
Image Processing, Video Terminals, and Printer Techuologies

Digital Technical Journal
Digital Equipment Corporation

Volume 3 Number 4

Fall 1991

Cover Design
High-performance screen display of bitonal images is one

of the topics in this issue. The handwriting and manually

produced technical drawings on our cover are types of images

that can be scanned, st01·ed electronically, ana then displayed

on an X terminal screen; portions of an image can be enlarged

or rotated on screen.

The cover was designed try Sandra Calef of Calef Associates.

Editorial
Jane C. Blake, Editor
Helen L. Patterson, Associate Editor
Kathleen M. Stetson, Associate Editor
Leon Descoteaux, Associate Editor

Circulation
Catherine M. Phillips, Administrator
Sherry L. Gonzalez

Production
Mildred R. Rosenzweig, Production Editor
Margaret L. Burdine, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Robert M. Glorioso
Richard]. Hollingsworth
John W McCredie
Alan G. Nemeth
Mahendra R. Patel
F Grant Saviers
Victor A. Vyssotsky
Gayn B. Winters

The Digital Technical journal is pub I ished quarterly by Digital
Equipment Corporation, 146 Main Street ML01-3/B68, Maynard,
Massachusetts 01754-2571. Subscriptions to the journal are $40.00

for four issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering
and computer science fields receive complimentary subscriptions
upon request. Orders, inquiries, and address changes should be
sent to the Digital Technical journal at the published-by address.
Inquiries can also be sent electronically to DTJ@CRLDECCOM.
Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 1 Burlington
Woods Drive, Burlington, MA 01 803-4539.

Digital employees may send subscription orders on the ENET to
RDVAX::)OURNAL or by interoffice mail to mailstop MLOI-3/B68.

Orders should include badge number, site location code, and
address. All employees must advise of changes of address.

Comments on the content of any paper are welcomed and may
be sent to the editor at the published-by or network address.

Copyright© 1991 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in educational institutions by faculty members and are not
distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted.
All rights reserved.

T he information in the journal is subject to change without
notice and should nor be construed as a commitment by Digital
Equipment Corporation. Digital Equipmem Corporation assumes
no responsibility for any errors that may appear in the journal.

lSSN 0898-901X

Documentation Number EY-H889E-DP

The following are trademarks of Digital Equipment Corporation:
ALL-IN-1, DECimage, DECnet, DECprint, DECserver, DECstarion,
DECwindows, Digital, the Digital logo, LAT, LN03, MicroVAX,
PrintServer, Q-bus, ReGIS, rtVAX, ULTRIX, VA,'\, VAXELN,
VAXstation, VMS, VT1000, VTI200, VT1300, and VXT 2000.

Apple DeskTop Bus is a trademark and LocalTal k is a registered
trademark of Apple Com purer, Inc.

Motorola and 68000 are registered trademarks of Motorola, Inc.

Open Software Foundation is a trademark and OSF and OSF/1 are
registered trademarks of Open Software Foundation, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

Texas Instruments is a trademark of Texas Instruments, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X W indow System is a trademar.k of the Massachusetts Institute
of Technology.

Book production was done by Digital's Database Publishing Group
in Northboro, MA.

I Contents

7 Foreword
Larry Cabrinety

Image Processing, Video Terminals, and Printer Technologies

9 Hardware Accelerators for Bitonal Imag e Processing
Christopher). Payson, Christopher]. C ianciolo,
Robert N. Crouse, and Catherine F. Winsor

26 X Window Terminals
Bjorn Engberg and Thomas Porcher

36 ACCESS. bus, an Open Desktop Bus
Peter A. Sichel

43 Design of the DECprint Comm on Printer Supervisor
for VMS Systems
Richard Landau and Alan Guenther

55 T he Comm on Printer Access Protocol
James D. Jones, A jay P Kachrani, and Thomas E. Powers

61 Design of the Turbo PrintServer 20 Controller
Guido Simone, Jeffrey A. Metzger, and Gary Vaillette

1

I Editor's Introduction

jane C. Blake

Editor

Products designed for quali ty, high-performance

presentation of data in both video and hard-copy
form are the topics of p apers in this issue of the

Digital Technical journal. The design cha l lenges
range from managing the h uge storage require
ments of images for display on X terminals to ensur
ing h igh-performance in a feature-rich printer
environment.

Image processing is the subject of the opening
paper by Chris Payson, Chris C ianciolo, Bob Crouse,
and Cathy Winsor. The authors note that one advan
tage of scanning images for screen disp l ay is t he

input time saved; however, the scanned i mages

and data can consume significant amounts of stor
age space. They then review the development of an

image accelerator board that not only helps solve
the problem of storage but also addresses t he need
for high-performance display-view and manipu la
tion-of bitonal i mages. In addition to specifics of

the board implementation, the authors offer an
overview of imaging concepts, terms, and future

directions for image accelerators.
T he terminal on which the image accelerator

board resides is D ECimage 1200, an X terminal.
X terminals development in general , incl uding a
discussion of the VT1200, is the sub ject of a paper
by Bjorn Engberg and Tom Porcher. Bjorn and Tom
focus their d iscussion on a comparison of the
X terminal and X workstation environments, and
explain why X terminals are a low-cost alternative .
The authors present the design choices debated by

the engineers during the development of Digital 's
X terminals , including the selection of a hardware

plat form, terminal and window management,
X server, com munications protocols, and font fi le
systems.

Video terminal and workstation users need the
assistance of a n umber of 1/0 devices, such as key-

2

boards, mice, and t ablets, a l l of which may not be
made by the same company. A new open desktop
bus, described by Peter Sichel, is a simple means to
connect as many as 14 low-speed devices to a desk

top system. In his paper, Peter presents the project
background, reviews the I 'C technology on which
the bus is based, and describes the protocol and the

configuration process.
Hard-copy presentation of data and recent devel

opments in printer tec hnologies are the topics of the
next three papers. Rick Landau and Alan Guenther

review t he DECprint Printing Services, which is
software that controls numerous printer features
for a wide range of printers. Also cal led a common

print symbiont, this component of t he VMS print

ing system supports several p age description lan
guages, hand les m ultiple media simul taneously,

and uses different I /0 interconnections and com

nmnication protocols.
Both DECp rint Printing Services and the subject

of the next paper, the common printer access pro
tocol, are part of the DECprint architecture. The
CPAP provides the fundamental services necessary
for the presentation of data at the printer. Jim
Jones, Ajay Kachrani, and Tom Powers describe the
challenge s of developing a protocol that operates
in a heterogeneous, internetworking environment

and that also ensures backward compatibi l ity with
older pro d ucts. Their success in developing a high
performance protocol is evidenced by OSF accep
tance of CPAP for inclusion in a future release of
OSF/ 1 .

A s was the case with the CPAP, performance
was also key in the development of the t urbo

PrintServer 20 controller. Guido Simone , Jeff Metzger,
and Gary Vai l lette explain that the req uirements of
complex docu ments demanded turbo controller
performance that was five to eight times that of the
c urrent control ler. To a i el t hem in making design
decisions, a performance analysis tool, RETrACE,
was created and is described here . Authors also
relate how they used existing chips in order to keep
development costs low and sti l l del iver a high
performance control ler.

The editors thank Liz Griego-Powel l of the Video,
Image and Print Systems Gro up for her help i n

preparing this issue.

Biographies

Christopher J. Cianciolo As a hardware design engineer in the Video, Image

and Print Systems Gro up , Chris C i anciolo is currently working on the design

for the group's l atest imaging product. Chris jo ined D igital in 1985 after par

ticipating in a co-op session in the Power Supply Engineering Gro up. He also

participated in co-op sessions for Charles Stark Draper Laboratory, Inc. on a

fiber-optic m issile guidance system project. He received his B.S.E.E. from

Northeastern University in 1988 and is c urrently pursui ng an M.S.E.E. , also from

Northeastern.

Robert N. Crouse Senior engineer Bob Crouse is a member of the Video ,

Image and Print Systems Group. He is currently working on the advanced devel

opment of new imaging technology for X window terminals. Bob was project

engineer for the development of a bitonal imaging accelerator for a low-end

VAXstation workstation. As a member of the Electronic Storage Development

Group , he designed a double-bit error detection and correct ion circuit for a VAX

mainframe. Bob received his B.S.E.E. from Northeastern University and holds one

patent.

Bjorn Engberg As a principal software engineer in the Video, Image and Print

Systems Group, Bj orn Engberg was the main architect and software project

leader for the VTIOOO and VT1200 X window terminals. He joined Digital in 1978

and worked as a development engineer a t CSS i n Sweden, where he modified

Digital 's terminals for the European m arket. He relocated to the United States

in 1982 to work on the VT240, the VT320, the LJ250, and several advanced devel

opment projects. Bj orn received an M.S.E.E. (honors) from the Royal Institu te of

Technology in Stockholm.

I

3

Biographies

4

A. Alan Guenther As a member of the technical st aff i n the DECprint System

Software Group, Al an Guenther is involved in the ongoing design and implemen·

t at ion of the DECprint common print symbiont. Prior to this, he was the prim ary

designer and implementor of the d istributed queuing services. Alan h as worked

at Digi t al since 1973, both as a fu l l -time employee and as an independent consul

t ant (from 1982 to 1990). After receiving a B.S. 01onors, 1970) from the University

of Mo man a, he worked at the university until he joined D igi tal .

James D. jones Jim Jones is a princip al engineer in the H ardcopy Systems

Engineering Group. He joined D igital in 1974 and was p ar t of a team developing

diagnostic programs for the DECsystem-10 and DECSYSTEM-20 systems. After run

ning his own software business for five years, Jim rejoined Digi tal to design

printer contro l lers and software. Most recently, he provided software for the

PrintServer products, authored the Common Printer Access Protocol speci fica

tion, and is helping to define the next generation of network printers. Jim is a

member of IEEE and ACM and p articipates i n the JETF.

Ajay P. Kachrani Princip al software engineer Ajay Kachrani cu rrently works

on the OSF/1 socket and XTI kernel interfaces and security project. Previously,

he led the development of the overal l PrintServer software version 4.0 with

dual network protocol support (DECnet and TCP/IP), from inception through

field test. Aj ay presented the CPAP protocol as an Internet st andard to the IETF

and added PrintServer support in version 1 .0 of the Pal l adium Print System at

MIT/Project Athena. Aj ay holds a B.S.E .E . (honors) from the University of Mysore,

Ind ia, and an M .S.C.S. from the University of Lowell .

Richard B. Landau Richard Landau is the DEC print program m an ager for the

Video, Image and Print Systems Group . Working to i mprove the interaction of

printing software and hardware, he init iated the DECprint, Font, and PostScrip t

programs. Prior to this, Rick w as the program and development m an ager for the

VAX DBMS, DATATRlEVE, COD, and Rdb/VMS products and for the rel ational

d at abase architecture. Before joining Digit al in 1974, Rick was an independent

consu ltant and was also employed by Appl ied D ata Research, Inc. He holds A.B .

(cum l aude, 1969) and M.A. (1973) degrees in statistics from Princeton University .

Jeffrey A. Metzger Presently a senior engineer, Jeff came to Digi t al as a co-op

student in 1983, working first in the Semiconductor Engineering Group and then

in H ardcopy Engineering. He bec ame a fu ll-time employee after gradu ating from

Cornel l University in 1985. He introduced H ardcopy to system-level logic simu

lation, contributed to the hardware, software, and firmware development of the

PrintServer 20, an d developed RETrACE, which is used to ch aracterize the exe

cution behav ior of PrintServer systems. Jeff is currently working in the Entry

Systems Business Group on a next-generation processor product.

Christopher J. Payson Chris Payson joined D igital as a hardware design

engineer in 1989 after five co-op terms. He is currently working on XIE software

and image hardware accelerators. Chris previously worked on performance

testing, d iagnostics, logic design, and demonstration software, all associatt:d

with imaging. He is coapplicant for a patent related to an image cl ipping algo

r ithm and hardware logic. Chris received a B.S.C.E . from Rochester Institu te of

Technology with highest honors and is currently pursuing an M.S.C.E. from

Northeastern University.

Thomas C. Porcher Principal engineer Tom Porcher is a member of the

Video, Image and Print Systems Group. He provided technical leadership in the

development of the VXT 2000 X terminal . Previously he was a technical leader

for the VT240 terminal, VAX Session Support Uti l ity, and the DEctt:rm terminal

emulator. Tom holds five patents for work on the VT240 terminal and on the multi

session protocol used in the VT340 and VT400 series terminals. Tom received his

B.S. in mathematics from Stevens Institute of Technology (1975). Ht: is a member

of the ACM.

Thomas E. Powers As a consultant engineer in the Hardcopy Engineering

Firmware/Software Group, Tom Powers is a vendor l iaison for desktop

PostScript printer products. He chairs the DECprint PAP Architecture Team

and was a contributor to the PrintServer 40 internal hardware/firmware archi

tecture. Tom represented Digital on American and international standards com

mittees on computer graphics from 1979 to 1989. He led several firmware teams

and is coinventor of the ReGIS Graphics Protocol. Tom has a B.S. E. E . from Tufts

University and an M .S.E.C.E . from the University of Massachusetts at Amherst.

Peter A. Sichel As a principal software engineer in the Video Terminals Archi

tecture Group, Peter Sichel led the development of the ACCESS. bus architecture

and device protocol specifications, in addition to writing the init ial ACCESS. bus

device firmware. He worked on the VT420 video terminal and the DECterm

DECwindows terminal emulator, and helps maintain Digital standards for video

terminals and keyboards. Peter joined Digital in 1981 after receiving B.S. and M .S.

degrees in computer engineering from the University of Michigan.

Guido R. Simone Guido Simone is a principal engineer in the Print Systems

Engineering Group and was the project leader and architect for the turbo

PrintServer 20 controller. He is currently working on the development of a

new print system architecture to be used with advanced printing technologies.

In previous work, Guido was the project leader and architect for an rtVAX

78R32 CPU chip-based laser printer controller. Before joining Digital in 1980, he

received a B.S. in electrical engineering from Rensselaer Polytechn ic Institute.

I

5

Biographies

6

Gary P. Vail lette Senior hardware engineer Gary Vai l lette has heen involved

in the design and implementation of printing system hardware since joining

Digi tal in 1983. His current work includes performance characterization of

PostScript printers and PrintServer products, and hardware implementation of

cern decompress ion in the turbo PrintScrver 20 product . Previously, Gary

worked at Data General Corporation and helped to develop their token bus

network product. He holds an A.A.E.E (1974) from Quinsigamond Com munity

College and expects to receive a B.S.C.S. (May 1992) from Boston Universi ty.

Catherine F. Winsor As a senior engineer in the Video, Image and Print Sys

tems Group, Cathy Winsor has worked on image accelerators. As the project

leader for the DEC:image 1200 hardware and the image util i ty l ibrary software,

Cathy was involved in the planning and development of an image-capable

VT1200. She is current ly leading the project to support imaging on the next

generation of Digital's X terminals. The project inclucles an image accelerator

board and XIE software. Cathy received an A.B. in engineering sciences from

Dartmouth Col lege and a B.S. E. E. from the Thayer School of Engineering.

I Foreword

Larry Cabrinety

Vice President,

Video, Image and Print

Systems Group

For the mi l l ions of people worldwide who use
Digital's computer equipment, the computer is not

the sophisticated system in the back room, or the
complex network. It is the equ ipment they use
each day-the terminal or monitor, keyboard and
mouse, desktop printer or network printer system.

Today's users demand products with h igh levels

of usabil ity and superior ergonomic features.
D igital's products set worldwide standards for the
user interface to computer systems. In the 90s our
focus is to offer products that operate in m ulti

vendor environments with the goal of delivering a
complete computing solution. In this issue you wil l
read about some of the Video, Image and Print Sys
tems (VIPS) Group's products and technologies that
support network computing and standards-based

environments.
D igital entered the video terminal market in 1975

with the VT52 for i ts time-sharing users. Its replace
ment, the VT100, embodied two important princi
ples-the use of standards in data communications
interchange and the protection of customer invest
ments through backward compatibi l ity of new gen
erations of products. The VT220, introduced in
1983, and the cost-effective VT320 terminals saw
the addition of functional i ty and ergonomic fea
tures which establ ished D igi tal as a leader i n the
commodities market.

In March 1990, Digital entered the X terminal
market with the introduction of the VTlOOO, fol

lowed by the VT1200 and VT1300 terminals later
that year. The emergence of MIT's X Window
Systems as the accepted industry standard for
windowing systems provided a standards-based
environment for distri buted applica tions display

processing. The X terminal user can now benefit
from the graphical user interface, sophisticated
appl ications, and standards of performance previ
ously available only on workstations. X terminals
run X l l server code which is operating system
independent and ideal ly suited for heterogeneous,
network-based computing environments. In this

issue you wil l read about the engineering decisions

made as the X terminals were developed.
There is a growing need in the industry to have

imaging applications run alongside conventional
text and graphics appl ications. Technical docu
mentation is an example of this. Imaging appl ica
tions, however, have special requirements to achieve
acceptable end-user performance. Although the X l l
software can handle images a s bit-map data, soft
ware and hardware assistance is required to achieve
acceptable performance. Digital has designed
DECimage hardware accelerators for rapid process
ing of image data. This technology is included in
the DECimage 1200 and will be incorporated in
fol lowing generations of X terminals. To make this
possible, Digital developed extensions to the

X server software that support the high-speed
transport and display of image data. To assure open
standards, the extensions have been proposed to
M IT for incorporation into releases of the X l l

server software.
In November 1990, Digital announced its next

generation of X terminals. The VXT2000 terminal

provides virtual memory and supports both a tra
ditional host-based model with software down
loaded to the terminals as well as the server style of
X terminal computing.

The VXT2000 terminal was designed to support

TCP/IP and LAT protocols, and further demonstrates
our comm itment to openness and support for cus
tomers' mult ivendor environments. This same phi
losophy is seen in our printer products and our open
desktop bus.

Digi tal pioneered the distri buted printing busi
ness with networked laser printers. This prod
uct area began when we combined two concepts

which had not been combined before-mid-range
laser printers and networks. I n the mid-1980s most
large-scale computing was done on mainframe
computers with large printers attached directly
to these systems. Typically these dedicated print

ers were only accessible to users on that particular

system. Digital 's distributed computing provided
an alternative to the mainframe. By combining the
power of multiple systems in c lusters or on net
works, a new distribu ted large system was created.

7

Foreword

A printing solution was needed to effectively work
in th is new d istributed computing environment.

The Print Server serie s add n:ssed this n eed.
PrintServer products enabled printing resources

to be directly connected to networks for the first

time, and since they were on the network and not
tied to any one system, they were acce ssible hy a l l

systems on those networks. They enabled the com·
plex printer fu nctiona l i ty previously found only in
dedicated mainframe printers to be d istributed
throughout end-user environments.

As these mid-range printers migrated out of the
computer room and into the office, new demands
for funct iona l ity were created. Large groups of users

brought many d ifferent requirement s for printing,

and our goal was to sat isfy as many as possible in a
single PrintServer. For example , some people need
"A" size paper for office c orrespondence, while
others may n eed "B" size paper for CAD/CAl\1 or
accoun ting work, and sti l l others need transparen
cies for presentat ion s. The PrintServer is flexible
enough to have a l l of these d ifferent types of

media available and offer both simplex and duplex
printing.

In 1985 when Digital was first developing the
PrintServer, there was no industry standard way
of describing the conten ts of a page to a print er.
Each major vendor had i ts proprietary language,
and none offered the compatibil ity necessary to

achieve our print system vision. Our goal was to
create a fam ily of products, from large to small ,
that offered compat ibi l i ty for al l app l ications. To
achieve this goal we had to select a protocol
that would enable us to print any file on any
printer. At that time Adobe Systems, the developer
of PostScript, was a smal l start-up company in
Si l icon Val ley. PostScript was not a standard, and in
fact, only a single PostScript laser printer model
had been shipped, the original Apple LaserWriter.
Our technical community fe lt PostScript was the
best solution to our net:ds, and at that point Digi tal
committed to adopting PostScript as our strategic

page description language. PostScript printers and

PostScript application support are now pervasive
throughout the industry and standard printing
protocols enable interactive com mun ication with
hosts on the network.

Signi ficant advances have taken place in the
PrintServer series over the past seven years. An

entire :VlicroVAX II system was housed wi thin the

8

original PrintServer 40, a long with cu stom hard·
ware acceleration hoards developed by the liard

copy Group to enable printing a t 40 pa gt:s per
minute. In this issue you wi l l read about th<.: single·
board control ler that replace s the MicroVAX 11 and
offers far more processing power. Using the latest
system-on-a-chip technology, our new turbo board
provides leadership performance for our printers.
The CCITI image decompression chip enables us to
provide fu l l-speed image printing to our customers
as the image market develops.

The first PrintServer systems supported printing
from VMS hosts ovt:r DECnet networks. Since then
the breadth of platform support has increased to

include first ULTRJX system s and then UNIX operat·

ing systems. A software kit for Sun systems wil l be
available soon. In expanding PrintServer connectiv·
i ty to include UNIX systems and TCP/11' network s,
we again faced the problem that no network print·
ing protocol existed for TCP/IP. With the h elp of
Digita l 's experts at the We stern Re search Labora·
tory, we were able to devdop a solution. In this
issue, we discuss the creation of a network printer
access protocol for TCP/ IP. Today this network pro
tocol is a proposed standard at the Internet Engi·

neering Task Force, the body control l ing the TCP/IP
protocol.

The development of the ACCESS. bus product has
brought an easy, standard way to l ink a desktop
computer to many interactive user interfaces. This

open desktop bus is currently implemented on the
Personal DECstation 5000 workstation, and imple·
mentations on future RISC workstations and video
terminals is u nderway. Developers of Digita l's prod·
u cts wi l l continue to place a h igh priority on open
standards. The papers included in this issu t: of the
Digital Technical journal will providt: insight into
the key areas of technology ust:d in the design and
development of VJPS product s.

Christopher]. Payson
Christopher]. Cianciolo

Robert N. Crouse
Catherine E Winsor

Hardware Accelerators for
Bitonal Image Processing

Electronic imaging systems transfer views of real-world scenes or objects into

digital bits for storage, manipulation, and viewing. In the area of bitonal images,

a large market exists in document management, which consists of scanning vol

umes of papers for storage and retrieval. However, high scan densities produce

huge volumes of data, requiring compression and decompression techniques to pre

serve system memory and improve system througbput. These tecbniques, as well as

general image processing algorithms, are compute-intensive and require high

memory bandwidth. To address tbe memory issues, and to acbieve interactive

image display petformance, Digital bas designed a series of bitonal image hard

ware accelerators. Tbe intent was to create interactive media view stations, with

imaging applications alongside other applications. In addition to achieuirzg mem

ory, performance, and versatility goals, the hardware accelerators have signifi

cantly improved final image legibility

Bitonal image technology, which can be viewed as

the electronic version of today's microfilm method ,

is experiencing a high rate of growth . However, the

electronic image data objects generated and manip

u lated in this technology are very l arge and require

intensive processing. In a generic system, these

requirements can resul t in poor image processing

performance or reduced appl ication performance.

To address these needs, Digital has designed a series

of imaging hardware accelerators for use in the doc

ument management market.
This paper provides a brief tutorial on electronic

imaging. It begins with a general description of the
imaging data type and compares this type to the

standard text and graphics data types. I t continues
with a discussion of specific issues in bitonal imag

ing, such as image data size, network transport
method, rendering speed , and end-user legibil ity.
The paper then focuses on D igital 's DECimage 1200
hardware accelerator for the VT1200 X window
terminal developed by the Video, Image and Print
Systems Group. I t concludes with future image

accelerator demands for the processing of multi

media applications and continuous-tone images.

Introduction to Imaging

Just as graphics technology blossomed in the 1980s,
electronic imaging and its associated technologies

Digital Technical journal Vol. 3 No. 4 Fa/11991

should come of age in the 1990s. Digital imaging

is a lready in use in many areas and new applica

tions are being created for both commercial and

scientific markets. The emergence of d igital images

as standard data types supported by the majority

of systems (like text and graphics of today) seems

assured . For a greater understanding of specific

imaging appl ications, this section presents general
imaging concepts and terms used throughout the

paper.

Concepts and Terms

In its simplest form, imaging is the d igital repre

sentation of real-world scenes or objects. Just as a

camera transfers a view of the real world onto a
chemical film, an electronic imaging system trans

fers the same view i nto d igital bits for storage,
manipulation, and v iewing. In this paper, the term

image refers to the digi tal bits and bytes that repre
sent the real-world view.

The process of digitizing the v iew may be done
through various methods, e.g., an image scanner

or image camera. A scanner is the conceptual

inverse of a normal printer. A printer accepts an

electronic stream of bits that describe how to

place the ink on the paper to create the desired
p icture. Conversely, optical sensors in the scanner

transform l ight intensity values reflected from a

9

Image Processing, Video Terminals, and Printer Technologies

sheet of paper and create a stream of electronic bits

to describe the p icture. Simi lar sensors in the focal

plane of a camera produce the other common digi

tization method, the electronic i mage camera.

The format of a digitized image has many param

eters. A p ixel is the common name for a group of

d igitized image bits that all correspond to the same

location in the image. This pixel contains informa

tion about the intensity and color of the image at

one location, in a format that can be interpreted

and transformed into a visible dot on a d isplay

device such as a printer or screen. The amount of

information in the pixel classifies the image into

one of three basic types.

• A bitonal image has only one bit in each pixel;

the bit is ei ther a one or a zero, representing one

of two possible colors (usually black and white).

• A gray-scale image has multiple bits in each pixel,

where each pixel represents an intensity value

between one color (al l zeros) and another color

(all ones). Since the two colors are usually black

and white, they produce a range of gray-scale

values to represent the image.

• A color image has multiple components per

p ixel , where each component is a group of

bits representing a value within a given range.

Each component of a color image corresponds

to a part of the color space in which i t is repre

sented. Color spaces may be thought of as dif

ferent ways of representing the analog, visible

range of colors in a d igitized, numeric form. The

most popular color spaces are television's YlN

format (one gray-scale and two color compo

nents) and the bit-mapped computer d isplay's

RGB format (red, green, and blue components).

The resolution of an image is simply the density
of pixels per unit distance; the most common den
sities are measured i n dots per inch (dpi), where
a pixel is cal led a dot. For example, a facsimile
machine (which is nothing more than a scanner,
printer, and phone modem in the same unit) typi

cally scans and prints at 100 dpi, although newer

models are capable of up to 400 dpi . As another

example, most workstation d isplay monitors are

capable of 75- to 100-dpi resolution, and some high

end monitors achieve up to 300-dpi resolution.

To d isplay an image at a density different from

its scanned density, without altering the image's
original size, requires the image to be scaled, so

that the new image density matches the output

10

media density. Scaling an image may be as simple as

repl icating and dropping pixels, or i t may involve

interpolat ion and other algorithms that take neigh

boring pixels into account. Generally, the more

complex scaling algorithms require more process

ing power but yield higher-quality images, where

qual i ty refers to how wel I the original scene is rep

resented in the resulting image.
Before an image can be displayed, i ts pixel values

often require conversion to account for the charac

teristics of the d isplay device. As a simple example,

a color image cannot retain its color when output

to a black-and-whi te video monitor or printer. I n

general, when a device can d isplay fewer colors
than an image contains, the i mage pixel values must

be quantized . Simple quantizing, or thresholding,

can be used to reduce the number of image colors

to the number of d isplay colors, but can result in

loss of image quali ty. Di thering is a more sophisti
cated method of quantizing, which produces the

il lusion of true gray scale or color. Although dither
ing need use no more colors than simple quantiz

i ng, it results in d isplayed i mages of much higher
qual i ty.

Image compression is a transformation process

used to reduce the amount of memory required to

store the information that represents the image.
Different compression methods are used for bi tonal

images than those used for gray-scale and color

images. These methods are standardized to specify
exactly how to compress and decompress each

type of image. For bitonal images, the most com

mon standards are the ones used in facsimile

machines, i .e . , Recommendations T.4 and T.6 of the

Comite Consultatif Internationale de Telegraphique

et Telephonique (CCJTT).1·2 Commonly known as
the Group 3 and Group 4 standards, the desig

nations are often shortened to G3-I D , G3-2D, and
G4-2D, referring to the particular standard group

aod to the coding method, which may be ei ther
one- or two-dimensional . For gray-scale and color
images, the joint Photographic Experts Group
OPEG) standard is now emerging as a joint effort of
the International Standards Organization (ISO) and

CCITI.0 Whichever format or process is used, com

pression is a compute-intensive task that involves

mathematically removing redundancy from the

pixel data.
A typical compression method creates an

encoded bit stream which cannot be d isplayed
directly; the compressed bits must be decom

pressed before anything recognizable may be

Vol. 3 No. 4 Fu/119')1 Digital Techuicaljournal

displayed. The term compression ratio represents
the size of the original image divided by the size of
the compressed form. For bi tonal images using

the CCITI standards, the ratio is commonly 20:1 on
normal paper documents, but can vary widely with

the actual content of the image. The CCITI stan
dards are also " lossless" methods, which means that

the decompressed image is guaranteed to be iden

tical to the original image (not one bit d ifferent).

In contrast, many " lossy" compression methods

al low the user to vary the compression ratio such

that a low ratio yields a nearly perfect image repro

duction and a high ratio yields a visible degradation

in image qual i ty. This trade-off between compres
sion and image qual i ty is very useful because of the

wide range of applications in imaging. An applica

tion need pay no more in memory space and band

width than necessary to meet image qual i ty

requirements.

A New Data Type and Its Features

The image data type is fundamentally different

from text and graphics. When a user views charac

ters or pictures on a display device, the source of

that view is usually not important. A sheet of text

from a printer may have come from either a text file

where the printer's own fonts were used, a graph

ics file where the characters were drawn with l ine
primitives, or an image file where the original text

document was scanned into the system. In any

case, the same letters and words present the user

with approx imately the same information; the dif
ferences are mostly in character qual ity and format.

In spite of their large storage space require

ments, images have several advantages over graph

ics or text. F irst, consider the process of getting
the information into the computer. With the imag
ing process, documents may be scanned automati

cally in a few seconds or less, compared to the time
required for someone to type the information cor
rectly (absolutely no errors) into a text file. Also,
even though the software exists to convert elec
tronic raster images into graphic primitive files, the
process loses detail from the original image and is
relatively slow. Next, consider the variety of infor
mation possible on a sheet of paper: a user can

not easily reproduce a diagram or a signature on a

document. A scanned image preserves not only the

characters, but their font, size, boldness, relative
position, any pictures on the page, and even

smudges or tears depending on the quality of the

image scan.

Digital Technical journal Vol. 3 No. 4 Fall 1991

Hardware Accelerators for Bitonal Image Processing

The major drawback in the imaging process is

increased data size, which results in storage mem

ory and network transport problems. High scan

densities and color information components create

large volumes of data for each image; a bitonal

image scanned at 300 dpi from an 8.5 -by-11-inch
sheet of paper requires over 1 megabyte of mem

ory in its original pixel form. Therefore, compres

sion and decompression are integral parts of any

imaging system. Even in compressed form, a bitonal

image of a text page requires about 50 kilobytes
of storage, whereas its American standard code

for information interchange (ASCII) text equivalent

requires only 4 to 5 kilobytes. Similarly, a graphics

file to describe a simple block d iagram is much

smal ler than its scanned image equivalent.

Based on these advantages and l imitations, sev

eral appl ications have emerged as perfect matches
for imaging technology. Bitonal images are used

in the expanding market of document manage

ment, which consists of scanning volumes of

papers into images. These images are stored and

indexed for later searching and viewing. Basically

an electronic file cabinet, this system resu lts in

large savings in physical cabinet space, extremely
fast document access, and the abi l i ty for multiple

users to access the same document simu ltaneously.

Gray-scale imaging is often used in medical appli

cations. Electronic versions of X rays can be sent

instantly to any special ist in the world for d iagno

sis, and the ordering of sequential computer-aided

testing (CAT)-scan images into a "volume" can pro

vide valuable three-dimensional views. The appli

cations for color imaging are relatively new and

still emerging, but some are already in use commer

cially, e .g . , l icense and conference registration pho

tographs. A further extension to stil l imaging is

digital video, which can be considered as a stream

of sti l l images. In conjunction with audio, d igital
video is commonly known as multimedia, appl ica

tions for which range from promotional presenta
tions to a manufacturing assembly process tutorial.

In this paper, we focus on the static bitonal imag
ing method of representing real-world data inside
computers. Static imaging is a simpler method of
representing a broader range of information than

the text and graphics media types, but i t carries

a greater requirement for processing power and

memory space. In addition, static imaging can be

viewed as one part of true multimedia, as can text,
graphics, audio, video, and any other media for
mats. Yet static imaging does not have the system

1 1

Image Processing, Video Terminals, and Printer Technologies

speed requirements of a motion v ideo and audio

system, which mu st present data at real-time rates.

As long as the user can tlcal with static i magcs at

an interactive rate, i . e . , being ablc to v iew the

images in the fo rmat of choice as fast as the user

can sdect them, then static imaging is a powerful

media presentation too l. The next section presents

the important issues concerning bitonal imaging in

a tlocumcnt managcment env ironment.

Bitonal Imaging Issues

As previously mentioned, b i tonal electronic imag

ing as an alternative to paper documcnts offers

many benehts, such as reducctl physical storage

space, instant and simu ltaneous access of scanned

images, and in general a more accessible media.

Serious issues need to be resolvetl before a produc

t ive imaging operation can be implemented. The

chief issues are the image data size, transport

method , perceivetl rendering speed, and final legi

bi l ity. In the fol lowing sections, we examine each

issue and present sol u tions.

Digitized Image Data Size

The most important issue concerns image data size.

I mages are typically documents, drawings, or p ic

tures that have been d igitized i nto a computer

readable form for storage antl retrieval. Depending

o n the dot densi ty of the scanner, a s ingle image

can be I to 30 megabytes or more in size. However,

storing a single image in i ts scanned form is not the

typical usage model . I nstead , a company may have

tens of thousands of scanned documents. Clearly,

with today's storage technologies, a company can

not afford to store such a large volume of images

in that format.

A typical ASCI I file represen ting the text on an

8.5 -by-1 1- inch sheet of paper requires approxi-

Table 1 Sa mple Bitonal I mage Sizes

Scan
Document Type Density
(Paper Size) (dpi)

A size 1 00
(8.5 X 11 i nch) 200

300

E si ze 1 00
(44 x 34 i nch) 200

300

mately 3 k ilobytes of memory. If the same sheet of

paper is digitized by scan ning at various dot den

sities, the result ing data tiles are huge, as shown

by the decom pressed bitonal im age sizes in Table ! .

Note t ha t Table 2 i ncludes the size of the scanned

image if scan ned in gray-scale and color modes,

alt hough using these modes would not make sense

on a black-and-whit�: sheet of paper. The image

sizes arc included for comparison and are d iscussed

in the section Future Image Accelerator Requi re

ments. The clara presented in Tables 1 and 2 i l lus

trates that the size of the original ASCII file is much

smal ler than any of the scanned versions. The data

also gives evidence that scanned images, in general,

require considerable memory.

Since the typical use for b i tonal images is for

volume document archival, an imaging application

must include a compression process to reduce mem

ory usage. This process must transform the original

scanned image file to a much smaller file without

losing the content of the original scanned data.

Compression algorithms may take d ifferent paths

to achieve the same result , but they share one basic

process, the removal of red undant i nformation to

reduce the object size. A common compression

rout ine searches the p ixel data for groupings, or

"run lengths," of black or white pixels. Each run

length is assigned a code sign ificantly shorter than

the ru n length i tself The codes are assigned by

sta tistics, where the most frequent run lengths

are assigned the shortest codes; statistics have been

amassed on a variety of document types for d iffer

ent scan densi ties and document sizes. A compres

sion process p arses through the origi nal im age

file, generat ing another tile that contains the codes

representing the origi nal image. Figure I , a sample

bitonal image co mpression, i l lustrates these com

pressed codes in a serial bi t stream.

Kilol'ytes of Data
Pixel Form Typical
(Decom pressed) Compressed

1 1 4 46

457 47
1 027 50

1 826 1 06
7305 1 1 4

1 6436 1 27

1 2 Vol. 3 No. 4 Fall 1991 Digital Technical journal

Table 2 Sample Gray-scale a n d Color
I mage Sizes

Document Type
and Size

1 28 x 1 28 pixel, 1 2 bits per pixel
gray-scale i m age

51 2 X 512 pixel, 8 bits per pixel
color i mage

51 2 x 51 2 pixel, 24 bits per pixel
color image

8.5 X 11 i nch, 100 dp i, 24 bits
per pixel, color i m age

Kilobytes of Data
in Pixel Form
(Decompressed)

24

256

768

2740

Several algorithms for bitonal compression are

widdy used today. As mentioned in the previous

section, the most common for bitonal images are

the CCllT standards G3-l D, G3-2D, and G4-2D, which

all use the approach just described. For the one
dimensional method, the algorithm creates run

lengths from all pixels on the same scan l ine. In the
two-dimensional methods, the algori thm some

times creates run lengths the same way, but the

previous scan l ine is a lso examined. Some codes

represent run lengths and even whole scan l ines

as " the same as the one in the previous scan l ine,
except offset by .v pixels," where N is a small inte

ger. The two-dimensional method takes advan

tage of most of the redundancy in an image and

returns the smallest compressed file. In addition to

preserving system memory, these compression

methods significantly improve network transport

performance.

IMAGE PI XELS

Hardware Accelerators for Bitonal Image Processing

Network Transport Constraints

The network transport performance for an image

is important, because images arc most often stored

on a remote system and v iewed on a widespread

group of d isplay stations. For example, one group in

an insurance company receives and scans claim

papers to create a central ized image database,

while users in another group acn:ss the documents

simultaneously to process claims. For the imaging

system to be productive. this image data needs

to be transported quickly from one group to the

other: telephone attendants answering calls must

have immediate access to the data.

Scanned image documents take a long time to

transport between systems, simply because they are

so large. When compression techniques are used , a
typical u ncompressed image stored in 1 megabyte

can be reduced to approximately 50 kilobytes.

Since transport time is proportional to the number
of packets that must be sent across the network,

reducing the data size to .:; percent of its original

size also reduces the transport time to 5 percent

of the original time. Therefore, you can now send

twenty compressed images in the same time previ

ously spent sending one uncompressed image.

Even with compression techniques, the image
files are stil l larger than their text file equivalents.

Moreover, most network protocols limit their

packet size to a maximum number of bytes, i .e . , an
image file larger than the maximum packet size

gets divided over multiple packets. If the protocol

requires an acknowledgmenr between packets, then

the transport of a large file over a busy network

becomes a lengthy operation.

t?t 1 r----1 _
o

�r-
AN LI

_
N E o F

__,...,.

'

U-
Ls

--,

600 WHITE 250 WHITE 845 WHITE �� �ACK

. . . 0 1 1 0 1 0000 1 0 1 000 00000 1 1 0 1 000 0 1 0 1 1 1 0 1 0 1 1 0 1 1 00000 1 1 0 1 000 0 1 1 0 1 00 1 00000 1 1 . .

COMPRESSED C O D E S I N A CONTINUOUS B I T STREAM

Figure I Bitonal Image Compression

Digital Techllical Jour11al VlJI. 3 No. 4 Fall 1991 1 3

I mage Processing, Video Terminals, and Printer Technologies

The platform for our most recent accelerator is

the VT1200 X window term inal, which uses the
local are a transport (I.AT) network protocol . We
soon realized that the X server packet size was
l imited to 16 kilobytes and the t yp ical A-size
compressed document was approximatel y 50 kilo

bytes. With this arrangement, each image transport
woul d have required four large data packets and
four acknowledgment p ackets. Working with the

X Window Terminal Base System Software Group,

we were able to rai se the packet size l imit to
64 ki lobytes. The b ase s ystem group also imple

mented a delayed acknowledgment scheme, which
eliminates the need for the c l ient to wait for an
acknowledgment packet before sending the next
data packet. Table 3 shows compressed image d at a
taken during the DECim age 1200 d evelopment
cycle. Notice that the network transport t imes

for Digi tal document interch ange format (DDIF)
decrease sharply after the p acket changes.

Perceived Rendering Speed
Because the image scanning and compression
operations occur only once, they are not as
perform ance-cri t ical as the decompression and
rendering for displ ay operations, which are done

many times. Decompression and rendering are p art
of the s ystem's disp lay response time, which is a
critical factor in a system designed for high-volume
appl ications that access thousands of images dai ly.
This time is measured from the inst ant the user
presses the ke y to s elect an im age to view, to the

moment the image is displayed completely on the
screen. The display response time is a fu nction of

the disk read time, network transport time, and dis
play st ation render time.

Although network transport time and disk file
read time have a direct effect on the response time,
accelerator developers rarel y have any control over

them. The disk acce ss time data from the DECimage
project anal ysis shown in Table 3 demonstrates that
the disk file read time is a significant portion of the

overal l response time. Thus, the display station
render time is the onl y are a of the disp lay response
time which can be clear l y intluenced and is, there
fore, the main focus of our image accelerators. The

local processing that must occur at the display sta
tion is not a trivial task; an im age must be decom
pressed, scaled, and clipped to fit the user's current
window size, and optional l y rotated.

The decompression procedure inverts the com
pression process; both are computational l y com

p lex . Input to the procedure is compressed data,
and output is the original scan l ine p ixel data,

which can be written to a disp l ay device. Scal ing
the data to fit the current window or fill a region

of interest is not trivi al either: a huge inpu t data

stre am must be processed (the decompressed, orig
inal file), and a moderate output data stream must
be created (the viewable image to be displ ayed).
While simple pixel repl icate and drop algorithms
m ay be used to scale the data, a more sophisticated
scaling algorithm h as been shown to great ly
enhance the output image qual i ty.

In addi tion to scal ing and cl ipping, the orthogo

nal rotation of image s (in 90-degree increments)
is a useful function on a display station. Some docu
ments may h ave words running in one direction
while pictures are oriented another way, or the user
m ay wish to view a portrait-mode image in l and

scape mode. In either case, orthogonal rotation
can help the user understand the inform ation; i .e . ,
the increased t ime to rotate the view is warranted.

When an image is scanned, p articu l arly with a
hand-held scanner, the p aper is never perfectl y
al igned. Thus, the image often requires a rotation of
I to 10 degrees to m ake the view appear straight
in the i m age file. However, mul tiple users want the

Table 3 DD I F I mage F i le Read Ti me and Fi le Tra nsport Perfo rma nce

Network Tra nsport Time
(mi l l iseconds)

Disk Read Time After Before

Image Size (mi l l iseconds) Packet Packet

(kilobytes) MicroVAX I I VAX 8800 VAX 6440 Change Change

1 9 1 223 480 281 325 960

41 1 534 655 332 61 4 1 792

99 2351 1 035 598 1 351 3928

1 57 3288 1 380 71 6 2283 6430

1 4 Vol. 3 No. 4 Fall 1991 Digital Teclmicaljourual

information from the document as quickly as pos
sible , and should not have to rotate the image by
a few degrees to make it perfectly straight on the
screen. Therefore, this m inimal rotation should
be done after the initial scanning process; i .e . ,
only once, prior to indexing the material into
the database, and not by every user in a distributed
environment. Because any form of rotation is
compute-intensive, allowing the user to perform
minimal rotations at a h igh-vol u me view station
would reduce the application's perceived ren

dering speed and add l i ttle value to the station 's
function.

Final Legibility
While the primary issue facing imaging applica
tions is data size, image viewing issues must also be

addressed. In short, an effective b i tonal imaging
display system must be responsive to overal l image
display performance and the resulting quality of
the image displayed. To enhance our products, we
optimized the display performance parameters as
best we could, given that some parameters are not

under our control . Improvements to monitor reso
lution and scanner densit ies continue to increase
the legibility of images. An affordable image system
should increase the image legibility by rendering
a bitonal image into a gray-scale image using stan
dard image processing techniques. We discuss the
method used in our accelerators, i.e . , an intel ligent

scale operation in the hardware pipel ine , in the
next section.

Hardware Accelerator Design

As explained in the previous section, transforming
documents into a stream of electronic bits is not
the demanding part of a bitonal imaging process

for document management. Also, scanners and
dedicated i mage data-entry stations abound in the
marketplace al ready. Instead, the challenge l ies in :
(1) managing the image data size to control
memory costs and reduce network slowdown;
(2) increasing the i mage rendering speed, i .e . ,
decompress the image , scale it , and clip i t to fit
the window size with optional rotation; and
(3) increasing the quality of the displayed images.
This section describes the way our strategy

i nfluenced the design of DECimage products. We
also discuss the chips used for decompression and
scaling, and how Digital's existing client-server pro
tocols support these imaging hardware accelerators.

Digital Technical]oun1al Vol. 3 No. 4 Fall 1991

Hardware Accelerators for Bitonal Image Processing

General Design Strategy
The number of applications using bitonal i mage
data continues to increase. In general, these appli

cations attempt to offer low cost while achieving
an interactive level of performance, defined as
no more than 1 second from point of request to

complete image display. Ultimately, software may

provide this functionality without hardware accel
eration, but today's software cannot. Moreover, the
parameters of image systems are not static; scan
densities, overal l image size, and the number of
images per database will a l l increase. These
increases will provide the most incentive for hard
ware assist at the low end of the X window ter
minals market, because software alone cannot
perform the amount of processing that users will
expect for their investment.

The User Model Although a single model cannot
suit every application, imaging is centered on cer
tain functions. Therefore, a user model built on
these functions wou ld be very useful in mapping
individual steps to the hardware: hardware versus
software performance, the function 's frequency of
use, and the cost of implementation.

The general user model for bitonal imaging sys
tems is relatively simple. A small market exists for
image entry stations, i n which documents are
scanned , ed i ted, and indexed into a database. While
a high throughput rate is important at these sta

tions, a general-purpose image accelerator is not
the solution-dedicated entry stations already
exist in the market. Instead, we designed a general
purpose platform, or versatile media view station,

to be used for imaging appl ications alongside other
applications. The user model for this larger market
is a set of operations for viewing and manipulating

images al ready entered into a database. The most
common operations in this model are decompres
sion, scal ing, clipping, orthogonal rotation, and
region-of-interest zooming.

Display Performance and Quality Optimization

The main thrust of the DECimage accelerator is to
achieve interactive performance for the operations
defined in the user model. A secondary goal is to
bring added value to the system by increasing the
qual ity of the displayed image compared to the

quality of the scanned image. A side effect of maxi

mizing performance in hardware is that the main
system processor has work off-loaded from it, free
ing it for other tasks.

1 5

Image Processing, Video Terminals, and Printer Technologies

The general design of the accelerator uses a

pipel ined approach. Since maximum performance

is desired and a large amount of data must be pro

cessed by the accelerator board, mu lt iple passes

through the board arc not feasible. Simi larly, the tar

geted low cost does not a llow a whole image bu ffer

on the board. With one exception (rota ti on), a l l

board processing shou ld b e dune i n one pipel i ne,

with the system processor simply feeding the input

end of the pipe and draining the output encl .

lkcause of the large amount of data to be read from

the board and displayed on the screen , the proces

sor should only have to move that data, not do any

further opera t ions on i t. lo this end, any logic

required to format the p ixels for the display bitmap

shou ld be included in the pipeline.

Cost Reduction through Less E\pensive System

Components The net cost of a bitonal imaging

system is i nfluenced by the capabi l i ty of the assist

hardware. The capabil ity of the hardware impl ies

Oexibil i ty in the choice of other system hardware.

In this regard, the most significant impact on cost

occurs in the memory and the display. A system that

makes use of fast decompression and scal ing hard

ware can quickly d isplay compressed im ages from

memory. This means either more images can be

maintai ned in the same memory, or the system can

operate with less memory than i t wou ld without

the assist hardware; less memory means lower cost.

A mon.: dramatic effect on system cost is in the

d isplay. Imaging systems general ly need higher

density displays than nonimaging systems, but the

cost of a 150-dpi display is approximately twice the

cost of a 100-dpi display of the same d imensio ns.

However, we found that we could i ncrease legi bi l

i ty, i .e . , expand a bitonal im age to a gray-scale repre

senta tion, by using an intel l igent sca le operat ion

in the hardware pipeline. For example, a bitonal

image rendered to a 100-dpi display using the i ntel

l igent scale process gives the perceived legibi l i ty

of the same image rendered to a 150-dpi di splay

with a simple sca l i ng method. That is, hy adding the

intel l igent scale, a 100-dp i d isplay can be used

where prev iously o nly a 150-dpi di splay wou ld be

adequate.

Cost Reduction through Integration Presently, as

in the DECimage 1200, hardware-assisted image

manipulation exists as a board-ll"vel option. Higher

levels of i ntegra tion with the base platform w i l l

provide lower overa l l cost for an imaging system.

1 6

The most straightforwa rd method o f integra tion is

to relocate the hardware from the present option

to the main system processor board; successive

steps of i ntegra tion wou ld consol idate m apped

hardware to fewer total devices. The most cost

effective i ntegra tion wil l be the inclusion of the

mapped hardware in the processor in a way simi lar

to a float ing-point u n i t (FI'l ") . Just as gra phics accel

eration is now being incl uded in system processor

design, images wi l l eventu a l ly achieve the status of

a requ ired data type and thus be supported in the

base system p rocessor.

Product Definition- What Does the User
Want?

The previously descri bed strategy was u sed in the

design of the image accell"rator board for the

DECimage 1200 system. The product requirements

cal led for a low-cost, high-performance document

i mage view station . These req ui rements evolved

from the belief that most users currently i nvesti

gating imaging systems are interested i n appl ica

t ions and hardware that wil l enable them to quickly

and simultaneously view document im ages and run

their existing non imaging appl ica tions. These users

are involved with com mercial and business appl i

cations, rather than scientific appl ica t ions. The

DECimage 1200 system was planned for the manage

ment of insurance claims processing, hosp i tal

pa tient medical records, bank records, a nd manu

facturing documents. As previously stated, the

imaging fu nctions required for these view-oriented

appl ications are high-speed decompression, scal

i ng, rotation, zooming, and clipping.

General Product Design
In defining the image capable system, the key

points in the product requirements l ist were

• High-performance image display

• Low cost

• Bitonal images only (not gray-scale or color)

• View-only functions

The need for high-performance display influ

enced the project team to design the hardware

accelerator board to handle im age decom press ion,

scali ng , a nd ro tation. Previous performance test

ing on a 3-VUP (VAX-1 1/780 u n i ts of p erformance)

CPU had yie·lded image software disp lay t imes from

5 to 19 seconds. These images were compressed

lk)f. 3 No. 4 rail 19'JI Digital Techt�ical journal

according to the cenT Group 4 standard (300 dpi,
8.5 -by-1 1 inches), and ranged from 20 to 100 kilo
bytes in size. In addition, the software display times

were highly dependent on the image data content.

The more complex image files, which had lower
compression ratios, took significantly longer to

decompress, scale, and display than the simpler

image files. For example, an A-size, 300-dpi, cenT

Group 4 compressed image with a compression

ratio of 10:1 took approximately 18 seconds to

d isplay, while another with a ratio of 33 :1 took
approximately 7 seconds.

The other three requi rements Jed to decisions

about the specific design of the image accelerator
board. The need for low cost meant designing an

option for an existing low-cost platform, which led

us to D igital 's VT1200 X window terminal. This
requirement also led to our support of the pro
posed X Image Extension (XIE) protocol.4 The XIE

protocol extends the X l l core protocol to enable
the transfer of compressed images across the wire

and to enable interactive image rendi tion and d is

play at the server. In the X windowing client-server
environment, image applications and compressed

image files exist on the client host machine, as

depicted in Figure 2. In addition, the XIE protocol

standardizes the interface-to-image functions in

the X windowing environment and enables the
development of a common appl ication that can be

used on any XIE-capable station. The client appl ica

tion issues commands to the X server display sub

system and the XIE special ized image subsystem.

When a user selects an i mage to view, the com

pressed image file is transported from the client

side storage device to the X server memory.

Because the proposed accelerator would han
d le only bitonal images, we could special ize our

board to decompress only the standard CCilT

X/X I E C L I E NT X/X I E
APPLICATION

X 1 1 AND XIE
SERVER

WIRE

I PROTOCOL

COMPRESSED
IMAGE STORAGE D ISPLAY IMAGE
• D ISK HARDWARE
• C D ROM

Figure 2 X Client-server Architecture

Digital Techllicaljournal Vol. 3 No. 4 Fall 1991

Hardware Accelerators for Bitonal Image Processing

Group 3 and Group 4 bitonal compression algo

rithms. This special ization al lowed the use of a

Digital application-specific integrated circuit (ASIC)

decompression chip. Finally, the view-only require

ment l imited the scope and complexity of the

design by eliminating the need for extra hardware

to handle the compression of images after they

have been scanned and edited .

Specific Product Design

The decisions described in the previous section led

to our design of an image accelerator board that

supports: CCI1T Group 3 and Group 4 image decom

pression using an ASIC decompression chip; integer

scaling using an ASIC scaling chip ; orthogonal rota

tion; and image d isplay. Figure 3 shows a general

block d iagram of the board and how it fits into

Digital 's VT1200 system architecture. The accelera

tor board is a ttached to the system address/data

bus, and its registers, data input port, and data

output port are m apped into the CPU 's 110 space.

The accelerator board is accessed by reading and

writ ing specific addresses l ike any other system
memory space . Note that the image accelerator

logic is separate from the video terminal logic.

Decompressed images are read from the image

board and writ ten to the base system video mem
ory for d isplay.

The main operation consists of the fol lowing

steps: compressed image data is read from system

memory and wri tten to the ASIC decompression

buffer by the processor; the data is then decom

pressed, scaled by the ASIC seal ing chip, packed

into words, and written to the output buffer.

Figure 4 shows a detailed block d iagram of the

image accelerator board logic. The scal ing chip out

puts p ixels of data (1 bit per p ixel in this case)

which are packed into words using shift registers.

As soon as a word of data is available, the scaling
chip output halts. Control signals generated in pro

grammable array logic (PAL) write the packed word
into the output buffer and tell the scal ing chip to

begin output ting pixels again. When the output
buffer is ful l , the processor reads the rendered
image data from the buffer. If rotation is requ ired,
the processor writes the data to the rotation

matrix; otherwise, the data is cl ipped and wri tten

to the bit map. The image driver software, after set

t ing up the board, al ternates between checking

whether the input buffer is empty and whether the
output buffer is fu l l .

17

Image Processing, Video Terminals, and Printer Tech nologies

c:J NETWORK SYSTEM IMAGE
INTERFACE MEMORY HARDWARE

t ! t !
< SYSTEM ADDRESS/DATA BUS > f ! !

OPTION DIAGNOSTIC V IDEO
f- DISPLAY MEMORY ROM MEMORY

F(!{ure 3 VT/200 System Architecture

The rotation circu it handles 90- and 270-degree

rota tion, whereas 180-clegree rotation is hand led
in the data packing shift registers by changing the
shift direction. The circu it rotates an 8-by-8-bit
block of data at a t ime. The first byte of eight con
secut ive scan l ines is wri t ten into eight individual
byte-wide registers. The most significant bit (MSB)
of each of these registers is connected to the byte
wide rotation output port latch. A processor read
of this port triggers a simultaneous shift in a l l of the
rotation data registers so that the next bit of each
register is now l atched at the rotation output port
for the next read. Figure 5 diagrams the rotation
circuitry just described.

lb achieve the best performance, we p ipel ined
the functional blocks in the hardware. The scal ing
engine docs not need to wai t for the entire image

IN PUT
BUFFER

!
DECOMPRESSOR
CHIP

!
-

SCAN L INE
RAM BUFFER

!
SCALING
CH IP r--

to be decompressed before it can begin scal ing;
insteacl, scal ing begins as soon as the first byte of
data is output from the decompressor. Thus dif
ferent pieces of the image fi le are being decom
pressed, scaled, and rotated simu ltaneously. The
hardware pipeline also eliminates the need to
store the ful ly uncompressed image (approximately
1 megabyte of data for A-size 300-dpi images) in

memory. The compressed image is written from
system memory to the accelerator board and a
decompressed, scaled, and clipped image is read
from the board . Because of the speed of the hard
ware, the software can redisplay an image with dif

ferent seal ing, cJ ipping, or rotation parameters; i t
merely changes the hardware setup for the differ

ent parameters and sends the compressed image
tile back through the accelerator board pi pel in e.

DATA PACKING -
FIFO OUTPUT

CIRCUIT BUFFER

t
SYSTEM ADDRESS/DATA BUS

I t
COMMAND 8 x 8
AND STATUS ROTATION
REGISTER MATR IX

Figure 4 Block Diagram of DECimage 1200 Accelemtor Hardware

1 8 Vol. . i No. 4 Fall 1991 Digital Technical journal

8 SCAN LINES OF IMAGE DATA
8-BYTE 1 8-BYTE 1 8-BYTE I BLOCK BLOCK BLOCK
1 #2 #3

I

8 x 8
ROTATION
MATRIX

0 1 2 3 4 5 6 7

SCAN LINE 0 t----------1
SCAN LINE 1
SCAN LINE 2

t---------1

ROTATION
OUTPUT
REGISTER

SCAN LINE 3 1----------i -
SCAN LINE 4 1----------t
SCAN LINE 5 1----------i
SCAN LINE 6 1----------i
SCAN LINE 7 '----------'

0 1 2 3 4 5 6 7

DISPLAY BYTE

Figure 5 Rotation Matrix

ASIC Design Description

The ASIC design consists of a decompressor chip,
which decodes the compressed image data to pixel

image data, and a scal ing chip, which converts the

image from the input size to the desired d isplay size .

Decompressor Chip The decompressor chip acts

as a CCITT binary image decoder. The chip contains

three distinct stages, which are pipel ined for the

most efficient data processing. Double buffering

of compressed input data is implemented to enable
simultaneous input data loading and image decod

ing to occur. Compressed data is loaded into the

input buffer by the processor through a 16- or 32-bit

port. Handshaking controls the transfer of decom
pressed data from the decompressor's 8-bit-wide

output bus to the scal ing chip.
The first stage of the decompressor chip con

verts CCITT-standard Huffman codes, which are of
variable-length, to 8-bit, fixed-length codes (FLCs) 5

A sequential tree fol lower circui t is implemented
to handle this conversion. Every Huffman code cor
responds to a unique path through the tree, which

ends at a leaf indicating the FLC. The 8-bit FLC is

sent to a first-in, first-out (FIFO) buffer, which holds
the data for the second stage.

The second stage of the chip generates a 16-bit,
run- length value from the FLC. The lower 15 bits of

Digital Technical journal Vol. 3 No. 4 Fall 1991

Hardware Accelerators j01· Bitonal /mage Processing

the word contain the number of consecutive white

or black pixels (called the run length). The upper
bit of the word contains the run-length color code

(0 for a white run and 1 for a black run). An FLC is

read from the FIFO buffer and decoded into one of

eight routine types. Each routine is made up of sev

eral states that control the color code toggling, run

length adder, and accumu lator circuits. At the end

of each routine, a new word containing the run
length and color information is written into a FIFO

buffer for the final stage.

The final stage of the decompressor chip con

verts the run-length and color information to black

or whi te pixels. This stage outputs these pixels in

16-bit chunks when the scaling chip sends a signal

indicating a readiness to accept more data.

Scaling Chip The primary purpose of the scal ing

chip is to input h igh-resolution document images

(300 dpi) and scale them for display on a medium

density moni tor (100 dpi). The chip offers inde

pendent scal ing in the horizontal and vertical

d irections. The scaling design implemented in the

chip is a patented algorithm that maps the input
image space to the output image space. General

M-to-N pixel scaling is provided where M and N are
integers between 1 and 127, with the delta between
them less than 65. M represents the number of pix

els in and N represents the number of p ixels out (in

the approximated scale factor) .

Given an image input size and a desired d isplay

size, we must find the M and N scale factors that
best approximate the desired scale factor, within

the range l imits of M and N as previously stated.
Thus an input width of 3300 and a desired out

put width of 550 are represented by an 111 of 6 and

an N of 1. The approximated M and N values are

loaded into the chip scale registers for downscal ing

or upscal ing.
The chip scal ing logic uses the scale register val

ues to increment the input pointer position and
generate output pixels. A la tched increment deci
sion term is updated every clock cycle, based on
the previous term and the scale register values.
When scal ing down (where fewer pixels are output
than are input), the logic increments the input
pointer posit ion every clock cycle, but only out

puts a pixel when the increment decision term is

greater than or equal to zero. Figure 6a i l lustrates

how this algorithm maps input pixels to output pix
els for a sample reduction. When scal ing up (where

every input pixel represents at least one output

19

Image Processing, Video Terminals, and Printer Technologies

SCALE DOWN FROM 10 INPUT PIXELS TO 5 OUTPUT PIXELS
(M = 2 AND N = 1)

I N IT = N = 1
DELTA1 = 2N = 2
DELTA2 = 2N - 2M = -2

I NPUT

INCREMENT
DECISION
REGISTER

OUTPUT

•

D = 1

•
1

2
•

D = -1

3
0

D = 1

0
2

4
0

D = -1

5
•

D = 1

•
3

6
•

D = -1

7
0

D = 1

0
4

8
•

D = -1

9
•

D = 1

•
5

1 0
•

D = -1

(a) Downscaling

SCALE U P FROM 3 INPUT PIXELS TO 9 OUTPUT PIX ELS
(M = 1 AND N = 3)

IN IT = 2M - N = -1
DELTA1 = 2M = 2
DELTA2 = 2M - 2N = -4

I NPUT •

I NCREMENT
DECISION D = -1 D = 1 D = -3 D = -1
REGISTER

OUTPUT • • • 0
2 3 4

2
•

D = 1

•
5

D = -3 D = -1

0 0
6 7

3
•

D = 1

0
8

D = -3

•
9

(b) Upscaling

Figure 6 Chip Scaling Examples

pixel), the.: logic outputs a pixel every clock cycle,
but only increments the input pointer position
when the increment decision term is greater than
or equal to zero. Figure 6b i l lustrates how this algo
r i thm maps input pixels to output pixels for a sam
ple magn i.fication. For both cases, the value of the
pixel (black or white) being output is the value of
the input pixel pointed at during that clock cycle.
In this dc.:scription, simply substitute rows for pix
els to repn:sent the vertical scaling process.

Software Support for the Hardware

Software support is needed to enhance the func
tions of the hardware accelerator in our image view
station. As ment ioned in the section General
Product Design, the XIE protocol extends the X l l
core protocol to enable the transfer of compressed
images across the wire and to enable image rendi-

20

tion and display at the server using the hardware
accelerator board. Like the X l l protocol, the XIE
protocol consists of a cl ient-side l ibrary called
XIElib , which provides cl ient applications access
to image routines, and a server-side piece, which
executes the cl ient requests. The XIE server imple
ments support at two levels : device-independent
and device-dependent. The device-dependent level
supports the functions that benefit from optimi
zation for a particular platform , or functions that
are implemented i n hardware accelerators. The

device-independent level enables qu ick porting of
functional ity from platform to platform. Figure 7

i l lustrates the X/XIE cl ient-server architecture.
The c l ient-s ide X IEi i b offers the minimum

functions necessary for im age rendition and dis
play. The tool kit level offers higher-level routines
that assist with windows application development.

11JI. 3 No. 4 Fall 19';)1 Digital Technical journal

APPLICATIONS

XLIB + XIELIB I

DEVICE INDEPENDENT (DIX)
--

X SERVER XIE SERVER

DEVICE DEPENDENT (DDX)

l + I DISPLAY I I IMAGING I HARDWARE

Figure 7 X/XIE Architecture

An example of a routine at this level might be

lmageDisplay, which d isplays an image in a previ
ously created window. lmageDisplay parameters

might include x and y scaling values, the rotation

angle, and region-of-interest coordinates. Whether

programming with the XIE protocol at the l ibrary

or toolki t level, applications developers benefit

from the platform i nteroperability of the standard

interface. Image accelerator hardware and opti

mized device-dependent XIE code changes the

application's image display performance, but an

application developed using the XIE protocol can
run on any XJE-capable server.

Accelerator Performance Results

With the DECimage I200 X terminal, we have

achieved i nteractive performance rates, reduced
memory usage, and increased final image legibil i ty.

We achieved these rates by transporting com
pressed files instead of huge pixel files and by imple

menting specialized image processing hardware.

The DECimage 1200 can read, transport, decom

press, scale, and d isplay an 8.5 -by-1 1-inch b itonal

document in I to 2 seconds. Successive displays,

i .e . , rotating, region-of-interest zooming, panning

around the image, all occur in less than I second,

Digital Techtzical]ournal Vol. 3 No. 4 Fall 1991

Hardware Accelerators for Bitonal /mage Processing

which is essentially as fast as the user can ask for
the d isplays. This speed is possible because the

image already resides in compressed form in the

server memory. Thus, the image does not have to

be read from the disk or transported across the

network.

Future Image Accelerator
Requirements

Hardware accelerators will continue to be required

for bi tonal imaging until software can provide the
same functional ity at the same performance level.

This section d iscusses the more complex image
schemes that are used for gray-scale imaging and

multimedia applications. In contrast to bitonal

imaging, these appl ications will require the use of

hardware accelerators wel l into the future.

Other appl ications wil l require richer user inter

faces uti l izing continuous-tone images, video, and

audio. All of these new data types are generally

data-intensive, and compression or decompression

of any one of them is a significant processing bur

den. Handl ing them in combination indicates that

the need for specialized hardware assistance will
persist for the foreseeable future.

Continuous-tone Images

Bitonal images are either black or white at each

point, but some appl ications require smoothly

shaded or colored images. These images are typi

cally referred to as continuous-tone images, a term
that denotes e i ther color or gray-scale, e .g . , photo

graphs, X rays, and still video. The representation

and required processing of this image format is
significantly different from that of bitonal images.

Continuous-tone images are represented by mul

tiple bits per pixel. This format al lows a greater

range of values for each pixel, which yields greater

accuracy in the representation of the original
object. Additionally, each pixel can consist of mul
tiple components, as i n the case of color. The num

ber of bits used to represent a continuous-tone
image is chosen according to the nature of the
image.

For example, medical X rays require a high

degree of accuracy. Consequently, 12 bits are gener

ally regarded as the minimum acceptable for the

rendering of this class of image. Color images typi

cally require 8 bits per pixel for each component

(YUV or RGB format) for a total of 24 bits per pixel.

Table 2 shows the relative size of samples of each

image. The need to express these images in a

2 1

Image Processing, Video Terminals, and Printer Technologies

compressed format is obvious from the storage

space requirements and the current storage media

l imits .

The compression of cont inuous- tone images can

be accomplished in several ways. However, most

imaging appl ications are not closed systems;

inevitably, each system needs to manipulate images

that are not of i ts own making. for this reason we

acloptccl the]PEG standard , which specifics an algo

rithm for the compression of gray-scale and color

images. Specifically, the]PEG compression method

is based on the two-dimensional (20) d iscrete

cosine transform (OCT). The OCT decomposes an

8-by-H rectangle of p ixels into i ts 64 20 spatial

frequency components. The sum of these 64 20

sinusoids exactly reconstructs the 8-by-8 rectangle.

However, the rectangle is approximated-and com

pression is achieved-by discarding most of the

64 components. Typically adjacent pixel values

vary slowly, thus there is l i ttle energy in most of the

discarded high-frequency components.

The edges of objects generally contribute to the

high-frequency components of an i mage, whereas

the low-frequency components are made up of

intensities that vary more gradually The more

frequency components included in the approxi

mation, the more accurate the approximation

becomes. Table 4 shows some sample]PEG image

compression ratios -"

The most popular part of the]PEG stanclarcl ,

the "' baseline" method , was defined to be easily

mapped into software, firmware, or hardware.

Straightforward OCT algorithms can be efficiently

implemented in firmware for program mable DSP
chips, clue to their pipel ined architecture. The first

systems to embody the standard did so using DSPs,

Table 4 Ty pica l Compression Parameters
for JPEG

Compression
Ratio

2:1

1 2: 1

32:1

1 00:1

22

Compression
Method

Lossless

Lossy

Lossy

Lossy

Rendered I mage
I ntegrity

Highest qual ity-
no data loss

Excellent qual ity-
i n d istinguishable
from the original

Good qual ity-
satisfactory for
most appl ications

Low qual ity-
recognizable

because any change to either the evolving standard

or a standard extension could be easily introduced
to the firmware. The fastest implementations arc

achieved by special-purpose hardware accelerators.

The]PEG i mplementation docs not require hard

ware, i .e . , the algorithm can be performed com

pletely in software. The case for hardware assist

is made in performance. Table 5 describes the
reduced instruction set computer (!USC) processor

performance, in m i l l ions of operations per seconcl

(mops), needed to provide the specified operation

at a motion video rate of 30 frames per second 7

However, generic IUSC processors of those speeds

are not avai lable today Therefore, dedicated, ctts

tom very large-scale integration (VLSI) devices

(such as the CL550-10 from C - Cube Microsystems)

must be used to perform the operations 8 Even

if the motion video rate is not required , the ASIC

devices offer the simplest hardware solution.

Live Video and Video Compression

Video captures the natural progression of events in

an environment, and is therefore a natura l and

efficient way to comm unicate. Consider, for exam

ple, the assembly of a set of components. One way

to express the assembly process is to show a series

of photographs of the assembly at successive steps

of completion. As an alternative, video can show

the actual assembly process from start to finish.

Subtle details of the process such as part rotations

and movements can be clearly conveyed , with the

added dimension of time.

Obviously, information expressed in video form

can be valuable; however, significant problems arise

in adapting video for use in computer systems.
First, the huge data size of video appl ications can
strain the system's storage capabi l i ty. Video can

be characterized as a stream of continuous-tone
images. Each of these images consists of p ixel val
ues with individual components making up each

p ixel . For video to have fu l l effectiveness, the sti l l
i mages must b e presented at video rates. In many
ctses the rate to faithfu l ly reproduce motion is

30 frames per second, which means that one

minute of uncompressed v ideo (512-by-480 p ixels

a t 24 bits per pixel) would consume over 1 gigabyte

of storage. In addi tion to storage demands, large

volumes of data cause bandwidth problems.

Presenting 30 frames per second to the video out

put with the above parameters wou ld require a

transfer rate of more than 22 megabytes per sec
ond from the storage device to the video output.

Vol. 3 No. 4 Fall l991 Digital Techuicaljournal

Hardware Accelerators for Bitonal /mage Processing

Table 5 Processing Requ i rements for I maging Functions

Processor

I maging Processor Operations per Pixel* Operations

Functions Read Write ALUt

Pixel move .25 .25 0

Point operation 2 1

3 X 3 convolve 9 8

8 X 8 DCT 24 1 4

8 x 8 block 1 28
match ing

'RISC processor, 1M pixels, 30 frames per second (Ips), 8 bits.
tALU = arithmetic logic unit

1 91

Thus, reducing the amount of data used to repre

sent the video stream would al leviate both storage

and bandwidth concerns.

The starting point for the compression of video

is with still images and, as previously mentioned,

the JPEG algorithm can be used to compress sti l l

continuous-tone images. Because video can b e rep

resented as a sequence of still images, the algori thm

could be appl ied to each sti l l . This procedure

wou ld produce a sequence of compressed video

frames, each frame independent of the other

frames in the sequence.

The evolving Motion Picture Experts Group

(MPEG) standard takes advantage of frame-to-frame

similarities in a video sequence, thereby enabling

more efficient compression than the appl ication

of the]PEG algorithm alone.9 In most situations,
video sequences contain high degrees of s imilar
ity between adjacent frames. The compression of

video can be increased by encoding a frame using

only the differences from the previous frame. The

majority of scenes can be greatly compressed; how

ever, scene transitions, l ighting changes, or condi

t ions of extreme motion need to be compressed as
independent frames.

The need for hardware assist in this area is com
pel l ing. Table 5 shows that to sustain a .JPEG decom
pression at 30 frames per second would require a

1950-mops processor. The same result can be
obtained using the CL550-10]PEG Image Compres
sion Processor.9 Although this device does not

make use of interframe similarities to increase com

pression efficiency, a device implementing the

M PEG standard would exploit these similarities.

Table 5 shows that motion compensation, to be

supported at 30 frames per second, requires a

9600-mops processor.

Digital Technical journal Vol. 3 No. 4 Fall 1991

M u ltiply Tota l at 30 fps (mops)

0 . 5 1 5

0 4 1 20

9 27 81 0

1 6 65 1 950

0 320 9600

Audio and A udio Compression
Video is usual ly accompanied by audio. The audio
can be reproduced as i t was recorded (with the

video), or it can be mixed with the video from

a separate source (such as a compact elise (CD)

player). The audio data is defined by appl ication

requirements. If the application a l lows lower

qua l ity, the audio can be sampled at lower rates

with fewer bits per sample, such as telephony rates,

which are sampled at 8 kilohertz and 8 b i ts per

sample. For appl ications requiring high-quality

(CD) audio, samples are usua lly taken at 44 k ilo

hertz and 16 bits per sample.

Integrating audio data into an application creates

special problems. The major characteristic that

differentiates audio from the other data formats
presented here is i ts continuous nature. Audio

must flow uninterrupted for it to convey any mean

ing. In video systems, the flow of frames may slow
down u nder heavy system loading. The user may

never notice i t , or may not be annoyed by it . Audio,

however, cannot slow or stop. For this reason, large

buffers are u sed to al low for load variations that

may affect audio reproduction.
A more subtle problem in creating applications

using audio is in synchronization. Audio data is
usually included to add another dimension of infor
mation to the app lication (such as speech).
Without a method of synchronizing the video and

audio, one data stream wi l l drift out of phase with
the other. One way to include synchronization is to

use time stamps on the audio and video. This is par

ticularly useful because standard time codes are

used in most production machines.

The compression of audio data is not as efficient

as that of the other data formats. Since a statistical

approach to coding audio is h ighly dependent on

23

Image Processing, Video Terminals, and Printer Technologies

the type of input (i .e . , voice, musical instru ment),

another method is required for general ized inputs.

Differential pulse code modulation (DPC .VI) is often

used to encode audio data. DPCM codes only the dif

ference between adjacent sample values. Since the

difference in value between samples is usua l l y less

than the magnitude of the sample, modest compres

sion can be achieved (4 : 1) . The l im i tation using this

technique is in the coding of h igh-frequency data.

Hardware assist for the audio data format wil l

probably come in the form of hardware to perform

functions other than compression. For instance,

DSP algorithms can perform equal ization, noise

reduction, ami special effects.

Multimedia

As the term impl ies, mult imedia may integrate a l l

o f the previously. mentioned image formats. The

word " may." is important in this context. This area

has been mainly technology-driven, due to such

factors as lack of standards, developing 1/0 devices,

insufficient system bandwidth, differing clara for

mats, and a vast amount of software integration.
It is currently a topic of debate whether typical

users will require the abi l i ty to create. as opposed

to only access, mult imedia source material. How

ever, for discussion purposes, mu ltimedia plat

forms can be classified into two categories:

authoring and user. Authoring refers to creation

of multimedia source material and requires differ
ent capabi li ties than user p latforms. In the creation

of a multimedia application, data from many differ

ent devices may need to be d igi tized and cross-

AUTHORING

110 AND DEVICE
CONTROL
COMPRESSION/
DECOMPRESSION

NETWORK

referenced. As the data is i ncorporated , it is com

p ressed and stored. Authors requi re the capabi l ity

to edi t and mix video and audio passages to get the

desired resu lt. Moreover, the video and audio may

originate from d ifferent devices and may. even be in

different formats.

As defined above, " user systems" do not require

all of the functions that aut horing systems need:

only. decompression is requi red in a typical user

system. Most ex isting user systems require an ana

log video source (videodisk), which is purchased

as part of the appl ication. The device control is per

formed by the application, i .e . , when a user selects

a passage to be replayed, the application sends

commands to the videodisk. Figure 8 depicts an

authoring system and a user system, along with

suggested I/O capabi l i ty.

Next-generation multimedia platforms wil l make

fu l l use of d igital video and audio. This impl ies that

systems wil l be able to receive and transmit multi

media appl ications and data over networks. This

interactive capabil i ty will improve the efficiency of

many mundane appl ications and devices. For exam

ple, electronic mail can be extended with video and

audio annotations, or meetings can be transformed

into v ideo teleconferencing. The adoption of com

pletely digital data for multimedia a lso implies that

the platform I/O will change. Some user systems

wil I not require ana log device interfaces or control :

the user wil l load the application over the network
or from an optical disk.

Each of the i mage formats described i n this

section has different characteristics, and each wil l

USER

110 AND DEVICE
CONTROL
DECOMPRESSION

NETWORK

Figure 8 Sample Multimedia Platforms

24 Vol. .3 To. 'I Fall 1991 Digital Technical journal

be presented in the embodiment of mul ti media.
Given the size, processing requirements (compres
sion and decompression), and real-time demands of
applications, hardware assist wi l l be a necessity.

Summary
Imaging is a unique data type with special sys
tem requ irements. To achieve interactive rates of
bitonal image d isplay performance today, hardware
accelerators are needed ; that has been the primary
focus of this paper. In the future, a general-purpose
processor should be able to hand le the imaging pro
cess at the necessary speed, and beyond that, the
processor shou ld be affordable in a low-cost b i tonal

imaging system. However, the bitonal document
processing market wil l not wait; it is in a high state
of growth and requ ires that products l i ke accelera
tors be developed for at least a few years.

Continuous- tone documents and mu ltimedia
applicat ions will place an even heavier processing
load on an imaging system. These areas wil l require
accelerators for several years. As imaging applica

tions, including bitonal, expand to cover more mar
kets, the quali ty enhancements and performance
benchmarks met by accelerators today wil l set
customer expectations . Consequently, our future
imaging products must be designed to meet these
expectations.

Acknowledgments

The authors wish to express thanks to the
X Window Terminal Hardware and Software Design
Groups for their support in developing the
DECimage 1200 option . The two major ASICs used
in the design were developed for previous pro
jects, and those two design teams are also offered
our thanks. Special thanks to Frank G lazer and

Tim Hel lman for their insightful research on the
image rendering process.

Digital Tech-nical journal Vol. 3 No. 4 f'i:lll 1991

Hat"dware Accelerators for Bitonal image Processing

References and Note

1 . Standardization of Group 3 Facsimile Appa

ratus for Document Transmission, cenT

Recommendations, Volume VI-Fascicle VII.3,
Recommendation T.4 (1980).

2. Facsimile Coding Schemes and Coding Control

Functions for Group 4 Facsimile Apparatus,

CCITI Recommendations, Volume Vl l-Fascicle

VIJ .3, Recommendat ion T.6 (1984).

3. Digital Compression and Coding of Continuous

Tone Still Images, Part I, Requirements and

Guidelines, ISO!IEC JTC 1 Draft International
Standard 10918-1 (November 1991) .

4. J. Mauro, X Image Extension Concepts, Version

2. 4 (Cambridge: MIT X Consortium, June 1988).

5. D. A. Huffman, "A Method for the Construction
of Minimum Redundancy Codes," Proceedings

IRE, vol . 40 (1962): 1098- 1 101 .

6. G. K. Wa l lace, "The .JPEG Sti l l Picture Compres
sion Algorithm," Communications of the ACIVI,

vol. 34, no. 4 (Apri l 1991): 30-44.

7. Table 5 is adapted from Y. Kim, " Image Com
puting Requirements for the 1990's: From Multi
media to Medicine," Proceedings of Electronic

Imaging West (April 1991) .

8 . CL550]PEG Image Compression Processor, Pre

liminary Data Book (San Jose, CA: C- Cube
Microsystems Inc. , November 1990).

9. Coding of Moving Pictures and Associated

Audio, Committee Draft of Standard ISO 1 1 172:
ISO/MPEG 90/176 (December 1990).

25

X Window Terminals

Bjorn Eng berg
T homas Porcher

X window terminals occupy a nicbe between X window workstations and grapbics

terminals. Tbe pU!pose of terminals in general is to provide low-cost user access to

bost computers or smaller dedicated systems. X window terminals furtber tbe

advance in grapbics terminals and prm•ide new and interesting wczys to utilize bost

systems. Etbernet cable provides for grapbics performance previous�}' not seen in

terminals. Tbe X Window 5)!stem developed by MIT allows multiple applications

to be displayed and contml/ed from tbe user's workstation. Now, with X window

terminals, tbe same poweJful user inte1face is available on bost and other non

workstation computers.

In mid 1987, the Video, Image and Print Systems

(VIPS) Group began the design of Digital 's first

X window terminal , the VTIOOO terminal and its

code upgrade, the VT 1200 terminal . Our goal was to
design and implement an X window terminal that

would a l l ow the use of windowing capabi l ities on

large computer systems. I n 1989, Digi tal developed

the VT l)OO X terminal and in 1991 the VXT 2000

X terminal . The designs of these X window termi

nals are all quite different. Our design approach

changed as the u nderlying technology changed.

This paper first compares host -system comput

ing with appl ications that run on workstations.
It summarizes the significance of the X Window

System developed by MIT and discusses the cl ient

server model. The paper then present s the need for

X window terminals and fol lows their development

stages. It compares and contrasts Digi tal 's differ

ent design strategies for the VTlOOO, VT I200, and
VT I300 X terminals. The paper concl uues with a

summary of the recently announced VXT 2000
X termina l .

Background

Before the development of the X Window Sys
tem, there was very l i ttle overlap in functional i ty

between workstations and other kinds of comput

ers. Workstations had stunning and fast graphics,

and many powerful applications were avai lable on

them. Those applications were not available to users

of basic 80-by-24 character-cel l text display termi
nals connected to a host system located in a clean

room. Graphics t<.:rminals, of course, al lowed the use

of ReGIS or another protocol for math and busin<.:ss

26

graphics, but their performance was far below the

expectations of a workstation user. Few p eople

have the patience to run , for example, a computer

aided design appl ication on a VT240 terminal, assum

ing such a version of the application is available.

Although a workstation offers fast graphics capa

b i l ities, its applications sometimes need more CPU

power or more disk space to do calculations in a

timely fashion. Graphics appl ications written for

workstations could not run on faster host comput

ers, which did not provide a display. Nor was there

a standard way to get data from the host to d isplay

on a workstation. Each appl ication requi red a
unique solution to this problem.

Since the introduction of the new cl ient-server

model of computing and modern networks, many

tasks can be divided into subtasks that can run

on the most suitable processor. The X Window Sys

tem uses the cl ient-server approach, as shown in
Figure 1 . The appl ication is viewed as an X cl ient,
and a workstation or a terminal can run an X server
that controls the display. The X server also controls

input from the keyboard and mouse or other point

ing devices.

Figure 1 Client-seruer Model

Vr>l. 3 No. 4 /-(i/1 /'}')/ D igital Teclmical journal

An X cl ient and an X server use an X wire to

communicate, as shown in Figure 2. The X wire
is simply a two-way error-free byte stream, which

can be implemented in many different ways. The

X Window System archi tecture does not stipu

late how the X wire shou ld be implemented , but

several de facto standards have emerged . Manu

facturers have designed X wires usually based on

the clata transport mechanisms that were avai lable

and convenient when the X Window System was

implemented. The X wires use transmission control

protocol/internet protocol (TCP/IP), DECnet, Local

Area Transport (LAT), and other protocols, and even

shared memory buffers as a transport to avoid

protocol overhead. A single implementation often

supports several transport mechanisms.

The X server typica l ly executes on a processor

with display hardware. The X cl ient can execute on
almost any processor. It may execute on the same

Figure 2 X Wires

TRADITIONAL
WORKSTATION

APPLICATION I
GRAPH ICS
L IBRARY

WINDOWING I SOFTWARE

DISPLAY HARDWARE

I I
KEYBOARD I I SCREEN

I MOUSE I

X Window Terminals

CPU as the X server, or it may execute on a host,

another workstation, or a compute server. The
X server can be connected to several X cl ients

simultaneously, with any combination of local

(running on the same CPU) or remote (running on

another CPU) X clients. The X server treats local and

remote clients equally.

Workstation Environment

Figure 3 compares a traditional non-X windowing

workstation with an X windowing workstation. In

both workstations the appl ication must use a

graphics l ibrary to com municate with the d isplay

hardware and software.

In an X windowing cl ient environment, the

l ibrary of routines is cal led Xl ib . An application

designer can choose from a wide variety of toolk its ,

which are essential ly a level of addi tional l ibrary

routines between the application and Xlib. The use

of a toolkit can significantly reduce the amount

of work an appl ication programmer has to do. The

appl ication software, Xl ib, optional toolkit, and

other l ibraries compose the X cl ient, as shown in

Figure 4.

With few exceptions, the X server comes with

the display hardware and input devices (keyboard

and pointer) indicated in Figure 5.

The X Window System with its flexibil i ty neatly

solves the problems of CPU power and d isk space

versus d isplay availabi l ity. Applications written for

X can execute on a wide variety of computers, and
the resu lts can be d isplayed on any of a mult itude

of devices, even on a workstation that would not

X WINDOWING
WORKSTATION

AP PLICATION

Figure 3 Inside the Workstation

Digital Teclmicnl Journal Vol. 3 No. 4 Fall 1991 27

Image Processing, Video Terminals, and Printer Technologies

APPLICATION

OPTIONAL TOOL·KIT
AND OTHER LIBRARIES

X LIB

Figure 4 1he X Client

X PROTOCOL HANDLER

DIS PLAY AND
INPUT HARDWARE

Figure 5 The X Server

X CLIENT

X SERVER

have the capacity to run the appl ication local ly.

Figure 6 shows how the X Window System fits into

a network environment.

The X Window System has already generated

many useful appl ications, and its widespread popu

larity ensures that many more applications will be

made available in the future.

Need for X Terminals

In a study to determine how workstations are used,

the VIPS Group fou nd that many users did not take

advantage of the fu ll potential of their work-

HOST CPU 1 HOST CPU 2

stations. In a software development or document

edi ting environment, the users often set up their

workstat ·ions as terminals. They usually created a
few termina1l emulation windows and used SET
HOST or RLOGIN commands to connect to a host
system on which they stored their working envi

ronment and fiks. Only two features of a work

station were frequently used . Users kept several

terminal emulators on their screens at the same

time, and set the terminal emulator windows to be

larger than 80 by 24 characters. Only rare.ly did t he

average workstation user take advantage of the fu l l

power of graphics applications.

The results of our study ind icated a need for

a cost-effective a l ternative to a workstation that

wou ld provide the features desired by a large num

ber of users. We envisioned a new k ind of termi

nal, one that would al low people to have m u ltiple

windows of arbitrary size, to connect with m u l

tiple hosts, ami, since the X architecture al lowed it,

to be able to use the same kind of graphics as a

workstation.

From an X archi tecture standpoint, X terminals

and X workstations are qui te similar. They can in

fact use the same hardware. For example, Digital's

VT1300 terminal runs on the same hardware as the

VA.'Cstation 3100 workstation. X terminal software

can also be made to run wel l on hardware plat

forms that are not sui table for workstations.

I X CLIENT I 1 x CLIENT 1 1 x CLIENT 1 r x CLIENTl
I l l 1 I NETWORK

: I INTE RFACE I NETWORK INTERFACE

I I
I X W I N DOWING WORKSTATION

I NETWORK
: I INTERFACE

I X CLIENT I I X CLIENT l
I I

I X SERVER I
I l

I KEYBOARD I I MOUSE I I SCREEN I

Figure 6 X Window Network Environment

I
ETH E R N ET

28 Vol . .3 Nu. 4 Fat/ 1991 Digital Techrtical]ournal

The main architectural difference between

the X terminal and X workstation software is that

X terminals are closed systems that do not sup

port local user applications. Although this may

seem to be an unnecessary restriction, i t does al low

X terminals to be made for less money. An open sys

tem that a l lows any user appl ication to run local ly

must have an established CPU architecture, a sup

ported operating system, such as the VMS, UNIX,

or ULTRIX system, and, subsequently, sufficient

memory and/or disk space to support such an envi

ronment. A closed system, on the other hand, can

be designed with simpler hardware, a smaller oper

ating system, less memory, and thus lower cost.

The absence of the abil i ty to run user applications

locally does not i mpact usability significantly since

the user can run any desired application on another

CPU. D igital 's VTlOOO and VT1200 X terminals were

designed based on this approach.

X Terminal Environment

X terminals often have local applications, but they
must be built into the terminal by the designers.

The VT1200 terminal has a video terminal emulator

(VTE), a window manager, and a terminal m anager
as the local applications. The VTE a ll ows the VT1200

terminal to m ake American National Standards

Institute (ANSI) character-cel l connections to a

HOST CPU 1

SERIAL
LINES

HOST CPU 2

X Window Terminals

host, via the Ethernet or the serial l ines as shown

in Figure 7. This capabi l i ty makes the VT1200 ter

minal useful in an environment that does not have

X window support.

Although any X server can ru n windows soft

ware, it does not provide a user interface. To manip

u late the windows, the user needs a window

manager. The window manager creates window

frames that al low the user to invoke functions to

move windows, resize windows, change stacking

order, and use icons. This capabil i ty also makes the

VT1200 terminal useful when no host is available to

run a remote window manager. A terminal with a

local window manager generates less network

traffic, and window management is not slowed

by host congestion or network round-trip delays.

The VT1200 X terminal allows use of a remote win

dow manager, if the user prefers a different style of

window management.

The local terminal manager provides the user

interface to initiate connections to host systems.

It is also responsible for the terminal customization

interface.

All cl ients communicate with the X server using

standard X wire commands only. Any window man

ager, remote or local, can manage all the windows

on the screen, regard less of whether the clients are

remote or local.

Figure 7 The X Terminal Environment

Digital Technical journal Vol. 3 No. 4 Fall 1991 29

Image Processing, Video Terminals, and Printer Technologies

Development of X Window Terminals

The development process of the VT 1000 and

VT1200 X terminals has important lessons to teach
us. The knowledge we gained in 1987 has helped us

develop future generations of X terminals.
When we designed the VTlOOO X terminal and

its code upgrade, the VTl200, we held many discus
sions within the group and with people from other
groups. We planned many i terations before we
arrived at the final architecture. It was by no means
the only way to design an X terminal, and in 19H9
we tried a different approach with the design of the
VT1300 terminal . We knew that the best decision at
a particu lar t ime might be very d ifferent from the
best decision one year later, since the technical and

marketing environment is constantly changing.
New tools, standards, and practices enter the field
while others become obsolete. Newer products

must always have new features to meet changing
technology requirements.

Hardware Platform
Our .first step was to discuss the hardware plat
form and select the kind of CPU to use, memory

size, 110 considerations, type of d isplay, etc. We
stud ied many different CPUs to determine which

one would provide the most capabi l ities for the
lowest cost. A VAX chip was rejected because, at the
time, it was far too expensive for the required price

range of the VTIOOO terminal . The Motorola 68000

series CPUs are quite powerful , but we had to con·
sicler other factors such as avai labi l i ty of software

and hardware tools, cross comp ilers and l inkers
that could run on the VMS system, and hardware
debugging facil it ies of sufficient power. We fma l ly
selected Texas Instruments' TMS34010 micro·
processor with video support and several bui lt -in
graphics instructions that made it a cost-effective
solution. It also came with VMS development tools,
a c compiler, an assembler and l inker, a single-step,
hardware trace buffer with disassembler, and a
powerful in-circuit emulator that made it possible
to control execution in detai l , inspect registers and
memory, and set break points and hardware watch

points (for example, break when writing value .x

into locationy).
We further discussed the kind of l/0 to use. A

sample implementation of the MIT X server on a
VAXstation 2000 workstation and a primitive serial
l ine protocol showed, as expected , that serial l ines
were clearly insufficient to carry the X wire proto·

30

col without some compression of the wire protocol
i tself. We had to build D igi tal 's first X terminal with
an Ethernet interface.

We needed to determine if this hardware platform
could give us sufficient performance. We made sev·
eral performance estimates, based on what we

knew then about the X server and other software
components. We went through each step in as much
detail as we could (before anything was built) . We
calcula ted how many instructions were necessary
to perform each task in the chain of receiving a
command and displaying i t on the screen. By .know
ing the speed of the CPU, we could estimate per·
formane<.: in characters or vectors per second .
Our estimates showed that the VTIOOO X terminal

would not be exceedingly fast, but the perfor·
mance would most probably be sufficient, de.fi·
ni tely faster than a VA.'I(station 2000 in most cases.

In retrospect, actual performance of the VT1000

terminal and the later software upgrade , the
VT1200, was close to our estimates, but i t took sev
eral passes of code optimization to ach ieve such
performance .

We also discussed alternate hardware designs
for performance improvements. One solution pro·
posed two CPUs, the TMS34010 microprocessor to
hand le the display and a 68000 microprocessor to
hand le I/0 and other tasks. Unfortunately, we found
no easy way to balance the workload between the
two crus. We estimated that the different software
components would have the fo l lowing relative CPU

demands:

• Interrupts, 5 percent

• Communications, lO percent

• Operating system, 5 percent

• X server (minus d isplay routines), 60 percent

• Display routines, 20 percent

To equalize the load between the CPUs, we would
have had to spli t the X server in two, a solution that
was not feasible. Any other spl i t of tasks would
cause one CPU to spend most of i ts time waiting
for the other, and the overal l performance gain

would be minimal . Communication between mul·
tiple CPCs is complex and is very d ifficult to debug.
Therefore, we decided that two CPUs were not
worth the trouble or the cost. The best way to
double performance is to insta l l a single CPU that
is twice as fast. At that time, the TMS34020 was

Vol. _) No. 4 Fall 19')1 D igital Teclmical]ou>·naf

already being mentioned as a fol low-up m icro

processor. Since its software would be compatible

with the TMS34010, we decided to keep it in mind

for possible use in a future terminal.

Code Selection

The use of read-only memory (ROM)-based code

versus downloaded code has been debated for

some time. ROM-based code starts up faster and

incurs less network traffic at startup time (espe

cia l ly on a site with many X terminals), but is not

flexible when software is upgraded. On the other

hand, downloaded code can be easily distributed.

An entire site can be upgraded with one or a few

installations by a system manager as opposed to

changing ROMs in a large number of terminals.

(With the VT1200 X terminal, customers can change

ROM boards.) From the point of view of terminal

business, it made sense to use ROM-based code in
1987. We reasoned that not a l l sites would have

E thernet, but with ROMs the X terminal would

still be usefu l as a m u ltiwindow terminal emula

tor. We real ized that such concerns would change

with time, and on the whole, downloaded code

would become the better approach. The only

exceptions wou ld be in the home or small office

markets where a boot host or an Ethernet might not

be avai lable. Subsequent X termina ls are being

made in both downloaded (for example, in the

VT1300 terminal) and ROM versions.

Operating System Selection

Next we considered which operating system to

use. We looked at other vendors' operating sys

tems, but found they were either too complex and

big or inadequate . One of our coworkers had writ

teo a very compact operating system for a VAX
system used on another project. We used it in our

prototype and then adapted i t for the TMS34010
processor. We implemented addi t ional functions
to run the rest of the software with minimum

changes.
There are many advantages to working with

"your own" operating system. It is easy to make

changes, to work around trick)' problems, and to
make special enhancements. But operating system

code is difficult to debug. Timing is very critical,

and throughout the project, we found strange bugs

in code that had init ia l ly appeared to be a l l right

to everyone involved . We found bugs under heavy
load condi tions after a rare sequence of events

Digital Technical journal Vol. 3 No. 4 Fall 1991

X Window Terminals

u ncovered l ittle timing windows and race condi

tions that had not been handled properly. Even

with i n-circuit emulators, such bugs could take

weeks to track clown.

In the VT1300 we decided to use the VAXELN

operating system. We wanted to avoid the possibil

ity of time wasted on finding and patching holes in

the design of a new operating system.

Local Terminal Manager

The VTlOOO X terminal is self-starting at power-up,

but without a host system, it needs a local user

interface. We decided that this i nterface shou ld

resemble a workstation session manager and thus

called it the local terminal manager. Although it

covers a different set of functions, we wanted the

local terminal manager to implement a similar set of

objects and operations (the "look and feel" or style)

of a workstation session m anager. The style of the

DECwindows session manager was chosen to make

it easier for a user to swi tch between an X terminal

and a DECwindows workstation. We wrote a subset

toolk i t for all the "customize" screens and ensured

that the VTE could use the same subset toolk i t for

its "customize" screens. As DECwindows has pro

gressed, subsequent X terminals have adapted the

new user interface preferences, in this case Motif.

Local Terminal Emulator

We considered a local terminal emu lator to be an

important component. We knew that X-based ter

minal emulators could run on the host, but in 1987

hosts with X windowing support were rare. Since

we were in the terminal group, a terminal that

could not manipulate ordinary text by i tself was

considered unsel lable . We wanted the ability to

access both X and non-X hosts and we wanted

to support multiple text windows. Therefore we

defined the terminal emulator as an X cl ient so that
text windows could coexist with X client windows.

This feature has proved to be exceptional ly popu
lar. A large number of users use nothing but v ideo

terminal emulator windows. They are not inter
ested in X windowing graphics, but do want mul

tiple and/or larger text windows on a large screen.

Local Window Manager

We debated whether or not to implement a local

window manager. The DECwindows window man

ager was under development and was constantly

changing. The DECwindows window manager

3 1

Image Processing, Video Terminals, and Printer Technologies

contained far too many VMS dependencies to be

ported easily. Also the X terminal did not have
enough memory to run the DECwindows wol kit

local l y. We coul d have ported other window man

agers, but they lacked the essential characteristics

of the DECwindows window manager. For a whi le

we considered letting the local clients have a primi

tive way £0 manage their own windows, until a ful l

featured window manager could be started on a

host. Again, this alternative lacked the DI:Cwindows

system's quali ties. We eventua l ly decided to write

a window manager based only on Xl ib and our

subset toolk i t cal ls . It has the essential characteris

tics of the DECwindows product. Al so, s ince the

DECwindows window manager of necessity wou ld

keep changing, we wrote the local window man

ager in such a way that it cou ld rel inquish control

to a remote window manager. This solution gave us

the most flexibi l i ty for this hardware platform. The

recently announced VXT 2000 X terminal has been

designed with virtual memory to accom modate a

well-establ is heel unmodified window manager, the

Motif Window Manager.

X Server

We al so needed to choose an X server. We cou ld
have based our code on the d istribut ion tape from

MIT, but a t the time the X Window System was not

yet a mature product. Every implementor had to

spend considerable t ime stabil izing the implemen

ta tion enough to yield a product and i mprove per

formance. Since the VMS DECwindows Group had

been writing code for the server, we decided to use

DECwindows code. Once the porting effort started,

we found that most of the performance had been

improved by V;'w'{ MACRO code. Consequently, we

had to re-engineer a l l the modules or adapt new

ones from the MIT tape. As we kept porting and

enhancing performance, our code changed more

and more unti l it became extremely difficult to

track bug fixes made by the DECwindows Group.

The MIT patches were also nearly impossible to use
because of code changes and because our starti ng

code was one step removed from the tape.

1b<Jay the MIT X server is a mature product;

patches and bug fixes are readily available from

MIT and from the X community. In our current

X terminals, the h igh degree of portability of the

MIT X server al lows us to keep most of the :\-!IT

X server source code almost unchanged so patches

are easily appl ied.

32

Communications Protocol

Many com mu nications protocols were avai lable,

but our choice was d icta ted by market pressures

rather than technical reasons. The market demanded

TCP/IP. DECnet would have been acceptable, but

it was running out of avai l able addresses, at least

within D igital . DECnet address space supports

only 64,000 nodes and requires manual address

and name assign ments. After waiting weeks to get

addresses for a few worksta tions, we real i zed that

adding thousands of X terminals into Digi ta l 's inter

nal network wou ld not be possible. DECnet Phase v

software has solved this problem.

Next we looked at the LAT protocol used by

Digital terminal servers and fou nd that i t bad sev

eral advantages. first, the VMS operating system

supports the LAT protocol. LAT uses u nique 48-bit

Ethernet addresses to identify each node, which

al lows a large node address space. LAT a lso does not

require any system management to add another ter

minal. A user can connect a terminal to a power

source, and the terminal automatically becomes

part of the network. Our performance evaluations

found that the LAT interface on the host could be

writ ten to incur Jess host overhead than DECnet,

which is important when many X terminals are con

nected to hosts.

Changes were needed in the VMS LAT driver to

accommodate X wire and font service connections.

The VMS Software Engineering Group worked with

us to ensure that we would have those changes

on schedule and in the appropriate VMS releases.

As a resu lt, we chose the LAT protocol for the VMS

community and TCP/IP for users of ULTRIX and UNIX

systems.

Font File System
Storing fonts and changing font file formats were
major problems. Since the VTIOOO X terminal d id

not have a local file system, some fonts had to be

stored in ROM to a l low the VTlOOO terminal to func
tion in standalone mode. A quick review of the
available DECwinJows fon ts showed that not a l l of

them fit in the ROM space al lowed for the terminal .

Furthermore, customer-designed fon ts or new font

releases could not be accom modated. The solution

was to be able to read fonts from a host system.

This approach provided a font service on the VMS

system, and enabled font files to be read over the

Internet. We designed a process cal led the fon t dae

mon to run on the VMS operating system. This pro-

Vol. .:i No 4 Faii i'J'JI Digital Techuicaljounwl

cess cou ld del iver font data on request to one or
several VTIOOO terminals. The VMS system 's font
daemon uses the LAT protocol to del iver the fonts

and protects somewhat against font file format
changes. In many ways, the design of the font
daemon makes it a precursor to a general font
server, and it is very similar to the X Font Server
being delivered by MIT in the latest release of the
X Window System.

To use the font service, the terminal user must
specify a font path in the VT1200 local terminal

manager. Specifying a host name is sufficient to
access the default font path, al though users with

their own font files can optional ly search other
directories. At startup, the VT1200 terminal makes a
font connection to the host's font service and del iv
ers the font path specification to the font service.
The font service sends font names and other basic
font information about a l l the fonts in the selected

path. When the VT1200 X server needs a font, the
VT1200 first searches the ROM-based fonts; if it is

not there, a request to read the font is sent to the
font daemon. The daemon sends the requi red infor
mation to the VT1200, and the X server can display
characters from that font. Since memory is l imited,
the VT1200 has font caching, a mechanism to dis
card fonts no longer used or to d iscard the least

used fonts. Our current X terminals increase the
robustness of the font mechanism ; for example,

they provide recovery should the font service or i ts
host become unavailable.

The special LAT code that we used on VMS sys
tems for the font service was not available on
UNIX and ULTRJX operating systems. Since inter
net protocol (IP) was available, we could use the
trivial file transfer protocol (TFTP) to read a file
from a host system, if the system manager set the

proper protections. We chose TFTP for its ease
of implementation and its wide availabil i ty on
UNIX and ULTRJX systems. The TFTP font path in a
VT1200 terminal specifies a host I P address and a
complete path to a file (usually named font.paths)
that contains the complete path to a l l the font
files that the VT1200 can use. The terminal can
then access a l l those font files, again through TFTP,
to obtain font names and other basic i nformation
about each font. When a client wishes to use a font,
the proper font file can be read again, this time to
load the complete font . Since this process is t ime

consuming, the font path pointing to the file has
an alternate format in which the font name fol
lows the complete path to each file. Using this alter-

Digital Teclmicaljournal \1()/. 3 No. 4 Fall 199l

X Window Terminals

nate format, the VT1200 terminal does not have to
open and read the font file unti l a cl ient actually
intends to use it .

Comparison of X Terminals

The VT1200 and VT1300 X window terminals
were built using different approaches to solve
the problems encountered du ring development.
The X terminal is a new and flex ible concept; there
is no single "best" design. Table 1 compares the
most important differences between the two termi

nals. We also include the specifics for the VXT 2000
X terminal.

The VT1200 is ROM-based; all i ts software is per
manently resident in the terminal. The VT1300 soft

ware is downloaded, so a host or bootserver on the
same network must supply the terminal with a load
image at power-up.

Since downloaded terminals are dependent on
the existence of at least one working host system,
the user interface can be designed differently.
While the VT1200 X terminal has a built- in user
interface, the VT1300 does not need it. The VT1300
terminal automatical ly makes an X connection to a
host at power-up, and the user is presented with
the same DECwindows login box as on a work
station. The VT1300 has no local cl ients; a l l c l ients
run on the host system.

The VT1200 terminal uses the LAT protocol for
i ts ease of use and minimal network management
demands. The VT1300 terminal uses the DECnet
software al ready implemented in the VAXELN oper
ating system used internal ly. Both terminals sup
port TCP/IP.

VXT 2000 X Terminal

One problem that has plagued al l X terminals is
l imited memory space. Workstations usual ly have a
virtual memory system, which provides large pag
ing and swap areas on a disk, and applications
and X servers can use more memory space than
the hardware has. Until now X terminals have not
had virtual memory systems. If too many appl ica
tions made excessive demands, or if a cl ient created
large off-screen images (ca lled " pixmaps" in the
X Window System) the terminals quickly used all
memory space . If the X server implementation
was correct, an error was reported and a client

might try a less demanding approach. In other
cases, the terminal or cl ient might s imply crash.
One alternative was to instal l more memory in the

33

Image Processing, Video Terminals, and Printer Technologies

Ta ble 1 Comparison of X Wi ndow Te rminals

VT1200 Terminal

Monochrome only

1 bit plane

Code i n ROM

No virtual memory

2-4M B RAM

TMS34010 CPU

Special operating system

Local c l ients:
Terminal manager
Win dow manager
Video term inal emu lator

Local customization

Choice of host (LAT only)

LAT protocol

TCP/1 P protocol

Special hardware

VT11300 Terminal

Color only

4 or 8 bit planes

Code downloaded

No virtual memory

8-32MB RAM

VAX CPU

VAXELN operating system

No local cl ients

Customized on host
just as a workstation

Automatic X window
log in to boot host

DEC n et protocol

TCP/I P protocol

Avai lable on several
workstation platforms

VXT 2000 Terminal

Monochrome and color

1 o r 8 bit planes

Code downloaded

Virtual memory

4-1 6 M B RAM

VAX CPU

Special operating system

Local cl ie nts:
Termi nal manager
Motif window manager
DECterm term in al emu lator

Local customization
Central i zed customization

Choice of host
(LAT and TCP/IP using XDMCP)

LAT protocol

TCP/I P protocol

Uses standard hardware

X terminal , a lthough this can be costly and offers no

guarantees.

In the next generation of Digita l 's X term inals,

the VXT 2000, this problem has found a cost

effective solution. Based on the VA.,'(architecture,

the VXT 2000 term inal uses virtual memory and

downloaded code. The Digital In.foScrver, an

Ethernet storage server, provides the load image,

virtual memory paging space, fonts, and customiza

tion storage. The same InfoServer al so solves

another problem: now the X terminal has access to

a file system. This a l lows more extensive customi
zation, as wel l as cen tral ized management of the

customization of a l l X termin;�ls on the network.

Figure 8 shows the configuration for the VXT 2000
X terminal.

Conclusion
X terminals are not intended to replace work

St:ltions. Nor wi l l workstations repl ace host sys

tems or completely d isplace X terminals in the

foreseeable fut ure. It is l ikely that host computers

wi l l a lways be faster and have more memory and

disk space than reasonably priced worksta tions

of the same era. It is a lso l ikely that term inals can

be built cheaper than workstations of reasonable

Figure 8 The VXT 2000 Network Environment

34 Vol. j No. 4 Fa/1 1991 Digital Technical journal

performance for some time to come. As long as that

is the case, there wil l be a market for X terminals
and host systems. Future X terminals will be faster,

and have more built-in functionality, more local

appl ications, X extensions, and most l ikely, addi

tional hardware features. X terminals will be the

networked terminals of the 1990s.

Acknowledgments

We wish to thank the members of the VT1200 devel

opment team who worked many long hours on this

project. Thanks to everyone inside and outside

the Video, Image and Print Systems Group who

contributed helpful suggestions, constructive criti

cism, and important hours using and testing the

products. Thanks to the LAT and VMS Software

Engineering Groups for incorporating the changes

needed for the VT1200 X terminal to be useful.
Thanks to the VIPS Quali ty Group for ensuring that

as few bugs as possible remained in the product
when shipped.

Digital Tech11icaljournal Vol. 3 No. 4 Fall /991

X Window Terminals

35

Peter A. Sichel I

ACCESS. bus, an Open Desktop Bus
With the recent introduction of the ACCESS. bus product, Digital has affirmed its

commitment to open systems and thus to facilitating better solutions for inter

active computing. This open desktop bus protJides a simple, uniform way to link

a desktop computer to as many as 14 low-speed 1/0 devices such as a keyboard,

mouse, tablet, or three-dimensional tracker ACCESS. bus features a 100-kilobit-per

second ma.:'<imum data rate, hardware arbitration, dynamic reconjiguration, a

mature capabilities grammar to support generic device drivers, and off-the-shelf,

low-cost flC microcontroller technology

As the cost of personal interactive computing

decreases, the range of appl ications and the need

for specialized I/0 devices is growing dramatical ly.

Traditional personal computers were designed to

accept only a small number of standard devices;

adding devices beyond those origina l ly envisioned

usually requ ires special ized hardware or software.

Custom interfacing is expensive for vendors and

users and thus limits the avai labil i ty of new devices.

ACCESS. bus provides a simple, u n iform way tO

l ink a desktop computer to a nu mber of low-speed

l/0 devices such as a keyboard, a mouse, a tablet, or

a three-d imensional (3-D) tracker. Designed from

the beginning as an open desktop bus, ACCESS . bus

faci l i tates cooperative solutions using equipment

from different vendors. This paper describes the

ACCESS. bus design and gives some insight intO how

the idea was adopted at Digita l .

Design Goal, Process, and Advantages
The design goal for the desktop bus fol lows from

our experience within the Video, Image and Print
Systems (VIPS) Input Device Group with trying to

support new devices on Digi tal terminals and

workstations. While various new devices have been
successfu l ly prototyped over the years, the need
for nonstandard hardware and custom software

drivers was always an expensive, time-consumi ng

obstacle. Even after successful prototyping, these

devices could not be read ily adapted tO our stan

dard systems, l imiting their use to custom appl ica

tions. In designing the desktop bus, our goal was to

make i t as easy as possible to interface previously

unavailable 110 devices to our systems in a way

that was both practical and marketable. This sec

tion expla ins the benefits of using a desktop bus,

36

describes the process we went through to convert

to a new bus architecture, and summarizes the key

advantages of the chosen design.

The basic desktOp bus concept is i l lustrated in

Figure 1 . The bus a l lows multiple, low-speed l/0
devices to be interconnected and thus interfaced

through a single host port. Desktop bus devices

such as a keyboard or a tablet, which are not hand

held, provide two connectors and al low another

device to be da isychained. A hand-held device

such as a mouse can be placed at the end of the

daisychain , or a connector expansion box can be

attached to accommodate additional devices that

do not provide two connectors.

CONNECTOR
EXPANSION
BOX

Figure 1 Basic Desktop Bus

Vol. 3 No. 'I Fa/1 /'J'J/ Digital Technical journal

The desktop bus has the fol lowing benefits:

• Enables greater flexibility and variety of use

• Reduces the cost of connecting multiple devices

• Expedites bringing new technology to market

• Helps leverage third-party devices

The first benefit, greater flexibil i ty, can be simply

achieved by al lowing addi tional devices and more

modular solutions. We further extended this bene

fit by designing a way for devices to be added at run

time without disrupting system operation. Con

figuration s hould be automatic; connecting stan

dard devices should not require powering down or

rebooting the system before a new device can be

used. The desktop bus supports mult iple l ike

devices without switches or jumpers.

The second benefit, reduced cost, was crucial to

having the bus accepted as a solution across a wide

range of products from low-end v ideo terminals

to high-end workstations. We recognized that con

temporary electrical techniques could e l iminate

the need for level translation circu i ts, - 12 vol t (V)
power sup pi ies, and perhaps some of the protec

tive components used with RS-232 interfacing.
Although many devices would now require two

connectors, system cost wou ld decrease because

we wou ld need to supply only as many connectors
as the number of devices to be attached , or possibly

one more.

The third benefit, expedi ting the time to market

for new technology, a l lows us to better satisfy

changing requ irements. Key to this benefit is hav

ing the means to connect new devices without

changing the system hardware or software. Based

on our experience with input devices, we devel

oped the concept of device capabi l i ty reporting

and generic device protocols. Standard devices

like keyboards and locators, e .g . , mice, tablets, and

trackba lls, all work in similar ways. For th is class

of device, we define a simple device protocol and
a way to parameterize and report device unique

characteristics. A single generic driver can adapt

i tself to work with a class of similar devices so
that no custom software is required for basic opera

tion of standard devices.

Leveraging third-party devices, the fourth

benefit, is a imed at satisfying diverse customer

requ irements. Because the use of computers con

t inues to proliferate, t he range of appl ications far

exceeds that which any one vendor can master.

Digital Tecbnicaf jounral Vol. 3 No. 4 Fall 1991

ACCESS.bus, an Open Desktop Bus

By making the bus truly open, we encourage third

parties to add value to our systems.

The benefits of a desktop bus are significant. But

converting to a new architecture, especial ly one

that is not back-ward compatible, is expensive in

terms of the time and effort required . How does a

large corporation bui ld agreement to make such

an investment decision' The desktop bus project

started as a grass roots engineering effort and grad

ually built momentum. The process was one of

dialogue to attract partners. Initial ly, three groups

with sl ightly different objectives worked together

to develop the bus. The visibi l i ty of separate groups

jointly supporting the bus concept was essential to

transform the idea into action . People are more

wil l ing to accept an idea that others around them

have already adopted.

The three groups that init iated the desktop

bus project were our VIPS Input Device Group in

Westford, MA, mentioned previously; the Work

station Systems Engineering (WSE) Group, located

in Palo Alto, CA; and the Video Advanced Develop

ment (A/D) Group in Al buquerque, Nl\1. Our Input

Device Group was looking for ways to simpl ify the

process of prototyping special ized input devices

and of getting related software support for our

video terminals and workstations. WSE was devel

oping a low-cost, personal workstation and needed

a flexible way to support mult iple input devices

without greatly increasing the cost of the base

workstation. The Albuquerque A/D Group had been

experimenting with next generation 1/0 devices,

i . e . , force-feedback joystick, 3-D tracker, and real

time audio and video, and was interested in having

these technologies adopted by other Digital groups.

This AID Group had used PC technology success

ful ly in one of its previous video projects.

In january of 1990, engineers from each group

real ized they were working on similar problems

and began to col laborate. The WSE Group was to

build the desktop bus host interface and software
drivers into their workstation; the VlPS Group was
to help define the device protocols and supply

desktop bus keyboards and mice; and the Albu
querque AID Group was to support bus devel

opment and prototype addi tional devices. Within
four months, VIPS had defined the basic protocols

and could demonstrate a working FC keyboard

and mouse. These early prototypes helped per

suade WSE to support the project and, in turn,

helped reinforce the importance of the project to
the VIPS Group.

37

Image Processing, Video Terminals, and Printer Technologies

We began presenting the desktop bus idea to
interested groups within Digi tal and received many
useful suggestions including

• Use the same keycodes as on the LK201 keyboard
to el iminate the need to rewrite k<:yboard
lookup tables.

• Store the country keyboard variat ion inside
the keyboard so users wil l not need to enter i t

manual ly.

• Keep the devices simple, without modes.

In addi tion, third-party input device vendors
made the fo.l lowing suggestions.

• Usc a modular connector that is easy to plug and

unplug correctly.

• Provide enough power for several additional
devices.

• Al low vendors to supply their own device
drivers; tuning their own device drivers is part
of the value added by the vendor.

The bus idea was elegant and genera lly wel l
received . Most of the reservations centered around
the l ikely impact on existing system components,
the current problems, and whether conversion to

the bus was feasible. Because we recognized that
other groups were facing tight dcvclopmcnt schecl
ulcs, we did not pressure these groups to support
our desktop bus work. We presented the desktop
bus as a possible solution to i nterface problems,
made our design information available, and worked

to incorporate suggestions. But as the development
work progressed, more partners supported our

effort.
Once we cleciclecl to use a des ktop bus, we

looked at avai lable designs, including the Apple
DeskTop Bus, the Musical Instrument Digital
Interface (MIDI), and serial buses offered by other
semiconductor vendors, and evaluated these a l ter
natives with respect to our design goal. Key advan

tagcs of the design chosen, i .e . , the ACCESS. bus, are

• Off- the-shclf interintegrated circu it (J 2C) micro

controller technology with maximum data rate

of 100 kilobits per second (kb/s) . This technol

ogy is low-cost, yet fast enough for sophisticated
input devices l ike a 3-D tracker.

• Built- in hardware arbitra tion, which simpl ifies
the software and allows reliable com munication
without inventing a new protocol.

38

• Dynamic recontiguration. The hardware and
software a l low bus devices to be "hot -plugged "
and used immedia tely, without restarting the
system. The devices are recognized automati
cally and assigned unique add resses. This advan
tage results in a plug-and-play user interface.

• A mature capabil i t ies grammar to support generic
device drivers. An extensible free-form grammar
allows devices to describe their characteristics
to a generic driver. Most common devices can
work with standard drivers.

Bus or network interconnection has become
widely accepted as a means of provid ing flexible
open solutions. To appreciate ACCESS. bus, it is help
fu l to position its performance capabi l i ties with
respect to those of other network interconnect
technologies, as shown in Table 1 .

Table 1 Network I nterconnects

Order of Magnitude
Performance

Bus Ty pe (kilobits per second)

Apple DeskTop Bus,
ACCESS.bus

LocaiTalk

Ethernet

F D D I

10-1 00

1 00-1 ,000

1 ,000-10,000

1 0,00 0-1 00,000

At first glance, the 100-kb/s speed of the
ACCESS .bus may seem adequate for large desktop
devices l ike printers and modems. Bu t these
devices can transm it long data streams indepen
dent of any user activity and , if not restricted, could
compromise the interactive performance of the
bus. Thus, ACCESS .bus is intended for low-speed
activities that people perform with their hands
and is fast enough to hand le multiple interactive
devices l ike a keyboard, mouse, or 3-D tracker.

Hardware Description
Before discussing the ACCESS.bus design, we pre
sent a description of the Philips FC technology

upon which the design is based. Details of the
specific ACCESS. bus implementation fol low.

Jnterintegrated Circuit Fundamentals
ACCESS. bus extends t he Phil ips PC bus to operate
off-board and , t hus, connect des ktop devices. The
FC is a two-wire serial clock and serial data

Vol. 3 No. 1 Fall I'J'JI Digital Technicaljmwnal

open-collector bus. An open-collector design means

that the clock and data l ines are normally in a high
impedance floating state and are pulled up to a log

ical high state.

A device that wants to send a message waits for

any message frame in progress to complete, then

asserts a START signal to become bus master and

begins to generate data and clock signals. The bus

clock is synchronized among a l l devices by i ts

wired AND connection. Each device, whether

transmitting or receiving, stretches the low period

of the clock until ready for the next bit to be trans

ferred. When the last device is ready, the bus clock
is al lowed to go h igh, generating a rising edge on

the serial clock. At this time, all active devices

sense the state of the bus data I in e . For a receiving

device, the state represents the received data bit .

For a transmitting device, the state determines

whether the device has successful ly asserted i ts
data on the bus. A transmitter that is sending a logi

cal high state and detects that the data l ine is being

held low by another sender, recognizes that it has

l ost arbitration and must try again later. When a

"co l l ision" or arbitration occurs, no data is lost, one

message is transmitted and received, and the

remaining messages must be sent again.

FC data messages are transmitted as 8-bit bytes,
with each byte being acknowledged by a ninth

ACKNO\VLEDGE bit from the receiver. PC technol

ogy also defines unique START and STOP signals to
delimit message frames. The first byte of any mes

sage frame is always the destination address.

ACCESS. bus Physical Implementation

Details of the physical implementation of ACCESS. bus

are as fol lows:

• Basic electrical configuration. ACCESS.bus uses

four-pin, shielded, modular-type connectors that

feature positive orientation and locking tabs.
Data and power for the bus are transmitted over

low-capacitance, four-wire, shielded cable. The
four conductors are used for ground, serial data,
serial clock, and + 12 v.

• Avai lable power. The maximum available power

for all devices is 12 v at 500 mill iamperes (rn A).
ACCESS. bus devices may supply their own power

from a separate source, if needed. A power-up

reset circu it must still be provided to reset the
device when bus power is appl ied.

• Cable length. The maximum cable length for

the entire bus is 8 meters. The limi ting factor is a

Digital Teclmicaljour11al Vol. 3 No. 4 Fall 1991

ACCESS.bus, an Open Desktop Bus

maximum capacitance not to exceed 700 pico

farads (pF).

• Number of devices. The m aximum number of

ACCESS.bus devices allowed on the bus is 14.

Limiting factors are the device addressing range

and the power distribution (a total of 500 rnA for

a l l devices).

• Hardware interfaces. ACCESS.bus hardware inter

faces are implemented using standard PC micro

controllers developed by the Signetics Company

or under l icense from Philips Corporation. (Sig
netics Company is a d ivision of North American

Phil ips Corporation.)

ACCESS.bus Protocol

Every device on the bus is a microcontrol ler with

an FC interface and behaves as ei ther a master

transmitter or a slave receiver, exclusively, as
defined by the FC Bus Specification.

Message Format

A message transmits information between a device
and the computer or between the computer and one

or more devices. There is one exception: a device

may attempt to reset other devices assigned to the

same address by sending a Reset message to i tself.

ACCESS . bus messages have the fol lowing format:

Byte

Number

2

3

4 through
(length + 3)

length + 4

Bit Number

1 2 3 4 5 6 7 8 l

destaddr 1 0 l

srcaddr 1 0 l

[P I length

body

checksum

Destination

address

Source

address

Protocol

flag, length

(the number
of data bytes
from 0 to 127)

Consists
of 0 to 127

data bytes

Initial ly, devices respond to a defau lt power-up

address. During the configuration process, the com

puter assigns a unique address to every device on

the bus. Messages are ei ther device data stream
(P=O) or control/status (P=l), as indicated by the

39

Image Processing, Video Terminals, and Printer Technologies

protocol flag. The minimum length of a message is

4 bytes; the maximum length is 131 bytes (127 data

bytes and 4 bytes for overhead). The message

checksum is computed as the logical XOR of all prc

vic)lls bytes, including the message address.

Standard Messages

The ACCESS .bus protocol defines the seven stan

dard interface messages summarized in Table 2.

Parameters defined within the body of the message

are l isted in parentheses.

Identification

Since the ACCESS. bus is a bus-topology network,

unique identification strings arc used to distinguish

devices. These strings arc structured as fol lows:

protocol revision: 1 byte (e.g. , "A'')
module revision: 7 bytes (e.g . . ''X l . 3 ")
vendor name: 8 bytes (e .g. , " DEC ")
module name: 8 bytes (e.g. , " LK501 ")
device number: 32-bit signed integer

The module revision, vendor name, and module

name strings an: left- justified ASCII character
strings padded with spaces. The device number

string is a 32-bit two's complement signed integer

and may be either a random number (if negative) or

a unique serial number (if posi tive).

Configuration Process

The configuration process is used to detect what

devices are present on the bus, assign each device a

unique address, and connect devices to the appropri

a te software driver. Configuration norma'lly occurs

at system start-up, or at any time when the com

puter detects the addition or removal of a device.

Power-up/Reset Phase

When reset or powered up, a device a lways reverts

to the default address and sends an Attention
message to alert the computer to its presence. At
system start-up or reini tialization, the computer

sends a Reset message to all PC addresses in the

ACCESS. bus device address range (14 messages) to
ensure that all devices on the bus respond at the

power-up default address.

Identification Phase

To begin address assignment, the computer sends

an Identification message at the device default

address. Every device at this address must then

respond with an Identification Reply message. As

each device sends its message, the JlC arbitrat ion

mechanism automatically separates the messages
based on the identification strings. The computer

can then assign an address to each device by includ

ing the matching identification string in the Assign

Address message. When a device receives this mes

sage and finds a complete match with the identifi

cation string, it moves its device address to the new
assigned value. As soon as a device has a unique

address, it is allowed to send data to the computer.
The FC physical bus protocol al lows multiple

devices on the bus at the same time if those devices

Table 2 Standard ACCESS.bus Protocol Messages

Computer-to-device Messages

Reset ()

Identification Request ()

Assign Address (identification string,
new address)

Capabi l ities Request (offset)

Device-to-computer Messages

Attention (status)

Identification Reply (identification string)

Capabilities Reply (offset, data fragment)

40

Purpose

Force device to power-up state and defau lt 12C address.

Ask device for its "identification string."

Tel l device with matching "identification string" to change its
address to "new address."

Ask device to send the fragment of its capab i l it ies i nformation
that starts at "offset. "

I nform computer that a device has f i n ished i t s power-up/reset
test and needs to be configured; "status" is the test resu lt.

Reply to Identification Request with device's unique
"identification stri ng."

Reply to Capabi l i t ies Request with "data fragment," a fragment
of the device's capabi l ities str ing; the computer uses "offset"
to reassemble fragments.

v'<:!l . .3 No. 4 Fall /':)':)1 Digital Technical]ottrnal

are transmitting exactly the same message. In the

rare event that two l ike devices report the same
random number or are mistakenly assigned to the
same address, each interactive device transmits a

Reset message to its assigned address prior to send

ing i ts first data message after being assigned a new
address. The self-addressed Reset message forces

other devices at the same address back to the

power-up default address, as if they had just been

hot-plugged . The message guarantees that each

device has a unique address, but not until the

device is actually used . The pseudo-random number
(or serial number, if available) d istinguishes devices

at identification time before they are used, al lowing
the host to inventory which devices are present.

Capabilities Phase

Device capabi l i t ies is the set of information that

describes the functional characteristics of an

ACCESS. bus peripheral. The purpose of capabil i ties
information is to al low software to recognize and

use the features of bus devices without prior

knowledge of their particular implementation. By

having locator devices report their resolution, for

example, generic software can be written to sup

port a range of device resolutions. Capabil i t ies

information provides a level of device i ndepen
dence and modularity.

The structure of capabil ities information is
designed to be simple and compact for efficiency,

but also extensible to support new devices without
requiring changes to existing software or periph

erals. These objectives are supported by m aking

the structure hierarchical and representing capabil

i ties information in a form that appl ications (and

humans) can use directly. The capabilities informa

tion is an ASCII string constructed from a simple,
readable grammar. The grammar allows text strings

to be formed into l ists, nested l ists, and l ists with
tagged elements. The capabi l ities string for a loca
tor might read as fol lows:

(p r o t (L o c a t o r)

t y p e (m o u s e)

b u t t o n s (1 (L) 2 (R) 3 (M))

d i m (2) r e l r e s (2 0 0 i n c h > r a n g e (- 1 2 7 1 2 7)

d Q (d n a m e (X))

d 1 (d n a m e (Y))

)

After assigning a unique address to a device, the

computer retrieves the device's capabi l i t ies string
as a series of fragments using the Capabil ities

Request and Capabil i ties Reply messages. The com-

Digital TechnicalJourna.l Vol. 3 No. 4 Fa/11991

ACCESS. bus, an Open Desktop Bus

puter then parses the capabil i ties string to choose

the appropriate appl ication driver for the device.

The parsed string is also made available to applica

tion programs using the device.

Normal Operation

During normal operation, the computer periodi

cally requests inactive devices to identify them

selves. If a device is found to be missing, or a new

device appears by sending an Attention message at

the default address, the computer sends an Identi

fication Request message to each device address

previously recorded as in use (up to 14 messages) to

confirm which devices are stil l present. The com

puter also sends a Reset message to each device

address previously recorded as not in use. The com

puter then begins the address assignment process

by sending an Identification message to the default

address and assigning each device that responds to

an unused device address.

Generic Device Concepts

ACCESS.bus uses the concept of generic device

drivers to support familiar 1/0 devices using only a

few drivers. Generic specifications for keyboards,

locators, and text devices have been developed.

Keyboards

The keyboard device protocol attempts to define

the simplest set of functions from which a Digital

LK201 or a common personal computer keyboard

user interface can be built. A generic keyboard con

sists of an array of key stations assigned numbers

between 8 and 255. When any key station transi
tions between open and closed, the entire l ist of

key stations currently closed or depressed is trans

mitted to the host. This reporting scheme is func

tionally complete; the host can detect every key

transition, and the scheme provides information
about the ful l state of the keyboard on each report.

No special resynchronization reports are required .
In addition to reporting key stations, the generic

keyboard device can support simple feedback
mechanisms such as keycl icks, bells, and l ight

emitting d iodes. These mechanisms are controlled
explicitly from the host so that minimal keyboard

state model ing is required. The capabili ties infor

mation is used to identify the keyboard mapping

table and the feedback mechanisms available. The
keyboard mapping table can also be stored in the
keyboard i tself as part of the capabi l ities string.

4 l

Image Processing, Video Terminals, and Printer Technologies

Locators

The locator device protocol is designed to accom

motla te a range of basic locator devices such as

a mouse or tablet. More complex devices can be
modeled as a combination of basic devices or can

provide their own device driver, thus minimizing
the burden on the protocol.

A generic locator consists of one or more dimen

sions described by numeric values and , optional ly,
a small number of key swi rches. The standard driver

requires the locator device to identify the type of

data it wil l report from a small l ist of options and

adjusts to hand le this data type. These options are

• Number of d imensions, e .g . , two, for a mouse or

a tablet

• Dimension type: absol ute, i .e . , referenced to

some fixed origin, l ike a tablet: or relative. i .e . ,

changed since last report, l i ke a mouse

• Resolution in divisions per unit , e .g. , counts per

inch or counts per revolut ion

• Dynamic range of values that can be reported,

i .e . , the minimum and maximum values

• Number of key switches, from 0 to 15

The assignment of scalar-value dimensions

returned from one or more devices to the user

interface functions is left to the appl ication. How

ever, to accommodate most conventions. the scalar

d imensions and the key switches can be labeled in
the capabil ities string.

Text Devices

The text device protocol is intended to provide a

simple way to transmit character data to and from

character devices such as a bar code reader or a
sma l l character display. A generic text device trans
mits a stream of 8-bit bytes from a character set.

Simple control messages are defined to support
flow control and to select communication parame
t<.:rs that might be used to i nterface with a modem.
The capabil it ies string contains information that

identifies the specific character set and communi

cation parameters used.

Summary
The ACC.ESS. bus network interconnect offers the

possibility of a standardized, low-speed, plug-and

play serial communications channel that can untan
gle peripheral i nterfacing and open the way to new

42

appl ications. As the advantages of this open desk
top bus design become wel l known, we expect

wider adoption of this product. The ACCESS. bus

is currently implemented on Digital's Personal
OECstation 5000 workstation, with implementa

tions underway for the next generation of RISC

workstations and v ideo terminals.

Acknowledgments

Many people contributed to the design ancl devel

opment of ACCESS.bus. I would especial ly l ike to

acknowledge Tom Stockcbrand and Tom Furlong

for their vision and early support; Chris Cued, Mark

Shepard, and Ernie Soul iere for their contributions

to the ACCESS.bus electrical design and protocols;

and Robert Clemens for the excellent demonstra

tion hardware and firmware development support.

GeneralRej(erences

D. Lieberman, " Desktop Bus Is Born Free," Elec

tronic Engineering Tintes (September 2, 1991) : 16.

ACCESS. bus Developer's Kit (Palo Alto, CA: Digital

Equipment Corporation, Workstation Systems

Engineering TRJ/ADD Program, 1991).

Signetics flC Bus Specification (Sunnyvale, CA:

Signetics Company, a Division of North American

Philips Corporation, February 1987).

Vol. ."> No. 4 t�{t/1 J')')J Digital Teclmicaljournal

Ri chard Landau
Alan Guenther

Design of the DEC print
Common Printer Supervisor
for VMS Systems

DECprint Printing Services software controls a variety of printerfeatures for a wide

range of printers. It supports several different page description languages, handles

multiple media simultaneously, and uses different I/0 interconnections and commu

nication protocols. Operating within the VMS printing environment, it imple

ments a large number of user-specified options to the PRINT command. DECprint

Printing Services functions as the supervisor in the VMS printing system for all

PostScript printers supplied by Digital. The common printer supervisor bas an espe

cially flexible internal structure and processing method to serve complex printing

environments.

The increasing variety and complexity of printing

devices in the last decade have strained the abi l i
ties of operating systems to support them. Users

demand access to, and control over, the increas

ingly sophisticated features of their p rinters. At the
same time, appl ication programming resources are

stretched by the requirement to support various

devices and features. Modern operating systems

include printing systems that support printers and
insu late applications from many details of printing.

DECprint Printing Services software was designed

to handle a wide variety of printers, with a range
of I/O connections, media hand l ing capabili ties,

finishing equipment, data syntaxes, and so forth.

I t provides the controll ing software that supports

the fu ll range of Digital printers capable of printing
PostScript documents.

DEC print Printing Services functions as a compo
nent of the VMS printing system at the level of
printer supervisor, cal led symbiont in VMS termi
nology. The supervisor is known within Digital as

the DECprint common printer supervisor or com
mon print symbiont (CPS). It is cal led common
because i t replaces a number of different symbionts
and is common to a range of printers. CPS is a com

pletely new program developed by the Video,

Image and Print Systems Group.

This paper explores the environment in which

printing systems now reside. I t describes the struc
ture and functions of DECprint Printing Services and

Digital Techu'icaljourual Vol. 3 No. 4 Fall /991

the design of CPS, focusing on its capabilities within

the VMS system. The paper then d iscusses the oper

ation of the VMS printing system and the enhanced

printing environment made possible by CPS.

Printing System Dirnensions

A printing system is the set of software and hard

ware components through which print requests

pass from the time the user decides to print a docu
ment u ntil the appropriate hard copy arrives.

The variety of printing devices in use is a chal
lenge for the printing system and for applica

tion programmers. We use the word "printer" in

this article to imply the fu l l range of output devices

that are at tached to systems and networks. A sys

tem today must support a wide number of d imen

sions: marking technologies, media, medium sizes,
speeds, transmission rates, and interconnects.

The DECprint Model of Printing

The DEC print model of printing is composed of sev
eral layers. Each layer has defined functions and 1/0

interfaces. The layers of the DEC print model and their
relationships to VMS and CPS are shown in Figure 1 .

This model of print ing describes a usefu l structure

with consistent functions and responsibi l i t ies.

• Appl ication. An application program creates

information that the user may want to print. Al l
types of applications fit into the model at this

43

Image Processing, Video Terminals, and Printer Technologies

JOB
SUBMISSION
INTERFACE

(NETWORK)
PR INTING
INTERFACE

PRINTER
ACCESS
INTE RFACE

DECPRINT ARCHITECTU RE

APPLICATION

USER
INTERFACE

- - -1- - - - -

PRINT
CLIENT

- - - - -1 - - - -

PRINT
SPOOLER

I
PR
SE

PR INT
SUPERVISOR

- - - -1- - - -
MARKING
ENGINE

I PR

FINISHING
EQUIPMENT

I NT
AVICE

INTER

VMS

D IGITAL
COMMAND
LANGUAGE - - +- -

SYS$SNDJBC

- - + - -
QUEUE
MANAGER

I
PRINT
SYMBIONT

- - + - -
PRINTERS

CPS

COMMON
PRINT
SYMBIONT

Figure 1 Relationships of the Vll1S Printing System Components to the DECprint Model

level, from data processing programs and simple

text edi tors to high-quality document formatting

and publ ishing appl ications. The appl ica tion may

present a printing interface directly to the user,

or may create a final form document from which

the user can access other print ing interfaces.

• User printing interface. A user expresses the
desire to prin t through a user interface to the

prin ting system. The i nterface may be oriented
to written com mands, to user selection of

menu choices, or to a point -and-sdcct graph ical

interface .

•]ob subm ission interface. User interface pro

grams communicate with the lower kv<.:b of the

printing system through an application program

ming interface (API) to the print client. The API

contains fu l l capabili ties for creating, destroying ,

and managing print jobs of all types. The job sub

mission i nterface may be operating svstcm

specific or may he based on emerging standards

for network printing.

44

• Print c l ient . The client accepts requests through

its API, performs defau lting for the user, assists in

selecting the correct print service, ga thers the

print instructions and docu ment files, and sub

mits the job to the print service. The protocol

used to submit the job may be operating system

specific or may be based on emerging standards

for network printing. The print service may be
local to the print cl ient (and the user), or it may
be located elsewhere in the network.

• Print service. The print service is a convenient
abstraction that includes the print spooler and aU

subsequent layers in the execution of the print

job, for some set of physical printers . Printers

are often grouped together based on their static

characteristics, such as type of printer, printer

data syntax, ancl default media.

• Print spooler. The print spooler accepts the print

job from the client, spools the files and queues

the job for later execution if necessary, ancl

then schedules the job for execution. If the job

Vol. 3 No. 4 Fall 1991 Digital Technical journal

Design of the DECprint Common Printer Supervisorfor VMS Systems

requires resources that are not immediately avail

able, human intervention may be necessary. For
example, if a job requires a special print medium,

then an operator or other printer attendant must
provide the medium for the printer. If the job

requires a special font, the spooler may be able to

obtain the font from a l ibrary without human

intervention.

• Printer supervisor. The supervisor d irectly con

trols the printer. I t interprets the print i nstruc

tions for the job, manages the printer and its fin

ishing equipment, and writes the document data
to the page description language (PDL) inter

preter. It also monitors the status of the printer,
supplies some resources on demand, and responds

to error conditions. On the VMS operating sys

tem, the printer supervisor is cal led a symbiont;

on ULTRIX and UNIX systems, a daemon.

• PDL interpreter. Generally, final form document

data is written in a data syntax intended for print

ing, but i t is not in the native form required
by the marking engine. A PDL interpreter trans

forms the printer language into the lower-level

form for the marking engine. For example, in a typ

ical laser printer, a PostScript interpreter trans

forms the PostScript language into a device-level

bi t map and media control instructions for

the print engine. In a simpler impact printer,

the controller turns characters and control

sequences into pin timing and paper movement

instructions.

• Marking engine. The marking engine consists of

the media transport and printing mechanisms,

generally controlled at a low level. Marking may

be done by a wide spectrum of technologies, and
the media used may also vary widely. For the
most part, descriptions in this paper use raster

devices such as laser printers as examples.

• Finishing equipment. The overall printing sys
tem includes finishing options that are not often
considered part of the (largely electronic) print

ing system. Currently affordable components of
the printing system are typically automated. For
example, several years ago duplex (two-sided)
printing was not economical for most office

applications; today it is, and many office printers

include this finishing feature. Stapli ng, on the

other hand, is still not economical for most office

applications, though i t is i mplemented i n many
high-end production printers.

Digital Technical journal Vol. 3 No. 4 Fall 1991

Implementations of the model in various operat

ing systems and printers may express the layers

differently, sometimes skipping certain layers. The

VMS printing system contains components at most
levels of the DECprint model. The DECprint com

mon printer supervisor (CPS) operates within the
VMS system, as indicated in Figure 1 . We designed

CPS to satisfy the requirements and projected needs

of users, system managers, and programmers. In the

next section we discuss the design of CPS.

Sharing Devices

Printers are often shared, especially high-end or

special ized, expensive devices. Since shared print

ers are not always immediately available to the

user or application program, the printing system

is required to hold jobs for printing later. The sys
tem must be able to store the user's instructions for

printing, along with the contents of the document,

until they are needed.

Insulating the Application from Details

A printing system insulates appl ications from the
details of printing devices. For example, DECprint

Printing Services provides communications mecha

nisms and protocols, determines whether a shared
device is currently busy, and sometimes translates

printer data syntax.

Appl ication programmers generally prefer to

deal with as few external interfaces as needed to

perform the task. Thus it is desirable to minimize
the number of d ifferent classes of printing devices

while maximizing the variety and flexibi l i ty of

printing devices. The DECprint architecture speci

fies that the printing system take responsibi l i ty for

matching the needs of the appl ication to the capa

bil i t ies of the output device, whenever possible.

For example, a printing system might need the abil

i ty to transform the printer data stream from a
data syntax used by the application to a data syntax
used by the printer. Hidden transformation makes
the system easier for applications to use. DECprint
Printing Services provides a certain number of
printer data syntax transformations of this type,
from languages such as DEC PPL3 (which is com
monly referred to as "ANSI" within Digi tal) and
ReGIS to PostScript, and from PostScript to printer

bit maps.

Internal Structure of CPS

In designing CPS, our primary goal was to create a
flexible system that would hand le al l the printer

45

Image Processing, Video Terminals, and Printer Technologies

features we could foresee ancll many tha t we could

not foresee, a system that could be modified as

needed to hand le not just new printers but new

classes of printers. CPS is capable of managing a

wide variety of character, l i ne , page, and document

printers.

lb create a flexible printing system, we needed to

design a highly modular internal structure. This inter

nal structure combines modules into sequences a t

several levels t o provide a general framework for

control l ing and manipula ting I/O devices.

At the bottom level of the structu re are fi lter

modu les, which are l ightweight, independently

schedulable subprocesses within a VMS process.

Filter modu les commlmicate with each other by

means of 1/0 routines and a shared data structure

containing joh information. Pointers to the 110 rou

tines and shared data are suppl ied in the invoca

tion of the filter module. The effect of the stream

1/0 routines is much l ike that of pipes i n the UNIX

operating systems.

At the next h igher level is a set of communicating

filter modu les; each stream of filter modules is

cal led a job step. Final ly, a module cal led the print

job ana lyzer combines a sequence of job steps to

hand le a complete print job.

Filter Modules and job Steps

Filter modules can read input from a preceding fil ter
modu le and write data to a succeeding filter mod

ule. h lter modu les may perform functions such as

reading a file, converting carriage control , translat

ing data syntax, or writing data to the printer. A

filter module receives as arguments an input stream

and an output stream , l ike a UNfX process, and a

shared data structure, unl ike a Ul\TJX process. A sim

ple fi l ter moclulc reads data from the input stream,

processes data, and wri tes data to the output stream.

A filter modu le may condition i ts operation based
on information from the shared data structure or

the contents of the data stream. For example, a

translator filter modu le might format data based on
the page size, margins, and aspect ratio specified

in the shared data structure, or based on control

sequences in the data stream, or both .

Not a l l filter modules use the input or output

streams. The file reader filter module reads from the

file instead of the input stream. Similarly, the device

output module writes to the printer instead of the

output stream.

A job step is a set of filter modu les piped together

to perform one complete subtask. A subt:tsk may be

46

as simple as "create a separator page·· or as complex

as the sequence "read a file, perform carriage con

trol convt:rsion , add /HEADER, translate from A:'-ISI

data syntax to PostScript, and write the ITsult to

the printer." A print job is a set of job steps that per
forms a l l functions the user requests explici t ly or

implicitly. The CPS faci l i ty that transla tes sekcted

printer data syntaxes into the PostScript language is

discussed in the section Data Syntax Translation.

Print job Analyzers
To simpl ify the addition of new printers and new

classes of printers, CPS contains a software struc

ture that corresponds to the hardware mechanisms

of a printer.

A print job ana lyzer (PJA) determines which

job steps are requ ired to process a job. CPS includes
a separate print job analyzer for each major class

of printer that it supports: serial PostScript,

PrintServer, and LN03 Image printer devices. When

the symbiont begins execution, a PJA is chosen based

on the type of device associated with the queue.

This PJA is used unt i l the symbiont is stopped. If a

terminal device, such as a TI or TX or LT device, is

associated with the queue, then the PJA for a serial

device is invoked. I f an LD device is used, then the

PJA for an LN03Q printer is chosen . Otherwise, the

PJA associated with PrintServer devices is used.

Each PJA contains a l ist of al l job steps requ ired to

execute a job on the class of printers it supports.

The PJA selects the job steps it needs from this l ist,

depending upon the instructions received from the

queue manager.

Job steps are I inked together. The first job step

chosen by the PJA is l inked to the termination of the

P.JA i tself; when t he PJA finishes compil ing the job,
it terminates, thus starting the execution of the job.

At the beginning of each job step, each filter mod
ule is assigned stack space and a stack frame. Its ini

t ia l program counter address and arguments are

stored in i ts saved registers for process activation.
CPS uses a piped stream 1/0 mechanism similar in

fu nction to a U N IX stream; a filter module 's input

comes from the outpu t of the previous module, and

its output becomes input to the following module.

I3y convention, the first filter module of the job step

is activated first in the job step; when a filter blocks
for output, t he next fi lter module is activated . That

fi l ter modu le then runs unti l i t blocks for inpu t or

output, at which point the previous or fol lowing

filter module is activated .

Vr>l. 3 Nu. 4 Fall 1991 D igital Technical journal

Design of the DECprint Common Printer Supervisor for VMS Systems

Table 1 Simpl ified Job-step Sequence

Job Step Function

init_ps_device

check_prologues

sheet_ count

job_burst

sheet_ size

wait_sheet_size

fi le_setup

get_vmbytes

wait_vmbytes

file_out

sync

init_ps_device

sheet_ count

wait_sheet_count

job_trai ler

sync

disconnect

Ensure the device is "fixed up."

Ensure that persistent
prologues are loaded.

Get the beginn i ng page count.

Print job bu rst page.

Get the cu rrent sheet_size.

Wait for the sheet_ size before
conti nuing.

Send any f i le /SETUP modules.

Get the amount of local printer
memory avai lable on the
printer.

Wait for the local printer
memory message f rom the
printer.

Read the f i le to print and send
it to the DECansi translator.

Wait for the printer to finish al l
pages.

Ensure the device is "fixed up."

Get the ending page count.

Wait for the page count to
come back.

Print the job trailer page.

Wait for the printer to finish
the job-trailer page.

Release the printer.

JOB STEPS

FILTER
MODULES

J READ GET
VMBYTES
MODULE

Table 1 shows a simplified listing of the job steps

compiled by the serial PJA to process a simple job:

one file to be printed in ANSI mode. Each of the job

steps shown contains one or more filter modules

piped together. For example the job-burst job step

has two modules piped together: the job-burst mod

u le and the write-to-printer module. Figure 2 shows

several job steps with several filter modules each.

If an error occurs at any point in the processing

of a job, CPS skips job steps unti l it reaches the

identified error job step set by the PJA. In Table 1 ,

the error job step points to the sync job step that

precedes the job-trailer job step . In this case, CPS
resynchronizes with the printer and prints the job

trailer page, includ ing the error message.

Event Handling

In addition to the output side of processing a job,
there is a corresponding input side. The input side

reads messages from the printer, parses them, and

notifies the appropriate handler of the event. The

handler is chosen based on the type of message sent.

• CPS internal messages are d ispatched to the

appropriate symbiont routines. For instance,

printer resource messages contain information
that affect CPS internal operations: paper size is

stored for later use by layup (the general map

ping of page images to sheets) and translators;
virtual memory size is stored for translators; and

page count is stored for la ter use in accounting.

WAIT
FOR
VMBYTES

Note that data flows from top to bottom and job steps progress from left to right.

Figure 2 job Steps and Filter Modules

Digital Technical Journal Vol. 3 No. 4 Fall 1991 47

Image Processing, Video Termjoals, and Printer Technologies

• Printer status messages arc dispatched to the
operator and, in some cases, to the current user.
CPS uses the normal V.\·IS OI'CO:vl notifica tion
mechanism to send messages to the system opn
ator. If the user specified /NOTIFY in the print
instructions, then CPS us<.:s the V.\IS SllRKTI IRt :

syst<.:m service to send the message to the user
also.

In some cases, printer status messages require
addi tional processing. for example. paper jams
requ ire spe<.:ial hand ling on some print<.:rs: since
CPS cannot determine how many pages were lost

in th<.: jam, it invok<.:s human intervention by plac
ing the job on hold. The operator or user can
determine what parts of t he job, if any, to reprint.

• Program status messages and user data messages
arc dispatched to the job log. If the user specified
/NOTIFY. then they are also displayed with the
$llRKTHRU system s<.:rvice. These messages may

be printed or logg<.:d .

The input and output sides of the symbiont run
asynchronously most of the time, hut occasionally it

is necessary for the output sid<.: to wait for a mes
sage from the printer. This synchronization between
the input side and output side of the symbiont is
accompl ished by an internal event-signal ing facil

ity. When synchronization is r<.:qu ired, the output
side wai t s for a specific named <.:vent and the input
side signals that event when i t is detected . For
example, a t the end of a job, CPS needs the final
printer sbeet_count i n order to calcu late the
sheet_ count for the job; this count is printed on the
trailer page and stored in the VMS accounting
records. When CPS ne<.:ds the sheet_count, the out

put side waits for an event named sheet_ count. The
input side parses the incoming sheet_count mes
sage, stores the returned value in the shared data
structure, and signals the sheet_cou nt event. The
processing of this event is asynchronous: at the
time the message comes in , the output s ide may or
may not have stal led while waiting for the
sheet_count even£. If the output side was wai ting

for that event, it is sched uled for fu rther process
ing; if the output side was not wait ing, the event is

remembered, in case the output side attempts to
wait for this condition in the near hnw-e.

In the next section we describe the ways CPS is
controlled and managed in the VMS printing system
and how it expands printing capabili ties in the VMS

environment.

48

The VMS Printing SJ'Stem Environment

CPS funct ions as a component of the VMS printing
system at the level of printer supervisor. As such, i t
interacts with, and is shaped by, the other compo
nents of the VMS system . The term printer super
visor is used in this paper to be consistent with the
terminology of the emerging International Stan
dards Organ ization (ISO) Document Printing Appl i
cation draft standard, ISO/IEC DIS 10175.

Components
The VMS Batch/Print system is a general queue man

agement service, capable of queuing, schedu l ing,
and executing jobs in response to a variety of user
specified instructions. 1 On the VMS system, the
printing instructions arc stored in a print job

object, which is placed in a queue of jobs for a
printer. Modern print jobs often resemble batch
jobs, due to complex stored processing instruc
tions and the heavy computing load placed on
graphics printer control lers.

The V.\15 printing system contains components at
most levels of the DECprint architectural model.

• l lser printing interface. The VMS system includes
interactive Digital Command Language (DCL)
interfaces for printing and managing print jobs,
printers, and the printing system i tself. 2 For
DECwindows appl ications. the DECwindows Print
Widget provides a graphical interface that per
mits users to specify al l the options for printi ng ,
and the ALL-IN-1 appl ication provides character
cel l menus for choosing print options, includ ing

the enhanced options offered by CPS.

• job submission interface. The VMS system
includes program cal l interfaces that give the
program a l l the capabi l i t ies of the DCL user
interface. 1

• Print cl ient and service for remote printing. The
d istri buted queuing services product currently
provides transparent remote printing in net
works using a proprietary network protocol.

• Print spooler. The VMS job Control ler, recently
replaced by the VMS Queue Manager, fu nctions as
queue manager and sched uler. (The function of
spooling printer data to temporary files is per
formed by the VMS file system and is transparent
to most components of the printing system.)

• Printer supervisors. The VMS system provides
two standard symbionts to support most l ine

\kJI. j No. 4 Faii i'.J'Jt Digital Techllicaljourtwl

Design of the DECprint Common Printer Supervisor for VMS Systems

printers and serial printers. PRTSMB supports

printers attached directly to communication
ports on the CPU, e.g. , the printer port on a VAX

workstation. LATSYM provides support for print

ers attached to the serial or parallel ports of

DECserver network communications servers. For
PostScript printers, CPS is used instead of these

standard symbionts.

The VMS printing system also contains compo

nents that affect CPS processing.

• Device control l ibraries are col lections of sma ll
text sequences that can be inserted i nto the data

stream from the symbiont to the printer. The

sequences are ideally organized into text l ibraries
containing named modules, with a separate

l ibrary for each type of output device . Device

control modules can be associated with a printer
queue by the system manager as part of a FORM

definition or a job reset function, or accessed

d irectly by the user with the /SETUP qualifier.

Device control l ibraries frequently contain

device-specific control sequences that alter the

format of the text and pages, for example, setting

printer paper margins, setting character pitch, or

enabling landscape printing. They may also con

tain downloadable font data or preprinted data
for each page.

• VMS form definitions contain page size and mar
gin specifications that guide the print formatting

process for a print job. The user can also specify

page setup strings and can prohibit the symbiont
from wrapping l ines during processing.

VMS Print Queues

VMS has several distinctly d ifferent types of queues.
Execution queues process jobs through a symbiont,

and generic queues transfer jobs to other queues.

Often generic queues are used for load balancing:

one generic queue may feed several printers of sim
ilar capabi l i ty and location.

CPS also uses generic queues in an unusual way.

Default attributes can be specified for generic
queues that cause all jobs submitted through the
queues to inherit certain default print instructions.
For example, a queue can be established that, by

defau lt, assumes that jobs are PostScript docu

ments, or assumes that jobs should be printed in

landscape orientation. This abil ity to set default
queue attributes is essential for supporting appl ica

tions that can specify the queue name for a print

Digital Technical journal V!Jl. 3 No. 4 Fal/ 1991

job, but cannot specify certain other qualifiers such

as DATA_ TYPE. It can also permit users of old appli
cations to access new features of the printing

system.

VMS Print Commands and Interfaces

The VMS printing system is manipulated through

DCL commands and qualifiers. Many of the

qualifiers are hand led by the queue manager and
have no impact on the operation of print sym
bionts; others directly affect the operation of CPS.2

The VMS system also supplies a call interface to

these functions.·'

VMS Interfaces to Symbionts

The VMS Job Controller/Queue Manager provides

two interfaces for customizing print symbionts: the
PSM module-replacement interface, and the SMB

server symbiont interface. CPS is currently imple

mented as a single-stream symbiont through the

SMB interface.

The SMB interface permits a user to replace the

flow of control of the symbiont with a separate pro

cess. The process may be writ ten in any style and

structure suitable to the task at hand, and need fol

low only certain minor guidelines with respect to

the operating system environment. To use the SMB

interface, we replaced the entire symbiont process.

The result was much greater flexibil ity, but we

were required to write more program code.

The SMB interface provides services to the sym

biont process through subroutine entry points and

callbacks that pass messages between the symbiont

and the VMS queue manager. Messages from the

system to the symbiont specify functions such as

start up, shut down, begin job, pause, resume, and

interrupt. Messages from the symbiont to the

system return information such as job status, job

completed, device status and error information,
and checkpoint and accounting data.

Range of Printers Supported

CPS currently supports the full range of PostScript
printers supplied by Digital, from a low-speed
color printer up to a 40-page-per-minute laser
printer that can hand.le 11 different paper sizes.

Special I/0 Processing

CPS supports several different means of communi
cation with the printer: serial, Ethernet, and a spe
cial high-speed video connection.

49

Image Processing, Video Terminals, and Printer Tec h nologies

The serial connection may be either a direct con

nection between the compmer and the printer or

a local area t ransport (LAT) connection by which

printer is a ttached to a serial port of a DECscrver

terminal server. The two methods differ only in

the way johs are started and terminated . For

LAT-connccted printers, CPS must establ ish and d is

miss the LAT connection a t the start and end of

each job.

Once the connection is establ ished with the

serial printer (via IAT or d irect connect), CPS begins

a dialogue with the printer using an asynchronous

serial l ine protocol and PostScript programs. The

asynchronous serial I ine protocol, defined by

Adobe Systems Inc . , consists of five control charac

ters that alter or query the state of the printer.

The symbiont forces the printer into an id le state

by a series of controi/T, control/C, and controi/D

characters. When a controi/T resu lts in an I DLE

message from the printer, the symbiont and printer

are ready to process a job.

PrintServer printers on Ethernet networks are

DECoct nodes. To write to a PrintServer printer, CPS
establ ishes a DECoct task-to-task session at the

beginning of the job. The dialogue required for syn

chronizing serial printers is not necessary for the

Ethernet printers; the PrintServer protocols pro

vide synchronization ancl device control opera

tions through separate control channels.

Printers connected through Ethernet use several

protocols, which are layered on DECnet task-to-task

com munications. The protocol used depends upon

the version of the PrintServer code.

The local area print service (LAPS) protocol was

developed for the PrintServer family and is sti l l in

use. The Common Printer Access Protocol (CPAP)

wi ll replace LAPS in a l l PrintServer printers. ; PAP is

based on the earlier Reid-Kent protocol, Internet

Socket 170, and is being discussed as a possible new
Internet standard. '

Special Processing for "Dumb" Printers
In some printer configurations, i t is economical to
use the workstation or CPU as the printer con

troller. In this case, the printer i ncludes only the

print engine and media handl ing and finishing

equipment, ancl none of the electronics, comput

ers, and interpreter programs that render the

graphics language into the elements required by the

print engine (usual ly an array of pixels). Such a

"dumb" printer is physical ly connected to the com

puter by a very high-speed l ink such as a direct

50

video connection or data bus. For such a controller

less printer to be general ly usefu l , the printing

system must emulate an existing class of printer.

The LN03 Image printer (LN03Q) is a bit-map

printer of this type. I t uses a special h igh-speed

DMA bi t -map interface that p lugs into a Q-bus and

provides the speed required for print ing scanned

images. The protocol between this interface and

the printer consists of bit maps and a sma l l amount

of status and synchronization information.

The engine i tself includes only the laser imaging

and paper han d ling equipment. CPS hand les the

rest of the control ler functions in the host com

puter. Because of the level of support and emu la

tion provided, the LN03Q printer appears to be an

ord inary PostScript job printer with some special

image capabi l i ties.

For a given print job, CPS performs the normal

processing up to the point at which the PostScript

languag�.: data stream would normally be sent to the

printer. At this point , CPS directs the data stream to

a special PostScript interpreter subroutine that pro

duces a bi t-map image of the printed page in mem

ory The bit-map image is then sent to the printer

through a special LNV21 d irect memory access 1/0

interface on the Q-bus.

The software for the LN03Q printer a lso has one

special processing path. The l.N03Q printer is

in tended as an image printer for bi t-map images.

CPS supports image fi les containing page im ages

that are scanned or precomputed at device resolu

tion (300 clots per inch) and optionally compr<.:ssed

with Comite Consu ltatif I nternationale de Tek

graphique et Tetephonique (CCJTT) Group 3 (l D) or

Group 4 (20) compression methods. Image files can

be transm it ted directly to the printer without con

verting to PostScript. Image files can only be sent
directly to t he p rinter if they are printed one page

per sheet; if the user requests printing mu ltiple pages
per sheet, or other layup functions, then the image

is processed through the PostScript interpreter.

I mage fi les are structu red in Digital document

in terchange format (DDI F), which expresses text,
graphics, and images together. Files intended for the

LN03Q printer must contain only image bit maps.

If the print job specifies DATA_TYVE= DDIF or the

file is a DDIF file, then CPS examines the file in a spe

cial mode. If the file correctly contains only image
bi t maps. CPS decompresses the images in memory

if necessary, using the DECimage Image Support

Libra11' routines. and then sends the uncompressed
bit map directly to the LN03Q print engine. Thus

!4JI. 3 Nu. 4 l-it// 1991 D igital Technical jour, at

Design of the DECprint Common Printer Supervisor for VMS Systems

the image goes directly to the printer without pass

ing through the PostScript interpreter.

Special Processing in CPS

CPS includes a number of special features and func

tions to satisfy the requirements of the DECprint
architecture and the VMS printing system. In this

section, we d iscuss the features that extend the

process of standard print symbionts or are com

pletely new.

Reading Print Instructions

CPS reads the print instructions for a job from the

VMS queue manager through the SMB$READ_
MESSAGE and SMB$READ_MESSAGE_ITEM functions

of the SMB interface. Print instructions are

expressed as attributes with values. Each attribute
has an associated numeric code and symbol, called

an i tem code, and a value of a specific data type.

The symbiont reads each item code and value, and

stores the information in a static data structure.

The information is used later to determine the pro

cessing sequence for the job, special information to
be displayed on separator pages, and so forth.

Bidirectional Communication with
PostScript Printers

CPS requires a fu l l duplex communications path to

PostScript printers since they report many condi

tions by sending messages to the host computer.

These messages include device status messages,

program status and error messages, user data mes
sages, and replies to CPS inquiries.

CPS also requests information from the printer

for synchronization, formatting, and accounting

purposes. For instance, to determine how to for

mat ANSI text, the symbiont needs to know what
paper is loaded in the printer.

CPS receives the messages from the printer and
parses them to determine what it should do with
the message. If the message is device status, then
CPS routes the message to the operator and/or the
user whose job is being printed. If the message is an
internal CPS communication, then CPS processes it .

Otherwise, the message is e ither a program status
message or a user data message. In either case it is

Jogged for the user.
Al l messages are parsed except user data mes

sages. Messages from the printer's interpreter are

converted to a standard format that would, if
desired, permit the message to be translated into

the user's native language.

Digital Technical jounwl Vol. 3 No. 4 Fall 1991

Data Syntax Translation

CPS provides a facil ity that translates selected

printer data syntaxes into the PostScript language.

The translating programs are subroutines, some

quite large and complex, that accept a data stream

in one format and produce a data stream in another

format. The translators are responsible for all for

matting, including sheet size, page orientation,
aspect ratio, and type sizes; CPS is responsible for

al l I/0 and coordination with the printer. The trans

lation faci l i ty currently supports the fol lowing

printer data syntaxes: DEC PPL3, ReGIS, Tektronix
4010/4014, and PCL Level 4.

The translation facil i ty has several restrictions. A

file may consist of only one data syntax, and all files

in a job must be of the same data syntax.
In general, CPS performs the translation from

one data syntax to another on the host computer.
In this way, simple printers that support only the

PostScript language internal ly can be extended

to support a number of printer languages. This

reduces the requirement for a complex printer con

troller that supports multiple data syntaxes inter

nal ly. Host translation can guarantee consistent use

across jobs of the printer's internal fonts, page ori

entation, finishing equipment, and page layup The

general mapping of page images to sheets supplied

as part of CPS requires that the printer operate in
PostScript mode. To ensure consistent use of fonts

and consistent positioning of pages with respect to
finishing such as duplexing and stapling, all lan

guage translation must be done by the symbiont.

Page Layup Multiple Pages per Sheet

Page layup is the process of printing more than one

page image on a sheet of paper. When more than

one page image is placed on a sheet of paper, the

images are rotated and scaled to fit on the page, but

are altered in no other way. The layup facil ity works
with all data types, including PostScript and PCL

data syntaxes. Layup also permits formatting for
larger paper sizes and then printing on smal ler
sheets.

Layup is invoked expl icitly with one or both
of the extended qualifiers NUMBER_ UP and LAYUP_
DEFINITION. NUMBER_UP specifies the maximum

number of page images that will be printed on a

single side of a sheet; for example, two-up printing

is specified by the "NUMBER_UP = 2 " option. Two or

four page images per side may save significant quan

ti ties of paper for draft printing, handouts, and the
l ike . Up to 100 page images may be placed on a

5 1

Image Processing, Video Terminals, and Printer Technologies

single sheet of paper for thumbnail draft printing to

review the overal l layou t of a document.
Layup may also he invoked through a combina·

tion of PAGE_SIZE and SHEET _SIZE with NUMHER_UP.

for example, the combination of PAGE_SIZE = E,
SHEET_SIZE=A, NUMBER_UP= 1 perm i ts printing

draft cop ies of large-format documents on small
paper. Conversely, the combination of PAGE_

SIZE =A,SHEET_SIZE= B,NU.\1BER_UP= 1 magnifies the

smal ler page to tit the larger sheet.

Duplex Printing

Printing on both sides of the paper i ntroduces a
numbcr of new options and interact ions that
requi re special processing in CPS. CPS begins each
document on the first siclc of a new sheet, so that
recto and vcrso (right-hand and left-hand) pages

and a lternat ing margins arc a l igned with the cor·
rect sides of sheets as they arc stacked by the

printer. This function :1lso interacts with the d ir<.:c·
tion in which the medium is physical ly loaded into
the printer if the medium is not symmetric left-to·
right, top-to-bottom , or front· tO·back, such as pre·
dril led paper.

The interactions of POL coordinate systems, page
layup, media selection, asymmetric media, duplex
printing, and binding are the most elusive engineer·
ing problems in the printing :1ppl ica t ion space. No
gennal model of these interactions has been devel·
oped, despi te considerable effort in standards com·
mittees. I t appears that i t is necessaq• to implement
every poss ible option.

Separator Pages
CPS prints a l l the separator pages defined by the

VMS queuing system as wel l as some generated by
CPS. Flag, burst, and trailer pages for job and file lev
els are ava i lable as defined by VMS, and contain
the same informat ion presented in a high ly lcgible
format . In addition to the standard V:'v!S infor·
mation, the job trai ler page also conta ins the first
two PostScript language errors returned from the
printer. This often makes it unnecessary tO use
MESSAGES= PRJNT to see simple errors.

To ensure that the job separator pages can always

be printed correctly, CPS r<.:s<.:ts the POL interpreter

in the printer befor<.: printing these pages. The CPS·
generated scparator pages do not alter the coordi·
nate system of the interpreter; the user's document
starts printing with the default PostScript state. File
separator pag�.:s, in contrast, print in the current

52

PostScript environment, including the alt<.:rctl p:1ge
geometry, e .g. , layup established by the print job .

CPS defines two new separator pages. The fi le
error page is printed when a tile cannot be opcn�.:d

or an error occurs while r�.:ad ing the file. The file
error page informs the usn of the error cond ition

which caused i t to be print<.:d . The job log page con·

tains up to 40 l ines of the job log fi le . The job log file
contains job events such as job start and job com·
pletion as wel l as program status messages and user

data returned from the printer.

Managing Printer Resources

Once com mun ication is established with the
serial printer, the symbiont must establish what
resources are avai lable on the printer. These
resources include prologues, which are comm only
used PostScript rout ines, the amount of available

virtual memory, and the med ium in the default
paper tray. For example, CPS persistently loads the
PostScript prologue for the output of the ANSI text

translator into the PostScript interpreter. This
resou rce might be lost to the printer because of a
power fai lure or might become obsolete clue to a
software upgrade. CPS interrogates the printer at
the beginning of any job requ iring the translator
prologue and loads a new prologue, if necessary.
CPS also performs similar processing for the
PostScript prologue that is used to generate the
separator pages.

For trad itional resources such as paper, CPS relies
on status messages from the printer to indica te that
the printer is stopped because paper supply is
empty or j ammed. These condi tions are relayed to
the operator and to the current user by standard

VMS mechanisms.

Library Search Lists
In the standard VMS print symbiont, only one
device control l i brary may be associated with a
queue. This is not a probl.em since the standard VMS
print symbiont deals with only one data syntax .
(Recal l that clevice control l ibraries are often writ·
ten in device-dependent data syntax.) CPS, on the
other hand , uses more than one data syntax when

printing a non-PostScript job: the data stream to the
printer is PostScript, but the data stream ro tbe
translator is in another data syntax.

Early versions of symbionts that supported
PostScript su ffered from the same restriction: only
one device control l i brary was ava i lable, and i ts

Vol. 3 No. 4 Fall 1')')1 Digital Tecbnicaf jou,..,wl

Design of the DECprint Common Printer Supervisor for VMS Systems

modules were expre�seu in PostScript. This made i t
impossible for users t o share device control
l ibraries with their standard VMS print symbiont
ami their non-PostScript printers.

To solve the problem of multiple data �yntaxes

in a job. CPS introduced device control l ibrary
search lists. The system manager, rather than speci

fying a single file specificat ion in the I N!TlALIZE/
QUEUE/LIBRARY com mand. creates a logical name

instead . CPS transla tes that specific logical name
and uses each element of the resu lt as a device con
trol l ibrary. Each l ibrary in the search l i st can have a
data syntax associated with i t by adding the

qual ifier, /DATA_ TYPE= .

CPS suppl ies a device control l ibrary,
CPS$ DEVCTL, which must be included in the search
l ist, usual ly as the first, or on ly, element in the
search I ist.

Summary
The DECprint model of printing describes a useful
structure with consistent functions and responsi
bil i t ies. CPS is an advanced print symbiont that runs
in the VMS printing system. I t includes many spe
cial ized functions to support the features of a wide
range of modern printing devices. I t provides, we
feel, an extraordinary level of support. It was

designed with a highly modular and flex ible inter
nal structure to permi t enhancements to be engi
neered with minimal interactions with current
operations.

CPS is currently shipping its fourth version. This
version fu l ly supports the ten d ifferent PostScript

printers suppl ied by Digi tal . which range from a
low-speed color printer to a h igh-speed laser
printer. It also supports five different data syntaxes
in which appl ications can wri te documents. We
expect that more printers and more capabil i ties
wil l be added in future versions, and that CPS wil l
require a minimum o f addi tional engineering effort
due to i ts very general internal structure.

Acknowledgments
We would l ike to thank Peter Conkl in for actively
init iating CPS and Gary L. Brown for even more
actively expanding i t . We would also l ike to thank
past and current CPS developers: Ned Batchelder,
Cathy Cal lahan, Mark DeVries, Rich Emmel, Dave
Gabbe, David Larrick, Klara Levin . Mary M arotta,
Doug Stcf:tnd l i , and Charlotte Tim lege. We would
l ike to thank Bill Fisher for h is extensive com ments

Digital Techuicaf]ouruaf Vol. _; No. 4 Pall 1991

on this art icle. F inal ly, we thank the many si tes and

p eople who have tested the DECprint Printing
Services software.

References

1 . VMS Utility Routines Manual (Maynard: Digital
Equipment Corporation, Order No. AA-LA67B-TE,

1990).

2. VMS DCL Dictionary, 2 vols. (Maynard: D igital

Equipment Corporation, Order Nos. AA-PBK5A-TE
and AA-PBK6A-TE, 1991).

3. Vil,.JS System Services Reference (Maynard: D igital
Equipment Corporation, Order No. AA-LA69A-TE,
1991).

4.]. Jones, A . Kachran i, and T. Powers, "The

Common Printer Access Protocol," Digital

Technical journal, val. 3, no. 4 (Fall 1991 , this
issue): 55-60.

5 . B. Reid and C. Kent, "TCP/IP PrintServer Print
Server Protocol," Western Research Lab Technical

Note TN-4 (Maynard: Digital Equ ipment
Corporation, 1988).

General References

Guide to Maintaining a VJ11S System (Maynard :
D igital Equipment Corporat ion, Order No.
AA-LA34A-TE, 1990).

DECprint Printing Services User's Guide (Maynard:
Digital Equipment Corporation, Order No.

AA-PBZGA-TE, 1991) .

DECprint Printing Services System !Hanager's

Guide (Maynard : Digital Equ ipment Corporation,

Order No. AA-PBZFA-TE, 1990).

Digital ANSI-Compliant Printing Protocol Level 3
Programming Reference Manual (Maynard: D igital
Equipment Corporation, Order No. EK-PPLV3-PM,
1991) .

Digital ANSI-Compliant Printing Protocol Level 3
Programming Supplement (Maynard: Digi tal
Equipment Corporation, Order No. EK-PPLV3-PS,
1991) .

PostScript Translator's Reference Manual for ReGIS

and Tektronix 4010/4014 (Maynard: Digital
Equipment Corporation, Order No. AA-PBWFA-TE,
1991) .

53

Image Processing, Video Terminals, and Printer Technologies

PostScript Printers Programmer's Supplement

(Maynard : Digital Equipment Corporation, Order

No. EK-POSTP-PS, 1991) .

PostScript Language Reference Manual, 2nd ed . ,

Adobe Systems Incorporated, ISBN 0-201-18127-4

(Reading, MA: Addison-Wesley, 1990).

Information Technology-Text and Office Sys

tems-Document Printing Application (DPA),

ISO/IEC JTC1/SC 18 N, Draft International Standards

10175-1 and 10175-2 (September 1991) .

CDA Base Services Technical Overview (Maynard :

Digital Equipment Corporation, Order No.

AA-PHJYA-TE, 1991).

Creating Compound Documents Using CDA Base

Services (Maynard: Digital Equipment Corporation,

Order No. A A-PHK2A-TE, Il)89).

Writing Converters Using CDA Base Services

(Maynard: D igital Equipment Corporation, Order

No. AA-PHK 1A-TE, 1991).

CDA Base Services Reference Manual, 2 vols.

(Maynard: Digital Equipment Corporation, Order

Nos. A A-PHJZA-TE and AA-PHKOA-TE, 1991).

CDA: DDIF Technical Specification (Maynard : Digital

Equipment Corporation, Order No. A A-PHK3A-TE,

1991) .

('DA: DTIF Technical Specification (Maynard: Digi tal

Equipment Corporation, Order :-.Jo. A A-PHK4A-TE,

1991).

DDIS .�vntax Spec�fication (Maynard: Digital

Equipment Corporation, Order No. EL-00081-00-1 ,

1987).

54 Vol . .3 No. 4 Fa/1 1')91 Digital Tecbnical]ournal

james D. jones
Ajay P. Kachrani

Thomas E. Powers

The Common Printer Access Protocol
The DEC PrintServer Supporting Host Software version 4.0 incotporates Digital's

first implementation of the new common printer access protocol (CPAP). This pro

tocol is compatible with the local area print server (LAPS) protocol, which was

optimized for VMS access and DECnet transport, and with tbe Reid-Kent proto

col, a PostScript-based, TCP/!P-connected print server for a client-server environ

ment. The CPAP protocol supports a variety of data presentation protocols

and allows printers to be connected to driving applications by various communica

tions and process-to-process intetfaces. Tbe protocol also couples entities running

different operating systems across disparate networks. Because of its superior

performance, the new CPAP protocol has been accepted by the Open Software

Foundation for inclusion in a future release of OSF/ 1.

The presentation of computerized data has become
a remarkably sophisticated and subtle operation.
Video displays now support windows with com
plex al locations of display space, variable fonts, and
real-time user input operations. Printing devices
now offer support for publication-quality fonts,
l ine art, and images. These devices can present
visual objects on a variety of media, from many
sources, and in variable orientations and presenta
tion modes. In addition, both video and printing
devices are now decoupled from dedicated com·
puting environments, and are shareable from many

hosts and by many users or programs.
Now, only the simplest printing devices are l im

i ted to presenting just characters, and many users
are finding such restricted capabi l ities inadequate.
Also, most printing devices sti l l require dedicated
connections to single computers. However, more
printers now offer fu ll network accessibil i ty; i .e . ,
network printers are capable of offering sophisti
cated services to a wide variety of users and their
applications.

The paper entitled "Design of the DECprint
Common Printer Supervisor for VMS Systems"
in this issue of the Digital Technical journal

describes access methods and interrelations
among services that provide for these increasingly
sophisticated data presentation capabil i t ies . 1 The
printer access protocol (PAP), a service interface in
the DECprint architecture, couples the printer
supervisor component to the logical printer for
presenting data and otherwise controlling a physi-

Digital Technical journal Vol. 3 No. 4 Fa/1 1991

cal prin ting device. The common printer access
p rotocol (CPAP) described in this paper provides
the fundamental services required by a printer
supervisor for the presentation of data and col lec
tion of accounting information. In addition, the
CPAP supplies easier network access between
printer supervisors and printers, as well as ancil

lary control of printers for network management

and device configuration. The CPAP also provides
services to d istribute the processing requirements

of the printer i tself, most notably a mechanism for
del ivery of network font services. This last capabil
ity al lows a printer to offer what amounts to vir
tual services, i .e . , the abi l i ty to configure i tself

dynamically to the demands of a print job without
the involvement of the printer supervisor.

This paper begins with a discussion of the

influence of existing protocols and the DECprint
architecture on our CPAP design goals. The sections
that fol low present the printer session concepts
and the functional i nterface between the protocol
and appl ications. We then describe the implemen
tation of the new protocol in a server environment,
including interoperabili ty, compatibi l ity, and the
translation of the older PrintServer protocol. At the
close of the paper, we discuss ongoing standard
ization issues.

History

The PrintServer 40, D igital's first ful ly networked
printer, was first shipped in 1986. Its local area print
server (LAPS) protocol was analogous to later

55

Image Processing, Video Terminals, and Printer Technologies

printer access protocols. The PrintServer 40 was a

ground-breaking product for D igital , and the LAPS

protocol was a major aspect of the PrintServer

development effort, portions of which date back to

198:1. The LAPS protocol was designed and devel

oped with particular product-oriented deliverables

in mind, and was optimized for VMS access and

DECnet transport. While this protocol predates

much of the architectural work now being imple

mented in Digital's printing products, it was (and

still is) a signi.ficant element of PrintServer archi

tecture and implementation.

Work began on more general PAPs in 1987 as

part of the early work on the DECprint archi tec

ture (known at the time as the Printing Systems

Model). The specifics of what would become the

CPAP emerged in late 1988 in two internal papers

by Brian Reid and Chris Kent of Digi tal's Western

Research Laboratory. These papers presented the

initial design concepts for a PostScript-based ,

TCP/IP-connected (transmission control protocol/

internet protocol) print server in a clearly defined

c l ient-server environment. This print server proto

col came to be known as the Reid-Kent protocol.

Design Rationale and Goals

By early 1988, design goals for (and constraints on) a

PAP were wel l u nderstood, and had been col lected

and publ ished as part of Digital 's Printing Systems

Model. Chief among these goals and constraints was

the need to support a variety of data presentation

protocols, and to al low printers to be connected to

driving appl ications by a variety of com munica

tions and process-to-process interfaces.
The increasing corporate commitment to open

systems made i t clear that a PAP would also have to
couple entit ies running various operating systems

across different networks. Thus, the DF.Cprint PAP

architecture team decided early in the design pro

cess that a PAP should be designed for public
access: that is, the specification for the protocol
should be put into the public domain and submit

ted for industry standardization.

Jnteroperabil ity is a most serious constraint.

Digi tal has a strong tradition of maintaining back

ward compatibil ity within and among its product

famil ies. In a distributed processing environment,

however, backward compatibil i ty takes on the

added burden of interoperabil i t y. Mult iple clients

must communicate with mult iple servers. any of

which can be upgraded to new versions of sup

ported pwtocols asynchronously. Addressing this

56

problem was a major conceptual test in the first

implementation of a CPAP server. This is discussed

in more detail in the sect ion The CPAP Server

Implementation.

The Reid-Kent protocol met many of the techni

cal design requirements for a new PAP . It was built

on industry-standard components, and contained

no proprietary technology that wou ld prevent its

publication.

However, certain PAP design goals were not cov

ered by the Reid-Kent protocol in its 1988 version.

• There was no faci l i ty to select a specific page

description language (PDL) for printers support

ing multiple interpreters.

• There was no method for soliciting the capabi l i

ties and media available on the printer.

• The only language supported was English

(contrary to the corporate guidelines for

international ization).

• Data sent from the printer was not categorized ;

user-specific information was mixed with opera

tor and service data.

• No means was provided to solicit the status of

the printer.

• There was no encoding to discriminate between

binary and text files.

However, these flaws were largely omiSSIOns

from the design goals, not fundamental conflicts

with them. The archi tecture team decided that the

Reid-Kent protocol could be extended to address

these omissions without serious conflict. I n fact,
the necessary extensions were designed to al low
cl ients and servers conforming to the original Reid

Kent protocol to remain in conformity with the fu l l
C:PAP specification.

Architecture

The CPAP is primarily a communication-oriented

protocol, i .e . , the presentation of its function is
closely coupled with its encoding. The major syn
tactic features of the < :PAP derived from the Reid

Kent protocol are the fol lowing.

• All encoclings are ASCII strings. This eases the

generation of protocol streams and ensures inde

pendence from the underlying comm u n ications

channels.

• No data fields are fixed length. This provides for

extensibi l i ty of the protocol and eases the gener

ation of a protocol stream .

Vol. 3 No. 4 Fall I'J'J/ Digital Technical journal

• Multiple channels of communication use the

same basic format. Common parsing of separate

channels simplifies implementations.

• Simple numeric tokens define the operators.

Session Concepts

The CPAP architecture defines separate contexts for

each type of work the CPAP can perform. Each con

text requires that a separate session be established

for its own tasks, and each session involves the cre

ation and use of a separate network connection

between the controll ing cl ient and the server. Each
connection identifies the type of session the initia

tor requires. The CPAP defines three d ifferent ses

sion types: print, management, and console.

The set of CPAP operators al lowed for a session is

restricted to those needed to support that type of

session. All session types have access to printer

status and configuration information. In addi tion,

multiple concurrent sessions are permitted. Print

sessions and management sessions may have one or

more virtual circuits active to a printer at a time.

The use of multiple circu its permits the streaming

of data to the printer over logically separate chan

nels, thereby eliminating application protocol over

head for the most frequent operations. In contrast,

console sessions use a single virtual circui t for

exchange of data with remote terminals.

Print Sessions Print sessions usually consist of a
series of documents printed for a user on a given

host by a printing service (a "printer supervisor"

as defined by the DECprint architecture). With the
operators provided by the CPAP, the printing ser

vice can determine the language interpreters,
printer options, fonts, prologues, and media that
are currently instal led at the server. These opera
tors also provide the current operational state,

number of jobs queued to the printer, and the cur

rent job status. These features permit the printing
service to select the printer (server) that can satisfy
the user's request and to determine a method for
submitting the job to the printer.

Once the printing service has begun a session
and identified itself, it identifies the user and the
user's job code to the printer. This information may

be used by the printer to provide usage information

to a central ized accounting service. The printing

service can then present documents to the printer.

A transaction between the printing service and the
printer establ ishes which interpreter the printer

Digital Tecbnicaljourual Vol. 3 No. 4 Fall 1')91

The Common Printer Access Protocol

will use for each document and which virtual cir

cuit will be used for i ts transmission.
Selection of the proper virtual circuit for trans

m ission of documents to the printer is performed

by passing tokens from the printer to the printing

service. The tokens are then mapped to whichever

v irtual-circuit service is being used by both the

printing service and the print server. This map

ping approach avoids passing network-specific

information within the protocol. Not only does the

approach make the CPAP independent of the net
works on which i t might run, it ensures that the

network services need no knowledge of CPAP

encodings. Such v irtual-circuit mapping is crit i

cal to allow CPAP cl ient-server processing to be

implemented in a heterogeneous, internetworking

environment.

During the printing of the document, some data

presentation interpreters (PostScript, for example)

send data back to the user or print service. In addi

tion, the printer may run out of paper or toner,

may have a ful l output tray, or may encounter other

exception conditions not directly related to the

interpretation of page description data. The CPAP

categorizes such conditions and delivers relevant

messages to the user, the operator, or the event logs.

Upon completion of the job, the printing service

is notified of the media used , the number of pages

printed, and the printer processing time required

to complete the job. The protocol also includes a

provision to abort jobs, e .g . , an improperly formed

document that might otherwise hang the printer.

Management Sessions The CPAP supports certain

printer services through management hosts. A man

agement host is a network entity (not necessarily
the same entity as the printing service) with which

the printer can exchange i nformation or request

services. Such services include

• Time service

• Centralized event logging

• Centralized accounting

• Program loading and configuration

• Font services

An important aspect of the CPAP is that the

printer is always passive with regard to initiating

management services. A candidate management
host advertises that it has services to offer, and a

print server accepts or rejects the offer. Once a

57

Image Processing, Video Terminals, and Printer Technologies

connection with one or more management hosts

is established, the printer may use such hosts as
servers for time synchronization, configuration file

access, and font lookup. Additional functions for

these hosts may be loading program images, event

logging, accounting, and general file access.

File naming to access general file services is a

problem that needs special attention if the server

and the protocol are to maintain independence
from the host operating systems. Commonly used

files an: identified in the CPAP by reserved tokens,

such as $CONFIG, $ DEFAULTS, $ RESOURCES, and

$SETUP. Arbitrary path names are allowed, but can

access only a l imi ted domain (from a known root
directory) to preserve file system independence

and to maintain security.

Translation to the host's services is provided

by the host i tself. This permits the printer to be

served by d ifferent hosts using a wide variety of
operating systems (and their implicitly different

file-naming conventions and syntaxes) without any

awareness of a management host's implementation

by the server.

Console Sessions A console session is a form of

printer management. The content of the data
exchanged during a console session is specific to

the printer, and is not specified by the CPAP.

Services performed within a console session might

include

• Operator services, such as tel l ing a printer what

media have been loaded (e.g . , by color, weight,

or transparency), or sett ing physical printer

defaults (e .g . , duplex versus simplex, or default
medium selection)

• Network management configuration services,

such as control I ing domain access to or from
the printer

• Troubleshooting or debugging services

Digital's implementation of console services on
current PrintServer products conforms to the
Enterprise Management Architecture.

Application Program Interface

The functional interface to any protocoJ provides

an additional abstraction between an application
and a protocol. This abstraction answers many of
today's software appl ication needs, including inter

operabil ity, portabil ity. modularity, and reusabil

ity across multiple architectures. An applica tion

58

programming interface (API) that a i iO\:vs access to
al l CPAP facil i ties is included in the protocol's

specification.
A connection block, which is passed as a parame

ter to al l functions, provides support for vari

ous printer types, their device identifications, and

descriptors for command and data channels. This

support includes separate command and data

channels for printers supporting mu ltiple virtual

circuits or channels. Just as in the case of the data

stream form of the protocol, the API form al lows
separate channels for data and commands.

A separate command channel allows ease of con

trol flow between client and server. This may

include the client receiving the server's status or

events, or the cl ient sending aborts to the server.
For devices that support only a single channel, the

generic printer driver can set both command and
data channels to the same value . For supporting

multiple jobs active at the same time (job overlap),

a job identification (ID) parameter is passed with

al l functions.

To support various message types, the address
of a read-cal lback routine is passed to the open

printer function along with a pointer to read-cal l

back arguments. These arguments may signal vari
ous events, or may consist of messages for the user,

operator, accounting, or resources available in the

printer.

An early version of the generic functional inter
face was part of MIT Project Athena's Palladium

Print System. The printer supervisor in Digita l 's

LN03R ScriptPrinter product was modified to cre

ate a generic printer interface for both the
ScriptPrinter device and the PrintServn fami ly.
This conversion from an API-accessible base took
one week to execute, whereas i t typical ly takes

six months of effort to develop a new printer
supervisor for a device as complex as the
PrintServer product.

The CPAP Server Implementation

The implementation of a protocol gives rise to

problems different from those related to its design.

When defining the archi tecture, one strives to pro

vide an ideal that includes all of the desired features

in an e legant manner. When performing an imple
mentation, one finds that elegance often has to take
a back seat to pragmatics. This is especially true

when the new protocol is intended to replace two

different protocols in a new version of an existing
product. Merely implementing the new protocol

V!J!. 3 No. 4 Fall 1991 Digital Tee/mica/ journal

is not enough-the implementation must some
how coexist with the protocols being replaced.

D igital's first production implementation of the

CPAP was targeted for the DEC PrintServer Sup

porting Host software version 4.0, which loads and
drives the PrintServer family of printers. For the

rest of this paper, we refer to this software by the

PrintServer product designation of LPS version 4.0.
We started the implementation by modifying

Digital's ULTRJX PrintServer client, which already

used the Reid-Kent subset of the CPAP, to use

DECnet network transport and run on the VMS oper

ating system. We then updated the LPS server

code to permit ei ther DECnet or TCP/IP transport.

This was accomplished by using the direct -to-port

communication features of the VAXELN operating

system. The server establ ishes a circui t using the
appropriate transport and then spawns a process

for deal ing with each incoming connection. Thus,
the same code can service print sessions, manage

ment sessions, and console sessions without con

cern for the type of network transport.

The CPAP was, by design, directly upward

compatible with the Reid-Kent protocol subset.
However, Digital's PrintServer offerings prior to

LPS version 4.0 were LAPS-based, and LAPS was not

CPAP-compatible. To permi t users of existing
PrintServer printers to continue to use these

products, we had to find a way for the new CPAP
implementation to coexist with the older LAPS

application protocol. We achieved this coexistence
by having the server p erform translations from the

older protocol to the new one in the server i tself.
When the client establishes the initial connection,

the server senses which protocol is being used by

the client system. If the initial message indicates

the use of LAPS, the server spawns i ncoming and

outgoing filters to deal with the incoming connec
tion, and a new internal circu i t replaces the

network connection to handle the interpretation
of the CPAP.

The coding of the LAPS filters was the last step
in implementation before testing began. The
PrintServer 20, PrintServer 40, PrintServer 40 plus,
and the new turbo PrintServer 20 all had to be
tested using both LAPS and the Reid-Kent subset of
the CPAP. In addition, the new implementations of

the management cl ient and the console cl ient on
the VMS system requi red verification. This verifi

cation entailed a multitude of tests using the LPS

symbiont running on older versions of the VMS
operating system, the newer common print sym-

Digital Technical journal Vol. 3 No. 4 Fall 1991

The Common Printer Access Protocol

biont (CPS), several versions of the ULTRIX oper

ating system, and a source kit version running on

a Sun Microsystems workstation.

Unfortunately, this testing uncovered latent

defects in the implementation of the existing prod

ucts. We had to analyze each of these defects and

plan corrective action. Since updating the existing

products in the field is a difficult process (both
technically and procedurally), we corrected most

of the defects by altering the server to deal with the

problems. Retesting was performed over several
baselevels to ensure that our changes caused no

regression.

At one of the early baselevels, the interface
between the network distribution software and the

server's PostScript interpreter was updated to use a
stream-based connection in place of the previous

packet protocol. This update permitted the new

CPAP data channel to be mapped by reference to

the input of the PostScript POL or any other POL

supported by the printer. This change alone per
mitted the performance of the server to be main

tained even when the server was translating from

the old LAPS protocol to the CPAP.
In general, development proceeded incremen

tal ly, i .e . , key features were identified and added

with each baselevel. While this technique limits the
complexity of producing the product, it raises an

important business issue. Specifically, the provi
sion of enhanced services in a cl ient-server envi

ronment often exposes aspects of the proverbial

"chicken-and-egg" situation. There is l ittle call to

offer enhanced features in a server if clients have
not been programmed to solicit the features. How

ever, cl ients are not readily upgraded to solicit
features that might not be widely available.

The LPS version 4.0 project team met i ts backward

compatibility design goals by including the LAPS-to

CPAP filters. In doing so, they undercut the need
to provide the enhanced feature support that the
CPAP was designed to deliver, since existing cl ients

(earlier versions) coul d not avail themselves of
the added features. In addition, the risks of includ
ing fu l l CPAP support in LPS version 4.0 (possible
increase in time to market, and the creation or expo

sure of more latent defects in all supported environ
ments) seemed to outweigh the benefits. However,

a last-minute change to use the new protocol's data

channel for loading fonts yielded such a large per

formance advantage that resistance to using the

new features crumbled , and the project team was
allowed to submit the fu ll protocol to field test.

59

Image Processing, Video Terminals, and Printer Tech nologies

Standardization

Network printing became widely available i n the

mid-1980s, but products from different vendors

were not compatible. Network printing protocols
were largely proprietary efforts by vendors who
had developed them for their own printer prod
ucts. Digi tal 's PrintServer 40 and i ts LAPS protocol
were typical in this regard . By the late 1980s,
network printing was an establ ished and competi
tive technology, but there was still l i ttle i nter
operabil ity among the various vendors' producb.

In the absence of printing protocol standards, the
Internet Engineering Task Force (IETF) formed a
Network Printing Protocol working group in
early 1990. This group's charter was to examine
printing protocols then in existence or u nder devel
opment, assess their appl icabi l i ty to Internet-wide

use, and suggest changes. Digital 's representatives
to the IETF working group on the Palladium

Printing Systems standardizat ion reported the inter
est shown in Digital's Reid-Kent protocol. Thus, in
July of 1990, Digital submitted a version of the PAP

that was u nder consideration by the DECprint PAP

archi tecture team.
Early consideration of this PAP by IETF and the

LPS version 4.0 implementation effort ran concur
rently. This provided a unique opportunity for

Digi tal 's implementers to obtain feedback from a

very knowledgeable architectural community. In
turn, they could report implementation experi
ences that affected the review and progress of the
specification towards standardization. Implemen
ta tions of CPAP clients and servers by companies
other than Digital are in progress.

As part of Project Athena's Palladium Printing

System, the CPAP has been accepted by the Open
Software Foundation for inclusion in a future
release of OSF/ 1 .

A draft of the CPAl' i s being circulated among
Internet members for com ment. Meanwhile, work
on future enhancements cont inues. Work is now in
progress to specify a superset of the existing pro
tocol that deals with authentication and encryp
tion to strengthen security. This work is being

done in the spirit of the original migration from the

Reid-Kent protocol to the CPAP; i .e . , the security
features being added will not adversely impact
users who do not need the new features.

Acknowledgments
The CPAP effort has been the work of many devel
opers. Chris Kent and Brian Reid drafted the base

60

architecture and created the first prototype imple
mentations. Jim jones championed the proto
col in the DECprint PAP archjtecture team (Alan
G uenther, Tom Hastings, Jim Jones, Tom Powers,
and Eric Rosen) and coded the LPS version 4.0

server. Carol Gal lagher wrote the LAPS fi lters to
translate from the old protocol to the new. M ike

Augeri and John McLain ported the management
and console clients to the VMS system from the
ULTRIX system.]. K . Martin rewrote the Berkeley
Software Development (BSD) sou rce kit to use the
new protocol. Ajay Kachrani developed our ULTRIX

and M IT Athena clients and represented the proto
col d uring early phases of the IETF standardization
effort. Many others supported these efforts, and

others are yet beginning to develop new CPAP
clients. We thank them all for their efforts.

Reference

1 . R. Landau and A. Guenther, "Design of the
DECprint Common Printer Supervisor for VMS

Systems," Digital Technical journal, vol. 3, no. 4

(Fall 1991 , this issue): 43- 54.

VIii. 3 No. 4 Fall 1991 Digitttl Technical journal

Guido Sim one
jeffre y A. Metzg er

Gary Vaillette

Design of the Turbo
PrintServer 20 Controller

The turbo PrintServer 20 controller is a pe1formance enhancement of the original

PrintServer 20 system controlle�: The turbo controller was developed to enable

PostScript code to execute faster and thus improve page throughput for complex

documents. The RETrACE analysis system was designed to analyze tbe pei formance

of the original PrintServer 20 system and estimate expected performance future

systems. Tbe turbo controller's processor and its three subsystems for memory,

write buffer; and bit-map data transfer were selected based on the analysis results.

Performance tests conducted on both the original and the turbo PrintServer 20
indicate the enhanced processing performance of the turbo controller.

In 1988 the turbo controller project was conceived
as a means of extending the l ife of the PrintServer 20

platform by introducing a performance-enhanced

system controller. The system control ler in the
PrintServer 20 is housed within and powered by
the printer or "print engine" ; it is a concise i mple

mentation of a single-board computer containing a
CPU, a memory subsystem, an Ethernet interface,

and a printer interface. I t suppl ies an environment

in which a multi tasking software system manages

communications with remote cl ients and with the

print engine, performs data conversion from the

page description language (PostScript) to bi t-map
images, and provides management of physical print
engine resources.

The original controller provided a maximum
print speed of 20 pages per minute, but this perfor

mance could not be maintained when the docu

ment included complex text, graphics, or images. To

improve page throughput for complex documents,
a controller was needed on which PostScript code
could execute faster. To enhance performance, the
competi tion was moving toward control lers based
on new industry-standard reduced instruction set

computer (RISC) processors. Therefore, to be com
petitive, Digital's new controller was required to
improve performance by five to eight times that of

the original control ler, which hacl been based on
the rtVA.,'C m icroprocessor.

As challenging as the performance improve

ment would be to achieve, budgetary pressures
forced restrictions on the implementation strategy.

Digitttl Teclmicaljourmrl Vol. 3 No. 4 Fall /991

We were to use existing, qualified chips wherever

possible in order to avoid new part qualification

costs and appl ication-specific integrated circui t

(ASIC) development costs.

Early investigations indicated that the p erfor
mance target was indeed achievable with existing
inexpensive ruse processors, as well as a high

speed Digital proprietary VAX processor. A ruse

processor would require porting a 2 .5 -megabyte

(MB) software system, which was far beyond the

scope of the project. The highest performance

VAX processor and the associated support chips,

which would not cause a problem with the soft
ware system, were far too expensive to be consid

ered. Alternatives were therefore l imited to less

expensive, lower speed VAX processors: the low

risk, 60-nanosecond (ns) CMOS VAX or CVAX pro

cessor was proven, ancl the higher speed and more

cost-effective "system on a chip" or SOC processor

was u nder development. Ei ther choice would have
a minimal impact on the software system and
would provide a cost-effective solution.

The original performance estimates for the CVAX
and the soc processors in general-purpose process
i ng environments were below the lower bound of
the performance target. The design team was also
uncertain of the actual execution characteristics of

the PrintServer software. For these reasons, it was

decided to begin the project with a performance

analysis of the origina l control ler to determine the

expected performance of a design based on either

processor.

6 1

Image Processing, Video Terminals, and Printer Technologies

This paper discusses the problems encou ntered
t.luring our analysis and the solutions d<:vised by the
Hart.lcopy Systems Engineering Group to overcome

them. The RETrACE tool suite, a performance ana ly
sis system, is described and the analysis resu lts are
provided. The paper then discusses the hart.lware
architecture of the turbo control ler and ends with a
presentation of the performance resu lts obtained
for standard PostScript benchmarks.

Performance Analysis of the Original
Controller

The PrintServcr 20 software system consists of a

VA-'\ELN operating system, an Adobe Systems, Inc.
PostScript interpreter, and a substantial amount of
software to manage communications and resources.

The task of analyzing its performance was compli
cated by two additional factors. First, the software
system's behavior depended on the characteristics
of the user's PostScript document. PostScript is

an interpreted programming language. Thus, l ike
any computer program, low-level machine perfor
mance can be dramatical ly affected by the program
being executed . Second, ami more painful , the
proprietary nature of the PostScript interpreter
prohibited us from obtaining code sources, and d is
cussing its internal architecture with engineers
from Adobe Systems.

While the characterization of a complex, par
tially proprietary, real -time software system is
difficult, it is not impossible. Programmer counter
address (PC) traces have offered many systems
designers very detai led insight into the execution
performance and characteristics of systems. PC
traces provide a means to observe a system at a
macroscopic level, allowing a view of the complex
i n teractions between the hardware and software
systems. System designers can use captured address
trace; from current machine performance to extra
polate expected performance of future systems and
help them make architectural trade-offs.

The RETrACE Analysis System
The HETrACE tool suite was created to provide

a nonintrusive means of capturing real-time PC

traces and ana lyzing the captured addresses. The
tool su ite consists of both hardware and software
components.

In order to keep expenses at a minimum, existing
hardware was used wherever possible. Only one
small module had to be developed to complete the
RETrACE hardware platform.

62

The RETrACE hardware consists of the following:

• Two imerconnect boards boot and operate a
system control ler on a table top. Developed as

part of the original PrintServer 20, the boards
connect the controiJer to a print engine and an
Ethernet.

• The PrintServer 20 server controller was modi
fied for use as an intel l igent trace bu ffer system.

• The PrintServer 20 server control ler's memory
capacity (12MB) was extended using the standard

4MB memory module used on the Kanji version
of the PrintServer 20.

• The RETrACE mother board was developed specif
ically for this tool su i te. I t contains a 32-bi t wide,

first- in , first-out (FifO) buffer a nd two loosely
coupled state machines.

• A standard PrintServer 20 system controller and
print engine were used as the "system under

observation."

• The console terminal was selected from the stan

dard VT series of terminals.

A diagram of the RETrACE hardware system is
shown in Figure 1.

The RETrACE mother board performed the data
capture, using the modi.fied control ler's memory as
a large buffer. The board monitored the processor
bus of the system under observation by copying
al I addresses and communications between the
r tVA-'\ processor and its external floating-point
unit . This copied data was placed into a FIFO buffer
that in turn was writ ten into the memory of the
modified controll er using a direct memory access
(Oi'vlA) device. Since a standard PrimServcr 20 con
trol ler and its optional memory expansion provide
16.VIB of storage, approximately 3 seconds of real
time execution address traces cou ld be caprured.
The data capture continued unt i l the trace bu ffer
memory was exhausted , at which point the data
was uploaded over a network connection to a VAX
VMS computer for analysis.

Due to the design of the original PrintServer 20

system, many large data areas and code sections
were mapped into different explicit memory spaces.
This subdivision provided a means of determining
which code function was executing in any given
segment of the address trace. With a simple statisti
cal study i t was possible to generate software exe
cution histograms and to determine many of the
characteristics of the system, including translation

Vr>l. 3 No. 4 Fall 1991 D igital Technical journal

PRINTSERVER 20
SYSTEM
CONTROLLER

SYSTEM UNDER
OBSERVATION

RETRACE
CONSOLE
TERMINAL

Design of the Turbo PrintServer 20 Controller

Figure 1 RETrACE Analysis System Hardware

buffer, floating point, instruction stream (!-stream)
versus data stream (D-stream), read versus write,
and interrupt performance. Hit rates for fu l ly asso
ciative caches of separate !-stream and D-stream,
as wel l as a combined I- and D-stream cache, were
also provided. These hit rates were determined for

first-level wri te- through caches from 128 bytes up
to 256 kilobytes (KB). Thus an upper bound for an
optimum-performance cached memory system
was determined.

Both processors under consideration possessed
the abi l i ty to access a memory subsystem at speeds
greater than that achievable with existing low-cost
dynamic random-access memory (DRAM) technol
ogy. The performance numbers predicted by the
processor groups indicated that cached memory
subsystems were required. Because these sub
systems can be expensive and their performance is
subject to the pecul iari t ies of the software that
executes on them, a multilevel memory simulator
was developed to al low accurate studies to be per
formed on proposed cache architectures.

The simulator was configured at run-time to sim
ulate an arbitrary hierarchical memory system that
was N levels deep, with an arbitrary size, associa
tivity, performance, and behavior at each level.
The memory level nearest the processor was
defined as the first level, and the l as t as main mem
ory. The simulator processed a trace file by walk
ing each address in the file through the memory
hierarchy starting nearest the processor at the first
level . If a copy of the address was found at a given
memory level, then a hit was signaled and the next
address was processed. If that address was not

Digital Tecbnicaljour11al Vol. 3 No. 4 Fall 1991

fou nd , then a m iss was signaled and the simula tor
would proceed to the next level of memory in the
hierarchy.

Whenever a hit occurred at a given level, it

was logged and all levels of memory in the hier
archy above it would al locate entries based on
their defined al location rules. While this procedure
indicated the memory system performance for
a proposed architecture, the overall system per
formance was still u nknown. Using a simple rule
based on the average execution time per address
for the existing control ler, and scaling that time
based on the clock speed increase of proposed pro
cessors, an overa l l performance number was esti

mated for a system based on either processor with
any arbitrary memory architecture.

Benchmark Selection
The RETrACE tools sui te provided the components
required to study the execution characteristics of
the PrintServer system without changing the char

acteristics of i ts normal operation. The only diffi
culty was to narrow the focus of the benchmark l ist
to provide a representative sample of PostScript
documents to print. Due to time constraints, the
l ist was l imited to five benchmarks.

BM 1 The BM 1 benchmark stresses those aspects of
the system that convert the mathematical represen

tations of characters to bit-map representations,

which comprise the form that is printed. This
benchmark uses several fonts in standard character
orientations, stressing both very large and small
character sizes.

63

Image Processing, Video Terminals, and Printer Technologies

R.\12 Of the same type as B.\1 1 , this benchmark

stn::sses the transforms from mathematical to hit
mapped character representations; howcvt.:r, the
characters printed are at arbitrary orient ations
with sizes ranging from typical to very small .

BM3 The B�1.1 benchmark is one of the standard
benchmarks for PostScript performance qua l ifica
tion. I t is a simpk: 41-page document that contains
st.:veral different fonts. The benchmark is designed
to characterize the standard text-hand l ing per

formance of a printer. This benchmark is printed
n.vice to ensure that a l l characters to be primed
have been converted from mathematical outl ines

to bi t-map representations of the characters. Thus
the focus of the benchmark is to move the text
data through the system, to copy the character bit
maps to the 1 MB region in memory that conta ins
the image to be printed , and to print the image. I t
should b e noted that this is t h e only benchmark
that printed at engine speed on the PrintScrver 20
system control ler powered by the rtVAX system.

HOUSE A binary image file, the HOUSE benchmark

was used to stress the com munications aspects of
the PrintServcr system.

SCHEll'! The SCHEM benchmark was a vector repre
sentation of a logic schematic. This benchmark was
used to stress the PostScript interpreter's abi l i ty to
interpret nonnative PostScript code and to exhibit
the characteristics of drawing vectors.

Analysis Results
The thrust of the analysis was to provide credible
evidence to support architectural and implemen
tation trade-offs. The major areas of focus were

• Memory system organization

• Printer intnface performance

• Main memory bandwidth

• Overa l l system performance

Memory Syste-m Organization The statistical anal

ysis of the trace information provided many clues

to direct our investigation toward the optimum
mcmorv system archi tecture. The overa ll read-to
write ratio for the observed benchmarks ranged
from as low as 4.5 : 1 up to '5.'5: 1 , which me:1ns for
a wri te-through cache system with a theoretical
100 percent read h i t rate, the writes would degrade

64

the overa l l h i t rate to approximately 81 to 84 per
cent. As the ana lysis of the data progressed, i t was
understood that the write data must be studied
very closely since it cou ld have a dramatic i mpact
on the overal l cache miss rate. During the cache

model simulations, the hit rates of the 1-stream
were between 85 to 90 percent. However, the
D-stream h i t rates were between 35 to 45 percent,
with writes accounting for 60 to 90 percen t of the
tota l D-stream misses. To achieve the greatest posi
tive effect on the hi t rate of the system, enhance

ment of write-miss performance was the most
advantageous. The two options to improve this per
formann: were either to implement a wri te-back
cache or to add a write buffer to the system. Further
cache simulations showed that a write buffer would
provide an 8 to 16 percent overa l l system perfor
mance improvement, which was equal to that of a
write-back cache. The wri te buffer, however, was
the more stra ightforward solution to implement.

Cache analys is revealed that the processors
required different memory archi tectures. The CVA.X
had an internal l KB, two-way set associative cache.
This was to be configured as a mixed 1- and D-stream
cache. An addi tionai 32KH ro 64KB, two-cycle wri te
through cache was to be added external ly. This
would also be configured as a mixed I- and D-stream
cache. A si ngl.e- longword, two-cycle wri te buffer
would provide enough buffering to reduce the
dramatic impact of write misses. The soc was
proposed to have an internal write-back cache
between 5 KB and 8KB, with each l KB region mak

ing up a single set. Cache simulations indicated
that with a minimum internal mixed 1- and 0-stream
cache of 5KB, five-way set associative, an externa l
data cache would have to be over 64KB to have even
a negligible effect on ovnal l system performance.
Therefore no external cache was recom mended. To
mi tigate the write-miss penalty, a two-cycle write
buffer of 4 to 6 longwords was recommended.

As an acceleration technique, the original
PrintServer 20 control ler contai ned a memory
access capability that a l lowed data written to mem
ory to be logical.ly ORed with data that was al ready
stored. This technique was particularly useful when
the software system was wri ting the image that was

u ltimately printed. As part of the process of gener
at ing an image to print, the individual characters
appearing on a page must be copied from a region
of memory ca l led the font cache to another region
cal led the frame buffer. The frame buffer contains
the actual data that is sent to the print engine.

Vol. 3 No. 4 Fall I')<) I Digital Technical]ourual

To complicate things, the data written to the frame

buffer must be able to overlay data that may al ready
be there, thus requiring a logical OR function.

When a document was printing at or near the

maximum engine speed of 20 pages per minute,

analysis showed this low-level copying function
consumed approximately 20 percent of the total

system time al lotted to generate and print one page.

Thus a logical OR function in the memory system
would reduce the number of memory data cycles

from "2 reads 1 write" to " 1 read 1 write," and

reduce the impact from a second read occupying a

useful cache l ocation. Without this capabil i ty, the

degradation would be between 5 and 10 percent of
overal l system performance when printing at or

near 20 pages per minute. Therefore memory capa

bil i ty with a logical OR function was recommended.

Printer interface Performance When a PrintServer

20 is printing, every page that ex i ts the printer

requires the 1 MB frame buffer to be copied from

memory to the print engine interface. Changing a

program-controlled p rinter interface to one driven

by a DMA device provided two significant advan

tages. The first was to reduce the rea l- time require

ments on the PrintServer software system, and the

second was to a l low for a l imitecl degree of paral

lelism on the controller. The para l lel ism was due to

the abil ity of the processor to continue to execute

from its cache memory system while the DMA
device accessed memory. The processor only stops

executing when a cache m iss occurs.

Main Memory Bandwidth With a CVAX processor

configured as recommended in the section Memory

System Organization, the main memory system

bandwidth requirement of the processor was

60 percent. For the soc, it was 70 percent when

an existing DRAl\1 control ler was used. A Dl\'lA

driven printer interface required 15 percent, and
an Ethernet interface required nominal ly 4 percent

with bursts up to 20 percent. Each subsystem was
scrutinized to reduce its required memory band

width. The resulting recommendation was to add a
32-bit bus to the memory subsystem to provide a
dedicated channel for a l l data being sent to the
printer interface. This provision would reduce

required memory bandwidth for the printer inter

face from 15 percent to about 7 percent. The sys

tem would then have a nominal memo1-y bandwidth

requirement of 71 percent for a CVAX system and

81 percent for an soc.

Digital Tecbtticaljournal Vol. 3 No. 4 Fa/1 1')')1

Design of the Turbo PrintServer 20 Controller

Overall System Performance The execution char

acteristics of the original PrintServer 20 provided

some interesting surprises. Most floating-point

calculations were performed in double precision;

and even more interesting, for each floating-point
operation, there was a floating-point conversion

from single to double precision, and then back

again . Since the precise operations were not

requi red, a simple compi ler switch removed the

conversions and provided a 3 percent overa l l sys

tem p erformance improvement for floating-point

intensive PostScript documents. A second surprise

came from the resu lts of the BM3 benchmark,

which indicated a translation buffer hit rate of
85 percent. At the time of the discovery, the

PrintServer 20 was configured with a standard

MicroVA..'(processor ; however, by substituting an

rtVAX, which uses one less memory access to refer

ence its page tables, an 1 1 percent system per

formance improvement was achieved. With this

improvement, the rtVA.c'C processor provided

enough power to al low the original PrintServer 20

to ship with its 20-page-per-minute designation.
This information led the turbo control ler designers

to determine that the translation buffer of the SOC

would be large enough for a l l the entries required .

Results

The final analysis revealed that the expected perfor

mance of a CVAX or SOC processor wou ld place
either design on the low side of the performance
requi rement. Therefore close attention to detail

would be requ ired d ur ing the implementation

phase of the project as every ounce of performance

mattered . The expectation was to have a choice

between an SOC processor with a 40-ns cycle time

and a CVAX processor with a 60-ns cycle time. The

performance i mprovements of the two processors
are compared in Table 1 .

Table 1 Performance I mprovement Relative
to Original Pri ntServer 20 Contro l ler

soc CVAX
Benchmark Processor Processor

8M1 4.7 3.7

8M2 4.9 4.0

8M3 4.3 3.3

HOUSE 4.9 4.2

SCHEM 4.7 3 .7

65

Image Processing, Video Terminals, and Printer Technologies

As the project schedule progressed, the risk asso

ciated with the new soc processor decreased. As
this risk window col lapsed, i t was u nderstood that
a turbo control ler based on the soc processor
would not only perform better, but would also cost
less as it would not require an external cache.

Turbo Controller Hardware Design

The turbo control ler was destined for a relatively

high-end printer. Therefore the hardware archi tec
ture had to provide maximum performance, even
though this implementation would increase costs.
Based on the results obtained during RETrACE analy

sis, the hardware design had the fo llowing imple
mentation goals:

• The SOC would provide the CPU, the float ing

point accelerator (FPA), and the cache subsystem.
No second-level cache would be implemented .

• A four- to six-entry write buffer would be
implemented.

• The transfer of bi t-map data to the print engine
would require a 32-bit DMA subsystem with scan
erase capabi l i ty.

• The memory subsystem would support OR-mode
memory access by the CPU and scan-erase access
by the DMA control ler.

Although both the SOC and rtVAX chips comply
with the VAX arch itecture standard and both are
conceptually very similar, they have significant dif
ferences in the bus interface. For example, the

soc uses a quadword cycle (one 32-bit address fol
lowed by two 32-bit data reads) to fi l l one i nternal
cache block, while the rtV�'\ processor, which does
not support caching, does not usc this type of
cycle. AJso, the clocking system on the SOC was
enhanced, and the t iming rela tionships between
signals were modified to improve performance.

The changes to the SOC bus in terfact:, plus the
required functional changes revealed by RETrACE
analysis, meant that very l i tt le of the original
PrintServer 20 controller design cou ld be appl ied
to the new control ler. One of the first questions to
be answered before the design of the turbo con

tro l ler could begin, was whether or not one or

more AS!Cs wou ld be required for the design. This
question had to be answered for three subsystems:

• Main memory

• Write buffer

• Bit-map data transfer subsystem

66

In each case existing chips satisfied some of the
requirements for the subsystem. In the end these
chips met al l our requirements, but only because
tht.:y wt.:re used in ways not originally intt.:ndcd by
the chip designers.

Main Memory

Since the SOC has a bus interface that is compati
ble with the CVAX chip, the most obvious chip to
use as a main memory control ler was the CVAX

memory control ler (CMCTL) chip.1 It responds to all
bus cycles generated by the soc, anct since it was
already used on a munber of pla tforms supported
by the VAXELN operating system, i ts use greatly
simplified port ing VAX ELN to the turbo control ler.
However, the turbo control ler requires two special
memory modes that are not provided directly by
the CMCTL, namely OR mode and scan-erase mode.
I t was essential to devise a way to include these
two modes if the CMCrL were to be used.

OR-mode memory is a technique used to improve
performance during the wri ti ng of the page bit
map into memory (scan conversion). D uring nor
mal memory operation (cal led replace mode) , the
dest ination operand in memory is replaced by the

source operand . During an OR-mode write cycle,
the destination operand is modified as fol lows:

• For each logicaJ zero in the source data being
writ ten, the corresponding dest ination bit in
memory remains unchanged .

• For each logicaJ one in the source data being
written , the corresponding destination bi t in
memory is written with the corresponding bit in
the pattern register.

• The p attern register is a 32-bi t register which
determines the "color" pattern of the " ink" being
written on the pagt.:.

Figure 2 shows a portion of the logic between
the CMCTL and the memory array that implements
the OR-mode fu nction in hardware. The OR-mode
operation is accomplished by inverting the source
data and connecting it to 32 independent write
enables of the memory array. When a zero is wri t
ten, it is inverted and the write cycle for that bit
becomes a read cycle, thus preventing any change
to the memory contents. When a one is written, it
is inverted and the write is ai Jowed to occur, but
the data actually wri tten depends on the value pre
viously wri t ten into the pattern register.

vbl. 3 No. 4 Faii i')'JI Digital TeciJIIicaljournal

MEMORY DATA BUS FROM CMCTL 32

D � DATA
32 [> DATA � I--IN OUT

PATTERN READ
REGISTER DATA PATH

'----- [> �
OR-MODE
WRITE
DATA PATH

WRITE
ENABLE

MAIN MEMORY
ARRAY

Figure 2 OR-mode Circuit

Two featu res of the CMCTL chip make it possible
to implement OR-mode memory. First, its 64MB
address space is divided i nto 4 arrays of 4 banks
(16 banks total). Second, the CMCTL chip can selec
tively disable parity checking on an array.

The large address space of the CMCTL al lows the
use of 2 arrays for replace mode and 2 arrays for
OR mode, since the turbo controller supports up to
32MB of memory. The control signals of the two
sets of arrays are combined such that OR mode and
replace mode access the same physical memory,
though in different ways. Parity error detection
is disabled on the OR-mode arrays; thus a read
through OR-mode address space cannot cause a par
ity error. This is necessary because OR-mode write
cycles may corrupt pari ty. Normal ly any bit map
created using OR-mode write cycles is read using

OR-mode read cycles.
The other special mode required for the main

memory system is cal led scan-erase mode. It is an
opera ting mode designed to i mprove bus uti l iza
tion during the transfer of the bit map from main
memory to a FIFO buffer connected to the printer
data l ines. This mode is made possible by a side
effect of the error-correcting code (ECC)/parity
generation logic i n the CMCTL. Any time a masked
write occurs (any write other than an al igned long

word , such as a byte write), the destination long
word must fi rst be read by the CMCTL, then
combined with the bytes tO be wri t ten in order
to generate the parity or ECC check bits for that
longword .

Digital Technicaljoumal Vol. 3 No. 4 Pall 1991

Design of the Turbo PrintServer 20 Controller

Three operations occur during a single scan
erase cycle. Refer to the circuit drawing in Figure 3.

1. The bus master asserts the signal's "bit -map
load" and "bit-map erase" and requests a masked
write. The C1viCTL performs a read, and the bit
map is read ontO the memory data bus.

2. Bit -map data is automatica l ly transferred from
the memory data bus intO the FIFO buffer.

3. The CMCTL performs a write. However, since
the bit-map erase signal has disabled the data
path a nd the pul l-down resistors have set the
data-in l ines to al l zeros, the write cycle, which
was intended by the designers of the chip as a
masked write, has in fact become a memory
clear operation.

Write Buffer
The LR3220 chip was chosen as the base for the
write buffer subsystem. It provides a six-entry FIFO
buffer for address, data, and byte mask and detects
whether the processor has requested a read at a
memory location for which a write is stil l pending.

I t also supports two operating modes: LR3000
mode and Harvard mode.

If i t were not for the Harvard-mode feature, it
would have been more difficult to inclucle the
LR3220 chip into the turbo control ler. The LR3000
processor, for which this chip was designed, has
staggered address tim ing. Some of the address and
byte-mask bits are asserted on the fall ing edge of
the clock, and the remaining bits are asserted on
the rising edge of the clock. When the LR3220 chip
is configured in LR3000 mode, the processor sub
system must meet these timing requirements.
However, when the LR3220 chip is configured i n
Harvard mode, a l l address, data, a n d byte-mask
information is read at the same rising clock edge.

The basic strategy for including the wri te buffer
into the turbo controller was to insert the write buf
fer between the soc ancl the rest of the system as
shown in Figure 4. The SOC would issue read and
write requests to the write bu ffer, ancl the write
buffer would issue read and wri te requests to the
rest of the system. During CPU cycles the soc and
the write buffer have a master-slave rela tionsh ip
in which the SOC is the master. The rela tionship

between the write buffer and the rest of the system

is also a master-slave relationship; however. the
write buffer is the master. In fact , the wri te-bu ffer
output interface must look al most identical to the

soc.

67

Image Processing, Video Terminals, and Printer Technologies

BIT-MAP LOAD

MEMORY DATA BUS FROM CMCTL

RE PLACE-MODE
WRITE DATA PATH

[> 32
'--

BIT-MAP ERASE I
WRITE ENABLE

i

32

DATA
IN

F IFO BUFFER

[[IlJ
I

DATA
32

OUT r-+- [>
READ

DATA TO
PRINT ENGINE

'--

DATA PATH

FROM CMCTL 1 COMMON
---.::.__c__::_c__::_c__::_ ______ -f� WRITE

ENABLE

MAIN MEMORY
ARRAY

Figure 3 Scan-erase Circuit

The structure of the write-buffer subsystem is
shown i n Figure 5. The bus interface unit responds
to read or write requests from the soc. During
write cycles, the bus interface writes the data into
the LR3220 chip and im mediately alerts the SOC to
terminate the cycle quickly. Whenever om� or more

entries in the LR3220 chip have data, the bus cycle
generator (BCG) removes the next entry ancl issues
a write request to the appropriate subsystem.

The write-buffer subsystem al lows the SOC to
"read around" the write buffer, provided rhe address
being read does not have a pending write in the

TO OTHER

SYSTEM WRITE-BUFFER SUBSYSTEMS
1---ON A CHIP SUBSYSTEM

CVAX UN IVERSAL
MEMORY DI RECT MEMORY
CONTROLLER ACCESS
(CMCTL) CONTROLLER

I I
PRINTER MAIN
DATA F IFO MEMORY
BUFFER ARRAY

I
TO PRINT ENGINE

Figure 4 Interconnection of Turbo Controller Subsystems

68 Vol. 3 No. 4 l'i:t/1 1')91 Digital Tech11ical jourt�al

Design of the Turbo PrintServer 20 Controller

BUS CYCLE
BUS LOCAL GENERATOR SYSTEM CONTROL SOC CONTROL INTERFACE CONTROL
UNIT SIGNALS AND

I-- r-- ARBITRATOR

r--

I>
ADDRESS IN

r-

L_ r---._
ADDRESS OUT LATCH

SYSTEM DATA/ADDRESS
SOC DATA/ADDRESS DATA I N DATA OUT

SOC BYTE MASK
v

MULTIPLEXER

LR3220 WRITE BUFFER SYSTEM BYTE MASK

Figure 5

LR3220. To handle this, the BCG includes an arbitra
tion circuit. When the SOC requests a read cycle,
the bus interface unit of the write buffer passes
the request to the BCG. The BCG responds once
i t has completed any write cycle curren tly in
progress, provided that the address to be read does
not have a pending write in the write buffer. When
the slave device being read acknowledges the BCG,
the acknowledgment is passed back to the bus
interface ancl finally to the soc to terminate the
cycle. The BCG then resumes its task of removing
entries from the LR3220 chip and issuing writes to
the rest of the system.

In order to maintain data coherency, the wri te
buffer subsystem enforces some additional
protocols.

• Al l wri tes to any location other than main
memory require a wri te-flush cycle; that is, the
bus interface must wait until the LR3220 chip
is empty before wri ting the data to it . Further
more, the bus interface must wait unti l the BCG

has finished the cycle before it acknowledges the
SOC and al lows it to perform the next cycle.

• All reads to any location other than main mem
ory require a read tlush, which has the same
restrictions as a write flush. These restrictions
are required to avoid the possibil i ty of reading
around a pending 110 space write, which often
has side effects to other addresses.

• The write-buffer subsystem must pass a l l DMA

bus transactions to the soc to ensure that a l l
cached memory locat ions that are modified by
DMA cycles have their correspond ing cache
entry inva lidated.

Digital Technical journal 14">1. 3 Nu. 4 Fa/1 1991

Write Buffer

Bit-map Transfer Subsystem
The bit-map transfer subsystem transfers bit-map
data, created by the PostScript interpreter, to the

print engine. It is composed of the 32-bit DMA con
trol ler, a FIFO subsystem, and scan-erase logic in

main memory as described in the section Main
Memory.

The main requ irements for the 32-bit DMA con
troller were

• 32MB address range

• Abil ity to transfer 32 bits at a time

• Abil ity to transfer the frame buffer forward

(incrementing the source address) or backward
(decrementing the source address)

None of the available DMA contro l ler chips met
all our requirements, but the AMD 9516 universal
DMA controller (UDC) met some of them. The uoc

is a 16-bit DMA controller with a 16MB address
range and the ability to increment or decrement the
source address. There were two drawbacks to the

use of this chip. The software would have to ensure
that the frame buffer was always within the lower
16MB of memory, and the UDC would use twice as
much bus bandwidth s ince it could transfer only
16 bits at a time.

It was proposed that the UDC cou ld be used as a
ful l 32-bit DMA controller if i t was connected to the
bus "incorrectly" by shift ing the data/address l i nes
to the left by one bit. That is, data/address l ine 0 on
the UDC would be connected to data/add ress line 1

on the bus; data/address line 1 of the UDC would be

connected to data/address line 2 on the bus; etc.
This type of connection doubles the address range
of the chip and causes the source address on the

69

Image Processing, Video Terminals, and Printer Technologies

bus to increment by 4 bytes (32 bits) instead of

2 bytes (16 bits).

This decision had a few impl<.:mcntation impacts.

For example, the register definitions were now

incorrect, since a l l the bits in a l l the registers were

shifted one bit to the left. However, once the soft

ware was modified to compensate for this, the UDC

functioned properly as a 32-bit DMA control ler.

When combined with the scan-erase feature of

main memory, i t a l lowed us to achieve our bit -map

transfer goal of reading 32 hits from memory, load

ing i t into the FII'O subsystem, and clearing the

memory location, all in a single DMA cycle.

Performance

In this section, the performance of the original

PrintServer 20 is compared to the enhanced perfor

mance of the turbo PrintServer 20.

Except for performance, the original PrintServer

20 and the turbo PrintServer 20 have identical func

tional capabi l i ties. Table 2 l ists the five functional

subsets that were characterized for performance
on both printers. The first four functional subsets

were rated using the PostScript real-time operator;

they measure the elapsed CPU time needed to

complete a test . The last functional subset was

rated according to the rate of pages exi ting

the printer. The term "DECnet/DPS" refers to the

DECnet job (a job is one of several m u ltiprocessing

tasks running on the controller) and the '"dis

tributed PrintServer software'' job. The term

" printer system" refers to the complete printer

system, including the PostScript job and the print

ing overhead jobs. The printer system was rated
according to the rate of pages exiting the printer.

Table 3 reports the general attributes of the five

files that were run with the RETrACE system and
chara<:terized for performance.

Table 2 Functional Subsets of the Pri nters

Functional Subsets

PostScript job

PostScript job

PostScript job

DECnet/DPS jobs

Printer system
exclud ing
DECnet/DPS

70

Cha ra cterizat ion

Math operations per second

Text: characters per second

Graphics: vector inches per
second

DECnet/DPS: ki lobytes per
second

I mage printing: square
inches per second

Table 3 Benchmark F i le Attributes

F i le Name General Attributes of Fi le

B M 1 . PS Contains 39 pages of text with
13 fonts of various sizes. Some
text strings are at varyi ng angles.

BM2.PS Contains 1 page of spiral text
of various point sizes.

BM3.PS Contains 41 pages of text with
5 fonts.

HOUSE.PS Contains a 1 -page bitonal image
of 3000 blocks (DECnet l im ited).

SCH EM.PS Contains a 65-page schematic
of g raphics (vectors) and text.

Math Operators Performance of the
PostScript job

Figure 6 i l lustrates the control lers' performance

resu lts in math operations per second. The test

determines the time needed to perform 50,000

primitive math operators (e.g. , adding two mJm

bers 50,000 times) during a PostScript test docu

ment. The real-time operator reads the current

time, and the repeat construct repeats the math

operator. This test measures the performance of

the CPU only.

0 1 4000

z
8 1 2000
w
(/)
a: 1 0000
w
Cl..
(/) 8000 z
0
� 6000
II
� 4000
0
I � 200: I I _[I I I I

ADD D I V M U L SORT COS EXP LOG

KEY:

0 OR IGINAL CONTROLLER

• TURBO CONTROLLER
T U R BO = 6.7 x ORIG INAL CONTROLLER

Figure 6 PostScript job Performance with Math

Text Performance of the PostScript job

Figure 7 compares the text performance of the

PostScript job on the original controller and the

turbo control ler. The test determines bow long it

takes the PostScript job to compose 250,000 equally

14>1. 3 No. 4 Fall 1991 Digital Technical journal

20000

0
z
0

1 5000 ()
w
(f)
a:
w
(l_
(f) 1 0000
a:
w
f-
()
<>:
a: 5000 <>:
I

I I ()

0
2 4

KEY:

0 ORIGI NAL CONTROLLER

• TURBO CONTROLLER

I, _I,
FONT POINT SIZE

TURBO = 5.2 x ORIG INAL CONTROLLER

I I
1 0 1 2

Figure 7 PostScript job Performance with Text

sized characters to the page buffer in memory,

which eventually is sent to the print engine to be
printed.

Graphics Performance of PostScript job

An important means of characterizing graphics per

formance is in vector inches per second. Figure 8
shows the results obtained by running a PostScript

vector program in which all vectors are at
45 degrees and vector lengths are from 0.1 inch to

3 inches.

3000

0
15 25oo
()
w
� 2000
w
(l_
� 1 500
I
()
?; 1 000
a:
0
f-
() 500 w
>

KEY:

0 ORIGI NAL CONTROLLER

• TURBO CONTROLLER
TU RBO = 4.6 x O R I G I NAL CONTROLLER

Figure 8 PostScriptjob Performance

with Graphics

Digital Technical journal Vol. j No. 4 Fall 1991

Design of the Turbo PrintServer 20 Controller

Image Performance

The i mage test characterized the complete printer

system, including the PostScript job and the print

ing overhead jobs, but excluding the DECnet/ DPS

time requi red to transfer an image file to a printer.

Three one-square-inch bitonal images at device

resolution were placed into the user dictionary

and were used repeated ly during the performance

measurement. The result of using these precached

i mages was to el iminate the DECnet and DPS soft

ware t ime that would be required to transfer a full

page image from a host to the printer. Performance
was measured by printing 10 pages of 80 square

inches of image per page.

The pages were printed landscape and portrai t

t o measure the i mage performance both o n axis and

off axis. (On axis means that the printer sequen

t ia l ly prints a l l b i ts of a word from the image on a

single scan l ine. Off axis by 90 degrees means that

the printer prints one bit from each word and does

not print the next bit in the word unti l it is a t

the same position on the next scan l ine.) Figure 9

shows the results of the image p erformance test in

square inches per second.

22.0

0 20.0
z
0 1 8.0 ()
w

1 6.0 (f)
a:

1 4 .0 w
(l_
(f) 1 2.0
w
I
()

1 0 .0

?; 8.0
w
a: 6.0
<>:
::::J 4.0 a
(f) 2.0

0

KEY:

0 ORIG INAL CONTROLLER
• TURBO CONTROLLER
T U R BO = 3.0 x ORIGI NAL CONTROLLER

Figure 9 Image Performance Measurement

of the Printing System

DECnet/DPS jobs Performance

DECnet/DPS transfer rates can be ignored for text

and graphics files, but these rates can consume

most of the time needed to print large image files.

For example, a single, letter-size page of image

contains more than 1 MB of image data, but the

71

Image Processing, Video Terminals, and Printer Technologies

corresponding PostScript file contains morT t han

2MB. Because the image data is represented in Amer

ican standard code for information interchange

(ASCII) hexadecimal characters in PostScript, S bits

of the PostScript file are needed to represent 4 hits

of image data.

' I(> measure DECnct/ DPS, a PostScript file of I M R

o f comments was sent t o the printer. The clock was

started ·when the beginning of the file was tTccived

by the PostScript interpreter and stopped when the

end of the file was received . The assumption of this

test method was that the PostScript interpreter can

parse comment I ines much faster than DECnet/ DPS

can t ransfer them.

The DECnet/DPS transfer rate is basica l ly propor

tional to the slower of the host and printer proces

sors. Figure 10 shows the DECnct/DPS results.

RETrACE Benchmark Files

The benchmark files l isted in Table 4 arc charac

terized both by the elapsed time from file arrival

90

80
0
z
0

70
() 60 w
(/)
cc 50 w a_
(/) 40 w
f-->-
C) 30
0

20 ...J
52

1 0

0

KEY:

0 ORIGINAL CONTROLLER

• TURBO CONTROLLER
TURBO = 4.9 " ORIG INAL CONTROLLER

Figure 10 DECnet/DPS}obs Perjonnance

to fi le printed and by the amount of CPU time used

to print the job. For example, in the B.\1:) bench

mark, the speed is l imited by the 20-page
per-minute print engine, but the CPU time needed

to print the file can be used as a performance
measurement.

Summary

The turbo controller enhanced the performance of

the PrintScrver 20 printer system. Its design was

prompted by the need to maintain print speed

performance for complex documents containing

text, graphics, and images. The RETrACE system was
designed to analyze the PrintServer 20 system to

determine which architectural changes would pro

vide the greatest improvement in PostScript perfor

mance. By optimizing hardware only in areas where

it was truly worthwhile, we were able to use exist

ing chips and reduce development costs. The sub
systems of the turbo control ler hardware that

were optimized as a resu lt of this analysis were

the processor (SOC which provided CPU, floating

point accelerator, and cache subsystem), a memory

subsystem with OR-mode and scan-erase access,

a write-buffer subsystem, and a 32-bit DMA sub
system. Results of the performance tests for five

benchmarks, including PostScript jobs, indicate the
levels of enhanced performance.

Acknawledgments

Chris Mayer designed and implemented the

RETrACE multilevel cache simulator. He developed
a ticketing algorithm that simpl ified the manage

ment of delayed behavior memory constructs such

as write buffers.

Reference

1 . D. K. Morgan, "The CVAX CMCTL-A CMOS
Memory Control ler Chip," Digital Technical

journal, vol. 1, no. 7 (August 1988): 139-143.

Table 4 Benchmark F i les Cha racterized by Ela psed Time a n d CPU Time (Seconds)

Benchmark Original Tu rbo Original Tu rbo delta delta

Fi le CPU CPU Elapsed Elapsed CPU Elapsed

BM1 7585 1 707 7735 2050 4.4 3.8

8M2 238 51 241 51 4.7 4.7

8M3 56 1 5 1 28 1 20 3.7 1 .1 *

HOUSE 67 1 5 1 06 31 4.5 3.4

SCHEM 2802 625 3073 675 4.5 4.6

"Limited by engine.

72 Vol. 3 No. i Full 1991 Digital Technical journal

I Further Readings

The Digital Technical Journal

publishes papers that explore

the technological foundations

of Digital's major products. Each

Journalfixuses on at least one

product area and presents a

cornpilation of papers written

by the engineers who developed

the product. The content for

the Journal is selected by the

journal Advisory Board.

Digital engineers who would

like to contribute a paper

to the Journal shou/.d contact

the editor at RDVAX.::BLAKE.

Topics covered in previous issues of the Digital

Technical journal are as fol lows:

Availability in VAXcluster Systems/
Network Performance and Adapters
Vol. 3, No. 3, Summer 1991

Discussions of VMS volume shadowing, VAXcluster

application design, and new avai labil i ty features of

local area VAXcluster systems, together with detai ls

of high-performance Ethernet and FDDI adapters,

and an analysis of FDDI LAN performance

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991

The FDDI IAN system and Digital 's products that

support this technology, with an overview and

papers on the physical and data l ink layers,

Common Node Software, bridge and concentrator

devices and related management software, and an

ULTR.IX network adapter

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. 1, Winter 1991

The archi tecture and products of Digital 's d is
tributed transaction processing systems, with

information on moni tors, performance measure
ment, system sizing, database availabi l ity, commit
processing, and fault tolerance

VAX 9000 Series
Vol. 2, No. 4, Fall 1990

The technologies ami processes used to build

Digi tal's first mainframe computer, including

papers on the architecture, m icroarchi tecture,

chip set, vector processor, and power system,

as wel l as CAD and test methodologies

Digital Tecbnical]oumal Vol. 3 No. 4 Fall /')91

DECwindows Program
Vol. 2, No. 3. Summer 1990

An overview and descriptions of the enhance

ments Digital 's engineers have made to MIT's

X Window System in such areas as the server, tool

kit, interface language, and graphics, as we l l as

contributions made to related industry standards

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990

The h ighly expandable and con.figurable midrange

fami ly of VAX systems that includes a vector proc

essor, a high-performance scalar processor, and

advances in chip design and physical technology

Compound Document Architecture
Vol. 2, No. 1, Winter 1990

The CDA family of archi tectures and services that

support the creation, interchange, and processing

of compound documents in a heterogeneous net

work environment

Distributed Systems
Vol. 1, No. 9,june 1989

Products that a l l ow system resource sharing

throughout a network, the methods and tools

to evaluate product and system performance

Storage Technology
Vol. 1, No. 8, February 1989

Engineering technologies used in the design, man

ufacture, and maintenance of Digital 's storage and

information management products

CVAX-based Systems
Vol. 1, No. 7, August 1988

CVAX chip set design and multiprocessing archi

tecture of the midrange VA.,'\ 6200 fami ly of systems

and the MicroVA.,'< 3500/3600 systems

Software Productivity Tools
Vol. 1, No. 6, February 1988
Tools that assist programmers in the development

of high-quali ty, rel iable software

VAXcluster Systems
Vol. 1, No. 5, September 1987

System communication architecture, design and
implementation of a distributed lock manager, and

performance measurements

VAX 8800 Family
Vol. 1, No. 4, February 1987

The microarchitecture, internal boxes, VAXBI bus,

and VMS support for the VAX 8800 high-end multi

processor, simulation, ancl CAD methodology

73

Further Readings

Networking Products
Vol. 1, No. 3, September 1986

The Digital Network Architecture (DNA), network

performance, LANbridge 100, DECnet-l i LTRIX and

DECnet-DOS, monitor design

MicroVAX II System
lf)/. 1, No. 2, March 1986

The implementation of the microprocessor and
floating point chips, CAD su ite, MicroVAX work

station, disk controllers, and TK';O tape drive

VAX 8600 Processor
Vol. 1, No. 1, August 1985

The system design with pipel inecl architecture,

the 1-box, F-box, packaging considerations, signal

integrity, and design for reliabil ity

Subscriptions to the Digital 1'echnical.fournal are

available on a yearly, prepaid basis. The subscrip

tion rate is 540.00 per year (four issues). Requests

should be sent to Cathy Phi l l ips, D igital Equipment

Corporation, MLO I-3/B68, 146 Main Street, Maynard,

MA 01754, U.S.A. Subscriptions must be paid in U.S.

dol lars, and checks should be made payable to

Digital Equipment Corporation.

Single copies and past issues of the Digital

Technical.fournal can be ordered from D igital

Press at a cost of $16.00 per copy.

Technical Papers by Digital Authors

R. Al-Jarr, ''A Methodology for Evaluating Decision

Making Architectmes for Automated Manufactur

ing Systems,'' Eleventh JF-AC Conference (August

1990).

S. Angebranndt, R. Hyde, D Luong, and N. Siravara,

"Integrating Audio and Tel<.:phony in a Distributed

Workstation Environment," Proceedings of the

Summer 1991 T!SLNIX Conference Oune 1991) .

S . Batra, M . Mallary, and A. Torabi, " Frequency

Response of Thin-lilm Heads with Longitudinal
and Transverse Anisotropy," !J:'I:'f:' lntermag '90
(April 1990).

R. Csencsits, N. Riel,]. D ion and S. Arsenault ,

"Interfacial Structure and Adhesion of Metal-on

polyamide," International Symposium for Testing

and Failure Analysis (October 1990).

R. Csencsits, J. Rose, R. St. Amand, L. E ll iott,

A. Hartzel l , L . Kisselgof, and]. Lloyd, "Aluminum

Interconnect Microstructure and Its Role in

Electromigration," Jntentational SymjJOsium

for Testing and Failure A na�ysis (October 1990).

74

J Delahunty and T. Kielty, "Automated Pareto

Analysis for Continuously Improving a VLSI

Fabrication Area's Process Stabi l i ty," Advanced

Semiconductor A1anufacturing Conference

(September 1990).

S. Del l , " Promoting Equal ity of the Sexes through

Technical Writ ing," Society.for Technical Commu

nication (August 1990).

B. Doyll' and K. Mistry, "A Lifetime Prediction

Method for Hot-carrier Degradation in Surface

channel P-MOS Devices," IEI:.'F [i-ansactions on

Electron Devices (May 1990).

E. Freedman and Z. Cvctanovic, " Efficient

Decomposi tion and Performance of Para l lel

POE, FFT, Monte Carlo Simulations Simplex

ami Sparse Solvers," IEEE Supercomputing '90

(November 1990).

A. Garde! and P Deosthali , " Hub-centered Pro

duction Control of Wafer Fabrication," Advanced

Semiconductor Manufacturing Conference

(September 1990).

A. Hartzel l , " Introduction of Argon as a Heat
Transfer Gas in a Single Wafer RJ E System,"

Jntenwtional Symposium for Testing and

Failure A nalysis (October 1990).

A. Heyman and J Thottuvel i l , "L inear Averaged and

Sampled Data Models for Large Signal Control of

High Power Factor AC-DC Converters," IEEE Power

Electronics Specialists Oune 1990).

L. Hill , "Video Signal Analysis for EMI Control,"
IEEE Electromag '91 (1991) .

L. H i l l and A. Metsler, "Video Subsystem Design

for EMI Control," IEEE Electrmnag '91 (1991) .

S . Kasturi, " Forced Convection: The Key t o the

Versatile Reflow Process," NEPCON East '90
Oune 1990)

D. Mirchandani and P Biswas, "Characterization

and Modeling Ethernet Performance of
Distributed DECwinclows Applications,"

ACM Sigmetrics (May 1990)

W Metz, "Automated On- l ine Optimization of an

Epi taxial Process," International Semiconductor

Manufacturing Science Symposium (May 1990).

K. Mistry, B. Doyle, and D. Krakauer, "Imract of

Snapback Induced Hole Injection on Gate Oxide

Rel iabil ity in N-MOSFET's," //.;/:1:.' Electron Device

Letters (October 1990).

Vol. .) No . .:j Fall I'J'JI Digital Technical journal

C. Pan, "Gas Lubrication," ASME/STLE Tribology

Conference (October 1990).

A. Phil ipossian, "Fluid Dynamics Analysis of

Thermal Oxidation Systems via Residence Time

Distribution (ROT)," Electromechanical Society

(October 1990).

M. Sidman, "Convergence Properties of an

Adaptive Runout Correction System," ASME
Winter Meeting (November 1990).

M. Sidman, "Parametic System Identification

on Logarithmic Frequency Response Data,"

IEEE Transactions on Automatic Control

(September 1991) .

D. Skendzic, "Two Transistor Flyback Converter

Design for EM! Control," IEEE Symposium on

Electromagnetic Compatibility (August 1990).

A. Smith and W Gol ler, " New Domain Configura

tion in Thin-film Heads," Intermag '90 (April 1990).

H. Smith and). Beagle, "SIMS for Accurate

Process Monitoring in CoSi2-on-Si MOSFET

Technology," Secondary Jon Mass Spectrometry

(September 1989).

). Thottuvel i l , "Using SPICE to Model the Dynamic
Behavior of OC-to-DC Converters Employing Mag
netic Amplifiers," IEEE Applied Power Electronics

Conference (March 1990).

R. Ulichney, "Frequency Analysis of Ordered

Dither," Hard-copy Output OE!LASE 89 SPIE '89
Proceedings (1991) .

R. Ulichney, "Challenges in Device Independent

Image Rendering," Applied Vision Optical Society

of America Technical Digest Series '89 (1991).

E. Zimran, " Performance Efficient Mapping of

Applications to Paral lel and Distributed Archi

tectures," International Conference on Parallel

Processing (August 1990).

Digital Press

Digital Press is the book publ ishing group of
Digital Equipment Corporation. The Press is an

i nternational publ isher of computer books and
journals on new technologies and products for

users, system and network managers, program

mers, and other p rofessionals. Proposals and ideas

for books in these and related areas are welcomed .

The fol lowing book descriptions represent a

sample of the books available from Digital Press.

Digital Technical journal Vol. 3 No. 4 Full 1991

VAX/VMS: Writing Real Programs in DCL
Paul C. Anagnostopoulos, 1989, softbound,

409 pages, Order No. EY-C 168E-DP-EEB ($29.95)

This book contains information that can help the

reader Jearn to write powerful and wel l-organized

programs in DCL, the command language for the

VAX/VMS operat ing system. The text includes a

review of the syntax and semantics of DCL and a

discussion of significant issues in the development
of serious DCL software. Programming paradigms

are presented, as wel l as the correct way to

implement them. The book presents good pro
gramming techniques and helps the student to

make effective use of the VMS operating system.

X WINDOW SYSTEM TOOLKIT:
The Complete Programmer's Guide
and Specification

I

Paul). Asente and Ralph R. Swick, 1990, softbound,

1000 pages, Order No. EY-E757E-DP-EEB ($44.95)

This book consists of two parts, "Programmer's

Guide" and "Specification." "Programmer's Guide"
describes how to use the X Toolkit to write

appl ications and widgets, and inc ludes many

examples. Each chapter in this part contains an

appl ication writer's section and a widget writer's

section. Application program mers need to read the

widget writer's sections only if they are curious

about what is going on behind the scenes;

widget program mers shou ld read both sections.

"Specification" provides a complete and concise

description of every component of the X Toolkit

Intrinsics, as standardized by the MIT X Consor

t ium. The level of detail i n this part is sufficient

to enable a program mer to create a new imple

mentation of the X Toolkit .

PRODUCTION SOFTWARE TIIAT WORKS:
A Guide to the Concurrent Development
of Realtime Manufacturing Systems
john A. Behuniak, Iftikhar Ahmad, and
Ann l\1 . Courtright, 1992, softbound , 204 pages,

Order No. EY-H895E-DP-EEB ($24.95)

This is a practical gu idebook for manufacturing
managers and process engineers who must develop

better process methodologies to stay competitive

and for developers of realtime manufacturing

software who need to cut time and costs from their

work. The presentation, which provides useful

advice ancl easy-to-follow procedures, addresses

three basic tasks of realtime software development

75

Further Readings

in a manufacturing plant: (1) managing the design

of the system; (2) setting up and managing a

development organization; and (3) implementing

tools for successfu! completion and managem<..:nt.

UNIX FOR VMS USERS
Phi l ip E. Bourne, 1990, softbound, 36R pages,

Order No. EY-C 177E-DP-EEU (S28.95)

This book emphasizes the practical aspects of

making the transition f rom the ViviS to the U N I X

operating system. Every concept pr<..:sented i s

il lustrated wi th one or more examples, comparing

how to perform a particular task in each of the

two operating systems. The book is organized in a

logical order and covers the fol lowing topics: fun

damental concepts to be grasped before touching

the keyboard, the first terminal sessions, the first
commands, editing, communicating with users,

resource ut i l ization, using devices, more advanced

commands, using h igh- level languages, program

ming the operating system, text processing, and

networking. Appendixes provide extensive cross

reference tables to make this a valuable reference

tool for even the experienced UNIX user.

LOGISTICAL EXCELLENCE:
It's Not Business as Usual
Donald). Bowersox, Patricia J Daugherty,

Cornelia L. Drogue, Richard N. Germain, and

Dale S. Rodgers, 1992, 300 pages,

Order No. EY-1 1953E-DP-EEB

This book focuses on the interpretation of research

findings that have been compiled to help managers

who seek to improve logistical competency within

their organization . It provides a sequent ial model,

the best practices of "excellent" logistics managers
with supportive statistical evidence, and extensive
coverage of Electronic Data Interchange in the
logistics process. It also includes a brief overview

of the expanding role that logistics has recently
played in the overall corporate strategy of increas
ing speed and qual ity. lb facil i tate i nterest and ease
of reading, an action-oriented case d ialogue runs

throughout the eight chapters.

WRITING VAX/VMS APPLICATIONS USING
PASCAL
Theo de Klerk, 1991 , hardbound , 748 pages,

Order No. EY-F592E-DP-EEB ($ 39.9';)

Written for the professional appl icat ion program

mer on the VAX/VMS operat ing system using the

76

VAX Pascal programming language, this is the first

book to actual ly discuss the construction of real

VMS applications. It sets forth a methodology for

producing h igh-qua l ity, professional VMS appli

cations by focusing on the aspects of the VMS

operating system crucial to every well-written

application.

THE DIGITAL GUIDE TO SOFTWARE
DEVELOPMENT
The staff of the Corporate User Information

Products (CUIP/ASG), Digital Equ ipment

Corporation, 1989, softbound, 239 pages,

Order No. EY-Cl78E-DP-EEB ($ 27.95)

THI:' DIGITA L GUIDE TO SOF1mlRE DEVELOPNIENT

is the tirst publ ished description of the method

ology that Digi tal uses to design and develop i ts
software . For the engineer ancl other professionals

associated with the creation ami marketing of
software applications, this book gives a rare look at

the practices of an industry leader and provides a

model for others who wish to introduce software

enginet:ring methods and tools into their own
companies. Also discussed are the use of selected

VMS case tools to expedite the process; the roles of

teams and team leaders; the use of review meetings

and docu ments; and formal procedures for testing

and maintenance. The guide includes numerous

diagrams and tables, c lear guidel ines for the coding

and documentation of software modules, a l isting

of related VMS documentation, and coding guide

l ines for VAX C.

DIGITAL GUIDE TO DEVELOPING
I NTERNATIONAL SOFTWARE
The staff of the Corporate User Information
Products (O J I P/AS< i), D igital Equipment
Corporation, 1991, softbound, 381 pages,
Order No. EY-F577E-DP-EEB ($28 95)

This book introduces the ground-breaking pack
aging and design guidelines recommended by

Digi tal for products destined for overseas markets.
Al ready used by more..: than 400 independent soft

ware vendors and development groups, as well as

by Digital engineers, this book offers an approach

that greatly simplifies the steps required to adapt

software to local markets once the parent product
has been released. The book features a description

of Digital 's international product model, a scheme

for separating the core functions of a product from

those that require t ranslation or modification for

1-h/. J No. 4 l'ali i'J'JI Digital Technical]ou.-nal

specific markets. Also included are guidelines for

developers working in DECWindows, VMS, and

ULTRIX environments; special considerations

involved in preparing a product for multibyte Asian

languages or for mu ltilanguage environments; and

appendixes with information on the systems issues
in computer architecture.

USING MS-DOS KERMIT: Connecting your
PC to the Electronic World, Second Edition
Christine M. Gianone, 1991 , softbound,

344 pages with software d isk included,

Order No. EY-H893E-DP-EEB ($34.95)

As in the first edition, this software package leads

the novice step by step through instal lation, com

munication setup, terminal emulation, fi le transfer,

and script programming, and also serves as a com

plete reference work for the experienced user.

Complete with 5Y.-inch diskette containing the

official M5-DOS KERMIT Version 3.1 1 program from

Columbia University, this revision includes a new

section on local area networks, additional material

on running Kermit in windowed environments
such as M icrosoft Windows and Quarterdeck

DesqView, a new appendix containing tables of
the escape sequences used by Kermit's text and

graphics terminal emulators, and expanded

descriptions of many of Kermit 's features.

ENTERPRISE NETWORKING:
Working Together Apart
Raymond H. Grenier and George S. Metes, 1991 ,

hardbound, 260 pages, Order No. EY-H878E-DP-EEB

($29.95)

To successful ly compete in the next century, com

panies must recognize and adapt to exponential

changes, including the d ispersion of markets and
resources and acceleration in market demands.

ENTERPRISE NETWORKJNG: Working Together

Apart, describes how management can support

this d istributed electronic information environ
ment and move through planned transitions to

a new organization, confident they wil l prosper.
Intended for individuals in charge of d irecting

transition of information-focused groups that
extend across geographies, this book is segmented

into four parts. The Introduction, Part I, defines

the assumptions and real i ties. Part II focuses on

Capabi l ity Based Environments. Part I I I d iscusses

Simultaneous Distributed Work, both Goals and
Processes, ancl Continuous Design and Quest for

Digital Technicaljottrlla/ Vol. 3 No. 4 Fat/ 1991

Qual i ty. The Epilogue, Part IV, concludes with

three appendices detai l ing Benchmarking, Build

ing Networks, and Networking Capabil i t ies.

THE ART OF TECHNICAL DOCUMENTATION
Katherine Haramundanis, 1992, softbound,

267 pages, Order No. EY-H892E-DP-EEB ($28.95)

Written primarily for novice and aspiring technical

writers within the computer industry, The Art

of Technical Documentation has unique features,
including i ts advice on planning and process,

research techniques, use of graphics, audience

analysis, definition of qua l ity, standards, and

careers that are valuable to experienced technical

writers as well . Haramundanis views the practice

of technical writing as being d ifferent from that

of scientific writing, and closer to investigative

reporting. In keeping with this premise, this book

is not a style guide that deals with a l l aspects of

typography and copy edit ing, but instead presents

the distil led knowledge of the author's many years
experience.

A COMPREHENSIVE GUIDE TO Rdb/VMS
Lilian Hobbs and Kenneth England, 1991,

softbound, 352 pages, Order No. EY-H873E-DP-EEB

($34.95)

The Rdb/VMS relational database system was

developed by D igital Equipment Corporation for

VAX computers using the VMS operating system.

This system is one of a number of information

management products that work together to

faci l i tate the sharing of information. The Rdb/VMS

system is used, for example, in high-performance

transaction processing systems. This book is based

on Rdb!VMS Version 4.0, which Digital made avail
able to customers at the end of 1990, and thus

includes the latest functional ity.

DIGITAL GUIDE TO DEVELOPING
INTERNATIONAL USER INFORMATION

I

Scott Jones, Cynthia Kennel ly, Claudia Mueller,

Marcia Sweezey, B i l l Thomas, and Lydia Velez, 1992,
softbound, 214 pages, Order No. EY-H894E-DP-EEB
($24.95)

Designed for the busy professional , this book

presents models that extend beyond Digital and

English speaking countries in a quick read/

reference format. Nine chapters and fou r appen
dices outl ine methods for creating written, visual,

77

Further Readings

and verbal information for cost-e!Iective trans
lation. Primarily for information special ists,
including writers, ed itors, i l lustrators, course
developers, and their managers, this book wil l also
help software developers and students enhance
the ir background in technical communication.

PRACTICAL KNOWLEDGE ENGINEERING:
Creating Successful Commercial Expert

Systems
Richard V Kel ly, Jr. , softbound, 212 pages,
Order No. EY-F591 E-OP-EEB ($28.95)

This book is a concise guide to practical methods
for init iating, designing, building, managing,

and demonstrating commercial expert systems.
It is a front-l ine report of what works (and what
does not) in the construction of expert systems,
drawn from the author's decade of experience
gained working on such projects in all major
areas of application for American, European, and
Japanese organizations. It also briefly reviews

the knowledge representation, programming,
and management techniques commonly used to
implement expert systems today, and describes the
intel lectual, organizational, financial , and manage

rial issues that knowledge engineers face daily in
performing their jobs. Among the topics covered
are: prospecting for " legitimate" problems; fore
casting costs, establ ishing project metrics and
wri ting specifications; preparing for system
"demos''; interviewing and selecting engineering
team members; and solving common difficulties
in design and implementation.

COMPUTER PROGRAMMING AND
ARCHITECTURE: The VAX, Second Edition

Henry M. Levy and Richard H. Eckhouse, Jr. , 1989,
hardbound, 444 pages, Order No. EY-6740E-DP-EEB
($3800)

This book is both a reference for computer profes
sionals and a text for students. A systems approach
helps the reader understand the issues crucial to
the comprehension, design, and use of modern
computer systems. Using the VA)(computer as an

example, the first hal f of the book is a text sui table

for a complete course in assembly language pro
gramming. The second half of the book describes
higher-level systems issues in computer architec
ture, namely, support for operating systems and
operating systems structures, virtual memory,
paral lel processing, microprogramming, caches,
and translation buffers.

78

VMS FILE SYSTEM INTERNALS

Kirby McCoy, 1990, softbound, 460 pages,
Order No. EY-F575E-0P-EEB ($49.95)

VIIIJS FILE SYSTEM INTERNALS, based on VMS Version
5.2, is a book for system programmers, software
special ists, system managers, applications design
ers, and other VAX/VMS users who need to under
stand the i nterfaces to and the data structures,
algorithms, and basic synchronization mechanisms
of the v,'viS file system. This system is the part of
the VAX/VMS operating system responsible for
storing and managing files and information in
memory and on secondary storage. The book is
also intended as a case study of the V.\'fS implemen

tation of a tile system for graduate and advanced
umkrgraduate courses in operating systems.

DECNET PHASE V: An OSI Implementation
James ,vlartin and Joe Leben, 1992, hardbound,
572 pages, Orcler No. EY-H882E-DP-EEB ($49.95)

This book provides a first in-depth look at DECnet
Phase V and the important issues that must be
resolved in the design and implementation of very
large networks. It presents key Open Systems In ter
connection (OSI) concepts and shows how DECnet
Phase V hardware and software products imple
ment internat ional standards associa ted with the
OSI model.

VAX/VMS OPERATING SYSTEM CONCEPTS
David Miller, 1991 , hardbound, 512 pages,
Order No. EY-F590E-DP·EEB ($44.95)

This book begins with an overview that centers
on one visi ble aspect of an operating system,
terminal input and output; it proceeds into wel l
organized chapters on process definition, paging
and memory management, securi ty, protection
and privacy; and it concludes with a chapter
on orerat ing systems at D igital Equipment
Corporation. Each chapter provides an intro
duction, theoretical discussion, general ly recog
nized solutions, a lgorithms and data structures,
and questions to encourage review of the centra l
concept presented .

THE VMS USER'S GUIDE
James F. Peters, III and Patrick). Holmay, 1990,
softbound, 304 pages, Order No. EY-6739E-DP·EEB
($28.95)

This up-to-elate guide for new VMS users provides
a sequence of steps for learning the VMS operating

1-b/. 3 No . . ; Fall 1')91 Digital Tee/mica/ journal

system and includes hands-on experiments with
step-by-step instructions. The book also can be

used as a reference for commands and util i ties.

THE V1VIS USER'S GUIDE, reflecting VMS Version 5,

provides complete VMS coverage-from Jogging
in to creating command procedures; contains
a thorough discussion of files and d irectories;
covers both the EDT and the EVE editors in detail;
and introduces programming with VA,'<TPU.

The guide includes learning aids in each chapter,
such as sum maries that contain tables of the

commands introduced in the chapter, exercises
to reinforce and extend the skil l s learned, and
review quizzes.

THE MATRIX: Computer Networks and
Conferencing Systems Worldwide

john S. Quarterman , 1990, softbound, 719 pages,

Order No. EY-C l76E-0P-EEB ($49.95)

This is the first reference book to describe in detail
the extensive yet largely unpubl icized web of
public and private networks and conferencing
systems that has spread to virtually every corner
of the world. The first half provides extensive
background information on the history, terminol
ogy, standards, protocols, technologies, worldwide

networked communities, and probable future
course of networking systems throughout the

world . The second half describes specific confer
encing systems and the interconnections between
them-according to geographic region worldwide.
Maps are included when available. Syntaxes and
gateways are provided for sending mai l from one
system to another. Additional chapters discuss a
number of well-known worldwide networks,
including the Internet and selected com mercial
systems. Two append ices provide essential infor
mation on public data networks worldwide and
on selected legal issues.

X AND MOTIF QUICK REFERENCE GUIDE
Randi). Rost, 1990, softbound , 369 pages,
Order No. EY-E758E-OP-EEB ($24.95)

Based on the newly released X Window System
Version 1 1 , Release 4 and Motif Version 1 .0, this
one-volu me guide combines three major reference
works on XLib, X Toolkit Intrinsics, and Motif
programming l i braries in a compact, easy-to-access
format. Features include complete descriptions
of approximately 400 X Lib routines, 200 x Toolkit
Intrinsics, and 200 Motif routines. The guide is
organized into five major reference sections-

Digital Technical jourttal Vol. 3 Nu. 4 Fall 1991

" X Protocol," " XLib," "X Tool kit Intrinsics," "Motif,"
and "General X" ; all routines and data structures

are organized alphabetically within each of these

sections.

FIFfH GENERATION MANAGEMENT:
Integrating Enterprises through Human
Networking

Charles M . Savage, 1990, hardbound, 267 pages,
Order No. EY-Cl86E-OP-EEB ($28.95)

This book explores the challenges managers face
as their organizations transit ion from the indus
trial era to the new era of knowledge networking.
The author contends that new technologies like
computer integrated manufacturing (CIM) will

I

not be successful until organizations transform
their structures from the steep hierarchies of
second generation management to the flattened
networks of the fifth generation. The book
contains two parts. In Book 1, " Five Days that
Changed the Enterprise," Savage narrates a case
study of senior executives confronting the prob
lems of a traditional organization as they work to
transform their company into a networked
organization. In Book 2, "Integrating Enterprises
through Human Networking," Savage draws on
contemporary management l iterature and his own
consulting experiences to present a logical case for
his recommendations. A concluding chapter offers

ten practical considerations that organizations
must address to prepare for change.

X WINDOW SYSTEM: The Complete Guide
to Xlib, PROTOCOL, XLFD, and ICCCM,

X Version 11, Release 4, Second Edition

Robert W Scheifler and james Gettys,
with jim Flowers, Ron Newman, and
David Rosenthal, 1990, softbound, 851 pages,
Order No. EY-E755E-DP-EEB ($49.95)

By combining four MIT X Consortium standards
into one volume, this book is the most complete
and up-to-date X Window System reference
available. In addition to the four standards, a lso
included are instructive diagrams, a detailed
glossary, and a comprehensive subject-oriented
index. The book consists of four main parts, each

with a standard specification produced by the
MIT X Consortium for X Version 1 1 , Release 4:

Part I, "Xl i b-C Language X Interface" ; Part 1 ! ,

"X Window System Protocol" ; Part 1 1 1 , " Inter
Cl ient Communications Conventions Manual " ;
and Part rv, "X Logical Font Description."

79

Further Readings

To receive a copy of our latest catalog or further
inJormation on these or other publ ications from
Digital Press, please write:

Digital Press
Department EEB

I Burl ington Woods Drive
Burl ington, MA 01803-4539

Or, you can order by call ing DECdirect a t
800-DIGITAL (800-344-4825).

When ordering be sure to refer to Catalog
Code EEB.

80 Vol. 3 Nu. 4 Fall 1991 Digital Technical journal

ISSN 0898-90 I X

Primed i n U . S . A . EY-H889E-DP/9 1 12 02 18 .0 DBP/NRO Copyrighr © Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Hardware Accelerators for Bitonal Image Processing
	X Window Terminals
	ACCESS.bus, an Open Desktop Bus
	Design of the DECprint Common Printer Supervisor for VMS Systems
	The Common Printer Access Protocol
	Design of the Turbo PrintServer 20 Controller
	Further Readings
	Back cover

