
NVAX CPU Chip 
Functional Specification· 

The NVAX CPU Chip is a high-perform~r..ce,single-chipimplerru:tntatioI1 of the,· VAX Ar~itecture for use in 
low-end and mid-range systems. :" 

Revlslon/Update Information: This is Revision 12 of this specification, wtiichsUP$r~d.esJ1evi,sion 1.1 re
leased in August 1991. The inform ation in this speelfication)eflects pass 2 of 
the NVAX CPU chip. Only the Electrioal Charact~ti.sti¢s:,Ctita:pter was updated 
from:,f1evision'·1.1 to Revision 1 .2. 

DIGITAL CONFIDENTJA'C' 

'. ' .: '. .~_'-:. ,.' ~_ '.: ,!'" l.J "_"'~" ....• :>.\' " , ' 

This information shall not be discloSed to persons otherthan.~~GITAL:emptoy.es;br·\1erirJ.y.;d-tStribute.d ~ithin ' 
DIGITAL. Distribution is restricted to persons auth.?r~ed aOO ;~signat~ by tmt·'o.tjgif1alij1g'btg~~iz~~qn ... 1hi$> .. 
document shall not be transmitted ,electronically, copied unle~"auti:lo~~igh1atinffOf9ariizatioFi~'orleft 
unattended. When not in use, this doelim&rit§hafI'-'be stored;'in al()Ckecr*-r.s~~;:atr •• ·; The"-restrictionsare 

enforced until this document is reclassif!,~~by:the~~,inating .organizati!?",!:, '~'. ~:-"'~::::';11;0:'.:;~'·<:· "~0i;C :',. '.. :. 
• j, \: ': . .:. ..... ~ • 

,~ ... ~. ..~., .... ' ... Semiconductor- Engi'A$sring Group 
Digital Equipment CorpOteit~on, HudsonrMasSClchusetts 



:~ , 

December 1991 

The drawings and specificatio:ns in this document are the property of Digital Equipment Corporation and 
shall not be reproduced or copied or used in whole or in part as the basis for the manufacture or sale of 
items without written permission. 

The information in this document may be changed without notice and is not a commitment by Digital 
. Equipment Corporation. Digital Equipment Corporation is not responsible for any errors in this document. 

This specification does not describe any program or product that is currently available from Digital 
Equipment Corporation, nor is Digital Equipment Corporation committed to implement this specification 
in any program or product.' -Digital Equipment Corporation makes no commitment that this document 
accurately describes any product it might ever make. 

Copyright C1989, 1990, 1991 by Digital Equipment Corporation 
All Rights Reserved 

Printed in U .SA 

" The fonowing are trademarks ot:Digttal Equipment Corporation: 

DEC 
DECnet 
DECUS 
MicroVAX 
MicroVMS 
PDP 

. , 

ULTRIX 
ULTRIX-32 
UNIBUS 
VAX 
VAXBI 
VAXcluster 

VAXstation 
VMS 
VT 



Contents 

CHAPTER 1 INTRODUCTION 1-1 

1.1 SCOPE AND ORGANIZATION OF THIS SPECIFICATION 1-1 

1.2 RELATED DOCUMENTS 1-1 

1.3 TERMINOLOGY AND CONVENTIONS 1-1 
1.3.1 Numbering ;:)' . 1-1 
1.3.2 UNPREDICTABLE and UNDEFINED 1-1 
1.3.3 Ranges and Extents 1-2 
1.3.4 Must be Zero (Mal) 1-2 
1.3.5 Should be Zero (SBl) 1-2 

F. 
1.3.6 Register Format Notation 1-2 
1.3.7 TIming Diagram Notation 1-5 

1.4 REVISION HISTORY 1-6 

CHAPTER 2 ARCHITECTURAL SUMMARY 2-1 

2.1 OVERVIEW 2-1 

2.2 VISIBLE STATE 2-1 
2.2.1 Virtual Address Space 2-1 
2.2.2 Physical Address Space 2-2 

2.2.2.1 Physical Address Control Registers • 2-4 
2.2.3 Registers 2-4 

2.3 DATA TYPES 2-6 

2.4 INSTRUCTION FORMATS AND ADDRESSING MODES 2-8 
2.4.1 Opcode Formats 2-8 
2.4.2 Addressing Modes 2-8 
2.4.3 Branch Displacements 2-11 

2.5 INSTRUCTION SET 2-11 

2.6 MEMORY MANAGEMENT 2-25 
2.6.1 Memory Management Control Registers 2-25 
2.6.2 System Space Address Translation 2-26 
2.6.3 Process Space Address Translation 2-28 

2.6.3.1 PO Region Address Translation • 2-28 
2.6.3.2 P1 Region Address Translation • 2-29 

2.6.4 Page Table Entry 2-31 
2.6.5 Translation Buffer 2-32 

2.7 EXCEPTIONS AND INTERRUPTS 2-33 
2.7.1 Interrupts 2-33 

2.7.1.1 Interrupt Control Registers • 2-34 
1 ,.. ~ ,.:.': ... :,~,;'" i.:~ ".,~. ; : ,. ~: 

. ~~ 

DIGITAL CONFIDENTIAL Iii 



Contents 

2.7.2 Exceptions 
2.7.2.1 Arithmetic Exceptions • 2-36 
2.7.2.2 Memory Management Exceptions • 2-37 
2.7.2.3 Emulated Instruction Exceptions • 2-38 
2.7.2.4 Vector Unit Disabled Fault • 2-40 
2.7.2.5 Machine Check Exceptions • 2-40 
2.7.2.6 Console Halts • 2-40 

2.8 SYSTEM CONTROL BLOCK 
2.8.1 System Control Block Vectors 
2.8.2 System Control Block Layout 

2.9 CPU IDENTIFICATION 

2.10 SYSTEM IDENTIFICATION 

2.11 PROCESS STRUCTURE 

2.12 PROCESSOR REGISTERS 

2.13 110 SPACE ADDRESSES 

2.14 REVISION HISTORY 

CHAPTER 3 NVAX CHIP INTERFACE 

3.1 

3.2 

INTRODUcnoN 

NVAX CPU PINOUT 
3.2.1 NDAL Signals and nmlng 

3.2.2 

3.2.3 

3.2.1.1 
3.2.1.2 
3.2.1.3 
3.2.1.4 
3.2.1.5 
3.2.1.6 
3.2.1.7 
3.2.1.8 
3.2.1.9 
3.2.1.10 

P%CPU_REQ_L • 3-6 
P%CPU_HOLD_L· 3-7 
POkCPU _SUPPRESS _L • 3-7 
POkCPU_GRANT_L • 3-7 
POkCPU_WB_ONLY_L • 3-7 
POkNDAL_H<63:0> • 3-7 
POkCMD_H<3:O> • 3-7 
POklD _H<2:0> • 3-7 
POkPARITY _H<2:0> • 3-7 
POkACK_L • 3-7 

Clocking signals 
3.2.2.1 
3.2.2.2 
3.2.2.3 
3.2.2.4 

3.2.2.5 

3.2.2.6 
3.2.2.7 

POkOSC_H, POkOSC _L • 3-8 
POkOSC_TC1_H, POkOSC_TC2_H • 3-8 
POkOSC_ TEST _H • 3-8 
POkPHI12_0UT_H, POkPH123_0UT_H, POkPHI34_0UT_H, 
POkPHI41_0UT_H • 3-8 
POkPHI12_IN_H, POkPHI23_IN_H, POkPHI34_IN_H, 
P%PHI41_IN_H • 3-8 
POkASYNC_RESET_L • 3-8 
PO/oSYS_RESET_L • 3-9 

Interrupt and Error Signals 
3.2.3.1 
3.2.3.2 
3.2.3.3 
3.2.3.4 
3.2.3.5 
3.2.3.6 

PO/oMACHINE_CHECK_H • 3-9 
PO/oIRQ_L<3:O> • 3-9 
POkH_ERR_L • 3-9 
POkS_ERR_L • 3-9 
P%INT_TIM_L • 3-10 
POkPWRFL_L • 3-10 

2-35 

2-41 
2-41 
2-42 

2-44 

2-44 

2-46 

2-49. 

2-61 

2-62 

3-1 

3-1 

3-1 
3-4 

3-8 

3-9 

Iv DIGITAL CONFIDENllAL 



Contents 

3.2.3.7 POkHALT_L • 3-10 
3.2.4 Cache Interface signals 3-10 

3.2.4.1 POkTS_INDEX_H<20:5> • 3-10 
3.2.4.2 POkTS_OE_L • 3-10 
3.2.4.3 POkTS_WE_L • 3-10 
3.2.4.4 POkTS_TAG_H<31:17> • 3-12 
3.2.4.5 POkTS_ECC_H<5:0> • 3-12 
3.2.4.6 POkTS_OWNED_H • 3-12 
3.2.4.7 POkTS_VALlD_H • 3-12 
3.2.4.8 POkDR_INDEX_H<20:3> • 3-12 
3.2.4.9 POkDR_ OE_L • 3-12 
3.2.4.10 POkDR_WE_L • 3-12 
3.2.4.11 POkDR_DATA_H<63:0> • 3-12 
3.2.4.12 POkDR_ECC_H<7:O> • 3-12 ... '..,.",., 

3.2.5 Test Pins 3-13 
3.2.5.1 POkTEST_DATA_H • 3-13 
3.2.5.2 POkTEST_STROBE_H • 3-13 .-
3.2.5.3 POkDISABLE_OUT_L • 3-13 
3.2.5.4 POkTEMP _H • 3-13 
3.2.5.5 POkTMS_H • 3-13 
3.2.5.6 POkTCK_H • 3-13 t.:.'":, .) ~, 

~ .. 3.2.5.7 POkTDI_H • 3-13 
3.2.5.8 POkTDO_H • 3-14 
3.2.5.9 POkPP _ CMD _H<2:0> • 3-14 
3.2.5.10 P%PP _DATA_H<11:0> • 3-14 

.' 
3.3 THE NDAL 3-15 

3.3.1 Terms 3-17 
~ 

3.3.2 NDAL Clocking 3-18 
3.3.3 NDAL Arbitration 3-18 

3.3.3.1 NDAL Arbitration Signals • 3-19 
3.3.3.1.1 PO/oCPU_REQ_L • 3-19 
3.3.3.1.2 101 - REQ_L • 3-19 
3.3.3.1.3 102_REQ_L • 3-20 
3.3.3.1.4 PO/oCPU _HOLD _L • 3-20 
3.3.3.1.5 101_HOLD_L • 3-20 
3.3.3.1.6 102_HOLD_L· 3-20 
3.3.3.1.7 P%CPU_SUPPRESS_L • 3-20 
3.3.3.1.8 101_SUPPRESS_L • 3-21 
3.3.3.1.9 102_SUPPRESS_L • 3-21 
3.3.3.1.10 PO,4CPU_GRANT_L • 3-21 
3.3.3.1.11 101_GRANT_L • 3-21 
3.3.3.1.12 102_ GRANT _L • 3-21 
3.3.3.1.13 PO,4CPU_WB_ONLY_L • 3-21 
3.3.3.1.14 101_WB_ONLY _L • 3-22 
3.3.3.1.15 102_WB_ONLY _L • 3-22 
3.3.3.2 NDAL Arbitration liming • 3-22 
3.3.3.3 NDAL Suppress and Its liming • 3-24 
3.3.3.4 NDAL Arbitration Rules • 3-24 

DIGITAL CONFIDENTIAL v 



Contents 

3.3A NDAL Information Transfer 3-27 
3.3.4.1 POkNDAL_H<63:0> • 3-27 
3.3.4.1.1 Address Field • 3-27 
3.3.4.1.2 Byte Enable Field • 3-29 
3.3.4.1.2.1 110 space writes • 3-33 
3.3.4.1.3 Length Field • 3-33 
3.3.4.2 P%CMD _H<3:0> • 3-33 
3.3.4.3 POkID_H<2:0> • 3-35 
3.3.4.4 POkPARITY _H<2:0> • 3-35 
3.3.4.5 P%ACK_L • 3-36 

3.3.5 NDAL Transactions 3-38 
3.3.5.1 Reads and Fills • 3-41 
3.3.5.1.1 Dstream Read Requests (DREAD) • 3-41 
3.3.5.12 Istream Read Requests (IREAD) • 3-41 
3.3.5.1.3 Ownership Read Requests (OREAD) • 3-41 
3.3.5.1.4 How memory handles reads to Owned blocks • 3-42 
3.3.5.1.5 Read cycle description and timing • 3-42 
3.3.5.1.6 Read Data Return cycles (RDRO, RDR1, RDR2, 

RDR3) • 3-44 
3.3.5.1.7 Read data error cycles (ROE) • 3-44 
3.3.5.1.8 Read data cycle description and timing • 3-45 
3.3.5.1.9 Read Transaction Examples • 3-45 
3.3.5.1.9.1 Ouadword Read and Fill • 3-45 
3.3.5.1.9.2 Multiple Ouadword Reads • 3-47 
3.3.52 Writes· H9 
3.3.5.2.1 Normal Write Transactions (WRITE) • 3-49 
3.3.5.22 Disown Write Transactions (WDISOWN) • 3-49 
3.3.5.2.3 Write Data and Bad Write Data (WDATA,BADWDATA) • 3-49 
3.3.5.2.4 Write transaction description and timing • 3-49 
3.3.5.2.5 Write Transaction Examples • 3-50 
3.3.5.2.5.1 Ouadword Writes • 3-50 
3.3.5.2.5.2 Multiple Ouadword Writes • 3-52 
3.3.5.3 NOPs· 3-53 

3.3.6 Cache Coherency 3-54 
3.3.7 Interrupts 3-55 
3.3.8 Clear Write Buffer 3-55 
3.3.9 VAX. archltecturally-deflned Interlocks 3-56 

3.3.9.1 Ownership and Interlock transactions • 3-56 
3.3.10 Errors 3-57 

3.3.10.1 Transaction Timeout • 3-57 
3.3.10.2 Non-existent memory and VO • 3-58 
3.3.10.3 Error Handling • 3-58 
3.3.10.4 Error Recovery • 3-63 

3.3.11 NDAL Initialization 3-64 

3.4 THE XMI-2 NVAX. SYSTEM 3-65 
3A.1 Cache coherency In the XMl2 system 3-65 

3.5 THE LOWEND NVAX SYSTEM - OMEGA 3-67 

3.6 RESOLVED ISSUES 3-68 

3.7 NVAX. CHIP INTERFACE SIGNAL NAME CROSS-REFERENCE 3-70 

3.8 REVISION HISTORY 3-72 

vi DIGITAL CONFIDENTIAL 



Contents 

CHAPTER 4 CHIP OVERVIEW 4-1 

4.1 NVAX CPU CHIP BOX AND SECnON OVERVIEW 4-1 
4.1.1 Thelbox 4-2 
4.1.2 The Ebox and Mlcrosequencer 4-3 
4.1.3 The Fbox 4-3 
4.1.4 The Mbox 4-4 
4.1.5 The Cbox 4-4 
4.1.6 Major Internal Buses 4-4 

4.2 REVISION HISTORY 4-6 

CHAPTER 5 MACROINSTRUCTION AND MICROINSTRUCTION PIPELINES 5-1 

5.1 INTRODUCTION 5-1 

5.2 PIPELINE FUNDAMENTALS 5-1 
5.2.1 The Concept of a Pipeline 5-1 
5.2.2 Pipeline Flow 5-3 
5.2.3 Stalls and exceptions in an Instruction Pipeline 5-5 

5.3 NVAX CPU PIPELINE OVERVIEW 5-6 
5.3.1 Normal Macroinstruction Execution 5-8 

5.3.1.1 The Ibox • 5-8 
5.3.1.2 The Microsequencer • 5-9 
5.3.1.3 The Ebox • 5-9 
5.3.1.4 The Fbox • 5-10 
5.3.1.5 The Mbox • 5-10 
5.3.1.6 The Cbox • 5-11 

5.3.2 Stalls In the Pipeline 5-11 
5.3.2.1 SO Stalls • 5-12 
5.3.22 S1 Stalls • 5-12 
5.3.2.3 S2 Stalls • 5-13 
5.3.2.4 S3 Stalls • 5-14 
5.3.2.5 S4 Stalls • 5-15 

5.3.3 exception Handling 5-16 
5.3,3.1 Interrupts • 5-17 
5.3.32 Integer Arithmetic Exceptions • 5-17 
5.3.3.3 Floating Point Arithmetic Exceptions • 5-17 
5.3.3.4 Memory Management Exceptions • 5-18 
5.3.3.5 Translation Buffer Miss • 5-19 
5.3.3.6 Reserved Addressing Mode Faults • 5-19 
5.3.3.7 Reserved Operand Faults • 5-20 
5.3.3.8 Exceptions Occurring as the Consequence of an 

Instruction • 5-20 
5.3.3.9 Trace Fault • 5-20 
5.3.3.10 Conditional Branch Mispredict • 5-20 
5.3.3.11 First Part Done Handling • 5-21 
5.3.3.12 Cache and Memory Hardware Errors • 5-21 

5.4 REVISION HISTORY 5-22 

DIGITAL CONFIDENTIAL vii 



Contents 

CHAPTER 6 MICROINSTRUCTION FORMATS 

6.1 

6.2 

6.3 

6.4 

EBOX MICROCODE 
6.1.1 Data Path Control 
6.1.2 Mlcrosequencer Control 

IBOX CSU MICROCODE 

IBOX INSTRUCTION ROM AND CONTROL PLAS 

REVISION HISTORY 

CHAPTER 7 THE IBOX 

7.1 

7.2 

7.3 

OVERVIEW 
7.1.1 Introduction 
7.1.2 
7.1.3 

Functional Overview 
The Pipeline 

INSTRucnON STREAM PREFETCHING 
7.2.1 The VIC 

7.2.1.1 VIC Control • 7-7 
7.2.1.2 VIC_Reads· 7-8 
7.2.1.3 VIC Fills • 7-8 
7.2.1.4 VIC Writes • 7-9 
7.2.1.5 VIC Bypass • 7-9 
7.2.1.6 VIC Hits Under Miss • 7-10 
7.2.1.7 VIC Exceptions and Errors • 7-10 
7.2.1 .8 PC Load Effects • 7-10 
7.2.1.9 E%STOP _IBOX_H Effects • 7-11 
7.2.1.10 Prefetch Stop Conditions • 7-12 
7.2.1.11 Prefetch Start Conditions • 7-12 
7.2.1 .12 Prioritized List of Prefetch Start/stop Conditions • 7-12 
7.2.1.13 VIC Enable • 7-13 
7.2.1.14 VIC Flushing • 7-13 
7.2.1.15 Flushing IREFs • 7-13 
7.2.1.16 VIC Control and Error Registers • 7-14 
7.2.1.17 VIC Performance Monitoring Hardware • 7-16 

7.2.2 The Prefetch Queue 
7.2.2.1 PC load effects • 7-17 

INSTRUCnON PARSING 
7.3.1 VAX Instruction Format 
7.3.2 The Instruction Burst Unit 

7.3.2.1 
7.3.2.2 
7.3.2.3 
7.3.2.4 
7.3.2.5 
7.3.2.6 
7.3.2.7 
7.3.2.8 
7.3.2.9 
7.3.2.10 
7.3.2.11 
7.3.2.12 

Specifier Identification • 7-21 
Operand Access Types • 7-23 
DL stall • 7-24 
Driving SPEC_CTRL • 7-24 
PC and Delta_PC • 7-24 
Branch Displacement Processing • 7-25 
Ebox Assist Processing • 7-25 
Reserved Addressing Modes • 7-26 
Quadword Immediate Specifiers • 7-26 
Index Mode Specifiers • 7-27 
Loading a new opcode • 7-27 
Reserved Opcodes • 7-28 

6-1 

6-1 
6-1 
6-3 

6-4 

6-5 

6-8 

7-1 

7-1 
7-1 
7-2 
7-4 

7-5 
7-5 

7-17 

7-17 
7-19 
7-19 

vIII DIGITAL CONFIDENTIAL 



7.4 

7.5 

7.6 

7.3.2.13 Instruction Parse Completion • 7-28 
7.3.2.14 Operands with Access Type VR and VM • 7-28 
7.3.2.15 I%IMEM_MEXC_H and I%IMEM_HERR_H • 7-28 
7.3.2.16 IBU stop and restart conditions • 7-29 
7.3.2.17 First Part Done (FPD) Set • 7-29 

7.3.3 The Instruction Issue Unit 
7.3.3.1 Issue Stall • 7-30 
7.3.3.2 PC Queue and PC loads • 7-31 

OPERAND SPECIFIER PROCESSING 
7.4.1 Operand Queue Unit 

7.4.1.1 Source Queue Interface • 7-34 
7.4.1.1.1 Short Literal Specifiers (Modes 0 .. 3) • 7-36 
7.4.1.1.2 RMODE Specifiers (Mode 5) • 7-36 
7.4.1.1.3 Index Mode Specifiers (Mode 4) • 7-36 
7.4.1.1.4 All Other Addressing Modes • 7-36 
7.4.1.2 Destination Queue Interface • 7-37 
7.4.1.2.1 RMODE Specifiers (Mode 5) • 7-38 
7.4.1.2.2 Index Mode Specifiers (Mode 4) • 7-38 
7.4.1.2.3 All Other Addressing Modes • 7-38 
7.4.1.3 Queue Entry Allocation • 7-38 
7.4.1.4 MD Allocation • 7-39 
7.4.1.5 Specifier Bus Enable • 7-39 
7.4.1.6 E%STOP _IBOX and Branch Mispredict • 7-39 

7.4.2 Complex Specifier Unit 

7.4.3 

7.4.2.1 CSU Microcode Control • 7-40 
7.4.2.2 CSU Pipeline • 7-41 
7.4.2.2.1 S1 Pipeline Stage • 7-41 
7.4.2.2.2 S2 Pipeline Stage • 7-45 
7.4.2.2.3 S3 Pipeline Stage • 7-48 
7.4.2.3 RlOG • 7-51 
7.4.2.4 Branch Mispredict effects • 7-52 
7.4.2.5 E%STOP _IBOX Effects • 7-52 
7.4.2.6 RSVD~DDR_FAULT effects • 7-52 
7.4.2.7 CSU Microcode Restrictions • 7-53 
7.4.2.8 Ibox IPR Transactions • 7-53 
7.4.2.8.1 IPR Reads • 7-53 
7.4.2.8.2 IPR Writes • 7-54 
Scoreboard Unit 
7.4.3.1 E%STOP _IBOX and Branch Mispredict PC load 

Effects • 7-55 

BRANCH PREDICTION 
7.5.1 Branch Prediction Unit 

7.5.1.1 The Branch Prediction Algorithm • 7-55 
7.5.1.2 The Branch History Table • 7-56 
7.5.1.3 Branch Prediction Sequence • 7-56 
7.5.1.4 The Branch Queue • 7-57 
7.5.1.5 Branch Mispredict • 7-58 
7.5.1.6 Branch Stall • 7-58 
7.5.1.7 PC loads • 7-58 
7.5.1.8 Branch Prediction IPR Register • 7-59 

PC LOAD EFFECTS 
7.6.1 Mispredlct PC Loads 

DIGITAL CONFIDENTIAL 

Contents 

7-30 

7-32 
7-32 

7-40 

7-54 

7-55 
7-55 

7~1 

7~2 

Ix 



Contents 

7.6.2 Ebox PC Loads 7-62 

7.7 E%STOP _IBOX EFFECTS 7-63 

7.8 INmALIZATlON 7-64 
7.8.1 Mechanisms for lbox State Reset 7-64 

7.9 ERRORS, EXCEPTIONS, AND FAULTS 7-64 
7.9.1 Overview 7-64 
7.9.2 Istream Memory Errors 7-64 
7.9.3 Dstrum Memory Errors 7-65 
7.9.4 Reserved Opcode Faults 7-65 
7.9.5 Reserved Addressing Mode Faults 7-65 

7.10 IBOX SIGNAL NAME CROSS-REFERENCE 7-67 

7.11 TESTABILITY 7-68 
7.11.1 Overview 7-69 
7.11.2 Internal Scan Register and Data Reducer 7-69 
7.11.3 Parallel Port 7-69 
7.11.4 Architectural Features 7-70 

7.12 PERFORMANCE MONITORING HARDWARE 7-70 
7.12.1 Signals 7-70 

7.13 REVISION HISTORY 7-71 

CHAPTER 8 THE EBOX 8-1 

8.1 CHAPTER OVERVIEW 8-1 

8.2 INTRODUCTION 8-1 

8.3 CHAPTER STRUCTURE 8-4 

8.4 EBOX OVERVIEW 8-4 
8.4.1 Mlcroword Fields 8-4 

8.4.1.1 Microsequencer Control Fields • 8-6 
8.4.2 The Register File 8-6 
8.4.3 ALU and Shifter 8-6 

8.4.3.1 Sources of ALU and Shifter Operands • 8-6 
8.4.3.2 ALU Functions • 8-7 
8.4.3.3 Shifter Functions • 8-7 
8.4.3.4 Destinations of ALU and Shifter Results • 8-7 

8.4.4 Ibox-Ebox Interface 8-7 
8.4.5 Other Registers and States 8-9 
8.4.6 Ebox Memory Access 8-9 
8.4.7 CPU Control Functions 8-9 
8.4.8 Ebox Pipeline 8-10 
8.4.9 Pipeline Stalls 8-10 
8.4.10 Mlcrotraps, Exceptions, and Interrupts 8-11 

8.5 EBOX DETAILED FUNCTIONAL DESCRIPTION 8-13 

x DIGITAL CONFIDENTIAL 



Contents 

8.5.1 Register File 8-13 
8.5.1.1 Register Groups • 8-13 
8.5.1.2 Access Ports • 8-14 
8.5.1.3 Register File Bypass Paths • 8-14 
8.5.1.4 Write Collisions • 8-16 
8.5.1.5 Valid, Fault, and Error Bits • 8-16 

8.5.2 Constant Generation 8-17 
8.5.3 The ALU 8-18 

8.5.3.1 ALU Condition Codes • 8-19 
8.5.32 SMUL Step Definition • 8-20 
8.5.3.3 UDIV Step Definition • 8-20 

8.5.4 The Shifter 8-21 
8.5.4.1 Shifter Condition Codes • 8-22 
8.5.4.2 Shifter Sign • 8-23 

8.5.5 RMUX and E_BUS%WBUS_L 8-23 
8.5.5.1 RMUX Produced Memory Request Signals • 8-24 
8.5.5.2 RMUX Produced E_BUs%WBUS_L Related 

Information • 8-24 
8.5.6 VA Register 8-25 
8.5.7 Q Register 8-25 
8.5.8 Bypassing of Results 8-26 
8.5.9 Result Destinations 8-27 
8.5.10 Miscellaneous Ebox Registers and States 8-27 

8.5.10.1 PSL • 8-27 
8.5.10.1.1 Condition Code Alteration • 8-28 
8.5.10.1.2 Trace and Trace Pending Bits • 8-29 
8.5.10.2 SC • 8-29 
8.5.10.3 INT.SYS • 8-30 
8.5.10.4 MMGT.MODE • 8-30 
8.5.10.5 State Flags • 8-30 
8.5.10.5.1 E%MACHINE_CHECK_H • 8-31 
8.5.10.5.2 State Rags and Pipeline Abort • 8-31 
8.5.10.6 DL Part of the Instruction Context Register • 8-32 
8.5.10.7 Mask Processing Unit • 8-32 

8.5.11 Branch Condition Evaluator 8-34 
8.5.12 Miscellaneous Ebox Operand Sources 8-35 

8.5.12.1 S+PSW_EX • 8-36 
8.5.12.2 Population Counter • 8-36 
8.5.12.3 RN.MODE.OPCODE· 8-36 
8.5.12.4 PMFCNT Register • 8-37 

8.5.13 VAX Restart Bit 8-37 
8.5.14 Ebox-Mlcrosequencer Interlace 8-38 

8.5.14.1 Instruction Context Register • 8-38 
8.5.14.2 Microtest Fields • 8-39 
8.5.14.3 Miscellaneous Microsequencer Signals • 8-40 
8.5.14.4 Miscellaneous Ebox-to-Microsequencer Signals • 8-41 

8.5.15 Ebox-Ibox Interlace 8-42 
8.5.15.1 Ibox Counters • 8-43 
8.5.15.2 Source Queue • 8-43 
8.5.15.3 Destination Queue • 8-44 
8.5.15.4 Miscellaneous Queue Retire Information • 8-45 
8.5.15.5 Branch Queue • 8-46 
8.5.15.6 Operand and Branch Buses • 8-46 

DIGITAL CONFIDENTIAL xl 



Contents 

xII 

8.5.16 

8.5.17 

8.5.18 
8.5.19 

8.5.20 

8.5.21 
8.5.22 

8.5.23 
8.5.24 
8.5.25 

8.5.26 

8.5.15.7 Retire Queue • 8-47 
8.5.15.8 Field Queue • 8-48 
8.5.15.9 Retiring Instructions • 8-49 
8.5.15.10 First Part Done • 8-49 
8.5.15.11 Ebox to Ibox Commands and IPR Accesses • 8-49 
8.5.15.12 Loading The PC • ~50 
8.5.15.13 Ebox to Ibox Rush Signals • ~O 
8.5.15.14 Detecting lbox Incurred Faults and Errors • 8-51 
Ebox-Fbox Interface 
8.5.16.1 Fbox Opcode and Operand Delivery • ~2 
8.5.16.2 Fbox Result Handling • 8-53 
8.5.16.3 Fbox Store Stall • ~3 
8.5.16.4 Fbox Destination Scoreboard. • 8-54 
8.5.16.5 Fbox Fault and Error Management • ~6 
8.5.16.6 Ebox to Fbox Commands • ~6 
8.5.16.7 Summary of Fbox-Ebox Signals • ~7 
8.5.16.8 Fbox Disabled Mode • 8-58 
Ebox-Mbox Interface 
8.5.17.1 10 Read Synchronization • 8-63 
8.5.17.2 Mbox-Ebox signals • 8-84 
8.5.17.3 Ibox IPR Access and LOAD PC • 8-66 
Ebox Vector Support 
Fault and Trap Management 
8.5.19.1 Faults and Errors Detected in S4 • 8-68 
8.5.19.1 .1 Coordinating Ebox and Fbox Faults and Errors • 8-68 
8.5.19.1 .2 Breaking the S4 Stall • 8-09 
8.5.19.2 Faults and Errors detected in S3 • 8-69 
8.5.19.3 Integer Overflow and Branch Mispredict Traps • 8-69 
8.5.19.4 Ebox Microtrap Handling • 8-70 
8.5.19.5 Coincidence of Branch Mispredict Trap with other Traps • 8-70 
8.5.19.6 Possible Microtrap Requests • ~71 
8.5.19.7 Fbox Fault Reporting • ~71 
Ebox Stalls 
8.5.20.1 The STALL Microword • 8-74 
8.5.20.2 Field Queue Stall • ~75 
8.5.20.3 Ebox Stall Conditions • 8-75 
8.5.20.4 Fbox and RMUX Related Stall Conditions • 8-76 
Miscellaneous Operations 
Ebox IPRs 
8.5.22.1 IPR 7C (hex), Patchable Control Store Control Register • 8-80 
8.5.22.2 IPR 70 (hex), Ebox Control Register • 8-81 
Initialization 
Timing 
Error Detection 
8.5.25.1 S3 Stall limeout • 8-84 
8.5.25.1 .1 Testing the S3 Stalllimeout Timer • 8-86 
Testability 
8.5.26.1 Parallel Port Test Features • 8-87 
8.5.26.2 E%WBUS_H<31 :0> LFSR • 8-90 

8-52 

8-59 

8-67 
8-67 

8-72 

8-77 
8-79 

8-84 
8-84 
8-84 

8-87 

DIGITAL CONFIDENTIAL 



Contents 

8.5.27 Microcode Restrictions 8-91 
8.5.27.1 Register Access Restriction • 8-91 
8.5.27.2 FLUSH.PAQ Restriction • 8-91 
8.5.27.3 Memory access restrictions • 8-91 
8.5.27.4 Shifter Restrictions • 8-91 
8.5.27.5 SHIFT.SIGN Restriction • 8-92 
8.5.27.6 MMGT.MODE Restrictions • 8-92 
8.5.27.7 MPU Restrictions • 8-92 
8.5.27.8 Microbranch Condition Restrictions • 8-92 
8.5.27.9 Ibox IPR read restriction • 8-92 
8.5.27.10 RETIRE.lNSTRUCTION • 8-92 
8.5.27.11 VAX Restart Bit Restriction • 8-92 
8.5.27.12 Q Register Interaction With SMUL.STEP and 

UDIV.STEP • 8-92 
8.5.27.13 UDIV/SMUL Restrictions • 8-93 
8.5.27.14 F.DEST.CHECK Restrictions • 8-93 
8.5.27.15 Fbox Operand Delivery Restriction • 8-93 
8.5.27.16 RMUX control Restrictions • 8-93 
8.5.27.17 Control Bits • 8-93 
8.5.27.18 Microtrap Dispatch and RESET.CPU Restrictions • 8-93 
8.5.27.18.1 Microtrap Flows • 8-93 
8.5.27.18.2 MISC/RESET.CPU Restrictions • 8-94 
8.5.27.18.3 Asynchronous Hardware Error Microtrap Restriction • 8-94 
8.5.27.18.4 Rrst Part Done Dispatch Restriction • 8-94 
8.5.27.19 PSL Use Restrictions • 8-94 
8.5.27.20 S+PSW Restrictions • 8-96 
8.5.27.21 RN.MODE.OPCODE Restrictions • 8-96 

8.5.28 Signal Name Cross-Reference 8-97 
8.5.29 Revision History 8-99 

CHAPTER 9 THE MICROSEQUENCER 9-1 

9.1 OVERVIEW 9-1 

9.2 FUNCTIONAL DESCRIPTION 9-1 
9.2.1 Introduction 9-1 
9.2.2 Control Store 9-3 

9.2.2.1 Patchable Control Store • 9-3 
9.2.2.1.1 Loading the Patchable Control Store • 9-3 
9.2.2.2 Microsequencer Control Field of Microcode • 9-8 
9.2.2.2.1 Jump Format • 9-9 
9.2.2.2.2 Branch Format • 9-10 
9.2.2.3 M IB Latches • 9-1 0 

9.2.3 Next Address Logic 9-11 
9.2.3.1 CAL and CAL INPUT BUS • 9-11 
9.2.3.1.1 Microtest Bus • 9-12 
9.2.3.2 Microtrap Logic • 9-13 
9.2.3.2.1 Microtraps • 9-13 
9.2.3.2.2 Microtrap Request liming • 9-15 
9.2.3.2.3 Prioritization of Microtraps • 9-15 
9.2.3.2.4 Erroneous Microtrap Interruption • 9-16 
9.2.3.2.5 Microtrap Detection Abort Effects • 9-17 
9.2.3.3 Last Cycle Logic • 9-18 
9.2.3.3.1 Interrupts • 9-19 
9.2.3.3.2 Trace Fault • 9-1 9 

DIGITAL CONFIDENTIAL xiii 



Contents 

9.3 

9.4 

9.5 

9.6 

9.7 

9.2.3.3.3 First Part Done • 9-19 
9.2.3.3.3.1 Interaction with Reserved Instructions • 9-19 
9.2.3.3.4 Instruction Queue • 9-20 
9.2.3.3.4.1 Instruction Context Latches • 9-22 
9.2.3.4 Microstack • 9-22 

9.2.4 Stall Logic 

INITIALIZAnON 

MICROCODE RESTRICTIONS 

TESTABIUTY 
9.5.1 Test Address 
9.5.2 MlB Scan Chain 

SIGNAL CROSS REFERENCE 

REVISION HISTORY 

CHAPTER 10 THE INTERRUPT SECTION 

10.1 OVERVIEW 

10.2 INTERRUPT SUMMARY 
10.2.1 
10.2.2 
10.2.3 
10.2.4 
10.2.5 

External Interrupt Requests Received by Edge-SensHlve Logic 
External Interrupt Requests Received by Level-Sensltlve Logic 
Internal Interrupt Requests 
Special Considerations for Interval Timer Interrupts 
Priority of Interrupt Requests 

10.3 INTERRUPT SECTION STRUCTURE 
10.3.1 Edge Detect and Synchronization Logic 

10.3.1.1 Edge Detect Circuitry • 10-8 
10.3.1.2 Interrupt Synchronization • 10-9 

10.3.2 Interrupt State Register 
10.3.3 Interrupt Generation Logic 

10.4 EBOX MICROCODE INTERFACE 

10.5 PROCESSOR REGISTER INTERFACE 

10.6 INTERRUPT SECTION INTERFACES 
10.6.1 Ebox Interface 

10.6.1.1 Signals From Ebox • 10-14 
H)"'6.1.2 Signals To Ebox • 1 0-14 

10.6.2 M1crosequencer Interface 
10.6.2.1 Signals from Microsequencer • 10-14 
10.6.2.2 Signals To Microsequencer • 10-15 

10.6.3 Cbox Interface 
10.6.3.1 Signals From Cbox • 10-15 

10.6.4 Ibox Interface 
10.6.4.1 Signals From Ibox • 10-15 

10.6.5 Mbox Interface 
10.6.5.1 Signals From Mbox • 10-15 

10.6.6 Pin Interface 
10.6.6.1 Input Pins • 10-15 

10.6.7 Signal Dictionary 

9-24 

9-24 

9-25 

9-25 
9-25 
9-26 

9-30 

9-33 

10-1 

10-1 

10-1 
10-2 
10-2 
10-4 
10-5 
10-6 

10-8 
10-8 

10-9 
10-10 

10-12 

10-13 

10-14 
10-14 

10-14 

10-15 

10-15 

10-15 

10-15 

10-15 

xlv DIGITAL CONFIDENTIAL 



10.7 REVISION HISTORY 

CHAPTER 11 THE FBOX 

11.1 

11.2 

11.3 

11.4 

11.5 

11.6 

11.7 

11.8 

OVERVIEW 

INTRODUCTION 

FBOX FUNCTIONAL OVERVIEW 
11.3.1 
11.3.2 
11.3.3 
11.3.4 
11.3.5 
11.3.6 

Fbox Interface 
Divider 
Stage 1 
Stage 2 
Stage 3 
Stage 4 

FBOX-EBOXINTERFACE 
11.4.1 Opcode Transfers to the Fbox 
11.4.2 Operand Transfers to the Fbox 
11.4.3 SummarY of Fbox Input Stage Stall Rules 
11.4.4 Fbox Result Transfers to the Ebox 
11.4.5 Fbox Pipeline Stalls 
11.4.6 Fbox Reset and Flush 
11.4.7 Summary of Fbox-Ebox Signals 
11.4.8 Fbox Instruction Set 

DIVIDER 
11.5.1 Introduction 
11.5.2 Overview 

INTERFACE SIGNAL TIMING DIAGRAMS 

DIVIDER OPERATION 

DIVIDER IMPLEMENTATION 
11.8.1 Divider Fraction Data Path 

11 .8.1.1 Divisor Register - DVR • 11-20 
11 .8.1 .2 Divider Array • 11-20 
11.8.1.2.1 DCSA and DSEL • 11-20 
11.8.1.2.2 LAT1· 11-21 
11.8.1.2.3 R2D and DCSAF· 11-21 
11 .8.1.2.4 DFB and SHF • 11-21 
11.8.1.2.5 CPA· 11-22 
11.8.1.3 Ouotient Recoding and Quotient Registers • 11-23 
11.8.1.3.1 OS21 and OREC • 11-24 
11 .8.1.3.2 OM and OS registers • 11-24 
11.8.1.3.3 OSEL and TSF· 11-25 

11.8.2 Divider Control 
11 .8.2.1 Divider Control Blocks • 11-26 
11 .8.2.1 .1 Control Sequencer • 11-26 
11.8.2.1.2 Opcode Information Latches • 11-27 
11 .8.2.1 .3 Divider Behavior during ABORT • 11-27 
11 .8.2.1 .4 Data path Control Drivers • 11-27 
11 .8.2.2 Summary of Divider Stage Outputs • 11-27 
11 .8.2.3 Data Valid Logic • 11-28 

DIGITAL CONFIDENTIAL 

Contents 

10-17 

11-1 

11-1 

11-1 

11-2 
11-3 
11-4 
11-4 
11-4 
11-4 
11-4 

11-4 
11-5 
11-6 
11-7 
11-8 

11-10 
11-11 
11-11 
11-12 

11-15 
11-15 
11-16 

11-17 

11-17 

11-19 
11-19 

11-25 

xv 



Contents 

11.8.3 Exponent and Sign Data Path 11-28 

11.9 STAGE 1 11-28 

11.10 SECnON IMPLEMENTATION DESCRIPTION 11-29 
11.10.1 Fraction Datapath 11-29 
11.10.2 Integer Overflow - IOVF 11-31 
11.10.3 Input Selector - ISEL 11-31 
11.10.4 Adder 11-31 
11.10.5 Recoder Selector - RSEL 11-32 
11.10.6 SRECODER 11-32 
11.10.7 Multiplier 'TWo's Complement Register - MTCR<18:0> 11-32 
11.10.8 Recoder 11-32 
11.10.9 PHI_ 4 LATCHES 11-32 
11.10.10 Recoder Register - MRECR[0:6]<5:0> 11-33 
11.10.11 Multiplier Initial Partial Product Selector and Register - MlPPR 11-33 
11.10.12 Multiplier Row 1 Selector and Register - MRW1 R 11-33 
11.10.13 Multiplier Row 2 Selector and Register - MRW2R 11-33 
11.10.14 Selector and Register - FD1 R 11-33 
11.10.15 Selector and Register - FD2R 11-33 

11.11 EXPONENT DATAPATH 11-35 
11.11.1 Stage 1 Exponent Processor Block diagram 11-35 
11.11.2 Exponent Adders 11-36 
11.11.3 Constants 11-36 
11.11.4 Zero Detection 11-37 
11.11.5 Exponent Adder 1 11-37 
11.11.6 Exponent Adder 2 11-37 
11.11.7 Exponent Difference Detection 11-38 
11.11.8 Output Selector 11-38 

11.12 SIGN DATAPATH 11-39 

11.13 STAGE 1 CONTROL 11-39 
11.13.1 Divide Instruction 11-39 

11.14 FRACTION DATAPATH OPERATION SUMMARY 11-40 

11.15 FRACTION DATAPATH EXCEPTION SUMMARY 11-40 

11.16 EXPONENT DATAPATH OPERATION SUMMARY 11-42 

11.17 EXPONENT DATAPATH EXCEP110N SUMMARY 11-43 
11.17.1 Passthru Signals 11-43 

11.18 STAGE 2 11-44 
11.18.1 Introduction 11-44 
11.18.2 MUL Instruction Flows 11-44 

11.19 STAGE 2 IMPLEMENTATION DESCRIPTION 11-47 
11.19.1 Fraction Datapath 11-47 
11.19.2 MSEL - Multiplier Selector 11-49 
11.19.3 MROW1 - Multiplier Row 1 11-49 
11.19.4 MROW2 - Multiplier Row 2 11-50 
11.19.5 MARRAY - Multiplier Array 11-50 

xvi DIGITAL CONFIDENTIAL 



Contents 

11.19.6 MILSBSR<S:O> - Multiplier Integer LSB Sum Register 11-50 
11.19.7 MILSBCR<4:0> - Multiplier Integer LSB Carry Register 11-51 
11.19.8 RSHIFT - Right Shifter 11-51 
11.19.9 RSHFTOR<AO:B58> - Right Shifter Output Register 11-51 
11.19.10 SDEC - Shift Decoders 11-51 
11.19.11 SDECOR<57:0> - Shift Decoder Output Register 11-51 
11.19.12 DETL - Detection Logic 11-52 
11.19.13 DETLOR<BO:B57> - Detection Logic Output Register 11-52 
11.19.14 L 1 DETL - Leading 1 Detection Logic 11-52 
11.19.15 LSSEL - Left Shift Selector 11-52 
11.19.16 LSENC - Left Shift Encoder 11-53 
11.19.17 LSHR<57:0> - Left Shifter Control Register 11-53 
11.19.18 FD1 SEL - Fraction Data 1 Selector 11-53 
11.19.19 FD1 R<AO:B58> - Stage 2 Fraction Data 1 Register 11-53 
11.19.20 FD2R<AO:B58> - Stage 2 Fraction Data 2 Register 11-53 
11.19.21 Exponent Datapath 11-54 
11.19.22 Zero Detection 11-54 
11.19.23 Exponent Adder 1 11-55 
11.19.24 Floating Overflow and Underflow Detection 11-55 
11.19.25 Output Selector 11-55 
11.19.26 ED2R<5:0> - Exponent Data 2 Register 11-55 
11.19.27 Sign Datapath 11-56 
11.19.28 Control 11-57 

11.19.28.1 Datapath Control Signals Output from Control Block • 11-58 
11.19.29 Stage 2 Fraction Datapath Operation Summary 11-60 
11.19.30 Passthru Signals 11-62 

11.20 STAGE 3 11-63 
11.20.1 Introduction 11-63 
11.20.2 Stage 4 Bypass 11-63 

11.20.2.1 Stage 4 Bypass Request • 11-64 
11.20.2.2 Stage 4 Bypass Abort • 11-64 
11.20.2.3 Stage 3 Response to FBOX Purge • 11-64 

11.20.3 Section Implementation Description 11-64 
11.20.3.1 Block Diagrams • 11-65 

11.20.4 Fraction Datapath 11-69 
11.20.4.1 Normalizer Input Selection • 11-69 
11.20.4.2 Left Shifter • 11-69 
11.20.4.3 Adder Input Selection • 11-70 
11.20.4.4 Adder • 11-70 
11.20.4.5 Mini-Round Incrementers • 11--72 
11.20.4.6 Output Selector • 11-72 
11.20.4.7 Fraction Datapath Operation Summary (Normal Operating 

Mode): • 11-73 
11.20.5 Exponent Datapath 11-74 

11.20.5.1 Constants • 11-74 
-11.20.5.2 Zero Detection • 11-74 
11.20.5.3 Exponent Adder 1 • 11-75 
11.20.5.4 Output Selector • 11-75 
11.20.5.5 Exponent Datapath Operation Summary (Normal Operating 

Mode): • 11-77 
11.20.6 Sign Datapath 11-77 

DIGITAL CONFIDENTIAL xvii 



Contents 

11.20.7 

11.21 STAGE 4 

Control 
11.20.7.1 
11.20.7.2 
11.20.7.3 
11.20.7.4 
11.20.7.5 
11.20.7.6 
11.20.7.7 
11.20.7.8 
11.20.7.9 
11.20.7.10 
11.20.7.11 

11.22 FRACTION DATAPATH 

Miscellaneous Control Signals • 11-78 
Oata_ Valid • 11-78 
Fault Bits and NEW_FOP • 11-78 
Signs_NoCEql, Fb_Neg4 • 11-79 
Integer Overflow Logic • 11-79 
Cin_BSS • 11-80 
SeL Other • 11-80 
Left Shifter Input Selection Signals • 11-80 
Osel1_Zero • 11-81 
0se11_Ed1r • 11-81 
MULL Adder • 11-81 

11.22.1 Fraction Implementation Descrl ptlon 
11.22.2 Fraction Operation 

11.23 EXPONENT DATAPATH 
11.23.1 Exponent Block Description 
11.23.2 Exponent Operation 
11.23.3 Floating Overflow and Underflow Detection 
11.23.4 Output Selector 

11.24 CONTROL 
11.24.1 Control Block Description 
11.24.2 Control Block Implementation 

11.25 MISCELLANEOUS AND SIGN LOGIC 
11.25.1 Miscellaneous Sign Logic Implementation 
11.25.2 Sign and Negative Result Logic 
11.25.3 Integer Overflow 
11.25.4 Zero Result 
11.25.5 Reserved Operand 
11.25.6 Floating Divide by Zero 

11.26 FBOX TESTABIUTY 

11-77 

11-$1 

11-$2 
11-$3 
11-84 

11-86 
11-$7 
11-$7 
11-$7 
11-$8 

11-90 
11-90 
11-90 

11-91 
11-91 
11-92 
11-93 
11-95 
11-96 
11-96 

11-97 
11.26.1 FBOX_ Test Control Signals 11-97 
11.26.2 FBOX_ Test Mode Description 11-97 

11.26.2.1 FBOX Section Operation During FBOX_ Test Mode • 11-97 
11.26.3 Revision History 11-99 

CHAPTER 12 THE MBOX 12-1 

12-1 

12-2 
12-6 
12-8 
12-9 

xvIII 

12.1 INTRODUCTION 

12.2 MBOX STRUCTURE 
12.2.1 IREF _LATCH 
12.2.2 SPEC_QUEUE 
12.2.3 EM_LATCH 
12.2.4 
12.2.5 
12.2.6 
12.2.7 

VAP_LATCH 
MME_LATCH 
RTY _OMISS_LATCH 
CBOX_LATCH 

12-11 
12-12 
12-14 
12-16 

DIGITAL CONFIDENTIAL 



Contents 

12.2.8 PA_QUEUE 12-17 
12.2.9 TB 12-18 
12.2.10 MME_DATAPATH 12-18 
12.2.11 ARBITRATION LOGIC 12-18 
12.2.12 S6_PIPELATCH 12-18 
12.2.13 DMISS_LATCH and IMISS_LATCH 12-19 
12.2.14 MD _BUS_ROTATOR 12-20 
12.2.15 Pcache 12-21 

12.3 REFERENCE PROCESSING 12-23 
12.3.1 REFERENCE DEFINITIONS 12-23 
12.3.2 SIMPLE MBOX PIPELINE FLOW 12-24 
12.3.3 REFERENCE ORDER RESTRICTIONS 12-25 

12.3.3.1 No D-stream hits under O-stream misses • 12-26 
12.3.3.2 No I-stream hits under I-stream misses • 12-26 
12.3.3.3 Maintain the order of writes • 12-27 
12.3.3.4 Maintain the order of Cbox references • 12-27 
12.3.3.5 Preserve the order of Ibox reads relative to any pending Ebox 

writes to the same quadword address • 12-27 
12.3.3.6 110 Space Reads from the Ibox must only be executed when 

the Ebox is executing the corresponding instruction • 12-27 
12.3.3.7 Reads to the same Pcache block as a pending read/fill 

operation must be inhibited • 12~8 
12.3.3.8 Writes to the same Pcache block as a pending readltill 

operation must be inhibited until the readlfill operation 
completes • 12-28 

12.3.4 REFERENCE ARBITRATION 12-28 
12.3.4.1 Arbitration Priority • 12~8 
12.3.4.2 Arbitration Algorithm • 12-29 

12.3.5 READS 12-30 
12.3.5.1 Generic Read-hit and Read-miss/Cache_fili 

Sequences • 12-30 
12.3.5.1.1 Returning Read Data • 12-31 
12.3.5.1.1.1 Pcache Data Bypass • 12-31 
12.3.5.2 I-stream Read Processing • 12-31 
12.3.5.2.1 I-stream Read Hits • 12-31 
12.3.5.2.2 I-stream Read Misses • 12-32 
12.3.5.2.3 1/0 Space I-stream Reads • 12--32 
12.3.5.3 D-stream Read Processing • 12--32 
12.3.5.3.1 Reads under Rlls • 12--33 
12.3.5.4 110 Space Reads • 12-33 

12.3.6 WRITES 12-34 
12.3.6.1 Destination Specifier Writes • 12-35 
12.3.6.2 Explicit Writes • 12-36 
12.3.6.3 Writes to 110 Space • 12--36 
12.3.6.4 Byte Mask Generation • 12-36 

12.3.7 IPR PROCESSING 12-37 
12.3.7.1 MBOX IPRs • 12-37 
12.3.7.2 Hardware MBOX IPR Format • 12-46 
12.3.7.3 IPR Reads • 12-47 
12.3.7.3.1 Mbox IPR Reads • 12-48 
12.3.7.3.2 Non-Mbox IPR Reads • 12-48 
12.3.7.4 IPR WRITES • 12-48 
12.3.7.4.1 Mbox IPR Writes • 12-48 

DIGITAL CONFIDENTIAL xix 



Contents 

12.4 

xx 

12.3.8 
12.3.9 
12.3.10 
12.3.11 

12.3.12 

12.3.13 
12.3.14 
12.3.15 
12.3.16 
12.3.17 

12.3.18 

12.3.19 

12.3.20 
12.3.21 

12.3.7.4.2 Non-Mbox IPR Writes • 12-49 
LOAD_PC 
INVALIDATES 
CACHE FILL COMMANDS 
MME CHECK COMMANDS 
12.3.11.1 MME_CHK· 12-50 
12.3.11.2 PROBE· 12-50 
TB Fills 
12.3.12.1 TB Tag Rlls • 12-51 
12.3.12.2 TB PTE Rlls • 12-52 
TBIS 
TBIP 
TBIA 
STOP_SPEC_Q 
UNALIGNED REFERENCES 
12.3.17.1 Unaligned Reads • 12-56 
12.3.17.2 Unaligned Writes • 12-56 
12.3.17.3 Byte Mask Generation for Unaligned Writes • 12-57 
12.3.17.4 Unaligned Destination Specifier Writes • 12-58 
12.3.17.5 Implication of Ebox unaligned references on 

M%EM_LAT_FUU._H • 12-58 
ABORTING REFERENCES 
12.3.18.1 Conditions for Aborting References • 12-59 
12.3.18.1.1 Aborting to Maintain Reference Order Restrictions • 12-59 
12.3.18.1.2 Aborting due to lack of hardware resources • 12-62 
12.3.18.1.3 Aborting due to memory management operation • 12-63 
12.3.18.1.4 Aborting due to an external flush condition • 12-63 
MBOX PIPELINE DEADLOCK AVOIDANCE SCENARIOS 
12.3.19.1 Unaligned Reference Deadlock Condition • 12-04 
12.3.19.2 READ_LOCKlWRITE_UNLOCK Deadlock Condition • 12-64 
THESPEC_Q_SYNC_CTR 
FLUSHING REFERENCES FROM THE MBOX PIPE 
12.3.21.1 Ibox Rushes • 12-66 
12.3.21.2 Ebox Rushes • 12-67 
12.3.21 .2.1 Rushing due to E%EM_ABORT _L • 12-67 
12.3.21 .2.2 Rushing due to E%FLUSH_MBOX_H • 12-67 
12.3.21.2.3 Ebox Rushing of the PA_ QUEUE • 12-68 

THE PCACHE 
12.4.1 PCCTL 
12.4.2 Pcache HltlMiss Determination 

12.4.2.1 HitlMiss Determination by Tag Comparison • 12-72 
12.4.2.2 Conditions which force Pcache Miss • 12-72 
12.4.2.3 Conditions which force Pcache Hit • 12-73 

12.4.3 Pcache Read Operation 
12.4.4 Peaehe Write Operation 
12.4.5 Pcache Replacement Algorithm 
12.4.6 Pcache Fill Operation 
12.4.7 Pcache Invalidate Operation 
12.4.8 PcachelPRAecess 
12.4.9 Peache IPR Summary 
12.4.10 Pcache States Resulting In UNPREDICTABLE operation 
12.4.11 Pcache Redundancy Logie 

12-49 
12-49 
12-50 
12-50 

12-51 

12-54 
12-54 
12-55 
12-55 
12-55 

12-58 

12-63 

12-65 
12-66 

12-70 
12-71 
12-72 

12-73 
12-74 
12-74 
12-74 
12-75 
12-75 
12-76 
12-77 
12-71 

DIGITAL CONFIDENTIAL 



12.5 

12.6 

MEMORY MANAGEMENT 
12.5.1 NVAX MEMORY STRUCTURE 

12.5.1.1 Virtual Address Space • 12-80 
12.5.1.2 Physical Address Spaces • 12-81 
12.5.1.2.1 Physical Address Space Mappings • 12-81 
12.5.1.3 ADDRESS TRANSLATION AND THE TB • 12-83 
12.5.1.4 30-bit to 32-bit Physical Address Translations • 12-85 
12.5.1.5 MEMORY MANAGEMENT EXCEPTIONS • 12-85 
12.5.1.5.1 MME_DATAPATH • 12-85 
12.5. 1.5.1. 1 MME Register File • 12-86 
12.5. 1.5.1.2 MME ALU • 12-87 
12.5.1.5.1.3 MME_SEQ· 12-88 
12.5.1.5.2 TB MISS SEQUENCE • 12-91 
12.5.1.5.2.1 Single Miss Sequence • 12-91 
12.5.1.5.2.2 Double Miss Sequence • 12-92 
12.5.1.5.3 ACVITNVIM=O • 12-93 
12.5.1.5.3.1 ACVITNVIM=O Fault Handling: • 12-93 
12.5.1.5.3.2 ACV detection: • 12-94 
12.5. 1.5.3.3 TNV detection • 12-94 
12.5.1.5.3.4 M=O detection: • 12-95 
12.5.1.5.3.5 Recording ACVITNVIM=O Faults • 12-95 
12.5.1.5.3.6 ACVITNVIM=O MME_DATAPATH Sequence • 12-97 
12.5.1.5.3.7 Microcode Invocation of ACVITNVIM=O • 12-98 
12.5.1.5.3.8 Microcode Processing of ACVITNVIM=O: • 12-99 
12.5.1.5.3.9 Pipeline Implications of ACVITNVIM=D condition • 12-100 
12.5.1.5.3.9.1 Pipeline Effects for MME Faults on Write 

References • 12-100 
12.5.1.5.3.9.2 Pipeline Effects for MME Faults on Read 

References • 12-100 
12.5. 1.5.3.9.3 Pipeline Effects of E%A.USH_MBOX_H on MME State • 12-100 
12.5.1.5.3.9.4 Pipeline Effects ofE%FLUSH_MBOX_H on "'''''ME_TRAP_L • 12-101 
12.5.1.5.4 Cross Page Sequence • 12-102 

MBOX ERROR HANDLING 
12.6.1 
12.6.2 

12.6.3 

12.6.4 

12.6.5 

Types of Errors Handled 
T8 parity error detection 
12.6.2.1 TB tag parity error detection • 12-103 
12.6.2.2 TB data parity error detection • 12-104 
Pcache parity error detection 
12.6.3.1 Pcache tag parity error detection • 12-104 
12.6.3.2 Pcache data parity error detection • 12-105 
Recording Mbox errors 
12.6.4.1 TBSTS and TBADR • 12-106 
12.6.4.2 PCSTS and PCADR • 12-107 
Mbox Error Processing 
12.6.5.1 Processing TB parity errors • 12-108 
12.6.5.2 Processing Pcache parity errors • 12-109 
12.6.5.3 Processing Cbox errors on Mbox-initiated read-like 

sequences • 12-110 
12.6.5.3.1 Cbox-detected ECC errors • 12-110 
12.6.5.3.2 Cbox-detected hard errors on requested fill data • 12-110 
12.6.5.3.3 Cbox-detected hard errors on non-requested fill 

data • 12-111 

DIGITAL CONFIDENTIAL 

Contents 

12-79 
12-80 

12-103 
12-103 
12-103 

12-104 

12-105 

12-108 

xxi 



Contents 

12.6.5.3.4 Microcode Invocation on Cbox-detected Hard 
Errors • 12-111 

12.6.5.4 Mbox Error Processing Matrix • 12-112 

12.7 MBOX INTERFACES 12-116 
12.7.1 IBOX INTERFACE 12-116 

12.7.1.1 Signals from lbox • 12-116 
12.7.1.2 Signals to lbox • 12-116 

12.7.2 EBOX INTERFACE 12-117 
12.7.2.1 Signals from Ebox • 12-117 
12.7.2.2 Signals to Ebox • 12-117 

12.7.3 INTERRUPT SECnON INTERFACE 12-118 
12.7.3.1 Signals to Interrupt Section • 12-118 

12.7.4 USEQINTERFACE 12-118 
12.7.4.1 Signals to Useq • 12-118 

12.7.5 CBOX INTERFACE 12-118 
12.7.5.1 Signals from Cbox • 12-118 
12.7.5.2 Signals to Cbox • 12-119 

12.8 INITIALIZATION 12-120 
12.8.1 Power-up Initialization 12-120 
12.8.2 Initialization by Microcode and Software 12-120 

12.8.2.1 Pcache Initialization • 12-121 
12.8.2.2 Memory Management Initialization • 12-121 

12.9 MBOX TESTABIUTY FEATURES 12-122 
12.9.1 Internal Scan Register and Data Reducers 12-122 
12.9.2 Nodes on Parallel Port 12-123 
12.9.3 Nodes on Top Metal 12-124 
12.9.4 Architectural features 12-124 

12.9.4.1 Translation Buffer Testability • 12-124 
12.9.4.2 Pcache Testability • 12-125 

12.9.5 M-BOX Miscellaneous Features 12-125 

12.10 MBOX PERFORMANCE MONITOR HARDWARE 12-126 
12.10.1 TB hit rate Performance Monitor Modes 12-126 

12.10.1.1 TB hit rate for PO/P1 I-stream Reads • 12-127 
12.10.1.2 TB hit rate for POIP1 D-stream Reads • 12-127 
12.10.1.3 TB hit rate for SO I-stream Reads • 12-127 
12.10.1.4 TB hit rate for SO D-stream Reads • 12-127 

12.10.2 Pcache hit rate Performance Monitor Modes 12-127 
12.10.2.1 Pcache hit rate for I-stream Reads • 12-127 
12.10.2.2 Pcache hit rate for D-stream Reads • 12-128 

12.10.3 Unaligned reference statistics 12-128 

12.11 MBOX SIGNAL NAME CROSS-REFERENCE 12-129 

12.12 REVISION HISTORY 12-132 

xxII DIGITAL CONFIDENTIAL 



Contents 

CHAPTER 13 THECBOX 13-1 

13.1 TERMINOLOGY 13-1 

13.2 FUNCTIONAL OVERVIEW OF THE CBOX AND BACKUP CACHE 13-1 
13.2.1 The Cbox and the System 13-2 
13.2.2 Wrlteback Cache and Ownership Concepts 13-3 
13.2.3 Backup Cache Operating Modes 13-3 

13.3 NVAX BACKUP CACHE ORGANIZATION AND INTERFACE 13-4 
13.3.1 Backup Cache Interface 13-10 

13.3.1.1 POkTS_INDEX_H<20:S> • 13-10 
13.3.1.2 POkTS_OE_L • 13-11 
13.3.1.3 POkTS_WE_L • 13-11 
13.3.1.4 POkTS_TAG_H<31 :17> • 13-11 
13.3.1.5 POkTS_ECC_H<S:O> • 13-12 
13.3.1.6 POkTS_OWNED_H • 13-12 
13.3.1.7 POkTS_VALlD_H • 13-12 
13.3.1.8 POkDR_INDEX_H<20:3> • 13-12 
13.3.1.9 POkDR_OE_L • 13-13 
13.3.1.10 POkDR_WE_L • 13-13 
13.3.1.11 POkDR_DATA_H<63:0> • 13-13 
13.3.1.12 P%DR_ECC_H<7:0> • 13-13 

13.3.2 Backup Cache Block Diagrams 13-14 

13.4 THE CBOX DATAPATH 13-19 
13.4.1 Mbox Interface 13-24 

13.4.1.1 Mbox to Cbox Transactions • 13-26 
13.4.1.1.1 The IREAD_LATCH and the DREAD_LATCH • 13-26 
13.4.1.1.2 WRITE_PACKER and WRITE_QUEUE • 13-27 
13.4.1.2 Cbox to Mbox Transactions • 13-30 
13.4.1.2.1 CM_OUT_LATCH • 13-32 
13.4.1.2.2 FILL_DATA_PIPE1 and FILL_DATA_PIPE2 • 13-33 
13.4.1.2.3 IREAD Aborts • 13-35 

13.4.2 ECC Datapaths 13-36 
13.4.2.1 Backup Cache Tag Store ECC • 13-36 
13.4.2.2 Backup Cache Data Store ECC • 13-39 

13.4.3 The BIU 13-42 
13.4.3.1 NDAL_IN_QUEUE • 13-42 
13.4.3.2 NON_WRITEBACK_QUEUE· 13-44 
13.4.3.3 WRITEBACK_ QUEUE • 13-44 
13.4.3.4 limeout counters • 13-46 
13.4.3.5 BIU clocking: Relating internal cycles to external 

cycles • 13-50 
13.4.4 The FILL_CAM 13-53 

13.4.4.1 Block-conflict in the FILL_CAM • 13-54 
13.4.4.2 The FILL_CAM and DREAD_LOCKs • 13-54 

13.5 CBOX INTERNAL PROCESSOR REGISTERS 13-56 

DIGITAL CONFIDENTIAL xxiii 



Contents 

xxiv 

13.5.1 

13.5.2 
13.5.3 

13.5.4 

13.5.5 

Cbox Control IPR (CCTL) 
13.5.1.1 ENABLE • 1~2 
13.5.1.2 TAG_SPEED • 13-62 
13.5.1.3 DATA_SPEED • 13-62 
13.5.1.4 SIZE • 13-63 
13.5.1.5 FORCE_HIT • 13-63 
13.5.1.6 DISABLE_ERRORS • 13-63 
13.5.1.7 SW_ECC • 13-63 
13.5.1.8 TIMEOUT_TEST • 13-64 
13.5.1.9 DISABLE_PACK • 13-64 
13.5.1.1 0 PM~CCESS _TYPE • 13-64 
13.5.1.11 PM_HIT_TYPE· 13-64 
13.5.1.12 FORCE_NDAL_PERR· 13-64 
13.5.1.13 SW_ETM· 13-64 
13.5.1.14 HW_ETM· 13-64 
IPR A2 (hex), BCDECC 
Backup Cache Tag Store Error Registers (BCETSTS, BCETIDX, 
BCETAG) 
13.5.3.1 
13.5.3.1.1 
13.5.3.1.2 
13.5.3.1.3 
13.5.3.1.4 
13.5.3.1.5 
13.5.3.1.6 
13.5.3.2 
13.5.3.3 
13.5.3.3.1 
13.5.3.32 
13.5.3.3.3 
13.5.3.3.4 

Beache Error Tag Status (BCETSTS) • 13-66 
LOCK • 13-67 
CORR ·1~7 
UNCORR • 13-67 
BAD _ADDR • 13-67 
LOST_ERR • 13-08 
TS_CMD • 13-68 

8cache Error Tag Index (BCETIDX) • 13-68 
Beaehe Error Tag (BCETAG) • 13-69 

VALID • 13-70 
OWNED • 13-70 
ECC • 13-70 
TAG • 13-70 

Backup Cache Data RAM Error Registers (BCEDSTS, BCEDIDX, 
BCEDECC) 
13.5.4.1 Beache Error Data Status (BCEDSTS) • 13-71 
13.5.4.1.1 LOCK • 13-72 
13.5.4.1.2 CORR • 13-72 
13.5.4.1.3 UNCORR • 13-72 
13.5.4.1.4 BAD_ADDR • 13-72 
13.5.4.1.5 LOST_ERR • 13-73 
13.5.4.1.6 DR_CMD • 13-73 
13.5.4.2 Beaehe Error Data Index (BCEDIDX) • 13-73 
13'.5.4.3 Beaehe Error Data ECC (BCEDECC) • 13-74 
Fill Error Registers (CEFADR, CEFSTS) 
13.5.5.1 Cbox Error Fill Status (CEFSTS) • 13-76 
13.5~5.1 .1 RDLK • 13-77 
13.5.5.12 LOCK • 13-77 
13.5.5.1.3 TIMEOUT • 13-77 
13.5.5.1 .4 ROE • 13-78 
13.5.5.1.5 LOST_ERR • 13-78 
13.5.5.1.6 100 • 13-78 
13.5.5.1.7 IREAD • 13-78 
13.5.5.1.8 OREAD • 13-78 
13.5.5.1.9 WRITE • 13-78 
13.5.5.1.10 TO_MBOX· 13-78 

13-61 

13-65 

13-66 

13-71 

13-76 

DIGITAL CONFIDENT.AL 



13.5.6 

13.5.7 

13.5.8 

13.5.5.1.11 RIP • 13-78 
13.5.5.1.12 OIP· 13-78 
13.5.5.1.13 DNF· 13-79 
13.5.5.1.14 RDLK_FL_DONE· 13-79 
13.5.5.1.15 REO_Flll_DONE· 13-79 
13.5.5.1.16 COUNT· 13-79 
13.5.5.1.17 UNEXPECTED_FilL· 13-79 
13.5.5.2 Fill Error Address (CEFADR) • 13-79 
NDAL Error Registers (NESTS, NEOADR, NEOCMD, NEDATHI, 
NEDATLO, NEICMD) 
13.5.6.1 NDAl Error Status IPR (NESTS) • 13-81 
13.5.6.1.1 NOACK • 13-82 
13.5.6.1.2 BADWDATA • 13-82 
13.5.6.1.3 LOST _ OERR • 13-82 
13.5.6.1.4 PERR • 13-82 
13.5.6.1.5 INCON_PERR • 13-83 
13.5.6.1.6 LOST _PERR • 13-83 
13.5.6.2 NDAL Error Output Address IPR (NEOADR) • 13-83 
13.5.6.3 NDAL Error Output Command (NEOCMD) • 13-83 
13.5.6.4 NDAL Error Input Command (NEICMD) • 13-84 
13.5.6.4.1 PARITY • 13-85 
13.5.6.4.2 10 • 13-85 
13.5.6.4.3 CMD • 13-85 
13.5.6.5 NDAL Error Data High and NDAL Error Data Low (NEDATHI 

and NEDATLO) • 13-85 
Backup Cache Tag Store Access Through IPR Reads and Writes 
(BCTAG) 
Backup cache deallocates through IPR access (BCFLUSH) 

13.6 CBOX CONTROL DESCRIPTION 

13.7 TRANSACTION DESCRIPTIONS 
13.7.1 
13.7.2 
13.7.3 
13.7.4 
13.7.5 
13.7.6 
13.7.7 
13.7.8-
13.7.9 

IPR Reads and IPR Writes 
I/O Space 
Clear Write Buffer 
Memory Read Hit 
Read Miss and Fill 
Write Hit 
Write Miss 
Deallocates Due to CPU Reads and Writes 
DREAD_LOCK and WRITE_UNLOCK 

13.8 CACHE COHERENCY 

13.9 ABNORMAL CONDITIONS 
13.9.1 Cbox Behavior When the Backup Cache is OFF 
13.9.2 Cbox Behavior When the Backup Cache is In FORCE_HIT Mode 
13.9.3 Cbox Behavior When the Backup Cache Is In Error Transition Mode 
13.9.4 Cbox transition Into Error Transition Mode 
13.9.5 
13.9.6 
13.9.7 
13.9.8 
13.9.9 

DIGITAL CONFIDENTIAL 

How to turn the Bcache off 
How to turn the Bcache on 
Assertion of POkCPU_WB_ONLY_L 
Backup Cache Errors 
Backup Cache Errors Incurred While In Error Transition Mode 

Contents 

13-81 

13-87 
13-89 

13-90 

13-94 
13-94 
13-94 
13-94 
13-96 
13-97 
13-97 
13-98 
13-98 
13-98 

13-99 

13-101 
13-103 
13-104 
13-104 
13-106 
13-108 
13-108 
13-109 
13-111 
13-114 

xxv 



Contents 

13.9.10 NDAL Parity Errors 

13.10 TESTABILITY 
13.10.1 
13.10.2 

Parallel port 
Internal scan chain 

13.11 PERFORMANCE MONITORING 

13.12 INITIALIZATION 

13.13 CBOX INTERFACES 

13.14 RESOLVED ISSUES 

13.15 NVAX CBOX SIGNAL NAME CROSS-REFERENCE 

13.16 REVISION HISTORY 

13-114 

13-115 
13-115 
13-116 

13-118 

13-119 

13-120 

13-124 

13-125 

13-128 

CHAPTER14 VECTOR INTERFACE 14-1 

14-1 

14-4 

14.1 

14.2 

DESCRIPTION 

REVISION HISTORY 

CHAPTER 15 ERROR HANDLING 15-1 

xxvi 

15.1 TERMINOLOGY 15-1 

15.2 ERROR HANDLING INTRODUCnON AND SUMMARY 15-1 

15.3 ERROR HANDLING AND RECOVERY 15-3 
15.3.1 Error State Collection 15-3 
15.3.2 Error Analysis 15-7 
15.3.3 Error Recovery 15-8 

15.3.4 

15.3.3.1 Special Considerations for Cache and Memory Errors • 15-9 
15.3.3.1.1 Cache Coherence in Error Handling • 15-10 
15.3.3.1.1.1 Cache Enable, Disable, and Flush Procedures • 15-10 
15.3.3.1.1.1.1 Disabling the NVAX Caches for Error Handling (Leaving the 

Bcache in ETM) • 15-11 
15.3.3. 1.1.1.2 Flushing and Disabling the Bcache • 15-11 
15.3.3.1.1.1.3 Enabling the NVAX Caches • 15-11 
15.3.3.1.2 Special Writeback Cache Recovery Situations and 

Procedures • 15-12 
15.3.3.1.2.1 Bcache Uncorrectable Error During Writeback • 15-12 
15.3.3.1.2.2 Memory State • 15-12 
15.3.3.1.2.2.1 Accessing Memory State • 15-13 
15.3.3.1.2.2.2 Repairing Memory State (Fill Errors) • 15-13 
15.3.3.12.2.3 Repairing Memory State (Tagged-Bad Locations) • 15-14 
15.3.3.1.2.3 Extracting Data from the Bcache • 15-14 
15.3.3.12.4 Address Determination Procedure for Recovery from 

Uncorrectable Bcache Data RAM Errors • 15-15 
15.3.3.1.2.5 Special Address Determination Procedure for Recovery 

from Uncorrectable Bcache Tag Store Errors • 15-15 
15.3.3.1.3 Cache and TB Test Procedures • 15-16 
Error Retry 
15.3.4.1 General Multiple Error Handling Philosophy • 15-17 
15.3.4.2 Retry Special Cases • 15-18 

15-17 

DIGITAL CONFIDENTIAL 



Contents 

15.4 CONSOLE HALT AND HALT INTERRUPT 15-19 

15.5 MACHINE CHECKS 15-22 
15.5.1 Machine Check Stack Frame 15-22 
15.5.2 Events Reported Via Machine Check Exceptions 15-24 

15.5.2.1 MCHK_UNKNOWN_MSTATUS • 15-33 
15.5.2.2 MCHK_INT.ID_ VALUE • 15-33 
15.5.2.3 MCHK_CANT_GET_HERE • 15-33 
15.5.2.4 MCHK_MOVC.STATUS • 15-33 
15.5.2.5 MCHK_ASYNC_ERROR • 15-34 
15.5.2.5.1 TB Parity Errors • 15-34 
15.5.2.5.2 Ebox S3 Stall Timeout Error • 15-34 
15.5.2.6 MCHK_SYNC_ERROR • 15-35 
15.5.2.6.1 VIC Parity Errors • 15-36 
15.5.2.6.2 Bcache Data RAM Uncorrectable ECC Errors and 

Addressing Errors • 15-36 
15.5.2.6.3 Bcache Lost Data RAM Access Error • 15-37 
15.5.2.6.4 NDAL I-Stream or D-Stream Read or D-Stream Ownership 

Read Timeout Errors • 15-37 
15.5.2.6.5 NDAL I-Stream or D-Stream Read or D-Stream Ownership 

Read Data Errors • 1 5-39 
15.5.2.6.6 Lost Bcache Fill Error • 15-41 
15.5.2.6.7 Unacknowledged NDAL I-Stream or D-Stream Read or 

D-Stream Ownership Read • 15-41 
15.5.2.6.8 Lost NDAL Output Error • 15-42 
15.5.2.6.9 PTE read errors • 15-43 
15.5.2.6.9.1 PTE Read Errors in Interruptable Instructions • 15-43 
15.5.2.6.9.2 Bcache Data RAM Uncorrectable EGG Errors and 

Addressing Errors on PTE Reads • 15-44 
15.5.2.6.9.3 NDAL PTE Read Timeout Errors • 15-45 
15.5.2.6.9.4 NDAL PTE Read Data Errors • 15-46 
15.5.2.6.9.5 Unacknowledged NDAL PTE Read • 15-47 
15.5.2.6.9.6 Multiple Errors Which interfere with Analysis of PTE Read 

Error· 15-47 
15.5.2.7 Inconsistent Status in Machine Check Cause Analysis • 15-47 

15.6 POWER FAIL INTERRUPT 15-48 

15.7 HARD ERROR INTERRUPTS 15-49 
15.7.1 Events Reported Via Hard Error Interrupts 15-49 

15.7.1.1 Uncorrectable Data Errors and Addressing Errors During Write 
or Write-Unlock Processing • 15-51 

15.7.1.2 Lost Bcache Data RAM Hard Errors • 15-53 
15.7.1.3 Bcache Timeout or Read Data Error in Quadword OREAD RII 

After Write Data Merged • 15-53 
15.7.1.3.1 Unexpected RII Error • 15--54 
15.7.1.3.2 Lost Bcache RII Error • 15-54 
15.7.1.4 NDAL No-ACK During WRITE or WDISOWN • 15-55 
15.7.1.5 Lost NDAL No-ACK Hard Errors • 15-55 
15.7.1.6 System Environment Hard Error Interrupts • 15-55 
15.7.1.7 Inconsistent Status in Hard Error Interrupt Cause 

Analysis • 15-56 

15.8 SOFT ERROR IN'rERRUPTS 15-57 

DIGITAL CONFIDENTIAL xxvii 



Contents 

15.9 

15.10 

15.11 

15.12 

xxvIII 

15.8.1 Events Reported Via Soft Error Interrupts 15-57 
15.8.1.1 VIC Parity Errors • 15-69 
15.8.1.2 Pcache Parity Errors • 15-69 
15.8.1.3 Bcache Tag Store Uncorrectable Errors • 15-69 
15.8.1.3.1 Case: BCETSTS<TS_CMD>=WUNLOCK • 15-70 
15.8.1.3.2 Case: 

BCETSTS<TS_CMD>=DREAD,IREAD,OREAD • 15-70 
15.8.1.3.3 
15.8.1.4 
15.8.1.5 
15.8.1.6 
15.8.1.7 
15.8.1.8 
15.8.1.9 

Case: BCETSTS<TS_CMD>=R_INVAL,O_INVAL,IPR_DEALLOCATE • 15-] 
Lost Bcache Tag Store Errors • 15-71 
Bcache Tag Store Correctable ECC errors • 15-71 
Lost Bcache Tag Store Correctable ECC errors • 15-72 
Bcache Data RAM Correctable ECC Errors • 15-72 
Lost Bcache Data RAM Correctable ECC Errors • 15-72 
Bcache Data RAM Uncorrectable ECC Errors and Addressing 
Errors on I-Stream or D-Stream Reads • 15-73 

15.8.1.10 Bcache Data RAM Uncorrectable ECC Errors and Addressing 
Errors on Writebacks • 15-73 

15.8.1.11 Lost Bcache Data RAM Errors With Possible Lost 
Writebacks • 15-74 

15.8.1.12 Lost Beache Data RAM Errors Without Lost 
Writebacks • 15-75 

15.8.1.13 NDAL I-Stream or D-Stream Read or D-Stream Ownership 
Read limeout Errors • 15-76 

15.8.1.14 NDAL I-Stream or D-Stream Read or D-Stream Ownership 
Read Data Errors • 15-77 

15.8.1.15 Lost Bcache Fill Error • 15-79 
15.8.1.16 Unacknowledged NDAL I-Stream or D-Stream Read or 

D-Stream Ownership Read • 15-79 
15.8.1.17 Lost NDAL Output Error • 15-80 
15.8.1.18 PTE read errors • 15-80 
15.8.1.18.1 Bcache Data RAM Uncorrectable ECC Errors and 

15.8.1.18.2 
15.8.1.18.3 
15.8.1.18.4 
15.8.1.18.5 

15.8.1.19 
15.8.1.20 
15.8.1.21 
15.8.1.22 

Addressing Errors on PTE Reads • 15-81 
NDAL PTE Read Timeout Errors • 15-82 
NDAL PTE Read Data Errors • 15-83 
Unacknowledged NDAL PTE Read • 15-84 
Multiple Errors Which interfere with Analysis of PTE Read 
Error • 15-84 

NDAL Parity Errors • 15-84 
Lost Parity Errors • 15-85 
System Environment Soft Error Interrupts • 15-85 
Inconsistent Status in Soft Error Interrupt Analysis • 15-85 

KERNEL STACK NOT VALID EXCEPTION 

ERROR RECOVERY CODING EXAMPLES 

MISCELLANEOUS BACKGROUND INFORMATION 
15.11.1 Note On Tagged-Bad Data Mechanisms 
15.11.2 Note On Ownership Mechanism 

REVISION HISTORY 

15-87 

15-88 

15-88 
15-88 
15-88 

15-90 

DIGITAL CONFIDENTIAL 



Contents 

CHAPTER 16 CHIP INITIAUZATION 

16.1 OVERVIEW 

16.2 HARDWAREIMICROCODE INITIALIZATION 

16.3 CONSOLE INITIALIZATION 

16.4 CACHE INITIALIZATION 

16.5 MISCELLANEOUS INFORMATION 

16.6 REVISION HISTORY 

CHAPTER 17 CHIP CLOCKING 

17.1 OVERVIEW OF THE NVAX CLOCKING SYSTEM 

17.2 RECEIVING THE NVAX EXTERNAL OSCILLATOR SIGNAL 

17.3 

17.2.1 
17.2.2 

The System Environment 
The Chip Test Environment 

ON-CHIP CLOCKS 
17.3.1 
17.3.2 
17.3.3 
17.3.4 
17.3.5 
17.3.6 

Clock GeneratlonlDlstrlbutlon Overview 
Global Clock Distribution 
Section Clock Distribution 
Global Clock Waveforms 
Section Clock Waveforms 
Clock Skews and Rise/Fail Times of the Section Clocks 

17.4 THE NDAL INTERFACE TIMING SYSTEM 

17.5 

17.6 

17.7 

17.4.1 
17.4.2 

17.4.3 
17.4.4 

NDAL Clocks 
Controlling Inter-Chlp Clock Skew 
17.4.2.1 Self Skew • 17-8 
17.4.2.2 Inter-Clock Skew • 17-9 
Driving and Receiving NDAL signals 
Information Transfer between the NDAL clock system and the on-chip 
clock system 

INITIALIZING THE NVAX SYSTEM. 
17.5.1 
17.5.2 
17.5.3 

Internal NVAX Reset 
Generation of Clocks During Power-up 
Clock Generator Reset 

NVAXCLOCK SECTION SIGNAUPIN DICTIONARY 
17.6.1 Schematic - Behavioral Translation 
17.6.2 Behavloral- Schematic Translation 

REVISION HISTORY 

DIGITAL CONFIDENTIAL 

16-1 

16-1 

16-1 

16-2 

16-3 

16-6 

16-7 

17-1 

17-1 

17-1 
17-1 . 
17-2 

17-3 
17-3 
17-5 
17-5 
17-5 
17-6 
17-7 

17-7 
17-7 
17-7 

17-9 

17-9 

17-9 
17-10 
17-11 
17-11 

17-14 
17-14 
17-15 

17-16 

x).lx 



Contents 

CHAPTER 18 PERFORMANCE MONITORING FACILITY 

18.1 

18.2 

18.3 

OVERVIEW 

SOFTWARE INTERFACE TO THE PERFORMANCE MONITORING FACILITY 
18.2.1 Memory Data Structure 
18.2.2 Memory Data Structure Updates 
18.2.3 Configuring the Performance Monitoring Facility 

182.3.1 Ibox Event Selection • 18-4 
18.2.3.2 Ebox Event Selection • 18-4 
18.2.3.3 Mbox Event Selection • 18-5 
18.2.3.4 Cbox Event Selection • 18-6 

18.2.4 Enabling and Disabling the Performance Monitoring Facility 
18.2.5 Reading and Clearing the Performance Monitoring Facility Counts 

HARDWARE AND MICROCODE IMPLEMENTATION OF THE PERFORMANCE 
MONITORING FACILITY 
18.3.1 
18.3.2 

Hardware Implementation 
Microcode Interaction with the Hardware 

18.4 REVISION HISTORY 

CHAPTER 19 TESTABILITY MICRO-ARCHITECTURE 

19.1 CHAPTER OVERVIEW 

19.2 THE TESTABILITY STRATEGY 

19.3 TEST MICRO-ARCHITECTURE OVERVIEW 

19.4 PARALLEL TEST PORT 
19.4.1 Parallel Port Operation 

19.5 TEST PADS 

19.6 SYSTEM PORT 

19.7 SERIAL P-CACHE PORT 

19.8 IEEE 1149.1 (JTAG) SERIAL TEST PORT 
19.8.1 TAP Controller State Machine 
19.8.2 
19.8.3 
19.8.4 
19.8.5 

Instruction Register 
Bypass Register 
Control Dispatch Logic 
Initialization 

19.9 BOUNDARY SCAN REGISTERS 
19.9.1 
19.9.2 

Boundary Scan Register Cells 
Boundary Scan Register Organization 

19.10 INTERNAL SCAN REGISTER AND LFSR REDUCER 
19.10.1 Internal Scan Register Cells 
19.10.2 Internal Scan Register Organization 

19.11 OUTPUT PIN TRI-STATE CONTROL 

19.12 OPERATING SPEED OF TEST LOGIC 

19.13 REVISION HISTORY 

18-1 

18-1 

18-1 
18-1 
18-2 
18-3 

18-6 
18-7 

18-8 
18-10 
18-11 

18-12 

19-1 

19-1 

19-1 

19-2 

19-3 
19-4 

1~ 

1~ 

19-7 

19-7 
19-9 

19-11 
19-12 
19-12 
19-16 

19-16 
19-16 
19-19 

19-22 
19-22 
19-23 

19-23 

19-24 

19-25 

xxx DIGITAL CONFIDENTIAL 



Contents 

CHAPTER 20 ELECTRICAL CHARACTERISTICS 20-1 

20.1 INTRODUCTION 20-1 

20.2 NVAX DC OPERATING CHARACTERISTICS 20-1 
20.2.1 Maximum Ratings 20-1 
20.2.2 Pin Driver Impedance 20-3 
20.2.3 Pin Capacitance 20-4 
20.2.4 Pin Operating Levels 20-4 

20.3 NVAX AC OPERATING CHARACTERISTICS 20-7 
20.3.1 AC Conditions of Test 20-7 
20.3.2 NDAL nmlng Specification 20-9 
20.3.3 BCACHE llmlng Specification 20-11 
20.3.4 Other Pin Timing Specifications 20-22 

20.3.4.1 Clock liming • 20-22 
20.3.4.2 Reset Timing • 20-23 
20.3.4.3 Interrupt, Error, and Test Pin liming • 20-24 

20.4 REVISION HISTORY 20-26 

APPENDIX A PROCESSOR REGISTER DEFINITIONS A-1 

A.1 REVISION HISTORY A-19 

INDEX 

FIGURES 

1-1 Register Format Example 1-3 

1-2 nmlng Diagram Notation 1-5 

2-1 Virtual Address Space Layout 2-2 

2-2 32-blt Physical Address Space Layout 2-3 

2-3 30-blt Physical Address Space Layout 2-3 

2-4 IPR E7 (hex), PAMODE 2-4 

2-5 General Purpose Registers 2-5 

2-6 Processor Status Longword Fields 2-5 

2-7 Data Types 2-6 

2-8 Opcode Formats 2-8 

2-9 Addressing Modes 2-9 

2-10 Branch Displacements 2-11 

2-11 IPR 38 (hex), MAPEN 2-25 

2-12 IPR 3A (hex), TBIS 2-25 

2-13 IPR 39 (hex), TBIA 2-26 

2-14 IPR OC (hex), SBR and IPR OD (hex), SLR 2-27 

2-15 System Space Translation Algorithm 2-28 

2-16 IPR 08 (hex), POBR and IPR 09 (hex), POLR 2-29 

2-17 PO Space Translation Algorithm 2-29 

2-18 IPR OA (hex), P1 BR and IPR OB (hex), P1 LR 2-30 

DIGITAL CONFIDENTIAL xxxi 



Contents 

2-19 P1 Space Translation Algorithm 2-30 
2-20 PTE Format (21-blt PFN) 2-31 

2-21 PTE Format (25-blt PFN) 2-31 
2-22 Minimum Exception Stack Frame 2-33 

2-23 General Exception Stack Frame 2-33 

2-24 IPR 12 (hex), IPL 2-35 

2-25 IPR 14 (hex), SIRR 2-35 

2-26 IPR 15 (hex), SISR 2-35 

2-27 ArHhmetic Exception Stack Frame 2-37 

2-28 Memory Management exception Stack Frame 2-38 

2-29 Instruction Emulation Trap Stack Frame 2-39 

2-30 Suspended Emulation Fault Stack Frame 2-40 

2-31 Generic Machine Check Stack Frame 2-40 

2-32 IPR 2A (hex), SAVPC and IPR 2B (hex), SAVPSL 2-41 

2-33 IPR 11 (hex), SCBB 2-41 

2-34 System Control Block Vector 2-42 

2-35 IPR OE (hex), CPUID 2-44 

2-36 IPR 3E (hex), SID 2-45 

2-37 IPR 10 (hex), PCBB 2-47 

2-38 Process Control Block 2-48 

2-39 IPR Address Space Decoding 2-49 

3-1 NDAL Pin Timing Relative to the NDAL CLOCKS 3-5 

3-2 Bcache Pin Timing Relative to INTERNAL NVAX Clocks (14ns system) 3-11 

3-3 NDAL Arbitration Block Diagram 3-19 

3-4 NDAL Arbitration timing 3-23 

3-5 NDAL Suppress timing 3-25 

3-6 Address Cycle Format 3-27 

3-7 Physical Address Space Layout 3-28 

3-8 NDAL Memory Address Interpretation 3-29 

3-9 POkACK_L Timing 3-37 

3-10 NDAL Read timing 3-43 

3-11 RDE example 3-45 

3-12 NDAL Fill timing 3-46 

3-13 Quadword Read and Fill 3-47 

3-14 Read command on the NDAL 3-47 

3-15 Read data return without using HOLD 3-48 

3-16 Read data return using HOLD 3-48 

3-17 NDAL Write timing 3-51 

3-18 Quadword write on the NDAL 3-52 

3-19 Hexaword write on the NDAL 3-52 

3-20 Octaword write on the NDAL 3-53 

3-21 NVAX XMI-2 System Block Diagram 3-65 

3-22 XMI2 Unlock Write example 3-66 

xxxII DIGITAL CONFIDENTIAL 



Contents 

~23 NVAX Lowend System Block Diagram 3-67 
4-1 NVAX CPU Block Diagram 4-2 
5-1 Non-Plpellned Instruction execution 5-2 
5-2 Partlally-Plpellned Instruction Execution 5-2 

5-3 Fully-Plpellned Instruction Execution 5-3 

5-4 Simple Three-Segment Pipeline 5-4 

5-5 Information Flow Against the Pipeline 5-4 

5-6 Stalls Introduced by Backward Pipeline Flow S-5 

5-7 Buffers Between Pipeline Segments 5-6 

5-8 NVAX CPU Pipeline 5-7 

6-1 Ebox Data Path Control, Standard Format 6-1 

6-2 Ebox Data Path Control, Special Format 6-2 

6-3 Ebox Mlcrosequencer Control, Jump Format 6-4 

6-4 Ebox Microsequencer Control, Branch Format 6-4 

6-5 Ibox CSU Format 6-5 

6-6 Ibox Instruction ROM Format 6-6 

7-1 Ibox Block Diagram 7-2 

7-2 VIC Block Diagram 7-6 

7-3 VIC Cache Row Format 7-7 

7-4 IPR DO (hex), VMAR 7-14 

7-5 IPR D1 (hex), VTAG 7-15 

7-6 IPR D2 (hex), VDATA 7-15 

7-7 IPR D3 (hex), ICSR 7-16 

7-8 Prefetch Queue Block Diagram 7-18 

7-9 SourcelDestlnation Queue Entry Formats 7-33 

7-10 Microword Format 7-40 

7-11 Complex Specifier Unit Control Path Block Diagram 7-42 

7-12 Complex Specifier Unit Data Path Block Diagram 7-51 

7-13 Branch Table Entry Format 7-56 

7-14 IPR D4 (hex), BPCR 7-60 

8-1 Ebox Block Diagram 8-3 

8-2 SMUL Step Operation 8-20 

8-3 UDIV Step Operation 8-21 

8-4 S+PSW Format 8-36 

8-5 RN.MODE.OPCODE E_BUSOkBBUS_L<31 :0> Source 8-37 

8-6 A Source Queue Entry 8-44 

8-7 A Destination Queue Entry 8-45 

8-8 Ebox Pipeline Latches 8-73 

8-9 IPR 7C (hex), PCSCR 8-80 

8-10 IPR 7D (hex), ECR 8-82 

8-11 NVAX Timeout Counters 8-85 

8-12 EOfoWBUS_H LFSR Block Diagram 8-90 

8-13 PMFCNT Processor Register in EOfoWBUS_H<31:0> LFSR Format 8-91 

DIGITAL CONFIDENTIAL xxxiii 



Contents 

~1 Mlcrosequencer Block Diagram 9-2 
~2 Microcode Mlcrosequencer Control Field Formats 9-8 

9-3 Instruction Queue Entry Format 9-20 

9-4 Instruction Context Format 9-22 

~5 Mlcrostack Organization 9-23 

9-6 Parallel Port Output Format 9-26 

10-1 Interrupt SCB Vector Offset 10-3 

10-2 Interrupt Section Block Diagram 10-8 

10-3 IPR 7 A (hex), INTSYS 10-12 

11-1 Fbox block diagram 11-2 

11-2 Fbox Execute Cycle Diagram 11-3 

11-3 Opcode Transfers to the Fbox 11-7 

11-4 Divider Array Block Diagram 11-17 

11-5 Input Signals from Input Interface 11-18' 

11-6 Result Transfer to Stage-l 11-19 

11-7 Divider Fraction Data Path 11-22 

11-8 CPA Block Diagram 11-23 

11-9 Divider Sequencer State Transition Table 11-26 

11-10 Fraction Datapath Block Diagram 11-30 

11-11 Recoder Block Diagram 11-34 

11-12 Stage 1 Exponent Processor Block diagram 11-35 

11-13 Sign Datapath Block Diagram 11-39 

11-14 Fraction Datapath Operation Table 11-40 

11-15 Fraction Datapath Exception Summary 11-41 

11-16 Exponent Datapath Operation Table 11-42 

11-17 Exponent Datapath Exception Table 11-43 

11-18 Stage 2 Fraction Datapath Block Diagram 11-47 

11-19 Stage 2 Exponent Datapath Block Diagram 11-54 

11-20 Sign Datapath Block Diagram 11-56 

11-21 Control Block Diagram 11-57 

11-22 Fraction Datapath Operation Summary 11-60 

11-23 Stage 2 Exponent Datapath Operation Summary 11-62 

11-24 Stage 3 Fraction Datapath Block Diagram 11-66 

11-25 Stage 3 Fraction Mlnl-round Block Diagram 11-67 

11-26 Stage3 Exponent Datapath Block Diagram 11-68 

11-27 Fraction Datapath Operation Summary 11-73 

11-28 Fraction Datapath Block Diagram 11-82 

11-29 Block Diagram of Exponent Processor 11-86 

11-30 Control Block Diagram 11-90 

11-31 Miscellaneous Pia Block Diagram 11-91 

12-1 Mbox Block Diagram 12-3 

12-2 Iref Latch 12-7 

12-3 Spec Queue 12-8 

xxxiv DIGITAL CONFIDENTIAL 



Contents 

12-4 EM_LATCH 12-10 
12-5 VAP_LATCH 12-11 
12-6 MME_LATCH 12-13 
12-7 RTY _DMlSS_LATCH 12-15 
12-8 CBOX_LATCH 12-16 
12-9 PA_QUEUE 12-17 
12-10 DMISS_LATCH and IMlSS_LATCH 12-19 
12-11 MD_BUS_ROTATOR 12-21 
12-12 Basic Mbox Timing 12-25 
12-13 2 Processor Synchronization Example 12-26 

12-14 Memory Scoreboard Example 12-27 
12-15 Barrel Shifter Function 12-35 

12-16 IPR EO (hex), MPOBR 12-38 
12-17 IPR E1 (hex), MPOLR 12-38 
12-18 IPR E2 (hex), MP1 BR 12-39 
12-19 IPR E3 (hex), MP1 LR 12-39 
12-20 IPR E4 (hex), MSBR 12-39 
12-21 IPR E5 (hex), MSLR 12-39 
12-22 IPR E6 (hex), MMAPEN 12-40 
12-23 IPR E7 (hex), PAMODE 12-40 

12-24 IPR E8 (hex), MMEADR 12-41 

12-25 IPR E9 (hex), MMEPTE 12-41 

12-26 IPR EA (hex), MMESTS 12-41 

12-27 IPR EC (hex), TBADR 12-42 
12-28 IPR ED (hex), TBSTS 12-42 

12-29 IPR F2 (hex), PCADR 12-43 
12-30 IPR F4 (hex), PCSTS 12-43 

12-31 IPR F8 (hex), PCCTL 12-44 

12-32 IPRs 01800000 thru 01801 FEO (hex), PCTAG 12-45 

12-33 IPRs 01COOOOO thru 01C01FF8 (hex), PCDAP 12-46 

12-34 MPOLA Register 12-46 

12-35 MP1 LA Register 12-47 

12-36 MSLR Register 12-47 

12-37 MP1 BR Register 12-47 

12-38 TB_TAG_FILL Format (from MME_LATCH) 12-52 

12-39 TB_TAG_FILL Format (from EM_LATCH): IPR 7E (hex), MTBTAG 12-52 

12-40 TB_PTE_FILL Data Format (from MME_LATCH) 12-53 

12-41 TB_PTE_FILL Data Format (from EM_LATCH): IPR 7F (hex), MTBPTE 12-54 

12-42 PA_ QUEUE conflict detection 12-60 

12-43 Logical Pcache Organization 12-70 

12-44 Peache Address Breakdown 12-71 

12-45 IPR Address Space Mapping 12-76 

12-46 Pcache Address Redundancy Mapping 12-78 

DIGITAL CONFIDENTIAL xxxv 



Contents 

12-47 Virtual Address Space Layout 12-80 
12-48 Physical Address Space of the NVAX Hardware 12-81 
12-49 3O-blt Physical Address Mapping 12-82 

12-50 32-blt Physical Address Mapping 12-83 

12-51 PTE and TB format 12-84 

12-52 MME Datapath 12-86 

12-53 MME Sequences 12-89 

12-54 MME Sequences Cont'd 12-90 

12-55 IPR EA (hex), MMESTS 12-95 

12-56 IPR ED (hex), TBSTS 12-106 

12-57 IPR F4 (hex), PCSTS 12-107 

13-1 The Cbox In the System 13-2 

13-2 Backup Cache Tag RAM Pin Timing 13-8 

13-3 Backup Cache Data RAM Pin Timing 13-9 

13-4 Tags and Data for 128-Kllobyte Cache 13-14 

13-5 Address as used for 128-Kllobyte Cache 13-15 

13-6 Tags and Data for 256-Kllobyte Cache 13-16 

13-7 Address as used for 256-Kllobyte Cache 13-16 

13-8 Tags and Data for 512-Kllobyte Cache 13-17 

13-9 Address as used for 512-Kllobyte Cache 13-17 

13-10 Tags and Data for 2-Megabyte Cache 13-18 

13-11 Address as used for 2-Megabyte Cache 13-18 

13-12 Cbox block diagram with DATA_BUS 13-22 

13-13 Cbox block diagram with ADDRESS_BUS 13-23 

13-14 Mbox Interface 13-24 

13-15 B%S6_DATA_Hc63:O> bypass timing 13-33 

13-16 M%ABORT_CBOX_IRD_H Timing 13-35 

13-17 Tag Store ECC Block Diagram 13-37 

13-18 Tag Store Error Correcting Code Matrix 13-38 

13-19 Data RAM ECC Block Diagram 13-40 

13-20 Backup Cache Data Store Error Correcting Code Matrix 13-41 

13-21 NVAX Timeout Counters 13-47 

13-22 BIU cycle counts 13-50 

13-23 NVAX time relative to NDAL time 13-51 

13-24 IPR Address Space Decoding as seen by Software 13-56 

13-25 (PR AO (hex), CCTL 13-61 

13-26 Format of the BCDECC 13-65 

13-27 IPR A3 (hex), BCETSTS 13-66 

13-28 IPR A4 (hex), BCETlDX 13-69 

13-29 IPR A5 (hex), BCETAG 13-69 

13-30 IPR A6 (hex), BCEDSTS 13-71 

13-31 IPR A7 (hex), BCEDIDX 13-74 

13-32 IPR A8 (hex), BCEDECC 13-75 

xxxvi DIGITAL CONFIDENTIAL 



Contents 

13-33 IPR AC (hex), CEFSTS 13-76 
13-34 IPR AB (hex), CEFADR 13-80 
13-35 IPR AE (hex), NESTS 13-81 
13-36 IPR BO (hex), NEOADR 13-83 
13-37 IPR B2 (hex), NEOCMD 13-84 
13-38 IPR B8 (hex), NEICMD 13-85 
13-39 IPR B4 (hex), NEDATHI 13-86 
13-40 IPR B6 (hex), NEDATLO 13-86 
13-41 Backup Cache Tag Store IPR Addressing Format 13-87 
13-42 IPRs 01000000 thru 011FFFEO (hex), BCTAG 13-87 
13-43 IPRs 01400000 thru 015FFFEO (hex), BCFLUSH 13-89 
15-1 IPR 2A (hex), SAVPC 15-19 
15-2 IPR 2B (hex), SAVPSL 15-19 
15-3 IPR 26 (hex), MCESR 15-22 
15-4 Machine Check Stack Frame 15-23 
15-5 Cause Parse Tree for Machine Check Exceptions 15-26 
15-6 Power Fall Interrupt Stack Frame 15-48 
15-7 Hard Error Interrupt Stack Frame 15-49 
15-8 Cause Parse Tree for Hard Error Interrupts 15-50 
15-9 Soft Error Interrupt Stack Frame 15-67 
15-10 Cause Parse Tree for Soft Error Interrupts 15-58 
15-11 Kernel Stack Not Valid Stack Frame 15-87 
17-1 NVAX CPU Interface Circuitry 17-2 
17-2 On-Chip XOR Test Functionality Waveforms 17-3 
17-3 On-Chip Clock Distribution 17-4 
17-4 Global Clock Wavefonns 17-6 
17-5 Relationship of Internal and NDAL Clock Cycles 17-8 
17-6 Self Skew 17-8 
17-7 System Reset nmlng 17-10 

17-8 Clock State During Initial Power-up 17-11 
17-9 Clock Generator Reset Timing 17-13 
18-1 Performance Monitoring Data Structure Base Address 18-2 

18-2 Per-CPU Performance Monitoring Data Structure 18-2 
18-3 IPR 3D (hex), PME 18-7 
18-4 IPR 7B (hex), PMFCNT In PMF Format 18-8 

18-5 Performance Monitoring Hardware Block Diagram 18-9 
19-1 Test Interface Unit 19-2 

19-2 Internal Scan Register Operation nming 19-5 

19-3 Self Relative Timing in Observe MAB Mode 19-6 

19-4 Serial Port Timing 19-8 

19-5 IEEE 1149.1 Serial Port (the Basic CTI) 19-9 

19-6 TAP Controller State Machine 19-10 

19-7 JTAG Instruction Register Cell 19-12 

DIGITAL CONFIDENTIAL xxxvII 



Contents 

19-8 IEEE 1149.1 Logic Timing during IR-5can Sequence 19-14 

19-9 IEEE 1149.1 Logic Timing during DR-5can Sequence 19-15 

19-10 In_beell Boundary Scan Cell 19-17 

19-11 out_beell Boundary Scan Cell 19-17 

19-12 lo_beell Boundary Scan Cell 19-18 

19-13 md_ beell Boundary Scan Cell 19-18 

19-14 Boundary Scan Register at TAG Store Interface 19-21 

19-15 Cells for Internal Scan Registers 19-22 

19-16 An ISR section turned Into LFSR 19-23 

20-1 NDAL Pin Timing Relative to the NDAL CLOCKS 2~9 

20-2 Generic Data RAM Timing Diagram 20-12 

20-3 Generic Tag RAM Timing Diagram 20-14 

20-4 XNP Specific Data RAM Timing Diagram 20-18 

20-5 XNP Specific Tag RAM Timing Diagram 20-20 

20-6 Relationship of Internal and NDAL Clock Cycles 20-22 

20-7 System Reset Timing 20-23 

20-8 Clock Generator Reset Timing 20-24 

TABLES 
1-1 Register Field Description Example 1-3 

1-2 Register Field 'tYpe Notation 1-3 

1-3 Register Field Notation 1-4 

1-4 Revision History 1-6 

2-1 3D-bit Mapping of Program Addresses to 32-blt Hardware Addresses 2-4 

2-2 General Purpose Register Usage 2-5 

2-3 Processor Status Longword 2-5 

2-4 General Register Addressing Modes 2-10 

2-5 PC-Relative Addressing Modes 2-11 

2-6 NVAX Instruction Set 2-12 

2-7 PTE Protection Code Access Matrix 2-32 

2-8 Interrupt Priority Levels 2-34 

2-9 Exception Classes 2-35 

2-10 Arithmetic exceptions 2-37 

2-11 Memory Management Exceptions 2-37 

2-12 Memory Management Exception Fault Parameter 2-38 

2-13 Instruction Emulation Trap Stack Frame 2-39 

2-14 System Control Block Vector 2-42 

2-15 System Control Block Layout 2-42 

2-16 SID Field Descriptions 2-46 

2-17 IPR Address Space Decoding 2-50 

2-18 Processor Registers 2-52 

2-19 1/0 Space Registers 2-61 

xxxvIII DIGITAL CONFIDENTIAL 



2-20 
3-1 
3-2 
3-3 

3-4 

3-5 

3-6 

3-7 
3-8 

3-9 

3-10 
3-11 
3-12 
3-13 
3-14 
3-15 
3-16 
3-17 
3-18 
3-19 
3-20 
3-21 
3-22 
3-23 
3-24 
3-25 
4-1 

5-1 
6-1 
6-2 
6-3 

6-4 

6-5 

6-6 

6-7 
7-1 
7-2 
7-3 

7-4 

7-5 
7-6 

7-7 
7-8 

Revision History 

NVAX CPU pinout 

NDAL AC timing specs 

NVAX DAL Bandwidth at 30ns 

NVAX DAL Bandwidth at 42ns 

NDAL Signals 

NDAL clocks 

Byte Enable for Quadword Reads and Writes 

Byte Enable for Octaword Writes 

Possible Byte Enables for NVAX-generated transactions 

NDAL Length Field 

NDAL Command Encodlngs and Definitions 

NDAL Address Cycle Commands as used by the NVAX CPU 

Commander P%ID _H Assignments 

NDAL Parity Coverage 

NDAL Command Usage by NVAX 

NDAL Command Usage by NDAL nodes besides NVAX 

RDR usage for ALL fill cycles 

NVAX Backup Cache Invalidates and Wrltebacks 

NVAX Read Timeout Values In Normal Mode 

NVAX Read Timeout Values In Test Mode 

NDAL Errors and NVAX CPU Error Responses 

NDAL Errors and Error Responses by System Components 

XMI2-NVAX Coherency requirements 

Cross-reference of all names appearing In the NVAX chip Interface chapter 

Revision History 

Revision History 

Revision History 

EBOX Data Path Control Mlcroword Fields, Standard Format 

EBOX Data Path Control Mlcroword Fields, Special Format 

Ebox Mlcrosequencer Control Mlcroword Fields, Jump Format 

Ebox Microsequencer Control Mlcroword Fields, Branch Format 

Ibox CSU Mlcroword Fields 

Ibox Instruction ROM Fields 

Revision History 

lbox Pipeline 

VIC Attributes 

VIBA bit fields 

VIC Status Flags 

VMAR Field Descriptions 

VTAG Field Descriptions 

VDATA Field Descriptions 

ICSR Field Descriptions 

DIGITAL CONFIDENTIAL 

Contents 

2-62 

3-2 
3-6 

3-15 
3-15 
3-16 
3-18 
3-30 

3-30 

3-32 

3-33 

3-34 

3-34 
3-35 . 

3-36 

3-39 

3-40 

3-44 

3-54 

3-57 

3-57 

3-60 

3-63 

3-65 

3-70 
3-72 
4-6 

5-22 
6-1 
6-2 

6-4 

6-4 

6-5 

6-6 

6-8 

7-4 

7-5 
7-7 

7-8 

7-14 
7-15 
7-15 
7-16 

xxxix 



Contents 

7-9 Specifier Control Fields 7-20 

7-10 Complex Specifier Control Fields 7-20 

7-11 Specifier Data Fields 7-21 

7-12 Instruction Context Summary 7-21 

7-13 Ebox Assist Summary 7-25 

7-14 IBU stop and start summary 7-29 

7-15 Instruction Queue Entry Format 7-30 

7-16 I%OPERAND _BUS _H Definition 7-34 

7-17 I%OPERAND _BUS _H Definition 7-34 

7-18 Source Queue Entries Written for Non-field Access Type Operands 7-35 

7-19 Source queue Entries Written for VR or VM Access Type Operands 7-35 

7-20 Destination Queue Entries Written for Non-field Access Type Operands 7-37 

7-21 Destination Queue Entries Written for VM Access Type Operands 7-38 

7-22 Source Queue Entries Retired 7-39 

7-23 Mlcroword Fields 7-40 

7-24 Microcode Page Allocation 7-41 

7-25 S1 Pipe Latch 7-43 

7-26 Next Address Generation Fields 7-45 

7-27 S2 Pipe Latch 7-46 

7-28 CSU Registers 7-46 

7-29 S3 Pipe Latch 7-48 

7-30 Branch Prediction Logic 7-57 

7-31 BPCR Field Descriptions 7-60 

7-32 BPCR <8:6> 7-61 

7-33 Reserved Addressing Mode Faults 7-66 

7-34 Cross-reference of all names appearing In the Ibox chapter 7-67 

7-35 Ibox Scan Register Fields 7-69 

7-36 Revision History 7-71 

8-1 Data Path Control Mlcroword Fields 8-4 

8-2 GPR Write Length 8-13 

8-3 ALU Operations 8-18 

8-4 Shifter Operations 8-22 

8-5 Condition Code Alteration Maps Specified By Microcode 8-28 

8-6 Condition Code Alteration Maps Used By The Fbox 8-28 

8-7 Setting and Clearing State Flags 8-30 

8-8 MPU Calculation 8-32 

8-9 Branch Condition Evaluation 8-34 

8-10 Ebox Sourced Microbranch Conditions 8-40 

8-11 Field Queue Branch 8-48 

8-12 Detection of Ibox Incurred Faults and Errors 8-51 

8-13 Ebox Mbox Requests 8-60 

8-14 Ebox Memory Request Information Busses 8-62 

8-15 Ebox Memory Request Information Truth Table 8-62 

xl DIGITAL CONFIDENTIAL 



Contents 

8-16 Ebox Response to M%MME_FAULT _H and MOfoHARD_ERR_H 8-65 
8-17 Ebox Mlcrotrap Requests 8-71 
8-18 Fbox Fault Codes 8-72 
8-19 Ebox Pipeline Stall and Flush Cases 8-73 
8-20 Ebox Miscellaneous Operations 8-77 
8-21 PCSCR Field Descriptions 8-81 
8-22 ECR Field Descriptions 8-83 
8-23 S3 Stall Timeout Values In Normal Mode 8-85 
8-24 S3 Stall Timeout Values In Test Mode 8-86 
8-25 Derivation of NVAX TImeout Values 8-87 
8-26 Ebox Observe Scan Signals 8-87 
8-27 PSt Restrictions Summary 8-96 
8-28 Signal Name Cross-Reference 8-87 
8-29 Revision History 8-89 
9-1 Example: Writing an Entry In the Patchable Control Store 9-4 
9-2 Contents of MlB Scan Chain, When Loading Patchable Control Store 9-5 
9-3 Jump Format Control Field Definitions 9-9 
9-4 Branch Format Control Field Definitions 9-9 

9-5 Jump Format Control Field Decodes 9-9 
9-6 Branch Format Control Field Decodes 9-10 
9-7 Branch Address Formation 9-10 
9-8 Current Address Selection 9-11 

9-9 Mlcrotest Bus Sources 9-12 
9-10 Mlcrotrap Request TIming 9-15 
9-11 Mlcrotraps 9-15 

9-12 Abort Effects In the Mlcrosequencer 9-18 

9-13 Mlcroaddresses for Last Cycle Interrupts or exceptions 9-18 

9-14 Instruction Queue Entry Format Field Definitions 9-20 

9-15 Control Store Address Formation 9-20 
9-16 Instruction Queue Operation 9-21 

9-17 Instruction Context Format Field Definitions 9-22 

9-18 Mlcrostack Pointer Example 9-23 
9-19 Stall TIming In the Mlcrosequencer 9-24 

9-20 Parallel Port Output Format Field Definitions 9-26 

9-21 Contents of MlB Scan Chain, In Observe Mode 9-26 

9-22 Schematic Signal Names, In Alphabetical Order 9-30 
9-23 Behavioral Model Signal Names, In Alphabetical Order 9-31 

9-24 Revision History 9-33 

10-1 Interrupt Vector Offset Registers 10-3 

10-2 Interrupt sca Vector Offset 10-3 

10-3 Internal Interrupt Requests 10-4 

10-4 Software Interrupts 1~5 

10-5 References to Interval TImer Processor Registers 1~ 

DIGITAL CONFIDENTIAL xII 



Contents 

10-6 Relative Interrupt Priority 10-7 
10-7 Summary of Interrupts 10-10 

10-8 INTSYS Field Descriptions 10-12 

10-9 Cross-reference of all names appearing In the Interrupt chapter 10-15 

10-10 Revision History 10-17 

11-1 Fbox Internal Execute Cycles 11-3 

11-2 List of the Fbox Total Execute Cycles 11-3 

11-3 Fbox Floating Point and Integer Instructions 11-13 

11-4 Total Fbox execute cycles for Divide operation 11-16 

11-5 CSA Inputs 11-21 

11-6 QM Cell Control Signals 11-25 

11-7 Divider Output Stages 11-27 

11-8 Stage 1 Fraction Register Operations 11-31 

11-9 Exponent Adder Operations 11-36 

11-10 Exponent Adder Carry-in Operations 11-37 

11-11 Stage 3 Fraction Datapath Operations 11-69 

11-12 Possible Values For Sum Bits cAO:B1> 11-71 

11-13 Bit Injection Within Adder 11-72 

11-14 Exponent Datapath Operation Summary 11-74 

11-15 LSB Carry-ln Values 11-75 

11-16 Exponent Output Selection 11-76 

11-17 Stage 3 Sign Datapath Operatlons/slgn_dp_oper 11-77 

11-18 Categories of Datapath Operations 11-78 

11-19 Fraction Datapath Operations 11-84 

11-20 Fraction Datapath Operation Summary 11-85 

11-21 Exponent Datapath Operation Summary 11-89 

11-22 Revision History 11-99 

12-1 Reference Definitions 12-23 

12-2 Byte Mask Logic for Aligned References 12-37 

12-3 Mbox IPRs 12-37 

12-4 MMAPEN Field Descriptions 12-40 

12-5 PAMODE Field Descriptions 12-40 

12-6 MMESTS Field Descriptions 12-41 

12-7 TBSTS Field Descriptions 12-42 

12-8 PCSTS Field Descriptions 12-43 

12-9 PCCTL Field Descriptions 12-44 

12-10 PCTAG Field Descriptions 12-45 

12-11 PCDAP Field Descriptions 12-46 

12-12 Probe Status Encodlngs 12-51 

12-13 TB_ TAG_FILL Definition 12-52 

12-14 MTBTAG Field Descriptions 12-52 

12-15 TB_PTE_FILL Definition 12-53 

12-16 MTBPTE Field Descriptions 12-54 

xiii DIGITAL CONFIDENTIAL 



Contents 

12-17 Byte Mask Logic for Aligned and Unaligned References 12-57 

12-18 PcachelPRs 12-76 

12-19 MMESTS Field Descriptions 12-95 

12-20 LOCK Encodlngs 12-96 

12-21 FAULT Encodlngs 12-96 

12-22 MMESTS State Update 12-97 

12-23 18STS Field Descriptions 12-106 

12-24 SRC Encodings 12-106 

12-25 PCSTS Field Descriptions 12-107 

12-26 Mbox Error Handling Matrix 12-112 

12-27 Mbox Performance Monitor Modes 12-126 

12-28 Cross-reference of all names appearing in the Mbox chapter 12-129 

13-1 Backup Cache Size and RAMs Used 13-4 

13-2 Tag and Index Interpretation based on cache size 13-4 

13-3 Backup Cache RAM Speeds and NVAX Cycle Time 13-5 

13-4 Cache pin drive times In the XNP environment 13-6 

13-5 Cache pin timing symbol definitions 13-6 

13-6 NVAX Backup Cache Interface Pins 13-10 

13-7 Usage of P%TS_INDEX_H<20:5> based on cache size 13-11 

13-8 Usage of P%TS_TAG_H<20:17> based on cache size 13-11 

13-9 Usage of P%DR_INDEX_H<20:5> based on cache size 13-12 

13-10 Cbox Queues and Major Latches 13-19 

13-11 Mbox-Cbox Commands 13-25 

13-12 Mbox to Cbox Command Matrix 13-26 

13-13 tREAD_LATCH Fields 13-27 

13-14 DREAD _LATCH Fields 13-27 

13-15 WRITE_QUEUE Fields 13-28 

13-16 Cbox to Mbox interface signals 13-30 

13-17 Cbox to Mbox Command Matrix 13-31 

13-18 Cbox to Mbox commands and resulting Mbox actions 13-31 

13-19 CM_OUT_LATCH Fields 13-32 

13-20 Fields of FILL_DATA_PIPE1 and FILL_DATA_PIPE2 13-34 

13-21 Cbox Action Upon Receiving M%A8ORT_CBOX_IRD_H 13-35 

13-22 NDAL_IN_ QUEUE Fields 13-43 

13-23 BIU commands sent to Cbox proper 13-43 

13-24 NON_ WRITEBACK_ QUEUE Fields 13-44 

13-25 WRITEBACK_ QUEUE Fields 13-44 

13-26 NVAX Tlmeout Values In Normal Mode 13-48 

13-27 NVAX Tlmeout Values In Test Mode 13-48 

13-28 Derivation of NVAX Tlmeout Values 13-49 

13-29 FILL_CAM Fields 13-53 

13-30 Cbox Response to Coherence Transactions to FILL_CAM Entries 13-54 

13-31 tPR Address Space Decoding 13-57 

DIGITAL CONFIDENTIAL xliii 



Contents 

13-32 Cbox Processor Registers 13-58 
13-33 CCTL Field Descriptions 13-61 

13-34 TAG_SPEED 13-62 

13-35 DATA_SPEED 13-62 

13-36 SIZE 13-63 
13-37 BCETSTS Field Descriptions 13-66 
13-38 Interpretation of TS _ CMD 13-68 
13-39 BCETAG Field Descriptions 13-69 
13-40 TAG Interpretation 13-70 

13-41 BCEDSTS Field Descriptions 13-71 
13-42 Interpretation of DR_ CMD 13-73 

13-43 BCEDIDX Interpretation 13-74 

13-44 CEFSTS Field Descriptions 13-76 

13-45 NESTS Field Descriptions 13-81 

13-46 NEOCMD Field Descriptions 13-84 
13-47 BCTAG Field Descriptions 13-87 

13-48 Tag and Index interpretation for BCTAG IPR 13-88 

13-49 Cbox Task Priority Under Normal Conditions. 13-91 

13-50 Cbox Task Priority When DWR_ CONFLICT Bits are Set In the WRITE_QUEUE. 13-91 

13-51 Cbox Task Priority When IWR_ CONFLICT Bits are Set In the WRITE_QUEUE. 13-92 

13-52 Cbox Task Priority When a DREAD_LOCK Is In progress until the WRITE_UNLOCK 
Is done. 13-92 

13-53 Order of quaclwords read from the Bcache 13-96 

13-54 NVAX Backup Cache Invalidates and Wrltebacks 13-99 

13-55 Backup cache behavior while It Is ON 13-102 

13-56 Backup cache behavior during ETM 13-105 

13-57 Backup cache state changes during ETM 13-106 

13-58 Backup Cache ECC Errors and NVAX CPU Error Responses 13-111 

13-59 Probability of reading data with an uncorrectable error after writing It with Inverted 
checkblts 13-113 

13-60 Backup Cache ECC Error handling during ETM 13-114 

13-61 Cbox Parallel Port Connections 13-115 

13-62 Interpretation of BC _ TS _ CMD<2:0> 13-115 

13-63 FILL_CAM scan chain 13-116 

13-64 Cbox Performance Monitoring Control 13-118 

13-65 Cbox Performance Monitoring Control 13-118 

13-66 CBOX Interface signals 13-120 

13-67 Cross-reference of all names appearing In the CBOX chapter 13-125 

13-68 Revision History 13-128 

14-1 Vector Instruction Set 14-1 

14-2 Revision History 14-4 

15-1 Error Summary By Notification Entry Point 15-2 

15-2 Console Halt Codes 15-19 

xliv DIGITAL CONFIDENTIAL 



Contents 

15-3 CPU State Initialized on Console Halt 15-20 
15-4 Machine Check Stack Frame Fields 15-23 
15-5 Machine Check Codes 15-24 

15-6 Revision History 15-90 

16-1 Revision History 16-7 

17-1 NVAX CPU Clock Sections 17-3 

17-2 Skews and RlselFall Times 17-7 

17-3 Revision History 17-16 

18-1 Performance Monitoring Facility Box Selection 18-3 

18-2 Ibox Event Selection 18-4 

18-3 Ebox Event Selection 18-4 

18-4 Mbox Event Selection 18-5 

18-5 Cbox PMCTRO Event Selection 18-6 

18-6 Cbox PMCTR1 Event Selection 18-6 

18-7 Revision History 18-12 

19-1 NVAX CPU's Test Pins 19-3 

19-2 Parallel Port Operating Modes 19-4 

19-3 Serial to Parallel Conversion of Scan Data 19-5 

19-4 Instruction Register 19-11 

19-5 Boundary Scan Register Organization 19-19 

19-6 Revision History 19-25 

20-1 Maximum Ratings 20-1 

20-2 Power DiSSipation Across Voltage and Cycle Time 20-2 

20-3 NVAX Pin Driver Impedance 20-3 

20-4 Maximum Pin Capacitance 20-4 

20-5 NV AX Pin Levels 20-4 

20-6 NVAX Pin Characteristics 20-5 

20-7 Pin Loading for AC Tests 20-7 

20-8 NDAL AC timing specs 20-10 

20-9 Generic Data RAM Timing Specification 20-13 

20-10 Generic Tag RAM Timing SpeCification 20-15 

20-11 OMEGA-Speclflc Data RAM Timing Specification 20-16 

20-12 OMEGA Specific Tag RAM Timing Specification 20-17 

20-13 XNP SpecHlc Data RAM Timing Specification 20-19 

20-14 XNP Specific Tag RAM Timing Specification 20-21 

20-15 Interrupt, Test, and Boundary Scan Pin AC timing specs 20-25 

20-16 Revision History 20-26 

A-1 Revision History A-19 

DIGITAL CONFIDENTIAL xlv 





Chapter 1 

Introduction 

The NVAX CPU is a high-performance, single-chip implementation of the VAX architecture. It 
is partitioned into multiple sections which cooperate to execute the VAX base instruction group. 
The CPU chip includes the first levels of the memory subsystem hierarchy in an on-chip virtual 
instruction cache and an on-chip physical instruction and data cache, as well as the controller 
for a large second-level cache implemented in static RAMs on the CPU module. 

1.1 Scope and Organization of this Specification 

This specification describes the operation of the NVAX CPU chip. It contains a description of the 
interface to the chip, an overview of the operation of the instruction pipeline, and extensive detail 
about the functional operation of each section of the chip. In addition, the specification contains 
discussions of error handling, chip initialization, and testability features. 

1.2 Related Documents 

The following documents are related to or were used in the preparation of this document: 

• DEC Standard 032 VAX Architecture Standard. 
• NVAX CPU Chip Design Methodology. 

1.3 Terminology and Conventions 

1.3.1 Numbering 

All numbers are decimal unless otherwise indicated. Where there is ambiguity, numbers other 
than decimal are indicated with the name of the base following the number in parentheses, e.g., 
FF (hex). 

1.3.2 UNPREDICTABLE and UNDEFINED 

RESULTS specified as UNPREDICTABLE may vary from moment to moment, implementation 
to implementation, and instruction to instruction within implementations. Software can never 
depend on results specified as UNPREDICTABLE. 
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OPERATIONS specified as UNDEFINED may vary from moment to moment, implementation to 
implementation, and instruction to instruction within implementations. The operation may vary 
in effect from nothing, to stopping system operation. UNDEFINED operations must not cause 
the processor to bang.,· i.e., reach a state from which there is no transition to a normal state in 
which the machine executes instructions. 

Note the distinction between result and operation. Non-privileged software can not invoke 
UNDEFINED operations. 

1.3.3 Ranges and Extents 

Ranges are specified by a pair of numbers separated by a " .. " and are inclusive, e.g., a range of 
integers 0 .. 4 includes the integers 0, 1, 2, 3, and 4. 

Extents are specified by a pair of numbers in angle brackets separated by a colon and are inclusive, 
e.g., bits <7:3> specify an extent of bits including bits 7, 6, 5, 4, and 3. 

1.3.4 Must be Zero (MBZ) 

Fields specified as Must Be Zero (MBZ) must never be filled by software with a non-zero value. 
If the processor encounters a non-zero value in a field specified as MBZ, a Reserved Operand 
exception occurs. 

1.3.5 Should be Zero (SBZ) 

Fields specified as Should Be Zero (SBZ) should be filled by software with a zero value. These 
fields may be used at some future time. Non-zero values in SBZ fields produce UNPREDICTABLE 
results. 

1.3.6 Reg ister Format Notation 

This spec:ification contains a number of figures that show the format of various registers, followed 
by a description of each field. In general, the fields on the register are labeled with either a name 
or a mnemonic. The description of each field includes the name or mnemonic, the bit extent, 
and the type. An example of a register is shown in Figure 1-1. Table 1-1 is an example of the 
description of the fields in this register. 

1-2 Introduction DIGITAL CONFIDENTIAL 



NVAX CPU Chip Funetional Specification, Revision 1.0, February 1991 

Figure 1-1: Register Format Example 

31 30 29 28127 26 25 24123 22 21 20119 l8 l7 l61l5 l4 l3 12111 lO 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 1 0 0 0 0 0 0 01 FAULT_CMD 1 x x x xlIEI 0 0 0 0 0 0 0 01 1 1 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 1 1 
TRAP ---+ 1 1 
INTERRUPT -+ 1 

BUS_ERROR ----+ 

Table 1-1: Register Field Description Example 

Name Extent Type Description 

BUS_ERROR 0 WC,O The BUS_ERROR bit is set when a bus error is detected. 

INTERRUPr 1 WC,O The INTERRUPT bit is set when an error that is reported as an 
interrupt is detected. 

TRAP 2 WC,O The TRAP bit is set when an error that is reported as a trap is detected. 

IE 11 RW,O The IE bit enables error reporting interrupts. When IE is 0, interrupts 
are disabled. When IE is a 1, interrupts are enabled. 

FAULT_CMD 23:16 RO The FAULT_CMD field latches the command that was in progress when 
an error is detected. 

The ''Type'' column in the field description includes both the actual type of the field, and an 
optional initialized value, separated from the type by a comma. The type denotes the functional 
operation of the field, and may be one of the values shown in Table 1-2. If present, the initialized 
value indicates that the field is initialized by hardware or microcode to the specified value at 
powerup. If the initialized value is not present, the field is not initialized at powerup. 

Table 1-2: Register Field Type Notation 

Notation 

RW 

RO 

WO 

wz 

WC 

RC 

Description 

A read-write bit or field. The value may be read and written by software, microcode, 
or hardware. 

A read-only bit or field. The value may be read by software, microcode, or hardware. 
It is written by hardware; software or microcode writes are ignored. 

A write-only bit or field. The value may be written by software or microcode. It is read 
by hardware and reads by software or microcode return an UNPREDICTABLE result. 

A write-only bit or field. The value may be written by software or microcode. It is read 
by hardware and reads by soaware or microcode return a O. 

A write-one-to-clear bit. The value may be read by software or microcode. Software or 
microcode writes of a 1 cause the bit to be cleared by hardware. Software or microcode 
writes of a 0 do not modify the state of the bit. 

A read-to-clear field. The value is written by hardware and remains unchanged until 
read. The value may be read by software or microcode, at which point, hardware may 
write a new value into the field. 
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In addition to named fields in registers, other bits of the register may be labeled with one of the 
three symbols listed in Table 1-3. These symbols denote the type of the unnamed fields in the 
register. 

Table 1-3: Register Field Notation 

Notation 

o 
1 

x 

1-4 Introduction 

Description 

A "0" in a bit position denotes a register bit that is read as a 0 and ignored on write. 

A "1" in a bit position denotes a register bit that is read as a 1 and ignored on write. 

An "X' in a bit position denotes a register bit that does not exist in hardware. The 
value is UNPREDICTABLE when read, and ignored on write. 
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1.3.7 Timing Diagram Notation 

This specification contains a number of timing diagrams that show the timing of various signals, 
including NDAL signals. The notation used in these timing diagrams is shown in Figure 1-2. 

Figure 1-2: Timing Diagram Notation 

HIGH 

LOW 

INTERMEDIATE 

VALID HIGH OR LOW 

CHANGING 

xxxxxxxxx 
E!GH TO LOW ,SS\ 
HIGH TO VALID ,SSS 

'SSm 
, $ $ , 

, $ $ , 

LOW TO HIGH 101 

LOW TO VALID 1111 

10M 
I I I» 

LOW TO INTERMEDIATE t 2 2 ; 

-...,j> ... >..,)--
INVALID TO INTERMEDIATE XXX»)--

--«« 
--«(<XX 

DIGITAL CONFIDENTIAL Introduction 1-5 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

1.4 Revision History 

Table 1-4: Revision History 

Who 

Mike Uhler 

Mike Uhler 

1-6 Introduction 

When 

06-Mar-1989 

15-Dec-1989 

Description of change 

Release for external review. 

Update for second-pass release. 
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Chapter 2 

Architectural Summary 

2.1 Overview 

This chapter provides a summary of the VAX. architectural features of the NVAX CPU Chip. It is 
not intended as a complete reference but rather to give an overview of the user-visible features. 
For a complete description of the architecture, consult the VAX Architecture Standard (DEC 
Standard 032). 

2.2 Visible State 

The visible state of the processor consists of memory, both virtual and physical, the general 
registers, the processor status longword (PSL), and the privileged internal processor registers 
(IPRs). 

2.2.1 Virtual Address Space 

The virtual address space is four gigabytes (2**32), separated into three accessable regions (PO, 
Pl, and SO) and one reserved page, as shown in Figure 2-1. 
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Figure 2-1: Virtual Address Space Layout 

+-------------------------+ 
00000000 1 1 length of PO Region in 

1 1 pages (POLR) 

1 PO ----------------1 
1 Region 1 1 

3FFFFFFF 1 V 1 PO Region growth direction 

+-------------------------+ 
40000000 1 1 Pl Region growth direction 

1 1 1 

1 Pl ----------------1 
I Region I length of Pl Region in 

7FFFFFFF I I pages (2**21-P1LR) 

+-------------------------+ 
80000000 1 I length of System Region 

1 1 in pages (SLR) 

1 System ---------------1 
I Region 1 I 
1 1 1 System Region growth 
1 1 I direction 
1 1 I 
1 1 1 
, I I 

ITIT!'DIT, V 1 

+-------------------------+ 
====~OO I Reserveci 
IT:::::: 1 Page 

+-------------------------~ 

NOTE' 

NVAX CPU chips at revision 1 implement the .original VAX memory management 
architecture in which any reference to a virtual address above BFFFFFFF (hex) causes 
a length violation. NVAX CPU chips at revision 2 or later implement the extended SO 
space addressing described above. 

2.2.2 Physical Address Space 

The NVAX CPU naturally generates 32 .. bit physical addresses. This corresponds to a four gigabyte 
physical address space as shown in Figure 2-2. Memory space occupies the :first seven-eighths 
(3.5GB) of the physical address space. 110 space occupies the last one-eighth (512MB) of the 
physical address space and can be distinguished from memory space by the fact that bits <31:29> 
of the physical address are all ones. 
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Figure 2-2: 32-blt Physical Address Space Layout 

00000000 

DFFFFFFF 

EOOOOOOO 
FFFFFFFF 

+-------------------------+ 
I I 
I I 
I I 
I I 
I I 
+- -+ 

Memory I 
Space I 

I 
I 
I 3.5 GB 

+- -+ 
I 
I 
I 
I 
I 

+- -+ 

+-------------------------+ 
I/O I 512 MB 

Space I 

+-------------------------+ 

In addition to the natural 32-bit physical address, the CPU may be configured to generate 30-bit 
physical addresses. In this mode, only 512MB of memory space can be referenced, as shown in 
Figure 2---3. 

Figure 2-3: 30-blt Physical Address Space Layout 

00000000 
1FFFFFFF 

20000000 

DFFFFFFF 

EOOOOOOO 
FFFFFFFF 

+-------------------------+ 
I Memory I 512 MB 
I Space I 

+-------------------------+ 
I I 
I I 
+
I 
I 
I 
I 
I 
+-
I 
I 
I 
I 
I 
+
I 
I 

Inaccessable 
Region 

-+ 
I 
I 
I 
I 
I 

-+ 3.0 GB 
I 
I 
I 
I 
I 

-+ 
I 
I 

+-------------------------+ 
I/O I 512 MB 

Space I 
+-------------------------+ 

The translation from 30-bit addresses to 32-bit addresses is accomplished by sign-extending 
PA<29> to PA<31:30>. In this mode, the programmer sees a 1GB address space, split evenly 
between memory and liD space, which is mapped to the actual 32-bit physical address space as 
shown in Table 2-1. Unless explicitly stated otherwise, addresses that are given in the remainder 
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of this specification are the full 32-bit addresses (which, of course, may have been generated from 
a 30-bit program address via the mapping shown). 

Table 2-1: 30-blt Mapping of Program Addresses to 32-blt Hardware Addresses 

Program Address 

OOOOOOOO •. 1FFFFFFF 

20000000 .. 3F'F'F'F'F'F'F' 

Hardware Addr.ess 

OOOOOOOO .. lFFFFFFF 

EOOOOOOO .• FFFFFFFF 

2.2.2.1 Physical Address Control Registers 

During powerup, microcode configures the CPU to generate 30-bit physical addresses. Console 
firmware may then reconfigure the CPU and optional vector unit to generate either 30-bit or 
32-bit physical addresses by writing to the MODE bit in the PAMODE register. The PAMODE 
register is shown in Figure 2-4. 

Figure 2-4: IPR E7 (hex), PAMODE 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 :PAMODE 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+~-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 
MODE --+ 

The PAMODE register also determines how PrEs are to be interpreted. In 30-bit mode, PrEs 
are interpreted in 21-bit PFN format. In 32-bit mode, PrEs are interpreted in 25-bit PFN format 
(although the two upper bits of the PFN field are ignored). The different PTE formats are 
described in Section 2.6.4. 

The PAMODE register is described in more detail in Chapter 12. 

2.2.3 Registers 

There are 16 32-bit General Purpose Registers (GPRs). The format is shown in Figure 2-5, and 
the use of each GPR is shown in Table 2-2. 
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Figure 2-5: General Purpose Registers 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I :Rn 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 2-2: General Purpose Register Usage 

GPR Synonym Use 

RO-RII General Purpose 

RI2 AP Argument Pointer 

RI3 FP Frame Pointer 

R14 SP Stack Pointer 

R15 PC Program Counter 

The Processor Status Longword (PSL) is a 32-bit register which contains processor state. The 
PSL format is shown in Figure 2-6, and the fields of the PSL are shown in Table 2-3. 

Figure 2-6: Processor Status Longword Fields 

31 30 29 28127 26 25 24123 22 21 20119 16 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--~-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I I IMBIFPI I CUR I PRV IMBI 
ICMITPIVMIZ ID IISI MOD I MOD IZ I IPL MBZ 

I I I I I I I I I 
IDVIFUIIVI TI NI ZI VI CI :PSL 

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 2-3: Processor Status Longword 

Name Bit(s) Description 

CM 31 Compatability Model 

TP 30 Trace Pending 

VM 29 VIrtual Machine Model 

FPD 27 First Part Done 

IS 26 Interrupt Stack 

CUR_MOD 25:24 Current Mode 

PRV_MOD 23:22 Previous Mode 

IPL 20:16 Interrupt Priority Level 

DV 7 Decimal Overfiow Trap Enable 

FU 6 Floating Underfiow Fault Enable 

IV 5 Integer Overfiow Trap Enable 

T 4 Trace Trap Enable 

1 MBZ in CUlTent implementation 
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Table 2-3 (ConL): Processor Status Longword 

Name Bit(s) Description 

N 3 Negative Condition Code 

Z 2 Zero Condition Code 

V 1 Overfiow Condition Code 

C 0 Carry Condition Code 

2.3 Data Types 

The l\TVAX CPU supports nine data types: byte, word, longword, quadword, character string, 
variable length hit field, F _floating, D_floating, and G_floating. These are summarized in 
Figure 2-7. 

Figure 2-7: Data Types 

07 06 05 04103 02 01 00 

+--+--+--+--+--+--+--+--+ 

Data Type: Byte 
Length: 8 bits 
Use: Signed or unsigned integer 

15 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I :A 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Data Type: Word 
Length: 16 bits 
Use: Signed or unsigned integer 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I I :A 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Data Type: Longword 
Length: 32 bits 
Use: Signed or unsigned integer 

Figure 2-7 Cont'd on next page 
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Figure 2-7 (Cont.): Data Types 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I I :A 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I I :A+4 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Data Type: Quadword 
Length: 64 bits 
Use: Signed integer 

07 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+ 

:A 
+--+--+--+--+--+--+--+--+ 

:A+l 
+--+--+--+--+--+--+--~-+ 

+--~--+--+--+--+--+--+--+ 

:.A+len;r:.h - 1 

Da~a ~y?e: Ch~~acte~ S~=ing 

~n;~t.: 0-64K by:.es 
Use: :Syce s~=ing 

i///!///////I///////////I 1 :A 
+--+--+--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--+--+--~--+--~-+--+--+--+--+--+--+--+--+--+ 

Data Type: Variable length bit field 
Length: 0-32 bits 
Use: Bit string 

15 14 13 12/11 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
lsi exponent fraction:A 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

fraction :A+2 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

31 30 29 28127 26 25 24123 22 21 20/19 18 17 16 

Data Type: F_floating 
Length: 32 bits 
Use: Floating point 

l5 14 13 1211l 10 09 08107 06 OS 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
lsi exponent I fraetion I :A 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-~+ 

1 fraction 1 :A+2 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

fraction :A+4 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 fraction 1 :A+6 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

63 62 61 60159 58 57 56155 54 53 52151 50 49 48 

Data Type: D_floating 
Length: 64 bits 
Use: Floating point 

Figure 2-7 Cont'd on next page 
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Figure 2-7 (Cont.): Data Types 

15 14 13 ~21~1 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 sl exponent I fraetion 1 :A 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I fraction 1 :A+2 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

fraction I :A+4 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

fraction 1 :A+6 
+--+-----+-----+--+--+--+--+--+--+--+--+--+--+--+ 

63 62 61 60159 58 57 56155 54 53 52151 SO 49 4B 

Data Type: G_floating 
I.ength: 64 bits 
Use: Floating point 

2.4 Instruction Formats and Addressing Modes 

VAX instructions consist of a one- or two-byte opcode, followed by zero to six operand specifiers. 

2.4.1 Opcode Formats 

.An opcode may be either one or two contiguous bytes. The two-byte format begins with an FD 
(hex) byte and is followed by a second opcode byte. The one-byte format is indicated by an opcode 
byte whose value is anything other than FD (hex). The one- or two-byte opcode format is shown 
in Figure 2-8. 

Figure 2-8: Opcode Formats 

07 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+ 

One-byte opcocie: 1 opeocie 1 :A 
+--+--+--+--+--+--+--+--+ 

15 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Two-byte opcocie: opeocie FD I :A 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

2.4.2 Addressing Modes 

An operand specifier starts with a specifier byte and may be followed by a specifier extension. 
Bits <3:0> of the specifier byte contain a GPR number and bits <7:4> of the specifier byte indicate 
the addressing mode of the specifier. If the register number in the specifier byte does not contain 
15, the addressing mode is a general register addressing mode. H the register number in the 
specifier byte does contain 15, the addressing mode is a PC-relative addressing mode. The 
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different addressing modes are shown graphically in Figure 2-9. General register addressing 
modes are listed in Table 2-4 and PC-relative addressing modes are listed in Table 2-5. 

Figure 2-9: Addressing Modes 

General register 
addressing mode: 

PC-relative 
addressing mode: 

07 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+ 

mode 1 register 1 
+--+--+--+--+--+--+--+--+ 

07 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+ 

mode 1 1 1 1 11 
+--+--+--+--+--+--+--+--+ 
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Table 2-4: General Register Addressing Modes 

Mode Name 

0-3 literal 

4 index 

5 register 

6 register deferred 

7 autodecrement 

8 autoincrement 

9 autoincrement deferred 

A byte displacement 

B byte displacement deferred 

C vvord displacement 

D word displacement 
deferred 

E lo~ord displaceIDent 

F lo~ord displacement 
deferred 

.Access Types 

r = read 
m = modify 
w = write 
a = address 
v = variable bit field 

Syntax 

i = any indexable address mode 
d = displacement 
Rn = general register, n = 0 to 15 
Rx = general register, n = 0 to 14 

Results 

y = yes, always valid address mode 
f = reserved addressing mode fault 
:r: = logically impossible 
p = program counter acidressiDg 
u = unpredictable 

Assembler 

S"#literal 

i[Rx] 

Rn 
(Rn) 

-eRn) 

(Rn);. 

@(Rn)+ 

B"d(Rn) 

@B"d(Rn) 

W"d(Rn) 

@W"'d(Rn) 

L"d(Rn) 

@L"'d(Rn) 

ud = unpredictable for clestination of CALLG, CALLS, JMP and JSB 
uq = unpredictable for quad, D/G_lloating and field if po8+8ize > 32 
u:r: = unpredictable if index register = base register 
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Access 

rmwav 

yffff 

yyyyy 

yyyfy 

yyyyy 

yyyyy 

yyyyy 

yyyyy 

yyyyy 

yyyyy 

yyyyy 

yyyyy 

yyyyy 

yyyyy 

PC SP IDdeDlble? 

x x f 

u y f 

u uq f 

u y y 

u Y \IX 

P Y \IX 

P Y \IX 

P Y Y 

P Y Y 

P Y Y 

P Y Y 

P Y Y 

P Y Y 
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Table 2-5: PC-Relative Addressing Modes 

Mode Name Assembler 

8 immediate IA#constant 

9 absolute O#address 

A byte relative BAaddress 

B byte relative deferred @BAaddress 

C word relative WAaddress 

D word relative deferred @WAaddress 

E longword relative LAaddress 

F longword relative defelTed @LAaddress 

For notation, refer to the key in Table 2-4 

2.4.3 Branch Displacements 

rmwav 

yuuyud 

yyyyy 

yyyyy 

yyyyy 

yyyyy 

yyyyy 

yyyyy 

yyyyy 

PC SP Indezable? 

u 

y 

y 

y 

y 

y 

y 

y 

Branch instructions contain a one- or two-byte signed'branch displacement after the final specifier 
(if any). The branch displacement is shown in Figure 2-10. 

Figure 2-10: Branch Displacements 

Signed. byte 
displacement: 

Signed. word 
displacement: 

07 06 05 04 10.3 02 01 00 
+--+--+--+--+--+--+--+--+ 

displacement 
+--+--+--+--+--+--+--+--+ 

15 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I displacem&pt I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

2.5 Instruction Set 

The NVAX CPU supports the VAX Base Instruction Group as defined in DEC Standard 032. 
These instructions are listed in Table 2-6. 
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Table 2-6: NVAX Instruction Set 

Opcode IDstructiOD N Z V C Exceptions 

Integer, Arithmetic and Logical Instructions 

58 ADAWI add.rw, sum.mw * * * * iov 

80 ADDB2 add.rb, sum.mb * * * * iov 

00 ADDL2 add.rI, sum.ml * * * * iov 

AO ADDW2 add.rw, sum.mw * * * * iov 

81 ADDB3 add1.rb, add2.rb, sum.wb * * * * iov 

01 ADDLS addi.rI, add2.rI, sum.wI * * * * iov 

Al ADDW3 add1.rw, add2.rw, sum.ww * * * * iov 

08 ADWC add.rI, sum.m1 * * * * iov 

78 ASHL cnt.rb, src.rI, dst. wI * * * 0 iov 

79 ASHQ cnt.rb, src.rq, dst.wq * * * 0 iov 

8A BIOB2 mask.rb, dst.mb * * 0 

OA BICL2 mask.rI, dst.m1 * * 0 

AA BICW2 mask-rw, dst.mw * * 0 

8B BICB3 mask.rb, src.rb, dst. wb * * 0 

OB BICL3 mask.rI, src.rI, dst. wI * * 0 

AB BICW3 mask-rw, srC.TW, dst.ww * * 0 

88 BISB2 mask.rb, dst.m.b * * 0 

08 BISL2 mask.rI, dst.ml * * 0 

AS BISW2 mask.rw, dst.mw * * 0 

89 BISB3 mask.rb, src.rb, dst.wb * * 0 

09 BISLS mask.rI, src.rI, dst. wI * * 0 

A9 BISW3 mask.rw, src.rw, dst. ww * * 0 

93 BITB mask.rb, src.rb * * 0 

D3 BITL mask.rI, src.rl * * 0 

B3 BITW mask.rw, src.TW * * 0 
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Table 2-6 (Cont.): NVAX Instruction Set 

Opcode IDstructioD N Z V C EltceptiODS 

Integer, Arithmetic and LogicallDstructioDS 

94 CLRB dst.wb 0 I 0 

D4 CLRL{::F} dst.wI 0 I 0 

7C CLRQ{=D::G} dst.wq 0 I 0 

B4 CLRWdst.ww 0 I 0 

91 CMPB src1.rb, src2.rb * II< 0 II< 

Dl CMPL srel.rl, src2.rI * II< 0 II< 

Bl CMPW sre1.rw, sre2.rw * II< 0 II< 

98 CVTBL sre.rb, dst.wI * II< 0 0 

99 CVTBW sre.rb, dst.ww * II< 0 0 

F6 CVTLB sre.rl, dst.wb * * II< 0 iov 

F7 CVTLW src.rl, dst.ww * II< II< 0 iov 

33 CVTWB sre.rw, dst.wb * II< II< 0 iov 

32 CVTWL Srt.rw, dst.wI * II< 0 0 

97 DECB dif.mb * II< II< II< iov 

D7 DECL dif.m1 * II< II< II< iov 

B7 DECW dif.mw * II< II< II< iov 

86 DIVB2 divr.rb, quo.mb * II< II< 0 iov, idvz 

C6 DIVL2 elivr.rl, quo.ml * II< II< 0 iov, idvz 

A6 DIVW2 divr.rw, quo.mw * II< II< 0 iov, idvz 

87 DIVB3 divr.rb, divcLrb, quo.wb * * II< 0 iov, idvz 

C7 DIVL3 divr.rl, divd.rl, quo.wI * * * 0 iov, idvz 

A7 DIVW3 divr.rw, divd.rw, quo.ww * * II< 0 iov, idvz 

7B EDIV divr.rI, divcLrq, quo.wl, rem.wI * II< * 0 iov, idvz 

7A EMUL mulr.rl, muld.rl, add.rl, prod.wq * * 0 0 

96 INCB sum.mb * II< II< * iov 

D6 INCLsum.m1 * II< II< * iov 
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Table 2-6 (Cont.): NVAX Instruction Set 

Opcode IDstractiOD N Z V C ExceptioDS 

Integer, Arithmetic and Logical InstructiOD& 

B6 INCWsum.mw * * * * iov 

92 MOOMB src.rb, dst.wb * * 0 

D2 MOOML src.rI, dst.wl * * 0 

B2 MOOMW src.rw, dst. ww * * 0 

BE M'NEGB src.rb, dst.wb * * * * iov 

OE MNEGL src.rI, dst.wI * * * * iov 

AE MNEGW src.rw, dst. ww * * * * iov 

90 MOVB sre.rb, dst. wb * * 0 

DO MOVL sre.rI, dst.wl * * 0 

7D MOVQ sre.rq, dst.wq * * 0 

BO MOv\v srC.rw, dst.ww * * 0 

9A MOVZBW sre.rb, dst.wb 0 * 0 

9B MOVZBL sre.rb, dst.wl 0 * 0 

30 MOVZWL sre.rw, dst.wI 0 * 0 

84 MULB2 mulr.rb, prod.mb * * * 0 iov 

C4 MULL2 mulr.rl, prod.m1 * * * 0 iov 

A4 MULW2 mulr.rw, prod.mw * * * 0 iov 

85 MULB3 mulr.rb, muld.rb, prod.wb * * * 0 iov 

05 MULL3 mulr.rI, muld.rI, prod.wI * * * 0 iov 

AS MULW3 mulr.rw, muld.rw, prod.ww * * * 0 iov 

DD PUSHL src.rI, {-(SP). wI} * * 0 

90 ROTL cnt.rb, src.rl, dst.wl * * 0 

D9 SBWO sub.rI, dif.m1 * * * * iov 

82 SUBB2 sub.rb, dif.m.b * * * * iov 
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Table 2-6 (Cont.): NVAX Instruction Set 

Opcode IDstructiOD. N Z V C Exceptions 

Integer, Arithmetic and LogicallDstructioDS 

C2 SUBL2 sub.rI, di£m1 * * * * iov 

A2. SUBW2 sub.rw, dif.mw * * * * iov 

83 SUBB3 sub.rb, min.rb, dif.wb * * * * iov 

C3 SUBL3 sub.rI, min.rI, dif.wI * * * * iov 

A3 SUBW3 sub.rw, min.rw, dif.ww * * * * iov 

95 TSTB sre.rb * * 0 0 

D5 TSTL sre.rl * * 0 0 

B5 TSTW srC.rw * * 0 0 

BC XORB2 mask.rb, dst.mb * * 0 

CC XORL2 mask.rI, dst.m1 * * 0 

AC XORW2 mask.rw, dst.mw * * 0 

8D XORB3 mask.rb, src.rb, cist. wb * * 0 

CD XORL3 mask.rI, src.rI, dst.wl * * 0 

AD XORW3 mask.rw, src.rw, dst. ww * * 0 

Address IDstructioDS 

9E MOVAB src.ab, cist. wI * * 0 

DE MOVAL{=F} arc.al, dst.wI * * 0 

7E MOVAQ{=D::G} src.aq, dst. wI * * 0 

3E MOVAW src.aw, dst.wI * * 0 

9F PUSHAB src.ab, {-(SP).wl} * * 0 

DF PUSHALt=F} ere.al, {-(SP). wI} * * 0 

7F PUSHAQ{=D=G} arc.aq, {-(SP).wI} * * 0 

3F PUSHAW src.aw, {-(SP).wl) * * 0 

Variable-LeDgth Bit Field IDstructioDS 

EC CMPV pos.rI, size.rb, base.vb, {field.rv}, sre.rl * * 0 * rav 

ED CMPZV pos.rI, size.rb, base.vb, {field.rv}, src.rI * * 0 * rav 
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Table 2-6 (Cont.): NVAX Instruction Set 

Opcode IDstructiOD N Z V C Exceptions 

Variable-Length Bit Field IDstructions 

EE EXTV pos.rl, size.rb, base. vb, ffield.rv}, dst.wl * * 0 rsv 

EF EXTZV pos.rl, size.rb, base.vb, {field.rv}, dst.wl * * 0 rsv 

FO INSV src.rl, pos.rl, size.rb, base. vb, {field. wv} rsv 

EB FFC startpos.rl, size.rb, base. vb , {field.rv} , 0 * 0 0 rsv 
findpos.wl 

EA FFS startpos.rl, size.rb, base.vb, {field.rv} , 0 * 0 0 rsv 
findpos.wl 

Control InstructiODS 

9D ACBB limit.rb, add.rb, index.mb, displ.bw * * * iov 

Fl ACBL limit.rl, add.rl, index.mI, clispl.bw * * * iov 

3D ACBW limit.rw, add.rw, index.mw, disp1.bw * * * iov 

F3 AOBLEQ limit.rl, index.ml, disp1.bb * * * iov 

F2 AOBLSS limit.rl, index.mI, displ.bb * * * iov 

IE BCC{=BGEQU} disp1.bb 

IF BCS{=BLSSU} displ.bb 

13 BEQL{=BEQLU} displ.bb 

18 BGEQ clisp1.bb 

14 BGTR displ.bb 

1A BGTRU disp1.bb 

15 BLEQ displ.bb 

IB BLEQU d,ispLbb 

19 BLSS displ.bb 

12 BNEQI=BNEQU} displ.bb 

1C BVC displ.bb 

ID BVS dispLbb 

El BBC pos.rl, base.vb, clisp1.bb, {field.rv} rsv 

EO BBS pos.rl, base.vb, displ.bb, {neld.rv} rsv 
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Table 2-6 (Cont.): NVAX Instruction Set 

Opcode IDstruction N Z V C E%ceptiODS 

Control InstructioDS 

E5 BBCC pos.rI, base.vb, displ.bb, ffield.mv} rsv 

E3 BBCS pos.rI, base.vb, dispI.bb, ffield.mv} rsv 

E4 BBSC pos.rI, base.vb, displ.bb, ffield.mv} rsv 

E2 BBSS pos.rI, base.vb, dispI.bb, ffield.mv} rsv 

E7 BBCCI pos.rI, base.vb, displ.bb, ffieId.mv} rsv 

E6 BBSSI pos.rI, base.vb, displ.bb, {field.mv} rsv 

E9 BLBC src.rI, disp1.bb 

ES BLBS src.r1, disp1.bb 

11 BRB disp1.bb 

31 BRW displ.bw 

10 BSBB disp1.bb, {-(SP).wl} 

30 BSBW disp1.bw, {-(SP).wl} 

SF CASEB selector.rb, base.rb, limit.rb, * * 0 * 
displ.bw-list 

CF CASEL selector.rI, base.rI, limit.rI, * lie 0 lie 

displ.bw-list 

AF CASEW selector.rw, base.rw, limit.rw, * lie 0 lie 

displ.bw-list 

17 JMP dst.ab 

16 JSB dst.ab, {-(SP).wl} 

05 RSB {(SP)+.rl} 

F4 SOBGEQ index.ml, disp1.bb * lie lie iov 

F5 SOBGTR index.ml, displ.bb * lie lie iov 
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Table 2-6 (Cont.): NVAX Instruction Set 

Opcode IDstructiOD N Z V C Exceptions 

Procedure Call1DstructiODS 

FA CALLG arglist.ab, dst.ab, {-(SP).w*) 0 0 0 0 rev 

FB CALLS numarg.rl, dst.ab, {-(SP).w*} 0 0 0 0 rev 

04 RET {(SP)+.r*) * * * * rev 

Miscellaneous IDstructions 

B9 BICPSW mask.rw * * * * rev 

B8 BISPSW mask.rw * * * * rsv 

03 BPI' (·<KSP). w*} 0 0 0 0 

00 HALT f·<KSP).w*} PrY 

OA INDEX subscript.rl, low.r!, bigh.rl, size.rl, * * 0 0 sub 
indexin.rl, indexout. wI 

DC MOVPSL dst.wI 

01 NOP 

BA POPR mask.rw, {(SP)+.r*} 

BB PUSHR mask.rw, {-(SP). w*} 

Fe XFC {unspecified operands} 0 0 0 0 

Queue IDstructiODS 

5C INSQHI entry.ab, header.aq 0 * 0 * rsv 

5D INSQTI entry.ab, header.aq 0 * 0 * rsv 

OE INSQUE entry.ab, pred.ab * * 0 * 

5E REMQHI header.aq, addr. wI 0 * * * rsv 

5F REMQTI header.aq, addr. wI 0 * * * rev 

OF REMQUE entry.ab, addr.wl * * * * 
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Table 2-6 (Cont.): NVAX Instruction Set 

Opcode IDstructiOD N Z V C hceptioDS 

Operating System Support IDstructiODS 

BD OHME param.rw, {...(ySP).w*} 0 0 0 0 

BO OHM!{ param.rw, {-(ySP).w*} 0 0 0 0 

BE OHMS param.rw, {-(ySP).w*} 0 0 0 0 

BF OHMU param.rw, {-(ySP).w*} 0 0 0 0 

06 LDPOTX fPOB.r*, -<KSP).w*} rsy, prv 

DB MFPR procreg.rl, dst. wI * * 0 rsy, prv 

DA MTPR src.rl, procreg.rI * * 0 rsy, prv 

00 PROBER mode.rb, len.rw, base.ab 0 * 0 

OD PROBEW mode.rb, Ien.rw, base.ab 0 * 0 

02 REI {(SP)+.r*} oj< * * * rsy 

07 SVPCTX {(SP)+.r*, POB.w*} prv 

Character StriDg IDstractioDB 

29 OMPCS len.rw, srcladdr.ab, src2addr.ab * * 0 * 

2D OMP05 srcllen.rw, srcladdr.ab, * * 0 * 
:fill.rb,src21en.rw, src2addr.ab 

SA LOOO char.rb, len.rw, addr.ab 0 * 0 0 

28 MOVOS Ien.rw, srcaddr.ab, dstaddr.ab, 0 1 0 0 
{R0-5.wl} 

20 MOV05 srclen.rw, srcaddr.ab, fill.rb, dstlen.rw, * * 0 * 
dstaddr.ab,{R0-5.wl} 

2A SOANO len.rw, addr.ab, tbladdr.ab, mask.rb 0 * 0 0 
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Table 2-6 (Cont.): NVAX Instruction Set 

Opcode IDstructiOD N Z V C ExceptioDS 

Character StriDg InstructiODS 

3B SKPC ehar.rb, len.rw, addr.ab 0 * 0 0 

2B SPANC len.rw, addr.ab, tbladdr.ab, mask.rb 0 * 0 0 

Floating Point IDstructiODS 

60 ADDD2 add.rd, sum.md * * 0 0 rav, fov, fuv 

40 ADDF2 add.rf, sum.mf * * 0 0 rav, fov, fuv 

40FD ADDG2 add.rgt sum.mg * * 0 0 rav, fov, fuv 

61 ADDD3 addl.rd, add2.rdt sum.wd * * 0 0 rsv, fov,fuv 

41 ADDF3 add1.ri', add.2.ri't sum.wf * * 0 0 rav, fov, fuv 

4lFD ADDG3 addl.rg, add2.rg, sum. wg * * 0 0 rsv, fov, fuv 

71 CMPD srcl.rd, src2.rd * * 0 0 rav 

51 CMPF srel.n, sre2.rf * * 0 0 rav 

51FD CMPG srel.rg, src2.rg * * 0 0 rav 

6C CVTBD sre.rb, dst.wd * * 0 0 

4C CVTBF sre.rb, dst.wf * * 0 0 

4CFD CVTBG sre.rb, dst.wg * * 0 0 

68 CVTDB sre.rd, dst.wb * * * 0 rav, iov 

76 CVTDF sre.rd, dst.wf * * 0 0 rav, fov 

SA CVTDL arc.rd, dst.wl * * * 0 rav, iov 

69 CVTDW src.rd, dst. ww * * * 0 rav, iov 

48 CVTFB src.n, dst. wb * * * 0 rav, iov 

56 CVTFD sre.n, dst. wd * * 0 0 rsv 

99FD CVTFG src.n, dst. wg * * 0 0 rsv 

4A CVTFL src.n, dst. wI * * * 0 rsv, iov 

49 CVTFW sre.n, dst.ww * * * 0 rav, iov 

48FD CVTGB sre.rg, dst.wb * * * 0 rav, iov 

33FD CVTGF sre.rg, dst.wf * * 0 0 rsv,fov,fuv 

4A.FD CVTGL arc.rg, dst.wl * * * 0 rsv, iov 
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Table 2-6 (Cont.): NVAX Instruction Set 

Opcode IDstructiOIl N Z V C ExCeptioDS 

Floating Point IDstructiODB 

49FD CVTGW src.rg, dst.ww * * * 0 rsv, iov 

6E CVTLD sre.rI, dst.wd * * 0 0 

4E CVTLF src.rI, dst.wf * * 0 0 

4EFD CVTLG sre.rI, dst.wg * * 0 0 

6D CVTWD src.rw, dst.wd * * 0 0 

4D CVTWF src.rw, dst. wf * * 0 0 

4DFD CVTWG src.rw, dst.wg * * 0 0 

6B CVTRDL sre.rd, dst.wI * * * 0 rsv, iov 

4B CVTRFL sre.rf, dst. wI * * * 0 rsv, iov 

4BFD CVTRGL sre.rg, dst.wI * * * 0 rsv, iov 

66 DIVD2 divr.rd, quo.md * * 0 0 rsv, fov, fuv, fdvz 

46 DIVF2 divr.rf, quo.mf * * 0 0 rsv, fov, fuv, fdvz 

46FD DIVG2 divr.rg, quo.mg * * 0 0 rsv, fov, fuv, fdvz 

67 DIVD3 divr.rd, divd.rd, quo.wd * * 0 0 rsv, fov, fuv, fdvz 

47 DIVF3 divr.rf, divd.rf, quo.wf * * 0 0 rsv, fov, fuv, fdvz 

47FD DIVG3 divr.rg, divd.rg, quo.wg * * 0 0 rsv, fov, fuv, fdvz 

72 MNEGD arc.rd., dst.wd * * 0 0 rsv 

52 MNEGF src.rf, dst. wf * * 0 0 rsv 

52FD MNEGG sre.rg, dst.wg * * 0 0 rsv 

70 MOVD src.rd., dst.wd * * 0 rsv 

50 MOVF src.rf, dst.wf * * 0 rsv 

50FD MOVG src.rg, dst.wg lie * 0 rsv 

64 MULD2 mulr.rd, prod.md lie * 0 0 rsv,fov, fuv 

44 MULF2 .mulr.rf, prod.mf * * 0 0 rsv, fov, fuv 

44FD MULG2 mulr.rg, prod.mg lie * 0 0 rsv,fov,fuv 

65 MULD3 mulr.rd, muld.rd, prod. wd lie * 0 0 rsv, fov, fuv 

45 MULF3 mulr.rf, muld.rf, prod.wf * * 0 0 rsv, fov, fuv 

45FD MULG3 mulr.rg, muld.rg, prod.wg lie lie 0 0 rsv, fov, fuv 
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Table 2-6 (Cont.): NVAX Instruction Set 

Opcode IDstructiOD N Z V C Exceptions 

Floating Point IDstructioDS 

62 SUBD2 sub.rd, dif.md * * 0 0 rsv,fov,fuv 

42 SUBF2 sub.rf, dif.mf * * 0 0 rsv, fov, fuv 

42FD SUBG2 sub.rg, dif.mg * * 0 0 rsv, fov, fuv 

63 SUBD3 sub.rd, min.rd, dif.wd * * 0 0 rsv, fov, fuv 

43 SUBF3 sub.rf, min.rf, dif.wf * * 0 0 rsv, fov, fuv 

43FD SUBG3 sub.rg, min.rg, dif.wg * * 0 0 rsv, fov, fuv 

73 TSTD sre.rd * * 0 0 rsv 

53 TSTF sre.rf * * 0 0 rsv 

53FD TSTGsrc.rg * * 0 0 rsv 

Microcode-Assisted Emulated IDstructiODS 

20 ADDP4 addlen.rw, addaddr.ab, sumlen.rw, * * * 0 rsv, dov 
sumaddr.ab 

21 ADDP6 addllen.rw, add1addr.ab, add21en.rw, * * * 0 rsv,dov 
add2addr.ab, suaUen.rw, suznaddr.ab 

F8 ASHP cnt.rb, srclen.rw, srcaddr.ab, round.rb, * * * 0 rsv,dov 
dstlen.rw, dstaddr.ab 

35 CMPP3 len.rw, srcladdr.ab, src2addr.ab * * 0 0 

37 CMPP4 srellen.rw, srcladdr.ab, src21en.rw, * * 0 0 
src2addr.ab 

OB CRC tbl.ab, inierc.rI, strlen.rw, stream.ab * * 0 0 

F9 CVTLP src.rI, dstlen.rw, dstaddr.ab * * * 0 rsv,dov 

36 CVTPL srcien.TW, srcaddr.ab, dst.wI * * * 0 rsv, iov 

08 CVTPS srelen.rw, srcaddr.ab, dstlen.rw, * * * 0 rsv, dov 
dstaddr.ab 

09 CVTSP srclen.rw, srcaddr.ab, dstlen.rw, * * * 0 rsv,dov 
dstaddr.ab 
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Table 2-6 (Cont.): NVAX Instruction Set 

Opcode IDstrDctiOD N Z V C kceptions 

Microcode-Assisted Emulated Instructions 

24 CVTPl' srclen.rw, srcaddr.ab, tbladdr.ab, * '" '" 0 rsv, dov 
dstlen.rw, dstaddr.ab 

26 CVTTP srclen.rw, srcaddr.ab, tbladdr.ab, * '" '" 0 rsv, dov 
dstlen.rw, dstaddr.ab 

27 DIVP divrlen.rw, divraddr.ab, divdlen.rw, * '" * 0 rsv, dov, ddvz 
divdaddr.ab, quolen.rw, quoaddr.ab 

38 EDITPC srclen.rw, srcaddr.ab, pattern.ab, * * * '" rsv, dov 
dstaddr.ab 

39 :MA.TCHC objlen.rw, objaddr.ab, srclen.rw, 0 * 0 0 
srcaddr.ab 

34 :MO'V"P len.rw, srcaddr.ab, dstaddr.ab * '" 0 0 

2E MOVTC srclen.rw, srcaddr.ab, fill.rb, * '" 0 * 
tbladdr.ab, dstlen.rw, dstaddr.ab 

2F MOVTUC srclen.rw, srcaddr.ab, esc.rb, * * * '" 
tbladdr.ab, dstlen.rw, dstaddr.ab 

25 MULP mulrlen.rw, mulraddr.ab, muldlen.rw, * * * 0 rsv, dov 
muldaddr.ab, prodlen.rw, prodaddr.ab 

22 SUBP4 sublen.rw, subaddr.ab, diflen.rw, '" * * 0 rsv, dov 
difaddr.ab 

23 SUBPG sublen.rw, subaddr.ab, minlen.rw, * * '" 0 rsv, dov 
mjnaddr ab diflen]=WI difaddr ab 
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Table 2-6 (Cont.): NVAX Instruction Set 

The notation used for operand specifiers is <DBme>.<access type><data type>. Implied operands (those locations that are 
referenced by the instruction but not specified by an operand) are denoted by curly braces n. 
Access Type 

a = address operand 
b = branch displacement 
m = modi1ied operand (both read and written) 
r = read only operand 
v = if not "Rn", same as a, otherwise R[n+l]'R[n] 
w = write only operand 

Data Type 

b = byte 
d = D_fioating 
f = F _floating 
g = G_fioating 
1 = longword 
q = quadword 
v = neld (used only in implied operands) 
w = word 
'" = multiple longwords (used only in implied operands) 

Condition Codes Modification 

'" = conditionally set/cleared 
- = not affected 
0= cleared 
1 = set 

EzceptiODS 

rsv = reserved operand fault 
iov = integer overflow trap 
idvz = integer divide by zero trap 
fov = fioating overflow fault 
fuv = floating under:fiow fault 
fdvz = floating divide by zero fault 
dov = decimal over1low trap 
ddvz = decimal divide by zero trap 
sub = subscript range trap 
prv = privileged instruction fault 
vec = vector unit disabled fault 
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2.6 Memory Management 

The NVAX CPU Chip supports a four gigabyte (2**32) virtual address space, divided into two 
sections, system space and process space. Process space is further subdivided into the PO region 
and the PI region. 

2.6.1 Memory Management Control Registers 

Memory management is controlled by three processor registers: Memory Management Enable 
(MAPEN), Translation Buffer Invalidate Single (TBIS), and Translation Buffer Invalidate All 
(TBlA). 

Bit <0> of the MAPEN register enables memory management if written with a 1 and disables 
memory management if written with a O. The MAPEN register is shown in Figure 2-11. 

Figure 2-11: IPR 38 (hex), MAPEN 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-.-+--+ 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I: MAP EN 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I 
MME --+ 

The TBIS register controls translation buffer invalidation. Writing a virtual address into TBIS 
invalidates any entry which maps that virtual address. The TBIS format is shown in Figure 2-12. 

Figure 2-12: IPR 3A (hex), TBIS 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Virtual Address I :TBIS 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

The TBIA register also controls translation buffer invalidation. Writing a zero into TBIA 
invalidates the entire translation buffer. The TBIA format is shown in Figure 2-13. 

DIGITAL CONFIDENTIAL Architectural Summary 2-25 



NVAX CPU Chip Functional Specification, Revision 1.lt August 1991 

Figure 2-13: IPR 39 (hex), TBIA 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 :TBIA 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

2.6.2 System Space Address Translation 

A virtual address with bit <31> = 1 is an address in the system virtual address space. 

System virtual address space is mapped by the System Page Table (SPT), which is defined by 
the System Base Register (SBR) and the System Length Register (SLR). The SBR contains the 
page-aligned physical address of the the System Page Table. The SLR contains the size of the 
SPT in longwords, that is, the number of Page Table Entries. The Page Table Entry addressed 
by the System Base Register maps the :first page of system virtual address space, that is, virtual 
byte address 80000000 (hex). These registers are shown in Figure 2-14. 

With a 22-bit SLR width, 222 - 1 pages in system space may be addressed. As a result, the last 
page of system space (beginning at virtual address FFFFFEOO (hex» is not addressable. As a 
result, this page is reserved and a reference to any address in that page will result in a length 
violation. 

NOTE 

NVAX CPU chips at revision 1 implement the original VAX memory management 
architecture in which any reference to a virtual address above BFFFFFFF (hex) causes 
a length violation. NVAX CPU chips at revision 2 or later implement the extended SO 
space addressing described above. 

NOTE 

When the CPU is configured to generate SO-bit physical addresses, SBR<SI:S0> are 
ignored. 
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Figure 2-14: IPR OC (hex), SBR and IPR OD (hex), SLR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I Physical Page Address of SPT I 0 0 0 0 0 0 0 0 01 :SBR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 0 0 0 0 0 0 0 0 0 01 Length of SPT in Longwords 1 :SLR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

The system space translation algorithm is shown graphically in Figure 2-15. 
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Figure 2-15: System Space Translation Algorithm 

system-space 
virtual address: 

SBR: 

SPTE: 

physical address: 

3 3 
1 0 9 8 o 

+-+---------------------+-------+ 
111 virtual page number I byte I 

+-+---------------------+-------+ 
I 1\ 
I extract VPN, I \ 
I check length, 1 \ 

3 212 and add 1 \ 
1 413 211 0 \ 

+------+---------------------+---+ \ 
1 physical address of SPT base 1 \ 

+--------------------------------+ I 
1 sign-extend PA<29> to PA<31:30>1 I 
1 if in 30-bit mode 1 I 
1 1 I 
13 yields I 1 
11 01 1 

+--------------------------------+ 1 
physical address of SPTE I 

+--------------------------------+ I 
I 
I 

fetch 1 
3 :2 2 1 
13201 

+------+-------------------------+ 1 
page frame number 1 

+------+-------------------------+ I 
1 check access in current I I 
I mode, I I 
I sign-extend PTE<:20> to 1 1 
1 I?TE<22:21> if in 30-bit 1 1 
I mode 1 1 
1 merge 1 / 
13 I / 
11 91/8 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

/ 
/ 

o / 
+-------------------------+-------+ 
1 page frame number 1 byte I 

+-------------------------+-------+ 

2.6.3 Process Space Address Translation 

I 
1 

1 

I 
I 

A virtual address with hit <31> = 0 is an address in the process virtual address space. Process 
space is divided into two equal sized, separately mapped regions. Ifvirtual address bit <30> = 0, 
the address is in region PO. If virtual address bit <30> = 1, the address is in region PI. 

2.6.3.1 PO Region Address Translation 

The PO region of the address space is mapped by the PO Page Table (POPT), which is defined by 
the PO Base Register (POBR) and the PO Length Register (POLR). The POBR contains the system 
page-aligned virtual address of the PO Page Table. The POLR contains the size of the POPT in 
longwords, that is, the number of Page Table Entries. The Page Table Entry addressed by the PO 
Base Register maps the first page of the PO region of the virtual address space, that is, virtual 
byte address O. The PO base and length registers are shown in Figure 2-16. 
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The PO space translation algorithm is shown graphically in Figure 2-17. 

Figure 2-16: IPR 08 (hex), POBR and IPR 09 (hex), POLR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 1 01 System Virtual Page Address of POPT I 0 0 0 0 0 0 0 0 01 : POBR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 0 0 0 0 0 0 0 0 0 01 Length of POPT in Longwords 1 :POLR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Figure 2-17: PO Space Translation Algorithm 

332 
109 9 8 o 

process-space +---+-------------------+-------+ 
virtual address: I 0 I virtual page number I byte I 

+---+-------------------+-------+ 
I 1\ \ 
I extract VPN, I \ \ 
I check length, I \ \ 

3 212 and add 1 \ \ 

1 312 211 0 \ \ 
+-------+-------------------+---+ \ \ 

POBR: 1 virtual address of POPT base \ \ 
+-------------------------------+ I I 
1 1 I I 
1 I I I 
1 yields 1 I I 

13 3 2 1 I I 
11 0 9 9 8 01 I I 

virtual address +---+---------------------------+ I I 
of POPTE: I Ivirtual pagQ number I byte I I 

+---+---------------------------+ I 
fetch using system-space translation I 
algorithm, including length check, I 
but without access check I 

3 2 2 I 
3 2 0 I 

+------+-------------------------+ I 
POPTE: I I page frame number 1 I 

+------+-------------------------+ I 
I check access in current 1 I 
I mode, I I 
I sign-extend PTE<20> to 1 I 
I PTE<22:21> if in 30-bit 1 I 

I mode 1 I 
I merge 1 / / 

13 1 / / 

11 91/8 0 / 
+-------------------------+-------+ 

physical address: I page frame number 1 byte I 
+-------------------------+-------+ 

2.6.3.2 P1 Region Address Translation 

The PI region of the address space is mapped by the PI Page Table (PIPT), which is defined by the 
PI Base Register (PIBR) and the PI Length Register (PILR). Because PI space grows towards 
smaller addresses, and because a consistent hardware interpretation of the base and length 
registers is desirable, PIBR and PILR describe the portion of PI space that is NOT accessible. 
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Note that PILR contains the number of nonexistent PTEs. PIBR contains the page-aligned 
virtual address of what would be the PTE for the first page of PI, that is, virtual byte address 
40000000 (hex). The address in PIBR is not necessarily an address in system space,but all the 
addresses of PTEs must be in system space. 

The PI space translation algorithm is shown graphically in Figure 2-19. 

Figure 2-18: IPR OA (hex), P1BR and IPR OB (hex), P1 LR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I Virtual Page Address of P1PT I 0 0 0 0 0 0 0 0 01 : P1BR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 0 0 0 0 0 0 0 0 0 01 (2 ** 21) - Length of P1PT in Longwords I :P1LR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Figure 2-19: P1 Space Translation Algorithm 

332 
109 9 8 o 

process-space +---+-------------------+-------+ 
virtual address: I 0 Ivirtua1 page number I byte I 

+---+-------------------+-------+ 
I 1\ \ 
I extract VPN, I \ \ 
I check length, I \ \ 

3 212 and add I \ \ 
1 312 211 0 \ \ 

+-------+-------------------+---+ \ \ 
P1BR: I virtual address of P1PT base I \ \ 

+-------------------------------+ I 
I I I 
I I I 
I yields I I 
13 3 2 I I 
11 0 9 9 8 01 I 

virtual address +---+---------------------------+ I 
of P1PTE: I virtual page nwnber I byte I I 

+---+---------------------------+ I 
fetch using system-space translation I 
algorithm, including length check, I 
but without access check I 

3 2 2 I 
1 3 2 0 I 

+------+-------------------------+ I 
P1PTE: _I page frame number I I I 

+------+-------------------------+ I I 
I check access in current I I 
I mode, I I 
I sign-extend PTE<20> to I I 
I PTE<22:21> if in 30-bit I I 
I mode I I 
I merge / / 
13 I / / 
11 91/8 0 / 

+-------------------------+-------+ 
physical address: I page frame number I byte I 

+-------------------------+-------+ 
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2.6.4 Page Table Entry 

If the CPU is configured to generate 30-bit physical addresses, it interprets PTEs in the 21-bit 
PFN format shown in Figure 2-20. Conversely, if the CPU is configured to generate 32-bit 
physical addresses, it interprets PTEs in the 25-bit PFN format shown in Figure 2-21. Note that 
bits <24:23> of the 25-bitPFN format are ignored by the NVAX CPU chip, which implements only 
32-bit physical addresses. The PTE formats shown below are described both in DEC Standard 
032, and in Chapter l2. 

Figure 2-20: PTE Format (21-bH PFN) 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
.--+--+--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--.--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I V [ PROT 1 M 1 Z \ OWN 1 SIS I Page Frame NUltIber , :PTE 
+--*--+--+--+--+--+--+--+--+--+--+--+--+--+--+--.--+--+--+--+--+--+--+--~-+--+--+--+--+--+--+--+ 

Figure 2-21 : PTE Format (25-blt PFN) 

31 30 29 26i27 26 25 24[23 22 21 20119 18 1~ 16[15 l' 13 12\11 10 09 0610' 06 C! 0'103 02 0: 00 

------------~--------~--+--------~--+--+_----~--~-----~--~--+--T--~--·-----------~-----------~--+ 
:?O':' I Yo i SiS IS: 

---------~--------~--------~-----~-------+-----------~-----------------------------~--~---------
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Table 2-7: PTE Protection Code Access Matrix 

Code C1Ift"eIlt Mode 

Decimal Binary Mnemonic It E S U Comment 

0 0000 NA no access 

1 0001 unpredictable reserved 

2 0010 KW RW 
3 0011 KR R 

4 0100 UW RW RW RW RW all access 

5 0101 EW RW RW 
6 0110 ERKW RW R 
7 0111 ER R R 
8 1000 SW RW RW RW 
9 1001 SREW RW RW R 

10 1010 SR.A~ RW R R 
11 1011 SR R R R 

12 1100 URSW RW RW RW R 
13 1101 UREW RW RW R R 

14 1110 URKW RW R R R 
15 1111 UR R R R R 

Access Modes 

K = Kernel 
E = Executive 
S = Supervisor 
U=User 

Access 'l'ypes 

R=Read 
W= Write 
- = No access 

2.6.5 Translation Buffer 

In order to save actual memory references when repeatedly referencing pages, the NVAX CPU 
Chip uses a translation buffer to remember successful virtual address translations and page 
status. The translation buffer contains 96 fully associative entries. Both system and process 
references share these entries. 

Translation buffer entries are replaced using a not-last-used (NLU) algorithm.. This algorithm 
guarantees that the replacement pointer is not pointing at the last translation buffer entry to be 
used. This is accomplished by rotating the replacement pointer to the next sequential translation 
buffer entry if it is pointing to an entry that has just been accessed. Both D-stream and I-stream 
references can cause the NLU to cycle. When the translation buffer does not contain a reference's 
virtual address and page status, the machine updates the translation buffer by replacing the 
entry that is selected by the replacement pointer. 

2-32 Architectural Summary DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

2.7 . Exceptions and Interrupts 

At certain times during the operation of a system, events within the system require the execution 
of software routines outside the explicit How of control of instruction execution. An exception is 
an event that is relevant primarily to the currently executing process and normally invokes a 
software routine in the context of the CUtTent process . .An interrupt is an event which is usually 
due to some activity outside the current process and invokes a software routine outside the context 
of the current process. 

Exceptions and interrupts are reported by constructing a frame on the stack and then dispatching 
to the service routine through an event-specific vector in the System Control Block (8CB). The 
minimum stack frame for any interrupt or exception is a PCIPSL pair as shown in Figure 2-22. 

Figure 2-22: Minimum Exception Stack Frame 

3: 30 2~ :8\27 26 25 :~:23 22 21 20/19 18 :- :6,:5 1~ 13 ::,:: 10 O~ 08107 06 05 04103 02 01 00 

------~--------------------~--------------------------------------------------------------+--~--. 
\ : (SP) 

------~-----~-----~-----------~--.--~--~--------------------------+--+--~----.--+--~--~--~-----+ 

------------------------------+--~--------------------+-----~--------------~--+--~-----~--------. 

This minimum stack frame is used for all interrupts. Certain exceptions expand the stack frame 
by pushing additional parameters on the stack above the PCIP~L pair as shown in Figure 2-23. 

Figure 2-23: General Exception Stack Frame 

31 30 2~ 28127 26 25 24123 22 21 20119 18 17 16/15 14 13 l2111 10 O~ 08/07 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Parameter n I : (SP) 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I Parameter 1 I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
\ PC I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
/ PSI. 1 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

What parameters, if any, are pushed on the stack above the PCIPSL pair is a function of the 
specific exception being reported. 

2.7.1 Interrupts 

DEC Standard 032 defines 31 interrupt priority levels, a subset of which is implemented by 
the NVAX CPU. When an interrupt request is generated, the hardware compares the request 
with the current IPL of the CPU. If the new request is of higher priority an internal request is 
generated. At the completion of the current instruction (or at selected points during the execution 
of interruptible instructions), a microcode interrupt handler is invoked to process the request. 
With hardware assistance, the microcode handler determines the highest priority interrupt, 
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updates the IPL, pushes a PCIPSL pair on the stack, and dispatches to a macrocode interrupt 
handler through the appropriate location in the SCB. 

Of the 31 interrupt priority levels defined by DEC Standard 032, the NVAX CPU makes use of 
24 of them, as shown in Table 2-8. 

Table 2-8: Interrupt Priority Levels 

lPL (hex) 

IF 
IE 
ID 
Ie 
IB 

1A 

18-19 

17 

16 

15 

14 
10-13 

01-OF 

IPL (decimal) 

31 

30 

29 

28 

27 

26 

24-25 

23 

22 

21 

20 

16-19 

01-15 

Interrupt Condition 

BALT_L asserted (non maskable) 

PWRFL_L asserted 

B_ERR_L asserted (or internal hard elTOt' detected) 

Unused 

Performance monitoring intelTUpt (internally handled by 
microcode) 

S_ERR_L asserted (or internal soft error detected) 

Unused 

m(LL<3> asserted 

m(LL<2> or I!\'"T_TlM_L asserted <mQ..L<2> takes priority) 

mQ..L<l> asserted 

mQ..L<o> asserted 

Unused 

SofWrare interrupt asserted 

Interrupts are discussed in more detail in Chapter 10. 

2.7.1.1 Interrupt Control Registers 

The interrupt system is controlled by three processor registers: the Interrupt Priority Level 
Register (IPL), the Software Interrupt Request Register (SIRR), and the Software Interrupt 
Summary Register (SISR). 

A new interrupt priority level may be loaded into PSL<20:16> by writing the new value to 
IPL<4:0>. The IPL register is shown in Figure ~24. 
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Figure 2-24: IPR 12 (hex), IPL 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 PSL<20:16> 1 :IPL 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

A software interrupt may be requested by writing the desired level to 8IRR<3:0>. The 81RR 
register is shown in Figure 2-25. 

Figure 2-25: IPR 14 (hex), SIRR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OIRequest IPLI :SIRR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

The 818R register records pending software interrupt requests at levels 01 through OF (hex). The 
818R register is shown in Figure 2-26. 

Figure 2-26: IPR 15 (hex), SISR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 I I I I I 1 1 1 1 1 1 1 1 1 1 01 :SISR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I 1 1 1 
IPL 15 request --+ 1 IPL 2 request --+ 1 

IPL 14 request --+ IPL 1 request --+ 

2.7.2 Exceptions 

The VAX architecture recognizes six classes of exceptions. Table 2-9 lists instances of exceptions 
in each class. 

Table 2-9: Exception Classes 

Exception Class 

Arithmetic trapslfaults 

DIGITAL CONFIDENTIAL 

Instances 

Integer over1low trap 
Integer divide-by-zero trap 
Subscript range trap 
Floating overfiow fault 
Floating divide-by-zero fault 
Floating underfiow fault 
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Table 2-9 (Cont.): Exception Classes 

Exception Class 

Memory management exceptions 

Operand reference exceptions 

Instruction execution exceptions 

Tracing exceptions 

System failure exceptions 

Instances 

Access control violation fault 
Translation not valid fault 
M::O fault 

Reserved addressing mode fault 
Reserved operand fault or abort 

Reserved/privileged instruction fault 
Emulated instruction faults. 
XFC fault 
Change-mode trap 
Breakpoint fault 
Vector disabled fault 

Trace fault 

Kemel-stack-not-valid abort 
IntelTUpt-stack-not-valid halt 
Console error halt 
Machine check abort 

A trap is an exception that occurs at the end of the instruction that caused the exception. 
Therefore, the PC saved on the stack is the address of the next instruction that would normally 
have been executed. 

A fault is an exception that occurs during an instruction and that leaves the registers and memory 
in a consistent state such that elimination of the fault condition and restarting the instruction 
will give correct results. After the instruction faults, the PC saved on the stack points to the 
instruction that faulted. 

An abort is an exception that occurs during an instruction. An abort leaves the value of registers 
and memory UNPREDICTABLE such that the instruction cannot necessarily be correctly 
restarted, completed, simulated, or undone. In most instances, the NVAX microcode attempts to 
convert an abort into a fault by restoring the state that was present at the start of the instruction 
which caused the abort. 

The following sections describe only those exceptions which are unique to the NVAX CPU, or 
where DEC Standard 032 is not clear about the implementation. 

2.7.2.1 Arithmetic Exceptions 

Arithmetic exceptions -are detected during the execution of instructions that perform integer or 
floating point arithmetic manipulations. Whether the exception is reported as a trap or a fault 
is a function of the specific event. In any case, the exception is reported through SCB vector 34 
(hex) with the stack frame shown in Figure 2-27. Table 2-10 lists the exceptions reported by 
this mechanism. 
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Figure 2-27: Arithmetic Exception Stack Frame 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 OS 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 Type Code 1 : (SP) 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 PC 1 

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 PSL 1 

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 2-10: Arithmetic Exceptions 

Type Code 

Decimal Hex Type Exception 

1 1 Trap Integer overflow 

2 2 Trap Integer divide-by-zero 

7 7 Trap Subscript range 

8 8 Fault Floating overflow 

9 9 Fault Floating divide-by-zero 

10 A Fault Floating underflow 

2.7.2.2 Memory Management Exceptions 

Memory management exceptions are detected during a memory reference and are always reported 
as faults. The three memory management exceptions are listed in Table 2-11. All three exceptions 
push the same frame on the stack, as shown in Figure 2-28. The top longword of the stack frame 
contains a fault parameter whose bits are described in Table 2-12. 

Table 2-11: Memory Management Exceptions 

SCB Vector 

20 (hex) 

24 (hex) 

30 (hex) 

Exception 

Access control violation 

Translation not valid 

Modify fault 
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Figure 2-28: Memory Management Exception Stack Frame 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 MI PI LI : (SP) 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 Some Virtual Address in the Faulting Page 1 

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 PC 1 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PSL 1 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 2-12: Memory Management Exception Fault Parameter 

Bit Mnemonic Meaning 

o 
1 

2 

L 
p 

M 

Length violation 

PTE reference 

Modify or write intent 

2.7.2.3 Emulated Instruction Exceptions 

The NVAX CPU implements the VAX base instruction group. For certain instructions outside 
that group, the NVAX microcode provides support for the macrocode emulation of instructions. 
There are two types of emulation exceptions, depending on whether PSL<FPD> is set at the 
beginning of the instruction. 

If PSL<FPD>=O at the beginning of the instruction, the exception is reported through 8CB vector 
C8 (hex) as a trap with the stack frame shown in Figure 2-29. The longwords in the stack frame 
are described in Table 2-13. 
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Figure 2-29: Instruction Emulation Trap Stack Frame 

31 30 29 28127 26 25 24123 22 21 20119 18 l7 l61l5 14 13 l211l lO 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Opcocie 1 : (SP) 

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I Old PC 1 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Specifier n 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Specifier f2 
.--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Specifier .3 
.--+--+--~--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Specifier .4 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Specifier f 5 
---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--~--+--+ 

Specifier +6 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-_._----+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

SpeCifier f.' 7 

---+--+--~--+--~--~--~-+--~-----~--+--+--+--+--+-----+-----+--+--.--T--~--+--~--~--+--+--+--+--+ 
Speci!ier .8 

PC 

---.--T-----------~--~--~--+--~--+--+-----~--~--------~-----~----~--+--~--~--+--~--+--T--+-----~ 

---+--~--~--+--+--~--+--~--+--~--~--~--.--~--~--~--------------~--~--+--~--------~-~--~--+------

Table 2-13: Instruction Emulation Trap Stack Frame 

Location 

Opcode 

Old PC 

Specifiers 

New PC 

PSL 

Use 

Zero-extended opcode of the emulated instruction 

PC of the opcode of the emulated instru.ction 

Address of the specified operand for specifiers of access type write (.wx) or address 
(.ax). Operand value for specifiers of access type read (.rx). For read-type operands 
whose size is smaller than a longword, the remaining bits are UNPREDICTABLE. 
For those instructions that don't have 8 specifiers, the remaining specifier longwords 
contain UNPREDICTABLE values 

PC of the instruction following the emulated instruction 

PSL saved at the time of the trap 

If PSL<FPD>=l at the beginning of the instruction, the exception is reported through SCB vector 
CC (hex) as a fault with the stack frame shown in Figure 2-30. In this case, PC is that of the 
opcode of the emulated instruction. 
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Figure 2-30: Suspended emulation Fault Stack Frame 

31 30 29 28127 26 25 24123 22 21 20119 16 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PC I : (SP) 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PSL I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

2.7.2.4 Vector Unit Disabled Fault 

Vlhen the NVAX CPU attempts to issue a vector instruction to the optional vector processor, it 
may discover that the vector unit is disabled. In this case, a vector unit disabled fault is initiated 
through 8CB vector 68 (hex). There are no parameters for this exception (besides the usual 
PCIPSL pair), and the reason for the exception must be determined by reading the appropriate 
vector unit registers. 

2.7.2.5 Machine Check exceptions 

A machine check exception is reported through 8CB vector 04 (hex) when the ~TVAX CPU detects 
an error condition. The frame pushed on the stack for a machine check indicates the type of error 
and provides internal state information that may help identify the cause of the error. The generic 
machine check stack frame is shown in Figure 2-31. Machine checks are discussed at length in 
Chapter 15. 

Figure 2-31 : Generic Machine Check Stack Frame 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

B~e Count of Parameters, Excluding This Longword I : (SP) 
+-_._-.--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
PC 

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PSL I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

2.7.2.6 Console Halts 

In certain microcode Hows, the NVAX microcode may detect an inconsistency in internal state, 
a kernel-mode HALT, or a system reset. In these instances, the microcode initiates a hardware 
restart sequence which passes control to the console program. 

When a hardware restart sequence is initiated, the NVAX microcode saves the current CPU 
state, partially initializes the CPU, and passes control to the console program at physical address 
E0040000 (hex). 

During a hardware restart sequence, the stack pointer is saved in the appropriate stack pointer 
IPR (0 through 4), the current PC is saved in IPR 42 (SAVPC), and the current P8L, halt code, 
and validity ftag are saved in IPR 43 (SAVP8L). The format of SAVPC and 8AVPSL are shown 
in Figure 2-32. 
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Figure 2-32: IPR 2A (hex), SAVPC and IPR 28 (hex), SAVPSL 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 Saved PC 1 :SAVPC 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PSL<31 : 16> 1 I I Halt Code 1 PSL<7 : 0> 1 : SAVPSL 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 1 
MAPEN<O> --+ 1 

Invalid SAVPSL if 1 --+ 

Console halts are discusssed in detail in Chapter 15. 

2.8 System Control Block 

The System Control Block (SCB) is a page containing the vectors for servicing interrupts and 
exceptions. The SCB is pointed to by the System Control Block Base Register (SCBB), whose 
format is shown in Figure 2-33. For best performance, SCBB should contain a page-aligned 
address. Microcode forces a longword-aligned SCBB by clearing bits <1:0> of the new value 
before loading the register. 

NOTE 

When the CPU is configured to generate 30-bit physical addresses, SCBB<31:30> are 
ignored. 

Figure 2-33: IPR 11 (hex), SCaB 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Physical Page Address of SCB 1 SBZ 1 0 01 :SCBB 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

2.8.1 System Control Block Vectors 

An SCB vector is an aligned longword in the SCB through which the NVAX microcode dispatches 
interrupts and exceptions. Each SCB vector has the format shown in Figure 2-34. The fields of 
the vector are described in Table 2-14. 

DIGITAL CONFIDENTIAL Architectural Summary 2-41 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

Figure 2-34: System Control Block Vector 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I longword address of service routine Icode I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 2-14: System Control Block Vector 

Bits Contents 

31:2 VutuaJ. address of the service routine for the interrupt or exception. The routine must be 
longword aligned, as the microcode forces the lower two bits of the address to 00 

1:0 Code, interpreted as follows: 

Value 

00 

01 

10 

11 

Meaning 

The event is to be serviced on the kernel stack unless the CPU is already on the 
interrupt stack, in which case the event is serviced on the interrupt stack 

The event is to be serviced on the interrupt stack. If the event is an exception, the 
IPL is raised to IF (hex) 

Unimplemented, results in a console error halt 

Unimplemented, results in a console error halt 

2.8.2 System Control Block Layout 

The System Control Block layout is shown in Table 2-15. 

Table 2-15: System Control Block Layout 

Vector Name Type Param 

00 passive release interrupt 0 

04 machine check abort 6 

08 kernel stack not valid abort 0 

OC power fail interrupt 0 

10 reserved/privileged fault 0 
instruction 

14 customer reserved instruction fault 0 

18 reserved operand fault/abort 0 

lC reserved addressing mode fault 0 

20 access control violation/vector fault 2 
alignment fault 
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Notes 

IPL is raised to request IPL 

parameters reflect 
machine state; must be serviced 
on interrupt stack 

must be serviced on interrupt 
stack 

IPL is raised to IE (hex) 

XFC instruction 

not always recoverable 

parameters are virtual address, 
status code 
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Table 2-15 (ConI.): System Control Block Layout 

vector Name Type 

24 

28 

2C 

30 

34 

38-3C 

40 

44 

48 

4C 

50 

54 

58 

translation not valid 

trace pending 

breakpoint instruction 

unused 

arithmetic trap'fault 

unused 

CHMK 

CHME 

CHMS 

CHMU 

unused 

soft error notification 

Performance monitoring 
counter overflow 

5C unused 

60 

64 

68 

6C-7C 

80 

84 

88 

8C 

90-BC 

CO 

C4 

hard error notification 

unused 

vector unit disabled 

unused 

interprocessor interrupt 

software level 1 

software level 2 

software level 3 

softwareleveb4-15 

interval timer 

unused 
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fault 

fault 

fault 

trap'fault 

trap 

trap 

trap 

trap 

interrupt 

interrupt 

interrupt 

fault 

interrupt 

interrupt 

interrupt 

interrupt 

interrupt 

interrupt 

Param Notes 

2 

o 
o 

1 

1 

1 

1 

1 

o 

o 

o 

o 
o 
o 
o 

o 
o 

parameters are virtual address, 
status code 

compatibility mode in other 
VAXes 

parameter is type code 

parameter is sign-extended 
operand word 

parameter is sign-extended 
operand word 

parameter is sign-extended 
operand word 

parameter is sign-extended 
operand word 

IPL is 1A (hex) 

Internal interrupt at IPL IB 
(hex). This vector supplies 
the physical base address of 
the block of performance 
monitoring counts in memory. 
See Chapter 18 for details. 

IPL is ID (hex) 

vectorinstrucQons 

IPL is 16 (hex) 

ordinarily used for AST delivery 

ordinarily used for process 
scheduling 

IPL is 16 (hex) 
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Table 2-15 (Cont.): System Control Block Layout 

Vector Name Type Param Notes 

C8 emulation start fault 10 same mode exception, 
FPD=O; parameters are opcode, 
PC, specifiers 

CC emulation continue fault 0 same mode exception, FPD=l; no 
parameters 

DO-F4 unused 

F8 console receiver interrupt 0 IPL is 15 (hex) 

FC console transmitter interrupt 0 IPL is 15 (hex) 

100-FFFC device vectors interrupt 0 Device interrupt vectors 

2.9 CPU Identification 

Software may quickly determine on which CPU it is executing in a multi-processor system by 
reading the CPUID processor register. The format of this register is shown in Figure 2-35. 

Figure 2-35: IPR OE (hex), CPUID 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 CPU Identification I :CPUID 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

The CPUID processor register is implemented internally as an 8-bit read-write register. The 
source of the CPU ID information is system-specific, and it is the responsibility of the console 
firmware at powerup to determine the CPU ID from the system-specific source, and write the 
CPU ID register to the correct value. 

2.10 System Identification 

The System Identification Register (SID) is a read-only register which includes the the system 
(actually the CPU) type, and the microcode revision number. The format of the SID register is 
shown in Figure 2-36. 
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Figure 2-36: IPR 3E (hex), SID 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 CPU Type 1 0 0 0 0 0 0 0 0 0 OIPatch RevisionlNSI Microcode Revision I :SID 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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Table 2-16: SID Field Descriptions 

Name 

Microcode Revision 

NS 

Patch Revision 

CPU Type 

Extent Type 

7:0 RO 

Description 

This field contains the microcode (chip) revision number. 
This number is incremented for each pass of the chip. 

S RO,O If this bit is a zero, there is either no microcode patch 
loaded, or the patch is a standard patch. If this bit 
is a one, a non-standard microcode patch is loaded.. A 
non-standard patch is one which goes beyond the formally 
released patches, such as a patch used for performance 
analysis. This bit is cleared on chip reset. 

13:9 RO,O If this field is zero, no microcode patch is loaded. If this 
field is non-zero, a microcode patch is loaded and this field 
indicates the patch number. This field is cleared on chip 
reset. 

31:24 RO This field contains 19 (declmal), indicating that this is an 
NVAXCPU. 

NOTE 

The patch revision and non-standard patch fields (SID<13:8» were added in pass 2 of 
the NVAX chip. 

2.11 Process Structure 

A process is a single thread of execution. The context of the current process is contained in the 
Process Control Block (PCB). The PCB is pointed to by the Process Control Block Base register 
(PCBB), which is shown in Figure 2-37. The format of the process control block is shown in 
Figure 2-38. Microcode forces a longword-aligned PCBB by clearing bits <1:0> of the new value 
before loading the register. 

NOTE 

When the CPU is configured to generate 30-bit physical addresses, PCBB<31:30> are 
ignored. 
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Figure 2-37: IPR 10 (hex), PCBB 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 OS 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I Physical Longword Address of the PCB 1 0 01 :PCBB 
+--+--+--~+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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Figure 2-38: Process Control Block 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I KSP :PCB 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

ESP +4 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

SSP +8 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

USP +12 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I RO I +16 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

R1 +20 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

R2 I +24 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

R3 I +28 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I R4 I +32 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I R5 I +36 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

R6 I +40 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

R7 I +44 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

R8 +48 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I R9 I +52 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

R10 I +56 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I Rll I +60 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I AP(Rl2) I +64 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I FP (Rl3) I +68 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PC I +72 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PSL I +76 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I POBR I +80 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 0 0 0 0 0 I ASTLVL I 0 0 I POLR I +84 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

P1BR I +88 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PME 0 0 0 0 0 0 0 0 0 I PlLR I +92 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
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2.12 Processor Registers 

The processor registers that are implemented by the NVAX CPU chip, and those that are required 
of the system environment, are logically divided into five groups, as follows: 

• Normal-Those IPRs that address individual registers in the NVAX CPU chip or system 
environment. 

• Bcache tag IPRs-The read-write block of IPRs that allow direct access to the Bcache tags. 
• Bcache deallocate IPRs-The write-only block of IPRs by which a Bcache block may be 

deallocated. 

• Pcache tag IPRs-The read-write block of IPRs that allow direct access to the Pcache tags. 
• Pcache data parity IPRs-The read-write block of IPRs that allow direct access to the Pcache 

data parity bits. 

Each group of IPRs is distinguished by a particular pattern of bits in the IPR address, as shown 
in Figure 2-39. 

Figure 2-39: IPR Address Space Decoding 

31 30 29 2612i 26 25 24123 22 21 20119 l8 17 16115 14 13 12111 10 09 0810i 06 05 0'103 02 01 00 

------~--~-----+--~--~--~-----.--+--+--~--~--~--~--~--------------+-----~--~--~-----------+-----~ 

Bcache Tag !PR Address 

31 30 29 2812i 26 25 24123 22 21 20119 18 l7 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

SBZ 1 11 01 01 xl Bcacbe Tag Index SBZ 
+--+--+--~--~--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Bcache Deallocate IPR Address 

31 30 29 28127 26 25 24123 22 21 20119 18 1i 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 SBZ 1 11 0 1 11 xl Bcache Tag Deallocate Index 1 SBZ 1 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Pcache Tag IPR Address 

31 30 29 28127 26 2S 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

SBZ 1 11 11 0 I SBZ I Pcacbe Tag Index I SBZ 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I 
Pcache Set Select (O-left, 1-rigbt) -+ 

Pcache Data Parity IPR Address 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I SBZ 1 11 11 11 SBZ I Pcacbe Tag Index I SBZ 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I 1 
Pcache Set Select (o-left, 1-right) -+ Subblock select + 

DIGITAL CONFIDENTIAL Architectural Summary 2-49 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

The numeric range for each of the four groups is shown in Table 2-17. 

Table 2-17: IPR Address Space Decoding 

IPR Address 
IPR Group Mnemonic2 Range (hez:) Contents 

Normal 

Bcache Tag 

Bcache Deallocate 

Pcache Tag 

Pcache Data Parity 

BCTAG 

BCFLUSH 

PCTAG 

PCDAP 

OOOOOOOO .. OOOOOOFFl 256 individual IPRs. 

01000000 .. 011FFFEOI 64k Bcache tag IPRs, each separated by 20(bex) 
from the previous one. 

01400000 .. 015FFFEOI 64k Bcache tag deallocate IPRs, each separated 
by 20(bex) from the previous one. 

01800000 .. 01801FE01 256 Pcache tag IPRs, 128 for each Pcache set, 
each separated by 20(bex) from the previous 
one. 

01COOOOO .. 01C01FFS1 1024 Pcache data parity IPRs, 512 for each 
Pcache set, each separated by 8(bex) from the 
previous one. 

1 Unused fields in the IPR addresses for these groups should be zero. Neither hardware nor microcode detects and faults on 
an address in which these bits are non-zero. Although non-contiguous address ranges are shown for these groups, the entire 
IPR address space maps into one of the these groups. H these fields are non-zero, the operation of the CPU is Ul\TDEFINED. 

2The mnemonic is for the first lPR in the block 

NOTE 

The address ranges shown above are those used by the programmer. When processing 
normal IPRs, the microcode shifts the IPR number left by 2 bits for use as an IPR 
command address. This positions the IPR number to bits <9:2> and modifies the 
address range as seen by the hardware to 0 .. 3FC, with bits <1:0>=00. No shifting 
is performed for the other groups of IPR addresses. 

Because of the sparse addressing used for IPRs in groups other than the normal group, valid IPR 
addresses are not separated by one. Rather, valid IPR addresses are separated by either 8 or 
20(hex). For example, the IPR address for Bcache tag 0 is 01000000 (hex), and the IPR address 
for Bcache tag 1 is 01000020 (hex). In this group, bits <4:0> of the IPR address are ignored, so 
IPR numbers 01000001 through 0100001F all address Bcache tag o. Similarly, the IPR address 
for the first subblock of Pcache data parity is 01COOOOO (hex), and the IPR address for the second 
subblock of Pcache data parity is 01COOOO8 (hex). 

Processor registers in all groups except the normal group are processed entirely by the NVAX 
CPU chip and will never appear on the NDAL. This is also true for a number of the IPRs in 
the normal group. IPRs in the normal group that are not processed by the NVAX CPU chip are 
converted into 110 space references and passed to the system environment via a read or write 
command on the NDAL. 

Each of the 256 possible IPRs in the normal group are of longword length, so a lKB block of 110 
space is required to convert each possible IPR to a unique 110 space longword. This block starts 
at address E1000000 (hex). Conversion of an IPR address to an 110 space address in this block 
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is done by shifting the IPR address left into bits <9:2>, filling bits <1:0> with zeros, and merging 
in the base address of the block. This can be expressed by the equation 

[0 ADDRESS = E1000000 + (IPR NUMBER * 4) 

The actual hardware implementation of this is different in that the IPR number is shifted left by 
2 bits, and bits <31:30,24> are set. There is no multiply or add done as one might conclude from 
the equation. 

Because many of the 256 possible IPRs in the normal group are processed entirely by the NVAX 
CPU chip, the corresponding I/O space location in the 1KB block is never referenced as a result of 
an MTPRlMFPR to or from these IPRs. However, note that a programmer can indeed reference 
these locations via an explicit I/O space reference with, e.g., MOVL. References to this block of 110 
space locations with instructions other than MTPR/MFPR may result in UNDEFINED behavior. 

The processor registers implemented by the NVAX CPU are are shown in Table 2-18. 

NOTE 

Many of the processor registers listed in Table 2-18 are used internally by the 
microcode during normal operation of the CPU, and are not intended to be referenced 
by software except during test or diagnosis of the system. These registers are flagged 
with the notation "Testability and diagnostic use only; not for software use in normal 
operation". References by software to these registers during normal operation can 
cause UNDEFINED behavior of the CPU. 
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Table 2-18: Processor Registers 

Number 

Register Name Mnemonic (Dec) (Hex) Type Imp! Cat 1I0Adcb 

Kernel Stack Pointer KSP 0 0 RW NVAX 1-1 

Executive Stack Pointer ESP 1 1 RW NVAX 1-1 

Supervisor Stack Pointer SSP 2 2 RW NVAX 1-1 

User Stack Pointer USP 3 3 RW NVAX 1-1 

Interrupt Stack Pointer ISP 4 4 RW NVAX 1-1 

Reserved 5 5 3 El00001· 

Reserved 6 6 3 El00001~ 

Reserved 7 7 3 El00001C 

PO Base Register POBR 8 8 RW NVAX 1-2 

PO Length Register POLR 9 9 RW NVAX 1-2 

PI Base Register PIBR 10 A RW NVAX 1-2 

PI Length Register PILR 11 B RW NVAX 1-2 

System Base Register SBR 12 C RW NVAX 1-2 

System Length Register SLR 13 D RW NVAX 1-2 

CPU Identification 1 CPUID 14 E RW NVAX 2-1 

Reserved 15 F 3 El00003( 

Process Control Block Base PCBB 16 10 RW NVAX 1-1 

System Control Block Base SCBB 17 11 RW NVAX 1-1 

Interrupt Priority Levell IPL 18 12 RW NVAX 1-1 

ASTLevell ASTLVL 19 13 RW NVAX 1-1 

Soft.ware Interru.pt Request Register SmR 20 14 W NVAX 1-1 

Soft.ware Interru.pt Summary Registerl SISR 21 15 RW NVAX 1-1 

Reserved 22 16 3 El000058 

Reserved 23 17 3 El00005C 

Interval Counter ControllStatusl,2 ICCS 24 18 RW NVAX 2-7 El000060 

Next Interval Count NICR 25 19 W System 3-7 El000064 

Interval Count ICR 26 1A R System 3-7 El000068 

Time of Year Register TODR 27 IB RW System 2-3 El00006C 

Console Storage Receiver Status CSRS 28 lC RW System 2-3 El000070 

Console Storage Receiver Data CSRD 29 ID R System 2-3 El000074 

Console Storage 'Transmitter Status CSTS 30 IE RW System 2-3 El000078 

Console Storage 'Transmitter Data CSTD 31 IF W System 2-3 El00007C 

Console Receiver Contro1lStatus RXCS 32 20 RW System 2-3 El000080 

1 Initialized on reset 
2Subset or full implementation depending on ECR control hit 
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Table 2-18 (Cont.): Processor Registers 

Number 

Register Name Mnemonic (])ec) (Bm:) Type Impl Cat VOAddress 

Console Receiver Data Buffer RXDB 33 21 R System 2-3 E1000084 

Console Transmitter Control/Status TXCS 34 22 RW System 2-3 E1000088 

Console Transmitter Data Buffer TXDB 35 23 W System 2-3 E100008C 

Reserved 36 24 3 E1000090 

Reserved 37 25 3 E1000094 

Machine Check Error Register MCESR 38 26 W NVAX 2-1 

Reserved 39 27 3 E100009C 

Reserved 40 28 3 E10000AO 

Reserved 41 29 3 E10000A4 

Console Saved PC SAVPC 42 2A R :NVAX 2-1 

Console Saved PSL SAVPSL 43 2B R NVAX 2-1 

Reserved 44 2C 3 E10000BO 

Reserved 45 2D 3 E10000B4 

Reserved 46 2E 3 E10000B8 

Reserved 47 2F 3 E10000BC 

Reserved 48 30 3 E10000CO 

Reserved 49 31 3 E10000C4 

Reserved 50 32 3 E10000C8 

Reserved 51 33 3 E10000CC 

Reserved 52 34 3 E10000DO 

Reserved 53 35 3 E10000D4 

Reserved 54 36 3 E10000D8 

I/O System Reset Register IORESET 55 37 W System 2-3 E10000DC 

Memory Management Enable1 MAPEN 56 38 RW NVAX 1-2 

Translation Buffer Invalidate All TBIA 57 39 W NVAX 1-1 

Translation Buffer Invalidate Single TBIS 58 3A W NVAX 1-1 

Reserved 59 3B 3 E10000EC 

. Reserved 60 3C 3 E10000FO 

Performance Monitor Enable1 PME 61 3D RW NVAX 2-1 

System Identification sm 62 3E R NVAX 2-1 

Translation Buffer Check TBCHK 63 3F W NVAX 1-1 

llnitialized on reset 
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Table 2-18 (Cont.): Processor Registers 

Number 

Register Name Mnemomc (Dec) (Hex) Type Impl Cat I10Addre 

IPL 14 Interrupt ACKs IAKl4 64 40 R System 2-3 E1000100 

IPL 15 Interrupt ACKs IAKl5 65 41 R System 2-3 E1000104 

IPL 16 Interrupt ACKs 1AK16 66 42 R System 2-3 E1000108 

IPL 17 Interrupt ACKs IAKl7 67 43 R System 2-3 E100010C 
Clear Write Buffers CWB 68 44 RW System 2-3 E1000110 

Reserved 69 45 8 E1000114 

Reserved 70 46 3 E1000118 

Reserved 71 47 3 E100011C 

Reserved 72 48 8 E1000120 

Reserved 73 49 3 E1000124 

Reserved 74 4A 3 E1000128 

Reserved 75 4B 3 E100012C 

Reserved 76 4C 8 E1000130 

Reserved 77 4D 3 E1000134 

Reserved 78 4E 3 E1000138 

Reserved 79 4F 3 E100013C 

Reserved 80 50 3 E1000140 

Reserved 81 51 3 E1000144 

Reserved 82 52 3 E1000148 

Reserved 83 53 3 E100014C 

Reserved 84 54 3 E1000150 

Reserved 85 55 8 E1000154 

Reserved 86 56 3 E1000158 

Reserved 87 57 3 E100015C 

Reserved 88 58 3 E1000160 

Reserved 89 59 3 E1000164 

Reserved 90 5A 3 E1000168 

Reserved 91 5B 3 ElOOO16C 

Reserved 92 5C 3 E1000170 

Reserved 93 5D 3 E1000174 

Reserved 94 5E 3 ElOOO178 

Reserved 95 5F 8 E1OOO17C 

sTestability and diagnostic use only; not for software use in normal operation 
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Table 2-18 (Cont.): Processor Registers 

Number 

Register Name Mnemonic (Dec) (He:s:) Type Impl Cat IlOAddress 

Reserved 96 60 3 E1000180 

Reserved 97 61 3 E1000184 

Reserved 98 62 3 E1000188 

Reserved 99 63 3 E100018C 

Reserved for VM 100 64 3 E1000190 

Reserved for VM 101 65 3 E1000194 

Reserved for VM 102 66 3 E1000198 

Reserved 103 67 3 E100019C 

Reserved 104 68 3 E1000lAO 

Reserved 105 69 3 E1000lA4 

Reserved 106 6A 3 E1000lA8 

Reserved 107 6B 3 E1000lAC 

Reserved 108 6C 3 E10001BO 

Reserved 109 6D 3 E10001B4 

Reserved 110 6E 3 E10001B8 

Reserved 111 6F 3 E10001BC 

Reserved 112 70 3 E10001CO 

Reserved 113 71 3 E10001C4 

Reserved 114 72 3 E10001C8 

Reserved 115 73 3 E10001CC 

Reserved 116 74 3 E10001DO 

Reserved 117 75 3 E10001D4 

Reserved 118 76 3 E10001D8 

Reserved 119 77 3 E10001DC 

Reserved for Ebox 120 78 2-6 E 1000 lEO 

Reserved for Ebox 121 79 2-6 E10001E4 

Interrupt System Status Registe~ INTSYS 122 7A RW NVAX 2-1 

Performance Monitoring Facility Count PMFCNT. 123 7B RW NVAX 2-1 

Patchable Control Store Control Registers PCSeR 124 7C RW NVAX 2-1 

Ebox Control Register ECR 125 7D RW NVAX 2-1 

Mbox TB Tag FillS MTBTAG. 126 7E W NVAX 2-1 

Mbox TB PTE FillS MTBPI'E 127 7F W NVAX 2-1 

sTesta.bility and diagnostic use only; not for software use in normal operation 
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Table 2-18 (Cont.): Processor Registers 

Number 

Register Name Mnemonic (Dec) (Hex) Type Impl Cat 110 Addrel 

Reserved for Vectors 128 80 3 E1000230 

Reserved for Vectors 129 81 3 E1000230 

Reserved for Vectors 130 82 3 E1000230 

Reserved for Vectors 131 83 3 E1000230 

Reserved for Vectors 132 84 3 E1000230 

Reserved for Vectors 133 85 3 E1000230 

Reserved for Vectors 134 86 3 E1000230 

Reserved for Vectors 135 87 3 E1000230 

Reserved for Vectors 136 88 3 E1000230 

Reserved for Vectors 137 89 3 E1000230 

Reserved for Vectors 138 SA 3 E1000230 

Reserved for Vectors 139 BB 3 E1000230 

Reserved for Vectors 140 8e 3 E1000230 

Reserved for Vectors 141 8D 3 E1000234 

Reserved for Vectors 142 8E 3 E1000238 

Reserved for Vectors 143 8F 3 E100023C 

Vector Processor Status Register VPSR 144 90 RW Vector 3 E1000240 

Vector Arithmetic Exception Register VAER 145 91 R Vector 3 E1000244 

Vector Memory Activity Register VMAC 146 92 R Vector 3 E1000248 

Vector Trans. Buffer Invalidate All VTBIA 147 93 W Vector 3 E100024C 

Reserved for Vectors 148 94 3 E1000250 

Reserved for Vectors 149 95 3 E1000254 

Reserved for Vectors 150 96 3 E1000258 

Reserved for Vectors 151 97 3 E100025C 

Reserved for Vectors 152 98 3 E1000260 

Reserved for Vectors 153 99 3 E1000264 

Reserved for Vectors 154 9A 3 E1000268 

Reserved for Vectors 155 9B 3 E100026C 

Reserved for Vectors 156 9C 3 E1000270 

Reserved for Vectors 157 9D 3 E1000274 

Reserved for Vectors 158 9E 3 E1000278 

Reserved for Vectors 159 9F 3 E100027C 
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Table 2-18 (Cont.): Processor Registers 

Number 

Register Name Mnemonic (Dec) (Hes:) Type Impl Cat 110 Address 

Obox Control Register CCTL 160 AO RW NVAX 2-5 

Reserved for Obox 161 A1 NVAX 2-6 

Bcache Data ECC BCDECC 162 A2 W NVAX 2-5 

Bcache Error Tag Status BCETSTS 163 A3 RW NVAX 2-5 

Bcache Error Tag Index BCETIDX 164 A4 R NVAX 2-5 

Bcache Error Tag BCETAG 165 AD R NVAX 2-5 

Bcache Error Data Status BCEDSTS 166 A6 RW NVAX 2-5 

Bcache Error Data Index BCEDIDX 167 A7 R NVAX 2-5 

Bcache Error ECC BCEDECC 168 AS R NVAX 2-5 

Reserved for Cbox 169 A9 NVAX 2-6 

Reserved for Obox 170 AA NVAX 2-6 

Fill Error Address CEFADR 171 AB R NVAX 2-5 

Fill Error Status OEFSTS 172 AO RW :t\"VAX 2-5 

Reserved for Obox 173 AD NVAX 2-6 

NDAL Error Status :r-..~STS 174 AE RW NVAX 2-5 

Reserved for Cbox 175 AF NVAX 2-6 

NDAL Error Output Address NEOADR 176 BO R NVAX 2-5 

Reserved for Cbox 177 B1 NVAX 2-6 

NDAL EITOr Output Command NEOCMD 178 B2 R NVAX 2-5 

Reserved for Cbox 179 B8 NVAX 2-6 

NDAL EITOr Data High NEDATHI 180 B4 R NVAX 2-5 

Reserved for Obox 181 B5 NVAX 2-6 

NDAL Error Data Low NEDATLO 182 B6 R NVAX 2-5 

Reserved for Obox 188 B7 NVAX 2-6 

NDAL Error Input Command NEIOMD 184 B8 R NVAX 2-5 

Reserved for Obox 185 B9 NVAX 2-6 

Reserved for Cbox 186 BA NVAX 2-6 

Reserved for Cbox 187 BB NVAX 2-6 

Reserved for Cbox 188 BC NVAX 2-6 

Reserved for Cbox 189 BD NVAX 2-6 

Reserved for Cbox 190 BE NVAX 2-6 

Reserved for Obox 191 BF NVAX 2-6 
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Table 2-18 (Cont.): Processor Registers 

Number 

Register Name Mnemonic (Dec) (Be:&:) Type Impl Cat I10Addrt 

Reserved 192 00 3 El000300 

Reserved 193 01 3 El000304 

Reserved 194 02 3 El000308 

Reserved 195 03 3 El00030C 

Reserved 196 C4 3 El000310 

Reserved 197 05 3 El000314 

Reserved 198 OS 3 El000318 

Reserved 199 07 3 El000310 

Reserved 200 08 3 E1000320 

Reserved 201 09 3 E1000324 

Reserved 202 CA 3 El000328 

Reserved 203 OB 3 E100032C 

Reserved 204 CC 3 El000330 

Reserved 205 CD 3 El000334 

Reserved 206 CE 3 E1000338 

Reserved 207 CF 3 E100033C 

VIC :Memory Address Register VMAR 208 DO RW NVAX 2-5 

VIC Tag Register VTAG 209 D1 RW NVAX 2-5 

VIC Data Register VDATA 210 D2 RW NVAX 2-5 

Ibox Control and Status Register ICSR 211 D3 RW NVAX 2-5 

Ibox Branch Prediction Control RegisterB BPCR 212 D4 RW NVAX 2-5 

Reserved for !box 213 D5 NVAX 2-6 

Ibox Backup pQ4 BPC 214 DS R NVAX 2-5 

Ibox Backup PC with RLOG Unwind' BPCUNW 215 D7 R NVAX 2-5 

Reserved for !box 216 D8 NVAX 2-6 

Reserved for !box 217 D9 NVAX 2-6 

Reserved for !box 218 DA NVAX 2-6 

Reserved for !box 219 DB NVAX 2-6 

Reserved for !box 220 DC NVAX 2-6 

Reserved for !box 221 DD NVAX 2-6 

Reserved for Ibox 222 DE NVAX 2-6 

Reserved for Ibox 223 DF NVAX 2-6 

sTestability and diagnostic use only; not for software use in normal operation 

"Chip test use only; not for software use 

2~ Architectural Summary DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.0t February 1991 

Table 2-18 (Cont.): Processor Registers 

Number 

Register Name Mnemonic (Dec) (Hex) Type Impl Cat 110 Address 

Mhox PO Base Registe~ MPOBR 224 EO RW NVAX 2-5 

Mhox PO Length Registe~ MPOLR 225 El RW NVAX 2-5 

Mhox P1 Base RegisterS MP1BR 226 E2 RW NVAX 2-5 

Mhox P1 Length Registers MP1LR 227 E3 RW NVAX 2-5 

Mhox System Base Registe~ MSBR 228 E4 RW NVAX 2-5 

Mbox System Length RegisterS MSLR 229 E5 RW NVAX 2-5 

Mbox Memory Management Enable! MMAPEN 230 E6 RW NVAX 2-5 

Mbox Physical Address Mode PAMODE 231 E7 RW NVAX 2-5 

l\Ibox M:ME Address MMEADR 232 E8 R NVAX 2-5 

l\fbox M:ME PTE Address MMEPTE 233 E9 R NVAX 2-5 

Mbox M:ME Status MMESTS 234 EA R NVAX 2-5 

Reserved for l\fbox 235 EB NVAX 2·6 

~fbox TB Parity Address TBADR 236 EC R !\"VAX 2-5 

l\fbox TB Parity Status TBSTS 23i ED RW 1'4\TAX. 2-5 

Reserved for Mbox 238 EE NVAX 2-6 

Reserved for Mhox 239 EF NVAX 2-6 

Reserved for Mhox 240 FO NVAX 2-6 

Reserved for Mbox 241 Fl NVAX 2-6 

Mbox Pcache Parity Address PCADR 242 F2 R NVAX 2·5 

Reserved for Mbox 243 F3 NVAX 2-6 

Mhox Pcache Status PCSTS 244 F4 RW NVAX. 2-5 

Reserved for Mhox 245 F5 NVAX 2-6 

Reserved for Mbox 246 F6 NVAX 2-6 

Reserved for Mbox 247 F7 NVAX 2-6 

Mhox Pcache Control PCCTL 248 F8 RW NVAX 2-5 

Reserved for Mbox 249 F9 NVAX 2-6 

Reserved for Mhox 250 FA NVAX 2-6 

Reserved for Mhox 251 FB NVAX 2-6 

Reserved for Mbox 252 FC NVAX 2-6 

Reserved for Mbo%. 253 FD NVAX 2-6 

Reserved for Mhox 254 FE NVAX 2-6 

Reserved for Mhox 255 FF NVAX 2-6 

sTestability and diagnostic use only; not for software use in normal operation 
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Table 2-18 (Cont.): Processor Registers 

Register Name 

Unimplemented 

See Table 2-17 

Type: 

R = Read-only register 
RW = Read-write register 
W = Write-only register 

Impl(emented): 

l\'"VAX = Implemented in the NVAX CPU chip 
System = Implemented in the system environment 

Number 

Mnemonic (Dec) (Hex) Type Impl 

100-
OOFFFFFF 

01000000-
F'F'F'F'F'F'F'F 

Vec'tor = Implemented in the optional vector unit or its NDAL interface 

Cat(eg-ory), class-subclass, where: 
class is one of: 

1 = Implemented as per DEC standard 032 

Cat 

3 

2 

2 = l'.I\iAX-spec:i:1ic implementation which is unique or different from the DEC standard 032 implementation 
3 = Not implemented internally; converted to I/O space read or write and passed to system environment 

subclass is one of: 

1 = Processed as appropriate by Ebox microcode 
2 = Converted to Mbox IPR number and processed via internal IPR command 

I10Addn 

3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment 
4 = If virtual machine option is implemented., processed as in 1, otherwise as in 3 
5 = Processed by internal IPR command 
6 = May be block decoded; reference causes UNDEFINED behavior 
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NV.AX CPU chip 
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2.13 1/0 space Addresses 

.As noted above, processor registers that are not implemented on the NVAX CPU chip are 
converted to I/O space reads or writes. Most of these IPRs are optional and may be implemented 
or not, as dictated by the needs of the system environment. The I/O space registers that must be 
implemented by the system environment are shown in Table 2-19. 

Table 2-19: 1/0 Space Registers 

I/O Space 
Address 

(Hex) Type 

E0040000 RO 

EI000100 RO 

E1000104 RO 

E1000108 RO 

E100010C RO 

E1000110 RW 

DIGITAL CONFIDENTIAL 

Definition 

Powerup boot ROM address from which the first instruction is fetched. 

Interrupt acknowledge for an IPL 14 (hex) interrupt requested via the 
IRQ..L<O> pin. 

Interrupt acknowledge for an IPL 15 (hex) interrupt requested via the 
mQ..L<l> pin. 

Interrupt acknowledge for an IPL 16 (hex) interrupt requested via the 
mQ..L<2> pin. 

Interrupt acknowledge for an IPL 17 (hex) interrupt requested via the 
IRQ..L<3> pin. 

Location which invokes a write buffer flush in the system environment. 
When this location is read, the CPU is waiting for confirmation that the 
ftush has completed. The returned data is ignored. 
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2.14 Revision History 

Table 2-20: Revision History 

Who When Description of change 

Mike Uhler 06-Mar-1989 Release for extemal review. 

Mike Uhler 15-Dec-1989 Update for second-pass release. 

Mike Uhler 2O-Jul-1990 Update to reflect implementation. 

Mike Uhler 04-Dec-1990 Update after pass 1 PG. 
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Chapter 3 

NVAX Chip Interface 

3.1 Introduction 

The NVAX chip communicates through five interfaces: the NDAL (NVAX data-address lines), the 
backup cache interface, the interrupt lines, the clocking interface, and the test interface. 

This chapter begins by listing all the NVAX pins and giving a brief description of each. The rest of 
the chapter describes the NDAL protocol in detail. The other interfaces are described as follows: 
the backup cache interfaces in Chapter 13, the intelTUpt lines in Chapter 10, the test interface 
in Chapter 19, and the clocking interface in Chapter 17. 

The NDAL is a 64-bit pended bidirectional bus which is used by the NVAX CPU to communicate 
with the system environment. The NDAL cycle time is three times longer than· the NVAX CPU 
cycle time. The NVAX CPU cycle time is targeted to 14ns, making the NDAL cycle time 42 
ns. Binned CPU parts may run at 10ns, resulting in an NDAL cycle time of 30ns. The NDAL 
supports up to four (4) nodes with a maximum of one (1) NVAX CPU. In this spec, these four 
nodes are referred to as CPU (NVAX), IOl_NODE, I02_NODE, and the memory interface. 

The NVAX CPU contains a writethrough primary cache and a writeback backup cache. The NDAL 
is designed to support the writeback cache and cache coherency in a multiprocessor system. 

NOTE 

IMPORTANT INFORMATION REGARDING THE NVAX CHIP INTERFACE IS ALSO 
CONTAINED IN Chapter 10 (The Interrupt Section), Chapter 13 (The Cbox), Chapter 17 
(Chip Clocking), AND Chapter 19 (Testability Micro-Architecture). THE READER 
MUST CONSULT THOSE CHAPTERS IN ORDER TO OBTAIN COMPLETE INFORMATION. 

3.2 NVAX CPU pinout 

The NVAX CPU chip contains the pins listed in Table 3-1. Following the table, each pin is 
described in more detail. 
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Table 3-1: NVAX CPU pinout 

Pin 1101 Type2 Function Number Total 

NDAL SIGNALS (80 total)s 

P%CPU_REQ..L 0 SS,lDlR NVAX Request 1 1 

PO/OCPU _BOLD_L 0 SS,lDlR NVAXHold 1 2 

Po/oCPU_SUPPRESS_L 0 SS,lDlR NVAX Suppress 1 3 
PO/OCPU _ GRANT_L I SS,lDlR NVAXGrant 1 4 

PO/OCPU_ WB_ONLY_L I SS,lDlR Writeback Only 1 5 
P%NDAL_B<63:O> 10 T,4D4R Data/Address Lines 64 69 

Po/oC:MD _B<8:0> 10 T,4D4R Command 4 73 

P%ID_H<2:O> 10 T,4D4R N ode Identification Lines 3 76 

P%PARITY_B<2:O> 10 T~4D4R NDALParity 3 79 

Po/cACK_L 10 OD,4D4R Acknowledge 1 80 

CLOCKS (15 total)" 

Po/c;OSC_H I SS,lD1R Oscillator, High Asserted 1 81 

P%OSC_L I SS,lDlR Oscillator, Low Asserted 1 82 

P%OSC_TCl_H I SS,lD1R Test ClocklTimeout Clock 1 83 

Po/oOSC_TC2_B I SS,lDlR Test Clock 1 84 

P%OSC_TEST_H I SS,lDlR Test Clock Control 1 85 

P%PBl12_0UT_H 0 SS,lD4R NDAL PHIl2, Driven 1 86 

P%PHI23_0UT_H 0 SS,lD4R NDAL PHI23, Driven 1 87 

P%PID34_0UT_B 0 SS,lD4R NDAL PHI34, Driven 1 88 

p%pm41_0UT_B 0 SS,lD4R NDAL PHI41, Driven 1 89 

P%PBl12_IN_H I SS,lD4R NDAL PHI12, Received 1 90 

Po/oPHI23_IN_B I SS,lD4R NDAL PHI23, Received 1 91 

P%PBl34_IN_B I SS,lD4R NDAL PHI34, Received 1 92 

p%pm41_IN_B I SS,1D4R NDAL PHI4l, Received 1 93 

P%ASYNC_RESET_L I SS,lDlR Reset Input to NVAX 1 94 

P%SYS_RESET_L 0 SS,lD3R Reset Output to System 1 95 

INTERRUPT AND ERROR SIGNALS (10 total)1 

P%MACBINE_CHECK_B 0 SS,lD1R Machine Check 1 96 

Po/cIR(LL<3:O> I OD,3DlR Interrupt Request Lines 4 100 

P%H_ERR_L I OD,3DlR Hard (unrecoverable) Error 1 101 

P%S_ERR_L I OD,3D1R Soft (recoverable) Error 1 102 

P%INT_TIM_L I SS,1DlR Interval Timer Request 1 103 

P%PWRFL_L I SS,ID1R Power Fail 1 104 

P%HALT_L I SS,lDlR Halt 1 105 
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Running 

Pin 110 Type Function Number Total 

BACKUP CACHE SIGNALS (133 total)· 

P%TS_INDEX_B<20:5> 0 SS,lD6R Tag Store Index Lines 16 121 

P%TS_OE_L 0 SS,lD6R Tag Store Output Enable 1 122 

P%TS_WE_L 0 SS,lD6R Tag Store Write Enable 1 123 

P%TS_TAG_B<31:17> 10 T,7D7R Tag Store Tag 15 138 

P%TS_ECC_B<5:0> 10 T,7D7R Tag Store ECC 6 144 

P%TS_OWNED_H 10 T,7D7R Tag Store Owned Bit 1 145 

P%TS_VALID_H 10 T,7D7R Tag Store Valid Bit 1 146 

P%DR_INDEX_B<20:3> 0 SS,lD18R Data RAM Index Lines 18 164 

P%DR_OE_L 0 SS,1D18R Data RAM Output Enable 1 165 

P%DR_WE_L 0 SS,lD18R Data RAM Write Enable 1 166 

P%DR_DATA_B<63:0> 10 T,19D19R Data RAM Data Lines 64 230 

P%DR_ECC_B<7:0> 10 T,19D19R Data RAM ECC 8 238 

TEST SIGNALS (23 total) '1 

P%TEST_DATA_H I SS,lD1R Test data input for microcode 1 239 
use. 

P%TEST_STROBE_B I SS,lDIR Test strobe for microcode use. 1 240 

P%DISABLE_OUT_L I SS,ID1R Disable NVAX Outputs 1 241 

P%TEMP_H 0 SS,lD1R NVAX Temperature Output 1 242 

P%TMS_H I SS,lDIR JTAG Test Mode Select 1 243 

P%TCK_H I SS,lD1R JTAG Test Clock 1 244 

P%TDI_H I SS,lDIR JTAG Serial Test Data Input 1 245 

P%TDO_B 0 SS,lD2R JTAG Serial Test Data Output 1 24S 

P%PP _CMD_B<2:O> I SS,lD1R Parallel Test Port Command 3 249 

P%PP _DATA_B<ll:O> 0 T,2D2R Parallel Test Port Data 12 261 

1 Indicates whether the pin is an NVAX. CPU Input, Output, or Input/Output pin. 

2Single Source is denoted by SS, Tristate by T, Open Drain by OD; #D indicates the maximum number of drivers and #R 
indicates the maximum. number of receivers expected on the board. 

sThese pins are discussed in detail in this chapter. 

'These pins are discussed in detail in Chapter 17 

6These pins are discussed in detail in Chapter 10 

6These pins are discussed in detail in Chapter 13 

7These pins are discussed in detail in Chapter 19 
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3.2.1 NDAL Signals and Timing 

The functionality of the NDAL pins is described in detail in Section 3.3. The timing of the pins 
is shown in Figure 3-1, and the AC specs are given in Table 3-2. 

NOTE 

The timing of the NDAL signals is given relative to the NDAL clocks which are received 
by NVAX: P%PHI12_IN_H, P9DPHI23_IN_H, P%PHIS4_IN_H, and P%PHI41_IN_ 
H. NVAX drivers were designed to meet this timing, taking the NDAL clock skew into 
account. (NDAL clock skew is covered in Chapter 17.) NVAX expects to receive signals 
which have been designed taking the clock skew into account; NVAX receivers account 
for no clock skew. 
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Figure 3-1: NDAL Pin nmlng Relative to the NDAL CLOCKS 
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Table 3-2: NDAL AC timing specs 

Input Pin 

Po/cNDAL_B<63:O> 

P%CMD_H<3:0> 

P%ID_B<2:O> 

Po/tPARITY_B<2:O> 

P%CPU_ WB_ONLY_L 

P%CPU_GRANT_L 

Output Pin 

P'iC!'.~.AL_H<63:O> 

Po/cCMD_B<3:0> 

P%ID_H<2:O> 

P%P.ARITY_H<2:O> 

PO/CCPU _HOLD_L 

Po/cCPU_SUPPRESS_L 

Po/tCPU_REQ...L 

Drive Time 

P%PBI23_IN_H R + 1 phase Gow 
transition), PC-IDPBl23_IN_H F + 3 
phases(high transition)3 

Hold Time 

Tristate Time 

lR means the rising edge of the dock is used; F meaDS the falling edge of the clock is used.. 

2The 2ns hold time requirement on the NDAL is as follows: the data does not have to be actively driven for this amount 
of time if the driver ensures that the values will be capacitively held on the bus for 2m past the phi4 risiDg edge. 

8P%ACE_L is pulled up through a resistor in the system; the same must be done on the test load board. 

3.2.1.1 pOkCPU _REQ_L 

NVAX asserts P9"DCPU_REQ..L to request the NDAL for the following cycle. P%CPU_REQ..L 
is a unidirectional signal from NVAX to the arbiter. 
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3.2.1.2 P%CPU_HOLD_L 

The NVAX CPU asserts P%CPU_HOLD_L in order to drive the NDAL on consecutive cycles. 

3.2.1.3 pOkCPU_SUPPRESS_L 

NVAX asserts P%CPU_SUPPRESS_L in order to suppress new NDAL transactions. While 
P%CPU _SUPPRESS_L is asserted, only fills and writebacks are allowed to proceed from non-
CPU nodes. . 

3.2.1.4 P%CPU_GRANT_L 

P%CPU_GRANT_L is asserted to notify NVAX that it must drive the NDAL during the following 
cycle. 

3.2.1.5 pO/oCPU_WB_ONLY_L 

'When the system asserts P%CPU_ WB_ONLY_L, NVAX only issues 'WDISOW':N or NOPcommands. 

3.2.1.6 pO/oNDAL_H<63:0> 

!\'VAX uses P%NDAL_H<63:0> to transfer address and data information to and from the system. 

3.2.1.7 pO/oCMD _H<3:0> 

The Po/oCMD_H<3:O> lines contain the NDAL command during any given cycle. NVAX drives 
and receives these lines. 

3.2.1.8 P%ID_H<2:0> 

NVAX drives and receives P%ID_H<2:O>, which contain the node identification number for every 
cycle. These lines identify which node is driving the NDAL or which node is to receive the NDAL, 
depending upon the current command. 

3.2.1.9 pOkPARITY _H<2:0> 

NVAX drives and receives P%PARITY_H<2:0>, which contains parity computed over P%NDAL_ 
H<63:0>, P%CMD_H<3:O> and P%ID_H<2:O> during every NDAL cycle. 

3.2.1.10 P%ACK_L 

NVAX asserts P%ACK_L when it has received a fill data cycle. NVAX receives P%ACK_L as an 
acknowledgement that its outgoing cycle was successfully received. It also receives Po/oACK_L 
for cycles which it did not drive on the NDAL, as a way of detecting inconsistent parity errors. 
An inconsistent parity error is where NVAX detects a parity error on the NDAL and also notices 
that P%ACK_L was asserted for that cycle. 

P%ACK_L is an open drain signal which is pulled high (deasserted) by an external resistor on 
the board. 
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3.2.2 Clocking signals 

The NVAX CPU chip generates four two-phase clocks which are distributed to the system. These 
clocks are also distributed back to itself, which minimizes skew between NVAX and the other 
chips on the NDAL. Each NDAL cycle is three CPU cycles long. 

The clocking signals are described in detail in Chapter 17. 

3.2.2.1 P%OSC_H, POIoOSC_L 

P%OSC_H and P%OSC_L are complementary oscillator inputs to NVAX. They are used to gen
erate on-chip clocks and system clocks. When P9DOSC_TEST_H is deasserted, P%OSC_H and 
P%OSC_L are used to generate NVAX clocks. 

3.2.2.2 P%OSC_ TC1_H, POIoOSC_TC2_H 

P%OSC_TCl_H and P%OSC_TC2_H are oscillator inputs to l\TVAX for use during testing only. 
'When Po/oOSC_TEST_H is asserted, P%OSC_TCl_H and P%OSC_TC.2_H are used to generate 
NVJV( clocks. 

P%OSC_TCl_H and Po/oOSC_TC2_H are 90 degrees out of phase with each other, and are XOR'd 
internally to produce an internal clock \vhich runs at twice the speed. This allows ~-VA..~ to run 
at full speed while the input clocks are running at half speed. 

P%OSC_TCl_H is also used as an input to the Ebox base timeout counter as an alternate clock 
for the timeout counter. Normally, the base counter is run from the internal NVAX clock; if the 
system designer wants to lengthen the timeout values used by NVAX, the base counter may be 
configured to run from Po/DOSC_TCl_H instead. Po/oOSC_TCl_H is synchronized to the internal 
NVAX clocks in order to be used for this purpose. 

3.2.2.3 P%OSC _TEST_H 

P%OSC_TEST_H is a control pin which determines which oscillator inputs are used by the clock 
generators. When Po/oOSC_TEST_H is deasserted, Po/DOSC_H and Po/DOSC_L are used; when 
P%OSC_TEST_H is asserted, lHrDOSC_TCl_H and P%OSC_TC2_H are used. 

3.2.2.4 P%PHI12_0UT_H, POIoPHI23_0UT_H, POIoPHI34_0UT_H, POkPHI41_0UT_H 

These two-phase overlapping clocks are driven from the NVAX chip to all nodes on the NDAL, 
including back to NVAX itself. 

3.2.2.5 P%PHI12_IN_H, POIoPHI23_IN_H, POkPHI34_IN_H, P%PHI41_IN_H 

These NVAX pins are used to receive the NDAL clocks, which are driven from P%PHII2_0UT_ 
H, P%PHI23_0UT_H, lHrcPHI34_0UT_H, and P%Pffi41_0UT_H. 

3.2.2.6 P%ASYNC_RESET_L 

P%ASYNC_BESET_L is an asynchronous input to NVAX which is used to generate an internal 
reset signal as well as P%SYS_RESET_L. 
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3.2.2.7 P%SYS _RESET_L 

NVAX drives P%SYS_RESET_L to notify all NDAL receivers to reset. It is deasserted syn
chronously with the NDAL clocks. 

3.2.3 Interrupt and Error Signals 

The interrupt and elTor signals are described in detail in Chapter 10. 

3.2.3.1 pO/oMACHINE_CHECK_H 

The assertion of P%MACHINE_CHECK_H indicates that the CPU is in a machine cheek se
quence. This signal may be wired to an LED on the board. (The pin is not able to drive the LED 
directly.) It will flicker during a normal machine check. If the CPU never comes out of machine 
check, the LED will stay lit and indicates to Field Service that the board needs to be replaced. 

3.2.3.2 pOkIRQ_l<3:0> 

The P%m~L<3:0> lines provide a general-purpose interrupt request facility to interrupt the 
~'VAX CPU. These four external interrupt request lines cOlTespond to interrupt requests at IPLs 
17,16,15, and 14 (hex). P%m~L<3> corresponds to IPL 17, P%IR~L<2> cOlTesponds to IPL 
16, p%m~L<l> cOlTesponds to IPL 15, and p%m(LL<O> cOlTesponds to IPL 14. These lines 
are level-sensitive, NOT edge sensitive. Once a node asserts its interrupt line, it should keep it 
asserted until N'VAX services the request. 

p%m~L<3:0> are asynchronous inputs to NVAX and are not expected to operate with any fixed 
relationship to the NDAL timing. 

3.2.3.3 p%H_ERR_l 

P%H_ERR_L is used to notify NVAX of an error condition in the system which has cOITUpted 
machine state. These elTors usually cannot be colTected by any retry mechanism. 

If at all possible, NDAL errors should be reported using the transaction level error reporting 
mechanisms (not asserting P%ACK_L or using the Read Data Error command). If this is not 
possible, P%H_ERR_L or Po/oS_ERR_L may be used. When P%H_EBR_L is asserted, NVAX 
will take a Hard Error InteITu.pt at IPL 1D (hex). 

P%H_ERR_L is an asynchronous input to NVAX and is not expected to operate with any fixed 
relationship to the NDAL timing. 

3.2.3.4 p%S_ERR_l 

The assertion of P%S_ERR_L indicates that an error which did not affect instruction execu
tion has been detected in the system environment. For example, if an NDAL node uses the 
BADWDATA because of an uncorrectable error in its cache, it would also assert P%S_ERR_L to 
notify NVAX of the event. When it recognizes the assertion of P%S_ERR_L, NVAX takes a Soft 
ElTor Interrupt at IPL 1A (hex). 

P%S_ERR_L is an asynchronous input to NVAX and is not expected to operate with any fixed 
relationship to the NDAL timing. 
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3.2.3.5 POkINT_TIM_L 

The assertion of P%INT_TIM_L indicates that the interval timer period has expired. 

P%INT_TIM_L is an asynchronous input to NVAX and is not expected to operate with any fixed 
relationship to the NDAL timing. 

3.2.3.6 P%PWRFL_L 

The assertion of P%PWRFL_L informs the CPU of an impending power failure. 

P%PWRFL_L is an asynchronous input to NVAX and is not expected to operate with any fixed 
relationship to the NDAL timing. 

3.2.3.7 P%HAl.T_L 

The assertion of ProHALT_L causes the CPU to enter the console at IPL IF (hex) at the next 
macroinstruction boundary. 

P%HALT_L is an asynchronous input to NVAX and is not expected to operate with any fixed 
relationship to the NDAL timing. 

3.2.4 Cache interface signals 

These pins are described in detail in Chapter 13. The timing of the pins is shown in Figure 3-2. 

NOTE 

The timing of the Bcache interface signals is given relative to the INTERNAL hTVAX 
clocks. 

3.2.4.1 pOk TS _INDEX_H<20:S> 

P%TS_INDEX_H<20:5> drive the address lines of the backup cache tag RAMs, thus indexing 
into one row of the tag store. 

3.2.4.2 POkTS_OE_L 

This pin is connected to the output enable pins of the backup cache tag store RAMs. When NVAX 
asserts P%TS_OE_L, the RAMs are enabled to drive P%TS_TAG_H<31:17>, P%TS_ VALID_H, 
P%TS_OWNED_H, and P%TS_ECC_H<5:0>. 

3.2A.3 pOkTS_WE_L 

This pin is connected to the write enable pins of the backup cache tag store RAMs. When 
NVAX asserts P%TS_WE_L, the RAMs are enabled to write the information on P%TS_TAG_ 
H<31:17>, P%TS_ VALID_H, P%TS_OWNED_H, and P%TS_ECC_H<5:0>, which NVAX drives 
when P%TS_ WE_L is asserted. 
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Figure 3-2: Bcache Pin TIming Relative to INTERNAL NVAX Clocks (14ns system) 
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3.2.4.4 P% TS_ TAG_H<31 :17> 

P%TS_TAG_H<31:17> car.ry the tag which is written to and read from the backup cache tag 
store. Each of these pads is built with an internal resistor so that if the tag bit is not used in a 
particular system, the pin value as seen by the Cbox is O. For example, a machine which runs 
only in SO-bit mode does not need to connect P%TS_TAG_H<31:29> to the backup cache. 

3.2.4.5 POk TS _ECC _H<5:0> 

P%TS_ECC_H<5:0 > carry the error correcting code which is written to and read from the backup 
cache tag store. 

3.2.4.6 pOkTS_OWNED_H 

P%TS_OWNED_H carries the OWNED bit which is written to and read from the backup cache 
tag store. 

3.2.4.7 pOkTS_VAlID_H 

P'ibTS_VALID_H carries the VALID bit which is written to and read from the backup cache tag 
store. 

3.2.4.8 P"oDR_INDEX_H<20:3> 

P%DR_INDEX_H<20:3> drive the address lines of the backup cache data RAMs, thus indexing 
into one row (one quadword) of the cache. 

3.2.4.9 P"oDR_ OE_L 

This pin is connected to the output enable pins of the backup cache data RAMs. When NVAX 
asserts P%DR_OE_L, the RAMs are enabled to drive Po/oDR_DATA_H<63:0> and P%DR_ECC_ 
H<7:0>. 

3.2.4.10 P%DR_WE_l 

This pin is connected to the write enable pins of the backup cache data RAMs. When NVAX asserts 
P%DR_ WE_L, the RAMs are enabled to write the information on P%DR_DATA_H<63:0> and 
P%DR_ECC_H<7:0>, which NVAX drives when P9DDR_ WE_L is asserted. 

3.2.4.11 P%DR_DATA_H<63:0> 

P%DR_DATA_H<63:O> carry the cache data which is written to and read from the backup cache. 

3.2.4.12 POkDR_ECC_H<7:0> 

P%DR_ECC_H<7:0 > carry the error correcting code which is written to and read from the 
backup cache data RAMs. 
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3.2.5 Test Pins 

These pins are covered in more detail in Chapter 19. 

3.2.5.1 P%TEST_DATA_H 

TEST_DATA_H.is an asynchronous input pin which may be used by microcode. It is pulled high 
internally so that if it is not used, it does not have to be connected on the board. 

3.2.5.2 P% TEST _STROBE_H 

TEST_STROBE_H is an asynchronous input pin which may be used by microcode. It is pulled 
high internally so that if it is not used, it does not have to be connected on the board. 

3.2.5.3 pO/oDISABLE_OUT_L 

When P%DISABLE_OUT_L is asserted, NVAX does not drive any of its Input/Output or Output 
pins, including the NDAL clock outputs CP%Pln12_0UT_H, P%PHI23_0UT_H, P%Pffi34_ 
OUT_H and P%PHI41_0UT_H). 

This functionality is used only during test. 

3.2.5.4 P% TEMP _H 

P%TEMP _H is an output pin to be used in test to determine when the NVAX CPU chip is at 
thermal equilibrium. The voltage on this pin will vary between VDD_I and VSS_I, depending on 
chip temperature, but the temperature to voltage transfer function will not be specified. 

As the chip heats up the voltage on the pin will fall, and once the chip is at thermal equilibrium 
the voltage will remain at some value below VDD _I. This voltage will be monitored by the tester, 
and testing will commence only when the voltage stops changing, indicating that the chip is at 
thermal equilibrium. 

3.2.5.5 P%TMS_H 

P%TMS_H is the JTAG test mode select input. It is pulled high by an on-chip resistor when it 
is not being driven externally. 

3.2.5.6 POkTCK_H 

P%TCK_H is the JTAG test clock. It is pulled low by an on-chip resistor when it is not being 
driven externally. 

3.2.5.7 P% TDI_H 

P%TDI_H is the JTAG serial test data input. It is pulled high by an on-chip resistor when it is 
not being driven externally. 
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3.2.5.8 pOkTDO_H 

P%TDO_H is the JTAG serial test data output. 

3.2.5.9 pOkPP _CMD_H<2:0> 

p%pp _ CMD_H<2:0> provides the NVAX parallel port a command indicating the current function 
of the parallel port. 

3.2.5.10 POkPP _DATA_H<11:D> 

P%PP _DATA_H<II:O> are output pins for reading test data from NVAX. 
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3.3 The NDAL 

The NDAL is a 64-bit limited length, pended, synchronous bus with centralized arbitration. 
Several transactions can be in progress at a given time, allowing highly efficient use of bus 
bandwidth. Arbitration and data transfers occur simultaneously. The bus uses multiplexed data 
and address lines. The NDAL supports quadword, octaword and hexaword reads and writes to 
memory and 110 space. 

The NDAL supports up to four (4) nodes with a maximum of one (1) NVAX CPU. In this spec, these 
four nodes are referred to as CPU (NVAX), IOl_NODE, 102_NODE, and the memory interface. 

Thirty nanoseconds is the minimum NDAL cycle time being considered for a binned CPU. 
Operating at 30ns, the NDAL has a raw bandwidth of 267 Mbytes/second. At 42ns, the NDAL 
has a raw bandwidth of 190 Mbytes/second. The usable bandwidth, which depends on transaction 
length, is shown in Table 3-3 and Table 3-4:. 

Table 3-3: NVAX DAL Bandwidth at 30ns 

Operation 

Quadword Read 

Octa.word Read 

Hexaword Read 

Quadword Write 

Oet.a.word Write 

Hexaword Write 

Bandwidth 

133.0 Mbytes/sec 

178.0 Mbytes/sec 

213.0 Mbytes/sec 

133.0 :Mbytes/sec 

178.0 Mbytes/sec 

213.0 Mbytes/sec 

Table 3-4: NVAX DAL Bandwidth at 42ns 

Operation Bandwidth 

Quadword Read 95.0 Mbyteslsec 

Oet.a.word Read 127.0 Mbyteslsec 

Hexaword Read 152.0 Mbytes/sec 

Quadword Write 95.0 Mbyteslsec 

Octaword Write 127.0 Mbyteslsec 

Hexaword Write 152.0 Mbyteslsec 

Table 3-5 details each NDAL signal. Where All is indicated for Drivers and Receivers, all four 
possible NDAL nodes drive or receive the signal. 
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Table 3-5: NDAL Signals 

SigDa! Type! Drivers Receivers Function 

Arbitration sigDals 

P'ltCPU_REQ..L 88 NVAX Arbiter NVAX requests the bus. 

IOl_RE<LL 88 IOl_NODE Arbiter IOl_NODE requests the bus. 

I02_RE<LL 88 I02_NODE Arbiter I02_NODE requests the bus. 

Po/tCPU_HOLD_L 88 NVAX Arbiter Extends Po/t>CPU _GBANT_L. 

IOl_HOLD_L 88 10l_NODE Arbiter Extends IOl_GRANT. 

I02_HOLD_L 88 102_NODE Arbiter Extends I02_GRANT. 

Po/tCPU_GRANT_L 88 Arbiter NVAX Grants NVAX the bus. 

IOl_GRANT_L 88 Arbiter 10 I_NODE Grants IOI_NODE the bus. 

I02_GRMTT_L 88 Arbiter I02_NODE Grants I02_NODE the bus. 

PO/OCPU_SUPPRESS_L 88 NVAX Arbiter Suppresses all but writebacks and fills. 

PO/OCPU_ WB_O~'"LY_L 88 Arbiter NVAX Limits NVAX to doing only Disown Writes 
or NOPs. 

10l_SLTPPRESS_L 8S IOl_NODE Arbiter Suppresses all but writebacks and fills. 

101_ WB_01'l'"LY_L 88 Arbiter IOl_NODE IOl_NODE may only do Disown Writes 
and :fills. 

I02_SUPPRES8_L 88 I02_NODE Arbiter Suppresses all but writebacks and fills. 

102_ WB_ONLY_L 88 Arbiter I02_NODE I02_NODE may only do Disown Writes 
and :fills. 

Data, address, and com.mand sigDals 

P%NDAL_B<63:O> T All All Multiplexed data and address lines. 

Po/oCMD_H<3:0> T All All Command being performed this cycle. 

P%ID_B<2:O> T All All Commander identification for the transac-
tion. 

P'loPARITY_B<2:O> T All All Parity for P%NDAL_H, P%CMD_H, and 
KID_H. 

Po/oACK_L OD All All NDAL acknowledgement of receipt. 

Clock sigDals 

Po/oSYS_RESET_L 88 NVAX All but NVAX Resets all nodes. 

Pln12_H 88 NVAX All PHI12 clock for all bus residents. 

Pm23_H S8 NVAX All Pln23 clock for all bus residents. 

PHI34_H 88 NVAX All pm34 clock for all bus residents. 

PHI4l_H 88 NVAX All pm4l clock for all bus residents. 

1 Indicates whether the pin is Bingle 80urce (B8), '.1ristate (T), or Open Drain (OD) 
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3.3.1 Terms 

In order to clearly describe the transactions which occur on the NDAL, the following terms are 
used: 

• Node - A node is a hardware device that connects to the NDAL. The largest NDAL system 
configuration will support 4 nodes. 

• Transfer - A transfer is the smallest quantum of work that occurs on the NDAL. Typical 
examples of transfers are the address cycle of a read, the address cycle of a write, and each 
data cycle of a write. 

• Transaction - A transaction is composed of one or more transfers. Transaction is the name 
given to the logical task being performed (e.g., read); in the case of the read specifically, the 
transaction consists of a command transfer followed some time later by a return data transfer. 
See Commander, Responder, Transmitter, and Receiver below. 

• Commander - The commander is the node that initiated the transaction in progress. In 
any write transaction, the commander is the node that requested the write; for reads, the 
commander is the one who requested the data. The distinction of being the commander in a 
transaction holds for the duration of the transaction in spite of the fact that in some cases it 
might appear that the commander changes. A case in point is where the commander initiates 
a read transaction. It is the responder (data source) that initiates the return data transfer, 
but the node that requested the data is still the commander. 

• Responder - The responder is the complement to the commander in a transaction. 
• Transmitter - The transmitter during an !'.c~AL cycle is the node that is driving the in

formation on the NDAL. Using the read transaction as an example, the commander is the 
transmitter .during the command transfer; during the return data transfer the commander is 
the receiver. 

• Receiver - The receiver receives the data being moved during a transfer. 
• Naturally Aligned - Refers to a data quantity whose address could be specified as an offset, 

from the beginning of memory, of an integral number of data elements of the same size. The 
lower address bits of a piece of naturally aligned data are zero. 

• ETM - Error Transition Mode. The backup cache enters Error Transition Mode when an error 
occurs. While in ETM, the state of the backup cache is preserved as much as possible. It 
continues to service requests to blocks which it owns, since those contain the only valid copy 
of data in the system. ETM is described completely in Chapter 13. 

• Address cycle - The cycle during which the address of the transaction is transmitted on the 
NDAL. This is the first cycle of a read or write. 

• Data cycle - A cycle during which the NDAL transfers data. These include data cycles of a 
write and fill data cycles. 

• Read Data Return - This is the command used during a cycle in which a responder is returning 
read data to a commander. These cycles are also referred to as fills. 
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3.3.2 NDAL Clocking 

The NDAL is a four-phase bus. NVAX drives four two-phase overlapping clocks to the other chips 
on the NDAL as well as back to itself, as shown in Table ~. 

Table 3-6: NDAL clocks 

NVAX output pin 

P%PBl12_0UT_H 

P%PBl23_0UT_H 

P%PBl34_0UT_H 

Po/oPID41_0UT_H 

NDAL clock 

PHI12_H 

PHI23_H 

PHI34_B 

PHI41_H 

See Chapter 17 for more details. 

3.3.3 NDAL Arbitration 

NVAX input pin 

P%PBIl2_IN_H 

P%PBI23_IN_H 

P9'tPm34_IN_H 

P%Pm:41_IN_H 

The NDAL protocol can architecturally support up to 4 nodes, which consist of one NVAX CPU 
and three interfaces to memory or 110. This spec assumes one interface to memory and two 
interfaces to 110. The 110 interfaces are referred to as I01_NODE and I02_NODE. The non-CPU 
nodes mayor may not contain caches. 

At a given time, any or all of the nodes may desire the use of the ~-nAL. Arbitration cycles occur 
in parallel with data transfer cycles using a set of lines dedicated specifically for arbitration. 

Figure 3-3 shows the connection of the arbitration signals on the fully-configured NDAL. This 
arbitration scheme assumes that the arbiter is built into the memory interface. If the arbiter 
were built as a separate chip, the memory interface would nee,d its own request, hold, grant, 
suppress, and wb_only lines. When the arbiter is built into the memory interface, the memory 
interface can withhold grant if its input queues are filling up. 
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Figure 3-3: NDAL Arbitration Block Diagram 

.---------. CPU REO L ---------
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1 1 CPU HOLD L 1 
1 NVAX I----~----=--------------->I 
1 1 CPU_GRANT_L 1 
1 1<-------------------------1 
1 1 CPU SUPPRESS L 1 
1 1----=--------=----------->1 
1 1 CPU WB ONLY L 1 
1 I<---~--~----=-------------I 
,---------, 1 

1 Arbiter 
1 

1 Memory 
1 Inter!acQI 
1 

.---------. I01_P~Q_L 1 

I:Ol_N:iD~ 

1 

1 

1 

1 

1 

1------------------------->1 1 !Cl_P.~~D_~ 1 
1------------------------->1 
I :~:_G?~.!::_:. I 

1<-------------------------1 
1 :O:_S::?P?~SS_:. 

I------------------------->i 

:<-------------------------i 
,---------, ! 

. ---------. :c: ?~'~ l 
: :----=---=---------------->1 
1 1 102 HOLD L 1 
1:02 NODE !----=----=--------------->I 
1 - 1 I02_GRANT_L 1 

1 1<-------------------------1 
1 1 102 SUPPR!:SS l 1 
1 1----=--------=----------->1 
1 1 I02_WB_ONLY_L 1 
1 1<-------------------------1 
,---------, 1 ,---------, 

The following sections describe the NDAL arbitration signals. 

3.3.3.1 

3.3.3.1.1 

NDAL Arbitration Signals 

P%CPU_REQ_L 

NVAX asserts P%CPU_REQ..,L to request the NDAL for the following cycle. PrDCPU_REQ..,L 
is a unidirectional signal from NVAX to the arbiter. 

3.3.3.1.2 I01_REQ_L 

IOl_NODE, an interface node, asserts IOI_REQ..L when it wants to drive the NDAL. IOl_REQ..L 
is a unidirectional signal from IOI_NODE to the arbiter. 
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3.3.3.1.3 I02_REQ_L 

I02_NODE, an interface node, asserts I02_RE~L when it wants to drive the NDAL. I02_RE'LL 
is a unidirectional signal from I02_NODE to the arbiter. 

3.3.3.1.4 pO/oCPU_HOLD_L 

The NVAX CPU asserts Po/£PU_HOLD_L in order to gain access to the NDAL for consecutive 
cycles. The NVAX CPU only asserts Po/oCPU_HOLD_L when PlfoCPU_GBANT_L is asserted; 
it never asserts P%CPU_HOLD_L unless Po/oCPU_GBANT_L is asserted. Assertion of 
P%CPU_HOLD_L guarantees that NVAX may retain ownership of the NDAL in the next cycle, 
independent of the value of any other outstanding requests. The arbiter must grant the bus to 
the CPU if the CPU asserts Po/£PU_HOLD_L. 

P%CPU_HOLD_L is used for multicycle transfers, allowing NVAX to acquire consecutive cycles. 
NVAX asserts P%CPU_HOLD_L for hexaword Disown Write transactions, in order to transfer 
the four quadwords of data consecutively and directly after the address cycle; and for quadword 
Write or Disown Write transactions, in order to transfer the one quadword of data directly after 
the address cycle. NVAX never asserts P%CPU_HOLD_L for more than four contiguous cycles. 

3.3.3.1.5 I01_HOLD_L 

IOl_HOLD_L is analogous to Po/cCPU_HOLD_L. It performs HOLD functionality for 
IOl_NODE. 

IOl_NODE may not assert IOl_HOLD_L unless IOI_GRANT_L is asserted during the current 
~"DAL cycle. Assertion ofIOI_HOLD_L guarantees that IOI_NODE may retain ownership of the 
NDAL in the next cycle, independent of the value of any other outstanding requests. The arbiter 
must grant the bus to IOl_NODE if it asserts IOl_HOLD_L. 

IOl_HOLD_L signal is used for multi cycle transfers, allowing IOI_NODE to acquire consecutive 
cycles. In a hexaword write transaction, for instance, IOl_NODE asserts IOI_HOLD_L in order 
to transfer the four quadwords of data consecutively. IOI_HOLD_L may also be used to transfer 
Fill data in consecutive cycles. 101_HOLD_L may be asserted for a maximum of four contiguous 
cycles. 

3.3.3.1.6 I02_HOLD_L 

I02_HOLD_L is analogous to 101_HOLD_L. It performs HOLD functionality for I02_NODE. 

3.3.3.1.7 POIoCPU_SUPPRESS_L 

NVAX asserts Po/£PU_SUPPRESS_L in order to suppress new NDAL transactions which NVAX 
treats as cache coherency requests. It does this when its two-entry cache coherency queue (the 
NDAL_IN_ QUEUE) is in danger of overflowing. 

During the cycle when Po/£PU_SUPPRESS_L is asserted, NVAX will accept a new transaction. 
NVAX requires transactions in the following cycle to be suppressed. 
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While Pt;OCPU _SUPPRESS_L is asserted, only fills and writebacks are allowed to proceed 
from non-CPU nodes. The CPU may continue to put all transactions onto the bus (as long 
as Po/oCPU_ WB_ONLY_L is not asserted). Because the NDAL_IN_QUEUE is full and takes the 
highest priority within the Cbox, NVAX is mostly working on cache coherency transactions while 
P%CPU_SUPPRESS_L is asserted, which may cause NVAX to issue WDISOWNs on the NDAL. 
However, NVAX may and does issue any type of transaction while P%CPU _SUPPRESS_L is 
asserted. 

3.3.3.1.8 I01_SUPPRESS_L 

IOl_NODE can suppress new transactions on the NDAL by asserting IOl_SUPPRESS_L. Fills 
and writebacks will proceed as usual. 

3.3.3.1.9 I02_SUPPRESS_L 

I02_NODE can suppress new transactions on the NDAL by asserting I02_SUPPRESS_L. Fills 
and writebacks will proceed as usual. 

3.3.3.1.10 P%CPU_GRANT_L 

Pt7cCPU_GR.A-"'TT_L is asserted to notify ~-v..4J( that it must drive the !\'T!>AL during the following 
cycle. Vthen P7cCPU_GRANT_L is asserted, ~"VAX must drive the bus with a valid command 
and correct parity. If NVAX did not request the NDAL, it drives the bus with a NOP. It only 
drives a non-NOP command if it actually requested the NDAL in the previous cycle. 

IfNVAX asserts P%CPU_HOLD_L, P%CPU_GRANT_L must be asserted in the next cycle. 

3.3.3.1.11 I01_GRANT_L 

The arbiter asserts IOl_GRANT_L when IOl_NODE is permitted to drive the bus. When 
IOl_GRANT_L is asserted, IOl_NODE must drive the bus with a valid command and correct 
parity. If IOl_HOLD_L is asserted, IOl_GRANT_L must be asserted in the next cycle. 

3.3.3.1.12 I02_GRANT_L 

I02_GRANT_L is analogous to IOl_GRANT_L. It grants the bus to I02_NODE. 

3.3.3.1.13 p%CPU _ WB _ONLY_L 

When Po/oCPU_ WB_ONLY_L is asserted, NV.AX will only issue Write Disown or NOPcommands, 
including Write Disowns due to Write Unlocks when the cache is off or in ETM. Otherwise, NVAX 
will not issue any new requests. During the cycle in which P%CPU_ WB_ONLY_L is asserted, 
the system must be prepared to accept one more non-writeback. command from the CPU. Starting 
with the cycle following the assertion of P9"oCPU _ WB_ONLY_L, NVAX will only issue writeback. 
commands. 
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3.3.3.1~14 I01_WB_ONLY_L 

101_ WB_ONLY_L is driven by the arbiter and received by 101_NODE. When 101_ WB_ONLY_L 
is asserted, 101_NODE only arbs for the bus in order to return. fills or disown writes. It does not 
initiate any new transactions. 

3.3.3.1.15 I02_WB_ONLY_L 

102_ WB_ONLY_L is driven by the arbiter and received by I02_NODE. When 102_ WB_ONLY_L 
is asserted, 102_NODE only arbs for the bus in order to return. fills or disown writes. It does not 
initiate any new transactions. 

3.3.3.2 NDAL Arbitration Timing 

The timing for NDAL arbitration is shown in Figure 3-4. There are several critical spots to note 
in the diagram. The arbiter receives the request lines by the end of PI. It must drive the grant 
lines to \"alid values by the end ofP3. It has two phases to calculate arbitration and to drive the 
grant lines across the board. 

In the fastest system (IOns ~"VAX), the arbiter has 15ns after receiving the request lines to 
arbitrate and to drive the grant lines. Board simulations for one system show that driving the 
grant lines will take about half that time. 

From the time a bus driver receives its grant line, it has three phases to drive P%NDAL_H<63:0>, 
P%CMD_H<3:0>, P%ID_H<2:0>, and Po/cPARITY_H<2:0> to valid levels. 

From the time the NDAL is valid on its pins, the receiver has four phases to compute parity and 
to assert P%ACK_L. 
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3.3.3.3 NDAL Suppress and Its nmlng 

When any node asserts its suppress line, no transactions other than writebacks or fills must be 
driven onto the bus, starting in the following cycle. For example, when Po/cCPU _SUPPRESS_L 
is asserted, the arbiter can accomplish this in the following way: if P9"cCPU_SUPPRESS_L is 
asserted during cycle 0, the arbiter does not grant the bus to any node, with the possible exception 
of the CPU, in cycle O. At the same time it asserts 101_ 'WB_ONLY and 102_ WB_ONLY. In cycle 
1, the arbiter continues to perform bus arbitration as it normally would, but now IOI_NODE and 
I02_NODE recognize the assertion of their respective W'B_ONLY lines, and they do not request 
the bus except for fills and writebacks. 

From this, it may be seen that the assertion of Po/oCPU_SUPPRESS_L causes the arbiter 
to assert 101_WB_ONLY_L and 102_'WB_ONLY_L; the assertion of 101_SUPPRESS_L causes 
the arbiter to assert Po/oCPU_WB_ONLY_L and 102_WB_ONLY_L; and the assertion of 
I02_SUPPRESS_L causes the arbiter to assert Po/cCPU_WB_ONLY_L and 101_WB_ONLY_L. 

The timing for suppression of the bus is shown in Figure 3-5. In this example, the CPU suppresses 
the bus by asserting P%CPU_SUPPRESS_L, which is valid at the end of PI in NDAL cycle O. 
The arbiter immediately asserts 101_ ,\\'B_01\TLY_L and 102_ ,\\'B_ONLY_L, which are valid by 
the end of P3 in the same cycle. This notifies IOI_NODE and 102_NODE that they should not 
arbitrate for the bus for new transactions, only for writebacks and fills. (If the 10 chip cannot 
suppress its request line quickly enough, it may drive NOPs onto the !\"D.A.L if it gets GRAl\"T, 
instead of '\vithdrawing its request in the first cycle.) Accordingly, in ~'"D.AL CYCLE 1 as shown 
in the diagram, IOI_RE~L is deasserted by IOI_NODE, since it has a read or.a write request 
to do. I02_RE'LL remains asserted because 102_NODE has a fill to do. 

During the cycle in which Po/oCPU _SUPPRESS ... L is asserted, the arbiter does not grant to any 
node with the exception of the CPU. Since it is the one suppressing the bus it should be allowed 
to continue issuing transactions on the bus. 

If a node had its HOLD line asserted and it had been granted the bus in the cycle before, it 
WOULD get grant under suppress. The rules for HOLD override the rules for SUPPRESS. 

In NDAL CYCLE 1, the bus is granted to 102_NODE which has arb'd to do its fill. The:fill is 
driven in NDAL cycle 2. 

3.3.3.4 NDAL Arbitration Rules 

The rules of arbitration are as follows: 
1. Any node may assert its request line during any cycle. 
2. A node's grant line must be asserted before that node drives the NDAL. 
3. An NDAL driver may only assert its HOLD_L line if it has been granted the bus for the 

current cycle. 
4. If a node has been granted the bus, and it asserts HOLD, it is guaranteed to be granted the 

bus in the following cycle. 
5. HOLD may only be used in two cases: (a) to hold the bus for the data cycles of a write; (b) to 

send consecutive :fill cycles. 

3-24 NVAX Chip Interface DIGITAL CONFIDENTIAL 



c 
i5 
~ .... 
o 
o z 
:!! 
c 
m 
~ 
l> r-

z 

~ 
o 
:r 
if 

i 
it a 
~ 
U1 

NDAL_H 

CPU_SUPPRIlSS_L 

IOl_WB_ONLY_L 

I02_WB_ONLY_L 

IOl_RIlQ_L 

I02_REQ_L 

CPU_RIlQ_L 

IOl_GRANT_L 

I02_GRAN'r_L 

CPU GRANT L - -

PHI12 

PHI23 

PHI34 

PHIU 

I
-N D A L 

Pl I~ 

C Y C L E o --I--N D A L C Y C I. Po 1 ---1-N D A L C Y C L E 

P3 

2---

P3 I P4 ._p_l __ I_~ ____ I_ .. _~~_I_~_4 __ ~_I~ P4 

<UillUIUllmU{~--- __ H U~( UUH UUH (UU U )-{UllUllIIHllllU--- -=:7»-
s lO_NODEl drives read address : CPU drives rend ndd~ess :read data return driven by IO_NODE2: 

~ill\\\\' IIlllTTl171 
s CPU suppresses bus due to full input queue 

\\\\\\\,\\ 11UIUll7 
arbiter asserts 101 NB ONLY L due to suppress NB ONLY deaaserted 

- - - after SUpfRESS dea.serted 

\\\\\\\\\\ U7lllTlll 
arbiter as.erts I02_WB_ONLY_L due to suppress 

read/write request I01_WD_ONLY_L 

""'\\\\\\ 111101171 
request for fill fill request remn.i.llIJ nflll~"" ,·d : request withdrawn after grant 

""",,"ill' IUUflju/ request for read 

171111/111 
bus not re-granted due to suppress 

\\\\\\\\\~. UUUlZll7 
bus not granted due to suppraso; bus grnnl:ed in cycle after suppress 

""'''''' 011111171 bus granted to CPU under CPU _SUJ?PltESS 

I , I , I ,'-___ _ 

__ ---II , I , I , __ _ 

_______ , ~ r----- \. / 

\. r--- ----, / --, / 

--- ------ --- ---1------1 ·--I·-·------j·--+ -I -- ---

J1 
ca 
c 
i 

~ 
z c 
~ 

~ 
r-
U> 
C 
'U 
"V 0 

I ."tt 
0 ... 0 i ~ :r ~ ca 
~ 

g 
Et. 

i 
f 
0; 
i 
Et. 
J 
f 
~. 
!i. 
S 
~ 

j:> 
~ 

~ 

j 
.... 
i .... 



NVAX CPU Chip Functional Specification, Hevision 1.0, February 1991 

6. HOLD must be used to retain the bus for the data cycles of a write, as the data cycles must 
be contiguous with the write address cycle. 

7. HOLD must not be used to retain the bus for new transactions, as arbitration fairness would 
not be maintained. 

8. If a node requests the bus and is granted the bus, it must drive the NDAL during the granted 
cycle with a valid command. NOP is a valid command. NVAX takes this a step further and 
drives NOP if it is granted the bus when it did not request it. 

9. Any node which issues a read must be able to accept the corresponding fills as they cannot 
be suppressed or slowed. 

10. If a node's WB_ONLY line is asserted, it may only drive the NDAL with NOP, RDE, RORn, 
WDISOWN, WDATA, or BADWDATA. 

11. If a node asserts its SUPPRESS line, the arbiter must not grant the bus to any node 
except that one in the next cycle. At the same time the arbiter must assert the appropriate 
'WB_ ONLY lines. In the following cycle, the arbiter must grant the bus normally. 

12. The rules for HOLD override the rules for SUPPRESS. 
13. The bus must be actively driven during every cycle. 

Specifics on arbitration algorithms may be found in the system specs for each ~~.AX system. 
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3.3.4 NDAl Information Transfer 

3.3.4.1 p % NDAL_H<63:0> 

The use of this field is multiplexed between address and data information. On data cycles the 
lines represent 64 bits of read or write data; on address cycles the lines represent address, byte 
enable, and length information. 

There are four types of data cycles: Write Data, Bad Write Data, Read Data Return, and 
Read Data Error. During write data cycles the commander drives its Commander ID on 
P%ID_H<2:O> and drives data on P%NDAL_H<63:0>. The full 64 bits of data are written 
during hexaword writes. For octaword and quadword length writes, the data bytes which are 
written correspond to the byte enable hits which were asserted during the address cycle which 
initiated the transaction. During Read Data Return and Read Data Error cycles the responder 
drives the original commander ID. 

The ~'"DAL address cycle is used by a commander to initiate an NDAL transaction. On address 
cycles the address is driv.en in the lo\ver longword of the bus, and the byte enable and transaction 
length are in the upper longword, as shown in Figure 3-6. 

Figure 3-6: Address Cycle Format 

---~--~--~--~--~--~-----------~-----------~--~--~-----~--~--~--~--~--~--~--~-----~--~-----~--~--~ 
: :";i:: I 

~-----~--~-----------------------------~--~--~--------------------~--~--------~--------~-----~--~ 
3: 30 29 2812i 26 25 24::3 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 

I space 1 aaaress I 

---+--+--~--~--~--~--~--------~--~--+--+--+--+--~-----+--~--~--+--+--+-----~--~--~--~--+--+--+--+ 
I 
,-- Mem - 000 •• 110 

I/O - III 

Each field shown in the diagram is described in the sections which follow. 

3.3.4.1.1 Address Field 

The address space supported by the NDAL is divided into memory space and 110 space. 

The lower 32 bits of the address cycle P%NDAL_H<31:0> define the address of an NDAL read 
or write transaction. The NDAL supports a 4 Gigabyte (2**32 byte) address space. The most 
significant hits of this address (corresponding to lines P%NDAL_H<31:29» select 512 Mb 110 
space (P%NDAL_H<31:29> = 111) or 3.5 Gb memory space <P%NDAL_H<31:29> = 000 .. 110). 

Figure 3-7 illustrates the division of the address space into memory space and 110 space. 

The division of the NDAL address space in the 110 region is further defined to accommodate the 
need for NDAL node and 110 node address space. More information about the division of 110 
space may be found in Chapter 2. 
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Figure 3-7: Physical Address Space Layout 
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Address bits <31:0> are all significant bits in an address to 1/0 space. Although the length field 
on the ~"DAL is always quadword for I/O space reads and writes, the actual amount of data 
read or written may be less than a quadword. The byte enable is used to read or write the 
requested bytes only. If the byte enable indicates a I-byte read or write, every bit of the address 
is significant. The lower bits of the address are provided so that the I/O adapters do not have to 
deduce the address from the byte enable. 

The number of significant bits in an address to MEMORY depends on the transaction type and 
length as shown in Figure 3-8. 
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Figure 3-8: NDAL Memory Address Interpretation 

Read quadword, octaword, hexaword 

Write quadword 

Write oct.aword 

Write hexaword 
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d - don't care 

It can be seen from the figure that bits A<4:3> are significant address bits or don't care, depending 
on the function being requested. 

All reads have significant bits down to the quadword. Although fills may be returned in any order, 
there is a performance advantage if memory returns the requested quadword first. The NDAL 
prot.ocol identifies each quadword using one of the four Read Data Return commands, so that 
quadwords can be placed in correct locations regardless of the order in which they are returned. 

Quadword, octaword and hexaword writes are always naturally aligned and driven on the NDAL 
in order from the lowest-addressed quadword to the highest. 

3.3.4.1.2 Byte Enable Field 

The Byte Enable field is located in P%NDAL_H<55:40> during the address cycle. It is used to 
supply byte-level enable information for quadword-Iength DREADs, !READs, DREADs, WRITEs, 
and "TDISDWNs and octaword-Iength WRITEs and WDISOWNs. Of these transactions, NVAX 
generates only quadword IREADs and DREADs to I/O space, quadword WRITEs to I/O space, 
and quadword WRITEs and WDISOWNs to memory space. 

If the byte enable is a "ltt, the byte is to be read or written. If it is a "0", the byte is not read or 
written. 

NOTE 

During quadword-Iength transactions the high portion of the byte enable field, located 
in P%NDAL_H<55:48>, is ignored. Commanders may drive any data pattern they 
wish in this field as long as it has correct parity. Responders must not depend on a 
certain defined pattern (such as all zeros). 

During hexaword-Iength transactions the entire byte enable field is ignored. During 
hexaword transactions, commanders are permitted to drive any data pattern they wish 
in this field as long as it has correct parity. Responders must not depend on a certain 
defined pattern (such as all zeros). 
During oetaword-Iength transactions, the byte enable located in PfDNDAL_H<47:4D> 
always corresponds to the low-order quadword of the oetaword. The byte enable 
located in P%NDAL_H<55:48> always corresponds to the high-order quadword of the 
oetaword. 

The correspondence between bits in the enable and bytes of the data is shown in Table 3-7 and 
Table 3-8. 
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Table 3-7: Byte Enable for Quadword Reads and WrHes 

Address cycle Data cycle 

Byte Enable Data Byte 

Po/oNDAL_H<47> P%NDAL_H<63:56> 

P%NDAL_H<46> P%NDAL_H<55:48> 

Po/oNDAL_H<45> P%NDAL_B<47:40> 

P%NDAL_H<44> P%NDAL_B<39:32> 

Po/oNDAL_H<43> P%NDAL_H<31:24> 

P%NDAL_B<42> Po/cNDAL_H<23:16> 

P%NDAL_H<41> P%NDAL_H<15:08> 

. Po/oNDAL_H<40> Po/oNDAL_H<07:00> 

Table~: Byte Enable for Octaword Writes 

Address cycle 

B~-te Enable Bit 

Po/c..''"DAL_B<4i> 

P%~'"DAL_B<46> 

P%~"DAL_H<45> 

P%~"DAL_H<44> 

P%~"DAL_H<43> 

P%~'"DAL_B<42> 

P%NDAL_H<41> 

P%NDAL_H<40> 

P%NDAL_H<55> 

P%NDAL_H<D4> 

Po/oNDAL_B<03> 

P%NDAL_B<52> 

Po/oNDAL_H<51> 

P%NDAL_B<50> 

P%NDAL_B<49> 

Po/oNDAL_B<48> 
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First data cycle Second data cycle 

Quadword 0 Data Byte Quadword 1 Data Byte 

Po/~"DAL_H<63:56> 

Po/oNDAL_H<55:4B> 

P%NDAL_H<47:40> 

P%NDAL_H<39:32> 

P%NDAL_H<31:24> 

Po/oNDAL_H<23:16> 

P%NDAL_B<15:08> 

P%NDAL_H<07:00> 

P%NDAL_B<63:56> 

P%NDAL_B<55:48> 

P%NDAL_B<4'1:40> 

P%NDAL_B<39:32> 

P%NDAL_B<31:24> 

P%NDAL_B<23:l6> 

P%NDAL_B<15:08> 

KNDAL_B<O'1:OO> 
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Table 3-9 illustrates possible bit pattem.s in the byte enable for transactions which NVAX 
generates. Only transactions in which the byte enable is valid are listed. 

NVAX will generate every possible byte enable for every possible address for quadword WRITEs 
and WDISOWNs to memory space, as shown by the table. lREADs to 110 space will always 
request a full quadword of data by asserting all the byte enable bits. 

DREADs and WRITEs to I/O space are issued using the quadword length NDAL encoding, but 
the requests are for only a byte, word, or longword at a time, as indicated by the byte enable 
given in the command cycle of a transaction. References that are unaligned across a naturally 
aligned quadword are decomposed into two separate requests for the bytes in each quadword; 
where this is the case, Table 3-9 shows the byte enable values for both references generated. In 
the cases where a second request is generated, the address is incremented by 8, which addresses 
the next quadword in 110 space, but address bits <2:0> are OOO(BIN). 

'When the NVAX CPU does an I/O space read for an interrupt acknowledge (IAK. read), it always 
generates a longword-aligned word-length read request. In other words, the byte enable which 
l\."l'\JAX uses for an IAK read is either 0000 0011 (binary) or 0011 0000 (binary). 

Table 3-9 reflects what NDAL requests the l\TVAX CPU will generate, depending on the software 
written. Software must take care only to generate requests which make sense in the system 
environment. Specifically, unaligned requests are forbidden by DEC Standard 032. 
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Table 3-9: Possible Byte Enables for NVAX-generated transactions 

Byte Enabled:O> 

NDAL Software NDALI NDAL Software Software Software Software 

Transaction Addr<2:O> :Beq.# Addr<2:O> Byte Beq. Word Beq. LW:Beq. QWBeq. 

QW WRITE, any 1st same as unrestricted unrestricted unrestricted unrestricted 
WDISOWN adcir SW 
(memory space) 

QW !READ (lIO 000 1st 11111111 
space) 

QWDREAD, 000 1st 000 0000 0001 OOOOOOll 0000 1111 00001111 

QWWRITE 2nd 100 11110000 

(lIO space) 

001 1st 001 0000 0010 00000110 00011110 00011110 

2nd 101 1110 0000 

3rd 000 00000001 

010 1st 010 0000 0100 00001100 00111100 00111100 

2nd 110 11000000 

3rd 000 00000011 

011 1st 011 0000 1000 00011000 01111000 01111000 

2nd 111 10000000 

3rd 000 0000 o ill 

100 1st 100 00010000 0011 0000 1111 0000 11110000 

2nd 000 0000 llll 

101 1st 101 00100000 01100000 11100000 11100000 

2nd 000 0000 0001 00000001 

3rd 001 00011110 

110 1st 110 0100 0000 1100 0000 1100 0000 UOOOOOO 

2nd 000 0000 0011 00000011 

3rd 010 00111100 

111 1st 111 1000 0000 1000 0000 1000 0000 1000 0000 

2nd 000 0000 0001 0000 0111 0000 0111 

3rd 011 01l110oo 
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3.3.4.1.2.1 110 space writes 

When the NVAX CPU issues an 110 space write, it always replicates the data identically on the 
high longword and the low longword of the NDAL, although the byte enable indicates that the 
data is only valid in one longword or the other. A system device may take advantage of this fact 
to avoid rotating the data. 

3.3.4.1.3 Length Field 

The length field is used to indicate the amount of data to be read or written for the current 
transaction. Table 3-10 shows how the length values correspond to transaction lengths. 

Table 3-10: NDAL Length Field 

00 hexaword 

01 unused 

10 quadword 

11 ocr.aword (not used by NVAX CPU) 

3.3.4.2 pO/oCMD _H<3:0> 

The P%CMD_H<3:0> lines specify the current ·bus transaction during any given cycle. The 
interpretation of the four bits is shown in Table 3-11. 
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Table 3-11 : NDAl Command Encodlngs and Definitions 

Levels Abbrev. Bus 'IraDsactioD Type Function 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

NOP 
Reserved 

WRITE 

WDISOWN 

!READ 

DREAD 

OREAD 

No Operation 

Write 

Write Disown 

Instruction Stream Read 

Data Stream Read 

D-Stream Read Ownership 

0111 Reserved 

1000 Reserved 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

RDE Read Data ElTor 

'WDATA Write Data Cycle 

BADWDATA Bad Write Data 

RDRO Read DataO Return (fill) 

RDR1 Read Datal Return (fill) 

RDR2 Read Data2 Return (fill) 

RDRS Read Data3 Return (fill) 

Nop 

Addr 

Addr 

Addr 

Addr 

Addr 

Data 

Data 

Data 

Data 

Data 

Data 

Data 

No Operation 

Write to memory with byte enable if 
quadword or octaword 

Write memory; cache disowns block 
and returns ownership to memory 

Instruction-stream read 

Data-stream read (without ownership) 

Data-stream read claiming ownership 
for the cache 

Used instead of Read Data Return in 
the case of an error. 

Write data is being ttansfen-ed 

Write data with errors is being 
transfened 

Read data is returning colTesponding 
to QW 0 of a hexaword. 

Read data is returning corresponding 
to QW 1 ofa hexaword. 

Read data is returning colTesponding 
to QW 2 of a hexaword. 

Read data is returning corresponding 
to QW 3 of a hexaword. 

The NVAX CPU does not implement all transaction lengths with all commands. The commands 
and lengths which it uses are in the table which follows. If NVAX implements the command in 
memory space, MEM is indicated in the table; if it implements the command in 110 space, 110 is 
indicated in the table. 

Table 3-12: NDAL Address Cycle Commands as used by the NVAX CPU 

COMMAND QUADWORD OCTAWORD REXAWORD 

!READ 00 ~M 

DREAD 110 ~M 

OREAD 

WRITE 

WDISOWN 

~ 

~M 

1 NVAX uses these transactions only when the backup cache is disabled or in Error Transition Mode. 

3-34 NVAX Chip Interface DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

When the cache is off, the NVAX CPU issues OREAD commands of hexaword length, 
and cOlTesponding Disown Write commands of quadword length. These correspond to the 
CPU-internal commands of Read Lock and Write Unlock. The lock/ownership granularity in 
memory must not be less than a hexaword. Otherwise, when the CPU did a hexaword OREAD 
followed by a quadword Disown Write, the other three quadwords would be in limbo. The CPU 
would assume that it didn't own them, and memory would believe that they were still owned by 
the cache. 

3.3.4.3 pOklD _H<2:0> 

During the address cycle and return data cycles, P%ID_H<2:O> contain the commander's ID. This 
ID is used to identify the source of the request on the address cycle and to associate returning 
data with the commander who issued the request on return data cycles. 

The commander ID codes available for use by a node are shown in Table 3-13. P%ID_H<2:1> 
indicate which node originated the transaction, and P%ID_H<O> indicates which of two 
outstanding reads per node. 

Table 3-13: Commander pOkID_H Assignments 

Node Name 

!\'\.:-\.x OOX 

memory interface Olx 

10 I_NODE lOX 

I02_NODE llX 

During write command and data cycles, P%ID_H<2:0> is driven with the ID of the commander. 
P%ID_H<2:1> is driven with the bits identifying the commander, and P%ID_H<O> may be driven 
with any value. P%ID_H<O> is not necessarily driven with the same value during the command 
cycle of a write and the corresponding data cycles of that write. 

Each commander node on the NDAL may have two read transactions outstanding. 

The memory interface is not a commander node, but it has been assigned a commander ID which 
may be used in some NVAX. systems. For example, in the nlI2 system, the memory interface 
refiects XMI2 read and write commands into the NDAL for cache coherency reasons. These reads 
and writes are not taken up by any node on the NDAL except to enforce cache coherency. The 
memory interface uses its own ID when driving these reads and writes onto the NDAL. If a write 
is refiected onto the NDAL merely to enforce cache coherency, the WDATA cycles may be omitted. 

3.3.4.4 P%PARITY _H<2:D> 

P%PARITY_H<2> is computed over P%CMD_H<3:O> and P%ID_H<2:O>. Even parity is used, 
where the" exclusive OR" of all bits including the parity bit is a "0". (All bits, including the parity 
bit, have an even number of "1 "'s.) 

P%PARITY_H<2> is inverted, forcing an NDAL parity error, when 
CCTL<FORCE_NDAL_PERR> is set. This is described in Chapter 13. 
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P%PARITY_H<I> is computed over the high longword of the NDAL, P%NDAL_H<63:32>. Odd 
parity is used, where the "exclusive OR" of all bits including the parity bit is a "Itt. (All bits, 
including the parity bit, have an odd number of "I "'s.) 

P%PARITY_H<O> is computed over the low longword of the NDAL, P%NDAL..-H<31:0>. Even 
parity is used. 

Using a combination of odd and even parity means that neither all "l"'s nor all "O"'s is a legal 
bus pattern. 

If a device requests the bus and is granted it, but chooses not to use it during a given 
cycle, it is responsible for driving the NOP command on P%CMD_H<3:0>. It must drive 
P%NDAL_H<63:0>, P%ID_H<2:0>, and P%PARITY_H<2:0> with correct parity. 

If NVAX did not request the bus, and it is granted the NDAL anyway, it will drive the NDAL 
with a NOP. 

When the bus is idle, the arbiter ensures that the NDAL is driven with correct parity. To do this, 
the arbiter may take advantage of the fact that ~"\~~ will drive the l\t~AL with NOP if it is 
unexpectedly gTanted the bus. 

The l\"'VAX BIU checks the ~L>AL for correct parity in every cycle, regardless of the contents 
of the bus. It does not distinguish between errors on the command lines or the data lines; it 
computes the three parity bits, and if any fail, it responds to the error according to Table 3-21. 

Table 3-14: NDAl Parity Coverage 

Parity bit protected data parity type 

P%PARITY_B<2> Po/oCMD_H<8:O>J»%ID_H<2:0> even parity 

P%PARITY_B<l> Po/cNDAL_H<63:32> odd parity 

even parity 

3.3.4.5 PO/OACK_L 

P%ACK_L is an open drain signal which is pulled high (deasserted) by an external resistor on 
the board. The resistor is able to pull the node high during the time allotted without assistance 
from any other P%ACK_L driver. Thus, an P%ACK_L driver only has to pull the signal low at 
the appropriate time. 

The receiver for a particular NDAL cycle is responsible for pulling P%ACK_L low (asserted) if it 
receives the cycle without parity errors. If another receiver detects a parity error on the cycle, it 
reports it by asserting P%H_EBR_L or PfoS_ERR_L. 

If Po/oACK_L is asserted in response to an NDAL cycle, it indicates that the receiving node has 
accepted an address cycle or a data cycle. Po/oACK_L being asserted for a read address cycle 
indicates that the responder will return a read response cycle at a later time. If it is asserted 
for a write address cycle, the transfer of the write address is assumed successful. If a cycle is 
accompanied by a NOP command, the cycle mayor may not be acknowledged by the assertion of 
P%ACK_L; NOP's do not have to be acknowledged but they may be. 

P%ACK_L is always asserted by the NDAL receiver unless there was a parity error on the bus. 
It is NOT used for flow control. 
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P%ACK_L is also not asserted when there is no node on the NDAL which recognizes the 
address space addressed, i.e., transactions to non-existent memory and I/O space will not receive 
P%ACK_L assertion. 

See Table 3-21 for NVAX response when P%ACK_L is not asserted. 

The timing of ACK_L relative to the data or address cycle is shown in Figure 3-9. For a given 
transfer, ACK_L is asserted one cycle later. In cycle 0 a read is driven, so ACK_L is asserted in 
cycle 1. In cycle 4 a NOP is driven, and in cycle 5 ACK_L is not asserted because NOP's do not 
have to be acknowledged. 

Figure 3-9: pO/oACK_l Timing 

ImA!. cycle i 0 I 1 I :2 I 3 I 4 I 5 I 6 I i I 
i-----I-----I-----I-----!-----l-----j-----I-----I 
I : I I I I ; I I 
I ?ea::" v~=:'-:I rica": I Read: !,cF : ~·==:'-:i v;::'a-:I I 

! I I I ! i I ! 
I ~=K I ~=K I ACK I ~=:. I ~K I A=? I 
i cycle I cy:le: cyc:'e I c~·:::'e' 
I 0 I :. i : i ~ 

I I 
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3.3.5 NDAL Transactions 

The following sections describe the entire set of NDAL transactions. 

Table 3-15 shows the entire set of NDAL commands and how they are used by NVAX. 

In memory space, NVAX issues all reads with hexaword length. Normal writes to memory space 
are always quadword length, and Disown Writes are quadword or hexaword. When the cache 
is operating normally, Disown Writes are only issued in hexaword length. When the cache is in 
ETM, NVAX issues Disown Writes of both hexaword and quadword length. When the cache is 
off, NVAX issues only quadword Disown Writes. NVAX issues quadword Disown Writes only as 
the result of an interlock operation. 

In I/O space, the ownership commands (OREAD and Disown Write) are not defined at all. NVAX 
issues only quadword operations in I/O space. NVAX never uses the BADWDATA command in 
I/O space. 
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Table 3-15: NDAL Command Usage by NVAX 

Address Used by 
Space Command NVAX Leugth LeDgth LeDgth 

QW OW HW 

N/A Nop yes 

N/A Reserved no 

Memory WRITE yes yes no no 

Memory WDISOWN yes yes no yes 

Memory !READ yes no no yes 

Memory DREAD yes no no yes 

Memory OREAD yes no no yes 

:Memory RDE no 

l\iemory 'WDATA yes 

:Memory BAD,\VDATA yes 

Memory RDRO no 

:Memory RDRI no 

l\iemory RDR2 no 

I\lemory RDR3 no 

110 WRITE yes yes no no 

110 WDISOWN no no no no 

110 !READ yes yes no no 

110 DREAD yes yes no no 

110 OREAD no no no no 

110 RDE no 

110 WDATA yes 

110 BADWDATA no 

110 RDRO no 

110 RDRl no 

110 RDR2 no 

110 RDRa no 
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Table 3-16 shows the usage of NDAL commands by NDAL devices other than NVAX. The 
ownership commands (OREAD and WDISOWN) are not defined at all in I/O space. Although 
nodes may use OREAD and WDISOWN of lengths other than hexaword, they must be aware 
of the memory coherency problems connected with using lengths other than hexaword for these 
operations. Memory defines ownership along hexaword boundaries. 

Table 3-16: NDAL Command Usage by NDAL nodes besides NVAX 

Used 
Address by NDAL 
Space COlDDUUld nodes Leugth Length Length 

QW OW HW 

N/A Nop yes 

N/A Reserved no 

:Memory WRITE yes yes yes yes 

" .:.uemory WDISOWN yes yes yes yes 

1:Iemory !READ yes yes yes yes 

~lemory DREAD yes yes yes yes 

~lemory OREAD yes yes yes yes 

~lemory RDE yes 

XvIemory WDATA yes 

Memory BADWDATA yes 

XvIemory RDRO yes 

Memory RDRl yes 

Memory RDR2 yes 

Memory RDR3 yes 

I/O WRITE yes yes yes yes 

I/O WDISOWN no no no no 

I/O !READ yes yes yes yes 

I/O DREAD yes yes yes yes 

I/O OREAD no no no no 

I/O RDE yes 

I/O WDATA yes 

I/O BADWDATA yes 

I/O RDRO yes 

I/O RDRl yes 

I/O RDR2 yes 

I/O RDR3 yes 
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3.3.5.1 Reads and Fills 

The read address cycle, which is recognized by one of the three read commands (DREAD, IREAD, 
or OREAD) is decoded by the interfaces in the system, and the one which recognizes the address 
latches that address and command. This device is the responder. The responder uses Read Data 
Return or Read Data Error cycles to return the data. Reads and fills are described in the sections 
which follow. 

3.3.5.1.1 Dstream Read Requests (DREAD) 

An NDAL commander uses the DREAD command to request Data Stream data from a responder, 
either memory or an 110 device. 

3.3.5.1.2 Istream Read Requests (IREAD) 

The IREAD command is used to request Instruction-Stream data from a responder, either memory 
or an I/O device. 

The separate I-stream read command is used in implementing halt protection for the CPU. 'When 
a system device which asserts P~oHALT_L recognizes an I-stream read in halt-protected space, 
it prevents PlioHALT_L from being asserted to the CPU. In the meantime, DREADs outside of 
halt-protected space may occur. Vlhen an IREAD outside of halt-protected space happens, the 
system device resumes asserting P%HALT_L to the CPU. 

When NVAX issues the IREAD command in 110 space, it expects a full quadword of data in 
return. The responding device may decode the IREAD command instead of the byte enable field 
to detect the need to return a full quadword of data. 

In addition, the separate IREAD command may be helpful in analysis during system debug or 
for performance analysis. 

3.3.5.1.3 Ownership Read Requests (OREAD) 

A node uses the OREAD command to gain ownership of a hexaword block of memory. Whereas 
previous systems implemented an Interlock read as well, the NDAL defines only the Ownership 
read. Interlocks can be accomplished using OREADs. 

OREADs are only defined for memory space; they are not used in 110 space. 

When memory receives an ownership read, an It owned" bit is set in memory and the read data 
is returned. Each hexaword in memory has an owned bit. The NVAX backup cache is organized 
by hexawords also, with an owned bit for each hexaword. Memory clears the owned bit when a 
Disown Write of any length is received to the same block. 
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3.3.5.1.4 How memory handles reads to Owned blocks 

If the ownership bit is already set in memory when the DREAD arrives, data is not returned 
immediately to the commander. Once the node which owns the data Disown Writes the block, the 
Ownership bit is set in memory and the data is returned to the commander. The fact that the 
ownership bit was set at the beginning of the reference is transparent to the commander on the 
NDAL. Once an OREAD is issued on the NDAL, the data must be returned to the commander 
without requiring any retry sequence. 

The analogous statement is true for an IREAD or a DREAD: If the ownership bit is already 
set in memory when the IREAD or DREAD arrives, data is not returned immediately to the 
commander. Once the node which owns the data Disown Writes the block, the the data is returned 
to the commander. The fact that the ownership bit was set at the beginning of the reference is 
transparent to the commander on the NDAL. Once an lREAD or DREAD is issued on the NDAL, 
the data must be returned to the commander without requiring any retry sequence. 

In certain error-handling situations, l'.TVAX itself may issue a read to a block which it already 
o·wns. In this case the memory controller should handle the read as it normally would: wait until 
!\'"'V-U completes the WDISO"'N, then return the read data to NVAX and set the ownership hit 
if the read was an DREAD. 

3.3.5.1.5 Read cycle description and timing 

A read command cycle consists of a commander driving an address cycle on P%NDAL_H<63:0>, 
as sho'\vn in Section 3.3.4. The commander drives Po/cCMD_H<3:0> with DREAD, IREAD, or 
OREAD. It drives its own identification code on P%ID_H<2:0>, and it drives correct parity on 
P%PARlTY_H<2:0>. 

The timing for a read cycle is shown in Figure 3-10. In this example, N'VAX is doing a read. In 
Cycle 0, NVAX asserts P%CPU_REQ..L to request the NDAL. It is granted the bus immediately, 
as shown by the assertion of Po/oCPU_GRANT_L in cycle O. (This example assumes that no 
other device was requesting the NDAL during this cycle.) 

The assertion ofPo/oCPU_GRANT_L in phase 3 of cycle 0 means that NVAX is obligated to drive 
the NDAL in phase 1 of Cycle 1. It drives the read address out at that time. In this example, it 
deasserts its request line at the same time as it has no other requests to make. (It is not obligated 
to deassert request if it does have other requests to make.) 

The device receiving the read recognizes it in phase 3 of cycle 1, and computes parity across the 
data it received. In this example, it recognizes no parity error, and asserts Po/GACK_L so that 
it is valid in phase 3 of cycle 2. The CPU receives P%ACK_L and knows that the read address 
cycle completed successfully. . 

If there had been a parity error and Po/GAC~L had not been asserted, NVAX would have 
responded with an error condition as described in Section 3.3.10.3. 
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3.3.5.1.6 Read Data Return cycles (RORO, RDR1, RDR2, ROR3) 

The Read Data Return command is used in response to any read request, whether !READ, 
DREAD, or OREAD. Multiple cycles are necessary to transfer all of the quadwords in a given 
hexaword transaction, and the cycles are not required to be consecutive. The commander, which 
has been monitoring the bus traffic waiting for its return data, latches the information. The 
responder returns the commander ID with the returned read data so the commander can recognize 
the returned read data it requested. 

For a hexaword read, the four fill quadwords may be returned in any order. The NDAL Read 
Data Return command identifies the location of each quadword within the natural boundary as 
it is returned so that it can be placed in the correct location regardless of the return order. The 
data which is returned is naturally aligned within each quadword. 

In I/O space, only one cycle's worth of data is returned. The actual amount of valid data 
returned depends upon the byte enable which was issued with the read request, as described 
in Section 3.3.4.1.2. The Read Data Return command corresponding to the requested 110 space 
address is used in returning the data. 

Read Data Return cycles do not have to occur in adjacent cycles. The requested quadword should 
be returned as soon as possible, for performance reasons, even if the remaining quadwords are 
not yet available. The remaining quadwords may be sent as they become available. 

Because the ~L>AL is a pended bus, multiple reads may be outstanding at a time. Because Read 
Data Return cycles do not have to occur contiguously, it is possible for Read Data Return cycles 
resulting from different read requests to take place in an interleaved fashion. 

Table 3-17 shows the correspondence between address hits <4:3> and the RDR command used in 
returning data at that address. (Bits <4:3> indicate the alignment of a quadword of data within 
a hexaword.) The RDR command must correspond to the address of the data being returned for 
transactions of all lengths, whether quadword, octaword or hexaword. The correct RDR command 
must be used for both memory space and 110 space. 

Table 3-17: RDR usage for ALL fill cycles 

Address 
bits <4:3> 

00 

01 

10 

11 

COD1Dl8.Dd used for fill cycle 

RDRO 
RDRl 

RDR2 

RDRS 

3.3.5.1.7 Read data error cycles (RDE) 

RDE is used to notify a commander of a problem with read data which is being returned. For 
example, the memory interface may use this command when it encounters an uncorrectable read 
error. 
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Once a Read Data Error cycle is sent for a particular read, no further read responses may be 
sent for that transaction. The following sequence illustrates the series of events during a return 
data of hexaword length containing an uncorrectable read error. In this example, HOLD is used 
to return the data in consecutive cycles. 

Figure 3-11: RDE example 

Arb 
CMD_H 
NDAI.._H 
!D_F. 
ACK_L 

o 1 2 3 4 

I resplHOLD I HOLD I I 
I IRDROIRDRllRDE I 
I Idataldatal I 
I I cmdr I cmdrl cmdrl 
I I IACR lACK IACR 

5 

3.3.5.1.8 Read data cycle description and timing 

During a read data cycle, Po/tC:MD_H<3:0> is driven to the value representing RDRO~ RDR1, 
RDR2, RDR3, or RDE. P%NDAL_H<63:0> is driven with the quadword of read data being 
returned. P%ID_H<2:0> is driven with the ID which was issued \vith the original read request. 
Correct parity is driven on P%PARITY_H<2:0>. 

The timing for a Read Data Return cycle is shown in Figure 3-12. In this example, IOI_NODE 
has fill data to return. In cycle 0, I01_RE'LL is asserted to request the bus, and IOl_GR.4...:."""T .... L 
is asserted in response. Since I01_G~"T_L was asserted in cycle 0, IOl_NODE is obligated to 
drive the NDAL in cycle 1. It does so and returns the fill data. The original requestor of the data 
receives the data at the beginning of phase 3 of cycle 1, and since it detects no parity errors, it 
asserts Po/aACK_L so that it is valid in phi3 of cycle 2, as shown. 

3.3.5.1.9 Read Transaction Examples 

3.3.5.1.9.1 Quadword Read and Fill 

A quadword read consists of a command transfer followed by a return data transfer as shown 
below: 
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Figure 3-13: Quadword Read and Fill 

0 1 2 :3 4 5 6 i 

Arb I emar I I I resp I I I 
eMIl_H I I read I I IRDR21 I 
NDAI.._H I I addr I I I data I I 
ID_B I Icmd:1 I I Ic:::mdrl I 
ACK_I. I I I ACKI I I ACKI 

The two transfers are the read command and the Read Data Return. The CPU commander 
arbitrates for the NDAL in cycle 0, and wins. In cycle 1 it drives the command and address of 
the read, and its own ID (for use later to identify the returning data). In cycle 2 the receiver for 
tha t cycle asserts P%ACK_L if no parity error was detected on the bus. 

Sometime later (call it cycle 4) the return data transfer begins with the responder arbitrating for 
the l\IL>AL. Having won it, in cycle 5 it drives the command, the data, and the commander's ID. 
The status of the returning data is specified in the read response code: either Read Data Return 
or Read Data Error. In this example, the quadword requested '\vas to quad\vord 2 of a hexaword, 
so the RDR2 command is used in returning the data. 

The commander monitors the NDAL and checks for an ID match during Read Data Return cycles. 
An ID match indicates that the read data is meant for that commander. In cycle 6, the commander 
asserts P%ACK_L if it detected no parity error during the previous ~'"DAL cycle. 

3.3.5.1.9.2 Multiple Quadword Reads 

The only type of multiple quadword read which is used by NVAX is the hexaword read. Octaword 
reads are also supported by the NDAL protocol but are not issued by the NVAX CPU. These 
read transactions move multiple quadwords of data from the responder to the commander. The 
command transfer of the transaction is shown below. 

Figure 3-14: Read command on the NDAL 

Arb 
eMIl H 
NDAL_H 
IDB 
ACK_I. 

o 1 2 :3 

I emar I I I 
I read I I 
laddrl I 
I cmdr I I 

I ACKI 

The following sequence illustrates the response to a hexaword read. In this example, quadword 
1 of the hexaword was the requested quadword, so Read Data. Return 1 is the command 
accompanying the first data to return. The requested quadword is returned first for performance 
reasons, although that is not required by NVAX or the NDAL. 
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Figure 3-15: Read data retum without using HOLD 

Arb 
CMD_H 
NDAl.._E 
ID-:H 
ACK_L 

o 1 2 3 4 5 6 7 

Irespl Irespl Irespl Irespl I 
IRDRlI IRDRO I IRDR31 IRDR21 
I data I I data I I data I Idatal 
I emar I I cmdr I lemarl lemarl 
I lACK I lACK I lACK I lACK 

The transfer above moves four quadwords of data. The command field of the NDAL in cycle 1, 
3, 5, and 7 says Read Data Return with the P%ID_H field identifying the intended receiver (the 
transaction commander). Each cycle provides a new quadword of read data and the P%ID_H 
remains unchanged. 

The example shows no transactions interleaved with the Read Data Return cycles, but it is 
entirely possible for non-related transfers to be taking place in the cycles between the fill cycles 
for one read. 

Read data may be returned in continuous cycles, if desired. through the use of the hold arbitration 
signals (see example below). The transmitter asserts its hold line in the first cycle to ensure that 
it maintains use of the NDAL long enough to complete the transfer. The hold lines are the highest 
priority arbitration lines and thus guarantee access. An interface is constrained to a maximum 
of four consecutive cycles in which it can assert its hold line. 

Figure 3-16: Read data return using HOLD 

eM!) H 

ND;,L_H 
ID_H 
ACK_l 

o 1 4 

Iresplholdlhcldlholdl I 
I I RDR2 I RDR3 I RDRO I RDRl I 

Idataldataldatalda~al 

I cmdr I cmdr I cmdr I cmdr I 
I lACK lACK lACK lACK 
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3.3.5.2 Writes 

3.3.5.2.1 Normal Write Transactions (WRITE) 

These transactions are used to move a pattern of bytes from an NDAL commander to one of 
the responders. The byte enable functionality is only used for quadword and octaword length 
transactions. In any hexaword write, all bytes are written regardless of the byte enable values. 

Parity must be correct for all bytes sent from any node, as NVAX checks parity across the entire 
NDAL during every cycle. 

If NVAX sees a write on the NDAL, it treats it as an invalidate request. A block invalidate is 
done if it is valid in the cache. A writeback is done if the block is owned. 

3.3.5.2.2 Disown Write Transactions (WDISOWN) 

The Disown "Trite transaction is the complement to the Ownership Read. After NVAX successfully 
gains ownership of a block in memory, it must relinquish ownership when another node wants 
ownership of the block or when the Bcache needs to do a deallocate. h'T\TAX accomplishes this by 
performing a Disown Write to the memory ,vith the latest copy of the data. The memory, which 
has been monitoring the bus traffic, notices that the transaction requested is a Disown Write. 
This condition allows it to clear the ownership bit in memory and to write the data as requested. 

I\'"V:<\X uses the Disown "Trite command ofhexaword length to perform writebacks from the backup 
cache. "W"hen the cache is off, it uses quad'\vord Diso'WIl '\\;'rites to achieve the effect of a Write 
Unlock. 

3.3.5.2.3 Write Data and Bad Write Data (WDATA,BADWDATA) 

The Write Data command is used during the data cycles ofa write if the data is good. If the data 
has been corrupted in some way, for instance, there were uncorrectable errors in a cache which 
was storing the data, the command used is Bad Write Data. 

When one quadword of a hexaword Write Disown is bad, the Bad Write Data command is only 
used for that quadword. The Write Data command is used for the good quadwords. The memory 
can use this information to distinguish which quadword of a hexaword block is bad. In addition, 
P%S_ERR_L may be asserted when the Bad Write Data command is used, to notify NVAX of 
the error. 

3.3.5.2.4 Write transaction description and timing 

In a Write transaction, a commander gains the NDAL and sends an address cycle. In this 
cycle, P%CMD_H<3:0> is driven to the value for WRITE. P%NDAL_H<63:0> is driven with the 
address, the transaction length, and byte enable. P%ID_H<2:1> is driven with the commander's 
identification code, and P%ID_H<O> is driven with any value. 

The commander immediately follows this cycle with one to four consecutive cycles of write data, 
depending on the length specified. In these cycles, P%CMD_H<3:0> is driven with either the 
WDATA command or the BADWDATA command. P%NDAL_H<63:O> is driven with the write 
data. P%ID _H<2:1> is driven with the commander's identification code, and P%ID _H<O> must 
be driven, but may be driven with any value, as long as the parity is correct. 
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All interfaces on the NDAL decode the address, and the one that recognizes the address becomes 
the responder and asserts P9CACK_L. The responder accepts the command, address, and data 
and performs the requested write. 

For quadword and octaword length transactions to memory space, the byte enable field that 
accompanies each command and address is completely unrestricted. Each bit in the IS-bit byte 
enable field corresponds to a byte of data in the associated quadword or octaword. If the bit is 
0, that byte must not be written; if the bit is 1, that byte must be written. For hexaword write 
transactions, the responder ignores the byte enable and writes all 32 bytes. 

For I/O space transactions, the byte enable is used as indicated in Section 3.3.4.1.2. 

The timing for a quadword write on the NDAL is shown in Figure 3-17. In cycle 0, NVAX 
requests the bus for the write by asserting P%CPU_RE<LL. In this example, no higher priority 
request is pending, so NVAX is granted the bus right away, in cycle O. NVAX then drives the 
write command and address in cycle 1, and asserts P%CPU_HOLD_L at the same time in order 
to retain the bus. In cycle 2 the write data is driven. 

Assuming there are no parity errors, Po/oACK_L is asserted by the receiver in cycle 2. This is in 
response to the address cycle of cycle 1. In cycle 3, which is not shown, P%ACK_L is asserted 
for the data cycle, cycle 2. 

3.3.5.2.5 Write Transaction Examples 

3.3.5.2.5.1 Quadword Writes 

Quadword writes move some number of bytes from the commander to the responder as specified 
by the byte enable field. The commander arbitrates as usual and upon winning the NDAL, drives 
the appropriate write command, the intended address, the data byte enable, and its own ID and 
asserts its hold line to signal that it will need the next cycle also. In cycle two, it identifies the 
cycle as a Write Data Cycle and provides the write data. If an NDAL parity error is detected on 
cycle 1 or 2, it is signaled in cycle 2 or 3 by withholding the assertion of P%ACK_L. 

The cycle timing for a quadword write is shown in Figure 3-18. 
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Figure 3-18: Quadword wrHe on the NDAL 

Arb 
CMD_P. 
NDAl._H 
ID H 
ACK_L 

3.3.5.2.5.2 

o 123 4 

I emcir I HOLD I I 
I Iw:1tlwaatl 
I ladcirldatal 
I I emcir I emcir I 
I I lACK lACK 

Multiple Quadword Writes 

The only multiple-data-cycle write issued by the NVAX CPU is the Hexaword Disown Write. 
Hexaword writes are similar to quadword writes except for the amount of data moved. The byte 
enable must be ignored in hexaword write transactions and all the bytes of the hexaword must 
be written. 

The first cycle of a hexaword write is identified with the length desired; successive cycles are 
identified as write data cycles. The hold line remains asserted, maintaining use of the NDAL for 
the commander. 

The four auad'~ords of data "ithin the hexaword must be issued in order from lowest address to 
highest address. The order then is quad,vord 0, quadword 1, quadword 2, quadword 3. (Address 
bits <4:3> determine the position of a quadword within a hexaword.) Unlike fill data cycl.es, the 
same command, 'W'DAT..A\., is issued for every write data cycle, so the order in which the data is 
issued is essential so that it is written to the correct address in memory. . 

A hexaword write is shown in Figure 3-19. 

Figure 3-19: Hexaword write on the NDAL 

Arb 
om H 
NDAL_H 
ID_H 
AC:K_L 

o 1 :2 3 4 5 

lemcirlholdlholdlholdlholdl I 
I Iwrt Iwdattwdatlwdattwdatl 
I ladciridatOIdatlldat21aat31 
I lemcirl I I I I 
I I lACK lACK lACK lACK lACK 

NOTE 
The write data must always immediately follow the write address cycle with no NULL 
cycles in between. 

The NDAL protocol also allows for octaword writes. The NVAX CPU does not use these, but they 
may be used by other nodes. 

The two quadwords of data within the octaword must be issued in order from lowest address to 
highest address. The order then is quadword 0, quadword 1. (Address hit <3> determines the 
position of a quadword within an octaword.) 
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.An octaword write is shown in Figure 3-20. 

Figure 3-20: Octaword write on the NDAL 

o 1 2 4 

I emar Iholdlholdl I 
I Iwri~lwda~lwdatl 

I laddrldatOldatll 
I lemdrl I I 

Arb 
CMD_H 
NDAl.._H 
ID_E 
ACK_L I I lACK lACK lACK 

3.3.5.3 NOPs 

5 

For implementation reasons, occasionally NVAX will arbitrate for the NDAL and, if the bus is 
granted, it \vill drive a NOP. This only happens when ~\TAX has just driven out two back-to-back 
transactions. This happens rarely, and since 1\TVAX has the lowest priority of the NDAL nodes, 
it is not a performance problem. 
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3.3.6 Cache Coherency 

Ownership Reads and Disown Writes on the NDAL are intended to support writeback caches by 
attaching an owner status to each block in physical memory. A block in memory is defined as 
a hexaword, or 32 bytes. A node which owns a block may write it repeatedly without accessing 
memory. Only one node owns a given block. Ownership is passed from memory to a non-memory 
node through an Ownership Read command. Ownership is passed from non-memory nodes to 
memory through a Disown Write command. 

The ownership bits in the caches and in memory indicate that a cache owns the block. The 
ownership bit in the writeback cache is set when the cache owns the block and is clear when the 
cache does not own the block. The ownership bit in memory is set when some cache owns the 
block and clear when memory owns the block. 

Shared read-only access to a block is permitted only when memory owns it. Otherwise the block 
can only be read by the node which owns the block. 

1\'VAX nodes with writeback caches can gain ownership and retain it for a very long time. ~\TAX 
monitors the bus continuously for memory space read-type and write commands to memory space 
by other nodes. ~nen l\TVAX detects a request for a block that it owns, it will perform the disown 
write to memory, allowing the original command to complete successfully. 

Table 3-18 shows what action is performed in the backup cache based upon the state of the block 
in the cache when a particular command is received. 

Table 3-18: NVAX Backup Cache Invalidates and Wrltebacks 

~'1>AL Command 

IREAD,DREAD 

OREAD 

WRITE 

WDISOWN 

Invalid block Valid & Unowned 

Invalidate 

Invalidate 

Valid & Owned 

Writeback, set Bcache to 
valid-unowned state 

Writeback, Invalidate 

Writeback, Invalidate 

Some devices other than NVAX will access memory directly over the NDAL. As these commands 
go to memory, NVAX recognizes the command and performs the appropriate cache coherency 
action. NVAX does not acknowledge the commands as the memory interface is the receiver for 
the transaction. NVAX distinguishes cycles driven by devices other than itself by decoding the 
value driven on P%ID _H<2:0> for the cycle, and recognizes those as cache coherency transactions. 

In some systems, such as the XMI2 system, there is a system bus to which multiple NVAX CPUs 
are interfaced. In these systems, memory commands which occur on the system bus must be 
driven into the NDAL so that NVAX can respond to them as necessary with cache coherency 
actions. 

For example, if an OREAD happens on the XMI2, an OREAD must be driven onto the NDAL 
to trigger NVAX to write back the block if it owns it. However, there is no node on the NDAL 
which becomes a responder to a memory access transaction which is driven FROM the memory 
interface. The result is that P<ftACK_L is not asserted to acknowledge such a transaction. This 
is not an error condition. 
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For more detail on the specific cache coherency requirements in the XMI2 system, refer to 
Section 3.4.1. 

3.3.7 Interrupts 

The P%ffiQ..L<3:0> lines provide a general-purpose interrupt request facility to inteITUpt the 
NVAX CPU. These lines are level-sensitive, NOT edge sensitive. Once a node asserts its interrupt 
line, it should keep it asserted until NVAX services the request. 

When NVAX receives an interrupt, it issues a read on the NDAL to one of four specified 110 space 
addresses. There is one address specified for each Interrupt Priority Level. This mechanism 
replaces the specific command, Read Interrupt Vector, which was used in previous systems. 

Read cycles to these specified I/O space addresses are monitored by all nodes which have an 
interrupt outstanding. The node which responds :first with a Read Data Return transaction will 
deasserl its interrupt request. 

Interrupting nodes on the ~'1)AL do not have to deassert and reissue their interrupts after one 
node is serviced. The remaining nodes monitoring the bus see the return vector cycle and maintain 
their interrupt requests in anticipation of another ~"V_4Jr 110 space read for an Interrupt Vector. 
If the common interrupt line remains asserted, NVAX will initiate another such cycle to be fielded 
by another first responder. 

Chapter 10 describes interrupts in detail. 

3.3.8 Clear Write Buffer 

Clear Write Buffer is used to force all writes in the processor to be delivered to memory. In 
previous systems, an explicit Clear Write Buffer command on the pin bus was used. The NDAL 
uses an 110 space address which may be read or written to indicate that write buffers should be 
cleared. 

The I/O space read is used when the CPU wishes an acknowledgement of the request. The CPU 
waits for the "read data II to return. before continuing operation. The actual read data which is 
returned is meaningless except to allow the CPU to proceed. The 110 space read does not complete 
until all previous writes are complete. This mechanism may be used during a process context 
switch to force any errors associated with previous writes to happen in the context of the current 
process before the process context switch actually occurs. 

The device which responds with read data to the Clear Write Buffer is system dependent. In 
theory it would be memory, since memory responding would indicate that all buffers before 
memory had been cleared. 

The I/O space write which serves as Clear Write Buffer is used when the process mode changes 
but the process is not being switched. Here the purpose is to :flush the writes as fast as possible 
when the mode changes, and to flush them ahead of any subsequent reads. Because the mode is 
changed often, it would be a performance hit to use the CWB read and to have to wait for the 
read data to return. Therefore the Clear Write Buffer is done as a write. 

When the Cbox receives the clear write buffer command from the Mbox, it flushes its write queue. 
The writes are delivered to the backup cache, since it is writeback, rather than directly to memory. 
The I/O space clear write buffer command, whether a read or a write, is then issued on the NDAL. 
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3.3.9 VAX architecturally-defined interlocks 

A VAX interlocked instruction causes the generation of a Read-Lock and a Write-Unlock which are 
guaranteed to happen back-to-back. The NDAL does not explicitly define interlocked transactions. 
Instead, the Ownership Read command is used in place of Read Lock and the Disown Write 
command is used in place of Unlock Write. 

If the interlocked location is already owned in the backup cache when the Cbox receives the read 
lock from the Mbox, the command is never seen on the NDAL as it is serviced directly on the 
cache. Writeback of the block is prevented until the write unlock is issued from the Ebox. 

3.3.9.1 Ownership and Interlock transactions 

If !\TVAX has a read lock in progress and P%CPU_WB_ONLY_L is asserted, the CBOX issues 
the write unlock regardless of the assertion ofP%CPU_ WB_ONLY_L. Otherwise, deadlock might 
occur ifP%CPU_WB~ONLY_L were asserted and a device in the system was waiting for NVAX 
to do a Write Unlock before deassertingP%CPU_W'B_ONLY_L. For example, memory would not 
return Read Lock data to an 110 device if the ownership bit 'were set. 

The ~\~ CPU does not support interlocks to 110 space. If the Cbox receives an interlock to I/O 
space, it converts it to a normal read on the l\rnAL. 
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3.3.10 Errors 

The NDAL supports the detection of all single-bit and some multiple-bit transmission related elTor 
conditions on the P%NDAL_H, Po/oCMD_H, P%ID _H, and P%PARITY_H lines by implementing 
parity across those lines. Additionally, the NDAL allows commanders to recover from some 
memory and I/O-space read/write class elTors. 

3.3.1 0.1 Transaction Timeout 

Each NDAL node must implement a timeout counter for each read which it may have outstanding. 
The NVAX Cbox implements two timeout counters, one for each possible outstanding read. If a 
read request times out, it is aborted by the Cbox. Any missing Read Data Return cycles will 
eventually cause that read to timeout in the Cbox. See Table 3-21 for details on how timeout is 
handled. 

The ~'VAX BIU starts its read timeout counter when it receives P%ACK_L assertion for the read. 
The counter is an 8-bit counter '\vhich, in normal operation, is clocked with a signal from the Ebox, 
EO/CTIMEOUT_ENABLE_H. The base counter in the Ebox is 16 bits wide. This implementation results 
in the timeout values shown in Table 3-19. 

Table 3-19: NVAX Read TImeout Values In Normal Mode 

l'\\TAX chip speed 

l().ns~-VAX 

12-ns NVAX 

14-ns:t-.TVAX 

Timeout Granularity 

655 microseconds 

786 microseconds 

917 microseconds 

Read timeout 

16i milliseconds 

200 milliseconds 

234 milliseconds 

A test mode for the NVAX read timeout counters is provided, and is described in detail in 
Chapter 13. In test mode, the read timeout counters are run directly from the internal NVAX 
clock, rather than from E%TIMEOVT_ENABLE_H. The test mode timeout values are shown in 
Table 3-20. 

Table 3-20: NVAX Read Timeout Values In Test Mode 

NVAX chip speed 

10-ns NVAX 

12-ns NVAX 

14-ns NVAX 

Timeout Granularity 

10 nanoseconds 

12 nanoseconds 

14 nanoseconds 

Read timeout 

2.5 microseconds 

3.0 microseconds 

3.5 microseconds 

The occurrence of transaction timeout is not normal and is expected to happen only when the 
system is broken. 

More information on timeout may be found in Chapter 13. 
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3.3.10.2 Non-exlstent memory and 110 

An address which is not implemented in memory on a particular system is known as non-existent 
memory. An 110 address of a device which is not present on a particular system is known as 
non-existent I/O. 

Devices on the NDAL must acknowledge any transactions to address space which they recognize 
by asserting P%ACK_L (except when there is a parity error). An address which is not recognized 
by any NDAL device is not acknowledged. 

If Po/oACK_L is not asserted in response to an NVAX request, the Cbox records the error by 
saving state in its error registers. (This error case is covered in Table 3-21). Software can read 
the error registers in the other NDAL nodes and find that the absence of P%ACK_L was not 
due to a parity error on the NDAL. From that information it can deduce that the problem was 
non-existent memory or 110. 

If an interface between the NDAL and another bus recognizes a read to some address and ACK's 
it, then finds that the address is not implemented on the other bus, the interface must use RDE 
to terminate the READ on the :r-..TDAL. It must not simply let the read time out, as this method 
of terminating the transaction takes much longer. 

If an ~~AL device ACK.'s a write, then determines that it was to non-existent memory or I/O 
space, it should notify the CPU appropriately. One possibility is to assert P%H_ERR_L. 

3.3.10.3 Error Handling 

This section describes the required behavior of NDAL commanders and responders in reaction to 
error conditions. 

In general, NDAL errors are handled as follows: 

• Null cycles have correct parity but are not acknowledged. The absence ofP%ACK_L assertion 
for these cycles is not an error condition. 

• Any NDAL receiver detecting bad parity in any field on a non-NULL cycle must ignore the 
cycle. P%ACK_L must not be asserted and no action should be taken in response to the NDAL 
command. The receiver may log the error. The device which drove the NDAL cycle must log 
the error (the absence of lHfDACK_L assertion) and notify NVAX in some way, depending on 
the exact situation. 

• If an NDAL responder returns Read Data Error for one quadword of return data, it must not 
send any further quadwords of data for that requeSt. If any further fills are received, the 
Cbox treats them as unexpected fills as described in Table 3-21. 

• On an ownership read, the memory should set the ownership bit as soon as it starts sending 
data back to the requestor. The NVAX backup cache does not set its ownership bit until it 
receives all the data for the block, so if any fill data is lost, the block will appear not to be 
owned by any element in the system. This simplifies error handling ifNVAX did the OREAD 
because of a write, and the write data has already been written into the cache when the error 
occurs. No other device can get access to the block while the error is being handled. 
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• An NDAL memory node may not clear its ownership hit unless all write data cycles associated 
with the Disown Write transaction are properly received. H write data is sent with the 
BADWDATA command, it is considered to be properly received. 

The NVAX BIU does not retry failed commands on the NDAL. 

If the Cbox recognizes that data has been lost, it asserts C%CBOX_H_ERR_B to the Ebox. (In some 
cases, the data may be recoverable by software.) When C%cBOx..H_ERR_B is asserted, the Cbox 
always puts the Bcache into Error Transition Mode. 

The Cbox asserts C%CBOx..S_ERR_H when it recognizes a soft error. A soft elTor does not 
necessarily interfere with code running on the machine. In some cases, the Cbox enters ETM 
upon recognizing a soft elTor. 

Table 3-21 shows the response of the NVAX CPU for every eITor situation. 
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Table 3-21: NDAl Errors and NVAX CPU Error Responses 

General Problem 

NVAX detects 
parity en-or on any 
NDALcycle 

Po/cACK_L not 
asserted for 
:NVAX-originated 
command 

Read timeout 
or Read Data Error 
before requested 
quadword is 
received 

Specific situation and action taken by NVAX CPU 

P1foACK_L asserted 
(inconsistent parity 
error) 

P%ACK_L 
not asserted (parity 
error) 

IREAD, DREAD (to 
memory or 110) 

OREAD 

WRITE or 
WDISOWN, 
address 
cycle or data cycle 
(to memory or lIO) 

IREAD, 
DREAD (memory or 
lIO space) 

OREAD 

Cbox asserts OICBO~sJB.R_H, puts backup cache into Error 
Transition Mode. An invalidate or writeback request may 
have been missed. 

Cbox asserts OIiCBO~s..EBR..H, puts backup cache into Error 
Transition Mode. An invalidate or writeback request may 
have been missed. 1 

Cbox aborts the read in the Cbox and the MOOr, asserts 
CC'ACBGX..S_ERRJ. 

Cbox aborts the read in the Cbox and the Mbox, enters 
ElTor Transition ~Mode~ and asserts ~Ox...S_ERR_EL If the 
OREAD was done because of a write miss, the write will 
now be done straight to memory since the cache is in ET~1. 

Cbox asserts ~BOXJI_ElUt_E. enters Error Transition :Mode. 
Data which should have been written to memory has been 
lost. If the elTor was on the data cycle and, in the sysum 
implementation. memory marks the data bad. software 
may choose to ignore the hard e!TOr response since the en-or 
will. be detected whenfrl'the data is read. ~"VAX continues 
to send the \VDATA cycles even if the address cycle or one 
of the WDATA cycles is NAICd. 

Cbox aborts the read in the Cbox and the ~!box, asserts 
CIliCBGX..SJm,R..H. 

Cbox aborts the read in the Cbox and the Mbox, asserts 
CIliCBGX..SJRlUl, enters Error Transition Mode. The Cbox 
does not set the ownership bit in the cache. If memory has 
set its ownership bit, there is no record of ownership for 
the block in the system; however, soft;ware can analyze and 
clean up the problem by reading the. Cbox error registers. 
If the OREAD was done because of a write miss, the write 
will now be done straight to memory since the cache is in 
ETM. 

lin some systems, such as the NVAX XMI-2 system, commands may be sent on the NDAL purely to notify NVAX of an 
invalidate request; these commands are not acknowledged. 

2The Cbox aborts the read in the Cbox by clearing valid bit in the FILL_CAM; it aborts the read in the Mbox by asserting 
OACBox..BAB.D_EU...a with the I_CF or D_CF command. 
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Table 3-21 (Cont.): NDAL Errors and NVAX CPU Error Responses 

General Problem 

Read timeout 
or Read Data Error 
after requested 
quadword 
successfully 
received 

Read timeout 
or RDE on OREAD 
with pending 
writeback request 

DIGITAL CONFIDENTIAL 

Specific situation and action taken by NVAX CPU 

mEAD,DREAD 

OREAD 
for a read-modify or 
a read-lock 

OREAD for a write 

Cbox aborts the read in the Cbox and the Mbox, asserts 
c.cBO%..S_EltR.R, does not validate cache entry. 

Cbox aborts the read in the Cbox and the Mbox, asserts 
c.cBO%..S_EltR.R, enters Error Transition Mode. The block 
is not validated or marked owned in the backup cache. 
Depending on system implementation, the ownership bit 
may be set in memory. If the OREAD was for a 
read-modify, software can analyze and correct the potential 
inconsistency in ownership information by reading the 
Cbox error registers. If the OREAD was for a read-lock, 
the write-unlock will follow to memory (as a quadword 
disown write) after the Cbox handles the error. If the 
memory subsystem has set its ownership bit, this write 
unlock preserves consistency in ownership in the memory 
subsyste~ if not, the write unlock location appears to 
be owned by memory and will be handled as an error by 
memory. 

Cbox aborts the read in the Cbox, asserts CC-~BOx...H..EBR.B:, 
enters Error Transition }Ylode. The write was pretiously 
done into the cache when the requested quadword. returned, 
since the Cbox merges the write data with the fill data. 
Since the read did not complete, the ownership bit is not set 
in the cache even though the new write data is in the cache. 
Software can recover the write data ifit is non-shared data. 
The backup cache must be flushed of owned data using the 
deallocate register, then put into force hit mode. The data 
can then be read and written to memory. If the data is 
shared, writes to memory may have been done out of order 
by the Cbox, and system integrity is in question. 

A pending writeback request is entered in the Fn..J..,_CAM 
when a writeback request arrives for an outstanding 
OREAD. If the OREAD does not complete successfully for 
any reason, the writeback request is aborted. The Cbox has 
not received the entire block, so it does not claim ownership 
for the block. Therefore, it does not write back the block as 
was requested. 
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Table 3-21 (Cont.): NDAL Errors and NVAX CPU Error Responses 

General Problem Specific SituatiOD and action taken by NVAX CPU 

Unexpected fill 
or unexpected RDE 
received 

If there is no corresponding FILL_CAM entry for a 
returning fill or RDE, the Cbox ignores the fill data. 
CfIiCBOX..H...EB.R..B is asserted. The data is not placed in the 
Bcache and not sent to the Mhox. 3 CEFSTS is loaded and 
locked; the UNEXPECTED_FILL bit is set since the £l1 or 
RDE was unexpected. 

S It is possible to create a scenario where an unexpected fill is received and is recognized by the Cbex because there is an 
entry in the FILL_CAM which apparently corresponds to the:6ll. For example, suppose the Cbox starts READ A READ 
A times out, so the Cbox aborts it and the con-esponding FILL_CAM entry is cleared. Now the Cbex starts READ B using 
the same ID as the aborted READ A Now, if memory returns read data for A, it apparently cOlTesponds to the fill cam 
entry for READ B. The data is accepted and NVAX is unknowingly operating with incorrect data. This behavior may 
cascade into READ C, READ D, etc., if the Cbox always has a new read outstanding by the time some unexpected data 
arrives. Eventually, however, the :fill cam entry will be empty when read data is returned, and the Cbox will recognize 
the error. Before the Cbox recognizes the condition. ~\:A..X may have been behavmg very strangely, as it bas probably 
been operating 'with either wrong Dstream. or ~'l"OI!g !stream data. 
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Each system which uses the NVAX CPU chip will develop its own error strategy. In general, 
enough information should be logged so that software can understand the problem. Table 3-22 
addresses system errors which the system designer should take into account. 

Table 3-22: NDAL Errors and Error Responses by System Components 

General Problem 

NDAL parity error 
and Po/oACK_L 
asserted 

NDAL parity error 
and Po/oACK_L not 
asserted 

'WDISO'WN 
to memory location 
which memory owns 

Specific situation and considerations to be made 

Node has cache 

Node has no cache 

Any write or 
WDATA 

WDATA for a 
Disown Write 

Assert P%S_ERR_L and disable the cache. The node may 
have missed an invalidate. 

Assert P%S_ERR_L. 

The lack of assertion of P%ACK_L is sufficient to notify 
the transmitter of the cycle; that transmitter is responsible 
for notifying the CPU of the error. If the transmitter lost a 
write, it should assert P%H_ERR_L. 

The memory interlace should not assert Po/oH_ERR_L 
because it cannot tell who sent the write. It should log 
the parity error. The transmitter which sent the write 
asserts P%H_ERR_L or takes other actions to initiate 
error recovery. 

The memory should not clear its OBIT; this way, reads from 
other CPU s will fail until software corrects the problem. 

Response is system dependent. :Memory should probably 
perform the write and log the error. 

3.3.10.4 Error Recovery 

In most cases an NDAL commander is permitted to reissue a failing transaction in order to 
recover from transient bus errors. Should the recovery fail (recovery may involve one or more 
reattempts of the failed transaction), then the commander logs a hard error. Implementation 
of error recovery is a system-dependent decision. This section contains guidelines on when a 
transaction may be retried. 

• All transactions which do not receive P%ACK_L assertion for the address cycle may be 
retried. 

• Any failing NDAL Write transaction may be retried. 
• Any failing Read to memory space may be retried. 
• Any failing 110 space Write transaction may be retried. 
• It is unsafe to retry any 110 space Read transaction receiving a response timeout since some 

110 devices may have read side effects. 

The NVAX CPU will not implement retry on any NDAL transactions. 
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3.3.11 NDAL Initialization 

When the NVAX CPU chip enters the reset state, the BID does the following: 

• Tristates P%NDAL_H<63:O>, P90CMD_H<3:0>, P%ID_H<2:0>, and P%P.ARI'lY_H<2:O>. 
This occurs when internal reset is asserted, and is not qualified with any clock.. 

• Releases P%ACK_L. This occurs when internal reset is asserted, and is not qualified with 
any clock. 

• Deasserts P%CPU_REQ..L, P%cPU_HOLD_L, and Po/oCPU_SUPPBESS_L. This occurs 
when internal reset is asserted, and is not qualified with any clock. 

• P%CPU_GRANT_L and P%CPU_ WB_ONLY_L are sampled during reset. 

While NVAX is asserting P%SYS_RESET_L, the NDAL clocks are nmning. P%SYS_RESET_L 
is deasserted relative to l\T!)AL P:En12. 

During reset, some l\TDAL node must drive the NDAL so that it is driven with a NOP and good 
parity by the time P~SYS_BESET_L is deasserted. NVAX receives the NDAL during reset. The 
NDAL must be drh.-en to valid levels with good parity by the time reset is deasserted, to prevent 
1\'"'\'AX from detecting a parity error. The following is an example of how to drive the ~-nAL with 
a NOp, \vhile putting valid parity on the bus: 

• Drive P%CMD_H<3:0> low (this is the NOP command). 
• Drive P%NDAL_H<63:0> low. 
• Drive P'icID_H<2:0> low. 
• Drive P%P.ARI'lY_H<2> low. 
• Drive P%P.ARI'lY_H<l> high. 
• Drive P%P.ARI'lY_H<O> low. 

The NVAX CPU does not assert P%CPU_REQ..L until at least 4 NDAL cycles after 
P%SYS_RESET_L is deasserted. 

P%CPU_GRANT_L should be deasserted during system reset. NVAX will not drive the NDAL 
if granted during reset. 
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3.4 The XMI·2 NVAX System 

A block diagram of the XMI-2 system is shown in Figure 3-21. Everything in the picture except 
memory,1I0, other CPUs, and the XMI-2 is contained on one module. 

The XMI-2 system is being developed by MSB and is a follow-on to the Mariah XMI-2 system. 

Figure 3-21: NVAX XMI-2 System Block Diagram 

1 BCache 1 ECC 1 ROM 1 I EEPROM I I SRAM I I IOPort I I TOY I 
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I ROMBus i\ 
I II 
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! ~::- 5"+~1 l~;;':' I X!-::2 I 100 1 i I I 
lOs:: -----> :?.=. "\T:'=: 1<------l------------------>::r:l':.,SS:::I<--/-->1 :.a-::2 !<--->I: 
I S?.z :,,~ 1 I " 1m;...!. I I C:::::ne: I I I 
,--- la:b:!'':.e:1 I I I 

:~:lS ,-------, I I I 
! ,------, I I , _____________ , I ! 

":~ .... ---------
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I Da':.a I 
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,-------, 

3.4.1 Cache coherency in the XMI2 system 
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1 !.~_!.:I?~! i<-----> i I 

,----------, 1 I 

---------- I I 
I I/O 1<-----> I I 
,----------, I I 
---------- I I 

IOther CPOs 1<----->1 I 
,----------, \/ 

Commands on the XMI2 must be forwarded to the CPU in order to maintain cache coherency. 
Table 3-23 shows the XMI2 commands and the corresponding command which must be forwarded 
on the NDAL to NVAX. The actions which Nvax takes as a result of the NDAL commands are 
shown in Section 3.3.6. 

Table 3-23: XMI2-NVAX Coherency requirements 

XMI2 Command 

Read 

Interlock Read,Ownership Read 

Unlock Write, Write Masked 

Disown Write,Tag Bad Data 

ResuJ:tiDg NDAL Command 

Dstream read 

Ownership Read 

Write1 

none 

1 WDATA cycles for the write may be omitted since the write is driven onto the NDAL for cache coherency reasons only. 
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Unlock Writes must be forwarded to the NDAL for the following case. Assume an 110 device does 
a Read Lock, Write Unlock to memory location A. Assume that the CPU wants to do a normal 
read to location A, and that it does not have A in its cache. Assume the following timing on the 
XMI: 

Figure 3-22: XMI2 Unlock Write example 

t1~ I/O device CPU 
I 
I Interlock Read A 
I 
I Read A 
I 
I Unlock Write A 

"\;" 

If the CPU reads A between the Read Lock and the Write Unlock the data the CPU caches should 
be invalidated after the write unlock. Otherwise, the CPU has stale data in its cache. This is 
because normal reads get data from XMI2 memory even if the location is interlocked. When 
'\rntes are fOI"\\"arded from the XMI2 to the NDAL, only the write address cycle must be driven. 
The write data cycles may be omitted. 
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3.5 The Lowend NVAX System • OMEGA 

A block diagram of the lowend system, called Omega, is shown in Figure 3-23. The lowend system 
is being developed in Maynard, in ESB, the Entry Systems Business Group (formerly MVB). 

Figure 3-23: NVAX Lowend System Block Diagram 
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The Lowend System implements an ownership hit in memory which is used to indicate that 
the NVAX CPU owns the block in its backup cache. This bit is covered by ECC. If an I/O 
interface issues a read or a write to a location which is owned by the NVAX backup cache, the 
memory interface holds the request until the writeback completes. It then completes the original 
transaction. The same applies to ownership transactions which may arrive from the NCA for an 
owned block of memory. 

The NCA uses the NDAL ownership transactions in order to perform interlocked transactions. 

One key problem in the Lowend System is the latency of a Qbus transaction. Once a device 
successfully issues a transaction on the Qbus, a timeout counter starts which will time out after 
8 microseconds. This timing is difficult to meet in an NVAX system because of the writeback 
cache. 

The analysis of the problem may be found in the specs for the Omega system. 
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3.6 Resolved Issues 

1. Issue: Should we implement Force Bad Parity on the NDAL for testing purposes, or can 
we get away without it? Solution: We are implementing a way to force bad parity on the 
command field of the ndal. 

2. Issue: The arbitration signals are not parity protected. Solution: This is not a problem 
because they are acknowledged by grant. The commander can always detect a problem by 
observing grant. If a request line is broken, the CPU will eventually timeout. 

3. Issue: Should the Cbox do retry on parity errors? Solution: No. The XMI has never seen 
a parity elTOr and it is a much longer bus with big connectors which we don't have. Retry 
would add unnecessary complexity. 

4. Issue from Supnik: Allow space for extended addressing by moving byte enable over. Solution: 
Byte enable moved over. 

5. Issue: Should parity be even or odd or a combination of both? Solution: Use even parity 
across the command, even parity across the lower longword of the hTDAL, and odd parity 
across the upper longword of the l\'T!>AL. The combination helps for package reasons - all pins 
can't drive the same way at once. (Steve Thierauf) 

6. Issue: Should the ~'"D ... -\L cycle time equal 2 or 3 CPU cycles? Solution: It will be much easier 
to design to 3 cycles so we'll do this in the interest of the schedule. 3 cycles may cost us 3% 
performance but it is worth it for ease of design. 

7. Issue: Should NVAX drive the lower three bits of address for I/O space transactions? Solution: 
Yes. It is in the critical path of I/O devices to deduce the address from the byte enable. 

8. Issue: If an Unlock Write transaction is directed to a location not currently locked, should 
the responder perform the write operation? Solution: This is a system-dependent issue. 
Recommendation added to the ElTOrs section. 

9. Issue: Should we have an acknowledged I/O space write? This would preserve write ordering 
between memory writes and I/O space writes. Solution: Historically this problem has not 
been addressed so our solving it is no value added. Software can be written which avoids the 
problem. 

10. Issue: Do the lowend systems need byte parity? Solution: If a system is built without a 
backup cache, the performance is going to be poor so doing the read-modify-write for masked 
writes to memory is OK. The Lowend System will need to do read-modify-writes when the 
cache is in EtTor Transition Mode, but this is very rare. As long as there is time to compute 
longword parity it seems sufficient. Adding byte parity would increase the number of pins on 
the CPU and on all NDAL interfaces by 6. 

11. Issue: There was not enough time for the arbiter if HOLD was a single open-drain signal. 
Solution: Have three hold signals, one for each commander, each of which is point-to-point. 

12. Is parity enable necessary? If not, we get rid of a pin. Solution: Parity enable is not necessary. 
Every planned NVAX system is able to generate parity on every ndal cycle. 

13. An additional command is under consideration. It would be called Disown Without Writeback 
(DISWOWB). It would be driven from the CPU to the memory interface after the CPU received 
a hexaword write to an owned block. DISWOWB indicates that the backup cache has given 
up ownership and invalidated the block, but is returning no data to memory. If a hexaword 
write is done in the system, memory has no use for the old data so it would be a waste of 
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time for the CPU to return it. Solution: This command does not appear to be useful enough 
to warrant the complexity. 

14. Can the CPU chip remove the internal resistors on the NDAL? If we do, some chip in the 
system would have to pull the bus to valid levels during reset. Resolution: Yes, NVAX has 
removed the internal resistors. Another component in every NVAX system will pull the NDAL 
to valid levels during reset. 
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3.7 NVAX Chip Interface Signal Name Cross-Reference 

All NVAX signal names and pin names referenced in this chapter have appeared in bold and reflect 
the actual name appearing in the NVAX schematic set. For each signal and pin appearing in this 
chapter, the table below lists the corresponding name which exists in the behavioral model. 

Table 3-24: Cross-reference of all names appearing In the NVAX chip Interface chapter 

Schematic Name 

P%ACK_L 

Po/aASYNC_RESET_L 

P%CMD_H<3:0> 

Po/cCPU_ GRAl'.'T_L 

P%CPU_HOLD_L 

Po/cCPU_REQ..L 

Po/cCPU_SUPPRESS_L 

Po/£PU_WB_ONLY_L 

P%DISABLE_OUT_L 

P%DR_DATA_B<63:0> 

Po/oDR_ECC_H<7:O> 

P%DR_INDEX_H<20:3> 

P%DR_OE_L 

P%DR_WE_L 

P%HALT_L 

P%H_ERR_L 

P%ID_B<2:O> 

Po/oINT_TIM_L 

p%m~L<3:O> 

Po/oMACBlNE_ CHECK_H 

P%NDAL_B<6S:O> 

Po/"oSC_B 

Po/oOSC_L 

Po/oOSC_TCl_H 

Po/oOSC_TC2_H 

Po/oOSC_TEST_B 

3-70 NVAX Chip Interface 

Behavioral Model Name 

OICBOXJI_EIlR-.B 

C9iCBOx.,.S..EBll-B 

OIiCBOx.,.BARD_ElUt..B 

~'l'lMEO'VT_ENABLE_H 

P%ACK_L 

P%ASYNC_RESET_L 

P%CMD_H<3:0> 

PO/CCPU_ GR.A1\'T_L 

P%CPU_HOLD_L 

Po/cCPU_REQ..L 

p%CPU_S'UPPBESS_L 

PO/CCPU_ WB_ONLY_L 

P%DISABLE_OUT_L 

Po/oDR_DATA.,H<63:0> 

Po/oDR_ECC_B<7:O> 

Po/oDR_INDEX....B<20:3> 

P%DR_OE_L 

Po/oDR_ WE_L 

Po/dlALT_L 

Po/dI_EBR_L 

Po/dD_B<2:O> 

P%INT_TIM_L 

Po/dR~L<3:0> 

Po/oMACBlNE_CHECK_H 

Po/oNDAL_B<63:O> 

Po/tOSC_H 

Po/oOSC_L 

Po/oOSC_TCl_H 

Po/tOSC_TC2_H 

Po/oOSC_TEST_H 
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Table 3-24 (Cont.): Cross-reference of all names appearing In the NVAX chip Interface chapter 

Schematic Name 

P%PARI'IY_B<2:O> 

P%PBl12_IN_H 

P%PBI12_0UT_H 

Po/DPBI23_IN_B 

P%PBI23_0UT_H 

Po/DPIDS4_IN_B 

P%PIDS4_0UT_H 

P%PID41_IN_B 

P%PID41_0UT_H 

Po/cpp _CMD_H<2:0> 

P%PP _DATA_H<ll:O> 

P%PWRFL_L 

P%SYS_RESET_L 

P%S_ERR_L 

Po/cTCK_H 

P%TDI_H 

P%TDO_H 

P%TEMP_B 

P%TEST_DATA_H 

P%TEST_STROBE_H 

P%TMS_H 

P%TS_ECC_B<5:O> 

P%TS_INDEX_H<20:5> 

P%TS_OE_L 

P%TS_OWNED_H 

P%TS_TAG_B<31:1'1> 

P%TS_VALID_B 

P%TS_WE_L 

DIGITAL CONFIDENTIAL 

Behavioral Model Name 

Po/DPARI'IY_B<2:O> 

P%PBl12_IN_H 

P%PBI12_0UT_H 

Po/DPBI23_IN_H 

Po/DPBl23_0UT_B 

P%PID34_IN_H 

P%PID34_0UT_H 

P%PID41_IN_H 

P%PID41_0UT_H 

P%PP _CMD_H<2:0> 

P%PP _DATA_H<ll:O> 

P%PWRFL_L 

P%SYS_RESET_L 

P%S_ERR_L 

Po/cTCK_H 

P%TDI_H 

P%TDO_H 

P%TEMP_B 

P%TEST_DATA_H 

P%TEST_STROBE_H 

P%TMS_H 

P%TS_ECC_H<5:O> 

P%TS_INDEX_B<20:5> 

P%TS_OE_L 

P%TS_OWNED_H 

P%TS_TAG_B<31:1 '1> 

P%TS_VALID_H 

P%TS_WE_L 
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3.8 Revision History 

Table 3-25: Revision History 

Who When 

Rebecca Stamm 20-Feb-1991 

Rebecca Stamm 7-Nov-1990 

Rebecca Stamm 4-Jul-1990 

Rebecca Stamm 17-May-1990 

Rebecca Stamm 20-Feb-1990 

Rebecca Stamm 3-Feb-1990 

Rebecca Stamm 3O-Jan-1990 

Rebecca Stamm 01-Dec-1989 

Rebecca Stamm 06-Mar-1989 
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Description of change 

Update after NVAX first pass. Clarmed ACK timing. Added signal 
name cross-reference. Added NDAL timing AC spec. Corrected Byte 
Enable table. Updated Bcache pin timing. J5T1MEOt1CENABLEJI clocks 
the Cbox timeout counter, not l5"l'Dr1EOVT_BABEJI. Added P% prefix to 
all pin names. 

PP _DATA are output only. Clarify NACK'd write handling. 
Correction: NVAX DOES receive the NDAL I/O signals during 
power-up. 

Update initialization description. Assert Herr on unexpected :6.11. 
Update ndal pin timing. :NVAX may drive NOPs under 'WB_O:NLY. 
Po/dD _H<O> not driven with same value during command and data 
cycles of a write. Close force_bad-parity issue. 

Take out vector pins, add two new test pins~ update description of 
unexpected :fill handling by setting CEFSTSc tJl"~ECTED_FILL>. 

Add unexpected RDE handling. Clarmed byte enables and 
octaword-length transactions. Corrected running total for ~\:~~ 
pins. Add detailed timeout description. Added timeout functionality 
to P%OSC_TCl_H. 

External release. Updates from internal review. Address<2:0> is sent 
out as zeros for the second half of an unaligned 110 space reference. 
NVAX does not implement internal resistors to pull the NDAL to 
valid levels during reset; a system device must drive the bus during 
reset. 

Reorganized chapter. Clarified byte enable section. NVAX issues 
identical data on both halves of the bus during I/O space writes. 
Released for internal review. 

Revision 1.0 release. Clarified byte enable table. Added error 
handling for unexpected fills. Added error handling for requested 
writebacks whose OREADs do not complete. 

Release for external review. 
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Table 3-25 (Cont.): Revision History 

Who When 

Rebecca Stamm 24-0ct-1989 

DIGITAL CONFIDENTIAL 

Description of change 

Several NVAX pins were added, deleted, or changed in either 
name or functionality. The terminology byte mask is changed 
to byte enable. 101_ WB_ONLY, 102_ WB_ONLY, lOI_SUPPRESS, 
and I02_SUPPRESS were added, and NDAL arbitration was 
changed, giving the arbiter responsibility for asserted the appropriate 
WE_ONLY lines when a SUPPRESS line is asserted. Addition 
of BADWDATA command. New command encodings. Elimination 
of Read Lock and Write Unlock commands on the NDAL. Add 
better explanation of Clear Write Buffer. Update error section. 
Remove PARITY_ENABLE_L pin. Removed Qbus latency problem 
description. Assigned an ID to the memory interface. Read data 
may be returned in any order: :r-.,'rVAX does not require the requested 
quadword first, although it is a performance advantage to return the 
requested qw first. 
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Chapter 4 

Chip Overview 

4.1 NVAX CPU Chip Box and Section Overview 

The ~'TVAX. CPU Chip is a single-chip CMOS-4 macropipelined implementation of the base in
struction group, and the optional vector instruction group of the VAX architecture. Included in 
the chip are: 

• CPU: Instruction fetch and decode, microsequencer, and execution unit 
• Control Store: 1600, 61-bit microwords 
• Primary Cache: 8 KB, 2-way set associative, physically-addressed, write through, mixed 

instruction and data stream 

• Instruction Cache: 2 KB, direct-mapped., virtually addressed, instruction stream only 

• Translation Buffer: 96 entries, fully associative 
• Floating Point: 4 stage, pipelined, integrated fioating point unit with selective stage 4 

bypass 
• Backup Cache Interface: Support for four cache sizes (2MB, 512KB, 256KB, 128KB), two 

tag RAM speeds and three data RAM speeds. 
• NDAL Interface: Memory subsystem interface. Supports an ownership coherence protocol 

on the Backup Cache 

The NVAX chip is designed in CMOS-4 with a typical cycle time of 14 DB, and with the option of 
running chips at a slower or faster cycle time. The chip can be incorporated into many different 
system environments, ranging from the desktop to the midrange, and from single processor to 
multiprocessor systems. 

The NVAX is a macropipelined design: it pipelines macroinstruction decode and operand fetch 
with macroinstruction execution. Pipeline efficiency is increased by queuing up instruction infor
mation and operand values for later use by the execution unit. Thus, when the macropipeline is 
nlDning smoothly, the Ibox (instruction parser/operand fetcher) is running several macroinstruc
tions ahead of the Ebox (execution unit). Outstanding writes to registers or memory locations are 
kept in a scoreboard to ensure that data is not read before it has been written. See Chapter 5 
for a more in-depth discussion of the macropipeline. 
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This chapter gives an overview of the different sections, or "boxes", that comprise the NVAX 
CPU. For more information on any of the boxes, please see the appropriate chapters within this 
specification. Figure 4-1 is a block diagram of the boxes, and the major buses that run between 
them. 

Figure 4-1: NVAX CPU Block Diagram 

FBOX 

4.1.1 The Ibox 

IBOX 

~ USEO 

E%IBOX IA BUS • 
E%50 nTI1=IE' A 
E%DO::RETIRE' .J-I 

~~~~l~HL----:~~~ 
EBOX 

------------------
TAGI 
DATA CBOX 
RAMS I ; 

; 

NDAL _______ _ 

The Ibox decodes VAX instructions and parses operand specifiers. Instruction control, such as 
the control store dispatch address, is then placed in the instruction queue for later use by the 
Microsequencer and Ebox. The Ibox processes the operand specifiers at a rate of one specifier per 
cycle and, as necessary, initiates specifier memory read operations. All the information needed 
to access the specifiers is queued in the source queue and destination queue in the Ebox. 

The Ibox prefetches instruction stream data into the prefetch queue (PFQ), which can hold 16 
bytes. The Ibox has a dedicated instruction-stream-only cache, called the virtual instruction cache 
(VIC). The VIC is a 2 KE, direct-mapped cache, with a block and fill size of 32 bytes. 
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The Ibox has both read and write ports to the GPR and MD portions of the Ebox register file 
which are used to process the operand specifiers. The Ibox maintains a scoreboard to ensure that 
reads and writes to the register file are always performed in synchronization with the Ebox. The 
Ibox stops processing instructions and operands upon issuing certain complex instructions (for 
example, CALL, RET, and character string instructions). This is done to maintain read/write 
ordering when the Ebox will be altering large amounts of VAX state. 

Since the Ibox is often parsing several macroinstructions ahead of the Ebox, the correct value 
for the PSL condition codes is not known at the time the Ibox executes a conditional branch 
instruction. Rather than emptying the pipe, the Ibox predicts which direction the branch will 
take, and passes this information on to the Ebox via the branch queue. The Ebox later signals 
if there was a misprediction, and the hardware backs out of the path. The branch prediction 
algorithm utilizes a 512-entry RAM, which caches four bits of branch history per entry. 

4.1.2 The Ebox and Microsequencer 

The Ebox and Microsequencer work together to perform the actual "work" of the VAX instructions. 
Together they implement a four stage micropipelined unit, which has the ability to stall and to 
microtrap. The Ebox and Microsequencer dequeue instruction and operand information provided 
by the Ibox via the instruction queue, the source queue, and the destination queue. For literal type 
operands, the source queue contains the actual operand value. In the case of register, memory, 
and immediate type operands, the source queue holds a pointer to the data in the Ebox register 
file. The contents of memory operands are provided by the Mbox based on earlier requests from 
the Ibox. GPR results are written directly back to the register :file. Memory results are sent to 
the Mbox, where the data will be matched with the appropriate specifier address previously sent 
by the Ibox. At times, the Ebox initiates its own memory reads and writes using E%V~BUS_L 
and E%WBUS_H. 

The Microsequencer determines the next microword to be fetched from. the control store. It 
then provides this cycle-by-cycle control to the Ebox. The Microsequencer allows for eight-way 
microbranches, and for microsubroutines to a depth of six. 

The Ebox contains a five-port register file, which holds the VAX GPRs, six Memory Data Registers 
(MDs), six microcode working registers, and ten miscellaneous CPU state registers. It also con
tains an ALU, a shifter, and the VAX PSL. The Ebox uses the RMUX, controlled by the retire 
queue, to order the completion of Ebox and Fbox instructions. As the Ebox and the Fbox are 
distinct hardware resources, there is some amount of execution overlap allowed between the two 
units. 

The Ebox implements specialized hardware features in order to speed the execution of certain 
VAX instructions: the population counter (CALLx, PUSHR, POPR), and the mask processing unit 
(CALLx, RET, FFx, PUSHR, POPR). The Ebox also has logic to gather hardware and software 
interrupt requests, and to notify the Microsequencer of pending interrupts. 

4.1.3 The Fbox 

The Fbox implements a four stage pipelined execution unit with selective stage 4 bypass for the 
floating point and integer multiply instructions. Operands are supplied by the Ebox up to 64 
bits per cycle on Eo/cABUS_B and ~BBUS_H. Results are returned to the Ebox 32 bits per cycle on 
F%FBOX_RESULT_H. The Ebox is responsible for storing the Fbox result in memory or the GPRs. 
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4.1.4 The Mbox 

The Mbox receives read requests from the Ibox (both instruction stream and data stream) and 
from the Ebox (data stream only). It receives write/store requests from the Ebox. Also, the Cbox 
sends the Mbox fill data and invalidates for the Pcache. The Mbox arbitrates between these 
requesters, and queues requests which cannot currently be handled. Once a request is started, 
the Mbox performs address translation and cache lookup in two cycles, assuming there are no 
misses or other delays. The two-cycle Mbox operation is pipelined. 

The Mbox uses the translation buffer (96 fully associative entries) to map virtual to physical 
addresses. In the case of a TB miss, the memory management hardware in the Mbox will read 
the page table entry and fill the TB. The Mbox is also responsible for all access checks, TNV 
checks, M-bit checks, and quadword unaligned data processing. 

The Mbox houses the Primary Cache (Pcache). The Pcache is 8KB, 2-way set associative and 
writethrough, with a block and fill size of 32 bytes. The Pcache state is maintained as a subset 
of the Backup Cache. 

The Mbox ensures that Ibox specifier reads are ordered correctly with respect to Ebox specifier 
stores. This memory "scoreboarding" is accomplished by using the PA queue. a small list of 
physical addresses which have a pending Ebox store. 

4.1.5 The Cbox 

The Cbox is the controller for the second level cache (the Backup Cache, or Bcache). Both the 
tags and data for the Bcache are stored in off-chip RAMs. The size and access time of the Bcache 
RAMs can be configured as needed by different system environments. The Bcache sizes supported 
are 2 ME, 512 KB, 256 KB, and 128 KB. In addition, a system with no Bcache RAMs is supported, 
although significant performance degradation occurs without a Bcache. The Bcache is a direct 
mapped writeback cache with block and fill sizes of 32 bytes. The Cbox packs sequential writes 
to the same quadword in order to mjnimize Bcache write accesses. Multiple write commands are 
held in the eight-entry WRITE_QUEUE. 

The Cbox is also the interface to the NDAL, which is the NVAX connection to the memory subsys
tem. The NDAL_IN_QUEUE loads fill data and writeback requests from the NDAL to the CPU. 
The NON_WRITEBACK_QUEUE and WRITEBACK_QUEUE hold read requests and writeback 
data to be sent to the memory subsystem over the NDAL. 

4.1.6 Major Internal Buses 

This is a list of the major interbox buses: 

• B%S6_DATA,..B: 
This bidirectional bus between the Cbox and MBox is used to transfer write data to the backup 
cache, to to transfer:fill data to the primary cache. 

• C%cBOX-,ADDR_B: 
This bus is used to transfer the physical address of a Pcache invalidate from the Cbox to the 
MBOx. 

• Eo/oABUS_H, E%BBUS_H: 
These two 32-bit buses contain the A- and B-port operands for the Ebox, and are also used 
to transfer operand data to the Fbox. 
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• E%mOx..~BUS_L: 
This bus is used by the Ibox to read the Ebox Register File in order to perform an operand 
access. An example is to read a register's contents for a register deferred type specifier. 

• E%IXLRETIRE_H, E%D~RETIRE_BMODE_H, E~RETIRE_RN'_H: 
This collection of related buses transfers information from the Ebox to the Ibox when a des
tination queue entry is retired. 

• E%SQ..BETIRE_H, WfcSQ..RETIRE_MD_H, £C1c8~RETIRE_RMODE_H, E%SQ..RETIBE_RN'l_H, 
Eo/cS~RETlRE_BN2_H: 

This collection of related buses transfers information from the Ebox to the Ibox when a source 
queue entry is retired. 

• E%VA....BUS_L: 
This bus transfers an address from the Ebox to the MBOx. 

• E%WBUS_H: 
This 32-bit bus transfers write data from the RMUX to the register file and the Mbox. 

• E_USQI1cMIB_H: 
This bus carries Control Store data from the Mierosequencer to the Ebox. 

• E_BUS%UTEST_L: 
This 3-bit bus transfers mierobranch conditions from the Ebox: to the mierosequencer. 

• Fo/oFBOX_RESULT_H: 
This bus is used to transfer results from the Fbox to the Ebox. 

• I%mOX-.ADDR_H: 
This bus transmits the virtual address of an Ibox memory reference to the Mbox. The address 
may be for instruction prefeteh or an operand access. 

• I%IQ...BUS_H: 
This bus carries instruction information from the Ibox to the Instruction Queue in the 
Mierosequencer. 

• I%mOX_IW _BUS_H: 
This bus is used by the Ibox to write the Ebox Register File for autoincrementldecrement type 
specifiers and to deliver immediate operands to the Register File. 

• I%OPERAND_BUS_H: 
This bus transfers information from the Ibox to the source and destination queues in the 
Ebox. 

• Mo/cMD_BUS_H: 
The bus returns right-justified memory read data from the Mbox to either the Ibox (64 bits) 
or the Ebox (32 bits). 

• M%S6_PA....H: 
This bus transfers the address for a backup cache reference from the MBox to the Cbox. 

• NDAL: 
The NDAL are bidirectional off-cbip multiplexed address and data lines used by the Cbox to 
communicate with the memory subsystem. The NDAL carries :6.11 data and writeback requests 
to the CPU, and write back data and read requests from the CPU to memory. 
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4.2 Revision History 

Table 4-1: Revision History 

Who 

Debra Bernstein 

Mike Uhler 

Mike Uhler 

4-6 Chip OVerview 

When 

06-Mar-1989 

18-Dec-1989 

04-Dec-1990 

DesmdpuoDofCbaage 

Release for extemal review. 

Update for second-pass release. 

Update after pass 1 PG. 
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Chapter 5 

Macroinstruction and Microinstruction Pipelines 

5.1 Introduction 

This chapter discusses the architecture of the !\'"'\:U CPU macroinstruction and microinstruction 
pipeline. It includes a section of general pipeline fundamentals to set the stage for the specific 
NVAX CPU implementation of the pipeline. This is followed by an overview of the NVAX CPU 
pipeline, an examination of macroinstIUction execution, and a discussion of stall and exception 
handling from the viewpoint of the Ebox. 

5.2 Pipeline Fundamentals 

This section discusses the fundamentals of instruction pipelining in a general manner that is 
independent of the NVAX CPU implementation. It is intended as a primer for those readers who 
do not understand the concept and implications of instruction pipelining. Readers familiar with 
this material are encouraged to skip (or at most skim) this section. 

5.2.1 The Concept of a Pipeline 

The execution of a VAX macroinstruction involves a sequence of steps which are carried out 
in order to complete the macroinstruction operation. Among these steps are: instruction fetch, 
instruction decode, specifier evaluation and operand fetch, instruction execution, and result store. 
On the simplest machines, these steps are carried out sequentially, with no overlap of the steps, 
as shown in Figure 5-1. 
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Figure 5-1: Non-Plpellned Instruction Execution 

--------------- Time ---------------> 
+--------------------+ 

Instruction 1 1501511521531541551561 

+--------------------+ 
+--------------------+ 

Instruction 2 1501511521531541551561 

+--------------------+ 
+--------------------+ 

Instruction 3 1501511521531541551561 

+--------------------+ 

In this diagram, "SO", "S2", ... , "S6" denote particular steps in the execution of an instruction. 
For this simple scheme, all of the steps for one instruction are performed, and the instruction is 
completed, before any of the steps for the next instruction are started. 

In more complex machines, one or more steps of the execution process are carried out in parallel 
with other steps. For example, consider Figure 5-2. 

Figure 5-2: Partlally.Plpelined Instruction execution 

--------------- T~ ---------------> 
----------------------. . 

Instruction 1 15015lI5215315'155ISf, 

Instruction :2 

Instruction 3 

+---------------------
~--------------------+ 
150:5:1521531541551561 

+--------------------+ 
+--------------------+ 
15015l1521531541S51561 

+--------------------+ 

In this example, step 86 of each instruction is overlapped in time (or executed in parallel) with 
step SO of the next instruction. In doing so, the number of instructions executed per unit time 
(instruction throughput) goes up because an instruction appears to take less time to complete. 

In the most complex machines, most (or all) of the steps are executed in parallel as indicated in 
Figure 5-3. 
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Figure 5-3: Fully.Plpelined Instruction execution 

--------------- !ime ---------------> 
+--------------------+ 

Instruction 1 1501511521531541551561 

+--------------------+ 
+--------------------+ 

Instruction 2 1501511521531541551561 

Instruction 3 

Instruction 4 

Instruction 5 

+--------------------+ 
+--------------------+ 
1501511521531541551561 

+--------------------+ 
+--------------------+ 
1501511521531541551561 

+--------------------+ 
+--------------------+ 
:501511521531S41551S61 

+--------------------+ 

In this example every step of instruction execution is performed in parallel with every other 
step. This means that a ne\v instruction is started as soon as step 80 is completed for the 
previous instruction. If each step, 80 .. 86, took the same amount of time, the apparent instruction 
throughput would be seven times greater than that of Figure 5-1 above, even though each 
instruction takes the same amount of time to execute in both cases. 

Figures 5-2 and 5-3 are examples of the concept of instruction pipelining, in which one or 
more steps necessary to ex.ecute an instruction are performed in parallel with steps for other 
instructions. 

5.2.2 Pipeline Flow 

A real-world form of a pipeline is an automobile assembly line. At each station of the assembly 
line (called segments of the pipeline in our case), a task is performed on the partially completed 
automobile and the result is passed on to the next station. At the end of the assembly line, the 
automobile is complete. 

In an instruction pipeline, as in an assembly line, each segment is responsible for performing a 
task and passing the completed result to the next segment. The exact task to be performed in 
each pipeline segment is a function of the degree of pipelining implemented and the complexity 
of the instruction set. 

One attribute of an automobile assembly line is equally important to an instruction pipeline: 
smooth and continuous flow. An automobile assembly line works well because the tasks to be 
performed at each station take about the same amount of time. This keeps the line moving at a 
constant pace, with no starts and stops which would redu.ce the number of completed automobiles 
per unit time. 

An analogous situation exists in an instruction pipeline. In order to achieve real efficiency in 
an instruction pipeline, information must flow smoothly and continuously from the start of the 
pipeline to the end. If a pipeline segment somewhere in the middle is not able to supply results 
to the next segment of the pipeline, the entire pipeline after the offending segment must stop, or 
stall, until the segment can supply a result. 

In the general case, a pipeline stall results when a pipeline segment can not supply a result to 
the next segment, or when it can not accept a new result from a previous segment. 
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This is a fundamental problem with most instruction pipelines because they occasionally (or not 
so occasionally) stall. Stalls result in decreased instruction throughput because the smooth flow 
of the pipeline is broken. 

A typical example of a pipeline stall involves memory reads. A simple three-segment pipeline 
might fetch operands in segment 1, use the operands to compute results in segment 2, and make 
memory references or store results in segment 3, as shown in Figure 5-4. 

Figure 5-4: Simple Three-Segment Pipeline 

+-----------+ +-----------+ +-----------+ 
1 Operand 1-> I Computation 1->1 Memory 
I Access I I I I Read 

+-----------+ +-----------+ +-----------+ 

Figure 5-5 illustrates what happens when the pipeline control wants to use the result of the 
memory read as an operand. 

Figure 5-5: Information Flow Against the Pipeline 

~------------ ~----------+ +------------
1 O!=,&=r.d ,-> I Computation 1->1 Meme=-..! i ----+ 
1 .iL~::eS5! 1 1 aead 1 1 

+------------ +-----------+ +-----------+ I 
--------------------------------------+ 
I +-----------+ +-----------+ +-----------+ 

I2 ~---->I Operand 1->ICcmputationl->1 Result 
1 Access 1 1 1 I Stor& 

+-----------+ +-----------+ +-----------+ 

In this case, the operand access segment of 12 can not supply an operand to the computation 
segment because the memory read done by II has not yet completed. As a result, the pipeline 
must stall until the memory read has completed. This is shown in Figure 5-6. 
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Figure 5-6: Stalls Introduced by Backward Pipeline Flow 

+-----------+ +-----------+ +-----------+ 
I1 1 Operand 1->IComputat1onl->1 Memory 1----+ 

1 Access 1 1 1 1 Read 1 1 
+-----------+ +-----------+ +-----------+ 1 

+-------------------------------------+ 
1 +-----------+ +-----------+ +-----------+ 

12 +---->1 Stall 1->1 Stall 1->1 Stall 1 
1 1 1 1 1 1 1 
1 +-----------+ +-----------+ +-----------+ 
1 +-----------+ +-----------+ +-----------+ 

I2 +------------------->1 Stall 1->1 Stall 1->1 Stall 
1 1 1 1 1 1 
1 +-----------+ +-----------+ +-----------+ 
1 +-----------+ +-----------+ +-----------+ 

:2 +---------------------------------->1 Operand 1->IComputat1onl->1 Result 1 
1 Access 1 1 1 1 Store I 
+-----------+ +-----------+ +-----------+ 

In this diagram, the memory read data from 11 is not available until the read request passes 
through segment 3 of the pipeline. But the operand access segment for 12 wants the data 
immediately. The result is that the operand access segment of 12 has to stall twice waiting for 
the memory read data to become available. This, in turn, stalls the rest of the pipeline segments 
after the operand access segment. 

This situation is an excellent example of an age-old problem with instruction pipelining. The 
natural and desired direction of information :fiow in a pipeline is from left to right in the above 
diagrams. In this case, information must flow from the output of the memory read segment into 
the operand access segment. This requires a right-to-Ieft movement of information from a later 
pipeline segment to an earlier one. In general, any information transfer which goes against the 
normal flow of the pipeline has the potential for causing pipeline stalls. 

5.2.3 Stalls and Exceptions in an Instruction Pipeline 

Even the best pipeline design must be prepared to deal with stalls and exceptions created in the 
pipeline. As mentioned above, a stall is a condition in which a pipeline segment can not accept 
a new result from a previous segment, or can not send a result to a new segment. An exception 
occurs when a pipeline segment detects an abnormal condition which must stop, and then drain 
the pipeline. Examples of exceptions are: memory management faults, reserved operand faults, 
and arithmetic overflows. One of the inherent costs of a pipelined implementation is the extra 
logic necessary to deal with stalls and exceptions. 

There are two primary considerations concerning stalls: what action to take when one occurs, 
and how to minimize them in the first place. The design of most instruction pipelines assumes 
that the pipeline will not stall, and handles the stall condition as a special case, rather than 
the other way around. This means that each segment of the pipeline performs its function and 
produces a result each cycle. If a stall occurs just before the end of the cycle, the segment must 
block global state updates and repeat the same operation during the next cycle. The design of 
the pipeline control must take this into account and be prepared to handle the condition. 

A common stall condition occurs when each pipeline segment has the same average speed, but 
different peak speeds. For example, a pipeline segment whose task is to perform both memory 
references and register result stores may take longer to perform memory references than result 
stores. This can cause earlier segments of the pipeline to stall because the segment can not 
take new inputs as fast if it is doing a memory reference rather than a result store. A common 
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technique to minimize this problem is to place buffers between pipeline segments, as shown in 
Figure 5-7. 

Figure 5-7: Buffers Between Pipeline Segments 

+-----------+ +------+ +-----------+ +------+ +-----------+ 
I Operand 1-> I Bu£fer 1-> I Computation 1-> I Bu££er 1->1 Memory 
I Aeees s I I I I I b I I Read 

+-----------+ +------+ +-----------+ +------+ +-----------+ 

By placing a buffer of sufficient depth between each segment of the pipeline, segments of differing 
peak speeds can avoid stalls caused if the next segment is unable to accept a new result. Instead, 
the result goes into the inter-segment buffer and the next segment removes it from the buffer 
when it needs it. Unfortunately, adding such buffers means that additional logic must also be 
added to handle the buffer fullIbuffer empty conditions. 

The performance advantage of an instruction pipeline comes from the parallelism built into the 
pipeline. If the parallelism is defeated by, for example, a stall, the advantage starts to drop. One 
problem associated with pipelines is that they can provide '1umpy" performance. That is, two 
similar programs may experience radically different performance if one causes many more stalls 
(which defeat the parallelism of the pipeline) than the other. 

Pipeline exceptions are different from stalls in that exceptions cause the pipeline to empty 
or drain. Usually, everything that entered the pipeline before the point of error is allowed 
to complete. Everything that entered the pipeline after the point of error is prevented from 
completing. This can add considerable complexity to the pipeline control. 

A larger problem occurs when the designer wants exceptions to be recoverable. Consider an 
exception caused by a memory management fault. On the VAX., this condition can occur because 
of a TB miss. The correct response to this fault is to read a PrE from memory, refill the TB, and 
restart the request that caused the fault. This can add considerable complexity to the design. 

5.3 NVAX CPU Pipeline Overview 

The remainder of this chapter discusses the NVAX CPU pipeline, which is shown as a block 
diagram in Figure 5-8. This is a high-level view of the CPU and abstracts many of the details. 
For a more detailed view of the pipeline, users are encouraged to refer to the individual box 
chapters in this specification. 

The pipeline is divided into seven segments denoted as "SO" through "S6". In Figure 5-8, the 
components of each section of the CPU are shown in the segment of the pipeline in which they 
operate. 

The NVAX CPU is fully pipelined and, as such, is most similar to the abstract example 
shown in Figure 5-3. In addition to the overall macroinstruction pipeline, in which multiple 
macroinstructions are processed in the various segments of the pipeline, most of the sections 
also micropipeline operations. That is, if more than one operation is required to process a 
macroinstruction, the multiple operations are also pipelined within a section. 
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5.3.1 Normal Macroinstruction Execution 

Execution of macroinstructions in the NVAX pipeline is decomposed into many smaller steps 
which are the distributed responsibility of the various sections of the chip. Because the NVAX 
CPU implements a macroinstruction pipeline, each section is relatively autonomous, with queues 
inserted between the sections to normalize the processing rates of each section. 

5.3.1.1 The Ibox 

The Ibox is responsible for fetching instruction stream data for the next instruction, decomposing 
the data into opcode and specifiers, and evaluating the specifiers with the goal of prefetcbing 
operands to support Ebox execution of the instruction. 

The Ibox is distributed across segments SO through S3 of the pipeline, with most of the work 
being done in 81. In 80, instruction stream data is fetched from the virtual instruction cache 
(VI C) using the address contained in the virtual instruction buffer address register MBA). The 
data is written into the prefetch q1l:eue (PFQ) and VIBA is incremented to the next location. 

In segment S1, the PFQ is read and the burst unit uses internal state and the contents of 
the IROM to select the next instruction stream component-either an opcode or specifier. This 
decoding processing is known as bursting. Some instruction components take multiple cycles to 
burst. For example, FD opcodes require two burst cycles: one for the FD byte, and one for the 
second opcode byte. Similarly, indexed specifiers require at least two burst cycles: one for the 
index byte, and one or more for the base specifier. 

"When an opcode is decoded, the information is passed to the issue unit, which consults the mOM 
for the initial Ebox control store address of the routine which will process the instruction. The 
issue unit sends the address and other instruction-related information to the instruction queue 
where it is held until the Ebox reaches the instruction. 

"When a specifier is decoded, the information is passed to the source and destination queue 
allocation logic and, potentially, to the complex specifier pipeline. The source and destination 
queue allocation logic allocates the appropriate number of entries for the specifier in the source 
and destination queues in the Ebox. These queues contain pointers to operands and results, and 
are discussed in more detail below. 

If the specifier is not a short literal or register specifier, which are collectively known as 
simple specifiers, it is considered to be a complex specifier and is processed by the small 
microcode-controlled complex specifier unit (CSU), which is distributed in segments 81 (control 
store access), S2 (operand access, including register file read), and S3 (ALU operation, Mbox 
request, GPR write) of the pipeline. The esu pipeline computes all specifier memory addresses, 
and makes the appropriate request to the Mbox for the specifier type. To avoid reading or writing 
a GPR which is interlocked by a pending Ebox reference, the CSU pipeline includes a register 
scoreboard which detects data dependencies. The esu pipeline also provides additional help to 
the Ebox by supplying operand information that is not an explicit part of the instruction stream. 
For example, the PC is supplied as an implicit operand for instructions that require it (such as 
BSBB). 

The branch prediction unit (BPU) watches each opcode that is decoded looking for conditional 
and unconditional branches. For unconditional branches, the BPU calculates the target PC and 
redirects PC and VIBA to the new path. For conditional branches, the BPU predicts whether 
the instruction will branch or not based on previous history. If the prediction indicates that the 
branch will be taken, PC and VIBA are redirected to the new path. The BPU writes the conditional 

5-8 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

branch prediction flag into the branch queue in the Ebox, to be used by the Ebox in the execution 
of the instruction. The BPU maintains enough state to restore the correct instruction PC if the 
prediction turns out to be incorrect. 

5.3.1.2 The Microsequencer 

The microsequencer operates in segment 82 of the pipeline and is responsible for supplying to 
the Ebox the next microinstruction to execute. If a macroinstruction requires the execution of 
more than one microinstruction, the microsequencer supplies each microinstruction in sequence 
based on directives included in the previous microinstruction. 

At macroinstruction boundaries, the microsequencer removes the next entry from the instruction 
queue, which includes the initial microinstruction address for the macroinstruction. If the 
instruction queue is empty, the microsequencer supplies the address of a special no-op 
microinstruction. 

The microsequencer is also responsible for evaluating all exception requests, and for providing 
a pipeline £lush control signal to the Ebox. For certain exceptions and interrupts, the 
microsequencer injects the address of a special microinstruction handler that is used to respond 
to the event. 

5.3.1.3 The Ebox 

The Ebox is responsible for executing all of the non-floating point instructions, for delivery of 
operands to and receipt of results from the Fbox, and for handling non-instruction events such 
as interrupts and exceptions. The Ebox is distributed through segments 83 (operand access, 
including register file read), S4 (ALU and shifter operation, Rmux request), and 85 (Rmux 
completion, register write, completion of Mbox request) of the pipeline. 

For the most part, instruction operands are prefetched by the Ibox, and addressed indirectly 
through the source queue. The source queue contains the operand itselffor short literal specifiers, 
and a pointer to an entry in the register file for other operand types. 

An entry in the field queue is made when a field-type specifier entry is made into the source queue. 
The field queue provides microbranch conditions that allow the Ebox microcode to determine if 
a field-type specifier addresses either a GPR or memory. A microbranch on a valid field queue 
entry retires the entry from the queue. 

The register file is divided into four parts: the GPRs, memory data (MD) registers, working 
registers, and CPU state registers. For register-mode speci::6.ers, the source queue points to the 
appropriate GPR in the register file. For other non-short literal speci::6.er modes, the source queue 
points to an MD register. The MD register is either written directly by the Ibox, or by the Mbox 
as the result of a memory read generated by the Ibox. 

The 83 segment of the Ebox pipeline is responsible for selecting the appropriate operands for the 
Ebox and Fbox execution of instructions. Operands are selected onto E%ABUS_B and E%BBUS_B 
for use in both the Ebox and Fbox. In most instances, these operands come from the register file, 
although there are other data path sources of non-instruction operands (such as the P8L). 

Ebox computation is done by the ALU and the shifter in the S4 segment of the pipeline on 
operands supplied by the 83 segment. Control for these units is supplied by the microinstruction 
which was originally supplied to the 83 segment by the microsequencer, and then subsequently 
moved forward in the pipeline. 
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The S4 segment also contains the RMUX, whose responsibility is to select results from either 
the Ebox or Fbox and perform the appropriate register or memory operation. The RMUX inputs 
come from the ALU, shifter, and P%FBO~RESULT_B at the end of the cycle. The RMUX actually 
spans the S4/85 boundary such that its outputs are valid at the beginning of the 85 segment. 
The RMUX is controlled by the retire queue, which specifies the source (either Ebox or Fbox) of 
the result to be processed (or retired) next. Non-selected RMUX sources are delayed until the 
retire queue indicates that they should be processed. 

As the source queue points to instru.ction operands, so the destination queue points to the 
destination for instruction results. If the result is to be stored in a GPR, the destination queue 
contains a pointer to the appropriate GPR. If the result is to be stored in memory, the destination 
queue indicates that a request is to be made to the Mbox, which contains the physical address of 
the result in the PA queue (which is described below). This information is supplied as a control 
input to the RMUX logic. 

Once the RMUX selects the appropriate source of result information, it either requests Mbox 
service, or sends the result onto E%WBUS_B to be written back to the register file or to other data. 
path registers in the 85 segment of the pipeline. The interface between the Ebox and Mbox for 
all memory requests is the EM_LATCH, which contains control information and may contain an 
address, data, or both, depending on the type of request. In addition to operands and results that 
are prefetched by the Ibox, the Ebox can also make explicit memory requests to the Mbox to read 
or write data. 

5.3.1.4 The Fbox 

The Fbox is responsible for executing all of the :floating point instructions in the VAX base 
instruction group, as well as the longword-Iength integer multiply instructions. 

For each instruction that the Fbox is to execute, it receives from the microsequencer the opcode 
and other instruction-related information. The Fbox receives operand data from the Ebox on 
Eo/oABUS_B and E%BBUS_H. 

Execution of instructions is performed in a dedicated Fbox pipeline that appears in segment S4 
of Figure 5-8,. but is actually a minimum of three cycles in length. Certain instructions, such 
as integer multiply, may require multiple passes through some segments of the Fbox pipeline. 
Other instructions, such as divide, are not pipe lined at all. 

Fbox results and status are returned via P%FBO~BESULT_H to the RMUX in the Ebox for 
retirement. When the instruction is next to retire, the RMUX hardware, as directed by the 
destination queue, sends the results to either the GPRs for register destinations, or to the Mbox 
for memory destinations. 

5.3.1.5 The Mbox 

The Mbox operates in the 85 and 86 segments of the pipeline, and is responsible for all memory 
references initiated by the other sections of the chip. Mbox requests can come from the Ibox 
(for VIC fills and for specifier references), the Ebox or Fbox via the RMUX and the EM_LATCH 
(for instruction result stores and for explicit Ebox memory requests), from the Mbox itself (for 
translation buffer fills and PrE reads), and from the Cbox (for invalidates and cache fills). 

5-10 Macroinstruction and Microinstruction Pipelines DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

All virtual references are translated to a physical address by the translation buffer (TB), which 
operates in the 85 segment of the pipeline. For instruction result references generated by the 
Ibox, the translated address is stored in the physical address queue CPA queue). These addresses 
are later matched with data from the Ebox or Fbox, when the result is calculated. 

For memory references, the physical address from either the TB or the PA queue is used to 
address the primary cache (Pcache) starting in the 85 segment of the pipeline and continuing 
into the 86 segment. Read data is available in the middle of the 86 segment, right-justified and 
returned to the requester on M%'MD_BUS_B by the end of the cycle. Writes are also completed by 
the end of the cycle. Although the Pcache access spans the 85 and 86 segments of the pipeline, 
a new access can be started each cycle in the absence of a TB or cache miss. 

5.3.1.6 The Cbox 

The Cbox is responsible for maintaining and accessing the backup cache (Bcache), and for control 
of the off-chip bus (the NDAL). The Cbox receives input from the Mbox in the 86 segment of the 
pipeline, and usually takes multiple cycles to complete a request. For this reason, the Cbox is 
not shown in specific pipeline segments. 

If a memory read misses in the Pcache, the request is sent to the Cbox for processin~. The 
Cbox first looks for the data in the Bcache and fills the Pcache from the Bcache if the data is 
present. If the data is not present in the Bcache, the Cbox requests a cache filIon the ~-nAL 
from memory. When memory returns the data, it is written to both the Bcache and to the Pcache 
(and potentially to the VIC). Although Pcache fills are done by making a request to the Mbox 
pipeline, data is returned to the original requester as quickly as possible by driving data directly 
onto Bo/cS6_DAT.A...B, and from there onto M%MD_BUS_B as soon as the bus is free. 

Because the Pcache operates as a write-through cache, all memory writes are passed to the Cbox. 
10 avoid multiple writes to the same Bcache block., the Cbox contains a write buffer in which 
multiple writes to the same quadwords are packed together before the Bcache is actually written. 
To maintain cache coherence with other system components, the Obex acquires ownership of any 
data that is written to the cache. 

5.3.2 Stalls in the Pipeline 

Despite our best attempts at keeping the pipeline flowing smoothly, there are conditions which 
cause segments of the pipeline to stall. Conceptually, each segment of the pipeline can be 
considered as a black box which performs three steps every cycle: 

1. The task appropriate to the pipeline segment is performed, using control and inputs from the 
previous pipeline segment. The segment then updates local state (within the segment), but 
not global state (outside of the segment). 

2. Just before the end of the cycle, all segments send stall conditions to the appropriate state 
sequencer for that segment, which evaluates the conditions and determines which, if any, 
pipeline segments must stall. 

3. If no stall conditions exist for a pipeline segment, the state sequencer allows it to pass results 
to the next segment and accept results from the previous segment. This is accomplished by 
updating global state. 
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This sequence of steps maximizes throughput by allowing each pipeline segment to assume that 
a stall will not occur (which should be the common case). If a stall does occur at the end of 
the cycle, global state updates are blocked, and the stalled segment repeats the same task (with 
potentially different inputs) in the next cycle (and the next, and the next) until the stall condition 
is removed. 

This description is over-simplified in some cases because some global state must be updated by a 
segment before the stall condition is known. Also, some tasks must be performed by a segment 
once and only once. These are treated specially on a case-by-case basis in each segment. 

Within a particular section of the chip, a stall in one pipeline segment also causes stalls in all 
upstream segments (those that occur earlier in the pipeline) of the pipeline. Unlike Rigel, stalls 
in one segment of the pipeline do not cause stalls in downstream segments of the pipeline. For 
example, a memory data stall in Rigel also caused a stall of the downstream ALU segment. In 
NVAX., a memory data stall does not stall the ALU segment (a no-op is inserted into the S4 
segment when S4 advances to S5). 

There are a number of stall conditions in the chip which result in a pipeline stall. Each is 
discussed briefly below and in much more detail in the appropriate chapter of this specification. 

5.3.2.1 SO Stalls 

Stalls that occur in the SO segment of the pipeline are as follows: 

Ibox: 

• PFQ full: In normal operation, the VIC is accessed using the address in VIBA, the data is 
sent to the prefetch queue, and VIBA is incremented. If the PFQ is full, the increment of 
VIBA is blocked, and the data is re-referenced in the VIC until there is room for it in the 
PFQ. At that point, prefetch resumes. 

5.3.2.2 S1 Stalls 

Stalls that occur in the Sl segment of the pipeline are as follows: 

!box: 

• Insufficient PFQ data: The burst unit attempts to decode the next instruction component 
each cycle. If there are insufficient PFQ bytes valid to decode the entire component, the burst 
unit stalls until the required bytes are delivered from the VIC. 

• Source queue or destination queue full: During specifier decoding, the source and destination 
queue allocation logic must allocate enough entries in each queue to satisfy the requirements 
of the specifier being parsed. To guarantee that there will be sufficient resources available, 
there must be at least 2 free source queue entries and 2 free destination queue entries to 
complete the burst of the specifier. If there are insufficient free entries in either queue,the 
burst unit stalls until free entries become available. 

• MD file full: When a complex specifier is decoded, the source queue allocation logic must 
allocate enough memory data registers in the register file to satisfy the requirements of the 
specifier being parsed. 'Ib guarantee that there will be sufficient resources available, there 
must be at least 2 free memory data registers available to complete the burst of the specifier. 
If there are insufficient free registers, the burst unit stalls until enough memory data registers 
becomes available. 
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• Second conditional branch decoded: The branch prediction unit predicts the path that each 
conditional branch will take and redirects the instruction stream based on that prediction. It 
retains sufficient state to restore the alternate path if the prediction was wrong. If a second 
conditional branch is decoded before the first is resolved by the Ebox, the branch prediction 
unit has nowhere to store the state, so the burst unit stalls until the Ebox resolves the actual 
direction of the first branch. 

• Instruction queue full: When a new opcode is decoded by the burst unit, the issue unit 
attempts to add an entry for the instruction to the instruction queue. If there are no free 
entries in the instruction queue, the burst unit stalls until a free entry becomes available, 
which occurs when an instruction is retired through the RMtJX. 

• Complex specifier unit busy: If the burst unit decodes an instruction component that must 
be processed by the CSU pipeline, it makes a request for service by the CSU through an 81 
request latch. If this latch is still valid from a previous request for service (either due to a 
multi-cycle :flow or a CSU stall), the burst unit stalls until the valid bit in the request latch 
is cleared. 

• Immediate data length not available: The length of the specifier extension for immediate 
specifiers is dependent on the data length of the specifier for that specific instruction. The 
data length information comes from one of the Ibox instr-:.ction PLAs which is accessed based 
on the opcode of the instruction. If the PLA access is not complete before an immediate 
specifier is decoded (which would have to be the first specifier of the instruction), the burst 
unit stalls for one cycle. 

5.3.2.3 S2 Stalls 

Stalls that occur in the 82 segment of the pipeline are as follows: 

Ibox: 

• Outstanding Ebox or Fbox GPR write: In order to calculate certain specifier memory 
addresses, the C8U must read the contents of a GPR from the register file. If there is a 
pending Ebox or Fbox write to the register, the Ibox GPR scoreboard prevents the GPR read 
by stalling the 82 segment of the C8U pipeline. The stall continues until the GPR write 
completes. 

• Memory data not valid: For certain operations, the Ibox makes an Mbox request to return 
data which is used to complete the operation (e.g., the read done for the indirect address of a 
displacement deferred specifier). The Ibox MD register contains a valid bit which is cleared 
when a request is made, and set when data returns in response to the request. If the Ibox 
references the Ibox MD register when the valid bit is off, the 82 segment of the e8U pipeline 
stalls until the data is returned by the Mbox. 

Microsequeneer: 

• Instruction queue empty: The final microinstruction of a macroinstruction execution How 
in the Ebox is indicated when a 8EQ.MUXILAST.CYCLE* microinstruction is decoded 
by the microsequencer. In response to this event, the Ebox expects to receive the first 
microinstruction of the next macroinstruction How based on the initial address in the 
instruction queue. If the instruction queue is empty, the Microsequencer supplies the 
instruction queue stall microinstruction in place of the next macroinstruction :flow. In effect, 
this stalls the micro sequencer for one cycle. 
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5.3.2.4 S3 Stalls 

Stalls that occur in the S3 segment of the pipeline are as follows: 

Ibox: 

• Outstanding Ebox GPR read: In order to complete the processing for auto-increment, 
auto-decrement, and auto-increment defelTed specifiers, the CSU must update the GPR with 
the new value. If there is a pending Ebox read to the register through the source queue, the 
Ibox scoreboard prevents the GPR write by stalling the S3 segment of the esu pipeline. The 
stall continues until the Ebox reads the GPR. 

• Specifier queue full: For most complex specifiers, the esu makes a request for Mbox service 
for the memory request required by the specifier. If there are no free entries in the specifier 
queue, the S3 segment of the esu pipeline stalls until a free entry becomes available. 

• RLOG full: Auto-increment, auto-decrement, and auto-increment defelTed specifiers require 
a free RLOG entry in which to log the change to the GPR. If there are no free RLOG entries 
when such a specifier is decoded, the S3 segment of the esu pipeline stalls until a free entry 
becomes available. 

Ebox: 

• Memory read data not valid: In some instances, the Ebox may make an explicit read request 
to the Mbox to return data in one of the 6 Ebox working registers in the register file. When 
the request is made, the valid bit on the register is cleared. '\\1ten the data is written to the 
register, the valid bit is set. If the Ebox references the working register when the valid bit is 
clear, the S3 segment of the Ebox pipeline stalls until the entry becomes valid. 

• Field queue not valid: For each macroinstruction that includes a field-type specifier, the 
microcode microbranches on the first entry in the field queue to determine whether the field 
specifier addresses a GPR or memory. If the field queue is empty (indicating that the Ibox 
has not yet parsed the field specifier), the result of the next address calculation repeats the 
microbranch the next cycle. Although this is not a true stall, the effects are the same in that 
a microinstruction is repeated until the field queue becomes valid. 

• Outstanding Fbox GPR write: Because the Fbox computation pipeline is multiple cycles long, 
the Ebox may start to process subsequent instructions before the Fbox completes the first. 
If the Fbox instruction result is destined for a GPR that is referenced by a subsequent Ebox 
microword, the S3 segment of the Ebox pipeline stalls until the Fbox GPR write occurs. 

• Fbox instruction queue full: When an instruction is issued to the Fbox, an entry is added to 
the Fbox instruction queue. If there are no free entries in the queue, the S3 segment of the 
Ebox pipeline stalls until a free entry becomes available. 

EboxlFbox: 

• Source queue empty: Most instruction operands are prefetched by the Ibox, which writes 
a pointer to the operand value into the source queue. The Ebox then references up to two 
operands per cycle indirectly through the source queue for delivery to the Ebox or Fbox. If 
either of the source queue entries referenced is not valid, the S3 segment of the Ebox pipeline 
stalls until the entry becomes valid. 
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• Memory operand not valid: Memory operands are prefetched by the Ibox, and the data is 
written by the either the Mbox or Ibox into the memory data registers in the register file. If 
a referenced source queue entry points to a memory data register which is not valid, the S3 
segment of the Ebox pipeline stalls until the entry becomes valid. 

5.3.2.5 S4 Stalls 

Stalls that occur in the S4 segment of the pipeline are as follows: 

Ebox: 

• Branch queue empty: When a conditional or unconditional branch is decoded by the Ibox, an 
entry is added to the branch queue. For conditional branch instructions, the entry indicates 
the Ibox prediction of the branch direction. The branch queue is referenced by the Ebox to 
verify that the branch displacement was valid, and to compare the actual branch direction 
with the prediction. If the branch queue entry has not yet been made by the Ibox, the S4 
segment of the Ebox pipeline stalls until the entry is made. 

• Fbox GPR operand scoreboard full: The Ebox implements a register scoreboard to prevent 
the Ebox from reading a GPR to which there is an outstanding write by the Fbox. For each 
Fbox instruction which will write a GPR result, the Ebox adds an entry to the Fbox GPR 
scoreboard. If the scoreboard is full when the Ebox attempts to add an entry, the S4 segment 
of the Ebox pipeline stalls until a free entry becomes available. 

Fbox: 

• Fbox operand not valid: Instructions are issued to the Fbox when the opcode is removed 
from the instruction queue by the micro sequencer. Operands for the instruction may not 
arrive until some time later. If the Fbox attempts to start the instruction execution when the 
operands are not yet valid, the Fbox pipeline stalls until the operands become valid. 

EboxlFbox: 

• Destination queue empty: Destination specifiers for instructions are processed by the Ibox, 
which writes a pointer to the destination (either GPR or memory) into the destination queue. 
The destination queue is referenced in two cases: when the Ebox or Fbox store instruction 
results via the RMIJX, and when the Ebox tries to add the destination of Fbox instructions to 
the Ebox GPR scoreboard. If the destination queue entry is not valid (as would be the case if 
the Ibox has not completed processing the destination specifier), a stall occurs until the entry 
becomes valid. 

• PA queue empty: For memory destination specifiers, the Ibox sends the virtual address of the 
destination to the Mbox, which translates it and adds the physical address to the PA queue. 
If the destination queue indicates that an instruction result is in memory, a store request is 
made to the Mbox which supplies the data for the result. The Mbox matches the data with 
the first address in the PA queue and performs the write. If the PA queue is not valid when 
the Ebox or Fbox has a memory result ready, the RMUX stalls until the entry becomes valid. 
As a result, the source of the RMUX input (Ebox or Fbox) also stalls. 

• EM_LATCH full: All implicit and explicit memory requests made by the Ebox or Fbox pass 
through the EM_LATCH to the Mbox. If the Mbox is still processing the previous request 
when a new request is made, the RMUX stalls until the previous request is completed. As a 
result, the source of the RMUX input (Ebox or Fbox) also stalls. 
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• RMUX selected to other source: Macroinstructions must be completed in the order in which 
they appear in the instruction stream. The Ebox retire queue determines whether the next 
instruction to complete comes from the Ebox or the Fbox. If the next instruction should come 
from one source and the other makes an RMUX request, the other source stalls until the 
retire queue indicates that the next instruction should come from that source. 

5.3.3 Exception Handling 

A pipeline exception occurs when a segment of the pipeline detects an event which requires that 
the normal flow of the pipeline be stopped in favor of another flow. There are two fundamental 
types of pipeline exceptions: those that resume the original pipeline flow once the exception is 
corrected, and those that require the intervention of the operating system. A TB miss on a 
memory reference is an example of the :first type, and an access control violation is an example 
of the second type. M=O faults are handled specially, as described below. 

Restartable exceptions are handled entirely within the confines of the section that detected the 
event. Other exceptions must be reported to the Ebox for processing. Because the NVAX CPU is 
macropipelined, exceptions can be detected by sections of the pipeline long before the instruction 
which caused the exception is actually executed by the Ebox or Fbox. However, the reporting of 
the exception is deferred until the instruction is executed by the Ebox or Fbox. At that point, an 
Ebox handler is invoked to process the event. 

Because the Ebox and Fbox are micropipelined, the point at which an exception handler is 
invoked must be carefully controlled. For example, three macroinstructions may be in execution in 
segments S3, 84, and S5 of the Ebox pipeline. If an exception is reported for the macroinstruction 
in the 83 segment, the t"\vo macroinstructions that are in the 84 and 85 segments must be allowed 
to complete before the exception handler is invoked. 

To accomplish this, the S41S5 boundary in the Ebox is defined to be the commit point for a 
microinstruction. Architectural state is not modified before the 85 segment of the pipeline, unless 
there is some mechanism for restoring the original state if an exception is detected (the Ibox RLOG 
is an example of such a mechanism). Exception reporting is deferred until the microinstruction 
to which the event belongs attempts to cross the S4!S5 boundary. At that point, the exception 
is reported and an exception handler is invoked. By deferring exception reporting to this point, 
the previous microinstruction (which may belong to the previous macroinstruction) is allowed to 
complete. 

Most exceptions are reported by requesting a microtrap from the Microsequencer. When the 
Microsequencer receives a microtrap request, it causes the Eboxto break all its stalls, aborts 
the Ebox pipeline (by asserting E_USQ%PEJ\BORT_L), and injects the address of a handler for 
the event into the control store address latch. This starts an Ebox microcode routine which will 
process the exception as appropriate. Certain other kinds of exceptions are reported by simply 
injecting the appropriate handler address into the control store at the appropriate point. 

The VAX architecture categorizes exceptions into two types: faults and traps. For both types, the 
microcode handler for the exception causes the Ibox to back out all GPR modifications that are 
in the RLOG, and retrieves the PC from. the PC queue. For faults, the PC returned is the PC of 
the opcode of the instruction which caused the exception. For traps, the PC returned is the PC 
of the opcode of the next instruction to execute. The microcode then constructs the appropriate 
exception frame on the stack, and dispatches to the operating system through the appropriate 
8CB vector. 
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There are a number of exceptions detected by the NVAX CPU pipeline, each of which is discussed 
briefly below, and in much more detail in the appropriate chapter of this specification. 

5.3.3.1 Interrupts 

The CPU services interrupt requests from various sources between macroinstructions, and at 
selected points within the string instructions. Interrupt requests are received by the interrupt 
section and compared with the current IPL in the PSL. If the interrupt request is for an IPL 
that is higher than the current value in the PSL, a request is posted to the microsequencer. At 
the next macroinstruction boundary, the microsequencer substitutes the address of the microcode 
interrupt service routine for the instruction execution flow. 

The microcode handler then determines if there is actually an interrupt pending. If there is, it 
is dispatched to the operating system through the appropriate SCB vector. 

5.3.3.2 Integer Arithmetic exceptions 

There are three integer arithmetic exceptions detected by the CPU, all of which are categorized 
as traps by the VAX architecture. This is significant because the event is not reported until after 
the commit point of the instruction, which allows that instruction to complete. 

Integer Overflow Trap 

An integer overflow is detected by the RMUX at the end of the S4 segment of the Ebox 
pipeline. If PSL<lV> is set and overflow traps are enabled by the microcode, the event is 
reported in segment 85 of the pipeline via a microtrap request. 

Integer Divide-By-Zero Trap 

An integer divide-by-zero is detected by the Ebox microcode routine for the instruction. It 
is reported by explicitly retiring the instruction and then jumping directly to the microcode 
handler for the event. 

Subscript Range Trap 

A subscript range trap is detected by the Ebox microcode routine for the INDEX instruction. 
It is reported by explicitly retiring the instruction and then jumping directly to the microcode 
handler for the event. 

5.3.3.3 Floating Point Arithmetic exceptions 

All floating point arithmetic exceptions are detected by the Fbox pipeline during the execution of 
the instruction. The event is reported by the RMUX when it selects the Fbox as the source of the 
next instruction to process. At that point, a microtrap is requested. 
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5.3.3.4 Memory Management Exceptions 

Memory management exceptions are detected by the Mbox when it processes a virtual read or 
write. This section covers actual memory management exceptions such as access control violation, 
translation not valid, and M=O faults. Translation buffer misses are discussed separately in the 
next section. Because the reporting of memory management exceptions is specific to the operation 
that caused the exception, each case is discussed separately. 

• I·Stream Faults 
While the Ibox is decoding instructions, it may access a page which is not accessible due 
to a memory management exception. This may occur on the opcode, a specifier or specifier 
extension, or on a branch displacement. Should this occur, the Ibox sets a global :MME 
fault flag and stops. Memory management exceptions detected on intermediate operations 
during specifier evaluation (such as a read for the indirect address of a displacement deferred 
specifier) are converted by the Ibox into source or destination faults, as described below. 
If the Ebox reaches the instruction which caused the exception (which may not happen due to, 
for example, interrupt, exception, or branch), it will reference one of the queues, which does 
not have a valid entry because the Ibox stopped when the error was detected. The particular 
queue depends on the instruction component on which the error was detected. If the Ibox 
global MME flag is set when an empty queue entry is referenced, the error is reported in one 
of four ways. 

If the Ibox global ~WE flag is set when the microsequencer references an invalid instruction 
queue entry, it inserts the instruction queue stall into the pipeline and the Ebox qualifies it 
with the fault flag. "When this flag reaches the 54 segment of the pipeline and is selected by 
the RMUX, a microtrap is requested. 
If the Ibox global MME flag is set when the Ebox references an invalid source queue entry, 
a fault flag is injected into either the Ebox or Fbox pipelines, depending on the type of 
instruction. To avoid a deadlock, S3 stalls do not prevent forward prgress of the flag in 
the pipeline. "When the flag reaches the S4 segment of the pipeline and is selected by the 
RMux, a microtrap is requested. 
If the Ibox global :M:ME flag is set when the Ebox microcode microbranches on an invalid field 
queue entry, a fault flag is injected into the Ebox ·pipeline. When the flag reaches the S4 
segment of the pipeline and is selected by the RMUX, a microtrap is requested. 
If the Ibox global :MME :flag is set when the Ebox references an invalid branch queue entry, 
and the RMUX selects the Ebox, a microtrap is requested. 
If the Ibox global MME :flag is set when the RMUX references an invalid destination queue 
entry for a store request, a microtrap is requested. 

• Source Operand Faults 
If the Mbox detects a memory management exception during the translation for a source 
specifier, it qualifies the data returned to the MD file with a fault flag which is written into 
the MD file. When this entry is referenced by the Ebox, a fault flag is injected into the 
pipeline. To avoid a deadlock, S3 stalls do not prevent forward prgress of the flag in the 
pipeline. When the flag reaches the S4 segment of the pipeline and is selected by the RMUX, 
a microtrap is requested. 
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• Destination Address Faults 
If the Mbox detects a memory management exception during the translation for a destination 
specifier, it sets a fault flag in the PA queue entry for the address. When this entry is 
referenced by the RM'UX, a microtrap is requested,. 

• Faults on Explicit Ebox Memory Requests 
Explicit Ebox reads and writes are, by definition, performed in the context of the instruction 
which the Ebox is currently executing. If the Mbox detects a memory management exception 
that was the result of an explicit Ehox read or write, it requests an immediate microtrap to 
the memory management fault handler. 

• M=O faults 
M=O faults occur when the Mbox finds the M-hit clear in the PTE which is used to translate 
write-type references. The event is reported to the Ebox in one of the three ways described 
above: ,"ia the MD :file or PA queue fault :flags, or via an immediate microtrap for explicit 
Ebox writes. 
Unlike other memory management exceptions, which are dispatched to the operating system, 
M=O faults are completely processed by the Ebox microcode handler. For normal instructions, 
the handler causes the !box to back out all GPR modifications that are in the RLOG and 
retrieves the PC from the PC queue. For string instructions, any RLOG entries that belong 
to the string instructions are not processed, and PSL<FPD> is set. Using the PTE address 
supplied by the Mbox, the Ebox microcode reads the PTE, sets the M-bit, and writes the 
PTE back to memory. The instruction stream is then restarted at the interrupted instruction 
(which may result in special FPD handling, as described below). 

5.3.3.5 Translation Buffer Miss 

Translation buffer misses are handled by the Mbox transparently to the rest of the CPU. When 
a reference misses in the translation buffer, the Mbox aborts the current reference and invokes 
the services of the memory management exception sequencer in the Mbox, which fetches the 
appropriate PTE from memory and loads it into the translation buffer. The original reference is 
then restarted. 

5.3.3.6 Reserved Addressing Mode Faults 

Reserved addressing mode faults are detected by the !box for certain illegal combinations of 
specifier addressing modes and registers. When one of these combinations is detected, the Ibox 
sets a global addressing mode fault flag that indicates that the condition was detected and stops. 

If the Ibox global addressing mode fault flag is set when the Ebox references an invalid source 
queue entry, a fault flag is injected into either the Ebox or Fbox pipelines, depending on the type 
of instruction. To avoid a deadlock, 83 stalls do not prevent forward prgress of the -flag in the 
pipeline. The fault flag is carried along the Ebox or Fbox pipeline and passed to the RMUX, 
which reports the event by requesting a microtrap when that source is selected. 
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If the Ibox global addressing mode fault flag is set when the Ebox microcode microbranches on 
an invalid field queue entry, a fault flag is injected into the Ebox pipeline. When the flag reaches 
the 54 segment of the pipeline and is selected by the RMUX, a microtrap is requested. 

Similarly, if the Ibox global addressing mode fault flag is set when the RMUX, in response to 
a request by the Ebox or Fbox, references an invalid destination queue entry, a microtrap is 
requested. 

5.3.3.7 Reserved Operand Faults 

Reserved operand faults for floating point operands are detected by the Fbox, and reported in the 
same manner as the floating point arithmetic exceptions described above. 

Other reserved operand faults are detected by Ebox microcode as part of macroinstruction 
execution flows and are reported by jumping directly to the fault handler. 

5.3.3.8 Exceptions Occurring as the Consequence of an Instruction 

Opcode-specific exceptions such as reserved instruction faults, breakpoint faults, etc., are 
dispatched directly to handlers by placing the address of the handler in the instruction PLA. 
for each instruction. 

Other instruction-related faults, such as privileged instruction faults, are detected in execution 
Hows by the Ebox microcode and are reported by jumping directly to the fault handler. 

For testability, the Fbox may be disabled. If this is the case, integer multiply instructions 
are executed by the Ebox microcode and floating point instructions are converted into reserved 
instruction faults for emulation by software. When the first Ebox microinstruction of an Fbox 
operand flow for a floating point macroinstruction reaches the S4 segment of the pipeline, a 
microtrap is requested. The handler for this microtrap then jumps directly to the reserved 
instruction fault handler. 

5.3.3.9 Trace Fault 

Trace faults are detected by the microsequencer with some help from the Ebox. The 
microsequencer maintains a duplicate copy of PSL<TP>, which it updates as required to track 
the state of the PSL copy as it would exist when the instruction is executed by the Ebox. At 
the end of a macroinstruction, the microsequencer logically ORs its local copy of the TP bit with 
PSL<TP>. If either is set, the microsequencer substitutes the address of the microcode trace fault 
handler for the address of the next macroinstruction. 

5.3.3.10 Conditional Branch Mispredict 

When the Ibox decodes a conditional branch, it predicts the path that the branch will take and 
places its prediction into the branch queue. When the Ebox reaches the instruction, it evaluates 
the actual path that the branch took and compares it in the 85 segment of the Ebox pipeline with 
the Ibox prediction. If the two are different, the Ibox is notified that the branch was mispredicted 
and a microtrap request is made to abort the Ebox and Fbox pipelines. The Ibox flushes itself, 
backs out any GPR modifications that are in the RLOG, and redirects the instruction stream to 
the alternate path. The Ebox microcode handler for this event cleans up certain machine state 
and waits for the first instruction from the alternate path. 
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5.3.3.11 First Part Done Handling 

During the execution of one of the 8 string instructions that are implemented by the CPU, an 
exception or an interrupt may be detected. In that event, the Ebox microcode saves all state 
necessary to resume the instruction in the GPRs, backs up PC to point to the opcode of the string 
instruction, sets PSL<FPD> in the saved PSL, and dispatches to the handler for the interrupt or 
exception. 

When the interrupt or exception is resolved, the software handler terminates with an REI back to 
the instruction. When the Ibox decodes an instruction with PSL<FPD> set, it stops parsing the 
instruction immediately after the opcode. In particular, it does not parse the specifiers. When the 
micro sequencer finds PSL<FPD> set at a macroinstruction boundary, it substitutes the address 
of a special FPD handler for the instruction execution fiow. 

The FPD handler determines which instruction is being resumed from the opcode, unpacks the 
state saved in the GPRs, clears PSL<FPD>, advances PC to the end of the string instruction (by 
adding the opcode PC to the length of the instruction, which was part of the saved state), and 
jumps back to the middle of the interrupted instruction. 

5.3.3.12 Cache and Memory Hardware Errors 

Cache and memory hardware errors are detected by the Mbox or Cbox, depending on the type 
of error. If the error is recoverable (e.g., a Pcache tag parity error on a write simply disables 
the Pcache), it is reported via a soft error interrupt request and is dispatched to the operating 
system. 

In some instances, write errors that are not recoverable by hardware are reported via a hard 
error interrupt request, which results in the invocation of the operating system. 

Read errors that are not recoverable by hardware· are reported via the assertion of a soft error 
interrupt, and also in a manner that is similar to that used for memory management exceptions, 
as described above. In fact, the MD file, PA queue, and the Ibox all contain a hardware error :Hag 
in parallel with the memory management fault flag. With the exception ofTB parity errors, which 
cause an immediate microtrap request, the event is reported to the Ebox in exactly the same way 
as the equivalent memory management exception would be, but the microcode exception handler 
is different. For example, an unrecoverable error on a specifier read would set the hardware error 
flag in the MD file. When the :Hag is referenced, the error flag is injected into the pipeline. When 
the fiag advances to the S4 segment and is selected by the RMUX., it causes a microtrap request 
which invokes a hardware error handler rather than a memory management handler. 

Note that certain other errors are reported in the same way. For example, if the memory 
management sequencer in the Mbox receives an unrecoverable error trying to read a PTE 
necessary to translate a destination specifier, it sets the hardware error fiag in the PA queue 
for the entry corresponding to the specifier. This results in a microtrap to the hardware error 
handler when the entry is referenced. PTE read errors for read references are also reported via 
the original reference. 

DIGITAL CONFIDENTIAL Macroinstruction and Microinstruction Pipelines 5-21 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

5.4 Revision History 

Table 5-1: Revision History 

Who When Description of cbaDge 

Mike Uhler 06-Mar-1989 Release for external review. 

Mike Uhler 19-Dec-1989 Update for second-pass release. 

Mike Uhler 02-Feb-1991 Update after pass 1 PG. 
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Chapter 6 

Microinstruction Formats 

6.1 Ebox Microcode 

The NVAX microword consists of 61 bits divided into two major sections. Bits <60:15> control 
the Ebox Data Path and are encoded into two formats. Bits <14:0> control the Microsequencer 
and are also encoded into two formats. 

6.1.1 Data Path Control 

The Data Path Control Microword specifies all the information needed to control the Ebox Data 
Path. The two formats, Standard and Special, are selected by bit <60>, the FORMAT bit. In 
addition, bit <45>, the LIT bit, selects the constant generation format of the microword, which 
may be either an 8-hit constant or a 10-bit constant, depending on a decode in the MISe field. 
Pictures of the microword formats are in Figure ~l and Figure 6-2. A brief description of each 
field is given in Table ~l and Table ~2. 

Figure 6-1: Ebox Data Path Control, Standard Format 

615 5 5 515 5 5 515 5 4 414 4 4 414 4 4 413 3 3 313 3 3 313 3 2 212 2 2 212 2 2 211 1 1 111 
019 8 7 615 4 3 211 0 9 817 6 5 413 2 1 019 8 7 615 4 3 211 0 9 817 6 5 413 2 1 019 8 7 615 

+-+---------+---------+-+-----+-+---------+---------+-+-+-+-----------+-----------+---------+ 
10 I ALU I MRQ IQI SHF 101 VAL I B ILIWIVI DST 1 A I MIse I 

+-+---------+---------+-+-----+-+---------+---------+-+-+-+-----------+-----------+---------+ 
IllPOS 1 CONST I MIse not equal CONST.10 

+-+---+---------------+ 
III CONST.10 I MISe equal CONST.10 

+-+-------------------+ 

Table 6-1: EBOX Data Path Control Microword FIelds, Standard Format 

Bit Position Microword Field 

60 FOR~ 

59:55 ALU 
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Microword 
Fonnat 

Both 

Description 

Microword format-Standard or Special 

ALU function select 
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Table 6-1 (Cont.): EBOX Data Path Control Mlcroword Fields, Standard Format 

Microword 
Bit Position Microword Field Format Description 

54:50 MRQ Both Mhox request select 

49 Q Standard Q register load control 

48:46 SHF Standard Shifter function select 

45 LIT Both ALU/shift.er B port control-register or literal 

44:40 VAL Standard1 Constant shift amount 

39:35 B Both1 ALU/shift.er B port select 

44:43 POS Both2 Constant position 

42:35 eONST Both2 8-bit constant value 

44:35 eONST.I0 BothS 10-bit constant value 

34 L Both Length control 

33 W Both Wbus driver control 

32 V Both VA write enable 

31:26 DST Both WBUS destination select 

25:20 A Both ALU/shift.er A port select 

19:15 MISe Both Miscellaneious function select, group 0 

1 NOT Constant generation microword variant 

2S-Bit Constant generation microword variant, when MISe field not equal CONST.I0 

SID-Bit Constant generation microword variant, when MISC field equal CONST.IO 

Figure 6-2: Ebox Data Path Control, Special Format 

615 5 5 SIS 5 5 SIS 5 4 414 4 4 414 4 4 413 3 3 313 3 3 313 3 2 212 2 2 212 2 2 211 1 1 111 
019 8 7 615 4 3 211 0 9 817 6 5 413 2 1 019 8 7 615 4 3 211 0 9 817 6 5 413 2 1 019 8 7 615 

+-+---------+---------+-------+-+-------+-+---------+-+-+-+-----------+-----------+---------+ 
III ALU I MRQ I MIsel 101 MZSC2 IDt B ILIWIVI DST I A I MISC I 

+-+---------+---------+-------+-+-------+-+---------+-+-+-+-----------+-----------+---------+ 
IllPOS I eONST I MIse not equal CONST .10 

+-+---+---------------+ 
III eONST.10 I MISe equal CONST.10 

+-+-------------------+ 

Table 6-2: EBOX Data Path Control Mlcroword Fields, Special Format 

Microword 
Bit Position Microword Field Format Description 

60 FORMAT Microword format-Standard or Special 
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Table 6-2 (Cont.): EBOX Data Path Control Mlcroword Fields, Special Format 

Microword 
Bit Position Microword Field Format Description 

59:55 ALU Both ALU function select 

54:50 MRQ Both Mbo:r:: request select 

49:46 :MISC1 Special Miscellaneous function select, group 1 

45 LIT Both ALU/shift.er B port control-register or literal 

44:41 :MISC2 Speciall Miscellaneous function select, group 2 

40 DISABLE.RETIRE Speciall Instruction retire disable 

39:35 B Bothl ALU/shift.er B port select 

44:43 POS Both2 Constant position 

42:35 CONST Both2 8--bit constant value 

44:35 CONST.10 Both3 10-bit constant value 

34 L Both Length control 

33 W Both Wbus driver control 

32 V Both VA write enable 

31:26 DST Both WBUS destination sele<= 

25:20 A Both ALU/shifter A port select 

19:15 :MISC Both Miseellaneious function select, group 0 

1 NOT Constant generation microword variant 

2S-Bit Constant generation microword variant, when MISe field not equal CONST.I0 

310-Bit Constant generation microword variant, when MISC field equal CONST.I0 

6.1.2 Microsequencer Control 

The Microsequencer Control Microword supplies the information necessary for the 
Microsequencer to calculate the address of the next microinstruction. The basic computation 
done by the Mierosequencer involves selecting a base address from one of several sources, and 
then optionally modifying three bits of the base address to get the final next address. 

Bit <14>, SEQ.FMT, selects between Jump and Branch formats. Figure 6-3 and Figure 6-4 show 
the two formats. Table 6-3 and Tabl~ 6-4 describe each of the fields. 
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Figure 6-3: Ebox Mlcrosequencer Control, Jump Format 

111111 1 1 
4 3 211 0 9 817 6 5 413 2 1 0 

+-+-+---+---------------------+ 
IOISJMUXI J 

+-+-+---+---------------------+ 

Table 6-3: Ebox Mlcrosequencer Control Mlcroword Fields, Jump Format 

Microword 
Bit Position Microword Field Format Description 

14 SEQ.FMT Microsequencer format-Jump or Branch 

13 SEQ. CALL Both Subroutine call 

12:11 SEQ.MUX Jump Next address select 

10:0 J Jump Next address 

Figure 6-4: Ebox Mlcrosequencer Control, Branch Format 

111111 1 1 
4 3 211 0 9 817 6 5 413 2 1 0 

--+-+---------+---------------+ 
11ISISEQ.COND I BR..O!"F 

+-+-+---------+---------------+ 

Table 6-4: Ebox Mlcrosequencer Control Microword Fields, Branch Format 

Microword 
Bit Position Microword Field Format Description 

14 

13 

12:8 

7:0 

6.2 

SEQ.FMT Microsequencer format-Jump or Branch 

SEQ.CALL Both Subroutine call 

SEQ.COND Branch Microbranch condition select 

BR.OFF Branch . Page offset of next address 

Ibox CSU Microcode 

The Ibox complex specifier unit is controlled by a 29-bit microword, as shown in Figure 6-5. A 
brief description of each field is given in Table 6-5. 
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Figure 6-5: Ibox CSU Format 

28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I ALU IDL I A I BIDS'! I MIse I MREQ IMOX I NX"l' I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table &-5: lbox CSU Mlcroword Fields 

Bit Position 

28:26 

25 

24:22 

21:19 

18:16 

15:13 

12:9 

8:7 

6:0 

Microword Field 

ALU 

DL 
A 

B 

DST 
MISe 
MREQ 
:Mt.JX_ Cl\"T 

NXT 

Description 

ALU function select 

Data length control 

ALU A port select 

ALU B port select 

Wbus destination 

Miscellaneous function select 

Mbox request select 

Next address mux select 

Next address 

6.3 Ibox Instruction ROM and Control PLAs 

The !box instruction decode is controlled by several ROMs and PLAs that are generated from a 
single source file whose format is shown in Figure 6-6. A brief description of each field is given 
in Table 6-6. A more detailed description of the control information as it is actually found in the 
hardware is given in Table 7-12. 
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Figure 6-6: Ibox Instruction ROM Format 

64 63 62 61 60 59 58 57 56 55 54 53 S2 51 50 49 48 47 46 45 
+--+--+--+--+--+--+--+--+--+--+----+--+--+--+--+--+--+--+--+-----+ 
I EXEC_IlISP IVSIST_SPCQIDSIB I VIFBI SP_CNT IA_CNTI 
+--+--+--+--+--+--+--+--+--+--+----+--+--+--+--+--+--+--+--+-----+ 

44 43 42 41 40 39 38 37 36 35 34 33 32 
+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I A1_REG IA1_IlL I Al_AT I ASS IST1 I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 
---+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
IE_IlL I AT 6 I DL 6 I AT 5 I IlL 5 I AT 4 I IlL 4 I A'l' 3 I IlL 3 I AT 2 I IlL 2 I AT 1 I IlL 1 I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 6-6: Ibox Instruction ROM Fields 

Bit Position Microworcl Field 

64:56 EXEC_DISP 

55 VS 

54:53 ST_SPCQ 

52 DS 

51 B 

50 V 

49 FB 

48:46 SP_CNT 

45 A_ONT 

44:41 AI_REG 

40:39 A1_DL 

38:36 A1_AT 

35:32 ASSISTI 

31:30 E_DL 

29:27 AT6 

26:25 DLG 

24:22 AT5 

21:20 DLS 

19:17 AT4 

16:15 DL4 

6-6 Microinstruction Formats 

Description 

Bits <9:1> of the instruction entry point address in the Ebox 
conn-ol store 

Deter::nines whether a Yfield specifier occupies 1 or 2 source 
queue entries 

Detern:rl.nes whether the parser is stopped at the end of the 
instruction, when the next PC queue entry is made, and when 
the parser is restarted 

Specifies the length (byte or word) of a branch displacement for 
the instruction 

Specifies whether the instruction has a branch displacement 

Not CUlTently used 

Specifies whether this instruction is implemented in the Fbox 

Specifies the number of real specifiers for the instruction 

Specifies whether the instruction has an assist 

Specifies the register to use for instructions with an assist 

Specifies the data length to use for instructions with an assist 

Specifies the access type to use for instructions with an assist 

Specifies the type of assist for instructions with an assist 

Specifies the initial Ebox data length to be used for the 
instruction 

Supplies the encoded access type of the sixth specifier, if any 

Supplies the encoded data length of the sixth specifier, if any 

Supplies the encoded access type of the fifhll specifier, if any 

Supplies the encoded data length of the fifth specifier, if any 

Supplies the encoded access type of the fourth specifier, if any 

Supplies the encoded data length of the fourth specifier, if any 
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Table 6-6 (Cont.): Ibox Instruction ROM Fields 

Bit Position Microword Field 

14:12 AT3 

11:10 DL3 

9:7 AT2 

6:5 DL2 

4:2 AT1 

1:0 DL1 

DIGITAL CONFIDENTIAL 

Description 

Supplies the encoded access type of the third specifiert if any 

Supplies the encoded data length of the third specifier, if any 

Supplies the encoded access type of the second specifier, if any 

Supplies the encoded data length of the second specifier, if any 

Supplies the encoded access type of the first specifier, if any 

Supplies the encoded data length of the first specifier, if any 
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6.4 Revision History 

Table 6-7: Revision History 

Who When 

Debra Bernstein 06-Mar-1989 

Mike Uhler 13-Dec-1989 

Mike Uhler 04-Feb-1991 

6-8 Microinstruction Formats 

Description of chaD.ge 

Release for external review. 

Update for second-pass release. 

Update after pass 1 PG. 
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Chapter 7 

Thelbox 

7.1 Overview 

7.1.1 Introduction 

This chapter describes the Ibox section of the }.j",\~ CPU chip. The 4-stage Ibox pipeline (SO .. S3) 
runs semi-autonomously to the rest of the l\."VAX CPU and supports the following functions: 

• Instruction Stream Prefetching 
The Ibox attempts to maintain sufficient instruction stream data to decode the next instruc
tion or operand specifier. 

• Instruction Parsing 
The Ibox identifies the instruction opcodes and operand specifiers, and extracts the informa
tion necessary for further processing. 

• Operand Specifi.er Processing 
The Ibox processes the operand specifiers, initiates the required memory references, and 
provides the Ebox with the information necessary to access the instruction's operands. 

• Branch Prediction 
Upon identification of a branch opcode, the Ibox hardware predicts the direction of the branch 
(taken vs. not taken). For branch taken predictions, the Ibox redirects the instruction 
prefetching and parsing logic to the branch destination, where instruction processing resumes. 

Figure 7-1 is a top level block diagram of the Ibox showing the major Ihox sub-sections and their 
inter-connections. 

This chapter presents a high-level description of the Ibox functions, then provides details of the 
Ibox sub-sections which support each function. 
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Figure 7-1: Ibox Block Diagram 
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7.1.2 Functional Overview 
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The Ibox fetches, parses, and processes the instruction stream, attempting to maintain a constant 
supply of parsed VAX instructions available to the Ebox for execution. The pipelined nature of 
the NVAX CPU allows for multiple macroinstructions to reside within the CPU at various stages 
of execution. The Ibox, running semi-autonomously to the Ebox, parses the macroinstructions 
following the instruction that is currently in Ebox execution. Performance gains are realized 
when the time required for instruction parsing in the Ibox is hidden during the Ebox execution of 
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an earlier instruction. The Ibox places the information generated while parsing ahead into Ebox 
queues. 

The Instruction Queue contains instruction specific information which includes the instruction 
opcode, a floating point instruction fiag, and an entry point for the Ebox microcode. 

The Source Queue contains information about the source operands for the instructions in the 
instruction queue. Source queue entries contain either the actual operand (as in a short literal), 
or a pointer to the location of the operand. 

The Destination Queue contains information required for the Ebox to select the location for 
execution results storage. The two possible locations are the VAX General Purpose Registers 
(GPRs) and memory. 

These queues allow the Ibox to work in parallel with the Ebox. As the Ebox consumes the entries 
in the queues, the Ibox parses ahead adding more. In the ideal case, the Ibox would stay far 
enough ahead of the Ebox such that the Ebox would never have to stall because of an empty 
queue. 

The Ibox needs access to memory for instruction and operand data. Instruction and operand data 
requests are made through a common port to the Mbox. All data for both the Ibox and the Ebox 
is returned on a shared Mo/cMD_BUS_H<63:0> 

The Ibox port feeds operand data requests to the Mbox Specifier Request Latch and instruction 
data requests to the Mbox Instruction Request Latch. These 2 latches allow the Ibox to issue 
memory requests for both instruction and operand data even though the Mbox may be processing 
other requests. 

The Ibox supports 4 main functions: 

1. Instruction Stream Prefetching 
2. Instruction Parsing 
3. Operand Specifier Processing 
4. Branch Prediction 

Instruction Stream Prefetching works to provides a steady source of instruction stream data for 
instruction parsing. While the instruction parsing logic works on one instruction, the instruction 
prefetching logic fetches several instructions ahead. 

The Instruction Parsing logic parses the incoming instruction stream, identifying and initial pro
cessing each of the instruction's components. The instruction opcodes and associated information 
are passed directly into the Ebox instruction queue. Operand specifier information is passed on 
to the operand specifier processing logic. 

The Operand Specifier Processing logic locates the operands in registers, in memory, or in the 
Instruction Stream. This logic places operand information in the Ebox source and destination 
queues, and makes the required operand memory requests. 

The Ibox does not have prior knowledge of branch direction for branches which rely on Ebox 
condition codes. The Branch prediction logic makes a prediction on which way the branch will go 
and forces the Ibox to take that path. This logic saves the alternate branch path target, so that 
in the event that Ebox branch execution shows that the prediction was wrong, the Ibox can be 
redirected to the correct branch direction. 
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7.1.3 The Pipeline 

The !box logic spans the first 4 segments of the NVAX CPU pipeline (SO .. S3). The following table 
lists the major Ibox sub-sections and which pipe segments they occupy. 

Table 7-1: lbox Pipeline 

Sub·Section 

Name 

VIC 

PFQ 

IBU 

nu 

BPU 

OQU 

SBU 

esu (Sl) 

esu (82) 

esu (S3) 

Description 

so Pipe Stage 

The VU'tual Instruction Cache is a 2KB direct mapped Istream-only cache with 32 byte 
blocks, a valid bit per quadword, and an access size of 8 bytes. 

The Prefetch Queue is a queue of instruction stream data supplied by the VIC. It is 4 bytes 
wide by 4 elemen'tS deep. 

S1 Pipe Stage 

The Instruction Bu...""St Unit breaks up the incoming instruction data into opcodes, operand 
specifiers, spec:i£.er extensions, and branch displacements and passes the results to other 
parts of the !box for further processing. 

The Instruction Issue Unit takes the opcodes provided by the IBU and generates an Ebox 
microcode dispatch addresses and other context for instnlction execution. 

The Branch Prediction Unit predicts whether or not branches will be taken and redirects 
the Ibox instruction processing as necessary. 

The Operand Queue Unit is the interface to the Ebox source and destination queues. 

The Scoreboard Unit tracks outstanding read and write references to the GPRs. 

This segment of the Complex Specifier Unit contains the microsequencer and control store. 

S2 Pipe Stage 

This is the register READ segment of the complex specifier unit. It accesses the necessary 
registers and provides the data to the ALU in the next pipe stage. 

sa Pipe Stage 

This is the ALU and WRITE segment of the complex specifier unit. This segment performs 
the necessary ALU operations and writes the results either to the Ebox register file or to 
local temporary registers. This segment also contains the Mbox interface. 

Pipe segment SO is dedicated to supplying a steady stream of instruction data for use by the IBU. 
When prefetching is enabled, the VIC attempts to fill the PFQ with up to 8 bytes of instruction 
stream data. 

The mu parses in 81, the Ebox receives information about the instruction and its operands in the 
instruction, source, and destination queues. The nu is the Ibox interface to the Ebox instruction 
queue, and the OQU is the interface to the source and destination queues. When the IBU bas 
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identified a new opcode, this opcode is passed to the nu which places the necessary opcode
specific information in the Ebox instruction queue. When operand specifiers are identified, the 
OQU places the necessary operand specific information in the source and destination queues. 

The CSU is a 3 stage (S1..S3) microcoded pipeline dedicated to handling operand specifiers which 
require complex processing andlor access to memory. It has read and write access to the Ebox 
register file and a port to the Mhox. Memory requests from the VIC are received at the CSU and 
forwarded to the Mbox when there is a cycle free of specifier memory requests. 

7.2 Instruction Stream Prefetching 

The Instruction Stream Prefetcbing mechanism provides a buffer of Istre am data 4 bytes wide and 
4 elements deep for use by the instruction parser. This buffer insulates the instruction parser from 
the bursty behavior of the cache and memory sub-systems, and allows for the parallel operation 
of the instruction fetching and instruction parsing functions. 

The two Ibox sub-sections which support the instruction prefetching function are the Virtual 
Instruction Cache (VIC) and the Prefetch Queue (PFQ) both of which reside in the SO pipe stage. 

7.2.1 The VIC 

The VIC is a 2KB, direct-mapped, Istream cache which acts as the primary source of instruction 
stream data for the Ibox. The VIC attributes are summarized in Table 7-2. 

Table 7-2: VIC Attributes 

Cache size 

Access Type 

Block Size 

Sub-block Size 

Valid Bits 

Data Parity Bits 

# of Tags 

Tag Parity Bit 

Fill Algorithm 

Access Size 

Bus Size 

Prefetcbing 

Data stored 

Vutua1lPhysical 

DIG[TAL CONFIDENTIAL 

2KBytes 

Direct Mapped 

32 Bytes 

8 Bytes 

4: Valid bits/Cache Block = 1 Per Sub-block 

4: Even Parity bits/Cache Block = 1 Per Sub-block 

64 Tags 

1 Even Parity Bit Per Tag 

Fill Forward 

8 Bytes 

8 Bytes 

NONE 

Istream Only 

Vtrtual 

The Ibox 7-5 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

Figure 7-2: VIC Block Diagram 
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The VIC is a virtual cache because the addresses that are used to index into the cache are un
translated VAX Virtual addresses. See Section 12.5 for more on VAX Memory Management 
and Address Translation. The VIC maintains a local prefetch pointer called VIBA<31:3> (Virtual 
Instruction Buffer Address). This address is quadword aligned and always points to the next 
quadword of Istream data to be sent to the PFQ. Table 7-3 shows the fields in VIBA<>. 
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Table 7-3: VIBA bit fields 

Bit field Field name 

<4:3> stJBBLE...INDEX 

<10:5> BOW_INDEX 

<31:11> VIBA_TAG 

Description 

Sub-block index (or column select) bits indicate which sub-block to select from 
cache block. 

Row select bits determine which cache row to access 

Bits to be compared against cache tag 

"Whenever the BPU issues a new PC, the VIC latches the NEW_pc<31:3> in VIBA<31:3>. VIBA<10:5> 
are used to select which cache row to access. Each cache row, shown in Figure 7-3, stores a 21-
bit tag with even parity for the tag, and four quadword sub-blocks each with a valid bit and an 
even parity bit which covers the data only. When a cache row of the VIC is accessed, The 21-bit 
tag is compared with VlBA<31:11> to determine cache hit or miss. VIBA<4:3> selects the cache 
sub-block. 

Figure 7-3: VIC Cache Row Format 

: 6 6 
0:: 0:: 0:: 0:3 0 

------------~---~------------------+-~--------------------~----------------------+-~-+------------------+ .:' , '=]..~ IVIP I Sub-block :3 dat.a IVIP I S1.!b-blc-ck :2 data IVIP I Si±--block 1 data IV IP I Sub-block 0 data I 

------------~---~------------------~-~-~------------------~-+-~------------------+-+-+------------------~ 
/ 

----------------------------------------------- 287 bits ----------------------------------------------

,\Vhenever space exists in the PFQ, the VIC attempts to supply the next quadword of instruction 
stream data by doing a VIC_BEAD using the current value ofVIBA<:31:3>. If the VIC_BEAD results 
in a miss, the VIC begins a VIC_FILL sequence by sending a request through the csu for a cache 
fill operation from the MbOx. 

7.2.1.1 VIC Control 

The VIC control evaluates the status flags summarized in Table 7-4 every cycle to determine 
the proper type of cache sequence for the next cycle. VIC_ENABLE enables the cache itself, 
specifically VIC_READS and VIC_WRITEs. PREFETCILENABLE is the enable bit for the Istream 
prefetch sequencer. VIC_ERROR indicates that there was a VIC parity error. MBO~ERROR 
indicates that error status was reported by the Mbox. WRrNtPENDING indicates that the Mbox 
drove valid Istream data on the M%MD_BUS_B<63:0> last cycle, and a cache write cycle should 
begin next. The MISS_PENDING flag is set when a VIC_READ misses in cache, and remains set 
until the cache fill sequence terminates. LOAD_ VIC_DATA indicates that VIC data is ready for the 
PFQ. LOAD>ID_DATA indicates that the data on the M%MD_BUS_B<63:0> during a VIC fill should 
be loaded into the PFQ. 
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Table 7-4: VIC Status Flags 

VIC Flag Meaning 

7 .2.1.2 VIC_Reads 

The VIC enable bit 

The prefetch enable bit 

There was a parity error in the VIC 

There was an etTOr in the Mbox fetching Istream data 

Valid data latched from MHmJJtJS_B<63:0>, ready to be written to the VIC 

A VIC cache fill from the Mbox is in progress 

A cache read from the VIC is in progress 

The VIC starts a VIC_READ sequence when PREFETCH_ENABLE is set and WRITE_PENDING is clear. 
If VIC_ENABLE is set, the VIC_READ sequence accesses the cache using the address in VIBA<31:3>. 
The decode of VIBA<lO:5> selects one of 64 cache rows. If TAG<20:0> matches VIBA<31:11> and 
the valid (V) bit for the sub-block selected by VIBA<4:3> is set, then there is a cache hit. The data 
from the sub-block selected by ''IBA<4:3> is driven onto VIC_DATA..BUS<63:0>, LOAD_VIC_DATA is 
asserted if the PFQ is not full, and the data is loaded into the PFQ. 

If VIBA<31:11> does not match TAG<20:0>, or the tag matches but the V bit for the selected 
sub-block is not set, then a cache miss has occurred. In this case, VIBA<31:3> is saved in 
MISS_ADDRESS<31:3> and the MISS_PENDING flag is set. The four data parity bits for the accessed 
cache block are latched in MISS_PAB.lTY<3:0>. The four valid bits for the same cache block are 
latched in MISs_VALID<3:0> if the cache miss is caused by a clear sub-block valid bit. If the cache 
miss is caused by a tag miscompare then MISS_VALID<3:0> is cleared. VIC_WRITEs make use of 
MISS..Al)DRESS<31:3>, MISs_PARITY<3:0>, and MISS_VALID<3:0>. A cache fill operation begins as 
described in Section 7.2.1.3. 

If VIC_ENABLE is clear or the LOCK bit in the ICSR register is set, indicating a VIC parity error 
has occurred, then all VIC_READS are forced to miss. 

7.2.1.3 VIC Fills 

Upon detection of a cache miss during a VIC_READ, the VIC issues a fill request to the CSU. The 
miss address, stored in MISS-.ADDBFSS<31:3>, is driven onto VIC_RlXLADDR<31:3> and V1C_REQ 
is asserted. The esu forwards the V1C_REQ to the Mbox during the next free cycle on the 
I%lBO:x..ADDR_B<> bus and associated control lines. 

The Mbox returns quadwords of instruction data starting with the requested quadword and 
continuing to the end of the block. This cache fill algorithm is called fill forward. If the Mbox 
goes off-chip to get the requested data, then a full cache block of instruction data is returned, 
but not necessarily in any particular order. If the Mbox processes the fill request and finds that 
the request resides in I/O space, the request is also sent off-chip. In this case only the single 
requested quadword of data returns to the VIC. In all cases, the VIC is unaware of the number of 
data blocks being returned. When the last block of data is being returned by either the Cbox or 
Mbox, a M~LAST_FlLL_B is signaled allowing MISS_PENDING to be cleared and a new read begun. 
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7.2.1.4 VIC Writes 

The assertion of M'?DVlC_DATA-.,.L indicates the presence of Istream data on M%MD_BUS_B<63:0>. 
The VIC latches 
M%MD_BUS_B<63:0> in FlLL_DArA<63:0>, M~_BUS_QW_PABlTY_L<O> in FlI..kDATA,..PAlUTY<:O>, 
M%QW _ALIGNMENT_B<l:O> in MISS_ADDRESS<4:3>, and sets WRITE_PENDING. 

If VIC_ENABLE is set, then a VIC_WRITE commences the next cycle using the address stored in 
MISS_ADDRESS<31:3> and the data stored in FILL_DATA<63:0>. MISS-.AJ)DRESS<10:5> selects 
the cache row to write and MISS_ADDRESS<4:3> selects the sub-block to write. TAG<20:0> 
and its parity bit for the selected row are written with MISS-AJ)DBESS<31:11> and the even 
parity calculated for these bits. The selected sub-block is written with FILL_DATA<63:0>. 
MISs_PARITY<3:0> and MISS_VALID<3:0> contain the four data parity bits and four valid 
bits for the cache block being filled. The parity bit in MISS_p.ARITY<3:0> indexed by 
MISS..AJ)DRESS<4:3> is associated with the sub-block being written. This parity bit is written with 
MO/CMD_BUS_QW_PARITY_L<O>. The valid bit in MISS_ VALID<3:0> indexed by MISS-AI)DBESS<4:3> 
is associated with the sub-block being written. This valid bit is set. Both MISS_PARITY <3:0> and 
MISs_vALID<3:0> are written into the cache array. 

There may be up to four VIC_WRITEs for each VIC_FILL depending upon sub-block alignment and 
fill sequence. However, the cache block tag and tag parity, all four data parity bits, all four data 
valid biis, and one sub-block of data are all written with every VIC_WRITE. 

If VIC_ENABLE is clear, VIC_WRITEs are disabled, but the cache fill sequence completes norma1l:;: 

See section Section 7.2.1.7 for information on M%HARD_ERR_B and Mo/cMME_FAULT_H. 

7.2.1.5 VIC Bypass 

When fill data arrives at the VIC on the M%MD_BUS_B<63:0>, an evaluation is done to determine 
if the incoming data should be loaded directly into the PFQ. If so, then the PFQ latches the data 
directly from the Mo/GMD_BUS_B<63:0> and VlBA is incremented by 8. This action is referred to as a 
VIC bypass and is signaled to the PFQ by LOAD_MD_DATA. Note that a VIC_WRITE occurs regardless 
of the outcome of the evaluation and whether or not the VIC bypass is enabled. H PFQ,..FULL from 
the PFQ is asserted, indicating the PFQ is full, then LOAD_MD_DATA is not asserted and VIBA is 
not incremented. 

The evaluation consists of checking to make sure that the incoming data is for the same 
cache block and sub-block to which VIBA points. The only time VIBA can be pointing to a 
different block than the block for ,which data is returning, is if a previous VIC bypass or 
Hit-Under-Miss incremented VIBA across a cache block boundary. This circumstance is indicated 
by a VIB.A..NEW _BLOCK flag. 

In order to facilitate VIC bypass, the Mbox returns M%QW -ALIGNMENT_B<:l:O> with each piece of 
fill data. These two bits represent the quadword index for this data within the hexaword cache 
block. If VIBA....NEW _BLOCK is clear and M~W -.ALIGNMENT_B<:l:O> match VIBA<4:3> then the 
incoming data can be loaded into the PFQ. When VIBA....NEW_BLOCK is set, indicating that the data 
the PFQ is waiting for is not in the block being filled by the Mbox, then VIC bypass is blocked and 
LOAD..MD_DATA is not asserted. 
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7.2.1.6 VIC Hits Under Miss 

If the last VIC_WRITE was also a VIC bypass condition, then VIBA increments and potentially points 
to valid data in the current or next cache block. A subsequent VIC_READ is permitted even when 
MISS_PENDING is still set. This is referred to as a VIC Hit-Under-Miss. If the VIC_READ during 
MISS_PENDING also misses, no cache fill request is started. MISS..Al)DBESS, MISS_PARITY<3:0>, 
and MISS_ VALID<3:0> are not updated on a second miss. Note that VIC_READS may start and stop 
during a :fill sequence based on VIC_WRITEs, but they always restart at the termination of a :fill 
sequence when M%LAST_FILL_B is signaled. 

7.2.1.7 VIC Exceptions and Errors 

The VIC interprets the Mbox exception and error signals during the VIC_WRITE sequence. The 
Mo/c:iMME_FAULT_H signal indicates that the Mbox encountered a memory management exception 
during the processing of an instruction stream reference. The Mbox produces the M%BARD_ERR_H 
signal when a hardware error is detected during the processing of an instruction stream reference. 
When M%VIC_D.ATA-.L indicates the presence of data from the Mbox on the M%.'I\ID_BUS_B<63:0>, the 
assertion of either Mo/tMME_FAULT_B or M%HARD_EBR_B blocks the setting of the WRITE_PD-"DING 
flag. M%MME_FAULT_B and M%HARD_ERR_B set the error flags IMl\lGT_EXC and MBARD_EBR, 
respectively. These flags are sent directly to the IBU. They are also used to disable prefetching 
and block VIC bypass until they are cleared either by a E%STOP _IBOX_B !rom the Ebox or a 
LOAD_NEW_PC from the BPU. They are also cleared by E%IBOx..LOAD_PC_L which indicates an 
impending LOADJmW_PC. 

The VIC checks tag and data during VIC_BEADS. Parity is calculated for the data sub-blocks 
selected by VIBA<4:3>. The even parity value for the quadword of data is then compared to 
the parity (P) bit associated with the sub-block read from cache. Data parity miscompares are 
reported as parity elTars only on valid data. The even parity value for VIC_TAG<20:0> is calculated 
on VIC_BEADs and compared to the parity (P) bit from the array that is associated with the tag 
read. Tag parity miscompares are always reported as parity elTors. When the VIC detects either 
parity elTor, it clears PREFETCB_ENABLE, disabling VIC prefetching, and sets the LOCK bit in the 
ICSR register, preventing further cache reads and writes. The VIC asserts DIARD_ERR to forward 
the error condition to the mu. IBARD_ERR remains asserted until it is cleared by a E%STOP _mox".H. 
The error status bits are set appropriately in the ICsa IPR register and the address of the error 
is latched in the VMAR register, as explained in Section 7.2.1.16. In addition, the VIC requests a 
system soft error interrupt by asserting the I%lBOx..S_ERR..L. 

VIC tag and data parity checking are done specifically to protect the data in the VIC arrays. 

Refer to section Section 7.9.2 for details on the mu handling of Istream errors. 

7.2.1.8 PC Load Effects 

The assertion of LOAD_ NEW_PC by the BPU has the following effects: 

1. PREFETCB_ENABLE is set. 

2. VIBA is loaded. 
VIBA<31:3> is loaded from the global Ibox bus NEW_pc<31:3> 

3. MlIARD_ERR is cleared. 

4. IMMGT_EXC is cleared. 

5. MISS_PENDING is cleared. 

7-10 Thelbox DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

6. WRITE_PENDING is cleared. 
7. VIC_READ is set. 
B. I%FLUSB_IREF _LAT_B is asserted by the BPU to the MbOx. 

The VIC reacts to any LOAD_NEW _PC from the BPU on a cycle by cycle basis as follows: 

Cycle N: 

• The Ibox may make an Istream request this cycle. 
• Fill data returning from the Mbox to the Ibox is ignored. 

Cycle N+1 : 

• LOAD_NEW _PC is asserted to redirect instruction :flow. 

• I%FLUSB_IREF _LAT_B is asserted to clear outstanding Istream references. 
• The Ibox may make an Istream request this cycle which is ignored by the Mbox. 
• Fill data returning from the Mbox to the Ibox is ignored. This is the last cycle in which fill 

data for the Istream being flushed can be sent. 
• Prefetching is enabled if previously disabled. 

• MISS_PENDING is cleared and VIC_READ is set. 
• New VIC hit or miss is determined. 

Cycle N+2: 

• The Ibox may make a new Istream request based on whether the VIC hit or missed. 
• MISS_PENDING may be set and VIC_READ cleared if a VIC miss was determined.. 
• The Mbox may not send Istream data for the old Istream request to the Ibox. 

Section 7.6 and Section 7.5.1.7 explain more about PC loads. 

7.2.1.9 E%STOP _IBOX_H Effects 

The assertion of E%STOP _IBOx..B by the Ebox has the following effects: 

1. PBEFETCB_ENABLE is cleared. 
2. MHABD_ERR is cleared. 
3. lMMGT_EXC is cleared. 

4. IBABD_EBR is cleared. 
5. MISS_PENDING is cleared. 
6. WRITE_PENDING is cleared. 
7. VIC_READ is cleared. 

B. I%FLUSILIREF_LAT_B is asserted by the BPU. 

The VIC reacts to a E%STOP _IBOx..B on a cycle by cycle basis as follows: 

CycleN: 

• E%STOP _IBOx..B is asserted. 
• The Ibox may make an Istream request this cycle. 
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• Fill data returning from the Mbox to the Ibox is ignored. 

CycleN+l : 

• I%FLUSH_mEF _LAT_B is asserted to clear outstanding Istream references. 
• The Ibox will not make an Istream request this cycle. 
• Fill data returning from the Mbox to the Ibox is ignored. This is the last cycle in which fill 

data for the Istream being flushed can be sent. 

• Prefetcbing is disabled. 
• MISS_PENDING and VIC_READ are cleared, VIC is put into an idle state, waiting for an 

Eo/cIBOx.,LOAD_PC_L from the Ebox. 

7.2.1.10 Prefetch Stop Conditions 

PREFETCH_ENABLE is cleared in the following eases: 

1. Any VIC, Mbox error, or Mbox exception 
when a VIC error is detected or Mbox error is reported. 

2. E%STOP _IBOX_H signaled by Ebox 
when the Ebox microcode performs a MISCIRESET_CPU which asserts E%STOP _IBOX_H. 

3. STOP_VIC_PREFETCH, STOP_PARSER bit from the mOM 
stops Ibox prefetching for those instructions expected to redirect the instruction flow or access 
the IPRs. 

7.2.1.11 Prefetch Start Conditions 

PREFETCH_ENABLE is set in the following cases: 
1. PC load 

on all PC loads. 
2. E%RESTART_IBOx.,H signaled by Ebox 

when the Ebox microcode performs a E%RESTART_IBOx.,B, unless there is an outstanding VIC 
or Mbox error, or a PC load by the Ebox: is pending, as signaled by E%IBOx.,LOAD_PC_L. 

7.2.1.12 Prioritized List of Prefetch Start/stop Conditions 

The following priority is followed when multiple prefetch start/stop conditions occur simultaneously: 

1. E%STOP _IBOx.,B - stops prefetching 
2. PC Load - starts prefetching 
3. E%IBOx.,LOAD_PC_L - stops prefetcbing (a PC load is pending) 

4. Any VIC or Mhos: Error or Exception - stops prefetching 

5. E%RESTART_IBOx.,H - starts prefetcbing 
6. STOP _ VIC_PREFETCH - stops prefetching 
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7.2.1.13 VIC Enable 

The VIC powers up with VIC_ENABLE clear. VIC_ENABLE can be set and cleared during normal 
operation through the IPR register described in Section 7.2.1.16. VIC_ENABLE is cleared by 
hardware when any VIC parity error is detected. 

MACROCODE RESTRICTION 

In functional operation, an REI must precede the MTPR which enables the VIC in order 
to flush all of the valid bits. However, if all the valid bits are guaranteed to have been 
written with a known value (such as in diagnostics or in macrocode that initializes the 
entire VIC), then this REI may be omitted. 

7.2.1.14 VIC Flushing 

The Ebox asserts E%FLUSH_VIC_H under microcode control to flush the VIC (clear all data valid 
bits). VIC flushes occur in such instances as the REI instruction, machine checks, and certain 
exceptions and interrupts. 

MICROCODE RESTRICTION 

The Ebox microcode guarantees that prefetching is disabled whenever E%FLUSH_ VIC_H 
is asserted, either implicitly in the context of an instruction with a STOP_PARSER assist 
or by performing an explicit Eo/~TOP _mOx:..H. 

The VIC reacts to a E%FLUSH_ VIC_H on a cycle by cycle basis as follows: 

CycleN: 

• Prefetching has already been disabled. 

• E%FLUSH_ VIC_H is asserted. 
• The !box may make an Istream request this cycle. 

• Fill data returning from the Mbox to the Ibox is ignored. 

Cycle N+1: 

• I%FLUSH_IREF _LAT_H is asserted to clear outstanding Istream references. 
• The Ibox will not make an Istream request this cycle. 
• Fill data returning from the Mbox to the Ibox is ignored. This is the last cycle in which fill 

data for the Istream being flushed can be sent. 

7.2.1.15 Flushing IREFs 

The signal I%FLUSH_IREF'_LAT_H is asserted by the BPU whenever a new PC is loaded indicating 
a redirection of the Istream. It is also asserted whenever there is a EO/cSTOP_IB01..H or a 
E%FLUSIL VIC_H from the Ebox. In all cases, the Mbox may continue to return VIC fill data in the 
same cycle as the I%FLUSH_mEF _LAT_H, but not the following cycle. The VIC will ignore any fill 
data received in the same cycle or the one cycle previous to the cycle in which I%FLUSH_mEF _LAT_H 

is signaled. 
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7.2.1.16 VIC Control and Error Registers 

The VIC contains 4 internal processor registers (IPRs) which provide VIC control and read/write 
access to the arrays. 

MACROCODE RESTRICTION 

VIC_ENABLE must be cleared before writing to the VIC IPRs: VMAR, VDATA, or VTAG. 
VIC_ENABLE must be cleared before reading from VIC IPRs: VDATA, VTAG. In functional 
operation, an REI must preceed the MTPR which enables the VIC. 

See Section 7.4.2.8 for details of the IPR mechanism. -} \' 
~4 

Figure 7-4: IPR DO (hex), VMAR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 1211ll1~ ~'81 7 6 5 141 (~ t 2 1 0 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--~--+--+--+--+--+--+--+--+--+--+--+ 
I ADDR I' I 1 I 01 01 :VMAR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+,--+--+--+--+ 

1 

, I 
RO'H_INDEX ---+ 

SUB_BLOCK ---+ 
LW ---+ 

Table 7-5: VMAR Field Descriptions 

Name Extent Type Description 

LW 

SUB_BLOCK 

ADDR 

2 WO 

4:3 RW 

10:5 RW 

31:11 RO 

Longword select bit. Selects longword of sub-block for cache access 

Sub-block select. Selects data sub-block for cache access, also latches 
VJBA<4:3> on VIC parity elTors 

Row select. Row index for read and write access to cache array, also 
latches VIBA<10:5> on VIC parity errors 

Error address field. Latches tag portion of VIBA on VIC parity errors 

When the VIC is disabled, the VIC Memory Address Register (VMAR) may be used as an index 
for direct IPR access to the cache alTays. VMAR<10:5> supply the cache row index, VMAR<4:3> 
supply the cache sub-block, and VMAR<2> indicates the longword within a quadword address. 

VMAR also latches and holds the VIBA<31:3> on VIC aITay parity errors. 
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Figure 7-5: IPR 01 (hex), VTAG 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 9 81 7 6 5 41 3 2 1 0 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 TAG 1 11 11 TP 1 DP 1 v 1 :VTAG 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 7-6: VTAG Field Descriptions 

Name 

V 

DP 
TP 

TAG 

Extent Type 

3:0 RW 

7:4 RW 

8 RW 

31:11 RW 

Description 

Data valid hits. Supply data valid hits on array read/writes 

Data parity hits. Supply data parity on array read/writes 

Tag parity hit. Supplies tag parity on tag array readlwrites 

Tag. Supplies tag on tag array read/writes 

The VTAG IPR provides read and write access to the cache tag array. An IPR write to VTAG will 
write the contents of the M%MD_BUS_H<63:0> to the tag, parity, and valid bits for the row indexed 
by VMAR<10:5>. VTAG<31:11> are written to the cache tag. VTAG<8> is written to the associated 
tag parity bit. VTAG<7:4> are used to write the four data parity bits associated with the indexed 
cache row. Similarly VTAG<3:0> write the four data valid bits associated with the cache row. 
DP<3:0> and v<3:0> are the data parity and data valid bits, respectively, for the 4 quadwords 
of data in the same row. DP<O> and v<O> correspond to the quadword of data addressed when 
address bits 4:3 = 00, DP<I> and v<l> correspond to the quadword of data addressed when 
address bits 4:3 = 01, etc. 

Figure 7-6: IPR 02 (hex), VDATA 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 9 81 7 6 5 41 3 2 1 0 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

DATA 1 : VDATA 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 7-7: VDATA Field Descriptions 

Name Extent Type Description 

DATA 31:0 RW Data for data array reads and writes 

The VDATA IPR provides read and write access to the cache data array. When VDATA is written, 
the cache data array entry indexed by VMAR is written with the lPR data. Since the IPR data is 
a longword, two accesses to VDATA are required to read or write a quadword cache sub-block. 

Writes to VDATA with VMAR<2> = 0 simply accumulate the IPR data destined for the low longword 
of a sub-block in FILL_DATA<31:0>. A subsequent write to VDATA with VMAR<2> = 1 directs the 
the IPR data to FILL_DATA<63:32>, and triggers a cache write sequence to the sub-block indexed 
byVMAR. 
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Reads to VDATA with VMAR<2> = 0 trigger a cache read sequence to the sub-block indexed by 
VMAR<>. The low longword of the a sub-block is returned as IPR read data. A read ofVDATA with 
VMAR<2> = 1 returns the high longword of the sub-block as IPR data. 

Figure 7-7: IPR 03 (hex), ICSR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 9 81 7 6 5 41 3 2 1 0 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 0 1 1 1 0 1 I: ICSR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

TPERR ---+ 
DPERR ---+ 

LOCK ---+ 
ENABLE ---+ 

Table 7-4): ICSR Field Descriptions 

Name 

ENABLE 

LOCK 

DPERR 

TPERR 

Extent Type 

o RW,O 

2 WC 

3 RO 

4 RO 

Description 

Enable Bit. When set, anows cache access to the VIC. Initializes to 
o on RESET. 

Lock Bit. When set, validates and prevents further modification of 
the error status bits in the ICSR and the error address in the VMAR 
register. When clear, indicates no VIC parity error has been recorded 
and allows ICSR and VMAR to be updated. 

Data Error Bit. When set, indicates data parity error occurred in 
data array if the Lock Bit is also set. 

Tag Error Bit. When set, indicates tag parity error occurred in tag 
array if the Lock Bit is also set. 

The ICSR IPR provides control and status functions for the Ibox. VIC tag and data parity errors 
are latched in the read-only ICSR<4:3>, respectively. ICSR<2> is set when a tag or data parity 
error occurs and keeps the error status bits and the VMAR register from being modified further. 
Writing a logic one to ICSR<2> clears the LOCK bit and allows the error status to be updated. 
When ICSR<2> is clear, the values in ICSR<4:3> are meaningless. When ICSR<2> is set, a VIC 
parity error has occurred, and either ICSR<4> or ICSR<3> will be set indicating that the parity 
error was either a tag parity error or a data parity error, respectively. ICSR<4:3> cannot be 
cleared from software. ICSR<O> provides IPR control of the VIC enable. It is cleared on RESET. 

7.2.1.17 VIC Performance Monitoring Hardware 

Hardware exists in the lOOx VIC to support the NVAX Performance Monitoring Facility. See 
Chapter 18 for a global description of this facility. 

The VIC hardware generates two signals I%PMUXO_H and I%PMUXl_H which are driven to the 
central performance monitoring hardware residing in the Ebox. These two signals are used to 
supply VIC hit rate data to the performance monitoring counters. 
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I%PMUXO_B is asserted the cycle when a VIC read reference is first attempted while the prefetch 
queue is not full. I%PMUXl_B signals the hit status for this event in the same cycle. 

The data is captured only on the first read reference that could be used by the PFQ to avoid skewed 
hit ratios caused by multiple hits or misses to the same reference while the prefetch queue is full 
or the VIC is waiting for a cache fill. 

7.2.2 The Prefetch Queue 

The PFQ is a 4-longword-deep queue for Istream data. When prefetching is enabled, the VIC 
controls the supply of data to the PFQ. The PFQ can accept one quadword of data each cycle. When 
the PFQ contains insufficient available space to load another quadword of data it asserts PFQ..FULL 
which prevents the VIC from loading additional data into the PFQ. When the PFQ contains no 
unused Istream data it asserts PFQ..EMPTY and sends it to the mu. 
The PFQ loads data from the MIQID_BUS_B<63:0> or VIC_DATA...BUS as directed by the load signals 
LOAD_l\iD_DA'IA and LOAD_VIC_DATA from the VIC. LOAD-.MD_DATA is asserted by the VIC only 
when there are no errors associated with the data. Data loaded from the VIC_DATA..BUS must 
be conditioned with the error signal IHARD_ERR. If LOAD_VIC_D.Al'A and IBARD_ERR are both 
asserted, con-upted data is loaded into the PFQ from the VIC_DATA.,BUS. To prevent this data from 
being used, the IBU reports the error immediately and stops parsing data. 

The PFQ determines the number of valid unused bytes of Istream data available for parsing and 
sends this information to the IBU on AVAIL..LE*. 'When the IBU retires Istream data it signals the 
PFQ on CIBU"lCRETIRE_SPECB_B<5:0> and· I_IBU%RETIRE_OPCODE the number of Istream bytes 
retired. These two signals are used to update the pointers in the PFQ. 

The output of the PFQ is directed through a MUX which aligns the data for use by the IBU. The 
alignment ~IUX takes the first and second longwords and the first byte from the third longword 
as inputs. The alignment MUX outputs 6 contiguous bytes starting from any byte in the first 
longword, based on the PFQ pointers. 

7.2.2.1 PC load effects 

The PFQ is Hushed when the BPU broadcasts a new PC load as indicated by I_BPU%LOAD_NEW_PC 
and when the Ebox asserts E%mO~LOAD_PC_L. In addition, when the BPU loads the PC, bits 
<2:0> of the new PC are decoded and used to set the PFQ pointer. 

7.3 Instruction Parsing 

The instruction parser identifies the different components of incoming VAX instructions and 
forwards those components to other parts of the Ibox for further processing. The instruction 
parser contains two logic sub-sections - the Instruction Burst Unit (IBU) and the Instruction 
Issue Unit (nu). 
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Figure 7-a: Prefetch Queue Block Diagram 
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The IBU parses incoming instruction data into Opcodes, Operand Specifiers and Speci:.6.er 
Extensions and Branch Displacements. This information is then passed on to the operand 
specifier processing logic. The opcode is also sent to the rru which generates an Ebox microcode 
entry point for this opcode and places it and other needed information in the instruction queue 
in the Ebox. See Table 7-15 for more information on the format of the Ebox instruction queue. 
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Instruction parsing is logically divided into 2 distinct activities: Instruction issue and specifier 
identification, and branch displacement and Ebox assist processing. The instruction issue and 
specifier identification activity starts when a new opcode is loaded by the mu. The IBU sends 
the opcode to the IIU for issuing to the Ebox. The instruction opcode is also used to determine 
the number of operand specifiers and branch displacements associated with the instruction. In 
parallel with instruction issue, the IBU identifies the operand specifiers. When all the operand 
specifiers are processed, the IBU begins the branch displacement and Ebox assist processing 
activity. The branch displacement (if present) is sent to the BPU, and Ebox assist specifiers (if 
present) are processed. See Section 7.3.2.7 for more on Ebox assists. 

7.3.1 VAX Instruction Format 

There are 3 components in VAX. instructions: opcodes, operand specifiers and specifier extensions, 
and branch displacements. The 1 or 2 byte opcode specifies the function to be performed. Operand 
specifiers with potential extensions range from 1 to 9 bytes and specify an instruction operand 
or operand location. The 1 or 2 byte branch displacements are signed offsets used to compute 
the destination PC in branch instructions. A VAX instruction is composed of an opcoae and 
optionally up to 6 operand specifiers and one branch displacement. For a given opcocie. the 
number of operand specifiers and branch displacements is fixed. 

The instruction opcode is the first one or two bytes in the instruction followed by the operand 
specifiers, followed by the branch displacement, all at successively increasing addresses. All 
references to opcodes in this section refer to one-byte opcodes unless specified otherwise. For 
more information on VAX. instruction formats, opcodes, and operand specifiers, see DEC STD 
032, VAX Architecture Standard. 

7.3.2 The Instruction Burst Unit 

The IBU bursts apart Istream data into its component parts: opcodes, operand specifiers, and 
branch displacements. The IBU is capable of identifying an opcode and one operand specifier each 
cycle. Operand specifiers are categorized according to the their Addressing Mode as being either 
simple or complex. Simple specifiers are register mode (Addressing Mode 5) and short literal 
(Addressing Modes 0 .. 3). All other specifier types, including assists, are considered complex. 

The IBU retires up to 6 bytes of data from the PFQ each cycle. New data is available from the PFQ 
at the beginning of a cycle. The mu sends the number of specifier bytes being retired back to the 
PFQ so that new data is available for processing by the next cycle. 

Instruction components extracted from the Istream data are sent to other parts of the Ibox for 
further processing. The opcode is sent to the IIU and the BPU on OPCODE<8:0>. The specifiers, 
except for branch displacements, are sent to the CSU, the SBU and the OQU via SPEC_CTB.L<21:0>. 
Branch displacements are sent to the BPU on B_BRANCB_DISP<7:0> and SPEC_DATA<7:0>. 

The specifier control field SPEC_cTRL<21:0> contains information about the specifier being retired 
each cycle. SPEC_CTRL<21:14> and SPEC_D.Al'A<31:0> contain information used in processing 
complex specifiers. Table 7-9 describes the information contained on these busses. 
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Table 7-9: SpecHler Control Fields 

Bit 
Field 

<9:7> 

<11:10> 

<12> 

<13> 

Field Name 

RNlSBOltT L1"1'E&\L 

DL 

VALID 

COMPLEX 

Description 

This bit is set if the specifier is a short literal. 

Contains a 6-bit short literal if the sblit :flag is set. <4:1> contains 
the general purpose register number associated with the specifier 
if the shlit llag is not set, in which case <6:5> are not used. 

Access Type of the instnlction operand with which this operand 
specifier is associated. 

Data length of the instnlction operand with which this operand 
specifier is associated. 

Flags data valid on the bus. 

This bit is set if this is a complex specifier. 

If the IBU is retiring a specifier, SPEC_CTBL<21:0> and SPEC_DATA<31:0> contain information 
about the specifier being retired. SPEC_CTBL<21:14> and SPEC_DATA<31:0> contain valid data 
used by the CSU only when the specifier is complex. If a simple specifier is being retired, the 
information on SPEc_CTRL<21:14> is invalid and not used by the CSU and the complex flag 
SPEC_CTRL<13> is not set. Table 7-10 describes the fields in SPEC_CTBL<21:14> used for complex 
specifiers. Table 7-11 describes the fields in SPEC_DATA<31:0> used by the csu and BPU. ,\Vhen 
displacement and displacement deferred mode specifiers are processed, byte and word data length 
specifiers are sign extended to longword data length on SPEC_DATA<31:0>. 

Table 7-10: Complex SpecHler Control Fields 

Bit 
Field Field Name 

<16:14> DISPATCB 

<17> AT_BMW 

<18> INDEXED 

<19> ASSIST 

<20> PC_MODE 

<21> .JMP _OB._JSB 

7-20 The Ibox 

Description 

Dispatch address for Complex Specifier Unit Control Store. 

1 if access type of operand is R, M or W. 

This bit is set if mode of previous specifier is index. 

This bit is set if this is an Ebox assist specifier. 

This fiag is set if the bits <3:0> of the specifier point to GPR 15 = PC. 

This bit is set if this instruction is a JMP or JSB. 
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Table 7-11 : SpecHier Data Fields 

Bit 
Field 

<7:0> 

<31:8> 

Field Name 

7.3.2.1 SpecHler Identification 

Description 

Upper order byte of word displacement if branch displacement is being 
processed. Otherwise, the lower order byte of data for immediate and 
displacement mode specifiers. 

Upper 3 bytes of data for immediate and displacement mode specifiers. 

In the instruction issue and specifier identification phase ofinstru.ction parsing, operand specifiers 
are parsed, and the necessary information about each specifier is sent to the specifier processing 
logic. The information needed by the Ebox to process the instruction is also identified and sent 
to the flU. Each time a new opcode is loaded in the IBU, instruction context for that opcode is 
extracted from PLAB, complimentary logic, and the Instruction ROM (IROM). This information is 
summarized in Table 7-l2. 

As each specifier is identified, the current SPEC_COu!\"T is decremented. '\\llen this counter 
reaches 0, the IBU enters the next phase of instruction parsing, Ebox assists and branch 
displacements processing. 

Table 7-12: Instruction Context Summary 

Field Name 

ASSIST 

#I bits 

3 

2 

1 

3 

2 

1 

DIGITAL CONFIDENTIAL 

Description 

IDstruction Con'text stored in the mOM 

Number of specifiers for this instruction 

STP _SlJPPBBSS_POQIBD» ,JtES'Ili\ltTJBOX: 

0/0 Do not stop parser,make a PC queue entry for the next 
instruction. 

011 Stop parser at the end of the instruction, make a PC 
queue entry for the next instruction, and restart parser on 
B'litIIESTAKT..mo~B. 

110 Stop parser at the end of the instruction, suppress PC entry 
for next instruction until LOAD,..NEW_PC is received, and restart 
parser on LOAD PC. See Table 7-14. 

111 Stop parser at the end of the instruction, suppress PC queue 
entry for next instruction until LOADJQ:W..PC is received, restart 
parser on naBSTAR.T~ 

Number of Ebox assists for this instruction 

Assist dispatch 

Access type for Ebox Assist 

Data Length for Ebox Assist 
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Table 7-12 (Cont.): Instruction Context Summary 

Field Name 

A..JUtG 

AT! 

AT2 

DLl 

D1.2 

Fa 

DISPATCH 

E_DL 

.AT3 

AT" 

AT5 

AT6 

D1.3 

DU 

D1.6 

D1.8 

B 

DISP_SIZE 

, bits 

1 

8 

8 

2 

2 

1 

9 

2 

8 

8 

1 

1 

2 

2 

2 

1 

1 

1 

1 

Description 

IDstructiOD Context stored in the mOM 

Register for Ebox Assist 

Access type for specifier # 1 

Access type for specifier # 2 

Data length for specifier # 1 

Data length for specifier' 2 

1 when this is an Fbox instruction 

Ebox microcode dispatch address 

Data length for instruction execution 

IDstruction Context stored in the PLAs 

Access type for specifier ~ 3 

Access type for specifier ~ 4 

Access type for specifier '* 5 

Access type for specifier #.= 6 

Data length for specifier '* 3 

Data length for specifier '* 4 

Data length for specifier :# 5 

Data length for specifier :# 6 

Indicates that there is a branch displacement. 

Size of the branch displacement. 0 = byte displacement, 1 = word. 

IDstruction Context decoded by logic 

Indicates how many source queue entries to allocate for RMODE (Mode 5) 
specifiers with variable bit field access type. 0 = 1 entry, 1 = 2 entries. 

Each cycle, the IBU evaluates the following information to determine if an operand specifier is 
available and how many PFQ bytes should be retired to get to the next opcode or specifier: 

• The number of PFQ bytes available. Each cycle, the PFQ provides the IBU with the number of 
instruction stream bytes available on AVAlL..LE<5:0>. This can be as little as 0 and as many 
as6. 

• The number of specifiers left to be parsed in the instruction stream. ISU keeps a running 
count of the number of specifiers left to be parsed for the current instruction. 

• The data length of the next specifier. 
• The COMPLEX..UNIT_BUSY flag SI_VALJD. When the esu is busy and cannot accept another 

complex specifier, 81_ VALID is asserted. If the IBU identifies a complex specifier while this 
signal is asserted, it stalls until the flag is cleared by the esu. 
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• DATA.,.LENGTB_ VALID flag. This flag is asserted when the instruction PLAs have valid data 
length information ready. This flag is cleared when a new opcode is loaded and set when the 
access type and data length information is available for use. 

• Specifier bus enable flag, SPEC_CTB.L..ENABLE, from the OQU. This flag enables the loading 
of specifier information onto the specifier control bus. If SPEC_CTRL_ENABLE is 1 then the 
specifier control bus is enabled, and one specifier can be processed. If SPEC_CTBL_ENABLE is 
o then no specifiers can be processed, and the mu stalls. 

• The parser stopped fiag PARSER_STOPPED. There are many times when the parser must 
be stopped to prevent it from interfering with Ebox activity. 'When this is necessary, 
PARSER_STOPPED is asserted and all parser activity stops. 

• The next 2 bytes of the instruction stream. 

If the specifier byte is a simple specifier (Addressing Modes 0 .. 3, or 5), and the following conditions 
are met, then the information for this specifier is driven onto SPEc_cTRL<12:0>, and the specifier 
byte is retired from the PFQ at the end of the cycle: 

1. There are at least 2 bytes of valid PFQ data. (At least one byte in the specifier field and one 
byte in the opcode field.) 

2. The parser is not stopped. 
3. There is at least one specifier remaining for this instruction. 
4. SPEC_CTRL_ENABLE = 1. 

If the first specifier byte is a complex specifier, and the following conditions are met, then the 
information for this specifier is driven onic SPEc_cTRL<21:0> and SPEC_DATA<31:0>, and the 
appropriate number of PFQ bytes for this specifier are retired from the PFQ at the end of the cycle: 

1. The number of bytes required according to the Addressing Mode and Data Length of the 
specifier (plus one for the opcode field) are available from the PFQ. 

2. The parser is not stopped. 
3. There is at least one specifier remaining for this instruction. 
4. SPEC_CTBL_ENABLE = 1. 

5. COMPLEX_UNIT_BUSY flag is not asserted. 

7.3.2.2 Operand Access Types 

There are 6 different access types for operands. The access type information determines whether 
the operand is a source or destination operand, and whether the operand, or the address of the 
operand is needed by the Ebox. These access types are modeled after, but are not identical to, 
the operand access types specified in the architectural summary. 

• A (Address) 
An operand with access type = A is a source operand. The Ebox gets the address of the 
operand, not the actual operand. 

• R (Read) 
An operand with access type = R is a source operand. The Ebox gets the actual operand. 

• M (Modify) 
An operand with access type = M is both a source and a destination. The Ebox gets the actual 
operand and a pointer to the destination. 
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• W (Write) 
An operand with access type = W is a destination operand. The Ebox gets a pointer to the 
destination. 

• VR (Variable bit field read-access) 
An operand with access type = VR is a source operand. The Ebox gets the actual operand 
if the addressing mode of the specifier for the operand is RMODE (Mode 5). Otherwise the 
Ebox gets the address of the operand. 

• VM (Variable bit field modify-access) 
An operand with access type = VM is both a source and a destination. The Ebox gets the 
actual operand if the addressing mode of the specifier for the operand is RMODE (Mode 5). 
Otherwise the Ebox gets the address of the operand. If the operand specifier is RMODE, the 
Ebox gets a pointer to the destination. Otherwise no destination pointer is supplied. 

7.3.2.3 DL stall 

For all but one addressing mode, the number of b:;'1es to retire for a specifier is determined 
entirely by the addressing mode. Immediate mode (SF) addressing, however, requires the data 
length information for the operand to determine how many PFQ bytes to retire. In the event 
tha t a new opcode is loaded and the first specifier is an immediate mode specifier, the absence of 
DATA_LENGTH_ VALID causes the IB'l7 to stall because there is no way to determine the number of 
PFQ bytes to retire for this specifier. DATA....LENGTH_ VALID is asserted the following cycle after the 
opcode has passed through the instruction PLAs and mOM to generate the required data length 
information. The immediate mode specifier can be retired the following cycle if the conditions 
described above are met. 

7.3.2.4 Driving SPEC_CTRL 

The data on SPEC_CTRL<13:0> is used by the OQU to generate Ebox source queue and destination 
queue entries that may be needed in the next cycle. The data on SPEc_cTRL<21:14> is used by 
the esu to generate the microcode dispatch addresses. SPEC_DATA<31:0> contains instruction 
stream data for Immediate and Displacement mode specifiers. 

7.3.2.5 PC and Delta_PC 

The IBU keeps a local copy of the PC called the lBU_PC which points to the next byte of I stream 
data that will be processed by the mu. 
When the IBU retires instruction stream data, the mu_pc is incremented by the number of operand 
and operand specifier bytes retired as signaled by SPEC_BYTES_RETIRED and LOAD_NEW_OPCODE. 
The IBU_PC can be loaded from the NEW_pc<31:0> when the signal LOAD..NEW_PC is asserted 
and all operand specifier, Ebox assist, and branch displacement processing is completed by the 
IBU. The mu_pc is sent to the esu, no and BPU on IBU_Pc<31:0>. 
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7.3.2.6 Branch Displacement Processing 

Some instructions have branch displacements as indicated by B. If B is set, the instruction has 
a branch displacement and the branch size is determined by DISP _SIZE. Both Band DISP _SIZE 
are outputs of the instruction PLAs. A DISP _SIZE of 0 indicates a byte branch displacement and a 
DISP _SIZE of 1 indicates a word displacement. 

The branch displacement is always the last piece of data for an instruction and is used by the BPU 
to compute the branch destination. Branch displacements are not sent to the specifier parsing 
logic. They are sent only to the BPU on SPEC_DATA<7%o> and B_BRANCH_DISP<7:0>. Branch 
displacement processing begins after all the non-displacement specifiers are parsed and retired 
from the PFQ. A branch displacement is processed when the following conditions are met: 

1. There are no specifiers left to be processed (Ebox assists excluded). 
2. The branch flag B<:O> is set in the instruction PLAs and the branch displacement has not been 

processed. 
3. The required number of bytes is available from the PFQ according to DISP _SlZE. 

4. The parser is not stopped. 

5. BRANCH_STALL is not asserted. BRA.~CH_STALL occurs on the load opcode of the next 
instruction after a secc:::ld conditional branch is received. 

BBA..'l'lJCH_STALL is described in the Section 7.5.1.6 section. 

If all these conditions are met, then the branch displacement is placed on SPEC_DATA<7:O> and 
B_BRANCH_DISP<7 :0> and DISP _ V.ALID is asserted. SPEC_DATA<7 :0> contains the high byte of 
a word branch displacement and B_BRANCH_DISP<:7 :0> contains the low byte of a word branch 
displacement or the byte branch displacement. If these conditions are not met, the IBU stalls. 

If an instruction contains no operand specifier, the branch displacement can be processed during 
the same cycle that the opcode is processed provided that there is sufficient data in the PFQ. 

7.3.2.7 Ebox Assist Processing 

Ebox assist processing can go on in parallel with branch displacement processing since they 
require no common resources. Ebox assists are implicit specifiers which help the Ebox speed 
up some of the time critical instructions. To the csu, these assists look very similar to normal 
complex specifiers and have associated with them all the normal access tY,pe, data length and 
register information. The only real difference is where this data comes from. Since these specifiers 
are not a part of the instruction stream, information about them must be stored in the mOM. The 
7 Ebox assists are summarized in the following table: 

Table 7-13: Ebox Assist Summary 

Assist 

Name 

Read 

DIGITAL CONFIDENTIAL 

Data 

Leugth 

Quad 

Register Description 

FP Read register mask for Ebox. Read return PC for 
Ebox and BPU 
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Table 7-13 (Cont.): Ebox Assist Summary 

Assist Access Data Register Description 

Name Type LeDgth 

BSB_DEST Read Long SP Read return. PC for Ebox and BPt7 

(SP)+.RQ Read Quad SP Quadword stack pop 

~SP).WL Write Long SP Longword stack push 

PC.BL Read Long NONE Current PC is sent to Ebox 

PC . .(sp).ML Modify Long SP Combines effects of PC.RL and -CSP).WL assists 

STOP.MBQX.QUEUE NONE NONE NONE Mbox specifier queue is stopped 

All of the Ebox assists generate dispatches to the CSU. 

"'hen all the normal specifiers for an instruction have been identified and retired from the PFQ, 
the Ebox assist (if any) is processed. The maximum number of assists for any instruction is 1. 

An Ebox assist is processed and its associated data driven onto SPEC_CTRL<21:0> when the 
following conditions are met: 

1. There is an Ebox assist. 
2. The parser is not stopped. 
3. It is not the same cycle as the opcode load. 
4. If the instr.lction is BSBW or BSBB, the branch displacement has been parsed. 
5. SPEC_C~ENABLE = 1. 
6. COMPLEX_L"1'.Tl'_BUSY fiag is not asserted. 

BSBW and BSBB instructions have PC.RL Ebox assists. For these instructions, the branch 
displacement must be retired and the IBU_PC must be updated to point to the byte following the 
branch displacement before the PC.RL assist can be processed. 

7.3.2.8 Reserved Addressing Modes 

Some combinations of specifier mode, specifier register, and access type cause reserved addressing 
mode faults in the VAX architecture. Refer to Table 7-33 for more details on reserved address 
mode detection. 

7.3.2.9 Quadword Immediate Specifiers 

Immediate mode specifiers with quadword data length take two or more cycles to process. When 
a quadword immediate specifier is detected by the lBU parse logic, the first longword is prOcessed 
(like a longword immediate specifier) and QUAD_FLAG, is set. 

QUAD_FLAG is used by the mu retire logic to properly retire the next four bytes when they 
become available in the PFQ. When the second longword is retired, QUAD_FLAG is cleared and the 
specifier count is decremented. QUAD_FLAG is also cleared by E%BRANCH_MISPREDICT_H, 
El.fcSTOp_mox..B, I%IMEM...MEXC_B, and I%lMDCBERR_H. 
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The first longword of the quadword immediate data is sent to the CSU in the normal fashion. The 
second longword of the quadword immediate data from the instruction stream is discarded. The 
csu then uses the specifier PC and generates a memory request to fetch the next four bytes of 
the immediate data. 

7.3.2.10 Index Mode Specifiers 

Index mode specifiers are two-part specifiers which take two or more cycles to process. The 
first byte of an index mode specifier specifies the index register; it is treated like any other 
complex specifier with the exception that a flag, index_wait is set, and the specifier counter is 
NOT decremented. Additionally, SPEC_CTRL<21:17> is ignored by the CSU. 

When the second byte of an index mode specifier is processed, the specifier counter is decremented 
and SPEC_cTRL<21:17> contains the appropriate data. SPEC_CTRL<18> is set and index_wait is 
cleared. 

The reserved addressing mode fault PLA in the IBU checks the mode of the second specifier byte. 
If the index_wait is set. and if the second byte is short literal, register mode, or index mode, a 
reSErved addressing mode fault is detected and sent to the Ebox on I%RSVD_ADDR_FAULT_H. Refer 
to Table 7-33 for more details on reserved addressing mode detection. 

7.3.2.11 Loading a new opcode 

A new opcode is loaded in the IBU under the following conditions: 

1. All operand specifiers, branch displacements and Ebox assists for the current instruction have 
been parsed (which asserted INSTR_DONE). 

2. The parser is not stopped. 
3. There is at least one byte of data available from the PFQ. 

4. ISSUE_STALL is not being asserted by the IIU. 

5. BRANCH_STALL is not being asserted by the BPU. 

New opcodes are loaded and passed directly to the instruction PLAs and mO:M. In parallel, the 
instruction issue and specifier identification process for the new instruction begins. 

When a the new opcode is loaded, a check: is made to see if the value of the opcode is FD. If it is, 
no instruction parsing is done this cycle. FD_OPCODE is set, the byte is retired from the PFQ, and 
another opcode load is enabled for the following cycle. The opcode sent to the flU and the BPU on 
OPCODE<8:0> is a concatenation of FD_OPCODE and the opcode byte. FD_OPCODE is bit 8, and 
the opcode is in <7:0>. 
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7.3.2.12 Reserved Opcodes 

Each time a new opcode is loaded in the IBU, instruction and operand specifier information is 
extracted from a set of PLAs and from the mOM in the IBU for that opcode. This information is 
specified in Table 7-12. When a reserved or unimplemented opcode is detected, the following 
occurs: 

1. The IBU !ROM has one of the STOP_PARSER bits set. This signals the IBU to stop parsing 
instruction stream data. 

2. The IBU mOM provides the reserved opcode dispatch address for Ebox microcode. 

7.3.2.13 Instruction Parse Completion 

Once all the operand specifiers, branch displacements and Ebox assists have been processed, 
instruction parsing is complete and INSTR_DONE is asserted. INSTR_DONE is used by the csu to 
make RLOG base queue entries and by the IBU to control loading of the BPU_PC under certain 
conditions. 

Additionally, ifinstruction parsing is complete and if there is no PC load pending, RETJRE_OPCODE 
is asserted and sent to the PFQ control logic and the IIU PC queue logic. In the PFQ this signal 
increments the number of specifier bytes retired by 1 in order to retire the previous opcode and 
allow for loading of the new opcode. It is used in the IIU to update the PC queue pointer under 
certain conditions. 

7.3.2.14 Operands with Access Type VR and VM 

One of the outputs from the instruction PLAB is a hit that indicates how many source queue 
entries should be written for VR and VM access type operands with register mode specifiers. 
When this bit is 0, only one source queue entry is written; when it is 1, two are written. This 
bit is available in the middle of the opcode load cycle and is sent to the OQU on VS. This signal 
remains valid throughout the instruction parsing operation. 

7.3.2.15 IO/OIMEM_MEXC_H and I%IMEM_HERR_H 

The IBU forwards Istrea.m errors to the Ebox on I%J::ME&LBERR_B and I%IMEM..MEXC_H. These 
signals :Bag memory management exceptions and hardware errors. The IBU receives three 
error signals from the VIC which are used to determine when to assert I%IMDCHERR_B and 
ICfdMEM..MEXC_H: IHARD_EBR, MBARD_ERR, and IMMGT_EXC. Refer to Section 7.2.1.7 for more 
detail on these signals. 

The IBU asserts I~MEXC_H if JMMGT_EXC is asserted from the VIC and the PFQ is empty or 
contains insufficient data to complete parsing of the current specifier, and parsing is not stopped. 
I%IMDLMEXC_B remains asserted as long as these conditions are met. 
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The IBU asserts I%IMEM_BERR_H under two different conditions. First, if MBARD_ERR is asserted 
from the VIC and the PFQ is empty or contains insufficient data to complete parsing of the 
current specifier, and parsing is not stopped. Additionally, if IBARD_ERR is asserted from the 
VIC, I%IMDCRERR_B is asserted immediately without waiting for the PFQ to run dry or contain 
insufficient data. I%IMEM_BERR_H remains asserted as long as these conditions are met. 

7.3.2.16 IBU stop and restart conditions 

Two categories of conditions cause the IBU to stop parsing: the first is exceptions, the second is 
instructions which need pipeline synchronization. When the IBU is stopped, PABSER_STOPPED is 
asserted. 

Table 7-14 summarizes all IBU stop and restart conditions. 

Table 7-14: IBU stop and start summary 

Stop Condition Start Condition Description 

stop ibox, Ebox restarts parser 

IRARD_ERR E'iUtESTART_IBOx.,S 

reserved addTessing mode fault, Ebox restarts parser 

''Ie hardware error, Ebox restarts parser 

FPD and load ~RESTART_IBOx..s FPD is set, parse opcode and stop parser, Ebox restarts 
opcode parser 

E'i-BRANCH_MISPRBDICT..L LCS'OllmtOx.,BESTAltT branch mispredict, ibox restarts parser 

stop parser set - I_CS'D'EBOx..aEBTAItT parser stopped when STP_BESTAltT_IBOX and INSTR_DONE are 
case 1 both asserted, ibox restarts parser 

stop parser set - LJBOIICSt7..LD_USTAltT parser stopped when STP _SlJPPItESS_PCQ and and JNSTlt_DQNE 

case 2 are both asserted and STP Ji,ESTARTJBOX is de-asserted, 
restart occurs when the csu supplies the BPU with the new 
PC and all other instruction parsing is complete 

7.3.2.17 First Part Done (FPD) Set 

Some long instructions can be interrupted in the middle of their execution sequence (e.g. MOVC 
instructions). When such an instruction is interrupted, the first part done bit (FPD) in the 
Processor Status Longword (PSL) is set indicating that the interrupted instruction will be 
resumed at the execution point where the interrupt occurred, rather than at the beginning of 
the instruction. All such instructions have one of the STOP_PARSER bits set in the mOM. This 
allows the FPD pack-up to IPR read the current PC (from the top of the PC queue) and then load 
the PC of the interrupt handler. 

When an instruction such as MOVC is interrupted, and the interrupt is processed, processor 
context is switched back to the interrupted process by the REI instruction. This instruction 
causes the PSL of the interrupted process to be reloaded with the FPD bit set. The Ebox sends the 
E%FPD_SET_L signal to the Ibox. If EO/DFPD_SET_L is asserted the Ibox will re-issue the interrupted 
instruction when valid opcode data is parsed by the IBU. However, after parsing and issuing the 
instruction, no. further data is parsed by the IBU. 
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~ 

When the interrupted instruction is complete, the Ebox loads the PC of the next instruction and 
parsing is restarted by the mu. 

7.3.3 The Instruction Issue Unit 

The flU takes opcodes received from the IBU and generates the information needed by the Ebox to 
begin instruction execution. .An instruction is said to be issued when this information is sent to 
the Ebox instruction queue. Table 7-15 shows the format of the instruction queue entries created 
by the flU. This information is sent to the Ebox on 19DI(LBUS_B<21:0>. 

The IIU must also keep track of the program counter (PC) values of the opcodes that are either in 
the instruction queue or are in Ebox execution. If the Ebox detects a fault during the execution 
of an instruction, it needs to be able to get at the PC of the faulting opcode. These PCs are kept 
in the PC queue. 

Table 7-15: Instruction Queue Entry Format 

Field 
Bit Field Name DescriptiOJl 

<0> VALID 1 when this queue entry is valid 

<9:1> DISPAlCH Ebox microcode dispatch address 

<10> FB 1 when this is an Fbox instruction 

<12:11> DL Data. length for instruction execution 

<21:13> OPCODE Instruction Opcode 

Most of the information needed to create an instruction queue entry is stored in the instruction 
ROM located in the mu. See Table 7-12. The opcode used to access the ROM is a 9-bit composite 
opcode consisting of 8 true opcode bits and 1 bit indicating whether or not this is a two byte FD 
opcode. This extra bit is generated by the IBU and passed along with the other 8 opcode bits. 

The IIU issues an instruction as soon as the instruction ROM access completes unless the 
instruction queue is full. The instruction queue full status is computed and maintained locally 
in the IIU. 

7.3.3.1 Issue Stall 

The nu maintains a counter of the number of slots filled in the Ebox instruction queue. Each 
time a new opcode is issued to the DU, the counter is incremented. When the Ebox removes an 
entry from the queue as indicated by the EtH1E'1'IRE_IN'STR_L signal, the counter is decremented. 
When the counter equals 6, the depth of the instruction queue, ISSUE_STALL is asserted, blocking 
the IBU from parsing a new opcode. 
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7.3.3.2 PC Queue and PC loads 

The PC queue is a 7 entry FIFO which contains PC values of opcodes that are either in the 
instruction queue or are in Ebox execution. Opcode PCs are added to the back of the queue 
as instructions are issued and removed from the front of the queue when the Ebox retires an 
instruction as indicated by E%RETIBE_INSTR_L. The PC of the next instruction to be retired by 
the Ebox is always at the front of the queue unless the PC queue is empty. The PC queue is 
flushed on chip reset or when either E%FLUSB_PCQ..B or E%BRANCB_MISPREDICT_L is asserted 
by the Ebox.. 

Any time the Ibox broadcasts a new PC on NEW_PC<31:0>, as signaled by LOAD_NEW_PC, it is 
loaded into the next available slot in the PC queue. If E%BBANCB_MlSPREDICT_L caused the PC 
load or if the Ebox stops the Ibox as signaled by E%STOP _mox..B, then following additional actions 
are taken: 

• The instruction queue counter is cleared. 
• ISSUE_STALL is cleared if set. 

In the event of an Ebox PC load, the parser is guaranteed to stop either by E%STOP _IBOX_H, 
STP _SUPPRESS_PCQ, or STP _RESTART_IBOX several cycles before the actual PC load occurs. These 
signals are used in the IBU to stop instruction parsing. When the new PC arrives, the PC queue 
is empty and ready to accept the new PC into the first available slot. 

The value of STP _SUPPRESS_PCQ affects whether the PC queue loads the next PC as the parser 
stops. If STP _SUPPBESS_PCQ is asserted then the next PC is entered in the PC queue. 

The value of the IBU_PC is loaded into the PC queue if LOAD..NEW_PC is not asserted, the burst 
unit signals that the parsing is complete with RETIBE_OPCODE, E%FPD_SET_L is not asserted, and 
either of the following conditions are true: 

• STP_SUPPRESS_PCQ is not asserted or STOP_VIC_PREFETCB is not asserted, and the BPU is 
not stalled 

• BSTL....FRC_PCQ (from the BPU) is asserted and the instruction is done. 

The PC at the front of the PC queue is readable by the CSU. When the Ebox needs access to this 
PC, it stops the Ibox and sends an IPR read request to the CSU. The CSU responds by reading the 
front of the PC queue and then writing that value to the Ebox working register (WX) specified 
by a register index supplied with the IPR command. See Section 7.4.2.8 for more details on IPR 
transactions. 

MICROCODE RESTRICTION 

For proper operation, retire_instr and lPR read of the BPC (Backup PC) from the PC 
queue must not occur in the same microword. This guarantees that the PC queue does 
not decrement in the same cycle that an IPR read of the BPC occurs. 
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7.4 Operand Specifier Processing 

Operand Specifier Parsing prepares instruction operands for access by th~ Ebox.. The three 
Ibox sub-sections which together perform this function are the Operand Queue Unit (OQU), the 
Complex Specifier Unit (esu), and the Scoreboard Unit (SBU). The OQU handles simple specifiers 
and acts as the interface to the Ebox. source and destination queues; the esu is responsible for 
processing complex specifiers, and the SBU provides the esu with information about the number 
of outstanding GPR read and write references in the source and destination queues. 

7.4.1 Operand Queue Unit 

The OQU controls the passing of operand information into the Ebox operand queues and the 
allocation of Ebox Memory Data registers (MDs). 

Simple specifiers are processed entirely in the OQU. Register mode specifiers are passed into the 
source or destination queues as pointers to the corresponding Ebox register file location. The OQU 
passes short literal specifiers as immediate data.. 

The 6 :MD registers in the Ebox register file are used as destinations for operand data requests 
made by the esu. When a complex specifier appears on the specifier control bus, the OQU allocates 
both the source queue entries and Ebox MDs and passes the Ebox register file index of the first 
alloca ted lID to the esu. 

The I%OPE~'"D_BUS_H<14:0> transfers source and destination queue entry information to the 
Ebox.. There may be up to 2 source queue entries and 2 destination queue entries made via the 
Io/cOPERAND_BUS_H<14:0> in a given cycle. The format for this bus is shown in Figure 7-9. 

Short literals: 
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Figure 7-9: Source/Destination Queue Entry Formats 

SHORT LITERAL Mode: 
14 13 12 III 10 8 I 7 6 5 4 I 3 2 1 o 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
1 01 0 I 1 1 1 <--nOPERAND_BOS H 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
I I I MBZ if SQ VALI:D2-1 
I I I +---short literal value:2 (quad) 
I I +-----------------------short literal value1 
I +-------------------------------------SHLIT (l-short lit) 
+-------------------------------------------------SQ_VALID:2 (l-quad operand) 

+-----------------------------------------------------SQ_VALID1 

Register Mode: 
14 13 1:2 III 10 8 I 7 6 5 4 I 3 2 1 o 

.---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
1 0 1 I 1 I GPRn GPRn+l 1 <--I%OPERAND_BUS H 

~---+---+---+---+---~---+---+---+---+---+---+---+---+---+---+ 

1 

+---REG2 (GPR:l+l tag for quad) 
+-------------------?~G: (G??~ ~ag) 

·-----------------------------G~R (l-:1=,r) ... ---------------------------------VF!:E:.D (l-Field Queue ::'-:.-:ry) 
--------------------------------------SF.:.:: (O-n ~": she·:-=. :i':.; 

~-----------------------------------------DQ \iALZD2 (l-quad w/m operand) 
----------------------------------------------DQ-v~~:~: 

~-------------------------------------------------SQ-V~~:=:2 (l-quad rim operL-:.d) 
"'------------------------------------------------------SC:V;':':O: 

;.:: C':!ler Modes fer access ':~'F.Qs read ano. mod!.!:: .. : 
_. :3 _4 ,.~ l~ 8 ! ' 5' ! 3: 0 
~---+---+---~---+-------+---+---+---+---+---+---~--+-------+ , . , 

- I I C' : ! 0 I 1 I 1. 

~---~---+---+---+---~---~---~---~---+---~---+---+---~---~---+ 
I 1 
I I +---REG2 (MD~+l tag for quad) 
I I +-------------------REGl (MOn tag) 
I I +-----------------------------GPR (O-MO) 
I I +---------------------------------VFIELD (l-Field Queue Entry) 
I I +-------------------------------------SHLIT (O-not short lit) 
I +-----------------------------------------DQ_VALID:2 (l-quad wlm operand) 
I +---------------------------------------------DQ VALID1 

I +-------------------------------------------------SQ-VALID:2 (l-quad rim operand) 
+-----------------------------------------------------SQ:VALID1 

All Other Modes for access type write: 
14 13 l2 III 10 9 8 I 7 6 5 4 I 3 2 1 o 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 
1 0 I 0 I 1 I I 0 I I 0 I GPRn I GPRn+l I <--I%OPERAND_BOS_H 
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 

I I I I I I I I I 
I I I I I I I I +---REG2 (GPRn+1 for quad) 
I I I I I I I +-------------------REGl (GPRn tag) 
I I I I I I +-----------------------------GPR (o-maest) 
1 I 1 I I +---------------------------------VFIELO (l-Field Queue Entry) 
I I I I +-------------------------------------SHLIT (O-not short lit) 
I I I +-----------------------------------------DQ V1LID2 (l-quad w/m operand) 

l---:::::::::::::=-=:==-:::::::-::-:::::::=-==-=::::=-=-::-::-::~~~~~ (l-quad rIm cparaDdJ 
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Table 7-16: .CYoOPERAND_BUS H DeflnHlon 

Bit Field 

VALUE2 

VALUE1 

SHLIT 

DQ..VALID2 

DQ..VALID1 

SQ..VALID2 

SQ..VALID1 

Field Name 

3:0 

9:4 

10 

11 

12 

13 

14 

All other modes: 

Description 

Upper bits for quadword short literal, must be zero's 

Short literal value. Lower bits for quadword 

Short literal. 1 if short literal, 0 otherwise 

Valid second destination queue entry - always 0 for short 
literal 

Valid destination queue entry - always 0 for short literal 

Valid second source queue entry - set if quadword short literal 

Valid source queue entry 

Table 7-17: IO/oOPERAND BUS H Definition 

Bit Field 

REG2 

REG1 

GPR 

WIELD 

SHUT 

DQ..VALID2 

DQ..VALIDI 

SQ..VALID2 

SQ..VALIDI 

Field Name 

3:0 

7:4 

8 

9 

10 

11 

12 

13 

14 

7.4.1.1 Source Queue Interface 

Description 

Register or MD for 2nd source/dest queue entry of a 
quadword specifier 

Register or MD for 1st source/dest queue entty 

Source/dest queue entry is for a register mode specifier 

Field queue entry to be made 

Short literal. 1 if short literal, 0 otherwise 

Valid second destination queue entry for quadword specifiers 

Valid destination queue entry 

Valid second source queue entry for quadword specifiers 

Valid source queue entry 

The OQU can write up to two source queue entries each cycle depending on the access type and 
data length of the operand they specify. I%oPERAND_BUS_B<SQ... VALID!> 
and I%OPERAND_BUS_B<SQ...VALID2> are the source queue entry valid bits. 
I%oPERAND_BUS_B<SQ... VALID!> indicates that the information on I%OPERAND_BUS_B<lO:4> is 
for a valid source queue entry. I%oPEBAND_BUS_B<SQ... VALID2> indicates the information on 
I%OPERAND_BUS_B<3:0> is for a valid source queue entry. I%OPERAND_BUS_B<lO:4> contains 
the information for any specifier that is placed on SPEC_C'rRL. I%OPERAND_BUS_B<3:0> contains 
the second source queue entry whenever the specifier on SPEC_CTBL has an access type of 
Read or Modify and a data length of quadword or it is an RMODE specifier with access 
type VR or VM and the VS hit is set. I%OPERAND_BUS_B<SQ... VALID2> is set only if 
I%OPERAND_BUS_B<SQ... VALIDl> is set. 
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The addressing mode of the operand specifiers determines the value of the source queue 
entries. For short literal (Modes 0 .. 3) addressing modes, I%OPERAND_BUS_B<VALUE1> contains 
the short literal data directly, with I%oPEBAND_BUS_B<Sm..IT> set. Source queue entries 
for register <Mode 5) addressing mode specifiers contain pointers to the referenced GPR, 
with I%OPERAND_BUS_B<GPR> set and I%OPERAND_BUS_B<SHLIT> cleared. Source queue 
entries for all other addressing modes contain pointers to Memory Data (MD) registers 
in the Ebox, with I%OPERAND_BUS_B<GPR> and I%oPERAND_BUS_B<SHLIT> both cleared. 
I%oPERAND_BUS_B<VFIELD>, is set for variable bit field specifiers and cleared otherwise. This 
bit is used by the Ebox to make Field Queue entries. 

The access type and data length of the operand being specified determines the number of source 
queue entries that are written for all operands except those with access types VR or VM. Read 
(R) and Modify (M) access type operands write one source queue entry if the operand data length 
is byte, word, or longword, and two source queue entries if the operand data length is quadword. 
Write (W) access type operands never write any source queue entries. A.ddress (A) access type 
operands ahvays write one source queue entry regardless of the operand data length. The number 
of source queue entries written for non-field access type operands is sum::narized in Table 7-18. 

Table 7-18: Source Queue Entries Written for Non-field Access Type Operands 

Access Type Data Length Number of Source Queue Entries written 

Read (R) 

?\'lodify (M) 

Write (W) 

Address (A) 

Read (R) 

Modify (M) 

Byte, Word, Long 

Byte, Word, Long 

Byte, Word, Long, Quad 

Byte, Word, Long, Quad 

Quad 

Quad 

1 source queue entry written 

1 source queue entry written 

o source queue entries written 

1 source queue entry written 

2 source queue entries written 

2 source queue entries written 

For VR and VM operands, the vs bit associated with the instruction and the addressing mode 
determine the number of source queue entries that are written. For these variable bit field access 
type operands, VS performs a function similar to the data length in non-field operands. The VS 
bit specifies how many source queue entries to write for VM and VR operands with &MODE 
specifiers. The value of VS is ignored if the access type of the operand is not VR or VM. If vs 
is 0 then one source queue entry is written for VR and VM operands with an RMODE specifier. 
If VS is 1 then two source queue entries are written for VR and VM operands with an RMODE 
specifier. Only one source queue entry is written for VR and VM operands with non-RMODE 
specifiers, regardless of the value of VS. Table 7-19 shows the number of source queue entries 
. written for operands with VR or VM access types. 

Table 7-19: Source queue Entries Written for VR or VM Access Type Operands 

VS Access Type Number of Source Queue Entries Written 

o RMODE 1 source queue entry written 

1 

X 

RMODE 

non-RMODE 
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2 source queue entries written 

1 source queue entry written 
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VS is supplied by the mu in the middle of the cycle in which the opcode is loaded and is held 
throughout the parsing of the instruction. 

7.4.1.1.1 Short Uteral Specifiers (Modes 0 •• 3) 

Short literal specifiers create a source queue entry with the SBLIT fiag set and the short literal 
data in I%oPERAND_BUS_B<VALUE1>. The short literal data is the full RN_SBORT_LITERAL<:6:1> 
from the specifier control bus. For quadword operands the OQU writes two source queue entries. 
In this case, I%OPEBAND_BUS_B<VALUE2> is 0, I%oPERAND_BUS_B<VALUE1> contains the 
short literal value, I%OPERAND_BUS_B<SHLlT> is set, and I%oPERAND_BUS_B<SQ,.. VALID1> and 
I%oPERAND_BUS_B<SQ,.. VALID2> are both set to indicate 2 source queue entries. 

Short literal addressing modes for VM and VR access type operands cause a reserved addressing 
mode fault to be signaled to the Ebox. All reserved addressing mode faults block the OQU from 
writing any source or destination queue entries. See Section 7.9.5 for details on these faults. 

7.4.1.1.2 RMODE Specifiers (Mode 5) 

Register mode specifiers create source queue entries with Io/tOPEP_~'''D_BUS_H<REG1> pointing to 
the specified Ebox GPR index and the SHUT bit clear. The conten.:s of I~PERA...~"D_BUs_B<REG 1> 
are taken directly from the specifier control bus R." field. Io/tOPERA.""D_BUS_B<GPR> is equal to 
1 for register mode operands .. If two entries are allocated for an operand due to quadword data 
length or the vs bit, the value for the second entry on I%OPER..~'-n_Bus_H<REG2> is the value of 
the first entry on I%OPERA."ID_BUS_H<REG1> incremented by 1 and modulo 16. For specifiers of 
type VR or VM, the I%oPERAND_BUS_B<VFIELD> is set to indicate a variable bit field specifier 
and cleared otherwise. 

7.4.1.1.3 Index Mode Specifiers (Mode 4) 

Indexed specifiers are processed by the mu as two specifiers. Only the second specifier, the base, 
may create a source queue entry. The first specifier is recognized and ignored by the OQU if it 
is a complex specifier with the dispatch field of the specifier control bus pointing to index mode. 
Therefore, if SPEC_CTBL<COMPLEX> is set and SPEC_CTRL<DISPATCII> is index mode, then no 
source queue entries will be made for the specifier. 

7.4.1.1.4 All Other Addressing Modes 

Specifiers which are not literal or register mode create source queue entries with the 
I%OPERAND_BUS_B<REG1> fields pointing to Ebox MDs and the SBLIT and GPR bits clear. One 
MD is allocated for each source queue entry of this type written. See Section 7.4.1.4 for more 
detail on MD allocation. If two entries are allocated for an operand due to quadword data length or 
RMODE with the VS bit set, the I%OPERAND_BUS_B<REG2> field for the second entry is equal the 
Io/eOPERAND_BUS_B<REG 1> field of the first incremented by 1 and modulo 6. The most significant 
bit for both I%OPERAND_BUs_B<REG1> and I%OPERAND_BUS_H<REG2> are set to 1 to colTespond 
with Ebox register file addressing. For specifiers of type VR or VM, the VFIELD bit is set to indicate 
a variable bit field specifier and cleared otherwise. Only one specifier per instruction may be of 
access type VR or VM, so as not to overflow the field queue. 
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7.4.1.2 Destination Queue Interface 

The OQU can write up to two destination queue entries each cycle depending on the access types 
and data lengths of the operands they specify. The addressing mode of the operand speci1ier 
determines the contents of the destination queue entries written. Destination queue entries for 
register (Mode 5) addressing mode specifiers contain pointers to the referenced GPR and the GPR 
flag is set to indicate a register mode destination. All destination queue entries for specifiers with 
an access type write will contain pointers to the referenced GPR, regardless of addressing mode. 
For non-register mode specifiers of access types read and modify, the I%OPERAND_BUs_B<REGl> 
and I%OPEBAND_BUS_B<REG2> fields are used by the source queue and ignored by the destination 
queue. All addressing modes other than register mode (Mode 5) and short literal <Modes 0 .. 3) 
clear the GPR flag to indicate a memory destination. I%OPEBAND_BUs_H<D~ VALIDl> is set if 
there is a valid destination queue entry. I%oPEBAND~BUs_B<D~ VALID2> indicates a second 
destination queue entry is also valid. I%OPERAND_BUs_H<D~ VALID2> will only be set if 
Io/cOPERAND_BUS_B<D~VALIDl> is also set. 

Short literal addressing mode specifiers for operands with access types of Write (W), Modify (M), 
and VM cause Reserved Addressing Mode Faults. Reserved Addressing :l\.lode Faults block the 
OQU from writing any source or destination queue entries. See Section 7.9.5 for details on these 
faults. 

The access type and data length of the operand being specified determines the number of 
destination queue entries that are written for 'all operands except those with '\vith access types 
VR or v:M:. Write (W) and Modify (M) access type operands write 1 destination queue entry if the 
operand data length is byte, word, or longword, and two destination queue entries if the operand 
data length is quadword. The number of destination queue entries written for non-field access 
type operands is summarized in Table 7-20. 

Table 7-20: Destination Queue Entries Written for Non-field Access Type Operands 

Access Type 

Read (R) 

Modify (M) 

Write (W) 

Address (A) 

Read (R) 

Modify (M) 

Write (W) 

Address (A) 

DataLeDgth 

Byte, Word, Long 

Byte,Word, Long 

Byte, Word, Long 

Byte, Word, Long 

Quadword 

Quadword 

Quadword 

Quadword 

Number of Destination Queue Entries Written 

o destination queue entries written 

1 destination queue entry written 

1 destination queue entry written 

o destination queue entries written 

o destination queue entries written 

2 destination queue entries written 

2 destination queue entries written 

o destination queue entries written 

For VR access type operands no destination queue entries are written. For VM access type 
operands, the vs bit associated with the instruction and the addressing mode of the operand 
specifier determine the number of destination queue entries that are written. The VS bit speci1ies 
how many destination queue entries to write for VM access type operands with RMODE specifiers. 
The value ofvs is ignored if the access type of the operand is not VM. Ifvs is 0 then one destination 
queue entry is written forVM access type operands with an RMODE specifier. Ifvs is 1 then two 
destination queue entries are written for VM access type operands with an RMODE specifier. VM 
access type operands with non-RMODE specifiers create no destination queue entries. Table 7-21 
shows the number of destination queue entries written for operands with VM access type. 
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Table 7-21: Destination Queue Entries Written for VM Access Type Operands 

VS Access Type Number of DestiDation Queue Entries Written 

o RMODE 1 destination queue entry written 

1 RMODE 2 destination queue entries written 

X non-RMODE 0 destination queue entries written 

7.4.1.2.1 RMODE Specifiers (Mode 5) 

Register mode specifiers create destination queue entries with I%OPERAND_BUS_B<REG1> 
pointing to the specified Ebox GPR and the I%OPERAND_BUS_B<GPR> bit set. The contents 
of the I%OPERAND_BUS_B<REGl> field are taken directly from the specifier control bus R.N 
field. If two entries are allocated for an operand due to quadword data length or the vs bit, 
I%OPEBA..'PID_BUS_H<REG2> for the second entry is I%OPERAND_BUS_H<REGl> incremented by 
1 and modulo 16. I%OPERAND_BUS_H<D~ V.ALIDl> and I%OPERA..~_Bus_H<D~ VALID2>, the 
destination queue entry valid bits, are both set. 

7.4.1.2.2 Index Mode Specifiers (Mode 4) 

Indexed specifiers are processed by the mu as two specifiers. Only the second specifier, the base, 
may create a destination queue entry. The first specifier is recognized and ignored when the 
specifier control bus has a complex specifier with the dispatch field pointing to index mode. In 
other words, if SPEC_CTRL<COMPLEX> is set and SPEC_CTRL<DISPATCH> equals index mode, then 
no destination queue entries will be made for the specifier. 

7.4.1.2.3 All Other Addressing Modes 

All other addressing modes create destination queue entries with the GPR bit clear. If two entries 
are allocated for an operand due to quadword data length or VM access type with the vs bit set, 
the GPR bit applies to both entries. 

7.4.1.3 Queue Entry Allocation 

The OQU maintains a count of available Source and Destination Queue entries using an up-down 
counter for each. When the OQU allocates source queue entries, the source queue counter 
increments by the number of entries allocated. When the OQU allocates destination queue entries, 
the destination queue counter .increments by the number of entries allocated. When the source 
queue counter equals 12, the source queue is full. When the destination queue equals 6, the 
destination queue is full. 

The source and destination queue counters decrement whenever the Ebox retires entries from 
the respective queues. The signals E%SQ...RETIRE_B<l:O> and E%DCLRETIRELB<O> are generated 
by the Ebox, and indicate the number of source and destination queue entries, respectively, to 
be retired this cycle. Up to two source queue entries and one destination queue entry may be 
retired each cycle. The E%SQ...RETIR.E-.B<l:O> signal decode is demonstrated in Table 7-22 
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7.4.1.4 MD Allocation 

MDs are allocated in the OQU using an up-down allocate counter and an index counter. When 
the oQU allocates a new MD, the allocate counter increments and the CUlTent value of the index 
pointer is sent to the CSU and then incremented modulo 6. Whenever a source queue entry which 
points to an MD is retired by the Ebox, the allocate counter decrements. The value of the allocate 
counter always represents the number of previously allocated MDs and the index counter always 
points to the next MD to allocate. When the allocate counter equals 6 there are no MDs left 
to allocate. The signals E%S(LRETIRE_MD_B<1:0> are generated by the Ebox and indicate the 
number of MD source queue entries to be retired this cycle. The EtrcSQ...RETIRE_MD_B<1:0> signal 
decode is demonstrated in Table 7-22. 

Table 7-22: Source Queue Entries Retired 

00 

o 1 

10 

11 

# SQ Entries 

Retired 

o 
1 

1 

2 

7.4.1.5 Specifier Bus Enable 

1:0 

00 

01 

10 

11 

#MD SQ Entries 

Retired 

o 
1 

1 

2 

The OQU applies back-pressure to the mu whenever there are insufficient MDs or source arid 
destination queue entries to hold more operands. SPEC_CTRL..ENABLE is driven by the OQU 
to enable the driving of specifier data on the specifier control bus. SPEC_Cl'B,kENABLE, when 
asserted, allows the mu to drive a specifier on SPEC_CTRL<21:0>. 

The number of available source queue entries, destination queue entries, and MDs determine 
whether a specifier may be parsed by the IBU and driven on the specifier control bus. 
SPEC_CTBL_ENABLE is asserted if there are at least 2 source queue entries, 2 destination queue 
entries, and 2 MDs available. 

7.4.1.6 E%STOP _IBOX and Branch Mlspredlct 

The following actions take place when the Ebox issues a Eo/eSTOP _mO:x..B or a branch mispredict. 

• The MD allocation counter and index counter are both reset to 0 

• The source queue counter is reset to 0 

• The destination queue counter is reset to 0 
• Any specifiers currently being processed will not make a queue entry. 
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7.4.2 Complex Specifier UnH 

The Complex Specifier Unit (eSU) processes all specifiers with modes other than short literal 
or register. It receives parsed instruction stream data and parameters on the specifier control 
fields. Using a 32-bit, 3-stage pipelined datapath with microcode control, the CSU performs the 
register and memory data operations required to provide the Ebox with instruction operands. 
Final operand values are routed to the Ebox memory data registers. 

7.4.2.1 CSU Microcode Control 

The CSU microsequencer provides microcoded control for the 3-stage pipelined datapath. Under 
typical operation, a control store address is generated for the 128-entry X 29-bit control store array 
and a new microword is referenced every cycle. The complete microword depicted in Table 7-23 
is issued and forwarded to the subsequent pipeline stages in consecutive cycles in order to control 
the data path logic in those stages. 

Figure 7-10: Microword Format 

2 .:. 2 .: 2 : ~ .. 2 1 1 . . 1 . 
.I. 1 1 - - - - - -

- ... - . s - - ~ - ..., 1 s- a i € - -
-------------------------------------------------------------------------------------------------------------;' .. ::: • ::::= I 1 .. =":- :s: !·::s: 
~---------------~-----------------------~-----------------------~---------------~-------~-------------------~ 

Table 7-23: Mlcroword Fields 

field 

ML 

A 

B 

DST 

MBEQ.FNC 

NX'J:ADDR 

description 

controls the ALU function 

selects mem req data length = long or DL 

lA_bus source 

IB_bus source 

IW _bus destination 

miscellaneous functions 

controls memory request function 

conditional control of decoder next 

full next microaddress field 

The 128-entry control store array is arranged as 8 pages of 16 micro words per page. Bits <6:4> 
of the control store address designate the microcode page, bits <3:0> designate the microword 
address within a page. The page organization places the microcode corresponding to a unique 
complex specifier flow within a particular page. 
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Table 7-24: Microcode Page Allocation 

page description 

000 displacement flows, modes=A,C,E 

001 displacement deferred fiows, modes=B,D,F 

010 auto increment fiow, mode=8 

011 auto increment deferred fiow, mode=9 

100 register deferred fiow, mode::6 

101 auto decrement fiow, mode=:7 

110 IPR and utility routines, index flow, mode=:4 

111 Ebox assists, idle address 

The CSU specifier microcode processes VAX defined specifiers 4 and 6-F. These are the operand 
specifiers that the Ibox defines as complex. Displacement data will be sign extended by the IBU so 
the CSU can process byte, word and long'\vord displacement specifiers in a longword microcode flow. 
DisplaCEment deferred specifiers merge together in a similar fashion. Ebox assists are t'implicif' 
operands in some of the ,,:4.....'( opcodes. In order to simplify Ebox microcode to handle instruction 
execution only, the implicit specifiers are processed up front by the Ibox. These assists appear to 
the Ebox as typical complex operands. See Section 7.3.2.7 for more information on assists. 

7.4.2.2 CSU Pipeline 

The 3-stage esu pipeline operates under microcode control during the 81, 82, and S3 stages of 
the Ibox pipeline. Control store address generation, control store lookup, and microword issUe 
occurs in the Sl stage. The datapatb source busses are driven during the 82 pipeline stage. The 
S3 stage contains the ALU and write destination bus logic, and memory request logic. 

Ordinarily, microwords move through the pipeline synchronously, advancing every cycle. Stalls 
occur when a resource required for a particular pipeline stage is unavailable. Stalls operate 
synchronously and transparently to the microcode How by freezing the sequence and the pipeline, 
thereby causing the esu logic to repeat the operation performed in the previous cycle. The stall 
terminates upon acquisition of the resource which caused the stall and the pipeline flow returns 
to normal, advancing every cycle. 

7.4.2.2.1 S1 Pipeline Stage 

The 81 pipe latch, also called the dispatch latch, controls the 81 pipeline logic. The 81 pipe latch 
is loaded from the parsed instruction stream data and parameters shown in Table 7-25. 

SI_RN, SI_AT, SI_DL, SI_DISPATCH, SI_AT_BMW, SI_INDEXED, SI_ASSIST, and SI_PC_MODE load 
directly from the specifier control field and the specifier complex control field as driven by the IBU. 
The SI_REG_INDEX loads from the MD_INDEX lines coming from the OQU. The 32-bit SI_IB_DATA 
and SI_IBO~PC are loaded from SPEC_DAT.A<31:0> and mu_pc<31:0> respectively. 

DIGITAL CONFIDENTIAL The lbox 7-41 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

Figure 7-11: Complex Specifier Unit Control Path Block Diagram 
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Sl_RXS_SCORE and Sl_RXD_SCOBE load from the entry in the SBU scoreboard atTay pointed to by 
the GPR number of the specifier. Sl_BXS_SCORE and Sl_RXD_SCORE represent "snapshot" values of 
the scoreboard, taken when a specifier dispatch enters the 81 pipe latch. The scoreboard updates 
the value of these entries based on the Ebox retiring source and destination queue entries. See 
Section 7.4.3 for scoreboard details. The snapshot values decrement in parallel with the SBU 
values. 
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Table 7-25: 81 Pipe Latch 

Bit 
Field Field Name 

<3:0> SI_RN 

<6:4> SI."AT 

<8:7> SCDL 

<12:9> SI_BXS_SCORE 

<15:13> SI_ItXD_SCORE 

<18:16> SI_DISPATCH 

<19> SI-.AT_RMW 

<20> SI_INDEXED 

<21> SI~SIST 

<22> SI_PC_MODE 

<25:23> SI_REG_lNDEX 

<57:26> 51_IB_DATA 

<89:55> SI_IBOX_PC 

<90> SI_VALlD 

<91> SI_JMP _OR_JSB 

Description 

GPR number from the specifier. 

Access Type of the operand associated with the specifier. 

Data length of the operand associated with the specifier. 

Value of scoreboard source queue counter indexed by GPR number. 

Value of scoreboard dest queue counter indexed by GPR number. 

Control store dispatch address. 

Access Type of operand is R, M or W. 

The base specifier has an index specifier. 

Ebox assist specifier. 

The specifier uses program counter addressing 

Value of OQt: MD allocation pointer. 

Data for Immediate and displacement mode specifiers. 

The PC of the next Istream byte following this specifier. 

S1 pipe latch valid bit. 

Indicates whether the instruction was ~!P or JSB. 

The SI_VALID bit indicates that the 81 pipe latch contains valid dispatch arguments waiting to 
be serviced. The CSU recognizes the availability of the valid complex dispatch, and performs the 
control store access. The microword is issued in 81 and loaded into the 82 pipe latch. The CSU 
sets SI_ VALID when a complex specifier is parsed by the IBU and doesn't advance to stage 82 
the following cycle. This is a result of a SI_STALL. The 81 logic clears 81_ VALID upon successful 
transition of the 81 microword into the 82 pipe latch. The clear 81_VALID bit indicates the 
availability of the 81 pipe stage for a new complex specifier dispatch next cycle. 

The 81_STALL condition occurs when the 81 context latch cannot be loaded immediately into 
the 82 pipe latch. This condition may occur during an 82_STALL, when L,mu%QUAD_FLAG_B<o> is 
asserted, or a multiple microword flow. S2_STALL indicates that the 82 pipe latch cannot currently 
advance (see 8ection 7.4.2.2.2 for more details on the S2_STALL). Naturally this stall ripples back 
to become an 8I_STALL as well because the 81 microword cannot advance into the 82 pipe latch. 
I_IBUo/DQUAD_FLAG_B<O> indicates the mu is waiting for the second longword of a quadword 
immediate mode specifier. Once the second longword is retired, J..mu%QUAD_FLAG_B<O> is 
de-asserted and the csu is allowed to process the quadword immediate mode specifier. During 
multiple microword flows, the next control store address is generated from the microword in the 
82 pipe latch. Consequently, the 81 pipe latch may accept one dispatch from the mu which sets 
81_ VALID. The dispatch in the 81 pipe latch is then in the S1_STALL condition waiting for service. 

The IBU uses 8I_VALID as part of the parser enable equation. If S1_VALID is clear then the IBU 
may parse a complex specifier and retire the instruction stream from the PFQ. If 81_ VALID is set 
then if the IBU parses a complex specifier it cannot retire the instruction stream because the 81 
pipe latch cannot accept the dispatch. The IBU stalls the parser such that the same specifier is 
parsed in subsequent cycles. 
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Typical microcode flows begin at a microcode address determined by a complex specifier dispatch. 
A DECODER_NEXT directive in the 82 pipe latch tells the microsequencer that the next microcode 
address is not related to the current flow. If SI_ VALID indicates a valid dispatch waiting in the 81 
pipe latch and the 82 pipe latch contains a DECODER_NEXT, then the microsequencer selects the 
81 pipe latch as the source of the next microaddress. This begins a new microcode :flow for the 
specifier being dispatched. The microcode sequences through a flow using microaddress jumps. 
A jump selects the NXT_ADDR<6:0> field of the microword in the 82 pipe latch directly for the 
next microword address. The final microword of each :flow contains a DECODER_NEXT which once 
again requests a new dispatch address. 

Requests for IPR references which are detailed in Section 7.4.2.8 must guarantee that the esu 
is idle. Thus, whenever the 81 logic detects an IPR read strobe from the Ebox, then the next 
microaddress is selected by the IPR number. The request immediately dispatches to the utility 
microcode page. 

The unwind_mispredict routine is selected when the Ebox signals a branch mispredicted. The 
RLOG unwinds restoring the GPRs until the RLOG is empty, then the Ibox is restarted. 

The esu dispatches to the common entry point for the single microword index routine when the 
dispatch number of a specifier indicates that it is an index. The index register is read from the 
Ebox and shifted by length = DL. 

The microaddress control selects the IDLE address when no valid dispatch or utility dispatch 
awaits processing. The IDLE microword simply jumps to its own address and executes the 
DECODER_NEXT directive, awaiting a valid dispatch. 

In addition to the standard DECODER_NEXT directive, the microcode and next address logic 
supports a conditional DECODER..NEXT. The DECODER_NEXT_IF_BWL performs a standard 
DECODER_NEXT if the data length associated with the specifier is byte, word, or longword. For 
quadword data length the next address logic performs a microaddress jump. 

The microcode and next address logic supports one conditional jump. The 
BRANCH_IF _RLOG_EMPTY directive causes the next microaddress logic to perform a standard jump, 
but in addition the logic OR function of a 1 and the next microaddress bit <0> is performed if 
the RLOG is empty. The RLOG unwind microcode uses this conditional jump feature. A single 
microword jumps to itself as long as the RLOG still has valid entries. When the RLOG empties, 
the microword conditionally jumps out of the loop. See Section 7.4.2.3 for RLOG details. 

The 81 logic uses a five-input multiplexer to select the source of the next control store address. 
Both the complex specifier multiplexer input and Ebox assist multiplexer input use data from the 
81 pipe latch to form the next address. The IPR multiplexer input uses the latched IPR number 
from the Ebox, to select which IPR type field will be used to form the next address. The next 
address field from the 82 microword enters another multiplexer input in order to perform the 
microaddress jump. The final multiplexer input is the idle address. Next address generation is 
summarized by Table 7-26. 
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Table 7-26: Next Address Generation Fields 

bit 
field 

<0> 

<1> 

<2> 

<3> 

<6:4> 

<0> 

<3:1> 

<3:1> 

<3:1> 

<3:1> 

<6:4> 

<6:1> 

field lUUDe 

SI_INDEXED 

SI_PC~ODE 

SI..AT_BMW 

000 

001 

010 

011 

NXT..,ADDR 

7.4.2.2.2 S2 Pipeline Stage 

description 

Specifier Dispatch 

forced to 0 

index specifier 

base register is the PC 

access type = read,modify, or write 

SI_DISPA1'CB4aO> field from the IBU 

forced to 0 

assist type 

Assist Dispatch 

forced to 111, assist page number 

!PR and Utility Dispatch 

forced to 0 

index routine 

lPR unwind RLOG read back-up PC 

~ICT..L 

lPR read 

forced to 110, IPBIutility page number 

Idle Dispatch 

forced to 1111111, idle address 

Nen Address 

next address field from the ~!rDCB.OWOB.D. For conditional jump OR in 1 if 
RLOG is empty 

next address field from the ~!rDCB.OWOB.D 

The 82 pipe latch controls the 82 pipeline datapath. Each cycle, the 82 pipe latch attempts to 
load a microword and specifier specific parameters from the instruction stream. The 82 pipe latch 
is shown in Table 7-27. 
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Table 7-27: S2 Pipe Latch 

Bit 
Field Field Name 

<3:0> S2JlN 

<6:4> S2..AT 

<8:7> S2J)L 

<11:9> S2_BBG_JNDEX 

<15:12> S2_BXS_SCOBE 

<18:16> S2..BXD_SCOBE 

<47:19> S2Jrt[CltOWOJU) 

<48> S2..NEW_FLOW 

<49> S2_JD_OB..,.DIP 

Description 

GPR number from the specifier. 

Access Type of the operand associated with the specifier. 

Data length of the operand associated with the specifier. 

Current value of 82 MD allocation pointer or WX index. 

Value of scoreboard source queue counter indexed by GPR number. 

Value of scoreboard deBt queue counter indexed by GPR number. 

The micro word issued in S1. 

Indicates the first microword of a fiow. 

Indicates whether the instruction was J.MP or JSB. 

S2_R.~, S2_AT, S2_DL, S2_JSB_OR_JMP, S2_BXS_SCOBE, and, S2_BXD_SCORE load directly from the 
81 pipe latch. S2_RXS_SCORE and S2_RXD_SCORE decrement in parallel with their corresponding 
SBU values. S2_REG_~"DEX typically loads directly from Sl_REG_lNDEX, however, if the dispatch 
is for an IPR read, it loads a copy of lYX.,INDEX from the Ebox. 

The S2_MICROWORD field of the 82 pipe latch updates from the microword issued by the 81 pipe 
stage. During an initial specifier dispatch, all of the 82 pipe latch updates. Bits <48:19> of 
the latch update every cycle, assuming no stalls. However, bits <49,18:0> of the latch remain 
constant throughout the context of one specifier flow, except for local scoreboard decrements of 
S2_R'XS_SCORE and S2_RXD_SCORE. This part of the 82 pipe latch does not load again until another 
dispatch occurs. This allows for multiple microword flows within the context of a given specifier. 

S2_NEW _FLOW indicates that contents of the 82 pipe latch represents the first microword of a new 
dispatch. In other words, the microword address for the microword in 82 was genera ted in any 
manner other than a microaddress jump. This pipe bit aids the 83 stage in loading the specifier 
context portion of the S3 latch. See section Section 7.4.2.2.3 for details. 

The 82 datapath contains the Csu register set and constant generator. The esu ALU source 
busses, the lA_bus and IB_bus, are controlled by the microcode fA and /B fields to drive the 
source busses in the 82 pipeline stage. The CSU microcode may also requests an Ebox GPR to 
source the lA_bus by providing the I%IBOX'....IA...ADDR_B<3:0> from the S2_BN field of the 82 pipe 
latch. The Ebox register read is strobed with IUBOX'....IA...BEAD_H. The Ebox returns GPR data 
later that cycle on the E%IBOx...IA...BUS_B<31:0> lines. This provides a path for the esu to obtain 
the base specifier register of the operand currently being processed. When the S2_microword is 
sourcing a GPR which is identical to the S3_microword destination register, the IW _BUS will be 
driven onto the source bus, bypassing the GPR read. 

Table 7-28: CSU Registers 

Register Available Written Description 

Name On From 

'1'0<> IA,IB IW temporary register 

7-46 The Ibox DIGITAL CONFIDENTIAL 



· NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

Table 7-28 (Cont.): CSU Registers 

Register Available Written Description 

Name On From 

IBJ>ATA IA,IB SPEC_DATA immediate and displacement data 

BX IA IW base specifier register 

JMD IA MD lbox memory data 

ltrfD IW Ebox memory data register 

wx IW Ebox working register 

EDL IB 1 for DL::Byte, 2 for Word, 4 for LONG, 8 for QUAD 

mL IB 1 for DL::Byte, 2 for Word, 4 for LONG, 8 for QUAD 

K" IB Constant 4 

102 IB Constant 12 

RLOG_RX IA IW_BUS Register pointed to by top ofRLOG 

RLOG_EDL IB Same as KDL except using DL from top of RLOG stack 

moX,.pc IA IBU_PC PC of instruction byte following last byte in specifier 

TO is a temporary register for microcode use. IB_DATA and IBOx..PC are the S2 pipeline copies 
of SCIB_DATA and Sl_IBOX_PC respectively. IB_DATA and IBOx..PC are loaded along with the 
S2_PIPE_LATCH<18:O> on the first microword of a dispatch. Then the CSU microcode maintains 
control of these registers throughout the context of a given specifier fiow. 

RX refers to the Ebox GPR register indexed by S2_RN. RLOG_RX refers to the Ebox GPR register 
indexed by the RLOG_RN. See Section 7.4.2.3 for more details. !tID addresses the Ebox MD register 
indexed by S2_REG_INDEX. WX points to the Ebox working register also indexed by 82_BEG_INDEX. 
K4 and K12 are constants. KDL is a constant based on S2_DL. The value of the constant is 1 for 
DL::O (byte), 2 for DL=l (word), 4 for DL=2 (longword), and 8 for DL=3 (quadword). mL is a 
constant based on S2_DL for immediate mode specifier with access type A or V. IDL differs from 
KDL in the fact that the constant value is 4 for DL=3 (quadword). RLOG_KDL is a constant similar 
to KDL, but based on RLOG_DL. See Section 7.4.2.3 for more details. 

For a majority of memory requests started by the CSU microcode, the Ibox memory data returns 
to the IMD register. The Mbox drives M%lBOX'...DA1'A.,L when Mo/cMD_BUS_B<31:0> contains valid 
data from a specifier memory request. The 1M» has a signal IMD_VALID associated with it. Each 
time the CSU microcode initiates a memory request IMD_VALID is set. Each time memory data 
returns to !MD, IMD_ VALID is reset. 

When M%MME_FAULT_B or M%BABD_ERR_H is asserted by the Mbox along with M%IBOX_DAT.A..L, 
this indicates that Ibox data on MtfciMD_BUS_B<63:0> is invalid and that the corresponding 
reference was associated with either a memory management exception or a hard error condition. 
In both cases the CSU continues to process the specifier, but sets fiags indicating the IMD contains 
invalid data. The fiags are reset at the end of each specifier fiow. They are forwarded to stage 
83 whenever the 1M» is selected to source the lA_bus. They are called I%FORCE_MME_FAULT_B 

and I%FORCE_BARD_FAULT_B. When set they indicate to the Ebox and Mbox that the associated 
register write or Ibox reference should be forced to "look" like a memory management fault or a 
hardware fault from the Ibox point of view. 
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The 82 pipeline stage stalls for three reasons: GPR destination queue stall (RXD_STALL), 
Ibox memory data stall (IMD_STALL) and S3_STALL. BXD_STALL occurs when the esu microcode 
attempts a read of a GPR for which there exist outstanding writes in the Ebox destination 
queue. The 82 pipeline logic detects BXD_STALL when S2_RXD_SCORE does not equal 0, and the 
S2_MICROWORD attempts to read the GPR from the Ebox indexed by S2_BN. The stall breaks when 
the Ebox retires a destination queue entry that causes both the SBU counter and the snapshot 
S2_RXD_SCORE to decrement. Multiple destination queue entries may have to be retired, causing 
multiple decrements, before S2_BXD_SCORE equals O. 

IMD_STALL occurs when the S2_M1CROWORD attempts to read the IMD when IMD_ VALID is set. This 
condition implies that a memory request was initiated by esu microcode which set IMD_ VALID, 
but memory data which resets the signal has not yet been returned. DID_STALL can only happen 
in the context of one complex specifier flow when the Ibox requests then waits for memory data 
to be returned to IMD. 

S2_STALLS block the 82 pipeline latch update, causing the 82 stage to execute the same stalled 
MICROWORD until the stall breaks. If an 82 stall occurs, not resulting from a 83 stall, the S3 
pipeline latch continues to updates; however, NOPs are fed into the 83 pipeline latch while the 
82 stall is in progress. 'When the stall breaks, the pipeline latches resume normal operation. 

7.4.2.2.3 S3 Pipeline Stage 

The 83 pipe latch controls the 83 pipeline datapath. Each cycle, the S3 pipe latch attempts to 
load a microword and the specifier-specific parameters from the instruction stream. The 83 pipe 
latch is shown in Table 7-29. 

Table 7-29: S3 Pipe latch 
Bit 
Field Field Name 

<3:0> S3_llN 

<6:4> S8-.AT 

<8:7> S8_DL 

<11:9> S8JUilG..INDEX 

<15:12> S8_BXS_SCOBE 

<46:16> S8_MICBOWOKD 

<47> S8_JSB_OB...JMP 

Description 

GPR number from the specifier. 

Access Type of the operand associated with the specifier. 

Data length of the operand associated with the specifier. 

Current value of sa MD allocation pointer or WX index. 

Value of scoreboard source queue counter indexed by GPR number. 

The microword issued in 81. 

Indicates whether the instruction was JMP or J8B. 

S3_BN, sa_AT, SS_DL, S3_BEG_INDEX, S3_JSB_OR_J.MP, and S3_RXS_SCORE load directly from the 82 
pipe latch. S3_BXS_SCOBE decrements in parallel with its corresponding SBU value. When sa 
logic initiates a memory reference with an MD destination, S3_BEG_INDEX specifies the index into 
the MD register array for the memory data write. Such memory requests cause MD_INDEX to 
increment modulo the size of the MD register file, so that the data for quadword operands, which 
require two memory requests, occupy successive MD registers. 

The SS_MICROWORD field of the 83 pipe latch updates from the S2_MICROWORD. During the first 
instruction of a specifier dispatch :Bow, as indicated by the contents of S2_NEW _FLOW, all of the 83 
pipe latch updates. The microword field in bits <46:16> continues to update every cycle, loading 
the new microword from 82. However, bits <47,15:0> of the latch remain constant throughout 
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the context of one specifier fiow, except for local scoreboard decrements of S2_BXS_SCORE, and 
local increments of S3_BEG_INDEL This part of the 83 pipe latch does not reload until another 
dispatch occurs, allowing for multiple microword flows within the context of a given specifier. 

The 83 data path contains the esu ALU and register write logic. The ALU maintains 32-bit input 
latches which load the lA_BUS and IB_BUS during an 83 pipe latch update. Under control of the 
microcode /ALU .FNC field the ALU performs 32-bit add, subtract, pass, and left bit-shift equal to 
S2_DL. The destination bus, IW _bus, provides the path to write the ALU results to one of the esu 
registers under control of the microcode IDST field. The IW _BUS_bus can also be selected to write 
to the Ebox GPR, MD, and working CWX) registers. The I%mox..IW_BUS_B<31:0> lines are driven 
from the ALU output, and the SS_RN field of the 83 pipe latch provide I%mOX_IW_ADDR_B<4:0> 
as an index into the GPR array. MD and WX writes both use the SS_REG_INDEX field of the S3 
pipe latch to provide I%IBOx..IW~DR_B<4:0> as an index into the Ebox register array. The Ebox 
register write is strobed with IO/clBOx..lW _ WRITE_B 

The S3 stage logic initiates esu memory requests based on the S3_MICROWORD. Along 
with a memory request command, the full 32-bit address is sent to the Mbox on the 
I%IBOx..ADDR_B<31:0> lines. These lines may be sourced from either the lA_BUS or IW_BUS, 
under the S3_MICROWORD IMREQ field control. If microcode selects the L-\_BUS for memory 
request address, the S3 pipe latch for the lA_BUS sources the address. The S310gic also f01"w'ards 
VIC_REQ from VIC Istream requests to the Mbox when there are no specifier memory requests in 
the S3_MICROWORD. In this case, the ISCIBOX_ADDR_B<31:0> is sourced by VIC_RE~ADDR from 
the 'VIC. 

The following control signals accompany I~IBOX_ADDR_B<31:0>. I%IBOx..CMD_L<4:0> indicates 
reference type to the Mbox. See Section l2.3.1 in Chapter 12 for valid values. I%IBOx..TAG_L<4:0> 
contains the Ebox register file destination of a memory request, a copy of S3_BEG_INDEX. 
I%IBOJCAT_L<l:O> and I%IBOx..DL_L<1:0> provide the Mbox with the access tj-"Pe and data 
length. ItFclBOx..AT_L<1:0> is either a copy of sa_AT or forced to read or write depending on 
control of the microcode JM:REQ field. I'7&mOX_DL_L<l:O> is either a copy of S3_DL or forced to 
longword depending on control of the microcode IML field. I%IBOx..REF_DEST_L<1:0> specifies 
the destination for memory request data. I%mox..REF _DEST_L<l> indicates that the Ebox MD 
registers are the destination. I%IBOx..REF _DEST_L<O> indicates that the Mbox IMD register is 
the destination. This field is decoded from the SS..MICROWORD memory field. The I%SPEC_REQ..B 
strobe is asserted for esu specifier memory requests. The I%IREF _REQ...B strobe is asserted for 
VIC Istream memory requests. 

For JMP, JSB, and certain Ebox assists, the 83 logic sends requests to the BPU to load a new 
PC. The PC value may be sourced from either the I%mox..IW_BUS_B<31:0> orM%MD_BUS_B<31:0> 
under S3_MICROWORD /MISC field control, as indicated by LD_PC_ WBUS or LD_PC_MD respectively. 

The 83 pipeline stage stalls for three reasons: GPR source queue stall (BXS_STALL), memory 
request stall (MR(LSTALL), and (BLOG_STALL). RXS_STALL occurs when the esu microcode 
attempts to write a GPR destination for which there exist outstanding read in the Ebox source 
queue. The S3 pipeline logic detects BXS_STALL when SS_BXS_SCORE does not equal 0, and 
the SS..l\UCROWORD attempts to write the GPR in the Ebox indexed by SS_RN. The stall breaks 
when the Ebox retires a source queue entry that causes both the SBU counter and the snapshot 
SS_RXS_SCORE to decrement. Multiple destination queue entries may have to be retired, causing 
multiple decrements, before SS_BXS_SCOBE equals O. 

RLOG_STALL occurs when BLDG_FULL is asserted and the microword in the S3 pipe requests a 
GPR write. The stall effect is exactly the same as RXS_STALL. The stall breaks when the Ebox 
retires an instruction which in turn relinquishes RLOG resources. 
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MRQ..STALL occurs when the S3_MICROWORD attempts a memory request but the 
M%SPEC_Q..FULL_H signal from the Mbox indicates that the request cannot be accepted. 

S3_STALLS block the 83 pipeline latch update, causing the 83 stage to execute the same 
stalled MICROWORD until the stall breaks. SS_STALLS also back-stall the 82 stage, in effect 
causing S2_STALL which blocks the 82 pipeline latch update. Both pipeline stages execute their 
respective stalled microwords until the stall condition breaks, allowing successful completion of 
the microword. The pipeline latches then continue to update as usual. 

RXS_STALL does not block the initiation of a memory request by the S3_MICROWORD. In other 
words, if the S3_MICROWORD indicates a memory request operation and no MRQ..STALL or 
RLOG_STALL exists, the request is initiated regardless of RXS_STALL. This somewhat de-coupled 
operation of the S3_STALIS breaks possible macroinstruction deadlocks due to the RO (RO)+ case. 
While processing the specifier (RO)+ the CSU microcode performs a write to the GPR RO. A 
RXS_STALL will hold until the Ebox retires the first source, RO. The Ebox must retire two source 
operands at a time, and therefore cannot retire the RO specifier until the MD for the second 
speciii.er is valid. 

The converse case, whether MRQ..STALL blocks a register write, is not an architectural or 
performance issue. This implementation blocks register writes during an MRQ..STALL. 
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Figure 7-12: Complex Specifier Unit Data Path Block Diagram 
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The register log or RLOG allows the Ibox to restore the state of the GPRs under certain exception 
conditions. Because of the pipeline organization, the Ibox works on macroinstructions ahead of 
the Ebox execution. Any or all of six possible operand specifiers for any distinct macroinstruction 
may be auto-increment or auto-decrement mode, which by definition modify the GPRs. The Ibox 
must log all modifications to the GPRs for these operand specifiers and. keep the log until the 
Ebox has retired the associated instruction. If the instruction stream gets redirected due to a 
branch or exception, then the Ibox uses the RLOG to restore the GPR registers to the condition 
expected at the time of the redirection. 

The RLOG is an 8-entry circular queue with read and write pointers. Each entry is oomposed of 
7 bits, 4 bits contain the GPR number, 2 bits specify DL, and 1 hit indicates auto-increment or 
auto-decrement. 

Elements are added to the RLOG under oontrol of the SS_MICROWORD IDST field. When the 
microword specifies a register log operation, then S3_RN, SS_DL, and the encoded IALU.FNC are 
entered in the RLOG entry pointed to by the write pointer. The write pointer is then incremented 
modulo 8. If the RLOG write pointer reaches the state in which another increment causes the 
write pointer to equal the read pointer, then the RLOG is full. The RLOG full condition may 
cause an RLOG_STALL as described in Section 7.4.2.2.3. 
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The RLOG only contains specifier state for macroinstructions which the Ebox has not executed. 
When the Ebox retires a macroinstruction, the RLOG discards RLOG entries associated with 
that macroinstruction, by advancing the RLOG read pointer. The RLOG_BASE_POINTER and 
RLOG_BASE_QUEUE provide the means for read pointer advancement. 

The RLOG_RASE_POINTER increments anytime a valid auto-increment address mode specifier, 
auto-decrement address mode specifier, auto-increment assist, or auto-decrement assist appears 
on SPEC_CTRL. In effect, the RLOG_BASE_POINTER allocates RLOG spaces for the csu to make 
subsequent entries. The RLOG_BASE_POlNTER is loaded into the 6-entry RLOG_BASE_QUEUE 
each time a new PC is loaded into the PC_QUEUE. The RLOG_BASE_QUEUE thus maintains an 
RLOG read pointer for every PC in the PC_QUEUE. The RLOG_BASE_QUEUE and the PC_QUEUE 
both retire entries when the Ebox asserts rIOR.ETIRE_lNSTR_L indicating that it bas retired a 
macroinstruction. The RLOG read pointer loads the value of the next RLOG_BASE_QUEUE entry 
at this time. 

The esu microcode controls the RLOG unwind procedure. RLOG unwind consists of repeatedly 
executing a microword that updates the GPR registers based on indirect references to RLOG_R..'T\I, 
RLOG_DL, and RLOG_FUNC. The RLOG supplies the values for the indirect references from the 
entry pointed to by the read pointer. This entry is retired by incrementing the read pointer. The 
RLOG retires successive entries until the read pointer is equal to the write pointer, then the RLOG 
is empty. At this point the unwind procedure completes and the RLOG is flushed by resetting the 
RLOG read and ,vrite pointers, the lU..OG_BASE_POn."TER, and the RLOG_BASE_QUEUE read and 
\vrite pointers. If the RLOG is empty when the microcode initiates an unwind, 0 will be added 
to whatever GPR is pointed to by the read pointers. 

7.4.2.4 Branch Mispredict effects 

When the Ebox asserts E%BBANCH_MISPREDICT_L, the NOP microword is forced into the 83 
pipeline stage, the 81 pipe latch valid bit is cleared, and the next microaddress logic selects 
the MI8PREDICT.UNWIND utility routine address. The microcode at this location unwinds the 
RLOG and then restarts the Ibox. H the RLOG is empty when the microcode initiates an unwind, 
o will be added to whatever GPR is pointed to by the read pointers. Note that the RLOG is NOT 
flushed on the assertion of E%BRANCH_MISPREDICT_L. It needs to remain intact to be unwound 
by esu microcode. 

IMD_ VALID is reset upon the assertion of E%BRANCB..MISPREDICT_L. 

7.4.2.5 E"oSTOP _IBOX Effects 

When the Ebox asserts E%STOP _moX-.,B, the microsequencer jams the csu to the idle state, except 
in the case when the csu is in the middle of IPR transaction unwind RLOGlread back-up PC. 
In this situation, the RLOG will unwind until completion, and the read of the back-up PC will 
be disabled. The esu is put into the idle state by forcing NOP microwords into the 82 and 83 
pipeline stages, clearing the 81 pipe latch valid bit, and selecting the IDLE microadd.ress. 

7.4.2.6 RSVD_ADDR_FAULT effects 

When I%BSVD_ADDR_FAULT_B is asserted for a complex specifier the 81 pipe latch valid bit is 
cleared. If there isn't a 81 stall the NOP microword is forced into the 82 pipeline stage. Complex 
specifiers already in the esu pipeline when I%RSVDJ\DDR_FAULT_B is asserted are allowed to 
finish processing. 
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7.4.2.7 CSU Microcode Restrictions 

The eBU microcode must guarantee, for all auto-increment, auto-increment deferred, and 
auto-decrement specifier microcode :8.ows, that any specifier memory requests destined for the 
MD is issued before or during the microword that modifies the GPR. Otherwise, it is possible for 
the eBU to infinitely stall due to an BXS_STALL. This is evident in the case ADDL2 RO,@(RO)+ 
where the Ebox must retire two source operands, and therefore cannot retire the RO specifier 
until the MD for the second specifier is valid. The e8U microcode must also guarantee, for all 
auto-increment, auto-increment deferred, and auto-decrement specifier microcode :8.ows, that the 
microword which initiates the memory request destined for the MD must have the misc field 
stall_iCrlo~full if the following microword modifies the gpr. 

The eBU microcode must guarantee, for all auto-increment, auto-increment deferred, 
auto-decrement and auto-decrement deferred specifier microcode :8.ows with access type AV, that 
the microword which writes the MD is immediately followed by the microword that modifies the 
gpr. This, in conjunction with an EBOX microcode restriction, is necessary in order to prevent 
an infinite RXS stall from occurring. 

The esu microcode must guarantee that memory requests which specify the Ibox IMD as the 
data destination, are used only for deferred operand evaluation. For a microword with a [IMD] 
sourc:. the previous micro'\vord must initiate the memory request with destination IMD and must 
not perform a GPR ,\rnte and not have the mise field stall_if_rlo~full. All this is necessary to 
protect the use of an unconditional MD latch in the esu datapath. 

7.4.2.8 Ibox IPR Transactions 

The Ebox microcode communicates with the Ibox in part through internal processor registers 
(IPRs). The IPR reads are handled by esu microcode. The IPR write control is distributed, however 
the description is included here for completeness. 

Ebox microcode conventions guarantee that the Ibox is idle before initiating Ibox IPR transactions. 
This is accomplished either by the knowledge that the current Ebox microcode :8.ow takes place in 
a macroinstruction with an drain Ibox assist or by asserting an explicit E%STOP _IBO:K...B command. 
The only exception involve the issuing of an IPR transaction when the CSU is involved in an RLOG 
unwind operation. In this case the unwind finishes in the esu, then the csu processes the latched 
IPR command. If the RLOG is empty when the microcode initiates an unwind, 0 will be added to 
whatever GPR is pointed to by the read pointers. 

MICROCODE RESTRICTION 

7.4.2.8.1 IPR Reads 

The Ebox signifies an IPR read by asserting the E%IBOX_IPR_READ_H strobe, the 
E%IBO:K...IPR_TAG_B<2:0>, and the E%IBO:K...IPR_NUM_B<3:0>. This information is latched in the 
B1 logic stage, and an IPR request :8.ag is posted. The 81 next address logic responds by creating 
an IPR dispatch to an IPR microaddress in the utility page of microcode, and by clearing the IPR 
request :8.ag. All Ibox logic blocks associated with IPR reads examine the E%IBOX_IPR_TAG_H<2:0>. 
If the IPR source is within a section, that section prepares to drive the IPR read data onto 
the VIC_REQ...ADDR. The microcode at the common IPR routine reads the VIC_REQ..ADDR, passes 
the value through the ALU, and writes the data to an Ebox working register located at the 
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E%IBO~IPR_NVM_B<3:0> offset in the register array. The VIC_REQ...ADDR is used for IPR read 
data source simply because it is a convenient 32-bit bus that runs through the entire section. 

7.4.2.8.2 IPR Wrttes 

The Ebox signifies an IPR write by asserting the E%IBO~IPR_ WHITE_B strobe and the 
E%IBO~IPR_TAG_H<2:0>. All Ibox logic blocks associated with IPR writes examine the 
E%IBOX_IPR_TAG_H<2:0>. If the IPR destination is within a section, that section prepares to accept 
the IPR write data from the M%MD_BUS_H<63:0>. The Mbox drives the M%MD_BUS_B<63:0> with 
IPR data and asserts M%IBO~IPR_ WR_B to complete the transaction. 

7.4.3 Scoreboard Unit 

The Scoreboard Unit (SBU) keeps track of the number of outstanding references to GPRs in the 
source and destination queues. The SBU contains two arrays of 15 counters: the RXS_AlUlAY for 
the source queue and the RXD~ for the destination queue. The counters in the arrays map 
one-to-one with the GPRs. There is no scoreboard counter corresponding to GPR 15, the PC, 
because P~IODE operations to the PC are unpredictable. The maximum number of outstanding 
operand references determines the maximum count value for the counters. This value is based 
on the length of the source and destination queues. The RXS_ARRAY counts up to 12 and the 
RXD_ARRAY counts up to 6. 

Each time valid register mode source specifiers appear on SPEC_CTRL<13:0>, the BXS_ARBAY 
counters that correspond with those registers are incremented. At the same time, the OQU 

inserts entries pointing to these registers in the source queue. In other words, for each register 
mode source queue entry, there is a corresponding RXS_ARBAY counter increment. This implies a 
maximum of 2 counters incrementing each cycle when a quadword register mode source operand 
is parsed. Each counter may only be incremented by 1. When the Ebox removes the source queue 
entries, the counters are decremented. The Ebox removes up to 2 register mode source queue 
entries per cycle as indicated on E%SQ..RETIRE_BMODE_B<I:0>. The GPR numbers for these 
registers are provided by the Ebox on E%SQ..BETIREJtNl_B<3:0> and E%S(LBETIRE_BN2_B<3:0>. 
A maximum of 2 counters may decrement each cycle, or anyone counter may be decremented by 
up to 2, if both register mode entries being retired point to the same base register. 

In a similar fashion, when a new register mode destination specifier appears on SPEC_CTRL<13:0>, 
the BXD_ARBAY counter that corresponds· to that register is incremented .. A maximum of 2 
counters increment in one cycle for a quadword register mode destination operand. When the 
Ebox removes a destination queue entry, the counter is decremented. The Ebox indicates removal 
of a register mode destination queue entry on n,DQ..BETIRE_BMODE_H. The GPR number for the 
register is provided by the Ebox on E%DQ..BETIRELBN_B<3:0>. 

Whenever a complex specifier is parsed, the GPR associated with that specifier is used as an index 
into the source and destination scoreboard arrays and snapshots of both scoreboard counter values 
are passed to the csu on RXS_sCORE<3:0> and RXD_scoRE<2:0>. The csu stalls ifit needs to read 
a GPR for which the destination scoreboard counter value is non-zero. A non-zero destination 
counter indicates that there is at least one pointer to that register in the destination queue. This 
means that there is a future Ebox write to that register and that its current value is invalid. 
The CSU also stalls if it needs to write a GPR for which the source scoreboard counter value is 
non-zero. A non-zero source scoreboard value indicates that there is at least one pointer to that 
register in the source queue. This means that there is a future Ebox read to that register and 
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its contents must not be modified. For both scoreboards, the copies in the CSU pipe are locally 
decremented on assertion of the retire signals from the Ebox. 

7.4.3.1 EO/oSTOP _IBOX and Branch Mispredlct PC Load Effects 

'Whenever a branch mispredict PC load occurs, or the Ebox issues a E%STOP _IBOx..H, all scoreboard 
array counters are cleared. 

7.5 Branch Prediction 

The Branch Prediction Unit (BPU) monitors each instruction opcode as it is parsed, looking for 
a branch opcode. Upon identification of a branch opcode, the BPU predicts whether or not the 
branch will be taken. If the BPU predicts the branch will be taken, it adds the sign extended 
branch displacement to the current PC and broadcasts the resulting new PC to the rest of the 
Ibox on the NEW_PC lines. 

7.5.1 Branch Prediction Unit 

7.5.1.1 The Branch Prediction Algorithm 

The BPD uses a "Branch History" algorithm for predicting branches. The basic premise behind 
this algorithm is that branch behavior tends to be patterned. If one looks in a program at one 
panicular branch instruction, and traces over time that instruction's history of branch taken vs. 
branch not taken, in most cases a pattern develops. Branch instructions that have a past history 
of branching seem to maintain that history and are more likely to branch than not branch in 
the future. Branch instructions which follow a pattern such as branch, no branch, branch, no 
branch etc., are likely to maintain that pattern. Branch history algorithms for branch prediction 
attempt to take advantage of this "branch inertia tt • 

The NVAX branch prediction unit uses a table of branch histories and a prediction algorithm based 
on the past history of the branch. When the BPU encounters a conditional branch opcode, a subset 
of the opcode PC bits is used to access the branch history table. The output from the table is a 
4 bit field containing the branch history information for the branch. From these 4 history bits, a 
new prediction is calculated indicating the expected branch path. 

Many different opcode PCs map to each entry of the branch table because only a subset of the PC 
bits form the index. When a branch opcode changes outside of the index region, the history table 
entry that it indexes may be based on a different branch opcode. The branch table relies on the 
principle of locality, and assumes that, having switched PCs, the current process operates within 
a small region for a period of time. This allows the branch history table to generate pertinent 
history relating to the new PC within a few branches. 

The branch history information consists of a string of 1's and O's indicating what that branch did 
the last four times it was seen. For example, 1100, read from right to left, indicates that the last 
time this branch was seen it did not branch. Neither did it branch the time before that. But then 
it branched the two previous times. The prediction bit is the result of passing the history bits 
that were stored through logic which predicts the direction a branch will go given the history of 
its last four branches. 
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The prediction algorithm is accessible via IPR for software programmjng and testability reasons. 
After power-up, the Ebox microcode initializes the branch prediction algorithm segment of the 
BPCR register with an algorithm which is the result of extensive simulation and statistics 
gathering. While it would be possible to create a program for which this prediction logic is 
wrong all the time, on the average it does very well. This algorithm is shown in Table 7-30. The 
BPCR is discussed in greater detail in Section 7.5.1.8. 

7.5.1.2 The Branch History Table 

The 512 entries in the branch table are indexed by the opcode pc<8:0>. Each branch table entry, 
as depicted in Figure 7-13, contains the previous four branch history bits for branch opcodes at 
this index. The Ebox asserts E~FLUSB_BPT_B under microcode control during process context 
switches. This signal resets all branch table entries to a neutral value: history = 0100. This will 
result in a next prediction of O. 

MICROCODE RESTRICTION 

ECiCFLUSH_BPT_B may only occur while the Ibox is stopped. E%FLUSH_BPT_H must be 
asserted before the first branch is executed. 

Figure 7-13: Branch Table Entry Format 

3 :2 1 0 

i F.is,:~=y I 
+---+---+---+---+ 

(:mos~ recent) 

7.5.1.3 Branch Prediction Sequence 

When the BPU encounters a conditional branch opcode it reads the branch table entry indexed by 
pc<8:0>. If the prediction logic indicates the branch taken, then the BPU sign extends and adds 
the branch displacement supplied by the IBU to the current PC, and broadcasts the result to the 
Ibox on the NEW_PC lines. If the prediction bit indicates not to expect a branch taken, then the 
current PC in the Ibox remains unaffected. 

The alternate PC in both cases (CUlTent PC in predicted taken case, and branch PC in predicted 
not taken case) is retained in the BPU until the Ebox retires the conditional branch. When the 
Ebox retires a conditional branch, it indicates the actual direction of the branch. The BPU uses 
the alternate PC to redirect the Ibox in the case of an incorrect prediction. Section 7.5.1.7 has 
more details on mispredicted branches. 

The branch table is written with new history each time a conditional branch is encountered. Once 
a prediction is made, the oldest of the branch history bits is discarded. The remaining 3 branch 
history bits and the new predicted history bit are written back to the table at the same branch PC 
index. When the Ebox retires a branch queue entry for a conditional branch, if there was not a 
mispredict, the new entry is unaffected and the BPU is ready to process a new conditional branch. 
If a mispredict is signaled, the same branch table entry is rewritten, this time the least significant 
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history bit receives the complement of the predicted direction, refiecting the true direction of the 
branch. 

The branch prediction logic is based on the contents of the BPCR register, described in 
Section 7.5.1.8. Mter power-up, as part of the initialization sequence, the Ebox microcode 
initializes the BPCR to ECOS (HEX) which implements the truth table in Table 7-30. 

MICROCODE RESTRICnON 

An IPR write to the BPCR register in the BPU is required after power-up to load the 
branch prediction algorithm. 

Table 7-30: Branch Prediction Logic 

Branch 
History Prediction for Next Branch 

0000 Not taken 

0001 Taken 

0010 Not Taken 

0011 Taken 

0100 Not Taken 

0101 Not Taken 

0110 Taken 

0111 Taken 

1000 Not Taken 

1001 Taken 

1010 Taken 

1011 Taken 

1100 Taken 

1101 Taken 

1110 Taken 

1111 Taken 

7.5.1.4 The Branch Queue 

Each time the BPU makes a prediction on a branch opcode, it sends information about that 
prediction to the Ebox on the I%BRANCH_BUS_H<1:0> The Ebox maintains a queue of branch data 
entries containing information about branches that have been processed by the BPU but not by 
the Ebox. The bus is 2 bits wide: one valid bit and one bit to indicate whether the Ibox took 
the branch or not. Entries are made to the branch queue for both conditional and unconditional 
branches. For unconditional branches, the value of I%BRANCH_BUS_B<O> is ignored by the Ebox. 
The branch queue length is selected such that it does not overflow, even if the entire instruction 
queue is :filled with branch instructions, and there are branch instructions currently in the Ebox 
pipeline. At anyone time there may be only one conditional branch in the queue. A queue entry 
is not made until a valid displacement has been processed. In the case of a second conditional 
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branch encountered while a first is still outstanding, the entry may not be made until the first 
conditional branch has been retired. 

7.5.1.5 Branch Mispredlct 

When the Ebox executes a branch instruction and it makes the final determination on whether 
the branch should or shouldn't be taken, it removes the next element from the branch queue and 
compares the direction taken by the Ibox with the direction that should be taken. If these differ, 
then the Ebox sends E%BRANCH..MISPREDICT_L to the BPU. A mispredict causes the Ibox to stop 
processing, undo (using the RLOG) any GPR modifications made while parsing down the wrong 
path, and restart processing at the correct alternate PC. 

7.5.1.6 Branch Stall 

The BPU back-pressures the IBU by asserting BBANCH_STALL when it encounters a new conditional 
branch with a conditional branch already outstanding. If the BPU has processed a conditional 
branch but the Ebox has not yet executed it, then another conditional branch causes the BPU to 
assert BRANCH_STALL. Unconditional branches that occur with conditional branches outstanding 
do not create a problem because the instruction stream merely requires redirection. The alternate 
PC remains unchanged until resolution of the conditional branch. The Ebox informs the BPU with 
the Eo/eBCOr-."D_RETIRE_L each time a conditional branch is retired from the branch queue in order 
for the BPU to free up the alternate PC and other conditional branch hardware. 

BRA.~CH_ST.ALL blocks the Ibox from processing further opcodes. ~llen BB.A.~CH_STALL is 
asserted, the IBU finishes parsing the current conditional branch instruction, including the branch 
displacement and any assists, and then the IBU stalls. The branch queue entry to the Ebox is 
made after the first conditional branch is retired. At this time, BRANCH_STALL is de-asserted and 
the alternate PC for the first conditional branch is replaced with that for the second. 

BSTL_FRC_pcQ is a signal used by the PC queue logic to force an entry into the PC queue when 
the second conditional branch is finally processed by the BPU after the release of a BRANCH_STALL. 
During a BRANCH_STALL, the PC queue refrains from updating the last entry to point to the next 
instruction until the stall breaks and the BPU finishes processing the second conditional branch. 

7.5.1.7 PC Loads 

The BPU distributes all PC loads to the rest of the Ibox. 

Ibox PC loads from the csu microcode load a new PC in one of two ways. When the Csu asserts 
PC_LD_WBUS, it drives a new PC value on the I%IBOx:,.IW_BUS_B<:31:0> lines. PC_LD_MD indicates 
that the new PC is on the MtQID_BUS_B<:63:0> lines. The BPU responds by forwarding the 
appropriate value onto the NEW_pc<:31:0> lines and asserting LOAD..NEW_PC. These Ibm PC 
loads do not change conditional branch state in the BPU. 

The Ebox signals its intent to load a new PC by asserting E%mox:,.LOAD_PC_L. The assertion 
of this signal indicates that the next piece of IPR data to arrive on the MtQID_BUS_B<63:0> 
is the new PC. The next time the Mbox asserts M%IBOx:,.IPR_WR_H, the new PC is taken from 
M%'MD_BUS_H<:31:0> and forwarded onto NEW_pc<:31:0> and LOAD_NEW_PC is asserted. 
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The BPU performs unconditional branches by adding the sign extended branch displacement to 
the current PC, driving the new PC onto the NEW_pc<31:0> lines and asserting LOAD_NEW_PC. 
Conditional branches load the PC in the same fashion if the logic predicts a branch taken. The 
following actions occur on a conditional branch mispredict or Ebox PC load: 

• any pending conditional branch is cleared 
• pending unconditional branches are cleared 
• any pending write to the Ebox branch queue is cleared 
• I%FLUSH_mEF _LAT_H is asserted to abort pending Istream fill requests in the Mbox 

7.5.1.8 Branch Prediction IPR Register 

The BPCR IPR provides control for the BPU and read/write access to the history array. The 
write-only BPCR<FLUSH_BIIT> bit causes a BPU branch history table flush. The flush is identical 
to the context switch flush, which resets all branch table entries to a neutral value: history bits 
= 0100. The write-only BPCR<FLUSH_CTR.> bit causes the BRANCH_TABLE..COUNTER<8:O> to be 
cleared. The BRANCH_TARLE_COUNTER provides an address into the branch table for IPR read and 
write accesses. Each IPR read from the BPCR or write to the BPCR with BPCR<LOAD_HISTORY> 
= 1 increments the counter. This allows IPR branch table reads and writes to step through 
the branch table array. BPCR<LOAD_HISTORY> enables writes to the branch history table. A 
write to the BPCR<HlSTORY> field with BPCR<LOAD_HlSTORY> = 1 causes a BPU branch history 
table write. The history bits for the entry indexed by the counter is written with the IPR data. 
BPCR reads supply the history bits in BPCR<HlSTORY> for the entry indexed by the counter. 
BPCR<MISPREDICT> will return a "1" if the last conditional branch mispredicted. BPCR<31:16> 
contain the branch prediction algorithm. Any IPR write to the BPCR will update the algorithm. 
An IPR read will return the value of the current algorithm. For example, a "ott in BPCR<16> 
means that the next branch encountered will not be taken if the history is ttOOOO". A "1" in 
BPCR<21> means that the next branch encountered when the prior history is tt0101" will be 
taken. 
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Figure 7-14: IPR D4 (hex), BPCR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 9 81 7 6 5 41 3 2 1 0 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 BPO_ALGORITHM 1 0 1 1 1 1 01 history I :BPCR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I 1 
LOAD_HISTORY ---+ I 

FLUSH_CTR ---+ 

MISPREDICT ---+ 
HISTORY ---+ 

The microcode will write the following bit pattern as part of the power-up sequence: 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 9 81 7 6 5 41 3 2 1 0 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 01 All O's 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 7-31 : BPCR Field Descriptions 

Name Extent Type Description 

HISTORY 

MISPREDICT 

FLUSH_BHT 

3:0 

5 

6 

FLUSH_eTR 7 
LOAD_HISTORY 8 

BPU_ALGORITHM 31:16 

RW 

RO 

WO 

WO 

WO 

RW 

Branch history table entry history bits. 

Indicates if last conditional branch mispredicted. 

Write of a 1 resets all history table entries to a neutral value, 
hardware clears hit. 

Write of a 1 resets BPCR address counter to 0, hardware clears bit. 

Write history array addressed by BPCR address counter. 

Controls direction of branch for given history. 

MACROCODE RESTRICTION 

If an MTPR to the BPCR register is followed by a conditional branch instruction, 
the prediction algorithm used for this branch is unpredictable. Furthermore, the 
branch history table update is also unpredictable. The BPU functions correctly, but 
programs which depend on particular patterns of branch predictions (such as diagnostic 
tests) should avoid placing conditional branch instructions immediately after an MTPR 
instruction that writes to the BPCR register. 

Bits 8,7,6 are defined in Table 7--32 for IPR writes to the BPCR. NOTE: The prediction algorithm 
will be updated on every IPR write to the BPCR. 
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Table 7-32: BPCR <8:6> 

BIT BIT BIT Write Action 

8 '1 6 

0 0 0 Do nothing, except update algorithm 

0 0 1 Flush branch table. History not written 

0 1 0 Address counter reset to o. History not written 

0 1 1 Flush branch table, reset address counter, history not written 

1 0 0 Write history to table, counter automatically increments 

1 0 1 Undefined: Branch table flushed, new history written, counter incremented 

1 1 0 Undefined: Write history to old counter value, counter reset to 0 

1 1 1 Undefined: Bninch table flushed, write history to old counter value, counter 
reset to 0 

7.6 PC Load Effects 

This section summarizes the various effects of loading a new PC in the Ibox. New PCs are loaded 
from four different sources. The BPU receives the new PCs from all these sources, dri'''es the new 
PC on NEW_Pc<31:0>, and asserts LOAD_NEW_PC. The four sources for new PCs in priority order 
are: 

1. Ebox PC load from the M%MD_BUS_B<31:0> 
The Ebox loads a new PC as a result of an interrupt or exception or for instructions like _ 
REI, HALT, CASEx etc. After the Ebox asserts the E%IBO:K..LOAD_PC_L signal, the PC is 
supplied on the M%MD_BUS_H<31:0>, along with the M%mOX_IPR_WR_B signal. The BPU 
selects Mo/OMD_BUS_B<31:0> to drive NEW_pc<31:0> and asserts LOAD_NEW_PC. 

2. Branch Mispredict PC 
When a mispredict has been detected, the BPU drives NEW_pc<31:0> from the alternate PC 
latch containing the address of the branch path not taken, and asserts LOAD_NEW_PC. 

3. PC_LD_ WBUS from the csu 
For instructions like JSB and JMP, the CSU computes a new PC and drives that PC up to the 
BPU. The BPU receives the PC on I%IBO:K..IW_BUS_B <31:0>, drives NEW_pc<31:0> and asserts 
LOAD_NEW_PC. 

4. PC_LD_MD from the CSU 
For instructions like JSB, JMP, RET and RSB, the csu requests a new PC from the MbOx. 
The csu asserts PC_LD_MD, and the next M%mox..,DATA..L signals the new PC is on the 
M%MD_BUS_B<31:0>. The BPU receives the PC on MtQID_BUS_B <31:0>, drives NEW_pc<31:0> 
and asserts LOAD_NEW_PC. 

5. Branch Destination PC 
For unconditional branches or when the BPU predicts a conditional branch as taken, it 
computes the branch destination, drives NEW_pc<31:0>, and asserts LOAD_NEW_PC. 
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The effects of loading a new PC are shown below. These effects take place regardless of the source 
of the PC. 

• PREFETCB_ENABLE is set in the VIC. 

• VIBA<31:3> in the VIC are loaded from NEW _pc<31:3> 

• MBARD_ERR is cleared in the VIC. 

• IMMGT_EXC is cleared in the VIC. 

• MISS_PENDING is cleared in the VIC. 

• WRITE_PENDING is cleared in the VIC. 

• VIC_READ is set in the VIC, allowing a new cache read sequence from the new address. 
• The PFQ is flushed and NEW_Pc<2:0> are latched as the initial BYTES_RETIRED. 

• The BPU asserts I%FLUSB_IREF _LAT_H indicating that the Mbox should flush its !REF latch. 

• The IBU stops the parser and latches the new PC from NEW'_pc<31:0>. 

• The IIU latches the new PC as the next entry in PC queue. 

7.6.1 Mispredict PC Loads 

V\Then a PC load is the result of a branch mispredict, additional actions must be taken as described 
below 

• All pending conditional and unconditional branches are cleared in the BPU. 

• Pending branch queue writes are aborted by the BPU. 

• In the IIU, the instruction queue free counter is cleared. 

• In the IIU, the PC queue is flushed 

• In the IIU, ISSUE_STALL is cleared. 
• The SBU clears the scoreboard array counters. 

• In the csu, the 81 stage produces the mispredict RLOG unwind microaddress. The S3 stage 
is forced to NOP. NOTE: The RLOG is NOT flushed. 

• In the csu, IMD_VALID is reset. 
• In the OQU, the MD allocation pointer is reset and the MD allocation counter is cleared. 

• In the OQU, the source queue free counter is cleared. 

• In the OQU, the destination queue free counter is cleared. 
• In the csu, the LD_PC_MD latch is cleared. 

7.6.2 Ebox PC Loads 

When the Ebox is the source of the new PC, the signal EtfdBOx..LOAD_PC_L is asserted several 
cycles before the actual PC arrives from the Mbox. Mter this signal is asserted, but before the 
new PC is loaded, the signal E%REST.ART_IBOX_H may be asserted, starting the parser and VIC 
prefetching. To avoid parsing from the wrong instruction stream, the following actions are taken 
upon the assertion of E%IBOx..LOAD_PC_L. 

• The PFQ is flushed, forcing PFQ..EMPTY to be asserted. 
• VIC prefetching is disabled until LOAD_NEW_PC is asserted by the BPU. This also blocks VIC 

bypass to the PFQ. 
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• MIIARD_ERR is cleared in the VIC. 

• IMMGT_EXC is cleared in the VIC. 

MICROCODE RESTRICTION 

E%IBOx..LOAD_PC_L and E%lBOX-IPR_ WRITE_H must not occur in the same cycle. 
Eo/dBOX_LOAD_PC_L and E%RESTART_mox..H must not occur in the same cycle. 

7.7 EO/oSTOP _IBOX effects 

When the Ebox microcode performs a MISCIRESET_CPU it asserts Eo/eSTOp_mOX-II. The Ibex 
requires E%9TOP _IBOx..H to be asserted whenever RESET_L is asserted. 

MICROCODE RESTRICTION 

Eo/tSTOP_IBOX.;.H" must always be followed by E%IBOx.,LOAD_PC_L and then 
Eo/cRESTART_lBOX_H. EO/tSTOP _mOX_H and Ec;cBRANCH_MISPREDICT_L cannot occur in 
the same cycle. 

The effects of this signal on the various sub-sec-aons in the !box are shown below. 

• PREFETCH_E.~LE is cleared in the VIC 

• l\IISS_PE-'''DING, '\\o'"RITE_PENDING, and READ_STATE are cleared in the VIC, putting the VIC in 
an idle state. 

• IHARD_ERR is cleared in the VIC. 

• MIIARD_ERR is cleared in the VIC. 

• IMMGT_EXC is cleared in the VIC. 

• In the Iru, the instruction queue free counter is cleared. 

• In the Iru, ISSUE_STALL is cleared. 
• The IQ.. VALID signal, from the IIU to the Ebox, is cleared. 

• The Istream parser in the mu is stopped. 
• The signals I~IIEIUCH and I%IMEM_MEXC_B are cleared. 
• The PREV_NOT_DONE signal is cleared in the mu 

• CSU_LD_PC_PEND is cleared in the mu 

• LD_NEW_PC_PEND is cleared in the mu 

• The FD opcode fiip-fiop is cleared in the mu 

• The IDLE microword is injected into all stages of csu pipeline. However, NOTE: RLOG 
unwind is not aborted. 

• If an IPR read to back-up PC with RLOG unwind is in progress, the unwind completes as 
normal, but the back-up PC write to the Ebox working register is disabled. All other Ibox IPR 
accesses are aborted. 

• IMD_VALID is reset in the csu 
• The IREF-pending latch is cleared in the csu 
• The PC_LD_MD - pending latch is cleared in the csu 
• The IPR read/write select signals reset in the csu 
• The stage 1 valid hit is cleared in the csu 
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• The source queue allocation counter is cleared in the OQU 

• The destination queue allocation counter is cleared in the OQU 

• The MD allocation counter is cleared in the OQU 

• The MD index counter is cleared in the OQU 

• The source and destination scoreboard counters are cleared in the SBU 

• Branch stalls are cleared in the BPU 

• I%FLUSH_IREF _LAT_H is asserted 

7.8 Initialization 

7.8.1 Mechanisms for Ibox State Reset 

The Ibox depends on the EC"~P _IBOX_B signal to initialize the states shown in Section 7.7. 
In addition, RESET_L is used to clear those states listed belo'\v which cannot be initialized by 
E%STOP _IBOx..B. 

• VIC_ENABLE is cleared in the \'1c. 

• RLOG pointers are reset in the CSU. 

• The IDLE microword is injected into stage 1 of the CSU pipeline. 
• PC queue pointers are reset in the IIU. 

7.9 Errors, Exceptions, and Faults 

7.9.1 Overview 

The Ibox handles some of the processing for memory hardware errors, memory management 
exceptions, and reserved opcode faults, and reserved addressing mode faults. A global view of 
error, exception, and fault handling is presented here. Implementation details are distributed 
amongst the Ibox sub-section text. 

Istream memory hardware etTors may originate in the Mhox and memory subsystem or in the 
VIC array. Dstream memory hardware errors originate in the Mbox and memory subsystem. 
Istream and Dstream memory management exceptions originate in the MbOx.. Reserved opcodes 
and reserved addressing modes are detected in Ibox. hardware during instruction parsing. 

7.9.2 Istream Memory Errors 

When the Mbox conditions returning Istream data with M'1ciMME_FAULT_B or M%lIARD_ERR_H, the 
VIC and PFQ writes are inhibited, prefetching is disabled, and the VIC sets appropriate condition 
fiags for the mu. The IBU continues to parse until it attempts to parse the Istream data that 
caused the exception or error. The condition :flags are then forwarded to the Ebox.. If the Ebox. 
detects an empty instruction queue, source queue, destination queue, or field queue while the 
exception or error condition is asserted, the Ebox. initiates an exception microtrap. 
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Any PC load or E%STOP _IBOx..H resets the error and exception Hags in the VIC. An Ibox PC 
load or Eo/cRESTART_IBOx..B restarts prefetching and parsing. Thus if the error or exception 
gets forwarded to the Ebox, the Ebox can reset the Ibox fiags, load a new PC and continue. If 
the instruction stream branches around the instruction stream data responsible for the error or 
exception, the Ibox resets the error fiags and continues without reporting the condition. 

If a VIC parity error is detected, VIC prefetching and mu instruction parsing are halted 
immediately and the error forwarded to the Ebox. This action is taken because the data containing 
the error may already have been loaded into the PFQ. If the Ebox detects an empty instruction 
queue, source queue, destination queue, or field queue while the exception or error condition is 
asserted, the Ebox initiates an exception microtrap. Section 7.2.1.7 and Section 7.3.2.15 contain 
the Ibox implementation details of Istream error and exception handling. See Table 8-12 and 
Section 8.5.19 for Ebox implementation details. 

7.9.3 Dstream Memory Errors 

Memory errors on incoming Dstream data are detected during the processing of some deferred 
mode specifiers. In auto-increment deferred and displacement deferred specifier modes, the 
complex specifier unit reads the address of an operand from memory. This memory read is 
followed either by a direct \vrite to an Ebox MD, or an operand memory reference to read the 
actual operand into an Ebox MD andlor create a PA queue entry for a result store. 

If the Mbox retum.s :M~c:l\IME_FAUL.T_H or Mt;:CHARD_ERR_R, then in the case of a direct MD write, 
the appropriate flag is sent with the ~ID write to the Ebox. If the Ebox detects one of the flags 
during an MD file access, it initiates an exception microtrap. If a memory operation is required 
to complete the processing of the specifier, the appropriate error or exception £lag, sent with the 
memory request. The Mbox forces a memory management error or exception to occur for that 
reference, causing a fault flag to be returned to the appropriate Ebox MD. 

Section 7.4.2.2.2 contains the Ibox implementation details of Dstream error and exception 
handling. See Table 8-12 and Section 8.5.19 for Ebox implementation details and Section 12.6.5 
for Mbox implementation details. 

7.9.4 Reserved Opcode Faults 

Reserved opcode faults occur when the lBU detects unimplemented or reserved opcodes during 
instruction parsing. All such opcodes stop the parser and make an Ebox instruction queue entry 
containing a microcode dispatch for the reserved opcode routine. Section 7.3.2.12 contains the 
Ibox implementation details for reserved opcode handling. 

7.9.5 Reserved Addressing Mode Faults 

Reserved Addressing Mode Faults occur due to illegal combinations of specifier mode, specifier 
register, and access type. Unpredictable addressing modes occur due to combinations of specifier 
mode, specifier register, access type, and data length that do not make sense. Table 7-33 
summarizes the behavior of the Ibox on reserved and unpredictable addressing modes. Reserved 
addressing modes as specified by the VAX Architecture Standard always cause reserved 
addressing mode faults. Unpredictable addressing modes may produce a fault, or may be allowed 
to continue even though the result does not make sense. The processing of unpredictable modes 
never hangs the machine. 
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Table 7-33: Reserved Addressing Mode Faults 

Address Access GPRs nata Indexed Action 

Mode 'JYpe Length 

SA#literal Modify take required fault 

SA#literal Write take required fault 

SA#literal Address take required fault 

SA#literal Field take required fault 

SA#literal Yes take required fault 

base[Rx] PC take required fault 

base[Rx] Yes take required fault 

Rn Address take required fault 

Rn Yes take required fault 

(RnH- :Modify PC take required fault 

(RnH- Write PC take required fault 

Rn PC sourceldest queue entry has Rn=PC 

Rn SP q!d,g 2nd source/dest queue entry has Rn=PC 

Rn SP~-\P,FP o~h unimplemented data lengths 

(Rn) PC Operand address is unpredictable 

-(Rn) PC Operand address is unpredictable 

-(Rn) Rx=Rn ax read for index, then Rn read for base 

(Rn)+ Rx=Rn ax read for index, then Rn read for base 

@(Rn)+ Rx=Rn Rx read for index, then Rn read for base 

(Rn)+ Address PC PC after specifier byte passed as address 

(Rn)+ PC Yes ax for index is read but not used 

When a Reserved Addressing Mode Fault is detected, I%RSVD_ADDR_FAULT_B is asserted, VIC 

prefetching is stopped, the IBU is stopped, and the CSU goes idle. A Reserved Addressing Mode 
Fault also blocks the OQU from makjng the source queue or destination queue entry associated 
with the faulting operand. 

If the Ebox detects an empty source queue, destination queue, or neld queue while 
Io/DRSVD-.AJ)DR_FAULT_B is asserted, the Ebox initiates an exception microtrap. 

All reserved addressing mode fault conditions are cleared in the Ibox when the Ebox loads a new 
PC. 
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7.10 Ibox Signal Name Cross-Reference 

All signal names referenced in this chapter have appeared in bold and reflect the actual name 
appearing in the NVAX schematic set. For each signal appearing in this chapter, the table below 
lists the corresponding name which exists in the behavioral model. 

Table 7-34: Cross-reference of all names appearing In the lbox chapter 

Schematic Name 

I~CB"..BOS_B<l:O> 

I~POBCE_IL\BJ)_FAm.TJI 

NtPOBCE_MME_FAtlLT_B 

I%mo~IA...ADDR_B<3:0> 

I~mO~I.A..READ_B 

I~mo~~·_ADDB_B<4:0> 

I~moX_IW_BUS_B<31:0> 

I~IMEM_MEXC_B 

I~ICLBtJS_B<22:O> 

IfliOPEBAND_BUS_B<14:0> 

I~PMVXl_B 

I~RSVD..ADDR_FAtlLT_B 

6BCOND_1tE'1"D.IE_L 

ftoBBANCB..MISPBEDJCT~ 

~BE'l".tItE_B 

J:CMDQ...BE'l".tItE_RMODE_B 

~BE'DBE..BN_B<3:O> 

KFL'VSIUIPI'JI 

KFLlJSB..PCCU! 

~tJSEr...VIC_B 

ftoFPD_SET_L 

ft,lBO~BV8J1<31:O> 

:£IMBOXJPR..NUM...B<3:0> 

:£IMBO~JPltJUtAD.JI 

~XJPR_TAG..B<2:O> 

ft,lBOXJPR_WBl'.nUI 
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Behavioral Model Name 

I%BRANCH_BUS_H<l:O> 

I%FORCE_HARD_FAULT_H 

I%FORCE_MME_FAULT_H 

I%IBOX_IA_ADDR_B<3:0> 

I%IBOX_IA_~_B 

I%IBOX_IW _ADDR_H<4:0> 

I%IBO)l.IW _BUS_H<31:0> 
I%IBOX_IW _ WRITE_H 

I%IBOX_S_ERR_L 

I%IMEM_HERR_B 

I%IMEM_MEXC_B 

I%I'LBUS_H<22:0> 

I%OPERAND_BUS_B<14:O> 

I%PMUXO_B 

I%PMUX1_B 

I%RSVD_ADDR_FAULT_H 

E%BCOND_RETIRE_H 

E%BRANCH_MISPREDICT_H 

E%DQ...RETIRE_H 

E%DQ..RETIRE_RMODE_H 

E%DQ..RETIRE_RN_H<3:O> 

E%FLUSH_BPI'_H 

E%FLUSH_PC'LH 

E%FLUSH_ VIC_H 

E%FPD_SET_H 

E%IBOx...~BUS_H<31:0> 

E%IBOx...IPR_NUM_H<3:0> 

E%IBOx...IPR_READ_H 

E%IBOx...IPR_TAG_H<2:0> 

E%IBOx...IPR_ WRITE_H 
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Table 7-34 (Cont.): Cross-reference of all names appearing In the Ibox chapter 

Schematic Name 

~IBOx....LOADJ'CJ. 

~BESTAltT_JBOx....B 

J:CIioBETJBE_INST.R._L 

~RE"1't8E_B<l:O> 

E'UQ..B.E'l'IB.E..MD_B<l:O> 

nsQ..RE'J.'JRE_RMODE_B<l:O> 

ft.SCLllE"l'IRE_RN1_B<3 :0> 

nSCLRETlllE_RN2_B<3:0> 

E'.iSTOP _IBOx..1I 

I~FOBCE~1ME_FAL"LT_H 

I~IBOx...A.DDR_II<31:0> 

IwIBOX_AT~L<1:0> 

I~IBOx..CMD_L<4~1:0> 

I~IBOx...DL..L< 1:0> 

I~IBOx...REF _DESTJ.<1:0> 

I~IBOx...TAG_L<2:0> 

I~mEF_BEQ...H 

ICJi,SPEC_~B 

M~_ERlLII 

MtQB~DATAJ. 

JI.IHB~lPR_ WR..JI 

~JPJLL..II 

MUfD_B'VSJ!<63 :0> 

M.UfD_B'OS_QW -.l'AlU'.l'Y_L 

M'IMME_FA'DLT_II 

lIftQW_ALlGNMENT_B<l:O> 

JIlIMPEC_Q..lI"OI..l....B 

M.,.VIC..;DA'»\..L 

7 .11 Testability 
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Behavioral Model Name 

E%IBOX_LOAD_PC_H 

E%RESTART_IBOX_H 

E%RETIRE_INSTR_H 

E%S'LRETIRE_H<l:O> 

E%S'LRETIRE_MD_H<l:O> 

E%S'LRETIRE_RMODE_H<l:O> 

E%S'LRETIRE_RN1_H<3:0> 

E%S'LRETIRE_RN2_H<3:0> 

E%STOP _IBOX_H 

I%FLUSH_IREF~LAT_H 

I%FORCE_HARD_FAULT_H 

I%FORCE_MME_FAULT_H 

I%IBOX_ADDR_H<31:0> 

l%IBOX_AT_H<l:O> 

I%IBOX_ Cl\ID_H<4:0> 

I%IBOX_DL_H<l:O> 

I%IBOX_REF _DEST_H<l:O> 

1%IBO~TAG_H<2:O> 

I%IREF _RE'LH 

I%SPEC_RE'LH 
M%HARD_ERR_H 

M%IBOX-DATA_H 

M%IBOX_IPR_ WR_H 

M%LAST_FnL_H 

M%MD_BUS_H<63:O> 

M%MD_BUS_QW_PARITY_H 

M%MME_FAULT_H 

M%QW_ALIGNMENT_H<l:O> 

M%SPEC_'LFULL_H 

M%VIC_D~H 
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7.11.1 Overview 

Ibox testability is enhanced by architecturally accessible features, and connections to the internal 
scan register and the parallel port. 

7.11.2 Internal Scan Register and Data Reducer 

Ibox state can be latched into the scan register and shifted off-chip through the global internal 
scan register. The shift out begins with scan register bit O. See Chapter 19 for the implementation 
details of the internal scan register. Table 7-35 lists the states in the Ibox scan register. Under 
global control from the test port, the Ibox scan register can be configured as a LFSR. 

Table 7-35: Ibox Scan Register Fields 

Bit 
Field Field Name 

<0> STP_llESTAltT 

<1> STP_SVPPRESS 

<2> SBL1T" 

<8:3> BNlSHORT Ll'l'EBAL 

<11:9> AT 

<13:12> DL 

<14> VALID 

<15> COMPLEX 

<18:16> DISPATCH 

<19> AT_BMW 

<20> INDED:D 

<21> ASSIST 

<22> PC_MODE 

<23> .IMP _OR...J8B 

<25:24> E..DL 

7.11.3 Parallel Port 

Description 

St.op parser flag 

Stop parser flag 

specifier control <0>, short literal 

specifier control <6: 1>, register or shlit value 

specifier control <9:i>, access type 

specifier control <11:10>, data length 

specifier control <12>, valid 

specifier control <13>, complex specifier 

specifier control <16:14>, dispatch address 

specifiercontr~<17>,~ 

specifier control <18>, index 

specifier control <19>, assist 

specifier control <20>, PC mode 

specifier control <21>, JMP or JSB 

execution data length <1:0> 

The esu microcode address is routed to the chip parallel port. The microcode address can be 
monitored on a cycle by cycle basis during chip debug by selecting the Ibox as source to the 
parallel port. When selected, a buffered version of the control store address, M11X...B<6:0>, appears 
on PP _DATA<6:0>. See Chapter 19 for the implementation details of the parallel port. 
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7.11.4 Architectural Features 

Internal processor registers are included as architectural features to aid in testability. IPR access 
to VIC tags and data is available through the VTAG and VDATA registers. See Section 7.2.1.16 
for the implementation details of the these registers. IPR access to the branch history table and 
branch status is available through the BPCR register. See Section 7.5.1.8 for the implementation 
details of the BPCR. 

7.12 Performance Monitoring Hardware 

7.12.1 Signals 

The Ibox provides two signals for perlormance monitoring: I%PMUXO_H asserts on every VIC access 
and I%PMUXl_H asserts on every VIC hit. These signals enable the Ebox performance monitoring 
hardware to gather statistics on VIC hits versus VIC accesses. 
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7.13 Revision History 

Table 7-36: Revision History 

Who When Description of ehaDge 

John F. Brown 19-Feb-1991 Update following pass 1 tape out 

John F. Brown, 12-Jan-1990 Intermediate release. 
Ruben 
Castelino, 
Mary Field, 
Paul Gronowski, 
Jeanne Meyer 

John F. Brown, 06-Mar-1989 Release for external review. 
Paul Gronowski, 
Jeanne 
McKinley 

John F. Brown 19-Dec-1988 Partial Update. 

Shawn Persels 06-0c""L<"' 1988 Initial release. 
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Chapter 8 

The Ebox 

8.1 Chapter Overview 

This chapter describes the Ebox section of the NVAX CPU chip. Only the major functional blocks, 
their interfaces to each other, and the interface to the rest of the NVAX system are described here. 
Circuit level implementation details are not of primary concern in this document. 

8.2 Introduction 

The Ebox is the instruction execution unit in the ~TVAX CPU chip. It is a 3 stage pipeline (S3 .. S5) 
which runs semi-autonomously to the rest of the NVAX chip and supports the following functions: 

• Instruction Execution 
The Ebox is responsible for carrying out the execution portion of each VAX instruction under 
control of a microfiow whose initial address is provided by the Ibox issue unit. 

• Instruction Coordination 
The Ebox is a major source of control to coordinate instruction processing in the Ibox, Mbox, 
and Fbox. It ensures that Ebox and Fbox macroinstructions retire in the proper order, and 
it provides controls to the Mbox and Ibox which help manage certain inter-macroinstruction 
dependencies. The Ebox cooperates with the Ibox in handling mispredicted branches. 

• Trap, Fault and Exception Handling 
The Ebox coordinates trap, fault, and interrupt handling. It delays the condition until all pre
ceding macroinstructions complete properly. It then collects information about the condition 
and ensures that the COtTect architectural state is reached. 

• CPU Control 
Most CPU control is provided by the Ebox. Ebox control functions include CPU initialization, 
controlling Ibox, Fbox, and Mbox activities, and setting control bits during major CPU state 
changes (e.g. taking an interrupt or executing a change mode instruction). 

The Ebox accomplishes many of the above functions by executing the NVAX Ebox microcode. This 
chapter views the Ebox as the interpreter of microcode. Describing how microcode functions are 
used to correctly emulate the VAX architecture or the architectural motivation for Ebox hardware 
functions is generally outside the scope of this discussion. 
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Figure 8-1 at the end of this section is a top level block. diagram of the Ebox showing all the 
major Ebox function units, their interconnections, and their place in the pipeline. The pipeline 
segments are shown in the diagram (82, 83, 84, and 85). The sections following the diagram 
describe the function elements depicted and the Ebox pipeline. 
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Figure 8-1: Ebox Block Diagram 
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8.3 Chapter Structure 

The Ebox is described from both an overall functional and individual function unit standpoint. 
The top level description is of the major Ebox functions. The next level consists of a detailed 
description of each of the Ebox function units. 

The Ebox functions are described in the initial sections of this chapter. They are presented 
referring to the microcode fields which control the Ebox. Within each section the Ebox functions 
in question are discussed in detail and the Ebox function units which support that function are 
introduced. The functional overview is followed by a comprehensive description of the each of the 
Ebox function units. 

The latter sections of this document describe Ebox initiali%ation, timing, error handling, testabil
ity and other details not related to the main-line functionality of the Ebox. 

8.4 Ebox Overview 

8.4.1 Microword Fields 

The Ebox is controlled by the data path control portion of the microword, which is either standard 
or special format. The other portion of the control word, the microsequencer control portion, 
controls the microsequencer which determines which microword is fetched in every cycle. The 
fields of the data path control portion of the microword and their effect within the Ebox are shown 
in Table 8-1. For more information on microword formats and field widths see Chapter 6. 

NOTATION 

The notation FIELDIFUNCTION is used throughout this chapter to mean that microword 
field FIELD specifies FUNCTION. 

Table 8-1: Data Path Control Mlcroword Fields 

Microword 
Field 

FORMAT 

LIT 

ALU 

MRQ 

SHF 

8-4 The Ebox 

Miaroword 
Format 

Both 

Both 

Both 

Both 

Standard 

De.criptiOll 

This one-bit field determines whether the microword is in the special format. 
If it is 1, the MISC1, MISC2, and D fields exist. If it is 0, the Q, SHF, and 
VAL fields exist instead. 

This one-bit field determines whether the mic:roword is the constant generation 
variant (format). !fit is 1, the POS and CONSTfields exist. Ifit is 0, the VAL 
and B fields exist instead in standard format, and the MISC2, D, and B fields 
exist instead in special format. 

Sets the ALU function, including typical ALU operations, and others. 

Controls initiation ofEbox memory accesses and other Mbox control functions. 
The Ebox decodes the field and sends the corresponding request to the Mbox. 

Sets the shifter:function. The W and Q fields control how the shifter output 
is used. Some settmgs of this field specify a pass operation instead of a shift. 

DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.0t February 1991 

Table 8-1 (Cont.): Data Path Control Mlcroword Fields 

Mic:roword 
Field 

VAL 

A 

B 

POS 

CaNST 

CaNST. lOs 

DST 

Q 

W 

L 

V 

MISC 

MISCI 

MISC2 

Mic:::roword 
Format 

Standardl 

Both 

Both1 

Both2 

Both2 

Both2 

Both 

Standard 

Both 

Both 

Both 

Both 

Special 

Speciall 

DISABLE.RETIRE Speciall 

Description 

Specifies the shift amount (1 to 31) or, if VAL = 0, specifies to shift the amount 
in the SC register. 

Specifies the source of E_BtJH.\BOS_Lc81tO> for this microword. The A field 
can select any element in the register file or one of several of Ebox sources. 
E_BVSIW.Bt1SJ.<81tO> is one of the two sources for the ALU and the shifter. 

When the source of E_BUSUBt1S_Lc811D> is a register this field specifies the 
source of E_Bt18~BBOS_Lc811D>. The B field can select from. some of the elements 
in the register file or from a small number of other Ebox soun:es. EJlun.BBt1S_ 
L<311D> is one of the two sources for the ALU and the shifter. 

When the source of E_Bt1SUBUSJ.<811D> is from the constant generator this 
field specifies which byte the constant value is in. Bytes a through 3 may be 
specified. The other bytes are forced to O. 

'Ibis field contains the literal byte value which is sourced to one of the bytes 
of E_BUSramUSJ"c311D> as specmed by the PCS field. (The other E_BUSUBUS_ 
L<31tO> bytes are forced to 0.) 

'Ibis field contaiDs the literal 10-bit value which is sourced to E_Bt1S'iCBBUS_ 
L<9lO>. (E_BUSC;CBBUS_L<31:10> are forced to 0.) 

This field specmes the destination of E_BUS~WBUSJAlaO>. The possible des
tinations include a subset of the register file and a number of other Ehox 
destinations. 

Controls whether or not the Q register is loaded with. the shifter output for 
this microword. 

Selects the driver OfE_BOS«iiWBOS_L<811D>. Either the ALU or the shifter output 
is driven on E_Bt18I1>WBOS-.L<8laO>. 

This field controls whether the Ehox operations are done with a data length of 
longword or the length specified in the DL register. The Ebox operations af
fected are condition code calculation, size of memory operations, zero extending 
of EJlVSII>WBt1S_L data, and bytes affected by register file writes. 

Controls updati.ng of the VA register. Either the VA register is updated with. 
the value:from the ALU, or it is not changed from its previous value. 

This field has many uses. Only ODe use can be selected at a time. This field 
can control PSL condition code alterations, set the DL register, set or clear state 
flags, or invoke a box coordination or control function. 

This field can specify one of a few Ibox or Fbax coordination or control func
tions, and can be used to set·or clear state flags. 

One M'box control function and one to add an F'box destination scoreboard 
entry. 

This field is used to disable retire of macroinstructions and retire queue entries 

1 Not constant generation microword variant. 

2Constant generation microword variant. 

sThe CONST.10 field is ac:tua1ly the POS field bitwise concatenated with the CONST field, with the POS field in the 
more significant position. It is simply a way of treating these two mic:roword fields as one. CONST.IO is only used when 
MISC/CONST.lO.BIT is specified. 

DIGITAL CONFIDENTIAL The Ebox 8-5 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

When a microword field is not present in all formats, it defaults to NOP (no operation) when a 
microword format without that field occurs. More specifically, standard format microwords effec
tively specify MISClINOP, MISC2INOP, and DISABLE.RETIRElNO by default. Special format microwords 
effectively specify QlHOLD.Q, SHFINOP, and VAIJO. When the microword is the constant generation 
variant of the standard format microword, VAUO is effectively specified, and the B field is ignored 
since this microword variant sources a constant onto E_BUS%BBUS_L<31:O>. In the constant gen
eration variant of the special format microword, MISC2INOP and DISABLE.RETIREINO are effectively 
specified, and the B field is ignored because this microword variant also sources a constant onto 
E_BUS%BBUS_L<31:O>. 

8.4.1.1 Microsequencer Control Fields 

In addition to decoding the datapath control portion of the microword, the Ebox decodes a part 
of the Microsequencer control portion of the microword. Specifically, it detects when the SEQ.FMT 

and SEQ.MUX fields (see Chapter 9 and Chapter 6) specify LAST. CYCLE or LAST.CYCLE.OVERFLOW. 

The Ebox fault detection logic and the RMUX control logic use these decodes. 

8.4.2 The Register File 

The register file contains four kinds of registers: lID (memory data), GPR, Wn (working), and 
CPUSTATE registers. The lID registers receive data from memory reads initiated by the Ibox, 
and from direct writes from the Ibox. The Wn registers hold microcode temporary data. They 
can receive data from memory reads initiated by the Ebox and receive result data from .ALU, 
shifter, or Fbox operations, and from the Ibox in the case of Ibox IPR reads. The GPRs are the VAX 

architecture general-purpose registers (though R15 is not in the file) and can receive data from 
Ebox initiated memory reads, from the ALU or shifter, or from the Ibox. The CPUSTATE registers 
hold semipermanent architectural state (e.g. KSP, SCBB). They can only be written by the Ebox. 

8.4.3 ALU and Shifter 

Each microword specifies source operands for the· ALU or shifter (A, B, POS, and CONST fields), 
operations for these function units to perform (ALU, SHF, and VAL fields), and a destination (or 
possibly two destinations if Q or VA is updated) for the result(s) (DST, Q, W, and V fields). Note 
that in special format microwords no shifter operation can be specified and the Q register can't be 
altered. In the course of executing the microworci, the Ebox will fetch the source operands onto 
E_BUS%ABUS_L<31:O> and E_BUS%BBUS_L<31:O>, carry out the specified ALU and shifter functions, 
and store the result in the specified locations (if any). 

8.4.3.1 Sources of ALU and Shifter Operands 

In general the sources of E_BUKABUS_L<31aO> and E_BU~BBUS_L<31:O> (the inputs to the ALU 

and shifter) are either a constant, a register from the register file, an Ebox register (e.g. PSL, Q, 
or VA), an Ebox source value calculated by a special function unit, a hardware status provided via 
a special path from outside the Ebox (e.g., interrupt status), or an entry from the source queue. 
E_BUS%BBUS_L<31:O> sources are limited to a subset of the register file, certain Ebox registers, 
and an entry from the source queue. The source queue is introduced in Section 8.4.4. 
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8.4.3.2 ALU Functions 

The ALU is capable of standard operations on byte, word, and longword size operands. It can 
pass either input to the output and is capable of a number of arithmetic and logical operations 
on one or two operands, producing condition codes based on data length and operation. It also 
has specialized functions which are discussed in Section 8.5.3. 

8.4.3.3 Shifter Functions 

The shifter does longword and quadword shift operations and certain pass-thru operations, always 
producing a longword output. The shifter treats the two sources as a single quadword, with 
E_BUS%ABUS_L<31:O> as the more significant longword. The longword output is this quadword 
shifted right 0 to 32 bits and truncated to longword length. The shifter produces condition codes 
based the longword output data. 

8.4.3.4 Destinations of ALU and Shifter Results 

The output of the shifter and the output of the ALU can drive E_BUSl1CWBUS_L<31:O>. The shifter 
output is also directly connected to the Q register so that the Q register can be loaded with the 
shifter output regardless of the source of E_BUS%WBUS_L<31:O>. In the same way, the ALU output 
is directly connected to the VA register. E_BUS%WBUS_L<31:O> data is the input to one of the write 
ports on the register file and can be used to update any register file entry except an ~!D register. 
Certain other Ebox registers (e.g. se, PSL) can be loaded from E_BUS%WBUS_L<31:O>. 

The destination of E_BUS%l\'BUS_L<31:O> can be specified by the current destination queue entry, 
when the microword so specifies. The destination queue is introduced in the following section. 

8.4.4 Ibox-Ebox Interface 

The Ibox-Ebox interface is made up of a number of FIFO queues. The purpose of these queues is to 
allow the Ibox to fetch and decode new instructions before the Ebox is ready to execute them. The 
Ibox adds entries as it decodes instructions, and the Ebox removes them from the other end as it 
executes them. For each opcode, there is a predetermined number of entries added to the various 
queues by the Ibox. Ebox execution microfiows remove exactly the right number of entries from 
each queue. 

The queues which interface the Ibox to .the Ebox directly are the source queue, the destination 
queue, the branch queue, and the field queue. The instruction queue, the PA queue, and the 
retire queue are introduced here for completeness. 

The source queue holds source operand information. Entries are added by the Ibox as it decodes 
the source type operand specifiers of each instruction. The entry is either a pointer into the 
register file or the data from a literal mode operand specifier. The Ebox accesses and removes 
an entry each time a microword specifies a source queue access in either the A or B fields. If the 
entry is literal data, it is used as an ALU and/or a shifter operand. Otherwise the register file is 
accessed using the pointer in the entry. 

The destination queue holds result destination information. Entries are added by the Ibox as it 
decodes the destination type operand specifiers of each instruction. A destination queue entry 
is either a pointer to a GPR in the register file or a :flag indicating that the result destination is 
memory. The Ebox accesses and removes an entry each time a mieroword specifies a destination 
queue access in the DST field. or the Fbox supplies a result which specifies a destination queue 
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access. If the entry is a pointer to a GPR, the Ebox writes the ALU, shifter, or Fbox data into the 
register file. Otherwise the data is stored in memory at the address found in the PA queue. 

The PA queue is in the Mbox.. Each time the Ibox adds an entry indicating a memory destination 
to the destination queue it also sends the Mbox a virtual address to be translated. When the 
Mbox has translated the address it puts it in the PA queue. If the current destination queue 
entry indicates a memory destination, the Ebox sends the result data to the Mbox to be written 
to the physical address found in the PA queue. The Mbox removes the PA queue entry as it uses 
it. 

The branch queue holds status bits for each branch instruction processed by the Ibox. The Ibox 
adds an entry to the branch queue each time it finishes processing a conditional or unconditional 
branch. The Ebox references and removes the current branch queue entry in the execution 
microfiow for the branch. This allows the Ebox to synchronize with the Ibox so that the branch 
does not :finish executing until the Ibox has successfully fetched the branch displacement specifier. 
I t also allows the Ebox to check for an incorrect branch prediction by the Ibox. 

Each time the Ibox decodes a branch it calculates the branch address. For unconditional branches 
it simply begins fetching from the new instruction stream immediately. For conditional branches 
the Ibox predicts whether the branch will be taken or not. The branch queue entry added by 
the Ibox indicates the branch prediction. 'When the Ebox executes an unconditional branch, it 
references the branch queue simply to ensure that the Ibox 'vas able to fetch the displacement 
specifier without a fault or error. For conditional branches the Ebox also checks that the branch 
prediction was correct and initiates a microtrap if it wasn't. If the branch wasn't correct, the 
Ebox notifies the Ibox, which uses the alternate path PC (which it had kept) to begin fetching 
along the correct path. 

The retire queue holds status for each macroinstruction currently being executed in the Ebox 
or the Fbox. The status indicates which unit will execute the instruction, the Ebox or the Fbox. 
The Ebox adds an entry each time the Microsequencer dispatches to a macroinstruction execution 
microfiow. The Ebox references the retire queue when the macroinstruction execution is complete 
in order to ensure that instructions finish executing in the proper order. A certain amount of 
concurrent execution in the Fbox and Ebox is possible. The retire queue is used to prevent one 
box from altering any architecturally visible state before the other box's execution for preceding 
macroinstructions finishes. The Ebox references and removes a retire queue entry each time an 
Fbox or Ebox instruction is retired. 

The field queue holds a one-bit type status for variable-length bit field base address operands 
processed in the Ibox. (Note that some operands are treated as variable-length bit field base 
address operands intemally by the NVAX CPU even though the operand is not really the base 
address of a variable-length bit field. These operands, including the true bit field base address 
operands, are collectively referred to as field operands.) The field queue entry indicates whether 
the field operand was register mode. The Ibox adds an entry when it processes operands which 
it knows by context require an entry. The Ebox retires an entry after it has used the information 
in a microcode conditional branch. Very different execution microfiows are required for some 
instructions, particularly bit field instructions, depending on whether a particular operand is 
register mode or specifies a memory address. In the latter case the information sent by the Ibox 
is a memory address, while in the first case the source and destination queue entries point to the 
register in the register file. See Section 8.5.15.8 for more information. 
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The instIuction queue is part of the Ibox-Microsequencer interface. It holds information derived 
from the VAX instruction opcode. The Ibox adds an entry as it decodes each instruction. An 
entry contains the opcode, data length, the microcode dispatch address for execution, and a flag 
indicating whether the macroinstruction is for the FboL The Microsequencer references and 
removes an entry at the start of execution of each VAX instruction. It uses the dispatch address to 
fetch the first microword of the macroinstIuction execution microfiow. At the same time it passes 
the opcode, data length, and the Fbox execution flag to the Ebox. The Ebox adds an entry to 
the retire queue at that time. That entry is simply the Fbox execution flag (except if the Fbox is 
disabled, see Section 8.5.15.7). See Section 9.2.3.3.4 for more on the instIuction queue. 

8.4.5 Other Registers and States 

The Ebox contains several special purpose registers, the Be, VA, and Q registers, and the PSL. 

The se register holds a shift count for use in some shift operations. 

The VA register can hold a virtual address or a microcode temporary value. The \~ register is 
directly readable by the Mbox and is the address source for all Ebox initiated memory operations. 
The VA register is loaded directly from the ALU output. 

The PSL is the VAX architecture program status longword register. It is loaded from E_B'CSl'lCWBUS_ 
L<31:0> and can be used as a source operand by the ALU or shifter. Its bits are used in many places 
in the Ebox and else\vhere in the CPU where required by the VAX architecture. 

The Q register is loaded from the output of the shifter. It holds shifter results for later use. 

8.4.6 Ebox Memory Access 

Through the mechanism of the source queue and the destination queue, the Ibox initiates most 
memory accesses for the Ebox. In certain cases the Ebox must catTy out memory accesses on 
its own. The MRQ :field of the microword specifies the Mbox operation. The virtual or physical 
address is provided from the VA register. If the VA is being updated in this microword, the address 
is bypassed directly from the output of the ALU. For writes, the data is taken from E_BUKWBUS_ 
L<31:O>, so it can be the output of the shifter or the ALU. For reads, the nST field of the microword 
specifies the register file entry which is to receive the data. This register must be a GPR or a 
working register. 

8.4.7 CPU Control Functions 

Most control functions are invoked through one of the MIse fields, but some of the MRQ field 
functions are Mbox control functions or miscellaneous control functions rather than memory 
access commands. The control functions generally act to reset a function unit (Fbox, Ibox, or 
Mbox), synchronize Ebox operation with a function unit, or restart semiautonomous operation of 
the Mbox or Ibox when either of them has stopped for some reason. 
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8.4.8 Ebox Pipeline 

t"~(\\ t:)'E ( ") r\~f 

I 
"v-.J ! 

Execution of micro words in the Eboxis pipelined with three pipe stages (83 .. 85). These stages are 
shown in Figure 8-1. In the first stage (S3), the E_BUS%ABUS_L<31aO> and E_BU~BBUS_L<31aO> 
sources are fetched or prepared. In the second (84) the ALU and shifter operate on the data. In 
the third (85) the result is written into the register file or to some other destination. Stages 
83 and 84 can stall for various reasons. Stage 85 cannot stall. Once a particular microword's 
execution has advanced into 85, it is going to complete. Various stalls occur in 84 in order to 
ensure that a particular microword's effects do not change any architectually visible state (e.g., 
GPRs, PSL) before proper completion without memory management faults is guaranteed. 

The Microsequencer fetches the microword and delivers it to the Ebox in 83. If the Ebox's 83 
stage is stalled, the Microsequencer's 82 activity is stalled as well. See Chapter 9 for more detail. 

Even though the operand fetch, function execution, and result store take place in different cycles, 
the microword specifies the operation as if it all took place in one cycle. The Ebox has bypass 
paths which allow a microword to use a register as a source even it it is updated by one of the two 
preceding microwords. For example, if the immediately preceding micro\vord updates WI in the 
register file and the current microword specifies WI as a source to the ALtT, the Ebox hardware 
detects the condition and muxes the data into the staging latch before the ALU at the same time 
as it forwards the data to the latch which sources E_BUS%WBUS_L<31:O> in stage S5. 

Bypass paths are only implemented where performance considerations '\varrant. Also b:rpass
ing isn't the solution to every problem pipelining introduces. For example, after the PSL is 
updated the microcode allows 2 cycles before a microword specifying SEQ.MUXlLAST.CYCLE or 
SEQ.MUXILAST.CYCLE.OVERFLOW because the PSL is not actually updated until S5. The 
Microsequencer uses the FPD, T, and TP bits in the PSL to determine the proper new microflow 
dispatch. It would make the decision based on old PSL information if the microcode didn't allow 
the 2 cycles. 

One place where the effect of pipelining is particularly apparent is in microcode conditional 
branches. For example, a microcode branch based on E_BUS%BBUS_L<31aO> data must immediately 
follow the microword which sources the relevant data onto E_BUS%BBUS_L<31:O>. Similarly, a 
microcode branch based on the ALU condition codes must be the second microword after the one 
which specified the ALU operation. See Chapter 9 for more detail on microcode branches. 

8.4.9 Pipeline Stalls 

The Ebox pipeline is controlled by the stall and fault logic. This function unit supplies stall 
signals which are used to gate clocking of control and data latches in each stage. It also controls 
insertion of effective no-ops into S4 when S3 is stalled and into S5 when 54 is stalled. 

The Ebox pipeline stalls in S3 when it is accessing a source operand in the register file or the 
source queue which is not valid. Many register file entries have a valid bit associated with them. 
A register file entry is not valid, and its valid bit is not set, if a memory read has been initiated 
for that entry and hasn't yet completed. A source queue entry is not valid if the Ibox hasn't added 
that entry yet. 

The Ebox stalls in S4 if the current destination queue entry is not valid and the microword in 
54 references a destination queue entry. A destination queue entry is not valid if the Ibox hasn't 
added that entry yet. 
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The Ebox stalls in S4 if the current destination queue entry is valid but specifies a memory 
destination for the data and the current PA queue entry is not valid. A PA queue entry is not 
valid if the Mbox hasn't added that entry yet. 

The Ebox stalls in S4 if the microword in S4 requests a memory operation and the Mbox is 
already working on an Ebox initiated memory operation (that is, the previous request is still in 
the EACLATCH). 

The Ebox stalls in S4 if the microword in S4 synchronizes with the branch queue and the branch 
queue entry is not valid. A branch queue entry is not valid if the Ibox hasn't added that entry 
yet. 

The Ebox stalls in S4 if the current retire queue entry specifies that an Fbox instruction must 
retire before the instruction associated with the microword in S4 and the Ebox is requesting the 
use of the RMUX to store result data. (The Ebox requests the use of the RMUX if the microword in 
S4 specifies anything other than NONE in the DST field.) 

If the Ebox stalls in S3, the S4 and S5 stages of the pipeline can continue execution. If S4 doesn't 
stall when S3 does, then an effective no-op is inserted into S4 after the current S4 operation 
advances into S5. The no-op is necessary so that the stalled S3 micro,vord isn't advanced to S4 
and 85 while an S3 stall is in effect. See Section 8.5.20 for :more detail. 

If the Ebox stalls in S4 then S3 stalls as well. {l\1icrowords can't pass each other in the pipeline.) 
During S4 stalls, an effective no-op is inserted into S5 after the operation in S5 completes. This 
is necessary so that the operation in S4 isn't advanced into S5 while an S4 stall is in effect. See 
Section 8.5.20 for more detail. 

In any cycle that the Ibox has not made a microstore dispatch address available to the 
Microsequencer and a dispatch is needed (i.e., during the last cycle of any microflow), the mi
crosequencer fetches the STALL microword. This microword specifies no Ebox operation and can't 
cause a stall anywhere in the pipeline (although it does specify SEQ.MUXlLAST.CYCLE). This allows 
the microwords already in the pipeline to continue even when the Ibox is temporarily unable to 
supply new instruction execution dispatches. See Chapter 9 for more detail. 

A microcode loop which repeatedly accesses the field queue until the current field queue entry 
becomes valid is also very much like a stall, though the stall logic is not actually involved. This 
condition is referred to as a field queue stall. In this situation, the Ebox pipeline advances in 
each cycle (unless the microword in S4 is stalled also). However, the same microword is fetched 
out of the control store in every cycle. In typical micrOcode usage of the field queue conditional 
branch, tbis microword will not alter any state in S4 or 85. See Section 8.5.15.8 for more detail. 

8.4.10 Microtraps, Exceptions, and Interrupts 

The Ebox and Microsequencer together coordinate the handling of exceptions and interrupts. 
Most interrupts and some exceptions are handled by Microsequencer dispatching to a microcode 
exception handler routine at the end of the CUlTent VAX instruction. These dispatches do not affect 
the execution of microwords already in the pipeline. Other exceptions cause a microtrap. In a 
microtraE the Microsequencer signals the Ebox to cause stages 83, S4, and 85 of the Ebox control 
pipeline to be flushed. It also signals the Ebox to flush the retire queue. (Flushing of the other 
Ibox-to-Ebox queues, the Fbox pipeline, and the specifier queue in the Mbox is done by microcode, 
except in the case of a branch misprediction.) At the same time the Microsequencer fetches a new 
microword from a special dispatch address in the control store based on the particular microtrap 
condition. This microflow handles any other necessary state flushing. Because a microtrap affects 
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microwords already in the pipeline, the Ebox delays handling most traps until the microword 
which incurred the fault has reached 84. The microtrap is taken at the time that microword 
would normally have entered 85. In certain cases, Ebox stalls delay a microtrap until the stall 
is ended. The purpose of this is to ensure that operations which are part of a preceding VAX 

instruction are allowed to complete properly. 

Most of the microtraps which the Ebox delays until S4 are due to Ibox-initiated memory operations 
which had an access or translation fault. Faults due to Ibox-initiated reads are detected by the 
Ebox when it accesses a valid MD register from the register file, and the fault bit associated with 
that MD is set. Each MD register has a fault bit which is set by the Ibox or the Mbox when a fault 
occurs in the memory reads necessary to fetch the source data. When the Ebox accesses an MD 
register with its fault bit set in 83, it catries that fault status down the pipeline into 84. 

All faults detected in S3 are piped to S4 before they cause a microtrap. Faults detected in S4 or 
piped to S4 will cause a microtrap only if the Ebox is next to retire a macroinstruction. Otherwise 
they are delayed until the Fbox retires an instruction and the retire queue entry indicates the 
Ebox. 

Fault status signals are sent by the Ibox for entries in the instruction queue, source queue, field 
queue, destination queue, and branch queue. Entries in the PA queue have fault bits. The Ebox 
detects a fault when it accesses a PA queue entry with its fault bit set or when it finds the 
instruction queue, source queue, field queue, destination queue, or branch queue empty and one 
of the fault status signals from the Ibox asserted. In the case of the instruction queue, the fault is 
detected in 82 and carried into 83 only when there is no 83 stall. In the case of the source queue 
and field queue, the faults are detected in 83. Instruction queue, source queue, and field queue 
related faults are carried down the pipeline until they reach 84, where they cause a microtrap 
once the Ebox is next to retire a macroinstruction. 

Faults encountered in Ebox-initiated memory operations cause the Microsequencer to trap im
mediately. Ebox memory accesses begin in 85 so these traps cannot affect microwords from 
preceding VAX instructions. It is up to microcode to make sure that the last Ebox memory access 
has completed properly before the Microsequencer dispatches to another VAX instruction execution 
microfiow. 

Hardware errors are essentially handled in the same way as faults. See Section 8.5.19. 
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8.5 Ebox Detailed Functional Description 

8.5.1 Register File 

The register file has 4 distinct groups of registers: MD (memory data), GPR, Wn (working registers), 
and CPUSTATE registers. There are a total of 37 registers in the file. There are 6 ports: 3 read 
ports and 3 write ports. The read ports are the A port, the B port, and the IA port. The write 
ports are the W port, the IW port, and the MD port. The result is UNPREDICTABLE if more than 
one write to the same location occurs at the same time. Section 8.5.1.4 explains why this never 
happens. 

8.5.1.1 Register Groups 

The MD registers are only written by the Ibox directly or by the Mbox in completing an Ibox
initiated memory read. They are only read by the Ebox, and only accessed using a pointer from 
the source queue. There are 6 MD registers, MDO-lID5. 

The GPRs are all of the VAX general purpose registers~ except R15 (PC). These are read and written 
by the Ebox in the course of instruction execution. The !\!box writes them to complete an Ebox
initiated memory read. The Ibox also reads and ,,'rites them. It reads them as it processes 
operand specifiers \vhich use a GPR in an address calculation. It writes them as it processes 
autoincrement and autodecrement operand specifiers, and in UD\'tinding the RLOG. There are 15 
GPRs, RO.R14 (R14 is often referred to as SP). 

Writes to GPRs can depend on the DL (data length) register. If the L field of the microword which 
caused the write specifies LONG, the fulllongword is written. If the microword specifies L'LEN<DL), 
only the appropriate bytes are written. The following table shows which bytes are written in all 
cases. 

Table 8-2: GPR Write Length 

Write Byte? 

DLRegister L Field of Microword 3 2 1 0 

X LONG Y Y Y Y 

BYTE LEN(DL) N N N Y 

WORD LEN(DL) N N Y Y 

LONGWORD LEN(DL) Y Y Y Y 

QUADWORD LEN(DL) Y Y Y Y 

X means don't care 

The Wn registers are used by microcode for temporary storage and to receive memory read data. 
They are only read by the Ebox using the A or B fields of the microword. They can be written by 
the Ebox, Mbox, or !box. The Mbox writes them in completing an Ebox memory operation. The 
Ibox only writes them when completing an Ebox-initiated read of an !box !PR. There are 6 Wn 
registers, WO-W5. 
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The CPUSTATE registers are used by the microcode to hold elements of architectural state. They 
are read and written only by the Ebox.. There are 10 CPUSTATE registers: KSP, ESP, SSP, USP, !SP, 
ASTLVL, SCBB, PCBB, SAVEPC, and SAVEPSL. 

8.5.1.2 Access Ports 

The A port and B port of the register file are read ports which can supply data to E_BUSo/GABUS_ 
1.<31:0> and E_BUS%BBUS_L<31:O>, respectively. These two ports are accessed in 83. The address 
can be supplied directly from the A and B fields of the microword or indirectly through the source 
queue. Source queue addressing is specified in the A and/or B microword fields. The A port can 
read any register in the file; the B port can read any register in the file except a CPUSTATE. 

The W port is the write port connected to E_BUS%WBUS_L<31:O>. It receives a result from the Ebox 
or Fboxin 85. It can write to the GPRs, CPUSTATEs, and Wn registers. The address can be supplied 
directly by the microword in the DST field or (for GPRs only) indirectly through the destination 
queue. De~tination queue addressing is used when the microword specifies DSTIDST or when the 
Fbox writes a result to a GPR. 

NOTE 

'When the Ebox initiates a memory read by sending a request to the Mbox, it specifies 
the register which will receive the memory data in the DS! field of the microword. 
This has the sides effect. ,vhen the microword is in S5, of writing that register with 
the value on E_BUS%WBUS_L<Sl:O>. Normally this register is written by the Mbox after 
this, before the particular register is read again. However, an exception can prevent 
the Mbox write and leave the register containing effectively garbage data. 

The IA port is a read port used by the Ibox to read GPRs for use in general address calculation and 
for autoincrement and autodecrement operand specifier processing. It can only read the GPRs. 
The address is supplied by the Ibox.. 

The IW port is a write port used by the Ibox. It can write to the GPRs, the MD registers, and the 
Wn registers. The Ibox writes GPRs when it processes autoincrement and autodecrement operand 
specifiers and when unwinding the RLOG. It writes MD registers when operand specifier decoding 
requires passing a value (such as an address) to the Ebox. The Ibox writes the Wn registers only 
when responding to an Ebox-initiated IPR read. The address is supplied by the Ibox. 

The MD port is used by the Mbox to write memory or IPR read data into Wn registers, :MD registers, 
and GPRs. The Mbox writes MD registers to complete Ibox-initiated reads. It writes Wn registers 
or GPRs to complete Ebox-initiated reads. The register file address is supplied by the MbOx. (The 
Mbox received the register file address when the memory operation was initiated.) 

8.5.1.3 Register File Bypass Paths 

The Ebox implements bypass for data being written into the register file or scheduled to be written 
into the register file further down the pipeline. Two techniques are employed: actual bypass 
datapaths and flow-thru bypass. Actual bypass paths are data paths and drivers which directly 
drive the data onto E_BUS%ABUS_L<Sl~ or E_BUs%BBUS_L<31~. The register file E_BUKABUS_ 

1.<31:0> or E_BUs%BBUSJ,.<31:O> drivers are automatically disabled when bypassed data is driven. 
Flow-thru bypass is the technique in which a write to the register file occurs early in the cycle, 
well before the read. This way, reads see the result of writes which occur in the same cycle. 
This technique can only be used when the write data is available early enough and is scheduled 
to be written in that cycle. (For example, bypass of S4 Ebox results to E..BUSVIGABUS_L<311O> 
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or E_BUS%BBUS_L<31:O> can't be done with :6ow-thru bypass because the register file write isn't 
supposed to happen until 85.) 

See Section 8.5.8 for a description of bypassing of Ebox or Fbox result data from S4 or 85. 

The register file has actual bypass paths for bypassing IW port writes to E_BUS%ABUS_L<31:O> and 
E_BUSo/cBBUS_L<31:O>. The IW port write occurs too late in the cycle for fiow-thru bypass to be 
used. 

NOTE 

rw port bypass is necessary for the NVAX CPU to correctly handle some sequences of 
operand specifier decoding. Here is one example. (10 understand this example, the 
reader may need to know things which haven't been explained before this point in this 
specification.) Assume the CPU has to execute the following sequence of macroinstruc
tions: 

ADDL2 RO,(RO)+ 
ADDL2 RO,Rl 

If the Ibox is executing far enough ahead of the Ebox and the read of memory data 
at (RO) takes a long time (as it \vould if it neither the Pcache nor the Bcache contains 
the data), then at some point the Ebox is stalled waiting for that data to arrive in an 
MD and the source and destination queues contain all the entries generated by the two 
ADDL2 instructions. The Ehox microword which executes ADDL2 is: 

AlSI, B/S2. ALU/A.PLUS.B, L'LENCDL), MISCILOAD.PSL.cc.nn, SEQJ~fL'XILAST.CYCLE.OVERFLOW 

In S3 this microword accesses the first two entries in the source queue, which in this 
case point to RO and some MD. The microword is stalled waiting for the memory read to 
complete (and the MD to become valid). The Ibox complex specifier unit (CSU) is stalled 
by the scoreboard unit (SBU) because it is just about to write R0+4 into the register file. 
For the Ebox must see the old value when it reads RO, the Ibox write to RO must be 
stalled. Once the Ebox retires the source queue entry containing the pointer to RO, the 
Ibox knows it can write RO. 

In cycle N the memory data arrives and is written into the MD. This ends the S3 stall in 
the Ebox. The very next microword to enter S3 (in cycle N+l) is for the second ADDL2. 
It reads RO and RI, and must see the new (incremented) value afRO. 
In cycle N+l, the Ebox signals the Ibox of two source queue retires, the Ibox SBU ends 
the CSu's stall, and the CSU writes R0+4 on the IW port. The Ebex reads RO in that cycle 
and, because of the IW port bypass, it sees the correct (autoincremented) value of RO. 

When processing an autoincrement or autodecrement specifier for an address access type operand 
specifier, the Ibex does two sequential writes into the register file. The first writes the address 
into an MD register. the second writes the incremented or decremented register value back into 
the register. In some cases this can cause the Ebox to attempt to bypass both from the output of 
the RMUX in S4 and from the IW port to either or both of E.-BUS%ABUS_L<Sl:O> and E_BUS%BBUS_ 

L<31:O>. In these cases the bypass from the output of the RMUX overrides the IW bypass. See 
Section 8.5.8 for more on bypass from the output of the RMUX. 
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8.5.1.4 Write Collisions 

The result is UNPREDICTABLE if more than one write to the same register file location occurs at the 
same time. To prevent this, writes to registers are controlled by certain hardware and microcode 
mechanisms. 

The MD registers can only be written by the Ibox or the Mbox. The Ibox complex specifier unit 
has hardware which allocates and deallocates MD registers. The Mbox writes an MD only when 
returning data for an Ibox-initiated operand data read, and it writes to the particular MD specified 
by the Ibox. The Ibox writes an MD directly only when it knows that no outstanding reads to the 
same MD exist in the MbOx. Therefore, The Mbox and Ibox will never write an MD at the same 
time. 

The GPRs can be written by the Ebox, Ibox, and MbOx. In many typical instruction execution 
situations, the Ebox never writes a GPR explicitly. It only writes them through destination queue 
accesses. The Ibox only writes GPRs to process autoincrement or autodecrement operand speci
fiers~ so it ahvays reads a given GPR prior to writing it. The Ibox scoreboard unit keeps track of 
which GPRs have been entered into the destination queue and allows Ibox complex specifier unit 
reads only when there are no Ebox writes outstanding. This means the Ibox \.vill never write a 
GPR at the same time as the Ebox. 

When execution of a particular macroinstruction requires the Ebox to directly write GPRs, the Ibox 
is ahvays stopped (the Ibox stops itself after processing the macroinstruction's operand specifiers). 
In these cases, microcode can write to any GPR without colliding with an Ibox write. The l\.1box 
only writes a GPR ,,""hen returning data for an Ebox-initiated Mbox operation. Microcode doesn't 
issue such a memory read unless it knO\VS the Ibox is stopped, and microcode doesn't write the 
GPR while such an operation is outstanding. 

'\\"'hen unwinding the RLOG, the Ibox may write GPRs. The Ebox microcode knows this may be 
happening because the unwind was either initiated under microcode control or as a result of a 
branch mispredict. In either case the Ebox microcode doesn't write GPRs while the unwind is 
occurring. 

The Ebox, Ibox, and the Mbox can write the Wn registers. The Mbox only writes a Wn register 
when returning read data for an Ebox-initiated Mbox operation. The Ibox only writes Wn registers 
to return IPR data at the Ebox's request. Microcode never writes a Wn if there is an Mbox or Ibox 
operation outstanding which will write the same register. 

Only the Ebox can write CPUSTATE registers, so there is no possibility of a write collision on those 
registers. 

8.5.1.5 Valid, Fault, and Error Bits 

Some of the registers in the register file have valid bits andlor fault and error bits associated with 
them. There is one valid bit, one fault bit, and one elTor bit associated with each MD register. 
The Wn registers each have a valid bit, but no fault or error bits. 

Valid bits are used to allow synchronization with memory reads. Whenever a memory read to 
a Wn register is initiated, the associated valid bit is cleared. The valid bit for an :MD register 
is cleared as a side effect of reading it, so it is already cleared when a memory read to it is 
initiated. (The MD valid bits are also cleared in exception cases, by MISCIRESET.CPU.) When the 
Mbox supplies the data, the valid bit is set. If the micro word in S3 reads from an MD or Wn 
register whose valid bit is not set, the pipeline stalls in S3. 
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Fault and error bits are used to indicate that some sort of exception occurred with the memory 
read. Fault bits indicate memory management exceptions, while error bits indicate hardware 
errors. When the microword in 83 reads an MD register whose fault or error bit is set, a microtrap 
is scheduled for this microword. The microtrap is delayed in the pipeline as is discussed in 
Section 8.5.19. Fault and error bits are needed to delay Ebox detection of memory exceptions 
until the Ebox is processing the associated VAX instruction. A set fault or error bit indicates an 
Ibox or Mbox detected exception condition related to source operand specifier processing. If the 
Mbox was unable to complete an Ibox-initiated memory operation targeted to MD, it sets the fault 
or error bit. If the Ibox encountered any sort of fault or error before initiating the final memory 
read necessary to process an operand specifier, it sets the fault or error bit directly. In either case 
the Ebox will not detect the fault until it is executing the associated VAX instruction. There is no 
need for Wn register fault bits because microtraps due to Ebox memory reads are taken as soon 
as they are reported by the Mbox. 

All the Wn register valid bits are set unconditionally in 83 of each new macroinstruction execution 
microflo\v. The Microsequencer signals the Ebox at start of these microflows. This is done to 
prevent errors from causing the pipeline to stall waiting for a condition which will never be true. 
If an error causes an Ebox memory read to a particular Wn register to fail to complete it leaves 
the \·alid bit cleared. If a ne\v microflow references the same working register, it will stall. Since 
the memory operation will never complete, the stall will never end. 

All Wn register valid bits are set unconditionally when the :huse field of the micro\vord specifies 
RESET. CPU. 

Wn register valid hits are normally set. A Wn register's valid bit is cleared in S4 if the micro\vord 
specifies a memory read which. will deliver data to that register. The bit is set when the Mbox or 
Ibox writes to that register. It is not altered by Ebox (A, B, or W port) accesses. The S4 clear of a 
Wn valid bit will cause the CUlTent S3 microword to stall if it references Wn. 

All the MD valid bits are cleared when the microword MISC field specifies RESET.CPU. AID valid bits 
are not normally set. In normal operation, an lID register's valid bit is set when the Mbox or 
Ibox writes that register, and is cleared as a side effect of the Ebox reading the register. 

8.5.2 Constant Generation 

There are two constant generators, an extremely simple E_BUS%ABUS_L<31:O> constant source 
and a more complicated ~BUs%BBUS_L<31:O> source. The E_BUS%ABUS_L<31:O> constant source is 
specified in the A field of the microword. It can produce the following longword constants: 0, 1. 
To source these constants to E_BUS%ABUS_L<31:O>, the microword specifies KO or Kl" respectively, 
in the A field. 

The E_BUS%BBUS_L<:31:O> constant generator builds a longword constant by placing a byte value 
in one of the four byte positions in the longword. The POS and CONST fields of the microword 
specify the value. The CONST field contains a byte value, while the POS field specifies the byte 
in the longword in which the value appears. The other bytes are zero. It is as if the POS field 
specified a left shift with zero fill of the CONST value. 

The POS and CONST fields are part of the constant generation variant of the microword. In this 
variant the VAL and B fields of the standard format microword, or the MISC2, DlSABLE.RETIRE, 
and B fields of the special format, are replaced by the POS and CONST fields. In the constant 
generation variant, E_BUS%BBUS_L<31:O> receives the constant so the B field is unnecessary. Also, 
the shifter uses the se register for the shift amount so the VAL field is not needed (put another 
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way, VAUO is effectively specified by the constant generation variant). Similarly, MISC2INOP and 
DISABLE.RETIREINO are effectively specified by constant generation variant microwords. 

Under control of the MISe field, the E_BUS%BBUS_L<31:O> constant generator can also provide a 
constant in which the low order 10 bits are specified by microcode and the high order 22 bits are 
all zero. This mode of constant generation occurs when the MISC field specifies CONST.I0.BIT. In this 
case the 10 bit constant is sourced from the CONST.I0 field of the microword. (The CONST.I0 field is 
formed by concatenating the two-bit FOS field with the 8-bit CONST field, with the POS field more 
significant.) The microword format must be the constant generation variant, ifMISC/CONST.I0.BIT 
is specified. 

The E_BUS%BBUS_L<31:O> constant generator can also provide the constant OOOOFFFFf16. It is 
produced when the B field of the microword specifies K.FFFF. 

8.5.3 The ALU 

The ALU is a 32-bit function unit capable of arithmetic and logical operations. Its inputs are E_ 
BUSt;"c..o\BUS_L<31:O> and E~BUS%BBUS_L<31:O>. Its output drives E_ALU%RESULT_H<31:O> which can 
be muxed onto E_BUS%~'BUS_L<31:O> and is directly connected to the VA register (see Section 8.5.6). 
It also produces condition codes (ALU<C>, ALU<N>, ALU<V>, ALU<Z» based on the results of its 
operation. The _o\LU condition codes are data length dependent, with the data length coming from 
the DL register or defaulting to longword depending on the microword L field. The ALU operation 
is specified by the ALU field of the microword. 

The follo'\ving table shows the ALU operations by name, and gives a description of each operation. 

Table 8-3: ALU Operations 

ALU Operation Name 

PASS.A 

PASS.B 

A..AND.B 

A.AND.NOT.B 

A.OR.B 

A.XOR.B 

NOT.A.AND.B 

A.PLUS.l 

A.PLUS.B 

A.PLUS.B.PLUS.l 

B.MINUSA 

A.MINUS.B 

A.MINUS.B.MINUS.l 

A.MINUS.l 

A.PLUS.4 

A.MINUS.4 
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Operation Description 

E_ALU%RESULT_H <- A 

E_ALU%RESULT_H <- B 

E_ALU%RESULT_H <- A .AND. B 

E_ALU%RESULT_H <- A .AND. (.NOT. B) 

E_ALU%RESULT_H <- A .OR. B 

E_ALU%RESULT_H <- A .xOR. B 

E_ALU%RESULT_H <- (.NOT. A) AND B 

E_ALU%RESULT_H <- A + 1 

E_ALU%RESULT_H<-A+B 

E_ALU%RESULT_H <- A + B + 1 

E_ALU%RESULT_H <- B - A = B + (.NOT. A) + 1 

E_ALU%RESULT_H <- A - B = A + (.NOT. B) + 1 

E_ALU%RESULT_H <- A - B-1 = A + (.NOT. B) 

E_ALU%RESULT_H <- A - 1 

E_ALU%RESULT_H <- A + 4 

E_ALU%RESULT_H <- A - 4 
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Table 8-3 (Cont.): ALU Operations 

ALU Operation Name Operation Description 

E_ALU%RESULT_H <- -B (minus B) NEG.B 

NOT.B 

SMUL.STEP 

UDrv.STEP 

E_ALU%RESULT_H <- .NOT. B (ones complement of B) 

E_ALU%RESULT_H <-A .sMUL. B (Q register is affected, see text) 

E_ALU%RESULT_H <- A .unrv. B (Q register is affected, see text) 

The following signals are used in functional descriptions below: 

• E_ALU%RESULT_B<N> is the nth bit of the ALU result. 
• E_ALUo/cCCH<N> is the nth carry-in bit in the ALU. It is the carry into the nth bit slice. The 

carry-in to the ALU is E.-A,LUO/cCCH<O>, while the carry out for longword data length is E_ 
ALUO/eCCH<32>. 

8.5.3.1 ALU Condition Codes 

The four condition codes calculated by the ALU are: 

• ALU<V>-Integer Overflow 
This bit indicates an integer ovel'fiow from the operation. It is the XOR of the carry in to the 
most significant bit with the carry out of the same bit. The calculation depends on the data 
length in effect for the operation. It is E_ALUo/cCCB<.~> .xOR. E-.ALU'icCCH<.~+l> where n is 7, 
15, or 31 for byte, word, or longword data length, respectively. 

• ALU<C>-Carry Out .. 
This bit is the carry out from the operation. It is E_ALU%CCB<8>, E_ALU%CCB<lB>, or E_ 
ALU%CCB<32> for byte, word, or longword data length, respectively. 

• ALU<Z>-Zero 
This bit indicates that the ALU result was zero. It is the logical NOR of 
E_ALU%RESULT_H<7:O>, E_ALU%RESULT_B<lS:O>, or E_ALU%RESULT_B<31:O> for byte, word, or 
longword data length, respectively. . 

• ALU<N>-Negative 
This bit indicates that the ALU result was negative. It is simply E_ALU%RESULT_H<7>, 
E_ALU%RESULT_B<lS>, or E..ALU%RESULT_B<31> for byte, word, or longword data lengths, 
respectively. length, respectively. 

For logical and PASS operations the ALU<C> and ALU<V> condition code bits are always zero. 

The ALU condition codes are available on the miCl"otest bus and can be used to update the PSL. 
If the microword following the one setting the ALU condition codes is stalled, the Ebox control 
logic holds the ALU condition code bits constant until the microword branching on them is ready 
to use them. The effect is the same as if no stall had occurred. See Section 8.5.14 and Chapter 9 
for more about the microtest bus and see Section 8.5.5 and Section 8.5.10.1 for more detail on 
setting PSL condition code bits. 

If the ALU operation is SMUL or UDIV, the ALU condition codes correspond to the ALU result before 
the one-bit shift is done on the result. 
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8.5.3.2 SMUL Step Definition 

The signed multiplication step is used to implement the sequential add and shift multiplication 
algorithm. It allows microcode to implement byte, word, and longword multiplication of two 
operands. The SMUL step uses the single bit left or right shifter at the output of the ALU, the Q 
register, and two microcode working registers. 

The operation of a single SMUL step is described in Figure 8-2. The proper number of SMUL steps 
is controlled by the microcode and depends upon the data length of the operation. 

The SMUL step operation selects the ALU operation (either PASS.A or A.PLUS.B) based on the least 
significant bit of the Q register. However the Q register must not have been loaded by the previous 
microword unless that microword specified an SMUL step. This is because that bit of the Q register 
is not ready in time to control the ALU operation if the Q register was loaded from the output of 
the shifter in the previous cycle. 

Figure 8-2: SMUL Step Operation 

t·:~ - 0 

o Ii" Q<O> - 1 

=::.!::: ~ ;' .. :'::.lJE?ZS:::': ::<~:': 0> <-- i\a ~ w~ (:!.::!'!.1 ?:o::.~:': ~ ! .. !..::-;!pl:':c::; 
E~SE E:~U%RESULT:H<31:0> <-- Wa (Partial Product) 

o WE~S<31:0> <-- (E_ALU%P~SutT_H<31> .XOR. E_ALU%=1_H<31> .XOR. E_ALU%=1_H<32» , E_ALU%RESOLT_E<31:1: 

o Q<31:0> <-- E_ALU%RESutT_H<O>' Q<31:1> 

At end: 
Wa ' Q - product 

NOTE: E_ALU%RESULT_H is the value of the ALU before the single-bit shift • 

. Description: The lsb of the Q register is tested for a 0 or 1. If Q<O> EQL 0, then 
the partial product is passed through the ALO unmodified. If 0<0> EOL 1, then 
partial product and the multiplicand are added together. Then the output of the 
ALO and the 0 register is shifted right one bit. The shift into the msb of WBOS is 
the exclusive-or of the ALU's output sign and the arithmetic overflow out of the ALU 
(arithmetic overflow is the exclusive-or of the carry-in and carry-out of the msb). 
The shift into the msb of 0 comes from E_ALU%RESOLT_H<O>. 

8.5.3.3 UDIV Step Definition 

The unsigned division step is used to implement the sequential shift and subtract non-restoring 
division algorithm. It allows microcode to implement byte, word, and longword division of two 
operands, and to produce the remainder. The UDIV step uses the single bit left or right shifter at 
the output of the ALU, the Q register, and two microcode working registers. 
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The operation of a single UDIV step is described in Figure 8-3. The proper number of UDIV steps 
is controlled by the microcode and depends upon the data length of the operation. The unsigned 
divide algorithm using the UDIV step requires microcode to shift the remainder one bit to the 
right after the final UDIV step. 

Figure 8-3: UOIV Step Operation 

Note that non-restoring division use the fact that 
2 ~ (Partial Remainder - Divisor + Divisor) - Divisor -
2 * (Partial Remainder - Divisor) + Divisor 

At stl!n: 
Q register - diVidend 
WD - divisor 
Wa - 0 (except during an extended divide when 

Wa contains the high-order longword 0= 
th. dividend) 

!'!lis op_:,c::.ie·:: resu:-:.s ~:'! -:.he Q re;i.s~e: c:o:l-:2.ir.i:lg ':.!l: q'.:o-:.:"-ar.-:. a:::l 
~a con~a~~!~; ~hc =~!ndE:. 

c :! ;...:.-=_::.: =:;:: :. 

=~~:, ~_;'':'tJ%?~St':'=_E <-- We - W::> (?artia: Remainder/Quotient - Divisor) 
E:'S~ =: __ :..:..:r~:,!:S~=_E <-- v:a ~ i-:--,:, ,:?a=:.:"a:' ;,,_:ra.:":::'.a.=/~::.·:·':.i_::.:. - :':"'7:"s:=} 

At end: 
Q register - quotient 
Wa - remainder 

NOTE: E_ALU%RESULT_H is the value of the ALU before the single-bit shift. 

Description: ALU CC.C is tested for a 0 or 1. If ALU CC.C EQL 1, then Wb is subtracted from Wa. 
If ALU ce.c EQL 0, then the Wa and WD a;e added together. The output of the ALO is 
then rotated to the left one-bit and driven onto the WBUS with w.BUS<O> being driven 
by 0<31>. Additionally, the Q register is rotated left one bit with the 
complement of the bit shifted out of the ALU result becoming 0<0>. ~he new 
ALO_CC.C condition flag comes from the carry out of the ALO (or E_ALU%CI_H<32> here). 

8.5.4 The Shifter 

The shifter is a right shift network with 64-bits of input and 32-bits of output. The input 
is E_BUS%ABUS_lAl:O> and E_BUS%BBUS_L<31:O> concatenated to' form a 64-bit word with 
E_BUS%ABUS_L<31:O> in the more significant longword. The output is E_SHF%SBF _RESULT_B<31:O> 
which can be muxed onto E_BUS%WBUS_L<31:O> and is directly connected to the Q register (see 
Section 8.5.7). 

The shifter produces two condition code bits, SBF<N> and SBF<Z>. These are available on the 
microtest bus and can be used to update the PSL. See Chapter 9 for more about the microtest bus 
and see Section 8.5.5 and Section 8.5.10.1 for more detail on setting PSL condition code bits. 
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The shifter shifts its input right by 0 to 32 bits. A shift amount of 0 selects the 
E_BUS%BBUS_L<Sl:O> and a shift amount of 32 selects E_BUS%ABUS_L<Sl~. The equivalent of 
a left shift of N is accomplished by shifting left justified data (32-N) to the right. 

The shift operation is specified in the 8HF field of the microword. The following table shows the 
shifter operations by name and gives a description of each operation. If the microword is in the 
special format, the shifter function defaults to NOP since the 8HF field is not present. 

Table 8-4: Shifter Operations 

Shifter Operation· Name 

NOP 

PASS.A 

PASS.B 

Bc\SS.Z 

LEFT.DOUBLE 

LEFT. SINGLE 

RIGHT.DOUBLE 

RIGHT.SL.~GLE 

• is the bitwise concatenation operator. 

Operation Description 

E_SHF%SHF_RESULT_H <- UNPREDICTABLE 

E_SHF%SHF _RESULT_H <- A 

E_SHF%SHF_RESULT_H <- B 

E_SHF%SHF _RESULT_H <- 0 

E_SHF%SHF _RESULT_H <- A'B rsh 32 - count (the effect is LSH 
count) 

E_SHF%SHF _RESULT_H <- KO rsh 32 - count (the effect is LSH 
count) 

E_SHF%SHF~RESULT_H <- A"B rsh count 

E_SHF%SHF _RESli'LT_H <- O'B rsh cou.~t 

For the 
8HFILEFT.8INGLE and SHFIRIGHT.8INGLE operations the shifter masks off E_BUS%BBUS_L<31:O> or 
E_BUS%A.BUS_L<31:O>, respectively. This guarantees that the bits shifted into the result are o. 
The shift amount comes from the VAL field of the microword or from the se register. The 8e 
register is the source of the shift amount if the VAL field is 0 or if the VAL field is not present 
because the microword is in the constant generation variant format. 

The 8e register can specify an actual shift amount in the range of 0 to 31, and the VAL field can 
specify a shift amount of 1 to 31 (0 in VAL implies se contains the shift amount). 

Neither the se nor the VAL field can specify a shift of 32. However, since the 8HFILEFT.8INGLE and 
8HFILEFT.DOUBLE operations differ from the corresponding right shift operations only in that the 
actual shift amount is the amount in the Be register or VAL field subtracted from 32 (32-N), the 
shifter shifts right by 32 when a left shift of 0 is specified. 

8.5.4.1 Shifter Condition Codes 

The shifter condition codes are not dependent on the instruction data length. They are calculated 
always for longword data length. The two condition codes calculated by the shifter are: 

• SHF<Z>· Zero 
This bit indicates that the shifter result was zero. It is the logical NOR of 
E_SIIFo/cSHF _RESULT_B<31~>. 
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• SHF<N> • Negative 
This bit indicates that the shifter result was negative. It is simply E_SBF%SBF _RESULT_B<3l>. 

The shifter condition codes are available on the microtest bus and can be used to update the 
PSL. If the microword following the one setting the shifter condition codes is stalled, the Ebox 
control logic holds the shifter condition code bits constant until the microword branching on them 
is ready to use them. The effect is the same as if no stall had occurred. See Section 8.5.14 and 
Chapter 9 for more about the microtest bus and see Section 8.5.5 and Section 8.5.10.1 for more 
detail on setting PSL condition code bits. 

8.5.4.2 Shifter Sign 

The shifter sign, SHF<N> , is saved after each shifter operation including pass operations. A 
constant based on this saved value is available as an input to E_BUSo/c:ABUS_L<31:O>. It is accessed 
by specifying SHIFI'~SIGN in the A field of the microword. The constant is 0 or FFFFFFFF#16 for 
Saved·SHF<J{> equal 0 or 1, respectively. Saved·SHF<N> is updated after each shifter operation 
and is held in each shifter NOP cycle. If microword :K specifies a shifter operation, and 
microword N+1 sources this constant, the new value is used to form the constant. However, 
the Saved-SHF<N> may be destroyed by executing a special format microword. The hit is 
UNPREDICTABLE after executing such a microword. 

The RM1JX coordinates Fbox and Ebox result storage and macroinstruction retiring. It is a 
large selector which selects the source of Ebox memory requests and the source of the next 
E_BUS%WBUS_L<31:O> data and associated information. The RMUX selection takes place in 84, as 
does the driving of the memory request to the Mbox. The new E_BUS%WBUS_L<31:O> data is not 
used until S5. 

The RMUX is controlled by the retire queue. See Section 8.5.15.7 for detail on the retire queue. 
The retire queue output is a status which indicates whether the next macroinstruction to retire 
is being executed in the Ebox or the Fbox. Based on this status, the RMUX selects one of the 
two boxes to drive E_BUS%WBUS_L<3l:O> and to drive the memory request signals. The box not 
selected will stall if it has need to drive E_BUS%WBUS_L<3l:O> or memory request signals. The 
retire queue read pointer is not advanced, and therefore the RMUX selection cannot change, until 
the currently selected box indicates that its macroinstruction is to be retired (except that the 
retire queue read pointer is not advanced when MISC1IR.ETIRElNSTRUCTION is speci:fted). 

NOTE 

The Ebox stalls when the microword does not specify NONE in the DST field and the 
retire queue selects the Fbox. It does not stall if the microword speci:ftes DSTINONE, 
even if the same microword specifies a memory request. This is the reason for the 
microcode restriction that any microword specifying a memory operation must also 
specify DSTIWBUS or something other than none in the DST field. See Section 8.5.27.15. 

The source (Ebox or Fbox) indicated by the retire queue is always selected to drive the RMUX. If 
the Ebox is selected, the W field of the microword in 84 selects either the ALU or the shifter as the 
source of the RMUX. (Note that E_BUS%WBUS_L<31:O> is always driven, even if the Ebox specifies 
DSTINONE.) 
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8.5.5.1 RMUX Produced Memory Request Signals 

The RMUX produced memory request signals are: 

• a memory command, 
• a status indicating a destination queue indirect memory store, 
• a tag giving a register file address in case a memory read is specified, 
• and the data length for the operation. 

This information is processed slightly further in the Ebox's Mbox interface logic to produce a 
memory request about halfway through 84. See Section 8.5.17 for more on Ebox memory requests. 

The only memory operation the Fbox can initiate is a destination queue indirect store (a memory 
store). If the Fbox is selected as the RMUX source, the memory request information comes from 
the Fbox and the destination queue. The destination queue is only accessed if the Fbox requests 
it. If it does not request a destination queue access, the memory information output by the RMUX 
indicates no operation. The Fbox also provides the data length if there is a store. 

If the Ebox is selected as the RMUX source, the memory request information comes from the 
microword. However, the DST field can cause a memory store request if it specifies a destination 
queue indirect store. The data length is from the DL register unless the microword L field overrides 
it to longword. The register £Ie address for memory reads always comes from the DST field. 

8.5.5.2 RMUX Produced E_BUsokWBUS_L Related Information 

E_BUS%WBUS_L<31:O> carries result data from the Ebox and Fbox and is the only path by 
which macroinstruction results are written to memory or registers. The RMUX produced 
E_BUS%WBUS_L<31:0> related information is: 

• the E_BUS%WBUS_L<31:O> (a longword of data), 
• the E_BUS%WBUS_L<31:O> destination address or specification, 
• the data length associated with E_BUS%WBUS_L<31:O>, 

• the S5 condition codes, 
• and an indication of which condition code map is to be used. 

The above control information is driven into 8S provided there is not an S4 stall. If there is an 
S4 stall, 85 control information specifying no operation is driven into 8S instead. 

If the Fbox is selected, E_BUS%WBUS_L<31:O> data comes from the Fbox. The E_BUS%WBUS_L<31:O> 

destination address comes from the destination queue. The condition code bits and map 
specification come from the Fbox. The Fbox sets map specification code to specify no change 
of the condition code hits, except in the last cycle of an instruction retire when the map specifier 
specifies a particular condition code update. See Section 8.S.10.1.1 for more detail on condition 
code alteration. 

If the Ebox is selected, E_BUS%WBUS_L<31:O> data comes either from E_ALU%RESULT_B<Sl:O> or 
E_SIIFo/cSHF_BESULT_B<31:O>. The condition codes come from the same source (ALU or shifter). 
Since the shifter only produces N and z condition code bits, the RMUX substitutes 0 for 8S C and 
V bits if the shifter is selected. The E_BUS%WBUS_L<31:O> destination address comes from the DST 
field of the microword or from the destination queue. The status indicating whether the condition 
code bits are to be updated and the condition code map to be used are both decoded from the MIse 
field of the microword. 
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In 85, E_BUS%WBUS_L<:31:O> drives the W port of the register file and is the input to several 
miscellaneous registers in the Ebox. The condition codes and the map are used to update 
the PSL condition code bits if the map and associated status indicate this should happen. 
E_BUS%WBUS_L<31:O> is also the source of write data for any memory write request which was 
sent by the Ebox to the Mbox in the previous cycle. In other words E_BUS%WBUS_L<31:O>, in 85, 
is the source of write data for the memory operation selected by the RMUX in 84. 

In 85, E_BUS%WBUS_L<31:O> is zero extended according to the data length. The data length is 
from the DL register unless the microword L field overrides it to longword. E_BUS%WBUS_L<31:O> 

data is zero extended from the effective data length to longword. 

8.5.6 VA Reg ister 

The 32-bit VA register is the source for the address on all Ebox memory requests, except 
destination queue based stores which use the current PA queue entry for an address. Unlike the 
entry in the PA queue, the VA register address is not yet translated (though it may be a physical 
address). It is a virtual address except 'when the memory operation doesn't require translation 
(as in IPR references or explicit physical memory references) or when memory management is oft'. 

The VA register can be used to latch a temporary ALU output value without driving the ALU result 
onto E_BUS%-WBUS_L<31:O>. 

The VA register can be loaded only from the output of the ALU, E_ALUtURESt.""LT_B<81:O>. It is loaded 
when the microword V field specifies to load it. The load occurs at the end of 84, even when there 
is an S4 stall. If a given microword specifies a memory operation in the ArRQ field and loads the 
VA register, the new VA value will be received by the Mbox with the memory command. For more 
detail on Ebox-initiated memory operations, see Section 8.5.17. 

NOTE 

The address for memory operations is part of the data latched in the EM_LATCH in the 
Mbox. This is why the Ebox can overwrite the VA value during 84 stalls even though 
the stall might be because the EM_LATCH is full. 

The VA register is one of the possible E_BUS%ABUS_L<31:O> sources. The microword specifies VA in 
the A field to use it. 

8.5.7 Q Register 

The 32-bit Q register is closely associated with the shifter. It can be loaded directly from the 
shifter output without driving that data onto E_BUS%WBUS_L<81:O>. Microcode uses it to hold 
temporary data. 

The Q register can only be loaded from the shifter output~ E_SIIF%SBF_RESULT_B<31:O>. It is 
loaded when the microword Q field specifies to load it. The load occurs at the end of 84, even 
when there is an 84 stall. 

The Q register is one of the possible sources of both E_BUS%ABUS_L<31:O> and E_BUS%BBUS_L<:31:O>. 

The microword specifies Q in the A or B field to use it. 

The data in the Q register is shifted one bit to the left or right as a side effect of the ALU SMUL.STEP 
and UDIv.STEP operations. The shift is one bit to the left for UDIV.8TEP and one bit to the right for 
SMUL.STEP. 
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8.5.8 Bypassing of Results 

The Ebox implements bypass paths for result data from S4 or S5 to E_BUS%ABUS_L<31:O> or 
E_BUS%BBUS_IAl:O>. These paths allow microwords to use any register in the register file as 
a source of E_BUS%ABUS_L<31:O> or E_BUS%BBUS_L<31:O> even if the register has been updated 
by one of the two preceding microwords. The Ebox pipeline reads from the register file in S3, 
operates on the data in 84, and writes the register file in 85. Since adjacent microwords in the 
pipeline could be from entirely different macroinstruction execution microftows, it is necessary 
that the Ebox hardware detect and resolve cases where one microword alters a register and a 
subsequent microword reads that register before it is written. 

NOTE 

The Fbox is one possible source of result data in 84, and any 85 operation may be a 
result store operation from the Fbox piped forward one stage. Bypassing of results 
destined for the register file from 84 or 85 works for Fbox result store operations in 
the Ebox pipeline in the same way as for microcode operations. 

The Ebox monitors the register file addresses on the A and B ports of the register file in 83 
and compares those to the p~ft'X register file address in 84. '\\llenever E_BUSo/cABUS_L41:O> and 
E_BUSo/c:BBUS_L<31:O> are expecting data that is not yet in the register file, the data is steered 
directly from the output of the RltfL"X (at the end of S4). 

NOTE 

The bypass path for register file entries from E_BUS%'\\~US_L<31:O> in 85 to 
E_BUS%ABUS_IAl:O> or E_BUS%BBUS_L<31:O> is implemented by register file flow-thru 
writes. E_BUS%WBUS_L<31:O> data is written into the register file early in the cycle and 
read after the write. So reads see the result of writes from the same cycle. 

The S3 A and B port addresses can come from the microword or the source queue. Similarly the 
RMUX address in S4 can come from the microword, the destination queue, or £he Fbox. The w 
port address in 85 has already been determined by the RMUX in the previous cycle. The Ebox 
bypass path control logic compares the :final 83 read addresses to the :final 54 write addresses and 
enables the appropriate bypass path when there is a match. (As noted above, 85 to S3 register 
file bypass is a flow-thru path.) 

Data length has an effect on bypass operations for GPRs. When a pending GPR write is to less 
than a fulliongword, only the bytes which are going to be updated are bypassed. The other bytes 
are read from the register file. Effectively, an independent bypass check. is made for each of the 
following: byte 0, byte 1, and the upper word. 

In the event that the W port and the RMUX update the same register, the bypass logic chooses the 
RMUX data as the source of E_BU9ibABUS_L<31:O> or E..BUS%BBUS_L<31:O>. 

NOTE 

Note it would be possible for a value to be constructed of data from the register file, 
the RMUX, and the w port all at once, because of differing data lengths. 

In the event that the IW port (from the Ibox) and the RMUX update the same register, the bypass 
logic chooses the RMUX data as the source of E_BUS%ABUS_L<31:O> or E_BUS%BBUS_L<31:O>. See 
Section 8.5.1.3 for more on IW port bypass. 
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The Q and VA registers updates are also effectively bypassed. Microcode can depend upon the 
new data being available to E_BUS%ABUS_L<31~ and E_BUS%BBUS_L<31:O> when the preceding 
microword updated these registers. However, the Q register contents are not bypassed if the Q 
register was updated by a shift caused by an ALUISMUL.STEP or ALU/UDJv.STEP ALU operation. 

NOTE 

The bypass mechanisms for the VA and Q registers are based on a flow-thru latch 
updated in S4 (and not stalled) rather than actual bypass paths. Neither bypass is 
data length dependent, as writes to these registers always load the entire longword. 

Bypassing for other registers and states in the Ebox generally does not make sense, and therefore 
is not implemented. For example, there is no bypass associated with the INT.SYS register or the 
PSL. 

8.5.9 . Result Destinations 

Most of the Ebox result destinations receive their data from E_BUS%WBUS_L<31~ in 
S5. Destinations specified in the DST field of the microword are updated in S5 from 
E_BUS%WBUS_L<Sl:O>. Possible E_B'CS'icWBUS_L<31:O> destinations are any register file entry, the 
PSL and se registers, and the lIMGT.MODE and Thi~.SYS special registers. More detail on the 
miscellaneous registers is given in the next section. 

A number of special capabilities for loading registers are available through the MISe field of the 
microword. 

• The DL (data length) register can be altered in 83, affecting the next microword but not the 
current one. 

• The Be register can be updated directly from E_BUS%ABUS_L<4:O> in 84 (overriding an S5 
update from the preceding microword). 

• The MPU (mask processing unit, see Section 8.5.10.7) can be updated directly from 
E_BUS%BBUS_L<29:16> in 84. 

8.5.10 Miscellaneous Ebox Registers and States 

There are a number of states and registers in the Ebox with special purposes. Some, like the 
DL register, provide control information. Some provide status signals used by Microsequencer 
conditional branches. They also vary in how and when they are loaded. 

8.5.10.1 PSL 

The PSL is the VAX architecture PSL register. Its bits are used in several places within the 
Ebox. The Microsequencer uses a number of the bits to make dispatching decisions. Additionally 
the current mode is used by the Mbox and the IPL level is used by the interrupts section (see 
Chapter 10 for more on intelTUPts). 

The PSL can be loaded as a longword or byte destination of E_BUS%WBUS_L<31:O> in S5. There are 
two different decodes of the DST microword field which load the PSL, DSTIPSL and DSTIPSL.BO. The 
first loads the entire PSL. The second loads only the low·order byte of the PSL. 
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8.5.10.1.1 CondHion Code Alteration 

The condition code bits of the PSL can be altered independently. This occurs when the MIse field 
of the mia-oword specifies one of the six possible PSL condition code update functions. Condition 
code update also occurs when the Fbox retires a macroinstruction. The update occurs at the 
end of 85. The resulting bits can be used in the next cycle (for example, the second following 
mia-oword can source the PSL). 

The new condition codes are a logic function (called a map) of the CUITent PSL condition codes and 
the new 85 condition codes. The 85 condition codes in any cycle were selected in the previous 
cycle by the RMUX from the shifter, ALU, and Fbox condition codes. The map specifier is an 
output of the RMUX. It is either supplied by the Ebox or the Fbox. The six different condition code 
update functions available through the MIse field of the mia-oword indicate six different maps. 
The Fbox derives its map from the opcode of the macroinstruction it is executing. 

The following tables show all the different condition code alteration maps. Table 8-5 shows the 
microcode specified maps used for macroinstructions executed in the Ebox. Table 8-6 shows the 
maps used for macroinstructions executed in the Fbox. 

Table 8-5: Condition Code Alteration Maps Specified By Microcode 

!\-IISC Field Specification 

LO~..D.PSL.CC.IIIP 

LOAD.PSL.CC.JIZJ 

LOAD.PSL.CC.nn 

LOAD.PSL.CC.mJ 

LOAD. PSL. cC.nIP. QUAD 

LOAD.PSLCC.PPJP 

Map Function 

PSL<NZ:V> <- S5 Condition Codes <NZ:V> 
PSL<C> <- PSL<C> (unchanged) 

PSL<N> <- S5 Condition Code <N> XOR S5 Condition Code <V> 
PSL<Z> <- S5 Condition Code <Z> 
PSL<V> <-0 
PSL<C> <- NOT 85 Condition Code <C> 

PSL<N ~,V,C> <- S5 Condition Codes <N :L,V,C> 

PSL<N :L,V> <- 85 Condition Codes <N:L,V> 
PSL<C> <- NOT S5 Condition Code <C> 

PSL<Z> <- PSL<Z> AND S5 Condition Code <Z> 
PSL<N ,V> <- S5 Condition Codes <N,V> 
PSL<C> <- PSL<C>( unchanged) 

PSL<V> <- NOT S5 Condition Code <Z> 
PSL<N:L,C> <- PSL<N:L,C>(unchanged) 

Table 8-6: CondHlon Code Alteration Maps Used By The Fbox 

Map Specifier Value 

o 
1 (used for MOVF, MOVD, MOVG) 

2 (used for most fioating point 
instructions) 
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Map Function 

No change to the PSL condition code bits. 

PSL<N~> <- S5 Condition Codes <N:L> 
PSL<V> <-0 
PSL<C> <- PSL<C> (unchanged) 

PSL<N:L> <- S5 Condition Codes <N,Z> 
PSL<V,C> <- 0 
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Table 8-6 (Conl): Condition Code Alteration Maps Used By The Fbox 

Map Specifier Value Map Function 

3 (used for MULL and some convert PSL<N,z,V> <- S5 Condition Codes <N,z,V> 
instructions) PSL<C> <- 0 

8.5.10.1.2 Trace and Trace Pending Bits 

'When the first microword of a macroinstruction execution microHow reaches 85, the PSL<T> 
hit is copied into the PSL<TP> bit. <Macroinstruction execution microfiows are distinguished 
from other microfiows by a status bit sent from the Microsequencer. See Section 8.5.14.3.) 
The Microsequencer receives both these bits and causes a trap fault dispatch when necessary. 
The Microsequencer anticipates the setting of PSL<TP> when it dispatches a macroinstruction 
execution microfiow so that it 'will dispatch to the trace fault handler on the next 
SEQ.l\.fl.:"X'LAST.CYCLE or SEQ.1fUX/LAST.CYCLE.OVERFLOW. (See Section 9.2.3.3.2.) 

8.5.10.2 SO 

The SC register is a 5-bit register which holds a shifter shift amount. The microword can specify 
left and right shifts of the amount in the se register. A microword specifies this one of two '\~ays. 
If the constant generation variant of the microword is used, the se register is always the source 
of the shift amount. Also, the SC register is the shift amount source if the microword is not a 
constant generation variant and the VAL field is zero. 

The se register can be loaded in two different ways. One way is to specify nST/SC, specifying the 
se as the destination of E_BUS%WBUS_L<4:O>. The other way is to specify MISCILOAD.SC.FROM.A. In 
this case the SC register is loaded from E_BUSo/oABUS_L<4:O>. 

The E_BUS%WBUS_L<4:O> load into SC occurs at the end of 85. The E_BUSo/GABUS_L<4:O> load occurs 
at the end of 84. In either case, the new value is not seen by the shifter until the next cycle. 
The shifter can use the old sc value during the current cycle. The SC control logic ensures that 
the following case works the same way with and without a stall on the second microword. If 
microword N loads the Be register off E_BU8%WBUS_L<4~, and microword N+l shifts some data 
by the amount in the se register, the data will be shifted according to the value in BC as microword 
N began. 

If two different microwords each specify a load of the Be in the same cycle, the E_BUS%ABUS_L<31:O> 
data is loaded. This can only happen if one microword specifies DSTISC and the following 
microword specifies MISeILOAD.SC.FROM.A. The more recently executed microword wins. (Note 
that this means the result when a stall delays the second microword is the same as if there is no 
stall.) 

NOTE 

If an Ebox pipeline abort occurs, it does not necessarily prevent the modification of the 
se register by a microword in the pipeline. If a microword which would alter the se 
in 85 (i.e., specifies DSTISC) enters 85 in a pipeline abort cycle, the 8e is loaded despite 
the abort. Effectively, the SC register is UNPREDICTABLE after a pipeline abort (though 
if a particular case is analyzed carefully, it may be possible to determine that the se is 
predictable in that case). 
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8.5.10.3 INT.SYS 

INT.sys is a possible E_BUS%ABUS_L<31:O> source and a possible E_BUS%WBUS_L<31:O> destination. 
It is microcode's interface to the intelTUpt section. Both as a source and as a destination, INT.sys 
is a longword. For information on the format and use of the register, see Chapter 10. The register 
is read in 83 and written in 85. 

8.5.10.4 MMGT.MODE 

The MMGT.MODE register is a 2-bit E_BUS%WBUS_L destination. It is loaded from 
E_BUS%WBUS_L<3:2> early in 85. Its value is used in memory management probe accesses (MRQ 
field specifies PROBE.V.RCHK, PROBE.V.RCHK.NOFILL or PROBE.V.WCHK). The Ebox drives this mode 
directly to the Mbo:x. For more detail on Ebox-Mbox interaction see Section 8.5.17. 

8.5.1 0.5 State Flags 

There are 6 I-bit state flags: 0 through 5. Microcode can conditionally branch on these bits. 
They can be set and cleared by microcode, and some are cleared automatically at the start of 
each macroinstruction execution microfiow. The state flags are used as microcode fiags for loops 
and shared microcode paths. 

The state bits are maintained in 83. If the state bits are altered in a microword, a branch based 
on the ne\v state may be specified in the next microword. It is possible to set or clear state flags 
and branch on the previous value in the same microword. 

The following table shows the microword fields and specifications used to set and reset state 
flags. 

Table 8-7: Setting and Clearing State Flags 

MIse Field in Standard Format Microword 

Mnemonic Operation 

MISC/CLR.STATE.3-0 

MISC/SET.STATE.O 

MISC/SET.STATE.1 

MISC/SET.STATE.2 

Clear State Flags 0-3 

Set State Flag 0 

Set State Flag 1 

Set State Flag 2 

MISel Field in Special Format Microword 

Mnemonic Operation 

MISClICLR.STATE.5-4 

MISClISET.STATE.3 

MISClISET.STATE.4 

MISClISET.STATE.5 

Clear State Flags 4 and 5 

Set State Flag 3 

Set State Flag 4 

Set State Flag 5 

At the start of each macroinstruction (macroinstruction and FPD dispatches in the 
micro sequencer ), in sa, state fiags 0 through 3 are reset. If the first microword of the 
macroinstruction execution microfiow sets any of the state fiags, it will override the automatic 
reset for the particular state bit(s) specified; the others are still cleared. 
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The state flag bits may be selected onto the microtest bus for use in microcode branches. See 
Section 8.5.14 and Chapter 9 for more on microcode branches. 

8.5.10.5.1 E%MACHINE_ CHECK_H 

If state flag 5 is 1 and state flag 4 is 0, the signal Eo/tMACBINE_CHECK_H is asserted. This causes 
pin P%MACHINE_CHECK_H to be asserted. 

8.5.1 0.5.2 State Flags and Pipeline Abort 

The state flags are maintained in S3. If a microword which specifies to set or clear state flags 
enters 83, the :flags are altered. Also, the automatic reset of state flags 0 through 3 at the start of 
a new macroinstruction execution flow occurs when the associated microword is in 83. In either 
of these cases, a pipeline abort (due to a microtrap) in S4 for the associated microword will not 
prevent the state flag modification. When microcode intends that the state flags not be altered 
by a specific flow if it is aborted by a microtrap, special rules must be followed. 

There are two cases. If the anticipated microtrap can only occur with microword N in S3, 
microword N+l can specify an alteration of a state flag and it will not happen if the microtrap 
occurs. If the anticipated microtrap can only occur with microword N in 84, and micrO\vord N+1 
alters a state :flag, that state fiag will be affected even if the microtrap occurs. In this case, 
microword N +2 may alter a state :flag and it will not happen if the micro trap occurs. 

If it is not predictable whether microword N will be in 83 or S4 when the anticipated microtrap 
occurs, then the obvious extrapolation of the above explanation determines the result. 

Here is an example case in which microword N is guaranteed to be in 83 when an anticipated 
microtrap occurs: 

• Microcode issued an explicit memory read to a Wn register and microword N sources Wn to 
the E_BUSo/cABUS_L<31:O> to synchronize the operation. The anticipated microtrap is associated 
with the memory read to Wn. 

Here are some example cases in which microword N is guaranteed to be in S4 when an anticipated 
microtrap occurs: 

• Microword N sources an lID to the E_BUS%ABUS_L<al:O> (through the source queue) to 
synchronize to an operand prefetch issued by the IbOL The microtrap is associated with 
the operand which is to be returned to the MD. 

• Microword N synchronizes to an explicit memory reference in microword N-l by specifying 
MRQlSYNC.MBOx. The microtrap is associated with the memory reference issued by microword 
N-l. 

Microcode which intends to avoid the side effect in which state :flags 0 through 3 are cleared in 
the first cycle of a macroinstruction micro:flow if a microtrap occurs may have to add a microword 
after the one synchronizing to the anticipated microfiow before specifying SEQ.MUXILAST.CYCLE or 
SEQ.MUX/LAST.CYCLE.OVERFLOW. Specifically ifmicroword N synchronizes to an anticipated microtrap 
in S4 and microword N+1 specifies SEQ.MUX/LAST.CYCLE, then state :flags 0 through 3 will not be 
cleared if the microtrap occurs. However, if microword N specifies SEQ.MUXILAST.CYCLE, the state 
flags could be cleared (though it would depend on the detailed timing of the events). 
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8.5.1 0.6 DL Part of the Instruction Context Register 

The DL is one field of the instruction context register. It contains the initial data length for the 
macroinstruction which is being executed in the Ebox. The data length is determined by the Ibox 
and passed to the Microsequencer in the instruction queue. The Microsequencer enters the DL 
into the instruction context register, along with other instruction context information. It is used 
by the Ebox as the default data length for each microword. Each microword specifies use of the 
data length in the DL or use of a data length of longword. The L field of the microword determines 
this. The operations affected by data length are: 

• Calculation of the ALU condition codes. 
The four condition codes are determined according to the data length. (For example, the 
ALU<N> is bit <31>, <15>, or <7> for longword, word, or byte length operations, respectively.) 

• Zero Extending of E_BUS%WBUS_L<31:O> data. 
E_BUS%WBUS_L<31:O> data is zero extended from the specified data length to longword. 

• The size of a memory operation initiated by this microword. 
This affects all memory operations except result stores to the current PA queue entry address. 
(PA queue entries contain the data length used for the store operation.) 

• Register File GPR Writes. 
GPR writes from E_BUS%WBUS_L<31:O> are gated by the data length such that only the bytes 
in that data length are affected by the write and others are unchanged. (Writes from the MD 
and IW ports to the GPRs are not affected by the DL.) 

The DL field in the instruction context register can be modified by specifying DL.BYTE, DL \,\rORD, or 
DL.LONG in the MISC field of the microword. The effect is to set the DL to byte, word, or longword 
data length, respectively. The old DL value applies to operations in the current microword. The 
new DL value applies to the next microword. 

See Section 8.5.14.1 for more on the instruction context register. 

8.5.10.7 Mask Processing Un" 

The mask processing unit (MPU) holds and processes a 14-bit value. The value is loaded from 
E_BUS%BBUS_L<29:18> when the microword specifies LOAD.MPU.FROM.B in the MISC field. The MPU 
outputs a set of bits with which the microcode can carry out an eight-way branch. They are 
MPUO_6<2:O> and MPU7_18<2:0>. The purpose of this is to allow microcode to quickly process bit 
masks in macroinstruction execution microfiows for CALLG, CALLS, RET, FFC, FFS, POPR, and PUSBR. 

The MPU unit loads a 14-bit value from E_BUS%BBUS_L<29:18> when the microword specifies 
it. This occurs in 84. The MPU evaluates the input producing the values on MPUO_6<2:O> 
and MPU7_13<2:0> shown in the table below. MPUO_6<2:(b depends only on mask bits <6:0> and 
MPU7_13<2:(b depends only on mask bits <13:7>. 

Table 8-8: MPU Calculation 

MPUO_6<2:O> Truth Table 

Mask<8:O> 

x x x x x x 

All values shown in binary. X = don't care ' 
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Table 8-8 (Cont.): MPU Calculation 

MPUO_6d:O> Truth Table 

Mask<6:O> 

X X X X X 1 

X X X X 1 0 

x x X 1 0 0 

x X 1 0 0 0 

X 1 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 0 0 

MPU7 _13<2:0> Truth Table 

Mask<13:7> 

X X X X X X 

X X X X X 1 

X X X X 1 0 

X X X 1 0 0 

X X 1 0 0 0 

X 1 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 0 0 

All values shown in binary. X = don't care 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

001 

010 

011 

100 

101 

110 

111 

000 

001 

010 

011 

100 

101 

110 

111 

Microcode can branch on the MPU7_13<2:0> or MPU6_0<2:0> values after they are loaded. The initial 
processing is done by the end of the S4 cycle which loaded the MPU. When microcode does branch 
on one of these values, the least significant bit which is 1 in the current mask value in the MPU 
is reset to 0 automatically. This occurs in S3, so that the next microword can branch on the new 
value of the mask. (The MPU bit clear does not occur in a cycle in which there is an S3 stall.) 
The MPU detects that the microword entering 83 specifies an eight-way branch on MPU7_13<2:0> or 
MPU6_<k2:0> by examjnjng the E_USQ%UTSEL_B<4:O> and E_USQ%UTSEkL<4:O> bits. If they specify 
a MPU branch, the appropriate bit is reset. 

If a load of a new MPU mask value is simultaneous with a microcode MPU branch, the new data is 
loaded correctly without any side effect due to the branch. This occurs when a microword specifies 
LOAD.MPU.FROM.B and the immediately following microword does a branch on the previous mask 
value. The branch is an S3 operation of the second mier-oword, while at the same time the load 
is an 84 operation of the first. (The branch outcome is guaranteed to reflect the MPU value before 
the load.) 
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8.5.11 Branch Condition Evaluator 

The branch condition evaluator uses the macroinstruction opcode, the ALU condition code bits, 
the PSL condition code bits, and E_SIIF%SIIF _BESULT_B<O> to evaluate the branch condition for 
all macroinstruction conditional branches. The evaluation is done in every cycle but is only used 
if the microword specifies SYNC.BDISP.TEST.PRED in the MRQ field. The result of the evaluation is 
compared with the Ibox prediction for the branch. The Ibox prediction is indicated in the current 
branch queue entry. If the Ibox prediction was not COlTect, the Ebox signals the Ibox and sends 
a branch misprediction trap request to the Microsequencer. 

The branch condition evaluation is begun late in 84 and finished early in S5. All the information 
needed to perform the evaluation is gathered late in 84. The PSL condition code bits used in the 
comparison are bypassed; they are the bits which will be latched into the PSL at the end of 84. 
The ALU condition code bits used are generated late in 84 and are dependent on the data length 
for the instruction. The shifter result bit is also generated late in 84. The opcode is available 
early in S4 and is used to set up the evaluation. 

In 85, the result of the branch condition evaluation is compared with the Ibox prediction, and 
Et;CBCO~"D_RETIRE_L is asserted to tell the Ibox that a branch queue entry for a conditional branch 
was removed from the branch queue. If the prediction was not COlTect, the Ebox also asserts 
E%BRA.~CH_MISPBEDICT_L which is received by the Ibox and Microsequencer. The ~ficrosequencer 
forces a branch mispredict microtrap beginning in the next cycle when Et1CBRA..~CB_!t!ISPREDICT_L 
is asserted. If E%BCO~"D_RETIRE_L is asserted and E~-cBRA.~CB'>fISPBEDICT:..L is not, the Ibox 
releases the resource which is holding the alternate PC (the address which the branch should have 
gone to if the prediction was not colTect). If E%BCO~-n_RETIRE_L and Et;CBR.AL~CBJ\nspREDICT:..L 
are both asserted, the Ibox begins unwinding the RLOG and fetching instructions from the 
alternate PC. In this case, the microtrap in the Ebox will cause the Ebox and Fbox pipelines to 
be purged and the various Ibox-Ebox queues to be fiushed. Also, E%FLUSBJ4BOX_B is asserted, 
fiushing Mbox processing of Ebox operand accesses other than writes. See Section 8.5.19 for 
more on Ebox handling of microtraps. See Chapter 9 for more on dispatching a microtrap. See 
Chapter 7 for more on activity surrounding branch misprediction. 

The branch macroinstruction has entered S5 and is therefore retired even in the event of a 
misprediction. It is the macroinstructions following the branch in the pipeline which must be 
prevented from completing in the event of a misprediction trap. 

The following shows all the cases the branch condition evaluator handles. The macroinstruction 
opcode and mnemonic are given along with the boolean equation used to determine if the branch 
is taken. 

Table 8-9: Branch Condition Evaluation 

IDstruction 

BNEQ,BNEQU 

BEQL,BEQLU 

BGTR 

BLEQ 

BGEQ 
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Opcode Branch TakeD Condition 

12 NOTPSL<Z> 

13 PSL<Z> 

14 NOT (PSL<N> OR PSL<Z» 

15 PSL<N> OR PSL<Z> 

18 NOTPSL<N> 
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Table 8-9 (Cont.): Branch Condition Evaluation 

Instruction Opcode Branch Taken Condition 

BLSS 19 PSL<N> 

BGTRU lA NOT (PSL<C> OR PSL<Z» 

BLEQU 1B (PSL<C> OR PSL<Z» 

BVC lC NOTPSL<V> 

BVS lD PSL<V> 

BGEQU,BCC 1E NOTPSL<C> 

BLSSU,BCS 1F PSL<C> 

SOBGEQ F4 NOTALU<N> 

SOBGTR F5 NOT (ALU<N> OR ALU<Z» 

AOBLSS F2 ALU<N> XOR ALU<V> 

AOBLEQ F3 (ALU<N> XOR ALU<V» OR ALU<Z> 

ACBB 9D (ALU<N> XOR ALU<V» OR ALU<Z> 

ACBW 3D <ALU<N> XOR ALU<V» OR ALU<Z> 

ACBL Fl (ALU<N> XOR ALU<V» OR ALt;<Z> 

BBS EO E_SHF~SHF _RESt.TLT_H<O> 

BBC El NOT E_SHF%SHF _RESLTLT_H<O> 

BBSS E2 E_SHF%SHF _RESULT_H<O> 

BBCS E3 NOT E_SHF%SHF_RESULT_H<O> 

BBSC E4 E_SHF%SHF_RESULT_H<O> 

BBCC E5 NOT E_SHF%SHF _RESULT_H<O> 

BBSSI E6 E_SHF%SHF _RESULT_H<O> 

BBCCI E7 NOT E_SBF%SHF _RESULT_H<O> 

BLBS E8 E_SHF%SHF _RESULT_H<C» 

BLBC E9 NOT E_SHF90SHF _RESULT_H<C» 

8.5.12 Miscellaneous Ebox Operand Sources 

Generally Ebox operand sources are registers in the register file or other registers. Certain 
sources are read type accesses to Ebox states, special results calculated automatically, or access 
to a data path not normally used as an operand source. In some cases data which can be accessed 
in another way is arranged in a special format as a source. 

DIGITAL CONFIDENTIAL The Ebox 8-35 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

Figure 8-4: S+PSW Format 

31 30 2~ 28127 26 25 24123 22 21 2011~ 18 17 16115 14 13 12111 10 O~ 08107 06 OS 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 0 01 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 0 0 0 0 01 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 1 
1 +--- PSL<7:S> +--- OPCODE<O> 

8.5.12.1 S+PSW_EX 

The 8+PSW _EX E_BUS%ABUS_L<31:O> source is simply a bit from the macroinstruction opcode and 
several bits from the PSL. It saves microcode steps in the CALLS and CALLG macroinstructions. 
Figure 8-4 shows the format of this longward source. 

Bit <29> comes from the instruction context register (OPCODE<O». Bits <7:5> come from the PSL 
register. 

8.5.12.2 Population Counter 

The Population Counter is an Ebox function unit which calculates four times the number of 
ones in E_BUS'icABUS_L<13:O> every cycle. Its result is available as a E_BUSt;'c..-\BUS_L<31:O> source 
to the following microword. It saves microcode steps in the CALLS, CALLG, POPR, and PUSHR 
macroinstructions. 

The Population Counter calculates a result in the range 0 to 14*4 equal to four times the number 
of ones in E_BUS%ABUS_L<13:O> early in 84. If microword N steers data to E_BUSO/CABUS_L<31:O>, 
microword N+l can access the Population Counter result for that data by specifying POP.COUNT 
in the A field. If microword N+l is stalled in 83, Ebox control logic holds the Population Counter 
result until the stall ends. The effect is the same as if no stall had occurred. 

The Population counter's result is used to calculate the extent of the stack frame which will 
be written by the macroinstruction. The two ends of the stack frame are checked for memory 
management purposes before any writes are done. 

8.5.12.3 RN.MODE.OPCODE 

RN.MODE.OPCODE is a longword composite source used when the microcode needs to access one of 
these data items. The four data fields in this register are RN<3:0>, CUR_MOD<l:O>, OPCODE<7:0>, 
and the VAJCRESTARTJUT. Figure 8-5 shows the position of these fields in the longword. This 
longword is one of the possible E_BUS%lIBUS_L<31:O> sources. It is read in 83. 

The RN<3:0> field is really a special data path. Its value is the GPR number in the CUITent source 
queue entry. The following restrictions apply: The A field of the microword must specify 51 (the 
current source queue output), and the microcode must know from context that the source queue 
entry points to a GPR. If these restrictions are not met, the value returned in the RN field is 
UNPREDICTABLE. 
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Figure 8-5: RN.MODE.OPCODE E_BUSOkBBUS_L<31:0> Source 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

RN I 0 0 I I OPCODE I 0 0 0 0 0 0 0 0 I I 0 0 0 0 0 0 0 I 
.--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I 
+-- VAX_RESTART_BIT 

The CUR_MOD<1:0> field is simply the access mode of the current process; it is taken directly from 
psL<25:24>. 

The OPCODE<7:0> field is the opcode from the most recent macroinstruction execution dispatch. 
It is taken from the instruction context register in S3. This instruction context register field has 
9 bits. The 9~h bit indicates the first byte of the opcode was FD#16. The opcode portion of the 
RJ\.MODE.OPCODE source does not include the 9th bit. 

The VA.X_RESTART_BIT field is the VAX Restart Bit which indicat.es that the most recently dispatched 
macroinstruction execution microfiow has not altered a GPR or initiated a memory write operation 
of some kind. It is used to indicate to the operating system that a macroinstruction which 
encountered some error hasn't modified any architectural state. See Section 8.5.13 for more 
detail. 

8.5.12.4 PMFCNT Register 

The PMFCNT register which is part of the performance monitoring facility is available as an 
E_BUS%ABUS_L<31:O> source. See Chapter 18 and Figure 18-4. 

8.5.13 VAX Restart Bit 

The VAX Restart Bit is used to keep track of whether the currently executing macroinstruction 
has altered any architecturally visible state. It is only used by macrocode handling machine 
check exceptions. Conceptually, the Ebox hardware resets this bit anytime a GPR is altered or 
a memory write or store is initiated and sets it anytime a new macroinstruction begins. Often 
there is more than one macroinstruction in the NVAX pipeline, making maintenance of the VAX 
Restart Bit somewhat tricky. 

As is described in Section 8.5.19, microtraps for faults are always taken at the end of 84, before 
the microword can advance to S5. The VAX Restart Bit is set reset only when operations advance 
to 85 and there is no pipeline abort in that cycle. 

The VAX Restart Bit is reset each time a microword which alters a GPR or specifies any memory 
write is advanced into S5. The bit is reset in 85 when a read is sent to the Mbox and the read 
data is to be returned to a GPR, since that event actually writes the data on E_BU~WBUS_L<31:O> 
into the specified GPR. 

The memory operations specified in the MRQ field which cause the VAX Restart Bit to be reset are: 

• WRITE.V.WCHK and 

• WRITE.V.UNLOCK. 
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In addition, all microwords specifying DSTIDST reset the VAX Restart Bit since destination queue 
indirect stores are either memory stores or GPR writes. 

The VAX Restart Bit is set each time a microword which causes dispatch to an execution 
microfiow is advanced into 85, or when microcode handles a trap exception by retiring the current 
instruction and dispatching to the exception handler in microcode. Specifically, it is set when 
MISCIRETIRE.INSTRUCTION or SEQ.MUXILAST.CYCLE is specified by the microword in 85. The set 
always overrides the reset when both conditions exist in the same cycle. So the bit is reset when 
a microword which alters a GPR or writes or stores to memory is in 85 and that microword does 
not specify MISCIRETJRE.INSTRUCTION or SEQ.MUXILAST.CYCLE. 

When the Fbox is retiring results, the VAX Restart Bit is maintained properly. It is reset if the 
Fbox stores a result in memory or the register file (that is, it is reset on any destination queue 
indirect store from the Fbox). It is set when the Fbox asserts F%RETIRE_B, retiring the current 
Fbox instruction. (Note that this is not the cycle in which the microword which initiated the Fbox 
instruction is in 84; this is the cycle in which the Fbox sends the result of the operation to the 
Ebox.) As with Ebox retires, the set overrides the reset. 

The \u Restart Bit doesn't detect all changes to architecturally visible states. Microcode takes 
explicit action when it is about to alier some architecturally visible state other than memory or 
a GPR. It can, for example, copy a GPR to itself before changing the other state in question. 

The \:o\.X Restart Bit is read out in 83 but is maintained in 85. The value of this bit isn't useful 
if the pipeline is executing macroinstructions normall~~ It is useful only when a machine check 
exception has been detected. Since the VA.'X Restart Bit is updated in mid 85, it won't report a 
memory or GPR "vrite until the second microword after the one which does the write. 

The VAX Restart Bit is read through the RN.MODE.OPCODE E_BUS%BBUS_L<31:O> source. See 
Section 8.5.12.3. 

8.5.14 Ebox-Microsequencer Interface 

The Ebox receives the data path control part of the microword and the macroinstruction context 
information from the Microsequencer at the beginning of S3. It also receives a few signals 
indicating the circumstances accompanying the fetch of the microword. The Ebox sends many 
states which are needed for conditional branches to the Microsequencer from various points in 
the Ebox pipeline. The Microsequencer uses these states for conditional branch calculation. 

8.5.14.1 Instruction Context Register 

The Microsequencer latches macroinstruction information at the beginning of each. 
macroinstruction executiop. microflow, including FPD microflows. This information was originally 
created in the !box and entered in the instruction queue. At some point the Microsequencer 
extracted that information along with a control store dispatch address. The Microsequencer 
pipelines this information so that it becomes visible to the Ebox at the same time as the microword 
from the dispatch address is clocked into the MIB Latch. The Microsequencer holds this data 
until the next time the first microword of a macroinstruction enters 83. See Section 9.2.3.3.4 and 
Section 9.2.3.3.4.1. 

Except for the DL data, the Ebox simply carries the instruction context data down the pipeline. In 
the Ebox, the DL register is loaded with the DL data when the first microword of a macroinstruction 
is in 83. This latch can be altered under microcode control. See Section 8.5.10.6. 
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The information passed by the Microsequencer to the Ebox is made up of the following fields: 

• Macroinstruction Opcode; Instruction Context<OPCODE> -= 
Instruction Context<12:4> 
The ninth bit indicates FD#16 was the first opcode byte. This data is carried down the Ebox 
pipeline. It is used in 83 as a source of data and for microcode conditional branches. In S4/S5 
it is used in the conditional branch evaluator. 

• Data Length; Instruction Context<DL> -= Instruction Context<3:2> 
The Ebox holds this initial instruction data length in the DL register. 

• Fbox Instruction Flag; Instruction Context<FI> = Instruction Context<l> 
This bit is asserted if the opcode is for any macroinstruction which is normally executed in 
the Fbox. The Ebox enters it in the retire queue and uses to force a reserved opcode fault for 
Fbox instructions when the Fbox is disabled. 

The Microsequencer signals that a new microflow begins with the accompanying microword and 
macroinstruction context information. If the new microflow is due to a macroinstruction, the 
Ebox latche5 the DL<l:O> data. The DL ,alue can be altered by microcode, so a special latch is 
implemented in 83 for it. The opcode is simply carried along the pipeline. It remains latched in 
the !\ficro5e~uencer until the next new macroinstruction How is dispatched, so it is not latched 
explicitly in the Ebox. This instruction context information is available to any microword in the 
associated macroinstruction's execution microflow. 

The floating point instruction flag is also entered in the retire queue when a new microfiow is for 
a macroinstruction. For more detail on the retire queue see Section 8.5.15.7. 

The macroinstruction context information is carried down the pipeline with each microword. 
The context information stalls when the microword stalls. The opcode is used in S4 and S5 to 
determine conditional branch results. The DL is used to control the ALU in 84, the size for any 
memory request in 84, E_BUS%WBUS_L<31:O> zero extension in S5, and GPR byte write-eDables in 
85. The floating point instruction flag is used in S3 to determine how to handle source operand 
faults. 

The DL register can be altered by microcode. This occurs when themicroword specifying the 
change is in 84. If new instnlction context information enters S3 at the same time as a microword 
specified DL alteration occurs, the instruction context load overrides the microword specified 
alteration. This is because the instruction context load is for the microword subsequent to the 
microword specifying the DL alteration. 

8.5.14.2 Mlcrotest Fields 

The Ebox provides most of the information used by the Microsequencer for microcode branches. 
The condition bits are driven onto the microtest bus when the Microsequencer requests it by 
driving the select code on E_USQ%UTSEkB<4:O> and ILUSQ%UTSEL_L<4:O>. The condition data is 
driven early in the cycle after it is computed. The following table shows the information the 
Ebox can supply. It gives the source and pipeline segment in which the data is driven. This 
condition information is tested in S3, as specified by the SEQ.COND field in the Microsequencer 
control part of the microword. The S3 operation determines the address of the next microword. 
So data delivered by the Ebox when microword N is in S3 is used by microword N+l to select 
microword N +2. If the data is driven while microword N is in S4 or S5, one or two more cycles 
of microbranch latency are required, respectively. 

DIGITAL CONFIDENTIAL The Ebox 8-39 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

Table 8-10: Ebox Sourced Mlcrobranch Conditions 

Source 

ALU<.Z>, ALU<C>, ALU<V>, ALU<N> 

8HF<N>, 8HF<.Z> 

E_B~US..L<81.1&1""1I> 

E_BUSCJilA.BUS-.L<D> OR E_BtJSCJDABUSJ.cU> 

E_BUSCJiiBBUS_LcSa3.IIO> 

E_BUSCJiiBBUS_L<2aO> EQ 0 

E_BUSCJiiBBOS_L<U18> NEQ 0 

:MPUO_6<2:0>,1t!PU7_13<2:0> 

State Flags 0-5 

Opcode<2:0> 

PSL<29~26:22> 

\"ECTOR_PRESE!\'"!' 

FBOX_ENABLE 

Field queue suNs - valid, and reLmode 

Fbox fault code (see Section 8.5.19.7) 

Pipeline Stage (condition bit driven at 
end of stage): 

S4 

S4 

83 

sa 
83 

83 

sa 
S4 

sa 
821 

S5 

always stable; configuration s+..atus bit (not 
used by NVAX microcode, see Section 8.5.18) 

always stable; configuration status bit 

always accessible; Ibox-Ebox queue 

effectively always stable; not valid except in 
microtrap for Fbox faults 

Ibypass or fiow-tbru design required 80 first microword of a macroinstru.cti.on execution fiow can specify a conditional 
branch on its macroin.struction opcode. 

See Chapter 9 for more on microbranches. 

8.5.14.3 Miscellaneous Mlcrosequencer Signals 

The Microsequencer provides the Ebox with several control signals. They signal certain 
Microsequencer events which have Ebox side effects. 

The Microsequencer signals E_U~UTSEkB<4:O> and E_USQ%U'rSEL_L<4:O> are used in early S3 
by the Ebox to detect that one of the MPU conditional branches (MPUO_6 or MPU7_1S) is decoded 
from the Microsequencer control part of the microword. The Ebox clears the appropriate bit in 
the mask stored in the MPU by the end ofS3. See Section 8.5.10.7 for more detail. 

The Microsequeneer signals E_USQ%UTSEL..B<4:O> and E_USQ'RJ'rSEkL<4:O> are used early in 
83 by the Ebox to detect that the field queue status conditional branch is decoded from the 
Microsequencer control part of the microword. The Ebox retires an entry from the field queue if 
the entry was valid at the time the branch was evaluated. See Section 8.5.15.8 for more detail. 

NOTE 

E_USQ%UTSEL_B<4:O> and E_USQ%UTSEL...L<4:O> are derived almost directly from the 
SEQ.COND field of the Microsequencer control part of the microword. See Chapter 9. 
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The Microsequencer asserts E_USQo/cMACRO_1ST_CYCLE_B when the microword in 83 is the 
first microword of a macroinstruction execution micro:flow (including the microHow at the FPD 
dispatch). The Ebox sets all the Wn register valid bits and resets state fiags 0-3 as a result of this 
signal. Both effects occur in S3. It also copies PSL<T> into PSL<TP> once the microword reaches 
85. Also, the Ebox latches the new instruction context DL value at the beginning of 83. 

The Microsequencer asserts E_USQ%PE...ABORT_L when a microtrap is initiated. In this cycle all 
the control latches in the Ebox pipeline are Hushed. Also, the Ebox flushes the retire queue. 

The Microsequencer asserts E_USQ%I(LSTALL_H when the microword in 82 is the STALL microword 
(see Section 8.5.20.1). This status is carried down the Ebox pipeline along with the microword. 
The status is asserted (and the microword is the STALL microword) only when the Microsequencer 
required an instruction queue entry but no entry was valid. When this status is true, and the 
Ibox is asserting one of its memory error signals, the Ebox assumes a memory error in fetching 
the opcode byte(s) occurred. This is piped forward to 83 and then treated like any other 83 
detected fault. A microtrap is forced when the condition is clocked into 84. See (Section 8.5.19). 
The STALL microword status is also used by the Ebox 83 stall timeout logic (see Section 8.5.25.1). 

T'\vo £elds from the ::Micro sequencer control portion of the micro\vord are decoded by the Ebox. 
These £elds are SEQ.MUX and SEQ.FMT. The Ebox determines when these fields decode to 
the operation L.-\sT.CYCLE or LAST.CYCLE.OVERFLOW. See Chapter 9 for more on the format of 
the ~Iicrosequencer control portion of the microword. The decoded status is carned down 
the Ebox pipeline with the other decodes of the microword. "'hen a microword specifying 
SEQ.MVXlLAST.CYCLE or SEQ.AfUXlLAST.CYCLE.OVERFLOW is advanced into S5, the Ebox signals the 
Ibox that a macroinstruction is retiring (except if the microword specifies DISABLE.RETIP-ElYES). 
See Section 8.5.15.9 for more detail. 

When a microword specifying SEQ.MUXILAST.CYCLE.OVERFLOW is advanced into S5, and the PSL<IV> 
and PSL<V> bits are both set, the Ebox signals the Microsequencer that an integer overfiow 
microtrap should occur. 

8.5.14.4 Miscellaneous Ebox-to-Microsequencer Signals 

The Ebox sends the Microsequencer several PSL bits which affect new microfiow dispatching 
(dispatching in response to SEQ.MUXILAST.CYCLE or SEQ.MUXILAST.CYCLE.OVERFLOW). They are 
PSL<T, TP, and FPD>. When the Microsequencer next decodes a SEQ.MUXILAST.CYCLE or 
SEQ.MUXlLAST.CYCLE.OVERFLOW operation, if PSL<FPD> or PSL<TP> is set, it dispatches to special 
microflows (a different microfiow for FPD than for TP) instead of the next macroinstruction 
execution microftow. If it dispatches for FPD (first part done), the Microsequencer removes an 
entry from the instruction queue and sends the instruction context information to the Ebox. For 
TP (trace fault) dispatches, the instruction queue is not referenced and the instruction context 
register is not loaded. 

When PSL<T> is set at instruction dispatch time (including dispatching for FPD), the 
Microsequencer sets a local copy of the PSL<TP> bit, called LOCAL_TP (see Section 9.2.3.3.2). If 
LOCAL_TP or PSL<TP> is set at the time of a dispatch for a macroinstruction, the instruction queue 
reference does not occur and a trace fault dispatch occurs instead. This could happen on the 
very next cycle after the macroinstruction dispatch with PSL<T> set and PSL<TP> not set. The 
Microsequencer sets LOCAL_TP during the first dispatch cycle so that it can affect the immediately 
subsequent dispatch. 
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The Ebox asserts the signal E_PSLVSL_IS_DST_SS_B in S5 of any cycle in which the entire PSL 
is being updated (i.e., if only the low byte of the PSL is updated, E_PSL%PSL_IS_DST_SS_B is not 
asserted). The Microsequencer clears LOCAL_TP when this signal is asserted. Note that the 
Microsequencer will initiate a trace fault dispatch if the PSL<TP> bit is set or LOCAL_TP, or both. 
So if a new PSL with PSL<TP> set is loaded, the trace fault dispatch will occur at the correct point. 

NOTE 

There is a microcode restriction which disallows specifying SEQ.MUXILAST.CYCLE or 
SEQ.MUX!LAST.CYCLE.OVERFLOW in the two microwords following one which loads the 
PSL. An exception to this rule is made when none of the PSL bits which affect new 
microfiow dispatching will be changed. Some microflows know from context that none 
of these bits will change in a given PSL write (for example, in the execution microfiow 
for the CALL macroinstruction, several bits in the low byte of PSL are cleared, but 
<T, TP, and FPD> are unaffected). 

8.5.15 Ebox-Ibox Interface 

The Ibox to Ebox interface is made up of a number of FIFO queues which carry operand information 
to the Ebox. These are the source queue, destination queue, field queue, and branch queue, 
'\.vhich carry source operand information, destination operand information, type information for 
bit field operands, and branch related information, respectively. These queues are part of the 
Ebox. The Ibox generally processes instructions ahead of the Ebox. As it processes operand 
specifiers it adds entries to one or more of the queues. Each specific macroinstruction execution 
microfiow always removes the same number of entries from. each queue as the Ibox adds (unless 
an exception occurs). With this buffering, the Ibox and Ebox operate independently enough that 
stalls or latencies in one box don't necessarily cause a stall in the other, resulting in greater 
overall execution speed. 

See Chapter 7 for more detail on many of the topics in this section. 

The Ebox maintains macroinstruction ordering information in the retire queue. This FIFO is not 
part of the Ibox to Ebox interface, but is closely related. The Ebox is both the supplier and the 
consumer of retire queue entries. 

In any of the queues described in this section an entry which hasn't been added is said to be 
invalid. Except in the case of the field queue, a stall (S3 for source queue, S4 for destination 
queue and branch queue) results when the microword references a queue entry which isn't valid. 
This stall ends when the Ibox adds enough entries to fulfill the microword's request. 

In any of the queues described here, adding an entry means writing an entry, and moving the 
write pointer to the next entry in the queue. Accessing or referencing an entry means reading 
an entry, and moving the read pointer to the next entry in the queue. Where it is needed, status 
information concerning the number of valid entries in a queue is generated by examining the 
read and write pointers of that queue. 
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8.5.15.1 Ibox Counters 

The Ibox has three counters which prevent queue overrun. Two counters are used to keep track 
of the number of entries in the source and destination queues, one for the source queue (allowing 
12 entries) and one for the destination queue (allowing 6 entries). The Ibox increments these 
counters when it adds entries. The Ebox notifies the Ibox when it retires entries from the source 
or destination queue, and the Ibox decrements the counters in response. 

Another counter in the Ibox keeps track of the number of macroinstructions which have been 
sent to the Ebox but have not been retired. This limits the number of entries in the retire queue, 
branch queue and field queue because there can be no more than one entry in each of these queues 
for any given macroinstruction. The counter allows up to 6 instructions in the EboxlFbox at a 
time. The Ibox increments this counter when it adds an entry to the instruction queue. When 
the Ebox signals the Ibox that a macroinstruction is retiring, the Ibox decrements the counter. 
This happens in S5 of the Ebox pipeline, one or two stages after the stage in which entries are 
removed from these queues. Note that this same mechanism limits the number of instruction 
queue entries to 6. 

I 

NOTE 

The limit of one field queue entry per macroinstruction is simply an NVAX convention. 
The VA..X Architecture does not include instructions which have more than one bit field 
base address operand specifier, but ~TVAX defines other operands as field type where it 
simplifies the implementation. 

The Ibox also has a counter to keep track of the number of available MD registers. It increments 
this counter when it allocates an MD to hold operand data (e.g., when it initiates a read of operand 
data from memory to an MD). 'When the Ebox retires a source queue entry, it tells the Ibox whether 
the entry pointed to an MD. The Ibox decrements the counter when the Ebox retires a source queue 
entry which pointed to an MD. It is possible for the Ebox to retire two source queue entries in 
one cycle, and the Ibox decrements the counter by two when both source queue entries pointed 
to MDs. 

8.5.15.2 Source Queue 

The source queue carries source operand information. The information is either literal mode data 
(6 bits) or a pointer into the register file. Ifit is a register file pointer, it either points to a GPR or to 
an MD register. The Ebox accesses one or two source queue entries per cycle in 83. Source queue 
accesses always cause data to be sourced to E_BUS%ABUS_L<31:O> or E_BUS%BBUS_L<31:O>. literal 
mode data is zero extended and driven directly onto the specified bus. Otherwise the contents 
of the location in the register file pointed to by the source queue entry is fetched. If the register 
which is accessed is not valid or is marked for writing by the Fbox, then the appropriate 83 stall 
occurs. 

Figure 8-6 shows a source queue entry. The VALUE field is either a register file address or a 6-bit 
literal data value. If it is a register file address, it points to either a GPR or MD register. SH_LIT 
indicates whether VALUE is short literal data (if SH_LIT is 1, VALUE is short literal data). 

Source queue entries are made for read, modify, address, and field operands. Both a source queue 
and a destination queue entry is made for each modify operand. 
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Figure 8-6: A Source Queue Entry 

06 05 04103 02 01 00 
+--+--+--+--+--+--+--+ 

VALUE 
+--+--+--+--+--+--+--+ 

I +--- SH_I.!T 

Field operands in NVAX are classified into read and modify types. Read and modify field operands 
both result in a source queue entry. Modify field operands also result in a destination queue entry 
if the operand specifier is register mode. 

Two source queue entries are made for quadword length operands. If they are for registers, they 
point to registers N and N+l. If they are memory operands, they point to MD registers which 
will receive data from memory addresses A and A+4. For literal mode, the first value is the 
immediate data, and the second is O. 

Source queue access fulfills a necessary synchronization function. "'llen microcode successfully 
accesses a source queue entry it knows that the Ibox was able to fetch the associated operand 
specifier. It also knows that there is no access violation or invalid translation condition associated 
"vith the operand. For modify type operands it also knows that the location will not give an access 
violation when "vritten. Microcode for complex macroinstructions always references all source 
operands ,,'\"hich might cause a memory management fault before altering any architecturally 
visible state. 

The number of entries in the source queue is 12. 

8.5.15.3 Destination Queue 

The destination queue carries destination operand information. The information is either an 
address in the register file of a GPR or a status indicating a memory write to the address in the 
PA queue in the MbOx. The destination queue is accessed in S4 (no more than one entry per cycle 
is used). Its information is used to decide how to write the result which is being calculated by 
the ALU, shifter, or Fbox in the same cycle. If the destination queue entry indicates a memory 
store, the request is sent to the Mbox. An S4 stall occurs if the Mbox is already busy or the PA 
queue entry is not ready. If the destination queue entry indicates a GPR write, the register file 
will be written using the address from the destination queue. The GPR write occurs in the next 
cycle (85). 

Figure 8-7 shows a destination queue entry. The VALUE field is either a register file address or is 
unused. If it is a register file address, it points to a GPR. MDEST indicates whether the destination 
of the data is memory. If MDEST is 0, the result is destined for the register :file and VALUE field 
indicates the destination address. If MDEST is 1, the destination of the data is memory and the 
VALUE field is unused. 

Destination queue entries are made for modify and write access type operands. Also, modify field 
operands result in a destination queue entry if the operand specifier is register mode. 
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Figure 8-7: A Destination Queue Entry 

04103 02 01 00 
+--+--+--+--+--+ 
1 1 VALUE 
+--+--+--+--+--+ 

1 

+--- MDEST 

Two destination queue entries are made for quadword length operands. If they are for registers, 
they point to registers Nand N+l. For memory operands they point to addresses A and A+4. 

Destination queue access fulfills a necessary synchronization function. If the destination queue 
entry is accessed and used successfully, microcode knows that the destination operand specifier 
was fetched successfully and that there will be no access violation when the destination location 
(if it is in memory) is written. In the case of quadword data length, successful use of the first 
destination queue entry guarantees that the second write will not incur a memory management 
exception either. 

The destination queue contains the Fbox destination scoreboard function. See Section 8.5.16.4 
for more information. 

The number of entries in the destination queue is 6. 

8.5.15.4 Miscellaneous Queue Retire Information 

"7b.en an entry is retired from the source or destination queues, certain information is sent back 
to the Ibox. The Ibox uses this information to maintain three counter values and to maintain 
GPR scoreboard information in the scoreboard unit (SBU). 

Zero or one destination queue entry can be retired in a given cycle. The retire information sent 
to the Ibox for the destination queue is: 

• whether an entry is being retired, 
• whether the entry being retired indicates a GPR·write or a memory write, and 
• the GPR number if it is a GPR write. 

The Ebox signals the Ibox when a destination queue retire occurs early in the cycle in which the 
operation is advanced into S5. 

Zero, one, or two source queue entries can be retired in a given cycle. Similar information is 
sent for each of the two source queue read ports. The retire information sent to the Ibox for each 
source queue read port is: 

• whether an entry is being retired, 
• whether the entry being retired indicates a GPR read, an MD read, or is short literal data, and 

• the GPR number if it is a GPR read. 

The Ebox signals the Ibox when one or two source queue retires occur. It does this early in the 
cycle in which the microword retiring the source queue entries is advanced into 84. 
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8.5.15.5 Branch Queue 

The branch queue carries information for conditional and unconditional branches. The 
information is a one-bit prediction status. The prediction status is only used by conditional 
branches. It indicates which way the Ibox predicted the conditional branch would go. The Ebox 
references the branch queue for two reasons: to synchronize with the Ibox fetch of the branch 
displacement and to compare the Ibox branch prediction to the actual branch result. 

The Ebox accesses the branch queue in S4 when the microword specifies SYNC.BDISP, 
SYNC.BDISP.RETIRE, or SYNC.BDISP.TEST.PRED in the MRQ field. SYNC.BDISP.RETIRE is used in 
unconditional branches. SYNC.BDISP.TES'tPRED is used in all conditional branches. SYNC.BDISP 
is used in some complex conditional branches. The Ibox doesn't add an entry to the branch queue 
until it has successfully fetched the displacement. When the Ebox accesses the branch queue, it 
will stall until there is an entry. This stall occurs in S4 and prevents the branch macroinstruction 
from retiring before the displacement has been successfully fetched. 

For conditional branches, the Ebox waits for the Ibox to add the entry to the branch qu.eue 
and then compares the Ibox prediction to the actual result of the branch which is calculated in 
the Ebox. If the branch was mispredicted, the Ebox initiates a microtrap in 85. Because the 
microtrap is in 85, the branch macroinstruction retires but subsequent macroinstructions are 
prevented from completing. 

In some complex conditional branches, the Ebox microcode waits for the branch queue entry to 
become valid before it stores a result calculated by the instruction. This allows the microcode to 
be sure the branch displacement was fetched withop,t a memory management fault or hardware 
error before modifying state. The microcode may have to delay retiring the branch queue entry 
and checking the branch prediction. SO SYNC.BDISP accesses the branch queue, and causes an S4 
stall if the entry is not valid, but does not cause the entry to be retired. 

The Ebox signals the Ibox whenever a microword which retires a conditional branch queue entry 
advances into 85 (that is a microword specifying SYNC.BDISP.TEST.PRED). This causes the Ibox to 
release the alternate branch path PC (the PC of the path not taken by the Ibox prediction). The 
Ebox signals a mispredicted branch at the same time, if there is one. If there is a mispredicted 
branch, the Ibox responds by unwinding the RLOG and resuming macroinstruction fetching at the 
alternate PC address. 

Du.e to complexity in the branch queue bypass logic, it may happen that one cycle of "unnecessary" 
stall occurs in cases where there back-to-baclt branches are executed. The extra cycle of stall 
happens only if the two branches are in adjacent stages of the Ebox pipeline and the Ibox writes 
the second branch queue entry one cycle before the the second branch is in 84, ready to retire 
(i.e., it wouldn't be stalled except for the branch queue stall). In this case the branch queue 
read pointer is being advanced and another branch queue entry is being written. Bypass is not 
implemented for the second branch in this specific case. 

The number of entries in the branch queue is 6. 

8.5.15.6 Operand and Branch Buses 

The transmission of operand information for the source queue, destination queue, and field queue 
occurs via the operand bus. This bus is described in Chapter 7. It carries all the information 
which might be entered into any of these queues, and it has valid bits which tell the Ebox when 
to add entries. 
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The operand bus caries information derived from decoding a single operand specifier. Zero, one 
or two source andlor destination queue entries are specified, and zero or one field queue entry. 
Only when the operand is quadword length can more than one source or destination queue entry 
be made. Whether a source or destination queue entry is made depends on whether the operand 
is read, write, or modify access type. (Note that the access type referred to here might not be 
identical to the true access type given in the VAX Architecture Standard, for various reasons.) 

A field queue entry is made for each field operand. The Ibox instruction decode logic determines 
if a particular operand is a field operand. Only certain macroinstructions have a field operand, 
and no macroinstruction has more than one field operand. 

The branch queue receives its information via the branch bus. This bus has one bit of data (a 
prediction status) and a valid bit. A branch queue entry containing the prediction status is added 
in every cycle in which the valid bit is asserted. See Chapter 7 for more information. 

8.5.15.7 Retire Queue 

The retire queue is used by the Ebox to force macroinstructions to retire in order. It contains 
one bit of information, a status indicating whether the Ebox or Fbox is the source of the next 
macroinstruction to retire. The Ebox adds an entry to the retire queue in S3 each time a new 
macroinstruction execution microflow begins. (If there is an S3 stall, the entry is added to the 
retire queue in the first cycle of the stall. Exactly one entry is made whether or not an S3 stall 
occurs for one or more cycles.) The retire queue entry is the FI bit from the instruction context 
register (see Section 8.5.14.1). However, if the FBOX_ENABLE bit in ECR (IPR 125) is not set, the 
retire queue entry is forced to indicate Ebox retire regardless of the FI bit. Similarly, if PSL<FPD>, 
PSL<27>, is set, the retire queue entry is forced to indicate Ebox retire regardless of the FI bit. 

The the retire queue is forced to indicate that the Ebox is next to retire when ECR<FBOX_ENABLE> 
is not set because the Fbox will not receive an operation dispatch from the Ebox 
(F%FBO~lST_CYCLE_B will never be asserted). ECR<FBOX_ENABLE> also disables microcode 
sending of operand data, overriding microcode. The Ebox generally forces a reserved instruction 
microtrap when Fbox instructions are in S4 (see Section 8.5.16.8 for more detail). This microtrap 
flushes the retire queue (and, because the retire queue is empty, the Ebox is automatically selected 
as the RMUX source). 

If the Fbox instruction is MULL, a reserved instruction microtrap does not occur (see 
Section 8.5.16.8). Instead the Ebox microcode executes the MULL. This requires that the Ebox be 
selected as next to retire and is the reason ECR<FBOX_ENABLE> forces the retire queue entry to 
select the Ebox. 

When PSL<FPD> is set SEQ.MUXlLAST.CYCLE and SEQ.MUXlLAST.CYCLE.OVERFLOW causes the 
micro sequencer to dispatch to a specific microcode entry point regardless of the instruction queue 
contents. Since this dispatch is to an Ebox microcode flow which will not send operands to the 
Fbox, the Ebox must be selected in the retire queue (though any previous instruction is not 
affected and retires normally). Otherwise, the Ebox could stall waiting for the Fbox to retire an 
instruction while the Fbox waited for source operands to be sent. That deadlock would only end 
on 83 stall timeout. 

The Ebox examines (without retiring an entry) the retire queue in S4 to determine whether the 
Fbox or the Ebox is the next source of a retiring macroinstruction. Based on the retire queue 
output, the RMUX is set to select either the Fbox or the Ebox as the source of control for S4-initiated 
memory references and most S5 operations. This selection remains in effect until the retire queue 
entry is retired. See Section 8.5.5 for more on how this status is used to control the RMUX. 
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If the Ebox is the next to retire a macroinstruction, the retire queue entry is retired in S4 when 
the microword advancing into S5 specified SEQ.MUXlLAST.CYCLE or SEQ.MUXlLAST.CYCLE.OVERFLOW 

and did not specify DlSABLE.RETIREIYES. If the Fbox is the next to retire a macroinstruction, the 
retire queue entry is retired in S4 when the Fbox asserts F%RETIRE_B. In either case the retire 
queue entry is not retired unless the selected operation advances into 85 (i.e., there is no S4 
staIl). (Note that a retire queue entry is not retired by the MISClIRETmE.INSTRUCTION operation.) 

The retire queue is flushed. when a microtrap occurs as well as when the MISC field function 
RESET.CPU is specified. Anytime the retire queue is empty, the Ebox is automatically selected as 
the source of the RMUX. 

Note that it is not possible for the retire queue to have less than the necessary number of entries 
in it, except after a microtrap, because each entry is added before it is required. 

The number of entries in the retire queue is 6. 

8.5.15.8 Field Queue 

The field queue carries information about field type source operands for bit-field macroinstructions 
and some other macroinstructions. The information is one bit which indicates whether the 
operand was register mode or not. Two different execution microflows are required for hit-field 
macroinstructions and certain other macroinstructions depending on whether a particular 
operand is register mode. The lOOx provides this information when it adds a source queue entry 
for the operand. Microcode is able to branch conditionally on the status of the field queue. This 
allows execution microflows to decide how to execute the instruction. 

Each entry in the field queue is a one-bit status which indicates whether the associated field 
operand is register mode. Microcode branches on a field queue entry are four way branches, 
though only three of the four outcomes are possible. The following table shows the possible 
branch outcomes. 

Table 8-11: Field Queue Branch 

Condition 

Field queue empty 

Field queue not empty-register mode 

Field queue not empty-not register mode 

Resulting Microtest Bus Value 

11 (can be execution dispatch target) 

01 (start of execution for register mode case) 

00 (start of execution for address mode case) 

A branch on the field queue when it is not empty causes the current field queue entry to be 
retired. 

The field queue has 6 entries. 

When the Ebox is branching on the field queue, it may have to wait for the Ibox to make an 
entry, in which case it loops repeatedly testing the field queue. This condition is similar to a 
stall, but no Ebox stall is involved. When microcode is branching on the field queue and it is 
empty, the signal E_FLQ%~STALL_B is asserted. This tells the 83 stall timeout logic that the 
Ebox is looping on the field queue. If this continues for a long time, a machine check occurs. See 
Section 8.5.25.1 for more detail. 
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E_FLQ%FQ...BTALL_H is also used by the fault logic. If E_FLQ%FQ...STALL_H is asserted and one 
of I%IMEM_MEXC_H, I%IMEM_BERR_H, or I%RSVD_ADDR_FAULT_H is asserted, then a S3 fault 
condition is detected. After a cycle in which there is no S4 stall (and given that the Ebox is 
next to retire), the fault condition advances into S4 and the appropriate microtrap is requested. 
See Table 8-12 and Section 8.5.19 for more information. 

8.5.15.9 Retiring Instructions 

Retiring a macroinstruction is an important synchronization point between the Ebox and the 
Ibox. When a macroinstruction is retiring, the last of its operations is in S5 and cannot be stalled 
or aborted: The Ebox signals the Ibox so that it can free up certain resources associated with the 
retiring instruction. The Ebox usually retires a retire queue entry at the same time as it retires 
the macroinstruction (the exception is MISClIRETIRE.INSTRUCTION which doesn't affect the retire 
queue). 

The resources in the Ibox which are freed up by retiring a macroinstruction are a backup PC 

queue entry and a group of RLOG entries associated with that macroinstruction. 

When the retire queue indicates the Ebox is next to retire a macroinstruction, the set of conditions 
required for retiring to occur are: 

• the microword in S5 specifies SEQ.MUXlLAST.CYCLE or SEQ.MUXlLAST.CYCLE.OVERFLOW, and not 
DISABLE.RETIRElYES, or 

• the MISCI field function, MISClIRETIRE.INSTRUCTION, is specified (though the retire queue is 
not affected in this case). 

The Fbox determines its own retire instruction status which it sends through the RMUX when the 
retire queue indicates the Fbox is next to retire a macroinstruction. If the Fbox operation request 
in S4 is advanced to S5 with this condition asserted, the Ebox retires an instruction. 

8.5.15.10 First Part Done 

The Ebox sends the current state of the PSL<FPD> bit to the Ibox on E%FPD_SET_L. If the Ibox 
fetches an opcode and this bit is set, the Ibox stops operation as soon as the opcode has been 
completely fetched. If the instruction is an interrupted instruction that is being resumed, then 
the operand specifiers mustn't be processed again since they may have side effects or may depend 
on data which has been altered by the instruction's execution. 

8.5.15.11 Ebox to 'box Commands and IPR Accesses 

The Ebox is the source of two signals which immediately affect Ibox operation, and three others 
which cause IPR read and write operations or a load-PC operation. 

The two signals which immediately change Ibox operation are: Eo/~TOP _IBOX_H and 
E%RESTART_IBOX_H. Ei1cSTOP _IBOX,..H is asserted in S5 when the microword specifies 
MISCIRESET.CPU. E%RESTART_mO~H is asserted when the microword in S5 specifies 
MISCIRESTART.IBOX. 

E9'oSTOP _IBO~H is used to cause the Ibox to stop processing instructions and clear the Ibox GPR 

scoreboard. I t does not clear the RLOG or backup PC queue, so the Ibox is still able to restore 
state to that required for a fault. See Chapter 7 and Section 8.5.19. 
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E%RESTART_IBO~H is used to restart the Ibox when it put itself in the stopped state after 
processing the operands for certain complex instructions. 

The Ebox detects its own accesses to Ibox IPRs in S5 just after issuing the request to the Mbox. 
It also decodes MRQILOAD.PC to detect a load-PC operation in 85. At that time it asserts one 
of three command strobes to the Ibox. They are E%IBOX-IPR_READ_H, E%IBOX_IPR_WRITE_H, 
and E%IBOX_LOAD_PC_L. The Ebox drives the signal fields E%IBO~IPR_TAG_H<2:O> and 
E%IBO~IPR_NUM..H<3:O> with the Wn register file destination for IPR read data and the IPR number, 
respectively. (The full register file address for the destination is 6 bits, but the Ibox appends the 
prefix for Wn registers since all Ibox IPR reads are sent to Wn registers.) For IPR writes and 
load-PC operations the lbox receives the data when the Mbox forwards it on Mo/oMD_BUS_B<31:O> 
in a later cycle. For read accesses the Ibox returns the data to the designated Wn register. 

Microcode synchronizes load-PC operations by issuing an 
Mbox operation (possibly MRQ/SYNC.MBOX). This synchronization is necessary because the Ibox 
will not be ready to accept the new PC data if a MISCIRESET.CPU occurs before the new PC data is 
forwarded by the Mbox. Any interrupt or exception which occurs after the load-PC will cause the 
Ebox to read the backup PC from the Ibox, and that value must have resulted from the load-PC 
operation. Once the synchronizing Mbox operation is complete, the microcode knows the Ibox has 
the data. 

Ibox IPR writes are synchronized by issuing a MRQlSYNC.MBOX (or another Mbox operation) after 
the operation. Once the MRQlSYNC.MBOX (or other Mbox operation) is complete, the microcode 
knows the Ibox has the data. 

8.5.15.12 Loading The PC 

The Ibox maintains all PC information for the NVAX CPU. When microcode executing in the Ebox 
determines that instruction fetching should begin at some address, it sends the starting PC value 
to the Ibox. Conceptually, this is equivalent to loading the PC register. However, the Ibox keeps 
track of a number of PC values, and there isn't really a current PC register. See Chapter 7 for 
more on how PC values are maintained. 

The Ebox sends a new PC value to the Ibox in 85 when the microword specifies LOAD.PC in the 
MRQ field. The PC data is sent via the Mbox. Microcode first ensures that the Ibox is stopped 
and, if necessary, flushes appropriate queues. Note that the RLOG should have been unwound 
beforehand. 

8.5.15.13 Ebox to Ibox Flush Signals 

Microcode is able to flush several entities in the Ibox: the virtual instruction cache (VIC), 
the branch prediction cache (BPC), and the backup PC queue (PCQ). In 85, the Ebox drives 
E%FLUSB_VIC_H, MFLUSH_BPT_B, and E%FLUSB_PCQ..B, when it decodes MISClIFLUSH.VIC, 
MISCllFLUSH.BPC, and MISCllFLUSH.PCQ, respectively. 
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8.5.15.14 Detecting lbox Incurred Faults and Errors 

There are two kinds of faults which can occur due to Ibox processing. Also, hardware errors can 
occur. When a fault or error occurs, the status is latched. The Ebox effectively detects the fault 
or error when it executes a microword which uses the result of the operation which incurred the 
fault or error. The Ebox causes a microtrap to occur when that same microword is about to be 
advanced from S4 into 85. See Section 8.5.19 for more on microtrap management. 

Some Ibox incurred faults and errors are initially detected by the Ibox, while others are first 
detected by the Ebox. When the Ibox detects a fault or error, it halts operation and asserts one of 
two fault indication signals or an error indication signal which are all received by the Ebox. These 
signals are I%IMEM..MEXC_B (which indicates a memory management fault), I%IMEM_HERR_H 

(which indicates a hardware error), and I%RSVD..A,DDR_FAULT_B (which indicates a reserved 
addressing mode). The Ibox only asserts I%RSVD_ADDR_FAULT_H for one cycle, so the Ebox has 
a latch which is set when it is asserted. This latch is reset by MISCJRESET.CPU and by branch 
mispredict microtraps. 

The Ebox ignores Ibox fault conditions until it determines that they applies to the current 
microword. This is done by associating some queue empty condition with the fault status. See 
Table 8-12. 

Faults and errors not detected by the Ibox are reported by the Mbox. For reads, the Mbox sets 
the fault or error bit associated with the target MD register in the register file. For writes, it 
sets the fault or error bit in the appropriate PA queue entry. When the Ebox references the MD 
register or tries to use the PA queue entry with a fault bit set, it detects the fault. 

Faults in memory reads issued by the Ibox as an intermediate step in processing an operand 
specifier (as in register deferred mode) are handled in a special way. When the memory read 
fault or error is detected in the Mbox, it returns a fault/error status instead of data. The Ibox 
latches this fault/error status. If the Ibox was going to use this data as an address (deferred 
mode), it sends the faultJerror status with the next specifier related memory request. The Mbox, 
seeing the fault/error status associated with the operation, sends the result to the MD register 
(for reads) or PA queue (for writes) with the same fault/error status. 

Detecting faults in memory reads issued by the !box as an intermediate step in processing an 
operand specifier can also occur another way. In the case where the Ibox will not have to issue a 
memory request using the result of the failed request (as in address access type with a deferred 
mode operand specifier), the Ibox reports the error by writing the MD fault or error status bit 
directly. The fault/error status latched in the Ibox is written into the MD fault/error status bits 
when the Ibox writes the MD. 

The table below lists the faults and indicates how each is detected. 

Table 8-12: Detection of lbox Incurred Faults and Errors 

Fault How Detected 

Instruction stream read fault/error on opcode Instruction queue empty AND (I~IMEM....MEXC_H OR 
I%IMDt.BERR_H) 
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Table 8-12 (Cont.): Detection of lbox Incurred Faults and Errors 

Fault 

Instruction stream read faultlerror on source 
operand (including modify type) 

How Detected 

(Source queue empty! OR E~FQ...STALL..B asserted) AND 
(I~C_H OR I~~BERR_H) 

Instruction stream read faultlen-or on destination Destination queue empty AND (I~JMEM MUC_H OR 
operand (write type) I~BERll..H) 

Instru.cti.on stream read faultlelTor on branch Branch queue empty AND (I~IMEM....MEXC_H OR I"'JMEM HERR_H) 

displacement 

Memory access 
encountered in processing a 
(including modify type) 

faultlerror 
source operand 

Attempt to read an MD register with a fault bit set 

Memory access Attempt to use a PA queue entry with a fault hit set 
fault/error encountered in processing a destination 
operand (write type) 

Reserved addressing mode on source operand (Source queue empty! OR E~FQ...STALIJI asserted) AND 
I'l&RSVD-.AJ)DRJI'AULTJI 

Reserved addressing mode on destination operand 

Reserved opcode 

Destination queue empty AND I~BSVD_ADDR-"AULT..B 

Microsequencer Dispatch 

! In this context, source queue empty includes the case where the microword in S3 requires two source queue entries to 
advance, but only one entry is present in the source queue. . 

It is not possible for the Ibox to assert both I%BSVD.-ADDR_FAULT_H and either of I%IMEM.;wEXC_H 
or I%IMEM_HERR_H at the same time. The Ibox stops operation as soon as it encounters one of 
these two faults, so the other cannot occur after one is detected. 

8.5.16 Ebox-Fbox Interface 

The Fbox executes independently of the Ebox but is dependent on the Ebox for delivery of source 
operands and storing of results. Floating point macroinstructions are decoded by the Ibox exactly 
like any other macroinstruction. The Ebox is dispatched to an execution microflow. This microflow 
delivers the source operands to the Fbox in 83 of the pipeline. Once the operands are delivered, 
the microflow is done. The Fbox returns the result in 84, along with any faults it might have 
detected. The Ebox keeps track of whether the Fbox macroinstruction is next to retire using the 
retire queue (see Section 8.5.15.9 and Section 8.5.15.7). Once the Fbox is next to retire, the Ebox 
may, at the Fbox's request, access the destination queue for the Fbox to determine where the 
Fbox results are to be written. When the Fbox indicates its last execution cycle, the Ebox retires 
a retire queue entry and updates the PSL with an Fbox supplied condition code. 

8.5.16.1 Fbox Opcode and Operand Delivery 

The Ebox prepares to deliver operands during 83 when the microword specifies FOP.VALID in the 
MIse! field. The opcode<8:0> for the instruction is delivered from the Microsequencer late in 82, 
so that the Fbox can decode the opcode before the operands arrive. The operands are available 
at the beginning of 84. They come from the output of the bypass muxes so that result data from 
the most recent 84 (Ebox or Fbox) operation is bypassed if necessary. Anything which stalls 83 
in the Ebox, stalls Fbox operand delivery (this includes 84 stalls). Along with the operands, the 
Ebox sends the current value ofpSL<FU>. 
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If the Ebox detects a fault or error associated with an Fbox source operand, it indicates this to 
the Fbox. The Fbox carries this information along its pipeline and indicates the fault and/or error 
when the Ebox is retiring the Fbox operation. This is how Fbox source operand fault microtraps 
are delayed until all preceding macroinstructions have retired. The Ebox ignores source operand 
faults (which proceed down the pipeline to S4) when the Fbox is next to retire. 

8.5.16.2 Fbox Result Handling 

The Ebox handles writing of Fbox results in S4 and 85. When the current retire queue entry 
indicates the next macroinstruction to retire is to come from the Fbox, the Ebox waits for the Fbox 
to assert Fo/oSTO~H or F%RETIRE_H. Either or both may be asserted. If FOftSTORE_H is asserted, 
the Ebox accesses the destination queue and issues a memory store or a GPR write, depending on 
the MDEST bit in the current destination queue entry. (See Section 8.5.17 for the exact definition 
of memory store.) 

The Fbox indicates it is retiring an instruction by asserting the signal F%RETIRE_H. In response 
to this signal, the Ebox retires the current retire queue entry. The Fbox sends a map specifier 
which tells the PSL logic in 85 of the Ebox pipeline how to set the PSL condition code bits based 
on the Fbox condition code. There may be an Fbox result store at the same time as a retire. 

The storing of Fbox results is handled exactly like the storing ofEbox results in the pipeline. The 
request is made in S4, through the RMUX. The Fbox supplies the data length for the store. (It 
derives the data length from the opcode.) If there is no stall or fault, the operation is advanced 
into 85 where the write is done unconditionally. Condition code updates are done in S5, too. The 
stalls which apply to this operation are the same as for an Ebox microword doing a stall. The 
destination queue and PA queue must have valid entries and the Mbox must be ready, if the 
Fbox is doing a store. The retire queue must indicate the Fbox for an Fbox store or retire to be 
allowed. Otherwise the Fbox store or retire is stalled. 

8.5.16.3 Fbox Store Stall 

In some cases the Fbox asserts F%STORE_H to indicate it has result data to store and then asserts 
FOfDSTORE_STALL_H to abort the store. This is done because certain Fbox operations may take an 
extra cycle, depending on the actual data pattern. FOfaSTORE_STALL..H is asserted too late for the 
Ebox to not send a store request to the Mbox (if the result is supposed to be stored to memory). 
If a store is forwarded to the Mbox and is then revoked by F%STORE_STALL_H, the Ebox asserts 
E%EM..,.ABORT_L early in the next cycle to abort the EM_LATCH operation and purge the EM_LATCH. 
This is the same mechanism used to abort EM_LATCH operations when an Ebox pipeline abort 
occurs (see Section 8.5.17.2). 

Due to complexities in the Mbox, (see Section 8.5.17.2), the Ebox ignores M%PA...Q...STATUS_H<O> 
in cycles in which E%EM....ABORT_L is asserted because of previous FOfoSTORE_STALL_H assertion. 
In this cycle, it behaves as if M%PA_Q....STATUS_H<O> is deasserted. 

IgnoringM%PA...Q....STATUS_H<O> and behaving as ifit is deasserted has the effect of unconditionally 
stalling the Fbox store (which is always ready in these cases in the current implementation). This 
means there is one cycle additional latency beyond that introduced by the Fbox aborting the store. 
Note this only occurs when E%EM_ABORT_L is actually asserted. If the abort store never was sent 
to the Mbox, M%P.A....Q...STA1US_H<O> is not ignored. 
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8.5.16.4 Fbox Destination Scoreboard 

The Ebox maintains state to detect pending Fbox stores to GPRs in the Fbox destination 
scoreboard. If any Ebox or Fbox operation attempts to source one of the GPRs which the Fbox is 
scheduled to update, the Ebox stalls and Fbox operand delivery is stalled. The Fbox destination 
scoreboard is implemented as part of the destination queue. This section describes the Fbox 
destination scoreboard functionality of the destination queue. See Section 8.5.15.3 for more on 
the main function of the destination queue. 

The Fbox destination scoreboard consists of a pair of comparators and a write-pending bit 
associated with each destination queue entry. If an Fbox update of a particular GPR is pending, 
the write-pending bit in the destination queue entry for that store is set. The bit is set in 
84, by specifying F.DEST.CHECK in the MISC2 field. If the Fbox source operands are all sent 
by one microword, that microword specifies MISC2IF.DEST.CHECK. If a sequence of more than 
one microwords sends the source operands to the Fbox, the MISC2IF.DEST.CHECK is in the last 
microword. 

Whenever a GPR is accessed using the source queue (AlSl and/or BlS2) in S3 , every destination 
queue entry with a set write-pending bit is compared with the two outputs of the source queue. 
A match, or hit, causes a stall if the source queue output which hits is actually specified by the 
microword in the A or B fields. For a hit to cause a stall, the write-pending bit in the destination 
queue must be set. Additionally, the source queue output which hits must specify a GPR access 
(i.e., it must not point to an MD register or contain literal data). If these conditions are met, the 
S3 operation is stalled. 

Note that the above check includes destination queue entries with their MDEST bit set. So pending 
writes to memory (using PA queue addresses) may cause a scoreboard hit stall. This is not done to 
prevent the Ebox from reading a GPR before a pending Fbox write to the GPR completes. Instead, 
it is done to prevent the Ebox from reading a GPR when the Ibox must write an incremented or 
decremented value first. This occurs when the Ibox processes an autoincrement or autodecrement 
specifier with write access type for an Fbox instruction. In processing the specifier, the Ibox csu 
can be stalled for some reason, and thus be delayed from writing the new value to the GPR. To 
handle this case, the Ibox sends the GPR number with ALL destination queue entries. If the 
Ebox reads a GPR which was used in a destination specifier, the scoreboard hit stall prevents the 
read until the destination queue entry is retired. 

Because of the minimum latency in the Mbox in processing specifier accesses, it is known that 
the Ibox CSU will updat.e the GPR before the associated PA queue entry becomes valid, and the 
destination queue entry will not be retired until the PA queue entry becomes valid. (Actually, the 
destination queue entry is effectively retired before the Ebox "knows" that the PA queue entry is 
not valid, but then an S4 stall exists which will last until the PA queue entry becomes valid. This 
stall will also stall S3, so the GPR access will be prevented until the GPR is valid. This is why all 
RMUX S4 stalls also stall S4 and S3 when the Fbox is next to retire an instruction.) 

In the event that a modify access type specifier is processed, an entry is made in the source and 
destination queues for the same specifier. If it is a register mode specifier, it does not cause 
a deadlock because the MISC2IF.DEST.CHECK operation which sets the write pending bit in the 
destination queue for the entry is not done until the last microword of the execution microflow 
is in S4. By that time all the operands have been sent to the Fbox. If the addressing mode is 
some memory access mode, the operand bus bits which carry the GPR number when processing a 
write access type specifier are used instead to carry the index of the MD register which will hold 
the source data. Interpreting this MD index as a GPR number could cause lost performance if a 
subsequent instruction accesses the GPR with the same index as that MD. (Deadlock doesn't occur 
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for the same reason as before.) To prevent possible loss in performance, the Ebox forces the index 
bits to 1 as they are written into the destination queue GPR field for modify access type operands 
only. This has the effect of converting specifying the PC in the destination queue. If a subsequent 
instruction does access the PC directly, then a stall will not hurt since this is an UNPREDICTABLE 
case. (The Ebox supplies the value 0 when the ~ is specified in this way.) 

NOTE 

When the Ebox is next to retire an instruction and is writing to a write access type 
destination operand, it will stall in S4 if the PA queue is not valid. This causes an 
83 stall. Thus the case which motivated the above special scoreboarding case for Fbox 
destinations can not occur for Ebox instructions. In fact, the only reason it can occur for 
Fbox instructions is because there are several "hiddent. pipeline stages between 83 and 
84 when the Fbox processes an instruction. These extra pipeline stages allow the Fbox 
to accept new instructions and their associated source operands before it has retired 
the current instruction. This combined with the fact that the Ibox can process t'simplett 

specifiers for new instructions even while the CSU is stalled processing a complex write 
access type specifier from a previous instruction is what leads to the need for the special 
scoreboard case described above. 

The Ebox will access ahead of the current destination queue entry as part of the Fbox destination 
scoreboard function. A pointer called the FDest pointer is maintained which may point to an 
entry which is after the front entry in the FIFO queue. Normally, it points to the current entry. 
However, in circumstances where the Fbox is next to store a result, it is incremented ahead of 
the current destination queue entry pointer. 

When the microword in S4 specifies MISC2IF.DEST.CHECK, the Ebox checks that the destination 
queue entry at the FDest pointer is valid. If it isn't, S4 stalls (stalling S3 as well). If the 
destination queue entry is valid, the associated write-pending bit is set. If the DL is quadword, 
then the bit associated with the next destination queue entry is also set. The FDest pointer is 
incremented by one, or by two if the DL is quadword. The write-pending bits are set in S4 even if 
there is an S4 stall. The FDest pointer is incremented as the operation advances into 85, when 
there are no S4 stalls. 

NOTE 

The DL supplied in the instruction queue with Fbox instructions is the length of the 
result. 

Flow-thru bypass ensures that the S3 microword is stalled if it is accessing a GPR and that GPR 

is specified by a destination queue entry whose write-pending bit is being set by the microword 
inS4. 

Write-pending bits in the destination queue are reset in S4 as the Fbox writes results, even if 
the MDEST bit is set in the destination queue entry being retired. Flow-thru bypass ensures that 
an 83 stall due to the scoreboard is broken in the cycle in which the Fbox drives the. result to the 
Ebox. This means the result in S4 (after the RMUX) is bypassed to E_BUStroABUS_L<31:O> and/or 
E_BUS%BBUS_L<31:O> in these cases. 

In 84, when the Fbox stores a result, the write-pending bit of the destination queue entry is 
reset. This means that destination queue entry can no longer cause a scoreboard hit stall. The 
bit is cleared even ifRMUX S4 stalls. In all cases this is safe either because the destination queue 
entry has MDEST set or because the particular RMUX S4 stall also causes an S4 stall which in turn 
causes an S3 stall which prevents Fbox operand delivery. 
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The write-pending bits and all destination queue pointers are reset when E_MSC%FLUSH_EBOX_H 
is asserted. This happens in every microtrap, including the power-up microtrap. 

8.5.16.5 Fbox Fault and Error Management 

As mentioned above, the Fbox latches source operand fault and error information and carries it 
along with its other instruction related information. Also, the Fbox may encounter a fault in the 
course of computing the result . .All these faults and errors are presented by the Fbox when it 
requests the RMUX. The Ebox responds by signaling a microtrap to the Microsequencer once the 
retire queue indicates the Fbox. Before the retire queue points to the Fbox, the Ebox ignores the 
fault status coming from the Fbox. 

The Ebox detects Ibox incurred faults and errors for Fbox operands as described in Table S-12, 
but instead of handling them directly, it passes the fault/error status to the Fbox. The Fbox 
doesn't wait for the operand valid signal when a fault or error status is asserted, even though 
there isn't valid data. This breaks a stall which might never end otherwise, since the Ibox stops 
processing operand specifiers when it encounters a fault or error. 

NOTE 

The Fbox treats the data which comes with the fault/error status as UNPREDICTABLE. 
Also the Fbox breaks the stall on any operands which follow an operand with an 
associated fault or error. The Ibox stops processing operand specifiers when it 
encounters a fault or error. If the Fbox didn't break the stall and propagate the 
fault/error to the RMUX, the CPU would hang. 

If there isn't a fault or error being signaled by the Fbox, there could still be a destination operand 
fault or error. If the Fbox is requesting the RMUX and indicating a destination queue indirect 
store, the Ebox cheeks for a destination operand fault or error (see Table 8-12). If there is one, 
the appropriate microtrap is forced. 

Most Fbox faults, and all Fbox errors, result in VAX architecture exceptions of the fault type. This 
means most Fbox faults, and all errors, are taken in S4 when the operation is about to advance 
into 85. Integer overflow is a trap in the VAX architecture sense, and causes a microtrap late in 
85. 

Fbox operand faults and errors have higher priority in the Microsequencer than Fbox originated 
data faults. Fbox operand faults cause the same microtraps as would be taken if that fault or 
error was detected in an Ebox instruction. Fbox originated data faults cause a floating fault 
microtrap, provided there aren't any operand faults or errors. 8ee Section 8.5.19.7 for more on 
how microcode determines the cause of the microtrap. 

8.5.16.6 Ebox to Fbox Commands 

The Ebox asserts the signal E%FLUSH_FBOX_H when the microword in 86 specifies RESET. CPU in 
the MIse field. This has the effect ofreseting the Fbox and clearing its pipeline of all operations. 
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8.5.16.7 Summary of Fbox-Ebox Signals 

The following signals are driven by the Ebox to the Fbox. 

• E%FOPCODE_H 
This 9-bit bus carries the full opcode for Fbox operations. (This bus is actually driven by the 
Microsequencer.) 

• E%FBOx...1ST_CYCLE_L 
This bit indicates there is a valid Fbox opcode on E%FOPCODE_H. (This signal is actually 
driven by the Microsequencer.) 

• Eo/GABUS_H and E%BBUS_H 
These 32-bit busses carry the source operand(s). 

• E%FDATA,.. VALID_H 
This signal tells the Fbox that all operands being sent to it are valid. The Fbox knows, from 
decoding the opcode, exactly what data is being sent on Eo/GABUS_H<31:O> and E%BBUS_H<31:O>. 

• E%A,.,.SHLIT_H and E%B_SHLIT_H 
These signals indicate the data on Eo/GABUS_H<31:O> and E%BBUS_H<31:O>, respectively, is a 
6-bit short literal value extracted from the instruction stream. Special data formatting· is 
required by the Fbox. 

• E%PSL_FU_H 
The current PSL<FU> value for use by the Fbox in deciding whether to signal floating point 
underflow faults or not. 

• E%F.JWMGT_FLT_H, E%F_MEM_ERR_H, and E%F_BSVD~DR_MODE_H 
These signals tell the Fbox that there is a fault or error associated with the source operands. 
The Fbox carries this status down the pipeline so that it is handled after instructions which 
are already in the Fbox pipeline. 

• E%FLUSH_FBOx...H 
This signal causes the Fbox to clear its pipeline of all operations. 

• E%RETIRE_OK..H This signal tells the Fbox whether to stall if it has an instruction to retire. 
The Fbox stalls if it wants to retire an instruction and this signal is not asserted. 

• E%STORE_OK_H This signal tells the Fbox whether to stall if it has a result to store. The Fbox 
stalls if it wants to write a result and this signal is not asserted, even if it also wants to retire 
an instruction and E%RETIRE_OK....H is asserted. 

The following signals are driven by the Fbox to the Ebox. 

• 

• 

• 

• 

• 

F%1NPUT_STALkH 
This signal causes the Ebox to stall in S3 if it is attempting to send operands to the Fbox. 

F%STORE_STALkI! 
This signal is asserted by the Fbox when it is asserting F%STORE_H but isn't able to supply 
valid data. 

F%FBOx...RESULT_H 
This 32-bit bus carries Fbox results to the Ebox. 
F%CC_N_H, F%CC_Z_H, .AND F%CC_ V_H 
These are the 3 the Fbox condition code bits. They are Negative, Zero, and Overflow. 

F%RETIRiLH 
This control signal tells the Ebox the Fbox is retiring an instruction in this cycle. 
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• F%STORE_H 
This control signal tells the Ebox the Fbox is storing a result in this cycle. 

• F%CC..MA,P _H<1:O>-
This is the map specifier which tells the Ebox how to update the PSL condition code bits. 

• F%FBO~DL_B<1:O> 
This is the data length used by the Ebox for an Fbox store. 

• "d\lMGT_FAULT_H 
Signals a memory management fault for one of the currently retiring instruction's source 
operands. 

• ~_H 
Signals a memory access hardware error for one of the currently retiring instruction's source 
operands. 

• F%RSVD~DRJMODE_H 
Signals a reserved address mode fault for one of the currently retiring instruction's source 
operands. 

• F%RSV_H 
Signals a reserved operand fault for one of the currently retiring instruction's source operands. 

• F%FOV_H 
Signals a :Boating point over:8ow fault resulted from the currently retiring instruction. 

• F%FU_H 
Signals a :Boating point under:8ow fault resulted from the currently retiring instruction. 

• F%FD~H 
Signals a :Boating point divide-by-zero fault resulted from the currently retiring instruction. 

8.5.16.8 Fbox Disabled Mode 

The ability to operate with the Fbox disabled is provided in the Ebox. When the Fbox is disabled, 
all :Boating point macroinstructions, including all Boating point CVT macroinstructions, cause 
reserved instruction faults. MULL is handled in microcode. 

The Fbox enable bit is in IPR 125, ECR (see Section 8.5.22). Ifit is not set, Ebox hardware functions 
are altered as follows: 

• Assertion of E%FBOx...,1ST_CYCLE_L to the Fbox is disabled (in the Microsequencer). 

• The entry made in the retire queue is overridden to specify Ebox instruction retire. 

• A reserved instruction fault is signaled to the Microsequencer when the first microword of 
any Fbox execution micro:Bow is about to advance into 85, except if that microword specifies 
MISCIMULL. 

With the Fbox disabled, each :Boating point macroinstruction causes a fault (a VAX architecture 
reserved instruction fault) when the first microword of its execution microflow is about to 
advance into 85. This occurs for all floating point macroinstructions, including :Boating point 
CVT instructions. 

Microcode can branch conditionally on the Fbox disable bit. The first microword of the MULL 
execution microflow specifies MISCIMULL and branches conditionally on the Fbox disable status. 
If the Fbox is enabled, the branch is to a microflow which dispatches the operation to the Fbox. 
If the Fbox is disabled, the branch is to an Ebox execution micro:Bow which completes the MULL. 

8-58 The Ebox DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

8.5.17 Ebox-Mbox Interface 

The Ebox to Mbox interface has a memory request function and a returned read result function. 
The Ebox issues memory requests by sending a command, address, and possibly write data to 
the Mhox. The Mbox returns read results by writing them directly into the register file. Faults 
and errors encountered by the Mbox in completing the operation are reported one of three ways 
depending on the operation. 

NOTE 

When the Ebox initiates a memory read by sending a request to the Mbox, it specifies 
the register which will receive the memory data in the DST field of the microword. 
This has the sides effect, when the microword is in 85, of writing that register with 
the value on E_BUS%WBUS_L<31:O>. Normally this register is written by the Mbox after 
this, before the particular register is read again. However, an exception can prevent 
the Mbox write and leave the register containing effectively garbage data.. 

There are three kinds of memory access requests issued by the Ebox: reads, writes, and stores. 
Reads are requests for memory data to be returned to a Wn or GPR register in the register file. 
The Ebox supplies the address directly. Writes are requests that data be written to memory. The 
address and data are both supplied directly by the Ebox. Stores are requests that data be written 
to the address in the current PA queue entry in the Mbox. The Ebox only supplies the data for 
stores. 

There are several control operations the Ebox can request of the Mbox. There are three kinds of 
TB invalidate requests. It can synchronize to the Mbox, causing a stall until the Mbox finishes 
memory management checks for the' current request. Also, probe, write check, TB fill, and 
processor register read and write operations are available. 

The Ibox issues operand data reads to MD registers on behalf of the Ebox as it processes operand 
specifiers. The Ebox simply uses the data when it is returned. The Ibox also issues a request 
that is the first half of a store. This supplies an address for the Mbox to translate and then enter 
into the PA queue. The Ebox eventually issues a store request which uses the address in the PA 
queue to do the write. 

Memory management faults encountered in memory reads and writes (not stores) issued by the 
Ebox are reported by the Mbox asserting the signal Mo/,MMILTRAP _L which is received by the 
Microsequencer. This causes an immediate microtrap and Ebox pipeline abort. 

Memory management faults encountered in memory reads initiated by the Ibox on behalf of the 
Ebox result in the Mbox asserting Mo/cMME_FAVLT_H which sets the memory management fault 
status bit associated with the target MD register in the register file. The Ebox detects the fault 
when a microword sources that particular MD register. 

Faults for stores are reported by the Mbox as soon as the PA queue entry is valid. The Ebox 
detects the fault when a microword attempts to issue a store request. 

Hardware errors in memory reads issued by the Ebox are reported by asserting M%HARD_ERR_H 

in the cycle in which read data is written into the register file. The data is generally incorrect, 
since an error occurred. The register file write can't be to an MD register since it is issued directly 
by the Ebox. There aren't fault hits in the register file to receive the error status for registers 
other than the MD registers. 80, when the Ebox detects a MD port write to a register other than 
an MD and the error status is asserted, the Ebox forces an immediate microtrap. This microtrap 
is not delayed by any 83 or S4 stalls. 
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Hardware errors in memory reads initiated by the Ibox on behalf of the Ebox result in the Mbox 
asserting M%HARD_ERR_H as it writes the target MD register in the register file. This sets the error 
status bit associated with the target MD register. The Ebox detects the error when a microword 
sources that particular MD register. 

Hardware errors for stores are reported by the Mbox as soon as the PA queue entry is valid. The 
Ebox detects the error when a microword attempts to issue a store request. 

TB parity errors are a special case. Whenever a TB parity error is encountered, the Mbox asserts 
M%TB_PERR_TRAP _L. The Microsequencer initiates an immediate asynchronous hardware error 
microtrap when M%TB_PERR_TBAP _L is asserted. This could happen as a result ofMbox processing 
of any Ebox memory reference, Ibox operand prefetch reference, or lbox instruction fetch or 
prefetch which uses the TB. ' 

All Mbox requests except store are specified in the MRQ field of the microword. The store request 
is implicit in Ebox or Fbox result storing through the RMUX. All Mbox requests are issued in 84. 
The table below shows the requests the Ebox can send to the MbOx. See Chapter 12 for more 
detail on each operation. 

Table 8-13: Ebox Mbox Requests 

Requeast Access Mode Operation 
MnemoDic Addressing Check Usedl Description 

MRQIREAD.V:RCHK virtual read current read virtual memory 

MRQIREAD.V:WCHK virtual write current read virtual memory and check 
for write access 

MRQIREAD.V:NOCHK virtual read virtual memory with no 
access check 

MRQIREAD.V:LOCK virtual write current read-lock virtual memory 

MRQIREAD.P physical read physical memory 

MRQIREAD.PR physical read processor register 

MRQlPROBE.V:RCHK virtual read mode Probe byte address for read 
- return 3-bit probe status to 
register file 

MRQlPROBE.V: virtual Probe byte address for presence 
RCHKNOFILL in TB - return I-bit status to 

register file, but don't fill TB if 
entry is not already in TB 

MRQlWCHK virtual write current check that memory location can 
be written 

MRQIWRITE.V:WCHK virtual write current write virtual memory 

MRQIWRITE.V:NOCHK virtual write virtual memory without 
access checks 

MRQIWRITE.V:UNLOCK virtual write current write-unlock virtual memory 

MRQIWRITE.P physical write physical memory 

MRQIWRITE.PR physical write processor register 

lCurrent means CUICMOD from the PSL, mode means contents of MMGT.MODE. 
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Table 8-13 (Cont.): Ebox Mbox Requests 

Request 
Mnemouic 

MRQ/PROBE.V.WCHK 

STORE 2 

MRQlLOAD.PC 

MRQlSYNC.MBOX 

MRQtrB.TAG.FILL 

MRQtrB.PTE.FILL 

virtual 

virtual 8 

virtual 

MRQtrB.INVAL.SINGLE virtual 

MRQtrB.INVAL.PROCESS -

MRQtrB.INVAL.ALL 

Access 
Check 

write 

write 8 

Mode 
Usedl 

mode 

CUlTent S 

lCnnent means CUR_MOD from the PSL, mode means contents of MMGT.MODE. 

Operation 
Description 

Probe byte address for write 
- return. 3-bit probe status to 
register file 

write to physical address in PA 
queue 

send the data to the lbox to be 
used as the new PC 

synchronize with 
memory management check. from 
previous Mbox request by issuing 
a form of NOP. 

directly load TAG part of 
"current" TB entry 

directly load PTE part of 
"current" TB entry 

invalidate single TB entry, if 
present 

invalidate all TB entries for 
current process 

invalidate all TB entries 

2This operation is not initiated through the MRQ field. It is issued by microwords specifying DSTIDST and libox operations 
with P'YTORE_B asserted, given that the destination queue entry indicates a memory destination. 

3'Ihm.slation and access check done previously by the MboL 

The store operation in the above table is not specified in the MRQ field. Each destination queue 
indirect result store which is to memory (as opposed to a GPR) is turned into a Mbox store request. 
The Mbox writes the data received with this request to the address extracted from the PA queue. 
(Two address entries in the PA queue are needed for unaligned stores.) 

The load-PC operation is accomplished with the aid of the Mbox (MRQILOAD.PC). The Mbox's part 
is to pass the data (PC) on E%WBUS_H<31:O> to the Ibox via Mo/eMD_BUS_H<31:O>. The Ebox signals 
the lOOx that the new PC value is coming. 

The information sent to the Mbox when the Ebox issues a command is shown in the following 
table. The information, except E%WBUS_H<31:O> data, is valid in 84. The command information 
is driven early in 84, while the address isn't valid until late in 84. E%WBUS_H<31:O> data is valid 
early in 85. The table shows the source of each item. See Chapter 12 for the encoding of these 
fields. 
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Table 8-14: Ebox Memory Request Information Busses 

Signal Source Description 

E%EBOx...CMD_H<~ decoded from MRQ and DST microword Request - command code 
fields 

E%WBUS_H<311O> E..BUM>WBUS_L<311O> write data, not ready until S5. (only needed for write 
type and store operations) 

E%VA,..BUS_L<311O> VA register with bypass address (or PTE in case of TB.PTE.FILL) 

~x...TAG_R<.4IO> DST microword field address in register file where read or probe result is to 
go 

E%EBOx...AT_B<11O> decoded from MRQ microword field access type for operation 

E%EBOXJ>kH<11O> DL register data length for access 

E%EBOx... VIRT~DR..B decoded from MRQ microword field 

:n.NO_MME_CHECK..B decoded from MRQ microword field 

Indicates virtual address - translation needed 

Indicates no access check should be done 

This information is all latched by the Mbox in the EM_LATCH. This latch can only hold one 
command. Once it is full the Mbox will ignore Ebox requests until it is empty again. It is 
emptied when the Mbox request completes. 

To process requests from the Ebox and from the Ibox, the Mbox receives the CUR_MOD pits from 
the PSL and the MMGT.MODE register contents. The CUR_MOD bits are normally used as the 
access mode for a request's TB check. The MMGT.MODE bits are used only when the request is a 
PROBE.V.RCHK, PROBE.V.RCHK.NOFILL or PROBE.V.WCHK. Note that the Mbox uses the CUR_MOD field 
for alllbox-initiated requests at all times, so it must receive both mode fields simultaneously. 

The address for Ebox-initiated memory accesses comes from the VA register. The microword 
issuing the memory request may update the VA register. If it does, the new VA value is sent with 
the request. The write data for a memory request is the data put on E%WBUS_H<31:O>, a buffered 
copy of E_BUS%WBUS_L<31:O>, by the microword issuing the memory request. 

The following table shows what the Ebox sends on each of the memory request information busses 
for each operation. 

Table 8-15: Ebox Memory Request Information Truth Table 

E%EDOI... 

Request E%EBOX_ ~ox_ E%EBOx... REDOx... VlRT_ ECQiO....MME_ AddrlData 
Mnemonic CMD_B<.faO> AT_B<1IO> DL_B<llO>l TAG_H<4IO>1 ADDR_H CBECK..R Sent? 

READ.V.RCHK DREAD read DL DST true false yes/no 

READ.V.WCHK DREAD modify DL DST true false yes/no 

READ.V.NOCHK DREAD read DL DST true true yes/no 

READ.V.LOCK DREAD_ modify DL DST true false yes/no 
LOCK 

1 DL means data length dictated by the microword; the DL register value unless the microword overrides the data. length 
to longword. 

2DST means the tag is the register specified in the DST field of the microword. 

- means don't care, doesn't apply. 

8-62 The Ebox DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

Table 8-15 (Cont.): Ebox Memory Request Information Truth Table 

B'QBO~ 

Request :H.BBOX., EUBO~ :H.~ £fYB()~ VIB.T_ ECJf.NO_MME_ AddrJData 
MIlemODic CMD_BdIO> AT_B<11O> DL..:s<lIO>l TAG_B<4IO>2 ADDR..:s ClIIilCEJ[ Sent? 

READ.P DREAD read DL DST false yes/no 

READ.PR IPR_RD DL DST false yes/no 

PROBE.V.RCHK PROBE read Byte DST true false yes/no 

PROBE.V.RCHK. PROBE ()4 Byte DST true true yes/no 
NOFILL 

WCEK MME_CHK write DL true false yes/no 

WRITE.V.WCHK WRITE write DL true false yes/yes 

WRITE.V.NOCHK WRITE write DL true true yes/yes 

WRITE.V.UNLOCK WRITE_ write DL true false yes/yes 
UNLOCK 

WRITE.P WRITE write DL false yes/yes 

WRITE.PR IPR_WR DL false yes/yes 

PROBE.v.WCHK PROBE write Byte DST true false yes/no 

STORE STORE false nol~es 

LOAD.PC LOAD_PC false nolyes 

SYNC.MBOX NOP Byte false nolno 

TB.PTE.FILL TB_PTE_ Byte false true yu'lno 
FILL 

TB.TAG.FILL TB_TAG_ Byte false true yes/no 
FILL 

TB.INVAL.SINGLE TBIS Byte false true yes/no 

TB.INVAL.PROCESS TBIP Byte false true nolno 

TB.INVAL.ALL TBJA Byte false true nolno 

1 DL means data length dictated. by the microword; the DL register value unless the microword overrides the data length 
to longword. 

2DST means the tag is the register specified in the DST field of the microword. 

sPTE data is sent on address bus through VA register. 

4Spec:i.al code-no access check is done. Only the presence of an entry in the TB is checked. 

- means don't care. doesn't apply. 

8.5.17.1 10 Read Synchronization 

Because the Ibox issues operand reads before the Ebox executes the associated macroinstruction, 
there is a possibility that an exception or branch will result in an operand read occurring even 
though the associated macroinstruction is never executed. This is not a problem if the read is to 
memory space, but it might be if the read is to 10 space. Many 10 space reads have side effects, 
so some mechanism is required which postpones an Ibox issued 10 space read until the Ebox is 
actually executing the macroinstruction which requires the 10 space read. The Mbox delays all 
10 space reads issued by the Ibox until the Ebox asserts the signal E%START_mox;..IO_RD_B. 
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The Ebox asserts E%sTART_IBO~IO_RD_H when the following are all true: 

1. The Ebox is stalled in 83 waiting for a register file entry indexed through the source queue 
(Le., A/Sl, A/S2, BlSl, or BlS2) to become valid, or E_FLQ%FQ..STALL_H is asserted, 

2. there is exactly one entry in the retire queue, 

3. there is no stall of S4 of the RMUX part of the Ebox pipeline, 

4. conditions 1,2, and 3 were true in the previous cycle, 

5. there is no MD fault for any of the MD registers currently being accessed in (stalled) 83, 

6. and the Ebox pipeline is not being flushed by a microtrap this cycle. 

The Mbox processes specifier queue entries one at a time (the specifier queue is the queue in 
the Mbox which receives all operand data references issued by the Ibox). If the specifier queue 
entry is an 10 space access, the Mbox will not process it unless S6 in the Mbox is idle (not 
processing any reference) and S6 was idle in the previous cycle and Eo/cSTART_IBO~IO_RD_H is 
asserted. (Note that a one cycle delay occurs in the Mbox on E%START_IBOX_IO_RD_H. This is why 
the current cycle and the previous cycle are checked for NOP in 86 in the Mbox.) If the Ebox 
is stalled waiting for read data to be put in an MD by the Mbox, and the Mbox is waiting for 
»rc8TA.RT_mO~IO_RD_H to be asserted (because the specifier queue entry is an 10 space read) 
then the Ebox must be waiting for the result of that 10 space read. 

The Ebox only asserts »rcSTART_mO~IO_RD_H when it is certain that the macroinstruction which 
will use the result of the 10 space read is going to execute. If the retire queue contains more than 
one entry, other instructions are in the Ebox or Fbox pipeline so »rcST.ART_IBO~IO_RD_H is not 
ass~rted in case one of them incurs an exception. If the Ebox is stalled in (RMUX) 84, it doesn't 
assert E%START_mox:....IO_RD_H because the previous macroinstruction's result store may incur an 
exception when it advances to 85. (Note that the retire queue entry is removed from the queue 
before the RMUX S4 stall status is known so that the RMUX S4 stall status has to be examined as 
well.) 

If the Ebox is being flushed by a microtrap in the current cycle, it doesn't assert 
E%START_mox..IO_RD_H because the previous macroinstruction actually had a trap. 

If there is an MD fault being reported in 83 of the Ebox, then the Ebox will take a microtrap 
after one cycle with no S4 stalls has passed. In the interim, E%START_mO~IO_RD_H must not be 
asserted. 

Assertion of Eo/~TART_mO~IO_RD_H when field queue stall is present is necessary to avoid 
deadlock, however it will cause the CPU to start an 10 space operand prefetch even when a 
memory management fault will cause the instruction to be fault. For example, this might occur 
with ADAW! if the second operand is in 10 space and the first can incur a memory management 
fault. 

8.5.17.2 Mbox-Ebox signals 

The Mbox drives the following control signals for Ebox use: M%EM_LAT_FULL_B 
and M%PA...Q..STATUS_H<2:O>. M%EM_LAT_FULL_B tells the Ebox the EM_LATCH is full. 
M%PA..,Q..STATUS_H<2:O> gives the status of the current PA queue entry. M%PA...Q..STAlUS_H<O> 
indicates that sufficient entries are valid in the PA queue to accept a store request. Multiple 
PA queue entries are needed for a store when the store will access multiple longwords in 
memory (as in quadword length stores and unaligned stores which cross a longword boundary). 
M%PA..,Q..STATUS_B<l> indicates that the relevant PA queue entries have a memory management 
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fault associated with them. The Ebox will not issue the store; it will microtrap when the microcode 
attempts it. M%PA...,Q..STATUS_B<2> indicates the relevant PA queue entries have a hardware error 
associated with them. The Ebox will not issue the store; it will microtrap when the microcode 
attempts it. 

In one case Ebox logic ignores M%PA.,.Q...STATUS_B<O> and behaves as if it is deasserted. Due to 
complexities in the Mbox, M%PA...Q..STATUS_B<2:1> are not logically correct in the cycle in which 
the Ebox aborts a EM_LATCH operation by asserting E%EM.-ABORT_L. This happens when the Ebox 
aborts an Fbox result store operation because of F%STORE_STALL..B (see Section 8.5.16.3). 

Due to complexities in the Mbox, M%PA...Q..STATUS_H<2:1>, which signal memory management 
exceptions and hardware errors associated with the PA queue entry, are not always correct in a 
cycle in which an EM_LATCH operation is aborted by assertion of E%EM..ABORT_L. In this cycle, 
the Ebox ignores M%PA.,.Q..STATUS_H<O> and behaves as if it is deasserted. M%PA.,.Q..STATUS_B<O> 

qualifies every use of M%PA.,.Q...STATUS_B<2:1>, so the Ebox can't incorrectly take or not take an 
exception because of incorrect M%PA...Q...STATUS_H<2:1> values. 

The Ebox ignores M%PA,..Q..STATUS_H<O> only in cycles in which a store of Fbox data was 
sent in the previous cycle and was aborted in this cycle by asserting E%EM.fi80RT_L because 
F%STORE_STALL..B was asserted. This be coincident with an actual pipeline abort (which also 
causes assertion of E%EM.fi80RT_L if a request was sent to the Mbox in the previous cycle). In 
this case the Ebox will ignore M%PA...Q..STATUS_H<O> in a cycle in which the microword in 84 is 
effectively a NOP, and no change in behavior will result. 

The Ebox stalls the microword in S4 if it specifies an Mbox request and the EM_LATCH is full. 
Also, S4 is stalled if the microword specifies a store and M%PA.,.Q...STATUS_H<O> is not asserted. 

The Mbox drives several signals and busses used in writing the data into the register file. 
These are M%EBO~DATA...H, M9"tMD_BUS_B<31:O>, and M%MD_TAG_H<4:O>. When M%EBOX_DAT.A,..H 

is asserted, the data on M%MD_BUS_H<31:O> is written into the register addressed by 
M9"cMD_TAG_B<4:O>. Note that Mo/tMD_TAG_H<4:O> is 5 bits; it can address up to 32 locations. The 
organization of the register file is such that the MD, Wn, and GPR registers (a total of 27 registers) 
are in the first 32 locations in the register file. This means they can be addressed with a 5-bit 
tag (which is mapped into the full 6-bit address by zero extension). 

The Mbox drives fault and error flags which are associated. with the data on M%MD_BUS_B<31:O>: 

M%MMitFAVLT_H and M%HARD_ERR_H. If Mo/cMME_FAULT_H or M%HABD_ERR..H is asserted when 
M%EBOx:..DATA.,.B is asserted, then a fault or error is being reported to the Ebox for some previously 
initiated read operation. This is handled in one of several ways, depending on the case, as is 
shown in Table 8-16. 

Sipal Asserted 

WnorGPR 

WnorGPR 

MD 

DIGITAL CONFIDENTIAL 

Responee 

The Ebox ignores this case. MII.MME_T.B.AP_L would have been 
asserted for the same fault in a previous cycle. 

In this case the Ebox forces an immediate hardware error 
microtrap. 

In this case the fault bit for the partieul.ar MD is set in the 
register file. 
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Table 8-16 (Cont.): Ebox Response to M%MME FAULT Hand M%HARD ERR H 

Signal Asserted 

MD 

Response 

In this case the error bit for the particular MD is set in the 
register file. 

The Mbox drives Mo/eMME_TRAP _L and M%TB_PERR_TRAP _L to force immediate microtraps. 
MO/cMME_TRAP _L causes a memory management exception microtrap, while M%TB_PERR_TRAP_L 

causes an asynchronous hardware error microtrap. 

The Ebox asserts certain Mbox control signals under the control of the MISC and MISC2 

fields of the microword. These signals are E%FLUSH_MBO~H, E%FLUSH_PA.....QUEUE_H, and 
E%RESTART_SPEC_QUEUE_H. E%FLUSH...MBO~H is asserted when MISCIRESET.CPU is specified. It 
causes the Mbox to flush ongoing Ebox reads, including those initiated by the Ibox. It also flushes 
the specifier queue. It does not flush the PA queue, so writes and stores already issued by the 
Ebox are not affected. 

E%RESTART_SPEC_Q~H is asserted when MISCIRESTART.MBOX is specified. It restarts Mbox 
processing of specifier queue references. Mbox specifier queue processing is stopped by Ibox 
request when certain complex macroinstructions are encountered._ 

E%FLUSH_PA.....QUEUE_H is asserted when MISC2IFLUSH.PAQ is specified. It causes the PA queue in 
the Mbox to be flushed: MISC2IFLUSH.PAQ should always be sepcified with a MRQ field request 
which causes an EM latch command (i.e., other than MRQlSYNC.BDISP, MRQlSYNC.BDISP.RETIRE, 
MRQlSYNC.BDISP.TEST.PRED, or MRQlNOP). 

When a pipeline abort occurs, the Ebox asserts E%EM....ABORT_L, conditionally. It is asserted 
because the abort is recognized too late to prevent the Ebox from issuing an Mbox request in 84. 
E%EM..ABORT_L is asserted in 85 and signals the Mbox to disregard the command just sent in 84. 
It is only asserted if the Ebox actually made an Mbox request in S4 and the EM_LATCH wasn't 
full. Even stores and write requests are aborted in this case. 

8.5.17.3 Ibox IPR Access and LOAD PC 

The Ebox detects Ibox IPR access requests in 85. At that time it asserts a command strobe to 
the Ibox. The Mbox will also detect that the IPR access is to the Ibox. It will treat an Ibox IPR 
read as a NOP. For IPR writes the Mbox forwards the data on M%MD_BUS_H<31:O> in a later cycle. 
Microcode synchronizes with Ibox IPR writes by issuing a MRQlSYNC.MBOX after the operation. 
Once the MRQlSYNC.MBOX is complete, the microcode knows the Ibox has the data. 

In detecting Ibox IPRs,. the Ebox treats the entire range of normal IPR addresses from DO to DF 
(hex)as Ibox IPRs. The exact test used by the Ebox is: vA<9:6>=D (hex) and VA<24>=O. The low 
four bits (VA<5:2» are sent to the Ibox so it can determine which of its IPRs is specified. 

The Ebox requests a load-PC Mbox operation in 84 when the microword specifies LOAD.PC in the 
MRQ field. In 85 of that microword it asserts a command strobe to the Ibox informing it that the 
Mbox will soon forward the new PC value. Microcode synchronizes with the load-PC operation by 
specifying a SEQ.MUX!LAST.CYCLE. The instruction queue must be empty at this time. Once the 
Ibox adds a new instruction queue entry, a macroinstruction dispatch occurs. While waiting, the 
Ebox executes a continuous stream of "STALL" microwords (see Section 8.5.20.1). 
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8.5.18 Ebox Vector Support 

The Ebox supports potential future vector architecture integration by providing a configuration 
status bit which is available for microcode conditional branches. 

VECTOR_UNIT_PRESENT is a configuration status bit for vector support in the IPR ECR. See 
Section 8.5.22. Microcode can branch conditionally on the VECTOR_UNIT_PRESENT status. 

8.5.19 Fault and Trap Management 

There are three kinds of VAX Architecture exceptions: faults, aborts, and traps. In all cases the 
PC, PSL, and other data is pushed on the stack, and the address of an exception handling routine 
is fetched from the SCB. For a trap, the instruction which caused the trap has finished completely, 
and the PC on the stack points to the next instruction to execute. For a fault, the PC on the stack 
points to the instruction which caused the exception. For an abort, the PC, PSL, and other state 
are UNPREDICTABLE; however, whenever possible the NVAX CPU tries to turn aborts into faults. 
The difference between an abort and a fault is that no important architectually visible state was 
modified by the instruction ifit was a fault, while some important architecturally visible state may 
have been modified if it was an abort. (Certain state, for example, the memory location which 
is pointed to by the stack pointer, can be modified in the case of a fault. Generally speaking, 
aborts are cases where restarting the instruction may not work because some state which the 
instruction depended on may have been altered.) The VAX Restart Bit in the machine check stack 
can be used in determining whether it is safe to treat an abort as a fault. 

To cleanly support the concepts described in the previous paragraph, the NVAX CPU has a 
macroinstruction commit point in the pipeline. Once any microword of the execution microflow 
has passed this point, the macroinstruction may have modified architectural state. Until .the 
first microword of the microflow passes the commit point, the instruction cannot have modified 
any architectural state. This point is the boundary between S4 and 85 in the Ebox pipeline. No 
architecturally visible state is ever modified in 83 or S4 of the pipeline. For example, the PSL 
and all registers in the register file are written only in 85. Also, memory requests are not issued 
until a microword specifying one is about to advance into 85, and it is certain there are no S4 
stalls. 

Each macroinstruction execution microflow obeys the restriction that no microword in that 
flow modifies any architectural state before it is certain that all the operand specifiers for the 
instruction have been properly fetched and decoded and that all the memory accesses which this 
microftow will request are not going to encounter a memory management violation. This does not 
mean that no microword of the microflow passes the S4/85 boundary before all this is checked. It 
only means that the microwords in the microflow don't write memory or any other architecturally 
visible state until th~se things are verified. The net result is that macroinstructions which 
encounter a memory management violation are restartable once the condition has been corrected. 
(Note that the string instructions don't quite follow these simple rules. Instead, they use a more 
elaborate set of rules to ensure that they can be restarted after any memory management fault.) 

Microfiows for macroinstructions which might encounter any kind of fault other than a 
memory management exception specifically test for the fault condition(s) before modifying any 
architectural state. This is in addition to checking for memory management faults, as described 
above. 
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Ebox hardware forces a reserved opcode fault for Fbox instructions (except MULL) when the Fbox 
is disabled, in S4 of the first microword of Fbox macroinstruction execution flows. Because this 
fault is requested in S4 of the first microword, it prevents any architectural state from being 
altered by these flows. 

Hardware errors are handled differently. They generally can't be checked for, and the architecture 
doesn't require any such checks. Generally aborts occur as a result of a hardware error 
encountered in an macroinstruction after all memory management checks have been done. In 
these cases, some architecturally visible state may have been modified before the macroinstruction 
has completed. 

8.5.19.1 Faults and Errors Detected In S4 

When the Ebox detects a fault or error condition in S4 associated with an operation that is about 
to advance into 85, it signals the Microsequencer to cause a microtrap. The microtrap will cause 
the Ebox pipeline to abort before it advances. Any operation which was in 85 already completes 
normally, but the operation in S4 is purged before it enters 85. The operation in 85 may be part 
of a previous macroinstruction microflow. That macroinstruction is not affected by the microtrap. 
The microword in S4 may be the first microword to modify architecturally visible state in a given 
execution microflow so it must be prevented from advancing into 85. 

8.5.19.1.1 Coordinating Ebox and Fbox Faults and Errors 

It is necessary that macroinstructions retire in order, even when there is a fault or error detected 
in 84. The micro trap for the fault or error must be delayed until the macroinstruction connected 
to the fault or error is next to retire. The current retire queue entry is used by the Ebox to 
decide whether a microtrap should be signaled. For example, if a branch displacement access 
fault or error is detected by the Ebox in S4 but the retire queue indicates the Fbox is next to 
retire a macroinstruction, then the branch macroinstruction came after the one being executed 
in the Fbox. The branch's fault or error must not cause a microtrap until the Fbox has retired 
its macroinstruction. Then the microtrap is forced, given that the next entry in the retire queue 
indicates the Ebox is next to retire a macroinstruction. The microtrap occurs in S4 after the 
Fbox's last operation advances into 85. The branch is prevented from retiring by the microtrap, 
since it incurred a fault or error. 

The Fbox reports a number of faults and one error to the Ebox. The Ebox ignores them until 
the retire queue indicates the Fbox is next to retire a macroinstruction. The reason is the same 
as in the previous paragraph. The microtrap has to be delayed until the logically preceding 
macroinstructions are advanced into 85. 

Destination queue and PA queue faults and errors can be connected either to the Ebox or the 
Fbox. It depends on whether the box selected by the retire queue is requesting a destination 
queue indirect store. If the destination queue is empty and I%IMEM_MEXC_H, I%IMDCHERR_H, 
or I%RSVD..ADDR_FAULTJI is asserted and the box indicated by the retire queue is requesting a 
destination queue store, then a microtrap is signaled immediately. Also, if a destination queue 
store is requested while the current destination queue entry is valid and M%PA...Q...STATUS_H<l> 

or M%PA...Q....STATUS_H<2> is asserted, a microtrap is taken (see Section 8.5.17). 
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8.5.19.1.2 Breaking the S4 Stall 

Other than the requirement that instructions retire in order, 84 stalls do not delay microtraps 
for faults or eITOl'S which are in 84. In other words, any S4 stall is broken once a fault or error 
in 84 is due,to the next macroinstruction to retire. 

8.5.19.2 Faults and Errors detected In S3 

When the Ebox detects a fault or error condition in S3, it latches it in order to carry it down 
the pipeline to 84. Unlike most control signals propagating down the pipeline, these fault and 
error conditions are not forced off when 83 is stalled and S4 isn't stalled. So the S3 stall doesn't 
have to end for the fault/error condition to propagate to 84. However, the fault/error conditions 
do stall in 83 if there is an 84 stall. This is because the microword in S4 may be from a previous 
macroinstruction. That instruction must be allowed to complete normally before the microtrap. 
Once the fault or error status has advanced into 84 and the retire queue indicates the Ebox is 
next to retire a macroinstruction, the Ebox signals the Microsequencer to microtrap. 

8.5.19.3 Integer Overflow and Branch Mispredict Traps 

There are two traps handled in Ebox hardware. They are integer overftow traps, and branch 
misprediction traps. Integer overflow traps are VAX Architecture exceptions, while branch 
misprediction traps are not part of the VAX architecture. Both of these traps are handled in the 
Ebox by causing a microtra p once the last microword of the macroinstruction's execution microflow 
has entered 85. The microtrap prevents the next microword (which is the first microword of a new 
microfiow) from advancing into 85. This means that the macroinstruction in question completes 
properly but its successors are not allowed to execute. This is done for integer overflow because 
this is the effect required by the VAX Architecture. It is done for branch misprediction because 
this is the effect required to recover from an incorrectly predicted conditional branch. 

Integer overflow traps occur when a microword which specifies SEQ.MUX/ 

LAST.CYCLE.OVERFLOW is in 85 and PSL<lV> and PSL<V> are both set. If a microtrap is signaled, 
it prevents the next microword (or Fbox operation) from advancing into 85; the current operation 
in 85 completes regardless of whether the microtrap is signaled. 

Of the VAX architecture instructions which can cause integer overftow, MULL and all the CVT 
instructions are executed in the Fbox (except that MULL is executed in the Ebox when the Fbox 
is disabled). Integer overftow is detected in the Fbox for these instructions. The Ebox determines 
that an integer overftow occurred by examining the new PSL<V> bit for every Fbox retiring 
instruction. To distinguish instructions which can incur integer overflow traps from others the 
Fbox might retire, the Ebox checks the map specifier supplied by the Fbox. MULL and CVTs with 
integer destinations all use the same map specifier, and no other Fbox executed instruction uses 
that particular specifier. When the instruction being retired by the Fbox uses that particular 
map specifier, and PSL<IV> and PSL<V> are both set, the Ebox forces the microtrap for integer 
overflow. 

Branch misprediction traps are taken in 85 when the microword specifies SYNC.BDISP.TEST.PRED 

and the branch condition evaluator determines that the branch was incorrectly predicted. The 
Ibox prediction is read from the branch queue in 84. The branch condition evaluator result is 
available in 85. If the prediction doesn't match the actual result, a branch misprediction microtrap 
is signaled. The microtrap will prevent the microword in S4 from completing. That microword 
may have been the first microword of the execution microfiow for the next macroinstruction. It is 
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not supposed to be executed because the Ibox incorrectly predicted the outcome of the conditional 
branch. For more on mispredicted branches see Section 8.5.15.5. 

If a branch mispredict is detected at the same time as an integer overflow, the integer overflow 
microtrap is taken. See Section 8.5.19.5. 

8.5.19.4 Ebox Mlcrotrap Handling 

The Ebox makes a microtrap request by asserting one of a number of micro trap request signals. 
The Microsequencer causes a microtrap at the end of the CUlTent cycle. The Microsequencer has 
a priority encoder which it uses to decide which microtrap dispatch should be taken when more 
than one microtrap request is asserted (see Chapter 9). Regardless of which microtrap is taken, 
the signal E_USQ%PE..ABORT..L is asserted, causing an effective no-op to be inserted into all the 
control latches in S3, 84, and S5. The result is a pipeline abort. 

Early in a pipeline abort cycle (the cycle in which all the control latches in the pipeline are 
flushed), the Microsequencer signals asserts E_USQ%PE_ABORT_L. The Ebox responds by flushing 
the retire queue and the Ebox pipeline. Also, if in the last cycle a new command had been accepted 
by the Mbox, the Ebox asserts E%EM..ABORT_L which aborts that command. (Eo/DEM..A80RT_L will 
abort any EM_LATCH entry.) 

In the case of a branch mispredict microtrap, the Ibox has already been signaled by the Ebox 
that a mispredict occurred. The Ibox has the alternate PC latched, and it will begin fetching from 
that location as soon as it has unwound the RLOG. See Chapter 7 for more detail. 

All microtrap flows except branch mispredict execute a RESET.CPU. This causes a flush or reset of 
the Ebox queues and register file valid bits, the Fbox, and the Mbox (except the PA queue and 
EM_LATCH). It also causes E%STOP _IBOx...H to be asserted. These microtrap flows then read the 
Ibox IPR which causes the RLOG to be unwound and returns the backup PC. 

The branch mispredict microflow doesn't execute a RESET.CPU because the Ibox automatically 
recovers from the branch mispredict and begins fetching instructions from the correct memory 
location. For the same reason, it does not read the Ibox IPR which causes the RLOG to be unwound 
and returns the backup pc. For branch mispredict, Ebox hardware asserts all the Bush or reset 
signals that MISCIRESET.CPU would have caused except that E%STOP _IBOx...H is not asserted. 

All microtrap Bows synchronize with the Mbox by executing MRQ/SYNC.MBOx. Then they execute 
a MISC2IFLUSH.PAQ which causes the PA queue in the Mbox to be flushed. This allows any stores 
which were pending in the EM_LATCH to be finished before the PA queue is flushed. 

Certain microcode rules and restrictions apply to the process of gathering state and flushing the 
various boxes and function units within boxes. See Section 8.5.27.18. 

8.5.19.5 Coincidence of Branch Mispredict Trap with other Traps 

It is possible for a branch mispredict trap to happen at the same time as an integer overflow trap. 
When this occurs, the integer overflow trap is taken because it has higher priority than branch 
mispredict. However, the Ibox is still signaled that a branch mispredict took place. In the few 
cycles that it takes for the MISCIRESET.CPU in the integer overflow microflow to arrive at 85 in 
the Ebox pipeline, the Ibox has begun unwinding the RLOG and correcting the backup PC queue. 
Once the Ibox starts this process, it delays its own response to the E%STOP_mox..H signal (which 
is asserted by MISCIRESET.CPU) until it has completed the correction process for the mispredicted 
branch. In this way, the correct backup PC is made available to the integer overflow microflow. 
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It is also possible for a trace fault to follow a mispredicted branch. In this case, the branch 
mispredict trap fiushes the pipeline (purging the microfiow for a trace fault which is following it 
down the pipeline) and the Ibox unwinds the RLOG and corrects the backup PC queue. Then the 
branch mispredict microftow executes a LAST.CYCLE which causes the Microsequencer to dispatch 
to the trace-fault handler. Early in the trace fault microfiow, RESET.CPU will be executed, and so 
MSTOP _mO~B may be asserted to the Ibox before it has finished correcting for the mispredicted 
branch. The Ibox's ability to delay its response to E%STOP_IBOx..,B is what allows the Ibox to 
finish its corrective action. 

8.5.19.6 Possible Mlcrotrap Requests 

The following table lists the microtrap requests the Ebox can make. 

Table 8-17: Ebox Mlcrotrap Requests 

Mierotrap 

Memory 
management fault 

Memory access error S4 

Reserved S4 
addressing mode 

Reserved operand fault S4 

Reserved S4 
instruction fault 

Branch SO 
misprediction trap 

Integer overflow trap SO 

Floating over1iow fault S4 

Floating underflow fault S4 

Floating divide-by-zero S4 
fault 

8.5.19.7 Fbox Fault Reporting 

Ibox signal, MD fault status bits, PA queue JUPI,.TIJfMMB BRR II 

fault bit, or indicated by Fbox signal, 
lI'MIMG'l'_I'AVLT...B 

Ibox signal, MD fault status bits, or JUPI,.TlmWJCBIUI 

indicated by Fbox signal, J"IWBRR II 

Ibox signal or indicated by Fbox JUPI,.TUSVD.."ADD...,D ... 

Indicated by Fbox EJ'LTVLOATJNGJI'AULTJI 

For floating point macroinstructions when EJ'LTUSVDJNsm..L 

the Fbox is not enabled. 

branch result mismatch ~ICTJ. 

PSL<V> and PBL<1V> both set, and JU'LTlMOVll'IJ. 

SEQ.MUX/LAST.CYCLB.OVBRP'LOW or Fbox map 
specifier indicates integer result 

Indicated by Fbox JU'LTVLOATJNG_lI"AULTJI 

Indicated by Fbox JU'LTVLOATJNG_lI"AULTJI 

Indicated by Fbox EJ'LTVLOATJNG_I'AULTJI 

The four Fbox faults, reserved operand, :floating overftow, :floating underflow, and :floating 
divide-by-zero all cause the same dispatch in the Microsequencer. The Ebox latches a priority 
encoded status when one of these faults is reported by the Fbox. This status is available to the 
trap handler via a microbranch. The priority order, from highest to lowest, is reserved operand, 
:floating divide-by-zero, fi.oating overftow, and floating underftow. Table ~18 shows the code for 
each of the four fault conditions. 
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Table 8-18: Fbox Fault Codes 

Fault 

Reserved operand 

Floating divide-by-zero 

Floating overB.ow 

Floating underflow 

8.5.20 Ebox Stalls 

Priority 

1 

2 

3 

4 

Code 

o 
1 

2 

3 

The Ebox pipeline is controlled by the Ebox stall logic. It supplies stall signals which gate clocking 
of data information into each pipeline stage. The Ebox stall logic stalls only the segments which 
must be stalled. 85 is never stalled. 83 stalls if S4 is stalled. If S3 is stalled but S4 is not stalled, 
a NULL microword (or, more generally, an effective no-op) is injected into S4 after the control 
information in S4 advances into 85. 

The clock for each pipeline latch in S3 and S4 is ~1 gated by a stall control signal. The stall 
control signals are E%S3_STALL, EtrcS4_STALL, and E%RMtJX...S4_STALL for stages 83, S4, and RMUX 
S4 respectively. These signals determine whether the corresponding latches are opened in 4>1. 

The stall control signals are used to stall a pipe stage. A stage is stalled when it cannot' complete 
its operation for some reason. Generally data needed by the stage is not yet valid, but is expected 
to become valid after some time. Also stage N will be stalled when stage N+1 is not ready to 
receive the output of stage N. 

The Ebox pipeline can be stalled while the Fbox uses the RMUX portion of the pipeline to store 
results. When the Fbox is next to retire an instruction, E%RMtJX...S4_STALL, E%RMtJX...B4_FLUSH, 
and Eo/~S5_FLUSH depend on the progress of Fbox result store operations. When the Ebox 
is next to retire, these signals are driven to the same logic level as E0/cS4_STALL, E%S4_FLUSH, and 
E%S5_FLUSH, respectively. 

The clock for 85 pipeline latches is not gated. However there is an 85 flush signal for control 
information and another flush signal for the output of the RMUX.. 

The S3, 84, and 85 pipeline latches which hold control information also have an 
asynchronous reset input signal: EtrcS3_FLUSH, E9"cS4_FLUSH, E%RMtJX...S4..FLUSH, Ef7'tS5_FLUSH, 
and E%RMtJX...S5_FLUSH. These signals clear (flush) the control information to an effective no-op. 
They are asserted after the clock which loads the latch but before the control information is used 
to alter any state in the Ebox or anywhere else in the NVAX CPU. 

The flush control signals are used to insert effective no-ops into a particular stage. This is done 
for two distinct reasons. First, when pipeline stage N is stalled but stage N+l is not stalled, 
an effective no-op is inserted into stage N+l as its current operation advances to stage N+2. 
Secondly, when a pipeline flush is needed, the flush signals are all asserted, so every stage of the 
pipeline has an effective no-op inserted. The Ebox flushes the pipeline when the Microsequencer 
asserts E_USQ%PE_ABORT_L (which indicates that a microtrap dispatch has been initiated). 

Figure 8-8 shows control and data path latches and how the various pipeline control signals are 
typically connected. 
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Figure 8-8: Ebox Pipeline Latches 
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Table 8-19 shows the various pipeline stall and flush combinations which can occur. An important 
factor in determining the pipeline controls is whether the Ebox or Fbox is next to retire a 
macroinstruction. This status is given by the current retire queue entry. 

Table 8-19: Ebox Pipeline Stall and Flush Cases 

Ebox Next to Retire a Macroinstruction 

Pipeline Control sa C10ckI S4 Clock! RMUX S4 Clock! S5 Flush! 
Case sa Flush S4 Flush RMUX S4 Flush RM:tJX Flush 

No Stalls runldon't flush runldon't flush nmldon't flush don't flush/don't flush 

S3 Stall (with no S4 stallldon't flush runlflush nmlflush don't flush/don't flush 
stall) 

S4Stall stallldon't flush stall/don't flush stallJdon't :flush flush/flush 
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Table 8-19 (Cont.): Ebox Pipeline Stall and Flush Cases 

Ebox Next to Retire a Macroinstruction 

Pipeline Control sa ClockI S4 Clock! RMOX S4 Clock! S5 Flush! 
Case sa Flush S4 Flush RMOX S4 Flush RMOXFlush 

Pipeline Abort runlfiush nmlfiush runlflush flush!:flush 

Fbox Next to Retire a Macroinstruction! 

Pipeline Control sa Clock! S4 Clock! RMOX S4 Clock! S5 Flush! 
Case sa Flush S4 Flush RMOX S4 Flush RMOXFlush 

Ebox requesting sta1Vdon't flush sta1Vdon't flush see note 31 flush/see note" 
BMUX (in 84)2, or don't flush 
Ebox 84 stall 

Ebox not requesting see noteS/don't flush see noteS/don't flush see note 31 don't flush/see note" 
RMUX (in 84) and no don't flush 
sa stall2 

Ebox not requesting sta1Vdon't flush see noteSlfiush see note 31 don't flush/see note " 
mrux (in 84) with don't flush 
83 stall2 

Ilf Fbox is next to retire a macroinstruction, then the RMUX always selects the Fbox even if the Fbox doesn't request it. 

2The Ebox is requesting the RMUX if the microword in S4 specifies anything other than NONE in the DST field. 

3Run ifFbox not requesting RMUX or ifFbox is requesting and there is no stall on the operation. Stall ifFbox is requesting 
a store and/or retire and there is a stall on the operation. 

"Don't flush if Fbox not requesting RMUX or if Fbox is requesting and there is no stall on the operation. Flush if Fbox is 
requesting a store and/or retire and there a RMUX 84 stall on the operation. 

sStall if RMUX 84 clock is stalled. Otherwise run. 

As is shown in Table 8-19, when an effective no-op is inserted into S4 during an S3 stall, S5 does 
not need to be flushed. The effective no-op in S4 will propagate into an effective no-op in 85. 

VERIFICATION NOTE 

The interaction between stalls and microbranches is different than Rigel. That all 
microbranch tests work properly when 83 is stalled and S4 is not stalled should be 
verified carefully. 

8.5.20.1 The STALL Mlcroword 

In any cycle that the instruction queue is empty (and the Ibox is not providing a bypassed 
instruction queue entry directly to the Microsequencer), the Microsequencer fetches the STALL 

microword. This microword specifies no operation, except SEQ.MUX!LAST.CYCLE, and can't cause a 
stall anywhere in the pipeline. This allows the microwords already in the pipeline to continue 
even when the Ibox is temporarily unable to supply new instruction execution dispatches. See 
Chapter 9 for more detail. 
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8.5.20.2 Field Queue Stall 

When microcode uses the field queue, it executes a 4-way conditional microcode branch on two 
conditions, a not-empty condition and the I-bit status in the current field queue entry. Only three 
of the 4 branch outcomes are actually possible, because the output of the field queue is forced 
off if the queue is empty. The Ibox makes an entry into to the field queue when it processes a 
field operand. While the queue is empty, the microcode loops continuously repeating the same 
conditional branch. This is very much like a stall condition in that the pipeline stages all have the 
same operation in them in every cycle while the field queue remains empty. See Section 8.5.15.8 
for more on field queue operation. 

8.5.20.3 Ebox Stall Conditions 

The Ebox stall logic detects the need for stalls in various parts of the pipeline. The stalls must 
be detected on time to gate 4>1 latches at the start of the next cycle. This section assumes the 
Ebox is next to retire a macroinstruction. The next section deals with stalls with the Fbox next 
to retire a macroinstruction. 

The Ebox pipeline stalls in 83 when it is accessing some data in the register file which is not 
valid or when it requires an entry in the source queue which is not available. Up to two source 
queue entries and up to two MD or Wn registers can be accessed at once. The S3 stall lasts until 
all the accessed elements are valid and available. 

Wn and MD registers have valid bits associated with them. A register is valid only if this bit is 
set. A register's valid bit is not set when a memory read has been initiated for that register and 
hasn't yet completed. The valid bit is set by the Mbox when the read completes. . 

The source queue read and write pointers are examined to determine when there are sufficient 
source queue entries to satisfy the microword in S3. Either one or two entries might be needed. 
Only one is needed if the source queue is referenced in the A or B microword fields but not both. 
Two are needed if the source queue is referenced in both microword fields. The Ebox stalls in 83 
if exactly the number of entries needed aren't present. In particular, if only one entry is needed, 
then the Ebox only stalls if the source queue is completely empty, and if two entries are needed, 
the Ebox stalls until two entries are made. 

The Ebox stalls in S3 if the microword in S3 is sending operands to the Fbox and the Fbox is 
indicating that it can't accept the any more operands. 

The Ebox stalls in S3 if the microword in S3 is accessing at least one GPR which is marked in the 
Fbox destination scoreboard as having an Fbox result store pending. 

Given that the retire queue indicates the Ebox is next to r~tire a macroinstruction, the Ebox 
stalls in S4 if the following are true: 

• The microword in S4 specifies DSTIDST. 

• The destination queue is empty, or the destination queue isn't empty, the destination queue 
entry indicates a memory store, and the current PA queue entry is not valid. 

The destination queue read and write pointers are examined to determine when the destination 
queue is empty. The current PA queue entry is valid when the Mbox has completed memory 
management checks for the store reference. The Mbox asserts M%PA....Q...STATUS_H<O> when the 
PA queue entry is valid. 
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The Ebox stalls in S4 if the microword in S4 initiates a memory operation and the Mbox is already 
working on an Ebox-initiated memory operation. The EM_LATCH in the Mbox holds the current 
Ebox memory request. It is not available until the Mbox has finished that request. The Mbox 
provides a status which informs the Ebox that the EM_LATCH is empty. 

Destination queue indirect stores that are memory stores go in the EM_LATCH like any other Ebox 
memory access. So EM_LATCH-full 84 stalls can occur even when the microword in S4 specifies 
MRQlNOP. 

The Ebox stalls in S4 if the microword in 84 synchronizes with the branch queue and the branch 
queue is empty. The branch queue read and write pointers are examined to determine when the 
branch queue is empty. 

The Ebox stalls in S4 if the microword in S4 specifies MISC2IFDEST.CHECK and the entry in the 
destination queue needed to complete this operation is not yet valid. This stall ends when the 
Ibox writes the needed entry. 

The destination queue has a second access pointer, the FDest pointer. This pointer is 
compared to the destination queue write pointer to determine when the entry needed for the 
MISC2IFDEST.CHECK is available. 

When it is next to retire an instruction, the Fbox can cause an S4 stall by asserting 
Fo/DSTORE_BTALkH, indicating that the Fbox is stalling for this cycle because the data on 
F%FBOx:..RESULT_H is incorrect or there is a data exception to be evaluated in the Fbox's last 
stage. ",cSTORE_STALkH is only supposed to be asserted if the Fbox is storing a result (i.e., 
Fo/DSTORE_H is asserted). 

8.5.20.4 Fbox and RMUX Related Stall Conditions 

The Ebox has several Fbox related stalls. When the Fbox requests the RMUX the Ebox may have to 
stall the Fbox. Also, depending on which box (Fbox or Ebox) is next to retire a macroinstruction, 
several different Ebox stalls may occur. 

NOTE 

When the microcode needs to stall in 83 waiting for an Fbox operation to complete, 
one or two microwords which specify DSTIWBUS should precede the microword needing 
the Fbox operation to be complete. Any microword specifying DSTIWBUS will stall in 
84 until the Fbox retires its instruction. The appropriate amount of delay depends on 
which result is being awaited. 

The Ebox stalls in 84 if the current retire queue entry specifies that the Fbox is next to retire 
a macroinstruction and the Ebox is requesting the RMUX. The Ebox is requesting the RMUX if 
the microword in 84 specifies anything other than NONE in the DST field. Otherwise it is not 
requesting the RMUX. 

The Ebox stalls the Fbox (by asserting a stall signal before the end of the cycle) when the Fbox is 
requesting the RMUX and one of the four following is true (note that if the Fbox is next to retire, 
the RMUX portion of the Ebox pipeline is stalled whenever the Ebox stalls the Fbox): 

• The Ebox is next to retire a macroinstruction. 
• The Fboxis next to retire a macroinstruction, is requesting to use the destination queue, and 

the current destination queue entry is not valid. 
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• The Fbox is next to retire a macroinstruction, is requesting to use the destination queue, 
the current destination queue entry is valid and indicates a memory destination, and the PA 
queue is not valid. 

• The Fbox is next to retire a macroinstruction, is requesting to use the des tina tion queue, the 
current destination queue entry is valid and indicates a memory destination, the PA queue 
is valid, and the EM_LATCH is full. 

The Ebox determines all these conditions as described in the previous section. No part of the 
Ebox pipeline is stalled by an Fbox request if the Ebox is next to retire a macroinstruction. 

The Fbox can cause an RMUX 84 stall by asserting Fo/"sTORE_STALL_H, indicating that the 
Fbox is stalling for this cycle because the data on F%FBOx..RESULT_H is incorrect or there 
is a data exception to be evaluated in the Fbox's last stage. (This also causes an 84 stall.) 
Fo/DSTORE_STALL_H is only supposed to be asserted if the Fbox is storing a result (i.e., Fo/"sTORE_H 

is asserted). 

The Ebox is always stalled in S4 if an RMUX S4 stall occurs. 

8.5.21 Miscellaneous Operations 

The microword allows for a number of miscellaneous control and data movement operations. 
Most of them have been described elsewhere in this chapter, and are only summarized here. The 
following table lists all the miscellaneous operations by microword field and gives a description. 
Any of these fields can also specify NOP (no operation). 

Table 8-20: Ebox Miscellaneous Operations 

MISe Field· Both Standard and Special Microword Formats 

Mnemonic 

DL.BYTE 

DL.WORD 

DL.LONG 

RESTART.mOX 

RESTART.MBOX 

RESET. CPU 

CLR.PERF.COUNT 

INCR.PERF.COUNT 

CLRSTATE.3·0 

SET.STATE.O 

SET.STATE.l 

SET.STATE.2 

MULL 
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Description 

DL <- byte; change effects next microword 

DL <- word; change effects next microword 

DL <- long; change effects next microword 

restart Ibox operand specifier parsing in S5 

restart Mbox operand processing in S5 

flush Mbox and F'box, initialize register file valid bits, flush Ebox queues, all in S6; 
stop Ibox in S5 

Clear the performance counters in S5. See Chapter 18 

Increment a performance counter in S5 if ECR<PMF _EMUX> is a certain value. See 
Chapter 18 

clear flags<3:0>; change effects next microword 

set flag<O>; change effects next microword 

set flag<1>; change effects next microword 

set flag<2>; change effects next microword 

disables reserved instruction fault normally generated for Fbox instructions when 
the Fbox is not enabled. Used in MULL2 and MULL3 80 microcode can execute the 
macroinstruction instead of the Fbox. 
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Table 8-20 (Cont.): Ebox Miscellaneous Operations 

MISe Field· Both. Standard and Special Microword Formats 

MnemoDic 

CONST.lO.BIT 

LOAD.SC.FROM.A 

LOAD.MPU.FROM.B 

LOAD.PSL.CC.IllP 

LOAD.PSL.CC.J1ZJ 

LOAD.PSL.CC.lill 

LOAD.PSL.CC.IllJ 

LOAD.PSL.CC.IllP.QUAD 

LOAD.PSL.CC.PPJP 

CLR.VECT.RDY 

Mnemonic 

RETIRE.INSTRUCTION 

FLUSH.VIC 

FLUSH.BPC 

FOP.VALID 

FLUSH.PCQ 

CLRSTATE.5-4 

SET.STATE.3 

SET.STATE.4 

SET.STATE.5 
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Description 

Special constant generation mode. See Section 8.5.2 

SC <- E_B~US_L<4IO> 

MPU <- E..BUKBBUS_L<29Il8> 

update PSL CCs: 
PSL<N,z,V> <- S5 Condition Codes <N,Z,V> 
PSL<C> <- PSL<C> (Unchanged) 

update PSL CCs: 
PSL<N> <- S5 Condition Code <N> .xOR. S5 Condition Code <V> 
PSL<Z> <- S5 Condition Code <Z> 
PSL<V> <-0 
PSL<C> <- .NOT. S5 Condition Code <C> 

update PSL CCs: 
PSL<N,z,V,C> <- S5 Condition Codes <N,Z,V,C> 

update PSL CCs: 
PSL<N,z,V> <- S5 Condition Codes <N,Z,V> 
PSL<C> <- .NOT. S5 Condition Code <C> 

update PSL CCs: 
PSL<Z> <- PSL<Z> .AND. S5 Condition Code <Z> 
PSL<N,V> <- S5 Condition Codes <N,V> 
PSL<C> <- PSL<C> (Unchanged) 

update PSL CCs: 
PSL<N,z,v> <- PSL<N,z,V> (Unchanged) 
PSL<V> <- .NOT. S5 Condition Code <Z> 

S3 clear ofVECTOR_RDY condition. See Section 8.5.18 

MISel Field· Special Format Microword 

Description 

generate lbox retire instruction signal in S5 

flush. lbox virtual instruction cache in S5 

flush. lbox branch prediction cache in S5 

F'box operand on E'*aABUS..B<311O> and EClmBUS_B<311O> or both 

Flush PC queue in lbox 

clear fiags<5:4>; change effects next microword 

set fiag<3>; change effects next microword 

set fiag<4>; change effects next microword 

set fiag<5>; change effects next microword 
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Table 8-20 (Cont.): Ebox Miscellaneous Operations 

Mnemonic 

F.DEST.CHECK 

FLUSH.PAQ 

MISC2 Field· Special Format Microword 

Description 

Access destination queue and make entry in Fbox destination scoreboard 

Flush PA queue in Mbox 

Mnemonic 

MRQ Field· Both Standard and Special Format Microwords 

Description 

SYNC.BDISP 

SYNC.BDISP.RETIRE 

SYNC.BDISP.TEST.PRED 

LOAD.PC 

Mnemonic 

YES 

NO 

stall if branch displacement invalid in S4; microtrap if fault 

stall if branch displacement invalid in S4; microtrap if fault; S5 retire entry 

stall if branch displacement invalid in 84; microtrap if fault; S5 microtrap if 
mispredict and retire entry 

load new PC (always followed by MISCIRESTART.IBOX) 

DISABLE.RETmE Field· Special Format Microword 

Description 

Disable the retire macroinstruction and retire retire queue entry effects of 
SEQ.MUXlLAST.CYCLE and SEQ.MUXlLAST.CYCLE.OVERFLOW 

Enable the retire macroinstruction and retire retire queue entry effects of 
SEQ.MUXlLAST.CYCLE and SEQ.MUXlLAST.CYCLE.oVERFLOW 

The MISCllRETIRE.INSTRUCTION function signals the lbox to retire an instruction in order to 
bring the backup PC queue and the RLOG into the correct state for restoring GPRs and 
providing the backup PC after a microtrap. It does not retire a retire queue entry. Therefore 
MISClJRETIRE.INSTRUCTION must always be followed by a MISCIRESET.CPU before the next 
macroinstruction execution dispatch (via SEQ.MUXlLAST.CYCLE). 

The MISCIRESET.CPU function causes EO/cSTOP _mO:K..H to be asserted in 85 and E%FLUSH_MBO:K..H, 

E_MSC%FLUSH_EBO:K..H, and E%FLUSH_FBOx:..H to be asserted in 86. 

8.5.22 Ebox IPRs 

The Ebox implements two IPRs. They are IPRs 124-125 (decimal), PCSCR and ECR. 

ECR is a possible source of E_BUS%ABUS_L<31:O>, accessed by specifying ECR in the A field of the 
microword. ECR and PCSCR are also possible destinations of E_BUS%WBUS_L<31:O>, written by 
specifying PCSCR or ECR in the DST field of the microword. On writes, the entire register is 
written, regardless of the current DL value. 
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Figure 8-9: IPR 7C (hex), PCSCR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 0 I 0 I 0 I I I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I I I I I I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I :PCSCB 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I I I I I I 
I +-- NONSTANDARD_PATCH I I I I I 
+-- PATCH_REV I I I I I 

DATA --+ I I I I 
RWL_SHIFT --+ I I I 

PCS_WRITE --+ I I 
PCS_ENB --+ I 

PAR_PORT_DIS --+ 

8.5.22.1 IPR 7C (hex), Patchable Control Store Control Register 

The pcseR is used to load control store patches. Chapter 9 describes the patchable control store 
function in detail. Figure 8-9 and Table 8-21 show the bit fields and give descriptions. 
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Table 8-21: PCSCR Field Descriptions 

Name Extent Type Description 

8 RW,O 

9 RW,O 

10 WO 

11 WO 

DATA 12 RW,O 

RW 

28:24 RW 

1 This hit or field not implemented in pass 1 chips. 

Writing a 1 disables control by the testability parallel port of 
the section of the internal scan used in loading the control 
store CAM (content addressable memory) and RAM. This is 
necessary when using this register to load the control store 
CAM and RAM. 

Enables the control store CAM and RAM so that patches are 
fetched and supersede the control store ROM. 

The event of writing a 1 to this bit causes the PCS scan chain 
contents to be written into the control store CAM and RAM. 
The control signal which enables the write returns to the 
inactive state automatically; there is no need for software to 
write a 0 to this bit after writing a 1. This bit always reads 
as o. 
The event of writing a 1 to this bit causes the PeS scan chain 
to shift by one. The control signal which enables the shift 
returns to the inactive state automatically; there is no need 
for software to write a 0 to this bit after writing a 1. This bit 
always reads as o. 
This bit holds the data which is shifted into the PCS scan 
chain when a 1 is written to RWL_SffiFr. By repeatedly 
setting DATA and writing a 1 to RWL_SHIFT, software can 
shift any data pattern into the PCS scan chain. 

This bit is set by software after loading a microcode patch. If 
it is 1, it indicates a non-standard microcode patch has been 
loaded. This bit is returned as bit <8> in a read from the SIn 
processor register, except that 0 is substituted for this bit in 
microcode for a SID read ifPCSCR<PCS_ENB> is o. 
This field is set by software after loading a microcode patch. 
It indicates the revision of the standard microcode patch 
which has been loaded. This field is returned as bits <13:9> 
in a read from the SIn processor register, except that 0 
is substituted for this field in microcode for a SIn read if 
PCSCR<PCS_ENB> is o. 

8.5.22.2 IPR 7D (hex), Ebox Control Register 

The ECR is used to configure certain Ebox functions. Figure 8-10 and Table 8-22 show the bit 
fields and give descriptions. 
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Figure ~10: IPR 7D (hex), ECR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I I I I I 0 I 0 I I 0 I 0 I 0 I 0 I 0 I I I I I I I : ECR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I I I I 
+-- PMF_CLEAR I I I I I 

PMF _LFSR --+ I I I I 
PMF_EMUX --+ I I I 

PMF_PMUX --+ I I 
PMF_ENABLE --+ I 

FBOX_TEST_ENABLE --+ 
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ICCS_EXT --+ 
TIMEOUT_CLOCK --+ 

TIMEOUT_TEST --+ 
TIMEOUT_OCCURRED --+ 

FBOX_ST4_BYPASS_ENABLE --+ 

FBOX_ENABLE --+ 
VECTOR_PRESENT --+ 

DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

Table 8-22: ECR Field Descriptions 

Name Erlent Type Description 

FBOX_ENABLE 1 RW,O 

TIMEOUT_EXT 2 RW,O 

FBOX_ST4_BYPASS_ 3 RW,O 
ENABLE 

TDMEOUT_OCCURRED 4 WC 

TIMEOUT_TEST 5 RW,O 

ICCS_EXT 7 RW,O 

PMF_ENABLE 16 RW,O 

PMF_EMUX 21:19 RW,O 

PMF_LFSR 22 RW,O 
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This bit is for vector unit support in a future version of this 
chip. 

This bit is set to a 1 by configuration code to enable the Fbox. 

This bit is set to a 1 by configuration code to select an external 
timebase for the S3 stall timeout timer. 

This bit is set to a 1 by configuration code to enable Fbox 
Stage 4 bypass. 

This bit indicates that an S3 stall timeout occurred. Writing 
it with a 1 clears it. 

If this bit is aI, the S3 stall timeout circuit counts cycles 
instead of cycles in which ~TIMEOUT_ENABLE_B is asserted. 
In this test mode the sa stall timeout time is roughly 50 
microseconds instead of roughly 3 seconds. 

This bit is most significant bit of the timeout base counter. It 
is used as an indication that ~TIMEOUT_ENABLE..B is functioning 
(though some logic is not covered by this test). It should be 
1 half of the time and 0 the other half of the time. The 
period of the oscillation is 65536 time the cycle time of the 
chip or of the waveform on P%OSC_TCl_H, depending on 
ECR<TlMEOUT_EXT>. For ECR<TlMEOUT_EXT> set to 
o and a 14 nsee cycle time, this is a period of roughly 900 
microseconds. 

This bit is set by configuration code to select the interval 
timer mode. When it is 0, the CPU implements a subset 
interval timer with ICC8<6> maintained on the chip. When 
set to 1, the CPU implements a full interval timer with ICCS, 
NICR, and ICR processor registers implemented off chip. See 
Chapter 10. 

When this bit is set to a 1, 6FBOI...TBST_EN'B_B is asserted. This 
puts the Fbox is a test mode in which data is passed from 
stage to stage unaltered. 

This bit is the internal implementation of the PME processor 
register. See Section 18.2.4 for more detail. 

This field selects the source of the events counted by the 
performance monitoring facility, when enabled, to be !box, 
Ebox, Mbox, or Cbox. See Section 18.2.3 for more detail. 

This field selects the Ebox events counted by the performance 
monitoring facility, when the performance monitoring facility 
is configured to count Ebox events. See Table 18-3 for more 
detail. 

This bit enables the ~WBUS_H<311O> LFSR (linear feedback 
shift register) accumulator. This is a testability feature. See 
Section 8.5.26.2 for more detail. 
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Table 8-22 (Cont.): ECR Field Descriptions 

Name 

8.5.23 Initialization 

Extent Type Description 

31 WO Writing a 1 to this bit clears the performance monitoring 
facility counters (which are also the :n.WBUSJl<31aO> LFSR 
accumulator). It is not implemented in hardware. Microcode 
handles this function. 

The main mechanism for Ebox initialization is the power-up microtrap, and the MISCIRESET.CPU 
which occurs in the first microword of this microtrap flow. When this trap occurs, the 
Microsequencer will assert E_USQ%PE_ABORT_L, aborting the Ebox pipeline as it does for any 
microtrap. None of the registers in the register file or elsewhere in the Ebox are cleared on 
initialization, except that IPR bits are cleared where indicated by the bit type (see Section 8.5.22). 
The state flags are also cleared by reset. 

The Ebox asserts EO/tSTOP _moX_H, E_MSC%FLUSH_EBO~H, E%FLUSH_MBOX_H, 
and E%FLUSH_FBOX_H during reset. This is the same effect as MISCIRESET.CPU. See the sections 
on initialization for each of the boxes for more detail. 

8.5.24 Timing 

TBS. A timing diagram for major Ebox signals will someday appear here. 

8.5.25 Error Detection 

Ebox handling of memory management faults and hardware errors detected by the Mbox while 
processing an Ebox or Ibox request is covered in Section 8.5.19 and Section 8.5.17. 

8.5.25.1 S3 Stall TImeout 

The Ebox implements an S3 stall timeout timer. The timeout time is shown in Table 8-23. 

Figure 8-11 shows all the NVAX timeout timers, including those implemented in the Cbox. The 
Cbox timeout timers are shown because they use E%TIMEOUT_BASE_H as their timebase. See 
Section 13.4.3.4 for more detail on the Cbox timeout timers. 

The timeout timer input is E%TIMEOUT_BASE_H, which is created internally by dividing the CPU 
clock by 65536. As an alterative in systems in which require longer timeout times than NVAX 
implements, this timer can use an externally supplied timebase. To select the external timebase, 
K%EXT_TMBS_H, ECR<TIMEOUT_EXT> is set to 1. In this case the base counter counts cycles of 
K%EXT_TMBS_H instead of the NVAX CPU internal clock. K%EXT_TMBS_H is a synchronized version 
of the signal received on pin P%OSC_TCl_H. Note that Po/DOSC_TCl_H is synchronized in the 
clock section to NDAL clocks and must therefore be driven with a clock signal which is high for 
longer than one NDAL cycle and low for longer than one NDAL cycle. For a square wave clock 
waveform this implies a speed of 11.9 MHz or less. 
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Table 8-23: S3 Stall Timeout Values In Normal Mode 

Cycle time 

100ns NVAX 

12-ns NVAX 

14-n8 NVAX 

1imeout 
Granularity 

655 microseconds 

786 microseconds 

917 microseconds 

Figure 8-11: NVAX Timeout Counters 

S3 Stall timeout 

2.6837 (min) to 2.68345 (max) seconds 

3.22044 (min) to 3.22123 (max) seconds 

3.75718 (min) to 3.7581 (max) seconds 

NOT(RESET) 

VDD 

(SYNCRONIZED 
P%OSC_TC1_H) 

E%TlMEOUT BASE H 
(MASTER UPDATE-ENABLE) 

VDO 

ECRcTIMEOUT_ TEST> 
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E_FLT%S3 TIMEOUT STALL H 

EBOX BASE COUNTER 
16 BITS 

READO COUNTER 
8 BITS 

1---------oCLEAFI 
ENABLE 

READ1 

~~----~~CLEAFI 

ENABLE 
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In every cycle the Ebox counter increments, if one of the following is true: 

• S3 is stalled, or 
• The microword in S3 is the STALL microword (as determined by the piped version of 

E_USQ%I~S'l'ALkB sent from the Microsequencer). 

• The field queue is being accessed via a microcode conditional branch and is empty 
(E_FLQ%F~STALL_B is asserted). 

These conditions are accumulated into one condition, E..FLT%S3_TIMEOUT_STALL..B, in the fault 
logic section of the Ebox. If none of the above conditions is true, the Ebox counter is reset to O. 
If the counter reaches its maximum value and overflows, an immediate asynchronous hardware 
error microtrap is forced. The microtrap breaks the Ebox stall by aborting the pipeline. 

When the S3 stall timeout timer overflows, forcing a microtrap, the signal EfYt83_TIMEOUT_H is 
asserted for one cycle. This causes the chip reset logic to reset the Mbox and Cbox. Microcode, 
in handling the asynchronous hardware error microtrap, must also do MISCIRESET.CPU in order to 
properly reset the Mbox. 

The Ebox timeout counter treats cycles in which the pipeline advances the STALL microword 
into S3 as an S3 stall cycle. If the Microsequencer sends STALL microwords into the pipeline 
continuously, the timer will eventually timeout. This is the case when the instruction queue in 
the Microsequencer r~ains empty forever. 

Similarly, if microcode is in an infinite loop, conditionally branching on the field queue contents, 
an S3 stall timeout will occur. 

Any true S3 or S4 stall which lasts forever will cause an S3 stall timeout. It is expected that 
some hardware failures within the NVAX CPU could cause the Ebox to get out of sync with the 
Ibox, Ebox, or Fbox.This could result in the Ebox waiting forever for an event which will never 
happen. This timeout timer causes a machine check exception to occur instead of allowing the 
CPU to simply hang. 

8.5.25.1.1 Testing the S3 Stall Timeout 11mer 

The Ebox timeout counter may be configured for testing by writing a 1 to ECR<S3_TIMEOUT_TEST>. 

When this bit is 1, the Ebox counter counts NVAX CPU internal clock cycles instead of cycles of 
E%TIMEOUT_BASE_B. Table 8-24 gives the timeout times in test mode. See the timeout counter 
test discussion in Section 13.4.3.4 for detail on how to cause a timeout for test purposes. The 
timeout will cause the asynchronous hardware error machine check (see Chapter 15). 

Table 8-24: S3 Stall Timeout Values In Test Mode 

Cycle time 

10-ns NVAX 

12-n8 NVAX 

14-ns NVAX 
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Timeout 
Granularity 

10 nanoseconds 

12 nanoseconds 

14 nanoseconds 

S3 Stall timeout 

40.95 (min) to 40.96 (max) microseconds 

49.14 (min) to 49.152 (max) microseconds 

57.33 (min) to 57.344 (max) microseconds 

DERIVATION OF TIMEOUT VALUES 
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The timeout values given above were derived as follows: 

Table 8-25: Derivation of NVAX TImeout Values 

~AU[ Tbneout 
mode Granularity 

Normal 

Test 

(in ~AX cycles) 

2**16 

1 

8.5.26 Testability 

S3 Stall timeout 

(in NVAX cycles) 

2**2~2**16 (min) to 2**28 (max) 

2**12-1 (min) to 2**12 (max) 

This section describes the testability features in the Ebox. 

8.5.26.1 Parallel Port Test Features 

The microaddress currently being used to access the control store is visible on the parallel port. 
Much information about Ebox execution can be inferred from the sequence of microaddresses 
seen on the parallel port. See Section 9.5. 

No other Ebox signal is visible directly at the parallel port. Quite a few are visible through the 
internal observability scan chain controlled via the parallel port controlled inputs. Table 8-26 
shows these signals. Timing information and a description is given for each signal. 

The scan chain loads input data in 4>4. If a signal is not ready to be latched in 4>4, it has to be 
delayed before being loaded into the scan chain. This implies that the particular signal's value 
sampled by the scan chain is from one cycle earlier than the cycle in which the scan chain was 
loaded. This is shown Table 8-26 in the timing column. 

Table 8-26 lists the scan chain data bits in the order in they would appear at the parallel port. 
The value of E_RGF%ERROR_H appears first and the value of F%STORE_STALL..H appears last. 

Table 8-26: Ebox Observe Scan Signals 

Schematic Signal TimiDg 

E~R..L delayed 

E~FAULTJ. delayed 
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Description 

A 1 value means the Ebox is detecting a hardware 
error associated with the current MD read (including 
bypassed MD reads) or with a current S3 lbox-to-Ebox 
queue access (instruction queue, source queue, or field 
queue). 

A 1 value means the Ebox is detecting a memory 
management fault associated with the current MD 
read (including bypassed MD reads) or with a current 
S3 Ibox-to-Ebox queue access (instruction queue, 
source queue, or field queue). 

A 0 value means the Ibox is signaling a memory 
management exception associated with one of the 
lbox-to-Ebox queues (instruction queue, source queue, 
field queue, branch queue, or destination queue). 
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Table 8-26 (Cont.): Ebox Observe Scan Signals 

Schematic Signal 'l'imina Description 

delayed 

delayed 

delayed 

delayed 

delayed 

delayed 

vss 
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A 0 value means the Fbox is currently requesting that 
no more input data be sent. 

A 0 value means the Thox is signaling a hardware 
error associated with. one of the Ibox-to-Ebox queues 
(instruction queue, source queue, field queue, branch 
queue, or destination queue). 

A 1 value means the destination queue is being 
accessed and there isn't a valid entry. 

A 0 value means the Fbox is requesting a store in this 
cycle. 

A 1 value means the Thox register :file write is being 
bypassed to E..BURBBUS_L 

A 1 value means the data on E_BUS~BBUS..J. is valid 
(otherwise a MD or WN stall would occur). 

A 1 value means the Ibox register :file write is being 
bypassed to E_BUfiABUS_L. 

A 1 value means the data on E_BUS~US_L is valid 
(otherwise a MD or WN stall would occur). 

A 0 value means the Fbox destination scoreboard in 
the destination queue has a hit (i.e., a current source 
queue based register :file read is to a register the Fbox 
will update in the future). 

A 0 value means the current source queue read(s) is 
(are) accessing an empty location - one kind of 83 stall. 

A 1 value means the Ebox is next to retire an 
instruction, not the FbOL 

A 0 value means the Ebox is signaling the 
microsequencer to initiate a memory management 
fault microtrap. 

A 0 value means the Ebox is signaling the 
microsequencer to initiate a synchronous hardware 
error microtrap. 

A 1 value means the Ebox is stalled in 84 doing the 
FDE8T.CHECK operation and the destination queue 
doesn't contain the necessary entry or entries. 

Always a 1 value. 

A 0 value means the Ebox is recognizing a hardware 
error because the Mbox wrote a working register or 
GPR while asserting MMIARD_ERR_R. 

A 0 value means the Ebox is detecting a memory 
management fault with a current 83 Thox-to-Ebox 
queue access (instruction queue, source queue, or field 
queue). 
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Table 8-26 (Cont.): Ebox Observe Scan Signals 

Schematic Signal TimiD.c Description 

f'CUDIGTJ'AtJLTJI 

delayed 

vss 
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A 0 value means the Ebox is detecting a hardware 
elTor with a current 83 Ibox-~Ebox queue access 
(instruction queue, source queue, or field queue). 

A 0 value means the most significant bit of this field is 
a 1. See Table 8-6. This data is valid for the condition 
code alteration in the current cycle (85), provided it is 
a Fbox instruction being retired. 

A 0 value means the least sig.oificant bit of this field is 
a 1. See Table 8-6. This data is valid for the condition 
code alteration in the CUlTent cycle (85), provided it is 
a Fbox instruction being retired. 

A 0 value means the Fbox is requesting an instruction 
retire in this cycle. 

A 0 value means the Ebox is stalling because the PA 
queue is not valid and the current destination queue 
access is requiring the use of the PA queue. 

A 0 value means the Ebox is 
stalling because the branch queue is empty and the 
cu.nent microinstruction in 84 accesses it. 

A 0 value means the Fbox is signaling a hardware error 
on one of the source operands for the currently retiring 
instruction. 

A 0 value means the .Fbox is signaling a reserved 
address mode fault on one of the source operands for 
the currently retiring instruction. 

A 0 value means the Fbox is signaling a memory 
management fault on one of the source operands for 
the currently retiring instruction. 

A 0 value means the Fbox is signaling a reserved 
operand fault for the currently retiring instruction. 

A 0 value means the Fbox is signaling a floating 
overflow fault for the currently retiring instruction. 

A 0 value means the 
Fbox is signaling a floating divide-by-zero fault for the 
currently retiring instruction. 

A 0 value means the Fbox is signaling a floatine 
underftow fault for the currently retiring instruction. 

A 0 value means the Mbox is signaling that the 
EM_LATCH is full. 

A 0 value means the Ebox is making an Mbox request 
in this current cycle. 

Always a 1 value. 

A 0 value means the Ebox is signaling the Mbox that 
an Ibox 10 space read may begin in the current cycle. 
subject to certain Mbox restrictions. 
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Table 8-26 (Cont.): Ebox Observe Scan Signals 

Schematic Sip..al Timing Description 

NSTORE.-STALI....H A 0 value means the Fbox aborted a store request late 
in the current cycle. 

8.5.26.2 E%WBUS_H<31 :0> LFSR 

E%WBUS_H<31:O> (the buffered copy of E_BU8f1CWBUS_L<31:O> which is driven to the Mbox) has 
an LFSR (linear feedback shift register) accumulator. The LFSR is implemented as part of the 
performance monitoring facility that is described in Chapter 18, and controlled by two bits in the 
ECR processor register: PMF _LFSR and PMF _CLEAR. 

The E%WBUS_H<31:O> LFSR is implemented as two identical 16-bit LFSRs, one for E%WBUS_H<31:16> 
and one for E%WBUS_H<15:O>. A block diagram of one of these 16-hit LFSRs is shown in Figure S-12. 
The reader should note that the output of the left-most hit in the LFSR chain is inverted before 
being XORed with earlier taps. This was done for implementation reasons. 

Figure 8-12: E%WBUS_H LFSR Block Diagram 

Both halves of the E%WBUS_H<31:O> LFSR may be cleared by software by writing a 1 to 
ECR<PMF_CLEAR> (which results in microcode executing the MISC/CLRPERF.COUNT function). 
The operation of the pair of LFSRs is started by software by writing a 1 to ECR<PMF _LFSR> 
and stopped by writing a 0 to the same bit. The current state of the E%WBUS_H<31:O> LFSR may 
be read by software via the PMFCNT processor register (an E_BUS%ABUS_L<31:O> source available 
via MFPR) in the format shown in Figure S-13. 
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Figure 8-13: PMFCNT Processor Register In E%WBUS_H<31 :0> LFSR Format 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 E_WBUS<31:16> LFSR Value 1 E_WBUS<15:00> LFSR Value I :PMFCNT 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

CAUTION 

The E%WBUS_B<31:O> LFSR hardware also provides the perlormance monitoring facility 
function under control of ECR<PMF _ENABLE>. The operation of the hardware is 
UNDEFINED if both ECIkPMF _ENABLE> and ECR<PMF _LFSR> are on, or if software uses a 
single MTPR write to turn off one hit and turn on the other simultaneously. That is, if 
either bit is on, software must turn off both bits with one MTPR and turn on the other 
with a second MTPR. 

8.5.27 Microcode Restrictions 

This section gives microcode restrictions due to Ebox microarchitec1u:re and the VAX architecture. 

8.5.27.1 Register Access Restriction 

The first microword of any execution microfiow must not read GPRs explicitly, and an explicit read 
must be preceded by at least one microword specifying something other than NONE in the DST field. 
(AIS!, AlS2, BlS!, and BlS2 are always allowed.) This restriction has to do with the fact that the Fbox 
destination scoreboard only examines the source queue outputs to detect GPR read-before-write 
hazards. Therefore it specifically does not apply in a microtrap flow since the Fbox can never 
write a result after a microtrap. 

8.5.27.2 FLUSH.PAQ Restriction 

MISC2IFLUSH.PAQ should only be specified when the MRQ field specifies an Mbox operation 
which is sent in the EM latch (i.e., other than MRQlSYNC.BDISP, MRQlSYNC.BDISP.RETIRE, 

MRQlSYNC.BDIBP.TEST.PRED, or MRQlNOP). Otherwise the Mbax will not Bush the PA queue. 

8.5.27.3 Memory access restrictions 

Microcode must ensure that all accesses from the current microfiow are complete before allowing 
the microsequencer to dispatch to the next microfiow. 

Destination queue indirect writes (DSTIDST) may be implicit memory operations. The MRQ field 
must specify NOP,8YNC.BDIBP,8YNC.BDISP.RETIRE, or SYNC.BDISP.TEST.PRED when this operation is 
specified. 

8.5.27.4 Shifter Restrictions 

If the shifter uses the sc register as the source of the shift amount, the se must have been 
loaded from E_BUS%ABUS_L<4:O> by the previous microword or from E_BUS%WBUS_L<4:O> by the 
microword before that. Otherwise the old BC value is used as the shift amount. 
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8.5.27.5 SHIFT.SIGN Restriction 

The saved copy of the shifter sign bit (Saved-SHF<N» is UNPREDICTABLE after executing a special 
format microword. 

8.5.27.6 MMGT.MODE Restrictions 

The MMGT.MODE register must be loaded before (in a microword preceding) the microword 
specifying a memory management probe in the MRQ field. 

8.5.27.7 MPU Restrictions 

If the MPU mask value is loaded by microword N specifying MISCILOAD.MPU.FROM.B, microcode 
may not branch on the new value until microword N+2. Microcode may branch on the old value 
in Nand N+1. 

8.5.27.8 Mlcrobranch Condition Restrictions 

The first microword of a macroinstruction execution microflow should not branch based on the 
state flags. (It may set or clear them.) 

8.5.27.9 Ibox IPR read restriction 

Microcode should not use GPRs as the target for read type accesses to Ibox IPRs. There is no 
synchronization mechanism to determjoe when the result is ready. Also, the control logic in the 
IOOx IPR assumes a working register is the destination. 

8.5.27.10 RETlRE.lNSTRUCTION 

The MISCl field operation, RETIRE.INSTRUCTION must always be followed by a MISCIRESET.CPU. 
The MISCIRESET.CPU may come any number of cycles later, but must come before the next 
macroinstruction microflow is dispatched. 

8.5.27.11 VAX Restan Bit Restriction 

The VAX Restart Bit should not be read until two microwords after the last microword whose 
effect is expected to be reflected in the bit's state. For example, the machine check microflow 
should wait until the second microword before reading the bit to put it on the stack. Then the 
bit will reflect the state for the aborted execution microflow. 

8.5.27.12 Q Register Interaction With SMULSTEP and UDIV.STEP 

In the microword after the last ALU/sMUL.STEP or ALUIUDN.STEP, the Q register should not be 
sourced to E_BUS%ABUS_L<31:O> or E_BUS%BBUS_L<31:O>. Bypassing is not implemented for this 
kind of Q register update. 

The microword before an ALU/SMUL.STEP must not update the Q register (QlUPDATE.Q) unless that 
microword also specifies ALU/SMUL.STEP. 
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8.5.27.13 UDIV ISMUL Restrictions 

The Q field must specify QlUPDATE.Q if the ALU field functions SMUL.STEP or UDIv.STEP are specified. 
Also the ALU result must be specified as the source of E_BUS%WBUS_L<31:O>, and the shifter 
operation must be NOP. 

8.5.27.14 F.DEST.CHECK Restrictions 

The F.DEST.CHECK miscellaneous operation should only be used as intended. It should be specified 
in the last microword of a microflow which sends operands to the Fbox. It should never be specified 
in a microword which also specifies nST in the DST field. 

8.5.27.15 Fbox Operand Delivery Restriction 

IN delivering operands to the Fbox microcode may only not use AlS2 or BlSl. Short literal bypass 
to the Fbox source operand buses is not implemented for these decodes. Use of these decodes 
for Fbox operands could cause improper input data formatting in the Fbox if a short literal data 
item is present in the source queue. 

8.5.27.16 RMUX control Restrictions 

Every microword with an S4 or 85 side effect of modifying any state (examples include 
SYNC.BDISP.RETlRE, RESET.CPU, and LOAD.PSL.CC.xxxx) must specify a DST other than NONE. A DST 

of WBUS is acceptable. This restriction specifically does not apply to FDEST.CHECK. 

Every microword specifying any operation other than NOP in the MRQ field must specify a DST 

other than NONE. A DST of WBUS is acceptable. 

8.5.27.17 Control Bits 

After changing either ofECR<l or 3> (FBOX_ENABLE or FBOX_ST4_BYPASS_ENABLE) microcode should 
not do a SEQ.MUXILAST.CYCLE or SEQ.MUXlLAST.CYCLE.OVERFLOW in the three microwords following 
the one altering the control hit. 

8.5.27.18 Mlcrotrap Dispatch and RESET.CPU Restrictions 

8.5.27.18.1 Mlcrotrap Flows 

In a microtrap handler for any microtrap except branch mispredict, microcode must do a 
MISCIRESET.CPU before it can read any of the registers in the register file which has a valid bit. 
This restriction is necessary to avoid deadlock. Specifically, microcode must not source any Wn 
register (working register) until the microword after the one which specifies MISCIRESET.CPU. 

In a microtrap handler for any microtrap except branch mispredict, there should he no memory 
request until the third microword after the one specifying MISCIRESET.CPU. 

In a microtrap handler for any micro trap except branch mispredict, any microcode operation 
which causes an entry in the retire queue to be retired is illegal until a MISCIRESET.CPU is executed 
and a second microword specifying SEQ.MUXlLAST.CYCLE and DISABLE.RETIREIYES is executed. 
This second microword must not occur until after the third microword after the one specifying 
MISCIRESET.CPU. 
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In a microtrap handler for any microtrap except branch mispredict, UNPREDICTABLE or UNDEFINED 

results could occur if microcode accesses the source queue, destination queue, instruction 
queue, branch queue, or field queue until the fourth microword after the one which specifies 
MISCIRESET.CPU. Similarly, UNPREDICTABLE results could occur if microcode reads from the Wn or 
GPR register before the fourth microword after the one which specifies MISCIRESET.CPU, or writes 
to these registers before the second microword after the one which specifies MISCIRESET.CPU. 

8.5.27.18.2 MISC/RESET.CPU Restrictions 

The fourth microword after one specifying MISCIRESET.CPU may specify SEQ.MUXlLAST.CYCLE 

(with DISABLE.RETIRElYES), but the first three must not. The first three microwords after a 
MISCIRESET.CPU must not access the source queue or field queue. The first two microwords after 
a MISCIRESET.CPU must not access the destination queue, branch queue. 

The first two microwords after a MISCIRESET.CPU must not issue memory requests. 

After a microword specifying MISCIRESET.CPU, any microcode operation which causes an entry 
in the retire queue to be retired is illegal until a microword specifying SEQ.MUXlLAST.CYCLE and 
DISABLE.RETIRElYES is executed. This microword must not occur until after the third microword 
after the one specifying MISCIRESET.CPU. 

8.5.27.18.3 Asynchronous Hardware Error Mlcrotrap Restriction 

There are two possible causes of this microtrap, TB parity error and 83 stall timeout. If the cause 
is S3 stall timeout then the Mbox and Cbox are reset by Ebox hardware for 17.5 cycles. Microcode 
must not issue any memory requests during that reset time period. Also, the Mbox requires that 
the MISCIRESET.CPU function be done during the reset period. The first microword of the microtrap 
handler does not reach 86 until 5 cycles after the 83 stall timeout is detected. Hence the earliest 
the effect of MISCIRESET.CPU on the Mbox can occur is 5 cycles into the 17.5 cycle reset period. 
Microcode currently issues the MISCIRESET.CPU upon entry to the asynchronous hardware error 
microtrap (regardless of the cause) and then waits 23 cycles before beginning normal exception 
handling procedures. This is the recommended procedure. 

8.5.27.18.4 First Part Done Dispatch Restriction 

The microcode flow at the dispatch for PSL<FPD> set must determine if the opcode is that of an 
Fbox instruction. If it is, then a MISCIRESET.CPU must occur before the next SEQ.MUXlLAST.CYCLE 

or SEQ.MUXlLAST.CYCLE.OVERFLOW. This case results in the Fbox and Ebox being out of synch in 
the protocol for sending opcodes and operands. The Fbox must be flushed. If the instruction is not 
an Fbox instruction, microcode may continue without the MISCIRESET.CPU (as it does in the case 
of unpacking and continuing the execution of an interrupted string instruction such as Movea). 

8.5.27.19 PSL Use Restrictions 

The PSL must not be loaded in the first nricroword of a macroinstruction execution microflow. 

The first two microwords of any macroinstruction execution microflow (any opcode dispatch or the 
FPD dispatch) should not use the PSL as a source. The PSL<TP> bit read onto E_BUSo/oABUS_L<31:O> 

will not necessarily be correct. Microcode may disregard this restriction if it is acceptable for this 
bit to be incorrect. (Reading the PSL does not prevent the automatic copy of <1'> to <TP>.) 

8-94 The Ebox DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

The PSL should not be read in the microword after it is updated. If this rule were not followed, 
it is UNPREDICTABLE whether the second microword will source the old or the new PSL value. 
(Actually it depends on whether an S3 stall occurs on the second microword.) 

On loading a new PSL, the third microword after the one altering the PSL may specify LAST.CYCLE 
for a decode dispatch, but the first two may not. If it is known that the PSL<FPD, T, or TP> bits 
will not change, then this restriction does not apply. 

On loading a new value to. PSL<FU>, the microword after the one altering the PSL may specify 
SEQ.MUXILAST.CYCLE for a decode dispatch, but the one which altered the PSL must not. 

If microcode loads a new value to PSL<IPL> in microword N, then microwords N through N+3 
must not specify SEQ.MUXILAST.CYCLE or SEQ.MUXILAST.CYCLE.OVERFLOW, but N+4 may. 

.After changing the PSL microcode generally should not micro-branch on PSL bits in the next two 
microwords. Assuming microword N updates the PSL, if microwords Nor N+l branch on the 
PSL the old PSL value will determine the result of the microbranch. However, if microword N+2 
branches on the PSL, it is UNPREDICTABLE whether the old or new PSL bits will be used to determine 
the branch outcome. (Actually, it is predictable if S3 stalls on microword N+l are known.) IfN+3 
branches on the PSL, the new PSL value will definitely determine the result of the microbranch. 
This restriction specifically does not apply if PSL<29,26:22> are not changed by the load. 

Many microcode :flows alter the condition code bits, PSL<3:0>, in the last cycle of the :flow. This 
implies that microcode should not source the PSL in the first microwords of any :flow except 
microtrap :flows (i.e., don't in these :flows: opcode dispatch, FPD dispatch, trace fault dispatch, or 
interrupt dispatch) unless it is acceptable that the incorrect value might be read for the condition 
code bits. (This assumes that the first microword of the flow synchronizes to any outstanding 
Fbox retire by specifying a nST other than NONE.) 

Certain restrictions accompany changes to PSL<CUR_MOD>. The Mbox must not be processing 
any Ebox references or operand prefetches while PSL<CUR_MOD> is being changed. The mieroword 
after the one changing PSL<CUR_MOD> can issue a memory reference which will be access checked 
using the new PSL<CUR_MOD> value. 

There are no restrictions on reading or writing the PSL in beginning of a microtrap flow. The 
Ebox pipeline has been :flushed before the microtrap flow begins, so there can't be updates to the 
PSL after this micro:flow starts. 

The following table summarizes PSL restrictions at beginnings and ends of :flows. 
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Table 8-27: PSL Restrictions Summary 

PSLBits At beginning of new Bowl 

PSL<3:0>; r' 
PSL<N:Z,V,C>s 

PSL<4,27>; 0 
PSL<T,FPD> 

PSL<6>; PSL<FU> 0 

PSL<20:16>; 0 
PSL<IPL> 

PSL<30>; 2 
PSL<TP> 

PSL<any other> 1 

Before end of any 1l0w2 

o 

3 

1 

4 

3 

o 

1 Number of microwords required at beginning of microflow before microword in which these bits are read. Applies to 
macroinstruction execution flows (including FPD dispatches), and to trace fault and interrupt dispatches, but not to 
microtrap dispatches. 

2Number of microwords after one which alters these bits (before and including the one which specifies 
SEQ.MUXlLAST.CYCLE or 8EQ.MUXlLAST.CYCLE.OVERFLOW) 
3This assumes the microcode convention of altering the PSL condition code bits in the last microword of some. execution 
flows. 

'This assumes that the first microword of the flow synchronizes to any outstanding F'box retire. 

8.5.27.20 S+PSW Restrictions 

The PSL is written in 85 while the S+PSW source is read in 83. If microword N updates the PSL, 
microword N+l should not source s+psw.1t is UNPREDICTABLE whether the old or new value would 
be sourced if this restriction were not obeyed. 

8.5.27.21 RN.MODE.OPCODE Restrictions 

For the RN field to be valid, the A field of the microword must specify 81 (the current source queue 
entry), and the microcode must know from context that the source queue entry points to a GPR. 
If these restrictions are not met, the value returned in the RN field is UNPREDICTABLE. 

The PSL is written in 85 while the RN.MODE.OPCODE source is read in S3. If microword N updates 
the PSL, microword N+l must not source the new value ofRN.MODE.OPCODE. It could receive the 
old value. 

8-96 The Ebox DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

8.5.28 Signal Name Cross-Reference 

The following table gives a cross reference for selected signal names in this chapter. Only signal 
names which have different names in this chapter than they do on the schematics are listed. 
Different names are used in this chapter only where the resulting description is significantly 
clearer. 

Table 8-28: Signal Name Cross-Reference 

Name in thia chapter 

B...ALtJl!WlB8VLTJ[<81d.&> 

B...ALU'lYt1I:IfOLT_H<14Q> 

B...ALv.,cur4l> 

B...ALt7'JI,CJ,..B<l1,B,2'7'" 
1I.J1.18,17,U> 

B...AL~B4038,._ 

.... 18,11> 

B...ALv.,cur<14,H.I0,8.8,4.b 

B...ALv.,cur<D.l1A7,1,8,l> 

B...ALv.,cur<o> 

~BlltJ~JW...PLU8B 
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Name on echematice Name in behavioral model 

B..,ALlJj.Dfto1lJ,.<lbl&> 

B..ALlJ.,.ADI1Yl...L<1.a> 

B...ALlJ....ADRCJ....L<:82> 

B...ALV~1,28,s'7 ... 

1I,21,1I.17,1&> 

B...ALlJ...ADKCUI~.-"w. 

",11.11> 

B.,.ASIUU.lJIJrJIlI:SULTJ[<lI.I&> 

B~T..B<1411D> 

B.,.ASIUU.tJIJIoCAlIlIIBS_OtJT_B4l> 

B.,.ASIU\LtJIJIoCAlIlIIBS_OtJT_B:~ sc, 
... 18,1&,1.0 

B."ASB;,..ALUM:AlIlIIBS_OtJTJI48,S7~ 

2IS,S1.18,17,11> 

B...A8I(..ALtJIJIoCAlIlIIBS_OtJT_B:<18,11,8,7AS,1> 

B.,.ASIUU.tJIJIoCAlIlIIBS_OtJTJI<1S,10 ......... 

B.,.ASIUU.UM:..JNJI 

no uact match, rougblyequals no exact ma~ roughly equals the following: 
the following: B_8'ft..1W:ATB..J'.JfOP ~SUI, 
B...8TL1DVDYJATILNOP JIIIllX-.~ B...8'ft.. .. VBB.Y...LA'l1lJ'fOP ~8UI 

no exact ma~ roughly equals no exact ma~ roughly equals the following: 
the following: B...8'ft..~84JI, 
B...STL~su., B_8'ft..1W:ATB~SUl, 

B...STL~~su, B_8'ft.. .. VBB.Y..IA.D~~B: 

B...STL1DVDY~STAL1JtII~.JWJ. 

no exact m.atch, 
roughly equals the following: 
B...STLtQfOP ~8I.J,., 

B...8TLV.JfOP~81J[ 

no exact 
ma~ roughly equals the 
following: B_~BT..L, 
B_8'1'P'H'JLABORTJI, 

B...8TL~RTJI 

no exact 
ma~ roughly equals the 
following: JUl'l'LUTALL_Sl..L, 

B...8TL~LA!nUJTAu...SS..L, 

B...8TL~VDY..LA'11L~..L 

no exact 
ma~ roughly equals the 
following: B...8TLUTALL..~L, 
B...8TL«H.ATlL8'l'ALL..su. 

no exact ma~ roughly equals the following: 
B_8'ft..U'...NOP_~8I_H, 

B_8'ft..~.JfOP .JIIItlX...SIJI, 

B...8'ft..IJiNOP ..BIItJX.81J[ 

no exact ma~ roughly equals the following: 
B...~RT..B 

no exact ma~ roughly equals the following: 
B_~SlJ[, B_8TLlIIl.A'.nUITAu...S3...H, 

B...8'ft.. .. VBB.Y~J[ 

no exact match, rougbly equals the following: 
B...STL~ B...STL1ItLATB..8~S(.H 
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Table 8-28 (Cont.): Signal Name Cross-Reference 

Name in this chapter 

8-98 The Ebox 

Name on schematics 

no exact 
match, roughly equals the 
following: E_STL~F ..,.NOP _~II, 

E_STLH.ATE..F..,.NOP _84_11 

no exact match, 
roughly equals the following: 
E_STLCU«>P _S5_L, 

E_STLV ..,.NOP _81_11 

Name in behavioral model 

no exact match, roughly equals the following: 
E_STL~F..,.NOP _84..:s:, E_STL~LATlLF..,.NOP _84_11 

no exact match, roughly equals the following: 
E_STLCJW«)P _86_11, E..STLV..,.NOP _S5J1 
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8.5.29 Revision History 

Table 8-29: Revision History 

Who 

John Edmondson 

John Edmondson 

John Edmondson 

John Edmondson 

John Edmondson 

John Edmondson 

John Edmondson 

John Edmondson 

John Edmondson 
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When Description of change 

30-NOV·1988 Initial Release. 

19-DEC·1988 Corrections and Updates. 

06·MAR·1989 Release for external review. 

29-NOV·1989 Updates after external review and modeling complete. 

IB.DEC·1989 Further updates, particularly adding real signal names. 

31-JAN·1990 Updates reflecting minor implementation motivated changes 
• rev 0.5. 

4-MAY-l990 Updates reflecting minor implementation motivated changes 
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Chapter 9 

The Microsequencer 

9.1 Overview 

The microsequencer is a microprogrammed finite state machine that controls the three Ebox 
sections of the ~'"VAX. pipeline: 83, S4, and 85. The microsequencer itself resides in the S2 section 
of the pipeline. It accesses microcode contained in an on-chip control ROM, and microcode patches 
contained in an on-chip SRAM. Each microword is made up offield~ that control all three pipeline 
stages. A complete microword is issued to 83 each cycle, and the appropriate microword decodes 
are pipelined forward to S4 and 85 under Ebox control. 

Each microword contains a microsequencer control field that specifies the next microinstruction 
in the microfiow. This field may sp~ an explicit address contained in the microword or direct 
the micro sequencer to accept an address from another source. It also allows the microcode to 
conditionally branch on various NVAX states. 

Frequently used microcode can be made into microsubroutines. When a microsubroutine is called, 
the return address is pushed onto the microstack. Up to six levels of subroutine nesting are 
possible. 

Stalls, which are transparent to the microcoder, occur when an NVAX resource is unavailable, 
such as when the ALU requires an operand that has not yet been provided by the Mbox. The 
microsequencer stalls when 83 of the Ebox is stalled. 

Microtraps allow the microcoder to deal with abnormal events that require immediate service. 
For example, a microtrap is requested on a branch mispredict, when the Ebox branch calculation 
is different from that predicted by the Ibox for a conditional branch instruction. When a microtrap 
occurs, the microcode control is transferred to a service microroutine. 

9.2 Functional Description 

9.2.1 Introduction 

The NVAX microsequencer consists of several functional units of logic that are explained in the 
following sections and illustrated in the block diagram, Figure 9-1. 
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9.2.2 Control Store 

The control store is an on-chip ROM which contains the microcode used to execute macroinstruc
tions and microtraps. It is made up of up to 1600 microwords. These are arranged as 200 entries, 
each entry consisting of 8 microwords. Each microword is 61 bits long, with bits <14:0> being 
used to control the microsequencer. The remainder of the microword, bits <:60:15>, is used by the 
Ebox to control S3 through S5. The Ebox also receives bits <:14,l2:11>, enabling it to recognize 
the last cycle of a microftow and the validity of the microtest bus select lines. 

The control store access is performed during 4>34 of 82 and 4>1 of S3 of the NVAX pipeline. The 
output of the Current Address Latch (CAL), E_USCLCAL%CAL_B<lO:O>, is used to address the 
control store. Bits <:10:4,0> are used to select one of the 200 entries. The eight microwords in the 
selected entry then enter an eight-way multiplexer, where E_USQ..CAL%CAL_B<3:1> select the final 
control store output. This structure is used because E_USQ..CAL%CAL_B<3:1> are valid later than 
bits <:10:4,0>, since E_USQ..CAL%CAL_B<3:1> must be OR'd with the microtest bus for a BRANCH 
format microinstruction (see Section 9.2.2.2.2 for details). 

9.2.2.1 Patchable Control Store 

The patchable control store is an on-chip 8RA.'l\1: which contains microcode patches. It consists of 
up to 20 micro'\vords. It operates in parallel '\nth the control store. The microaddress from the 
CAL is the input to its CAM (Content Addressable Memory). If the address hits in the CAM, the 
output of the patchable control store is selected as the new microword, rather than the output of 
the ROM control store. 

The patchable control store and CAM are precharged in 4>3 and evaluate in 4>41' The CAL output, 
E_USQ..CAL%CAL_B<lO:O>, is used in its entirety as the lookup address in the CAM, as opposed to 
the 1-of-200 selection followed by the 1-of-8 selection used in the ROM control store. 

9.2.2.1.1 Loading the Patchable Control Store -

Entries in the Patchable Control Store and its CAM are written under software control from 
the Patchable Control Store Control Register (PCSCR) in the Ebox. The CAM must be disabled 
during this operation, so that no hits can occur. This is done by writing a zero to PCSCR<PCS_ 
ENB>. In addition, Parallel Test Port control of the MIB scan chain must be disabled, by writing 
a one to PCSCR<PAR_PORT_DIS>. Following assertion of K,..E%RESET_L, PCSCR<PCS_ENB> 
and PCSCR<PAR_PORT_DIS> both contain zeroes. 

Data is serially scanned into the MIB scan chain, in the order shown in Table 9-2 (data is shifted 
from bit 0 to bit 91). The data is taken from PCSCR<:DATA>; shifting into the scan chain is 
enabled by PCSCR<:RWL_SHIFT>. 

The final 20 bits scanned in (positions<19:0> in the scan chain) are used to select which entry in 
the patchable control store is to be written. Only one of these 20 bits may be asserted at a time. 
\Vhen all 92 bits of the scan chain have been serially loaded, the selected patchable control store 
and CAM entry are written under control of PCSCR<:PC8_ WRITE>. 

All patchable control store entries must be written with either valid or NULL patches before 
the PCS is enabled. A NULL patch is an entry whose CAM location is written with an un
usedlunreferenced microaddress; there can never be a hit on this microaddress. The values of 
the MIB bits in a NULL patch are don't-care. 
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When the patchable control store is loaded, the patch revision must be loaded into PCSCR<PATCH_ 
REV>. If the patch is non-standard (i.e., one which is not a formally distributed patch, such as 
a performance analysis patch), PCSCR<NONSTANDARD_PATCH> must be set to 1; otherwise 
it must be set to o. These fields can be read by software to determine which patches are present 
in the machine. These fields are included in reads of the SID processor register. 

Enabling of the patchable control store is done by writing a zero to PCSCR<PAR_PORT_DIS> 
and then writing a one to PCSCR<PCS_ENB>. 

See Section 8.5.22.1 for more details on PCSCR operation. 

The following table shows an example of writing an entry in the patchable control store. 

Table 9-1: Example: WrHlng an Entry In the Patchable Control Store 

Phase 

1 

2 

Action 

Microeyele 1 

3 Write 0 to PCSCR<PCS_ENB>l (disable the CAM) 
CAM: NOW DISABLED 
'Write a 1 to PCSCR<PAR_PORT_DIS>l (disable parallel port control) 

4 

Mierocyele 2 

1 

2 PARALLEL PORT CONTROL NOW DISABLED2 

3 Write data for MIB scan chain bit<91> to PCSCR<DATA>l 
Write 1 to PCSCR<RWL_SHIF'I'>l 

4 

1 

2 

Microeycle 8 

3 Write data for.MIB scan chain bit<90> to PCSCR<DATA> 
Write 1 to PCSCR<RWL_SHIF'I'> 

4 Data for MIB scan chain bit<91> shi:fted into MIB scan chain bit<O>2 

1 

2 

1 An 85 operation. 

Mierocycle " 

2Note I-cycle delay between some PCSCR fields and MIB scan chain. 
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Table 9-1 (Cont.): Example: Writing an Entry In the Patchable Control Store 

Phase Action 

Microeycle " 

3 Write data for MIB scan chain bit<89> to PCSCR<DATA> 
Write 1 to PCSCR<RWL_SHIFT> 

4 Data for MIB scan chain bit<90> shifted into MIB scan chain bit<O> 
Data for MIB scan chain bit<91> shifted into MIB scan chain bit<l> 

1 

2 

Microcycle 94 

3 Write 1 to PCSCR<PCS_\VRITE>l (write data into patchable control store) 

4 Data for WB scan chain bit<91> shifted into MIB scan chain bit<91> 

1 

2 

3 

Mlcrocycle 95 

4 DATA \VRITTEN Thi'O PCS E1\~RY FRO!\l MIB SCAN CHAIN2 

1 An S5 operation. 

2Note I-cycle delay between some PCSCR fields and ~IlB scan chain. 

Note that this example assumed no stalls within the Ebox. Also note that PCSCR<PCS_ 
ENB> and PCSCR<PAR_PORT_DIS> must be re-written with the correct values every cycle 
that PCSCR<DATA> is written. 

Table 9-2: Contents of MIB Scan Chain, When Loading Patchable Control Store . 

Position 

<91> 

<90> 

<89> 

<88> 

<87> 

<86> 

<85> 

Description 

MIBJ(<l> 

lSee Chapter 6 for details on microword fields. 

DIGITAL CONFIDENTIAL 

Comment 

Microword Field BRANCH.OFFSETl 
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I 
Table 9-2 (Cont): Contents of MIB Scan Chain, When Loading Patch able Control Store 

Position Description 

<84> MIB.,Bc7> 

<83> MIB..B<84> 

<82> MIB..Bc49> 

<81> M1B..Bc48> 

<80> M1B..Bc4'b 

<79> MIB..Bc48> 

<78> MIB..BClIO> 

<77> MIB..B<18> 

<76> MIB..B<18> 

<75> MIB..B<17> 

<74> MIBJI<16> 

<73> MIBJI<15> 

<72> MIBJI<31> 

<71> MIBJlc3O> 

<70> MIB..B<29> 

<69> MIBJl48> 

<68> MIBJI<2'> 

<67> MIBJldS> 

<68> MIBJI<2b 

<65> MIBJI<U> 

<64> MIBJI<28> 

<63> MIB..B<22> 

<62> MIB..B41> 

<61> MIB..B4O> 

<SO> CAM MICltOADDlmS8<1O> 

<59> CAM MICltOADDItBSIkIt> 

<58> CAM MICltOADDBB8Sc8> 

<57> CAM MICJtOADDBBS8c7> 

<56> CAMMICltOADDBBIItkI> 

<55> CAKIIICJtOADDBB8ScIb 

<54> CAllIIICBOADD:JtBIItkC> 

<53> CAlI MICBOADDJt1CS84> 

<52> CAllMICBOADD~ 

<51> CAlI MICBOADDlmS8<1> 

<50> CAM MICJtOADDBB8S<O> 

<49> MIB..B<1O> 

9-6 The Microsequencer 

Comment 

Microword Field L 

Microword Field MISC1 

Microword Field FMT 

Microword Field MISC 

:Microword Field DST 

Microword Field A 

Microadclress to be patched 

Microword Field SEQ.COND 
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Table 9-2 (Cont.): Contents of MIB Scan Chain, When Loading Patchabie Control Store 

Position Description 

<48> MIBJl4> 

<47> MIBJlc8> 

<46> M1B_B<14> 

<45> M1BJI<18> 

<44> MIB_B<12> 

<43> MIB_B<1l> 

<42> MIB_B<89> 

<41> MIB_B48> 

<40> MIB_B<87> 

<39> MIBJI<88> 

<38> MIB_Bc35> 

<37> MIB_Bc44> 

<36> MIB_Bc43> 

<35> MIB_Bc42> 

<34> ~lIB_Bc:41> 

<33> MIBJI<46> 

<32> MIBJlc:4O> 

<31> MIB_Bc54> 

<30> MIB_Bd8> 

<29> MIB_BcU> 

<28> MIB_Bd1> 

<27> MIBJldO> 

<26> MIBJI<8I> 

<25> MIBJl4I> 

<24> MIBJI<II> 

<23> MIBJlc68> 

<22> MIBJlcS7> 

<21> M1BJI<I8> 

<20> MIBJlcI6> 

<19> pes EN'1'KY SBLBCT<18> 

<18> pes EN'1'KY SBLBCT<18> 

<17> pes EN'1'KY SBLBCT<17> 

<16> pes ENTRY SBLBCT<18> 

<15> PCB EN'1'KY SELBCT<11> 

<14> pes ENDl1' SELBCT<14> 

<13> pes ENTKY SBLBCT<13> 

DIGITAL CONFIDENTIAL 

Comment 

Microword Field SEQ.FMT 

Microword Field SEQ.CALL 

Microword Field SEQ.COND 

Microword Field B 

Microword Field MISC2 

Microword Field LIT 

Microword Field D 

Microword Field MRQ 

Microword Field W 

Microword Field V 

Microword Field ALU 

Entry in PCS to be written 
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Table 9-2 (Cont): Contents of MIB Scan Chain, When Loading Patchabie Control Store 

Position Description Comment 

<12> PCB ENTJlY SELBCT<D> 

<11> PCB ENTJlY SELBCT<11> 

<10> PCB ENTJlY SELBCT<1O> 

<9> PCB ENTJlY SELBCT<8> 

<8> PCB ENTJlY SELBCT4> 

<7> PCS ENTJlY SELBCT<'b 

<6> PCS ENTJlY SELECT4> 

<5> PCB ENTRY SELBCTc&> 

<4> PCS ENT.RY SELECT",b 

<3> PCS ENTRY SELECT<3> 

<2> PCS ENTItY SELECT<2> 

<1> PCS ENTItY SEL'ECTcl> 

<0> PCS D."TIlY SELECT<O> 

9.2.2.2 Mtcrosequencer Control Field of Microcode 

The micro sequencer control field of the NVAX microword is used to help select the next microword 
address. The next address source is explicitly coded in the current microword; there is no concept 
of sequential next address. 
The SEQ.FMT field, hit <14> of the micro sequencer control field, selects between the following 
two formats: 

Figure 9-2: Microcode Mlcrosequencer Control Field Formats 

14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

JtJMP 1 01 I 1 J 1 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 1 1 
1 I+-- SEQ.Mt1X 
1 +--- SEQ. CALL 
+--- SEQ.FMT 

14 13 12111 10 09 08107 06 OS 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

BRANCH 1 11 1 SEQ .COND 1 BRANCH. OFFSET 1 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 1 
1 +--- SEQ.CALL 
+--- SEQ. FMT 
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Table 9-3: Jump Fonnat Control Field DeflnHlons 

Name 

SEQ.FMT 

SEQ.CALL 

SEQ.MUX 

J 

Extent Description 

14 Of or JUMP 

13 Controls whether return address is pushed on microstack . 

12:11 Selects source of next microaddress 

10:0 JUMP target address 

Table 9-4: Branch Format Control Field Definitions 

Name Extent Description 

SEQ.FMT 

SEQ.CALL 

SEQ.COND 

BRANCH.OFFSET 

9.2.2.2.1 Jump Format 

14 

13 

12:8 

7:0 

1 for BRANCH 

Controls whether return address is pushed on microstack 

Selects source of Microtest Bus 

Page offset of next microinstruction 

Jump format microinstructions choose the next address from one of three possible sources: the J 
field (bits<10:0> of the current micro'\vord), the microstack, or the last cycle logic. The microword 
fields decode as follows: 

Table 9-5: Jump Format Control Field Decodes 

SEQ.CALL SEQ.MUX 

0 0 

1 0 

X 1 

X 2 

X 3 

NEXT 
ADDRESS 

SOURCE 

J 

J 

STACK 

Last Cycle Logic 

Last Cycle Logic 

REMA.RKS 

JUMP microinstruction. 

CALL microinstruction. Cun-ent microword address 
with bits <3:0> incremented by one is pushed onto 
microstack. 

RETURN microinstruction. Top entry of microstack 
is selected. 

Last cycle. Select next microfiow. 

Last cycle and enable integer overflow trap. Select 
next mic:rofiow. 

On a CALL microinstruction, the address of the current microinstruction, with bits <3:0> 
incremented by one, is pushed onto the Microstack. The CALL address is modified to avoid 
a RETURN to the CALL address, which would cause an infinite loop. 
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9.2.2.2.2 Branch Format 

Branch format microinstructions allow the microcoder to perform CASE operations on NVAX 
state. The SEQ.COND field drives the microtest bus select lines which select the source 
that drives the microtest bus. (Refer to Section 9.2.3.1.1 for details.) The microtest bus 
is OR'd with bits <3:1> of the BRANCH. OFFSET field, allowing up to an eight-way case. 
Casing may be reduced to two-way or four-way by setting to ones the appropriate bits in 
BRANCH.OFFSET<3:1>. 

Table 9-6: Branch Format Control Field Decodes 

SEQ.CALL 

NEXT ADDRESS 

SOURCE REMARKS 

BRANCH microinstruction. - 0 

1 

BRANCH. OFFSET 

BRANCH. OFFSET CONDITIONAL CALL microinstruction. CUlTent 
microword address with bits<3:0> incremented by one is 
pushed onto micro stack. 

As in the JUMP format, the SEQ. CALL field is used to indicate that a RETURN address must 
be pushed on the microstack. 

For the purposes of BIL~~CH microinstructions, the control store is divided into 256-microword 
pages. The target of a branch microinstruction must he in the same page as the BR..4....~CH as 
only the least significant 8 hits of the address are modified. The BRANCH. OFFSET field is the 
destination address offset within the current page. 

A branch address is made up as follows: 

Table 9-7: Branch Address Formation 

Bit(s) 

<10:8> 

<7:4> 

<3:1> 

<0> 

Source 

Current Addres&<10:8> 

BRANCH.OFFSET<7:4> 

BRANCH.OFFSET<3:1> OR UTEST<2:O> 

BRANCH.OFFSET<O> 

9.2.2.3 MIB Latches 

The microword output from the Control Store B-to-1 multiplexer is latched in ~1 into the Control 
Store Microinstruction ButTer (CS_MIB) latch. The microword output from the Patchable Control 
Store is also latched in ~1' into the PCS_MIB latch. The outputs of the CS_MIB and PCS_MIB 
latches drive a multiplexer, which selects the PCS_MIB output if the CAL output bit in the 
Patchable Control Store CAM; otherwise, the multiplexer selects the CS_MIB output. 

Bits <14:0> of the multiplexer output (the Microsequencer 
Microinstruction, E_USQ..CSM%UMIB_B<14:O» are driven hack to the microsequencer; all bits are 
driven to the Microinstruction Buffer (MIB) latch which operates in ~2. Bits <60:14,12:11> of 
the MIB latch output (E_USQCQIIB_B) are driven to S3 of the Ebox; all hits are driven to the MIB 
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scan chain (see Section 9.5.2). When a microtrap is detected, the contents of the MIB latch are 
forced to NOP. The MIB latch is stalled on a microsequencer stall. 

9.2.3 Next Address Logic 

The remainder of the microsequencer is devoted to determining the next control store lookup 
address. There are five next address sources: 

1. JUMPIBRANCH.OFFSET field of Microword 
2. Microtrap Logic 
3. Last Cycle Logic 
4. Microstack 
5. Test Address Generator 

9.2.3.1 CAL and CAL INPUT BUS 

The CAL, or Current Address Latch, is a static latch which holds the 11 bit address used to access 
the control store. It operates in 4>3, and is stalled on a micro sequencer stall. Bits <10:8> are also 
"stalled" when forming a branch address (see Table 9-7). 

The input to the CAL is the CAL Input Bus (E_US~BUSo/cCAL_Il'."PUT_L). The CAL Input Bus 
is a dynamic bus, precharged in 4>2. The selected next address source drives this bus in 4>3. 
Bits <14,12:11> of the micro sequencer control field are used in selecting three of the next 
address sources: E_US~CSM%tJMIB_B<lO:O> (for a BRANCH or JUMP address), the output of 
the last cycle logic, and the microstack output. The fourth CAL Input Bus source is the 
microtrap address; if a microtrap is detected, this input is selected regardless of the value of 
E_USQ.,.CSM%UMIB_H<14.12:11>. The fifth source is a test address, driven from the Test Address 
Generator. This input has the highest priority. In summary: . 

Table ~: Current Address Selection 

NEXT 
TEST TRAP SEQ.FMT SEQ.MUX ADDRESS 

ADDR DETECTED <14> <12:11> SOURCE REMARKS 

0 0 1 XX Branch Addressl BRANCH/CONDITIONAL 
CALL microinstructions 

0 0 0 00 J JUMP/CALL 
microinstructions 

0 0 0 01 Microstack RETURN 
microinstruction 

0 0 0 1X Last Cycle Logic Start new microilow 

0 1 X XX Microtrap Logic Microtrap 

1 X X XX Test Address Test address 
Generator 

lSee Table 9-7 
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9.2.3.1.1 Mlcrotest Bus 

The microtest bus allows conditional branches and conditional calls based on information 
generated outside the microsequencer, such as Ebox condition codes. The SEQ.COND field of 
the BRANCH format is driven on the microtest select lines, E_USQ%UTSEL_B<4:O>, in 4>23. These 
lines are decoded by all conditional information sources in the Ebox. The selected source drives 
its information on the microtest bus, E_BUKUTEST_L<2:o>. E_BUKUTFST_L must be valid in time 
to be OR'd with value on the CAL Input Bus and latched in the CAL in 4>3. 

The sources for the microtest bus are as follows: 

Table 9-9: Mlcrotest Bus Sources 

UTSEL<4:O> Select 

00 No source 

01 ALU.~~r2 

02 ALU.l\t"ZC2 

OS B.2-01 

04 B.S-31 

05 A.i-51 

06 A.15-121 

Oi AS1.BQA.BNZl1 

08 MPU.O-S2 

09 MPU.7-132 

OA STATE.2-02 

OB STATE.S·32 

OC OPCODE.2-01 

OD PSL.26-24' 

OE PSL.29.23-228 

OF SHF.NZ2,!NT 

10 VECTOR,TEST 

11 FBOX 

12 FQ.VRl 

1S-1F Not Used 

1 Data is taken from 83. 

2Data is taken from 84. 

'Data is taken from 86. 

"See Section 8.5.19.7. 

UTEST<2:O> 

000 

ALU_CC.N,ALU_CC.Z,ALU_CC.V 

ALU_CC.N ,ALU_CC.z,ALU_CC.C 

EB_BUS<2:0> 

EB_BUS<5:3> 

EA_BUS<7:S> 

EA_BUS<15:14>, EA_BUS<1S> OR EA_BUS<12> 

E..~_BUS<31>, EB_BUS<2:O> = 0, EB_BUS<15:8> NEQ 0 

MPUO_6<2:0> 

MPU7 _13<2:0> 

STATE<2:O> 

STATE<5:3> 

OPCODE<2:0> 

PSL<26:24> 
PSL<29>,PS~3~2> 

SHF_CC.N, SHF_CC.z, INTERRUPr_REQUEST 

EC1kVECTOR_UNIT_PRESENT>', TEST DATA, TEST STROBE 

Encoded fault<1:0>", EClkFBOX.ENABLED> = 08 

0, FIELD_QUEUE_NOT_VALID, FIELD_QUEUE_RMODE 

The microtest select lines are always driven with bits <12:8> of the MIB output regardless of the 
microinstruction format. The microtest bus is only OR'd with the CAL Input Bus if the BRANCH 
source is selected to drive that bus. 
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Two of the microtest sources, the Field Queue (FQ) and the Mask Processing Unit (MPU), perform 
some function based on the value of the microtest select lines. These functions must check 
SEQ.FMT, E_USQo/CMIB_B<l4>, for validity of the microtest select lines. 

The microtest select lines are precharged to a value of zero during 4'1; no microtest source is 
selected for this value. 

9.2.3.2 Mlcrotrap Logic 

Microtraps allow the microcoder to deal with abnormal events that require immediate service. 
'When a microtrap occurs, the microcode control is transfeITed to a service microroutine. 
Operations further behind in the pipe than the one which caused the microtrap are aborted. 

Microtraps are generated by the Ebox, Mbox, or Ibox. Those Ebox microtrap requests considered 
faults are asserted in S4 of the microinstruction in which they occurred. Those that are considered 
traps are asserted in 85 of the microinstruction in which they occurred. 

Microtraps have higher priority than all other next address sources except the Test Address 
Generator. Microtraps are detected in ~4. The microtrap signals are OR'd together in 4>1 to form 
E_USQ%PE_ABORT_L. The trap signals are prioritized and address lookup is done to select the 
appropriate microtrap handler address, which is driven on the CAL Input Bus in 4>3. 

Since microtraps are not detected until 4'4, too late for control store access in that cycle, the 
signal E_USQ%PE_ABORT_L is used to force NOPs in all the Ebox and microsequencer inter-stage 
latches in ~l and 4>2. This effectively flushes the pipe. In the cycle following microtrap detection, 
control store access is done using the microtrap handler address, and the first microword of the 
trap handler is driven to S3 on E_USQ%MIB_H. 

Microtrap microcode flows flush the Ebox, Fbox, the specifier queue in the Mbox, the Instruction 
Queue in the micro sequencer, and the Ibox. The only exception to this is the branch mispredict 
microtrap, which does not flush the Ibox. The microtrap handler also loads a new PC which 
allows the Ibox to start prefetching. At the end of the microtrap, microcode control is returned 
to the last cycle logic. 

Microtrap signals must be asserted for only one cycle, to prevent multiple detections of the same 
trap. 

9.2.3.2.1 Mlcrotraps 

1. Powerup 
The powerup microtrap is requested when the chip is powered up. This forces the internal 
state of the chip to a known condition. See Chapter 16 for details. 

2. Asynchronous Hardware Error 
The asynchronous hardware error microtrap request can happen at any time regardless of 
what is in the pipeline. The following conditions cause execution of this microtrap: 

• S3 Stall Timer Expiration 
The S3 stall timer counts the number of consecutive cycles that S3 is stalled.. When 
the counter reaches its limit, it initiates the Asynchronous Hardware Error microtrap by 
asserting E_TIM'1cS3_TIMEOUT_H. See Section 8.5.25.1 for more detail concerning the timer. 

• Translation Buffer Parity Error 
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If the Mbox detects a TB parity etTOr, it initiates the Asynchronous Hardware Error 
microtrap by asserting M%TB_PERR_TRAP _L. 

3. Integer Overflow 
The integer overflow microtrap request, E_FL'NlOVFL_L, is asserted in S5 when the Ebox 
detects an integer overflow condition (see Section 8.5.19.3) during the last cycle of a 
macroinstruction with overftow checking enabled. The microinstruction that checked the 
overfiow condition completes, but any microinstruction initiated after it is aborted. 

4. Branch Mispredict 
A branch mispredict microtrap request, E_PSI&BRANCH_MlSPREDICT_H, is asserted in 85 by 
the Ebox when the output of the Branch Queue (the Ibox branch prediction) does not match 
the branch direction calculated by the Ebox. See Section 8.5.19.3. 

5. Reserved Instruction Fault 
The Ebox initiates the reserved instruction microtrap in S4 when the Fbox is disabled and 
any Fbox instruction other than MULL is issued. It asserts E_FLT%RSVD_INSTR_L to initiate 
the microtrap. 

6. Hardware Errors 
The Ebox hardware error microtrap request, E_FLT%HW_ERR_H, is asserted in S4 on 
operand-related hardware errors, such as the attempted access of an MD register which 
has its error bit set. 

7. Memory Management Exceptions 

• Reported by Mbox 
An explicit read or write request by the Ebox can result in a memory management 
exception. This causes the Mbox to assert the microtrap request signal, Mo/GMME_TBAP _L. 
See Section 12.5.1.5.3.7 for further detail. 

• Reported by Ebox 
A memory management fault can also occur during a memory access initiated by 
the Ibox, such as for an opcode or operand specifier. When this happens the Ibox 
asserts I%IMEM_MEXC_H. The Ebox combines this signal with several other conditions to 
generate E_FLT%'MME_EBR_B. It initiates the memory management microtrap by asserting 
E_FLT%MME_ERR_B in 84. See Section 8.5.15.14 and Section S.S.19 for more detail. 

S. Reserved Addressing Mode 
A reserved addressing mode fault occurs when the !box: detects a reserved addressing 
mode on an operand specifier. The reserved addressing mode microtrap request, 
E_FLNRBVD_ADDRJWODE_H, is asserted in S4 by the Ebox. Refer to Section 8.5.15.14 and 
Section 8.5.19 for details. 

9. Floating Point Fault 
A :floating point fault is a fault detected by the Fbox. If the current entry of the retire queue 
points to the Fbox, the request E_FLNFLOATING_FAULT_B can be asserted. If the retire queue 
points to the Ebox, the request is stalled until the retire queue does point to the Fbox. There 
are four possible causes for assertion of E_FLT%FLOATlNG_FAULT_B: :floating over.6ow, floating 
underflow, reserved operand, and :floating divide by zero. The trap handler cases on the 
:floating point fault code on the microtest bus. See Section 8.5.16.5 for further detail. 
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9.2.3.2.2 Microtrap Request TIming 

The exceptions which result in microtrap requests to the microsequencer are detected in different 
pipeline seqments. In addition, some microtrap requests are delayed in order to align the request 
with a particular pipeline segment. 

The following table gives the pipeline segment in which the exception is detected and the pipeline 
segment in which the microtrap request is made for each type of microtrap. 

Table 9-10: Microtrap Request Timing 

Microtrap 

Powerup 

Asynchronous Hardware Error, sa Stall Timer 

Asynchronous Hardware Error, TB Parity Error 

Integer Overflow 

Branch Mispredict 

Reserved Instruction Fault 

Hardware Error 

:Memory :Management Exception, :Mbox 

:Memory :rv1anagement Exception, Ebox 

Reserved Addressing Mode 

Floating Point Faults 

9.2 .. 3.2.3 Prioritization of Microtraps 

Exception Microtrap 

Detected Requested 

N/A N/A 

S3 S3 

N/A N/A 

S5 55 

S5 SO 

S3 54 

53~54 54 

N/A N/A 

53.54 54 

S3,84- 54 

54 54 

Microtraps must be prioritized since more than one request may be asserted at a time. Microtrap 
priorities and microtrap handler addresses are given in the following table. 

Table 9-11: Mlcrotraps 

Priority Microtrap Dispatch Address (Hel[) 

1 Powerup 00 

2 Asynchronous hardware errors 04 

3 Integer overflow 08 

4 Branch mispredict OC 

5 Reserved instruction fault 10 

6 Hardware error 14 

7 Memory management exceptions 18 

8 Reserved addressing mode faults Ie 
9 Floating point faults 20 

The priorities of the microtraps are assigned utilizing the following dependencies: 
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1. The chip must be placed in a known state upon powerup. 
2. Once in a known state, asynchronous hardware errors take precedence over all, since they 

indicate a serious problem. 
3. Microtrap requests issued in S5 have priority over those in S4 since they are further down 

the pipe. 
4. Opcode faults take priority over operand faults. 
5. Of the requests issued in 84, whichever physically took place first (was forwarded the furthest) 

has priority. 
6. Architecturally defined faults or traps (i.e. integer overfiow) have priority over 

implementation defined faults or traps (i.e. branch mispredict). 
7. Reserved addressing mode faults are mutually exclusive of operand memory management 

faults for the same operand, because the source queue is empty before a reserved addressing 
mode fault request is made. 

8. The fioating point fault may only be requested when the retire queue points to the Fbox. 

9.2.3.2.4 Erroneous Mlcrotrap Interruption 

A window of at least 4 cycles exists between initiation of a microtrap (assertion of 
E_USQ%PE_ABORT_L) and decoding of RESET~CPU for all microtraps except Branch ~fispredict. 
(A subset of the RESET.CPU operations is performed immediately on detection of branch 
mispredict.) During this window, a lower priority microtrap based on state which will be cleared 
by RESET.CPU must not be allowed to interrupt the higher priority microtrap which has begun 
execution. This restriction is met by the following rules: 

• Powerup 
Powerup can interrupt any microtrap as it has the highest priority. The powerup microtrap 
is initiated by deassertion ofK..E%RESET_L. Assertion ofK_E%RESET_L causes all NVAX state 
to be initialized, so no microtraps will occur to interrupt powerup based on previous state. 

• Asynchronous Hardware Error 
Asynchronous hardware errors can interrupt any microtrap but Powerup. Due to the effects 
of K..E%RESET_L described above, no special logic is needed to meet this constraint. 

• Ebox-Generated Microtraps 
All Ebox-generated microtrap requests (integer overflow, branch mispredict, reserved 
instruction fault, Ebox hardware error, Ebox memory management exception, reserved 
addressing mode, and floating point faults) are cleared within the Ebox immediately on 
assertion of E_Ue;Q%PEJ\BORT_L. Thus, none of these microtraps can interrupt another. 

• Mbox-Generated Microtrap 
The Mbox memory management exception can occur at any time between assertion of 
E_U~PE_ABORT_L and decoding of RESET. CPU, if an Ebox-initiated memory reference 
is outstanding. The following list describes the possibility of assertion of M%MME_TRAP_L 
(initiation of the Mbox memory management exception microtrap) during each type of 
microtrap. 

• Powerup: 
As described above, Mtf:MME_TBAP _L cannot be asserted. 

• Asynchronous Hardware Error: 
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By the nature of these errors, the Ebox may be performing any operation during initiation 
of this microtrap, so Mo/ciMME_TBAP _L could be asserted. 

• Integer Overflow, Branch Mispredict: 
Detection of these traps occurs only on the last cycle of a microfiow, in S5. All outstanding 
Ebox-initiated memory references which could produce an error have been completed by 
this time, so M%MME_TRAP_L cannot be asserted. 

• Reserved Instruction Fault: 
Initiation of this microtrap occurs in 84, on the first cycle of the micro'fiowfor the offending 
instruction. If that same microword begins an Ebox-initiated memory reference, the 
reference will be aborted on initiation of the microtrap. 
On initiation of a Reserved Instruction Fault microtrap, S5 can only contain the last 
microword of the previous micro'fiow. As described above, MO/c:l\fME_TRAP _L could not be 
asserted at that point. 

• Ebox Hardware Error, Ebox Memory 1ianagement Exception, Reserved Address Mode: 
These faults are generated during operand access. By microcode convention, no operands 
are referenced while there is an outstanding Ebox-initiated memory reference. Thus, 
Mo/cMM:E_ TRAP _L cannot be asserted. 

• Mbox Memory Management Exception: 
:tvlultiple Ebox-initiated memory references can be outstanding at any time, so a second 
Mbox Memory Management Exception could occur. 

• Floating Point Fault: 
Similar to the Reserved Instruction Fault, this fault is detected in 84, with the first result 
transfer from the Fbox. Any memory reference initiated during this cycle will be aborted 
on initiation of the microtrap. S5 could only contain the last cycle of a micro'fiow. Thus 
Mo/cMME_TRAP_L cannot be asserted. 

In summary, the Mbox Memory Management Exception microtrap is the only trap which could 
incorrectly interrupt a higher priority microtrap in this window. In order to prevent this 
error, detection of the Mbox Memory Management Exception is blocked at the microtrap logic 
for the cycles from microtrap initiation (assertion of E_USQ%PE.."ABORT_L) through execution of 
RESET. CPU (assertion of E-.MSC%EARLY_FLUSB_EBOx...B). Mbox Memory Management Exception 
detection is enabled again in the cycle following execution of RESET. CPU . 

Branch Mispredict is the only microtrap for which RESET.CPU is not executed. In this case, 
E_MSC%EARLY_FLUSB_EBOx...B is asserted in the same cycle as E_USQ%PE--ABORT_L; therefore, 
detection of the Mbox Memory Management Exception is only blocked at the microsequencer for 
one cycle. However, as described above, Mt~MMEtTRAP_L cannot be asserted during the Branch 
Mispredict microtrap, so the blocking is not necessary for proper execution of this microtrap. 

9.2.3.2.5 Mlcrotrap Detection Abort Effects 

The microsequencer aborts operation on detection 
of a microtrap (assertion of E_USQ%PE_ABORT_L). The following table shows the timing for all 
micro sequencer logic that is cleared or reset on an abort. 
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Table 9-12: Abort Effects In the Mlcrosequencer 

Phase What is Clearedl.Reset 

E_USCLSTLCJeLATB_t7IKLS'D\I..LJ. 

E_t78Q9rIIBJ to sa 
E_'t18QCUIACBO_1S'I'_CYCLE_B to sa 
J5lI'BO~1ST_CYCLEJ. to Fbox 

E_t78Q...8'lt1l1>VERY_LATE_'D8Q..STAI..'kL 

J5lI'BO~l8T_CYCLEJ. to Fbox 

E_t18QCUIACBO_1S'I'_CYCLE..B master latch 

9.2.3.3 Last Cycle Logic 

The last cycle logic examines several conditions used to determine \vbich new microfiow is to be 
taken when LAST.CYCLE or LAST.CYCLE.OVERFLO'\\T is detected on E_US~CSM%'L"MIB_H, no 
microtraps are detected, and no test address is driven. There are five possible new microflows, 
listed in order of priority: 

1. Interrupt Request Handler 
2. Trace Fault Handler 

3. First Part Done Handler 
4. Instruction Queue Stall 
5. The macroinstruction microcode indicated by the top entry in the instruction queue. 

The last cycle logic prioritizes these sources and performs address lookup. In addition, the signal 
E_USQ...l..ST'1cSELECT_IQ...B is derived. This signal is asserted when a valid entry is taken from the 
instruction queue. 

Table 9-13: Mlcroaddresses for Last Cycle Interrupts or exceptions 

Priority 

1 

2 

3 

4 

Interra.pt or Esceptiou. 

Interrupt request 

Trace fault 

First part done 

Instruct.ion Queue Stall 

Dispatch Address (lies:) 

24 

28 

2C 

30 

The priorities in the last cycle logic are assigned using the following dependencies: 

1. Interrupts and trace faults must be handled between instructions. (Interrupts may also be 
serviced at defined points during long instructions such as string instructions; this servicing 
is handled by microcode.) 

2. By definition, an interrupt that is permitted to request service has a higher priority level 
(IPL) than any exception that occurs in the process to be interrupted, or any instruction to 
be executed by that process. 
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3. When tracing is enabled (E_PSL%PSL_H<TP> is set), a trace fault must be taken before the 
execution of each instruction. 

4. If an instruction begins execution with PSL<FPD> set, the first part done handler must be 
entered rather than the normal entry point for the instruction. 

5. PSL<TP> and PSL<FPD> cannot both be set when an instruction begins execution. In order 
for PSL<FPD> to be set, the instruction must have been interrupted previously; the interrupt 
handler always clears PSL<TP> before saving the PSL when interrupting an instruction. 
(Note that the interrupt handler does not clear PSL<TP> when the interrupt is taken between 
instructions.) 

6. The Instruction Queue Stall microword is executed if an opcode is requested from the 
Instruction Queue but the queue is empty. 

9.2.3.3.1 Interrupts 

Interrupt servicing is requested by the Ebox by assertion of E%INT_REQ....H. For more information 
on interrupts, see Chapter 10. 

9.2.3.3.2 Trace Fault 

A trace fault should be requested when the PSL<TP> hit is set. Due to the pipelined 
implementation of the Ebox, a local version of the PSL<TP> hit must be maintained; thus, the 
trace fault is actually requested when LOCAL_TP is asserted. 

There are two cases that must be considered in setting LOCAL_TP. In the first case, a 
macroinstruction starts execution with PSL<T> set. This is the normal program tracing mode. 
LOCAL_TP must be set immediately after the macroinstruction begins execution. In the second 
case, an interrupt was taken at the end of a macrointruction, and the trace must be taken 
when interrupt processing completes. In this case, PSL<TP> is set, and LOCAL_TP is asserted. 
LOCAL_TP is also updated whenever the PSL is written. LOCAL_TP is cleared by loading the 
PSL as a longword, with a value of 0 in the <TP> hit. 

9.2.3.3.3 First Part Done 

The first part done handler is selected when PSL<FPD> is asserted and the instruction queue 
output is valid. The top entry in the instruction queue is removed (E_USQ...LS~~ELECT_I~H 
is asserted), but the last cycle address is the first part done handler address, rather than the 
dispatch taken from the instruction queue. 

If PSL<FPD> is asserted and the instruction queue is empty, the Instruction Queue Stall 
microword is selected. 

9.2.3.3.3.1 Interaction with Reserved Instructions 

The !box detects unimplemented instructions (such as POLYx), and causes the microcode to 
enter the reserved instruction fault handler by placing the microaddress for that handler in the 
dispatch field of the instruction queue entry for the unimplemented instruction. However, if 
PSL<FPD> is asserted, the last cycle logic selects the first part done handler rather than the 
reserved instruction fault handler. The first part done handler detects this case and branches to 
the reserved instruction fault handler. 
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9.2.3.3.4 Instruction Queue 

The instruction queue is a FIFO filled by the Ibox. This queue permits the Ibox to fetch and 
decode instructions ahead of Ebox execution. 

The instruction queue is 6 entries deep. Each entry is 22 bits long. The format of each entry is 
as follows: 

Figure 9-3: Instruction Queue Entry Format 

21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I OPCODE I DL IFII DISPATCH I VI 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 9-14: Instruction Queue Entry Format Field Definitions 

Name Extent Description 

OPCODE 21:13 9-bit opcode of the instruction. 

DL 12:11 Initial data length of instruction operands. 

FI 10 Set if entry is an Fbox instruction. 

DISPATCH 9:1 Microcode address of the instruction's microfiow. 

V 0 Set if entry is valid. 

The instruction queue entry indicated by the write pointer is written in 4>4. The write pointer is 
advanced in 4>2 if the valid bit is set in the new queue entry. 

The instruction queue entry indicated by the read pointer is read in 4>1. The address used to 
access the control store is derived from the instruction queue entry as follows: 

Table 9-15: Control Store Address Formation 

Bit(s) Value 

o 
IQ entry DISPATCH field 

o 

If the valid bit of the entry being read is set, and the instruction queue is selected as the CAL 
Input Bus source, E_USQ%MACRO_lST_CYCLE_H is asserted and driven to the Ebox in 4>1 of S3. 
This signal is cleared on a microtrap, and stalls on a microsequencer stall. If the first cycle of an 
Fbox instruction is detected«FI> is asserted), the signal E%FBOX,..lST_CYCLE_L is also asserted, 
and driven to the Fbox in 4>23 of 82. This signal is only asserted once per instruction; it is not 
stalled on a microsequencer stall. 

If the valid bit of the entry to be read is not set, and the instruction queue is selected as the CAL 
Input Bus source, the last cycle logic selects the Instruction Queue Stall microaddress (030#16), 
which is used to look up the stall microword in the control store. The stall microword is a NOP for 
the EboX; it selects the last cycle logic again in the micro sequencer. In addition to driving the stall 
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microword to the Ebox, E_USQ%IQ...STALL_H is asserted in 4>1 of S2. This signal, in conjunction 
with memory management and hardware error signals driven by the Ibox, is used by the Ebox 
to detect instruction stream referencing errors. 

The read pointer is advanced in 4>3 if E_UsQ...cSM%UMm_H selects the last cycle logic, the last 
cycle logic selects the instruction queue, and the valid bit in the queue entry that was read out is 
set. When the read pointer is advanced, the valid hit in the entry read out is cleared. The read 
pointer is stalled on a microsequencer stall. 

The instruction queue is flushed when the Ebox decodes RESET. CPU from the MIB 
(E_MSC%EARLY_FLUSH_EBOX_H is asserted). The pointers are reset, and the entry valid bits are 
cleared. 

Table 9-16 shows the phase-by-phase events that occur on an instruction queue stall. Initially, 
the read and write pointers both have a value of 4; the queue is empty. 

Table 9-16: Instruction Queue Operation 

Phase 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

Action 

E_USQ..CSM"UMIB_B = LAST. CYCLE 
E_USQCHQ..ST.ALL_B asserted 

Microcycle 1 

Last microword of instruction flow driven to S3 

CAL = IQ stall address 

Write I"IQ..BUS_B to Entry[4] (value = valid data) 

E_USQ..CSM"UMIB_B = LAST. CYCLE 
E_USQ..INQCI>IQ..Otn'_B = Entry[4] 
E_USQ..I.S'l"AiSELECT_IQ..B assserted 
E_uSQCHQ..~Bdeasserted 

Microcycle 2 

NOP microword driven to sa 
Increment write pointer (pointer=5) 

CAL = Entry[4] 
Increment read pointer (pointer=5) 
Clear valid bit in Entry[ 4] 

Write I~IQ..BUS_B to Entry[5] (value = valid data) 

Microcycle 3 

E_USQ..CSM"UMlB_B = micro sequencer field of first microword 
E_U8QlQ(ACRO_lST_CYCLJLB asserted 

First microword of new instruction flow driven to S3 
Increment write pointer (pointer=6) 
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9.2.3.3.4.1 Instruction Context Latches 

The instruction queue drives the dispatch address to the last cycle logic. The remainder of the 
queue entry (DL,OPCODE,FI) is latched in the instruction context (ICTX) latches. The format is 
as follows: 

Figure 9-4: Instruction Context Format 

11 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+ 
I OPCODE I DL IF!I 
+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 9-17: Instruction Context Format Field Definitions 

Name 

OPCODE 

DL 
FI 

Extent Description 

11:3 

2:1 

o 

9-bit opcode of the instruction. 

Initial data length of instruction operands. 

Set if entry is an Fbox instruction. 

The output of the queue is latched every~2 for hold-time reasons. The ICTX master latch operates 
in ~ 4 of 82, and is loaded from the queue output latch only when a valid entry is removed from 
the instruction queue (E_U~ISTo/c:SELECT_I~H is asserted). The ICTX slave latch operates in 
~1 of 83; its output (E_USQ%ICTX...H) is driven to the Ebox. The instruction context latches are 
only valid when their respective pipeline stages are executing macroinstructions. 

Both the master and slave latches are stalled on a microsequencer stall. The slave latch is 
stalled holding the correct value for the current 83 cycle, and the master latch is stalled holding 
the correct value for the next cycle. 

The opcode portion of the instruction context (E%FOPCODE_H) is driven to the Fbox from the 
instruction queue output latch, in ~2 of 82. 

9.2.3.4 Mlcrostack 

Frequently used microcode can be made into microsubroutines. When a micro subroutine is called, 
the return address is pushed onto the microstack. The output of the microstack is driven on the 
CAL Input Bus when a RETURN is decoded from the E_US<LCSM%UMIB_H, no microtraps are 
detected, and no test address is driven. 

The microstack is 6 entries deep. It is a circular stack, with the write pointer always one entry 
ahead of the read pointer. Each entry is an II-bit control store address. The addresses stored in 
the microstack incorporate any modification done by the microtest bus. 

Every ~1, the entry indicated by the microstack read pointer is read out into a ~1 latch, where 
it is held to be driven on the CAL Input Bus in ~3. Also in ~1, the RETURN address is written 
into the entry ahead of the microstack read pointer. The RETURN address is formed by adding 
1 to bits <3:0> of the CALL address in the CAL. Bits <10:4> are unchanged. 
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The microstack pointer is incremented in 4>4 on a CALL or CONDITIONAL CALL 
microinstruction; it is decremented on a RETURN microinstruction. The microstack pointer 
is stalled on a micro sequencer stall. It is only reset when the chip reset signal, K_E%RESET_L, is 
asserted. 

Figure 9-5: Mlcrostack Organization 

POINTER ARRAY 

+-----+ +------------------------------------+ 
I 0 I 1 1 
+-----+ +------------------------------------+ 
I 1 I 1 First Call writes here 1 

+-----+ +------------------------------------+ 
1 2 1---+--->1 Pointer - 2 read entry 

+-----+ 1 +------------------------------------+ 
I 3 1 +--->1 Pointer'"' 2 write entry 1 

+-----+ +------------------------------------+ 
1 4 1 1 I 
+-----+ +------------------------------------+ 
1 5 I 1 I 
+-----+ +------------------------------------+ 

Consider a CALL followed immediately by a RETURN with an initial microstack pointer value of 
2. Table ~18 shows the phase-by-phase operation of the microstack during the next three cycles. 

X: CALL Y 
X+l: {next microword} 

Y: RETURN 

Table 9-18: Mlcrostack Pointer Example 

Phase 

1 

2 

3 

4 

1 

2 

3 

4 

Action 

CAL=X 

Write X+l1 to Array[3] 
USTACK... OUT<10:0>=Array[2] 
E_USQ...CSM'*''DMIB_B = CALL 

CAL=Y 

Microcycle 1 

Microcycle 2 

Increment microstack pointer (pointer=3) 

lAssumptiOn: the result of the increment to bits<3:0> of X is X+1. 
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Table 9-18 (Cont.): Mlcrostack Pointer Example 

Phase Action 

Microcycle 3 

1 Write Y+l to Array[4] 
U8TACILOUT<10:0>=Array[3] (value = X+l) 
E_U8Q...C8M"UMIB_B = RETURN 

2 

3 CAL=X+l 

4 Decrement microstack pointer (pointer=2) 

9.2.4 Stall Logic 

The microsequencer is stalled whenever S3 is stalled. The Ebox derives the signal 
E_STIl~USE<LSTALL..H which is used to stall the micro sequencer. The micro sequencer creates 
delayed versions of this signal as needed to stall various latches. The signals E_USQ%PE-ABORT_L 
(asserted on initiation of a microtrap) and E_US(LTST%FORCE_TEST.J\I>DR_L (asserted on detection 
of the Test Address Generator driving a control store microaddress, see Section 9.5) break a 
micro sequencer stall by clearing the delayed versions of E_STL%USEQ..STALkH. 

The following table shows the timing for all stallable logic in the microsequencer. 

Table 9-19: Stall Timing In the MlcroSequencer 

Phase What Stalls 

4'1 ICTX slave latch to S3 

E_USQUIACBO_lST_CYCLEJI latch to S3 

E_USQMtIBJI to 83 

Current Address Latch 

E_USQ'QIACBO_lST_CYCLE_B master latch 

Instruction queue read pointer 

ICTX master latch to 83 

Microstack pointer 

9.3 Initialization 

A reset (assertion of ~E%RESET_L) causes the microsequencer to initialize in the following state: 

• A powerup microtrap is initiated (see Table 9-12 for microtrap ABORT effects). 

• The micros tack pointer is reset to zero. 
• The instruction queue valid bits are flushed and its pointers are reset by 

E...MSC%EARLY_FLUSH_EBO:K..B. 

• The Patchable Control Store CAM is disabled, since PCSCR<PCS_ENB> is cleared in the 
Ebox. 
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• The MIB scan chain is controlled by the Parallel Test Port command pins, since 
PCSCR<PAR_PORT_DIS> is cleared in the Ebox. 

• The Test Address Generator is reset to an address value of zero. 

9.4 Microcode Restrictions 

1. Every microtrap except Branch Mispredict must contain a RESET.CPU in order to reset the 
Instruction Queue. (The Ebox is flushed automatically, clearing the queues, on detection 
of branch mispredict.) RESET. CPU must not be issued within the 3 microwords preceding 
LAST. CYCLE in order to allow time for the Instruction Queue to be cleared (if RESET. CPU 
is present in microword N, LAST.CYCLE cannot be present until microword N+4). 

2. For correct operation of Trace Fault and First Part Done in the Last Cycle Logic, 
PSL<T,TP,FPD> must not be changed within the 2 microwords preceeding LAST.CYCLE (if 
any of these PSL bits are changed in microword N, LAST.CYCLE cannot be present until 
microword N+3). 

3. No Ebox-initiated memory requests can be made in the last cycle of a microflow, other than 
writes with the translation already known to be valid. 

4. No Ebox-initiated memory requests can be outstanding when the microcode -references an 
operand (queue entry or register file location). 

5. The instruction queue stall microword must indicate LAST.CYCLE. 
6. PSL<TP> must be cleared by the interrupt handler before it allows execution of an interrupted 

instruction to resume. 
7. The Patchable Control Store (PCS) WRITE command, issued by writing a "1" into 

PCSCR<PCS_WRITE> in microinstruction N, must not be followed by a PCS ENABLE 
command (issued by writing a "lit into PCSCR<PCS_ENB» before microinstruction N +2. 

8. Following the writing of the Patchable Control Store ENABLE bit (PCSCR<PCS_ENB> ) in 
S5 by microinstruction N, the first microinstruction for which Patchable Control Store can be 
considered enabled is microinstruction N +4. 

9. The First Part Done microflow must check for the case in which an unimplemented instruction 
begins execution with PSL<FPD> set. In this case, microcode must branch to the Reserved 
Instruction Fault microflow, rather than executing the normal First Part Done microflow. 

9.5 Testability 

9.5.1 Test Address 

The control store microaddress is both controllable and observable. A microcode address can be 
driven to the microsequencer from the Test Address Generator. The Test Address Genera tor is an 
II-bit counter which is initialized to a value of zero on assertion of K_E%RESET_L. It increments 
its address counter once on each deassertion of To/oCS_TEBT_H, thus cycling through all possible 
control store addresses. 

This microaddress source takes priority over all others. To ensure immediate control store 
lookup using this microaddress, assertion of T%CS_TEST_H sets an SIR latch whose output is 
E_USQ....TST%FORCE_TEST_ADDR_L. Assertion of this signal breaks any stall on 4>2, 4>3, and 4>4 
latches in the microsequencer. This allows the control store to operate, driving the selected 
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microword into the MIB scan chain (see Section 9.5.2). The Ebox stall(s), if any, are unaffected, 
along with stalls on 4>1 latches in the microsequencer. 

E_USQ...'I'ST%FORCE_TEST..ADDR_L is deasserted when the Test Address Generator has completed 
generation of all possible addresses (when its counter overflows). 

The microaddress driven from the CAL can be be observed on the Parallel Test Port data pins 
under control of the Parallel Test Port command pins. The microsequencer drives to the Parallel 
Test Port in 4>1' 

Figure 9-6: Parallel Port Output Format 

11 10 09 08107 06 05 04103 02 01 
+--+--+--+--+--+--+--+--+--+--+--+ 
I CAL OUTPUT I 
+--+--+--+--+--+--+--+--+--+--+--+ 

Table 9-20: Parallel Port Output Format Field Definitions 

Name Extent Description 

CAL OUTPUT 11:1 Microaddress driven from CAL 

9.5.2 MIS Scan Chain 

A 92-bit scan chain is present at the output of the MIB, allowing the complete microword to be 
latched and scanned out of the chip. The scan chain master latches operate in 4>4; the slave 
latches operate in 4>2. In observe mode, the scan chain is loaded and shifted under control of the 
Parallel Test Port command pins. When scanning out, MIB scan chain bit<91> is the first bit to 
reach the Parallel Test Port. 

Note that control of the MIB scan chain must be given to the parallel port during this operation, 
by writing a 0 to PCSCR<PAR_PORT_DIS>. See Section 8.5.22.1 for details. 

Table 9-21 : Contents of MIB Scan Chain, In Observe Mode 

Position 

<91> 

<90> 

<89> 

<88> 

<87> 

<86> 

<85> 

<84> 

Description 

E_UsqyaBJI<2> 

E_UsqyaBJI<3> 

E_UsqyaBJI<4> 

E_~JI<6> 

E_UsqyaB..B<IB> 

E_USQCQUB..B<'7> 

lSee Chapter 6 for details on microword fields. 
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Microword Field BRANCH. OFFSET! 
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Table 9-21 (Cont.): Contents of MIB Scan Chain, In Observe Mode 

Position Description Comment 

<83> E_U8QMUBJI<M> Microword Field L 

<82> E_U8QMUBJI~ Microword Field MISC1 

<81> E_U8QMUBJl4B> 

<80> E_U8QMUBJI<47> 

<79> E_U8QMUBJI<.M> 

<78> E_U8QMUB_B4O> Microword Field FMT 

<77> E_USQUDB_B<19> Microword Field MISC 

<76> E_U8QClIDMlBJI<18> 

<75> E_U8QMUB_B<l7> 

<74> E_U8QMUB_B<l8> 

<73> E_~JI<1a> 

<72> E_USQll(tMlB_B<3l> Microword Field DST 

<71> E_USQIl(tMIB_B<3O> 

<70> E_U8QMUB_B<28> 

<69> E_U8QMUB_B<2B> 

<68> E_U8QMUB_B4'7> 

<67> E_U8QMUBJl4I> 

<66> E_U8QMUBJl4I> Microword Field A 

<65> E..USQ'HIIB_B<M> 

<64> E_~JI<I3> 

<63> E_U8Q9IIBJI<D> 

<62> E_USQUDBJI<ll> 

<61> E_USQIl(tMIB_B<ID> 

<60> Value Undefined No Observe Input 

<59> Value Undefined No Observe Input 

<58> Value Undefined No Observe Input 

<57> Value Undefined No Observe Input 

<56> Value Undefined No Observe Input 

<55> Value Undefined No Observe Input 

<54> Value Undefined No Observe Input 

<53> Value Undefined No Observe Input 

<52> Value Undefined No Observe Input 

<51> Value Undefined No Observe Input 

<50> Value Undefined No Observe Input 

<49> E_U8QMUB_B<lO> Microword Field SEQ.COND 

<48> E_~_B<I> 
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Table 9-21 (Cont.): Contents of MIB Scan Chain, In Observe Mode 

Position Description Comment 

<47> E_USQQUB-.&4> 

<46> E_VSQCI!MIB-.&<1,o Microword Field SEQ.FMT 

<45> E_tJSQClQIIB_B<13> Microword Field SEQ. CALL 

<44> E_US~_B<12> Microword Field SEQ.COND 

<43> E_VSQCI!MIB-.&<1l> 

<42> E_VSQCJ&MIB_B<89> Microword Field B 

<41> E_VSQ'QIIB-.&<38> 

<40> E_tJSQClQIIBJ!<3'7> 

<39> E_tJSQClQIIBJ!<88> 

<38> E_tJSQClQIIB_B<36> 

<37> E_tJSQClQIIBJ!~> Microword Field MISC2 

<36> ~US~_B<43> 

<35> E_VSQ'QIIBJ!<42> 

<34> ~tJSQClQIIB_B<4l> 

<33> E_VSQCJ&MIB-.&<4I> Microword Field LIT 

<32> E_tJSQClQIIB_B<4O> Microword Field D 

<31> E_USQCY!JBJ!<6b Microword Field MRQ 

<30> E_USQCJ&MIB-.&43> 

<29> E_USQCY!JBJ!<D> 

<28> E_tJSQClQIIB_B41> 

<27> E_USQCY!JB-.&<50> 

<26> E_USQCJ&MIB_B<33> Microword Field W 

<25> E_USQ'QIIB_B42> Microword Field V 

<24> E_USQCJ&MIBJ!4B> Microword Field ALU 

<23> E_USQCQIIBJ!<I58> 

<22> E_USQ'UIIB-.&47> 

<21> E_USQCJ&MIBJ!<I58> 

<20> E_USQCQIIBJ!<A> 

<19> Value Undefined No Observe Input 

<18> Value Undefined No Observe Input 

<17> Value Undefined No Observe Input 

<16> Value Undefined No Observe Input 

<15> Value Undefined No Observe Input 

<14> Value Undefined No Observe Input 

<13> Value Undefined No Observe Input 

<12> Value Undefined No Observe Input 

9-28 The Mcrosequencer DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

Table 9-21 (Cont.): Contents of MIB Scan Chain, In Observe Mode 

Position Description Comment 

<11> Value Undefined No Observe Input 

<10> Value Undefined No Observe Input 

<9> Value Undefined No Observe Input 

<8> Value Undefined No Observe Input 

<7> Value Undefined No Observe Input 

<6> Value Undefined No Observe Input 

<5> Value Undefined No Observe Input 

<4> Value Undefined No Observe Input 

<3> Value Undefined No Observe Input 

<2> Value Undefined No Observe Input 

<1> Value Undefined No Observe Input 

<0> Value Undefined No Observe Input 
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9.6 Signal Cross Reference 

Note that the signal names used in this specification are the schema tic signal names. 

Table 9-22: Schematic Signal Names, In Alphabetical Order 

Schematic Signal Name 

E%FBOX_lST_CYCLE_L 

E%FOPCODE_H 

E%INT_RE'LH 

E_BUS%UTEST_L 

E_FLT%FLOATING_FAULT_H 

E_FLT%HW _ERR_H 

E_FLT%IOVFL_L 

E_FLT%MME_ERR_H 

E_FLT%RSVD_ADDR_MODE_H 

E_FLT%RSVD_INSTR_L 

E_MSC%EARLY_FLUSH_EBOX_H 

E_PSL%BRANCH_MISPREDICT_H 

E_PSL%PSL_H 

E_STL%USE'LSTALL_H 

E_TIM%S3_TIMEOUT_H 

E_USQ%ICTICH 

E_ USQ%I'LSTALL_H 

E_ USQ%MACRO_lST_CYCLE_H 

E_USQ%MIB_H 

E_ USQ%PE_ABORT_L 

E_ USQ%UTSEL_H 

E_US'LBUS%CAL_INPUT_L 

E_US'L CALo/oCAL_H 

E_ US'L CSM%UMIB_H 

E_US'LINQ%I~OUT_H 

E_US'LLST%SELECT_I'LH 

E_US'LSTL%LATE_US'LSTALL_L 

E_ US'LSTL%VERY_LATE_US'LSTALL_L 

E_US'LTST%FORCE_TEST_ADDR_L 

I%I:MEM_MEXC_H 

I%I'LBUS_H 
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Behavioral Model Signal Name 

E%FB OJL lST_ CYCLE_L 

E%FOPCODE_H 

E%INT_RE'LH 

E_BUS%UTEST_H 

E%FLOATING_FAULT_H 

E%HW_ERR_H 

E%IOVFL_H 

E%MME_ERR_H 

E%RSVD_ADDR_MODE_H 

E%RSVD_INSTR_FAULT_H 

E_MSC%EARLY_FLUSH_EBOX_H 

E%BRANCH_MISPREDICT_H 

E_PSL%PSL_H 

E_STL%USE'LSTALL_H 

E_TIM%S3_TIMEOUT_H 

E_ USQ%ICTICH 

E_USQ%I'LSTALL_H 

E_USQ%MACRO_lST_CYCLE_H 

E_USQ%MIB_H 

E_USQ%PE_ABORT_H 

E_ USQ%UTSEL_H 

E_US'LBUS%CAL_INPUT_L 

E_ US'L CAL%CAL_H 

E_US'LCSM%UMIB_H 

E_US'LINQ%I'LOUT_H 

E_ US'LLST%SELECT_I~H 

E_US'LSTL%LATE_US~STALL_L 

E_US'LSTL%VERY_LA.TE_US~STALL_L 

E_US'LTST%FORCE_TEST_ADDR_L 

I%IMEM_MEXC_H 

I%I~BUS_H 
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Table 9-22 (Cont.): Schematic Signal Names, In Alphabetical Order 

Schematic SigDa! Name 

K_E%RESET_L 

M%MME_TRAP _L 

M%TB_PERR_TRAP _L 

T%CS_TEST_H 

Behavioral Model Sipal Name 

K%RESET_L 

M%:MME_TRAP _H 

M%TB_PERR_TRAP _H 

T%CS_TEST_H 

Table 9-23: Behavioral Model Signal Names, In Alphabetical Order 

Behavioral Model Sipal Name 

E%BRANCH_~nSPREDICT_H 

E%FBOX_1ST_CYCLE_L 

E%FLOATING_FAtJLT_H 

E%FOPCODE_H 

E%lrn1_ERR_H 

E%I!\7_RE'LH 

E%IOVFL_H 

E%l\f1\IE_ERR_H 

E%RSVD_ADDR_~IODE_H 

E%RSVD_INSTR_FAtJLT_H 

E_BUS%UTEST_H 

E_MSC%EARLY_FLUSH_EBOX_H 

E_PSL%PSL_H 

E_STL%USE~ST.ALL_H 

E_TIM%S3_TIMEOUT_H 

E_USQ%I'LSTALL_H 
E_USQ%~CRO_1ST_CYCLE_H 

E_USQ%MIB_H 

E_USQ%PE_ABORT_H 

E_USQ%UTSEL_H 

E_US~BUS%CAL_~_L 

E_ US'LCAL%CAL_H 

E_US~CSM%UMIB_H 

E_USQ%ICTX...,H 

E_US~INQ%I'LOUT_H 

E_USQ..LST%SELECT_I~H 

E_ US'LSTL%LATE_ USQ..STALL_L 

E_USQ..STL%VERY_LATE_US~STALL_L 
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Schematic Signal Name 

E_PSL%BRA..~CH_MISPREDICT_H 

E%FBOX_1ST_CYCLE_L 

E_FLTUFLOATING_FAULT_H 

E%FOPCODE_H 

E_FLT'n-ffi\ _ERR_H 

E%I!\'"T:...RE~H 

E_FLTliIOVFL_L 

E_FLT9C!\IME_ERR_H 

E_FLT%RSVD_ADDR_:MODE_H 

E_FLT%RSVD_INSTR_L 

E_BUS%UTEST_L 

E_MSC%EARLY_FLUSH_EBO~H 

E_PSL%PSL_H 

E_STL%USEQ..STALL_H 

E_TIM%S3_TIMEOUT_H 

E_USQ%IQ..ST.ALL_H 

E_USQ%MACRO_1ST_CYCLE_H 

E_USQ%MIB_H 

E_USQ%PE_ABORT_L 

E_USQ%UTSEL_H 

E_USQ..BUs%CAL_~_L 

E_USQ..CAL%CAL_H 

E_USQ..CSM%UMIB_H 

E_USQ%ICT.X....H 

E_USQ..INQ%IQ..OUT_H 

E_USQ..LST%SELECT_I'LH 

E_USQ..STL%LATE_ USQ..STALL_L 

E_ USQ..STL%VERY_LATE_USQ..STALL_L 
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Table 9-23 (Cont.): Behavioral Model Signal Names, In Alphabetical Order 

Behavioral Model Signal Name 

E_US~TST%FORCE_T.EST_ADDR_L 

I%IMEM_MEXC_H 

1%1 Q..B US_H 

K%RESET_L 

M%MME_TRAP _H 

M%TB_PERR_TRAP_H 

T%CS_TEST_H 
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Schematic Signal Name 

E_U~TSr%FORCE_TEST_ADDR_L 

I%IMEM_MEXC_H 

I%IQ..BUS_H 

K_E%RESET_L 

M%MME_TRAP _L 

M%TB_PERR_TRAP _L 

T%CS_TEST_H 
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9.7 Revision History 

Table 9-24: ReviSion History 

Rev Who When Description of ehange 

0.0 Elizabeth M. Cooper ()6..Mar-1989 Release for external review. 

0.1 Elizabeth M. Cooper 14-Sep-1989 Post-modelling update. 

0.5 Elizabeth M. Cooper 10-Dec-1989 Updates for Rev 0.5 spec release. 

0.5A Elizabeth M. Cooper 5-Jan-1990 Remove vector microtrap and V bit 
from IQ. 

O.5B Elhabeth M. Cooper 20-Jun-1990 Accumulated updates. 

0.6A Elizabeth M. Cooper 26-Nov-1990 Final updates. 

0.6B Elizabeth M. Cooper, 12-Dec-1990 Final final updates. 

Tim C. Fischer 

O.6C Elhabe~h M. Cooper I-Jan-1991 Add signal cross reference tables. 

0.6D Elizabeth M. Cooper 13-Feb-1991 Add description of patch revision. 
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Chapter 10 

The Interrupt Section 

10.1 Overview 

The interrupt section receives interrupt requests from both internal and external sources, and 
compares the IPL associated with the interrupt request to the current interrupt level in the PSL. If 
the interrupt request is for an IPL that is higher than the current PSL IPL, the interrupt section 
signals an interrupt request to the micro sequencer 'Which will initiate a microcode interrupt 
handler at the next macroinstruction boundary. 

When an interrupt is serviced by the Ebox microcode, the interrupt section provides an encoded 
interrupt ID on E_BUSo/cABUS_L<20:16>, which allows the microcode to determine the highest pri
ority interrupt request that is pending. Interrupt requests are cleared in one of three ways, 
depending on the type of request. 

Software interrupt requests are supported via a I5-bit SISR register, which is read and written 
by the microcode, and which makes requests to the interrupt generation logic. 

Both full and subset interval timer support is provided, based on the state of the ICCS_EXT bit 
in the "ECR processor register, as described in Section 8.5.22. If ECR<lCCS_EXT>=O, a subset 
interval timer is supported by implementing the interrupt enable bit of the ICes processor reg
ister in internal logic. If ECR<lCCS_EXT>=l, a full interval timer is supported, and external 
logic must implement the full ICeS, ICR, and NICR processor registers. In this instance, reads 
from and writes to these registers are converted to 110 space addresses and transmitted off-chip, 
as described in Section 2.12, Processor Registers. 

10.2 Interrupt Summary 

Interrupt requests received from external logic are divided into two categories: those received by 
edge-sensitive logic, and those received by level-sensitive logic. Both are synchronized to internal 
clocks. In addition, there are several internal sources of interrupt requests. 
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10.2.1 External Interrupt Requests Received by Edge-Sensitive Logic 

Five of the external interrupt requests are received by edge-sensitive logic and synchronized to 
internal clocks. These signals request the following special-purpose intenupts. 
• P%HALT_L: The assertion of P%HALT_L causes the CPU to enter the console at IPL IF 

(hex.) at the next macroinstruction boundary. This interrupt is not gated by the current 
IPL, and always results in console entry, even if the IPL is already IF (hex). Note that the 
implementation of this event is different from a normal interrupt in which a PCIPSL pair 
are pushed onto the interrupt stack. For this event, the current PC, PSL, and halt code 
are stored in the SAVPC and SAVPSL processor registers. The mechanism by which the 
console is entered, and a description of the SAVPC and SAVPSL processor registers is given 
in Section 15.4, Console Halt and Halt Interrupt .. 

• P%PWRFL_L: The assertion of P%PWRFL_L indicates that a power failure is pending. 
This results in the dispatch of the interrupt to the operating system at IPL IE (hex) through 
SCB vector OC (hex). 

• PCiOH_ERR_L: The assertion of PCiOH_ERR_L indicates that a hard error has been detected 
in the system environment. This results in the dispatch of the interrupt to the operating 
system at IPL 1D (hex) through SCB vector 60 (hex). 

• P%S_ERR_L: The assertion of P%S_ERR_L indicates that a soft error has been detected in 
the system environment. This results in the dispatch of the interrupt to the operating system 
at IPL 1A (hex) through SCB vector 54 (hex). 

• P%INT_ TIM_L: The assertion ofP%Il\"T_ TIM:_L indicates that the interval timer period has 
expired. If the interrupt enable bit in the ICeS processor register is set (whether this bit is 
implemented internally or externally), an interrupt is dispatched to the operating system at 
IPL 16 (hex) through SCB vector CO (hex). If ICCS<6> is not set, no interrupt is dispatched. 

Each signal must make a high-to-Iow transition to assert the interrupt request. A pseudo-edge 
detect circuit is used to capture this transition asynchronously. Details of the edge detect logic 
given in Section 10.3.1. Because these are special-purpose interrupt requests with an implied 
SCB vector, no acknowledgement of the interrupt is required. Ebox microcode explicitly clears 
the interrupt request when the interrupt is serviced. 

10.2.2 External Interrupt Requests Received by Level-Sensitive Lc;»gic 

Four of the external interrupt requests are received by level-sensitive logic and synchronized to 
internal clocks. These signals request general-purpose interrupts at the following IPLs. 

Interrupt BequestIPL 

Bequest (Hex) (Dec) 

p%mQ...L<3> 17 23 

P%mQ..,L<2> 16 22 

Po/dRQ..L<l> 15 21 

Po/olRQ...L<O> 14 20 

Each signal must be driven low and remain low to assert the interrupt request. When one of 
these interrupts is to be serviced, the Ebox microcode acknowledges the interrupt by issuing an 
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NDAL read of word length to one of four longword-aligned interrupt vector offset registers to 
obtain the SOB offset through which the interrupt should be dispatched. The address of the 
register depends on the interrupt being serviced, as shown in Table 10-1. 

Table 10-1: Interrupt Vector Offset Registers 

InteJ.TUpt Vector Offset Processor 

Request Register Address Register! 

Po/oIR'L,L<3> EIOOOIOC IAKl7 

Po/oIR'L,L<2> EIOOOI08 IAKl6 

p%m'L,L<l> EIOOOI04 IAKl5 

p%m'L,L<o> EIOOOIOO IAKl4 

1 Direct access to the interrupt vector offset registers is provided via processor register reads for system test. Software 
references to these processor registers du.riJlg normal system operation can result in UNDEFINED behavior 

In response, the microcode expects to receive an interrupt 8CB vector offset, which is shown in 
Figure 10-1. The fields are described in Table 10-2. 

Figure 10-1 : Interrupt SeB Vector Offset 

31 30 29 28127 26 25 24123 :2 21 20119 16 17 16115 14 13 l21l1 10 09 08107 06 05 04103 02 01 00 

: x x x x x x x x x x x x x x x xl Sys~am Cor.~rel Block Offset IPRI =:'1 :!AKlx 
---~--~--~--~-~--+--+--~--~--+--+--+--~--~--~--~-~--+--+--+--~--+--+--+--+--+--~--~--+--~--+--+ 

Table 10-2: Interrupt SCB Vector Offset 

Name 

IL 

Extent Description 

o Interrupt Level Override. In normal operation, the IPL at which the interrupt is 
serviced is implied by the request signal that was asserted. If the IL bit is set in the 
intelTUpt vector offset, the IPL at which the interrupt is taken is forced to 17 (hex). 
This capability supports external buses, such as the Q-bus, that can not guarantee 
that the device that responds with the intelTUpt SOB vector offset is the device that 
originally requested the interrupt. 

For example, the Q-bus has four separate interrupt request signals that correspond 
to P%IRQ...L<3:0> but only one signal to daisy chain the interrupt grant. 
Furthermore, devices on the Q-bus are ordered so that higher priority devices are 
electrically closer to the bus master. If an P%IR'LL<1> request is being serviced, 
there is no guarantee that a higher priority device will not intercept the grant. 
Software must determine the level of the device that was serviced and set the IPL 
to the correct value. 
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Table 10-2 (Cont.): Interrupt sce Vector Offset 

Name Enent Description 

PR 1 

15:2 

Passive Release Flag. In certain circumstances, notably in multi-processor 
configurations, an intenupt may be requested but removed by the time the microcode 
acknowledges it by reading the interrupt vector offset register. If the PR bit is set 
in the interrupt SCB vector offset, the microcode treats this interrupt as an internal 
passive release and resumes the interrupted instruction stream without dispatching 
the interrupt. 

If the interrupt request is deasserted before the microcode reads the intelTUpt ID, 
the m will be zero, indicating that no intelTUpt is pending. In that instance, no 
read of the interrupt vector offset register is done, and the microcode generates an 
immediate passive release. 

Longword offset from the start of the SCB of the vector to use to dispatch this 
interrupt. AoL"ter zero-extending to longword length, microcode adds this value to the 
contents of the SCBB register, reads that location, and uses it as the SCB vector 
with which to dispatch the interrupt to the operating system. 

NOTE 

If both the PR and IL bits are set in the interru.pt SeB vector offset, the PR bit takes 
priority and a passive release is done. 

10.2.3 Internal Interrupt Requests 

The Cbox, Ibox, and Mbox report elTor conditions by asserting internal intelTUpt request signals 
that are logically ORed with the synchronized versions ofP%H_ERR_L and P%S_ERR_L. These 
requests are then handled in exactly the same manner as requests generated by external sources, 
as specified above. The following table details the internal intelTUpt sources 

Table 10-3: Internal Interrupt Requests 

SigDal Source Type 

CCl.CBOlLH..BB.R_1I CBOX H_ERR_L 

~OlLS_1EBlUI CBOX S_ERR_L 

ICMBOlLS_EBR..L mox S_ERR_L 

II'QIBOlLS_EB.BOll_1I MBOX S_ERR_L 

The performance monitoring facility requests an interrupt at IPL 1B (hex) when the 
performance counters become half full. The performance monitoring hardware asserts the signal 
E_P.MN%PMON_L to perform this request. This request is serviced entirely by microcode, and 
cleared by writing to the appropriate bit in the ISR. Chapter 18 should be consulted more details 
about the Peformanee Monitoring facilities. 
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Architecturally defined software interrupt requests are implemented through an internal register 
in the interrupt section. Under control of the SISR and SIRR processor registers which are 
described in Chapter 2, the Ebox microcode sets the appropriate hit in this register, which then 
results in the dispatch of the interrupt to the operating system at an IPL and through the SCB 
vector implied by the interrupt request. The association between the interrupt request, requested 
IPL, and SCB vector for these requests is shown in the following table. 

Table 10-4: Software Interrupts 

Request IPL SCB Vector 

SISR bit (Hex) (Dec) (Hex) 

SI SR< 15 > OF 15 BC 

SISR<14> OE 14 BS 

SISR<13> OD 13 B4 

SISR<12> OC 12 BO 

SISR<11> OB 11 AC 

SISR<10> OA 10 AS 

SISR<09> 09 09 A4 

SISR<OS> 08 08 AO 

SISR<Oi> 07 07 9C 

SISR<06> 06 06 98 

SISR<05> 05 05 94 

SISR<04> 04 04 90 

SISR<03> 03 03 8C 

SISR<02> 02 02 8S 

SISR<Ol> 01 01 84 

Ebox microcode explicitly clears the interrupt request when the interrupt is serviced. 

10.2.4 Special Considerations for Interval Timer Interrupts 

The NVAX CPU may be configured to support either a subset interval timer, or a full interval 
timer, depending on the state of ECR<1CCS_EX'r>, as described in Section 8.5.22, Ebox IPRs. 
Console firmware initializes this bit to the correct state based on the system environment in 
which the CPU chip is used. 

The internal implementation of the interval timer interrupt request gates the assertion of 
P%INT_TIM_L with the internal copy of the interrupt enable bit of the ICCS processor register 
(ICC8<6». The CPU chip does not know the source of the signal driving P%INT_TIM_L, and 
this fact is used to allow the implementation of both a subset and full interval timer. 

If ECR<1CCS_EXT>::O, an SRM-approved subset interval timer may be implemented by driving 
P%INT_TIM_L with an oscillator whose period is lOms. In this mode, the NICR and ICR 
processor registers are not required nor implemented, and microcode maintains the subset ICCS 
processor register with an internal copy of only the interrupt enable bit from ICC8<6>. References 
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to the ICCS processor register affect only ICCS<6>, and are handled internally without being 
transmitted on the NDAL. 

If ECR<lCCS_EX'I'>=l, a full interval timer consisting of the ICeS, NICR, and ICR processor 
registers may be implemented in external logic. P%INT_TIM_L is asserted when the 
programmed interval has expired. Processor register references to the ICCS, NICR, and ICR 
processor registers are converted to I/O space references and transmitted onto the NDAL, as 
described in Section 2.12, Processor Registers. However, even in this mode, microcode maintains 
the internal copy of ICCS<6> consistent with a write to ICCS that is transmitted onto the NDAL. 
As a result, if interrupts are enabled in the off-chip ICCS register, they are also allowed by the 
internal ICCS interrupt enable bit. Conversely, if interrupts are disabled in the off-chip ICCS 
register, they are also disabled by the internal hit. External logic is expected to return all 32 
bits when the ICCS processor register is read, including the correct state of the interrupt enable 
bit. Microcode does not attempt to merge the external data with the internal copy of ICCS<6> to 
satisfy a processor register read of ICCS. 

It should be noted that ECR<lCCS_EXT> has no effect on the operation of the interrupt section 
hardware. It is used strictly as a control bit which directs the microcode operation of references 
to the ICCS processor register. Independent of the state ofECR<lCCS_EXT>~ processor register 
\rntes to ICCS cause microcode to update the internal copy of the interrupt enable bit. If 
E CR<l CCS_EXT> = 1, references to the ICCS processor register are also transmitted onto the 
!\-r>AL. References to the ~ICR and ICR processor registers are always transmitted onto the 
1\-r>AL; they are simply not used if the system implements a subset interval timer. 

Table 10-5 gives a summary of the results of references to the ICeS, l\'T}CR, and ICR processor 
registers, with both states of ECR<lCCS_EXT>. 

Table 10-5: References to Interval Timer Processor Registers 

Operation 

MFPR #PR$_ICCS,x 

MTPR x,IPR$_NICR 

MFPR #PR$_NICR,x 

MTPR x,1PR$_ICR 

MFPR #PR$_ICR,x 

1See Section 2.12 

Update internal lCCS<6> 

Return internal lCC8<6> 

Write data to El0000641 

Read and return data from El0000641 

Write data to El0000681 

Read and return data from ElOOOO6S1 

10.2.5 Priority of Interrupt Requests 

Update internal lCC8<6>, write data to 
EI0000601 

Read aDd return data from ElOOO0601 

Write data to ElOOO0641 

Read aDd return c1ata from El0000641 

Write data to El0000681 

Read aDd return c1ata from El0000681 

When multiple interrupt requests are pending, the interrupt section prioritizes the requests. 
Table 10-6 shows the relative priority (from highest to lowest) of all interrupt requests. For 
reference, this table also includes the IPL at which the interrupt is taken, and the SCB vector 
through which the interrupt is dispatched. 
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Table 10-6: Relative Interrupt Priority 

Inte1Tl1pt Request IPL SCB Vector 

Request (Hex) (Dec) (Hex) 

P%HALT_L IF 31 None l Highest priority 

P%PWRFL_L 1E 30 OC 

P%H_ERR_L2 ID 29 60 

E_PMNCJalMON_L IB 27 NoneS 

P%S_ERR_L2 1A 26 54 

p%mQ..,L<3> 17 23 Specified by devices 

p%mQ..,L<2> 16 22 Specified by devices 

P%Il'."T_TIM_L 4 16 22 CO 

p%mQ..L<l> 15 21 Specified by devices 

p%mCL,L<o> 14 20 Specified by devices 

SISR<15> OF 15 BC 

SISR<14> OE 14 B8 

SISR<13> OD 13 B4 

SISR<12> OC 12 BO 

SI SR< 11> OB 11 AC 

SISR<10> OA 10 AS 

SISR<09> 09 09 A4 

SISR<08> 08 08 AO 

SISR<07> 07 07 9C 

SISR<06> 06 06 98 

SISR<05> 05 05 94 

SISR<04> 04 04 90 

SISR<03> 03 03 8C 

SISR<02> 02 02 88 

SISR<Ol> 01 01 84 Lowest priority 

1 Direct dispatch to console; PC, PSL placed in SAVPC, SAVPSL processor registers 

2lncludes Cbox, Ibox, and Mbax internally generated requests 

sSCB vector offset supplied by the device 

4When enabled by the internal ICC8<6> 

lilnterrupt processed entirely by microcode 

The P%IRQ..L<2> request takes priority over the P%INT_'rIM_L request, both of which 
are at IPL 16 (hex). Inter-processor interrupts in multi-processor systems are requested via 
P%IRQ..L<2>, and they must take priority over interval timer requests. 
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10.3 Interrupt Section Structure 

The interrupt section consists of three basic components: the edge detect and synchronization 
logic, the interrupt state register (ISR), and the interrupt generation logic. A block diagram of 
the intelTUpt section is shown in Figure 10-2. 

Figure 10-2: Interrupt Section Block Diagram 
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10.3.1.1 Edge Detect Circuitry 
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The pads for the five special-purpose external interrupt request signals contain logic which detects 
high-to-Iow transitions on these signals. A falling edge sets an SR flip-flop which begins the 
interrupt request process. This interru.pt request process involves setting another SR flip-flop 
to register the interrupt. This second flip-flop may only be cleared by microcode. Microcode 
clears this flip-flop while servicing the interru.pt request. The edge detect circuitry resets itself 
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automatically (clearing the first SR) within two NDAL cycles following the low-to-high transition 
of the pin. 

10.3.1.2 Intenupt Synchronization 

The pads for all external interrupt request signals (both the edge and level sensitive types) contain 
synchronizers to allow the use of asynchronous signals for interrupt requests. The pin signals 
are synchronized to the internal NVAX. clocks and are then passed to the ISR. More deterministic 
timing behavior may be desired in some applications such as during test. This may be achieved 
by driving the signals synchronously with respect to the input clocks. The chapter on Electrical 
Characteristics should be consulted for details about setup and hold times. 

10.3.2 Interrupt State Register 

The interrupt state register is a composite register that implements the I5-bit architecturally 
defined SISR register, the internal copy of the interrupt enable bit from the ICeS processor 
register. the interrupt latch for the performance monitoring facility inteITUpt, and the interrupt 
request latches for the 5 special-purpose and 4 general-purpose interrupts. The ISR contains two 
kinds of elements: SR Hops for the special-purpose interrupt requests, and latches for the other 
requests. The follo\ving table lists the types and positions of all elements in the ISR. 

ISR bit 

31 

30 

29 
28 

27 

26 

25 

24 

23 

22 

15:1 

0 

State Element 

SR-SRflop 
I-Latch 

State 

Element 

SR 

SR 

SR 

SR 

SR 

L 

L 

SR 

L 

L 

L 

L 

Description 

Interrupt request for P%HALT_L interrupt 

Interrupt request for P%PWRFL_L interrupt 

Interrupt request for P'1oH_ERR_L and internal hard elTOr interrupts. 

Interrupt request for E.PJdNIIDPJ40N.L, the performance monitoring facility 
interrupt 

Interrupt request for P'1DS_ERR_L and internal BOft elTOr interrupts 

Interrupt request for P%IR<LL<3> interrupt 

Interrupt request for P%IR<LL<2> interrupt 

Interrupt request for P%INT_TIM_L interrupt 

Interrupt request for P%IR<LL<1> interrupt 

Interrupt request for P'1~L<O> interrupt 

SISR<15:1> latches and requests for software intenupts 

IntemalICC8<6>la~h 

Synchronized inputs from the external special·purpose interrupt requests are logically ORed with 
the internal requests from the Cbox, Ibox, and Mbox. The assertion of one of these signals causes 
the appropriate request flop to be set in ISR<3I:29,27,24>. These request flops are cleared under 
Ebox microcode control when written with a 1 from the corresponding bits of E_BUs%WBUS_L. 
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Synchronized inputs from the general-purpose interrupt requests are loaded into the appropriate 
latch in ISR<26:25,23:22>. These request latches are cleared when the interrupting device 
deasserts the interrupt request in response to a CPU request for an interrupt vector offset. 

The performance monitoring facility interrupt request is loaded into the request flop in 
ISR<28>. The request is cleared under Ebox microcode control when written with a 1 from 
E_BUS%WBUS_L<28>. 

SISR<15:1> is implemented via ISR<15:1>, and is loaded from bits <15:1> of E_BUS%WBUS_L 
under Ebox microcode control. These request latches are cleared under Ebox microcode control 
when a new value is loaded from E..BUS%WBUS_L. 

The internal copy of the interrupt enable bit in the ICCS processor register (ICCS<6» is 
implemented via lSR<O>, and is loaded from E_BUS%WBUS_L<O> under Ebox microcode control. 
Local logic gates the interval timer request from ISR<24> with the state of ISR<O>. 

The interrupt request elements of the interrupt state register aSR<31:22,15:1» go to the 
interrupt generation logic. ISR<O> and ISR<15:1> may also be read onto E_BUS%ABUS_L for 
return to the Ebox. 

10.3.3 Interrupt Generation Logic 

The interrupt generation logic priority encodes all interrupt requests from the interrupt state 
register to determine the highest priority request. The output of the encoder is the request IPL 
and the interrupt ID of the highest priority request. If any request is pending, the request IPL is 
compared against E_PSL%PSL_BdO:l6> from the Ebox. If the request IPL is higher than the PSL 
IPL, or if the request is for P%HALT_L <P%H.ALT_L is not gated by the IPL), E%II\"T_RE~H is 
asserted to the microsequencer. 

The assertion of E%lNT_RE~H causes the microsequencer to initiate a microcode interrupt handler 
at the next macroinstruction boundary. The same signal is available on the microtest bus 
(E_BUSo/tUTEST_L<O> as a microbranch condition, which is checked by the Ebox microcode during 
long instructions. 

Along with the request IPL, the intelTUpt generation logic provides an encoded intenupt ID 
that identifies the highest priority interrupt. The interrupt ID is read onto bits <20:16> of 
E_BUS%ABUS_L along with ISR<O> and ISR<15:1> when microcode references the AflNT.SYS 
source. For each interrupt, the interrupt ID encoding, request IPL, ISR bit number, method for 
clearing the interrupt, and 8CB vector is shown in Table 10-7. 

Table 10-7: Summary of Interrupts 

ISR SCB 
Interrupt IntID RequestIPL Bit Be.et Vector 

Request (1Ie%) (Dec) (Hex) (Dec) (Dec) Method (Hex) 

P%HALT_L IF 31 1F 31 31 Write 1 to ISR bit Console 
BaIt 

P%PWRFL_L 1E 30 1E 30 30 Write 1 to ISR bit oc 
Po/oH_ERR_Ll 1D 29 1D 29 29 Write 1 to ISR bit 60 

1 Includes Cbox, Ibox, and M'box intemally generated requests 
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Table 10-7 (Cont.): Summary of Interrupts 

18R seB 
Interrupt Int ID RequestIPL Bit Reset Vector 

Request (Hex) (Dec) (Hex) (Dec) (Dec) Method (Hex) 

E_PMN%PMON_L 1B 27 1B 27 282 Write 1 to ISR bit Handled by 
microcode 

P1oS_ERR_L1 1A 26 1A 26 2~ Write 1 to ISR bit 54 

P1dRQ...L<3> 17 23 17 23 26 ReadIAKl7IPR Supplied by 
device 

p%mQ...L<2> 16 22 16 22 25 Read IAK16 IPR Supplied by 
device 

P%INT_TIM_L 1C3 28 16 22 242 Write 1 to ISR bit co 
p%mQ...L<l> 15 21 15 21 23 ReadIAKl5IPR Supplied by 

device 

p%mQ...L<o> 14 20 14 20 22 Read IAKl4 IPR Supplied by 
device 

SISlk15> OF 15 OF 15 15 Write 0 to ISR bit BC 

SISlk14> OE 14 OE 14 14 Write 0 to ISR bit B8 

SISR<13> OD 13 OD 13 13 Write 0 to ISR bit B4 

SISlk12> OC 12 OC 12 12 Write 0 to ISR bit BO 

SISlk11> OB 11 OB 11 11 Write 0 to ISR bit AC 

SISlk10> OA 10 OA 10 10 Write 0 to ISR bit AS 

SISlk09> 09 09 09 09 09 Write 0 to ISR bit A4 

SISlk08> 08 08 08 08 08 Write 0 to ISR bit AO 

SISR<07> 07 07 07 07 07 Write 0 to ISR bit 9C 

SI Slk06 > 06 06 06 06 06 Write 0 to ISR bit 98 

SISlk05> 05 05 05 05 05 Write 0 to ISR bit 94 

SISlk04> 04 04 04 04 04 Write 0 to ISR bit 90 

SISlk03> 03 03 03 03 03 Write 0 to ISR bit 8C 

SISlk02> 02 02 02 02 02 Write 0 to ISR bit 88 

SISlk01> 01 01 01 01 01 Write 0 to ISR bit 84 

No Interrupt 00 00 Dismiss interrupt 

1 Includes Cbox, Ibox, and Mbox internally generated requests 

2Write-l-to-clea:r ISR bit is different than IPL and interrupt ID 

3 Interrupt ID is different than IPL 

The interrupt ID is the same as the request IPL for all interrupt requests except for the interval 
timer request. 
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DESIGN CONSTRAINT 

A value of zero for the interrupt ID must be returned if an interrupt is no longer 
present, or if the highest priority interrupt request is no longer higher than the PSL 
IPL. Normally, once an intelTUpt request is made, it remains until it is cleared by the 
microcode. However, the level-sensitive interrupt requests may be deasserted after the 
interrupt is dispatched, but before the microcode reads the intelTUpt ID. Therefore, it is 
possible that the highest remaining interrupt has a request IPL lower than the current 
PSL IPL. If zero is not returned for the interrupt ID in this instance, the processor will 
not function correctly. 

10.4 Ebox Microcode Interface 

The Ebox microcode interfaces with the interrupt section primarily through reads (via 
E_BUS%ABUS_L) and writes (via E..BUS%WBUS_L) of the ISR accomplished through the AIINT.SYS 
and DSTIINT.SYS decodes. These decodes provide access to the so-called INT.SYS register, which 
is shown in Figure 10-3. The fields of the register are listed in Table 10-8. 

Figure 10-3: IPR 7A (hex), INTSYS 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 1 1 1 1 10101 1010101 INT.ID 1 SISR<15:1> 1 1 :INTSYS 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 1 1 1 1 1 1 

1 1 1 1 1 1 +-- ICCS<6> 
1 1 1 1 1 +-- INT_TIM_RESET 
1 1 1 1 +-- S ERR RESET 
1 1 1 +-- PMON-RESET 
1 1 +-- H ERR RESET 
1 +-- PWRFL _RESET 
+-- HALT_RESET 

Table 10-8: INTSYS Field Descriptions 

Name Extent Type Description 

ICC8<6> 0 RW,O This field contains the internal copy of the interrupt enable bit from 
the ICCS processor register. It is set to 0 by microcode at powerup. 

SISR 15:1 RW,O This field contains the 15 architecturally-defined software interrupt 
request bits. It is set to 0 by microcode at powerup. 

!NT.ID 20:16 RO This field contains the encoding of the highest priority interrupt 
request as listed in Table 10-7. Writes to this field are ignored. 

INT_TIM_RESET 24 WC,O Writing a 1 to this field clears the P%INT_TIM_L interrupt request. 

1 0-12 The Interrupt Section 

Writing a 0 has no effect on the request. The field is read as a 0 and 
the interrupt request is cleared by microcode at powerup. 
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Table 10-8 (Cont.): INT.SYS Register Fields 

Name Extent Type Description 

27 

PMON~RESET 28 

29 

30 

31 

WC,O Writing a 1 to this field clears the P%S_ERR_L interrupt request. 
Writing a 0 has no effect on the request. The field is read as a 0 and 
the interrupt request is cleared by microcode at powerup. 

WC,O Writing a 1 to this field clears the E_PMNVMON_L interrupt request. 
Writing a 0 has no effect on the request. The field is read as a 0 and 
the interrupt request is cleared by microcode at powerup. 

WC,O Writing a 1 to this field clears the Po/oH_ERR_L interrupt request. 
Writing a 0 has no effect on the request. The field is read as a 0 and 
the interrupt request is cleared by microcode at powerup. 

WC,O Writing a 1 to this field clears the P%PWRFL_L interrupt request. 
Writing a 0 has no effect on the request. The field is read as a 0 and 
the interrupt request is cleared by microcode at powerup. 

WC,O Writing a 1 to this field clears the Po/GH.ALT_L interrupt request. 
Writing a 0 has no effect on the request. The field is read as a 0 and 
the inteITUpt request is cleared by microcode at powerup. 

DESIGN CONSTRAINT 

~nen read onto E_BUSo/cABUS_L, ThTT.SYS<31:27,24> must be zero. Microcode 
updaies the iniemal copy of ICCS<6> and SISR<15:1> by reading the I~~.SYS 
register,modifying the appropriate bits, and writing the updated value back. The 
write-one-to-clear bits must be read as zero because the microcode does not mask them 
out before writing them back. 

MICROCODE RESTRICnON 

The INT.SYS register is not bypassed. A write to INT.SYS in microinstruction n must 
not be followed by a read of INT.SYS sooner than microinstruction n+4. 

MICROCODE RESTRICnON 

Changes to machine state that affect the generation ofintelTUpts (PSL<IPL>, ICCS<6>, 
or SISR<15:1» done by microinstruction n must not be followed by a LAST CYCLE 
microinstruction sooner than microinstruction n+4 if the change is to be observed by 
the next macroinstruction. 

10.5 Processor Register Interface 

Software can interact with the interrupt section hardware and microcode via references to 
processor registers, as follows: 

• ICCS: References to the ICCS processor register allow access to the copy of ICCS<6> that is 
implemented in INT.SYS<O>, as described in Section 10.2.4. 

• NICR, ICR: References to the NICR and ICR processor registers are transmitted off-chip to 
an optional full interval timer implementation as described in Section 10.2.4. 

• SISR, SIRR: References to the architecturally-defined SISR and SIRR processor registers 
allow access to SISR<15:1>, which are implemented in lNT.SYS<15:1>. 
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• ECR: References to ECR<ICCS_EX'l'> select the interval timer configuration, as described in 
Section 10.2.4. 

• 1A.Kl4, IAKl5, IAKl6, IAKl7: Reads of the IAK processor registers allow diagnostic and test 
software direct access to device interrupt vectors, as described in Section 10.2.2. References 
to these processor registers during normal system operation can result in UNDEFINED 
behavior. 

• INTSYS: References to the INTSYS processor register allow diagnostic and test software 
direct access to the INT.SYS register. Reads of the INTSYS processor register return the 
format shown in Figure 10-3. Writes of the INTSYS processor register are internally masked 
by microcode such that only the left halt write-to-clear bits are written. Other hits remain 
unchanged. Writes to the INTSYS processor during normal system operation can result in 
UNDEFINED behavior. ' 

10.6 Interrupt Section Interiaces 

10.6.1 Ebox Interiace 

10.6.1.1 Signals From Ebox 

• E_BUS%'WBUS_L: Write data bus, from which ICCS<6> and SISR<15:1> are loaded, and from 
which the write-one-to-clear interrupt latches are cleared. 

• E_PMN%P.MON_L: Performance monitoring facility interrupt request. 
• E_PSL%PSL_B<20:16>: IPL field from the current PSL. 
• E_STL%F _NOP _S5_B: Force a NOP into S5 of the MIB decode pipe when an S3 or S4 stall exists 
• E_STL%LATE_F _NOP _S4_H: Force a NOP into S4 of the MIB decode pipe when an S3 stall exists 
• E_STL%LATE_STALL_S4_H: Stall the MIB decode pipe when an S4 stall exists 

10.6.1 .2 Signals To Ebox 

• E_BUS%ABUS_L: A-port operand bus, on which ICCS<6>, SISR<15:1>, and the interrupt m 
are returned. 

10.6.2 Microsequencer Interface 

10.6.2.1 Signals from Mlcrosequencer 

• E_USQ%MIB_B<31:2O>: MIB lines used to decode the writes/reads to INT.SYS 
• E_USQ%MIICIAl:2O>: MIB lines used to decode the writeslreads to INT.SYS 
• E_US~UTSEL..B<4:O>: Microtest bus select code. 
• E_US~UTSEL_L<4:O>: Microtest bus select code. 
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10.6.2.2 Signals To Mlcrosequencer 

• E%JNT_REQ...H: Interrupt pending. 
• E_BUS%UTEST_L<O>: Microtest bus. 

10.6.3 Cbox Interface 

10.6.3.1 Signals From Cbox 

• C%CBOX,.,H_ERR_H: Hard elTor interrupt request. 
• C%cBOX,.,S_ERR_H: Soft error interrupt request. 

10.6.4 Ibox Interface 

10.6.4.1 Signals From Ibox 

10.6.5 Mbox Interface 

10.6.5.1 Signals From Mbox 

10.6.6 Pin Interface 

10.6.6.1 Input Pins 

• P%HALT_L: Special-purpose halt "intelTUpt" signal, sampled by edge-sensitive logic. 
• P%H_ERR_L: Special-purpose hard elTor interrupt signal, sampled by edge-sensitive logic. 
• P%INT_TIM:_L: Special-purpose interval timer interrupt signal, sampled by edge-sensitive 

logic. 
• p%mQ..,L<3:0>: General-purpose interrupt signals, sampled by level-sensitive logic. 
• P%PWRFL_L: Special-purpose power failure interrupt signal, sampled by edge-sensitive 

logic. 
• P%S_ERR_L: Special-purpose soft error interrupt signal, sampled by edge-sensitive logic. 

10.6.7 Signal Dictionary 

Table 10-9: Cross-reference of all names appearing In the Interrupt chapter 

Schematic Name Behavioral Model Name 
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Table 10-9 (Cont.): Cross-reference of all names appearing In the Interrupt chapter 

Schematic Name 

E_PMN'liPMON..,L 

E_PSL~PSL..RdOa18> 

E_STLc;Q' .,NOP _S5-R 

E_USQ%MlB_R<31a2O> 

L_USQ%MlB_L<31a2O> 

L_USQ~t."TSEL..Bc.C1O> 

L_USQ~'L"l'SEL_L<41O> 

1 0-16 The Interrupt Section 

Behavioral Model Name 

C%CBOX_S_ERR_H 

E%INT_REQ...H 

E_BUS%ABUS_H 

E_BUS%UTEST_H 

E%WBUS_H 

E_PMN%PMON_H 

E_PSL%PSL_H 

E_STL%F _NOP _S5_H 

E_STL%L..'\TE_F _NOP _S4_H 

E_STL%LATE_STALL_S4_H 

E_ USQ9C~llB_H 

E_ USQ'iC!\IIB_H 

E_ USQ'iC'tJTSEL_H 

E_ USQ'kt."'TSEL_H 

I%IBOX_S_ERR_L 

:M%~IBOx....S_ERROR_H 

P%HALT~L 

P%H_ERR_L 

P%S_ERR_L 

P%INT_TIM_L 

P%PWRFL_L 

P%S_ERR_L 
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10.7 Revision History 

Table 10-10: Revision History 

Who When 

Mike Uhler 06-Mar-1989 

Mike Uhler 14-Dec-1989 

Ron Preston 09.Jan-1990 

Mike Uhler 2O.Jul-1990 

Ron Preston 07-Feb-1991 
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Description of change 

Release for external review. 

Update for second-pass release. 

Changes to simplify implementation. 

Update for change to performance monitoring intenupt request and 
reflect implementation. 

Update to reflect Pass 1 implementation. 
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Chapter 11 

The Fbox 

11.1 Overview 

This chapter describes the fioating point unit of the :NVAX CPU chip. Only the major functional 
blocks, their interfaces to each other, and the interface to the rest of the !\.~~ system are 
described here. Circuit level implementation details are not of primary concern in this document. 

11.2 Introduction 

The Fbox is the fioating point unit in the NVAX CPU chip. The Fbox is a 4 stage pipe1ined 
fioating point processor, with an additional stage devoted to assisting division. It interacts with 
three different segments of the main CPU pipe1ine, these are the micro-sequencer in S2 and the 
Ebox in 83 and 84. The Fbox runs semi-autonomously to the rest of the CPU chip and supports 
the following operations: 

• VAX Floating Point Instructions and Data Types 
The Fbox provides instruction and data support for VAX floating point instructions. VAX F-, 
D-, and G-floating point data types are supported. 

• VAX Integer Instructions 
The Fbox implements longword integer multiply instructions. 

• Pipelined. Operation 
Except for all the divide instructions, DIV{F,D,G}, the Fbox can start a new single precision 
floating point instruction every cycle and a double precision floating point or an integer mul
tiply instruction every two cycles. The Ebox can supply two 32-bit operands or one 64-bit 
operand to the Fbox every cycle on two 32 bit input operand buses. The Fbox drives the 
result operand to the Ebox on a 32-bit result bus. 

• Conditional "Mini-Round" Operation 
Result latency is conditionally reduced by one cycle for the most frequently used instructions. 
Stage 3 can perform a "mini-round" operation on the LSB's of the fraction for all ADD, SUB, 
and MUL floating instructions. If the "mini-round" operation does not fail, then stage 3 drives 
the result directly to the output, bypassing stage 4 and saving a cycle of latency. 

• Fault and Exception Handling 
The Ebox coordinates the fault and exception handling with the Fbox. Any fault or exception 
condition received from the Ebox is retired in the proper order. If the Fbox receives or 
generates any fault or exception condition, it does not change the flow of instructions in 
progress within the Fbox pipe. 
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Figure 11-1 is a top level block diagram of the Fbox showing the six major functional blocks 
within the Fbox and their interconnections. 

Figure 11-1: Fbox block diagram 
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11.3 Fbox Functional Overview 

The Fbox is the floating point accelerator for the NVAX CPU. Its instruction repertoire includes 
all VAX base group :floating point instructions. The data types that are supported are F, D, and 
G. Additional integer instructions that are supported are MULL2, and MULLS. 

The number of internal execution cycles and the total number of cycles to complete an instruction 
within the Fbox is measured as follows in Figure 11-2 
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Figure 11-2: Fbox Execute Cycle Diagram 
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The internal execution time for all instructions except MUL{D,G,L} and DIV{F,D,G} is four cycles. 
The internal execution time of the ,·arious Fbox operations is given in the following Table 11-1. 

Table 11-1: Fbox Internal Execute Cycles 

INSTRUCTION F D G L 

MUL 4 5 5 5 

DIV 14 25 24 

ALL OTHER 4 4 4 4 

The total number of cycles taken by the Fbox to complete an instruction is given in Table 11-2. 
Note that this includes the cycles taken for opcode and operand transfer, in particular, the dead 
cycle between the opcode and the first operand is counted. 

Table 11-2: List of the Fbox Total Execute Cycles 

INSmUCTlON F D 

MOL 

DIV 
ALL OTHER 

7 

17 

7 

11.3.1 Fbox Interface 

10 

30 

9 

G 

10 

29 

9 

L 

8 

This section is responsible for overseeing the protocol with the EbOx. This includes the sequence 
of receiving the opcode, operands, exceptions, and other control information, and also outputing 
the result with its accompanying status. The opcode and operands are transferred from the input 
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interface to stage 1 in all operations except division. The result is conditionally received from 
either stage 3 or stage 4. 

11.3.2 Divider 

The divider receives its inputs from the interface and drives its outputs to stage 1. It is used 
only to assist the divide operation, for which it computes the quotient and the remainder in a 
redundant format. 

11.3.3 Stage 1 

Stage 1 receives its inputs from either the interface or the divider section and drives its outputs 
to stage 2. It is primarily used for determining the difference between the exponents of the two 
operands, subtracting the fraction fields, performing the recoding of the multiplier and forming 
three times the multiplicand, and selecting the inputs to the first two rows of the multiplier array. 

11.3.4 Stage 2 

Stage 2 receives its inputs from stage 1 and drives its outputs to stage 3. Its primary uses are: 
right shifting (alignment), multiplying the fraction fields of the operands, and zero and leading 
one detection of the intermediate fraction results. 

11.3.5 . Stage 3 

Stage 3 receives most of its inputs from stage 2 and drives its outputs to stage 4 or, conditionally, 
to the output. Its primary uses are: left shifting (normalization), and adding the fraction fields 
for the aligned operands or the redundant multiply array outputs. This stage can also perform a 
"mini-round" operation on the LSB's of the fraction for ADD, SUB, and MUL floating instructions. 
If the "mini-round" does not overfiow, and if there are no possible exceptions, then stage 3 drives 
the result directly to the output, bypassing stage 4 and saving a cycle of latency. 

11.3.6 Stage4 

Stage 4 receives its inputs from stage 3 and drives its outputs to the interface section. It is used 
for performing the terminal operations of the instruction such as rounding, exception detection 
(overflow, underfiow, etc.), and determining the condition codes. 

11.4 Fbox· Ebox Interface 

The Fbox depends on the Ebox for the delivery of instruction opcodes and source operands and 
for the storing of results. However, the Fbox does not require any assistance from the the Ebox 
in executing the Fbox instructions. The Fbox macroinstructions are decoded by the Ibox just 
like any other macroinstruction and the Ebox is dispatched to an execution flow which transfers 
the source operands, fetched during 83 of the CPU pipeline, to the Fbox early in 84. Once all 
the operands are delivered, the Fbox executes the macroinstruction. Upon completion, the Fbox 
requests to transfer the results back to the Ebox. "When the current retire queue entry in the 
Ebox indicates an Fbox result and the Fbox has requested a result transfer, then the result is 
transferred to the Ebox, late in S4 of the CPU pipeline, and the macroinstruction is retired in S5. 
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The Fbox input interface has two input operand registers which can hold all of the data for one 
instruction, and a three segment opcode pipeline. If the Fbox input machine is unable to handle 
new opcodes or operands then P%JNPVT_STALL_B is asserted to the Ebox, causing the next Fbox 
data input operation to stall the CPU pipeline at the end of its 83. 

The Fbox output interface has a format mux and two result queues, the data queue and the 
control queue. The format mux is used to transform the result data into VAX storage format. 
The queues are used to hold data results and control information whenever result transfers to 
the Ebox become stalled. 

11.4.1 Opcode Transfers to the Fbox 

'\\7henever the Fbox indicates that it is ready to receive new information by negating 
F%INPUT_S'rALL_H, the Ebox may initiate the next opcode or operand transfer. The Fbox receives 
instructions from the Microsequencer (82 of the CPU pipeline) on a 9 bit opcode bus. The opcode 
bus is made up of the 8 msb's of the macroinstruction along with a single bit which, when 
set, indicates a G data type operation (i.e., the low order macroinstruction opcode byte was FD 
(hex). The Micro-sequencer indicates the presence of a new opcode by asserting the opcode valid 
fl.ag~ EC-cFBOX_1ST_CYCLE_H. This opcode 'v'alid flag is only asserted once for each ne\v instruction. 
In particular, if the Microsequencer was stalled during an opcode transfer cycle then the same 
opcode could be driven for multiple cycles, however, Eo/cFBOX_1ST_CYCLE_H is only asserted for one 
of those stalled cycles. A complete list of the instructions executed by the Fbox and the opcode 
received from the Micro-sequencer is contained in Table 11-3. 

NOTE 

The Fbox does not check for an illegal opcode. However, if an illegal opcode is received 
then the Fbox will interpret it as if it were an ADDF. No indication is given that this 
error has occured, the Fbox simply assumes that an ADDF has been started. When the 
instruction is retired (assuming that it actually was not an ADDF) it will be possible for 
diagnostic software to determine that an error has oeeured. This processing of illegal 
opcodes is done entirely to keep the Fbox internal control signals in a predictable state 
and thus avoid any "catastrophic" failure. 

Once a valid opcode has been received from the Microsequencer, it is processed in a three element 
pipeline/queue by the Fbox input logic. The first level, II, is a static register which feeds the 
re-code PLA.. The second level, 12, is the recoded opcode. The third level, 13, is the current 
instruction, this register is output to both the Divider and Fbox stage 1. Any operand being sent 
to the Fbox is always for the instruction that is in 13. Each level has a corresponding valid bit 
which indicates the presence of an instruction to be executed. When the Fbox input is not stalled 
then opcodes and operands :flow in the following order: 

a. Opcode from the Microsequencer is loaded into II during~4. (CPU 82) 
b. Re-code PLA runs during the following ~12. 
c. Re-coded opcode is loaded into 12 at the end of ~2' 
d. 12 is loaded into 13 during the following ~3. 
e. Input operand latches are loaded during the next 4>12, at the earliest 
f. Fbox internal Data Valid is set on 4>3 following the last operand reception. 
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If the final data is not received during phase 12, then the 13 register stalls. This back pressures 
the Fbox input instruction pipeline, if there is a valid instruction in 12 then it will also stall. 
Once 12 is stalled, II will stall on the next instruction from the micro-sequencer. When the final 
operand for the instruction in 13 is received the stall is removed and new instructions are allowed 
to advance within the input pipeline. 

Besides stalling when waiting for operands from the Ebox, the input instruction pipeline stalls 
for a :fixed number of cycles during MUL{D,G,L} and DIV{F,D,G} instructions. These internally 
generated stalls, termed opcode stalls, are needed to allow multiple passes in the multiply and 
the divide arrays. The opcode stalls not only keep the Fbox input pipeline from advancing, but 
also cause F%INPUT_STALL_B to be asserted back to the Ebox. 

Because an opcode stall can not be started until alI the operands for the stalling opcode have 
been received, a three level instruction pipeline/queue is needed in the Fbox input stage (refer 
to Section 11.4.3, Figure 11-3). It is possible for the Fbox to receive two additional new opcodes 
before the opcode stall can be asserted and take effect at the Ebox. These two additional opcodes, 
along 'with -the original stalling opcode, must be held in the Fbox input stage until the stall is 
finished. 

11.4.2 Operand Transfers to the Fbox 

Source operands, which were accesed in the Ebox during S3, are transferred from the Ebox to 
the Fbox early in 84. There will always be at least one cycle between the opcode transfer and the 
corresponding operands, . during which the Fbox decodes the opcode. The data type of the source 
operand, contained in the 13 register of the input instruction pipeline, is used to select the proper 
data input format. There are two 32-bit input data busses, Eo/cABUS_B and E9CBBUS_H, which are 
used to transfer operands to the Fbox. If the instruction is either a single operand type or, an 
integer or Hoating F type, then all of the operands are transferred in one cycle. If the instruction 
is a :floating D or G type then one complete 64 bit operand is transferred on the concatenated 
input busses at a rate of one per cycle. For a floating D or G data type, the lower longword (Le., 
sign, exponent, and fraction MSB's) is transferred on the EtrcABUS_B and the upper longword is 
transferred on the Eo/cBBUS_B<>. 

Each 32-bit input operand bus has a related short literal flag which indicates the presence of 
a short literal on bits<5:0> of the corresponding bus. If a double precision operand is being 
transferred then a short literal will be detected using the flag associated with the E%ABUS_H 
and the Boating short literal data will be taken from E%ABUS_H<5:O>. The remaining Eo/cABUS_B 
and E%BBUS_B bits are zero, however the Fbox ignores them. When receiving an integer short 
literal, the integer is on bits<5:0> and the Fbox depends on the remaining bits of that bus being 
zero. The Fbox: must transform all short literals to the proper format based on the instruction 
data type. 

When all of the input operand information for both input data busses is valid, the Ebox asserts 
an input valid flag, M>FDATA... VALID_H. If the flag is not asserted then the Fbox input machine 
enters an input stalled state. 

Along with the operands, the Ebox sends 3 different operand fault Bags. These are the memory 
management, hardware error, and reserved address mode faults. Once an operand fault has been 
sent to the Fbox, it is unpredictable whether the Ebox will or will not assert the E%FDATA.... VALID_H 
signal. It is also unpredictable whether or not any other outstanding operands will be sent. When 
the Fbox receives an input fault two actions take place: 
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1. The Fbox asserts data valid into the Fbox pipeline. This breaks any internal stall conditions, 
thus allowing the instru.ction to complete. 

2. The Fbox asserts F%INPUT_STALL_H. This halts the transfer of any other operands and 
prevents the Fbox and Ebox from getting out of synchronization. This stall normally continues 
until after the faulting instruction has been retired by the Fbox. It is cleared by the assertion 
of E%FLUSH_FBOx...H or K%RESET_H. 

Since the faulting operand data values used by the Fbox are undetermined, it is possible that 
the Fbox may generate additional faults. However, the Ebox prioritizes the faults on retirement, 
the three input operand faults are at the highest priority. Therefore, any Fbox generated fault 
is ignored if the Fbox received an input operand fault. On completion, the faulting instruction 
will be handled by the Ebox in the proper order, ensuring compliance with the VAX architecture 
standard. In addition, the Ebox will flush the Fbox, this will cause F%JNPUT_BTALL_H to be 
negated, releasing the stalled state. 

Besides the operand fault flags, the Ebox also sends the current ,,·alue of the PSL floating 
underfiow enable bit, E%PSL_FU_H. If the FU bit is set then the Fbox will cause a fault on floating 
underfio\'r. '\\1hether the FU bit is set or clear, the Fbox will return a floating zero data yalue on 
the result bus if underflow is detected. 

11.4.3 Summary of Fbox Input Stage Stall Rules 

The follm.ving list is a set of input stall rules for the Fbox input stage. They center around opcode 
transfers and the actions related to the assertion and negation of F%I!\"PUT_STALL_R. 

1. Floating opcodes are transfelTed from the Microsequencer to the Fbox during the CPU's 82 
cycle. There will always be at least one cycle between an opcode transfer, OPC1, and the 
first data transfer for that opcode. In addition, there can only be one new opcode transfer, 
OPC2, between Opel and opel's last data transfer. It is possible that a new opcode transfer, 
Ope3, could take place in the same cycle as Opel's last data transfer. Refer to the following 
Figure 11-3. 

Figure 11-3: Opcode Transfers to the Fbox 

Cycle I n I n+1 I n+2 I m m+1 I m+2 
+---------+---------+---------+ ... +---------+---------+---------+ 
I OPCl I I 1ST DATA I I I I LAST DATA I 

+---------+---------+---------+ ... +---------+---------+---------+--- ... 
I OPC2 I I I 

+---------+---------+---------+--- ... 
I OPC3 

+---------+--- ... 

2. Assertion of F%INPUT_STALL_H implies that the next data transfer cycle will stall; i.e., 
if F%INPUT_STALL_B is asserted during a data transfer cycle then that cycle will not 
stall but the next data transfer cycle will. That next data transfer cycle can not have 
either E%FBOx...lST_CYCLE_H or ~FDATA....VALID_H asserted. The Ebox will repeat the 
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stalled transfer cycle keeping the E%ABUS_B, E%BBUS_H, E%FDATA ... ,VALID_B, and any faults 
unchanged. 

3. If F%INPUT_STALL_B is released in the current data transfer cycle then the current data 
transfer cycle will be repeated once more in the next cycle, this time with E%FDATA.. VALID_B 
asserted. In that next cycle it is also possible to have E%FBO~lST_CYCLE_B asserted, 
indicating a new opcode transfer. 

11.4.4 Fbox Result Transfers to the Ebox 

Data is returned to the Ebox on one 32-bit output bus. A single integer or :floating F type result 
can be returned in one cycle. Floating DIG data requires two cycles, the lower 32-bits (i.e., sign, 
exponent, and mantissa msb's) are returned in the first cycle followed by the upper 32-bits in the 
next cycle. A two bit data length field and a two bit condition code map field are also returned 
,vith each result transfer, as are all of the result status bits. The data length field is used to 
indicate a result data length of Byte, Word, Longword, or Quadword. The condition code map 
field informs the Ebox which PSL condition code bits must be updated for the retiring instruction. 
If the Fbox is not trying to retire an instruction then the condition code map is forced to a value 
of "no update". For double precision results which require two transfers, the data length is set to 
Quadword during both transfers. The condition code map will be forced to a value of "no update" 
during the first transfer of a double precision result and then to the proper instruction dependent 
code during the second transfer. The other result status is broadcast during both transfers. The 
Ebox uses the result status to detect microtrap conditions before any store of result data occurs. 

The Fbox supplies 12 bits of status information with the retirement of each instruction. These 
are made up of: 

a. Operand faults received with the input operands. 
1. F%MMGT_FLT_H - memory management faults 
2. FCfoMERR_H - hardware read faults, etc 
3. F%RSVD-.ADDR_MODE_B - Reserved Address Mode Fault 

b. Fault conditions detected by the Fbox 
1. F%RSV_B .. reserved operand 
2. F%FOV_B .. :floating over:fiow 

3. F%FU_B - :floating under:fiow 
4. F%FDBZ_B - :floating divide by zero 

c. Fbox condition code values 
1. F%CC_N_H - result is negative 
2. F%CC_Z_B'" result is zero 
3. FtroCC_V_B - result caused an integer over:fiow 
4. F%CC_MAP_B<llO> - cc update map select 

If multiple exceptions are detected by the Fbox for an instruction that it is executing then all of 
the exceptions for that instruction are reported to the Ebox. The Ebox and Microsequencer 
will prioritize these faults. The source operand faults are at the highest priority. Refer to 
Section 8.5.19.7 for the priority of the Fbox detected faults. 
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There are two signals from the Ebox to the Fbox that control the transfer of results by the FboL 
E%R.ETIRE_O~H informs the Fbox that it may be possible to retire an instruction. E%STORE_OK_H 
indicates that it is possible for the Fbox to store data. When the Fbox wants to store a result the 
request signal, F%STORE_H is asserted. Similarly, if the Fbox wants to retire an instruction then 
F%R.ETIRE_H is asserted. All instructions must be retired on completion, most instructions (with 
the exception of TST and CMP) also need to store data. Single precision and integer instructions 
which store a result request to both store and retire in a single transfer cycle. Double precision 
instructions which store a result need two transfer cycles, the first transfer requests only to store, 
the second transfer requests to both store and retire. All TST and CMP instructions, regardless 
of data type, will request to retire without a store in one transfer cycle. 

The completion of a result transfer from the Fbox to the Ebox is recognized when the appropriate 
request and its corresponding OK signal are both asserted. Conversely, if the corresponding OK 
signal is not asserted then the Fbox stalls (repeats) the current transfer. 

Vlben an instruction is completed by the Fbox core, the Fbox output stage transforms the data 
result back into VAX memory format. The VAX formatted data, along ,vith ten hits of result 
status, is then always written into the output data queue. This queue has seven entries, each of 
which are 74 bits wide. The data from this queue is transferred to the Ebox on the Fo/c:RESULT_H 
bus in a mst-inlfirst-out fashion, one long'\vord at a time. If the data queue is empty at the 
time that the core is retiring, then the low word of the formatted data, along with the result 
status, is also selecied to bypass directly to the result bus. This action is performed by the result 
multiplexer, which can select one of three sources: the queue bypass bus, the output queue lo\v 
word, or the output queue high word. 

The data queue is written every cycle, its input (write) pointer is only advanced after writing 
valid data. ~'benever an instruction is retired, the data queue output (read) pointer is advanced. 
When the input and and output pointers are selecting the same entry then the queue is empty. 
If the input pointer is only one entry ahead of the output pointer a condition called empty next 
is detected. The empty and empty next conditions are used to generate result transfer requests 
from the data queue, and also in selecting between the queue bypass bus or the queue read data. 
Because double precision results retire from the Fbox core in one cycle but require two cycles to 
be transferred back to the Ebox, the high word of a double precision result will always be soureed 
from the data . queue. This allows the core to retire quadword results in consecutive cycles (which 
could happen when CVTx{D,G) instructions are executing). 

Besides the data queue, the Fbox output also has a control queue. This queue is seven bits wide 
by seven entries deep. It contains information derived from the opcode; the result data length, 
the condition code map, whether the instruction writes a result or not, and how many transfer 
cycles will be required to retire the instruction. Since the opcodes will precede the data through 
the Fbox pipeline by one cycle, there is no need to have a bypass bus for the control queue. The 
output machine is always able to write the control information into this queue and read it back 
before it is needed. Like the data queue, the control queue is written every cycle. Its input 
pointer is advanced after a new instruction has been passed through the pipeline and written 
into this queue. Its output pointer is advanced after a valid entry has been read into the control 
latch (i.e., the control queue's output latch). Because the .request information is needed early in 
the transfer cycles, the control queue often is running ahead of the data queue. 

Result transfers to the Ebox can be initiated by one of three sources: from the Fbox stage 3 bypass 
request line, from a data valid in Fbox stage 4, or from the Fbox output queue. The output queue 
takes precedence over the Fbox core. If the queue is not empty then the current queue output is 
transferred to the Ebox, any concurrent results from the Fbox core are written into the output 
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queue. Fbox stages 3 and 4 perform their own prioritization. If stage 4 is retiring an instru.ction 
then stage 3 will not attempt to bypass stage 4. Instead, stage 3 passes its unrounded result to 
stage 4 and stage 4 will retire that result in the next cycle. 

11.4.5 Fbox Pipeline Stalls 

The Fbox input can request to stall the Ebox for one of two reasons. The Ebox does not actually 
stall until the next time it is ready to transfer data to the Fbox. 

Fbox Input Stall 

1. Opcode Stalls 
2. Fault Stalls 

As was- mentioned earlier at the end of Section 11.4.1, the implementation of some instructions 
requires more than one cycle of execution within some stages of the Fbox pipeline. These 
instructions require that they be followed by a sufficient number of bubbles in the pipeline such 
that they can not be OyelTUIl by succeeding instructions. In particular, MUL{D,G~L} require two 
cycles in the stage 2 multiply array, and DIV{F!,D~G} require lO!,21,20 cycles, respectively, in the 
divide array. In order to guarantee proper operation, the Fbox input generates an input stall 
of the appropriate length for each of these instructions. The multiply stalls are controlled by a 
simple state machine in the Fbox input, it starts when all of the multiply operands have been 
received and continues for one cycle. The divide stalls are started by the input interface, as soon 
as all of the divide operands are received, and ended by a dhide done signal \vhich is received 
from the Fbox divider stage. 

'\\1henever the Fbox receives an operand from the Ebox for which the Ebox has signaled a fault, 
the Fbox will request an input stall. This is done because it is unpredictable whether or not 
the Ebox will complete any other outstanding data transfers for this instruction. Therefore, to 
prevent the Fbox from entering an unpredictable state, P'%INPUT_STALL_B is asserted and any 
new data transfers after the faulting source operand are blocked. When the instruction with the 
faulting operand is retired the Ebox will :Bush the Fbox, this will release the fault stall condition. 

The Fbox output can cause a stall at the Ebox for one of two reasons: 

Fbox Output StaU 

1. Result not ready 

2. Stage 4 bypass abort 

If the Fbox does not have any results ready to retire and it is the selected source for the RMUX 
in the Ebox, then the Ebox is stalled until the Fbox is ready to transfer the result. 

Stage 3 in the Fbox has the ability to perform "mini-round" operations for floating ADD, SUB, 
and MUL instructions. When stage 3 detects that it may be possible to round its fraction result 
and bypass stage 4, then it makes a request to store data to the Fbox output interface. If the 
data queue is empty then this store request is passed on to the Ebox. Later in the same transfer 
cycle, stage 3 may detect a "mini-round" overflow or some other error condition. If this occurs 
then stage 3 signals an abort of the stage 4 bypass. If the data queue was empty then this abort 
causes Fo/cSTORE_STAI.L..B to be asserted to the Ebox. The current store is stalled, by the Fbox, 
for one cycle until the correct result can be obtained from stage 4. 
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11.4.6 Fbox Reset and Flush 

The Fbox can be initialized by the assertion of two different signals. At powerup time K%RESET_B 
is asserted for several cycles. This signal initializes all of the instruction registers and the output 
queue pointers in the Fbox interface. Any outstanding transfers and all stalls are terminated. At 
the completion of reset the Fbox is properly initialized and ready to receive opcodes and operands. 

The Ebox can also initialize the Fbox by asserting the E%FLUSB_FBO~H signal. This has the same 
effect as resetting the Fbox, the Fbox pipeline is cleared of all operations. Operations already 
under way anywhere in the pipeline are lost. E%FLUSB_FBO~H is updated during phase 1 and 
it is only asserted for one cycle. The Fbox is ready to receive new opcodes in the very next cycle. 

11.4.7 Summary of Fbox-Ebox Signals 

The following signals are driven by the Ebox to the Fbox. 

• E%FLUSH_FBOX_H 
This signal causes the Fbox to clear its pipeline of all operations. 

• ECiCFBOX_lST_ CYCLE_H 
This signal tells the Fbox that the opcode is valid. 

• E%FOPCODE_H<8:O> 
This 9-bit opcode bus carries the B-bit opcode byte of the macroinstruction along with a single 
bit that indicates G-type data. 

• E%FDAT..o\.. V.ALID_H 
This signal tells the Fbox that all data on the operand busses is valid. The Fbox knows, from 
decoding the opcode, exactly what data to expect. 

• E%.ABUS_H<31:O> and E%BBUS_B<31:O> 
These 32-bit busses carry the source operand(s). 

• Eo/cA...SBLIT_B and E%B_SBLrl'_B 
These signals indicate that the data on the Eo/4lABUS_B or the ~BBUS_B, respectively, is'a 
6-bit short literal value extracted from the instruction stream.. Special data formatting is 
requ.ired by the Fbox. 

• E%PSL_FUJI 
The current psL<FU> value for use by the Fbox in deciding whether to signal :floating point 
underflow faults or not. 

• E%F .,l\fMGT_FLT_B, E%F ,.MEM..ERR_H, and E%F _BSVD_ADDR~ODE_B 
These signals tell the Fbox that there is a fault or error associated with the source operands. 
The Fbox carries this status down the pipeline so that it is handled after instructions which 
are already in the Fbox pipeline. 

• E%FBO~S4_BYPASS_ENB_B 

This signal is used to control the Fbox stage 4 bypass option. Assertion of this signal enables 
stage 3 to conditionally bypass stage 4. This signal is normally cleared at system startup, 
disabling the bypass option. This signal has the additional function of selecting between 
FDlR or FD2R to be output of Stage3 while the FBOX is in FBOX_Test mode. 

• E%RETIBE_OE....B, E%S'I'ORE_OK.-B 
These signals inform the Fbox of any stalls when attempting to transfer a result to the Ebox. 
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The following signals are driven by the Fbox to the Ebox. 

• F%IN'PUT_STAI..kH 
This control signal stalls the Ebox from issuing any more operands to the Fbox. 

• F%RETIRE_B 
This control signal tells the Ebox the Fbox is attempting to retire an instru.ction in this cycle. 

• Fo/eSTORE_B 
This control signal tells the Ebox the Fbox is attempting to store a result in this cycle. 

• pcr~TORE_STALL_H 

This control signal tells the Ebox the Fbox is stalling the current store request this cycle. 

• ~IDRESULT_B<31:OO> 

This 32-bit bus caITies Fbox results to the Ebox. 
• F%FBOX_DL_B<I:O> 

This is the data length used by the Ebox for an Fbox store. 
• F%CC_lICB, F%CC_Z_H, Fo/cCC_ V_H 

These 3 signals carry Fbox condition code bits to the Ebox. They are Negative, Zero, and 
Overflow. 

• Fo/eCC_MAP _H<I:O> 
This is the map specifier which tells the Ebox how to update the PSL condition code hits. 

• Fc,"c..'\fMGT_FLT;.,H 
Signals a memory management fault for one of the currently retiring instruction's source 
operands. 

• Fo/GMERR_H 
Signals a memory access hardware error for one of the currently retiring instruction's source 
operands. 

• F%BSVD_ADDR_MODE_B 
Signals a reserved address mode fault for one of the currently retiring instruction's source 
operands. 

• F%RS'V_H 
Signals a reserved operand fault for one of the currently retiring instru.ction's source operands. 

• F%FOV_H 
Signals a Boating point overflow fault resulted from the currently retiring instruction. 

• ~_B 
Signals a Boating point underflow fault resulted from the currently retiring instruction. 

• F%FDBZ_B 
Signals a Boating po~t divide-by-zero fault resulted from the currently retiring instruction. 

11.4.8 Fbox Instruction Set 

The instructions listed in Table 11-3 constitute the VAX integer and :floating point instructions 
supported by the Fbox datapath. 
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Table 11-3: Fbox Floating Point and Integer Instructions 

Fbox CC 
Ope lDstructiOD NZVC MAP DL Exceptions 

04C CVTBF src.rb, dst.wf **00 10 10 
06C CVTBD src.rb, dst.wd **00 10 11 
14C CVTBG src.rb, dst.wg **00 10 11 

04D CVTWF src.rw, dst. wf **00 10 10 

06D CVTWD src.rw, dst.wd **00 10 11 
14D CVTWG src.rw, dst. wg **00 10 11 
04E CVTLF src.rI, dst. wf **00 10 10 

06E CVTLD sre.rl, dst.wd **00 10 11 
14E eVTLG src.rI, dst.wg **00 10 11 

048 c\'TFB src.n, dst.wb ***0 11 00 rsv, iov 

049 eVTFW sre.n, dst.ww ***0 11 . 01 rs'\, io" 

04A CVTFL sre.n, dst.wI ***0 11 10 rsv~ iov 

068 CVTDB src.rd., dst. wb ***0 11 00 rsv, iov 

069 CVTDW src.rd., dst.ww ***0 11 01 rsv, iov 

06A CVTDL src.rd, dst. wI ***0 11 10 rsv, iov 

148 CVTGB are.rg, dst.wb ***0 11 00 nv, iov 

149 CVTGW sre.rg, dst.ww ***0 11 01 nv, iov 

14A CVTGL src.rg, dst.wl ***0 11 10 nv, iov 

04B CVTRFL src.rf, dst. wI ***0 11 10 rsv, iov 

06B CVTRDL src.rd., dst.wl ***0 11 10 rav, iov 

14B CVTRGL src.rg, dst.wl ***0 11 10 nv, iov 

056 CVTFD src.rf, dst. wd **00 10 11 rav 

199 CVTFG src.rf, dst. wg **00 10 11 rsv 

076 CVTDF src.rd, dst. wf **00 10 10 rav,fov 

133 CVTGF src.rg, dst.wf **00 10 10 nv, fov, fuv 

040 ADDF2 add.rf, sum.mf **00 10 10 nv, fov, fuv 

041 ADDF3 addl.rf, add2.rf, sum.wf **00 10 10 rsv,fov,fuv 

060 ADDD2 add.rd, sum.md **00 10 11 nv, fov, fuv 

061 ADDD3 add1.rd, add2.rd, sum.wd **00 10 11 nV,fov,fuv 

140 ADDG2 add.rg, sum.mg **00 10 11 rsv,fov,fuv 

141 ADDG3 add1.rg, add2.rg, sum. wg **00 10 11 nv, fov, fuv 
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Table 11-3 (Cont.): Fbox Floating Point and Integer Instructions 

Fbox CC 
Ope IDstructiOD NZVC MAP DL ExceptiODS 

042 SUBF2 sub.rf, dif.mf **00 10 10 rev,fov,fuv 

043 SUBF3 sub.rf, min.rf, eli!. wf **00 10 10 rev, fov,fuv 

062 SUBD2 sub.rd, dif.md **00 10 11 rev, fov,fuv 

063 SUBD3 sub.rd, min.rd, dif.wd **00 10 11 rev, fov, fuv 

142 SUBG2 sub.rg, dif.mg **00 10 11 rev,fov,fuv 

143 SUBG3 sub.rg, min.rg, dif.wg **00 10 11 rev, fov, fuv 

OC4 ~IDLL2 mulr.rl, prod.ml ***0 11 10 iov 

Oe5 lvIULL3 mulr.rl, muld.rl, prod.wI ***0 11 10 iov 

044 ~roLF2 mulr.ti, prod.mf **00 10 10 rsy, fo,·, fuv 

045 MULF3 mulr.rf~ muld.rf, prod.wi **00 10 10 rsv, fov, fuv 

064 :Mt;"LD2 mulr.rd, prod.md **00 10 11 rsY, fov, fuv 

065 l\rt1LD3 mulr.rd, muld.rd, prod.wd **00 10 11 rsv, fov, fuv 

144 ~fiJ"'LG2 mulr.rg, prod.mg **00 10 11 rsv,fov,fuv 

145 MULG3 mulr.rg, muld.rg, prod.wg **00 10 11 rev, fov, fuv 

046 DIVF2 divr.rf, quo.mf **00 10 10 rev, fov, fuv, fdvz 

047 DIVF3 divr.ti, divd.rf, quo.wf **00 10 10 rev, fov, fuv, fdvz 

066 DIVD2 divr.rd, quo.md **00 10 11 rev, fov, fuv, fdvz 

067 DIVD3 divr.rd, elivd.rd, quo.wd **00 10 11 rev, fov, fuv, fdvz 

146 DIVG2 elivr.rg, quo.mg **00 10 11 rev, fov, fuv, fdvz 

147 DIVG3 elivr.rg, divd.rg, quo.wg **00 10 11 rev,fov,fuv, fdvz 

050 MOVF src.rf, dst.wf **0- 01 10 rev 

070 MOVD sre.rc., dst. wd **0- 01 11 rev 

150 MOVG sre.rg, dst. wg **0- 01 11 rev 

052 MNEGF src.n, dst. wf **00 10 10 rev 

072 MNEGD src.rd, dst. wd **00 10 11 rev 

152 MNEGG src.rg, dst. wg **00 10 11 rev 

051 CMPF sre1.rf, src2.rf **00 10 :xx rev 
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Table 11-3 (Cont.): Fbox floating Point and Integer Instructions 

Fboz CC 
Ope IDstructioD. NZVC MAP DL E:&:ceptiODS 

071 CMPD sre1.rei, src2.rd 

151 CMPG srel.rg, src2.rg 

053 TSTF src.rf 

073 TSTD src.rd 

153 TSTG src.rg 

CC_MAP: Condition Code Map 

00 = No Update 
()1 = MOV Floating 
10 = All Other Floating 
11 = Integer 

DL: Result Data Lenet;h 

00 = Byte 
01 = Word 
10 = Long 
11 = Q-olad 

11.5 DIVIDER 

11.5.1 Introduction 
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The divider stage in the Fbox performs the floating point divide operations. The inputs to the 
divider stage are the divisor and the dividend operands, source data type, opcode, data valid, 
and abort from the input interface section. The divider computes the quotient, and outputs to 
stage 1 of the pipeline: the quotient as two vectors, the :final remainder, also as two vectors, and 
division done signals. The divider also supplies the division done signal to the input interface 
section. The input interface stalls after issuing a divide instruction and defers further issue of 
instructions to Divider/Stagel until the division is completed in the divider. 

The final quotient and the final remainder are computed in the pipe stages. The sign of the :final 
remainder is used for correcting the quotient. This correction is done in stage-3 of the pipeline. 
The terminal operations for floating point divide (quotient overflow, rounding), and the detection 
of floating overflow, underflow, and reserved operand are done in the pipeline stages. 

The execution time within the divider stage is data independent for divide instructions. The table 
below lists execution time within the Fbox for divide instructions. 
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Table 11-4: Total Fbox execute cycles for Divide operation 

IDstruction 

DIVF 

DIVD 

DIVG 

Execution time in cycles 

17 
30 

29 

The execution cycles are counted beginning with the cycle in which Fbox receives the divide 
opcode through the cycle in which Fbox retires the result to EBOX. 

A typical cycle count for OIVD instruction would have 1 opcode transfer cycle, 1 dead cycle, 2 
operand transfer cycles, 1 divide pIa cycle, 20 divider array cycles (retires 60 bits of quotient), 
1 cycle each through stagel, stage2 and stage3 and finally 2 cycles for the result transfer from 
stage4 Gower longword) and output interface (upper longword) for a total count of 30 Fbox cycles. 

11.5.2 Overview 

The dhider uses the Radix-2 SRT division algorithm using the following recursive relation: 

::?" ~s -:'::'e ~~:-:!~: = .. =.e.:!..::.:'.:, 
; !s ~=e ~~:-:.i_~~ £~: 
~ is ~he ~i~iso=. (ass~ed to be no:malize~.) 

The partial remainder is computed using carry save addition and the quotient is selected using 
an estimate of the partial remainder. The boundary conditions for the partial remainder and the 
estimated partial remainder are as follows: 

a. -2D -< partial remainder < 2D 
b. 0 -< Max. error < 1.0 
c. -2.5 -< est1mated partial remainder < 2.0 
d. Quotient selection 

q - -1 if estimated partial remainder < (- 0.5) 
q - 0 if (- 0.5) -< estimated partial remainder < 0 
q - +l if estimated partial remainder >- 0 

To compute the estimated partial remainder the condition b) together with (c) above implies that 
a Carry Propagate Adder (CPA) of 4 bits (3 bits above the binary point and 1 bit below the binary 
point) is required. 

The division process essentially consists of the following two steps to retire each bit: 

• Compute estimated partial remainder using the CPA and the quotient 
• Compute the new partial remainder using the CSA by adding +0, -0 or 0 to the partial 

remainder based on the quotient from step 1. 
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Figure 11-4: Divider Array Block Diagram 
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In order to speed up the time for retiring each bit, step 1 and step 2 are performed in parallel as 
there are only three choices for the quotient. As shown in the block diagram, Figure 11-4, the 
divider array computes (PR+1 *D), (PR-1 *D) and (PR+O*D) for all the possible values of quotient: 
q = -1, +1, and 0, in parallel while the quotient is being calculated. The correct new partial 
remainder is selected using the computed quotient. In the divide array, there are three rows of 
CSAs. Thus three bits are retired with each pass through the divide array. 

11.6 Interface Signal Timing Diagrams 

11.7 Divider Operation 

For a valid divide operation, the divisor is loaded into Divisor (DVR) register and the dividend 
into Dividend Feedback (DFB) register, both during Pffi_ 4. The CFB is initialized to zero. The 
control then sequences the datapath with appropriate control signals to load DFB and QM, for 
the required number of divide steps. For the DIVF instruction, the divide array generates 27 
bits of quotient. For the DIVG instruction, the divide array produces 57 bits of quotient. For the 

DIGITAL CONFIDENTIAL The Fbox 11-17 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

Figure 11-5: Input Signals from Input Interface 
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Key: I - driven by Interface 

DIVD instruction, the divide array produces 60 bits of quotient. In general, since the quotient is 
greater than or equal to 0.5 and less than 2.0, the number of quotient bits to generate are the 
number of bits in the data type, one bit above the binary point and for rounding an additional 
hit in the least significant end. Since the divider array has three rows, one to two additional bits 
are generated. 

The divider control receives the F _I%DSEQ..START_L signal from the input interface indicating 
a valid DIV instruction. This signal should remain valid from the trailing edge of PHI_2 (input 
to the Divider PLA) thru. to the trailing edge of PHI_4 (Divisor and Dividend· Latches). coming 
from the input interface. The divisor and dividend operand latches are conditioned by the 
F _I%DSEQ...START_L signal. The source data type field from the input interface determines 
whether the division is a DIVF or DIVD or DIVG. 

At the conclusion of the required divider steps signals F_D_C2%DSEQ..DONEDAT4_H (to 
Input Interface) and F_D_C%DIVDONE_DAT_H (to Stage-I) are asserted. First the quotient 
components are driven on F_I%FDlR_H and F_I%FD2R_H together with the exponent and sign 
registers on respective buses. Then the sum and carry vectors are driven on F _I%FDR1_H and 
F _I%FD2R_H with exponents and signs. 
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Figure 11-6: Result Transfer to Stage-1 
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D - driven by Divider. 

NOTE 1: divdone dat with t bypass d deasserted. 
NOTE 2: data vaIid only for quotient transfer. 

The final quotient and the:final remainder are computed in the pipeline stages. In stage 1, the 
two parts of the quotient and in the following cycle, the two parts of the remainder are added. The 
final quotient requires coITeCtion if the sign of the final remainder is negative as one too many 
subtractions were performed. Thus, if the sign of the final remainder is negative the quotient is 
decremented in stage 3. If the quotient is GEQ 1.0, it is shifted down and rounding constant is 
added in stage 4. " 

11.8 Divider Implementation 

The divider stage consists of fraction data path, control, exponent and sign sections. 

11.8.1 Divider Fraction Data Path 

The divider fraction data path is composed of divisor register, divider array, quotient logic, 
quotient/remainder selector, and the fraction data path drivers. A block diagram of the divider 
fraction data path is shown in Figure 11-7. The divider fraction data path is shifted down by 
three bits relative to the interface and stage 1 fraction data path as shown in the figure. 
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11.8.1.1 Divisor Register • DVR 

The divisor register DVR<Bl:B55> stores the divisor from the interface for divide operations. 
The DVR register is loaded during PHI_ 4 when input interface asserts the F _I %DSE't,START_L 
(asserted in Pffi_2 and held by the divider through Pffi_4) and the divider control asserts 
DVR_ "WR_FDI (asserted in Pffi_ 4). DVR<.A2:AO> are forced to zero and DVR<BO> is forced 
to one. The output of this register is shifted down by two bits (for topological reasons to create 
space for Estimated Partial Remainder logic at the left of the datapath) and is used by the divider 
aITay to compute the partial remainder in DCSA cells. The dividend operand is also latched in 
PEn_4. 

11.8.1.2 Divider Array 

The divider array consists of three rows of carry save adders (CSA:s), three carry propagate adders 
(CPAs), latches for the dividend and intermediate results. The various cells the divider array is 
composed of are DCSA, DSEL CPA, LA.Tl, R2D, DCSAF, DFB and CPA. The least significant bits 
of the array are different from the others and are described later. 

11.8.1.2.1 DCSA and DSEl 

The nCSA, the carry save adder cell computes in parallel the (partial remainder + di,,"isor), 
(partial remainder - divisor) and (partial remainder + 0) corresponding to the quotient values of 
-1, 1, and 0 as sum (8) and carry (C). The correct new partial remainder is selected in DSEL 
using the three select lines from the CPA. 

?R: Pa~ial Rema~~der 
s: swr. ~npu~ 
c: carry inpu~ 
D: d.ivisor 

S P~uso: sum output of PR+O 
S-PLUSD: sum out~ut of PR+l*D 
S:M!NUSD: sum output of PR-l*D 

SUM - S XOR C 
SANDC L - NOT(S AND C) 
SORC_L - NOT(S OR C) 

S PLUSO - SUM 

C_PLUSO: carry output of PR+O 
C_PLUSD: carry OUtput of PR+l*D 
C_MZNUSD: carry output of PR-l*D 

S - PLUSD - NOT «D AND SUM) OR (NOT D AND NOT SUM» 
S:MINUSD - NOT(S_PLUSD) 

C PLUSO - NOT(SANDC L) 
C-PLUSD - NOT«D AND SORC L) OR (NOT D AND SANDe L» 
C:MINUSD - NOT«NOT D AND-SORC_L) OR (D AND SAN.DC_L» 

The inputs to the first row of the divider array are DVR, SFB_H, CFB_H. During the :first step of 
the divide, the SFB and CFB contain the dividend and zero respectively and during subsequent 
steps they carry the outputs of the third row. The second row of the divider also uses the DCSA 
and DSEL cells. 

In the least significant bits of the array, since the S vector is shifted left by 1 and C vector is 
shifted left 1>,y 2, except for the first step of the division, the S and C inputs to the DCSA are 
zero. For the first step of the division, the least significant bit contains dividend <B55>. For the 
computation of PR-1 *D, the divisor is complemented and a one is forced in the C input position 
( to complete the 2's complement) as illustrated in Table 11-5. 
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Table 11-5: CSA Inputs 

CSAPorts PR+o PR+l*D PR-l*D 

Input S S S S 

Input C 0 0 1 

Input D 0 D NOTD 

Output S S SXORD SXORD 

Output C 0 SANDn SOR (NOT D) 

11.8.1.2.2 LAT1 

The outputs of the first row are latched every cycle in the L..4..Tl cell to avoid corrupting the third 
row inputs. The LATI cell is also used to latch the select lines from the row 1 CPA in hit position 
<B56> for the formation of the quotient. The L..td'l outputs are shifted left - S by one and C 
by two, to form the 2*partial remainder for the second row DCS.A.. During reset, LATI is loaded 
with the row 1 outputs to prevent illegal data making multiple select lines valid in the second 
and third rows of the divider array. 

11.8.1.2.3 R20 and OCSAF 

The cell R2D buffers the outputs of the second row and consequently the Sand C vectors for the 
third row are asserted low. The cell DCSAF used for the third row is similar to the DCSA cell 
except that it takes Sand C in complement form. 

11.8.1.2.4 DFB and SHF 

The DFB register contains static latches for the S and C outputs from the third row of the divider 
array and to store the dividend. The dividend is loaded into SFB from the input bus during pm_ 4 
using the control signal DFB_ WR_FD2 and RESET_H, while the CFB is cleared. The Sand C 
vectors from the third row are loaded into DFB using the control signal DFB_ WR_R3 at the end 
of each pass through the array. The outputs of the DFB cell SFB_H and CFB_H are fed back to 
the first row of the array for the next pass. In addition, at the end of the required division steps, 
the DFB holds the final remainder to be transmitted to stage 1. The sign of the final remainder 
is used to correct the final quotient. Since the sign is derived from <.A.O> bit of the stage 1 adder, 
the final remainder is shifted down and buffered. The 8HF cell accomplishes this and its outputs 
are RSR_L and RCR_L. 
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Figure 11-7: Divider Fraction Data Path 

F _ %F02_LcA2:B58> 
FROM INPUT INTERFACE 

F _B%FC'_Lc2:B5h 

~ 

OVR_LATCH (B, :B5 6) 
1/ OVR_WR_FO' (PH 

"-

~ W-W 
v -.J 

ROW1 
CSA1 I--CPA1 I"- /1 SEL1 

I 
OVR_H S C 

,1/ ,1/ " I I 1/ 
PHI -LATCH 

1'. 

2 

I ~ ,1/ ,1/ I I 

I I I I 
I 

CSA~ ~ C~A2 l/ " ROW2 I OS21 

f' / SE~L2 

I I w 
IS C I ! I ,1/ ,!/ I ~ 

1/ , 
I I ROW3 

I I 
CSA3 

~ C~A3 Q23 
I' ;' SEL3 

I i 
- ~ i 

VSS J S C 
I ~/~ '-.I/W 

I I DFS 1/ OFB_WR_FO 

" I 
,1/ F 

, V j,...FB 

SHF 

S C 

-W -W 
1/ 

QM_SHIFT _IN ( 
F C,G 

CN I' 
as i/ 

PHI_2 

" QS QC RS RC 

" 1/ , " 1/ , i/ SEL_QUOIREM 
i/ 

OSEL. (QUOTIENT/REMAINDER SELECT) I' 

, l/, , ~ 1 OIVDONE_DAT 
i/ 

TS (TRISTATE DRIVERS) I' tF W F _'%FO' R_H TO STAGE·, 
F _'%F02R H 

11.8.1-.2.5 CPA 

The CPA in each row of the divider array computes the estimated partial remainder(EPR) and 
generates the three select lines for selecting one of PR+O, PR+D and PR-D in the array. The 
inputs to the CPA are the four MSBs of S and C from the divider array. The CPA is implemented 
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as a carry select adder as shown in Figure 11-8. The carry select adder computes the sign of the 
EPR, SIGN_H, and the zero detect logic detects if the 4-bit sum is exactly -0.5 (1111#2), Z_H. The 
three select lines are derived as follows: 

ESTIMATED PARTIAl.. REMAINDER 

Oll.l 
OlO.0,OlO.1,Oll.0 
OOl.X 
ooo.x 
lll.l 
111.0 
1l0.X 
101.1 
101.0,lOO.X 

SE~ Zt R* H - select PR+O out~ut 
s~~=:t:R~:E - Select PR+D out?U~ 
S~~_~~_R*_E - select PR-D output 

s~:._z:_!{ .. _E - ::_E - s::z.: ~::. j=::. 2 
S~:_::_?~ .. _~ - :::: Z_E ;':;D S:Gl:_E 
S~:._!·=_?:~ _= - l~=':' S:G!~_E 

ACTION 

SELECT PR+O OUTPUT (NOT POSSIBt£) 
SELECT PR-D OUTPUT (NOT POSSIBLE) 
SELECT PR-D OUTPUT 
SELECT PR-D OUTPUT 
SELECT PR+O OUTPUT 
SELECT PP.+D OUTPUT 
SELECT PR+D OUTPUT 
SELECT PR+D OUTPUT 
SELECT PR+D OUTPUT (NOT POSSIBLE) 

The three select lines are also used to form the quotient. 

Figure 11-8: CPA Block Diagram 

S<A2> C<A2> S<AO:BO> C<AO:BO> S<A1 :80> 

QSELECT 

11.8.1.3 Quotient Recodlng and Quotient Registers 

DIGITAL CONFIDENTIAL 

C<A1 :80> 

SEL_ZD_R* _L 
SEL_PD_R* _H 
SEL_MD_R* _L 
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11.8.1.3.1 QS21 and QREC 

The select lines SEL_PD_R*, and SEL_MD_R* indicate the selected quotient value. Each pass 
through the array three pairs of quotient bits are generated. These can be expressed as the 
number of additions and the number of subtractions performed. These bits need to be accumulated 
in two shift registers. The final quotient is the total number of effective subtractions performed. 

In order to minimize the number of bits to accumulate and to reduce the shift register bits, 
the three pairs of quotient bits from each pass through the divider array are encoded into four 
bits. The encoding is accomplished by generating the magnitude of the number of subtractions 
in each pass as three bits and a catTY bit if the number of additions is greater than the number 
of subtractions. These four bits, instead of the six bits before the encoding, are accumulated in 
the shift register QM!QS. The catTy vector after shifting left by 1 is subtracted from the number 
of effective subtractions to form the final quotient. 

Since the row 3 computation is done last, two sets of quotient bits are generated from the first 
two rows - one for each. possibility and the final quotient bits are selected based on the row 3 
quotient bits. The cell QS21 performs recoding and generates the QSB21, QSB20, QSBIO(QSBll) 
and QCAI and QCAO. 

;~ - a:;~~i:~ cc~_ !~ :~w : 
SG - s~,:ra=,: cion. in row :3 

x: - 52 XOR 1..2 

Q5S21 - NOT (X2 XO~ 51) QSB20 - X2 XOR Al 
Q5E11 - 51 XOR Al QSB10 - NOT Q5511 
Q530 - 50 O~ AO 

QCAl - 1..2 O~ (NOT 52 AND NO'!' 51) 
QCAO - 1..2 OR (NOT 52 AND Al) 

The cell QREC selects the final quotient bits and its outputs are QSUB_H<2:0> and QC_L<O> 
corresponding to the effective subtractions and the carry from one pass thru the array. These 
bits are shifted in ~ accumulate the final quotient in QMlQS cells. 

11.8.1.3.2 QM and QS registers 

The QM and QS is a master/slave shift register that holds the two components of the quotient -
the number of subtractions performed and the carry vector respectively. Mter each pass through 
the array the quotient bits are loaded into QM at various positions depending on the data type. 
For the DIVF instruction the quotient bits are shifted into bit <B25>. For the DIVD instruction 
the quotient bits are shifted in at position <B5S>. For the DIVG instruction the quotient bits are 
shifted in at position <B55>. The quotient carry component QC, is shifted left by one position 
when it is loaded into QM. The QM register is initialized to zero before beginning a new divide 
instruction so that the pipeline stages can operate on all the bits of the quotient. The QM register 
gets loaded either from the QSUB<2:0> and QC<O> or from the slave QS after a shift of three 
bits in PHI_ 4. The QS latch is loaded every PHI_2. The QM cells uses six control signals to clear, 
load or shift in the data. These control signals are derived as shown in Table 11-6. 
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Table 11-6: QM Cell Control Signals 

Operation 

Bit PositiollS INIT DIVF DIVD DIVG DONE Cells 

AO:B22,B26:B52 CLEAR SHFL SHFL SHFL NOP QMC,QMFC,QMGC 

B23:B25 CLEAR FLOAD FSHF FSHF NOP QMF 

B53:B55 CLEAR NOP SHFD GLOAD NOP QMG 

B56:B58 CLEAR NOP DLOAD NOP NOP QMD 

Control Signals • 

DQM_SHFL 0 1 1 1 0 

DQM_FLD 0 1 0 0 0 

DQM:_FSHF 0 0 1 1 0 

DQM_DLD 0 0 1 0 0 

DQM_GLD 0 0 0 1 0 

DQM_CLR 1 0 0 0 0 

'" -asserted HIGH. 
During reset, all the above control signals except DQ~CCLR are deasserted. 

In order to simplify the stage 1 control, the ones complement of the QC component is transferred 
to stage 1 so that stage 1 adder performs the same operation for both the final quotient and the 
final remainder computation. 

11.8.1.3.3 QSEL and TSF 

The QSEL selects the divider results to be driven to the stage 1 fraction data path. At the 
end of the required division steps, first the two components of the quotient are selected and 
in the following cycle the RSR and RCR of the final remainder are selected using the control 
signals DIV _SEL_REM_ *. Since the carry component of the quotient is only one bit .per three 
quotient bits, zeros are forced into the other two bits. The TSF cell consists of a tristate driver 
that drives the divider results on F _B%FDl_L and F _B%FD2_L busses during Pffi_2 and Pffi_3 
using the control signal F _D_C2%DIVDONE_DATF _H. The TSF also contains buffers to drive 
F_I%FDlR_H and F_I%FDlR_H to stage 1. 

11.8.2 Divider Control 

The divider control is responsible for all sequencing and control of the divider data path. It 
gets F _I%DSEQ..START_L, SRC_DT_H<l:O> , F _I%DATA_ VALIDR_H and F _I%ABORT_H from 
the Input Interface. The divider control generates all control signals for the data path, and 
F_D_C2%DSEQ..DONEDAT4_H signal for the input interface and F_D_C%DIVDONE_DAT_H 
to stage 1 of the pipeline. The early signal F _D_C2%DSEQ...DONEDAT4_H to the input interface 
stays valid thru two cycles for both the quotient and remainder transfers. 
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The F _I%DSE'LSTART_L signal obtained from the input interface must be valid by the trailing 
edge of PHI_2. A latched version of this signal is used in Pffi_ 4 to latch in the divisor and 
dividend. 

11.8.2.1 Divider Control Blocks 

The divider control consists of the control sequencer and miscellaneous logic, source data type 
latches, and buffers for driving the various control signals to the fraction data path. 

11.8.2.1.1 Control Sequencer 

The control sequencer is implemented as a PLA.. The inputs to the PLA are the latched version of 
F_I%ABORT_H, F_I%DSEQ..START_L, F_I%SRC_DT_H<l:O> and state information. The PLA 
essentially implements a counter and a sequencer to control the data path. The divider control 
stays in the NOP state until a valid divide opcode and valid operands are received. The signal 
F _I%DSEQ..START_L obtained from the input interface combines these two conditions. 
The state transition table shows the sequencer state, inputs and outputs. 

Figure 11-9: Divider Sequencer State Transition Table 

--------------------------------------------------------------------------------------------------------------. : :!;::;:-s O:;:'rtT=S 

~;-=:.: .. : ~-.:-.:'.- - S?,.:_=:- s:;..:!<,:c> ~~:.-:~"'! E-:SY ::'!~_:'A: :s:?~!:: ---: .. S:;' .. :£<~: c> :::~_ :.?: s~-_::== ~~:~_7;~:=' --
~--------------------------------~----------------------------------------------------------------------------~ :. x x x 0 0 0 0 1 ~1::>? 0 0 0 

0 1 X NO? 0 0 0 0 1 NO? 0 0 0 
I 0 0 X NOr 0 1 0 1 0 PASS:'. 0 0 0 

0 x x PASSl 0 : c - C PASS:2 C 0 C 
I 0 X X PASS2 0 1 0 1 0 PASS3 0 0 0 
I 0 X X PASS3 0 1 0 1 0 PASS4 0 0 0 
I 0 X X PASS4 0 1 0 1 0 PASSS 0 0 0 
I 0 X X PASSS 0 1 0 1 0 PASS6 0 0 0 
I 0 X X PASS 6 0 1 0 1 0 PASS7 0 0 0 
I 0 X DIG PASS 7 0 1 0 1 0 PASse 0 0 0 
I 0 X F PASS7 0 1 0 1 0 LAS'X2 1 0 0 
I 0 X X PASse 0 1 0 1 0 PASS 9 0 0 0 
I 0 X X PASS 9 0 1 0 1 0 PASS10 0 0 0 
I 0 X X PASS10 0 1 0 1 0 PASSll 0 0 0 
I 0 x X PASSll 0 1 0 1 0 PASS12 0 0 0 
I 0 X X PASS12 0 1 0 1 0 PASS13 0 0 0 
I 0 x X PASS13 0 1 0 1 0 PASS14 0 0 0 
I 0 X X PASS 1 4 0 1 0 1 0 PASS15 0 0 0 
I 0 X X PASS15 0 1 0 1 0 PASSl6 0 0 0 
I 0 X X PASS16 0 1 0 1 0 PASS17 0 0 0 
I 0 X G PASS17 0 1 0 1 0 LAS'X2 1 0 0 
I 0 X D PASS17 0 1 0 1 0 PASSlS 0 0 0 
I 0 x X PASSlS 0 1 0 1 0 LAS'X2 1 0 0 
I 0 x X LAST2 0 1 0 1 0 SooNE 1 1 0 , 0 x X SOONE 0 1 1 0 0 (looNE 1 1 1 
I 0 x X QOONE 1 1 1 0 0 IUX>NE 1 0 0 , x x X RDONE 0 0 0 0 1 NOP 0 0 0 

+--------------------------------+----------------------------------------------------------------------------+ 

The divider control PLA has 10 inputs, 14 outputs and 26 Minterms. These numbers include one 
spare input, one spare output and three spare minterms. 
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11.8.2.1.2 Opcode Information Latches 

The divider latches the source data type signal from the input interface. If the divider is not busy, 
then the source data type information is latched into a static Pffi_2 latch (cell LS). The output 
of this latch is used as an input to the sequencer PLA. 

11.8.2.1.3 Divider Behavior during ABORT 

Divider starts execution upon receipt of the F _I%DSE'LSTART_L signal from the Input Interface. 
Assertion of F _I%ABORT_H from the Input Interface, while the divider is retiring quotient bits, 
will automatically force the divider to reset its control sequencer to its initial NOP state and to 
maintain the data valid enable in its deasserted state. It is expected that the Input Interface 
also deasserts the F _I%DATA_ VALIDR_H signal during the ABORT cycle. 

Assertion of the F_I%ABORT_H signal from the Input Interface during quotient and result 
transfers to Stage-I, also STOPS the divider from driving the F _D%DATA_ v..4.LIDR~H 
line to Stage-I. As above it is expected that the Input Interface also deasserts the 
F _I % DATA_ v..4.LIDR_H signal during the ABORT cycle. 

11.8.2.1.4 Data path Control Drivers 

The ~·arious control signals to the data path are combined with the appropriate clock signals and 
driven to the data path. 

11.8.2.2 Summary of Divider Stage Outputs 

The following table shows the divider stage outputs for the divide operations: 

Table 11-7: Divider Output Stages 

Instruction 

DIVF 

DIVD 

DIVG 

Q(C,s)-Quotient Vectors QC, QS 

Q(A,S) 

Q(C,S)<AO:B25>=Q 

Q(C ,S)<B26:B58>::O 

Q(C,S)<AO:B58>=Q 

Q(C,S)<AO:B55>=Q 

Q(C,S)<B56:B58>::O 

R - Remainder vectors, carry and sum 

NOTE: 

Divider Outputs 

R 

Remainder 

Remainder 

Remainder 

• The divider stage saves the exponent and the sign parts of the operands and passes them 
during the result transfer unchanged. 

• Floating divide by zero, reserved operand, floating overflow and underflow are not detected 
by the divider stage. In these cases, the Q(C,S) and R outputs are undefined. 
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• The control outputs generated by the divider 
stage, DIVDONE_DAT_H and DSE~DONEDAT4_H signals are deasserted for non-divide 
operations. 

11.8.2.3 Data Valid Logic 

The divider output signal F _D%DATA_ VALIDR_H driven to Stage-l signal is a logical OR'ing 
of F _1%DATA_ VALID_H signal from the Input Interface and the F _D_C_DV%EN_H signal from 
the Divider. These signals are mutually exclusive. The Input Interface deasserts its data valid 
after issuing a divide instruction and awaits the F _D_ C2%DSE~DONEDAT4_H signal from 
the Divider before it asserts the data valid again. The presence of the global ABORT signal 
F _I%ABORT_H disables the driving of F _I%DATA_ VALIDR_H signal by the Divider. 

11.8.3 Exponent and Sign Data Path 

The exponent data path in the divider consists of registers to save the exponents and signs of 
the divisor and the dividend. The divider does not operate on the exponent and sign parts of 
the divisor and the dividend. The exponents and signs are saved to pass them to stage 1 of the 
pipe along with the quotient and final remainder components so that for lioating point divide 
operations, the exponent result and exception conditions can be detected. 

The Ll cell is a static latch and is loaded with sign and exponent data from the interface during 
PID_ 4 if a valid F _I%DSE(LSTART_L is detected. At the end of divide operation the exponent 
and sign data is driven to stage 1 exponent data path. The cell TSE contains the tristate driver 
and the driver. The exponent and sign data, as in the case of the fraction data path, is actively 
driven during pm_2 and pm_s using the control signal F _D_C2%DSE~DONEDAT_H and 
PID_2S. 

11.9 Stage 1 

Stage 1 of the pipeline is primarily used to perform the addition of the two inputs, or to compute 
the encoded shift amount, or to perform the recoding for the multiplier array, generate the initial 
partial product, select the row one input to the multiplier and the row two input to the multiplier 
in stage 2. Stage 1 receives its inputs from either the interface section or the divider section. All 
outputs of stage 1 are driven to stage 2 of the pipeline. The sign of the adder result is driven to 
stage S as well as stage 2. Stage S requires the sign of the remainder, for the divide operation, 
to determine if the quotient result should be incremented. 

The fraction datapath portion of stage 1 primarily consists of an input selector, an adder, the 
multiplier recoder, and two output selectors. The adder in stage 1 is used for many functions. 
For multiply operations it is used to compute three times the multiplicand, for quotient operations 
it is used for adding the sum and carry vectors for the quotient; for other operations it is used to 
add two vectors. 

The recoder logic is used to select the appropriate bits of the multiplier and recode them. The 
recoded bits are inputs to the multiplier array in stage 2. 
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The exponent datapath of stage 1 primarily consists of an input selector, two adders, detection 
logic, and an output selector. The main purpose of the exponent section in stage 1 is to compute 
the exponent difference. The detection logic is used to determine the range of the exponent 
difference. 

The sign datapath portion in stage 1 performs no operation on the sign bits. They are passed 
unchanged to stage 2. 

11.10 Section Implementation Description 

11.10.1 Fraction Datapath 

Figure 11-10 is a top level block diagram of the Fbox stage 1 fraction datapath. 
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Figure 11-10: Fraction Datapath Block Diagram 
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The Table 11-8 lists what is required to be loaded into the stage 1 fraction datapath registers, 
FDlR and FD2R, for each operation. 

Table 11-8: Stage 1 Fraction Register Operations 

Category Operation Condition 

FO 

F1 

F2 

F3 

F4 

F5 

F6 

F7 

F8 

F9 

FlO 

FDlR <- OPl • (OP2) + 1 

FDlR <- OP1 ·SHR1(OP2)+ 1 

FD1R <- .SHRl(OP1)+OP2+ 1 

FDlR<-OPl 

FDlR<-OP2 

FDlR <- OPl + OP2 

FDIR <- OPl + 0 

FDlR <- -(OPl) + 0 + 1 

FDlR <- OP2 + SHL1(OP2) 

FD2R <-OPl 

FD2R<-OP2 

Effective SUB (DeltaE=O), eMP 
Effective SUB (DeltaE= +1) 

Effective SUB (DeltaE= ·1) 

Effective ADD or effective SUB CDeltaE > 1), and 
ED1R < ED2R 

Effective ADD or effective SUB CDeltaE > 1), and 
ED1R >= ED2R 

DIV ( after the divide array operation, done once for 
the quotient and one for the remainder) '" 

CVTft, CV'Tfi, MOV, l\fl'I~G, TST, and CVTif(ifinput 
integer is positive) 

CVTif (if input integer is negative) 

:MUL, :Mt)"LL 

Effective ADD or effective SUB CDeltaE > 1), and 
EDlR >= ED2R 

Effective ADD or effective SlJB CDeltaE > 1), and 
ED1R < ED2R, or MUL, MULL 

"-The divider supplies stage 1 with QA . This allows the stage 1 adder to perform the same operation on the quotient and -
the remainder inputs. 

11.10.2 Integer Overflow • IOVF 

The integer overflow logic in stage 1 is used to help facilitate the detection of an integer overflow . 
condition during a CVTFI operation. 

11.10.3 Input Selector • ISEL 

ISEL consists of two 3 to 1 selectors. The inputs to the A selector are FD1R%I<bI>, 
FD1R%I<bI+1>, and FD2R%I<bI-l>. The inputs to the B selector are FD2R%I<bI>, 
FD2R%I<bI+1>, and zero. Both selectors can invert the selected input. 

11.10.4 Adder 

The adder uses two 61-bit inputs to derive a 62-bit result. The 61-bit inputs have two bits above 
the binary point and 59 bits below; the 62-bit result has an additional bit above the binary point. 

The main carry acceleration technique used is carry select. The adder is broken up into nine 
small groups, with all but the least significant group having duplicate carry chains. These carry 
chains operate in parallel in the first half of the stage 1 cycle. Propagate and generate logic 
operates before the carry chains. These parts of the adder are fully static. 
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In second half of the cycle, the sum logic executes. Just as for the carry logic, there is duplicate 
sum logic for all groups except the least significant one. These carry out signals are used to select 
the correct sum values. These parts of the adder are also fully static. The carry in to bit position 
<B5B> is set directly by the stage 1 control. 

11.10.5 Recoder Selector • RSEL 

RSEL is a 2 to 1 selector which selects either F _I%FDlR_H<aO:b2B> or F _I%FD1R_H<b26:b55>. 
When F_1_C%MRW_UPPER_H 
is asserted bits <a0:b28> are selected, and when F_1_C%MRW_UPPER_H is deasserted bits 
<b26:b55> are selected. 

11.10.6 SRECODER 

The srecoder uses the radix S modified Booth algorithm to compute the recoded sign bits of 
the partial products. The srecoder receives F _I%FD1R_H<aO:b26> as an input and outputs 9 
recoded sign bits, F _l_R'iCSREC_H<S:O>. If either F _1_E%E1Z_H or F _1_E%E2Z_H is asserted, 
ihe srecoder will force the outputs to a one. The recoded sign bit is asserted when the partial 
product is positive. 

11.10.7 Multiplier Two!s Complement Register· MTCR<18:0> 

The 1\.ITCR. register is a 19 bit 2 to 1 selector and register. "'ben F _1_ C%~:tRW _ 'UPPER_H is 
asserted the A inputs to the selector are selected and when F _1_ C%MRW _ UPPER_H is deasserted 
the B inputs to the selector are selected. Bit zero of the A input is tied to VDD, bits <9:1> are 
driven by the SRECODER, and bits <18:10> are tied to VDD. Bits <9:0> of the B input are driven 
by the RECODER and bits <18:10> are driven by the SRECODER. 

11.10.8 Recoder 

There are 31 inputs to the the recoder: F _1_R%RSEL_H<29:0> and zero. The least significant bit 
of the recoder input is always zero. The recoder performs the recoding using the radix S modified 
Booth algorithm. The recoder generates 60 recoded bits. They are F_1_R%MREC_H<59:0>. 
Of the 60 bits, IS are used in stage 1. F _1_R%MREC_H<5:0> are used to select the 
MIPP. F_1_R%MREC_H<11:6> are used to select the row one input to the multiplier array. 
F _1_R%MREC_H are used to select the row two input to the multiplier array. If either 
F _l_E%EIZ_H or F _1_E%E2Z_H is asserted, the recoder will force the recoder outputs to recode 
zero. 

11.10.9 PHI_4 LATCHES 

The pm_ 4 latches are used to latch F _I%FD1R<a2:b58>, F _I %FD2R<a2:b5S> , 
F _1_R%MREC_H<59:0>, and F _l_R%SREC_H<S:O>. 
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11.10.10 Recoder Register· MRECR[O:6]<S:O> 

The MRECR register is a 42 hit register. The latch is written every cycle with the upper 42 hits 
of the recoder output (F _l_R%MRE C_3R_B<59: 18> ). The output of the register is driven to stage 
2 as MRECR[O:6]<5:0>. 

11.10.11 Multiplier Initial Partial Product Selector and Register • MIPPR 

The MIPP selector is a 1 of 5 selector. It uses the RECODER output hits F _1 %MREC_3R_H<5:0> 
to select the initial partial product. The inputs to the selector are: plus/minus (lX, 2X, 3x., 4X) 
the multiplicand, and zero. The selected input will be latched at the end of stage 1 execute cycle. 

11.10.12 Multiplier Row 1 Selector and Register· MRW1R 

The 1-IR'\VIR selector is a 1 of 5 selector. It uses the RECODER output bits 
F _1 %11:REC_3R_H<11:6> to select the ro'\v 1 input to the multiplier array. The inputs to the 
selector are: plus/minus (lx., 2X., 3X, 4X) the multiplicand, and zero. The selected input will be 
latched at the end of stage 1 execute cycle. 

11.10.13 Multiplier Row 2 Selector and Register • MRW2R 

The :MR,\V2R selector is a 1 of 5 selector. It uses the RECODER output bits 
F _1 %1fREC_3R_H<17:12> to select the ro'\'\" 2 input to the multiplier array. The inputs to the 
selector are: plus/minus (lx., 2X., 3X, 4X) the multiplicand, and zero. The selected input will be 
latched at the end of stage 1 execute cycle. 

11.10.14 Selector and Reg ister • FD1 R 

The FDIR selector is a 4 to 1 selector. The inputs to the selector are FD1_3R, FD2_3R, the output 
of the adder, and zero. The selected input is latched at the end of stage 1 execute cycle. 

11.10.15 Selector and Register • FD2R 

The FD2R selector is a 3 to 1 selector. The inputs to the selector are FDl_3R, FD2_3R, and zero. 
The selected input is latched at the end of stage 1 execute cycle. 

Figure 11-11 is a block diagram of the recoder logic in stage 1 of the Fbox fraction datapath. 
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Figure 11-11: Recoder Block Diagram 
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11.11 Exponent Datapath 

11.11.1 Stage 1 Exponent Processor Block diag ram 

Figure 11-12 is a block diagram of the exponent processor logic in stage 1. 

Figure 11-12: Stage 1 Exponent Processor Block diagram 

------------------------------------1 1-----1 1----------------------------------------1 1---------------------
F_!_E"iED1R_H 1 1 I< 1 1 1 1 E".-I_E"iED2P,-E STl'_EJo.l 

1 1 1 1 1 1 
\ I 1 1 \ / 

+-----------------~-~-----------------------------------------------~ 
F :. =~E!.A E:Z :. --------->: ZE?.C DE'!:::!!Ol' i ------> :: _:'_E%E:Z?,_F. 

F:::C%El~=~:Z=~ ---------------------------------------------------------------.----. :_l_£~~:Z~_E 
F ! !~ED1R F. I I - - - \ / 

1: ! I 
\. / 

!J:.'T?:"-: S::::'E::TOR 
F:'?, ;'..=:;'E?.:' 

\ ./ 

----------.-------~-~---------------------~-------------+----~-~-----
\ :' \ I 

-----------------------------------------------------~---------~----+ 
E".-!_ElkED1R_H 1 1 

1 1 
I< 1 1 

1 1 
EA ADl liES ADl 1 

- \ / - \! 
1 i F_!_!:%EDZR_E 
1 1 

+---------~-+-----+-~----------------------------------------~-~---~ 

~---------~+-----.-.-----------~----------------------------+------~ 
F I ElkED1R H III< liE ADl 1 1 I I F I E%C2R H STN EAl 

------------------------~-~-----~--\ /-----\ /----~----\ /----------------------------\ /-::::-----::--------:----
+-----------------------------.-+-----------------------------------+ 

F 1 C%ISEL2 ED2R A ElL -->1 
F-l-C%ISELZ-K A ilL ----->1 
F-l-C%!SELZ-ED1R BElL -->1 AO 
F:l:C%ISEL2:I<_B_H/L ---->1 NO 

INPUT SELECTOR 
FOR ADDER.2 

+---------+-+-----------------+-+---------+-+---------+-+----+-+----+ 
F ! ElkED1R H liE ADl I 1 INP 2A I 1 INP.2B 1 I 1 1 F I EtED2R H 
-- - 1 1 - 1 1 - \ / - \ / 1 1 -- -

+---------+-+-----------------+-+----------------------------+-+----+ 
F 1 ClkINVER'l' EA ADZ E/L ->1 COMPLEMENT LOGIC FOR 
F:l:ClkINVER.'l':EB:AD2:H/L ->1 EXPONENT ADDER .2 

+---------+-+-----------------+-+---------+-+--------+-+-----+-+----+ 
F I ElkED1R H liE AD1 IlEA ADZ 1 1 EB AD2 1 1 1 1 F ! E'ED2R H 
-- - II - 1 1 - \ / - \ / 1 1 -- -

+---------+-+-----------------+-+----------------------------+-+----+ 
F_l_ClkCIN_E_AD2_H ------->1 AU EXPONENT ADDER .2 1 

+---------+-+-----------------+-+---------+-+----------------+-+----+ 
F I EtED1R H liE ADl liE AD2 1 1 1 1 F I ElkED2R H 
-- - II - \ / - \ I 1 1 -- -

+---------+-+------------------------------------------------+-+----+ 

F_1_ElkE_N_F. 

1 EXPONENT DIFFERENCE 1----> F 1 ElkE DIFF 5 1 NEQ 0 
1 LOGIC 1----> F:l:E'E:DIFFRji<5:0>- . 

+---------+-+-----------------+-+---------+-+----------------+-+----+ 
F I ElkED1R H liE AD1 liE AD2 1 1 1 1 F I E'ED2R E 1 EA2 

------------------------~-~------~--I I------------~----I I----~----I 1----------------1 1-::;:-----;:-------------:--1 1 \ / \ / 1 1 l_EOS 

Figure 11-12 Cont'd on next page 
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Figure 11-12 (Cont.): Stage 1 Exponent Processor Block diagram 

+---------+-+------------------------------------------------+-+----+ 1----> F I E%E DIFF 
EXPONENT DIFFERENCE 1----> F-I-E%E-DIFF-

1----> F-I-E%E-DIFF-
DETECTION LOGIC 1----> F-I-E%E-DIFF-

1----> F:I:E%t:DIFF: 

+---------+-+-----------------+-+----------------------------+-+----+ 
F I E%EDlR H liE ADl 1 1 1 1 F I E%ED2R H -- -\/ - \/ \/-- -

+-------------------------------------------------------------------+ F 1 C%OSE~l ZERO L ------>1 
F-l-C%OSE~l-t AnI H/L --->1 PH! 4 LATCHES, OUTPUT SELECT 
F-l-C%OSEL1-ED1R ilL ---->1 -AND PH!_2 LATCHES 
F:l:C%OSEL1:E~2P:H/L ---->1 

+---------+-+-------------------------------------------------------~ l_EOS 
------------------------------------i 1------------------------------------------------------------------------

F_l_E%E~l~H \ I 

11.11.2 Exponent Adders 

The operations performed by the adders in stage 1 are listed in Table 11-9. E1 refers to 
F_I_E%EDIR_H, E2 refers to F_I_E%ED2R_H, and K refers to the constants generated in the 
control section of stage 1. 

Table 11-9: Exponent Adder Operations 

Category Adder#l Adder #2 

EO 

El El- E2 E2 -El 

E2 - El + E2 

E3 - El + K - K+ El 

E4 El- K 

E5 El+E2 

E6 El+K 

11.11.3 Constants 

Condition 

CVTif, :MULL 

SUBf, ADDf, elm 

DIVf 

CVTfi 

CVTff, MOVf, MNEGf 

MULf 

TSTf 

The constants are driven from the control section into the exponent datapath. The constants 
needed for stage 1 are listed below. 

0000010000000 = 0 ; TSTf 
0000010000000 = 128 ; CVTfi', MOV, MNEG {F,D} 
0010000000000 = 1024; CVTfi', MOV, MNEG {G} 
0000010111000 = 184 ; CVTfi {F,D} 
0010000111000 = 1080 ; CVTfi {G} 

The Table 11-10 shows the required carry-in to the exponent adders. 
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Table 11-10: Exponent Adder carry-In Operations 

Category CinE~l CinE_AD2 

EO d d 

El 1 1 

E2 1 d 

E3 1 1 

E4 1 d 

E5 0 d 

E6 0 d 

d = don't care 

11.11.4 Zero Detection 

The zero detectors check to see if an exponent operand has a value of zero. They are enabled by 
EKA_ElZ and EKA_E2Z. The deiection is done in the second half of execute cycle and driven 
into the control as E 1Z and E2Z. E lZ detects zero on edlr and E2Z detects zero on ed2r. 

11.11.5 Exponent Adder 1 

The exponent adder is a 13-bit static adder used to add or subtract two inputs. Each input is 
passed through a 2 to 1 selector and inversion logic prior to the adder. 

INP_lA can be selected from EDlR or K. If ISELl_EDlR_A is asserted, then EDIR is passed 
through the selector. If ISELl_K_A is asserted, then K is passed through the selector. Inversion 
of the adder input is then done based on the assertion of INVERT_EA_AD l. 

INP _lB can be selected from ED2R or K. If ISEL1_ED2R_B is asserted, then ED2R is passed 
through the selector. If ISEL1_K_B is asserted, then K is passed through the selector. Inversion 
of the adder input is then done based on the assertion ofINVERT_EB_ADl. 

The adder also contains a carry-in to the LSB cell, CIN_E_ADl_H. The carry-in is primarily used 
for performing subtraction operations. 

Since the adder is static, it begins its operation when the input data is valid at the start of the 
stage 1 execute cycle. Intermediate results in the exponent adder are latched in the second half 
of the execute cycle and sent to the detection logic and outPut selector. 

11.11.6 Exponent Adder 2 

Exponent adder 2 is almost identical to exponent adder 1. The only real difference is found in 
the input selection logic. 

INP _2A can be selected from ED2R or K. If ISEL2_ED2R_A is asserted, then ED2R is passed 
through the selector. If ISEL2_K_A is asserted, then K is passed through the selector. Inversion 
of the adder input is then done based on the assertion of INVERT_EA_AD2. 
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INP _2B can be selected from EDlR or K.. If ISEL2_ED1R_B is asserted, then ED1R is passed 
through the selector. If ISEL2_K_B is asserted, then K is passed through the selector. Inversion 
of the adder input is then done based on the assertion of INVERT_EB_AD2. 

The adder also contains a carry-in to the LSB cell, CIN_E_AD2_H. The carry-in is primarily used 
for performing subtraction operations. 

Since the adder is static, it begins its operation when the input data is valid at the start of the 
stage 1 execute cycle. Intermediate results in the exponent adder are latched in the second half 
of the execute cycle and sent to the detection logic and output selector. 

11.11.7 Exponent Difference Detection 

The exponent difference detection is used to detect certain exponent values. The detection is done 
on the output of both exponent adders, adder 1 and adder 2, and then selection of the exponent 
difference is based on E_N. E_N is hit 12 of adder 1. It is used to select the detection results 
from the positive adder output. The detection logic detects the following conditions: 

Exponent Difference = 0 E_DIFF _EQL_O 
Exponent Difference> 1 E_DIFF _GTR_l 
Exponent Difference = 24 E_DIFF _EQL_24 
Exponent Difference = 25 E_DIFF _EQL_25 
Exponent Difference > 57 E_DIFF _GTR_57 
E2 > El E_N 
Exponent Difference <S:l> l\TEQ. 0 E_DIFF _S_l_NEQ...O 

The detection and latching is done at the start of the execute cycle. 

In addition, the absolute value of the exponent difference is determined at the start of the stage 
1 execute cycle. These lines, E_DIFFR<5:0>, are used to drive the inputs to the shift decoders in 
stage 2. 

The exponent block also generates a signal called EDIFF _S_l_NEQ...O. This signal is asserted 
when bits <5:1> of the positive exponent difference are not equal to zero. 

11.11.8 Output Selector 

The output data (ED1R) can be selected from four sources: ed1r, ed2r, e_ad1 or it can be set 
to zero. The selection is done based on the assertion of the output select control signals. If 
OSELl_ED1R is asserted, then ed1r is selected. If OSEL1_ED2R is asserted, then ed2r is 
selected. If OSELl_E_ADl is asserted, then e_ad1 is selected. If OSEL1_ZERO is asserted, 
then the output of the selector is zeroed. The output of the selector is latched every cycle at the 
end of the stage 1 execute cycle and driven into the following stage. 
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11.12 Sign Datapath 

The sign bits of both the operands are not modified within stage l. They are used by the stage 
1 control. The two sign bits S1 and S2 are latched in stage 1 and are passed to stage 2 of the 
pipeline. 

Figure 11-13: Sign Datapath Block Diagram 

I SlP. ! 
I -

<----------+ To S-:.age 1 
Con~:-ol 

<----______ i ____________________ ~ 

V S~R : 

?E:_~ --------->i s:_~? __ : 

?E:_: ---------> .::-!"'~-

I 
\.~ S~?~:. 

11.13 Stage 1 Control 

The control section in stage 1 receives the opcode from the interface. The control section 
unconditionally decodes it every cycle. After a minimum of a one cycle delay, stage 1 will receive 
operands from the input interlace. If it is a one operand instruction the input interface will 
assert data valid, and stage 1 will perform the instruction. If it is a two operand instruction, 
both operands are driven in the same cycle alongwith data valid. 

11.13.1 Divide Instruction 

During a divide operation, the opcode, data valid, and two operands are passed to the divider and 
stage 1 by the interface. The divider and stage 1 will perform their portion of the divide operation. 
Stage 1 will deassert data valid. When the divider completes the divide operation, stage 1 will 
again receive the opcode. The following cycle stage 1 will receive data valid, divdone_dat, and 
quotient bits QS and QA. Stage 1 will compute the quotient and pass data valid and the quotient 
result to stage 2. The next cycle stage 1 will receive divdone_dat and the sum and carry vectors 
for the remainder. Stage 1 will compute the remainder and pass the sign of the remainder to 
stage 3. 
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11.14 Fraction Datapath Operation Summary 

Figure 11-14: Fraction Data path Operation Table 

Condition Data 
EDIFF IDIV 

OPER1..T!ON I E::'Z I E2Z 5 1 ZERO I £ N - - FD1R I FD2R ! F_N I MRECR I MIPPR I MRWR I EDIFF , IOV: 

+--------------+-----+-----+-------+------+-----+--------+------+-----+-------+-------+------+-------+------+ 
EFF SUB 0 0 0 0 0 Fl-F2 Fl 0 X X X X X 
EDT'!:":" - 0 

£:: SUE 0 0 0 0 0 :1-:2/2, Fl C X X X X X 
DE:'T.A - --+:. , 

£.:F S~J= C 0 0 1 i-Fl/2+:2 I F: X X X X X 
~=::':A - --- : I 

-- - ,--" :.?~ C 0 0 :: -- X ): X ).: V X 

-- - ::;..;= ~- .. - C ,", , : =1 ::: 
---- .. > -
= . .:? (, X 0 \' -- -- .. X .I. X X X 

!~=~!,:', ;- " 
y. " X :-~-=..; -- v Y. Y. '" 

::-."!, :, 9' 0 .!. 0 :)1:: -- --- "\ .' . :.: X ): X 

!~=--=- ~ 0 X X =:~::2 ::- ~. 

" y V Yo X 
I 

!-!OV/l>!!~~ 0 0 X 0 I X Fl 0 V X X X X X 
I 

':S: 0 0 X 0 I X Fl 0 V X X X X X 
I 

C\"'!!! 0 X 0 I X :l 0 X i: X X X 

I 
C\r:i! 0 0 X 0 I X Fl 0 0 X X X X X 
Sl -0 I 

I 
C\~i! 0 0 X 0 r X -Fl 0 0 X X X X X 
5l - 1 I 

I 
CVT!i 0 0 X 0 I X F1 0 0 X X X V V 

+--------------+-----+-----+-------+------+-----+--------+------+-----+-------+-------+------+-------+------+ 
X -Don't care F1 -Fraction portion of operand 1 
V -Valid F2 -Fraction portion of operand .2 

11.15 Fraction Datapath Exception Summary 
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Figure 11-15: Fraction Datapath exception Summary 

Condition Data 
ED IFF IDIV 

OPERATION I E1Z I E2Z 5_ 1 ZERO I E_N FD1R I FD2R I F_N I MRECR I MIPPP. I MRWR I ED IFF I IOV: 

~-------------------+-----+-------+------+-----+------+------+-------------+-------+------+-------+------+ EFF SUB 1 1 0 0 0 0 0 0 X X X X X 
EDZFF - 0 

E'I:"':' SUB 1 0 X 0 1 0 F2 0 X X X X X 
EJ:;'l"'I:"':' -1 0 1 X 0 0 0 Fl 0 X X X X X 

EF: ADD OR 1 0 X 0 1 0 F2 X X X X X X 
~!' SUB AIm 0 1 X 0 0 0 Fl X X X X X X 
E,t'!F: > -
0·:: .. 0 x 0 1 0 0 x x x x x X 

1 X 0 C 0 0 >: x x X x X 
:. x 0 c c- o j: x x j= x X 

'!' .. --': ,:; - - x i: ): ,-' ::: ~ x x .... ---, -, ~ 
x i: .!. : 0 c x :i: 

--· .. z ".;: _ x :i: ): s j: .!. :r: x x --~-,-,:! 

X 1 X (; :i: 0 (; .'. x x x :i: 

!-:: -; / !,=,~:; - x x ): 0 1.1 X X 7. X X 

-- - .A. i: x ~' CJ ): .. x x .'. 
---.;:.z X X ): c G x :i: x j.: x 
--.:;. .. :x: ".' j: j: ): j: ~' 

~--------------------------~-------~--------------------------~-----~-------~--------------~-------~------~ 
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11.16 Exponent Datapath Operation Summary 

Figure 11-16: Exponent Datapath Operation Table 

Condit. ion Data 

ED IFF IDIV ED IFF ED IFF ED IFF EDIFF EDIFF 
C?ERll.TION E~Z I E2Z I 5_1 ZERO I E_N ED1R I - 0 - 1 > 1 - 24 - 25 

+--------------+-----~-----+-------+------+-----~------+-------+-------+-------+-------+-------+ 
ErF SUB o o o o 
:::t'!:: - 0 

EFF SUB o o o o 

__ S:.-r:. c o o o 
=~:.:;.. - - -- J 

__ .. "-_ C'R o 

~:::::: > -
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.!. C: 

o E1 1 
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E: 
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lye V 

X : -=::..,..~: I X 
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x 
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:. x 
:. 

x x 

x 

x 

MOV/MNEG 0 0 X 0 X I E1-K X X X X X 
I 

':'!:':' 0 0 X 0 X I 0 V X X X X 

I 
CIt'!'!! 0 0 X 0 X I E1-K X X X X X 

I 
:;\~i! 0 0 X 0 X lOX X X X X 
51 - 0 I 

I 
CVTi! 0 0 X 0 X lOX X X X X 
51 - 1 I 

I 
CVTfi 0 0 X 0 0 I-E1+K X X X V V 

+--------------+-----+-----+-------+------+-----+------+-------+-------+-------+-------+-------+ 
X - Don't care 
V - Valid 
K - Constant 
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E1 - Exponent portion of operand 1 
E2 - Exponent portion of operand 2 

MAX - Maximwn exponent [E1, £2 J 
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11.17 Exponent Datapath Exception Summary 

Figure 11-17: Exponent Datapath exception Table 

Condi'tion Da'ta 
::DIFF IDIV ED IFF EDIFF ED I:: EDIFF EDIn' 

! OPERATION I E1Z , E.2Z I 5 -1 I ZERO I E_1' ED1R I - 0 ! -1 > 1 I - .2" I -.25 
.--------------+-----+-----~-------+------+-----+------+-------+-------+-------+-------+-------+ 
I £FE'" SUB :. I 1 I 0 0 0 0 , 0 0 0 0 .. 
~::F - 0 I I 

I I 
E:F SUB 0 I 1 I 0 0 0 :"..i. 0 :. 0 0 0 
~~:.:;.. - - ... 1 I 

I 
--- st:-: :. 0 I 0 0 ... ::..,.; 0 1 0 0 0 

--'=---~. - -- -
--- ~_'e.I ...J:" .. ~: 0 - ~- 0 0 1 X X 

--- --- .t"_"..,; - 1' • C' -- C', - X :s: 
c::: > --
::!.:? 0 , x - 0 0 x x x x -

x '-' 0 0 x x x x 
- x (. c - ;:, 0 c :; 

.. ~-- -= ...: - ~ . x (; '.' x x x x x .... ---, -, ~ 
.. 1 X 0 I X I 0 X X X X X 

i 
---;-; A _ - I j: I x v I ~ .. : i c' j x x x X I X __ W_,_,'::I 

i: 1 I x 0 I x 0 I x x x x I x 
I I I I 

I MOV/MNEG 1 X I x 0 I X 0 I x x x x I x 
I I I I 

i -:s:- - x I x 0 I x 0 I ,\1 X X X I X 
I I I I 

~lT=! 1 X I x 0 I X 0 I X X X X I X 
I I I I 

CVTfi 1 X I X 0 I 1 0 I x x x 0 I. 0 

+--------------+-----+-----+-------+------+-----+------+-------+-------+-------+-------+-------+ 
No~e - Stage 1 will not assert F_l%E2ZR_H during one operand instructions. 

NOTE: 

• The exponents and signs are driven to stage 1 during both quotient and final remainder 
transfers to stage 1. 

11.17.1 Passthru Signals 

:MM:GT_FLT_L, MEM_ERR_L, RSV_ADR_L and PSL_FU_H signals are simply passed through 
stage-l without change. They are latched coming in from Input Interface during Pffi_, and 
driven to Stage-2 during Pffi_2. 
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NEW_FOP _H signal also passes through to Stage-2 unaffected. It is latched during PIn_l coming 
from Input Interface and driven to Stage-2 during PHI_S. This signal is gated with the global 
purge signal F_I%PURGE_H from the input interface which clears it on a PURGE from the 
input interface. This signal is used by the Output Interace to manipulate its control-queue and 
data-queue pointers. 

11.18 STAGE 2 

11.18.1 Introduction 

Stage 2 of the Fbox pipeline is composed of a fraction datapath, an exponent datapath, a sign 
data path and a control block. Stage 2 receives all its data inputs from stage 1 and passes all its 
data outputs to stage 3. Stage 2 receives control inputs from stage 1 and the interface section, 
and passes control information to stage 3. The stage 2 fraction datapath has an array multiplier, 
a right shifter "and detection logic. The detection logic is used to detect the bit position of the 
most significant bit in a number and if a number is equal to zero. The detection logic is also used 
to generate the sticky bit associated with the right shifter. The exponent datapath is composed 
of the standard exponent block, of which only the adder and the output selector are used, and an 
additional 6 bit data register. The sign bits are passed from stage 1 to stage 3 unchanged. 

The stage 2 fraction data path performs operations on its input data for the following instructions: 
ADDf, StJBf, ~1Pf, TSTf~ MULf, MtJLL, CVTif, CVTfi and CVTRfi. The ADDf and SUBf 
instructions use the output of the right shifter and the detection logic. CMPf, TSTf, CVTif use 
the output of the detection logic. The 1\flJLf and rvruLL instructions use the output of the array 
multiplier. The CVTfi and CVTRfi instructions use the output of the right shifter. For all other 
instructions the stage 2 fraction output registers are either written with the unchanged input 
data passed from stage 1 or the contents are undefined. 

The stage 2 exponent datapath performs operations on its input data for the MULf and DIVf 
instructions. The adder in the exponent datapath is used to either add or subtract the appropriate 
exponent bias from the exponent data passed from stage 1. The output selector selects between 
the adder output, the input data from stage 1, and zero. For all instructions other than MULf 
and DIVf, the output selector passes the data passed from the stage 1 exponent datapath. 

The stage 2 control block generates all conditional datapath control signals and passes control 
information to stage 3. The control block must sequence the fraction multiplier for MULD/G 
and MULL instructions which require two consecutive cycles of execution in the stage 2 fraction 
datapath for generating the two vectors (carry and sum) used for forming the final product in 
stage 3. 

11.18.2 MUL Instruction Flows 

Stage 2 is the stage of the Fbox pipeline that executes most of the computation needed for MULf 
and MULL instructions. To clarify the need for the multiply hardware in stage 2, the basic MUL 
:flow is described. The multiplication algorithm implemented in the FBOX is the modified Booth 
algorithm which retires 3 multiplier bits at a time. The steps for calculating the product, or 
the fraction portion of the product in the case of floating point operands is as follows. First, the 
multiples of the multiplicand that are required by the Booth algorithm are calculated and the 
multiplier is recoded. Then the snmmands (a snmmand must be one of the calculated multiples 
of the multiplicand) which are to be added together to form the product are selected based on 
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the recoded bits of the multiplier. Finally, the snmmands are added together and all terminal 
operations (rounding, etc.) are performed as required by the particular instruction and datatype. 

The stage 1 fraction datapath basically calculates the required multiples of the multiplicand 
and recodes the multiplier. The stage 1 exponent datapath adds the exponents of the operands 
for floating point instructions. The sign of the operands are passed from stage 1 to stage 2 
unchanged. The stage 2 fraction datapath selects the summands and performs carry-save addition 
on the summands. The stage 2 exponent datapath subtracts the appropriate exponent bias from 
the sum of the exponents calculated in stage 1. The signs of the operands are passed from 
stage 2 to stage 3 unchanged. The stage 3 fraction datapath forms the final product by doing a 
carry-propagate addition of the carry and sum vectors output from stage 2. The stage 3 exponent 
datapath decrements the exponent of the product if the fraction portion of the product needs to 
be normalized. Stage 3 also checks for potential data dependent stage-4 bypassable cases by 
carrying out a miniround on the lower 3 bits and the round bit. If the rounding operation doesn't 
carry past the 4 bits then stage-4 is bypassed. This bypass is aborted should stage-3 detect 
any exception or potential exception conditions. For a more detailed explanation refer to stage-3 
specifiction. 

For all non stage-4 bypassable instructions, Stage 3 passes the signs of the operands unchanged to 
stage 4. The stage 4 fraction datapath performs all terminal operations on the product. For ~rULf 
instructions stage 4 rounds the fraction of the product and increments the exponent if the fraction 
overfio,'\"s. Stage 4 also checks for floating overflow and underlio\'\". For ~Itj'LL instructions stage 
4 checks for integer overflow and forms and aligns the product for outputing to the interface. 
Stage 4 generates the correct sign bit for floating and integer MUL instructions. 

Two consecutive cycles of execution in stage 2 are needed to complete all MtJL instructions except 
M1JLF. This is due to the fact that 1 cycle is required for each pass through the multiply hardware 
in stage 2 and only F floating datatype multipliers can be completely retired in one pass. A more 
detailed description of the operations executed in the fraction datapaths of stages 1 through 4 is 
given below. 

Stage 1 passes the recoded multiplier, +1 *multiplicand and +3*multiplicand to stage 2. The 
multiples of the multiplicand required by the Booth algorithm are 0, +1-1*multiplicand, 
+1-2*multiplicand, +1-3*multiplicand and +/-4*multiplicand. Stage 1 only calculates 
+3*multiplicand because the other multiples are obtained by a simple shift of +1 *multiplicand, 
and all negative multiples are generated by two's complementing the positive multiples. In 
order to reduce the number of computations executed in stage 2 for MOLD, stage 1 also passes 
the summand selected from the recoded 3 LSB's (assuming D datatype) of the multiplier. The 
initial partial product is zero for all MUL instructions except for MOLD. Stage 1 also passes two 
summands which are input to two rows of CS adders in stage 2 called MROWI and MROW2, 
and a vector which facilitates generating the two's complement of the selected summands. The 
logic in stage 1 which determines the snmmands for MROWI and MROW2 examine different 
multiplier bits depending on the operand datatype and whether it needs to output snmmands for 
the first or the second pass through the stage 2 multiply hardware. The initial partial product is 
latched in the MIPPR, and the two summand inputs to the MROWl and the MROW2 are latched 
in the MRW1R and the MRW2R, respectively. The vector used in stage 2 for two's complementing 
the selected summands is latched in the MTCR. 

Stage 2 selects all the summands which are needed to form the product, with the exception of 
the summands provided by stage 1. Stage 2 performs carry-save addition on the summands and 
outputs a carry and a sum vector to stage 3 for the formation of the final product. The multiply 
hardware in Stage 2 can be thought of as a 9 row, 3 bit retirement, carry-save multiply array 
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which is capable of feeding its outputs back to its inputs for executing MULD/G and MULL 
instructions. Each multiply array cell is composed of a selector which selects a summand and a 
carry save adder which adds the summand to the partial product. The first two physical rows 
of the array are called MROWl and MROW2, and are different from the other 7 rows in that 
they have no selector. The selected summands for MROWl and MROW2 are passed from stage 1 
in the MRWIR and MRW2R. During the first execute cycle of a MUL instruction, MROWl adds 
the following three inputs from stage 1: the MIPPR output, the MRWIR output, and the MTCR 
output. During the second execute cycle, MROW1 adds the MRWlR output and the fed back 
MARRA.Y sum and carry outputs. 

Stage 3 does the carry propagate addition on the carry and sum vectors passed from stage 2 
to form the final product and normalizes the product if necessary. Note that a left shift of 1 bit 
position is the maximum normalization possible. Actually two separate carry propagate additions 
are performed in stage 3. A 60 bit caITY propagate addition is performed to form the fraction 
portion of floating point products and the high order 58 bits of integer products. A separate 6 
bit carry propagate addition is performed to form the 6 least significant bits of integer products. 
The carry out generated from the 6 hit addition is accounted for in the 60 bit addition so the 6 bit 
sum can be concatenated to the high order 58 bits. Stage 3 passes the results of both additions 
to stage 4. 

Stage 4 performs all the terminal operations (rounding, etc.) on the final product (except when 
stage-3 bypasses stage-4 operations) before passing the product to the interface section. Stage 
4 handles detection of floating underflow, floating overfiow, integer overfiow, and the proper 
alignment of the product. 
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11.19 Stage 2 Implementation Description 

11.19.1 Fraction Datapath 

Figure 11-18: Stage 2 Fraction Datapath Block Diagram 

MTCP __ L MRW1R_L F_HFIllR MRECR 
I! M!PFR_L II MRv12R_L II F HsFD2 - II +------------------------------------+ 
II II II II II II II +------------------------~ I 
I! II II II II II II I 
\/ \/ Ii II II II II V MeR v ME?. /62 /62 

-------------+--------+--------+-------++-------+--------++----------------+---------------------+ I I 

+--------------------~--------~~--------+-------~--------·.--------~-------·---------------------T 
II II II II 

II 
II 
Ii 

II II 
\ I~=S~:":' \ I!·:SS~: 

--------------------------------------_ .. ---------------------------------------------------------.. . 

------------------------------~-----------------~--------------------------~---------------------~ 
I: I: I I 

I I 

I' 
Ii 

II 11 
\/!.:?~:_:: \ /1-1:':_ S 

~--------------------------------------+~-------~.-------~~-------~-------------------------------

! ! 
\/~l? 

i I i! ! ! 

---------------------------------------~-----------------~----------------------------------------
i<- -- ------ ::.:_~ 

---------------------------------------+--------++-------+~--------~-------++--------------------+ I 
II II II II II I 
\/FD1R \/FD2R \/l·lRECR \/Y.&A_C1R \/MA_S1R I 

---------------------------------------++-------.. -------~.-------.+-------+.--------------------. I 

MARRAY (ROWS 2 - 6) 
I<-:--!------ FE: 4 
I I ?E!:2 
I--j--I--+ 

+--------------------------------------++-------++----------------++-------++--------------------+ I I 
I I I I I I I 1-----------------------... I 
I I I I I 1 ------- I 1--------------------------+ 
I I I I I 1 I I +------+--+ 
II II II II I I 
II II II II v v 
I I I I I I I I +---+---+ +---+---+ 
II I I II I I I MILSBCR 1 IMII.SBSRI<- PHI_2 
I I I I I I I I +---+---+ +---+---+ 
I I I I II II I I 
\/FD1R \/FD2R \/MCR_L \/MBR_L V MILSBCR V MILSBSR 

Figure 11-18 Cont'd on next page 
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Figure 11-18 (Cont.): Stage 2 Fraction Datapath Block Diagram 
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Figure 11-18 Cont'd on next page 
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Figure 11-18 (Cont.): Stage 2 Fraction Datapath Block Diagram 
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11.19.2 MSEL· Multiplier Selector 
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II 
\/!!5? .. 

II 
\/:'SER 

The MSEL is composed of two 62 bit, 2 to 1 selectors. One selector selects the carry input to 
the MROW1, the other selects the sum input. The two possible carry inputs to the MROW1 are 
the F _1 %MTCR_L and zero in some bit positions, or the MCR fed back from the bottom of the 
MARRAY. The two possible sum inputs to MROW1 are the F _1 %MIPPR_L or the MSR fed back 
from the bottom of the MARRAY. If the signal MSEL_PASS_FB_H is asserted, then the MCR and 
MSR outputs are passed to the MSEL outputs, MCSELO and MSSELO, respectively. Otherwise 
the F_1%MTCR_L and the F_1%MIPPR_L are passed to MCSELO and MSSELO, respectively. 
The MSEL_PASS_FB_H signal is asserted during the second execute cycle of MULD/G and 
MULL. MCSEL0<:A2:B58> and MSSEL0<A2:B58> are driven to the MROWl. 

11.19.3 MROW1· Multiplier Row 1 

The MROW1 is composed of a row of 59 CS adders and a 3 bit carry propagate adder. The MROW1 
is actually the first physical row of the multiplier array but since the summand selection is 
performed in stage 1, the MROW1 has no summand selector. The CS adders perform a carry-save 
addition on MRWIR_L<A2:B55> (the summand), MCSEL0<:A2:B55> and MSSEL0<A2:B55>. 
The 3 bit carry propagate adder adds MCSELO<B56:B58> and MSSELO<B56:B58> and is needed 
to maintain a correct partial product. The 3 bit carry propagate adder insures that if the bits 
of the C and the S vector which are shifted out of the array cause a carry of bit significance 
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B55, that carry is correctly added to the partial product. The MROW1 generates a carry output, 
MRW1_C, and a sum output, MRW1_S, which are input to the MROW2. 

11.19.4 MROW2 - Multiplier Row 2 

The MROW2 is composed of a row of 59 CS adders and a 3 bit carry propagate adder. The 
MROW2 is the second physical row of the multiplier array, and like the MROW1, it has 
no summand selector. The summand selection for the MROW2 is done in stage 1. The 
CS adders perform a carry-save addition on MRW2R_L<A2:B55> (the summand), and sign 
extended MRW1_ C<A2:B53> and MRW1_S<A2:B52>. The 3 bit carry propagate adder adds 
MRW1_C<B54:B55>, MRW1_S<B53:B55>, and the carry out of the 3 hit carry propagate adder 
in the MROW1, MRW1_C<B56>. This 3 bit carry propagate adder is needed to maintain a correct 
partial product. The 3 bit carry propagate adder insures that if the bits of the C and the S vector 
which are shifted out of the array cause a carry of bit significance B55, that carry is correctly 
added to the partial product. ·The MROW2 generates a carry output, MRW2_C, and a sum output, 
MR\V2_S, \vhich are input to the first row of the :MARRAY. 

11.19.5 MARRAY· Multiplier Array 

The :\!ARR...4..Y is a 3 bit retirement per row multiplier array which has 7 ro~s of multiplier 
cells. The MROW1, MROW2, and the :MARRAY are used together to generate a carry and a 
sum vector which are added in stage 3 to produce the final product. The inputs to 1W\RRA.Y 
are F_1%FDIR, F_1%FD2R, ~mECR~ ~m'W"2_C, and MRW2_S. The F_1%FD2R and F_1%FDlR 
contains 1 *multiplicand and 3*multiplicand respectively for MUL instructions. The MRECR 
contains the recoded multiplier bits. The MRW2_C and MRW2_S signals are the carry and sum 
outputs of the MROW2. Each multiplier cell is composed of a selector and a CS adder. The 
selector selects the summand input and the CS adder adds the summand to the partial product. 
The MRECR[O:6J<5:0> control the summand selectors. The selector inputs are F _1 %FD2R, 
F_l%FD2R left shifted by 1 bit position,F_l%FD1R, F_1%FD2R left shifted by 2 bit positions, 
or zero. The selector can generate the ones complement of any of the previously mentioned 
inputs for generating negative summands. The ones complement of zero is never generated. 
The MARRAY selector outputs are unconditionally latched in PHI_4. The least significant bit 
positions <B56:B58> in MARRAY, as in the MROW1 and MROW2, are populated by three bit 
carry propagate adder cells which are used to calculate carrys which have the weight of the 
<B55> bit position. The carry and sum outputs from the second row of the MARRAY, MA_C[1] 
and MA_S[1], are latched unconditionally in PHI_ 4. The least significant 5 carry and 6 sum 
outputs of the MARRAY cells in the fifth and sixth rows of the MARRAY are latched in the 
MILSBCR and MILSBSR. The MILSBCR and the MILSBSR are used in stage 3 to form the 6 
least significant bits of longword products. The carry and sum outputs from the last row of the 
MARRAY, MA_C[6J and M,A..S[6], are latched unconditionally in PEn_2. The latched versions of 
MA_C[6] and MA_S[6] are the MCR and MSR signals and are driven to the MSEL and stage 3. 

11.19.6 MILSBSR<S:D>· Multiplier Integer LSB Sum Register 

The MILSBSR is a 6 bit register. This register holds a 6 bit sum vector which is used to 
form the least significant 6 bits of the 64 bit product of longword operands. MILSBSR<5:3> 
are written with MA_S[5]<B53:B55>, and MILSBSR<2:0> are written with MA_S[4]<B53:B55> 
uncondtionally in PEn_2. The contents of this register are undefined for instructions other than 
MULL. The MILSBSR is driven to stage 3. 
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11.19.7 MILSBCR<4:0>· Multiplier Integer LSB Carry Register 

The MILSBCR is a 5 bit register. This register holds a 5 bit carry vector which is used to 
form the least significant 6 bits of the 64 bit product of longword operands. MILSBCR<4:3> 
are written with MA_C[5]<B54:B55>, and MILSBCR<2:0> is written with MA_C[4]<B54:B56> 
uncondtionally in PIn_2. The contents of this register are undefined for instructions other than 
MULL. The MILSBCR output is driven to stage 3. 

11.19.8 RSHIFT· Right Shifter 

The RSlnFT shifts F _1 %FD1R to the right by 0 to 57 bit positions depending on the control 
signal FORCE_SHFT_O and the output of the shift decoder, SDECO. The RSHIFr is used for 
pre-aligning operands in ADD and SUB instructions under certain conditions (for details see 
the description of the stage 2 control) and right shifting the fraction of a Hoating point operand 
in CVTFIICVTRFI instructions. If the signal FORCE_SHFT_O is asserted~ the RSEnFT will 
pass F _1 %FD1R<AO:B58> to its output RSHFTO<-~O:B58> unshifted. If FORCE_SHFT~O is 
deasserted. F _1 %FD1R is passed to RSHFTO right shifted by 0 to 57 bit positions~ depending on 
the state of SDECO<57:0> which has exactly 1 bit asserted. F_1%FD1R<AO> is always passed 
to the RSHFT<AO> output. The RSHFTO<BO:B57> bits which become vacant due to the right 
shift of F _1 %FDIR<BO:B58> are zero filled. The RSHIFT output, RSHFTO, is driven to the 
RSHFTOR. 

11.19.9 RSHFTOR<AO:B58>· Right Shifter Output Register 

The RSHFTOR is a 60 bit register which is written with RSHFrO<AO:B58> unconditionally in 
PEn_ 4. The RSHFTOR is driven to the FD1SEL. 

11.19.10 SOEC· Shift Decoders 

The SDEC decodes the F _1 %E_DIFFR_H<5:0> from the stage 1 exponent datapath to a 58 bit 
output, SDECO<57:0>, which has exactly one bit asserted. The SDECO is the fully decoded 
right or left shift amount which is used to control the RSInFT or the normalizer in stage 3, for 
ADD, SUB and CVTFI instructions under certain conditions (for details see the description of the 
stage 2 control). The assertion of SDECO<57> corresponds to a shift of zero. The assertion of 
SDECO<56> cOlTesponds to a shift of 1, and so on. The SDEC output is driven to the RSlnFT, 
the SDECOR and the DETL. 

11.19.11 SDECOR<S7:0>· Shift Decoder Output Register 

The SDECOR is a 58 bit register which is written with SDECO<57:0> unconditionally in PHI_4. 
The SDECOR is driven to the LSSEL. 
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11.19.12 DETL· Detection Logic 

The DETL detects if F _1 %FDlR is equal to zero, generates outputs which are used by the leading 
one detection logic, L1DETL, and calculates the sticky hit for the adder in stage 3. The sticky hit 
is needed for ADD and SUB instructions under certain conditions (for details see the description 
of the stage 2 control). If the control signal DETL_EN_STKY_L is asserted, the DETL takes 
F _1 %FD1R and SDECO as its inputs and calculates the sticky hit, STKYR. The sticky bit is 
set if a one in the F_1%FDlR is right shifted out of the B58 bit position by the RSHIFT. If 
F _2%SET_STKYR_H is asserted, STKYR is set independent of the DETL inputs. The STKY 
latch is written unconditionally in PHI_2 and is driven to stage 3. If DETL_EN_STKY_L is 
deasserted, the DETL takes only the F_1%FD1R as its input and it generates outputs which 
are used by the L1DETL. The DETL has two outputs, FZ and DETLO<65:0>. The FZ is the 
zero detection output and is driven to the stage 2 control block. The DETLO<65:0> outputs are 
driven to the DETLOR. FZ is asserted if F_1%FD1R<BO:B57> are all zeros. The FZ output is 
conditionally loaded in PEn_2 in the stage 2 control. 

11.19.13 DETLOR<BO:B57>· Detection Logic Output Register 

The DETLOR is a 58 bit register which is written with DETLO unconditionally in Pffi_ 41. The 
DETLOR is driven to the L1DETL. 

11.19.14 L1DETL· Leading 1 Detection Logic 

The L1DETL is used to· determine the bit position of the leading or most significant bit of 
the F_1%FD1R<BO:B57>. If F_l%FD1R<AO> is a 1 then leading 1 detection is performed on 
the ones complement of F _1 %FDIR<BO:B57>, otherwise leading 1 detection is performed on 
F _1 %FD1R<BO:B57>. The LlDETL output, LIDETLO, is 58 bits wide and has exactly one hit 
asserted. The LIDETLO output determines the shift required to normalize (the normalizer is in 
stage 3) the F_1%FDIR in CVTIF and under certain conditions ADD and SUB instructions (for 
details see the description of the stage 2 control). If LIDETLO<BO> is set, the left shift amount 
is zero. If LIDETLO<B1> is set, the left shift amount is one, and so on. If the signal E1Z_E2Z 
is asserted, LlDETO<BO> is set independent of the DETLOR outputs. If EIZ_E2Z is deasserted, 
the L1DETL outputs depend on the DETLOR outputs. The LIDETLO is driven to the left shift 
selector LSSEL. 

11.19.15 LSSEL· Left Shift Selector 

The LSSEL is -a 58 bit 2 to 1 selector which selects between LIDETLO<BO:B57> and 
SDECOR<57:0>. If the signal LSSEL_PASS_SDECOR_H is asserted, then SDECOR<57:0> is 
passed to LSSELO<BO:B57>. Otherwise LIDETLO<BO:B57> is passed to LSSELO<BO:B57>. 
LSSEL_PASS_SDECOR_H is asserted if a CVTFI instruction is decoded, or if and an effective 
subtraction and exponent difference greater than 1 is detected. LSSELO is driven to the LSHR. 
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11.19.16 LSENC· Left Shift Encoder 

The LSENC does a binary encoding of the LSSELO<BO:B57> and drives the encoded signal, 
LSENCO_DYN<5:0>, to the ED2R. The LSENCO_DYN signal is used in CVTIF and under certain 
conditions ADD and SUB (for details see the description of the stage 2 control). LSENCO_DYN is 
used to form the result exponent in CVTIF. LSENCO_DYN is used to correct the result exponent 
due to normalizing the result in ADD and SUB. LSENCO_DYN<5:0> is driven to the ED2R. 

11.19.17 LSHR<57:0>· Left Shifter Control Register 

The LSHR is a 58 bit register which is written with LSSELO<BO:B57> unconditionally in Pffi_2. 
The contents of this register determine the number of bit positions the normalizer in stage 3 will 
shift its input data. Exactly one bit of LSHR<57:0> is asserted. The LSHR output is driven to 
stage 3. 

11.19.18 FD1SEL· Fraction Data 1 Selector 

The FD1SEL is a 60 bit 2 to 1 selector that selects the input to the stage 2 FDIR. 
If FD1_SEL_PASS_O_l is asserted, zero is passed to the FD1SEL output, FDlSELO. If 
FI;n_SEL_PASS_D_l is deasserted, then the RSHFTOR is passed to FD1SELO. The FD1SEL 
output is driven to the FDIR. 

11.19.19 FD1R<AO:B58>· Stage 2 Fraction Data 1 Register 

The FDIR is a 60 bit register which is written with FDlSELO unconditionally in PHI_2. The 
contents of this register for all instruction flows are given in the description of the stage 2 control. 
The FDIR output is driven to stage 3. 

11.19.20 FD2R<AO:B58>· Stage 2 Fraction Data 2 Register 

The FD2R is a 60 bit register master/slave register. The master register is written with 
F_l%FD2R unconditionally in Pffi_4, and the slave register is written with the output of the 
master unconditionally in Pffi_2. The contents of this register for all instruction flows are given 
in the description of the stage 2 control. The FD2R output is driven to stage 3. 
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11.19.21 Exponent Datapath 

Figure 11-19: Stage 2 Exponent Datapath Block Diagram 
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11.19.22 Zero Detection 

This functional block is not used in stage 2. 
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11.19.23 Exponent Adder 1 

The exponent adder is a l3-bit static adder used to add or subtract two inputs. Each input is 
passed through a 2 to 1 selector and inversion logic prior to the adder. INP _lA can be selected 
from EDIR or K. If ISEL1_EDIR_A is asserted, then EDIR is passed through the selector. If 
ISEL1_K_A is asserted, then K is passed through the selector. Inversion of the adder input 
is then done based on the assertion of INVERT_EA_ADI. INP_IB can be selected from ED2R 
or K If ISEL1_ED2R_B is asserted, then ED2R is passed through the selector. If ISEL1_K_B 
is asserted, then K is passed through the selector. Inversion of the adder input is then done 
based on the assertion of INVERT_EB_ADI. The adder also contains a carry-in to the LSB cell, 
CIN_E_AD1_H. The carry-in is primarily used for performing subtraction operations. Since the 
adder is static, it begins its operation when the input data is valid near the falling edge of phase 
1. Intermediate results in the exponent adder are latched in phase 3 and sent to the detection 
logic and output selector. 

For stage 2, L~l> _lA always selects EDIR not inverted. INP _lB always selects K Inversion 
of Thl> _lB is done based on the assertion of CIK_E_ADl. In other words, in stage 2 
Il\"VERT_EB_ADl is shorted to and named CIN_E_.Wl. 

11.19.24 Floating Overflow and Underflow Detection 

This functional block is not used in stage 2. 

11.19.25 Output Selector 

The output selector is used to select the output data from three different sources: edlr, eadl or 
zero. This selection is done for the exponent output data (EDIR), the floating overflow (F _OVFR) 
and the floating underflow (F _ UNFR). The selection is based on the assertion of two control 
signals, OSEL1_ZERO and OSELl_E_ADl. OSELl_E_ADl if asserted, selects the output from 
E_ADl; for overflow and underflow, OSEL1_E_ADl selects E_ADl_UNF and E_ADl_OVF. If 
OSELl_E_ADl is deasserted, then the output is selected from EDIR; for overflow and underflow, 
OSELl_E_ADl deasserted selects EDIR_OVF and EDIR_UNF. This selection is done using a 
2 to 1 selector. The- selection of zero is done prior to the 2 to 1 selector described above. If 
OSELl_ZERO is asserted, then the inputs from E_ADl and EDlR entering the 2 to 1 selector 
are both forced to zero. Then, since only one s~lect line is used to control the selector, the zero 
value will be transfetTed to the output regardless of the assertion of OSEL1_E_ADl. The output 
of the selector is latched every phase 1 and driven into the following stage. 

11.19.26 ED2R<5 :0> - Exponent Data 2 Register 

The ED2R is a 6 bit register which is written with LSENCO _DYN<5:0> unconditionally in Pffi_2. 
The ED2R output is driven to the stage 3 exponent datapath. 
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11.19.27 Sign Datapath 

Figure 11-20: Sign Datapath Block Diagram 
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The 2 inputs to the stage 2 sign data path are F _1 %SlR_H and F _1 %S2R_H These bits correspond 
to the sign of operand 1 and the sign of operand 2, respectively. The stage 2 datapath does not 
perform any operations on the sign bits. SIR and S2R are 1 bit master-slave registers. The master 
latches are '\Uitten unconditionally in PHI_4 and the slave latches are written ,nth the master 
latch outputs unconditionally in PHI_2. The register outputs F _1 %SlR_H and F _2%S2R_H are 
driven to stage 3. 
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11.19.28 Control 

Figure 11-21: Control Block Diagram 

: IOUN: EN DATA TAGR SRC DTR<2> 
... ABORT-I CPI!.. _ RNDR II -I FOP _ FLOi\"'R 

I I I 1·-----+ I I I 
I I I +-----+ I I I I 
I I ----------+ I I I I I 
I .------------+ I I I I I I 
+--------------. ! I I I I I I 

v v v \I v \/ 

From Stage 1 

SCAN FOP F NR E1ZR E DIFF EQ!.. OR !..NEGIR IDIV"BY OR 
DSTDTR I -E NR E2ZR-E DIFF EO!.. 24R MNEGBR IDIV OVFR 
II I II II E-DIIT-EQ!..-2SR MNEGWR II SCAN ED? 
II I II II E-DIIT-GTR-1R MNEGl..R I I" -
II I II I I E-DIIT-GTR-S7R I I .,.----+ I I 
I I I I I I I - II - I I I +----, I 
II I II II II II II +---, 
\/ V \/ \/ \/ \/ \/ I 

~-----------------------------------------------------------------------------+-+ 
r~: : ---->: 
:~:-: ---->1 

:E::3 ---->~ 
r~: .; ----> 
r~: :: ---->! 
:~:-:::; ---->1 
:?:-3'; ---->: 
:~::~: ---->1 

:. =.=-.: - ::~:..::: -- -- > , 
5=;'.1-: CE~:I~ ---->: 
s=;.:::!.:;..s:~p~ ---> i 

S:;',!~_SJ. ... -:=: ----> ~ 

==~j:_=!':;'.ss_E' ----> i 
~~:::: :;.~s =: <---I 

::>~::.. :='N STKY :. <--- 1 

:ORCE:SE:T:O <---I 
::::Z E:Z <---\ 

:'SS::::_:;"SS_SD~=OR <---I 
S~: S=:~l:~ <--- 1 

FD1SE!.. PASS 0 !.. <---I 
- F:Z:H --->1 

S'I;"~ :2 CON'!R.O!.. 

!<-- : l~S:R 

1<-- :::.rss::?, 
I 

1--> C:l~ ::: ;..:: 
1--> ~_:.:c:~,~_~::o 
\--> os::::.: ::: ;..::. 
! --> os::::.: - E::?, 
!--> CS::::':'-:!~: :. 

,-+--+---+---+----+----++----++------+-----+-++----++-------++--------++-++-----, 
I II II I II II II II II 

--------------, II II I II II II II II I 
I ---------, II II I II II II II II ,--------
I -------, II II I II II II II 1'-----. 
I I -----, II II I I II t t II II ,----- .1 
I F_IOUNF_EN I I DATA_ VALIDR I I IIEFFS_E1Z_E2Z IF_NFl. E1ZR E_DIFF_EQ!,,_OR LNEGIR IDIV_BY_ORI 

F_ZR I I SRC DTR<2> I FOP _FLOW I I I IE_NR E2ZR E_DIFF_EQL_24R HNEGBR IDIV_OVFR I 
I I CRFL_RNDR -I I II DST_DTR I SCAN_FOP II E_DIFF_EQL_2SR HNEGNR II I 
I I I I I II II I I 1\ II E_DIFF_GTR_lR MNEGl..R II I 
I I I I I 1\ II I I II II II II II I 

V V V V V \I \/ V V \/ \I \/ \I \/ SCAN_EDP 
... From Interface '1'0 Stage 3 

The stage 2 control block generates control signals for the stage 2 fraction and exponent datapaths 
based on opcode and control information passed from stage 1. The control block decodes the 
datapath control signals one cycle prior to the cycle in which they are needed in the datapaths. 
The control signals are latched in master slave latches to allow control decoding to overlap 
with datapath execution and to prevent races. The control block also loads control information 
output from stage 1 into master slave registers and passes the information to stage 3. The 
master slave latches which hold the SRC_DTR<2>, FOP _FLOWR<5:0>, DATA_ VALIDR, and 
DST_DTR<2:0> signals are written in Pffi_l (master strobe) and PID_3 (slave strobe). All 
other master slave latches are written unconditionally in PID_ 4 and PID_2. If the interface 
section asserts F _I%ABORT_H the signals F _2%LAT_MUL2_H and F _2%DATA_ VALIDR_H are 
deasserted. 
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The internal signal F_2%LAT_MUL2_h is used to facilitate the sequencing of the fraction 
multiplier and stalling of the DATA_ VALIDR bit transfer for MOLD/G, and MULL instructions. 
F _2%LAT_MUL2_H is asserted during the second decode cycle of MOLD, MULG, and MULL 
instructions. If F _2%LAT_MUL2_H is asserted, the DATA_ VALIDR bit will not be passed to 
stage 3, and the multiplier will select fed-back outputs as its inputs. F _2%LAT_MUL2_H is 
unconditionally deasserted one cycle after it is asserted. 

The stage 2 control block also modifies one bit of the internal opcode encoding, 
F _1 %FOP _FLO'\VR_H<l>, before passing it to the stage 3 control if the conditions effective sub 
and exponent difference greater than 1 are detected. It also contains the FZR bit latch and some 
logic to conditionally clear the latch. If an effective subtraction is decoded, and EIZR XOR E2ZR 
is true, the FZR bit latch will be cleared. If this condition is not true, the FZR bit latch will 
loaded with the FZ output of the DETL in the fraction datapath. 

11.19.28.1 Datapath Control Signals Output from Control Block 

C:C\_E_AD1_H: This is the carry-in to the LSB position of the exponent data path adder, E_.IDl. 
This signal also controls the ones complementing of the exponent bias. If asserted the ones 
complement of the exponent bias is passed to the EB_ADl output of the exponent complement 
logic. If deasserted, the true exponent bias is passed to the EB_ • .tU>l output unchanged. 
F _2_C%CIN_E_AD1_His asserted if a :hofL~f instruction is decoded by the stage 2 control. 

F _2_C%DETL_EN_STKY_L :This enables the DETL to detect conditions for setting the sticky bit 
'which is used by the stage 3 fraction adder. This signal is asserted if an effective subtraction is 
decoded and the exponent difference between the operands is greater than one. 

F_2_C%E_K_H<7> : This signal is an exponent bias which is driven to the Il\TP_IB input of the 
exponent complement logic. This signal is the complement ofE_K_H%F_2_C<lO>. 

F_2_C%E_K_H<lO> : This signal is an exponent bias which is driven to the INP_IB input of the 
exponent complement logic. This signal is asserted if the F _1_C%DST_DTR_H<2:0> decodes to 
G datatype. 

F _2_C%EIZ_E2Z_H : If this signal is asserted, the LIDETLO<BO> bit will be set (which indicates 
the contents of the F_1%FDlR is a normalized number) independent of the other inputs to the 
LIDETL. This signal is asserted if (F _1 %EIZR OR F _1 %E2ZR) AND (effective sub) is detected. 

F_2_C%FD1SEL_PASS_O_L : If this signal is asserted then the FD1SEL will pass zeros 
to it's outputs and the stage 2 FDIR will load in all zeros. This signal is asserted if 
F _l_E%EDIFF _GTR_57_H is asserted, and ADDf or SUBf or CVTfi or CVTR£ is decoded. 

F _2_C%LSSEL_PASS_SDECOR_H : If this signal is asserted F _2_P%SDECOR_H is passed 
to the LSSEL output, F _2%LSSELO_H. If deasserted, F _2_L%LIDETLO_H is passed to 
F_2_L%LSSELO_H. LSSEL_PASS_SDECOR_H%F_2_C is asserted if a CVT.6. or CVTR£ 
instruction is decoded, or if an effective subtraction and exponent difference greater than 1 is 
detected. 

F_2_C%MSEL_PASS_FB_H : If this signal is asserted F_2_M%MCR_L is passed to the MSEL 
carry output, MCSELO, and the F_2_M%MSR_L is passed to the MSEL sum output. If 
deasserted, the MTCR%_l is passed to MCSELO, with zeros in the vacant bit positions, and 
the F_l%MIPPR is passed to MSELO. F_2_C%MSEL_PASS_FB_H is asserted if the internal 
signal F _2_C%LAT_MUL2_H is asserted. 
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F _2_C%OSEL1_E_AD1_H / F _2_C%OSEL1_ED1R_H : The OSELl_E_ADl_H and the 
OSEL1_EDlR_H signals are complementary signals. If OSEL1_E_ADl_H is asserted, the 
exponent output selector, OSELl, passes E_ADl, E_AD1_0VF and E_AD1_UNF to its outputs. 
If OSEL1_EDlR_H is asserted, EDlR, EDIR_OVF and EDlR_UNF are passed to the OSEL1 
outputs. OSEL1_E_ADl_H is asserted if a MUL or DIV is decoded by the stage 2 control. 

F _2_C%OSEL1_ZEROS_L : If this signal is asserted the exponent output selector, OSELl, passes 
zero to its output. If deasserted, zero is not passed to the OSELl outputs. This signal is asserted 
if a MUL or a DIV is decoded, and F _l_E%EIZR_H or F _1_E%E2ZR_H is asserted. 

F _2_C%SET_STKYR_H : If this signal is asserted the STKYR is forced to 1, independent 
of the state of the F _1 %FDlR and the SDECOR. If deasserted, the state of the STKYR 
depends on the instruction fiow and the data. SET_STKYR_H%F_2_C is asserted if 
F _l_E%E_DIFF _GTR_57R_H A.'fW NOT(F _1 %ElZR OR F _1 %E2ZR%) is true. 

F _2_C%FORCE_SHFT_O_H : This signal forces the RSHIFT to pass the FD1R%_l to its output 
unshifted. If this signal is deasserted, then the RSHIFT shifts the F _1 %FD1R by the number of 
bit positions decoded by the SDEC. This signal is deasserted if an effective sub is decoded and the 
F _l_E%E_DIFF _GTR_IR ... H is asserted, or if an effective add is decoded, or a CVTfi or a CVTRfi 
is decoded and F _l_E%E_~"'R~H is low. 
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11.19.29 Stage 2 Fraction Datapath Operation Summary 

The following tables summarize the operation of the stage 2 fraction and exponent datapaths. 

Figure 11-22: Fraction Datapath Operation Summary 
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Figure 11-22 Cont'd on next page 
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Figure 11-22 (Cont.): Fraction Datapath Operation Summary 
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M'J!..FI X 0 1 X X 0 I FD1R: 1* FD2R: 1* 
M"J"....F I X 1 1 X X 0 I FD1P,-1* FD2R_ 1* 
MtJ...!" I X X X X X 1 I tID tID 

IMn.DG I X 0 0 x x 0 I FD1P, HI FD2R a~ 
IMULDG I X 0 0 x X 1 I FD1P,-Hi FD2R-1*+ 
lMU:.DG I X 1 X X X 0 I FD1R: 1;- FD2R: 1* 
IMC'!.DG I X X 1 X X 0 I !'D1R 1;- :Il2R 1'" 
I Ht-::'DGI x 1 X X X 1 I FD1R: 1· FD2R-1· 
Il-ft':.!;\; I X X X x I FD1F~ 1* :=2? .. - 1* 

!.z,:..:., ~ x x x x x 0 I =~:'F,"-:.~ ~:ZR: lee 
I M' .. -:o:. I X X X X X I FD1P,-l~ F:l2?,_ l~~ , 

:/5 - :;~::..:-=.es 7a.::"ci =a:-~~ a::.c S~::: ,"ec':ors. 
? ... (;a_=-_: .. ,: - :;0&:-.. :-:'&5 -:.::'a-; '":-~~ s-:.::.;_ : =:..;::::. s::'!!-:e.= !::::-.;-; :'s ;....;.._; 

~ 

== 

- 5-:.:.;s : :=-==-=S -:.::':"5 :--=;:"5-:'£= ':.c. =.... a:: %06::5. 
Cc~~a~~s 3~ul~i~lica~: gene:atec i~ stage 1. 

- ::::~a!~s :9~~:~~;:~:~~. 
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Figure 11-23: Stage 2 Exponent Datapath Operation Summary 

+-------------------------------------------------+-----+-------------------------------+ Cond.itions I Exponent Datapath Registers 

+-------+---------._----+-----+-----+-------+-----+-----+----------------+--------------+ 
OPC I £FF A/S I E1Z I E2Z I E_N I ED IFF I M2 I K I ED1P. ED2R 

+-------+---------+-----+-----+-----+-------+-----+-----+----------------+--------------+ 
I I I I I 

I ADD! A X I X I X I X I X X I ED1P. 1 UD 
ISUBf S 0 I 0 I X IED-O,l I X X I ED1P.-1 LSENCO 
I S 0 I 1 I X IED-C,l I X X I ED1P.-1 0 

S 1 I 0 I X IED-o,l I X X I ED1R:l 0 
S 1 I 1 I X 1£D-0,1 I X X I ED1R 1 0 
S X I X I X I ED>l I X X I EDU( 1 tID 

I I I I I 
ICM?!, X X I X X I X I X X I ~lP._l tID 
I"'''"'''~ I I I I 
I I I I 
l=n"!'/D X 0 I 0 j: I X X 128 I £_.iWl-:::;:):P._ l+K t;~ 

,---.::, X C I i X ): :.: 1:::"; --;.:;.:-:::::?~-:~::. '"-
,--_ .. z .t. - I :r: I :l': I X X I X (, '-'-1--"-
I---:~Z X X I :. X ! X .t. :.: 0 ~ 

I I 
i I I 
; !"::'-;.-=, X X X ): I X X :.: :tl)l? ___ - -...; 

!!,,~,;~~!, I 
I-~~~ ! 
1 _. ___ , 

I =-",,":!,:', I 

! :-.. -:?!! 

I--_.I.e- ): I X :l': .!-. X I X I X ! :',$::'::== 1_" __ -

i I 
I~.:..!'/D X 0 0 I X I X I X 128 E 1.Dl-ED1P. l-K t:D 
!!'!".:'!.G X 0 0 I X I X I X !lO24 ::::AD1-!:t):!.P: l-K UD 
IMti:.! X 1 X I :-: I X I X I X 0 tID 
11-:,,;-:'! X X I 1 I X I X I X I X 0 W 

I I I I 
lM1'r~, X X I X I X I X I X I X tID tID 

+-------~---------+-----+-----.-----+-------+-----~-----+----------------+--------------+ 
OPC - opeODE 

Err A/S - Denotes that the operation is an effective ADD or SUB. 
ED - Exponent d.ifference. 
tID - Undefined 

11.19.30 Passthru Signals 

MMGT_FLT_L, MEM_ERR_L, RSV .ftDR_L and PSL_FU_H signals are simply passed through 
stage-2 without change. They are latched coming in from Stage-l during Pffi_4 and driven to 
Stage-3 during PIn_2. 

NEW_FOP _H signal also passes through to Stage-3 unaffected. It is latched during PHI_l 
coming from Stage-l and driven to Stage-3 during PHI_3. This signal is gated with the global 
purge signal F_I%PURGE_H from the input interface which clears it on a PURGE from the 
input interface. This signal is used by the Output Interace to manipulate its control-queue and 
data-queue pointers. 
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11.20 STAGE 3 

11.20.1 Introduction 

Stage 3 of the pipeline is used primarily to left shift an input, or to perform the addition of 
two inputs. Stage 3 contains a control section and portions of the fraction, exponent, and sign 
datapaths. In addition, stage 3 has the capability to bypass stage 4 rounding operation for certain 
instructions. Stage 3 takes virtually all of its inputs from stage 2 of the pipeline, and drives it's 
outputs either to stage 4 or to the output interface directly. 

The fraction datapath portion of stage 3 consists of a left shifter, an instantiation of the generic 
adder and some mini-rounding incrementers. The left shifter is used for convert and effective 
subtraction-like operations. The adder is used by all other operations either to pass an input 
to the output (by adding zero), or to add two vectors-for example, the two input operands 
(correctly aligned) for addition/subtraction, or the sum and carry vectors for multiplication. 
The mini-rounding incrementers are used to round the fraction result during a stage 4 bypass 
operation. Stage 3 also performs the injection of the sticky bit and increments the quotient, 
dependent on the sign of the remainder. The output of stage 3 is always normalized, where 
relevant. 

The exponent data path consists of the generic exponent block. In this stage, the input selector, 
adder, and output selector are primarily used. For addition, subtraction, multiplication.. and 
division, the adder is used to increment/decrement the input exponent according to whether the 
fraction addition can o\7eriiow/underiiow. It also subtracts the left shift amount \",hen the fraction 
portion performs a left shift. 

The sign datapath portion in stage 3 will generate the correct sign for the result during a 
successful stage 4 bypass. No operation is performed on the sign bit that is sent to stage 4. 

Some integer overflow detection logic is included in the control path. Additionally the six LSB's 
generated for MULL are combined, and a few stage 4 signals are generated. 

11.20.2 Stage 4 Bypass 

For a specific set of instructions and conditions, stage 3 can supply a result to the output interface 
directly. This is referred to as a "stage 4 bypass" and improves Fbox latency by supplying a 
result one full cycle earlier than the stage 4 supplied result. In order to bypass stage 4, stage 
3 must perform the required operations that stage 4 would normally perform under the same 
conditions. This includes rounding the fraction, supplying the correct exponent and generation 
of the condition codes and status information that is related to the result for floating ADD, SUB 
and MUL instructions. 

Stage 3 performs the rounding operation through the use of incrementers. These incrementers 
are much smaller in width than the number of fraction bits for a particular data type due to 
timing constraints. Because of the limited size of the inerementers not all fraction datums can 
be correctly rounded by stage 3. (The mini-round succeeds if the selected incrementer for a 
bypassable instruction does not generate carry out.) If the mini-round fails, the unmodiiied 
fraction is driven and the stage 4 bypass is aborted. 

Stage 3 and stage 4 share common busses to drive results to the output interface. Stage 4 will 
drive the busses, during phi3, if it has a valid data. Stage 3 will drive the busses, during phi3, 
if it can successfully bypass an instruction and stage 4 does not have a valid data. 
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The stage 3, stage 4 common busses are listed below: 

f b~f out l<bO:bSS> fract~on result bus 
f:b.e:out:l<lO:O> exponent result bus 
f b~s out si~n result bus 
f:b.n:out psin result bus 
f b.z out pslz result bus 
f:b~:out pslv result bus 

11.20.2.1 Stage 4 Bypass Request 

When stage 3 has detected that a stage 4 bypass may be possible it signals the output interface 
by asserting the signal F _S%S4_BYPASS_REQR_B during pbi4. 

All of the following conditions must be met in order to generate a stage 4 bypass request. 

= :'::e s:!?"=.:1. F _2%D~ VALIDR_H :is asse::e:! :in::':=.::!.,:; :.':Ia: :r.e d=.:=. p:ese::: 
a: s:a~E ;'e i~pu: is vA1~=. 

= ~e s:';::=.l F _3%DATA .. 'vALIDR_H :'s N~!' asse::.: :'::::!=a::!.,:~ :ba: c : • .!':.:..:!: 
?;:.~ :.::: ..!E!:: =.: E:a.~ • .; :.:: :bE ~:fj-'-!.=;';S c.,:·:':' •• 

o :;e:!. :be: of tne :wo input ope:lUlcU are reserved opera.~ds. 

11.20.2.2 Stage 4 Bypass Abort 

In order to abort a stage 4 bypass, the signal F _3%S4_B'YPASS_ABORTR_H must be asserted during 
phl2. Either of the two following conditions must be met in order to abort a stage 4 bypass 
assuming the bypass request was generated. 

o Mini-round fa~lure. ~be selected mini-round incramenter carried out of it's 
most significant bit position. 

o Exponent overflow or underflow ~s detected on e~tber of the two exponent 
results in stage 3's exponent section, ~rrespective of the possible 
l-bit left or right sbift required for the fract~on adder result. 

11.20.2.3 Stage 3 Response to FBOX Purge 

Stage 3 responds to the FBOX purge by clearing from stage 3, the data_valid flag and also the 
new_fop flag. 

11.20.3 Section Implementation Description 
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11.20.3.1 Block Diagrams 

Stage 3 is made up of three sections: control, fraction, and exponent. On the following pages, 
block diagrams of the fraction and exponent datapaths are shown. 
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o 
Figure 11-24: Stage 3 Fraction Datapath Block Diagram 
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Figure 11-25: Stage 3 Fraction Mlni·round Block Diagram 
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Figure 11-26: Stage3 Exponent Datapath Block Diagram 
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11.20.4 Fraction Datapath 

The operations performed in the fraction datapatb. in this stage are shown in the following table. 

Table 11-11: Stage 3 Fraction Datapath Operations 

Category Operation Condition 

FO 

Fl 

F2 

F3 

F4 

F5 

F6 

LSHFT_OUT <- FDIR.SHL.[LSHR] 

LSHFT_OUT <- FD2R.SHL.[LSHR] 

SUM <- FD2R + FDIR 

SUM <- FD2R + .not.FDlR + .not.STKYR 

SUM: <- FD2R + FDIR + Rnddi 

Sm! <- FD2R + FDIR + .not.F_h'"R 

sm! <- .not.:MCR + .not.:MSR 

EFF.SUBft deltaE < 2, neither operand = 0; 
CVTif; CVTfi, left shift; CVTRfL, left shift. 

EFF.SUBf, deltaE < 2, operand(s) = 0 

EFF.ADDf; CVTft'; MOV£; MNEGf; CMPf; 
TSTf; CVTfi, right shift 

EFESUBf, deltaE > 1 

CVTRfL, right shift 

DIVf 

:MULf; A1ULL; 

11.20.4.1 Normalizer Input Selection 

The data to be left-shifted may be contained in F _2t;CFDIR_H or F _2%FD2R_H. The normalizer input 
selector is used to select between these two input registers. 

11.20.4.2 left Shifter 

The left shifter is capable of performing zero to fifty-seven bit left shifts. The shift amount is 
driven on the LSHR lines in decoded form.. The output of the left shifter is driven on LSHFT_OUT 
to the stage 3 output selector. For effective subtractiont exponent difference equal to zero, the 
output of the left shifter may be negative. The shift amount is forced to "shift of zero" if stage 3 
is in FBOX_Test mode or the chip is reset. 
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11.20.4.3 Adder Input Selection 

The adder is driven with two input vectors: AIN and BIN. AIN can be FD2R or MSR; BIN can 
be FDIR or MCR. Note that for several operations, either FDIR or FD2R must be zero; the data 
is contained in the other register. 

These operations are: 

CVTff 
MOVf 
MNEGf 
CMPf 
TSTf 
CVT:6., right shift 
CVTRfL, right shift 
DI\Tf 

11.20.4.4 Adder 

The adder uses two 61-bit inputs to derive a 62-bit result. The 61-bit inputs have two bits above 
the binary point and 59 bits below; the 62-bit result has an extra bit above the binary point. In 
this stage, the most significant bit of each input is not used; neither are the two most significant 
bits of the output. 

The main carry acceleration technique used is carry select. The adder is broken up into nine 
small groups, with all but the least significant group having duplicate carry chains. These carry 
chains operate in parallel during the early part of the execute cycle. Propagate and generate 
logic operates before the carry chains. These parts of the adder are fully static. 

During the late part of the execute cycle, the sum logic executes. Just as for the carry logic, there 
is duplicate sum logic for all groups except the least significant one. In addition, logic to derive 
the true group carry out signals executes in these phases. These carry out signals are used to 
select the correct sum values. These parts of the adder are also fully static. 

NOTE FOR MULL: 

The adder in stage 3 adds the 58 MSB's generated by the multiplier array. <1358> of 
AIN and BIN is forced to zero for multiply operations. 

Shift Detection Logic: 

The most significant group of adder bits, bit positions <A2:Bl>, is different from the groups below 
it. In this group, both the carry and sum logic execute during the early part of the execute cycle. 
Late in the execute cycle, shift detection logic executes. If enabled, it examjnes the sum bits 
<AO:Bl> to determine whether a one bit shift right or left is needed to normalize the result. The 
possible values of sum bits <AO:Bl> are given in the table below for each operation which may 
yield a non-normalized adder result. 
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Table 11-12: Possible Values For Sum Bits cAO:B1 > 

Result II Result '2 Result '3 Operation 

0.1X. l.xx 0.00 EFF.ADDf 

0.1X. 0.01 0.00 EFF.SUBf, deltaE>l 

0.1X. 0.01 0.00 MULf 

0.1X. 1.xx 0.00 DIVf 

If the shift detection logic is disabled, then the signal indicating "no shift needed" will be asserted. 

This logic is also conditioned with another signal (sel_other) which is used to deassen all of the 
shift detection signals. Since these shift detection signals are used to drive the output selector for 
the stage, this feature permits the selection of a stage output other than the shifted or unshifted 
adder result. 

The logic used to control the shifting is as follows: 

Det_shrl detects the case in which the fraction result is l.xx.xx, and thus the fraction mustbe 
shifted right by one bit to be normalized. Det_pass detects several cases: first, the case in which 
the fraction result is O.1XX..xx; second, the case in which the fraction result is zero (O.OOxx..xx); 
last, the case in which shifting is disabled. Det_shll detects the case in which the fraction result 
is O.OlXX. .. xx, and the fraction must thus he shifted left by one hit to be normalized. 

The detection logic is duplicated, with one copy for each of the two sets of sum bits. This logic 
is fully static. The correct shift signals are selected dynamically by the true group carry out of 
the previous group, and driven out of the adder. A signal indicating whether a shift was done is 
driven to the exponent section, where it is used in selecting the proper exponent output. 

Bit Injection Within Adder: 

The adder performs rounding and two's complementing for all datatypes. The following table 
shows the bit positions into which injection is done. The bit positions are defined as C(Y), meaning 
the carry in of the yth bit position. This carry in is derived by forcing a carry out to be generated 
in bit position (y-l). Only Rnddi is used in this stage. 
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Table 11-13: BH Injection Within Adder 

'IYPe of lDjectiol1 

Rudf Rnddi Rudg 

c(B24) 

c(B56) 

c(B53) 

c(B55) 

The carry in to hit position <SSB> is set directly by the stage's control section. 

11.20.4.5 Mini-Round Incrementers 

These incrementers are used to round the fraction result supplied by either the left shifter or the 
adder. The incrementer for D and G type is four hits wide while the incrementer for F type is 
three bits wide. 

, 1.20.4.6 Output Selector 

The output selector is a precharged l-of4 selector. It selects either the left shifter output or the 
adder output (shifted left one bit position, passed unsbifteci, or shifted right one hit position). 
Three of the four selector control signals (the three adder output selection signals) are driven 
from the adder to the output selector; the fourth (the left shifter output selection signal) is driven 
from the control section. 
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11.20.4.7 Fraction Datapath Operation Summary (Normal Operating Mode): 

Figure 11-27: Fraction Datapath Operation Summary 

+------------------------------------------+------------------------------------------------+------------------+ Conditions , FOP Inputs , FD? OutPUt I 
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----.-------------------~------.-----+-----+------~------~-----+--------------------~-------+------------------. 
O?C - Opcode 
E:F AIS - Effective Addition (A) or Effective Subtraction (S) 
SUM - Adder OUtput, shifted left/passed unshifted/shifted right as needed 
ED - Exponent Difference 
V - Valid data 
x - Don't care 
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11.20.5 Exponent Datapath 

The operations performed in the stage 3 exponent datapath adder are shown in the table below. 
Note that the exponent operation category numbers are unrelated to the fraction operation 
category numbers. 

Table 11-14: Exponent Datapath Operation Summary 

Category Operation done in Adder Condition 

EO 
EI 

E2 

E3 

E5 

E6 

NOOP 

E_ADI <- EDIR + K + 1 

(ER + 0 + 1 ) 

E_ADI <- EDIR + .not.K 

(ER·I) 

E_ADI <- 'EDIR + .not.ED2R + 1 

( ER • NORl\f ) 

E_ADI <- K + .not.ED2R .;. 1 

( BIASI· NORM ) 

E_ADI <- EDIR + .not.K + 1 

(ER· BIAS2 ) 

E_ADI <- EDIR + K 

(ER + BlAS3) 

CMPf; TSTf 

DIVt; EFF..ADDf 

MULf; :MULL; EFF.SUBf, deltaE>l 

EFF.SUBf, deltaE<2 

CVTif 

CVTfi, CVTRtL 

CVTff, :MOVf, ~fl\~Gf 

11.20.5.1 Constants 

Five bits (bits <BITMAP>(lO), <BITMAP>(7), and <5:3» of the exponent constants are driven 
from the control section into the exponent section. The other eight constant bits are hardwired 
to ground within the exponent block. The constants needed in stage 3 are: 

KO - 0000000000000 
1111111111111 

K1 - 0000010100000 
K2 - 0010000100000 
K3 - 0000000011000 
K4 - 0000000101000 
K5 - 0000000110000 
K6 - 0000010000000 
K7 - 0010000000000 

o 
-1 

160 
- 1056 

24 
40 
48 

128 
- 1024 

- NOT(KO} 
; CVT{B,W,L}{F,D} 
; CVT{B,W,L}G 
; CVT{F,D,G}L/CVTR{F,D,G}L 
; CVT{F,D,G}W 
; CVT{F,D,G}B 
; CVT{D,G}F/CVTFD 
; CVTFG 

K1 and K2 are the BIAS! constants, used in CVTif; Ka, K4, and K5 are the BlAS2 constants, used 
in CVTfi and CVTRfL; K6 and K7 are the BlASS constants used in CVTfi', MOVf, and MNEGf. 

11.20.5.2 Zero Detection 

The zero detectors are not used in stage 3. 
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11.20.5.3 Exponent Adder 1 

The exponent adder is a l3-bit static adder used to add or subtract two inputs. Each input is 
passed through a 2 to 1 selector and inversion logic prior to the adder. 

INP _lA can be selected from ED lR or K.. If ISELl_ED lR_A is asserted, then ED lR is passed 
through the selector. If ISELl_K_A is asserted, then K is passed through the selector. Inversion 
of the adder input is then done based on the assertion of INVERT_EA.-ADI. INP _lA is never 
inverted in this stage. 

INP _lB can be selected from ED2R or K.. If ISELl_ED2R_B is asserted, then ED2R is passed 
through the selector. If ISELl_K_B is asserted, then K is passed through the selector. Inversion 
of the adder input is then done based on the assertion of INVERT_EB_ADl. 

The adder also contains a carry-in to the LSB cell, CIN_E_ADl_H. The carry-in is primarily used 
for performing subtraction operations. The table below gives the carry value for each exponent 
operation category: 

Table 11-15: L.SB Carry-In Values 

Category Carry In 

EO 
El 
E2 

E3 

E4 

E5 

E6 

d 

1 

0 

1 

1 

1 

0 

Since the adder is static, it begins its operation when the input data is valid near the falling 
edge of phase 2. Intermediate results in the exponent adder are valid by the middle part of the 
execute cycle and sent to the detection logic and output selector. 

11.20.5.4 Output Selector 

The output selector is used to select the output data from three different sources: edlr, e_adl or 
zero. This selection is done for the exponent output data (EDIR), the :Boating overflow (F _OVFR) 
and the floating under6.ow (F_UNFR). The selection is based on the assertion of two control 
signals, OSELl_ZERO and OSELl_E_ADl. 

OSEL1_E_ADl if asserted, selects the output from E_ADl; for overftow and underflow, 
OSEL1_E_ADl selects E_ADl_UNF and E_AD1_OVF. IfOSELl_E_ADl is deasserted, then the 
output is selected from EDlR; for overflow and underflow, OSELl_E_ADl deasserted selects 
EDlR_ OVF and EDlR_ UNF. This selection is done using a 2 to 1 selector. 

The selection of zero is done prior to the 2 to 1 selector described above. If OSELl_ZERO is 
asserted, then the inputs from E_ADl and EDIR entering the 2 to 1 selector are both forced 
to zero. Then, since only one select line is used to control the selector, the zero value will be 
transferred to the output regardless of the assertion of OSELl_E_ADl. 

The output of the selector is latched every cycle and driven into the following stage. 
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The selection of the exponent output is shown in the following table. 

Table 11-16: Exponent Output Selection 

Ezponent 

Operation Select EDlR Force Zeros 

if: Category if: 

EO 
El 

E2 

E3 

E4 

E5 

E6 

always select 

fraction passed 

unsbifted 

fraction passed 

unsbifted 

fraction shifted 

fraction shifted 

always select 

always select 

always select 

always select 

DIV: (elzr + e2zr) 

EFF.ADDf: (elzr * e2zr) 

MUL: (elzr + e2zr) 

EFF.SUBf: (elzr '" e2zr) 

EFF.SUBf~ deltaE=O: (f_zr) 

EFF.SUBf: (elzr '" e2zr) 

(Czr) 

(elzr) 

As shown in the table above, some selection operations are dependent only on the operation 
category, ,vhile others also depend on ,,,"hether the fraction adder result needed a one bit 
normalization. The control section implements the following equation: 

CSEI.:1 E i.Z:Z - :1 
CSEL1:E:.. .. Z.Dl - :. 

!~ GSEZ:Z E ;.:oJ 
!~ GSE:.:.:ED1R 

GSEL1_E_ADl and GSEL1_EDlR are generated in the control section, based on the opcode. 
SHFr_DONE is generated in the adder, based on the value of the adder output. If RESET is 
asserted, SHFT_DONE selects the exponent output. 

The overflow and underflow outputs that are selected are never used. 
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11.20.5.5 Exponent Datapath Operation Summary (Normal Operating Mode): 

+------------------------------------------------------+-----------------+------------------+ 
I Conaitions I EDP Inputs I EDP Output I 

+------+---------+-------+-----+-----+-----+-----------+---+------+------+------------------+ 
I OPC I EFF A/S I ED IFF I E1Z I E2Z I F_ Z I SHM_DONE: I K I ED1R I ED2R I ED1P. I 

+------+---------+-------+-----+-----+-----+-----------+---+------+------+------------------+ 
I ADD!, A x 0 x I x 0 I V I V I x ED1P. 
I SUB! A x x 0 I x 0 I V I V I x ED1P. 
I A x 0 x I x 1 I V I V I x E_.AIll 
I A x x 0 I x 1 I V I V I x E_.AIll 
I A x 1 1 I x x I V I V I x 0 
I S ED-O 0 7.. I 0 7.. I x I V I V E_ADl 
I S ED-O x 0 I 0 l: I x I V I V E_ADl 
I S ED-O 1 1 I x 7.. I x I V I V 0 
I s c-O x x I 1 x I ,. I V I V 0 
I S E:I>-l 7.. x I x x I x I V I V E_J..!n 
I s I 0>1 x x I x C> I V I V I x E~:'? 

I S E:»l x x I x - I V I V I x E A!:l 
i I I I 
IC~~! l: 7.. x ! x I x l: I x ! '\'! I x ~=:?" 
l!S':! J.: x x ! x ! x x 1 x I V , x E.::'? .. 

I 
1 t:-,,~=, I .,,- x 0 G I x 0 i V I V I l: E::? 
! I I 
11-:=:"!, I l: 7.. 0 C I x 0 I V I V ! x E::? 
! !-r:-:.:., x .,,- c I ... - V I 7.. - .t" __ 

I ! I 
l~"""~~ i_

la 
___ , X X 0 x I x x I 'v ! V I x ~-;..::: 

. "',---& :.>: l: - I X I ',- .:.. .I. !'._. -I 

!~=~:;: I 

I~,,'":=! I x x I x I x I x .,,- ! V I \" I x -_r-.l_ 
I""'-~:'~ ..,. Z x X f". j: i .I. - ..._-

~: "\" x Z - x .- x .. 
I CV':R!L I x x I :I: I x I x I x I V I V I >: E_ADl 

-------------------------------------~-----------------------------------~------------------+ 

11.20.6 Sign Datapath 

The operation done in the sign datapath portion of stage 3 is shown in the table below. 

Table 11-17: Stage 3 Sign Datapath Operatlons/slgn_dp_oper 

Category Operation Condition 

so 

81 

C3%slr_h <- f_2%slr_h 

f_3%s2r_h <- f_2%s2r_h 

Cb%s_out_l <- C3%bp-plsn 

always performed 

performed during stage 4 bypass 

11.20.7 'Control 

The control section generates all the control signals needed for stage 3, based on the opcode and 
several condition signals, such as ElZR and F _ZR. It sends the opcode and necessary condition 
signals to stage 4. In addition, it contains some integer overflow detection logic, a 6-bit adder 
used in MULL, and logic to generate some control signals needed by stage 4. 
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The following table shows which categories of operations are performed in the fraction, exponent, 
and sign datapath portions of stage 3 for each opcode. Each category indicates a unique set of 
control signals to be driven. The control section generates these combinations of categories. 

Table 11-18: Categories of Datapath Operations 

Opcode Operation 
Categories of Datapath Operations 

CVTfi', MOVf, MNEGf 

CVTif 

CVT:fi, right shift 

CVT:fi, CVTRtL: left shift. 

C'VTRfL, right shift 

DIVf 
EFF_.\I)Df 

EFF.SUBf, deltaE<2, opnds <> 0 

EFF.StJBf, delta.E<2, opnd(s) = 0 

EFF.SUBf, deltaE>1 

C:MPf; TSTf 

:MlTLf, ~f(;"LL, 

11.20.7.1 Miscellaneous Control Signals 

Fraction 

F2 
FO 

F2 

FO 

F4 
F5 
F2 
FO 

FI 
F3 
F2 
F6 

Ezponent Sign 

E6 SO 

E4 SO 

E5 SO 

E5 SO 

E5 SO 

EI SO 

EI SO 

E3 SO 

E3 SO 

E2 SO 

EO SO 

E2 SO 

Most of the stage 3 control signals are generated in the control decoders, but some are generated 
or conditioned external to the decoders. These signals are described in this section. 

11.20.7.2 Data_Valid 

The data_valid signal sent to stage 4 is received from stage 2 and is enabled when there is no 
FBOX flush occurring and a stage 4 bypass is also not occurring. The equation for enabling 
F _3_C%8_D~ VALIDR_B is as follows: 

NOT f_.1.abort_h AND (f_3b4_bypass_abortr_h OR 
NOT ( f_3.s4_bypass_Qnb AND f_3.!l4_bypass_rQqr_h )) 

This operation is performed before the end of the execute cycle. 

11.20.7.3 Fault Bits and NEW_FOP 

There are three fault signals associated with each valid data that :Bows through the FBOX pipe. 
In addition to these three fault signals there is one more signal (new_fop) which indicates that 
there is a new FBOX operation is coming through the FBOX pipe. The three fault signals are 
named F_3%MMGT_FLT_L, F _3o/GMEM..ERR_L, F_3%BSV_ADR_L. A stage 4 bypass request can not be 
generated if any of the fault lines are asserted. The new_fop signal is cleared out of the FBOX 
pipe whenever an FBOX purge occurs. 
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11.20.7.4 Signs_Not_Eql, Fb_Neg4 

Stage 3 generates two signals for use in stage 4. These signals are signs_not_eqlr_h and 
fb_neg4r_h The equation for signs_not_eql is: 

FB_NEG4 is the signal used to negate the B input to the stage 4 fraction adder. The input is 
negated if stage4 needs to perlorm a two's complement. The equation implemented is: 

:= NEG4 - [(E:FF'SrJE .. E iX!F: EQL 0 .. : 2~: N) + 
- (Ci?'!'::I oj, SlR) + - - --

(SIr;J1S_NC'!'_E;-Z)) .; F_:ztFEOY._S'YP,ASS_E 

11.20.7.5 Integer Ovet1low logic 

Some of the logic used to detect the integer overflow condition for CVTii and CVTRfL is located 
in stage 3. This static logic operates unconditionally, and its outputs are used by stage 4 \vhen 
needed. 

The first function is IOVFL3. It implements the equation 

(DESTD'1'<~lORD> It MNEG~1R) + 

(!)ESTD'!'<LONG> It~)) 

IOVFL3 detects integer overflow for CVTfi and CVTRfL (no round up), in the case where the 
hidden bit of the fraction becomes the MSB of the integer, and the sign is negative. In this case, 
a two's complement must be perlormed on the integer. If the integer is 100 ... 00, no overflow 
will occur since the result of the two's complement will be 100 ... 00, a negative number. This 
happens because in N bits, more negative numbers (one more) can be represented using two's 
complement than positive numbers. Thus, there is no positive equivalent of the most negative 
number (100 ... 00). If the integer is not 100 ... 00, overflow will occur since the result of the two's 
complement will be oxx.. . .xx, a positive number. 

The second function is IOVFL4. It implements the equation 

IOVFL4 <-- (IOVFL4A + IOv.FL4B) It CVTRfL 

IOv.FL4A <-- LNEGIR ItS2R It E_DIFF_EOL_25R 

IOv.FL4B <-- SlR .. E_DIFF_EOL_24R It CRE'L_RNDR It HNEGLR 

IOVFL4 detects integer overfiow for CVTRiL, in the case when rounding causes the integer to 
be incremented. IOVFL4A detects the case where the integer is 011 ... 11, the result should be 
positive, and a round up occurs. IOVFL4B is used to detect a case not covered by IOVFL3. In 
general, if the hidden bit of the fraction becomes the MSB of the integer and the sign bit is 
negative, overflow will occur unless the integer is 100 ... 00. However, for CVTRiL, overftow will 
also occur for an integer equal to 100 ... 00 if the integer must be rounded up. IOVFlAB covers 
this case. 

IOVFL3 and IOVFL4 are sent to stage 4, which calculates the final integer overflow result. 
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11.20.7.6 Cln_BSS 

The carry in to bit position <B58> of the fraction adder is generated outside the control decoders, 
using control signals generated by the decoders. (See Fraction Datapath Operation Summary.) 

---CIN_BSB - F_ltF_N if operatio~ is DIVIDE 

CIN_BSB - STKY if 0pfiration is EFFSUB, EDIFF>l 

CIN_BS8 - 0 otherwisfi 

The decoders generate the signals indicating the operation type. 

11.20.7.7 SeI_Other 

The sel_other signal is used in the adder and output selector in order to permit selection of the 
normalizer output as the stage output. For all operations except CVTfi, the value of this signal is 
determined by the operation. For CVTfi, it is determined by the sign of the exponent difference 
obtained in stage 1. If the exponent difference is negative, a left shift is performed on the fraction, 
and stage 3 must select the normalizer output. If the exponent difference is positive, a right shift 
is performed, and stage 3 selects the adder output. (See Fraction Datapath Operation Summary.) 
Finall~ the normalizer output is always selected in FBOX_Test mode and when the chip is reset. 
The equation implemented is the following: 

(~ '" F_3tSEL_OTHEP __ B) + 

F.-If'FBOX_BlrASS_H + 

The control decoders generate the signal F_3_01D8EL_OTHER_H, used for all operations except 
CVTFI. 

11.20.7.8 Left Shifter Input Selection Signals 

There are two left shifter input selection signals: F_3%ISBFT_FDl~R and F_S%LSHFT_FD2R_H. 
Either F _2%FD1R or F _2%FD2R may hold the input to be left-shifted. (See Fraction Datapath 
Operation Summary.) F _2%FD2R holds the input if the operation is effective subtraction, with 
either input equal to zero. For all other operations, F _2%FD1R holds the input to be shifted. The 
equations implemented are the following: 

LSHFT_FDl:R - IF_ItF130X_BrPASS_B It (EFFSUB .. (ElZ + E2Z))) + 

IF_I.FBOX_BrPASS_B .. F_ItS4_BrPASS_ENB_H) 

LSHFT_FD2:R - IF_ItF130X_BrPASS_B '" (EFFSUB .. (EIZ + E2Z))) + 

(F_ItF130X_BrPASS_B It F_I.S4_BrPASS_ENB_H) 
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11.20.7.9 Osel1_Zero 

This signal is used to force the stage 3 exponent output to zero. The equation implemented is as 
follows (see description of the output selector in the exponent section): 

OSELl ZERO - {{DIV ... (E1Z + E2Z;) + 
- {~ ... (E1Z + E2Z;) + 

{EFFADD ... (E1Z ... E2Z;) + 
{EFFSUB ... (E1Z ... E2Z;) + 
(EFFSUB ... E DIFE' EQL 0 ... F Z) + 
(eil'!'!:! ... F-Z) +- - -
retT:::! ... E1ZJ + 
(MOt':! ... E1Z) + 
(MNEG:! ... E1Zj) ... F_Ii"FBOY,-'sl"PASS_H 

11.20.7.10 Osel1_Ed1r 

This signal is used to select the stage 3 exponent output. If it is asserted, the contents of 
F _SG2%EDIR are chosen as the stage output; othennse, the exponent adder output is chosen as 
the stage output. 

!:=:~= 

OSEL1_E.D1R - 1 :if [C!@: -fe 

'IST:t + 
F_ItFBOY._BY'P;.sS_B ) ... RESET 

CSE:1_ED1R - SEF'I_D01-<"E :!:! IEFFSrJE ... E_DZFF_G':rFL1) + 
EE"FJJ)D + 
NUL + 
DI"il ... F_ItFBOY._SYFASS_H + 
P.ESE'!' 

11.20.7.11 MULL Adder 

The multiplier array in stage 2 generates 64-bit sum and carry vectors for MULL. The 58 MSB's 
are combined in the fraction adder in stage 3. The 6 LSB's (<B58:B63» of each vector must be 
added together in the control section of stage 3. The six sum bits generated are sent to stage 4 
(as are the MSB sum bits). Any carry out of the six LSB's has been previously incorporated in 
the MSB's in stage 2. 

11.21 STAGE 4 

Stage 4 of the pipe is used to do various terminal operations of an instruction. It does round 
or a 2's complement on the result of stage 3. The result of stage 4 is the :final result which is 
sent to the interface section. Stage 4 finds the sign of the final floating result and outputs it to 
the interface. Stage 4 also detects the following conditions: integer overflow, floating over:6.ow, 
floating underflow, zero result, negative result, reserved operand and floating divide by zero. 
In addition to this, it sets the correct condition codes (PSL.Z AND PSLN). Stage 4 also checks 
whether the condition for CMP and TST instruction is met or not. For eMF, the correct condition 
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codes are set. During any CMP instruction, stage 4 forces the fraction and exponent datapath 
output to zero. When reset is asserted only one path of selector will be enabled in the fraction 
adder selector logic. 

11.22 FRACTION DATAPATH 

Figure 11-28: Fraction Datapath Block Diagram 

: Bt: o~ L<Bl:BS8> I I - - - \/ 
I I F 3tFD1R<AO:BS8> 
\/ -

---------------------------------------------------------------------------------------------+ 
I ZERO :lE'ZE==IOl' !.OG:C/Mt:'I.l. OV-.:.?.n.Oii l.OGIC I I 1--> '1'0 COl~'!P,O:" 

---------------------------------------------------------------~+-----------------+-----------
I; 
\/ 

! I 
\/ 

1<--------- : 3'~l.S=R<5:0> 
V -

----------------------------------------------------------------------------------------------

\/ 

:;. 
€:-!:: ;...:=~ 

I \ Ii 
Ii 
\/ 

: I 

I: 
II 
II 

I j =_ ';_A.1!::::_= 
\/ 

Iii j 

! <---s~:., !~:. 
I <---==_l;~~ 

1 <- ?-l=::,;t c.:.. 
!<- =:lr=S5,=::·~_=:e 
1 <- S4,:"- _:=-.:~:., .::::_:.. ... 
1-> SE:'I'_D:n~ ere E:G.) 

11------------------------11-------> SUM<b48>.Su.M<b40>. I SUM<b24> ('1'0 ~SC LOGIC) 
\ / S'OM (.~:ER R£S~,!) \ I I 

~---.----------------------------------------------------------------------------------+-----+ 

----~----------------------------+~--------------~+-----------------------------------~-----+ 
I DET _ Sh"Rl 
I 

V v 
" II 
\/ P.!:SN 

II I I 
II I I 
\I RESS \/ 

II ZERO 
\/ 

~--------------------------------------------------------------------------------------------+ RSELEC'1'OR II 

+------------------------------------++------------------------------------------------------+ 
II 
\/ 

II 
\I 

+--------------------------------------------------------------------------------------------+ FD1R<BO:B5S> I I 1<-- PHI_2 

+------------------------------------++------------------------------------------------------+ 
1 I F 4%FDlR I I 
\/ - \I 

+--------------------------------------------------------------------------------------------+ I 1<-- PHI 3 
I BUS DRIVERS 1<-- DATA_VALID 
I 1<-- F_tlNFR_H 

+--------------------------------------------------------------------------------------------+ 
1/ 
\I F_B%F_OU'l'_L<Bl:B58> ( To output interface.) 
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11.22.1 Fraction Implementation Description 

FRACTION DETECTION LOGIC 

The detection logic in the fraction datapath is connected directly to the output from stage 3. The 
F _3%FDIR_H and F _3%MILSBR_H outputs from stage 3 are necessary for the detection logic. 
The detection logic works unconditionally and no control signals are provided to the logic except 
clocks. The detection logic detects a zero result for MULL and CVTfi instructions. It also detects 
overflow for the MULL instruction. Overfiow for MULL occurs when the 32 msb's of the 64-bit 
result are not equal to the sign extension of the low half (32 Isb). 

SELECTOR 

The selector drives the selected input into the adder. The selector either selects F _3%FDIR_H 
unshifted or shifted left by eight bits. It can also negate the selected input. The control 
input to the selector is SEL_MULL_L, SEL_MULL_H, FB_NEGR_H, and FB_NEGR_L. If 
the SEL_Mt.i'LL_H is high then it is a MULL instruction and the F _3%FDIR_H and 
F _3_C7£:~nLSBR_H is selected, shifted left by eight bits. If SEL_MULL_H is 10'''', then the 
F_3%FDIR_H is selected 'without any shifting. IfFB_1\TEGR_H is high then the selected input is 
complemented. The complementing is necessary for doing a 2's complement if certain conditions 
are satisfied for EFFStJB and CVTfi instructions. 

ADDER 

The adder is used for the terminal operation of the result, i.e. for rounding, to find the 2's 
complement of the result and to add zero to the input. The last case is used when the input to 
stage 4 is to be passed as output of stage 4. The adder also drives the result selection signals. 
One input (FB) to the adder is F_4_A%BIN_H and the other input (FA) is always zero. The 
R.~*, Cm_B58 and CINB55_ ONE signals are driven to the adder by the control of stage 4. 

SHIFT DETECTION LOGIC OF ADDER 

If enabled, the adder examines the sum bits <AO:Bl> to determine whether a one bit shift right 
is needed to normalize the result. The instructions which may require a one bit right shift are: 
EFF .ADDf, EFF.SUBf, MULf, DIVF, CVTif and CVTff. For all these instructions the result from 
stage 4 fraction adder could be of the form 0.lXX.., 0.00 ... , or l.xx. .. 

If the shift detection logic is disabled, then the signal indicating "no shift. needed" will be forced 
valid. This logic is also conditioned with another signal, which is used to force all of the shift 
detection signals to their invalid value. Since these shift detection signals are used to drive the 
output selector for the stage, this featUre permits the selection of a stage output other than the 
shifted or unsbifted adder result. 

The logic used to control the shifting is as follows: 

f_*_B%det_shrl_h - AO * shift_en * sel_other 

f_*_a%det_pass_h - {[(AO*BO + AO*SO*Bl) * shift_en) + shift_en} * sel_other 

DET_SHRl detects the case in which the fraction result is l.XX.,XX, and thus the fraction must 
be shifted right l>y one bit to be normalized. DET_PASS detects several cases: first, the case 
in which the fraction result is 0.lXX.XX; second, the case in which the fraction result is zero 
(O.OOxx..xx); last, the case in which the shifter is disabled. 
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1-BIT RIGHT SHIFTER 

The input to the 1-bit shifter is the adder result. The output of the I-bit shifter is the adder 
result unshifted (RESN) and the adder result shifted right by I-bit (RESS). The I-bit shifter 
works unconditionally. The shifter is used to right shift a fraction overflow result in case of 
fraction overflow for floating point instructions. If fraction overftow has occured then the shifted 
result is used, otherwise the unshifted result is used. 

RSELECTOR 

The RSELECTOR selects the final result for an instruction. The output of the selector is latched in 
pm_2 which is passed to the interlace. The inputs to the RSELECTOR are the two outputs from 
the I-bit shifter and zero. For the CMP instruction and for floating destination type instructions 
if the final result is zero then it selects zero. For all other instructions the selector selects the 
I-bit right shifter output (RESN or RESS). 

BUS DRIVERS 

The BUS DRIVER section drives the final stage 4 result to the output interface on an active-low 
precharged bus, F _B%F _OUT_L<BI:B55>. This bus is shared with stage 3 which uses it to bypass 
stage 4 for certain instructions. The input to the BUS DRIVER section is F _4%FDIR_H<Bl:B55>. 
During PW_3, if stage 4's data_valid bit is set and the underflow condition is not detected, the 
inyerted ~"alue of F _4%FDIR_H<Bl:B55> is driven onto the bus. If underflow is detected then 
the bus is not driven. This represents a zero being driven to the output interface. The fraction 
sign bit (SlR)~the PSL.N bit, and the exponent data bits are all driven to the output interface in 
the same manner. 

11.22.2 Fraction Operation 

The operations performed in the fraction datapath are shown in the table below. 

Table 11-19: Fraction Datapath Operations 

Condition 

EFF _SUB AND FN=l AND DeltaE::O 

EFF _SUB AND FN::O AND DeltaE::O 

EFF _.ADD OR (EFF _SUB AND NOT DelatE::O) 

MULf 

DIVf 

CV'Iif 

CVTffIMOV 

MNEG instruction 

CVTfi AND SlR::O 

CVTfi AND SlR=l 

CMPtrsT and PIPELINED CMP inst. 

MULL 

11-84 The Fbox 

FloatiDg Operation 

FDlR <- 0 + NOT FB + 1 

FDIR<-O+FB 

FDlR <- 0 + FB + Rnch 

FDlR <- 0 + FB + Rnch 

FDlR <- 0 + FB + Rnch 

FDlR <- 0 + FB + Rnch 

FDlR <- 0 + FB + Rnch 

FDlR<-O+FB 

FDlR<-O+FB 

FDIR<-O + NOTFB + 1 

FDlR<-O 

FDIR<-O+FB 

ADDER 

SHIFT_EN 

y 

y 

y 

y 

y 

y 

y 

N 

N 

N 

N 

N 
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Table 11-20: Fraction Datapath Operation Summary 

Conditions Inputs 
Output 

ope EDIFF ElZ E2Z F_Z FDlR MILSBR FDIR 
Value 

E_A X 0 X X V X SUM 

E_A X X 0 X V X SUM 

E_A =0 1 1 X X X 0 

E_S =0 X X 0 V X SUM 

E_S =0 X X 1 X X 0 

E_S =0 1 1 X X X 0 

E_S >0 0 X X V X SUM 

E_S >0 X 0 X V X SUl\1 

~rt~Lf X 0 0 X V X SUM 

:MULf X 1 X X X X 0 

~nJLf X X 1 X X X 0 

DrVf X X 0 X V X stJM 

DIVf X X 1 X X X 0 

CVTif X X X 0 V X SUM 

CVTif X X X 1 X X 0 

CVTff X 0 X X V X SUM 

CVTff X 1 X X X X 0 

MOVIN X 0 X X V X SUM 

MOVIN X 1 X X X X 0 

CVTfi X 0 X X V X SUM 

CVT.fi X 1 X X X X 0 

MULL X X X X V V SUM 

eMP V V V V X X 0 

E A/E S - Eff add/Eff 8ubstarct. 
MOV/N- - MOV/MNEG instruction 
0 - Zero result. 
X - Don't care 
V - Valid 
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The "::0" and ">0" under the EDIFF value column for E_A or E_S refers to the exponent difference 
value being equal to zero or greater than zero respectively. 

11.23 EXPONENT DATAPATH 

Figure 11-29: Block Diagram of Exponent Processor 

F 3 E%ED1R P. I I - - - \ / 
K I I 

I I 
I I F BikE OUT L<lO: 0> 
\ / - - - I I F 3 E%ED2R P. 

\ / - - - F_4_EAl 
+-----------------+-+-----------------------------------------------+ 

F_4_C%ENA_E1Z_~, 
F_'_C%EN.k_~:!Z_l, 

--------> I I I zmo DE'!1:C:OlON ! ------> F " ~%E1Z? 

+---------.-+-----+-~---------------------------------------+-~----+ :-4-E'~:Z~-
F 3 E%EDl? P. I I K I I 1 I I 1 F 3 E%ED2R H - - --- -\/ \/ \/ \/-- -

--------------------------------------------------------------------+ 
=_~_C%:SE~:_E~l?~A_E/~ -->1 
=_"'_=%:.5~:.:_::_A_E/:. ----->! 
=_ .;_=%:s~:.:_=:=:~E_E/~ -->1 
=_.;_=%:s:::.:_:~_=_E/:: ----->; 

1 

I _.-=- ... .;. S~E::':'?\' 
1 FOR ';;'::-ER l 

! 1 

~-----------~-----~-----------------------~-----------~-~-----------+ 

! i 
K i 

1 

I 
\ ! 

::::_:; .. i I 
\ / 

:~:_l= I 
\ / 

I = 3 E~~:::? :; 
1 - - -

~---------+-------~--------------------------------------------~---~ =- .; =~::~~~!{: EJ... ;...:': :: /:. - > ~ =: ';:=%:!:,\~~::~:~l::E/:' ->! 

------------~-----~-~-----------------------~-----------------------~ y. I 
I 

1 1 
\. I 

EA;'::: 1 1 £E A:il 1 1 
\. / - \! 

I I EXPOP..N'I A!lDER 1 

----------~------~+---------~-~---------------------------~.----+ 
-: 3 E%ED1P. P. 11K I I I I liE ADl I I -: 3 !:lJED.2P. E F 4 EAl 

---=-=------=--1 1-----------1 1---1 I--=------------------------------~-~------~---~-~ 
\ / \ / 1 I -:_~_!:os 

+-----------------------------+-+-----------------------------------+ 
K_F%PH!_ '_H -------------> 1 1 1 I I PH!4 LATCHES I 

+---------+-+-----------------+-+-----------------------------------+ 
F 4 E%EDl H 1 1 1 I liE A:ol -- - \/ \/ \/-

+-------------------------------------------------------------------+ 
F 4 ClJEN G TYPE I. ------>1 1 1 OVERFLOW AND 1 
F-'-C%EN-F.5 TYPE L ------>1 1 I UNDERFLOW 1 
F:4:ClJOSEL1:zmo:H ------>1 1 1 DETECTION LOGIC I 

F 4 ClJOSELl ZERO L 
F:4:ClJSHFT_DoNE_H 

+---------+-+-----------------+-+-----------------+-+---------------+ 
F 4 E%EDl H 1 I 1 1 liE ADl 1 1 F OVFl, F OVF.2 -- - \/ \/ \/ - \/ - -

+-------------------------------------------------------------------+ 
-----> I 1 1 OUTPUT SELECT 1 
----->1 1 1 AND PHI2 LATCHES 1 

I I I 1 
+---------+-+-------------------------------------+----+------------+ F 4 EOS 

---------------1 1-----------1 1-----------------------1 I-----------------------~;:---
FONFRH II II 1 I 

<-=----=-----------+----------------1-1-----------1-1-----------------------1 I 
'1'0 FRAC. D.P. I F_4_ElkEDULH \ / \ / F_ON!"R_H V V F_OVFR_H 

I +-------------------------------------------------------------------+ 
+----->1 I 

PH! 3 ---------->1 BUS DRIVERS I 
DATA_VALID ----->1 I 

+-------------------------------------------------------------------+ 
1 I 1 1 
\ / F_BlJE_OUT_L<lO:O> V V F 4tFOV 00'1' L 

F_UFON_OOT_L 
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11.23.1 Exponent Block Description 

The exponent block can be used for various functions. In stage 4 it is used to increment the stage 
3 exponent result. It is also used to detect the floating underflow and floating overflow conditions 
on the final result. The zero detector result is used for CVTfi overflow detection logic. The final 
exponent result is either the stage 3 result, or the stage 3 result incremented by one, (if there 
is overflow) or zero. As the selection of the final result is done near the end of a cycle, floating 
overfiow and underflow are computed for all possible results and the correct one is chosen with 
the result. 

11.23.2 Exponent Operation 

In the exponent data path, the stage 3 exponent result is incremented unconditionally for each 
instruction. Then, depending on the instruction and the fraction result, the correct exponent 
is selected. The three possible exponent results are: the stage 3 exponent result, the stage 
3 exponent result incremented by one, and zero. For instructions having integer as the final 
output, the exponent is a don't care. 

11.23.3 Floating Overflow and Underflow Detection 

Floating point overflow and underfiow is detected on the output of the exponent adder as well as 
the exponent data (EDIR). 

Floating point overflow requires detecting a case when the exponent is larger than the largest 
biased exponent of 255 for F and D, and 2047 for G. The overflow is detected as follows, where 
e<12:0> represents the exponent: 

For F ana D: OVerflow - e<l2> 1< ( e<11> + e<BITMAP> (10) + .<9> + .-<8» 

for G: overflow - .<12> 1< &<11> 

The floating overfiow signals, EDIR_OVF and E_AD1_OVF, are only asserted if an overflow is 
detected and the appropriate enable signal is asserted. The enable signals are en_fd_type_l and 
en-Ltype_l, they signal whether a floating point operation is being performed and what the. data 
type is. 

Floating point underflow requires detecting the case when the exponent is smaller than the 
minimum exponent. Since the smallest biased exponent is 1 for F, D and G, the following logic 
detects underflow: 

for F,D and G: 

unaerf10w - e<12> + NOR (e<0> to &<12», which reduces to, 
- e<12> + NOR (e<0> to &<11» 
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As with overflow, the underflow signals, EDIR_ UNF and E_AD 1_ UNF, are asserted only if an 
underflow is detected and one of the enable signals is asserted. 

The overflow and underflow signals are selected as described in the output selector section. 

11.23.4 Output Selector 

The output selector is used to select the output data from three different sources: edlr, e_adl or 
zero. This selection is done for the exponent output data (EDIR), the floating overflow (F _ OVFR) 
and the floating under:fiow (F _ UNFR). The selection is based on the assertion of two control 
signals, OSEL1_ZERO and SHFT_DONE. 

SHFr_D ONE , if asserted, selects the output from E_ADl; for overflow SHFT_DONE selects 
E_ADl_UNF and E_ADl_OVF. If SHFT_DONE is deasserted, then the output is selected from 
ED1R; for overflow and underflow, SHFT_DO:NE deasserted selects EDIR;... OVF and "EDIR_ 'lJl\j'T. 
This selection is done using a 2 to 1 selector. 

The selection of zero is done prior to the 2 to 1 selector described above. The selection for the 
exponent result is done as follows. If the final result is know to be zero then a zero result is 
selected. The PSL.Z bit (see below under miscellaneous logic) is asserted if the final result is 
zero, which asserts OSELl_ZERO. IfOSELl_ZERO is asserted, then the inputs from E_ADI and 
EDIR entering the 2 to 1 selector are both forced to zero. Then, since only one select line is used 
to control the selector, the zero value will be transferred to the output regardless of the assertion 
of SHFT_DONE. 

The output of the selector is latched during PHI_2 of every cycle and driven to the BUS DRIV"ER 
section. 

BUS DRIVERS 

The BUS DRIVER section drives the final stage 4 result to the output interlace on an active-low 
precharged bus, F_B%E_OUT_L<lO:O>. This bus is shared with stage 3 which uses it to bypass 
stage 4 for certain instructions. The input to the BUS DRIVER section is F _ 4_E%EDIR_B<lO:O>. 
During pm_a, if stage 4's data_valid bit is set and the underflow condition is not detected, the 
inverted value ofF_4_E%EDlR_H<lO:O> is driven onto the bus. If underflow is detected, the bus 
is not driven. This represents a zero being driven to the output interface. 
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Table 11-21: Exponent Datapath Operation Summary 

Conditious Input 
Output 

ope EDIFF EIZ E2Z F_Z EDIR EDIR 
Value 

E_A X 0 X X V V 

E_A X X 0 X V V 

E_A =0 1 1 X X 0 

E_S =0 X X 0 V V 

E_S =0 X X 1 X 0 

E_S =0 1 1 X X 0 

E_S >0 0 X X V V 

E_S >0 X 0 X V V 

~mLf X 0 0 X V V 

!\IDLf X 1 X X X 0 

:MULf X X 1 X X 0 

DIVf X X 0 X V V 

DIVf X X 1 X X 0 

CVTif X X X 0 V V 

CVTif X X X 1 X 0 

CVTff X 0 X X V V 

CVTfi X 1 X X X 0 

MOVIN X 0 X X V V 

MOVIN X 1 X X X 0 

CVTfi X X X X X X 

MULL X X X X X X 

CMP X X X X X 0 

E AlE S - Eff add/Eff substarct 
MOV/N- - MOV/MNEG instruction 
X - Don't care 
V - Valid 

The "=0" and ">0" under the EDIFF value column for E_A or E_S refers to the exponent difference 
value being equal to zero or greater than zero respectively. 
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11.24 Control 

Figure 11-30: Control Block Diagram 

IF_3_C%FOP_FLOWR_H<5:0> 
I 
I 
I 

IF nnsox BYPASS H 
1- - -

v v 

~------------------------------------------------------+ 
1--> !:IT SO:S 
1--> SE!i='!_!:N 
1--> Mi::.:' 
1 

!--> C\"!':: 
!--> ?..:~ 

1--> !::-;;'_l:!:'! 
:--> :=: .. ::? 

~------------------------------------------------------+ 

I <--i::!l 

~-----------------------------------------------------+ i<--PHI2 

~------------------~----------------------------------+ 
I 
IF_4_C%:OP_:LOWR_H<S:O> 
v (TO MISC LOGIC 0: STAGE 4 ) 

11.24.1 Control Block Description 

The control block supplies all the control signals for various operations in stage 4 and also sends 
the control information to interface delayed by a cycle. The control block gets it's input from stage 
3. 

11.24.2 Control Block Implementation 

The main control is implemented with a PLA. The inputs to the PLA are the opcode and bypass 
signals. All the instruction information is encoded in FOP _FLOWR_H. The following control 
information is decoded in the PLA: EFF _SUB, SHIFT_EN, MULL, CVTFI, RND, ENA_DET and 
PCMPR. SHIFT_EN is asserted for CVTif, CVTDF, ADD/SUB, DlVf, MULf. RND is asserted for 
CVTif, CVTff, ADDISUB, DIVf, MULf. ENA...DET is asserted for CVTff, ADDISUB, DIVf, MUL£, 
CVTff, CVTi£. 

The destination data type is decoded to get six signals for each datatype. They are: 
FrYPE,DTYPE, GTYPE, BYTE, WORD and LONG. 
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The logic used to generate other control signals in stage 4 are as follows: 

md en h - fop flowr h<2> ;: md h ;: (eff sub AND e d1f! eql Or) 
fop:flowr_h<2> : If-~h1s ~1gnal is low for 1n~true~ion in p1pe1ined mode requiring rnd, 

then nld is disabled, i.e. it is a truncate mode. 

rndt h - rnd_en_h ;: ftype 
mddI h - rnd_en_h ;: dtype 
mdg_h - rnc_en_h ;: gtype 
cin bS8 h - e d1f! eel Or h ;: eft sub ;: f nr h 
cinb55_one_h - (e~fi:h~*-Slr_h) + (~igns_no~_eqlr_h) 

fb_neg_h is generated by stage 3 and sent as fb_neg4r_h to stage 4. The equation 
irr~lemen~ed in stage 3 is : 

sel other h - ~=m~r OR osl% f h 
psl:_f_h - :hi~ si;n~: ~I:I be high if the result for a flcat~ng destination result 

is C and if for a eM? instr".lction if both tn .. :;perancs are sa:ne. 

11.25 MISCELLANEOUS AND SIGN LOGIC 

Figure 11-31: Miscellaneous Pia Block Diagram 

v itV it itV V vvv 

MIse PIA 
1--> PSLZ_F_H 
1 
1--> PSLN2_F_H 
1 

1--> PSLNl F H 
1 --

1--> RESERVED_OPD 
1 
1--> F DIV BY 0 
1 - --

+------------------------------------------------------+ 

11.25.1 Miscellaneous Sign Logic Implementation 

Stage 4 is used to find the sign of the final result, condition codes and exceptions. Specifically it 
does sign computation, integer overflow detection, zero result detection, negative result detection, 
reserved operands and floating divide by zero detection by utilizing the information provided from 
the previous stages of the pipe. H the result is zero, stage 4 will force its output to zero. In the 
case of floating underflow, the sign, PSLN_F _H, fraction, and exponent of the result are forced to 
zero. 
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11.25.2 Sign and Negative Result Logic 

The sign of the final result and the PSL.N status bits are the same except for eMP and TST 
instructions. For CMP and TST instructions, the sign bit is a don't care and the PSLN bit is 
high if the first operand is strictly less than the second operand. If the final result is a zero 
then the sign bit and the PSL.N bit should be forced to zero. The PSL.Z (see below) bit is set 
if the result is zero, which is used to force the sign and the PSLN bit to zero. For the integer 
instruction the sign is already in the result, and hence sign is computed only for floating results. 
Hence the PSL.N bit for floating result PSLN_F _H is same as the sign bit. The signals, PSLN 
and PSL.Z, are driven to the output interface on the active-low precharged bus which is shared 
with stage 3. During PHI_3, if stage 4's data_valid bit is set and the underflow condition is not 
detected, the inverted value of PSL.N is driven onto the bus. The inverted value of the PSL.Z 
signal is also driven onto the bus during PHI_3, if the data_valid bit is set, regardless of the 
underflow condition. The interface uses these signals to determine if the CMP condition is met 
or not. 

The PSL.N bit is obtained as below. 

:! rS~.Z ~he~ PS~.N - 0 

For EFF.WDIEFFSti''B the PSL.N bit of the result is given as follows. 

- -&::=_s::.= or I"_:~!=_-;:_:· .. { __ ::'''S:= - w_:-.... s:=; 

For MULf and DIVf the PSL.N bit of the result is the XOR of the sign of the input operands. 

For MOV, CVTff and CVTif the PSLN bit of the result is the sign of the input operand. For 
MNEG instruction the PSLN bit of the result is the inverse of the sign of the input operand. 

PSL.N - slr * (MOV + CVTff + CVTif) + slr * MNEG 

For CMP and :5: instruction the PSL.N bit is 

PSL.N - [signs_not_eql*slr + 

signs_eql*{ e_diff_eql_O * Cf_n XOR slr) * f_z + 

All the above computations are done in the miscellaneous PLA. As the number of minterms for 
psln logic was large, two signals are generated in the PLA, which are OR'ed outside and AND'ed 
with PSLZ_F _H, to give the final PSLN_F _H. Sign has to be computed only for instructions 
considered above. For all the above instruction the final sign is either the PSLN bit or it is a 
don't care, hence 

For CVTfi and MULL, the PSL.N bit is the MSB of the final result. For MULL and CVTfi. 
(destination long), the MBB is SUM<B24>. For CVTfi with destination of word the MSB is 
SUM<B40> and with destination of byte the MBB is SUM<B48>. Also when the destination is 
byte and word, the only instruction possible is CVTfi. Hence the PSL.N bit is 

PSL.N - SUM<B24> * (LONG * CVTfi + MOLL ) + 

SUM<B40> * WORD + SUM<B48> * BYTE 
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11.25.3 Integer Over1low 

Integer overflow is possible for MULL and CVTfi instructions. The overflow condition for the 
convert floating to integer instruction is determined in stages 1, 3 and 4 of the pipe. For MULL 
instruction, the overflow is determined in stage 4. All these conditions are combined to give the 
integer overflow signal to the interface stage. 

OVERFLOW DETECTION FOR CVTfi 

The CVTfi instruction overflow detection operation performed in all the stages is given below. All 
constants are in decimal. 

Let the exponent of input operand be El, then the actual exponent of the Hoating number is 
El-bias. Let that number be ACTUAL_EXP. 

hence, 

Let DEST_LEN equal the length, in bits, of the destination result 

hence, 

:'-=5":_:'::: - :c= -::::"'.e~ =:c·a-:.~:':.: ~: _. _'= :"::s-::-.::-:.:"::: 
c.ss':_.l..:: -:6 !:= C~:lVE.::' ':::a.':.~=.; -:.~ ...... cr: ins':.=-.;=':.:..c~ 

:~s":_:~~ - __ !:= ::~~~~ =::a~~~; ~: ::~~~:== !~s~=~=~~:~ 

For convert from floating to integers of length 8(B), 16(W), 32(LW) integer overfio\v occurs under 
the following condition. 

1. !! a:~ual_exp > des~_len 
:. !! a:~ua:_exp - QeS~_le~ an= sl=-O 
~. !! a:~~a:_eXp - des~_le~ ~Q sl=-: L~C t~e in~ege= ?o~ic~ 
is nc~ equal ~o ~he mos~ nega~ive numbe= 

,. fo: CVT rounded to long only, in addition to the above concitions the 
!ollowing concitions haVe to be checkec: 

a} if actual exo - 31 anc slr - 0 and the 32 bits of the integer part 
are of the form- 01111 ••• 111 and the remaining fraction 1s greater than 
or equal to 0.5. 

b} if actual exp - 32 anc slr - 1 and the 32 bits of tbe integer part 
1s of the for.m 10000 ••• 000 and tbe remaining fraction is greater than 
or equal to 0.5. 

The actual detection of the above conditions are done in stages 1, 3 and 4. 

In stage 1 the following signals are generated. 

lnegir - Least negative integer; high if <BO:B31> of F_I%FD1R_H are 1 
mnegbr - Most negative byte; high if <B1:B7> of F_I'FD1R_H are 0 
mnegwr - Most negative word; high if <Bl:B1S> of F_I%FD1R_H are 0 
mnegbr - Most negative longword; high if <B1:B31> of F_I%FD1R_H are 0 
crfl rndr - Convert floating to longword round bit; <B32> of F_I'FD~_H 
e diff eql 24r - exponent difference equals 24 
e:diff:eql:2Sr - exponent difference equals 25 

In stage 3 an exponent difference (see below) is done to determine the first three conditions for 
CVTfi overflow. The fourth condition for CVTRtL is also determined in stage 3. 
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Let El be the exponent of the incoming operand in stage 3 and ER be the result of the subtraction 
in stage 3. ER is send to stage 4. 

ER - (bias + dest_len) - E1 
- constant - E1 

Above Constant Values 

F,D --> B C-l36 
F,D --> W C-144 
F,D --> L C-160 
G --> B C-1032 
G --> W C-1040 
G --> L C-1056 

Stage 3 sends out two signals, IV3 and IV 4, to stage 4 for CVTfi overflow detection. They are 
generated as follows. 

iv' - (:n_;~= y !:= y c_;!!= __ ;:_:: 
~ =nE;:= ~ !:= • c=!:_=::: • __ =~!~_.~:_~4) * (C\~~~) 

In stage 4 the following operations are performed. Let, 

_1<:2:~> - _x~~~_~~ ~.!~~~ !:e: s~a=. S s~s~=a=~icn 
.. ..... - -::. .. S~;-:: ::;.:: :'! .. :.. ~ ..... :<::'> 
elz - 1, el<:::O> is zero 

The first two conditions is determined as 

The third condition for CVTfi overfiow is determined as: 

The fourth condition for overfiow is given by iv4. Finally the CVTfi overflow is determined as 

OVERFLOW DETECTION FOR MULL 

For MULL integer overflow occm-s if the high half of the double length result is not equal to the 
sign extension of the low half. The following condition is determined on MULL result to detect 
integer overflow. The register F _3%FDlR_H<BO ... .B32> contains the high 33 bits of the MULL 
64-bit result. 

mull_zero - NOR OF BITS fdlr(BO) THROUGH fdlr(B32) ;33 BITS 

mull_one - AND OF BITS fdlr(BO) THROUGH fdlr{B32) ;33 BITS 

The integer overflow is defined as: 
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11.25.4 Zero Result 

'When the final result is zero then the zero flag (PSL.Z) bit has to be set. Different instructions 
are analyzed. 

For EFFADDIEFFSUB a zero result is possible when a) Both the input operands are equal and 
it is an effective SUB operation or b) Both the input operands are zero. 

For a floating multiply instruction, zero result is possible only when one or both the input operands 
is zero. 

For a floating divide instruction, a zero result is possible only when the dividend is zero. i.e. the 
second operand is zero. "'nen the first operand, the divisor, is zero then it is floating divide by 
zero. "'ben a floating dh-ide by zero occurs then the PSL.Z bit is a don't care. 

:~:..z - ~:_: ~ ::~ .. = 
For ~fOV&~LG/CVTffinstructions zero result is possible only when the input operand is zero. 

For C1-IPITST instruction zero flag has to be set when operand 1 is equal to operand 2. For the 
TST instruction operand 2 is zero. 

For convert integer to floating instructions the result is zero if the input integer is zero. 

Ps~.z - =_Z * CVTif 

All the above computation is done in the miscellaneous PLA. The output of the miscellaneous 
PLA is PSLZ_F _H, as only the PSL.Z bit for floating instruction was considered. 

For integer multiply instructions and all convert :floating to integer instructions, zero result is 
possible for many different input operands. Hence the final result will be checked for zero result. 
For the CVTfi instruction, stage 4 is used to do a 2's complement. The 2's complement of zero 
is again zero, and the 2's compliment of any non-zero number will not be zero. Hence the zero 
condition can be detected at the input of stage 4 rather than at its output. For MULL the low 
order 32 bits of the result need to be checked for zero result. The register MILSBR has the 6 low 
hits of 32-bit lsbs and register FDIR<B32:B57> has the other 26 hits of the 32-bit Ish result. The 
conditions which are generated are as follows: 

f 4 d%zero mil h 
f-4-d%zero-byt-h 
f-4-d%zero-wor-h 
f:4:d%Zero:mul:h 
f_4_d%zero_lon_h 

- NOR of f 3%fdlr h<BS6:BS7> * NOR of f 3 emilsbr h<S:O> 
- NOR of f-3%fdlr-h<B48:BSS> - - -
- NOR of f-3%fdlr-h<B40:B47> 
- NOR of f:3%fdlr:h<B32:B39> 
- NOR of f_3%fdlr_h<B24:B31> 
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The zero detection is done as follows, 

- NOR OF FD1R(B4S) THROUGH FD1R(B55) ;8 bits 
- i_4_d%zero_byt_h 

- NOR OF FD1R(B40) THROUGH FD1R(B55) ;16 bits 
- i_4_d%zero_byt_h * i_4_d%zero_wor_h 

- NOR OF FD1R(B24) THROUGH FD1R(B55) ;32 bits 
- zerc_w * !_4_d%zero_mul_h • f_4_d%zero_lon_h 

zero mull - (NOR OF FD1R{B32) THROUGH FD1R(B57» * 
- (NOR OF MILSBR{O) THROUGH MILSBR(5» 

- zero_w * !_4_d%zero_mul_h * f_4_d%zero_mil_h 

PSL.Z - zero_l * (long * CVTfi) + zero_w * word + 
zero_b * bytQ + zQrc_l * zQro_mull * MOLL 

During PHI_3, if stage 4's data_valid bit is set, the inverted value of the PSL.Z bit is driven onto the 
active-Io\v shared bus. 

11.25 .. 5 Reserved Operand 

The reserved operand fault is checked in stage 4 of the pipe. A reserved operand fault is possible 
only \~hen the input operand is floating type. "Then a reseng ed operand fault occurs the other 
condition codes are overridden. The reserved operand detection is done in the miscellaneous pIa. 

For one operand instruction: 

For two operand instruction: 

RES.OP~ - (f 3 c%elz: h * ! 3%slr_h + !_3_c%e2zr_h * f_3%s2r_hl * 
(;.:oD+ SUE + D::Vf + !roLf + cMP) 

11.25 .. 6 Floating Divide by Zero 

When a floating divide by zero occurs, the f_div_by_zero bit has to be set. The Hoating divide by 
zero fault occurs if operand 1 is zero. The logic is done in miscellaneous PLA. 
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11.26 FBOX TESTABILITY 

This section describes FBOX_Test mode of operation. FBOX_'Thst mode would primarily be used 
during chip debug and possibly during manufacturing tests. 

11.26.1 FBOX_Test Control Signals 

Two FBOX input signals are associated with FBOX_Test mode. E%FBOX_TEST_ENB_H 
is received from the EBOX, latched during PHIl, and driven down the FBOX pipe as 
F_I%FBOX_BYPASS_H. Assertion of E%FBOX_TEST_ENB_B puts the FBOX into FBOX_Test mode. 
A second signal, E%FBOX_S4_BYPASS_ENB_H, has the function of selecting two slightly different 
modes of FBOX_Test mode. E%FBOX_S4_B'YPASS_ENB_B is received from the EBOX by a PHIl 
latch and driven into the Fbox core as F_I%S4_BYPASS_ENB_B by a following PID3 latch. 

11.26.2 FBOX_ Test Mode Description 

FBOX_Test mode allows simple testing of the FBOX fraction and exponent datapaths. 'When 
in FBOX_Test mode, the basic operation of each stage is to pass fraction and exponent data, 
unchanged~ from its input to its output. Thus~ the test mode features allow FDlR or FD2R to 
be passed through the fraction datapath and EDlR to be passed through the exponent datapath. 
Selection of whether to pass FDlR or FD2R to the Fbox output is done, in Stage3, by looking at 
the yalue of F _IC;CS4_Bl'PASS_~~_H. SIGN bit processing is not affected by FBOX_Test mode. 

11.26.2.1 FBOX Section Operation During FBOX_ Test Mode 

Input and Output - The Input and Output sections of the FBOX operate as normal. 

Divider - In the Divider, F_I%FBOX_BYPASS_H assertion forces F_D_C%DIVDONE_DAT_H to be 
asserted to Stagel effectively bypassing the Divider. This enables Stagel to use data supplied by 
the Input interface as the result of the Divider stage. 

Stagel - In Stagel., F _I%FBOx,..BYPASS_H assertion forces Stagel output register select signals 
to a state that writes the Stagel FDlR, FD2R, and EDlR output registers with the contents of 
the Input interface FDlR, FD2R, and ED1R respectively. 

Stage2 - In Stage2, F _I%FBOx,..BTPASS_H assertion forces right-shifter control to a "shift_of_zero II 
in order to pass FD 1R throug~ Stage2. Output register select signals are forced to a state 
which writes the Stage2 FDlR and EDlR output registers with the contents of the Stagel FDlR 
and ED lR. Stage2 FD2R is always written with the contents of Stagel FD2R irrespective of 
FBOX_Test mode. 

Stage3 - In Stage3, F_I%FBOx,..BYPASS_B assertion forces left-shifter control to a "shift_of_zero" 
in order to pass FDlR or FD2R through Stage3. Selection of whether to pass FDlR or FD2R is 
done by the value on F _I%S4_BYPASS_ENE_H and output is on StageS's FDlR. Stage3 EDlR output 
is written with Stage2 EDlR input while in FBOX_test mode. Stage3 fraction output selectors 
are forced to output the contents of the left_shifter during FBOX_Test mode. The following 
table describes Stage3 operation modes and data driven on various busses for different modes of 
operation. 
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The main features of this implementation are: 

o Either FD1R or FD2R can be selected to pass direetly through the FSOX 

o The two shared busses between Stages 3/4 and the output interface ean 
be selectively driven by Stage 3 or Stage ~. 

o Provides visibility of the Stage3 miniround inerementer results. 

F_I%FBOX_SYPASS_H 
I 
IF_I%S4_BYPASS_ENB_H 
II Value Appearing On Susses 
II 
II 
II 
II 

Stage 3 Operation 
Mode 

Miniround 
Incrementer F_B%F_OUT_L<Bl:BSS> F_3%FD1R_H<AO:BS8> F_B%E_OOT_~<lO:O> 

Input. 

-----------------------------+-----------+--------------------+---------------~-.--------------------~-----. 
I 00 i N~~.a: Operation w/ 

I S';_B:tpass - crr 
Opcode I Stage 4 !raction 

I Depe."':dent I re:sult 
IStage 3 !raetior. I 
I resu:t I 

Stage .; expone~t I Stage 
result I re 

-----------------------------~-----------~----------------------------------------------------------~------
01 

; :) ! 

N~;::r..a;. ~per~::.ion w/ 
S.;_=~~·ass - C!~ 

Ope ode 
Dependent Ires~lt i! Stage .; 

I!:.y?ilssed, else 

:St.age 3 !raet.ion 
r .. s:ll-: 

St.age 3 expone~t. 
rQs~!~ !! S~ag. ~ 

b::-pass.:, .15. 
S-:age ~ czpe::.e=.-: 

==~X_=Y:~~S, Cp:o:. I S~a;. ~ ~=~v_~ ~==:?~E<A0:~5S> S~a~. , D=iv~ 
S';_E~-;ass - .~::: i ~.?e.~Q.n-: ! F:::P'-.E<=: :::5> '* I =::'::,,-::<:"0: ~> 

~----------------------------~----------~--------------------------------------~--------------------~-------=::::·:_=l:ASS, 
S':_=~-;ass - :.:~, 

=~":pass~=l. ~::=~Qe 

=::i':_=l-:;'.'sS, 
S",_:E<ypass - ON, 

~c!!-:~-pass2.!:,!e epeo:1. 

I D.?e."':Qe~,: 

!"or see: 
I !oo~note 

Dependent 

S':.a.;-.. ~ :-:!. ·w"e~ 
::::>-:-::<3:::55> 

;:::?-:-::<;'~:=5S> 

" ! 
j 

s':.!.;-.. ~ =-=:.~_:: ;::::?,:-::<A·:':E5E> $'::.;. ~ ==~~~:: 
FD2R_H<Bl:BSS> I I E:D1R_H<lO:O> 

I I 
'* I '* I 

~::: 

~-------------------------------------------------------------+-----------------~--------------------~-------
- ;.:~ fraet.icn cat.a bits are passec ~hrough Stage 3, as rec.ived, by way c! the left shi!t.er. 

- In FBOX_Test meae,with 54_Bypass on and a bypassable opcode in 5tage3 the majority but not all o! frae 
bits are passed through 5~age 3,as received, by way of the left shif~er and the output seleetor ehoosi 
shifter output. 
For :-type data two fraction bits (B22:B23) are passed through Stage3 by way of the mini round ineremen 
Similarly, for D-type data six fraction bits (BSO:BS5) and for G-type data three fraetion bits CBSO:BS 
are passed through Stage3 miniround incrementers. 
It is important to note that the eontrol logio for the miniround input selectors makes it's selection 
on opeode information and the signal F_3_A%SHFT_DONE_R. FBOX_Test mode is not factored into the minir 
inerementer's input seleetor eontrol. Depending on the opeode and exponent differenee, miniround inpu' 
could choose left shifter output or fraction adder output to be fed to the miniround ineramenters. 

The simplest way to pass FD2R through Stage3 (unchanged) is to select the proper opeoae 
and data sueh that an effeetive subtraet with exponent difference of zero will enter Stage3. 
This will seleet Stage 3'5 left shifter output as the souree for the miniround incrementar input 
and the round bit pOSition will be zero. 

Stage4 In Stage4, F _I%FBO~BYP.ASS_B assertion forces fraction adder carry-in and round 
signals to zero to allow FDIR to pass through Stage3 unchanged. Stage4 FDIR and EDIR 
are written with the contents of Stage3 FDlR and EDIR respectively. 
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11.26.3 Revision History 

Table 11-22: Revision History 

Who 

Anil Jain 

Anil Jain 

Dave Deverell 

When 

17-Mar-1989 

18-Dec-1989 

25-Jan-1991 

DIGITAL CONFIDENTIAL 

Des~puonofclumge 

Initial Release 

Updated to reflect the Fbox implementation 

Updated to reflect PASS1 implementation and FOX_Test section 
added 
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Chapter 12 

The Mbox 

12.1 INTRODUCTION 

The Mbox performs three primary functions: 

• VAX memory management: The Mbox, in conjunction \vith the operating system memory 
management software, is responsible for the allocation and use of physical memory. The 
Mbox performs the hardware functions necessary to implement VAX memory· management. 
It performs translations of virtual addresses to physical addresses, access violation checks 
on all memory references, and initiates the invocation of software memory management code 
\vhen necessary. 

• Reference processing: Due to the macropipeline structure of NVAX, and the coupling between 
NVAX and its memory subsystem, the Mbox can receive memory references from the Ibox, 
Ebox and Cbox simultaneously. Thus, the Mbox is responsible for prioritizing, sequencing, 
and processing all references in an efficient and logically correct fasbion and for transferring 
references and their corresponding data tolfrom the Ibox, Ebox, Pcache, and Cbox. 

• Primary Cache Control: The Mbox maintains an 8KB physical address cache of I-stream and 
D-stream data. This cache, called the Pcache (Primary Cache), exists in order to provide a two 
cycle pipeline latency for most I-stream. and D-stream data requests. It is the fastest D-stream 
storage medium for NVAX and represents the first level of D-stream. memory hierarchy and 
the second level of I-stream memory hierarchy for the NVAX computer system. The Mbox is 
responsible for controlling Pcache operation. 
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12.2 MBOX STRUCTURE 

This section presents a block diagram of the Mbox and defines the function of the basic Mbox 
components. This section neither explains why the functions of each component exist nor does it 
discuss the interactions among the components. The intent of this section is only to define the 
function and interconnection of the components for future discussion. Subsequent sections will 
deal component interaction. 

The following block diagram illustrates the basic components of the MbOx. 
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Figure 12-1 : Mbox Block Diagram 
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The Mbox is implemented as a two-stage pipeline located in the fifth and sixth segments of the 
NVAX macropipeline (85 and 86). References processed by the Mbox are first executed in 85. 
Upon successful completion in 85, the reference is transferred into 86. At this point, the reference 
has either completed or is transferred to the Ibox, Ebox, or Cbox. 

During any cycle, the fundamental state of the 85 and 86 stages can be defined by the particular 
references which currently reside in these two stages. For the purposes of describing the Mbox, 
all references can be viewed as a packet of information which is transferred on the 85 and 86 
buses. The 85 reference packet, and the coITesponding 85 buses are defined as: 

• ADDRE8S: The M_QUE%S5_ VA,..B<31:0> bus transfers all virtual addresses and some physical 
addresses into the S5 pipe. The M_QUE%SS_PA.,.B<31:0> bus transfers some physical addresses 
into the S5 pipe and transfers all addresses out of the 85 pipe. 

• DATA: M_QUE%ss_DATA..B<31:0> transfers data originating from the Ebox, through the 85 
pipe. 

• COMM..~~: M_QUEo/cS5_CMD_B<4:0> transfers the type of reference through the 85 pipe. This 
command field is defined in Section 12.3.l. 

• TAG: The M_QUE%SS_TAG_B<4:0> transfers the Ebox register file destination address corre
sponding to the reference through the S5 pipe. 

• DEST_BOX: M..QUE%S5_DEST_B<1:0> transfers the reference destination information through 
the S5 pipe. This field is defined as follows: 

M_Q'CE%S5_DEST_ 
H De:6nitioD 

the reference requests data destined for the MhOx. 

the reference requests data destined for the Thox. 

the reference requests data destined for the EbOx. 

00: 

01: 

10: 

11: the reference requests data destined for the Ebox and Thox. 

• AT: The M_QUE%S5~_B<1:O> transfers the access type of the reference. This field is defined 
as follows: 

M_QUE%S5_AT_ 
H DemrlUOD 

00: th passive query access (See PROBE command) 

01: read access 

10: write access 

11: modify access (read with write check for future write to same addr) 

• DL: The M_QUE%S5_DkB<1:O> transfers the data length of the reference. This field is defined 
as follows: 
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M_QUE%S5_DL_ 
H Definition 

00: byte 

01: word 

10: longword 

11: quadword 

• REF_QUAL: The M_QUE%S5_QUAL_B<6:0> transfers information which further qualifies the 
reference for the purpose of Mbox processing. This field is defined as follows: 

Definition 

address of reference is currently a virtual address. 

reference has been tested for cross-page condition. 

reference is first part of an unaligned reference. 

reference is second part of an unaligned reference. 

enable ACV and ~i=O checks. 

reference has or is forced to have a hard error. 

M_QUECiiS&_QUAL..B<6> 

M_Q~"_QUAL_B<5> 

M_Q~"_QUAL_B<4> 

~QUE%"_QUAL_B<3> 

M_Qm:r;t,SS_QUAL..B<2> 

M_QVV.cS5_QUAL_B<l> 

M_Q'OEc.<SS_QtiAL..B<O> reference has or is forced to have a memory management fault (ACV~'"V~{=O). 

The 86 reference packet, and the corresponding 86 buses are defined as: 

• ADDRESS: The M%S6_PA..,.B<31:0> bus transfers a physical address through the S6 pipe. 

• DATA: Bo/'iSG_DATA..,.B<63:0> transfers data through the 86 pipe. 
• COMMAND: M%S6_CMD_B<4:0> transfers the type of reference through the 86 pipe. This 

command field is defined in Section 12.3.l. 

• DEST_BOX: 1\CQUE_MS2%S6_DEST_B<1:0> transfers the reference destination information 
through the 86 pipe. This field is defined as follows: 

M_QUE_MS29'D86_ 
DEST_H Definition 

00: the reference requests data destined for the Mbox. 

01: the reference requests data destined for the Ibox. 

10: the reference requests data destined for the EbOx. 

11: the reference requests data destined for the Ebox and Ibox. 

• S6_BYTE_MASK: :M%S6_BYTE_~B<7:0> transfers the byte mask information through the 
S6 pipe. The byte mask field is used to indicate which bytes of a longword or quadword write 
should actually be written to a cache or memory. 

• REF_QUAL: 1\CQUE..)IS2%S6_QUAL_B<3:0> transfers information which further qualifies the 
reference for the purpose of Mbox processing. This field is defined as follows: 
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M_QUE_MS2%S6_QUAL_ 
H bit Definition 

M..QVE~_Q~B<3> reference is first part of an unaligned reference. 

M_QVE_M.S5S6_QUAL..B<2> reference is second part of an unaligned reference. 

M..QtlE_MS5S6_QuAL..B<l> reference has or is forced to have a hard elTOr. 

M_QtJE..MSSS6_QUAL..B<O> reference has or is forced to have a memory management fault (ACVITNVIM=( 

12.2.1 IREF _LATCH 

The IREF_LATCH is a latch which stores all I-stream read references (IREADs) requested by 
the Ibox. Each lREAD is stored in the IREF _LATCH until the reference successfully completes 
in 85. 

The follo\ving figure illustrates the structure of the IREF _LATCH: 
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Figure 12-2: lref Latch 

>-1 _IR_E_F_.-R_E_Q __________ eot.1 VALID BIT 

I IREAC 

REAt) ACCESS 

ON CL. 

TRUE 

FALSE 

FALSE 

FALSE 

TRUE 

The output of the address field of the mEF _LATCH has an incrementer associated with it in 
order to increment the quadword address. The output of this structure can be tristated. 

See Section 12.3.5.2 for a more complete understanding of lREF _LATCH function in the context 
of overall Mbox operation. 
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12.2.2 SPEC_QUEUE 

The SPEC_QUEUE is a 2-entry FIFO structure which stores D-stream read and write references 
associated with specifier source and destination operands decoded by the !box. Each reference 
latched in the 8PEC_ QUEUE is stored until the reference successfully completes in S5. If the 
reference is unaligned, the entire reference must complete in 85 before the corresponding entry 
is invalidated. 

The following figure illustrates the structure of the SPEC_QUEUE: 

Figure 12-3: Spec Queue 

S"EC_FlEO 
VALID BIT VALID liT 

I£OX_:::MOe4.' :0> 
COMMANO COMMAND 

!cOX_ADORe3' :0> 
ADDRESS ADDRESS 

ISOX TAGc2:0> 
TAG TAG 

190X_ c.!: _OeSTe' :0> 
DESTINATION DESTINI. TION 

IBOX_ATe, :0> 
ACCESS TY~E ACCESS TY~E 

IBOX_DLe1 :0> 
DATA LENGTH DATA LENGTH 

NOT STO,._S,.EC_QeO> 

X,.AGE_CHECKED 

FALSE 

FALSE 

TRUE 

: MBOX FORCE HAAD FAULTeCb 

FORCE MME FAUL TeO> 

The output of this structure can be tristated. 
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12.2.3 EM_LATCH 

The EM_LATCH latches and stores all commands originating from the Ebox. Each reference is 
stored until the following two conditions are satisfied: 1) the "complete logical reference" (i.e. 
the pair of aligned references required if the EM_LATCH reference is unaligned) clear memory 
management access checks, and 2) the EM_LATCH reference successfully completes in 85. 

The following figure illustrates the structure of the EM_LATCH: 
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Figure 12-4: 

VAI.ID 81T 

Sf VAe31 :0> 

W 8USc31 :0> 
DATA 

TAG 

S! ATc1:~> 
ACCESS TV"'! 

DATAU!NGTH 
S5 Dl.c1:~> 

S$ OU.t.Lch 
VIRT .r.:~ 

.. ALSE 

"Al.SE 

SS_OUALel> 

8S OUAl.eD> 

A 4-way byte barrel shifter is connected to the data portion of the EM_LATCH. This enables the 
write data to be byte-rotated into longword alignment. 

The EM_LATCH output can be tristated. 
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12.2.4 VAP _LATCH 

The function of the VAP _LATCH is to create and store the second reference of an unaligned 
reference pair. Each reference is stored until the reference successfully completes in 85. The 
following figure illustrates the structure of the VAP _LATCH: 

Figure 12-5: YAP _LATCH 

SE DATAc3l:0> , -

SS DESTcl :0> , -

SS QUALcb , -

VALID BIT 

COMMAND 

ADDRESS 

DATA 

TAG 

DESTINATION 

ACCESS TY~I 

DATA LENGTH 

VIRT'I"HYS 

TRUE 

FALSE 

TfIIUE 

TRUE 

FALSE 

FALSE 

IU_CMDc4 :0> c 

SS_ VAc3l :0> 

SS_D"'T4c31 :0> 

S!_ TAGc4:0,. 

SE_DESTcl :0,. 

S!_"'Tc1:0,. 

SS_DLc1 :0,. 

SS_QUALe',," 
c 

SS_QUALe',. 
c 

SS_QUALe.,. 

S,_QUALel,. 
c 

SS_QUALcb 
c 

S,_QUALeb 
c 

S,_QUALeO,. 
c 

The VAP _LATCH transforms the current 85 reference into a new reference. Thus, input for 
the VAP _LATCH is taken off of the 85 buses. An incrementor exists on the input side of the 
address field which adds eight to M_QUE%S5_ V~B<31aO> in order to create the second reference in 
an unaligned pair of references. 

The VAP _LATCH output can be tristated. 
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See Section 12.3.17 for a more complete understanding ofVAP_LATCH function in the context of 
overall Mbox operation. 

12.2.5 MME_LATCH 

The :MM:E_LATCH (Memory Management Exception Latch) stores references associated with 
memory management processing. It acts as a buffer between the 85 processing pipe and the 
:MME_DATAPATH. The :MME_LATCH is the 85 source for PrE references (page table entry 
reads), PrE data, and Mbox internal processor registers and TB fill operations. 

The following figure illustrates the structure of the MME_LATCH: 
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Figure 12-6: MME_LATCH 

VALID BIT 

I 
MME_CMO_GENc4:0> 

COMMAND 
SS_CMDc4 :0> 

MME_ALUe31 :0> SS _VAe3l:0> 
ADDRESS 

MO BUSe31 :0> 

: MM~_ALUe31 :0> 
55 _DATl-e3l :0,. 

DATA 

MME_ TAGe4:0,. 
TAG 

SS_ TAGc4:0,. 

MME_OESTe1 :0,. SS _OESTe' :0,. 
DESTINATION 

MME -A'1"e1:0> S!_A-:-c'::~> 
ACCESS TYPE 

MME_DL.e1:0> 55 _DL.e1 :0> 
DATA L.EN~T,," 

MM=_ VI"~ _AODI'I 55 _OUAL.el» 
VIf'iT:P;';YS 

FALSE 
SS_OUALcS> 

FAL.SE 
SS_QUAL.e4> 

FALSE 
SS_QU"L.eb 

I MME_ENABLE_"CV _CHK SS_QUALcZ> 

FALSE 
.,_QUALeb 

FAL.SE 
SS_QU"LcO> 

Each reference is stored until the reference successfully completes in 85. 

The :MME_LATCH output can be tristated. 

c 

t 

c 

t 
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The RTY_DMI8S_LATCH stores D-stream reads which missed in the Pcache when a previous 
D-stream fill sequence has not yet completed. This latch is the mechanism by which aD-stream 
read, which missed in the 86 pipe during another D-stream fill sequence, can be retried in the 
85 pipe at some later point. 

An 86 D-stream read is loaded into the RTY_DMISS_LATCH when it misses in the Pcache while 
a previous D-stream fill sequence is in progress. A RTY_DMI8S_LATCH is driven into the S5 
pipe during or after the point when the final D_CF reference is executing in S6 to complete the 
previous fill sequence. A RTY_DMIS8_LATCH reference is invalidated when its read is retired 
from 85. 

The following figure illustrates the structure of the RTY _DMISS_LATCH: 
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VALID BIT 

SS_CMDc' :0> S5 -CMDc4:0> 
COMMAND • 

S6 PA<S' :0> S5 PA<3' :0> - ADDRESS - • 

SS TAGc4 :0> S5 -TAGc4:0 > 
TAG • 

S6 - OESTe' :0> 55 - OEST<~: 0> 
DESTINATION 

se - Dl.e' :0> S:_DL<': 0> 
DATA LENGT'" 

FALSE 
S5_QUALc6> 

TRUE 
S:_QUAL<5> • 

S6 -QUAL<4> S5_QUAL,<Al> 

S6 -QUAL<3> S5_QUAL,c3> 

FALSE 
S5_QUAL,c2> 

FALSE 
S5_QUALc' > • 

FALSE 
S5_QUALcO> 

The RTY_DMISS_LATCH output can be tristated. 

See Section 12.3.5.3.1 for a more complete understanding ofRTY_DMISS_LATCH function in the 
context of overall Mbox operation. 
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12.2.7 CBOX_LATCH 

The CBOX_LATCH stores references originating from the Cbox. These references are I-stream 
Pcache :fills, D-stream Pcache fills, or Pcache hexaword invalidates. 

Each reference is stored until the reference successfully completes in 85. 

The following figure illustrates the structure of the CBOX_LATCH: 

Figure 12-8: CBOX_LATCH 

VAL.IO BIT 

COMMANO 

SS PAc3,:O> 
ADDRESS - . 

OcSilNATION 

QUADWORO DL. 

S5 QUAL.c6> 
FAL.SE 

TRUE 

FAL.SE 

FAL.SE 

FAL.SE 
S5_ QUALc2> • 

HARD ERRORcO> 

FAL.SE 

Note that no data field is present in this latch even though this latch services cache fill commands. 
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Cache fill data will be supplied to the Pcache on the B%S6_DATA...,H Bus by the Cbox during the 
appropriate S6 cache fill cycle. The C%CBOx..,ADDR_B bus is driven by the Cbox during invalidate 
commands. During cache fill commands, all but two bits of the C%cBOx...ADDR_B bus are driven by 
the DMISS_LATCH or IMISS_LATCH. The Cbox will drive cumoX_FD:.L_QW _B<4:3> during cache 
fill commands in order to supply the quadword alignment of the :fill data within the hexaword 
block.. 

The CBOX_LATCH output can be tristated. 

12.2.8 PA_QUEUE 

The PA_QUEUE (Physical Address Queue) stores the physical addresses associated with desti
nation specifier references made by the Ibox via a DEST_ADDR or READ_MODIFY command. 
The Ebox will supply the corresponding data at some later time via a STORE command. 'W'hen 
the STORE data is supplied, the PA_ QUEUE address is matched with the STORE data and the 
reference is turned into a physical ,\VRlTE operation. 

The following figure illustrates the structure of the PA_QUEUE: 

Figure 12-9: PA_QUEUE 

----6 eNTRies oe:?----

VA1.IO 'I~ VIo.LIC BIT 

itA .QUEUE CONFLICT 

ADDRESS ADDRESS 

I>ATA LENGTH DATA LENGTH 

FALSE 

TRUE 

FA.LSE 

MBOX_FORCE MME_FAUL TeO> 

The PA_ QUEUE is organized as a 8-entry FIFO. Addresses from the Ibox are expected in the 
same order as the corresponding data from the Ebox. 
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The PA_QUEUE has address comparators built into all FIFO entries. These comparators detect 
when the physical address bits <8:3> of a valid PA_QUEUE entry matches the corresponding 
physical address of an Ibox D-stream read. 

See Section 12.3.6.1 and Section 12.3.18.1.1 for a more complete understanding of PA_QUEUE 
function in the context of overall Mbox operation. 

12.2.9 TB 

The TB (translation buffer) is the mechanism by which the Mbox performs quick virtual .. to
physical address translations. It is a 96-entry fully associative cache ofPTEs (Page Table Entries). 
Bits 31 through 9 of all S5 virtual addresses act as the TB tag. The replacement algorithm 
implemented is Not-Last-Used. 

See Section 12.5.1.3 for more information. 

12.2.10 MME_DATAPATH 

The :MlvIE_DATAPATH (Memory Management Datapath) is used to process most memory man
agement functions performed by the Mbox. Specifically, it performs the following functions: 

• Creates read references of PTEs in order to obtain virtual address translations not cUlTently 
cached in the TB. 

• Creates TB fill references in order to write PTE data into the TB. 

• Stores memory management internal processor registers. 
• Stores virtual addresses associated with memory management faults or TB parity errors. 

The MME_DATAPATH implements these functions with a register file and an ALU. See Section 12.5.1 
for a more complete description of the MME_DATAPATH. 

12.2.11 ARBITRATION LOGIC 

The ARBITRATION LOGIC is responsible for determining which reference source drives its 
reference packet into the S5 pipe. (See Section 12.3.4 for more information about reference 
arbitration.) 

12.2.12 S6_PIPELATCH 

The S6_PIPELATCH is the buffer between the S5 and S6 stages of the Mbox pipeline. It latches 
the S5 reference packet, modifies it appropriately, and drives it as an S6 reference packet into 
the S6 pipe. M_QUEUS_DA7A,.B<31:0> is driven onto both the upper and lower halves of BCfcS6_ 
D.ArA,..B<63:0>. M~_CMD_B<4:0> is either: 

1. driven by the M_QUE'*SS_CMD_B<4:0> 

2. is changed into a NOP 
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12.2.13 DMISS_LATCH and IMISS_LATCH 

The DMISS_LATCH stores the currently outstanding D·stream read. That is, a I).stream read, 
which missed in the Pcache, is stored in the DMISS_LATCH until the corrsponding Pcache block 
:fill operation completes. The DMISS_LATCH also stores IPR_RDs to be processed by the Cbox 
until the Cbox supplies the data. I·stream reads are handled analogously by the !MISS_LATCH 
except that IPR_RDs are never handled by the IMISS_LATCH. 

The following figure illustrates the structure of the DMISS_LATCH and the IMISS_LATCH: 

Figure 12-10: DMISS_LATCH and IMISS_LATCH 

VAL.IO BIT 

AOORESS 

TAG 

OESTINATION 

1 ST UNALIGNED 

2ND UNALIGNED 

NON-CACHE ABLE 

1ST FILL 

PCACHE_B1.K_MATCH 

HEXAWORD_AOOR_MATCH 

• 

FIRST_FILL • 

These two latches have comparators built in in order to detect the following conditions: 

• If the he:xaword address of an invalidate matches the hexaword address stored in either 
MISS_LATCH, the corresponding MISS_LATCH sets a bit to indicate that the corresponding 
:fill operation is no longer cacheable in the Pcache. 
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• Address<11:5> addresses a particular Pcache index (corresponding to two Pcache blocks). If 
address<8:S> of the DMISS_LATCH matches the corresponding bits of the physical address 
of an 85 I-stream read, the 85 I-stream read is stalled until the entire D-stream fill operation 
completes. This prevents the possibility of causing a D-stream fill sequence to a given Pcache 
block from simultaneously happening with an I-stream fill sequence to the same Pcache block. 

• By the same argument, address<8:5> of the IMISS_LATCH is compared against 8S D-stream 
reads to prevent another simultaneous I-streamlD-stream fill sequence to the same Pcache 
block. 

• Address<8:S> of both miss_latches is compared against any S5 memory write operation. This 
is necessary to prevent the write from interfering with the cache fill sequence. 

See Section 12.3.5.1 for a more complete understanding of the DMISS_LATCHlIMISS_LATCH 
functions in the context of overall Mbox operation. 

The function of the MD_BUS_ROTATOR is to right-justify read data and drive it on the MO/cMD_ 
BUS_H. For unaligned reads (see Section 12.3.17.1) the ~ID_BUS_ROTATOR is designed to as
semble read data from two read references and drive it on the Mo/c:MD_BUS_H in right-justified 
form. This rotator coupled with the IvIbox decomposition of unaligned references into two aligned 
references, allows the Ibox and Ebox to issue unaligned D-stream reads and receive the requested 
data aligned to the Ebox datapath. 

The !\rID_BUS_ROTATOR is illustrated below: 
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M%MD_BUSc7:0> 
M%MO BUSc1S:8> 

M%MD BUSc2~ :16> 
M%MD BUSc31 :24> 

M%MD BUSc3Si :32> 
M%MD BUSc47 :40> r- - .-

M%MD 8UScS5 :48> 
M%MD BUSc6~ :56> I L '\TCH 

- ... - ROTATOR 

CONTROL 

S·WAY 8YTE 8ARREL SHIFTER 

8%S6_ DATAc6 3:56> 
8%S6_ DATAc5 5:48> 

8%S6_ DATA<4 7:40> 
8%S6_ DATAc3 19:32> 

8%S6_ PATAc3 ., :24> 
8%S6_ DATAd ~:16> 

8%S6_ PATAc1S:8> M%St PAc 
B%S6 _0 AT Ac7 :0> lA_a 

, , 

Although the diagram above describes the MD_BUS_ROTATOR as an 8-way byte barrel shifter, 
its actual design is a functional subset of a full barrel shifter. The lower four bytes of the output 
of the rotator are designed as a full 8-way byte barrel shifter in order to right-justify D-stream 
longword data. However, the upper four bytes always directly pass M%MD_BUS_B<63:32> since 
these bytes are only used when aligned I-stream quadword data is sent to the VIC. 

12.2.15 Pcache 

The Pcache is a two-way set associative, read allocate, no-write allocate, write through, physical 
address cache of I-stream and D-stream data. It stores 8192 bytes (8K) of data and 256 tags 
corresponding to 256 hexaword blocks (1 hexaword = 32 bytes). Each tag is 20 bits wide corre
sponding to bits <31:12> of the physical address. There are four quadword subblocks per block 
with a valid bit associated with each subblock. The access size for both Pcache reads and writes 
is one quadword. Byte parity is maintained for each byte of data (32 bits per block). One bit of 
parity is maintained for every tag. The Pcache has a one cycle access and a one cycle repetition 
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rate for both reads and writes (note however, that the entire Mbox latency is two cycles due to 
the two stage Mbox pipeline). 

The Pcache represents the first level of D-stream memory hierarchy and the second level of 1-
stream memory hierarchy in all NVAX computer systems. Pcache entries must be invalidated in 
order to maintain cache coherency with higher levels of the memory hierarchy. See Section 12.4 
for more information on the Pcache. 
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12.3 REFERENCE PROCESSING 

This section discusses how references are processed by the Mbox, and how the Mbox functional 
components interact to carry out reference processing. 

12.3.1 REFERENCE DEFINITIONS 

The following table describes all types of references processed by the Mbox: 

Table 12-1: Reference Definitions 

Name Value (hex) Reference Source Description 

!READ OE Ibox Aligned quadword I-stream read 

DREAD lC Ibox, Ebox, Mbox Variable length D-stream read 

DREAD_MODIFY 1D Ibox Variable length D-stream read with 
modify intent as a result of Ibox-
decoded modify specifiers 

DREAD_LOCK IF Ebox Variable length D-stream read with 
atomic memory lock 

WRITE_UNLOCK 1A Ebox Variable length write with atomic 
memory unlock 

WRITE IB Ebox Variable length write 

DEST_ADDR OD Ibox Supplies address of a write-only 
destination specifier 

STORE 19 Ebox Supplies write data corresponding 
to a previously translated destina-
tion specifier address. 

IPR_WR 06 Ebox: Internal Processor Register Write 

IPR_RD 07 Ebox Internal Processor Register Read 

IPR_DATA 04 Mbox Transfers Mbox IPR data to Ebox 

LOAD_PC 05 Ebox: Transfers a PC value to Ibox via 
M'HID..Bvs_B<31:0> 

PROBE 09 Ebox Mbox returns ACVfrNVlM:O sta-
tus of specified address to Ebox:. 

MME_CHK 08 Ebox, Mbox Performs ACVtrNVlM=O check on 
specified address and invokes the 
appropriate memory management 
exception 

TB_TAG_FILL OC Ebox, Mbox Writes a TB tag into a TB entry. 

TB_PI'E_FILL 14 Ebox, Mbox Writes PrE data into a TB entry. 
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Table 12-1 (Cont.): Reference Definitions 

Name 

TBIS 

TBlA 

TBIP 

NOP 

Value (hex) 

10 

18 

11 

03 

02 

01 

OF 

00 

Reference Source Description 

Ebox Invalidates a specific PTE entry in 
the TB. 

Ebox,Mbox Invalidates all entries in TB. 

Ebox Invalidates all PTE entries in TB 
corresponding to process-space tram 
lations. 

Cbox 

Cbox 

Cbox 

Ibox 

!box, Ebox, Mbox 

D-stream quadword Pcache fill 

I-stream quadword Pcache fill 

Hexaword invalidate of a Pcache 
entry 

Stops processing of specifier refer
ences. 

No operation 

12.3.2 SIMPLE MBOX PIPELINE FLOW 

A major Mbox design consideration was to return requested read data to the Ibox and Ebox as 
quickly as possible in order to minimize macropipeline stalls. If the Ebox pipeline is stalled 
because it is waiting for a memory operand to be loaded into its register file (md_stall condition), 
then the amount of time the Ebox remains stalled is related to how quickly the Mbox can return 
the data. In order to minimize Mbox read latency, a two-cycle pipeline organization is used. This 
organization allows requested read data to be returned in a minimum of two cycles after the read 
reference is shipped to the Mbox. 
The timing diagram below illustrates the basic sequential processing within the two-cycle Mbox 
pipeline. 
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Figure 12-12: Basic Mbox Timing 

S5 PIPE 56 PIPE 

1 1 1 

1-----------1------------1-----------1------------1-----------1------------1------------1------------1 1 1 1 

<----- TB LOOKUP ------> <------- RO=ATE & RETURN DATA --------> 
=0 IBOX & EBOX 

<----------------- Pcache ACCESS -----------------> 
(read, write, fill, invalidate) 

At the start of the 85 cycle, the Mbox drives the highest priority reference into the 85 pipe. The 
Mbox arbitration logic determines which reference should be driven into 85 at the end of the 
previous cycle. The first half of the 85 cycle is used to translate the virtual address to a physical 
address \ia the TB. 

The Pcache access is started during phase two of 85 and continues into the first quarter of 86. 

If the reference should cause data to be returned to the Ibox or Ebox, the first three phases of 
the 86 cycle is used to rotate the read data (if the data is not right-justified) and to transfer the 
data back to the Ibox and/or Ebox. 

Thus, assuming an aligned read reference is issued in cycle x by the Ibox or Ebox, the ~Ibox can 
return the requested data in cycle x+2 pro'~dded that 1) the translated read address \vas cached 
in the TB, 2) no memory management exceptions occurred, 3) the read data was cached in the 
Pcache, and 4) no other higher priority or pending reference inhibited the immediate processing 
of this read. 

12.3.3 REFERENCE ORDER RESTRICTIONS 

Due to the macropipeline structure of NVAX, the Mbox can receive "out-of-order" references 
from the Ibox and Ebox. That is, the Ibox can send a reference corresponding to an opcode 
decode before the Ebox has sent all references corresponding to the previous opcode. Issuing 
references It out-of-order" in a macropipeline introduces complexities in the Mbox to guarantee 
that all references will be processed correctly within the context of the VAX architecture, the 
NVAX. macropipeline, and the Mbox hardware. Many of these complexities take the form of 
restrictions on how and when references can be processed by the Mbox. 

The following synchronization example is useful to illustrate several of the reference order 
restrictions. 

DIGITAL CONFIDENTIAL The Mbox 12-25 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

Figure 12-13: 2 Processor Synchronization Example 

PROCESSOR 1 

MOVL fl,C 
MOVI: fl,T 

PROCESSOR 2 

10$ BLBC T,lO$ 
MOVL C,RO 

This example illustrates two processors operating in a multiprocessor environment. Initially, 
processor 1 owns the critical section corresponding to memory location T. Processor 1 will modify 
memory location C since it currently has ownership. Subsequently, processor 1 will release 
ownership by writing a 1 into T. Meanwhile, processor 2 is "spinning" on location T waiting 
for T to become non-zero. Once T is non-zero, processor 2 will read the value of C. 

Note that this example is not the preferred way to implement synchronization. A better way 
would be to use VAX interlocked instructions which guarantee atomicity. This is, ho\vever, a 
valid example 1.Ulder current SRM rules because it does not disallow an NVAX multiprocessor 
system from supporting this synchronization structure. 

The following discussion explains the Mbox reference order restrictions. 

12.3.3.1 No O-stream hits under o-stream misses 

"NoD-stream hits under D-stream misses tt refers to the fact that the ~Ibox will not aHo\'\'" a 
D-stream read reference, which hits in the Pcache, to execute as long as requested data for a 
previous D-stream read has not yet been supplied. 

Consider the code that processor 2 executes in the example above. If the Mbox allowed D-stream 
hits under D-stream misses, then it is possible for the Ibox read of C to hit in the Pcache during a 
pending read miss sequence to T. In doing so, the Mbox could supply the value of C before processor 
1 modified C. Thus, processor 2 would get the old C with the new T causing the synchronization 
code to operate improperly. 

Note that, while D-stream hits under D-stream misses is prohibited, the Mbox will execute a 
D-stream hit under a D-stream fill operation. In other words, the Mbox will supply data for a 
read which hit in the Pcache while a Pcache fill operation to a previous missed read is in progress, 
provided that the missed read data has already been supplied. 

I-stream and D-stream references are handled independently of each other. That is, I-stream 
processing can proceed regardless of whether a D-stream miss sequence is currently executing, 
assuming there is not Pcache index confiict. 

12.3.3.2 No I-stream hits under I-stream misses 

This is the analogous case for I-stream read references. This restriction is necessary to guarantee 
that the Iboxwill always receive its requested I-stream reference first, before any other I-stream 
data is received. 
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12.3.3.3 Maintain the order of writes 

Consider the example shown above. If the Mbox of processor 1 were to reorder the write to C 
with the write to T, then processor 2 could read the old value of C before processor 1 updated C. 
Thus, the Mbox must never re-order the sequence of writes generated by the Ebox microcode. 

12.3.3.4 Maintain the order of Cbox references 

Again consider the example above. Processor 2 will receive an invalidate for C as a result of 
the write done by processor 1 in the MOVL #l,C instruction. If this invalidate were not to be 
processed until after processor 2 did the read of C then, the wrong value of C has been placed in 
RO. 

Strictly speaking we must guarantee that the invalidate to C happens before the read of C. 
However, since C may be in the Pcache of processor 2, there is nothing to stop the read of C from 
occurring before the invalidate is received. Thus from the point of '\--jew of processor 2, the real 
restriction here is that the invalidate to C must happen before the invalidate to T which must 
happen before the READ of T \vhich causes processor 2 to fall throught the loop. As long as the 
Mbox does not re-order Cbox references, the invalidate to C will occur before a non-zero value of 
T is read. 

12.3.3.5 Preserve the order of Ibox reads relative to any pending Ebox writes to the same 
quadword address 

Consider the following example: 

Figure 12-14: Memory Scoreboard Example 

MOVl.. U,e 
MOVl.. e,RO 

In the NVAX macropipeline, the Ibox prefetches specifier operands. Thus, the Mbox receives a 
read of C corresponding to the "MOVL C,RO" instruction. This read, however, cannot be done 
until the write to C from the previous instruction completes. Otherwise, the wrong value of C 
will be read. . 

In general, the Mbox must ensure that Ibox reads will only be executed once all previous writes 
to the same location have completed. 

12.3.3.6 1/0 Space Reads from the Ibox must only be executed when the Ebox Is executing the 
corresponding Instruction 

Unlike memory reads, reads to certain I/O space addresses can cause state to be modified. As a 
result, these I/O space reads must only be done in the context of the instruction execution to which 
the read corresponds. Due to the macropipe1ine structure of NVAX, the Ibox can issue an I/O 
space read to prefetch an operand of an instruction which the Ebox is not currently executing. 
Due to branches in instruction execution, the Ebox may in fact never execute the instruction 
corresponding to the I/O space read. Therefore, in order to prevent improper state modification, 

DIGITAL CONFIDENTIAL The Mbox 12-27 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

the Mbox must inhibit the processing of 110 space reads issued by the Ibox until the Ebox is 
actually executing the instruction colTesponding to the 110 space read. 

12.3.3.7 Reads to the same Pcache block as a pending read/fill operation must be Inhibited 

The organization of the Pcache is such that one address tag corresponds to four subblock valid 
bits. Therefore, the validated contents of all four subblocks must always correspond to the tag 
address. If two distinct Pcache fill operations are simultaneously filling the same Pcache block, 
it is possible for the fill data to be intermixed between the two fill operations. As a result, an 
lREAD to the same Pcache block as a pending D-stream readl:fi11 is inhibited until the pending 
read/fill operation completes. Similarly, a D-stream read to the same Pcache block as a pending 
I-stream readlfill is also inhibited until the fill completes. 

12.3.3.8 Writes to the same Pcache block as a pending readlflll operation must be Inhibited until 
the read/fill operation completes 

As in the above, this restriction is necessary in order to guarantee that all valid subblocks contain 
valid up-to-date data. Consider the following situation. The Mbox executes a write to an invalid 
sub block of a Pcache block \vhich is currently being filled. One cycle later, the cache fill to that 
same subblock arrives at the Pcache. Thus, the latest subblock data, which came from the write, 
is O\Tenrntten by older cache fill data. This subblock is now marked valid with "old" data. To 
avoid this situation, writes to the same Pcache block as a pending read/fill operation are inhibited 
until the cache fill sequence completes. 

12.3.4 REFERENCE ARBITRATION 

The Mbox maintains seven different reference storage devices in 85. The purpose of these devices 
is to buffer pending references, which originate from different sections of the chip, until they can 
be processed by the MbOx. In order to optimize performance of the NVAX pipeline, and to maintain 
functional correctness of reference processing in light of the Mbox hardware configuration and 
reference order restrictions, the Mbox services references from these queues in a prioritized 
fashion. 

12.3.4.1 Arbitration PrIority 

During every Mbox cycle, the reference arbitration logic is responsible for detenninjng which 
unserviced references should be processed next cycle. The reference sources are listed below from 
highest to lowest priority: 

1. CBOX_LATCH 

2. RTY_DMISS_LATCH 

3. MME_LATCH 
4. VAP _LATCH 

5. EM_LATCH 

6. SPEC_QUEUE 
7. IREF_LATCH 

8. nothing can be driven = => Mbox drives a NOP command into 85 
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This prioritized scheme does not directly indicate which pending reference will be driven next, 
but instead indicates in what order the pending references should be tested to determine which 
one will be processed. Conceptually, the highest pending reference which satisfies all conditions 
for driving the reference is the one which is allowed to execute during the subsequent cycle. 

The rationale behind tbis priority scheme can be explained as follows. All references coming from 
the Cbox are always serviced as soon as they are available. Since Cbox references are guaranteed 
to complete in S5 in one cycle, we eliminate the need to queue up Cbox references and to provide 
a back-pressure mechanism to notify the Cbox to stop sending references. 

A D-stream read reference in the RTY_DMISS_LATCH is guaranteed to have cleared all potential 
memory management problems. Therefore, any reference stored in this latch is the second 
consideration for processing. 

If a reference related to memory management processing is pending in the MME_LATCH, it 
is given priority over the remaining four sources because the Mbox is designed to clear all 
memory management exceptions through the use of the :M:ME_LATCH before normal processing 
can resume. 

The VAP _LATCH stores the second reference of an unaligned reference pair. Since we desire 
to complete the entire unaligned reference before starting another reference, the VAP _LATCH 
has next highest priority in order to complete the unaligned sequence that was initiated from a 
reference of lesser priority. 

The EM_L.4..TCH stores references from the Ebox. It is given priority over the SPEC_ QlJEUE 
and IREF _LfJCH sources because Ebox references are physically further along in the pipe than 
Ibox references. The presumed implication of this fact is that the Ebox has a more immediate 
need to satisfy its reference requests than the Ibox, since the Ebox is always performing real 
work and the Ibox is prefetching operands that may, in fact, never be used. 

The SPEC_QUEUE stores Ibox operand references. It is next in line for consideration. The 
SPEC_ QUEUE has priority over the IREF _LATCH because specifier references are again 
considered further along in the pipeline than I-stream prefetching. 

If no other reference can currently be driven, the lREF _LATCH can drive an I-stream read 
reference in order to supply data to the Ibox. 

If no reference can currently be driven into 85, the Mbox automatically drives a NOP command. 

12.3.4.2 Arbitration Algorithm 

Based on the priority scheme discussed above, the arbitration logic tests each reference to see 
whether it can be processed next cycle by evaluating the current state of the Mbo.x. The teSt 
associated with each latch is described below: 

• CBOX_LATCH: 8ince Cbox references always want to be processed immediately, a validated 
CBOX_LATCH always causes the Cbox reference to be driven before all other pending 
references. 

• RTY_DMI88_LATCH: A pending D-stream read reference will be driven from this latch once 
the final D_CF command has been retired from the 85 pipe. 

• MME_LATCH: A pending MME reference will be driven when the contents of the 
MME_LATCH is validated. 

• VAP _LATCH: A reference from the VAP _LATCH will be driven provided that the VAP _LATCH 
is validated. 
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• EM_LATCH: A reference from the EM_LATCH will be driven provided that the EM_LATCH 
is validated. 

• SPEC_QUEUE: A validated reference in the SPEC_QUEUE will be driven provided that 
the SPEC_ QUEUE has not been stopped due to explicit Ebox writes in progress (see 
Section 12.3.20). 

• IREF _LATCH: A reference from the !REF_LATCH will be driven provided that the 
lREF_LATCH has not been stopped due to a pending READ_LOCKlWRITE_UNLOCK 
sequence (See Section l2.3.19.2). 

If none of the conditions above are satisfied, the Mbox will drive a NOP command onto 
M_QUFt0S5_CMD_H<4:0> causing the S5 pipe to become idle. 

12.3.5 READS 

12.3.5.1 Generic Read-hit and Read-mlss/Cache_flll Sequences 

In order to orient the reader as to how memory reads are processed by the Mbox, this section will 
describe the "vanilla" read sequence. It does not discuss reads which TB_MISS, or otherwise are 
stalled for a variety of different reasons. 

The byte mask generator generates the corresponding 
b)''"te mask by looking at M_Qt1EC"~_ \1A.,B<2:0> and M_QUEo/cS5_D~H<1:0> and then drives the 
byte mask data onto M'7CS6_B'1'TE_~B<7:0> during the subsequent cycle. Byte mask data is 
generated on a read operation in order to supply the byte alignment information to the Cbox on 
an I/O space read. 

When a read reference is initiated in the S5 pipe, the address is translated by the TB (assuming 
the address was virtual) to a physical address during the first half of the S5 cycle. The Pcache 
initiates a cache lookup sequence using this physical address during the second half of the S5 
cycle. This cache access sequence overlaps into the following S6 cycle. During phase four of the 
86 cycle, the Pcache determines whether the read reference is present in its array. 

If the Pcache determined that the requested data is present, a "cache hit" or "read hit" condition 
occurs. In this event, the Pcache drives the requested data onto B%S6_DATA....H<63:0>. The signal, 
M%CBOX_REF _ENABLE_L, is de-asserted to inform the Cbox that it should not process the 86 read 
since the Mbox will supply the data from the Pcache. 

If the Pcache determined that the requested data is not present, a "cache miss" or "read 
miss" condition occurs. In this event, the read reference is loaded into the IMISS_LATCH or 
DMI8S_LATCH (depending on whether the read was I-stream or D-stream) and the Cbox is 
instructed to continue processing the read by the Mbox assertion of M%CBO%..REF _ENABLE..L. At 
some point later, the Cbox obtains the requested data. The Cbox will then send four quadwords 
of data using the I_CF a-stream cache fill) or D_CF (D-stream cache fill) commands. The four 
cache fill commands together are used to fill the entire Pcache block corresponding to the hexaword 
read address. In the case of D-stream fills, one of the four cache fill command will be qualified 
with OldlEQ..DQW _H indicating that this quadword :fill contains the requested D-stream data 
corresponding to the quadword address of the read. When this fill is encountered, it will be 
used to supply the requested read data to the Mbox, Ibox andlor Ebox. 

If, however, the physical address corresponding to the I_CF or D_CF command falls into I/O 
space, only one quadword :fill is returned and the data is not cached in the Pcache. Only memory 
data is cached in the Pcache. 
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Each cache fill command sent to the Mbox is latched in the CBOX_LATCH. Note that neither 
the entire cache fill address nor the fill data are loaded into the CBOX_LATCH. The address in 
the IMIS8_LATCH or DMIS8_LATCH, together with two quadword alignment bits latched in the 
CBOX_LATCH are used to create the quadword cache fill address when the cache fi.ll command 
is executed in 85. When the fill operation propagates into S6, the Cbox drives the corresponding 
cache fill data onto B%S6_DATA..B<63:0> in order for the Pcache to perform the fill. 

12.3.5.1.1 Returning Read Data 

Data resulting from a read operation is driven on Bo/0S6_DATA_H by the Pcache (in the cache hit 
case) or by the Cbox (in the cache miss case). This data is then driven on Mo/ciMD_BUS_B<63:0> 
by the MD_BU8_ROTATOR in right-justified form. The signals M%VIC_DATA...L, M%mOX_DATA..L, 
M%IBOX_IPR ... WR_H, M%EBOX_DAT.A...H, Mo/cMBOX_DATA, are conditionally asserted with the data to 
indicate the destination(s) of the data. 

12.3.5.1 .1.1 Pcache Data Bypass 

In order to return the requested read data to the Ibox andlor Ebox as soon as possible, the Cbox 
implements a Pcache Data Bypass mechanism. '''''hen this mechanism is invoked, the requested 
read data can be returned one cycle earlier than 'when the data is driven for the 86 cache fill 
operation. The bypass mechanism \vorks by haYing the Mbox inform the Cbox that the next 86 
cycle will be idle, and thus the Bt;CS6_DAI:.4._H bus will be available to the Cbox. When the Cbox is 
informed of the 86 idle cycle, it drives the B%S6_DATA..H bus with the requested read data if read 
data is currently a,·ailable (if no read data is available during a bypass cycle, the Cbox drives 
some indeterminent data and no valid data is bypassed). The read data is then formatted by the 
MD_BUS_ROTATOR and transferred onto the M%MD_BUS_B to be returned to the Ibox andlor 
Ebox, qualified by M%VIC_DATA_L, ~f%IBOX_DAT.A..L, andlor M%EBOX_DATA..H. 

12.3.5.2 I-stream Read Processing 

Memory access to all I-stream code is implemented by the Mbox on behalf of the Ibox. The Ibox 
uses the I-stream data to load its prefetch queue and to fill the VIC (Virtual Instruction Cache). 

When the Ibox requires I-stream data which is not stored in the prefetch queue or the VIC, the 
Ibox issues an I-stream read request which is latched by the IREF_LATCH. The Ibox address is 
always interpreted by the Mbox as being an aligned quadword address. Depending on whether 
the read hits or misses in the Pcache, the amount of data returned varies. The Ibox continually 
accepts I-stream data from the Mbox until the Mbox qualifies I-stream MD_BUS data with the 
M%LAST_FlLL_H signal. M%LAST_F'ILL_R informs the Ibox that the current fill terminates the 
initial IREAD transaction. 

12.3.5.2.1 l-stream Read Hits 

When the requested data hits in the Pcache, the Mbox turns the IREF _LATCH reference into a 
series of I-stream reads to implement a VIC "fill forward" algorithm. The fill forward algorithm 
generates increasing quadword read addresses from the original address to the highest quadword 
address of the original hexaword address. In other words, the Mbox generates read references so 
that the hexaword VIC block corresponding to the original address is filled from the point of the 
request to the end of the block.. The theory behind this fill forward scheme is that it only makes 
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sense to supply I-stream data following the requested reference since I-stream execution causes 
monotonically increasing I-stream addresses (neglecting branches). 

The fill forward scheme is implemented by the IREF _LATCH. Once the IREF _LATCH read 
completes in 85, the IREF _LATCH quadword address incrementor modifies the stored address 
of the IREF _LATCH so that its contents becomes the next quadword !READ. Once this "new" 
reference completes in 85, the next IREAD reference is generated. When the lREF _LATCH finally 
issues the lREAD corresponding to the highest quadword address of the hexaword address, the 
forward fill process is terminated by invalidating the IREF _LATCH. 

12.3.5.2.2 I-stream Read Misses 

The :fill forward algorithm described above is always invoked upon receipt of an IREAD. However, 
when one of the IREADs is found to have missed in the Pcache, the subsequent IREAD 
references are fiushed out of the 85 pipe and the IREF _LATCH. The missed IREAD causes 
the IMISS_LATCH to be loaded and the Cbox to continue processing the read. When the Cbox 
returns the resulting four quadwords of Pcache data, all four quadwords are transferred back 
to the Ibox qualified by M%YIC_D.U'A..,.L. This in effect, results in a VIC "fill full" algorithm since 
the entire VIC block will be filled. Fill full is done instead of fill forward because it costs little 
to implement. The Mbox must allocate a block of cycles to process the four cache fills; therefore, 
all the Pcache fill data can be shipped to the VIC \tith no extra cost in Mbox cycles since the 
?tlt;'cMD_BUS_B would otherwise be idle during these fill cycles. 

Note that the Ibox is unaware of what :fill mode the Mbox is currently operating in. The 
VIC continues to fill I-stream data from the MC:u'\ID_BUS_B \vhenever M%VIC_DAT.A".L is asserted 
regardless of the Mbox fill mode. The Mbox asserts the M%LAST_F'ILL_B signal to the Ibox during 
the cycle which the Mbox is driving the last I-stream fill to the Ibox. M%LAST_FILL_H informs 
the Ibox that is is receiving the final VIC fill this cycle and that it should not expect any more. 
In fill forward mode, the Mbox asserts M%LAST_FILL_B when the quadword alignment equals 11 
(Le. the upper·most quadword of the bexaword). In:fill full mode, the Mbox receives the last :fill 
information from the Cbox and transfers it to the Ibox through the M%LAST_FILL_B signal. 

It is possible to start processing I-stream reads in fill forward mode, but then switch to fill full. 
This could occur because one of the references in the chain of fill fonvard !READs misses due to 
a recent invalidate or due to displacement of Pcache I-stream data by a D-stream cache fill. In 
this case, the Ibox will receive more than four fills but will remain in synchronization with the 
Mbox because it continually expects to see fills until M%LAST_FILL_B is asserted. 

12.3.5.2.3 1/0 Space I-stream Reads 

See Section 12.3.5.4. 

12.3.5.3 D-stream Read Processing 

Memory access to all D-stream references is implemented by the Mbox on behalf of the Ibox 
(for specifier processing), the Mbox (for PTE references), and the Ebox (for all other D-stream 
references). 

In general D-stream read processing behaves the same way as I-stream read processing except 
that there is no fill forward or fill full scheme. In other words, only the requested data is shipped 
to the initiator of the read. From the Pcache point of view, however, a D-stream fill full scheme 
is implemented since four D_CF commands are still issued to the Pcache. 
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D-stream reads can have a data length of byte, word, longword or quadword. With the exception 
of the cross-page check function, a quadword read is treated as if its data length were a longword. 
Thus aD-stream quadword read returns the lower half of the referenced quadword. The source 
of most D-stream quadword reads is the Ibox. The Ibox will issue aD-stream longword read to 
the upper baH of the referenced quadword immediately after issuing the quadword read. Thus, 
the entire quadword of data is accessed by two back-to-back D-stream read operations. 

A DREAD_LOCK command always forces a Pcache read miss sequence regardless of whether 
the referenced data was actually stored in the Pcache. This is necessary in order that the read 
propagate out to the Cbox so that the memory lock/unlock protocols can be properly processed. 

12.3.5.3.1 Reads under Fills 

The ~Ibox will attempt to process a DREAD after the requested fill of a previous D-stream fill 
sequence has completed. This mechanism, called "reads under fills" is done to try to return read 
data to the Ibox andlor Ebox as quickly as possible, without having to \vait for the previous fill 
sequence to complete .. 

If the attempted read hits in the Pcache, the data is returned and the read completes. If the 
read misses in the S6 pipe, the corresponding fill sequence is not immediately initiated for t\VO 
reasons: 

• A D-stream cache fill sequence for tbis read cannot be started because the D~n8S_L..~TCa: 
is full corresponding to the currently outstanding cache fill sequence. 

• The D-stream read may hit in the Pcache once the current fill sequence completes becauSe 
the current fill sequence may supply the data necessary to satisfy the new D-stream read. ' 

Because this DREAD bas already propagated through the 85 pipe, the read must be stored 
somewhere in order that it can be restarted in 85. The RTY_DMI8S_LATCH is the mechanism 
by which the 86 read is saved and restarted in the 85 pipe. 

Once the read is stored in the RTY_DMI8S_LATCH, it will be retried in 85 after the final D_CF 
reference is retired from 85 (the final D_CF completes the previous D-stream fill sequence). The 
RTY_DMISS_LATCH is invalidated when the retried reference is retired from 85. 

12.3.5.4 1/0 Space Reads 

110 space reads are defined as reads which address 110 space. Therefore, a read is an 110 read 
when the physical address bits, addr<31:29>, are set. I/O space reads are treated by the Mbox 
in exactly the same way as any other read, except for the following differences: 

• 110 space data is never cached in the Pcache. Therefore, an 110 space read always generates 
a read-miss sequence and causes the Cbox to process the reference. 

• Unlike, a memory space miss sequence, which returns a hexaword of data via four I_CF or 
D_CF commands, an 110 space read returns only one piece of data via one I_CF or D_CF 
command. Thus the Cbox always asserts C%LAST_Fn..L_B on the first and only I_CF or D_CF 
110 space operation. If the 110 space read is D-stream, the returned D_CF data is always less 
than or equal to a longword in length. 
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• 110 space D-stream reads are never prefetched ahead of Ebox execution. An 110 space 
D-stream read issued from the Ibox is only processed when the Ebox is known to be stalling 
on that particular 110 space read (see Section 12.3.18.1.1). 

NVAX RESTRICTION 

I-stream I/O space reads must return a quadword of data. Execution of an I-stream 
I/O space read which does not return a quadword of data is unpredicatable. 

12.3.6 WRITES 

All writes are initiated by the Mbox on behalf of the Ebox. The Ebox microcode is capable of 
generating write references with data lengths of byte, word, longword, or quadword. With the 
exception of cross-page checks (see Section 12.5.1.5.4), the Mbox treats quadword write references 
as longword write references because the Ebox datapath only supplies a longword of data per 
cycle. Ebox '\vrites can be unaligned. 

The Mbox performs the following functions during a write reference: 

• Memory Management checks: The I\Ibox checks to be sure the page or pages referenced have 
the appropriate write access and that the valid virtual address translations are available. 
(See Section 12.5 ) 

• The supplied data is properly rotated to the memory aligned longword boundary. 
• Byte Mask Generation: The Mbox generates the byte mask of the write reference by 

examining the write address and the data length of the reference. 
• Pcache writes: The Pcache is a write-through cache. Therefore, writes are only written into 

the Pcache if the write address matches a validated Pcache tag entry. 
The one exception to this rule is when the Pcache is configured in force D-stream hit mode. 
In this mode, the data is always written to the Pcache regardless of whether the tag matches 
or mismatches. 

• All write references which pass memory management checks are transferred to the Cbox via 
B%S6_DATA,..B<63:0>. The Cbox is responsible for processing writes in the Bcache and for 
controlling the protocols related to the write-back memory subsystem. 

When write data is latched in the EM_LATCH, the 4-way byte barrel shifter associated with the 
EM_LATCH rotates the EM_LATCH data into proper alignment based on the lower two bits of 
the corresponding address. The diagram below illustrates the barrel shifter function: 
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Figure 12-15: Barrel Shifter Function 
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The result of this data rotation is that all bytes ( 
relative to memory longword boundaries. 

"'ben '\.vrite data is driven from the E~I_LATCH, M_ 
of the barrel shifter so that data will always be pre 

Note that, while the M_QUE%S5_DATA_H bus is ~ 

quadword wide. Bo/cS6_DATA..H is a quadword wi 
The quadword access size facilitates Pcache and 
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half of B%S6_DATA.,.H<63:0> is ever used to write the Pcacbe Slnce au W .U"I:< "'V~ ______ . • 

a longword or less of data. When a write reference propagates from 85 to 86, the longword 
aligned data on M_QUEo/cS5_DATA.-B<31:0> is transferred onto both the upper and lower halves of 
Bo/cS6_DATA_H<63:0> to guarantee that the data is also quadword aligned to the Pcache and Cbox. 
The byte mask corresponding to the reference will control which bytes of B%S6_DAT.A...B<63:0> 
actually get written into the Pcache or Bcache. 

Write references are formed through two distinct mechanisms described below. 

12.3.6.1 Destination Specifier Writes 

Destination specifier writes are those writes which are initiated by the Ibox upon decoding a 
destination specifier of an instruction. When a destination specifier to memory is decoded, the 
Ibox issues a reference packet corresponding to the destination address. Note that no data is 
present in this packet because the data is generated when the Ebox subsequently executes the 
instruction. The command field of this packet is either a DEST_ADDR command (when the 
specifier had access type of write) or a DREAD_MODIFY command (when the specifier had access 
type of modify). 

The address of this command packet is translated by the TB, memory management access checks 
are performed, and the corresponding byte mask is generated. The physical address, DL and 
other qualifer bits are loaded into the PA_QUEUE. When the DE8T_ADDR command completes 
in 85, it is turned into a NOP command in 86 because no further processing can take place 
without the actual write data. 
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When the Ebox executes the opcode corresponding to the Ibox destination specifier, the 
corresponding memory data to be written is generated. This data is sent to the Mbox by a 
STORE command. The STORE packet contains only data. When the Mbox executes the STORE 
command in 85, the corresponding PA_QUEUE packet is driven into the 85 pipe. The data in 
the EM_LATCH is rotated into proper longword alignment using the byte rotator and the lower 
two bits of the corresponding PA_ QUEUE address and are then driven into 85. In effect, the 
DE8T_ADDR and 8TORE commands are merged together to form a complete physical address 
WRITE operation. This WRITE operation propagates through the 85186 pipeline to perform the 
write in the Pcache (if the address hits in the Pcache) and in the memory subsystem. 

12.3.6.2 Explicit Writes 

The term explicit writes defines writes generated solely by the Ebox. That is, writes which do 
not result from the Ibox decoding a destination specifier but rather writes which are explicitly 
initiated and fully generated by the Ebox. An example of an explicit write is a write performed 
during a Move instruction. In this example, the Ebox generates the virtual write address of 
every write as well as supplying the corresponding data. The PA_QlJEUE is never involved in 
processing an explicit write. 

Explicit writes are transferred to the Mbox in the form of a 'W"RITE command issued by the Ebox. 
These writes directly execute in 85 and S6 in the same manner as when a write packet is formed 
from the PA_ QUEUE contents and the STORE data. 

12.3.6.3 Writes to 1/0 Space 

I/O space writes are defined as a write command which addresses I/O space. Therefore, a write 
is an I/O space write when the physical address bits, addr<31:29>, are set. I/O space writes 
are treated by the Mbox in exactly the same way as any other write, except for the following 
differences: 

• I/O space data is never cached in the Pcache; therefore, an I/O space write always misses in 
the Pcache. 

12.3.6.4 Byte Mask Generation 

8inCe memory is byte-addressable, all memory storage devices must be able to selectively write 
specified bytes of data without writing the entire set of bytes made available to the storage device. 

The byte mask field of a write reference packet specifies which bytes within the quadword Pcache 
access size get written. The byte mask is generated in the Mbox by the byte mask generation 
logic based on M_Q~_ V~B<2:0> and the data length of the reference. 

Byte mask data is generated on a read as well as a wriate in order to supply the byte alignment 
information to the Cbox on an I/O space read. The following table illustrates the behavior of the 
byte mask generator for all aligned reads and writes: 
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Table 12-2: Byte Mask logic for Aligned References 

BM BM BM 
addr<2:O> (DL-byte) (DL-word) (DLdoDg) BM (DL-quad) 

000 00000001 00000011 00001111 00001111 

001 00000010 00000110 00011110 00011110 

010 00000100 00001100 00111100 00111100 

011 00001000 00011000 01111000 01111000 

100 00010000 00110000 11110000 11110000 

101 00100000 01100000 unaligned unaligned 

110 01000000 11000000 unaligned unaligned 

111 10000000 unaligned unaligned unaligned 

See Section 12.3.17.3 for a description of byte mask generator for unaligned references. 

12.3.7 IPR PROCESSING 

12.3.7.1 MBOX IPRs 

The Mbox maintains the following internal processor registers: 

Table 12-3: Mbox IPRs 

Register Name 

MPOBR (Mbox PO Base Register)1 

MPOLR (Mbox PO Length Register)1 

MP1BR (Mbox PI Base Register)1 

MPlLR (Mbox PI Length Register)1 

:MSBR {~.fbvx Systam Base Pwgi~wr)1 

MSLR (Mbox System Length Register)1 

MMAPEN (Map Enable Bit)1 

PAMODE (Address Mode) 

MMEADR (MME Faulting Address Register)1 

MMEPTE (PTE AddreSIJ Register)1 

MMESTS (status of memory management exception)1 

TBADR (address of reference causing TB parity error) 

TBSTS (status ofTB parity error) 

PCADR (address ofreference causing Pcache parity error) 

PCSTS (status of Pcache parity error and PrE hard errors) 

PCCTL (control state of Pcache operation) 

1Testability and diagnostic use only; not for software use in normal operation. 
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IPRAddress 
(in hex) 

EO 
E1 
E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 

EA 

EC 
ED 

F2 

F4 

F8 
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Table 12-3 (Cont.): Mbox IPRs 

Register Name 

PCTAG 

PCDAP 

IPRAddress 
(in hex) 

o 1800000 .. 0 180lFE< 

OlCOOOOO .. OICOIFF 

The first thirteen IPRs listed above (memory management IPRs) are stored in the 85 pipe in 
the register file of the MME_DATAPATH. All other IPRs are stored in the 86 pipe. Note that 
when an Mbox IPR, other than a Pcache tag, is addressed, the actual IPR address is received on 
M_QlJECY0S5_V~B<9:2> (the table above is written such that all addresses start at bit<O». 

The following is the format description of each Mbox IPR. Each format illustrates the format 
visible at the programmer level. The formats do not necessarily illustrate the intenlal hardware 
storage format. 

Figure 12-16: IPR EO (hex), MPOBR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 11 01 system virtual page address of PO page table I 01 01 01 01 01 01 01 01 OI:MPOBR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Figure 12-17: IPR E1 (hex), MPOLR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 01 01 01 01 01 01 01 01 01 01 length of PO page table in longwords I:MPOLR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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Figure 12-15: Barrel Shifter Function 

original +-----+-----+-----+-----+ 
4 bytes of I 4 I 3 I :2 III 
Ebox data +-----+-----+-----+-----+ 

barrel shifter +-----+-----+-----+-----+ 
output when I 3 I :2 III 4 I 
M_QUE%S5_VA_H<l:0> - Ol +-----+-----+-----+-----+ 
barrel shifter +-----+-----+-----+-----+ 
output. when I :2 III 4 I :3 I 
M_QUE%S5_VA_H<1:0> - lO +-----~-----+-----~-----+ 

ba:re! sh!!te: .-----+-----~----.-----+ 
out:;;'..lt when ; :. ! 4 I :3 I :2 I 

M_Q:~%S5_VA_H<1:O> - II ~------------------------

The result of this data rotation is that all bytes of data are now in the correct byte positions 
relative to memory longword boundaries. 

\Vhen write data is driven from the El\.I_LATCH, M_QUEo/cS5_DATA....H<31:0> is driven by the output 
of the barrel shifter so that data will always be properly aligned to memory longword addresses. 

Note that, while the M_QUE%S5_DATA_H bus is a longword wide, the B%S6_DA.T.A.,H bus is a 
quadword wide. Bo/c:S6_DATA_H is a quadword wide due to the quadword Pcache access size. 
The quadword access size facilitates Pcache and VIC fills. Ho'\vever for all writes, at most 
half of B%S6_DMA-H<63:0> is ever used io write the Pcache since all write commands modify 
a 10ngword or less of data. When a write reference propagates from 85 to 86, the longword 
aligned data on M_QUEo/cS5_D.ATA..B<31:0> is transferred onto both the upper and lower halves of 
Bo/cS6_DA'£A..H<63:0> to guarantee that the data is also quadword aligned to the Pcache and Cbox. 
The byte mask corresponding to the reference will control which bytes of B%S6_DArA...B<63:0> 
actually get written into the Pcache or Bcache. 

Write references are formed through two distinct mechanisms described below. 

12.3.6.1 Destination Specifier Writes 

Destination specifier writes are those writes which are initiated by the Ibox upon decoding a 
destination specifier of an instruction. When a destination specifter to memory is decoded, the 
Ibox issues a reference packet corresponding to the destination address. Note that no data is 
present in this packet because the data is generated when the Ebox subsequently executes the 
instruction. The command field of this packet is either a DEST_ADDR command (when the 
speciiier had access type of write) or a DREAD_MODIFY command (when the specifter had access 
type of modify). 

The address of this command packet is translated by the TB, memory management access checks 
are performed, and the corresponding byte mask is generated. The physical address, DL and 
other qualifer bits are loaded into the PA_QUEUE. When the DE8T_ADDR command completes 
in 85, it is turned into a NOP command in 86 because no further processing can take place 
without the actual write data. 
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When the Ebox executes the opcode corresponding to the Ibox destination specifier, the 
corresponding memory data to be written is generated. This data is sent to the Mbox by a 
STORE command. The STORE packet contains only data. When the Mbox executes the STORE 
command in 85, the corresponding PA..., QUEUE packet is driven into the 85 pipe. The data in 
the EM_LATCH is rotated into proper longword alignment using the byte rotator and the lower 
two bits of the corresponding PA_QUEUE address and are then driven into 85. In effect, the 
DE8T_ADDR and STORE commands are merged together to form a complete physical address 
WRITE operation. This WRITE operation propagates through the 85/S6 pipeline to perform the 
write in the Pcache (if the address hits in the Pcache) and in the memory subsystem. 

12.3.6.2 Explicit Writes 

The term explicit writes defines writes generated solely by the Ebox. That is, writes which do 
not result from the Ibox decoding a destination specifier but rather writes which are explicitly 
initiated and fully generated by the Ebox. An example of an explicit write is a write performed 
during a Move instruction. In this example, the Ebox generates the virtual write address of 
every write as well as supplying the corresponding data. The PA..QIJEUE is never involved in 
processing an explicit write. 

Explicit writes are transferred to the Mbox in the form of a '\VlUTE command issued by the Ebox. 
These writes directly execute in 85 and 86 in the same manner as when a write packet is formed 
from the PA_ QUEUE contents and the STORE data. 

12.3.6.3 Writes to 1/0 Space 

I/O space writes are defined as a write command which addresses 110 space. Therefore, a write 
is an I/O space write when the physical address bits, addr<31:29>, are set. 110 space writes 
are treated by the Mbox in exactly the same way as any other write, except for the following 
differences: 

• I/O space data is never cached in the Pcache; therefore, an 110 space write always misses in 
the Pcache. 

12.3.6.4 Byte Mask Generation 

8inCe memory is byte-addressable, all memory storage devices must be able to selectively write 
specified bytes of data without writing the entire set of bytes made available to the storage device. 

The byte mask field ofa write reference packet specifies which bytes within the quadword Pcache 
access size get written. The byte mask is generated in the Mbox by the byte mask generation 
logic based on l~CQUE%SS_ V~B<2:0> and the data length of the reference. 

Byte mask data is generated on a read as well as a wriate in order to supply the byte alignment 
information to the Cbox on an 110 space read. The following table illustrates the behavior of the 
byte mask generator for all aligned reads and writes: 
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Figure 12-18: IPR E2 (hex), MP1BR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+-~~--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 11 01 system virtual page address of P1 page table I 01 01 01 01 01 01 01 01 OI:MPIBR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Figure 12-19: IPR E3 (hex), MP1 LR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1·01 01 01 01 01 01 01 01 01 01 length of (2**21) - PI page table in longwords I:MPILR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Figure 12-20: IPR E4 (hex), MSBR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 physical page address of system page table I 01 01 01 01 01 01 01 01 OI:MSBR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Figure 12-21 : IPR ES (hex), MSLR 

31 30 29 28127 26 25 24123 2221 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 01 01 01 01 01 01 01 01 01 01 length of system page table in longwords I:MSLR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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Figure 12-22: IPR E6 (hex), MMAPEN 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 MI:MMAPE~ 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 12-4: MMAPEN Field Descriptions 

Name Extent Type Description 

M o RW When 0, disables Mbox memory management. When 1, enables 
Mbox memory management. 

Figure 12-23: IPR E7 (hex), PAMODE 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 I:PAMODE 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 

MODE------+ 

Table 12-5: PAMODE Field Descriptions 

Name Extent Type Description 

MODE o 
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RW When 0, maps addresses from a 30-bit physical address space. When 
1, maps addresses from a 32-bit physical address space. 
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Figure 12-24: IPR E8 (hex), MMEADR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I address associated with recorded MME fault I:MMEADR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+~-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Figure 12-25: IPR E9 (hex), MMEPTE 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PTE address associated with an address corresponding to a modify fault I:MMEPTE 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Figure 12-26: IPR EA (hex), MMESTS 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

SRC I 01 01 01 01 01 01 01 01 01 o 1 FAULT 1 01 01 01 01 01 01 01 01 01 01 01 MI ILVI:MMESTS 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
<---+----> I 

I 1 
+---- LOCK 

Table 12-6: MMESTS Field Descriptions 

Name 

M 

FAULT 

SRC 

LOCK 

Extent 

0 

1 

2 

15:14 

28:26 

31:29 

Type 

RO 
RO 

RO 
RO 

RO 

RO,O 

Description 

Indicates ACV fault occurred due to length violation. 

Indicates ACVlrNV fault occurred on PTE reference corresponding 
to MMEADR. 

Indicates corresponding reference had write or modify intent. 

Indicates nature of memory management fault. See Fault bit 
encodings below 

Complemented shadow copy of LOCK bits. However, the SRC bits 
do not get reset when the LOCK bits are cleared. 

Indicates the lock status of MMESTS. See LOCK encodings below. 
This field is cleared on :H.FLUSB_MBOx:..X. 

See Section 12.5.1.5.3.5 for information on how these fields are encoded. 
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Figure 12-27: IPR EC (hex), TBADR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I virtual address associated with the recorded TB parity error I :TBADR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Figure 12-28: IPR ED (hex), TBSTS 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I SRC I 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 CMD I I I 1 I :TBSTS 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I I I 
EM_VAL---------+ I I 1 
TPERR-------------+ I 1 
DPERR----------------+ I 
LOCK--------------------+ 

Table 12-7: TBSTS Field Descriptions 

Name Extent Type Description 

LOCK 0 WC Lock Bit. When set, validates TBSTS contents· and prevents any 
other field from further modification. When clear, indicates that no 
TB parity error has been recorded and allows TBSTS and TBADR 
to be updated. 

DPERR 1 RO Data Error Bit. When set, indicates a TB data parity error. 

TPERR 2 RO Tag Error Bit. When set, indicates a TB tag parity error. 

EM_VAL 3 RO EM_LATCH valid bit. Indicates if EM_LATCH was valid at the time 
of the error TB parity error detection. This helps the software error 
handler determine if a write operation may have been lost due to 
the TB parity error. 

CMD 8:4 RO S5 command corresponding to TB parity error. 

SRC 31:29 RO Indicates the original source of the reference causing TB parity error. 

See Section 12.6.4.1 for information on how these fields are encoded. 
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Figure 12-29: IPR F2 (hex), PCADR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I quadword physical address associated with the recorded Pcache parity error I 01 01 OI:PCADR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Figure 12-30: IPR F4 (hex), PCSTS 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 I I CMD I I I I I: PCSTS 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I I I I 
PTE_ER---------+ I I I I 
PTE_ER_WR---------+ I I I 
LEFT_BANK---------------------------+ I I 
RIGHT_BANK-----------------------------+ I I 
DPERR-------------------------------------+ I 
LOCK-----------------------------------------+ 

Table 12~: PCSTS Field Descriptions 

Name Extent Type Description 

LOCK o 

DPERR 1 

RIGHT_BANK 2 

LEFI'_BANK 3 

CMD 8:4 

PrE_ER_WR 9 

PrE_ER 10 

WC 

RO 

RO 

RO 

RO 

we 

we 

Lock. Bit. When set, validates PCST8<8:1> contents and prevents 
modification of these fields. When clear, invalidates PCST8<8:1> 
and allows these fields and PCADR to be updated. 

Data Error Bit. When set, indicates a Pcache data parity error. 

Right Bank Tag Error Bit. When set, indicates a Pcache tag parity 
error on the right banJt. 

Left Bank Tag Error Bit. When set, indicates a Pcache tag parity 
error on the left bank. 

S6 command corresponding to Pcache parity error. 

Indicates a hard error on a PrE DREAD which resulted from a TB 
miss on a WRITE or WRITE_UNLOCK. 

Indicates a hard error on a PrE DREAD. 

Note that the state of PCSTS<31:11> are "don't cares" during an IPR write operation. 
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Figure 12-31: IPR F8 (hex), PCCTL 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 11 11 11 11 11 11 11 11 11 11 11 1 I 11 1 I 1 I 11 11 11 1 I 11 11 11 1 I PMM I 1 : PCCTL 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I I I 
RED_ENABLE---+ 1 1 I 
ELEC DISABLE----+ I 1 
P_ENAsLE--------------------+ I 
BANK_SEL-----------------------+ I 
FORCE HIT-------------------------+ I 
I_ENABLE ----------------------------+ 
D_ENABLE -------------------------------+ 

Table 12-9: PCCTL Field Descriptions 

Name Extent Type Description 

o 

CENABLE 1 

2 

3 

4 

PMM 7:5 
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RW,O 

RW,O 

RW,O 

RW,O 

RW,O 

RW,O 

When set, enables Pcache for all INVAL operations and for 
all D-stream readlwrite/fill operations, qualified by other control 
bits. When clear, forces a Pcache miss on all Pcache D-stream 
readlwritelfill operations. Note, however, that an ACVtrNVlM=O 
condition overrides a desasserted D_ENABLE in that it will force a 
Pcache hit condition with D_ENABLE=O. 

When set, enables Pcache processing of INVAL, lREAD and 1_ CF 
commands. When clear, forces a Pcache miss on IREAD operations 
and prevents state modification due to an CCF operation. Note, 
however, that an ACV/TNVfM=O condition overrides a desasserted 
CENABLE in that it will force a Pcache hit condition with 
CENABLE::O. 

When set, forces a Pcache hit on all reads and writes when Pcache 
is enabled for I or D-stream operation. 

When set with FORCE_HIT=l, selects the "right bank" of the 
addressed Pcache index. When clear with FORCE_HIT= 1, selects 
the '1eft. bank" of the addressed Pcache index. BANK_SEL is a don't 
care when FORCE_HIT=O. NOTE: BANK_SEL never affects bank 
selection during IPR reads and !PR writes to the Pcache tags or 
Pcache data parity bits; bank selection for these commands is always 
determined by the specified IPR address. 

When set, enables detection of Pcache tag and data parity errors. 
When deasserted, disables Pcache parity error detection. 

SpecifiesMbox performance monitor mode (see Section 12.10). Note 
that this field does not control or affect the operation of the Pcache 
in any way. PMM is placed in PCCTL for the convenience of the 
hardware implementation. 
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Table 12-9 (Cont.): PCCTL Field Descriptions 

Name Extent Type Description 

RW,O When set, the Pcache is disabled electrically to reduce power 
dissipation. NOTE: This bit should only be set when the Pcache 
is functionally turned off by the deassertion of both I_ENABLE and 
D_ENABLE. UNPREDICTABLE operation will result when this bit 
is set when either CENABLE or D_ENABLE is also set. Also note 
that Pcache tag or parity IPRs will not function properly when this 
bit is unconditionally set. 

RO When set, indicates that one or more Pcache redundancy elements 
are enabled (see Section 12.4.11 for more information). 

Note that the state ofPCCTL<31:10> are "don't cares" during an IPR write operation. 

Figure 12-32: IPRs 01800000 thru 01801FEO (hex), PCTAG 

31 30 29 28\27 26 25 24\23 22 21 20\19 18 17 16\15 14 13 12\11 10 09 08\07 06 05 04\03 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

tag \ 1\ 1\ 1\ 11 11 11 PI valid bitsl AI:PCTAG 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 12-10: PCTAG Field Descriptions 

Name Extent Type Description 

A 0 RW Allocation Bit cOlTesponding to index of this tag. 

valid bits 4:1 RW Valid Bits cOlTesponding to the four data subblocks. PCTACk4> 
colTesponds to uppermost quadword in block. PCTACk1> 
corresponds to lowermost quadword in block. 

P 5 RW Even Tag Parity 

tag 31:12 RW Tag Data 

Note that the state of PCTAG<11:6> are "don't cares" during an IPR write operation. 
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Figure 12-33: IPRs 01 COOOOO thru 01 C01 FFS (hex), PCDAP 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 DATA_PARITY I:PCDAP 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 12-11: PCDAP Field Descriptions 

Name Extent Type Description 

7:0 RW Even byte parity cOITesponding to addressed quadword of data. Bit 
n represents parity for byte n of addressed quadword. 

Note that the state of PCDAP<31:8> are "don't cares" during an IPR write operation. 

12.3.7.2 Hardware MBOX IPR Format 

The IPR formats listed above reflect the formats used by the programmer to execute IPR read 
and write operations. However, due to the specific structure of the Mbox memory management 
datapath, four memory management registers are internally stored in a different format in order 
to facilitate all length violation checks and PI space PrE calculations. The following describes 
the hardware formats of these registers: 

Figure 12-34: MPOLR Register 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 01 length of PO page table in longwords I 01 01 01 01 01 01 01 01 OI:MPOLR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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Figure 12-35: MP1 LR Register 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 (length of (2**21) - P1 page table in lon9words) + lr_bias 1 01 01 01 01 01 01 0: 01 01:MP1LR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--~--+--+--+--+--+--+--+ 

Figure 12-36: MSlR Register 

31 30 29 2e12~ 26 25 2'123 22 21 20119 18 ~i 16115 14 ~3 12il~ 10 09 08107 06 05 04103 02 C: 00 

---~--~--~--~--~-.-----~--~--~--~--+--+--+--~--+--~--~-.--~--~--+--~--+-----~--~-----+-----~--~ 
! 0: ~en~h o! sys~em page ~a~:e ir. longwo:tis : C. 1 C I 0 i 0 I 0 i u! 0 i C i v i :!'!S:"?, 

~--------~--+--~--~--~--+--+--~-----+--.--~--~--+--~--~--~--~--~-----.--~--------------~---------

The re-formating operation necessary to convert the program-level format to the hard\vare-level 
format is handled by microcode. When IPR writes are done to these registers, the microcode 
shifts the length register data 9 bits to the left before delivering the IPR_ "'RITE reference to 
the Mbox. In the MP1LR case, the microcode adds a bias value to the data following the shift 
operation. This is done in order to compensate for the "1" \vhich \vilI occur in virtual_addr<30> 
position during length check subtraction operations for all Pl space virtual references. 

The microcode reverses the format operation to convert the Mbox IPR data back into the 
program-level format during MxLR IPR_READ operations. 

The hardware format for MPIBR is shown below: 

Figure 12-37: MP1 BR Register 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I system virtual page address of P1 page table - br_bias 1 01 01 01 01 01 01 01 01 01:MP1BR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Before sending the IPR_ 'WRITE data to the Mbox, the microcode substracts a different bias value 
from the PI space base register. This is done in order to compensate for the "1" which will occur 
in virtual_addr<30> position during PI space PrE address calculations. 

The microcode reverses this format operation to convert the Mbox IPR data back into the 
program-level format during MPIBR IPR_READ operations. 

12.3.7.3 IPR Reads 

IPR reads (internal processor register reads) are issued to the Mbox by the Ebox using the IPR_RD 
command. The Ebox issues an IPR_RD in order to obtain the contents of an NVAX internal 
processor register existing somewhere in the system other than the Ebox. 
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12.3.7.3.1 Mbox IPR Reads 

When the Ebox issues an IPR_RD to an Mbox 85 IPR, the :MME_DATAPATH will respond by 
accessing the appropriate register and loading it into the data field of the MME_LATCH. The 
:MME_LATCH is then validated with an IPR_DATA command. Subsequently, the IPR_DATA 
command will execute in the Mbox pipe by passing the requested IPR data back to the Ebox on 
M%MD_BUS_B<31:0>, qualified by M%EBOx..,DATA.,.H. 

All Mbox 86 IPRs return their data directly on M%MD_BUS_B<31:0>, qualified by M%EBOx..DATA...B, 
during the 86 execution of the IPR_RD command. 

Any IPR address in the range EO-FF which is not specified above is called a reserved Mbox IPR 
(reserved for any future Mbox IPR functional requirements). An IPR_RD to a reserved Mbox IPR 
will cause the assertion ofM%EBO~D.A.T.I\..B in order to unstall the Ebox which is waiting for IPR 
data to be returned. Note however, that the returned data is UNPREDICATABLE. 

12.3.7.3.2 Non-Mbox IPR Reads 

The Ebox '\vill issue an IPR~RD command to the Mbox to access IPRs existing in other sections 
of the l\TVAX computer system. Specifically, IPR_RD commands are issued to address IPRs in the 
Ibox, Cbox, ~"TIAL and memory subsystem. 

IPR_RDs to the Ibox (IPR addresses DO-DF) are treated as NOPs. That is, execution of an Ibox 
IPR_RD command performs no Mbox function and does not modify any Mbox state. This behavior 
facilitates the Ebox microcode decode of IPR commands by allowing Ibox IPR_RDs to be issued 
to the :Mbox even though the Mbox does not playa role in returning Ibox IPR data. 

IPR_RDs which do not address the Ibox or the Mbox are transferred to the Cbox for further 
processing by asserting M%CBOx..,BEF_ENABLE_L when the IPR_RD is in S6. These IPR_RDs 
are handled by the Mbox in a manner similar to a DREAD which misses in the Pcache. The 
IPR~RD command is loaded into the DMISS_LATCH as the command is transferred to the Cbox. 
DMISS_LATCH state is set to indicate that the reference is not cacheable. Subsequently, the 
Cbox responds to the IPR_RD by sending back the requested data via one D_CF command. The 
IPR_RD sequence is similar to an 110 space READ miss sequence in that only one D_CF command 
is sent rather than four, and the returned data is not loaded in the Pcache even though a D_CF 
command was used to return the data. 

12.3.7.4 IPR WRITES 

IPR writes (internal processor register writes) are issued to the Mbox by the Ebox using the 
IPR_ WR command. The IPR_ WR command modifies the contents of an internal processor register 
which is located in the Ibox, Mbax, Cbox, NDAL or memory subsystem. The addressed register 
is modified using the longword of data associated with the IPR_ WR command. 

12.3.7.4.1 Mbox IPR Writes 

All Mbox IPBs located in S5 reside in the MME_DATAPATH. These IPRs are written by the 
IPR_ WR command during the cycle after the IPR_ WR executes in S5. All other Mbox !PRs 
reside in S6 and are written during the cycle when the IPR_ WR executes in S6. See Table 12-3 
for a description of the Mbox IPR registers. 

An IPR_ WR to an Mbox reserved IPR causes no action to be taken. 
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12.3.7.4.2 Non-Mbox IPR Writes 

Unlike Ibox IPR reads, the Mbox plays a role in processing Ibox IPR writes. The Mbox reoognizes 
all Ibox IPR writes (addresses DO-DF) and passes the data through the Mbox pipeline onto 
Mo/oMD_BUS_B<31:0> qualified by M%mox..,IPR_ WR. The Ibox receives the IPR write data and stores 
it in the Ibox IPR specified by information received directly from the Ebox. Processing Ibox IPR 
writes via the Mbox allows the M%MD_BUS_B to be used to transfer Ibox IPR write data without 
the need for a special Ebox-Ibox data bus. 

The Mbox asserts M%CBOx..,REF _ENABLE_L to the Cbox when the addressed IPR falls outside of 
the Ibox and Mbox IPR address space. This causes the Cbox to continue processing the IPR_ WR. 

The LOAD_PC command is used to transfer a new Program Counter value from the Ebox to the 
Ibox via the Mbox. This PC value propagates through the Mbox in order to transfer the Ibox data 
across Mo/cl\ID_BUS_H<31:0>. Using the Mo/c:MD_BUS_H for this purpose eliminates the need for a 
special Ebox-Ibox data bus. . 

The LO.W_PC command operates in a manner identical to an Ibox IPR_ "TIt command. The only 
difference between a LOAD_PC and an Ibox IPR_ ~~ command is that no IPR address need be 
decoded. The LOAD_PC command directly specifies the destination of the data as being the Ibox 
PC. 

12.3.9 INVALIDATES 

The Pcache must always be a coherent cache with respect to the Bcache. In other words, the 
Pcache must ahvays contain a strict subset of the data cached in the Bcache. If cache coherency 
were not maintained, incorrect computational sequences oould result from reading "stale" data 
out of the Pcache in multi-processor system configurations. 

An invalidate is the mechanism by which the Pcache is kept coherent with the Bcache. A Pcache 
invalidate operation occurs when data is displaced from the Bcache or when Bcache data is 
invalidated. The Cbox initiates an invalidate by specifying a hexaword physical address qualified 
by the INVAL command. The INVAL oommand is latched by the Mbox in the CBOX_LATCH. 

Execution of an INVAL command guarantees that data corresponding to the specified hexaword 
address will not be valid in the Pcache. If the hexaword address of the INVAL command 
does not match to either Pcache tag in the addressed index, no operation takes place. If the 
hexaword address matches one of the tags, the four corresponding subblock valid bits are cleared 
to guarantee that any subsequent Pcache accesses of this hexaword will miss until this hexaword 
is re-validated by a subsequent Pcache fill sequence. If a cache fill sequence to the same hexaword 
address is in progress when the INVAL is executed, a hit in the corresponding MISS_LATCH is 
set to inhibit any further cache fills from loading data or validating data for this cache block. 

Also note that an assertion of C%cBOx..,BARD_ERR_B during a cache fill command causes the cache 
fill operation to be processed as if it were an INVAL operation. 
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12.3.10 CACHE FILL COMMANDS 

See Section 12.3.5.1 for a discussion of cache :fill operations. 

12.3.11 MME CHECK COMMANDS 

Two commands exist for the purpose of checking references for possible memory management 
exceptions. 

12.3.11.1 MME_CHK 

The fWlction of the MME_ CRK command is to obtain the allowed access rights for a specified 
page, and to compare it against an intended access mode specified by M_QUE%S5_AT_B<l:O>. The 
MME_ CHK command causes a TB access of the PTE corresponding to the MME_CHK address. 
If the PTE is not cached in the TB, the Mbox first fetches the PTE from memory. Once the PTE 
information is accessed, ACVITl\TVIM=O checks are performed. If an Ac\~ Th"V or M=O fault is 
detected, the appropriate memory management fault response is invoked (See Section 12.5.1.5.3 
for a description of ACV/TNV!.M=O faults). 

12.3.11.2 PROBE 

The PROBE command is used when the microcode must determine the accessibility of a page 
before changing any state (e.g. PROBER, PROB~T~ CH!\Ix macro instructions). It'functions 
exactly as an MME_CHK command except for three differences: 

• If an Ac\~ TNv, or M::O condition is detected, no Acv, TNv, or M=O response is invoked. That 
is, a PROBE merely detects the condition without actually causing a memory management 
exception. The PROBE command will update MMESTS based on the probe information if 
MMESTS is unlocked. However, a PROBE command will never lock MMESTS. 

• The PROBE command returns status to the Ebox which indicates the nature of any memory 
management condition the PROBE may have detected. 

• If M_QUE%S5..AT_B<l:O>=OO corresponding to the 
PROBE reference, then the MME_DATAPATH tb_miss sequence is not invoked when the 
TB detects a miss. 

Status is returned to the Ebox on the MtQID_BUS_H in the following format: 

• Mo/tMD_BUS_B<3> is set when the PROBE reference hits in the TB. 
• M%MD_BUS_B<2> is set when the PROBE reference corresponds to an ACV fault. 
• M%MD_BUS_B<l> is set when the PROBE reference corresponds to an TNV fault. 
• M%MD_BUS_B<O> is set when the PROBE reference corresponds to an M=O fault. 
• All other MIfciMD_BUS_B bits are undefined. 

NOTE 

One exception to this PROBE status format exists. When M%MD_BUS_B<2:0> = Oll, 
the meaning of this code indicates that a TNV has occurred on the PPTE (Process Page 
Table Entry) corresponding to the PROBE address. It does NOT mean that a TNV and 
M::O fault have simultaneously occurred on the PROBE address (this would not make 
sense). 
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The following tables summarizes all possible PROBE status encodings. 

Table 12-12: Probe Status Encodlngs 

XOOO atA=OO No fault. 

XOOI atA=OO Modify fault. 

XOIO atA=OO TNVfault. 

XOll atA=OO TNV fault on PPI'E reference. 

XlOO atA=OO ACVfault. 

XlOI atA=OO illegal status (will never be generated) 

XlIO atA=OO illegal status (will never be generated) 

XlII atA=OO illegal status (will never be generated) 

Oxxx at=OO PROBE missed in TB. Lower three bits are a don't care. 

1XXX at=OO PROBE hit in TB. Lower three bits are a don't·care. 

If memory management is turned off (i.e. MAPEN=O) execution of the PROBE command returns 
a status ofM%MD_BUS_H<2:0>=O indicating that no fault was detected (MlYcMD_BUS_B<3> will vary 
based on hit/miss TB status). 

12.3.12 TB Fills 

12.3.12.1 TB Tag Fills 

The TB_TAG_FILL command is used in conjunction with the TB_PTE_FILL command to cache 
a PrE in the TB. The data associated with the TB_TAG_FILL command corresponds to a virtual 
byte address in some virtual page. The TB_TAG_FILL command causes the page address on 
M_QlJEIreSS_ VA...H<31:9> of the TB_TAG_FILL data to be written into the tag field of the TB entry 
pointed to by the NLU TB allocation pointer (see Section 12.5.1.3 for information about the NLU 
TB allocation pointer). The TB valid bit (TBV) of the entry is cleared.. 

When TB_TAG_FILLs occur from the :MM:E_LATCH, the tag data is driven onto M_QUE%S5_ V~H 
in the following format: 
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31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I VPN I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 12-13: TB_TAG_FILL Definition 

Name Extent Type Description 

VPN 31:9 w VIrtual page address used to fill a TB tag field. 

During the TB_TAG_FILL, the TB logic will automatically generate even tag parity corresponding 
to PrE<31:9>. This parity will be written into the TB during the TB_TAG_FILL operation. 

When TB_TAG_FILLs occur from the Ebox, the tag data is supplied from the address field of the 
EM_LATCH and is driven onto M..QUE%S5_ VA..,B in the following format: 

Figure 12-39: TB_TAG_FlLL Format (from EM_LATCH): IPR 7E (hex), MTBTAG 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I VPN I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I TP I : MTBTJ! 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 12-14: MTBTAG Field Descriptions 

Name Extent Type Description 

TP 
VPN 

o 
31:9 

w 
w 

Even tag parity hit. 

Virtual page address used to fill a TB tag field. 

In this case, the even tag parity corresponding to the VPN is specified in bit<O> of the data 
field for the TB_TAG_FILL. This mechanism allows COITect or inCOITect parity to be deliberately 
written into the TB tag array for testability purposes by invoking the TB_TAG_FILL operation 
through the appropriate MTPR instruction. 

12.3.12.2 TB PTE Fills 

The TB_PTE_FILL operation drives the PTE data onto 1~CQUE%S5_VA...B<31:O> in order that this 
data can be written into the data array of the TB. The data is written into the entry pointed 
to by the NLU TB allocation pointer. The TB valid hit (TBV bit) of the entry is set (Note 
that a TB_TAG_FILL command will not be issued by the Mbox if PrE<31> is clear in order to 
guarantee that only validated PTEs are ever cached in the TB). The NLU TB allocation pointer 
is incremented after the fill is done. 
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When TB_PTE_FILLs occur from the :MME_LATCH, the PTE data is driven onto M_QUE%S5_ VA.,.H 
during a TB_PTE_FILL in the following format: 

Figure 12-40: TB_PTE_FILL Data Format (from MME_LATCH) 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 11 PROT I M 1 0 I 0 1 0 I PFN 1 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 12-15: TB_PTE_FlLL DeflnHlon 

Name Extent Type Description 

PFN 22:0 W Page frame address 

0 25:23 Forced to 0 by MME_LATCH 

M 26 W PTE modify bit. 

PROT 30:27 W PTE protection field. 

1 31 Valid bit of PrE (must be a "1". See below) 

Only hits <30:26>, <22:0> and the corresponding PTE parity hit are actually written into the 
TB array during a TB_PTE_FILL. TELPrE_FILLs from the MME_LATCH will only be issued 
for validated PTEs. Therefore, PTE<31> will always be set. The TB logic will automatically 
generate even parity to he written during the fill corresponding to PrE<31:0>. Note that the 
parity generator includes PTE<31> in this calculation even though this hit is not written into the 
TB. Since PTE<3l> is always a "ltt during a TB_PTE_FILL, the stored parity can be thought of 
as odd parity on hits <30:0>. 

When TB_PTE_FILLs occur from the EM_LATCH, the PTE data is driven onto M_QlJEf1tS5_VA.,.H 
during a TB_PTE_FILL in the following format: 
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Figure 12-41: TB_PTE_FILL Data Format (from EM_LATCH): IPR 7F (hex), MTBPTE 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 11 PROT I M I 0 1 P 1 0 1 PFN 1 :MTBPT 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 12-16: MTBPTE Field Descrtptlons 

Name Extent Type Description 

PFN 22:0 W Page frame address 

0 23 Assumed to be a "0" for parity calculation. 

P 24 W U ser-settable even parity corresponding to PrE<31:26> and 
PTE<22:0>. 

0 25 Assumed to be a "0" for parity calculation. 

M 26 W PTE modify bit. 

PROT 30:27 W PTE protection field. 

1 31 Assumed to be a "I" for parity calculation. (See below) 

Bits <30:26>, <22:0> are written into the TB array during a TB_PI'E_FILL. Bit<24> is interpreted 
as the corresponding PTE parity and is directly written into the TB as such. This gives the user 
the flexibility of writing correct or incorrect PrE parity for testability purposes. Note however 
that while PI'E<31> is not written into the TB, it must be assumed that this bit is set when the 
user calculates even parity on PTE<31:0>. Similarly, PrE<25> and PTE<23> must be cleared 
for proper parity calculation. 

See Section 12.5.1.5.2 for a description of TB fill sequences. 

12.3.13 TBIS 

The TBIS (TB Invalidate Single) command invalidates the PTE entry corresponding to the 
specified virtual address, providing that the PTE is cached in the TB. If the PTE is not cached in 
the TB, no action is taken. 

12.3.14 TBIP 

The TBIP (TB Invalidate Process) command invalidates all the PTE entries corresponding to 
PO or PI space translations which are currently cached in the TB. This command is used when 
the CPU changes process context. It allows a new process translation state to be set up for the 
new process context without being polluted by old translations corresponding to the old process 
context. TBIP does not invalidate PTEs corresponding to system space translations because these 
translations are valid across all processes. 
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12.3.15 TBIA 

The TBIA (TB Invalidate All) command invalidates all PrE entries in the TB and resets the NLU 
TB allocation pointer to a known state. This is done for CPU initialization purposes, when the 
operating system reconfigures its system space translations, and when the Mbox clears the TB 
after encountering a TB parity error. 

The STOP _SPEC_ Q command is sent by the Ibox to inform the Mbox that no subsequent Ibox 
specifier references should be processed until the Ebox sends the proper synchronization. This 
command decrements the SPEC_Q...SYNC_CTR. In all other respects, it is treated as a NOP by 
the Mbox. See Section 12.3.20 to understand the context of the use of STOP _SPEC_ Q. 

12.3.17 UNALIGNED REFERENCES 

An unaligned reference is a D-stream memory read or memory write reference that refers to 
data which crosses a quadword-aligned boundary (note that unaligned I/O space references 
are defined to cause 'U'1\"PREDICTABLE behavior). A quadword boundary is the appropriate 
address resolution because the Pcache and Cbox read and '\vrite aligned quadwords of data. If a 
reference crosses a quadword-aligned boundary, the unaligned reference must be translated into 
two references-one for each distinct quadword memory access. 

Detection of an unaligned reference is done in S5 by the unaligned detection logic and is a function 
ofM_QUE%S5_ VA_H<2:0> and M_QUEo/cS5_DL_B<l:O> of the S5 reference packet. The following table 
summarizes all possible unaligned configurations: 

DL ADDB<2:O> 

word 111 

longword 101, 110, 111 

quadword 101, 110, 111 

When an unaligned D-stream read, STORE or WRITE is detected, the Mbox does the following: 

• The address of the unaligned reference is used to reference the aligned quadword 
corresponding to the lower portion of the data. 

• The Mbox generates a second reference corresponding to the aligned quadword corresponding 
to the upper portion of the reference. 

• In the case of reads, once both references have been executed, the requested data is extracted 
from the two quadwords and aligned to l\ftQtU)_BUS_B<31:0>. 

The implication of unaligned processing by the Mbox is that unaligned references are functionally 
invisible to the Ibox and Ebox. That is, the !box and Ebox can perform reads and writes without 
regard to alignment. Note that Mbox-generated references and I-stream reads are always aligned 
references. 
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12.3.17.1 Unaligned Reads 

When an S5 read is determined to be unaligned, the S5 command packet is loaded into the 
VAP _LATCH. However, M..QUE%SS_ VA..,.B<31:0> is not directly loaded. Instead the quadword 
incrementor associated with the VAP _LATCH increments the M_QUE%S5_ VA..,.B quadword address. 
This new address is loaded and is used to reference the upper half of the unaligned data. 

Meanwhile, the current S5 read command is allowed to execute. When this read successfully 
completes in S5, the VAP _LATCH is validated indicating that it contains the upper half of 
the unaligned reference and that it can now be executed. Subsequently, the VAP _LATCH 
reference will be processed in the S5 pipe. Once it successfully completes in S5, the VAP _LATCH 
is invalidated. Note that if the read originated from the EM_LATCH, the EM_LATCH was 
invalidated as the first reference of the unaligned pair successfully completed. However, if the 
read came from the SPEC_QUEUE, the SPEC_QUEUE is not invalidated until the VAP _LATCH 
reference successfully completes (See Section 12.3.19.1). 

When data for the first read is available on BCi'tS6_DATA..B<63:0> (either from the Pcache or the 
Cbox), the data is rotated by the ~ID_BUS_ROTATOR based on Mo/eS6_PA..,.B<2:0> and latched 
in the 1ID_BUS_ROTATOR latches. Since the VAP_LATCH read was executed after the initial 
read. its data is guaranteed to be available during some cycle after the initial data is latched by 
the j\ID_BUS_ROT.A.TOR. When the second data arrives in S6, the data is rotated by the same 
number of bytes as '\\"'as done for the first reference. The lower one, two, or three bytes of the 
Mt;cMD_BUS_B is then driven from the 1-ID_BUS_ROTATOR latches which contain valid data from 
the first reference while the remaining bytes ofMo/cMD_BUS_B are driven directly from the rotator. 
The effect of this sequence is to assemble the data from the two reads in a right-justified manner 
on the M%MD_BUS_B. When the assembled data is driven, M%IBO%..DATA...L and/or M%EBO%..D.ATA...B 
are asserted to indicate the destination of the data. 

The RTY_DMISS_LATCH always contains a physical address because it stores retried reads from 
the 86 pipe. The implication of this fact on unaligned reads is that an unaligned sequence is never 
initiated from the RTY_DMISS_LATCH because the RTY_DMISS_LATCH address is physical. 
If an unaligned reference crosses a page boundary, the physical address of the second reference 
is not guaranteed to be a quadword incremented version of the first reference since the first and 
second references are associated with different address translations. 

12.3.17.2 Unaligned Writes 

Like unaligned reads, unaligned writes are processed by breaking the reference into two aligned 
quadword references such that the VAP_LATCH always generates and stores the upper portion. 
When this EM_LATCH command successfully completes in 85, the VAP _LATCH generates the 
upper portion of the unaligned write reference in the same manner as an unaligned read. The 
data driven on M_QUEtfc85_DATA...B<31:0> from the EM_LATCH byte rotator during the first write 
is latched in the VAP _LATCH. Thus, when the VAP _LATCH write executes, the same data is 
again driven onto :M..QUEU5_D~B<31:O>. It is the different byte masks and addresses of the 
two aligned writes which cause the proper bytes to be written into the proper bytes of memory. 
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12.3.17.3 Byte Mask Generation for Unaligned Writes 

The byte mask generator must understand whether a given reference is the first or second 
reference of an unaligned reference pair in order to generate the appropriate byte mask. 
M_QUE%S5_QUAL.-H<3> is used to determine this. 

The following table illustrates examples of the behavior of the byte mask generator for aligned 
and unaligned writes: 

Table 12-17: Byte Mask L.ogic for Aligned and UnaUgned References 

BM BM BM 
ref addr<2:O> (DL-byte) (DL-word) (DL-long) BM (DL-quad) 

1st 000 00000001 00000011 00001111 00001111 

2nd 000 

1st 001 00000010 00000110 00011110 00011110 

2nd 001 

1st 010 00000100 00001100 00111100 00111100 

2nd 010 

1st 011 00001000 00011000 01111000 01111000 

2nd 011 

1st 100 00010000 00110000 11110000 11110000 

2nd 100 

1st 101 00100000 01100000 11100000 11100000 

2nd 101 00000001 00000001 

1st 110 01000000 11000000 11000000 11000000 

2nd 110 00000011 00000011 

. 1st 111 10000000 10000000 10000000 10000000 

2nd 111 00000001 00000111 00000111 

Since the VAP _LATCH always increments the virtual address by eight, the lower three hits of 
the VAP_LATCH address will always be the same as the original address. However, the lower 
three bits of the address sent to the Cbox (M%C_S6_PAd~) are always zeroed on the second half 
of an unaligned reference in order that the address that is sent off chip is consistent with the 
corresponding byte mask value. 
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12.3.17.4 Unaligned Destination Specifier Writes 

When an unaligned DEST_ADDR or unaligned DREAD_MODIFY command is latched in the 
8PEC_ QUEUE, the unaligned detection logic :flags the unaligned condition and thus, the reference 
is split into two aligned references by the mechanism described previously. As each one of the 
pair of commands executes, one entry will be added to the PA_QUEUE. 

When the corresponding data arrives in the EM_LATCH via the STORE command, the data 
is rotated based on the lower two address bits output from the PA_QUEUE. The rotated 
data is then matched up with the reference driven from the PA_QUEUE to form a newly 
assembled WRITE command. Since the reference driven from the PA_QUEUE indicates 
that M_QUEo/c&_QUAL-.B<4>=1 (i.e. this reference is the first part of an unaligned pair), the 
v..~_L..-\TCH latches and validates a copy of the STORE command with the rotated STORE 
data. 'When this newly assembled ,\\'RITE command successfully completes in S5, the bottom 
entry of the PA_ QUEUE is retired. When the VAP _LATCH subsequently executes the second 
STORE reference, the second entry in the PA_QUEUE is matched with it and retired. In effect, 
the STORE data is split into two STORE commands so that each STORE is merged with each 
PA_QUElJE entry to form two WRITE commands. 

12.3.17.5 Implication 01 Ebox unaligned references on M%EM_LAT_FULL_H 

The EM_LATCH is invalidated whenever the E...\{_LATCH reference successfUlly completes in S5. 
However, if the E~f_LATCH reference was unaligned, the second half of the reference still awaits 
processing in the VAP _LATCH even though the EM_LATCH has been invalidated. Clearing the 
E:\-I_LATCH \vbile the second half of an unaligned Ebox reference is still pending could release 
the EM_STALL condition causing the Ebox microcode to advance even though the Mbox has not 
completed processing of the second part of the previous unaligned reference. 

This scenario is undesireable since the Ebox microcode makes synchronization assumptions based 
on references being retired from the EM_LATCH. To preserve these assumptions, the Mbox 
will assert M%El\LLAT_FULL_B until both halves of the unaligned reference have been retired 
even though the EM_LATCH will have been invalidated earlier. Note that this applies to both 
unaligned reads and unaligned writes. 

12.3.18 ABORTING REFERENCES 

The Mbox abort operation is used to cancel the current 85 operation. When an abOrt is executed, 
the 85 state, which would normally be updated due to execution of the current 85 reference, is not 
updated. The aborted S5 reference is not propagated into S6. Instead, a NOP is introduced into 
the S6 pipe. In effect, an aborted S5 reference is equivalent to a NOP command being executed 
in 85. . 

Note that the abort operation should be viewed as only cancelling the current execution of 
a reference. In most cases, aborting an operation does not invalidate the existence of the 
corresponding reference, which will still be stored in one of the reference sources and retried 
at a later point. 

The abort operation is executed when M_S5C...AB~ORT_L is asserted. The following changes to 
Mbox state are inhibited during the cycle in which M_S5C_AB'l'%A.BORT_L is asserted: 

• The reference source which drove the aborted command into 85 does not invalidate the 
corresponding command. Thus, the reference still exists to be retried during a subsequent 
cycle. 
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NOTE 

There are two exceptions to this rule. The CBOX_LATCH is always invalidated 
after it drives a command into S5. The EM_LATCH will be invalidated if the Ebox 
has explicitly requested it to be (via the E%EM_ABORT_L signal). 

• Loading the PA_QUEUE with a DEST_ADDR or DREAD_MODIFY command is inhibited. 
Emptying the PA_ QUEUE when a STORE command is driven in 85 is inhibited. 

• If the unaligned detection logic detected an unaligned reference during the aborted cycle, the 
VAP _LATCH is not validated to contain the second portion of the unaligned sequence. 

, 2.3.18.1 Conditions for Aborting References 

In general, references are aborted for five reasons: 

• The reference is aborted to prevent a reference order restriction from occurring (see 
Section 12.3.18.1.1). 

• The reference is aborted because insufficient hardware resources are available to complete 
processing of the current command. 

• The reference is aborted because a memory management operation must be performed prior 
to execution of the current reference. 

• The reference is aborted in order to avoid a deadlock condition related to unaligned references. 
• The reference is aborted due to an external flush condition. 

The following describes the specific conditions which can invoke an abort operation for each of 
the five categories listed above. 

, 2.3.18.1.1 Aborting to Maintain Reference Order Restrictions 

• Aborting D-stream hits under D-stream misses: Consider the case where two D-stream reads 
are executed in back-to-back cycles. In this case, the second D-stream read will be aborted 
in 85 if the first D-stream read misses in the Pcache in S6. This prevents the possibility of 
propagating the second read into 86 and having it bit and return data before the first read 
returns data. 
Note that this condition applies to all D-stream "read_like" references (i.e. references which 
return data to the Ebox). Specifically, this condition applies to DREAD, DREAD_MODIFY, 
DREAD_LOCK, IPR_RD, and PROBE commands. 

• Aborting I-stream hits under I-stream misses: The Mbox initiates an lREAD sequence 
by issuing consecutive lREAD commands via the I-stream "fill forward" mode (See 
Section 12.3.5.2.1). If the first !READ in this sequence misses in the Pcache in 86 while 
the second lREAD is executing in S5, the second IREAD is aborted. This is done to handle 
I-stream reads in an analogous fashion to D-stream reads. 

• Aborting to preserve order of Ibox reads relative to Ebox writes: As explained previously, the 
PA_QUEUE is the structure used to store pending destination specifier addresses until the 
Ebox can supply the corresponding data to complete the write reference. Once the Ebox 
supplies the data, the write executes and the corresponding entry in the PA_QUEUE is 
invalidated. 
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The comparator function built into the PA_ QUEUE is used to detect address matches on 
bits<8:3> between Ibox D-stream read references and any of the valid PA_ QUEUE entries. 
Consider the example shown in Figure 12-14. 
In this example, the Ibox would decode the destination specifier of the first MOVL instruction 
which causes a DEST_ADDR command to be sent to the PA_QUEUE. Subsequently, the Ibox 
would decode the first specifier of the second MOVL, causing a read to be issued to the MbOL 

When this read is started in the 85 pipe, a PA_QUEUE comparator will detect an address 
conflict between the read and the pending destination address. As a result, the read is aborted 
and is not successfully executed until the write completes. Thus, all reads originating from 
the SPEC_QUEUE are aborted if the PA_ QUEUE detects an address conflict. 
Note that the PA_QUEUE must always detect physical address conflicts. Detecting virtual 
address conflicts is not sufficient since two or more different virtual pages could he mapped 
to the same physical page causing two or more different virtual addresses to conflict on the 
same physical longword. 
Also note that the PA_QUEUE is capable of detecting false conflicts because only address 
bits <8:3> are compared rather than the entire address. Performance data indicates that 
the number of false conflicts using addr<8:3> is sufficiently low to have an insignificant 
performance degradation. Bits <8:3> are used since they are untranslated address hits and, 
therefore, are immediately available for use without waiting for the address to be translated. 
The lower three bits are not used because the PA_ QUElJE must detect confiicts at quad\vord 
resolution. The follo\ving diagram illustrates why quadword resolution· must be used: 

Figure 12-42: PA_QUEUE conflict detection 

<-------------------------------- memory ali~eQ quadworQ ------------------------------> 

1 1 
1----------1----------1----------1----------1----------1----------1----------1----------1 
1 <---PA_QUEUE entry addresses this longword--> 1 

<----+-----> 
A DREAD is issued which I 

adaresses this byte ------------------+ 
PA QUEUE addr<2:0>: 010 
DREAD addr<2:0>: 101 

The diagram above illustrates eight bytes of memory within a memory aligned quadword. In 
this example, the PA_ QUEUE contains a destination address which references a longword. 
While this reference is not longword aligned., it is handled as an aligned reference because the 
reference does not cross an aligned quadword boundary. Consider the byte DREAD shown 
above which is issued by the SPEC_QUEUE and is executed in 85 in the presence of the 
PA_ QUEUE entry. W'hile a PA_ QUEUE address conflict clearly exists on the fifth byte within 
this quadword, the lower three bits of the PA_ QUEUE address do not mat41 the lower three 
bits of the DREAD address. Thus, the the lower three bits cannot be used for the purposes 
of PA_QUEUE conflict detection. 
DREAD_MODIFY references with DL=quadword pose a special problem for the PA_QUEUE 
conflict logic. Quadword memory operands are requested by the Ibox by issuing aD-stream 
reference with DL=quadword followed by another D-stream reference with DL=longword. 
The first reference causes the lower balf of the quadword operand to be returned on 
M%MD_BUS_B<31:0> (i.e. all quadword DREADs only return a longword of data). The 
second reference addresses the upper half of the quadword causing the upper half of the 
operand to be returned on Mo/cMD_BUS_B<31:0>. If the quadword operand is aligned, both 
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the quadword and the longword references have the same quadword address. Thus, when 
the DREAD_MODIFY longword reference is executed in 85, a PA_QUEUE address conflict 
could be detected against the DREAD_MODIFY quadword reference previously loaded. If this 
were to happen, a deadlock state would exist within the NVAX chip because the colTesponding 
STORE data for the quadword operand cannot be generated to clear the PA_ QUEUE until 
the Ebox receives the entire requested quadword operand, which cannot happen as long as 
a PA_ QUEUE address conflict is detected. A similar deadlock situation could result from an 
unaligned DREAD_MODIFY quadword operand. 

To avoid this deadlock problem, the PA_QUEUE control logic stores a state bit for each entry 
to indicate whether the DL is quadword. If the last entry loaded contains a quadword, the 
PA_QUEUE address conflict logic associated with that PA_QUEUE entry is inhibited. This 
avoids deadlock by preventing the PA_QUEUE conflict logic from detecting a conftict between 
the first half and the second half of the same DREAD_MODIFY quadword specifier. 

• 1/0 space reads prefetched by the Ibox which are destined for the Ebox must be inhibited 
until the Ebox is stalling on that particular 110 space read: Since certain 110 de\ices can 
cause their state to change based on a read reference to that device, the possibility exists 
for I/O device state to be improperly modified based on Ibox prefetching of operands. '\\~e 
must guarantee that any state change only occurs within the context of Ebox execution of the 
corresponding instruction. 

Thus, I/O space reads are aborted in S5 until \ve can guarantee that the Ebox is executing 
the instruction corresponding to the 1/0 space read. This function is implemented by aborting 
any I/O space read originating from the SPEC_ Qu~lJ'E which returns data to the Ebox when 
either of the follo\Ung two conditions is true: 

1. Eo/cSTART_IBOX_IO_RD_R is deasserted. £C""J'D8TART_IBOx..IO_RD_H is an Ebox signal that 
informs the Mbox that the S3 Ebox pipe is currently in MD_STALL waiting for an 
operand to be retmned. Thus, the deassertion of this signal indicates that the Ebox 
cannot CUlTently be stalling on the I/O space operand. 

2. A NOP command does not currently exist in the 86 pipe. This condition is necessary to 
account for a timing boundary condition which can exist between the Mbox and Ebox. 
It is possible for the Ebox to be MD_STALLing on an 86 reference corresponding to a 
previous instruction when the I/O read is in 85. In this case, :nsTART_mox..IO_RD_B 
could be asserted in reference to the previous MD data which may exist in the 86 pipe 
while the I/O space reference exists in the S5 pipe. To avoid this potential problem, the 
I/O space reference is aborted until a NOP is detected in S6 which indicates that this 
boundary condition cannot exist. 

Note that it is necessary to stipulate that this abort condition only affect Ibox I/O space 
DREAD references which directly return data to the Ebox. Thisis because it is conceivable 
that a deferred mode destination specifier could cause the DREAD of the address of the 
operand to map to I/O space. In this situation, the Ebox will never MD_8TALL on 
this reference since it corresponds to a destination specifier. Thus, the pipeline could 
hang if the Mbox unconditionally aborted all Ibox I/O space DREADSs. By conditioning 
M_QUE~5_DEST_H into this abort equation, this deadlock condition is avoided by only 
applying this abort condition to DREADs which return data to the Ebox 

• Aborting reads to the same Pcache index as a pending readlfill operation: As stated in 
8ection 12.2.13, allowing two Pcache fill sequences to simulataneously operate on the same 
Pcache block creates the possibility of corrupting this Pcache block. To prevent this, address 
bits <8:5> of the DMI8S_LATCH are compared against M_QUE%S5_PA...B<8:5> when 85 
contains an lREAD and the DMISS_LATCH is validated. If there is a match, the 85 lREAD 
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is aborted in order that a potential I-stream :fill sequence does not pollute the Pcache block 
. associated with the D-stream fill already in progress. 

Note that address bits<8:S> are used to detect a Pcache index address conflict even though 
bits<11:S> represents the entire Pcache index. The upper three bits of the Pcache index are 
not used because these can be translated address bits which are not available in time for 
the address comparator circuit. By only using bits <8:S>, some false address confiicts may 
occur. A false address conflict will needlessly delay processing of a read or write reference, 
however, the NVAX performance model has shown that this has a negligible impact on overall 
performance. 

Even if a true Pcache index conflict is detected, it is possible that there is no block confiict 
because the 2-way set associative Pcache contains two blocks per index. In order to reduce 
hardware complexity however, a block conflict is assumed to have ocCUITed whenever an index 
conflict is detected even though the references may address different blocks within the index. 

By the same rationale, the same address bits ofa valid IMISS_LATCH are compared against 
M_QUEo/aSs_PA..B<B:5> when S5 contains a D-stream read. If a match is found, the 85 read is 
aborted in order to let the I-stream fill proceed without possible cOlTUption. 

• Aborting writes or STORESs to the same Pcache index as a pending read/fill operation: As 
stated in Section 12.3.1B.1.1, writes should be inhibited from executing if they map to the 
same Pcache block as a Pcache fill already in progress. Otherwise, the memory 'Write data 
could miss in the Pcache block during a fill sequence before the Cbox supplied the iiII data. 
v.'hen this subblock is filled by the Cbox, this Pcache subblock. would be validated with old 
data. Therefore, the write data which was processed by the Mbox would not be refiected in 
the Pcache . 

• o\voiding this situation is accomplished by the comparators built into the DMISS_LATCH and 
!MISS_LATCH. If either of these latches are valid, and bits <B:5> of the fill address equals 
M_QUEo/cSS_PA..B<B:5> of an S5 write or S5 STORE, then the SS write is aborted. Note that 
since the entire write address is not compared, we may abort writes when there was not 
a true address conflict. This is done however, for circuit speed reasons and does affect the 
overall CPU performance appreciably. 

12.3.18.1.2 Aborting due to lack of hardware resources 

• Aborting a "read_like" reference when the RTY_DMISS_LATCH is full: Consider the situation 
where a D-stream fill is execu.ti.ng and the RTY_DMISS_LATCH stores the next read to be 
executed. If a third read is started in SS, it is automatically aborted. H the third read were 
not aborted two incoITeCt scenarios would result. The third read could miss in S6 with no 
where to put it, since both the DMISS_LATCH and the RTY_DMISS_LATCH are full. If 
the third read bit, its data would be returned before the data of the second read, which is 
equivalent to an illegal "bit under miss" scenario. 

For the purposes of the above discussion, a "read-like" reference is defined as any reference 
which returns data to the Ebox. Thus, a read-like reference is a DREAD, DREAD_MODIFY, 
DREAD_LOCK, IPR_RD, or PROBE command. 

• Aborting DEST_ADDR or DREAD_MODIFY due to insufficient room in PA_QUEUE: If a 
destination specifier reference is executing in SS, but there are insufficient PA_QUEUE 
entries to store the reference, the Mbox has no choice but to abort the S5 reference and 
retry it later when more PA_ QUEUE entries free up. If the 85 reference is unaligned, the 
abort logic tests for two empty slots in the PA_ QUEUE since two will be required for the 
unaligned reference. If the S5 reference is aligned, only one slot need be available. 
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• Aborting an S5 write, STORE or Cbox IPR_ WR due to Cbox back-pressure: All S6 Cbox writes 
are automatically transferred to a write buffer in the CbOL The Cbox uses this write buffer to 
store the writes until they can be written into the Cbox, Bcache or main memory. If this write 
buffer becomes sufficiently full so that we cannot guarantee that the S5 write or STORE can 
be loaded into the write buffer when it propagates to 96, the S5 command is aborted. The 
Cbox asserts write buffer back-pressure to the Mhox by asserting C%WR_BUF_BACK,..PRES_H. 

12.3.18.1.3 Aborting due to memory management operation 

When a tb_miss or cross-page condition is detected, a memory management operation must be 
processed before the S5 reference can be allowed to complete. Thus, detection of a tb_miss 
or cross-page condition causes the S5 command to be aborted until the memory management 
operation finishes. This also prevents the possibility of having to handle a second memory 
management sequence before the first memory management sequence completes. 

The two specific abort conditions are: 

• Aborting an S5 reference due to TB_:MISS condition: If the virtual address of the S5 reference 
is not found in the TB, the corresponding physical address cannot be immediately derived. 
Therefore, the reference is aborted until the translation can be cached in the TB (See 
Section 12.5.1.5.2 for information on memory management). 

• Aborting an S5 reference due to CROSS_PAGE condition: If an unaligned S5 reference 
references two pages, a CROSS_PAGE condition has been detected. In this situation, access 
checks of both pages must be made before the reference is allowed to complete. Therefore~ 
the reference is aborted and retried after the CROSS_PAGE check has tested the upper page 
(See Section 12.5.1.5.4). 

In either situation described above, all but.two reference types from the Ibox or Ebox references 
will be continually aborted until the memory management sequence completes. The two 
exceptions are the STOP _SPEC_ Q and STORE commands. Since these references are guaranteed 
not to require any memory management function, these references are allowed to proceed. Note 
that while a STOP_SPEC_Q command is never aborted, it is transformed into a NOP command 
as it enters the S6 pipe. This is allowable since no S6 function is performed by this command 
and it offers an extra 86 data bypass opportunity. 

12.3.18.1.4 Aborting due to an external flush condition 

This abort condition will be explained in the discussion of fiushes. 

12.3.19 MBOX PIPELINE DEADLOCK AVOIDANCE SCENARIOS 

Two special considerations have been designed into the Mhox in order to avoid two possible 
pipeline deadlock conditions. 
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12.3.19.1 Unaligned Reference Deadlock Condition 

Consider the situation where the second part of an unaligned D-stream read is driven into S5 
from the VAP _LATCH. If this read conflicts with the quadword address of a valid PA_ QUEUE 
entry, this read will be aborted based on PA_ QUEUE address conffict detection. 

If the VAP _LATCH is not cleared, a pipeline deadlock situation has occurred because the 
VAP _LATCH command will always execute before an EM_LATCH command. However, a STORE 
command originating from the EM_LATCH is the only way the PA_QUEUE confiiet can be 
eliminated. Therefore, in addition to aborting the VAP _LATCH reference during a PA_ QUEUE 
conflict, the VAP_LATCH must be invalidated in order that the arbitration logic can select the 
EM_LATCH STORE command to clear the PA_ QUEUE confiiet condition. 

Clearing the VAP _LATCH due to PA_QUEUE confiict detection has several implications. It means 
that the unaligned sequence must be restarted from the beginning in order to re-generate the 
VAP_LATCH reference. This. is why the colTesponding SPEC_QUEUE entry is not invalidated 
until the entire unaligned sequence successfully completes in S5. A side effect of this is that the 
first read of the unaligned sequence will be re-executed causing two read references to the same 
data. This, however, is harmless if the read is to memory. This may not be harmless if the read is 
to I/O space, however, unaligned I/O space reads are defined to yield u'"}.&-PREDICTABLE results. 

Another implication of avoiding this pipeline deadlock is that the bottom entry of the PA_QUEUE 
must be in~alidated if the VAP _LATCH command was a DREAD_MODIFY command. If it was 
a DRE..c\D_1vIODIFY, the first reference of the unaligned pair had already introduced an entry 
into the PA_QUEUE. Since the first reference will be re-executed, the corresponding PA_QlJEUE 
entry is invalidated to avoid replicating the same PA_QL'"EliE entry twice. 

12 .. 3.19.2 READ _lOCKlWRITE_UNlOCK Deadlock Condition 

Once a READ_LOCK command has been passed to the Cbox, the Cbox will not process any 
subsequent D-stream read references until the corresponding WRITE_UNLOCK command has 
been executed. This behavior introduces a deadlock consideration. 

Consider the situation where a DREAD_LOCK has been sent to the Cbox. Before the EM_LATCH 
is loaded with the corresponding WRITE_UNLOCK, the Mbox starts processing an !READ 
reference which misses in the TB. The resulting memory management sequence will issue a 
D-stream PTE read which the Cbox will not process until it has received the WRITE_UNLOCK 
command. However, the Mbox will never send the WRITE_UNLOCK (or any other Ebox or Ibox 
reference) until the memory management sequence completes, which can not occur until the PTE 
DREAD completes. 

This deadlock condition is avoided by the arbitration logic by disabling IREF _LATCH selection 
once a DREAD_LOCK command has successfully been retired from the S5 pipe. Thus, no !READ 
TB_MISS can occur between the READ_LOCK and WRITE_UNLOCK, thus avoiding the deadlock 
situation. 

The arbitration logic will re-enable !REF_LATCH selection on either of the following two 
conditions: 

1. A WRITE_UNLOCK reference has been retired from the S5 pipe. This will cause the Cbox 
to resume D-stream read processing, thus eliminating the deadlock condition. 
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2. E%FLUSH_MBO~B is asserted by the Ebox due to a hard error. This condition should 
occur much more infrequently than the above condition because a WRITE_UNLOCK must 
normally be issued after a READ_LOCK.. However, if an error OCCUlTed sometime between 
the READ_LOCK and WRITE_UNLOCK, a hard error microtrap will result preventing a 
WRITE_UNLOCK from being issued. The microtrap will generate E%FLUSH-MBOx...,B which 
re-enables IREF _LATCH selection because no WRITE_UNLOCK will follow. 
Note that the Cbox state, which prevents subsequent D-stream reads from being processed 
before the WRITE_UNLOCK, will be cleared by an IPR_ WRITE during the error handler. 

Note that the analogous deadlock condition involving a SPEC_QUEUE reference cannot occur 
because Ibox processing will have been halted prior to the READ_LOCKlWRITE_UNLOCK 
sequence. The analogous deadlock condition involving an EM_LATCH reference will not 
occur because Ebox microcode will never issue a D-stream read in the middle of a 
READ_LOCK/\VRITE_UNLOCK sequence. 

The PA_ Qt.,'EUE address comparator function can maintain the relative order of specifier reads 
and destination specifier writes because both the reads and the writes originate from the same 
Ibox pipeline stage and are loaded into the same reference queue. Ho\'\""e'\"er~ when the Ebox issues 
reads or ,,"rites independently of the Ibox destination specifier decodes, the PA_QUEUE cannot 
be used since there is no implied ordering between the Ibox reads and Ebox reads or writes from 
t\vo different pipeline stages. In this case, an 8-state counter, called the SPEC_'LSYN'C_CTR, is 
used to prevent Ibox memory operand prefetching when the Ebox can be writing to memory. 

When the Ibox decodes an instruction that can cause explicit Ebox writes which are independent 
of the Ibox destination specifier decodes (e.g. MOVC), the Ibox loads the SPEC_QUEUE with a 
STOP _SPEC_ Q command after all specifer references for the same instruction have been l()aded. 
Execution of STOP_SPEC_Q in S5 causes the SPEC_Q...SYNC_CTR to be decremented. The 
nominal state of this counter is one. Whenever, the value of SPEC_'LSYNC_CTR is zero, the 
arbitration logic will not select a SPEC_QUEUE reference as the source for the S5 pipe for 
the next cycle. The effect achieved is to stop all Ibox specifier references from occurring after 
the STOP _SPEC_ Q command has executed. When the Ebox completes all explicit writes for 
the instruction which caused the Ibox to issue the STOP _SPEC_ Q command, the Ebox asserts 
the EQESTART_SPEC_QVEVE_B signal. Each assertion of E%RESTART_SPEC_QVEUE_B causes the 
SPEC_'LSYNC_CTR to be incremented. Subsequent specifier reference processing resumes 
when the value of SPEC_Q....SYNC_CTR is positive. Thus, the SPEC_Q....SYNC_CTR acts as 
a synchronization device to stop processing of specifier references whenever the Ebox may be 
independently modifying memory state. 

Note that a value of zero in the SPEC_Q....SYNC_CTR only prevents the arbitration logic from 
selecting the SPEC_QUEUE as the 85 reference source. It does not prevent the Ibox from loading 
additional references into empty 8PEC_ QUEUE entries. 

The 8PEC_'LSYNC_CTR is an 8-state unsigned counter which can store values from 0 to 7. 
A counter function must be used for this synchronization function because pipeline behavior 
can cause the Ebox to assert ~B.ESTART_SPEC_QUEUE_B multiple times before the Mbox ever 
processes any STOP _SPEC_Q commands. For example, if the Mbox is executing a TB_MI8S :flow 
while the Ebox is retiring multiple instructions associated with this synchronization scheme, 
multiple assertions of E%RESTART_SPEC_QUEUE_B will result even though no STOP _8PEC_ Q 
commands have been processed yet due to the on-going memory management sequence. 
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Thus, the SPEC_Q..SYNC_CTR buffers up the E%RESTART_SPEC_QUEUE_B assertions until the 
corresponding STOP _SPEC_ Q commands are processed from the SPEC_QUEUE. Note that there 
is no need for the SPEC_Q...SYNC_CTR to buffer up multiple instances of STOP _SPEC_Q because 
the SPEC_QUEUE intrinsically buffers these instances. 

The 8-state SPEC_Q..SYNC_CTR can buffer up to six E%RESTART_SPEC_QUEUE_B assertions 
(SPEC_Q...SYNC_CTR values 2 through 7). Six buffer states are sufficient to buffer all pending 
instructions which could result in the Ebox assertion of E%BESTART_SPEC_QUEUE_B because at 
most six of these instructions can be issued to the Ebox before the Ibox is back-pressured from 
decoding the next instruction of this type. Six buffered states are derived from the fact that 
the Ibox must fill its four-stage pipeline in addition to the 2-entry SPEC_QUEUE before it is 
back-pressured by the SPEC_QUEUE from issuing any further instructions which the Ebox could 
assert E%BESTART_SPEC_QUEUE_B in response to. 

12.3.21 FLUSHING REFERENCES FROM THE MBOX PIPE 

Flushing the Mbox pipeline refers to altering the state of the :M'box in a controlled way so that 
certain pending and currently executing references are eliminated from the MbOL There are 
two distinct mechanisms that cause different types of references to be flushed. One type of ftush 
originates from the Ibox and the other type from the Ebox.. 

12.3.21.1 Ibox Flushes 

If the Ibox 'VI C is in the process of being filled by a previously requested IRE-ID, and the 
Ibox. has determined, or has been forced, to start decoding instructions at a new point in the 
I-stream requiring another VIC fill, the Ibox asserts the signal, I%FLUSB_IBEF _LAT_H, to the 
Mbox. From the Ibox point of view, assertion of I%FLUSH_mEF _LAl'_H indicates that the current 
VIC fill operation will be immediately cancelled. This allows the Ibox to invoke a new VIC fill 
operation via a new IREAD, without having to wait for the current VIC fill operation to complete. 

From the Mbox point of view, assertion of I%FLUSB_IBEF _LAT_B aborts all pending and currently 
executing I-stream activity by penorming the following actions: 

1. The IREF _LATCH is invalidated. Any IREAD sent to the Mbox during the cycle 
I%FLUSB_IREF _LAT_B is asserted is not validated. 

2. If the CUlTeIlt 85 reference is an IREAD or an I_OF, it is aborted. 
3. . The !MISS_LATCH is invalidated and all state indicating an outstanding I-stream fill is 

cleared. If the IMISS_LATCH is being loaded during the cycle that llfoFLUSB_mEF'_LAT_B is 
asserted, the IMISS_LATCH is not validated. 

4. The signal, M%ABORT_CBO~mD_H, is asserted to the CBOX to indicate that the M'box does 
not want any more I_OF references which may have been pending in the Cbox. 

If I%FLUSB_IBEF _LAT_B is asserted during a cycle with an outstanding istream read or fill, the 
Mbox logic guarantees that the M%VIC_DATA...,L signal will not be asserted in response to the 
IREAD during any subsequent cycles. However, M%VIC_DATA..L may be asserted during the same 
cycle that I%FLUSB_IREF_LAT_B is asserted. It is the responsibility of the Ibox to ignore the 
corresponding data in this case. 
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12.3.21.2 Ebox Flushes 

12.3.21.2.1 Flushing due to E%EM_ABORT_L 

Due to the construction of the microcode, it is possible for the Ebox to issue a reference to the 
Mbox only to discover during the following cycle that the reference should not have been issued. 
In this case, the Ebox asserts E%EM_ABORT_L during the cycle following when the reference was 
issued. E%El\LABORT_L causes the Mbox to unconditionally clear the EM_LATCH and to abort 
the S5 reference if that reference was driven from the EM_LATCH. The net effect is to :flush out 
all Mbox state associated with this Ebox reference. 

12.3.21.2.2 Flushing due to EO/oFLUSH_MBOX_H 

When the Ebox determines that a branch misprediction took place, or that process context is to 
be changed, or that an exception or interrrupt bas occured, the macropipe1ine must be flushed in 
order that no processor state changes as a result of subsequent pipeline operations. As part of 
this flush operation, all pending or currently executing references in the Mbox which correspond 
to flushed instructions are immediately and permanently aborted. The Ebox informs the Mbox 
of this situation by asserting E%FLUSH_MBO~H. 

The assertion of E~FLusH_!tmoX_H invokes the following Mbox actions: 

1. The SPEC_Ql)~lJ"-E is invalidated. Any reference sent to the !vIbox SPEC_Qti'Eu~ during 
the cycle in which E~FLusB_!tmox..H is asserted is not validated. 

2. The SPEC_Q..Sl~C_CTR is unconditionally reset to the value of O. The effect of this is to 
inhibit further SPEC_QUEu~ reference processing by never selecting the SPEC_Qu""Eu""E 
as the S5 reference source (See Section 12.3.20). It does not inhibit the Ibox from loading 
references into the SPEC_ Q'UEUE during subsequent cycles, however. This function is 
associated with the scheme for fiushing the PA_QUEUE. See Section l2.3.21.2.3. 

3. If the current S5 reference was driven from the SPEC_QUEUE, it is aborted. 
4. If the EM_LATCH contains any type of read, IPR_RD, probe or MIv.tE_CHK, it is invalidated. 

Any reference sent to the EM_LATCH during the cycle that E%FLUSH_MBO~H is asserted is 
not validated. 

5. If the current S5 reference was driven from the EM_LATCH, and this reference is any type 
of read, IPR_RD, probe or :M:ME_CHKit is aborted. 

6. If the VAP _LATCH contains any type of read or DEST_ADDR, it is invalidated. H a read or 
DEST_ADDR is being loaded into the VAP _LATCH during the cycle that E%FLUSH_MBO~H 
is asserted, the VAP _LATCH is not validated. 

7. If the current S5 reference was driven from the VAP _LATCH, and this reference is any type 
of read or DEST_ADDR, it is aborted. 

8. If the RTY_DMISS_LATCH contains any type of an Ibox or Ebox read, it is invalidated. If 
an Ibox or Ebox read is being loaded into the RTY_DMISS_LATCH during the cycle that 
E%FLUSB.J'tIBO~H is asserted., the RTY_DMISS_LATCH is not validated. 

9. If the current S5 reference was driven from the RTY_DMISS_LATCH, and this reference is 
an Ibox or Ebox read, it is aborted. 

10. If the DMISS_LATCH contains a currently outstanding Ibox or Ebox read, the 
DMISS_LATCH state is modified to indicate that the data should not be sent to the Ibox 
or Ebox when the data becomes available. 

11. MMESTS<31:29> are cleared. This unlocks the MMESTS reg. 
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The effect of items 1 through 10 above can be summarized as follows. All Ibox and Ebox D-stream 
reads, which have not yet propagated into 86, are blown away. Note that Mbox D-stream reads 
(PrE references) are not affected by E%FLUSB_MBOx..H. Any outstanding D-stream fill sequence 
corresponding to an Ibox or Ebox D-stream read is allowed to complete in order that the D-stream 
data is filled in the Pcache. However, the requested data will not be returned to the Ibox 
andlor Ebox. Any WRITE or STORE reference which existed in one of the Mbox reference 
sources PRIOR to the E%FLUSB_MBOX_B assertion is allowed to complete in the presence of the 
E%FLUSH_MBOX_B assertion. This is necessary because any write data existing in the Mbox prior 
to the E%FLUSB_MBOx..B assertion represents a memory modification corresponding to an action 
before the Ebox decided to ftush. 

If E%FLUSB_MBOX_B is asserted during a cycle with an outstanding D-stream read or 
D·stream fill, the Mbox logic guarantees that the M%IBOX_D~L and M%EBOx..DATA.-B signals 
will not be asserted in response to the D-stream read/fill during any subsequent cycles. 
However, M%IBOX_DAl'A....L or M%EBOX_D.A.T.A...B may be asserted during the same cycle that 
E%FLUSB_MBOx..B is asserted. It is the responsibility of the Ibox and Ebox to ignore the 
corresponding data in this case. 

Note that I~FLUSB_IBEF _LAT_B causes an outstanding I-stream fill sequence to be completely 
stopped~ but E~FLUSH_l\IBOX_H allows an outstanding D·stream fill sequence to continue without 
returning data to the Ibox andlor Ebox. These two cases are handled differently based on 
performance model data 'which indicates that it is beneficial to future references to complete 
the D·stream fill, but allowing the I-stream:fill to complete only binders the immediate need of 
accessing different I-stream data. 

12.3.21.2.3 Ebox Flushing of the PA_QUEUE 

The function of E%FLUSH_MBOX_B described above is to clear out reference state associated with 
instructions that had not yet been started by the Ebox. Note however, that E%FLUSH_MBOx..B 
does not flush the PA_QUEUE even though the PA_QUEUE may contain reference state that 
should be logically ftushed by E%FLUSB_MBOX_B. This is because the PA_ QUEUE may also contain 
reference state associated with the currently executing Ebox instruction. The PA_ QUEUE entries 
associated with the currently executing Ebox instruction must be retired from the PA_QUEUE 
in the normal fashion before the remainjng PA_QUEUE entries may be flushed. 

Thus, flushing the PA_ QUEUE is a two-step process described as follows: 

1. As described in Section l2.3.21.2, ECd'LUSB.,MBOx..B inhibits the Mbox arbitration logic from 
selecting SPEC_QUEUE references for processing during subsequent cycles. This function 
guarantees that no more PA_QUEUE entries can be filled during subsequent cycles. 

2. Once the Ebox has issued all STOREs corresponding to state modifications that must occur 
before the Mbox is completely ftushed, the Ebox issues another reference which is qualifted 
with the E%FLUSH_PA...,QUEUE_H signal. Once this EM_LATCH reference executes in S5, 
the Mbox is guaranteed to have completed all subsequent STORE references. Thus, when 
this EM_LATCH reference executes, the remaining entries in the PA_QUEUE are flushed. 
Note that both halves of an unaligned STORE will complete before the "E%FLUSH_PA...QUEUE" 
reference is executed because the second half of the reference is stored in the VAP _LATCH, 
which has higher priority than the EM_LATCH. 
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The Ebox will assert E%RESTART_SPEC_QUEUE_H once the "E%FLUSB..PA..,.QUEUE" reference 
has been latched in the EM_LATCH. E%RESTART_SPEC_QUEUE_B re-enables Mbox processing 
of SPEC_QUEUE references during subsequent cycles. 

MICROCODE RESTRICTION 

Eo/cFLUSH~Ox...H 

has been asserted, E%FLUSB_PA..,.QUEUE_R and E%RESTART_SPEC_QUEUE_R must be 
asserted before the Ibox or Ebox require further Mbox processing of Ibox or Ebox 
D-stream references. E%FLUSR_PA....QUEUE_H and E%RESTART_SPEC_QUEUE_R must be 
asserted during a cycle subsequent to the assertion of E%FLUSR_MBOx...H, and only 
when the microcode guarantees that all corresponding STORE commands have been 
retired by the EM_LATCH. 
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12.4 THE PCACHE 

The Pcache is a two-way set associative, read allocate, no-write allocate, write through, physical 
address cache of I-stream and D-stream data. The Pcache has a one cycle access and a one 
cycle repetition rate for both reads and writes. It stores 8192 bytes (8K) of data and 256 
tags corresponding to 256 hexaword blocks (1 hexaword = 32 bytes). Each tag is 20 bits wide 
corresponding to bits <31:12> of the physical address. There are four quadword subblock.s per 
block with a valid bit associated with each subblock. The access size for both Pcache reads and 
writes is one quadword. Even byte parity is maintained for each byte of data (32 bits per block). 
One bit of even parity is maintained for every tag. 

The logical orgainiza tion of the Pcache is shown below: 

Figure 12-43: Logical Pcache Organization 

<-------------- l~!~ bank ----------------> <-------------- rigr.~ bank ---------------> 
---------------------------+-------------------------------~------------------.--------------

---------------~----------+------.-------------+----------~-----------.-------------~-------

----~----------------------~------~------------------~-----~----------~--------------------~ 

~--------------------------~-------------~------~---------~----.------~--------------------

+---.----+-----+----+------+------~------+------+----+-----+----+------+------+------+------+ 
12;: I A I !? I '!'ACO I i.1S I DID? i DIDP I DID? I D/DP I n I TAG I VB i IilIiP I D/DP I IiIIiP ! D/DP I 

---------~----+----~------~-------------+------~----+-----+----+------+------~------+------~ 
where: .r. -

TP
TAG -
V3-
D/DP -

Alleea~ion bit. In~icates whether the le!t or right bank was last allocated. 
1 bit of even tag parity. 
20 bits of tag address. 
4 valid bits. Each bit corresponds to 8 bytes of data. 
a bytes o! data with 8 bits of even byte parity (72 total bits). 

The Pcache is logically organized into 128 direct mapped indexes, where each index consists of 
two blocks, and each block consists of: 20-bit tag, 1-bit tag parity, 4 valid bits, 256 bits of data, 
and 32 bits of data parity. In addition, each index also contains a one bit allocation pointer. 

The breakdown of address bits for Pcache decoding is shown below: 
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Figure 12-44: Pcache Address Breakdown 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

tag address index address I I 1 I 
+--+--+--+--+--+--+--~-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

<--+--> 
1 

subblock address -------+ 
where: tag address - bits loaded into or compared with tag. 

index address - addresses 1 0: 128 indexes. 
subblk address - addresses 1 o! 4 aligned quadwords within the hexaword data block. 

12.4.1 PCCTL 

The PCCTL controls the mode of operation of the Pcache. PCCTL is accessible by IPR_RD and 
IPR_ WR operations. See Figure 12-31 for the definition of this register. 

Note that Pcache operation is further qualified by the state of PCSTS<O> (See Section 12.6 for 
more information about PCSTS). If this bit is nOD-zero, Pcache operatioD is automatically forced 
to behave as if I_ENABLE=O and D_ENABLE=O, regardless of the actual state of I_ENABLE 
and D_ENABLE. Effectively, this shuts do'\VD normal Pcache operation due to the presence of a 
pre'vious Pcache parity error. 

Kote that Pcache invalidate operations are only disabled if both D_ENA.BLE=O and I_ENABLE=O, 
or if PCSTS<O> is set. 

Note that the ELEC_DISABLE bit of PCCTL is intended for debug use only. This bit 
electrically disables the Pcache to reduce power dissipation. This bit should only be set when 
the Pcache is functionally turned off by the deassertion of both I_ENABLE and D_ENABLE. 
UNPREDICTABLE operation will result when this hit is set when either I_ENABLE or 
D_ENABLE is also set. Any further discussion concerning Pcache function assumes that 
ELEC_DISABLE is inactive. 

Also note·that all Pcache IPR_RD and IPR_ WR operations will function correctly regardless of the 
state of I_ENABLE or D_ENABLE or PCSTS<O>. However, Pcache array IPRs will not function 
if ELEC_DISABLE is set. 

If either D_ENABLE or I_ENABLE are to be toggled to the on state, the Pcache array must 
be initialized prior to such action. See Section 12.8.2.1 for more information about Pcache 
initialization. 

When the FORCE_HIT (Force Hit) bit is set and I-stream or D-stream operation is enabled, all 
enabled memory space read and write references are forced to hit in the Pcacbe regardless of the 
value of the stored tag. The BANK_SEL bit specifies which tag of the pair of tags addressed is 
forced to hit. Thus when FORCE_HIT=l, the Pcache becomes a 4K direct mapped cache with all 
reads and writes forced to hit in the Pcache. Toggling BANILSEL causes the other half of the 
8K Pcache to become accessible in this direct mapped mode. Note that BANILSEL never affects 
bank selection during IPR reads and IPR writes to the Pcache tags or Pcacbe data parity bits; 
bank selection for these commands is always determined by the specified IPR address. Also note 
that the FORCE_HIT bit only affects memory space references. I/O space references still miss in 
the Pcache regardless of-the state of the FORCE_HIT bit. 
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The FORCE_HIT feature is designed to facilitate testing the Pcache data alTay and to 
make diagnostic tests easily loadahle within the Pcache by simple WRITE operations. When 
FORCE_mT=O, the Pcache is configured as an 8K 2-way set associative cache, no reads or writes 
are forced to hit, and the BANK_SEL bit is a don't care. 

The P _ENABLE (Parity Enable) bit allows the detection of Pcache tag and data parity errors to 
be enabled or disabled. If P _ENABLE=O, Pcache parity elTors will not be detected. Thus when 
P _ENABLE=O, no Pcache error will be recorded in PCSTS or will be reported to the Ebox. 

Note however, that when FORCE_HIT=l, Pcache tag parity is never checked regardless of the 
state of P _ENABLE. 

12.4.2 Pcache Hit/Miss Determination 

12.4.2.1 HIt/Miss Determination by Tag Comparison 

Vlhen an IREAD, DREAD, DREAD_MODIFY, WRITE, VvlUTE_lJNLOCK, or INVAL operation 
is executed, the Pcache must determine if the referenced data is present in its alTay. To do this, 
physical address bits<11:5> are input to the Pcache row decoders in order to determine which 
one of the 128 direct mapped indexes is being addressed. Subsequently, all 629 bits "vithin the 
addressed index are accessed by the assertion of the cOlTesponding word line. The two accessed 
tag values are simultaneously compared to physical address bits<31:12>. A Pcache hit condition 
occurs when all of the following conditions are simultaneously true: 

• The contents of one of the two addressed tags matches the data on M%S6_P~B<31:12>. 
• The valid bit corresponding to both the matched tag and to the addressed subblock (specified 

by physical address bits<4:3» is set. 

• The stored tag parity corresponding to the matched tag is the same as the value calculated 
off of Mo/cS6_PA...B<31:12>. 

If an address match is detected on one of the tags and the valid bit which corresponds to both 
the matched tag and the addressed subblock (specified by physical address bits<4:3» is set, then a 
Pcache hit condition has been detected on the corresponding Pcache tag. The absence of the Pcache 
hit condition causes a Pcache miss condition. 

12.4.2.2 Conditions which force Pcache Miss 

The Pcache miss condition is forced to override the tag determination of hitlmiss described above 
when anyone of the following conditions is satisfied: 

• If PCSTS<O> is set, the Pcache miss condition is forced due to a previous Pcache parity error. 
• If an !READ or I_CF operation is accessing the Pcache and I_ENABLE=O, the Pcache miss 

condition is forced. 

• If a D-stream read or D_CF operation is accessing the Pcache and D_ENABLE=O, the Pcache 
miss condition is forced. 

• If a DREAD_LOCK operation is executing, the Pcache miss condition is forced. This 
guarantees that the read will propagate to the Cbox for synchronization purposes. 

• If an I_CF operation is executing and the IMISS_LATCH state indicates that the reference 
cannot be cached, the Pcache miss condition is forced. 
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• If a D_CF operation is executing and the DMISS_LATCH state indicates that the reference 
cannot be cached, the Pcache miss condition is forced. . 

12.4.2.3 Conditions which force Pcache HH 

The Pcache hit condition is forced to override the tag determination of hit/miss described above 
when anyone of the following conditions is satisfied. Note that unless explicitly stated to the I 
contrary, the forced Pcache miss conditions above take precedence over the forced Pcache hit 
conditions described below. 

• If a read reference is tagged as having a memory management fault or hard error associated I 
with it (i.e. M_QUE_MS2%S6_QUAL_B<O> = 1 or M_QUE..MS2%S6_QUAL_B<l> = 1), a Pcache hit 
condition is forced. NOTE: This force hit condition takes precedence over any force miss 
condition described above. 

• If the operation is a DREAD, DREAD_MODIFY, WRITE, or WRITE_UNLOCK, and 
D _ENABLE = 1 and FORCE_ffiT=1, the Pcache hit condition is forced on the tag corresponding 
to both the addressed Pcache index and the bank specified by the BANILSEL bit EXCEPr I 
when the address maps to I/O space. I/O references must never hit in the Pcache regardless 
of the state of FORCE_IDT. 

• If the operation is an IREAD and I_ENABLE=1 and FORCE_IDT=1, the Pcache hit condition 
is forced on the tag corresponding to both the addressed Pcache index and the bank specified 
by the BANILSEL bit. 

• If the operation is a D_CF and D_ENABLE=1 and the DMISS_LATCH state indicates that 
the reference is cacheable, the Pcache hit condition is forced and the bank is specified by the 
allocation field of the DMISS_LATCH. 

• If the operation is a I_CF and I_ENABLE=1 and the IMISS_LATCH state indicates that the 
reference is cacheable, the Pcache hit condition is forced and the bank is specified by the 
allocation field of the IMISS_LATCH. 

12.4.3 Pcache Read Operation 

A Pcache read operation is initiated by a DREAD, DREAD_MODIFY, or IREAD reference. A 
Pcache read begins by determining the Pcache hit or miss condition described above. If a Pcache 
hit is detected, the quadword of data corresponding to both the tag in which the hit occurred and 
to physical address bits<4:3> is driven out of the Pcache. 

If a Pcache miss condition is asserted, all the data driven out of the Pcache is ignored except for 
the allocation hit. The allocation bit is stored in the DMISS_LATCH (in the case of aD-stream 
read) or in the IMISS_LATCH (for an IREAD). This bit will be used during a cache fill operation 
to select the appropriate block to be filled (See Section 12.4.6 for information about allocating and 
filling blocks). 
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12.4.4 Pcache Write Operation 

A Pcache write operation is initiated by a STORE, WRITE or WRITE_UNLOCK reference. A 
Pcache write begins by determining the Pcache hit or miss condition described above. If a Pcache 
hit is detected, the data present on B%S6_D~H<63:0> is selectively written into the quadword 
corresponding to both the tag in which the hit occurred and to physical address bits<4:3>. The 
data is selectively written by using MI1a96_BYTE_~H<7:0> as a write enable for the eight 
respective bytes of data. The corresponding data parity is also written in the same manner for 
each corresponding byte which is written. 

If a Pcache miss condition occurs, no Pcache write operation takes place. However, the write 
reference is forwarded to the Cbox for processing regardless of the hit/miss condition in the 
Pcache. 

12.4.5 Pcache Replacement Algorithm 

When a Pcache miss occurs during a read operation, it must be decided which one of two blocks 
will be allocated for the subsequent Pcache fill sequence. When the Pcache miss occurred because 
no validated tag field matched the read address, the state of the corresponding allocation bit 
indicates which bank aeft or right) should be used for the resulting fill sequence. The value of 
each allocation bit changes according to the "not-last-used" algorithm. That is, the allocation bit 
always points to the bank within the index that was not last accessed. 

When a read miss occurs because no validated tag field matched the read address, the value of the 
allocation hit is latched in the MISS_LATCH corresponding to the read miss. This latched value 
will be used as the bank select input during the subsequent fill sequence. As each fill operation 
takes place, the inverse of the allocation value stored in the MISS_LATCH is written into the 
allocation bit of the addressed Pcache index. During Pcache read or write operations, the value 
of the allocation bit is set to point to the opposite bank that was just referenced because this is 
now the new "not-last-used" bank. 

The one exception to this algorithm occurs during an invalidate. When an invalidate clears the 
valid bits of a particular tag within an index, it only makes sense to set the allocation bit to point 
to the bank select used during the invalidate regardless of which bank was last allocated. By 
doing so, we guarantee that the next allocated block within the index will not displace any valid 
tag because the allocation bit points to the tag that was just invalidated. 

12.4.6 Pcache Fill Operation 

A Pcache fill operation is initiated by the I_CF (I-stream cache fill) or D_CF (D-stream cache fill) 
reference. A fill op.eration can be considered to be a specialized form of a write operation. A fill 
is· functionally identical to a Pcache write operation except for the following differences: 

• The bank. within the addressed Pcache index is selected by the following algorithm. If a 
validated tag field within the addressed index matches the cache fill address, then the block. 
corresponding to this tag is used for the fill operation. If this is not true, then the value of 
the corresponding allocation bit selects which block will be used for the fill. 

• The first fill operation to a block causes all four valid bits of the selected bank to be written 
such that the valid bit of the corresponding fill data is set and the other three are cleared. 
All subsequent fills cause only the valid bit of the corresponding fill data to be set. 
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• Any fill operation causes the fill address bits<31:12> to be written into the tag field of the 
selected bank.. Tag parity is also written in a analogous fashion. 

• A fill operation causes the allocation bit to be written with the complement of the value 
latched by the corresponding MISS_LATCH during the initial read miss event. 

• A fill operation forces every bit of the corresponding byte mask field to be set. Thus, all eight 
bytes of fill data are always written into the Pcache array on a fill operation. 

12.4.7 Pcache Invalidate Operation 

A Pcache invalidate operation is initiated by the INVAL reference. The invalidate operation is 
interpreted as a NOP by the Pcache if the address does not match either tag field in the addressed 
Pcache index. If a match is detected on either tag, an invalidate will occur on that tag. Note that 
this determination is made based only on a match of the tag field bits rather than on satisfying 
all criteria for the Pcache hit condition (Pcache hit factors in valid bits and verified tag parity 
into the equation). 

When an invalidate is to occur, the four valid bits of the matched tag are written with zeros and 
the allocation bit is written with the value of the bank select used during the current invalidate 
operation. 

Also note that an assertion of C%cBOx..HARD_ERR_H during a cache fill command causes the cache 
fill operation to be processed as if it were an INVAL operation. 

12.4.8 Pcache IPR Access 

For testability reasons it is important to verify that every Pcache storage bit can be read and 
written in both "0" and "1" states. The easiest way to do this is to provide a mechanism to directly 
read and write every bit in the Pcache array. The data field is already accessible through read 
and write commands. The tag field, tag parity, valid bits and data parity are directly accessible 
through IPR_RD and IPR_ WR operations to the Pcache IPRs defined below: 
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Figure 12-45: IPR Address Space Mapping 

Normal IPR Address 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I SBZ I 0 I SBZ I IPR number 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Pcache TAG IPR Address 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I SBZ I 11 11 01 SBZ I BI pcache index addr I SBZ I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

where: B - o _a> select the left bank of the specified index. 
1 _a> select the right bank of the specified index. 

Pcache Data Parity IPR Address 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I SBZ I 11 11 11 SBZ I BI pcache index addr I SBA I SBZ 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

where: B - 0 _a> select the left bank of the specified index. 
1 _a> select the right bank of the specified index. 

SBA - subblock address selection 

The format of a Pcache tag IPR is shown in Figure 12-32. 

The tag parity bit is included in the Pcache tag IPR format to allow the user to write bad tag 
parity into the array in order to verify the tag parity logic. Further, the valid bits and allocation 
bit are also included so that the Pcache can be initialized to a known state. . 

The format of a Pcache Data Parity IPR is shown in Figure 12-33. This IPR allows the Pcache 
data parity to be directly read and written for testability purposes. 

12.4.9 Pcache IPR Summary 

The following table summaries all IPRs associated with the Pcache: 

Table 12-18: Pcache IPRs 

IPRAddreS8 
Register Name (in hex) 

PCADR (quadword address of reference causing Pcache parity error) 

PCSTS (status of Pcache parity error) 

PCCTL (control state of Pcache operation) 

PCTAG 

PCDAP 

FO 

F1 

F2 

01800000 .. 01801FEO 

01 COOOOO .. O 1 CO 1 FF8 

See Section 12.6 for a description of the PCADR and peSTS registers. Note that with the 
exception of the Pcache tag IPRs, the addresses of the three other Pcache IPRs are driven into 
the Mbox shifted left two hits. This fact is not reflected in the above table. 
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12.4.10 Pcache States Resulting in UNPREDICTABLE operation 

The capability of arbitrarily altering Pcache state through IPR write operations allows for the 
possibility of putting the Pcache into obscure states which cannot be achieved by IInormal't 
operation. Two of these states will cause UNPREDICTABLE behavior: 

1. Setting the ELEC_DISABLE bit in PCCTL will cause IPR read operations to the Pcache 
tag or Pcache data parity bits to return incorrect data. Setting the ELEC_DISABLE bit 
will cause IPR write operations to the Pcache tag or Pcache data parity bits to be disabled. 
Setting ELEC_DISABLE with either I_ENABLE or D_ENABLE set may cause Pcache read 
operations to return incorrect data. Setting ELEC_DISABLE with either I_ENABLE or 
D_ENABLE set will cause Pcache write, invalidate and cache fill functions to be disabled. 

2. Through explicit Pcache tag IPR write operations, a user could write both blocks of a Pcache 
index with the same tag, tag parity and valid bit data. If this condition occurs with one or 
more sub-block valid bits set, the Pcache will return invalid data on references corresponding 
to the written tag (note that normal Pcache operation precludes this situation from ever 
occurring). 

12.4.11 Pcache Redundancy Logic 

Due to the extreme density of the Pcache array, the Pcache has a high susceptibility to 
manufacturing defects. As a result, redundancy logic was designed in order to provide a 
mechanism which would allow the Pcache to function correctly in the presence of a small number 
of manufacturing defects. , 
The redundancy logic consists of hardware which supports the operation of sixteen extra indic:ies 
which exist in addition to the 128 IIregular" indic:ies. If a defect exists in an index which does 
not disturb the function of any column logic, the redundancy logic allows the bad index to be 
replaced by one of the 16 extra indicies. If an index is determined to be malfunctioning during 
chip test, a redundant index can be substituted for the bad index by blowing specific fuses on the 
chip through the use of a lazer. Blowing these fuses creates logic state transitions on redundancy 
control signals which disable the operation of a set of 4 'tregular" indicies and will enable the 
operation of 4 redundant indicies in their place. 

Four sets of four redundancy fuses exist. Each set controls 4 of the 16 redundant indicies. Each 
set can map its 4 redundant indicies into one of 8 different sets of 4 IIregular" indices. The 
redundancy mapping is shown below: 
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Figure 12-46: Pcache Address Redundancy Mapping 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I I RS I XIRED_ADDRI XI 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

where: RS represents the address bits corresponding to the four sets of four redundancy fuses. 

The two X's represent the address bits corresponding to the set of four indicies which 
get replaced. 

RED_ADDR represents the lazer-programmable address bits that specify which one of 8 sets 
of 4 "regular" indicies are to be replaced. 

Each set of 4 redundancy fuses consists of three bits to specify the address mapping (specified by 
RED_ADDR above) and 1 bit to enable the redundant indicies to operate in place of the specified 
set of "regular" indicies. When one or more redundancy elements are blown, another fuse is also 
blown which will set the RED_ENABLE bit in PCCTL (see Figure 12-31). Thus, by reading the 
PCCTL IPR one can determine if one or more redundancy elements has been enabled. 
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12.5 MEMORY MANAGEMENT 

The Mhox, the Ebox microcode, and the VMS memory management software implement VAX 
memory management. The Mbox performs the hardware memory management functions 
necessary to process most references in a quick efficient manner. The operating system 
software performs all other functions. For a description of the hardware end of VAX memory 
management, the reader is referred to the Memory Management chapter of the 'VAX Architecture 
Standard" (DEC STD 032). For a complete description of the software end of VAXlVMS memory 
management, the reader is referred to the Memory Management chapters of "VAXlVMS Internals 
and Data Structures". 

The Mbox is responsible for the following memory management functions: 

• Performing virtual-to-physical address translations. 

• Maintaining a cache of PTEs to perform the quick translations. 
• Performing access mode checks on memory references. 

• Performing TNV checks on memory references. 
• Performing M=O checks on memory references. 

• Directly or indirectly invoking a software memory management exception handler due to ACV 
(Access Violation) or TNV (Translation not Valid) or M=O faults. 

• Detecting cross-page conditions and performing the corresponding access mode checks. 
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12.5.1 NVAX MEMORY STRUCTURE 

12.5.1.1 Virtual Address Space 

The NVAX. virtual address space conforms with the description of the VAX virtual address space. 
The space contains four gigabytes (2**32) of memory divided into four regions as shown below: 

Figure 12-47: Virtual Address Space Layout 

00000000 

3FFFFFFF 

40000000 

7FFFFFFF 

80000000 

FFFFFEOO 
FFFFFFFF 

+-------------------------+ 
1 1 

1 1 
1 PO ----------------1 
1 Region 1 1 
1 V 1 

+-------------------------+ 

length of PO Region in 
pages (POLR) 

PO Region growth direction 

1 1 PI Region growth direction 
1 1 1 

1 Pl ----------------1 
1 Region 1 length of PI Region in 
1 1 pages (2**2l-PlLR) 

+-------------------------+ 
1 length of System Region 
1 in pages (SLR) 

System ---------------1 
Region 1 1 

1 1 System Region growth 
1 1 direction 
1 1 
V 1 

+-------------------------+ 
1 Reserved 1 

1 Page 1 

+-------------------------+ 

NOTE 

NVAX CPU chips at revision 1 implement the original VAX memory management 
architecture in which any reference to a virtual address above BFFFFFFF (hex) falls 
into a reserved region and causes a length violation. NVAX CPU chips at revision 2 or 
later implement the extended SO space addressing described above. 
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12.5.1.2 Physical Address Spaces 

The NVAX hardware addresses a physical address space defined by another four gigabyte region. 
The first seven-eighths ofit addresses physical memory. The top one-eighth of this space addresses 
110 space~ Thus, all 110 space addresses can be distinguished by physical address bits<31:29> = 
111 (binary). 

Figure 12-48: Physical Address Space of the NVAX Hardware 

+-------------------------+ 
00000000 I 

I 
+- -+ 
I I 
I I 
+- -+ 
I I 
I I 
+- -+ 

Memory I 
Space I 3.5 Gigabytea 

+- -+ 
I I 
I I 
+- -+ 
I I 
I I 
+- -+ 
I I 

DFFFFFFF I I 
+-------------------------+ 

EOOOOOOO I I/O I 512 Magabytea 
FFFFFFFF I Space I 

+-------------------------+ 

12.5.1.2.1 Physical Address Space Mappings 

The Mbox is designed to accommodate both a 30-bit and 32-bit physical address space as seen at 
the program level while maintaining one physical address space as seen by all NVAX hardware 
extemal to the Mbox (shown above). These two programleve1 physical address spaces are mapped 
by Mbox hardware into the NVAX physical address space according to the value of the PAMODE 
register. See Figure 12-23 for a description of PAMODE. 

The PAMODE register is accessible by the IPR_RD and IPR_ WR commands. When PAMODE=O, 
the 30-bit physical address space seen at the program level is translated into the NVAX. physical 
address space as follows: 
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Figure 12-49: 30-bH Physical Address Mapping 

Program Level 30-bit 
Address Space 

+-------------------------+ 
00000000 I Memory I 
lFFFFFFF I Space I 

+- - - - - - - - - - - - -+ 
20000000 I I/O 
3FFFFFFF I Space 

+-------------------------+ 

+- -+ 
I 
I 
+- -+ 

I 
Outside of I 

+- 30-bit Space -+ 
I I 
I I 
+- -+ 
I 
I 
+- -+ 
I I 

FFFFFFFF I I 
+-------------------------+ 

mapped when 
PAMODE-O 

NVAX Physical 
Address Space 

+-------------------------+ 
00000000 I Memory 
lFFFFFFF I Space 

+-------------------------+ 
I I 
I I 
+
I 
I 
+
I 
I 
+-
I 
I 
+-
I 
I 
+
I 

DFFFFFFF I 

Inaccessable 
Region 

When PAMODE-O 

-+ 
I 
I 

-+ 
I 
I 

-+ 

-+ 

-+ 

+-------------------------+ 
EOOOOOOO I I/O I 
FFFFFFFF I Space I 

+-------------------------+ 

Logically speaking, this mapping is accomplished by the Mbox by sign-extending physical 
address<29> into physical address<31:29>. 

When PAMODE=l, the 32-bit physical address space seen at the program level is directly 
translated into the NVAX physical address space: 
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Figure 12-50: 32-b1t Physical Address Mapping 

Program Level 32-b1t mapped when NVAX Physical 
Address Space Address Space PAMODE-l 

+-------------------------+ +-------------------------+ 
00000000 I I 00000000 I I 
lFFFFFFF I I lFFFFFFF I I 

+- -+ +- -+ 
I I I I 
I I I I 
+- -+ +- -+ 
I I I I 
I I I I 
+- -+ +- -+ 
I I I I 
I Memory I I Memory I 
+- Space -+ +- Space -+ 
I 
I 
+- -+ +- -+ 
I I I I 
I I I I 
+- -+ +- -+ 
I I I 
I I I 
+- - - - - - - - - - - - -+ +-------------------------+ 

EOOOOOOO I I/O EOOOOOOO I I/O 
FFFFFFFF I Space FFFFFFFF I Space 

+-------------------------+ +-------------------------+ 

12.5.1.3 ADDRESS TRANSLATION AND THE TB 

For a complete description of VAX virtual address translation, the reader is referred to the 
Memory Management chapter of the "VAX Architecture Standard" (DEC STD 032). An overview 
of this process can be found in Section 2.6 of this specification. 

The Mbox performs virtual-to-physical address translations in the S5 pipe when the following 
two conditions are satisfied: 

1. The MAPEN bit is set (MAPEN enables virtual address translations). 

2. M..Q~_QUAL..H<6> indicates that the 85 reference is a virtual reference. 

When both of these conditions are met, the address in M_QUEY5_VA...H<31:O> is translated by 
the Mbox, and the resulting physical address is driven on M..QtJEY5_PA..-B<31:O>. If both these 
conditions are not satisfied, the contents ofM_QUE%S5_VA...B<31:O> is treated as a physical address 
and is directly transferred to M..QUE%S6_PA..-B<31:O>. 

The TB (translation buffer) is the mechanism. by which the Mbox performs quick 
virtual-to-physical address translations. It is a 96-entry read allocate fully associative cache 
of PTEs (Page Table Entries). 

The format of a page table entry and a TB entry are shown below. 
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Figure 12-51: PTE and TB format 

Page Table Entry 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I VI PROT I MI 51 Physical Page Frame Address I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

where: V - valid bit 
PROT - authorized access modes 
M - modify bit 
S - reserved bit 

TB Entry 

5 
4 

5 
3 

5 
2 

5 
1 

2 2 
9 8 

2 2 
5 4 

2 2 
3 2 o 

+-----+----+--------+---------+------+---+----+------------------+ 
I TBV I TP I TP_BAR I TAG I PROT I M I DP I PFN 
+-----+----+--------+---------+------+---+----+------------------+ 

where: TBV - TB entry valid bit 
TP - even tag parity bit 
TP_BAR - complement of TP 
TAG - virtual address<31:9> 
PROT -
M -
DP -
PFN -

authorized access modes 
modify bit 
even parity for validated PTE field 
physical page frame address 

Note that the TB entry stores all but three bits of the PrE field. The TB entry does not store the 
S bit because it is not used, and the TB entry does not store the upper two bits of the PTE PFN 
because these bits correspond to a larger physical address space than NVAX uses. The tag field 
stores the virtual page frame address. The TBV bit indicates whether the corresponding entry is 
valid. If TBV is set, then PrE<31> is valid because the TB only caches PTEs whose valid bit is 
set. 

The associativity of each TB entry is implemented by the use of comparators on the TBV and 
tag fields. When a virtual address is driven onto M_QUE'1cSS_VA...H<31:0> at the start of a cycle, 
each TB tag comparator, whose corresponding TBV bit is set, looks for a match between the 
M_QUEo/eS5_VA...H virtual page frame address and its corresponding tag. If no comparator finds a 
match, the TB_MISS condition has occurred indicating that no TB entry contains a translation 
for the specified address (see Section 12.5.1.5.2 for discussion of TB_MISSes). 

If one of the entries detects a match (TB_mT condition), the PFN, PROT, and M fields of 
the corresponding TB entry are read out of the TB. M..QUE%S5_pA...B<31:9> are driven with the 
contents of the accessed PFN. M_QUEo/cS5_PA-B<8:0> are the untranslated bits addressing a byte 
within a page; therefore, these bits are driven directly from M_QUE%ss_VA...H<8:0>. 

The PROT, and M fields, which were driven out of the TB with the PFN, are used by the 
memory management exception detection logic to determine ACV and M=O conditions (See 
Section 12.5.1.5.3). 

TB entries are allocated using a NLU (Not-Last-Used) TB allocation pointer. The TB entry pointed 
to by the NLU allocation pointer is allocated and validated during a TB_TAG_FILI1TB_PrE_FILL 
sequence. The allocation pointer increments in round robin fashion around every TB entry when 
a TB lookup accesses the entry pointed to by the allocation pointer or when a TB_PTE_FILL 
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operation is done. Because the allocation pointer is guaranteed not to point to the last entry 
referenced, this scheme implements a not-last-used allocation scheme. 

TB entries can be invalidated in the following ways: 

• An entry can be invalidated by being displaced from the TB by allocation of another PTE to 
the same TB entry. 

• An entry can be invalidated by execution of the TBIS (TB Invalidate Single) command. If the 
specified TBIS virtual address matches a TB tag, the TBV bit corresponding to the matched 
tag is cleared. Clearing the TBV bit invalidates the TB entry (See Section 12.3.13 ). 

• Entries can be invalidated by execution of the TBIP (TB Invalidate Process) command. TBIP 
causes the most significant bit of all the tag fields to be examined. If this bit is cleared, 
the corresponding TBV bit is cleared. The effect of this operation is to invalidate all PTEs 
corresponding to PO or P1 space translations (See Section 12.3.14 ). 

• All entries can be invalidated by the execution of the TBIA (TB Invalidate All) command. 
This command resets the TBV bit of every TB entry (See Section 12.3.15 ). 

12.5.1.4 30-blt to 32-blt Physical Address Translations 

When PAMODE::O, the NVAX system is configured such that only 30-bit physical addresses are 
processed at the program level. Since the Mbox and Cbox hardware is designed assuming a 32-bit 
hardware address space, the Mbox must appropriately translate all 30-bit physical addresses into 
32-bit physical addresses based on the mapping scheme shown in Figure 12-49. This is done in 
two ways. 

1. When the Mbox receives a physical address from one of its reference sources, the mapping is 
implemented by an address sign extension scheme involving the upper three address bits. In 
this scheme, address<31:30> are forced to the state of address<29>. 

2. When the Mbox receives a virtual address, virtual address translation occurs normally 
without any sign extension of the resulting physical address. This is possible because the 
corresponding sign extension function is preprocessed on the upper three hits of page frame 
address which is written into the TB during the TB_TAG_FILL operation. 

Note that restrictions exist about how the PAMODE register can be modified. See Section 12.8.2 
for more information. 

12.5.1.5 MEMORY MANAGEMENT EXCEPTIONS 

12.5.1.5.1 MME_DATAPATH 

The MME_DATAPATH (Memory Management Datapath) is used to process most memory 
management functions performed by the Mbox. Specifically, it performs the following functions: 

• Creates read references of PTEs in order to obtain virtual address translations not currently 
cached in the TB (See VAX Architecture Standard, DEC STD 032, for a description of this 
process). 

• Creates TB fill operations in order to fill tag and PTE data in the TB. 

• Stores most Mbox internal processor registers. 
• Stores virtual addresses associated with memory management faults. 

• Stores PTE addresses associated with M=O faults. 
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The MME_DATAPATH is illustrated below: 

Figure 12-52: MME Datapath 

U_ADDRclhO~ "_DATAcI! :0> U_CIIDc£:O~ 

IIME..,I.A'n:H J 1 IIMI_ADDR_LAT I I IIIIE_DAT"-LAT I 
aID AlIDA DATA 

I I aID I IID_IIUlcI!:O 

GI!N!IIA1\)R 

IIIII_"H_'ILI 
... ~ III 

1I1I1_ALUeI!. 

A II 

.~ t ... ~'11 , 

I 

B ~ ALU / 
t 

12.5.1.5.1.1 MME Register File 

The register file has one write port and two read ports (one for each input to the ALU). The 
register file contains the following longword registers: 

Reg Name DefiDitioD 

PAMODE Address Mode Register: enables 30 or 32-bit address mapping 
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Reg Name Definition 

MMAPEN12 

MSLR12 

MSBR1 

MPOLR12 

MPOBRI 

MPILR12 

:MPIBRI 

MMEADRI 

MMEPrEl 

MMESTS1 

TBADR 

TBSTS 

TMPI 

TMP2 

Mbox Map Enable Register: turns on/off virtual translations 

Mbox System Length Register: Length of System Page Table 

Mbox System Base Register: Addr of System Page Table 

Mbox PO Length Register: Length of PO Page Table 

Mbox PO Base Register: Addr of PO Page Table 

Mbox PI Length Register: Length of PI Page Table 

Mbox PI Base Register: Addr of PI Page Table 

MME Faulting Address Register 

PrE Address Register 

Status of memory management exception 

Address of reference causing TB parity error 

Status of TB parity error 

Scratch Register 1 

Scratch Register 2 

1 Testability and diagnostic use only; not for software use in normal operation. 

2Ebox ucode sends and receives this data toIfrom the MME reg file shifted left 9-bits. 

Note that the datapath associated with this register file performs all bit shifts associated with 
MME processing except for 9-bit shifts required on MMAPEN, MSLR, MPOLR, and MP1LR 
registers. The Ebox microcode sends pre-formatted data to these registers such that the data 
has been pre-shifted left nine bit positions. This facilitates the M:M:E datapath implementation. 
IPR_RD operations from these registers send data back to the Ebox in the same format. Thus, the 
Ebox microcode will re-format the data back into the standard formats illustrated in Table 12-3. 

Note that a 9-bit left shift is performed on MMAPEN so that the contents of MMAPEN can be 
used to increment a virtual address by a page in order to perform cross page check operations. 

The MME_ADDR latch stores the address which was driven on M_QUEo/0S5_VA....H<31:0> 
during the previous cycle. The MME_DATA latch stores the data which was driven on 
M_QUEo/0S5_DATA_B<31:0> during the previous cycle. The A input to the ALU is either driven 
from MME_ADDR, MME_DATA, or the A read port of the register file. 

12.5.1.5.1.2 MME ALU 

The ALU (Arithmetic Logic Unit) performs the following functions: 

• pass A: used for receiving addresses and data from main S5 pipe. 
• pass B: used for reading/writing registers 
• A + B: used to generate PTE addresses (note 9-bit right shift on A input) 
• A - B: used for page table length checks of PO and SO space references (note 7-bit right shift 

on A input) 
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The output of the ALU can write the following: 

• address field of the MME_LATCH (to generate PrE reads, TB tag fills and TB pte fills) 
• data field of the :M:ME_LATCH (to return requested IPR read data) 

• the register file 

12.5.1.5.1.3 MME_SEQ 

The lMME_SEQ is a state machine which controls sequencing of the MME_DATAPATH. It controls 
which devices drive and latch data in the MME_DATAPATH, whatALU function is to be executed, 
and what command gets generated and latched in the MME_LATCH, The possible MME state 
sequences of the MME_SEQ are illustrated by the following two diagrams below: 

12-88 The Mbox DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

Figure 12-53: MME Sequences 

1 

START 01' Til_MISS 
SEQUENeE 

f 
LOAD TMP1 I 

I PERFORM PAGE TAIILE I 
LENGTH VIOL.ATON 

CHECK 

LENGTH VIOLATION 

NO LENGTH VIOLATION 

I ISSUE Til TAG FILL I 
TO ALLOCnE A NEW 

Til ENTRY 

1 
I ISSUE PTE DREAD I 

Til_MISS ON PTE DREAD 

TB_HIT ON PTE DREAD 

I RECEIVE PTE DATA I 

ACVITNV VIOLATION 

NO ACVITNV VIOLATION 

I ISSUE ~~ PTE FILL I TO VALl iATE TIEW 
Til NTRY 

END 01' TB lass SEQUENCE 
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i ... ----- DOUIILE TB MISS SEOUENCE----. 

l I LOAD TMP2 I 
WITH PPTE AD ADDR 

i I PERFORM PAGE T AIILE I 
LENGTH VIOL.ATON 

CHECK , 
LENGTH VIOLATION 

i 

NO LENGTH VIOLATION 

I ISSUE TB TAG FILI.I 
TO ALLOCnE A NeW 

TB ENTRY 

l 

I ISSUE SPTE DREAD I (PHYSICAL READ) 

I I RECEIVE PTE DATA 
l 

TNV VIOLATION 

NO TNV VIOLATION 

! 

I ISSUE TB PTE I'ILLl 
TO VALIDATE 1II!W 

Til ENTRY 

IRE.ISSUE TIS TAG FIL1 
TO RE-ALLOd>.TE "PTE 
FOR MM! FAULT_ADDR 

I RE·ISSUE PTE DREAD I 
l 

; 1 
GOTO ACVITNV SEQUENCE 

.. ·.-----DOUI!ILE TB MISS SEOUENCE----...; 
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Figure 12-54: MME Sequences Cont'd 

START OF WE IPR_WR SEQUENCE 

LOAD ADDRESSED 
MME IPR FROM 

MME_DATA LATCH 

END OF IPR_WR SEQUENCE 

START OF WE IPR_RD SEQUENCE 

LOAD MME_LATCH WITH 
ADDRESSED MME IPR 

AND ISSUE IPA_DATA CWO 

END OF IPR_RD SEQUENCE 

START OF ACV/TNV/M.O SEQUENCE 

t 
CONDITIONALLY LOAD TMP1 

FROM MME_ADOR 

t 
CONDITIONALLY UPDATE 

MME-"AULT_ADDR 
I. 

MME_STAT 

1 
IF I0Il.0 CONDITION: 

GENERATE PTE ADDR AND 
CONDITIONALLY UPDATE 

I0IlI0Il E_PTE_ADDR 

1 
END OF ACV/TNV/M.O SEQUENCE 

There are five distinct entry points into the MME sequences: 

• TB_MISS Entry Point: Whenever a TB_MISS condition is detected on an Ibox or Ebox 
reference, the MME_SEQ executes the sequence defined by the TB_MISS Entry Point. 

• Cross Page Entry Point: The MME_SEQ executes the Cross Page Sequence in order to check 
for:MME faults which may exist on the upper page of a reference that crosses a page boundary. 

• ACVtrNVfM=O Entry Point: The MME_SEQ can execute this sequence when an AGV, TNv, 
or M=O condition is detected on an S5 reference, or when an ACV or TNV condition is detected 
during the TB miss sequence. 

• MME IPR_RD Entry Point: The MME_SEQ executes this fiow when an Mbox IPR register 
located in the MME_DATAPATH is addressed by an IPR_RD command. 

• MME IPR_ WR Entry Point: The :MME_SEQ executes this fiow when an Mbox IPR register 
located in the MME_DATAPATH is addressed by an IPR_ WR command. 

Once an MME sequence starts, the processing of all Ibox and Ebox references is inhibited until 
the sequence completes. Once the MME sequence terminates, normal processing resumes and 
the original reference which initiated the MME sequence will be retried. 
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12.5.1.5.2 TB MISS SEQUENCE 

When memory management is enabled (MAPEN=1) and no valid tag entry in the TB matches 
the corresponding virtual page frame address applied on M_QUEo/DSS_ VA...B<31:9>, the TB does not 
contain the necessary translation information to convert the address to physical space. In this 
situation, the TB asserts its TB_MIS8 signal which initiates a series of sequential events that 
will cause the proper PTE to be written into the TB. 

12.5.1.5.2.1 Single Miss Sequence 

A single miss sequence is defined as a TB miss sequence with only one TB miss occurring 
during the sequence. The following series of events characterizes a single TB miss sequence 
(see Figure 12-53 for a flow chart description of this sequence): 

• cycle 1: TB asserts TB_MIS8. S5 reference is aborted (will be retried later). MME_ADDR 
latches M_QUEo/cS5_ VA...H. 

• cycle 2: TMP1 is loaded from MME_ADDR in order to store the TB miss address in the MME 
register file. 

• cycle 3: The proper page table length check is performed using TMP1, the appropriate XLR 
and a subtract ALU operation. If a length violation exists, the execution sequence continues 
in the ACVrrNVlM=O sequence (See Section 12.5.1.5.3.6). 

• cycle 4: The address field of the M:ME_LATCH is loaded with the TMP1 fault address and 
the MME_LATCH is validated with a TB_TAG_FILL command. 

• cycle 5: The TB_TAG_FILL command executes in S5 (assuming no Cbox reference took 
priority) to allocate a TB entry corresponding to the TB miss address. 
The corresponding PrE address is formed using TMPl, the appropriate XBR and the A+B 
ALU operation. The PTE DREAD is loaded into the MME_LATCH. 

• cycle 6: The PrE DREAD is started in 85 (assuming no Cbox reference took priority). If 
this is an 8PTE (System Page Table Entry) DREAD, this reference is physical and, therefore, 
cannot have a TB_MISS and/or TNV condition associated with it. If this is a PPTE DREAD 
(Process Page Table Entry) DREAD, this reference is virtual and can have a TB_MISS and/or 
TNV condition associated with it. Since a single miss sequence is being described here, a 
PPTE DREAD hits in the TB by definition (see Section 12.5.1.5.2.2 for a description of when 
this reference misses). 
Note that no ACV protection checks are performed on this DREAD because it is an Mbox PTE 
DREAD. No TNV checks are performed because only PrEs with PrE<31> set are cached in 
the TB. No M=O check is performed since this is strictly a read operation. Assuming TB miss 
problems occurred, the address is now properly translated and the DREAD continues into 86. 

• cycle x: The PTE data is available on the M%MD_BUS_B<31:0>. This data is latched in the 
address field of the MME_LATCH. ACVITNV checks are performed on the protection and 
valid bit fields of the incoming PTE data. If an ACVfINV condition is detected, the memory 
management sequence continues in the ACVITNVfM=O sequence (See Section 12.5.1.5.3.6). 
If neither condition is detected, the MME_LATCH is validated with the TB_PTE_FILL 
command. 

• cycle x+l: The TB_PTE_FILL command is executed in S5 (assuming no other Cbox command 
took priority) to load the PTE into the TB and validate the TB entry. Normal processing 
resumes and the reference which causes the original TB miss will be retried. 
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12.5.1.5.2.2 Double Miss Sequence 

When the MME_DATAPATH generates a PPTE DREAD in order to resolve a TB miss, the PPTE 
address is itself a system virtual address. Therefore, it is possible for the PPl'E DREAD to 
generate a second TB miss. In this case, the PPTE DREAD TB miss must be processed first in 
order to translate the PPrE DREAD address. Following this, the original TB miss sequence can 
resume in order to translate the initial faulting address. This scenario is called a double TB miss 
and is shown below (see Figure 12-53 for a flow chart description of this sequence): 

• cycle 1: TB asserts TB_MISS. S5 reference is aborted (will be retried later). MME_ADDR 
latches M_QUE%SS_ V.A...H. 

• cycle 2: TMPI is loaded from MME_ADDR in order to store the TB miss address in the !\{ME 
register file. 

• cycle 3: The proper page table length check is performed using TMPl, the appropriate PXLR 
and a subtract ALU operation. If a length violation exists, the execution sequence continues 
in the ACVtJNVlM=O sequence (See Section 12.5.1.5.3.6). 

• cycle 4: The data field of the :MM:E_LATCH is loaded with the TMP1 fault address as the 
MME_LATCH is validated with a TB_TAG_FILL command. 

• cycle 5: The TB_TAG_FILL command executes in 85 (assuming no Cbox reference took 
priority) to allocate a TB entry corresponding to the TB miss address. 

The corresponding PPTE address is formed using TMP1, the appropriate PXBR and the A+B 
ALU operation. The PPrE DREAD is loaded into the MME_LATCH. Note that because the 
Mbox generated a PPTE DREAD as part of a TB miss sequence, the virtual reference is loaded 
into the MME_LATCH with the ACVfM=O reference qualifier cleared so that ACV checks will 
not be performed on the reference. 

• cycle 6: The PPTE DREAD is started in 85 (assuming no Cbox reference took priority). The 
TB asserts TB_MI8S again because the PPrE address translation was not present in the TB. 
MME_ADDR latches the PPTE DREAD address and the DREAD is aborted. 

• cycle 7: TMP2 is loaded from the MME_ADDR with the PPI'E DREAD address. 

• cycle 8: The system page table length check is performed using TMP2, SLR and the A-B ALU 
operation. If a length violation exists, the execution sequence continues in the ACV/TNV IM.=O 
sequence (See Section 12.5.1.5.3.6 ). 

• cycle 9: The address field of the :MM:E_LATCH is loaded with the TMP2 PPTE fault address 
as the MME_LATCH is validated with a TB_TAG_FILL command. 

• cycle 10: The TB_TAG_FILL command executes in 85 (assuming no Cbox reference took 
priority) to allocate a TB entry corresponding to the TB miss address. Note that the TB entry 
that is allocated destroys the previous TB entry allocation for the original TB miss because 
the NLU TB allocation pointer has not moved. 

The corresponding SPTE address is formed using TMP2, SBR and the A+B ALU operation. 
The 8PTE DREAD is loaded into the MME_LATCH. 

• cycle 11: The SPTE DREAD is started in 85 (assuming no Cbox reference took priority). Note 
that this DREAD has a physical address. Therefore, no memory management problem can 
occur on this read. 

• cycle x: The SPTE data is available on the Mo/cMD_BUS_H<31:0>. This data is latched in the 
address field of the MME_LATCH. ACVITNV checks are performed on the protection and 
valid bit fields of the incoming PTE data. If an ACVITNV condition is detected, the memory 
management sequence continues in the AG'V'ITNVIM=O sequence (See Section 12.5.1.5.3.6). 
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If neither condition is detected, the MME_LATCH is validated with the TB_PrE_FILL 
command. 

• cycle x+l: The TB_PTE_FILL command is executed in S5 (assuming no other Cbox command 
took priority) to load the SPTE into the TB and validate the TB entry. Note that the NLU 
TB allocation pointer is incremented on a TB_PTE_FILL operation. 

In order to re-allocate a TB entry for the original TB miss address, the address field of the 
MME_LATCH is loaded with TMP1 while the command field is loaded with a TB_TAG_FILL 
command. 

• cycle x+2: The TB_TAG_FILL command is executed in S5 (assuming no other Cbox command 
took priority) to re-allocate a TB entry corresponding to the original TB miss. 

The original PPTE address is re-generated using TMP1, the appropriate PXBR and the A+B 
ALU operation. The PPrE DREAD is loaded into the MME_LATCH (ACV checks are once 
again disabled for this reference). 

• cycle x+3: The PPTE DREAD is started in 85 (assuming no Cbox reference took priority). 
Note that no ACV protection checks are performed on this DREAD because it is an Mbox PTE 
DREAD. No TNV checks are performed because only PrEs with PrE<31> set are cached in 
the TB. No M=O check is performed since this is strictly a read operation. The PPTE DREAD 
address is now properly translated. 

• cycle y: The PPI'E data is available on Mo/oMD_BUS_B<31:0>. This data is latched in the 
address field of the MME_LATCH. ACV ITNV checks are performed on the protection and 
valid bit fields of the incoming PTE data. If an ACVITNV condition is detected, the memory 
management sequence continues in the ACVtrNVlM=O sequence (See Section 12.5.1.5.3.6). 
If neither condition is detected, the MME_LATCH is validated with the TB_PrE_FILL 
command. 

• cycle y+l: The TB_PI'E_FILL command is executed in S5 (assuming no other Cbox command 
took priority) to load the PPrE into the TB and validate the TB entry. Normal processing 
resumes and the reference which caused the original TB miss will be retried. 

MICROCODE RESTRICTION 

To avoid a potential infinite loop case whereby the Mbox is stuck in the TB double 
miss sequence forever, the Ebox microcode must guarantee that it issues a non-STORE 
instruction other than TBIA, TBI8, or TB_TAG_FILL during the cycle immediately 
preceding the cycle it issues either a TBIA, TBI8 or TB_TAG_FILL instruction. 

12.5.1.5.3 ACVITNV/M=O 

12.5.1.5.3.1 ACVITNV/M=O Fault Handling: 

In order for an Acv, TNv, or M=O fault to be processed, the following steps must occur: 

1. The Mbox must detect the ACVITNVIM=O condition. 

2. The Ebox microcode must be invoked to start processing the condition. 
3. The Ebox microcode must probe Mbox state in order to detennine which fault occurred and 

how it should be processed. 
4. The Ebox microcode must service the fault condition directly, or it must invoke an operating 

system memory management service routine to service the fault. 
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5. If the memory management fault was not fatal to the process, normal instruction execution 
resumes by restarting the instruction corresponding to the memory management fault after 
servicing the fault. 

12.5.1.5.3.2 ACV detection: 

The protection field of a PTE indicates the authorized access rights for each execution mode. 
When a reference causes the TB to access a PTE, the protection field of the PrE corresponding 
to the reference is driven out of the TB. The ACV (Access Violation) detection logic uses the PTE 
protection field, ~QUJNcS5_AT_H<1:0>, and the appropriate CPU execution mode from the Ebox 
(i.e. user, supervisor, executive, kernel) to detect access violations. If, for example, the protection 
field indicates a ttread-only" access in user mode, the CPU execution mode specifies user mode, 
and M_QUE%S6...AT_H<I:0> indicates write access, then an ACV condition is flagged since a write 
reference is not allowed to this page in user mode. 

A 2: 1 MUX controls the source of the CPU execution mode. The CPU execution mode information 
is normally taken directly from the current mode field of the PSL (psL<25:24». On PROBE 
references, however, the CPU execution mode is driven from E%MMGT.-MODE_H<1:0> in order to 
check for ACV conditions for an execution mode which the CPU is not currently in. 

An ACV condition is also generated when a PTE reference fails to satisfy the page length check 
corresponding to the virtual space of the reference or when the virtual reference falls into reserved 
page region of virtual memeory (FFFFFEOO-FFFFFFFF). Either condition is reported as an ACV 
length violation. 

An ACV check is also performed on the protection field of all PTEs which have just been sent to 
the Mbox due to an earlier Mbox DREAD issued during the TB_MISS sequence. 

ACV protection and length checks are perlormed on all Ibox and Ebox references and on all 
MME_ CHKs. ACV page length checks are performed on all PTE addresses. However, ACV 
protection checks are never performed on PrE read references generated by the MbOx. 

Note that the ACV protection condition is disabled from occurring during any cycle where the 
reference is aborted. 

When an ACV condition occurs, the MME_SEQ is invoked to execute the ACVITNVIM=O sequence. 
ACV checks only occur on virtual addresses when memory management is enabled and when the 
reference indicates that memory management checks should be done (i.e. M_QUE%S5_QUAL_H<2> 
= 1). 

12.5.1.5.3.3 TNV detection 

When the PTE valid bit is clear, it indicates that the corresponding PrE page frame address 
translation is not valid. This is called a Translation Not Valid Fault (TNV). TNV detection 
only occurs during the TB_MISS sequence when the Mbox receives PTE data from the Pcache 
or Cbox such that the PTE valid bit (PTE<31» is clear. When a TNV fault is detected, the 
:MME_SEQ interrupts the TB_MISS sequence and invokes the ACVITNVfM=O sequence. By 
doing so, the invalid PTE is never cached in the TB and a memory management fault is recorded 
(See Section 12.5.1.5.3.5 on recording memory management faults). 
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12.5.1.5.3.4 M::O detection: 

When a virtual reference causes the TB to access a PTE, the modify bit of the PTE is read 
out of the TB. A cleared modify bit indicates that the corresponding page has not been written 
to. If the valid bit of the PTE is set, and the modify bit is clear and the access type of the S5 
reference indicates an intention to modify the page (e.g. write or modify access type), then the 
Mbox must initiate the proper sequence of events to process this "M=O" condition. The M=O check 
is performed when memory management is enabled and a virtual reference hits in the TB. 

Note that the M=O condition is disabled from occurring during any cycle where the reference is 
aborted. 

12.5.1.5.3.5 Recording ACV ITNV/M=O Faults 

In order for the microcode to determine the nature of the memory management fault detected 
by the Mbox, the Mbox must record the necessary fault information. The fault information is 
recorded in Mbox IPRs which can be read by Ebox microcode. The fault information is stored in 
three of the registers in the MM:E register file which are accessible to microcode by IPR reads 
and writes: 

• The MMEADR register stores the virtual address associated with the ACV, TNV or M=O fault. 
As per SRM requirements, if the ACVrrNV fault occurred by referencing a PTE during a TB 
miss sequence, the MMEADR stores the original address and not the PTE address. 

• The :MMEPTE register stores the virtual or physical address of the Page Table Entry 
corresponding to a virtual reference upon which an M=O condition has been detected. 

• The M:M:ESTS register stores state which indicates to the microcode the context and type of 
fault corresponding to the ACVrrNVIM=O condition. The format ofMMESTS is shown below: 

Figure 12-55: IPR EA (hex), MMESTS 

31 30 29 2BI27 26 25 24123 22 21 20119 1B 17 16115 14 13 12111 10 09 OBI07 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 1 SRC 1 01 01 01 01 01 01 01 01 01 o 1 FAULT 1 01 01 01 01 01 01 01 01 01 01 01 MI ILVI:MMESTS 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
<---+----> 1 

1 1 
+---- LOCK 

Table 12-19: MMESTS Field Descriptions 

Name Extent Type Description 

M 

FAULT 

o RO 

1 RO 

2 RO 

15:14 RO 
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Indicates ACV fault occurred due to length violation. 

Indicates ACVtfNV fault occurred on PrE reference corresponding 
to MMEADR. 

Indicates corresponding reference had write or modify intent. 

Indicates nature of memory management fault. See Fault bit 
encodings below 
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Table 12-19 (Cont.): MMESTS Field Descriptions 

Name Extent Type Description 

SRC 28:26 RO Complemented shadow copy of LOCK bits. However, the SRC bits 
do not get reset when the LOCK bits are cleared. 

LOCK 31:29 RO Indicates the lock status of MMESTS. See LOCK encodings below. 
This field is cleared on EU'LUSH...MBO~II. 

Table 12-20: LOCK Encodlngs 

Defined LOCK values 
(binary) Definition 

000 MMESTS, MMEADR and MMEPrE are unlocked. 

001 valid IREAD fault is stored (no other IREAD fault can overwrite :MMESTS, 
MMEADR, or MMEPl'E). 

011 valid !box specifier fault is stored (only an Ebox reference fault can overwrite 
MMESTS, MMEADR, or MMEPI'E). 

111 valid Ebox fault is stored (MMESTS, MMEADR, and MMEPI'E are 
completely locked). 

Note that the encodings for the SRC bits are the complemented version of the the LOCK bits. Thus, 
for example, a fully locked SRC encoding is 000. 

Table 12-21: FAULT Encodlngs 

Defined FAULT values 
(binary) Definition 

01 ACV Fault. This is the highest priority fault in the presence of multiple 
simultaneous faults. 

10 TNV Fault. This is the next highest priority fault. 

11 M::O Fault. This is the lowest priority fault. 

Due to the macropipeline design, the :MMEADR, MMEPTE and MMESTS registers must be 
conditionally loaded in a prioritized fashion. These registers are loaded depending on the relative 
states of their current contents and on the context of the current fault. If the MMESTS register 
is empty, the current fault state is always loaded. If the MMESTS register contains a valid 
fault condition, the M:M:EADR, MMEPI'E and MMESTS are only loaded if the current fault is 
associated with a pipe stage further along in the pipe than the stage corresponding to the stored 
MMESTS state. This loading priority is necessary because these memory management faults 
must be reported within the context of the execution of the instruction they are associated with. 
A fault detected on an Ebox reference is loaded provided that another Ebox reference fault is 
not already loaded. Faults detected on Ibox specifier references are only loaded if no Ebox or 
lbox specifier reference fault is currently stored. Faults on Ibox I-stream references are only 
loaded if the :M:M:ESTS register is empty. In effect, the MMESTS register captures the first 
memory management exception that will be associated with Ebox execution. Stated differently, 
it captures the fault which occurs farthest along in the macropipeline. 
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The LOCK field of MMESTS specifies the source of the faulting reference currently stored 
in MMESTS. Thus, the decision to load another faulting reference into MMESTS is made by 
examining the bits of the LOCK field. 

The FAULT field is set in a prioritized manner. That is, an ACV fault takes precedence over 
a TNV or M=O fault. A TNV fault takes precedence over an M=O fault. Therefore, if multiple 
pending fault conditions are true, only the fault condition with the highest priority is reported in 
the M:M:ESTS register. 

When the Ebox starts the memory management exception microflow, it issues an IPR_RD to the 
MMESTS to determine the nature of the memory management fault. The MMESTS register is 
automatically unlocked by resetting the LOCK field when the E%FLUSB_MBOx..B signal is asserted 
by the Ebox. 

12.5.1.5.3.6 ACVITNV/M=O MME_DATAPATH Sequence 

When an ACVtrNVIM=O condition occurs the MME_DATAPATH performs the following actions 
in order to record the fault for subsequent use by the Ebox microcode. 

• cycle 1: AGV, TNY, or M=O condition is detected. MME_ADDR latches M_QUEo/cS5_ VA..,.B 
address. Note that the S5 reference is NOT aborted. 

If the faulting reference is associated with an Ebox reference, Mo/cMME_TRAP_L is asserted to 
the micro sequencer to generate a memory management microtrap. If the faulting reference 
was associated with a DEST_ADDR command, the MME fault is logged in the corresponding 
PA_QUEUE entry. In all other cases (lREADs and Ibox D-stream reads) M%MME_FAULT_B 
qualifies the M%MD_BUS_B indicating that the requested data had a memory management 
problem. 

• cycle 2: If this ACV/TNVIM=O sequence was not invoked from a previous MME_SEQ flow, the 
contents of MME_ADDR are loaded into TMPl. If this sequence was invoked from another 
MME_SEQ flow, TMP1 is not loaded because it already contains the original address that 
must be reported for this ACVtrNV condition. 

• cycle 3: The source of the reference which directly/indirectly invoked the MME fault is 
compared to M:M:ESTS<31:29> (the LOCK field) to determine whether this fault should be 
recorded in MMEADR, MMEPTE, and in MMESTS. If a previous fault of equal or greater 
priority is already stored in MMESTS, MMESTS, MMEADR, and M:M:EPTE are not updated. 
If the LOCK field indicates that this fault should be recorded, MMEADR is loaded from TMP1 
and MMESTS is updated as follows: 

Table 12-22: MMESTS State Update 

fault type MMESTS<15:14> 

ACV without MME_SEQ active (no modify intent) 01 

ACV without MME_SEQ active (modify intent) 01 

M=O 11 

length violation on ref during TB_MISS seq (no modify) 01 

length violation on ref during TB_MISS seq (modify intent) 01 
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MMESTS<2:O> 

000 

100 

100 

001 

101 
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Table 12-22 (Cont.): MMESTS State Update 

fault type MMESTS<15:14> MMESTS<2 

length violation on PTE ref during TB_MISS seq (no modify 01 011 
intent on original reference) 

length violation on PTE ref during TB_MISS seq (modify 01 111 
intent on original reference) 

TNV on PTE ref during TB_MISS seq (no modify intent on 10 010 
original reference) 

TNV on PTE ref during TB_MISS seq (modify intent on 10 110 
original reference) 

The LOCK field of :MMESTS is updated appropriately. 

• cycle 4: If MM:ESTS was updated during cycle 3, and the fault was M=O, the corresponding 
PTE address is formed using TMPl, the appropriate XBR and A+B ALU operation. The PrE 
address is then loaded into MMEPrE. 

12.5.1.5.3.7 Microcode Invocation of ACV/TNVIM::O 

Microcode is invoked for ACVITNVfM=O faults in three different ways: 

• If the faulting reference originated from the Ebox, then the Mbox asserts M%'M:MILTRAP _L to 
invoke a memory management microtrap. M%MMILTBAP_L is asserted at the end of the cycle 
in which the ACTfINVIM=O fault was detected. Thus, from a microcode point of view, the 
microtrap happened before the EM_LATCH contents were retired. This microtrap invokes 
the ACV rmv IM=O microflow which handles the fault in the context of the reference executing 
in the Ebox. 

• If the faulting reference is a read sourced by the Ibox (either a D-stream or I-stream read), 
M_QUEo/cS5_QUAL_H<O> is set indicating that a memory management fault should be forced 
on this read. When the read propagates into S6, the Mbox forces the Pcache to hit and 
returns invalid data. This data, however, will be qualified with the M%MME_FAULT_H signal 
to indicate that the data is invalid and that an ACVITNVIM=O fault is associated with this 
data. When the Ebox references the corresponding D-stream operand, or requires the decode 
of the corresponding I-stream data, a microtrap is generated by the Ebox to invoke the 
ACVITNVIM=O microfiow. 
If an MME fault occurs on the address of the address of an operand (i.e. Ibox decoding a 
deferred specifier), the Mbox records the fault in MMEADR and MMESTS in the usual way 
and returns data qUalified by M%MM1LFAULT_H. In some instances, the Ibox must issue a 
second reference to the Mbox based on the address returned by the first reference. Due to 
the fault however, the Ibox cannot issue a valid operand read address since the data returned 
by the first reference was invalid. In this case, the Ibox issues a read qualified with the 
I%FORCEJWME_FAULT_R signal. This causes the Mbox to "fake" an ACVITNV violation by 
qualifying the returned data with M(~MltUtFAULT_R. This reference is trapped on when the 
Ebox references the operand. 
Note that when the Mbox "fakes" an ACVlTNVfM=O violation, the MME_DATAPATH does 
not invoke a memory management response to either an ACTtrNVlM=O problem or to a 
TB_MISS. Further, no state update is performed for either the MMESTS or MME_ADDR. 
Thus, these registers still record the true ACV/TNV error. 
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• If the faulting reference is a DEST_ADDR, an ACVtrNVlM=O hit in the PA_QUEUE is set 
in the corresponding PA_ QUEUE entry. When the Ebox microcode checks for the validity 
of the PA_QUEUE in order to send the corresponding STORE data, the Ebox detects the 
ACVtrNVlM=O condition and generates the microtrap. 

The PA_QUEUE hardware must guarantee that the first PA_QUEUE entry of an unaligned 
pair of entries must he marked with the ACVlTNVIM=O condition regardless of which of the 
two references caused the fault. This is necessary so that the microcode takes the proper 
action at the start of the reference. 

If an ACV length violation or a TNV fault is generated on an Mbox PTE reference, the original 
reference (i.e. the reference that caused the memory management sequence which generated the 
PTE reference) must be marked as having an :MM:E fault associated with it. Thus, when the 
original reference is retried after the memory management sequence completes, the reference 
will be treated as if the MM:E fault was associated with it. Note that the l\fMESTS register 
records the fact that the actual fault was associated with the PTE reference and not the original 
reference. 

12.5.1.5.3.8 Microcode Processing of ACV ITNV IM=O: 

The NVAX macropipeline design can cause synchronization problems related to operating system 
processing of PTEs. The SRM states that "software is not required to flush TB entries after 
changing PTEs that were already invalid." Consider the case where an Ibox read prefetches 
an invalid PTE from a page table. Just after this read, the Ebox completes the previous 
macroinstruction by updating, validating and writing the same PTE back to memory. When 
the Ebox references the prefetched PTE operand, an invalid TNV fault will be generated because 
the PTE has just been validated. 

To prevent this scenario from occurring, the memory management fault microcode must re-test 
for fault conditions before invoking the actual fault sequence. If no fault is detected at this 
time, no fault processing occurs. Microcode re-tests the fault conditions by first asserting 
E%FLUSH_MBOX_H, which unlocks MMESTS and clears pending Mbox references. Following this, 
the microcode reads the fault address from MMEADR via an IPR_RD command and then issues 
a TBIS command corresponding to this faulting reference. The TBIS will clear out the potentially 
out-of-date PTE in the TB which is associated with the fault. The microcode will then issue a 
PROBE command to the same address. The PROBE will cause the updated PTE to be cached 
in the TB (unless a TNV fault is detected) and will record the new fault status in MMESTS 
and return the status to the Ebox. Note that the PROBE command does not lock MMESTS. If 
the microcode detects a valid fault upon reading the PROBE status, microcode fault processing 
continues. Otherwise, the instruction is restarted without causing a memory management fault. 

If a real ACV or TNV fault was detected, it re-reads M:M:ESTS to get the updated status based on 
the last PROBE operation. The microcode constructs and pushes the memory management fault 
stack frame consisting of the fault status, the contents of MMEADR, the PC of the corresponding 
instruction, and the PSL at the time of the fault. The microcode then reads the appropriate 
SCB (System Control Block) vector corresponding to either the ACV or TNV fault. Based on 
this vector, the microcode sets the appropriate CPU execution mode and redirects the PC to 
the appropriate operating system memory management macrocode fault handler. This software 
fault handler reads the fault status and the faulting address from the stack and processes the 
ACV or TNV fault based on this information. Once the fault is processed, an REI is executed, the 
macropipeline is flushed, and normal instruction processing resumes by restarting the instruction 
that originally caused the fault. 
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If the microcode read MMESTS and determined the fault to be an M::O condition, the microcode 
processes the fault without the aid of operating system sofware. To do this, the microcode performs 
the following actions: 

1. A TBIS command is issued which references the faulting address. This reference will cause 
the PTE, which was used to detect the M=O fault, to be invalidated from the TB. 

2. The microcode will then test the faulting address to determine whether it was a process or 
system space reference. If it was a system space reference, the corresponding 8PTE address 
must be a physical address. If it was a process space reference, the corresponding PPTE 
address must be a virtual address. 

3. The microcode then issues a DREAD using the PTE address it read from MMEPTE. 
If the microcode determined the PrE to be an SPTE, the read is issued with 
M_QUEo/tS5_QUAL..H<6>=O indicating a physical read. If the microcode determined the PrE to 
be a PPrE, the read is issued with M_QUEo/cS5_QUAL_H<6>=1 and M_QUEo/cS5_QUAL_H<2>=1 
indicating a virtual read with ACV and M=O checks disabled because the Mbox must not 
perform M=O checks and ACV protection checks on PrE references. 

4. When the PTE data is received, the Ebox sets the modify bit of the PrE indicating that 
the corresponding page is written. The new PrE is then written back into the page table 
in memory by issuing a physical WRITE or a virtual write with ACV IM=O checks disabled, 
depending on the physical or virtual nature of the PTE. 

5. The microcode then flushes the macropipeline and resumes normal instruction processing by 
restarting the instruction corresponding to the M=O fault. 

Note that when the address which caused the M=O fault is restarted after the M=O fault was 
serviced, the Mbox will generate a TB_MISS condition since the old PTE was invalidated from the 
TB. Subsequently, a TB_MISS sequence will be invoked which will cause the new PTE to be read 
into the Mbox and cached in the TB. 

12.5.1.5.3.9 Pipeline Implications of ACV /TNV IM=O condition 

12.5.1.5.3.9.1 Pipeline Effects for MME Faults on Write References 

If an Acv, TNV or M::O condition occurs on a write reference, the faulting write is transformed 
into a NOP command in the S6 pipe. Thus, the Pcache and Bcache are prevented from modifying 
any memory state as a result of a memory management fault detected in 85. 

12.5.1.5.3.9.2 Pipeline Effects for MME Faults on Read References 

If the faulting reference is a read, the read must be prevented from leaving the Mbox pipe since a 
read to 110 space could cause detrimental state changes. This is handled by forcing the deassertion 
ofMo/tCBOX,.REF_ENABLE_L which causes the Cbox to ignore the read. 

12.5.1.5.3.9.3 Pipeline Effects of E%FLUSH_MBOX_H on MME State 

A more subtle implication involving the NVAX macropipeline exists whieh affects updating 
recorded Mbox MME state. Since the MME_SEQ executes independently of the Ebox microcode, 
the MME_8EQ must appropriately synchronize to Ebox execution such that MME state will not 
be updated for references that will never be processed by the Ebox. 
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Consider the following situation. A tb_miss sequence has begun. on a specifier reference. During 
this sequence, the Ebox detects a branch mispredict which causes redirection of the processing 
stream. As the PTE data is returned to the Mbox, a TNV condition is detected. This TNV must 
not be recorded because it corresponds to a reference which the Ebox will not see due to the 
redirection of the execution stream. 

From the Mbox point of view, handling this scenario can be generalized as follows. If the Mbox 
receives a Eo/oFLUSH_MBOX signal during any memory management sequence which may update 
mme state, one of three possibilities will happen: 

1. If E%FLUSH_MBOX is received after MME state has been updated, E%FLUSH_MBOX will unlock 
MMESTS so that only Iv.IME state corresponding to the redirected execution stream will be 
recorded. 

2. If E%FLUSH_MBOX is received during the cycle that an mme state update is being done, 
the functional effect of E%FLUSH..MBOX will predominate, thus causing the MMESTS to be 
unlocked. 

3. If E%FLUSH_MBOX is received before the state update, :MMESTS will be cleared by 
E%FLUSH..MBOX and a state bit will be set which will inhibit any mme state updates during 
the remaining mme sequence. 

Note that the analogous problem exists when processing a memory management sequence on an 
IREAD when I%FLUSH_IREF _LAT_H is asserted. In this case, the following three possibilities can 
occur: 

1. IfI%FLUSH_mEF_LAT_H is asserted when MMESTS contains a validated fault on an IREAD, 
I%FLUSH_mEF _LAT_H will unlock MMESTS. 

2. If I%FLUSH_mEF _LAT_H is asserted during the cycle that an mme state update is being done 
on an IREAD reference, the functional effect of Io/oFLUSH_mEF _LAT_H will predominate, thus 
causing MMESTS to be unlocked. 

3. If I%FLUSH_mEF_LAT_H is received before a MMESTS update but during a memory 
management fault sequence invoked from an IREAD, MMESTS will be cleared by 
I%FLUSH_mEF_LAT_H and a state bit will be set which will inhibit the subsequent mme state 
update. . 

Note that while a special state bit is necessary to synchronize MME updates with Ebox execution 
stream redirection, no special mechanism is required to keep TB state synchronized. There 
are two reasons for this. First, the TB never validates a PTE whose PrE valid bit is clear. 
Secondly, the Mbox arbitration logic prevents Ebox references such as TBIS, TBIP, and TBlA 
from executing when a memory management sequence is executing. Therefore, TB state updates 
are always serialized ~th respect to TB invalidates generated by the Ebox microcode. 

12.5.1.5.3.9.4 Pipeline Effects of E%FLUSH_MBOX_H on M%MME_TRAP_L 

Just as E%FLUSH~BOx....H must be examined in order that MME state remains synchonized 
to Ebox execution, E%FLUSH_MBOX_H must also be factored into the logic which generates 
Ml1cMME_TRAP_L. This prevents the following scenario from occurring. If the Ebox has issued a 
DREAD which misses in the Pcache as a result of a MOVC instruction, the Mbox will propagate 
the reference forward to the Cbox. While the read is pending, the Ebox issues an MME_ CHK 
command which TB misses causing the Mbox to initiate a TB miss sequence. During this 
sequence, the Cbox returns the read data qualified by Co/oCBOX_HARD_ERR_H. This causes the 
Ebox to microtrap into the error handler resulting in the assertion of E%FLUSH_MBOX_H. If the 
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Mbox were to subsequently assert M%MME_TRAP _L based on a memory management fault on the 
MME_CHK command, the Ebox would microtrap out of the error handler and initiate MME fault 
sequence that should never occur. 

Thus, the assertion of E»OFLUSB.JWBOx...U during a memory management sequence inhibits 
the assertion of M%MME_TRAP_L during that cycle or any subsequent cycles of the memory 
management sequence. 

12.5.1.5.4 Cross Page Sequence 

When an unaligned virtual reference falls across a page boundary, ACVtrNVlM=O checks must 
be performed on both pages before the Mbox can determine if the reference passes or fails ACV 
checks. The function of the cross-page sequence is to generate an :M:ME_CHK reference to check 
the second page (i.e. the upper page) for ACV/rNVIM=O problems. As long as the MME_CHK 
clears memory management checks before the reference is allowed to execute, the reference can 
be processed in the normal manner because ACVITNVIM.=O checks on the first page (i.e. the 
lower page) will naturally occur as they do on all virtual references. If an ACVrrNV problem is 
found on either page, an ACV trNV condition is flagged for the reference. 

When the cross-page detection logic flags a cross-page condition, the following cross-page sequence 
is invoked: 

• cycle 1: The cross-page condition is detected. The 85 reference is aborted. The MME_ADDR 
latches the M..QUE%S5_ VA...H address. 

• cycle 2: The MME_DATAPATH adds 512 to the address in MME_ADDR. The resulting 
address is guaranteed to fall into the upper page of the original reference for all byte, word, 
longword and quadword references. This address is loaded into the !\{ME_LATCH qualified 
by an MME_CHK command. The MME_CHK reference (with DL=byte) will perform memory 
management checks on the upper page. 

• cycle 3: The MME_CHK is executed in 85 (assuming no Cbox reference took priority). If 
a TB_MI88 occurs, the TB_MI8S sequence is first invoked to obtain the proper translation. 
Once the TB has been updated based on the TB_MISS, the original MME_CHK reference will 
be restarted and the cross-page sequence will be re-invoked from the beginning. 

When the translation of the MME_CHK reference has properly occurred, ACVIM=O checks are 
performed (note that TNV checks are only performed when the PTE is to be fille,d in TB). If an 
ACVITNVfM=O fault is detected during the MME_CHK processing, M_QUEo/fB5_QUAL_B<O> of 
the original reference, which caused the cross-page sequence, is set. Thus, when this reference 
is restarted, an MME fault will be reported. If no ACVITNV/M=O condition was detected on 
the upper page, the original reference is marked as having passed the cross-page condition 
(M_QUE%S5_QUAL_H<5> is set). 

• cycle x: The original reference is restarted. If no ACVITNVIM=O fault occurred on the upper 
page the reference executes normally without further cross-page checks. 

If the reference was marked as having an MME fault, the reference fault will be reported in 
the previously-described fashion (see Section 12.5.1.5.3.7). 

The cross-page sequence is only invoked on a virtual reference when memory management is 
enabled. 
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12.6 MBOX ERROR HANDLING 

12.6.1 Types of Errors Handled 

Mbox plays a role in the processing of the following types of errors: 

• TB tag parity errors. 

• TB data parity errors. 
• Pcache tag parity errors. 
• Pcache data parity errors. 

• Errors encountered by the Cbox while processing a memory read, I/O space read, or IPR_RD 
which were transferred from the Mbox to the Cbox. Note that these errors could originate 
from the Bcache, NDAL or memory subsystem. 

All other possible errors are handled without Mbox involvement. 

12.6.2 TB parity error detection 

12.6.2.1 TB tag parity error detection 

Conceptually, a single bit of even parity representing TB tag parity is stored in each TB entry. 
Whenever a valid tag entry matches the 85 virtual page address, the corresponding tag parity 
data is accessed and driven out of the °TB array for a subsequent parity check. Thus tag parity 
errors are only detected on the entry which causes a TB hit condition. 

The value of tag parity with which the stored parity data is compared to is calculated in parallel 
with the TB access by using the virtual page address found on M_QUE%S5_V~H<31:9>. This 
scheme eliminates the need to drive out the matched tag entry in order to calculate parity. 
If the tag matched the virtual page address, then the correct parity value can be derived from 
M_QUE%S5_ V.A.,.H<31:9> instead of from the stored tag. This scheme is called predicted parity. 

Tag parity in a fully associative cache can cause several different failure modes since the tag 
state directly determines which entry (or entries) are selected during each TB access. Assuming 
a single bit soft failure occurs in a single TB tag (i.e. a tag bit accidentally toggles due to 0 some 
transient failure mode), three possible failure modes are possible: 

1. A single bit tag error can cause no TB entry to match because the tag no longer compares 
with the virtual page address that it should have compared to. Thus, a TB_MISS condition 
is generated which causes the PTE data to be accessed from memory. This PrE data, along 
with its corresponding tag, will be written into a TB entry. In effect, this scenario causes the 
single bit tag error to remain undetected, but does not corrupt the virtual address translation 
process. 

2. A single bit tag error may cause exactly one TB entry to match because the incorrect tag 
entry happens to match a virtual page address which is not already cached in the TB. In 
this situation, the tag parity read out of the TB is guaranteed not to match the virtual page 
address parity. Thus a TB tag parity error will be correctly detected. 

3. A single bit tag error may cause two TB entries to match because the incorrect tag entry 
happens to match a virtual page address which is already cached in the TB. Thus, the correct 
tag entry detects a match at the same time as the incorrect tag entry detects a match. 
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Due to the wired OR function implicit in accessing data off of a shared bit line within the TB 
array, it is possible that the tag parity read out of the array matches the parity of the virtual 
page address causing no tag parity error to be detected. In this case, the wired OR function on 
the PTE bit lines will OR the two accessed PTE entries together causing an incorrect PTE to 
be read out. If an even number of PTE bits were corrupted by the simultaneous PrE access, 
the parity logic associated with the PTE data will not detect a problem. This is a disatrous 
situation to the currently-executing CPU process because the TB will produce an incorrect 
translation without producing a parity error . 

.As a result of the undetected fatal parity error discussed in this third case, a single bit of tag 
parity is stored in both its true and complement form in each TB entry. For a single entry 
match, these two parity lines always produce a "01" or "10" value. Due to the wired OR access, a 
two-entry TB match due to a single bit tag parity error, produces a "11" parity access indicating 
a multiple tag match and a tag parity error. 

TB tag parity is written along with the tag during a TB_TAG_FILL operation. 

12.6.2.2 TB data parity error detection 

Data parity error detection is conceptually simpler than tag parity detection. When a TB hit 
condition occurs the accessed PTE data is driven out of the TB along with the corresponding 
stored data parity. Parity is then calculated on the data and compared with the stored parity. A 
miscompare results in a TB data parity error. TB data parity is a single bit corresponding to the 
entire stored PrE field. 

TB data parity is written along with the PTE data during a TB_PTE_FILL operation. 

12.6.3 Pcache parity error detection 

12.6.3.1 Pcache tag parity error detection 

Pcache tag parity is stored and checked as a single bit representing even parity across the entire 
20-bit tag field. Unlike the TB implementation however, true and complement versions of single 
bit tag parity are not implemented-only the true version is implemented. 

There are two separate aspects to Pcache tag parity error detection. The first aspect employs 
the "predicted parity" scheme which was used for the TB. However, the Pcache does not use 
predicted parity to directly detect tag parity errors. Instead, predicted tag parity is factored into 
the Pcache hit logic such that a Pcache miss will be forced if the tag parity does not agree with 
the parity calculated on the input address. By doing so, the tag parity design does not have to 
handle the case of a Pcache hit causing data to be returned to the Ibox, Ebox or Mbox in the 
presence of a Pcache tag parity error. Pcache predicted tag parity works by generating parity 
on Mo/D86_P.A.....H<31:12> at the same time as the Pcache access is taking place. If a validated 
tag matches the address on Mo/aSG_P.A.....H<31:12>, but the tag parity does not match the predicted 
parity, a Pcache miss is forced. 

The second aspect of Pcache tag parity error detection explicitly detects the tag error condition 
after the Pcache access has completed. Both banks of the tag store have their own tag parity 
generator. When both tags of the addressed Pcache index are driven out of the tag store, the two 
parity generators calculate tag parity based on the two accessed tags. These calculated values are 
compared to the corresponding stored tag parity which was accessed from the tag store with the 
tag data. If a miscompare occurs, a tag parity error is flagged. Note that this mechanism allows 
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miscomparing tags to be flagged as tag parity errors while the other tag may simultaneously 
generate a Pcache hit or miss. 

Pcache tag parity is checked on both tags on all Pcache I-stream read operations only when 
I_ENABLE=1 and FORCE_ffiT=O in the PCCTL. Pcache tag parity is checked on both tags on 
all Pcache D-stream read and write operations only when D_ENABLE=l and FORCE_HIT=O 
in the PCCTL. When FORCE_HIT=!, tag parity is never checked. Pcache tag parity is never 
checked on an IPR_RD operation to a Pcache tag. Tag parity is written on a cache fill operation 
or on an IPR_ WR to a Pcache tag. 

12.6.3.2 Pcache data parity error detection 

Byte parity is maintained for each Pcache hexaword block.. Therefore, each block contains 32 bits 
of parity-one bit of even parity for each byte of data. 

Pcache data parity is checked on the same conditions as Pcache tag parity checks except for two 
differences: 

1. Unlike tag parity, Pcache data parity errors are only detected during a Pcache hit condition. 
One exception to this rules exists though. If the Pcache force hit condition exists due to a 
memory management fault or hard fault, then Pcache data parity is not checked in spite of 
the Pcache hit condition. 

2. Unlike tag parity, data parity is written into the array during a Pcache write operation rather 
than checked. Mo/tS6_BYTE_MASI(..H<7:O> enables writing data parity into the Pcache in the 
same manner as M%S6_BYTE~K..H<7:O> enables writing data into the Pcache. Therefore, 
each data parity bit is only updated as its corresponding byte of data is updated in the Pcache 
array. 

The Pcache data parity check begins following the completion of the Pcache read access. Correct 
parity is generated on all eight data bytes read out of the Pcache. Each bit of generated data 
parity is compared to its corresponding stored parity. If one or more mismatches is found, a 
Pcache data parity error has occurred. Note that the parity check is independent of which bytes 
of the eight accessed bytes were actually requested by the read reference. Therefore, a Pcache 
data parity error can occur even though the requested bytes of data have correct parity. 

12.6.4 Recording Mbox errors 

When any hard error is detected within the system, the error is recorded in one of many error 
status registers located throughout the NVAX system. When the operating system error handler 
routine is invoked from a microtrap or interrupt, the handler can read the state of all the error 
registers through IPR_RD operations to determine what error or errors were present when the 
error handler was invoked. 

The Mbox contains four of these error registers. Two are used to record TB parity errors and the 
other two are used to record Pcache parity errors. 
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12.6.4.1 TBSTS and TBADR 

The TB status register is shown below: 

Figure 12-56: IPR ED (hex), TBSTS 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 SRC 1 0 1 01 0 1 01 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 01 0 1 01 0 1 0 1 01 CMD 1 1 1 : TESTS 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 1 1 1 
EM VAL---------+ 1 1 1 

TPERR-------------+ 1 1 
DPERR----------------+ 1 
LOCK--------------------+ 

Table 12-23: TBSTS Field Descriptions 

Name Enent Type Description 

LOCK 

CMD 
SRC 

o 

1 

2 

3 

WC 

RO 

RO 

RO 

8:4 RO 

31:29 RO 

Lock. Bit. When set, validates TBSTS contents and prevents any 
other field from further modification. When clear, indicates that no 
TB parity error has been recorded and allows TBSTS and TBADR 
to be updated. 

Data Error Bit. When set, indicates a TB data parity error. 

Tag Error Bit. When set, indicates a TB tag parity error. 

EM_LATCH valid bit. Indicates if EM_LATCH was valid at the time 
of the error TB parity error detection. This helps the software error 
handler determine if a write operation may have been lost due to 
the TB parity error. 

S5 command corresponding to TB parity error. 

Indicates the original source of the reference causing TB parity error. 

Table 12-24: SRC Encodlngs 

Defined SRC values 

110 

100 

000 

Definition 

valid IREAD error is stored 

valid Ibox specifier reference error is stored 

valid Ebox reference error is stored 

See Figure 12r-27 for the format description of TBADR. 

When a TB parity error is detected with LOCK=O, TBADR is loaded with the virtual address 
which caused the TB parity error, and all fields of TBSTS are updated to record the nature of 
the TB parity error. Note that both the TPERR and DPERR bits can be set at the same time if 
these two error conditions occurred during the same cycle. When a TB parity error is recorded, 
the LOCK bit is set to validate the contents of both TBSTS and TBADR registers. When LOCK 
is set, all bits of both registers are frozen and cannot be changed until the LOCK bit is cleared. 
Thus, any subsequent error is not recorded if LOCK=1. 
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When the operating system. error handler is invoked, TBSTS and TBADR will be read through an 
IPR_RD command in order to determine if any TB parity errors were recorded. If the state of the 
LOCK bit was read to be a zero, then no error has occurred and the remaining state information 
in these two registers is invalid. If the LOCK bit was found to be set, then the remaining error 
state of these two registers characterizes the nature of the recorded error. 

Once the error handler has read these registers, it re-enables TBSTS to record any new errors by 
clearing the LOCK bit. Clearing the LOCK bit is accomplished by writing a "1" to LOCK through 
an IPR_ WR operation. 

12.6.4.2 PCSTS and PCADR 

The PCSTS register is shown below: 

Figure 12-57: IPR F4 (hex), PCSTS 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1 I 11 11 11 11 11 11 1 I CMD I 1 1 1 I : peSTS 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 1 I 1 I 
PTE_ER---------+ I I 1 I 
PTE ER WR---------+ I I I 
LEFT BANK---------------------------+ I 1 
RIGHT_BANK-----------------------------+ 1 
DPERR-------------------------------------+ 

LOCK-----------------------------------------+ 

Table 12-25: PCSTS Field Descriptions 

Name Extent Type Description 

LOCK o 

DPERR 1 
RIGHT_BANK 2 

LEFT_BANK 3 

CMD 8:4 

PTE_ER_WR 9 

PTE_ER 10 

we 

RO 

RO 

RO 

RO 

we 

we 

Lock Bit. When set, validates PCST8<8:1> contents and prevents 
modification of these fields. When clear, invalidates PCSTS<8:1> 
and allows these fields and PCADR to be updated. 

Data Error Bit. When set, indicates a Pcache data parity error. 

Right Bank Tag Error Bit. When set, indicates a Pcache tag parity 
error on the. right bank.. 

Left Bank Tag Error Bit. When set, indicates a Pcache tag parity 
error on the left bank. 

S6 command corresponding to Pcache parity error. 

Indicates a hard error on a PTE DREAD which resulted from a TB 
miss on a WRITE. 

Indicates a hard error on a PTE DREAD. 

The PCSTS and PCADR record Pcache tag and data parity errors. The function and operation 
of these registers is identical to the TBSTS and TBADR registers except that the PCADR stores 
physical quadword addresses rather than virtual byte addresses, and it also records PTE hard 
error events. The definitions of these registers are shown in Figure 12-29 and Figure 12-30. 
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Note however, that when PC8TS<O> is set, Pcache memory reads, writes and invalidates are 
disabled. 

The PCSTS is a partial misnomer in that it also records hard error state associated with fatal 
elTors occurring on Mbox PTE DREAD references. These hard errors have nothing to do with 
Pcache parity errors, however, they are included in PCSTS for implementation simplicity. 

The PTE_ER bit of PCSTS will set whenever the Cbox has returned fatal error status on a 
requested PrE DREAD. The PrE_ER_ WR bit of PCSTS will set whenever the Cbox has returned 
fatal error status on a requested PTE DREAD which was due to a TB miss on a WRITE reference. 
Both of these bits may be set independently of the LOCK bit of PCSTS. Further, the state of these 
bits are always valid regardless of the state of the LOCK bit. These two bits can only be cleared 
by a write-one-to-clear operation to each bit. 

12.6.5 Mbox Error Processing 

12.6.5.1 Processing TB parity errors 

TB tag parity errors can be detected on all commands which cause a TB tag lookup to occur (See 
Section 12.6.5.4). TB data parity errors can be detected on all commands in which data can be 
read out of the TB (See Section 12.6.5.4). 

For hardware simplicity, the detection of any TB parity error will cause the Mbox to generate a 
hard error microtrap and will cause the faulting reference and all pending Ibox, Ebox and Mbox 
references to be cleared. Thus, any TB parity error is fatal in the sense that it is non-recoverable 
and will cause a machine check. 

The following describes the specific sequence of events which occur following the detection of a 
TB tag parity error, or a TB data parity error: 

1. If the TBSTS register is locked, TB8TS state is not updated. Assuming the TB8TS is not 
locked, the TB parity condition is recorded in the TBSTS and the associated virtual address 
is loaded into TBADR. TBSTS and TBADR are subsequently locked by setting TBSTS<O>. 
The Mbox asserts M%TB_PEBR_TRAP_L to invoke a hard error microtrap. 

The valid bits of the IREF_LATCH, SPEC_QUEUE, EM_LATCH, VAP_LATCH, and 
RTY_DMISS_LATCH are unconditionally cleared to eliminate all pending references which 
might involve a subsequent TB operation. 

2. The TB parity error detection causes the MM:E_DATAPATH to invoke the TB parity error 
sequence. As a result, the MME_DATAPATH issues a TBIA command. 
The reference which caused the TB parity error is transformed into a NOP command as it 
propagates into the- 86 pipe. Thus, this reference will not modify any Pcache, Bcache or Cbox 
state. 

3. The TBIA command executes in 85 causing all TB entries to be invalidated and for the NLU 
pointer to be reset. All TB entries are invalidated rather than just the one which caused the 
parity error. This is done based on the premise that a single soft failure in the TB may affect 
more than one entry. Thus, each distinct soft failure will only be detected and reported once. 
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12.6.5.2 Processing Pcache parity errors 

Pcache tag parity errors can be detected on all commands which cause a Pcache tag lookup to 
occur (See Section 12.6.5.4). Pcache data parity errors can be detected on all commands in which 
data is read out of the Pcache (See Section 12.6.5.4). 

The strategy behind processing Pcache parity errors is to tum. off the Pcache and let the Cbox 
process the reference from the Bcache or from main memory. Thus, in the absence of any of 
errors from the Cbox or memory subsystem, a Pcache parity error never causes an error fatal to 
the currently executing process. 

The following describes the specific sequence of events which occur following the detection of a 
PCACHE tag parity error: 

1. The Pcache tag parity error is recorded in it and the corresponding physical address is 
recorded in PCADR. PCADR and PCSTS are subsequently locked by setting the LOCK bit of 
PCSTS. Locking PCSTS automatically disables the Pcache from performing any subsequent 
non-IPR operations. 

The Mbox asserts MtfcMBOX".S_ERROR_H to :Bag an interrupt which will guarantee that the 
parity error will be recorded as a soft error at some future time. 

If the Pcache operation is a write, the Cbox will automatically continue processing the 
reference independent of any parity error condition. In the case of read operations, the 
predicted parity mechanism guarantees that a Pcache miss condition will occur when a tag 
parity error is detected. Thus, M%CBOX".REF _ENABLE_L is asserted in response to the Pcache 
miss condition causing the Cbox to continue to process the read reference. 

The following describes the specific sequence of events which occur following the detection of a 
PCACHE data parity error: 

1. The Pcache data parity error is recorded in it and the corresponding physical address is 
recorded in PCADR. PCADR and PCSTS are subsequently locked by setting the LOCK bit of 
PCSTS. Locking PCSTS automatically disables the Pcache from performing any subsequent 
non-IPR operations. 
The Mbox asserts M%MBOX".S_ERROR_H to :Bag an interrupt which will guarantee that the 
parity error will be recorded as a soft error at some future time. 
If the Pcache operation was a read in the absence of an outstanding fill operation, then 
M%CBOX".LATE_EN_H is asserted to inform the Cbox that it must continue to process the S6 
reference because of the Pcache data parity error. M%CBOX".LA.TE_EN_H may be asserted in 
spite of the fact that M%CBOX_REF_ENABLE_L was deasserted earlier in the cycle because 
M%CBOX".REF_ENABLE_L is dependent on the Pcache hit condition but not on the parity error 
detection. The Pcache read reference is loaded into the corresponding MISS_LATCH and the 
read is treated in subsequent cycles as a normal Pcache miss sequence. 

If the Pcache operation was a D-stream read which occurred during an outstanding fill 
operation, M%CBOX".LATE_EN_H is not asserted because the Mbox and Cbox are unable to 
handle another fill at this point. When the the fill sequence completes, this reference will be 
retried (from the RTY_DMISS_LATCH), and MtfcCBOX".LATE_EN_H will be issued. 
Note that M%CBOX".LATE_EN_H is never asserted during a Pcache write operation. 
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12.6.5.3 Processing Cbox errors on Mbox-lnlUated read-like sequences 

The Cbox detects errors that occur in the Bcache, NDAL or memory subsystem. When the Cbox 
detects one of these errors, and it is associated with an Mbox-initiated reference that requires 
data to be returned (e.g. memory read, 110 space read, or IPR read), the Mbox must transfer the 
eITor status of the reference back to the destination corresponding to the reference. The Mbox 
never records a Cbox-detected eITor in Mbox error registers because the eITor is logged in Cbox 
eITor registers. 

12.6.5.3.1 Cbox-detected ECC errors 

The Cbox returns requested data through a I_CF or D_CF command to the Mbox while 
simultaneously checking the error-coITeCtion code to check for a possible Bcache error. If an ECC 
eITor is found, the Cbox asserts Co/cCBOx...ECC_ERR_H. This causes the Mbox to latch a NOP in 
the CBOX_LATCH rather than the cache fill. As a result, the Mbox does not perform any Pcache 
state updates resulting from the bad data nor does it assert M%VIC_DATA.L, M%mox...DATA_L, 
M%EBOx...DATAJI, or MO/ciMBOx...DATA to indicate the presence of valid data. 

During subsequent cycles, the COOx will determine if the ECC error is correctable or not. If it 
is, the data will be corrected and returned. If the data is not cOITectable, a Cbox-detected hard 
eITor has occurred and will be dealt with as described below. 

Note that the ECC detection mechanism is what verifies the validity of the data. The COOx does 
not send any parity information in order for the Mbox to check the validity of the received data. 

12.6.5.3.2 Cbox-detected hard errors on requested fill data 

If the Cbox has determined that the requested data cannot be returned for some reason, the 
Cbox drives a cache fill command qualified by C%cBOx...BARD_ERR_R. When this happens, the 
Mbox performs the following actions: 

1. The assertion of C%CBOx...HARD_ERR_H indicates to the Mbox that the cache fill data is invalid. 
Thus, the Mbox returns the invalid data on the M%MD_BUS_H in the same manner that all 
data is returned except that the data is further qualified by M%BARD_ERR_H. M%HARD_ERR_H 
informs the receiver that the data is invalid and that the requested data cannot be returned 
due to a hard error. 

2. Once the COOx detects a hard eITor on the requested data, the Cbox immediately terminates 
the pending fill sequence by the assertion of C%LAST_FILLJI. Thus, no further data 
corresponding to the same fill sequence will be returned and the Mbox fill sequence 
corresponding to the eITor is terminated by invalidating the corresponding MISS_LATCH. 

3. An I_CF or D_CF command which is qualified by C%cBOX_HARD_ERR_H is interpreted by the 
Pcache as an INVAL command. Thus the invalid data is not filled in the Pcache. 
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12.6.5.3.3 Cbox-detected hard errors on non-requested fill data 

The Cbox performs the same actions as described above to indicate the presence of a hard error 
regardless of whether the data is the requested data or just one of the other three pieces of fill 
data for the corresponding Pcache block. If the data is non-requested fill data, the Mbox performs 
the following actions: 

1. Once the Cbox detects a hard error on the non-requested data, the Cbox immediately 
terminates the pending fill sequence by the assertion of C%LAST_FlLL_H. Thus, no further 
data corresponding to the same fill sequence will be returned and the Mbox fill sequence 
corresponding to the error is terminated by invalidating the corresponding MISS_LATCH. 

2. An I_CF or D_CF command which is qualified by C%CBOX_HARD_ERR_H is interpreted by the 
Pcache as an INVAL command. Thus the invalid :fill data is not filled in the Pcache and 
all previous fills to the same block are invalidated. This is necessary in order to maintain 
coherency between the Pcache and Bcache because a Bcache data block will only be validated 
if all the data within the block is error-free. 

12.6.5.3.4 Microcode Invocation on Cbox-detected Hard Errors 

When the Cbox indicates a hard error on requested read data, invalid data is -driven on the 
M%MD_BUS_H qualified by M%HARD_ERR_B to indicate that the data is invalid due to a hard error. 
When the Ebox references the corresponding data a microtrap is generated by the Ebox to invoke 
the hard error micro:flow. 

If the hard error occurs on the address of the address of an operand (i.e. Ibox decoding a deferred 
specifier), the Mbox returns data qualified by M%BARD_ERR_B in the normal manner. However, 
in some instances, the Ibox must issue a second reference to the Mbox based on the address 
returned by the first reference. Due to the hard error however, the Ibox cannot issue a valid 
operand read since the data returned by the first reference was invalid. In this case, the Ibox 
issues a read qualified with the I%FORCE_BARD_FAULT_B signal. 

If this deferred specifier is a source operand, the Mbox "fakes" a hard error on this read by forcing 
a Pcache hit and by qualifying the returned data withM%BARD_ERR_B. This reference is trapped 
on when the Ebox references the operand. 

If this deferred specifier is a destination specifier, the Mbox sets the corresponding hard error 
bit in the the PA... QUEUE. The hard error condition is then propagated to the Ebox through 
M%PA...Q..STATUS_B<2>. 

If a hard error is generated on an Mbox PTE reference, this fact is recorded in the PCSTS 
register (see Section 12.6.4.2), the tb_miss sequence is immediately terminated, and the original 
reference (i.e. the reference that caused the memory management sequence which generated the 
PTE reference) is tagged as having the hard error associated with it. 

When the original reference is retried after the memory management sequence completes, the 
reference will be treated as if the hard error actually occurred on it. 

If the original reference was a read from the Ibox, the Mbox asserts M%RARD_ERR_H as it retums 
the invalid data to notify the Ibox or Ebox of the problem. The error handler will be invoked by 
the Ebox once the Ebox references the invalid data. The error handler will then read all error 
registers in the system to determine the nature of the error (note that the Cbox has recorded the 
physical PrE address of the fatal read). 
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Hard errors on PTE DREADs resulting from a TB miss on a DEST_ADDR get reported through 
the M%PA,..Q...STATUS_B<2> mechanism described. above. 

Thus, any hard error on a PrE reference invoked. by an Ibox reference will always be reported 
within the context of the executing instruction. However, fatal errors on PTE DREADs resulting 
from MME_CHK and WRITE references pose a more difficult problem than PrE errors resulting 
from reads. Since both of these references do not cause the Ebox to wait for a response from the 
Mbox, a more involved sequence is implemented in order to maximize the ability to report the 
fatal eITor within the context of the cOITesponding instruction execution. 

Thus, when a PTE eITor is detected on ANY Ebox reference except for PROBEs, the following 
sequence will take place: 

1. The Mbox will immediately assert MtQfME_TRAP_L (unless the Ebox has previously asserted 
EVLUSH-.MBOx..H during the tb miss sequence). 

The MME sequencer will update MMEADR to record the original address of the reference 
which resulted in the tb miss sequence-it does not record the PTE address. The MME 
sequencer will update MMESTS<2> to indicate whether the original address had modify 
intent. The FAULT, PrE_REF, and LV fields of MMESTS are UNPREDICTABLE in this 
context. 

2. The assertion of MfQIME_TRAP _L will cause the Ebox to immediately trap to the mme 
microflow. 

3. The mme microflow will examine MMESTS<2> and issue a PROBE command to the address 
in MMEADR to determine to nature of the mme fault. 

4. The PROBE will invoke another TB miss. If the PTE error does not reoccur, valid PROBE 
status will be returned to the Ebox indicating the absence or presence of a true mme fault. 
In this case, Ebox processing of the current instruction will continue with no consequences 
due to the transient hard error. 
If the PrE error does reoccur on the TB miss during PROBE processing, the PROBE status 
returned. to the Ebox will be qualified with M%HARD_ERR_H indicating that a fatal error 
occurred during the PROBE reference. This will invoke the error handler within the context 
of the executing instruction. 

12.6.5.4 Mbox Error Processing Matrix 

The following table summaries all Mbox error handling. A blank entry in the table means that 
the corresponding error cannot occur for the given reference. 

Table 12-26: Mbox Error Handling Matrix 

Pcache 
TB tag TB data Pcache tag data parity Cbox hard 

Command parity error parity error parity error error error 

lbox references 

IREAD A A B D F 
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Table 12-26 (Cont.): Mbox Error Handling Matrix 

Command 

DREAD 

DREAD_MODIFY 

DEST_ADDR 

STOP _SPEC_Q 

Ebox references 

DREAD 

DREAD_LOCK 

STORE 

WRITE 

WRITE_UNLOCK 

IPR_RD (to Pcache) 

IPR_RD (non-Mbox) 

IPR_ WR (to Pcache) 

IPR_WR 
(non-Mbox) 

PROBE 

MME_CHK 

TB_TAG_FILL 

TB_Pl'E_FILL 

TBIS 

TBIP 

TBIA 

LOAD_PC 

Mbox references 

Pl'EDREAD 

TB_TAG_FILL 

TB tag 
parity error 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

TB_PrE_FILL A 
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TB data 
parity error 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

Pcach.e 
Pcache tag data parity COOl[ hard 
parity error error error 

B D F 

B D F 

B D F 

B F 

C 

C 

C 

F 

B D G 
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Table 12-26 (Cont.): Mbox Error Handling Matrix 

Command 
TB tag 
parity error 

TB data 
parity error 

Pcache tag 
parity error 

Pcache 
data parity 
error 

Cbox hard 
error 

A A 

Cbox references 

E 

H 

H 

LEGEND: 

A. 

B. 

C. 

D. 

• Mbox microtraps Ebox by assertion of M%TB_PEBR_TBAP_L during cycle error was 
detected. 

• The faulting reference and all pending lbox and Ebox references are blown away. 

• TBIA command is issued to invalidate entire TB. 

• TBSTS and TBADR are updated appropriately. 

• A Pcache miss condition is forced to occur on this read reference causing the assertion 
of MO/oCBOX-REF _ENABLE_L. This instructs the Cbox to continue processing the read 
reference. 

• M%MBOX-S_ERROR_B is asserted to post a soft error interrupt. 

• PCSTS and PCADR are updated appropriately (a side effect of this operation turns off 
the Pcache). 

• The Cbox continues to process the write reference, as is done on all write operations 
regardless of a Pcache parity error. 

• M%MBOx...S_ERROR_B is asserted to post a soft error interrupt. 

• PCSTS and PCADR are updated appropriately (a side effect of this operation turns off 
the Pcache). 

• M%CBOx...LATE_EN_B is asserted to instru.ct the Cbox to continue processing the reference 
which caused the Pcache parity error. 

• M%MBOX-S_ERROR_B is asserted to post a soft error interrupt. 
• PCSTS and PCADR are updated appropriately (a side effect of this operation turns off 

the Pcache). 
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• The invalidate operation takes place in spite of the tag parity error because the invalidate 
is only a function of matching all tag bits. 

• M~Ox..,S_ERROa..B is asserted to post a soft elTor interrupt. 
• PCSTS and PCADR are updated appropriately (a side effect of this operation turns off 

the Pcache). 

• The Cbox indicated a hard error for a non-PTE read or IPR_RD operation by the assertion 
of C%CBOx..,BARD_ERB._B and C%LAST_FlLL.-B. 

• If the hard error corresponded to the data explicitly requested by the Mbox reference, 
M%BABD_ERR_B qualifies M%MD_BUS_B data indicating to the M%MD_BUS_B receiver that 
a hard error occurred while accessing the requested data. 

• The fill sequence is immediately terminated by the assertion of C%LAST_FILL_B. and the 
entire Pcache block corresponding to the fill is invalidated. 

• The hard error detected by the Cbox on this Mbox-issued PTE DREAD is recorded in 
PCSTS. The tb miss sequence is immediately terminated. 
IF the error resulted from an Ibox reference, the error is tagged back to the appropriate 
Ibox reference latch. The error is then signaled via M%BARD_ERR_B when the 
requested data is returned on M%MD_BUS_B, or is reported through PA...Q...STATUS<2> (for 
DEST_ADDR commands). 
If the original reference came from the Ebox, M%MME_TRAP _L is asserted (in all cases 
except for PROBE references). This will invoke the memory management fault handler 
in order to try to report the hard error within the context of the execution of the instruction 
(see Section 12.6.5.3.4 for more information). 

• The fill sequence is immediately terminated by the assertion of C%LAST_F'ILkH. and the 
entire Pcache block corresponding to the fill is invalidated. 

H. C%CBOx..,BARD_ERR_B was asserted by the Cbox during an I_CF or D_CF command. This is 
the mechanism by which the Cbox informs the Mbox of a hard error during a read or IPR_RD 
operation where the Cbox must return data. Thus, see the error responses specified by F and 
G for the error response within context of the original read operation. 
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12.7 MBOX INTERFACES 

The Mbox passes data and/or control information to four other sections of the NVAX chip. These 
sections are: 1) Ibox, 2) Ebox, 3) Useq and 4) Cbox. This section will describe the interfaces to 
each of these sections. 

12.7.1 IBOX INTERFACE 

12.7.1.1 Signals from lbox 

• I%IBOx...CMD_L<4,1:0>: Command field of reference sent by Ibox. 
• I%IBOX'.J\DDR_B<31 :0>: Transfers addresses of Ibox references to Mbox. 
• I%IBOx...TAG_L<2:0>: Ebox reg file destination of reference sent by Ibox. 

• I%IBO~_L<I:0>: Access type of reference sent by Ibox. 
• I%IBOx...DL_L<I:0>: Data length of reference sent by Ibox. 
• I%IBOx...REF_DEST_L<I:0>: Indicates the destination(s) of the requested Ibox reference . 

• 
• I%IBEF _REQ..H: When asserted, indicates that a valid IREAD reference is present on the 

I%IBOX'.J\DDR_B<31:0> bus. 
• I%SPEC..REQ..,B: When asserted, indicates that a valid specifier reference is being issued to 

the Mbox. 
• I%FORCE..MME_FAULT_B: Indicates that the associated Ibox reference should be forced to "look" 

like a memory management fault from the Ibox point of view. 

• I%FORCE_HARD_FAULT_B: Indicates that the associated Ibox reference should be forced to 
"look" like a hardware fault from the Ibox point of view. 

• I%FLUSH_IREF _LAT_H: Indicates that any current IREAD sequence in Mbox should be 
immediately cleared. 

12.7.1.2 Signals to lbox 

• M%sPEC_~FULL..H: Informs Ibox that the SPEC_QUEUE is full and cannot accept any new 
references. 

• M%LAST_F'II..kH: Qualifies I_CF data being returned to Ibox. It indicates that this data is the 
last fill data for the current fill sequence . 

• 
• Mo/oMD_BUS_H<63:0>: Transfers data back to Ibox. 
• M%MD_BUS_QW_PARITY_L: Quadword parity for M4Qf))_BUS_H. 

• M%QW..AUGNMENT_H<I:0>: Indicates the relative aligned quadword position of VIC fill data 
within the aligned hexaword. 

• M%VIC_DATA..,.L: When asserted, indicates that MtrGMD_BUS_H<63:0> contains VIC fill data. 
• M%IBOx...DATA..,.L: When asserted, indicates that M%MD_BUS_H<31:0> contains requested Ibox 

data. 
• M%IBOx...IPR_WR_H: When asserted, indicates that M%MD_BUS_H<31:0> contains Ibox IPR 

write data. 
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• M%MME_FAULT_H: When asserted in conjunction with M%VIC_D~L or M%IBOX_DATA..L, 
indicates that data on Mo/cMD_BUS_H is invalid and that the corresponding reference was 
associated with a memory management exception. 

• M%HARD_ERR_B: When asserted in conjunction with M%VIC_D~L or M%IBOx...DATA..L, 
indicates that data on M%MD_BUS_H is invalid and that the corresponding reference was 
associated with a hard error condition. 

12.7.2 EBOX INTERFACE 

12.7.2.1 Signals from Ebox 

• E%EBOX_CMD_H<4:0>: Command field of reference sent by Ebox. 

• E%VA..BUS_L<31:0>: Transfers addresses of Ebox references to Mbox. 

• E%WBUS_H<31:0>: Transfers data of Ebox references to Mbox. 
• E%EBOx...TAG_H<4:0>: Ebox reg file destination of reference sent by Ebox. 

• E%EBOUT_H<1:0>: Access type of reference sent by Ebox. 

• E%EBOx...DL_B<1:0>: Data length of reference sent by Ebox. 

• E%EBOx... VIRT_ADDR_B: Indicates whether address is virtual or physical . 

• 
• Eo/'oMMGT_MODE_H<1:0>: Execution mode to be used for ACV checks on PROBE references. 

• E%CUR_MODE_B<1:0>: Execution mode to be used for ACV checks on all non-PROBE 
references. 

• E%EREF_REQ...H: When asserted, indicates that a valid Ebox reference is currently being 
issued. 

• E%EM..,ABORT_L: Indicates that the current EM_LATCH reference should be disregarded. 

• E%FLUSH..MBOx...H: Indicates that certain references and reference state in the Mbox should 
be cleared (See Section 12.3.21.2 ). 

• E%FLUSH_PA,..QUEUE_H: Indicates that the PA_QUEUE should be flushed (See 
Section 12.3.21.2 ). 

• E%START_IBOX_IO_RD_H: Indicates that the Ebox is md stalling on the corresponding 
SPEC_QUEUE read. If this SPEC_QUEUE read is an 110 space read and 
Eo/cSTART_IBOx...IO_RD_H is not asserted, the read is aborted until it is asserted. 

• E%RESTART_SPEC_QUEUE_B: Indicates that Ebox has sent all explicit writes for the current 
instruction to the Mbox and, therefore, causes the SPEC_~SYNC_CTR to be incremented. 

• EO/oNOJ\fMJLCHECK.-H: Indicates that the corresponding EM_LATCH reference should not be 
tested for ACV or M=O conditions. 

12.7.2.2 Signals to Ebox 

• M%EM_LAT_FULL_H: Indicates that EM_LATCH is currently full and cannot accept any new 
references. 

• M%PA..Q...STATUS_B<2>: indicates that the corresponding address in the PA_QUEUE is 
associated with a hard error. 

• M%PA..Q...STATUS_B<1>: indicates that the corresponding address in the PA_QUEUE is 
associated with a memory management exception. 
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• M%PA...~STATUS_B<O>: indicates that sufficient physical address data is present in the 
PA_QUEUE to initiate an Ebox STORE command. 

• M%MD_BUS_H<31:0>: Transfers data back to Ebox. 
• M%MD_TAG_H<4:0>: Ebox reg file destination of reference on Mo/cMD_BUS_B<31:0>. 

• M%EBO:x;.,DATA..,H: When asserted, indicates that M%MD_BUS_B<31:0> contains requested Ebox 
data. 

• Mo/cMME_FAULT_B: When asserted in conjunction with M%EBO:x;.,DATA...H, indicates that data on 
M%MD_BUS_H is invalid and that the corresponding reference was associated with a memory 
management exception. 

• M%BARD_ERR_B: When asserted in conjunction with M%EBO:x;.,DAT.A....H, indicates that data on 
M%MD_BUS_B is invalid and that the corresponding reference was associated with a hard error 
condition. 

• M%PMUXO_B: Mbox performance data signal (see Section 12.10). 

• M%PMUXl_H: Mbox performance data signal (see Section 12.10). 

12.7.3 INTERRUPT SECnON INTERFACE 

12.7.3.1 Signals to Interrupt Section 

• Mo/cMBO:x;.,S_ERROR_H: Indicates that the Mbox has logged a hard error in the PCSTS register 
and thus, is posting an interrupt. 

12.7.4 USEQ INTERFACE 

12.7.4.1 Signals to Useq 

• MIf(MMELTRAP_L: Indicates to the Useq that a memory management exception is to be invoked. 

• M%TB_PERR_TRAP_L: Indicates to the Useq that a tb parity error has been detected. 

12.7.5 CBOX INTERFACE 

12.7.5.1 Signals from Cbox 

• C%cBO:x;.,CMD_B<1:0>: Command field of Cbox reference sent to Mbox. 
• C%CBO:x;.,ADDR_H<31:5>: Hexaword address of Cbox reference sent to MbOx. 
• C%MBO:x;.,FILL-.QW_H<4:3>: Indicates the aligned quadword within the aligned hexaword. 
• C%REQ...DQW_H: Qualifies the current D_CF to indicate that this is the requested data. 

• BlfD86_DATA..,B<63:0>: Data of Mbox reference seen by Cbox. 
• C%S6_DP_H<7:0>: Even data parity corresponding to B'*S6_DATA...H<63:0> during cache fill 

references . 

• 
• C%LAST_FILL_H: When asserted, indicates that this is the last fill sent for the current 

sequence. 
• C%cBO:x;.,HARD_ERR_H: When asserted when Cbox is driving data onto the B%S6_DATA....B Bus, 

it indicates that data on M%~m_BUS_H is associated with a non-recoverable hard error. 
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• Co/oCBOx;..ECC_ERR_R: Indicates that an ECC error is associated with the Cbox data being 
returned. 

• C%WR_BUF_BACK.,.PRES_H: Indicates that Cbox cannot accept any more entries in its write 
buffer. 

12.7.5.2 Signals to Cbox 

• M%S6_CMD_H<4:0>: Command field of Mbox reference seen by Chox. 

• M%S6_P.A..,.B<31:3>: Quadword physical address of Mbox reference seen by Cbox. 
• M%C_S6_PA_H<2:0>: Address within addressed quadword of Mbox reference seen by Chox. 

• Bo/cS6_DA'L\..H<63:0>: Data of Mbox reference seen by Cbox. 
• M%S6_BYTE_MASK..H<7 :0>: Byte mask field of Mbox reference seen by Chox. 

• Mo/oCBOx;..REF_ENABLE_L: Indicates that current 86 read reference packet should be latched 
and processed by the Cbox. This signal is a don't care on write operations. 

• M%CBOx;..LATE_EN_H: Asserted at the end of a cycle to indicate that a Pcache parity error was 
detected. As a result, the Cbox must continue to process this reference regardless of what 
MO/oCBOx;..REF _ENABLE_L indicated. . 

• 
• Mo/tJABORT_CBOx..m.n_H: Indicates that any IREAD which the Cbox may be processing should 

be immediately terminated. 

• M%CBOx;..BYPASS_ENABLE_H: Indicates that the COOx may drive B%S6_DA'L\..H<63:0> during 
the following cycle in order to attempt a data bypass. 
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12.8 INITIALIZATION 

12.8.1 Power-up Initialization 

The signal, K..M%RESET_L is asserted during the power-up reset sequence. The following state is 
forced whenever K....)I%RESET_L is asserted: 

• EM_LATCH valid hit is cleared. 
• VAP_LATCH valid bit is cleared. 
• MME_LATCH valid bit is cleared. 
• RTY_DMISS_LAT valid bit is cleared. 
• DMISS_LATCH valid bit is cleared. 

• MME state machine is forced to the home state. 
• PCCTL<8:0> are cleared (this disables the Pcache). 

The power-up reset sequence also causes the assertion of E%FLUSH_MBOX. E%FLUSH..MBOX will 
cause the following state to be forced within the context of the power-up sequence; 

• The SPEC_QUEUE valid bits are cleared. 
• The SPEC_Q...SYNC_CTR is reset to O. Note that a subsequent E%B.FSTART_SPEC_Q signal is 

expected to enable SPEC_QUEUE arbitration. 

• MMESTS<31:29> are cleared. This invalidates and unlocks the MMESTS register. 

See Section Section 12.3.21.2 for a complete description of all state changes due to E%FLUSH..lWBOX. 

Once E%FLUSHJWBOX has been asserted, E%FLUSH_PA,.,QUEUE will be asserted during a 
subsequent cycle. E%FLUSH_P~QUEUE will cause all PA_QUEUE valid bits to be cleared. 

The power-up reset sequence also causes the assertion OfI%FLUSH_mEF_LAT. I%FLUSH_IREF_LAT 
will cause the following state to be forced within the context of the power-up sequence: 

• The IREF _LATCH valid bit is cleared. 

• The IMISS_LATCH valid bit is cleared. 

See Section Section 12.3.21.1 for a complete description of all state changes due to I%FLUSH_mEF_LAT. 

12.8.2 Initialization by Microcode and Software 

It is the responsibility-of the power-up microcode to perform an IPR_ WRITE operation to clear 
MAPEN before any virtual memory references are issued to the Mbox from either the Ebox or 
Ibox. Failure to clear MAPEN could result in UNDEFINED behavior prior to complete memory 
management state initialization. 

PAMODE is also cleared by the power-up microcode via an IPR_ WRITE command. If the system 
configuration requires a 32 bit program-visible physical address space, setting the PAMODE value 
via an IPR_ WRITE must be done under very controlled conditions because writes to the PAMODE 
processor register affect both physical address generation and interpretation of PrEs. With the 
possible exception of certain diagnostic code, writes to the PAMODE processor register should 
not be performed while memory management is enabled. With memory management disabled, 
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writes to the PAMODE processor register should not be performed unless the PC of the MTPR 
instruction which writes to the register is in one of the following (hex) address ranges: 

OOOOOOOO .. 1FFFFFFF 
EOOOOOOO .. FFFFFFFF 

By restricting PC to one of these address ranges, changes to the PAMODE register do not cause 
the genera ted physical address to change in going from 30-bit mode to 32-bit mode, or vice versa. 
At powerup, microcode fetches the initial instruction from the boot ROM at address E0040000 
(hex), which is in the second of the ranges shown above. Therefore, the console code in the boot 
ROM may write to the PAMODE processor register, and it is expected that this is the place where 
the PAMODE processor register will be initialized. 

In uncontrolled conditions, writes to the PAMODE processor register can cause UNDEFINED 
results. 

12.8.2.1 Pcaehe Initialization 

The Pcache is disabled by the power-up initialization sequence. In order to enable the Pcache, 
the following sequential actions must be performed: 

1. Pcache IPR_ WRITE operations must be performed to each Pcache tag to write the tag field 
to a known state, set the tag parity bit to the cOlTesponding value, and clear the subblock 
valid bits. 

2. The lock bit in PCSTS must be cleared so that a locked PCSTS will not inhibit turning on 
the Pcache. 

3. An IPR_WRITE to the PCCTL must be done to enable the Pcache in the desired operation 
mode. This step effectively turns the Pcache on. 

I 
Note that the data array need not be initialized because correct parity will be written into the data I 
array whenever fill data is validated, and data parity is only checked on validated sub-blocks. 

12.8.2.2 Memory Management InHlalizatlon 

Memory management is disabled by MAPEN being cleared by the power-up microcode. Before 
memory management can be turned on, the following actions must be performed: 

• The Ebox must issue a TBIA command to invalidate the TB and reset the NLU pointer to a 
known state. This is done as part of the microcode processing of an MTPR to MAPEN. 

• The Ebox must write the appropriate values into the six memory base and length registers 
via IPR_ WRITE commands. 

Once this is done, the Ebox may turn on memory management by setting MAPEN through an 
IPR_ WRITE command. 
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12.9 Mbox Testability Features 

This section describes what testability features are made use of for Mbox testability, and what 
Mbox signals are used for each testability function. For a global understanding of NVAX 
testability, and for a detailed description of each testability strategy and hardware mechanism, 
the reader is referred to Chapter 19. 

12.9.1 Internal Scan Register and Data Reducers 

The following lists Mbox signals which are captured in the internal scan chain. The signals are 
listed in the order in which they are serially shifted out. Therefore, the first signal listed is the 
first signal shifted out. If a bus of signals is listed in the form signal<x:y>, y represents the first 
hit to be shjfted o11t; x represents the last bit of the bns to be shjfted ont 
Captured Signal Name Description 

M;..QUB_QtJ3'IJWMIL VALO..LAST_B<> 

M;..QUB_QtJ3'IJWMIL VAL1..LAST_B<> 

M;..QUJLQtncr.D(. VAlJASTJI<> 

JrJ...QtJB..QUKPA~STATV8_PS_B<2:0> 

M;..QUB_QUKMMB_TBAP YI_B<> 

JrJ...QUB_QUKR'lT_VAlJASTJ2_B<> 

JrJ...SIC_ TS'l'CJ&:CBOx;.)IBF_BN_P2..B<> 

ARCBOIJI'lPASS_ENABL1UI<> 

M...8IC_TSTYM...LAT~~B<> 

M_QUB_QlJ3'IHI1EF _ VAL..lA.ST-.8<> 

M...QUB_QUltQJMB_VAIJ,.AST-.8<> 

M;..QUJUMILfU5...PA....L3_B<9:31> 

M...QUE_S6LfU5...P~«>:8> 

M...QtJ:BYS.-AT_B<1:0> 

M...QtJ:BYS_TAG_B<4:0> 

M...QtJ:BYS_DBST_B<1:0> 

M...QtJ:BYS_CMDJI<4:0> 

M...QtJ:BYS_DL...B<1:0> 

M...QtJ:BYS_Q11AL....B<6:0> 

cycle-delayed valid bit for Oth entry Spec Queue 

cycle-delayed valid bit for 1st entry Spec Queue 

cycle-delayed valid bit for EM_LATCH 

Status bits for PA_ QUEUE 

Memory Management Exception Trap signal 

cycle-delayed valid bit for RTY_DMISS_LATCH 

Indicates S6 read reference is for Cbox 

Enables bypassing of Cbox cache fill data 

Indicates EM_LATCH backpressure status to Ebox 

cycle-delayed valid bit for VAP _LATCH 

cycle-delayed valid bit for IREF _LATCH 

cycle-delayed valid bit for MME_LATCH 

samples S5_PA Bus 

samples S5_PA Bus 

Access type for 85 reference 

Ebox tag address for 85 reference 

Box destination code for S5 reference 

Command for S5 reference 

Data length for S5 reference 

Qualifier bits for 85 reference 

Note that only M.-QUE%S5_PAJI<31:0> contains a data reducer. Implementing a data reducer on this 
bus should provide coverage for the Mbox 85 pipe as well as coverage for the Ibox, Ebox and Cbox 
logic which issue references to the Mbox. 
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12.9.2 Nodes on Parallel Port 

The following signals are observable via the Parallel Port: 

M..QUE%S5_CMD_H<4:0> 

Current Reference Source (3 encoded bits). The encodings are as follows: 

Reference Source 

NOP or PA_QUEUE (when cmd = STORE) 

IREF_LATCH 

SPEC_QUEUE 

EM_LATCH (when cmd A= STORE) 

VAP _LATCH (when cmd A:: STORE) 

MME_LATCH 

RTY_DMISS_LATCH 

CBOX_LATCH 

M_Q11E_QU5o/GABORT_P4_H 

M_MME.,)fMD%TB_MISS_L3_H 

M_PC_BSL%PCACHE_HIT_P4_H 

000 

001 

010 

011 

100 

101 

110 

111 

Encoding 

MME state machine state bits (4 encoded bits). The encodings are as follows: 

State Name Encoding 

home 0000 

tb_miss_1 0001 

tb_miss_2 0010 

tb_miss_3 0011 

tb_miss_4 0100 

tb_miss_5 0101 

doub_tb_miss_1 0110 

doub_tb_miss_2 0111 

doub_tb_miss_3 1000 

doub_tb_miss_ 4 1001 

mme_1 1010 

mme_2 1011 

ipr_rd_1_th_per_2 1100 

xpage_1 1101 

tb_per_1 1110 

undefined 1111 

MD_BUS Qualifiers (3 encoded bits). The encodings are as follows: 
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Event Encoding 

undefined 000 

Ibox data 001 

Ebox data 010 

Ibox and Ebox data 011 

VIC data 100 

Ibox IPR data 101 

undefined 110 

Mbox data 111 

M"cMME_FAULT_B 

12.9.3 Nodes on Top Metal 

tbd 

12.9.4 Architectural features 

The following is a brief description of all the Mbox architectural features which are relevant to 
verification, debug, and chip test. All of these features are invoked through the use of IPRs which 
are defined at the NVAX instruction set level. All of these IPRs can be invoked through the use 
of MTPR or MFPR macroinstructions. See the Architectural Summary Chapter for a list of all 
Mbox IPR addresses. Note that Mbox IPR addresses referenced through the MxPR instruction 
are translated by the Ebox microcode into IPR_RD, IPR_WR, TBIS, TBIA, or PROBE operations 
before being issued to the Mbox. 

12.9.4.1 Translation Buffer Testability 

The diagnostic user can invalidate the entire TB array by executing an MTPR instruction which 
addresses the TBIA IPR. This operation will also reset the NLU pointer. The user can invalidate 
any virtual page address which may cached in the TB by executing a MTPR addressing the TBIS 
IPR. 

The diagnostic user can explicitly query the TB to determine if a given tag is validated and 
stored in the TB. This is accomplished by addressing the Translation Buffer Check IPR through 
the MTPR instruction. 

Every TB entry can be explicitly filled and validated by the diagnostic user through the use of the 
TB_TAG_FILL and TB_PTE_FILL commands. The entry on which these two commands operate 
at any given time is addressed by the NLU pointer. The NLU pointer is a round robin pointer 
which increments when a TB_PrE_FILL is executed or when a tag match is detected on the entry 
which the NLU pointer is currently pointing to. The NLU pointer is reset to point to the Oth 
entry whenever a TBIA command is executed. 
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It is·the responsbility of the diagnostic user to set hislher tests up such that normal I-stream and 
D-stream references generated in the macropipeline do not interfere with the TB state under test. 
Specifically, the user must guarantee that all relevant pages of the diagnostic program reside in 
the TB before the test begins, such that accessing these pages will not cause modification of the 
TB state while the diagnostic program is explicitly probing and changing TB state. 

See Section 12.5.1.3 for a complete description of TB function as it relates to testability. See 
Section 12.3.11.2 for a description of the PROBE command which can be invoked through the 
Translation Buffer Check IPR. 

12.9.4.2 Pcache Testability 

Every bit in the Pcache can be read and written by the user through DREAD, WRITE, IPR_RD 
and IPR_WR operations. Pcache is accessed by DREADs and WRITEs. All other bits (tag, valid 
bits and parity bits) are accessed through Mbox IPRs. 

The operational mode of the Pcache can be changed to accomodate testing the array. The mode 
is controlled by the Pcache Control Register (PCCTL) which can be read and written as an Mbox 
IPR. The PCCTL allows the user to: 

1. Enable/disable D-stream and/or I-stream operations to the Pcache. 

2. Allow the Pcache to operate in a direct mapped force hit mode. 
3. Enable/disable Pcache parity checks. 

See Section 12.4 for a complete description of Pcache function as it relates to testability. 

12.9.5 M-BOX Miscellaneous Features 

-tbd 

DIGITAL CONFIDENTIAL The Mbox 12-125 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

12.10 Mbox Performance Monitor Hardware 

Hardware exists in the Mbox to support the NVAX Performance Monitoring Facility. See 
Chapter 18 for a global description of this facility. 

The Mbox hardware generates two signals, M%PMUXO_B and M%PMUXl_B, which are driven to the 
central performance monitoring hardware residing in the Ebox. These two signals are used to 
supply Mbox performance data for the purpose of recording performance statistics. Seven Mbox 
performance monitoring functions exist. The function to be executed is specified by the PMM 
field of the PCCTL register (see Figure 12-31). 

The following describes the seven Mbox performance monitor modes: 

Table 12-27: Mbox Performance Monitor Modes 

PCC'I'L<7 :5> 

000 

001 

010 

011 

100 

101 

110 

111 

Performance Monitor Mode 

TB hit rate for SO Space I-stream Reads l 

TB hit rate for SO Space D-stream Readsl 

TB hit rate for POIP1 Space I-stream Readsl 

TB hit rate for POIP1 Space D-stream Readsl 

Pcache hit rate for I-stream Reads 

Pcache hit rate for D-stream Reads 

illegal mode-Results are UNPREDICTABLE 

ratio of unaligned virtual reads and virtual writes to total virtual reads 
and virtual writes 

ITB hit count is unconditionally incremented when MAPEN::O 

12.10.1 TB hit rate Performance Monitor Modes 

The TB hit rate modes work by asserting M%PMl1XO_H during the cycle in which a specific type 
of virtual read reference is first attempted in the S5 execution pipe. During the same cycle, 
M%PMUXl_B will transfer the TB hit status corresponding to this read execution event. 

It is important to capture this data only on the first execution of the read in order that the TB 
hit statistics are not skewed by multiple retries of the same reference due to aborted cycles and 
tb_miss sequences. 

One low probability scenario exists in which this scheme will not accurately record the TB hit/miss 
data for the reference. Consider the case where the read is initially executed and is found to hit 
in the TB while simultaneously being aborted due to some abort condition (e.g. Pcache Index 
Con:8ict). During the following cycle, another reference is executed which invokes a TB miss 
sequence. If the TB miss sequence displaces the PrE corresponding to the first read, then the 
read will subsequently be retried as a TB miss event even though it has already been recorded 
as a TB hit event. However, the frequency of this scenario should normally be so low that the 
accuracy of the TB hit ratio statistics will not be affected. 
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12.10.1.1 TB hit rate for PO/P1 I-stream Reads 

In this mode, M%PMUXO_H is asserted during the cycle in which the lREF _LATCH first attempts 
to drive a virtual process space lREAD into the 85 pipe. Note that MtfcPMUXO_H is only asserted 
in response to lREAD execution events caused by Ibox-generated IREADs. This avoids recording 
Mbox-generated "fill forward" lREADs which would abnormally boost the TB hit rate. During 
the same cycle, M%PMUXl_H will transfer the TB hit status corresponding to the same IREAD 
execution event. 

12.10.1.2 TB hit rate for PO/P1 D-stream Reads 

In this mode, M%PMUXO_H is asserted during the cycle in which the SPEC_QUEUE, EM_LATCH, 
VAP _LATCH or MME_LATCH first attempts to drive a virtual process space read into the S5 
pipe. During the same cycle, M%PMUXl._H will transfer the TB hit status corresponding to the 
same read execution event. 

12.10.1.3 TB hit rate for SO I-stream Reads 

In this mode, M%PMUXO_H is asserted during the cycle in which the lREF _LATCH first attempts 
to drive a system space IREAD into the S5 pipe. Note that M%PMUXO_H is only asserted in 
response to lREAD execution events caused by Ibox-generated IREADs. This avoids recording 
Mbox-generated "fill forward" IREADs which would abnormally boost the TB hit rate. During 
the same cycle, M%PMUXl_H will transfer the TB hit status corresponding to the same lREAD 
execution event. 

12.10.1.4 TB hit rate for SO D-stream Reads 

In this mode, M%PMUXO_H is asserted during the cycle in which the SPEC_QUEUE, EM_LATCH, 
VAP _LATCH or MME_LATCH first attempts to drive a virtual system space read into the-85 
pipe. During the same cycle, M%PMUXl_B will transfer the TB hit status corresponding to the 
same read execution event. 

12.10.2 Pcache hit rate Performance Monitor Modes 

The Pcache hit rate modes work by asserting M%PMUXO_H during the cycle in which a specific 
type of 86 physical read reference is executed in the Pcache. During the same cycle, M%PMUXl_B 

will transfer the Pcache hit status corresponding to this read execution event. 

12.10.2.1 Pcache hH rate for I-stream Reads 

In this mode, M%PMUXO_H is asserted during the cycle in which an IREAD is executing in 
the S6 pipe. M%PMUXO_H is only asserted in response to IREAD execution events caused by 
Ibox-generated lREADs. This avoids recording Mbox-generated "fill forward" IREADs which 
would abnormally boost the Pcache hit rate. M%PMUXl_H will transfer the Pcache hit status 
corresponding to the same lREAD execution event during the cycle which M%PMUXO_H is asserted. 
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12.10.2.2 Pcache hit rate for D-stream Reads 

In this mode, M%PMUXO_R is asserted during the cycle in which a D-stream read is executing 
in the S6 pipe. M%PMUXO_R is only asserted in response to the first Pcache lookup attempt of 
a D-stream read executing in the S6 pipe. This avoids skewing the performance data based on 
the same reference being retried in the Pcache due to the "read under fill" function. Therefore, 
S6 reads originating from the RTY_DMISS_LATCH do not cause the assertion of M%PMUXO_R. 

M%PMUXl_R will transfer the Pcache hit status corresponding to the same read execution event 
during the cycle which M%PMUXO_R is asserted. 

12.10.3 Unaligned reference statistics 

This mode allows the user to obtain the percentage of references processed by the Mbox which 
are unaligned. 

In this mode, M%PMUXO_R is asserted on any virtual read, virtual DEST_ADDR, or virtual 
WRITE reference driven from the SPEC_QUEUE or EM_LATCH. The reference must virtual 
to be recorded due to the nature of the hardware implementation. M%PMVXL.R is asserted on the 
same conditions as M%PMUXO_R, except that it is further qualified by the fact that the reference 
is unaligned. 
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12.11 Mbox Signal Name Cross-Reference 

All signal names referenced in this chapter have appeared in bold and reflect the actual name 
appearing in the NVAX schematic set. For each signal appearing in this chapter, the table below 
lists the corresponding name which exists in the behavioral model. 

Table 12-28: Cross-reference of all names appearing In the Mbox chapter 

Schematic Name 

B"8~U)ATA....B<63:0> 

C%CBOI..,cMD...H<1:0> 

C%CBO~DR ... B<31:5> 

CCQIBOI..,P'ILL..Qw_B<4:3> 

C9IORBCLDQW ... B<> 

CU8 ... DP ... B<7 :0> 

C%CBOI..,BARD ... ERB...B 

C9IOCBOI..,EC(um~_B 

C9IOWR....BUF .JlACJt.PRE8 ... B 

E9IOEBOI..,CMD_B<4:0> 

E9IOvA....BU8J.<31:0> 

E9IOWBus ... B<31:0> 

E9IOEBOI..,TAG ... B<4:O> 

E9IOEBO~T...H<1:0> 

E9IOEBOXJ>L.JI< 1 :0> 

E9IOEBOI.., VIRT..,ADDB,..,B 

nMMGT~DE ... B<l:O> 

E9ICUlUIoDE...H<l:O> 

E9IOERD' ....REQ...H 

E9IOD(.ABORT....L 

E9IOFLUSll...,MBOx...H 

E9IOFLt:JSB....PA....QUEUJi: ... B 

E9IOSTART_mox..,IOJID ... H 

E9IORESTART_SPEC ... QUEUE...H 

~ ... MME.-CBECJUI 

I9IOIBOI..,CMD_L<4,1:0> 

I .. mox...,ADDR...H<31:0> 

I9IOIBOI..,TAG....L<2:0> 

I .. IBO~_L<1:0> 
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Behavioral Model Name 

B%S6_DATA_H<63:0> 

C%cBOX_CMD_H<1:0> 

C%CBOX_ADDR_H<31:5> 

C%MBOX_FILL_ QW _H<4:3> 

C%RE'LDQW _H 

C%S6_DP _H<7:0> 

C%LAST_FILL_H 

Co/oCBOX_HARD_ERR_H 

C%CBOX_ECC_ERR_H 

C%WR_BUF_BACK_PRES_H 

E%EBOX_CMD_H<4~> 

E%VA_BUS_H<31:0> 

E%WBUS_H<31:O> 

E%EBOX_TAG_H<4:0> 

E%EBOX_AT_H<l:O> 

E%EBOX_DL_H<1:0> 

E%EBOX_VIRT_ADDR_H 

E%MMGT_MODE_H<1:0> 

E%CUR_MODE_H<1:0> 

E%EREF _RE'LH 

E%EM_ABORT_H 

E%FLUSH_MBOX_H 

E%FLUSH_PA_QUEUE_H 

E%START_IBOX_IO_RD_H 

E%RESTART_SPEC_QUEUE_H 

E%NO_MME_CHECK_H 

I%IBOX_CMD_H<4:0> 

I%IBOX_ADDR_H<31:0> 

I%IBOx....TAG_H<2:0> 

I%IBOX_AT_H<1:0> 
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Table 12-28 (Cont.): Cross-reference of all names appearing In the Mbox chapter 

Schematic Name 

I~IBO~IJ.<1:0> 

I~IBOx:..;aBF J)B8TJ.< 1:0> 

I~IB.D' .JlEQ..lI 

I'YPB<Ul.BQ_B 

I~roBCE...MMB-"AULTJI 

I~roBCE..BAB.D_FAULTJI 

I~FLUSBJBBlI'_LAT_B 

~RT_CBO~.JI 

M.c_S8_PA....B<2:O> 

M'lCBOIJIYPASS_BNABLJUI 

M'ICBO:x..I..ATE...,_B 

M'ICBOlUIBFJl:NABLB..L 

MCMmox..DATA...B 

~JI'VLIJI 

~_BB.B..B 

WSBOXJ)ATA....L 

WQBOXJPB._WRJI 

~.,;FD:.IJI 

M'QIBO:x..S_II:RBORJI 

MIQID_BUS_B<63:O> 

M...m_BUS_QW..PABl"IT_L 

~_TAG_B<4:O> 

~-"AVLT_B 

~A...Q...STATV8.J1<2:0> 

I8PJrroXDJI 

M~PMUXlJJ 

M~w_ALIGNMBNTJI<1:0> 

~_Q...ruLL...B 

MCJWM_BTrE...MASI...B<7 :0> 

MCJWM_CMD_B<4:0> 

MH8_pA..ll<31:0> 

I8V1CJ)A'n\..L 

M:..QtJBY5..ATJI<l:O> 

M:..QtJBY5_CMDJJ<4:0> 

M:..QtJBY5J)ATAJI<31:0> 

M:..QtJBY5_DEBT_B<l:D> 
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Behavioral Model Name 

I%IBOX_DL_H<1:0> 

I%IBOX_REF _DEST_H<1:0> 

I%IREF _RE'LH 

I%SPEC_RE'LH 

I%FORCE_~_FAULT_H 

I%FORCE_HARD_FAULT_H 

I%FLUSH_IREF _LAT_H 

M%ABORT_CBOX_IRD_H 

M%C_S6_P~H<2:0> 

M%CBOX_BYPASS_ENABLE_H 

M%CBOX_LATE_EN_H 

M%CBOX_REF _ENABLE_H 

M%EBOX_DATA_H 

M%EM_LAT_FULL_H 

M%HARD_ERR_H 

M%IBOx....DATA_H 

M%IBOX_IPR_ WR_H 

M%LAST_FILL_H 

M%MBOX_S_ERROR_H 

M%MD_BUS_H<63:0> 

M%MD_BUS_QW _PARITY_H 

M%MD_TAG_H<4:O> 

M%MME_FAULT_H 

M%PA_'LSTATUS_H<2:0> 

M%PMUXO_H 

M%PMUX1_H 

M%QW_ALIGNMENT_H<1:0> 

M%SPEC_'LFULL_H 

M%S6_BYTE_MASK_H<7:0> 

M%S6_C:MD_H<4:0> 

M%S6_PA_H<31:0> 

M%VIC_DATA_H 

M..QUE%S5_AT_H<1:0> 

M_QUE%S5_CMD_H<4:0> 

M_QUE%S5_DATA_H<31:0> 

M_QUE%S5_DEST_H<1:0> 

DIGITAL CONFIDENTlAl 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

Table 12-28 (Cont.): Cross-reference of all names appearing In the Mbox chapter 

Schematic Name 

M...QUEU&J)LJI<1:0> 

M...QUEU&_PAJI<31:0> 

M...QUEU5_QUAL_B<6:0> 

M...QUEU5_TAG_B<4:0> 

M...QUEU&_ vA.,.B<31:0> 
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Behavioral Model Name 

M_QUE%S5_DL_H<1:0> 

M_QUE%S5_PADP _H<31:0> 

M_ QUE%S5_QUAL_H<6:O> 

M_ QUE%S5_TAG_H<4:0> 

M_ QUE%S5_ VA_H<31:0> 

M_S5C%ABORT_H 
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12.12 Revision History 

Who When Description of change 

Mike Uhler 12-Sep-I991 Correct TB selections in the PMM field of PCCTL 

Bill Wheeler 26-Jul-I991 correct an inconsistency in spec 

Bill Wheeler 21-May-I991 add an mbox ucode restriction 

Bill Wheeler 26-Apr-I991 final tweaks 

Bill Wheeler 25-Feb-1991 tweaked description of ucode biasing of mm regs 

Bill Wheeler 22-Feb-I991 described ucode biasing of mm regs 

Bill Wheeler 20-Feb-1991 Changed text to reflect expaned SO space configuration 

Bill Wheeler 20-Sep-I990 Other tweaks; add signal nef table 

Bill Wheeler 8-May-1990 Other tweaks 

Bill Wheeler 27-Feb-1990 Add perf monitor hardware. Other tweaks 

Bill Wheeler 15-Jan-I990 Signal name change 

Bill Wheeler 20-Nov-1989 Final Changes prior to review for Rev 1.0 Release 

Bill Wheeler 23-Aug-I989 More Updates 

Bill Wheeler 31-Jul-1989 Spec Update 

Bill Wheeler 06-Mar-1989 For External Release 

Bill Wheeler 30-Nov-1988 Initial Release 
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Chapter 13 

The Cbox 

13.1 Terminology 

Term Meaning 

Enor transition mode (ETM) Mode where the backup cache only services CPU requests to blocks which 
are valid-owned. All other CPU requests, including those to valid-unowned 
blocks, are ignored by the backup cache and are forwarded to memory. 
The purpose is to use the cache as little as possible because of previously 
detected errors. 

Cache coherence transaction A transaction from the external system which inteITogates the backup cache 
and may cause a block invalidate and/or a block writeback. 

Deallocate The actions necessary to allocate a new block because of a read miss or 
a write miss. A writeback is required if the block is valid-owned. An 
invalidate is required if the block is valid, whether owned or unowned. A 
cache coherency request which results in a hit also causes a deallocate. 

Longword 4: bytes of data 

Quadword 8 bytes of data 

Hexaword 32 bytes of data 

13.2 Functional Overview of the Cbox and Backup cache 

The Cbox is that section of the NVAX CPU chip which controls the backup cache and interfaces 
to the external bus. The Cbox includes the BIU functions for the NVAX CPU. The backup cache 
is a writeback cache. Cache tags and cache data are stored in off-chip static RAMs (off-the-shelf 
parts). The Cbox implements the control for the cache tags; control for the cache data; and control 
for the external pin bus, the NDAL. 

The Mbox sends read requests and writes to the Cbox; the Cbox sends fills and invalidates to the 
MbOx. The Cbox ensures that the Pcache is a subset of the backup cache through invalidates. 

The Cbox communicates with the memory subsystem (everything beyond the backup cache) via 
the NDAL. The Cbox generates reads and receives fills; it receives cache coherence transactions 
from the NDAL to which it responds with invalidates and writebacks, as appropriate. 

The reader is assumed to be familiar with Chapter 3, which describes the NDAL. 
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Cache coherence in an NVAX system is based upon the concept of ownership. A hexaword block 
of memory may be owned either by memory or by an NVAX backup cache. In a multiprocessor 
system, only one of the caches or memory can own the block at a time. Several of the planned 
NVAX systems implement an explicit ownership bit for each hexaword block of memory; it would 
also be possible to build an NVAX system without explicit ownership bits in memory. 

13.2.1 The Cbox and the System 

The Cbox has a tightly coupled internal interface with the MbOx. It has separate external busses 
which communicate with the backup cache tag RAMs, the backup cache data RAMs, and the 
memory interface, as shown in Figure 18-1. 

Figure 13-1: The Cbox In the System 
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13.2.2 Writeback Cache and Ownership Concepts 

There is one fundamental difference between a writeback cache and a writethrough cache. "When 
a write is received by a write-through cache, the data may be written into the cache and is 
always written to memory as well. When a write is received by a writeback cache, the write is 
not necessarily forwarded to memory; the write may be done only into the cache. The data is 
written back to memory only if another element in the system needs that data, or if the block is 
displaced (deallocated) from the cache. 

The NVAX backup cache is a writeback design in which a cache block may exist in one of three 
states: invalid, valid-unowned, and valid-owned. A block which is valid-unowned is a read-only 
copy of memory data. A block which is valid-owned may be written by NVAX, and if it has been 
written since being put into the cache, is the only up-to-date copy of the data in the system. The 
l'i'VAX cache makes no distinction between valid-owned blocks it has written and those which it 
has not written. 

A valid-unowned copy of a given cache block may reside in one or more backup caches in an 
l\TVAX multiprocessor system. No l\"'\;:tU( backup cache may contain a valid cache block which is 
valid-owned by another backup cache in the system. The Cbox design relies upon the system bus 
andlor the system bus interface to support ~-nAL Ownership ReadlDisown Write pairs to ensure 
cache coherency. 

The most straightforward way to implement a memory for :NVAX is to have an ownership bit 
associated with each hexaword of data. When this memory receives an Ownership Read (OREAD) 
for a hexa\vord, ownership is passed to the requesting CPU, and the data is returned to the CPU. 
If another Ownership Read arrives for that hexaword from a second CPU, memory does not 
return the data since the hexaword is not owned by memory but by the first CPU. The first CPU 
recognizes the second OREAD as a cache coherence transaction and writes back the data from 
its cache, using the Disown Write command. The data is then available for the second cpu. 
During normal operation, the Cbox issues an OREAD to the memory interface and receives 
ownership of the block before it performs a write to that block in the backup cache. The Cbox 
relinquishes ownership of the data when a cache coherence transaction requesting a writeback 
appears on the NDAL. 

13.2.3 Backup cache Operating Modes 

The backup cache has four distinct modes of operation. 

• Cache ON. Normal operation. Most of this chapter describes Cbox operation when the backup 
cache is on. 

• Cache OFF. Reset puts the backup cache into the OFF state. The backup cache may be 
enabled/disabled (turned ON/OFF) by software through the Cbox control !PR. Cache off mode 
is described in Section 13.9.l. 

• Force Hit. The Cbex forces all memory space reads and writes to bit in the backup cache. 
This mode is used for testing and initialization purposes. Force Hit mode is described in 
Section 13.9.2. 

• Error Transition Mode. The Cbox enters Error Transition Mode upon recognition of some 
error conditions or when put into ETM explicitly by an IPR write. Error Transition Mode is 
described in Section 13.9.3. 
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13.3 NVAX Backup Cache Organization and Interface 

The backup cache is configurable based on the size and speed of the cache RAMs used to imple
ment the cache on the board. 

The backup cache may be configured to be one of four sizes: 128 kilobytes, 256 kilobytes, 512 
kilobytes, or 2 megabytes. This is controlled by the SIZE field in the CCTL register, as described 
in Section 13.5.1. The smallest RAMs which may be used to achieve each configuration are shown 
in Table 13-1. 

Table 13-1: Backup Cache Size and RAMs Used 

Cache size Tag RAM Size Data RAM Size Number of Tags Valid Bits Per Tag 

128 Kilobytes 4Kx4 16Kx4 4K 1 

256 Kilobytes SKxS1 32Kx 81 8K 1 

512 Kilobytes 16Kx4 64Kx4 16K 1 

2 Megabytes 64Kx4 256Kx4 64K 1 

lUBing x8 parts means the cache no longer takes advantage of the :Dibble protection feature of the cache ECC design. 

Regardless of configuration, the cache has a block size of 32 bytes and has no subblocks. The 
data bus to the cache is 8 bytes wide, so in order to read out an entire block, 4 accesses are done. 
Each block contains 32 bytes of data and has associated with it a tag, a valid bit, and an owned 
bit. ECC protection is provided on each quadword in the cache. ECC protection is also provided 
on the tag store. 

Each of address bits <20:17> serves either as an index bit or as a tag bit, based on the cache size 
configured. Table 13-2 shows how the bits are used. 

Table 13-2: Tag and Index Interpretation based on cache size 

Cache size Tag bits 118ed Indez bits used 

128 kilobytes Tag<31:17> Index<16:5> 

256 kilobytes Tag<31:18> Index<17:5> 

512 kilobytes Tag<31:19> Index<18:5> 

2 megabytes Tag<31:21> Index<20:5> 

The backup cache speed may also be configured based on the access time of the RAMs used to 
implement the tag store and the data store. The TAG_SPEED and DATA_SPEED fields of the 
Cbox control register, CCTL, are used to control the number of NVAX cycles used by the Cbex to 
access the RAMs. The relationship between TAG_SPEED, DATA_SPEED, NVAX cycle time, and 
the cache RAM access times required is shown in Table 13-3. 
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NOTE 

Table 13-3 is based upon simulations of the XNP (XMI-based system) board. These 
numbers may only be applied directly to an environment which is very close to that of 
theXNP. 

Table 13-3: Backup Cache RAM Speeds and NVAX Cycle Time 

Tag RAM tacread Data BAM 

CCTL a.ccetIS (access) tag write CCTL access datarea.d data write 

TAG_SPEED time rep rate rep rate DATA..,.SPEED time rep rate rep rate 

RAM Speeds required for 16 D& NVAX cycle time 

0 0·2lns (2)3 cycles 3 cycles 001 0·19.5ns 2 cycles 3 cycles 

11 22· 37m (3)4cycies 4 cycles 01 20·3S.5ns 3 cycles 4 cycles 

10 36·S1.5ns 4 cycles S cycles 

RA..'I\1 Speeds required for 14 DS l'.VAX cycle time 

0 0·1'i.5ns (2) 3 cycles 3 cycles 001 0·16 ns 2 cycles 3 cycles 

11 18·3l.Sns (3)4 cycles 4 cycles 01 17·30 ns 3 cycles 4 cycles 

10 31· 44 %IS 4 cycles 5 cycles 

RAM Speeds required for 12"D& NVAX cycle time 

0 0·14ns (2) 3 cycles 3 cycles 001 0·13 ns 2 cycles 3 cycles 

11 IS· 26m (3)4cycies 4 cycles 01 14·25 %IS 3 cycles 4 cycles 

10 26·37ns 4cycles 5 cycles 

RAM Speeds required for 10 D& NVAX cycle time 

0 o ·10.Sns (2)3 cycles 3 cycles 001 0·9.5 JlS 2 cycles 3 cycles 

11 1l·20.5ns (3)4 cycles 4, cycles 01 10· 19.5ns 3 cycles 4 cycles 

10 20· 29.5ns 4, cycles 5 cycles 

lTAG_SPEED=1 cannot be used with DATA_SPEED=OO, as the NVAX Cbox cannot function with tag rams whose read 
access time is longer than the data ram read access time. 

Extensive simulations of the NVAX chip, package, and XNP board were done in order to determine 
the drive times of the cache pins in this environment. The drive times are measured from the internal 
NVAX clock to the signal being valid at the cache pin. The drive times for TT (typical speed) parts 
under worst-ease conditions are shown in Table 13-4. These drive times would be met under worst
ease conditions in the 14ns system. These drive times only apply to the XNP board, and cache drive 
times and performance would be different in a different environment. 
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Table 13-4: Cache pin drive times In the XNP environment 

NVAX Cache Interface Pin 

P%TS_TAG_H<31:17>, FCkTS_ECC_H<5:O>, 
P%TS_OWNED_R, P%TS_ VALID_R 

P%TS_TAG_H<31:17>, FCkTS_ECC_H<5:O>, 
P%TS_OWNED_R, P%TS_ VALID_R 

P%TS_INDEX_H<lO:O> 

P%TS_INDEX_H<20:11> 

P%TS_OE_L 

FCiCDR_Thii>EX_H<20:3> 

P%DR_OE_L 

P%DR_DATA_H<63:0>, P%DR_ECC_H<7:O> 

P%DR_DATA_H<63:0>, P%DR_ECC_H<7:O> 

Starting clock 

E...PA.DCH'BI..S_H 

E...PADL4IIiIPBI_S_H 

E...PADLVIII_lJI (assertion), 
E...PADL4IIiIPBI_"_H (deassertion) 

E...PADIJIi.PHI_S_H (assertion), 
E...PADL4IIiIPBI_lJI (deassertion) 

E...PADLVHI_S_H 

E...PADLfii>PHI_l_H (assertion), 
E...PADLfii>PBC,,-H (deassertion) 

E...PADLVHI_S_H (assertion), 
E...PADLCiCPHI_l_H (deassertion) 

E..PADLfii>PHI_"J 

E.,PADLfii>PHI_"_H 

Time to sigDal valid 
at cache RAM 

8.5 ns 

1.5 ns (tristate time) 

8.0ns 

8.0 ns 

8.0 ns 

8.0 ns 

8.0 ns 

8.0 ns 

8.0 ns 

8.5 ns 

1.5 ns (tristate time) 

Figure 13-2 and Figure 13-3 show the timing of cache tag transactions and of cache data transactions. 
The symbols shown in the timing diagrams are defined in Table 13-5. 

Table 13-5: Cache pin timing symbol definitions 

Symbol Meanjng 

Taa RAM address access time: valid index to RAM output valid 

Toe Assertion of output enable to RAM output valid 

Tob RAM output bold from address change 

Tohz Output disable to RAM output in high Z 

Taw Valid index to end of RAM write 

Tdw Data valid to end of RAM write 

Tnz NVAX tristate time 

'IWr Write enable deassert to address change (write recovery) 

Tdh NVAX data hold time after write enable deassert 

'l\vp Write enable pulse width 

Tas RAM address setup time to write enable assertion 
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13.3.1 Backup Cache Interface 

This section describes the NVAX pins dedicated to the backup cache interface. These are listed 
in Table 13-6. 

Table 13-6: NVAX Backup Cache Inter1ace Pins 

Signal Number Input/output Type 

BACKUP CACHE TAG STORE SIGNALS (41 total) 

P%TS_INDEX_B<20:5> 16 Output One driver, six receivers 

P%TS_OE_L 1 Output One driver, six receivers 

P%TS_WE_L 1 Output One driver, six receivers 

P%TS_TAG_B<31:1 "1> 15 Input/Output Tristate, seven drivers/receivers 

P%TS_ECC_H<5:O> 6 Input/Output Tristate, seven drivers/receivers 

P%TS_O\\~'"ED_H 1 Input/Output Tristate, seven drivers/receivers 

P%TS_VALID_H 1 Input/Output Tristate, seven drivers/receivers 

BACKUP CACHE DATA R.AM: SIGNALS (92 total) 

P%DR_~"DEX_H<20:3> 18 Output One driver, eighteen receivers 

P%DR_OE_L 1 Output One driver, eighteen receivers 

Po/oDR_ WE_L 1 Output One driver, eighteen receivers 

P%DR_DATA_B<63:0> 64 Input/Output Tristate, nineteen driverslreceivers 

P%DR_ECC_H<"1:0> 8 Input/Output Tristate, nineteen driverslreceivers 

The pins listed are described in the sections which follow. 

13.3.1.1 pOkTS_INDEX_H<20:S> 

These pins drive the address lines of the tag RAMs, thus indexing into one row of the tag store. 
The value driven depends upon the corresponding bits in the address of the memory or IPR 
reference being done. 

P%TS_INDEX_H<16:5> are used for every cache configuration. P%TS_INDEX..H<20:1'1> are 
used based on the cache size selected. When the cache size selected is smaller than 2 megabytes, 
some or all of these fou:r: bits are driven to 0 rather than to the value givep in the address. This 
is shown in Table 13-7. 
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Table 13-7: Usage of POkTS_INDEX_H<20:5> based on cache size 

Cache size 

128 ldlobytes 

256 kilobytes 

512 ldlobytes 

2 megabytes 

P%TS_INDEX_H bits driven 
UDcoDditioDally to 0 

P%TS_INDEX_B<20:17> 

P%TS_INDEX_B<20:18> 

P%TS_INDEX_B<20:l9> 

None 

P%TS_INDEX_H<16:5> 

P%TS_INDEX_B<17:5> 

KTS_INDEX_B<18:5> 

KTS_INDEX_Bd0:5> 

P%TS_INDEX_H<20:5> are driven by NVAX and received by up to 6 RAM chips. 

13.3.1.2 pOkTS_OE_L 

P%TS_ OE_L (Tag Store Output Enable) is an output pin which controls the tag store RAMs. 
It enables the RAMs to drive their outputs. It is asserted (driven low) when the tag store 
is being read, and allows the tag store to drive P%TS_TAG_H<31:17>, P%TS_ECC_Hc5:0>, 
P%TS_OWNED_H and P%TS_ VALID_H. 'When the tag store is being written, P%TS_OE_L is 
deasserted (driven high). 

P%TS_ OE_L is driven by :NVAX and received by up to 6 RAM chips. 

13.3.1.3 p%TS_WE_L 

P%TS_WE_L (Tag Store Write Enable) is an output pin which, when asserted, enables the tag 
store RAMs to be written. It is asserted (driven low) during writes of the tag store. 

P%TS_ 'WE_L is driven by NVAX and received by up to 6 RAM chips. 

13.3.1.4 pO/oTS_TAG_H<31 :17> 

P%TS_TAG_H<31:17> are 110 pins which are used to transfer the cache tag to and from the tag 
store RAMs. When the tag store is being written, P%TS_TAG_H<31:17> are used as outputs; 
when the tag store is being read, P%TS_TAG_H<31:17> are used as inputs. 

Some of the tag lines are not used when the cache is bigger than 128 kilobytes, as shown in 
Table 13-8. When this is the case, the board designer does not need to connect the pin at all on 
the board. The pin is pulled low through a resistor in the pad so that internal to the Cbox, the 
unused tag lines are recognized as zeros when the tag is read. 

Table 13-8: Usage of POk TS TAG Hc20:17> based on cache Size 

Cache size 

128 kilobytes 

256 kilobytes 

512 kilobytes 

2 megabytes 

13-10 The Cbox 

None 

P%TS_TAGJI<l '1> 

P%TS_TAG_B<18:1 '1> 

P%TS_TAG_B<20;l. '1> 
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All of the P%TS_TAG_H<31:17> pads are built with internal resistors, for chip layout consis
tency. 

Each P%TS_TAG_H pin is connected to one RAM 110 pin. A system designer who intends to 
run NVAX only in 30-bit mode can leave P%TS_TAG_H<31:29> unconnected, and they will be 
pulled low internally so that the Cbox sees a zero value. 

13.3.1.5 pOkTS_ECC_H<S:O> 

P%TS_ECC_H<5:0> are 110 pins which are used to transfer the ECC check bits to and from the 
tag store RAMs. "When the tag store is being written, P%TS_ECC_H<5:0> are used as outputs; 
when the tag store is being read, P%TS_ECC_H<5:O> are used as inputs. 

Each P%TS_ECC_H pin is connected to one RAM 110 pin. 

13.3.1.6 pOkTS_OWNED_H 

P%TS_OWNED_H is an I/O pin which is used to transfer the ownership hit to and from the tag 
store RAMs. V\1hen the tag store is being written, P%TS_OWNED_H is used as an output; when 
the tag store is being read, P%TS_ OWNED _H is used as an input. 

P%TS_O'\\1\"ED_H is connected to one RAM 110 pin. 

13.3.1.7 P%TS_VAl.ID_H 

P%TS_ VALID_H is an I/O pin which is used to transfer the valid bit to and from the tag store 
RAMs. 'When the tag store is being written, P%TS_ VALID_H is used as an output; when the 
tag store is being read, P%TS_VALID_H is used as an input. 

P%TS_ VALID_H is connected to one RAM 110 pin. 

13.3.1.8 P%DR_INDEX_H<20:3> 

These pins drive the address lines of the data RAMs, thus indexing into one row of the data store. 
The value driven depends upon the corresponding bits in the address of the memory reference 
being done. 

P%DR_INDEX_H<16:S> are used for every cache configuration. P%DR_INDEX_H<20:17> are 
used based on the cache size selected. When the cache size selected is smaller than 2 megabytes, 
some or all of these four bits are driven to 0 rather than to the value given in the address. This 
is shown in Table 13-9. 

Table 13-9: Usage of P%DR_INDEX_H<20:S> based on cache size 

Cache size 

128 kilobytes 

256 kilobytes 

512 kilobytes 

DIGITAL CONFIDENTIAL 

P%DR_lNDEX_Bbits driven 
1IDconditioDally to 0 

P%DR_INDEX_B<20:1'1> 

P%DR_lNDEX_B<20:18> 

Po/oDR_lNDEX_B<20:19> 

P%DR_lNDEX_B<16:5> 

P%DR_INDEX_B<17:S> 

P%DR_INDEX_B<18:5> 
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Table 13-9 (Cont.): Usage of POkDR INDEX H<20:S> based on cache Size 

P%DR_INDEX_Hbits driven 
Cache size UDconc1itioDBlly to 0 P%DR_INDEX..H bits 1l8ed 

2 megabytes 

P%DR_INDEX_H<16:5> are driven by NVAX and received by 18 RAM chips. 

13.3.1.9 P%DR_OE_l 

P%DR_OE_L (Data RAM Output Enable) is an output pin which controls the data RAMs. It 
enables the RAMs to drive their outputs. It is asserted (driven low) when the data RAMs are being 
read, and allows the data RAMs to drive P%DR_DATA_H<63:0> and P%DR_ECC_H<7:O>. 
When the data RAMs are being written, P%DR_OE_L is deasserted (driven high). 

P%DR_OE_L is driven by NVAX and received by 18 RAM chips. 

13.3.1.10 P%DR_WE_l 

P%DR_ WE_L (Data RAM ,\\Trite Enable) is an output pin which, when asserted, enables the data 
RAMs to be written. It is asserted (driven low) during writes of the data R.AM:s. 

P%DR_ "WE_L is driven by NVAX and received by 18 RAM chips. 

13.3.1.11 P%DR_DATA_H<63:0> 

P%DR_DATA_H<63:0> are I/O pins which are used to transfer the cache data to and from 
the data RAMs. When the data RAMs are being written, P%DR_DATA_H<63:O> are used as 
outputs; when the data RAMs are being read, P%DR_DATA_H<63:0> are used as inputs. 

Each one of P%DR_DATA_H<63:O> is connected to one RAM I/O pin. 

13.3.1.12 POkDR_ECC_H<7:0> 

P1DDR_ECC_H<7:0> are I/O pins which are used to transfer the data ECC to and from the data 
store. When the data store is being written, P%DR_ECC_H<7:O> are used as outputs; when the 
data store is being read, P%DR_ECC_H<'7:O> are used as inputs. 

Each one ofP%DR_ECC_H<7:O> is connected to one RAM I/O pin. 
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13.3.2 Backup Cache Block Diagrams 

Figure 13-4 and Figure 13-5 show the connections to the tag store and data RAMs and the way 
the address is used for the 128-kilobyte cache. 

Figure 13-4: Tags and Data for 128-Kllobyte Cache 

P%TS_OE_L 

P%TS_WE_L 

POlo DR_INDEX_H<16:3> , 
/ 

POlo DR_OE_L , 
/ 

POlo DR_WE_L , 
/ 
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Figure 13-5: Address as used for 128-Kllobyte Cache 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I tag - 15 bits I data and tag store index - 12 bits I , UNUSED I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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Figure 13-6 and Figure 13-7 show the connections to the tag store and data RAMs and the way 
the address is used for the 256-kilobyte cache. 

Figure 13-6: Tags and Data for 256-Kllobyte Cache 

P%TS_OE_L 

P%TS_WE_L 

po;, oDR_INDEX 

p% DR_OE_L 

p% DR_WE_L 

H<17:3> '\ 
/ 

'\ 
/ 

'\ 
/ 

TAG STORE 
3 PARTS, 8K X 8 

DATA RAMS 
9 PARTS, 32K X 8 

/1" 

P%OR_DATA_H<63 :0;:. 
,V 

Figure 13-7: Address as used for 256-Kllobyte Cache 

VALID H 
P%TS:ECC_H<S:O> 

/" 

P%OR -
'\/ 

31 30 29 28127 26 25 24123 22 21 20119 l8 17 l6115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

tag - 14 bits I data ana ta9 store inaex - l3 bits I I UNUSED I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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Figure 13-8 and Figure 13-9 show the connections to the tag store and data RAMs and the way 
the address is used for the 512-kilobyte cache. 

Figure 13-8: Tags and Data for 512-Kllobyte Cache 

POlo TS_' NOEX_H<18:5> 

P%TS_OE_L 

P%TS_WE_L 

po;. oDR_'NDEX_H<18:3> \, 
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./ 
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TAG STORE 
6 PARTS, 16K X 4 

VALIO_H 
P% TS_ECC_H<5 :0> 

DATA RAMS 
18 PARTS, 64K X 4 

I, /i' 

P%DR_DATA_H<63 :0> P%DR -
/ ,/ 

Figure 13-9: Address as used for 512-Kllobyte Cache 

3l 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 tag - 13 bits 1 ciata and tag store inclex - 14 bits 1 1 'ONOSED I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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Figure 13-10 and Figure 13-11 show the connections to the tags and data RAMs and the way the 
address is used for the 2-megabyte cache. 

Figure 13-10: Tags and Data for 2-Megabyte cache 

P% TS_IN DEX_H<20 :5> 

P%TS_OE_L 

P%TS_WE_L 

P% DR_INDEX_H<20:3> " 
/ 

P% OR_OE_L " / 
P% DR_WE_L -""-

/ 

TAG STORE 
5 PARTS, 64K X 4 

DATA RAMS 
18 PARTS, 256K X 4 

/1" 

P%OR_DATA_H<63:0> 

',I' 

Figure 13-11: Address as used for 2-Megabyte Cache 

/1" 

P%OR -,v 

31 30 29 28127 26 2S 24123 22 21 20119 l8 17 16115 14 l3 l21l1 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

tag - II bits ciata anci tag store index - 16 bits 1 1 UNUSED 1 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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13.4 The Cbox Datapath 

The Cbox includes datapath and control for interfacing to the Mbox, the cache RAMs, and to the 
NDAL. The portion of the Cbox which primarily interfaces to the Mbox and the cache RAMs will 
be referred to here as the Cbox proper, while the portion of the Cbox which primarily interfaces 
to the NDAL will be referred to as the BIU. 

The Cbox datapath is organized around a number of queues and latches, an address bus and a 
data bus in the Cbox proper, and an address bus and a data bus in the BIU. Separate access is 
provided to the tag store and the data RAMs. 

Table 13-10 lists the Cbox queues and the major latches. Each is covered in more detail later in 
the section. The IPRs are not covered here, as they are covered in Section 13.5. 

Table 13-10: Cbox Queues and Major Latches 

QueuelLatch Entries AddresslData 

C:M_OUT _LATCH 1 

FILL_D_-\TA_PIPEs 2 

DRE..W_LATCH 1 

IREAD_LATCH 1 

WRITE_PACKER 1 

WRITE_QUEUE 8 

FILL_CAM 2 

WRITEBACK....QUEUE 2 

Address<31:3> and 
data<S3:0> 

Dat8<63:0> 

Address<31:0> 

Address<31:0> 

Address<31:0> and 
data<63:0> 

Address<31:O> and 
data<S3:0> 

Address<31:3> 

Address<81:5> or 
data<63:O> 

Address<81:3> and 
data<68:O> times 4 

Address<31:O> and 
data<63:O> 

Function 

Holds fill data or an invalidate address 
being sent to the Mbox. 

Pipeline data destined for the MbOx. 

Holds a data-stream read request from 
the Mbox. 

Holds an instruction-stream read request 
from the Mbox. 

Compresses sequential memory writes to 
the same quadword. 

Queues write requests from the Mbox. 

Holds addresses for read or write misses 
which have resulted in a read to 
memory; one may hold the address of an 
in-progress DREAD_LOCK which has no 
memory request outstanding. 

Holds up to 8 quadword fills and up to 2 
coherence transactioris from the NDAL. 

Holds writeback addresses and data to be 
driven on the NDAL. The queue holds up 
to 2 hexaword writebacks. It is also used 
for quadword WDISOWNs. 

The NON_WRITEBACILQUEUE holds 
all non-WDISOWN transactions destined 
for the NDAL. This includes reads, I/O 
space transactions, and normal writes 
which are done when the cache is off or 
inETM. 

It can be seen from Table 13-10 that some of the queues contain address and data entries 
in parallel (CM_OUT_LATCH, WRITE_PACKER, WRITE_QUEUE, WRITEBACK...,QUEUE, 
NON_ WRITEBACK_QUEUE), some contain either addresses or data <NDAL_IN_QUEUE), some 
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contain only data (FILL_DATA_PIPE), and some contain only addresses (DREAD_LATCH, 
lREAD_LATCH, FILL_CAM). 

The Cbox is organized around an address datapath and a data datapath. A block. diagram of the 
data datapath is given in Figure 13-12, and a block. diagram of the address datapath is given in 
Figure 13-13. 

There are five major busses in the Cbox: C_BUs%DBUS_B<63:O>, C_BUS%BIU_DArA_B<63:O>, 
C_ADC%ABUS_B<31:O>, C_ADC%BIU_ADDR_OUT_B<31:O> and C_BW%ADC_ADDR_JN_B<31:O>. The first 
two transfer data, and the last three transfer addresses. From the block diagrams, it can be seen 
which of the latches and queues are connected to which busses. Transfers between address and 
data are connected only through the AbusIDbus Xfer block, which is in the BIU. 

The data flows may be understood by examining Figure 13-12. Write data enters the Cbox 
through the WRITE_QUEUE and is written into the data RAMs. When a writeback of a block 
occurs, data is read out of the data RAMs, transferred to the WRlTEBACK_ QUEUE in the BIU, 
and is driven onto the ~TDAL. 

,\Vhen read data is read from the backup cache, it is sent to the Mbox through the 
CM_OL~_LATCH. When read data returns from memory, it enters the Cbox through the 
}"l)AL_IN_ QUEtJE, is driven across C_BUS%BW_DAT.A...B<63:O> to C_BUS%DBUS_H<63:O> and into 
the data RAMs, as well as to the Mbox through the CM_OUT_LATCH. 

"'hen the Bcache is oil, write data is sent from the 'WRITE_QtJEVE directly to the 
NON_WRlTEBACK_Qt.iEu'"'E and to memo!"); bypassing the cache entirely. 

The last data flow of signmcance has to do with the reading and '\vriting of IPRs. The Dbus IPRs 
and the NDAL IPRs are read and written directly from the data data path. 

The address flows may be understood by examining Figure 13-13. Address bits <31:3> are used 
for memory space reads and \vrites, which always address a quadword boundary. Address bits 
<31:0> are used for I/O space reads and writes, which may address individual bytes. 

Read addresses arrive through the IREAD_LATCH and the DREAD_LATCH, and write addresses 
anive via the WRITE_QUEUE. Each address is driven across C_ADC%ABUS_B<31:O> to the tag 
RAMs, where it is looked up so that hit may be calculated. The index portion of the address is 
also driven to the data RAMs in case of a hit. 

If a read or a write results in a hit, the data is sent back to the Mbox via the CM_ OUT_LATCH. 
The requested quadword is always sent first on a Bcache hit. Bits <4:3> are driven onto 
Co/tMBO~FlLL_QW_B<4:3> to enable the Mbox to distinguish between quadwords within a 
hexaword. The most significant bits are not driven for :fill data, as the Mbox knows from its 
miss latches and the:fill command (D_CF or I_CF) which hexaword address the data corresponds 
to. 

If the read or write does not result in a Bcache bit, the miss address is loaded into the FILL_CAM, 
which holds addresses of outstanding read and write misses; the address is also driven to the 
BIU, where it enters the NON_WRITEBACK_QUEUE to be driven onto the NDAL. When the 
:fill data returns, the value of the NDAL signal P%ID_H<O> is used to locate the correct one of 
the two addresses in the FILL_CAM so that the data RAMs and the tag RAMs may be written. 
The address is driven out of the FILL_CAM to index the tag and data RAMs. 
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Another address-type operation occurs when a cache coherency transaction appears on the NDAL. 
In this case, the address comes in through the NDAL_IN_QUEUE and is driven from the BIU 
to the CBOX proper through the CBOX_BID_INTERFACE. The address is looked up in the tag 
RAMs, and if it hits, the address is sent through the CM_ OUT_LATCH to the Mbox for a Pcache 
invalidate. If necessary, the VALID andlor OWNED bit is cleared for the Bcache entry. Only 
address bits <31:5> are used for invalidates, as the invalidate is always to a hexaword. 

If a writeback is required, the index is driven to the data RAMs so the data can be read out. The 
address is then driven to the WRITEBACK_QUEUE for the writeback; it is followed shortly by 
the writeback data on the data busses. 

When Abus IPRs are read or written, the address busses and the data busses come into 
play. When an Abus IPR is read, the data is driven onto C."ADC%ABUS_B<31:O> and then to 
C_ADC%Bnt.ADDR_OUT_B<31:O>. The BIU uses the AbuslDbus XFER block to transfer the data to 
C_BUS%Bm_DAl'.A,.H<63:O>; it then goes to C_BUS%DBUS_B<63:O> and back to the Mbox through the 
CM_OUT_LATCH. 

When an Abus IPR is writien, the data is driven from the Mbox through the WRITE_QUEUE, 
to C_BUS'itDBUS_B<63:O>, and to C_BUS%BID_DATA...B<63:O>. The AbuslDbus XFER block transfers 
the data to C_ADco/cBnt.ADDR_OVT_B<31:O>, and it is then driven to C_ADCo/cABUS_B<31:O> so that 
it can be written into the register. 

The byte mask is received from the Mbox for writes and I/O space reads. It is passed through the 
Cbox and onto the !\i'DAL for writes when the cache is off or in ETM, and it is passed through to 
the NDAL for all I/O space transactions. 

13-20 The Cbox DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

Figure 13-12: Cbox block diagram with DATA_BUS 
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Figure 13-13: Cbox block diagram wtth ADDRESS_BUS 
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13.4.1 Mbox Interface 

All NVAX CPU chip transactions for the Cbox arrive through the Cbox-Mbox interface. Reads 
come from the Mbox to the Cbox through the read latches. Writes arrive through the 
WRITE_PACKER and the WRITE_QUEUE. All fills returning from the Cbox to the Mbox go 
through the CM_OUT_LATCH. 

A block diagram of the Mbox interface is shown in Figure 13-14. 

Figure 13-14: Mbox Interface 

;'" ;'" I M%SS_PA_H<31 :3>. M· ... C_SE_PA_H<2:0> 
Ce;.CBOX_AOOR_H<31 :5> 

1 1 (INVA~S) 7K 

~/ W 
C·4MBOX_FIL • ow H<',., I ,I 

I DREAD_LATCH I I IREAD_LATCH I 
I 

(FI~LS) /1' FIL.L_OATA_PIPE2 WRITiU:>ACKER 

1" 1 w 

I FllL_DATA_PIPE1 1 
/f" WRITE_ QUEUE 

j--------- -- -------------------- ----------~ 
8 ENTRIES 

i ICM_ADDR_LATCHI I eM_DATA_LATCH II 

: r.... CM OUT LATCH""" : 
~ _________________ ~ ___ = ___________ __________ J 

C_BUS%DBUS_H<63:0> 1 
C_ADC%ABUS_H<31 :0> ,/ , .... ,1/ 

When the Mbox has a command for the Cbox, the command appears on M%S6_CMD_B<4iO>. 
M%CBOx.,BEF _ENABLE_L is asserted for all reads, IPR_RDs, and IPR_ WRs. It is not asserted 
for writes since the Cbox accepts all writes from the Mbox. The Cbox loads the address from 
M%S6_P~B<Sl:3> and M%C_S6_PA...,BdiO> into either the mEAD_LATCH, the DREAD_LATCH, or 
the WRITE_PACKER. If the command is a write, the Cbox loads the data from B%S6_DATA..,B and 
the byte enable from M%S6_BYTE..MASK...B into the WRITE_PACKER. 

Table 13-11 shows the commands which pass between the Mbox and the CboL 

DIGITAL CONFIDENTIAL The Cbox 13-23 

I 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

Table 13-11: Mbox-Cbox Commands 

CODlDlBDd 

DREAD_LOCKl 

WRITE_UNLOCK 

WRITE 
IPR_RDl 

D_CF 

I_CF 

Thi\'AL 

NOP 

13-24 The Cbox 

Description 

Instruction stream read 

Data stream read 

Data stream read with modify 
intent 

Interlocked data stream read 

Write which releases lock 

Normal write 

Read of an internal or 
external processor register 

Write of an internal or 
external processor register 

Data stream cache fill 

Instt"Uction stream cache :fill 

Hexaword invalidate 

No operation. 

Cbox datapath element involved 

!READ_LATCH 

DREAD_LATCH 

DREAD_LATCH 

DREAD_LATCH 

WRITE_PACKER, WRITE_QUEUE 

WRITE_PACKER, WRITE_QUEUE 

DREAD_LATCH 

CM_otJT_LATCH 

CM_OUT_LATCH 

C!\I_0UT_LATCH 
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13.4.1.1 Mbox to Cbox Transactions 

The Mbox commands and accompanying control and data signals are shown in Table 13-12. 
M%cBO~REF _ENABLE_L and M%CBOx...LArE_EN_B are used to enable certain transactions coming 
to the CboX; M%CBOx...LA.TE_EN_B is only used for transactions which may bit in the Pcache. From 
the table, is may be seen that the assertion of M%CBOX_REF _ENABLE_L is not necessary for writes 
and write unlocks; and that M%CBOx...LATE_EN_B is only used for DREADs, lREADs, and READ 
MODIFYs. M%S6_BYTE_MASB:..B<7:O> is valid for all transactions, although B%S6_D~B<6S:O> is 
not valid for read transactions. 

Table 13-12: Mbox to Cbox Command Matrix 

Mbox-driVeJ1 Signal or Bus 

M'iC>86_CMD_BQIO> lt5CBOx.,.BEF..ENABLE-L M~S6_PAJI<3118> MIJi>S6_B'!TE..MASE..B<1aO> 

MIiiCBOx.,.LAT.E_ENJI M~_S6_PA...BdaO> hS6_DA'rA..B<83aO> 

DREAD valid 1 valid valid valid X2 

READ valid valid valid valid X 
:MODIFY 

IREAD valid valid valid valid X 

READ valid 03 valid valid X 
LOCK 

IPR READ ,"alid 0 valid valid X 

IPR valid 0 valid valid valid 
'WRITE 

WRITE X X valid valid valid 

WRITE X X valid valid valid 
UNLOCK 

OTHER X X X X X 

1 "valid" denotes that the signal is either asserted or deasserted by the Mbox, and the Cbox interprets it appropriately. 

2"X" denotes that the Mbox may drive any value to the Cbox, and the Cbox does not care what value is driven.. 

a"O" denotes that the Mbox never a.aerts the signal in this case. 

13.4.1.1.1 The IREAD_LATCH and the DREAD_LATCH 

·When the Mbox has a read command for the Cbox, the Cbox loads the address from from 
M%S6_PA..,.B<31:3> and M%C_S6_PA..,.B<2:O> into either the mEAD_LATCH or the DREAD_LATCH, 
depending on the command. Only IREADs are loaded into the lREAD_LATCH. The 
DREAD_LATCH is used for DREAD, DREAD_MODIFY, DREAD_LOCK, and IPR_READ. 

The Mbox only has one outstanding IREAD and one outstanding DREAD at a time, so no 
backpressure for the latches is needed. When the DREAD_LATCH is valid, the Mbox does 
not start the next DREAD-type transaction until all :fill data from the previous command is 
returned to the Mbox. When the IREAD_LATCH is valid, the Mbox does not start the next 
lREAD transaction until either the !READ has been aborted or all fill data from the IREAD is 
returned to the MbOx. 
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The Cbox services a read bit from the read latch; a read miss is transferred to the FILL_CAM 
where it awaits the arrival of data from memory. Table 13-13 and Table 13-14 show the fields 
which are contained in the two read latches. 

Table 13-13: IREAD_LATCH Fields 

Field 

ADDRES8<31:0> 

CMD<4:0> 

Purpose 

Physical address of the read request. 

Specific command being done aREAD). 

Table 13-14: DREAD LATCH Fields 

Field Purpose 

Specific command being done (DREAD, DREAD_MODIFY, DREAD_LOCK, 
IPR_READ). 

ADDRESS<31:0> Physical address of the read request. 

'Vhen the Mbox asserts M%ABORT_CBOX_IBD_H, the Cbox clears the lREAD_LATCH entry if the 
reference has not yet started. If the CBOX is in the middle of the tag store lookup or in the middle 
of a bit sequence and returning the Iread fill data, it aborts the lookup or the data sequence. If a 
miss has already been initiated, the CBOX continues with the fills to the backup cache but does 
not send any data to the Mbox. 

13.4.1.1.2 WRITE_PACKER and WRITE_QUEUE 

Writes from the Mbox go through the WRITE_PACKER and into the WRITE_QUEUE. The 
WRITE_PACKER holds one quadword of data; the WRITE_QUEUE consists of 8 entries, each 
of which contains a quadword of data. The purpose of the WRITE_PACKER is to accumulate 
memory-space writes to the same quadword which arrive sequentially, so that only one write has 
to be done into the cache. Performance modelling shows that this can reduce by 70% the number 
of writes done to the backup cache. 

Only normal WRITE commands to the same quadword are packed together. Other writes 
pass immediately from the WRITE_PACKER into the WRITE_QUEUE. The WRITE_PACKER 
is flushed at the following times: 

• When a memory-space WRITE to a different quadword arrives. The new quadword then 
remains in the write packer until a write packer flush condition is met. 

• When a WRITE_UNLOCK anives. The WRITE_UNLOCK is then passed immediately from 
the WRITE_PACKER to the WRITE_QUEUE. 

• When an 110 space write arrives. The 110 space write is then passed immediately from the 
WRITE_PACKER to the WRITE_QUEUE. 

• When an IPR_ WRITE arrives. The IPR_ WRITE is then passed immediately from the 
WRITE_PACKER to the WRITE_QUEUE. 

• If an !READ or a DREAD arrives to the same hexaword as that of the entry in the 
WRITE_PACKER. 
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• Whenever any condition for fl.ushing the write queue is met on the entry in the 
WRITE_PACKER. 

• If the DISABLE_PACK hit in the CCTL IPR is set. In this case, every write passes directly 
through the WRITE_PACKER without delay. 

THREE-CYCLE L.ATENCY THROUGH THE WRITE_QUEUE 

If the WRITE_QUEUE and the WRITE_PACKER are empty, the latency of any write 
through them is 3 cycles. The implication of this is that if any reads which Hush 
the WRITE_QUEUE are done alternately with writes, their execution will be greatly 
slowed. This applies to IPR reads and writes and may be an issue in testing the chip. 

Table 13-15 describes the fields in the 'WRITE_QUEUE. 

Table 13-15: WRITE_QUEUE Fields 

Field 

I\VR_CONFLICT 

c~m<4:0> 

ADDRESS<:31:0> 

BYTE_EN<7:0> 

DATA<63:0> 

Purpose 

Indicates that the entry contains valid information. 

Indicates that this write conflicts with a DREAD, giving the 'WRITE_Q1.J'EL~ 
priority. Check is done using hexaword address. 

Indicates that tms write confiicts with an !READ, giving the \VRITE_QtJEu'"'E 
priority. Check is done using hexaword address. 

Specific command being done. 

Physical address of the write. 

Byte enable for the write. 

Data to be written. 

When a quadword of data is moved into the WRITE_QUEUE, it is serviced by the Cbox arbiter 
as the lowest-priority task, unless special conditions exist. 

Servicing writes separately from reads allows reads to take higher priority and gets read data 
back to the CPU faster. However, a read which follows a write to the same hexaword must 
not be allowed to complete before the write completes. To prevent this there are conflict bits, 
DWR_CONFLICT<8:0> and IWR_CONFLICT<8:0>, implemented in the WRITE_QUEUE and 
WRITE_PACKER, one for each entry. The conflict bits ensure correct ordering between writes 
and a DREAD or an !READ to the same hexaword . 

. When a DREAD arrives, the hexaword address is checked against all entries in the 
WRITE_QUEUE and WRITE_PACKER. Any entry with a matching hexaword address bas 
its corresponding DWR_CONFLICT bit set. The DWR_CONFLICT bit is also set if the 
WRITE_QUEUE entry is an IPR_ WRITE, a WRITE_UNLOCK, or an I/O space write. If any 
DWR_CONFLICT bit is set, the WRITE_QUEUE takes priority over DREADs, allowing the writes 
up to the point of the conflicting write to complete first. 

When an !READ arrives, the hexaword address is checked against all entries in the 
WRITE_QUEUE and WRITE_PACKER. Any entry with a matching hexaword address bas 
its corresponding IWR_CONFLICT bit set. The IWR_CONFLICT bit is also set if the 
WRITE_QUEUE entry is an IPR_WRITE, a WRITE_UNLOCK, or an I/O space write. If any 
IWR_CONFLICT bit is set, the WRITE_QUEUE takes priority over IREADs, allowing the writes 
up to the point of the conflicting write to complete first. 
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As each write is done, the conflict bits and valid bit of the entry are cleared. When the last write 
which conflicts with a DREAD finishes, there are no more DWR_CONFLICT bits set, and the 
DREAD takes priority again, even if other writes arrived after the DREAD. In this way a DREAD 
which confiicts with previous writes is not done until those writes are done, but once those writes 
are done, the DREAD proceeds. 

The analogous statement is true for an IREAD which has a conflict. IfIWR_ CONFLICT is set and 
the IREAD is aborted before the confiicting write queue entry is processed, the WRITE_QUEUE 
continues to take precedence over the IREAD_LATCH until the conflicting entry is retired. 

If both a DREAD and an IREAD have a confiictin the WRITE_QUEUE, writes take priority until 
one of the reads no longer has a confiict. If the DREAD no longer has a confiict, the DREAD is 
then done. Then the WRITE_QUEUE continues to have priority over the !READ_LATCH since 
the lREAD has a conflict, and when the confiicting writes are done, the IREAD may proceed. If 
another DREAD atrives in the meantime, it may be allowed to bypass both the writes and the 
lREAD if it has no confiicts. 

This mechanism is used for other cases to enforce read/write ordering. Cases where the 
WRITE_Q1JEtiE (and the "TRITE_PACKER) must be flushed before proceeding are listed below: 

1. DREAD_LOCK and \VRlTE_UNLOCK. 
2. All IPR_READs and IPR;.,. WRITEs (includes Clear Write Buffer). 
3. All 110 space reads and I/O space writes. 
4. Dread or Iread conflict with a write (checked to hexaword granularity, on address bits <31:5». 

When a DREAD_LOCK arrives from the MBOX, D'WR_CONFLICT bits for all valid writes in the 
WRITE_QUEli'E and WRITE_PACKER are set so that all writes preceding the DREAD_LOCK 
are done before the DREAD_LOCK is done. 

When any IPR_READ anives, all DWR_CONFLICTbits for valid entries in the WRITE_QUEUE 
and WRITE_PACKER are set, forcing the writes to complete before the IPR_READ completes. 
This ensures that IPR reads and writes are executed in order. 

~Tben any D-stream I/O space read anives, all DWR_CONFLICT bits for valid entries. in the 
WRITE_QUEUE and WRITE_PACKER are set, so that previous writes complete first. 

When any I-stream 110 space read anives, all IWR_CONFLICT bits for valid entries in the 
WRITE_QUEUE and WRITE_PACKER are set, so that previous writes complete first. 

Note that when a WRITE_UNLOCK arrives, the WRITE_QUEUE is always empty as it was 
previously flushed before the READ_LOCK was serviced. 

When a new' entry for the DREAD_LATCH arrives, it is checked for conflicts with the 
WRITE_QUEUE. At this time the DWR_CONFLICT bit is set on any WRITE_QUEUE entry 
which is an 110 space write, an IPR_ WRITE, or a WRITE_UNLOCK. Similarly, when a new 
entry for the IREAD_LATCH arrives, it is checked for conflicts with the WRITE_QUEUE. At this 
time the IWR_CONFLICT bit is set on any WRITE_QUEUE entry which is an I/O space write, 
an IPR_ WRITE, or a WRITE_UNLOCK. 

Thus, all transactions from the Mbox except memory space reads and writes unconditionally 
force the flushing of the WRITE_QUEUE. Memory space reads cause a flush if they conflict with 
a previous write. 

If the WRITE_QUEUE fills up, the Cbox asserts C%WR_BUF _BAClCPRES_H. The Mbox then stops 
sending more writes to the Cbox until C%WR_BUF _BACK.-PRES_H is deasserted. 
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13.4.1.2 Cbox to Mbox Transactions 

The Cbox sends fills and invalidates to the Mbox. The signals which the Cbox drives in doing 
this are shown in Table 13-16. 

Table 13-16: Cbox to Mbox Interface signals 

Field 

~LAST.~H 

ce-~O~BARD_ERR.H 

Purpose 

Specific command being done: either D_CF, I_OF, INVAL, or NOP. 

Hexaword address for invalidate sent to Mbox 

Indicates that the quadword of:fill data being returned was the requested 
quadword of data: the quadword to which the original address corresponded. 
It is also asserted if c.cBOx..,BARD_ERlLH is asserted and the requested quadword 
has not yet been returned; the Mbox then notifies the !box and/or Ebox that 
the requested data has been returned so that the machine does not hang. 

Indicates that this is the last data being sent for the read request. 

Indicates that an unrecoverable error is associated with the data. This bit only 
qualifies fills, not invalidates. When ~~BARD_EBR_R is asserted, the Obox 
also asserts Cca.A.ST_FILL_R as no more fills follow. Ct;iCBO~RARD_ERR_H may be 
asserted as the result of an uncorrectable error in the Bcache or as the result 
of RDE on the :NDAL. 

Indicates that a correctable backup cache ECC error is associated with the 
cun-ent fill data and the data should be ignored. Valid for fills only, not 
invalidaLes. Corrected data will follow. 

Address bits to indicate to which quadword within the hexaword the current 
fill data belongs. 

Bus used to receive data from the l\lbox and to send :fill data to the Mbo%. 

Byte data parity for BY8.DArA,.,Bd8IO>. 

Table 13-17 shows what signals are driven and valid for every Cbox-to-Mbox transaction. 

If an error in the backup cache or on the NDAL happens while fill data is being retrieved, the 
Cbox notifies the Mbox using C%CBO~BARD_ERRJI or c%cBO~ECC_ERR_B. Table 13-18 shows 
how both normal cases and error cases are handled by the Mbox. 
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Table 13-17: Cbox to Mbox Command Matrix 

~CMD_B<1IO> 

Cbox-driven SigDa! 
or Bus NOP (00) INVAL (01) I_CF (10) D_CF (11) 

C'iiCBOx...,ADDR..B<811l> Xl valid2 X X 

CHtEQ..DQW_JI 03 0 valid4 valid 

~lAST_FILL_JI 0 0 valid valid 

C'iiCBOx.,.BABD_EltR..B 0 0 valid valid 

C'iiCBOx.,.ECC_BB.R..B X X valid valid 

C'IiMBOx....nu._QW_Bc4a3> X X valid valid 

~_DATA.Bc881O> not driven not driven driven driven 

CCieS6_DP _B<71O> not driven not driven driven driven 

I"X" denotes that the Cbox may drive any value to the Mbox, and the Mbox does not care what value is driven. 

2" valid" denotes that the signal is either asserted or deassened by the Cbo:x, and the Mbox interprets it appropriately. 

8"0" denotes that the Cbox never asserts the signal in this case. 

'The ltfbox ignores the value driven by the Cbox in this case. 

Table 13-18: Cbox to Mbox commands and resulting Mbox actions 

NOP 

I_CF or D_CF 

I_CF or D_CF 

I_CF or D_CF 

Qualifiers 1 MbO% Action 

Qualifiers do not apply. Take no action. 

None asserted. Accept fill data for outstanding !READ or DREAD; 
expect more. 

CtJdAST_FILL..H asserted Accept fill data for outstanding lREAD or DREAD; 
expect no more. 

CtJK3OX'..,IWt.DJQm.,Jl, Perform invalidate, expect no more fills for this 
CtJdAST_FILL..H read. (C'HAST..FILL...B is always asserted when 

~_EIt.1I....B is asserted.) 

CtJK3Ox.,.BCCJQm.,Jl Ignore this 1ill data, expect fill later. 

~JQm'" and Ignore this 1ill data, expect fill later. 
OH..\ST-FILL..H 

This case never happens, and is disallowed. 
c«Jl.CIIOX,..BAR.D..BRIl...H 

INVAL Qualifiers do not apply. Perform invalidate. 

INVAL to outstanding :fill Qualifiers do not apply. 
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Perfonn invalidate, expect :fill data. Do not 
validate the data in the Pcache when it returns. 
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13.4.1.2.1 CM_OUT_LATCH 

The CM_OUT_LATCH holds:fill data and invalidate addresses which are destined for the MbOx. 
The Mbox never backpressures the Cbox (it can always receive a command from the Cbox) so a 
queue is not needed. The latch has an address portion and a data portion. The fields are shown 
in Table 13-19. 

Field 

CMD<1:0> 

ADDR<31:5> 

FILL_QW<4:3> 

DATA<63:0> 

Purpose 

Specific command being done. 

Physical address of the invalidate. This field is not used for fills. 

Quadword alignment of the fill. This field is not used for invalidates. 

Fill data. 

The CM_ OUT_LATCH is loaded with an invalidate when the backup cache deallocates a valid 
block or when it performs an invalidate due to a cache coherency transaction on the NDAL. The 
CM_OL"'T_L..~TCH is loaded with cache fill data '\vhen the l\'TIAL returns fill data which was 
requested by the Mbox or when a read request bits in the backup cache. Cbox control ensures 
that both events never happen in the same cycle. 

The command from the CM_ OUT_LATCH is driven on C%CBOX_CMD_H<l:O>. If the command is an 
in'\"alidate, the address is driven on C%CBOX_ADDR_B<31:5>, and no data is driven to the lvIbox. If 
the command is a fill, the qu.adword alignment is driven on C%MBOx..FILL_QW_H<4:3>. (The Mbox 
has the hexaword address during these cycles.) Fill data is piped through the FILL_DATA_PIPEs 
and driven on B%S6_DATA...B<63:O>. The Cbox calculates byte parity on the £11 data and drives.it 
on C~_DP_B<7:O>. 

If an IREAD is in progress in the Cbox and the MBOX asserts Mo/cABORT_CBOX_IRD_H, the Cbox 
prevents any further command, address, or data for that Iread from being driven to the Mbox, 
as described in Section 13.4.1.2.3. 
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13.4.1.2.2 FILL_DATA_PIPE1 and FILL_DATA_PIPE2 

The FILL_DATA_PIPEs are used to pipeline the:fill data·for two cycles so that the Obox drives 
B%S6_DATA,..B<63:O> coincidentally with the write-enable of the Pcache. If there is a free cycle on 
BcrtS6_DATA,..B<63:O>, the Obox may bypass the:fill data from the FILL_DATA_PIPE1 (to achieve a 
one-cycle bypass). This allows the Mbox to return data to the Ibox or the Ebox one cycle early. 
The cache :fill to the Pcache is done in the normal cycle, driven from FILL_DATA_PIPE2, even if 
Ebox or Ibox data was bypassed in an earlier cycle. The timing relationships for one cache :fill 
are shown in Figure 13-15. 

Figure 13-15: B%S6_DATA_Hc63:O> bypass timing 

one-cy:le oata bypass aa~a w=it~en to Pcache 

cy:le :. cycle : cy:le ~ I cycle 4 I 
I+~++~I~-~~~!-~--~I+++·+I-+·++i++~-+!-+--+I-----i+.-~-'~++~-i-+·++I+++++I+++-+I+++~+I+++++I+++++I 

I ,.. I ,.. I : I 

B%S6_DATA...H valid 
<.:c= :?ca:he ~~:l} 

: B~~6_DATA.B<63:O> va:id (-:0 !-~_:S:iS) 
I Mt;eCBOx.,BYPASS_ENABLE_B 
C%CBOX_CMD_H 
Co/~Ox.,FtLL_Q~~B<4~> 

In this example, a fill is just arrh~g' in cycle 1, so the Cbox drives C~BOx.,CMD_H and 
Co/ciMBOx.,FILL_QW _B<4:3>. 

The Mbox drives M%CBOX_BYPASS_ENABLE_H to the Cbox in cycle 2 to indicate that Bo/cS6_D~H 
is free during the current cycle. This causes the Obox to bypass data from FILL_DATA_PIPE1 
to B0/cS6_DATA...H to achieve a one-cycle bypass. 

In cycle 3 the Cbox drives the data from FILL_DATA_PIPE2 to the Pcache for the write. It does 
this even though the bypass was done previously, because the Pcache is always written in the 
third cycle after C%CBOx.,CMD_B is driven with the fill command. 

The rules for the Cbox driving data on B%S6_DATA.,.H are as follows: 

1. IF FILL_DATA_PIPE2 contains valid data, drive B%S6_DATA,..B from FILL_DATA_PIPE2 

2. ELSE IF M%CBOX_BYPASS_ENABLE_H is asserted and FILL_DA.TA...PIPE1 contains valid data, 
drive from FILL_DA.TA...PIPE 1 to achieve a one-cycle bypass. 

The Mbox keeps enough state to know what the Cbox will be bypassing in any given cycle. 

When the Obox drives B%S6_DArA...H, it also generates byte parity and drives C%S6_DP _H with the 
same timing. 
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The fields of the FILL_DATA_PIPEs are shown in Table 13-20. 

Field 

!READ 

DATA<63:0> 

Purpose 

Indicates that fill data is for an !READ. 

Fill data. 

The lREAD field is necessary in case of an IREAD abort, as described in Section 13.4.1.2.3. 
If Mo/aABORT_CBOX-.mD_H is asserted and the data in either FILL_DATA_PIPEl or 
FILL_DATA_PIPE2 is for an IREAD, that FILL_DATA_PIPE must be cleared so that data is 
not driven back to the Mbox. 
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13.4.1.2.3 IREAD Aborts 

The Mbox asserts the signal M%ABORT_CBO~mD_B to notify the Cbox to abort any IREAD which 
it is currently processing. This may happen because of a branch mispredict where the Istream 
has been prefetching from one branch and has to change over to the other. The Mbox then aborts 
all outstanding !READs so that a new !READ can begin. 

When the Cbox receives the abort signal, the read in question may be anywhere in the Cbox read 
sequence. The exact action taken depends on where the read is, as shown in Table 13-21. 

Table 13-21: Cbox Action Upon Receiving M%ABORT_CBOX_IRD_H 

State of the mEAD Action Taken by the Cbox 

No !READ outstanding No action taken. 

IREAD_LATCH valid Clear the !READ_LATCH so the request will not be started. 
but not started 

IREAD_LATCH Abort the hit calculation immediately. This frees the tag store and data RAMs 
valid and hit calculation for another request. 
in progress 

IREAD_LATCH valid 
and read hi: in progress 

Abort the data RAM sequence immediately. The tag store and data RAMs are 
freed up for another request. 

!READ valid in 
FILL_CA.\f 

Clear the TO_MBOX bit in the FILL_CAM entry. 'When the :fill data returns 
from memory, validate it in the backup cache but don't send the data to the 
l\Ibox. 

!READ fill data 
in Cl\COUT_LATCH or 
FILL_DAXA_PIPEs 

Clear the entry containing !READ data so that the data is not returned to the 
Mbox. 

Figure 13-16 shows an example of timing for the Cbox abort response. In cycle 1, 
Mo/aABORT_CBOx..IRD_B is asserted during phase 2. The Cbox is ready to drive the I_CF command 
and B%S6_D.A1'.A...B during phase 4. The assertion of M%ABORT_CBO~IBD_B prevents both of those 
actions. 

The next lREAD may appear two cycles after the abort. 

I eyele 1 I eyele 2 I eyele :3 I 
I +++++ 1+++++ f +++++ I +++++ f +++++ I +++++ I +++++ I +++++ I +++++ I +++++ I +++++ I +++++ I 
I I I I 

" A 

I I I 
I I Mbox may send next 7READ 
I BtIS6_D.A:rA..B for I CF not c1ri ven due to abort 

I C%CBO~CMD_B-I CF ;ot driven due to abort 
M%ABORT_CBOx..,IBD_B -
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13.4.2 ECC Datapaths 1 

The backup cache tag store and data store are both protected by error-detect-and-correct codes 
(ECC). ECC was chosen for its capability to correct errors because the cache is writeback. and 
may contain the only copy of data in the system. 

The codes employed detect andlor correct the following errors: 

1. Detect and correct single-bit errors. 
2. Detect double-bit errors. 
3. Detect three and four bit failures if within one nibble. 
4. Detect some addressing failures. 
5. Detect all-zero's failure on all protected bits. 
6. Detect all-one~s failure on all protected bits. 

In general, ECC works as follows: Some number of check bits are generated. Each check bit is 
parity calculated over some subset of the data bits to be protected. The data bits and the check 
bits together are known as a code word. 

,\Vben data is written, the check bits are calculated and stored with the data; when data is read 
the check bits are regenerated and compared against the stored check bits. The result of the 
comparison is called the syndrome; if it is all zeros there is no error. The syndrome is passed 
through the syndrome decoder, which decodes one of N states. Each of the N states corresponds 
to one of the data or check bits being protected by ECC. 

If the syndrome does not decode successfully, the error is recognized as uncorrectable. If it does 
decode successfully, the output of the decoder indicates which bit is in error and that bit is inverted 
to achieve the data correction. 

13.4.2.1 Backup Cache Tag Store ECC 

Figure 13-17 shows a block diagram of the ECC data path for tag store ECC. 
P%TS_TAG_H<31:17>, P%TS_OWNED_H, and P%TS_VALID_H are protected directly by 
ECC. 

When the tag store is written, the generated check bits are written into the RAMs with the tag, 
valid and owned bits. When the tag store is read, the check. bits are regenerated on the stored 
tag, valid and owned bits and compared with the stored check bits. The result of the comparison 
is the syndrome, which decodes to tell the hardware which bit is in error. 

1 see Steve Elkind's memo of 31 January 1989. ECC Codes for NVAX Bcache, far mare detail about the codes chosen. 
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Figure 13-17: Tag Store ECC Block Diagram 

NOTE: EACH PARITY TREE HAS DIFFERENT SUBSETS OF DATA LINES AS INPUTS; 

·EACH PARITY TREE PRODUCES ONE CHECK BIT. 
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SYNDROME DECODER UNCORRECTABLE_ERROR 

TAG<31 :17>, VALID,OWNED 

J 
CORRECT _ TAG<31 :17>,CORRECT _ VALID,CORRECT _OWNED 

XOR INDIVIDUAL BITS 

CORRECTED TAG, VALID, OWNED 

A failure in addressing the RAMs is covered indirectly in the following way: When an 
entry is written into the tag store, even parity is generated on the on-chip version of 
P%TS_INDEX..H<20:5>. This is the address parity bit. (Those bits ofP%TS_INDEX_H<20:17> 
which are not required to address the RAMs, based on cache~selection, are zero'd during 
parity generation.) The address parity bit, P%TS_TAG_~~~, P%TS_OWNED_H, and 
~,!S_V~_H are all used in generating the check bits to J>;~~' ~e a~dress parity 
bIt Itself IS not actually stored. lS t'~v,1 tOf ... ;,!,f"7 

When an entry is read from the tag store, parity on P%TS_INDEX_H<20:5> is recalculated and 
used in the regeneration of the check bits, which are then compared with the stored check bits. 
If there was an addressing failure in either reading or writing the RAMs, and the regenerated 
check bits do not match the stored check bits, the output of the syndrome decoder indicates that 
the address bit is in error. Addressing failures are only detected if the failure was such that 
incorrect parity is produced from the address. 
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i~e ECC datapath makes a "predictive" ECC possible which is used in the hit calculation. While 
the tag RAMs are being accessed, the six predictive ECC check bits are calculated on the expected 
tag, valid, and owned bits. This predictive ECC is then compared with the actual ECC check bits 
read from the TAG RAMs during the hit calculation. In this way, an ECC error prevents a cache 
hit, so that a hit is never detected and then rescinded due to an error. 

The code used for tag ECC is shown in Figure 13-18. The check bit which is marked with a "1" in 
each row is generated by a parity tree whose inputs are the Tag, Valid, Owned, and AP (address 
parity) bits which are marked with a "1" in that row. 

Figure 13-18: Tag Store Error Correcting Code Matrix 

Igenerated check bitsl 1--------------------- tag bits -----------------1 / 
Syndrome 1 CO C1 C2 C3 C4 C5 0 V 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 AP 

----------1----------------------------------------------------------------------------------
SO 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 

----------1-------------1-------------1-------------1------------1------------1---------1----
51 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 

----------1-------------1-------------1-------------1------------1------------1---------1----
52 1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 

----------1-------------1-------------1-------------1------------1------------1---------1----
53 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 

----------1-------------1-------------1-------------1------------1------------1---------1----
54 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 

----------1-------------1-------------1-------------1------------1------------1---------1----
55 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 

----------1-------------1-------------1-------------1------------1------------1---------1----
1 nibble 0 1 nibble 1 1 nibble 2 1 nibble 3 1 nibble 4 1 h h 

Even parity - CO, C2, C3, C5 
Odd parity - Cl, C4 
5n - (generated Cn) XOR (stored Cn) 

1 
nibble 5, three bits only 

not stored 

In a tag store read operation, a non-zero syndrome indicates an error. If the syndrome generated 
matches one of the columns in the matrix, the error is correctable and the matching column 
indicates the bit to be corrected. For example, if syndrome<5:0> equals 011100(BIN), then tag bit 
<31> must be inverted to correct the problem. Any syndrome value which is non-zero and does 
not match a column in the matrix indicates an uncorrectable error. 

This code has the property that if any three or four bits in one nibble are in error, the syndrome 
produced will not match any matrix column. This means that an uncorrectable error will be 
flagged for a single 4-bit-wide RAM failure. It does not necessarily protect against single RAM 
failures if 8-bit-wide RAMs are used. 

NOTE 

Nibble protection only works if the bits in each nibble shown in the matrix are 
physically stored in the same RAM chip. The board designer must ensure that this is 
the case. 
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Odd parity is used for check bits 1 and 4 to protect against the all-zeros failure mode. Otherwise, 
all-zeros would be a valid code word. The choice of odd and even parity bits prevents all-ones 
from being a valid code word as well. 

13.4.2.2 Backup Cache Data Store ECC 

Figure 13-19 shows a block diagram of the ECC datapath for data ram ECC. 
P%DR_DATA_H<63:0> are protected directly by ECC. Address failure is covered indirectly in 
the same manner as it is covered on the tag store. When data is written into the data RAMs, 
parity is generated on the on-chip version ofP%DR_INDEX_H<20:3> and used as an additional 
data bit in generating the check bits to be stored. The address parity bit is not actually stored. 
When an entry is read from the data RAMs, parity on P%DR_INDEX_H<20:3> is recalculated 
and used in the regeneration of the check bits, which are then compared (XOR'd)with the stored 
check bits to produce the syndrome for the transaction. (If a cache size is selected which does not 
use some or all ofP%DR_INDEX_H<20:1'7>, those bits are zero'ed during the parity calculation.) 
In many cases an address failure is detected because the check bits will not match and an error 
is ilagged. 

The syndrome is used to calculate whether there was an error, and if so, and it was a correctable 
error, the syndrome tells which bit needs to be corrected. 

The code used for data ECC is shown in Figure 13-20. The check bit (C) which is marked with 
a "1" in each row is generated by a parity tree whose inputs are the data bits marked with a "I" 
in that row. 

As in tag store ECC, any syndrome value which is non-zero and does not match a column in 
the table indicates an uncorrectable error. A correctable error is indicated when the syndrome 
matches a column in the table. For example, data bit <44> must be inverted to correct the error 
if syndrome<7:0> equals 10000011(BIN). 

This code has the property that if any three or four bits in one nibble are in error, the syndrome 
produced will not match any matrix column. This means that an uncorrectable error will be 
flagged for a single 4-bit-wide RAM failure. 

NOTE 

Nibble protection only works if the bits in each 4-bit nibble shown in the matrix are 
physically stored in the same RAM chip. The board designer must ensure that this is 
the case. If x8 RAMs are used, the failure of an entire RAM chip is not protected by 
the code. 

Odd parity is used in check bits 3 and 7 to prevent all-ones and all-zeros from being valid code 
words. 
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Figure 13-19: Data RAM ECC Block Diagram 
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Figure 13-20: Backup Cache Data Store Error Correcting Code Matrix 

DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD D DDD 
0123 4567 8911 1111 1111 2222 2222 2233 3333 3333 4444 4444 4455 5555 5555 6CCC CCCC C666 A 

01 2345 6789 0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 0012 3456 7123 P 

1101 0001 0001 0011 1110 1101 1101 1100 0011 0010 0010 1101 1110 1010 1110 0100 0000 0000 1 SO 
1010 0010 0010 0100 1011 1010 1010 1011 0100 0100 0100 1011 1011 1101 1101 1010 0000 0000 1 51 
01Il 1100 1100 1000 0101 0111 0111 0111 1000 1001 1001 0110 0101 0111 0011 0001 0000 0000 1 52 
0100 1111 1111 0001 0010 0001 0001 0001 0001 0001 0001 0001 1111 0001 1111 1000 1000 0100 0 53 
1111 0101 1001 0111 0001 0100 0100 1000 0111 1101 1101 0010 0110 1000 0110 0000 0100 0010 1 54 
1111 1010 0110 1101 0100 1000 1000 0010 1101 1011 1011 0100 1001 0100 1001 0000 0010 0001 1 55 
1011 1111 0000 0100 1000 1101 0010 0100 1011 1000 0111 0111 1111 1101 0000 1000 0001 0111 0 56 
0000 1111 0000 1111 0000 1111 0000 0000 0000 1111 0000 1111 0000 1111 1111 0000 0000 1111 0 57 

AP is not stored in the RAMs. 

Even parity - CO, C1, C2, C4, C5, C6 
Odd parity - C3, C7 
5n - (generated Cn) XOR (stored Cn) 
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13.4.3 The BIU 

The BIU contains the NDAL pads, the NDAL_IN_QUEUE, the WRITEBACK_QUEUE, the 
NON_ WRITE BACK_ QUEUE, the BIU IPRs, and timeout counters for outstanding reads. The 
pads are run on the NDAL clocks, while the rest of the BIU is run on the NVAX internal clocks. 

The BIU IPRs are described in Section 13.5; the rest of the BIU is described here. 

13.4.3.1 NDAl_IN_QUEUE 

The NDAL_IN_QUEUE receives fill data and cache coherency requests from the NDAL. It consists 
of 8 quadword entries for fill data and two entries for cache coherency addresses. Queue control 
ensures that each entry is processed in the order in which it was received, so that fills and 
coherency requests are always processed in order. 

The BIU also uses the NDAL_IN_QUEUE mechanisms to inform the FILL_CAM that a read 
transaction was not acknowledged or timed out before the fill data returned. 

The 8 fill data slots ensure that there is always room in the queue for CPU fill data being returned 
from memory. 

The two cache coherency slots are managed through the assertion of PO/oCPU _SUPPRESS_L. 
The BIU asserts Po/oCPU_SUPPRESS_L on the NDAL to prevent the cache coherency slots 
from overflowing. When one slot fills, the BIU must assert Po/oCPU_SUPPRESS_L immediately 
because the next NDAL cycle may be another cache coherency cycle, which would fill both queue 
slots. This means that two cache coherency commands may be received only if they are on 
back-to-back cycles; if only one is received, P%CPU_SUPPRESS_L is asserted until that one is 
handled by the Cbox. This should happen quickly since the NDAL_IN_ QUEUE is serviced by the 
Cbox as the highest priority task. 

The BIU deasserts P%CPU_SUPPRESS_L when it is able to accept more cache coherency 
commands. Note that fill data may always return, whether or not Po/"cPU_SUPPRESS_L is 
asserted, as there is always room in the queue for fill data. 

The NDAL_IN_QUEUE is loaded with a valid entry to be processed by the Cbox (1) whenever 
there is a valid memory address cycle on the NDAL, where P%ID_H<2:1> is not equal to the 
NVAX ID, and which is accompanied by one of the following commands: IREAD, DREAD, OREAD, 
or WRITE (cache coherency cycles); (2) whenever there is a Read Data Return or Read Data Error 
cycle on the NDAL and P%ID_H<2:1> indicates that it belongs to the CPU; (3) when the BIU 
detects NACK for an outgoing read; (4) when a read transaction times out before data is returned. 

The fields of the two portions of the NDAL_IN_QUEUE are shown in Table 13-22. 
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Table 13-22: NDAL_IN_QUEUE Fields 

Field 

Fill entries 

VALID 

DATA<63:0> 

Cache coherency entries 

VALID 

ADDRES8<31:5> 

Purpose 

Indicates that the entry contains valid information. 

Fill data being returned. 

Indicates that the entry contains valid information. 

The address of the cache coherency request. 

When the BIU sends a transaction from the NDAL_IN_ QUEUE to the Cbox proper, it is 
accompanied by one of the commands shown in Table 13-23. 

Table 13-23: BIU commands sent to Cbox proper 

Command name 

C_BIU%%NOP_C:MD 

C_BIU%%FILL_O_CMD 

C_BIU%%FILL_l_CMD 

C_BIU%%RDE_O_CMD 

C_BIU%%RDE_l_CMD 

C_BIU%%NACK_O_CMD 

C_BIU%%NACK_1_CMD 

C_BIU%%TIMO_O_CMD 

C_BIU%%TIMO_1_CMD 

C_BIU%%INVAL_R_CMD 

C_BIU%%INVAL_O _CMD 

HeaDing 

No operation. 

Fill for FILL_CAM entry o. 
Fill for FILL_CAM entry 1. 

Read Data Error for FILL_CAM entry o. 
Read Data Error for FILL_CAM entry 1. 

No NDAL acknowledgement received for read from FILL_CAM entry o. 
No NDAL acknowledgement received for read from FILL_CAM entry 1. 

Read from FILL_CAM entry 0 has timed out. 

Read from FILL_CAM entry 1 has timed out. 

Cache coherency request resulting from a DREAD or an IREAD on the NDAL. 

Cache coherency request resulting from an OREAD or a WRITE on the NDAL. 

No address is returned for fills, as the NDAL P%ID_H<O> which is returned tells the Cbox which 
FILL_CAM entry was used for the read address. This information is encoded in the commands 
in Table 13-23. The Cbox uses the backup cache index from the FILL_CAM to write the correct 
locations in the tag store and data RAMs. 

There are four separate NDAL Read Data Return commands to allow the Cbox to identify the 
quadwords within the hexaword as they return. The lower two bits of the NDAL command 
are encoded to represent bits <4:3> of a quadword address. The BIU passes these bits to the 
CBOX_BIU_INTERFACE, which drives them onto C.,.ADC%ABUS_B<4:3> when the data is driven 
onto C_BUS%DBUS_B<63:O>. The information is then driven to the Bcache and to the Mbox. In this 
way the correct quadword cache entry is written in both caches. 
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13.4.3.2 NON_WRITEBACK_QUEUE 

All outgoing commands except disown writes pass through the NON_WRITEBACK_QUEUE. 
When the backup cache is on, the NON_WRITEBACK_QUEUE contains read misses, OREADs 
due to write misses, and 110 space reads and writes. When the backup cache is off, all transactions 
except quadword disown writes (which result from WRITE_UNLOCKs) go oQ.t through the 
NON_ WRITE BACK_QUEUE. 

The NON_ WRITEBACK_ QUEUE has two entries. The fields of each entry in the queue are 
shown in Table 13-24. 

Table 13-24: NON_WRITEBACK_QUEUE Fields 

Field 

VALID 

CMD<3:0> 

Purpose 

Indicates that the entry contains valid information. 

Specific command being done. 

100 

ADDRES8<31:0> 

LENGTH<63:62> 

BYTE_ENABLE<47:40> 

DATA<63:0> 

Identification, driven onto P%ID_H<o>, for outgoing reads only. 

Address of the outgoing command. 

Length of the outgoing command. 

Byte enable. 

Data, used if the outgoing command is a write. 

The format of the address field corresponds to that of an address cycle on the NDAL, which is 
described in Section 3.3.4.l. 

Writes from this queue are always byte-enabled quadword writes whether to memory space or 
110 space. 

The NON_WRITEBACK_QUEUE has a backpressure signal so that when it gets full, the Cbox 
stalls transactions from the Mbox until there is room in the queue to proceed. Fills and cache 
coherency transactions continue normally. 

13.4.3.3 WRITEBACK_QUEUE 

The WRITEBACK_QUEUE holds addresses and data for write disowns to memory. It contains 
two entries, each consisting of address and data for either a hexaword or a quadword disown 
write. 

Table 13-25 shows the fields in the WRITEBACK_ QUEUE. 

Table 13-25: WRITEBACK QUEUE Fields 

Field 

VALID 

CMD<3:0> 

ADDRES8<63:0> 

DATAO<63:0> 

DIGITAL CONFIDENTIAL 

Purpose 

Indicates that the entry contains valid information. 

Specific command being done. 

Address cycle for the writeback. 

First quadword of writeback data. 
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Table 13-25 (Cont.): WRITEBACK QUEUE Fields 

Field 

DATAl<63:0> 

DATA2<63:0> 

DATA3<63:0> 

BYTE_ENABLE<7:0> 

Purpose 

Second quadword of writeback data. 

Third quadword of writeback data. 

Fourth quadword of writeback data. 

Byte enable for quadword disown writes. 

The format of the address field corresponds to that of an address cycle on the NDAL, which is 
described in Section 3.3.4.l. 

When a disown write is done, the ADDRESS field is first loaded. CMD<3:0> is loaded with the 
WDISOWN command. Four quadwords of write data are loaded if the transaction is hexaword 
length; if the transaction is quadword length, one quadword of data is loaded. 

All writeback data is read from the data RAMs before the NDAL transaction is started, to simplify 
error handling. If a quadword of data is read out with an uncorrectable error, the command field 
sent with that data cycle is changed from WDATA to BADWDATA 

The WRITEBACK_QUEUE always takes priority over the NON_WRITEBACK_QUEUE in 
driving the NDAL. 

The WRITEBACK_QUEUE backpressures the Cbox control when it gets full, causing the 
following: 

1. All reads from the Mbox are prevented. 

2. All writes from the Mbox are prevented. 

3. All :fills are prevented. 
4. All cache coherency lookups are prevented. 
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13.4.3.4 Timeout counters 

The BIU has two timeout counters, one for each read request which may be outstanding. If all 
the fills for an outstanding read have not completed when the associated timeout counter expires, 
the BIU notifies the FILL_CAM of the error and it is handled as described in Chapter 3. 

The NVAX timeout counters are shown in Figure 13-21. The Ebox contains the Ebox base counter 
and the Ebox counter, which counts Ebox stall cycles. The Cbox contains two read counters which, 
in normal mode, are driven from the Ebox base counter. The Ebox counters are described in detail 
in Chapter 8. 

Three IPR bits control the operation of the timeout counters. When ECR<TIMEOUT_EXT>, 
E CR<S3_TIME OUT_TEST> , and CCTL<TIMEOUT_TEST> are all cleared, the counters are 
in normal mode. When ECR<TIMEOUT_EXT> is set, an external timebase may be used to 
lengthen the timeout period; when CCTL<TIMEOUT_ TEST> is set, the read timeout counters 
are placed in test mode, under which the read timeout values are shortened; and when 
ECR<S3_TIMEOUT_TEST> is set, the Ebox counter is put in test mode, under which the S3 
timeout value is shortened. 
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Figure 13-21: NVAX TImeout Counters 
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In normal mode, the Cbox and the Ebox share the base counter, which is run from the internal 
NVAX clock. The 12-bit Ebox counter and the 8-bit Cbox read counters are clocked with the 
global signal, E%TIMEOUT_ENABLE_H, which is generated from the 16-bit base counter. In 
normal mode, E%TlMEOUT_ENABLE_H is asserted for one NVAX internal cycle when the Ebox 
base counter overftows; if an external timebase is used (if ECR<TIMEOUT_EXT> is asserted), 
E%TIMEOUT_ENABLE_B is asserted for one cycle of the external timebase when the counter 
overflows. E%TIMEOUT_BASE_H is always asserted when the timeout counter is in normal mode; if 
ECR<TIMEOUT_EXT> is asserted, E%TIMEOUT_BASE_H is asserted for one NVAX. internal cycle 
when the input clock transitions high. 

The timeout values for normal mode are shown in Table 13-26. 
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Table 13-26: NVAX TImeout Values In Normal Mode 

Timeout 
Cycle time Granularity Read timeout! Ebox timeout1 

100ns 655 microseconds 167.117 (minimum) to 167.772 2.6837 (minimum) to 2.68345 
NVAX (max) milliseconds (max) seconds 

12-ns 786 microseconds 200.54 (minimum) to 201.327 3.22044 (minimum) to 3.22123 
NVAX (max) milliseconds (max) seconds 

14-ns 917 microseconds 233.964 (minimum) to 234.881 3.75718 (minimum) to 3.7581 
NVAX (max) milliseconds (max) seconds 

1 The timeout logic is in normal mode when ECR<TIMEOUT_EXT>, CCTL<TIMEOUT_TEST>, and 
ECR<S3_TIMEOUT_TEST> are all cleared. 

Each Cbox read counter is initialized to zero when it is not enabled with either 
C_BIU_NOC_5%BXI...TIMO_O_EN'_H or C_BIU_NOC_5%BXLTlMO_l_EN_H, and counts as long as the read 
is outstanding. If all the fills do not return within the timeout period, the counter overflows and 
C_BIU_NOC%BXI_TIMO_O_LAT_H or C_BID_NOC%BXI_TIMO_l_LAT_H is asserted. As a result, the read 
is aborted, the timeout counter is reset to zero, and the error is handled as described in Chapter 3. 

If a system designer needs to lengthen the timeout values, an external timebase, K%EXT_TMBS_H, 

can be selected by setting ECR<TIMEOUT_EXT> in the Ebox control register. In this case, 
the Ebox base counter is clocked with the external timebase, which enters the chip through 
Po/aOSC_TCl_H. 

The counters are configurable for use at chip test and at power-up test. At chip test and/or 
during power-up diagnostics, the read counters can be tested in the following way: Set 
CCTL<TIMEOUT_TEST> so that the Cbox counters run off the internal NVAX clock. Clear 
ECR<S3_TIMEOUT_TEST>. Do a read of a memory or I/O space location which will not respond 
within the timeout period. A read timeout should occur. This must be done for each timeout 
counter. 

The timeout values for the Cbox and Ebox counters in test mode are shown in Table 13-27. 

Table 13-27: NVAX Timeout Values In Test Mode 

Timeout 
Cycle time Granularity Read timeout1 Ebox timeout2 

100ns 10 nanoseconds 2.55 (minimum) to 2.56 (max) 40.95 (minimum) to 40.96 (max) 
NVAX microseconds microseconds 

12-ns 12 nanoseconds 3.06 (minimum) to 3.072 49.14 (minimum) to 49.152 (max) 
NVAX (max) microseconds microseconds 

14-ns 14 nanoseconds 3.57 (minimum) to 3.584 57.33 (minimum) to 57.344 (max) 
NVAX (max) microseconds microseconds 

lRead timeout test is done under these conditions: ECR<TIMEOUT_EXT> and ECR<S3_TIMEOUT_TEST> cleared; 
CCTL<TIMEOUT_TEST> set. 

2Ebox timeout test is done under these conditions: ECR<TIMEOUT_EXT> and CCTL<TIMEOUT_TEST> cleared; 
ECR<S3_TIMEOUT_TEST> set. 
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Forcing timeouts cannot be done by reading nonexistant memory or I/O: NDAL designers respond 
to nonexistant memory and I/O space with either NACK or RDE, which happen well before the 
timeout counters expire. A timeout can be accomplished in the following way: 

1. Do a write or a read-modify-write which causes an OREAD to bring owned data into the 
backup cache. 

2. Do an IPR WRITE to clear the owned bit in the backup cache tag store. 
3. Perform another operation which requires ownership in the Bcache. This OREAD will timeout 

because it won't hit in the backup cache and memory won't respond because it believes the 
backup cache owns it. 

4. Do an IPR WRITE to the Bcache tag store to put it back into the owned state. 

The list which follows describes a scenario in which read data takes a long time to return to the 
Ebox. This case should not approach the Ebox timeout value; it is given to illustrate what can 
keep data from returning quickly to the Ebox. 

1. The Cbox write queue is full. 
2. A Dread, call it Dread A, enters the Cbox and has a conftict with the last write queue entry, 

Write A, which means that the whole write queue must be cleared out before Dread A can 
proceed. 

3. The writes in the write queue all miss in the Bcache, and each one requires a writeback from 
another CPU which owns the block. As each writeback is done, the data is returned to the 
Bcache, ownership is passed to the Bcache, and the write queue is emptied of one write. In 
this scenario, eight writebacks are required before Read A can be processed. 

4. After the Oread for Write A reaches the NDAL, an invalidate arrives for A After the data 
is returned and Write A is processed, the block will be written back, due to the previous 
invalidate. 

5. Now Dread A will miss in the Bcache, and it will have to wait for another writeback. 
Eventually this read data will return, and the Ebox gets its data. 

DERIVATION OF TIMEOUT VALUES 

The timeout values given on the previous pages were derived from NVAX cycles as 
follows: 

Table 13-28: Derivation of NVAX Timeout Values 

NVAX Timeout 
mode Granularity Read timeout Ebox timeout 

(in NVAX cycles) (in NVAX cycles) (in NVAX cycles) 

Normal 2**16 2**24-2**16 (minimum) 2**28-2**16 
to 2**24 (max) (minimum) to 2**28 

(max) 

Test 1 2**8-1 (minimum) 2**12-1 (minimum) to 
to 2**8 (max) 2**12 (max) 
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13.4.3.5 BIU clocking: Relating Internal cycles to external cycles 

Three NVAX internal cycles take place in the time of one NDAL cycle. The BIU relates internal 
cycles to external cycles by naming the internal cycles according to where they fall relative to the 
external cycle. This is shown in Figure 13-22. 

Figure 13-22: BIU cycle counts 

BIU CYCLE COUNT: 

PHil PHI2 PHI3; PHI4 PHil i PHI2 ; PHI3 ; PHI4 PHil PHI2 i PHI3 ; PHI4 
NVAX INTERNAL CYCLES: 

NDAl PH 11 NDAl PH 12 NDAl PH 13 NDAl PH 14 

NDAl EXTERNAL CYCLE: 

The BIU has a shift register which asserts only one of the signals C_BIUo/cCYCLE_l_H, 

C_BIUo/cCYCLE_2_H, and C_BIUo/oCYCLE_3_H during any given NVAX. cycle. This shift register is 
initialized properly by K_CE%RESET_H, which comes from the clock section of the chip. During 
reset, the clock section asserts K..,.CE%RESET_H during every NDAL phase 4, allowing the BIU to 
initialize the shift register properly. 

Only the NVAX. internal clocks are used in the Cbox and BIU, while only the external clocks 
are used in the pad ring. Through the use of C_BWo/£YCLE_CH, C_BIUo/oCYCLE_2_H, and 
C_BIUo/oCYCLE_3_H, the BIU is able to properly drive and receive the NDAL to and from the 
pad ring. 

There is a delay in the NDAL clocks as they travel from NVAX to the other NDAL chips and also 
back to NVAX. The delay from the NVAX. output pin, p%pm12_0UT_H, to the NVAX input pin, 
P%P1n12_IN_H, may be as little as Ons or as much as three internal NVAX. phases (one NDAL 
phase). This delay is shown graphically in Figure 13-23. 
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Figure 13-23: NVAX time relative to NDAL time 
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K....MCB%PIII..IJl, K.>fCB%PBI_2_H, K....MCB%PIII..3_H, and K,J\fCB%PHJ..4_H are the internal NVAX 
clocks which are used in the Cbox. Figure 13-23 shows that the NDAL clocks at the input pins 
(P%PWI2_IN_H, P%PHI23_IN_H, P%Pffi34_IN_H, and P%PW41_IN_H) may be delayed by 
up to three internal NVAX phases. The NDAL always operates with respect to the clocks as 
received at each NDAL driver/receiver, so if the NDAL clocks are delayed, the entire operation 
of the NDAL is delayed. 
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The CBOX BIU is designed so that even if the NDAL is operating with three full phases of delay 
from the internal NVAX clocks, the BIU is able to drive and receive the NDAL properly. For 
example, P%NDAL_H<63:0> are valid at the beginning ofNDAL phase 3. NVAX receives this 
bus using an NDAL latch which is open while P%PHI23_IN_H is asserted. The output of this 
latch is sent from the NVAX pad ring to a latch in the NVAX BID which is open during NVAX 
phase 4 of BID cycle 3. This timing allows 2 NVAX phases of delay to get the signal from the 
pad ring to the BID. Thus, the NDAL is properly received for the entire range of possible NDAL 
delay. Once the NDAL is latched by the phase 4, cycle 3 latch, the BIU operates entirely using 
the internal NVAX clocks; the NDAL clocks are only used in the pad ring itself. 
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13.4.4 The FILL_CAM 

The FILL_CAM has two entries, each of which is used for an outstanding read to memory or for 
a DREAD_LOCK in progress. Its depth limits the number of outstanding reads to memory at a 
time. The fields in each FILL_CAM entry are described in Table 13-29. 

Table 13-29: FILL_CAM Relds 

Field 

ADDRES8<3 1:3> 

RDLK 

IREAD 

OREAD 

WRITE 

TO_MBOX 

RIP 

OIP 

DNF 

RDLK_FL_DONE 

REQ...FILL_DONE 

COUNT<l:O> 

VALID 

Purpose 

Quadword-aligned address of the read request. 

Indicates that a READ_LOCK is in progress. 

This is an Istream read from the Mbox which may be aborted. 

This is an outstanding OREAD; block ownership bit should be set when the 
fill returns. 

This read was done for a write; write is waiting to be merged with the fill. 

Data is to be returned to the Mbox. 

READ invalidate pending. 

OREAD invalidate pending. 

Do not fill - data is not to be written into the cache or validated when the fill 
returns. 

Indicates that the last fill for a READ_LOCK arrived. 

Indicates that the requested quadword of data was received from the NDAL. 

Counts the number of fill quadwords that have been successfully returned. 

Indicates that the entry contains valid information. 

The FILL_CAM backpressures the Cbox control so that if it is full, any read or write request 
stalls until an entry is free. 

When the read miss first occurs and the FILL_CAM entry is loaded, the following bits are cleared: 
RIP, OIp, RDLK_FL_DONE, and RE~FILL_DONE. VALID is set and the ADDRESS field is 
loaded. IREAD, RDLK, OREAD, WRITE, and TO_MBOX are loaded with the correct information. 
If the cache is off, in ETM, or the miss is for an 110 reference, DNF is set; otherwise it is cleared. 
COUNT is set to 0 if four fill quadwords are expected; it is set to 3 if only one quadword is 
expected. 

As each fill returns successfully, COUNT is incremented so that when the final fill returns and 
COUNT=3, the Cbox updates the tag store appropriately. 

If an abort request arrives from the Mbox, and the entry is marked IREAD, the TO_MBOX bit is 
cleared. When the data returns, it will be written into the backup cache (if DNF is not set) but 
it will not be sent to the Mbox. 

If a coherence request arrives from the NDAL which matches the address of a FILL_CAM entry, 
RIP or OIP may be set. Table 13-30 shows when each is set. 
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Table 13-30: Cbox Response to Coherence Transactions to FILL_CAM Entries 

State of OREAD bit 

OREAD set or clear 

OREAD set 

OREAD clear 

Coherence 

Transaction 

OREAD, READLK, any 
write 

DREAD, IREAD 

DREAD,IREAD 

Cbox: Action 

Set OIP. Send invalidate immediately to the 
Pcache. 

Set RIP. 

Take no action. 

When all the fills for an outstanding miss have completed, a cache coherence transaction is 
initiated if either RIP or alP is set and DNF is not set. This is done immediately after the fill 
and the validate of the cache are done, and cannot be interrupted by any other transaction. 

When a WRITE_UNLOCK completes successfully and RIP or alP is set, the cache coherence 
transaction is initiated immediately. 

There are several error cases where RIP or alP may be set, indicating the need ,for a cache 
coherence transaction, but the Cbox will not perform the transaction, possibly causing the system 
element to time out. These cases are as follows: 

1. The fill sequence fails by ending in RDE or timeout. If the fill was meant for the Pcache and 
ends in an error, the Pcache invalidates itself. 

2. A READ_LOCK sequence does not conclude with a WRITE_UNLOCK but with a 
write-one-to-c1ear to the RDLK bit in CEFSTS. 

As shown in the table above, when an ownership-type coherence transaction arrives, an invalidate 
is sent immediately to the Pcache and alP is set. When the cache coherence transaction to the tag 
store is processed immediately after all the fills have arrived, a second invalidate will be issued 
to the Pcache, although it is not strictly necessary. The first invalidate is sent immediately so 
that the block in the Pcache is invalidated as soon as possible, to prevent the stale data from 
being accessed before the rest of the fills return. 

13.4.4.1 Block-conflict In the FILL_CAM 

Every new read or write from the Mbox is checked against valid FILL_CAM entries so that any 
transaction with a cache block conflict is stalled until all the fills return for the outstanding 
read, clearing the conflicting FILL_CAM entry. In this way, cache accesses to a block with an 
outstanding fill are prevented. 

When the cache is off or in ETM, writes are not checked for block conflict but are sent immediately 
to memory. 

13.4.4.2 The FILL_CAM and DREAD_LOCKs 

Each DREAD_LOCK from the Mbox is held in the FILL_CAM until the associated 
WRITE_UNLOCK completes, regardless of whether the read hits or misses in the backup 
cache. Only one DREAD_LOCKlWRITE_UNLOCK transaction is in progress at a time. A 
DREAD_LOCK which does not produce an owned hit in the backup cache results in an ORE.AD 
on the NDAL to gain ownership of the block so that the write can be done. 
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By holding the DREAD_LOCK address in the FILL_CAM from the time the DREAD_LOCK starts 
until the WRITE_UNLOCK completes, the Cbox prevents the block from being written back to 
memory during that time. This guarantees that the DREAD_LOCKlWRITE_UNLOCK sequence 
will not be interrupted by another CPU requesting ownership of the block. The CPU depends on 
no other state in memory once the OREAD is done in order to complete the WRITE_UNLOCK, 
so no deadlock can arise. 

Every new transaction is checked against the FILL_CAM to ensure that the block is not 
inaccessable due to an outstanding fill or DREAD_LOCK. 

If either RDLK bit is set in the FILL_CAM, lREADs and DREADs are not processed. Incoming 
fills and coherency transactions continue normally; and the WRITE_QUEUE is serviced normally. 
The only transaction which should appear in the WRITE_QUEUE (when either RDLK bit is set) 
is the WRITE_UNLOCK corresponding to the READ_LOCK 

The one exception to this is when the READ_LOCK terminates in an error. In this case 
an IPR_WRITE to CEFSTS is the next transaction which appears in the WRITE_QUEUE .. 
Specifically, a write-one-to-clear of the RDLK bit in CEFSTS has the side effect of clearing any 
RDLK bit in the FILL_CAM which is set. If one of the RDLK bits is cleared in the FILL_CAM, 
hardware also clears the corresponding valid bit, freeing the entry for a new transaction. 

When the RDLK hit is cleared by a normal WRITE_UNLOCK, a cache coherency transaction is 
initiated if RIP or OIP was set on the entry. RIP and OIP are ignored when the RDLK bit is 
cleared by the "IPR write unlock" method. 
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13.5 Cbox Internal Processor Registers 

The processor registers that are implemented by the NVAX Cbox are logically divided into three 
groups, as follows: 

• Normal-Those IPRs that address individual registers in the NVAX CPU chip or system 
environment. 

• Bcache tag IPRs-The read-write block of IPRs that allow direct access to the Bcache tags. 
• Bcache deallocate IPRs-The write-only block of IPRs by which a Bcache block may be 

deallocated. 

Each group of IPRs is distinguished by a particular pattern of bits in the IPR address, as shown 
in Figure 13-24. 

Figure 13-24: IPR Address Space Decoding as seen by Software 

NODmal IPR Address 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I SBZ I 0 I SBZ 1 IPR Number I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Bcache Tag IPR Address 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 SBZ I 11 01 01 xl Bcache Tag Index I SBZ I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Bcache Deallocate IPR Address 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

SBZ I 11 01 11 xl Bcache Tag Deallocate Index 1 SBZ 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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The numeric range for each of the three groups is shown in Table 13-31. 

Table 13-31: IPR Address Space Decoding 

IPR Address 
IPR Group Mnemonic! Range (hex) Contents 

Normal 

Bcache Tag 

Bcache Deallocate 

BCTAG 

BCFLUSH 

OOOOOOOO .. OOOOOOFF 256 individual IPRs. 

OlOOOOOO .. OllFFFE02 64k Bcache tag IPRs, each separated by 20(hex) 
from the previous one. 

01400000 .. 015FFFE02 64k Bcache tag deallocate IPRs, each separated 
by 20{hex) from the previous one. 

IThe mnemonic is for the first IPR in the block 

2Unused fields in the IPR addresses for these groups should be zero. Neither hardware nor microcode detects and faults on 
an address in which these bits are non-zero. Although non-contiguous address ranges are shown for these groups, the entire 
IPR address space maps into one of the these groups. If these fields are non-zero, the operation of the CPU is UNDEFINED. 

NOTE 

The address ranges shown above are those used by the programmer. When processing 
normal IPRs, the microcode shifts the IPR number left by 2 bits for use as an IPR 
command address. This positions the IPR number to bits <9:2> and modifies the 
address range as seen by the hardware to 0 .. 3FC, with bits <1:0>=00. No shifting 
is performed for the other groups of IPR addresses. 

Because of the sparse addressing used for IPRs in groups other than the normal group, valid IPR 
addresses are not separated by one. Rather, valid IPR addresses are separated by 20(hex). For 
example, the IPR address for Bcache tag 0 is 01000000 (hex), and the IPR address for Bcache tag 
1 is 01000020 (hex). In this group, bits <4:0> of the IPR address are ignored, so IPR numbers 
01000001 through 010oo01F all address Beache tag O. 

Processor registers in all groups except the normal group are processed entirely by the NVAX 
CPU chip and will never appear on the NDAL. This is also true for a number of the IPRs in 
the normal group. IPRs in the normal group that are not processed by the NVAX CPU chip are 
converted into 110 space references and passed to the system environment via a read or write 
command on the NDAL. 

The processor registers implemented by the NVAX Cbox are are shown in Table 13-32. 
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Table 13-32: Cbox Processor Registers 

Number Cbox Cbox 

Register Name Mnemonic (Dee) (Hex) Type Loci Adctt2 

Cbox Control Register CCTL 160 AO RW Abus 280 

Reserved for Cbox 161 Al 

Bcache Data ECC BCDECC 162 A2 W Dbus 288 

Bcache Error Tag Status BCETSTS 163 A3 RW Abus 28C 

Bcache Error Tag Index BCETIDX 164 A4 R Abus 290 

Bcache Error Tag BCETAG 165 AD R Abus 294 

Bcache Error Data Status BCEDSTS 166 A6 RW Dbus 298 

Bcache Error Data Index BCEDIDX 167 A7 R Abus 29C 

Bcache Error Data ECC BCEDECC 168 A8 R Dbus 2A0 

Reserved for Cbox 169 A9 

Reserved for Cbox 170 AA 

Fill Error Address CEFADR 171 AB R Abus 2AC 

Fill Error Status CEFSTS 172 AC RW Abus 2BO 

Reserved for Cbox 173 AD 

NDAL Error Status NESTS 174 AE RW BIU 2B8 

Reserved for Cbox 175 AF 

NDAL Error Output Address NEOADR 176 BO R BIU 2CO 

Reserved for Cbox 177 B1 

NDAL Error Output Command NEOCMD 178 B2 R BIU 2C8 

Reserved for Cbox 179 B3 

NDAL Error Data High NEDATHI 180 B4 R BIU 2DO 

Reserved for Cbox 181 B5 

NDAL Error Data Low NEDATLO 182 B6 R BIU 2D8 

Reserved for Cbox 183 B7 

NDAL Error Input Command NEICMD 184 B8 R BIU 2EO 

Reserved for Cbox 185 B9 

Reserved for Cbox 186 BA 

Reserved for Cbox 187 BB 

Reserved for Cbox 188 BC 

Reserved for Cbox 189 BD 

Reserved for Cbox 190 BE 

Reserved for Cbox 191 BF 

Bcache Tag (01000000 - 011FFFEO HEX) BCTAG RW Abus 

1 Each Cbox IPR is located in the Cbox Abus datapath, the Cbox Dbus datapath, or the Cbox BIU datapatb.. 

2The address given is as it is seen in the Cbox, after microcode has shifted the software address left by two bits. 
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Table 13-32 (Cont.): Cbox Processor Registers 

Number Cbox Cbox 

Register Name Mnemonic (Dec) (Hex) Type Loci Ad~ 

Bcache Deallocate (01400000 - 015FFFEO HEX) BCFLUSH W Ahus 

1 Each Cbox IPR is located in the Cbox Abus datapatb., the Cbox Dbus datapatb., or the Cbox BIU datapatb.. 

2The address given is as it is seen in the Cbox, after microcode has shifted the software address left by two hits. 
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IPRs in the system and in the Cbox are accessed through IPR_READs and IPR_ WRITEs from 
the Mbox to the Cbox. When the Cbox recogrrizes a valid IPR_READ on Mo/eSG_CMD_H<4:O>, it 

. loads the read into the DREAD_LATCH to be processed. The Mbox guarantees that only one 
DREAD or IPR_READ may be outstanding at a time, so that the DREAD_LATCH will not be 
overwritten. A valid IPR_ WRITE is loaded into the WRITE_PACKER and proceeds immediately 
to the WRITE_QUEUE. 

All IPR reads and writes to the Cbox flush the WRITE_QUEUE before completing. Any 
IPR_READ sets DWR_CONFLICT bits in all valid entries in the WRITE_QUEUE so that any 
preceding writes of any kind will complete before the IPR_READ. An IPR_ WRITE is placed in 
the WRITE_QUEUE after the preceding writes so that the ordering takes place naturally. If a 
read arrives after the IPR_WRlTE and before it has been processed, the WRITE_QUEUE conflict 
bits are set so that the WRITE_QUEUE takes priority over the read. 

If the IPR_READ addresses one of the Cbox registers, the Cbox returns the data from the register 
through the CM_OUT_LATCH, in the usual way that it would return. data for a read hit. The only 
difference is that it returns just one quadword or less of data, rather than the usual 4 quadwords. 
The Cbox asserts C%LAST_F'II..kH so the Mbox does not expect any more fills. 

If a write-only Cbox register is read, the Cbox returns UNPREDICTABLE data. Reading an 
unimplemented Cbox register returns UNPREDICTABLE data; if an unimplemented register is 
written, the write is discarded by the Cbox and normal operation continues. 

If the Cbox receives an IPR access to a legal IPR address which is not within the Cbox block of 
IPR addresses, it converts it to an 110 space read or write. The Cbox merges the IPR address 
with EIOOOOOO hex, effectively adding the base 110 space address of the IPR block to the IPR 
address. This is done in hardware by forcing bits <31:29> and bit <24> to 1's. (The other upper 
bits are expected to be received as zero's.) 

From this point on, the transaction is treated as an 110 space transaction by the Cbox. It sends 
the request off-chip to the NDAL through the NON_WRITEBACK_QUEUE. When the fill data 
returns, the data is returned to the Mbox but is not cached by the Cbox. 110 space reads and 
writes are never cached in the primary cache or the backup cache. 
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13.5.1 Cbox ControllPR (CCTL) 

CCTL is a read/write register which contains bits controlling the behavior of the Cbox. The bits 
are detailed in Figure 13-25 and Table 13-33. 

Figure 13-25: IPR AO (hex), CCTL 

31 30 29 28121 26 25 24123 22 21 20119 18 11 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I I I xl xl xl xl xl xl xl xl xl xl xl xl xl I I I I I I I I I I I I :CCTL 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I 
I I 
I '-sw ETM 
'-HW_ETM 

I I I I I I I I I I I I 
I I I I I I I I I I I '-ENABLE 
I I I I I I I I I I '-TAG_SPEED 
I I I I I I I I I I 
I I I I I I I I I '-DATA_SPEED 
I I I I I I I I '-SIZE 
I I I I I I I I 
I I I I I I I '-FORCE HIT 
I I I I I I '-DISABLE ERRORS 
I I I I I '-sw ECC -
I I I I' -TIMEOUT TEST 
I I I '-DISABLE PACK 
I I '-PM ACCESS TYPE 
I '-PM_HIT_TYPE -
'-FORCE_NDAL_PERR 

Table 13-33: CCTL Field DescrlpUons 

Name Extent Type Description 

ENABLE 0 RW,O Turns the bcache on and off. 

TAG_SPEED 1 RW,O Controls time to access the tag RAMs. 

DATA_SPEED 3:2 RW,O Controls time to access the data RAMs. 

SIZE 5:4 RW,O Selects one of four backup cache sizes. 

FORCE_HIT 6 RW,O Forces memory reads and writes to hit in the backup cache. 

DISABLE_ERRORS 7 RW,O Disables all backup cache ECC errors. 

SW_ECC 8 RW,O Enables use of ECC check bits as given by software for the tag 
store and data RAMs. 

TIMEOUT_TEST 9 RW,O Puts the Cbox read timeout counters into test mode. 

DISABLE_PACK 10 RW,O Disables the Cbox write packer. 

PM_ACCESS_TYPE 13:11 RW,O Selects type of Bcache access for the performance monitoring 
hardware. 

PM_HIT_TYPE 15:14 RW,O Selects type of Bcache hit for the performance monitoring 
hardware. 

FORCE_NDAL_PERR 16 RW,O Forces a parity error in the command field of the next outgoing 
NDAL transaction. 

SW_ETM 30 RW,O U sed by software to put the backup cache into ETM. 

HW_ETM 31 WC Used by hardware to put the backup cache into ETM. 
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13.5.1.1 ENABLE 

When ENABLE = 1, the backup cache is enabled for operation. When ENABLE=O, the backup 
cache is off and all references are treated as misses and are not looked up in the backup cache. 
When the backup cache is off: FORCE_IDT, SW _ETM and HW _ETM are ignored. Reset clears 
this bit so that the Bcache is off when the chip is reset. 

13.5.1.2 TAG_SPEED 

The Cbox provides this bit to select the speed of the tag rams. Table 13-34 shows the relationship 
of the value of TAG_SPEED and the access time of the tag RAMs, given in NVAX cycles. This 
is the total RAM access time including internal Cbox processing time. For information on the 
actual cache ram access times required, see Section 13.3.1. Reset clears this bit so that the tag 
access repetition rate is 3 cycles when the chip is reset. 

Table 13-34: TAG_SPEED 

o 
1 

tag read 

rep rate 

3 cycles 

4 cycles 

13.5.1.3 DATA_SPEED 

tag write 

rep rate 

3 cycles 

4 cycles 

comments 

may not be used when DATA_SPEED=OO 

The Cbox provides this bit to select the speed of the data rams. Table 13-35 shows the relationship 
of the value of DATA_SPEED and the access time of the data RAMs, given in NVAX cycles. This 
is the total RAM access time including internal Cbox processing time. For information on the 
actual cache ram access times required, see Section 13.3.1. Reset clears these bits so that the 
data read rep rate is 2 cycles when the chip is reset. 

Table 13-35: DATA_SPEED 

00 

01 

10 

11 

data read 

rep rate 

2 cycles 

3 cycles 

4 cycles 

unused1 

lCbox response in this mode is UNDEFINED. 

data write 

rep rate 

3 cycles 

4 cycles 

5 cycles 

unused1 

comments 

may not be used when TAG_SPEED=1 

The fastest DATA..,.SPEED may not be selected with the slowest TAG_SPEED, for in this 
configuration the result of the cache hit calculation is not known in time for the Cbox state 
machines to operate correctly. 
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13.5.1.4 SIZE 

Four backup cache sizes are selectable by using the SIZE bits, as shown in Table 13-36. These 
bits are cleared on reset so that when the chip is reset, the 128-kilobyte cache is selected by 
default. 

Table 13-36: SIZE 

SIZE<l:O> 

00 

01 

10 

11 

13.5.1.5 FORCE_HIT 

Backup cache size 

128 kilobytes 

256 kilobytes 

512 kilobytes 

2 megabytes 

When FORCE_mT is set, all memory references, both Dstream and Istream reads and writes, 
are forced to hit in the backup cache. The tag store state is not changed but data is always read 
or written. Reset clears this bit. 

The backup cache must be enabled when the cache is used in FORCE_mT mode. 

This mode is expected to be used for testing purposes only. 

13.5.1.6 DISABLE_ERRORS 

When DISABLE_ERRORS is set, all ECC errors from the backup cache are ignored. Neither 
Co/oCBOX_B_ERR_B nor Co/cCB01-S_ERR_H is asserted. Co/cCBOx..BARD_ERR_B is not asserted for 
data returning to the Mbox. The backup cache data syndrome is loaded into BCEDECC on 
every cache access; the behavior of BCETSTS, BCETIDX, BCETAG, BCEDSTS, and BCEDIDX 
is unpredictable. This feature allows operation of the backup cache even if the error detection 
and correction logic is faulty. It also allows access to the backup cache syndrome for the purposes 
of testing the ECC logic. Reset clears this bit. 

13.5.1.7 SW_ECC 

When SW _ECC is clear, the Cbox generates correct ECC check bits for all writes to the tag store 
and data RAMs. When SW_ECC is set, the Cbox does not generate the check bits when the 
backup cache is written with data, but uses the check bit values as specified by software and 
written in the BCDECC register. Note that if a read or write reference misses in the Bcache 
when SW _ECC is set, all four fills will be written with the ECC given in BCDECC when they 
return. 

When SW_ECC is set and the tag store is written using an IPR write to BCTAG, the Cbox uses 
the check bits for the tag store as given through the IPR write. The value of SW _ECC does not 
affect tag store transactions other than IPR writes. 

Reset clears this hit. 
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13.5.1.8 TIMEOUT_TEST 

When TIMEOUT_TEST is set, the Cbox uses the internal clock to clock its read timeout counter. 
When TIMEOUT_TEST is clear, the Cbox uses E%TIMEOUT_BASEJI to clock its timeout counters. 
Reset clears this hit. 

13.5.1.9 DISABLE_PACK 

When DISABLE_PACK is set, the Cbox does not pack quadword writes together. Instead, the 
write packer passes every write it receives directly into the write queue. When the hit is clear, 
the Cbox write packer operates normally. DISABLE_PACK is intended for testing purposes only. 
Reset clears this hit. 

13.5.1.10 PM_ACCESS_TYPE 

PM.-ACCESS_TYPE selects the type of Bcache access for the performance monitoring hardware .. 
The function of these three bits is fully described in Section 13.11. Reset clears these bits. 

13.5.1.11 PM_HIT_TYPE 

PM_InT_TYPE selects the type of Bcache hit for the performance monitoring hardware. The 
function of these two bits is fully described in Section 13.11. Reset clears these bits. 

13.5.1.12 FORCE_NDAL_PERR 

When a 1 is written to FORCE_NDAL_PERR, a parity error is caused in the command field 
of the next outgoing NDAL transaction. The parity error is caused by inverting the value of 
P%PARITY_H<2>. 

Setting this bit causes only one parity error. The parity error does not occur until NVAX is granted 
the NDAL for its next outgoing transaction. If software sets FORCE_NDAL_PERR and clears it 
before NVAX is granted the bus, NVAX will still force a parity error on the next transaction. In 
order to produce a second parity error on the bus, FORCE_NDAL_PERR must be cleared and set 
again by software. 

Reset clears this hit. 

13.5.1.13 SW_ETM 

This is a software-write8.ble bit to put the backup cache into Error Transition Mode. When the 
cache is on and software ascertains that the cache is producing errors, it can set this bit in order 
to turn off the cache while ensuring cache coherency. Software can then flush owned data through 
use of the Bcache Deallocate IPR, BCFLUSH. In this manner, the unique data can be extracted 
from the cache before it is turned off completely. Reset clears this bit. 

13.5.1.14 HW_ETM 

Hardware sets this bit when an uncorrectable error is detected in the backup cache tag store or 
data rams, unless DISABLE_ERRORS is set. Hardware sets the bit to put the backup cache into 
Error Transition Mode. 

Software clears HW _ETM by writing a one to it. 
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13.5.2 IPR A2 (hex), BCDECC 

Figure 13-26: Format of the BCDECC 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I xl xl xl xl xl xl ECCHI I xl xl xl xl xl xl xl xl xl xl xl xl ECCLO I xl xl xl xl xl xl :BCDECC 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

The ECCm field corresponds to data check bits <7:4>. The ECCLO field corresponds to data 
check bits <3:0>. 

This register is written by software. It is a write only register. 

Software writes BCDECC using an IPR_ WRITE. The value in the register is then used to explicitly 
write ECC into the data RAMs during any write of the data RAMs, but only if SW _ECC is set in . 
the control register. If SW _ECC is not set, hardware ignores the value in BCDECC and generates 
the check bits to be written using the ECC syndrome generator. 

BCDECC is expected to be used during testing only. It allows software to explicitly write bad 
ECC into the data RAMs in order to test Cbox error detection logic. Note that BCDECC will 
be used as the source of the ECC check bits during any write of the backup cache data RAMs, 
including those done for fills. Cache transactions must be carefully controlled while this register 
is being used in order to obtain the expected results. BCDECC will probably be most useful when 
used in FORCE_mT mode, so that no fills are generated. 

Reset does not affect this register. 
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13.5.3 Backup Cache Tag Store Error Registers (BCETSTS, BCETIDX, BCETAG) 

On some tag store errors, hardware overwrites the corrupted values so that they cannot be 
diagnosed by reading the tag store directly. For this reason there are tag store error registers 
which hold the relevant data, so that software can understand the problem. 

The tag store error registers are loaded when any tag store error occurs. Their contents are 
not changed during reset. The status bits in BCETSTS indicate what sort of error happened. 
Correctable errors are indicated by the CORR bit; the UNCORR and BAD_ADDR errors are both 
uncorrectable-type errors. 

If no error is yet logged in the registers, the registers are loaded when either a correctable or an 
uncorrectable error occurs. Once the registers are loaded with information from a correctable 
error, they are locked against further correctable errors, and are only loaded again if an 
uncorrectable error happens. At this time either UNCORR or BAD_ADDR is set. The LOCK 
bit in BCETSTS is set as well. In this way, information from the first correctable error is held in 
the registers, and is only overwritten if an uncorrectable error happens later. 

The error registers are cleared and unlocked by software. If the error registers hold data from 
a non-correctable error and yet another non-correctable error happens before the error registers 
are unlocked, the LOST_ERR bit is set. This indicates to software that it does not have sufficient 
information in the error registers to recover from all uncorrectable errors which have occurred. 

13.5.3.1 Bcache Error Tag Status (BCETstS) 

The BCETSTS register gives the general status of an error in the tag store, indicating the 
transaction which was taking place at the time and the type of error. The register is written 
by hardware and read by software. Hardware does not clear the error hits in this register; this 
must be done by software using write-one-to-clear to the bottom 5 bits of the register. The contents 
of the register are not changed during reset. 

Figure 13-27: IPR A3 (hex), BCETSTS 

'~) 1 J 
31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl TS_CMD I I: I .. I I ')1 :BCETSTS 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I I I I 
I I I I '-LOCK 
I I I '-CORR 
I I '-UNCORR 
I '-BAD ADDR 
'-LOST_ERR 

Table 1 ~7: BCETSTS Field Descriptions 

Name Extent Type Description 

LOCK o WC Lock bit. Indicates that BCETSTS (except LOST_ERR), 
BCETIDX, and BCETAG are locked. 

CORR 1 WC Indicates that a correctable ECC error was encountered. 
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Table 13-37 (Cont.): BCETSTS Field Descriptions 

Name Extent Type Description 

UNCORR 2 WC Indicates that an uncorrecta.ble ECC error was encountered. 

BAD_ADDR 3 WC Indicates that an addressing error was detected. This is an 
uncorrecta.ble error. 

LOST_ERR 4 WC Indicates that more than one uncorrectable error occurred which. 
was not recorded in the error registers. 

TS_CMD 9:5 R Indicates what tag store command was being processed at the 
time the error occurred. 

13.5.3.1.1 LOCK 

Whenever the tag store error registers are locked due to an uncorrectable error, the LOCK bit is 
set. At this time either UNCORR or BAD_AD DR is also set to indicate the type ofuncorrectable 
error. When the LOCK bit is set, the BCETSTS, BCETIDX, and BCETAG registers are all locked. 
Clearing the lock bit unlocks all three registers. The LOCK bit is set by hardware and it is cleared 
by software. It is a write-one-to-clear bit. 

13.5.3.1.2 CORR 

CORR is set when the tag store ECC decoder detects a correctable error. When this occurs, the 
Bcache Tag Store Error registers are loaded and are locked against further correctable errors. 
They are not locked against an uncorrectable error which follows. BCETSTS<LOCK> is not set. 

If a correctable error is followed by an uncorrectable error, the CaRR bit remains set. 

The CORR bit is set by hardware and it is cleared by software. It is a write-one-to-clear bit. 

13.5.3.1.3 UNCORR 

UNCORR is set when the tag store ECC decoder detects an uncorrectable error. When this occurs, 
the Bcache Tag Store Error registers are loaded and locked. 

The UNCORR bit and the BAD_ADDR bit are exclusive: only one of them is set for a given error 
which sets the LOCK bit. If the other type of error occurs later, the related bit is not set since 
the register is already locked. In this case, LOST_ERR is set instead. 

The UNCORR bit is set by hardware and it is cleared by software. It is a write-one-to-clear bit. 

13.5.3.1.4 BAD _ADDR 

BAD_ADDR is set when the tag store ECC decoder detects an error in the address bit, indicating 
some problem with the address lines going to the tag rams. This is an uncorrectable error, thus, 
when it occurs, the Bcache Tag Store Error registers are loaded and locked. 

The UNCORR bit and the BAD_ADDR bit are exclusive: only one of them is set for a given error 
which sets the LOCK bit. If the other type of error occurs later, the related bit is not set since 
the register is already locked. In this case, LOST_ERR is set instead. 
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The BAD_ADDR bit is set by hardware and it is cleared by software. It is a write-one-to-clear 
hit. 

13.5.3.1.5 LOST_ERR 

LOST_ERR indicates that after the first uncorrectable error was recorded in the tag store error 
registers, an additional uncorrectable error occurred for which state was not saved. LOST_ERR 
is set by hardware and is cleared by software. It is a write-one-to-clear bit. 

13.5.3.1.6 TS_CMD 

The TS_CMD field indicates what the tag store was doing when the error was detected. Its values 
are listed in Table 13-38. 

Table 13-38: Interpretation of TS_CMD 

TS_CMD NAME Tag Store Operation 

00111 

00011 

00010 

01000 

01101 

01001 

01010 

DREAD 

mEAD 

OREAD 

WUNLOCK 

Data-stream (DREAD) or DREAD_MODIFY tag lookup 

Instruction-stream tag lookup 

Ownership-read tag lookup for a write or a READ_LOCK 

Ownership-read tag lookup for a WRITE_UNLOCK (lookup done 
only in ETM) 

Cache coherency tag lookup as the result of NDAL DREAD or 
IREAD 

Cache coherency tag lookup as the result of NDAL OREAD or 
WRITE 

Tag lookup for an explicit IPR deallocate operation 

There are three tag store operations which do not cause any soIt of errors: tag store update after 
a fill, ipr write of the tag store, ipr read of the tag store. Thus, these commands will not appear 
in BCETSTS. 

13.5.3.2 Bcache Error Tag Index (BCETIDX) 

This register is loaded and locked when a tag store error occurs. If a correctable error is followed 
by a second error which is not correctable, the register is loaded with information from the second, 
more serious error. Except for this case, once it is locked, it is not changed until software explicitly 
unlocks the register. This register is written by hardware and read by software. Its contents are 
not changed during reset. 
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Figure 13-28: IPR A4 (hex), BCETIOX 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 Backup Cache Tag Store Address I 0 I 01 01 01 01 :BCETIDX 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

BCETIDX contains the complete hexaword address corresponding to a tag store request which 
resulted in an error. Since the full address is saved, both the cache index and the cache tag of 
the request are known. Thus, this register shows what index was being accessed when the error 
occurred as well as showing what the tag of the request was. Software can compare this tag with 
the actual tag read from the RAMs, which is saved in BCETAG. 

On a BCFLUSH which incurs an error, the address used to flush the cache is captured in 
BCETIDX, not the memory address of the block. 

13.5.3.3 Bcache Error Tag (BCETAG) 

This register is loaded when a tag store error occurs. It is locked when an uncorrectable error 
occurs on a tag store access. Once the register is locked, it is not overwritten until it is unlocked 
by software. BCETAG is written by hardware and read by software. It is a read-only register 
from the software point of view. The contents of BCETAG are not changed during reset. 

The register holds the data which was read from the tag store and produced the error, as shown 
in Figure 13-29. 

Figure 13-29: IPR A5 (hex), BCETAG 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 TAG 1 ~ ECC 1 I 1 0 1 0 I 0 1 0 1 0 I 0 1 0 1 0 1 0 1 : BCETAG 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 1 1 
'-TAG or 0, based 1 '-VALID 

on cache sizQ '-OWNED 

Table 13-39: BCETAG Field Descriptions 

Name Extent Type Description 

VALID 9 RO Valid bit 

OWNED 10 RO Ownership bit 

ECC 16:11 RO ECC check bits 

TAG 31:17 RO Backup cache tag 
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13.5.3.3.1 VALID 

VALID is the bit read from the tag RAMs which indicates whether the block is valid in the Bcache. 

13.5.3.3.2 OWNED 

OWNED is the bit read from the tag RAMs which indicates whether the Bcache owns the block 
in question. 

13.5.3.3.3 ECC 

The ECC field contains the check bits as read from the tag RAMs during the tag access which 
produced the error. 

13.5.3.3.4 TAG 

The TAG field of BCETAG is the cache tag as read from the tag RAMs. It must be interpreted 
based on the cache size being used, as shown in Table 13-40. When certain address bits are not 
used as tag bits for the cache size given, their value in BCETAG is o. 

Table 13-40: TAG Interpretation 

Cache size Tag bits used Unused tag bits 

128 kilobytes TA<k31:17> None 

256 kilobytes TA<k31:18> TACk 17> 

512 kilobytes TA<k31:19> TA<k18:17> 

2 megabytes TA<k31:21> TA<k20:17> 
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13.5.4 Backup Cache Data RAM Error Registers (BCEDSTS, BCEDIDX, 
BCEDECC) -

The data RAM error registers hold data relevant to errors in the backup cache data RAMs, so 
that software can understand the problem. 

BCEDSTS holds the general status of the problem. BCEDIDX holds the data RAM index being 
used when the problem occurred. BCEDECC holds the syndrome bits as calculated on the data 
which was read from the RAMs when the problem occurred. 

If no elTOr is yet logged in the data RAM error registers, the registers are loaded when either 
a cOlTectable or an uncorrectable error occurs. Once the registers are loaded with information 
from a correctable elTor, they are locked against further correctable errors, and are only loaded 
again if an uncorrectable error happens. If an uncorrectable error happens, the LOCK bit in 
BCEDSTS is set and the registers are not overwritten until software clears the elTor bits. In this 
way, information from the first correctable error is held in the registers, and is only overwritten 
if an uncorrectable error happens later. 

If the registers are locked, any subsequent non-correctable elTor causes the LOST_ERR bit to be 
set, but does not modify any other information in the registers. LOST_ERR indicates to software 
that it does not have sufficient information in the error registers to recover from all uncorrectable 
errors which have occurred. 

Of the backup cache data RAM error registers, only BCEDSTS is writable by software. Software 
clears the error and lock bits which reenables all the Data RAM error registers to record the next 
error which occurs. 

The contents of BCEDSTS, BCEDIDX, and BCEDECC are not affected by reset. 

13.5.4.1 Bcache Error Data Status (BCEDSTS) 

Figure 13-30: IPR AS (hex), BCEDSTS 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl DR_CMD I 01 01 01 I I I I I :BCEDSTS 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I I I I 
I I I I '-LOCK 
I I I '-CORR 
I I '-UNCORR 
I '-BAD ADDR 
'-LOST_ERR 

Table 13-41: BCEDSTS Field Descriptions 

Name Extent Type Description 

LOCK o 

CORR 1 
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WC 

WC 

Lock bit. Indicates that the BCEDSTS, BCEDIDX, and BCEDECC 
registers are locked. 

Indicates that a correctable ECC error was encountered. 
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Table 13-41 (Cont.): BCEDSTS Field Descriptions 

Name Extent Type Description 

UNCORR 

BAD_ADDR 

LOST_ERR 

2 

3 

4 

11:8 

WC 

WC 

WC 

R 

Indicates that an uncorrectable ECC error was encountered. 

Indicates that an addressing error was detected. 

Indicates that a second uncorrectable error occurred; it was not 
recorded in the error registers. 

Indicates what command was being processed by the data RAMs at 
the time the error occurred. 

The LOCK bit is set when an error which was not correctable has occurred. If the CORR bit is set, 
the data ram error registers are locked unless an uncorrectable error occurs. On an uncorrectable 
error, the LOCK bit is set and the registers are permanently locked until unlocked by software. 

The contents of BCEDSTS are not affected by reset. 

13.5.4.1.1 LOCK 

Whenever the data RAM error registers are loaded with an uncorrectable error, the LOCK bit is 
set. At this time either UNCORR or BAD_ADDR is also set to indicate the type of uncorrectable 
error. (A correctable error does not set BCEDSTS<LOCK>.) When the LOCK bit is set, the 
BCEDSTS, BCEDIDX, and BCEDECC registers are all locked. Clearing the lock bit unlocks 
all three registers. The LOCK bit is set by hardware and it is cleared by software. It is a 
write-one-to-clear bit. 

13.5.4.1.2 CORR 

CORR is set when the data ECC decoder detects a correctable error. When this occurs, the Bcache 
Data Error registers are loaded and locked against further correctable errors; BCEDSTS<LOCK> 
is not set. The CORR bit is set by hardware and it is cleared by software. It is a write-one-to-clear 
bit. 

13.5.4.1.3 UNCORR 

UNCORR is set when the data ECC decoder detects an uncorrectable error. When this occurs, 
the Bcache Data Error registers are loaded and locked. The UNCORR bit is set by hardware and 
it is cleared by software . .It is a write-one-to-clear bit. 

13.5.4.1.4 BAD _ ADDR 

BAD_ADDR is set when the data ECC decoder detects an error in the address bit, indicating 
some problem with the address lines going to the data rams. This is an uncorrectable error, thus, 
when it occurs, the Bcache Data Error registers are loaded and locked. The BAD~DR bit is 
set by hardware and it is cleared by software. It is a write-one-to-clear bit. 
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13.5.4.1.5 LOST_ERR 

LOST_ERR indicates that after the first uncorrectable error was recorded in the data error 
registers, an additional uncorrectable error occurred for which state was not saved. LOST_ERR 
is set by hardware and is cleared by software. It is a write-one-to-clear bit. 

13.5.4.1.6 DR_CMD 

The DR_CMD field indicates what the data RAMs were doing when the error was detected. Its 
values are listed in Table 13-42. 

Table 13-42: Interpretation of DR_ CMD 

0111 DREAD 

0011 IREAD 

0100 WBACK 

Data RAM operation 

Data lookup for a Dstream read 

Data lookup for an Istream read 

Data lookup for a writeback 

0010 RMW Data lookup for a read·modify·write (done for normal writes and 
WRITE_UNLOCKs.) 

There are two data RAM operations which do not cause any sort of errors: full quadword writes 
and fills. Thus, these commands will not appear in BCEDSTS. 

DR_CMD is only written by hardware. It is read-only for software. 

13.5.4.2 Bcache Error Data Index (BCEDIDX) 

This register holds the index of a data RAM transaction; it is loaded when an error is detected 
on a data RAM access. The index loaded due to a correctable error is not overwritten unless an 
uncorrectable error occurs afterwards. If an uncorrectable error occurs, BCEDIDX is loaded and 
locked. BCEDIDS is unlocked by software; the lock bit is in the BCEDSTS register. 

BCEDIDX is read-only from software's point of view. Its contents are not affected by reset. 

- 13-72 The Cbox DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

Figure 13-31: IPR A7 (hex), BCEDIDX 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I 01 01 01 01 01 01 01 01 01 01 01 I Backup cache data RAM index 1 01 01 01 :BCEDIDX 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

1 
'-index or undefined, based on cache size 

BCEDIDX must be interpreted based on the cache size being used, as shown in Table 13-43. 
When certain address bits are not used as index bits for the cache size given, their value in 
BCEDIDX is undefined. 

Table 13-43: BCEDIDX Interpretation 

Cache size Index bits used undefined index bits 

128 kilobytes BCEDIDX<16:3> BCEDIDX<20:17> 

256 kilobytes BCEDIDX<17:3> BCEDIDX<20:18> 

512 kilobytes BCEDIDX<18:3> BCEDIDX<20:19> 

2 megabytes BCEDIDX<20:3> None 

13.5.4.3 Bcache Error Data ECC (BCEDECC) 

This register holds the syndrome as calculated on the backup cache data and check bits. It is 
loaded when an error occurs on a data RAM access. Then it follows the same lock rules that 
the other Bcache Data Error registers follow. It is unlocked by software. The lock bit is in the 
BCEDSTS register. The contents of BCEDECC are not affected by reset. 

When DISABLE_ERRORS is set, BCEDECC is loaded on every quadword read from the cache. 
This provides a way of testing the ECC logic by reading the results of the syndrome calculation. 
Note that because 4 quadwords are read from the Bcache at a time, BCEDECC will contain the 
syndrome from the LAST quadword read after the 4-qw transaction is complete. Software can 
control which quadword is read last by varying the requested quadword of a transaction; the 
Bcache controller always returns the requested quadword first, then returns the remaining 3 
quadwords in wraparound order. For example, if the programmer wants to see the contents of 
BCEDECC after quadword 2, she would do a read to quadword 3 of the block, and the quadwords 
would be read out in the order 3-0-1-2. 

Software can use BCDECC to write known check bits to the data RAMs; when the RAMs are 
read, the syndrome is captured by BCEDECC. Once the syndrome is known, the check bits which 
were calculated by the ECC hardware can be deduced, because the check bits read from the RAMs 
were known. The syndrome is simply the XOR of the calculated check bits and the check bits 
which were read from the RAMs. 

If the programmer wants to learn what the correct checkbits for a particular data pattern should 
be, she can write data to the cache while BCDECC contains all zero's and CCTL<SW _ECC> is 
set. This forces checkbits of zero to be written to the cache with the data. When the data is read 
back, BCEDECC will contain the correct checkbits for the data (the XOR of the checkbits read 
and the checkbits calculated by hardware). 
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BCEDECC is read-only from software's point of view. 

Figure 13-32: IPR AS (hex), BCEDECC 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I xl xl xl xl xl xl ECCHI I xl xl xl xl xl xl xl xl xl xl xl xl ECCLO I xl xl xl xl xl xl :BCEDECC 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

The ECCm field corresponds to syndrome bits <7:4>. The ECCLO field corresponds to syndrome 
bits <3:0>. 
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13.5.5 Fill Error Registers (CEFADR, CEFSTS) 

Some elTors are related to outstanding reads to memory. These elTors may be diagnosed using 
the CEFSTS and CEFADR registers. CEFSTS holds general information about the type of read 
outstanding; CEFADR holds the address of the outstanding read. The contents of these these 
registers are not changed during reset. 

13.5.5.1 Cbox Error Fill Status (CEFSTS) 

The CEFSTS register holds information related to a problem on a read which was sent to memory. 
If a read request to memory times out or is terminated with RDE, the CEFSTS register and the 
CEFADR register are loaded and locked. 

The register is read-write. Only the lowest five bits and the UNEXPECTED_FILL bit may be 
written, and then only to clear them after an error. CEFSTS is not affected by reset. 

Figure 13-33: IPR AC (hex), CEFSTS 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I xl xl xl xl xl xl xl xl xl xl I xl xl xl x I COUNT I I I I I :CEFSTS 
+--+--+--+--+--+--+--+--+--+--+- +--+--+--+--+--+--+- +--+- +- +- +--+--+--+--+--+--+--+--+--+--+ 

I 
I 
'-UNEXPECTED_FILL 

I I I I 
I I I '-RDLK 
I I '-LOCK 
I '-TIMEOUT 
I '-RDE 
'-LOST_ERR 

'-IDO 
'-IREAD 

'-OREAD 
'-WRITE 

'-TO_MBOX 
'-RIP 

-OIP 
-DNF 

'-RDLK FL DONE 
'-REQ_FILL_OONE 

Table 13-44: CEFSTS Field Descriptions 

Name Extent Type Description 

RDLK 0 WC Indicates that a READ_LOCK was in progress. 

LOCK 1 WC Indicates that an error OCCUlTed and the register is locked. 

TIMEOUT 2 WC FILL failed due to transaction timeout. 

RDE 3 WC FILL failed due to Read Data Error. 

LOST_ERR 4 WC Indicates that more than one error related to fills occurred. 

IDO 5 RO NDAL identification hit for the read request. 

IREAD 6 RO This is an Istream read from the Mbox which may be aborted. 

OREAD 7 RO This is an outstanding DREAD. 

WRITE 8 RO This read was done for a write. 
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Table 13-44 (Cont.): CEFSTS Field Descriptions 

Name Extent Type Description 

TO_MBOX 9 RO Data is to be returned to the MbOx. 

RIP 10 RO READ invalidate pending. 

OIP 11 RO OREAD invalidate pending. 

DNF 12 RO Do not fill - data not to be written into the cache or validated 
when the fill returns. 

RDLK_FL_DONE 13 RO Indicates that the last:fill for a READ_LOCK arrived. 

RE'LFILL_DONE 14 RO Indicates that the requested quadword was successfully returned 
from the NDAL. 

COUNT 16:15 RO For a memory space transaction, indicates how many of the fill 
quadwords have been successfully returned. For I/O space, is set 
to 11(BIN) when the transaction starts as only one quadword will 
be returned. 

UNEXPECTED_FILL 21 WC Set to indicate that an unexpected fill was received from the 
NDAL. 

13.5.5.1.1 RDLK 

RDLK is set to show that a READ_LOCK is in progress. This hit is write-one-to-clear. The side 
effect of performing a write-one-to-clear to this bit is to clear the VALID hit for an entry which had 
its RDLK bit set; this has the effect of clearing out the FILL_CAM entry. This is the same action 
which is taken when a WRITE_UNLOCK is received. Microcode uses this functionality during 
certain error sequences; the hit is implemented in the zero position to make the microcoding as 
efficient as possible. ... .. ~ 

.. · •. ···,·.lb .. 

This bit is normally not read as a one by software, because the IIJ,icrocqde ensures that 'the. 
READ_LOCK-WRITE_UNLOCK sequence is an indivisible operation. It: however," the :first 
quadword of a READ_LOCK is returned successfully and then the transaction either times out 
or is terminated in RDE, CEFSTS is loaded with the RDLK bit set. 

13.5.5.1.2 LOCK 

The LOCK bit is set when a read transaction which has been sent to memory terminates in Read 
Data Error or in Timeout. At the same time, all information corresponding to the read is loaded 
from the FILL_CAM into the CEFSTS register. When the LOCK bit is set, one of TIMEOUT, 
RDE, or UNEXPECTED_FILL is also set to indicate the type of error. Once the LOCK bit is 
set, none of the information in CEFSTS or CEFADR changes, with the possible exception of 
LOST_ERR, until the LOCK bit is cleared. 

Hardware sets the LOCK bit and software clears it by writing a one to that location. 

13.5.5.1.3 TIMEOUT 

TIMEOUT is set when a read transaction which was sent to the NDAL times out for some reason. 
When TIMEOUT is set, the LOCK bit is also set. 

Hardware sets the TIMEOUT hit and software clears it by writing a one to that location. 
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13.5.5.1.4 ROE 

RDE (Read Data Error) is set when a read transaction which was sent to the NDAL terminates in 
RDE. When the RDE bit is set, the LOCK bit is also set. The UNEXPECTED_FILL bit will be set 
as well, if the RDE was actually unexpected (no read corresponding to the RDE was outstanding 
when that RDE was received). 

Hardware sets the RDE bit and software clears it by writing a one to that location. 

13.5.5.1.5 LOST_ERR 

The LOST_ERR bit is set when CEFSTS is already locked and another RDE, timeout, or 
unexpected fill error occurs. This indicates to software that multiple errors have happened and 
state has not been saved for every error. 

Hardware sets the LOST_ERR bit and software clears it by writing a one to that location. 

13.5.5.1.6 100 

100 corresponds to the NDAL signal, P%lD_H<O>, which was issued with the read that failed. 
It also indicates which one of the two FILL_CAM entries was used to save information about the 
transaction while it was outstanding. . 

13.5.5.1.7 IREAD 

IREAD indicates that the transaction in error was an IREAD. 

13.5.5.1.8 OREAD 

OREAD indicates that the transaction in error was an OREAD; the OREAD may have been done 
for a write, a READ_LOCK, or a read modify. 

13.5.5.1.9 WRITE 

WRITE indicates that the transaction in error was an OREAD done because of a write request. 

13.5.5.1.10 TO _MBOX 

TO_MBOX indicates that data returning for the read was to be sent to the MBDX. 

13.5.5.1.11 RIP 

RIP (Read Invalidate Pending) is set when a cache coherency transaction due to a read on the 
NDAL is requested for a block which has Dread fills outstanding at the time. This triggers a 
writeback of the block when the fill data arrives; a valid copy of the data is kept in the cache. 

13.5.5.1.12 OIP 

OIP (Dread Invalidate Pending) is set when a cache coherency transaction due to an DREAD or 
a WRITE on the NDAL is requested for a block which has DREAD fills outstanding at the time. 
This triggers a writeback and invalidate of the block when the fill data arrives. 
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13.5.5.1.13 DNF 

DNF (Do Not Fill) is set when data for a read is not to· be written into the Bcache. This is the 
case when the cache is off, in ETM, or when the read is to I/O space. The assertion of this bit 
prevents the block from being validated in the cache. 

13.5.5.1.14 RDLK_FL_DONE 

This bit is set in the fill cam when a READ_LOCK hits in the Bcache or the last fill arrives from 
the BIU for a READ_LOCK. Once this is set, the corresponding WRITE_UNLOCK is allowed to 
proceed. This overrides the FILL_CAM block conBict on the WRITE_UNLOCK which is inevitable 
since the READ_LOCK is held in the FILL_CAM until the WRITE_UNLOCK is done. 

13.5.5.1.15 REQ_FILL_DONE 

RE<t.FILL_DONE is set when the requested quadword of data was successfully received from. 
the NDAL. This is used to allow error handling software to differentiate between an error which 
occurred before the requested data was received, and an error which occurred after the requested 
data was received. -

If the error occurs while the requested data is being returned, such as the requested data being 
returned with RDE, it is as if the requested data was not received. REQ..FILL_DONE will not 
be set because the requested data was not successfully received. 

13.5.5.1.16 COUNT 

These two bits indicate how many of the expected four quadwords have been returned successfully 
from memory for this read. If they are OO(BIN), no quadwords have returned, if they are 01(BIN), 
one quadword has returned, etc. If the entry was for a quadword read, the count bits are set to 
11(BIN) when the reference is sent out. 

As an example, if RDE is returned before any other RDR returns for a hexaword request, COUNT 
will be OO(BIN), to indicate that no quadwords of data were successfully returned. 

13.5.5.1.17 UNEXPECTED_FILL 

UNEXPECTED_FILL is set to indicate that an RDE or an RDR cycle was received from the 
NDAL with an ID for which the FILL_CAM entry was not valid. When UNEXPECTED_FILL is 
set, CEFSTS and CEFADR are loaded and locked. RDE will also be set if the unexpected fill was 
an RDE rather than an RDR. 

UNEXPECTED_FILL is a write-one-to-clear bit which is set by hardware and cleared by software. 

13.5.5.2 Fill Error Address (CEFADR) 

The CEFADR register holds the original quadword read address of a fill which ended in an error 
condition. It is loaded when an error is detected on a fill. It is a read-only register. 

13-78 The Cbox DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

CEFADR is locked when CEFSTS is locked. Its contents are not changed during reset. 

Figure 13-34: IPR AB (hex), CEFADR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Fill error address 1 01 01 01 :CEFADR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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13.5.6 NDAL Error Registers (NESTS, NEOADR, NEOCMD, NEDATHI, NEDATLO, 
NEICMD) 

The NDAL error registers hold information related to NDAL errors. NESTS, NDAL Error Status, 
holds error bits relating to any problems encountered. 

NEOADR, NDAL Error Output Address, holds the address corresponding to the cycle which was 
in error. NEOCMD, NDAL Error Output Command, holds the command bits corresponding to 
the cycle in error. 

NEDATHI, NDAL Error Data High Longword., and NEDATLO, NDAL Error Data Low Longword, 
hold the data from. an NDAL cycle where NVAX detected a parity error on the bus. NEICMD, 
NDAL Error Input Command, holds the command bits corresponding to a cycle with a parity 
error. 

The NDAL error registers are not affected by reset: their contents are not changed during reset. 

13.5.6.1 NDAL Error Status IPR (NESTS) 

The NESTS register holds information about any errors which happened on the NDAL. All six 
bits in this register are write-one-to-clear. Reset does not affect this register. Power-up does not 
initialize the register. 

Figure 13-35: IPR AE (hex), NESTS 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl I I I I I I :NESTS 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I I I I I 
I I I I I I 
I I I I I '-NOACK 
I I I I '-BADWDATA 
I I I '-LOST_OERR 
I I '-PERR 
I '-INCON PERR 
'-LOST_PERR 

Table 13-45: NESTS Field Descriptions 

Name Extent Type Description 

NOACK o 

BADWDATA 1 

2 

PERR 3 
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WC 

we 

WC 

we 

Indicates that ptTtA.CK_L was not asserted for an outgoing NVAX 
cycle. This bit locks NEOADR and NEOCMD. 

Indicates that an outgoing data cycle was accompanied by the 
BADWDATA command. This bit locks NEOADR and NEOCMD. 

Indicates that multiple outgoing errors, either NOACK or 
BADWDATA, were detected. 

Indicates that a parity error was detected on the NDAL. This bit 
locks NEDATHI, NEDATLO, AND NEICMD. 
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Table 13-45 (Cont.): NESTS Field Descriptions 

Name Extent Type Description 

Inconsistent parity error. INCON_PERR 

LOST_PERR 

4 

5 

WC 

we Indicates that multiple NDAL parity elTors were detected. 

13.5.6.1.1 NOACK 

NOACK is set when NVAX detects that P%ACK_L was not asserted on the NDAL for an outgoing 
NVAX cycle. When NOACK is set, NEOADR and NEOCMD are locked so that software can read 
them to see what transaction was being attempted when the error occurred. 

NOACK is set on any outgoing NVAX cycle which is not acknowledged, whether it was an address 
cycle or a data cycle. The information which is locked in NEOADR and NEOCMD corresponds 
to the address cycle of the transaction. For example, if an outgoing write data cycle is not· 
acknowledged, the address cycle for that write operation is saved in NEOADR and NEOCMD. 

NOACK is not set if there was a previous BADWDATA. If a BADWDATA cycle is NOACK'd, both 
BADWDATA and NOACK are set. 

NOACK is cleared by a write-one-to-cIear. 

13.5.6.1.2 BADWDATA 

BADWDATA is set when the BIU receives data for a writeback from the cache which had an 
uncorrectable ECC error, and thus is being issued on the NDAL with the BADWDATA command. 
When BADWDATA is set, NEOADR and NEOCMD are locked so that software can read them to 
retrieve the information about the failure. 

The address for the write operation is captured in NEOADR, and the command information for 
the cycle is captured in NEOCMD. 

BADWDATA is not set if there was a previous NOACK. If a BADWDATA cycle is NOACK'd, both 
BADWDATA and NOACK are set. 

13.5.6.1.3 LOST_OERR 

LOST_ OERR is set when NOACK or BADWDATA is already set and another one of those errors 
occurs. It notifies softwaz:e that state was saved only for the first outgoing error. 

LOST_OERR is cleared by a write-one-to-clear. 

13.5.6.1.4 PERR 

PERR is set when NVAX detects a parity error on the NDAL. When PERR is set, NEDATHI, 
NEDATLO, and NEICMD are locked so that software can read them to see what was on the 
NDAL when the error occurred. 

Since NVAX calculates parity on every cycle, PERR will be set on both its own transfers and the 
transfers of other devices which fail the parity check. 

PERR is cleared by a write-one-to-clear. 
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13.5.6.1.5 INCON_PERR 

INCON_PERR (Inconsistent parity error) is set when an NDAL parity error is detected on a cycle 
which is also acknowledged with Pff'tACK_L. This means that NVAX detected a parity error but 
some other device acknowledged the transfer. 

INCON_PERR is only set in conjunction with PERR. It is not set unless PERR is set. If one 
NDAL parity error has already occurred, setting PERR, but INCON_PERR was not set for that 
cycle, a subsequent cycle with an inconsistent parity error will not cause INCON_PERR to be set. 

INCON_PERR is cleared by a write-one-to-clear. 

13.5.6.1.6 LOST _PERR 

LOST_PERR is set when PERR is already set and another NVAX transfer fails the parity check. 
LOST_PERR notifies software that multiple NVAX transfers have failed the parity check; state 
was saved only for the first. 

LOST_PERR is cleared by a write-one-to-clear. 

13.5.6.2 NDAL Error Output Address IPR (NEOADR) 

The NEOADR register is loaded for every address cycle which the Cbox drives onto the NDAL, 
unless it is locked. It is loaded during the cycle when the corresponding P%ACK_L should be 
asserted on the NDAL. It is locked when the NOACK bit in the NESTS register is set. 

When NEOADR is locked, it contains the address information for the :first transaction which 
failed. If it is read when it is not locked, it contains information from the last address cycle 
which was acknowledged on the NDAL. 

The format of NEOADR matches the low longword of the NDAL during an address cycle. 

NEOADR is read-only to software. Its contents are not changed during reset. 

Figure 13-36: IPR 80 (hex), NEOADR 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I NDAL address I :NEOADR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

13.5.6.3 NDAL Error Output Command (NEOCMD) 

The NEOCMD register is loaded and locked exactly as NEOADR is loaded and locked. The 
format of NEOCMD is similar to that of the high longword of the NDAL during an address cycle. 
The high quadword byte enable positions are NOT included, since NVAX only uses quadword 
byte-enabled transactions; and the NDAL ID and command are added in the lower four bits of 
the longword. 
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The contents of NEOCMD are not affected by reset. 

Figure 13-37: IPR 82 (hex), NEOCMD 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I LEN I xl xl xl xl xl xl xl xl xl xl xl xl xl xl BYTE_EN I 01 ID I CMD I :NEOCMD 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Table 13-46: NEOCMD Field Descriptions 

Name Extent 

CMD 3:0 

ID 6:4 

15:8 

LEN 31:30 

Type 

RO 

RO 

RO 

RO 

Description 

NDAL command as driven by NVAX during the transaction. For 
specific values, see Section 3.3.4.2. 

Commander ID as driven by NVAX during the transaction. For 
specific values, see Section 3.3.4.3. 

Byte enable as driven by NVAX during the transaction. For specific 
values, see Section 3.3.4.1. 

Length of the NDAL transaction. 
Section 3.3.4.1. 

For specific val ues, see 

The meanings of these fields are described in Chapter 3. 

13.5.6.4 NDAL Error Input Command (NEICMD) 

NEICMD, NEDATHI, and NEDATLO are loaded at the same time and they are locked at the 
same time. They are all loaded when a parity error occurs; at this time the PERR hit is set in 
NESTS, which locks the three registers. If a second NDAL parity error happens, the registers are 
not loaded again; they are not loaded again until after they are unlocked when software clears 
PERR. 

NEICMD contains the P%CMD_H<3:0>, P%ID_H<2:O>, and P%PARITY_H<2:0> bits from the 
failed transfer. 

NEICMD is a read-only register. Its contents are not changed during reset. 
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Figure 13-38: IPR B8 (hex), NEICMD 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl xl PARITY I ID I CMD I :NEICMD 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

13.5.6.4.1 PARITY 

The PARITY field corresponds to the NDAL lines P%PARITY_H<2:O>. 

13.5.6.4.2 10 

The ID field corresponds to the NDAL lines P%ID_H<2:0>. 

13.5.6.4.3 CMD 

The CMD field corresponds to the NDAL lines pcf£MD_H<2:O>. 

13.5.6.5 NDAL Error Data High and NDAL Error Data Low (NEDATHI and NEDATLO) 

NEDATHI and NEDATLO behave analogously to NEICMD. They capture P%NDAL_H<63:0> 
during a cycle with a parity error. NEDATHI contains the high longword of data from the 
NDAL (p%NDAL_H<63:32»; NEDATLO contains the low longword of data from the NDAL 
(P%NDAL_H<31:0». 

The format of NEDATHI and NEDATLO must be interpreted based on the CMD found in 
NEICMD. If the CMD field shows that the cycle was a data cycle, the registers contain two 
longwords of data. If the CMD field shows that the cycle was an address cycle, the registers are 
in the format of an NDAL address cycle, as shown in Figure 13-39 and Figure 13-40. 

The contents of NEDATHI and NEDATLO are not affected by reset. 
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Figure 13-39: IPR 84 (hex), NEDATHI 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I LEN I UNDEFINED I BYTE_EN I UNDEFINED I :NEDATHI 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Figure 13-40: IPR 86 (hex), NEDATLO 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I address I :NEDATLO 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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13.5.7 Backup Cache Tag Store Access Through IPR Reads and Writes (BCTAG) 

Direct access to the backup cache tag store is provided to aid in error recovery and diagnosis and 
to assist testing. These accesses work whether the cache is on or off, in ETM or in force hit mode. 

If there is a valid FILL_CAM entry for the same cache block which is being accessed through an 
IPR read or write, the IPR read or write is stalled until the fills return and the FILL_CAM entry 
is no longer valid. 

When the backup cache tag store is being accessed through IPR reads and writes, address bits 
<24:22> = 100 (BINARY). Address hits <20:5> are used as the index into the tag store RAMs; 
these indicate which backup cache location is to be written or read. 

Figure 13-41 : Backup Cache Tag Store IPR Addressing Format 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I SBZ I 1 0 0 I x I I BCTAG Index I SBZ I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I 
'-BCTAG Index or SBZ, based on cache size. 

Some or all of bits <20: 17> are not actually used as the index if the cache is smaller than 2 
megabytes. This is set out explicitly in Table 13-48. 

The format for reading and writing the backup cache tag store as an IPR is described in 
Figure 13-42 and Table 13-47. 

Figure 13-42: IPRs 01000000 thru 011FFFEO (hex), BCTAG 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I TAG I I ECC I I I x I x I x I x I x I x I x I x I x I : BCTAG 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I I 
'-TAG or 0, based I '-VALID 

on cache size '-OWNED 

Table 13-47: BCTAG Field Descriptions 

Name Extent Type Description 

VALID 9 RW Valid bit 

OWNED 10 RW Ownership bit 

ECC 16:11 RWI ECC check bits 

TAG 31:17 RW Tag data 

IThe ECC bits are written from. the value given in the IPR_ WRITE only if the SW _ECC bit of the CCTL IPR is set. 
Otherwise, the Cbox generates and writes correct ECC for the tag, owned and valid values being written. 
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Some or all of TAG<20:17> are not actually used as tag if the cache is larger than 128 kilobytes. 
This is set out in Table 13-48. 

Table 13-48: Tag and Index Interpretation for BCTAG IPR 

Cache size Tag bits used Index bits used 

128 kilobytes TACk31:17> Index<16:5> 

256 kilobytes TACk31:18> Index<17:5> 

512 kilobytes TACk31:19> Index<18:5> 

2 megabytes TACk31:21> Index<20:5> 

The tag store must be initialized to a known state when the chip is powered up. This is done 
through IPR_ WRITEs to BCTAG. 

When the tag store is read, the ECC check bits are read out directly from the tag store in the 
format shown. ECC is not checked on IPR accesses to the tag store; no errors can occur during 
these accesses. 

Some care must be taken if IPR reads of the tag store are done while other transactions are in 
progress. The tag information read out may not be what the programmer expects if cache 'misses 
or cache coherency transactions are in progress on the block which is being read. For example, 
if a cache miss is in progress, the new tag will be in the tag store but the valid and owned bits 
will be clear. 
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13.5.8 Backup cache deallocates through IPR access (BCFLUSH) 

The Backup Cache Deallocate IPR is a write-only register which software uses to explicitly request 
the deallocation of a cache block. For example, this register may be used when hardware has put 
the cache into ETM and software wants to request writeback of the owned blocks to memory. 

If there is a valid FILL_CAM entry for the same cache block which is being flushed, the flush is 
stalled until the fills return and the FILL_CAM entry is no longer valid. 

Figure 13-43: IPRs 01400000 thru 015FFFEO (hex), BCFLUSH 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I SBZ 1 11 0 1 11 x I Bcache Tag Deallocate Index I SBZ 1 : BCFLUSH 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

When BCFLUSH is written, the CbOx accesses the tag store. If the block is invalid, no further 
action is taken. If the block is valid but not owned, the Cbox sends a block invalidate to the Mbox 
and invalidates the entry in the Bcache tag store. If the block is valid and owned, it sends a 
block invalidate to the Mbox, performs a writeback of the data, and invalidates the entry in the 
tag store. 

This behavior takes place whether the cache is on, off, in ETM, or in FORCE_ruT mode. In 
FORCE_HIT mode, BCFLUSH does a real lookup of the tag store and does not force the access 
to hit. Software must take care not to force deallocates when cache state is not consistent with 
the state of memory. For example, when the cache is off: valid and owned bits may be set for 
blocks which are no longer up-to-date with respect to memory. 

When a deallocate is done, the VALID and OWNED bits will be cleared as necessary, and the 
value of the stored TAG is modified. Its value is UNPREDICTABLE. Correct ECC is stored on 
the tag store entry. 

A BCFLUSH operation never changes the data stored in the data RAMs. 

Errors are detected and reported during BCFLUSH operations. 

The index given is interpreted as in Table 13-48, based on the size of the cache. 

BCFLUSH may be used when the Bcache is on, as the Pcache is kept a subset of the Bcache 
during these operations. However, new blocks may be allocated due to memory reads and writes 
as the cache is being flus~ed. 
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13.6 Cbox Control Description 

The Cbox control consists of the following sections: 

• Mbox Interlace. Controls receiving commands from the Mbox including checking for 
read/write conflicts, and sending data and invalidates back to the Mbox. 

• Cbox Arbiter. Decides which Cbox request should be serviced next. 
• Tag Store Control. Controls access to the tag store RAMs, hit calculation, ECC generation 

and checking for tag RAMs, tag RAM error handling. 

• Data Ram Control. Controls access to the data RAMs, ECC generation and checking for data 
RAMs, data RAM error handling. 

• NDAL interface. Controls access to the NDAL queues and implements the NDAL protocol 
described in Chapter 3. 

The tag store controller is a state machine which executes any of the following tasks, upon 
instruction from the arbiter: 

• C_TAG%%DREAD_CMD. Performs a lookup for a data-stream read. Hits if tag matches and 
is valid. 

• C_TAG%%IREAD_CMD. Performs a lookup for an instruction-stream read. Hits if tag 
matches and is valid. The operation may be cancelled midstream if the IREAD is aborted. 

• C_TAG%%OREAD_CMD. Performs a lookup which requires ownership. Hits if tag matches 
and is valid and owned. 

• C_TAG%%R_INVAL_CMD. Perlorms a cache coherency lookup as the result of an NDAL 
DREAD or IREAD; clears OWNED if necessary. 

• C_TAG%%O_INVAL_CMD. Perlorms a cache coherency lookup as the result of an NDAL 
OREAD or WRITE; clears VALID and/or OWNED if necessary. 

• C_TAG%%FILL_CMD. Sets the VALID and/or OWNED bit for a fill which has completed. 
• C_TAG%%IPR_DEALLOC_ WRlTE_CMD. Performs a lookup for a deallocate; clears VALID 

and OWNED bits if the block was owned. 
• C_TAG%%IPR_TAG_WRITE_CMD. Writes the tag store with given data. 
• C_TAG%%IPR_TAG_READ_CMD. Reads the tag store from the location requested. 

When the command given has been executed, the tag store controller notifies the arbiter that it 
has finished. 

The data RAM controller is a state machine which executes any of the following tasks, upon 
instruction from the arbiter: 

• C_DAT%%DREAD_CMD. Reads four quadwords of data-stream data from the Bcache and 
sends them to the Mbox interface. 

• C_DAT%%IREAD_CMD. Reads four quadwords of instruction-stream data from the Bcache 
and sends them to the Mbox interlace. The operation may be cancelled midstream if the 
Iread is aborted. 

• C_DAT%%WB_CMD. Reads four quadwords of data from the Bcache and sends them to the 
WRITEBACK_QUEUE. 

• C_DAT%%RM_WRITE_CMD. Perlorms a read-modify-write operation on the Bcache 
quadword. 
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• C_DAT%%WRITE_BMO_CMD. Performs a full quadword write on the Bcache. 
• C_DAT%%FILL_CMD. Writes fill data into the Bcache; merges write data with the fill if 

necessary. 

When the command given has been executed, the data RAM controller notifies the arbiter that 
it has finished. 

The arbiter looks at the DREAD_LATCH, the IREAD_LATCH, the WRITE_QUEUE, and 
incoming transactions from the CBOX_BIU_INTERFACE to decide which to service next. It 
notifies the tag store controller and data RAM controller of which command to execute next. 

Fills and cache coherency requests both arrive in the NDAL_IN_ QUEUE and are sent to the 
Cbox proper through the CBOX_BIU_INTERFACE. They are processed in order; therefore, one 
does not have priority over the other. 

When a transaction such as a read miss causes a cache block to be deallocated, the 
deallocate always takes place as the next data RAM transaction. Transactions in the 
CBOX_BIU_INTERFACE take next-highest priority. In the normal case, the DREAD_LATCH 
takes next priority, the IREAD_LATCH next, and the WRITE_QUEUE takes lowest priority. 
These priorities change if there are special circumstances, as shown in the tables which follow. 

Table 13-49: Cbox Task Priority Under Normal Conditions. 

Priority 

1 

2 

3 

4 

5 

Source of Transaction 

Deallocate caused by previous transaction. 

CBOX_BIU_INTERFACE (Fills and cache coherency requests) 

DREAD_LATCH 

IREAD_LATCH 

WRITE_QUEUE 

Table 13-50: Cbox Task Priority When DWR_CONFLICT BHs are Set In the WRITE_QUEUE. 

Priority 

1 

2 

3 

4 

5 

13-90 The Cbox 

Source of Transaction 

Deallocate caused by previous transaction. 

CBOX_BIU_INTERFACE (Fills and cache coherency requests) 

!READ_LATCH 

WRITE_QUEUE 

DREAD_LATCH - not serviced until DWR_CONFLICT bits are clear 
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Table 13-51: Cbox Task Priority When IWR CONFUCT Bits are Set In the WRITE QUEUE. 

Priority 

1 

2 

3 

4 

5 

Source of Transaction 

Deallocate caused by previous transaction. 

CBOX_BIU_INTERFACE (Fills and cache coherency requests) 

DREAD_LATCH 

WRITE_QUEUE 

IREAD_LATCH - not serviced until IWR_CONFLICT bits are clear 

Table 13-52: Cbox Task Priority When a DREAD_LOCK Is In progress until the 
WRITE_UNLOCK Is done. 

Priority 

1 

2 

3 

4 

5 

Source of Transaction 

Deallocate caused by previous transaction. 

CBOX_BIU_INTERFACE (Fills and cache coherency requests) 

WRITE_QUEUE - the WRITE_UNLOCK corresponding to the DREAD_LOCK is the 
only write which will arrive unless an error occurs; in this case the IPR_ WRITE clearing 
the RDLK bit in the FILL_CAM is the next write to arrive. 

DREAD_LATCH - not serviced until the WRITE_UNLOCK completes or the 
FILL_CAM RDLK bit is cleared. 

IREAD_LATCH - not serviced until the WRITE_UNLOCK completes or the FILL_CAM 
RDLK bit is cleared. 

There are various resources in the Cbox which must be available for the start of a transaction. 
The necessary conditions vary, depending on the transaction in question. 

Necessary conditions before servicing a fill from the CBOX_BIU_INTERFACE are as follows: 

1. The data RAMs and the tag store must be free. The tag store is only strictly necessary for 
the last fill but for implementation simplicity, both are required for all fills. 

2. The WRITEBACK_ QUEUE must not be full. A writeback may be necessary at the completion 
of the fill. 

Necessary conditions before SeI"VlClng a cache coherency request from the 
CBOX_BIU_INTERFACE are as follows: 

1. The tag store must be free. 
2. The WRITE BACK_ QUEUE must not be full. 

Necessary conditions before servicing a transaction from the DREAD_LATCH or the 
IREAD_LATCH are as follows: 

1. The data RAMs and the tag store must be free. 

2. A FILL_CAM entry must be available, in case the read misses. 

3. There must be an available entry in the NON_ WRITEBACK_QUEUE, in case the read misses. 
4. There must be no valid entry in the FILL_C.AM for the same cache block as that of the new 

request. 
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5. There must be no RDLK hit set in the FILL_CAM, indicating that a READ_LOCK -
WRITE_UNLOCK sequence is in progress. 

6. There must be no block conflict with any WRITE_QUEUE entry. 
7. The WRITEBACK_QUEUE must not be full. 

Necessary conditions before servicing a full quadword write from the WRITE_QUEUE are as 
follows: 

1. The tag store must be free. 
2. If a read lock is not outstanding, a FILL_CAM entry must be available, in case the write 

misses and requires an OREAD. 
3. If a read lock is not outstanding, there must be an available entry in the 

NON_ WRITEBACK_ QUEUE, in case the write misses. 
4. There must be no valid entry in the FILL_CAM for the same cache block as that of the new 

request, unless the new request is a WRITE_UNLOCK. 
5. If there is a READ_LOCK in the FILL_CAM, the fills for the READ_LOCK must have 

completed. 

6. The WRITEBACK_QUEUE must not be full. 

The tag store lookup for a full quadword write may be done while the data RAMs are busy with 
another transaction. When the data RAMs free up, the full quadword write is done. If full 
quadword writes are streaming through the WRITE_QUEUE, this effectively pipelines the tag 
store accesses and the data RAM accesses so that the writes take place at the maximum write 
rep rate of the data RAMs. This would not be the case if the arbiter required both the data RAMs 
AND the tag store to be free before starting the full quadword write. 

Necessary conditions before servicing any WRITE_QUEUE entry other than a full quadword 
write are as follows: 

1. The tag store and the data RAMs must he free. 

2: If a read lock is not outstanding, A FILL_CAM entry must be available, in case the write 
misses and requires an OREAD. 

3. If a read lock is not outstanding, there must be an available entry in the 
NON_WRITEBACK_QUEUE, in case the write misses. 

4. There must be no valid entry in the FILL_CAM for the same cache block as that of the new 
request, unless the new request is a WRITE_UNLOCK. 

5. If there is a READ_LOCK in the FILL_CAM, the fills for the READ_LOCK must have 
completed. 

6. The WRITEBACK_ QUEUE must not be full. 

From the above lists, the following is true: 

1. When the data RAMs are busy, the only tag store operations which may proceed are cache 
coherency requests and full quadword write requests. 

2. No transaction from the Mbox which produces a block conBict with the FILL_CAM 
may proceed, except a WRITE_UNLOCK. This includes 110 space transactions and IPR 
transactions, for implementation simplicity. 
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13.7 Transaction Descriptions 

13.7.1 IPR Reads and IPR Writes 

These transactions are described in Section 13.5. 

13.7.2 1/0 Space 

110 space references are recognized when address bits <31:29> are equal to all ones. Address 
bits <31:0> are used for 110 space reads and writes, which may reference bytes. All bits of the 
address are driven onto the NDAL. 

In addition, the byte enable field is valid for all I/O space reads and writes, as described in 
Chapter 3. When the Cbox receives an 110 space read or write, it passes the byte enable from 
the Mbox out through the BIU to the NDAL. 

110 space references are never cached in the Bcache. All such references are passed directly to 
the NDAL. 110 space fill data which returns is passed directly to the Mbox. 

110 space references are always quadword length. When the quadword returns on the NDAL, 
the Cbox returns it directly to the Mbox and asserts C%LAST_FILL_B so the Mbox does not expect 
any more fills. 

110 space references also result from IPR_READs and IPR_ WRITEs to the Cbox which are not 
in Cbox register space. The Cbox converts these to 110 space reads and writes, as described in 
Section 13.5. 

Before an 110 space read is allowed to proceed, the WRITE_QUEUE is flushed. I/O space 
writes are naturally ordered with respect to previous 110 space writes since they go into the 
WRITE_QUEUE behind any previous 110 space writes. They are also ordered with respect to 
previous reads and subsequent reads through the write conflict bit mechanism. 

There are situations where I/O space writes will appear out of order with respect to memory 
space writes. See Section 13.14 for an explanation of when this may happen. 

READ_LOCKs and WRITE_UNLOCKs to I/O space are not supported by the Cbox. If software 
issues these transactions through the Mbox, the Cbox converts them to normal DREADs and 
WRITEs on the NDAL. 

13.7.3 Clear Write Buffer 

In previous systems, Clear Write Buffer (CWB) was implemented as a separate command. 
NVAX implements this as an IPR read or write which the Cbox converts into an 110 space 
read or write on the NDAL. As this transaction passes through the Cbox, it has the effect 
of clearing previous entries in the WRITE_QUEUE, the NON_ WRITEBACK_ QUEUE, and the 
WRITEBACK....QUEUE. 

An IPR_READ to clear the write buffers causes all the DWR_CONFLICT and IWR_CONFLICT 
bits in the WRITE_QUEUE to be set. All writes are flushed as top priority, and then the I/O space 
read is issued to the NDAL and system. Which device responds to the read is system-dependent. 
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An IPR_ WRITE to clear the write buffers goes into the WRITE_QUEUE. If any reads are 
outstanding, they complete first due to their higher priority and then the writes complete. If 
a new read arrives while the IPR_ WRITE is still in the WRITE_QUEUE, the con:ftict bit is set 
for that entry so the read does not complete until after the IPR_ WRITE to clear the write buffer. 
After that IPR_ WRITE completes, read/write priority goes back to the default behavior. 

The Clear Write Buffer has the effect of clearing both the WRITEBACK_QUEUE and the 
NON_ WRITE BACK_ QUEUE, as follows: the CWB, whether issued as an IPR_READ or an 
IPR_WRITE, enters the NON_WRITEBACK_QUEUE. Since the WRITEBACK_QUEUE takes 
priority over the NON_ WRITEBACK_ QUEUE, any previous writebacks will be issued to the 
NDAL before the CWB is issued from the NON_ WRITEBACK_QUEUE. Any entries which were 
already in the NON_ WRITEBACK_QUEUE will be issued before the CWB as transactions in the 
queue are always issued in order. Thus, before the CWB completes, both outgoing NDAL queues 
are flushed of all previous transactions. If the CWB is issued as an IPR_READ, software receives 
positive acknowledgement that the queues were cleared when the fill returns. 

The IPR_ WRITE is issued to the NDAL as an I/O space write. As with the I/O space read to clear 
the write buffers, the device which responds is system-dependent. 
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13.7.4 Memory Read Hit 

Several different kinds of memory reads may arrive from the Mbox, as shown in the following 
table. 

Read Cboxacnon 

IREAD hits if tag matches and valid bit is set 

DREAD hits if tag matches and valid bit is set 

DREAD_MODIFY hits if tag matches and valid bit is set 

DREAD_LOCK hits if tag matchest valid bit is sett and ownership bit is set 

When the Mbox asserts M%CBOX_REF _ENABLE_L, the Cbox takes the command from Mo/d36_CMD_H. 

If the backup cache is occupied with another transaction, the Cbox puts an IREAD into the 
IREAD_LATCH or a DREAD into the DREAD_LATCH for later processing. Otherwise, the read 
bypasses the read latches and is started immediately. 

When both the tag store and the data RAMs are free, the transaction starts. The tag lookup is 
done in parallel with the data lookup. If the read hits, data is driven from the backup cache RAMs 
back through the CM_ OUT_LATCH. The fill command is sent to the Mbox on Co/cCBOX_CMD_H<l:O>. 

Two cycles later, the Pcache fill is done while the Cbox drives data onto Bo/d36_DATA.,..H<63:O>. 

Using the fastest RAM speed configuration, the backup cache access incurs an additional4-cycle 
latency penalty beyond the Pcache access. Each subsequent quadword in the block takes an extra 
two cycles from the previous quadword. 

On a read hit in the backup cache, the requested quadword is always returned first to the Mbox. 
The subsequent quadwords are sent in wrapped order as shown in Table 13-53. 

Table 13-53: Order of quadwords read from the Bcache 

Requested QW 2nd QW returned 3rd QW returned 4th QW returned 

QWO QWl QW2 QW3 

QWl QW2 QW3 QWO 

QW2 QW3 QWO QWl 

QW3 QWO QWl QW2 
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13.7.5 Read Miss and Fill 

At the same time the tag store access is done for a read, the address is put in the FILL_CAM. If the 
read misses, that entry is validated and the address is sent to the NON_ WRITEBACK_QUEUE. 

If the read command was DREAD_MODIFY and missed, it is converted to an OREAD on the 
NDAL. All other reads are sent as either lREADs or DREADs on the NDAL. 

From the NON_WRlTEBACK_QUEUE the request goes across the NDAL to the memory 
interface. When the memory interface returns the fill, the Cbox puts the fill into the 
NDAL_IN_QUEUE. Since the block size is 32 bytes and the NDAL is 8 bytes wide, four fill 
transactions on the NDAL result from the read request. 

The arbiter services the CBOX_BIU_INTERFACE, and thus the fill, as highest priority. At this 
time, Cbox control takes the fill from the CBOX_BIU_INTERFACE and puts the data in the 
CM_OUT_LATCH. At the same time it starts writing the backup cache RAMs with the data, 
which takes at least three cycles, depending on RAM access time. The fill data is driven to the 
Mbox from the CM_ OUT_LATCH as described in the cache hit section preceding. 

As fill data returns, the Cbox keeps track of how many quadwords have been received with a 
two-bit counter in the FILL_CAM. If two read misses are outstanding, fills from the two misses 
may return interleaved, so each entry in the FILL_CAM has a separate counter. When the last 
quadword ofa read miss arrives, the new tag is written and the valid bit is set in the cache. The 
owned bit is set if the fill was for an Ownership Read. The FILL_CAM is made available for the 
next cache miss. 

If the RIP or OIP bit is set (and DNF is not set) in the FILL_CAM when the last fill returns, the 
arbiter immediately notifies the tag store control to start a cache coherency transaction on that 
block; nothing intervenes between the last fill and the cache coherency transaction. 

13.7.6 Write Hit 

A write from the WRITE_QUEUE is begun by accessing the tag store. It is a write hit if the tag 
matches, the valid bit is set, and the ownership bit is set. In this case the write data may be 
written into the data RAMs. The data RAMs are not accessed for the write until it is determined 
that the write hit. 

The write is somewhat complicated because we have ECC across 8 bytes in the data RAMs. If 
all bytes in the quadword are not to be written with new data, the old data is read out of the 
data RAMs during the tag store lookup and before the write is done. The new data is merged 
with the old so that ECC can be calculated across the new quadword. This action is known as 
read-modify-write. 

If byte enable indicates that the write is a full quadword write, the read-modify-write is not 
necessary. In this case, the tag store lookup may proceed even if the data RAMs are not available; 
when the RAMs then become available, the write is done (assuming the tag store access resulted 
in hit-owned). This allows sequential full quadword writes to be effectively pipelined, as the tag 
store lookup for the next write may proceed while the current write is being done into the data 
RAMs. If the fastest RAM configuration is used, this achieves a three-cycle repetition rate for 
full quadword writes. 

When the write is complete, the entry is removed from the WRITE_QUEUE. 
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13.7.7 Write Miss 

If the tag store lookup for a write is done and the ownership bit is not set or the tag does not match, 
an ownership read is issued to the memory subsystem through the NON_ WRITEBACK_ QUEUE. 
At the same time, the new tag is written to the backup cache tag store with cleared VALID and 
OWNED bits. When the requested quadword returns through the NDAL_IN_ QUEUE, the write 
data is merged with the fill data, ECC is calculated, and the new data is written to the cache 
RAMs. At this time the write is removed from the WRITE_QUEUE. When the fourth quadword 
returns, the valid bit and the ownership bit are set in the tag store. None of the fill data is sent 
to the Mbox, since the request originated from a write rather than from an Mbox read. 

13.7.8 Deallocates Due to CPU Reads and Writes 

When any tag lookup for a read or a write results in a miss, the cache block is deallocated to 
allow the fill data to take its place. If the block is not valid, no action is taken for the deallocate. 
If the block is valid but not owned, the block is invalidated in the backup cache tag store and 
an invalidate is sent to the Pcache. If the block is valid and owned, the block is written back 
to memory, invalidated in the tag store, and an invalidate is sent to the Pcache. The Hexaword 
Disown Write command is used to write the data back. 

If a writeback is necessary, it is done immediately after the read or write miss occurs. The miss 
and the deallocate are contiguous events and are not interrupted for any other transaction. 

When the block is invalidated or deallocated at the time of the miss, the VALID and OWNED bits 
are cleared. The TAG is written with a value corresponding to the address of the read or write 
which just missed. When the fill returns, the VALID and OWNED bits are written appropriately. 

The four quadwords for the deallocate are read out from the bcache in the order shown in 
Table 13-53. They are driven on the NDAL in order from QWO to QW3, however, as required by 
the NDAL protocol for hexaword writes. 

13.7.9 DREAD_LOCK and WRITE_UNLOCK 

The Cbox receives DREAD_LOCKlWRITE_UNLOCK pairs from the Mbox. It never issues those 
commands on the NDAL. The Cbox always uses Ownership Read-Disown Write on the NDAL 
and depends on use of the ownership bit in memory to accomplish interlocks. 

When the cache is on, a DREAD_LOCK which produces an owned hit in the backup cache causes 
no memory access. All four quadwords are read out of the Bcache and sent to the Mbox. The 
address is placed in the FILL_CAM to prevent any access of the block Wltil the WRITE_UNLOCK 
is done. 

A DREAD_LOCK which does not produce an owned hit in the backup cache results in an OREAD 
on the NDAL, whether the cache is on or off. When the cache is on, the WRITE_UNLOCK is 
written into the backup cache and is only written to memory if requested through a coherence 
transaction or due to a deallocate. When the cache is off: the WRITE_UNLOCK becomes a 
Quadword Disown Write on the NDAL. 

When a DREAD_LOCK arrives in the DREAD_LATCH, the WRITE_QUEUE is flushed before 
the DREAD_LOCK is started. All transactions from the IREAD_LATCH or the DREAD_LATCH 
are prevented until the WRITE_UNLOCK takes place or until the RDLK bit in the FILL_CAM 
is cleared through an IPR_ WRITE to the CEFSTS IPR. 

DIGITAL CONFIDENTIAL The Cbox 13-97 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

During READ_LOCKlWRITE_UNLOCK processing, the NDAL_IN_QUEUE is serviced 
normally, so if the cache is on, the NDAL may see some writebacks while the 
DREAD_LOCKlWRITE_UNLOCK is in progress. 

When the Bcache is running in normal mode, a WRITE_UNLOCK is not looked up in the tag 
store as it is guaranteed to be owned in the cache. The arbiter initiates a read-modify-write 
directly to the data RAMs without any tag store access at all. If the Bcache is in ETM, the 
WRITE_UNLOCK is looked up, as the block mayor may not be owned in the cache. 

When the Bcache is off, a WRITE_UNLOCK which is done without a preceding READ_LOCK 
will be sent directly to the NDAL. In any other mode of Bcache operation, the WRITE_UNLOCK 
is expected to be preceded by a READ_LOCK. When the cache is off, a WRITE_UNLOCK without 
a preceding READ_LOCK may be useful for error handling (this is not currently implemented in 
the microcode). 

13.8 Cache Coherency 

Since NVAX is used in multiprocessor systems, cache coherency requests requiring invalidates 
and/or writebacks arrive on the NDAL. These may require action in the Bcache and/or the Pcache. 
Under normal conditions, the Cbox ensures that the Pcache is a subset of the Bcache, as explained 
below. Thus, it is able to filter invalidate requests so that not all are sent to the Pcache. 

Table 13-54 shows the actions taken in the Bcache, based on the NDAL command which arrives 
and matches a cache block. 

Table 13-54: NVAX Backup Cache Invalidates and Wrltebacks 

NDAL Command 

IREAD,DREAD 

OREAD 

WRITE 

WDISOWN 

Invalid block Valid & Unowned 

Invalidate 

Invalidate 

Valid & Owned 

Writeback, set Bcache to 
valid-unowned state 

Writeback, Invalidate 

Writeback, Invalidate 

Whenever an invalidate is necessary in the Bcache, according to Table 13-54, an invalidate is 
also sent to the Pcache. . 

Invalidates are sent to the Pcache under the following circumstances: 

1. When an invalidate is necessary in the Bcache, due to a cache coherency request, the 
invalidate is also forwarded to the Pcache. 

2. When a cache miss causes a Bcache deallocate, a corresponding invalidate is forwarded to 
the Pcache. 

3. When a write to BCFLUSH causes a bcache deallocate, a corresponding invalidate is 
forwarded to the Pcache. 

4. When a OREAD or WRITE cache coherency request matches an entry in the FILL_CAM, 
the invalidate is forwarded immediately to the Pcache. When the last fill returns, a second 
invalidate is forwarded to the Pcache. 
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5. When the Bcache is off or in FORCE_mT mode, ALL cache coherency requests result in 
invalidates to the Pcache. It is not strictly necessary to send invalidates for IREAD and 
DREAD cache coherency requests, as multiple caches may contain read-only copies of data, 
but for implementation reasons they ARE sent as invalidates to the Peache. 

6. When the Bcache is in ETM, all OREAD and WRITE cache coherency requests result in 
invalidates to the Pcache. (IREAD and DREAD cache coherency requests do not result in 
invalidates to the Peache.) A second invalidate is passed to the Pcache if the normal Bcache 
lookup conditions are met. 

NOTE 

When a cache coherency request hits in the cache and either VALID or OWNED is 
modified, the tag which is written to the cache is the same as the tag which was there 
originally. 
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13.9 Abnormal conditions 

This section describes the various modes of Bcache behavior as well as Cbox response when it 
detects an error. 

The Bcache has four operating states which are controlled by the following hits in the CCTL 
register: ENABLE, FORCE_HIT, SW _ETM, and HW _ETM. The four states are ON, OFF, ETM, 
and FORCE_InT. The four states are determined and prioritized as follows: 

1. OFF. If the ENABLE bit is cleared in CCTL, the Bcache is OFF and those conditions take 
precedence. 

2. FORCE_IflT. If the ENABLE hit is set and FORCE_InT is set, the Bcache is in FORCE_ruT 
mode and those conditions take precedence. 

3. ETM. If the ENABLE bit is set, FORCE_mT is cleared, and either SW _ETM or HW _ETM is 
set, the cache is in ETM mode and those conditions take precedence. 

4. ON. If the ENABLE bit is set and FORCE_ruT, SW_ETM, and HW_ETM are cleared, the 
cache is ON. 

The ON state is the normal operating condition of the cache. OFF, FORCE_HIT, and ETM modes 
are described in the sections which follow. A summary of the backup cache behavior when it is 
ON and incurring no eITors is given in Table 13-55. 
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Table 13-55: 

Cache 

'IransactioD 

CPU IREAD, 
DREAD 

CPU Read 
Modify 

CPU 
READ_LOCK 

CPU Write 

Fill for 
OREAD for 
Write 

Fill for 
OREAD 

Fill for 
READ 

NDAL 
IREAD, 
DREAD 

NDAL 
OREAD, 
WRITE 
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Backup cache behavior while It Is ON 

Cache Response 

Miss 
Invalid Miss Valid Miss Owned 

READ Read Read 
memory memory, memory, 

Pcache inval Pcache 
inval, Bcache 
dealloc 

OREAD ~Read OREAD 
memory memory, memory, 

Pcache inval Pcache 
inval, Bcache 
dealloc 

OREAD ORead OREAD 
memory memory, memory, 

Pcache inval Pcache 
inval, Bcache 
dealloc 

OREAD OREAD OREAD 
memory memory, memory, 

Pcache inval Pcache 
inval, Bcache 
dealloc 

Hit Valid 

Read cache 

Read cache 

OREAD 
memory, 
Pcache inval 

OREAD 
memory, 
Pcache inval 

Hit Owned 

Read cache 

Read cache 

Read cache 

Write cache 

------No tag store lookup; write Bcache unconditionally'-------

-Write cache with fill data and write data; set TS valid-owned ---

----Write cache with fill data; set TS valid-owned -----

----Write cache with fill data; set TS valid -------

---No action for a misss---- No Action Writeback, 
Bcache 
valid-unowned 

set 

---No action for a miss-s --- Bcache inval, 
Pcache inval 

Writeback, Bcache 
inval,Pcache inval 
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13.9.1 Cbox Behavior When the Backup Cache is OFF 

The backup cache may be off for three reasons: the chip has just powered up, the system contains 
no backup cache, or software has disabled the cache by clearing the ENABLE bit in the Cbox 
control register. 

When the cache is off, no accesses to the backup cache are done. Errors are not detected and 
cache state is UNCHANGED unless explicitly changed by software through IPR reads and writes. 

When the backup cache is off, all Ownership-Invalidate cache coherency requests (as the result 
of OREADs or WRITEs) which arrive are forwarded as invalidates to the Mbox, as the data may 
be valid in the Pcache. All reads from the Mbox go directly to the NON_ WRITEBACK_QUEUE, 
and an entry in the FILL_CAM is allocated. Fills which return are sent directly to the Mbox 
without accessing the Bcache, and when the last fill for a block arrives, the FILL_CAM entry is 
cleared. All writes except WRITE_UNLOCKs go directly to the NON_ WRITEBACK_ QUEUE. 1 

When the cache is off, a DREAD_LOCKlWRITE_UNLOCK pair from the Mbox becomes Hexaword 
Ownership ReadlQuadword Disown Write on the NDAL. 

All writes issued from NVAX when it is operating without a backup cache are of quadword 
length. Memory reads are of hexaword length since the Pcache block size is a hexaword. Even if 
the Pcache is off, a hexaword of data is returned to the MbOx. 

A DREAD_MODIFY command from the Mbox normally becomes an OREAD on the NDAL when 
it misses in the cache. However, when the cache is off, a normal DREAD is used on the NDAL. 

1 If P%CPU_WB_ONLY_L is asserted, the WRITE_UNLOCK must be allowed to proceed. Only the 
WRITEBACK_QUEUE continues when Plr£PU_WB_ONLY_L is asserted, so the WRITE_UNLOCK must go through 
the WRITEBACK_QUEUE. 
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13.9.2 Cbox Behavior When the Backup Cache is in FORCE_HIT Mode 

FORCE_ffiT mode is intended to be used for testing purposes only. It is used when the cache is 
enabled. 

When FORCE_InT is set, all memory space reads and writes to the Bcache, both Istream and 
Dstream., are forced to hit. Tag store state is not changed at all; the data RAMs are accessed as 
if the tag store access produced an owned-valid hit. Cache coherency transactions are treated as 
they are when the cache is off: they are not looked up in the backup cache, they are all forwarded 
to the Mbox, and cache state is not changed as the result of the cache coherency requests. 

When the Bcache is in FORCE_ffiT mode, deallocates are not done. Even if the tag matches and 
the VALID and OWNED bits are set, the block is not written back. The implication of this is that 
if FORCE_ffiT mode is being used while running in a multiprocessor environment, the Bcache 
must be flushed of all owned blocks beforehand. 

Tag store and data RAM ECC errors are detected in FORCE_IDT mode if DISABLE_ERRORS 
in the CCTL register is not set, resulting in the usual error handling. 

Suppose the ECC logic for the data RAMs is to be tested. Put the cache in FORCE_IDT mode. 
Set SW_ECC in the Cbox control register. Write the desired ECC into BCDECC. Do a Dstream 
write to the desired location, and the location will be written using ECC from BCDECC rather 
than from Cbox-generated ECC. Suppose the ECC written is such that when the data is read, an 
ECC error will be flagged. 

Now perform a read of the location while FORCE_inTis still set. The read will result in an ECC 
error, showing that the logic is working correctly. The data ram error registers may be read and 
will correspond to the induced error. 

13.9.3 Cbox Behavior When the Backup Cache is in Error Transition Mode 

When the Cbox detects certain errors, as described in Chapter 3 and Section 13.4.2, it puts itself 
into Error Transition Mode. 

The goals of the Cbox design during ETM are the following: 

1. Preserve the state of the cache as much as possible for diagnostic software. 
2. Honor Mbox references which hit owned blocks in the backup cache since this is the only 

source of data in the system. 
3. Respond to NDAL cache coherency requests normally. 

Once the Cbox enters Error Transition Mode, it remains in ETM until software explicitly disables 
or enables the cache. To ensure cache coherency, the cache must be completely flushed of valid 
blocks before it is re-enabled because some data can become stale while the cache is in ETM. 

Table 13-56 describes how the backup cache behaves while it is in ETM. 
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Table 13-56: Backup cache behavior during ETM 

Cache 

'lransaction 

CPU IREAD,DREAD 

CPU Read Modify 

CPU READ_LOCK 

CPU Write 

Fill (from read started 
before ETM) 

Fill (from read started 
during ETM) 

NDAL cache coherency 
request 

Cache Response 

Miss Valid hit Owned hit 

Read memory Read memory Read cache 

Read me~ory Read memory Read cache 

OREAD memory OREAD memory Oread memory, Bcache 
deallocl 

Write memory Write memory Write memory, Bcache 
deallocl 

Write memory Write memory Write cachel 

-------Normal cache behavio:r::....--------

---,Do not update backup cache; return data to Mbox~--

--Normal cache behavior except that o-inval always goes to Pcache2
--

IDone to preserve write ordering; no invalidate is sent to the Pcaehe. For the READ_LOCK (or WRITE), the block 
writeback may be done before OR after the OREAD (or WRITE). 

2The tag store controller looks up the invalidate request normally; if the lookup was an o-inval (due to an OREAD or a 
WRITE on the NDAL), the Cbox arbiter unconditionally forwards an invalidate to the Pcaehe. If the hit conditions are 
met in the cache, a second invalidate for the same block is forwarded to the Pcache (the tag store controller behaves as 
it does in normal mode.) 

Any reads or writes which do not hit valid-owned during ETM are sent to memory: read data is 
retrieved from memory, and writes are written to memory, bypassing the cache entirely. 

The cache supplies data for Ireads, Dreads, and Dread Modifys which hit valid-owned; this is 
normal cache behavior. 

If a write hits a valid-owned block in the cache, the block is written back to memory and the write 
is also sent to memory. The write leaves the Cbox through the NON_ WRlTEBACK_ QUEUE, 
enforcing write ordering with previous writes which may have missed in the cache. 

If a READ_LOCK hits valid-owned in the cache, a writeback of the block is forced and the 
READ_LOCK is sent to memory (as an OREAD on the NDAL). This behavior enforces write 
ordering between previous writes which may have missed in the cache and the WRITE_UNLOCK 
which will follow the READ_LOCK 

The write ordering problem to which the previous two paragraphs allude is as follows: Suppose 
the cache is in ETM. Also suppose that under ETM, writes which hit owned in the cache are 
written to the cache while writes which miss are sent to memory. Write A misses in the cache 
and is sent to the non-writeback queue, on its way to memory. Write B hits owned in the cache 
and is written to the cache. A cache coherency request arrives for block B and that block is placed 
in the writeback queue. If Write A has not yet reached the NDAL, Writeback. B can pass it since 
the writeback queue has priority over the non-writeback queue. If that happens, the system sees 
write B while it is still reading old data in block A, because write A has not yet reached memory. 
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Referring again to Table 13-56, note that a WRITE_UNLOCK that hits owned during ETM is 
written directly to the cache. There is only one case where a WRITE_UNLOCK will hit owned 
during ETM: if the READ_LOCK which preceded it was performed before the cache entered ETM. 
(Either the READ_LOCK itself or an invalidate performed between the READ_LOCK and the 
WRITE_UNLOCK caused the entry into ETM.) In this case, we know that no previous writes are 
in the non-writeback queue because writes are not put into the non-writeback queue when we 
are not in ETM. (There may be 110 space writes in the non-writeback queue but ordering with 
110 space writes is not a constraint.) Therefore there is not a write ordering problem as in the 
previous paragraph. 

Table 13-56 shows that during ETM, cache coherency requests are treated as they are during 
normal operation. 

Fills as the result of any type of read originated before the cache entered ETM are processed in 
the usual fashion. If the fill is as a result of a write miss, the write data is merged, as usual, 
as the requested fill returns. Fills caused by any type of read originated during ETM are not 
written into the cache or validated in the tag store. 

During ETM, the state of the cache is modified as little as possible. Table 13-57 shows how each 
transaction modifies the state of the cache. 

Table 13-57: Backup cache state changes during ETM 

Cache 

Transaction 

CPU IREAD,DREAD, 
Read Modify 

CPU READ_LOCK 

CPU Write 

Fill (from read started 
before ETM) 

Miss 

None. 

None. 

None. 

None. 

Cache State Modified 

Valid hit 

None. 

None. 

None. 

None. 

Owned hit 

None. 

Clear VALID & 
OWNED; change 
TS_ECC accordingly. 

Clear VALID & 
OWNED; change 
TS_ECC accordingly. 

Write new data, change 
DR_ECC accordingly. 

Fill (from read started 
duringETM) 

--------.None.--------

NDAL cache coherency 
request 

----Clear VALID & OWNED; change TS_ECC accordingly:.-----

13.9.4 Cbox transition into Error Transition Mode 

When the BIU encounters an error which induces ETM, it sends an explicit transaction to 
the arbiter requesting that the Cbox enter ETM. When the arbiter services this transaction, 
CCTL<HW _ETM> is set. The next transaction serviced by the arbiter will be under ETM. 

DIGITAL CONFIDENTIAL The Cbox 13-105 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

When the backup cache tag store or data RAM controller encounters an ETM-inducing error, it 
sets CCTLdIW _ETM> immediately. 

The arbiter picks up the new value of CCTL<HW _ETM> whenever it starts a new transaction. 
The tag store controller picks up the new value whenever the arbiter instructs it to start a new 
transaction. For a given transaction, the arbiter and the tag store always see the same value of 
ETM. Since they pick up the state of ETM at the beginning of every transaction, the Cbox always 
enters ETM in a predictable way. 

Although the data ram controller may cause the assertion of HW _ETM, it does not use ETM in 
processing its transactions. 

In general, if a transaction starts when the Bcache is operating normally, and it encounters an 
ETM-inducing error, the next transaction is handled in ETM. There is one exception: If a read 
is looked up in the tag store and hits, the data RAM controller looks up the data in the backup 
cache. While the data is being read out of the RAMs, the tag store controller may start a lookup 
for a quadword write. If the quadword write hits, the write WILL be done to the backup cache 
even if the read data encounters an ETM-inducing error before the write is done to the Bcache. 
This sequence would be as follows: 

1. Tag store lookup and Data RAM lookup for READ A start. 

2. Tag store lookup for READ A completes. 
3. Tag store lookup for Quadword Write B starts. 
4. Data RAM lookup for Read A encounters an ETM-inducing error. 
5. Tag store lookup for Quadword Write B completes; it was a hit. 

6. Data RAM lookup for Read A completes. 
7. Data RAM write for Quadword Write B is carried out to the Bcache. 

Quadword Write B completed as if the Bcache were operating normally. If the tag store lookup for 
the Quadword Write had not started until after the ETM-inducing error had been encountered, 
then the Quadword Write would have been carried out under ETM, and the write would have 
been done directly to memory. 
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13.9.5 How to turn the Bcache off 

Because the Bcache is a writeback cache, care must be taken to maintain cache coherency when 
turning it off. 

If the cache is running normally and software wishes to turn it off, it must do the following: 

1. Write CCTL to set SW _ETM. In this mode, the Bcache will not allocate any new blocks and 
will send all cache coherency requests to the Mbox as invalidates. 

2. Use the BCFLUSH register to flush all owned blocks out of the cache. 
3. Turn off the Bcache by writing CCTL to clear ENABLE and SW _ETM simultaneously. If an 

error was encountered during the deallocate process, HW _ETM may be set and if so, should 
be cleared as well. 

If the Bcache encounters an uncorrectable ECC error, the Cbox sets HW _ETM in the CCTL 
register. If software wishes to turn off the cache, it must do the following: 

1. Use the BCFLUSH register to flush all owned blocks out of the cache. 

2. Write CCTL to clear ENABLE and clear HW _ETM simultaneously. This turns off the Bcache. 

If Bcache errors are happening, but only in part of the cache, software may be able to avoid the 
errored portion of the cache by disabling it through use of the SIZE field in CCTL. If part of the 
cache is failing, a smaller cache size may be selected so that only part of the cache RAMs are 
being used. The cache must be flushed before changing the cache size so that the tags are correct. 

This only works if the smallest cache size is not being used to begin with, and if the failing areas 
of cache do not fall within the range of the smaller cache size selected. 

13.9.6 How to turn the Bcache on 

When NVAX powers up, garbage data is stored in the Bcache tags and data. This would result 
in ECC errors if the cache were turned on immediately. 

Through IPR writes, every Bcache tag store entry must be written with cleared OWNED and 
VALID bits. The value written to the TAG is irrelevant, as long as correct ECC is written to the 
TAG store. 

The Bcache data RAMs must also be initialized with correct ECC on powerup. FORCE_HIT 
mode may be used to initialize the Bcache data RAMs with correct ECC. If full quadword writes 
are used, no data RAM errors will be detected during this process, since the RAMs are written 
without being read first. If partial quadword writes are used, errors will be detected because of 
the read-modify-write which is necessary. If the programmer sets the DISABLE_ERRORS bit in 
the CCTL register, the Cbox will ignore these errors. 

Once the tag store and data RAMS have been initialized, the cache may be enabled by setting 
ENABLE in the CCTL register. 

If the Bcache is in ETM, it may be incoherent with respect to other CPUs and memory because 
of how it treats writes which hit valid but not owned in the cache (see Table 13-56). In addition, 
the Pcache, if enabled, is no longer a subset of the backup cache. The procedure for turning on 
the Pcache and the Bcache described in Chapter 16 must be followed. 

If the Bcache is operating normally and is turned off for some reason, the programmer must 
ensure that when it is reenabled, all the OWNED and VALID bits are cleared. 
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When P%CPU_WB_ONLY_L is asserted, NVAX may only arbitrate in order to issue Disown 
Writes on the NDAL. When P%CPU_ WB_ONLY_L is asserted, the Cbox continues to process 
transactions from the NDAL_IN_QUEUE normally, performing writebacks as necessary. With 
one exception described below, the COOx arbiter prevents all new reads and writes from the Mbox 
while P%CPU_ WB_ONLY_L is asserted. Therefore, if P%CPU_ WB_ONLY_L is asserted for 
long periods of time, CPU performance could be adversely impacted. 

The exception to the rule is the following: If a READ_LOCK from the Mbox is in progress when 
P%CPU_ WB_ONLY_L is asserted, the WRITE_UNLOCK from the write queue must be allowed 
to complete. Otherwise, deadlock could occur if the system asserted P%CPU_WB_ONLY_L until 
it received data from the WRITE_UNLOCK 

Therefore, while P%CPU_ WB_ONLY_L is asserted, the write queue is permitted to continue if a 
READ_LOCK is in progress. The READ_LOCK is completed when either the WRITE_UNLOCK 
is issued and completed, or an "IPR WRITE_UNLOCK" to CEFSTS is issued and completed. 

During the cycle in which P%CPU _ WB_ ONLY_L is asserted, the Cbox may issue a non-writeback 
command on the NDAL. It is up to the NDAL arbiter not to grant to NVAX again during 
that cycle, so that the Cbox does not issue another non-writeback command in the following 
cycle. If the NDAL arbiter does assert Po/cCPU_GRANT_L during the same cycle in which 
P%CPU_WB_ONLY_L is asserted, NVAX may drive another non-writeback command on the 
NDAL in the following cycle which was granted. 

There is one interesting error case which can occur when P%CPU_WB_ONLY_L is asserted. It 
is as follows: 

Normally, when the Cbox has a READ_LOCK outstanding and it receives an O_INVAL cache 
coherency request (OREAD or WRITE to the block), it sets the OIP bit in the FILL_CAM 
(O_INVAL pending). If the Cbox receives an R_INVAL cache coherency request, it sets the RIP 
bit in the FILL_CAM CR_INVAL pending). When the Ebox issues the WRITE_UNLOCK and the 
Cbox arbiter sees that RIP or OIP is set, it issues a block writeback to the NDAL. This is done 
even if Po/oCPU_WB_ONLY_L is asserted. 

If some error occurs which prevents the Ebox from issuing the WRITE_UNLOCK, it sends the 
Cbox an "IPR WRITE_UNLOCK" to clear the READ_LOCK out of the FILL_CAM. This "IPR 
WRITE_UNLOCK" clears the FILL_CAM entry but the Cbox arbiter DOES NOT check the status 
of RIP and OIP to see if we need to do a writeback. 

The implication is that if the Cbox is in the middle of a READ_LOCK-WRITE_UNLOCK 
and a cache coherency transaction arrives for the block, AND the Ebox never issues the 
WRITE_UNLOCK due to some error (see below), the Cbox will NOT write back that block in 
response to the former invalidate. (The COOx would write the block back if a subsequent cache 
coherency request arrived.) The following error would cause this situation: TB parity error after 
issuing the read lock; Ebox S3 stall timeout after issuing the read lock; an uncorrectable error in 
the Backup cache data RAMs on the first quadword of the read lock. 

This could cause a deadlock in a system if the system had asserted Po/oCPU_WB_ONLY_L 
because it was waiting for the writeback. NVAX might never issue the writeback and the Cbox 
stops processing after the "IPR write unlock", until P%CPU_WB_ONLY_L is deasserted. 
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One solution to the deadlock is for the system element which is waiting for the writeback 
to have a timeout counter, so that it does not wait forever. Once the element times out, 
P%CPU_ WB_ONLY_L should be deasserted and the system can continue to operate. Or if 
the cache coherency transaction is reissued on the NDAL after the completion of the "IPR 
WRITE_UNLOCK", the Cbox WILL service it. 
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13.9.8 Backup Cache Errors 

In general, the Cbox logs as much state as possible concerning errors and notifies the Ebox and/or 
Mbox that an error has occurred. For every error, the Cbox asserts either C%CBOx...H_ERR_H or 
Ctf£BOx...S_ERR_H to notify the interrupt section of a hard error or a soft error, respectively. The 
Cbox also notifies the Mbox if the error occurred on a fill to the Mbox. 

The backup cache goes into Error Transition Mode when it detects any uncorrectable error from 
the cache RAMs. 

Table 13-58: Backup Cache ECC Errors and NVAX CPU Error Responses 

General Problem 

Correctable 
ECC error in the 
data RAMs 

Correctable 
ECC error in the tag 
store 

13-110 The Cbox 

Specific Situation and Action Taken by NVAX CPU 

read hit for writeback 
or read hit for 
deallocate IPR 

read hit for Mbox 

read for write hit 

miss 

any 
read or write except 
WUNLOCK (hit or 
miss) 

WRITE_UNLOCK 

cache coherence 
transaction miss 

cache coherence 
transaction hit 

Cbox asserts CC1K3O~S_ERR-.H. The data for the writeback 
is corrected and the writeback continues normally. 

Cbox asserts CflfCB()~s_BRlUL CCJ&oCBOX;..EC(uaUt~H is asserted 
to tell the Mhox to ignore the uncorrected data. When 
the data has been corrected, it is driven to the MbOx. 
Hardware does not correct the error in the cache. 

Cbox asserts c.cBO~s.,;BlUl-.H. The corrected data is merged 
with the write data and written into the RAMs. 

No error is reported. 

Cbox asserts CCJ&CBO~S_BBll.-H, assumes the transaction 
missed, and sends a READ or an OREAD to memory. If 
the location was owned, making a deallocate necessary, 
the outgoing address is corrected for the writeback. Note 
that if the transaction actually hit-owned, the read or 
oread is sent to the NDAL followed by a writeback of the 
same block. The errored location is corrected by hardware 
when the tag and valid bit are written for the fill. 

No tag store lookup is done, so this case does not occur. 

Cbox asserts CfJICBO~S_ERR-.H. Hardware does not correct 
the bad location; it may be done by software. 

Cbox asserts CC)(,CBO~SJ£BR_H. Writes the corrected tag, 
valid, and owned bits back into the tag store when 
invalidating the entry. Uses corrected address for the 
writeback if necessary. 
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Table 13-58 (Cont.): Backup Cache ECC Errors and NVAX CPU Error Responses 

General Problem Specific Situation and Action Taken by NVAX CPU 

Uncorrectable ECC 
error in the data 
RAMs (includes 
addressing errors) 

Uncorrectable ECC 
error in the 
tag store (includes 
addressing errors) 
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read for writeback or 
deallocate IPR 

VALID-OWNED or 
VALID-UNOWNED 
read for Mbox 

VALID-OWNED 
DREAD_LOCK for 
Mbox, first quadword 
fails 

VALID-OWNED 
DREAD_LOCK 
for Mbox, quadword 
other than the first 
one fails 

read for 
write or write-unloc~ 
valid-owned hit 

miss 

read for Mhox 

write 

cache coherence 
transaction 

Cbox asserts c.cBO~S_ERR_H, puts backup cache into ETM. 
The data cycle command for the NDAL is changed to 
BADWDATA and the writeback continues normally. 

Cbox asserts CCJ&,CBOX-.S_EBllJl, puts backup cache into 
ETM. The CM_OUT_LATCH is loaded with the data and 
marked bad by asserting Cf,CBO~HAR.D_ERR_H. 

Cbox asserts CCJ&,CBO~S_EBllJl, puts backup cache into 
ETM. The CM_OUT_LATCH is loaded with the data 
and marked bad by asserting CCJ&,CBO~HARD_ERR_H. The 
DREAD_LOCK entry remains in the FILL_CAM until 
microcode issues the "IPR write unlock". If RIP or OIP is 
set, it is not processed. 

Cbox asserts CCJ&,CBOX-.S_EBllJl, puts backup cache into 
ETM. The CM_OUT_LATCH is loaded with the data 
and marked bad by asserting CCJ&,CBO~HARD..ERRJI. The 
EboxlMbox issues the WRITE_UNLOCK since data for 
the DREAD_LOCK was returned. 

Cbox asserts ~ox H ERR H, puts backup cache into 
ETM. When the error is detected, write data has already 
been merged with the corrupted data. The Cbox inverts 
two of the ECC check bits (bits 3,7) which gives a 
bigh probability that when the data is read again, an 
uncorrectable error will be detected. See description after 
this table. 

No error is reported. 

Cbox asserts c.cBO~S_ERR..H, puts backup cache into ETM. 
The read is sent to memory; if the backup cache actually 
owned the block the read will time out. If fill data is 
returned, the fill is done to the Bcache and the fill data 
is sent to the MbOx. 

Cbox asserts c.cBO~S_ERR..H, puts backup cache into ETM. 
The Oread for the write is sent to memory. If the cache 
actually owned the block, the read will time out and the 
write will then be sent to memory. The write will then 
time out as well unless error handling software cleans up 
the problem. If the cache did not own the block, the Oread 
will complete, the write will be merged with it, and the 
merged data will be written to the cache. 

No tag store lookup is done, so this case does not occur. 

Cbox asserts c.cBO~S_ERR_H, puts backup cache into ETM. 
Transaction is treated as a miss with regard to the backup 
cache; the invalidate is forwarded to the Mbox if the cache 
coherence transaction was due to an OREAD or a WRITE. 
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One action noted in the table deserves further explanation. When an uncorrectable ECC error is 
detected in the data RAMs during a read-modify-write, the Bcache controller has already begun 
to write the new data into the cache, overwriting the errored data. The new data may have been 
corrupted by the errored data which was read from the cache. If this were allowed to be written 
into the cache with correct ECC, it might be read back later with no errors and incorrect data 
would be returned to the CPU. 

In order to prevent this from occurring, the Bcache controller inverts two of the checkbits which 
are being written to the cache to deliberately cause errored data to be written. This increases 
the likelihood that when the data is read back., an uncorrectable error will be detected whether 
the data is read back as written or with single-bit or multiple-bit errors. 

Due to layout constraints, only checkbits 3,6, and 7 were potential candidates to be inverted in 
the circumstance described. The probabilities for reading the data back as uncorrectable are 
shown in Table 13-59. 

Table 13-59: Probability of reading data with an uncorrectable error after writing It with 
Inverted checkblts 

Bita DO error single bit double bit triple single quad single 

m"bble 
Inverted read back error read error read m"bble error error 

back back read back read back 

3,6 1.00 .3425 .9909 .4306 .6111 

3,7 1.00 .3973 .9916 .4861 .6667 

6,7 1.00 .1233 .9878 1.0000 1.0000 

3,6,7 0.00 .9863 .44.29 1.0000 1.0000 

Choosing bits 3 and 7 results in uncorrectable errors a high percentage of the time if you assume 
a high likelihood that the data will be read back with no error (as it would be if the original 
error were transient) or with a double-bit error (as it would be if the original error were a hard 
double-bit error). 
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13.9.9 Backup Cache Errors Incurred While in Error Transition Mode 

Table 13-60 describes error handling when the backup cache is already in ETM. 

NOTE 

The table below only describes ETM error cases which differ from error handling when 
the cache is in normal mode. 

Table 13-60: Backup Cache ECC Error handling during ETM 

General Problem Specific Situation and Action Taken by NVAX CPU 

Correctable 
ECC error in the tag WRITE_UNLOCK 
store 

Uncorrectable ECC 
error in the read for Mbox 
tag store (includes 
addressing errors) 

write 

13.9.10 NDAL Parity Errors 

~o~~mmJL The enror is corre~d 
and the WRITE_UNLOCK is handled as it normally is 
in ETM: it is written to the Bcache if it hits owned, and 
it is written to memory if it misses or hits valid. 

Cbox asserts C%CBO~s_mm_H, puts backup cache into ETM. 
The read is sent to memory; if the backup cache actually 
owned the block the read will time out. If fill data is 
returned, the fill is not done to the Bcache but is sent to 
the Mbox. 

c%cBo~sJm.B...H. The write is sent to memory. If the 
cache actually owned the block, the write will time out 
in the memory interface unless software forces the Cbox 
to disown the block. If the cache did not own the block, 
the system handles the write as it normally does for a 
cache which is oft 

~o~sJm.B...H. The write is sent to memory as "a 
QW WDISOWN. Since the READ_LOCK was done just 
previously, memory always believes that we own the 
block. In most cases, the cache itself does not have 
a record of owning the block since a READ_LOCK to 
an owned block during ETM forces a writeback of the 
block. In these cases the WRITE_UNLOCK handling 
is very consistent. There is only one case where the 
cache does own the block: if we entered ETM on or after 
the READ_LOCK and before the WRITE_UNLOCK. In 
this case, the cache may contain previously written data 
which is not now reflected into memory. This may be 
handled by software. 

The Cbox response to NDAL parity errors is described in Chapter 3. 
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13.10 Testability 

The testability features provided in the Cbox make key Cbox control visible for debug purposes. 
The testability features do not specifically address fault coverage for manufacturing, since Cbox 
activity is very visible on the NDAL and cache interface pins. 

Many of the Cbox IPRs should be useful for testing and debug. The IPRs are described in 
Section 13.5. This section describes additional Cbox testability features. 

13.10.1 Parallel port 

The parallel port is useful for real-time debugging and for manufacturing test. The Cbox does 
not control any nodes using the parallel port; it is used for observation only. C%PP _DATA...H<1l:7> 

are driven as shown in Table 13-61. The Mbox contains the circuitry which enables 
C%PP _DATA....H<1l:7> to drive the parallel port when 'N'cMB0X-DR_PP _H is asserted. 

Table 13-61: Cbox Parallel Port Connections 

Parallel port 
signal Cbox signal Cbox Signal Meaning 

cc.pp J)ATA...B<ll> 

Of,pp J)ATA,..B<1O> 

cc.pp J)ATA,.,B< 8> 

Of,PP J)ATA,.,B< 8> 

Of,PP J)ATA,.,B< 7> 

BC_TS_CMD<l> 

BC_TS_CMD<O> 

DEALLOC 

BC_HIT 

Given in Table 13-62 

Given in Table 13-62 

Given in Table 13-62 

Asserted when the tag store starts a deallocate. 

Backup cache hit; factors in the type of request with VALID, 
OWNED, and the result of the tag compare. 

Table 13-62: Interpretation of BC TS CMD<2:0> 

BC_TS_CMD Name 

000 DREAD 

001 mEAD 

010 OREAD 

011 WUNLOCK 

100 R_INVAL 

101 O_INVAL 

110 IPR_DEALLOC 

111 unused 
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Tag store operation 

Data-stream tag lookup 

Instruction-stream tag lookup 

Ownership-read tag lookup for a write or a READ_LOCK 

Ownership-read tag lookup for a WRITE_UNLOCK (done only under 
ETM) 

Cache coherency tag lookup as the result of NDAL DREAD or IREAD 

Cache coherency tag lookup as the result of NDAL OREAD or write 

Tag lookup for an explicit IPR deallocate operation 
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13.10.2 Internal scan chain 

A scan chain is provided on both entries of the FILL_CAM. A Linear Feedback Shift Register is 
provided on this scan chain. This serves two purposes: it helps the debug effort and it increases 
fault coverage in manufacturing. The scan chain bits are loaded when Mtr~_ISR_LOAD_L is 
asserted; they are shifted out when it is deasserted. The LFSR is enabled when Mo/£_ISR_LFSR_L 
is asserted. When Mtr~_ISR_LFSR_L is not asserted, the scan chain becomes an observe-only 
register. 

The FILL_CAM gives cycle-by-cycle information on what is happening in the Cbox, as every 
potential cache miss is loaded into the FILL_CAM before the miss actually occurs. There is 
information relating to cache coherency requests as well. 

The Cbox scan chain covers the following bits of the FILL_CAM: 

Table 13-63: FILL_CAM scan chain 

Name Extent Type Description 

RDLK_O ° WC Indicates that the outstanding read is a READ_LOCK 

IREAD_O 1 RO This is an Istream read from the Mbox which may be aborted. 

OREAD_O 2 RO This is an outstanding OREAD. 

WRITE_O 3 RO This read was done for a write. 

TO_MBOX_O 4 RO Data is to be returned to the MbOx. 

RIP_O 5 RO READ invalidate pending. 

OIP_O 6 RO OREAD invalidate pending. 

DNF_O 7 RO Do not fill - data not to be written into the cache or validated 
when the fill returns. 

RDLK_FL_DONE_O 8 RO Indicates that the last fill for a READ _LOCK arrived. 

RE<LFILL_DONE_O 9 RO Indicates that the requested quadword was successfully received. 

COUNT_O 11:10 RO How many of the :fill quadwords have been returned successfully. 

VALID_O 12 WC Indicates that an error occurred and the register is locked. 

RDLK_l 13 WC Indicates that the outstanding read is a READ_LOCK 

IREAD_l 14 RO This is an Istream read from the Mbox which may be aborted. 

OREAD_l 15 RO This is an outstanding DREAD. 

WRITE_l 16 RO This read was done for a write. 

TO_MBOX_l 17 RO Data is to be returned to the MbOx. 

RIP_l 18 RO READ invalidate pending. 

OIP_l 19 RO OREAD invalidate pending. 

DNF_l 20 RO Do not fill - data not to be written into the cache or validated 
when the fill returns. 

RDLK_FL_DONE_l 21 RO Indicates that the last fill for a READ _LOCK arrived. 

RE<LFILL_DONE_l 22 RO Indicates that the requested quadword was successfully received. 

COUNT_l 24:23 RO How many of the fill quadwords have been returned successfully. 
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Table 13-63 (Cont.): FILL CAM scan chain 

Name Extent Type Description 

25 we Indicates that an error occurred and the register is locked. 

There are two FILL_CAM entries. Thirteen hits in each are covered, for a total of 26 bits in this 
scan path. 

The Cbox scan chain is connected in the order shown in the table, with bit <0> shifted out first 
and sent to the Mbox scan chain. When the Cbox scan chain is in shift mode, a "0" is shifted 
into bit <25> of the Cbox scan chain. Bit <0> is driven onto C%ISR2_TDO_H, which is input to the 
Mbox scan chain. 
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13.11 Performance Monitoring 

The Cbox sends two signals, C%PMUXO_H and C%PMUXl_H to the 
performance counters. CCTL<PM_ACCESS_TYPE> controls the mux which outputs C%PMUXO_H. 
CCTL<PM_IDT_TYPE> controls the mux which outputs C%PMUXCH. 

The correspondence between CCTL<PM_ACCESS_TYPE> and C%PMUXO_H is shown in 
Table 13-64. 

Table 13-64: Cbox Performance Monitoring Control 

CCTL: 

001 

010 

011 

100 

101 

110 

111 

Signal muxed 

BC_COR_READ 

BC_COR_OREAD 

unused 

BC_CPU 

BC_CPU_IREAD 

BC_CPU_DREAD 

BC_CPU_OREAD 

Signal functionality 

Bcache coherency access (as a result of an NDAL 
DREAD, IREAD, OREAD, or WRITE) 

Bcache coherency access as a result of an NDAL 
DREAD or IREAD 

Bcache coherency access as a result of an NDAL 
OREAD or WRITE 

Bcache CPU access (as a result of an NVAX Iread, 
Dread, or Oread) 

Bcache CPU access as a result of an NVAX Iread 

Bcache CPU access as a result of an NVAX. Dread 
or Dread-modify 

Bcache CPU access as a result of an NVAX. Oread 
due to a read lock, a write, or a write unlock. 

The correspondence between CCTL<PM_HIT_TYPE> and C%PMUXl_H is shown in Table 13-65. 

Table 13-65: Cbox Performance Monitoring Control 

CCTL: Signal muxed 

onto C%PMUXl...H 

00 

01 

10 

11 

Signal functionality 

Bcache hit; factors in VALID and OWNED as 
necessary, based on the transaction. 

Bcache hit owned; tag matched, VALID and 
OWNED were set. 

Bcache hit valid; tag matched, VALID was set, 
OWNED was either set or clear. 

Bcache miss; tag did not match, VALID and 
OWNED were set (triggers writeback). 

The HIT signals which produce C%PMUXl_H are valid during the same cycle in which the ACCESS 
signals which produce C%PMUXO_H are asserted. They must be valid at the same time because in 
the central performance monitoring hardware, C%PMUXl_H is conditioned with C%PMUXO_H. 
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13.12 Initialization 

When the CPU powers up, K..C%RESET_L and K%RESET_CCTL.-L are asserted, clearing the main 
queues and latches in the Cbox and putting the Cbox state machines into their idle states. The 
only Cbox IPR which is initialized on reset is the Cbox control register, CCTL. It is initialized as 
described in Section 13.5.1. 

s:. C%RESET_L is also asserted when the Ebox timeout counter expires. At this time 
K%RESET_CCTI...-L is not asserted. Thus, the Cbox is initialized just as on power-up except that 
CCTL is not changed. 

s:.C%RESET_L must be asserted for 18 internal cycles (6 NDAL cycles) in order to properly reset 
the Cbox. 

The backup cache must be initialized and turned on as described in Section 13.9.6. Software 
must write CCTL to the desired state. The W1C error registers should be cleared so that they 
are starting with no error bits set. 

When the CPU powers up, K%EXT_RESET_L is asserted which puts the pads into their reset state: 

• Tristates P%NDAL_H<63:O>, P%CMD_H<3:0>, P%ID_H<2:0>, and P%PARITY_H<2:0>. 
This occurs when internal reset is asserted, and is not qualified with any clock. 

• Releases P%ACK_L. is occurs when internal reset is asserted, and is not qualified with any 
clock. 

• Deasserts lHToCPU_REQ..L, lHToCPU_HOLD_L, and P%CPU_SUPPRESS~. This occurs 
when Ko/oEXT_RESET..L is asserted, and is not qualified with any clock. 

• Deasserts P%TS_OE_L, P1oTS_ WE_L, P%DR_OE_L, and P%DR_ WE_L. This occurs when 
K%EXT_RESET_L is asserted, and is not qualified with any clock. 

• Tristates P%TS_TAG_H<31:17>,P%TS_ECC_H<5:O>,P%TS_ VALID_H, 
P%TS_OWNED_H, P%DR_DATA_H<63:0>, and P%DR_ECC_H<7:0>. This occurs when 
K%EXT_RESET_L is asserted, and is not qualified with any clock. 
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13.13 Cbox Interfaces 

The Cbox interfaces with the Mbox, the NDAL, the backup cache, the Interrupt section, and the 
Clock section. The signals the Cbox uses for each of these interfaces are listed here. 

Table 13-66: CBOX interface signals 

Signal Number 110 

NDAL SIGNALS (80 total) 

~oCPU_RECLL 1 0 

~oCPU_BOLD_L 1 0 

~oCPU_GRANT_L 1 I 

~oCPU_SUPPRESS_L 1 0 

~oCPU_WB_ONLY_L 1 I 

P%NDAL_H<63:O> 64 110 

~oCMD_H<3:0> 4 110 

P%ID_B<2:O> 3 110 

P%PARITY_H<2:O> 3 110 

~~CK_L 1 110 

BACKUP CACHE TAG STORE SIGNALS (41 total) 

P%TS_INDEX_H<20:5> 16 0 

P%TS_OE_L 1 0 

P%TS_WE_L 1 0 

P%TS_TAG_H<31:17> 15 110 

P%TS_ECC_H<5:O> 6 110 

P%TS_OWNED_H 1 110 

P%TS_VALID_H 1 110 

BACKUP CACHE DATA RAM SIGNALS (92 total) 

P%DR_INDEX_H<20:3> 18 0 

P%DR_OE_L 1 0 

P%DR_WE_L 1 0 

P%DR_DATA_H<63:O> 64 110 

P%DR_ECC_H<7:O> 8 110 
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Description 

Requests the NDAL. 

Holds the NDAL. 

Grants NVAX the NDAL. 

Suppresses the NDAL. 

Suppresses non-writeback NVAX transactions. 

NDAL address/data, multiplexed lines. 

NDAL command. 

Identifies the NDAL driver. 

Parity on the NDAL. 

Acknowledges NDAL cycles as correctly received. 

Index into the tag store. 

Tag Store Output Enable. 

Tag Store Write Enable. 

Backup cache tag. 

Tag store ECC. 

Indicates ownership of the block. 

Indicates the block is valid. 

Index into the data rams. 

Data RAM output enable. 

Data RAM write enable. 

Backup cache data. 

Backup cache data ECC. 
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Table 13-66 (Cont.): CBOX Interface signals 

Signal Number 

CLOCK PINS (4 total) 

P%PBI12_IN_H 1 

P%PHI23_IN_H 1 

p%pm34_IN_H 1 

p%pm41_IN_H 1 

CLOCK SECTION INTERFACE (5 total) 

KJI~~l_H 1 

K.,.MC:n,PRU_H 1 

K __ C:n,P~3_H 1 

KJlC:n,PHL,,-H 1 

It.P~PHI_IJ! 1 

K...P~3_H 1 

It.P~"-H 1 

It.PADLVBJ...l_H 1 

It.PADL~.":LH 1 

It.PADLVBJ...3_H 1 

It.PADLVBJ..."J! 1 

K%BXT_REBET.J. 1 

It. CCJl>RESET_L 1 

K%RESET_CCTL..L 1 

It.CE'*'BESETJ! 1 

EBOX INTERFACE SIGNALS (2 total) 

C%CBO~_H 1 

C%CBOx...S_ERR_H 1 

ECJ&.TJMEOUT_BASBJ! 1 

ECJ&.TJMEOUT~H 1 
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VO 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

o 

o 

I 

I 

Description 

NDAL clock used in the pads. 

NDAL clock used in the pads. 

NDAL clock used in the pads. 

NDAL clock used in the pads. 

Clock used in the Cbox. 

Clock used in the Cbox. 

Clock used in the Cbox. 

Clock used in the Cbox. 

Clock used in the upper pad ring. 

Clock used in the upper pad ring. 

Clock used in the upper pad ring. 

Clock used in the lower pad ring. 

Clock used in the lower pad ring. 

Clock used in the lower pad ring. 

Clock used in the lower pad ring. 

Puts the cache and NDAL pads into their reset 
state. 

Resets the Cbox except for CCTL. 

Resets the Cbox control register, CCTL. 

Resets the BID cycle counter which relates internal 
to external time. 

Indicates a hard error in the backup cache or on the 
NDAL. 

Indicates a soft error in the backup cache or on the 
NDAL. 

Controls the NDAL read timeout counters. 

Controls the NDAL read timeout counters. 
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Table 13-66 (Cont.): CBOX Interface signals 

S~ Nwmb~ VO Description 

TEST AND PERFORMANCE MONITORING SIGNALS (10 total) 

5 

1 

1 

1 

1 

1 

1 

1 

1 

C_PAD.-N%BSR..-.ND~H<S3> 1 

E_PAD_IN'NBSR.-MACHlNE_CBECK.-L 1 

:s:..PAD_CKHDISABLE_O'VT_H 1 
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1 

1 

o 

o 

I 

I 

I 

I 

I 

I 

I 

o 
I 

I 

o 
o 

Cbox internal state, driven to the Mbox, where it is 
driven to the parallel port when selected. 

Cbox internal scan chain output which hooks up to 
the Mbox scan chain. 

Tells the Cbox LFSRJinternal scan chain whether 
to load or shift. 

Puts the Cbox LFSRlinternal scan chain into Linear 
Feedback Shift Register mode. 

Clocks the boundary scan cells. 

Clocks the boundary scan cells. 

When asserted, the boundary scan cells are in load 
mode; otherwise, they are in shift mode. 

When asserted, the pins are driven with data from 
the boundary scan cells rather than with NVAX 
internal data. 

Controls the update of the cache I/O pads, when 
driven by JTAG. 

Boundary scan chain output from the Cbox pads. 

Boundary scan chain input from the Ebox pads. 

Asynchronously disables all NVAX outputs 
from driving; equivalent to the inversion of 
P%DISABLE_OUT_L. 

Cbox performance monitoring output. 

Cbox performance monitoring output. 
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Table 13-66 (Cont.): CBOX Interface signals 

Signal Number 110 

MBOX INTERFACE SIGNALS (157 total) 
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5 

29 

3 

8 

1 

1 

1 

1 

64 

8 

2 

27 

2 

1 

1 

1 

1 

1 

I 

I 

I 

I 

I 

I 

I 

I 

I/O 

o 
o 
o 
o 

o 

o 

o 

o 

o 

Description 

Mbox reference command field. 

Physical address of Mbox reference. 

Physical address of Mbox reference, lower three 
bits. 

Byte enable field of Mbox reference. 

Indicates that the current 86 reference packet 
should be latched and processed by the CboX; not 
asserted for writes as all writes are processed by 
the COOL 

This is equivalent to M'*CB01:..REF J£NABLEJ., but 
driven to the COOx with later timing, after the Mbox 
detects a Pcache parity error. It indicates that 
the S6 reference packet should be processed by the 
COOL 

Indicates that any IREAD which the Cbox may be 
processing should be immediately terminated. 

Indicates that the Cbox may drive nS~LDATA...H<AO> 
during the following cycle in order to attempt a fill 
data bypass. 

Bus used to receive data from the Mbox and to send 
data to the MboL 

Byte data parity for BU6J)ATA,..H<63.cb. 

Command field of Cbox reference sent to Mbox 

Hexaword address for invalidate sent to Mbox 

Address bits to indicate to which quadword within 
the hexaword the current fill data belongs. 

Indicates that the requested quadword of data is 
being returned. This is asserted for both DREADs 
and !READs; it is also asserted if a hard error 
occurs on fill data and the requested quadword has 
not yet been returned. 

Indicates that this is the last fill sent for the read 
being processed 

Indicates that a hard error is associated with the 
data being returned. The Mbox treats this as a fill 
with an error. 

Indicates that an ECC error is associated with the 
data being returned. The Mbox ignores the data 
and waits for another fill from the CbOL 

Indicates that the Cbox cannot accept any more 
entries in its WRITE_QUEUE. 
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13.14 Resolved Issues 

1. Issue: Does the Cbox need to check for conflicts between writes into the Istream and IREADs? 
Resolution: Yes, it does. The following case illustrates why. 

Suppose that the Cbox did not check for conflicts between writes and Istream reads. Also 
note that the SRM requires that an REI be done after any write into the instruction stream. 
REI flushes all write buffers and flushes the VIC. 

Suppose that the Ibox is prefetching and issues mEAD A, IREAD A+1. A and A+l are 
adjacent hexawords. Around the same time the Ebox is doing unaligned WRITE A,A+l,REI 
which was caused by Istream previous to that now being fetched by the Ibox. 

Suppose the sequence as seen by the Mbox is IREAD A, unaligned WRITE A,A+ 1, IREAD 
A+l, REI. The first IREAD is prefetching Istream data and should retrieve the new A. If 
the first IREAD misses in the VIC and the Pcache, the Bcache will return old data for the 
IREAD. The write will then be done into the Pcache, since it is write-through, and into the 
WRITE_QUEUE. At this point the new data for A is in the Pcache. 

Now the second IREAD misses the Pcache and appears in the IREAD_LATCH in the Cbox. 
It is serviced before the write since no conflict checking is done for IREADs, and they take 
priority over writes. Old data is returned to the Pcache for the second IREAD. Then the 
Clear Write Buffer command appears in the Cbox because the Ebox is executing the REI so 
the write is done. 

At this point the VIC has old data for the IREADs. This is ok because the REI flushes the 
VIC. Location A is updated in the Pcache because the write was done after the first IREAD. 
However, the Pcache has old data for A+l because the Bcache returned the old data after the 
write missed into the Pcache. 

When the Istream re-fetches A+l, it will get old data from the Pcache. This is not the behavior 
we want. Thus, the Cbox implements conflict checking for IREADs and prevents the IREAD 
of A+l from bypassing the write to A+1. 

2. Issue: Is it ok that the Cbox reorders I/O space writes with respect to memory space writes? 
Resolution: Yes, it is OK per VAX ECO 95, Allow Write-and-Run to 110 space. 
This is the scenario where the Cbox may reorder I/O space writes with respect to memory 
writes: The Mbox issues Memory Write A followed by 110 Write B. Memory Write A hits owned 
in the backup cache and is written. 110 Write B goes to the NON_ WRITEBACK_QUEUE. 
The NDAL is busy or P%CPU_WB_ONLY_L is asserted, so I/O Write B stays 
in the NON_ WRITEBAC~ QUEUE. Meantime, a cache coherency request arrives for 
memory location A. The data is retrieved from the backup cache and put into the 
WRITEBACK_QUEUE. 

Since 
the WRlTEBACK_QUEUE contains a cache coherency request (or Po/oCPU_WB_ONLY_L 
is asserted), the WRITEBACK_QUEUE has priority over the NON_ WRITEBACK_QUEUE. 
Therefore Memory Data A reaches the NDAL before I/O Write B, effectively reordering the 
writes. 
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13.15 NVAX CBOX Signal Name Cross-Reference 

All CBOX signal names and pin names referenced in this chapter have appeared in bold and reflect 
the actual name appearing in the NVAX schematic set, with the exception of K%EXT_RESET_L, 
which is a behavioral model name only. For each signal and pin appearing in this chapter, the 
table below lists the corresponding name which exists in the behavioral model. 

Table 13-67: Cross-reference of all names appearing In the CBOX chapter 

Schematic Name 

CCJ5oCBOx....:a.JmR_H 

CCliCBOI..,S.,;ERR..H 

OJIIIS~TDO...B 

OJIILASTJILL_H 

CCQOK)I..,~QW_H<4rS> 

CClWMUXOJI 

OJIIPMUXl.ft 

OJIIPP J)ATA..H<1117> 

OJIIWR...BVFJlACK...PREB_H 

C..AJ)C1aABVS...B<31aO> 

C..AJ)C4Ji>BIU-.ADDR_OVT.ft411O> 

C_B~-.ADDR.-lNJl411O> 

C_B~CLE_l...B 

C_BltJCJlCYCLE_2J1 

C_BltJCJlCYCI..B..3J1 

C_BIU_~TIMO_O..LAT...B 

C_BIU_~TJMO_l..LAT...B 

C_BIU..NOC_5YXL'l'DIO_O..;EN..H 

C_BIU..,.NOC_5YXL'l'DIO_1..;EN_H 

C_BVSUIUJ)ATA...H<I3IO> 

13-124 The Cbox 

Behavioral Model Name 

C'l£BOI..,CMD...B<11O> 

C'I£BOI..,ECC_ERR.ft 

C'I£BOI..,HAB.D_BRR_H 

C'I£BOI..,H..ERR-H 

C'I£BOI..,S_EBB._H 

OI.ISB2_TDOJI 

OM.AST_FILL.ft 

OQDI()~QW_H<4rS> 

C_~-.ADDR_OVTJl411O> 

C_BItJilU.DC..,.ADDR_lNJl41aO> 

C_BIO'«:YCLE_l...B 

C_BIO'«:YCLE_2_H 

C_BIO'«:YCLB_S_H 

C_BIU..NOCYXLTIMO_O_LAT_H 

C_BIU..NOCYXLTIMO_l..LATJI 

C_BIU..NOCYXI_TIMO_O..EN_H 

CJIIt1..NOCYXLTIMO_l..EN_H 

C_BVSYIUJ)ATA....H<83IO> 
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Table 13-67 (Cont.): Cross-reference of all names appearing in the CBOX chapter 

Schematic Name Behavioral Model Name 

E_PAD_IN'I'%BSR_MACBlNE_CHECK....L 

K%EXT_'1MBS_H 

K%RESET_CCTL_L 

K....C%RESET_L 

K....CE%RESET_H 

K....MCB%PBI_CH 

K....MCB%PBI_2_H 

K....MCB%PBI_3_H 

K....MCB%PBI_4_H 

K....PAD%PBI_l_H 

K....PAD%PBI_3_H 

K....PAD%PBI_4_H 

K_PADL%PBI_CB 

K....PADL%PBI_2_B 

K....PADL%PBI_3..B 

K....PADL%PBI_4_B 

K....PAD_CK2%DISABLE_OUT_B 

K....PAD%EXT_RESET_TOP _L 

K....PAD%EXT_RESET_BOT_L 

M%ABORT_CBOXJRD....& 

M%CBO~BypASS_ENABLE_B 

M%CBO~LATE_EN_B 

M%CBOOEF_ENABLE_L 

M%C_ISR_LFSR_L 

M%C_ISR_LOAD_L 

M%C_S6_PA_B<2aO> 

M%S6_BYTE..MASK....BdsO> 

M%S6_CMD_B<4aO> 

M%S6_PA.,.B<3113> 

T%MBO~DR_PP_B 

T_JTG%BSR_:EXTEST_L 

T_JTG%BSR_UPDATE_L 

T_.J'l:'Go%CAPTURE_L 

T_JTG%DRCLK..,.B 

T_JTG%DRCLK..,.L 
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T_BSR%MACBINE_CBECK.-H 

K_P.AD%EXT_TMBS_B 

K%RESET_L 

K_C%RESET_L 

K_CE%RESET_H 

K%PBI_CB 

K%PBI_2_B 

K%PBI_3_B 

K%PBI_"_B 

K%PBI_CB 

K%PBI_3_B 

K%PBI_4_B 

K%PBI_l_B 

K%PBI_2_H 

K%PBl.-3_B 

K%PBI_"_B 

P%DISABLE_OUTJ.. 

K%EXT_RESET_L 

K%EXT_RESET_L 

M%ABORT_CBO%.,.m:o..H 

M%CBO~BYPASS_ENABLE_B 

M%CBO%.,.LATE_EN_H 

M%CBO%.,.REF_ENABLE_B 

T%ISR_LFSR_B 

T%ISR...LOAD_B 

M%C_S6_PA_H<2IO> 

M%S6_BYTE...MABK....B<7sO> 

M%S6_CMD_H<4sO> 

M%S6_PAJI<3h3> 

"rQIBO%.,.DR_PP _B 

T%BSR_EX'rEST_B 

T%BSR_UPDATE_H 

T%CAPTURE_H 

T_.rrG_TAP%DR_CLKEN'_B 

T_.rrG_TAP%DR_CLKEN'_H 
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Table 13-67 (Cont.): Cross-reference of all names appearing In the CBOX chapter 

Schematic Name 

Po/oACK_L 

Po/tCMD_H<3:0> 

Po/tCPU_GRANT_L 

Po/tCPU_HOLD_L 

Po/tCPU_RE<LL 

Po/tCPU_SUPPRESS_L 

Po/tCPU_ WB_ONLY_L 

P%DISABLE_OUT_L 

P%DR_DATA_H<63:0> 

P%DR_ECC_H<7:O> 

P%DR_INDEX_H<20:3> 

P%DR_OE_L 

P%DR_WE_L 

P%ID_H<2:O> 

P%NDAL_H<63:O> 

Po/oOSC_TCl_H 

P%PARITY_H<2:O> 

P%PHI12_IN_H 

P%PBI23_IN_H 

p%pm34_IN_H 

p%pm41_IN_H 

P%PHI12_0UT_H 

P%TS_ECC_H<5:O> 

P%TS_INDEX_H<20:5> 

P%TS_OE_L 

P%TS_OWNED_H 

P%TS_TAG_H<31:17> 

P%TS_VALID_H 

P%TS_WE_L 
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Behavioral Model Name 

Po/oACK_L 

Po/oCMD _H<3:0> 

P%CPU_GRANT_L 

Po/oCPU_HOLD_L 

Po/oCPU_RE<LL 

Po/oCPU_SUPPRESS_L 

Po/oCPU_ WB_ONLY_L 

P%DISABLE_OUT_L 

P%DR_DATA_H<63:0> 

P%DR_ECC_H<7:O> 

P%DR_INDEX_H<20:3> 

P%DR_OE_L 

P%DR_WE_L 

Po/olD_H<2:O> 

Po/oNDAL_H<63:O> 

Po/DOSC_TCl_H 

P%P.ARITY_H<2:O> 

P%PBI12_IN_H 

P%PBI23_IN_H 

p%pm34_IN_H 

p%pm41_IN_H 

P%PBI12_ OUT_H 

P%TS_ECC_H<5:O> 

P%TS_INDEX_H<20:5> 

P%TS_OE_L 

P%TS_OWNED_H 

P%TS_TAG_H<31:17> 

P%TS_VALID_H 

P%TS_WE_L 
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13.16 Revision History 

Table 13-68: Revision History 

Who 

Rebecca Stamm 

Rebecca Stamm 

Rebecca Stamm 

Rebecca Stamm 

Rebecca Stamm 

Rebecca Stamm 

Rebecca Stamm 

When 

9-0ct-1991 

16-Aug-1991 

20-Feb-1991 

14-Aug-1990 

4-Jul-1990 

3-Jun-1990 

17-May-1990 

DIGITAL CONFIDENTIAL 

Description of change 

Made the following change: Bcache data MUST be initialized with 
correct ECC on powerup, contrary to what was in previous revisions. 

Minor updates and clarifications. RDE and UNEXPECTED_FILL are 
both set if an unexpected RDE arrives on the NDAL. During ETM, a 
read modify that does not hit owned causes a read to memory, NOT 
an OREAD to memory. On uncorr error on RMW, checkbits 3 and 7 
are inverted rather than 3,6,7. Added description of why the bits are 
inverted. 

Correct TS_CMD and DR_CMD encodings. Clarify some sections. 
Add description of NVAX-NDAL timing. Add statements that the 
contents of the Cbox error registers are not changed during reset. 
Added cache timing information. Added table of cache behavior while 
it is ON. Appended P% to the beginning of all pin names, since those 
match the schematics and the beh model. Add assertion levels to 
signal names. 

Remove E%MEMORY_REBET, add x:,.RESET_CC'l".L..L 

Correct description of HMKMORY_RESBT. Added ~cm,RESET...H. Added 
CCTL<FORCE_NDAL_PERR>. Update description of Cbox behavior 
when PO/OCPU _ WB_ ONLY_L is asserted. Update conditions for 
servicing the write queue. Update cache coherency section with 
bug correction. Added to cache ram speed table, I6ns. Clarify 
CEFSTS<COUNT>. Clarify BCFLUSH during FORCE_HIT mode. 
Update handling of DREAD lock which fails on an uncorrectable error 
on the first quadword. Clarify handling of correctable error in the tag 
store. Added section about the FILL_CAM and block conflicts. 

Clarify handling of write, readlock in etm. Make 
CEFSTS<UNEXPECTED_FILL> WIC. 

Clarify invalidate handling 
sections. Always give the WRITEBACK_QUEUE priority over the 
NON_WRITEBACK_QUEUE. Change bit definitions in- CEFSTS. 
Change WR_MRG_DONE to REQ..FILL_DONE in CEFSTS and 
FILL_CAM. Clarify stalling of IPR accesses to the tag store while 
a FILL_CAM entry to the same block is valid. 

The Cbox 13-127 



NVAX CPU Chip Functional Specification, Revision 1.1 t August 1991 

Table 13-68 (Cont.): Revision History 

Who 

Rebecca Stamm 

Rebecca Stamm 

Rebecca Stamm 

Rebecca Stamm 

Rebecca Stamm 

Rebecca Stamm 

13-128 The Cbox 

When 

20-Feb-1990 

3-Feb-1990 

19-Jan-1990 

13-Jan-1990 

21-Mar-1989 

16-Mar-1989 

Description of change 

Update error table. Add complete description of timeout counters. 
Change CCTL<TIMEOUT_EXT> 
to CCTL<TIMEOUT_TEST>, update description of that bit. Add 
~'l'IMBOUT_BASEJI to Cbox interface signal list. Add control signal 
names for scan chain, updated scan chain section, removed two bits 
from the scan chain. Add control signal names for parallel port, 
updated parallel port section. Update description of CEFSTS RDLK 
bit. Clarified description of CEFADR. Clarified tag store actions 
on deallocates. Update performance monitoring hardware section 
and added control bits to CCTL. Correct clock names. Bcache read 
quadwords returned in wrapped order rather than in Grey code order. 
WRITEBACK_QUEUE full prevents all transactions from starting. 
Add BC_TS_CMD decodings for the parallel port. Added TS_CMD 
encodings to BCETSTS. Added DR_CMD encodings to BCEDSTS. 
More detail on NESTS bit descriptions. Better explanation of use 
of BCDECC register. Add detail to WRITE_UNLOCK explanation. 

External release. Eliminated BCEDHI and BCEDLO IPRs. Made 
updates based on internal review. 

Release for internal review. 

Intermediate release. Many edits. Eliminated backup cache data 
RAM access through IPR reads and writes. Updated Cbox internal 
bUB sing diagrams and description. Write queue is 8 entries. 

Release for external review 

Release for internal review 
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Chapter 14 

Vector Interface 

14.1 Description 

The l\TVAX CPU chip does not fully support the VAX vector instruction set and any attempt to 
execute a vector instruction will result in a reserved instruction fault. Vector instructions are 
listed in Table 14-1. 

Table 14-1: Vector Instruction Set 

Opcode 

31FD 

34FD 

35FD 

36FD 

37FD 

80FD 

81FD 

82FD 

83FD 

84FD 

85FD 

86FD 

87FD 

88FD 

89FD 

8AFD 

8BFD 

8CFD 

8DFD 

Instruction 

MFVP regnum.rw, dst.wl 

VLDL cntr1.rw, base.ab, stride.rl 

VGATHL cntrl.rw, base.ab 

VLDQ cntr1.rw, base.ab, stride.rl 

VGATHQ cntr1.rw, base.ab 

VVADDL cntr1.rw 

VSADDL cntrl.rw, scal.rl 

VVADDG cntrlrw 

VSADOO cntr1.rw, scal.rq 

VVADDF cntrl.rw 

VSADDF cntrl.rw, scaLrl 

VVADDn cntrlrw 

VSADDD cntrl.rw, sca1.rq 

VVSUBL cntr1.rw 

VSSUBL cntrl.rw, scal.rl 

VVSUBG cntrlrw 

VSSUBG cntr1.rw, scaLrq 

VVSUBF cntrl.rw 

VSSUBF cntrl.rw, scal.rl 
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Table 14-1 (Cont.): Vector Instruction Set 

Opcode Instruction 

8EFD VVSUBD cntrl.rw 

8FFD VSSUBD cntrl.rw, scal.rq 

9CFD VSTL cntrl.rw, base.ab, stride.rl 

9DFD VSCATL cntrl.rw, base.ab 

9EFD VSTQ cntrl.rw, base.ab, stride.rl 

9FFD VSCATQ cntrl.rw, base.ab 

AOFD VVMULL cntrl.rw 

A1FD VS:MULL cntrl.rw, scal.rl 

A2FD VVMULG cntrl.rw 

A3FD VSMULG cntrl.rw, scal.rq 

A4FD VVltfULF cntrl.rw 

AEFD VS~rtJLF cntrl.rw, scal.rl 

A6FD VVMULD cntrl.rw 

A7FD VS~ruLD cntrl.rv;, sca1.rq 

ABFD VSYNC regnum.rw 

A9FD MTVP regnum.rw, src.rl 

AAFD VVDIVG cntrl.rw 

ABFD VSDIVG cntrl.nv, scal.rq 

ACFD VVDIVF cntrl.rw 

ADFD VSDIVF cntrl.nv, scal.rl 

AEFD VVDIVD cntrl.rw 

AFFD VSDIVD cntrl.rw, scal.rq 

COFD VVCMPL cntrl.rw 

C1FD VSCMPL cntrl.rw, scal.rl 

C2FD VVCMPG cntrl.rw 

C3FD VSCMPG cntrl.rw, scal.rq 

C4FD VVCMPF cntrl.rw 

C5FD VSCMPF cntrl.rw, scal.rl 

C6FD VVCMPD cntrl.rw 

C7FD VSCMPD cntrl.rw, scal.rq 

C8FD VVBISL cntrl.nv 

C9FD VSBISL cntrl.nv, sca1.rl 

CCFD VVBICL cntrl.rw 
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Table 14-1 (Cont.): Vector Instruction Set 

Opcode IDstractiOD 

CDFD VSBICL cntrl.rw, scalrl 

EOFD VVSRLL cntrl.rw 

EIFD VSSRLL cntrl.rw, scal.rl 

E4FD VVSLLL cntrl.rw 

E5FD VSSLLL cntrl.rw, scal.rl 

EBFD VVXORL cntrl.rw 

E9FD VSXORL cntr1.rw, scal.rl 

ECFD VVCVT cntrl.rw 

EDFD IOTA cntrl.rw, scal.rl 

EEFD VVMERGE cntrl.rw 

EFFD VS:MERGE cntrl.rw, sca1.rq 

Although the vector instruction set is not fully implemented, some residual support is included 
in the Nv...4.X CPU chip and should be considered: 

• The Ibox, under control of the IROM, decodes the vector instructions listed above, including 
parsing and processing the instruction specifiers. If a memory management exception is 
detected on the instruction or one of the specifiers, the Ibox will report it to the Ebox, which 
will ignore it in favor of reporting a reserved instruction fault instead. However, if a hardware 
error is detected during the processing of the vector instruction or specifiers, that error will 
be reported in the usual way. 

• The ECR<VECTOR_PRESENT> bit remains in the hardware, but a reserved instruction fault 
will result if a vector instruction is executed, independent of the state of this bit. 

• A vector disabled fault will never be generated by the NVAX. CPU chip microcode. 
• References to vector processor registers in the range 90-97 (hex) are intercepted by the mi

crocode and are not transmitted on the NDAL as is the normal case for an unimplemented 
processor register. Rather, writes to these registers are ignored, and reads from these registers 
return O. The operating system depends on this behavior. 
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14.2 Revision History 

Table 14-2: Revision History 

Who 

Mike Uhler 

Mike Uhler 

14-4 Vector Interface 

When 

06-Jan-1990 

02-Feb-1991 

Description of chaDge 

Initial release 

Update aft.er pass 1 PG. 

DIGfTAL CONFIDENTIAL 



Chapter 15 

Error Handling 

This chapter describes the h"VAX CPU error exceptions and interrupts as seen from the macrocoder's 
point of view. It is organized with respect to the SCB vectors through which the event is dis
patched. The SCB layout and SCB vector format are described in Chapter 2. Exceptions and 
interrupts that are a result of normal system operation are described in Chapter 2. 

15.1 Terminology 

Term Meanjng 

Fill Any quadword of data re'turned to the l\"VAX CPU chip in response to read-'type 
operation. The quadword containing the requested data is a fill. 

Ownership bit In the Bcache and the memory, a bit is stored with each hexaword called the owner
ship bit. In the Bcache it indicates the Bcache owns the block.; it has the one valid 
copy of the data. In memory it indicates some cache or bus interface bas the one 
good copy of the block, not the memory. 

Memory cache state In memory in various system environments, a certain amount of state is kept for 
each hexaword in memory. This state always includes the ownership bit. In some 
system environments, it includes additional information. 

ETM Error transition mode in the Bcacb.e: in this mode the Bcache is not used except if 
it owns the addressed block. It continues to respond to NDAL coherency requests 
which require writeback. 

15.2 Error handling Introduction and Summary 

This chapter discusses all levels of hardware and microcode-detected errors. Errors notification 
occurs through one of the following events, listed in order of decreasing severity. 

• Console error hal~A halt to console mode is caused by one of several elTOrs such as Interrupt 
Stack Not Valid. For certain halt conditions, the console prompts for a command and waits 
for operator input. For other baIt conditions, the console may attempt a system restart or a 
system bootstrap as defined by DEC Standard 032. The actual algorithms used are outside 
of the scope of this document. 

• Machine check-A hardware error occurred synchronously with respect to the execution of 
instructions. Instruction-level recovery and retry may be possible. 

• Power fail-The power supply asserted the power fail signal. 
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• Hard error interrupt-A hardware error occurred asynchronously with respect to the execu
tion of instructions. Usually, data is lost or state is corrupted, and instruction-level recovery 
may not be possible. 

• 80ft error interrupt-A hardware error occurred asynchronously with respect to the execution 
of instructions. The error is not fatal to the execution of instructions, and instruction-level 
recovery is usually possible. 

• Kernel stack not valid-During exception processing, a memory management exception oc-
curred while trying to push information on the kernel stack. 

This chapter explains in detail several of the 8CB entry points. The purpose is to help the 
operating system programmer determine exactly what error occurred and to recommend an error 
recovery method. Since this chapter is only concerned with errors which are generic to all system 
environments, it may be used as the basis for a specification of error handling and recovery for 
particular systems based on the NVAX CPU chip. 

The following information is given in this chapter for each 8CB entry point: 

• What parameters are pushed on the stack. 
• "1bat failure codes are defined. 
• "1bat additional information exists and should be collected for analysis. 
• How to determine what error(s) actually occurred. 
• How to restore the state of the machine, and what level of recovery is possible. 

Table 15-1 shows the general error categories associated with each of these error notifications. 

Table 15-1: Error Summary By Notification Entry Point 

EntryPomt 

Console Halt 

Machine Check 

Power Fail 

Soft Error 
InteITUpt 

15-2 Error Handling 

SCB Indu: 
(hex) 

N/A 

04 

OC 
54 

General Error Categories 

IntelTUpt Stack not valid, kernel-mode halt, 
double error, illegal SCB vector, 
initial Power up, BALT_L assertion 

Memory management, intelTUpt, microcode detected CPU errors, 
CPU stall timeout, 
TB parity errors, VIC tag or data parity errors, 
Bcache uncorrectable data read errors, 
memoryINDAL read errors (no-ACK, timeout, or RDE from system 
environment) 

system environment notification via PWRFL_L 

VIC tag or data parity errors, 
Pcache tag or data parity errors, 
Bcache uncorrectable tag errors, 
Bcache uncorrectable data read errors 
Bcache uncorrectable data errors in writebacks, 
Bcache correctable tag and data errors, 
memorylNDAL read errors (no-ACK, timeout, or RDE on reads), 
NDAL parity errors, 
system environment notification via S_ERR_L 
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Table 15-1 (Cont.): Error Summary By.NoUficatlon Entry Point 

SCB lDdez 
Entry Point (hez) General Error Categories 

Hard ElTor 
Interrupt 

60 Bcache uncolTectable data errors on write operations, 
NDAL no-ACK on writes, 
Bcache :fill errors in NDAL ownership reads after merging write data 
in the cache data RAMs, 
system environment notification via H_ERR_L 

15.3 Error Handling and Recovery 

All errors (except those resulting in console halt) go through SCB vector entry points and are 
handled by service routines provided by the operating system. A console halt transfers control to 
a hard,vare-prescribed IO-space address. Software driven recovery or retry is not recommended 
for etTors resulting in console halt. 

Software error handling (by operating system routines) can be logically divided into the following 
steps: 

• State collection. 
• Analysis. 
• Recovery. 

• Retry. 

These steps are discussed in general in the next four sections. After that, details are supplied on 
analysis, recovery and retry for each error event which results in an exception or interrupt. This 
information is organized by SCB entry point. 

15.3.1 Error State Collection 

Before error analysis can begin, all relevant state must be collected. The stack frame provides 
the PCIPSL pair for all exceptions and interrupts. For machine checks, the stack frame also 
provides details about the error. 

In addition to the stack frame, machine checks and hard and soft error interrupts usually require 
analysis of other registers. It is strongly recommended that all the state listed below be read 
and saved in these cases. State is saved prior to analysis so that analysis is not complicated by 
changes in state in the registers as the analysis progresses, and so that errors incurred during 
analysis and recovery can be processed with that context. 

Ibox 
ICSR: Ibox (VIC) control and status register. 
VMAR: VIC memory address register. 

Ebox 
ECR: Ebox control and status register. 
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Mbox 
TBSTS: TB status register. 
TBADR: TB address register. 
PCSTS: Pcache status register. 
PCADR: Pcache address register. 

Cbox 
CCTL: Cbox Control Register. 
BCEDST8: Bcache data error status register. 
BCEDIDX: Bcache data error index register. 
BCEDECC: Bcache data error ECC/syndrome register. 
BCETSTS: Bcache tag error status register. 
BCETIDX: Bcache tag error index/address register. 
BCETAG: Bcache errored tag register. 
CEFSTS: Read and Bcache fill status register. 
CEFADR: Read and Bcache fill address register. 
l\"ESTS: NDAL error status register. 
NEOADR: NDAL error output address register. 
~~OCMD: NDAL en-or output command register. 
l\TEICMD: NDAL error input command register. 
l\TEDATHI: NDAL error input data register (HI). 
l\TEDATLO: NDAL error input data register (LO). 

System environment 
All states (i.e., CSRs) which report error conditions or events. 

For the purposes of the rest of this chapter, it is assumed that each of these states is saved in a 
variable whose name is constructed by prepending "8_" to the register name. For example, the 
ICSR would be saved in the variable 8_ICSR. 

The following example shows allocation of memory storage for the error state. 

; ERROR STATE COLLECTION DATA STORAGE 

;IBOX 
S_ICSR: • LONG 0 ; IBOX VIC CONTROL AND STATUS REGISTER 
S_VMAR: • LONG 0 ; IBOX VIC ERROR ADDRESS REGISTER 

;EBOX 
S_ECR: • LONG 0 ; EBOX CONTROL AND STA'l'OS REGISTER 

;MBOX 
S_TBSTS: • LONG 0 ; n STATUS REGISTER 
S_TBADR: • LONG 0 ; n ERROR ADDRESS REGISTER 
S PCSTS: • LONG 0 ; PCACHE STATtJS REGISTER 
S:PCADR: • LONG 0 ; PCAC'HE ERROR ADDRESS REGISTER 
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CBOX 
S_CCn.: • LONG 0 CBOX CONTROL REGISTER' 
S BCEDSTS .LONG 0 BCACHE DATA RAM ERROR STATUS REGIS'l'ER 
S:BCEDIDX • LONG 0 BCACHE DA1'A RAM ERROR INDEX REGISTER 
S BCEDECC • LONG 0 BCACHE DA1'A RAM ECC/ SYNDRO!£ REGIS'l'ER 
S-BCETSTS • LONG 0 BCACHE TAG RAM ERROR STATUS REGISTER 
S-BCETIDX • LONG 0 BCACHE TAG RAM ERROR INDEX REGIS'l'ER 
S-BCETAG: • LONG 0 BCACHE TAG RAM ERRORED TAG REGIS'l'ER 
S:CEFSTS: • LONG 0 READ AND BCACHE FILL ERROR STATUS REGISTER 
S_CEFADR: .l.ONG 0 READ AND BCACHE FILL ERROR ADDRESS REGIS'l'ER 
S_NESTS: • LONG 0 NDAL ERROR STATUS REGISTER 
S_NEOADR: .LONG 0 NDAl. OU'l'PO'T ERROR ADDRESS REGISTER 
S_NEOCMD: • LONG 0 NDAL OU'l'PO'T ERROR CO~ REGISTER 
S_NEICMD: • LONG 0 NDAL INPU'l' ERROR COMMAND REGIS'l'ER 
S NEDATH!: .LONG 0 NDAL INPU'l' ERROR ADDRESS REGIS'IER (HI) 
S:l.1£DAl'LO: • LONG 0 NDAL :!NPO'l' ERROR ADDRESS REGISTEP. (LO) 

SYSTE:M ENVIROme}."'!': 
i ~OR R!::=!STERS FROM THE SYSTEM E1~YIRONMEN'! (MODULE, MEMORY (S), BUS lNTEP.FA:::E (5» 
: Ji..?..E SA ,,"ED S?.I: 

The following example shows collection of error state which would normally be done early in 
the eITor handling routine. Note the handling of error registers which may be overwritten in 
the e\Tent of a more severe error. For example, after a correctable Bcache data RAM error, 
BCEDIDX would hold the index of the correctable error. If an uncorrectable Bcache data RAl\-1 
error occurs, BCEDIDX \vould be reloaded with the index of the more sever uncorrectable error. 
To ensure the data in BCEDIDX and BCEDECC matches the report in BCEDSTS, a conditional 
test is performed and these two registers are recaptured if both an uncoITectable and correctable 
error are reported in BCEDSTS. Otherwise, BCEDIDX and BCEDECC could reflect a previous 
correctable eITor even though BCEDSTS reports a more severe error. 

SAVE S'!;'.'!'E: 

lOS: 

;!BOX 
M:?R .PR19S lCSR,S ICSR 
MrPR fPR19 s: \I'MAP-, s: VMAR 

;EBOX 

;MBOX 
MFPR fPR19S TeSTS,S TaSTS 
MFPR tPR19S-TBADR,S-l'aADR 
MFPR tPR19S-PCSTS,S-PCSTS 
MFPR tPRl9S:PCADR,S:PCADR 

;CBOX 
MFPR 
MFPR 
MFPR 
MFPR 
BICl.3 
CMPL 
BNEQ 
MFPR 
MFPR 

tPR19S CCl'L,S CCTL 
tPR19S-BCEDIDX,S BCEDIDX 
tPRl9S-BCEDECC,S-BCEDECC 
fPRl9S-BCEDSl'S,S-BCEDsrs 
t~C<BCEDSrS$M coRa ! BCEDSTS$M LOCK>,S BCEDSTS,RO 
RO,tBCEDSTSSM-CORR ! BCEDSTSSM-LOCK -
lOS - -

MFPR 
MFPR 
MFPR 
BICl.3 
CMPL 
BNEQ 
MFPR 
MFPR 

fPRl9S BCEDIDX,S BCEDIDX 
fPRl9S:BCEDECC,S:BCEDECC 

tPRl9S BCETIDX,S BCErIDX 
. tPR19S-BCETAG,S BcETAG 

tPR19S-BCETsrs,s BCETSl'S 
fAC<BCETSl'SSM CORR ! BCETSTSSM LOCK>,S BCEl'SrS,RO 
Ro,tBCETSrS$M-CORR ! BCETSTSSM-LOCK -
2~ - -
tPRl9S BCETIDX,S BCETIDX 
fPR19S:BCETAG,s_icETAG 
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20$: MFPR 
MFPR 
MFPR 
MFPR 
MFPR 
MFPR 
MFPR 
MFPR 

fP~9S CEFSTS,S CEFSTS 
fPR19S-CEFADR,S-CEFADR 
fPR19S-NESTS,S NESTS 
fP~9S-NEOADR,S NEOADR 
fPR19S-NEOCHO,S-NEOCKD 
fP~9S-NEICHO,S-NEICMD 
fPR19S-NEDATHI,S NEDATHI 
fPR19S:NEDATLO,S:NEDATLO 

; SYSTEM ENVIRONMENT 
COLLECTION OF SYSTEM ENVIRONMENT ERROR REGISTERS GOES HERE 

A.dditional state collection is recommended while/after flushing the Bcache because certain errors 
may occur as a result of the flush operation. The following state should be collected immediately 
after flushing each Bcache location. 

Cbox 
CCTL: Cbox Control Register. 
BCEDSTS: Bcache data error status register. 
BCEDIDX: Bcache data error index register. 
BCEDECC: Bcache data error ECC/syndrome register. 
BCETSTS: Bcache tag error status register. 
BCETIDX: Bcache tag error index/address register. 
BCETAG: Bcache errored tag register. 
l\j~STS: ~L>'.o\L error status register. 
!\~OADR: ~L>AL error output. address register. 
l\i"EOCMD: N'TIAL error output command register. 

System environment 
All states (i.e., CSRs) which report the event of NVAX sending a BADWDATA cycle on the 
NDAL. 

For the purposes of the rest of this chapter, it is assumed that each of these states is saved in a 
variable whose name is constructed by prepending tlSS_tI to the register name. For example, the 
BCEDSTS register would be saved in the variable SS_BCEDSTS. 

The following example shows allocation of memory storage for additional error state collected 
while/after flushing the Bcache. 

; ADDITIONAL ERROR STATE COLLECTION DATA STORAGE FOR AFTER BCACHE FLUSH 

SS CCTL: • LONG 0 
SS:BCEDSTS: • LONG 0 
SS_BCEDIDX: • LONG 0 
SS_BCEDECC: • LONG 0 
SS BCETSTS: • LONG 0 
SS-BCETIDX: • LONG 0 
SS:BCETAG: • LONG 0 
SS NESTS: • LONG 0 
SS:NEOADR: • LONG 0 
SS_NEOCHO: .LONG 0 

SYSTEM ENVIRONMENT: 

;CBOX 
CBOX CONTROL REGISTER 
BCACHE DA'rA BAM ERROR STA'l"OS REGISTER 
BCACHE DATA BAM ERROR INDEX REGISTER 
BCACHE DATA BAM ECC/SYNDROME REGISTER 
BCACHE TAG RAM ERROR STATUS REGISTER 
BCACHE TAG RAM ERROR INDEX REGISTER 
BCACHE 'rAG RAM ERRORE!> TAG REGISTER 
NDAL ERROR STATUS REGISTER 

; NDAL O'OTP'O'l' ERROR ADDRESS REGISTER 
; NDAL OUTPUT ERROR COMMAND REGISTER 

ADDITIONAL ERROR STATE COLLECTION DATA STORAGE FOR AFTER BCACHE FLUSH 

REGISTERS WHICH ARE AFFECTED BY A BADWDATA CYCLE FROM WAX ARE SAVED HERE 
AFTER THE BCACHE FLUSH 
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The following example shows collection of error state which would normally be collected during 
and just after flushing the Bcache. 

;CBOX 
MFPR tPR19S CCTL,SS CCTL 
MFPR tPRl9S-BCEDIDX;SS BCEDIDX 
MFPR tPR19S-BCEDECC,SS-BCEDECC 
MFPR fPR19S-BCEDSTS,SS-BCEDSTS 
BICL3 fAC<BCEoSTSSM CORR ! BCEDSTSSM LOCK>,SS BCEDSTS,RO 
CMPL RO,tBCEDSTSSM-CORR! BCEDSTSSM-LOCK -
BNEQ 30S - -
MFPR fPR19S BCEDIDX,SS BCEDIDX 
MFPR fPR19S:SCEDECC,SS:BCEDECC 

305: MFPR fPR19S BCETIDX,SS BCE!IDX 
MFPR f:R19S-BCETAG,SS BCETAG 
M:PR ~PR19S-BCETSTS,SS BC£:STS 
B!~3 fAC<BC£TSTSSM co?i ! BCETSTSSM ~OCK>,SS BC£TSTS,RO 
o..~~ RO,fBCETSTSSM:CORR! ECETSTSSM:~OCK -
B!r=;Q 405 
!-::'PR fP?19S BCE'!'IDX, S5 :9C::=::O>: 
~~PR *?R19S::SC:::AG,SS_BCETAG 

~~PR ~?R195 NE5TS,55 ~~s=s 
M!'PR .:?19S-1~CllD?, SS n~~;'.DR 
!":::::?.. *:?,,:gs:!~~~=, ss:!·~o:!~= 

15.3.2 Error Analysis 

With the error state obtained during the collection process, the error condition can be analyzed. 
The purpose is to determine what error event caused the particular notification being handled (to 
the extent possible), and what other errors may also have occurred. Analysis of machine checks 
and hard and soft error interrupts should be guided by the parse trees given in the appropriate 
sections below. 

NOTE 

Errors detected in or by one of the caches usually result in the cache automatically 
being disabled. However, to minjmize the possibility of nested errors, it is suggested 
that error analysis and recovery for memory or cache-related errors be performed with 
the Pcache disabled and the Bcache in ETM. 

In some cases, a notification for a single error occurs in two ways. For example, an uncorrectable 
error in the Bcache data RAMs will cause a soft error interrupt and may also cause a machine 
check.. Software should handle cases where a machine check handler clears error bits and then 
the soft error handler is entered with no error bits set. 

In certain cases one error event results in two related reports. For example, a Bcache 
uncorrectable data error during a writeback will be reported in NESTS as a BADWDATA event. 
In this case, the BADWDATA event captures the full address of the errored data (that is why 
BADWDATA is an error event). Cases like this are handled as single error events. 

In general an error reporting register can report events which lead to machine check., soft error, 
or hard error. A given error event can result in machine check and soft error interrupt, or in 
just one or the other. Events which lead to hard error interrupts generally can not also cause 
machine check or soft error interrupt. Sometimes an error event which leads to machine check or 
soft error interrupt is closely related to an event which leads to hard error interrupt (e.g., Bcache 
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:fill error on :first quadword of a fill for an OREAD done for a write causes soft error interrupt, 
but the same error on a later quadword causes hard error interrupt). 

Multiple simultaneous errors may make useful recovery impossible. However, in cases where 
no conflict exists in the reporting of the multiple errors (i.e., no one error register is used to 
report two errors), and recovery from each error is possible, then recovery from the set of errors 
is accomplished by recovering from all of them. For example, recovery from a Pcache tag parity 
error and a Bcache correctable data error being reported together is possible by following the 
recovery procedures for each error in sequence. 

The error cause determination parse tree for machine check exception is directed at causes or 
possible causes of machine checks. It ignores errors which lead to hard or soft error interrupts 
but not to machine checks. Similarly, the hard error interrupt cause determination ignores 
errors which lead to machine check or soft error interrupt, and the soft error interrupt cause 
determination ignores errors which lead to machine check or hard error interrupt. 

There is a natural order between machine check, hard error interrupt, and soft error interrupt 
because the IPL for hard error interrupts is higher than that of soft error interrupts and the IPL 
in the machine check exception is higher than either of the error interrupts. This hierarchy is 
important because knowledge ofwmch notification event occurred is used to discriminate between 
certain error events (e.g., an error on the initial fill quadword for a read-lock is distinguished from 
a fill error on a subsequent quadword by the fact of machine check notification). 

15.3.3 Error Recovery 

Recovery from errors consists of clearing any latched error state, repairing damaged state 
(if necessary and possible), and restoring the system to normal operation. There are special 
considerations involved in analysis and recovery from cache or memory errors, which are covered 
in the next sections. 

Recovery from multiple error scenarios is possible when there is no conflict in the error registers 
which report the errors and there is no conflict in the recovery procedures for the errors. However 
all recovery procedures in this chapter assume that only one error is present. None of the 
procedures are valid in multiple error scenarios without further analysis. 

In some instances, it may be desirable to stop using the hardware which is the source of a large 
number of errors. For example, if a cache reports a large number of errors, it may be better to 
disable it. It is suggested that software maintain error counts which should be compared against 
error thresholds on every error report. If the count (per unit time) exceeds the threshold, the 
hardware should be disabled. 

NOTE 

Hard failures of one bit in the tag store can lead to unrecoverable errors requiring a 
full system crash. It would be appropriate to have an extremely low threshold for tag 
store correctable errors, especially if they recur in the same location or bit position. 

NOTE 
NVAX CPU utilization of the NDAL and memory is extremely high if the Bcache is 
disabled. In multiprocessor systems a CPU should probably be removed from the 
system rather than being used with the Bcache off. In a single processor system there 
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may be effects to 10 subsystem performance and latency due to the high NDAL and 
memory utilization. 

15.3.3.1 Special Considerations for Cache and Memory Errors 

Cache and memory error recovery requires special considerations: 

• Cache and memory elTor recovery should always be done with the Pcache and VIC off and 
the Bcache in error transition mode (ETM). (In certain cases, the last part of recovery must 
be done with the Bcache off.) See Section 15.3.3.1.1.1, Cache Enable, Disable, and Flush 
Procedures. 

• Bcache Hush is necessary before re-enabling the Bcache whenever it is in ETM. See 
Section 15.3.3.1.1, Cache Coherence in Error Handling. 

• Bcache flush should be always be done one block at a time, recapturing the relevant elTor 
registers between each block flush. 

• Cache coherence requires a specific procedure for re-enabling the caches. See 
Section 15.3.3.1.1, Cache Coherence in Error Handling. 

• ElTor recovery should be performed starting with the most distant component and working 
toward the CPU and Ebox. System environment memory errors should be processed first, 
followed by NDAL errors, Bcache fill elTors, Bcache tag store and data RAl\1 errors, Pcache 
errors, TB errors, and, finally, VIC errors. 

• ~"DAL errors are cleared by writing the write-one-to-clear bits in J\!~STS. The suggested way 
to do this is to write a one to the specific error bit. 

• Bcache fill errors are cleared by writing the write-one-to-clear bits in CEFSTS. The suggested 
way to do this is to write a one to the specific elTor bit. Special recovery procedures. may be 
necessary after Bcache:fill errors. See Section 15.3.3.1.2, Special Writeback Cache Recovery 
Situations and Procedures. 

• Bcache tag store errors are cleared by writing the write-one-to-clear bits in BCETSTS. The 
suggested way to do this is to write a one to the specific error bit. Special recovery procedures 
may be necessary after Bcache uncorrectable tag store errors. See Section 15.3.3.1.2, Special 
Writeback Cache Recovery Situations and Procedures. 

• Bcache data RAM errors are cleared by writing the write-one-to-clear bits in BCEDSTS. The 
suggested way to do this is to write a one to the specific error bit. Special recovery procedures 
may be necessary after Bcache uncorrectable data RAM errors. See Section 15.3.3.1.2, Special 
Writeback Cache Recovery Situations and Procedures. 

• Hardware ETM is cleared by writing the write-one-to-clear hit in CCTL. The suggested way 
to do this is to write the value saved during error state collection back to the register. 

• Pcache tag and data store errors are cleared by writing the write-one-to-clear bits in peSTS. 
The suggested way to do this is to write a one to the specific error bit. Pcache Hush is necessary 
after Pcache tag store parity errors. See Section 15.3.3.1.1.1, Cache Enable, Disable, and 
Flush Procedures. 

• TB errors are cleared by writing the write-one-to-clear bits in TBSTS. The suggested way to 
do this is to write a one to the specific error bit. 

• PTE read errors are cleared by writing the PTE error write-one-to-clear bits in PCSTS. The . 
suggested way to do this is to write a one to the specific error hit. 

DIGITAL CONFIDENTIAL Error Handling 15-9 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

• VIC errors are cleared by writing the write-one-to-clear bits in ICSR. The suggested way 
to do this is to write a one to the specific error bit. VIC Hush and re-enable is necessary 
after VIC tag store parity errors. See Section 15.3.3.1.1.1, Cache Enable, Disable, and Flush 
Procedures. 

15.3.3.1.1 Cache Coherence In Error Handling 

Certain procedures must be followed in order to maintain cache coherence while enabling NVAX 
caches. Since many errors cause caches to be disabled, and since cache and memory error recovery 
is normally done with the Pcache and VIC off and the Bcache in ETM, the complete cache enable 
procedure is done as part of recovery from all cache and memory elTors. 

Once the Bcache is in ETM mode, it will not be coherent with memory if it is re-enabled 
before being flushed. This is because writes (from the Mbox) to blocks which happen to be 
VALID_ UNO~TED in the Bcache are not copied into the Bcache data RAMs. These writes are 
only sent out on the NDAL. Once the Bcache is put in ETM by hardware or soft,vare action, a 
Bcache flush must be done before re-enabling the Bcache. The procedure is described in the next 
section. 

·Wbile the Bcache in in ETM or off, the Pcache will stay coherent with memory. Ho,\vever, before 
the Bcache is re-enabled, the Pcache must be disabled. After the Bcache is re-enabled, the Pcache 
must be flushed before it is re-enabled. The procedure is described in the next section. If a Pcache 
tag parity error occurred, the flush procedure gl,"en is sufficient to clean up the Pcache tag store. 

The VIC (virtual instruction cache) is not automatically kept coherent '\nth memory. It is flushed 
as a side effect of the REI instruction (as required by the VAX architecture). Normally in error 
recovery, there is no definite need to :fiush the VIC. For consistency and for the sake of beginning 
error retry in a known state, flushing the VIC during error recovery is recommended. However, 
in the event of VIC tag parity errors, the complete VIC Hush procedure described in the next 
section must be done. 

The TB is not automatically kept coherent with memory. Software uses the TBIS and TBIA 
functions to maintain coherence, and the LDPCTX instruction clears the process PTEs in the 
TB. Normally in error recovery, there is no definite need to :fiush the TB. For consistency and 
for the sake of beginning error retry in a known state, :fiushing the TB during error recovery is 
recommended. When a TB parity error occurs, Mbox hardware :fiushes the TB by itself (via an 
internally generated TBIA), but it would be appropriate for software to test the TB after a parity 
elTor. This is discussed in Section 15.3.3.1.3. 

15.3.3.1.1.1 Cache Enable, Disable, and Flush Procedures 

To enable the NVAX caches, the caches are Hushed and enabled in a specific order. The ordering is 
necessary for coherence between the Bcache, Pcache, and memory. For simplicity, one procedure 
is given for enabling the NVAX caches, even though variations on the procedure may also produce 
COtTect results. Disabling the caches can be done in any order, though one procedure is given 
here. 

In error handling, the VIC and Pcache are disabled while the Bcache is placed in ETM. The 
Bcache :Bush from ETM procedure is done to turn off the Bcache altogether. The cache enable 
procedure assumes that the Bcache is completely off at the start. 
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15.3.3.1.1.1.1 Disabling the NVAX Caches for Error Handling (leaving the Bcache In ETM) 

This is the procedure for disabling the NVAX caches (placing the Bcache in ETM): 

NOTE 

These procedures will be supplied with MACRO coding examples. 

• Disable the VIC: 

TBS (MTPR to ICSR) 

• Disable the Pcache: 

TBS (MTPR to PCCTL) 

• Put the Bcache in software ETM: 

15.3.3.1.1.1.2 Flushing and Disabling the Bcache 

This is the procedure for fiushing the Bcache and disabling it: 

• Flush and disable the Bcache: 

Errors can occur as a result of fiushing the Bcache. Before carrying out the procedure, 
BCEDSTS and BCETSTS should be clear of unrecoverable errors, and NESTS should be clear 
of unrecoverable outgoing errors. The MTPRs to BCFLUSH IPRs should be done one block at 
a time, checking the BCEDSTS and BCETSTS error registers after each one. (The MFPR from 
BCEDSTS or BCETSTS will not finish until all the Bcache accesses which result from the MTPR 
to BCFLUSH are done.) Otherwise any unrecoverable error which occurs during the flush may 
become a lost unrecoverable error and a system crash will most likely be necessary. 

Errors which occur while flushing the Bcache are separate errors and should be handled 
independently of the initial error. However, certain errors may be expected during the flush 
procedure, based on the initial error. Also, the successful outcome of the Bcache flush procedure 
is important in determining whether to retry or restart the interrupted or machine checked 
instruction stream. 

15.3.3.1.1.1.3 Enabling the NVAX Caches 

The procedure for enabling the NVAX caches after an error is the same as is used to initialize 
the caches after power-up. See Section 16.4, Cache initialization). This procedure ensures that 
error retry/restart occurs with the caches in a known state. The procedure is outlined below. 

• The caches must all be disabled and the Bcache must be disabled (not just in ETM). 
Follow the above procedures to reach this state. 

• Flush the Bcache (Loop on MTPR to BCTAG !PRs). 
• Enable the Bcache (MTPR to CCTL). 
• FlUsh the Pcache (Loop on MTPR to PCTAG IPRs). 
• Enable the Pcache (MTPR to PCCTL). 
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• Flush the TB: 

• Flush the VIC (Loop on MTPRs to VMAR and VTAG, writing an initial value). 
• Enable the VIC (MTPR to ICSR). 

15.3.3.1.2 Special Write back Cache Recovery Situations and Procedures 

Writeback caching can lead to a couple of special error cases. Some of them can be recovered. 
Sometimes, further state determination or state capture is required after the error cause 
determination guided by the parse trees in the sections on machine check exceptions and hard 
and soft errors. Further analysis may also be necessary. 

15.3.3.1.2.1 Bcache Uncorrectable Error During Wrlteback 

""hen a Bcacheuncorrectable data RAM error occurs in a writeback, the status, cache index, and 
error syndrome are captured in BCEDSTS! BCEDIDX, and BCEDECC. As it is written back, the 
data is tagged-bad via the BAD,,:nATA 1\~AL command. However, the address of the lost data is 
not captured in the Bcache error registers (for implementation reasons). For this reason, sending 
BAD,\VDATA on the :r-..'D.AL is treated as if it were an error by the bus interface unit (BIU). This 
means the full address is captured in ~~OADR while the status is captured in l\'ESTS. This 
writeback can sit in the writeback queue in the BIU for an indefinite amount of time. If a Bcache 
uncorrectable error on writeback is detected, but NESTS does not show any outgoing error status, 
the writeback queue must be drained to continue the analysis and recovery. This is most easily 
accomplished by the following IPR write. 

S_NESTS should be reloaded from NESTS after this operation. If S_NESTS does not show the 
the BAD'WDATA elTor status after draining the writeback queue, and it shows no other outgoing 
error, then there is a serious inconsistency and the system should be crashed. 

15.3.3.1.2.2 Memory State 

Memory in NVAX systems supports the write back cache by maintaining some amount of state for 
each hexaword (each cachable block) in memory. In XMI2 systems with XMA2 memory modules, 
an ownership bit, and interlock bit, and an owner ID is stored for each hexaword. In OMEGA 
systems, only an ownership bit is stored for each block. Other system environments are possible. 

The effect of a given error on the stored ownership bit in memory is system specific. Since the 
system environment is not directly aware of errors which occur inside the NVAX CPU chip, the 
system specific behavior is limited to the result of system environment errors. 

It is always assumed that a an ownership read command no-ACKed on the NDAL doesn't affect 
the ownership bit in memory. Depending on the system, the state of memory's ownership bit 
(and other such state) may be UNPREDICTABLE or determinate after errors in data returned 
for ownership reads. If it is determinate, it may be set or reset, possibly depending on which fill 
quadword had the error and on the sort of error that occurred. 

This specification assumes that memory does not reset a set ownership bit on a WDISOWN until 
all four quadwords have been successfully received by memory (as is stated in Chapter 3). 
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15.3.3.1.2.2.1 Accessing Memory State 

In recovering from certain elTors it is necessary to read (or access by some means) the 
state memory has stored with each hexaword. This specification assumes a routine called 
MEMORY_STATE exists which returns this state given a block address. 

MEMORY_STATE may have system specific errors and side effects. For example, in XMI2 
systems this routine may cause a read timeout error in the memory module and a con-esponding 
machine check. Software must be prepared to handle this. Before calling MEMORY_STATE, 
software should confirm that all registers which may end up reporting expected etTors are clear 
of en-ors. This helps minimize the possibility that an unrelated error event is ignored because it 
appears to be an expected error. In the XMI2 example, within the NVAX CPU, CEFSTS is the 
register to check because a memory read timeout is the only error which is expected as a side 
effect of MEMORY_STATE. 

15.3.3.1.2.2.2 Repairing Memory State (Fill Errors) 

In recovering from various Bcache fill errors it is necessary to reset the o,vnership state in memory. 
In some system environments, this can be done without writing the data in memory. In others 
reseting the ownership siat.e may ha'''e the side effect of altering the data stored in the memory 
block. 

In cases where the fill error resulted from lost"l data ,vhich can not be recovered, the ownership 
bit may still be set in memory ,,,,bile no cache owns the block. If the data is private to one 
process, then the system may be able to continue operating after killing that one job. The system 
dependent procedure is then used to reset the ownership bit. 

For certain Bcache fill errors, an attempt is made to reset the ownership bit in memory, while 
maintaining or restoriong the correct data to the memory block. 

• All the data is in memory. One or more quadwords of (the same) data are also in the cache. 
Memory's ownership bit is set (meaning it "thinks" a cache owns the block). The owner ID 
stored with the block in memory indicates this CPU. The cache tag for the block does not 
indicate the block is owned. (In general, if no writes to this block timeout, and the block is 
private to one process, then the repair can be done.) 

• All the data is in memory. One or more quadwords of data are also in the cache, and one 
quadword has been altered by the Cbox in processing a write to that block from the Mbox. 
Memory's ownership bit is set (meaning it "thinks" a cache owns the block). The owner ID 
stored with the block in memory indicates this CPU. The cache tag for the block does not 
indicate the block is owned. an general, if no writes to this block timeout, and the block is 
private to one process, then the repair can be done.) 

NOTE 

If an owner ID for each block is not stored in memory, then recovery of the lost data 
is not recommended. The data should be treated as lost, and the appropriate system 
actions should be taken. 

1 In this case the more general sense of "lost" is implied. That is. memorfs ownership bit is set but no cache writes the 
data back when a read is done to that location. In some systems. it may be possible to identify which CPU memory 
"thinks" owns the data. but it is often not possihle to determine which error caused this situation to arise. 
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To recover from the first situation listed above in an XMI2 system, for instance, one of the COlTect 
quadwords in the Bcache is accessed (see Section 15.3.3.1.2.3) and used in the XMI2 procedure 
for reseting mekory's ownership bit. The side effect of this procedure is the the data extracted 
from the Bcache is written to memory. Given that the block is private to one process and no 
writes have timed out in memory, this data is still COlTect. (Note that software must somehow 
ensure that no writes to this block are pending in the memory before beginning the repair. This 
can be done by waiting an amount of time equal to an XMA2 write timeout time.) 

10 recover from the second situation listed above in an XMI2 system, the same procedure is 
followed, but the data written back is part of the known-altered quadword. The remainder of the 
known-altered quadword is written to the block after the repair. 

15.3.3.1.2.2.3 Repairing Memory State (Tagged-Bad Locations) 

In recovering from Bcache uncorrectable data RAM errors on writebacks is necessary to reset 
the tagged-bad-data state for a block in memory. This is a system specific procedure. In general, 
before clearing the tagged-bad data state of memory, software must first ensure that no more 
accesses to the block can occur. Otherwise there is the danger that some process on some other 
processor or a D~1..-\ 10 de'\ice will see incorrect data and not detect an error. 

In XMI2, a sequence of operations involving writes to registers in a memory module followed by 
a ,vrite to the memory block in question is required. To do this the Bcache should be off, because 
!\V:U will not issue a write to memory when the cache is enabled (or is in EThI and the block's 
tag indicates v..U-ID-OWNED). 

In OMEGA, reseting tagged-bad-data state in memory requires that a full quadword write to the 
tagged-bad quadword be accomplished. The most straightforward way for NVAX software to do 
this is to fill in the Bcache tag store and data RAMs with a VALID .. OWNED block and force a 
writeback (via a MTPR to BCFLUSH). 

15.3.3.1.2.3 Extracting Data from the Bcache 

10 extract data from the Bcache, the Bcacbe is placed in FORCE_HIT mode. Before this is done, 
the Bcache must be oft'. 

With the Bcache flushed and disabled, set the Bcache in FORCE_:EnT mode and extract the data. 
Note that the code which executes this procedure and its local data must be in 10 space. The 
TB entries (PTEs) which map this code and local data must be fixed. in the TB. (This is most 
easily done by fiushing the TB via an MTPR to TBIA and then accessing all the relevant pages in 
pages in sequence.) Otherwise Bcache FORCE_EnT will interfere with instlUCtion fetch, operand 
access, and PTE fetches in TB miss sequences. 

The following instruction places the Bcache in FORCE_HIT mode: 

TBS CM'l'PR to CCTL) 

With the Bcache in FORCE_BIT mode, a read in memory space of any address whose index portion 
matches the index of the cache data will return the data (provided there is no uncorrectable data 
RAM error). This is most easily accomplished by reading from the true address of the data. 
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NOTE 

In FORCE_IDT mode, Bcache data RAM ECC errors are detected (unless 
CCTL<DlSABLE_ERRORS> is set). Software should prepare for an ECC error 
(BCEDSTS unrecoverable error bits should be clear). 

The Bcache is restored to the disabled state by: 

TBS (MTPR to CC'l'L) 

15.3.3.1.2.4 Address Determination Procedure for Recovery from Un correctable BClche Data 
RAM Errors 

After an uncorrectable data RAM error in the Bcache, only the index of the block is stored, not 
the complete physical address. The procedure for constructing the physical address of the error 
is given here. It depends on the assumption that the block has not been replaced. The detailed 
error descriptions only refer to this procedure when this assumption is valid. 

This is the procedure for constructing a physical address from the contents of S_BCEDIDX and the 
tag indicated by that register. It uses the Bcache tag Eee check routine found in Section 15.10. If 
an unreco\·erable ECC error if found in the tag, then the address can not be determined directly. 

(? .. .sa: ":.:.= ~~:'a !-:;":?~ ==c:-. 3:-:,AG :r?,.s. :~&:k ~::a~ :.!'lE: -:.a; de::.a a~ci c!l .. ck t!-:s a=e ::==-=:-: c= cc== .. ::-:.a=.:e. 
~:":.=5.=,": ':::.-= a:==~ss -::; 1==:--=:"'::: :! -:.::. :C==-=:-;.= =.5-:';:-:' a::c. CC==!':l& ,,":!.:':: E_=~=::::·:.: 

NOTE 

The above procedure is used in the event of a Bcache data RAM error. If it fails 
because the tag also has an uncorrectable error, then the error should be considered 
unrecoverable. However, the search procedure described in the next section could be 
used to obtain useful information for the error log (specifically, which blocks this CPU 
has marked owned in memory for this cache index). 

15.3.3.1.2.5 Special Address Determination Procedure for Recovery from Un correctable Bcache 
Tag Store Errors 

An uncorrectable tag store error in the Bcache can cause certain interesting error cases. In some 
of these cases data may be lost (the copy in the Bcache was overwritten). In other cases, the 
data is still good in the cache. In all cases, the address of the lost data is not directly known. A 
special procedure must be used to determine this address. 

This section describes the generic address determination procedure for use in recovering from 
Wlcorrectable tag store errors. Specific error event descriptions in Section 15.5.2, Section 15.7.1, 
and Section 15.B.1 refer to this procedure for address determination. The possible outcomes of 
this procedure are: 

• The single address of a lost data block is found. Retry and recovery information for the error 
is found in the specific error event description which referred to this address determination 
procedure. 

• No address is found. It can be assumed that no block was owned by the Bcache (or the error 
was transient). Retry and recovery information for the error is found in the specific error 
event description which referred to this address determination procedure. 
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• Multiple addresses are found. This is a multiple unrecoverable error situation, and the system 
should be crashed. 

The procedure for determining the address of a lost data block follows. Note that this procedure 
assumes the relevant tag in the Bca.che is not (correct or correctable) VALID-OWNED. This 
procedure is for analyzing the result of errors in that tag. 

This procedure assumes that MEMORY_STATE will return the ownership state and the physical 
ID of the CPU which memory "thinks" owns the block. If memory does not store an owner ID 
and there is exactly one writeback cache in the system, then the lack of an owner ID might not 
prevent error recovery. 

• The Bcache should be in ETM. 

• Search for the address: 

(5 ..... ==h all memo=;:' block a::=esses WhOSE ir.ciu po:--;ion ma-;ehes the incie~: of the Beache tag wi-:h the 
e====. Cheek lr.;omory s-:a':e !:= ':hE blo:k. :! -;his C::"C' is the oto."ne= o! -::. ... ,: i:<:.:ck, -:ne. .. thE block is lost 
C::::::.:!.:lwc ~r.L_ sea:er.. &'7.::' !.! o%:. .. ::5': :::-:k is !et:!'l~. Ze:c, 0:16, or :m.:.!.':!p~e los,: :locks co::lc: be p:ese~ 
l;:-:.e -:'!'la~ !.:: s::-"s-:'£ns \\-!':!: nc :'~-:l.= :: :;'::.5 i:: %r'~w:r~=~:" and .xac-:.ly 0:1. =::7, io: :::a~· e= may ~o': b.;: possiblE 
~~, 2.SS-:.:.:ne ':.:'5.-: E'VE:::t o .. -:le: =:==k :!.s ow:;.:: ~r -:,ha ~tr. !-:. Ina::" be n .. =essa::t -:: =:::!'!::i .aeh $.': o'W:led b'::: 
=.a.:':"::; ':.!l-ii :a:k.a: :o:a-:.:":::.. =!!-:.!.s o"":'le: =.~,. ~~!.s ~t:, ~he =.a: s~:::.:= '::Z:.e:::-:..) 

NOTE 

This procedure is specific to recovering from tag store errors in one CPU. So ,,,,hen 
the memory state for a block indicates another cache in the system owns a particular 
block, that block is not counted as lost. Thai block may be '1osf' in the more general 
sense (if the cache indicated as the owner no longer "knows" that it owns the block or 
is somehow unable to write it back.) The purpose here is only to find blocks that are 
definitely lost as a result of errors involving this CPU. 

15.3.3.1.3 Cache and TB Test Procedures 

TBS 

OUTUNE OF TO·BE·SPECIFIED TEST PROCEDURES 

Testing is generally done using the force hit mode of a cache. The code and data 
of the test procedure must reside in 10 space. Assuming memory management is 
enabled during tbis procedure, the needed PTEs must be in the TB before entering 
force hit mode in the Pca.che or Bcache. For the Bcache, testing should be done 
with errors disabled. The ECC logic should be tested thoroughly on one location by 
forcing various check bit patterns and examjnjng the syndrome latched on the read 
(BCEDECC is loaded on every read in Bcacbe disable-errors mode). Pcache and VIC 
parity checking should be tested by writing bad parity into the arrays. TB testing may 
be accomplished by writing to MTBTAG and MTBPrE (with care to not change any 
TB entry necessary for the test code and data and not to cause two TB entries to exist 
for one address). PROBER and PROBEW (setting PSL<PRV_MOD» are then used to 
verify the protection bits. Testing the modify bit would be difficult, though approaches 
exist. 
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15.3.4 Error Retry 

Error retry is a function of the error notification (machine check. or error interrupt), error type, 
and error state. The sections below specify the conditions under which the instruction stream 
may be restarted. 

If retry is to be attempted, the stack must be trimmed of all parameters except the PCIPSL pair. 
This is necessary only for machine checks, because error interrupts do not provide any additional 
parameters on the stack. An REI will then restart the instruction stream and retry the error. 
Some form of software loop control should be provided to limit the possibility of an error loop. 
Note that pending error interrupts may be taken before the retry occurs, depending on the IPL 
of the interrupted or machine checked code. 

Strictly speaking, an REI from a hard or soft error interrupt handler is not a retry since these 
interrupts are recognized between macroinstructions. A machine check exception is an instruction 
abort, and an REI from the handler will cause the failing instruction to be retried (provided retry 
is indicated by analysis). "'nat these cases all have in common is that the interrupted instruction 
stream is restarted. This is only done when the result of error analysis and recovery is such that 
all damaged state has been repaired and there is no reason to suspect that incorrect results will 
be produced if the image is restarted and another error does not occur. 

If complete recovery from one or more errors is not possible (i.e.~ some state is lost or it is 
impossible to determine what state is lost), possibly the entire system will have to be crashed, a 
single process \.vill have to be deleted, or some other action will have to be taken. Software must 
determine if the error is fatal to the current process, to the processor, or to the entire system, 
and take the appropriate action. 

It is expected that software handles machine checks, soft error interrupts, and hard error 
interrupts independently. For example, after handling a machine check from which retry is to 
occur, software does not check. for errors which might cause a pending hard or soft error interrupt. 
The machine check handler is exited via REI (after trimming the machine check information off 
the stack). If the IPL of the machine checked instruction stream is low enough, any pending hard 
or soft error interrupt is taken before the retry occurs. However, if the interrupted instruction 
stream was running at high IPL, then it will continue oblivious of remaining errors. 

15.3.4.1 General Multiple Error Handling Philosophy 

Multiple errors may be reported at the same time. In some cases the NVAX CPU pipeline will 
contain multiple operand prefetches to the same memory block. This can cause multiple errors 
from a single non-transient failure. It could also occur that two separate errors occur at nearly 
the same time and are thus reported simultaneously. 

Multiple error scenarios may be grouped into the following three classes: 

1. Multiple distinct errors for which no error report interferes with the analysis of any other 
(e.g., no lost error bits set). 

2. Multiple errors which could have been caused by the NVAX CPU pipeline issuing more than 
one reference to a given block before the error interrupt or machine check forced a pipeline 
flush. 

3. Multiple errors for which analysis is complicated because the reports interfere with each 
other. 
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It is the intent of this chapter to recover from class 1 (above) by simply treating the errors as 
separate and recovering from each in turn. Retry or restart evaluation is based on the cumulative 
result of the recovery and repair procedures for each error. 

For class 2, specific cases are identified in which lost errors are tolerated. These cases are 
selected because the NVAX pipeline can easily cause them (given one error), and because sufficient 
safeguards exist to ensure that correct operation is maintained. Section 15.3.4.2 lists these cases. 

Class 3 scenarios are generally not considered recoverable. The system is simply crashed in those 
cases. 

Note that lost correctable errors are not considered serious problems since hardware recovers 
from those automatically. 

15.3.4.2 Retry Special Cases 

The multiple error scenarios \vhich are handled are listed below. They are made likely by the 
1\TVAX pipeline'S tendency to prefetch operands. The safeguard that exists in all cases is that 
en-ors inconsistent with correct operation after the error (such as lost data) will invariably cause 
a hard error interrupt or be detectable by the analysis accompanying the machine check or soft 
en-or intenupt. 

• Lost Bcache data RAM uncorrectable ECC errors and addressing errors. 
(BCEDSTS<LOST_ERR> ) 

• Lost Bcache fill errors (timeouts and RDEs). (CEFSTS<LOST_ERR» 
• Lost ~'"DAL output errors (No-ACKs). (~~STS<LOST_OERR» 

NOTE 

Retry from a machine check is done even when a hard error interrupt might be pending. 
If the machine checked I-stream were running at high enough IPL, it would not be 
interrupted immediately. Typical hard error causes are write errors. They can not 
cause a machine check.. So the fact that a serious error is ignored in the machine 
check retry equation is not considered a problem. The other error would probably have 
occurred anyway and it would not have interrupted the I-stream until IPL was lowered. 
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15.4 Console Halt and Halt Interrupt 

A console halt is not an exception, but rather a transfer of control by the NVAX CPU microcode 
directly into console macrocode at the boot ROM address E0040000 (hex). Console halts are 
initiated at powerup, by certain microcode-detected double error conditions, and by the assertion 
of the external halt interrupt pin, HALT_L. 

There is no exception stack frame associated with a console halt. Instead, the SAVPC and SAVPSL 
processor registers provide the necessary information. The format of SAVPC (IPR 42) is shown 
in Figure 15-1. 

Figure 15-1: IPR 2A (hex), SAVPC 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Saved PC I :SAVPC 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

The PSL, halt code, MAPEN<O>, and a validity bit are saved in SAVPSL (IPR 43). The fonnat 
of SAVPSL is shown in Figure 15-2. The halt codes are shown in Table 15-2. 

Figure 15-2: IPR 28 (hex), SAVPSL 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

PSL<31:16> I I I Halt Code I PSL<7:0> I :SAVPSL 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I I 
MAPEN<O> --+ I 

Invalid SAVPSL if 1 --+ 

The possible halt codes that may appear in SAVPSL<13:8> are listed in Table 15-2. 

Table 15-2: Console Halt Codes 

Mnemomc Code (Hex) 

ERR_HLTPIN 02 

ERR_PWRUP 03 

ERR_INTSTK 04 

ERR_DOUBLE 05 

ERR_HLTINS 06 

ERR_ILLVEC 07 

ERR_WCSVEC 08 

ERR_CHMFI OA 
ERR_IEO 10 

ERR_lEI 11 
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Meanjng 

HALT_L pin asserted 

Initial power up 

Interrupt stack not valid 

Machine check during exception processing 

HALT instruction in kernel mode 

nlegal SCB vector (bits <1:0> = 11) 

WCS SCB vector (bits <1:0> = 10) 

CHM:x: on interrupt stack 

ACVlrNV during machine check processing 

ACVlrNV during kemel-stack-not-valid processing 
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Table 1"5-2 (Cont.): Console Halt Codes 

MnemoDie Code (Hex) 

ERR_1E2 12 

ERR_1E3 13 

ERR_IE_PSL_26_24_101 19 

ERR_IE_PSL_26_24_110 1A 

ERR_IE_PSL_26_24_111 1B 

ERR_REI_PSL_26_24_101 1D 

ERR_REI_PSL_26_24_110 1E 

ERR_REI_PSL_26_24_111 1F 

Meaning 

machine check during machine check processing 

machine check dming kernel-stack-not-valid 
processing 

PSL<26:24> = 101 during interrupt or exception 

PSL<26:24> = 110 during interrupt or exception 

P8L<26:24> = 111 during interrupt or exception 

PSL<26:24> = 101 during REI 

PSL<26:24> = 110 during REI 

PSL<26:24> = 111 during REI 

NOTE 

In certain error conditions detected during the execution of a string instruction, the 
state packup sequence leaves the FPD bit set in the SAVPSL register, but the SAVPC 
register pointing at the instruction following the string instruction, rather than at 
the string instruction itself. If the FPD bit is no set in the SAVPSL register, SAVPC is 
correct. As error halts are not normally restartable, this is not a problem. For a console 
halt due to the assertion of the HALT_L pin, which is the only normally restarlable 
console halt, SAVPC is always correct, even if the halt interrupt was detected during 
the execution of a string instruction. 

At the time of the halt, the current stack pointer is saved in the appropriate IPR (0 to 4), 
and SAVPSL<31:16,7:0> are loaded from PSL<31:16,7:0>. SAVPSL<15> is set to MAPEN<O>. 
SAVPSL<14> is set to 0 if the PSL is valid and to 1 if it is not (SAVPSL<14> is undefined after 
a halt due to a system reset). SAVPSL<13:8> is set to the console halt code. 

To complete the hardware restart sequence and thereby pass control to the console macrocode, 
the state shown in Table 15-3 is initialized. 

Table 15-3: CPU State Initialized on Console Halt 

State 

SP 

PSL 

PC 

MAPEN 

Ices 
SISR 

ASTLVL 

PAMODE 

BPCIk31:16> 

15-20 Error Handling 

Initialized Value 

IPR 4. (IS) 

041FOOOO (hex) 

EOO40000 (hex) 

o 
o (after reset, code=3, only) 

o (after reset, code=3, only) 

4. (after reset, code=3, only) 

o (after reset, code=3, only) 

FECA(hex) (after reset, code=3, only) 
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Table 15-3 (Cont.): CPU State Initialized on Console Halt 

State Initialized Value 

CPUID 0 (after reset, code::3, only) 

all else undefined 
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15.5 Machine Checks 

The machine check exception indicates a serious system error. Under certain conditions, the error 
may be recoverable by restarting the instruction. The recover-ability is a function of the machine 
check code, the VAX Restart bit (VR) in the machine check stack frame, the opcode, the state of 
PSL<FPD>, the state of certain second-error bits in internal error registers, and most probably, 
the external error state. 

A machine check results from an internally detected consistency error (e.g., the microcode reaches 
an "impossible" state), or a hardware detected error (e.g., an uncorrectable Bcache ECC error on 
a data read). 

A machine check is technically a macro instruction abort. The NVAX CPU microcode attempts to 
convert the condition to a fault by unwinding the current instruction, but there is no guarantee 
that the instruction can be properly restarted. As much diagnostic information as possible is 
pushed on the stack and provided in other error registers. The rest of the error parsing is then 
left to the operating system. 

When the software machine check handler receives control, it must explicitly acknowledge receipt 
of the machine check via a write of any value to the MCESR processor register with thefollowing 
instruction: 

Figure 15-3: IPR 26 (hex), MCESR 

31 30 29 28127 26 2S 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xl :MCESR 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

15.5.1 Machine Check Stack Frame 

The machine check stack frame is shown in Figure 15-4. The fields of the stack frame are 
described in Table 15-4, and the possible machine check codes are listed in Table 15-5. The 
contents of all fields not explicitly defined in Table 15-4 are UNDEFINED. 
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Figure 15-4: Machine Check Stack Frame 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16/15 14 13 12/11 10 09 08/07 06 05 04/03 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
/ 24 (byte count of parameters, not including this longword) / : (SP) 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
/ ASTLVL / x x x x x/ Machine Check Code / x x x x x x x x/ CPUID 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
/ INT.SYS register 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
/ SAVEPC register 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
/ VA register 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Q register 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

Rn I x x/Mode / Opcode I x x x x x x x xlVR/ x x x x x x xl 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
/ PC 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PSL 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

31 30 29 28/27 26 25 24/23 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 

Table 15-4: Machine Check Stack Frame Fields 

Longword Bits 

(SP)+O 31:0 

(SP)+4 31:29 

23:16 

7:0 

(SP)+8 31:0 

(SP)+12 31:0 

(SP)+16 31:0 
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Contents 

Byte count-This longword contains the size of the stack frame in bytes, not 
including the PC, PSL, or the byte count longword. Stack frame PC and PSL 
values should always be referenced using this count as an offset from the stack 
pointer. 

ASTLVL-This field contains the current value of the VAX ASTLVL register. 

Machine check code-This longword contains the reason for the machine check, 
as listed in Table 15-5. 

CPUID-This field contains the current value of the VAX cpum register. 

INT.SYS register-This longword contains the value of the INT.SYS register 
and read onto the Abus by the microcode. The fields in this register are 
described in Chapter 10. 

SAVEPC-This field contains the SAVEPC register which is loaded by microcode 
with the PC value in certain circumstances. It is used in error handling for PTE 
read errors with PSL<FPD> set in this stack frame. 

VA register-This longword contains the contents of the Ebox VA register, which 
may be loaded from the output of the ALU. 
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Table 15-4 (Cont.): Machine Check Stack Frame Fields 

LoDgWord Bits 

(SP)+20 31:0 

(SP)+24 31:28 

Contents 

Q register-This longword contains the contents of the Ebox Q register, which 
may be loaded from the output of the shifter. 

Rn-This field contains the value of the Rn register, which is used to obtain the 
register number for the CVTPL and EDIV instructions. In general, the value 
of this field is UNPREDICTABLE. 

25:24 Mode-This field contains a copy of PSL<CUR_MOD>. 

23:16 Opcode-This field contains bits <7:0> of the instruction opcode. The FD bit is 
not included. 

7 VR-This field contains the VAX Restart bit, which is used to communicate 
restart information between the microcode and the operating system. If this 
bit is set, no architectural state has been changed by the instruction which was 
executing when the error was detected. If this bit is not set, architectural state 
was modified by the instruction. 

Table 15-5: Machine Check Codes 

MnemoDic Code (Res:) 

MCHK_UNKNOWN_MSTATUS 01 

MCHK....INT.ID_ VALUE 02 

MCHK_CANT_GET_HERE 03 

MCHK_MOVC.STATUS 04 

MCHK_ASYNC_ERROR 05 

MCHK_SYNC_ERROR 06 

Meanjng 

Unknown memory management fault parameter 
returned by the Mbox (see Section 15.5.2.1) 

illegal interrupt ID value returned in INT.SYS (see 
Section 15.5.2.2) 

illegal microcode dispatch occurred (see 
Section 15.5.2.3) 

illegal combination of state bits detected during 
string instruction (see Section 15.5.2.4) 

Asynchronous hardware error occurred (see 
Section 15.5.2.5) 

Synchronous hardware error occurred (see 
Section 15.5.2.6) 

15.5.2 Events Reported Via Machine Check Exceptions 

This section describes all the errors which can cause a machine check exception. A parse tree is 
given which shows how to determine the cause of a given machine check. After that, there is a 
description of each error. For each error, the recovery procedure is given. Where appropriate, the 
conditions for retry are given. See Section 15.3.3 and Section 15.3.4 for more on error recovery 
and error retry. 
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Figure 15-5 is a parse tree which should be used to analyze the cause of a machine check 
exception. The errors shown in the parse tree are described in detail in the sections following 
the figure. The section is indicated in parenthesis with each error. Note that it is assumed 
that the state being analyzed is the saved state, as described in Section 15.3.1. Otherwise the 
state could change during the analysis procedure, leading to possibly incorrect conclusions. (See 
Section 15.3.2 for general information about error analysis.) 
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Rgure 15-5: Cause Parse Tree for Machine Check Exceptions 

MACHINE CHEeR 
----+ (select one) 

MCHK UNKNOWN MSTATUS 
+------=-------=----------------------------------> Unknown memory management status error (Section15.5.2.1) 
I 
I MCHK_INT.ID_VALUE 
+-------------------------------------------------> Illegal interrupt ID error (Section 15.5.2.2) 
I 
I MCHK CANT GET HERE 
+------=----=---=---------------------------------> Presumed impossible microcode address reached 
I (Section 15.5.2.3) 
I MCHK_MDVC.STATUS 
+-------------------------------------------------> MOVCx status encoding error (Section 15.5.2.4) 
I 
I MCHK ASYNC ERROR 
+----+ (select all, at least one) 

S_TBSTS<LOCK> 
+----+ (select all) 
I I 
I I S_TBST5<DPERR> 
I +---------------------------------------> TB PTE data parity error (Section 15.5.2.5.1) 
I I 
I I S_TBSTS<TPERR> 
I +---------------------------------------> TB tag parity error (Section 15.5.2.5.1) 
I 
I none of the above 
I +---------------------------------------> Inconsistent status (no TBSTS error bits set) 
I (Section 15.5.2.7) 
I S_ECR<S3_STALL_TMEOUT> 
+--------------------------------------------> 53 stall timeout error (Section 15.5.2.5.2) 

none of the above 
+--------------------------------------------> Inconsistent status (no asynchronous machine check error 

set) (Section 15.5.2.7) 
MCHK_SYNC_ERROR 

+----+ (select all, at least one) 
I I 
I I S_ICSR<LOCK> 
I +----+ (select all, at least one) 
I I I 
I I I S ICSR<DPERR> 
I I +---=-----------------------------------> VIC (virtual instruction cache) data parity error 
I I I (Section 15.5.2.6.1) 
I I I S ICSR<TPERR> 
I I +---=-----------------------------------> VIC tag parity error (Section 15.5.2.6.1) 
I I I 
I I I none of the above 
I I +---------------------------------------> Inconsistent status (no ICSR error bits set) 
I I (Section 15.5.2.7) 
v v 
1 2 

Figure 15-5 Cont'd on next page 
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Figure 15-5 (Cont): Cause Parse Tree for Machine Check Exceptions 

2 
v v 

v 
1 

S BCEDSTS<LOCK> AND 
NOT S PCSTS<PTE ER> 

+----+ (select one> 
I I 
I I S BCEDSTS<BAD ADDR> 
I +---=+ (select o~e) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

+----------------------------------> Bcache data RAM addressing error on D-stream read 
or read-lock (Section 15.5.2.6.2) 

+----------------------------------> Bcache data RAM addressing error on I-stream read 
I (Section 15.5.2.6.2) 
I otherwise 
+----------------------------------> Not a synchronous machine check cause (see soft and 

hard error interrupt events) 
S_BCEDSTS<UNCORR> 

+----+ (select one) 
I I 
I I S_BCEDSTS<DR_CMD>aDREAD 
I +----------------------------------> Bcache data RAM uncorrectable ECC error on D-stream read 
I or read-lock (Section 15.5.2.6.2) 
I S_BCEDSTS<DR_CMD>-IREAD 
I +----------------------------------> Bcache data RAM uncorrectable ECC error on I-stream read 
I I (Section 15.5.2.6.2) 
I I otherwise 
I +----------------------------------> Not a synchronous machine check cause (see soft and 
I hard error interrupt events) 
I none of the above 
+---------------------------------------> Inconsistent status (no BCEDSTS unrecoverable error bits 

set) (Section 15.5.2.7) 
S BCEDSTS<LOST ERR> AND 
NOT S_PCSTS<PTE_ER> 

+--------------------------------------------> Lost unrecoverable Bcache data RAM error 
I (Section 15.5.2.6.3) 
I S_CEFSTS<LOCK> AND 
I NOT S_PCSTS<PTE_ER> 
+----+ (select one) 

v 
2 

S_CEFSTS<TIMEOUT> 
+----+ (select one) 

v 
3 

S CEFSTS<TO MBOX> AND 
(NOT S CEFSTS<REQ FILL DONE» 

+----+ (select one) - -
I I 
I I S_CEFSTS<IREAD> 
I +-----------------------------> I-stream NDAL read timeout error (Section 15.5.2.6.4) 
I I 
I I S_CEFSTS<OREAD> 
I +-----------------------------> D-stream NDAL ownership read timeout error 
I I (Section 15.5.2.6.4) 
I I otherwise 
I +-----------------------------> D-stream NDAL read timeout error (read only operand) 
I (Section 15.5.2.6.4) 
I otherwise 
+----------------------------------> Not a synchronous machine check cause (see soft and 

hard error interrupt events) 

Figure 15-5 Cont'd on next page 
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Figure 15-5 (Cont): Cause Parse Tree for Machine Check Exceptions 

1 
v 

2 
v 

3 
v 

S_CEFSTS<RDE> 
+----+ (select one) 

I 
I S_CEFSTS<TO_MBOX> AND 
I (NOT S_CEFSTS<REQ_FILL_DONE» 
+----+ (select one) 

S_CEFSTS<IREAD> 
+-----------------------------> I-stream NDAL read data error (Section 15.5.2.6.5) 

S CEFSTS<OREAD> 
+---=-------------------------> D-stream NDAL ownership read data error 
I (modify operand or read-lock) (Section 15.5.2.6.5) 
I otherwise 
+-----------------------------> D-stream NDAL read data error (read only operand) 

(Section 15.5.2.6.5) 
otherwise 

+----------------------------------> Not a synchronous machine check cause (see soft and 
hard error interrupt events) 

S CEFSTS<UNEXPECTED FILL> 
+---=-----------------=-----------------> Not a synChronous machine check cause (see soft error 
I interrupt events) 
I otherwise 
+---------------------------------------> Inconsistent status (either CEFSTS<RDE>, CEFSTS<TIMEOUT>, 

or CEFSTS<UNEXPECTED FILL> should be set) 
(Section 15.5.2.7) -

S CEFSTS<LOST ERR> AND 
NOT S_PCSTS<PTE_ER> 

+--------------------------------------------> Lost Bcache fill error (Section 15.5.2.6.6) 
I 
I S_NESTS<NOACK> AND 
I NOT S_PCSTS<PTE_ER> 
+----+ 

S _ NEOCMD<CMD>-IREAD 
+---------------------------------------> Unacknowledged I-stream NDAL read (Section 15.5.2.6.7) 
I 
I S _ NEOCMD<CMD>-DREAD 
+---------------------------------------> Unacknowledged D-stream NDAL read (read only operand) 
I (Section 15.5.2.6.7) 
I S NEOCMD<CMD>-OREAD 
+---=-----------------------------------> Unacknowledged D-stream NDAL read (modify operand or reac 
I (Section 15.5.2.6.7) 

,I S_NEOCMD<CMD>-WRITE OR WDISOWN 
+---------------------------------------> Not a synchronous machine check cause (see hard error 
I interrupt events) 
I otherwise 
+---------------------------------------> Inconsistent status (invalid command in NEOCMD<CMD» 

(Section 15.5.2.7) 
S NESTS<LOST OERR> AND 
NOT S PCSTS<PTE ER> 

+-------=---------=--------------------------> Lost unrecoverable NDAL output error (Section15.5.2.6.8) 
I 

v v 
1 2 

Figure 15-5 Cont'd on next page 
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Figure 15-5 (Cont.): Cause Parse Tree for Machine Check Exceptions 

1 2 
v v 

S BCEDSTS<LOCK> AND 
S-PCSTS<PTE ER>1 

+---=+ (select-one) 
I I 
I I S BCEDSTS<BAD ADDR> 
I +----+ (select one) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

v v 
1 2 

S BCEDSTS<DR_CMD>-DREAD 
+---=------------------------------> Bcache data RAM addressing error on PTE read 
I (Section 15.5.2.6.9.2) 
I S BCEDSTS<DR CMD>-IREAD 
+---=+ (select one) 

S BCEDSTS<LOST ERR> 
+---=------------=------------> Multiple errors in context of PTE read error 
I (Section 15.5.2.6.9.6) 
I otherwise 
+-----------------------------> Bcache data RAM error addressing error on I-stream read 

(Section 15.5.2.6.2) 
otherwise 

+----+ (select one) 

+-----------------------------> Multiple errors in context of PTE read error 
I (Section 15.5.2.6.9.6) 
I otherwise 
+-----------------------------> Not a synchronous machine check cause (see soft and 

hard error interrupt events) 

+----+ (select one) 
I I 
I I S BCEDSTS<DR CMD>-DREAD 
I +---=----------=-------------------> Bcache data RAM uncorrectable ECC error on PTE read 
I I (Section 15.5.2.6.9.2) 
I I S BCEDSTS<DR CMD>-IREAD 
I +---=+ (select one) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

S BCEDSTS<LOST ERR> 
+---=------------=------------> Multiple errors in context of PTE read error 
I (Section 15.5.2.6.9.6) 
I otherwise 
+-----------------------------> Bcache data RAM error uncorrectable error on I-stream read 

(Section 15.5.2.6.2) 
otherwise 

+----+ (select one) 
I 
I S_BCEDSTS<LOST_ERR> 
+-----------------------------> Multiple errors in context of PTE read error 
I (Sect ion 15. 5 • 2 • 6. 9. 6) 
I otherwise 
+-----------------------------> Not a synchronous machine check cause (see soft and 

hard error interrupt events) 
I none of the above 
+---------------------------------------> Inconsistent status (no BCEDSTS unrecoverable error b:ts 

set) (Section 15.5.2.7) 

Figure 15-5 Cont'd on next page 

1 At least one potential PTE cause must be found or the status is inconsistent (see Section 15.5.2.7). Some of the outcomes 
indicate a potential synchronous machine check cause which is not a potential PTE read error cause. These errors should 
be treated separately. 
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Figure 15-5 (Cont.): Cause Parse Tree for Machine Check Exceptions 

1 2 
v v 

v 
1 

S CEFSTS<LOCK> AND 
S-PCSTS<PTE ER>1 

+---=+ (select-one) 

v 
2 

S_CEFS TS<T IMEOOT> 
+----+ (select one) 
I I 
I I S CEFSTs<TO MBOX> AND 
I I (NOT S CEFsTS<REQ FILL DONE» 
I +----+ (select one) - -
I I I 
I I I S CEFsTS<IREAD> 
I I +---=+ (select one) 

I 

v 
3 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

S CEFSTS<LOST ERR> 
+---=-----------=--------> Multiple errors in context of PTE read error 
I (Section 15.5.2.6.9.6) 
I otherwise 
+------------------------> I-stream NDAL read timeout error {Section 15.5.2.6.4) 

S CEFSTS<OREAD> 
+---=+ (select one) 

S CEFSTS<LOST ERR> 
+---=-----------=--------> Multiple errors in context of PTE read error 
I (Section 15.5.2.6.9.6) 
I otherwise 
+------------------------> D-stream NDAL ownership read timeout error 

(Section 15.5.2.6.4) 
otherwise 

+-----------------------------> D-stream NDAL read timeout error (PTE read) 
(Section 15.5.2.6.9.3) 

I otherwise 
+----+ (select one) 

I 
I S CEFSTS<LOST ERR> 
+---=-----------=-------------> Multiple errors in context of PTE read error 
I (Section 15.5.2.6.9.6) 
I otherwise 
+-----------------------------> Not a synchronous machine check cause (see soft and 

hard error interrupt events) 

Figure 15-5 Cont'd on next page 

1 At least one potential PTE cause must be found or the status is inconsistent (see Section 15.5.2.7). Some of the outcomes 
indicate a potential synchronous machine check cause which is not a potential PTE read eITOr cause. These errors should 
be treated separately. 

15-30 Error Handling DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Speci:6.cation, Revision 1.1, August 1991 

Figure 15-5 (Cont): Cause Parse Tree for Machine Check exceptions 

1 
v 
I 
I 
I 
I 
I 
I 
I 

2 
v 

v v 
1 2 

3 
v 

+----+ (select one) 
I 
I S_CEFSTS<TO_MBOX> AND 
I (NOT S CEFSTS<REQ FILL DONE» 
+----+ (select one) - -
I I 
I I S_CEFSTS<IREAD> 
I +----+ (select one) 
I I I 
I I I S CEFSTS<LOST ERR> 
I I +---=-----------=--------> Multiple errors in context of PTE read error 
I I I (Section 15.5.2.6.9.6) 
I I I otherwise 
I I +------------------------> I-stream NDAL read data error (Section 15.5.2.6.5) 
I I 
I I S_CEFSTS<OREAD> 
I +----+ (select one) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

S CEFSTS<LOST ERR> 
+---=-----------=--------> Multiple errors in context of PTE read error 
I (Section 15.5.2.6.9.6) 
I otherwise 
+------------------------> D-stream NDAL ownership read data error 

(Section 15.5.2.6.5) 
otherwise 

+-----------------------------> D-stream NDAL read timeout error (PTE read) 
(Section 15.5.2.6.9.4) 

I otherwise 
+----+ (select one) 

I 
I S CEFSTS<LOST ERR> 
+---=-----------=-------------> Multiple errors in context of PTE read error 
I (Section 15.5.2.6.9.6) 
I otherwise 
+-----------------------------> Not a synchronous machine check cause (see soft and 

hard error interrupt events) 
S CEFSTS<UNEXPECTED FILL> 

+---=+ (select one) -

S CEFSTS<LOST ERR> 
+---=-----------=------------------> Multiple errors in context of PTE read error 
I (Section 15.5.2.6.9.6) 
I otherwise 
+----------------------------------> Not a synchronous machine check cause (see hard error 

interrupt events) 
otherwise 

+---------------------------------------> Inconsistent status (either CEFSTS<RDE>, CEFSTS<TIMEOUT>, 
or CEFSTS<UNEXPECTED FILL> should be set) 
(Section 15.5.2.7) -

Figure 15-5 Cont'd on next page 

1 At least one potential PTE cause must be found or the status is inconsistent (see Section 15.5.2.7). Some of the outcomes 
indicate a potential synchronous machine check cause which is not a potential PTE read error cause. These elTors should 
be treated separately. 
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Figure 15-5 (Cont): Cause Parse Tree for Machine Check Exceptions 

1 2 
v v 

S NESTS<NOACK> AND 
S:PCSTS<PTE_ER>l 

+----+ 
I 
I S _ NEOCMD<CMD>-IREAD 
+----+ (select one) 
I I 
I I S NESTS<LOST OERR> 
I +---=----------=-------------------> Multiple errors in context of PTE read error 
I I (SectionlS.S.2.6.9.6) 
I I otherwise 
I +----------------------------------> Unacknowledged I-stream NDAL read (Section lS.S.2.6.7) 
I 
I S _ NEOCMD<CMD>-DREAD 
+---------------------------------------> Unacknowledged D-stream NDAL read (PTE read) 
I (Section lS.S.2. 6. 9.5) 
I S _ NEOCMD<CMD>-OREAD 
+----+ (select one) 
I I 
I I S NESTS<LOST OERR> 
I +---=----------=-------------------> Multiple errors in context of PTE read error 
I I (Section lS.S.2.6.9.6) 
I I otherwise 
I +----------------------------------> Unacknowledged D-stream NDAL read (modify operand or rea( 
I (SectionlS.S.2.6.7) 
I S_NEOCMD<CMD>-WRITE OR WDISO'WN 
+----+ (select one) 

I 
I S_NESTS<LOST_OERR> . 
+----------------------------------> Multiple errors in context of PTE read error 
I (Section 15.5.2.6.9.6) 
I otherwise 
+----------------------------------> Not a synchronous machine check cause (see hard error 

interrupt events) 
otherwise 

+---------------------------------------> Inconsistent status (invalid command in NEOCMD<CMD» 
(Section lS.S.2. 7) 

none of the above 
+--------------------------------------------> Inconsistent status (no cause found for synchronous mach: 

(Section lS.S.2. 7) 
otherwise 

+-------------------------------------------------> Inconsistent status (unknown machine check code) 
(Section lS. 5.2.7) 

Notation: 
(select one) 

(select all) 
(select all, at least one) 

otherwise 
none of the above 

- Exactly one case must be true. If zero or more than one is 
true, the status is inconsistent. 

- More than one case may be true. 
- All the cases are possible causes of a particular machine check. 

More than one may be true. At least one must be true or the status 
is inconsistent. A case is not considered true if it evaluates to 
-Not a machine check causew • 

- fall-through case for (select one) if no other case is true. 
- fall-through case for (select all) or (select all, at least one) 

if no other case is true. 

NOTE 

References to VR and PSL<FPD> in the "retry condition" parts of the following 
descriptions of machine check causes should be understood to refer to the named hit 
in the machine check stack frame. 

1 At least one potential PTE cause must be found or the status is inconsistent (see Section 15.5.2.7). Some of the outcomes 
indicate a potential synchronous machine check cause which is not a potential PTE read error cause. These errors should 
be treated separately. 
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15.5.2.1 MCHK_UNKNOWN_MSTATUS 

Description: An unknown memory management status was returned from the Mbox in response 
to a microcode memory management probe. This is probably due to an internal elTOr in the Mbox, 
Ebox, or microsequencer. 

Recovery procedures: No explicit error recovery is required in response to this elTOr. 

Retry condition: This error can only happen in microcode processing of memory management 
faults for a virtual memory reference. Retry if: 

(VR = 1) OR (PSL<FPD> = 1). 

15.5.2.2 MCHK_INT.ID _VALUE 

Description: An illegal interrupt ID was returned in INT.SYS during interrupt processing 
in microcode. This is probably due to an internal error in the interrupt hardware, Ebox, or 
micro sequencer. 

Recovery procedures: No explicit error recovery is required in response to this elTOr. 

Retry condition: This error can only happen in microcode processing of interrupts which occurs 
between instructions or the middle of interruptable instructions. Retry if: 

(VR = 1) OR (PSL<FPD> = 1). 

15.5.2.3 MCHK_ CANT _GET_HERE 

Description: Microcode execution reached a presumably impossible address. This is probably 
due to a microcode bug or an internal error in the Ebo:x or microsequencer. 

Recovery procedures: No explicit error recovery is required in response to this error. 

Retry condition: Retry if: 

(VR = 1) OR (PSL<FPD> = 1). 

1S.5.2A MCHK_MOVC.STATUS 

Description: During the execution of MOVCx, the two state bits that encode the state of the 
move (forward, backward, fill) were found set to the fourth (illegal) combination. This is probably 
due to an internal error in the Ebox or micro sequencer. 

Recovery procedures: No explicit error recovery is required in response to this error. 

Retry condition: Because the state bits encode the operation, the instruction can not be 
restarted in the middle of the MOVCx. If software can determine that no specifiers have been 
over-written (MOVCx destroys RO-RS and memory due to string writes), the instruction may be 
restarted from the beginning by clearing PSL<FPD>. This should be done only if the source and 
destination strings do not overlap and if: 

(PSL<FPD> = 1). 
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15.5.2.5 MCHK-"SYNC_ERROR 

This machine check code reports serious errors which interrupt the microcode at an arbitrary 
point. Many internal machine states (e.g., bits in the PSL, the PC or SP) are questionable. 
Recovery is typically not possible. 

15.5.2.5.1 TB Parity Errors 

Description: Parity errors in tags and PrE data in the TB cause an asynchronous machine 
check by directly forcing a microtrap in the microsequencer. The reference being processed by 
the Mbox may be for and explicit Ebox reference, an operand prefetch or DEST_ADDR reference 
from the specifier queue, or an instruction prefetch from the lREF latch. Also the reference could 
be a read generated by the Mbox within a TB miss for a process space virtual address since 
process page tables are stored in virtual memory (system space). 

Description (TB PTE Data Parity Error): A parity error in the PrE data portion of a TB 
entry which hit had a parity error. 

Description (TB Tag Parity Error): A parity error in the tag portion of a TB entry which hit 
had a parity error. 

Recovery procedures: To recover, clear TBSTS<LOCK>. 

Retry condition: Since the Ibox is nearly always able to issue instruction prefetches, TB parity 
errors could occur at practically any time. This makes it impossible to determine what machine 
state is incorrect. There is no guarantee that all writes with a different PSL<CUR_MOD> 
completed successfully. Therefore even the stack frame PSL<CUR_MOD> can't be used to 
determine whether system data is uncorrupted. 

So retry is not possible. Crash the system. 

15.5.2.5.2 Ebox S3 Stall Timeout Error 

Description: S3 stall timeout errors occur when the Ebox microcode is stalled waiting for some 
result or action which will probably never occur. S4 stalls in the Ebox cause S3 stalls and therefore 
can lead to S3 stall timeout. Additionally, field queue stall and instruction queue stall can cause 
this timeout. (These last two situations are not Ebox pipeline stalls, but they are similar in 
effect.) The timeout can occur in any microfiow for a number of reasons. Machine state may be 
corrupted. This timeout is probably due to an internal error in the NVAX CPU such that one 
box is waiting for another to do something which it isn't going to do. An example would be if the 
Ebox microcode expected one more source specifier than the Ibox delivered. The Ebox will stall 
until the timeout occurs waiting for the Ibox to deliver one more source operand via the source 
queue. 

S3 timeout errors can be caused by failures of various pipeline control circuits in the Ebox. Also 
a deadlock within a box or across multiple boxes can cause this error. 

Recovery procedures: To recover, clear the S3_STALL_TIMEOUT bit in ECR. 

Retry condition: Because this error can occur at any time, it is not possible to determine what 
machine state is incorrect. Also, this error should never happen and indicates either a serious 
failure in the NVAX CPU chip or a design bug. So retry is not possible. Crash the system. 
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15.5.2.6 MCHK_SYNC _ERROR 

This machine check code reports errors which occur in memory or 10 space instruction fetches or 
data reads. Except in the case of PTE read errors, core machine state should be consistent since 
microcode has to explicitly access an operand or instruction in order incur this error. Microcode 
does not access memory results or dispatch for a new instruction execution with core machine 
state in an inconsistent state. 

PTE read errors on write transactions can cause a microtrap at an arbitrary time, and so core 
machine state may be inconsistent. 

Many of the error events described below for synchronous machine check are possible causes. IT 
more than one is present, there is no way to determine which actually caused the machine check. 
If exactly one possible cause is discovered, then the machine check may be attributed to that 
cause. The reason multiple causes may be present is that the NVAX CPU prefetches instructions 
and data. If the CPU branches or takes an exception before using data it has requested, then 
the pending machine check is taken as a soft error interrupt (though it might not be recoverable 
in the final analysis). 

If multiple errors occur, recovery and retry may be possible. It is recommended that retry from 
multiple errors be done only if one error report does not interfere with analysis of, and recovery 
from, another error. 

An example of such interference is when S_BCEDSTS reports a Bcache data RAM uncorrectable 
error on a writeback while S_NESTS is reporting a NDAL command no-ACK error. Normally, 
S_NESTS<BADWDATA> would be reported by the writeback error and S_NEOADR would report 
the address of the lost writeback. The no-ACK error makes recovery from the writeback error 
much more difficult. But there it is unlikely that these two errors would occur together since 
they are understood to be uncorrelated events. So this case is considered unrecoverable. 

If two errors are entirely separate, neither interfering with the analysis and recovery of the 
other, then it is acceptable to retry from these errors provided all the error analyses and recovery 
procedures result in a retry indicatif!';, 

In several cases, lost errors are tolerated. See Section 15.3.4.2 for a list of these special cases. 
In each case, the strong tendency to prefetch data exhibited by the NVAX pipeline makes the 
particular lost error likely, given that one error of that kind occurred. Also, in each case, if data 
is lost in the lost error, a hard error interrupt is posted. So these errors are tolerated as long as 
they do not cause a hard error interrupt. 

Errors in opcode or operand specifier fetching are always detected before architecturally visible 
state within the CPU is modified. This means the VR bit from the machine check stack frame 
should be 1. This error handling analysis attempts to recover from multiple errors, so the retry 
condition for each error is -made as general as possible. If the machine check handler finds only 
errors of the kind listed here, then VR should be 1 and it is an inconsistent report if it is not (see 
Section 15.5.2.7). 

• VIC parity errors. 
• Bcache data RAM uncorrectable ECC and addressing errors in I-stream reads. 

• Bcache timeout errors and fill read data errors in I-stream reads. 

• Unacknowledged NDAL I-stream reads 
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15.5.2.6.1 VIC Parity Errors 

Description: A parity error was detected in the VIC tag or data store in the Ibox. VIC parity 
errors cause a machine check when the Ebox microcode requests dispatch to a new instruction 
execution microflow or attempts to access an operand within an instruction execution microflow. 

VIC Data Parity Errors: A parity error occurred in the data portion of the VIC. 

VIC Tag Parity Errors: A parity error occurred in the tag portion of the VIC. 

In all cases, the quadword virtual address of the error is in VMAR. 

Pending Interrupts: A soft error interrupt should be pending. 

Recovery procedures: To recover, disable and :flush the VIC by re-writing all the tags (using 
the procedure in Section 15.3.3~1.1.1). Also, clear ICSR<LOCK>. 

Retry condition: Retry if: 

(VR = 1) OR (PSL<FPD> = 1). 

15.5.2.6.2 Bcache Data RAM Uncorrectable ECC Errors and Addressing Errors 

Description (addressing errors): A Bcache addressing error was detected by the Cbox in an 
I-stream or D-stream read during a Bcache hit. Addressing errors are the result of a mismatch 
between the address the Cbox drives to the RAMs for a read access and the address used to write 
that location. A multiple bit data error can appear to be addressing error, though it is extremely 
unlikely. 

Description (uncorrectable ECC errors): A Bcache uncorrectable data error was detected by 
the Cbox in an I-stream or D-stream read during a Bcache hit. Uncorrectable data errors are the 
result of a multiple bit error in the data read from the Bcache. An addressing error with a single 
bit data error will appear as an uncorrectable data error. 

Description (all cases): The Bcache is in ETM. ~ _BCEDIDX contains the cache index of the 
error, and S_BCEDECC contains the syndrome calculated by the ECC logic. 

The physical address of the reference can be found by reading the tag for the data block (using 
the procedure in Section 15.3.3.1.2.4). (If the physical address is found to be in 10 space, it is an 
inconsistent status. See Section 15.5.2.7.) If the block's tag is found to contain an uncorrectable 
ECC error, then the address can not be determined. 

It should never be the case that both S_BCEDSTS<BAD_ADDR> and S_BCEDSTS<UNCORR> 
are set. If they are, it is an inconsistent status (see Section 15.5.2.7). 

Pending Interrupts: A soft error interrupt should be pending. 

Recovery procedures (addressing errors): To recover, clear BCEDSTS<LOCK, BAD_ADDR>. 

Recovery procedures (uncorrectable ECC errors): To recover, clear BCEDSTS<LOCK, 
UNCORR>. 

Recovery procedures (both cases): Flush the Bcache. Clear CCTL<HW _ETM> (after flushing 
the Bcache). If the data is owned by the Bcache and if the error repeats itself (is not transient), 
then a writeback error will result from the :flush procedure. Software should prepare for this by 
clearing NESTS and BCEDSTS errors. 
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Retry condition: If no writeback error occurs in the Bcache flush, retry if: 

(VR = 1) OR (PSL<FPD> = 1). 

If a writeback. error occurs in the Bcache flush, then the data is presumed to be unrecoverable. See 
Section 15.8.1.10 for a description of handling an error in a writeback. Given that the address is 
available (no error in the tag store), software should determine if the error is fatal to one process 
or· the whole system and take appropriate action. Otherwise, crash the system. 

15.5.2.6.3 Bcache Lost Data RAM Access Error 

Description: A lost Bcache data RAM error may have been a machine check. cause. It also 
might not have been. Lost Bcache data RAM errors which cause machine checks are always read 
errors, and can be retried unless the aborted instruction has altered essential state. Whether or 
not it- is a machine check cause, the error will have caused either a soft or hard error interrupt. 
Lost Bcache data RAM errors which can not have caused a machine check are dealt with in the 
sections on hard and soft error interrupts. 

Lost Bcache data RAM errors may be caused by more than one operand prefetch to the same 
cache block. 

Recovery for lost Bcache data RAM errors depends on whether the pending interrupt is a hard or 
soft error interrupt. The machine check error handling software should defer recovery until the 
expected hard or soft error interrupt occurs. Once the interrupt is taken, the error recovery and 
restart instructions found in the hard error interrupt and soft error interrupt sections should be 
referenced. See Section 15.7.1.3.2 and Section 15.8.1.15. 

Software should employ some mechanism to record that an interrupt for a lost Bcache data RAM 
error is pending. This mechanism should allow detection of a case in which an expected interrupt 
does not occur (once IPL is lowered). If the expected interrupt does not occur when IPL is lowered, 
then a serious inconsistency exists and the system should be crashed. 

The Bcache in in ETM. 

Pending Interrupts: A hard or soft error interrupt should be pending, or possibly both. 

Recovery procedures: No specific recovery action is required. 
Note that BCEDSTS<LOST_ERR> is not cleared. It will be cleared by the hard or soft error 
interrupt handler. Also, the Bcache must remain in ETM until the error interrupt occurs. 

Retry condition: Retry only if: 

(VR = 1) OR (PSL<:FPD> = 1). 

15.5.2.6.4 NDAL I-Stream or D·Stream Read or D-stream Ownership Read Timeout Errors 

Description: An I-stream or D-stream read or D-stream ownership read timed out before any 
fill quadword was received. This is not an accepted means for a system environment to notify the 
NVAX CPU of "non-exi.stent memory or 10 location". The error could he caused by an error in the 
system environment or an NDAL parity error on the returned data. It also could be caused by 
some previous error in the system environment or this CPU which leaves a cache block marked 
as owned in memory and not marked as owned in any cache in the system. 
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S_CEFSTS<COUNT> indicates the number of quadwords received before the error. 
(S_CEFSTS<COUNT> should always be 11 (binary) if the address is in 10 space.) The physical 
address is in S_CEFADR. 

CEFSTS<WRITE> should not be set. If it is, it is an inconsistent status (see Section 15.52.7). 

I-stream read: The Bcache is not in ETM. 

I-stream errors cause a machine check when the Ebox microcode requests dispatch to a new 
instruction execution microflow or attempts to access an operand within an instruction execution 
microfiow where the I-stream data with the error is required for the dispatch or access. 

D-stream read: The Bcache is not inETM. 

D-stream read errors cause a machine check. when the Ebox microcode accesses prefetched 
operand data or when the Mbox returns data tagged with an error indication to the Ebox register 
file. . 

D-stream ownership read: The Bcache is in ETM. No write data has been merged with the 
returning fills. 

The address should not be in 10 space. If it is, it is an inconsistent status (see Section 15.5.2.7). 

D-stream ownership read errors eause a machine check when the Ebox microcode accesses 
prefetched operand data or when the Ebox issues a read-lock. 

Pending Interrupts (all cases): A soft error interrupt should be pending. 

Recovery procedures (all cases): Clear CEFSTS<LOCK, TIMEOUT>. 

Additional Recovery procedures for D-stream ownership read: Flush the Bcache. Clear 
CCTL<HW _ETM> (after flushing the Bcache). 

Depending on the system environment, memory may have set its ownership bit for this block. 
The data in memory is presumably still good. The Beache block is marked invalid in the Bcache 
tag store. 

If S_CEFSTS<COUNT> is greater than 0, then part of the data also is in the Beache. In general, 
it is not possible to determine which quadwords are valid. However, if the S_CEFSTS<COUNT> 
is 11 (binary) and S_ CEFSTS<REQ....FILL_DONE> is not set, then the three quadwords in the 
Bcache block other than the quadword pointed to by S_ CEFADR are valid. 

If S_CEFSTS<COUNT> is greater than 0, and the address in S_CEFADR is not in 10 space, 
then the block was not owned before the operation began. In this case, use the procedures in 
Section 15.3.3.1.2.2 to determine if memory's ownership bit is set and this CPU owns the block. 
If so, use the system specific procedure (see Section 15.3.3.1.22.2) to reset it. In some systems 
(the XMI2 for example) this may require a quadword of correct data be written to memory to 
reset the ownership bit. Section 15.3.3.1.2.3 describes procedures for extracting data from the 
Bcache data RAMs in this case. 

If memory's ownership hit was left set as a result of this error and no non-destructive procedure 
exists for restoring it, then the hexaword block is lost. 

Retry condition a-stream or D-stream read): Retry if the address is not in 10 space and: 

(VR = 1) OR (PSL<FPD> = 1). 
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Retry condition (D-stream. ownership read): Given that no data is lost, retry if the memory 
state repair procedure is successful or not called for and if: 

(VR = 1) OR (PSL<FPD> = 1). 

If the hexaword block could not be repaired or data is lost, software must determine if the error 
is fatal to one process or the whole system and take appropriate action. (If it is fatal only to one 
process, use the system dependent procedure for reseting memory's ownership bit.) 

Post Retry Recovery: If the same fill error recurs on retry, then the block. is probably "lost".1 
Software must determine if the error is fatal to one process or the whole system and take 
appropriate action. Of it is fatal only to one process, use the system dependent procedure for 
reseting memory's ownership hit.) 

NOTE 

It may be appropriate in this case to first cause each CPU in the system to flush its 
Bcache, and then retry once more. 

NOTE 

It may be that another error (such as an uncorrectable tag store error on a coherence 
request) will be repaired by the soft error interrupt handler before the retry actually 
occurs, fortuitously repairing the cause of the fill error. 

15.5.2.6.5 NDAL I-Stream or D-Stream Read or D-Stream Ownership Read Data Errors 

Description: An I-stream or D-stream read· or D-stream ownership. read ended with 
an RDE (read data error) NDAL cycle before any the fill quadwords were received. If 
S_CEFSTS<COUNT> is 0 or the address in S_CEFADR is an 10 space address, this is an accepted 
means for a system environment to notify the NVAX CPU of "non-existent memory or 10 location". 
Otherwise, the error could be caused by an error in the system environment. It also could be 
caused by some previous error in the system environment or this CPU which leaves a cache block 
marked as owned in memory and not marked as owned in any cache in the system. 

S_CEFSTS<COUNT> indicates the number of quadwords received before the error. 
(S_CEFSTS<COUNT> should always be 11 (binary) if the address is in 10 space.) The physical 
address is in S_CEFADR. . 

CEFSTS<'WRITE> should not be set. If it is, it is an inconsistent status (see Section 15.5.2.7). 

I-stream read: The Bcache is not in ETM. 

I-stream errors cause a machine check when the Ebox microcode requests dispatch to a new 
instruction execution microflow or attempts to access an operand within an instruction execution 
microfiow where the I-stream data with the error is required for the dispatch or access. 

D-stream read: The Bcache is not in ETM. 

D-stream read errors cause a machine check when the Ebox microcode accesses prefetched 
operand data or when the Mbox returns data tagged with an error indication to the Ebox register 
file. 

1 In this case the more general sense of 'lost" is implied. That is, memory's ownership bit is set but no cache writes the 
data back when a read is done to that location. In some systems, it may be possible to identify which CPU memory 
"thinks" owns the data, but it is often not posSlble to determine which error caused this situation to arise. 
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D-stream ownership read: The Bcache is in ETM. No write data has been merged with the 
returning fills. 

The address should not be in 10 space. If it is, it is an inconsistent status (see Section 15.5.2.7). 

D-stream ownership read errors cause a machine check when the Ebox microcode accesses 
prefetched operand data or when the Ebox issues a read-lock. 

Pending Interrupts (all cases): A soft error interrupt should be pending. 

Recovery procedures (all cases): Clear CEFSTS<LOCK,RDE>. 

Additional Recovery procedures for D-stream ownership read: Flush the Bcache. Clear 
CCTL<HW_ETM> (after flushing the Bcache). 

Depending on the system environment, memory may have set its ownership bit for this block. 
The data in memory could still be good. The Bcache block is marked invalid in the Bcache tag 
store. 

IfS_CEFSTS<COUNT> is greater than 0, then part of the data also is in the Bcache. In general, 
it is not possible to determine which quadwords are valid. However, if the S_ CEFSTS<COUNT> 
is 11 (binary) and S_CEFSTS<REQ...FILL_DONE> is not set, then the three quadwords in the 
Bcache block other than the quadword pointed to by S_CEFADR are valid. 

If S_CEFSTS<COUNT> is greater than 0, and the address in S_CEFADR is not in 10 space, 
then the block was not owned before the operation began. In this case, use the procedures in 
Section 15.3.3.1.2.2 to determine if memory's ownership bit is set and this CPU owns the block. 
If so, use the system specific procedure (see Section 15.3.3.1.2.2.2) to reset it. In some systems 
(the XMI2 for example) this may require a quadword of correct data be written to memory to 
reset the ownership bit. Section 15.3.3.1.2.3 describes procedures for extracting data from the 
Bcache data RAMs in this case. 

If memory's ownership bit was left set as a result of this error and no non-destructive procedure 
exists for restoring it, then the heX8~t)rd block is lost. 

Retry condition (I-stream or D-stream read): Retry if the address is not in 10 space and: 

(VR = 1) OR (PSL<FPD> = 1). 

Retry condition (D-stream ownership read): Given that n9 data is lost, retry if the memory 
state repair procedure is successful or not called for and if: 

(VR = 1) OR (PSL<FPD> = 1). 

If the hexaword block could not be repaired or data is lost, software must determine if the errol 
is fatal to one process or the whole system and take appropriate action. (If it is fatal only to onE 
process, use the system dependent procedure for reseting memory's ownership bit.) 

Post Retry Recovery: If the same fill error recurs on retry, then the block is probably "lost". J 

Software must determine if the error is fatal to one process or the whole system and takE 
appropriate action. (If it is fatal only to one process, use the system dependent procedure fOl 
reseting memory's ownership hit.) 

1 In this case the more general sense of "lost" is implied. That is, memory's ownership bit is set but no cache writes th4 
data back when a read is done to that location. In some systems, it may be posSlble to identify which CPU memo~ 
"thinks" owns the data, but it is often not possible to determine which error caused this situation to arise. 
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NOTE 

It may be appropriate in this case to first cause each CPU in the.system to flush its 
Bcache, and then retry once more. 

NOTE 

It may be that another error (such as an uncorrectable tag store error on a coherence 
request) will he repaired by the soft error interrupt handler before the retry actually 
occurs, fortuitously repairing the cause of the fi.ll error. 

15.5.2.6.6 Lost Bcache Fill Error 

Description: Some number of fill errors occurred and were not latched because CEFSTS and 
CEFADR already contained a report of an unrecoverable error. There is no guarantee this error 
could have caused a machine check, though it may be a cause. Lost Bcache fill errors which 
cause machine checks are always read errors, and can be retried unless the aborted. instruction 
has altered essential state. If it is a machine check cause, the error will have caused a a soft. 
error interrupt. Lost Bcache fill errors which can not have caused a machine check are dealt with 
in the sections on hard and soft error interrupts. 

Lost Bcache fill errors may be caused by more than one operand prefetch to the same cache block. 

Recovery for lost Bcache fill errors depends on whether the pending interrupt is a hard or soft 
error interrupt. The machine check error handling software should defer recovery until the 
expected hard or soft error interrupt occurs. Once the interrupt is taken, the error recovery and 
restart instructions found in the hard error interrupt and soft. error interrupt sections should be 
referenced. See Section 15.7.1.3.2 and Section 15.8.1.15. 

Software should employ some mechanism to record that an interrupt for a lost Bcache fill error 
is pending. This mechanism should allow detection of a case in which an expected interrupt does 
not occur (once IPL is lowered). If the expected interrupt does not occur when IPL is lowered, 
then a serious iritonsistency exists and the system should be crashed. 

The Bcache may be in ETM (S_CCTL<HW_ETM> will be set if it is). 

Pending Interrupts: A hard or soft error interrupt should be pending, or possibly both. 

Recovery procedures: No specific recovery action is required. Note that CEFSTS<LOST_ERR> 
is not cleared. It will be cleared by the hard or soft error interrupt handler. Also, the Bcache 
must remain in ETM (if it is already) until the error interrupt occurs. 

Retry condition: Retry only if: 

(VR = 1) OR (PSL<FPD> = 1). 

15.5.2.6.7 Unacknowledged NDAL I-Stream or D-Stream Read or D-Stream Ownership Read 

Description: An I-stream or D-stream read or D-stream ownership read was no-ACKed by the 
system environment. This could be because the external component(s) received bad NDAL parity 
or it could be due to a system-specific notification of "non-existent memory or 10 location". The 
physical address is in S_NEOADR. 

I-stream read: The Bcache is not in ETM. 
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I-stream errors cause a machine check when the Ebox microcode requests dispatch to a new 
instruction execution microfiow or attempts to access an operand within an instruction execution 
microfiow where the I-stream data with the error is required for the dispatch or access. 

D-stream read: The Bcache is not in ETM. 

D-stream read errors cause a machine check when the Ebox microcode accesses prefetched 
operand data or when the Mbox returns data tagged with an error indication to the Ebox register 
file. 

D-stream ownership read: The Bcache is in ETM. 

The address should not be in 10 space. If it is, it is an inconsistent status (see Section 15.5.2.7). 

D-stream ownership read errors cause a machine check when the Ebox microcode accesses 
prefetched operand data. 

Pending Interrupts (all cases): A soft error interrupt should be pending. 

Recovery procedures (all cases): Clear NESTS<NOACK>. 

Additional Recovery procedure for D-stream ownership read: Flush the Bcache. Clear 
CCTL<HW _ETM> (after flushing the Bcache). 

Retry condition: Retry if: 

(VR = 1) OR (PSL<FPD> = 1). 

15.5.2.6.8 Lost NDAL Output Error 

Description: Some number of NDAL output errors occurred and were not latched because 
NESTS, NEOADR, NEDATHI, and NEDATLO already contained a report of an unrecoverable 
error. There is no guarantee this error could have caused a machine check, though it may be a 
cause. Lost NDAL output-errors which cause machine checks are always read errors, and can be 
retried unless the aborted ins'lction has altered essential state. If it is a machine check cause, 
the error will have caused a a soft error interrupt. Lost NDAL output elTors which can not have 
caused a machine check are dealt with in the sections on hard and soft error interrupts. 

Recovery for lost NDAL output errors depends on whether the pending interrupt is a hard or 
soft error interrupt. The machine check error handling software should defer recovery until the 
expected hard or soft error interrupt occurs. Once the interrupt is taken, the error- recovery and 
restart instructions found.in the hard error interrupt and soft error interrupt sections should be 
referenced. See Section 15.7.1.5 and Section 15.8.1.17. 

Software should employ some mechanism to record that an interrupt for a lost NDAL output error 
is pending. This mechanism should allow detection of a case in which an expected interrupt does 
not occur (once IPL is lowered). If the expected interrupt does not occur once IPL is lowered, 
then a serious inconsistency exists and the system should be crashed. 

The Bcache may be in ETM (S_CCTL<HW_ETM> will be set if it is). 

Pending Interrupts: A hard or soft elTor interrupt should be pending, or possibly both. 

Recovery procedures: No specific recovery action is required. Note that NESTS <LOST_ERR> 
is not cleared. It will be cleared by the hard or soft error interrupt handler. Also, the Bcache 
must remain in ETM (if it is already) until the error interrupt occurs. 
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Retry condition: Retry only if: 

(VR = 1) OR (PSL<FPD> = 1). 

15.5.2.6.9 PTE read errors 

The following sections describe error handling for PTE read errors. PrE read errors are read 
errors which happen in reads issued by the Mbox in handling a TB miss. Handling of these errors 
is different from handling the same underlying error (Bcache data RAM error, Bcache fill error, 
or NDAL no-ACK error) when PTE read' isn't the cause. 

If S_PCSTS<PTE_ER> is set, then a PTE read issued by the Mbox in processing a TB miss had 
an unrecoverable error. The TB miss sequence was aborted because of the error. The original 
reference can be any I-stream or D-stream read or write. If the original reference was issued by 
the Ebox, then the PTE read which incurred the error will have been retried once (because of a 
special hardware/microcode mechanism for handling PTE read errors on Ebox references). 

PTE read errors are difficult to analyze, partly because the read error report in the Cbox does 
not directly indicate that the failing read was a PrE read. Because of this and because PTE read 
errors should be rare (a very-small percentage of the reads issued by the Mbox are PrE reads), 
multiple errors which interfere with the analysis of the PTE error are not considered recoverable. 

The mechanism for reporting PTE read errors on Ebox references involves the Mbox forcing the 
Ebox (via a microtrap) into the microcode routine which normally handles memory management 
faults. This routine probes the address of the original reference, effectively retrying the failing 
PTE read. Assuming the error is not transient, the probe by microcode will cause a machine check. 
If the error does not occur on the probe, microcode restarts the current instruction stream. So 
machine checks caused by PTE read errors can easily occur with the particular PTE read error 
having occurred twice (with a lost error bit set in the relevant Cbox error register). The analysis 
here tolerates these particular multiple error reports and allows retry in those cases, provided 
the remainder of the error analysis indicates retry is appropriate. (Note that there is no way to 
tell from the information available to the machine check handler whether the original-reference 
was an Ebox or Ibox reference.) 

If the reference which incurs the PTE read error is a write, S_PCSTS<PTE_ER_ WR> will be set. 
In this case the original write is lost. No retry is possible partly because the instruction which 
took the machine check may be subsequent to the one which issued the failing write. Also, PTE 
read errors on write transactions can cause a machine check at a practically arbitrary time in a 
microcode flow, and core machine state may not be consistent. 

15.5.2.6.9.1 PTE Read Errors In Interruptable Instructions 

Another special case associated with PTE read errors exists for interruptable instructions 
(specifically CMPC3, CMPC5, LOCC, MOVC3, MOVCS, SCANC, SKPC, and SPAN C). For these 
instructions, if the PrE read error occurred for an Ebox reference, the PC in the machine 
check stack frame points to the instruction following the interrupted instruction. In this 
case, the SAVEPC element in the machine check stack frame is the PC of the interrupted 
instruction. However in all other cases, SAVEPC is UNPREDICTABLE. This case is not 
considered recoverable because analysis of the error information can not unambiguously conclude 
that this case is present. To tell that this case might be present, the error handler examines the 
FPD bit in the PSL in the machine check stack frame. If FPD is set in the stack frame (in the 
case of a PTE read error) then one of the following is true: 
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• One of the interruptable instructions listed above incurred the PTE read error. In this case, 
SAVEPC from the machine cheek stack frame points to the interrupted instruction, and PC 
in the stack frame points to the next instruction. 

• An REI instruction loaded a PSL with FPD set and a certain PC. The Ibox incurred the PrE 
read error in fetching the opcode pointed to by that PC. In this case, the PC in the stack 
frame points to the instruction which was the target of the REI and SAVEPC from the stack 
frame is unpredictable. 

It is not possible to determine with certainty which of the two above cases is the cause of a machine 
cheek with S_PCSTS<PTE_ER> set and stack frame PSL<FPD> set. Retry is not possible since 
software can not tell which PC to restart with. However, software may wish to probe the location 
pointed to by the PC in the stack frame, expecting a possible machine check as a result. If 
a machine check does occur, that is information indicating that the second case occurred (not 
totally unambiguously, of course). A very good guess may be made by a person examining the 
error report if the machine check stack frame and the result of this probe is available in the 
report. 

15.5.2.6.9.2 Bcache Data RAM Uncorrectable ECC Errors and Addressing Errors on PTE Reads 

Description (addressing errors): A Bcache addressing error was detected by the Cbox in a PrE 
read during a Bcache hit. Addressing errors are the result of a mismatch between the address 
the Cbox drives to the RAMs for a read access and the address used to write that location. A 
multiple bit data error can appear to be addressing error, though it is extremely unlikely. 

Description (uncorrectable ECC errors): A Bcache uncorrectable data error was detected 
. by the Cbox in a PTE read during a Bcache hit. Uncorrectable data errors are the result of a 

multiple bit error in the data read from the Bcache. An addressing error with a single bit data 
error will appear as an uncorrectable data error. 

Description (all cases): The Bcache in in ETM. S_BCEDIDX contains the cache index of the 
error, and BCEDECC l ltains the syndrome calculated by the ECC logic. The physical address 
of the PTE read can be found by reading the tag for the data block (using the procedure in 
Section 15.3.3.1.2.4). (If the physical address is found to be in 10 space, it is an inconsistent 
status. See Section 15.5.2.7.) 

If the block's tag is found to contain an ECC error, then the address can not be determined. 

S_BCEDSTS<LOST_ERR> may be set. This error is probably due to the same PTE error 
occurring more than once. This is an acceptable assumption unless a hard error interrupt occurs 
after handling this error. 

It should never be the case that both S_BCEDSTS<BAD_ADDR> and S_BCEDSTS<UNCORR> 
are set. If they are, it is an inconsistent status (see Section 15.5.2.7). 

Pending Interrupts: A soft error interrupt should be pending. 

Recovery procedures (addressing errors): To recover, clear BCEDSTS<LOCK, BAD_ADDR>. 

Recovery procedures (uncorrectable ECC errors): To recover, clear BCEDSTS<LOCK, 
UNCORR>. 
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Recovery procedures (both cases): Flush the Bcache. Clear CCTLdfW _ETM> (after flushing 
the Bcache). Clear PCSTS<PTE_ER>. If the data is owned by the Bcache and if the error repeats 
itself (is not transient), then a writeback error will result from the flush procedure. Software 
should prepare for this by clearing NESTS and BCEDSTS errors. 

Retry condition: If no writeback error occurs in the Bcache flush, retry if: 

(VR = 1) AND (PSL<FPD> = 0) AND (S_PCSTS<PTE_ER_ WR> = 0). 

If 

crash the system. 

If a writeback error occurs in the Bcache flush, then the data is presumed to be unrecoverable. See 
Section 15.8.1.10 for a description of handling an error in a writeback (software must determine 
if the error is fatal to one process or the whole system and take appropriate action). 

15.5.2.6.9.3 NDAL PTE Read Timeout Errors 

Description: A PTE read timed out before any fill quadword was received. This is not an 
accepted means for a system environment to notify the NVAX CPU of "non-existent memory or 
10 location". The error could be caused by an error in the system environment or an NDAL 
parity error on the returned data. It also could be caused by some previous error in the system 
environment or this CPU which leaves a cache block marked as owned in memory and not marked 
as owned in any cache in the system. 

S_CEFSTS<COUNT> indicates the number' of quadwords received before the error. 
(S_CEFSTS<COUNT> should always be 11 (binary) if the address is in 10 space.) The physical 
address is in S_CEFADR. 

CEFSTS<WRITE> should not be set. If it is, it is an inconsistent status (see Section 15.5.2.7). 

The Bcache is not in ETM. The read was not an ownership read, so this error can not have caused 
the ownership bits in memory to be left in the wrong state. 

S_ CEFSTS<LOST_ERR> may be set. This error is probably due to the same PTE error occurring 
more than once. This is an acceptable assumption unless a hard error interrupt occurs after 
handling this error. 

Pending Interrupts: A soft error interrupt should be pending. 

Recovery procedures: Clear CEFSTS<LOCK, TIMEOUT>. Clear PCSTS<PTE_ER>. 

Retry condition: Retry if: 

(VR = 1) AND (PSL<FPD> = 0) AND (S_PCSTS<PTE_ER_WR> = 0). 

Otherwise, crash the system. 

Post Retry Recovery: If the same fill error recurs on retry, then the block is probably "lost".l 
Software must determine if the error is fatal to one process or the whole system and take 
appropriate action. (If it is fatal only to one process, use the system dependent procedure for 
reseting memory's ownership bit.) 

1 In this case the more general. sense of "lost" is implied. That is, memory's ownership hit is set but no cache writes the 
data back when a read is done to that location. In some systems, it may be possible to identify which CPU memory 
"thinks" owns the data, but it is often not posSlble to determine which error caused this situation to arise. 

DIGITAL CONFIDENTIAL Error Handling 15-45 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

NOTE 

It may be appropriate in this case to first cause each CPU in the system to flush its 
Bcache, and then retry once more. 

NOTE 

It may be that another error (such as an uncorrectable tag store error on a coherence 
request) will be repaired by the soft error interrupt handler before the retry actually 
occurs, fortuitously repairing the cause of the fill error. 

15.5.2.6.9.4 NDAL PTE Read Data Errors 

Description: A PrE read ended with an RDE (read data error) NDAL cycle before any the fill 
quadwords were received. If S_CEFSTS<COUNT> is 0 or the address in S_CEFADR is an 10 
space address, this is an accepted means for a system environment to notify the NVAX CPU of 
"non-existent memory or 10 location". Otherwise, the error could be caused by an error in the 
system environment. It also could be caused by some previous error in the system environment 
or this CPU which leaves a cache block marked as owned in memory and not marked as owned 
in any cache in the system. 

S_ CEFSTS<COUNT> indicates the number of quadwords received before the error. 
(S_CEFSTS<COUNT> should always be 11 (binary) if the address is in 10 space.) The physical 
address is in S_CEFADR. 

CEFSTS<WRITE> should not be set. If it is, it is an inconsistent status (see Section 15.5.2.7). 

The physical address of the PTE is in S_CEFADR. The Bcache is not in ETM. The read could not 
have been an ownership read, so this error can not have caused the ownership bits in memory to 
be left in the wrong state. 

S_CEFSTS<LOST_ERR> may be set. This error is probably due to the same PTE error occurring 
more than once. 't'his is an acceptable assumption unless a hard error interrupt occurs after 
handling this error. 

Pending Interrupts: A soft error interrupt should be pending. 

Recovery procedures: Ch~ar CEFSTS<LOCK, RDE>. Clear PCSTS<PTE_ER>. 

Retry condition: Retry if: 

(VR = 1) AND (PSL<FPD> = 0) AND (S_PCSTS<PTE_ER_WR> = 0). 

Otherwise, crash the system. 

Post Retry Recovery: If the same fill error recurs on retry, then the block is probably "losttt.1 

Software must determine if the error is fatal to one process or the whole system and take 
appropriate action. (If it is fatal only to one process, use the system dependent procedure for 
reseting memory's ownership bit.) 

1 In this case the more general sense of ''lost'' is implied. That is, memory's ownership bit is set but no cache writes the 
data back when a read is done to that location. In some systems, it may be possible to identify which CPU memory 
"thinks" owns the data, but it is often not possible to determine which error caused this situation to arise. 
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NOTE 

It may be appropriate'in this case to first cause each CPU in the system to flush its 
Bcache, and then retry once more. 

NOTE 

It may be that another error (such as an uncorrectable tag store error on a coherence 
request) will be repaired by the soft error interrupt handler before the retry actually 
occurs, fortuitously repairing the cause of the fill error. 

15.5.2.6.9.5 Unacknowledged NDAL PTE Read 

Description: A PrE read was no-ACKed by the system environment. This could be because the 
external component(s) received bad NDAL parity or it could be due to a system-specific notification 
of "non-existent memory or 10 location". 

The physical address of the PTE is in S_NEOADR. The Bcache is not in ETM. 

S_CEFSTS<LOST_OERR> may be set. This error is probably due to the same PTE error occurring 
more than once. This is an acceptable assumption unless a hard error interrupt occurs after 
handling this error. 

Pending Interrupts: A soft error interrupt should be pending. 

Recovery procedures: Clear NESTS<NOACK>. Clear PCSTS<PTE_ER>. 

Retry condition: Retry if: 

(VR = 1) AND (PSL<FPD> = 0) AND (S_PCSTS<PTE_ER_ WR> = 0). 

Otherwise, crash the system. 

:15.5.2.6.9.6 Multiple Errors Which Interfere with Analysis of PTE Read Error 

Because PTE read errors lead to several unusual cases, retry is not recommended in the event 
that other errors cloud the analysis of the PTE read error. 

Pending Interrupts: A hard or soft error interrupt should be pending, or possibly both. 

Recovery procedures: No specific recovery action is called for. 

Retry condition: No retry is possible. Crash the system. 

15.5.2.7 Inconsistent Status in Machine Check Cause Analysis 

Description: A presumed impossible error report was found in the error registers. This could 
be due to a hardware failure or bug, or to incomplete analysis in this spec. 

Pending Interrupts: A hard or soft error interrupt should be pending, or possibly both. 

Recovery procedures: No specific recovery action is called for. 

Retry condition: No retry is possible. The integrity of the entire system is questionable. Crash 
the system. 
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15.6 Power Fail Interrupt 

Power fail interrupts are requested to report imminent loss of power to the CPU. Power fail 
interrupts are requested via the PWRFL_L pin at IPL IE (hex) and are dispatched to the operating 
system through 8CB vector OC (hex). 

The stack frame for a power fail interrupt is shown in Figure 15-6. 

Figure 15-6: Power Fall Interrupt Stack Frame 

31 30 29 28127 26 25 24123 22 21 20119 l8 17 16115 l4 l3 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I pC 1 : (SP) 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PSL I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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15.7 Hard Error Interrupts 

Hard error interrupts are requested to report an error that was detected asynchronously with 
respect to instruction execution. This results in an interrupt at IPL ID (hex) to be dispatched 
through SCB vector 60 (hex). Typically, these error indicate that machine state has been corrupted 
and that retry is not possible. 

The stack frame for a hard error interrupt is shown in Figure 15-7. 

Figure 15-7: Hard Error Interrupt Stack Frame 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 PC 1 : (SP) 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

PSL 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

15.7.1 Events Reported Via Hard Error Interrupts 

This section describes all the errors which can cause a hard error interrupt. A parse tree is given 
which shows how to determine the cause of a given hard error. After that, there is a description 
of each error. For each error, the recovery procedure is given. Where !ppropriate, the conditions 
for restart are given. See Section 15.3.3 and Section 15.3.4 for more on error recovery and error 
retry. 

Figure 15-8 is a parse tree which should be used to analyze the cause of a hard error interrupt. 
It is assumed that the state being analyzed is the saved state, as described in Section 15.3.l. 
Otherwise the state could change during the analysis procedure, leading to possibly incorrect 
conclusions. (See Section 15.3.2 for general information about error analysis.) 
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Figure 15-8: Cause Parse Tree for Hard Error Interrupts 

HARD ERROR IN'l'ERRUPT 
----+ (select all, at· least one) 

S_BCEDSTS<LOCK> 
+----+ (select one) 
I I 
I I S BCEDSTS<BAD_ADDR> 
I +----+ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

+---------------------------------------> Bcache data RAM addressing error on a write or write-unlc 
from Mbox (Section 15.7.1.1) 

otherwise 
+---------------------------------------> Not a hard error interrupt cause (see soft error interruJ 

events) 
S_BCEDSTS<UNCORR> 

+----+ 

+---------------------------------------> Bcache data RAM uncorrectable ECC error on a write or wrj 
I unlock from Mbox (Section 15.7.1.1) 
I otherwise 
+---------------------------------------> Not a hard error interrupt cause (see soft error interruI 

events) 
none of the above 

+--------------------------------------------> Inconsistent status (no BCEDSTS unrecoverable error bits 
set) (Section 15.7.1. 7) 

I S_BCEDSTS<LOST_ERR> 
+-------------------------------------------------> Lost unrecoverable Bcache data RAM error 

S_CEFSTS<LOCK> 
+----+ (select one) 

(Section 15.7.1.2) 

S_CEFSTS<TIMEOUT> AND S_CEFSTS<REQ_FILL_DONE> 
AND S_CEFSTS<WRITE> AND S_CEFSTS<OREAD> 

• 

+--------------------------------------------> NDAL timeout on OREAD for write from Mbox after write dat 
I merged with fill data in cache (Section 15.7.1.3) 
I S CEFSTS<RDE> AND S CEFSTS<REQ FILL DONE> 
I AND S_CEFSTS<WRITE>-AND S_CEFSTS<OREAn> 

"+--------------------------------------------> NDAL read data error on OREAD for write from Mbox after 
write data merged with fill data in cache (Section15.7.1 

+--------------------------------------------> Unexpected NDAL fill received. 
I (Section 15.7.1.3.1) 
I otherwise 
+--------------------------------------------> Not a hard error interrupt cause (see soft error interrul 

events) 

+-------------------------------------------------> Lost Bcache fill error 
I (Section 15.7.1.3.2) 
v 
1 

Figure 15-8 Cont'd on next page 
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Figure 15-8 (Cont.): Cause Parse Tree for Hard Error Interrupts 

1 
v 

S NESTS<NOACK> 
+---=+ (select one) 

S_NEOCMD<CMD>-WRITE 
+--------------------------------------------> no-ACK on WRITE command or data cycle 
I (Section 15.7.1.4) 
I S_NEOCMD<CMD:>-WDISOWN 
+--------------------------------------------> no-ACK on WOISOWN command or data cycle 
I (Section 15.7.1.4) 
I otherwise 
+--------------------------------------------> Not a hard error interrupt cause (see so£t error interrupt 

events) 
S_NESTS<LOST_OERR> 

+-------------------------------------------------> Lost no-ACK error 
I (Section 15.7.1.5) 
I (status consistent with hard error interrupt 
I in system environment error registers) 
+-------------------------------------------------> Hard error interrupt from system environment 
I (Section 15.7.1. 6) 
I otherwise 
+-------------------------------------------------> Inconsistent status (Section 15.7.1.7) 

Notation: 
(select one) - Exactly one case must be true. If zero or more than one is 

true, the status is inconsistent. 
(select all) - More than one case may be true. 
(select all, at least one) - All the cases are possible causes of a hard error interrupt. 

otherwise 
none of the above 

More than one may be true. At least one must be true or the status 
is inconsistent. A case is not considered true if it evaluates to 
"Not a hard error interrupt causeR. 

- fall-through case £or (select one) if no other case is true. 
- £all-through case for (select all) or (select all, at least one) 

if no other case is true. 

15.7.1.1 Uncorrectable Data Errors and Addressing Errors During Write or Write-Unlock 
Processing 

Description: In processing a write or write-unlock, the Cbox detected an addressing error or 
an uncorrectable ECC error on the data read from the Bcache data RAMs. The write data has 
already been merged with the corrupted Bcache data and the write of the merged ("bad") data 
occurred. Data from the write is lost. 

There are two types of uncorrectable Bcache data RAM errors: addressing errors and 
uncorrectable ECC errors. Both are detected through the ECC check logic. U ncorrectable ECC 
errors indicate that two or more hits of the stored data quadword have changed and the error 
correcting code can not correct the data. A multiple-bit data error can appear to be addressing 
error, though it is extremely unlikely. A single-bit error combined with an addressing error 
appears as an uncorrectable error. 

Addressing errors indicate that the location read from the data RAM was probably written using a 
different address than the one used to read it out. The actual hardware failure could have occurred 
in the previous data RAM write or the current read. Addressing errors are more serious than 
uncorrectable ECC errors since they indicate the integrity of the entire Bcache is questionable. 
Also, there is less than a 100% chance that a given addressing error will result in recognition 
of an addressing error. This is because addressing errors are recognized by encoding the parity 
of the address with the data and checking it on read back. All single-bit addressing errors are 
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detectable. Note that addressing errors on writes are never detected if that data is never read 
out again. 

The Cbox inverts three of the check bits being written back into the data RAMs to ensure that 
if the data is read again an uncorrectable error will be detected. If a subsequent read occurs, 
S_BCEDSTS<LOST_ERR> should be set, and the instruction which issued the read will machine 
check. However this mechanism is not fully reliable at ensuring that a subsequent read will 
detect the error (see Section 15.11.1, Note On Tagged-Bad Data Mechanisms). 

For either case, the physical address is determined from the contents of S_BCEDIDX using the 
procedure in Section 15.3.3.1.2.4. (If the physical address is found to be in 10 space, it is an 
inconsistent status. See Section 15.7.1.7.) S_BCEDECC contains the syndrome calculated by the 
ECC logic. The Bcache is in ETM. 

If the block's tag is found to contain an ECC error, then the address can not be determined. 

It should never be the case that both S_BCEDSTS<BAD_ADDR> and S_BCEDSTS<UNCORR> 
are set. If they are, it is an inconsistent status (see Section 15.7.1.7). 

Recovery procedures (addressing error): Clear BCEDSTS<BAD_ADDR, LOCK>. 

Recovery procedures (uncorrectable ECC error): Clear BCEDSTS<UNCORR, LOCK>. 

Recovery procedures (both cases): The data in this block is lost. Flush the Bcache. Clear 
CCTL<HW _ETM> (after flushing the Bcache). Flushing the Bcache should cause a writeback 
error (in which BADWDATA will be sent on the NDAL), so BCEDSTS and NESTS should be 
cleared beforehand. Then use the system specific procedure to clear the tagged-bad state from 
this block in memory. 

It is possible that no writeback error will occur, or that it will happen at the wrong address. This 
would occur if an error in the data RAMs caused the data to appear as correctable or without 
error even though it was written with three ECC bits inverted. Also, this could occur if the data 
was written to a different location than intended (addressing error). If this happens, then the 
block in memory will incorrectly appear to be good data. 

NOTE 

When clearing the tagged-bad data state of memory, software must first ensure that no 
more accesses to the block can occur. Otherwise there is the danger that some process 
on some other processor or a DMA 10 device will see incorrect data and not detect an 
error. 

Restart condition (addressing error): Addressing errors occur on data RAM reads and writes. 
Because the Cbox writes "b~d" data back into the location, there is no way to distinguish transient 
read errors from transient write errors. Therefore, the worst case has to be assumed: some 
previous write was written to the wrong place in the Bcache or the failing write has been written 
to the wrong location in the Bcache. In other words, not only is the block. whose address is known 
corrupted, but another block is as well. No restart is possible. The integrity of the entire system 
is questionable. Crash the system. 

Restart condition (uncorrectable ECC error): If the address of the data is available and no 
unexpected writeback errors occurred during the Bcache flush, software must determine if the 
lost data is fatal to one process or the whole system and take the appropriate action. 

If the address of the data could not be determined or unexpected errors occurred during the 
Bcache flush, crash the system. 
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15.7.1.2 Lost Bcache Data RAM Hard Errors 

Description: Some number of unrecoverable Bcache data RAM errors occurred and were not 
latched because BCEDSTS already contained a report of an unrecoverable error. There is no 
guarantee this error could have caused a hard error interrupt, though it may be a cause. 

Lost Bcache data RAM errors may be caused by more than one operand prefetch to the same 
cache block. 

Bcache data RAM errors which cause hard error interrupt indicate that write data has been lost. 
Specifically, a read-modify-write operation for a write or write-unlock had an uncorrectable ECC 
error or an addressing error. The data was written back into the RAMs with three check bits 
inverted. 

The Bcache is in ETM. 

Pending interrupts: A soft error interrupt may be pending. 

Recovery procedures: Clear BCEDSTS<LOST_ERR>. 
CCTL<HW_ETM> (after flushing the Bcache). 

Flush the Bcache. Clear 

Restart condition: No restart is possible since the errors which were not recorded could 
potentially have caused lost write data and no indication of what data is lost exists (based on 
the fact that this error was reported by hard error interrupt). Also, the possibility exists that a 
subsequent read to any location which had this error could receive incorrect data with no error 
indication. Crash the system. 

NOTE 

The lost data should be marked bad through the Bcache tagged-bad scheme. But there 
is a significant probability of an error converting that tagged-bad location back to good 
data. This is because precisely the location which had the data error is being depended 
on to store a different value without an error. The Bcache tagged-bad scheme does 
not reliably preserve the bad data status of the location in the presence of errors (see 
Section 15.11.1, Note On Tagged-Bad Data Mechanisms). So the tagged-bad locations 
may appear good to a subsequent reader. This is why the system must be crashed. 

15.7.1.3 . Bcache TImeout or Read Data Error In Quadword OREAD Fill After Write Data Merged 

Description: A D-stream ownership read for a write or write-unlock timed out or terminated 
receiving an RDE fill response after the requested quadword was received. The error could be 
sue to an error in the system environment or to any previous error in the system environment or 
this CPU which leaves a cache block marked as owned in memory and not marked as owned in 
any cache in the system. 

The quadword physical address is in S_CEFADR. The address should not be in 10 space. If it 
is, it is an inconsistent status (see Section 15.7.1.7). The merged data is in the Bcache in the 
quadword indicated in S_CEFADR. The ownership and valid bits in the Bcache are not set. 

CEFSTS<WRITE> should not be set. If it is, it is an inconsistent status (see Section 15.7.1.7). 

Recovery procedures: Clear CEFSTS<LOCK>. Clear CEFSTS<TIMEOUT> if the error is a 
timeout, and CEFSTS<RDE> ifitis a read data error. Flush the Bcache. Clear CCTLdlW _ETM> 
(after flushing the Bcache). 
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Depending on the system environment, memory may have set its ownership bit for this block. 
This should be predictable for the given system environment because at least one quadword of 
data was received successfully. If the bit is set, then subsequent reads and writes to the same 
location may fail while the error is being handled. 

The data in memory should be unchanged. The quadword containing the merged data is in the 
Bcache. 

In general, the memory block can not be repaired. However, assuming the memory block is 
left owned, no writes to the block have timed out in memory, and the block is private to the 
interrupted job, it can be repaired by the following procedure. 

• Extract the addressed quadword from the Bcache (see Section 15.3.3.1.2.3). 

• Reset memory's ownership state (see Section 15.3.3.l.2.2.2) and write the extracted quadword 
to memory. 

NOTE 

Software must somehow ensure that no writes to this block are pending in the memory 
before beginning the repair. This can be done by waiting an amount of time equal to a 
memory subsystem write timeout time.) 

If memory's ownership bit is not set, the block can not be repaired. 

Restart condition: If memory state repair is successful, restart. Otherwise, software must 
determine if the lost data is fatal to one process or the whole system and take the appropriate 
action. 

15.7.1.3.1 Unexpected Fill Error 

Description: At least one fill was received when none for that transaction ID was expected by 
the NVAX CPU. This can only occur if a serious NDAL error has occurred. Reads previous to this 
event may have received incorrect data. 

If S_CEFSTS<RDE> is set, the unexpected fill was an RDE NDAL transaction. 

The Bcache is in ETM. S_CEFADR is UNPREDICATBLE. 

Recovery procedures: Clear CEFSTS<LOCK, UNEXPECTED_FILL>. Flush the Bcache and 
clear CCTL<HW _ETM> (in that order). 

Restart condition: Data may have been corrupted in memory because of incorrect read data 
being processed. Crash the system. 

15.7.1.3.2 Lost Bcache Fill Error 

Description: Either at least one fill error occurred in an OREAD after write data was merged 
or an unexpected fill was received. The error was not latched because CEFSTS and associated 
registers already contained a report of an unrecoverable error. There is no guarantee this error 
could have caused a hard error interrupt, though it may be a cause. 

The Bcache may be in ETM. Read S_CCTL<HW_ETM> to find out. 

Pending interr1!l.pts: A soft error interrupt may be pending. 

15-54 Error Handling DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

Recovery procedures: Clear CEFSTS<LOST_ERR>. If the Beache is in ETM, :flush it and clear 
CCTL<HW_ETM> (in that order). 

Restart condition: Data has been corrupted but the address is unknown. Crash the system. 

15.7.1.4 NDAL No-ACK During WRITE or WDISOWN 

Description: When the Cbox issues an NDAL WRITE or WDISOWN on the NDAL and it is 
not acknowledged, the Cbox requests a hard error interrupt. This could be because the external 
component(s) received bad NDAL parity or it could be due to a system-specific notification of 
"non-existent memory or 10 location". The transaction is not retried by hardware, so the data is 
lost. Typically, for writebacks, the Bcache location is overwritten soon after this error, so there is 
no way to recover the data from the Bcache. 

The Bcache is in ETM. S_NEOADR contains the physical address. S_NEOCMD contains the byte 
mask and NDAL command. 

Recovery procedures: Clear NESTS<NOACK>. Flush the Bcache. Clear CCTL<HW_ETM> 
(after flushing the Bcache). 

Retry condition: Software must determine if the lost data is fatal to one process or the whole 
system and take the appropriate action. 

15.7.1.5 Lost NDAl No-ACK Hard Errors 

Description: Some number of outgoing NDAL WRITE or WDISOWN commands were not 
acknowledged and were not latched because NESTS, NEOCMD, and NEOADR already contained 
a report of an NDAL output error. There is no guarantee this error could have caused the hard 
error interrupt, though it may be a cause. 

Pending interrupts: A soft error interrupt may be pending. 

Recovery procedures: Clear NESTS<LOST_NOACK>. 

Restart eondition: No restart is possible since the errors which were not recorded could 
potentially have caused lost write data. No indication of what data is lost exists. Crash the 
system. 

15.7.1.6 System Environment Hard Error Interrupts 

Description: Errors which occur in the system environment and result in loss of data and 
which can not notify the NVAX CPU by returning RDE notify the CPU of the error by asserting 
H_ERR_L (e.g., write errors). Errors which can be signaled by RDE should not use hard error 
interrupt notification. Errors which are corrected automatically by hardware and do not result 
in loss of data should use soft error interrupt notification instead. 

NOTE 

It is very important that components in the system environment which assert 
H_ERR_L have a CPU accessible register which unambiguously reports the H_ERR_L 
assertion. Otherwise, system specific error handling for the hard error interrupt would 
always crash the system (every time). 
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It is also strongly recommended that an address be stored where applicable. This may 
allow the operating system to kill one process or job instead of crashing the system in 
the event of that hard error. 

Recovery procedures: Clear the error status bits in the system registers and perform any 
necessary system dependent recovery procedure. 

Restart condition: Depends on the error. H the system environment reports the address of the 
lost data (where applicable) software may be able to kill just one process instead of crashing the 
system. 

15.7.1.7 InconSistent Status In Hard Error Interrupt Cause Analysis 

Description: A presumed impossible error report was found in the error registers. This could 
be due to a hardware failure or bug. 

Recovery procedures: No specific recovery action is called for. 

Restart condition: No retry is possible. The integrity of the entire system is questionable. 
Crash the system. 
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15.8 Soft Error Interrupts 

Soft error interrupts are requested to report errors which were detected, but did not affect 
instruction execution. This results in an interrupt at IPL 1A (hex) to be dispatched through 
SeB vector 54 (hex). 

The stack frame for a soft error interrupt is shown in Figure 15-9. 

Figure 15-9: Soft Error Interrupt Stack Frame 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PC I : (SP) 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I PSL I 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

15.8.1 Events Reported Via Soft Error Interrupts 

This section describes all the errors which can cause a soft error interrupt. A parse tree is given 
which shows how to determine the cause of a given soft error. Mer that, there is a description 
of each error. For each error, the recovery procedure is given. Where appropriate, the conditions 
for restart are given. See Section 15.3.3 and Section 15.3.4 for more on error recovery and error 
retry. 

Figure 15-10 is a parse tree which should be used to analyze the cause of a soft error interrupt. 
It is assumed that the state being analyzed is the saved state, as described in Section 15.3.l. 
Otherwise the state could change during the analysis procedure, leading to possibly incorrect 
conclusions. (See Section 15.3.2 for general information about error analysis.) 

Note that many errors which cause a so"'ft error interrupt may also lead to a machine check 
exception. For this reason, a soft error interrupt with no apparent cause is not an inconsistent 
state unless the CPU has executed an instruction while IPL was lower than 1A (hex) since the 
most recent machine check exception. 

When a soft error interrupt is the only notification for any memory read error which could cause 
a machine check, the error didn't cause a machine check for one of the following reasons. 

• The error did not occur on the quadword the Ebox or Ibox requested (Pcache fill error). 

• The Ebox took an interrupt before accessing an instruction or operand which was prefetched 
by the Ibox. at could be this soft error interrupt.) 

• A prefetched instruction or operand belonged to an instruction following a mispredicted 
branch, so the Ebox never executed the instruction (and it was flushed from the pipeline 
when the branch mispredict was recognized). 

• The Ebox took an exception for a different reason before attempting to use an instruction 
execution dispatch or access an operand prefetched by the Ibox. (The pipeline was flushed 
because of the exception.) 
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Figure 15-10: Cause Parse Tree for Soft Error Interrupts 

SOFT ERROR INTERRUPT 
----+ (select all, at least one) 

S_ICSR<LOCK> 
+----+ (select all, at least one) 

S ICSR<DPERR> 
+---=----------------------------------------> VIC (virtual instruction cache) data parity error 
I (Section 15.8.1.1) 
I S _ ICSR<TPERR> 
+--------------------------------------------> VIC tag parity error (Section 15.8.1.1) 
I 
I none of the above 
+--------------------------------------------> Inconsistent status (no ICSR error bits set) 

(Section 15.8.1.22) 
S_PCSTS<LOCK> 

+----+ (select all, at least one) 

S_PCSTS<DPERR> 
+--------------------------------------------> Pcache data parity error (Section 15.8.1.2) 
I 
I S PCSTS<RIGHT BANK> 
+---=-----------=----------------------------> Pcache tag parity error in right bank 
I (Section 15.8.1.2) 
I S PCSTS<LEFT BANK> 
+---=----------=-----------------------------> Pcache tag parity error in left bank 
I (Section 15. 8~ 1.2) 
I otherwise 
+--------------------------------------------> Inconsistent status (no PCSTS error bits set) 

(Section 15.8.1.22) 
S_BCETSTS<LOCK> 

+----+ (select one) 
I I 
I I S_BCETSTS<UNCORR> 
I +----+ (select one) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
v v 
1 2 

+---------------------------------------> Bcache tag store un correctable ECC error on D-stream rea 
I (Section 15. 6.1.3) 
I S_BCETSTS<TS_CMD>-IREAD 
+---------------------------------------> Bcache tag· store uncorrectable ECC error on I-stream rea 
I (Section 15.6.1.3) 
I S_BCETSTS<TS_CMD>-OREAD 
+---------------------------------------> Bcache tag store uncorrectable ECC error on write or 

read-lock (Section 15. 8.1.3) 

+---------------------------------------> Bcache tag store uncorrectable ECC error on write-unlock 
I (done only in ETM) (Section 15.8.1.3) 
I S_BCETSTS<TS_CMD>-R_INVAL 
+---------------------------------------> Bcache tag store uncorrectable ECC error on writeback 

request type of NDAL operation (Section 15.8.1.3) 
S BCETSTS<TS CMD>-O INVAL 

+---=----------=------=-----------------> Bcache tag store uncorrectable ECC error on 
I writeback-and-invalidate type of NDAL operation (Section 
I S BCETSTS<TS CMD>-IPR DEALLOCATE 
+---=----------=--------=---------------> Bcache tag store uncorrectable ECC error on software 
I forced deallocate (Section 15.8.1.3) 
I otherwise 
+---------------------------------------> Inconsistent status (invaiid command) 

(Section 15.8.1.22) 

Figure 15-10 Cont'd on next page 
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Figure 15-10 (Cont.): Cause Parse Tree for Soft Error Interrupts 

1 2 
v v 

S BCETSTS<BAD ADDR> 
+---~+ (select o;e) 

S_BCETSTS<TS_CMD>-DREAD 
+---------------------------------------> Bcache tag store addressing error on D-stream read 
I (Section 15.8.1.3) 
I S_BCETSTS<TS_CMD>-IREAD 
+-----------------------~---------------> Bcache tag store addressing error on I-stream read 
I (Section 15.8.1.3) 
I S_BCETSTS<TS_CMD>-OREAD 
+---------------------------------------> Bcache tag store addressing error on write or 
I read-lock (Section 15.8.1.3) 
I S_BCETSTS<TS_CMD>-WUNLOCK 
+---------------------------------------> Bcache tag store addressing error on write-unlock 
I (done only in ETM) (Section 15.8.1.3) 
I S_BCETSTS<TS_CMD>-R_INVAL 
+---------------------------------------> Bcache tag store addressing error on writeback 
I request type of NDAL operation (Section 15.8.1.3) 
I S BCETSTS<TS CMD>-O INVAL 
+---~----------~------~-----------------> Bcache tag store addressing error on 
I writeback-and-invalidate type of NDAL operation (Section15.8.1.3) 
I S BCETSTS<TS CMD>=IPR DEALLOCATE 
+---~----------~--------~---------------> Bcache tag store addressing error on software 
I forced deallocate (Section 15.8.1.3) 
I otherwise 
+---------------------------------------> Inconsistent status (invalid command) 

(Section 15.8.1. 22) 
otherwise 

+--------------------------------------------> Inconsistent status (no BCETSTS error bits set) 
(Section 15.8.1. 22) 

+-------------------------------------------------> Lost unrecoverable Bcache tag store error 
I (Section 15.8.1.4) 
v 
1 

Figure 15-10 Cont'd on next page 
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Figure 15-10 (Cont.): Cause Parse Tree for Soft Error Interrupts 

1 
v 

S_BCETSTS<CORR> 
+----+ (select one) 
I I 
I I S BCETSTS<LOCK> 
I +---=----------------------------------------> Lost Bcache tag store correctable error 
I I (Section 15.8.1.6) 
I I otherwise 
I +----+ (select one) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
v 
1 

+---------------------------------------> Bcache tag store correctable ECC error on D-stream read 
I (Section 15.8.1.5) 
I S_BCETSTS<TS_CMD>-IREAD 
+---------------------------------------> Bcache tag store correctable ECC error on I-stream read 

(Section 15.8.l.5) 

+---------------------------------------> Bcache tag store correctable ECC error on write or 
I read-lock (Section 15.8.1.5) 
I S_BCETSTS<TS_CMD>-WUNLOCK 
+---------------------------------------> Bcache tag store correctable ECC error on write-unlock 
I (done only in ETM) (Section 15.8.1. 5) 
I S_BCETSTS<TS_CMD>mR_INVAL 
+---------------------------------------> Bcache tag store correctable ECC error on writeback 

request type of NDAL operation (Section 15.8.1.5) 
S BCETSTS<TS CMD>-O INVAL 

+---=----------=------=-----------------> Bcache tag store correctable ECC error on 
I writeback-and-invalidate type of NDAL operation (Section 
I S BCETSTS<TS CMD>-IPR DEALLOCATE 
+---=----------=--------=---------------> Bcache tag store correctable ECC error on software 
I forced deallocate (Section 15.8.1.5) 
I otherwise 
+---------------------------------------> Inconsistent status (invalid command) 

(Section 15.8.1.22) 

Figure 15-10 Cont'd on next page 
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Figure 15-10 (Cont.): Cause Parse Tree for Soft Error Interrupts 

1 
v 

S_BCEDSTS<CORR> 
+----+ (select one) 
I I 
I I S_BCEDSTS<LOCK> 
I +--------------------------------------------> Lost Bcache data RAM correctable error 
I I (Section 15.8.1.8) 
I I otherwise 
I +----+ (select one) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

+---------------------------------------> Bcache data RAM correctable error on D-stream read 
(Section 15.8.1. 7) 

+---------------------------------------> Bcache data RAM correctable error on I-stream read 
I (Section 15.8.1.7) 
I S_BCEDSTS<DR_CMD>-WRITEBACK 
+---------------------------------------> Bcache data RAM correctable error on writeback 

(Section 15.8.1. 7) 

+---------------------------------------> Bcache data RAM correctable error on read-modify-write 
I for write or write-unlock (Section 15.8.1.7) 
I otherwise 
+---------------------------------------> Inconsistent status (invalid command) 

(Section 15.8.1.22) 
I S_BCEDSTS<LOCK> AND 
I NOT S PCSTS<PTE ER> 
+----+ (;elect onel 

S_BCEDSTS<UNCORR> 
+----+ (select one) 
I I 
I I S_BCEDSTS<DR_CMD>aDREAD 
I +---------------------------------------> Bcache data RAM uncorrectable ECC error on D-stream read 
I I (or Pcache fill for read-lock) (Section 15.8.1.9) 
I I S_BCEDSTS<DR_CMD>-IREAD 
I +---------------------------------------> Bcache data RAM uncorrectable ECC error on I-stream read 
I I (Section 15.8.1. 9) 
I I S_BCEDSTS<DR_CMD>-WRITEBACK 
I +---------------------------------------> Bcache data RAM uncorrectable ECC error on writeback 
I I (Section 15.8.1.10) 
I I otherwise 
I +---------------------------------------> Inconsistent status {all other cases cause hard error 
I interrupt} (Section 15.8.1.22) 

v v 
1 2 

Figure 15-10 Cont'd on next page 
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Figure 15-10 (Cont.): Cause Parse Tree for Soft Error Interrupts 

1 2 
v v 

S BCEDSTS<BAD ADDR> 
+---=+ (select one) 
I I 
I I S BCEDSTS<DR CMD>-DREAD 
I +---=----------=------------------------> Bcache data RAM addressing error on D-stream read 
I I (or Pcache fill for read-lock) (Section 15.8.1.9) 
I I S BCEDSTS<DR CMD>-IREAD 
I +---=----------=------------------------> Bcache data RAM addreSSing error on I-stream read 
I I (Section 15.8.1.9) 
I I S BCEDSTS<DR CMD>-WRITEBACK 
I +---=----------=------------------------> Bcache data RAM addressing error on writeback 
I I (Section 15.8.1.10) 
I I otherwise 
I +---------------------------------------> Inconsistent status (all other cases cause hard error 
I interrupt) (Section 15.8.1.22) 
I otherwise 
+--------------------------------------------> Inconsistent Status (no error bits set in BCEDSTS) 

(Section 15.8.1.22) 
S BCEDSTS<LOST ERR> AND 
NOT S_PCSTS<PTE_ER> 

+----+ 
I I 
I I S_NESTS<BADWDATA> OR S_NESTS<LOST_OERR> 
I +--------------------------------------------> Lost unrecoverable Bcache data RAM error with possible 
I I lost writeback error (Section 15.8.1.11) 
I I otherwise 
I +--------------------------------------------> Lost unrecoverable Bcache data RAM error 
I (Section l5. 8 .1.12) 
I S_CEFSTS<LOCK> AND 
I NOT S_PCSTS<PTE~ER> 
+----+ (select one) 

v 
1 

S_CEFSTS<TIMEOUT> 
+----+ (select one) 
I I 
I I S_CEFSTS<OREAD> 
I +----+ (select one) 
I I 
I I 
I I 

v 
2 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
v 
:3 

S CEFSTS<WRITE> AND 
NOT S CEFSTS<TO MBOX> 

+----+ (;elect one> 
I I 
I I S CEFSTS<REQ_FILL_DONE> 
I +-----------------------------> Inconsistent status (should cause hard error interrupt) 
I I (Section 15.8.1.22) 
I I otherwise 
I +-----------------------------> D-stream NDAL owne~ship read for Mbox write timeout 
I error before write data merged with fill data (Section15 
I S_CEFSTS<TO_MBOX> 
+----------------------------------> o-stream NDAL ownership read timeout error 

(modify operand or read-lock) (Section 15.8.1.13) 
otherwise 

+----------------------------------> Inconsistent status (either WRITE or TO_MBOX, but not boo 
should be set) (Section 15.8.1.22) 

Figure 15-10 Cont'd on next page 
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Figure 15-10 (Cont.): Cause Parse Tree for Soft Error Interrupts 

1 
v 

2 
v 

3 
v 

oth,erwise 
+----+ (select one) 

S_CEFSTS<IREAD> 
+----------------------------------> I-stream NDAL read timeout error (Section 15.8.1.13) 

S_CEFSTS<TO~MBOX> 

+----------------------------------> D-stream NDAL read timeout error (read only operand) 
(Section 15.8.1.13) 

otherwise 
+----------------------------------> Inconsistent status (TO_MBOX should be set) 

(Section 15.8.1.22) 
S_CEFSTS<RDE> 

+----+ (select one) 
I I 
I I S_CEFSTS<OREAD> 
I +----+ (select one) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

S_CEFSTS<WRITE> 
AND NOT S CEFSTS<TO MBOX> 

+----+ (select one) -
I I 
I I S_CEFSTS<REQ_FILL_DONE> 
I +-----------------------------> Inconsistent status (should cause hard error interrupt) 
I I (Section 15.8.1.22) 
I I otherwise 
I +-----------------------------> D-stream NDAL ownership read for Mbox write read data 
I. error before write data merged with fill data (Section15.B.l.14) 
I S_CEFSTS<TO_MBOX> 
+----------------------------------> D-stream NDAL ownership read read data error 

(modify op2rand or read-lock) (Section 15.8.1.14) 
otherwise 

+----------------------------------> Inconsist~t status (either WRITE or TO_MBOX, but not both, 
should be set) (Section 15.8.1.22) 

otherwise 
+----+ (select one) 

+----------------------------------> I-stream NDAL read read data error 
I (Section 15.8.1.14) 
I S_CEFSTS<TO_MBOX> 
+----------------------------------> D-stream NDAL read read data error (read only operand) 
I (Section 15.8.1.14) 
I otherwise 
+----------------------------------> Inconsistent status (TO_MBOX should be set) 

(Section 15.8.1.22) 
I otherwise 
+--------------------------------------------> Inconsistent status (either CEFSTS<RDE> or CEFSTS<TIMEOUT> 

S CEFSTS<LOST ERR> AND 
NOT S_PCSTS<PTE_ER> 

should be set or, if CEFSTS<UNEXPECTED FILL> is set, it 
should cause a hard error interrupt) (Section 15.8.1.22) 

+-------------------------------------------------> Lost Bcache fill error 
I (Section 15.8.1.15) 

v 
1 

Figure 15-10 Cont'd on next page 

DIGITAL CONFIDENTIAL Error Handling 15-63 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

Figure 15-10 (Cont.): Cause Parse Tree for Soft Error Interrupts 

1 
v 

S_NESTS<NOACK> AND 
NOT S PCSTS<PTE ER> 

+----+ (select one) 

S_NEOCMD<CMD>-IREAD 
+--------------------------------------------> Unacknowledged I-stream NDAL read (Section 15.8.1.16) 
I 
I 5_ NEOCMD<CMD>-DREAD 
+--------------------------------------------> Unacknowledged D-stream NDAL read (read only operand) 

(Section 15.8.1.16) 

+--------------------------------------------> Unacknowledged D-stream NDAL read {modify operand or reo 
I (Section 15.8.1.16) 
I S_NEOCMD<CMD>-WRITE or WDISOWN 
+--------------------------------------------> Inconsistent status (should cause hard error interrupt) 
I (Section 15.8.1.22) 
I otherwise 
+--------------------------------------------> Inconsistent status (invalid command in NEOCMD<CMD» 

(Section 15.8.1.22) 
S NESTS<LOST OERR> AND 
NOT S_PCSTS<PTE_ER> 

+-------------------------------------------------> Lost NDAL output error (Section 15.8.1.17) 
I 
I 5 BCEDSTS<LOCK> AND 
I S-PCSTS<PTE ER>l 
+---=+ (select-one) 

S_BCEDSTS<ONCORR> 
+----+ (select one) 

S_BCEDSTS<DR_CMD>-DREAD 

• 

+---------------------------------------> Bcache data RAM uncorrect~le ECC ~rror on PTE read 

v 
1 

v 
2 

I (Section 15.8.1.18.1) 
I S BCEDSTS<DR CMD>-IREAD 
+---=+ (select one) 

v 
3 

S BCEDSTS<LOST ERR> 
+---=------------=-----------------> Multiple errors in context of PTE read error 
I (Section 15.8.1.18.5) 
I otherwise 
+----------------------------------> Bcache data RAM un correctable ECC error on I-stream reac 

(Section 15.8.1. 9) 

Figure 15-10 Cont'd on next page 

1 At least one potential PTE cause must be found or the status is inconsistent (see Section 15.8.1.22). Some of the outcomes 
indicate a potential soft error interrupt cause which is not a potential PTE read error cause. These errors should be 
treated separately. 
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Figure 15-10 (Cont.): Cause Parse Tree for Soft Error Interrupts 

1 
v 

v 
1 

2 
v 

3 
v 

S BCEDSTS<DR CMD>-WRITEBACK 
+---=+ (select ~ne) 
I I 
I I S BCEDSTS<LOST ERR> 
I +---=------------=-----------------> Multiple errors in context of PTE read error 
I I (Section 15.8.1.18.5) 
I I otherwise 
I +----------------------------------> Bcache data RAM uncorrectable ECC error on writeback 
I (Section 15.8.1.10) 
I otherwise 
+---------------------------------------> Inconsistent status (all other cases cause hard error 

interrupt) (Section 15.8.1.22) 
S_BCEDSTS<BAD_ADDR> 

+----+ (select one) 
I I 
I I S BCEDSTS<DR_CMD>-DREAD 
I +---------------------------------------> Bcache data RAM addressing error on PTE read 
I (Section 15.8.1.18.1) 
I S BCEDSTS<DR CMD>=IREAD 
I +---=+ (select ~ne) 
I I 
I I S BCEDSTS<LOST ERR> 
I +---=------------=-----------------> Multiple errors in context of PTE read error 
I I (Section 15.8.1.18.5) 
I I otherwise 
I +----------------------------------> Bcache data RAM addressing error on I-stream read 
I (Section 15.8.1.9) 
I S_BCEDSTS<DR_CMD>-WRITEBACK 
I +----+ (select one) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

S BCEDSTS<LOST ERR> 
+---=------------=-----------------> Multiple errors in context of PTE read error 
I (Section 15.8.1.18.5) 
I otherwise 
+----------------------------------> Bcache data RAM addressing error on writeback 

(Section 15.8.l.10) 
otherwise 

+---------------------------------------> Inconsistent status (all other cases cause hard error 
interrupt) (Section 15.8.1.22) 

I otherwise 
+--------------------------------------------> Inconsistent Status (no error bits set in BCEDSTS) 

(Section 15.8.1.22) 

Figure 15-10 Cont'd on next page 

At least one potential PTE cause must be found or the status is inconsistent (see Section 15.8.1.22). Some of the outcomes 
indicate a potential soft error interrupt cause which is not a potential PTE read error cause. These errors should be 
treated separately. 

DIGITAL CONFIDENTIAL Error Handl ing 15-65 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

Figure 15-10 (Cont.): Cause Parse Tree for Soft Error Interrupts 

1 
v 

S CEFSTS<LOCK> AND 
S-PCSTS<PTE ER>l 

+---=+ (select-one) 
I I 
I I S _ CEFSTS<TIMEOUT> 
I +----+ (select one) 
I I 
I I S _ CEFSTS<OREAD> 
I +----+ (select one) 
I 
I S_CEFSTS<WRITE> AND 

NOT S CEFSTS<TO MBOX> 

v v 
1 2 

+----+ (select oneT 
I 
I S_CEFSTS<REQ_FILL_DONE> 
+-----------------------------> Inconsistent status (should cause hard error interrupt) 

(Section 15.8.1.22) 
otherwise 

+----+ (select one) 
I 
I S CEFSTS<LOST ERR> 
+---=-----------=--------> Multiple errors in context of PTE read error 
I (Section 15.8.1.18.5) 
I otherwise 
+------------------------> D-stream NDAL ownership read for Mbox write timeout 

error before write data merged with fill data (Section1 
S CEFSTS<TO MBOX> 

+---=+ (select-one) 
I I 
I I S CEFSTS<LOST ERR> 
I +---=-----------=-------------> Multiple errors in context of PTE read error 
I I (Section 15.8.1.18.5) 
I I otherwise 
I +-----------------------------> D-stream NDAL ownership read timeout error 
I (modify operand or read-lock) (Section 15.8.1.13) 
I otherwise 
+----------------------------------> Inconsistent status (either WRITE or TO_MBOX, but not b 

should be set) (Section 15.8.1.22) 
otherwise 

+----+ (select one) 

S_CEFSTS<IREAD> 
+----+ (select one) 

I 
I S_CEFSTS<LOST_ERR> 
+-----------------------------> Multiple errors in context of PTE read error 
I (Section 15.8.1.18.5) 
I otherwise 
+-----------------------------> I-stream NDAL read timeout error (Section 15.8.1.13) 

S_CEFSTS<TO_MBOX> 
+----------------------------------> D-stream NDAL read timeout error (PTE read) 
I (Section 15.8.1.18.2) 
I otherwise 
+----------------------------------> Inconsistent status (TO_MBOX should be set) 

(Section 15.8.1.22) 

Figure 15-10 Cont'd on next page 

1 At least one potential PTE cause must be found or the status is inconsistent (see Section 15.8.1.22). Some of the outcomes 
indicate a potential soft elTOr interrupt cause which is not a potential PTE read elTOr cause. These errors should bE 
treated separately. 
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Figure 19-2: Internal Scan Register Operation nmlng 
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Note that the initial packets of ISR data contain data from before the load event from the last 
bit on the chain. After one or two samples, this data is all valid sampled data. The bits from the 
scan chain are serial-to-parallel converted as shown in Table 19-3. Note that for ISR1, 9 bits are 
always visible. Every third NVAX cycle, they shift up by three bit positions. 

Table 19-3: Serial to Parallel Conversion of Scan Data 

ISRl 

ISR2 

PP_DATA<5> 

PP _DATA_B<4> 

PP _DATA_B<3> 

PP _DATA_B<8:6> 

PP _DATA_B< 11:9 > 

PP _DATAJI<2> 

PP _DATA_B<l> 

PP _DATA_B<O> 

DIGITAL CONFIDENTIAL 

Bit from Scan Chain 

Most recently received bit 

Second most recently received bit 

Third most recently received bit 

Last PP _DATA_B<5:3> (from 3 NVAX cycles ago) 

Last PP _DATA_B<8:6> (from 3 NVAX cycles ago) 

Most recently received bit 

Second most recently received bit 

Least recently received bit 
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Observe MAB 

For full speed MAB observation, an internal clock is provided which will allow synchronous 
capture by a DAS in any debug environment. Figure 19-3 shows the the self-relative timing 
during Observe MAB mode. 

Figure 19-3: Self Relative Timing In Observe MAS Mode 

PP DATA<10:0> 

P? D~_TA<11> 
(N"7;..x PE! 2) 

Force MAB 

1 WAX cycle 

IE __ ---.-. ;.1 _. __ I . I . 

r ~ ~~-----~ 
~ __ /_7_Z~/\~S~\~\~ __ ~ __ ~/~7~ZI\~S~S~\ ____ ~~/~Z~Z~/\~S~S~\ ____ ~ __ _ 

During Force M-.!\B mode an internal 11 bit counter forces address on the microaddress bus. The 
count.er is initialized internally by the Ebox.. It gets incremented each time FORCE ~iAB mode 
is entered, thus allowing it to go through all control store addresses. Refer to the testability 
sections of Micro-Sequencer chapter for further details of Force :tv1AB operation. 

Observe .Box Signals 

The timing for observing internal signals from boxes follows the basic pattern as that for observing 
MAE. Note that PP _DATA_H<11> may be used for observing box-specific signal. Details of the 
signals observed may be found in the testability section of each box chapter. 

19.5 Test Pads 

This port consists of strategic internal nodes brought out to top level of metal in the form of 
3x3 micron test pads. These pads will be accessed by probes during chip debug and wafer probe 
manufacturing tests. The access may primarily provide observability of these nodes, however, con
trollability may also be provided where appropriate. See the testability sections in box chapters 
for the list of nodes brought out on the top metal layer. 

19.6 System Port 

This is simply the normal system I/O of the chip. It is identified as a test access port because of 
two reason: 

• It is used to provide the read/write access to testability features via the VAX architecture's 
MFPR and MTPR instructions. 
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• It provides the natural resource for testing the chip via the macro-code based tests. 

See the individual box chapters for the list of specific architectural features provided. 

19.7 Serial P-cache Port 

Instruction stream data may be serially loaded into the P-cache by supplying data on the TEST_ 
DATA_H pin and strobing it with the TEST_STROBE_H pin. Chip microcode collects the bit
serial data, packs it into longwords, and writes the longwords into the P-cache. After loading the 
P-cache, the microcode passes control to the first MACRO instruction in P-cache. 

The serial load follows this fiow: 

• TEST_STROBE_H is de-asserted while ASYNCH_RESET_L is asserted. TEST_STROBE_H 
is normally pulled up through on-chip resistors. 

• '\\-"hen ASYNCH_RESET_L is de-asserted, the on-chip power-up microcode enters the special 
burn-in fiow. 

• ,,:nen 1-fCHK_H is asserted, TEST_STROBE_H should be de-asserted. The chip is now ready 
to receive serial data input. 

• The first. bit of instruction stream data should be placed on TEST_DATA_H, Then TEST_ 
STROBE_H should be asserted. 

• TEST_STROBE_H should then be de-asserted. TEST_DATA_H can change on the same edge 
as the TEST_STROBE de-assertion. 

• TEST_STROBE_H may transition at a maximum rate of 1110 the internal chip clock fre
quency. There is no minimum rate. 

• 32K bits of instruction stream data must be loaded into cache. At this time, MCHK_H will be 
de-asserted, signifying the cache load is complete. The chip then jumps to the first location 
in P-cache, attempting to execute an instruction at that location. 

It is difficult to achieve high test coverage in the the burn-in and life-test environments due to 
limited test pattern bandwidth and the difficulty in synchronizing test equipment to the NVAX 
chip. Using this serial port, burn-in and life-test programs can load the real "test program" into 
P-cache, where the chip can perform a self-test. 

This scheme minjmizes test pattern bandwidth, allows for asynchronous transmission of the serial 
data, provides a means to stimulate multiple chips under test which are running asynchronously, 
and supplies a means to achieve high test coverage. 

19.8 -IEEE 1149.1 (JTAG) Serial Test Port 

The Serial Test Port is a 4-pin test access interface based on IEEE 1149.1 standard. (See [2], [3].) 
In NVAX it is used for accessing and controlling the boundary scan register. The port" supports 
EXTEST, SAMPLE and BYPASS instructions. 
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Figure 19-4: Serial Port nmlng 
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The block diagram of the port logic together with the boundary scan register is shown in 
Figure 19-5. The port logic shown represents all the logic used in the definition of Common 
Test Interface (see [2]). It consists of the four-wire Test Access Port (TAP), a TAP controller, an 
instruction register (IR) and a bypass register (BPR). 

The four pins in test access port are TDI_H, TOO_a TMS_H, and TCK_H. These pins conform 
to all requirements of the standard. The port also uses PP_CMD_H< 0> pin as pseudo-TRST_L 
pin. When asserted low, this pin resets the JTAG test logic. See Section 19.8.5 for more details. 

The TAP Controller is a state machine which interprets IEEE 1149.1 protocols received on TMS 
line and generates appropriate clocks and control signals for the testability features under its 
jurisdiction. 
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Figure 19-5: IEEE 1149.1 Serial Port (the Basic en) 
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The Instruction Register resides on a scan path. Its contents are interpreted as test instructions 
and are used to select the testability modes and features. 

The Bypass Register is a one bit shift register which provides a single-bit serial connection through 
the port (chip) when no other test path is selected. 

19.8.1 TAP Controller State Machine 

The TAP Controller is a synchronous finite-state state machine that interprets IEEE 1149.1 
protocols received on TMS line. The state transitions in the controller are caused by the TMS 
signal on the rising edge of TCK In each state, the controller generates appropriate clocks and 
control signals that control the operation of the testability features. Appropriate actions of the 
testability features are initiated on the rising edge of TCK following the entry into a state. 

The TAP controller states provide the four basic actions required for testing: transportation of 
test data (Shift), stimulus application (Update), test execution (Run-Test), and response capture 
(Capture). Test data are transported generally in the beginning and at the end of a test. 

The state diagram for the TAP controller is shown in Figure 19-6. The TAP controller causes 
appropriate actions to occur only in the testability features selected by the current instruction in 
the instruction register. All other testability features maintain status quo. Status quo means that 
the registers either retain their previous state or continue to operate in their previously selected 
mode. 
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A Scan Sequence begins with entry into the Capture State and end with the exit from the Update 
State. The Scan Sequence entered from Select-DR-Scan controls the instruction register, and 
the one entered from Select-DR-Scan controls the testability feature selected by the instruction 
register. The actions caused by the states in the two scan sequences are identical. The following 
is the brief description of each state. 

Figure 19-6: TAP Controller State Machine 

Values Shown are TMS 

10 

r::~:-~ 
~h~~~R~C 

Exit~-OR 

o 

• Test-Logie-Reset: This state disables the test logic. The chip performs normal system 
operation. Testability features are either inactive or are performing normal system operation. 
The TAP controller is forced into this state at power-up and it continues to remain in this 
state as long as TMS is held high. 

• Run-TestlIdle: This is a combined controller" state between scan operations when the test 
logic is either idle or a particular test is running. 

For example, upon entry into this state, an internal test (such as self-test or macrocode 
test involving data reducers etc.) selected by the current instruction is executed. All other 
testability features (not involved in the current test) maintain status quo. 
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• Select-D~Scan: This is a temporary controller state in which all test registers (instruction 
register as wen as testability features) maintain status quo. If TMS is held low when the 
controller is in this state, then a scan sequence for the selected test feature is initiated. 

• Select-IR-Sean: This is a temporary controller state in which all test registers maintain 
status quo. If TMS is held low when the controller is in this state, then a scan sequence for 
the Instruction Register is initiated. 

• Capture: In this controller state, the chip data is parallel loaded into the selected test 
register Unstruction Register or testability feature). This is the state in which the observe 
action takes place. 

• Shift: In this state the selected test register shifts data one stage towards its serial output 
on each rising edge of TCK. 

• Exit1: This is a temporary controller state where all test registers maintain status quo. 

• Pause: This controller state allows shifting of the selected test register to be temporarily 
halted. All test registers maintain status quo. 

• Exit2: This is a temporary controller state. All test registers maintain status quo. 
• Update: The selected test register updates its outputs by transferring data from the shifter

stage into parallel output stage. Tnis update action is initiated on the first falling edge of 
TCK upon entry into the state. All other registers maintain status quo. 

19.8.2 Instruction Register 

The JTAG Instruction Register on !\·'V~.~ CPU consists of 2 bits. The two bits are interpreted as 
per Table 19-4 to select and control the operation of boundary scan register. During Caoture-IR 
state, the shift register stage of IR is loaded with data '01'. This automatic load feature is useful 
for testing the integrity of the JT...\G scan chain on module. 

Table 19-4: Instruction Register 

m< 1:0 > 

00 

01 

10 

11 

Test Register Selected 

Boundary Scan Register 

Boundary Scan Register 

Bypass Register 

Bypass Register 

Test IDstructioDl Operation 

EXTEST. Also forces reset to internal chip logic. 

SAMPLE 

BYPASS 

BYPASS. Default 

A cen used in the instruction register is shown in Figure 19-7. The ir_cell operations are con
trolled by m_CAPTVRE_B, m_SlDFT_Cl, IR_SllIFT_C2, m_UPDATE_B and m_RESET_L signals. These 
signals are described later. 
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Figure 19-7: JTAG Instruction Register Cell 
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19.8.3 Bypass Reg ister 
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The bypass register provides a one bit scan route though the 2\V'AX chip during a scan-shift 
operations. It provides a means for effectively bypassing the ~\:~ CPU chip's test logic during 
testing at. module and system levels. 

'When the bypass register is selected, a CAPTURE-DR controller state loads a '0' in the bypass 
register. V\1hen the JTAG instruction selects the Bypass operation, Bypass register is selected for 
the scan operation. 

19.8.4 Control Dispatch Logic 

Dispatch logic generates signals to control operations of JTAG circuitry, including the the instruc
tion register and the driver on TDO_H pin. It decodes the current instruction in the IR and the 
current TAP controller state information and dispatches the control signals to the bypass and 
boundary scan registers. The control signals dispatched are described below .. 

Dispatch to Boundary Scan Register 

• BSR_EXTEST_R: Asserted high when the instruction selects EXTEST instruction. This allows 
boundary scan cells to drive data on output and 110 pins. BSR_EXTEST_H also forces an 
internal reset to chip logic. This makes chip's internal logic insensitive to test patterns used 
for interconenction test. 

• BSR_CAP'I'URE_H: The signal is asserted when TAP controller enters the CAPTURE-DR state 
and deasserted when the TAP Controller exits CAPI'URE-DR state. The signal causes data 
to be observed into the boundary scan register, 

• BSR_SBIFT_Cl: Issues a pulse with the falling edge of TCK_H during CAPI'URE-DR and 
SHIFT-DR states. 

• BSR_SBIFT_C2: Unconditionally issues a pulse with each rising edge of TCK_H. 
• BSR_UPDATE_R: Issues a pulse with the falling edge of TCK_H during UPDATE-DR state. 

This pulse loads new data into the parallel output latch in md_bcells described later. 
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Dispatch· to Bypass Register 

Dispatch to Bypass Register consists of BSR_CAP'lURE_H, BSR_SRIFT_Cl, and BSR_SHIFT_C2 sig
nals. Note that these are subset of signals dispatched to the boundary scan register. 

Dispatch to Instruction Register 

• IR_CAPTVRE_B: The signal is asserted when TAP controller enters the CAPTURE-m state 
and deasserted when the TAP Controller exits CAPTURE-IR state. The signal causes status 
data ('01') to be observed into IR, 

• IR_SHIFT_Cl: Issues a pulse with the falling edge of TCK_H during CAPTURE-IR and SHIFT
IR state. 

• m_SHIFT_C2: Unconditionally issues a shift pulse with each rising edge of TCK_H. 
Note that the data shifts from the most significant bit to least significant bit. The least 
significant bit is at TDO _H. 

• IR_UPDATE_B: Issues a pulse with the falling edge of TCK_H during tJPDATE-IR state. This 
pulse loads ne\v instruction into the parallel output latches of IR. 

• IR_BESET_L: This signal initializes the instruction register's output latches. When asserted 
10\\, all IR output latches are set high to force B'l"PASS instruction. m_RESET_L is asserted low 
\vhen the T...I\P Controller enters the Test-Logie-Reset state. 

Olspatch to TDO Multiplexers and Driver 

!vIultiplexer control is dispatched by decoding the instruction register as per Table 19-4. EXABLE_ 
TDO_H is generated as follows. 

• ENABLE_TDO_H: This signal is asserted high when the TAP controller is in SHIFT-IR or 
SEnFT-DR states. The signal enables TDO_H pin driver whenever a shift operation is in 
progress and keeps it disabled all other times. 

Figure 19-8 and Figure 19-9 show the timing diagram of the signals dispatched by the Control 
Dispatch Logic and the behavior of the Boundary Scan Register and the Instruction Register 
during the IR-Scan and DR-Scan sequences. 

Notice that the implementation must meet the standard's requirement that the changes on TDO_ 
H occur with falling edge ofTCK_H signal. In NVAX CPU this requirement is met by including a 
timing latch at the TDO_H pin. The latch opens when the TCILH is low and closes when TCK_H 
is bigh. 
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19.8.5 Initialization 

The TAP Controller and the Instruction Register's output latches are initialized by PP_CMD_ 
H<O>. When PP_CMD_H<O> pin is asserted low, the TAP controller is forced to enter the 
Test-Logie-Rest state and the IR is forced to BYPASS instruction. 

During Test-Logie-Reset state, all JTAG logic, including boundary scan register, is in inactive 
state. That is, the chip performs normal system functions. The boundary scan logic is set to a 
passive sample (observe) mode. TAP controller leaves this state only when a JTAG test operation 
is desired and appropriate sequence is sent on TMS_H and TCILH pins. 

NOTE 

Note that PP_CMD_H< 0 > pin on NVAX CPU acts like a pseudo-TRST_L pin. Since 
this pin is internally pulled-up, a system designer must make provision to assert 
the pin low, at least during the power-up operation. This will keep all JTAG 
circuits inactive and allow system to wake up normally in system mode. 

19.9 Boundary Scan Registers 

The ~'V:.4.X CPU chip's boundary scan register primarily facilitates int.erconnection test on module 
during module manufacturing and field service. Uses during other life cycle testing phases may 
also be possible. 

The boundary scan register is a single shift register formed by bounchlry scan cells placed at most 
of the chip's signal pins. The register is accessed via the JTAG port's TDI_H and TDO_H pins. 
Its operation is controlled by the control dispatch received from the JTAG Port. 

19.9.1 Boundary Scan Register Cells 

The NVAX chip uses four main types of boundary scan cells. 

In_beell: Used on input-only pins. Figure 19-10 shows the block diagram. The bcell basically 
consists of l-bit shift register. The cell supports Sample and Shift functions. The cell is used at 
input-only pins. 

out_beeU: Used on output-only pins. Figure 19-11 show the block diagram. Besides the shift 
register, the cell has an output multiplexer. The cell supports the following functions: Sample, 
Shift, Drive outputs. The cell is used at miscellaneous output-only pins. 

10 _been: Used on bi-directional pins. Figure 19-12 show the block diagram. The cell is identical 
to the out_bcell cell except that it captures test data from the incoming data line. The cell supports 
Sample, Shift, Drive output functions. It is used at all 110 pins. 
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md_beell: Used on certain special pins and internal signals. For example, this cell is used on 
TS_ WE_L, TS_OE_L, DR_ WE_I.., DR_OE_L pins and on internal driver enable signals for bi· 
directional busses. Figure 19-13 show the block diagram of an md_bcell. The cell builds upon the 
out_beell. It has a third output latch which holds data at output steady while a shift operation 
is in progress. The cell supports Sample, Shift, Drive output, and Hold output functions. 

Figure 19-10: In_beell Boundary Scan Cell 
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Figure 19-11: out_bee II Boundary Scan Cell 
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Figure 19-12: IO_beell Boundary Scan Cell 
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Caution: In NVAX CPU chip, when Boundary Scan Register is shifting data in EXTEST 
mode (that is, when bsr_extest_h is asserted) the shifting of data is transferred to the 
pins and is visible to the other components connected to the pins. 
Since the back-up cache interface pins are connected to RAMs which do not have bound
ary scan on them, the protection is provided by extra logic in the bcells on PJW bits. 
This is explained later. 
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19.9.2 Boundary Scan Register Organization 

The boundary scan register on NVAX CPU chip is 243 bits long. Table 19-5 lists all the signal 
pins and the associated boundary scan register cell type. The pins are listed in the order of 
their connection from TDI_H pin to to TDO_H pin. Thus, cell on the internal signal on signal 
C_PAD_N%NDAL_OUT_DRV_H is closest to TDI_H pin and the cell on pin CH1P_ID_H<II> is 
farthest from the TDI_H pin. In an entry with more than one pin, the cell on the first pin is closer 
to the TDI-pin. On-chip fuses provide a means to program each die with a unique ID number 
which can be used to trace a packaged part back to the lot, wafer, and die location of origin for 
yield analysis. Although it is not part of the chip boundary, the twelve bit CHIP _10 _H<II> is 
connected to boundary scan chain so that the ID can be easily accessed through the JTAG port. 

Table 19-5: Boundary Scan Register Organization 

BSR Cell 
Signal Name Count Pin type Type Remarks 

C_PAD_N%NDAL_ OUT_DR V _H 1 Int signal md_bcell Int Signal 

NDAL_H< 32:63 > 32 110, tri, 4 pts io_beell 

OSC_H, OSC_L 2 In none 

° SC_TEST_H 1 In none 

OSC_TCl_H, OSC_TC2_H 2 In none 

PHI12_0UT_Ir, PH123_0UT_H 2 Out, ID, 4R none 

PHI41_0UT_H, PHI34_0UT_H 2 ~Out, ID, 4R none 

SYS_RESET_L 1 Out md_bcell 

ASYNC_RESET_L 1 In, ID, 3R in_beell 

DISABLE_OUT_L 1 In, ID, 3R in_beell 

TEST_STROBE_H 1 In,ptp in_br:ell 

TEST_DATA_H 1 In, ptp in_beell 

IRQ..L< 0:3 > 4 In, Op dr, 3D, lR in_beell 

H_ERR_L, S_ERR_L 2 In, Op dr, 3D, lR in_beell 

INT_TIM_L 1 In, ptp in_beell 

PWRFL_L,HALT_L 2 In, ptp in_beell 

:MACHlNE_ CHECK_H 1 Out, ptp out_beell 

TEMP_H 1 Out none 

PP_CMD_H< 0:2 > 3 In, pull-up none 

PP _DATA_H< 0:11 > 12 Out none 

TS_TAG_H< 17:31 > 15 110, tri 7 pts io_beell 

TS_ECC_H< 0:5 > 6 110, tri 7 pts io_beell 

TS_OWNED_H, TS_VALID_H 2 110, tri, 7 pts io_beell 

C_PAD_T%EN_TS_DRV_H 1 Int. signal md_bcell Int signal 

TS_INDEX_H< 5:20 > 16 Out, 6 pts out_beell 
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Table 19-5 (Cont.): Boundary Scan Register Organization 

BSR Cell 
Signal Name Count Pin type Type Remarks 

TS_OE_L, TS_VVE_L 2 Out, 6 pts md_bcell 

DR_INDEX...H< 3:20 > 18 Out, 8 pts out_beell 

DR_OE_L, DR_WE_L 2 Out, 8 pts md_bcell 

C_PAD_D%EN_DR_DRV_H 1 Internal sig md_beell Int Signal 

DR_DATA_H< 0:23 > 24 I/O, tri,19 pts io_bcell 

DR_ECC_H< 0:7 > 8 I/O, tri, 19 pts io_beell 

DR_DATA_H< 24:63> 40 I/O, tri, 19 pts io_bcell 

CPU_WB_ONLY_L 1 In, Op dr in_beell 

ACK_L 1 I/O, Op dr, 4 pts io_beell 

CPU_SUPRESS_L 1 Out, ptp out_beell 

CPU_HOLD_L 1 Out, ptp out_beell 

CPU_RE~L 1 Out, ptp out_bcell 

CPU_GRANT_L 1 In, ptp in_beell 

CMD_H< 0:3 > 4 I/O, tri, 4 pts io_beell 

ID_H< 0:2 > 3 I/O, tri, 4 pts io_beell 
• 

PARITY_H< 0:2 > 3 I/O, tri, 4 pts io_beell 

NDAL_H< 0:31 > 32 I/O, tri, 4 pts ~ io_bcell 

CHIP _ID_H<O:ll> 12 Int signal in_beell Int Signal 

PHI12_IN_H, PHI23_IN_H 2 In, ID, 4R none 

PHI41_IN_H, PIll34_IN_H 2 In, ID, 4R none 

TMS_H 1 In, pull-up none 

TCK_H 1 In, pull-down none 

TDO_H 1 Out,tri,2D none 

TDI_H 1 In, ptp, pull-up none 

Some of the boundary scan register cells in NVAX are grouped together to form sections. A section 
is simply a collection of pins that are identical in nature and have identical boundary scan cells 
on them. A section is generally controlled and operated identically during certain test modes. 
The pins in a section may also be logically related and may be located physically together. Some 
such sections are described below. 

BSR at TAG Store Interface 

The boundary scan register at TAG Store interface consists of 4 sections: WE/OE bits, a driver 
enable bit on C_PAD_T%EN_TS_DRV_H signal, 23 data bits (tag, ECC and own), and 16 address 
(index) bits. Figure 19-14 shows the block diagram. The boundary scan cell type used in each 
segment is listed in Table 19-5. (The figure does not show the actual order of connection.) 
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Figure 19-14: Boundary Scan Register at TAG Store Interface 
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bsr_capture_h 

IEEE P'149.1 Port 

The following are some specific requirements. 

to 
td 0 h 

WE/OE Bits: The WE/OE Bits use md_bcells with additional logic to allow proper operation of 
RAMs during interconnection testing. When bsr_extest_h is asserted, the test data is injected on 
pins is as follows: 

• TS_ WE_L hit: Data injected is the logical OR of the value stored in the md_bcell's output 
latch and the complement of bsr_update_h signal. 

• TS_ OE_L hit: Data injected is the logical OR of the value stored in the md_bcell's output 
latch and the complement of bsr_capture_h signal. 

Idea is to assert these two signals appropriately in a non-overlapping manner and only when the 
boundary scan is not shifting the data. This enhancement allows the test operation to meet the 
timing constraints in accessing RAMs. (See reference [4].) It also protects RAM interface from 
the shifting data pattern. 

BSR at Data RAM Interface 

The BSR section at Data RAM interface also consists of 4 segments: WE/OE bits, a driver enable 
bit on C_PAD_D%EN_DR_DRV_H) signal, 12 Data bits, and 18 Index bits. The block diagram and 
operation of BSR at Data RAM interface are exactly same as the BSR at TAG Store interface. 

BSR at NDAL Interface 

The BSR section at NDAL data interface has a driver enable bit on the internal signal C_PAD_ 
No/cNDAL_OUT_DRV_H. It allows the drivers on bi-directional NDAL pins to be controlled by JTAG 
during testing. 
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19.10 Internal Scan Register and LFSR Reducer 

NVAX CPU chip has several internal nodes observable via internal scan registers. This observ
ability facilitates chip debug. Some internal scan register sections turned into LFSR Reducers to 
enhance fault coverage and reduce test vectors during chip manufacturing tests. 

19.10.1 Internal Scan Register Cells 

Figure 19-15 shows the block diagrams of two types of cells used in NVAX. ISR cell is used for 
Scan-only registers and ISL is used for implementing Scan-cum-LFSR registers_ 

Figure 19-15: Cells for Internal Scan Registers 

PI PI 

so 
so 

SI 
SI __ ~~ __________ ~ 

load h 

ISR Cell ISL Cell 

Cell for Scan-only Register Cell for Scan-cum-LFSR Register 

Figure 19-16 shows how an LFSR is constructed by using ISL cells and an ISR. The ISR cell used 
in the left-most bit position represents a dummy bit. The cell provides the multiplexer function 
required to enable feedback during LFSR operation. (Note that this cell can be replaced by an 
ordinary multiplexer. The feedback taps for the LFSRs are based on primitive characteristiC 
polynomial. (The actual taps used will be documented in respective box chapters when LFSR 
size and other constraints are known.) 

Internal Scan register's operations are controlled by internal NVAX clocks and by two signals 
received from the parallel port as follows: 

pm_4_H and pm..2_H are internal NVAX clocks. The PHL4_H loads the master and PHI...2_H 
loads the slave. 
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Figure 19-16: An ISR section tumed Into LFSR 
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'Vhen ISR_LOAD_H is asserted high the master latches in ISR and ISL cells capture/observe 
data from internal signals. ,Vhen ISR_LOAD_H is asserted low the internal scan register 
shifts data. Xote that the shift occurs independent. of assertion on ISH_LFSR_H. ISR_LOAD_R 
is latched in phase PReS before using it to control the ISRs. 
"When both ISR_LFSR_R and ISR_LOAD_H are asserted high, the internal scan register sections 
containing ISL cells operate as LFSRs to and compress data. ISR_LFSR_H is a;so latched in 
phase PBI_3 before using it to control the internal LFSRs. 

19.10.2 Internal Scan Register Organization 

The Internal Scan Registers are divided into 2 groups: ISRI and ISR2. The ISRI consists of the 
scan register on the control store. It is used for patching the control store as well as reading out 
the control store during testing. 

ISR2 consists of all the other internal scan registers. Specific nodes included on the internal scan 
registers are listed in individual box chapters under their testability sections. The individual box 
scan registers are chained together, and are shifted out in the following order: Ibox, Ebox, Mbox, 
Cbox. 

Both ISRI and ISR2 operate at the internal clock rate. However, they are read out at the parallel 
port at NDAL clock rate. See Section 19.4.1 for details of ISRI and ISR2 operation. 

19.11 Output Pin Tri-state Control 

NVAX CPU chip has a dedicated pin disable_out_l. When asserted low, the CPU chip tri-states 
output drivers on all output-only and bi-directional pins, except those listed below. When asserted, 
the pin also forces internally a reset to the NVAX CPU chip. 
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The only exceptions are the TDO _H pin and NDAL clock output pins which are not tristated by 
the disable_out_l pin. Not tristating clock output pins has been approved by the stage-1 module 
test engineers. 

Leaving out the TDO_H pin allows the JTAG circuits to operate while chip tristate is in effect. 
This affords additional flexibility for the module manufacturing test. For example, during the 
interconnection test, the NVAX outputs may be allowed to drive only during the CAPTURE-DR 
state and kept in tristate in all other states. This can eliminates the effect of shifting patterns, 
as well as drastically reduces the duration of time for which the drivers may see an interconnect 
short fault. 

The single pin tristate function is used only during testing. 

Note that the drivers on bi-directional I/O pins are also tristated by internal Cbox logic during 
RESET and by the boundary scan register during the interconnection test (EXTEST mode) .. The 
order of precedence is as follows: DISABLE_OUT_L, Boundary scan register, and the Cbox logic. 

19.12 Operating Speed of Test Logic 

rne IEEE 1149.1 Port and the boundary scan register are designed to be operable in the range 
o to 10 !v!Hz at least. Internal scan registers operate at internal clock rate. A higher speed of 
10 ~ffiz (instead of 5 1\1Hz) has been set to make the boundary scan register usable during the 
'\\'"afer probe testing. 

NOTE 

The JTAG circuitry design must account for the fact that TCK_H will not be driven in 
the running system. 

References 

1. "mUG's Testability Document V1.0," NVAX Testability User's Group, December 1988. 

2. "Common Test Architecture: Adaptations and Compatible Applications of IEEE P1149.1 
Specification, Revision 1.0," Semiconductor Design & Engineering/Advanced Test Technology 
Group, February 1990. 

3. IEEE Standard 1149.1-1990: "IEEE Standard Test Access Port and Boundary-Scan Architecture 
draft D3." January 1989, 

4. "Testing connections to non-JTAG Static RAMs with JTAG Boundary Scan," D. K.. Bhavsar, 
DEC Internal Report, December 1989. 

19-24 Testability Micro-Architecture DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

19.13 Revision History 

Table 19-6: 

Who 

Dilip Bhavsar 

Dilip Bhavsar 

Dilip Bhavsar 

Dilip Bhavsar 

Dilip Bhavsar 

Dilip Bhavsar 

IYJip Bhavsar 

J o'"'TJ. F. Brown 

Dilip Bhavsar 

John K Brown 

Dilip Bhavsar 

John F. Brown 

Revision History 

When 

06.Mar·1989 

1S-Jul-1989 

lS-Jan-1990 

16-Mar-1990 

21-May-1990 

14-June-1990 

03-July-1990 

03-Jul-1990 

30-Jul-1990 

23-Aug-90 

28-Sep-90 

20-Feb-91 

DIGITAL CONFIDENTIAL 

Description of change 

Release for external review. 

First Update of specific details. 

3rd Release. 

Spec error in WE and ° E bcells corrected. 

(3.2) bcell on SYS_REST pin changed to md_bcell. IR and speed spec 
updated. Clock tristating removed. Serial port for PCache intro
duced. 

(3:3) Parallel port modes changed. JTAG Reset added. Box control· 
lability removed. 

(3.4) JTAG Reset finalized. bcell and other figures updated to refiect 
actUal implementation. Timing on JTAG con'tTol signals changed to 
be consistent mth edge-trigger design. Pins listed in order of their 
connection in BSR. 

Serial PCacne Port details added. 

Reset actions by JTAG EXTEST instruction and DlSABLE_OL7_ 
L pin added. Timing diagrams added. Parallel Port operation de
tails added. ISR/lSL clocking changed to PHI_ 4 (master) and Phi_2 
(slave). Final Edits for Rev 3.4. (See NITS 314, 330, 337, 351, 360) 

Timing diagram for Serial P·cache port added 

Rev 3.5. PPort timing changed (NITS # 385). More description for 
PPort operation.Also, the boundary scan order updated to reflect im
plementation. 

Rev 3.6. Updates for spec release: PPort fields & scan chain order 

Testability Micro-Architecture 19-25 



~·.~s 

· {l-s:-

\ , 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

Figure 15-10 (Cont.): Cause Parse Tree for Soft Error Interrupts 

1 2 
v v 

v 
1 

+----+ (select one) 
I I 
I I S_CEFSTS<OREAD> 
I +----+ (select one) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

S_CEFSTS<WRITE> 
AND NOT S CEFSTS<TO MBOX> 

+----+ (select one) -

+-----------------------------> Inconsistent status (should cause hard error interrupt) 
I (Section 15.8.1.22) 
I otherwise 
+----+ (select one) 

5 CEFSTS<LOST ERR> 
+---=-----------=--------> Multiple errors in context of PTE read error 
I (Section 15.8.1.18.5) 
I otherwise 
+------------------------> D-stream NDAL ownership read for Mbox write read data 

error before write data merged with fill data (Section15.8.1.14) 

+----+ (select one) 
I I 
I I 5 CEFSTS<LOST ERR> 
I +---=-----------=-------------> Multiple errors in context of PTE read error 
I I (Section 15.8.1.18.5) 
I I otherwise 
I +-----------------------------> D-stream NDAL ownership read read data error 
I (modify operand or read-lock) (Section 15.8.1.14) 
I otherwise 
+----------------------------------> Inconsistent status (either WRITE or TO_MBOX, but not both, 

should be set) (Section 15.8.1.22) 
otherwise 

+----+ 

5 CEFSTS<IREAD> 
+---=+ (select one) 

5 CEFSTS<LOST ERR> 
+---=-----------=-------------> Multiple errors in context of PTE read error 
I (Section 15.8.1.18.5) 
I otherwise 
+-----------------------------> I-stream NDAL read read data error 

(Section 15.8.1.14) 

+----------------------------------> D-stream NDAL read read data error (PTE read) 
I {Section 15.8.1.18.3) 
I otherwise 
+----------------------------------> Inconsistent status (TO_MBOX should be set) 

(Section 15.8.1.22) 
I otherwise 
+--------------------------------------------> Inconsistent status (either CEFSTS<RDE> or CEFSTS<TIMEOUT> 

should be set or, if CEFSTS<UNEXPECTED FILL> is set, it 
should cause a hard error interrupt) (Section 15.8.1.22) 

Figure 15-10 Cont'd on next page 

1 At least one potential PTE cause must be found or the status is inconsistent (see Section 15.8.1.22). Some of the outcomes 
indicate a potential soft error interrupt cause which is not a potential PTE read error cause. These errors should be 
treated separately. 
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Figure 15-10 (Cont.): Cause Parse Tree for Soft Error Interrupts 

1 
v 

S NESTS<NOACK> AND 
S-PCSTS<PTE ER>l 

+---=+ (select-one) 
I I 
I I S_NEOCMD<CMD>-IREAD 
I +----+ (select one) 
I I I 
I I I S NESTS<LOST OERR> 
I I +---=----------=------------------------> Multiple errors in context of PTE read error 
I I I (Section 15.8.1.18.5) 
I I I otherwise 
I I +---------------------------------------> Unacknowledged I-stream NDAL read (Section 15.8.1.16) 
I I 
I I S _ NEOCMD<CMD>-DREAD 
I +--------------------------------------------> Unacknowledged D-stream NDAL read (PTE read) 
I I (Section 15.8.1.18.4) 
I I S_NEOCMD<CMD>-OREAD 

+----+ (select one) 
I , 
, I S NESTS<LOST OERR> 
, +---~----------=------------------------> Multiple errors in context of PTE read error 
I I (Section 15.8.1.18.5) 
I ,otherwise 
I +---------------------------------------> Unacknowledged D-stream NDAL read (modify operand or re 
I (Section 15.8.1.16) 
I S_NEOCMD<CMD>-WRITE or WDISOWN 
+--------------------------------------------> Inconsistent status (should cause hard error interrupt) 
, (Section 15.8.1.22) 
I otherwise 
+--------------------------------------------> Inconsistent status (invalid command in NEOCMD<CMD» 

(Sect ion 15. 8 • 1. 22 ) 
S_NESTS<PERR> 

+----+ (select one) 

S_NESTS<INCON_PERR> 
+--------------------------------------------> NDAL inconsistent parity error 
I (Section 15.8.1.19) 
I otherwise 
+--------------------------------------------> NDAL parity error (Section 15.8.1.19) 

S_NESTS<LOST_PERR> 
+-------------------------------------------------> Lost NDAL parity error or inconsistent parity error 
I (Section 15.8.1.20) 
, (status consistent with soft error interrupt 
I in system environment error registers) 
+-------------------------------------------------> Soft error interrupt from system environment 
I (Section 15.8.1. 21) 
, none of the above 
+-------------------------------------------------> Inconsistent status (possible machine check or hard err 

interrupt during soft error interrupt processing) 
(Section 15.8.1.22) 

Figure 15-10 Cont'd on next page 

1 At least one potential PTE cause must be found or the status is inconsistent (see Section 15.8.1.22). Some of the outcom~ 
indicate a potential soft error interrupt cause which is not a potential PTE read error cause. These errors should bE 
treated separately. 
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Figure 15-10 (Cont.): Cause Parse Tree for Soft Error Interrupts 

Notation: 
(select one) - Exactly one case must be true. If zero or more than one is 

true, the status is inconsistent. 
(select all) - More than one case may be true. 
(select all, at least one) - All the cases are possible causes of a soft error interrupt. 

otherwise 
none of the above 

15.8.1.1 VIC Parity Errors 

More than one may be true. At least one must be true or the status 
is inconsistent. A case is not considered true if it evaluates to 
"Not a soft error interrupt cause". 

- fall-through case for (select one) if no other case is true. 
- fall-through case for (select all) or (select all, at least one) 

if no other case is true. 

Description: A parity error was detected in the VIC tag or data store in the Ibox. 

VIC Data Parity Errors: A parity error OCCUlTed in the data portion of the VIC. 

VIC Tag Parity Errors: A parity error occurred in the tag portion of the VIC. 

In all cases, the quadword virtual address of the error is in S_ VMAR. 

Recovery procedures: To recover, disable and flush the VIC by re-writing all the tags (using 
the procedure in Section IS.3.3.1.1.1). Also, clear ICSR<LOCK>. 

15.8.1.2 Peaehe Parity Errors 

Description: A parity error was detected in the Pcache. Either a tag parity error or a data 
parity error is reported, though tag parity errors in both the left and right banks may be reported 
simultaneously. The reference, whether it was a read or write, was passed to the Cbox as if the 
Pcache had missed. No data is lost. The Pcache is disabled because PCSTS<LOCK> is set. 

S_PCADR contains the physical address of operation incurring the error. The address should not 
be in 10 space. If it is, it is an inconsistent status (see Section 15.8.1.22). 

Recovery procedures: Clear PCSTS<LOCK>. Flush the Pcache and initialize the Pcache tag 
store (see Section 15.3.3.1.1.1.2). 

15.8.1.3 Beache Tag Store Uncorreetable Errors 

Description: An uncorrectable ECC error or an addressing error resulted from reading the 
Bcache tag store. The Bcache is in ETM. The hexaword physical address of the transaction 
incurring the error is in S_BCETIDx.. (If the physical address is found to be in 10 space, it is 
an inconsistent status. See Section IS.8.1.22.) S_BCETAG contains the actual tag data and 
check bits read during the failing access. Software may use the routine TAG_ECC_CHECK in 
Section 1S.10 to ,check the tag data and determine the syndrome. The result of this check should 
give the result expected from S_BCETSTS<UNCORR,BAD_ADDR>. 

It should never be the case that both S_BCETSTS<BAD_ADDR> and S_BCETSTS<UNCORR> 
are set. If they are, it is an inconsistent status (see Section 1S.8.1.22). 
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For any normal Mbox command (i.e., not BCFLUSH), this error leads to a fill of the block whose 
tag had the error. This is because the Cbox converts uncorrectable tag store errors into misses 
and sends the associated reference to memory. For reads, the reference sent out is a read or an 
ownership read, and when the data returns it is loaded in the Bcache. For writes, an ownership 
read is sent, and when the data returns the write is merged with it and it is loaded in the Bcache. 
When the fill finishes successfully, the tag is updated (overwriting the bad tag). If the fill times 
out, the tag is not overwritten. 

In some cases, this error leads to an NVAX CPU read timeout andlor a write timeout in memory. 
This occurs when the block was VALID-OWNED in the Bcache and is the same block that is being 
accessed by the failing operation. Errors resulting from these lost blocks are handled separately. 

Write-unlocks are a special case. No tag lookup is done for write-unlocks unless the Bcache is in 
ETM. If the Bcache is in ETM, and the tag store error occurs for that transaction, the write-unlock 
is sent to memory. 

Recovery procedure (all cases): Clear BCETSTS<LOCK>. If it is an addressing error, clear 
BCETSTS<BAD_ADDR>. Otherwise, clear BCETSTS<UNCORR>. 

15.8.1.3.1 Case: BCETSTS<TS_CMD>=WUNLOCK 

Recovery procedure: Write a INVALID tag with good ECC to the tag with the error (using the 
BCTAG access path). Then flush the Bcache. Clear CCTL<HW _ETM> (after flushing the Bcache). 
Software should prepare for another tag error during the Bcache flush by clearing BCETSTS of 
unrecoverable errors. 

Restart conditions: 

The Bcache was in ETM at the time the write-unlock arrived. The data is in memory may be 
corrupt and memory's ownership bit was cleared. Memory is corrupted at the location indicated 
by S_BCETIDX. Software must determine if the error is fatal to one process or the whole system 
and take appropriate action. 

15.8.1.3.2 Case: BCETSTS<TS_CMD>=DREAD,IREAD,OREAD 

Recovery procedure: Flush the Bcache. Clear CCTL<HW_ETM> (after flushing the Bcache). 
Software should prepare for another tag error during the Bcache flush by clearing BCETSTS of 
unrecoverable errors. After flushing the Bcache, it is necessary to determine if any block is "lost". 
If a block's memory ownership bit is set and no writeback cache in the system has it owned, then 
the block is said to be lost. Use the procedure in Section 15.3.3.1.2.5. This procedure can result 
in :finding no lost blocks, one lost block, or multiple lost blocks. 

Restart conditions: If there is one lost block, it is not recoverable. Software must if the lost 
data was fatal to one process or the whole system and take appropriate action. 

If multiple blocks are lost (this isn't expected), crash the system. 
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15.8.1.3.3 Case: BCETSTS<TS_CMD>=R_INVAL,O_INVAL,IPR_DEALLOCATE 

Recovery procedure: Flush the Bcache. Clear CCTL<HW_ETM> (after flushing the Bcache). 
Software should prepare for another tag error during the Bcache flush by clearing BCETSTS of 
unrecoverable errors. Mter flushing the Bcache, it is necessary to determine if any block is "lost tI. 
If a block's memory ownership bit is set and no writeback cache in the system has it owned, then 
the block is said to be lost. Use the procedure in Section 15.3.3.1.2.5. This procedure can result 
in finding no lost blocks, one lost block, or multiple lost blocks. 

If exactly one block is lost, memory's owner ID information indicates this CPU, write a 
VALID-OWNED tag with the address of the lost block into the tag which had the error (using 
the BCTAG access means). Then flush this location to memory. An error could occur with this 
flush, in which case the data is not recoverable. 

NOTE 

If memory does not store an owner ID with each block in a particular system, then this 
recovery method is not recommended. Instead, the data should be considered lost. 

Restart conditions: If there is one lost block, and the repair procedure didn't incur an error, 
restart . 

. If the repair procedure was not successful, the data is not recoverable. Software must if the lost 
data was fatal to one process or the whole system and take appropriate action. 

If multiple blocks are lost (this shouldn't result from one tag store error), crash the system. 

15.8.1.4 Lost Bcache Tag Store Errors 

Some number of unrecoverable Bcache tag store errors occurred and were not latched because 
BCETSTS already contained a report of an unrecoverable error. All unrecoverable tag store errors 
cause soft error interrupt, so this is definitely a cause of the soft error interrupt. 

Lost Bcache tag store errors may be caused by more than one operand prefetch to the same cache 
block. 

The Bcache is in ETM. 

Unrecoverable tag store errors can cause lost data by overwriting blocks in the Bcache. 

Unrecoverable tag store errors in ETM on write-unlocks can cause corrupted memory data. 

Recovery procedure: Clear BCETSTS<LOST_ERR>. Flush the Bcache. Clear 
CCTL<HW_ETM> (after flushing the Bcache). Software should prepare for another tag error 
during the Bcache flush by clearing BCETSTS of unrecoverable errors. . 

Restart conditions: Lost write-unlock errors may have corrupted memory. Crash the system. 

15.8.1.5 Bcache Tag Store Correctable ECC errors 

Description: A correctable error occurred in accessing the Bcache tag store. The Bcache is 
not in ETM. S_BCETIDX contains the physical address of the error. (If the physical address 
is found to be in 10 space, it is an inconsistent status. See Section 15.8.1.22.) (The index 
portion of S_BCETIDX indicates which tag store entry had the error.) S_BCETAG contains the 
actual tag data and check bits read during the failing access. Software may use the routine 
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TAG_ECC_C:HECK in Section 15.10 to check the tag data and determine the syndrome. ThE 
result of this check should be a correctable single-bit error. 

Recovery procedures: Clear BCETSTS<CORR>. 

If the operation was anything but a tag lookup for an explicit IPR deallocate operation (i.e., 
BCFLUSH), software should flush that one location by writing the BCFLUSH IPR. 

TBS (MTPR to (BCFLUSH + (S_BCETIDX & INDEX_MASK))) 

This effectively scrubs the Bcache tag store location by invalidating it and forcing it to be written 
back if it is owned. This may be done without putting the Bcache in software ETM. 

15.8.1.6 Lost Bcache Tag Store Correctable ECC errors 

Description: A correctable error occurred in accessing the Bcache tag store, but it is lost because 
of an uncorrectable tag store error which also occurred. 

Recovery procedures: Clear BCETSTS<CORR>. 

The Bcache should be flushed (and it would be because of the uncorrectable error in any case). 
This effectively scrubs the Bcache tag store location by invalidating it. 

15.8.1.7 Bcache Data RAM Correctable ECC Errors 

Description: A correctable error occurred in accessing the Bcache data RAM. The Bcache is 
not in ETM. S_BCEDIDX contains the cache index of the error, and S_BCEDECC contains the 
syndrome calculated by the ECC logic. It is not possible to reliably determine the physical address 
of the error, since the Bcache is not in ETM and therefore the block can be overwritten at any 
time after the error. 

Recovery procedures: Clear BCEDSTS<CORR>. 

lfthe opel19.tion was a read (S_BCEDSTS<DR_CMD>=DREAD or IREAD), lftware should flush 
that one location using the BCFLUSH IPR. 

TBS (MTPR to (BCFLUSH_BASE + (BCEDIDX & INDEX_MASK))) 

This effectively scrubs the B'cache data RAM location by invalidating it and forcing it to be written 
back if it is owned. This may be done without putting the Bcache in software ETM. 

15.8.1.8 Lost Bcache Data RAM Correctable ECC Errors 

Description: A correctable error occurred in accessing the Bcache data RAM, but it is lost 
because of an uncorrectable data RAM error which also occurred. The address and syndrome of 
the error are not known. 

Recovery procedures:" Clear BCEDSTS<CORR>. 

The Bcache should be flushed (and it would be because of the uncorrectable error in any case). 
This effectively scrubs the Bcache data RAM location by invalidating it and forcing it to be written 
back if it is owned. 
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15.8.1.9 Bcache Data RAM Uncorrectable ECC Errors and Addressing Errors on l-8tream or 
D-Stream Reads 

Description (addressing error): A Bcache addressing error was detected by the Cbox in an 
I-stream or D-stream read during a Bcache hit. Addressing errors are the result of a mismatch 
between the address the Cbox drives to the RAMs for a read access and the address used to write 
that location. A multiple bit data error can appear to be addressing error, though it is extremely 
unlikely. 

Description (uneorrectable ECC error): A Bcache uncorrectable ECC error was detected by 
the Cbox in an I-stream or D-stream read during a Bcache hit. Uncorrectable data errors are the 
result of a multiple bit error in the data read from the Bcache. An addressing error with a single 
bit data error will appear as an uncorrectable data error. 

Description (both cases): The Bcache in in ETM. S_BCEDIDX contains the cache index of 
the error, and S_BCEDECC contains the syndrome calculated by the ECC logic. The physical 
address of the reference can be found by reading the tag for the data block (using the procedure 
in Section 15.3.3.1.2.4). (If the physical address is found to be in 10 space, it is an inconsistent 
status. See Section 15.8.1.22.) 

If the block's tag is found to contain an ECC error, then the address can not be determined. 

It should never be the case that both S_BCEDSTS<BAD_ADDR> and S_BCEDSTS<UNCORR> 
are set. If they are, it is an inconsistent status (see Section 15.8.1.22). 

Recovery procedures: To recover, clear BCEDSTS<LOCK>. Also, if it is an addressing error, 
clear BCEDSTS<BAD_ADDR>. Otherwise, clear BCEDSTS<UNCORR>. 

Flush the Bcache. Clear CCTL<HW _ETM> (after flushing the Bcache). If the data is owned by 
the Bcache and if the error repeats itself (is not transient), then a writeback error will result 
from the flush procedure. Software should prepare for this by clearing NESTS and BCEDSTS 
errors. 

Restart Conditions: If a writeback error occurs in the Bcache flush, then the data is presumed 
to be unrecoverable. See the next section for a description of handling an error in a writeback. 
Software must determine if the error is fatal to one process or the whole system and take 
appropriate action. 

If the address of the error in the flush is not the same as that of the original error, this is a 
multiple error case in the data RAMs and is a serious failure. Crash the system. 

15.8.1.10 Bcache Data RAM Uncorrectable ECC Errors and Addressing Errors on Writebacks 

Description (addressing error): A Bcache addressing error was detected by the Cbox in an 
writeback Addressing errors are the result of a mismatch between the address the Cbox drives 
to the RAMs for a read access and the address used to write that location. A multiple bit data 
error can appear to be addressing error, though it is extremely unlikely. The NDAL WDATA 
cycle was converted to a BADWDATA cycle. Memory should have tagged the location as bad and 
unreadable by an implementation specific mechanism. 

Description (uncorrectable ECC error): A Bcache uncorrectable ECC error was detected by 
the Cbox in an writeback. Uncorrectable data errors are the result of a multiple bit error in 
the data read from the Bcache. An addressing error with a single bit data error will appear as 
an uncorrectable data error. The NDAL WDATA cycle was converted to a BADWDATA cycle. 
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Memory should have tagged the location as bad and unreadable by an implementation specific 
mechanism. 

Deseription (both cases): The Bcache in in ETM. S_NESTS<BADWDATA> should be set. If 
it isn't, and S_NESTS<LOST_ OERR> and S_NESTS<NOACK> aren't set, then the writeback 
which incurred the error is still in the writeback queue in the BIU. Software should force the 
writeback queue to be drained (causing the second error event to occur) by reading from the CWB 
register. 

After this, NESTS, NEOADR, and NEOCMD should be captured again. 

If S_NESTS<BADWDATA> is set, then S_NEOADR contains the physical address of the lost 
writeback data. (If the physical address is found to be in 10 space, it is an inconsistent status. 
See Section 15.8.1.22.) 

IfS_NESTS<BADWDATA> isn't set but S_NESTS<.LOST_OERR> is, then the address of the lost 
writeback data is not available. 

If after draining the writeback queue, S_NESTS<BADWDATA> isn't set, then an inconsistency 
exists (see Section 15.8.1.22). 

It should never be the case that both S_BCEDSTS<BAD_ADDR> and S_BCEDSTS<UNCORR> 
are set. If they are, it is an inconsistent status (see Section 15.8.1.22). 

Recovery procedures: To recover, clear BCEDSTS<LOCK> and NESTS <BADWDATA> , 
if it is set. If it is an addressing error, clear BCEDSTS<BAD_ADDR>, otherwise clear 
BCEDSTS<UNCORR>. Flush the Bcache. Clear CCTLdIW _ETM> (after flushing the Bcache). 
Then use the system specific memory repair procedure to undo the tagged-bad data in memory 
(see Section 15.3.3.1.2.2.3). 

NOTE 

When clearing the tagged-bad data state of memory, software Ih~t first ensure that no 
more accesses to the block can occur. Otherwise there is the danger that some process 
on some other processor or a DMA 10 device will see incorrect data and not detect an 
error. 

Restart Conditions: The data is lost, software must determine if the error is fatal to one 
process or the whole system and take appropriate action. If the address of the lost data could not 
be determined, crash the system. 

15.8.1.11 Lost Bcache Data RAM Errors With Possible Lost Writebacks 

Description: Lost Bcache data RAM errors which cause only a soft error interrupt (when 
S_NESTS indicates the possibility of a lost writeback error) indicate that data errors occurred 
on reads or writebacks, but no new write data was lost. S_NESTS reports the writeback error, 
unless multiple NDAL output errors have occurred. 

The Bcache in in ETM. 

Lost Bcache data RAM errors of this kind can be caused by an operand prefetch from a Bcache 
block followed by a write to the same block. 

15-74 Error Handling DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

If S_NESTS<BADWDATA> is set, then S_NEOADR contains the physical address of a writeback. 
(If the physical address is found to be in 10 space, it is an inconsistent status. See 
Section 15.8.1.22.) 

Recovery procedures: To recover, clear BCEDSTS<LOST_OERR>. Flush the Bcache. Clear 
CCTL<HW_ETM> (after flushing the Bcache). Writeback errors may occur during the :flush. 
Software should prepare for this by clearing NESTS and BCEDSTS errors. 

If S_NESTS<BADWDATA> is set, clear NESTS<BADWDATA>. Use the system specific memory 
repair procedure to undo the tagged-bad data in memory (see Section 15.3.3.1.2.2.3) (the Bcache 
must 1?e flushed before this repair procedure). 

NOTE 

When clearing the tagged-bad data state of memory, software must first ensure that no 
more accesses to the block can occur. Otherwise there is the danger that some process 
on some other processor or a DMA 10 device will see incorrect data and not detect an 
error. 

Restart condition (S_NESTS<LOST_OERR> set): There is no way to determine how many 
writebacks failed. They all should have gone to memory with BADWDATA cycles, where memory 
would have them marked as tagged-bad data. So an unknown block may be tagged-bad in memory. 
If so, the next access to that block could come from the system itself, even if it It belonged " only to 
one process. This will cause the system to crash. But there is a chance that the next access will 
come from a user process. This would allow the system to stay up, though that process would 
have to be deleted. 

_ If the system's implementation of tagged-bad data is not reliable (see Section 15.11.1, Note On 
Tagged-Bad Data Mechanisms), software should crash the system. If it is reliable, restart. 

Restart condition (S_NESTS<LOST_OERR> not set): 

The writeback data is lost but the address is known. Software must determine if the error is 
fatal to one process or the whole system and take appropriate action. 

15.8.1.12 Lost Bcache Data RAM Errors Without Lost Wrltebacks 

Description: Lost Bcache data RAM errors which cause only a soft error interrupt (when 
S_NESTS indicates no possibility of write back error) indicate that data errors occurred on reads. 
No Write data was lost. 

Lost Bcache data RAM errors may be caused by more than one operand prefetch to the same 
cache block. 

The Bcache in in ETM. 

Recovery procedures: To recover, clear BCEDSTS<LOST_OERR>. Flush the Bcache. Clear 
CCTL<HW _ETM> (after flushing the Bcache). Writeback errors may occur during the flush. 
Software should prepare for this by clearing NESTS and BCEDSTS errors. 

Restart condition: Only reads from the Bcache failed. Restart is possible unless any error 
encountered during Bcache flush is fatal. 
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15.8.1.13 NDAL I-Stream or D-Stream Read or D-Stream Ownership Read Timeout Errors 

Description: An I-stream or D-stream read or D-stream ownership read timed out before all 
the fill quadwords were received. This is not an accepted means for a system environment 
to notify the NVAX CPU of "non-existent memory or 10 location"·. The error could be caused 
by an error in the system environment or an NDAL parity error on the retum.ed data. It 
also could be caused by some previous error in the system environment or this CPU which 
leaves a cache block marked as owned in memory and not marked as owned in any cache in 
the system. S_CEFSTS<COUNT> indicates the number of quadwords received before the error. 
(S_CEFSTS<COUNT> should always be 11 (binary) if the address is in 10 space. If the address 
is in memory space; S_ CEFSTS<COUNT> indicates the number of quadwords received.) The 
physical address is in S_CEFADR. 

I-stream or D-stream read: The Bcache is not in ETM. 

D-stream ownership read: The Bcache is in ETM. No write data has been merged with the 
returning fills. 

The address should not be in 10 space. If it is, it is an inconsistent status (see Section 15.8.1.22). 

If the ownership read was for an Mbox write, the write was sent on the NDAL after the OREAD 
timed out. 

If the ownership read was for a read-lock, the corresponding write-unlock should have been 
received from the Ebox. The write-unlock is sent as a quadword WDISOWN by the Cbox, so no 
memory location is left owned. (If the error was on the requested quadword, a machine check 
would definitely have resulted. If a separate error prevents the write-unlock, that will be reported 
either in ot~er error registers.) 

Recovery procedures (all cases): Clear CEFSTS<LOCK, TIMEOUT>. 

Additional Recovery procedures for D-stream ownership read (S_CEFSTS<WRITE> 
set): Flush the Bcache. Clear CCTL<HW _ETM> (after flushing the Bcache). 

Depending on the system environment, memory may have set Its ownership bit for this block. If 
so the write data must have been lost, and a hard error interrupt is expected. Use the system 
dependent procedure for reseting the ownership bit in memory. 

If memory would not have set its ownership bit for this block, memory's state may be correct and 
up to date. 

Additional Recovery procedures for D-stream ownership read (S_ CEFSTS<WRITE> not 
set): Flush the Bcache. Clear CCTL<HW _ETM> (after flushing the Bcache). 

Depending on the system environment, memory may have set its ownership bit for this block. 
The data in memory is presumably still good. The Bcache block is marked invalid in the Bcache 
tag store. However, if the error occurred on a read-lock, the corresponding write-unlock should 
have occurred and it will have cleared the ownership bit for this block. 

If S_CEFSTS<COUNT> is greater than 0, then part of the data also is in the Bcache. 
In general, it is not possible to determine which quadwords are valid. However, if 
S_CEFSTS<RECLFILL_DONE> is set, then the quadword in the Bcache block pointed to by 
S_CEFADR is valid (except in the case of a read-lock, but the data shouldn't be needed for 
memory repair in that case). 
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If S_CEFSTS<COUNT> is greater than 0, and the address in S_CEFADR is not in 10 space, 
then the block was not owned before the operation began. In this case, use the system dependent 
procedures (see Section 15.3.3.1.2.2.1) to determine ifmemory's ownership bit is set and this CPU 
owns the block If so, use the system specific procedure (see Section 15.3.3.1.2.2.2) to reset it. In 
some systems (the XMI2 for example) this may require a quadword of correct data be written to 
memory to reset the ownership bit. Section 15.3.3.1.2.3 describes procedures for extracting data 
from the Bcache data RAMs in this case. 

If memory's ownership bit was left set as a result of this error and no non-destructive procedure 
exists for restoring it, then the hexaword block is lost. 

Restart condition: Restart if the memory state repair procedure is successful or no repair is 
called for, no data is lost, and the address is not in 10 space. If the hexaword block could not be 
repaired or data is lost, software must determine if the error is fatal to one process or the whole 
system and take appropriate action. 

Post Restart Recovery: If the same fill error recurs on restart, then the block is probably 
ttlost".l Software must determine if the error is fatal to one process or the whole system and take 
appropriate action. (If it is fatal only to one process, use the system dependent procedure for 
reseting memory's ownership bit.) 

NOTE 

It may be appropriate in this case to first cause each CPU in the system to flush its 
Bcache, and then restart once more. 

NOTE 

It ma:y be that another error (such as an uncorrectable tag store error on a coherence 
request) will be repaired by the soft error interrupt handler before the restart actually 
occurs, fortuitously repairing the cause of the fill error. 

15.8.1.14 NDAL I·Stream or D-Stream Read or D·Stream Ownership Read Data Errors 

Description: An I-stream or D-stream read or D-stream ownership read terminated with an RDE 
(read data error) NDAL cycle before all the fill quadwords were received. IfS_CEFSTS<COUNT> 
is 0 or the address is an 10 space address, this is an accepted means for a system environment 
to notify the NVAX CPU of tin on-existent memory or 10 location". Otherwise, the error could be 
caused by an error in the system environment. It also could be caused by some previous error 
in the system environment or this CPU which leaves a cache block marked as owned in memory 
and not marked as owned in any cache in the system. 

S_CEFSTS<COUNT> indicates the number of quadwords received before the error. 
(S_CEFSTS<COUNT> should always be 11 (binary) if the address is in 10 space.) 

In any case, the physical address is in S_CEFADR. 

I-stream or D-stream read: The Bcache is not in ETM. 

D·stream ownership read: The Bcache is in ETM. No write data has been merged with the 
returning fills. 

1 In this case the more general sense of "lost" is implied. That is, memory's ownership bit is set but no cache writes the 
data back when a read is done to that location. In some systems, it may be possible to identify which CPU memory 
"thlnks" owns the data, but it is often not possible to determine which error caused this situation to arise. 
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The address should not be in 10 space. If it is, it is an inconsistent status (see Section 15.8.1.22). 

If the ownership read was for an Mbox write, the write was sent on the NDAL after the OREAD 
was aborted. 

If the ownership read was for a read-lock, the corresponding write-unlock should have been 
received from the Ebox. The write-unlock is sent as a quadword WDISOWN by the Cbox, so no 
memory location is left owned. (If the error was on the requested quadword, a machine check 
would definitely have resulted. If a separate error causes prevent the write-unlock, that will be 
reported either in other error registers.) 

Recovery procedures (all cases): Clear CEFSTS<LOCK, RDE>. 

Additional Recovery procedures for D-stream ownership read (S_CEFSTS<WRITE> 
set): Flush the Bcache. Clear CCTLdIW _ETM> (after fiushing the Bcache). 

Depending on the system environment, memory may have set its ownership bit for this block. If 
so the write data must have been lost, and a hard error interrupt is expected. Use the system 
dependent procedure for reseting the ownership bit in memory. 

If memory would not have set its ownership bit for this block, memory's state_ may be correct and 
up to date. 

Additional Recovery procedures for D-stream ownership read (S_ CEFSTS<WRITE> not 
set): Flush the Bcache. Clear CCTLdIW _ETM> (after fiushing the Bcache). 

• Depending on the system environment, memory may have set its ownership bit for this block. 
The data in memory could still be good. The Bcache block is marked invalid in the Bcache tag 
store. However, if the error occurred on a read-lock, the corresponding write-unlock should have 
occurred and it will have cleared the ownership bit for this block. 

If S_ CEFSTS<COUNT> is greater than 0, then part of the data also is in the Bcache. 
In general, it is not possible to determine which quadwords are valid. However, if 
S_CEFSTS<RE'LFILL_DONE> is set, then the qua-1T'7()rd in the Bcache block pointed to by 
S_CEFADR is valid (except in the case of a read-lock, but the data shouldn't be needed for 
memory repair in that case). 

If S_CEFSTS<COUNT> is greater than 0, and the address in S_CEFADR is not in 10 space, 
then the block was not owned before the operation began. In this case, use the procedures 
in Section 15.3.3.1.2.2 to determine if memory's ownership bit is set. If so, use the system 
specific procedure (see Section 15.3.3.1.2.2.2) to reset it. In some systems (the XMI2 for example) 
this may require a quadword of correct data be written to memory to reset the ownership bit. 
Section 15.3.3.1.2.3 describes procedures for extracting data from the Bcache data RAMs in this 
case. 

If memory's ownership bit was left set as a result of this error and no non-destructive procedure 
exists for restoring it, then the hexaword block is lost. . 

Restart condition: Restart if the memory state repair procedure is successful or no repair is 
called for, no data is lost, and the address is not in 10 space. If the hexaword block could not be 
repaired or data is lost, software must determine if the error is fatal to one process or the whole 
system and take appropriate action. 
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Post Restart Recovery: If the same fill error recurs on restart, then the block is probably 
"lost".l Software must determine if the error is fatal to one process or the whole system and take 
appropriate action. af it is fatal only to one process, use the system dependent procedure for 
reseting memory's ownership bit.) 

NOTE 

It may be appropriate in this case to :first cause each CPU in the system to flush its 
Bcache, and then restart once more. 

NOTE 

It may be that another error (such as an uncorrectable tag store error on a coherence 
request) will be repaired by the soft error interrupt handler before the restart actually 
occurs, fortuitously repairing the cause of the fill error. 

15.8.1.15 Lost Bcache Fill Error 

Description: Some number of fill errors occurred and were not latched because CEFSTS and 
CEFADR already contained a report of an unrecoverable error. Lost Bcache fill errors which do 
not cause hard error interrupts are always read errors. 

Lost Bcache fill errors may be caused by more than one operand prefetch to the same cache block. 

Lost Bcache fill errors may leave blocks marked owned by this CPU in memory without the 
Bcache actually owning the block. 

The Bcache may be in ETM. Read S_CCTL<HW_ETM>to find out. 

Recovery procedures: Clear CEFSTS<LOST_ERR>. If the Bcache is in ETM, flush the Bcache 
and clear CCTL<HW _ETM> (in that order). 

Restart condition: Lost Bcachefill errors may leave blocks marked owned by this CPU in 
memory without the Bcache actually owning the block. In systems where the ownership bits are 
very reliably maintained (see Section-15.11.2, Note On Ownership Mechanism), restart. 

In systems where the ownership bits are not very reliably maintained, crash the system. 

15.8.1.16 Unacknowledged NDAL I-Stream or D-Stream Read or D-Stream Ownership Read 

Description: An I-stream or D-stream read or D-stream ownership read was no-ACKed by the 
system environment. This could be because the external component(s) received bad NDAL parity 
or it could be due to a system-specific notification of "non-existent memory or 10 location". The 
physical address is in S_CEFADR. 

I-stream or D-stream read: The Bcache is not in ETM. 

D-stream ownership read: The Bcache is in ETM. 

The address should not be in 10 space. If it is, it is an inconsistent status (see Section 15.8.1.22). 

1 In this case the more general sense of'1.ost" is implied. That is, memory's ownership bit is set but no cache writes the 
data back when a read is done to that location. In some systems, it may be possible to identify which CPU memory 
"thinks" owns the data, but it is often not possible to determine which error caused this situation to arise. 
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If the ownership read was for an Mbox write, the write was sent on the NDAL after the OREAD 
timed out. If the write was also no-ACKed, a hard error interrupt would have been posted. That 
is handled as a separate error. 

Recovery procedures (all cases): Clear NESTS<NOACK>. 

Additional Recovery procedure for D-stream ownership read: Flush the Bcache. Clear 
CCTL<HW_ETM> (after flusbing the B~che). No error is expected during the Bcache flush. 

15.8.1.17 Lost NDAL Output Error 

Description: Some number of NDAL output errors occurred. Some number of read no-ACKs 
and/or BADWDATAs were missed. Hard error interrupt would have occurred if a write or 
writeback was no-ACKed. 

Lost NDAL output errors may be caused by more than one operand prefetch to the same cache 
block. 

The Bcache may be in ETM. read S_ CCTL<HW _ETM> to find out. 

Recovery procedure: Clear NESTS<LOST_ OERR>. If CCTL<HW _ETM> is set, flush the 
Bcache and clear CCTL<HW _ETM> (in that order). 

Restart conditions: Lost NDAL output errors may leave tagged bad locations in memory. In 
systems where the method of implementing tagged-bad data is reliable (see Section 15.11.1, Note 
On Tagged-Bad Data Mechanisms), restart. 

If a tagged-bad block is not reliable in the particular system, crash the system. 

15.8.1.18 PTE read errors 

The following sections describe error handling for PTE read errors. PTE read errors are read 
errors which happen in reads issued by the Mbo" ;n handling a TB miss. Handling of these errors 
is different from handling the same underlying error (Bcache data RAM error, Bcache fill error, 
or NDAL no-ACK error) when PTE read isn't the cause. 

If S_PCSTS<PTE_ER> is set, then a PTE read issued by the Mbox in processing a TB miss had 
an unrecoverable error. The TB miss sequence was aborted because of the error. The original 
reference can be any I-stream or D-stream read or write. 

PTE read errors are difficult to analyze, partly because the read error report in the Cbox does 
not directly indicate that the failing read was a PTE read. Because of this and because PTE read 
errors should be rare (a very small percentage of the reads issued by the Mbox are PTE reads), 
multiple errors which interfere with the analysis of the PTE error are not considered recoverable. 

If the reference which incurs the PTE read error is a write, S_PCSTS<PTE_ER_ WR> will be set. 
In this case the original write is lost. No retry is possible partly because the instruction which 
took the machine check may be subsequent to the one which issued the failing write. Also, PTE 
read errors on write transactions can cause a machine check at a practically arbitrary time in a 
microcode flow, and core machine state may not be consistent. 
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15.8.1.18.1 Bcache Data RAM Uncorrectable ECC Errors and Addressing Errors on PTE Reads 

Description (addressing errors): A Bcache addressing error was detected by the Cbox in a PrE 
read during a Bcache hit. Addressing errors are the result of a mismatch between the address 
the Cbox drives to the RAMs for a read access and the address used to write that location. A 
multiple bit data error can appear to be addressing error, though it is extremely unlikely. 

Description (uncorrectable ECC errors): A Bcache uncorrectable data error was detected 
by the Cbox in a PTE read during a Bcache hit. Uncorrectable data errors are the result of a 
multiple bit error in the data read from the Bcache. An addressing error with a single bit data 
error will appear as an uncorrectable data error. 

Description (all cases): The Bcache in in ETM. S_BCEDIDX contains the cache index of the 
error, and S_BCEDECC contains the syndrome calculated by the ECC logic. The physical address 
of the PrE read can be found by reading the tag for the data block (using the procedure in 
Section 15.3.3.1.2.4). (If the physical address is found to be in 10 space, it is an inconsistent 
status. See Section 15.8.1.22.) 

If the block's tag is found to contain an ECC error, then the address can not be determined. 

S_BCEDSTS<LOST_ERR> may be set. This lost error is probably due to the same PTE error 
occurring more than once. This is an acceptable assumption unless a hard error interrupt occurs 
after handling this error. 

It should never be the case that both S_BCEDSTS<BAD_ADDR> and S_BCEDSTS<UNCORR> 
are set. If they are, it is an inconsistent status (Section 15.5.2.7). 

Recovery procedures (addressing errors): To recover, clear BCEDSTS<LOCK, BAD_ADDR>. 

Recovery procedures (uncorrectable ECC errors): To recover, clear BCEDSTS<LOCK, 
UNCORR>. 

Recovery procedures (both cases): Flush the Bcache. Clear CCTL<HW _ETM> (after flushing 
the Bcache). Clear PCSTS<PTE_ER>. If the data is owned by the Bcache and if the error repeats 
itself (is not transient), then a writeback error will result from the flush procedure. Software 
should prepare for this by clearing NESTS and BCEDSTS errors. 

Restart condition: If no writeback error occurs in the Bcache flush, restart if: 

(S_PCSTS<PTE_ER_WR> = 0). 

If 

crash the system. 

If a writeback error occurs in the Bcache flush, then the data is presumed to be unrecoverable. See 
Section 15.8.1.10 for a description of handling an error in a writeback (software must determine 
if the error is fatal to one process or the whole system and take appropriate action). 
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15.8.1.18.2 NDAL PTE Read TImeout Errors 

Description: A PTE read timed out before any fill quadword was received. This is not an 
accepted means for a system environment to notify the NVAX. CPU of "non-existent memory or 
10 location". The error could be caused by an error in the system environment or an NDAL 
parity error on the returned data. It also could be caused by some previous error in the system 
environment or this CPU which leaves a cache block. marked as owned in memory and not marked 
as owned in any cache in the system. 

S_CEFSTS<COUNT> indicates the number of quadwords received before the error. 
(S_CEFSTS<COUNT> should always be 11 (binary) if the address is in 10 space.) The physical 
address is in S_CEFADR. 

CEFSTS<WRlTE> should not be set. If it is, it is an inconsistent status (see Section 15.5.2.7). 

The physical address of the PTE is in S_CEFADR. The Bcache is not in ETM. The read could not 
have been an ownership read, so this error can not have caused the ownership bits in memory to 
be left in the wrong state. 

S_ CEFSTS<LOST_ERR> may be set. This error is probably due to the same PTE error occurring 
more than once. This is an acceptable assumption unless a hard error interrupt occurs after 
handling this error. 

Recovery procedures: Clear CEFSTS<LOCK, TIMEOUT>. Clear PCSTS<PTE_ER>. 

Restart condition: Restart if: 

Otherwise, crash the system. 

Post Restart Recovery: If the same fill error recurs on restart, then the block is probably 
"lost".l Software must determine if the error is fatal to one process or the whole system and take 
appropriate action. (If it is fatal only to one process, use the system dependent procedure for 
reseting memory's ownership bit.) 

NOTE 

It may be appropriate in this case to first cause each CPU in the system to flush its 
Bcache, and then restart once more. 

NOTE 

I t may be that another error (such as an uncorrectable tag store error on a coherence 
request) will be repaired by the soft error interrupt handler before the restart actually 
occurs, fortuitously repairing the cause of the fill error. 

1 In this case the more general sense of "lost" is implied. That is, memory's ownership bit is set but no cache writes the 
data back when a read is done to that location. In some systems, it may be possible to identify which CPU memory 
"thinks" owns the data, but it is often not posSlble to determine which error caused this situation to arise. 

15-82 Error Handling DIGITAL CONFIDENTIAL 



NVAX CPU Chip Functional Specification, Revision 1.1, August 1991 

15.8.1.18.3 NDAL PTE Read Data Errors 

Description: A PTE read ended with an RDE (read data error) NDAL cycle before any the fill 
quadwords were received. This is an accepted means for a system environment to notify the 
NVAX CPU of tlnon-existent memory or 10 locationtl . Otherwise, the error could be caused by an 
error in the system environment. It also could he caused by some previous error in the system 
environment or this CPU which leaves a cache block marked as owned in memory and not marked 
as owned in any cache in the system. 

S_CEFSTS<COUNT:> indicates the number of quadwords received before the error. 
(S_CEFSTS<COUNT> should always be 11 (binary) if the address is in 10 space.) The physical 
address is in S_CEFADR. 

CEFSTS<WRITE> should not be set. If it is, it is an inconsistent status (see Section 15.5.2.7). 

The physical address of the PTE is in S_CEFADR. The Bcache is not in ETM. The read could not 
have been an ownership read, so this error can not have caused the ownership bits in memory to 
be left in the wrong state. 

S_ CEFSTS<LOST_ERR> may be set. This error is probably due to the same PTE error occurring 
more than once. This is an acceptable assumption unless a hard error interrupt occurs after 
handling this error. 

Recovery procedures: Clear CEFSTS<LOCK, RDE>. Clear PCSTS<PTE_ER>. 

Restart condition: Restart if: 

Otherwise, crash the system. 

Post Restart Recovery: If the same fill error recurs on restart, then the block is probably 
"lost".l Software must determine if the error is fatal to one process or the whole system and take 
appropriate action. (If it is fatal only to one process, use the system dependent procedure for 
reseting memory's ownership hit.) 

NOTE 

It may be appropriate in this case to first cause each CPU in the system to flush its 
Bcache, and then restart once more. 

NOTE 

It may be that another error (such as an uncorrectable tag store error on a coherence 
request) will be repaired by the soft error interrupt handler before the restart actually 
occurs, fortuitously repairing the cause of the fill error. 

1 In this case the more general sense of 'lost" is implied. That is, memory's ownership hit is set but no cache writes the 
data back when a read is done to that location. In some systems, it may be possible to identify which CPU memory 
"thinks" owns the data, but it is often not possible to determine which error caused this situation to arise. 
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15.8.1.18.4 Unacknowledged NDAL PTE Read 

Description: A PrE read was no-ACKed by the system environment. This could be because the 
ex.tem.al component(s) received bad NDAL parity or it could be due to a system-specific notification 
of "non-existent memory or 10 location". 

The physical address of the PTE is in S_NEOADR. The Bcache is not in ETM. 

S_ CEFSTS<LOST_ OERR> may be set. This error is probably due to the same PTE error occurring 
more than once. This is an acceptable assumption unless a hard error interrupt occurs after 
handling this error. 

Recovery procedures: Clear NESTS<NOACK>. Clear PCSTS<PTE_ER>. 

Restart condition: Restart if: 

Otherwise, crash the system. 

15.8.1.18.5 Multiple Errors Which Interfere with Analysis of PTE Read Error 

Because PTE read errors lead to several unusual cases, restart is not recommended in the event 
that other errors cloud the analysis of the PTE read error. 

Pending Interrupts: A hard or soft error interrupt should be pending, or possibly both. 

Recovery procedures: No specific recovery action is called for. 

Restart condition: No restart is possible. Crash the system. 

15.8.1.19 NDAL Parity Errors 

Description: A cycle with a parity ~rror was received by the NVAX CPU chip from the NDAL. If 
it is an inconsistent parity error, another node acknowledged the transaction despite the parity 
error seen by the NVAX chip. The Bcache is in ETM. The Bcache is coherent with memory 
because it only accesses VALID-OWNED locations in the Bcache data RAMs once in ETM. Some 
other node's request may timeout because the Cbox missed a coherency request for writeback. 
The Pcache may now be incoherent since an NDAL write to a Bcache VALID-UNOWNED location 
may have been missed. 

In some systems (e.g., OMEGA), a no-ACK on an NDAL command implies no effect from that 
command took place. This makes NDAL parity errors very recoverable. In other systems (e.g., 
XMI2), a no-ACK on an NDAL command does not imply this (for invalidates forwarded from the 
XMI2 bus), and all parity errors imply possible lost invalidates and incoherent Pcache. 

Recovery procedure: Clear NESTS<PERR> and NESTS<1NCON_PERR>. Flush the Bcache. 
Clear CCTL<HW _ETM> (after flushing the Bcache). 

Restart condition: If no-ACK in the specific system implies a command was not effective, and 
if the error was not an inconsistent parity error, restart. Otherwise, It isn't possible to determine 
whether the interrupted instruction stream may have seem the effect of out of order writes 
because of the Pcache missing an invalidate. Crash the system. 
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15.8.1.20 Lost Parity Errors 

Description: Some number of cycles with parity errors were received by the NVAX CPU chip 
from the NDAL. Some may have been inconsistent parity errors. The Bcache is in ETM. The 
Bcache is coherent with memory because it only accesses VALID-OWNED locations in the Bcache 
data RAMs once in ETM. Some other node may timeout because the Cbox missed a coherency 
request for writeback. The Pcache may now be incoherent since an NDAL write to a Bcache 
VALID-UNOWNED location may have been missed. 

Recovery procedure: Clear NESTS<LOST_PERR>. Flush the Bcache. Clear 
CCTL<HW _ETM> (after fiushing the Bcache). 

Restart condition: It isn't possible to determine whether the interrupted instruction stream 
may have seem the effect of out of order writes because of the Pcache missing an invalidate. 
Crash the system. 

15.8.1.21 System Environment Soft Error Interrupts 

Description: Errors which occur in the system environment and do not result in loss of data or 
which can notify the NVAX CPU by returning RDE also notify the CPU of the error by asserting 
S_ERR_L (e.g., read errors). Errors which are corrected automatically by hardware and do not 
result in loss of data should use soft error interrupt notification. 

NOTE 

It is important that components in the system environment which assert S_ERR_L 
have a CPU accessible register which reports the S_ERR_L assertion. 

Attention should be given to the robustness tagged-bad data schemes. If error detection 
for these schemes is good enough, then error recovery may be able to ignore lost soft 
errors. Lost soft errors are very possible in NVAX systems because the first error doesn't 
normally prevent NVAX from continuing to issue new requests (sue to macropipelining). 

Similarly, good error detection schemes on the ownership bits in memory may facilitate 
recovery from lost soft errors. 

It is also recommended that an address be stored where applicable. They allow software 
to do improve the systems chance of surviving an error event without crashing by 
cleaning up tagged-bad locations and the like. For example, a write timeout clearing a 
page in the VMS page handler may be unrecoverable, while clearing that tagged-bad 
data location before it ever got to the page handler might be quite recoverable. 

Recovery procedures: Clear the error status bits in the system registers and perform any 
necessary system dependent recovery procedure. 

Restart condition: Typically, restart is possible, though in cases where data is lost software 
may have to kill one process or crash the system. 

15.8.1.22 Inconsistent Status In Soft Error Interrupt Analysis 

Description: A presumed impossible error report was found in the error registers. This could 
be due to a hardware failure or bug. 

Recovery procedures: No specific recovery action is called for. 
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Restart condition: No restart is possible. The integrity of the entire system is questionable. 
Crash the system. 

NOTE 

This status can result if machine check occurs. Software may employ some mechanism 
for determining that this occurred, but it must be sure that mechanism can't ever falsely 
indicate that an inconsistent status is acceptable. Inconsistent status is a serious 
problem and should not be ignored. 
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15.9 Kernel Stack Not Valid Exception 

A Kernel Stack Not Valid Exception occurs when a memory management exception is detected 
while attempting to push information on the kernel stack during microcode processing of another 
exception. Note that a console halt with an error code of ERR_INTSTK is taken if a memory 
management exception is encountered while attempting to push information on the interrupt 
stack. 

The Kernel Stack Not Valid exception is dispatched through SCB vector 08 (hex:) with the stack 
frame shown in Figure 15-11. 

Figure 15-11: Kernel Stack Not Valid Stack Frame 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

PC I : (SP) 
.--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

PSL 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
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15.10 Error Recovery Coding Examples 

To be supplied. 

15.11 Miscellaneous Background Information 

This section contains miscellaneous background information relevant to this error ha~dling 
chapter. 

15.11.1 Note On Tagged-Bad Data Mechanisms 

Writebacks which are sent as BADWDATA are supposed to appear as tagged-bad data in memory, 
and further reads to that block should fail. In some systems, tagged bad data is implemented by 
a mechanism as reliable as that used to store data. In at least one system (OMEGA), tagged-bad 
data is implemented by altering the ECC code of the data as it is written. Some single-bit and 
many double-bit errors in this data can make it appear to be correctable or correct when read. 
This is less protection from error than valid data has. In such a system, an error which results 
in a lost tagged-bad-data block is reason to crash the system. In systems with reliable storage 
of "tagged-bad-data", operation can continue after such an error because it is essentially certain 
that any process which accesses that data will see an RDE error for that block and will machine 
check before it uses the bad data. 

The Bcache data RAMs in NVAX use the above relatively unreliable mechanism for tagged-bad 
data. Three ECC check bits are flipped in the stored value. This mechanism would often prevent 
a subsequent read from succeeding, but it is not sufficiently reliable to allow missing tagged-bad 
blocks in the Bcache to be tolerated. As a result, all errors which may have left a tagged-bad 
block in the Bcache without some error address register pointing it out are cause to crash the 
system. 

15.11.2 Note On Ownership Mechanism 

In the absence of additional errors, the memory/cache ownership mechanism ensures that no 
other process can access the block whose ownership bit is set in memory and is not owned by any 
cache. Cache coherence in the system depends on this mechanism. In some systems, memory 
error detection and correction for ownership bits is as reliable as for data. This is true of XMI2 
based systems. However, in some systems the mechanism is less reliable. One example is the 
OMEGA system, where the ownership bits are stored with a single-bit-error-detect-and-correct 
scheme which can not detect most double bit errors and therefore interprets most double bit errors 
as correctable single bit errors. In such a system, error situations in which unknown blocks in 
memory may be owned should be taken as a system crash. 

In OMEGA, there is a proposal make up for the non-robust ownership hit error detection scheme 
by flushing the cache on every "correctable" ownership bit error in the NMC. If the "correctable" 
error really is an uncorrectable error, this may be detected by a WDISOWN to an unowned 
memory location. This is because some uncorrectable errors are seen as correctable errors, so 
one ownership bit is flipped by memory's error correction hardware and at least two bits were 
wrong to start with. There is a chance that the "correction" flips one of the bad bits, but it could 
also flip one of the remaining correct bits. This leaves the memory with one or three incorrect 
ownership bits after an uncorrectable "correctable" error. If every cache is flushed immediately 
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after a "correctable" error, then writebacks to apparently unowned locations may result if the 
error is inadvertently made worse by the correction scheme. These are detectable protocol errors 
and should lead to a system crash. If the effect of the error correction was to mark block(s) as 
owned when no cache owns them, then eventually some process will attempt to access that data 
and time out. If the error was successfully corrected, then Hushing the caches causes a pause 
in processing and no bad effects. If these errors are infrequent, this seems an acceptable loss in 
performance in exchange for increased reliability. 
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15.12 Revision History 

Table 15-6: Revision History 

Who 

Mike Uhler 

Mike Uhler 

John 
Edmondson 

John 
Edmondson 

John 
Edmondson 

1 ~90 Error Handling 

When 

06-Mar-1989 

19-Dec-1989 

12-Feb-1990 

3O-Jun-1990 

31-May-1991 

Description of change 

Release for external review. 

Update for second-pass release. 

Update with error handling information. 

Update further after internal review and resolution of many issues. 

Minor updates for pass 2 changes. 
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Chapter 16 

Chip Initialization 

16.1 Overview 

This chapter describes the hardware initialization process for the NVAX CPU chip. The hardware 
and microcode start the initialization, and then pass control to the console macrocode at address 
E0040000 for further initialization. 

Much of the job of initialization involves setting the NVAX internal processor registers (IPRs) 
to a known state, or using NVAX IPRs to perform functions such as cache initialization. See 
Chapter 2 for a list of the NVAX IPRs. Also, see the individual box chapters for a more in depth 
definition of many of the IPRs. 

16.2 Hardware/Microcode initialization 

The NVAX Chip hardware initializes to the following state on powerup or the assertion of chip 
reset: 

1. The VIC, Pcache, and Bcache are disabled. 

2. The RLOG is cleared. 

3. The Fbox and vector unit are disabled. 

4. The microstack is cleared. 

5. The Mbox and Cbox are reset, and all previous operations are flushed. 

6. The Fbox is reset. 

7. The !box is stopped, waiting for a LOAD PC. 

8. All instruction and operand queues are flushed. 

9. All MD valid bits are cleared, and all Wn valid bits are set. 
10. A powerup microtrap is initiated which starts the Ebox at the label IE~POWERUP .. 

The NVAX Chip microcode then does the following: 

1. Hardware interrupt requests are cleared. 

2. ICCS<6> is set to O. 
3. SISR<15:1> is set to O. 

4. ASTLVL is set to 4. 
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5. The Mbox PAMODE IPR is set to 30-bit physical address mode. 
6. CPUID is set to O. 
7. The BPCR branch history algorithm is reset to the default value. 

8. Backup PC is retrieved from the Ibox and saved in SAVPC. 
9. PME is cleared. 
10. The current PSL, halt code, and value of MAPEN are saved in SAVPSL. 
11. MAPEN is cleared (memory management is disabled). 

12. All state flags are cleared. 
13. PSL is loaded with 041FOOOO. 
14. PC is loaded with E0040000 (the address of the start of the console code). 

16.3 Console initialization 

The console macrocode has the job of filling the gap between the initialized state described above 
and the initial state needed for the operating system. To that end, the console code does the 
following: 

1. Set CPUID to the correct value from the system environment. 

2. Set ECR (Ebox Control Register) as follows: 
1. Set FBOX_ENABLE to enable the Fbox. 
2. Set S3_TIMEOUT_EXT as required by the system environment. 
3. Set FBOX_ST4_BYPASS_ENABLE to enable Fbox stage 4 bypass. 

4. Write one to S3_STALL_TIMEOUT to clear any error. 
5. Set ICCS_EXT as required by the system environment. 

3. Set I"'~R (Ibox Control Status Register) as follows: 
1. Clear ENABLE to leave the VIC disabled. 

2. Write one to LOCK to clear any error. 
4. Set the PAMODE register MODE bit as required by the system. 
5. Write one to clear the LOCK bit in TBSTS (Translation Buffer Status). 

6. Initialize the PCSTS (Pcache Status) Register: 
1. Write one to clear the LOCK bit. 
2. Write one to clear PTE_ER_WR. 

3. Write one to clear PTE_ER. 
7. Set CCTL (Cbox Control) as follows: 

1. Clear ENABLE to leave the Bcache disabled. 
2. Set TAG_SPEED, DATA_SPEED, and SIZE to reflect the Bcache RAM configuration in 

the system. 
3. Clear FORCE_HIT. 
4. Clear DISABLE_ERRORS. 

5. Clear SW _ECC. 
6. Clear TIMEOUT_TEST. 
7. Clear DISABLE_PACK to allow the write packing feature. 
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8. Clear SW _ETM. 
9. Write one to clear HW _ETM. 

8. Clear the various Cbox error registers: 
1. BCETSTS (Bcache Error Tag Status): Write one to LOCK, CORR, UNCORR, BAD_ADDR, 

and LOST_ERR to clear any errors. 

2. BCEDSTS (Bcache Error Data Status): Write one to LOCK, CaRR, UNCORR, BAD_ 
ADDR, and LOST_ERR to clear any errors. 

3. CEFSTS (Cbox Error Fill Status): Write one to RDLK, LOCK, TIMEOUT, RDE, and 
LOST_ERR to clear any errors. 

4. NESTS (NDAL Error Status): Write one to NOACK, BADWDATA, LOST_OERR, PERR, 
INCON_PERR, and LOST_PERR to clear any errors. 

16.4 Cache initialization 

Either the console code or the operating system will do the following final initialization steps 
(code examples are given): 

1. Initialize the VIC 

2. 

This code initializes the VIC by writing all 128 tags with 
good parity and all valid bits clear. 

movl 
movl 
movl 
movl 
movl 
movl 

vic_loop: 
mtpr 
mtpr 
add12 
cmpl 
bneq 

EIiable the VIC 

#"xOOOOO020, 
to, rl 
to, r2 
#"xOOOO0800, 
tPRl9 $_ VMAR, 
fPRl9$_VTAG, 

r2, r4 
rl, rS 
rO, r2 
r3, r2 
vic_loop 

rO 

r3 
r4 
rS 

tag index increment E 1 hexaword block 
tag init value 
VIC tag starting address 
VIC tag ending address + 1 block 
VIC memory address register (VMAR) 
VIC tag register (VTAG) 

write current index to VMAR 
write the tag via VTAG 
increment index by the block size 
check if done 

mtpr f<icsr$m_enable+icsr$m_lock>, tPR19$_ICSR 

3. Initialize the Bcache tags 

This code initializes the Bcache by writing all tags with good 
ECC and all valid and owned bits clear. This example initializes 
a S12Kb Bcache. This code can be changed to in it the other legal 
Bcache sizes by changing the value in R3. SW_ECC in CCTL is clear, 
so the CBOX will generate correct ECC for the tag/valid/owned bits. 

movl t"xOOOOOO20, 
movl fO, rl 

rO tag index increment - 1 hexaword block 
tag init value 

movl f"x01000000, 
movl f"x01080000, 

bcache_loop: 
mtpr rl, r2 
add12 rO, r2 
cmpl r3, r2 
bneq bcache_loop 
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r2 
r3 

Bcache tag starting address 
Bcache tag ending address + 1 block 
for S12Kb Bcache 

write tag to current tag address 
increment index by the block size 
check if done 
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4. Initialize the Bcache data 

.SBTTL ZERO_BCACHE_DATA 
:++ 
: ZERO_BCACHE_DATA - Write zero data and good ECC to the BCACHE data rams 
;--

BYTES_PER_QUADWORD - 8 

BYTES_PER_PAGE - 512 

QUADWORDS_PER_PAGE - BYTES_PER_PAGE!BYTES_PER_QUADWORD 

ZERO BCACHE DATA: 
PUSHR t h M<RO,Rl,R2,R3,R4,RS,R6> : Save registers 
MFPR iPRS CPUID, R5 ; XMI node id 
MOVL SYSLSL BACKUP CACHE CONSTANT[R5],Rl ; For.mative cache constant 
MTPR Rl,fPRl3S CCTL ; Set cache with default constant 
EXTZV tPRl3_CCTLSV_SIZE,tPR13_CCTLSS_SIZE,Rl,R2 : Extract backup cache size 
MOVL SYSLSL_BCACHE_PAGE_CONSTANT[R2],R5 ; Cache page count 
CLRL R6 "AOB" index 
CLRQ Rl ; Quadword data to be written to BCACHE rams 

lOS: 
MULL3 tBYTES_PER_PAGE,R6,R3 ; BCACHE page index to write 
BSBW MAP PHYSICAL ADDRESS Map R3 PA to R4 VA 
CLRL R3 - ; "AOB" -index 

20$: 
JSB @IO_WRITE_BCACHE_DATA ; Write BCACHE data 
ADDL2 iBYTES PER QUADWORD,R4 ; Update VA 
AOBLSS iQUADWORDS_PER_PAGE,R3,20$ ; Loop 'til done 
AOBLSS R5,R6,lO$ ; Loop 'til done 
MFPR iPRS CPUID,RS ; XMI node id 
MOVL SYSLSL BACKUP CACHE CONSTANT[RS],Rl ; For.mative cache constant 
MTPR Rl,tPRl3S CCTL ; Set cache with default constant 
POPR tAM<RO,Rl~R2,R3,R4,R5,R6> ; Restore registers 
RSB ; Return 

;++ 
MAP_PHYSICAL_ADDRESS - Map a physical address with a system VA 

INPUTS: 
R3 Physical address to map to system VA 

OUTPUTS: 
R4 System VA of physical address in R3 

MAP PHYSICAL ADDRESS: 
PUSHR t h M<RO,Rl,R9> ; Save registers 
BSBW GET XNP NUMBER ; CPU number to R9 
MOVAL @SYSLOA SPTE[R9],RO : Address of this CPU's SPTE 
BICL2 tPTESM_VALID, (RO) ; Invalidate SPTE 

INVALIDATE_TB ENVIRON-UNMAPPED ; Invalidate this TB 

MOVL (RO),Rl ; SPTE 
EXTZV tVA$V VPG,fPTESS PFN,R3,R4 ; Address PFN 
INSV R4,iPTE$V PFN,fPTE$S PFN,Rl ; Insert the PFN 
BISL3 t<PTESM VALID!PTESM-MODIFY!PTESC KW>,Rl, (RO) ; Map PFN 
EXTZV fVASV BYTE,fVASS BYTE,R3,RO ; Address byte offset 
MULL3 fS12,R9,Rl ; ThIs CPU's page offset 
MOVAB @SYSLOA_SPTE_VA[R1J,R4 ; VA that this CPU's SPTE maps 
INSV RO,tVASV_BYTE,tVASS_BYTE,R4 ; A VA that maps physical address 
POPR t AM<R0,Rl,R9> ; Restore registers 
RSB ; Return 
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;++ 
INPUTS: 
Rl - Lo longword data to be written to BCACHE 
R2 - Hi longword data to be written to BCACHE 
R4 - Virtual address that maps physical address corresponding 

to secondary cache index to be written. 

OUTPUTS: 
RO LBS indicates BCACHE data written, otherwise clear 

;--

;******************************************************************************* 

This routine cannot be stepped through using XDELTA. The FORCEHIT bit 
in the backup cache control is set and will cause erroneous hits to 
occur in the secondary cache. 

, 
;******************************************************************************* 

.ALIGN LONG 

IO WRITE BCACHE DATA ROUTINE: 
MOVI.. R3~ IO SAvED REGISTER ; Save register 
MTPR to,tP~_TBIA ; Reset TB allocation pointer 
CLRL RO ; Signal failure 
TSTL 10$ ; Ensure TB hit 
TSTL 30$ ; Ensure TB hit 
TSTL (R4) Ensure TB hit 
TSTL BA 4(R4) ; Ensure TB hit 
MOVAB 10$, R3 ; Address to check 
MTPR R3,tPR$ TBCHK ; In TB 
BVC 20$ ; If VC no 
MOVAB 30$,R3 ; Address to check 
MTPR R3,tPR$ TBCHK ; In TB 
BVC 20$ ; If vc no 
MOVAL (R4),R3 ; Address to check 
MTPR R3, tPRS TBCHK ; In TB 
BVe 20$ ; If VC no 
MOVAL BA 4(R4),R3 ; Address to check 
MTPR R3,tPR$ TBCHK In TB 
BVC 20$ ; If VC no 

10$: 
MFPR tPR13$ CCTL,R3 ; Read CCTL 
BICL2 t<- -; Form a mask 

<1@PR13 CCTL$V FORCE HIT>l- ; Force hit mode 
<1@PR13=CCTL$V=DISABLE_ERRORS>l- ; Disable errors 
<0>-
>,R3 ; Local copy control register 

BISL3 t<- ; Form a mask 
<1@PR13 CCTL$V ENABLE>l- ; Enable BCACHE 
<1@PR13-CCTL$V-FORCE HIT>l- ; Force hit mode 
<1@PR13=CCTLSV=DISABLE_ERRORS>l- ; Disable errors 
<0>-
>,R3,RO ; Local copy control register 

MTPR RO,tPRl3$ CCTL Enable Bcache - FORCE HIT, DISABLE ERRORS 
MFPR tPR13$ CCTL,RO Allow the dust to settle ••• 
MOVQ Rl, (R4) ; Write BCACHE data 
MTPR R3,tPRl3$ CCTL BCACHE off 
MFPR tPR13$ CCTL,R3 Allow the dust to settle ••• 
MOVI.. tSS$ NORMAL,RO Signal success 

20$: -
MOVL 10 SAVED REGISTER,R3 ; Restore register 
RSB -; Return 

30$: 

5. Initialize the Pcache 

This code initializes the Pcache by writing all 256 tags with 
good parity and all valid bits clear. 

movl 
movl 
movl 
movl 

f ..... x00000020, rO 
to, rl 

tag index increment - 1 hexaword block 
tag init value 

f ..... x01800000, r2 Pcache tag starting address 
f ..... x01802000, r3 Pcache tag ending address + 1 block 
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pcache_loop: 
mtpr 
add12 
cmpl 
bneq 

r~, r2 
rO, r2 
r3, r2 
pcache_loop 

6. Enable the Bcache and the Pcache 

write tag to current tag address 
increment index by the block size 
check if done 

NVAX cache coherency requires that the Pcache is always a subset of the Bcache. This code 
to enable the caches is arranged to insure that this is true. Thus, the Bcache is enabled first, 
and an REI is executed between the Bcache enable and the Pcache enable. The purpose of 
the REI is to synchronize data prefetching such that the Pcache will not perform any fills to 
addresses that were not also filled in the Bcache. 

mfpr #PRl9$ CCTL, r6 
bis12 t<cctlSm enable>, r6 
mtpr r6, tPRl9$_CCTL 

movpsl - (sp) 
moval init_cont,-(sp) 
rei 

16.5 Miscellaneous Information 

; get current value in Cbox CTL IPR 
; set the Bcache enable bit 

write the new Cbox CTL IPR 

push the psl 
and the next PC 
branch to the next PC 
flushing the VIC 
and aborting all 
previous IREADS 

Now that state is synChronized, enable 
the Pcache 

There is no need to explictly initialize the Translation Buffer as the NVAX microcode performs 
an internal TBIA on any MTPR to the MAPEN IPR. 

There is no need to explictly initialize the data portions of the VIC or Pcache as long as the tags 
are initialized with all valid bits clear. Both Bcache tags and Bcache data must be initialized 
before the cache is enabled. 
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16.6 Revision History 

Table 16-1: Revision History 

Who 

Debra Bernstein 

Debra Bernstein 

Debra Bernstein 

Rebecca Stamm 

DIGITAL CONFIDENTIAL 

When 

9-May-1990 

19-Nov-1990 

Il-Mar-1991 

9-0ct-1991 

Description of change 

Initial edit 

Add Miscellaneous Information section. Add true code 
examples for cache init. Add information on the 
ordering of cache enable. 

Update to pests, tbsts 

Bcache data must be initialized as well as the Bcache 
tags. 

• 
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Chapter 17 

Chip Clocking 

17.1 Overview of the NVAX Clocking System 

The ~\TAX CPU generates all the clock signals required to operate the CPU and the ~'T!)AL 
interface. The clocks are derived from a high frequency oscillator signal that is supplied to the 
chip. To allow for flexible logic design the chip implements a four phase clocking system. The 
four internal ~TVAX clock phases are generated on-chip by dhiding the frequency of the external 
oscillator by four. 

The NVAX chip generates and drives the NDAL clocks which are used to clock the peripheral 
chips on the ~'"DAL bus. The h"DAL also uses a four phase clock scheme, but runs three times 
slower than the internal NVAX clocks. 

17.2 Receiving the NVAX External Oscillator Signal 

The NVAX. chip can receive the external clock from one of two sources depending on the state of the 
OSC_TEST_H pin. When OSC_TEST_H is asserted the clock is received by the OSC_TC1_H 
and OSC_TC2_H pins. These pins are configured to use standard 3V CMOS signal levels. When 
OSC_TEST_H is deasserted the clock is received by the OSC_H and OSC_L pins. These pins 
use a differential amplifier circuit to receive the clock signal from an ECL oscillator. Figure 17-1 
shows the NVAX clock interface circuitry. 

EXTERNAL OSCILLATOR 

Detailed information concerning the design of the external oscillator can be found in 
the NVAX Signal Integrity Specification. 

17.2.1 The System Environment 

During normal system operation OSC_TEST_H is ~ed low and the OSC_H and OSC_L pins are 
used to receive the extemal clock source. The NVAX CPU is designed to operate at a maximum 
internal clock speed of 100 MHz. This requires the external oscillator to deliver a 400 MHz 
clock. At these frequencies the generation and interconnection of signals is extremely complex 
and specialized circuitry must be used. 
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Figure 17-1: NVAX CPU Interface Circuitry 
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The NVAX oscillator generates a pair of clock signals that are 180 degrees out of phase. The 
oscillator does not supply standard CMOS logic levels. The signals have a peak to peak voltage 
swing of .5 volts centered at 3.5 volts - therefore, a standard CMOS input buffer cannot be used 
on the chip to receive the signals. Instead, a differential amplifier is used and the signals are AC 
coupled and level shifted before they are received by the amplifier. 

17.2.2 The Chip Test Environment 

The chip tester, used during chip manufacturing to functionally verify the part, cannot supply 
a 400 MHz clock. The two pins OSC_TC1_H and OSC_TC2_H offer an alternative method for 
supplying the chip with clocks. The pin OSC_TEST_H is used to select between the system and 
test clocking modes. When the pin is asserted the test clock pins supply the clock to the chip. 
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The test clock pins are supplied with two clock signals that are 90 degrees out of phase. They 
are XORed on-chip to generate the internal2X clock signal K_PAD_CK1%ZZ. Figure 17-2 shows 
the relationship between K.-PAD_CK1%ZZ and the test clock input signals. 

Figure 17-2: On-Chip XOR Test Functionality Waveforms 
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In addition to the frequency doubling feature of the test clock input circuitry, the pins use CMOS 
differential ampliiiers to receive the clock signals. Hence, the test oscillator clock inputs can be 
used to drive the chip at slower than maximum speeds using standard 3 volt CMOS logic levels. 

17.3 On-Chip Clocks 

17.3.1 Clock Generation/Distribution Overview 

Figure 17-3 illustrates the overall structure of the clock generation/distribution system. The 
clocks are distributed across the chip in two stages. The global clock generator receives the 
master clock signal and generates the following global clocks that are driven to various sections 
of the nvax chip: 

• eight single phase matched clocks (true and complement) K%PBI...l:4_H &; L 

• four double phase matched clocks K%PHC12:4CH 

• four NDAL matched clocks K..GLB%PHI12:41_0UT_H 

• two specially tuned single phase clocks K..P%PHI_SE and E... V%PHL.SE 

For purposes of defining clock specifications in different parts of the NVAX chip, clock section (or 
simply, section) is defined for the remainder of the chapter to be one of the chip sections shown 
in Table 17-1. 

T$ble 17-1: NVAX CPU Clock Sections 

Section Name Symbol 

Cbox MCB 

Ebox IEB 

Fbox F 

Ibox I 

Mbox M 

Pcache P 
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Table 17-1 (Cont.): 

Section Name 

VIC 

Upper lIO Pad Logic 

Lower lIO Pad Logic 

Global Reset Logic 

NVAX CPU Clock Sections 

Symbol 

V 

PAD 

PADL 

K 

Figure 17-3: On-Chip Clock Distribution 
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The global clock signals are received and driven into each section by local clock buffers. It is 
these local clocks that are used to control logic sequencing throughout the chip. Note that the 
active high single phases are used by all sections, while the double phases and active low single 
phases are used only in the Fbox. NDAL clocks are driven to the pads where they are buffered 
and driven off chip. 

1 where X is a clock section symbol. 
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17.3.2 Global Clock Distribution 

In this two stage distribution scheme, clock generation and distribution are very tightly controlled 
at the global level. Delays seen by each section are mjnimjzed and equalized to reduce global 
skew. Global clock signals have matched buffer delays from the generator, matched interconnect, 
and matched section loads. 

Load matching on global clock signals is implemented using dummy loads - MOSFET capacitors 
added to global distribution lines to balance section driver loads seen by the global clock generator. 
Dummy loads are added to global clock signals at each section input, matching the section load 
on that signal with the most heavily loaded clock signal at that section input. Global routing of 
the clock signals is carefully controlled to both mjnjmjze RC delays and to match the delays of 
all signals atriving at a common receiver. 

To provide fiexibility in global clock distribution, global clock signals are organized into four 
groups. Interconnect and loads are matched between the signals within each group. The four 
groups are designed to have very similar edge rates and delay characteristics. These groups 
consist of: .. 

1. K'iCPHl..l:4_H - active high CPU clocks 
2. K'iCPHI_l:4_L and K'iCPHC12:41_H - active lo\v and double phase CPU clocks 
3. K_GLBt7CPHI12:41_0LTT;..H - double phase ~'"DAL clocks 
4. K_plicpm_3E_H and K_ V'iCPHI_3E_H - special CPU clocks 

17.3.3 Section Clock Distribution 

Section clock distribution rules are more fiexible than global rules to allow for stringent routing 
requirements at the section level. Primary requirements for section-level distribution are 1) 
maximum 125 pS RC delay between section drivers and any receiver, and 2) adherence to NVAX 
methodology which specifies the use of only fully complementary receivers. A detailed description 
of the rules relating to the use of the NVAX on-chip clocks can be found in the NVAX CPU Chip 
Design Methodology document. 

17.3.4 Global Clock Waveforms 

Eight single phase and four double phase clock signals are globally distributed on the chip. Four 
NDAL clocks are driven to the pads where they are bufiered and driven off chip. The single 
and double phase CPU clocks have a period of one NVAX cycle. The NDAL clock cycle is three 
NVAX cycles in length. Both rising and falling clock transitions occur at the boundaries of each of 
the four phases of an NVAX clock cycle. Waveforms for the globally-distributed clock signals are 
shown in Figure 17-4. The use of these global clock signals is RESTRICTED to interconnecting 
the section clock drivers. 

Clock signals K_P%PHI_3E_L and K_ V%PHI_3E_L are used for sense amplifier timing within 
the Pcache and VIC, respectively. These signals are "early" versions of K%Pffi_3_H and are 
carefully tuned in relation to other clock signals. For this reason, waveforms for these clocks are 
not depicted in Figure 17-4. These signals are discussed further in the next section. 
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Figure 17-4: Global Clock Waveforms 
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17.3.5 Section Clock Waveforms 

The section clocks are buffered versions of the globally distributed clock signals. Ten sections 
on the chip receive clocks K%PBI_l:4_H, while the Fbox is the only receiver of K%PHCh4_L 
and K%PHC12:41_H. NDAL clocks are received only at the pads and are driven off chip as 
PHI12:41_0UT_H. 

Clock signals K_P'kPHI_3E_L and K.. V~1IL3E..L are received only in the Pcache and VIC sections, 
respectively. These clocks are used to trigger sense amplifiers and must be tuned such that their 
buffered, section level edges precede the normal section level phase 3 edges (e.g. K_P%PHl_3_H 
and K_ V%PID_3_H) by approximately 1.2 nS. 

All section buffers have identical internal delays. To insure this, standard clock drivers are used 
in each section (except the Fbox). The standard clock driver is designed to be used in a distributed 
fashion: multiple identical parallel drivers are used, with inputs, outputs, and primary internal ~ 
nodes being individually strapped together within each section. 
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17.3.6 Clock Skews and Rise/Fall Times of the Section Clocks 

1 2 

Because of the tightly controlled delays in the first stage of the distribution network, clock skew 
specifications are the same in most sections of the chip. The only exception to this is in the Fbox, 
where leverage of the layout from the Rigel Fbox necessitates specification of a lower-tolerance 
skew. This higher skew figure is due to larger allowable RC delays in the Fbox section level clock 
distribution network. 

Table 17-2 specifies the skews and riselfall times for the edges of the single phase clock signals. 
These values are for a 'IT part running at 100°C and 3.0 volts. Clock Skew is the uncertainty in 
time from when any clock edge crosses the 50% V dd point to when any other clock edge crosses 
the 50% Vdd point. The rise and fall times are measured from the 10% to 90% points of the full 
voltage transition of the clock signal. Adjacent clock phases can overlap or underlap due to clock 
skew. 

Table 17-2: Skews and Rise/Fail Times' 

Skew Between Skew Between 
Skew Within Skew Within Any Two Fbox and Any 
Any Section2 Fbox Sections2 Section Rise/Fall Times 

0.5 nS 1.0 nS 0.5 nS 1.0 nS 0.5 nS 

17.4 The NDAl interface timing system 

17.4.1 NDAl Clocks 

The NVAX CPU provides four double phase low skew clocks that are used by the memory interface 
to communicate with the CPU via the NDAL. The NDAL runs at one third the speed of the internal 
CPU cycle. The NDAL clocks are generated by dividing the internal clock frequency by three. 
The interconnect used for these signals must be well controlled to avoid excessive delay, ringing, 
and skew. 

The relationship of the four clocks to the internal CPU clock cycle is shown in Figure 17--5. The 
timing diagram. also indicates the timing of the NDAL signals. The NDAL changes in ~12, is valid 
during 4>3, and goes tristate in ~4. All NDAL signal transitions are referenced to the RISING 
transitions of the clocks. 

1 These skews are not valid for the NDAL clocks. See Section 1.4 for specific NDAL clock skew information. 

2 ExcludiDg the FboL 
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17.4.2 Controlling Inter-Chip Clock Skew 

The distribution of the NDAL clocks across the module is critical to the performance and 
functionality of the CPU. At the specified operating frequencies of the CPU, the module 
interconnect acts as a transmission line. It has a characteristic impedance and delay. The 
interconnect used for the clock signals must be carefully matched to avoid skew. Note that skews 
and signal delays are measured from the point where the waveform reaches VDD/2 (nominally 
1.65V). 

MODULE INTERCONNECT 

Detailed information concerning the design of the module interconnectivity can be 
found in the NVAX Module Signal Integrity Handbook. 

Figure 17-5: Relationship of Internal and NDAL Clock Cycles 
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17.4.2.1 Self Skew 

Each NDAL clock is distributed to a number of receivers on the CPU board. In a perfect electrical 
environment each chip would receive the clocks at exactly the same time. Unfortunately, due to 
mismatched interconnect lengths and variations in the electrical properties of the interconnect, 
a clock signal will not arrive at the ditierent receivers at the same time. For example, refer to 
Figure 17-6. The clock signal is driven from the NVAX CPU to four clock receivers. Due to 
interconnect length mismatches it will be received at points A, B, C, and D at different times. 
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Figure 17-6: Self Skew 
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The maximum difference in the arrival time of a particular clock transition at different locations 
is defined as the self-skew of the clock. Self-skew is the maximum possible difference between 
the actual clock transition and the specified clock transition. For the :!\T'\TAX CPU to operate at 
its maximum perlormance the following rules must be obeyed. 

1. The rising transition of each N"DAL clock occurs at any receiver within loOns of when it occurs 
at any other receiver. For example, refer to the diagram above. The 4>12 rising transition 
occurs at point A, point B, point C and point D, and the transitions at each separate point 
occur within loOns of the transitions at every other point. 

2. . Rule 1 must also hold for N"DAL falling edge transitions. 

These rules imply that if a clock transition appears at one receiver O.5ns before the specified time, 
the same clock transition cannot appear at another receiver more than 0.5nsafter the specified 
time: this would violate rule 1. 

17.4.2.2 Inter-Clock Skew 

At the clock receivers, each NDAL clock transition is specified to appear at some time relative 
to any of the other NDAL clock transitions. In an ideal design, all clock transitions would occur 
at the specified time. Unfortunately, due to device, processing, and interconnect mismatches, the 
clock signals will arrive at times different from those specified. The uncertainty in arrival times 
is defined as the inter-clock skew. For the NVAX CPU to operate at its maximum performance 
the following inter-clock skew roles must be obeyed. 

1. The skew between any two rising NDAL clock transitions at any two receivers is +1-0.5ns. 
For example, if the transitions are defined to be 15ns apart, the clock design guarantees that 
they are between 14.5 and 15.5 ns apart. 

2. Skew between falling clock transitions is +/-0.5ns. 

3. The skew between a rising transition and a falling transition is +1-O.75ns. 

17.4.3 Driving and Receiving NDAL signals 

Detailed information regarding NDAL clocking and NDAL skew considerations can be found in 
Chapter 3. 
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17.4.4 Information Transfer between the NDAL clock system and the on-chip 
clock system 

Detailed information regarding information transfer between the NDAL clock system and the 
on-chip clock system can be found in Chapter 13. 

17.5 Initializing the NVAX system. 

ASYNC_RESET_L is an asynchronous input to the 1\TVAX chip. It is used to force the NVAX 
CPU into a known state. The assertion of ASYNC_BESET_L occurs during NVAX system 
initialization. ASYNC_RESET_L must be asserted for a minimum of 7 NDAL cycles. 

SYS_RESET_L is both an asynchronous and synchronous output. SYS_RESET_L is 
asynchronously asserted whenever ASYNC_RESET_L is asserted. When asserted, it places 
the ~'"VAX. system chips in their initial power-up states. 

SYS_RESET_L is asserted for a minimum of 7 NDAL cycles. The deassertion of the signal is 
s)'Ilchronized to the :r-..~.AL clocks. It is deasserted on the rising edge of PHI12_0UT_H and is 
,\9alid at the ~'TIAL receivers in time to be latched in l\."'DAL ~ 4. Figure 17-7 shows the relationship 
between ASYNC_RESET_L and SYS_RESET_L signals. 

Figure 17-7: System Reset Timing 
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17.5.1 Internal NVAX Reset 

The ASYNC_BESET_L pin is used to generate several internal reset signals wbich reset 
various parts of the NVAX chip. ASYNC_BESET_L is synchronized with NDAL 4>3, 
then latched after settling with NDAL 4>1. This synchronized signal is piped to NVAX 
4>4 to produce E..P~C_RESET. The internal, buffered version of ASYNC_RESET_L is 
K_P.AD%ASYNC_RESET. 
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To satisfy various logic timing constraints, several reset signals are produced and distributed 
throughout the NVAX chip. The primary internal NVAX reset is K%RESET. This signal 
is asserted asynchronously and deasserted synchronously following assertionldeassertion of 
ASYNC_RESET_L or DISABLE_OUT_L, or during the BSR External Test. Buffered versions 
of KO/cRESET are used by the Ebox, Ibox, VIC, and Fbox to reset local logic. Detailed information 
regarding the functions of DISABLE_OUT_L and the BSR External Test can be found in the 
NVAX Testability Specification. 

The Mbox, Pcache, and Cbox (excluding BIU) receive buffered versions of K_MC%BESET. This 
signal functions the same as K%BESET, except it is also asserted following an Ebox S3 timeout 
(see individual box chapters of this specification for detailed information). 

The 110 Pad logic receives buffered versions ofK%EXT_BESET. This signal is the same as K%BESET, 
except it is not asserted with DISABLE_OUT_L or during BSR External Test as K%RESET is. 

K_CE%RESET is asserted during ~TDAL 4>3 and piped to l\'TVAX internal ~1' A buffered version of 
this is used to reset BIU logic in the Cbox to the proper l\TDAL sequencing state during the reset 
sequence (see CBOX chapter for detailed information). 

DIGITAL CONFIDENTIAL Chip Clocking 17-11 



NVAX CPU Chip Functional Speci1ication, Revision 1.0, February 1991 

17.5.2 Generation of Clocks During Power-up 

The NVAX chip generates its internal clocks and the NDAL clocks by dividing down a high 
frequency external oscillator signal. The external system oscillator is powered from the module 
5 volt power supply. Its clock signals must be valid before 3 volt power is supplied to the NVAX 
chip. The oscillator takes a maximum of 10 mS of initialization time before its clocks can be 
considered free running. Hence, the module power supply must be designed to guarantee that 
the 3 volt supply is not valid until 10 mS after the 5 volt supply is stable. 

The NVAX clock generator derives free nJDDing clocks from the external oscillator clock. The 
clock generator is self-initializing and is not affected by the assertion of ASYNC_RESET_L, 
except for clock generator reset test features (see CLOCK GENERATOR RESET, next section). 
The clock generator requires a maximum of 3 oscillator clock cycles to initialize itself after the 
3 volt module power supply has become valid. Figure 17-8 shows the NVAX Chip and external 
oscillator power-up sequence. 

Figure 17-8: Clock State During Initial Power-up 
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+ , 1 I + , , , + ,--,-, + ,--,-, 
PHI_12_00T (NDAL System Clock) XXXXXXXXXXXXXXX/-----------------------\ /--------------

+ , I , + 1 , , + 1 +, 1 , 
PHI_23_00T (NeAL System Clock) XXXXXXXXXXXXXXX /-----------------------\ /-. 

+ I + 1 I 1 + I I I + , 
PHI_34_00T (NDAL System Clock) xx:xxxxxxxxxxxx /-----------------------\ ________________ _ 

+ , , I + I' + I I I + I I , 
PHI_41_0OT (NDAL System Clock) XXXXXXXXXXXXXXX------------\ /-----------------------\ 

+ I I I + , 1 1 + I 1 I + , , ,-
*****************************************************************************************************************, 

17.5.3 Clock Generator Reset 

The NVAX chip incorporates a clock generator reset feature for use in verifying chip timing. The 
generator can be reset to a known cycle and phase in order to verify various signals against their 
specified timing. 
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WARNING 

Use of the clock generator reset feature must follow these specific sequencing and 
timing constraints. Deviation from these specifications will have undesirable results, 
and can result in physical damage to the NVAX chip. Contact a member of the NVAX 
clock design team for further information about this feature. 

Figure 17-9 shows the proper signal timing for effecting a reset of the clock generator. To begin 
the clock generator reset sequence, the chip is powered up using normal high speed oscillator 
inputs supplied through OSC_H and OSC_L. This is the normal powerup mode, and allows the 
internals of the chip to reach a deterministic operating state. 

Following a normal powerup reset sequence, the oscillator input is turned off briefly (1 .. 2 mS) 
to switch the oscillator input to the test clocks. Following the switch to the test clocks, the 
chip is again reset to restore any internal state lost during the test clock switch. Note that 
ASYNC_RESET_L is held asserted through the duration of the clock generator reset sequence. 

Following this second chip reset sequence, the test clocks are stopped briefly (500 nS MAX). The 
states of test clocks OSC_TCl_H and OSC_TC2_H when stopped must be the same, either both 
high or both low (as shown). TEST_DATA_H should be driven low as shown in Figure 17-9 to 

enect the clock generator reset. This immediately places the clock generator into ~\::.~ ~2 and 
:N'TI_~ 4'>1. TEST_DATA_H is then driven high and clocking of the chip is resumed. On the first 
oscillator cycle following resumption of clocking, the generator will transition into l\"V:AX 4'>s and 
begin normal sequencing. AYSYNC_RESET_L must remain asserted for at least i !\'"DAL cycles 
follo"ving resumption of clocking. 

DIGITAL CONFIDENTIAL Chip Clocking 17-13 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

Figure 17-9: Clock Generator Reset nmlng 

CPU Phase 
NDAl. Phase 

2 
1 

I 

:3 
I 

4 
2 

1 2 3 1 
3 

1-\_1-\_1-\_1-\ __________________________________________________________________ ___ 

osc TC: H 

I 

\ 1-\ 1-\ 1-\ 1-----------------------------------------------------------------------------------. - - - - I 

------------------_1 ---\_1---\_1 ---\_1--- \ 1--- \_1--- \ 1---\_1-' 
I I 

------______ 1---\_1---\_1---\ 1---\ _________ 1---\_1---\_1---\_) - , , 
I-\_I-\_I-\_I-\~ _______ I-\ 1-\ 1-\ 1-\ 1-\ 1-\ 1-\ I-\ _______ I-\_I-\_I-\_I-\_I-\j-\_I-\ ,- - - - - - -, , 

------------------------------------------------------------\--_I-------------------------------~ I I , 
-----------SSSSSSSSSSSS-----------------~--I!I!/-----------\ __________ /--

... _- - .. 
• "" -"=- -

1 

:.:' ::5 : :::5 : : ::s 
::.1:: • :-..!.:-. • :.:..::. • 

.~ - -.. ~ 

- E_SZ=%OSCl_K ~s ~~w ~~~_~a: =as~_= ~:~:k ;=c~~:&: !=o~ &~~:._= ~hw OS:_K a~~ 
OSC_I. :.~;-.;~s, == ~:::.& OSC_~l_E a.."'!~ OSC_~_K ~::;."-:':$. OS:_DS1'_K 
:"5 -.;s.: ':-: 5&: .. :-: ":.!'lc ::::k s:-:.:.:: .. as :i_s:=~z.= !:: -:':::'5 ::oet: s?W·:!!:!..:a-:.:":::. 

- S indica~es a s,:a~ic (non-changing) ~1D~ ~ 1. 

'!'iming Not;es; 
_. £C~ ~in in~ut;s OBC K and OSC I. must be use: to supply clocks to chip p=ie= 

to a~Q auring powe~-up. lnpu~s OSC_TC1_P. and OSC_TC2_P. must be held low in order to 
prevent latch-up. 

2. Switch to test clocks OSC_TC1_H and OSC_TC2_H. Start measure out lpat on chip tester. 

3. Clocks restarted to restore internal chip signals prior to clock-reset sequence. 

4. ASDC auz1' 10 must remain asserted for a minimum of 7 NDAI. cycles 
following restart of clocks. 
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17.6 NVAX Clock Section Signal/Pin Dictionary 

17.6.1 Schematic· Behavioral Translation 

Schematic Name l 

- Signals 

K%EXT_RESET 

K%PHI_l_H 

K%PHI_2_H 

K%PHI_3_H 

K%PHI_4_H 

K%PHI_l_L 

Ko/i:PHI_2_L 

K%PHI_3_L 

K'iCPHI_ 4_L 

K9CPHI_12_H 

K%PHI_23_H 

K%PHl_34_H 

K%PHl_41_H 

K%RESET 

K_CE %RE SET 

K_GLB%PHI12_0UT_H 

K_GLB%PHI23_0UT_H 

K_GLB%PHI34_ OUT_H 

K_GLB%P:En41_0UT_H 

K_MC%RESET 

K_P%PID_3E 

K_PADo/~C_RESET 

K_PAD%SYNC_RESET 

K_SEC%OSC1_H 

K...V%PID_3E 

- Pins 

ASYNC_RESET_L 

DISABLE_OUT_L 

OSC_TEST_H 

Behavioral Model Name l 

K%EXT_RESET 

K%PHI_l_H 

K%PHI_2_H 

K%PHI_3_H 

K%PHI_4_H 

K%PHI_l_L 

K%PHI_2_L 

K%PHI_3_L 

K%PHI_4_L 

K%PHI_12_H 

K%PHI_23_H 

K%PHC34_H 

K%PHI_41_H 

K%RESET 

K_CE%RESET 

K%NDAL_PHI_12_H 

K%NDAL_PHI_23_H 

K%NDAL_PID_34_H 

K%NDAL_PHI_41_H 

K_MC%RESET 

non-existent2 

K_PAD%ASYNC_RESET 

K...PAD%SYNC_RESET 

module calls 

non-existent2 

P%ASYNC_RESET_L 

P%DlSABLE_OUT_L 

P%OSC_TEST_H 

lSigDals without specified assertion levels may uist in _H and/or _L versions. 

2These signals are not modeled in the behavioral code. 

S Any transition is represented. in behavioral model by a call to routine n_%master_clock_tnmsition. 
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Schematic Namel Behavioral Model Namel 

OSC_H P%OSC_H 

OSC_L P%OSC_L 

OSC_TC1_H P%OSC_TCl_H 

OSC_TC2_H P%OSC_TC2_H 

PHI12_0UT_H P%Pln12_0UT_H 

PHl23_0UT_H P%PHI23_0UT_H 

PHI34_0UT_H P%PHI34_0UT_H 

PHI41_0UT_H P%PHI41_0UT_H 

SYS_RESET_L P%SYS_RESET_L 

TEST_DATA_H P%TEST_DATA_H 

lSignals ~ithout speci1ied assertion levels may exist in _H and/or _L versions. 

17.6.2 Behavioral· Schematic Translation 

Behavioral Model Name" 

• Signals 

K%EXT_RESET 

K%PHI_l_H 

K%PHI_2_H 

K%PHI_3_H 

K%PHI_4_H 

K%pm_l_L 

K%pm_2_L 

K%PHI_3_L 

K%PHI_4_L 

K%PHI_12_H 

K%PHI_23_H 

K%PHI_34_H 

K%PHI_41_H 

K%RESET 

K_CE%RESET 

K%NDAL_PHI_12_H 

K%NDAL_PHI_23_H 

K%NDAL_PHI_34_H 

Schematic Name" 

K%EXT_RESET 

K%PHI_l_H 

K%PHI_2_H 

K%PHI_3_H 

K%PHI_4_H 

K%PHI_l_L 

K%PHI_2_L 

K%PHI_3_L 

K%PHI_4_L 

K%PHI_12_H 

K%PHI_23_H 

K%PHI_34_H 

K%PHI_41_H 

K%RESET 

K_CE%RESET 

K_GLB%PHI12_0UT_H 

K_GLB%PHI23_0UT_H 

R;..GLB%PHI34_0UT_H 

"Signals without speciiied assertion levels may exist in _H and/or _L versions. 
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Behavioral Model Name" 

K%NDAL_PID_41_H 

K_MC%RESET 

K_PAD%ASYNC_RESET 

K_PAD%SYNC_RESET 

-Pins 

P%~C_RESET_L 

P%DISABLE_OUT_L 

P%OSC_TEST_H 

P%OSC_H 

P%OSC_L 

P%OSC_TCl_H 

P%OSC_TC2_H 

P%PHI12_01.i"T_H 

P%PHI23_0LTT_H 

P%PHI34_0UT_H 

P9CPHI41_0UT_H 

P%SYS_RESET_L 

P%TEST_DATA_H 

Schematic Name" 

I\..GLB%PHI41_0UT_H 

K_MC%RESET 

I\..PAD%ASYNC_RESET 
K_PAD%SY.NC_RESET 

ASYNC_RESET_L 

DISABLE_ OUT_L 

OSC_TEST_H 

OSC_H 

OSC_L 

OSC_TCl_H 

OSC_TC2_H 

PHI12_0UT_H 

PHI23_0tJT_H 

PHI34_0'l'"r_H 

PHI41_0tJ'T_H 

SYS_RESET_L 

TEST_DAT-~_H 

·Signals without speci1ied assertion levels may exist in _H and/or _L versions. 

17.7 Revision History 

Table 17-3: Revision History 

Who When 

Bill Bowhill 

Tim Fischer 

DIGITAL CONFIDENTIAL 

28-Jan-1990 

28-Jan-1991 

Description of cIumge 

Initial Release 

Pass 1 Updates Complete 
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Chapter 18 

Performance Monitoring Facility 

18.1 Overview 

The NVAX CPU chip contains a facility by which privileged software may obtain performance in
formation about the dynamic behavior of the CPU. The facility is implemented with a combination 
of hardware and microcode, and controlled by software using privileged instructions. 

Two 64-bit performance counters called PMCTRO and PMCTRI are maintained in memory for 
each CPU in the system. The lower 16 bits of each counter are implemented in hardware in the 
CPU, and at specified points, microcode updates the quadwords in memory with the contents of 
the hardware counters. 

The performance monitoring facility may be configured by privileged software to count a number 
of events in the system, from which performance analysis data such as cache and TB hit rates, 
cycles-per-instruction, and stall frequencies may be calculated. 

18.2 Software Interface to the Performance Monitoring Facility 

The performance monitoring facility makes use of a data structure in memory, and must be 
configured and enabled via a location in the System Control Block, processor register references, 
and the LDPCTX instruction. 

18.2.1 Memory Data Structure 

The two 64-bit performance counters for each CPU are maintained in a data structure in memory. 
This data structure consists of a pair of quadwords for every CPU in the system. The physical 
address of the base of the data structure is obtained from offset 58 (hex) in the System Control 
Block. The format of this location is shown in Figure 18-1. 
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Figure 18-1: Performance Monitoring Data Structure Base Address 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 Physical Address of Performance Monitoring Data Structure ISBZ 0 1 11 :SCB+58 (hE 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

NOTE 

A quadword-aligned physical base address is constructed by clearing the lower 3 bits 
of the longword fetched from offset 58 (hex) in the SCB. Microcode will not update the 
block in memory unless bits <2:0> of this longword contain 011 (binary). If these bits 
are found to contain another value, a machine check with code MCHK_PMF_CONFIG 
is performed to notify software that the performance monitoring facility was incorrectly 
configured. If is strongly suggested that the physical address be at least octaword 
aligned, and preferably page aligned. 

The address of the pair of quadwords for an individual CPU is computed by shifting the CPUID 
value left 4 bits and adding this value to the base address. This calculation is shown in equation 
form below (all numbers in these equations are hex). 

phys_base_addr = 8GB [58] AND F F F F F F FO; 

The format of the pair of quadwords for each CPU is shown in Figure 18-2. 

Figure 18-2: Per-CPU Performance Monitoring Data Structure 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

PMCTRO, low longword , :+00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

PMCTRO, high longword 1 :+04 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

63 62 61 60159 58 57 56155 54 53 52151 50 49 48147 46 45 44143 42 41 40139 38 37 36135 34 33 32 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--.--+--+--+ 

PMCTR1, low longword 1 :+08 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

PMCTR1, high longword 1 :+12 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

63 62 61 60159 58 57 56155 54 53 52151 50 49 48147 46 45 44143 42 41 40139 38 37 36135 34 33 32 

18.2.2 Memory Data Structure Updates 

When the performance monitoring facility is enabled, the memory data structure is updated from 
the hardware counters if the PMCTRO counter is more than half full and the current processor 
IPL is below 1B (hex), if a LDPCTX instruction is executed and the PME bit in the new PCB is 
off, or if the performance monitoring facility is disabled via a write to the PME processor register. 
The PME bit is internally implemented as ECR<PMF _ENABLE>, with conversion handled by 
microcode. 
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When the PMCTRO counter reaches half full, an interrupt at IPL 1B (hex) is requested. This 
interrupt request is serviced like any other interrupt if the IPL of the processor is below that 
of the interrupt request IPL. Like any other interrupt, it is serviced between instructions (or in 
the middle of the interruptable string instructions). Unlike other interrupts, the performance 
monitoring interrupt is serviced entirely by microcode, with no software interrupt handler 
required. 

When a performance monitoring interrupt occurs, microcode temporarily disables the facility, ! 
~e~~s a.nd~l~ars ~llehardware counters, then updates the memory data structure with the 

'haraware co~t~.">The 'iacilitYisthen re..enabled, the interrupt is dismissed, and the interrupted I" 

instruction stream is restarted. 

NOTE 

Although the performance monitoring facility is disabled during the memory update 
process, it is re-enabled for the restart of the interrupted instruction stream. Therefore, 
depending on what events were selected, the facility may count events that are part of 
the restart process. 

At the maximum rate (one increment every 14ns CPU cycle), an interrupt is requested every 459 
microseconds. 

If a LDPCTX is executed and the PME bit in the new PCB is off, or if the performance 
monitoring facility is disabled via a write to the PME processor register, the microcode disables ) I 
the performance monitoring facility, reads .. and clears the hardware counters, and updates the, ; 
memory data structure for the CPU with""inrtlia'rttwaI'@ coufits. - - . .-

NOTE 

The hardware counters are not cleared, and the memory data structures are not 
updated when the performance monitoring facility is disabled via a direct write to 
ECR<PMF _ENABLE>. 

18.2.3 Configuring the Performance Monitoring Facility 

Before the performance monitoring facility is enabled, software must select the source of ~he event 
to be counted. This is accomplished first by selecting the box that reports the event, and then by 
selecting the event that is to be counted. The box section is made by writing to the PMF_PMUX 
field in the ECR processor register, as indicated by Table 18-1. 

Table 18-1: Performance Monitoring Facility Box Selection 

ECR<PMF _PMVX> 
(binary) Source of Information 

00 

01 

10 

11 

!box 

Ebox 

Mbox 

Cbox 

The event selection within the box is made by writing to a processor register within the box, as 
described in subsequent s~tions, and in the box chapters elsewhere in this specification. 
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The hardware used to implement the 16-bit counters is constructed such that the PMCTRJ 
counter increments only if both its selected event, and the PMCTRO selected event are truE 
simultaneously. As such, PMCTR1 is a strict subset of PMCTRO. As a result, some combination~ 
of event selections will not cause PMCTR1 to be incremented. In some boxes, the event selectioI 
is specified in such a way that compatible events are automatically selected. In other boxes, thE 
user must specify compatible events. Where they are required, compatible events are describee 
in the sections below. 

18.2.3.1 Ibox Event Selection 

The Ibox reports only one event, so if the Ibox is selected, that event is also selected. The ThO] 

inputs to the PMCTRO and PMCTR1 hardware counters are shown in Table 18-2 

Table 18-2: lbox Event Selection 

PMCTRO Input PMCTRllnput Description; Use 

VIC Access VIC Hit VIC hits compared to total VIC accesses; VIC hit ratio. 

18.2.3.2 Ebox Event Selection 

The Ebox reports several events, as selected by the PMF _EMUX field in the ECR processor 
register. The Ebox inputs to the PMCTRO and PMCTR1 counters are shown in Table 18-3. 

Table 1~: Ebox Event Selection 

ECR<PMF _EMUX> 
(binary) PMCTRO Input 

000 Cycles 

001 Cycles 

010 Cycles 

011 Cycles 

100 Total stall 

101 Total stall 

PMCTRllnput Description; Use 

S3 Stall S3 stalls (source queue, MD, Wn, Fbox scoreboard 
hit, Fbox input) compared to total cycles; 83 stalls 
per unit time. 

EM+PA queue EM latch and PA queue stalls compared to total 
Stall cycles; EM+PA queue stalls per unit time. 

Instruction 
Retire 

Total stall 

Ebox and Fbox instructions retired compared to total 
cycles; CPl. 

Total Ebox stalls compared to total cycles; Stalls pel 
unit time. 

S3 Stall S3 stalls compared to total stalls; S3 stalls as a 
percentage of all stalls. 

EM+PA queue EM latch and PA queue stalls compared to total 
Stall stalls; EM and PA queue stalls as a percentage oi 

all stalls. 
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Table 18-3 (Cont.): Ebox Event Selection 

ECR<PMF _EMUX> 
(binary) PMCTRO Input 

111 S5 Microword 
event 

18.2.3.3 Mbox Event Selection 

PMCTRI Input 

S5 Microword 
event 

Description; Use 

Number of times a microinstruction whose MISe 
field contained INCR.PERF.COUNT reached S5. By 
using the patchable control store, one may count 
microcode events by setting the MISC field of selected 
microwords to this value. If this event is selected, 
writing to the PMFCNT processor register will 
increment the counters via the MISC field decode. 

The Mbox reports several events, as selected by the PMM field in the PCCTL processor register. 
The Mbox inputs to the PMCTRO and PMCTR1 counters are shown in Table 18-4. 

Table 18-4: Mbox Event Selection 

PCCTL<PMM> 
(binary) PMCTRo Input 

000 

001 

010 

011 

100 

101 

110 

111 

so I-stream TB 
access 

so D-stream TB 
access 

POIP1 I-stream 
TB access 

POIP1 D-stream 
TB access 

I-stream Pcache 
access 

D-stream 
Pcache access 

Total reads and 
writes 

PMCTRI Input 

so I-stream TB 
bit1 

so D-stream TB 
bit1 

POIP1 I-stream 
TB bit1 

POIP1 D-stream 
TB bit! 

I-stream Pcache 
bit 

D-stream 
Pcache hit 

Unaligned reads 
and writes 

Description; Use 

TB bits for so I-stream references compared to total 
TB accesses for so I-stream references; SO I-stream 
TB hit ratio. 

TB bits for so D-stream references compared to total 
TB accesses for SO I-stream references; SO D-stream 
TB bit ratio. 

TB bits for PO and PI I-stream references compared 
to total TB accesses for PO and PI I-stream 
references; POIP1 I-stream TB hit ratio. 

TB bits for PO and PI D-stream references compared 
to total TB accesses for PO and PI D-stream 
references; POIP1 D-stream TB bit ratio. 

Pcache hits for I-stream references compared to total 
Pcache accesses I-stream references; I-stream Pcache 
bit ratio. 

Pcache bits for D-stream references compared to
total Pcache accesses D-stream references; D-stream 
Pcache hit ratio. 

Selection causes uNPREDICTABLE behavior of the 
performance monitoring hardware. 

Unaligned virtual reads and writes compared to total 
virtual reads and writes; Unaligned references as a 
percentage of all references. 

lTB bit count is unconditionally incremented when MAPEN::O 
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18.2.3.4 Cbox Event Selection 

The Cbox reports several events, as selected by the PM_ACCESS_TYPE and PM_ffiT_TYPE 
fields in the CCTL processor register. The Cbox inputs to the PMCTRO counter are shown in 
Table IS-5 and the Cbox inputs to the PMCTR1 counter are shown in Table 18--6. For the 
Cbox, all of the PMCTRI selections shown in Table 18--6 are compatible with all of the PMCTRO 
selections shown in Table IS-5. 

Table 18-5: Cbox PMCTRO Event Selection 

CC~PM_ACCESS_TY.PE> 

(binary) PMCTRO Input 

000 

001 

010 

011 

100 

101 

110 

111 

Bcache coherency access. PMCTRO increments when the Bcache processes any 
coherency request from the NDAL. 

Bcache coherency READ access. PMCTRO increments when the Bcache processes a 
IREAD or DREAD coh~rency request from the NDAL. 

Bcache coherency OREAD access. PMCTRO increments when the Bcache processes an 
OREAD OR WRITE coherency request from the NDAL. 

Selection causes UNPREDICTABLE behavior of the performance monitoring hardware. 

Bcache CPU access. PMCTRO increments when the Bcache processes any reference 
from the CPU. 

Bcache CPU IREAD access. PMCTRO increments when the Bcache processes an 
instruction-stream read request from the CPU. 

Bcache CPU DREAD access. PMCTRO increments when the Bcache processes an 
data-stream read, or read-with-modify-intent request from the CPU. 

Bcache CPU OREAD access. PMCTRO increments when the Bcache processes a 
data-stream read lock, write, or write unlock request from the CPU. 

Table 18-6: Cbox PMCTR1 Event Selection 

CC~PM_HIT_TYPE> 

(binary) PMCTRI Input 

00 Bcache hit.· PMCTR1 increments when a Bcache access results in any hit. 

01 Bcache hit owned. PMCTR1 increments when a Bcache access results in an owned hit. 

10 Bcach~ hit valid. PMCTR1 increments when a Bcache access results in a valid hit. 

11 Bcache miss owned. PMCTR1 increments when a Bcache access results in a miss in 
which both the valid and owned bits were set. 

18.2.4 Enabling and Disabling the Performance Monitoring Facility 

The performance monitoring facility is enabled or disabled by setting or clearing the Performance 
Monitor Enable (PME) bit in the CPU. This bit may be written in one of three ways: with a write 
to the PME processor register, by loading a new value with a LDPCTX instruction from the PME 
bit in the new PCB, or by a direct write of the ECR<PMF_ENABLE> bit. 
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The format of the PME processor register is shown in Figure 18-3. 

Figure 18-3: IPR 3D (hex), PME 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
I SBZ I :PME 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

I 
ENABLE --+ 

If PME<O> is written with a 1, the performance monitoring facility is enabled. If PME<O> 
is written with a 0, the performance monitoring facility is disabled. Direct writes to 
ECR<PMF _ENABLE> are similar to writes to PME<O>, with the exception that the hardware 
counters are not automatically cleared, and the memory counters are not·updated on an explicit 
write to ECR<PMF _ENABLE>. 

The CPU PME bit is also loaded by the LDPCTX instruction from PCB+92<31>. 

CAUTION 

The longword at offset 58 (hex) from the SCB and the correct unique CPUID value for 
each CPU must be initialized before the performance monitoring facility is enabled. 
Failure to do so will result in UNDEFINED behavior of the system. 

The CPU PME hit is cleared, and the performance monitoring facility is disabled, at powerup. 

18.2.5 Reading and Clearing the Performance Monitoring Facility Counts 

In normal operation, microcode automatically updates the memory counters by reading the 
current value of the hardware counters, adding these values to the memory counters, and clearing 
the hardware counters. This iii the preferred mode of operation. 

However, there may be some situations in which software wishes to directly read or clear the 
hardware counters. The current value of the hardware counters may be read from the PMFCNT 
processor register, whose format is shown in Figure 18-4. 
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Figure 18-4: IPR 7B (hex), PMFCNT in PMF Format 

31 30 29 28127 26 25 24123 22 21 20119 18 17 16115 14 13 12111 10 09 08107 06 05 04103 02 01 00 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
1 Current Hardware PMCTRl Value I Current Hardware PMCTRO Value 1 :PMFCNT 
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

The current value of the 16-bit hardware PMCTRI counter is returned in PMFCNT<31:16> and 
the current value of the 16-bit hardware PMCTRO counter is returned in PMFCNT<15:0>. 

The two 16-bit hardware counters may be explicitly cleared by software by writing a 1 to 
ECR<PMF_CLEAR>. H the counters are explicitly cleared, any outstanding interrupt request 
is also cleared. It is strongly suggested that the hardware counters not be cleared while the 
performance monitoring facility is enabled. 

If the performance monitoring facility is configured to select the Ebox mier-oword event 
(ECR<PMF _PMUX>=Ebox, ECR<PMF _EMl1X>=85 microword event, ECR<PMF _ENABLE>=1), 
a write of any value to the PMFCNT processor register will increment both hardware counters. 

TEST NOTE 

The performance monitoring facility hardware incrementers may be tested by clearing 
them via ECR<PMF_CLEAR>, selecting the Ebox 85 microword event, and enabling 
the facility. Each write to the PMFCNT processor register will then increment both 
hardware counters, and the result may be observed by reading the PMFCNT register. 
The interrupt request may be tested by incrementing the PMCTRO hardware counter 
into hit<15>, which will cause an interrupt to be requested. 

NOTE 

If the 16-bit hardware counters are explicitly cleared by writing a 1 to 
ECR<PMF_CLEAR>, any count in these registers is lost and will not be included in 
the memory counters. • 

CAUTION 

The performance monitoring hardware also provides the "WBU8 LF8R function under 
control of ECR<PMF _LFSR>. The operation of the hardware is UNDEFINED if both 
ECR<PMF _ENABLE> and ECR<PMF _LFSR> are on, or if software uses a single 
MTPR write to turn off one bit and turn on the other simultaneously. That is, if 
either bit is on, software must turn off both bits with one MTPR and turn on the other 
with a second MTPR. 

18.3 Hardware and Microcode Implementation of the Performance Monitoring 
Facility . 

The performance monitoring facility is implemented via both CPU chip hardware and microcode. 
A block diagram of the perfonnance monitoring hardware is shown in Figure 18-5. 
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Figure 18-5: Performance Monitoring Hardware Block Diagram 
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The lower 16 bits of the PMCTRO and PMCTRI performance counters are implemented as two 
I6-bit incrementers in the Ebox. Both incrementers have a common clear line which is driven I 
from an 85 decode ofMISC/CLR.PERF.COUNT, and each has a separate carry-in input to cause an 
increment in the appropriate counter. The 32-bit concatenated value from.· the incrementers can 
be read onto E_BUS%ABUS_L (the active-low variant of MlABUS_H), and the upper bit of PMCTRO I 
is used to generate E_PltfNCil,P!dON_L, the performance monitoring facility interrupt request. 

The PMCTRO and PMCTRI carry-in inputs are supplied by PMUXO and PMUXl, with the 
PMCTRI carry-in signal gated with the PMCTRO carry-in signal. This makes PMCTRl counter 
a strict subset of the PMCTRO counter. Increments of both counters are suppressed if the 
performance monitoring facility is not enabled, or if the PMCTRO counter has reached its 
maximum value. 

DIGITAL CONFIDENTIAL Performance Monitoring Facility 18-9 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

The top-level selection of events is determined by ECR<PMF _PMUX>, which selects the source 
to PMUXO and PMUXl. This selects the source (lbox, Ebox, Mbox, Cbox) of the carry-in signals 
to each counter. Distributed in the appropriate boxes are second-level muxes which are selected 
to provide the actual source of the increment events for PMCTRO and PMCTRl. 

18.3.1 Hardware Implementation 

The two I6-bit hardare counters are implemented as side-by-side incrementers in the Ebox 
datapath (this hardware also implements the 'Wbus LFSR reducer that is described in the 
testability section of Chapter 8). The carry-in signals for each of the counters are driven from two 
4-to-l muxes that are selected by ECR<PMF_PMUX>, and which select the appropriate source 
of inputs to the incremeniers. 

Logic in the Ibox, Mbox, and Cbox select the appropriate values to drive the two carry-in signals 
based on processor register fields in the bOL The Ebox carry-in signals are selected locally and 
provide the fourth input to the muxes. The PMCTRI carry-in signal is forced to be a subset of the 
PMCTRO carry-in signal by A..'Y\L>ing the raw PMCTRI carry-in signal with the P1v1CTRO carry-in 
signal to produce the final PMCTRI carry-in signal. 

Because the Pl\ICTRl increment is a strict subset of the PMCTRO increment, the ultimate source 
of the two carry-in signals align them such that they are valid in the same cycle. For example, 
if the selcted conditions are IREAD PCACHE ACCESS and' PCACHE HIT, these two signals are 
,,"alid in the same cycle, and they refer to the same reference. Therefore the assertion of IREAD 
PC ... 4..C:HE ACCESS is delayed until the cycle in which PCACHE EnT -is valid. In addition to 
this, the source of the carry-in signals guarantees that any events that may be retried are only 
recorded once. For example, a particular Pcacbe access causes only one increment, even if it is 
retried multiple times. 

When the IS-bit PMCTRO counter increments into the high-order bit, an interrupt is requested by 
asserting the E_PMN%PMON_L signal to the interrupt section, unless the hardware is configured 
to enable LFSR mode. This signal is sampled by edge-sensitive logic, so the interrupt request is 
maintained until it is cleared by writing a 1 to the appropriate bit in the INT.SYS register, even 
if the performance monitoring facility hardware counters are subsequently cleared. 

When the IS-bit PMCTRO incrementer reaches its maximum value, subsequent increments of 
either counter are inhibited by blocking the clocks to the logic when a carry-out is detected 
from PMCTRO. In normal operation, this should not occur, but the counter may overflow if the 
interrupt request isn't serviced within several hundred microseconds, as would be the case if 
software spent an extended period of time a high IPL with the performance monitoring facility 
enabled. 

The 32-bit concatenated value of the two IS-bit hardware incrementers can be read onto 
E_BUS%ABUS_L when selected by an S3 decode of AlPERF.COUNT. This is the mechanisim by 
which microcode retrieves the current values of the two incrementers. The 32-bit concatenated 
value is cleared by an S5 decode of MISClCLRPERF.COUNT. The clear is done independent of 
whether the logic is enabled for performance counting or LFSR mode. 
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18.3.2 Microcode Interaction with the Hardware 

There are several points at which the microcode interacts with the performance monitoring facility 
hardware. At powerup, microcode clears both of the I6-bit hardware incrementers and any 
potential interrupt request. 

MICROCODE RESTRICTION 

If the performance monitoring facility hardware incrementers are cleared in cycle 'n' via 
MISC/CLR.PERF. COUNT, INT.SYS<28> must be written with a 1 no earlier than cycle 
'n+3' to guarantee that the interrupt request is cleared. This delay is due to latency 
introduced between the performance monitoring factility hardware and the interrupt 
section. 

Microcode reads the current value of the hardware incrementers via A1PERF. COUNT as a 
byproduct of a read of the PMFCNT processor register, and as part of the process of updating the 
memory counters. 

Microcode clears the hardware incrementers via MISC/CLR.PERF.COUNT when 
ECR<PMF _CLEAR> is written with a 1. Microcode also clears the incrementers after reading 
and updating the memory counters. 

Microcode uses the CPUID processor register value to find the pair of quadwords that contain 
the performance counter values for this CPU. This value must be correctly initialized by either 
console firmware or software before the performance monitoring facility is enabled. The operation 
of the processor is UNDEFINED if CPUID is not correctly initialized. 

The memory counters are updated under three circumstances: when a performance monitoring 
facility interrupt is serviced, when the facility is disabled via a write to the PME processor register, 
and when the facility is disabled by loading a new value ofPME is LDPCTX. The memory updates 
are done in a common subroutine by disabling the facility by clearing ECR<PMF _ENABLE>, 
reading the current value of the hardware incrementers and then clearing them, and updating 
each quadword in memory with the appropriate I6-bit hardware value. 
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18.4 Revision History 

Table 18-7: Revision History 

Who 

Mike Uhler 

Mike Uhler 

Mike Uhler 

Mike Uhler 

Mike Uhler 

When 

12-Sep-1990 

12-Jan-1990 

02-Jul-1990 

13-Feb-1991 

12-Aug-1991 

18-12 Performance Monitoring Facility 

Description of change 

Reverse the definition of the TB selections for the Mbox 
performance monitoring mux 

Initial release 

Update to reflect implementation 

Update to relect pass 1 design 

Minor updates to clarify interrupt request 
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Chapter 19 

Testability Micro-Architecture 

19.1 Chapter Overview 

This chapter describes the ~\'AX CPU chip's Testability Micro-_4..rchitecture-a framework of 
testability features implemented throughout the l\-rv:.u CPU chip. 

The chapter does not detail the motivation for testability features or discuss the actual method 
of their uses in various life cycle testing phases. These is covered elsewhere. (For example, see 
in [1J.) 

19.2 The Testability Strategy 

The l\"VAX CPU chip's testability strategy addresses the broad issue of providing cost-effective 
and thorough testing during many life cycle testing phases. The strategy specifically implements 
test features to support 

• chip debug 
• high fault coverage test at wafer probe and packaged chip test 
• support "reduced probe contact" wafer probe test 

• support for effective chip burn-in test 
• support module interconnection test via boundary scan and in-circuit-test (ICT) via a single 

pin tristate feature. 

The strategy uses a combination of a variety of testability techniques and approaches that are best 
suited to address the specific functional elements in the chip. The cost-effective implementation 
is realized by the appropriate consideration of global issues, by unifying the test objectives, by 
sharing test resources and by exploiting features inherent in the chip. The strategy also relies 
on leveraging off the design verification patterns in developing production test patterns to meet 
the fault coverage goals. 

The test features are implemented such that they have no effect on the targeted performance of 
the chip. 
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19.3 Test Micro-Architecture Overview 

The NVAX CPU chip's Test Micro-Architecture consists of two principal elements: Test Interface 
Unit and the Testability Features. 

Test Interface Unit 

The Test Interface Unit (TIU) implements a comprehensive test access strategy for the NVAX 
CPU. It permits an efficient access to testability features implemented on the chip. 

Figure 19-1: Test Interface Unit 

"~9.' I::: 
(JTA G) Sus 

( ~ pin s} 
"'_ .A 

< 

Peach 
(2 

~ ". 

Se ri al 
• Port 
pins) 

q 

T e s t a b i I i t Y 

F e a t u r e s 

" ~ 
411: ~ 

EJ IEEE 1149.1 
S e ria I 
Test Access 
Port 

Parallel 
Test 
Po rt 

Parallel tI. ~ 
Port 
(15 pins) 

V 

tI. ~ 

'II: >' 
tI. ~ S 

Y 
S 
t 
e 
m 
P 
0 
r 
t 

'" " tI. 
System 

~ 

Pins 
'II: >' 

TIU shown in Figure 19-1 consists of three ports: an IEEE P1149.1 (JTAG) serial test port, 
a parallel test port and an "invisible" port consisting of test pads. The serial test port is a 4-
pin dedicated test access port conforming to the IEEE Pl149.1 (JTAG) standard. It is used for 
accessing the boundary scan register. 

The parallel test port consists of 15 dedicated pins. This port is used for accessing internal scan 
registers and test features which benefit from parallel access (for example, microaddress bus). 

The Test Pads primarily facilitates micro-probing during chip debug. These pads are located at 
strategic nodes throughout the chip. 

The NVAX CPU also has a special 2-pin serial port consisting of TEST_DATA...H and TEST_ 
STROBE_H that allow the PCache to be loaded serially under control from special microcode. 
This feature has been provided to support convenient self-test operation during the chip burn-in 
test. For more details see Section 19.7 
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In addition to these test ports, NVAX also uses the normal system port (pins) for test access. This 
access consists of using the VAX instructions to manipulate a testability feature or to perform 
the actual tests on the chip's logic. 

Table 19-1 summarizes the dedicated test pins for NVAX.. 

Table 19-1: NVAX CPU's Test Pins 

Pin Name 

TMS_H 

TCK_H 

PP _CMD_H<2:0> 

PP _DATA_H<ll:O> 

DISABLE_ OUT_L 

TEST_DATA_H 

TEST_STROBE_H 

OSC_TEST_H 

o SC_TC I_H. OSC_TC2_H 

TEMP_H 

Testability Features 

Pin Type 

Input, ~-up 

Output, Tri-state, 2 
receivers 

Input, Pull-up 

Input, pull-down 

Input, pull-up 

Output 

Input, Pull-up 

Input, Pull-up 

Input, Pull-up 

Input 

Input 

Output 

Pin Function 

IEEE 1149.1 Serial Test Data Input 

IEEE Pl149.1 Serial Test Data Output 

IEEE 1149.1 Test Mode Select 

IEEE 1149.1 Test Clock 

Parallel Port: Command Pins 

Parallel Port: Data Pins 

Disables (tristate) all output drivers 

Data for serially loading PC ache 

Strobe for serially loading PC ache 

Test clock enable. See Section 3.2.2 

Test clocks. See Section 3.2.2 

Temperature sensor. See Section 3.2.5 

The testability features facilitate the testing of the chip, module, or system. The testability 
features are scattered throughout the NVAX CPU chip. The features implemented primarily use 
internal scan registers, LFSR Reducers and boundary scan register. 

19.4 Parallel Test Port 

This port allows the critical chip nodes to be either controlled or monitored in parallel. The port 
consists of 15 dedicated test pins as follows: 

PP _DATA_H<11:0>: A 12 bit output pins that provide control to or observability of various 
internal nodes. 
PP _CMD_H<2:0>: Selects up to eight different test configurations at the parallel port. 

Table 19-2 lists the Parallel Port's configurations. 

NOTE 

1. "When the parallel port is not in use, internal pull-ups on PP _CMD_H<2:0> pins 
force the port into an inactive (Ebox observe MAE) state. 
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2. PP_CMD_H< 0 > pin is also used as pseudo-TRST_L pin to reset JTAG circuits. 

Table 19-2: Parallel Port Operating Modes 

Command Pins 

PP _CIW> _H<2:0> Port Mode 

111 Observe MAB (Default) 

110 Observe Mbox 

101 Observe CboxlMbox 

100 Observe !box 

011 Enable LFSR Mode 
010 Undefined 
001 Shift ISRs 

000 Force MAB 

19.4.1 Parallel Port Operation 

Internal Scan Registers 

PP _DATA_H<ll:O> 

PP _DATA.,.H<11> 

PP _DATA_H<10:O> 
PP _DA~H<ll:9> 

PP _DATA.,.B<8:4> 

PP _DATA.,.H<3> 

PP _DATA-H<2> 

PP _DATA.,.B<l> 

PP _DATA_H<O> 
PP _DATA_H<ll:9> 

PP _DATA_H<8> 

PP _DATA_B<7> 

PP _DATA_H<6:4> 

PP _DATA.,.H<3:0> 
PP _DATA_H<11> 

PP _DATA.,.H<10:7> 

PP _DATA_H<6:0> 
PP _DATA_H<11:O> 
PP _DATA_B<ll:O> 
PP _DATA_H<11:3> 

PP _DATA_B<2:0> 
PP _DATA.,.B<ll:O> 

Data Pins 

Signals controlled/Observed 

Internal PBI_2. 

Ebox MAB. See Section 9.5. 
85 Reference Source. See Section 

85 command. See T~ble 12-1. 

85 Abort. 

S5 TB Miss. 

85 PCache Hit. 
Cbox BC_TS_CMD<2!O>. See Table 13-

Cbox DEALLOC. 

Cbox BC_HIT. 

Mhox MD Destination. See SectiOl 

Mhox MME State. See Section 12.' 
Internal PHC2. 

Undefined. 

I-MAE. See Section 7.11.3. 
Undefined. 
Undefined. 
ISRI (Control Store data). 

I8R2 (Other intemalscan d-4-"\). 
Undefined. See Section 9.5. 

When shifting, the ISR bits are serial to parallel converted. They change every third cycle on 
internal PHI_ 4. This gives usable time with respect to the NDAL clocks. The parallel port 
commands are captured synchronously with respect to the NDAL clocks, in NDAL phase 3. In 
order to give full flexibility in capturing a given internal cycle, a mechanism is provided to delay 
the capture-and-start-shifting event by 0, 1, or 2 cycles. This delay is determined by the state 
of the parallel port bits PP _ CMD< 1:0 > immediately before entering the Shift ISR mode. COO' 
corresponds to zero delay, '01' corresponds to 1 cycle delay and '10' correspond to two cycle delays.) 
See the timing diagrams in Figure 19-2 
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Chapter 20 

Electrical Characteristics 

20.1 Introduction 

This chapter specifies the electrical characteristics to which one must adhere in order to incorporate 
the chip in a system. Related information may be obtained from the following documents: 

1. NVAX Module Signal Integrity Handbook. 

2. CMOS-4 Technology File, revision 2.3. 
3. NVAX CPU Module Inter-chip Specification. 
4. NVAX CPU Chip Functional Specification, Chapter 3, Chapter 13, and Chapter 17. 

20.2 NVAX DC Operating Characteristics 

20.2.1 Maximum Ratings 

Table 20-1: Maximum Ratings 

Parameter sym min 

internal supply voltage VDDi 3.0 

external supply voltage VDDe 3.0 

power dissipation @ 10ns cycle 

power dissipation @ 12ns cycle 

power dissipation @ 14ns cycle 

power dissipation @ 18ns cycle 

junction temperature Tj 0 
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max units comments 

3.465 Vdc 3.3V +5%/-10% including power sup-
ply ripple 

3.465 Vdc 3.3V +5%/-10% including power sup-
ply ripple 

16.3 watts measured at VDDi= VDDe= 3.465V 

13.8 watts measured at VDDi= VDDe: 3.465V 

12.0 watts measured at VDDi= VDDe= 3.465V 

9.7 watts measured at VDDi= VDDe= 3.465V 

100 degC specific ambient temperature de-
pends on board design and air flow 
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Table 20-2: Power Dissipation Across Voltage and Cycle Time 

Cycle time min@3.2V max@3.2V mraOa.465V max@3.6V units 

lOns cycle 8.3 13.9 16.3 17.6 watts 

12ns cycle 7.1 11.8 13.8 14.9 watts 

14ns cycle 6.2 10.3 12.0 13.0 watts 

18ns cycle 5.0 8.3 9.7 10.4 watts 

The power dissipation numbers given are worst-case average power dissipation measurements; 
they do not represent the peak instantaneous power dissipated on NVAX. The worst-case average 
power values were developed from the measured power dissipated when a worst-case pattern was 
run on an NVAX chip in a Neptune system. 
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20.2.2 Pin Driver Impedance 

Table 20-3 contains the acceptable range for output driver impedance, assuming worst case 
environmental skews. 

Table 20-3: NVAX Pin Driver Impedance 

Rterm Rterm. Rds Rds Z Z 

Name low high low high low high 

Po/llACK_L 10 15 19 37 29 52 
Po/oCMD _H<3:0> 10 15 65 125 75 140 
Po/oCPU_HOLD_L 12 18 20 41 32 59 
Po/oCPU_RE'LL 12 18 20 41 32 59 
Po/oCPU_SUPPRESS_L 12 18 20 41 32 59 
P%DR_DATA_H<63:0> 11 17 20 41 31 58 
P%DR_ECC_H<7:O> 11 17 20 41 31 58 
P%DR_INDEX_H<20:3> 4 6 12 25 16 31 
P%DR_OE_L 4 6 12 25 16 31 
P%DR_WE_L 4 6 12 25 16 31 
P%ID_H<2:0> 10 15 65 125 75 140 
Po/~CHINE_CHECK_H 10 15 65 125 75 140 
P%NDAL_H<63:0> 10 15 65 125 75 140 
P%PARITY_H<2:0> 10 15 65 125 75 140 
P%PID12_0UT_H 8 12 8 23 16 35 
P%PID23_0UT_H 8 12 8 23 16 35 
P%PID34_0UT_H 8 12 8 23 16 35 
P%PID41_0UT_H 8 12 8 23 16 35 
P%PP _DATA_H<ll:O> 10 15 65 125 75 140 
P%SYS_RESET_L 12 18 20 41 32 59 
P%TDO_H 10 15 65 125 75 140 
P%TS_ECC_H<5:O> 11 17 20 41 31 58 
P%TS_INDEX_H<20:5> 12 18 20 41 32 59 
P%TS_OE_L 12 18 20 41 32 59 
P%TS_OWNED_H 11 17 20 41 31 58 
P%TS_TAG_H<31:17> 11 17 20 41 31 58 
P%TS_WE_L 12 18 20 41 32 59 

Key to pin characteristics: 

Rterm - termination resistance 
Rds - device resistance 
Z - sum of resistance range 

Conditions of test: 

Vdd = 3.465v 
'lJ = 0 and 100 degrees Centigrade 
Rds measured with the pin shorted to Vdd=3.465v for measuring N-MOS characteristics 
Rds measured with the pin shorted to Vss=O.Ov for measuring P-MOS characteristics 
Pins cannot tolerate shorts for prolonged periods. The above information is provided for test purposes only. 
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20.2.3 Pin Capacitance 

Table 20-4: Maximum Pin Capacitance 

Pin Types 

I/O and output only pins 

input only pins except for Po/oPHIXX_lN_R 

P%PB1XX_IN_H 

Conditions of test (in simulation): 

Rating Unit 

12.0 pF 

7.5 pF 

8.5 pF 

measured as pin capacitance to VSSi with all other pins returned to VSSi 
'Ij = 27 degrees Centigrade 
measured at DC, zero bias for the junction capacitors 

20.2.4 Pin Operating Levels 

Table 20-5 summarizes the electrical characteristics for various pin operating levels. Table 20-6 
identifies the operating level associated with each unique pin group. 

Table 20-5: NVAX Pin Levels 

Level Type VJl Vlh Vol 101 Voh loh MaxVm1 Leakage 

TrLI02 0.8 2.0 0.4 +2mA 2.5 -2mA 6V 100uAmps 

TrL IN 0.8 2.0 4.5V 100uAmps 

TrLINPU3 0.8 2.0 Vdd+0.5V ±200-900uAmps 

P%PP _Cl\ID_ 0.8 2.0 Vdd+O.5V 1000uAmps 
H<2:O> 

CMOS' 0.8 2.0 0.4 +2mA 2.6 -2mA 4.5V 100uAmps 

CMOS5 0.8 2.0 Vss+O.IV +40uA Vdd-0.1V -40uA 4.5V 100uAmps 

ECLIN -0.3V +0.3V Vdd+0.5V 100uAmps 

ACKI~ 0.8V 2.0 0.4 +17mA Vdd+O.5V 100uAmps 

lm.aximum voltage tolerable without incurring damage 

25-volt tolerant 

3pins with active pull-up or pull-down 

'with TIL load 

liwith CMOS load 

6active pull-up to 3.3 volts 

1 
c:' r 
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Table 20-6: NVAX Pin Characteristics 

Name Type Level Voltage Pull·x 

Po/oACK_L B,OD ACK 3 
P%ASYNC_RESET_L I TTL 3 + 
Po/oCMD _H<3:0> B TTL 5 
PO/OCPU_ GRANT_L I TTL 3 
Po/oCPU_HOLD_L 0 TTL 5 
Po/oCPU_RE(LL 0 TTL 5 
Po/oCPU_StnPPIUESS_L 0 TTL 5 
P%CPU_WB_ONLY_L I TTL 3 
P%DISABLE_OUT_L I TTL 3 + 
P%DR_DATA_H<63:0> B TTL 5 
P%DR_ECC_H<7:O> B TTL 5 
P%DR_INDEX_H<20:3> 0 TTL 3 
P%DR_ OE_L 0 TTL 3 
P%DR_WE_L 0 TTL 3 
P%HALT_L I TTL 3 
P%H_ERR_L I TTL 3 
P%ID _H<2:0> B TTL 5 
P%INT_TIM_L I TTL 3 
P%m<LL<3:O> I TTL 3 
P%MACmNE_CBECK_H 0 TTL 5 
P%NDAL_H<63:O> B TTL 5 
P%OSC_H I ECL 3 
P%OSC_L I ECL 3 
P%OSC_TCl_H I CMOS 3 
P%OSC_TC2_H I CMOS 3 
Po/oOSC_TEST_H I CMOS 3 
P%PARITY_H<2:0> B TTL 5 
P%PHl12_IN_H I CMOS 3 
P%PBl12_0UT_H 0 CMOS 3 
P%Pin23_IN_H I CMOS 3 
P%PBl23_0UT_H 0 CMOS 3 
p%pm34_IN_H I CMOS 3 
p%pm34_0UT_H 0 CMOS 3 
p%pm41_IN_H I CMOS 3 
p%pm41_0UT_H 0 CMOS 3 
P%PP _CMD_H<2:O> I TTL 3 + 
P%PP _DATA_H<ll:O> 0 TTL 5 
P%PWRFL_L I TTL 3 
P%SYS_RESET_L 0 TTL 5 
P%S_ERR_L I TTL 3 

Key to pin characteristics: 

LEVEL - threshold levels as per Table 20-5 
VOLTAGE - (5) 5V tolerant driver, (3) 3V tolerant driver - must not be exposed to 5V signals 
PULL-X - (+) active pull-up, (-) active pull-down 
TYPE - (B) bidirectional, (I) input, (0) output, (OD) open drain 
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Table 20-6 (Cont.): NVAX Pin Characteristics 

Name Type Level 

P%TCK_H I TTL 
P%TDI_H I TTL 
P%TDO_H 0 TTL 
P%TEMP_H 0 < 3V 
P%TEST_DATA_H I TTL 
P%TEST_STROBE_H I TTL 
P%TMS_H I TTL 
P%TS_ECC_B<5:0> B TTL 
P%TS_INDEX_B<20:5> 0 TTL 
P%TS_OE_L 0 TTL 
P%TS_OWNED_H B TTL 
P%TS_TAG_B<31:17> B TTL 
P%TS_VALID_H B TTL 
P%TS_WE_L 0 TTL 

Key to pin characteristics: 

LEVEL - threshold levels as per Table 20-5 

Voltage 

3 
3 
5 
3 
3 
3 
3 
5 
5 
5 
5 
5 
5 
5 

Pull-x 

+ 

+ 
+ 
+ 

VOLTAGE - (5) 5V tolerant driver, (3) 3V tolerant driver - must not be exposed to 5V signals 
PULL-X - (+) active pull-up, (-) active pull-down 
TYPE - (B) bidirectional, (I) input, (0) output, (OD) open drain 
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20.3 NVAX AC Operating Characteristics 

This section specifies AC timing parameters, but is not intended to illustrate detailed transac
tionaloperation. 

20.3.1 AC Conditions of Test 

1. Tj = 0 to 70 degrees Centigrade 
2. VDDi = 3.3 volts +3.9%/-3% (3.2 to 3.43V) 
3. VDDe = 3.3 volts +3.9%/-3% (3.2 to 3.43V) 
4. Voltage levels used for timing specifications as per Table 20-5. 

5. Pin loading used for timing specifications as per Table 20-7. 

Table 20-7: Pin Loading for AC Tests 

Pin Total Pin Loading 

P%DR_INDEX_H<20:3> 140 pF 

P%DR_OE_L 140 pF 

P%DR_ WE_L 140 pF 

P%TS_INDEX_H<20:5> 60 pF 

P%TS_OE_L 60 pF 

P%TS_WE_L 60 pF 

P%PHlXX_OUT_H 70 pF 

all others 40 pF 

Loading required for 
chip test on Takeda 3381 

Series Resistor Series Capacitor 

10 ohms 100pF 

10 ohms 100 pF 

10 ohms 100pF 

15 ohms 20 pF 

15 ohms 20 pF 

15 ohms 20 pF 

22 ohms 30 pF 

none none 

The AC conditions of test given were designed specifically with the Neptune and Omega systems 
in mind, in order to maximize chip yield. The AC conditions of test may be changed in the future 
depending upon chip yields and the needs of the system partners. 
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20.3.2 NDAL Timing Specification 

NDAL signal timing is specified as phase and constant offsets from the NDAL clock inputs. The 
chip operating frequency determines the phase time. 

Figure 20-1: NDAL Pin Timing Relative to the NDAL CLOCKS 

P%PHIl2_IN_H 

P%PHI23_IN_H 

P%PHI34 _ IN _ H 

P%PHI41_IN_H 

P%ID H<2:0> 
P%PARITY H<2 :0> 
P%NDAL H<63:0> 
P%CMD_H<3:0> 

P%ID B<2:0> 
P%PARITY H<2:0> 
P%NDAL B<63: 0> 
P%CMD_H<3:0> 

P%CPU HOLD L 
P%CPU-SUPPRESS L 
P%CPU:REQ_L -

P%CPU WB ONLY L 
P%CPU:GRAm_L-

----I-----NN D A L C Y C L E:-----I-----NN D A L C Y C L E,----I 

P4 Pl P2 P3 P4 Pl P2 P3 P4 

_____ _J/ \ .... ______ _J/ 

I I \ .... _------.,. 
_______ ~----Ji~--~----~\ .... ----.,._-----Ji~----~-----~\'------~ 
~----~~ ________ ~/-----------~~ ________ ~/r----~---+{ 

1 1 1 
/ \ / \ .... ____________ _J/ 

-I ! ! : 1----
~««««««««« »»»~ 

As dri.ven by NVAX CPU: I 
Dri.ven from P%PHI12 IN H ri.sing edge 
Re1eased wi.th P%PHI41_IN_H ri.si.ng edge 

: : : I 
~ .»)~ 

As recei.ved by NVAX CPU I 
Latch c10ses wi.th P%PHI41_IN_B ri.si.ng edge (1atch open duri.ng phi.23) 

""""" LI/'////// "////////////////// 
As pu1led 10w by NVAX CPU & pu11ed hi.gh through board pu11up resi.stor 
NVAX pu1ls 10w w/P%PHI23_IN_H ri.sing; NVAX releases wi.th P%PHI23_IN_H fa11i.ng 
: I : : : I : : 

As requi.red by NVAX CPU 
Latch c10ses wi.th P%PHI34 IN H ri.si.nq edge 
(latch open duri.nq phi.12)-

1----1 I 1 
XXXXXXX)()O< 

As dri.ven~b~y~Nv.~AX~~C~PU~-----------1 
Dri.ven wi.th P%PHI12_IN_H ri.sinq edge 

>000000000000001 As ~iredby ~ CPU :: ! 1 Latch closes wi.th P%PHI41 IN H ri.sinq edge 
(latch open duri.ng phi.23)- - I : 

--- ---I I 1 ---1--- --- ----'-' 
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Table 2lh9: NDAL AC timing specs 

Input Pin 

Po/oNDAL_B<63:O> 

Po/oCMD_H<3:0> 

P%ID_H<2:O> 

P%PARITY_H<2:O> 

Po/oCPU_WB_ONLY_L 

Po/oCPU_GRANT_L 

Output Pin 

P%NDAL_B<63:O> 

P1oCMD_B<3:0> 

P%ID_B<2:O> 

P%PARITY_H<2:O> 

P1oCPU_BOLD_L 

P1oCPU_SUPPRESS_L 

P1oCPU_RE'L,L 

Output Valid 

P%PHI23_IN_H R + 1 phase Oow 
transition), P%PHI23_IN_B F + 3 
phases(higb transition)8 

i, t," lit 
/ 

Bold Time 

Output Tristate 

1 R means the rising edge of the clock is used; F means the falling edge of e clock is used. 
. ! 

2Data may be held capacitively during the hold time. . / 

8Po/oACK..L is pulled up to 3.3v through a resistor in the system and inf.e test environment. 

I 
/ 
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20.3.3 BCACHE Timing Specification 

Due to the chip's clocking structure, BCACHE timing is specified relatively between the various 
BCACHE signals. 

Figure 20-2 and Figure 20-3 show the Bcache timing for a generic NVAX system. Table 20-9 and 
Table 20-10 specify the RAM timing constraints under NVAX input requirements subtitle, and 
the guaranteed chip output under NVAX output responses. This data should be used to establish 
chip input requirements and output responses in a generic system environment. Signal delays 
are dependent on chip packaging and board design. 

For the OMEGA system, the chip must meet the input constraints and the output responses spec
ified in Table 20-11 and Table 20-12. The OMEGA system operates at a 14ns clock cycle, using a 
128 KB cache with 16Kx4 25ns data RAMs and 4Kx4 25ns tag RAMs. This configuration requires 
the Bcache processor register settings CCTL(DATA_SPEED)=Ol and CCTL(TAG_SPEED)=l to 
allow one slip cycle for both data and tag RAM access. See Chapter 13. 

The specific timing for XNP systems is shown in Figure 20-4 and Figure 20-5. The chip must 
meet the input constraints and the output responses specified in Table 20-13 and Table 20-14. 
The XNP system operates at a 14, 12, or IOns clock cycle, using a 2 MB cache with 256Kx4 
20ns data RAMs and 64Kx4 15ns tag RAMs. This configuration requires the Bcache processor 
register settings CCTL(DATA_SPEED)=Ol and CCTL(TAG_SPEED)=l to allow one slip cycle for 
both data and tag RAM access. 

The timing constraints for both the OMEGA and XNP systems are based upon the RAM specifi
cations rather than upon NVAX predicted behavior. Actual signal delays are dependent on chip 
packaging and board design. 
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Table 20-9: Generic Data RAM TIming Specification 

Param Function 

Taa 

Toe 

Toh 

Tohz 

address access to RAM data valid 

OE assertion to RAM data valid 

RAM data_ output hold from INDEX 
change 

OE deassertion to RAM data high-z 

Param Function 

Tto data high-z to OE assertion 

Tdw data valid to WE deassertion 

'l\vp WE pulse 

Taw address valid to end of write 

Tnz NVAX tristate time 

Twr write recovery (WE deassertion to 
INDEX change) 

Tdh data hold after WE deassertion 

Tas address setup 

Tow OE deassertion to WE assertion 

DIGITAL CONFIDENTIAL 

NVAX Input Requirement 

::; (7 phases - P%DR_INDEX_H drive-to-valid delay) 

::; (5 phases - P%DR_OE_L deasserted-to-asserted delay) 

2:: 2.0ns 

::; (4 phases - P%DR_OE_L asserted-to-deasserted delay) 

NVAX Output Response 

2:: O.Ons 

2:: (5 phases - P%DR_DAT_H drive-to-valid delay) 

2:: (6 phases - P%DR_ WE_L deasserted-to-asserted delay) 

2:: (10 phases - P%DR_INDEX_H drive-to-valid delay) 

::; 1 phase 

~ 0.On8 

2:: O.Ons 

2:: O.Ons 

2:: O.Ons 
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I I 
ptTS_INOEX_" [ndex for read 

I I I IE Taa 
I I I . 
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I I rToejH. 
: rTrZ~ RAMS drivin 

I t.eYi1e : I .1.5ne 
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I -- I I L ___ : ___ I I 
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Table 20-10: Generic Tag RAM Timing Specification 

Param. Function 

Taa 

Toe 

address access to RAM data valid 

OE assertion to RAM data valid 

Param. Function 

'!'to 

Tdw 

'lWp 

Twr 

Tdh 

Tas 

high-z to OE assertion 

data valid to WE deassertion 

WE pulse 

write recovery 

data hold time 

address setup 

DIGITAL CONFIDENTIAL 

NVAX Input Requirement 

:$ (7 phases· P%DR_INDEX_B drive-to-valid delay - 1.5ns) 

:$ (5 phases - P%DR_OE_L drive-to-valid delay - 1.5ns) 

NVAX Output Response 

~ 1.5ns 

~ (5 phases· P%TS_TAG_B drive-to-valid delay) 

~ (6 phases - ~TS_ WE_L drive-to-valid delay) 

~ -2.0ns 

~ 1.Ons 

~ (4 phases - P%TS_JNDEX_B drive-to-valid delay) 
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Table 20-11: OMEGA-Specific Data RAM Timing Specification . 

128KB Bcache, 25ns Data RAMs, 25ns Tag RAMs, 14ns cycle 

NVAX Test Input Requirements 

Param Function Timing Measuring Point Notes 

Taa address access to data valid ~25.0ns INDEX 2.4H1.4L must be met before 
tester drives data 

Toe OE assertion to data valid ~ 12.0ns OE.4L must be met before 
tester drives data 

Toh output hold ~ 3.0ns INDEX .4H12.4L tester hold time 

Tohz OE deassertion to data high-z ~ lO.Ons OE2.4H tester hold time, chip 
overdrives 

Tcycle internal cycle time 14.Ons 

NVAX Test Output Responses 

Param Function Timing Measuring Point Notes 

'!'to high-z to OE assertion ~ O.Ons OE 2.4L 

Tdw data valid to WE deassertion ~ lO.Ons DAT 2.4H1.4L 

Twp WE pulse ~ 15.0ns WE .4L, WE 2.4H 

Twr write recovery ~ O.Ons WE .4L, INDEX .4H12.4L 

Tdh data hold time ~ O.Ons WE2.4H 

Tas address setup ~ O.Ons INDEX 2.4H1.4L, WE 2.4L 

Tow OE deassertion to WE assertion ~ O.Ons OE 2.4H, WE .4L 
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Table 20-12: OMEGA Specific Tag RAM Timing Specification 

512KB Bcache, 12ns Data RAMs, 12ns Tag RAMs 

NVAX Test Input Requirements 

Param Function Timing Measuring Point 

Taa address access to data. valid ~ 12.0ns INDEX 2.4H1.4L 

Toe OE assertion to data. valid ~ 6.0ns OE .4L 

Tcyc1e internal cycle time 14.Oos 

NVAX Test Output RespoDSes 

Param Function Timing Measuring Point 

Tto high-z to OE assertion ~ O.Ons OE2.4L 

Tdw data. valid to WE deassertion ~ 6.0ns DAT 2.4H1.4L 

Twp WE pulse ~ 12.0ns WE .4L, WE 2.4H 

Twr write recovery ~ O.Ons WE .4L, INDEX .4H12.4L 

Tdh data. hold time ~ O.Ons WE 2.4H 

Tas address setup ~ 0.On8 INDEX 2.4H1.4L, WE 2.4L 

Notes 

must be met before 
tester drives data . 

must be met before 
tester drives data 

Notes 

• 
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Table 20-13: XNP Specific Data RAM Timing Specification 

Param 

Taa 

Toe 

Toh 

Tohz 

Tcyc1e 

Param 

Tto 

Tdw 

Twp 

Twr 

Tdh 

Tas 

Tow 

2MB Bcache, 20ns Data RAMs, 15ns Tag RAMs 

NVAX Test Input Requirements 

Function Timing Measuring Point 

address access to data valid ~ 20.0ns INDEX 2.4H1.4L 

OE assertion to data valid ~ 10.Ons OE.4L 

output hold ~ 5.0ns INDEX .4H12.4L 

OE deassertion to data high-z ~ 10.Ons OE 2.4H 

internal cycle time 14.0,12.0, 
or 10.0ns 

NVAX Test Output Responses 

Function Timing Measuring Point 

high-z to OE assertion ~ O.Ons OE 2AL 

data valid to WE deassertion ~ 12.0ns DAT 2.4H1.4L 

WE pulse ~ 14.0ns WE .4L, WE 2.4H 

write recovery ~ O.Ons WE AL, INDEX .4H12.4L 

data hold time ~ O.Ons WE 2.4H 

address setup ~ O.Ons INDEX 2.4H1.4L, WE 2.4L 

OE deassertion to WE assertion ~ O.Ons OE 2.4H, WE .4L 

Notes 

must be met before 
tester drives data 

must be met before 
tester drives data 

tester hold time 

tester hold time, chip 
overdrives 

Notes 
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Table 20-14: XNP Specific Tag RAM Timing Specification 

Param 

Taa 

Toe 

Tcycle 

Param 

Tto 

Tdw 

Twp 

TWr 

Tdh 

Tas 

2MB Bcache, 20ns Data RAMs, 15ns Tag RAMs 

NVAX Test Input Requirements 

Function Timing Measuring Point 

address access to data valid· ~ 15.Ons INDEX 2.4H1.4L 

OE assertion to data valid ~ B.Ons OE.4L 

internal cycle time 14.0,12.0, 
orl0.0ns 

NVAX Test Output Responses 

Function Timing Measuring Point 

high-z to OE assertion ~ O.Ons OE 2.4L 

data valid to WE deassemon ~ 7.0ns TAG 2.4Hl.4L 

WE pulse ~ 15.0ns WE .4L, WE 2.4H 

write recovery ~ O.Ons WE .4L, INDEX .4H12.4L 

data hold time ~ O.Ons WE 2.4H 

address setup ~ O.Ons INDEX 2.4H1.4L, WE 2.4L 

Notes 

must be met before 
tester drives data 

must be met before 
tester drives data 

Notes 
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20.3.4 Other Pin Timing Specifications 

20.3.4.1 Clock Timing 

When P%OSC_TEST_H is not asserted the chip receives the master clock through the P%OSC_ 
Hand Po/oOSC_L pins. Operation of the chip at the maximum internal clock speed of 100 MHz 
requires an input clock frequency of 400 MHz. These pins require capacitively-coupled, differen
tial waveforms, 180 degrees out of phase at inverted EeL levels. The peak-to-peak differential 
voltage must be at least 600m V, with a differential symmetry of 60/40 or better. The voltage 
should not exceed the absolute value ofVdd plus 500 mV during operation. 

When P%OSC_TEST_H is asserted the chip receives the master clock through the MoOSC_ 
TC1_H and P%OSC_TC2_H pins. Operation of the chip at the maximum internal clock speed of 
100 MHz requires an input clock frequency of 200MHz. These pins require waveforms that are 
90 degrees out of phase at CMOS input levels (Table 20-5). Each edge must be place within an 
accuracy of ± 24 degrees. 

The chip provides four double phase NDAL clocks on the P%PHIXX_OUT_H pins. The chip also 
receives these clocks through the P%PHIXX_IN_H pins. The relationship of the four clocks to 
the internal CPU clock cycle is shown in Figure 20-6. 

Figure 20-6: Relationship of Internal and NDAL Clock Cycles 

CPU CYCLE 1 1 1 2 1 3 1 4 1 1 1 2 1 3 1 4 1 1 1 2 1 3 1 4 1 
PHIl PHI2 PHI3 PHI4 

NDAL CYCLE 1-----------1-----------1-----------1-----------1 

PHI12_ OUT _H /----------------------- \, _______ _ 

PHI23_0UT_H /-----------------------\ ___ _ 

PHI34_0UT_H \ ________ /-----------------------\ 

PHI 4 l_OUT_H ------------\ /------------

The following skew specifications must be met for all NDAL clock receivers. Inter-clock skew is 
dependent on the electrical characteristics of the chip environment. . 

1. The rising edge of any clock will be present at all receivers within ± 0.5 ns, as measured from 
the CMOS VIh level (see Table 20-5). 

2. The falling edge of any clock will be present at all receivers within ± 0.5 ns, as measured 
from the CMOS Vllievel. 

3. The skew between the rising edge of any phase and the falling edge of any other phase will 
be no more than ± 0.75 ns, as measured from Voh to Vol. 

4. The NDAL clocks will have an edge rate of 2.0 ns or better, measured at the receiver, between 
the 10% and 90% points. 
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20.3.4.2 Reset Timing 

P%ASYNC_RESET_L is an asynchronous input. It must be asserted for a minimum 
of 7 NDAL cycles. The P%SYS_RESET_L output is asserted asynchronously whenever 
P%ASYNC_RESET_L is asserted. P%SYS_RESET_L is deasserted synchronously with the 
rising edge ofP%PffiI2_0UT_H. Figure 20-7 shows the relationship between the reset signals 
and the clocks. 

Figure 20-7: System Reset Timing 

************************************************* 
I NDAL CYCLE I NDAL CYCLE I NDAL CYCLE I 
I I I I 
I Pli P21 P31 P41 Pli P21 P31 P41 Pli P21 P31 P41 
1---1---1---1---1---1---1---1---1---1---1---1---1 
+ 1 1 1 + 1 1 1 + 1 1 1 + 

P%ASYNC_RESET_L --\\\ /////--------------------------------------
<-- Asserted for a minimum of 7 NDAL Cycles ---> 1 1 + I 1 + 1 I 1 + 

P%SYS_RESET_L --\\\\\\\\\\\ ///////////------
+ 1 1 + 1 1 + 1 1 1 + 

P%PHI12 OUT H /-------\ /-------\ /-------\ / 
P%ASYNC RESET L asynchronous - - + 1 1--1-+ , '--1-+ , 1--'-+ 
asserti~n cau;es asynchronous P%PHI23 OUT H /-------\ /-------\ /-------\ 
assertion of P%SYS RESET L. - - +--, 1 1--+-1 1 1--+-1 1 1--+ 

- - P%PHI34 OUT H \ /-------\ /-------\ /-------\ 
- - +--1-1 1 +--1-1 1 + 1 1 1 + 

P%PHI41_0UT_H ----\ ___ /-------\ ___ /-------\ ___ /----
+ 1 , 1 + 1 1 1 + 1 1 1 + 
************************************************* 

The clock generator can be reset to a known state by using the P%TEST_DATA_H input as shown 
in Figure 20-8. With P%AYSYNC_RESET_L asserted, all clock inputs are stopped briefly (500 
nS MAX). The states of test clocks P%OSC_TCl_H and Po/oOSC_TC2_H when stopped must 
be the same, either both high or both low. P%TEST_DATA_H should be driven low to effect 
the clock generator reset. This immediately places the clock generator into NVAX 4>2 and NDAL 
~1. P%TEST_DATA_H is then driven high and clocking of the chip is resumed. On the first 
oscillator cycle following resumption of clocking, the generator will transition into NVAX ~3 and 
begin normal sequencing. PO/oAYSYNC_RESET_L must remain asserted for at least 7 NDAL 
cycles following resumption of clocking. 
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Figure 20-8: Clock Generator Reset Timing 

CPU Phase 
NDAL Phase 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 2 3 4 1 2 3 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 1 I 2 3 

I 

1 

1-\_1-\_1-\_1-\ __________________________________________________________________ __ 

INTERNAl OSC 

I 
\_1-\_1-\_1-\_1-----------------------------------------------------------------------------------

I 
---------_/---\_1---\_1---\_1---\ __ -----,/---\_/---\_1---\_1-

I I 
___________ /---\_1--- \ /--- \_/--- \ _____ ---:-_1---\_/---\_/--- \ 

I I 
1-\_1-\_/-\_/-\_--_/-\ 1-\ 1-\ 1-\ 1-\ /-\ /-\ 1-\ /-\ 1-\ 1-\ /-\ 1-\ 1-\ I-

I ,- - - - - - -I ,- - - - --

P%ASYNC_RESET_L ______________________ ~----------------------------__ ----------__ --------------------

P%SYS_RESET_L 

NDAL Phase 1 

I' I 
------------------------------------------------------------\ 1-------------------------------I I 1 '--I I 
-----------c---SSSSSSSSSSSS---------------------------------//ii/-----------\ I-

I I I 1 I I 
I' I , I I 
I I Setup Assert Hold 

Note 1 Note 2 Note 3 10 nS 10 nS 10 nS Note 4 
min. min. min. 

* CHIP POWER-UP * * CLOCK RESET SEQUENCE * 

- K SEC%OSCl H is the internal master clock produced from either the P%OSC_H and 
P%OSC L inputs, or the P%OSC !lel Band P%OSC !l.'C2 B inputs. P%OSC DS'!l' B 
is us;d to select the clock ;our~e as described in this clock spe~ific~tion. 

- S indicates a static (non-changing) NDAL 9> 1. 

Timing Notes: 
1. EeL pin inputs P%OSC_H and P%OSC_L must be used to supply clocks to chip prior 

to and during power-up. Inputs P%OSC !l.'Cl B and P%OSC !I.'C2 H must be held low in order to 
prevent latch-up. - - - -

2. Switch to test clocks P%OSC_'!l'C2_B and P%OSC_'!l'C2_B. Start measure out lpat on chip tester. 

3. Clocks restarted to restore internal chip signals prior to clock-reset sequence. 

4. P%ASYNC RESE'!l' L must remain asserted for a minimum of 7 NDAL cycles 
followi;g restart of clocks. 

20.3.4.3 . Interrupt, Error, and Test Pin Timing 

P%DISABLE_OUT_L and P%TCK_H are an asynchronous inputs. 

P%TEMP _H is an asynchronous output. 

When P%PP _CMD_H<2:O> selects ~2 on P%PP _DATA_H<II> (see Chapter 19) then the output 
is asynchronous. 

The timing for the interrupt, parallel port, serial port, and boundary scan, and error pins is 
shown in Table 20-15. 
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Table 20-15: Interrupt, Test, and Boundary Scan Pin ~C timing specs 

Input Pin 

P%PWRFL_L 

P1oHALT_L 

P%B_ERR_L 

P%INT_TIM_L 
P%S_ERR_L 

P%TEST_DATA_H 

P%TEST_STROBE_H 

Output Pin 

3.0 nB to JW1cPBI41_IN_B R 

3.0 nB to P%PBI41_IN_B R 

3.0 ns to P1cPBI41_IN_H R 

3.0 ns to P%PBI41_IN_B R 
3.0 ns to P%PBI41_IN_H R 

1 phase to Po/cPBI41_lN_H R 

1 phase to P%PBI41_lN_H R 

1 phase to P%PBI41_IN_H R 

3.0 nB to P%TCK 

3.0 ne to P%TCK 

Output Valid 

P%TCK R + 10.0 ns 

Bold Time 

PtfcPBI41_IN_H R + 0.0 nB 

P%PBI41_lN_H R + 0.0 ns 

PtfcPBI41_lN_H R + 0.0 ns 

PtfcPBI41_lN_H R + 0.0 ns 

P%PBI41_IN_H R + 0.0 ns 

P%PBI41_lN_H R + 1 phase 

P%PBI41_IN_H R + 1 phase 

P%TCK F + 3.0 ns 

P%TCK F + 3.0 ne 

lR means the rising edge of the clock is used; F means the falling edge of the clock is used. 
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20.4 Revision History 

Table 20-16: Revision History 

I 

Who When Description of clumge 

Rebecca Stamm S-Dec-1991 Revision 1.2, COlTect power supply numbers, leakage 
numbers, AC conditions of test 

Rebecca Stamm 9-0ct-1991 Revision 1.1, update power numbers and AC test 
conditions 

John F. Brown SO-Aug-1991 Revision 1.0, first edition released 

John F. Brown 20-Jun-1991 Revision 0.1, first edition for review 

Mike Uhler lS-Feb-1991 Revision 0.0, add template 
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Appendix A 

Processor Register Definitions 

This appendix contains the SDL (Structure Definition Language) definitions for the ~"'VAX pro
cessor registers. These definitions are used by chip verification code, and it is strongly recom
mended that soft\vare groups use the same definitions to minimize errors in the generating new 
defini tions. 

NOTE 

Tne file shown below is maintained by the ~V:4.X CPU chip design group and is con
stantly being updated as changes are made to the design. It is included here simply 
as a means to document processor register definitions used in examples throughout 
this specification. The latest machine-readable version of this file should always be 
obtained from the NVAX CPU chip design group. 

module SPRl9DEF; 

{. Nvax - Specific Processor Register Definitions 
{* 
{* 
{* To convert this file to a macro library, do the following: 
{* 
{* SOL/LANGUAGE-MACRO/COPYRIGHT/VMS DEVELOPMENT/LIST PRl9DEF 
{* LIBRARY/CREATE/MACRO/SQUEEZE PRl9DEF PRl9DEF 
{*-

constant RE\~SION equals 30 prefix PRl9$; /* Revision number of this file 

1* In the definitions below, registers are annotated with one of the following 
1* Symbols: 
1* 
1* RW - The register may be read and written 
1* RO - The register may only be read 
1* WO - The register may only be written 
1* 
1* For RO and WO registers, all bits and fields within the register are also 
1* read-only or write-only. For RH registers, each bit or field within 
1* the register is annotated with one of the following: 
1* 
/* RW - The bit/field may be read and written 
/* RO - The bit/field may be read; writes are ignored _ 
/* wo - The bit/field may be written; reads return an UNPREDICTABLE result. 
/* Wz - The bit/field may be written; reads return a 0 
/* WC - The bit/field may be read; writes cause state to clear 
/* RC - The bit/field may be read, which also causes state to clear; writes are ignored 
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aggregate PR19DEF union prefix PR19; 

/* Architecturally-defined registers which have different characteristics 
/* on this CPuo 

constant TODR equals %xlB tag $; /* Time Of Year Register (RW) 

constant MCESR equals %%26 tag $; /* Machine check error register (WO) 

cons~ant SAVPC equals %%2A tag $; /* Console saved PC (RO) 

constan~ SAoV?SL equals %x2B tag $; /* Console saved PSL (RO) 
PRl9SAV?5L_B!TS structure fill prefix SAVPSL$; 

PS~ LO bitfield lenath 8 mask; /- Saved PSL bits <7:0> 
lir~TCODE ~i~!ield l;ngth 6 mask; /* Halt code containing one of the following values 

cons~an~ ~~~_K~TP!N equals %%2; 1* HAL!_L pin asserted 
constant ~T_?WROP equals %x3; /* Initial powerup 
ccnstant ~T_!~~STK equals %x4; /* Interrupt stack not valie 
c~ns~ar.~ r~: DOU:~E equals %x:; /* Mac~ine cheer. =~rin; exception processing 
c~nstant nA!::H~:!NS equals %x6; /* Halt instruction in kernel mode 
c=nstan~ ~~r_:~VEC e~~als %xi; /- ::lega1 5=3 vector (b!ts<l:O>-ll; 
::=nstr.~ E..:.~r_'i';,=so\l~: eq:.:als %x8; /* ;;-:5 S:B vector (bi~s<:: 0>-:0) 
::::.!:':c:::, ::_:'':'':_:?!''::: Q~;.a~s %L;';' /7 =:-:!~ on i=;:._:::'1.:~': s~a:k 

= =·=.s':. &'::::. F..A::=_:~O eq,",a.~s %zlC'; /* ~~';/TNV c.~=ing machine ehe:k ~:-oeessing 
::::.s-:.a::.-: ::.;...:::_:!:: _::-:2.:5 %z:!; /.,. A~-/:l:\" c:~:=:!.::.; p:s:-:-.. ~ ;=C:fiSS!!'l'; 
:::::s":.a::o: ::.;...:..:_:::: .. ;-':'2.:'5 %z.:~; /., l-:&:r.:":le :he:!: :i::.=:'::;- : .. a.:::':':: .. ~:::.=k p=o:ess!.::.g 
::::s':.c:: F";''':':_:~3 Eq-~a:s J!z:~; /? !-!&::!':lw ·:ne:k :-==!.::; ::~::-: ;==:.ss:'::; 
::ns-:a::.-: ::_:..:.: :E PE~ ::: e~a.;,.s %j;:i'; /+ PS:<:€:2~>-::: :::.:r:'n; ::'nter:.:~-: cr ex::ep~!cn 
::=:-_~-='3.::.': =:.----:--:e----.~ e;--.:a:s ~::.:;._; l· ?S:.:<:€::.;>-:.:C ::..;=!.::.;- !.::~ ... ==.;~~ ___ j:CQ~':!==' 
::::.s~a::.~ ~:~~:-:!-;s:-::~ _q~a:s %z::; j' :S~<:€::~>-::: :~=~~: !~~£==~;~ __ ~:_?':.!=~ 
::::'S":.:::'-: ::;.:.:':?z:~:S:_:c:. e~.;als %'z::-; /-r PS:~<:ZE ::.;>-::: :"".:~:'::g __ _ 
::::s~a::-: ::;':'=_?~:_:E:_:::' £::-:.:=.~s %:::.:~; I'" ?S:..<:::: ::.;>-:..::. ::.:.=:..::; __ _ 
::::.s":.£:.":. S;.:.=_~:_=S:_::: e;~a:s %~:=; /Y :S~<:€::4>-::: :~=!~; : __ 

:::-~-;..:..:: =~':.!~£:~ :£::::.:: : ==s~; , .. :::~c.:!: sA .... :,;:. ~! - :.. 
:~:.:...:!.:: =!":.=~_:: :,-=:;-::::. 1 mask; 
=~ __ ~_ ;!~!~_:: :_~=~:. :6 =~S~; 

c::':' :?~:~S:;''':.?S:':_=::S; 

co~s-:~r.t IO?ZSET.equals %x37 tag $; /* I/O system reset register CWO) 

/* Per!o:mar.ee ~;nitoring enable (RW) 

c~ns~an-: S:: eq~als %x3E tag S; /w System ider.tification register (RO) 
PR~95:D_B!TS structure fill prefix SIDS; 

UCODE REV bitfiele length 8 mask; /* Microcode (chip) revision number 
NONSTANOA?~ PATCE bi~field length 1 mask; /* PCS loadee with a non-standard patch 
PATCH REV bItfield length 5 mask; /* Patch revision number 
F!LL I bit!ield length 10 fill tag S$; 
TY?E-bitfleld length 8 mask; /* CPU type code (19 decimal for NVAX) 

ene PR~9SID_BITS; 
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1* System-level required registers. 
1* These registers are for testability and diagnostics use only. 
1* They should not be referenced in normal operation. 

constant IAK14 equals %x40 tag $; 

constant IAK1S equals %x41 tag $; 

constant IAK16 equals %x42 tag $; 

constant IAK17 equals %x43 tag $; 

1* Level 14 interrupt acknowledge (RO) 

1* Level lS interrupt acknowledge (RO) 

1* Level 16 interrupt acknowledge (RO) 

1* Level 17 interrupt acknowledge (RO) 

P~l~ZAY. v~CTOR structure fill prefix IAKS; 1* Vector returned in response to IAY.lx read 
!?~17 bi~=ield length 1 mask; 1* Force IPL 17, independent of actual level 
PR bitfield length 1 mask; 1* Passive release 
S==_O==S~: bitfield length 14 mask; /* LW offset in SeE of interrupt vector 
F:~~_l bit!ield length 16 fill tag S$; 

end ?R:9!A¥._\~=TOR; 

DIGITAL CONFIDENTIAL Processor Register Definitions A-3 



NVAX CPU 'Chip Functional Specification, Revision 1.0, February 1991 

1* Ebox registers. 

1* Ebox register definition 

constant INTSYS equals %x7A tag $; 1* Interrupt system status register (RW) 
PR19INTSYS BITS structure fill prefix INTSYS$: 

ICCS6 bitfiela length 1 mask; 1* ICCS<6> (RO) 
S!SR bitfiela length 15 mask; 1* SISR<15:1> (RO) 
!NT_ID bit!ield length 5 mask; 1* ID of highest penaing interrupt (RO) 

cons~ant I~~_ID_HALT equals %x1=: 1* Halt pin 
constant IN! ID PWRFL eauals ~xl~; 1* Power fail 
constant !NT-ID-H ERR e~als ~xlD; 1* Hard error 
constant INT:ID:IIIT_TIM-equals ~xlC: 1* Interval timer 
constant IN! !D PMON eauals %x1:; 1* Performance monitor 
constar..t Il,,:r-:n-s ERR ~auals -b~lJo_; /"" Soft error 
constant INT-ID-IRQ3 e~als %x17: 1* I~~ ~I aevice interrupt 
constant IUT-ID-IRQ2 eq. .. als %x16; I'" IF:' :'6 aei7iee ir.terrupt 
:~:lst:.a:.-:. !l:T-!D-ZRQl equals %z!5; /.- _=_ "!~ :i~,,:!.=e in-:.e::t:p: 
e:mstant :l~!-:D-!?.QO eq-.lals %x14; I'" :F:' ... o.e,ice ir.terrupt 
eor.star..t IN:-::;-S!S?l5 eq'.lals %xC'=: /"" S!SR<:S> 
constant !1~':-::l:-S:SRl4 equals %xC'~: /.., S:SR<H> 
=:·~s-:.a::':. :!~:-_::_S:S?':3 eq'.:!.ls .XC~; 17 S:S?~<:3> 
c~~s-:.~t. ::':-:_::_S:S?':':; .~.le.ls %x:·:; /9 S:.5?~<:2> 

:·~::s,:a.::':. !!.~: =:: S:S?~l 4iq''':e.:s "s:..::'::: /9 S:.5~<::> 
::::s":.::::-: :::-::=:.=:.5:':CI _:;-'':&:5 %:-::.;..: S:.s?~<:~> 
:::".s":.a::~ :::-:_::_5:5? .. ;. e;--:.a:s Itx':'~; I~ ::S:.<9> 
=:::S-:"3.:::: :!:::~::-_S:S~e _;-':2.:5 %zC'E: , .. E:S?~<E.> 

::::05";:':':.-: :!:-:_=_S:S: .. - -=;-.:.a:s ~=:-; .: • .:::?~<-> 

::::S-:'a:':t :::-:_::_S:S?6 -;-';£':$ ~x:'£: S:S?<6> 
::::s-;.r..~ ::::_::'_::::": .;-..:=.:s ~z·:·:; 5:.5? .. <:> 
::::s-;.a.::::. _ ... __ --_.:-.:~. 6;-":'=':5 ~j;: . .;; =:.s?~<.;> 

::::S-:'a:':t :r,:_::_S:S?.3 _;-,;a.:'s ~x:::: I~ S:S?<:3> 
:::::so:a::-: ::::_::_::::: -=;-.:.a:s ~=:.:: S:S?<:> 
==::.s-:.a=:.":. _ .... __ --_~-.::"'- .. ~.:.:.:s %z::; / .. $:S:? .. <:> 
::::5':.:::::' :::-:_::_:::_:::-: .. ;::.~:s %::::.; /'" ::: ::.-:..==::;':. 

=::::_: =:.~=:..:::. :6~9''::: 3 !!:: -:.a; 5;; 
::~_::~_?ZS~: ~it=i.lo l.ngth : mask; /9 :::-:..~a: t~~&: ir.terru?~ rese-:. (WC) 
!'::.:._= ri-:.!ie1o length 2 !111 tag Ss; 
S_~?2~?~SET bi~!iela lL~;th 1 mask; /* So!t error interrupt reset (We) 
F!·:~:'_?ZS~'! b;,t!ield leng':.h 1 mask; I· Pe:!o::m&nee monitoring int.rr .. p-c res.t (v~C) 

E_~?~_?ZS~: :!t!i.l: l~g':.= : :ask: 1 9 ~a=: &=r~r !r.':._r~~~t reset (v~l 

Ph~~ RESET bitfield length 1 mask: 1* Power fail interrupt reset (WC) 
HALT_~SET bitfiela length 1 mask: 1* Halt pin interrupt reset (WC) 

ena PR19INTSYS_BITS: 
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/* Ebox registers, continued. 

constant PMFCNT equals %x7B tag $; 1* Perfor.mance monitoring facility count register (RW) 
PR19PMFCNT BITS structure fill prefix PMFCNT$: 

PMeTRO bitfield length 16 mask; /'* PMCTRO word 
PMCTRl bitfield length 16 mask; /'* PMCTRl word 

end PR19PMFCNT_BITS; 

constant PcseR equals %x7C tag $; /'* Patchable control store control register (RW) 
PR19PCSCR BITS structure fill prefix PCSCR$; 
FI~L 1 bTtfield length e fill tag $S; 

PA? PORT-DIS bitfield length 1 mask: /* Disable parallel port control of scan chain (RW) 
peS:EN~ bitfield length 1 mask; /"" Enable use of patchable control store (RWl 
peS_WRITE bitfield length 1 mask; /"" Write scan chair. to patchable control store (WO) 
Rr.."L_SE!:T bitfield length 1 mask; /* Shift read-write later. scan ::hain by one bit (WO) 
D~.TA bi-:field lengtr. 1 mask; /'" Data to be shifted into the pes scan chain (:<:rn 
:::':_2 l:·!-:!ield length 10 fil: -::.ag SS; 
!;~:~S:Al\,":)A?Z_PATCE b!-:!ield ler:.T-t. ::. mask; /* pes loaded with a non-standard pa-:::h (R;;) 
F;'.:'=-::_PZY b1tfi.10 lengtr. 5 :ask; I"" Patch re ..... ision number (RN) 
:::"~_3 }:,:::!!£:d lE!'l;-:h 3 !!:: ~ag $$; 

er.d rR:g?=S=?~=:~S; 

?~l~~=?~=::S S~=~=~~=E !~:: p:c=!~ ~:?$; 
-.~::O? .. _:?~S~!~ l:~':.~:'_:~ :.::..;-:::. :. :r4;S):: lor ·~~e:':.:-r u.~!-; ;=.Sc:~:: (~i\) 

=:.:):_:::.:;,-=:..~ :::!.'~=io&::' :e~;-:.:: : :--.2.51-:; /Y ===.~: E.:la!:~.:' {R't·~~ 
:=~Z:::-:_U':: =:. -=:!:.. .. :: :'c::;-:':: : =:as}:; / or 56:.:-:' c:C.=:4a.: -:.:'::-... :a5. ::: S3 s-;a.:: ":.~:r:e:::-; -:.:':r==:- (?,:t-~~ 

=E:·X_S:~_=!:;'...s.:_~:;...::.! :t!.-:.:!..:: :.::.;-:.:: : :.ask; /9 =:·:·z s':.!.;. "' c::l·:':'::ic:la: b::'Pass &:lab:'e (?,.:;':) 

::: .. Z:::-:_:::::-?..;z:: =:..-:.::.. .. :: : .. ::.;-:.:: : ::.as!:; / ... S~ s'::.:: -:.!.:r...:':.:,: :::::.==_: \~::; 

:-=·:=::::"=_:~S= =:'::=:'.c:=' :. .. ~;--:::. : = .. ~s::'; /'" 5.::".:-: ~es':. Ir.o:. !er S:: s-:.a.:': ":.:.r,eo".:~ (? .. i:) 

::!~!::::.:_=::=:: :::.-;=:. ... :=. :s::::!: : = .. ~~k; 1
9 :l::k S~ -:.!.:r .... :::-: {? .. v-i} 

:::S_:::i:: =':::.!i.e.:: ~s::;-:.:' : :~S}:; / .. :~:: ==:S ~:::;:a:Q=::'£: :.:: CA':..:::a: ::;!: (?"l{} 
=:~~_: =~~=~c:: :~~=~:. 5 !~:: ':.a; 5!; 
==::r:_=~~:_!:::;'''::''E ::~-:=:..c:= :s::,;-":.!: : =.asr.: /", ~a;:6 ":.es':. == :;··:x (R~-;) 

=:~:_: =:..":.=!.~:: :~~;":.:: : !~:: '::; S;; 
:!~~ _~:~;.-=:.:: =,:! . .':::,i.f::=' :6::';-:':: : :!i.as!:.; .I" :&==:-::.2.::.:. ::L:::'!~:=!.::; !a.:!.:'!. -:::- ,=.a= 1. {?~i;.! 

:!·Z_::·.::;:.: ;::'t::.!.;::c. ;;.;:::g-::.:: : ::t>asr.; /" :~rf:=~cc Irloni-:~ring fa:!:"i-:y mas~er se:";::t (?vO 
cons~ant ?~~~ !BOX equals %bOO; /'" Select !box 
constar.~ PMUX-~BOX equals %bOl; /* Selec~ ~ox 
constar.t PMUi:-l-SOX equals %blO; /+ Select Moox 
constan~ P~~:CBOX equals %bll; /* Select ebox 

Pl~_~; bi~::ielc length 3 mask: /* Perfor.mance monitoring facility Ebox mux selec~ (RW) 
cons~ant EMUX_S3_STALL equals %bOOO; /* Measure S3 stall against total cycles 
cons-:ant EMUX_E.~_PA_STALL equals %b001: /* Measure EM+PA queue stall against total cycles 
cons~ant EMUX_CPI equals %b010; /'" Measure instructions retired against to~al cycles 
cons~ant EMUX STALL equals %bOll: /* Measure total stalls against total cycles 
constant EMUX-S3 STALL PCT equals %blOO: /* Measure S3 stall against total stalls 
constant EMUX:EY.:PA_STALL_PCT equals %blOl: /* Measure EM+PA queue stall against total stalls 
constant EMUX_OWORD equals %blll: /* Count microword increments 

PMF LFSR bitfield length 1 mask: /* Perfor.mance monitoring facility Wbus LFSR enable (RW) 
FILL 3 bitfield length e fill tag $$: 
PMF_CLEAR bi~field length 1 mask: /'* Clear performance monitoring hardware counters (WO) 

end PR19ECP~BITS: 
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/* Mbox TB registers. 
/* These registers are for testability and diagnostics use only. 
/* They should not be referenced in normal operation. 

constant MTBTAG equals %x7E tag $; 1* Mbox TB tag fill (WO) 
P~19MTBTAG B!TS structure fill prefix M7BTAG$; 

TP bitfield length 1 mask; /* Tag parity bit 
F!LL 1 bitfield length 6 fill tag SS; 
VPN bit field length 23 mask; /* Virtual page number of address (VA<31:9» 

end PR19MTBTAG_BITS; 

cons~ant MTBPTE equals %x7F tag $; 1* Mbox T.B PTE fill (wv) 
PR19MTBPTE BITS struc~ure fill prefix M!$PTES; /~ Format is normal PTE format, except for PTE parity bit 

PFN bi~fi;ld length Z3 mask; /'* Page frame number (PA<31:9» 
F:~l_: bitfield length 1 fill tag 5S; 
P bit!ielc length 1 mask; /* PTE parity 
F:~~_: bi~=ielc length 1 !ill tag S$; 
M :!-=.!'i£:c len~!: 1 mask; /"It M~ci!fy :bit. 
PR~'!' bi~!iel:: le:lgt.h : mask; /'* Pro~e::tion field 
V :b:!.~!ield le. .. gth 1 mask; /* PTE va:id bit 

end ~R19~~S?~_E:=S; 
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/* Vector architecture registers 

constant VPSR equals %x90 tag $; 1* Vector processor status register (RW) 
PR19VPSR_BITS structure fill prefix VPSR$; 

VEN bit field length 1 mask; 1* Vector processor enabled (RW) 
RET bitfield length 1 mask; 1* Vector processor state reset (WO) 
FILL 1 bitfield length 5 fill tag $$; 
AEX bit!ield length 1 mask; /* Vector arithmetic exception (WC) 
FILL_2 bitfield length 16 fill tag SS; 
I~ bit field length 1 mask; 1* ~plementation-speeific hardware error (WC) 
F:LL_3 bit!ield length 6 fill tag SS; 
BSY J::.it!ielc leng":!: :. mask; lYe Vector processor busy eRO) 

end ?R19~~SR_S!TS; 

constant .';;',.ER equals ~x9l tag $; !* Vector aritr.metic exception register (RO) 
?R19Vp~, BITS st~~cture fill prefix: V~R$; 
F_~r.)F titfield lengtt :. mask; 1* Floating ~~derflow 

.. -'~" .. b':'::!i.ld. l.a:lg-:.h . mask; /* :lo2."t:!.r.; C:iv!'Qe-b:z"-z~=c 

=_~:'PR b!:!!cl: :.n~~~ _ ~ask; /7 =loa~!r.; reserved o~=L~d 
:_O\~~ bi~!~&:c l_~g~h 1 mask; /. :loa~ing ove:!l~w 

b!t!ield :en;:r. . fill tag 5$; 
:_:~1>7:' =:::.::'0£::' : .. ::';-:'!-'. .. ruask; /. !=~::.e;e: ove:!!ow 
=:~~_: =!~=!~:: :~~;~r. :0 !~:~ ~a; Ss: 
?Z'~:S=~~_l~':;'..s:~ =:'-;!:"i::c 1&::;-:.:: 1£ :rl.ask; /"" \'!'e:O:C:- ~eS':.!:la~':o:: :~;!.s:.£= :nask 

e::~ :?_::"::;'~,"-::::E; 

......... :,.-: -:- :- . .. _-- --: -, 
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/* Cbox registers. 

constant CCTL equals %xAO tag $; 1* Cbox control register (RN) 
PR19CCTL_B!TS structure fill prefix CCTL$; 

ENABLE bitfield length 1 mask: /* Enable Bcache (RW) 
TAG_SPEED bitfield length 1 mask; /* Tag RAM speed (RW) 

constant TAG_3_CYCLES equals 0; /* Select tag RAM speed: 3-cycle read rep/3-cycle write rep 
constant TAG 4 CYCLES eauals 1: /* Select tag RAM speed: 4-cycle read rep/4-cycle write rep 

DATA_SPEED bitfield length i mask: /* Data RAM speed (RW) 
constant DATA_:_CYC-~S equals 0: /* Select data RAM speed: 2-cycle read rep/3-eycle write rep 
co~stant DATA_3_CYCLES equals 1: /* Select aata RAM speed: 3-cyele reaa rep/4-cycle write rep 
eo~stant DATA , CYC~S eeuals:; /* Select aata RAM speed: 4-eycle read rep/5-cycle write rep 

S=ZE bitfield length 2 mask; /* Beaehe size eRW) 
co~stant S~ZE :2SKB eaua.ls 0: /* S .. lect 128l".B Beaehe 
co~stant S:Z£:256KS e~als 1; /* Select 2S6KE Bcaehe 
co~sta~t S:ZE_512KB e~~als 2: /* Select 512F~ Beache 
cc·~stant S::::E_2*3 egwals 3; /"" Select 2M3 Beache 

=OR==:_~:: ::,~-==icl: le:l;-:'!i. :. mask; /"11: ForCE =:a.ehQ hit (RW) 
::S;'-=!'£_~.RC·?.s bitfielC: len;'th 1 mask: /* ~isu·le Beach .. ECC errors (RW) 
SX_=::: ::itfiel: len;t!l 1 r,ask: / ... £nable use of software E~~ (Rl-v) 
::::.Z::::_~S': bio:!!.&:c l_r.;:.:: : mask; /- !.=.a:l .. tes't. e! :b:x = .. 2.:: -:.!mect:~ :;".!:l':.e:s (:~v:} 

:::s;.:::.::_=;..::: ::itfiel: le~r-h :. xr.uk: /y Disa=le "'rite pa:kin; (RW) 
=!·:_;"::£SS_:'Y:?~ l::!..t!!.ele le:l;~h :3 ::lask; /'" ?r!or:m&nce mo~it~r:!..n~ access ':1"'PQ (Riil 

=:::.s-:z.::-: :!·:; .. :_=~E .. ~-=.:.:s C'; /7: C:.h.=c:lCY 2.:=.5.5 c! .!':.n.= ~~-pe 
::::.s-:.r.-: ?!-j..:_=:.!!_?.:;;.:: e.q:;a!s 1; /." ::=.e= .. :::::-" &:=655 '!e: ?.!.;..:: 
::::.s-;a::-:. :::":'.:_:::':'_:'?':::;''':: e;-..;:.~s:~ /- ::::6=-=::':::- 2.::.5S !:: :.?z;...:. 
::::s':.r.-: :!~:;. .. :_:::: ,;-.:.a.:s 4: I Y c:-: aceess :! a::::' -:::7'= 
:::-.. s,,:a::-: ::·~:_:=-:-_:?L:''':' e=-';!.~S _, =?~ a::.ss ::= ::~~.: 
::::S':a!::' ::~:;. ... :_==::_:.?z;.~ £;--:'20:5 t.; /-- C::'- a:e.ss !:: ~?...!:A: 
::~s':~=::; =l~:":'_:_=:::_:'?~:'~ eq-.:.a.:s -;; /- Crt! a:cess :0: C?~.=t 

:~" .. _~::_=~:::: ::':.':.::"~:: :.::;--::: : !:~sk; j. :'£=!:~~=_ :::::.':-:.::!::; ...... - '":.~",? {?:;";; 
::::s:.a::-:. :~~:_E:: .~.:.::.:s C'; ! ... E':-:. 
::::.s-:.r.~ =!~:':_F.::_:'t-::~ 6~":!.:S:; /'W E::: :::. .~ .. --:: .. :. =:":::: 
::::~-:.r.,: ?::':_E:':_-~·;':':~ .. ~~a:"s:: /'91: Ei-:. C:l va:~: ~l;·:.k 

::::.s-:.c-; =:~':':_!·::SS_:~·::~:' fi~.:.a:'.s::: / .. ! .. ::'ss ::: 0.,.-::.= =,:o:k <:a-";5.5 ft·=:'::' .. =·a.::-:"· 
=:'~~_!'=.;''':''_:::?''? ... =~-:.!:. .. ::: : ... ~::::: : =.as}:; i'ft =e,==es : ;'E.:!-::; e=:~r en -:.h .. !~.;..:., _ ......... ~_ ~-":-;'~:.!.== -:':2.::'S2.:-:! .. ::: 

:::.:._: :::'':.!~c:,e. len;o:r. :"3 :!ll ~a9 5$; 
S~ =:=~ bi~!ielc len~~h 1 ~asy.: /* £nter s:ftw~re error ~rL~s!~!Qn moae (RW) 
Ht(!:':'1f. ritfielc length 1 mask; /'" Error transition moae enterea aue to error (i':~) 

end PRl9C=~_E:TS; 

cons~ant BCDECC equals %~ tag $; /* Beache data ram ECC (WO) 
:?R19BCDECC_EITS s~ructure fill prefix BCDECC$: 

::!.L_l bit!ield length 6 fill tag S$: 
ECCLC bitfiela length 4 mask: /* ECC cheek bits <3:0> 

:ILL_2 bi~field length 12 fill tag SS: 
ECCH! bitfield length 4 mask; /* ECC check bits <7:4> 
FILL 3 bitfielC: leng~h 6 fill tag SS; 

end PR19BCDECC_BITS: 
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/* Cbox registers, continued 

constant BCETSTS equals %xA3 tag $; /* Bcache error tag status (RW) 
PR19BCETSTS BITS structure fill prefix BCETSTS$; 

LOCK bitfield length 1 mask; /* Tag store registers are locked due to an error (WC) 
CORR bitfield length 1 mask: /* Correctable error occurred (WC) 
UNCORR bitfield length 1 mask; /* Uncorrectable error occurred (WC) 
BAD_ADDR bitfield length 1 mask; /* Addressing error occurred (WC) 
LOST ERR bitfield length 1 mask: /* Error occured while register was locked (we) 
TS_CMD bit!ield length 5 mask; /* Tag store command which caused error (RO) 

const~~t ~ DREAD equals %bOOlll: 1* Command was D-stream tag lookup 
const~~t ~-!~ eouals %b0001~; 1* Command was I-stream tag look~p 
constant CMD:O~ e~als %b00010; 1* Command was OREAD tag lookup for write or read lock 
constant eM!:: WUlu.OCK eouals %b0100D; /* Command was write unlock tag lookup (done only uncier E:M) 
consta::t o=~? !~-Ii'"J...J.. e~uals %bOllOl; /* Command was inval tag lookup for l~;"::' IiP..EAD or !P'=:;'.Ii 
consta::t o-:=:c::ar;;.:. equals %b01001; /Y: Command was :"nval tag lookup fer 1~!)A:.. O?z;.:J or v-<?':'!::: 
consta::t CMD_:?P __ Ii:::;';;:':"OC equals %b01C1D; /* Command was tag loor-up to::: :?R deallocate 

~!t!ield lengt~ :: !!ll tag 55; 
.:':0. ;::: .. 19S=:::'S:S_E:=S; 

/"" E-c:a::he errc::: tag (RO) 
:? .. :;:::E=';'~ ::-::S s-;:-,..;c::.~rc .:!.:: ;=_!~>: =~=;. .. ~~; 
=:~~_: =~~=~~:: :~~~r. ~ !!:: ~a; SS; 

".-;''':':: :~":=i~:':' :e~;--:.:: : :.ask; ;~ oo;.':'a::': ::.-; 
::.:::~: :::.::.::"-=:"::' :c::;--:,:-.. : ::-.ask; 
~== =~~=~~:d :E~==~ 6 ~ask; 
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/* Cbox registers, continued 

constant BCEDSTS equals %xA6 tag $; /* Bcache error data status (aw) 
PRl9BCEDSTS BITS struct~re fill prefix BCEDSTS$; 

LOCK bitfield length 1 mask; /* Data RAM registers are locked due to an error (WC) 
CORR bitfield length 1 mask; /* Correctable ECC error occurred (WC) 
ONCORR bitfield length 1 mask; /* Oncorrectable ECC error occurred (WC) 
BAD_ADDR bitfield length 1 mask; /* AddreSSing error oceurred (WC) 
~OS!_ERR bitfield length 1 mask; /* Error occurred While register was loeked (w~) 

F::;:'!,_:' bi~field leng~h :3 fill tag SS; 
DF~CMD bi~fielc length 4 mask; /* Data RAM command which ea~sed error (RO) 

CO~StL~t CMD D~ equals %bOlll; /* Comm&nd was D-stream data lookup 
constant CMD:I?~ equals %bOOll; /* Command was I-stream data lookup 
const~t ~m_W=ACK e~~als %b0100; /* Command was writeback data lookup 
cc~stant om ?,MW eauals %b0010; /* Command was read-mocify-write data lookup 

F::;:'!,_: bitfield length "20 fill tag 55; 
en: P~19B=EDS=S_=:TS; 

:: .. :'9::~'=:=:_=:=S s'::-~=':~=. ~!.:: ::'r .. !!z ==~~==S; 
=:~~_: b~~!i_:c :e:~h 6 !~~: ~a~ S$; 

E==:': =~ -:!i .. :.::. :.=.~r.. .; :ask; :=c::!lw :'a.~a ~CC s~"=.:'rom .. ::,,':'5 <~: c> 
=:~:._: =,:. -:.!!. .. :c :£..~=-:. :: 

~:=~: =~~=~&:: :E~~r. ~ ~~sk; 

2.;- !s; 
:=..:!l6 :'a::.a ~:: 
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/* Cbox registers, continued 

cons~ant ~FADR equals %xAB tag $: /* Fill error address (RO) 

constant CEFSTS equals %xAC tag $: /* Fill error status (RW) 
PR19CEFSTS BITS structure fill pre~ix CEFSTS$: 

RDLK bitfield length 1 mask: 1* Error occurred during a read lock (WC) 
LOCr. bi~field length 1 mask: /* CEFSTS & CEFADR registers are locked due to an error (We) 
TIMEOUT bitfield length 1 mask: 1* Fill failed due to transaction timeout (WC) 
?DE b!.~!ield length 1 mask; /'* Fill failed due to Read Data Error (WC) 
LOST ~?~, bitfield length 1 mask: 1* Error occurred while register was locked (WC) 
ZDO ;itfield length 1 mask: I'" NIl;':' id<O> for failed read (R:l) 
IPD.D bitfield length 1 mask: 1* Error occured during an I?EAtl (RO) 
O?~ Litfield len~h 1 mask: I'" Error occurred during an O?~ (RO) 
w"?..!':E b!.tfield len~h 1 mask: /'" Error occurred dur!.ng a write (RO) 
':'::_1-130:;: bitfield length 1 mask; /'" Da':.a was destinec for ':.he Mbox (RO) 
R:? bitfield length _ ~~sk; /"'?~ invalidate was pending (RO) 
::P =itfield length :. ~sk; 1'* O~ inva:idate ~as pending (RO) 
::~ ::!.tfie:'c length 1 mask; Iy Data was not to be va:'idate: when fill com;:<i.eted (RO) 
?.:;:.?._:::._:;:!~ t!.t!ield length 1 mask: /'* Last f1:1 f::= reac lock receive: (R~l 

?~·::_;::":"_DO!:E: ~!-;:iclc len;-:.::' 1 mask; /~ Aeques~e= :!.:: q':.l2:W:'!"= was re:.s!vec !C~ -:.~is r.~d. 
:::::::: =:'~=ic::"Q :.::;-:.:' ~ ::las}:: /<ft !1~&= e! requ.S':.~:' ~i; :! !!.:: =c::.a:"'V": (? .. ~; 

=-::.:._: :::::i.;::c. lc!'l;~!: .: =~:: ~ag SS; 
::!:=::.:?~=:-=::_=:~:. !:.!-:.!:. .. :c. :...::..;-:.:: : raask; j?: ?=.~ =: :?.:?~ ... -a.s =~:c:.'";.!' .. : !=::. -:h. :;:;...:. "-"'!:c::' =!.::_:a.~ .... __ ".7a:!.c (~.;:) 

=-:~:_: =!~!~_:: :~~=~~ :C !~:: ~a; S~; 
i:::: :? .. :~=~:S:S_::=S; 
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1* Cbox registers, continued 

constant NESTS equals %xAE tag $; 1* NDAL error status CRW) 
PR19NESTS BITS structure fill prefix NESTS$; 

NOACK bitfield length 1 mask: 1* OUtgoing command was NACKed (WC) 

BADWDATA bitfield length 1 mask: 1* BADWDATA cycle transmitted (WC) 
:LOS'!'_OERR bitfield length 1 mask; 1* OUtgoing error was lost while register was locked (WC) 
PERR bitfield length 1 mask: 1* NDAL parity error detected (We) 
INCON PERR bitfielc leng-:.h 1 mask; 1* Inconsistent parity error (parity error detected on 
~OS!~P£RR bitfield length 1 mask; 1* NDAL parity error detected while register was locked (W=) 

/* ACKee transaction) (WC) 
F:~:_l bit!ield len;th 26 fill tag SS; 

ene PK19NESTS_S=TS; 

ccnstant l'EOADR eg-.:.als %xBO tag $; /* ~~AL error output address (RO) 

constant }~OCMD eg-~als %xB2 tag $; /* h1D~ errcr OUtput command (RO) 
P?~:$th~O~!:'_3:TS s-::uc-:.'c:e !ill pr£!!.x l~~~·=>S; 

a=· :·:::.!i.:'c lEr.~h 'mask; /-- 1m;...:.. e:::r.:n.a.=:: O~ ·:n:::.;cin; .==o~ t=L~sc.=~ion (see below) 
:~ bi t!iele le:::gt:: :: mask; /* ~'"D1.1. :~ on cutgcing error tra:lsactic:l 
:~:._: l:,i-:.!!.ld :'_n;~h 1 ~:'ll -:'2.; S5; 
E!-:~_~!': r'!~=iclc :_~.g:.h S mask: /<fr Sy-:.e .::=.=·: .. s C!". c::::'~;j:!.:l; .. ==:: ,:=c:sa:':.~~n 
=:~~~: ~~-:.=iw:c :.~;~~ :~ =~ll ~a~ S~: 
~E!\ =~':.=iclci :w::;-:.r .. 2 mask; /. ~-e::;':.h :::. ::::.;::"::; .::.:.: ~=2.::52.:':.:':::' (54ft :· .. :0 .. ) 

,. 
~"-'.:"'- .:===: :.a::.a 

.J __ 
C~ .. : ---=_ .. 

/9 
."0_.:0"_ ~-- .. - -:-: 

.. _ .. ~ 
--'''''' . :'.-

cc;::s-:.a::-: !~::!.=, ;:q~a:'s %z=c -=&; S; .'y :=;...:. .. ==== !.-:.;:.:-: ::="2=.: (? .. :: 

:P .. :?:~::!·=_=:=S s-:.:-.::-:.::.=_ ':.1 - .. :;:= ... .:!.z :~:=·=S; ::= ::!-:~:.£:c :...s=:-=- ~ r..ast:; i'ft :=;..:. =o=.a::.~ =s=_:"v .. ~ .::: .==:.: -:.=a.::.sa:-:.:':::. (S~ :'~:"C-W) 
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/* Cbox registers, continued 

/* Encoded NDAL length values 

cons~ant LEN HW equals %bOO prefix NDAL$; 
cons~ant LEN:OW equals %blO prefix NDAL$; 
constant LEN_OW equals %bll prefix NDAL$; 

/* encoded NDAL command values 

/* Length - hexaword 
/* Length - quadword 
/* Length octaword 

constan~ CMD rmp equals %bOOOO prefix NDALS; /* Command - NO? 
constant CMD:W?,,:TE equals %::'0010 prefix NDA!.S; /'" Commanc. - virite 
constan~ ~_~~!SOWN equals %b001~ prefix 1~A!.$; /* Co~nc - Write disown 
constan~ ~ID_!P~ equalS %b0100 prefix ~~ALS; /'" Comm~~c !-read 
cons~ant CMD_DREAD eq'.lals %b010l prefix lI...:>AL$; /'" Command - :C'-read 
cons":ant C!.~ O~.D eouals %b0110 'Orefix 10;':'$; /* Commanc. - Co-read 
=c::.s~a::-:. ::!-=::?.=oE. £qu~ls %b100:' ~:~=!.~:. l\-:,;''':'S; /"tr Co:r.:nan: - R.a.: cia::.: e::o= 
c.~~s-:.a::,: CIv=_v=~ ... :A equals %~:":lC !=,=Q!:!.~ l"~;'':'';; /'" =~!:'.::la.~c - v;=!~Q da-=.a 
::::S-:'=.::::: C!~=_:s..ADr:-DA=A eq-.;a.:s fs;:,:O:: ;-=s!!x :~;'~$; /"" Ce':::::la::=- - :a::' · ... ·::!.":e d.a~a. 

c:.::s":.a:~:: ~'_?':>R:; eq-..la.:"s %~!:OO F·:£!:!.z l~';:'$: 1* C=::.-rj,a~= Rca:' :iao:a =.":.i.::-::' 0 
:o::s-:.an":. :::'=_?":1?~ sqL;als .:;::..~:. F=~=!~ l:=;'~S; ;"" CC:oI:J.a~= ?".a: da-:.a =&~t:..:n 1 
c::ls-:a::-: =.::;_?=.:::..: _;-.:a:"5 %=,:::'0 ::·=£=~z !~;'~S; :==-~::= :<.sa:' ::!.":.!. _s ___ ... :2 
=.::::.s-:.a:::: ::!~=_P~?~ _~.;als %l:::::: P=-£!:"j: :=;'':''S; /or :=,==.:.::~ ?.aa:' :a":.a =£":.:;=. ~ 

DIGITAL CONFIDENTIAL Processor Register Definitions A-13 



NVAX CPU Chip Functional Specification, Revision 1.0, February 1991 

/* Cbox registers, continued 

constant BCTAG equals %x01000000 tag $; /* First of 64K Bcache tag IPRs (RW) 
constant BCTAG_128KB_MAX equals %x010lFFEO tag $; /* Last tag IPR for 128KB Bcache 
constant BCTAG_256KB_MAX equals %x0103FFEO tag $; /* Last tag IPR for 256KB Bcache 
constant BCTAG_S12KB_MAX equals %x0107F:EO tag S; /* Last tag IPR for S12KB Bcache 
constant BCTAG_2MB_~: equals %xOllFFFEO tag $; /* Last tag IPR for 2MB Bcache 

constant IPR_INCR equals %x20 prefix BCTAGS; /* Increment between ~cache tag IPR numbers 
PR19BCTAG_BITS structure fill prefix BCTAGS; 
FILL_~ bitfielcl length 9 fill tag SSi 

VALID ~!t!ield length 1 mask; /* Valid bit eRW) 
Orm-":.D bit!ield 1enr-h ~ mas):; /* OWnership bit (RW) 
ECC ritfield length 6 mask; /* ECC bits (RW) 
TAG bitfield length 15 mask; /* tag data (RW) 

end PR19B:TAG_E!TS; 

co!:.s-:.a:l': BCFLUSH equals %x01400000 tag $; /'" :irs"; c! 64:': :seache tag dea::'ocate !PRs (WO) 
cc!:.s-:.a!:.': BC=:.tiSF._:.2S::=_::;:'.>: eq~als Iu:Cl';:'ITEC ,:ag $; '''' :'ast aea:locC!':.e IPP. fe: ::':SY.E Beach. 
cc-ns':.a!:.t 5:=:':1SF._:56Y~_!-~: e;;,:a18 %xCl';:SITEC ':.ag; /'" :'a8t aeal.:"'c:a':.e :PR fe: 256Y.E Bcache 
c:·::,stant SC=:.tiSF._::ZF''=_~: eq-.!als %zOl-,"7ITEO tag $ :. :'ast c.alloca':e Ii'? fe: 5:'2F'': Bcache 
c~~s~a~~ EC:LUSE_:~~~~_X .q~&ls %x:::=::~O ~ag S; ~ ~as~ eea:l~~a~. ::~ fo= 2~ ~~a=hQ 

eC'!1s-:,a.::~ :::?,,_::='=? ... _~t:!.~s %z: ~ ;·=e.:iz =:=:'::5E:: / .. :::'==_=~E:':-:' :'_::~_L-:' =:a:!lQ d..2.::o:a-:.w =:::? .. :l;:rJ: .. :-s 
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/* Ibox registers. 

constant VMAR equals %xDO tag $; /* VIC memo%1-' adaress register 
PR~9VMAR BITS structure fill prefix VMAR$; 

FILL 1 bitfleld length 2 fill tag $$; 
LW bltfield length 1 mask; /* longword within quadword 
SUB BLOCK bitfield length 2 mask; /* Bubo-block indicator 
ROW-INDEX bitfield length 6 mask: /* cache row index 
ADDR bitfield length 21 mask: /* error address 

end PR19VMAR_BITS: 

constant '~AG equals %~l tag $: /* v~C tag register 
PR19~~AG ===5 str~cture fill prefix \~AG$: 

Y bitfield leng":h "lI'.ask; /'* da't.a valid. l:,~tS 
I:.p b!tfield length" mask: 1'* data parit::' bits 
':? b:!.::'!ielc. lE.r.;th ~ mas;:; /." ~ag ?a=!.':.::~ b.!::. 
:::.:._:. bi~=ic:'c lc!'l;t.h 2 !!.:l _c:.~ $5; /-rr ::nusac 
=A~ t!~=i&:c lEn~~ :: mask; 

£::: ~? .. 19-:.~';'~_3::S; 

b~ts (zero) 

c:::s~a::~ :::SR £;-.:a15 %;C'.3 -:.a; ~: I"':.: :~: ::!'"'::.:.:: !-::.: s-:,a-:.us =-=;is-;.c: \~'t.;; 

F?:9:=S~~_=:=S !:-:=-';:~::.:=" !:.:: ;=c:iz ::S?S; 
~!:.:.-=:.~ !:~-:'=~E::= :a::;-:.::' : =.£S}.:; for ~.-:: .:::a:::~ =~-:. (?~i;) 

~;~~_;~;;~~~::~~;~~t~ ;.a~~;: 
::~?..? .. =!.':.!:'-=:~ :.s.::--.;-":.:: : ::..as}:; 
:::£:::. =:. -;=:..~::. :":::=-::' : ::..as::; 

=!':=~~:= ::==~~ -
is::.=. :F .. :S-:::S?_=:::: 

... =~":.!. ;:=:..~:. £==== '~:: .. :-; 
:a; ~!.=:..':~ .. -===:= {?:: 
::::. --, 

:: .. ::::=:._=::-E S-:':-':':-:"':'=i: ::..:: ;=-=!:..z =:::,.~; 
~:':=:? .. !. 1::.':'::..::: :£::~:: ~ :as~-:; I. ==a::::' :::!s'::-~- =!~S 

=:~~_: =~~!i~:: :e=;~~ : !:..:: -;a; ::; 
! .. ::S::?Z==:-= = :.-:':=-.::=' :-a:-.:-:: .. ::. ::-.. :s!:; ,'" :::.s-:.:=: .. -:! !as,,: ==1.:::::' 
:::':;SF._:P.: bi-:!ield :cr.;-:.:: : Ir~sk; =:-.:,s:_ ==a.::.:h ::':"s-:.c:::", -:a=.:.e 
:!/JSE_CTR l::'::!:'c:Q len;-:.~ :. :.ask; /- =::::s:;' :'=~eh :is-=. a=:: :O~::::'E= 

LOAD H::STO?Y b!";!ielo len;-:.h 1 mask: I" w::!-:e neloi history ':.c a::ra::' 
=::':1.:). bit!ielc lengt.h -: fill tag $5': /"" unusec bits (must Pe zero) 
:s:?-r_;':"GO?":,!:~ :":::.!i&l: lE---:~:: 1': :=ask; /"" =-:a:::::' ~:Q=:'=~!o:: a~;:-:!':.hm 

constant BPU ALGOR:THM equals %x:~CA: 1* default value for BPU ALGORITHM field 
end. PP~9BPCP~B!TS; -

/* The following two registers are for testability and diagnostics use only. 
1* They should not be referenced in normal operation. 

constant BPC equals %xD6 tag $; /* Ibox Backup PC (RO) 

constant BPCUNW equals %xDi tag $: /* Ibox Backup PC with .RLOG unwind (RO) 
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/* Mbox internal memory management registers. 
/* These registers are for testability and diagnostics use only. 
/* In nor.mal operation, the equivalent architecturally-defined registers 
/* should be used instead. 

constant MPOBR equals %xEO tag $; /* Mbox PO base register (RW) 

constant MPOI.R equals %xEl tag $; /* Mbox PO length register (RW) 

constant MP1BR equals %xE2 tag $; /* Mbox Pl base register (RW) 

consta:::t MPl!.R equals %xE3 tag $; / ... Mbox Pl length register (RW) 

constant MS3R equals bE4 tag S; / ... Mbox system base register (RW) 

constant y...s:r..R equa.ls %xES tag $; / ... MOox system length register (RW) 

constant ~Ja.E:::l\ equals %xE6 tag $; i'" Mbox memory management enabl& (RW) 
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/* Mbox registers. 

constant PAMODE equals %xE7 tag S; /* Mbox physical address mode (RW) 
PR19PAMODE BITS structure fill prefix PAMODES: 

MODE bitfield-length 1 mask: /* Addressing mode(l - 32bit addressing) (RW) 
constant PA_30 equals 0: /* 30-bit PA mode 
constant PA 3: equals 1; /* 32-bit PA mode 

FILL_l b1tfield-length 31 fill tag SS: 
end PR19PAMODE_BITS; 

constant ~~R equals ~xES tag $; /* Mbox memory management fault address (RO) 

constant MME?T£ equals %x~9 tag $; 1* MOo>: memory management fault PTE address (RO) 

ccnsta~t MMESTS equals %xEA tag $; /~ Mbox memory management fault status (RO) 
:R:9!~S=S B:TS St:~cture !!:l prefix ~STSS; 

~".: :::'-:.!'ie~: len;-:!: 1 =~ask; j. AC\- =a~1:: ::a.,;c ':.c- ler.;~r. viola':.ion 
?=~_?Z: t!tfielc :e~;t~ : mask; j. A=V/T~-V fa~:t occurred on PPTE reference 
~; !:':'::.:i.:; :e:l.;-:'r.. : ::.:.s}:; /'fI: ~6=.a=E::=" had w:!.":.E: cr !rt~dify i:l't.er.~ 
:::::..:._: ;·:.::!:'c:c lE::;-:!l :.: :!:l -:.a.; S:~; 

:A:-:": l::!::.!ic~ci ~e::;-:.!'! : =.ask; /'fI' :a-:;~ ... :. ':.::~, one c! th. !e:'lowin;: 
::::5-::: ... -; ::';"~:~;' .. :"",,. -e;--.:a:s:; /..". 1" __ " :!s:..:.:"-= 
::::s-:£::-: :;._:-:.:_=~. £;:':3.:s :::; :'''' :::-,,~ !a:.:.: ': 
::::'S':.!.::::. =;'.:-:':_!'-~: _::.:.a.:'s~; ;Off !~-.:. :a::.:::. 

=:~:_: =~~=~6:: :&~r~~ :: !!:: ~~= !;; 
S? .. = :: ~-:!~-=:~ :£::~::. ~ :""""':'5;:; : .. S::a:':·i-: =:.;.::'" :! :.:::~ !:~':S (Swc !·:s~=S c::ls-:a::~s ::c:::. ... ·) 

==::'S'::.::':' _=.r_.:' .. -=~.:.~.:.s .;~: :': -; : .. :::z __ ;·a=:' '::: .. _==:= ac.:.=css \? .. :; 

: 

-
_ ...... -. :.~ ... ':. ----- -=;:.:a..:s ~~~: ':.:.;' -; 

:~:::E;:~_=::; S~=~:~~=~ =~:: ;=c!~x ::S:S$; 
:.:=:: =~-:.=~o:::. :.-==.=~:: : =':S~':i .... :.-s;-:"s':..:= :"s :::::.a:' ::; .. -:.: :- ~ ____ (1"::: 
::~:.?~ ;.:.'==:.-=:: :.a::.==:: : =.:S}:i 

::~:~ =~':=!~:~ :~~::~ : ~~~: 
'. :.s::= ;:a=:':.~· -===== i? .. :; 

=:!.:_.~ ... ;,.:. :::'-:::'-='::' :'-s!':;-::: : =;,:.si:; ,' ... E,.: :2::':::' 'Woo .. as ~-!.::.c. y."'he:: ... ===:- c::-.:.==_= (? .. O) 
C! .. =, =~-:!:.. .. :c :_::~:: :: = .. ask; ! .. 05: ::.==.a::: wile::' ::. :a=~':.y a=:c: o:c'!.:r.::' (?toO) 
F::t~_l =!-:.=i .• :"~ len~-:.h ::: :i:l "tag 5S; 
SRC b!~!iele length 3 mask; /. So~rce 0: original refemce (see ~~C$ cons~ants below) (RO) 

.r.: PR:'9-:3STS_::!'Si 

ccns':ant !R!::_:.kTC"'ii e:r.:a.ls 6 prefix MSRC$; it Source of fault was IRE:: latch 
constant SPEC_Q~UE equals 4 pr&f1x ~~RCS; /* Source of fault was spec queue 
constant EM_~~TCE equals 0 prefix MS~$; /* Source of fault was EM latch 
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I~ Mbox Pcache registers 

constant PCADR equals %xF2 tag $: I~ Mbox Pcache parity error address eRO) 

constant PCSTS equals %xF4 tag $: I~ Mbox Pcaehe parity error status (RW) 
PR19PCSTS BITS structure fill prefix peSTS$: 

LOCR bi~field length 1 mask: 1* Register is locked due to an error (We) 
DPERR bitfield length 1 mask: I~ Data parity error occurred (RO) 
R:G?T_BANK bit field length 1 mask; I~ Right bank tag parity error occurred ~O) 
LE:'!'_B~.NE bitfield leng~h 1 mask; I~ L6ft bank tag parity error occurred(RO) 
CMD bit!ield len~h : mask: I~ S6 command when Pcache parity error occured eRO) 
?'!'E_ER_v."R bitfield len~h 1 mask: 1* Hard error on PTE DREAD oecurreci (orig-':e! was WT":TE-) (We) 
~:::-::~ bi~field leng~h :. mask; I~ Hard error on PTE DREAD occurred (WC) 
=_~~ ~ z!~!icld length Zl fill tag $$; 

a~c PR:9?CS~S_~:TS; 

constant ?CC:~ equals ~x:s tag $; 1* Mbox Pcache control (RW) 
:?-.:9:?===:'_=:':S s-:,=-,,;,:"::~re :!~:l ;=e!~.x ?C==~~; 

:_=:!;;..E~ !:·':'::.!ie:= lE::;-:'I: : ::-.ask; j .. :'n&:-l& !c·: !.nva:i:cia't.e, !:-s':.r.am r .. ac/wr!::.&/!:':l 
:_::l,AE~ b;.t!ie:'c len;-~::' 1 mask; lor ::nable for ;:'validate, :-s":r.a."t read/!1:'l CRoW) 
!'c·: .. ~_:.:: =~-:.=i .. := : .. ::.;-:,r. : mask: /7 ~a.=.l. !O::e h!t or.. ?:a:he rQ!.:ances (:tW) 
E;':7:._::~ =,~~!:" .. .:..:. :.. .. ::;-:!:. :. :n~sk; /* S .. :.:-: l .. ~:. ='&:'lk !! C, =ig::~ ba.:lk !.! 1. (:t~.;) 

:_~:;E:':: :::':::i.:: :.::.;-:::' :. .r;-~a.s~:; /. ~:5.l:'1. F,a~:'':~'' :he:k:!.:g (tfw) 
?:-:. .. : .=:::.!.:. .. :': :~::.~!: 3 !"'..as?; / .. ! .. ==-~X ;-e:!=.::na::,:e :n=~':'.':.,:,: r.~=. (Rv;~ 

~:.z=_::S~~:'~ ::!::=~~:.:. :.:::;':.!: : !:4!lsk; /* i-:a=~_ .. :.:-:::.:2.: ::'sa=·:. :~:: CRi\j .,' 

~;~::~~;~~~=~~~;:.:~;~;:::~~::. !~:~:~~~ ~~; ?_:=::a:::~· e."laZ:. =1~ iF.C) or,: 

-==:.:' :?:i::::::'_===':; 

_ ::!~!~oi::~ : .. ::.;-:.:: : =.as~; /9 :.~; ::·a::'-:::- iN:, 
=:~:-: =!-:.:!.:: :.~:~:. : !~:: -:- ::; 
-:;.:; ::!. t!!. .. ::: :' .. ::;t::' ::: :r:.ask: !... :a; l:!.,,:s (~*) 

E..-"lQ ?? .. l9?·::~:;_~::S; 

ccnstan~ ?C::;;'.? equals %>:OlCOOOOO tag $: 1* First of 1024 Peaehe cia":a pari":y !ilRs {Rvn 
c:ns~ant ?C:;'':_!·~: eq..,;a:'s ~~:'nCC1::S ":a; $: I" !.as~ cf 1C:4 Peache ciata par:'ty :P?s 

constan~ !P~_!NCR equals %x8 prefix PCDAP$; I~ Increment between Pcaehe data parity !PR numbers 
PR19PCDAP B!TS structure fill prefix PCDAP$: 
DA=;'_?~~~!Y bi~field len;":h 8 mask; 1* Even byte parity for the addressed quaciword (RW) 

F!~~_l bi~!ield length 2' !ill ~a9 $$; 
end PR19PCDAP_B!TS: 

end PR19DE:: 
end_module $PRl9DEr': 
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Addressing Modes 

General Register· 2-10 
PC-Relative· 2-11 

Address Translation· 12-79 
PO Process Space· 2-28 
P1 Process Space· 2-29 
System Space • 2-26 

ALU·8-18 
ASTLVL 

See DEC Standard 032 

B 
Backup Cache 

See Bcache 
Bcache 

Addressing 128KB Cache • 13-15 
Addressing 256KB Cache· 13-16 
Addressing 2MB Cache· 13-18 
Addressing 512KB Cache· 13-17 
Data Store ECC Matrix • 13-40 
Disabling· 13-108 
Enabling • 13-1 08 
Interface Pin Descriptions -13-10 
IPR Access - 13-56. 13-87 
Organization· 13-4 
Pin Timing -1~. 20-11 
RAM Speeds - 13-5 
Tag and Index Interpretation ·13-4 
Tag Store ECC Matrix - 13-38 

BCDECC-1~5 

BCEDECC -13-75 
BCEDIDX - 13-74 
BCEDSTS -13-71 
BCETAG -13-09 
BCETIDX - 13-09 
BCETSTS -13456 
BCFLUSH - 13-89 
BCTAG • 13-87 
Boundary Scan Register -19-16 
BPCR- 7-60 
BPU -7-55 
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BPU (Cont.) 

Branch History Table - 7-56 
Branch Mispredict Processing - 7-58 
Branch Prediction Algorithm· 7-55 
Branch Prediction Sequence - 7-56 
Branch Queue - 7-57 
Branch Stall- 7-58 
PC Loads - 7-58 

Branch Condition Evaluator· 8-34 
Branch Prediction Unit 

See BPU 
Branch Queue - 8-46 
Byte Mask Generation - 12-36 

Unaligned References· 12-57 

c 
Cache Coherency - 13-99 
CCTL· 13-61 
CEFADR·13-80 
CEFSTS· 13-76 
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Clock Domain Crossing • 17-9 
Clock Skew • 17-7 
Controlling Inter-Chip Skew - 17-7 
External Oscillator· 17-1 
Generation and Distribution - 17-3 
Global Clock Distnbution· 17-5 
Global Clock Waveforms - 17-5 
Initialization· 17-9 
Inter-Clock Skew· 17-9 
NDAL Clocks· 17-7 
NDAL Signals • 17-9 
Rise and Fall Times • 17-7 
Section Clock Distribution· 17-5 
Section Clock Waveforms • 17-6 
Self Skew· 17-8 
Test Environment· 17-2 

Chip Initialization - 16-1 
Cache· 16-3 
Cbox -13-119 
Console - 16-2 
Ebox - 8-84 
Hardware and Microcode -16-1 
Ibox· 7-64 

Index 
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Chip Initialization (Cont.) 

Mbox - 12-120 
Microsequencer - 9-24 

Chip Overview 
Box and Section Description - 4-1 
Major Buses • 4-4 
The Cbox • 4-4 
The Ebox and Microsequencer 0 4-3 
The Fbox • 4-3 
The lbox • 4-2 
The Mbox· 4-4 

Chip Reset 017-10 
Clocking 

See Chip Clocking 
Complex Specifier Unit 

SeeCSU 
Console Halt • 2-40, 15-19 

Halt Codes -15-19 
CPUID-2-44, 18-2, 18-7, 18-11 
CSRD 

See DEC Standard 032 
CSRS 

See DEC Standard 032 
CSTD 

See DEC Standard 032 
CSTS 

See DEC Standard 032 
CSU -7-40 

D 

Branch Mispredict Effects· 7-52 
Ibox IPR Transactions· 7-53 
Microcode Control- 7-40 
Microcode Restrictions· 7-53 
Pipeline • 7-41 
RLOG ·7-51 

Data Types • 2-6 to 2-8 
Destination Qu~ue • 7-32, 8-44 

E 
ECR· 8-81 
Electrical Characteristics 

AC Characteristics - 20-7 
AC Conditions of Test • 20-7 
DC Characteristics • 20-1 
Maximum Ratings· 20-1 
Pin Capacitance • 20-4 
Pin Driver Impedance - 20-3 
Pin Levels· 20-4 
Power Dissipation Across Voltage and Cyde 

Time- 20-2 
Error Handling and Recovery· 15-3 

Cache and Memory Errors - 15-9 
Cache Coherence ·15-10 
Error Analysis· 15-7 

2-1ndex 

Error Handling and Recovery (Cont.) 
Error Recovery· 15-8 
Retry -15-17 
State Collection - 15--$ 

Errors 
Bcache ·13-111 
Dstream Memory - 7~5 
Istream Memory - 7-64 
Pcache Parity Error· 12-104 
TB Parity Error" 12-103 

Error Transition Mode 
See ETM 

ESP 
See DEC Standard 032 

ETM ·13-104 
Exceptions" 2-35 

Arithmetic· 2-36 
Ebox Handling - 8-67 to 8-72 
Emulated Instruction· 2-38 
Fbox Detected • 8-56 
Ibox Detected· 8-51 
Machine Check· 2-40 
Memory Management • 2-37 
Reserved Addressing Mode· 7-65 
Reserved Opcode • 7-65 
Vector • 2-40 

Exception Stack Frame 
General· 2-33 
Minimum" 2-33 

F 
Fbox Destination Scoreboard - 8-54 
Fbox Disabled Mode • 8-58 
Fbox Result Handling • 8-53 
Fbox Stage 4 Bypass ·11-63 
Field Queue· 8-48 

G 
GPR· 2-4 

H 
Hard Error Interrupts • 15-49 

Event Descriptions· 15-51 to 15-56 
Parse Tree· 15-50 to 15-51 
Stack Frame • 15-49 

VO Space Read Synchronization· 8-G3, 12-33 
IAK14· 10-3, 10-14 
IAK15· 10-3, 10-14 
IAK16 0 10-3, 10-14 
IAK17 ·10-3, 10-14 
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Ibox IPR Access • 8-66 
IBU· 7-19 

Branch Displacement Processing • 7-25 
DL Stall • 7-24 
Ebox Assist Processing • 7-25 
Exception and Error Processing· 7-28 
FPD Processing • 7-29 
Index Mode Specifiers· 7-27 
Instruction Context - 7-21 
Instruction Parse Completion - 7-28 
Loading New Opc:ode - 7-27 
Operand Access Types - 7-23 
PC and Delta PC - 7-24 
Quadword Immediate Specifiers - 7-26 
Reserved Addressing Modes - 7-26 
Reserved Opcodes - 7-28 
Specifier Identification - 7-21 
SPEC_CTRL Bus- 7-24 
Stop ancl Restart Conditions - 7-29 
V Access Mode Operands - 7-28 

ICCS ·1~, 10-13 
ICR· 10-6, 10-13 
ICSR· 7-16 
IIU - 7-30 

Issue Stall- 7-30 
PC Queue and PC Loads - 7-31 

Initialization 
See Chip Initialization 

Instruction Burst Unit 
See IBU 

Instruction Context - 7-21, 8-38, 9-22 
Instruction Issue Unit 

''':, 

SeeliU , _ 
Instruction Parsing - 7-17 
Instruction Queue - 9-20 
Instruction Set - 2-11 to 2-24 
INT.SYS Register - 8-30 
Internal Processor Registers 

SeelPRs 
Internal Scan Register 

Cbox -13-116 
Chip-19-4 
Ebox - 8-87 
lbox- 7~9 
Mbox ·12-122 
Microsequencer • 9-26 

Interrupts - 2-33 
Interrupt State Register' 10-9 
Interrupt Summary - 10-10 
Interrupt Vector - 10-3 
Interval Timer -10-5 
INTSYS· 10-12, 1~14 
IORESET 

See DEC Standard 032 
IPL· 2-34 
IPRs 

ASTLVL 
See DEC Standard 032 
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IPRs (Cont.) 
BCOECC -13-65 
BCEDECC - 13-75 
BCEDIDX'13-74 
BCEDSTS'13-71 
BCETAG -13-69 
BCETIDX - 13-69 
BCETSTS - 13-66 
BCFLUSH - 13-89 
BCTAG -13-87 
BPCR- 7-60 
CCTL-13-61 
CEFADR • 13-80 
CEFSTS - 13-76 
CPUID - 2-44, 18-2, 18-7, 18-11 
CSRD 

See DEC Standard 032 
CSRS 

See DEC Standard 032 
CSTD 

See DEC Standard 032 
CSTS 

See DEC Standard 032 
ECR-8-81 
ESP 

See DEC Standard 032 
Full listing· 2-52 to 2~0 
IAK14· 10-3,10-14 
IAK15'10-3,10-14 
IAK16 - 10-3, 10-14 
IAK17 -10-3,10-14 
ICCS -10-6,10-13 
ICR -1~, 10-13 
ICSR· 7-16 
INTSYS -.10-12,10-14 
IORESET 

See DEC Standard 032 
IPL- 2-34 

-'ISP 
See DEC Standard 032 

- ..... KSP . 
See DEC Standard 032' 

MAPEN ·2-25 
MCESR • 15-22 . - .- . -- _. "- ... 
MMAPEN • 12-40 
MMEADR - 12-41 
MMEPTE - 12-41 
MMESTS • 12-41, 12-95 
MPOBR - 12-38 
MPOLR -12-39,12-47 
MP1BR -12-39, 12-47 
MP1LR· 12-39, 12-47 
MSBR ·12-39 
MSLR • 12-40, 12-47' -. :~ • 
MTBPTE· 12-54 
MTBTAG • 12-52 
NEDATHI • 13-86 
NEDATLO • 13-86 
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IPRs (Cont.) 

NEICMD - 13-85 
NEOADR • 13-83 
NEOCMD .. 13-84 
NESTS· 13-81 
NICR -10-8,10-13 
POBR-2-29 
P1BR - 2-30 
P1LR - 2-30 
PAMODE • 2-4, 12-40 
PCADR - 12-43 
PCBB-2-4G 
PCCTL - 12-44, 12-71 
PCDAP - 12-46 
PCSCR-s-aO 
PCSTS - 12-43, 12-107 
PCTAG • 12-45 
PME·18-7 
PM FCNT • 18-8 
RXCS 

See DEC Standard 032 
RXDB 

See DEC Standard 032 
SAVPC· 2-40, 15-19 
SAVPSL· 2-40,t5-:1S:' 
SBR· 2-26 
SCBB- 2-41 
SID ·2-44 
SIRR - 2-35, 10-13 
SISR· 2-35, 1~13' 

r .~ ';_ 

SLR· 2-26 
SSP--

See DEC Standard 032 
TBADR • 12-42 
TBCHK 

See DEC Standard'032 
TBIA· 2-25, 12-55 
TBIS • 2-25, 12-54 
TBSTS -12-42, 12-106' -' 
TODR 

See DEC Standard 032 
TXCS 

See DEC Standard 032 
TXDB 

See DEC Standard 032 
USP 

See DEC Standard 032 
VAER . _. ,. 

See DEC Stanoard 032 :~H. 
VDATA-7-15 
VMAC 

See DEC Standard 032 
VMAR· 7-14 
VPSR 

See DEC Standard 032 
VTAG" 7-15 
VTBIA 

See DEC Standard 032 

4-Index 

:- .' 

ISP 
See DEC Standard 032 .. - . 

J 
STAG Test Port - 19-7 

K 
Kernel Stack Not Valid • 15-87 

Stack Frame - 15-87 :.,-
KSP 
,~ DEC Standard 032 

L 
LFSR' 

WSUS-s-gO 

M 
Machine Check - 2-40, 15-22 

Codes - 15-24 
Event Desc!iPt.!o'1S • .15::?;3~ tol5::-4Z ... _ , .. ,,. ._ .-. 
Parse Tree· 15-25 to 15-32 
Stack Frame • 15-22 

MAPEN·2-25 
Mask Processing Unit 

See MPU 
Mbox Commands • 12-23 
Mbox Reference Order Restrictions • 12-:25. 
MCESR • 15-22 
MD Bus Rotator· 12-20 
Memory Management Probe Status Encoo.ings-

12-51 
Microcode Format 0, 

' ... Ebox· 6-1 to 6-4, 8-4 to s-:o: '9-8 
Ibox CSU • 6-4 .. ·to··6-5 ._' - ... ,. 
.ibox iROM and Control PLAs· 6-5 to 6-7 

'. Microcode Restrict.ion:s 
. Ebox • 8-91 to 8-96 

MicrO$tack - 9-22 
Microtest Fields - 8-39 
Microtraps • 9-13 to 9-18 
MMAPEN • 12-40 
MMEADR -12-41 
MMEPTE • 12-41 
MMESTS -12-41,12-95 ::' 
MMGT.MODE Register·' &-30 ' 
MPOBR - 12-38 
MPOLR·12-39,12-47 
MP1BR - 12-39, 12-47 
MP1LR 012-39,12-47 
MPU .. 8-32 
MSBR-12-39 
MSLR -12-40,12-47 
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MTBPTE - 12-54 
MTBTAG ·12-52 

Parallel Port 
Observe Mbox (Cont.) ~(" '1 

S5 Reference Source· 12-123 _ .. :.,' ' .. Jj 

Operating Modes· 19-4 : \ ':: ~ • F - k~ 
.. Patchable Control Store .S I • C ~'!' ' .,:; N 

Loading· 9-3 ; B--8 ~" - -:.1 

Overview • 9-3 -): 0-"'. ' . ,,'.f, NDAL 

Arbitration ~ 3-18 Pcache '12-21,12-70 is.,_ ", 
Cache Coherency • 3-54_ ,_ .. , __ ,. ,,__ . Adtiressing. 12-70 08,. _ ~ '='J 
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