
UWFU\vFU
WFU~vFUW

FU~vFU~ .. F
UWFUV;FU
WFUWFU\-J
FUh'FUWF

UWFUWFU
WFU~iFU\-J

FUWFU\vF
U\-JFU\~FU

WFUWFUW
FUWFUWF

UWFUWFU UWFUWFU
WFUWFUW WFUWFUW
FUWFUWF FUWFUWF
UWFUWFU UWFUWFU
WFUWFUW WFUWFUW
FUWFUWF FUWFUWF
UWFUWFU UWFUWFU
WFUWFUW WFUWFUW
FUWFUWFW WFUWFUWF
UWFUWFUWFUWFUWFUWFUWFUWFU

FUWFUWFUWFUWFUWFUWFUWFU
WFUWFUWFUWFUWFUWFUWFU

UWFUWFUwFUWFU

U.vFU\-lFU UWFU\-lFU·
WFUWFUW WFUWFUW
FUWFU\~F FUWFU\vF
UWFUWFU UWFUWFU
WFUWFUW WFUWFUW
FUWFU\vF FtJ\.vFU\vF
UWFUWFU U ·U\vFU\~FU
WFUWFUW UWF WFUWFUW
FUWFUWF UWFUF FUWFUWF
UWFUWFU WWFUWFU UWFUWFU
WFUWFUW UWFUWFUWF WFUWFUW
FUWFUWFUWFUWFUWFUWFUWFUWF
UWFU\vFUWFUWFU\~FUWFU~'iFU~ .. FU
WFUWFUWFUWFU FUWFUWFUWFUW
FUVJFU~'VFUWFU WFU\-JFU\vFUWF
UWFUWFUWFU UWFUWFUWFU
WFUWFUNFU
FUWFU~vFU
UWFUWFU

Fu\~FU~vFUW
WFU\oJFUWF

UWFUWFU

UWFUWFUWFUWFUWFUWFUWFUWF
WFUWFU\iFUWFU~~ FU\'iF UwFU~ F U
FtrwFUWFU~vFU~'~ FU,·IFU\.., FU~·j F(j,~
UWFUWFUWFUWFUWFUWFUriFUWF
WFU\'JFUW
FUwF{fwF
UWFUWFU
WFUWFUW
FUWFUWFUWFUWFUWFUW
UW FU~'J F ow FU\-JF U~-J PUW F
WFUWFUWFUWFUWFUWFU
FUWFUWFUWFOWFU\'JFUW
UWFUWFU
WFUWFUW

. FUWFUWF
U\'lFUWFU
WFUwFUW
FUWFUWF
UWFUWFU

INDEX TO MAJOR TOPICS IN THIS MANUAL

Pages

Abbreviations -12

Arithmetic operators 10-11

Break Key 4

Character Codes • 74

Control Keys 4,16

Commands 14-50

Summary 53

Direct, Indi rect 5

ASK - 19-25

BREAK 41

COMMENT • 42

DO 29-30

ERASE 15
FOR _ 37-39

GOTO 29

HESITATE II 42

IF 31-32

JUMP 33-34

KONTROL • -- 49-50

LINK 34-35

LOOK 18

MODIFY/MOVE 15-17

NEXT 39-41

ON 32

OPEN 44-48

PUNCH 43

QUIT • .. ~ .. 35-36

RETURN 31

SET _ 26-27

TYPE 19-24

WRITE 14

XECUTE 28

·YNCREMENT 28

ZERO 27

Editing • 13

Enclosures 12

Error Messages 51,75

Formatting • 21-22

functions 55-73

Summary • 73

Program Defined · 66-72

fABS 58

FATN 57

FBUF, FCOM 63-64

FCOS • 56-57

FOIN 65

fEXP 56

FIN 61

FIND 62

F ITR 59

FLOG 56

FMIN, FMAX 60

FMQ • 64

FOUl 61-62

fRAC • 59

FRAN • 60

FSGN 58
fSIN • 5~-57

FSQT • • • • 58

fSR • • 64

FTRM • • • • • 63

Input echo 46-47

Input terminators .. 25

I/O operators 19~23·

Line numbers • • 5-6
Loops 31

Numbers . .7

Patches . 76

Punctuation . ·.7

Reading in programs · ,- 43,,45 .

Symbol table dump • · ' ':'··20
.. . -

Trace feature 52-'5-3·

Variables • • • • • '_ &-~10

INTRODUCTION to U/W-FOCAL for the PDP/8

UWF is a powerful, interactive, language for the PDP/B* which combines ease of

use with an extensive set of features, allowing one to perform complex calculations

or control laboratory experiments with a minimum of effort. UWF is an advanced ver

sion of FOCAL*, a stack processing language which is somewhat similar to BASIC and

FORTRAN, but much easier to use! Programmers who are familiar with either of these

languages should be able to write programs for UWF almost immediately, while those

who are just learning will find that UWF's simplified commands and built-in editor

make their progress very rapid.

HARDWARE REQUIREMENTS

The minimum system configuration for running UWF is an 8K machine capable of

executing the POP8* instruction set, and some sort of terminal. UwF will automati

cally take advantage of any additional memory present as well as permitting the use

of high-speed I/O devices such as punched paper tape or an audio tape recorcer for

program and data storage. There is also a much more elaborate version available for

systems l ;censed to use the OS/8* operating system which provides compLete dev-ice

independent file support.

~fOCAL, POP8 and OS/8 are trademarks of Digital Equipment Corp., Maynard, Mass.

LOADING UWF

To load the binary tape containing UWf into your machine proceed as follows:

1) Make sure that the BIN loader is r"esident in Fie ld O.

2) Set the Switch Register to 7777 and hit 'ADDR LOAD',

then reset Switch 0 if input is from the High Speed

reader (leaving 3777), otherwise go to the next step.

3) Place the tape in the reader so that the read-head is

positioned over the leader section and hit the 'START'

(or 'CLEAR' and 'CONTINUE') switches~

UWf-=1 .

The run light will go off when the tape has finished loading; check to be sure

the display is zero, indicating a successful load. If not, repeat steps 1-3 above

to see if you get the same checksum error each time. If you do, the tape you are

using has probably been damaged and you should try again with another copy.

STARTING THE PROGRAM

In order to start UWF for the first time, do the following:

1) Set the Switch Register to 0100 (UWF's Starting Address)

2) Press the 'ADDR LOAD' and 'EXTD. ADDR LOAD' switches

3) Set switches 0-2 and 6-11 for any options desired (v.i.)

4) Now set the 'RUN/HALT' switch to RUN, and hit 'CO~TINUE'

UWF should respond immediate~y with a congratulatory message and indicate the

amount of memory available in your system. For installations with more than 8K,

here ;s how the additional memory space is used:

12K

16K

...
32K

Expanded symbol storage or

One additional program area II

Five more program areas, or four plus

FCOM
10

FCOM

If you wish to limit the amount of memory available for any reason, you should set

switches 9-11 in the switch register before proceeding with Step 4:

Switches 9-11 (octal): O=All, 1=28K, 2=24K, 3=2OK, 4=16K, 5=12~ and 6 or 7=8K

There are a number of other • custom' features ~hich can be installed auto

matically when the program is first started up. These options are controlled by the

setting of bits 0-2 and 6-8 in the switch register. The first group (0-2) selects

various terminal options while the second group (6-8) controls additional features.

S~itches 3-5 are ignored and may be set to any value. Once UWF has been started the

first time step 3 is unnecessary and the switches may remain set to '100'.

UWF-Z

Switch 0: Use 'CRT-style' rubouts instead of 'backslashes'

Switch 1 : Output four 'nulls' after every Carriage Return

Switch 2: Print error messages on a new line

Switch 6: Add three extra 'secret variables' (&,:,\)

Switch 7: Add the 'KONTROL' command and the 'FDIN' function

Switch 8: Add the 'FCOM' and 'FBUF' functions (requires 12K)

Example: a switch setting of '4134' limits the program to 16K, adds FCOM, FBUF and

the digital I/O routines, and installs 'scope rubouts'. The '100' bit is ignored.

Some of these patches can also be installed (or removed) after the program has been

started - see Appendix II for further details. Note that adding the 'FCOM' function

reduces the effective memory size by 1 field, hence users with 16K who add this op

tion will normally lose the first additional program area. Since it might be more

desirable in this particular case to have FCOM replace the extra variable storage,

there is a 'magic location' which can be changed (-before- you start things up!) to

effect this arrangement. (16K configurations only - see Appendix II for details.)

Note that UWF runs with the interrupt system -ON- which allows program execu

tion to overlap certain I/O operations. The result is faster run times, a 'live'

keyboard and the possibility of adding 'background' tasks which can be controlled

by the program or 'high-level' interrupts in which an external event causes the ex

ecution of a specific group of statements within the program.

With the interrupt system enabled, however, it is possible that an 'unknown'

device wilt create a continuous interrupt and thus prevent UWF from running. If the

'RUN' light goes on but there is no output as soon as you hit the 'CONTINUE' switch

halt the machine, hit the 'RESET' or '"CLEAR' switch a few times and then restart at

location 100. If UWF still appears to be stuck in an endless loop:.You' will probably

have to add an appropriate 'clear flag' instruction to the interrupt routine. See

Appendix II for the proper locatione

UWF-3

UWF's CONTROL KEYS

UWF recognizes the foLlowing control keys:

1) CTRL/F is the master program break key - it will restart

UWF at anytime, assuming that the program is still running.

2) CTRL/C is the monitor break key. It witl eventually trap

to a resident 'ODT' package which ;s not yet implemented.

3) CTRL/S (XOFF) stops output to the terminal. This provides

users with video terminals time to inspect their results.

4) CTRL/Q (XON) resumes output to the terminal. Some terminals

issue XON/XOFF codes automdtically when the screen fills up.

5) The RETURN key is used to terminate all command lines. UWF

will not recognize a command until the RETURN key is typed.

6) The RUBOUT or DELETE keys are used to cancel the previous

character. On hard-copy terminals a "I is echoed for each

character deleted. On video terminals they just disdppcar!

7) The LINE FEED key is used to retype a command line -before

typing RETURN in order to verify that all corrections were

made properly. This is mostly for hard-copy terminals.

Remember: UWF can be interrupted at any time simply by typing CTRL/F. This is

accomplished by holding down the CTRL key and then typing the letter If I. UWF will

respond by typing a question mark (?) followed by the line number where the program

was interrupted and then print an asterisk to indicate that it is ready for further

instructions:

?@ 05.13 UWF was interrupted at line 5.13

UWF-4

DIRECT and INDIRECT COMMANDS

UWF prints an asterisk (*) whenever it is in command mode waiting for new

instructions. You can then type in either 'direct commands' which are executed

immediately, or 'indirect commands' which are saved for e~ecution at a tater time.

To use UWF as a fancy 'calculator' simply give it a 'direct command' and hit the

RETURN key. For example, if you enter the command:

*TYPE PI

UWF will print the value '3.141592654E+OO', correct to 10 significant figures. The

Direct Command feature is the essence of interactive programming since it permits

one to work through a long calculation a step at a time, or to tryout several dif

ferent ways of doing something. You can experiment with any of UWF's commands by

simply typing them in as you read ~hrough this manual.

Indirect Commands always begin with a line number which indicates the order in

which they are to be executed. They may be ~ntered in -any- order, however,· and can

be examined or changed at any time. Changes to indirect commands are facilitated by

the use of UWF's built-in editor which allows lines to be modified, moved to a

different part of the program, or deleted. Since indirect commands can be selec

tively executed by direct commands it;s possible to build a very powerful set of

'macros' which can then be called with just a few keystrokes.

Line numbers in UWF have a 'dollar and cents' format: 'XX.YY· where 'XX, may

range from 00-31 (the 'group' number) and 'YY' may have any value from 00-99 (the

'step' number). Group 0 and Step 0 both have special meanings in some commands, so

the first line of the program is usually labeled ".". Notice that leading and

trailing zeros are not necessary, but one must always include a space after the

line number to separate it from the commands on the rest of the line. Here are some

sample indirect commands:

*3.61 TYPE !

.12.7 COMMENT

*1.99 QUIT

UWF-5

A standard programming practice is to index sequential commands by an incre

ment of either '.05' or '.1'. Thus line ".2' would be used for the statement

folLowing line '1.1' rather than line '1.11'. This leaves room to insert up to 9

additional lines in case changes to the program are necessary. Of course lines can

always be moved to make room, but it is a nuisance to have to do this and such

changes might require aLteration of other parts of the program as well.

GROUP and RELATIVE LINE NUMBERS

SeveraL UWF commands are capable of operating on all statements with the same

group number. To reference an entire group of lines one simply specifies the group

number without designating any particular program step: 'WRITE 1', for example,

will list all the program steps in 'Group ". Since the number ", and the number

'1.00' are indistinguishable to UWF, it is no~ possible to write just line 1.00

without writing the rest of the lines in the same group as well. For this redson

the first line in a group is generally reserved for comments in order to avoid any

complications with group operations.

UWF can also designate a • sub-group' operation consisting of all the lines

following a specified line in the same group. Such operations are indicated by a

'negative line number': 'WRITE -'.51~ for instance, will list all of the lines in

Group 1 starting from line 1.5 (if it exists).

line numbers in the range '.01-.99' are termed 'reLative tine numbers', i.e.

they refer to lines in the -current group-, rather than to ~~nes in 'Group 0'. The

use of such line numbers is encouraged because it makes the program more compact

and aLso allows subroutines to be moved easily from one part of the program to

another without having to worry about internal re'erences. Lines with numbers less

than 1.00 -can- be saved as part of the indirect program, but they can onLy be

executed when the program is started from the beginning since there ;s no way to

branch to them at a Later time.

Finally, references to line 'a' also have a special meaning. A few commands

interpret such references to mean 'the -entire program', while most others regard

'line O' as a reference to 'the next command'. Line 0 itseLf is the permanent com

ment line (the 'Header Line') at the b~ginning of the prograffio

PUNCTUATION

It is a common practice to put several commands on the same line in order to

reduce the amount of paper required for listing the program as well as to con

solidate related operations. A 'semicolon' (i) is used to separate such commands:

*SET A=5; TYPE A

Commands which operate on more than one expression use a 'comm~' to separdte

the values. Thus the command 'TYPE A,B' is equivalent to 'TYPE Ai TYPE S'. Spaces

may be included to improve the readability of a program, but one must remember that

'space' is a 'terminator' (equivalent to a comma)

interpreted as 'TYPE A,B', not as 'TYPE AB'.

NUM~ERS AND VARIABLES

so the ·command 'TYPE A S' is

UWF can handle up to 10-digit numbers with a magnitude range of 10-615. Num

bers may be written assigned or unsigned quantities and may include a decimal

fraction as well as a 'power-of-ten' exponent indicated by the letter 'E'. All

numbers are stored internally in a 'floating-point' format with 35 bits of mantissa

and 11 bits of exponent. This is equivalent to more than 10-digit accuracy. UWF

will respond with an error message if a user attempts to enter a number with too

many digits. The following all represent the value 'sixty':

60 60.00 6E1 600.0E-1

UWF also allows letters to be treated as numbers so that questions may be

answered with a 'YES' or 'NO' response rather than with a numer;~ reply. When

decoded in this manner, the letters 'A-Z' have the ~alues '1-26', except that the

letter 'E' always means ·power-of-ten'. Thus the answer 'NO' would have the num~r

ical value '155' and the number 'sixty' couLd also be written as 'ODT' or 'OFEA'.

Note that the leading '0' is only required ~hen incorporating such 'numbers' into a

program. It is not required as part of 'a user response.

UWF-7

VARIABLE NAMES

Variables are used to store input values or to save intermediate results.

Variables are thus like the storage registers on a calcu~?tor except that the

programmer may make up his own names to designate the values stored. UWF allows

variable names of any length, but only the first two characters are retained inter

nally. Thus the names JOHN and JOE would both refer to the variable 'JO'. The first

'character of a variable name must obviously not be a number, nor can it be the

letter 'F' since that letter is used to designate functions. However UWF does allow

symbols such as '$' and to be used as part of a variable name so you can have

quantities such as A$, A', and Aile Variables are always stored as numeric quan

tities; UWF does not currently have ·string' variables.

THE SYMaOL TABLE

The names of the variables w~ich have been used by the program are saved

(along with their values) in a region of memory called the ·Symbol Table'. This

area is completely independent of the area used to store the program so changes to

the text buffer do not affect any of the values stored in the symbol table. This is

extremely convenient since it allows a program to be interrupted, modified, and

then restarted somewhere in the middle, knowing that any intermediate results

obtained will still be available. of course the programmer may examine any such

values simply by TYPEing them out, or he may change a few values with a direct

command before restarting the program. Variables are always assumed to ha~e the

value 'zero' until another value has been assigned. The 'TYPE $' command can be

used to list all the values in the Symbol Table in the order they were defined by

the program. The ZERO command is used to clear the table, or to selectively set

some of the variables to zero. Variables with the value '0' may be replaced by

other, non-zero variables when the symbol table fills up. This ;s transparent to

the programmer since 'undefined' variables are always zero anyway.

UWF-8

PROTECTED VARIABLES

The symbols {!,",#,$,i.} and optionally {&,:,\}, along with the value of 'PI',

are 'protected' variables which cannot be replaced or removed by d ZERO command.

This makes them useful for saving results which are needed by a second program.

Since they cannot be input or output directly and do not appear in a symbol table

dump, they are also sometimes called 'secret' variables. Note that UWf automatic

ally sets 'PI' equal to '3.141592654' so users should not use 'PI---' as a variable

name or this value will be lost. The variabLe '!' ('bang') is used as the dimension

constant for double subscripting (v.i.) and many of the remaining 'secret vari

ables' serve as dummy arguments for Program De-fined Functions (see page 66). To

TYPE the values of these variables you must prefix a '+' sign or enclose them in

parentheses: TYPE +! or TYPE (!) will output the value of the first one.

SUBSCRIPTED VARIABLES

Variables may be further identified by attaching a subscript enclosed in par

entheses immediately after the name, e.g. 'A(1)'. Such subscripts may consist of

arithmetic expressions involving other subscripted variables so quite intricate

relations can be developed. Unlike many other high-level languages, UWF does not

require any 'dimension' statements for processing subscripted variables, nor are

the"subscripts limited to only positive integers (they are limited to 12 bits,

however). A variable such as 'APPLE(-PIE), is thus perfectly acceptable although

UWF will view this more prosaicly as simply 'AP(-3)'. Non-subscripted variables are

the same as those with a subscript of zero, i.e. 'AI = 'A(O)'.

To handle double subscripting, UWF -does- require a small amount of additional

information. Before using a double subscripted variabLe the programmer must store

the maximum value of the ,first subscript in the protected variable '!'. This value

may be greater than the actual maximum without incurring any storage penalty, but

if it is too small more than one array element will be stored in the same location.

Since this single 'dimension constant' is used for all arrays it should be chosen

for the largest array in cases where the program uses several different sizes.

UWF-9

To illustrate: suppose that operations on a 5x5 array were necessary. Then '!'

('bang') should be set to 5. If 3x3 arrays ~ere also needed simultaneously (which

is not very likely) their elements would all be unique and only 9 storage locations

would be used, not 25. Non-square arrays are handled just as easily: a 5x20 array

would still only require that '!' be set to 5 since that is the maximum value of

the -first- subscript. This method of storing two-dimensional arrays proves very

convenient: for a ~ide range of linear algebra problems. The value of '!' is gen

erally.,used as a loop limit so that the routines can be used with any size array.

ARITHMETIC OPERATORS

UWF recognizes 6 basic arithmetic, and 1 special 'chara~ter value' operator:

1) + Addition

2) - Subtraction

3) * Mu l tip l ; cat; on

4) I Division

5) -- Signed Integer Powers

6) = Replacement

7) • Value of next character

These 7 operators'maybe combined with explicit numbers and function or vari

able names to create 'Arithmetic Expressions' such as:

UWF-l0

-Such expressions can be used -anywhere- that explicit numbers appear in this

writeup. In particular, they may be used to compute line numbers. All expressions

are evaluated to '10-digit' accuracy, independent of the format used for output.

Intermediate results are generally rounded off rather than being truncated. Most

commands use, or operate on, arithmetic expressions. If such expressions are -omit-

ted- a value of 'zero' is always assumed. This occurs frequently when evaluating

line numbers, hence you should recall the comments about line '00.00' mentioned on

page 6.

PRIORITY of ARITHMETIC OPERATIONS

Arithmetic operations are performed in the following sequence:

First priority - integer powers (A)

Second priority - multiplication (*)

Third priority - division (/)

Fourth priority - subtraction and negation (-)

Fifth priotiry - addition (+)

Last priority - replacement (=)

When UWF evaluates an expression which includes several operations, the order

above is followed. For example, UWF evalutes the expression:

leaving 'X' equal to 'zero' and 'Z' equal to 2.5

Notice that multiplication has a higher priority than division. Thi s is dif-

ferent from the convention in many other languages where these operations have

equal priority. In most cases this difference is of no consequence. The effect of

e.bedding replacement operators is to cause portions of the expression to be eval

uated in a somewhat different order than would be the case if they w~re not in

cluded. In the example above, for instance, the quantity 'SA2' is divided by the

Quantity '5*2' and then the quantity '2' which is equal to '5/2' is subtracted from

the result. However, if one were to add a 'Y=' operator after the first '/' then

the quantity '5-2' would be divided by 'Y' which would be equal to '5*2-Z'.

UWF-11

ENCLOSURES

The order of evaluation can also be changed by the use of enclosures. Three

different kinds are allowed by UWF: Parentheses '()', Square Brackets '[)', and

Angle Brackets '<>'. Subscripts and function arguments are common examples of ex

pressions contained in enclosures. UWF treats all sets identically (they must be

matched, of course!), except in some of the monitor commands in the OS/8 version.

If the expression contains nested enclosures, UWF will evaluate it starting with

the innermost set and working outward. For example:

is evaluated as 'four hundred' with 'A'=20 and IB'=5

ABBREVIATIONS

U~F doesn't care whether you tell it to 'TYPE' or 'TAKEOFF'! The reason is

that only the -first- letter of the command is recognized, just as only the first

-two~ letters of a variable name have significancec So while we have been carefully

spelling out all the commands in the examples so far, we could just as well have

abbreviated them to their first letters.

This feature of the language is both good and bad. On the one hand it greatly

reduces the amount of typing required and at the same time increases the number of

program steps possible. But on the other hand, a program containing hundreds of

single letter commands looks more like a sheet of hieroglyphics than anything else.

This makes it Quite difficult for the beginner to understand the program logic

until he himself has become more familiar with the meaning of all the symbols. For

maximum clarity the eXdmples in this writeup will generally be spelled out, but you

should realize that the commands 'T PI' and 'TYPE PI' will produce -exactly- the

same result.

We will now turn to a detailed examination of all the commands available to the UWf

programmer, beginning with the editing commands since they are required for further

program development.

UWF-1Z

-' -
COMMAND MODE EDITING

When UWF is in command mode you can use the RUBOUT or DELETE key to correct

any typing errors. Each time that you hit this key UWF will delete the precedeing

character and echo a '" on the terminal. If you have a video terminal, and you set

switch 0 up when you started UWF for the first time (or made the appropriate patch

yourself), hitting DELETE wiLL actually remove the character from the screen. This

is obviously much nicer since 'what you see is what you've got l
• On the other hand,

users with a hard-copy terminal can always just hit the 'LINEFEED' key to have the

current input line retyped so that they can see just how it 'really' looks to UWF.

There is no limit to the length of input lines, however if your terminal does not

handle 'wrap-around' automatically, the practical limit is the width of paper.

In addition to RUBOUT, the BACKARROW (or UNDERLINE key as it is identified on

newer terminals) may be used to delete all characters to the left, including the

line number of an indirect command~ You may then start over again. It is not

necessary to hit RETURN although you may wish to do so to get back to the left

margin again. Note that LINE FEED will not echo a blank link and RUBOUT will stop

echoing a '" when it reaches the beginning-of the line.

The use of 'BACKARROW' as a 'line-kill' character necessarily means that this

character (and RUBOUT, of course) cannot be part of the program, but all remaining

ASCII characters, both upper and lower case, can be used. Control codes can also be

used, but they should be scrupulously avoided since they are non-printing and are

therefore impossible to find when they are embedded in a program. In fact, if you

ever have a mysterious error in what appears to be a perfectly good command, just

try retying it in its entirety to eliminate any 'ghosts'.

Once you hit the RETURN key, UWF will digest whatever you have typed, so sub

sequent changes require the use of the editing commands. The text buffer can hold

approximately 7UOO (cecimdl) characters - typically 3-4 pages of printout. To list

any or all of this material you use the WRITE command; to eliminate some of it you

use ERASE and to make changes without having to' retype the Ulchanged part, you use

the MODIFY command. This command can also be used to MOVE parts of the program to a

different location.

UWF-13

W R I T E

The WRITE command, without any modifier, will list all of the indirect com

mands currently saved in the text buffer. Lines are typed out in numerical sequ

ence, no matter in what order they were entered, and are separated into the groups

you have specified. For this reason it is very convenient to use a different group

number for each major part of the program even if such a section only has a few

program steps. Using the first line (line XX.GO) for a COMMENT to describe the

purpose of that section is also highly recommended.

The WRITE command can also be qualified by a string of numbers to limit the

listing to selected portions of the program. 'WRITE ", for example, will print out

just the commands belonging to Group 1, while 'WRITE 2.2' will list only that

single line. A command such as 'WR1TE 1,2,3.3,4.9,5' will list 3 groups and 2

single lines, in the order specified. Of course you shoulo try to plan your progrdm

so that it executes smoothLy ~from top to bottom-, but if you do need to odd a

major section at the end, the ~RITE command can be used to at least make a listing

showing the logical program flow. Another convenient feature of the WRITE comm~nd

is the ability to list a specific line and all lines following it within the same

group. This is done by specifying a -negative- line number. Thus 'WRITE -1.5' will

list line 1.5 (if it exists> plus the remainder of Group 1. 1ne WRITE command will

not produce an error if the line or group you specified is missing - it will simply

not list it: What you see is what you've got!

UWF-1~

ERA S E

.-

The ERASE command is used to delete parts of the program. 'ERASE' without a

qualifier deletes the entire program, while 'ERASE 2' will delete just Group 2.

Other possibilities are 'ERASE 9.1' which will only remove that single line, and

'ERASE -4.5' which will eliminate the second half of Group 4. Since 'ERASE 0'

erases everything, you must use an 'ERASE -.01' command to erase all of Group O.

There is no way to erase lines such as '2.00' without erasing the entire group at

the same time; this is one restriction on the use of such lines. Unlike the WRITE

command, only a single qualifier may be used with ERASE, and UWF will return to

command mode immediately after executing the commmand. Typing in a new tine with

the same number as an old one will effectively erase the previous version. Entry of

just a line number by itself will result in a 'blank line' which may be used to

separate sub-sections of a program. Note that this treatment of blank lines differs

from that used by BASIC. Blank lines will be ignored during program execution.

MOD I FYI M 0 V E

To change a program line or to move it to a different part of the program, you

must use the MODIfY or MOVE commands. MODIFY· without a qualifier can be used to

examine the header line, but it cannot be used to change this line. MODIFY with a

single line number permits changes to the line specified while a MODIFY (or MOVE)

~ith -two- line numbers allows similar changes,· but saves the modified line ~ith

the new number. The old line, in this case, remains just as it was.

MODIFY only operates on single lines (at the moment), so a command such as

'MODIFY" will allow changes to line 1.00, not to all of Group 1. Similarly, 'MOVE

2,3' will move line 2.00 to line 3.00; it will not move all the lines in Group 2.

Since UWF does not have a 're-number' command, moving lines and then erasing the

old copy is the only ~ay to ~dd additional lines when you foryct to leave eno~9h

room between sequential line numbers.

UWF-15

After you have entered a MODiFY (or MOVE) command, UWF will optionally print

out the line number and then pause until you enter a search character. As soon as

you have done so, the line specified will be typed out through the first occurrence

of this character. If you want to insert material at this point, just type it in;

if you want to delete a few characters, simply use the RUBOUT or DELETE key. Other

editing options may be invoked by typing one of the following control keys. Note:

mistakes made while trying to modify a line often lead to embedded control codes,

so if you do get confused, just type CTRL/F and try again.

CTRL/F Aborts the command - the line is unchanged

CTRL/G (BELL) Rings bell and waits for a new search char.

CTRl/J elF) Copies the rest of the line without changes

CTRL/L (FF) Looks for the next occurrence of search char.

CTRL/M (CR) Terminates the line at this point

8KAROW, UNDRlN Deletes all chars to the left, except lineno.

RUBOUT, DELETE Deletes previous chardcter, as in command mode

The ldst two operations dre simiLar to those available during command mode

except that BACKARROW or UNDERLINE does not delete the line number. To remove the

first command on a line containing several commands, just enter a semicolon (;) as

the search character, wait for the first command to be typed out, hit BACKARROW or

UNDERLINE and then hit the LINE FEED key.

CTRL/G and CTRL/L may be used to skip Quickly to the part of the line requir

ing changes. If the change(s) you wish to make involve frequently used characters

(such as an '='), you can initially select a different symbol which occurs less

frequently .and then use BELL to change to the character you really wish to find. Or

you can simply keep hitting the FORM FEED key to advance through the line. In case

your terminal happens to respond to a FF, you will be pleased to know that UWF does

not echo this character!

UWF-16

If you just want to move a line from one location to another, type a IF as the

initial search character. If you are adding new commands in the middle of a line,

be sure to use the LF key - not the RETURN key - to finish copying the rest of the

line. Otherwise you will lose the commands at the end of the line and you will have

to MODIFY the line a second time in order to re-enter them! If you have a hard-copy

terminal you may wish to WRITE out the line after you have modified it to check for

additional errors. With a video terminal, on the other hand, the corrected line

will be displayed just as it is.

If you have many lines to move (say all the lines in Group 5), and you have a

slow terminal, you can disable the printout during the Move in order to speed

things up. To do this, simply disable the keyboard echo by using the '0 II command

(this is discussed on page 46). A disadvantage to this method is that not even the

MOVE commands will be printed so you have to operate 'in the dark', but this is

still the best way to make such a major program change. To restore the keyboard

echo just hit CTRL/F.

On video terminals the number of the line being modified is printed out at the

beginning so that the changes will be properly positioned on the screen. With a

hard-copy terminal, however, the line number is not normally printed in order to

leave as much room as possible for rubouts and insertions. Appendix II indicates

the location to change if you wish to add the line number printout in this case.

UWf-17

EXPANDED TEXT STORAGE

If your machine has more than 12K of memory, UWF wilL automatically use Fields

3-7 for additional text buffers. This alLows such systems to keep several different

programs in memory at the same time which;s obviously a very convenient thing to

do. The LOOK command ;s then used to select the desired 'area' for editing, program

execution, etc. Programs in different areas are essentially independent and may use

the same line numbers, but the symbol table and the 'stack' are shared by dll

areasa

The LOOK command has the form: 'LOOK Area', where 'Area' has the value '0' for

the main text buffer and "', '2', '3', etc. (up to 5) for the additional fields.

LOOK always returns to command mode and is normally only used as a direct commence

'L l' will switch to Area 1 while 'L 0' (or just 'L') will return to Area O. For

calls between program areas, see the LINK command described Later on page 34.

UWF-18

INPUT / OUTPUT COM~ANDS

UWF's I/O commands are called 'ASK' and 'TYPE', respectively. The TYPE command

has appreared previously in a few of the examples; basically it converts the value

of an arithmetic expression to a string of ASCII characters which are then sent to

the terminal, or to whatever output device has been selected as a result of an

appropriate 'OPEN' command (see page 44). Similarly, the ASK command is used to

input numeric values, either from the keyboard, or from another input device. Both

of these commands recognize 6 special operators for controlling the format of 1/0

operations. These operators are, in fact, just the symbols previously identified dS

'protected variables' and it is because of ~heir special significance in ASK I TYPE

commands that they cannot be input or output directly. These operators, and their

meanings, are as follows:

1) Generate a new line by printing a CR/LF

2) .. Enclose character strings for labeling

3) # Generate a RETURN without a LINE FEED

4) $ Print the contents of the Symbol Table

5) X Change the output format

6) . Tabulate to a given column or ignore input .

You will notice that these are mostly • output , operations. Nevertheless, they

perform the same function during an ASK command that they do in a TYPE command. The

'#' operator does not work on all 1/0 devices and is therefore seldom used. It was

originally intended for overprinting on the same line, but may be easily patched

(see Appendix 11) to generate a FORM FEED, should that be desirable. The remaining

operators will now be discussed in greater detail.

UWF-19

THE NEW LINE (BANG) OPERATOR

The'!' operator is used to advance to a new line. UWF never performs this

function automatically, so output on a single line may actually be the result of

severaL ASK or TYPE commands. 'Bang' operators can be 'piled together' to produce

multiple blank lines: 'TYPE !!!!!', for example, would advance 5 lines. Note that

to produce a sing~e blank line may require either 1 or 2 '!'s, depending upon

whether anything has been written on the first line.

THE QUOTE II OPERATOR

UWF uses the operator to enclose strings which are output just as they

appear in the program. Thus the command: TYPE "HELLO THERE, HOW ARE YOU TODAY?"

would simply print the message enclosed by the quote marks. The 'ASK' command uses

such output for prompting: ASK "HOW OLD ARE YOU? ",AGE wilL print the question and

then wait for a response. In some cases the TRACE operator (1) is also useful for

printing labels during an ASK or TYPE command - see page 52.

THE SYMBOL TABLE DUMP $ OPERATOR

The Symbol Table Dump operator ($) has already been mentioned briefly on page

8. It prints all the symbols defined by the user's program in the order in which

they were encountered. It does not print the values of the 'secret variables'. To

conserve paper and to permit as many symbols as possible to be listed on a v;oeo

terminal, the listing normally has three values per line. This format can be

changed simply by specifying a different number after the '$'. Thus 'TYPE 55' witt

change the default value to 5, which is convenient on terminals which can print up

to 132 characters per line. The total number of symbols possible depends upon the

amount of memory available. In an 8K machine there will only be room for about 120

variables while in a 12K machine one can have approximately 675. For internal

reasons, a Symbol Table Dump always terminates execution of the commana line it is

on, hence commands following it on the same line will not be executed.

UWF-20

THE fORMAT 7. OPERATOR

The format operator (7.) aLlows UWF to print numeric results in any of three

standard formats: integer, mixed decimal, or 'floating-point' (scientific nota

tion). A format remains in effect until another one is selected. Initially UWf is

set to print all results in full-precision scientific notation so that all digits

of a result will be output. However for many calculations a 'decimal' or 'integer'

style of output is more desirable. Such formats are selected by the value of an

arithmetic expression following the 'i.' operator ~hich has the form:

%t'J D. DP

where 'NO' is the Number of Digits to be printed (the result will be rounded off to

this precision), and 'opt is the requested number of Decimal Places. 'DP' should be

smaller than 'NO' unless 'ND' is zero; if top' is zero the result will be an

'integer' format and no decimal point will be printed. Thus the command 'TYPE

X2,P!' will produce the result' 3'.

Notice that the form of the format specification is similar to that used for

line numbers. This may help to explain why it is necessary to use '7.5.03', rather

than '7.5.3', when you wish to have 5 digit.s printed with up to 3 decimal places.

The number of decimal places actually printed may not be exactly what you have

requested. If UWf finds that the number being output is too big to fit the format

you specified it will reduce the number of decimal places. for example, if you try

the command:

iYPE %5.04, 123.456

you will actually get the value' 123.46' printed since it is not possible to show·

4 decimal places with only 5 digits. Note however that UWF -did- print the 5 most

significant digits in a format approximately like the one requested.

accustomed to dealing with large powerful computers which print only

Progrdmmers

a st ring of

'*****'s under similar circumstances should find UWF's approach quite sensible.

UWF-21

What happens if the number is so large that even the most significant part

overflows the field specified? In that case UWF automatically switches to floating

point format for that value so you wiLL be able to see an unexpect~d result without

. having to re-rLfl the entire program! You can try this out simply by typing the

value '123456' without changing the format from the prev~ous setting. UWF will

print: I 1.2346E+05'.

To purposefully select a floating-point format you should specify one with

'ND' equal to O. Thus the format 'i..OS' will print 5-digit numbers in proper

scientific notation (1 digit before the decimal point). The default format when UWF

is first loaded is 'i..1' which prints all 10 digits. To return to this format you

can simply specify 'i.', since the value '0' is treated the same as 'i..". Note that

using an arithmetic expression for the format specification, rather than just a

fixed number, permits the format to be changed dynamically while the program is

running: 'r.VF' would select a format using the value of the variable IVF'.

finally, note that UWF will never print more than 10 significant digits - the

limit of its internal accuracy. If the quantity IND' is larger than this, spaces

~ill be used to fill out the number. If the quantity lOP' is larg~r, zeros will be

added. In any case, if the number is negative UWF will print a minus sign just

ahead of the first digit. A plus sign is never printed (except as part of the

exponent), but a space is reserved for it anyway. An additional space is also

printed at the beginning in order to separate the number from any previous output.

This space may be omitted (or changed to an '=' sign) by making the patch shown in

Appendix II.

To summarize the various output format settings:

%N 'N' digit integer format

XN.O 'N' digits with up to '0' decimal places

%.0 '0' digits in scientific (F.P.) notation

X the same as 'X.1' - full precision f.P.

UWf-22

THE TAB : OPERATOR

The tab (:) operator provides a convenient way to create column output. The

expression following the colon is used to set the column, i.e. ':10' specifies col

umn 10. The tab routines do not attempt to go backward if the column specified is

to the left of the current print position - the command is simply ignored in this

case. 'Tabs' are recommended in place of a string of spaces so that changes in the

output format will not affect subsequent columns.

There are two special cases: tabbing to column 0 and tabbing to a negative

column. Neither ;s possibLe since columns are numbered from 1 to 2047, but both are

useful operations. Expressions which have the value zero can be evaluated by the

tab operator within a TYPE command -without- producing any output. This is conven

ient occasionally, especially for calling the FOUT function (see page 61). Tabbing

to a negative column has been given a quite different interpretation, however.

Since the current version of UWf can only input numeric values with the ASK

command, there is a need for a method to skip over label fields when re-reading

output produced by another program. This facility is provided by 'tabbing' to a

negative column number which causes no output, but instead reads and ignores the

specified number of characters. Thus the command 'TYPE :-1' will -read- 1 character

from the input device. This may well appear confusing, since we have an • output ,

command waiting for input, so the 'ASK' command may be used instead: 'ASK :-1'

performs the same function. This feature provides a simple way to get the program

to wait for operator inter~ention. For example, the command 'TYPE "TURN ON THE

PUNCH":-1' would print the message and then wait for any keyboard character to be

typed. An 'ASK :-2000' command will let a visitor type almost anything s-he likes

into the computer without danger of destroying a .valuable program.

UWF-25

Having ~iscussed all the ASK/TYPE operators, there is really very little more

to explain about the commands themselves. TYPE can evaluate a whole series of

arithmetic expressions which are generally separated by commas or spaces or one of

the above operators, while ASK can input values for a whole list of variables,

again separated by commas or spaces. Here are a few examples:

TYPE !!:1U"TODAY 1S"7.2,15 i~4" OCTOBER"'978!

ASK "TYPE A KEY WHEN YOU ARE READY TO GO":-1

TYPE !ltTHE ROOTS ARE:" i.S.02, R1 :20 R2 !!

ASK !"WHAT IS THE INITIAL VALUE OF X? II IX

Notice that the TAB and NEW LINE operators can be included in an ASK command

to help format the input. Thus 'ASK X :10 Y !' would keep the input responses in

two nicely aligned columns. It is quite convenient to be able to output the neces

sary prompting information with the ASK command; other languages frequently require

separate commands (such as 'PRINT' followed by 'INPUT') for these operations. The

trace operator described on page 52;s also useful in ASK and TYPE commands when

one is interested in a 'minimal effort' I/O structure.

One other feature of a TYPE command should be noted: it is possible to save

the "value of a quantity being 'TYPEed' just by including a replacement operator in

the expression. Thus 'TYPE X=5' will output the value '5' and also save it as the

value of the variable ·X'.

Numeric input for the ASK command can take any of the forms listed on page 7,

specifically: signed integers, alphabetic responses, decimal values or numbers

containing a power-of-ten exponent. Because such numbers are processed as they are

being input it ;s not possible to use the RUBOUT key to delete an erroneous char

acter. Rather, one must effectively hit the 'clear key' (as on a calculator> and

then re-enter the entire number. The 'clear' function is indicated by typing a

'SACKARROW' or 'UNDERLINE' just as it is during command input. If you do attempt to

use RUBOUT, no t\' will be echoed which serves as a reminder that this key is

ignored during an ASK command.

UWF-24

INPUT TERMINATORS

UWF allows a variety of characters to serve as input terminators. In addition

to the RETURN key, one may use a SPACE (spaces in front of a number are ignored,

but may be used to format the input as desired - spaces following the number always

act as a terminator), a CO~~A, SEMICOLON, or other punctu~tion marks such as a

QUESTION MARK or COLON. A 'period' is, of course, recognized as a decimal point,

but a second period also works as a terminator. Any of the arithmetic operators

also serve as terminators; in particular, the I,' and '-' characters are often

convenient. This allows responses such as '1/2' or '1-5 1 for the values of -two-

~ifferent variables.

In fact, any character -except- 0-9, A-Z, RUaOUT and LINE- or fORM-fEED can be

used to terminate the response to an ASK command. More to the point, however, is

the fact that the program can test to see which terminator was used. This allows a

very simple input loop to read an indefinite number of items until a specific

terminator (a I?', for instance) is found. See the discussion of the FTRM function

on page 63.

The ALTMODE or ESCAPE key is a special case: typing either of these keys

leaves the previous value of the variable unchanged. This allows quick responses to

repeated requests for the same value. The program, of course, can pre-set the value

of the vdriable so that an ALTMODE response will merely confirm the expected value.

UWF-25

ARITHMETIC PROCESSING COMMANDS

There are four commands in this group: SET, XECUTE, YNCREMENT and ZERO.

5 E T

The most frequently used command in the UWF language is the SET command. This

command evaluates arithmetic expressions without producing any output (except when

the trace feature is enabled - see page 52). Such expressions typically have the

form:

SET Variable Name = Arithmetic Expression

But more general expressions, particularly those containing sub-expressions, are

perfectly acceptable. Thus a command such as 'SET A=B=C=5' could be used to set all

three variables to the same value while 'SET I=J+K=1' would initialize the value of

'K' (to 1) as well as set 'I' to 'J+1'. Expressions used with the SET command do

not need to contain replacement operators: the command 'SET fIN()' could be used,

for instance, to input a single character. The value of the function would not be

saved, however; this is sometimes useful when calling '1/0' functions for their

'side-effects'.

Note that the word 'SET' (or its abbreviation 'S') is not optional as it is in

some other languages. The flexible syntax employed by UWF makes it mandatory that

every command begin with a command letter. One SET command, however, will process

as many expression as can fit on a single line. The expressions should be separated

by commas or spaces, for instance:

'SET A=1,B=2,C=A+S' which is equivalent to 'SET C=(A=1)+S=Z'

Another point to remember is that the 'same variable may appear on both sides of an

UWf-l6

'=' sign. Thus 'SET X=X+S' has the effect of redefining the value of 'X' to be 5

more than the initial value. This can get to be tricky if the Sdme variable appears

several times in a single expression on both sides of replacement operators. The

rulE here is that in each instance the variable will h~ve its current value until

the entire expression to the -right- has been evaluated; then it will be replaced

with the new value. To give a fairly simple, yet intriguing, example:

SET A=8+A-8=A which is equivaLent to SET C=a+A,B=A,A=C-a

This will interchange the values of 'A' and'S'. Another expression which does the

same thing is: SET A=8+0*8=A. Notice that the processing of this expression in

volves two different values of'S': The first time 'B, is encountered it is on the

right side of an '=', so its current value is used; the second time it is on the

left side, so the rest of the expression is evaluated, the substitution made, and

then processing of the first p~rt is resumed. Thus 'A' retains its original value

until the very end <when it is replaced by the initial value of 'B', which was

saved on the st a c k) •

Z E R 0

The special case of 'SET Var=O' is conveniently handled by the ZERO command. A

single ZERO command may be used to set several variables to zero, making it very

convenient for initializing sums and 'flags': 'ZERO A,#,C' will set those three

va~iables to zero. As a special case, if no variables are specified, the ZERO

command clears the entire symbol table. This effectively sets -all- the variables

to zero since this is the default value for 'undefined' Quantities.

One other use of the ZERO command should be mentioned. When the Symbol Tdble

fills up, UWF tries to replace any variables which have the value '0' with new

variables. This procedure succeeds as long as there ;s at least 1 variable with

this value, since that one will simply be renamed, and no matter what the name, it

~ill always be zero. As a result of this scheme, programmers may regain symbol

table space by ZEROing unneeded variables when they are finished with them.

UWF-27

Y NCR E MEN T

Another special case of the SeT command - 'SET Var = Var + l' is handled by

the YNCREMENT command. This command allows a list of variables to be either incre

ment or decrementeq by the value "'. The command 'Y K', for example, is equivalent

to 'SET K=K+1' while 'Y -J' is the same as 'SET J=J-1'. Of course commands such as

'V N,O-P' are permitted; this one increments the variables 'N' and '0' and decre

ments 'pl. Either commas, spaces or minus signs may be used to separate the vari

able names.

X E CUT E

The XECUTE command has been included for compdtibility with earLier versions

of UWF. Its purpose was to evaluate arithmetic expressions without setting useLess

'dummy' variables. This is now accomplished by the SET command itself simply by

omitting the replacment operator. Thus 'SET FOUT(7)' may be used to ring the bell

on the terminal. Internally 'SET' and 'XECUTE' are identical; it is recommended

that SET be used in new programs.

UWF-Z8

BRANCH and CONTROL COMMANDS

This class of commands is used to test arithmetic results, .- set up loops and

otherwise control the sequence of command execution. There are 11 commands in this

catagory - UWF has a very rich control structure built around two fundamentally

different types of transfers: the 'GOTO' branch and the 'Du' call. Both interrupt

the normal sequence of command execution, but the GOTO is an unconditional branch

while a DO call eventually returns to the next command following the call. The DO

command is similar to the 'GOSUS' in BASIC, but is considerably more flexible.

GOT 0

This command has the form 'GOTO line number'. It causes an immediate trdnsfer

to the line specified. The 'GO' command is the usual way of starting the indirect

program at the lowest numbered line; it ma>" Je used to start the program at any

other line as well: 'G 2.1' will start at line '2.1'. An explicit line number may

be replaced by an arithmetic expression to create what FORTRAN calls an 'Assigned

Goto': 'SET X=S.1 ••• GOTO X'.

D 0

The DO command is effectively a subroutine call. A DO command without a modi

fier (or equivalently, a 'DO 0' command) calls the entire stored program. This may

be used as a Direct Command in cases where you wish to follow such action ~ith

additional commands, e.g. 'DO;TYPE FTlM()' might be used to check the running time

of a benchmark program.

UWF-29

DO also accepts a list of line and group numbers such as 'DO -.7,8,9.1', which

would call the subroutine starting at line XX.7U in the current group, then Group 8

and finally line 9.1. 100' is completely recursive: a DO may thus 'do' itself! Note

that the commands called by a DO are not designated anywhere as subroutines - they

may be, and usualLy are, just ordinary commands somewhere in the main program. This

is one of the major differences between DO calls in UWf and GOSUBs in BASIC.

Suppose, for example, that the program had a line such as:

1.3 ZERO A,B,C; SET 0=5, E=6

·which occurred in Group 1 as part of an initialization sequence. If the same set of

commands were needed later in Group 12, one would only need to write 'DO 1.3'. This

facility for re-using common parts of the program is akin to writing 'macros' and

is generally considered to be a good programming practice. The one feature missing

from the 00 command is the ability to explicitly pass arguments to the 'sub

routine l
; this must be handled by the use of • common' variables. As you will see

later on (page 66), Program Defined function calls provide this capability in a

somewhat limited form.

A DO call may be terminated in one of four ways:

1) There are no more lines to execute in the range specified

2) A RETURN command is encountered

3) A loop containing a DO is terminated by a NEXT or BREAK

4) A GO TO transfers to a line outside the range of the DO

The first condition is the most common, especially for single line calls. The

second condition is explalned below, while the third is explored in the discussion

of the NEXT command. That leaves only the fourth possibility: GOTO branches can be

used to terminate a DO call simply by transfering to a line outside of the range;

however the line transfered to will be executed first, which can lead to slightly

unexpected results.

precede the group,

For instance, if the line branched to happens to immediately

no exit will occur because UWf will firid itself back in the

proper group again when it finishes the line. Another somewhat similar case occurs

when calling a 'sub-group-: GOTO transfers anywhere in the same group will be

honored without cousing a return. Thus if you wish to force a return from a DO

call, do it with the RETURN command (v.i.), not with a GOTO~

UWF-30

RET URN

The RETURN command provides a way to selectively exit from a 00 call in cases

where the entire subroutine is not required. Since a 'DO' call always specifies the

implied range of the subroutine (a single line or an entire group), a RETURN

command is normally not required. There are cases, however, especially when calling

a 'sub-group', in which a RETURN is necessary to force an early exit. If there is

no subroutine call to return from, RETURN will go back to command mode instead,

i.e. it behaves just like a QUIT command. This is a useful feature, since programs

which end with a RETURN can be run normally, but can also be called as subroutines

via the LINK command (see page 34).

RETURN can also designate a line number, for example: RETURN 5.3. ~ this case

the normal return to the calling point is aborted (except for PDF calls, see page

68) and the program continues from the line specified. This is a very important

feature since it effectively transforms a 00 call into a GOTO branch. It is all the

more usefuL since it can be 'turned on and off' simply by making the return point

an arithmetic expression which, when zero, indicates a normal return, but otherwise

causes a branch to the line specified. This gives UWF a 'multiple return' feature

which is found in only a few high-level languages.

I F

The form of the IF command is:

IF (Arithmetic Expression) negative, zero, positive

where 'negative', 'zero' and 'positive' are line number expressions not containing

commas. Depending upon the sign of the v~lue being tested, the program will perform

a 'GOTO' branch to one of the three possibilities. The expression being tested must

be enclosed in parentheses and must be ,separated from the command word by a space.

UWf-31

Not all of the branch options need to be specified, and relative line numbers

are especially useful for those which are. Here are some examples of IF commands:

IF (D=S"'2-4*A*C) .2,.3,.4 Tests for al L 3 possibilities

IF (A-5) 5.1, 5.1 Branches if A is less than 5

IF (-X) .9 or IF (X)".9 Branches if X is greater than 0

IF· [I-JJ , .2 Branches only if I equals J

IF <W> .4".4 Branches only if W ;s non-zero

These examples illustrate the flexible nature of the IF command. In commands

with only 1 or 2 branch options, if the branch ;s -not- taken, the next sequential

command will be executed - whether this command is on the same Line or on the next

line (unless the IF is in a FOR loop, v.i.>. Here, then, is a case where 'line O'

is interpreted as the 'next command'. Also note (example 1 above) that the expres

sion being tested may contain replacement operators so that the value may be saved

for use elsewhere in the program.

o N

The ON command is identical in form to the IF command: ON (exp) N,Z,P. The

difference is that DO calls are used in place of GOTO transfers, so upon completion

of the subroutine, the program will continue with the next command following the OM

test.* This is often a very convenient thing to do since it alLows additional

processing for specific cases. As with the IF command, not all 3 calls need to be

specified, so one can test just for eQuality (zero), or for some other condition.

Notice that an entire group can be called by the ON command.

* The automatic return can be aborted if desired

further details.

see the RET~RN commdnd for

J U M P

The JUMP command has two distinct forms which have been designed to serve the

needs of interactive programs:

JUMP line number -or-

JUMP (expression) S1, S2, S3, S4, S5, •••

The first form is a conditional GOTO in which the branch is taken -unless- there is

a character waiting in the input buffer. This form is used to test the keyboard for

input without interrupting the program if there isn't any_ This feature is essen

tial in interactive programs which allow program flow to be controlled dynamically

from operator response. For example:

1.1 YNCR 1; JUMP .1; TYPE I

~ill hang in a loop incrementing the Variable 'I' until a key is struck, then type

the number of cycles. The character used to interrupt the program can be read with

the FIN function (see page 61) and so used to further control program flow. If the

example above simply called FIN to read the character directly, the program would

hang in the input wait loop and nothing further could be accomplished until the

operator struck a key.

The second form of the JUMP command provides a computed subroutine (00) call

which is essentially similar in form to the ON command except that the actual

-value- of the arithmetic expression being tested is used (rather than just the

-si9n- bit) to determine which subroutine to call. The call list is indexed from 1

to N, and any number of subroutines may be specified. Values of the expression

which do not match up with a specified call are ignored. In the example shown

above, Subroutine No.4 will be called if the expression has the value 4.5, whereas

if the expression has the value -1, 0, or 12.3, no subroutine at all will be

called. As with the IF and ON commands, line numbers may be omitted (or set to

zero) to avoid a call for certain values of the expression.

UWf-33

Typically the expression is simply the ASCII value of a keyboard character

which is used to select un appropriate subroutine. For eXdmple:

JUMP (FI~()-'@) A,B,C"E

will call subroutine 'A' if the letter 'A' is typed, etc.

letter 'DI is treateu as a 'NOP' by this particuLar command.

Notice that typing the

As with the ON com-

mand, the program normaLLy continues with the next sequential command following the

subroutine call unless a RETURN command is Employed to transfer elsewhere.

LIN K

The LINK command allows systems with more than 12K to call subroutines stored

in different text 'areas'*, thus 'linking' such areas together as part of a 'main'

program. The command has the form:

LINK Area, Subroutine Pointer

where 1 Area' may have the values '0' or '1 '. in a 16K system, and up to • 5' if

sufficient memory is available. The 'Subroutine Pointer' is a line or group (or

sub-group) number as described for the DO, ON and JUMP commands. A value of • 0'

specifies that the entire area is to be used as a subroutine. Examples:

L,4 Calls group 4 in Area 0

L 1,-8.5 Calls sub-group starting at line 8.5 in Area 1

L,.3 Calls line XX.30 in the same group in Area 0

l 2,;T "DONE" Executes all of Area 2, then types 'DONE'

Notice that the comma is required punctuation even when the second parameter

is zero, as in the lost example.*. To avoid returning to the calling area at the

end of the subroutine, use a RETURN command with a non-zero line number, such as 'R

.9' to abort the normal return sequence. By using a computed line number in such a

command the calling program can control th~ return.

used to cancel all returns - see below.

Uwf-j4

A 'QUIT' command can also be

The variables created or used by d program in onE area are shared by all

areas, so be c~reful to avoid conflicts. Also, since each LINK saves its return on

the 'stack', watch out for calls which never return, but simply chain from one ared

to another. This will eventually lead to a 'stack overflow' which can be cured by

using a 'QUlT X' command to cancel all pending returns.

The LINK command functions properly for calls from within the same orea, but

the DO command is clearly preferable since, for one thing, it can handle multiple

caLls which the LINK commdnd cannot. LINK can be used in direct commands;

somewhat similar to the 'LIBRARY GOSUB' command in the 05/8 version.

it ;s

*For more information on storing programs in different areas, see the discus

sion on page 18.

**LINK and LOOK differ only in the presence or absence of a second parameter.

If only ~he area is specified UWf returns to command mode (LOOK), otherwise it

executes a subroutine call (L1NK).

QUI T

The QUIT command stops program execution and resets

that all pending operations (such as subroutine returns>

the 'stack' pointers so

are destroyed. CTRL/f as

well as any execution error performs an effective QUIT, thereby returning to com

mand mode. There are rare occasions, however, when it is desirable to be able to

'quit' and then simulate a keyboard restart so that the program will continue

running without actually returning to command mode. This is accomplished by speci

fying a non-zero line number as a 'restart' point. Thus 'QUIT 1.1' will stop

execution, clear the stacks, and then restart at line 1.1. To restart at the lowest

numbered line of the program, use a 'Q .001- command. 'QuIT 0' or just IQ' will

stop the program and return to command mode.

UWf-35

It is also possible to use QUIT to specify a restdrt point for any error con

dition. This is accomplished by specifying a -negativc- line number, i.e. something

Like 'QUIT -9.". This command will not stop the program when it is executed; it

wilL merely remember the line number and then continue with the next command. If an

error subsequently occurs, however, the program will be automatically restarted at

Line 9.1 instead of returning to command mode.

This provides UwF with a somewhat limited error recovery procedure, but one

which can be' used to take care of certdin 'unexpected' conditions which might

develop while the program was runnin9 unattended. Note that it ;s up to the user to

determine which error caused the restart. One way that this could be accomplished

is to select different restart points for differenct sections of the program where

specific errors might be expected. This feature shoulG be considered somewhat 'ex

perimlntal' in the sense that it may not be included in later releases of UWF if

other features appear to be more important.

The error trap is automatically reset every time UWF returns to command mode in

order to prevent conditions set by one program from causing an unexpected restart

at a later time.

LOOP CuMMANDS

UWF has j commands for constructing program loops. The FOR command sets up the

lOOPi the NEXT command serves as an optional terminator, and the BREAK command pro-

vides a ~ay to exit from a loop before it runs to completion. UWF's loops are

slightly different from those in other languages, but the differences, once recog

nized, are easy to accomodate. Basically, UWF uses 'horizontal' loops which consist

of only the statements following the FOR command on the same line. Most other

algebraic languages use 'vertical' loops which consist of a number of contiguous

program steps with some way to designate the end of the loop.

UWF's approach is convenient for short loops since the commands to be repeated

are si mply coded on the same line wi th the FOR command and no 'end-of-loop' desig-

nation is requ; red. Loops which reQui re several lines of code are handled just as

easily by putting a '00' command in the main loop to call all the statements which

cannot be placed on the same line. A NEXT command at the end of those statements

then serves to designate both the end of the loop as well as the continuation point

of the program. Symbolically, UWF's loops may thus have either of these two forms:

or

xx.yy

FOR * * *i loop commands

FOR * * *i 00 -.yy

first loop command

second loop command

last loop command; NEXT

The latter form is practically identical to that used by BASIC or FORTRAN,

with the mere addition of the 'DO' call on the first line.

UWF-37

fOR

This command initializes a loop, assigning a 'loop varioble ' to count the num

ber of iterations. The form is:

FOR Var = Initial Value, Increment, Final Value;

. or, more generally,

FOR expression 1, expression 2, expre~sion 3 ;

where the first variable to the left of a replacement operdtor in expression 1 will

be used as the loop counter. The semicolon after expression 3 is required punctua

tion. An increment of +1 is assumed if only the initial and final values are given.

Notice that the increment, if specified, is the -second- expression! This is

different from the convention used by BASIC and FORTRAN. There are no restrictions

on any of the expressions: they may be positive, negative or non-integer. Thus one

can increment either 'forward' or 'backward', using any step size. The execution of

the FOR command is such, however, that one pass will always occur even if the

'initial value' is greater than the 'final value ' • In any case, the exit value of

the loop varidbte will be one increment more than the value it had in the final

iteration.

Here are some examples:

1) FOR I=J=1,10;

2) FOR l=1,N; FOR M=-L,L;

3) FOR X(I)= 10, -1, 1i

4) FOR A=O, P1/180, 2*PI;

5) FOR Q= P/2, Q, S*Q;

Notice that loops may contain other loops (Ex. 2). Such 'nesting' is permitted

to a depth of 1S or so, but in prdctice,

Another point, illustrated in example 5,

loops are rarely nested more than 5 deep.

is th~t the initial value of the loop

UWF-38

variable can be used by the expression for the increment and the final values; also

notice that subscripted varidbles are permissible dS loop indices (Ex. 3).

In example 1 it may appear that both 'I' and 'J' will be used as control

variables. This is not the case: only the first variable (in this case 'I') will be

incremented. Other variables (such as 'J') may be given values by replacement

operators in any ot the three expressions, but these values will not change during

the loop (unless commands within the loop ctlange them). It is often quite con

venient to use the FOR command to initialize several variables used in the loop

along with the value of the loop index.

The novice programmer who wishes to try writing a simple loop might begin with

the following direct command:

fOR I=1,10;TYPE 1,I A 2,!

which wiLL print out the first 10 squares in some (unspecified) format. The more

experienced programmer will quickly appreciate UWF's loop structure; for one thing,

no rules regarding branches into the middl~ of a loop are necessary since there is

no way to branch to the middle of a line!

N EXT

The normal termination for a loop is at the end of the Line containing the FOR

command. If the loop contains a GOTO branch, however, the end of the line brdnched

to becomes the terminator. It is convenient at times, especially in direct com

mands, to terminate the loop in the middle of a line so that other commancs which

Logically follow the loop can be placed on the same line. The NEXT command serves

this purpose, as shown in the following example:

fOR * * *; loop commanci; NEXT; other commands

~hich excludes 'other commands· from the Loop.

UWF-39

This construction also works in 'vertical' loops:

FOR * * *; DO -.#

commands

commands

NEXT

The commands executed by the 'DO' ~ill be terminated upon encountering the

NEXT command. But more importantly, when the loop is finished, UWF will continue

with the first c~mmand following the NEXT - thus skipping over the commands in the

body of the loop. If this 'NEXT' command ~ere to be omitted or replaced by a

'RETURN', the program would simply 'fall through' to the first statement in the

Loop (the one indicated by 1#' in the exampLe above).

Notice that the NEXT command contains no references to the loop variable. This

is a little different from the way most versions of BASIC implement this commdnd,

but the effect is quite similar and since only the first letter of the command ~ord

is decoded, variations such as 'NI' or 'NEXT-J' may prove helpful to some pro-

grammers. Nested .loops, of course, may require 'nested NEXTs':

example ~hich types out all the elements of a 5xS array a row

CR/LF printed at the end of each row:

FOR 1=1,5; FOR J=1,5; TYPE ACI,J); NEXT; TYPE

'N;N·. Here is an

at a time with a

NEXT has one other feature: it may be uSed with a line number to specify a

continuation point other than the next sequential command. Thus: 'FOR * * *i

commands; NEXT .S' will branch to line XX.80 when the loop runs to completion.

Note 1: A NEXT command which is executed outside of a FOR loop is ignored

unless it specifies a line number, in which case the branch will always be taken. A

'NEXT' command may thus be placed at the beginning of any line and used as a target

for a 'do nothing' branch from within a loop without affecting the normal execution

of that line.

Note 2: Loops which contain conditional branches (i.e. 'IF' commands) should

be careful that all paths end with an appropriate 'NEXT' if it is desired to skip

UWF-40

over the statements in the loop under all conditions. Whichever 'NEXT' is executed

on the final iteration will determine the program flow.

B REA K

Once a loop has been initiated it must normally run to completion. Branching

to a line outside of the loop is not effective: that line will simply be treated as

a continuation of the main loop (see comments about GOTO's in a loop in the preced

ing section). One way to force an exit from a loop would be to set the loop

variable to a value greater than the final value. This is obviously not very

'elegant', to say the least, so the BREAK command has been provided to solve this

difficulty. A BREAK causes an immediate exit from the loop (preserving the current

value of the loop index), and the program then continues with the next sequential

command following the BREAK. As you might expect, BREAK may also specify a line

number so you can branch to a different part of the program at the same time that

you leave the loop. A 'BREAK' without a line number. is ignored (just like the NEXT

command) if it ;s encountered outside of a loop, so lines containing BREAKs can be

used by other parts of the program. Each BREAK exits from only a single loop, so to

exit from nested loops it would be necessary to use multiple BREAK commands:

'8;8 15.1' will exit from 2 loops and then transfer t~ line 15.1.

UWF-41

MISCELLANEOUS COMMANDS

We will now finish the alphabet: C,H,K,P,U,V are the remaining command let

ters. 'u' and 'V' are not implemented in this version and may be used for whatever

purpose the user desires. The '@' command is also available for expansion purposes.

COM MEN T

Any command beginning with a 'C' causes the rest of the line to be ignored.

Such lines may thus be used for comments describing the operation of the program.

In particular, line XX.DO (the first line in a group) should generally be reserved

for comments. Branching to a Comment line from within a loop will terminate that

cycle of the loop. In this way a 'COMMENT' is equivalent to the fortran 'CONTINUE'

statement. A 'NEXT' command performs the same function and in addition may be used

to designate the continuation of the program.

H E SIT ATE

The HESITATE command delays the program for a time specified by the command.

The argument (which must be an integer) is nominally in milliseconds, so 'H 1000'

will generate approximately a 1 second delay. However, the exact deLay is directly

dependent upon the cycle time of the machine,

Here is an example using the 'H' command:

so some calibration is necessary.

FOR T=1,9; TYPE It."; HESITATE 250*T

UWf-42

PUN C H

The PUNCH command allows the programmer to save a copy of the texL buffer and

the symbol table in binary format, ready to reload with the standard Binary loader.

This command requires either a High Speed punch or an audio (cassette) recorder.

Tapes created with the PU~CH command can only be read with the Binary loader since

they are not punched as ASCII characters. The advantage to punching tapes ;n this

format is that they tend to be somewhat shorter than ASCII tapes and they also

contain a checksum so there is less probability of an error going undetected. The

disadvantage however, is that they are absolute memory dumps and so are not neces

sarily transportable between different versions of UWF. They also cannot be loaded

by UwF itself from a remote location, but require access to the front panel of the

computer in order to activate the Binary loader as well as to restart UWF once the

tape is loaded.

To use this command (assuming that you have a cassette recorder, but the same

procedure appLies to a HS papertape punch), advance the tape to an unused area,

turn on the recorder and then type 'P' followed by a RETURN. Approximately 5

seconds of leader code will be punched, followed by the contents of the text buffer

and then the symbol table. To restore a program (and any symbols in use at the time

it was dumped), position the tape at the start of the leader, and while this

section is being read, start the BIN loader from the front panel. If you start the

loader before reaching the leader section, the computer will halt with a checksum

error (AC not zero); hit the CONTINUE switch quickly, and if you are still in the

leader, all will be well. After reading in the program tape you must manudlly re

start UWF at location 100 (see page 2).

The PUNCH command always returns to command mode (like MODIFY and ERASE), so

it cannot be followed by other commands, and should not be included in the program

itself. In systems with more than 12K the PUNCH command will dump the contents of

the -current- program area, so to save the program in Area 3, for example, use a 'L

3' command to get to it and then type 'P' to punch it out. A program can only be

reloaded into the area that it came fro~; so if you wish to move a program to a

different area you must ~RITE it out (rather than PUNCHing it), and then read it in

again as explained on page 45.

UWF-43

THE 'OPEN' COMMANDS

In addition to the PUNCH command described above, UWF has a series of 'OPEN'

commands which aLlow ASK and TYPE (or other 1/0 operations) to use something other

than the terminal. These commands consists of -two- words (or two single-letter ab

breviations) separated by a space. You may recall thdt the letter '0' has already

been used for the 'ON' command and wonder how it could also be used for ·OPEN'.

'OPEN' and 'ON' can be distinguished, however, since ON must always be followed by

an arithmetic expression. Here is a short summary of the 'OPEN' commands currentLy

available. The mnemonics, which were chosen in part to be compatible with the OS/8

version, are somewhat less than perfect!

OPEN INPUT 0 I Selects the Terminal as the Input dev i ce

OPEN OUTPUT 0 0 Selects the Terminal as the Output device

OPEN READER 0 R Selects the High SpeEd Reader for Input

OPEN PUNCH o P Selects the High Speed Punch for Output

OUTPUT TRAILER o T Punches It:aderltrailer code (ASCII 200)

OPEN ----,ECHO o -,E Connects the Input device to the Output

Only the first two commands (O I and 0 0) and the ECHO option are useful

unless you have a high speed reader/punch (or an audio tape recorder). The list of
,-

'OPEN' commands could also be expanded to include things like '0 L' (for selecting

a Lineprinter) or '0 S· to send output to a 'scope display, etc. Such expansion is,

however, entirely up to the user.

I/O DEVICE SELECTION

The Input and Output devices are always reset to the terminal when you hit

CTRL/f. To select a different device, use the appropriate OPEN command. For ex-

ample, to read in a program from the High Speed Reader, simply type in an '0 R'

command and henceforth, until this assignment is changed, all input to UWF wiLL

come from the reader rather than from ~he keyboard. In particular, even direct

UWf-44

commands wiLL be taken from the reader, so you can set up a program tape to run the

machine while you are gone. Also, if the tape contains a listing of a program it

will be read into the text buffer just as though you were typing it in yourself.

This is an alternative method for saving programs which has the advantage that- they

are available as ASCII tapes which can be edited or processed by other programs. A

'time-out' trap in the reader routine normally senses when the end of the tape has

been re~ched and then restores the terminal as the input device. A 'backarrow' or

'underline' is printed on the terminal to indicate that it is the active input (and

output) device once more. If you need to manually restore the terminal to its usudl

status, just hit CTRL/f.

Similarly, to select the High Speed Punch (or Cassette Recorder) for use as

the output device, just use an '0 p' command. To dump the text buffer on tape, for

example, enter the commands:

o P,T; W; 0 T,O (do not hit RETURN)

and then start the punch or recorder. Hit RETURN anq then wait for the asterisk (*)

to reappear on the terminal.

To re-read such a tape at a later time, position it in the reader somewhere in

the leader section, use the ERASE command to clear the progrdm area, and then type

'0 R' followed by the RETURN key. If input is from Q~paper tape reader, the reader

will now begin to read the tape. If input is from an audio recorder you should

actually start the tape moving (in the leader section) before hitting the RETURN

key, otherwise the first few characters are likely to be 'garbage' as the tape

comes up to speed and UWf may well conclude thdt you have run out of the tape

before you have even begun!

It is also possible to use the reader/punch for data storage purposes. This

works best with paper tape since the audio recorder lacks a 'stop-on-character'

capability, making it difficult for UWf to keep up with the data once the tape has

started moving. By way of an example, the following command will read in 50 numb€rs

from the high-speed reader:

o R; FOR 1=1,50; ASK DATA(l); NEXT; 0 1,E

UWf-45

Notice thdt an '0 1,E' command is used at the end of the loop to restore input to

the keyboard. If this command were omitted the H.S. reader would continue to be

used for input, probably causing an error to occur since it;s unlikely that the

next data value on the tape would correspond to anything expected from the key

board. The ',E' part of this command is explained more fully in the next section.

THE ECHU OPTION

The ',E' option mdY be added to either an '0 I' or '0 R' command to specify

that the input characters are to be 'echoed' to the output device. Generally this

option is -always- used with '0 I' and -never- used with '0 R'. The echo option may

at first appear slightly confusing since UWF normally runs with the keyboard echo

-on- and thus one comes to expect that ~hatever is typed will be printed on the

terminal. This makes the -terminal appear much like a simple typewriter and tends to

obscure the fact that if UwF were not sending back each character it received,

-nothing- would be printed! The 'ECHO' option must be specified when selecting "the

input device, or -NO ECHO- will be assumed. Thus an '0 I' command will select the

keyboard for input {it may already -be- selected> and effectively turn the echo

off. An '0 I,E' command is necessary to restore the echo under program controL. Of

course any program error, or typing CTRL/F, wilL also restore the echo.

The ability to disable the input echo is convenient at times since it allows a

program to read one thing and possibly print something else. An example of this

mode of operation occurs during command input: when you type the RUBOUT key you do

not get this character printed, but rather a Ibackslash' (\), or on a video ter-

minal, a three character sequence: 'backspace, space, backspace', which effectively

removes the character from the screen. UWF programs can also be written to use the

keyboard for program control, and in such cases it is often desirable to have

'silent' input. You can try this out quickly by using a direct '0 I' command to

disable the echo. Now type in '0', 'spacc', 'I', 'comma', lEt and hit RETURN and

the ccho will return again.

UWF-46

Another time when you will want to disable the echo is when reading in a

program tape on the • low-speed' reader. If you turn off the echo in this case you

can avoid getting an unwanted listing while you relax to the rhythm of a quiet

little Iburp,burp,burpl instead of a 'clackety clack clack'. Just hit CTRL/F at the

end of the tape to turn on the echo again.

Similarly, wh~n r~ading a data tape from the high-speed reader it is generally

undesirable to have it all printed on the terminal. Thus the '0 R' command auto

matically disables the echo; but if you wc.nted to see what some of the data looked

like, you could use an 10 R,E' command. To make a copy of a program or data tape

you would first switch output to the punch and then turn on the echo to 'print'

each character received on the output tape, e.g.

o P;O R,E;S FINO()

The 'FINO' function (described on page 62) keeps reading from the input

device, looking for the character code specified. In this case a 'null' was used

which will never be found, so the effect of this command is to continue reading

until the end of the tape is reached at which point the terminal will automatically

be restored as the 1/0 device, with the echo enabled. If only portions of a tape

were to be copied you could use the FIND function to search for an appropriate

character and then switch 1/0 back to the terminal yourself. You can use the ECHO

option to skip sections of the tape by disabling the echo until you 'find' the

right character and then turning it back on to copy some more.

UWF-47

THE LEADER I TRAILER OPTION

The 'T' option punches leader/trailer code (ASCII 200). This is convenient

(but not essential) for separating output on paper tape, and somewhat more im

portant when using an audio recorder since there is no visual indication of breaks

in the data. Blank tape may also be used as 'leader' and both are ignored each time

the reader is selected as the input device. However, after the first valid input

character has been ~ead these same

cause both input and output to be

codes are interpreted as the 'end-of-tape' and

restored to the terminal. A 'backarrow' or

'underline' is also printed to indicate that the EaT was detected. This character

serves the dual purpose of also removing any 'garbage' characters which might have

been read after the last valid input.

The 'T' option can be used alone ('a TI) or in conjunction with another 'OPEN'

command. The number of L/T code~ punched is determined by an optional arithmetic

expression following the letter 'T' (and separated by a space from it), with the

previous specification being used as the default. The initial value is 512, which

is about right for use with an audio recorder, but somewhat ridiculous for paper

tape (over 4 feet of leader!). A value of 70 or so is more appropriate in this

case. You can always just repeat the 'T' option to get a slightly longer leader if

you want to: 'a T 100,T' will punch out 200 LIT codes but leave the default set at

100. Notice how this option was used in the example on page 45 for writing out all

of the program buffer. The length specified by the 'T' option is also used by the

'PUNCH' command (see page 43).

UWF-4S

K 0 N T R 0 L

This is an optional command which may be used to program the DR8-EA parallel

1/0 module. The 'K' command is used to set and clear individual bits in the output

register while the FDIN function (described on page 65) is used to read the cor

responding bits in the input register. These options are added by the initializa

tion routine if Switch 7 is -UP- (see page 3).

The KONTROL command uses -positive- nunbers to turn bits on, and -negative

numbers to turn them off. Each bit is directly controllable, independent of the

setting of any of the others. Thus a 'K l' command, for example, will turn on bit

'1' without changing the state of any of the other 11 bits, while a 'K -1' command

will turn it off again. In order for this scheme to work successfully the bits must

be numbered from '1-12' rather than from '0-11' which is the usual convention. This

is because '-0' is not distinguishable from 1+0'. In fact, 'a' is interpreted to

mean 'clear all bits', so a 'K O' command (or just 'K' since 'a· is the default for

all arithmetic expressions) can be used to quickly initialize this register.

More than one bit position can be set at a time, e.g. a command such as:

K 1,-2,3 will set bit 1, clear bit 2, and finally set bit 3

In this form, each operation occurs sequentially with perhaps 10 miLLiseconds

or so between operations. This allows a command such as 'K 1,-1' to be used to

generate a short pulse on line 1. If it is necessary for several signals to occur

simultaneousLy, those operations can be encLosed in parentheses:

K 1,(2,3,4),-1 will set bit 1, then bits 2,3,4, then clear bit 1

Since for some purposes it is more convenient to be able to specify various

bit combinations with a singLe arithmetic expression rather than setting and clear

ing each bit individually, a third mode of operation is also available. In this

mode, the last 4 bits (bits '9-12') are set to the value of an expression preceded

by an ';' sign. The remaining 8 bits are not changed. Thus a 'K,=S' command would

IIUI=-I..O

first clear all bits (the comma indicates a missing argument which ;s the same as

'0'), then set bits '10' and '12' while clearing bits '9' and '11' (whichwere

already clear in this case).

To summarize the 3 different forms of the KONTROL command:

K N,-N

K (L,M,-N)

Turns a single bit on or off

N=O turns -all- bits off

Performs all operations in parentheses

simultaneously, instead of sequentially

Sets the 4 least-significant bits to the

binary value of N; this form may not be

used inside parentheses.

UWF-50

ERROR MESSAGES

UWF traps any 'illegal' operation such as division by zero or an unknown

command and prints a peculiar little message to tell you what the problem was dnd

where in the program it occurcd. If you type in the command: '~ET 2=3' for example,

UWF will reply with:

'107.44'

which is its way of telling you that you have something besides a variable on the

left side of an '=' sign. To decode the error message you should look at the back

cover of this manual (or the summary card) which lists alL of the error diggnostics

and their probabLe cause.

If this same error had occure~ while the program was running (i.e. not from a

direct command), the error message would aLso indicate the line in the program

containing the erroneous statement:

107.44 @ 15.13

indiates 'operator missing or illegal use of an equal ~sign' in line 15.13.

The program 'QUITS' whenever an error occurs, thus all pending operations are

cancelled and in generaL it is impossible to resume -precisely- at the point of

interruption, but it is often possible to make the necessary changes, perhaps

update a few variabLes with direct commands, and then restart from a point close to

where the error occured.

This version also has an 'auto-restart' feature which allows the program to

continue after an error instead of returning to command mode. This feature is

selected by an option in the IQUIT' command and is described in greater detail on

page 35.

UWf-S1

THE TRACE fEATURE

To further assist in finding the source of an error, UWF has d facility for

printing out each program step as it tries to execute it. Thus when an error occurs

you con see exactly where the problem is. The 'trace' feature-is turned on by the

occurrence of a '?' in the program (not one ~hich is precedec by a single quote or

€nclos~d in double quotes, however) and turned off again by another '?'. Thus only

the portion of the program between pairs of question marks will be output while the

program is running. The '?' may be given in a direct command, so to trace the

entire program, just use a 'GO?' command to start it. Similarly a 'DO 5.2?' command

will selectively trace that one line.

As a further aid to finding logical errors (as opposed to simple programing

mistakes), when the trace is on, UWF will print out the result of all expressions

appearing in SET commands. Thus you can see the values of alL the variobles as well

as the program steps which created those values. A video termin~l is obviously

preferable for program traces since rather voluminous output can be generated in

quite a short time.

A somewhat secondary use of the TRACE feature is for simplified input/output

prompting. Whenever variables have names closely resembling their usage, it is a

bit of a waste to have commands such as:

ASK "AGE? "AGE or TYPE "COST="COST

when, with only a small sacrifice in the punctuation, the following will do just as

well:

ASK ?AGE ? or TYPE ? COST? _

UWF will print out just the characters enclosed by the '?'s. For this reason

it is preferable to use 'spaces' as separators r~ther than 'commas', i.e.

'ASK ?A BCl) C(J,K) ?'

will print out each variable name followed by d spdce and then wait for its value

UWf-5Z

to be input. One small disudvantage to this 'trick' is thdt ~hen such statements

are -actu3Lly- being traced, the text enclosed by'?' marks will -not- be printed

due to the 'toggling' nature of the trace switch.

There is one other small anomoly associated with the trace feature: A command

such as 'SET !=5,$=10' will not set those two 'secret variables' when it is traced,

but wiLL instead first perform a CR/LF and then dump the symbol table! Thi sis

because during a program trace all SET commands are treated internalLy as though

they were 'TYPEs' and hence the secret variables toke on their special roLes oS

operators. There is a simple solution to this problem, however, and that is to

simply prefix a '+' sign, or otherwise embed such variables in the midst of an

arithmetic expression so that they are no longer recognized as ASK/TYPE operators.

Thus the command 'SET +!=5,+$=10' would be trdced properLy.

COMMAND SU~1MARY

The following table provides a quick review of UWF's entire command reper

toire.

Ql

ASK

BREAK

COMMENT

00

ERASE

FOR

GOTO

HESTATE

IF

JUMP

JUMP

FORM

not implemented in this version

list of Variables, "prompts", formatting options

line number

your programs \Jhenever possible

list of lines, groups, or sub-groups

line, group, sub-group, or • all'

Var = start, increment, finish

line number

time delay desired

(Arithmetic expression) negative, zero, positive

line number

(Arithmetic expression) one, two, three, four, •••

UWF-5j

EXAMPLE

A X,Y(I),Z(J,K)

B or B 11.45

C FOR COiVlMENTS

0 .7, -9.5, 10

E 5 or E 9.1

F I=1,5;F J=I,-1,0

G 11.8 or G .3

H 1000

1 (K=l-J) , .5

J .3;C WAIT LO()P

J (N) 1, .2, -3.4

KO~TROL bit positions

LOUK program area

LINK program area, subroutine pointer

MODIfY line number

MOVE old line number, new line number

NEXT line number

ON (Arithmetic expression) neg~tive, zero, positive

PUNCH punches program ~nd vari~bles in binary format

QUIT line number

RETURN line number

SET list of arithmetic expressions

TYPE arithmetic expressions, "labels", formatting

U available for user expansion

V available for user expdnsion

WRITE list of lines, groups, sub-groups, or lall'

XECUTE list of arithmetic expressions (same as SET)

YNCR list of variables

ZERO list of variables or lall'

OPEN INPUT, ECHO normal terminal input

OPEN READER selects high-speed reader

OPEN PUNCH selects high-speed punch

OPEN OUTPUT selects terminal for output

OUTPUT TRAILER punches leader/trailer code

UWf-S4

K 1,(-1,2,3),=X

L 1

L 2,4.1 or L,10

M 5.1

M 3.3,6.3

F 1=1,10;N;T PI

0 (A-S) -9.2, 9

p

Q or Q 5.1

R or R .2

S A=S, B=C=A/2

T !?A ?: 10"8="8

W or W -1.5,2,3.1

X fSlN (II) I Feos (#)

Y I-J,K L

Z,#,A,B(I),CeJ,K)

0 l,E

0 R

0 P

0 0

0 T or o T 70

INTERNAL FUNCTIONS

In spite of the fact that only about 3.3K words have been used to implement

UWF, there are nearly 20 built-in functions and a facility for adding a limitless

number of Programeq Defined Functions.

The 'internal' functions provide the user .~ith full-dccuracy C'10-digit') ~p

proximations for commonly used relations such as log, exponential, sine, cosine,

square root, etc. Also included are simple numerical functions such as absolute

value, integer, sign and fractional parts, maximum/minimum, etc. And finally, th~re

are a few functions for character processing and special 1/0 operations such as

redding the Switch Register and lOading the MG. All function nQmes in UWF bEyin

with the letter IF'; thus vdriables names may not bEgin with this letter.

TRANCENDENTAL FU~CTIONS

This class of functions, so named beCause the relations they represent con

only be expressed dS infinite series, includes the natural log and exponEntial

functions and the three most common trignometric functions. The series approxima-

tions used by UWF have been optimized by a constrained least-squdres procEdure to

reduce the error over the principal argument range to at worst a few parts in 10

billion.

The trancendental functions can be removed if you wish to increase the number

of variables available in the 8K version. Removing them creates space for anoth~r

55 variables - a total of 175 instead of only 120. Program Defined Functions can be

incorporated in their place at the expense of greater execution time and slightly

poorer accuracy. See page 71 and Appendix 11.

UWF-55

FLO G

FLOG(X) returns the natural logarithm of the absolute value of the argument.

An error occurs if X is zero since the theorectical result is infinite. No error

occurs if 'X' is negative, although the Log function is, in foct, only defined for

positive arguments. This implementation facilitates the use of FLOG for extrQcting

roots and raising values to non-integer powers. The Common (basc-10) logarithm is

easily obtained from the FLOG function just by dividing by FLOG(10). Example:

TYPE I.,"NATU({AL LN(Pl)="FLOG(PI) :45"CCM~ON LOG(PI)="FLOG(PJ.)/FLUG(10)!

NATURAL LN{PI)= 1.144729886E+00 COi~~jON LOG{Pl)= 4.971498727E-01

F E X P

FEXP{X) returns the value of eAX where 'e'= 2.718281828 ••• The value of Ie' is

always available as FEXP(1). This function is often used to extract roots and

compute non-integer powers. For example, ·XA3.S' is found from the expression:

FEXP(3.5*FLOG(X». Similarly, the cube root of 27 may be founa from the expression:

FEXP(FLOG(27)/3). The absolute value of the argument must be less than approx

imately 1400 in order to avoid numeric overflow.

f SIN - F COS

FSIN(A} dnd FCOS(A) return the value of the sine and cosine of the angle 'A'

when 'A' ;s measured in -radians-. A 'radian' is a unit of angular measure pre

ferred for scientific and engineering ~ork because it eliminates factors of PI in

many formulae. One radian ;s 1/2PI of a full circle, or approximately 60 degrees.

·UWF-S6

To convert angLes from degrees to radians you simpLy multipLy by P1/180. The vdlue

of 'PI' is a protected var;dble which is aLways avaiLable. Here is a short table of

the values of FSIN and FCOS over the first qUdurant as produced by the command

shown. Notice how the radian value was saved for use in the second function call:

•
FOR A=O,10,9U; TYPE i.2,A i.15.1, FSIN(R=A*PI/1bU), FCOS(R)!

0 O.OOUOOOOOOO 1.0000000000

10 0.1756481776 O.9848077)~O

20 0.3420201433 0.9396926207

30 0.5000000001 0.8660254037

40 0.6427ti76U96 0.7660444431

50 0.7660444431 0.6427876096

60 0.866025403(' 0.5LJOOOOOOO1

70 0.93969262G7 O.!J420l01433

80 0.98480775:)0 O.17-S64b1778

90 1.0000000000 0.0000000000

F TAN - FAT N

The Tangent function is not provided as an intErnal function since it is just

the ratio of FSIN/FCOS dnd is thus easy enough to compute. The user may implement

his own FTAN function, however, as described in the discussion of Program Defined

Functions on page 67.

The inverse ('arc-I) tangent function is available, ho~ever. FATN acc~pts val-

ues of any magnitude and returns the -angle- (in radians) which would give that

tangent. The range of answers ;s from -PI/2 (-90 degrees) to +PI/2 (+90 degrees).

To convert from radians to degrees, just multiply by 1S0/Pl. For example, to ch~ck

that the angle ~hose tangent is -1 is, in fact, -45 degrees:

TYPE 1SU*FATN(-1)/Pl -45.00GOOOOO

UWf-S7

All other trig functions ccJn be der;,,~d from these primary functions. for eXampLe;

Cotdngent

Arcsine

Arccosine

HyperboLic sine

HyperboLic cosine

FCOSCA)/FSIN(A)

FATN{A/FSGT(1-A*A»

FATNCFSQT(1-A*A)/A)

(FEXP(A)-FEXP(-A»/2

(FEXPCA)+FEX?(-A»/2

Consult any ~dv~nced Algebra book for other such id~ntities.

F S Q T

The fSQT function computes the square root of the argument using an iterative

approximution which guarantees that no more than the last bit will be in error.

Example: TYPE FSQTCZ), FSQT(2)~2!

1.414213562 2.0UOOOOOOO

F A 8 S

FABS returns the absolute vaLue of the argument: TYPE FABSC-1), FABS(1)

FSGN returns -1,

zero or positive.

1.00000000 1.0000000UO

F S G N

a or +1 depending upon whether the argument was: negdtive,

U\iJF-5o

Example: TYPE FSGN(Pl), FSGN(PI-Pl), FSGN(-Pl)

1.000000000 0.000000000 -1.000000000

FIT R

FITR returns the InTegeR part of the argument. Thus 'FITR(PI)' is '3 1 and

'FITR(-5.S)' is '-5'. Note that some languages have an 'entier' function which ;s

the 'integer less than or equal to the argument'. For positive numbers this pro

duces the Sdme result as UWf's FITR function, but for negative values it gives the

next lowest number. If you are converting a pro9r~m which was originally written in

another language, be sure to watch for this subtlety! It should be noted that many

functions and commands in UWF convert values to an integer form internally without

requiring the programer to do so. Subscripts, for example, are always used in ;nt~

ger form, meaning that 'A(1.5)' is legal, but is no different from 'A(1)'. In gen

eral, a vaLue which is used as an index or is stored in a hardware register is

always converted to an integer before use.

F R A C

FRAt returns the fractional part of a number - the part which FITR discards!

This may be used to do 'modulo-Nt arithmetic or to check for a remainder. The user

is cautioned, however, that the value returned by FRAC may have onLy limited

accuracy and hence checks for 'exact' values computed from expressions containing

the FRAt function should generally be avoided. To illustrate, the fractional vaLue

of '.002' ;s .OOZ, but the fractional value of 1.002 is off in the 8th place while

that of 1000000.002 is only correct to 3 digits. This is simply the result of

taking the difference between two large numbers.

UWF-59

F MIN - F M A X

These functions compare two arguments, returning the algebraically smallest or

largest value. Thus 'fMIN(+1,-2) would return 1-2' while fMAX would return '+1 '.

These functions have several uses. A simple example in connection with the FLOG

function allows one to avoid the 'log-of-zero' error with a call such as

tFLOG{FMAX(1E-10,X». Simildfly, the FMIN function can be used to avoid ty~ing non-

existent vdlues when dumping an array in a multi-column format. In this example,

'C' is the number of columns and IN' the number of ddta values in the array:

FOR I=1,C,N; FOR J=I,fMIN(N,C+I-1); TYPE Q{J); NEXT; TYPE

As a final example, an entire array can be scanned for its extrema simply by com

paring each element with the previous best estimates:

SET MIN=MAX=A(1); fOR 1=2,N; SET MIN=fMIN{A(I),MIN), MAX=fMAX(A(I),MAX)

A disadvantage of this method for locating the extremes is that no information is

available as to which element ;s biggest or smallest, only the values are returned.

f RAN

The FRAN function returns a different pseudo-random number each time it is

called. The numbers are limited to the range 0-1 and have an approximately 'flat'

distribution. Other distributions, for instance Gaussian or Lorentzian functions,

can be ~reated as Program Defined Functions by using fRAN in an appropriate expres

sion. The function is initialized by the input wait loop so the values you observe

will appear to be truly random. The pair-wise and higher-order groupings do have a

small correlation coefficient, but even so, a reasonable value of PI can be

obtained using FRAN to generate a 2-dimensional sc~ttcr pattern. The principle use

of FRAN appears to be for games.

UWF-60

CHARACTER dnd 1/0 FUNCTIONS

The remaining internal functions hdndle character manipulation and other

special-purpose 1/0 ope:rations. The character functions include FIN, fOUT, fIND and

fTRM, while FSR, FMQ and FDIN are 'I/O-type' functions. fBUF and fC0M provide

access to extended memory for storing large data arrays.

fIN

The fIN function reads a single character from the Input Device and returns

the numerical value of that character. A list of character values may be: found in

Appendix I and the vaLue of any character can be obtained within the pre jram simply

by preceding it with a single Quote mark. Thus the expression (IA) will have the

value of the letter 'A' (19~) while ('A-'Z) ~ill be the difference of the codes for

'A' and 'Z'. Character strings can be read with the FIN function and later output

with fOUT; this is a bit slow, but does provide UWF with a limited string-handling

facility.

F 0 U T

The fOUT function generates a singLe character from the value of an arithmetic

expression. It will thus output what FIN has input: 'FOUT(193)' ~iLl generate the

letter 'At. More commonly, however, FOUT is used to output special control char

acters which wouLd otherwise be invisible if they were simply included in a 'TYPE

........ command. For instance, 'FOUT(7)' is used to ring the 'bell', while

'FOUT(140)' outputs a 'form-feed' character. 'fOUT(~7)' generates an ESCAPE code

which is used by many terminals to initiate special functions such as reverse

video, cursor movement, etc.

UWF-6'

FOUT expects arguments in the range O-l55; values beyond this range will be

output, but should be avoided. Most terminals respond in the same ~ay to values in

the range 0-127 and 128-255. UWF's input routines, however, always return values in

the higher range (128-255) in keeping with the standard established for the PCM-12.

The value returned by FOUT is always -zero-, not the value of the character

code! This was done to simplify calling the function as part of a commdnd. For

instance, you can output a formfeed ahead of a program listing by using a 'WkITE

FOUT(12)' command instead of just 'WRITE'. Si~ilarly, since 'tabbing' to column

zero is ignored, you can include FOUT's in ASK or TYPE commands just by putting

them in 'tab expressions'. To print a 'double quote' mark, for instance, you coulu

use the following:

TYPE "THIS IS A ": FOUT (' ") II MARK! II which will produce THIS IS A " MARK!

FIN D

FIND searches for a character equal to its argument, reading and echoing all

characters it encounters until it finds a match. The echo is controlled by the

setting of the input echo switch, as described earlier on page 46. The character

which matches is -not- echoed, however, but;s returned as the value of the func

tion. To output this character too, you may use a call such as'S FOUT(FIND('A»)'

where 'A' is the search character. To read in a comment line, just search for a

Carriage Return: SET FINO(141). To read the same line in from a paper tope, how

ever, you should search for the Linefeed following the CR: SET FINO(130). This is
due to different conventions for the 'end-of-linc' chdracter. FINO also checks con

tinually for a CTRL/Z. This is recognized as an 'End-of-File' mark and causes FIND

to return with the value 'zero' instead of with the value of the scarch character.

UWf-62

F T R M

As discussed earLier on page 25, the ASK command treats any input other than

'0-9' and 'A-Z' as a terminator, which means that data values may be conveniently

'flagged' by the use of a speciaL terminating character. The purpose of the FTR~

. function is to then pass this information back to the program so that special

action may be taken if necessary. For instance, a program might need to be able to

work with either metric or EngLish measurements, using an appropriate terminator to

differentiate between them. Similarly one can devise a 'pocket calcuLator' program

which accepts numbers terminated by one of the arithmetic operators and then per

forms the indicated function. One of the more common uses for this feature is to

permit an indefinite number of data values to be read in, sensing a special ter

minator for the last value. A loop like the one in the exampl,-~eLow (which checks

for a '?') is all that is required:

4.1 ZERO N;TYPE "ENTER QUIZ GRADES, TERMINATE THE LAST ONE WITH A'?'''!

4.2 ASK G(N=N+1); IF (FTRM()-'?) .2".2; TYPE X2"THERE WERE"N "GRADES"!

F B U F - F COM

These functions alLow UWF to use extra memory for data storage and are thus of

interest only for systems with more that 12K. They may be added by setting SW1~~h.8

-UP- when UWF is started for the first time (see page 3). FBUF is designed to

handle 12-bit (signed) integer data while FCOM may be used for storing either 24-

bit integers or 48-bit floating-point values. Both functions are called in the same

manner: the first argument specifies the relative location in the storage area and

the second argument (if any) is the value to be stored at that location. The

function always returns the value at the location specified. Thus:

FCOM(l)

FBUF(l,V)

returns the 'Ith' value in the 'FCOM' area

stores the value of 'V' in the '1th' location.

UWF-63

The range of the index is typically 0-4095 for FBUF and 0-1023 for FCOM. FCOM

has another mode however, in which data is stored as two-word integers (rather than

four-word floating point values) thereby doubling the amount of storage available

but limiting the range of the data to +/- 2-23. To use FCOM in this mode, specify a

-negative- index (legal range is -1 to -2048). Here is a loop which stores the

square root of all numbers from 0-1023:

fOR 1=0,1023; SET fCOM(I,FSQT(I»

Although FBUF and FCOM share the same field, FBUF starts from the 'bottom up' while

fCOM stores from the 'top down', so both functions may be used simultaneously.

Furthermore both functions are fully recursive, so calls such as 'FCOM(I,FCOM(J»

may be used to move data from one location to another.

F S R

The FSR function reads the value of the Switch Register. This may be used to

control program options. The value is treated as a signed number so the range is

from -2048 (4000 octal) to +2047 (3777 octal).

F M Q

The FMQ function displays the integer part of the argument in the MQ register.

This is quite handy for 'spying' on the progress of a long calculation simply by

displaying the value of a loop index. Since FMQ returns the integer part of the

argument, it can be incLuded in a subscript expression, such as 'A(FMQ(I»' which

is functionally the same as 'A(I)' but also displays the index in the MQ.

UWf-64

F 0 I N

This is an optional function for reading the input register of a DR8-EA par

allel 1/0 module. It may be added (along with the 'KO~TROL' command) by setting

Switch 7 -UP- the first time UWF is started. The interface may be wired to respond

to either levels or pusles, the difference being that it will 'remember' a pulse,

but 'forget' when a Level changes. Each bit is separately addressable, and each may

be wired for pulse or level sensing. For use with the FDIN ('Digital INput')

function, the bits are considered to be numbered from 1-12 (rather than from 0-11),

just as they are for the 'KONTROL' command (page 49).

The value of 'FDIN(O)' (or just 'FDIN()' since 'zero' is always the default

value of an argument) is simply the weighted sum of all input bits which have been

'set'. Bit '1' has the value 2048, bit '2' 'weighs' 1024, etc. The maximum value ;s

thus '4095' if all the bits are turned on. Any bits which are read by the FDIN

function will be reset if they are resettable, i.e. if they are wired for 'pulse'

input. This ensures that only one occurrence of an event will be detected by the

program.

FDIN can be made to respond to only a single bit, or to a collection of bits,

by including various arguments as the programmer desires. For instance, 'FOIN(1)'

will only sense the state of bit '1'. If bit 1 is on, FOIN will have the value

2048, while if it is off, the value 'a' will be returned, regardless of the setting

of any other bits. Furthermore only bit 1 will be reset. The value of 'FDIN(-1)' on

the other hand, will be the status of all bits -except- bit 1, i.e. bits 2-12. Any

bits which are read will be reset as described above.

More complicated masks can be constructed by specifying multiple bits. Thus

'FOIN{1,3)' will only look at bits ", and '3', while 'FDINC-2,-5)' will look at

-all but- bits 2 and 5, etc.

UWF-65

PROGRAM DEFINED FUNCTIONS

UWF allows the user to define his o~n set of special functions within the

program. Such 'Program Defined Functions' ('PDFs') may consist of any set of UWF

commands, ranging from a single program step to as much as an entire group. A PDF

is very similor to an ordinary subroutine ('DU') call, but with 3 importdnt differ

ences:

1) a PDF may pass arguments to the subroutine

2) Q PDF returns a numeric value - the value of the function

3) a PDF may occur in any command, not just DO, eN, LI~K, etc.

The last difference is esp~cially importcnt since it allows subroutine calLs

in some circumstances when they might not otherwise be possible.

The form of a PDF call is:

F(line number, argument list)

where the letter 'F' identifies this as a function call ~nd the line (or group)

number identifies the function. This number can be r.cplaced by a suitably chosen

variable so that one may use a 'named' function call rath~r than a 'numeric' une

(v.i.). The argument list is not required, but may contain se~cral argum~nts.

!ypically, only 1 or 2 are used although this is not a fundamental restriction. The

arguments may consist of other PDF calls which do not thcmselv~s hd~e arguments, or

any other internaL functions, with or without arguments. The use of nested PDF

calls containing an argument list ;s restricted since the arguments are not storeo

recursiyely. Here are few examples of Program Defined Functions:

F{2,A*B)

F{.9,X,Y)

F(-9.S)

Calls Group 2, pdssing 'A*B' as the argument

Calls line XX.90 in the current group

Calls sub-group ot line 9.5 with no arguments

UWf-66

Coding a PDF is no different from writing an ordinary subroutine, but the

mechanism for passing argument values and returning the function result needs to be

explained. The value of each arithmetic expression appearing in the argument list

is saved in a specific 'protected variabLe'. The first argument is saved in the

variable '#', the second one in the variabLe '$', and the third in the variable

'X'. Additional arguments are possible, and if necessary more protected variabLes

should be defined when initiaLizing UWF (see page 3). The ordinary variables

created by the program may also be used as 'common' variables (those appearing in

both the 'main' program and the definition of the function) for passing information

to the subroutine.

PDF calls are not required to always have the same number of arguments, so

infrequently used parameters can be placed after frequently used ones. These wiLL

not be changed unless they are modified by the subroutine itself. In the first

example, the value of 'A-times-B' is placed in the variable '#'. In the second

example, 'X' is placed in '#', and 'Y' goes into'S'. If this function were called

subsequently with only a single .argument, the value placed in'S' would not be

disturbed. No arguments are used in the third example, but any variables defined by

the program may be used by the subroutine. This is the only reasonable way to

handle arrays.

The subroutine must then be written to use the appropriate protected variable

whenever it needs the value of the corresponding argument. A routine to compute the

length of a vector, for instance, might use an expression such as 'FSQT(#*#+$*$)'.

The value returned by the function is just the result of the last arithmetic

expression processed by the subroutine. This expression may be evaluated by any

suitable command, but typically the SET command is employed. To begin with a very

simple example, here is how you could code the tangent function:

9.9 SET FSIN(#)/FCOS(#)i COMMENT: THIS IS THE TANGENT FUNCTION

You could also include a replacement operator to save the result in a vari

able, or you could use the TYPE command to output the result of the expression, or

whatever. Since it is the -last- result which is returned as the value of the

function, however, if other calculations are necessary for checking the result or

UWF-67

performing ancilli~ry calcul6tions, th~ value desired must be saved ~nd then 'SET'

again just before returning.

There are a number of UWf commands which do not disturb a PDF result and so

may be used without c~ution in the definition of the function. These are COMMENT,

RETURN, Y~CRE~IENT and ZERO. On the other hand, branching commands always evaluate a

line number (which may be zero), and so cannot be used to terminate a PDF without

destroying the (expected) function resuLt. It should also be pointed out that the

line number option in a RETURN command (see p3gC 31) will be ignored by a PDF call.

This is necessary to Ensure that the program returns to complete"the function Call.

While most PDF calls just use an expLicit line or group number to i~entify the

function, it is possibLe to b~ somewhat more elegant! By using a variable with a

nicely selected name you can specify the 'F(TAN,X)' function rather than th~

'F(9.9)' function. To do this, just set the variable 'TAN' 1'0 the value 9.9. This

has the additional advantage that you can easily move the subroutine to a different

part of the program without having to change all the function calls.

UWf-68

EXAMPLES OF PRUGRAM DEFI~ED FUNCTIONS

Here are a few interesting PDF's which illustrate some of the things you can

do. A symbolic name has been used in most cases; it must be set to the value of the

line or group actually used to code the function •

. 1) F<PWR,X,Y) - raises 'X' to the 'Y' power when ty, is non-integer:

SET FEXP($*FLOG(#»

Sample call: TYPE F(PWR,27,1/3) 3.000000000

2) f(!,N) - computes the Nth factorial (maximum value of N is about 300)

FOR 1=$=1,#; SET $=$*1

Sample call: TYPE F(!,S) 120.0000000

3) f(SUM) - computes the sum of the subscripted array 'G(l)'

ZERO $; fOR 1=1,N; SET $=$+G(I)

Sample call: SET AVE=F(SUM)/N

4) f(PN,X) - evaluates the polynomial 'Y=CCO)+C(1)*X+C(2)*X-Z+ ••• +C(N)*X-N'

FOR 1=N,-1,$=O; SET $=$*#+C(I)

This function is useful for computing series approximations

UWF-69

5) F(OCTAL,VALUE) - converts a number from decimal to octal

FOR 1=N=O,4;SET N=N+(#-8*#=FITR{#/8»*10-1

Sample call: TYPE F(OCTAL,1000) 1750

This is the most interesting of the functions shown so far, if for no other reason

than that it uses all the arithmetic operators in a single SET command as well as

some fancy redefinitions within the loop. The technique employed is quite general

for changing from one number base to another, so simply by interchanging the 18's'

and '10's' in the definition you can construct a function to give you the decimal

equivalent of an octal number:

TYPE F(OECIMAL,1000) 512

To be still more elegant you can rewrite the function to use the value of '$' in

place of the number'S' shown above and thus have a general-purpose routine for

converting to any number base (less than or equal to 10). A fun thing to do once

you have made this change, is to try it out with a direct command such as:

FOR J=2,10; TYPE F{BASE, 99, J)!

which will then type out the value of 'ninty-nine' ;n a'll number bases from 2-10.

The loop limit represents the maximum number of digits required to represent the

number, so if you try this with large numbers and small number bases you will

probably need to increase the limit to something more than '4'.

6) PDF replacements for the trdncendental functions:

These functions may be used in place of the internal functions in the event

that you wish to delete some of them to increase the number of variables available

on an 8K machine.

F(EXP)=

EXP=25.1

F(lOG)=

lOG=26.1

F(ATN)=

ATN=27.1

F(SlN)=

SIN=28.1

F(COS)=

FeTAN)=

TAN=29.1

F(ASIN)=

ASIN=~O.'

FCACOS)=

F(H5IN)=

HSIN=31.1

F(HCUS)=

25.1 IF (#*#-.01).2; SET #=F(EXP,#/2)Al

25.2 SET t=1+#+#*#/2+#-3/6+#-4/24+#A5/120

26.1 IF (#*#-2.04*#+1).2; SET ~=2*F(LOG,FSQT(#»

26.2 SET #=(#-1)/(#+1), #=2*(#+#-3/3+#-5/5+#-717)

27.1 If (#*#-.01).2; SET #=2*F(ATN,#/(1+FSGT(1+#*#»)

27.2 SET #=#-#-3/3+#-5/5-#-7/7

28.1 If(#*#-.01).2; SET #=F(SlN,#/3), #=3*#-4*#-3

28.2 SET #~#-#-3/6+#-5/120

28.3 SET f(SlN, Pl/2-#)

29.1 IF (#*#-.01).2;5 #=F(TAN,#/2), #=2*#/(1-#*#+1E-99)

29.2 SET #=#+#-j/~+#-5/7.5+#-7/315

30.' If (#*#-.01).2;S #=2*F(.'~#/(FSQT(1+#)+FSQTC1-#»)

30.2 SET #=#+#-3/6+.075*#-5+#-7/22.4

30.3 SET Pl/2-F(ASIN)

31.' If (#*#-.01).2; SET #=F(HSIN,#/3), #=3*#+4*#-3

31.2 SET #=#+#-3/6+#-5/120

31.3 SET FSQT(F(HSIN)*#+1)

The method used in these functions is to recursively reduce the argument to a value

typically tess than .1, evaluate a series appro~imation which ;s f€dsonably accur

ate for an argument of this magnitude, ~nd then 'bootstrap' back using an identity

such as ·c-ZX=(e-X)-2'. Thus the appro~imation ~or F(EXP) is evaluated after recuc

ing the argument to the proper range and then the result is squared enough times to

return to the original value. This clever method was devised by A.K. Head.

UWf-71

7) In many cases a PDF call is preferable to a simple 100' because it can pass a

parameter or t~o to the subroutine at the same time and can also return a 'status'

value. As an example of such a use, consider a subroutine for finding the roots of

a quadratic equation. There are three possible cases: the roots are equal, the

roots are real, but unequal, or the roots are complex numbers. If the values pro

duced by the subroutine are stored in 'R1' and 'R2', then after calling the routine

one must still decide how to interpret the results. If the subroutine were to

return the value of the 'discriminant' this could be accomplished as follows:

ON (f(QR» complex, equal, unequal

~

where 'QR' is the group number of the Quadratic Root subroutine, and 'complex',

'equal', 'unequal' are line or group numbers associated with ttle 'ON' command which

serves both to call the subroutine and to test the result at the end.

examples will undoubtedly occur to the redder.

UWf-72

Other uch

FU~CTION SUMMARY

Here is a list of all the functions implemented in the standard version of

UWF. Since up to 36 internal functions are possible, it should be clear that this

list is not exhaustive.

FABS

FATN

FBUF

FCOM

FCOS

FDIN

FEXP

FIN

F1ND

FITR

FLOG

FMAX

FMIN

FMQ

FOUT

FRAC

FRAN

FSGN

FSIN

FSQT

FSR

FTRM

F

Returns the absolute value of the argument

Returns the angle in radians whose tangent is given

Optional: stores or retrieves 12-bit signed integers

Optional: acceSSES ddditional memory for ddta storage

Returns the cosine of an angle measured in radians

Optional: returns value of digital input register

Returns value of 'e~X' where IXI ;s less than 1418

Reads and returns the value of a single character

Searches for a given character code

Returns integer value of the argument

Returns the natural logarithm of the argument

Returns the maximum value of two arguments

Returns the minimum value of two arguments

Displays the argument in the M9, returns same

Outputs a single character value

Returns the fractional part of the argument

Returns a random number in the range 0-1

Returns the sign value of the argument: -1,0,+1

Returns the sine of an angle measured in radians

Returns the square root of a positive number

Returns the signed value of the switch register

Returns the value of the last ASK terminator

Program Defined Functions

UWF-7j

DECIMAL VALUES r~R ALL CHARACTER CODES

CODE CHARACTER CD. CHAR CD. CHAR CD. CHAR

128 CTRL/@ NULL 160 SPACE 192 @ 224

129 CTRL/A SOH 161 19j A 225 a

130 CTRL/B STX 162 It 194 B 226 b

131 CTRL/C ETX 163 II 195 C 227 c

1~2 CTRL/D E(JT 164 $ 196 0 228 d

133 CTRL/E ENQ 165 1- 197 E 229 e

134 CTRL/F ACK 166 & 198 F 230 f

135 CTRL/G BELL 167 199 G 231 9

136 CTRL/H 8.S. 168 (200 H l32 h

137 CTRL/I TAB 169) 201 I 233 ;

138 CTRL/J L.F. 170 * 202 J 234 j

139 CTRL/K V. T • 171 + 205 K 235 k

140 CTRL/l F. F. 172 , 204 L 236 l

141 CTRL/M C. R. 173 - 205 M 237 m

142 CTRL/N SO 174 206 N 238 n

143 CTRL/O S1 175 I 207 0 239 0

144 CTRL/P OLE 176 0 208 P 240 p

145 CTRL/Q XON 177 1 209 Q 241 Q

146 CTRL/R DC2 178 2 210 R., 242 r

147 CTRL/S XOFF 179 .) 211 S 243 s

148 CTRL/T DC4 180 4 212 T 244 t

149 CTRL/U NAK 181 5 213 U 245 u

150 CTRL/V SYNC 182 6 214 V 246 v

151 CTRL/W ETB 183 7 215 W 247 w

152 CTRL/X CAN 184 8 216 X 248 x

153 CTRL/Y EM 185 9 217 y 249 y

154 CTRL/Z SUB 186 218 Z 250 z

155 CTRL/[ESC 187 ; 219 [251 {

156 CTRL/\ FS 188 < 220 \ 252

157 CTRL/) GS 189 = 221] 253 } AL TMODE

158 CTRl/" RS 190 > 222 254 - PREF IX

159 CTRLI US 191 1· 223 255 Xi DELETE

UWF-74

FOUT(141) will output a RETURN/LINEFEED while FOUT(13) will just do a RETURN. Codes

225 through 255 are lower case letters, some of which serve other functions on "key

boards without lower case. Many keyboards use ISHIFT/K' for '[I, 'SHIFT/L' for '\'

and 'SHIFT/M' for ']' and corresponding combinations for the control codes follow

ing 'CTRL/Z'. These symbols are often not printed on the key tops. Codes 0-127 are

the same as codes 128-255 except for the parity bit. UWF always forces the parity

bit during input.

?

?01.50

?01.93

?03.10

?03.30

?03.47

?04.35

?06.03

?06.41

?07.44

?07.67

?07.76

?08.10

?10.50

118.32

119.72

121.57

122.65

125.02

127.90

131.<7

+ or

ERROR CODES FOR UWF (V4E) OCTOBER 1978

Keyboard interrupt (CTRL/F) or restart from location 10200

Group number greater than 31

Non-existant line number in a MODIFY or MOVE command

Non-existant line called by GOTO, IF, NEXT, BREAK or QUIT

Illegal command

Non-existent line or group: DO, ON, JUMP, LINK or PDf call

Missing or iLlegaL terminator in a FOR command

IllegaL use of a function or number: ASK, YNCR or ZERO

Too many variabLes (ZERO unnecessary ones to recover space)

Operator missing or illegaL use of an equal sign

Variable name begins with 'F' or improper function call

Double operators or an unknown function

Parentheses don't match

Program too large (sorry, you'll have to erase some of it)

FCOM index out of range

Logarithm of zero

Square root of a negative number

More than 10 digits in a number

Stack overflow: reduce nested subroutines and expressions

Zero divisor

Non-existant program area called by LOOK or LINK

End of input sensed, 1/0 switched back to the terminal

UWF-75

A P P'E N D I X I I

Here is a list of patches for adding a number of special features to UWF. They

are shown in the format: FLLLLI CCCC PPPP; QQQQ where 'FLLLL' is the Field + Mem

ory location, 'CCCC' is the original contents, and 'pppp' is the patch. In cases

where several succ~ssive locations are to be changed, a semicolon is shown, fol

lowed by the next patch IQQQQ'. Note that the 'FCOM' patch shown below is for 16K

versions only and must be added -before- UWF ;s started the first time.

FIELD 0

000451 4463 4442 Replace extra variable storage with FCOM (16K only - see page 3)

000611 7610 6213 Print a CR/LF before printing an error message

FIELD 1

104021 4547 0000 Eliminate the line number printout in MODIFY

112161 7000 4533 Make the ASK command print a ':1 each time

112411 1377 7040 Use the '#' operator to output a Form Feed

124711 1000 1177; 4533 Change 'rubout' for video terminals

130701 7106 7107 Increase the delay after a Carriage Return

131341 7000 6xxx Clear an unwanted interrupt (next 3 locations too)

156651 1103 1213 Make TYPE print an '=' ahead of each value

156661 4534 7200 Remove the initial space (or ':') printed by TYPE

145031 62X1 62Y1 Change the data field used by FCOM ('X,Y' may be 2-7)

145451 62X1 62Y1 Ditto for the FBUF function ('X' is set at startup)

100331 4566 5200 Remove the FLOG, FEXP and FATN functions to increase the

123711 5020 1754; 1754; 1754 size of the symbol table in the 8K version.

100331 5200 5303 Remove FSIN and FCOS to increase the symb9l table size a

123671 5205 1754; 1754 little .bit more (8K only).

UWF-76

NOT E S

(e) 1978 by LAB DATA SYSTEMS

Seattle, Wdshington 9b'~5

All rights reserved (JvZ)

UWF-77

?

?01.50

?01.93

?03.10

?03.30

?03.47

?04.35

?06.03

?06.41

?07.44

107.67

107.76

?08.10

?10.50

?18.32

?19.72

?21.57

?22.65

?25.02

?27.90

?31.<7

-Eo- or

ERROR CODES FOR UWF (V4E) OCTOBER 1978

Keyboard interrupt (CTRL/F) or restart from location 10200

Group number greater than ~1

Non-ex;stant line number in a MODIFY or MOVE command

Non-existant line called by GOTO, IF, NEXT, BREAK or QUIT

Illegal command

Non-existent line or group: DO, ON, JU~P, LINK or PDF call

Missing or illegal terminator in a FOR command

Illegal use of a function or number: ASK, YNCR, or ZERO

Too many variables (ZERO unnecessary ones to recover space)

Operat~r missing or illegal use of an equal sign

Variable name begins with 'F' or improper function call

Double operators or an unknown function

Parentheses don't match

Program too large (sorry, you'll have to erase some of it)

FCOM index out of range

Logarithm of zero

Square root of a negative number

More than 10 digits in a number

Stack overflow: reduce nested subroutines and expressions

Zero divisor

Non-existant program area catled by LOOK o~ LINK

End of input sensed, 1/0 switched back to the terminal

F PAL

FPAL allows the user to code short 'machine language' functions directly into

his program. This provides 'keyboard control' of special devices which are not
supported by any of the normal functions or commands, and also permits operations
requiring only 12-bit arithmetic to proceed at full machine speed. Routines as long

as 32(10) instructions"can (in theory) be incorpot~ated) but in pl~ac1..ice, FPAL rou:"

tines are seldom longer than about 5-10 instructions - just enough to execute a
short sequence of lOTs to pulse a control line, for instance.

The form oft he fun c t ion ca 11 is: F PA L (A C) ins t , i n 5 t , ins t ••• ») v;h e r' e • A C' i san

arithmetic expression, the value of which will be placed in the AC prior to calling

the routine, and the remaining arguments are construed as a list of -octal- numbers

which represent the desired machine instructions. These are stored in Field) such

that the first instruction is at 'page+l', the second at 'page+21, etc. After the

1 ast i nst ruct. i on has been tucked altJay, FPAL loads the AC wi th the i ntegf:f part of

the first argument, clears the Link, and calls the routine. The final value of the

AC is then returned to the program as the value of the functionc Note that the user
does not have to worry about any of the 'calling' instructions - he only has to

write the essential machine code~

Here are a few examples which may help clarify how the FPAL function works and
illustrate some of the things it can do:

Ex. 1 : U~~F ha s an I Fr~Q' funct i on for load i ng a number into the HQ reg i ster

(where it is preserved by all internal arithmetic operations), but no corresponding

function for finding out "~at is already there. The following FPAL function will
not only do this, but will also increment the value in the MQ at the same time:

TYPE MQ=FPAL(,7501,7001,7521)

Note that the first argument has been omitted in this example, since no information

is being passed -to- the function. The first instruction (7501=MQA) reads the MQ,

the next (7001=IAC) increments this value and the third (7521=SWP) interchanges the

new and old values, saving the new value for a subsequent call, and returning the .
old value to the program. Machines based on the 6100 microprocessor may not be able
to display the MQ while UWF is running. Using this function however» the value of
the hardware register can be saved in the variable IMQ', and output by the 'TYPE'
command as well. So being able to actually 'see' this register is not a necessity.

Ex. 2: Several variations of this routine come to mind almost immediately. For
instance, we could use the hardware 'SWpl instruction to interchange two values:

SET MQ=FPAL(AC,7521)

or we could take advantage of the 'MQA' instruction to perform an 'inclusive OR'

between a value in the MQ and one in the AC: SET FMQ(A),AB=FPAL(B,7501).

Ex. 3: As a final example, suppose that we have constructed an AID converter
interface which uses the same instruction set as the AD8-EA. In order to test it
out we can use the following FPAL routine to implement the IFAOC' function:

SET CH(N)=FPAL(N,6531,6532,6534,5203,6533)

The channel number ('N') will be p1aced in the AC at the beginning and can be used
to control the multiplexer via a 16031' (=ADLM) instruction. The converter is then
started (6532=ADST) and we begin testing the 'done' flag (6534=ADSD) to see when it
is finished. This involves a 'JMP .-1' instruction which mean~ that the location of
the 'ADS0 1 instruction (relative to a page boundary) must be known. Since FPAL rou
tines always start at 'page+l', (location 'page+O r can be used as a 'temporary'), a
jump to the -third- instruction becomes '5203'. When the conversion is finally done
the result is read into the AC (6533=ADRO), and returned to the program.

It goes almost without saying, that such easy access to machine-level code is
both powerful - and - dangerous! No error checking can be performed, so a single
'typo' can lead to instant disaster! Always be sure, therefore~ to save a copy of a
valuable program -before- you tryout any sort of 'wild' FPAL function, and be
especially careful with ISZs, DCAs, JMPs and JMSs since they can modify memory or
send the program off 'into the wild blue yonder'.

Similarly, give special consideration to any lOT which might cause a hardware
interrupt since UWF runs with the interrupt system enabled! Most interfaces have an
'interrupt disable' instruction, but if it is necessary to use an '10F t in order to
protect UWF from a spurious interrupt, be sure to clear the fiag and then issue an
lION' before exiting from the function - otherwise it may be necessary to restart
the interpreter in order to activate the interrupt system again (see page 2).

ADVANCED CONSIDERATIONS

While it is clearly possible to use FPAL to implement patches to UWF itself,
this practice is -strongly- discouraged (and no help with such folly will be
offered) since this makes programs 'version dependent'. On the other hand~ there
-are- a few 'tricks' which could prove usefu1 at various times:

1) The value of the first parameter is actually·converted into a 24-bit inte

ger, of which only the lower 12-bits are loaded into the AC at the beginning of the
routine. This means that the values '4095 1 and 1_1' will both load '77771(8) into

the AC. The high-order part of the number can be accessed with a 'TAD 45 1 (1045)
instruction, while the low-order half can always be recalled ~th a 'TAD 46' (I046)

if it is needed later on in the function.

2) The value of the AC is normally returned as a signed number; if it is more

desirable to have an 'unsigned' result you C2n simply code an 'lSI .+1' instruction
as the last step of the routine. Thus: 'TYPE FPAL(4095) , will return I-I', whereas

'TYPE FPAL(4095,2202}' will return '4095'. The '2202' instruction is 'ISZ .+1' when
located at 'page+ll.

Notice that numbers appearing in the -first- argument of an FPAL call are
treated as 'decimal' values and can be replaced by variables and/or other func
tions. The remaining arguments, however, are processed as character strings and so
cannot be replaced by arithmetic expressions.

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81

