
DEC-11-00DA-D

PDP 1 1

o D T - 1 1 R DEB U G GIN G PROGRAM

PROGRAMMER'S MANUAL

for the

Disk Operating System

For additional copies, order No. DEC-11-00DA-D from Digital Equip

ment Corporation, Direct Mail, Bldg. 1-1, Maynard, Mass. 01754

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

i

First Printing, May 1971

Your attention is invited to the last two
pages of this document. The "How to Obtain
Software Information" page tells you how to
keep up-to-date with DEC's software. The
"Reader's Comments" page, when filled in and
mailed, is beneficial to both you and DEC;
all comments received are acknowledged and
are considered when documenting subsequent
manuals.

Copyright @ 1971 by Digital Equipment Corporation

This document is for information purposes and
is subject to change without notice.

Associated Documents:

PDP-II Disk Operating System Monitor,
Programmer's Handbook, DEC-II-MWDA-D

PDP-II PAL-IlR Assembler,
Programmer's Handbook, DEC-ll-ASDB-D

PDP-II Edit-II Text Editor,
Programmer's Manual, DEC-ll-EEDA-D

PDP-II Link-II Linker and Libr-ll Librarian,
Programmer's Manual, DEC-II-ZLDA-D

PDP-II PIP, File utility Package,
Programmer's Manual, DEC-ll-PIDA-D

PDP-II FORTRAN IV, Compiler and Object Time System,
Programmer's Manual, DEC-ll-KFDA-D

The following are trademarks of Digital Equipment

Corporation:

DEC

FLIP CHIP

DIGITAL (logo)

OMNIBUS

ii

PDP

FOCAL

COMPUTER LAB

UNIBUS

PRE F ACE

This manual describes the features and operation of the

ODT-IIR Debugging Program for the PDP-II Disk Operating

System (DOS). The manual assumes familiarity with the

Disk Operating System Monitor (see PDP-II Disk Operating

System Monitor, Programmers Handbook, DEC-Il-MWDA-D).

In addition to the ODT-IIR Debugging Program and the

Monitor, the Disk Operating System software includes:

PAL-IIR Assembler

Edit-II Text Editor

PIP, File Utility Package

Link-II Linker

Libr-ll Librarian

FORTRAN IV

iii

CHAPTER 1

1.1

1.2

1.3

CHAPTER 2

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

2.2.10

2.2.11

2.3

2.4

2.5

2.6

2.6.1

2.6.2

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

CON TEN T S

INTRODUCTION

Relocation

Relocatable Expressions

Commands

COMMANDS AND FUNCTIONS

Printout Formats

Opening, Changing, and Closing
Locations

The Slash, /

The Backslash-f \

The LINE FEED key,+

The Up-Arrow, t

The Back-Arrow,+

Opening the Addressed
Location, @

Relative Branch Offset, >

Return to Previous Sequence, <

Accessing General Registers
0-7

Accessing Internal Registers

Entering Radix50 Mode, X

Breakpoints

Running the Program, riG and riP

Single-Instruction Mode

Searches

Word Search, riW

Effective Address Search, riE

Page

1-1

1-2

1-2

1-4

2-1

2-1

2-2

2-2

2-3

2-4

2-4

2-4

2-5

2-5

2-5

2-6

2-6

2-7

2-8

2-10

2-11

2-12

2-12

2-13

The Constant Register, riC 2-13

Core Block Initialization, iF and iI 2-14

Calculating Offsets, riO

Relocation Register Commands,
r i nR, i nR i R

The Relocation Calculators,
nR and n!

ODT's Priority Level, $p

ASCII Input and Output, rinA

Return to Monitor, CTRL/C

v

2-15

2-16

2-17

2-18

2-19

2-19

CON TEN T S

Page

CHAPTER 3 ERROR DETECTION 3-1

CHAPTER 4 PROGRAMMING CONSIDERATIONS 4-1

4.1 Functional Organization 4-1

4.2 Breakpoints 4-1

4.3 Search 4-6

4.4 Teletype Interrupt 4-7

CHAPTER 5 OPERATING PROCEDURES 5-1

5.1 Loading Procedures 5-1

5.2 Starting and Restarting 5-1

vi

CHAPTER 1

INTRODUCTION

ODT-IIR (Qn-line Qebugging !echnique for the PDP-II) is a system

program which aids in debugging assembled and linked object pro

grams. From the keyboard you interact with ODT and

the object program to:

• print the contents of any location for
examination or alteration,

• run all or any portion of your object
program using the breakpoint feature,

• search the object program for specific
bit patterns,

• search the object program for words which
reference a specific word,

• calculate offsets for relative addresses,

• fill a block of words or bytes with a
designated value.

During a debugging session you should have at the teleprinter

the assembly listing of the program to be debugged. Minor cor

rections to the program may be made on-line during the debug-

ging session. The program may then be run under control of ODT

to verify any change made. Major corrections, however, such as

a missing subroutine should be noted on the assembly listing

and incorporated in a subsequent updated program assembly.

1-1

1.1 RELOCATION

When the relocatable assembler produces a binary relocatable

object module, the base address of the module is taken to be

location 000000, and the addresses of all program locations

as shown in the assembly listing are indicated relative to

this base address. After the module is linked by the Linker,

many values within the program, and all the addresses of loca

tions in the program, will be incremented by a constant whose

value is the actual absolute base of the module after it has

been relocated. This constant is called the relocation bias

for the module. Since a linked program may contain several

relocated modules, each with its own relocation bias, and

since, in the process of debugging, these biases will have to

be subtracted from absolute addresses continually in order to

relate relocated code to assembly listings, ODT-llR provides

an automatic relocation facility.

The basis of the relocation facility lies in 8 relocation

registers, numbered 0 through 7, which may be -set to the

values of the relocation biases you are interested in at a

given time during debugging. Relocation biases should be

obtained by consulting the memory map produced by the Linker.

Once set, a relocation register is used by ODT-llR to relate

relocatable code to relocated code. For more information

on the exact nature of the relocation process, consult the

manual on the Link-ll Linker (DEC-ll-ZLDA-D).

1.2 RELOCATABLE EXPRESSIONS

The symbol n below stands for an integer in the range 0 to 7

inclusive.

The symbol k stands for an octal number up to six digits

long, with a maximum value of 177777. If more than six digits

are typed, ODT-llR takes the last six digits, truncated to the

low-order 16 bits. k may be preceded by a minus sign, in which

case its value will be the two's complement of the number typed.

For example:

1-2

k (number typed) Value

1 000001
-1 177777
400 000400
-177730 000050
1234567 034567

The symbol r is called a relocatable expression and is

evaluated by ODT-llR as a l6-bit (6 octal digit) number. It

may be typed in anyone of three forms:

Form A

Form B

Form C

k

n,k

C or
C,k or
n,C or
C,C

The value r is simply the value
of k.

The value of r is the value of k
plus the contents of relocation
register n. If the n part of this
expression is greater than 7, ODT
takes only the last octal digit of
n.

Whenever the letter C is typed,
ODT-llR replaces C with the con
tents of a special register called
the Constant Register. This value
has the same role as the k or n
that it replaces. The Constant
Register is designated by the sym
bol $C and may be set to any value,
as indicated below.

In the following examples, assume that relocation register

3 contains 003400 and that the constant register contains 000003.

5
-17
3,0
3,150
3,-1
C
3,C
C,O
C,lO
C,C

Value of r

000005
177761
003400
003550
003377
000003
003403
003400
003410
003403

NOTE

For simplicity's sake, most examples in
this section use Form A. All three forms
of r are equally acceptable, however.

1-3

1.3 COMMANDS

ODT's commands are composed using the following characters

and symbols. They are often used in combination with the address

upon which the operation is to occur, and are offered here for

familiarization prior to their thorough coverage which follows.

1

r/

/

r\(SHIFT/L)

\

nR

n!

+ (LINE FEED
key)

t or

RETURN

+ or

open the word at location r.

reopen the last opened location.

open the byte at location r.

reopen the last opened byte.

after a word has been opened, retype the
contents of the word relative to reloca
tion register n-i.e., subtract contents
of relocation register n from the contents
of the opened word and print the result.
If n is omitted, ODT-IIR selects the
relocation register whose contents are
closest but less than or equal to the con
tents of the opened location.

after a word or byte has been opened,
print the address of the opened loca
tion relative to relocation register n.
If n is omitted, ODT-IIR selects the
relocation register whose contents are
closest, but less than or equal to the
address of the opened location.

open next sequential location.

open previous(location 1

close open location and accept the next
command

take contents of opened location, index
by contents of PC, and open that loca~
tion. 2

The circumflex, A, appears on some keyboards and prints in
place of the up-arrow.
2-
The underline, , appears on some keyboards and prints in

place of the back-arrow.

1-4

@

>

<

x

riO

$n/

$y/

iF

i I

iB

riB

rinB

inB

riE

riW

take contents of opened location as
absolute address and open that location.

take contents of opened location n as
relative branch instruction and open
referenced location.

return to sequence prior to last @, >,
or + command and open succeeding location.

perform a Radix 50 unpack of the binary
contents of the current opened WOrdi
then permit the storage of a new Radix 50
binary number in the same location.

calculate offset from currently open
location to r.

open general register n (0-7)

open special register y, where y may be
one of the following letters:

S Status register (saved by ODT
after a breakpoint)

M Mask register

B First word of the breakpoint table

P Priority register

C Constant register

R First relocation register
(register 0)

F Format register

fill memory words with the contents of
the constant register.

fill memory bytes with the contents of
the low-order 8 bits of the constant
register.

separate commands from command arguments
(used with alphabetic commands
below); separate a relocation register speci
fier from an addend.

remove all Breakpoints

set Breakpoint at location r

set Breakpoint n at location r

th remove n Breakpoint

search for instructions that reference
Effective address r

search for Words with bit patterns which
match r

1-5

inS

is

riG

iP

kiP

iR

inR
rinR

riC

rinA

CTRL/C

enable Single-instruction mode (n can
have any value and is not significant);
disable breakpoints

disable Single-instruction modei reenable
breakpoints.

Go to location n and start program run

Proceed with program execution from
breakpoint; stop when next breakpoint
is encountered or at end of program

In Single-instruction mode only, Proceed
to execute next instruction only

Proceed with program execution from
Breakpoint; stop after encountering the
Breakpoint k times

In Single-instruction mode only, Proceed
to execute next k instructions.

set all relocation registers to -1 (high
est address value).
set relocation register n to -1.
set relocation register n to the value of
r. If n is omitted, it is assumed to be 0

print the value of r and store it in the
constant register

print n bytes in their ASCII format, starting
at location ri then allow n bytes to be typed
in, starting at location r.

prepare Monitor to accept a command from
the keyboard.

1-6

CHAPTER 2

COMMANDS AND FUNCTIONS

When ODT is started as explained in Chapter 5, it will indicate

its readiness to accept commands by printing an asterisk on the

left margin of the teleprinter paper. In response to the asterisk

you can issue most commands; for example, you can examine and, if

desired, change a word, run the object program in its entirety or

in segments, or even search core for certain words or references t~

certain words. The discussion below explains these features.

All commands to ODT are stated using the characters and symbols

shown in Sections 1.2 and 1.3.

2.1 PRINTOUT FORMATS

Normally, when ODT prints addresses (as with the commands +, t, +,

@, <, and>) it attempts to print them in relative form (FORM B in

Section 1.2). ODT looks for the relocation register whose value

is closest but less than or equal to the address to be printed, and

then represents the address relative to the contents of the reloca

tion register. However, if no relocation register fits the require

ment, the address is printed in absolute form. Since the relocation

registers are initialized to -1 (the highest number) the addresses

are initially printed in absolute form. If any relocation register

subsequently has its contents changed, it may then, depending on

the command, qualify for relative form.

For example, suppose relocation registers 1 and 2 contained

1000 and 1004 respectively, and all other relocation registers

contained numbers much higher. Then the following sequence might

occur:

*774/000000+
000776/000000+
1,000000 /000000+
1,000002 /000000+
2,000000 /000000

2-1

The format is controlled by the format register, $F. Normally

this register contains 0, in which case ODT prints addresses rela

tively whenever possible. $F may be opened and changed to a non-zero

value, however, in which case all addresses will be printed in ab

solute (see section 2.2.10).

2.2 OPENING, CHANGING AND CLOSING LOCATIONS

An open location is one whose contents ODT has printed for examina

tion, and whose contents are available for change. A closed location

is one whose contents are no longer available for change.

The contents of an open location may be changed by typing the new

contents followed by a single character command which requires no

argument (i.e.,+, t, RETURN, +, @, >, <). Any command typed to open

a location when another location is already open, will first cause

the currently open location to be closed.

2.2.1 The Slash /

One way to open a location is to type its address followed by a

slash:

~1000/012746

Location 1000 is open for examination and is available for change.

Note that in all examples ODT's printout is underlined; your typed

input is not.

Should you not wish to change the contents of an open location,

merely type the RETURN key and the location will be closed; ODT

will print another asterisk and wait for another command. However,

should you wish to change the word, simply type the new contents

before giving a command to close the location:

~1000/012746 012345

*
In the example above, location 1000 now contains 012345 and is

closed since the RETURN key was typed after entering the new con

tents, as indicated by ODT's second asterisk. Used alone, the slash

2-2

will reopen the last location opened:

~1000/012345 2340

Y002340

In the example above, the open location was closed by typing the

RETURN key. ODT changed the contents of location 1000 to 002340 and

then closed the location before printing the *. We then typed a sin

gle slash which directed ODT to reopen the last location opened.

This allowed us to verify that the word 002340 was correctly stored

in location 1000.

Note again, that opening a location while another is currently

open will automatically close the currently open location before

opening the new location.

Also note that if you specify the opening of an odd numbered ad

dress with a slash, ODT will open the location as a byte, and sub

sequently will behave as if a backs lash had been typed.

2.2.2 The Backslash, \

In addition to operating on words, ODT-IlR operates on bytes. One

way to open a byte is to type the address of the byte followed by

a backslash. (\is printed by typing SHIFT/L). This not only causes

the byte value at the specified address to be printed out, it also

causes the value to be interpreted as ASCII code, and the corres

ponding character to be echoed (if possible) on the teleprinter.

*lOOl\lOl=A

A backslash typed alone will reopen the last open byte. If a word

was previously open, the backslash will reopen its even byte.

~1002/000004\004=

The LINE FEED and up-arrow (or circumflex) keys will operate on

bytes if a byte is open when the command is given (see Sections

2.2.3, and 2.2.4). For example:

*lOOl\lOl=A+
001002 004= +
001001 101=A
*

2-3

2.2.3 The LINE FEED Key, +

If the LINE FEED key is typed when a location is open, ODT closes

the open location and opens the next sequential location:

*1000/002340+
001002/012740

(+ denotes typing the LINE FEED key)

In this example, the LINE FEED key instructed ODT to print the

address of the next location along with its contents, and to wait

for further instructions. After the above operation, location 1000

is closed and 1002 is open. The open location may be modified by

typing the new contents.

If the opened location was a byte, the LINE FEED opens the next

byte.

2.2.4 The Up-Arrow, t

The up-arrow (or circumflex) symbol is effected by typing the SHIFT

and N key combination. If the up-arrow is typed when a location is

open, ODT closes the open location and opens the previous location

(as shown by continuing from the example above):

001002/0l2740t
001000/002340

(t is printed by typing SHIFT and N)

Now location 1002 is closed and 1000 is open. The open location

may be modified by typing the new contents.

If the opened location was a byte, then t opens a byte as well.

2.2.5 The Back-Arrow, +

The back-arrow (or underline) symbol is effected by typing the

SHIFT and 0 key combination. If the back-arrow is typed to an open

word, ODT interprets the contents of the currently open word as

an address indexed by the Program counter (PC) and opens the loca

tion so addressed:

*1006/000006+
QOl016/l00405

(+ is printed by typing SHIFT and 0)

2-4

Notice in this example that the open location, 1006, was in

dexed by the PC as if it were the operand of an instruction with

address mode 67 as explained in the PAL-llR Assembler Programmer's

Manual.

A modification to the opened location can be made before a +,

t, or +, is typed. Also, the new contents of the location will

be used for address calculations using the + command. Example:

*100/000222 4+ (modify to 4 and open next location)
000102/000111 6+ (modify to 6 and open previous location)
000100/000004 100+(change to 100 and open location indexed
000202/(contents) by PC)

2.2.6 Open the Addressed Location, @

The symbol @ will optionally modify, close an open word, and use
its contents as the address of the location to open next.

*1006/001024 @
001024 000500

(open location 1024 next)

*1006 001024 2100
002100/177774

@(modify to 2100 and open
location 2100)

2.2.7 Relative Branch Offset>

The right angle bracket, >, will optionally modify, close an open

word, and use its low-order byte as a relative branch offset to the

next word opened.

*1032/000407 301>
000636/000010

(modify to 301 and interpret
as a relative branch)

2.2.8 Return to Previous Sequence, <

The left-angle bracket, <, will optionally modify, close an open
{

location, and open the next location of the previous sequence in-

terrupted by a +, @, or > command. Note that +, @, or > will

cause a sequence change to the word opened. If a sequence change

has not occurred, < will simply open the next location as a LINE

FEED does. The command will operate on both words and bytes.

2-5

*1032/000407 301 >
000636/000010 <
001034/001040 @

001040/000405,005= <
001035 ~002= <
001036 004=

(> causes a sequence change)
« causes a return to original
(sequence)
(@ causes a sequence change)
« now operates on byte)
« acts like +)

2.2.9 Accessing General Registers 0-7

The program's general registers 0-7 can be opened using the fol

lowing command format:

where n is the integer representing the desired register (in the

range 0 through 7). When opened, these registers can be examined

or changed by typing in new data as with any addressable location.

For example:

~$0/000033

*
and *$4/000474 464

*

(RO was examined and closed)

(R4 was opened, changed, and
closed)

The example above can be verified by typing a slash in response

to ODT's asterisk:

~000464

The +, i, + or @ commands may be used when a register is open.

2.2.10 Acessing Internal Registers

The program's Status Register contains the condition codes of the

most recent operational results and the interrupt priority level of

the object program. It is opened using the following command:

~$S/000311

where $S represents the address of the Status Register. In response

to $S in the example above, ODT printed the 16-bit word of which

only the low-order 8 bits are meaningful: Bits 0-3 indicate whether

2-6

a carry, overflow, zero, or negative (in that order) has resulted,

and bits 5-7 indicate the interrupt priority level (in the range 0-7)

of the object program. (See the PDP-II Handbook for the Status

Register format.)

The $ is used to open certain other internal locations:

$B location of the first word of the breakpoint table (see
Section 2.3).

$M mask location for specifying which bits are to be exam
ined during a bit pattern search (see Section 2.6).

$p location defining the operating priority of ODT (see
Section 2.12) .

$S location containing the condition codes (bits 0-3)
and interrupt priority level (bits 5-7).

$C location of the Constant Register (see Section 2.7) .

$R location of Relocation Register 0, the base of the Re
location Register table (see Section 2.10).

SF location of Format Register (see Section 2.1).

2.2.11 Radix 50 Mode,X

The Radix 50 mode of packing certain ASCII characters three to a

word is employed by many DEC-supplied PDP-II system programs, and

may be employed by any programmer via the Assembler's ".RAD50"

directive.

ODT-IIR provides a method for examining and changing memory

words packed in this way with the "X" command.

When a word is opened, the user may type "X", in which case

ODT will convert the contents of the opened word to its 3-character

Radix 50 equivalent, and will type these characters on the Teletype.

You may then type one of the following:

~
a. RETURN key

b. LINE FEED key

Effect
closes the currently open location

closes the location and opens the
next one in sequence

2-7

c.

d.

t key

Any three characters
whose octal code is
040 (space) or great
er.

closes the location and opens the
previous one in sequence.

convert the three specified char
acters into packed Radix 50 format.

Legal Radix 50 characters are:

$ Space o through 9 A through Z

If any other characters are typed, the resulting binary number is

unspecified. However, exactly three characters must be typed be

fore ODT resumes its normal mode of operation.

After the third character is typed, the resulting binary number

is available to be stored into the opened location by closing the

location in anyone of the usual ways (carriage-return, line feed,

etc.). Example:

~1000/042431

~1000/011421

X=KBI CBA

X=CBA

WARNING

After ODT has converted the three characters to binary,
the binary number can be interpreted in one of many
different ways, depending on the command which follows.
For example:

~1234/063337 X=PRO XIT/

Since the Radix 50 equivalent of XIT is 113574, the final
slash typed in the example will cause ODT to open loca
tion 113574 if it is a legal address. (See Chapter 3
for a discussion of command legality and detection of
errors.)

2.3 BREAKPOINTS

The breakpoint feature facilitates monitoring the progress of

program execution. A breakpoint may be set at any instruction

which is not referenced by the program for data. When a breakpoint

is set, ODT replaces the contents of the breakpoint location with

a trap instruction so that when the program is executed and the

2-8

breakpoint is encountered, program execution is suspended,

the original contents of the breakpoint location are restored,

and ODT regains control.

With ODT-IIR you can, at anyone time, have up to eight breakpoints

set, numbered 0 through 7. The riB command will set the next avail

able breakpoint. Specific breakpoints may be set or changed by the

rinB command where n is the number of the breakpoint. For example:

*1020iB
*1030iB
*1040iB
*1032ilB

*

(sets breakpoint 0)
(sets breakpoint 1)
(sets breakpoint 2)
(resets breakpoint 1)

The iB command removes all breakpoints. To remove only one of the

breakpoints the inB command is used, where n is the number of the

breakpoint. For example:

*i2B

*
(removes the second breakpoint)

The $B/ command opens the location containing the address of

breakpoint O. The next seven locations contain the addresses of

the other breakpoints in order, and thus can be opened using the

LINE FEED key. (The next location is for ~ingle-instruction mode,

explained in Section 2.5). Example:

*$B/00I020 +
nnnnnn/00l032+
nnnnnn/ (address internal to ODT)

In this example, breakpoint 2 is not set. The contents will

be an address internal to ODT. After the table of breakpoints is

the table of Proceed command repeat counts, first for each breakpoint,

and then for the Single Instruction mode (see Section 2.5).

nnnnnn/00l036
nnnnnn/nnnnnn
nnnnnn/OOOOOO
nnnnnn/OOOOOO

+
+ (breakpoint 7)
+ (single-instruction address)
15 + (count for breakpoint 0)

(count for breakpoint 1)

2-9

2.4 RUNNING THE PROGRAM, riG AND riP

Program execution is under control of ODT. There are two commands

for running the program: riG and r;P. The riG command is used to

start execution (~o) and riP to continue (~roceed) execution after

having halted at a breakpoint. For example:

':lOOOiG

starts execution at location 1000. The program will run until en

countering a breakpoint or until program completion, unless it

gets caught in an infinite loop, where you must either restart or

reenter as explained in Section 5.2.

When a breakpoint is encountered, execution stops and ODT

prints Bni (where n is the breakpoint number), followed by the

address of the breakpoint. You may then examine desired locations

for expected data. For example:

':1010i 3B

*lOOOiG
*B3iOOlOlO
*

(breakpoint 3 is set at location
1010)

(execution started at location 1000)
(execution stopped at location 1010)

When a breakpoint is set in a loop, it may be desirable to

allow the program to execute a certain number of times through

the loop before recognizing the breakpoint. This may be done by

typing the kiP command and specifying the number of times the

breakpoint is to be encountered before program execution is sus

pended (on the kth encounter) .

The count, k, is associated only with the numbered break

point which most recently occurred. A different proceed count may

be associated with each- numbered breakpoint, and will apply to

that breakpoint only.

B3 i 00 1010
*1250iB
*4iP
B3i001250

*

Example:

(execution halted at breakpoint)
(set breakpoint at location 1250)
(continue execution, loop through
breakpoint 3 times and halt on 4th
occurrence of the breakpoint)

2-10

The breakpoint repeat counts can be inspected by typing $B/

and following that with the typing of nine LINE FEEDs. The repeat

count for breakpoint 0 will then be printed. The repeat counts for

breakpoints 1 through 7, and the repeat count for the single in

struction trap follow in sequence (see Section 2.5). Opening any

one of these provides an alternative way of specifying the count.

The location, being open, can have its contents modified in the

usual manner by the typing of new contents and then the RETURN key.

Breakpoints are inserted when performing an r;G or kiP com

mand. Upon execution of the riG or kiP command, the general regis

ters 0-6 are set to the values in the locations specified as

$0-$6 and the processor status register is set to the value in

the location specified as $S.

2.5 SINGLE-INSTRUCTION MODE

With this mode you can specify the number of instructions you wish

executed before suspension of the program run. The ~roceed command,

instead of specifying a repeat count for a breakpoint encounter,

specifies the number of succeeding instructions to be executed.

Note that breakpoints are disabled when single-instruction mode

is operative.

Commands for sin~le-instruction mode follow:

inS

kiP

is

Enables Single-instruction mode (n can
have any-value and serves only to dis
tinguish this form from the form iS)i
breakpoints are disabled.
Proceeds with program run for next k
Tnstructions before reentering ODT (if
k is missing, it is assumed to be 1).
(Trap instructions and associated handlers
can affect the Proceed repeat count. See
Section 4.2)

Disables ~ingle-instruction mode.

When the repeat count for Single-instruction mode is exhausted

and the program suspends execution, ODT prints:

B8ik -*---

2-11

where k is the address of the next instruction to be executed.

The $B breakpoint table contains this address following that of

breakpoint 7. However, unlike the table entries for breakpoints

0-7, direct modification has no effect.

Similarly, following the repeat count for breakpoint 7, is

the repeat count for single-instruction mode. This table entry,

though, may be directly modified, and thus is an alternative way

of setting the Single-instruction mode repeat count. In such a

case, ;P implies the argument set in the $B repeat count table

rather than 1.

2.6 SEARCHES

With ODT you can search all or any specified portion of core

memory for any specific bit pattern or for references to a specific

location.

2.6.1 Word Search, r;W

Before initiating a word search, the mask and search limits must

be specified as shown in the example below. The location repre

sented by $M is used to specify the mask of the search. $M/ opens

the mask register. The next two sequential locations (opened by

LINE FEEDs)contain the lower and upper limits of the search. Bits

set to 1 in the mask will be examined during the search; other bits

will be ignored. Then the search object and the initiating command

are given using the r;W command where r is the search object. When

a match is found the address of the unmasked matching word is

printed. For example:

*$M/OOOOOO 177400 +
nnnnnn/OOOOOO 1000 +
nnnnnn/OOOOOO 1040
*400;W
001010/000770
001034/000404

*

(test high order eight bits)
(set low address limit)
(set high address limit)
(initiate word search)

2-12

In the search process, the word currently being examined and

the search object are exclusive ORed (XORed), and the result is

ANDed to the mask. If this result is zero, a match has been found,

and is reported on the teleprinter. Note that if the mask is zero,

all locations within the limits will be printed.

Typing CTRL/U during a search printout will terminate the search.

2.6.2 Effective Address Search, riE

ODT enables you to search for words which address a specified

location. Open the mask register only to gain access to the low

and high-limit registers. After specifying the search limits

(Section 2.6.1) the command riE is typed (where r is the effective

address), initiating the search.

Words which are either an absolute address (argument n itself)

a relative address offset, or a relative branch to the effective

address will be printed after their addresses. For example:

*$M/177400+
nnnnnn/OOlOOO
nnnnnn/00l040
*1034iE
001016/001006
001054/002767
*1020iE
001022 177774
001030 001020
*

1010+
1060

(open mask register only to gain
access to search limits)

(initiating search)
(relative branch)
(relative branch)
(initiating a new search)
(relative address offset)
(absolute address)

Particular attention should be given to the reported

references to the effective address because a word may have the

specified bit pattern of an effective address without actually

being so used. ODT will report these as well.

Typing CTRL/U during a search printout will terminate the search.

2.7 THE CONSTANT REGISTER, riC

It is often desirable to convert a relocatable address into a

relocated address or to convert a number into its two's complement,

and then to store the converted value into one or more places in

your program. The Constant Register provides a means of accomp

lishing this and other useful functions.

When riC is typed, the relocatable expression r is evaluated

to its six digit octal value and is both printed on the teleprinter

2-13

and stored in the Constant Register. The contents of the Constant

Register may be invoked in subsequent relocatable expressions by

typing the letter C.

Examples:

~-4432;C=173346

~1000/001000 C

~lOOOilR

~1,4272iC=005272

(The two's complement of 4432 is
placed in the Constant Register)

(The contents of the Constant
Register are stored in location
1000)

(Relocation Register 1 is set to
1000)

(Relative location 4272 is reprint
ed as an absolute location and
stored in the Constant Register)

2.8 CORE BLOCK INITIALIZATION, iF AND iI

The Constant Register can be used in conjunction with the commands

;F and iI to set a block of memory to a given value. While the most

common value required is zero, other possibilities are plus one,

minus one, ASCII space, etc.

When the command iF is typed, ODT-llR stores the contents of

the Constant Register in successive memory words starting at the

memory word address specified in the lower search limit, and end

ing with the address specified in the upper search limit.

When the command iI is typed, the low-order 8 bits in the Con

stant Register are stored in successive bytes of memory starting

at 'the byte address specified in the lower search limit and ending

with the byte address specified in the upper search limit.

Example: Assume relocation register 1 contains 1000, 2

contains 2000, and 3 contains 3000. The following sequence sets

word locations 1000-1776 to zero, and byte locations 2000-2777 to

ASCII spaces.

2-14

~$M/OOOOOO +

nnnnnn/OOOOOO
nnnnnn/OOOOOO
*OiC=OOOOOO
*iF
*$M/OOOOOO +
nnnnnn/OOlOOO
nnnnnn/001776
~40iC=000040

*iI

"*

1,0+
2,-2

2,0+
3,-1

2.9 CALCULATING OFFSETS, riO

(open mask register to gain access
to search limits)

(sets lower limit to 1000)
(sets upper limit to 1776)
(Constant Register set to zero)
(Locations 1000-1776 set to zero)

(Sets lower limit to 2000)
(Sets upper limit to 2777)
(Constant Register set to 40

(SPACE))
(Byte locations 2000-2777 are set
to value in low order 8 bits of
Constant Register)

Relative addressing and branching involve the use of an offset -

the number of words or bytes forward or backward from the current

location to the effective address. During the debugging session it

may be necessary to change a relative address or branch reference

by replacing one instruction offset with another. ODT calculates

the offsets for you in response to its riO command.

The command riO causes ODT to print the 16-bit and 8-bit

offsets from the currently open location to address r. For example:

~346/000034 414iO 000044 022 22

,V000022

In the example, location 346 is opened and the offsets from that

location to location 414 are calculated and printed. The contents

of location 346 are then changed to 22 (the 8-bit offset) and verified

on the next line.

The 8-bit offset is printed only if it is in the range

-12810 to 12710 and the 16-bit offset is even, as was the case

above. For example, the offset of a relative branch is calculated

and modified as follows:

*1034/103421 1034iO 177776 377 \ 021 377
*103777

Note that the modified low-order byte 377 must be combined with

the unmodified high-order byte.

2-15

2.10 RELOCATION REGISTER COMMANDS, rinR, inR, iR

The use of the relocation registers has been defined in Section

1.1. At the beginning of a debugging session it will be desirable

to preset the registers to the relocation biases of those relocat

able modules which will be receiving the most attention.

This can be done by typing the relocating bias, followed

by a semicolon and the specification of relocation registers.

rinR

r may be any relocatable expression and n is an integer

from 0 to 7. If n is omitted it is assumed to be O.

As an example:

~1000i5R

~5,100i5R

*

(puts 1000 into relocation
register 5)

(effectively adds 100 to the
contents of relocation register
5)

In certain uses programs may be relocated to an address below

that at which they were assembled. This could occur with PIC

code which is moved without the use of the Linker.

In this case the appropriate relocation bias would be the

2's complement of the actual downward displacement. One method

for easily evaluating the bias and putting it in the relocation

register is illustrated in the following example:

Suppose the program was assembled at location 5000 and

was moved to location 1000. Then the sequence:

*lOOOilR
*1,-5000ilR

*
puts the 2's complement of 4000 in relocation register 1, as de

sired.

Relocation registers are initialized to -1, so that unwanted

relocation registers will never enter into the selection process

when ODT searches for the most appropriate register.

2-16

To set a relocation register to -1, type ;nR. To set all re

location registers to -1, type iR.

ODT maintains a table of relocation registers, beginning at the

address specified by $R. Opening $R ($R/) opens relocation register

~. Successively typing the LINE FEED key opens the other relocation

registers in sequence. When a relocation register is opened in this

way, it may be modified just as any other memory location.

2.11 THE RELOCATION CALCULATORS, nR AND n!

When a location has been opened, it is often desirable to relate

the relocated address and the contents of the location back to

their relocatable values. To calculate the relocatable address

of the opened location relative to a particular relocation bias,

type n!, where n specifies the relocation register .. This calcu

lator works with opened bytes and words. If n is omitted, the

relocation register whose contents are closest but less than or

equal to the opened location is selected automatically by ODT. In

the following example, assume that these condition~ are fulfilled

by relocation register 2, which contains 2000:

To find the most likely module that a given opened byte is in,

~2500\011~ !=2,000500

Typing nR after opening a word causes ODT-llR to print the

octal number which equals the value of the contents of the opened

location minus the contents of relocation register n. If n is omit

ted, ODT-llR selects the relocation register whose contents are

closest but less than or equal to the contents of the opened loca

tion. For example, assume the relocation bias stored in relocation

register 1 is 001234; then:

~1,5001024550 lR=1,0233l4

The valu~ 23314 is the content of 1,500, relative to the base 1234.

An example of the use of both:

If relocation register 1 contains 1000, and relocation

register 2 contains 2000, then to calculate the relocatable ad

dresses of location 3000 and its content, relative to 1000 and

2000, the following can be performed.

~30001005670 11=1,002000 2!=2,001000 lR=1,004670 2R=2,003670

2-17

2.12 ODT's PRIORITY LEVEL, $P

$P represents a location in ODT that contains the priority level

at which ODT operates. If $p contains the value 377, ODT will

operate at the priority level of the processor at the time ODT

is entered. Otherwise $P may contain a value between 0 and 7

corresponding to the fixed priority at which ODT will operate.

To set ODT to the desired priority level, open $P. ODT

will print the present contents, which may then be changed:

*$P/000006 377
*

If $p is not specified, its value will be seven.

Breakpoints may be set in routines at different priority

levels. For example, a program running at a low priority level may

use a device service routine which operates at a higher priority

level. If a breakpoint occurs from a low-priority routine, if

ODT operates at a low priority, and if an interrupt does occur

from a high priority routine, then the breakpoints in the high

priority routine will not be executed since they have been removed.

2-18

2.13 ASCII Input and Output, r;nA

ASCII text may be inspected and changed by the command

r;nA

where r is a relocatable expression, and n is a character count.

If n is omitted it is assumed to be 1. ODT prints n characters

starting at location r, followed by a <CR> <LF>. You may then type

one of the following:

a.

b.

<CR>

<LF>

ODT outputs <CR> <LF> <*> and waits for
another command.

ODT opens the byte following the last
byte output.

c. <up to n characters of text>

ODT inserts the text into core, starting
at location r.

If less than n characters are typed, you
must terminate the command by typing
CTRL/U, causing <CR> <LF> <*> to be output
as in case a. above. However, if exactly
n characters are typed, ODT responds with:

<CR> <LF> <address of next available byte> <CR> <LF> < *>

Note that n may actually be expressed as a relocatable

expression, and could be quite large, accidentally. There is

no safeguard against this in ODTllR.

2.14 Return to Monitor, CTRL/C

If ODT is awaiting a command, a CTRL/C from the keyboard

will simulate a TTY interrupt and effectively wake up the

Monitor. The Monitor responds with a tc on the teleprinter

and returns to ODT at a wait loop (BR .). See Chapter 3 of the

DOS Monitor Programmer's Handbook for a more detailed description

of CTRL/C.

2-19

CHAPTER 3

ERROR DETECTION

ODT-llR informs you of two types of error: illegal or unrecognizable

command and bad breakpoint entry.

ODT-llR does not check for the legality of an address when

commanded to open a location for examination or modification.

Thus the command:

177774/

will reference nonexistent memory, thereby causing a trap through

the vector at location 4. If this vector has not been properly in

itialized, unpredictable results will occur.

Similarly, a command such as

$20/

which references an address eight times the value represented by

$2, may cause an illegal (nonexistent) memory reference.

Typing something other than a legal command will cause ODT to

ignore the command, print

?

*
and wait for another command. Therefore, to cause ODT to ignore a

command just typed, type any illegal character (such as 9 or RUBOUT)

and the command will be treated as an error, i.e., ignored.

ODT suspends program execution whenever it encounters a break

point, i.e., a trap to its breakpoint routine. If the breakpoint

routine is entered and no known breakpoint caused the entry, ODT

prints:

BE001542

*
and waits for another command. In the example above, BE001542 de

notes Bad ~ntry from location 001542. A bad entry may be caused by

an illegal trace trap instruction, setting the T-bit in the status

register, or by a jump to the middle of ODT.

3-1

CHAPTER 4

PROGRAMMING CONSIDERATIONS

Information in this section is not necessary for the efficient

use of ODT. However, its content does provide a better understand

ing of how ODT performs some of its functions.

4.1 FUNCTIONAL ORGANIZATION

The internal organization of ODT is almost totally modularized

into independent subroutines. The internal structure consists of

three major functions: command decoding, command execution, and

various utility routines.

The command decoder interprets the individual commands,

checks for command errors, saves input parameters for use in

command execution, and sends control to the appropriate command

execution routine.

The command execution routines take parameters to be saved

by the command decoder and use the utility routines to execute the

specified command. Command execution routines exit either to the

object program or back to the command decoder.

The utility routines are common routines such as SAVE-RESTORE

and I/O. They are used by both the command decoder and the command

executers. (See Figure 1.)

4.2 BREAKPOINTS

The function of a breakpoint is to give control to ODT whenever

the user program tries to execute the instruction at the selected

address. Upon encountering a breakpoint, the user can utilize all

of the ODT commands to examine and modify his program.

When a breakpoint is executed, ODT-llR removes all the break

point instructions from the user's code so that the locations may

be examined and/or altered. ODT then types a message to the user

4-1

USER

PROGRAM

FIGURE 1

COMMUNICATION AND DATA FLOW

BREAK- COMMAND
\ POINT DECODER

I HANDLERI 1~--)7l __ ""c---' t<ii:~----
--.'!

PROGRAM
ACTION
COMMANDS m -----··---1 PROGRAM

EXAMINA
TION &

I MODIFICA- \
! TION COM-I

:;>1 MANDS \
I.--J

INTERNAL
TABLE MANI
PULATION
COMMANDS

ODT
INTERNAL
TABLES

-> UTILITY --- .rTy ~ .. //
ROUTINES IC<:----<--_--Q~UT
(I/O, ETC.)

User Environment ODT

Legend Flow of Control

-------- Flow of Data

4-2

of the form Bn;k where k is the breakpoint address (and n is the

breakpoint number). The breakpoints are automatically restored when

execution is resumed.

A major restriction in the use of breakpoints is that the word

where a breakpoint has been set must not be referenced by the pro

gram in any way since ODT has altered the word. Also, no break

point should be set at the location of any instruction that clears

the T-bit. For example:

MOV #240,177776 ;SET PRIORITY TO LEVEL 5

Note that instructions that cause or return from traps
(e.g., EMT, RTI) are likely to clear the T-bit, since
a new word from the trap vector or the stack will be
loaded into the Status Register.

A breakpoint occurs when a trace trap instruction (placed in

the user program by ODT) is executed. When a breakpoint occurs,

the following steps are taken:

1. Set processor priority to seven (automatically set
by trap instruction).

2. Save registers and set up stack.

3. If internal T-bit trap flag is set, go to step 13.

4. Remove breakpoints.

5. Reset processor priority to ODT's priority or
user's priority.

6. Make sure a breakpoint or Single-instruction mode
caused the interrupt.

7. If the breakpoint did not cause the interrupt, go
to step 15.

8. Decrement repeat count.

9. Go to step 18 if non-zero; otherwise reset count
to one.

10. Save Teletype status.

11. Type message to user about the breakpoint or
Single-instruction mode interrupt.

12. Go to command decoder.

l3. Clear T-bit in stack and internal T-bit flag.

14. Jump to the Go processor.

15. Save Teletype status.

4-3

16. Type BE (Bad Entry) followed by the address.

17. Clear the T-bit, if set, in the user status and
proceed to the command decoder.

18. Go to the Proceed processor, bypassing the TTY
restore routine.

Note that steps 1-5 inclusive take approximately 100 micro

seconds during which time interrupts are not permitted to occur

(ODT is running at level 7).

When a proceed (iP) command is given, the following occurs:

1. The proceed is checked for legality.

2. The processor priority is set to seven.

3. The T-bit flags (internal and user status) are set.

4. The user registers, status, and Program Counter are
restored.

5. Control is returned to the user.

6. When the T-bit trap occurs, steps 1, 2, 3, 13, and 14
of the breakpoint sequence are executed, breakpoints are
restored, and program execution resumes normally.

When a breakpoint is placed on an lOT, EMT, TRAP, or any

instruction causing a trap, the following occurs:

1. When the breakpoint occurs as described above, ODT
is entered.

2. When iP is typed, the T-bit is set and the lOT, EMT,
TRAP, or other trapping instruction is executed.

3. This causes the current PC and status (with the T-bit
included) to be pushed on the stack.

4. The new PC and status (no T-bit set) are obtained from
the respective trap vector.

5. The whole trap service routine is executed without
any breakpoints.

6. When an RTI is executed, the saved PC and PS (including
the T-bit) are restored. The instruction following the
trap-causing instruction is executed. If this instruc
tion is not another trap-causing instruction, the T-bit
trap occurs, causing the breakpoints to be reinserted

4-4

in the user program, or the Single-instruction mode
repeat count to be decremented. If the following in
struction is a trap-causing instruction, this sequence
is repeated starting at step 3.

NOTE

Exit from the trap handler must be via
the RTI instruction. Otherwise, the
T-bit will be lost. ODT will not gain
control again since the breakpoints
have not yet been reinserted.

Note that the iP command is illegal if a breakpoint has

not occurred (ODT will respond with ?)i

after any trace trap entry.

iP is legal, however,

The internal breakpoint status words have the following

format:

1. The first eight words contain the breakpoint ad
dresses for breakpoints 0-7. (The ninth word con
tains the address of the next instruction to be
executed in Single-instruction mode.)

2. The next eight words contain the respective repeat
counts. (The following word contains the repeat count
for Single-instruction mode.)

These words may be changed at will by the user, either by

using the breakpoint commands or by direct manipulation with $B.

When program runaway occurs (that is, when the program is

no longer under ODT control, perhaps executing an unexpected part

of the program where a breakpoint has not been placed) ODT may

be given control by pressing the HALT key to stop the machine,

and restarting ODT (see Section 5.2). ODT will print *, indicating

that it is ready to accept a command.

If the program being debugged uses the teleprinter for input

or output, the program may interact with ODT to cause an error

since ODT uses the teleprinter as well. This interactive error

will not occur when the program being debugged is run without ODT.

4-5

1. If the teleprinter interrupt is enabled
upon entry to the ODT break routine, and no
output interrupt is pending when ODT is entered,
ODT will generate an unexpected interrupt when
returning control to the program.

2. If the interrupt of the teleprinter reader (the
keyboard) is enabled upon .entry to the ODT
break routine, and the program is expecting
to receive an interrupt to input a character,
both the expected interrupt and the character
will be lost.

3. If the teleprinter reader (keyboard) has just read
a character into the reader data buffer when the
ODT break routine is ~ntered, the expected char
acter in the reader data buffer will be lost.

4.3 SEARCH

The word search allows the user to search for bit patterns in

specified sections of memory. Using the $M/ command, the user

specifies a mask, a lower search limit ($M+2), and an upper
search limit ($M+4). The search object is specified in the search

command itself.

The word search compares selected bits (where ones appear

in the mask) in the word and search object. If all of the se

lected bits are equal, the unmasked word is printed.

The search algorithm is:

1. Fetch a word at the current address.

2. XOR (exclusive OR) the word and search object.

3. AND the result of step 2 with the mask.

4. If the result of step 3 is zero, type the address
of the unmasked word and its contents. Otherwise,
proceed to step 5.

5. Add two to the current address. If the current
address is greater than the upper limit, type *
and return to the command decoder, otherwise go
to step 1.

Note that if the mask is zero, ODT will print every word

between the limits, since a match occurs every time (i.e., the

result of step 3 is always zero).

4-6

In the effective address search, ODT interprets every word

in the search range as an instruction which is interrogated for

a possible direct relationship to the search object. The mask

register is opened only to gain access to the search limit regis

ters.

The algorithm for the effective address search is (where

(X) denotes contents of X, and K denotes the search object) :

1. Fetch a word at the current address X.

2. If (X)=K [direct reference], print contents and
go to step 5.

3. If (X)+X+2=K [indexed by PC], print contents and
go to step 5.

4. If (X) is a relative branch to K, print contents.

5. Add two to the current address. If the current
address is greater than the upper limit, perform
a carriage return/line feed and return to the
command decoder i- otherwise, go to step 1.

4.4 TELETYPE*INTERRUPT

Upon entering the TTY SAVE routine, the following occurs:

1. Save the LSR status register (TKS).

2. Clear interrupt enable and maintenance bits in
the TKS.

3. Save the TTY status register (TPS).

4. Clear interrupt enable and maintenance bits
in the TPS.

To restore the TTY:

1. Wait for completion of any I/O from ODT.

2. Restore the TKS.

3. Restore the TPS.

*Teletype is a registered trademark of the Teletype Corporation.

4-7

WARNINGS

If the TTY printer interrupt is enabled upon entry
to the ODT break routine, the following may occur:

1. If no output interrupt is pending when ODT is
entered, an additional interrupt will always
occur when ODT returns control to the user.

2. If an output interrupt is pending upon entry,
the expected interrupt will occur when the
user regains control.

If the TTY reader (keyboard) is busy or done, the
expected character in the reader data buffer will
be lost.

If the TTY reader (keyboard) interrupt is enabled
upon entry to the ODT break routine, and a character
is pending, the interrupt (as well as the character)
will be lost.

4-8

CHAPTER 5

OPERATING PROCEDURES

This section describes loading procedures for ODT, restarting and

reentering procedures, and error recovery.

5.1 LOADING PROCEDURES

ODT-IIR is supplied as a relocatable object module. It should be

linked with other object modules which form the program to be de

bugged. The resultant load module is loaded into core memory using

the System Loader, as explained in the Disk Operating System Moni

tor Programmer's Handbook.

5.2 STARTING AND RESTARTING

After loading the load module (including ODT) into core via the Monitor

GET command, ODT may be started by means of the Monitor command OD. ODT

indicates its readiness to accept input by printing:

ODTIIR Vnnnn (nnnn is the ODT version number)
*

When ODT is started at its start address, the SP register is

set to an ODT internal stack, registers RO-R6 are saved in $0-$6,

the teleprinter status and Central Processor status are saved, and

the trace trap vector is initialized. If ODT is started at its

start address after breakpoints have been set in a program, ODT

will forget about the breakpoints and will leave the program modi

fied, i.e., the breakpoint instructions will be left in the pro

gram.

There are two ways of restarting ODT:

1. Restart at start address + 2 (use the DOS command OD R)

2. Reenter at start address + 4 (use the DOS command OD K)

5-1

To restart, use the Monitor command OD R. A restart will

save the general registers, clear the relocation registers, remove

the breakpoint instructions from the user program, and then forget

all breakpoints, i.e., simulate the iB command.

To reenter, use the Monitor command OD K. A reenter will save

the Processor Status and general registers, remove the breakpoint

instructions from the user program, and ODT will type the BE (Bad

Entry) error message. ODT will remember which breakpoints were

set and will reset them on the next iG command (iP is illegal after

a Bad Entry) .

5-2

INDEX

Absolute address, 1-2, 2-1
Accessing general

registers 0-7, 2-6
Address

absolute, 2-1
relative, 2-1
search, 2-13, 4-7

Algorithm
effective address search, 4-7
word search, 4-6

ANDing, 2-13, 4-6
ASCII

character packing, 2-7
code, 2-3
I/O, 2-19

Asterisk symbol (*) usage, 2-1
At symbol (@) usage, 2-5
Automatic relocation facility, 1-2

Back-arrow symbol (+) usage,
Backslash symbol (') usage,
Bad breakpoint entry, 3-1
Base address, 1-2
Branching, 2-15
Breakpoint, 2-8, 2-9, 4-1

priority levels, 2-18
removing, 2-9
repeat count, 2-11, 2-12
restoration, 4-3
setting, 2-9
status words, 4-5

Byte opening, 2-3

2-4
2-3

Calculating offsets, 2-15
Changing location, 2-2
Circumflex symbol (A) usage, 1-4,

2-3
Closing location, 2-2, 2-3
Command

decoder, 4-1
execution, 4-1
illegal, 3-1

Commands, 1-4, 2-1
list of, 1-4, -5, -6

Communication and data flow
chart, 4-2

Condition codes, 2-6
Constant register, 1-3, 2-13
Conversion

number, 2-13
relocatable address, 2-13

Core block initialization, 2-14
Count specification, 2-11

Description of ODT-IIR, 1-1
Dollar sign symbol ($) usage, 2-6,

2-7

X-I

Effective address search, 4-7
Error caused by teleprinter

I/O, 4-5
Error detection, 3-1
Exclamation point (!) usage, 2-17
Exclusive OR, 2-13, 4-6
Exit from trap handler, 4-5
Expressions, relocatable, 1-2

Flow chart: Communication and
Data, 4-2

Format register ($F), 2-2

HALT key, 4-5

Illegal command, 3-1
Infinite looping, 2-10
Internal location opening, 2-7
Internal organization, 4-1
Interrupt priority level, 2-6, 2-7

Left angle bracket «) usage, 2-5
Limits, search, 2-12
LINE FEED key, 2-3, 2-4
Loading procedures, 5-1
Location

opening, changing, closing, 2-2
priority level, 2-8

Looping, 2-10.
infini te, 2-10

Mask, 2-12
Minus sign usage, 1-2
Mode X, 2-7
Modifying open location, 2-5

Nonexistent memory reference, 3-1

Offset calculation, 2-15
Open location, 2-2, 2-3
Opening

addressed location, 2-5
byte, 2-3, 2-4
internal locations, 2-7

Operating procedures, 5-1
Organization, internal, 4-1

Priority level, 2-18
Proceed command, 4-4
Proceed count, 2-10
Program counter (PC), 2-4
Program execution suspension, 2-9
Program runaway, 4-5

Radix 50 characters, 2-8
Radix 50, Mode X, 2-7
Reentering, 5-2
Relative

address, 2-1, 2-2, 2-15
branch offset, 2-5

Relocatable
code, 1-2
expressions, 1-2, 1-3

Relocated modules, 1-2
Relocation, 1-2

bias, 1-2, 2-17
calculators, 2-17
facility, automatic, 1-2
registers, 1-2
register table, 2-17

Removing breakpoints, 2-9
Repeat counts, 2-11, 2-12
Restarting, 5-1, 5-2
Restoring breakpoints, 4-3
Return to previous sequence, 2-5
Right angle bracket (» usage,2-5
Runaway program, 4-5
Running the program, 2-10

Search,
effective address, 2-13, 4-7
termination, 2-13
word, 2-12, 4-6

Setting breakpoints, 2-9
Single-instruction mode, 2-11
Slash (/) usage, 2-2, 2-6
Starting and restarting, 5-1
Status register, 2-6
Suspension of program execution,

Table
breakpoint, 2-9
Proceed command repeat counts, 2-9
relocation registers, 2-17

T-bit, 4-3
Teleprinter I/O error, 4-5
Termination of search, 2-13
Trace trap instruction, 4-3
Trap handler exit, 4-5
Trap instruction, 2-8, 4-3
TTY SAVE routine, 4-7
Two's complement, 1-2

Underline symbol () usage,
up-arrow symbol (t) usage,
utility routines, 4-1

1-4, 2-4
2-3, 2-4

XOR (exclusive OR), 2-13, 4-6

Word search, 2-12, 4-6

2-9

X-2

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming
notes, software problems, and documentation corrections are published
by Software Information Service in the following newsletters.

Digital Software News for the PDP-8 & PDP-12

Digital Software News for the PDP-11

Digital Software News for the PDP-9!15 Family

These newsletters contain information applic·able to software available
from Digitalis Program Library. Articles in Digital Software News up
date the cumulative Software Performance Summary which is contained
in each basic kit of system software for new computers. To assure that
the monthly Digital Software News is sent to the appropriate software
contact at your installation, please check with the Software Special
ist or Sales Engineer at your nearest Digital office.

Questions or problems concerning DEC software should be reported to
the Software Specialist. In cases where no Software Specialist is avail
able, please send a Software Performance Report form with details of
the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

T he s e for ms w h i c h are a va i I a b lew i tho u t c h a r g e fro m the Pro g ram
Library, should be fully filled out and accompanied by Teletype output
as well as listings or tapes of the user program to facilitate a complete
investigation. An answer will be sent to the individual and appropriate
topics of general interest will be printed in the newsletter.

New and revised software and manuals, Software Performance Report
forms, and software price lists are available from the Program Library.
When ordering, include the document number and a brief description of
the program or manual requested. Revisions of programs and documents
will be announced in the newsletters. Direct all inquiries and requests
to:

Program Library
Digital Equipment Corporation
146 Main Street, Bldg. 1-2
Maynard, Massachusetts 01754

Digital Eq,uipment Computer Users Society (DECUS) maintains a user
library and publishes a catalog of programs as well as the DECUSCOPE
magazine for its members and non-members who request it. For further
information please write to:

DECUS
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

READER'S

PDP-ll ODT-llR Debugging program
Programmer's Manual

DEC-ll-OODA-D
May 1971

COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of
this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and read
ability.

Did you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Please state your position. _____________ _ Date:

Name: ________________ Organization: ____________ _

Street: ________________ Department: _____________ _

City: ___________ . State: ________ Zip or Country _______ _

- - - - - - - - - - - - - - - - Fold Here -

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATfS

Postage will be paid by:

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33
MAYNARD, MASS.

