
...

DECUS PROCEEDINGS

1962
PAPERS AND PRESENTATIONS

of

The Digital Equipment Computer Users Society

Maynard, Massachusetts

Copyright 1963 by Digital Equipment Computer Users Society

ACKNOWLEDGEMENT

On behalf of DECUS I gratefully acknowledge the help of the
Technical Publications Department, Digital Equipment Corporation,
in the preparation of these Proceedings.

President C. M. Walter

DECUS OFFICERS

March 1961-0ctober 1962

Executive Board:
Charlton M. Walter, President (AFCRL)
John Koudela, Jr., Secretary (DEC)

Comm ittee Cha irmen :
Edward Fredkin, Programming (then BBN)
Lawrence Buckland, Meetings (lTEK)
Will iam Fletcher, Equipment (BBN)
Elsa Newman (Mrs.), Publ ications, DEC

PREFACE

This is the first Proceedings of meetings of the Digital Equipment Computer Users Society. Formed in

March 1961, for the purpose of fostering the interchange of information, ideas, and the advancement of

the art of programmed data processing - particularly with appl ication to the Digital PDP-1, the Society

(DECUS) has grown in numbers and in scope. DECUS now maintains a programming library facility for its

members and issues DECUSCOPE, a technical newsbulletin, every month.

The papers presented at two Meetings wh ich took place in 1962 are the subject of these Proceedings. A

one-day Symposium was held May 17, 1962 at ITEK Corporation in Lexington on the subject: "Image

Processing and Displays.1I A two-day Annual Meeting, in October 1962, was hosted by the Computation

and Mathematical Sciences Laboratory, AFCRL, Hanscom Field, Bedford. The papers presented covered

a wide range of subjects and the meeting was highlighted by a lively Panel Discussion called: MACRO,

DECAL, and the PDP-1. Some of the papers given then are still in the germ ina I state but the authors

were prevailed upon to contribute them. During 1962, users of a second Programmed Data Processor, the

PDP-4, were welcomed to DECUS. More will be reported in the 1963 meetings about this data processor.

The rapid growth of DECUS and its diverse interests are evidenced by the presentations themselves. What

may not be clearly visible is the remarkable spirit of cooperation in the interchange of such diverse infor

mation. The 1962 Proceedings are a testimonial of this cooperative spirit and a tribute to the authors. I

regret that there was not space for the sparkl ing good humor and even wit, which enl ivened the discussion

between papers and during the questioning periods. Every user member was represented and participated

fully.

DECUS is deeply grateful to all who have contributed to the substance and embellishment of this first

endeavor.

v

Elsa Newman
DECUS Secretary

TABLE OF CONTENTS

FOREWORD

C. M. Walter, President, ix

Section I UTILITY PROGRAMS AND TECHNIQUES

A PERIPHERAL PROCESSOR FOR LARGE COMPUTERS

D. T. Men k • • (• • • • • • • • • • • • • • • • • '. • • • • • • • • • • • • ~. • • • • • • • • • • • • • • • • 3

TRANSLATION PROBLEMS OF ~ PERIPHERAL COMPUTER
IN A MULTI-L1NGUAL'HOUSE

R. P. Abbott and L. E. Mish

A SYSTEMS TAPE FOR THE PDP-1

5

F. Bonne II . • • • • . . . • . • • • • • • . • • • • • • • • • . • • • • • • .'. • • • • • • • . • • • • • • 7

TED: A TAPE EDITOR

C. R. Brown and D. W. Connoll'y. ~................................ 9

SCOPETRACE

J. R. Hayes •••••••••••••••••• :' • • • • • • • • • • • • • • • • • • • • • • • • • • • 13

MATRIX PACKAGE FOR THE DX-1 EXPERIMENTAL
DYNAMIC PROCESSOR AT AFCRL

C.J. Caso, J. M. Sexton and J. N. Seltzer

DECAL-BBN
(BBN Symbolic Version of DECAL)

-- ., 17

R. J. McQuillin ••••••••••••••••••••••••••••••••• 0 ••• ". • • • • • • • 19

Section II PROBLEM ORIENTED TECHNIQUES

MINIMAX DETECTION STATION PLACEMENT

R. D. Smallwood, Lt. ••• 23

US'E OF THE PDP-1 IN OPTICAL DESIGN

M. V. Morello, E. J. Radkowski, M. P. Rimmer and R. R. Shannon. • • • • • • • • • • • 25

COMPUTER AIDED ANALYSIS OF
MULTIVARIABLE SYSTEMS USI NG COLOR SCOPE

C. M. Wa I te r ••• 29

vii

A WORLD OCEANOGRAPHIC DATA DISPLAY SYSTEM Page

E. Fredk in. • 31

THE VORTEX OCEAN MODE L

E. Fredkin • .. • • • • • • 33

SPACEWAR~
REAL-TIME CAPASI L1TY OF THE PDP-l

J. M. Graetz. • 37

ON-LINE PROCESSOR-ORIENTED
INVESTIGATION OF A CLASS OF DYNAMIC ATTRIBUTE
EXTRACTION AND CLASSIFICATION PROCESSES

C. M. Walter •• 41

Section III HARDWARE AND INPUT-OUTPUT TECHNIQUES

FILM READING USING A COMPUTER

A. M. Co ppe II e tt i . • 55

A FUNCTIONAL DESCRIPTION OF THE ITEK DISPLAY SYSTEM

E. W. Pu ghe, Jr. 57

A TIME-SHARING SYSTEM FOR THE PDP-l COMPUTER

J. E. Ya tes • •• 61

PROCESS CONTROL APPLICATIONS OF PDP-4

C. G. Sell 63

Section IV PANEL DISCUSSION

DECAL, MACRO AND THE PDP-l 67

Section V APPENDIX

ANNUAL MEETING .. A-l

A TTE N DAN CE •• A-3

AUTHOR INDEX. • A-5

viii

FOREWORD

These Proceedings comprise a broad spectrum of papers whose color, in a figurative sense, ranges from the

deep blues of special utility programs and debugging aids, through the lush greens of problem oriented

techniques, to the rosey hues of new hardware aids designed to enhance the on-line use of computers. In

organizing the papers we have attempted to portray the typical cycle of events centered about the utili

zation of a new class of computers.

Much initial energy has to be expended on the creation and improvement of utility programs and systems

before anything very usefu I can be accompl ished with oursystems. To those of us who are strictly problem

oriented, this is an extremely frustrating time, made bearable by the naive hope that it might be brief and

end with some powerful general problem solving language in our possession. Unfortunately, this dream is

inevitably dispelled as we proceed to call for a diversity of modes of control, and of action, which strain

the existing hardware and programming systems to their technological limits, in our quest for useful results.

From the insight thus gained, however, is created the structure of new programming systems, and of pro

cessor configurations better fitted to provide each particular user with assistance in solving the problems

of interest to him. The onset of the second stage of activity is already clearly discernible from the orien

tation of a majority of the papers in these Proceedings. The theme is closer man-machine interaction.

This theme in present, both in the increased emphasis on on-line programming, debugging and problem

solving aids utilizing scope and light-penci I communication, and in the requisite improvements in flicker

free scopes, time sharing hardware, and optical 1-0 devices.

It has been a singular pleasure, during the past two years, to have been in a position to observe the evolu

tion of a Society which spans such a diversity of on-line processor configurations and uses. In this brief

interval of time the small scale processor has evolved from a meager and inadequate substitute for a large

central computer, into a formidable device whose flexibility and increasingly lower cost makes it the

logical candidate for a multitude of real-time information processing operations.

The ease with which hardware can be tailored to particular applications has already out-stripped the soft

ware development problem • However, as the engineering technology rapidly improves, and the ultimate

user becomes more intimately tied to the operating system, we may look forward to an era in which better

control can be achieved and maintained over the growing software domain.

C. M. Walter,
D ECUS President

ix

Section I

UTI LITY PROG RAMS AN D TECH N IQUES

LAWRENCE RADIATION LABORATORY'S PDP-l
A PERIPHERAL PROCESSOR
FOR LAR GE COMPUTERS*

Dorothy Monk

Abstract
LRL's PDP-l, installed last summer, is now
in full time operation as a peripheral pro
cessor fo r Livermore's Larc, Stretch, and
7090s, which are occupied full time with
scientific computing.

We will discuss briefly 1) the motivation
(economic and otherwise) which led to the
choice of the PDP for this job; 2) general
considerations which affect the specifica
tions 0 f systems and production programs
used on a computer for th is purpose; 3) some
of the specific tasks with which our com
puter is occupied; 4) advantages and dis
advantages observed so far of the PDP in
this environment; and 5) some implications
for the design of a peripheral processor of
PDP class.

* The Editor regrets that the full paper was not re
ceived in time to be incl uded in these proceedings.

3

TRANSLATION PROBLEMS OF A PERIPHERAL COMPUTER
IN A MULTI-LINGUAL HOUSE

R. P. Abbott and L. E. Mish

Introduction

Datamation - the oracle of our burgeoning indus
try - has mentioned, on more than one occasion,
that Lawrence Radiation Laboratory is a hodge
podge of incompatible machines. This paper might
be considered, somewhat, as an IIlnsider l s Con
fession . II Our present computer configuration con
sists of three 7090 1s, two 1401 Is, one LARC, one
STRETCH, one 650, and, of course, one PDP. We
are in the process of converting the three 7090 l s
to two 7094 1s. In the foreseeable future, the com
puter complex will be expanded to include a CDC
3600, as well as a CDC 6600. These machines
speak such different languages as Decima I, Bina
ry, Conc ise, BCD-eeze, XS3-eeze, and, of
course, thet old standby, Hollerith. Frequently,
the output from one of these machines is neededas
input to a code wh ich is on some other machine.
Usually, the two machines do not speak the same
language or the data must be rearranged or both.

In addition to the computer complex, there are many
data gathering devices located at various testing
stations, both at LRL and at other agencies. These
devices generally speak one of the aforementioned
languages, but the dialects include 35 mm photo
graphic negatives, 5 or 8 channel paper ta pe,
punched cards, and 7 or 8 channel magnetic tape.
Most of these may be odd parity, even parity, or
both. Thus, we are called upon to make a trans
lation, conversion rearrangement, or both. The
PDP, to which can be attached enough 10 gear to
be able to accept and generate a II of the languages
and dialects, was programmed to make these trans
lations, conversion, etc.

Programming for the PDP

Two ground rules were establ ished prior to in itiat
ing the programming.

1) Because there are at least two 10 devices in
volved in each translation code, the processing
speed of each code should be equa I to the max
imum rate ofthe slowest of the involved devices.

2) Whenever possible, all Input and Output data

5

must be checked for validity and parity.

IBM cards - intermixed Hollerith and binary - to
IBM magnetic tape

The translation from intermixed Hollerith and bina
ry has been done on our 1401 I s, but to take advan
tage of the faster card reader and for backup rea
sons, it was decided to make this available on the
PDP also.

Ground rule 1) calls for an examination of rates,
so-oo. The card reader can run at 2100 cards/min.
The maximum rate for putting card images on 15KC
tape is about 3750 card images/min. The processing
rate, by rule 1), sha II be 2100 cards/min. Rule 2)
says that we sha II va I idity check the Hollerith cards.
The binary cards wi II be checked by the large com
puters at read-in time. Each record on magnetic
tape sha II be checked and IIstandard tape tech
niques ll shall be used. II Standard tape technique ll

means that if a bad record is encountered, that rec
ord sha II be backspaced, a space equa I to one record
gap shall be erased, and the record shall be re
written and rechecked. If ten erasure attempts fail
to yield a good record, the problem shall be re
started and the tape replaced.

The conversion from Hollerith to BCD is not wired
into the PDP so it must be programmed. The first
approach took 103 decimal cells and, on the aver
age, took 47.6 ms to empty the card reader buffer
and convert. This was a weighted table search
where a maximumof 16 searches were made for each
character. The on Iy trouble with this method was
that the 47.6 ms is much too large foran individual
card cycleof 28.4 ms when running at 2100 cards/
min.

The method finally used is a direct table-look up
using the Hollerith punches as the table address.
For each character, the punches in rows 1 - 9 pro
vide the table address, and the punches in rows 12,
11 and 0 provide a correction factor. Th is approach
empties thebufferandconvertsinonly10 ms, which
is we II under the required 28.4 ms. Space-wise,
the fast conversion is a dog. It takes 463 decimal
cells, of which only 87 contain data or instructions

and the rest contain zeroes. The zeroes are impor
tant to the conversion, however, inthatan invalid
Hollerith punch is converted to one of these zeroes
and when it is written on the even parity tape, a
character skip will result and the standard tape
techn ique wi" stop the problem.

An interesting sidelight is to be found in the time
versus space analysis in the previous example.
Speed was increased by a factor of 4.7. On the
other hand, space was increased by 4.6. This rule
was found to be true in other examples: That is,
an increase in speed by a factor of N causes an
increase in space by the same factor N.

Now that the code has been debugged and timed,
it is running at 1600 to 1900 cards/min, instead
of 2100. This discrepancy seems to be due to the
summation of plus and minus fudge factors on the
time quotations for the card reader and tape drive.
For instance, the card reader time is not a hard
fast 28.4 ms, but more like 28.4 ±2 ms, under
idea I conditions.

Tape start time, and tape stop time, are quoted at
±1 ms. The fact that the PDP is a 5 microsecond
machine doesn't begin to dent mechanical delays
on the order of 5 ms. If a highly integrated tim
ing study is made, it might be possible to strike
2100 cards/min, but is it really worth the effort?

IBM magnetic tape to LARC magnetic tape

Anothertranslation problem of interest is the trans
lation of IBM magnetic tape to lARC magnetic
tape, or vice versa. Our PDP has an IBM com
patible tape control and a LARC compatible tape
control. Each control has 2 tape drives. To make
th is a genera I purpose routine, it was decided that
the code should stand ready to accept variable
length records. Rule 2) (va I idity & parity checks)
will be satisfied by standard tape techniques. A
look at rule 1) (timing) provides the brilliant idea
of simultaneity. That is -- let's start one tape
reading and, at the same time, start the other tape
writing and perform the translation while they are
in motion! It is sort of a IIhe takes the high road
and she takes the low road and IIII be in Scotland
before them .11 Only, it doesnlt work. The com
mand structure of the PDP (specifically lackof in
dex register) is such that the bookkeeping necessary
to convert three separate characters from a PDP
word requires more than 200 microseconds per word
converted.

6

PDP Saves Processing Steps

The procedure wh ich was fina" y used is to start the
read tape, convert the first N words: start the write
tape, and finish the conversion of the remaining
words. The processing speed attained with this
method is about 6 ms longer than the read time.
Th is particular translation code is a good illustration
of the processing steps which can be saved with the
PDP. This code takes output from, say, a 7090 and,
in one step, produces lARC input. The old method
consisted of an additional processing pass on the
7090 to prepare a Ho"erith image tape, which was
punched off line on a 1401. The: cards were then
converted to a LARC tape by a Remington Rand
Card-to-tape Converter.

Other routines

Other conversion routines on the PDP include:
Paper tape to magnetic tape, with options to check
odd or even parity on the paper tape, write odd or
even parity IBM or Remington Rand tapes.

Print LARC or IBM tapes on the PDP Printer.

Magnetic tape to visual CRT, and precision CRT
with 35 mm camera. T his routine handles bOth
characters and graph ica I data.

35 mm negatives with graphical data to magnetic
tape.

IBM tape to IBM tape.

LARC tape to LARC tape.

Magnetic tape to printer and magnetic tape to pre
cision CRT - simultaneously.

Our assembly routine deserves mention in that it
reads the instructions from Hollerith cards, uses
I BM tape as temporary storage, prints the I isting on
the Anelex printer at 1000 lines/min (the printer
uses the XS3 language), and the object code is
punched in binary form on IBM cards.

Conclusion

The coding techniques wh ich were fina II y used in
our conversion routines are not complex, but they
do serve to illustrate that one cannot afford to ap
proach the trivia I problem of data conversions with
care less contempt.

A SYSTEMS TAPE FOR THE PDP-1

Fraser Bonne II

Abstract
Routines which are frequently used are stored
on magnetic tape. In order to use these rou
tines, it is sufficient to start the PDP with
a short paper tape (under 100 words long)
and then to type four characters wh ich iden
tify the desired routine. A loader on the
systems tape then finds the routine on the
tape, loads it into memory, and transfers
control to it. A routine has been written for
a Itering the systems tape.

The Systems Tape
The systems tape is started by means of a short paper
tape. The paper tape contains a program which
finds a loader on the systems tape, loads the loader
into memory and transfers control to the loader.
Once the loader is in memory, the systems tape
may be used simply by starting the computer at a
specified location. The systems tape loader does
the following:

1. Types - TYPE ID.

2. Reads an I D fro m the typewriter. (Each
routine on the systems tape is identified by
a three-character I D.) The loa de r 'will
accept the last three characters typed be
fore a slash (/) is typed.

3. Searches a table for the I D. (If the I D is not
found in the table, the machine will type
---ILLEGAL ID---and start again at (1).)
Gets from the table the number of the record
in which the desired routine is to be found.

4. Moves the systems tape to the proper record.

5. Searches the record for the desired routine
and reads it into memory. (Severa I short
programs may occur in the same record. Th is
el iminates unnecessary record gaps.)

6. Checks for tape reading errors. (If there are
errors, severa I attempts are made to read the
tape. If none are successful, the mach ine

7

will type---TAPE ERROR---and then pro
ceed as if there were no errors.)

7. Gets a tape disposition instruction from the
systems tape. Generally, this instruction
will be to start the systems tape moving to
the head of the nearest loader, so that it
will be in position for the next use. How
ever, certain routines called from the systems
tape will need to use immediately the tape
control wh ich controls the systems tape. For
this reason, there is the option of leaving
the systems tape where it has stopped.

8. Transfers control to be called ro·utine. The
systems tape may still be moving to the near
est loader. The loader occurs at intervals
on the systems tape so that no matter what
position the tape is in, a loader is not far
away. Optimal placement of loaders has
not been determ ined •

Diagram for Systems Tape Records
Figure 1 shows a diagram which describes the for
mat of a "standard" systems tape record. Provision
is made for nonstandard records. For example, a
routine on the systems tape may be divided into two
parts. The first part may be called in the normal
manner, while the second part is stored in the next
systems tape record to be read by the first part at
a later time. Or, the second part may be read into
the part of memory which is occupied by the systems
tape loader.

One should have a routine for altering a systems
tape. One should be able to delete and insert both
programs and whole records. The routine must make
the necessary changes in the loaderls table of I Dis
and their corresponding record numbers. It should
be able to read a program from paper tape on other
media and arrange it in the proper format for storage
on the system tape. It should see to the placement
of loaders at specified intervals. (Because certain
records on a systems tape should not be separated
by a loader, it is a good idea to use one word in
each record to indicate whether a loader may im
mediately follow that record on the systems tape.)

FORMATS OF SYSTEMS TAPE RECORDS

I) Loader:

Record
Number

000000
{Indicates
that this

is a
loader)

II) Other Records:

A) Standard

The address
of the first

word of
the loader's

table

Loader's Table

(*)

ID RN (*
m m

Loader Program
RN. is the number of the record

I
in which is found the routine

whose ID is ID ..
I

)

Record
Number

A positive number means
advance to nearest
loader. A negative
number means backspace
to nearest loader.

S-l, where S is t~e num-I' ,I I I(Ll,l - Fl,l) words
ber o~ records which must (*) (To be put in

besklppedtogettothe III Fl lllLllllocationsFl 1 11
L -F)J Fl 2Ll 2 1,2 1,2 --- 11 F

1,kl
L
1,kl

(L l k -F l
' 1

nearest loader. (S < 0, I" th h L : 1)
if next record is loader) roug 1,1

, , words
words

-,
Systems tape

< disposition.
"Jump I (*) (Stop or else F2 ,1 L2 ,1

)

Address" 2

~ move to
nearest loader)

I 343536
343536 000000 000000

) I (*) (L -F) Systems tape "Jump {Indicates (t) (t)
F L p,kp p,kp (End of

p p,kp p,kp
words program)

disposition Address" end of

(
record)

(*) 1
1

, •.• , I p are the I D's of the P programs contained in the record.

(t) The last two words of the record may be used to give information to a routine which alters the systems tape.

B) Nonstandard

The first three words of the record must be the same as on a standard record.

343536

)
(Indicates end

,kl of program; will
not be an ID in
concise code.)

TED: A TAPE EDITOR

Charles R. Brown and Donald W. Connolly

Abstract
The principle and operation of a uti I ity pro
gram for the PDP-l computer are described.
The program is an aid in the editing or mod
ification of alphanumeric text in that the op
erator may communicate with the computer
in the very alphanumerics of the text itself.
It is a computer time-saver in that the modi
fications and the control instructions for their
accompl ishments may be prepared at an in
expensive, off-line machine.

Introduction
TED is the OAL program for preparing and editing
symbol ic tapes with the aid of the PDP-l computer.
With TED a II typing involved in preparing and edit
ing tapes may be done at an off-I ine typewriter
punch. Thus, TED permits off-I ine editing in the
sense that all typing may be done off-line and the
only on-I ine time required is that necessary for the
reading of text and control tapes.

Editing Features
With TED tapes are edited bykillinga lineorblock
of I ines, inserting a I ine or block of I ines, and sub
stituting one I ine for another line. Memory may be
inspected by requesting one or more I ines to be
typed or displayed on the scope. A I ine may be
referred to by its symbolic address. This is true for
the typing, displaying, reading, punching, kill ing,
inserting, and substituting of lines. --

TED has a text mode and a control mode; a mode
change occurs when an overstrike is typed in or read
in. When TED is in text mode, characters are stored
in the temporary text buffer unti I a carriage return
occurs. The carriage return resets the temporary
text buffer and adds the lin e to the permanent
buffer.

In control mode characters are stored in a tempo
rary control buffer. A carriage return resets the
control buffer and causes the control statement to
be executed. Control statements are not stored in
a permanent buffer.

9

The backspace operates in both modes to kill the
last character. In control mode it operates on the
temporary control buffer; in text mode it operates
on the temporary text buffer. When in control
mode, the typewriter types in black. Thus, the
typewriter is in red only when characters are being
stored in a text buffer. TED starts in control mode,
black and lower case.

Control Characters
Control statements in TED begin with a control
character that denotes the operation to be perform
ed, and operates upon one or more I ines of the per
manent text buffer. The control characters and
their general meaning are listed below.

Character Meaning

t '!ype
· {period} II

, {comma} II

d display
p punch
r read
k kill -
· {middle dot} II

/ {slash} II

Lnsert {after}
s substitute

leader
Listed below are the eight contrO'l statements which
consist only of a control character. Carriage re
turn is indicated by ~ .

Single Character Statements

Statement

t ~
· ~ {period}
, ~
p~
r j
/~
· ~ {middle dot}
1 ~

Meaning

types all lines
types last line
types first two lines
punches all lines
reads all lines
kills all lines
k ills last Ii ne
punches leader

Control Statements With Symbol ic Addresses
All control characters which are letters (except 1)
maybeusedwithsymbolic addresses; the others may
not. In TED a symbol ic address is the string of char
acters from the carriage return f 0 the tab. For
DECAL symbol ics, block symbols, program symbols,
and system symbols would normally be symbol ic
addresses for TED. In the following examples, the
symbol ic addresses are block symbols in the DECAL
system. ForTEDasymbolic address maynotcontain
spaces or begin with a period. A control statement
with one symbol ic address is simply the control char
acterfollowed by the symbol ic address. An example
is the II type ll statement:

tstart: ~

which will result in the line with the symbolic ad
dress start: being typed. This example is appropri
ate for the control characters p, d, and k. The
control characters r, i, andsrequire some addi
tional explanation. The control statement

rstart: ~

will resultinthe tape being read up to and includ
ing the I ine with the symbol ic address start: . The
control statement --

istart: ~

will result in the last lineof permanent text buffer
being inserted after the I ine with the symbol ic ad
dress start: . The control statement

sstart: ~

will result in the last line of permanent text buffer
being substituted for the I ine with the symbol ic ad
dress start: . T his statement is equivalent to

istart: ~
kstart: .~

A linewhich does not have a symbolic address may
be referenced by indicating the number of lines it
is below a line with a symbolic address. Any line
with a symbol ic address may be chosen. The con
trol statement

tstart:/5 ~

wi II resul t in the fifth line after start: being typed.
The count is in octal and should not exceed octal
77. The slash is used here rather than plus to avoid
case sh ifts.

The control characters t, d, p, k, and i may be
used with two symbo Ii c addresses. The format is the

10

control character, the first symbol ic address, a
comma, the second symbolic address. The "type"
example

tstart:, fin ish: J,

is appropriate for d, p, and k. The first symbolic
address indicates the first line ofa block; the second
symbolic address indicates the last line of a block.
Thus, the example would result in the block of lines
beginning with start: and ending with finish: be-
ing typed. -- ---

The insert statement has a different meaning. The
control statement

istart:, fin ish : ~

would result in the block of lines beginning with
fin ish: and ending with the last I ine of permanent
text buffer being inserted after start: .

Special Features
Whenever TED reads from tape a control statement
it cannot execute, it does one of two th ings. (1)
If the statement begins with a legitimate control
character the reader stops, the unexecutable state
ment is typed, control is turned over to the type
writer, and TED goes to control mode. Thus, the
correct control statement may be typed. (2) If the
control statement does not begin with a legitimate
control character it is ignored. Unexecutable con
trol statements (beginning with a legitimate con
trol character) which are typed in result in lIerror"
being typed back. Unexecutable statements gener
ally occur because a symbolic address was incor
rectly typed.

If TED's permanent text buffer is filled, "buffer
full" wi II be typed out in red. If th is occurs wh i Ie
TED is trying to satisfy a read statement, the read
er wi" stop, control wi" be turned over to the
typewriter, and TED will go to control mode.

If sense switch 5 is up when the buffer is filled,
TED wi II punch and ki" the first seven lines and
continue reading, repeating this until the whole
tape has been read. Thus, TED wi II read a tape of
any length. However, control statements should
not refer to lines which have been read more than
two or three pages earlier since this much ordinary
symbol ic program material is about the capacity of
the permanent text buffer.

TED assumes that a tape begins in text mode. Thus,
if a tape is to begin with a control statement, the
tape should begin with an overstrike. When TED
finishes readinga tape, italwaysturns control over
to the typewriter and goes to control mode.

A display resulting from a statement which is typed
wi II be terminated by the striking of any key except
space bar. Striking the space bar will cause the
block be ing displayed to be indexed. Thus, if lines
three through five are displayed before the space
bar is struck, I ines four through six wi II be displayed
after the space bar is struck. In this manner, the
display may be stepped through an entire program.

If a display statement is read from tape, the display
will be modified by the space ba r as described
above. A carriage return will cause the display to
terminate and TED to continue reading tape. Typ
ing a left paren will turn control over to the type
writer and TED wi II be in control mode. All other
keys are ignored.

TED displays both lowercase and uppercase char
acters. Thus, a block of lines which is displayed
will look just as it would if they were typed. The
only qualification is that the display feature has
only two fixed tabs.

Suggestions and Cautions
In the following, 11' indicates uppercase, ~
indicgtes lowercase, and :::::::) indicates tab. So
that the first line of a symbolic tape will always
have a labe I, it is suggested that the first I ine be:

n U -==t Ji
If this is done, there will never be a line in a sym
bol ic tape that cannot be referenced by a labe I,
since control statements of the form

t 11 U/-n
are permissable. Th is procedure wi II not affect the
complication with DECAL.

In order that materia I typed off-I ine will look as if
it had been typed on-I ine, change ribbon color
after the overstrike is struck. Tapes should start
in red.

If severa I I ines have identica I symbol ic addresses,
TED assumes that a control statement with such a
label refers to the first one.

11

If tapes are to be compi led with DECAL, one may
tab after dss or fin., making these symbol ic ad
dresses forTE D . -

Before return ing the carriage or tabbing, the type
writer should a Iways be in lower case. If th is is not
done, TED may not recognize symbolic addresses
and displayed I ines may be in the wrong case.

TED wi II read leader and trailer consisting of feed
holes or "7" holes. Errors made by the operator of
the off-I ine typewriter-punch should be corrected
by backspaces and never by "delete" punches.

APPENDIX

Examples of Editing with Ted
The following subroutine, in symbol ic form, with
hand-noted changes could be edited in a variety
of specific ways. Two examples are given.

dss hold mdck
dss cr
dss prmd black wait
dss temp cntrl os

~---------~~

t:

a:

fin.

el-i-
I"'p&'

J"ef'-~

ffl-~

!pi-
imp a
sft 4
dac hold
jmp mdck
szf' 4
jmp rpt
clf 4
dzm ipt
lac prmd
sad black
jmp wait
lac cr
dac temp
law' 2
doc cntrl
lac os
jmp t

ipt ~ dss check

rpt'
rpa'
jsp check

The origina I symbol ic tape is first read into TED by
striking r ~. The control tape below is then read
the same way.

Off-line control tape:

rpt'*
srptl

~rpt'/l ,rpt '/5

dss check*

idss

ddss,a :/15

p

/

rpa'*

jsp check*

Function:

Text to be substituted
Control instruction to

execute same
Re moves lin e s II c I ill

through II spill
Line to be added after

IIrptll
Inserts above I ine after

IIrptll
New dss lin e to be

added
Inserts above after first

dss, wh i ch has been
made a "s y m b 0 I i c
address" here

Will cause display of
entire e d i te d text

At th is point striking a
carriage return would
ca use the program to
continue reading the
control tape. Strik
ing the (would re
turn control tot h e
operator

Will make 500 lines of
feed holes for leader

Wi II punch off entire
edited text

Will make trailer, as
above

Will ki II entire text,
preparatory, for next
editing job

12

Example 2:

Off-line control tape:

dss check*
rpt'*

* Ti-pt '/5,fin .11

krpt'/rpt'/5

P
1

rpa'*
jsp check*

Function:

Text to bE} inserted

Wi II insert a II three of
the lines in red (these
having been added to
the permanent t ext
following fin. which
here has been made a
symbolic address by a
tabafter the period) •

Wi II kill the six lines
at the top beginning
with rptl

Leader, punchoff and
trailer as before

Note: The extra carriage returns in the above
examples are not needed in the actual con
trol tape.

*These symbols print out in red.

SCOPETRACE

John R. Hayes

Abstract
A computer program for the Digital Equip
ment Corporation PDP-1 computer, but ap
plicable in principle to other computers, is
described. The program is designed to fa
cilitate the debugging of object programs
by providing a geometrical representation of
the operation of the object program.

Introduction
Scopetrace is designed to aid in the process of de
bugging programs. It provides a pictorial mapping
on the scope of the operation of the object pro
gram and simultaneously displays the following four
quantities.

a. the contents of the accumu lator,

b. the contents of the in-out register,

c. the address of the instruction being ex
ecuted,

d. the effective instruction, i. e., that in
struction which the computer performs
aft e r indirect addressing and execute
commands have been taken into account.

The Scopetrace Display
A typical scopetrace display is shown in Figure 1.
The segment of program traced in Fi gure 1 is listed
in Figure 2. In the top row, from left to right,are
shown the contents of the ac, the contents of the
io, the address of the instruction just executed,
and the effective instruction. The addresses being
traced are shown in the first or left-hand column.

The firstaddress and all following addresses which
end in zero are displayed in fu II. All other ad
dresses are indicated by a short horizontal bar.

The left-hand side of the second column contains
arrows which indicate the course of the program.
The arrows are assigned by the following four rules:

13

a. When control proceeds from register n-1
to n and then to n+ 1, the arrow II ~ II is
placed next to the address n, i. e., the
program moves through consecutive in
structions.

b. When control proceeds from n-1 to n to
some register other than n+ 1, the arrow
.. ~ II is assigned, i.e., the program is
shown to II jump out. II

c. When control proceeds from some regis
ter other than n-1 to n and then to n+ 1 ,
the arrow 11..-11 is used, i.e., the pro
gram is shown to II jump in.1l

d. When control proceeds from some register
other than n-1 to n to some register other
than n+ 1, the arrow II ~ II is assigned,
i.e., the program is shown to II jump in"
and then "outll again.

The right-hand side of the second column shows the
number of consecutive times that the arrow in the
left of the column was assigned at the location.
Whenever an arrow is assigned to a location which
is different from the last arrow assigned to that lo
cation, the pictorial mapping moves overa column.
Thus, when the sample program jumped out from
4021 and jumped back in at 4010, the mapping
moved from column 2 to column 3. Again, when
the program jumped outat4020, the mapping moved
from column 3 to column 4.

Control of Scopetrace
The steps outlined below should be followed toob
tain pictorial mapping of a program:

1. Read in the Scopetrace tape and start the
program (Loscopetrace starts at 1, H iscope
trace starts at 5700.

2. Type in the following four numbers, each
followed by a space:

a. the first address to be displayed.

b. the last address to be displayed. (Note:
the difference between the first and last
address should not be greater than octal
75 for Loscopetrace or octal 64 for Hi
scopetrace.)

c. the address at which the object program
starts.

d. the memory option, either 10 or 30. Wi th
the 10 option, 6 display columns are a
vailable for pictorial mappingand 10 oc
tal words of storage are required per in
struction mapped. With the 30 option 22
display columns are avai lable for mapping
and 30 octa I words of storage are requ ired
per instruction mapped. The 30 option
should not be used in Hiscopetrace when
more than 24 octal instructions are being
mapped. To do so would cause the pro
gram to exceed the available storage.
When the final space has been typed, the
address column wi II appear on the scope.

3. Select a "breakpoint, II that is, select the
firstaddressatwhich you want program map
ping to pause and put this address in the ad
dress portion of the test word. If you want
the mapping to pause on the nth time it comes
to the breakpoint rather than the first time,
then, place n in the instruction part of the
test word.

4. Type the letter lib, II Scopetrace wi II ha It at
this point to allow the operator to reset the
test word. Thus, use of the test word to set
the breakpoint does not prevent mapping of
programs which use the test word.

5. Press continue. Thefull Scopetrace display
will now appear.

The breakpoint may be reset as often as desired.
Each resetting will allow mapping to continue to
the new breakpoint.

Single stepping through the program may be ac
compl ished, after the first breakpoi nt has been set,
simply by striking the spacebar.

14

The use of breakpoints and single stepping will suf
fice for almost all cases. Some cases which cause
trouble should be mentioned, however. The one
normal process which requires special treatment is
typing in. To accompl ish a type-in, the following
steps are necessary:

a. Set the appropriate breakpoint address in
to the test word.

b. S trike II carriage return. II

c. Strike the character that it is desired to
type-in. Scopetrace halts at this point
to allow resetting of the test word.

d. Press continue. This completes the type
in.

Scopetrace wi II not execute an instruction wh ich
would modify the scopetrace program. Instead trac
ing stops before executing such an instruction and
the mappingof the program up to that point is dis
played on the scope.

An illegal instruction in the object program wi II
hal t Scopetrace. Loscopetrace wi II hal t at 502 and
Hiscopetrace at 6401.

Storage Required
The program plus fixed storage occupies 1077 octal
registers of memory. Loscopetrace occupies the re
gion from 1 to 1100 and Hiscopetrace, from 5700 to
6777. The extra storage required depends on the
number of instructions mapped and on the memory
option. (See Scopetrace control 2d.). To calcu
late the octal number of extra storage registers re
quired, simply multiply the number of instructions
mapped by the memory option.

Comment
While Scopetrace was designed primarily as a de
begging tool, it isalso useful as an aid in teaching
programming. Since the accumulator, the input
- output register, and the effective address are
displayed, the effects of the various instructions
may easily be demonstrated.

Figure 1 Figure 2

A TYPICAL SCOPETRACE DISPLAY A TYPE-OUT ROUTINE

000000 000000 004022 600124 typeword' doc save
law' 3

04005 +- 1 doc count

+ 1 loop: lac save

+ 1 cli
04010 + 1 .- 2 rei 6

+ 1 • 2 doc save

+ 1 + 2 dio temp

+ 1 + 2 lac temp

+ 1 + 2 sas oct76

+ 1 • 2 tyo'

+ 1 + 2 isp count • 1 + 2 imp loop
04020 + 1 + 1 ~ 1 imp rml

-+ 1 1 save:
G1 count:

'---' .~ ~ ~ temp:
column column column column oct76: oct76

1 2 3 4 fin.

15

MATRIX PACKAGE FOR THE DX-l EXPERIMENTAL
DYNAMIC PROCESSOR AT AFCRL

Carmine J. Caso, James M. Sexton, Janet N. Seltzer

Abstract
The Matrix Package is a system of computer
programs to perform general Matrix Opera
tions. It is centered around an executive rou
tine designed to allow effective usage by peo
ple with minimal programming experience.

The Matrix Package breaks down into two parts
consisting of an Interpreter and Control Portion,
and a n Operation Portion. This sub-division is
necessitated by the form of the input operation re
questdata which issimilar to certain Fortran state
ments and other problem oriented languages. The
Interpreter and Control Portion of the system accepts
the input operation request data, whether it be from
punched paper tape or from the on-I ine typewriter,
and interprets each statementas a specific request.
In doing so, an operation command table is gen
erated and subsequently used by the Control Portion
in guiding the operation of the stated requests. The
Operation Portion of the system performs the oper
ations as requested by the Control Portion. The
Operation Portion contains a II the necessary rou
tines to perform the Matrix Operations as indicated
by the input request data.

The Matrix Package operates from magnetic tape
with the Interpreter and Control Portion being the
first block. The subsequent tape blocks contain
the programs of the basic Matrix operations, add,
subtract, multiply, eigenvalue, eigenvector, in
verse, and transpose, and also the necessary input
output routines.

Input-output media may be punched paper tape,
the on-I ine typewriter and magnetic tape.

There are three types of statements for the opera
tions request data. The first such statement is the
Dimension statement. This statement wi II be used
to allocate storage locations to the Matrices in
volved in the subsequent input request data state
ments. All Matrices used must be mentioned here;
otherwise, an error printout wi II occur when the
Interpreter Portion discovers a Matrix name which

17

has not been assigned storage area. The Dimen
sion statement must be the first statement of the
input request data. Its format consists of: 1) the
word SIZE wh ich is a notation to offset this type
of statement from the others, and to indicate that
its contents are the Matrices' dimensions: 2) the
Matrix name, symbol or identification, which must
be at least one character and no more than three
characters; and 3) the actual Matrix dimensions en
closed by parenthesis and separated by a comma.
As many Matrices' names as desired may be used
unti I storage a 1I0cation is exceeded.

E.G., SIZE A(5,5), BB(20,20), CDE(l,lO)

The CALL Statement

The second type of operation request data state
ment is the CALL statement. This type of state
ment is subdivided into two parts, Input/Output,
and Functional. The input/output statements con
tain certain com po n e n t s; a call code, an I/O
source, and I/o address, a data format, and in
the case of Magnetic tapes, a block number. The
call codes are READ, PUNCH, PRINT, WRITE, and
CALL. The I/O sources are PAPER for paper tape,
TYPE for the typewriter, and MTAPE for Magnetic
Tape. The I/O address may be any Matrix name,
symbol, or identification. The data format spec
ifies the type of conversion to be performed be
tween the internal machine language and external
notation. The notations used are I for integer, F
for fixed point and E for floating point. The num
ber of positions of the field which appear to the
right and left of the decimal point are required
when using the fixed and floating point data for
mat. All Input/Output statements are I imi ted in
that certain components are legal only with spec
ific components. For example, it is correct to
READ PAPER, READ TYPE, and PUNCH PAPER,
but is is illegal to PUNCH TYPE, which is also
somewhat of a difficul t task. Punching output on
the on-line typewriterwould be quite a job to per
form. Input statements do not require a data for
mat whereas Output statements do need a format.
Magnetic Tape call statements require a block num
ber for its data format.

OPERATION
READ PAPER TAPE
READ ON-LINE TYPEWRITER
PUNCH PAPER TAPE
PRINT ON-LINE TYPEWRITER
WRITE MAGNETIC TAPE (Block 2)
READ MAGNETIC TAPE (Block 6)

FORM
READ PAPER, A,
READ TYPE, BB,
PUNCH PAPER, CCE, F3.2
PRINT TYPE, BB, 14
WRITE MTAPE, A, B2
CALL MTAPE, CDE, B6

Functiona I Statements
The functional statements are concerned with the
call ing of a particular Mat r i x function. These
statements contain three components; a call code,
an inputaddress, and an output address. The call
codes are EVALUE for the Eigenvalue function,
EVECTOR for the Eigenvector function, INVERSE
for the Inverse function, and TRANSPOSE for the
Transpose function. The input and output address
istheMatrixname, symbol, or identification. An
example of a functional statement is TRANSPOSE
ABC, XYZ, which wi II be interpreted to mean -
find the Transpose of Matrix ABC and store the re
sults in the Matrix area XYZ.

The Arithmetic Statement
The third and last type of operation request data
statement is the Arithmetic statement. This type
of statement is concerned with three Matrix oper
ations; addition, subtraction, and multiplication.
These statements are made up of the Matrix name,
symbol, or identification, the storing element, and
the arithmetic operations. For example, A = BC +
DEF where A, BC, and DEF are Matrix names, the
I iterals define the storing element and the plus sign
is the arithmetic operator. Otheroperators are the
minus sign (-) and the mul tiplication sign {x}. The
Matrixarea where the result of the operation is to
be stored is always to the left of the literals. To
the rightare the Matrix names used in the operation
along with the desired operator.

Input Statement

The media of inputting the source data used by the
Functional and Arithmetic Statements is determined
by the Input statements of the operation request
data. An example wou Id be READ TYPE, ABC,
which would be interpreted to mean read from the

18

on-I ine typewri ter, data input to be stored in the
Mat r i x area assigned ABC. Another example,
READ PAPER, Zl, would mean read inputdata from
paper tape into the matrix area Zl.

On-Line Output
On-Ifne output may be Monitor Information, Error
Diagnostics and Data Listings 0 When the Matrix
Package operation is initiated, a self-explanatory
message wi II be printed on-line. This message, de
termined by the setting of sense switch 1, will in
form the operator as to the media by which the in
put operation requests are to be entered. Sense
switch 1 down signifies that the input operation re
quests will come from paper tape and if it is up,
that the input operation requests wi II come from
the on-I ine typewriter.

As the sequence of commands indicated in the input
operation requests proceeds, a running log of oper
ations is printed on-I ine. The messages may be in
formation as to the present operation or they may
be certain instructions for the operator to follow.
M 0 n i to r information may be omitted by setting
sense switch #2.

Error diagnostics will be printed on-I ine whenever
a grammatical or machine error is detected. The
printout will be a three digit code in red, which
wi II represent a specific explanation of the error.

On-line data I istings as requested in the operation
requests will be listed, headed with the Matrix name
symbol, or identification. The listing will have a
maximum of eight columns across the page. If the
row has more than eight columns, the remaining
columns wi II be I isted directly below the preceding
row. There wi II be a blank I ine between each row.

Single Precision Floating Point

The Matrix Package in its present form as designed
for the DX -1 computer uses 8K Core Memory, the
majority of which is used for data storage, and also
uses three magnetic tapes (type 52 control), one of
which is required; this being the System tape.
Another tape is used only if magnetic tape input/
output statements are used. The third tape is used
when the Eigenvector function is called on. The
arithmetic used in this version of the Matrix Pack
age is single precision floating point.

DECAL-BBN
(BBN Symbolic Version of DECAL)

R. J. McQuillin

Abstract
The following talk reports progress on the new
version of DECAL presently being completed
at Bolt, Beranek and Newman. This version
will have many new features. At this time
a report will be given on the improvements
to the ex isting system as well as the addition
of ALGOL-like features to the algebraic
compiler.

Introduction
For some time work has been going on for the purpose
of making a good symbolic version of DECAL. The
starting point was to produce a disassembly of the
old DECAL F17C, which existed only as a binary
tape. The disassembled I isting was reorganized and
written in DECAL symbol ic form. After this first
symbolic version of DECAL F17C was produced,
work was begun on extensive rewriting of the system.
DECAL F 17C had been patched and modified so often
there were many artifacts that were awkward and
c1umsythatwere used so that things would compile
properly. These artifacts have been removed in the
rewrite. In fact, the rewrite has been so ex
tensive that the name of the system has been chang
ed to DECAL-BBN to reflect the differences between
old and new systems. Parti cu larly affected in the
new version is the algebraic compiler.

In addition to DECAL itself, the linking-loader fea
turewasalso rewritten, partly to make it more ele
gant, and partly in order that it would be able to
handle the increased capabilities of DECAL-BBN.

The New Features of DECAL-BBN
DECAL-BBN has been extensively debugged. (One
of the drawbacks of older versions of DECAL were
the errors in the system.) In addition, to correcting
of eliminating errors the system has been made much
more efficient, both in speed of compilation and in
the economy of the compi ler itself. The new version
ofthealgebraic compiler is very efficient, in fact,
temporary storage allocation is kept to a minimum
at all times.

19

The following completely new features have been
added:

1) Improved Typeout Format. In DECAI.:-BBN only
error typeouts are done while a program is compil
ing. All other typing is done at the end of the com
pilation and only after all punching is completed.
In addition, all typeouts may be suppressed through
sense switch option. An action operator is written
whichwill allow all the normal typing to be punched
out at the end of compi lotion. Then the tape can
be run off-I ine to get the listings.

2) Conditional Statements. The conditional state
ments are handled exactly a s described in the
ALGOL manual. In ALGOL language:

if B then U else S
or if B then U

where B is a Boolean expression; U is an uncondi
tional statement; and S is a statement. These items
are the same as described in the ALGOL manual.
As example, we may write conditional statements
in the following ways:

if A > b then goto c
if (a > b) /\ (c .:f: d) then d else goto e
if a then goto b else if a > c then goto e
if a> b then c else d then goto e else goto f

3) For Statements. The for statements are also as
described in the ALGOL manual. They are of the
form~

for k <= F do S

where k is a variable, F is a for I ist and S is a state
ment. These items are also described in the ALGOL
manual. We may have for statements of the form:

for i <= 0 step 1 until n do S
for i <= m,n step 1 until p do S
for i <= 0 step 1 whi Ie a < b do S

4) Procedures. Procedures, as described by the
ALGOL manual, are like subroutines in machine
language. The differences are that they compi Ie in
a standardized way, and that they allow a variable

numberof arguments. When a procedure designation
is encountered in statement, a certain standard
coding is produced. Forexample, suppose we have
an expression I ike:

a+J(k,r)=>b

Here J may be a procedure for finding the Bessel
function arguments k and r. (Actua Ily according to
ALGOL, procedures that have a single value are
called functions, so we may call J (k, r) a functional
designation.) The coding that is produced here is:

lac K
ida J
jac r
add a
dac b

We may declarea precedure by using the expression:

procedure J(k,x); B

Where B is the body of the procedure. We maya Iso
specifya definite result to be communicated back
upon exit from the procedure. Thus, suppose we
wish to find the Hankel function and return with the
address of the first element of the two-element array
which contains the results - the first element con
tains the Bessel function, and the second element
the Neuman function. Then we would write:

procedure H (k,r,H); resultadr H; B

5) Subscripted Variables. DECAL-BBN wi II have
the capabil ities of handl ing subscripted variables.
It will actually produce an intermediate coding
which will be handled by a subscript interpreter
during run time. Thus we may write:

A [i, j] + B [i, j] => C [i, j]
A [ixj,k] + B [i/j,k] =>C[i+j,j+k,k+m]
lacA[i,i]
if A [i ,j] > 0 then goto b

We may also have subscripts on subscripts. Thus:

A [i[j]] => b

will be handled properly by DECAL-BBN.

6) Hybrid Operators. DECAL-BBN has a new kind
of operator called the hybrid operator. It is a
combination 0 f an instruction generator and an
action operator. More precisely, it is an action
operator with precedence.

7) Address Arithmetic on System Symbols and Un
defined Symbols. Additions have been made to
both the DECAL-BBN and to Linking Loader-BBN
to make possible address arithmetic on system sym
bols and undefined symbols. Thus we may write:

dss a
imp a + 1

or lac a + 1
a: ..

The form for writing address arithmetic on Systems
S or undefined symbols is not general but sufficient
for most purposes. It must be of the form; the loca
tion followed by a (+) or (-), followed by an octal
number.

Other Features
The basic structure or skeletal form of DECAL-BBN
is such that it requires no further recompilation of
the system. Supplementary, however, to this basic
structure are separate tapes of action operators, in-
struction generators and words. The programmer
may select only those of the above that he needs
and feed them into the basic system. Any modifica
tion of the basic DECAL-BBN is made through action
operators, and not through recompi lation.

Recommendations for Increased Communications
It is hoped that DECAL-BBN can be adopted as the
standard compi lerof the DECUS organization. The
DECAL-BBN symbolic form makes possible the use
of action operators. These action operators can then
be communicated in their symbolic form to DECUS
members. There is every indication that a standard
programming language for PDP-l users would insure
a largermediumforcommunication. In addition it
is hoped, that the algorithms as published in the
Communications of the ACM will be easily and
closely translatable into PDP-l code, thus opening
a vast communication link to the whole computing
community.

Conc lusions
In this paper I have discussed only some of the new
features contained in DECAL-BBN which wi II make
it a more elegant system than its predecessor. The
hybrid operator and the incorporation of ALGOL
I ike features described earl ier make the new version
a rea II y useab I e too I for commu n i cat i on among PD P-l
users and between the DECUS members and other
compute r users.

20

Section II

PROBLEM ORIENTED TECHNIQUES

MINIMAX DETECTION STATION PLACEMENT

Richard D. Smallwood, Lt.

Abstract
One problem in the detection of enemy op
erations is the location of a given number
of detection stations within a limited area.
A practical requirement is that one assumes
complete knowledge of the enemy of the
effectiveness and location 0 f the station
net. This in turn necessitates a minimax
solution of the problem, that is, the stations
must be placed so that the minimum proba
bility of detecting an enemy event within
the area is a maximum.

The solution of the simpler one-dimensional
problem, i. e., the placement of n stations
on the unit line, has been programmed on
the DX-l computer. The program uses an
iterative techn ique with typeouts and a dis
play available after each iteration.

One probJem that arises in implementing a network
for the detection of specific operations over an
area of interest, is the optimum placement of a
given number of detection stations. It is of par
ticular interest, to know where n stations should
be placed in the area so that the probabil i ty of
detecting an enemy operation is maximized.

One assumption that is made in the analysis is that
the enemy will know the effectiveness, as well as
the position, of each of the stations. With this
knowledge the enemy will certainly cause any
operations to occur where our probability of de
tection is a minimum. Thus, the problem is to
place the stations so that this minimum probability
of detection is maximized.

In solving this problem, we assume that we are
given a function p{x) which is the probability of
detection for one station if an event occurs a dis
tance x from the station. Furthermore, it is assum
ed thateach of the stations operates independently
from the others so that the overa II probabi I i ty of
detection, P, for an event is one minus the prob
ability thatnone of the stations detect the event:

n
P = 1 -1)-' f1 - p{x.)l

i= 1 L' 1 'j

23

where Xi is the distance from the event to the i~
station.

This problem has not been solved for an arbitrary
area; however, a set of necessary conditions for
the optimum placement of n stations on the unit
line has been derived (1). If we write the over
all probability of detection for an event occuring
at x (O<x<l) as P{x), then these conditions require
that the Value of P at the end points, and the min
imum value of P between each pair of stations all
be equal.

The solution of this one dimensional problem for any
number of stations and an arbitrary function p{x)
has been programmed on the PDP-1. The optimum
placement of the n stations is found by an iterative
technique thatattempts to minimize a function that
is a measure of the deviation from the optimum
placement. If a o is the value of P{x) at x=O, an
is the value of P{x) at x= 1, and ai is the minimum
va lue of P{x) between the i.tb. and (i+ 1) .tb stations,
then the technique attempts to minimize:

n 1 n
V =2: I a. - -.L a·11 . ° 1 n . ° 1= 1=

or the absolute deviation of each of the critical
values of P from the average.

In addition, the program displays a measure of P{x)
on the color scope at the end of each station so
that the convergence of the solution may be ob
served visua lIy.

Several interesting results have been obtained from
this program. It is hoped that this work wi II lead
eventually to the solution of the two-dimensional
problem and in addi tion, to the solution of other
more realistic extensions of the model.

(1) Smallwood, R.D. "Detection Station Optim
ization - I"

Project CAMBRIDGE Memorandum No.5, De
tection Physics Laboratory, AFCRL, 9 Ju Iy 1962

USE OF THE PDP-l IN OPTICAL DESIGN

M. V. Morello, E. J. Radkowski, M. P. Rimmer and R. R. Shannon

Abstract
The design of an optical system consists, in
a basic manner, of solving n different non
I inear equations in m unknowns. Often n
and m may be of the order of twenty or more.
The problem is further compl icated by engi
neering and physical constraints as well as
the fact that no defin itive statement can be
made as to when the best sol ution has been
found.

These problems will be discussed, and it will
be shown how the PDP can serve as an ideal
lens design computer. A demonstration of
current programs wi II be given.

I ntrod uct ion
The PDP-l offers some unique and interesting pos
sibilities for applications to optical design work.
Perhaps the best way to emphasize this is to outline
what is the basic advantage. The PDP permits an
optical designer to observe in "real time" the de
tai Is of the I ight distribution in an image. In es
sence, the machine communicatesdirectlywith the
designer through the display. The designer can
then react and make changes in the system via the
typewriter, display or console. The aim here is
not to use the machine as a gigantic sketch pad,
but to usefully present a large amount of data in a
usable manner.

The lens des ign problem may be described as that
of solving n non-I inear equations in m variables.
It is not uncommon for nand m to be each of the
order of 20 or 30. Furthermore, there are non
I inear boundary conditions on each variable and
no well-defined way of knowing when a solution
has been reached. Of course a II of the parameters
involved have physical significance.

Now, how is the problem approached? A lens is
set up as a starting point by deciding upon the
focal length, aperture, field angle, spectral re
gion, intended use and desired resolution. From
widely respected basic rules a starting configura-

25

tion is picked. Traditionally, this starting point
has been empirical, based upon the experience of
the designer. With a computer, this is still largely
true. However, the inte II igent use of a computer
permits one to investigate a large number of pos
sible solutions, and thus to develop a broad level
of quasi-empirical experience within a short time.
Thus the first major step in design is more or less
mechanized. It has been repeatedly shown that
there is no more sense in starting the design of a
lens by randomly dropping glass blanks ina computer
than there would be in designing a gas turbine by
starting a program out on a pile of metal plates.

The Des i gn Process
To proceed with the actual design process requires
a short digression as to the model of an optical
system wh ich is used.

The basic geometrical model of a lens depends upon
tracing a geometrical pencil of light, that is a ray,
through the lens using Snell IS law. The product of
index of refraction and angle with respect to the
norma I of a surface is conserved at the surface.
That is, N sin I = N' sin P. Between surfaces, the
rules of analytic geometry are used to trace ray
paths and to find the angle with the normal. To
trace rays is a repetitive process and therefore
ideally suited to a computer. Each ray, however,
provides only a limited amount of data concerning
the lens. Many rays originating from severa I ob
ject points are required to fully assess the state of
correction of the lens. The measure of this state of
correction or of the aberration residual of a lens
is obtained from the size of the patch over which
the rays spread in the image plane. An exact pic
ture of the geometrical characteristics of the lens
may be obtained.

To satisfactorily and completely analyze a lens may
require tracing 100 rays in each of three colors at
three field points, or about 900 rays. For a sample
lens of six surfaces with one aspheric some inter
esting numbers are generated for the time required
for doing this. See Table 1 below.

Time Requjredto Plot and Analyze a Sample lens of
six surfaces with one aspheric surface.

Calculation
of
Ray

Surface

By
Human

Spheric 3 to 10 min
Aspheric 1/2 to 1 hr

One Ray 1 hr-avg.
900 hours

900 Ray or 100 days

Plot and
Analysis

2 days

By
LGP

2-13 sec

23 sec

5 hrs

2 days

Table 1

By
PDP

10-50 msec

1/10 sec

90 sec

1 sec

Obviously such an approach becomes really practi
cal only for a PDP type machine.

The time required for hand work is so absurd that an
entire approach using approximate techniques has
developed over the years. This consists of expanding
the sine of the angle of incidence to successively
greater orders of accuracy. First order, or Gaussian
optics, leads to formulae for magnification and
image position. Third order aberration theory gives
the first aperture and field error terms which are
separated into such aberrations as spherical, coma,
astigmatism, distortion and curvature of field. These
permita rapid but approximate picture of the state
of correction over the field to be obtained. Fifth
and seventh order theory extends the accuracy
somewhat.

Times again, are:

Calculation By By By
of Human LGP PDP

One
Surface

30 2 min
4-20 sec 1/10-1/2 sec

3+5 15 min
Sample

12-9Omin 24 sec 2min .6-3 sec
Problem

Output + 5 min 30 sec 1 sec
Analyze (Coeffs.) (Coeffs .) (Graphs)

Table 2

26

Obviously, a n improvement. Using third order
perhaps twenty to a hundred iterations may be re
quired fora solution depending upon the complexity
of the problem. Using third plus fifth, ten to fifty
iterations. Needless to say, the final stages must
be carried 0 u t using exact ray trace d a t a. A
minimum ray fan for each final step would be as
fo \lows, for 51 rays,

Human
LGP
PDP

2 hours
3 min
5 secs

Now, I be I i eve you can see how the PD P can be a
design partner. Economically, it is feasible to use
the machine as such.

Where do we stand now? We have working and are
now using, third order, ray trace, and fifth order
programs. We are working on refinements of these
programs with respect to improving display commu
nication. At present we display the curves of great
est use to a designer. We will add new displays
showing spot diagrams and the lens itself as time pro
ceeds. We also plan to add a certain amount of
semi-automaticsolvingasanaid and adjunct to the
display through the I ight pen.

So far I have mentioned only geometrical optics.
When the wave length of light is included, diffrac
tion occurs and must be taken into account. We
have one general system analysis or study program
which computes the spatial frequency response. This
gives a picture of the lens response complete enough
to be of use in accurately computing resolution and
amount of information passed by the lens. In this
regard the PDPservesasa research as well as an an
alytic and engineering tool.

Our optics programs are extremely complex. The
design package so far completed requires, with
FLINT and lens data storage, about 6000 words.
Obviously the disc display and low speed expanded
memory are essential to complete integration of these
programs. We require about 3000 to 3500 active

core locations to work with. An exchange with the
disc is obviously profitable. Our final package for
design and analysis will probably use about 10,000
to 12,000 instructions by the end of this year.-1'

*APPENDIX (added March 1963)
The Optical Design Package has been integrated
under a Master Executive routine which calls pre
stored programs from auxil iary disc storage.

Ray Trace Intercept Curves
Ray fans from on-axis, seven tenths and full field
re lative object he ights are traced in the sagitta I
and tangential directions. The ray intercept curves
in the image plane are plotted directly on the CRT
and recursively displayed by the Itek display system.
Figure 1 ill ustrates these curves plotted from dif
ferent wave lengths.

Figure 1

Lens Drawing
A scaled representation of the lens system is drawn
on the scope from the lens parameters. Figure 2
is an illustration of a lens drawing.

Figure 2

27

Spot Diagram
By tracing a grid of rays arranged in a hexagonal
close packed pattern and displaying the intercept
points in the image plane on the CRT, it is possible
to obtain an excellent approxjmation to the shape
and structure of the image.

The spot diagram shown in Figure 3 was calculated
and displayed on the CRT for 511 rays in 150 sec
onds. A graph-plotter program reproduces the CRT
displayon an on-line graph-plotter so that the lens
designer can take a hard copy image of the scope
display with him.

Figure 3

Lens Analysis Program
Response characteristics for various spatial frequen
cies are also calculated and displayed on the CRT.
Figure 4 illustrates an example from this program.

Figure 4

COMPUTER AIDED ANALYSIS OF
MULTIVARIABLE SYSTEMS USING COLOR SCOPE

C. M. Walter

In the investigation of many complex mu I tivariable
statistical and dynamical systems it is often suffi
cient to obtain a feel for the general behavior of
the system. In order to achieve this Jlfeel,JI it is
nece.ssary to construct and to eva luate a variety of
mathematical models. This is usually a laborious
task for very complicated systems and the usual se
quence of operations runs somewhat as follows: 1.
Aspecific mathematical model is constructed from
physical insight into the system. 2. Computa
tional algorithmsare prepared. 3. Computer pro
grams written, .often not in close concert with the
orginator of the problem. These programs are a 1-
most always debugged in a messy fashion in a long
seriesofboutswithan off-line processor. 4. Fin
ally, a run ismadeanda large amount of tabulated
data is placed in the hands of the problem origina
tor. 5. Graphs must then be prepared in order to
see what is going on. This whole operation is then
carried out repeatedly, with the outcome at any
given stage usually either unavailable, oronly par
tially transcribed from relatively useless tables in
to intelligible graphical form, before a decision
on the next sequence of off-I ine computer runs can
be made.

Oneofthe principal motivations behind the Exper
imental Dynamic Processor, DX-1, at AFCRL was
to provide a research vehicle for studying the util
ity of closer man-machine communication in pro
vidinga better feel for the behavior of various sur
veillance and other sensor information processing
systems.

Since most of the sensor attribute extraction tech
niques, andothersignal filteringmachines, involve
an extensive matrix manipulation capability, con
siderable effort has been put into the development
of a matrix handl ing package for the PDP-1 type
machine. The preliminary version of this package
has been described in a previous artic Ie by Carmine
Caso of the Wolf Research and Development Cor
poration. A primary objective of this utility sys
tem is to facilitate on-line matrix manipulation.
Also, in order to make effective use of the color
scopeasa graphical outputmedium, andasa mech
aism for manual intervention for the purpose 0 f
rapid parameter and function alteration it has been

29

necessary to underwriting the development of an
elaborate system of display uti I i ty programs. This
work wi II be reported on at a later date. Suffic ielit
routines existat the present time, however, to give
the following cursory illustration of the potential
of this sort of approach.

One of the most important processes underlying a
wide variety of problems in many areas of dynamics,
statistics and of signal analysis, is the eigenfunc
tion, or stationary mode description process. Con
sequently we have begun to evolve a series of con
trol procedures to simpl ify the study of this complex
process.

The determination of all of the eigenvectors and
eigenvalues associated with a large matrix can be
prohibitively time-consuming, and is usually un
necessary, particularly when the given matrix is
obtained from a sampl ing process, or is only an ap
proximation to some complex interaction process.

Akey problem, therefore, is to know when to ter
minate the iterative procedure which is attempting
to determine the set of eigenvectors,f 'JtJ, and
eigenvalues, !Af, of the matrix A. i. e., the
solutions of tHe implicit equationA~=Act. An
other related problem is to obtain a feel for the
degree of stabi I ity of the eigenvectors under small
perturbations abo u t the i r estimated positions.
These are questions which are almost impossible to
answer analytically, except in trivial situations,
or in terms of very crude bounds.

Through the use of the color scope and I ight pencil
on the DX-1 it is possible, (see figure 1) to exhibit
a particular estimate for some eigenvector, ~ as
asetofpoints, (u

1
, ••• , u), in one color (blue),

with the abscissa correspo7,ding to the coordinate
number and the ordinate indicating the coordinate
value of the n-dimensional vector. Any variant of
this vector, say v, can then be entered, via the
light pencil, (see figure 2) in a different color,
{green)and the resulting transformed vector W (=
}~,;~) is exhibited, by the computer after suitable
norma I ization, in sti II another color, (red) to see
how near it is to u. (See figure 3.)

Another capability of importance in studying the
overall convergence problem, is to exhibit the suc
cessive iterations tending toward a given eigen
vector in different intensities of one color, with
the most intense hue corresponding to the most re
cent iteration for that vector. Tendencies of the
system to oscillate or to exhibit other anomolies
then stand out clearly in terms of the visible past
history showing both the rate and nature of con
vergence.

These techniques provide a very effective and e 1-
egant means for studying the stabil ity and conver
gence properties of selected ei genmodes of the sys
tem under investigation, both as a function of pur
turbations in the eigenvector component values and

.

. .-
5 10

as a function of the particular analytical repre
sentationofthesystem. E.g., whether it is char
acterized in termsofa differential system of equa
tions or in some equivalent integral equation form
u lation. Often the algorithm ic description need
ed for purposes of computation wi II introduce spur
ious instabilities which are extermely difficult to
evaluate analytically, and which have no "phys
ical" counterpart· in the actual system under in
vestigation.

In resolving problems of the above sort, the cap
abil ity for having the originator of the problem in
teractdirectlywith the problem as it is running on
the processor leads to very great savings in the over
all time needed to get the requisite understanding
of the behavior of the model under investigation.

. .

.
15 20

....
Figure 1. First Eigenmode of Vibrating String u

· . · ,

· : " ..
9

... ~
•••• I : :~ "

.
5 10 15

Figure 2. Variation on First Eigenmode ~

o • .
• • ·0 :. t : :

•
5 10 15

~

Figure 3. Response to Variation w

30

20

•
20

A WORLD OCEANOGRAPHIC DATA DISPLAY SYSTEM

Edward Fredkin

Abstract
The purpose of the world oceanographic data
display system is to enable a researcher to
conduct an analysis of oceanographic data
using a series of visual displays generated by
a digital computer. The eventual goal of the
program wi II be the desi gn of a computer sys
tem capable of storing the entire body of
world oceanographic data and making it
available for visual display and analysis.

The researcher wi II be able to select specif
ic data for display, in the form of contour
I ines against a map of a selected oceanic
area. He wi II be able to vary the parameters
of the data selected, and observe the re
su I ting variations in the contour lines. It
isanticipated that the world oceanographic
data display system wi II open up the present
ly available body of oceanographic data to
a rapid and meaningful analysis by oceano
graphic researchers.

Introduction
Oceanographic data has been collected over the
course of many years. This data may, typically,
take the form of readings (at a specific location)
of temperature, degree of salinity, percentage of
oxygen content, and densi ty at varying depths. It
is generally collected in the form of water samples
taken during the course of oceanographic expedi
tions. Thus, at the present time, a vast amount of
oceanographic data has been collected; the task of
analyzing this data manually presents formidable
diffi cu I ties.

Description of System
The World Oceanographic Data Display System will
consist of a PDP-1 computer wi th a magnetic tape
unit, a cathode ray tube visual display unit, a light
pen, an input-output typewriter, and control
switches. Oceanographic data will be stored on
magnetic tape and will be processed and displayed
by appropriate programs.

Method of Operation
In operation, a world map will appear on the CRT

31

visual display unitof the computer. The researcher
will then designate a specific geographical area
(e. g., the South Atlantic) for enlargement on the
visual display scope by pointing a light pen at the
desired geographical area. He may then select a
sub-area within the South Atlantic area for en
largement and display in the same manner. He may
continue this process until the desired degree of en
largement has been obtained.

At this point the researcher, by typing an appro
priate symbol on the input-output typewriter, wi II
instruct the computer to transfer oceanographic
data for the selected region from magnetic tape
storage into the computer memory unit. It isantic
ipated that data to be used in the World Oceano
graphic Data Display System will include the lat
i tude, longi tude and identification number for each
oceanographic station, 1 and for each recorded
depth at the station, the following information:
(See figure A) (1) temperature, (2) salinity, (3)
oxygen percentage and (4) density, or specific vol
ume anomaly. After data read-in has been accom
pi ished, two addi tiona I features wi II appear on the
visua I display scope. First, super-imposed on the
area map selected for visual display wi II appear a
number of illuminated dots. Each dot wi II represent
the location of a specific oceanographic data sta
tion. All oceanographic data stations in the se
lected area will be represented by these light dots.
Sec 0 n d, five thermometer-type data indicator
scales will appear in the lower righthand corner of
the visual display scope. These wi II represent (1)
depth, (2) temperature, (3) sal inity, (4) oxigen
percentage and (5) density. They may be used by
the researcher to select modes of data display in
following manner.

The researcher may indicate a specific depth on the
depth indicatorscale with his light pen. 2 He may
also indicate a specific value for one other para
meter on the appropriate indicator scale in the

same way. For example, he may designate a depth
of five hundred meters and a temperature of five
degrees centigrade.

This will cause all stations reporting temperatures
of five degrees or higher at a depth of five hun
dred meters to appear as bright dots on the visual
display s cop e. Stations reporting temperatures
lower than five degrees at a depth of five hundred
meters will appear as dim dots on the visual dis
play scope. In this waya" temperature gradient ll

will be outlinedon the visual display scope in the
form of a brightly lit (or, conversely, a dimly lit)
area.

Combinations of Data for Analysis
The World Oceanographic Data Display System will
make possible the analysis of data in the following
combinations:

(1) depth vs. temperature

(2) depth vs. sa I i nity

(3) depth vs. oxygen percentage

(4) density vs. depth

(5) density vs. temperature

(6) density vs. salinity

(7) density vs. oxygen percentage

In this way the researcher wi II have avai lable a
rapid and flexible method of determining the re
lationsh ips wh ich exist (a) within a given set of two
parameters and/or (b) between several individual
parameters.

32

Other Capabi I ities of the System
The researcher, in the conduct of his analysis, may
note an anomalous station displayed on the scope.
By pointing his light pen at this station, he will
cause to be displayed on the scope the name of
the cruise and other pertinent information. He can,
if so desired, cause this information to be typed out
by the computer for purposes of maintaining a per
manent record. In this connection, the computer
system wi II be able to accept and record comments
(together with the name of the user) regarding the
validityof recorded data; such information will be
retained by the computer and made avai lable to sub
sequent users upon request.

Summary
Access to the vast body of oceanographic data has
beenatbestslow, difficult, and in many cases im
practical under manual methods of data analysis.
The World Oceanographic Data Display System
would immediately open up the large body of data
now available in computer-readable form to rapid
and meaningful analysis by oceanographic research
ers. In this sense it would serve as a technological
stimulus which might lead, in turn, to rapid and ex
tensive advances in the state of the art of world
oceanography.

lEach location where oceanographic data has been
collected (e.g., by use of an oceanographic cur
rent meter) is referred to a san oceanographic
"station. II

2Density may be simi larly plotted against other
parameters.

THE VORTEX OCEAN MODEL

Edward Fredkin

Abstract
The Vortex program is a computer program
written for the PDP-1 computer. Th is pro
gram simulates a Vortex Ocean Model and
displays the results of the simulation on the
computer scope. In addition, the computer
collects certain statistics on the model, and
allows a researcher to control the configu
ration of the simulation by appropriate en
tries made on the input-output typewriter.
At any time during the computation, the
value of any of the variables in the compu
tation may be examinedor changed by using
the typewriter. In addition, certain of the
variables may be given a random assignment
of values by pressing a single key on the
typewriter.

In general this program allows a researcher
to work with the Vortex Ocean Model so as
to gain familiarity and understanding of the
behavior of the model.

In the Vortex Ocean Model, a set of vortices
interact in a circular or in an unbounded
ocean. The number of vortices may be var
ied from one to thirty-one. In addition,
there is a special test point which is used to
collect statistics on the effects of the vor
tices. Each vortex rotates with a strength,
where the ith vortex rotates with strength
Sl. When the direction of the rotation is
counterclockwise, it is positive; clockwise
rotation is negative. The rotation of each
vortex affects the position of all other vor
tices. This effect is in direct proportion to
the strength, and in inverse proportion to
the distance.

This program performs all computations in
fixed point, which is essential in order to
gain the desired speed of computation; how
ever, most input and output is handled by a
floating point system. The program, not
counting tables, is approximate Iy 3600 (dec
imal) registers long. It operates with suf
ficient speed to s how several vortices in
operat ion, fl i cker-free •

33

An unusual feature is that the program auto
mat ica II y tests to see whether the computer
is standard, has the optional high-speed
multiply and divide, or has the Itek type of
divide. In each case it modifies itself ap
propriately in order to take complete advan
tage of the capabilities 0 f the computer.

The Vortex Control System
The Vortex program is controlled from the type
writer. At any time, during the operation of the
program, various parameters may be examined or
changed. In addition, the computation or various
parts of it may be halted, continued, or restarted
at will. In general the Vortex program is controlled
by typing certain letters on the typewriter. These
letters are called II control characters. II When a
control character is typed, the appropriate action
is taken, and the program continues. Certain con
trol characters, in particular those that are directly
related to the val ue of some parameter, usually be
have in the following fashion: when theyare typed,
the value of the corresponding parameter is printed.
In order to change the value of a given parameter,
the character slash [I] * is used. Slash always
changes the value of the parameter last referred to.
A parameter may be changed as ofter as desired
without retyping its control character, just by re
using the slash[/] •

Some variables are put into the program and printed
out by the program in floating decimal, i.e., as a
decimal number with an exponent. For example,
the value of pi would be printed [+3.1416+0) mean
ing 3.1416x100 • The number 0 f feet in a mile
would be typed out as follows [+5.2800+3] which
is interpreted as 5.2800x103 or 5280. The number
of seconds in a memory cycle, 5 microseconds,
would be printed out as 5.0000-6. When numbers
are be ing typed in, no such ~igid rules need to be
followed. The actual number typed may have a
decimal point or the decimal point may be omitted
as you like. If the decimal point is omitted the
number is assumed to be an integer. This number

*Square brackets will be used to indicate the exact
string of characters that are typed out or typed in.

is then multipl ied by -10 raised to the power of the
number immediate Iy following the first number. The
input of a floating decimal number is terminated by
the first non-numeric, non-sign or decimal point
encountered. Thus, pi may be put into the com
puter in any of the following formats. [3.14159],
[31416-40], [+3.14159+0], [+ .00031416+4z] •

A decimal integer is typed in as a string of digits
preceded by a sign, where the plus sign is option
ai, and terminated by any non digit.

Following is a table of the control characters and
their functions.

[t] The val u e of At, the tim e increment, is
printed. The value of A t may be changed by use
of the slash. The value of At is typed in floating
point format, -2< A t<2.

[k] The value of the parameter k is printed. The
value of k may be changed by use of the slash.
The value of k is typed in floating point format,
-256 <k <256.

[c] The value of the parameter c is printed. The
value of c may be changed by use of the slash.
The value of c is typed in floating point format,
-256 <c <256.

[n] The value of the parameter n is printed. n is
the number of vortices in the system, not counting
the test point. The value of n may be changed by
typing the slash. The value of n is typed as an
integer, 1 <=n <=31 •

[i] The value of the parameter i is printed. i is
the current val ue of the index for subscripted quan
tities. Some of the parameters, namely x, y, and
s, have a value for each of the n points and also
for the test point. In order to examine these values
for a given point, the parameter i is set to a small
integer, i<n. Once thevalueofi is set, itre
mains at that value until it is changed. In order
to exam ine or change the parameters of the test
po int, i is set to the va I ue zero. The va I ue of the
index, i, may be changed by use of the slash. The
value of i is typed in as an integer, 0 2. i 2. 31 •

[x] The value of Xi is printed. The value of Xi
may be changed by use of the slash. The value of
i must have been set previously. The value of Xi
is typed in floating point format, -1 <xi<l.

[y] The value of Yi is printed. In all respects the
same as for x.

34

[s] The va I ue of si is printed. In a II respects the
same as for x •

[p] The value of p is printed. p is a parameter
that controls whether the vortices are affected by
the boundary. p is a decimal integer that must be
set to one of three different values, 0, -0, 1. If
the val ue of pis 1, then the vortices will be affected
by the boundary. This is done bycomputing image
vortices and computing their effects on the normal
vort ices. I f the va I ue of p is 0, the computat ion
will proceed as before, however, the vortices will
be uneffected by the image vortices. If the value
of p is -0, most of the computation for computing
image vortices will beskipped. Theonlydifference
between the value 0 and -0 is one of timing; the
total difference in computation time between the
value 0 and 1 is negligible, while with value set
to -0 the speed of the program is measurably in
creased.

[r] The control character r is a toggle switch.
Every time [r] is typed, the program changes from
one of two states to the other. The function of r
is to freeze the computation, and to display addi
tional data on the scope. If [r] is typed again the
computation will continue, if r is then pressed again
it will freeze, etc. When the computation is frozen
by means of r, the values of the variables remain
constant, e.g., there is no change in any of the
XiS, y's or strengths (SiS), and the statistics remain
constant. Various parameters may be examined and
changed wh i1e the computation is frozen. In case
of certain types of errors, after an error print indi
cating the type of error and where in the program
the error occurred, the computation will be auto
matically frozen.

[a] The value of a, the radius of the circle that
is used as the boundary in the image computation,
is printed. The value of a is typed in floating point
format, -4<a <4.

[0] In order to display the circular boundary, the
letter 0 may be typed. 0 is a toggle switch as is
r, the boundary appearing and disappearing with
each subsequent type of the letter o. Displaying
the boundary will noticeably slow down the com
putation and display.

[b] The control character b stands for beginning.
Beginn ing sets a new set of random numbers in xi,
Yi and si. For all values of i otherthan i=o. Thus,

all points are assigned random positions and strengths
except fo r the test point. The random numbers
used range uniformly -1/4< random variable <+1/4.
Thus the points are more or less grouped in the cen
ter with fairly small strengths. Beginning also re
sets to zero the statistics and cycle count.

[v) The control character v restarts, the same as
does the con t r 0 I character b , however, v will
always restart with the same table of random num
bers as did the previous b. Thus, once an interest
ing display results from typing the letter b, it may
be repeated as 0 ft en as desired by typing [v) •
When restarting, the statistics and cycle are reset
also.

[h) Typing [h) will cause the vortex program to
type all the statistics. The statistics typed out will
be (1) the total time, (2) the average value of dx
for the test po i nt, (3) the average va I ue of dy for

be followed by a floating decimal number. All
these numbers affect the value of the entries in the
f table. Let us assume that three numbers typed in
are represented by 0(,$, and i respectively,
then the allowable range of these numbers would
be determined as follows, -256~ - ~, fi + '1 <256.
The f table consists of 32 different values the entire
table is filled after the typing of the three numbers.
"i, which is typed after the type out [+ or -/), is
the rangeofa uniformly distributed random variable
that is added to each value put into the table. This
va I ue may be set to zero. For the 32 entries in the
f table, (fO through f31) f and f31 are set to the
va I ue typed after [base) , 0(. Then the va I ues of
the entries in the f table are increased I inerly until
at f16' theyare equal tojlat which point they are
decreased linearly until at f31 they are equal to
~ again. After this is done, the random variables
are added to th is trangular I ike array.

the test point, (4) the variance of dx for the test 100-
point (dx-ax)2, (5~variance of dy (dy_dy)2,

ForO{ =-25,~ =75, 1$ =15

and (6) (dx-dx) x (dy-cry). fM
[d) The display routine. In order to allow the
insertion of a title, which will be displayed on the
scope whenever the computation is frozen, type
[d) followed by a title. When typing the title, the
choice of characters is unl imited, except that tabs
and carriage returns should not be used, and the
title should be no more than 50 spaces long. Al
though the message must not exceed 50 spaces in
length it may actually contain more characters be
cause of the upper and lower case characters, and
non-space characters. When yo u have finished
typing in the title, then move sense switch one up
and down to indicate so to the program.

[m) Restart statistics from zero. If it is desired
to start the statistics at zero this may be accom
plished by typing the letter m. Th is wi II set the
number of cycles, the time, and all statistics to
initial values.

[z) The control character z is used to set the f
function table. This allows a fairly automatic set
ting of all the val ues of the f function table. After
typing [z) the program will type out the word
[base), at this point a floating decimal number
should be typed in. Next the program will type
out the word [top) which should be followed by
typing in another floating decimal number then the
program will typeout [+ or -/) which should again

·'1 50-

35

0-

-50
o 5 1YJ 10 15 20 25 30 31

[f) The control character f allows an entire table
to be typed in, all 32values, or just 1 value. Once
the letter f is typed, the program will type out
[f-table, a or 1?). In order to change all of the
f table, type [a). To change any given member
[1), the digit one.

When Changing One Val ue of f
m

When typing in just one value, the program will
print [m=) , this indicates that a value for m should
be typed in, m is an integer, 0<m<31. The value
of fm will be printed. The value of fm may be
changed by use of the slash. f m is typed in floating
point format, -256~fm~256.

When Changing All of The f-table
The va I ue of the subscript m (0 < m < 31) wi II be
printed, then type in a value for f;-. The value
of the subscript m will be increased by one and
printed, etc. fm is typed in floating point format,
-256 <fm <256.

The Error System
The Vortex program, has a general and fairly elab
orate error detection system. The types of errors
detected are those caused by overflow. In order
to speed the computation, all internal calculations
are done in fixed po int. Th is means that for each
variable, the smallest change in value is equal to
approximately 1/250,000 times the range of that
variable. Should the result of any computation be
a number outside the range of the variable that is
being computed, then an overflow condition exists
and an error print will occur. The error print is of
the form the letters [err] in red followed by a two
letter code, also in red, followed by the octal loca
tion of the offending instruction. At this point the
computation freezes and various registers may be
examined or changed or the computation restarted
by means of the typewriter control features.

36

Facts About The Vortex Program
The Vortex program is coded in the DECAL lan
guage. The format used is almost entirely the in
struct ion word statement, as th is program needs to
operate in real time and needs to be very fast.
Features of DECAL were used to make t~is program
compatible between machines that use multiply and
divide as built-in instructions and those that use
subroutines. The Vortex program itself consists of
approximately 1,400 (1,400 decimal) instructions.
Room for up to 32 vortices is contained in a table
352 registers long. Various subroutines and their
tables used by the vortex system add an additional
2,200 registers to the program, for a total of about
4,000 registers (the memory contains 4,096 regis
ters). The major subroutines used are the floating
point system which is used for input and output and
ce"rtain computations, the in-out subroutines, and
the display subroutines.

SPACEWAR!
REAL-TIME CAPABI LlTY OF THE PDP-1

J. M. Graetz

Abstract
The game starts with each pl.ayer in control
of a spaceship (shown on PDP scope) equipped
with propulsion rockets, rotation gyros, and
space torpedos. The use of switches to con
trol apparent motion 0 f displayed objects
amply demonstrates the real-time capabil
ities of the PDP-1 •

I ntroduct ion
The demonstration program known as SPACEWAR!
was first conceived in December, 1961 at an in
formal gathering of the Hingham Institute where
Wayne Wiitanen, Stephen Russell, and the author
were discussing some of the possibil ities of the use
of the large-screen CRT which was to be attached
to the new PDP-1 computer at M .1. T. One idea
that caught our fancy was the thought of a moving
display under the control of the user. We thought
that a simulation of sh ips in space would provide
an excellent demonstration and the discussion de
veloped into the Hingham Institute Study Group on
Space Warfare, under whose auspices almost all
of the work described here was done. The main
control and computation programs were written and
debugged in the first monthsof 1962 by Stephen R.
Russe II of Harvard.

The program is set up in the form of a game for two
persons and a PDP-1. Each person has control over
one of two displayed spaceship outlines. The object
of the game is to destroy the opponent's ship by
blasting him out of space with torpedos. Control
is maintained over the sh ip's orientation by simu
lating rotational gyroscopes. A II translation is
achieved with the ship's main drive rocket; the ship
will accelerate in the direction its nose is pointing
as long as the rocket engines are turned on. Both
sh ips are armed with ball istic missiles (torpedos)
which are released from the nose of the ship with a
velocity equal to the ship's velocity plus that im
parted to the missile by the launcher. From then
on, the torpedos are in true ball istic fl ight. Each
ship has one other means of getting from one place
to another, namely "hyperspace," which allows
him to get out of the way quickly.

37

The display incl udes a background of stars and a
bright, fl ickering star or .. heavy star" in the center
of the scope which maintains a rather fierce grav
itational field.

The Game
At the be gin n in g of the game two spaceships,
equipped with 31 torpedos, are displayed in diag
onally opposite quadrants of the scope face. The
players operate switches for the purpose of maneu
vering into position for joining the fray. (It is un
wise to remain in a single position for a very long
time, and also fruitless, for the torpedos have only
a I imited range.) The torpedos have two types of
fuze: one is a proximity fuze which causes the
torpedo to explode when it comes within a certain
critical distance of any other coil idable object
which will also be caused to explode. The other
is a time fuze which causes the torpedo itself to
explode if it has not encountered another object
after a given length of time.

The II heavy star" in the center is constantly exert
ing a strong gravitational influence on the two
spacesh ips (torpedos are not affected by gravity) •
This star alsohasavery short capture radius; a ship
with reasonably large intrinsic velocity can come
in quite close to the star without fearof being cap
tured. Th is maneuver is frequently used to change
direction rapidly.

If a ship is captured by this star, it loses all ve locity
and is thrust into the "anti-point, II that point on
the surface of a topologically toroidal scope wh ich
is represented by the four corners of the face.

All coil idable objects explode on coming into crit
ical range. The current rules require that a game
is won only if the remaining ship (after the opponent
has exploded) can successfully avoid being blown
up by any torpedos wh ich may be left over. A tie
is declared: when both ships coli ide (and explode);
when an apparent victor is destroyed by a loose
torpedo; or when both ships run out of torpedos.
(Each sh ip has 31 torpedos at the start of each game).

The Spaceships
The two ships have different outl ines making them
more easily distinguishable on the scope face. Ro
tation is readily apparent and rocket blast is equal
ly detectable. When the ship is blasting, a fiery
tail is seen at the base of the ship, where the main
rocket exhaust is placed. The spaceship outl ines
are generated and displayed by a program written
by. Daniel Edwards of M .1. T. This program pro
vides a very fast and reasonably fl icker-free dis
play. Torpedosappearas singlemovingdots. They
resemble stars rather close I y •

The Heavy Star
A bright, fl ickering point in the center of the scope
represents the massive star referred to as the II heavy
star.1I This star has a strong effect (which approx
imates gravitation) on the two spaceships. The
program for this was also written by Daniel Edwards.
In the final version of SPACEWAR! he is going to
provide an improved integration to el iminate some
of the more unexpected, albeit interesting, pro
perties of the "heavy star. II

The Stars of the Heavens
To add verisimilitude to the display, a background
of stars is provided. At first, this was merely a
random display of dots. However, Peter Samson of
M .1. T. has written a program wh ich displays a star
map of the sky as seen from the Earth's equator.
The size of the scope I imits the extent of the map
to a 450 segment of the heavens. Stars down to
just above fifth magnitude are displayed. The dis
play moves imperceptibly across the face of the
scope from left to right, and, given time, the com-

38

plete band of stars of this section of the map will
be displayed.

Hyperspace
This is an emergency device • It frequently happens
that a ship cannot accelerate fast enough to get
out of the way of an approaching torpedo. The
player may send the ship into hyperspace then.
The sh ip then will disappear and very shortly will
reappear somewhere else on the scope. Since this
is a wayof getting from one place to another with
out traveling the distance between, the method
used must be hyperspace! Each player has exactly
three hyperspace i umps •

On most PDP-ls, the ships are controlled byswitch
es in the Test Word. For the M .1. T. machine,
however, two control consoles were devised by
Robert A. Saunders and Alan Kotok, both of M.I • T •
Each console has a double-throw switch to control
rotation, a firing button, and a blast lever. Hyper
space is entered by push ing the blast lever forward
and releasing.

Acknowledgement
Special thanks from the Hingham Institute are ex
tended to: the various members of the Tech Model
Railroad Club for help and encouragement; to Prof.
Jack B. Dennis, director of the M.I. T. TX-O and
PDP-l installations, whose assistance went beyond
the generous allowance of time on the computer;
and, to Digital Equipment Corporation without
whose gift SPACEWAR! would still be wishful think
ing at the Hingham Institute.

Figure 1 A Common Opening Maneuver

39

ON-LINE PROCESSOR-ORIENTED
INVESTIGATION OF A CLASS OF DYNAMIC ATTRIBUTE

EXTRACTION AND CLASSIFICATION PROCESSES

C. M. Walter

Abstract
A method for the comparat ive eva I uat ion of
a wide class of self-adaptive attribute ex
traction and classification procedures is de
scribed. This method involves the on-line
use of a medium size digital computer cou
pled to a colored CRT display. Multichannel
sensor information, or numerical test data,
to be abstracted and classified, can be en
tered into the system from paper tape, or
through an A-D converter, or manually, by
use of I ight-penc ii, CRT and keyboard. Both
raw sensor data, its representation in the
form of abstracted attributes, and its recon
struction from incomplete sets of attributes
can be viewed simultaneously on the CRT
output. On-I ine keyboard and light-pencil
control provide an excellent mechanism for
investigating the structure of the various
complex transformation processes wh ich are
involved in th is approach to the consol ida
tion and interpretation of sensor information.

1. Introduction
The development 0 f increasingly more elaborate
sensors and measuring devices for obtaining em
pirical information about the environment, has led
to a continuing crisis in the information processing
domain. Improvements in radar, radio, and seismic
detection devices, together with the advent of a
variety of energy detecting satellites, is creating
growing mountains of unprocessed data 0 The poten
tial of this data, for purpose of military surveil
lance, and also as a source of scientific knowledge,
often diminishes rapidly with its age in a raw, un
processed state.

Unfortunately, the cost of directly operating on
this sensor data with the present generation of dig
ital "data processors" (actually logical symbol ma
nipulating devices) is proving to be too costly.
Much of the current effort in pattern recognition
and on the application of artificial intelligence
to this domain, seems to be addressed primarily to

41

the symbol manipulating aspects of the problem.
The more fundamental matter of extracting appro
priate sets of intrinsic attributes, together with both
the syntactic and semantic rules governing their
behavior, has only been treated by a few groups.

In large measure, the difficulty arises because the
canonical attributes, which behave according to
reasonably simple logical or mathematical rules,
have to be obtained from the raw sensor data by a
process 0 f statistical and dynamical abstraction.
These attributes are usually not the measured out
puts of the various sensors, and are generally re
lated to these raw measurements in a complex multi
variate statistical-and dynamical-manner, which
depends upon both the process under observation
and also the measurement process itself.

Thus, the primary problem is not so much one of
symbol manipulation according to specified rules,
asthatof determining what the rules should be, and
of establishing meaningful interpretations for the
symbols. Under this viewpoint, the problem of
effective dynamic processor design is inseparably
tied to the general measurement problem.

It is, therefore, only reasonable that we should
investigate in detail various important classes of
dynamic attribute extraction procedures, together
with possible mechanisms for efficiently realizing
these procedures. A step in this direction is the
on-I ine simulation of various classes of these sensors
attribute extraction procedures, using an orthodox
digital data processor, to which suitable graphic
input-output devices have been added. 1 The slow
ness and inefficiency of this type of simulation,
on sequential processors, clearly calls for the de
velopmentofaparallel processing capability which
at least covers the man ipulation of the I inear asso
ciative matric algebras needed to characterize the
basic measurement and attribute extraction process.

1Walter, C. M., liThe Experimented Dynamic Pro-
cessor DX-1, II Part 9, 1962 IRE International Con
vention Record, March, 1962.

Since appropriate physical realizations must be pro
vided for the matrix elements, in terms of the non
canonical coordinates associated with the raw sensor
measurement processes, th is is not an easy task.
However, the use of electro-optical storage mech
anisms and parallel processing techniques should
materially aid in these real izations.

2. The General Problem
The emphas is in th is report wi II be on the deve lop
mentof on-I ine data processing techniques foreval
uating a class of dynamic attribute extraction and
classification procedures. The particular class of
procedures to be implemented is based on a synthe
sisofmethods from multivariate analysis, statistical
mechanics and the quantum theory of measurement
processes, as applied to the non-atomic domain,
and is discussed in detail elsewhere.2

The categories of data to which these techniques
are most relevant are those in which the important
attributes are not clearly discernible from direct
examination of the raw measurement data. This is
particularl y true of target signature identification
problems in the surveillance area, whether the
basic mechanism be radar, I. R., radio forward
scatter or back-scatter, or sonar. It is a Iso true of
bioelectric signals such as EE G and ECG data. In
all 0 f these examples the sign ificant, structura I
attributes are highly interrelated, in terms of the
raw sensor data, in both a statistical and a dynam
ical manner. Any process which attempts to un
scramble this data must seek the natural invariants
of the system and determine a suitable basis for the
exhibition of these invariant attributes.

3. Approach
The attribute extraction processes under investiga
tion may be resolved into six interrelated phases:
1) raw sensor data description; 2) intrinsic attribute
derivation; 3) interpreted data description in terms
of intrinsic attributes; 4) truncation of interpreted
data; 5) resynthesized sensor data from truncated
interpreted data; 6) comparison of raw and resynthe
sized data.

3.1 The first phase is concerned with the consol
idation of the raw sensor data, x, into a family of
descriptors, (; , from which an interaction func-

2Huggins, W. H., et al., .. Representation and
Analysis of Signals, II Department 0 f Electrical
Engineering Monographs, Parts I to X, The John
Hopkins University, 1957-1962.

42

tion, F is formed, along the lines delineated in
Appendix A, Section 1. 1 (A-1. 1). The tabular
description of raw sensor input data is outl ined in
A-4.3. A similar format of colored points is used
to exhibit the x data on the color CRT attached to
the DX-1 System. Means are provided for input
ing the data, either through the scope under light
pencil control, or from mag tape, with light pencil
editing. In the scope display the t-coordinate is
horizontal, rather than vertical, as in the printout.

3.2 The second phase involves the construction of
a transformation, u, from the sensor data coordinate
basis, to a new basisof intrinsic attributes, in terms
of wh ich the interaction function possesses the sim
plest structure in the sense of least interaction be
tween isolated attributes. The specific mechanism
chosen to achieve this goal is the eigenfunction
procedure specified in A-1 .2. The tabular descrip
tion of the eigenvector attribute fi Iters is discussed
in A-4.2.

3.3 Then, using the eigenbasis determining pro
cedure, it is possible to provide an interpreted data
presentation, ~ , in which the intrinsic attributes
characterizing the process under observation are
ordered in such a manner that the least significant
attributes can be most readi Iy neglected. This is
particularly important for purposes of information
transmission and storage. Procedures for construct
ing this interpreted information are discussed in
A-1.3, and the tabular mode of description is pre
sented in A-4.4. The associated graphic CRT dis
play is arranged with t-coordinate horizontal and
aligned directly under the associated x data on the
CRT for viewing convenience.

3.4 At th is point the interpreted data is arranged
in a format (cf. A-4.4) wh ich permits three kinds
of controlled information degradation. We can
eliminate interpreted data in all channels whose
associated eigenvalues are less than a given value,
as outl ined in A-1 .4. Another information reduc
tion process which can be investigated at this point,
but which has not been explicitly implemented in
the present program, is to quantize the range of
values of the cp function in a progressively coarser
manner. The third mechanism for controlled infor
mation reduction, is to select cP n (t) for values of
t, modulo some number ", where f <~< NO. This
is possible because of the interpolation- feature of
the resynthesis transformation from cP to x, as indi
cated in section 3.5 be low.

3.5 The next phase of the attribute extraction pro
cess treats the problemof resynthesis of an approx
imation to the original sensor data. In problems of
information transmission, the effectiveness of the
system is often measured by the fidelitywith which
this resynthesis can be achieved from the smallest
amount of intermediate, interpreted (i .e ., suitably
encoded) data. The resynthesis process is described
in A-1.5 and is greatly simpl ified by the unitary
property of the eigenbasis transformation.

Basically, the inverse transformation, fromftto 0,
and hence to x, is the transpose of the transforma
tion from 6 to fJ. Moreover, for a given val ue of
t, each <P n(t) is formed by looking ahead in the
x data up to NO un its along t, hence in the
resynthesis process, the estimate ~ ~(t) can be used
to estimate a new x I through a process of inter
polation and extrapolation • Several tabular modes
of description are outlined in A-4.6 and 4.7 and
follow a format similar to that used for the raw x

data, except that the intensity level of the re
synthesized data points is now a measure of the
confidence that the resynthesized data points be
long to the signal pattern. The use of multi-level
intensity, under program control on the color CRT,
has proved highly effective in providing a "feel"
for the manner in which the resynthesis process is
altered as the "bandwidth" of the interpreted, in
termediate data, is compressed.

3.6 Finally, the consequences of carrying out the
various kinds of controlled information degradation
cited in section 3.4 above can be examined through
an on-line comparison of the raw sensor data, x,
with the resynthesized approximation, Xl • The
initial efforts in this phase have been concerned
primarily with means for conveniently obtaining a
direct visual comparison between x and Xl data.
However, on Iy problems of computation speed limit
the extent to which a variety of analytical error
criteria can be examined and compared.

APPENDIX A

1 •

1 .0

FUNCTIONAL DESCRIPTION OF A CLASS OF

DYNAMIC ATTRIBUTE EXTRACTION PROCEDURES

Functionsto be Evaluated

The Basic Measurement Descriptor

Let c§ (t) be the basic measurement
a

descriptor associated with the stored measurement data

x 0' (t + Of 0)' defined, for a (x, a, a
O
)' and

x (t + (1 0)'
O!

t, specified over suitable domains as

o if x I 8a (t)
= x 01 (t + Of 0) , C if x

and C = / ../ NO N1

N
2

where E b (t) =
a

a =

for each t.

We shall also write

5 a (t) = 0 (x, Of, «0; t),

and, for convenience, interpret the ordered triplet (x, cr, aO)

a = NO N 1 X + N 1. (01 0 - 1) + ex.

43

a as the integer,

where
x, y = 0, 1 ,

01, S = 1, ••• , N,

aO' S = 1, ••• , NO' 0
N = 2 NO N1 '

n = 1, ••• , N,

a, b = 1, ••• , N.

1 .1 Weighted Bivariate Interaction Matrix

1 • 1 • 1

Let

= < 6 a (t) b b (t) >,

where

< <5 a (t) cS b (t) > = 6 a (t) 6b (t) •

Here S in the set of values of t over which the finite averaging operation is carried out, and

N(S) is the number of elements in S.

We shall require that

F ab = Fba,

and that

N

'E F = 1 •
aa

a =
Hence a constraint on the function K is that

1 N1 NO

~ E E
x = 0 a = a

O =

Un we ighted Case

(Relative interaction is a bil inear function of S -buffer is independent of q 0' ~ 0 components

of positions.)

K (aO' ~ 0) =

1 .1.2 First Weighted Case

(Relative interaction in bil inear function of a O~ eO components of positions.)

<
6 e 0 (NO - a O + 1) a O = ~ 0

(NO + 1) (NO + 2)

K (e 0' aO)

44

1 .1.3 Second Weighted Case

1 .2

(Relative interaction is inversely proportional to number 0 f positions which a signal of length

I SO-oeO I can occupy in b -buffer.)

Eigenfunctions,

Let

u (a), and Eigenvalues,
n

N
t

b =
F b u (b) = ~ u (a)
ann n

where the values t\ are ordered so that
>

An An + 1

for all n.

Let the u's be normal ized so that

N
E u (a) u (a) = n m

a =
for all n, m, and

N
E u (a) u (b) =

1
n n

n =

for all a, b.

b nm

ab

Thus, u will be a unitary tranformation.

Note that

it n
=

N
I;

a =
for each n, and that

N
1:)n

n =
hence, for each n

0 <
An

<

a

1 .

N
~

b =

N
E
=

F
aa

)

,

> u (a) u (b) 0 ,
n n

= 1 . ,

1 .3 Transformation to Interpreted Descriptor, q, n (t)

Let 4> (t) be related to 0 (t) by the transformation
n a

45

N

4' n (t) = ~

a =

Note that

cp~
N

(t) = E
a =

hence

N
1:; ~ 2 (t)

1 n n =
for a II t.

Also, we may note that

N
E

b =

N
1:

a =
2 S (t) = 1,
a

< cp ~ (t) > =

N
!:

N
:E

b =
< Sa (t) ~b (t) > un (a) un (b) ,

=

a =

N
~

a =

N
E

b =
F b u (a) u (b)
ann

The inverse transformation, since u (a) is unitary, will be
n

t (t) =
a

N
E

n =
u (a) ~ (t) : 5 (t)
n 't"'n a

A . n

where'6 (t), as given by the summation, will, in general, only be an approximation to the de-
a

scriptor Oa (t), which must, by definition, be 0 or C for each a and t.

Hence, for pusposes of estimating S in the presence of errors, we may take it to be C if

t ~ 0.5 C and 0 otherwise. A final check on the va I idity of the estimation wi II be the re

quirement that

CK = E S 2
(t) = 1,

a
a

for a II t.

1 .4 Reinterpretation of Data Descriptors, ~ (t), by Partial Elimination and Reconstruction
----~----------------~--~~n~~~-----------------------------

Let the vector c? (t) be subjected to a transformation to new data ~ I (t), where
n . n

~ ~ (t) f<pn (t) for 1 :

z (t) for m
n

< n = m,

< n = N.

Here the synthesized data, z (t), may either be deterministic or nondeterminift.;ic data,
n

46

subject to the constraint I z (t) I
n

< = 1 for a II n, t.

1 .5 Resynthesis of Basic Measurement Data from Reinterpreted Data

Let

~ I (t) =
a

N
E

n =
u (a)
n

I (t)
n '

where, by definition, we take the resynthesized raw data Xl (t) to be
Of

Xl« (t +~O) = x if gl f 0.5 C.

This gives a prediction for up to NO units beyond t.

Note that ~ , suitably quantized, may be taken as the measure of confidence we have in the

decision:

Xl
a (t + 4'0) = x,

for a given 0(, 010' t.

For resynthesis based on data always measured re lative to the centeDf the storage NO + 1 along

the time-I ike stora.ge coordinate a
O

' 2

=

2. Externa I Parameters and Functions

2.1 Input Data, x (t)
~-----.,;;-a-

Binary valued range, (0, 1}, for Xi

N
1::

n =
u
n

Integer valued domain, [1, ••• , T + NO}' for ti

Integer va I ued parameter set, { 1, ••• , N 1 J, for Cf.

2.2 Synthesized Data, z (t)
....!....-----~-n-

Continuous range of val ues in closed interval, [-1, 1] , for Zi

Integer valued domain, (1, ••• , T + NO }1 for ti

Integer va I ued parameters set, {m + 1, ••• , N J, for ni

Values of z (t) will be specified in both a deterministic manner and also statistically.
n

3.0 Internal Parameters and Functions

3.1 Length of Transient Data Storage, NO' where NO is odd . (Required for center of storage

to be at an integer va I ue NO + 1), for parameter Q{. •
2 0

47

3.2 Total Size of Transient Data Storage N

3.3 Span of Transformed Data, N.

3.4 Restricted Span of Transformed Data, m.

3.5 Matrix for Eigenfunction Transformation, F ab.

3.6 Interpreted Descriptor, + n (t)

4.0 Format

Continuous range of values in interval [-1, 1];

Integer valued domain (1, ••• , T J for t;

Integer valued domain { 1, ••• , N J for n.

4.1 Matrix Fab

x = 0 x = 1

~/f3 2 N1 q/~ 2

1 -- 1 --
2 -- 2 --

x = 0 x = 1

2 2

2 2

48

a
O = 1 , ~ 0 =

N1

4.2 Eigenfunctions and Eigenvalues

4.3

u1

x = 0

01.0 /01. 1 2 Nl

1 --

2

~O/ 01. 1 2

1 --

2 --

NO --

Raw Data, x (t)
cr-

t/a 1

1 x

2 x

T x

NOTE:

2

x

x

x

Value of
x

o

x =
etO/ a 2 Nl

1 --
2 --

x =
2

NO --

Nl

x

x

x

49

Symbol to be
Recorded

Blank

Asterisk

4.4

4.5

4.6

Interpreted Data, <P n J!2.
tin 1 2 N

1 --

2

T

NOTE: Data is specified to one decimal digit pi us sign.

Reinterpreted Data, q, I (t)
--~--------=--n-

Same as in 4.4}
NO + 1

Resynthesized Characteristic Function, ~ I (x, ('1, 2 ; t)

Essentially same format as in 4.3 except for type of symbols}

tla

1

2

2 ••• Nl

T ----
NOTE:

A Value of 0

~ < 0.25 C -
0.25 C < ~ < 0.5 C

0.5 C< ~ < 0.75 C

0.75 C < ~-

50

Symbol to be
Recorded

Blank

Minus Sign

Plus Sign

Asterisk

4.7 Resynthesized Characteristi c Function I ~I (x, (Jt, 'l'o..L...!2
~/Q!
1

2

NO
1

2

2

--
--
--

t K

t NO + K

T = J NO + K

2

where J , K are positive integers such that

J NO + K ~ T

51

CK

CK =

CK =

Section III

HARDWARE AND INPUT-OUTPUT TECHNIQUES

FILM READING USING A COMPUTER

A. M. Cappelletti

Abstract
The advantages of us ing mov ie fi 1m as a med
ium for recording and storing data, which
mightbeproducedbya space vehicle, or by
a wind or current measuring device, are quite
impressive, particu larly in view of the lim it
ed storage space and input power required.
The main problem is devising a means to
II read II the data after it has been recorded_
Because of certain inevitable fluctuations of
the film, simple mechanical and electrical
devices used for this purpose were found to
be unsatisfactory. Inorder to enlist the aid
of a computer, it was necessary to develop
a suitably sophisticated I ight-sensitive input
device, optimal logic systems and appropri
ate programs.

Introduction
Scientists over the past 50 years or so have often
found it advantageous to use 16 mm and 35 mm fi I m
as a mediumof data storage. Until recently, how
ever, the only methods of retrieving this data in
vo I ve d manual procedures and the human eye.
Many and varied mechanical electrical devices
have been designed for th is task, but in general,
they were proved not to be adequate. The reasons
were obvious to those who tried to make such de
vices and it is generally agreed that a machine with
the sophisticated logical capabilities of a digital
computer would be required for retrieving d a t a
stored on fi 1m.

Binary Film
Data film can be categorized as binary film or an
alog film. Binary type film may be depicted by first
describing an instrument that produces such data.
The Richardson Oceanographic Transducer, other
wise known as a current meter, is acyl indrica I
shaped instrument about three feet high and eight
inches in diameter made of very strong cast alumin
um built to withstand the immense pressures of the
ocean depths. On top of th is instrument is a vane
wh ich functions much the same as a weather vane.
Within the instrument the direction of this vane is
converted across the film into fourteen gray binary
bit positions, called channels. On the bottom of

55

the current meter there is what is calleda Savonios
rotor wh ich functions I ike a wind anemometer that
measures the speed of the current. This measure
ment is recorded as pulses in one or both of two
channel positions. There isalso a channel position
for a clock pulse, and another for a continuous
reference line which is always "on." Thus, across
the widthof the film is a total of 18 on-off channel
positions somewhat analogoustothe eight channels
on P DP-l punched tape. Th is bi nary type fi I m can
be read by straightforward procedures using logic
and memory tables to keep track of the eighteen
channel positions, which may vary as much as one
tenth the width of the film. We are presently de
signing a system which will allow 1012 binary bits
on a 100 foot roll of 16 mm film.

Analog Film
Analog f i I m is completely different from binary
fi 1m, especially in the reading process. In its most
general sense, analog film is simply a picture of
someth ing; e.g., a radar scope trace, a microscope
sl ide, or perhaps an x-ray of human lungs. The
process of "reading" these pictures amounts to var
ious levels of pattern recognition.

The Film Reading System
Information International, Inc. has recently com
pleted the development of a film reading system
suitable for reading both binary and analog film.
The film reading system is based on three major
elements: a PDP-l digital computer, together with
a visual display scope; a film reading device; and
computer programs for using the computer and film
reader.

The film reading process involves the scanning of
film by a rapidly moving light point on the visual
display scope. The output of this scanning opera
tion is detected by a photo-sensitive device in the
film reader and relayed to the digital computer for
further processing and analysis. In addition to
translating the data itself into a more desirable
format, the film reading system can also furnish
summaries and analyses of the data as may be re
quired.

The flexibil ity of the film reading system in two
respects should be emphasized. First, almost any
format of data on film can be read, with appropriate
modifications to the basic computer program. This
incl udes data represented in the form of lines, graphs
{e .g., radarpulses}, points, andothersimilar forms
of datlJ. Second , almast any type of desired out
put may be obtained once the basic data is obtained
from thefilm . Forms of output whichare available
incl ude the following:

1. A print-out or listing of data on paper

2 . A record of the data on magnetic tape

3. Visual representations of data. These may
take the form of a continuaus graph {using
a digital x-y plotting device}. Or they may
take the form of photographs -- still or mo
tion -- of scope displays. This latter format
is particularl y flexible in t hat computer
programs may be designed and written to
provide many types of useful and informative
data representations.

In addition to data recordedon film, data recorded
an any I ight-permeable medium (such as I ight or
medium weight paper) can also be read by means of
the fi 1m reading system.

Applicationsof the film reading system include the
following:

1. Analysis of data produced by oscillographs
or other types of graph ic recorders

56

2. Tracking and analysis of objects for which
motion pictures are available {e .g., missile
tracking studies}

3. Reading of astronomical orastrophysica I data
recorded on film {e.g ., analysis of stel lar
configurations}

4. Readi ng photographs of c lou d chambers,
bubble chambers, and spark chambers

5. Counting of particles {such as blood cells or
bacteria} in photographs

Reading of Analog Film
A film reading system to read analog data repre
senting missile tracking studies recorded in the form
of radar pulses on 35 mm film was completed . The
film reading system was developed with the follow
ing capabilities:

1. Approx i mate I y 500 read i ngs perfra me of the
amplitude of the radar signals

2 . Computation of the median amplitude value
for each frame

3. Count of the number of radar pulses

4. For each radar pulse, a measurement of pulse
width, average ampl itude during the pulse,
and measurement of the I 0 cat ion of the
leading edge of the pulse

5 . Recording on magnetic tape of all original
and processed data

A FUNCTIONAL DESCRIPTION OF THE ITEK DISPLAY SYSTEM

Earle W. Pughe, Jr.

Abstract
The Itek-Flicker Free Display displays line
drawings on a 10" x 10" scope 30 times a
second with a maximum total line length of
600 inches. The Display is controlled from
a Telex disc through logic which controls
the beam. There are about 20 instructions
used to control the display. When the dis
play is ,to be changed, new instructions are
put on the disc by a block transfer from the
PDP, otherwise the computer is not needed
for the display.

Introduction
In the development of the Electronic Drafting Ma
chine (EDM), sometimes referred to as the Digital
Graphic Processor (DGP), the need for a suitable
real-time input-output computer display was im
mediatelyapparent. Amechanical X-Yplotter was
deemed too slow. A conventional point by point
computer display has objectionable flickerand con
sumes a substantial amount of computer time when
displaying several hundred inches of lines. Thus
there was a need for a flicker-free real-time dis
play thatdid not require appreciable computer time
to operate and which could display a meaningful
drawing while accepting a light pen input as the
drafting penci I.

Requirements
To meet the flicker-free requirement a frame rate
of 30 per second was selected. This rate is com
patiblewitha conventional 1800 RPM drumor disc,
the same as TV frame frequency and c lose to the 16
frame or 32 fields per second of home movies. If a
higher frame rate is used, the amount of display is
correspondingly reduced • Conversely, reduc ing the
frame rate would enable more data to be displayed;
but the flicker would become very apparent and,
objectionable.

Todisplaya useful amountof data, i.e., more than
500 inches of lines on a 10" x 10" display area at
30 cycles, a point by point display is too slow and
a faster scan such as TV, requ i res too many bi ts of
storage, so a continuous incremental I ine drawing

57

technique was selected. The basic method employ
ed is to specify the initial X Y position and then
to leave the beam on and gi~e ~ncremental values
of A X and A Y which are added to the current X Y
each increment of time. Thus a I ine drawing ttch~
nique much like that used on many mechanical X-V
plotters is used.

A 2
10

or 1024 position scope such as the DEC Type
30B is used wit h the normal increment being 4
adjacentpositionsorapproximately 1/25 inch. The
period is 1.67 x 10-6 seconds, i.e., 20,OOOincre
ments for 1/30 second, giving 800 linear inches of
drawing. Certain bookkeeping functions tend to re
duce the 800 inches in a 1/1 scale. However,
scales of 1/4, 1/2, 1, 2, 4, 8, and 16 are avail
able so several thousand linear inches may be dis
played. On a 10" x 10" display, 1000 inches of
drawing represents 10 lines per inch across the face
of the scope; an amount far in excess of any usual
line drawing. About 2000 characters can be dis
played on the scope, which gives the display sys
tem use as an editing tool.

Block Transfer
To meet the problem of releasing the computer for
other uses when the display is not changing, the
display data is blocked onto a drum or disc in 6-bit
parallel from the computers' core memory. Aspecial
1-0 order (720061) has been added to the PDP-l at
Itek and to one PDP-l at AFCRL to block transfer
the data from the core memory onto the disc or drum,
or to read the data back into the core memory from
thedrum. Since 20,000 bits per track for 6 tracks
in parallel represents almost 7000 words, several
blocks are required to fill up the drums display
tracks. A specia I feature of the block transfer is
that no extra counters are needed. If the block
order is given in register n, registers n+ 1 through
the end of memory are blocked on the drum (or read
from the drum), the program counter end carry ter
minates the order and the next order is taken from
register zero. Thus, a typical transfer would be:

n-l, 220010 register 10 contains the drum address
n, 720061

n+.,

7777
o

} display data

601000 jump to next computer routine

When it is desired to use the computer display to per
form such functions as tracking the light pen or dis
playing control points, the computer display oper
ates in the normal way and takes precedence over
the drum display. When the computer display is
done, the drum display continues with that portion
of the picture erased which would have been dis
played at the time of the computer display. Two
techniques are avai lable to the programmer to keep
the computer display from apparently interfering
with the drum display: one is to display from the
computer at a time allotted for this purpose on the
drum, and the second is to erase a different portion
of the display each time.

Display Processor
A block diagram of the system is given in Figure 1 •
The computer blocks the display information onto
the drum. Between the drum and the display CRT
is a display processor. The function of the display
processor is to decode the 6-bitdisplay instruction,
perform the necessary arithmetic to calculate the
new X-V position and to transfer this information
into the X and Y decoder registers in the display
console. The display processor is a sma II specia I
purpose computer. The 6-bi t display byte is de
coded as an instruction which in turn, with seven
timing pulses, controls the X accumulator and Y

58

accumulator. The 6-bit display byte is not added
directly to the X and Yaccumulators. There are
codesforsuch functions as ignore, beam intensity,
point plot etc.

In the display processor there is a drum sector counter
(20 sectors) and 8-bit segment counter. The sector
counter is cleared by the drum index pulse and
counts the 20 drum sectors as the drum revolves.
The programmer can number each I ine or character
by giving a segment command at the start of each
pulse. The sector pulses clear the segment counter.

Light Pen Response
If it is desired to use the light pen to select a line
or character displayed from the drum, the segment
sector counter is read into the computer when the
light pen sets itsflag. Each line is given a segment
count by the programmer before blocking the display
data onto the drum and this data is transferred onto
the drumalongwith the picture. The light pen re
sponse iswell underone microsecond so noambiguity
resu Its.

While the display system was designed for the Elec
tronic Drafting Machine, it has general use as a
computer output device. At Itek the display has
been extensively used as the output for lens design 1
and has been used to a lesser extent as an a Ipha
numeric display.

1 See paper by Shannon, Morello, Rimmer and
Radkowski - "Use of Displays in Optical Design.11

A

C

PDP-l I

COMPUTER 0

D
R
U
M

X
A t---f
C

DISPLAY C

PROCESSOR Y
A 1---4

C
C

Figure 1 Display System Block Diagram

DISPLAY
CONSOLE

A TIME-SHARING SYSTEM FOR THE PDP-1 COMPUTER *

John E. Yates

Abstract
A system for time sharing of the PDP-1 digital
computerwith seven typewriters, two paper
tape punches, two paper tape readers and two
CRT Displays is described. The additional
hardware requ ired forthe system and the mod
ification required to a basic PDP-1 are de
scribed and a program is presented to handle
the monitor of "executive" functions of the
system. A System using two typewriters, one
punch, one reader and one display based on
this design is currently being installed at
M.I.T.

Introduction
A time sharing system for the PDP-1 at M .1. T. has
been designed and is in the process of construction.
It allows for the use of seven typewriters, two paper
tape punches, two readers, and two CRT displays
simultaneously, by up to seven users. Every effort
has been made to make as many features of the bas
ic machine available to users as possible, although
some sacrifices must be made to make the computing
capac ity avai lable to several users simultaneously.

The System
The seven consoles which comprise the system each
consist of a typewriter, six sense switches, a con
so leO N switch, a display lever which allows
lengthened quantas, a debugging button, and two
lights indicating the console is active in core and
it is permissible to type in. The two punches, two
readers and two displays are shared among the users
on an assigned basis. The test word switches are
also assigned.

Programming for the System in Two Parts
The programming for the time-sharing system con
sists of two parts, the executive routine and the ad
ministrative routine. The executive routine is a
permanent part of core memory (approximately 512
registers) which will handle the needs of the time
sharing system ona second-to-second basis. It will
handle the so-called instruction traps and time - out
interrupts. 2. The administrative routine is a sep
arate program brought into memory on request to

61

perform such jobsas: assignment of equipment, reg
ulation of memory protection, provision for services
such as an assembl ing, debugging routines, editing
programs, error indication for illegal instructions,
and other m isce lIaneous jobs. Let us assume severa I
users are using the computer, a particular program
is in core and is being executed. Since one does
not wish the computer to stop because of a user's
errors, (and thus keep others from executing) certain
provisions must be made. All halt instructions, il
legal operation codes, requests for manual run, and
illegal instruction cause a trap to the executive
routine, ER (See Figure 1).

ENTRY

Trap

Dispatch

Figure 1 General Flow
Diagram of Executive Routine

Similarly certain lOT commands must trap as the
program does not know if the equipment has been
assigned to it, or which one to address if one has
been assigned. The ER then executes the command
using the correct assignment, or puts out an error
indication thru the administrative routine

Maximum Efficiencf
The program maywe I compute or require characters
faster than the I/O equipment can take care of or
supply them. Normally, the computer waits in an
in-out halt for the completion pu Ise before process
ing the next character. Under the time-sharing sys
tem it goes to another program while waiting. For
maximum efficiency, several characters are com
puted at once and stored in a buffer in the ER. Then
the next program is brought in. At frequent intervals
a time-out interrupt occurs where in control is mo
mentari Iy transferred to the ER. Here one character
is taken from each buffer and transmitted, if the I/O
device is ready to accept. If not, it is skipped.
Control then returns to the program in core. When
a certain maximum time has elapsed, or if the ER
buffer becomes full, or if the program runs into an
error, the program is dismissed and another brought
in. A magnetic drum capable of holding twenty -
two memories is used as auxiliary storage for the
programs not currently active in core. In this way

62

no time is wasted and each user's program is in mem
ory often enough for the user to think he has the
computer to himself.

Several instructions have been added to the machine
which are val id during the time the executive rou
tine has control. They are decoded from the lOT
77 class and are used by the executive routine to
test the states of the consoles, to make equipment
assignments, and to provide the proper information
to the status bits for the user current in memory.

*This paper is based on a thesis prepared by the
author in partial fulfillment of the requirements for
the degree of MS in Electrical Engineering, M .1. T •
The complete thesis is avai lable as report ESL-R-140
from:

Publications Department
Electronic Systems Laboratory
Building 32
Massachusetts Institute of Technology

PROCESS CONTROL APPLICATIONS OF PDP-4*

C. G. Bell

Abstract
The PDP-4 is designed to operate as a mod
ule for a large majority of process control
appl ications. In terms of these appl ications
the interface capabilities allow PDP-4 to be
connected to the process, or to Input/Output
equipments, with a minimum amount of extra
hardware in are I at i vel y straightforward
manner.

The PDP-4 configuration, in terms of the
above design constraints is described as well
as the specific interface terminals, their po
larities, timingand operation with the pro
gram. The terminals include Device Selec
tion, Information Collection, Information
Distribution, Program Interrupt, Data Inter
rupt and Real-Time Clock.

*The Editor regrets that the complete paper was not
received in time to be included in these proceed
ings.

The PDP-4 data processor was introduced at the
May 17 meeti ng. Users of th is processor were for
mally welcomed at the DECUS Annual Meeting in
October, 1962. Future plansby DECUS Executive
Board includea special meeting in 1963 for PDP-4
users.

63

Section IV

PANEL DISCUSSION

MACRO, DECAL, and the PDP-1

Moderator: Dr. John Hayes*

Panel:

Dr. Hayes:

Prof. Dennis:

Dr. Hayes:

Prof. Dennis:

(MACRO) Professor Jack Denn is, M .1. T •
Harrison Morse, DEC

(DECAL)

Alan Kotok, M.I.T.

Edward Fredkin, Information International, Inc.
Ted Strollo, BBN
Roland Silver, Mitre Corp. (not present)

For some time now, there have been rumbl ings among programmers about DECAL
versus MACRO for the PDP-1. It began to look as though perhaps people
wouldnlt talk to each other who talked different programming languages. From
the discussion today, we should learn a good deal about both of these program
ming languages.

Among a numberof things, lid like to remindourpanelists that some of us know
DECAL, some of us know MACRO, some of us don It know either. But very
few of us know both MACRO and DECAL. So, I hope that statements may be
explained where there may be a language difficulty. In the process of discus
sion, I would hope that we would develop first of all, for the purpose of new
users who are perhaps trying to decide which language to use, the relative
advantages of one over the other or perhaps the relative advantages of using
both. For old users of MACRO or DECAL, such as the members of my labora
tory, we would I ike to find out enough advantages of one language over the
other to justify the time and expense (which may well be considerable) of re
training people to use the other language.

Now I'd like to introduce the panel: For MACRO, Professor Jack Dennis of
M .1. T ., Harrison Morse of DEC, and Alan Kotok of DEC and M .1. T. For
DECAL, Ted Strollo of AFCRL and BBN, and Edward Fredkin of Information
International, Inc. I'm sorry that Roland Silver, who was to speak for DECAL
could not attend. I am moderator, but I plan to moderate only in the case of
severe physical danger to one or more participants. Professor Dennis.

Am I correct in the understanding that so far in this meeting, there has been
no presentation of MACRO? How much time do I have for my initial presen
tation?

The time will be five minutes.

I will start with a brief description of what MACRO is. MACRO is an assembly
program (as opposed to a compiler program) and was originally developed in
1958 and 1959 for the TX-O computer at M.I • T. The needs of the users of the
TX-O computer, at that time, were the determinants of the features that were
placed in the MACRO assembly program. The original version of the MACRO

*Psychologist, Operational Applications Laboratory, Air Force Electronics Systems Division, AFSC,
Bedford, Mass.

67

Dr. Hayes:

Mr. Fredkin:

assembly program was based quite a bit on previous experience in the Wh irlwind
Laboratory at M .1. T • and the experience of the people who participated in the
Whirlwind group. When the TX-O computer was brought to M .1. T. in 1958,
we had need for creating a new programming system for the machine. At that
time, we asked for an assembly language so that the machine could be used by
students and research people at M.I • T. We discovered many features wh ich
should be in an assembly program for the type of uses which were being made
of it - for example, the automatic macro-instruction feature, whereby a user
may assign a name to a sequence of instructions or words and later on in his
program use that name to specify the sequence to be placed in the object pro
gram. Since then additional features have been added to TX-O MACRO, such
as automatic reservation of storage for constants, for variable automatic stor
age, and automatic reservation of table space by using a dimension statement.
Various people here helped with this work. Among them, we should mention
Bob Saunders in particular (now with Information International), Bob Wagner
who is working for the Rand Corporation, and Alan Kotok who is on this panel.
When the PDP Computer was donated to M.I.T. by the Digital Equipment Cor
poration in the fall of 1961, there was quite a bit of concern about the kind
of language that should be provided for the PDP for use by students and staff
in the M.I • T. work and after some time we decided to translate the MACRO
program so it could be used on the PDP. This was a rather easy job because
of the great similarity of the two machines, and I believe it was accomplished
in something like three weeks of work on the part of abovt four people, work
ing part time, which was quite an accomplishment. As to the reasons I think
that MACRO is a very useful assembly program, I have the feel ing that for the
PDP Computer, an assembler is more desirable than a compiler. I feel this way
because appl ications made of the PDP-1 are such that using a compiler would
lead to object programs which are relatively inefficient and require consider
ably more space than required by a program hand-coded for translation by an
assemblyprogram. When Isay this, I don't mean that a compiler can't be con
structed which would be suitable for the PDP-1, but I believe that compilers
which are based on the kind of compiling techniques which are now in exist
ence would lead to programs wh ich are long and time-consuming in the ir opera
tion on this machine. So my feel ing is that for many classes of problems for
which the PDP is used, an assembly language is the more important language
to be concerned with. I believe that the MACRO source language has all of
the more important useful features of any assembly language in existence and
is very flexible in its use. I th ink I'll wait unti I later for any further comments.

Maybe we should now turn to a DECAL representative: Mr. Fredkin.

Well, I guess I've been labeled a DECAL representative. Let me say some
thing about MACRO, though. I like MACRO and I think it's fine, but I don't
think it's fine for the PDP-1 because I don't think the PDP cares what you put
in the reader as long as you don't make it shudder too much. I think MACRO
is fine for a group of people and there are members of that group here. The
fact is, that we could be sitting up here arguing whether we should speak Engl ish
or some other language and I don't th ink you can argue th is on the merits of the
language so much as by looking at the language in terms of its practical uses.
DECAL and MACRO are two very different languages. DECAL is a very com
pi icated system, MACRO is a simple system. Simpl icity is very n ice sometimes
and the PDP-1 is perhaps a simple computer, but if you describe the two sys
tems by listing their properties, DECAL includes more of the desirable features
of MACRO than vice versa by a big margin.

68

Mr. Kotok:

1. DECAL has one important thing and this is really best described as gro~th
potential. The language is increasing in capabil ity with time. The fact that
itls changing may be·a disadvantage, but still it is including more andi'hore of
the ALGOL language features.

2. DECAl,has a I·ibrary feature. It allows groups, large organizations to set
up systems with various individuals l programs. It allows you to use I ibrary pro
grams and library tapes and allows you to relocate binary - in general, those
things that are oriented for systems programming.

Now MACRO, on the other hand, is a beautiful language for one person who
wants to sit down, write his program, and make it work. This is characteristic
of many users of MACRO; in particular, I would say, characteristic of M.I.T.
students who generally d~nlt get together to write large systems, but write their

'own programs. They wah'tto assemble, get someth ing out, run it, debug it, etc.
That is very different from the way many other organizations use computers.
So, I really~feel that there are a set of users for which MACRO is better. On
theotherhand, I feel that there is a much largerset for which DECAL is better
because most organizations have invested in systems and these systems are large
and quantitative.

Another point ••• Sure enough, MACRO does result in efficient object codes,
but normally I donlt care. What I care about is the lapse of time between when
I start writing and when I have a fin ished program. Generally 11m going to
write the program over five times and maybe the last time 1111 do it in mach ine
code. I want the amount of time I spend doing this to be minimum; I donlt care
about the machine. I usually write programs for hours that only amount to
milliseconds and so sometimes it takes 10 milliseconds {instead of one} for hav
ing used the DECAL algebraic compiler. On the other hand, use of the DECAL
compiler may cut hours off the time of actually writing the program itself. So,
I think that there are very specific issues involved in the choice of a program
ming language, and I think 1111 defer getting down to them until welve heard
from each of the people.

I donlt think I can say as much as the two gentlemen who preceded me, but I
think they did outline the issues pretty well. One thought, which might be
germane, is that maybe we shouldn It be arguing whether MACRO versus DECAL.
Instead, whether either oneof them or FRAP. It seems live been informed that
a large number of users are still using FRAP for one reason or another and may
be if we come out no where else, at least users will know someth ing about one
of these two systems that we are discussing here.

11m certainly not trying to claim that MACRO isas general a system as DECAL,
especially, the new DECAL described in the paper that was presented before
this discussion.* I think that you obtain through this generality, the facility
of the use of DECAL (as was shown in the discussion that preceded this one)
the description of instruction generators and action operators, which caused
Mr. McQuillin to indicate that even he gets confused occasionally. The
macro-instruction feature of MACRO is somewhat akin to the instruction gen
erator feature of DECAL and our system is, we think, somewhat easier to use.
I th ink that most of the complaints against MACRO and why people say DECAL

*DECAL-BBN - SymbOl ic Version of DECAL - by R. J. McQuill in - p. 19 of these proceedings.

69

Mr. Strollo:

Mr. Morse:

over MACRO as an assembler is that, first of all, MAC R 0 has a lim it e d
set 0 f s y m bo Is: 1, 2, and 3 characters. I can certainly see that people
can get unhappy with this. Maybe I'm on the wrong side of the fence, too,
but, like Ed, I can see where there might be objection to this. Also, in
MACRO there is an absence of a linking facility between programs. However,
the linking facility, it seems, as provided by DECAL, is a mixed blessing.
Since it is a one pass system, there is no way to directly get a loadable binary
type which can be read in right away. The second pass of the assembly that
MACRO does do is often necessary in DECAL if you do wish just a self-loading
tape causing you to go through two passes of punching. These are just a few
of the points.

I'd like to say that I don't think it's different types of programmers who should
use MACRO or DECAL. It would seem to me it depended on the type of pro
gram to be written. Sometimes when writing a short program which one would
like to get into the machine as quickly as possible, MACRO has advantages.
But, if one were working on a long system and expected to link several short
programs together then I think DECAL is the better system to use because pro
grams which other people have already written can easily be incorporated. A
library tape, for example, could be used. Thus available programs which have
already been debugged can be linked with the recently written program. Cer
tainly this is a lot easier than recompiling all programs over again and going
through a new process with each program and then reading it into the computer.

I think there are two philosophies you can have when writing programs. You
can either write one very large program {and you would almost have to do it
with MACRO where all the symbols are linked together and where you stand
a good chance of not getting the program debugged for quite a while} or you
can write several short programs debugging each program as you write it. When
you are certain that programs A & B are working, then you can write a program
C and get it working and then try it in conjunction with A and B. I think the
latter is a strong point of DECAL. You can take all of your shorter programs
wh ich you know are working now and I ink them together with your recently
written program and be pretty much certain that you're not going to have a
major debugging problem.

I would like, first of all, to make one thing very clear. An impression, I
think, Ed Fredkin and Ted Strollo have given is that it's difficult for more than
one person to work on one program in MACRO and it's difficult to write a pro
gram that isn't one big chunk of coding. This is not true. I have many times
written programs which consist of a big glob of subroutines {literally 20 or 40
to 100} and a large control program, with the subroutines on separate symbol ic
tapes. The subroutines are assembled and checked out separately, prior to put
ting together the whole system. Once the subroutines are checked out, these
are punched out on a binary tape and a symbol punch gotten from MACRO. The
subroutines sit in a fixed place and remain there while you go to work on a
control program. One great advantage of this is that you can use MACRO
instructions as a means of call ing these subroutines. In particular, one person
can write all the subroutines, define how they're used, and another person, not
knowing a thing about this big black box, can use MACRO instructions to call
the subroutines. This is one way of performing the same function that DECAL
does with the relocatable subroutines which are called by syste~ symbols when
the main program is loaded. Just this to counteract the impression that MACRO

70

Mr. Strollo:

Mr. Fredkin:

Dr. Hayes:

Mr. Fredkin:

Prof. Denn is:

Mr. Fredkin:

Prof. Denn is:

Mr. Fredkin:

Prof. Denn is:

is for one-man programs only. There are advantages to both systems. If youlre
doing mainly arithmetic processing, DECAL does have the advantage that you
can write a program much more quickly and possibly get it debugged much more
quickly. A disadvantage here is that at the present time DECALls programs
must be debugged in octal. This will eventually be counteracted by using DDT
and symbols from DECAL for debugging. Another disadvantage is that if the
DECAL program is large and has many systems symbols which must be stored in
memory while loading the program, then you also have storage problems that
are alleviated by using MACRO since you can use all of core except the last
27 registers or so.

If I understand MACRO correctly all symbols are three characters in MACRO.
Is that correct? For example if someone else were working on a program could
you say to them don't use the symbol A because I'm using the symbol A in my
program and you can't use it in yours? Is this what you would have to do? I
think there should be a feature for external symbols because there are a certain
group of symbols that I use over and over again in several of my programs and
even if I were working on a system I I ike to use these symbols with in the pro
gram I ike II move" or someth ing I ike that.

I think the communications problem when youlre writing a long system would
be enormous if you had to el iminate all the symbols you use and pass it on and
say don't use these symbols in your program.

We II, when writing with FRAP we used to break th ings up. We used to say
I'll start all my symbols with my initials. This is sort of hard when youlre lim
ited to three characters because it doesn't leave too many initials.

Especially if you have a long name.

That's right. If you have four initials.

Take the example that Mr. Morse gave in which you compile a set of subrou
tines and then define a set of MACRO instructions to be the call ing sequences
for the subroutines. After youlve got to that stage, you may dispense with the
symbols which are involved in the subroutines and simply use the MACRO in
structions in your main control program. So once you have coded the subrou
tines and defined the call ing sequences and debugged them you may dispense
with all of the symbols involved in these programs in the subroutines and refer
to them only through the MACRO instructions.

Isnlt that true only if you know the binary locations?

No.

Dispensing with all the symbols?

One wayof doing this is to define the calling sequences as macro-instructions
on a separate tape wh ich is assembled with the subroutines. Then a defin itions
tape is obtained containing only the macro-definitions. If you have used the
system correctly, the macro-instructions defined on the tape provide the
correct calling sequences for the subroutines, but the tape will not have any
of the symbol definitions of the subroutines.

71

Mr. Fredkin:

Prof. Denn is :

Mr. Fredkin:

Prof. Denn is:

Mr. Kotok:

Mr. Fredkin:

Dr. Hayes:

Note:

Mr. ~rse:

However, these subroutines will not be able to link if you get rid of their def
initions, unless you pick the binary location.

That is correct.

Now for instance on a DECAL library tape you might have 20,000 instructions
worth of program. You can It fix the binary locations and pick any subset so
it's impossible to have such facility in MACRO where you do in DECAL. By
the way, when we talk about library tape I thought lId mentiononething. One
of the advantages of MACRO is the ease of tape handling. With DECAL, es
peciallywith this I ibrarytape and such, we had in mind from the very beginning
that this should be a magnetic tape feature eventually. It should work with
paper tape, and in addition it should get into magnetic tape. It is on magnetic
tape here and there are people who put in a I ittle paper tape, maybe about 20
fanfolds, where they crowd a whole slew of things in the library and just go
whizzing through this mag tape and they pick up all of these routines so that
you do get access easily in a relocatable form.

I would liketopointout that for the TX-O computer there is a relocating ver
sion of MACRO assembly program. The relocating features were not translated
into the PDP version because of space I imitations in memory of the PDP. How
ever, I expect that this is something that the Digital Equipment Company would
be interested in doing, but we don't have the manpower at this time.

Another way, is to store the symbol ic version of each subroutine on tape and
add to MACRO a facility which could be done with about as much trouble as
putting in the DECAL library tape to call the subroutines wanted in symbolic,
assembling these at that time. This means a double tape handling, but when
youlre handling magnetic tape the extra time needed is still so much less than
the time used to handle the paper tape it becomes a very workable scheme and
does not entail large changes to the MACRO system itself.

Just to comment on the thing Prof. Dennis was talking about before - assembl
ing a large numberofsubroutines and using the MACRO instructions with these
subroutines as cal ling sequences maybe done by using the symbol punch facility
in MACRO. The symbols may be punched for use with DDT, or the MACRO
instructions without the symbols may be punched for use at a later date. The
MACRO calling sequences would be absolute addresses of the subroutines for
later use.

Three th ings occur to me: First, how about the length of symbols because we
can't name everything you want with three letters? Second, what about re ...
location? Third, what about library tapes? These are all features of DECAL
now and they could be a part of MACRO.

Yes, our discussion seems to have boiled down to the properties of future pro
grams. Are there any further comments from the panel or is it now time to
entertain questions from the floor?

(Questions from the audience were not audible for purposes of recording them.
One question to Dit prompted the explanation of macro-instructions.)

I would I ike to give a brief description of how to use macro-instructions. The

72

Mrs. Newman:

Mr. I'iorse:

Prof. Denn is:

macro-instruction facility is a way of naming a series of instructions which are
commonly used in the program, which can be put in the program by writing the
name of the macro-instruction.

For instance to define the MACRO instruction load:

define load B, A
lac (A
dac B
terminate

Th is MACRO instruction is commonly used to load register B with the constant A.

Now to use the instruction in the program to load 3 with register zzz one need
only write:

load zzz, 3

I may also use other MACRO instructions within a MACRO definition:

define

The use of th is

load 2 z, one, two
load z, one
load z+ 1, two
terminate

load 2 g, 4, 20

will cause the following instruction to be assembled

lac (4
dac g
lac (20
dac g+ 1

This operation will be performed many times. The argument A will be cycle
lac 9 times and that can be used as part of the later work. For example, this
is essentially the MACRO feature.

A good, brief description of MACRO appeared in the May 1962 issue of
DECUSCOPE.

Thank you.

In programs written in a large interpretive system (for example, a system for
floating point computation), the interpreted instructions may be given names
with mnemonic significance by parameter assignments or macro-instruction
definitions. With macro-instructions, specifying the parameters of an inter
preted instruct ion is far more conven ient. Of course, an interpreted instruct ion
may occupy two or three registers, depending on how many arguments must be
specified to the interpreter. Th is makes no difference when you are using
macro-instructions. The macro-instruction may have a length of 1, 2, or 3

73

Editor's Note:

Mr. Fredkin:

Mr. W\orse:

Editor's Note:

Dr. Hayes:

Questions from
the floor:

Prof. Denn is:

Mr. Saunders:

Mr. Strollo:

Mr. Morse:

Dr. Hayes:

Question:

Dr. Hayes:

registers depending on the particular instruction it represents.

There was a comment from the floor about the ease of writing macros.

There is one thing about macros. They are easy to write, but I would rather
work with" instruction generators" which are easy to use. You use things more
often than you write them and since you are only going to write it once you
don't need MACRO to do it. Let me give you an example of this. What do
you do when you want 39 in register? In DECAL you write: 39=> A but in
MACRO you have to remember whether it is: LOAD A, 39 or: LOAD 39, A
(which goes into which). I guess Dit made a mistake in the definition and you
can write into A, put 39. His results will involve the equivalent law 47, and
dac into A. Taking Dit Morsels example in the May DECUSCOPEj I showed
him a program in DECAL which did the same thing and it was easily 1/8 as long
and he said that's not fair because I used existing subroutines. I didn't use
anything but a single DECAL library tape. So the program was shorter and
much easier to write.

This is true, but first of a II, the example was to illustrate the use of macro
instructions and was not intended to compare MACRO's virtues with those of
any other programming system. However, let's use it for that as Ed has, and
compare the effort needed to run the programs. Using MACRO, you need only
do two passes on the symbolic tape and you have a binary tape which may be
loaded and run. Using DECAL, you must first assemble the program, then load
the I inking loader, load the program, load the I ibrary tape, and if you do not
wish to do this every time the program is run, you must load punch-off and
punch out a binary tape.

There was much reaction in the audience, especia lIy from DECAL users.

I think the audience is getting jittery because they cannot participate. Are
there any questions from the audience?

One of the features of DECAL is the instruction generator. I think this is
equivalent to definitions. Is this correct?

Yes, in the form of macro-instruction definitions.

What you can do, for instance, is to have additional MACRO instructions
written into the programs. What one cannot do is have the MACRO instructions
written in dupl icate on certain substructures depending on the val ue.

If you can't get all of the instructions in on DECAL, you can insert a new tape
in DECAL. Can you do this in MACRO?

Yes, it is possible.

Any comments from the floor?

Not audible but Moderator repeated.

The question has to do with the use of magnetic tape with DECAL.

74

Mr. Fredkin:

Mr. Fredkin:

Prof. Denn is:

Editorls Nore:

Dr. Hayes:

Mr. Kotok:

Prof. Denn is:

Mr. Strollo:

Mr. Fredkin:

When you use it, my experience with DECAL is that even paper tape tears
much less. DECAL defin itely has growth potential with respect to magnetic
tape.

(A question was directed to Mr. Fredkin about writing programs.)

The thing is that DECAL has facility for doing things. In MACRO you write
the programs over and over, but in DECAL we only do it once. A very im
portant thing is the join ing of binary programs. You can do it in MACRO, but
in DECAL we put them in locations and never bother with them again. In gen
eral, if you have a very complicated mathematical thing and you have to be
fast, you can do parts of it in DECALalgebraic language and then maybe convert.

The language I would use would depend on whether my program could be divided
into subroutines. Certain programs are impossible to divide into subroutines.
Then the question of MACRO versus DECAL depends on whether the macro
instruction feature of MACRO turns out to be useful with reference to what you
are doing, and in most cases it is. The advantage of using MACRO for pro
grams with many subroutines is that you can give nice names to the ir call ing
sequences and refer to them by conven ient names. You have the advantage
in DECAL which is given by the linking loader feature. I prefer the coding
format of MACRO to the coding format of DECAL. This, of course, is some
thing outside of what either program can do for you and I admit that this is a
matter of opinion and my personal bias. It mayalso have something to do with
my experience with MACRO.

Discussion from the floor became more I ively but speakers were heard by those
sitting close by. A question was raised about the effect of DECAL on the PDP
causing strain on input-output devices and it was pointed out that the M .1. T • ma
chine had been modified forMACROand didnlt accept DECAL. Jackson Wright
repeated that the format of MACRO was easier for a program writer. A little
excitement was engendered at th is point. It was obvious that the audience was
having a good time and that the DECAL users thought it more advantages for
them in its present form.

Yes, Mr. Kotok.

I saw Ted Strollo working on a program on the flexowriter. I didn It see any
algebraic statements in it at all. He mentioned the manipulations which you
wi II have to go through to type the DECAL program, some of wh ich have to do
with just which characters to choose. All the upper cases were troubling him.
Also, a system where you have to put in information as to where you are assem
bling and not compiling has many difficulties such as the difficulty of putting
in addresses a lone.

It depends on whether you are talking about compil ing. If you are doing your
own programming and have no typist, the more characters you have the more
chance for errors.

Th is could be remedied by the action operators in DECAL.

Ease of typing should not be the basis for eval uating a system.

75

Dr. Hayes:

Mr. Fredkin:

Mr. Kotok:

Editorls Note:

Dr. Hayes:

Mr. Fredkin:

Prof. Denn is:

Dr. Hayes:

Mr. f'.Aorse:

Mr. Strollo:

Mr. Wright:

It is difficult to evaluate on the basis of how many keys you have to strike to
make a comma.

There was a time when I, too, used to program in MACRO. I I iked MACRO
instructions but lIve made progress. The algebraic statement is the best although
lId I ike to have a combined system.

We ought to ask the audience what they like, we have been talking mainly
about what we have to offer. It would be interesting to find out what they use
and what they I ike. (Many voices and affirmative nods.) Who are DECAL
users?

The moderator asked for a showof hands. The numberof people using MACRO
and the number of people using DECAL were about the same. The count for
each system is given below.

16 DECAL
16 MACRO - (M.I • T. programmers)
9 FRAP

About one-half of the audience did not indicate a preference. That is very
interesting. Yes, Ed.

MACRO is 5 years old and has reached some maturity. It has a good write-up.
DECAL hasn It reached the same state of maturity but seems to be getting there.
I think that within the not too distant future we will see DECAL with a good
up-to-date Symbol ic and a good write-up.

DECAL as it is presently offered, does not have the possibility of subscripted
variables -- the most important feature of the algebraic language. I understand
a version of DECAL is being prepared now which does offer subscripts but I
have the feeling that putting subscripts in DECAL is going to increase the in
efficiency of object programs over programs created with the absence of sub
scripts and I th ink it is possible to create a compiler language for a computer
like the PDP-1 which could compile efficient object programs better than any
today in that it would not be a one to one translation between source programs
and object representations. I bel ieve that such a program is possible and I
would like to see one prepared and I would then be sure to use a compiler for
any program I would write, but until such time I will use the assembler.

Yes. Would the other members of the panel like to give some conclusions now?

I believe MACRO is a better system for writing programs in which you need
close control over the resulting object code and storage allocation, for example
a real-time control program. In contrast, DECAL is more efficient from the
point of view of the lapse time of beginning a program and getting it running.

Itls a matter of what type of program one is writing and whether it is desirable
to use programs other people have worked out. When linking a group of pro
grams together, one saves time with the DECAL system.

Can you link programs with different symbols and different programs?

76

Mr. Fredkin:

Mr. Kotok:

Audience:

Prof. Denn is:

Dr. Hayes:

Yes ~ DECAL does it ~ BBN has it - In summary; an interesting thing happened
some time ago - Elsa Newman got after me. (Shels the greatest weapon DECUS
has!) With reference to outl ining virtues for DECAL or MACRO, her idea was
to do something like this debate, but in written form for the DECUSCOPE. So
Dit Morse and I got together to have a debate and what happened was that I
agreed with nearly every statement he made and I think, vice versa. We got
so bored with this, that after three-quarters of an hour, we went home. On
the panel today, I decided that I would argue more strongly in behalf of DECAL,
but my feeling is that both systems are good, for the reasons I've mentioned
earl ier.

I must agree with Ed. I argued for MACRO, but I feel as Ed does that both
systems are worthwhile. I would have liked to find out about what others like.
If one sees something that neither of these systems hasorcan finda compromise
that you think is better drop a line to DECUSCOPE and weill start something
like the ACM debates.

(laughed)

The discussion this afternoon served a very good purpose in bringing to light
the features of these two systems to the audience. If this is so, it has served
its purpose.

I hope, in spite of the good-fellowship and gemutlichkeit we have generated,
that the audience will have gained some appreciation of the differences be
tween these two systems and that they will now be able to ask better questions
about them for the ir own appl ications.

77

Section V

APPENDIX

ANNUAL MEETING

Place: Air Force Cambridge Research Laboratories
L. G. Hanscom Field
Bedford, Massachusetts

Date: October 10, 11, 1962

PROGRAM
October 10 - Wednesday

0900

0930

0945

1030

1100

1215

1330

1400

1600

October 11 - Thursday

0900

0920

Registration

Introductory Remarks - Chari ton M. Walter, President of DECUS

The PDP-4 Programming System - H. Morse, DEC

Reading Film with a Computer - M. Cappelletti, Information International, Inc.

A World Oceanographic Data Display System - Edward Fredkin, Information
International, Inc.

Lunch - Officers' Club

Minimax Detection Station Placement - Richard D. Smallwood, AFCRL

Displays -

Group I: to the DX-1 Experimental Dynamic Processor Room

Display of Minimax Detection Station Placement

Dynamic Attribute Extraction Display & Discussion - Charlton M. Walter,
AFCRL

Display - Steven Bernstein, AFCRL

Group II: to the Operations Applications Laboratory

Displays & Discussion

Reconvene in Main Conference Room, Building 1105A - General Discussion
and Security Check

Matrix Package for the DX-1 System - Carmine Caso, Wolf R&D

Lawrence Radiation Laboratory's PDP-1

1. A Peripheral Processor for Large Computers - Mrs. Dorothy Monk

2. A PDP Systems Tape - Fraser Bonnell

3. Translation Problems of a Peripheral Computer in a Multilingual House
R. P. Abbott and L. E. Mish

A-1

1100

1115

1230

1330

1530

1730

Playing Music in Real Time - Peter R. Samson, MIT

Business, Introduction of Newly Elected Officers

1962-63 Officers

Lunch

Edward Fredkin, President
Elsa Newman, Secretary

Committee Chairman

Eunice Cronin, Meetings
William Fletcher, Equipment
John R. Hayes, Programming
Elsa Newman, Publ ications

The BBN Symbolic Version of DECAL - R. J. McQuillin, Bolt, Beranek &
Newman, Inc.

DECAL, MACRO and the PDP-1 (Panel Discussion)

Moderator

Panel

(for MACRO)

(for DECAL)

Concl uding Remarks

John Hayes, OAL, Air Force Systems Command

Professor Jack Dennis, Massachusetts Institute of
Technology

Harrison Morse, Digital Equipment Corporation
Alan Kotok, Massachusetts Institute of Technology

Edward Fredkin, Information International, Inc.
Theodore Strollo, AFCRL, BBN

Edward Fredkin, Decus President, (1962-1963)

A-2

ATTENDANCE

ANNUAL MEETING

October 10 and 11, 1962

Air Force Cambridge Research Laboratories

CHARLES W. ADAMS ASSOCIATES
Bedford, Massachusetts

John Gi I more - D
Mary Lanahan
AI Rousseau
Paul Rodenh iser

AIR FORCE CAMBRI DGE RESEARCH LABS.
Bedford, Massachusetts

Frank Be Izer, Jr.
B. Bernste in - pd
Harry Blum
Roger E. Bove
Eun ice C. Cron in
Robert Duncan
Donald Easterday
Stuart Gygi
Edward Le Febvre
Philip Lieberman
John Mott-Sm ith
Vera Pless
Eugene Prange
Richard D. Smallwood P, pd
Charlton M. Walter - P, D
Weiant Wathen-Dunn - D

AIR FORCE SYSTEMS COMMAND
(Electron ic System Division)
Bedford, Massachusetts

Charles R. Brown - pd, D
Donald W. Connolly - pd
James Duva
Ira Goldstein
John B. Goodenough
John R. Hayes - P, D
Sylvia Mayer
Raymond Nickerson
Anne Story
Paul Wein
Robert Westfield
Major John T. Will is

A-3

ATOMIC ENERGY OF CANADA, LIMITED
Chalk River, Canada

J. Quarrington - D

BIO-DYNAMICS
Cambridge, Massach usetts
Avery Johnson

BOLT, BERANEK & NEWMAN, INC.
Cambridge, Massachusetts
Los Angeles, California

M. Breen
Lucy Darley
Thomas Evans
Wi II iam Mann
Thomas Marill - D
Richard J. McQuillin - P
David Park
Theodore Strollo - pd

JET PROPULSION LABORATORY
(California Institute of Technology)
Pasadena, Ca I iforn ia

William Sholey

DATA PROCESSING, INC.
Waltham, Massachusetts

Richard Mills - D

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts

Harlan Anderson
Robert Beckman
Gordon Bell
Peter Bonner
Mart i n Graetz
Ben jamin Gurley
John Koude la
Nancy Lambert
Harrison Morse - D
Elsa Newman
George Rice

GEOTECHNICAL INFORMATION
Garland, Texas

Gerald Clawson - D

INFORMATION INTERNATIONAL, INC.
Maynard, Massachusetts

Michael Cappelletti - P
Edward Fredkin - P, D
John Wood

INFORONICS, INC.
Maynard, Massachusetts

lawrence Buckland - D
Will iam Nugent

INFORMATION SYSTEMS DIVISION
(International Telephone & Telegraph)
Paramus, New Jersey

H. Gould - D

ITEK CORPORATION
Lexington, Massachusetts

Will iam Blotn i ck
Charles Burgess
Terrence R. Cullen
Doris Gagnon
Richard Hagan
H. P. Peterson
Earle Pughe
Edward Radkowsk i
Robert Rizzo
Edward Spignise
T. R. Stansfield

LAWRENCE RADIATION LABORATORY
Livermore, California

Frazer Bonnell - D
Lloyd Mish - P
Dorothy T • Monk - P, D

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts

Professor Jack B. Denn is - P, D
Alan Kotok
Peter Samson - P
Robert Saunders
Jackson Wright

MASSEY DICKENSEN COMPANY
Waltham, Massachusetts

W. J. Lennon

OREGON PRIMATE RESEARCH CENTER
Beaverton, Oregon

Robert W. Coffin - D

RAYTHEON COMPANY
Wayland, Massachusetts

Ralph W. Zaorski

SYSTEMS RESEARCH LABORATORIES
Dayton, Ohio

W. Fahle - D

UNITED AIRCRAFT RESEARCH LABORATORIES
East Hartford, Connecticut

Gerard A. Paquette - D
David Sirota

WOLF RESEARCH & DEVELOPMENT CORP.
West Concord, Massachusetts

D. B. Brzezenski - D
Carm i ne Caso - P
Norman Hirst
Janet Seltzer

Notes: D - DECUS Delegate or designated representative.

P - Speaker or Panel member.

pd - Displayed CRT showing special programs.

A-4

Abbott, R. P.

Bell, C. G.

Bonnell, F.

Brown, C. R.

Cappelletti, A. M.

Caso, C. J.

Fredkin, E.

Graetz, J. M.

Hayes, J. R.

McQuillin, R. J.

Mish, L. E.

Monk, D. T. (Mrs.)

Morello, M. V. (Miss)

Pughe, E. W., Jr.

AUTHOR INDEX

Lawrence Radiation Laboratory
University of California
Li vermore, Ca I iforn i a

Digital Equipment Corporation
Maynard, Massachusetts

Lawrence Radiation Laboratory
University of Cal ifornia
livermore, California

Operationa I Appl ications Laboratory
Air Force Electronic Systems Division
Air Force Systems Command
Bedford, Massachusetts

Information International, Inc.
Maynard, Massachusetts

Wolf Research & Development Corporation
Concord, Massachusetts

Information International, Inc.
Maynard, Massachusetts

Massachusetts Institute of Technology
Cambridge, Massachusetts

Operational Applications Laboratory
Air Force Electronic Systems Division
Air Force Systems Command
Bedford, Massachusetts

Bolt Beranek & Newman, Inc.
Cambridge, Massachusetts

Lawrence Radiation Laboratory
University of California
livermore, California

Lawrence Radiation Laboratory
University of California
livermore, Cal ifornia

Itek Corporation
Lexington, Massachusetts

Itek Corporation
Lexington, Massachusetts

A-5

Page

5

63

7

9

55

17

31-33

37

13

19

5

3

25

57

Radkowski, E. J.

Rimmer, M. P.

Seltzer, J. N. (Miss)

Sexton, J. M.

Shannon, R. R.

Smallwood, R. D., Lt.

Walter, C. M.

Dennis, J. (Professor)

Fredkin, E.

Hayes, J.

Kotok, A.

Morse, H.

Strollo, T.

Itek Corporation
Lexington, Massachusetts

Itek Corporation
Lexington, Massachusetts

Wolf Research & Development Corporation
Concord, Massachusetts

Wolf Research & Development Corporation
Concord, Massachusetts

Itek Corporation
Lexington, Massachusetts

Air Force Cambridge Research Laboratories
Cambridge, Massachusetts

Air Force Cambridge Research Laboratories
Cambridge, Massachusetts

PANEL MEMBERS

Massachusetts Institute of Technology
Cambridge, Massachusetts

Information International, Inc.
Maynard, Massachusetts

Operational Applications Laboratory
Air Force Electronic Systems Division
Air Force Systems Command
Bedford, Massachusetts

Massachusetts Institute of Technology
Cambridge, Massachusetts

Digital Equipment Corporation
Maynard, Massachusetts

Air Force Cambridge Research Laboratories
Cambridge, Massachusetts

A-6

25

25

17

17

25

23

29-41

	000
	001
	002
	003
	005
	007
	008
	009
	01
	03
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	17
	18
	19
	20
	21
	23
	25
	26
	27
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	53
	55
	56
	57
	58
	59
	61
	62
	63
	65
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06

