Digital Equipment Corporation Maynard, Massachusetts

STATPAC User's Guide

PDP-15 Systems

DEC-15-UFZA-D

STATPAC USER'S GUIDE PDP-15/20 PDP-15/30 PDP-15/40 PDP-9 ADVANCED SOFTWARE SYSTEMS

For additional copies order No. DEC-15-UFZA-D from Program Library,

Price \$3.00

Digital Equipment Corporation, Maynard, Mass.

1st Printing June 1969

Copyright (C) 1969 by Digital Equipment Corporation

CONTENTS

Page

CHAPTER 1

1.1	Control Module	1-1
1.2	Input Module	1-3
1.3	SMMRY Module	1-4
1.3.1	SMMRY Statistics	1-4
1.3.2	SMMRY Options	1-6
1.4	STPRG and MLTRG Modules	1-10
1.4.1	Regression Analysis	1-11
1.4.2	Regression Options	1-13
1.4.3	Regression Plots	1-14

CHAPTER 2

MODULE OPERATING PROCEDURES

2.1	Control Module	2-1
2.1.1	Command Dialogue	2-1
2.1.2	Error Messages	2-1
2.2	Input Module	2-2
2.2.1	Command Dialogue	2-2
2.2.2	Error Messages	2-3
2.3	Descriptive Statistics Module	2-3
2.3.1	Command Dialogue	2-3
2.3.2	Error Messages	2-5
2.4	Regression Analysis Modules	2-5
2.4.1	Command Dialogue	2-5
2.4.2	Error Messages	2-7

CHAPTER 3

IMPLEMENTING AND AUGMENTING STATPAC

3.1	Building an Executable File	3-2
3.2	Adding Processing Modules to STATPAC	3-7

CHAPTER 4

SAMPLE OPERATION

4.1	Input Example	4-2
4.2	SMMRY Example	4-4
4.3	STPRG Example	4-9
4.4	MLTRG Example	4-18

APPENDIX A

DESCRIPTIVE STATISTICS ALGORITHMS

CONTENTS (Cont)

Page

APPENDIX B REGRESSION ANALYSIS ALGORITHMS

ILLUSTRATIONS

1-1	STATPAC Logic Modules, Flow Diagram	1-2		
	TADLEC			

TABLES

1-1

STATPAC Symbol Definitions

1-6

PREFACE

The PDP-15/9 statistics package (STATPAC) is a FORTRAN-coded program used to perform statistical analysis on user-supplied data. STATPAC runs under control of the PDP-15 Advanced and Background/Foreground Monitor Systems and the PDP-9 Keyboard Monitor System, and requires some form of auxiliary bulk storage, such as DECtape or disk. This guide is intended to set forth operating procedures for the user, and does not contain detailed descriptions of the internal operations of the package. The Guide is organized as follows:

Chapter 1	Introduction to STATPAC
Chapter 2	Module Operating Procedures
Chapter 3	Implementing and Augmenting STATPAC
Chapter 4	Sample Operation

Chapter 1 provides general descriptions of each of the modules in the package. Chapter 2 details the command dialogue and possible error messages. Chapter 3 contains information related to building an executable file and augmenting basic systems either through addition of user software modules or through expanding the hardware configuration. Chapter 4 contains sample dialogue and output for all STATPAC modules. The Appendix contains detailed algorithms for computations performed within the package which will be of interest to the more demanding reader. Finally, a bibliography of statistical texts and applicable manuals is included for convenient reference.

No attempt is made within the Guide to educate the novice statistician. It is assumed that the user has a good background in statistics and can use the package as a tool to achieve the desired results.

CHAPTER 1 INTRODUCTION

STATPAC is a FORTRAN-coded program used to perform statistical analysis on user-supplied data. The package is designed to run under control of PDP-15/9 monitor systems in a hardware configuration that includes 8K of core memory, a console Teletype, a high-speed paper tape reader and punch, and two bulk storage units. Due to the limitations of 8K core memory, the package is divided into logical modules, each of which consists of one or more core loads (i.e., chains or overlays). The modules (Figure 1-1) reside on a bulk storage device (logical -4) and include CONTROL, INPUT, SMMRY, STPRG, and MLTRG. Basic operation of the package requires that the user supply data to the INPUT module which prepares standardized binary data files. The user then can, depending upon his next task, select any one of the modules for operation. Briefly, the SMMRY (Summary) module provides the user with a set of descriptive statistics based upon his input files. The descriptive statistics include mean, variance, standard deviation, standard error of the mean, skewness, kurtosis, maximum, minimum, range, and a correlation matrix. The other two modules (STPRG and MLTRG) can be selected to perform stepwise linear regression and multiple linear regression, respectively.

The following paragraphs provide a general description of each of the modules. User dialogues are presented in Chapter 2 and detailed algorithms for the internal computations are given in Appendix A.

1.1 CONTROL MODULE

The CONTROL module acts as an executive routine, performing miscellaneous control functions while providing a means for communications between modules. Initially, the CONTROL module is loaded into core (see Chapter 3). Once loaded, it types the message

*PROG

The user must respond by typing one of the following names:

INPUT SMMRY STPRG MLTRG EXIT

By responding with EXIT, the user terminates all processing by STATPAC and control is returned to the monitor. Responding with one of the module names causes the corresponding module (or a portion of it) to be loaded from the STATPAC tape (logical -4), overlaying the CONTROL module. Control is transferred to the module that has been loaded, and it requests and obtains the remaining control parameters required to perform an analysis by conducting a dialogue

Figure 1-1 STATPAC Logic Modules, Flow Diagram

1-2

with the user (see Chapter 2). When the selected module has completed its task, it requests that the user supply the name of the next module to be loaded. If the user requests the module that is already in core, the module again requests the required control parameters. This continues until the user requests a different module, at which time the CONTROL module is loaded into core and, in turn, loads the selected module.

1.2 INPUT MODULE

The INPUT module performs two basic tasks:

- a. Conversion of user-supplied BCD data to binary.
- b. Preparation and storage of the standardized binary data files on a file structured bulk storage device.

The user's input data consists of observations, with each observation consisting of a number of variables. For example, each person living in a town could be considered an observation consisting of the variables age, weight, height, etc. One can think of a data file, then, as a rectangular array or matrix of the form:

	Variable (1)	Variable (2)		Variable (L)
observation 1	x _{1,1}	x _{1,2}	•••	x _{1,L}
observation 2	x _{2,1}	x _{2,2}		X _{2,L}
•	•			
	•	•		•
•	•			
observation N	X _{N,1}	X _{N,2}		X _{N,L}
	Note: X _{ij}	$i = i^{th} observations$ $j = i^{th} variable$	ion	

This data file consists of N observations, with each observation consisting of L variables. One can think of the observations as rows and the variables as columns. In using the statistics program, the user will frequently be asked: "What are the variables?", to which he must respond by enumerating the column ordinals of the variables he wants analyzed. In brief, given the subscripts 1, 2, ..., L, where each subscript is associated with one variable, the program is interested in how many and which variables were chosen.

The standardized binary data files are organized on the tape written by the INPUT module as follows:

Unit 1 has one record which contains L, the number of variables in each observation and the names of each variable.

Unit 2 through K have one record which specifies the number of observations within the unit, N; and N records which contain the values of the variables for each observation. All units, except possibly the K^{th} , have the same number of observations. Unit K may have less than N observations.

The last unit (K+1) has one record which contains 0 to signal the end of data.

1.3 SMMRY MODULE

The SMMRY module reads data files designated by the user, analyzes the data, and outputs the following statistics for each variable which was selected by the user for analysis:

Mean Variance Standard Deviation Standard Error of the Mean Skewness Kurtosis Maximum Minimum Range Correlation Matrix

1.3.1 SMMRY Statistics

The previous statistics are estimates of the corresponding parameters of the populations from which the samples were drawn. The *mean* serves to specify the "center" of the data, while the *standard deviation* is a measure of the scatter, or dispersion, of the data from the center. The *variance* is the square of the standard deviation.

The figure at the left shows the changes in the shape of a curve effected by varying the standard deviation, σ .

The *skewness* is used to measure the symmetry of a distribution about the mean. Since the normal distribution is symmetric, skewness is used to test whether a distribution is not normal.

The sign of the skewness statistic indicates the direction of the skew as seen at the right.

Kurtosis measures the relative concentration of values of a sample; i.e., about the "center", the "tails", and the "shoulders" of the distribution. The illustration at the right compares curves with different degrees of kurtosis.

The maximum is the highest observed value and the minimum is the lowest observed value. Their difference is the range.

The *correlation matrix* indicates whether any pairs of variables in a file are highly correlated. Independent variables which are too highly correlated should not be used in the same regression analysis problem.

The descriptive statistics module (SMMRY) will also enable the user to perform hypotheses testing.

Table 1-1 STATPAC Symbol Definitions

Symbol	Definition
L	the number of variables in a user data file
j	the ordinal of a particular variable in a file $(1 \le j \le L)$
K	the number of files in an analysis
i	the ordinal of a particular file $(1 \le i \le K)$
N _i	the number of observations in the i th file
m	the observation ordinal $(1 \le m \le N_i)$
^x jim	the j^{th} variable in the m th observation of the i^{th} file
σ_{ji}	the standard deviation of the j^{th} variable in the i^{th} file
σ_{ji}^2	the variance of the j^{th} variable in the i^{th} file
\overline{x}_{ji}	*the calculated mean of the j^{th} variable in the i^{th} file
$\mu_{\mathbf{j}\mathbf{i}}$	*the actual mean of the j^{th} variable in the i^{th} file
$\tilde{\mu_j}$	the user supplied test mean for the j th variable
$\sigma_{\rm j}^2$	the user supplied test variance for the j^{th} variable
У _i	the observed value of the dependent variable
\hat{y}_i	the predicted value of the dependent variable determined using the regression model
y	the calculated mean of the observed dependent variable
b _i	the coefficient of the i^{th} variable in a regression model
b _o	the constant term of a regression model.

*These symbols are used interchangeably in descriptions of hypotheses.

1.3.2 SMMRY Options

The SMMRY module of STATPAC includes six hypothesis test options. Each option permits the user to test one or more actual hypotheses. The user requests a specific option in response to the initial dialogue as described in Chapter 2.

SMMRY Option 1 allows the user to test hypotheses which relate the calculated means for variables to user-supplied test means. These hypothesis tests may be performed upon one or more data files (up to 10 files). The statistic calculated for each file, however, is independent of that calculated for any other data file.

STATPAC calculates the following t-statistic when option 1 is requested:

$$\mathbf{t}_{ji} = \left\{ (\overline{\mathbf{x}}_{ji} - \boldsymbol{\mu}_j) \sqrt{\mathbf{N}_i} \right\} / \sigma_{ji}$$

Under the assumption that the sample came from a normal population, the user can use the statistic t_{ji} to test hypotheses which relate the calculated mean of a variable (μ_{ji}) to the user-supplied test mean for that variable (μ_j) , as summarized below.

Hypothesis	Acceptance	Alternative
	Criteria	Hypothesis
$\mu_{ji} = \mu_j$	$t_{(1 - \alpha/2)(N_i - 1)} \le t_{ji} \le t (1 - \alpha/2)(N_i - 1)$	$\mu_{ji} \neq \mu_{j}$
$\mu_{ji} \leq \mu_{j}$	$t_{ji} < t_{(1 - \alpha)(N_i - 1)}$	$\mu_{ji} > \mu_j$
$\mu_{ji} \ge \mu_{j}$	$t_{ji} > -t_{(1 - \alpha)(N_i - 1)}$	$\mu_{ji} < \mu_{j}$

When the acceptance criteria is not satisfied at the user-specified significance level (α), the alternate hypothesis is accepted. The t-values are obtained from a statistical table using the values of N_i - 1(the degrees of freedom) and the expression in α as the parameters for selecting the t-value from the table.

SMMRY Option 2 allows the user to test hypotheses which relate the variance to a user-supplied test variance. These hypothesis tests may be performed upon one or more data files (up to 10 files). The statistic calculated for each file, however, is independent of that calculated for any other data file.

STATPAC calculates the following chi-square statistic when option 2 is requested:

$$\chi_{ji}^{2} = \left\{ \sum_{m=1}^{N_{i}} (X_{jim} - \overline{X}_{ji})^{2} \right\} / \sigma_{j}^{2}$$

Assuming a normal population, the χ^2_{ji} statistic may then be used by the statistician to test hypotheses which relate the calculated variance (σ^2_{ji}) with the user-supplied variance (σ^2_j) , as summarized below.

HypothesisAcceptanceAlternative
$$\sigma_{ji}^2 = \sigma_j^2$$
 $\chi^2(\alpha/2) (N_i \cdot 1) < \overline{\chi_{ji}^2 < \chi^2(1 - \alpha/2) (N_i - 1)}$ $\sigma_{ji}^2 \neq \sigma_j^2$ $\sigma_{ji}^2 \leq \sigma_j^2$ $\chi_{ji}^2 < \chi^2_{(1 - \alpha) (N_i - 1)}$ $\sigma_{ji}^2 > \sigma_j^2$ $\sigma_{ji}^2 \geq \sigma_j^2$ $\chi_{ji}^2 < \chi^2_{(\alpha) (N_i - 1)}$ $\sigma_{ji}^2 < \sigma_j^2$

When the acceptance criteria is not satisfied at the user-specified significance level (α), the alternate hypothesis is accepted. The chi-square values are obtained from a statistical table using the values of N_i - 1 (degrees of freedom) and the expression in α as the parameters for selecting the chi-square value from the table.

SMMRY Option 3 allows the user to test hypotheses which relate the mean of a variable in one file to the mean of the corresponding variable (i.e., same ordinal) in another file. Thus, at least 2 files must be included in the analysis, but not more than 10 files may be analyzed.

STATPAC calculates the following t-statistics when option 3 is requested by the user:

where

$$t_{jrs} = (\overline{X_{jr}} - \overline{X_{js}}) / (S^2/N_r + S^2/N_s)^{1/2}$$

$$S^2 = \left\{ (N_r - 1) \sigma_{jr}^2 + (N_s - 1) \sigma_{js}^2 \right\} / \left\{ N_r + N_s - 2 \right\}$$

In the calculation, r and s vary from 1,2,...,K for each value of j. Results are provided by STATPAC for each value of j (i.e., for each variable being analyzed). Thus, for every value of j, there is a K x K matrix generated (where K is the number of files in the analysis).

Under the assumption that the samples came from normal populations with $\sigma_{jr}^2 = \sigma_{js}^2$, the user can perform the following hypothesis tests for the variables of each possible pair of files in the analysis using the statistic t_{jrs} . Each hypothesis test relates variables with the same ordinal, but contained in different files.

Hypothesis	Acceptance Criteria	Alternate Hypothesis
$\mu_{jr} = \mu_{js}$	$-t_{(1 - \alpha/2)(N_r + N_s - 2)} < t_{jrs} < t_{(1 - \alpha/2)(N_r + N_s - 2)}$	$\mu_{jr} \neq \mu_{js}$
$\mu_{jr} \leq \mu_{js}$	$t_{jrs} < t_{(1 - \alpha)} (N_r + N_s - 2)$	$\mu_{jr} > \mu_{js}$
$\mu_{jr} \ge \mu_{js}$	$t_{jrs} > -t_{(1-\alpha)}(N_r + N_s - 2)$	$\mu_{jr} < \mu_{js}$

When the acceptance condition is not satisfied at the user specified significance level (α), the alternate hypothesis is accepted. The t-values are obtained from statistical tables using the values of N_r + N_s - 2 (the sum of the separate degrees of freedom N_r - 1 and N_s - 1), and the expression in α as the parameters for selecting the value from the table.

SMMRY Option 4 allows the user to test hypotheses which relate the variance of a variable in one file with the variance of the corresponding variable (i.e., same ordinal) in a second file. Analysis of at least two files must be performed for this option to be executed, but no more than 10 files may be included in the analysis.

When option 4 is requested, STATPAC computes the following F-statistic:

$$F_{jrs} = \sigma_{jr}^2 / \sigma_{js}^2$$

where r and s vary from 1,2,...,K for each value of j. These F-values are output by STATPAC for each variable in the analysis (j, where $1 \le j \le L$) and for all combinations of values for r and s (r, s = 1,2,...,K). Thus, for every value of j, there is a K x K matrix generated (where K = the number of files in the analysis).

Under the assumption that the samples were drawn from normal populations, the user can perform the following hypothesis tests for a fixed variable and for each pair of files in the analysis, using the computed statistic F_{jrs} . Each hypothesis test relates the variance of a variable with the variance of a variable having the same ordinal, but contained in a different file.

HypothesisAcceptanceAlternate
$$\sigma_{jr}^2 = \sigma_{js}^2$$
 $F_{(\alpha/2)} (N_r \cdot 1, N_s \cdot 1) < F_{jrs} < F_{(1 - \alpha/2)} (N_r - 1, N_s - 1)$ $\sigma_{jr}^2 \neq \sigma_{js}^2$ $\sigma_{jr}^2 < \sigma_{js}^2$ $F_{jrs} < F_{(1 - \alpha)} (N_r - 1, N_s - 1)$ $\sigma_{jr}^2 > \sigma_{js}^2$ $\sigma_{jr}^2 > \sigma_{js}^2$ $F_{jrs} > F_{(\alpha)} (N_r - 1, N_s - 1)$ $\sigma_{jr}^2 < \sigma_{js}^2$

When the acceptance condition is not satisfied at the user-specified significance level (α), the alternate hypothesis is accepted. The F-values are obtained from statistical tables using the values of the degrees of freedom for each file, N_r - 1 and N_s - 1, and the expression in α as the parameters for selecting the F-value from the table.

SMMRY Option 5 allows the user to test the hypothesis that, for a particular variable, the means of that variable in all files of the analysis are equal at the user-specified significance level. Analysis of at least 2 files must be performed for this option to be executed, but no more than 10 files may be included. Option 5 is a generalization of option 3.

When option 5 is requested, STATPAC computes the following F-statistic for each variable j analyzed:

$$F_{j} = \frac{\begin{pmatrix} K \\ \sum N_{i} (\overline{X}_{ji} \cdot \overline{\overline{X}_{j}})^{2} \\ i = 1 \end{pmatrix} / (K \cdot 1)}{\begin{pmatrix} K & N_{i} \\ \sum & \sum (X_{jim} \cdot \overline{X}_{ji})^{2} \\ i = 1 & m = 1 \end{pmatrix} / \sum _{i = 1}^{K} (N_{i} \cdot 1)}$$

where

$$\overline{\overline{\mathbf{X}}_{j}} = \left(\sum_{i=1}^{K} \overline{\mathbf{X}}_{ji}\right) / K$$

Under the assumption that all samples were drawn from normal populations with equal variance (i.e., $\sigma_{jr}^2 = \sigma_{js}^2$ for all r, s = 1,2,...,K) the user may test the following hypothesis:

HypothesisAcceptanceAlternate
$$\mu_{j1} = \mu_{j2} = \dots = \mu_{jK}$$
 $F_j < F_{(1 - \alpha)} (V1, V2)$ $\mu_{jr} \neq \mu_{js}$ wherefor some r and s $V1 = K - 1$ $V2 = \sum_{i=1}^{K} (N_i - 1)$ $i = 1$

When the acceptance condition is not satisfied at the user-specified significance level (α), the alternate hypothesis is accepted. The F-values are obtained from statistical tables using the values of 1 - α , V1, and V2 as the parameters for selecting the F-value from the table.

SMMRY Option 6 allows the user to perform Bartlett's test for equal variances for a particular variable in all data files in the analysis (normal populations are assumed). Analysis of at least 2 files must be performed for this option to be executed, but no more than 10 files may be included. Option 6 is a generalization of option 4.

When option 6 is requested by the user, STATPAC computes the following chi-square statistic and correction:

$$j \chi^{2}(K-1) = (\log_{e} 10) \left\{ \left[\log_{10} \left\{ \left(\sum_{i=1}^{K_{i}} \sum_{m=1}^{N_{i}} (X_{jim} \cdot \overline{X}_{ji})^{2} \right) + \sum_{i=1}^{K} (N_{i} \cdot 1) \right\} \right] \sum_{i=1}^{K} (N_{i} \cdot 1) \left\{ \sum_{i=1}^{K} (N_{i} \cdot 1) \log_{10} \left(\sum_{m=1}^{N_{i}} \frac{(X_{jim} \cdot \overline{X}_{ji})^{2}}{N_{i} \cdot 1} \right) \right] \right\}$$

$$C = 1 + \left[(K-1)/3 \right] \left\{ \sum_{i=1}^{K} \frac{1}{(N_{i} \cdot 1)} \cdot \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^{K} (N_{i} \cdot 1) - \frac{1}{K} \sum_{\substack{i=1 \\ \sum i = 1}}^$$

corrected $j \chi^{2}(K-1) = j \chi^{2}(K-1) / C$

where C is the correction factor. Under the assumption that all samples are drawn from normal populations, the user may test the following hypothesis:

Hypothesis	Acceptance	Alternate
	Criteria	Hypothesis
$\sigma_{j1}^2 = \sigma_{j2}^2 = \dots = \sigma_{jK}^2$	$_{j}\chi^{2}_{(K-1)} < \chi^{2}_{(1-\alpha)(K-1)}$	$\sigma_r^2 \pm \sigma_s^2$
		for some r and s

where $j \chi^2(K-1)$ may be the corrected or the uncorrected value computed by STATPAC.

When the acceptance condition is not satisfied at the user specified significance level (α), the alternate hypothesis is accepted. The chi-square values are obtained from statistical tables using the values of 1 - α and K - 1 as the parameters for selecting the chi-square value from the table.

For a more complete description of the options, the reader is referred to Chapter 7 of *Statistics in Research* by Bernard Ostle.

1.4 STPRG AND MLTRG MODULES

STPRG denotes the Stepwise Linear Regression Module and MLTRG denotes the Multiple Linear Regression Module. These modules are logically separate, but still have much in common (including a similar algorithm, input/output format, and internal organization). Because of their similarities, these modules are described together, with differences clearly noted where they exist.

1.4.1 Regression Analysis

Assuming a set of N observations, where each observation consists of L + 1 variables, consider the first L-variables to be independent and denoted by X_i , i = 1, 2, ..., L. Consider the last variable to be a dependent variable, denoted y. To summarize, the data will appear as follows:

X _{N,1}	X _{N,2}	X _{N,3}	X _{N,L}	Y _N
•				•
•	•	•	•	•
		•		
x _{2,1}	x _{2,2}	X _{2,3}	x _{2,L}	Y ₂
x _{1,1}	x _{1,2}	x _{1,3}	x _{1,L}	Y ₁

Now, let us assume that there exists a model (i.e., a rule, relationship, formula, or equation) which defines y as a function of the X's. This model can be expressed in the following manner:

$$Y = B_0 + B_1 X_1 + B_2 X_2 + ... + B_L X_L + E$$

where $B_0, B_1, ..., B_L$ are the parameters of the model, and E is a true error to compensate for any discrepancies in the model. The task of regression analysis is to estimate or approximate this model, as follows:

$$Y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_L x_L + e$$

where the b's are estimates of the parameters and e is the residual of the estimating model. The estimating model is applied to all observations in the set of data as follows:

$$\hat{y}_{i} = b_{0} + \begin{pmatrix} L \\ \sum_{j=1}^{L} b_{j} x_{ij} \end{pmatrix} + e_{i}$$
 $i = 1, 2, ..., N$

where y_i is the estimate of y_i in the data, $e_i = y_i - \hat{y_i}$ is the residual for the ith estimate, and N is the number of observations. The "goodness" criteria of the estimating model is that the sum of the squares of the residuals must be a minimum (i.e., least squares). The criteria may be expressed as follows:

$$\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N} e_i^2 = \text{minimum}$$

A regression model with two independent variables is illustrated below. This hyperplane is determined as the best fit for the equation $y = b_0 + b_1 x_1 + b_2 x_2$ by STATPAC regression analysis. The predicted values (\hat{y}_i) , the observed values (y_i) , and the residuals (e_i) are shown for three observations.

Because each b_i in the model is raised to the first power and because there are several x's this analysis is referred to as multiple linear regression. At times, one may suspect that some of the independent variables do not significantly contribute to the prediction quality of the model. In such a case, one can examine the contribution of each variable to the model and, using the following criteria, include or exclude variables. To delete a variable, which at this point in time is in the model, the *increase* in the residual variance caused by the elimination of the variable from the model is calculated. If the increase is significant according to a user pre-selected level, the variable is deleted from the model, the *decrease* in the residual variable, which at this point in time is not in the model, the *decrease* in the residual variable is calculated. If this decrease is significant, according to a user pre-selected level. If this decrease is significant, according to a user pre-selected level, the variable is not in the model. To enter a variable is calculated. If this decrease is significant, according to a user pre-selected level, the variable is added to the regression equation; otherwise it is not added. The technique of examining variables individually is denoted stepwise linear regression, (note that stepwise implies multiple variables, hence multiple linear regression).

The output of regression analysis consists of:

- a. Correlation of each independent variable with the dependent variable
- b. For stepwise regression, output is for each step or iteration and includes:
 - (1) Variable entering (or leaving) the model

(2) Sequential F-test which is compared with the user supplied value of F-IN (or F-OUT) to determine inclusion (exclusion) of the variable in the model

- (3) The degrees of freedom for this iteration
- (4) R-squared, the multiple correlation coefficient
- (5) The change in multiple correlation from the previous iteration

(6) The standard error of the dependent variable

(7) An analysis of variance table which includes an overall F-value which is used to test the hypothesis that all coefficients (except the constant term) are zero

(8) A table of variables in the regression consisiting of the respective coefficients, standard errors, and F-values needed to remove these terms from the model

- (9) The constant term of the model (b_0)
- (10) A table of variables not in the regression model and including the tolerance level, partial correlation with the dependent variable, and the F-value needed to enter these terms in the model
- c. For multiple linear regression, the output includes:
 - (1) The value of R-squared, the multiple correlation coefficient
 - (2) The standard error of y
 - (3) An analysis of variance table, as in stepwise regression analysis
 - (4) The regression coefficients with their standard errors
 - (5) The constant term of the model (b_0)

1.4.2 Regression Options

The regression analysis modules have four options and four plots which may be requested by the user. The first three options allow the user to perform hypothesis tests. The last option is the output of residuals. (Analyses which involve many observations require considerable amounts of time to output residuals.)

Option 1 of STPRG or MLTRG allows the user to test hypotheses $H_0: b_i = 0$ or $H_1: b_i \neq 0$. STATPAC computes the value of $t_i = b_i/s.e.(b_i)$ for i = 1, 2, ..., p - 1. If $|t_i| \le t(N - p, 1 - \frac{1}{2}\alpha)$, H_0 is accepted; otherwise, H_1 is accepted. The hypothesis is accepted or rejected at the 100 $(1 - \alpha)$ % significance (confidence) level. In the expression above,

N is the number of observations in the data file

p is defined by the model such that N-p = degrees of freedom (p is the number of coefficients in the model, $y = b_0 + b_1 y_1 + ... + b_{p-1} y_{p-1}$)

 α is the user selected significance level

Option 1 output consists of the t-value (t_i) for each term in the regression model, and the degrees of freedom.

Option 2 is a generalization of option 1 which tests the hypotheses $H_0: b_i = b'_i$ and $H_1: b_i \neq b'_i$ where the value of b'_i is supplied by the user. (Thus option 1 is option 2 with $b'_i = 0$.) STATPAC computes $t_i = (b_i - b'_i)/s.e.$ (b_i) for i = 1, 2, ..., p - 1. If $|t_i| \leq t(N - p, 1 - \frac{1}{2}\alpha)$, the hypothesis H_0 is accepted at the 100(1 - α)% significance level. Otherwise the hypothesis H_1 is accepted. The user is asked to supply the values for b'_i in the command dialogue whenever this option is selected. Option 2 output consists of the t-values (t_i) for each term in the regression model, the user supplied coefficients from question 8 of the dialogue, and the degrees of freedom.

Option 3 is a further generalization of options 1 and 2 and tests the hypothesis $H_0: L \le b_i \le H$, where H and L are limits of the confidence interval for each coefficient in the regression model. The confidence interval is computed by STATPAC at the $100(1 - \alpha)\%$ confidence level as represented by the following equation:

$$b_{i} \pm t(N - p, 1 - \frac{1}{2}\alpha) (s.e.(b_{i}))$$

The value of $t(N - p, 1 - \frac{1}{2}\alpha)$ is supplied by the user from a t-table, for a statistical value of α , in response to STATPAC dialogue. Option 3 output consists of the upper and lower bounds of the confidence intervals, and the degrees of freedom.

Option 4 is requested by the user when he desires output of residual values (output is on logical 3). Regression analysis with many variables will require considerable time to output the residuals. The residual output for each observation in the original file includes the observation ordinal, the observed dependent variable (y_i) , the predicted value of $y(\hat{y}_i)$ by the model, and the residual for each observation $(e_i = y_i \cdot \hat{y}_i)$.

1.4.3 Regression Plots

Plot 1 is predicted \hat{y} versus residual for each observation. The plot should appear as a broad horizontal band with no trend. A plot which shows an increasing broadness indicates that the variance is not constant and the regression is suspect. Each element of the grid is a counter with maximum value equal to 9.

Plot 2 is predicted \hat{y} versus observed y. The plot indicates the ability of the model to predict the observed y's. The ideal situation would be the straight line, $\hat{y} = y$. As in plot 1, each element of the grid is a counter with maximum value equal to 9.

Plot 3 is residuals versus ordinal. The residuals are plotted versus the ordinal of the observation to check for time factors in the model. A non-horizontal plot is an indication that the model may be time dependent. That is, either variance increases with time or terms in time should have been included in the model.

Plot 4 is an overall plot of residuals. This histogram of residuals indicates normal distribution of the residuals.

For further description of the plots and their implications, refer to Chapter 3 of *Applied Regression Analysis*, by Draper and Smith (see Bibliography). Options 1, 2 and 3 are also described in Section 1.4 of the same reference.

CHAPTER 2 MODULE OPERATING PROCEDURES

STATPAC is loaded as a compiled and chained FORTRAN program (see Chapter 3 of this manual and the applicable Users' Guide). Once STATPAC is loaded, the CONTROL module assumes control. The command dialogue and possible error messages for the five modules are described in this chapter.

NOTES

1. If the user has assigned the Teletype handler (TTA) to logical 5, he may use the RUBOUT key to erase one character to the left for each striking of the key. Control U may be typed to delete the whole line. These keys can only be used to erase up to the last carriage return.

2. Characters typed by STATPAC are underlined in the following text to distinguish them from those typed by the user.

3. Sample input and dialogue for each module is contained in Chapter 4.

2.1 CONTROL MODULE

2.1.1 Command Dialogue

CONTROL contains one dialogue message which it types on logical 4.

*PROG

On logical 5, CONTROL expects one of the following five responses, left justified:

INPUT SMMRY STPRG MLTRG EXIT

2.1.2 Error Messages

If the user does not respond with one of the above legal responses, the CONTROL module will type:

*ERROR *PROG

CONTROL then awaits the input of another module name.

2.2 INPUT MODULE

2.2.1 Command Dialogue

The execution of the INPUT module is directed by the following dialogue. The ASCII data file must be on logical 6. and the new file will be written on logical 1.

Question 1: <u>*FILE (OLD)</u> AAAAAAAAA	INPUT requests the user to identify the name of his data file with its nine character name (i.e., six character file name and three-character extension). If the device as- signed to logical 6 is not a bulk storage device, this name is of no consequence and a carriage return or blank card will suffice. If the device is bulk storage, the nine character name may be obtained from the directory listing and must be given exactly as given on the listing.			
Question 2: *FILE (NEW) AAAAA	Question 2 of binary file w format as de name for all to logical 1, suffice.	of INPUT requests the name which it will create. The use scribed in the FORTRAN M further analysis by STATP, the name is of no conseque	e to be associated with the standardized r must respond with five characters in A5 Manual. The file will be identified with this AC. If a non-bulk storage device is assigned nce, and a carriage return or blank card will	
Question 3: $\frac{*FORMAT}{(S_1, S_2,, S_n)}$	The user mu BCD (ASCII to the numb format state	st respond by typing the fo) data. The number of field er of variables per observati ments, see the FORTRAN	rmat needed to read <i>one</i> observation of his ds specified in the format must correspond ion (see Question 5). For a discussion of Manual.	
Question 4: <u>*NO. OBS.</u> IIIII	INPUT requests the number of observations in the user's data file. The user responds with an integer value of five characters right justified in the five character field. (Preceding spaces or 0s must be supplied by the user for numbers with less than five characters.)			
Question 5: <u>*VARS</u> VARII=AAAAA VARII=AAAAA :	Question 5 r He need not est variable s script given sponse must	equests the user to specify specify the names of all of subscript in the list which m by the user defines the num be in the form given below	the names of the variables in his data file. the variables, but he must include the high- nay not be greater than 15. <i>The highest sub- ther of variables per observation</i> . The re- :	
VARII=AAAAA		Character Position	Content	
2		1 through 3 4 and 5 6 7 through 11	VAR subscript II (01 ≤ II ≤ 15) = variable name in A5	
	The list of values or blank car	ariables is terminated by a b	plank record (e.g., a simple carriage return	

Question 6: <u>*ZERO OBS.</u> AAA The user is asked if he wants those observations which contain at least one 0 variable printed. If the user wants these observations, he responds by typing "YES" in A3 format. Any other response (e.g., "NO", or a simple carriage return) will suppress the typing of such observations. (See Section 2.2.2 for a more complete description.)

Comment: *O.K. INPUT outputs this message to terminate the dialogue, and to indicate that processing will now begin. No response is necessary.

NOTE

Once a user BCD data file has been written in standardized binary format on logical 1 by INPUT, the user need not generate the binary file again.

2.2.2 Error Messages

If the user types an illegal subscript (greater than 15) to Question 5 (*VARS), INPUT will type the following message and will not accept the line which was typed.

*IGNORED

The user may continue with legal responses to the question.

If a subscript less than 1 is typed, the input list is terminated and the following question will be asked (ZERO OBS.).

If a bulk storage device is assigned to logical 6 and the user does not respond with the exact name of a file in response to Question 1 (*FILE (OLD)), IOPS 13 will result.¹ No recovery is possible except by restarting execution of STATPAC. Restarting is accomplished by typing CNTRL/C after IOPS 13. The monitor from which execution may be restarted will be loaded.

If a variable of a particular observation does not conform to the user-specified format (answer to the question *FORMAT), the variable in question may be recorded as 0 in the standardized file created by INPUT. The question "ZERO OBS." allows the user to monitor 0 values for such losses. If the user requests such output, INPUT will type the entire observation on logical 4 together with the observation ordinal. The option cannot, however, distinguish between valid and assigned 0 values.

NOTE

1. Only five characters (A5) for a file name are supplied by the user in Question 2. STATPAC supplies \Box STP as the remaining four characters of the file name in the bulk storage directory.

2. All variables in BCD data on logical 6 must be *real*; i.e., E-, F- or G-type conversion.

2.3 DESCRIPTIVE STATISTICS MODULE

2.3.1 Command Dialogue

Question 0: *PROG

SMMRY

The module currently in command requests the user to specify the next module to be used. Assume the user answers with the name of the descriptive statistics module, SMMRY.

Question 1:The user is asked to specify the files to be analyzed by the SMMRY module. The*FILEresponse consists of the names assigned to the files during execution of the INPUTAAAAAmodule (INPUT Question 2). Response must be in A5 format, left justified. AsAAAAAmany as ten files may be analyzed at one time. The user terminates the list of file.names by supplying a blank record (e.g., a simple carriage return or a blank card).

AAAAA

¹Consult the Users' Guide of your computer system for a description of the IOPS 13 error.

Question 2: <u>*VARS</u> II II · · II

Question 3: *OPTS

2

IIIII

The user is asked to list the subscripts of the variables to be analyzed. The response is in I2 format, right justified. At most, 15 subscripts may be listed, and the values of II must be $01 \le II \le 15$. The list of subscripts is terminated by a blank record.

The user is requested to indicate which, if any, hypothesis tests are desired. The user responds with a 0 if he does not want a specific option and with a 1 (or any positive integer) if he does want an option. The first position represents option 1, the second position represents option 2, etc. If no options are desired, the user may respond with a blank record. Examples:

001101User requests options 3, 4, and 6.100000User requests option 1 only.

Question 4:

Question 5:

٦

<u>*MEAN</u> MENII=±XXX.XXXX MENII=±XXX.XXXX

MENII=±XXX.XXXX

.

If option 1 is requested in response to Question 3, the user is requested to provide a test mean for each variable in the analysis. The user must respond in the following form.

Character Position	Content
1 through 3	MEN
4 through 5	subscript II (01 ≤ II ≤ 15)
6	=
7 through 15	test mean in F9.6

The list is terminated by a blank record. An entry for a subscript may be retyped and only the last appearance will be used. If a variable which is in the analysis by virtue of being listed in Question 2 is not assigned a test mean, a default test mean of 0 is assumed.

The user who has requested option 2 in Question 3 is requested to provide a test variance for each variable in the analysis. The user must respond in the following form.

*VRNC
VARII=±XXX.XXXX
VARII=±XXX.XXXX
•
•

VARII=±XXX.XXXX

Character Position	Content
1 through 3	VAR
4 through 5	subscript II ($01 \le II \le 15$)
6	=
7 through 15	test variance in F9.5

2-4

The list is terminated by a blank record. An entry for a subscript may be retyped after it has already been entered and only the last appearance will be used. If a variable in the analysis is not assigned a test mean, because it was listed in Question 2 a default test mean of 0 is assumed by STATPAC.

Comment:	STATPAC indicates the termination of dialogue and the start of the requested
*O.K.	analysis by typing the comment O.K.

2.3.2 Error Messages

If the user responds with a subscript greater than 15 in response to Questions 2, 4, or 5, that particular line is completely ignored but no message is typed. If the user responds with a non-positive subscript to one of these same questions, this is treated as a list terminator and the dialogue proceeds to the next question.

If the user responds to Question 2 (*VARS) with a subscript which is greater than the number of variables/observations in some data file which he has listed in Question 1 (*FILE), the message

*ERR1

will be output on logical 4. Note that the number of variables per observation is defined by the user's response to Question 5 of INPUT. When this error condition exists, the file in question is excluded from further analysis and processing continues. If all the user listed files from Question 1 are eliminated from analysis, the following message will be output on logical 4:

*ERR2

If the user requests option 3, 4, 5, or 6 and has listed only one file name for analysis in response to Question 1, these options will not be processed and no output will result, since they are meaningless for only one file.

NOTES

1. When the elements of the correlation matrix are being calculated, the terms

$$\sum_{m=1}^{N} (x_{jm} \cdot \overline{x}_{j})^{2}, \sum_{m=1}^{N} (x_{im} \cdot \overline{x}_{i})^{2}$$

are used in the denominator of the expression for calculating c_{ij} . If both of these terms are not larger than TOL = .1E-9, then c_{ij} is given the default value 2.0.

2. If, during the processing of option 2, a user supplied variance is found to be less than or equal to TOL = .1E-9, the corresponding statistic is given the default value of 1.E76. Similarly, if during the processing of option 1, a standard deviation is calculated from the data file which is less than .TOL, the corresponding statistic is assigned the default value .1E76. Option 4 operates similarly.

2.4 REGRESSION ANALYSIS MODULES

2.4.1 Command Dialogue

Ques	tion 0:
	*PROG
	STPRG
or	MLTRG

The module currently in command types this question. The user is assumed to have typed either STPRG or MLTRG.

Question 1: * <u>FILE</u> AAAAA	STPRG or MLTRG requests the name of the data file to be analyzed. The user responds in A5 with the exact name of the file which was given in answer to INPUT Question 2.
Question 2: * <u>VARS</u> II II II · · · II J	STPRG or MLTRG requests the subscripts of the variables to be analyzed. The user must respond in I2, followed by a carriage return, and right justified in the two character field. Values must be $01 \le II \le 15$. The last subscript of the list will be considered the dependent variable. Each subscript is terminated by a carriage return, and the list is terminated by a blank record (e.g., an extra carriage return or blank card). If all variables of the file are to be analyzed, the user need only type the subscript of the dependent variable.
Question 3: * <u>FIN</u> XXXX.XXXX	STPRG requests the F-value which will be used to determine if a variable not in the model makes a significant contribution to the model and, therefore, should be added. The user responds in F9.5 followed by a carriage return.
	NOTE
	This question is asked only when the user response to Question 0 is STPRG.
Question 4: * <u>FOUT</u> XXXX.XXXX	Question 4 of STPRG requests the F-value to determine if the contribution of a vari- able, which is in the estimating model, is insignificant and should therefore be ex- cluded from the model. Response is in F9.5. See NOTE for Question 3.
Question 5: * <u>LIM</u> II	Question 5 of STPRG requests the user to specify the number of iterations or cycles to be allowed in the calculation of the estimating model. The limit prevents STPRG from getting into a nonproductive loop of successively including and excluding vari- ables in the model. If the user responds with other than a positive integer, STPRG will use a default limit equal to twice the number of independent variables being analyzed. See NOTE for Question 3.
Question 6: * <u>TOL</u> XXXX.XXXX	Question 6 requests the tolerance factor used by STPRG and MLTRG. The tolerance is used to check for constant observations and to check the diagonal elements of the correlation matrix to avoid trying to invert a badly behaved matrix. Values for TOL are usually between 0.001 and 0.0001. If the user responds with a blank record, STATPAC uses a default value of TOL = .001.
Question 7: * <u>OPTS</u> IIII	STPRG or MLTRG requests the user to specify which options are desired. The four options are described in detail in Section 1.4.2. The user responds with a 0 if he does not want an option or with a 1 if he does want the option. Examples:
	1000Option 1 only1010Options 1 and 3 only0011Options 3 and 4 only

Question 8: * <u>COEF</u> COFII=XXXX.XXXX	This question in the second lined below.	n is asked only if the user r l position of the response t	equests option 2 in Question 7 (i.e., here of Question 7). The user must respond	e types 1 1 as out-
COFII=XXXX.XXXX		Character Position	Content	
COFII=XXXX.XXXX		1 through 3 4 and 5 6 7 through 15	COF subscript II (01 ≤ II ≤ 15) = test coefficient in F9.5	
	The list is te	rminated by a blank record	l.	
Question 9: * <u>FCTR</u> XXXX.XXXX	This question a 1 in the thir the value of mating the d degrees of fr the estimate	n is asked only if the user r ird position of the response $t(N - p, 1 - \frac{1}{2}\alpha)$ in F9.5. T legrees of freedom (N-p) an eedom are output by the re d value used to obtain the	equests option 3 in Question 7 (i.e., he to Question 7). The user must respon- the t-value is obtained from a table by ad specifying a confidence level. The a egression module and may be checked response.	e types nd with esti- ictual against
Question 10: * <u>PLTS</u> IIII	The user is r described in correspondir he does not	equested to specify the out Section 1.4.3, and are liste ng to those plots he wants a want. Examples:	put plots which he would like. The pl d below. The user types a 1 in the posi- and a 0 in the positions corresponding	lots are sition to plots
	1000 0010 1011	Plot 1 only Plot 3 only Plot 1, 3, and 4		
Comment: * <u>O.K.</u>	The regression dialogue and	on analysis modules type th start of the processing.	is message to indicate termination of	the
		I	NOTE	

An "A" appears in plotted output when the value to be plotted is a counter which exceeds 9.

2.4.2 Error Messages

If the user responds to Question 2 (*VARS) or Question 8 (*COEF) with a subscript value greater than 15, the line in question will be ignored. If a non-positive subscript is typed, the list in question is terminated and STATPAC types the next question in the dialogue.

If the following expression is less than the user-supplied tolerance for a specific variable with subscript j:

$$\left(\sum_{i=1}^{N} (x_{ij} \cdot \overline{x_j})^2\right)^{\frac{1}{2}} \leq \text{TOL}$$

where N is the number of observations, the jth variable is considered constant by STATPAC and the following error message is output on logical 4:

(The value j is the subscript of the variable which caused the error.) ERR 1 will terminate processing and a new dialogue will begin.

If the MLTRG module is being used and not all the independent variables can be entered (due to the choice of TOL in part) the following error message will be output on logical 4:

*ERR 2

ERR 2 will terminate processing and STATPAC will begin a new dialogue.

If the user has responded with a subscript greater than the number of variables/observation, STATPAC outputs the following error message:

*ERR 3

ERR 3 will terminate processing and cause STATPAC to begin a new dialogue. Note that the number of variables per observation is defined by the user's response to Question 5 of INPUT.

When the STPRG module is being used, a limit factor (LIM) is used to limit the number of passes in the stepping algorithm. Exceeding this limit causes the following error message on logical 4:

*ERR 4

ERR 4 terminates processing and STATPAC begins a new dialogue.

If no variables are entered into the regression model when using either the MLTRG or the STPRG modules, the following message is output on logical 4:

*ERR 5

ERR 5 terminates processing and STATPAC begins a new dialogue.

NOTE

When any of the above error conditions occur, the user should not indiscriminately adjust the values of TOL, FIN, LIM, etc., to force a complete analysis. The user should closely examine the variables and limits involved before making any such adjustments.

CHAPTER 3 IMPLEMENTING AND AUGMENTING STATPAC

This chapter describes the procedure to be followed when building a STATPAC executable file using the PDP-15 and PDP-9 Monitors. Refer to CHAIN and EXECUTE of the Users' Guide for the general description for chaining the STATPAC program. The procedure for building an executable file with specific hardware and handler assignments is described later in this chapter.

ogical Unit	Function within STATPAC
-4	Contains STATPAC in executable form in IOPS binary.
1	Contains standardized binary data files written by the INPUT module in IOPS binary.
2	Stores temporary files during processing by a STATPAC module in IOPS binary.
3	Hard copy statistical output in IOPS ASCII.
4	Program queries and error messages in IOPS ASCII.
5	User responses to queries in IOPS ASCII.
6	User supplied BCD data files as input to the INPUT module in IOPS ASCII.
7	Temporary storage of residuals (regression) and temporary storage of option output for SMMRY in IOPS binary.

STATPAC modules make use of the following logical units. Specific device handlers must be assigned to these units when the executable file is built.

If the user assigns a bulk storage device to logical unit 3, the output of STATPAC will be recorded in files with the following file names:

Descriptive Statistics

SMMRY STP	Contains the standard SMMRY module output
OPTON STP	Contains the output of the options for SMMRY

Regression Analysis

REGRS STP	Contains the standard regression output (for each step in the case of STPRG) and the residual output, if requested
OPTPL STP	Contains the output for regression options 1, 2, and 3 and the plotted output, if requested

3.1 BUILDING AN EXECUTABLE FILE

STATPAC is supplied to the user in three forms:

- a. Source files for each STATPAC chain.
- b. Binary files of the FORTRAN compiled STATPAC source for each chain.
- c. An executable file with fixed handler assignments, chained as described in this section.

The files are organized according to the following chart.

Module	Source File	Binary File	
CONTROL	CH01 SRC	CH01 BIN	
INPUT	CH03 SRC	CH03 BIN	
SMMRY	CH06 SRC	CH06 BIN	
SMMRY	CH07 SRC	CH07 BIN	
SMMRY	CH08 SRC	CH08 BIN	
SMMRY	CH09 SRC	CH09 BIN	
STPRG & MLTRG	CH10 SRC	CH10 BIN	
STPRG & MLTRG	CH11 SRC	CH11 BIN	
STPRG & MLTRG	CH12 SRC	CH12 BIN	
STPRG & MLTRG	CH13 SRC	CH13 BIN	

NOTE

16K of core memory is required to build the STATPAC executable file, although it will operate in an 8K memory.

An executable file is produced from the above chains by following the steps outlined below. The description assumes that the user has two DECtapes as bulk storage devices for the Monitor System. Assuming also that the compiled binary files are on DECtape unit 1; the user should make the following handler assignments:

\$A DTA0 -1 \$A DTA1 -4,-6 \$A DTB1 1,2,6,7 \$A TTA 3,4,5 \$CHAIN Once CHAIN has been loaded from the system tape, the message "CHAIN V2A" is typed as shown below. The user then types the command "BUILD STATPC", thereby identifying the executable file to be built. The user then types all responses which are preceded by a > in the following listing. (Lines preceded by a > indicate user response is required. Lines not preceded by a > are typed by CHAIN.)

CHAIN V2A >BUILD STATPC >C 1 >CHØ1 >END CHØ1 36655 BCDIO 33662 •SS 33603 GOTO 33555 STOP 33542 SPMSG 33447 FIOPS 32713 OTSER 32617 INTEGE 32467 REAL 31466 CHAIN# 1 LOWEST 31466 COMSZE ØØØ1Ø >C 3 >CH03 >END СНØЗ 34672 DTB. 32647 FILE 31325 • DA 31256 BCDIO 26263 BINIC 26012 •SS 25733 FIOPS 25177 OTSER 25103 INTEGE 24753 REAL 23752 CHAIN# 3 LOWEST 23752 COMSZE ØØØ1Ø >C 6 >CH06 >END CHØ6 35077 DTB. 32054 FILE 31532 31463 • DA BCDIO 26470 BINIO 26217 •SS 26140 GOTO 26112 FIOPS 25356 OTSER 25262 **INTEGE 25132** REAL 24131

CHAIN#	6
LOWEST	24131
COMSZE	00167
>C 7 >CH07 >END CH06 DTB• FILE FLOAT SQRT •DA BINI0 •SS FIOPS OTSER INTEGE REAL	33571 30546 30224 30213 30125 30056 27605 27526 26772 26676 26546 25545
CHAIN#	7
LOWEST	22545
COMSZE	ØØ167
>C 8 >CHØ8 >END CHØ8 DTB. FILE ABS FLOAT SQRT ALOG1Ø .EE .EC .DA BINIO .SS GOTO FIOPS OTSER INTEGE REAL	33620 30575 30253 30224 30136 30116 30025 27761 27761 27742 27441 27362 27334 26600 26504 26354 25353
CHAIN#	10
LOWEST	25353
COMSZE	00167
>C 9 >CH09 >END CH09 DTB. FILE .DA BCDIO BINIO .SS GOTO FIOPS OTSER INTEGE REAL	35511 32466 32144 32075 27102 26631 26552 26524 25770 25674 25544 24543

	CHAIN# LOWEST COMSZE	11 24543 00167	
	>C 10 >CH10 >END CH10 DTB. FILE .DA BCDI0 BINI0 .SS GOT0 FIOPS OTSER INTEGE REAL	34420 31375 31053 31004 26011 25540 25461 25433 24677 24603 24453 23452	
	CHAIN# LOWEST COMSZE	12 23452 ØØ125	
	>C 11 >CH11 >END CH11 DTB. FILE ABS IABS FLOAT SQRT .DA BINIO .SS FIOPS OTSER INTEGE REAL	31553 26530 26206 26170 26154 26143 26055 26006 25535 25456 24722 24626 24476 23475	
· .	CHAIN# LOWEST COMSZE	13 23475 00273	
·	>C 12 >CH12 >END CH12 DTB. FILE ABS •DA BINIO •SS GOTO FIOPS OTSER INTEGE REAL	33003 27760 27436 27420 27351 27100 27012 26773 26237 26143 26013 25012	

CHAIN# 14 LOWEST 25012 COMSZE 00273 >C 13 >CH13 >END CH13 35217 DTB. 32174 FILE 31652 •DA 31603 BCDI0 26610 BINIO 26337 •SS 26260 GOTO 26232 FIOPS 25476 OTSER 25402 INTEGE 25252 REAL 24251 CHAIN# 15 LOWEST 24251 COMSZE ØØØ25 >CLOSE CHAIN V2A >EXIT MORITOR V48

NOTE

Chain numbers are typed by the user in decimal, but CHAIN prints the chain numbers in octal.

When the message "CHAIN V2A" is typed at the end of the listing, STATPC is on DECtape 1 in executable format. After calling the MONITOR, STATPC is executed by typing:

A DTC1 -4 E STATPC

NOTE

STATPC XCT is the name of the executable file which is stored on logical unit 1 by CHAIN.

The assignments made to build the executable file described in this chapter result in all files (ASCII, binary, or temporary) being stored on DECtape 1, and all hard copy output being on the Teletype unit, which is also used for the dialogue of the modules.

The user can increase the processing and output speed by optimally assigning peripheral handlers to the STATPAC logical units.

3.2 ADDING PROCESSING MODULES TO STATPAC

The user has the ability to add FORTRAN coded modules to STATPAC by following a few simple conventions. For example, assume the user wishes to add a module which is written in one chain to STATPAC. The name of the new module is ABCDE. The chain must include the following statements:

COMMON ICNTRL, CPBLTY, IFLAG, ...

DATA ABCDE/SHABCDE/

- C PROCESSING BEGINS HERE
- 100 CONTINUE
 - :
 - C PROCESSING IS FINISHED
- 200 WRITE (4,201)
- 201 FORMAT (6H*PROG) READ (5,202) CPBLTY
- 202 FORMAT (A5) IF (CPBLTY.EQ.ABCDE) GO TO 100 C DIFFERENT MODULE REQUESTED, CALL CONTROL MODULE CALL CHAIN (1) END

If the newly added module must read a data file which was written by INPUT, the file (on logical-1) could be read with the following coding:

С	READ AAAAA, WHICH WAS GIVEN BY USER IN QUEST. 2 OF INPUT.	
	READ (5,100) FILE (1)	
100	FORMAT (A5)	
С	FILE (2)=4H STP	
	CALL SEEK (1,FILE)	
	READ (1) L, (NAME(I), $I=1, L$)	
С	INITIALIZE OBSERVATION COUNTER	
	N=0	
103	READ (1) NO	
	IF (N0.EQ.0) GO TO 102	
	N=N+N0	
	DO 101 N01=1,N0	
	READ(1)(X(I),I=1,L)	
101		CONTINUE
-----	---	--------------------------------
		GO TO 103
С		ALL OBSERVATIONS READ
С		N TOTAL NUMBER OF OBSERVATIONS
102		CALL CLOSE (1)
	:	

The format of the files formed by INPUT which must be read by a user written module for analysis is given in Section 1.2. This format is summarized below. The file is stored on a bulk storage device with directory entry AAAAA STP where the name AAAAA is supplied by the user in response to Question 2 of INPUT and the STP is automatically supplied by STATPAC. In the following description, L is the number of variables (the highest acceptable subscript supplied in Question 5 of INPUT).

[L, NAME(1),,NAME(L)]	Contains the number of variables per observation and their respective names
[N0]	N0 is the number of observations which follow
[X ₁ ,X ₂ ,X _L]	Contains one observation
[X ₁ ,X ₂ ,,X _L]	Contains one observation
[N0]	N0 is the number of observations which follow
$[X_1, X_2,, X_L]$	Contains one observation
•	
$[x_1, x_2,, x_L]$	Contains one observation
[0]	Contains 0 to indicate that zero observations follow, i.e., the end of the data file

The entries in COMMON which must be made in the user supplied module are the following:

ICNTRL	Used by the CONTROL module
CPBLTY	Used if the user requests a different module once processing is completed by the module presently in core (used to read the answer to "*PROG")
IFLAG	May be used in the user supplied program to define multiple entry points into a chain if the module occupies more than one chain (set to 1 by CONTROL)

When the user adds a module to STATPAC, the CONTROL module must be modified to allow the new module to be called. The following changes must be made to CONTROL, assuming that the new module is named ABCDE and that chain number 20 is assigned to it when the executable file is built. (The CONTROL module is chain 1.)

- a. Increase the dimension of TABLE by 1 (i.e., for the first addition, TABLE (6) is the correct dimension).
- b. Add the following DATA statement to the CONTROL module:

DATA ABCDE/5HABCDE/

c. Increase the value of MODULS by 1 (i.e., for the first addition, MODULS/5/ is changed to MODULS/6/).

d. The module selector statement "GOTO (101,102,103,104,105),I" should be changed to add the statement number of a CALL CHAIN command. For the first addition, the GOTO statement is changed to:

GOTO (101,102,103,104,105,106),I

and the following statement is added after statement 105:

106 CALL CHAIN (20)

CHAPTER 4 SAMPLE OPERATION

The user dialogue with STATPAC and the possible data output are illustrated in this chapter. Each of the options and plots which may be requested in the modules is included in the output. The responses to the initial dialogue are for illustrative purposes only, and are not intended as examples of statistically meaningful responses.

The user is referred to the following books for more complete descriptions of the statistical applications of the various options and plots. The selection of tolerances and test means, variances, etc., is discussed in these references.

Descriptive Statistics:	Statistics in Research
	by Bernard Ostle Chapter 7
	Quality Control and Industrial Statistics
	by Acheson J. Duncan, PH. D. Chapter 4
Regression Analysis:	Applied Regression Analysis
	by N. R. Draper and H. Smith Chapters 1,2,3,4, and 6
	BMD Biomedical Computer Programs
	edited by W. J. Dixon Pages 233-257
	Mathematical Methods for Digital Computers
	edited by Anthony Ralston, PH. D. and Herbert S. Wilf, Ph. D. Chapter 17

The operation of the CONTROL module is not illustrated explicitly since the only question used specifies the analysis module desired by the user.

The data used to illustrate the STATPAC modules was obtained from *BMD Biomedical Computer Programs*, published by the University of California Press, used with permission of the editor, Mr. W. J. Dixon.

4.1 INPUT EXAMPLE

The following Teletype listing is an example of the dialogue for the INPUT module. Any printed line which is started with an asterisk (*) is typed by STATPAC; all other lines are typed by the user. Comments are added to the listing to aid the reader.

The message

WARNING - COMMON SIZE DIFFERS

is often typed during the execution of STATPAC. This message is typed by CHAIN and should be ignored by the STATPAC user.

Following the INPUT dialogue, a complete listing of the BMD data is provided to illustrate the format used. This data (its source was credited at the beginning of this chapter) is analyzed by the STATPAC modules and is used throughout this chapter to illustrate the operation of the various modules.

\$E STATPC	
*PROG	
INPUT	
*FILE (OLD)	
	3 spaces
RMD	
*FORMAT	note use of RUBOUT key
(F7.2.7) F7.9.2F7.2.2F7.9)	·
*NØ • 0BS •	
00068	
*VARS	
VARØ1=ONEBM	
VARØ2=TWOBM	
VARØ3=TREBM	
VARØ4=QRTBM	
VAR06=SIXBM	
VARØ5=FIVBM	blank record (i.e., simple carriage return)
*ZERO OBS.	olank lecolu (i.e., simple carnage letuin)
*Ø•K•	

00250	30025	02500	ØØ159	99934	00064
91300	00021	92199	MMMR7	MMM36	90965
00350	aaa22	a22a0	00043	00041	00082
00175	aaaao	00100	00100	00015	88800
VI9173	010101019	N.W.1.2M	90180	1 1 1 1 1 J	00023
00300	99983	92300	NNSNN	NNN33	ИИИ64
09290 	<u>90010</u>	<u> </u>	90339	aaa13	00016
00550	99997	00140	00340	00016	99912
00600	aaaak	aaaga	00500	00011	00007
00100	00000	22070	00150	00011	00001
00130	MUMMA	100210	1.26	0.0001.9	(1004×
00500	00018	NN 36N	00180	00027	MMM 20
00500	MMMM3	00100	00140	00014	99912
<i>0</i> 0309	gagar	00270	00100	99925	00013
aasaa	00006	<u>aa3aa</u>	QQ15Q	00021	aaa2a
aaoaa	aaaaa	00100	00150	00010	aaaoo
00200	00008		00230	00018	00023
00100	00055	02200	00110	90046	00118
<u> </u>	MMM13	91300	99289	90917	00050
00050	09926	00120	00073	90948	ØØØ63
00025	aaa23	02300	00010	00036	00150
01400	888823	00100	00010	0000°5	000070
01409	000003	00100	000330	00000	00012
NN52N	00015	MM2.20	NNN58	00033	00054
90350	00028	01400	00001	90946	00109
ØØ35Ø	<i>MMMM6</i>	00060	MM 500	00010	00010
aa25a	00035	03500	00570	00038	00125
00050	00011	aaoaa	00340	00016	aaaAA
999939	00011	0.0200	00040	00010	00044
NNSNN	ר במימימו	01100	NNN 2N	NRMSN	MMM48
90700	99032	03200	00660	00038	00105
00400	<u> </u>	00100	00450	00012	<i>00009</i>
01500	00023	02300	00015	00049	00130
00100	00038	03800	aassa	00043	00160
00100	agair	00,000	00150	000040	00100
1919320	111111	מימיכוממי	00150	00033	90048
01300	<i>00906</i>	00120	<i>00370</i>	<i>00009</i>	MMM36
00200	90025	02500	00100	00035	90150
91200	00095	99170	00030	00021	90978
00400	aaaaa	00075	00100	00017	00023
00200	00007	00050	001/0	00011	000000
99300	100001	00330	MM200	00012	90042
QURUU	00020	asaaa	00250	00030	MMU 15
aa9aa	ଡ଼ଡ଼ଡ଼ଡ଼ୄୄ	00086	<u>aa25a</u>	ØØØ15	<u>aaasa</u>
99699	00012	00400	00120	00020	00036
99899	99926	99169	90110	00035	00056
00150	00015	00200	00160	0000	00026
00130	00013	99300	00100	00029	00036
00100	00010	MNN 9N	01000	00015	NNN50
aaraa	00028	02800	00420	00040	00108
00200	00034	03400	00090	00042	00106
<u>09690</u>	99994	aaasa	00360	00011	00016
a1500	00033	assaa	00100	00044	00104
01300	00032	0.52.00	00100 aaooa	00044	00104
01700	00011	01100	00230	90914	00047
01600	00002	<i>a</i> aa 5a	00180	00011	09027
99309	00018	00160	00110	00032	00012
00600	00903	00940	90130	00015	00007
01400	aaaag	00110	aasaa	00017	00018
00400	00014	000110	00070	0000	00000
00000	00014	00090	00070	00029	00028
00180	00015	00240	00150	00021	00022
01500	00003	00150	aaara	00013	00011
01800	<i>MMMM6</i>	aa55a	ØØ57Ø	00009	00920
99599	00019	aasaa	00410	00016	00014
0,0,0,0,0	00012	a1100	00000	02010	00019
03900	00011	01100	NNSNN	00022	00003×
02900	NNNNR	00800	00100	00055	00103
00180	00024	024 <u>0</u> 0	<u>a</u> a11a	90038	MM196
01300	00026	92699	00170	00038	MMM 63
91900	99999	1291A	04800	ดตุลออ	00208
01100	00017	01700	001/0	00005	00020
01100	000017	91 190	00160	000020	00032
NINNN	UUU15	NN 20N	NN354	NNN17	NNNSX
19699	00010	<u> MA2MA</u>	<u>00100</u>	00026	00032
ØØ 5ØØ	00022	92299	90120	00039	00100
00100	00015	<u>aa5aa</u>	00080	99929	00050
01700	aaaao	aasaa	Ø1300	00010	aaaea
aasaa	00007	00500	01300	AAAEC	AAAIF
NINCOW	000030	113544	NNN 91	MMM 5X	00065
00130	90910	90130	NN 900	90910	NN925

4.2 SMMRY EXAMPLE

The following statistical output is the result of analysis by SMMRY on the previously presented BMD data and two arbitrary files, DATA1 and DATA2. The arbitrary data files are included to allow the user to select all six options of SMMRY for demonstration purposes. Thus the complete printed output is presented with options.

*PRUG	
SMMRY ***WARNING ***WARNING	 COMMON SIZE DIFFERS*** This message should be ignored. COMMON SIZE DIFFERS***
*FILE	User requests analysis of three data files - BMD, DATA1, and DATA2.
BMD DATA1 DATA2	
*VARS Ø1 Ø4 Ø5 Ø2 Ø3	User types the variables to be analyzed - no specific order necessary.
*0PTS	User requests all six options - any nonzero digit may be used to request an option.
*MEAN MENØ1=1•6 MENØ2=1•7 MENØ3=1•8 MENØ4=2•3 MENØ5=2•5	User types the values for the test mean of each variable - Option 1 was requested.
*VRNC VAR01=4.1 VAR02=4.2 VAR03=4.3 VAR04=4.4 VAR05=3.5	User types the values of the test variances of each variable - option 2 was requested.
*0•K•	Processing will now begin.

Carriage returns typed to terminate lists.

DESCRIPTIVE STATISTICS

BMD **Name of file being analyzed**.

		NO• OBS• =	68	
VARIABLE	MEAN	VARIANCE	STANDARD	STANDARD
NO. NAME			DEVIATION	ERROR
1 ONEBM	ؕ69956E+01	0.41909E+02	0.64738E+01	0.78506E+00
2 TWORM	0•15250E+02	0.87563E+02	0•93575E+01	Ø•11348E+Ø1
3 TREBM	0.10425E+02	0.13519E+03	0.11627E+02	0•14100E+01
4 ORTBM	0.30996E+01	Ø•35966E+Ø2	Ø•59971E+Ø1	0.72726E+00
5 FIVBM	Ø•25397E+Ø2	0•15574E+03	0•12479E+02	0•15134E+01

	SKEWNESS	KURTOSIS	MAX	MIN	RANGE
1	0.15008E+01	0.21928E+01	0.30000E+02	0.25000E+00	0.29750E+02
2	0.57906E+00	-0.80053E+00	0.38000E+02	0.20000E+01	0.36000E+02
3	0•89081E+00	-0.72163E+00	0•38000E+02	0•40000E+00	0.37600E+02
4	0.62546E+01	0•43371E+02	0•48000E+02	0.10000E-01	0•47990E+02
5	0•43154E+00	-0.85983E+00	0•58000E+02	0.50000E+01	0•53000E+02

analysis.

DATA1

VARIABLE NO• NAME	MEAN	VARIANCE	STANDARD DEVIATION	STANDARD ERROR
1 ONE01	0.45600E+02	0.12417E+02	0.35237E+01	0.70475E+00
2 TW001	9.31300E+03	0.14840E+05	0.12182E+03	0.24364E+02
3 TREØ1	0.24136E+03	0.15286E+04	0.39097E+02	0.78194E+01
4 ORT01	0.10868E+03	0.32631E+03	0•18064E+02	0.36128E+01
5 FIV01	0.37440E+02	0.23059E+03	0.15185E+02	0.30370E+01

SKEWNESS	KURTOSIS	MAX	MIN	RANGE
1 -0.46517E+00 2 0.68285E+00 3 0.14744E+01 4 0.46925E+00 5 0.33407F+00	0.12996E+01 0.10441E+01 0.18508E+01 -0.84454E+00 -0.13492F+01	0.51000E+02 0.67700E+03 0.35700E+03 0.14700E+03 0.64000E+02	0.35000E+02 0.13900E+03 0.19800E+03 0.19800E+03 0.15000E+02	0.16000E+02 0.53800E+03 0.15900E+03 0.68000E+02

				CORE	FLATIO	N MAT	RIX				
				00111			N1 //				
		ONEØ 1	1 TW	001 2	2 TREØ	1 3	ORTØ1	4	F I VØ 1	5	
1	ONEØ1	1.00000	7								
2	TWOØ1	0.01155	1 1.	000000	3						
З	TREØ1	-0.29137	3 -0.	179528	3 1.00	0000					
4	ORTØI	0.35203	9 -0.	029065	5 -0.46	0303	1.0000	000			
5	FIVØ1	0.31023	1 -0.	164700	0-0.33	3221	0.9380	952	1.0000	900	

DATA2

VAR 1 2 3 4 5 Answers OPTION VAR 1 2 3 4 5 Answers	USER MEAN 0.1600E+01 0.1700E+01 0.2300E+01 0.2300E+01 0.2500E+01 0.2500E+01 0.4100E+01 0.4200E+01 0.4200E+01 0.4200E+01 0.4400E+01 0.4400E+01 0.4200E+000E+00 0.400E+000E+000E+000E+000E+000E+000E+000	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E 0.1513E 0.6849E 0.1397E 0.2106E 0.5477E 0.2981E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.2 +02 0.1 +02 0.1 +02 0.1 +02 0.1 +02 0.1 +02 0.1 +03 0.7 +04 0.8 +03 0.1 +04 0.1	 ∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02 150E+02 480E+05 532E+04 780E+04 581E+04 	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0 t-values values of DATA2 0.8771E+0 0.4463E+0 0.1001E+0 0.3867E+0 0.5198E+0 Uses to be connered	9 1 2 to be compared with bbtained from t-table. 9 9 2 3 3 3 with values obtained
VAR 1 2 3 4 5 Answers OPTION VAR 1 2 3 4 5	USER MEAN 0.1600E+01 0.1700E+01 0.2300E+01 0.2300E+01 0.2500E+01 0.2500E+01 0.4100E+01 0.4200E+01 0.4200E+01 0.4400E+01 0.4300E+01 0.4300E+01 0.3500E+01	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E 0.1513E 0.6849E 0.1397E 0.2106E 0.5477E 0.2981E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.3 +01 0.2 +02 0.1 +02 0.1 +03 0.7 +04 0.8 +04 0.8 +03 0.1 +04 0.1	 ∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02 150E+02 480E+05 532E+04 780E+04 581E+04 	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0 t-values values of 0.463E+0 0.4463E+0 0.4463E+0 0.1001E+0 0.3867E+0 0.5198E+0	9 1 2 1 1 2 to be compared with bbtained from t-table. 9 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
VAR 1 2 3 4 5 Answers OPTION VAR 1 2 3 4 2 3 4 2 3 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	USER MEAN 0.1600E+01 0.1700E+01 0.2300E+01 0.2300E+01 0.2500E+01 0.2500E+01 0.4100E+01 0.4200E+01 0.4300E+01 0.400E+01	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E 0.1513E 0.6849E 0.1397E 0.2106E 0.5477E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.2 +02 0.1 +02 0.1 +03 0.2 +04 0.2 +02 0.1 +02 0.1 +02 0.1 +03 0.2 -0.1 +02 0.1 +03 0.2 -0.1 +02 0.1 +0.2 +0.2 0.1 +0.2	 ∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02 150E+02 480E+05 532E+04 786E+02 	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0 t-values values of DATA2 0.8771E+0 0.4463E+0 0.1001E+0 0.3867E+0	9 1 2 to be compared with bbtained from t-table. 9
VAR 1 2 3 4 5 Answers OPTION VAR 1 2 3	USER MEAN 0.1600E+01 0.1700E+01 0.2300E+01 0.2300E+01 0.2500E+01 0.2500E+01 0.4100E+01 0.4200E+01 0.4200E+01 0.4200E+01	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E 0.6849E 0.1397E 0.2106E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.3 +01 0.2 +02 0.1 +02 0.1 +03 0.7 +04 0.8 +04 0.9	 ∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02 150E+02 480E+05 532E+04 	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0 t-values values of DATA2 0.8771E+0 0.4463E+0 0.4463E+0 0.1001E+0	9 1 2 to be compared with bbtained from t-table. 9
VAR 1 2 3 4 5 Answers OPTION VAR 1 2	USER MEAN 0.1600E+01 0.1700E+01 0.2300E+01 0.2300E+01 0.2500E+01 0.2500E+01 0.2500E+01 0.4100E+01 0.4200E+01	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E BMD 0.6849E 0.1287E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.3 +02 0.1 +02 0.1 +02 0.1	 ∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02 A1 24 268E+02 480E+02 	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0 t-values values of DATA2 0.8771E+0 0.4462E+2	9 1 2 1 2 to be compared with obtained from t-table.
VAR 1 2 3 4 5 Answers OPTION VAR	USER MEAN 0.1600E+01 0.1700E+01 0.2300E+01 0.2300E+01 0.2500E+00 0.2500E+000E+00 0.2500E+00 0.2500E+00 0.2500E+00 0.2500E+00 00	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E BMD	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.3 +02 0.1 +02 0.1	∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02 A1 24	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0 t-values values of DATA2	9 1 2 1 1 2 to be compared with obtained from t-table.
VAR 1 2 3 4 5 Answers 0PTION VAR	USER MEAN 0.1600E+01 0.1700E+01 0.2300E+01 0.2500E+000E+00 0.2500E+000E+000E+00 0.2500E+000E+000E+00E+00E+00E+00E+00E+00E+0	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.2 +02 0.1	∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0 t-values values of	9 1 2 1 1 2 to be compared with bbtained from t-table.
VAR 1 2 3 4 5 Answers OPTION VAR	USEP MEAN 0.1600E+01 0.1700E+01 0.2300E+01 0.2500E+00 0.2500E+000 0.2500E+000E+00 0.2500E+000E+0000E+000E+0000E+000E+00	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.2 +02 0.1	∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0 t-values values of	1 2 1 1 2 to be compared with obtained from t-table.
VAR 1 2 3 4 5 Answers 0PTION	USER MEAN 0.1600E+01 0.1700E+01 0.1800E+01 0.2300E+01 0.2500E+01 to Question 4	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.2 +02 0.1	∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0 t-values values of	9 1 2 1 1 2 to be compared with obtained from t-table.
VAR 1 2 3 4 5 Answers	USER MEAN 0.1600E+01 0.1700E+01 0.2300E+01 0.2500E+01 0.2500E+01 0.2500E+01	BMD 0 • 68 73E 0 • 1194E 0 • 6117E 0 • 1099E 0 • 1513E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.2 +02 0.1	∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.4845E+0 0.2132E+0 t-values values of	9 1 2 1 2 to be compared with bbtained from t-table.
VAR 1 2 3 4 5 Answers	USEP MEAN 0.1600E+01 0.1700E+01 0.2300E+01 0.2300E+01 0.2500E+01 0.2500E+01	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.2 +02 0.1	∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0 t-values values of the second	1 2 1 1 2 to be compared with
VAR 1 2 3 4 5	USER MEAN 0.1600E+01 0.1700E+01 0.1800E+01 0.2300E+01 0.2500E+01	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.2 +02 0.1	∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0	9 1 2 1 1 2 2
VAR 1 2 3 4 5	USEP MEAN 0.1600E+01 0.1700E+01 0.1800E+01 0.2300E+01 0.2300E+01	BMD 0.6873E 0.1194E 0.6117E 0.1099E 0.1513E	67 DAT +01 0.6 +02 0.1 +01 0.3 +01 0.2 +02 0.1	∧1 24 243E+02 278E+02 064E+02 945E+02 150E+02	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0 0.2132E+0	9 1 2 1 1 2
VAR 1 2 3 4	USEP MEAN 0.1600E+01 0.1700E+01 0.1800E+01 0.2300E+01	BMD 0.6873E 0.1194E 0.6117E 0.1099E	67 DAT +01 0.6 +02 0.1 +01 0.3	∧1 24 243E+02 278E+02 064E+02 945E+02	DATA2 0.3102E+0 0.1091E+0 0.4847E+0 0.5405E+0	1 2 1 1
VAR 1 2 3	USER MEAN 0.1600E+01 0.1700E+01	BMD 0.6873E 0.1194E 0.41175	67 DAT +01 0.6 +02 0.1	A1 24 243E+02 278E+02 064E+02	DATA2 0.3102E+0 0.1091E+0 0.4547E+0	9 1 2
VAR 1	USER MEAN	BMD Ø • 68 7 3 E	67 DAT	A1 24 243E+02	DATA2 9.3102E+0	9
VAR	USER MEAN	BMD	67 DAT	A1 24	DATA2	9
VAR	USER MEAN	вмр	67 DAT	A1 24	DATA2	•
VAR	USER MEAN					
			,			
UPIION	1			1		
007.4.00					\mathbf{i}	
				∧ ^N	i - 1 (degrees of freed	om for each data file)
5 FIV	0.72991	0 0.7289	78 -0.714	846 - 9.	737734 .1.00	0 0 00
3 TRE	02 -0.87237 02 -0.10700	1 -0.2493	84 1.000 27 0.150	000 505 1	aaaaaa	
2 TWC	192 9.99590	4 1.0000	99			
1 ONE		19				
	ONEØ2	1 TWOAS	2 TRE02	3 QR	T02 4 FIV0	2 5
		(;0	KKELAIJUN	MAIRIX		
			DDFLATION	ΜΛΤΡΙΥ		
5 -0.	35647E+00 -0	•13386E+0	1 0.1159	9E+03	0•72509E+02	0•43400E+02
4 0.	12898E+00 -0	•14738E+0	1 0.4700	0E+02	9 • 69999E+91	9•41000E+02
3 9.	37643E+90 -0	•16785E+0	1 0.2300	0E+02	0.40090E+01	0.19000E+02
1 Ø.	583568+00 -0 127358+00 -0	• 74511E+0 • 15320F+0	4 0.2100 1 0.7100	いた+の2 のF+の2	0.31000E+91 0.31000E+92	M•20000E+02 M•40000F+02
1 0	2002/D.00	705115:0	a a a	05.00	0 1000013-01	a 000000-00
	SKEWNESS	KURTOSIS	М	AX	MIN	RANGE
JFIV	₩Z N•9834	06706	୬ • େଅଛି I 4≞ [™]	,0 11		
4 ORT	02 0.2580	9E+02 (9E+02 (N•18907E+! a.0a014F+!	//3 0/- //3 0/-	•13130E+02 •14218F+02	0.43482E+01 0.44961E+01
3 IKE	02 0.1240	0E+02 0	7.47822E+	72 A.	• 69154E+Ø1	0.21868E+01
O TOP	02 0.5150	9E+02 (0.20828E+0	73 Ø.	14432E+02	ؕ45637E+01
2 TWO	az a•78aa	9E+01	9.39956E+(az a.	63210E+01	0.19989E+01
1 ONE				1.		2
1 ONE	에는					FRROR
ARIABI 10 • NAI 1 ONE 2 TWO	LE ME. Me	ΑN	VARIANCI			

OPTION 3

VAR = 1

		RMD	67	DATA1	24	DATAS	<u>ģ</u>
BMD	67	0.0000)E+00	-0.2825	E+02	-0.3679E	+ 919
DAŤA1	24	0.2825	SE+02	0.0990	E+02	0.2263E	+ 612
DATA2	2	0.3675	9E+09	-0.2263	E+02	0.0000E	+ 919

t-statistic comparing variable 1 in BMD and DATA1.

VAR = 2

		BMD	67	DATA1	24	DATAS	9
BMD	67	9.0009	E+00	-0.2018	E+02	-0.1061E	+ଜ୧
DATA1	24	0.2018	E+02	0.00001	E+00	0.6710E	+ (?) 1
DATA2	9	0.1061	E+92	-0.6710	E+01	0.0000E	+00

VAR = 3

		BMD	67	DATA1	24	DATA2	9
BMD	67	0.0000E	+00	-0.4404E	- +Ø2	-0.5219E	+00
DATA1	24	0.4404E	+02	. 0.0000E	5+00	0.1825E	+02
DATA2	9	0.5219E	+00	-0.1825E	1+02	0.0000E	+00

VAR = 4

		BMD	67	DATA1	24	DATA2	9
BMD	67	0.0000E	+ØØ	-0.4255E	E+02	-0.9113E	+01
DATA1	2.4	0.4255E	+02	0.0000E	E+00	0.1303E	+02
DATA2	9	ؕ9113E	+01	-0.1303E	E+02	0.0900E	+00

VAR = 5

		RMD	67	DATA1	24	DATA2	9
BMD	67	0.0000	E+00	-0.38871	E+01	-0.1696E	+02
DATA1	24	ؕ3887	E+01	a•0000)	E+00	-0.1090E	+02
DATAS	9	M•1696	E+02	9 • 1 Ø 9 Ø I	E+02	0.00005	+00

```
OPTION 4
```

VAR = 1

		BMD	67	DATA1	24	DATA2	9
BMD	67	0•1000E	+01	0.3375E	+01	0.1049E+	01
DATA1	24	0•2963E	+00	0.1000E	+01	0.3108E+	00
DATA2	9	0•9534E	+00	0.3218E	+01	0.1000E+	01

VAR = 2

		BMD	67	DATAI	24	DATA2	9
BMD	67	0•1000	E+01	0.5901	E-02	0.4204E	+00
DATA1	24	0•1695	E+03	0.1000	E+01	0.7125E	+02
DATA2	9	0•2379	E+01	0.1404	E-01	0.1000E	+01

F-statistic comparing variable 2 in DATA2 and DATA1.

VAR = 3

	BMD	67	DATA1	24	DATA2	9
BMD 67	0•1000E-	+01	0.8844E	-01	0.2827E+	+01
DATA1 24	0•1131E-	+02	0.1000E	+01	0.3196E+	+02
DATA2 9	0•3537E-	+00	0.3129E	-01	0.1000E+	+01

VAR = 4

		BMD	67	DATA1	24	DATAS	9
BMD	67	0 • 1000	E+01	0 • 1 1 0 2	E+00	0 • 1 902E	:+00
DATA1	24	0 • 9073	E+01	0 • 1 0 0 0	E+01	0 • 1 726E	:+01
DATA2	9	0 • 5257	E+01	0 • 5 7 9 4	E+00	0 • 1 000E	:+01

VAR = 5

		BMD	67	DATA1	24	DATA2	9
BMD	67	0 • 1000	E+01	0.6754	E+00	0.7704E	;+00
DATA1	24	0 • 1481	E+01	0.1000	E+01	0.1141E	;+01
DATA2	9	0 • 1298	E+01	0.8766	E+00	0.1000E	;+01

OPTION 5 F-VALUE VAR 1 0.4252E+03 0.2429E+03 2 3 0.1142E+04 ___F-statistic comparing variable 3 in all files of the analysis. 0.9504E+03 4 5 0.2280E+03 2 100 V1 = Degrees of freedom parameters. V2 = OPTION 6 VAR UNCORRECTED CORRECTED 0.1062E+02 0.9609E+01 1 2 0.2417E+03 0.2187E+03 0.7398E+02 0.6694E+02 З 0.5215E+02 0.4719E+02 4 5 0.1527E+01 0.1381E+01 K - 1 = 2= 0.1105E+01 Correction factor С

4.3 STPRG EXAMPLE

The following example illustrates the STPRG module of STATPAC including all options and plots. The previously presented BMD data is analyzed with variable 6 as the dependent variable. STPRG performs four steps and stops after including independent variables 1,3,4, and 5 in the regression model. Variable 2 was not entered into the model because the value of F (ENTER) never exceeded the value of F-IN (=0.5).

*PROG STPRG ***WARNING - COMM	ION SIZE DIFFERS*** This message should be ignored.
*FILE	User types the name of the file to be analyzed.
BMD *VARS 01 04 05 02 03 06	User types the variables to be considered for the model. The last variable listed is used as the dependent variable.
*F I N	User types the F-value to determine entry.
*FOUT	User types the F-value to determine exit.
*LIM 06	User types the maximum number of iterations.
*TOL	User requests the default tolerance (0.001).
*OPTS 1111 *COEF COEM1=1-1	User requests all options. User supplies the test coefficients for option 2.
COF02=1.2	

COF03=1.3	
COF05=1.4	
COF04=1.5	
COF02=1.2678	
	User types simple carriage return.
*FCTR	User supplies the value for $t(N-p, 1-\frac{1}{2}\alpha)$.
2.0	
*PLTS	User requests all plots.
1111	-
*0•K•	Processing will now begin.

${\tt REGRESSION} \ \ {\tt OUTPUT} \ \ {\tt CSTPRO} \ \ \, {\tt Stepwise regression}$

ρατα	FIL	E BM	D -			Name of file (Question 1).
NO• 0	RS•		68			
RESP•	6	SI	XBM	-	<u> </u>	Subscript and name of dependent variable.
TOL.	,	୬ • ୬ମ	100			Response to Question 6.
F-IN	1	7.59	ଉଉଡ଼ି)	_		
F-OUT	(1.30	999			Responses to Questions 3 and 4.
			,			
VART	ABL	E	COF	R.	X.VS.Y	

•	THOLE	GONNE A ST	
~	~~~~~		. Response to Question 2.
$\left(1\right)$	ONEBM	0.082056	
5	TWOBM	0.749617	
3	TREBM	9.786958	
4	ORTBM	9.342568	
5	FIVBM	0.645167	
\cup	′ •		-Responses to Question 5 of INPUT.

STEP NO. 1

VAR. ENTERING	3 TREBM	- Subscript and name of first variable in model
SEO. F-TEST	106.724	F-test to determine entry $(106.724 > 0.5)$
DEGREES OF FREE	DOM 66	
CHANGE IN R-SO	0.617888	- Change in multiple correlation coefficient
R-SQ	0.617888	- New multiple correlation coefficient
STD. ERR. Y	27.1238	- Standard error of dependent variable.

ANUVA		Analy	sis of Variance			
SOURCE	D.F.	SUM OF SQUARES	MEAN SQUARE		OVERALL F	
TOTAL REGRS• RESID•	67 1 66	0.127073E+06 0.785169E+05 0.485562E+05	0•785169E+05 9•735799E+03		0.106794E+03	
VAR• IN R	EG•					
VARIA	BLE	COEFFICIENT	STD. ERROR	F	(REMOVE)	

3 TREBM 0.294426E+01 0.285000E+00 0.106724E+03 F-value needed to remove this variable from_ the present regression model B0 = 26.0998 ← Constant term of the model

```
VAR. NOT IN REG.
```

VARIABLE	TOLERANCE	PARTIAL CORR.	F (ENTER)
1 ONEBM 2 TWOBM 4 ORTBM 5 FIVBM	n.999974 n.24659n n.984158 n.434591 ∳ a _{ii}	0 • 126216 0 • 219325 0 • 397285 0 • 132760 Partial correlation	0 • 105225E+01 0 • 328473E+01 0 • 121821E+02 0 • 116621E+01 F-values needed to enter these
	-	with y	variables in the present regression model

STEP NO. 2

 VAR.
 ENTERING
 4
 0.RTBM
 ✓ Variable 4 enters regression model

 SE0.
 F-TEST
 12.1821

 DEGREES
 OF
 FREEDOM
 65

 CHANGE
 IN
 R-S0
 0.060311

 R-S0
 0.678199
 STD.
 ERR.
 Y

ANOVA

SOURCE	D•F•	SUM OF SQUARES	MEAN SQUARE	OVERALL F
TOTAL REGRS• RESID•	67 2 65	0.127073E+06 0.861808E+05 0.408923E+05	0•430904E+05 0•629112E+03	0•684940E+02

VAR. IN REG.

VARIABLE	COEFFICIENT	STD. ERROR	F (REMOVE)
3 TREBM	0.282755E+01	0.265660E+00	0.113284E+03
4 ORTBM	0.179768E+01	0.515052E+00	9•121821E+Ø2

BØ = 21.7445

VAR. NOT IN REG.

VAF	RIABLE	TOLERANCE	PARTIAL CORR.	F (ENTER)
1	ONEBM	0.933987	9.027242	0.475306E-01
2	TWOBM	0.246516	0.246529	0•414141E+01
5	FIVBM	0.378439	9.321789	0.739256E+01

STEP NO. 3

VAR . E	ENTERING	5 F	I VBM 🖛 🗕 🚽	Variable 5 enters the regression model
SEO. F	F-TEST	7.39	9256	
DEGREE	ES OF FREED	MOC	64	
CHANGE	E IN R-SQ	0.033	3322	
R-SQ		Ø • 71	1521	
STD. E	ERR• Y	23.0	328	

ANOVA

SOURCE	D•F•	SUM OF SQUARES	MEAN SQUARE	OVERALL F
TOTAL	67	0.127073E+06		
REGRS.	3	0•904151E+05	0•301384E+05	0.526176E+02
RESID.	64	0.366580E+05	0.572781E+03	

VAR. IN REG.

VARIABLE	COEFFICIENT	STD. ERROR	F (REMOVE)
3 TREBM	ؕ195840E+01	0•407974E+00	0•230429E+02
4 ORTBM	Ø•231239E+Ø1	0.526652E+00	0.192786E+02
5 FIVBM	0.103553E+01	9.389860E+00	0.739256E+01

BØ = 2.91072

VAR. NOT IN REG.

VARIABLE	TOLERANCE	PARTIAL CORR.	F (ENTER)	
1 ONEBM	0•883169	0 • 1 1 1 1 1 4	0.787547E+	00
2 TWOBM	0•113447	0 • 0 1 5 7 3 7	0.156066E-	01

STEP	NO •	4 - Last step - no more variables to be entered or removed
------	------	--

VAR. ENTERING	1 ONEBM - Variable 1 enters regression model
SEQ. F-TEST	0.787547
DEGREES OF FREEF	00M 63
CHANGE IN R-SQ	0.003562
R-SQ	0.715082
STD. ERR. Y	23.9727

ANOVA

SOURCE	D•F•	SUM OF SOUARES	MEAN SOUARE	OVERALL F
TOTAL	67	0.127073E+06		
REGRS.	4	9•998677E+05	0.227169E+05	0.395291E+02
RESID.	6.3	0.362054E+05	9.574689E+03	

VAR. IN REG.

All values are greater than F-OUT (0.3)

VARIABLE	COEFFICIENT	STD. ERROR	F (REMOVE)
1 ONEBM	9 • 427298E+90	0•481394E+00	0•787547E+00◀
3 TREBM	0.189677E+01	9.414512E+00	0.209389E+02
4 ORTBM	0.223335E+01	0•534995E+00	Ø.174266E+Ø2
5 FIVBM	0•111674E+01	0.392316E+00	0.810276E+01

B0 = -1.25284

Less than F-IN (0.5)

VAR . N	I TOI	NR	EG.
---------	-------	----	-----

VARIABLE	TOLERANCE	PARTIAL CORR.	F (ENTER)
2 TWOBM	9.102908	9 • Ø52498	0•170755E+00

RESIDUAL OUTPUT

NO •	OBS	PRED	RESID
1	9.640000E+92	0.885535F+02	-0.245535F+02
2	0.650000F+02	0.862786F+02	-0.212786F+02
3	0.820000F+02	0.887180E+02	-0.671796F+01
4	0-930000E+02	0.007100E.02	0.049002F+00
5	0.640000E+02	0 \$ 40725E+00	-0.0007255400
5	0.040000E+02	0.8497356402	-0.209735E+02
0	0 • 1600000E+02	N•226273E+02	-0.662731E+01
1	0.120000E+02	0.292135E+02	-0.172135E+02
8	0.270000E+92	9•262787E+02	0•721302E+00
9	0•480000E+02	0•289919E+02	0•190081E+02
10	0.500000E+02	0•418836E+02	0 811641E+01
11	0•120000E+02	0.215410E+02	-0.954102E+01
12	0•130000E+02	0.353019E+02	-0.223019E+02
13	0•290909E+92	0.320935E+02	-0.120935E+02
14	0•230000E+02	0.271830E+02	-0.418304E+01
15	9•118009E+93	0•947300E+02	0.232700E+02
16	0.500000E+02	0.503519E+02	-0.351914E+00
17	0•630000E+92	9.564708E+92	0.652920E+01
18	0.150000E+03	0.829056F+02	0.679944F+02
19	9.729000E+02	9.200252F+02	0.519748E+02
20	9.540000F+02	0.420349F+02	0.119651F+02
21	0.109000E+03	0 - 781895E+02	0.308105E+02
	0.10000E.00	0 • 761695E. 02.	0.3001032.02
22	0.100000E+02	0.237146E+02	-0.137146E+02
23	0•125000E+03	Ø•121368E+Ø3	0•363178E+01
24	0•440000E+02	0.282155E+02	ؕ157845E+02
25	0•480000E+02	0•439175E+02	0•408250E+01
26	0•195000E+03	0•119610E+03	-0.146104E+02
27	0•900000E+01	ؕ258037E+02	-0.168037E+02
28	0.130000E+03	0•103836E+03	0.261638E+02
29	0•160000E+03	0.124185E+03	0.358153E+02
30	0•480000E+02	0•499287E+02	-0.192869E+01
31	0.360000E+02	0•248910E+02	ؕ111090E+02
32	0.150000E+03	ؕ883400E+02	0.616600E+02
33	0.780000E+02	0.312197E+02	0.467803E+02
34	0.230000E+02	0.251065E+02	-0.210652E+01
35	0.420000E+02	0.258751E+02	0.161249E+02
36	0.720000E+02	0.785157E+02	-0.651573E+01
37	0.200000E+02	0.265577E+02	-0.655773F+01
38	0-360000E+02	0-2000112102 0-339123E+02	0.208769F+01
30	0-560000E+02	0-467423E+02	0.925773F+01
40	0-360000E+02	0 - 410371E+02	-0.503711E+01
41	0 0 4 0 0 0 0 0 E + 0 2	0 - 410371E-02	-0 1217015+02
41	0.10000000000	0 • 3 9 1 7 9 1 E + 02	-0.1303045+01
42	0.1080002+03	0.1093246+03	-0.1323965+01
43	0.10600000000	0.1130052+03	-0.100476E+01
44	0.160000E+02	0.231520E+02	-0.715201E+01
45	0.104000E+03	0 • 1 1 9008E+03	-0.150084E+02
46	0.470000E+02	0.476452E+02	-0.645188E+00
47	0.270000E+02	0.228350E+02	0•416496E+01
48	0•120000E+02	0•412560E+02	-0.292560E+02
49	0•700000E+01	0•217236E+02	-0.147236E+02
50	0•180000E+02	0•302658E+02	-0.122658E+02
51	0•280000E+02	0•369663E+02	-0.896633E+01
52	0.250000E+02	0.308700E+02	-0.586995E+01
53	0.110000E+02	0.243047E+02	-0.133047E+02
54	0.200000E+02	0•396499E+02	-0.196499E+02
55	0.140000E+02	0.317013E+02	-0.177013E+02
56	0.380000E+02	0.614628E+02	-0.234628E+02

0•103000E+03	Ø•53112ØE+02	0•498880E+02
0•106000E+03	0•899314E+02	0•160686E+02
0•630000E+02	0•998496E+02	-0.368496E+02
0•208000E+03	0•201456E+03	0.654361E+01
0.320000E+02	0•671833E+02	-0.351833E+02
0•280000E+02	Ø•415379E+Ø2	-0.135379E+02
0.320000E+02	0•420629E+02	-0.100629E+02
0•100000E+03	ؕ888450E+02	ؕ111550E+02
0.500000E+02	0•428304E+02	Ø•716963E+Ø1
0•800000E+02	0•519009E+02	0•280991E+02
0•650000E+02	ؕ134051E+03	-0.690510E+02
ؕ250000E+02	ؕ330358E+02	-0•803584E+01
	0.103000E+03 0.106000E+03 0.630000E+02 0.208000E+03 0.320000E+02 0.280000E+02 0.320000E+02 0.320000E+02 0.100000E+03 0.500000E+02 0.800000E+02 0.650000E+02 0.250000E+02	0.103000E+03 0.531120E+02 0.106000E+03 0.899314E+02 0.630000E+02 0.998496E+02 0.208000E+03 0.201456E+03 0.320000E+02 0.671833E+02 0.280000E+02 0.415379E+02 0.320000E+02 0.420629E+02 0.100000E+03 0.888450E+02 0.500000E+02 0.420629E+02 0.100000E+03 0.888450E+02 0.500000E+02 0.428304E+02 0.500000E+02 0.519009E+02 0.519009E+02 0.134051E+03 0.250000E+02 0.330358E+02

OPTION 1

	T-VALUE	VARIABLE	
Note that t-statistics are compute only for variables included in the model	0.887438E+00 0.457590E+01 0.417451E+01 0.284654E+01	1 ONEBM 3 TREBM 4 ORTBM 5 FIVBM	

OPTION 2

		Response to Question 8
VARIABI	LE USER COEFF	T-VALUE
1 ONE	BM ؕ110000E+01	-0.139759E+01
3 TRE	3M ؕ130000E+01	Ø•143968E+Ø1
4 QRTI	BM 0•150000E+01	ؕ137075E+01
5 FIV	BM 0•140000E+01	-0.722017E+00

OPTION 3

T(N-P ,	1-ALPHA/2) =	2 • 00000 ← Response to Question 9 (FCTR
VARIABLE	LOWER BOUND	UPPER BOUND
1 ONEBM 3 TREBM 4 QRTBM 5 FIVBM	-0.535581E+00 0.106774E+01 0.116335E+01 0.332109E+00	0 • 139000E+01 0 • 272579E+01 0 • 330334E+01 0 • 190137E+01

N-P = 63 — Degrees of freedom

```
PLOT 1
```


PLOT 2

PLOT 3

Value of the residual

4.4 MLTRG EXAMPLE

The following sample output is the result of analysis of the DATA1 file with the MLTRG module of STATPAC. The output does not include options and plots, as the MLTRG options and plots are the same as those of STPRG previously presented.

*PROG					
MLTRG ***WARNING	-	COMMON	SIZE	DIFFERS***	This message should be ignored
*FILE					
DATA1 *VARS 06 *TOL •00103 *OPTS		J	Last varia vill be en	ble typed is the de tered in the regress	pendent variable (all variables in the file ion model)
1001		(Only opti	ons 1 and 4 are req	uested
*PLTS 0111 *0•K•		(Only plot	s 2, 3 and 4 are req	uested

REGRESSION OUTPUT (MLTRG)

DATA FILE DATA1 NO. ORS. 25 RESP. 6 SIX01 Cependent variables TOL. 0.00103

VARIABLE	CORR• X•VS•Y	
1 ONE01 2 TW001 3 TRE01 4 ORT01 5 FIV01	0.068706 0.468219 0.111343 0.308764 0.290697	All independent variables are included in the model

R-SQ			0.494342
STD.	ERR•	Y	1•15539

ANOVA

SOURCE D.F.	SUM OF SQUARES	MEAN SQUARE	OVERALL F
TOTAL 24 REGRS• 5 RESID• 19	9 • 501600E+02 0 • 247962E+02 0 • 253638E+02	0•495924E+01 0•133494E+01	0.371496E+01

VAR. IN REG.

VARIABLE	COEFFICIENT	STD. ERROR
1 ONEØ1	0.430884E-02	0.724055E-01
2 TW001	0.722737E-02	0.212183E-02
3 TRE01	0.158192E-01	0.728874E-02
4 QRT01	0•148276E-01	0.444280E-01
5 FIV01	0.339402E-01	0.505993E-01

BØ = -6.71895

APPENDIX A DESCRIPTIVE STATISTICS ALGORITHMS

 \overline{X}_{ji} : mean of the jth variable in the ith file.

$$\overline{X}_{ji} = \begin{pmatrix} N_i \\ \sum_{m=1}^{N_i} X_{jim} \end{pmatrix} / N_j$$

 σ_{ji}^2 : variance of the jth variable in the ith file.

$$\sigma_{ji}^{2} = \left(\sum_{m=1}^{N_{i}} (X_{jim} - \overline{X}_{ji})^{2}\right) / (N_{i} - 1)$$

 σ_{ji} : standard deviation of the jth variable in the ith file.

$$\sigma_{ji} = \sqrt{\sigma_{ji}^2}$$

 $S.E._{ji}$: standard error of the mean of the jth variable in the ith file.

$$\text{S.E.}_{ji} = \sigma_{ji} / \sqrt{N_i}$$

 $SKEWNESS_{ji}$: coefficient of skewness of the jth variable in the ith file.

$$\text{SKEWNESS}_{ji} = \frac{\begin{pmatrix} N_i \\ \sum (X_{jim} - \overline{X}_{ji})^3 \end{pmatrix} / N_i}{\sigma_{ji}^3}$$

 KURTOSIS_{ji} : coefficient of kurtosis of the jth variable in the ith file.

$$KURTOSIS_{ji} = \frac{\begin{pmatrix} N_i \\ \sum (X_{jim} - \overline{X}_{ji})^4 \end{pmatrix} / N_i}{\sigma_{ji}^4} -3$$

 C_{rs} : simple correlation coefficient between the rth and sth variable in the ith file.

$$C_{rs} = \frac{\begin{bmatrix} N_{i} \\ \sum \\ m=1 \end{bmatrix}}{\begin{bmatrix} \left(X_{rim} - \overline{X}_{ri} \right) \left(X_{sim} - \overline{X}_{si} \right) \\ \sum \\ m=1 \end{bmatrix}} \left(X_{rim} - \overline{X}_{ri} \right)^{2} \left\{ \begin{bmatrix} N_{i} \\ \sum \\ m=1 \end{bmatrix} \left(X_{sim} - \overline{X}_{si} \right)^{2} \right\}^{\frac{1}{2}}$$

APPENDIX B REGRESSION ANALYSIS ALGORITHMS

corr (x_i,y) : correlation of the ith dependent variable with the independent variable.

$$\operatorname{corr}(\mathbf{x}_{i}, \mathbf{y}) = \frac{\sum_{m=1}^{N} (\mathbf{X}_{im} \cdot \overline{\mathbf{X}}_{i}) (\mathbf{y}_{m} \cdot \overline{\mathbf{y}})}{\sqrt{\sum_{m=1}^{N} (\mathbf{X}_{im} \cdot \overline{\mathbf{X}}_{i})^{2}} \sqrt{\sum_{m=1}^{N} (\mathbf{y}_{m} \cdot \overline{\mathbf{y}})^{2}}$$

r²: multiple correlation.

$$r^{2} = \frac{\sum_{i=1}^{N} (\widehat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y})^{2}} = 1 - a_{nn}$$

s_y: standard error of y.

$$s_y = \sqrt{\sum_{m=1}^{N} (y_m - \overline{y})^2} \sqrt{a_{nn} / (N-1-p)}$$

Sequential F-test (Entering).

where

 $F = \left\{ V_{max} (\phi - 1) \right\} / (a_{nn} - V_{max})$ $V_{max} = maximum V_i, V_i = a_{in} a_{ni} / a_{ii}$ $a_{ij} = elements of the correlation matrix$ n = total number of variables being analyzed $\phi = degrees of freedom (N-1-p)$

Sequential F-test (Leaving)

where

$$F = \left\{ (|V_{\min}|) \cdot \phi \right\} / a_{nn}$$

$$V_{\min} = \min V_i, V_i = a_{in} a_{ni} / a_{ii}$$

and other symbols as above.

ANOVA Analysis of Variance Table

D.F. (Degrees of Freedom)	Total	N - 1
	Regression	р
	Residual	N - 1 - p
Sum of Squares	Total	Ν
		$SS_y = \sum_{m=1}^{\infty} (y_m \cdot \overline{y})^2$
	Regression	$SS_{reg} = SS_y (1 - a_{nn})$
	Residual	$SS_{resid} = SS_{y} - SS_{reg}$
Mean Square	Regression	$ms_{reg} = SS_{reg}/p$
	Residual	$ms_{resid} = SS_{resid}/(N-1-p)$
Overall F	Regression	ms _{reg} /ms _{resid}

Table of Variables in Regression

 b_i : coefficient of the ith variable.

$$b_i = b_{in} \frac{\sigma_n}{\sigma_i}$$

where

 $b_{in} = i^{th}$ element of last (nth) column of inverted correlation matrix.

$$\sigma_{n} = \sum_{m=1}^{N} (y_{m} - \overline{y})^{2} \qquad \sigma_{i} = \sum_{m=1}^{N} (X_{im} - \overline{X}_{i})^{2}$$

 s_i : standard error of b_i .

$$s_i = \frac{s_y}{\sigma_i} \sqrt{b_{ii}}$$

where

s_y is standard error of y;

 σ_i is defined as above;

 b_{ii} is diagonal element of the correlation matrix.

 F_i : F-test to remove the ith variable.

$$F_i = \left[\frac{b_i}{s_i} \right]^2$$

 b_0 : constant term of model.

$$b_0 = \overline{y} - \sum_{i=1}^{T} b_i \overline{x}_i$$

where T = number of variables in regression

Table of Variables not in Regression

 tol_i : tolerance of ith variable.

$$tol_i = a_{ii}$$
 (the ith diagonal element of the inverted correlation matrix)

Partial correlation of the ith variable.

part. corr._i =
$$a_{in}/\sqrt{a_{ii}a_{nn}}$$

 F_i : F-test to enter the ith variable.

$$F_{i} = \left\{ a_{in}^{2} (\phi - 1) \right\} / (a_{ii} a_{nn} - a_{in})^{2}$$

where

 $\phi = N - 1 - p$

Residual Output

 \hat{y}_i : predicted value of the dependent variable for the ith observation.

$$\hat{y}_i = b_0 + \sum_{j=i}^{T} b_j X_{ji}$$

where

T = number of variables in regression.

 e_i : residual for the ith observation.

$$\mathbf{e}_i = \mathbf{y}_i \cdot \hat{\mathbf{y}}_i$$

BIBLIOGRAPHY

The following PDP-15 and PDP-9 manuals describe the software and operating procedures used by STATPAC:

PDP-15/20 System

PDP-15/20 Advanced Monitor Software System Digital Equipment Corporation, Maynard, Mass.; Order No. DEC-15-MR2A-D.

PDP-15/20 User's Guide

Digital Equipment Corporation, Maynard, Mass.; Order No. DEC-15-MG2A-D.

PDP-15/30 System

PDP-15/30 Background/Foreground Monitor Software System Digital Equipment Corporation, Maynard, Mass.; Order No. DEC-15-MR3A-D.

PDP-15/30 User's Guide

Digital Equipment Corporation, Maynard, Mass.; Order No. DEC-15-MG3A-D.

PDP-15/40 System

PDP-15/40 Disk Oriented Background/Foreground Monitor Software System Digital Equipment Corporation, Maynard, Mass.; Order No. DEC-15-MR4A-D.

PDP-15/40 User's Guide

Digital Equipment Corporation, Maynard, Mass.; Order No. DEC-15-MG4A-D.

PDP-9 Advanced Software System

Keyboard Monitor Guide PDP-9 ADVANCED Software System; Digital Equipment Corporation, Maynard, Mass.; Order No. DEC-9A-NGBA-D. PDP-9 ADVANCED Software System Monitors Digital Equipment Corporation, Maynard, Mass.; Order No. DEC-9A-MADO-D.

FORTRAN Manuals

PDP-15 FORTRAN IV Manual Digital Equipment Corporation, Maynard, Mass.; Order No. DEC-15-KFZA-D.

FORTRAN IV Programmer's Reference Manual PDP-9 ADVANCED Software System; Digital Equipment Corporation, Maynard, Mass.; Order No. DEC-9A-KFZA-D.

The following statistics texts contain useful information relating to the descriptive statistics module:

Quality Control and Industrial Statistics (Revised edition) by Acheson J. Duncan, Ph.D.; Richard D. Erwin, Inc., 1959; Chapter 4.

Statistics in Research (Second edition),

by Bernard Ostle; The Iowa State University Press, Ames, Iowa; 1963; Chapter 7.

The following statistics texts contain useful information relating to the regression analysis modules:

Applied Regression Analysis

by N. K. Draper and H. Smith; John Wiley & Sons, Inc.; 1968; Chapters 1, 2, 3, 4, and 6.

BMD Biomedical Computer Programs (Second edition)

edited by W. J. Dixon; University of California Press, Berkeley, California; 1967; Pages 233-257.

"Multiple Regression Analysis"

by M. A. Efroymson, contained in *Mathematical methods for Digital Computers* (Volume 1); edited by Anthony Ralston, PH.D., and Herbert S. Wilf, PH.D.; John Wiley & Sons, Inc.; 1967; Chapter 17.

INDEX

А

Adding Processing Modules To Statpac, 3-7 File format, 3-8

Algorithms Descriptive statistics, A-1 Regression analysis, B-1

В

Bartlett's test, 1-10

Building an executable file, 3-2

С

CHAIN, 3-3

COEF, 2-7

Command dialogue, 2-1, 2-2, 2-3, 2-5 COEF, 2-7 FCTR, 2-7 FILE, 2-2, 2-3, 2-6 FILE (NEW), 2-2 FILE (OLD), 2-2, 2-3 FIN, 2-6 FORMAT, 2-2 FOUT, 2-6 LIM, 2-6, 2-8 NO. OBS, 2-2 O.K, 2-3, 2-5, 2-7 OPTS, 2-4, 2-6 PLTS, 2-7 TOL, 2-6 VARS, 2-2, 2-4, 2-6 **VRNC**, 2-4 Control Module, 1-1, 2-1 EXIT, 1-1

Descriptive statistics, 1-4 Algorithms, A-1 Dialogue, 2-3 Device handlers, 3-1 Error messages, 2-1, 2-3, 2-5, 2-7 ERR1, 2-5, 2-7 ERR2, 2-5, 2-7 ERR3, 2-8 ERR4, 2-8 ERR5, 2-8 ERROR, 2-1 IGNORED, 2-3 Example, INPUT, 4-2 **MLTRG**, 4-18 SMMRY, 4-4 STPRG, 4-9 EXIT, 1-1 FCTR, 2-7

FILE, 2-2, 2-3, 2-6

FILE (NEW), 2-2

FILE (OLD), 2-2, 2-3

File format, 1-3, 3-2

File name, 2-3, 3-2

FIN, 2-6

Correlation matrix, 1-5, 2-5

PROG, 1-1, 2-1

Е

F

FORMAT, 2-2	MLTRG module, 1-1, 1-10
	Dialogue, 2-5
FOUT, 2-6	Example, 4-18
	Output, 1-12
Н	
	Model, 1-11
Hyperplane, 1-11	N 11 / 1 01
Iterathesis test 16 112	Module operating procedures, 2-1
hypothesis test, 1-0, 1-15	NEUT command dialogue, 2-1
Ţ	RUBOUT 2-1
-	SMMRY command dialogue, 2-3
IGNORED, 2-3	STPRG & MLTRG command dialogue, 2-5
Implementing and Augmenting STATPAC, 3-1	Modules, 1-1
Device handlers, 3-1	CONTROL, 1-1, 2-1
Executable file, 3-1	INPUT, 1-1, 1-3, 2-2, 4-2
Logical units, 3-1	SMMRY, 1-1, 1-4, 2-3, 4-4
	STPRG, 1-1, 1-10, 2-5, 4-9
INPUT module, 1-1, 1-3,	MLTRG, 1-1, 1-10, 2-5, 4-18
Dialogue, 2-2	
Example, 4-2	Multiple Linear Regression Module,
Observation, 1-3	(see MLTRG module)
Standardized binary data file, 1-3	N
variables, 1-5	IN IN
К	NO OBS 2-2
Kurtosis, 1-5	0
L	Observation, 1-3
LIM, 2-6, 2-8	O.K, 2-3, 2-5, 2-7
Logical units, 3-1	Output, Regression Analysis, 1-12
М	D
171	r
Maximum 1.5	A Predicted Y Versus Observed 1-14
Mean, 1-4	A Predicted Y Versus Residual, 1-14
,	,
MEAN, 2-7	PLTS, 2-7
Minimum, 1-5	PROG, 1-1, 2-1

R

Range, 1-5	Standardized binary data file, 1-3
Regression Analysis, 1-11	Stepwise Linear Regression Module.
Algorithms, B-1	(see STPRG module)
Dialogue 2-5	
Hyperplane 1-11	STP 2-3
Model 1-11	511, 2-5
$\begin{array}{c} \text{Output} 1.12 \\ \end{array}$	STPPC module 1.1.1.10
Deciduale 1.11	Dislama 25
Residuals, 1-11	Erro la 4.0
D N 11 Oct diam 25	Example, 4-9
Regression Module Operation, 2-5	Output, 1-12
	Symbol definitions, 1-6
Regression Options, 1-13	
	Т
Regression plots, 1-14	
Overall plot of Residuals, 1-14, 4-18	TOL, for SMMRY, 2-5
Predicted Y Versus Observed Y, 1-14, 4-16	
Predicted Y Versus Residual, 1-14, 4-15	TOL, for regression analysis, 2-6
Residuals, Versus Ordinal, 1-14, 4-17	
	V
Residuals, 1-11, 1-14	
	Variables, 1-3
S	
	Variance, 1-4
Sample Operation, 4-1	
	VARS, 2-2, 2-4, 2-6
Skewness, 1-5	, , _ ,
	W
SMMRY module, 1-1, 1-4	
Dialogue 2-3	WARNING 4-2
Example 4-4	WARNING, 4-2
Example, 4-4	7
SMMPV Options 1.6	L
SMMRT Options, 1-6	
Hypothesis test, 1-6	ZERO OBS, 2-2, 2-3
SMMRY statistics, 1-4	
Correlation matrix, 1-5	
Kurtosis, 1-5	
Maximum, 1-5	
Mean, 1-4	
Minimum, 1-5	
Range, 1-5	
Skewness, 1-5	
Standard Deviation, 1-4	
Variance, 1-4	

Standard deviation, 1-4

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes, software problems, and documentation corrections are published monthly by Software Information Service in the following newsletters.

Digital Software News for the PDP-8 Family Digital Software News for the PDP-9 Family Digital Software News for the PDP-15 Family

These newsletters contain information applicable to software available from Digital's Program Library (see title page for address). Software products and documents are usually shipped only after the Program Library receives a specific request from a user.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a catalog of programs as well as the DECUSCOPE magazine for its members and non-members who request it.

Please complete the card below to receive information on DECUS membership or to place your name on the newsletter mailing list.

Please send			
	DECUS membershi	ip information,	
or add my name	to the		
	DECUSCOPE non-	membership list.	
And, send me the	e Digital Software N	ews for the	
🗌 PDI	P-8	DP-9	\Box PDP-15
NAME			
COMPANY			
ADDRESS			
CITV		TATE	710
	C		. 2.11

------ Fold Here ------

..... Do Not Tear - Fold Here and Staple

FIRST CLASS PERMIT NO. 33 MAYNARD, MASS.

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

DECUS Digital Equipment Corporation 146 Main Street Maynard, Mass. 01754
READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publications. To do this effectively we need user feedback – your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual?

How can this manual be improved?_____

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the following periodically distributed publications are available upon request. Please check the appropriate box(s) for a current issue of the publication(s) desired.

PDP-15 Software Manual Update, a quarterly collection of revisions to current software manuals.

PDP-15	User's	Bookshelf,	a biblic	ography	of c	urrent	software	manuals.

Program Library Price List, a list of currently available PDP-15 software programs and manuals.

Please describe your position.	• • • • • • • • • • • • • • • • • • •					
Name		Organization				
Street		_ Department		_		
City	State		Zip or Country	-		

...... Do Not Tear - Fold Here and Staple

------ Fold Here

FIRST CLASS PERMIT NO. 33 MAYNARD, MASS.

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation Software Information Services 146 Main Street, Bldg. 3-5 Maynard, Massachusetts 01754

Digital Equipment Corporation Maynard, Massachusetts