AP), 13-3, 13-7
frame pointer (FP), 13-3
program counter (PC), 13-3
stack pointer (SP), 13-3
value return, 13-3

REGISTER parameter-location, 13-5,
13-10, 13-12, 13-15, 13-18, 13-21

Register usage categories, 13-3
Register usage conventions, 13-8

GLOBAL, 13-9
NOPRESERVE, 13-9
PRESERVE, 13-8

Register-declaration *, 10-10
Register-names

builtin, 10-11
standard, 10-11

Registers, 3-17
general purpose, 13-4

globally usable, 13-4
locally usable, 13-4
non-preserved, 13-4
not used, 13-4
preserved, 13-4

multi-purpose usage, 13-4
passing parameters in, 13-4
special purpose, 13-3

Relational expression, 5-8
RELATIVE

in addressing-mode-attribute, 9-17
in module-switch(16), 19-5

RELA TIVE (see
LONG-RELATIVE
WORD-RELATIVE)

Relative address, 9-19
%REMAINING function, 15-45

examples of, 16-25
in conditional-macro expansion, 16-17
in iterative-macro expansion, 16-18
in simple-macro expansion, 16-16

Remaining-actuals-list
in iterative-macro-call, 16-17

f(REMOVE function, 15-26
REMQHI(32), D-3
REMQTI, D-3
REP in plit, 4-13
REPLACEI(36), D-6
REPLACEN (36), D-6
Replication

in syntax notation, 2-8
Replicator*, 4-13
REQUIRE

in module-switch, 19-5
in switch, 18-11
Require-declaration*, 16-27
Reserved word

complete list of, A-I
RESET(16), D-2
Resignaling, 17-11

exam pIes of, 17-15
Return character, 2-2
Return-expression*, 6-16
Returned-value*

element of mechanism vector, 17-9
of establisher routine, 17-9

Right-operand, 5-3
ROT(16,32,36), D-1
Routine, 12-1

establisher, 17-3
handler, 17-6
main routine, 1-3
signaler, 17-1
small example of, 1-17

Routine-attribute*
in external-routine-decl, 12-17
in forward-routine-decl, 12-16
in global-routine-decl, 12-15
in ordinary-routine-decl, 12-9

Routine-body*
in global-routine-declaration, 12-15
in ordinary-routine-decl, 12-9

Routine-call *, 12-3
Routine-declaration *, 12-7

implicit block, 8-8
Routine-designator*, 12-3
Routine-name*

in enable-declaration, 17-3
in external-routine-decl, 12-17
in forward-routine-decl, 12-16
in global-routine-declaration, 12-15
in ordinary-routine-decl, 12-9

RSX-AST linkage-type(16), 13-10, 13-12,
13-14

RTT linkage-option, 13-10, 13-13

S

SAFE
in module-switch, 19-4
in switch, 18-11

Satisfaction of test, 6-2
%SBTTL function, 15-41
Scalar data segment, 3-6

allocation of, 3-7
SCANC(32), D-5
SCANI(36), D-6
SCANN(36), D-6
Scope of declaration, 8-5

examples of, 8-4, 8-6
Searching character sequences, 20-14
Segment-name*

in ordinary-structure-reference,
11-29

SELECT in select-expression, 6-8
Select-expression *, 6-8
Select-Iabel*

in select-expression, 6-8
Select-line*

in select-expression, 6-8
SELECT A in select-expression, 6-8
SELECTONE in select-expression, 6-8
SELECTONEA in select-expression, 6-8
SELECTONEU in select-expression, 6-8
SELECTU in select-expression, 6-8
Semicolon

in block, 8-2
in general-structure-reference, 11-35
in structure-declaration, 11-22
significance of, 8-3

Separation rules, 2-4
for numeric-literal, 4-4

Sequence-comparing functions, 20-12
Sequence-searching functions, 20-14
Sequence-translating functions, 20-15
Sequence-writing functions, 20-9
Sequential flow, 6-1
SET

in case-expression, 6-5
in field-declaration, 11-26
in select-expression, 6-8

SETUNWIND function, 17-11
SHARE

psect-attribute, 18-3
Shift operator, 5-6
Side effects, 4-17
SIGN function, 5-15
Sign-extension-flag*, 11-12
Signal, 17-2

implicit, 17-6

Index-15

Signal, (Cont.)
nested, 17-1~3
unwind, 17-6

SIGNAL function, 17-5
assigning value of, 17-9

Signal vector, 17-8
SIGNAL_STOP function, 17-6
Signaler routine, 17-1
SIGNED

in extension-attribute, 9-3
in range-attribute, 9-16

Signed value extension, 3-4
Simple-macro-call, 16-13

expansion of, 16-15
Simple-macro-definition*, 16-8

examples of, 16-7
SIXBIT

literal (see C)()SIXBIT)
code table, B-8
encoding, B-8

S:(;SIXBIT in string-literal, 4-8
c;cSIZE function, 15-33
Size* in field-selector, 11-12
SKIP linkage-option, 13-22
SKPC(32), D-5
Slash as operator, 5-7
SOURCE

in module-switch, 19-5
in switch, 18-11

Source file, 1-15
Source listing counter, 18-15
Space, 2-3
SPANC(32), D-5
Special character, 2-2
Special-switch*, 18-11, 18-14, 19-5
SPL(l6), D-l
STACK

in module-switch(36), 19-6
Stack, 3-16
Stack frame, 13-3
STACK parameter-location, 13-10
Stack pointer (SP) register, 13-3
Stackframe for LOCAL data, 10-8
Stacklocal-declaration*, 10-9
STANDARD parameter-location, 13-5,

13-15, 13-21
Standard-function, 5-14
Statement

block-action as, 8-3
Storage, 3-16
Storage allocation

using structure-attribute, 11-25
Storage-class*

in psect-declaration, 18-3

I6-Index

String encodings, B-1
ASCII, B-1
RAD50_10, B-5
RAD50_11, B-3
Radix-50, B-3
SIXBIT, B-8

%STRING function, 15-22
String operations

compile-time
(see Lexical Functions), 15-1

run-time
(see Character Handling), 20-1

String-literal*, 4-8
lexical processing of, 15-14

String-type*, 4-8
STRUCTURE

in module-switch, 19-5
in switch, 18-11

Structure, 3-6
(see also Data structures)
introduction to, 1-10
predeclared

BITVECTOR, 3-10, 11-38
BLOCK, 3-10, 11-38
BLOCKVECTOR, 3-11, 11-38
VECTOR, 3-8, 11-38

user-defined, 3-12, 11-46, 11-47,
11-48, 11-50, 11-52

Structure allocation, 11-23
introduction to, 11-7

Structure-attribute*, 11-24
in switch, 18-11, 19-5

Structure-body*, 11-22
Structure-declaration*, 11-22

interchangable, 11-8
introduction to, 11-6
placement of field-selector, 11-18

Structure-name*
in general-structure-reference,

11-35
in structure-attribute, 11-24
in structure-declaration, 11-22

Structure-reference*, 11-29
as primary, 4-17
examples of, 11-28
introduction to, 11-7

Structure-size*, 11-22
SUBD(16,32,36), D-2
SUBF(l6,32,36), D-2
SUBG(32,36), D-4
SUBH(32), D-4
SUBM(16,32), D-2
Subroutine flow, 6-1
Subtraction operator, 5-8

Supplementary functions, 5-14
for character handling, 20-1

SWAB(16), D-1
c; SWITCHES function, 15-38
Swi tches-declaration *, 18-11

in library source file, 16-29
SYMBOLIC

in module-switch, 19-5
in switch, 18-11

Symbolic constants
(see BIND-data-declaration,

LITERAL declaration), 14-1
Symmetric array structure, 11-47
Syntax notation, 2-5

concatenation, 2-6
dialect-specific features, 2-8
disjunction, 2-7
ellipsis, 2-7
replication, 2-8
syntactic literal, 2-6
syntactic name, 2-6
syntactic rule, 2-5

System interface operations
builtin (36), D-7

T

TIl
in module-switch(16), 19-5

Tab character, 4-8
Target systems, 1-1
Target-system differences, 3-6
Temporary data, 10-1
TES

in case-expression, 6-5
in field-declaration, 11-26
in select-expression, 6-8

Test*, 6-2
incomplete evaluation of, 6-4

TESTBITCC(32), D-3
TESTBITCCI(32), D-3
TESTBITCS(32), D-3
TESTBITSC(32), D-3
TESTBITSS(32), D-3
TESTBITSSI(32), D-3
Tested-Ioop-expression*, 6-13
THEN in conditional-expression, 6-2
(}oTHEN in lexical-conditional,

15-49
%TITLE function, 15-40
TO

in case-expression, 6-5
in loop-expression, 6-10
in select-expression, 6-8

TOPS10
in module-switch(:36}, 19-6

TOPS20
in module-switch(:36), 19-6

TRACE
in module-switch, 19-5
in switch, 18-11

Trailing comment, 2-4
Transfer vector, 6-7
Transportability checking, 18-15,

C-1
TRAP linkage-type(16), 13-10, 13-14
Two-dimensional structure, 11-47

u

UNAMES
in module-switch, 19-4
in switch, 18-11

Unary operators, 5-2
Uncounted plit, 4-12
Undeclare-declaration*, 18-18
Undefined value of block, 8-3
%UNQUOTE function, 15-42

examples of, 15-9, 15-43, 16-27
UNSIGNED

in extension-attribute, 9-3
in range-attribute, 9-16

Unsigned value extension, 3-4
UNTIL in loop-expression, 6-13
Unwind signal, 17-6
Unwinding, 17-11

examples of, 17-17
Up-arrow operator, 5-6
UP LIT in plit, 4-13
%UPV AL literal-name, 14-3
User-defined structures, 11-46

bounds-checking structure, 11-46
general purpose structure, 11-52
non-contiguous structure, 11-48
one-origin vector structure, 11-46
partially overlayed structure, 11-50
symmetric array structure, 11-47
two-dimensional structure, 11-47

UUO(36), D-7

v
Value

discarded value, 6-4
extension of, 9-3
of a block, 8-3

Index-17

Value (Cont.)
of names, 8-6
undefined value, 8-3

Value return register, 13-3
V ALUECBIT linkage-option, 13-10, 13-13
Values

normal representation of, 3-1
% VARIANT function, 15-38
IV ARIANT in compiler command, 15-38
VAX-II calling standard, 13-16
VAXIVMS

condition handling in, 17-29
VECTOR

as psect-attribute, 18-3, 18-8
VECTOR structure, 11-38

example of, 3-8
VERSION

in module-switch, 19-5
Vertical bar in syntax, 2-7
Volatile-attribute*, 9-13

use in condition handling, 17-4,
17-8, 17-29

W

WAIT(16), D-2
~o WARN function, 15-39

IS-Index

Weak-attribute*, 9-19
in external-routine-decl, 12-17
purpose of, 10-7

WHILE in loop-expression, 6-13
WITH in leave-expression, 6-14
WORD allocation-unit, 3-2
WORD-RELATIVE

in addressing-mode-attribute,
9-17

in module-switch(32), 19-6
in switch, 18-12

WRITE
psect-attribute, 18-3

Writing character sequences, 20-9
W ri ting characters, 20-8

x
~cx in integer-literal, 4-3
XFC(32), D-5
XOR as infix operator, 5-9

Z
ZIP

in module-switch, 19-4
in switch, 18-11

READER'S COMMENTS

BLISS
Language Guide

AA-H275C-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)
o User with little programming experience
o Student programmer
o Other (please specify)

Name __ Date ______________________________ ___

Organization

Street

City ________________________ _ State ___________ Zip Code __________ _

or Country

- - Do Not Tear - Fold Here and Tape - - - - - - - - - -

~DmDDmD IIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mailed in the
United States

- - - - Do Not Tear - Fold Here -

-= U

UPDATE NOTICE NO.1

BLISS
Language Guide

AD-H275C-T1

April 1983

Insert this page in the BLISS Language Guide to maintain an up-to-date
record of changes to the manual.

NEW AND CHANGED INFORMATION

This update reflects changes and additions made to the BLISS Language Guide.

Copyright © 1983 by Digital Equipment Corporation
All Rights Reserved

INSTRUCTIONS

Add the following pages to the BLISS Language Guide as replacements for or additions to current pages.
The changes made on replacement pages are indicated in the outside margin by change bars (I) for
additions and bullets (e) for deletions. A date at the bottom of the new pages denotes revised or new
information for this update.

OLD PAGE

Title page/copyright page
1-5/1-6
Chapter 4 Table of Contents
4-3/4-4 through 4-9/4-10
6-15/6-16
Chapter 9 Table of Contents
9-1/9-2
9-7/9-8 through 9-9/9-10
9-17/9-18 through 9-19/9-20
12-9/12-10
12-15/12-16 through 12-17/12-18
Chapter 13 Table of Contents
13-21/13-22 through 13-25/13-26
13-31/13-32
15-21/15-22 through 15-23/15-24
15-27/15-28
15-47/15-48
16-29/16-30
17-7/17-8 through 17-11/17-12
17-25/17-26
Chapter 20 Table of Contents
20-1/20-2
20-5/20-6
20-13/20-14 through 20-15/20-16
A-1 / A-2 throug h A-9/ A-1 0
0-5/0-6 through 0-7/blank
Index-1/lndex-2 through

Index-15/lndex-16
Reader's Comments/Mailer

NEW PAGE

Title page/copyright page
.1-5/1-6
Chapter 4 Table of Contents
4-3/4-4 through 4-9/4-10
6-15/6-16
Chapter 9 Table of Contents
9-1/9-2
9-7/9-8 through 9-10.1/blank
9-17/9-18 through 9-19/9-20
12-9/12-10
12-15/12-16 through 12-17/12-18
Chapter 13 Table of Contents
13-21/13-22 through 13-26.1/13-26.2
13-31/13-32 through 13-32.1/blank
15-21/15-22 through 15-23/15-24
15-27/15-28 through 15-28.1/blank
15-47/15-48 through 15-48.1/blank
16-29/16-30 through 16-31/blank
17-7/17-8 through 17-11/17-12
17-25/17-26
Chapter 20 Table of Contents
20-1/20-2 through 20-2.1/blank
20-5/20-6
20-13/20-14 through 20-15/20-16
A-1/A-2 through A-9/A-10
0-5/0-6 through 0-7/blank
Index-1/lndex-2

through Index-17/lndex-18
Reader's Comments/Mailer

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-001
	09-002
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10.0
	09-10.1
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	11-001
	11-002
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	12-001
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	13-001
	13-002
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26.0
	13-26.1
	13-26.2
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32.0
	13-32.1
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	14-001
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	15-001
	15-002
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28.0
	15-28.1
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-45
	15-46
	15-47
	15-48.0
	15-48.1
	15-49
	15-50
	16-001
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	17-001
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	18-001
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	19-001
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	20-001
	20-01
	20-02.0
	20-02.1
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-001
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-001
	C-01
	C-02
	C-03
	C-04
	D-001
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	replyA
	replyB
	update1

