S

Files=11 Cn=Disk Structure Specification

Andrew €, Goldstein _
Advancede=1] Software Deviopoment
M 3wU/FR8 Ext, 2475 ‘

{=Aor= {978
Document 130=95ReAI 2w

Copyricht (C) 1978 Ni{aital Eauioment Corgoratiom, Maymard,
Mass,

The material included in this functicnal smecification, ine
cluding byt not limited to imstruction times and operatina
sneeds, {s for information purposes only, A1) suych material
s sublect to chamge without motice, Censeauentlyv Diaita)
Eauipment Corporation makes no claim and shall not be liable
for its acecuracy,

5

This software is furnished under a license for use omly on &
sinale computer svstem and may be copied only with the in=
clusior of the abkove copyright notice, This software, _or
amy other copies thereof, may not be orovided or ctherwize
made available to amy other person excent for use om suych
svstem and to ome who agrees to these license terms, Title
to ard ocwnership of the software shall at all times remain
im Digital Equipment Corporation,

The {nformaticm {n this document is sublect to chanae with=
out rotice and should not be constryed as a commitment by
NDigital Eauipment Corporation,

Diaital Equipment Corporation assumes no resmensibility for
the use or reliability of its software on equipment which is
not sueplied by Dicital Eauipment Corporation,

Files=11 Om=Disk Structure PAG

m
N

1.4 Scope ,

This aocument {s a smecificatiomn of the onwmedia structure
that s wused by Files=11, Files=11 {s a ceneral purpose
file structure which is imtended to be the stanmdard file
structure for al] medium to large PDP=1] systems, Small
systems such as RT={1 have beem specifically excluced be~
cause the complexity of Files={1 would impcse too great a
burcen on their simplicity anmd small size,

This document describes structure level 2 of Files=11, also
referred te as O0DS~2 (on=disk structure 2), It contains
feature and reliability improvements over structure level |
(0DS~1),

1.1 Conventions

A11 numerical values aiven im this document are 1in decimal
radix, unless indicated otherwise,

Within the fi{le structure are fields containinc bimary in=
tecers of various lemgths, Unless otherwise indicated, all

these fielgs are im the standard numerical formar, whick

means that the most significant bits are stored in the hi=
ghest numhered addpress, T

In the descriptions of various structures on the disk, there
are fields that are labeled "rmot used", These fields must
be z2ero, so that thevy can be made non=zero for future uyse,
Since they are reserved for future use, programs readina
these structures should mot assume that these fields are inm
fact zero,

2.7 Medium

Filea=11 is a structure which is imposed on a medium, That
medium must have certaim properties, whieh are cescribed in
the following section, Gemerally speaking, block addregse
able storage deviees such as disks and Dectace are suitable
for Fileg=11; hence Fi{les=1! structured media are aqenanri=
cally referred to as disks,

2.1 Volume

The basic mecdium that carries a Files=11 structure i{s re=
ferred to as a volume, A volume (a'so cftem referred to as
a unit) is defimed as an ordered set of logical bleocks, A

-

Files=11 Nm=Disk Structure : PAGE 3

loagfcal bloek s am arrav of S12 Rebhi{t bytes, The logical
blocks im a volume are consecutively numbered frem J to n=1,
where the volume contains n logical blocks, The mumber age
sianed to a loaical block is ecalled 1{ts 1ogical block
numher, or LAN, Files=1] is capable of describing velumres
ue te 2**32 blocks in size, In practice, a volume shoula be
at least 122 blocks in size to be ysefyl,

The loaical bleecks of a volume must he ramdomly addressable,
The volume must also allow tramsfers of any lenath up to ASK
bvtes, in multiples of four bytes, “Whemn a transfer s
longer thanm 512 bytes, consecutively numbered logical bloeks
are transfered until the byte count is satisfied, In other
words, the volume can be viewed as a partitioned drrav of
bvtes, It must allew reads and writes of arrays of anv

lenath less thanm 65K bytes, orovided that they start an a ~

loqical bleck bouncdary and that the length is 2 multiole of
four bvtes, When only part of a block {s written, the con=
temts of the remainder 0f that logical Block will bhe unde=
fimed,

The logical blocks of a volyme are grouped imto clusters,
The cluster is the basic unit of space allocation on the voe
ltume, Each cluster contains one or more loaical blocks:
.the number of Dblocks {in a cluster is kmrowm as the volume
cluster factor, or storage map cluster factor,.

4 volume is idertified as a Files=11 volume bky the home
bleck, The home block is located at a defimed chysical lo=
cation om the volume, and is identified by the opresence of
checksums and oredictable values, The home biock is deg=
cribed im cetafl {n section S,1, To f{denmtify the volume,
the home block contains a volume label, which is a string of
ue te 12 ASCII characters, The characters are restrictec to
the orintima ASCII set ({.e,, excluding comtrol characters
and rubout), Further, it is reccommended that volume labels
be restricted to alphanmumerics only to aveid conflicts with
the command lamguages of supporting systems, The volume
label of a volume may not be null,

2.2 Volume Sets

A volume set is a collection of related volumes that are
normally treated as one loafcal device in thre usual operat=
ina svstem comncent, FEach volume cenmtaing its owm Fileg=il
stryctures however, files on the various volures in a vo-=
lume set may he referenced with a2 relative volume nurher,
whieh uniauely determimes which volume {irm the set the file
it located on,

A volume get has associated with it a structure rame, which

e

Files=11 Om=Disk Structure 4 PAGE 4

is an strima 0f uo te 12 ASCII eharacters which identifies
the volume set, The character set limitations of the volume
label alse apply *o the structure name, The Structure name
may met be mull,

2.2.1 Tightlv Coupled Volume Set =

A tightly coupled volume set is a volume set which {s cone=
sistent anrd self {demtifying, The volume labels of the vo=
lumes makina up the set must be umfaue withim the set, and
must be differemt from the structure mame, Relative volume
ome of the set conmtains a file which lists the volume labels
of all the volumes in the sat, thus associatina volume la=
bels with realative vaolume numbers. Each volume s identi=
fied as being part of the set by carryima the structure
mame, its volume label, amd {ts relative volume number,

2.2.2 Loosely Counlad Volume Set =

4 loecselv courled vo1um~ set {s a collection of volumes
which {8 not self {dentifyimg, There is no file listina the
volume labels, 0Onmly one fi{le may cross from anvy one velume
in the set to arother, am~ files im the set which cross vow
lumes mavy be pracessed onrly seauentia1lv. Correct seauenc=
ima of the volumes that hold a particular file is the pres=
pomsinility 0f the gsystem operator, There are checks that
will catch most handling errors, but they cannot be fool=
prect, The purpose of the loosely coupled volume set is to
emylate multieavolume magtape, ard allow a file to be read or
writtemr seaquentially with only ome velume mounted at a time.

3,2 Files

Amy data in a velume or volume set that is of any interest
(i.ear all blocks not available for allocation) {s contained
in a file, A file is an ordered set of wvirtual blocks,
where a wvirtual block {s anm array of 512 8 bit bytes, The
virtual blocks of a file are consecutively numpered from |
to n, where n {s the highest rumbered block that has been
allocated to the file, 'The mumber assigred to a virtual
block {s ecalled (obviously) {ts virtual block numher, or
VRN, Virtyal bloecks are mapped to urique logical hleeks in
the volume get by Files~i]l, Virtual blocks may te crecessed
in the same manner as logical blecks, Any array of Fbtytes
less tham 658K {im lemath may be read or written, perovided
that the transfer starts on a virtual ¢tloek boundary ang
that its lemath is a myltiple of four,

-

Files=11 OmmDisk Structure ' PAGE §

For most files, all VBN®s less than or eaqual to the highest
VBM allocated map to some LBN im the volume set, Such files
are sajd to be demsa, Files which are sparse contain virtus=
al blocks which have not been allocated logical bloecks,

3.1 File ID

Each file in a volume set is uniauely idenmtified by a File
10, A File ID {s a bimary value consistima of 48 hits (3
POP=11 words). It is supplied by the file system when the
file is created, and muyst be susplied by tke user whenever
he wishes to reference a particular file,

The three words of the File ID are used as follows:
vierd 1 File Number

Locates the file within a particular volume of the
volume set, File numbers ordinarily lie inm the
range | through 65535, The set cof file numbers on
a volume s moderately (but nmot totally) demses
at ary {nstanmt {n time a file numher uniauely
{dentifies one file within that volume,

sord 2 File Seauence Number

Ident{fies the current use of am {ndividual file
number om a volume, File numbers are reeused!
when a file is deleted 1{ts file number becomes
available +for future wuse for some other file,
Each time a file number {s re=used, & different
file seauence nmumber s assignmed to distinmauish
the uses of that file mumber, The file seauence
rumber {s essential sinmce it is perfectly lega)
for users to remember and attempt to use a File 1ID
long after that file has been deleted,

Werd 3 Relative Velume Numher

Identifies whiech volume of a volume set the file
is located on, If the velume in auestion 1is not a
member of a volume set, them this word is zero,
14 the volume s part of a volume set, ther the
relative velyme number, onmr RYN, lies In the ranmge
from | te 65535, Inm any context where a rarticu=
lar volume &6f a volume set cam be identijfied as
the "eurrert volume", such as 2 file extermsion
linkage, a relative volume mumber of 2zero rmeans
"the current volume”, When a file is referrec to
in the conmtext of the volume on which it lies, ¢t
should be referred to with a relative volume

-3

Files=11 On=Disk Structure | PAGE 6

number of zero, regardless of the RVN that may be
assigned to that volume,

File Number Extenmsion

1f the maximum number of files rpermitted on the
volume (as recorded in the home block) is areater
tham 65535, thenm the higk byte of the relative vo=
lyme number becomes a high order extensionr to the
file number, The volume set size {s then limited
to 255 volumes, while the range of allowable file
numbers extends from 1 to 2xx2ds=], Ahen 24 bit
file nmumbers are used, the file system should mot
create files whose file number is an inteaer mule
tiple of 65536 (i.2,y, whese low 16 bits are zero).
Sueh file numbers will break existinmna PDPei]
software (such as FCS=11),

3,2 File Header

Each file om a Filegs=1l volume 1is ‘descrimhed by a file
header, The file header is a block that contains all the
information necessary to access the file, It {s mot mart of
the filer rather, {t 1is contaired in the volume’s index
file, (The index file is described in sgection 5,1). The
header block is organized {nto six areas, of which the first
five are variable in size,

3.2,1 Header Area =

The information in the header area permits the
file system to verify that this block {s in fact a
file header and, in particular, {s the header
beimg sought by the user, It contains the file
numher and file sequence number of the file, as
well ag {ts ownership amd protection codes, Thig
area also contains offsets to the other areas of
the file header, thus defining their size,

3.2.2 Idemt Area =

The ident area 0f a file header comtains identifi=
cation and accoyntimg cata about the file, Stored
here are the primary name of the file, i{ts cream=
tiom date anmnd time, revision count, date, and

time, anmd expiration date,

e

Files=11 On=Disk Structure PAGE 7

3.2.3 ‘Mao Apea =

The map area descripes the mapoing of virtual
blocks of the file to the logical blocks of the
velume, The maoping data consists of a list of
retrieval pointers, Each retrieval pointer des=
cribes one grocup of conmsecutively numbered logical
blocks that are allocated to the file, Fetrieval
pointers are arranged inm the order of the virtual
blocks they represent,

3.2.4 Aceess Control List =

The access control list is am ooticnral area that
comtains a list of users that are allowed access
to the file, The access control list makes {t
cossible to describe user communities for a par=
ticular file that cannot be expressed with the
regular orotection classes,

3.2,5 Reservecd Apea =
This optiomal area {s reserved for the use by CSS

or special applicaticns, It will mot be used by
standerd Files=l! systems, . -

3.2.6 End Checksum =
The last two bytes of the file headear contain a 16
bit additive checksum of the preceding 255 words

of the fi{le heacer, The checksum s used to help
ver{fy that the block is in fact a file header,

3.3 Myltieheader Files

Since the file header is of fixed size, it {s inevitable

that for some files the rapping informaticr will nmot fit in

the allocated space, A file with a large amount cf mappina
Aata is therefore represented with a chaim of file headers,
Each header mars a consecutive set of virtual blocks: the
extarsion limkage {n the header area limks the headers to=
gether in order of ascending virtual block numbers, The ex~=
temsion pointer {im each file header is the File IL of the
next header im seauemrce, :

.

Ff1es-11 On=Disk Structure PAGE 8

3,4 Myuttimyolume Files

Multiple headers are also nmeeded for files that scan volumes
in a volume set, A header may only man logical blocks lo=
cated on its volumey therefore a multiwvolume file {s ree=
presented by headers on 3)l1 volumes that comtain portians of
that file, Im a multievolume file contained om a locsely
coupled volume set, the File ID of the first header cn each
continyation volume alwavys has the value 9,9,n, where n s
the &YN of the volume on which the file starts plus the

number of preceding volumes containina portions of the file,

3.5 File Header = Detafled Descriotion

This sectiomr describes im detail the ftems comtaimed in the
file header, Each item {s {dentified by a svmbol which re=
presents the offset address of that item within its area 1in
the file header, Anmy item may be located {m the file header
bv locating the area to which it belongs and then adcing the
value of 1{ts offset address, Users who concerrm themselves
with the comtents of file headers are strongly urced to use
the offset symbols, The symbols may be defimed in assemblyv
lanquace programs by calling and invokimg the macro FHDL2S,
wkich may be foumd {n the macro library o0f anvy svstem that
supoerts Files=11, Altermatively, orme may find the macro in
the file F1I1MAC,MAC, which may be obtaimed from the author,

3,585,101 Validity =
4 valid file mheacer {s defimed by the following rules!
1, The header checksum is correct, unless SC,CHK s
set im H,8CHA, in which case the checksum word con=
taimns the value 125252,

2. The comtents of H,IDOF is mo less than the offset
H FOWN/2, ‘

3, The four offset bytes are related {m the mannmer
(M, IDOF) <= (H,MPOF) <= (H,ACQOF) <= (H,RSCF),

e The high byte of H,FLEV contains the value 2.

5, The low byte of H.FLEV contains a value greater of
equal to 1,

6, The word H, FNUM contains the file number,

7, The word H.FSER contains the fi{le seauerce numbar,

Files=11 On=Disk Structure : Pa

@)
m
O

R, The high byte H,FRYN contains the extended part of
the file number, if anv,

9, The contents of the bByte H,USE must be less tham or
eaual to (H,ACOF) = (H,MPOF),

A deleted file header conforms to the format of a valia file
header with the following exceptions:

1, SC.MDL is set im H,FCHA,
2., HFNUM and H,FRVYN contain zero,

3, The file header checksum containms zero,

3,5,2 Header Area Descripotion =

The header area of the‘?i]e_headep always starts at byte 2,
It contains the basic information needed for checkina the
validity of accesses to the file,

3,5.2.1 FHJIDOF = { Byte Ident Area Défset

This byte containms the nmumber af 1A bit words
cetween the start of the file header and the start
of the {dent area, Jt defimes the locatiom 0f the
ident area and the size of the header area,

3.5.,2.2 HM,MPOF = | Byte Map Area Offset

This byte contaims the mumber of 16 bit words
hbetween the start of the file header and the start
of the map area, It defimes the locatiom of the
map area and, together with H,IDOF, the size of
the ident area, ,

3.5.2.3 H,ACOF = 1 Byte Access Conmtrol List Offset

Thig byte contains the number of 16 bit words
between the start of the file header and the start
of the access contro! list, 1t defimes the Jloca=
tien of the ACL and, together with H,¥PNF, the
size of the map area,

Y

Files=11 Om=Disk Strueture ‘ PAGE 12

3.5.2.4 H,RSOF = | RByte Reserved Area CQffget

This bvte contains the nmumber of 16 bit words
between the start of the header and the start of
the reserved area, The reserved area will mot be
used by Files=11 itself, and may be used by CSS or
scecial agplications, Together with H,ACOF, this
byte defimes the size of the access control list,
The size of the reserved area is implied by the
contents of H,RSQF amd the end of the header
block, ' '

The presence of the {dent, map, ACL, amd reseryed
areas s optional, Absence of any area {s sigw
nalled not by a zero offset, but bv the ecuality
of the two offsets that defime that area’s size,
Al five areas are variable in lemgthy
implementations of Files=11 must check the lenath
of a particular area before attemptimg to refers
emce a particular entry,

3.5.2.5 H.FSEG = 2 Bytes Extension Seamenmt Number

This word contains the value n, where this hreader
ie the ntlith neader of the filer i,e,, headers of
a file are nymbered seauentiallv.starting with 2,

3.5.2.6 HFLEV = 2 Bytes Structure Level anmdg Version

The file structure level and versior 1{s used teo
igemtify different versions of Files=11 as they
affect the structure of the file header, This
permits upwards compatibility of #{le structures
as Files=11 evolves, in that the structure leve!
word {dentifies the version of Files=i1l that cre=
ated this marticular file, _This document des~
cribes structure level 2 of Files=11, The high
byte of H,FLEV must contaim the value 2, The Jlow
bvyte contains the version number, which must be
greater or equal to 1, The version mumber will be
ineremented whenever compatible additions_are made
to the Files=il structure that may be safely iq=
nered by an old version of the file system, Thig
decument describes version 1 of structure level 2,

Filesw{}

3.5.247

3.5.2.8

3.5.2.9

3.5,2.12

3,5,2.11

3I5.2.12

Cr=Disk Structure , PAGE 11

H,FNIUM = 2 Rytes File Number) -

This word contaims the file number of the file,

H,FSEQ = 2 Rytes ‘F*le Sequemce Number

This word contains the file secuence number of the
file,

H,FRVN = 2 Bytes Relative Volume Number

This word is used to hold part of the third word
of the File 1ID whem approoriate, This word is
usually referred to as the relative velume number,
When used as such (f,e,, to indicate the volume of
a volume set), {t is not recorded inmn the file
header, since the RVMN of a volume mav change dure
irg a file’s 1{fe, and the RVN pertien of a File
ID may be zero or menwzerc, dependina on the gomw
text, However, wher the hiagh byte ef the RVN s
used as .am extension to the file numter, then it
is recorded in the high byte of this word, The
low byte of H,FRVN {s always zero,

H.EFNU = 2 Bytes Extension File Number

This word contains the ?ﬁ?e-number of the rnext sgew
auerntial extension header for this file, If there
i3 mo extension header, thig word comtaing 2,

H,EFSQG = 2 Bytes Extension File Sequence Mymber

This word containms the fi{le seacuence number of the
mext sequential extensjon header for this file,
If there {is no extension KReader, this word . conre
taims 2,

H.ERVN = 2 Bytes Extension Relative Volume Na,

This word cortains the relative volume numher of
the wvelume inm the volume set that contaims the
naext sequential extension header for this file,
1+ there i3 mo extensiom header, or {f the exten=

~

Files=1! On=Disk Structure ' PAGE 12

3.5.2.13

3.5.2.14

siom header {s located on the same volume as this
header, this word comntains @,

H,UFAT « 32 BRytes User File Attributes

This area {s used by the record marmager, or any
other higher level access mechanism, to store {mm=
formation mecessary for processing the file, e,q,.,
recard control data, end of file mark, ete,

H,FCHA « 4 Rytes File Characteristics
M UCHA = H, FCHA+Z User Controlled Char,
HeSCHA = H, FCHA+1 System Controlled Char,

The file characteristics words econtain the follows=
img flagq bits:

UCL.CON Set if the file is leeoically contiauouss
{e@as 1f for all virtual blecks in the
file, virtual bloek i maos to loaical
bloeck k+i on onre volume for scme con=
stant k, This bit may be implicitly set
or cleared by file system operations
that allocate space to the file: the
yger may onmly ¢clear {t exolicitly,

uc.cne Set {f the file {s allocated contiauous

: best effort) i.@er as contiguous as
possible,

e DLK Set if the file {s aeaccess=locked,

This _bit is used as a flag warnimg that
the file was mot prorerly closed and may
contain fmcomnsistent data. Access to
the file ig denied if this bit is set,

UC.RCK Set {f the file is to be read=checked,
A1l read operations on the file, inmeclud=
ing reads of the file header(s), will be

nerformed with a read, read=compare to

assure data imtegrity,

UC,KCK Set {f the file {3 to be write=checked,
411 write operations on the file, {n=
eluding modifications of the file
header(s), will bpe performed with a

"wurite, read=compare to assure dats {ne=
teq"itv.

uhﬁ

Files=11 On=Disk Structure PAGE 13

UCWNID Set {f {mcremental dump (backup) s to
' ve disabled for this file,

Uc,%ac Set if the file {s to be write=back
cached? fe@ey 1f a cache is used fopr
the file data, data wrjtten by a user is
enly writtenm back to the disk when {g it
removed from the cache, Clear fonr
writemthroygh cache operation,

The second byte of the file characteristics words
is historically kmown as the system controlled
file characteristics, It contains the following
flag bits, defined as referemnced withim the byte!

SC.MOL Set {f the file is marked ' for dalete,
If this bit {s set, further accessesg to
the file are denied, and the file wil)
be physicallv deleted when mo users are
accessinmg it,

SC.BAD Set {f there §s a bac data block in the
file, This bit is as vet umimplementec,
It is intended for dymamic bad bleck

handling,

SC.DIR Set {f the ¥ile is a dqneczopy.

SC.ACL Seé if an access control 1ist exists for
this file,

SC,CHK This bit s set if the file header

checksum was not comouted, If this bit
{s set, the checksum word must contain
the octal value 125252, This "feature"
is for small systems that canmot afford
the milligsecond or two that it takes to
compyute the header checksumy {ts use {s
stronaly discouraged, ’

3.5.,2.15 « 2 Rytes (mot used)

3,5.2.16 M USE = | vie Map Words {im Use

This bvte contains a count of the number of mao
area words currently inm use,

\

vt

Fileswi] OnmeNisk Structure PAGE 14

3.5.2417

3.5.2.18

H,PRIV @« { Ryte Accessor Privilege Leve!

This byte defimes the lowest privileage level at
which am accessor must be running in order to he
allowed access to the file, Eaech mrivilege level
is a two bit integer; 2ero refers to the lowest
privilece and 3 ts the highest, Privilege levels
may be assiagred separately to the basic file ac=
cess modes, using the following bit assiement {n
this hytes

Read Bits @ = 1|
Wpite ~ Bits 2 = 3
Execute Bitsg 4 = 5
Delete Rite 6 = 7

Am eperatima system should mam its privilece level
codinQg onto this code in the smoothest manner posse
siole, For example, the four access modes of VMS,
user, supervisor, exec, and kermel, are coced as 4
throuoh 3, respectively, A svstem guch as RSXmi{M
whieh has enly two levels (privileged and
noreprivileged), should map the two onto 3 and @,
respectively, '

Privileae levels are meant to confine access to
the contents of files to suitably trustworthy oro=
cedures, Thus, a user might be demied the ability
te write a record structured file directly (on a
virtual bleek basis), but would be permitted to
werite the file through the record manager, which
would ke suitably orivileged,

For a record structured file, an aporopriate set
of orivilege levels would be 2,2,@,%, excressed in
the order pread = write = execuyte = delete,

M.FOWN = 4 Bytes ~ File Qumer UIC
H.PROG = H,FOWN+2 Programmer (Member) Nyumber
H.PROJ =& H, FOWN+2 Projlect (Groue) Number

Thegse words comtain the bimary user jdemtification
code (UIC) of the ouwmer of the file, The file
owner {s usually (but nct npcessan11y) the creator
of the file,

-

Files=11 OrewDisk Structure PAGE 15

3.5.2.19

H,FPRO = 2 Rytes File Protection Code

This word controls what access all users {m the

system may have to the file, Accessors of a file
are categorized accordimg to the relatiomshio
hetween the UIC of the accessor and the UIC of the
owner of the file, Each category is controlled bv
a four bit field in the protection word, The ca=
tegory of the accessor {s selected as follows:?

System Rits 0 = 3

The accessor {s sublect to system proe=
tection {f the project numbep of the UIC
umder which ke {3 punmning s 12 ocectal or
less,

Qurer Bits 4 = 7

The accessor {s sublect to ownmer orotece
tion {f the UIC under which he is run=
ming exactly matches the file owner UIC,

Group Bits 8 = 11

The accessor {s sublect te group protec=
tiem {f the project number of his UIC
matches the prolect mumber of the file
owner LIC,

World Bits 12 = 15
The accessor is subject to werld crotecs

tion {f he does not fit into any of the
above categories,

Four types of access are defimed {n Files=11:

read, write, execute, and delete. Fach feur bit
field im the protection werd {s bit encocded to
permit or deny any combirmation of the four types
of access to that category of accessors, Settina
a bit denies that type of access to that category.
The bits are defimed as follows (these values

acply to a right=]jystified protection field)s

FR,RDV Demy read access
FP, WPV Dany write access
FPLEXE Nemy execute access
FP.DEL Neny delete access

Whem a user attempts to access a file, oprotection
checks are performed {im all the categories to
whien he {s eliaoible, imn the order system = OQwner

-3

Files=1! Om=Disk Structure PAGE 16

3.5.2.27

3.5.2.21

3.5,2,22

- aroup = woerld, The user is granted access to
the file if any of the catecories to which he s
eligible qgrants him access,

Recommended defaults for file protection for an
"opem shop" svstem are [RWD,RWD,RW,R) (exoressed
in the order of syatem = ownmer = groyp = world,
where each Jletter denotes the oresence of that
permission), 0Nbserve that only files whiech cone
taim executable orograms should have execute pro=
tection turmed on, Recommended defaults for a
"closed shop" system are [RWD,RWD,R,],

H RPRND = 2 Bytes Record Pprotection Code

This word conmtrols what access all users f{n_ the
svstem may have to the -recoras {n a file,
Accessors are categorized {mte System, Owner,

Group, and World {n the same manmner as_for file

protection, The record orotection word s likee
wise divided into four four bit fields to control
each accessor cateqory, The four bits in the re=
cord protection field are defined as follows:?

RP ROV Deny reading records

RP,WRV Nemy weriting new recerds
RPLUPD Demy writing existina records
RP,DEL Demy deleting records

Recommended defaylts for record protectiomn for an
"ecoen shop" system are [RWUD,RWUD,RWID,R]Y,
Recemmended defaults for a "closed shop" system
are [RWUDoRWUDlR']. :

= 4 RBytes (not used)

HeSEMK = 4 Bytes Security Mask

The security mask is a bit encoded field that re=
presents f{nformation cateaories that mav be pre=
sent {m this file, Am accessor alsoc carries a
security mask that represenmts informaticn cateqo=
ries that he may possess, 7To read a file, the acw
cessor’s security mask must be a superset of the
security mask of the file: to wprite a file, thne
security mask of the file must be eaual to that of
the accessor, (Technmically, inm securityv mask cro=-

-

Files=11 On=Disk Structure PAGE 17

tocols, the mask of the f{le must be a superset of
that of the writer, but since Files=1! systems do
not allow writipe without read cermission, both
conditions apply for a writer,)

Individual bits in the security mask are defined
system wide by the system mamager, The installa=
tion manager is responsible for ensuring consis=
tency and coherency of security masks when volumes
are ysed on multiple operating systems,

NMote that the traditional securitvy level system
(confidential, secret, etc,) can be achieved by a
unary encoding in several bits of the mask,

’3.5.2.23 S.HDHD = 74 Bytes Size of Header Area

This symbel represents the total size of the
header area containming all of the above entries,

3.5.3 1ldent Area Description =

The {dent area of the file header begins at the word inmdi=
cated by M,IDOF, It conrtains identification anmd accounting
data ahout the file,

3.5.3.1 I.FNAM = 20 Rytes File Name

This area containms the mame of the file im ASCII.
A dot separates name from type, and a semicelon
separates type from version: both are alwavs pre=
sent, If the name is shorter than 22 bvtes, it is
padded with blanksy {f it is lenger, 1t is trun=
cated, '

3.5.3.2 I.,RVNO = 2 Bytes Revision Number

This werd contains the revision count of the file
in birmarvye The revisiom count {s the mumber of
times the file has been accessed for write,

v

Files=11 OneDisk Structure) PAGE 18

2e543.3

«5e3.

3.5.3.3

3.5.3.¢

3454347

3.5.3.8

I.CRDT = 8 Bytes Creation date and Time

These eiaht bvtes contain the date and time at

which the file was created, The time is exoressed

in the standard {ntermal time format, whiech 1{s a
6d hit integer representing tenths of microseconds
elansed since midmight, 17 November 1858,

I.,RVDT = 8 Bytes Revision Date amd Time

The revision time is the time at which thre file
was last deaccessed after being accessed for
write, Tt is expressed as the same format as the
creation time above, \

1.EXDT = B Bytes Expiration Date amd Time

These efght bytes contain the date and time at
which the file becomes eligible to be deleted,
The fopmat is the same as that of the creation and
revision times above,

1.BKDT = 8 RBytes Backup Date and Time
These eight bytes contain the date and time at

which the file was last backed ur, The fermat {9
the same as the othepr dates and times,

I.,ULAB = 82 Bytes User Labe!

This optiomal area contains any label a user mav
wish to associate with the file,

S,IDHD = 116 Bytes Size of ldent Area

This symbo)l represents the size of the 1dent area
containina all of the above entries,

——

Files~11 OmmDisk Structure . PAGFE 19

3,5,4 Map Area Descriotion =

The mao area o0f the file header starts at the word imdicated
by H,HPOF, It comtaims the information mecessary tc map the
virtual blocks of the file to the logical blocks of the vo=
lume, This area contains the retrieval pointers that actu=
allv map the virtual blocks of the file to the loaiegal
Blocks of the volume, Each retrieval pointer describes a
corsecutively numbered qroue of logical blecks whiech is al=
locatea to the fi{le, The coumt field contains the binmary
value n to represent a group of n+!l logical blocks, The
logical bloeck number field contains the logical bleck number
of the firast logical bloek im the group, Thus each retrieve
al wooimter mars wvirtual blocks | through J+n inte loaica!l
blocks k throuah k+n, respectively, where | {s the total
mumber olus ome of virtual blocks representes by all preced=
ina retrieval poinmters ir this and all precedine headers of
the file, n is the value contaimed in the count field, and k
is the valuye canmtajned in the logical bleeck number field,

Observe that |, k, and n+! must alwavs be integer multicles

of v, the volume cluster factor,

If the LBN field of 2 retrieval pointer containms all ones
(i.0., points to block 2**22=1 or 2%x*x32=1), then that retri=
eval poimter represents an umallccated portion of a sparse
file, The -count field describes the number of unallocated
virtua) blocks in the mormal manner,

There are four formats of retrieval peinters, identified by
escape codes, The different formats may be intermixed withm=
im a file header,

Format # = two bDytes

jeal Placement U

‘Retrieval pointer format @ {s used to store olacement data
im the file heacder, It describes the placement control supe
plied with the allocatiom that created the followino retpi=
eval pointer, allowing the placement of a file to be repli=
cated when the file is copied or backed up and restored,
The coding of the placement data {s at present undefined,
Format 2 {s identified by bits 1S amd 14 of the first word
heing set to 20,

-

Filesm1l Om=NDigk Structure PAGE 202

Format { = four bytes,

a1} High | Count !

! Low Order LBN -

,-----.-------------.. !

Retrieval pointer format | orovides am 8 bit count field and
a 22 bit LBN field, It is therefore cacable of representing
a groupr of up to 256 blocks on a volume up to 2**22 " blocks
in size, Format | i3 ident{fied by bits 15 and 14 of the
first word heing set to @1,

Farmat 2 = 3ix bytes,

AL LR P PR P L L L
{121 - Count !
| -
| = LBM -}
! ' -

Retrieval poimter format 2 provides a 14 bit count field and
a 32 bhit LBN field, It {s capable of representing a qreun
of up to 16384 blocks on a velume up to 2#x32 bloecks in
size., Format 2 is {dentified by Bits 15 amd 14 of tha first
word nbeinmna gset to 18,

Format 3 = aicht bytes,

11t High]
{wolm= -l

| Low Order Count !

\ g'-.-"‘--".""'----‘-..’
! i

- LBN .|

!

|

'
|
|

Retrieval pointer format 3 provides a 32 bit count field and
a 32 bit LBN field, It is capable of describing a group of
up to 2**3@ blocks om a velume up to 2**32 blocks §in size,
Format 3 s fdentified hy bits 15 and 14 of the first word
being set to 11, ’

wi

Files=11 NneDisk Structure PAGE 21

3.5.5 Access Comtrol List =

The access control 1ist starts at the word fndicated by the
bvte H,ACOF, Note that the entire ACL must be contained in
the primary header of the file, and s thus limited to about
65 entries, Each access control list entry consists of a
control word which jdemtifies the tvoe of the entry and cone

tainms the access rights aivem by the list entry, Followina

the comtrol word {8 a value field whose size and interoreta=
tiom depends on the tvpe code of the ACL entry,

! RPRO | FPRO | aM 0! ! Type !

! , !
!-- Va}ue --Ag
! !

!---'.--.---‘-------ﬂ—-‘--'--'.-.-.----- !

The four bit type field controls the size the interoretation
sf the enmtry’s value field, and to some extent, the in=
tercretatiom of the entry, The tvpe field mav assume one of
the followima values:

A uIC The value field is a 4 bvte UIC, The
ACL entry. {s applicable to the accessor
1¢ the accessor UIC matches the value

field,
ALGRP The value field is a 2 byte aroup
number, The ACL entry is applicable {f

the agrour number of the accessar UIC
matches the value field, :

A, MEM The value field {s a 2 byte member
number, The ACL emtry is applicable {f
the member number of the accessor UIC
matches the value field, :

A PSWD The value field is an & byte prassword,
hashed by~ some algorithm to be deter=
mined, The ACL entry {s -acelicable {f a
nassword supplied by the accessor
matches the value field (under hashirg).

A ACF The value field {s the file ID (6 bvtes)
of an access control file, whecge conw
tents are access control list entrijes,

The access rights aranmted by this ACL

entry are the intersection of the riahts
coded {im this enmtry and the rights
gramted by the entries of the access
control file,

v

Files=11 On=Disk Structure 1 PAGE 22

The one bit O field, when set, grants ownership orivileqes
(charae orotectiom, etc,) as woart of the access rights
aranted by this ACL enmtry,

The twe bit AM field specifies the least oprivileged access
mode permitted to access the file,

The four bit FPRO f1e1d specifies the file orotection gramte
ed by the ACL enmtry, if the accessor is eligible, Its cone
tents are fnmterpreted {m the same way as the H,FPRO field of
tha file header,

The four bit RPRO field scecifies the record protection
granted bty the ACL emtry, {f the accessor is eligible, Tts
contenmts are {nternreted in the same way as the H,RPRN field
of the file heaaer

Note that the access centrol list augments the permissions
of the file: ieeer i1t arants pePMissioﬂ pather thanm rese
tricting it. This meanms that {anoring the ACL does mot com=
pramise file protection, ’

3.5,6 Reserved Area =

The resepved area of the file reader starts at the word {ne
dicatea by the byte H,RSOF, This area {s nmot used by stan=
dard Files=1} fi\e mamagers, but {s available for use by CSS
and special applications, ‘

3,5.7 Emd Checksum Description =

The header check sum occupies the last two bytes of the file
header, It is venified every time a header is read, and is
recorputed every time a header is written, If the bit
SC.CHK is set {n the system controlled characteristics word
H.SCHA, them the checksum has not been computed, and the
cheeksum word must contaim the octal value 125252,

3.5,7.1 H.CKSM = 2 Bytes Block Checksum

This word is a simple additive checksum of all
other words in the block, It is computea by the
following PDP=11 routine or its equivalent:?

MOV Headerwaddress,Ri
CLR R}

=

Filasw1l OmeDisk

12% 1

3.6 File Header

The following is
file header,

Structure PAGE 23

ADD (RZ2)+,R1
SOR R2,14%
MOV Ri,(R3)

Layout

a araohical lavout of the fields i{n ‘the

'

Files=11 On=Disk Structure PAGE 24

Header Area

HoMPOF Map Area Offset | Idemt Area Offset | H,INOF

]
H.RSQOF | Resv, Area Nffset | ACL Aprea Offset | H.ACQF
! File Segment Number | H.FSEG
] File Structure Level | H.FLEV
’-.---.--------'----------.-------..'--.g

: _

!

!

!

File Number ! H,FNUM

File Seaquence Number | H,FSEQ
Relative Valume Number H H,FRYN

Extension File Number ! H.EFNU

Extemnsion File Seaq, Num,

Fxtemsiom RVN

H.EFSQ
M ERVN

H.UFAT

User Attribute Area

: H,FCHA .
H.S5CHA M, UCHA

- ' File Characteristics .-

—— - ———— — . Som n e et e immn - -

(rot used) |
Acecess Level { Map wWords {n Usa | H,USE
| H,PROG

- File Owner UIC we |
_ H H.PROJ
-.-'-..-.----..-----------..-----.-----' .
File Protection , | H,FPRO

.-..----‘—--------.--.‘--.‘-.---.-.----’
Reecord Protection ! H,RPRO

» !

- (not used) wa |

H PRIV

) ! Hoe SEMK
-m= Security Mask e |

e . Ve S —An e A e mm e e —— R SN A MNe v i e W S AR . —— A AL A S eNE e e e e e

Kl J

Filese=11 On=Disk Structure : PAGE 25

! b

!n.---n.--------i.-i-.-ﬁ--n----.-----n--: S‘HDHD

Ident Area

; X X A KX R X R N R 2 2 B B & K K B R B N & R L N R R E 2 K 2 X L A & A XK J !

| I.FNAM

!
!-- .-{
| !
H File Name !
|
]
!

!
!
g-— . - -
!
!

f Revisiom Number ! 1.RVND

‘ ----.-‘-QI---...-.“-.-'-’-'-‘-.--‘.--.-- l

! I1.CRDT

8.- - -
! o

|me , Creatiom Date -
| .

[-n --

!

! I.RVDT

!-n -m
!)

e Revisiom Date -n
]

]

l-' - ..

| T.EXDT

’_-. - e
! ‘ .

| o= Expimation Date -
! o

o= -

H '
’-.---'----.-----'.---------.----.------

! I.BKDT

lam -
|
{m- Rackup Date -
!
'ﬂ- - .

x‘--------------.-----.--------’--ﬂ-‘---

!
!

I.ULAR

— e o —— S v W B mw . — e AGtm A A el e S M Gmls e e Ame e wem e W e wew

Y

N

Filesw11 OneDisk Structure

User File Labe!

'----.-----.---------A..----'---------'-

!
|
'
|
!
'

PAGE 26

S.INKHD

i

Files=11 Nm=Digsk Structure . PAGE 27

Map, AClL, amd Reserved Areas

L AR A A L B A A A B A B A L A 0 K L LXK X X XL KK K LA R AL XLJE J

Retrieval Pointers

!
!
!
!
|
'
!
i
!
!
!
!

]

:

!

1

)

|

!

|

H

{

1]

1

]

H

!

Access comtrol List |
H

|

|

[]

t

|

{

‘ !
Pesarved Apea !
H

i

!

e S PP U

! File FHeader Checksum - ! H,CK3M

‘-‘------------------n--------------u-.-- i

4,3 Directories

Files=11 provides directories to allow the organizatiem of
files im a meaninmgful way, While the File ID is sufficient
to locate a file unicuely en a veolume set, {t is hardly mne=

momic, Directorieg are files whose fumction is to associate

symbolic mames with File ID’s,

The directory format alse conmtaims hooks for extensiomrs {n
future systems, Ome of these {3 a construct known as a
symbolic link, A symboli¢c 1imk allows a directory to cone
taim a pointer to a file which is mot om the same volume
set, and can therefore mot be remresented by a File ID, A
symboliec link therefore associates the file name with anmothe
er ASCII strima,

K1) d

Files=11 Om=Disk Structure ' ' PAGE 28

4,1 Directory Heirarchies

Since directories are files with ne special attributes, di=
ractories may list files that are {mn turn directories, Thus
the user may construyct directory heirarchies of arbitrarv
depth amd comelexity te structure hig files as he pleases,

!

4,1,1 Two Leve! Directory Heirarchy =

Implementations of Files=11 on existing PDP=1! sygtems all
sunport a two leve] directory . heirarchy which §is tied inm
with the user identificatiomn mechanism of the cperating sys=
tem, Fach UIC known to the system {s associated with a user
file directory (UFD), References to files that do mot snmecw
ify a directorv are generally defaulted to the UFD associate
ed with tme user’s UIC, The syntax used to refer to LUIC’s
is the same as that used to {demtify the directory-inm a file
name strimg, The construet "[m,ml" 1{s wused to refer to
group number n, member number m, All UFD’s are listed {n
the volume’s master file directory (MFD) under a file nmame
constructed from the directory string, (See sectior 5,2 for
a descripticon of the MFD,) A string of "[m,m]" associates
with a directory name of "nnnmmm,DIR;1", where mAn and mmm
are n and m padded out to three diaits each with leadina
2eroes, Note that all nuymber conmversions are done im octal.

Two points should be moted here, The UFD structure desw=
cribed here 13 not intrinsically part of the Files=~1!
- on=disk sterycturesr rathepr, it is a convenient cataleainag
system applied by various operating systems, Also, there is
mro hard and fast relationship between the owmer UIC of a
file and the UFD in which it {s listed, Genmerally, they
will correspond, but nmot mecessarily,

2

4,1.,2 Multielevel NDirectory Heirapchy =

\Mew implementations of Files=11 use a multi=level directory
heirarchy, where the first level below the MFD {s referred
to as the user file directory (UFD) and subseauent levels
are referred to as sub file directories (SFD’s), Users are

identified at the command level by ASCII] mames; the svstem

translates user names into UIC’s internally, Thuys MFD en=
tries will correspond to the ASCII user names, A directory
specifier will have the format "[namel,mame2,nareld, ,,. 1",
Fach mame im the list tramslates to a directory file mame of
the form "mame,DIR;1" amd is searched for im the current di=
rectory level, -

Observe trat the directory orotocel s rogt tied to the

-

Fileswil MneNisk Structure PAGE 29

structure level of the disk, Thus mew systems will aluways
have tc khandle the "[n,ml" construct, which macs teo a_ UFD
rame of "mrammm DIR:{" amrd orovides omly two levels of di=
rectory, O0ld systems wil)l mot be ahle to handle volumes

d,1.3 *yultimVplyme Directory Structure =

In a volume set, the MFD for the all of the wuser files on
the volume set is the MFD of relative volume 1, Its entries
can pcint to UFN"s located on anmvy_volume in the set, whose
entries canmn in turn roint to files and sub directories on
any volume in the set, The MFD’s of the remaining volumes
in the set only ligt the reserved files om each volume,

The agssiamment of volumes to specific directcries anrd files
is not covered by this specification, Different systems may
imrclement different policies to trade off factors such _as
parformance, reliability, and separability, Optimizina forp
cerformance, for example, usually means scattering the files
as randomlvy as possible across the volume set to make the

most use of the available multiple oositiormers, Maximym -

separability . (the ability to make use of only part of the
volume set) is achieved by locating files on the same volume
as their directories, and possibly enterimg the directories
in the MFN’s of the volumes on which they reside,

4,2 Directery Protection

For directory operations, the record protection field is in=
terpreted specially by the dipreectory mamagepr, The four bits
(described im the section om record protection) are f{nter=
oreteqd as follows?

RP,.RDY Neny lookups _

P WRY Neny enterimng new files .
ePLUPD Deny enterimng new versions of fi{les
RP,DEL Deny removing files

By settima the accessor crivilege level of a directory file
aporonriately, the system (or user) may prevent users from
rummaaina through the directory using the normal fi{le access
methads,

1f record protection is not oresent foer a directory file,
then the basic file access protection is used 1f {t exists.
lLLookups reayire '

Al

Files=11 NmaDisk Structure PAGF 32

4,3 Directery Structure
A directory {3 a comtiguous file, organized as a seauentia)
file with variable lemgth records, with the attribute set
that records do nmot cross block boundaries, and mo carriage
control attributes, Directory entries withinm each block are
packed together to conform to the wvariable lemgth record
format: a =) bvte count siarmals the end of records for that
Block, (See section & for a discussiom of record formats,)
The ertries {m a directory are sorted alphabetically, per=
mitting the use of an omtimjzed search, Entries which are
mylticle wversions of the same name and type are arranged in
order of decreasing version number to ocotimize version re=
lated opverations, Each directory record consists cf the
followinmg?

:----.-.'--.-.-----ﬂ--------.----------- l

| Record Byte Count |

! Version Limit !

! Name Ryte Count | . Flaags

!

!
{))
! File Name String
|
|
!

H
!
H
!
|
!
!
|
H
|
|
|
Value Field |
}
|
|

I ——

Count This two byte field is the stamdarc byte count
field of a variable length record,

Limit This word contains the maximum mumber of versions
that are to be retaimed for this mame and tvoe,
An attempt to enter meore versioms tham the limit
will result i{in the deletion of the least recenmt
versiom, or am error return, at the implemenmtinma
system’s oeotion, :

Flaas This byte contains the type code cf the directory
entry ard assorted flag bits, The tyce code is

i

Files=11 On=Disk Structure _ PAGE 31

Name

Value

contained in the three Jow hits of the flags byte,
It is ome of the followimag values:

DV.FID ~ The value field is a list of
version numbers and 48 bit File Id°’s,
DV,.SLK The value fleld is a symbolie

1imk strimg,
The following flag bits are defimed:

DF ,PRY Set {f the oreceding directorv
record contaimgs. the same mame and tvpe
as this one, o ,

DF JNXV Set if the mext directory npre=
cord contaims the same mame and type as
this one,

This field contains the file mname and type {n
ASCII, serarated bv a a dot, The cdot is present
even {f either name, or tvpe, or both, are null,
Only upper case alphabetic and numeric characters
may he present imn the mame and tyoe, 14 the
lenath of the name is odd, it is padded with a
single null, '

This field contains the "valye" of the directorv
entry: d,2.s, the informatiom returmed to the user
from a lcokup coperatiom, If the directory record
is a File ID 1ist (the tvype field is DV,FID), the
value field ig a 1ist of version mumbers and core
responding f{le 1ID’s, aopearing {nm descenaina
erder by version number, The number of entries f{n
the 1ist is decduced from the recerd byte count,

!
: ---------u-----------------.------6----

! Version Numbher

‘-- - w

! File ID

!
1
1
(]
]
}
)
1
1
H
'
1]
|me -
: |
]

:-----..-..--.-----------.----------.’-- ‘

Version Number !
{ .--‘----n‘---------.-Q--------—------'--. x

{
!
!
!
! File ID
]
!
!
!

LE AT EL EEEEEREELE AL X LY L EYE L RAEXLEELELEREXR]

Wil

Files=11 Nr=Disk Structure PAGE 32

20 ‘20 4w e Be -

Version Number !
)

!

--z

‘ File 1D !
!

—— - - —
]
L}

Version This word containg the version number of the di=
© rectory entry {n bimary., Version mumbers must lie
in the rance from | to 32767,

File ID These three words are the file ID that the direce
tory entry points to,

1f the directory entry 8 a symbelic link (the
flags byte comtaims DV.SLK¥), then the value field
is varfable lemngth, JIts first byte s a byte
count, and the remaimder §is am ASCII strimeo which
describes the linkage, The strima s padded to
the next word boundary with a null {f necessarv,
The format is the followingtl

'-------‘----------- l---‘ﬂd----ﬂ-------. 2

] Byte Counmt |

!
!

!

!

! ~ Symbolie Linmk String |

1

!

!

; ---------.--------.---.-------------z

5,7 Reserved Files

Clearly any file system must maintain some data structure on
the medium which {s used to control the file orgamnization,
In Files=11 this data is kert in several files, These files
are created when a new volume is imitialized, They are uni=

bl

Files=11 Om=Disk Structure PAGE 33

aue im that their File ID’s are known constants, Note,
however, that the relative volume nymber used when accessina
one cf these files deoenmds upom the comtext, The exact
number of these files which {s oreseﬁt om a particu!ar Vo=
lume mav varvy however, at least five must be present, Al]
cf these files are non-de)etable. These f{les have the fol=
lowing uses:

File ID 1,1 is the index file, The imdex file is the root
of the entire Files=11 structure, It comtains the volume’s
Pootstrap block and the home block, which is used to identi=
fy the volume anmd Jocate the rest of the file structure,
The imdex file also contaims all of the file headers for the
voelume, and a bitmap to control the allocation of file
heacders,

File ID 2,2 is the storage bitmap file, It {s used to con=
trol-the allocation of legical blocks on the volume,

File ID 3,3 {s the bad block file. It is a file containina

all of the kmownm bad blocks on the volume,

File INn 4,4 i3 the volume master file directoary (or MFD),
It forms the roaot of the volume’s directory structure, The
MFD lists the five known files, all first level user direc=
tories, and whatever other files the user chooses to enter,

File ID 5,5 i¢ the system core {mage file, Its use is oper=
ating svstem dependent; 1{ts basic purpose is to provide a
file of known File ID for the use of the operating system,

File ID 6,46 is the volume’s free space file, The blocks
contained in this file are available for allocation by an
alternate allocation scheme that does not drive off the sto=
rage bitmap, :

File ID 7,7 is the volume set 1ist file, If this velume s
relative volume ome of a tightly coupled volume set, this
file contaims a 1ist of the labels of all the volumes in the
set,

File 1D 8,8 is the volume backup Jourma! file, It _contains
a loa of full volume and inmcremental backuyos performed on
the volume,

File ID 9,9 is the standard continuation file, If this vo=
lume is part of a loosely courled volume set, this file con=
tains the first segment of the portion of the multi=volume
file that resides om this volume, '

More File ID®s may be reserved im the future; users should
mot make any assumetions about the values of user created
File ID’s,

hate-—

Files=11 Om=Disk Structure PAGF 34

5.1 Index File

The index file is File ID 1,1, It {s listed in the MFD as
INDEXF,SYS;s1, The index file i1s the root of the Fileg=1}
structure {n that it orovides the means for identification
and initial access to a Files=11 velume, and contains the
access data for al)l files on the volume (including itself),
This file has the FCS record format of S12 byte fixea lenath
records, with mo carriage control, (See section & for a
deseription 0f the FCS file format,) ’

.

Sele! PRootstrap Block =

Virtyal blogk | of the imdex file s the volume’s _koot
bleck, It is almost always mapped to logical block ? of the
volure, If the volume is the svystem device of am operatina
svystem, ‘the boot block comntains am onerating system depenw
dent orogram which reads the operating system into memory
whemn the boot block 1is read and executed by a machine’s
hardware bootstram, If the volume is mot a2 svstem device,
the beoot block contains a smal) pregram that outputs a mese
sage on the system conscle to inform the operator to that
effect, If bloeck @ of a volume {g bad, it is cermissible to
map virtual block | of the index file to some other bloeck,
In this case, obviously, volume cammot be used as a svstem
velume,

Sele2 Home Block =

Virtual block 2 of the {ndex file {3 the volume’s home
block, The purpose of the home block {s to {dentify the vo=
lume as Files=11, establish the specific identity of the vo=
lume, and serve as the ground zero emtry point imto the voe
lume’s file structure, The home bleoeck {s_recoomnized as a
home block by the cresence of checksums in kmownm places and
bv the presence of nredictable values in certain locatiens,

The home hlock i{s located om the first good bhlock of the

home block search sequermce, The search seauemce is of the

form
1 +n* delta, mn =2 A, 1, 2, 3, 4 saesee

The home block search delta is computed from the geametry of
the volume such that, {f the volume jg viewed as a three di=
mensional space, the search seauence will travel apprexi=
mately down the body diagomal of the space, Since volyme
failures tend to occurr across ome dimensicn, this minim{zes
the chance of a simgle fatlure destroving both home blocks

Files=11 Ore=Disk Structure PAGE 35

of the volume, The search delta is comouted from the volume
geometry, exoressed {n sectors, tracks (surfaces), and cyl=
inders, accordina to the following rules, to handle the
cases where one or two dimensions of the volume have a size
of 1. :

Geometry? Pelta

s x {1 x 11 !

I » t x 13 i

{ x 1 x e 1

s x .t x 1 s+

T x | x H s+

{ x ¢t x ¢ t+1

S x t x ef (t+1)*g+]

In most cases, the home block is located om LBN 1,

S.1.3 Cluster Filler =

If v, the cluster facter of the volume, is qreater tharmn 1,
them the mnext v¥2e?2 blocks of the imdex file are cories of
the home block used to fill out the first two clusters of
the imdex fi{le, Note that, for c¢luster factors greater than
{1, this results im a wasted disk cluster, The benefit of
this techniaue is a_mueh simpler rule for findimng the VBN of
imteresting parts of the index file, '

S5.1.4 PRackup Homa Bloek =

The backup home block is a second copy of the home block lo=
cated farther down the home block search seauence, It per=
mits the velume to be used even {f the primary home block is
destrovyed,

In ceneral, the backup home block should be allocated on the
second c¢ood bloeck of the search sequenmce, If it is rot,
them all precedinc bleocks om the seaquence must ret be avail=
able for allocation, This is tc prevent the situation of a
malicious user constructing a counterfeit imdex file, which
would be used if the primary home block ever wenmt bhad,

The cluster which cgnta§ns the backup home block {s mapped

into the inmdex file as virtual blocks v*x2+1 thraoush ve3,

where v i the voluyme ¢luster factor, Cbserve that the
backue home block may be located amnywhere within this clus=
ter, because there {3 no hard and fast relatioﬁshic between

Filesw!l OneDisk Structure o N PAGE 36

the cluster factov and the velume’s track and ¢cylinder bhoun=
daries, The emtire cluster is therefore filled out with co=
pies of the home block,

5.1,5 Backup Index File Header =

The next cluster of the index f{le contains a backuo cooy of
the index file header, so that data on the volume can be re=
covered {f the index file header goces bad, The cluster o=
cupies virtual bloecks v*3+] through v*4, where v §s the vo=
tume cluster factor, The LBN of the backur index file
header {3 stored in location H,IHLB im the home block, The
backup imdex file header occupies the firgst block of thig
cluster: the remaimina blocks are not used amd their conw=
tents are undefined,

S.1.,6 Index File Ritmap =

The index file bitmap is used tc conmtrol the allocatiom of
file numbers (and hence file headers)., It is simply a bit
string cf lemath n, where n {g the maximum number of files
cepmitted on the volume (comtaimed in offset H,FMAX inm the
home block), The bBitmap spams over as many bloeks as is ne=

cessary to held 1t, i{.e., max numher of files divided by’

4796 and rounded up., The numbepr of hlocks in the bitmac s
contained in offset H,IBSZ of the home bloeck,

The bits in the index f{le bitmap are numbered seauentially
from 3 to n=l in the obvious mannmer, {,e.s from right to
left {im each byte, and im order of increasing byte address,
Bit] is used to reoresent file nmnumber J+i1: {if the bit is
"1, then that file mumber {8 in use; {f the bit is 2, then
that file number is neot 1{in use and may be assigred to a
newly created file, ’

The imgex file bitmao starts at virtual block vxd+l of the
index file and continues throuoh VRN yxd+m, where m i3 the
mumher of blecks in the bitmap, and v 1s_ the storage map
cluster factor, It {3 located at the logical block indicate
ed by offset H,IBLR in the home bleek,

S5.1.7 File Headers =

The rest of the {ndex file centains all the file heacders for
the valume, The first 16 file headers (fcr file numbers |
to 16) are loaically contiguous with the index file bitmae
to facilitate their Jlocation: the rest may ke allocated

ol

B e

Files=11 Dm=Disk Structure ' PAGE 37

wherever the file svstem sees fit, Thus the first 16 file
headers may be located from data im the home block (H,ISSZ
and H,IBLR) while the rest must be located through the map=
eirg data {in_ the index file header, The file header for
file murper n is located at virtual block vxd+m+n (where m
is the numper of blocks in the index file bitmap, and v is
the storace map cluster factor),

The FCS end of #ile mark for the index file {8 located at
the last f{le header ever used,. Al)l header blocks located
before the EOF are subjJeect to valjdation when used te create
a new file, If the block contains garbage, the new header
is assiagned a file seayence numbher of 1, beinag the first yse
of thigs header block, If the block contains a deleted file
header, the mew header is assigned a seauence number one
higher tham the one containmed in the block, A block conm~
tajning a valid file header must mever be used to create a
new file, even {f §t is marked free im the imdex file bit=
map, This prevents files from being lost {f bits are
dropeoed in the bitmap, Index file blocks bevomd the EOF are
assumed to contaim garkhage for the purpose of creatimg mew
file headers, '

S5.1.8 Index File Lavout =

The followima is a sketch of the blocks {m the index file,

‘Observe that this {llustration assumes a storage map cluster

facter greater thanm 2,

L X X F K X X X R N X 3 E B B B K 3} '.--
| \
Root
Bloek

Home

Bloeck Cluster 1

More
Home

- . A a— A - — b

Hore
Home

|
!
'
!
!
!
!
|
|
!
!
!
!
!
!
{
|
!
i
!

- — A wem e P MDA S - e e v et e

Files=11 Om=Di{gk Structure

{
!
!
i
!
i
!
'
|
!
!
!
'
i
!

!
i
!
!
]
!
'
|
!
|
!
!
i
!

-

. v v e i . M = - —_— - — ——— i oot w—rtn —

Bloecks

o “ws »

Rackup
Home
Bleck

LA E B B B X X X % & XK. & 2 X % 32 % 1}
Mare
Home
Bloecks
Backup
Index
File
Header

(mot)
(used)

Index
File
Ritmap

16
File
Headers

Lots

More

File
Headers

. —— -t W o WD mitn S W - van i M - NS e e wem i A W D M A A . A D e Mo i — v ma Ao M mas e an e

A
s -
1

/

”~

~N

Ve

~

!
!
'
H

- —r e e - v —— . -

7

N

A v N ey - WA e e e -

Cluster 2

Cluster 3

Cluater 4

Contiauous

PAGE 38

st

Files=11 Nr=Digk Structure | : » PAGE 39

! !
!

[E X E R KX E L ¥ % L K N & L A K L. 3 J g

Se1.9 Home Block Details =

The follewing is a detailed descriptiom of the HhRome block,
Note that all copies of the volume’s home block containr the
same data, with the exception of the cells containing the
block’s VBN amd BN, ‘

Items contained im the home block are {dentified by symbelic
offsets in the same mammer as items in the file header, The
symbols may he defimed in assembly lamquace pregrams by cale
ling and 1inrvokima the macro HMBL23, wkhich may be found in
the macra library of any system that suppeorts Files=!l,
Altermatively, one may find the macro in the file
F1{“4AC MAC, which is available from the auther,

5.1.9.,1 H,HALB = 4 RBytes Home Rlock LBN

This double word contaims _the logical bloek number
of this particular copy of the home block.

S.1.9.2 H,AHLB = 4 Bytes Alteprmate Home Rlpek L BN

This double word contains the LBN of the volume’s
secondary home block, One may determire, when
scarning the home block sequence, whetkher the
block read is the primary or secondary hore dblock
by comparing H,HBLB ana H,AHLB, This value must
be mom=zero for a valid home block,

3.1.9.3 He IHLE = 4 Rytes Backup Imdex File Header LRN

This double word contains the logical bleck eon
which the backup {mdex file header is located,
This value mugt be nonrwzero for 2 valid home
block,

o

Files={1 CrmeDisk Structure . | PAGE 40t

Sele9,4 H,VLEV = 2 Bytes Structure Level and Version
The volume structure level and versjon is used to
identify different versioms of Files=11 as theyv
affect the structure of all parts of the volume
excert the file header, This permits upwards comm=
patibility of fi{le structyres as Files=1l ayolves,
in that the structure level word identifies the
version of Files=11 that created this particular
volume, This document describes structure level 2
of Files=11, The high byte of H,VLEV must containm
the value 2, The low byte containms the version
number, which must be greater or eaual to |1, The
version number will he incremented whenever compaw
tible additions are made to the Files=1! structure
that may bhe safely ignorea by ar old version of
the file system, This document descrites version
1 of structure level 2,

S.1.9.5 H,SBCL = 2 Bytes Storace Bitmao Cluster Factor

This word contains the cluster factor used im the
storage bitmap file, The eluster factor is the
number cf blocks represemted by each bit in the
storage bitmap, This value {is also referred to as
the volume cluster factor, ™~

B5.1,9.6 H,HMBYR = 2 Rytesg Home Block VBN

This word cortains the virtual Bblock that this
particular copy of the home block occupies in the
index file, This value must be non=2ero for a
valid home bleck, ‘

5.1.9.7 H AHVR « 2 Bytes Backup HMome Block VBN

This word contaims the virtual block number that
the cluster contajnima the secondary home block
occupies im the imndex file, The comtents of ¢this
word {s vx2+1, where v is the storage map cluster
factor,

i

Filesmwil

S.l.qia

S.1.9.9

5.1.9.1’2

Sale9.1d

OneNisk Structure PAGE 41

Ho INVB = 2 Bytes Backup Index File Header VBN

This word contains the virtual block number that
the backup index file header occupies in the index
file, The contents of this word {s v*3+i, where v
is the storaqge map cluster factor,

H,IBVR = 2 Bytes Index Fi{le Bijtmap VBN

This word contains .the starting virtual bleck

numher of the index file bitmac, The contemts of
this word is the value vxd4+i, where v is the sto=
race map cluster factor,

H, IRLR = 4 Rytes Index File Bitman LBN

This double word contains the startina logica!l

block address of the index file bitmac, Once the

home block of a volume has been found, it is _this
value that oprovides access to, the rest of the
jndex file and to the volume, This value must be
mon=zero for 2 valid home block,

H,FMAX = 4 Bytes Maximum Number of Files

This double word contains the maximum number of
files that may be presemt on the volume at any
time, This value must be qQreater than the cone=
tents of H,RSVF for the home bleck to be valid,
If the maximum number of files is less than 65536,
then the third word of File ID’s referencing files
on this volume is simply the relative velume
number, and the volume set of which this volume i{s
a member may conmtaim up to 65535 volumes, If the
maximum number of files is greater than or ecual
to 65536, however, then the high byte of the third
word of File 1ID’s 1is the high byte of the f{le
mumber, and the volume set mav consist of wup to
255 volumes, Under no circumstances may the maxiw
mum numher of files be greater than 2xx24=],

M

Files=11 Onm=Disk Structure. ' ' PAGE 42

S.1.9.12

5.119113

5.1.9.14

149,15

S.le9.186

Sala9.17

H,IRSZ = 2 Bytes Index File Bitmac Size

This 16 bit word contains the number of blocks

that make up the index ¥i1e bitmap., This value
must be mon=zero for a valid home block,

H,RSVF = 2 Rytes Number of Reserved Files

This word comtaims the number cf of réaserved file
on the volume, The file seauence number of each
reserved f{le is always ecual to its file number,
Reserved fi{les may not be deleted, This word must
contain a mimimum value of S5 to be valid, '

H,DVTY = 2 Bvtes Disk Device Type

This word {8 an {ndex identifyima the tyme of disk
that contains this volume, It is ecurremtly nmot
used and always contains @,

H,RYN « 2 Bytes Relative Velume Number

This wored comtains the re1at1ve volume nmumher that
this volume has bteem assigned in a volume set, If
the volume {s mot part of a volume sat, then this
word ccnta1ns zero,

HeNVOL = 2 Bytes Number df Voelumes

This word contains the total number of volumes in
this volume set {f ¢the comtents of H,PVN jg |
(fe€er {f this volume is the first volume of the
volume set), Otherwise, this word contaims zero,

H,VCHA = 2 Rytes Volume Characteristics

This word contains bits whieh provide additional
control over access toc the volume, The following
bits are defimed: ’

HoNDC Set if device control fumctions are not
permitted or this volume, Device con=
trol fumcticns are those which can thre=

f

Files=11 Om=Disk Structure , PAGE 43

5,1,9.18

5.1.9.19

aten the 1{rmteagrity of the volume, such
as direct reading amd weritinag of loajcal
hlocks, etc,

CH NAT Set {f the volume may mot be attached,
fe@es :Peservecd for the sole uUse by one
task or yser,

CHL.RCK Set if the velume {s to ne read checked.
" A1l bhloek reads dome on this volume,
both fcr data and for file structure,

will be rerformed with a read,
reacdecompare seauence to insure data in=

) tea”ityo
CH.WCK Set {f the velume {8 to be wpite

checked, A1l bloek writes dome on this
volume, both for data _and for file
structure, will be performed with a
wpite, readecompare sequence to insure
data integrity,

H,VOWN w 4 Bytes Velume Owpner UIC

Thig double word econtaims the bimary UIC of the
owner of the volume, The format igs the same as
that of the file owner UIC stored in the file
header, ‘

HeVSMX = 4 Bytes Volume Security Mask

These four bytes contain the security mask for the
volume, In the same manner as the security mask
of a file, the volume security mask controls the
informatiom categories that may be stored on the
volume, - Only files whose security mask is a sub=
set of the volume security mask may be writtem on
the velume, Note, howeyer, that the security mask
of a wuser accessing files om the volume dees not
have to he a suyperset of the volume mask, since he
must still pass the security mask check on the in=
dividyal files, Further, if such a check were
made, the security masks of all files written onm
the volume would have to be equal to the volume
mask, whiech is not very useful,

Files=11 Dm=Disk Structure ' , FAGE 44

5.1.9.20

5.1.9.21

Sllﬂq.aa

S5.¢149.23

H.,YPROD = 2 RBytes Velume Protectiem Code

This word comtains the crotection code for the en=
tire volume, A1) operations or all files on the
volume must pass both the volume and the file pro=
tection check. to be permitted, Accessors to the
volume are categorized imto system, owner, Qroup,
and world with respect to the volume owner UIC in
the same manrmer as for file orotection, Fach ca=
tegery {8 conmtrolled bhv the familiar four bit
field, The four access modes are bit encoded as
follows? :

VP ,RDV Deny reading f11es

VP, WRY Denvy writinmg exast?nc files

VP, CRE Deny creating filﬂs

VP ,DEL Deny deIetinc files

H.DFPR = 2 RBytes Default File Protection

This word contains the file protection that will
be assianed to all files created on this volume it
no file protection is specified by the user,

HJ.DRPR = 2 Bytes Default Record Protection

This word contains the record protection that will
be assiamed te all files created on this volume {¥
no file protection is specified by the user,

H,CHK] = 2 Bytes First Checksum

This word is an additive checksum e¢f all entries
preceding {n the home block (i,e,, all those liste
ed above), It is computed by the same sort of ale
gorithm as the f{le header checksum (see section
3.5.7.1),

F,VDAT = 8 Bytes Volume Creation Date

This area cgntains the date and time that the vo=
lume was {nmitialized,_ It i{s in the same bimary

format used {m the file header (see s#c'ion_&S%%

3.“.2).

i

Files=11 On=Disk Structdre : PAGE 45

S.1.9.25

5.1.9.26

Sela%.27

Sel.9.32

H.HISZ = 1 Bvte Default Window Size

This byte contains the numher of retrieval po=
inters that will he used for the "window" (in core
file access anata) when files are accessed an the
volume, 1{f nmot otherwise specified by the acces=
sor,

H.LRUC = 1| Byte Directory Preeaccess Limit

This byte contains a count of the mumber of direcs
tories to be stored in the file system’s directory

access cache, More generally, it is an estimate.
of the number of concurrent users of the volume

amd its use may be gemeralized im the future,

H,FIEX = 2 Bytes Default File Extend

This word contaims the number c¢f blocks that wil)
be allocated to a file whem a2 user extends the
file and asks for the system default value for ale=
location,

- = 388 Bytes Mot Used

iy
e
I

H,SNAM = 12 Bytes Structure Name

This area contains the ASCII name of the volume
set to which this volume belomas, padded out to 12
bytes with spaces, If this volume {s not a member
of a volume set, then this area {3 filled with
nulls, :

H.INDN = 12 Bytes Volume Name

This area cortainms the volume larel {m ASCIT, It
{s padded out to 12 bytes with spaces, It is
olaced here {n accordance with the proposed volume
identification standard,

A

Files=11 Om=Disk Structure - PAGE 46

Se1e9.31

S.1.,9.32

H,INRO = 12 Bvtes Velyme Owner‘

This area contains an ASCII string identifying the

owner of the volume,. The area is padded out to 12
bytes with trafiling spaces, It {s placed here in
accordance with the proposed volume {dentification
stamdard,

H,INDF = {2 Bytes Format Type

This field contaims the ASCII strimag "DECFILE1{R"
padded out to 12 bytes with spaces, It identifies
the volume as beimnag of Files=1] format, structure
level 2, It is placed here in accordanmce with' the
oroposed volume jdentificatiom standard,

e = 2 Bvtes _ Mot Used

H.CHK2 = 2 Bytes Second Checksum

This word 1s the last word of the hRome block, It
containg an additive echeeksum of the oreceding 255
words of the home bloek, computed accordinc to the
algorithm 1isted in section 3,5,7.1.

o

Files=11 On=Disk Structure

Se149.35

Home Blocik Lavout =

i--------'-.----.--'--------..---'.-----’
! : | . !
| = LBN of This Bloek -l
! -
! ' !
|a= LBN of Secondary MHome Block we |

1
]

|
. !
! LBN of Secondary S
l.- : : .-e
! Index File Heacer !

L]

!

! .--.---------'v-.----‘.---""-------.--

| Volume Structure Level

! Storage Bitmap Cluster Factor !

“--.---.-----..--‘-------------'.-.‘-‘-- ,

! VAN of This Bleck | 1

| Backup Home Bloek VEN !

A Rackup Imdex Heagder VBN |

‘ (P XL XY R AKX LN R 2 N X 2 8 L X 0 & B B B B B X L K. 2

| Index File Ritmap VBN |

g LR R E LY RN SR ENEELEES LR E 2 B 2 L R R K X & L &.J l

! Index File !

] Bitmap LBN !

‘-'--.-----------”-..----------.--.-----t
! o H
|m- Maximum Number of Files -
! !

! Index File Bitmap Size |

! Nuymber of Reserved Files , !
’---.--.--.--.--.---.-‘.--.-------.-‘.--"

| Disk Device Tvpe !

! Relative Volume Number |

! Number of Volumes inm Set !
t--"-----.----'--.'--------------------’
! Voelume Characteristics |

{
!

:‘- VQ’ume QWHe" UIC -
!

‘--------.‘-.-----.-----'-----.ﬂ-!---"-

!

- —

-

PAGE 47

H HBLR
TH,AMLSB
He IHLA

H VLEV
H.SA8CL
H,HBYRB

He AHVE

- H,FMAX

VRTYY:
H,RSVF
H,DVTY
H,RVN

H,NVOL
HoVCHA

H,VOWN

H, VEMX

al

Files=11 On«Disk Structure

HaLRUC

- A . S D e M S e e N R TR AN BME NS LS GBS NS ST WG Sl MR e .

o= Volume Security Liﬁit »e |

! -

! Velume Protection. |

! Default File Protection !

‘ [T R LR R AR AR K RN 2. 0 & K K K X K N & A & R 2 2 J ‘

! Default Record Protection |

: L E X L XX X E N L XX XL EEE B L E R L LKL LA LE R LA.J ;

H : Firat Checksum 1

‘.--------------.“--------.------------ '

i !

g - -, . - -
|)

|m- Volume Creation Date -
H

| Directory Limit | Def, Window Size

! Default File Extend N

!
!
|
’-- ' --s
!
!
|
!

(met used)

- , -
o -
.- Structure Name --
-~ -
. .

!
!
!
!
i
|
!
!
!
!
!
:.
'
!
!
!
!
|
|
i
'
]
!
!
!
!
i
!

- Volume Name -
' i
- e -.s

PAGE 48

H.VPRO
H,DFFR
H,DRPR
‘HoCHK1

HeVDAT

HeW182Z

H,FIEX

H,SNAM

He INDN

!
2hii

Filesw11 Nn=Disk Structure : PAGE 49

t.
=-.

:------..----.-.-.---------.-----..-----

He INDO

— . T an e i G ee. G Seh M A G g e e i S

- Volume QOwner

H, INDF

- Format Tvre -
- --,

!
- ‘ ' .-l

!

----.----------—---------------.----.ﬂ- !

H
!
;
]
|
!
|
!
!
|
]
!
!--
|
!
{
|
!
!
]
|
|
!
! (mot used)]

]
]

| Seecond Checksum | H,CHK?2
]

2------‘-.----...---------‘------------.

5.2 Storage Bitmap File

The storage bitmap file is File ID 2,2, It is listed {nm the
MFD as BITMAP,SYS;1, The storage bitmap is used to control
the available space omn a volume, It conmsists of a storage
comtrol block whieh contains summary information about the
volume, and the bitmap itself which lists the availablilty

of imdividual bloeks, This file has the FCS record format

of 512 byte fixed length records, with no carriage control.
The end of file mark 1is positiomed to poinmt to the last
block used, The storaqe bitmap file must be contiguous,

Al

Files=11 On=Disk Structure . PAGE SQ

5.2.1 Storage Conmtrol Rlock =

Virtual block 1 of the storage bitmap {s the storage control
block, It contaims summary {imformation about the volume,
Note that implementation of same of the features in the sto=
rage conmtrol bloek may require it to be written at mount and
dismount, ,

5e2elel CL.VLEV = 2 Rytes Storage Map Structure lLevel

This word contains the structure level of the sto=
rage control bloeck, The high byte conmtains the
value 2 to indicate Files=1]l structure level 2,
The low byte contains the version number, which
must be eaual to or greater then i,

S.2.1.2 CoSBCL = 2 Bytes Storage Map Cluster Factor
Th%s werd contains the storage map cluster factor
of the volume, Its comntents are {dentical to the

contenmts of H,SBCL im the home bleck, It s
nlaced here for convemience,

SeCeled C,VSIZ = 4 Rytes Volume Size

These four bvtes contain the volume size expressed
in loagical bleeks,

S.2.1.4 C,BLKF = 4 Bytes Bloekinag Factor
These words contain the bloeking factor of the vo=

Jume! J.2,, the mumber of phvysical blocks or sec=
tors that make up onme logical block,

SelalsS CLSECT = 4 Bytes Sectors Per Track

These words contafn‘the rnumber of logical bloeks
im each track of the volume,

Filesmil On=Disk Structuyre ' PAGE S1

-

5.2.1.6 C,TRAK = 4 Bytes Tracks Per Cylinder

These words containm the number of tracks contaimed
in each cylinder of the volume,

S.2.147 CoCYLN = 4 Bytes Number of Cylimders

These words contain the total number of cylinders
on the volume, The above three ayantities are
nresent to assist ontimized allocation of space on
physical boundaries in the volume,

B5eCele@ C,STAT = 2 Bytes Status word
This word contains the followima status bits:

CS.TRN Volume {m tramsition, This bit i{s set
1f the volume may be {m am inconsistent
state because it was not dismounted
proverly, A system which does write on
replace caching of the storage map, for
example, should set this bit on mount
amd clear it on dismount,

5.2.1.18 C.CKSM = 2 Rytes Bleck Checksum

This word contains the ubiauitous block checksum,
It is comouted using the same algorithm as the
file header checksum (section 3.5.7.1), -

5.2.1.11 Storage Conmtro) Block Layout =

! Structure Level | C.VLEV
l-------------.------.---'---.---.------=
! Storage Map Cluster Factor H c.s88CL
! H £.vS1z
]
t

o Volume S{ze im Blocks e

ad

Filas=1] Om=Disk Struecture PAGE 52

| | x

U { C.BLKF
- BRlockimg Factor . - |
! |

!) ! C.SECT
|m- Sectors Per Track - |
' |

H) ! C.TRAK
|m- Tracks Per Cylinden e |
! |

C.CYLN

- Cvlinders on Volume - .
Volume Status C.STAT

PP R Y XA RRX R XL X X J

(not used)

— e s A LR e e S e e W e e W S e

LA L E X R LB B LALLELLLELELELRELEEELLELELEELE RS E 2 84 a

Block Checksum ! C.CKSM

LR A B X B L X L K X L 2 R & B & B L B L & K & X K B K B A X A B B B R A R J :

s
!
s
|
!
!
!
!
!
!
!
!
!
!
z
|
!
s
!
!

5,2.2 Storage Bitmap =

Virtual blocks 2 through n+l ape the storage bitmap itself,
It is best viewed as a bit strirmg of lemgth m, numbered from
? to me=1, where m is the total number of allocatable_cluys=
ters on the volume rounded up to the next multiple of 4296,
Each cluster contains v Jogical blocks, where v is the sto=
race map cluster factor (also referred to as the volume
cluster factor) contained inm location H,SBCL im the home
Elock, The bits are addressed in the usual manner (packed
right to left in seauentially numbered bytes), Since each
virtual block holds 4996 bits, n blocks, where n = m/U4@96,
are ysed to hold the bitmap, Bit | of the bitmap recresents
loaical blocks Jxv throuah Jxvével of the volumes {f the
bit is set, the blocks are frees {f clear, the blocks are
allocated, (Clearly the last k bits of the bitmap are always

abd

Files=11 Onm=Di{sk Structure PAGE 53

clear, where k {s the difference between the true size of
the volume amd m, the lemgth of the bitmap,

Rounding the storage map file up te the next multiole of the
volume <¢luster factor may result in some unused blocks at

the end of the file, The FCS enmd of file mark points to the

last bleck used,

5,3 Bad Bleck File

The bad bloeck file i3 File ID 3,3, It js listed in_the MFD
as BADBLK,SYS:1, The bad block file is simely a file cone=
tainimg all of the known bad blecks on the volume, This
file nas the FCS record format of S12 byte fixed lemath re=
cords, with no carriage control, The end of file mark may
be olaced as the operating system’s bad bleck handling strae
teay finds useful, Volume inftialization sheuld nlace the
ECF at the end of the bad hlocks found durimg initifaliza=
tiom, At all times, the EQF should at least coimt cast the
bad bloek descriptor data, described below, This ensures
that the bad bloek data is preserved for future
re=initialization of the volume,

'5.3,1 Factory Bad Block Descriptor =

On disks which have factory gemerated last track bad block
datar such as the RK@6, RK27, and RMA3Z, the first several
clusters of the bad block file should inelude the last track
of the volume, This track ¢contains redundantly recorded

deseriptions of the bad blocks on the volume, as descr{bedv'

in DEC STD., {44, "Disk Stamdard for Recording and Handlina
Mamufacturimg Detected Bad Sectors”,

5.3.2 Software Bad Block Descriptor =

Om disks that do mot have factory last track bad block data,
the first cluster of the bad block file contains the bad
bleck descriptor for the volume, It {s always located on
the last good bloek of the volume, This bloeck may conmtainm a
listimg of the bad blocks on the volume produced bv a bad
bloek scam program or diagnostic, The software bad block
descriotor {s most of a Files={] Structure Level 1 header
map area, The first two bytes conmtaim the conmstamts | and

3, rescectively, The third byte contains the number of"

words that ecnntaim data, .The fourth bvte contains the
number of words available for had block data, The last word
of the bloeck contains the usual additive ehecksum, The re=

-

Files=11 Onroisk Structure ' ‘. ‘ PAGE 54

trieval pointers are structure level 1 format | pointers, as
described below,

Rad Rlgek Descriptor Lavout

’

{ 3 | { |
! Map Words Avail, { Mam Words in Use |

Retprieval Pointers

LY L X LR Y N.B N & B R N X L L LK B 2 X X R & B L E L& B B B A & B K.J

Bleeck Checksuym

, !
! !
! d
! |
! !
! !
! !
! |
| i
! !

Fach retrieaval peimter is_four bytes in lenath, Byte 1 cone
tajns the high order bits of the 24 bit LBN, Byte 2 con=
tains the count field, and bytes 3 amd 4 contain the low 16
bits of the LBN,

i Count] High
! Low QOrder LAN

'
!
!n---------!- . "
!
!

;._-----.---.---------

5.4 Master File Directery

The master fi{le directory {s File ID 4,4, It is listed in
the M™MFD (itself) as 7202222,DIRs1, The MFD is the rcot of
the volume’s directory structure, It lists the peserved
files, pelus whatever the user chooses to enter, The format
of the MFD {s the same as all directory files, and s des=
cribed {in sectionm 4,3, In the UFD structures descrited inm
sections 4,1,1 and 4,1,2, the MFD contains emtries for all
user file directories,

i

Files=11 OmeDisk Structure ‘ PAGE 5§

5.5 Core Image File

The core image file is File ID 5,5, It is listed {im the MFD
as CORIMG,SYSsl. Its use is operating system dependent, In
gemeral, it provides a file of known File ID for the use of
the operating system, for uUse as a swap area, for example,
or as a monitor overlay area, etc, This file has the FCS
record format ef 512 byte fixed lemath records, with no car=
riage control, The end of file mark is positioned to point
to the physical end of file,

5.6 Free Space File

The free space file is File ID 6,4, It is listed im the MFD
as FREFIL.SYS:1. Tre space it econtaimns is available for ale=
locatien %o other files, The presence of this file allows
imdividyal {mmlementations of Files={! te use an alternate
secheme of space allocatiom which {s more coemplex than usinc
the storage bitmao alone, but has potentially much better
performance, Svstems which do nmnot sucport. this method of
allocation should trumcate this file to zero and return the
space it maps to the storage bitmao before using the volume,
This file has the FCS record format of 512 byte fixed length
records, With no carriage control, Its end of file mark s
yndefined,

5,7 VYolume Set List

The velume set list {s File ID 7,7, It {s listed in the MFD
as VOLSFET.SYS3!, It is used omly on relative volume one of
a tigrtly counled volume set, There, {t contains a list of
the volume Jabels of the volumes contained in this volume
set, The format of this file {3 FCS 64 byte fixed lenath
records with 1mb1{ed carriage control, The first 12 bytes
0% record | comtainm the structure mame of the volume set,
The first 12 bytes of record n contain the volume label of
relative volume nei{, The remaining 52 bytes of each record
are reserved for future use,

5.8 BRaeckup Leg File

The backuyp log file §s File Id 8,8,2, It is listed {r the
MED as RACKUP,5YS:1l, This file contains a history af volume
and imcrementa) backups performed omn the volume, Its format
i{s at present undefined,

Files=1! On=Disk Structure ‘ PAGE 56

.9 Contimuation File

The standard continuation file is File ID 9,9, It is listed
in the MFD as EXTFIL,SYS2t, It is used as the extension
File ID when a file crosses from one volume of a loosely
couyoled volume set to another, The purpcse of this reserved
File ID is allow a multi=volume file to be written seauen=
tially .wizh enly ome volume mounrted at a time, Ordinmarily,
when a file is extended onto another volume, the new header
myst ke created first to obtain the mew File ID before the
extensionm linkage im the current header can be writtem, The
use of this reserved Fi{le ID allows the extension linkaqe to
he writtern with a known constant before the mext volume s
even ¢n line,

6.4 FCS File Structure

File Contrel Services (FCS) is a wuser Jlevel {nterface to
Files=1! <implemented 1{nm the RSX=11 systems, Its orincipal
feature i{s a record control facility that allows sequential
processing of variable lemgth records and seauential and
random access to fixed length record files, FCS {interfaces
to the virtual block facility provided by the basic Files=11
structure,

6,1 FCS File Attributes

FCS stores attribute information about the file {in the
file’s - user attribute area (H,UFAT- = see sectien 3,5.2.13).
It uses only the first 7 wordsy the "rest are igrored by
FCS. The following {tems are contained in the attribute
area: they are {dentified by the usual symbolic offsets
(relative to the start of the attribute area), The offsets
may he defined in assembly larguage proarams by callinmg and
fnveking the macro FDOFFS DEFSL. Flaag values and bits may
be defined by callins and imvoking the macro FCSRTS, Thasge
macros are in the system macro library of ary operating svs=
tem that sypcorts Files=11, Alterngtiver,,a!l these values
are defimed in the svystem obhject library of any system that
supports Files={1, and may be obtaimed at link time,

6.1.1 F,RTYP 1 Byte Record Tvpe =

This byte identifies which tvype of records are
contaimned {in this file, The following three va=
lyes are legal! "

oy

Files=11 On=Disk Structure | . PAGE §7

R.FIX
R,VAR
R.SEG

6142 FLRATT

This byte
trol the

Fixed lemgth records,
Variable length records,
Seauyenced variable length records

1 Byte Record Attributes =

contains record attribute bits that cone
hamndling of records under various cone

texts, The following flag bits are defimed:

FDLFTN

FD.CR

FD.BLK

FDDPRN -

6.1,3 F,RSIZ

l'se Fortran carrfage contrel 1{f set,
The first byte of each record is to be
interpreted as a standard Fortran car=
riage cortrol character whem the record
is copied to a carriaqge comntrol device,

Use {mplied_ carriage comtrol {f sat,
vhem the file 1{s cocied to a carriage
contro! device, each record {8 to be
preceded by a line feed and followed bv
a carriage return, Note that the FD,FTN
and FD,CR bits are myutually exelusive,

Records do mot ecross bleck boundaries {f
set, Gemerally, there will be dead
space at the end of each bleek: how
this {s handled s explaimed in the des=
cription of record formats 1in section
- ‘

Use print file carriage conrtrol, Legal
only {f the record type is R,5€EQ, The
leadinmrg two bvyte field of each record is
used as carriage control instead of as a
sequence number, The first and second
bytes apre used as leading and trailing
carriage formatting, respectively, The
interpretation of the carriage contprol
bytes 1{s described below {n section
6,243,

2 Bytes Record S{ze =

In a fixed length record file, this word conmtains

the size

of the records imn bytes, In a variable

lerath record file, this word cortains the size in
bvtes of the lomngest record im the file,

Files=11 On=Disk Structure PAGE S8

6,.1.4

bala5

b.1.6

6u1.7

F.HIRK 4 Bvtes Highest VBN Allecated =

This 32 kit number is a coumt 0% "the number of
virtual blocks allecated to the file, Simce this
value is maintaired by FCS, it is usually correct,
but it is not guaranteed sinmce FCS is a user leve)
cackage, : :

F,EFRK 4 Bytes FEmd of File Block'=

Thig 32 bit number is the VBN im which the end of
file is lecated, Both F,MIBK anmd F,EFRBK are
storad with the high order half {in the first two
bytes, follewed by the low order half,

F.FFRY, 2 Rytes First Free Ryte =

This word is a count of the number of bytes {nm use
in the virtual block containing the enmd of file:
iser it 18 the offgset to the first byte of .the
file available for arpending, MNote that an end of
file that falls on a block boumdary may be repree-
sented {m either of twa wavs. If the file con=
tains preciselv n blocks, F,EFBK may contaim n and
F.FFEBY wil]l conmtain 512, or F,EFBK may contain nm+!
and F,FFBY will contain €,

S FATT 14 Bytes Size of Attribute Rlock =

This symbol remresents the total mumber of bytes
in the FCS file attribute block,

6.2 FCS File Attributes Lavout

F.RATT

z ----------‘-'-.--.‘- ’-----------------.-

| Record Attr, ! Record Type ; FeRTYE
e T v
T e e T e
i-- ~ Allocated --é |

:-- - .

-

Files=11 On=Disk Structure ' PAGE S9

! VBN \ |
| First Free Ryte : ! F.FFRY
|ewemeeccsccssansescancecaancnnnenansune] 5, FATT

6.3 Attribute Standardization

To assure _a certainm consistency of file record structures,
certain fielda imn the record attributes area are standarde
{zed, and must contain well definmed values regardless of the
record structure or file organization in use,

1, The record type bvte (F,RTYPE) must contain a code
that identifies the file organization and record
structure, All codes must be reqistered with this
specification,

2. The record attribute bits should be used as dess
cribed apove when applicable, New attributes
ahould be recistered with this specification,

'3, The high VBN field (F.HIBK) must contaim the number
of blocks allecated to the file, File mamagers may
modify this field during some operations on the
file, ‘

4, The end of file mark (F.EFBK and F,FFBY) should
describe the emd of data in the file when applica=
ble,

6,4 Record Structure '

This sectiom describes how records are packed in the virtual
blocks of a disk file, 1Inm gemeral, FCS treats a disk file
as a seauentially numbered array of bytes, Records are num=
bered conmsecutively startimg with |,

!

6.4.1 Fixed Lerath Records =

In a file consisting of fixed lemgth records, the records
are simply packed end to end with mo additional contrel ine
formation, If the record lemath is odd, each record {8 pade
ded with a simale null, For direct access, the address cf a
record is computed as follows:

Let: n = record number

-

Files=11 On=Disk Structure , PAGE . 60

record size (in bvtes) .

byte address of record {n file

number of records cer block

VBN containino the start of the pecord
byte offgset withim VBN]

-0 4 K
RN

((k+1)/2)%2 (rounded up record length)
(nei)*h

m/S512+1 (truncated)

m mod 512,

Then

o nu

The previous discussiom agssumes that precords cross block
boymdaries (that is, FD,BLK {s not set), If records do not
cross plock boundaries, they are limited to 512 bytes, and
the followina eauations apoly (the variables are defined as
above)

((k+1)/2)%2 (roumded up record lenmgth)
Si2/h (truncated)

(n=1)/a+!l (trunmcated)

{((n=1) mod @)*h

M uu

6.4,2 Variable Length Records =

In a file consisting of varijable length records, records may
‘be up to 32767 bytes in length, FEach pecord is preceded by
a two bvte Bimary count of the bytes 1{in the recerd (the
count does not include itself), For examele, a null record
is recresented by a simgle zero word, The bvte court is al=
ways word aligned: f..s {f 2 record ends on am odd bvte
boundary, it is padded with a single null,

If records do mot cross block boundaries (FD,BLK s set), .

they are limited to a size of 512 bytes, A byte count of =1
is used as a flag to sighal that there are mo more records

in a particular block, The remainder of that block is then .

dead space anrd the mext record im the file starts at the be=
ginnimg of the mext bleck,

b.U4,3 Seauenced Variable Lemgth Records =

The format of a sequenced file {s fdentical to a variable
lemgth record file excert that a two byte seauence number
field is located immediately aftep the byte count field of
each record, This field contaims a binmary value which is
usually interpreted as the linme number cf that record (see
Section 6,1,2 FDPRN and Sectiom 6,2,3,1). The seauence
number is not returmed as part of the data whem a record s
read, but {s availabhle geparately, Note that the record

=

Files=11 On=Disk Structure . , _ PAGE &1

pyte count field counts the sequence number field as well as
the data of the record,

6.4,3.1 Format of Two Byte Print Control Field in R,SEG Re=
cords = ’

If the FDLPRN bit {s set in the record attribute then the
two bvyte "seauence number" field is ugsed to contaim carriage
contrn]l data for the record, PRyte ? is prinmt control infors=
mation to act wupon before the record data {s output to a
unit record devices byte 1| is orint control information to
act ucem after the record data has been output to a unit re=
cord device,

The format of each byte is as follows:

Rit 7 Bits 6=0 Meaning
) 2 Ne carriage control
? count(i=127) "count" mew limes (CR/LF)
Bit 7 Bit 6 Rit 5 Bits 4=2 Meaning
! 4 2 ASCII C2 set ASCII char to
, output (CR,FF etc,)
1 ? i ASCII C1 set ASCII char (B8 kit code)
to outeput L.
1 1 2 code (2=63) Device specific code
1 1 1 - Reserverd
NQTE

The print comtrol field is not eceurrently suéoorted
by FCS or RMS=11, ’

aid

Files=11 On=Disk Structure . PAGE 62

7.6 Record Mamagement Services (RMS)

Record Management Services (IMS) {s a user level interface -

to Fileseii{, It provides a flexible means of data storage.
retrieval, amd modification through a combinaticn of file
oraanizatior and record access modes, File organization is
the structure of data within the virtual bhlocks of a
Files=1] file, and record access mode {s the manner in which
storimg amd retprievina the data im the file occurs, '

RMS suoports/defines three file organizatioms which are:

., Seauential = compatible with FCS fixed, variable,
amnd seauemced variable record files (see Section 6)

., Relative = RM$ only
. Imdexed = RMS enly

R#S imterfaces to the virtual block facility orovided by the
Files=!1 structure,

7.1 Data Formats and RepreSehtation

RMS suoports file organizations which recuire a more complex
degree of structuring than that reauired by FCS, PRM3 also
stores bimary values in a different mamner in gemeral than
Files=11 defimes, For these reasons the data format and re«
presentations used by RMS are givem in the followira sec-
t‘OHSO

7.1+1 Strimg Storage =
A1l strings are stored left Justified, The left most chare

acter 18 1in byte N and the right most character is in bvte
N+Mw] where M {3 the length of the string, Co '

7.1,2 Strimng Character Code Set -

A1) strimg values are assumed to be im the 7=bit ASCII coade
set,

bl

Files=11 Om=Digk Stﬁucture , PAGE 63

7.1.3 Strimg Collating Sequence =

The collating seauenece used is the T7Te=bit ASCII code set
where NUL s the lowest valued character and DEL {s the hi=
aohest valued character, ’ ’

NOTE

The intermal representation of ASCII characters on
PpPm=11 systems {s 7=bit ASCII, The strimg compare
routime of RMS=11 however, performs a full B8=bjt un=
sioned compare per character, RMS does not verform
any "clear bit 7" code on {mput or outout onera=
tions, Tais allows the suoport of user bimary bvte
strinqg, the KANA character set used in Japan, and
in the future Rsbit ASCII when defimed, without RMS
modifications since the true colating seauence s
lowest character = ? and highest character = 255,

¥

7.1.4 Unsigred Bimary Valqe Storage =

A11 unsianed bimary values are stored with the Least Siagni=

ficant PRits (LSB) 1{in byte N and the Most Sigmificant Bits

(M8R) im byte N¢Mwl where M {3 the lemgth of the binary

valuye,)
EXAMPLE: 2 byte umsigned binmary value

LS8 | N
‘-------’
! M8R | N#¢i

7.1.5 Siamed Binary Value Storage =

A1) sigred bimary values are stored as unsigned bimary va=
lues except that most sigmificant bit (bit 7 of byte N¢M=])
of the value is {nterpreted as the sian of the value,
Negative numbers are stored as the two’s comolement of the
cositive valye,

e

Files={l Om=Disk Structure ' "~ PAGE 64

EXAMPLE: 2 byte siagmed bimary value j

! LS8 PN

‘.-------.-- :

181 MsB i N+t

7.1.6 Pointer Values =

All ecointers are étored as unsigned bimary values, Poinmtars
are stored varfable lemath, The length of a ocointer value
is specified by the control bits _associated with the oo=

inter, The length requirement for a pointer is determined
by the range of VBN values {1t falls im as follows:

2 Svtes start VBN | - 65,535
3 bvtes start VBN 65,536 = 16,777,215

4 bytes start VBN 16,777,216 = 4,294,967,295

7.1.7 Sycket Poimters = .

A hucket pointer ig a pointer value which specifies the
start VBN of the bucket, The lemgth of the bucket (number
af VEN’s in bucket) i{s imteroreted im the context of {ts
usage within the file, and is specified in the file’s coroloa
data, :

EXAMPLE: 2 byte bucket pointer

! Lse | N
*.-u----l :
i MSB | N+i

7.1.8 Record Poimters =

Record pointers are composed of two fields, a one byte re=
corc 1IN0 field followed by a bucket pointer, The ID is used
as a urmisue record {centifier for records within a3 bhucket,
The records are tagged with their ID’S whem storec {nm the
bucket,

EXAMPLE: 3 byte record pointer

“xi

Files=11 Onm=Disk Structure PAGE 65

' Il | N RECCRD ID

LSB | N+{ BUCKET POINTER

LLE L L X1} ‘

!
!
| MSB | N+

7.1.9 Packed Decimal Strings =

Packed decimal strings are from 1 to 16 bytes im length,
The format i3 as follows:

7 43 @

todt L a2 1A

1 d3 | d4 | A+t

L]
LLE R X & & K B K 2 K B E K 2 2 J

I di | sigmn | AeN=i

L. A 2 R R FE 2 X R K R X B N B R}
where:

d = digit in the range of 2 thpry 9 (bimary
value) '

sigm is plus if value is 19, 12, 14, er 15
sfgn {s minus 1f value is 11 or 13
N {s lemgth of strings in bytes

i.= (N=1)%2+1 and is am odd number in the range
of 1 they 31

dl is most significant digit (may be a leadina
zero)

di is least sianmificant diqit

i

Fileswil On=Disk Structure PAGE b6

7.2 RMS File Attributes

RMS stores attribute {information about the file {n the
file’s wuser attribute area (H,UFAT = see Section 3,4,1,9).
It uses the first ten (10) words; the rest are reserved byv
RMS, The following i{tems are contairmed in the attribute
areas they are jdentified by symbolic offsets into an RMS
intermal structure, The relative offset intc the attribute
area may be calculated bv subtractima FEFORG from the aiven
offset name/value, The offset definitions may be definedad in
" assembly lamguage programs by calling and {nvokinmg the macro
IFAQFS RMSSL, Flag values amd bits may be defimed by cal=
lina and invokimg the FABSBT DFIN3| macro. These macros can
be found im the RMSMAC,MLB macro library on al]l PCP={] sys=
tems suopertimg RMS, :

-

7.2.1 F&%FORG {1 Byte = Record Format anmd File Orcanmjzation

This byte idemtifies the file’s organization and
whieh tyoe of record format {t contains, The rew=
cord format is contaimed i{m bits @ = 3, and the
file’s orgamization s conmtained in bits 4 - 7,
The symbolic values are defimed such that they may
be OR’ED te vield the contents of the FSFORG
field, :

Record Formats!

FRIUDF Undefined record format (Rlock 1I/0 enly
file)

FRS$FIX Fixed lemgth records
FBSVAR Variable length records

FBSVFC Variable with Fixed Control (VFC) records
(the FCS R,SEQ fis_ a special case form of
the record format {,e., the fixed control
area s two hytes long and contains the
records sequence number) :

FBESTM ASCII stream records, RMSell used only
as a ‘means for RSTS/E ASCII data inter=
change, Records are delimited by vertie=

"cal form effecter characters (LF, VT, FF
and CR/LF pairs),

File Orqganizations:

FESSER Sequential File crganizatien (FBSSE3 = @
to maintain compatibility with FCS)

a

Files=11 On=Disk Structure : PAGE 67

Te244

Tela2

FR$REL Relative File organization
FRBEIDX Index File organizatian

FRSHSH Hashed File Orgamizatien (mot implemented)

FSRATT | Byte = Record Attributes

This byte comtains record attributes bits that
control the handiing of records under various conw
texts, The followirmra flag bits are defined:

FREFTN See Section 6,1,2 FD,FTN

FRSCR See Section 6,1,2 FD.CR

FREPRN See Sectionm 6.,1,2 FD,PRN and 6,2,3,1

FRERLK Record do not cross hlock boun@arigé for
the Seayential file ergamization {f set.

See Section 6,1,2 FD.81LK for more deta=
il.

FERSIZ 2 Bytes = Record Size

In file containing fixed lemgth format records
this word comtains the size of the records in
bvtes, In Sequential files containing variable eor
variable with fixed comtrol formattec records this
field contains the size in bytes of the longest
record im the file, This field 18 undefimed for
Relative amd Imdexed files containimg variable or
variable with fixed comtrol format records,

FSHVEN 4 Bytas = Highest VBN Allocated

RMS updates this field whemever the file is opened
for write access, For details om this field see
Sectioﬁ 6-1-4 F.HIBKn v

FRHENF 4 Rytes = Emd of File Block

This 32 bit number is the VBN im which the end of
file is lecated for the Seauential file oraaniza=
tion, Both F3HVRN and FEINEOF are stored with the

o J

Files=11 On=Disk Struecture PAGE 68

high order half in the first two bytes, followed
by the low eorder half, The low order half is svme
polically referenced by FSLVEN and FSLEQF respec=
tively, These are the only two places that RMS
stores block numbers in this manmer (see Section
7.1), and is dome so to maintaim ‘comematibility
with FCS. The Relative amd Index file does nmot
use this field and {ts value {s usually (but not
guaranteed) either the contenmts of FEHVBN or the
contents of FIHVBN plus one,

T.2.6 F3FFBY 2 Bytes = First Free Ryte

This field 18 used for the Seauential file orcani=
zation as a count of the number of bytes in use {in
the virtual block cortaiming the ena of file, The
Relative and Indexed file organizatiomn do mot use
this field amd jts value will be either 2 or 512,
For more details om this field see Sectionm 6,1,6
F.FF3Y, '

7.2.7 FSBKSZ { Ryte = Bucket Size

This fi{eld contains the buycket size or maximum
pbucket size for the Relative and Indexed file or=
ganization respectively, The bucket size 1{s rew=
presented as the nmumber of virtual blocks {t con=
tains, Legal values are from | = 32, For compa=
tibility with FCS a valuye of @ {s interpreted as
1

7.2.8 FSHDSZ { Byte = Fixed Header §ize

Thig field contains the number of bvtes (1 = 255)
in the fixed conmtrol area whem the file contains
Variable with Fixed Control format records, A
value of @ i{s interpreted as 2 so that compatibil=
ity with FCS*S Sequenced Varjable length record
format file (R,SER) is maimtaipmed,

7.2.9 F3MRS 2 Bytes = Maximum Record Size

This field contaims a user specified maximum pre=
cord size 1imit im bvtes, to be emnforced on outout
operations, Files comtainimg Fixed length format

i

Files=11 Om=D{sk Strueture PAGE 69

records have FSMRS set eaual to FSRSIZ, For all

other record formats F3MRS {3 set to the wuser

specified value given when the file was created. .

A value of 2 {s interpreted as no maximum record
size limit specified,

FSDEQ 2 Bvtes = default Extend Guanmtity

This field contains a user specified default file

extend auantity to be used whemever RMS needs to
extend the file, A value of @ §s interpreted as
Juse the volumes default extend,

i

Files=11 OUn=Disk Structure ' ' PAGE 70

7.2.11 RMS File Attributes Layout =

! Reeord Attr, | File Org,/rec fmt | F3FORG
T e e e T st
TR T e
i.. ’ Allocated ..;
T R T o
v VBN -‘g
lememecaescsenesamemnmeanmmnansanennmann |
: First Free Byte 1 FS$FFRY
Fskosz | Frxes cine Siae 1 Bucker size | Fssks:
T axinun Recora 3ive Linit 1 Favas
T et Eevens meaniee Tl st

To calculate the offset into the User Attributes area in the
file header subtract FEFORG from all symbolic offsets,

7.3 Prologue Rloeks'

The RMS Relative and Indexed file ormamizatioms wuse the
~first several wvirtual blocks of the file to contain addi=
tional file degeription data, This area of the file g
called the file prologue, In the Relative file organiza=
tion, the prologue 18 exactly ome bloeck lonma: in _the Ine
dexed orcamization i{ts lemgth variegs, The symbolic offset
names, and flag values and bits used {n the file proloqye
blocks and pecord formats may be obtaimed by callimg and ine
voking the follewing macros from the RIMSMAC,MLB macro libra=
ry on all PDP=1{1 systems supporting RMS,

ARDOF S RMS S|,
BKTOFS RMSSL
KDXOFS]MSSL
KDXSRT DFINSL
XARSBT DFINSL
8KTEBT DFINEL

The last word of every orolegue block contains the standard
Files<l1l check sum (see Sectien 3,4,4,1), '

o

Files=11 On=Disk Structure PAGE 71

7.3.! Prologue Block § (VBN {) =

Prolooue Black | contaims common data for both the Indexed
and Relative files, and file orgamization dependent data,
The major Indexed file dependent data i{s the orimary key de=
finition (the K3XXXX symbols), The major Relative file de=
pendent data are the maximum record number, the address of

the first data bucket, and the "real" End of File 31o0ck’

(last initialized, zeroed, V3N), The orimary key definition
offsets (K¥XXXX) apre ysed for all key definftions within: the
oroloque of the index file and are relative to the start of
each key descriptor,

The key defimitions sueply al)l the {nformation needed by RMS
to retrive, {msert, update, and delete records for the In=
dexed file organization, The basic data which are contained
in a key defimition are as follows

., “here the asseaeciated key ?ield is positioned in the
record, and how lorg 1t is,

. The VBN address of the asscefated Root bucket,
. Various key field ocotionms

The key definitions are linked fnto a chain by the VBN ad=
dress and byte cffset within the prologue block for the mext
cey definitjom, The Indexed file organization can be viewed
as a multi=partitioned fiIe.:» The first partwtion is the
oroloqgue, the second partition is the index. associafed with
the orimarv key definition, and the thirg partitionm is the
user data agsociated with the primary index, Every indexed
oraanized file contains these three partitions, Im addition
wher altermate keys are agefined them twe additional parti=
tions per alternate key are created, The first partitiom is
the imdex associated with the altermate key definition, and
the gsecond opartition {8 the RMS data associated with the
index, The RMS data containm pointers i{inmto the wuser data
vpartition for ¢the records meetimg the various kev values,
The index {s structured 2s an n’ary tree where the nodes _of
the 1index are byckets, The imdex structure is the same for
all key defimitions, ‘

7.3.1.1 K3NLVR 4 RBytes = VRN for Next Key Descriptor

This field contains the virtual hlock adoress in
which the rext key descriptor may be found, This
field is only looked at when the KIBNYT field con=
tains a 2, Ahem KENLVB amd KSNBYT = Q2 the last
key descriptor has been found, The least signifis
cant 16 bits of the YBM are stored in KEINLVB and

T

Files=11 Nm=Disk Structure : PAGE 72

7.3.1.2

7e3.1.3

7.3.1.4

“743.1.5

7.3.1.86

the most siqanificant 16 bits are stored in
KENLVR+2 (KS$NMHVB),

KENBYT 2 Bytes = Byte Df?set>?or Next Key Descrice
tar ')

This word field comtains the byte offset relative
to the beainning of the VBN contained im KENLVB
for the next key descriptor in the chain of kev
deserintors, The first key desecriptor cemtained
im a VBN starts at byte offset @, and the eahain
will thread through the current VBN before qoina
to the mext VBN, This meams that the VBN wil)
only change when K3NRYT contains a 2,

K$EIAN | Byte = Inmcdex Area Number

This byte contaims the number of the Allocation

Area to use for the index huckets associated with
this key starting at leve! 2 aqeimg up to and in=
cluding the Root bucket, :

KSLAN | Byte = Lowest Leve! Index Area Number

This byte contains the number of the Allocation
Area to use for Level | of the {ndex buckets asso=
ciated with this key (2 value of 2 means use the
contents of KEIAN), : ‘

K$DAN | Byte = Data Level Area Numbenr

This field contains the mumber of the Allocation
Area to use for the data level (level) of the
index buckets associated with this key descrictor.

KSLVL | Bvte = Level of Root

This field contains the level number of the Root
pucket associated with this key descriptor., This
field is mot supported by RMSwii{ release one,

Files=1}

7.3.1.7

7'3'1C8~

7.3.1.9

Te3a1a12

703,111

OneDisk Structure PAGE 73

KSTRKS | Byte = Imdex Buecket Size

This field contains the bucket size {m VBN’S for
all index . level (level 1 through the roct level)
buckets (1 = 32) for this key descriptor,

KSDBKS | Ryte = Data Bucket Size

This field contains the bucket size {im VRBN’S For
all data level! (level @) buckets (1 = 32) for this
key descriptor, -

PENEKS | Rvte = Data Rucket Size

This is a symbeli¢ redefimition of K$DRKS for use
by the Relative file orgamnization,

KSLVBN 4 Bytes = Address of Root Bucket

This field contaims the bucket address of the Root
bucket for the index asso¢iated with this key des=
eriptor, The 32 bit VBN {s stored {n the manner
cescribed inm Section 7,2.1.1, .

KSFLGS | Ayte = Key Deseriptor Flaas

This field contains a tit vector for the various
key optioms supported by RMS as follows:

XBREOUP Dupiiéate key values allowed

XBECHG ‘ Key value may chamge on 3UPDATE opera=
tion

XBENUL Null key character emabled (KSNULL)

XBEINT Index must be injtialized

dhen the XBSINI bit {s set the KELVBN field cone
taims the following?

KBLVBN = C(KEDAN)
KSLVRN+Y = CIKETAN)
KELVERNe+2 = C(KILAN)
KSLVBN+3 = 2 not used

ad

Files=11 On«Disk Structure \ PAGE 74

7T.3.1.12

7.3.1.13

7.3.1.14

This information . is used once only when the {ndex
for this key definition is created, Simce the
area number information is mot mormally stored i{n
the in memory data base for am open indexed file
the reauired area numbers to create the imdex are
stored in the root bucket field for this crmece only
oceration, The area numbers are mot meeded im the
in memcry data base simece on future tucket allcca=
tion the area number stored in the bucket whieh {s

"aplittima" {s used as the area number to allocate .

the new bucket from (see section 7.5.1,1.2)

PSFLLGS | Byte = Prologue Flags

This field {s a symbelic redefinition of the
K$3FLGS field for use by the Relative file organi=
zation, RBits defimed for this field are:

PRSNEX Error encounted extending Relative file
mno further extending {s mossible,

KSDTP { Byte = Data Type for Key

This field contains the data type of the key field
withim the wuser data records, The only leaal
value currently for RMS={{ {s XB3STG, The follow=
{ma data types are defined,

XBSSTG String data tvpe (umsigned R=bit bytes)
XB$IN2 " Signed 15 bit integer (2=bytes)

XBERNZ Unsigned 16 bit bimary (2 bytes)

XBSING Siamed 31 bit_imteger (d=bvtes)

XBERNY Umsigned 32 bit bimary (l=bytes)

XBRPAC Packed decimal (1=16 bytes)

KENSEG | Byte = Numher of Segments in Key

This field cantains the _nrumber of seaments (1 = 8)
that make up the defimpitiom of the logical key
field, The XR3IINZ2, XBEBN2, XBSIN4, XBEIRN4, and
XB%PAC key field data tyces may only contaim one
(1) seament,

s

Files=11 Dn=Disk Structure PAGE 75

7.3.1.15

7.3.1.16

7301417

7.3.1.18

Te3.1.1°9

7+.3.1.22

KENULL 1 Syte = "NULL" Character

This field eontains a user specified ¢character,

1f the key field withim the data record associated
with this kev descriptor contaims onrly "null"
characters the record will mot be inserted into
the associated Index, - The "mull" value for the
XB$IN2, XBEBNZ2, XBSIN4, XBEBN4, and XBFPAC kev
field data tyces is defimed as zero (2), This
field s enabled by the XBINUL bit in the KSFLGS
and {s only valid for altermate kevs,

KEKYSZ | Byte = Total key Size

This field contains the sum‘c¥ all the key seament

sfzes to vield the total size of the key field in
bytes (1 = 255),

KSKEY | Byte = Key of Refererce

This field conrtains the key of peference number (2

= 2854) for this key descripter, Primary key = @3
altermnate keys = | = 2854,

KEMINL 2 Bytes = M{imimum Record Lenmath

This field contains the minimum lenath record in
bytes to contain the complete key field,

KSIFIL 2 Bytes = Inmdex Fill Quantity

This field comtains the number of bvtes to use for
~index level buckets (levels | = nm) before a bucket

split is considered when the user reauests RMS to
follew fill quantities,

KSDFIL 2 Rytes = Data Fill Quantity

This field contains the number of bytes to use for
user level buckets (level @) before a bucket split
is considered whenm the user reauests RMS to follow
fi11 aquantities,

T

Files=11 On=Disk Structure | | PAGE 76

7.3.1.21

7.3.1,22

7ea3.1.23

Te3a1.24

74341425

7.3.1.26

7.3.1.27

K3P0OS 16 Bytes = Key Segment Offset Positions
This is a set of eight (8) 2 byte fields

(KSPQSU=KSPOST) - which contain the relative offset
(2 = n) into the data record for each key seagment,

K$SIZ 8 Bytes = Key Segment Size
This is a set of B | byte fields (K3SIZA=KS$SSIZ7)

which contain the size im bytes for the key seqw
ment,

KEKNM 32 Bytes = Key Name
This is a 32 byte string supplied by the user when

the key was defimed, If mot supplied wil) comtain
NULLS,

KSLOVR 4 Bytes = First Data Bucket
This field contains the bucket address of the
first bucket at the data leve! (level @) associate

ed with this key descriptor, This field {s not
supported by RMS=11 prelease | and conmtains a zero,

14 Spare BRytes =

PSAVBN | Byte = VBN of First Area Descriptor

This field contaims the VBN (2 = 255) of the first

Allocation Area descriptor hlock, Allocatiom Area
deseriotor blocks are virtually contiguous and are
directly accessed by area number, See Section
7.2.3.

PSAMAX | Byte = Maximum Number of Areas

This field contains the maximum number of definmed
Allecation Area descriptors (1 = 255) for this
file, Eight (B) Allecatiom Area descriotor can
fit im a virtual block sinece each area descriptor

Al

Filesw1! OnmwDisk Structure , PAGE 77

7e3.1.28

Te3.1.29

Te3.1.32

"Ta3.1431

Te3e1.32

S 7.341.33

is 64 bytes lema, The file address of any Area
deseriptor mavy be caleulated as follows:?

Let: a = area number (0 = 254)
v = VBN address for a
o = offset inte v for a

Then: v = a/B (truncated) + c(FSAVBN)
o = (a mod B)x6d

PSDVEN 4 Rytes = Address of First Data Bucket

This field contains the 32 hit VBN of the first
data bucket im a Relative file,

PELMRN 4 Bytes = Maximum Record Numbern

This field contains the user specified maximum re=
cord number .which will be allowed on SPUT orera=
tions to the Relative file organization, If ¢the
user specifies 2@ then this field will contain the
maximum record number possible (2%xx31=1),

PSLEOF 4 Bytes = EQF VBN
This field contains the last f{nitialized (i,e.s

zeroed) VBN (i.e,, the EQF VBN) fer the Relative
file orqganzation,

PSVERN 2 Bytes = Prologue Version Number

This field containg a oprologue version nubmer,
The only legal value at thig time s onme (1),

292 Rytes = Regerved fop Future Use

2 Rytes = Ppologye Checksum (see 7,2)

Files=1] On=Disk Structure

7.3.1.34

KSLVL

KEDRKS
P3DRKS

KEDTP
KINULL

KRKEY

—— e - - man e e G e e e U i e B mn e e - wn aam

Proloque Block | Layout =

!-“..-------_-...--‘-—----.--..--.’--.'-g N

| VBN For Next Key !

|m- we |

. Descriptor !
} NDtfset To Next Key Deseno,
t--.----.-O----.---.-----.---.-.'-.-—'--

!

! Root Level } Data Aprea # !

Data Bkts ' Imdex Rkts
Size ! Size

LA R X X LA X X E BB LA LR L ELERELRLE R LLEERRE L LA L LAR XK.

}
|
H
Root Rucket |
|
]

Peinter '
ﬂ----...--.--'------------ﬂ--------.---’
Data Tyne H Flags !
.-‘-..--.-"---.-----’-.-------------.ﬂ!
"NULL" Character | # of kev segments |

Key Of Ref, -1 Total Key Size |
]

Minimum Record tenqth

E X X ELELEELLEEALLEELEERELLEEEELERLES 2 .80 XX

Index Fil] Guantity

[I T X XX EX Y AN R EE N R EEX L ELEE LA LR X & 2]

Data Fil) Quantity

P L A X XX XX LB L2 LXK LK LXEERE L L RLLEE LA L AR R LR

- AR WaR A e . WS e Mo et e e

Key Field Seament
Offset Pos{tions

(KSPOSA=KSPOST)

, ! o
Key Field Segment Sizes
(KSSIZ@=K$SI27)

Key Name String
(22 Bytes)

—— ——— . o 1SN —— —— AN nan e wan i men a m a a- a—

First Data Bucket

- - -.g

PAGE 78

KSNLVA

KINBYT
KEIAN
KENDAN

K$IBKS
KSLVEN
KSFLGS

PSFLGS

KENSEG

KSKYSZ

KEMINL
KSIFIL

K3O0FIL

K$P08

K$S1Z

KEKNM

K3LOvVR

i

Files=11 Cm=Disk Structure ’ PAGF 79

Pointer C
--‘----------'.----..-----------.----.-,
Srcare (14 Bytes) /

|

LA R A R L X E K E K L R B B A B B E X R K & K 2 & E B N & N K X B E & K A & J ;

Max Area # ! VBN 0f 1st Area IPSAVEBN

Start VEN of (st Data Bucket | PEDVRN

-

(relative file only) !

’ LEX A B L L K A A R A KA B X LAREXE XXX L ELLEXELESE R KX 2 J '

PRAMAYX

o o o e N\ oo

| Maximum Pecord | PSLMRN

'-- X --’

b Nyumber , !

' Relative File EOF VEN | PSLEOF
- . .-I

(Last Initialized VBN = lersed) .!

LA K R K K X R B K X 2 & R § E R N B N R R B B X R E X B B R R R E N R N B N J ‘
Prologue Versionm Mumber PRVERN

‘Rloek Cheecksum
Bvte Qffset S17

}

|

!

| !
| }
! |
/ Spare (392 Bytes) /
H |
! A
| }
| !
|

T7e3.2 Alternmnate Key Prologue Rlocks =

Altermate key proloaue hlocks are chaingd together through
the KINLVBE field of the key descriptors (see Section
7.2.1.1)s Five alternate key descrintors can fit in a VBN,

7.3.3 Area Descriptor Prologue Blocks =

The Indexed file orgamizationm reauires a methoa of allocat=
ing the virtual blocks of the file to the various usaaqes
within the file (e,.9.» Index buyckets and Data buckets), The
structure which allows this virtual bloek allocatien manage=
ment {s the Area Descriptor, The Indexed file supports myle
tiople allocatiom areas to achieve the fellowing user file
design carmabilitiess ’

1e Different buckat sizes betweem the {ndex Gtuckets

Y

Files=i1

2

NmmDisk Structure PAGE 80

and associated data buckets,

Different index and data bucket s{zes on a per kay
basis,

Allocation placement control for the var{ous eles
ments of the file,

Eiaht area descriptor can be contaimed in a virtual bloek,

amd al)

the area degerioter prologue bloeks are virtually

contiauous (see Sections 7.2,1.26 and 7.2.1.27 for more de@«

ta“s).

7.3.3.14

7.3.3.2

743.3.3

7.3.3.4

7.3.3.5

Scare | Bvyte =
ASF|LLG | bvte = Flags (nofyused)

ASAID | Byte = Area Number (2 = 254)

This byte contaims the Area’s number and s used
as a redumdancy check since all area descriotors
are located at a2 fixed relative position to the
start of the Area Descriptor orologue blocks,

A$BKZ | Ryte = Rycket Size for Area

Thig field eontains the areas’s bucket size {n
blogks (1 = 32) which is the granularity of allo-
cation,

ASVOL 2 Ryte =~ Relative Volume Number

This field contains the relative volume number for
the last file extend for this area when placement
comtrol was reauested,

=

Files=11 On-DisQ Structure PAGE 81

7e3e3.6 ABALN | Byte = Extend Alloecation Alignment

This field contains the allocatien alignment used
for the last file extemd for this area,

Legal values for this field are:

2 placement comtrol not recuested
XBECYL cylinder alignment (not imolemented)
XBSLBN logical bloek alignment

XREVEN virtual block alignment .

XBERFI allocate close to related file

by FID (not implemented)

7.3.3.7 A$AOP { Byte = Alignment Qptions

This field contains oBtion bits to aualify the
ASALN field, Leagal values are as follows?

XBSHRD Aligmment {s absolute and fail {f not
available (rote: {1legal for XBIVBN or
XBSRFI alignment),

XB$CTG Allocatien is to be comtiguous,

7e3.3.,8 ASAVL U4 Bytes = Available {(Returmad) Buckets

This field contains the 32 bit VEN of the finrst
available bucker {im a chaim (linked through the
first 4 bytes of the bucket) of buckets, This
chain of buckets would be the result of returming
buckets back to the area, The returning of buck=

- ats {8 not ecurrently supoorted by RMS so that the
only legal value for this field {s zero (9),

7e3.3.9 A3CVB 4 Bytes = Start VBN ?dr Current Extent

This field contaims the 32 bit start VBN for the
current extent, The current extent {s the extent
from which buckets wil) bhe allocated,

|
il

Files=1] On=Disk Stpucture PAGE 82

7.3.3.1?

7.3.3,12

Te3.3.13

7.3.3.14

7.3.3.15

ASCNB 4 Bvtes = Number of blocks im Current Extent

This field contains the numher of blocks that were
allocated to this current extent, The combination
of ASCVB and ASCNB describes im virtual block
terms the result of the file extend operation for
the current extent,

ARNUS 4 Bytes = Number of hlocks used

This field contains the mumher of dlocks that have
beer allocated from the current extent,

ASNVR 4 Bytes = Next VBN to Use
This field contains the 32 bit VAN to use for the

start VBN of the mext bucket allocated from tha
current extent,

ABNXT 4 BSytes = Start VBN for Next Extent

‘This field conmtaims the 32 bit start VBN for the

next extenmt, When the current extent {s used up
the next extent is made the current -extent and the
rext extemt descrintion {s zeroed, The area ¢an
only be extended when the next extent descriotion
is zero,.

ASXRY 4 Rytes = Number of bloeks {m Next Extenmt

This field contains the number of blocks that were
allocated to this next extemt, Thie combimation
of ASNXT and ASXBY describes {n virtual bleck
terms the resuylt of the file extend operation for

thevnext extent,

ASDEN 2 Bytes = Default Extend Quantity

This field contaimns the wuser specified default
file extemd auantity to be used whemevepr the area
is to be extemded by RMS, A value of 2 means use
the file’s DEG, However, {m mo case will less
than one bucket size fer this area be reauested,

LYY

Filasw1! OnwDisk Structure . PAGE 83

7.3.3.16

74343417

7.3.3.18

7¢343.19

7.3.3.22

Reserved 2 Rytes =

ARLOC 4 Bytes = Start LBN om Voluyme

This field contains the start logical bloek number
for the last extent performed for this area,.

ASRFI & Bytes = Related File ID

This field contain the FID of a related file for
the XBSRFI allecatior alianment (ASALN) (mot im=
plemented)

Spares 12 Bytesg =

ASCRC 2 Bytes = Checksum

This field is a dummy field to pad out the area
deeriptor to 64 bytes, This alse allows the stane=
dard Fileg=1]l checksum to be stored in the last
word of the Area Descriptor Prelogue block,

ad

Files=11 Om=Disk Structure

7.3.3.21

ASFLG

ABBKZ

ABADP

Area Descriptor Layout =

Flaas }- Spare |
Bucket Size | Area Numbenr

L X B N R R R B R X X R B N ¥ R E X X K B X R N B S R R X R B R E N R R B X I
Relative Velume MNuymber

!

|

!

. !

Align Optioms |. Alloec, Alianm,]
]

H

|

!

]

List

LA A B A R & X R L & K LA K KB & X LA LA X X L L2 KX LLEEL R J]

Start VBN For !
Current Extent |
----.'-----.--.--.-.-.-.--.---------'.'s
Nymber 0f VBN’s In
Current Extent

'

{

H

|

!

|

|

!

‘ N,

| ‘ Avaiiable Bucket

]

'

!

H

i

|

i

H

:U-.ﬂ--.---------.---‘---------.-----‘.-

! Number Of VBN’a lised
In Current Extent
Next VBN To Use For

Current Extent
Start VBN For
Next Extemt
Numbepr Of VBN’s In
Next Extend

Nefault Extend Quantity

!
|
!
|
!
|
|
|
!
|
|
|
|
!
}
!
L X K K & X K B N 2 N KR B R E N K S B KR E R X K K N FE K E N N R R E X B N i
Smare !

L X E B L KX F X F X X K 2 3 R E X B N N E X F & N F X R K X K R E N R N R J ‘
!

H

H

|

|

!

|

|

|

|

|

!

H

!

!

!

Extend For This Area
File ID For
Related File For
File Extends

Spafes
(12 Rytes)

Gummy Field To Allew Rleoek Checiksum

LA KL B B K X L X X A N & 2 E B L B L A K LK E B L & L X & 2 K B E & K R R _J_J

}
:
!
{
]
!
|
!
!
!
|
!
!
!
|
| Start LBN For Last
|
|
|
|
!
|
|
!
|
|
!
!
!
|
!

PAGE 84

ASATID
ASYVOL
ASALN

ARAVL
ARCVSH
ASCNR

ASNUS

ASNVEB

ASNXT
ASXBY

ASDER

ASL0C

ASRFI

ASCRC

Wi

Files=11 OnwDisk Structure PAGE 85

7.4 Seauential File Format

The RS Seauential file is compatible with the FCS Fixed and

Variable lemgth record files, Please refer to Sectiom 6,2
throuah 6,2.3, The RMS variable with Fix Comtrol record
format s a cemeralizatiorn of the Seauenced Varialbe Lenmgth
Records of FCS (Section 6.,2.3) im that the fixed control
area (alwavs 2 bvtes for FCS) can be varied betweem | to 255
bvtes,

7.5 Paelative File Format

The Pelative file currently uses virtual block ome (1) for

its orologue, and starts {ts data buckets at virtual block
2. Records are stored fn fixed lenmgth cells within umfore
mated buckets (mo overhead bytes in bucket) startinag at byte
¢ and packeg end to end ({.e.2 byte aligred), The virtual
blocks withim the relative file must be 1nit1alizeo (zeroed)
when they are allocated to the file to suaport deleted re=
cord control,

7.5.1 Relative File Record Formats =

Records are stofed in fixed lemath cells, The first byte of

eack cell 1s a record control byte used to provide deleted

recard control, The following bits are defined:

DCSNEL record hag beenm deleted

DC3IREC record exists
A value of 2 i{ndicates the cell has maver ‘contajned a re=
conrd,

The relative file supports variable and variable with fixed
cortrol lemath record uo to the reauired user specified Max=
imum Record S{ze (MRS), In these cases the record contrel
bvte {s followed with a two byte bimary count cof the bytes
in the record (the count does not include {tsel¥), I1f ¢the
¢cell size does not evenly divide the bucket size them the
remainima space inm the bucket {s dead space and the next re=
cord im the file wil) be stored in the finrst cell of the
next buycket, Im other words records mever sman bucket boun=
daries,

:lhi

Filesw1! Ome=Digk Structure

7.541.1

Ta5.1.2

745.1.3

Fixed Length Records =

! ctr) | data (mrs bytes) |

cell size = MRS+1

Varjable Length Records =

' PAGE 86

Il ctrl | size | data (size bytes) | !

eel]l size = MRS+3

~

Variable With Fixed Control Records =

CE YRR LR R X R XL L XA XKLL R L XA XL L EXLRLR LA RR AR L LR A J

Vet

Teb

cell size = MRS+f{xed ctrl size+l

Indexed Fi{le Format

| size | fixed | data (size=fixed ctr] bytes) | P

The Inmdexed File uses virtual blocks 1, 2 and {f necessary

up

current

to

gue of the following forms:

VBN

VRN

1

i

Single Key
I,

' .
i Primary Key
| Deserintion
|
$
i

:-u-u--------------.--u---..-.-

’-------‘.--------------—----- z

LA X X L EE B KB R R E LK LN 2 B B R N R A K 2 L R J

LA X Y K B K L X B K L X & X F R E N X LK E R R N R R 2 J

PEAMAX } PSAVAN

z-.---------.---‘-------------

and inclucding 84 as a maximum for its prologue, The
implementation on the PDP=1{ will

result im a prolo=

!
'
'
!
!
l---.
! |
! !
i !
|
!
'

'(-n

Fileswil On=Digk Structure

VBN3=N

| Area Descriptors |
| (Up To 8) Fer !
! simgle key 4 is all that !
] can be used H
! |

|

! Index ancd Data
| ' Buckets
!
!

Multiple Kev

¥YBN 2

1f more thanm S

VBN 3

VBM PRAVEBN

Ppimary Key
Descrintor

PEAMAX | PSAVEBN

: |
| !
z |
| | !
!'-------.--ﬂ----...’.---v-.-..“:
| !
s !
| |

LA A BB L K R A X B B L 0 K28 & L K R E L & X R B X B J

0

]

|

] ,

! Up To. S Key
} Descrictors
[

|

!

|

1

Key S Descrintor

..---‘--.-------------'.----.-

altermate keys

| !
! o |
] Key Descriptors !
| ete, H
!]
!]

! |
} Area Deserintors }
] 8 Per Block]
H]
! !

o v — - — — ——

Comw

PAGE 87

Files=11 On=Disk Structure -~ PAGE 88

index and data bucket space starts at!
((PIAMAX/B(truncated))+PSAVEN)

Records are stored {n formatted buckets (buckets have cverhm
ead bytes) and are pcacked end to end ({,e., byte aligned),
The bucket format and the various record formats are given
in the followimg sections,

7T.6.1 Index Structure =

The Index is structured as a balamced tree, The necdes inm
the tree are buckets, and the rodes are serially searched,
The Index nede contains imdex records as soecified {im Secw
tiom 7.5.2.1.

The bucket size {s eomstant for index modes, but may be difse
ferent than the Data huckets, The Data buckets are all the
same size,

Each level of the index {s horjzontaly linked via the Next

bucket opointers, The horizomtal linking is circular with
the last bucket (noted by BCELBK) poimting back to the first
bucket, ‘The Data buckets for ar Imdex may be viewed as the

data level (set) of the index and are limked im the same
manner as buckets in any other level of the Index, Figure
7=2 shows the structure of the Index,

The key value associated with 1{ndex records (see Section
7a5.2.1) i3 the highest or highest possible key value inm the
bucket poinmted to by the bucket poimter im the record,

The tasic search rule for an {nmdex search is to follow the
first path for which the search key {s ecual to or less than
the key valye stored {n the {ndex record,

7.6.1.1 Primary Key Index Structure =

The primary key {ndex for a file is structured as stated 1in
Section 7,5.,2 above where the data level is cemposed of
buckets which contain the User’s data records, The data
buckets may also econtain RRV records, See Sectiom 7,5,3 and
7.5.2.3 for details on RFV precords,

Files=11 NneDisk Structure PAGE 89

Tebel,2 Altermate Key Imdex Structure =

Arn altermate key index for a file is structured as stated in
Sectior 7,5.2 above where the data level i{s composed of
buckets which contain pointer array records as specified in
Sectiorn 7,5,2,4. Therefore the indices within the Indexed
File quanigationhhave the same structure, where only the
intercretation of the records within the data leve! of am
index is different, .

7.6.,2 Record Referance Veetor (RRV) =

“hem a record {8 {nserted {n am Imndexed file the record f{s
assigned a reference vector address and this address is
stored in the data record in the record pointer field (see
Section 7,5.,2.2). This address {s the imftial address of
the record itselé$, "~ wWhemever the record {8 maved the
record’s reference vector recoprd is updated with {ts new ade
dress, The record, in turm, points back to 1i{ts reference
vector so that {t cam be ycodated if the record is moved
agaim, The reference vector record is created when the re=
cord s moved for the first time, Using this techniaue the
worst case 1ndirection for a record i3 kept at ome, and we
can always find the record via its reference vector address,

The record pointers used within the Indexed file organizae
t*on.‘ and the RFA (Record’s File Address) returned to the
user im the RFA field of the RAB are always the record’s
reference vector address,

The space reqguired for RRV pointers i{n the data records of a
file is reauired to {nsure RFA addressing and alternate
keys, The RRV records are stored at the end of the data ree=
cords in the user data buckets, The use of RRV’s and secon=
dary indices {s graohica11v shown {m Figure 7e3,

7.6.3 PBucket Format =

The Indexed organizatiom uses a formatted bucket as {ts pri=
mary unit of seondary storage, A bucket is composed of some
number of virtual blocks in the ramage of =32 and has a
header starting at byte ome of the bucket,

The Bucket %s composed of three Jlogical areas, a HMHeader:
area, a Record storage area and a Free sSpaCe area,

Each of these areas will be described im the sectiomns that

follow,
!/

Files=11 Om=Digk Structure ‘ PAGE 9@

Tebadal

76034101

7lbﬂ3'.1.2

Teba3.1.4

7.él3.1|5

Header Area =

The bucket header area is comoosed of a RAS data
section, a bucket storage cortrol section, amd a

structure Jink section, The size of the bucket

header {s 14 bytes (S$BHD),

BECHK | Byte = Check Bvte

This is a orme byte check character, Khemever a
bucket {s wpitten the value im the check byte f{s
changed and copied into the last byte of the bucks
et, Yhenever a bucket {s read the check byte f{s
compared to the copy for eauality, By this tech=

micue hardware faflures durimg transfer are dew

tectable ({i.e,, the BUS breaks ete,),

RSTAA | Byte = This Allocation Area

This field contains the allocation area number
that this bucket was allocated from,

B3ADR 2 Bytes = Bueket Address Samole

This is a sample of the bucket’s start VBN ade
dress, and {s composed of the low order 16 bits of
that address, This field is writtem upem bucket
formattina, anmd i3 checked whemever the bucket is
read into main memory,

BSNBY 2 Bytes = Next Avaflable Byte
This field contains the byte address relative to

the start of the bucket of the first free byte {m
the Free Storage Area of the bucket,

RENID | Byte = MNext Avai{lable ID

This f{eld econtains the ID mumber to use for the
next record placed im the bucket,

T

Files=11 On=Disk Structure | CAGE 91

T.6.3.1,6

7.6.3.1-7

Te6.3,1,8

7'603I1.q

BSLID | Ryte = Last Available 1D

This field contains the ID mumber of the last 1ID
in the contiguous range of ID’s specified by the
contents of BINID anmd RSLID, Whem the contents of
BENID are greater than the comntents of B83LID or is
zero then there is no "mext" available 1D, When
this condition occurs the bucket {s scannmed to
find the laraest contiguous ramae of unrused ID’s
and BSNID and BSLID are updated to describe that
range,

RINBK 4 Bvtes = Next Rucket Pointer

This field contains the start VBN of the nmext
bucket at this level of the index or data carti=
tion for the Indexed fi{le organization., This opo=
fnter always points to a bucket of the same size.

RELEV | Byte = Leve] Number for Bucket

This field contains the level number relative to
the data level for this bucket, im the index, The
Data level buckets contaim a @, the lowest Teve!
buckets of the index contain a 1, the mext level
huckets qoing towards the root contaim a 2 etc,

NOTE

"Data buckets" refer to the buckets which
contaim the data records associated with
the index, For the orimary f{ndex these
are the yser data records, and for the al=
.ternate index these are system data res
cords which contaim am array of pointers
to user data records,

\

R3RCR | Ryte = Control Rits

This {s a bit emcoded bvte field and {s wused in
the processimg of a bucket, The following bits
are definmed for the indexed file oraganization:?

ubt

Files=11 OmmDigsk Structure ' PAGE 92

Teba3a2

7.6.3.3

Tebs3.4

7e6.3.5

R3TAA

BsLID

38RCR

RCSLBK = last bucket irm leve]
BCEROT = poot bucket of index

Record Sterage Area =

The record storage area starts at the first byte
after the bucket header area, and ends at the bvte
address stored im BSNBY minus one, The record
structures {m buckets vary with the use of the
bucket, Seetion 7,5,2 specifies the varfous res
cord structures ysed,

Free Storage Area =

The free storage area starts at the byte address
stored im BSNBY and up to the check byte coov in
the bucket, Anmy and all free storage statistics
refer to this contiguous free storage area,

However it is possible due to "fast" record dele=

ticns to have "free" space within the record sto=
rage area of the buycket, The reclaimina of thisg
space is dome or anm as needed basis,

S$RBHD 14 Rytes = Size of Header Area

This symbol represents the size of the bucket
header area, '

Bucket Format Layout =

I This Area | Cheeck Byte f B8CHK
e e P e
T AT e e ey
S O T
T e maarer T e
' (Start VBN) ;

Files=11 On=Disk Structure PAGE 93

Record Storage
Area

c(BENBY)

LA A A X A X X A X AL ENXENXRE LS EIYEEYE N AERY S X KX J

Area

Check Byte Copy |

! |
| |
! |
! |
| |
! '
! ~ Free Space |

[]
i |
! |
! |
! }

Tebold Record Structures =

The following record structures apply to the Indexed file
organfization, '

7.6.4.1 Index bucket record =

|

| |
‘ | IRCB | PS | | Byte

! | !
s.---ﬂ-------’
] 1
| Rucket ! n Bvtes
i Pointer | \
| !
‘--------.---:
] |
| Key Value | m Bytes
] !
| |

IRCR ccnmntains Imdex Record Cormtrol Rits

The following bits are defimed in the IRCR bytes

IC3CP Compressed kev value (not currently de=
finmed),
.ICEEHP Poimter to emoty bucket,

PS is the pointer size as follows:

2 byte bucket pointer
I byte bucket poimter
4 hyte bucket pointer

VI]
huu

i

Files=1l Om=Disk Structure

Tebobe2

PAGE 94

2 = ymdefimed

Gemeral Data Bucket Record =

]

! DRCR | RS | { Byte

| ID | {1 Byte
’ﬂ”........-.-‘

! Record | N Bvtes Optional
! Poimter H

:----ﬂ----.--.-z R . N

! S1ze i No Size If Fixed Lemgth Data
‘-u-----------!

| ,

| Data M Byteg

!

|

1
|
| M =3 S{ze or Fixed Lenmgth
1

DRCB contaims Data Record Conmtral Rits

The following bits are defimed im the DRCB bytel

DCSDEL

DCSBRYV

DCENPS

DCeKDL

DCENCP

PS is the
followss

. Reegord deleted, or poimter to deleted

record,
Record reference vector record,

No pointer size field mresent (qualifies
PS)

Poimter to record for this key mo longar
arplies SUPDATE echanged the key, hut re=

"cord existsy note ID will be zerced on

al} systems starting with Release 1 onm
RSX=1{M V3,

Lo not compress this deleted record,
pointer size for the Record pointer as
3 byte record pointer

4 byte record poimter

S byte record poinmter
undefined

H 1w

NP~

and

Files=11 On=Disk Structure PAGE 95

T.6.4,3 PRRV Records =

. Record Referemce Veetor (RRV) records are records which
2oint to thke record associated with the reference vector,
They fumctien as "forwardinc addresses" for the actual re=
cords whem they are moved,

The format is as follows!:

I-----------=
! DRCB | PS |
:------..---3
! n !
| Record |
| Pointer |
] (]
(]]

where the DCSRRYV bit is set im the DRCB field,

7.6.4,4 Deleted RRV Records =

The RRY pecord ?og a deleted record can be as small as the
first two bvytes of the RRY record. In this case the follows
ing DRCB kits are set:

DCERRY
. DCENPS
DCEDEL

Tet4,5 Seconmdary (or altermate) Imdex Data . Record (SIDR)
for which duplicate keys are allowed =

The data records associated with an alternate index are_ no=
imter arrays to the users data records, The format of the
record {s as follows:!

!
! DRCH ! P8 | 1 Byte
!---.----.---------.-e

Data Record | IR i Byte
]

Dunliecate Count 4 Bytes (DCINPS=7)

H

|

! |
Overhead ! Size | 2 Bytes

- - - - - 2 !

: i

| !

)

Key Valye M Bytes

Files=11 Om=Disk Structure \ PAGE 96

Poi{mter #K

Data ! SIDR Record ! X Byte Poimtenr
on ! Pointer #1 ' Arpay
Reco‘rd !—-------—-----.---n.!
| SIDR Record | Y Bytes record
{ Pointer #2 |
".--------------ﬂ.-—g !
' . '
! . !
' . !
‘.-.--------'------.-g
' SIDR Record ! Z Bytes
! |
' !

Fields within the pointer array record!

PS This field contains the size of the duclicate
- ecount field as follews

2 = 3 bvtes
1 = 4 bytes **xTHIS IS THE CONLY VALUE USEDx=*
2 =5 bvtes
3 =2 yndefined
DRCH Bits used for rointer array records .

NCSNFS 1f this bit {s set then there is no due
, plicate count field, This is used for
all array contimuatioms records, since

the count applies to the total array,

7.6,4,6 Secomdary (altermate) Index Data Record = No Dupli=
cates = '

The data records associated with an altermate index for
which duplicate key values are rot allowed {s shown in Sec=
tien 7,5,2.4 exceot that the duplicate count field {s omite
ted (DC3NPS=1) amd there {s only ore SIDF Record Pointer,

NOTE
bhem a pecord is deleted the No Duolicates SIDR re=

cord is compressed out of the secondary index’s data
tucket at the time o0f the delete,

Files=1] OmwPigk Structure

7.6.“.7

SIPR Record Pointers =

The format of the record pointers used {n Secondary

Data Records

Nverhead
Record
Pointer
InS bytes

ORCR bhits

is as follows:

| DRCB

PS | | Bvte

| Recgord
| Pointer

| N 3ytes
H .
|

used for SIDR record nmoimters:

DC3OL

LCSDEL

Poimter has beenm deleted due to
chamge on a BUPDATE gperaticmn, Inm
case the ID portion of the record
inter will be zero, '

Record associated with this pointer
been deleted, '

PAGE 97

Index

key
this
pow=

has

by

Files=11

Om=Disk Structure

Fiqure 7=2

Index Structure

Root
HE H
Pl oK .. Kx
A H
| |
g----.--—-- t

: !---------.----- ! ’

v A

tod !

(I) I

b olKab we X§ !eae! |

I Loy

I
U '

: LA A AKX L A K2 L FEX T X X ¥) x

1
t
!
i
v
P !
| !

Vo i
LES X E L T X X ¥ T
1

|

!
!.------.-‘

]

v

I iKab 1. |
! leseidatal |
Yo ! i

NOTES:

A1l buyckets im a level

reee Xab ., | XK

ot Lot
kil
b by

| oKy
leasssidatal
! | !

|
!
!
!
v
!
'
!

are linked hopizontally from

PAGE 98

left to

rioht via mext bucket coinmters (see Sectiom 7.5.1.1.7).

i

Files=11

CASE

o
n

n

Om=Disk Struecture

Record Has Never Moved

we== Pointer Im Secomdary Index
! Poirter Array

v
P S
T
AT po S
] (RRVP) H

[]
[}
H
| User Cata

RRVP = Regcoras
Vector Pointer

Record Hasg Moved

emme Po{mter In Secondary Index
! Pointer Arpay

]
]

v

LA B L A K R E X L B X 8 X X 2 XK |

PAGE 99

Record

Refarence

! DRCAH ! PS |Kwewunwe Reeord Reference

L ELE R ERE L L L X ER XXX} J

| 10 '

Vector

’ Record PO"ﬁteP 3----
1]

!
!
[]
T
H
L]
XYL E R LR R L X] }
]]
1 1
]
1
]
1
]
1
]
i
]
1
]
L
-

\j .
! ORCSH i PS |

! ' 0 !

| Record Pointer |sweeeu=e
H (RRVP) !

! Data]

Figure 7=3

RRV Usaae

User Nata Record

i

Files=11 On=Disk Structure

[Emcd of 0DS2,RNO]

PAGE 122

&t

