APL-11
Programmer’s Reference
Manual

Order No. AA-5076B-TC

dlilgliltlall

January 1980

This document describes Version 2 of APL-11.

APL-11

Programmer’s Reference
Manual

Order No. AA-5076B-TC

R SUPERSESSION/UPDATE INFORMATION: This is a revision.
SOFTWARE VERSION TO APL-11V2
OPERATING SYSTEMS AND VERSION: e RT11V4

® RSX-11M V3.2

® RSX-11M-PLUS V1.0
APL-11 V1

® RSTS/E V7

To order additional copies of this document, contact the Software Distribution Center,
Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard. massachusetts

Second Printing: January 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corpqration assumes nho responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.
Digital Equipment Corporation assumes no responsibility for tpe use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1978,1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
docgment requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0Ss/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

CONTENTS

Page
PREFACE ix
ACKNOWLEDGMENT xi
CHAPTER 1 THE APL OPERATING ENVIRONMENT 1-1
1.1 APIL, ON THE PDP-11 1-1
1.2 FILES IN THE APL SYSTEM 1-2
1.2.1 APL Workspaces 1-2
1.2.2 APL Data Files 1-3
1.3 APL HARDWARE 1-3
1.3.1 APL Terminals 1-4
1.3.2 ASCII Terminals 1-4
1.4 THE APIL CHARACTER SET 1-5
1.5 INTERACTING WITH APL 1-7
1.5.1 RT-11 Operating Procedures 1~7
1.5.2 RSTS/E Operating Procedures 1-10
1.5:3 RSX-11M Operating Procedures 1-12
1.5.4 IAS Operating Procedures 1-12
1.6 KEYBOARD EDITING PROCEDURES 1-13
l1.6.1 Immediate-Mode Editing Procedures 1-13
1.6.2 Processing Character Errors 1-15
CHAPTER 2 THE APL LANGUAGE 2-1
2.1 OVERVIEW OF APL STATEMENTS 2-1
2.1.1 Statement Execution Modes 2-1
2.1.2 Statement Components 2-2
2+d o241 Identifiers 2-2
Zels2:2 Numeric Constants 2-2
2.1.2.3 Data Structures 2-3
2.1.3 Significance of Spaces and Comments 2-5
2.1.4 APL Statement Types 2-6
2.1.5 Evaluation of APL Statements and Expressions 2-7
2.2 FORMATTING APL NUMERIC OUTPUT 2-7
2 3 ERROR HANDLING 2-9
2.4 ARRAY INDEXING AND COMPARISONS 2-10
2.4.1 Indexing Arrays in APL 2-10
2.4.2 The Index Origin 2-12
2:4:3 Comparison Tolerance or Fuzz 2-13
2.5 INPUT/OUTPUT OPERATIONS 2-14
2.5.1 Quad Input Mode 2-15
2:542 Quote-Quad Input Mode 2-16
2.5.3 Quad-Del Input Mode 2-17
2.5.4 Escaping from an Input Loop 2-17
2.5.5 Normal and Quad Output Modes 2-18
2.5.6 Heterogeneous Output Mode 2-18
26567 Bare Output Mode 2-19
2.5.8 Terminating Output 2-19
2.6 PRIMITIVE SCALAR FUNCTIONS 2-20
2.6.1 Monadic and Dyadic Functions 2-20

iii

CONTENTS (CONT.)

Page
2.6.2 Extending Scalar Functions to Arrays 2-22
2.6.3 Using Operators with Scalar Functions 2-23
2.6.4 Relational Functions 2-24
265 | : Determining the Residue 2-24
2 5ed PRIMITIVE MIXED FUNCTIONS . 2-25
24741 Summary of Primitive Mixed Functions 2-25
2ud=2 Specifying Array Coordinates 2-27
2ulsd po: Returning the Shape of an Array 2-29
2.7.4 p: Reshaping an Array 2-31
2.7s5 1: Generating Consecutive Numbers 2-33
2.7.6 1: Finding the Index of a Value 2-35
277 ,: Converting a Value to a Vector 2=-37
2.7.8 ,: Catenating and Laminating Variables 2-38
2uilad /: Compressing an Array 2-43
24 1w 110 \: Expanding an Array 2-45
2w T add 4: Taking Array Elements 2-47
2adsl2 V: Dropping Array Elements 2-49
2+7s13 §: Transposing the Dimensions of an Array 2-51
2.7.14 ®: Transposing an Array 2-52
2al+d5 ¢: Reversing an Array 2-56
2.7.16 ¢: Rotating an Array 2-57
25w L7 A: Sorting an Array in Ascending Order 2-59
2.7.,18 V: Sorting an Array in Descending Order 2-61
2.7.19 ?: Rolling Random Integers 2-62
2.7.20 ?: Dealing Random Integers 2-63
241:2L T: Constructing a Character String 2-64
2.7.22 T: Representing a Number in Another Base 2-66
2.7:23 L: Decoding a Number Representation 2-68
2.7.24 €: Executing a Character String 2=-70
2.7.25 €: Determining the Members of an Array 2-73
2.7.26 u: Eliminating Duplicate Elements in a Set 2-74
2w T2 u: Determining the Union of Two Sets 2=75
2.7.28 n: Determining the Intersection of Two Sets 2-76
2.7.29 ~: Excluding Set Elements 2=-77
2.7.30 c: Determining a Proper Subset 2-78
2.7.31 >: Determining a Strict Superset 2-79
2:7432 v: Formatting an Array 2-80
2.7.33 ¥: Formatting a Character Array with
Width and Precision 2-81
2.7.34 H: Performing Matrix Inversion 2-84
2:.7.35 H: Performing Matrix Division 2-86
2.8 OPERATORS 2-88
2.8.1 F/: Reducing an Array 2-89
2.8.2 f\: Scanning an Array 2-91
2:8.3 f.g: Computing the Inner Product of an
Array 2-93
2.8.4 °o.f: Computing the Outer Product of Two
Arrays 2~95
CHAPTER 3 DEFINING AND EXECUTING APL PROGRAMS 3-1
3.1 MODES OF OPERATION 3-1
32 DEFINING THE FUNCTION 3=1
3e2al The Function Header 3-2
3.2.2 Variable Classifications 3-3
3.2.2.3 Dummy Variables 3=3

iv

CONTENTS (CONT.)

P, P Local Variables

3.2.2.3 Global Variables

3.2.2.4 Dynamic Localization

34243 Function Input and Qutput

3.2.4 Comment Lines

el D Examples of Defined Functions

3.2.5.1 Niladic Function

3.2.5.2 Monadic Function

3.2.5.3 Dyadic Function

3.3 EDITING THE FUNCTION

3.3.1 Adding Function Lines

3.3.2 Replacing Function Lines

3.3.3 Inserting Function Lines

3.3.4 Deleting Function Lines

3.3.5 Displaying Function Lines

3.3.6 Editing the Function Header

3.3.7 Renumbering Function Lines

3.3.8 Line-Editing Procedures

3.4 EXECUTING THE FUNCTION

3.4.1 Branching Within a Function

3.4.2 The Use of Statement Labels

3.4.3 Suspending Function Execution

3.4.4 Examining the State Indicator

3.4.5 The Trace Vector

3.4.6 The Stop Vector

3.4.7 Locking a Function

CHAPTER 4 APIL, SYSTEM VARIABLES AND I-BEAM FUNCTIONS

4.1 INTRODUCTION

4.2 SYSTEM VARIABLES

4.2.1 (cT: Establishing the Comparison Tolerance

4.2.2 [JI0: Setting the Index Origin

4.2.3 JPP: Determining the Output Precision

4.2.4 OPw: Determining the Width of the Output
Line

4.2.5 [OrRL: Setting a Random Link

4.2.6 [JAv: Storing a Vector of Characters

4.2.7 OLC: Reporting on Executing Functions

4.2.8 OWA: Reporting the Available Working Area

4.3 I-BEAMS

4.3.1 I15: Reinitiating Error Displays for the
Execute Function

4,3.2 I16: Suppressing Error Displays for the
Execute Function

4.3.3 I18: Returning the Condition of the
Workspace

I20: Returning the Time of Day

I21: Returning the CPU Time

I22: Returning Workspace Availability
123: Returning the System Job Number

I25: Returning Today's Date

I126: Returning a Line Number

I127: Returning a Vector of Line Numbers
I28: Returning the Terminal Character Set
I29: Returning the User's Project-
Programmer Number

I S L S
« o e

WWwWwWwwbww ww
o s

PHRFAWO NNy

. e
MR O

uel
o
Q
(4

HHWOWOLOYOoNNOOAULITUTUTE D DWWW

WWWWWwWWwWWwWwWwWwWwwwwwwwwwwww

[I A |

o -
NN

KN N N
L
BB DWW W

oY

S
wm

| I R T T A I |
e lNonlie oliocBUN IEN IR o) B0 (o))

S O O N O O N

[
I
o

CONTENTS (CONT.)

13 I30: Clearing the State Indicator

.14 I36: Terminating the APL Session

SYSTEM FUNCTIONS

1 OCk: Obtaining a Canonical Representation
«2 [JFX: Establishing a Function

3 JFX: Erasing a Named Object

4 (NL: Constructing a List of Labels,
Variables, or Functions

4.4.5 0rc: Returning a Name Classification
CHAPTER 5 SYSTEM COMMANDS

5 o L OVERVIEW OF SYSTEM COMMANDS

5.1.1 System Command Format

5.1.2 Action and Inquiry Commands

5+1s3 APL Workspaces

5.2 BASIC WORKSPACE-CONTROL COMMANDS

5.2.1 JCLEAR: Clearing the Active Workspace

56242 JWSID: 1Identifying the Active Workspace

5.2.3 JSAVE: Saving a Copy of the Active
Workspace

5.2.4 JLOAD: Retrieving a Workspace

5.2.5 JLIB: Listing Workspace Names

5.2.6 JDROP: Deleting Stored Workspaces or Files

5.3 WORKSPACE~CONTENT COMMANDS

5.3.1 JVARS: Displaying a List of Global
Variables

5¢3.2 JFNS: Displaying a List of Functions

5.3.3 JGROUP: Defining or Dispersing a Group

5.3.4 JGRP: Displaying the Members of a Group

5.3.5 JGRPS: Displaying a List of Groups

5.3.6 JCOPY: Copying Objects from a Workspace

537 JPCOPY: Copying from a Workspace with
Protection

5.3.8 JERASE: Erasing Global Names

5.3.9)ST: Displaying the State Indicator

5 %310)SIV: Displaying the State Indicator and
Local Variables

5.4 WORKSPACE-ENVIRONMENT COMMANDS

5.4.1 JORIGIN: Determining the Index Origin

5.4.2)JDIGITS: Determining the Output Precision

5.4.3 JWIDTH: Determining the Width of the
Output Line

5.4.4 JFUZZ: Determining the Comparison Tolerance

5.5 APL TERMINATION COMMANDS

5.5.1 JOFF: Terminating the APL Session

5.5.2 JRUN: Terminating the Session and Running
a Program

5.6 SYSTEM COMMANDS AND THE EXECUTE OPERATOR

CHAPTER 6 THE FILE SYSTEM

6.1 OVERVIEW OF THE APL-11 FILE SYSTEM

6.1.1 ASCII Sequential Files

6.1.2 Random-Access Files

6.2 FILE SYSTEM OPERATORS

6.2.1 B: Setting the File Pointer

vi

bt o W,
acotLmp NN

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

TABLE

.
.

e o o .

WWwwwwhN N
. .

& wNP BN

AN NN

QO W

HE
o

| AN A U O U Y N A N N A N R R N S |
ANOUB WO WNDEDNDH

DD N OUTNN NN NN NN

wﬁib
O

CONTENTS (CONT.)

H: Reading Data from a File
B: Writing Data into a File
File Operator Examples
FILE SYSTEM COMMANDS

JASSIGN: Assigning a File
JCREATE: Creating a File
JCLOSE: Closing a File
JRENAME: Renaming a File

SUMMARY OF APL FUNCTIONS AND OPERATORS
APL SYSTEM COMMANDS

SYSTEM VARIABLES AND I-BEAM FUNCTIONS
ERROR MESSAGES

APL INSTALLATION PROCEDURES

INSTALLING APL IN AN RT-11V3 SYSTEM
INSTALLING. APL IN A RSTS/E V6C SYSTEM

FIGURES

The APL Keyboard (LA37 Terminal)

TABLES

APL Terminals

APL Character Set

Input/Output Operators

Primitive Scalar Functions

Dyadic Circle Functions

Primitive Mixed Functions and Operators
Transpose Definitions

Identity Elements of Scalar Dyadic Functions
Inner Product Definitions

Outer Product Definitions

Filename Components

APL-11 Data Types

Primitive Scalar Monadic Functions
Primitive Scalar Dyadic Functions
Primitive Dyadic Circle Functions
Logical Functions

Primitive Mixed Functions

Composite Operators: Generalized Reduction
and Scan, Inner and Outer Products
Keyboard I/O Operators

File I/O Operators

Primitive Mixed Functions and Operators
(summary Information)

vii

o)
7]
[Ce}
(0]

]
NE~=OO

e R e - - -
1
HHERPWOYago

i
—

|
=

G
- e

[ea e
NN

Index~1

A-7

PREFACE

APL was first defined by K. E. Iverson in 4 Programming Language
(Wiley, 1962) and has since been developed in collaboration with

A. D. Falkoff and L. M. Breed. APL has been adapted into a conver-
sational programming system and has been implemented on a variety of
computers.

APL is a very concise programming language especially suitable for
handling numeric and character array-structured data. Despite its
mathematically concise and consistent format, APL is intended to be
used as a general data-processing language as well as a mathematician's
tool. The language is flexible enough to solve problems in text-
handling and commercial data processing as concisely and as easily as
it can be used to solve problems in numerical mathematics and
statistics.

APL allows user-defined functions to be expressed with the same syntax
as that used to express primitive language functions. This provides
the user with an efficient and simple means of expanding the capabili-
ties of the language to handle the requirements of any application
area.

Areas of current application include scientific data reduction and
analysis, simulation and forecasting, financial modeling, design
engineering, electric circuit analysis, engineering analysis, inven-
tory and payroll management, data base manipulation, reservation sys-
tems, automatic theorem proving, computer-assisted instruction (CAI),
and student education (high school and college level) in programming
and the structure of algorithmic processes. The applicability of

APL as a complete conversational programming system is unlimited.

This manual presents an implementation of APL-11, a version of the
APL language on the PDP-11 computer system. It should serve as a
reference manual for all users of APL-11. This is not intended to be
used as a language primer. The new APL user may want to refer to

any of several good primers available for basic instruction in the
language.

This manual is divided into six chapters and five appendixes. Infor-
mation is structured as shown on the following page:

ix

Chapter
1

Contents

APL-11 operating environment

APL terminals and character set

Starting, ending, and interrupting the APL session
Keyboard editing procedures

APL language introduction and background information
Primitive scalar and mixed functions

Defining, editing, and executing user-defined
functions

APL system variables and 1-beam functions
APL system commands

APL-11 file system

Appendixes A through D provide summary information on 4APL functions,
system commands, I-beams and system variables, and error messages
respectively. Appendix E describes procedures for installing 4PL

in the RT-11, RSTS/E, RSX-11M, and IAS operating environments.

ACKNOWLEDGMENT

The APL-11 System, which runs under RSTS/E, RT-11, RSX-11M, or IAS,
was originally developed by the Oregon Museum of Science and
Industry.

xi

THE APL-11 OPERATING ENVIRONMENT

CHAPTER 1

THE APL-11 OPERATING ENVIRONMENT

1.1 APL ON THE PDP-11

The APL-11 system has been implemented as a language interpreter on
the PDP-11. It operates on a wide range of hardware processors and
has been designed to run under any of four operating systems: RT-11,
RSTS/E, RSX-11M, or IAS. This chapter introduces APL-11 and illus-
trates differences in initiating, terminating, and interrupting an
API, session under these operating systems.

The APL-11 interpreter has been designed to be as flexible as possible
to meet the needs of a variety of different users. Users can select
from a range of system options. A customized version of the 4Pr-11
system is distributed, reflecting the following installation-dependent
characteristics:

e type of PDP-11 processor being used

° availability of floating-point hardware (FPP or FIS) on
the PDP-11 processor

° operating system (RT-11, RSTS/E, RSX-11M, or IAS) under
which 4PL-11 will run

® arithmetic precision desired (single-precision or double-
precision)

If an installation's PDP-11 processor is not a PDP-11/70 or another
processor that offers extended instructions (for example, the
PDP-11/45 or a processor supporting EIS), the APL software simulates
these extended instructions by generating a set of macros. Similarly,
if the processor does not support the FPP hardware, the APL software
simulates the capabilities of this hardware by assembling a software
floating-point package with the APL interpreter.

The RT-11, RSTS/E, RSX-11M, and IAS operating systems provide APL
users with most of the standard features of the PDP-11 single-user
and time-sharing environments. APL-11 is configured for single-user
access under RT-11 and RSTS/E, or as a task under RSX-11M and IAS;
thus, the interpreter is heavily overlaid to increase the size of the
user workspace.

A single-precision APL-11 system provides an accuracy of approximately
seven digits, and a double-precision system offers an accuracy of about
16 digits. If a single-precision system is selected, floating-point
numbers are four bytes long. If a double-precision system is selected,
floating-point numbers are eight bytes long.

1-1

1.2 FILES IN THE APL SYSTEM

This section describes the special characteristics of workspaces and
data files in the APL-11l environment.

1.2.1 APL Workspaces

workspace is a part of the user's memor
ggoﬁgqunctigns and variables defined by the APL user, and v;iuesszzés
temporary results obtained while executing APL sFatements. e gic A
symbol table is stored in the workspace, along W}th the state in i . é
an internal stack that may be accessed to determine the execution sda u
of any defined function in the workspace. Workspages can be clgared,
named, erased, or saved on a secondary-storage device, and retrieve

from that device at a later time.

y area that is used to

When the user begins an APL session, a special worgspace called the .

elear workspace is made available for his use. This workspace contalns

no defined functions or variables, has a clear symbol table and §tate
indicator, and has no open files. The clear workspace has a variety -
of standard system values associated with it, including the following:

® index origin of 1

e output line length of 72 (the default terminal width is
used for RSTS/E)

e six (single-precision) or ten (double-precision) significant
digits

e comparison tolerance (fuzz) of 5E 7 (single-precision) or -
5E 715 (double-precision)

These values may be changed by the user during the current APL
session. If a workspace is saved, the user-specified values are
stored along with the workspace and will be in effect when the saved
workspace 1is retrieved at a later time.

The workspace currently available to the user is known as the active
workspace. All functions and variables defined during the current
APL session are stored in this workspace. The active workspace may
be stored as a file on a PDP-11 secondary-storage device, such as
disk, floppy disk, DECtape, and magnetic tape. It may be saved in
core-image format by the)SAVE system command (Section 5.2.3). The
user may assign the active workspace a name by the)WSID system
command (Section 5.2.2) and may override this name, if desired, when
the workspace is saved.

Once an APL workspace has been saved on secondary storage, it may be
deleted by the JDROP system command (Section 5.2.6) or retrieved to
function as the active workspace once again. If the file has been
saved, it must be retrieved by the)LOAD system command (Section 5.2.4).
Data from the workspace may be copied into the current workspace by

the)COPY and PCOPY system commands (Sections 5.3.6 and 5.3.7). The
maximum size of an APL workspace depends upon the operating system and
the amount of memory in the system.

1.2.2 APL Data Files

In the APL-11 system, data files may be stored on a variety of devices,
including disk, floppy disk, DECtape, and magnetic tape. Two types of
data files are supported by APL-11l:

® ASCII sequential
® random access

ASCII sequential files are line-oriented sequential files that may
be read and written by 4APL, by the MACRO Assembler, and by a variety
of other language processors. ASCII sequential files may also be
created and modified by RT-11l, RSTS/E, RSX-11M, and IAS text
editors.

Random-access files may be read and written in a non-sequential fashion.
When accessing the file, the user identifies the particular byte or data
value to be read or written and specifies the format of that value.

Data may be specified as ASCII, byte, integer, APL character, single-
precision floating-point, or double-precision floating-point gquantities.
Random-access mode allows the user to construct records containing
values of several different data types. It also facilitates the use of
random—~access data files created by other language processors or systems.

The file operators and system commands implemented as part of the APL-11
file system are described in detail in Chapter 6.

1.3 APL HARDWARE

The user interacts with API by means of a typewriter-like terminal.

The APL language supports the use of a special character set, in which
Greek letters and a variety of other special characters represent APL
language operators. Examples of such special characters include p,

1, 0O, vV, and €. Several terminals available to APL-1ll users provide
keyboards on which the full APL character set may be utilized. Stan-
dard ASCII terminals may also be used with APL. On ASCII terminals,

the special APL symbols are represented by means of keyword mnemonics,
described in Section 1.4. The user selects the APL or ASCII character
set at the time that he begins the current APL session (see Section 1.5).

Table 1-1 lists the terminals supported by the PDP-1ll computer system
for use with APL-11, The second column of this table indicates whether
or not the special APL character set is represented on the terminal
keyboard. The third column lists the terminal designator that must be
entered at the time that the APL session begins (see Section 1.5).

Table 1-1
APL Terminals
Terminal Character Set Designator
Any standard ASCII terminal ASCIT TF
without the APL character set
DECwriter II model LA37 with APL/ASCII LA37
APL option
Tektronix (R) 4013 or 4015 APL/ASCII 4013
terminal
(® Tektronix is a registered trademark of Tektronix, Inc.

THE APL-11 OPERATING ENVIRONMENT

1.3.1 APL Terminals

The terminal keyboard illustrated below may be used in either ASCII or
APL mode. It supports the full APL character set: all characters on
this keyboard are received and interpreted by APL. Note that letters,
numbers, and some of the special characters appear in the conventional
keyboard positions, The letters print only in upper-case and are pro-
duced only when the keyboard is not shifted. The full APL character
set is described in Table 1-2, included in Section 1.4.

NUMERIC PAD

I BP0000EAEEDHDER JHUBE
FEHE CIWRIYVOOEEEEHE OOC G
FEFF JEBARDEPEENOKWEDEHE CDD?

FHEPIEIER®MO0D®= 10U

8.9 .2 &

Gupacres' sty TUTT SECECT MAIL (J

Figure 1-1 The APL Keyboard (LA37 Terminal)

1.3.2 ASCII Terminals

ASCII terminals do not support the use of the special APL character

set illustrated in the 4PL keyboard shown in Section 1.3.1. If the user
has an ASCII terminal or is operating in ASCII mode on an APL terminal,
he must use keyboard mnemonics in place of the special APL symbols

not available in ASCII. To represent the APL rho symbol (p), for ex-
ample, the user enters the mnemonic .RO. The .GO mnemonic is equiva=-
lent to the APL right-arrow (-), and the .EP mnemonic is equivalent to
the APL epsilon (e¢). A summary of the mnemonic equivalents for all

APL characters is provided in Table 1-2.

If the user has an ASCII terminal, but erroneously selects the APL
character set by specifying an incorrect terminal designator, he can
terminate the APL session by typing the)OFF system command, replacing
the left parenthesis with a double quote character, as in the
following:

"off

Note that lower-case characters must be used.

NOTE

Because the keyword mnemonics are charac-
terized by the presence of a period (.)

as the first character, the period should
not be used to separate the workspace
filename and extension name in ASCII mode.
The comma (,) should be used instead.

1-4

THE APL-11 OPERATING ENVIRONMENT

l.4 THE APL CHARACTER SET

Table 1-2 summarizes all characters used in the APL system. The first
column lists the characters found on APL terminal keyboards. The sec-
ond column provides a list of the corresponding characters available
on ASCII terminals. The third column lists keyword mnemonics used to
- represent APL symbols not available on the ASCII keyboard. The fourth
column supplies the names commonly associated with the APL characters,
with upper-case letters indicating the origin of the mnemonic
representation.

The second section of the table lists APL overstruck characters. These
are characters constructed by overstriking two distinct characters on
the terminal keyboard. For example, the logarithm symbol (®) is formed
by overstriking the circle (0) with the exponentiation symbol (x). The
grade up symbol (4) is formed by overstriking the delta symbol (A) with
the straight line (|) used to represent residue or absolute value. To
express an overstruck character on an APL terminal, the user types one
character of the overstrike combination, ‘then presses the backspace key,
then types the other character of the combination. The order is not
significant. On ASCII terminals, all overstruck characters are repre-
sented by alternate single-strike characters or by keyword mnemonics.

Table 1-2
APL Character Set

Single-Strike Characters

ASCII Set

Mnemonic

Name

%}
>l es LNy =l X ATV R N e
©

—Oe — |

A-7
&

H AAMV ok~ || 0 e

o
I
0

SUSe LN -

.AN

«GT

.LT

«TK
.US

«AL
.BX
. CE

add

alphabetics

ANd

assignment
concatenate, comma
colon

decimal point
Divide

equal to

expand
exponentiate
Greater Than

left bracket

left parenthesis
Less Than
multiply

numerics

quote string
question (roll and deal)
reduce

right bracket
right parenthesis
semicolon

subtract

TaKe

UnderScore

residue (ABsolute value)
Alpha

quad (BoX)

CEiling (maximum)

THE APL-11 OPERATING ENVIRONMENT

Table 1-2 (Cont.)
APL Character Set

Single=-Strike Characters

APL Set ASCII Set Mnemonic Name
M .DA drop (Down Arrow)
.DD Dieresis
1 .DE DEcode
v «DL Del
¢ .DM DiaMond
n .DU Down Union
T .EN ENcode
€ .EP EPsgilon
L .FL Floor
> .GE Greater than or Equal
> . GO GO to (branch)
1 .10 IOta
{ .LB Left Brace
A .LD delta (Lower Del)
< .LE Less than or Equal
= .LK Left tack
o .LO circle (Large 0)
> . LU Left Union
z .NE Not Equal to
NG NeGation
~ «NT NoT
w .OM OMega
v +OR OR
} .RB Right Brace
— .RK Right tacK
) -RO RhO
c «RU Right Union
o S0 jot (Small o)
u .UU Up Union
Overstruck Characters
APIL Set ASCII Set Mnemonic Name
A " lamp
b ! factorial
$ $ Dollar Sign
¥ .GD Grade Down
A .GU Grade Up
I +IB I-Beam
® LG LoGarithm
~ - NN NaNd
L « NR NOR
X .CB Column expansion
U] .CR Column Rotate
2 .CS Column reduction
5] .DQ Divide Quad
E LIQ Input Quad
B .00 Output Quad
U .0U out
» +PD Protected Del
A «PT set file PoinTer
R .QD Quad Del
M « Q0 Quote Quad
5 .Ss Subset
) «CO Contains

1-6

THE APL-11 OPERATING ENVIRONMENT

Table 1-2 (Cont.)
APL Character Set

Overstruck Characters
APL Set ASCII Set Mnemonics) Name
¢ . RV ReVersal
® .TR TRanspose
® - XQ eXecute
¥ +FM ForMat
A-Z ZA-,.Z7 underscored alphabetics
A A underscored del

1.5 INTERACTING WITH APL

This section describes how the APL-11l user establishes communication
with 4PL and concludes or interrupts an APL session. It provides
separate descriptions of operating procedures in the RT-11, RSTS/E,
RSX-11M, and IAS operating systems.

1.5.1 RT-11 Operating Procedures

APL-11 runs as a single-user program in the RT-11 operating system.
An example of invoking APL, performing a function, and ending an APL
session is included at the end of this section.

To initiate interaction with APL, the user first establishes communica-
tion with RT~1l. The system displays the period prompt character, and
the user enters the following command:

.R APL

and presses the RETURN key. The RETURN key must be pressed at the con-
clusion of any monitor or APL statement to cause that statement to be
transmitted. APL begins the session by asking about the user's
terminal type:

TERMINAL. .

and waiting for a response. If the user types H (for HELP), APL dis-
plays a description of the terminals currently supported by the system,
and repeats the "TERMINAL.." prompt - for example:

RUN $AFL

TERMINAL . o H

GIVE THE APPROFRIATE RESFONSE FOR YOUR TERMINAL

RESFONSE YOUR TERMINAL

l.A3Z4 LA36 WITH AFL CHARACTER SET OFTION
4013 TEKTRONIX 4013
TT ANY TERMINAL NOT HAVING AFL FONT

TERMINAL +

The user selects the designator that is appropriate to his terminal
type, and enters it as shown below:

TERMINAL.. TT

THE APL-11 OPERATING ENVIRONMENT

After receiving a valid terminal designator, APL responds with a sign-
on greeting -- for example:

WELLCOME TO AFPL/11

It then supplies a clear workspace for use during the current APL
session and displays the message:

CLEAR WS

The system indents six spaces to indicate that it is ready to accept
user input. APL output results at the left margin, but automatically
indents six spaces before unlocking the keyboard and allowing any user
text to be entered. The system thus clearly differentiates between
system and user entries,

Under RT~11, an APL session may be concluded by means of either of the
system commands shown below.

Command Effect

)OFF Ends the session, exits from APL, and
returns to RT=11 command level.

JRUN filename Ends the session, exits from APL, and
runs the program specified as an argu-
ment in the)RUN command.

These system commands are described in greater detail in Sections 5.5.1
and 5.5.2. 1-beam 36 (Section 4.3.15) may also be used to terminate
the APL session and return to RT-11 command level. With all of these
commands and functions, APL automatically closes all open files before
exiting from APL.

The currently active workspace will not be preserved if)OFF,)RUN, or
I-beam 36 is issued. If the user wants to save this workspace before
terminating the APL session, he should store it on disk or on another
secondary-storage device by issuing a)SAVE (Section 5.2.3) system
command.

The user may interrupt APL without actually terminating the session
and losing the active workspace. The following control characters are
used in the RT-11 system to interrupt APL.

Character(s) Circumstances Effect
CTRL/C APL is awaiting input Echoes a +C character

and stops execution,
displaying "EXECUTION

STOP". Indents six
spaces and awaits new
APL input.
CTRL/C, APL is executing a Echoes two +C characters,
CTRL/C function, evaluating aborts output, and stops
an expression, or execution, displaying
performing output. "EXECUTION STOP" and

the expression being
evaluated. Indents six
spaces and awaits new
APL input.

THE APL-11 OPERATING ENVIRONMENT

Character(s) Circumstances Effect

CTRL/0O APL is performing Inhibits output until
output on the terminal. completion of current

output or until another
CTRL/O is typed. The
first CTRL/O echoes a
40 character, the sec-
ond CTRL/O reenables
output.

NOTE

On an APL terminal, CTRL/C echoes as zn
and CTRL/O echoes as 2o,

In the following example, user responses are underlined.

RUN_AFL
TERMINAL . T

WELCOME TO AFL/11 V1.0
CLEAR WS
L LOOFER
L1l LOOFS A A+l
r21 GO L.O0F

£31 DL
A1
LOOPER

RESTARTING AFL
LOOFERLCLI ALAtL

973

If three or more CTRL/C characters cause control to be returned to
RT-11 command level, the user may reenter APL without beginning a new
session by issuing the REENTER monitor command. The current active
workspace is preserved, so the symbol table and all defined functions
and variables remain intact. In general, the user should close all
files before interrupting the APL session in this way.

When APL is reentered, a restart message is displayed, and APL identi-
fies the command or function line that was being evaluated when execu-
tion was suspended. An up-arrow (+) or caret (A) identifies the
particular position in the line at which evaluation was interrupted,
exactly as shown for the "EXECUTION STOP" case illustrated above.

CAUTION

If the user issues any command that runs
another program (e.g., PIP) while at RT-11
command level, the current workspace will
be lost.

1.5.2 RSTS/E Operating Procedures

To initiate interaction with APL, the user first establishes communica-
tion with RSTS/E, entering his project=programmer number and password
in the normal way. The system displays a sign-on greeting and enters
the standard BASIC language environment. BASIC displays a "Ready"
message to indicate that it is ready to accept input. The user enters
the following command:

run Sapl

and presses the RETURN key. The RETURN key must be pressed at the
conclusion of any monitor or APL statement to cause that statement to
be transmitted. If the RSTS/E installation has established the CCL
command, APL, the user simply types:

apl

and presses the RETURN key. In either case, APL begins the session by
asking about the user's terminal type:

TERMINAL, .

and waiting for a response. The user specifies the terminal being
used during the current APL session, as illustrated in Section 1l.5.1.

After receiving a valid terminal designator, APL responds with a
sign-on greeting., As in the RT-1l1l environment, it supplies a clear
workspace for use during the current APL session and displays the
message:

CLEAR WS

The system indents six spaces to indicate that it is ready to accept
user input.

Under RSTS/E, an APL session may be concluded by means of one of the
system commands shown below.

Command Effect

JOFF Ends the session, exits from APL,
and returns to BASIC; BASIC displays
the "Ready" message.

JRUN filename Ends the session, exits from APL,
and runs the program specified as an
argument in the)RUN command.

I-beam 36 may also be used to terminate the APL session and return to
BASIC. With all of these commands and functions, 4APL automatically
closes all open files before exiting from 4PL.

As in the RT-~1ll environment, APL does not automatically preserve the
currently active workspace when)OFF,)JRUN, or I-beam 36 is issued.

THE APL-11 OPERATING ENVIRONMENT

If the user wants to save this workspace before terminating the 4PL
session, he should store it on disk or on another secondary storage
device by issuing a JSAVE system command.

In the RSTS/E operating system, the user may interrupt APL execution
without actually exiting from 4APL. The following control characters
are used to interrupt the 4PL session in the RSTS/E system.

Character (s) Circumstances Effect

CTRL/C APL is executing a Echoes a +C character,
function, evaluating displays an EXECUTION
an expression, await- STOP message and the
ing input, or perform- expression being evalu-
ing output. ated, indents six spaces,

and awaits new APL input.

CTRL/0O APL is performing Inhibits output until

output. completion of current

output or until another
CTRL/O is typed. The
first CTRL/O echoes a
+0 character; the sec-
ond CTRL/O reenables
output.

NOTE

On an APL terminal, CTRL/C echoes as 2n
and CTRL/O echoes as 2o.

When APL is interrupted, it identifies the command or function line
that was being evaluated when execution was suspended. An up-arrow
(+) or caret (A) identifies the particular position in the line at
which execution was interrupted, as illustrated in the following
example. In this example, user responses are underlined. Note also
that, because the terminal used in this example was an APL terminal,
CTRL/C echoed as 2n, the equivalent of 4+C in the APL type face.

1-11

THE APL-11 OPERATING ENVIRONMENT

1.5.3 RSX-11M Operating Procedures

4PL-11 runs as a task under the RSX-11M operating system. To in@tiate
interaction with APL, the user first establishes gommunlcatlon with
the RSX-11M Monitor Console Routine (MCR). MCR displays the angle

bracket prompt character (>), and the user enters the following
command :

>APL

and presses the RETURN key. The RETURN key must be pressed at the
conclusion of any monitor or APL command to cause that statemegt to
be transmitted. As with RT-11 and RSTS/E, APL begins the session by
asking about the user's terminal type and awaiting a response (see
Section 1.5.1 for examples of valid responses). APL then d%splays a
sign-on greeting and supplies a clear workspace for use during the
current APL session. This is shown in the example below.

>APL
TERMINAL..TT

WELCOME TO APL-11 V02-01
CLEAR WS

The system indents six spaces to indicate that it is ready to accept
user input.

Under RSX-11M, an APL session may be concluded by means of the)OFF
system command described in Section 5.5.1 I-beam 36 may also be used
to terminate the APL session and return control to the Monitor Console
Routine. If the user wants to save the currently active workspace
before issuing JOFF or I-beam 36, he should use the)SAVE system
command.

1.5.4 IAS Operating Procedures

QPL—ll runs as a task under the IAS operating system. To initiate
interaction with 4PL, the user first establishes communication with
the IAS Program Development System (PDS). PDS displays the PDS>
prompt, and the user enters the following command:

PDS>4PL

and presses the RETURN key. The RETURN key must be pressed at the
conclu51o§ of any monitor or 4APL command to cause that statement to

be transmitted. As with the other operating systems, APL begins the
session by asking about the users' terminal type and awaiting a
response (seg Section 1.5.1 for examples of valid responses). APL then
dlsplays a sign-on greeting and supplies a clear workspace for use
during the current APL session. This is shown in the example below.

PDS>4PL
TERMINAL..TT

WELCOME TO APL-11 V02-~01
CLEAR WS

The system indents six spaces to indicate that it is ready to accept
user input.

THE APL-11 OPERATING ENVIRONMENT

Under IAS, an APL session may be concluded by means of the)OFF system
command, described in Section 5.5.1 I-beam 36 may also be used to
terminate the APL session and return control to the Program Development
System. If the user wants to save the currently active workspace
before issuing JOFF or I-beam 36, he should use the)SAVE system
command.

1.6 KEYBOARD EDITING PROCEDURES

This section summarizes the procedures for entering and correcting AP]
text at an APL or ASCII terminal.

1.6.1 Immediate-Mode Editing Procedures

The characters in an APL input line may be typed in any order. The
line may even be typed backwards by using the appropriate space and
backspace characters. Regardless of how the line is entered, it is
evaluated exactly as it appears on the terminal before the user presses
the RETURN key; the order in which statement components are entered is
not significant. 1If there are too many characters in the line, APL
will display the following message:

LINE T0O0 LONG
The entire line will be ignored.

If the user has left spaces in the 4PL line, he may backspace to insert
characters before he presses the RETURN key. Note that backspacing is

a method for positioning the carriage; it does not cause characters to

be erased or deleted.

The user may discover that he has mistyped one or more characters in
an APL statement before he presses the RETURN key and causes that
statement to be transmitted. Errors may be corrected by means of the
special keyboard characters described below. If a new line is entered
by the user immediately after a CTRL/C, CTRL/U, or RUBOUT character
has been processed, the line will not be indented six spaces in the
normal APL fashion, but will begin at the left margin.

Character Meaning

RETURN Terminates the input line and causes the
APL statement to be transmitted.

CTRL/C Interrupts APL function execution, ex-
pression evaluation, input, and output.
Echoes +C on the terminal.

In RT-11, returns control to command
level; two CTRL/C characters must be
entered if APL is performing input or
output.

In RSX-11M and IAS interrupts,

APL execution but does not return
control. On an APL terminal, echoes
as z=zn.

THE APL-11 OPERATING ENVIRONMENT

Character

CTRL/U

RUBOUT

0 (overstruck QU)

Meaning

Deletes the current input line and
echoes +U on the terminal. Does not
delete characters past the firgt)
carriage return/line feed combination
encountered to the left of the CTRL/U.

CTRL/U cannot be used to delete a
multiple-line literal (see the
description of the overstruck OU below) .

Oon an APL terminal, echoes as 2v.

Deletes the last character from the
current line and echoes the character
on most terminals.

Each succeeding RUBOUT typed by the
user deletes and echoes another
character up to the first carriage
return/line feed combination en-
countered to the left of the RUBOUT.

The DELETE key is used in place of
RUBOUT on some APL terminals.

Causes an escape from an input loop or
expression. Entered as mnemonic ,O0OU
on ASCII terminals.

The 0U sequence may be used to escape
from a loop containing a quad or guote-
quad input request.

It may also be used to delete a
multiple~-line literal, which has
been created by placing an odd number
of quotes (usually one) on a line.
When this occurs, subsequent lines
are considered part of the literal
until another line with an odd number
of quotes is typed - for example:
e ' THIS
I A MULTIFLE
LIME LITERAL'
£y
THIS
1% A MULTIFLE
L.IME LITEFRAL

I? APL does not respond to an input
line, the problem may be that the user
has accidentally entered a multiple-
line literal. To escape, the user
should type a single quote on a line
to terminate the literal or should use
the 0U sequence to cancel the literal.

1-14

THE APL-11 OPERATING ENVIRONMENT

Character Meaning

CTRL/R Retypes the current input line. This is
often helpful in cases in which exten-
sive editing has been performed on a
line. CTRL/R does not alter the input
line and may be used any number of times.

On an APL terminal, echoes as =

The example included below illustrates the use of many of the special
immediate-mode editing characters described above.

e a3}
e R R SR A
2]

— 20

1.6.2 Processing Character Errors

If the user transmits a line containing an invalid character - for

example, an illegal overstrike in APL mode or an illegal mnemonic

in ASCII mode - APL generates the following error message:
CHARACTER ERROR

The line in which the error occurred is ignored, and APL indents to
allow the user to retype it.

CHAPTER 2

THE APL LANGUAGE

This chapter describes an implementation of the APL language and pro-
vides a detailed discussion of the features supported by APL-11,

2.1 OVERVIEW OF APL STATEMENTS

This section introduces the syntax rules that govern the construction
of statements in the APL language. It summarizes statement components
and discusses the types of APL statements and the evaluation of APL ex-
pressions.

2.1.1 Statement Execution Modes
APL statements may be executed in either of two modes:

e Immediate mode, in which statements and expressions
are executed immediately, as entered by the user.

® Function-definition mode, in which the user may con-
struct a program or function consisting of APL state-
ments, may name and save the function, and may exe-
cute the function at a future time.

The syntax of the language itself is identical in both modes; however,

a few special symbols have been defined for ease of editing in function-
definition mode, and these are not generally relevant to immediate-mode
execution. Most of the examples in this chapter illustrate immediate-
mode execution of individual APL statements. Chapter 3 describes the
preparation and editing of programs in function-definition mode and
introduces the special API symbols used in that mode.

In immediate mode interactions, APL clearly differentiates between sys-
tem and user entries. When the user begins an APL session, the carriage
automatically indents six spaces before allowing any text to be en-
tered. The user enters a statement and presses the carriage return to
indicate that the entry is complete. APL processes the statement and
displays the result at the left margin of the next line., The system
then begins a new line and automatically indents the customary six
spaces before unlocking the keyboard for the user's next statement.
System and user entries can thus be distinguished, as shown in the fol-
lowing interaction.

2-1

THE APL LANGUAGE

System User

+J

AT
@

10

2.1.2 Statement Components
An APL statement may consist of the following components:

® identifiers (variables, label names, user-defined func-
tion names)

® constants
° symbols for APL primitive functions

The following subsections summarize the characteristics of APL identi-
fiers, constants, and data structures. APL primitive functions and
operators are described in Sections 2.6 through 2.8. Labels and user-
defined functions are discussed in Chapter 3.

2.1.2.1 Identifiers - APL identifiers are used to name variables, user-
defined functions, and labels within functions. An identifier may con-
sist of any number of letters or digits; the first character of the
sequence must be a letter, where a letter is defined as any character
A-Z, A-Z, A or A. Only the first 31 characters of an identifier are
significant, and embedded spaces are not allowed.

A variable must be assigned a value before it can be referenced, or a
VALUE ERROR results. A discussion of specific types of API variables
and detailed information about function and label name construction
are included in Chapter 3.

All APL identifiers are stored in the symbol table. The symbol table
gonsists of 508 bytes in the clear workspace, and it expands dynam-
ically, as needed, to the capacity of the workspace. Each identifier
entry requires seven bytes, plus one byte for each character of the

identifier, plus an optional fill byte, to bring the total to an even
number of bytes.

2.1.2.2 Numeric Constants -~ Numeric constants are of two types: deci-
mal and exponential. The decimal form may be entered with or without

a decimal point. The exponential form consists of an integer or deci-
mal quantity, followed by E and the power of ten by which the quantity

2=2

THE APL LANGUAGE

is to be multiplied. All of the following numeric constants are valid
representations of the same value.

1A
S]

.~

556
5

556 0 5560E”1 S5.54E2 S5400E72
556 556 556 556 556

»
[
e J

&

i

%51

When APL outputs a sequence of numeric constants, the system attempts
to display the entire list in decimal form, as shown in the example
above.

In APL, negative numbers are represented by a numeric constant, immedi-
ately preceded by a negative sign (7). This sign is a distinct symbol
(upper-case 2) and can be used only in negative numeric constants; it

is not the same character as the minus sign (-) used to indicate a nega-
tive or minus function. On ASCII terminals, the negative sign is typed
as .NG, Note that a space may not be included between the negative

sign (T or ,NG) and the number. It is displayed as the minus sign (-)
on ASCII terminals, except in displays of user functions. Examples of
using negative numbers and negative and minus functions are included
below.

"1
-

2-3
1

“2-"3
1

THET 4T RE 4
"3ET4

2.1.2.3 Data Structures - Numeric and character data can be structured
in a variety of ways. The following data structures are supported by
APL:

[scalars
® vectors
° matrices
® arrays of three or more dimensions
A scalar is a single numeric or character value. A numeric scalar is

entered as shown in the first example below. Note in the second example
that a character scalar must be enclosed in single quotes.

Ee 1O

A vector is a l-dimensional array or string consisting of any number
of values. A numeric vector is entered as a list of values separated

by at least one space ~ for example:

Acl 2 3 4
[+
123 4

THE APL LANGUAGE

ements are 1, 2; 3, and 4, stored

: : ose el .
Here A is defined as a vector wh Several other numeric vectors

in the order in which they were entered.
are created below.

3 2 3
-1 2 3

-12 3
-1 "2 "3

Note that the first example generates a vector wpose first element is
~1:; the second example applies the monadic negative operator (=) to the

positive numeric vector 1 2 3.

A character or literal vector is entered as a string of character con-
stants enclosed in single quotes; no spaces are inserted between en-
tries in a character vector, because the space character is itself a
legitimate literal value. An example of entering and examining a char-
acter vector is shown below.

Ae ABCHEFGHT JKLMMOFRESTUVWIYZ!
A
ABCDEFGHL WKL MMOMRFEG TUVWITY I

A single quote character may be represented in a character vector by
means of two consecutive single guotes - for example:

HAME & ' MARTHA ' 1 &
HAME
MARTHA 'S

(B O

Several lines of character data may be entered as one literal string,
as shown below.

Ae'THIS IS5 A
MUL TIFLE LLHE
LITERAL'

2]
THIS T4 A
MULTIFLE LIME
L. T TEFRAL

A matrix is a 2-dimensional array consisting of rows and columns. The
user must enter values corresponding to each element of an array, but
must also specify the shape of the array. The shape of an array is
the nu@ber of dimensions which it has and the length of each of these
dimensions. For example, a matrix may have six elements arranged as
two rows and three columns, or three rows and two columns, as illus-
trated by arrays 4 and B below.

A

3
é

>
a2

[
s S oS

The primitive rho (p) function is used to specify the shape of a new
array, to reshape an existing array, or to determine the shape of an

2-4

THE APL LANGUAGE

existing array; it is described in detail in Sections 2.7.3 and 2.7.4.
Following is an example of creating a simple matrix with the rho
function.

Aeq 2P0 1 2 3 4 5 47
A

™ p IO
N e

Arrays of three dimensgions and more are also supported by APL. An
APL array may have as many as 16 dimensions; the only restriction is
that the size of the array must not exceed the size of the user's
workspace. When an array of more than two dimensions is displayed, a
blank line is inserted between each dimension, as in the following
example.
D0 AP ABRCDEFGHIJKLMMOFGRESTUVWITZARCDER ¢
ABCL
EF GH

LK
MO

QRsT
UV

TEAR
CDER

2,1.3 Significance of Spaces and Comments

Spaces are usually not significant in APL. They need not be included
to separate primitive functions from constants or variables but they
may be used in such statements if desired. 1In particular, on ASCII
terminals the mnemonics for APL primitive functions need not be either
preceded or followed by a space. The following pairs of expressions
are equivalent.

Ae-Eg] -0

f & B o4 f e ©
«TRE

IR B

Spaces are also not required between a succession of primitive func-
tions -~ for example:

Agp /B

Spaces must be included to separate the names of adjacent user-defined
functions, constants, and variables. For example, they are required

2-5

THE APL LANGUAGE

when entering a series of numeric constants as a vector. The spaces
included in the following statements are necessary.

2OTERIG 3

Be3 4 00

HeF 12
Spaces may not be included between a negative sign (~ or .NG) and a
numeric constant (Section 2.1.2.2).

Comments may be used freely in APL. Their use is particularly rglevant
in function-definition mode. Comments must appear on separate llngs
and may not be included on lines containing APL statements. The first
character in a comment line must be a lamp (m) character, formed by
overstriking the down union (n) and jot (e¢) characters. If an ASCl1l
terminal is being used, the first character in a comment line must be

a double-quote ("). Chapter 3 describes comment lines in greater
detail (see Section 3.2.4) and illustrates their use in a variety of
user~defined functions.

2.1.4 APL Statement Types

There are two general types of APL statements.
° branch statements
] assignment statements

Branch statements are used to restart a function and to transfer con-
trol from one part of a program to another. These statements are most
relevant in the context of user-defined functions and are described in
Chapter 3.

Assignment statements are used to assign one or more values to a vari-
able or data structure. The general form of an assignment statement
is illustrated in the following example:

Ae2e3

where the constant 3 is added to the constant 2 and the resulting
value, 5, assigned to variable 4. There may be multiple assignments
or specifications in a single APL statement - for example:

AEZrEe+CET7

nge the value 7 is assigned to ¢, 11 to B, and 1% to 4. The expres-
sion is evaluated according to the rule described in Section 2.1.5.

Multiple specifications are particularly useful in initializing data
values, as illustrated below:

AERECDE()

The expression:

2+3

e
o

may also be considered an assignment statement; in this case, no ex-
plicit variable is available to receive the result, so the value of
the computation is simply assigned to the terminal.

THE APL LANGUAGE

The result of an APL expression is displayed at the terminal, unless
the leftmost operation on the line is an assignment or branch opera-
tion or unless the user is in function-definition mode.

2.1.5 Evaluation of APL Statements and Expressions

Unlike some languages, which perform multiplication and division before
addition and subtraction, APL has no explicit operator precedence. APL
statements and expressions are evaluated in strict right-to-left order,
regardless of the particular functions in the statement. For example,

the expression:

X A+E
27

evaluates to 27, using right-to-left evaluation, rather than 17, which
would be the result if operator precedence were emploved. All APL
statements are executed as if they were parenthesized from right-to-
left. Thus, the expression:

x4+
27

is interpreted as:

Ix(4+T)
27

The user may control the order in which the individual operations in a
statement are evaluated by explicitly parenthesizing the operations to
be treated as a gquantity. To cause the expression included above to
evaluate to 17, not 27, the user enters the following:

(3%4)+5
17

This expression evaluates to 17, because 5 is added to the quantity
3x4, not simply to 4.

2.2 FORMATTING APL NUMERIC OUTPUT

The APL-11 system may be configured as either a single-precision or a
double-precision system for the internal representation of floating—
point numbers. The single-precision version of APL-11 uses a precision
of about seven decimal digits; the double-precision version uses a
precision of about 16 digits.

The internal precision of numeric representation in APL is not subject
to the user's run-time control. However, the user may specify both the
desired precision of numbers to be displayed as output and the maximum
length of the output line. The)DIGITS system command (Section 5.4.2)
sets the output precision, and the)WIDTH system command (Section 5.4.3)
sets the length of the line. The examples in this section illustrate the
impact of both of these commands on the appearance of APL output. Vector
and scalars are printed in a compact form; arrays and higher dimensional
structures, however, are formatted for tabular output.

Before a numeric array is printed, it is scanned to determine the "best”
output format. The columns of numeric arrays are aligned and packed to-
gether with at least one space of separation. Once the maximum field
width has been determined for an array, the numbers are left-justified

2-7

THE APL LANGUAGE

in that field. No attempt is made to align the decimal points. APL
attempts to display all numbers without decimal points and exponents.
When scalars, vectors, and arrays are being displayed, only those
numbers that require exponentation are displayed in that form - for

example:

A6 UEHE.0 HUAED G H6ETY
556 054 HD6 H.H6ETE

Fractional numbers are displayved with a leading zero before the decimal
point. Note that the maximum number of displayed digits has been set
to six in the examples below.

JRLGLITSE 4

was 7
1ROOGOGO00
LE+G
Q.01
T OGOBGOO00L
LE™ L0

1o 2E4ED
123400
2 &Gril
A T A T |
o1 11
2 3FG 123 TLIRE L1233 L1238 123 5,432
1.2300E™1 71.,2300871 1.2300E™]
1.2300E™] 1.2300E7] G.4321E710
2OBPGIEX X L L2E L1223 123484 1EY
01230 3 00,1230
0,1230 123458 10000

When_the length of a vector or array exceeds the maximum line width
specified in the)WIDTH command, the excess numbers are indented
beneath the second element of the first line, as shown below.

SWLDTH X0 (generate 30 consecutive numbers)
wWis 7
1234564789 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 2

27 2B 29 30

B0 (compute natural logarithms)
O 0.69318 1.,09861 1.38629

L.60%44 1,79176

194591 2.07%44

L1722 2.30259

IMEGITS 3
was 4
#1110
O 0,49 4.1 1.39 1.41 1.79
1.95 2,08 2,2 2.3

2-8

THE APL LANGUAGE

In APL there are actually two ways to control the numb igi i

: : er of digits dis-
playgd_ln numeric output. The)DIGITS system command sets thegoutput
precision directly, and the floor (l) function, illustrated in the last
example below, rounds the numbers included in the function. In this

example, the numbers are rounded to three lace i
i g D $ to the right of the

IDIGITS 4
wAs 3
YWIDTH 72
was 30
®15
QO 0.69315 1.09861 1.38629 1.60944
LETZxL G+l EIxe 5
0 0.693 1.099 1.386 1,609

2.3 ERROR HANDLING

When an error is encountered in an APL statement, an error message is
normally output, followed by a display of the line in which the error
occurred. An up-arrow (4) beneath this line identifies the particular
point at which the error was discovered. Examples of several common
error conditions are included below.

¥ee-3
oy ¥

VAOLUE ERROR

Ax K
11\
L+1E+2+3
BYHTON ERROR
1+1E+243
4
1 241 2 3 45 6 7

LEMGTH ERROR
1 241 2 3 4 85 67
4

Because APL is a highly interactive system, the user can almost always
respond to an error condition simply by correcting the statement in
which the error occurred. This characteristic of the language also
facilitates a trial-and-error approach to program development.

In immediate mode, the user generally responds to an error message by
reentering a corrected statement or by changing the value of a variable
used in a computation. In function-execution mode, APL outputs an
error message, along with the name of the function and the line number
of the statement at which the error occurred; it also suspends execu-
tion of the function. The user may then terminate the suspended pro-
gram, restart it at another statement, or perform debugging operations
before resuming execution. These operations might include editing the
suspended program, displaying the current values of variables used in
the program, examining the status of functions called by the program,
or developing a test program to analyze the output of the suspended
program. Chapter 3 describes techniques for developing and executing
functions.

If certain types of errors occur in function-execution mode, the user
may not want execution of the function to halt to await correction of
the error conditions. The implementation of 4PI described in this

2-9

THE APL LANGUAGE

ndle error conditions under

ha
manual therefore allows the user to 4.3.2) and the execute (e)

program control by I-beam 16 (Section
operator (section 2. T 20) &

2.4 ARRAY INDEXING AND COMPARISONS

This section introduces the use of array index%ng in AEL_and gragldeﬁ
background information on the function of the index origin an uzg
in performing comparisons. These concepts are helpful in understand-

ing the examples included in subsequent sections of this chapter.

2.4.1 Indexing Arrays in APL

The concept of using and entering values for arrays in APL has a}ready
been introduced in this chapter. An element of an array may be indexed
by specifying a bracketed element number to the right of the array name
as follows:

Vil
This expression represents the simplest form of indexing and can be

used to access the first element of vector V. If V consists of the
vector shown below, then V[3] is 7.

ves 4 7 9
VL3
7

In the examples shown above, the array being indexed is a vector, and
the index is a scalar value representing the position of the desired
element in the vector. A more complex form of indexing occurs when
the array is of higher dimension or when the index is itself an array.
The latter case is illustrated below.

Te2 4 5
Vel0 22 31 49 56 68 72
VLT

2249 56

Here V and I are both vectors. The expression V[I] is used to access
the elements of V referenced by I ~ the second, fourth, and fifth mem-
bers of vector V. The result of V[I] is itself a vector consisting of
the same number of elements as vector 7. I may be a matrix or a higher-
dimensional array; the result always has the same shape as I.

The array being indexed need not be a variable. It may be a constant
set of values or even an expression to be evaluated, as shown below:

74605 4 3 2 102 41
b 4

(2 4 8 16 x 2001 21
4 16

In general, there must be as many indices as there are dimensions in
the array. 1In APL, the number of dimensions is known as the rank.
For a vector, a single index is sufficient to identify the desired
element. A matrix or 2-dimensional array regquires two indices, sep-
arated by semicolons; a 3-dimensional array requires three. Thus, if

2-10

THE APL LANGUAGE

M is of rank N, then M must have N subscripts, separated by semi-
colons. If M is a matrix, then M[2:;4] is the element at the inter-
section of the second row and the fourth column of ¥; the first
element in brackets identifies the row and the second specifies the
column. The shape of the result of M[I;J] is (pI),pd - for example:

A subscript may be omitted from an index specification, but the semi-
colon must be included if only one matrix dimension specification is
being omitted. If the right subscript is omitted, then all columns
are selected from the matrix; if the left subscript is omitted, then
all rows are selected - for example:

1 2 Z 4
& & 7 8
4 10 11 12
Al e
1 2 3 4
Aarge 31
2 3
& 7
1o 1l

Note that the semicolon is required to indicate which subscript has
been omitted. If the index specifications are completely omitted, as
in the first example below, the entire array is displayed. In the
second example, the entire array is displayed because one semicolon -
one fewer than the number of dimensions in the array - is included.

Red 1 02 3 4

i
s

34

HEwd
2
3 4

Some additional examples are included below:

Ve P RRO T S

VIS
CE

VE& UG 4 F 2 1]
FELCEA

Me Br2 G5 4 6 %4

2-11

THE APL LANGUAGE

VM

EED

FED
Mep 21 2 21
MMM M

4]

£
R s
[

Al el

Indexing may also be used to change specified elements of an array by
replacing their values with new values. An example of this is shown
below.

&

i 2 3

4 35 6
ALL:Z 317 8
AL251L 2069
f

1 7 8

g 9 b
ALL#11«12
@

12 7 8

9 K4 &

2.4.2 The Index Origin

The index origin specifies the index of the first element in an array.
If the index origin is 1, then members of vector V are numbered V[1],
V[2], and so on. If the index origin is 0, elements begin at V[0], not
V[1]1. The default index origin setting in the clear workspace is 1,
but the user may change this setting to 0 or reset it to 1 by means of
the [JI0 system variable (Section 4.2.2) or the JORIGIVN system command
(Section 5.4.1). The index origin setting is saved with the rest of
the workspace.

The value of the index origin is also used by 4PL in many of the func-
tions described in Chapter 2. These include:

® catenation (,)

[] lamination (,)

2-12

THE APL LANGUAGE

° compression (/)

] expansion (\)

® dyadic transpose (&)
® reverse (¢)

(] rotation (¢)

° grade up (4)

® grade down (V)

® roll (?)

° deal (?)

® reduction (f/)

° scan (f\)

® index generator (1)
) index of (1)

rde]
Ae 4
2}

L 2 3 4
3

AL33

)
4 3 21
T

Lol
W RN

1723475
YORIGLM ()

Ae 4
A

0123
A3

AR
T

0
Ti

O
ry
Py

Grh
2.4.3 Comparison Tolerance or Fuzz

When two very large numbers, or two numbers that have non-zero frac-
tional components are compared in the APL-11 System, they are con-
sidered to be equal if they are within a certain comparison tolerance

2-13

THE APL LANGUAGE

of "fuzz" quantity of each other. Comparison tolerance is used in the
following APL functions:

L relational operators (<,<,=,z,>,%)
° index function (dyadic 1)
'y membership function (dyadic ¢)

® floor (L)

° ceiling (I)

The amount of tolerance applied by APL-11 may be controlled by the
user by means of the [CT system variable (Section 4.2.1) or the
)FUZZ system command (Section 5.4.4). The default relative Fuzz in
the clear workspace is set to 5E 7 in single-precision systems and
5E 15 in double~precision systems. The Fuzz setup is saved with the
workspace.

The comparison tolerance is [CT times the larger of the two numbers
that are being compared, in absolute value. The formal definition
for tolerant equality is the following:

R«(|A-B)<OCcTx(14)I|B
Examples of user control over comparison tolerance are included below.

[T e BTG

COL Y Dl s e L Gxe 1 28]
Q0000000111111 1111113111

e e B0

POLY ks
QOO00000000001111111411411

2.5 INPUT/OUTPUT OPERATIONS

The implementation of APL described in this manual facilitates input
and output operations on a variety of system devices. Chapter 6 de-~
scribes the file system used to handle file-oriented I/0 in ASCII
sequential and random-access format. This section is oriented to ter-
minal input and output, but most of the general information described
here is applicable to all system I/O devices.

In APL, input and output operations are generally expressed by means

of the special quad operator, . Input/output statements are special
kinds of assignment statements. If a quad symbol appears immediately
to the left of a left-arrow, the value of the expression to the right
of that specification arrow is output - for example:

HelG-[1e3+4
7
Here the quantity 3+4 is assigned to the quad operator and displayed.
The value Of X 1s computed but not displayed. Terminal Output can also

be accomplished simply by entering the name of the variable whose value
is to be displayed:

(X4
N

THE APL LANGUAGE

If a guad symbol appears anywhere in an APL statement except immediate-
ly to the left of a left-arrow, input is accepted from the terminal, as
in the following:

ACIX+5
NH
7

Table 2-1 lists the formats of the input and output operations that
can be performed in APL-11l, along with section references.

Table 2-1
Input/Output Operators

Expression Meaning Section
A< Quad (evaluated) input 2.5.1
A< Quote-quad (character) input 2.5.2
A<f Quad-del (unedited) input 258 .3
A<C@ltypellN File input 6.2.2
A Normal ocutput 2.5.5
43B3C Heterogeneous output 2.5.6
O<A Quad output 2.5.5
M<A Bare output 2.5.7
CBltypelA File output 6.2.3

The file input and output functions are described in detail in Chap-
ter 6; the basic forms of the quad operator are discussed below.

2.5.1 Quad Input Mode

The most basic form of APL input is called evaluated input. Evaluated
input means that the expression entered by the user is evaluated for a
value, which then replaces the [0 character. 1In the following example,
the value entered by the user is assigned to the variable to the left
of the specification arrow.

K¢

[13

18
The X variable takes on the value (18) entered by the user at the
terminal.

APL prompts the user to supply a value by displaying a quad character
followed by a colon, as shown below.

2-15

THE APL LANGUAGE

SRS SRS
I The user requests evaluated input.

& APL prompts and the user enters a

R string which again requests evaluated
Ax1+8 input.

[1e APL prompts again and the user enters 3.
Léxl-2

i3 The second input string evaluates to
A 16x3-2 or 16, and the first evaluates

& to 3x16+8=6; APL responds with 6.

To enter a character string as a value in quad mode, the user must
enclose the string in single quotes - for example:

G]

ERECYY EDRICRLIGM (D OIFCED Y
A
HOT O ERHQUGH CORE

If the user enters only a carriage return or spaces followed by a
carriage return, APL again displays the prompt and waits for the input
to be reentered. While the system is awaiting input, the user may

enter and execute a system command or may define a function. The input
request remains pending. After the desired operation has been per-
formed or the user has returned to immediate mode, APL prompts again

and waits for input. If an error is encountered in the input, APL dis-
plays the appropriate message and allows the user to reenter the input
but does not reprompt. To reenter the input, the user must first type
+0, which will cause the prompt to appear; he may then reenter the input.

2.5.2 Quote-~Quad Input Mode

A version of the quad operator called the gquote-quad operator (1) is
used especially for the input of character data. An example of quote-
quad mode is shown below.

Hef
THAT 'S AMARLNG

THATIT S AMOIIMNG

Unlike evaluated input, quote-quad input allows character strings to
be entered without explicit quote characters. When APL encounters a

M symbol, it positions the carriage at the left margin and accepts the
data entered by the user up to the next carriage return as a character
string. If a single character is entered, APL treats it as a literal
scalar; a string is stored as a literal vector. If the user enters
only a carriage return, 4APL treats this input as a vector of length

U: thls 1s signiricantly dirferent Irrom tlie nhandlling of empty input
in evaluated input mode, in which APL rejects the input and waits for
the user to reenter it.

2-16

THE APL LANGUAGE

Quote-quad input is also called unevaluated input. If the user enters
an expression, APL does not evaluate it, but simply treats it as a
character string. APL does edit the characters that are entered; for
example, overstrikes which are made up of three separate characters
are combined into a single character.

2.5.3 Quad-Del Input Mode

A special version of the quad operator, the quad-del operator (M)
enters characters exactly as typed by the user. No special editing of
APL characters is performed. The backspace, for example, is treated
as a special character, and an overstrike symbol is not created. The
following statements illustrate the difference between quad-del and
quote-quad modes in entering overstruck 4PL characters.

e M
nNA

£
4

REA N
[S12]

f" :-
2

.f" i N F

The example included below shows the particular use of quad-del mode
in accepting input from ASCII-mode terminals. Mnemonics entered in
ASCII mode are not decoded.

A QD
« TRE

JRO A
4

A 00
« TRA

RO A

RO 7L TRAY

As in quote-quad input mode, if the user enters only a carriage return,
APL treats this input as a null vector of length zero.

2.5.4 Escaping from an Input Loop

If an input request occurs within an infinite loop in an APL defined
function, the user can interrupt function execution by typing 0U, as
follows:

O<backspace>U
thus overstriking the two characters. Users of ASCII terminals
escape by typing the .OU mnemonic. An escape of this kind causes

function execution to be interrupted but does not cause an exit from
the function.

2-17

THE APL LANGUAGE

2.5.5 Normal and Quad Output Modes

If a quad operator () appears immediately to the left of a left-arrow,
the value of the expression to the right of the arrow is output.
Because APL automatically displays the value of an expression or
variable not explicitly assigned to another variable, it is often not
necessary to express explicit terminal output requests. For example,
the 4P statement:

feE
3

is equivalent to the statement:

B
3

because both have the effect of displaying the wvalue of B.

Quad output mode is especially helpful when an APL statement con-
sists of multiple specifications - for example:

Ae3elleSx4
20

This statement performs the computation and displays the desired out-
put - the result of the computation 5xu4. It is more efficient than
the following similar examples:

5x4

20
AeZ+R0
AEEX 4
[

20
AeZ+A
Fa

23

If the last operation (the leftmost operation) being performed in a
line is an assignment (<) or branch (») (see Section 3.4.1), then no
final output is produced. The following 4APL statement will not cause
output to be displayed:

Ae5x4

but the example shown below will display a value:

A44+A65

2.5.6 Heterogeneous Output Mode

APL users often need to mix character and numeric data on the same
output line. Mixed output lines of this kind are called heterogeneous
output. The APL user requests heterogeneous output simply by entering
a series of values or expressions, separated by semicolons, in the
order in which they are to appear. The values may be parenthesized.
The following is an example of the use of heterogeneous output.

2-18

THE APL LANGUAGE

As mentioned in Section 2.5.5, a value will not be displayed if the
leftmost expression on a line is an assignment or branch operation.

The heterogeneous output facility may be useful for entering function
lines that consist of multiple 4PL statements. The user should
remember, however, that APL evaluates expressions in right-to-left
order by line, without regard to embedded separating semicolons.

2.5.7 Bare Output Mode

Bare output is a special kind of APL output that is normally accom-
plished by means of the quote-quad character - for example:

(«'SPECIFY USER ID!'

The normal output described in Section 2.5.5 is terminated by a car-
riage return/line feed pair so that the next input or output begins
at a standard position on the following line. Bare output, on the
other hand, is not concluded by a carriage return/line feed if it is
followed by another bare output request or by quote-guad input. The
character input accepted after a bare output operation is handled as
if the user had spaced over to the position immediately following the
final character of the bare output value. This implies that the
resulting value of the input string normally contains a number of
blanks, as shown in the example below. The use of bare output allows
a character response to appear on the same line as the output text.

GLHLT
[| M- ' fabniE QUL FREADY TO ERTER VAL UEST !
£21 Al
£31
TEY
ARE TOW READY TO EMTER VALUJEST? O

i
(21w

Carriage returns that would normally be inserted because of a limita-
tion on page width are not included in bare output.

If bare output is specified in immediate rather than function-execu-
tion mode, it is usually not distinguishable from normal output. A
bare output statement such as 0«4 must be followed by an input entry
at the terminal, and thus the output will be concluded by the conven-
tional carriage return. Bare output is therefore more appropriately
utilized in function-execution mode.

2.5.8 Terminating Output
The display of output on the terminal may be terminated before it has

been completed by pressing the CTRL/O or CTRL/C key. See the dis-
cussion in Sections 1.5.1 and 1.5.2.

2-19

THE APL LANGUAGE

2.6 PRIMITIVE SCALAR FUNCTIONS

APL primitive functions are of two types: sgcalar and mixed. Scalar
functions have the following characteristics:

e They take single-number (scalar) arguments
] They yield scalar results
) They are used primarily for basic arithmetic and logical

operations, such as addition, exponentiation, maximum value,
and logical OR

With a few exceptions, the primitive scalar functions take numeric
scalar arguments. Only the relational functions (<,<,=,>,2,%) take
either character or numeric arguments.

The logical functions (v,A,¥,%,~) must have arguments that are equal
to 0 or 1.

Table 2-2 summarizes the primitive scalar functions available in this
implementation of 4APL, and provides a definition or example of each.

Most of the functions are straightforward and familiar arithmetic or

logical functions and do not require detailed discussion.

The following subsections describe the difference between monadic and
dyadic primitives, discuss the extension of scalar functions to
arrays, describe the use of APL operators with primitive functions,
and summarize any information about the functions in Table 2-2 that
is either not obvious or different from the ordinary mathematical
interpretation of the functions. The monadic roll (?) primitive is

a scalar function and is included in the table for completeness; how-
ever, it is the only primitive scalar function that is origin-
dependent (Section 2.4.2) and is more appropriately described in con-
junction with the dyadic deal function in Sections 2.7.21 and 2.7.22.

2.6.1 Monadic and Dyadic Functions

Most of the primitive scalar functions and some of the mixed functions
described in Section 2.7 have been implemented in two forms: monadic
and dyadic. Monadic functions take only a right argument - for
example, 4 (reciprocal), !B (factorial) or ~1 (logical NOT).

Dyadic functions take both left and right arguments - for example,

3+2 (addition), AlB (maximum), and X=Y (equal). The operator is
always a single APL symbol, usually the same as the corresponding
symbol used in ordinary mathematics.

The syntax of a function (i.e., the presence of one or two arguments)
determines whether the function is monadic or dyadic. For example,
|4 is a monadic function used to determine the magnitude or absolute

value of the argument A. A4A|B is a dyadic function used to obtain the
residue or remainder available after dividing B by 4. The particular
function specifed by the | symbol is dependent upon the context of

the statement.

2-20

THE APL LANGUAGE

Table 2-2
Primitive Scalar Functions

Monadic Form fY Symbol Dyadic Form XfY
Definition Definition
or Example Function Function or Example
+Y«~>0+Y Plus + Plus 5.3+4.2+>9.5
~Y+>0-Y Negative - Minus 5-6<> 1
xY«+(Y¥Y>0)=-Y<0 Signum X Times 4x7,2+«+28,8
$Y<>13Y Reciprocal + Divide 542+«+2.5
*Ye>(@22.71828,..) *7 Exponential * Power 9% 0. 5+~>3
T6.7<+6,7 Magnitude | Residue 5| 7«2 5|7 7«>3
T5]77«>"2 7]0+=>0
y Iy Ly Ceiling r Maximum 5[2«5
5.47 6 B
“5.47 75 76 Floor L Minimum 3} 743
@ xN<+N<>+@N Natural @ Logarithm |[XeY+»Log Y Base X
Logarithm XoY<«+(@Y)+0X
10«21 1Y«>Yx!Y-1 Factorial ! Binomial X1Y<+>(1Y)s(1X)x!Y-X
or !Y<+»Gamma(Y+1) Coefficient|3!5++10 216+>15
?Y«->Random choice Roll ?
from 1Y
Oy<«-+(3,14159.,.)xy | Pi times o Circular See Table 2-3
~1430 ~0<=>1 Not ~
A And X|Y [XAYLXVY | XRY K »Y
\ Or 00 0 0 1 1
L Nand o1 0 1 1 0
» Noxr 110 0 1 1 0
111 1 1 0 0
< Less Relationals:
< Not greater Result is 1 if the
= Equal relation holds and
> Not less 0 if it does not.
> Greater 3>7+-0
z Not equal TA'<'C el

2-21

THE APL LANGUAGE

Table 2-3 _
Dyadic Circle Functions
(-X)oY X Xoy

(1-Y%x2)%.5 0 (1-Yx2)*.5
Arcsin Y 1 Sine Y
Arccos Y 2 Cosine Y
Arctan Y 3 Tangent Y
(T1+Y%x2)*.5 4 (1+Y%2)%.5
Arcsinh Y 5 Sinh Y
Arccosh Y 6 Cosh Y
Arctanh Y 7 Tanh Y

2.6.2 Extending Scalar Functions to Arrays

The primitive functions described in this section are considered
scalar functions because they take scalar arguments and yield scalar
results. The operations performed by these functions can, however,
be extended to arrays. A primitive scalar function is applied to an
array on an element-by-element basis. Thus, if the user specifies an
addition function in which both arguments are vectors, the cor-
responding elements of the vectors are added - for example:

HOE 9es 73
11 18 11

The arrays on which the primitive scalar functions operate may be of
any dimensions. If a dyadic function is being performed, the arrays
specified as the arguments of the function must generally have the
same number of elements and be the same shape (e.g., a 2-by-3 array
is not equivalent to a 3-by-2 array). There is one exception to this
rule. If one argument is an array and the other is a scalar or a
single-element array, the single value is applied to every element of
the array. The following two examples are therefore equivalent.

G Haesd 2

The following examples illustrate the use of several other primitive
scalar functions.

2-22

THE APL LANGUAGE

Ae3 JPpE 6 8 X 21 6 42
[}
53 6 8
3 2 1
4 4 2
3 X6y
25 346 b4
£y 4 1
3 146 4
2%
10 12 18
& 4 2
12 08 4

2rQ 1 23 4 H 678
1 248 16 32 64 128 254

4 9 16 25 ZHeQ.H
2345 6

2.6.3 Using Operators with Scalar Functions

Operators are special APL functions that take dyadic primitive scalar
functions as their arguments. For example, the reduction operator
combines the elements of a vector or the elements along one dimension
of an array. The elements are combined in accordance with the spec-
ified function (e.g., addition, multiplication, etc.). The following
example illustrates the addition of the elements of a vector.

&

The plus sign in this statement could be replaced by any of the dyadic
primitive scalar functions in order to perform a different function.

The formats of the four APL operators are listed below and are
described in detail in Section 2.8.

® reduction (f/)

® scan (f\)

® inner product (f-g)
° outer product (o-f)

2=23

THE APL LANGUAGE

2.6.4 Relational Functions

In APL, the relational functions (<, 5, =, >, 2, #) return results;

i i i f the
they are not simply comparison opera;ors. An expre551on (o)
for% A<B yields a result value of 1 if the relation holds - for

example:

Ea \‘{)

4ré

0
gyt

These functions may take either numeric or character arguments; how-
ever, they may not have one numeric and one character argument, or a
DOMAIN ERROR results. Note that = and = will return a 0 result for
arguments of different types. For characters, the AV system variable
defines the collating sequence to be used in relational functions. A
character appearing earlier in [JAV is "less than" one appearing later

(Section 4.2.6).

When used with boolean arguments (0 and 1), the relational functions
may be used to perform logical operations. For example, the not
equal (%) function performs an exclusive OR operation if its arguments

are 0's and 1l's.

O 1 0 1#0 0 1 1

G110
2.6.5 |[: Determining the Residue
The dyadic residue (|) function is used to obtain the remainder or

residue of a number. In the function:

518
where 5 and 8 are both positive, 3 is the remainder when 8 is divided
by 5, and 3 is considered the 5 residue of 8. The residue is a unique
number whose value is in the range between the value of the left
argument and zero.

The residue function, 4{B, has the following characteristics:

® If the left and right arguments are equal (4=B), the residue
is 0.

® If the left argument is zero (4=0), the residue is the value
of B (4|B = B).

® If 4 is not zero (4#20), the residue is in the range 4 through

0; it may equal 0 but not 4. For some integer, I, the residue
can be expressed as B-Ix4.

2-24

THE APL LANGUAGE

Examples of these cases are included below. For a discussion of the
outer product operator included below (4-.|B), see Section 2.8.4.

717
0
710
0
017
7
0177
7
A«<3 0 3
B«<6 574737271 0 1 2 3 4 5 6
Ao . |B
601 2 0 1 2 0 1 2 0 1 2 0
6’5 74 737271 0 1 2 3 4 5 6
07271 07271 07271 07271 o0
X<21.824
01ix
0.004

The result of a residue function has the same sign as the left argu-
ment of the function. If the left argument is negative, then the sign
of the result is negative, as shown below.

-5 5|77
because 2= "7+ 1] 5
The arguments of the residue function need not be integer numbers - for
example:
2|5.8
1.8
1.213.9
.3

The formal definition of the 4PL-11 residue function is the following:
A|B<«+B-Ax| B+4+A=0

where <» indicates that the two sides of the expression have the same
value.

2.7 PRIMITIVE MIXED FUNCTIONS

The functions presented in this section are primitive mized functions.
Primitive scalar functions take scalar arguments, yield scalar results,
and are extended to arrays on an element-by-element basis. Mixed
functions, on the other hand, may take array arguments and yield scalar
or array results, or may take scalar arguments and yield array results.

2.7.1 Summary of Primitive Mixed Functions
Table 2-4 summarizes the primitive mixed functions available in this

implementation of APL, along with the operators introduced in Section
2.6.3 and described in Section 2.8.

Table 2-4
Primitive Mixed Functions and Operators

9¢-¢

Monadic Form fY Takesl Dyadic Form XfY
Coordinate Origin=-
Section Function Definition Argument Symbol Dependent pefinition Function Section
Mixed
Punctions:
20743 Returns array shape pY no p no XpY Reshapes an array 2.7.4
2:7:8 Generates consecu- 1 no t yes Xud Finds an index 2.7.6
tive integers
2.7.7 Converts to a vector 4 yes2 y no X, Y Catenates or laminates 2.7.8
yes /s no xX/Y Compresses an array 2.7.9
yes \ no X\Y Expands an array 2.7.10
no + no Xty Takes array elements 2. 7sld
no v no Xy Drops array elements 2 x Pl
2.7.13 Transposes an array ®Y no 8 yes3 xQy Transposes an array 2.7.14
2.7.15 Reverses an array by yes ¢ no X0y Rotates an array 2.7.16
2.7.17 Sorts in ascending Ay yes 4 yes
order
2.7.18 Sorts in descending VY yes ¥ yes
order
2.7.19 Rolls random integers 2y no ? yes xzy Deals random integers 2.7.20
2.7.21 Constructs a charac- TY no T no X1y Encodes a number in 2.7.22
ter string another base
no 1 no XLy Decodes a number P T 23
representation
2.7.24 Executes a character ¥ no € no XeY Determines array 2 {T%25
String membership
2.7.27 Eliminates duplicates U no U no XuY Determines union of 2.7.26
in a set two sets
no n no Xuy Determines intersection 2.7.28
of two sets
no ~ no x~Y Excludes elements in 2.7.29
first set but not in
second
no c no Xe¥ Determines a proper 2.7.30
subset
no =} no XY Determines a strict 2.7.3%
superset
no] no XY Determines a superset 2.7.31.
no = no Xc¥ Determines a subset 2.7.30.
2 s P32 Formats an array vy no v no vy Formats a numeric array 2.7.33
with width and precision
2.7.34 Performs matrix (B4 no 5] no xEy Performs matrix division
inversion
Operators
2.8.1 Reduces an array [y yes I/ no
2.8.2 Scans an array ANY yes N no
no f.g no XFay Computes inner product 2.8.3
no °o.g no Ko.gY Computes outer product 2.8.4

lApply to both monadic and dyadic forms
2Dyadic form only

3Dyadic form, left argument only

THE APL LANGUAGE

The boxed information at the beginning of each section provides addi-
tional summary information, which is repeated for quick reference in
Appendix A (Table A-9). In these descriptions, "any" means that any
argument domain (character or numeric) or argument shape (scalar,
vector, or array) may be specified. If the argument domain is "any*",
this indicates that arguments may be either character or numeric, but
both arguments must be the same type.

2.7.2 Specifying Array Coordinates

When expressing mixed functions for arrays of two dimensions or more,
it may be necessary to specify the particular array coordinate to
which the function applies. This is done by including in the function
a bracketed expression representing the desired coordinate in the
specified array. For example, the following function catenates array
4 to dimension 1 of B.

A,[1] B

An array coordinate can be specified for the following functions and
operators:

Function Symbol Section
catenation . 2.7.7
lamination . 2.7.8
compression / 2.7.9
expansion N 2.7.10
reverse ¢ 2.7.15
rotation ¢ 2.7.16
sort (ascending) A 2.7.17
sort (descending) ¥ 2.7.18
reduction £/ 2.8.1
scan £\ 2.8.2

The array coordinate is origin-dependent, that is, it depends upon the
current value of the index origin. 1In the above example, 4 is
catenated to the first dimension of B if the index origin is 1 and to
the second dimension of B if the index origin is 0.

If the bracketed expression is omitted from a mixed function, the func-
tion is performed on the last coordinate of the array. If B is a
4-dimensional array, the following function compresses along coordi-
nate 4.

A/B
The user can specify that certain functions are to be performed on the
first coordinate by using a special symbol, formed by overstriking the

minus sign (-) with another symbol, usually the normal symbol of the
function - for example:

AfB

THE APL LANGUAGE

All symbols are shown below.

Function Symbol
compression #
expansion X
reverse e
rotation e
reduction £+
scan £\

2-28

THE APL LANGUAGE

2.7.3 p: Returning the Shape of an Array

Function: monadic rho (p); R<pY
Argument Domain:

left: -
right: any
Argument Shape:
left: -
right: any

Result Range: null or non-negative integers
Result Shape: vector; pR<3ppY

Origin-Dependent? no

Take Dimension Argument? 1O

The monadic form of the rho (p) function returns the shape of an array.
If B is a character vector consisting of 'ABCDEF', then the rho func-
tion included below returns the number of characters in the array.

b3
ABRCDEF

R
&

Because B is a l-dimensional array, pB returns only a single number.
If 4 is a matrix with five rows and six columns, then the following
result occurs.

2]
1 o 3 4] &
¥ g 4 o 11 12
13 14 135 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
£

U ob

If the vector that is the argument of the function is a l-dimensional
array with a length of 1, then the rho of the array will be 1. The
following example illustrates the generation and examination of an
array consisting of the single digit, 3.

Kelpd

FK

1

See Section 2.7.4 for a discussion of the dyadic form of the rho
function used in this example.

If the value of X generated in the example above is a scalar, not an
array, then the rho of X is the null vector, a vector of length
zero - for example:

iKed
£ K

THE APL LANGUAGE

line in response to the pKk statement. The
including zero, is the null vector. The
This is illustrated in the follow-

APL simply displays a blank
shape of any single scala;,
shape of the null vector 1s zero.

ing example.
F£O

FORQOD
O
The pX function always returns one element for each qimension of the
array K. The following is an example of a rho function on a 2-
dimensional array.

1)
5 9

& 3
)
2 2

FA
3

3

The expression p4 returns the dimensions of 4 as number of rows,
followed by number of columns.

The function ppX can be used to return the rank of X as follows:

Array pPpK
Scalar 0
l-dimensional 1
2-dimensional 2
3-dimensional 3

This effect is the result of the fact that pX is a vector containing
one element for each dimension of X, so its rho, p(pXk), is a l-element
vector consisting of the number of dimensions of X.

The function pppX returns 1 for all possible X's.

THE APL LANGUAGE

2.7.4 p: Reshaping an Array

Function: dyadic rho (p); R<XpY
Argument Domain:
left: non~negative integers
right: any
Argument Shape:
left: scalar or vector; (ppX)<1
right: any
Result Range: same as right argument
Result Shape: array; pR<>X for a vector
Origin-Dependent? no
Take Dimension Argument? no

The dyadic form of the rho function specifies a new array or reshapes
an existing one. It is issued as shown in the following example:

3PS
where the left argument, 3, specifies the shape of the array to be
constructed and the right argument, 5, specifies the value to be
assigned to each element of the array. The shape of the array
describes both the number of dimensions of the array and the number of
elements in each dimension. In the example above, a l-dimensional
array is created, because only a single value is supplied to the left
of the p; the number of elements is the actual value of the
argument, 3.

The right argument of the dyadic p function may be any shape.

The example above illustrates the generation of a numeric constant
array. An array consisting of literal characters can be constructed
by including a character string as the right argument and enclosing
it in quotes. A character vector reshaped in this way is displayed
without spaces, as shown in the following example.

KR RO DER

AR
VOEF

The examples included below illustrate the generation of two arrays.
The first example reshapes an existing array; the second specifies the
elements of a new array in the rho function.

The array that is being reshaped need not have the same number of
values as the array from which values are taken. In the following
expression:

A5y p e

THE APL LANGUAGE

If B has more than five elements, then only
1f B has fewer than five elements, then the
ed as often as necessary, in row-major order.
lustrates both of these operations, first
d then reshaping it into a vector.

4 requires five elements.
the first five are used.
elements in B are repeat
The following example il
shaping a 2-dimensional array an

Al 2
DR
o3 4 1
202 4 1 2

Kpaia
1203

The next example reshapes a character vector into a 3-dimensional
array.

R e P AECDEF G WK LM GRS T UV W
[3]
B (M
O 2

MO
Gk s T
LIV Wi

A general rule for the dyadic rho function can be expressed as the
following: if A<«VpB, then pA«-»V and A contains only elements of 5.

A relationship between the rho and ravel (Section 2.7.7) functions can
also be described as VpB<«>Vp,B.

The rho function is often used in conjunction with iota (Section 2.7.5).
The next example generates an array consisting of consecutive integers.

[lefred 2p 04
3 4

Any number of array elements can be specified in a dyadic rho function,
as long as the number is not negative or fractional and does not
generate an array too large for the user's workspace.

The rho function may be used to generate a null or empty vector. A
vector of this kind is often useful in executing APL functions. As
described in Section 3.4.1, if an empty vector is the argument of a
branch, then function execution will not branch but will continue to
the next statement in sequence.

An empty vector is generated when the right argument of the rho is a
scalar. Some examples of expressions that generate null vectors are
included below.

pA
Opl|
0p0
10

(where 4 is a scalar)

2=32

THE APL LANGUAGE

2.7.5 1: Generating Consecutive Numbers

Function: monadic iota (1); R«1Y
Argument Domain:

left: -

right: non-negative integers
Argument Shape:

left: -

right: scalar or l-element vector
Result Range: non-negative integers
Result Shape: vector; pR«>,Y
Origin-Dependent? yes, result
Take Dimension Argument? no

The monadic form of the iota (1) function is used as an index genera-
tor. It generates a number of consecutive integers, equal to the
value specified as the argument of the iota, starting from the value
of the index origin. The following is an example of this function.

[lefeq
1234
)

4

The argument of the function must be a non-negative integer scalar or
a l-element array.

The expression 1V generates a vector containing ¥ components. If the
index origin is set to 1, these components have values 1 through V.

If the origin is 0, then the resulting vectocr has values 0 through N-1.
The index origin default is 1 in the clear workspace, but this

setting can be changed by the user by means of the [0I0 system variable
(Section 4.2.2) or the)ORIGIN system command (Section 5.4.1), as
shown below.

13
YORILGIM

13

<
-
3

The monadic iota function can be used in any expression to generate
consecutive results. The following example illustrates the use of
iota in generating powers of 2.

2x110
1 2 48 16 32 64 128 256 912

Iota is often used in conjunction with rho.

To generate a vector with the same number of entries as array X, the
user can specify the expression shown below; in this case, array X
contains four elements.

w7 1 3 4
s
123 4

THE APL LANGUAGE

As illustrated in the following example, the index generator function
can be used to generate a null or empty vector; the shape of a null
vector is always zero.

10
(APL outputs a blank line)

This function may also be used to determine the value of the current
index origin:
1l
i (index origin is 1)

0 (index origin is 0)

THE APL LANGUAGE

2.7.6 1: Finding the Index of a Value

Funetion: dyadic iota (1); R«X1Y
Argument Domain:
left: any*

right: any*

Argument Shape:
left: vector; (ppX)sl
right: any

Resuit Range: non-negative integers
Result Shape: scalar or array; pR<pY
Origin-Dependent? yes, result

Take Dimension Argument? no

The dyadic form of the index (1) function locates the first occurrence
of a particular value in a vector - for example:
4 9 68
v
&
myr
3
The value of Y occurs as the third element of vector X. When using
the dyadic form of iota, X can be scalar or a vector and Y can be
any scalar or array.

The index function can be used to locate a particular type of value in
a vector. For example, to find the index of the largest value in X,
the following is specified:

ey f/H
mpad
HEHAT /3
The right argument of the index function may be an array. If B is the
vector:
Be) 1023 4B a7 89
and A4 is a 2-dimensional array:
[
[I~
o 9
then the following can be sgpecified:

He ey A

"t
1

The result of a dyadic iota function X<«B14 always has the same shape
as the right arqument of the function - formally pX<+p4. If 4 is a
matrix, then the correspondence between 4 and X can be expressed as
follows: X[7;J] is the smallest X such that 4[7;J] is equal to BLK].

*Both arguments must be either character or numeric; argument
types cannot be mixed in the same function.

2-35

THE APL LANGUAGE

The right argument of the function can be an array of literal charac-
ters, as shown below.
VORCTEF Gy HEADE

85 1 45 4
If the array identified by this argument contains a number or literal
that cannot be found in the left vector, then APL responds with the
next index number after the last element of the vector. In the follow-
ing example, APL tries to locate the numbers 1, 2, 3, and 4 in vector
V. There is no occurrence of 1 in the 6-element vector, so the next
available index, 7, is displayed as the index of 1.

Veli 4 23 7 8
Al 24
Vi

The next index number can be expressed as 1+p7V.

The examplgs inclgded.so far in this section have assumed that the
index origin setting is 1. If the origin has been set to zero, index
values are returned as shown in the example below.

VOECDER | 0
3 7

YORIGLH O
was

CERYECTEE R U b @
206

2-36

THE APL LANGUAGE

— 2.7.7 ,: Converting a Value to a Vector

Function: monadic ravel (,); R<,Y
Argument Domain:

left: -

right: any
Argument Shape:

left:

right: any
Resuit Range: same as argument
Result Shape: vector; pR++x/pY
Origin-Dependent? no
Take Dimension Argument? 1O

The monadic ravel (,) function constructs a vector from any scalar or
array. The following example illustrates the use of the ravel func-
— tion in transforming a 2-dimensional array into a vector.

[JeEeya
L2345 6
I ¥
&

The vector produced by ravel has the same number of elements as the
original array. The elements of the array are preserved in the result-
ing vector in row major order. If the argument to the right of the ,
is already a vector, then B<=,4.

The ravel function may be used to transform a scalar value into a
single-element vector. If 4 is a scalar, then ,4 produces a vector
containing one element:

A< A

Note below the difference between the shape of a scalar (null vector)
and the shape of a scalar to which the ravel function has been
applied.

o

0.4 (APL outputs a blank line)

2-37

THE APL LANGUAGE

2.7.8 ,: Catenating and Laminating Variables

Function: dyadic catenation (,); R<«X,Y
Argument Domain:

left: any*

right: any*
Argument Shape:

feft: array

right: array
Result Range: same as argument
Result Shape: array
Origin-Dependent? no
Take Dimension Argument? yes

The dyadic catenation and lamination (,) functions are used to chain
scalars or arrays together to form a new array. Catenation joins
variables together along an existing dimension; lamination joins them
together along a new dimension. The following example illustrates the
catenation of two vectors to each other and to several scalar values.

fedofgow
Eeds 7
B g B
58 9 6 7
1GQemygly |
Lo S 8 92 6 7 12

Any number of items can be catenated. The order in which values are
catenated is the order in which they are specified in the APL state-
ment. The result of a catenation can be expressed as follows:
if pA+—+5 and pB+«>3, then pR<«A,B is 8, R[15]«>4 and R[5+13]<«=>B.

Catenation is useful in adding new subtotals to a grand total or for
inserting new elements between existing elements of a vector. The
following example illustrates the insertion of the scalar value 6 in
vector A.

Aol 20X 4% 789 10 11 12

123456789 10 11 12
Literal values can also be catenated, as shown in the following example:

PRUSMED b 3 B0
FRAME Y

APL does not allow the user to catenate numbers to literal characters
and displays a DOMAIN ERROR if such an operation is attempted.

The dyadic catenation function may also be used to joint multi-
dimensional arrays together along an existing coordinate. The user
includes this integer coordinate number in brackets in the function
specification. If the coordinate is omitted, APL assumes the last
coordinate (1 or the rank of the array, whichever is larger (1[ppd)).

*Both arguments must be either character or numeric: argument
types cannot be mixed in the same function.

2-38

THE APL LANGUAGE

For a 2-dimensional array, APL extends along the second dimension,
thus adding a column, as shown in the first example below. In the
second example, the scalar value 0 is catenated with the array 4 along
the coordinate specified by the user; this has the effect of adding a
row. As discussed in 2.6.2, APL extends the scalar argument, 0, to
the array on an element-by-element basis.

Al RApréh
1y ()

12 3 0

4 5 & 0
Ay L1710

it 2 3

4 4 6

o 0 0

A scalar value can be included in the catenation function, as shown
in the following:

Ay 7
3 7
b 7

[LN

1

4
Both arguments of the catenation function may be arrays. In the fol-
lowing example, the arrays are of equal size.

g8 7 3
2009 4

%
o 1 2
I 4 05

My 1Y
g 7 3
2 9 4
o 1 2
04 0

My
g 7 3 0 1
2 9 4 3 4

¢

The next example illustrates the catenation of two arrays of different
sizes.

Mel AP G
2]
1 2 3
4 5 6
Bed Apb&e\Q
Y
7 8 @
10 11 12
i3 14 15
FCeA 1Ok

2-39

http://fCf.fi

THE APL LANGUAGE

& 3

~

8
11
14

R NGy =

O
Lt Al

[8

Three general rules can be established for catenating arrays according
to the form A,[X]B. 1If a catenation expression does not conform to
any of the rules presented below, it is not a legal APL expression.

1 If the arrays have equal dimensions ((ppA)=ppB), then
K must be in 1pp4 and p4 must equal pB except in the
Kth dimension. This is illustrated in the following

example:
flz)

504 050
P

3 & 5
Firge g |72)
3

510 05

Here 4 is equivalent to R[;14:;] and B to R[;u4+16;].

2. If the arrays have different dimensions ((ppd)#ppB),
then B must have one fewer coordinates than 4 or vice-
versa (1=|(ppd)-ppB) and pB must equal p4d without its
Kth coordinate. This is shown below.

Ae3 4 G0
Eed SFO
Fit g iy B

LLEMGTH ERROR
Fi g iy ¢ B¢

1\
Fii g £y [] 86
ok as
4 45
Here, A is equivalent to R[{13;;] and B to R[u;;].
3. If one of the arguments is a scalar, then the scalar

element is expanded and applied to the array on an
element-by-element basis along the Xth dimension, as
described in Section 2.6.2.

Lamination differs from catenation in that it joins variables along

a new coordinate. The APL syntax is the same for catenation and
lamination. However, the coordinate specification ([X]) is fractional
in a lamination expression, indicating a position between existing
coordinates in which the new coordinate is to be placed. If the two
drguments in a lamination function do not have the same dimensions,
then at least one of them must be a scalar value or APL will not accept
the function.

The following examples illustrate some applications of the lamination
feature.

AEC
LEF

58]
i

(23]
EE
CF

3

a3

uv

T

(¥
(g o]

EF

(218}
JZAVS

ow
0

THE APL LANGUAGE

e ABCY y [0, 5] DEF

P

[t COEC 1] 37 P DR

R

[leteR 2p UVWHTED

Aed Dp ot ARQDEFR
Ayl 20n

Ay fl.9le

Ay (2,300

Ay L5

M SR

TA
R

e

Rt

TE
o

YL L2 ETA

THE APL LANGUAGE

THE APL LANGUAGE

2.7.9 /: Compressing an Array

Function: dyadic compression (/) ;R<«X/[K1Y
Argument Domain:

left: Booleans (0,1)

right: any
Argument Shape:

left: scalar or vector

right: scalar or array
Result Range: same as right argument
Result Shape: array; ppR<>ppY
Origin-Dependent? no
Take Dimension Argument? vyes

The dyadic compression (/) function builds a new vector or array from
an old one by specifying the elements to be deleted and those to be
preserved. The right argument of the function may be any array. The
left argument must be the scalar argument 0 or 1 or a boolean vector
(a vector containing only 0's and 1's). The compression function
operates as shown below.

SRS~ S I T e
Bed L o0 1 O
[14- 168 76

S5O7 011

Elements in 4 whose positions correspond to the positions of 1's in

B are preserved; elements corresponding to 0's in B are dropped.
Because only 0's and 1l's are valid values for B, the number of elements
in the resulting array can be expressed as */B. If B contains only
1l's, all elements of A are preserved; if B contains only 0's, the
result is the empty vector.

The lengths of 4 and B must generally be the same. However, if 4 is
of length 1, it will automatically be extended to the length of B; if
B is of length 1, it will be extended to the length of 4. Thus:

Aesi 79 11 13
Bed 10 10O
E /5

L8
5 7 9 11 13
(/0 :
(AP, outputs a blank line.)

The expression 0/4 produces the empty vector, because all elements of
A are dropped.

As discussed in Section 2.7.2, a compression function may also be
specified for one particular coordinate of a multi-dimensional array
by including the coordinate number in brackets. For a matrix, com-
pression along the first coordinate may cause certain rows to be
omitted; compression along the second coordinate may cause columns to
be dropped. The result in all cases is a matrix. Several examples of
array compression are included below. These cxamples also illustrate
the defaults which APL supplies when the coordinate number is omitted
from the function.

2=43

THE APL LANGUAGE

fed 40012

)
1 2 3 4
G & 7 8
K4 o 11 1z
1

L0 L/010aA

1 2 X 4

4 10 11 12
oo 1 07020

1 3
57
4 11
FO/
30
Held BF1é
[
2 &
54 L o (Compress along last dimension)
12 3

(Compress along first dimension)

The shape of the result of a compression function can be expressed as
follows: if R<«B/[KJ4, then ppR<-»ppd.

2-44

THE APL LANGUAGE

2.7.10 \: Expanding an Array

Function: dyadic expansion (\); R<X\[X]Y
Argument Domain:

left: Booleans (0,1)

right: any
Argument Shape:

left: scalar or vector

right: scalar or array
Result Range: same as right argument
Result Shape: array; ppR<3ppY
Origin-Dependent? no
Take Dimension Argument? yes

The dyadic expansion (\) function builds a new vector or array by
expanding the elements of another array into a new format. Expansion
is the converse of compression (see Section 2.7.9). The right argu-
ment of the function may be any array. The left argument must be the
scalar value 0 or 1 or a boolean vector containing only 0's and 1l's.
The expansion function operates as shown below.

Aed
Vel O L 0 1
VA A
10203
VY F AL
oo L

The function expands the elements of 4 into the format specified by V.
The values of 4 are inserted in positions corresponding to the occur-
rence of 1's in V. For numeric values, zeroes are inserted in posi-
tions corresponding to 0's in the boolean vector. If the right argu-
ment is a character string, as in the second example above, spaces are
used rather than zeroes.

The number of 1's in the boolean vector must generally be the same as
the number of values in the array included as the right argument.
Thus, +/V must be equivalent to p4d. However, a scalar boolean value
as the left argument of the function is extended as shown below.

10 ING

H o008

As discussed in Section 2.7.2, an expansion function may also be
specified for one particular coordinate of a multi-dimensional array
by including the coordinate number in brackets. Several examples of
array expansion are included below. These examples also illustrate
the defaults which APL supplies when the coordinate number is omitted
from the function.

2-45

THE APL LANGUAGE

DeAel Zrd

D =
[o8
e S O

1O ANLL A

ol o
SR
*rOW

10 1 INE2Tge

o)
40 5 6
G 0D ONW0

Jeted O ON'T

jasl
S

K THIST S

B F MG T OM

ML E & x
i

3 9
Vel 1L L 10 1 L 01
AN

xTHIS I8 4

i BT OR

LE g%

10 1 1%
XRTHISISAM

EIFANS T O
LML E % %

2-46

THE APL LANGUAGE

2.7.11 +: Taking Array Elements

Function: dyadic take (t); R<XtY
Argument Domain:
left: integers
right: any
Argument Shape:
left: scalar or vector; (pX)<>ppY
right: any
Result Range: same as right argument
Result Shape: array; pR<>| X
Origin-Dependent? no
Take Dimension Argument? no

The dyadic take (4) function builds a new vector or array by taking
a specified number of elements from an existing array. The right
argument of the function may be any array. The left argument can be
a one element array or scalar, or a vector. The number of elements
in the left argument must be equal the number of dimensions in the
right argument. A scalar is treated as a one element vector.

The take function operates as shown below.

Vel &3 4
[Jeine2pV

This expression takes the first two elements of V and forms a new vec-
tor. If the value of the scalar is greater than the number of ele-
ments in 7V, then the resulting vector, X, is extended so that its
length is the value of the scalar. As shown below, zeroes are used to
extend a numeric vector and blanks are used to extend a character
vector.

AR
1 2
4413
1230
FLIE 1O AL L
AFL
10

In the expression R<S4V, if S is positive, then R consists of the first
S elements of V. If S is negative, then R contains the last |5 ele-
ments of V. If |9 is greater than the number of elements in V
((18)>pV), then zeroes or spaces are inserted in R before or after

the values of V. Examples of the effects of negative scalars are
included below.

TEMLE 24 B 48

00 12 24 49
O T FDO4E
FOO4%
o
23

A take functlon may also be specified for a multi-dimensional array.
In this case, the left argument of the function must be a vector
containing one element for ecach dimension of the array. In the
expression S4V, the value of S[1] indicates the number of elements to
be taken along the first coordinate of V, and so on. Several examples
of taking an array are included in the following.

2-47

THE APL LANGUAGE

Aelled Srld

1) 2 3 4 G
& 7 8 9 10
11 12 13 14 15
2 TarA
3 ;0 The shape of the result of the take
4 B function can be expressed as follows:
0 0 if R«A4B, and ppR<«»ppB, then pR<~>|4.
1 2
6 7
il 12

2-48

THE APL LANGUAGE

2.7.12 +: Dropping Array Elements

Function: dyadic drop (4); R«X+Y
Argument Domain:
left: integers
right: any
Argument Shape:
left: scalar or vector; (pX)<>ppY
right: any
Result Range: same as right argument
Result Shape: array; pR<«{(pY-|X)
Origin-Dependent? no
Take Dimension Argument? no

The dyadic drop (+) function builds a new vector or array by
dropping a specified number of elements from an existing array.
The right argument of the function may be any array. The shape
requirements for the arguments are the same as for the take func-
tion (2.7.11).

The drop function operates as shown below.

[lev

L e

[e3e 2V

This expression drops the first two elements of 7V and forms a new vec-
tor with the remaining elements. If the value of the scalar is
greater than the number of elements in V, then the result is the null
vector.

The drop function handles negative scalar values in much the same way
as take. The function R« §4V causes the last |S elements of 7V to be
omitted from vector F. The following is an example of the effect of a
negative scalar on a drop function.

R

LB 3

A drop function may also be specified for a multi-dimensional array.
In this case, the left argument of the function must be a vector con-
taining one element for each dimension of the array. In the expres-
sion S+V, the value of S[1] indicates the number of elements to be
dropped along the first coordinate of 7V, and so on. The examples
below illustrate the use of drop in multi-dimensional arrays and
demonstrate the construction of identical arrays by means of alterna-
tive take and drop functions.

[leemre 3 Ep 8
i 2 3 4 o]
& 7 a 9 10
11012 13 14 15

2 TRee
4 9
Y 10

N 22
4 5
? 10

2-49

THE APL LANGUAGE

The following example illustrates the use of drop in a character array.

[J&-FeD X 4@ ABRCOEFGHE K LMHOFRIESETUY W
ABCT
B F G H
LKL

MMOF
QFR&T
LINVW

Cige
s
W
PR AR
00 0

2-50

THE APL LANGUAGE

2.7.13 &: Transposing the Dimensions of an Array

Function: monadic transpose (®);R<QY
Argument Domain:

left: -

right: any
Argument Shape:

left: —

right:any
Result Range: same as argument
Result Shape: array; pR<>0pY
Origin-Dependent? no
Take Dimension Argument? no

The monadic transpose () function interchanges the dimensions of any
array. For a matrix, this function has the effect of exchanging the
rows and columns. The symbol & is formed by overstriking the circle
o with the backslash (\) character. The following is an example of

a simple matrix transposition.

[eme2 Rpa b
1 2 3
4 5 4

P

£ 6 19

7
2]

Note that the & function changes the shape of the array from 2-by-3
to 3-by-2. For a matrix, the monadic transpose function often per-
forms the same operation as the dyadic transpose function described
in Section 2.7.14.

A transposition for a 3-dimensional array is shown below.

Heg 228

Ay
i

34
5 &
7 8
W

i
x 7
26
4 8

If the right argument of the monadic transpose function is a vector
4, then §4<+A. The shape of the result of the monadic transpose
function can be expressed as follows: if R«®4, then ppR<»pp4 and
pR«>$pd.

THE APL LANGUAGE

2.7.14

(¥): Transposing an Array

Argument Domain:
left: non-negative integers
right:any
Argument Shape:
left. vector;
right: any
Result Range: same as right argument
Result Shape: array
Origin-Dependent? yes, left argument
Take Dimension Argument? ves

(pX)<>ppY

Function: dyadic transpose (8);R<X®[K]Y

The dyadic transpose (®)

function restructures an array of any shape.

It can be considered an extended version of the monadic transpose and
in some cases has the same effect on a matrix as the monadic function -

for example:

[lefie2

1 2 &
]

o .
D F LG

4 &
By
i 4
2008
X 6
2 o1aA

The right argument of a dyadic or scalar & function may be any array.
The left argument must be a vector containing one element for each of

the dimensions of the array to be transposed.
expresses the rank of the right argument.

can be expressed as the following:
have two elements if 4 is a matrix,
and so on.

The shape of the vector
For the function V&4, this
pV must equal ppd. Thus V must
three if A is a 3-dimensional array,

A scalar argument is treated as a one element vector.

The dyadic transpose function rearranges the dimensions of an array
by transposing them according to the vector provided as the left

argument.

The following illustrates an existing array and the way

in which a new array is developed by transposing its dimensions.

A

1 2 3 4
W] & 7 &
o 10 11 12
1314 15 1é
1718 19 20
21 22 23 24
Iy
23 4

If the following APL statement is specified:

3 1 284

THE APL LANGUAGE

then the vector supplied as the left argument is used to rearrange
the dimensions of 4 as shown below. The elements of the vector
determine the new positions to which the elements of pR are to be

moved.
(left argument) 3 1 2
(Shape of 4) 2.3 A

(Shape of result) 3;y:%<;

The new array has the structure shown below,

Feed | 2mA
[

! 13

2 14

3 15

4 16

-] 17

& 13

7 1e

£ 20

G 21
100 22
i1 23

12 34

The examples included above illustrate the case in which the
coordinates of the original array are permuted. 1In a permutation,
all of the coordinate numbers are the same, but they are arranged

in a different order; for example, 3 1 2 is a permutation of 1 2 3.
In the function V®4, if V is a permutation of 1pp4, then the follow-
ing is true. 1If X represents a coordinate of array 4 and the func-
tion R«V&4 is specified, then R is an array similar to 4 except

that the Xth coordinate of 4 is the V[X]th coordinate of R and (pR)
(V] is equal to od.

In a dyadic transpose function, it is also legal to specify as the
left argument a vector which is not a permutation of the coordinates.
Two or more of the elements may be identical. Legal values for the
elements of the vector must follow these rules:

® FEach element of the vector must be a positive integer
that is less than or equal to the rank of the right
argument (Veippd).

) All of the positive integers up to the largest in the
vector must appear in the left argument ((1[/V)eV).
In a 3-dimensional array with shape 2 3 4, valid vectors
include 312, 111, 112,221,211, 122,121,
and 2 1 2, 1Invalid vectors are 3 1 1, (2 is missing)
22 2, (1 is missing), and 2 3 2 (1 is missing).

Incomplete vectors have special meaning in the dyadic transpose

function. Only particular elements will be selected by the vector,
as shown below.

THE APL LANGUAGE

Vector Selects

111 Elements whose first, second, and third indices
are the same

I 3 2 Elements whose first and second indices are the
2 21 same
2 3 1 Elements whose second and third indices are the
122 same
L 2 L Elements whose first and third indices are the
212 same

The elements selected by this vector will be transposed as shown in
the examples below. Such dyadic transpositions effectively take
slices through the array along different diagonal directions. The
first example below obtains the main diagonal of the matrix.

Pt A dh
[
2 3
4 5 &
U RS
LS
fed 3 40124
4]
l 2 3 4
W & 7 &
& 10 11 12

13 14 15 16
17 18 19 20
210022 23 24

A A 1
1 13
& 18
11 23

The following examples illustrate dyadic transpositions of a
character array,

[leme 2 X 4 0 @ECIEF G DK L MM O RS T UMW
AKCH
ELF G
LKL,

MECF
QRS
LIV W

L4 dwe
23K

102 laa
AET
IRV

11 28A
A% {ud o]
QRRST

THE APL LANGUAGE

MEY
MU

EBFJ
MY

DGK
DsW

Tl
Frr

Table 2-5 may be helpful in determining transpositions for a variety
of arrays.

Table 2-5
Transpose Definitions

Case pR Definition

R<18QV pV R<V

R<«1 28/)M oM R«M

R+2 18M (pM)[2 137 R[T;J]«M[J;I]
R+l 18M L/pM RIIT)«MIT;:;I]
R+<1 2 384 pA R<«A

R+«1 3 284 (pd)[1 3 2] RII;J;K]1«ALT;K:;J]
R<+2 3 184 (pd)[3 1 21 RIT;J;K1«ALJ ;KT
R+3 1 284 (pA)(2 3 1] RUI;J3K1«ATK3T3J]
Re1 1 284 (L/(pA)XL[1 23),(p4)[31] RLT;J1«ALI3I;J]
R+1 2 184 (L/Cpa)[1 31),(p4)[2] RIT;JI<ALT ;1]
RB+«2 1 184 (L/(pa)L2 31),(pa)I1] RIT;JY«ALJ3II]
R«1 1 184 L/0A RIIJ«A[I;T;1I]

THE APL LANGUAGE

2.7.15 ¢: Reversing an Array

Function: monadic reverse {0); R<®[K]1Y
Argument Domain:

left: -

right: any
Argument Shape:

left: -

right: scalar or array dimension
Result Range: same as argument
Result Shape: array; ph<>pY
Origin-Dependent? no
Take Dimension Argument? vyes

The monadic reverse (¢) function is used to reverse a vector or the
elements of one coordinate of a multi-dimensional array. The symbol
¢ is formed by overstriking the circle o with the vertical line (|)
used for absolute value. The reverse function differs from transpose
in that it changes the order of an array, not its structure. The
following is an example of reversing a vector,

OB
5 4 3 21

As discussed in Section 2.,7.2, the reverse function may also be
specified for one particular coordinate of a multi~-dimensional array
by including the coordinate number in brackets. Several examples

of array reversal are included below. These examples also illustrate
the defaults which APL supplies when the coordinate number is omitted
from the function.

[lefe 3 Ge @

1 2 3 4
5 & 78

P e
5 4 7 08
1 2 3 4

GL2ue

302 1

g 7 &6 5

ey
4 3 2 1
8 7 4 05 ; >

&6 (Reverse last dimension)
5 o4& 7 0B ; ; :
1 0m 03 a4 (Reverse first dimension)

It is possible to reverse a matrix in both of its dimensions. This
is not the same as transposing the matrix, as is indicated in the
examples that follow,

flereld Fr1é

1 2 3
4 5 6
LUROT N ARt
6 I 4
F 2 1
B
1 4
3 4

THE APL LANGUAGE

2.7.16 ¢: Rotating an Array

Function: dyadic rotation (¢); R<XO[X]Y
Argument Domain:

left: integers

right: any
Argument Shape:

left: scalar or vector

right: scalar or array
Result Range: same as right argument
Result Shape: array; pR+pY
Origin-Dependent? no
Take Dimension Argument? vyes

The dyadic rotate (¢) function is used to rotate an array by a speci-
fied number of places. The right argument of the function may be any
array. The left argument may be a scalar or a vector. The following
example illustrates two rotations of a vector; note that a positive
rotation causes a left shift and a negative rotation causes a right
shift.

A
45 1 23

TRBAE
A4 5 12

a

If a vector is being rotated, the left argument of the function must
be a scalar or a l-element vector.

A rotation function may also be specified for a multi-dimensional
array by including the coordinate number in brackets. If a multi-
dimensional is rotated, the left argument of the function must be a
scalar, a single-element vector, or an array whose elements correspond
to the dimensions of the array to be rotated, with the dimension
being rotated omitted from the array. For example, if a matrix
containing three rows and four columns is rotated and a vector is
included as the left argument of the function, that vector must
contain three elements if the rows of the matrix are rotated and four
elements if the columns are rotated. A scalar left argument will be
extended to an array of proper shape. This is illustrated in the
following examples.

Hend Gp VARCOEFGHIJKL Y

ARCT
R G H
KL
O L 2dn
ARCT
FGHE
KL
1oL 2 FelLis
EF KD
LJCH
ARGL

Negative values in the left argument are handled as shown below.
These examples also illustrate the defaults which APL supplies when
the coordinate number is omitted from the function.

2-57

THE APL LANGUAGE

[lefreX 5p) @B CLEF GM LK LMMG
AECTE
FGHIJ
KL MO
7L 2 2 2an
F L MMO
KECTE
SGHIJ
G 2 Tles
£3 B (2 LOE
HIJFG
CHK LM

The shape of the result of a rotation function can be expressed as
follows: pR<+»>pB if R<«4A¢ [KX] B, then pAd<> (K # 1ppB)/pB.

2-58

THE APL LANGUAGE

2.7.17 A: Sorting an Array in Ascending Order

Function: monadic grade-up (A); R<A[K]Y
Argument Domain:

left: -

right: any
Argument Shape:

left: -

right: scalar or array; (ppY)s<2
Result Range: non-negative integers
Result Shape: vector; pR+-+(pY) [K]
Origin-Dependent? yes
Take Dimension Argument? yes

The monadic grade up (4) function aids in sorting an array in ascending
order. The grade up function is extended to operate on matrices as
well as vectors. The argument of the function represents the scalar,
vector, or matrix whose elements are to be recorded. The array being
sorted may contain either numeric or character elements.

If two or more elements of the array being sorted have the same value,
then the order of the elements is determined by their relative
positions in the original array.

The symbol 4 is formed by overstriking the delta (A) character with
the vertical line (|) used for absolute value.

The following example illustrates the use of the grade up function
in sorting the elements of a vector.

Ac 9 7 4 X 10 4
[leEeqh
15 7 432 6
ArE]
23447900

Note that the grade up function does not actually sort the vector.

It creates a permutation vector of the index numbers of the elements;
this vector is then used to sort the original vector, as shown in the
examples above.

The current setting of the index origin determines the index values
returned by the grade up function, An example of this is included
below.
HeX 7006 1 02
PR
4 51 3 2

YORIGIM O

As discussed in Section 2.7.2, the grade up function may also be
specified for one particular coordinate of a matrix by including the
coordinate number in brackets. APL supplies defaults when the
coordinate number is omitted from the function, as shown in the
examples below.

THE APL LANGUAGE

If the array to be sorted by the grade up function is a matrix, the
simplest operation causes each row of the matrix to be treated as a

string.

is equal to the number of rows in the matrix.

The result of the grade up function is a vector whose length

The following examples

illustrate the sorting of two matrices - one character and one

numeric.

STEVE

SAM

STAN

3

2

SAM

STAN
STEVE

w

3
3
3

5

3

PN

T
2
2

A

pA

A4 (Sort along last dimension)

AlAAs]

O O w -ty
[+]

® 3

0 &

B (Sort along last dimension)

|
0

P O oOoXr o
i]
B

~N o gt

0

gge:§mpésssigclu§eilabove cause the matrix to be sorted by rows:;
' ubscripting the functi b i
to sort on the basis ofgcolumns.Ctlon' as shown below, it is possible

S8S
TAT
EMA
/A
E

588
ATT
MAE

nv

A

pA
"
f_l]A (Sort along first dimension)

AL;401147

2-60

THE APL LANGUAGE

2,7.18 ¢¥: Sorting an Array in Descending Order

Function: monadic grade-down (V); R<V[X1Y
Argument Domain:

left: -

right: any
Argument Shape:

left: -

right: scalar or array; (ppY)<2
Result Range: non-negative integers
Result Shape: vector; ph<>(pY)[X]
Origin-Dependent? yes
Take Dimension Argument? yes

The monadic grade down (V) function aids in sorting an array in
descending order. The grade down function is extended to operate on
matrices as well as vectors. The right argument of the function
represents a scalar, vector, or matrix whose elements are to be
reordered. The array being sorted may contain either numeric or
character elements.

Duplicate values are handled exactly as in the grade up function; the
order of such elements is determined by their relative positions in
the original vector. As in the case of grade up, the index origin
setting determines the values returned.

The symbol V is formed by overstriking the del (V) character with the
vertical line (]). Following are several examples of using the grade
down function to sort the elements of a vector.

€Y

1242

[l+Bepn

275 4

ALK

75 4 3 221

Alyhdes 7 3 1 2 4 21

4% 221

n
~d
[

r3
-t
fa s

7

]

Like the grade up function, V creates a permutation vector that can
be used to sort the original vector. The last two examples above
illustrate the way in which grade down and indexing operations can
be performed together. The grade down function operates on matrices
in the same way as that described for grade up, except that it sorts
the elements of the matrix in descending order.

2-61

THE APL LANGUAGE

2.7.19 ?: Rolling Random Integers

S e

Function: monadic scalar roll (?); R<«?Y

Argument Domain:
left: —)
right: non~negative integers
Argument Shape:
left: ~
right: any
Result Range: non-negative integers (0s<Y)
Result Shape: array; pR<«pY
Origin-Dependent? yes
Take Dimension Argument? no

The monadic roll (?) function is used to generate an array of ipdepend-
ent random integers. Roll is actually a scalar rather than a mixed
function, but it is presented here because it is closely related to

the dyadic deal function (Section 2.7.22).

The argument of the roll function is an array of positive integers.

The shape of the array produced by the expression R+«?4 is the same as
the shape of 4. 1If the current index origin setting is 1, each ele-~
ment in R is a random integer in range 1 through the value of the
corresponding element in 4. If the origin is 0, the range is 0 through
the value of the corresponding element in 4 minus 1. An example of a
roll function performed on a vector is included below.

P33 10 18§ 230 25
39 4 13 4

Note that the number 4 was generated twice, once as a random integer in
range 1 through 15 and once in range 1 through 25. This can happen be-
cause numbers selected by roll are independently random within each
range. The term "roll" relates to the analogy between the operation
pPerformed by this function and the rolling of several dice. The deal
function differs from roll in that it generates a set of random num—
bers in which no number is selected twice.

THE APL LANGUAGE

2.7.20 ?: Dealing Random Integers

Function: dyadic deal (7), R<X?Y
Argument Domain:

left; non-negative integer (X<Y)

right: non-negative integer
Argument Shape:

left: scalar

right: scalar
Result Range: non-negative integers (0<Y)
Result Shape: vector; pR<r,X
Origin-Dependent? yes
Take Dimension Argument? no

The dyadic deal (?) function generates a vector of integers randomly
selected from another vector; no number may be selected more than once.
Unlike the roll function, which can be compared to rolling several
dice independently, "deal" refers to the analogy of dealing a number
of cards from a deck containing no duplicates.

Both arguments of this function must be positive scalars or single-
element arrays. The length of the vector produced by the expression
R<+A?B is the same as the value of 4. A4 identifies the number of
elements to be selected randomly from the values in range 1 through B
if the index origin is 1, or 0 through B minus 1 if the index origin
is 0. The value of A must be less than or equal to the value of

B (A<B). Several examples of the deal function are included below.

12 43 5
E B30
G, 190E3LBOTERDT 7, 9633T9SIGECD9 2,94432185FE4R9 7, 93976 R066E 429

FORIGIMN O
was
Sk
31 402
Note in the first and last examples that if the values of the two
arguments are the same (4<«+B), then the resulting vector is a permuta-
tion of 1B.

THE APL LANGUAGE

2.7.21 T: Constructing a Character String

Function: monadic quote (T); R<TY
Argument Domain:

left: numbers

right: numbers
Argument Shape:

left: —

right: any
Result Range: null or characters
Result Shape: vector
Origin-Dependent? no
Take Dimension Argument? no

The monadic quote (7) function converts numeric values to character
strings and may be helpful in preparing text to be processed by the
execute function. The argument may be a scalar or an array.and'may'
have numeric or character values. If the argument is numeric, it will
be converted to a character string as shown below.

Mel @ OF 4

[lev eyt

1234
s

"
Al 3P
Koyl

1 2 3

4 5 &

P8

VLEBAEE s B
110111
(ldrek
G0 0 000

In the second example above, array 4 is converted to a 20-character
vector (spaces output by APL are included in the size) in which the
character representations of 1 through 6 are members but the corre-
sponding numeric values are not.

If the argument is already a character string, then special processing
is performed to determine whether or not the string represents APL
identifier (i.e., a variable or function name). If the character
string is not defined as an identifier, 74 returns the null vector.
If A4 is defined as a variable, TA returns the value of the variable,
converted to a character string. If 4 is defined as a function, T4
returns the lines of the function definition, separated by pairs of
carriage return/line feed characters. Examples of these uses of the
quote function are included below.

ael 203 4

L B g i

1 232 4
,'.\1’-3

R o TS ST I o

THE APL LANGUAGE

GEeMm G &
[11 ®e(3xA)+4xE
L21 el
L33 v

26
100

[14-C g 1 G5 ¢

¢ OZea GOX
Ee (IxA) +4XE
HeTe

48

BYMYAN ERFROR

L8]

G 1
,'\
100

Note that the definition of function G is effectively restored by the
use of the character string that represented this function in an exe-
cute operation.

2-65

THE APL LANGUAGE

2.7.22 T: Representing a Number in Another Base

Function: dyadic encode (T); R<XTY
Argument Domain:
left: numbers
right: numbers
Argument Shape:
left. numbers
right: numbers
Result Range: numbers
Result Shape: array; pR<>(pX),pY
Origin-Dependent? no
Take Dimension Argument? no

The dyadic encode (1) function is used to represent a scalar or an
array in any number system. It is sometimes called the representation
function. The right argument identifies the scalar or array to be
translated. The left argument is a vector or scalar that represents
the number base in which the value is to be expressed; the vector con-
tains one element for each column of the representation. For example,
to encode the decimal value 7 in four columns of binary representation,
the following function may be specified.

22 247

=

011

It is often useful to specify mixed bases for the number to be repre~
sented. The encode function can be used to express some number of
inches in miles, vards, feet, and inches, or some number of millisec-
onds in days, hours, minutes, seconds, and milliseconds. The following
are examples of these and other similar situations.

0 17460 3 12+273125
4 544 2 5 (miles, yards, feet, inches)
0 24 60 60 1000+719732523
8 7 5% 32 448 (days, hours, minutes, seconds,
04 2 2 16 3 120+100001 milliseconds)
100185 2 41 (gallons, quarts, pints, cups,
O 3 320 5.5 3 124100001 tablespoons, teaspoons, drops)
01 184 5 2 5 (leagues, miles, rods, yards,
O 12 8 3 20100001 feet, inches)
17 4 2 2 1 (pounds, ounces, drams, scruples, grains)

In the expression ATB, 4 is the representation rule to be applied to

B. Each element of the vector 4 is defined in terms of the element
immediately to its left. Thus, in encoding a number as miles, yards,
§e§§’ and inches, the following elements are specified from right to
eft.

) 12 inches in 1 foot
° 3 feet in 1 yard
° 1760 yards in 1 mile

A miles specification is desired, but is not being derined in terms
of another quantity, so 0 is inserted in the miles column, as follows:

0 17460 3 12+273125

4 346 2 8

2-66

THE APL LANGUAGE

The following examples of base 3 conversions demonstrate the specifi-
cation of different numbers of columns in the rule vector and illus-
trate the way in which negative numbers are encoded.

3 & 37

1 2

1281

3 By
21

33 Fvly
101

Another useful application of the encode function is shown below.
Here the integer and fractional portions of a number are returned.

He BRI, T
0 1rx

8232 0,75

An encode function may also be specified for vectors and multi-
dimensional arrays. The shape of the result of the function R<4ATB is
always (pA).pB or the same as the outer product. Examples of encoded
arrays are included below.

[letend 202 &

2 2 2
3 3 3
[1¢-Eebpl 2
1 0
1 0
L0
2002
£ 002
&2
I T
23 2
MeCed 2rB65 429 103 492
865 429
103 492
10010 10ye
g 4
L 6
4 2
o 9
09
3 2

THE APL LAMGUAGE

2.7.23 1: Decoding a Number Representation

Function: dyadic decode (l); R<XLY
Argument Domain:

left: numbers

right: numbers
Argument Shape:

left: any

right: any
Result Range: numbers
Resuit Shape: array
Origin-Dependent? no
Take Dimension Argument? no

The dyadic decode (1) function reduces a representation in.a number.
system to a value. It is the converse of the encode.functlon_(Sectlon
2.7.19) and is sometimes called the base value functlon.. Equivalent
examples of the two functions as they operate on a quantity expressed
in yards, feet, and inches are shown below.

1260 % 12463
1 23

1760 & 121 2 03
43

The functions ATB and Ai1B differ only in the values included as B; A
expresses the number base in both cases.

The number of elements in 4 and B must generally be the same; element
2 in A expresses the base in which element 2 in B is encoded, and so
on. However, if 4 is a scalar or a single-element array, it is
extended so that its length is the same as that of B. For example,
the following function has the effect of producing the base 10 value
of the base 8 number 3777.
Qa3 72 7 7
2047

The decode function may be viewed as a form of inner product. The
following illustrates two equivalent functions.

Ae 7460 3 12
EBel 203
0 I

36 12 L4 oxE

The following are several additional decode examples:

21 0 1 0

10
8.1l 4 4
100
241 1 00
~ 4
L4 2 4 2.0 2 1 21
109

(number of pints in bushel, 2
pecks, 1 gallon, 2 quarts, 1 pint)

2-68

THE APL LANGUAGE

A decode function may also be specified for multi-dimensional arrays.
The function 41B is equal to W+.xB where W is the weighting vector
given by Wlpdl<«+1 and WL(-N)+pAdl«-AL(-N)+1+pA]xW[(-N)+1+pA]). The value
of A[1] is thus irrelevant.

The arrays specified as the arguments of the decode function must con-
form according to the rules specified for inner products in Section
2.8.3. As with the inner product function, if neither decode argument
is a scalar, then the number of elements in the last coordinate of the
left argument must equal the number of elements in the first coordi~
nate of the right argument, or either of these coordinates must con-

tain exactly one element. In general, if the left argument (4) is a
vector and B is the right argument, then the result is W+.xB where
WLIJ«x/IvA. 1If A is a scalar or a vector of equal elements, the

result is the decimal value of the right argument in base 4.

Several examples of decode functions that use arrays are provided
below.

[lemerd 202 3

2 2 2
F &
e¥ed 201 0 0 1L 1 0
1 0
0 1
L0
oy %
5 2
1o 3
fleWe2 Zpq4 2 1 9 X 1
4 2 1
3 1
W X E
5 2
10 3

2-69

THE APL LANGUAGE

2.7.24 ¢: Executing a Character String

Function: monadic execute (€); R<eY
Argument Domain:

left: -~

right: characters
Argument Shape:

left: —

right: vector
Result Range: characters or numbers
Result Shape: scalar or array
Origin-Dependent? no
Take Dimension Argument? no

The monadic execute or unquote (e¢) function is used to execute a char-
acter string as an APL statement. The scalar or vector included as
the right argument of the function is evaluated as a character string
to be executed by APL. An example of this function is shown below.

[Jéfigg ' JVARS!
I b [I ¥ 14 M e il

The effect of this example is to execute the)VARS system command
(see Section 5.3.1) and thus obtain a display of the global variables
available in the user's workspace.

The right argument of the ¢ function may be a scalar or a character
vector. If the scalar value 4 is numeric, then the value of €4 is
equivalent to 4. If 4 is a character scalar or vector, it is

evaluated exactly as if it were quad input from the terminal. Carriage
return/line feed characters in 4 are treated as APL statement separa-
tors, just as they would be in input from the terminal, so multiple
line executes are allowed. The result of the expression R<e¢4d is the
value of the last statement evaluated in 4. If the last statement has
no value (e.g., R<c''), R is the null vector.

Errors encountered in the character string processed by the execute
function are handled exactly as if they occurred in statements entered
from the terminal. If an error is encountered while evaluating the
execute string, an error message is output and the segment of the
execute string currently being evaluated is displayed. (Output may be
suppressed by 1I-beam 16, described in Section 4.3.2.) If an error
occurs, no further evaluation of the string is performed, and €4
returns a null array whose shape is ¢ F, where EF is a number indicat-
ing the error that was encountered. Appendix D contains a complete
description of all APL error conditions.

The execute function is also known as the unquote function, because
it strips quotes from the value entered as its argument. Other uses
of this function besides the execution of system commands include the
following:

® Function definition (line editing commands are not
permitted)
® Conversion of vectors of characters representing numeric

constants into numeric values

e Specification of an APL name as an argument to a function,
rather than the value of that name

THE APL LANGUAGE

The examples included below illustrate the use of ¢ in function

definition,
APL statements.

sy
.'.f'*'«:.).

R R R
FIAEE e

Frge b Gl

e 4
i
VALl UE ERRQFR
=
li\
Crg gt &3

™

449

Yigog ' b4
3+2
&'

TR

I

E
VAL UE EFRROR

TiEUT e ERROR
K2y
a

FE
o7

G
i} VTS - LE AR
R Eeg ' YHAVE TH!
X3 PWERIER L O EXD
[43 w
2]

the execution of system commands,

At

THIS I8 HARD TO KELYIEVE

WHEM LOADED MESUMES AFTER E

PR THIT SHWE

WHEM LOADED RESUMES

g AT

b
Leg @i
=

Yegop 11
P¥

ECUTE

~
s

AFTER EXMEQUTE

2-71

and the evaluation of

FBUTE AUTOMAT TS0

AUTOMATICALLY

AUTOMATLCALLTY

THE APL LANGUAGE

2.7.25 ¢: Determining the Members of an Array

Function: dyadic membership (¢); R«XeY
Argument Domain:

left: any

right: any
Argument Shape:

left: any

right: any
Result Range: Booleans (0,1)
Result Shape: array; pR<«pY
Origin-Dependent? no
Take Dimension Argument? no

The dyadic membership (e) function is a set function that is used to
determine whether or not particular elements of one array occur as
elements of another array. Both arguments of the function 4¢B may be
arrays of any dimension; the left argument, 4, contains the elements
for which membership in array B is to be determined. The result of
the membership function is a boolean array whose shape is the same as
that of 4. The result consists only of 0's and 1l's; a 1 indicates
that the corresponding element in 4 is a member of array B, a 0 that
it is not. Following is an example of the use of the ¢ function in
analyzing the membership of a vector.

[e g b @ECO
100 14100

FY A R O G

UG g AT

R XDED

The compression function is helpful here in identifying the particu-
lar characters that are members of the vector.

The two arguments of the membership function need not have the same
rank, as is illustrated in the first example below.

Al BPrT7 B 2 4 & &
g 1 é

& A 340

F As 0

For all arrays B, the expression 4e¢B is equivalent to 4e¢,B.

THE APL LANGUAGE

2.7.26 u: Eliminating Duplicate Elements in a Set

Function: monadic elimination (u); R<«uY
Argument Domain:
left: -
right: any
Argument Shape:
left: ~
right: any
Result Range: characters or numbers
Result Shape: vector
Origin-Dependent? no

Take Dimension Argument? no

The monadic elimination (u)
the duplicate elements in a single set.
vA may be a numeric or character scalar or an array of any dimension.
The result of the function is always a vector, regardless of the shape
The result vector contains only one occurrence of
even if it occurs multiple times in A.

of the argument, A.
each argument element,

[T T N T N T S ¢
10

TR AT LS R
LTHVESEBLE

TR
L2 3 4 5 4

function is a set function that eliminates
The argument of the function

THE APL LANGUAGE

2.7.27 u: Determining the Union of Two Sets

Function: dyadic union (U); R<XUY
Argument Domain:
left: any*
right: any*
Argument Shape:
left: any
right: any
Result Range: characters or numbers
Result Shape: Vector
Origin-Dependent? no
Take Dimension Argument? no

The dyadic union (u) function is a set function that concatenates
two arguments and creates a vector consisting of the elements

of the arguments. The arguments of the function AuB may be
scalars or arrays of any dimension. The result of the function is
always a vector, regardless of the shape of the argument. The
arguments may be either numeric or character, but both arguments
must be the same type or a DOMAIN ERROR will result.

In the union example below, note that duplicate elements from the
concatenation of the two arguments are not discarded:

'BARNYARD'U 'YARDARM'
BARNYARDYARDARM

The following examples illustrate the use of the union function with
a variety of arguments of different shapes. The final example illus-
trates that the shape of the result is always a vector, even if it
consists of a single element.

103 Zus
L33 4

S ORCATE ¢ I A)
23 01 1

i

ER SRV T
VIS L ELLE
Frargo

*Both arguments must be either character or numeric; argument
types cannot be mixed in the same function.

THE APL LANGUAGE

2.7.28 n: Determining the Intersection of Two Sets

Function: dyadic intersection (n); R<XnY
Argument Domain:
teft: any*
right: any*
Argument Shape:
left: any
right: any
Result Range: characters or numbers
Result Shape: vector
Origin-Dependent? NO
Take Dimension Argument? no

The dyadic intersection (n) function is a set function that determines
the elements that the two arguments of the function have in common.
Both arguments of the function AnB may be scalars or arrays of any
dimension. The function returns the elements of the left argument,
A, that are also in the right argument, B. The arguments may be
either numeric or character, but must both be the same type. The
result of the function is always a vector, regardless of the shape

of the argument.

Note that multiple occurrences of an element in the left argument that
also are present in the right argument will appear an equal number of
times in the results. This is illustrated in the second example.

10020 30a10 30 5O 7O

13 30
PMISSOURE Ty MESE TS L
MISST
(1érm¥®
123 45 &
e
o0 10

g 1 0 1
1ok

*Both arguments must be either character or numeric; argument
types cannot be mixed in the same function.

THE APL LANGUAGE

2.7.29 ~: Excluding Set Elements

Function: dyadic exclusion (~); R<X~Y
Argument Domain:
left: any*
right: any*
Argument Shape:
left: any
right: any
Result Range: characters or numbers
Result Shape: vector
Origin-Dependent? no
Take Dimension Argument? no

The dyadic exclusion (~) function is a set function that returns

the elements that are in the first argument of the function, but not

in the second. Both arguments may be scalars or arrays of any dimen-
sion. In the function A~B, the result is a vector consisting of the
elements in the left argument, A, that are not also in the right
argument, B. The arguments may be either numeric or character, but
must both be the same type. The function is always a vector regardless
of the shape of the argument.

01
POABCUEF o V MESDE D
WO
IMISSESBIFFI 4 ' MEISSOURDL

B g

Note that the exclusion function returns the elements in 'MISSISSIPPI'
that are not in 'MISSOURI', but it does not return the elements in
'MISSOURI' that are not in 'MISSISSIPPI'. APL effectively crosses
out the elements in the left argument that are also in the right
argument. The set of elements that remain in the left argument is

the result of the function.

When the left argument is null, the function returns the null vector,
as shown in the second example below.

PERNVE S L ELE Y

OB S AV I] I

VA VNG L L

*Both arguments must be either character or numeric; argument
types cannot be mixed in the same function.

2-76

THE APL LANGUAGE

2.7.30 <c: Determining a Proper Subset

Function: dyadic subset (c); R<XcY
Argument Domain:

left: any*

right: any*
Argument Shape:

left. any

right: any
Result Range: Booleans (0,1)
Resuit Shape: 1-element vector
Origin-Dependent? no
Take Dimension Argument? no

The dyadic subset (c) function is a set function that determines
whether or not the left argument is a subset of the right argument.
Both arguments may be scalars or arrays of any dimension. The argu-
ments may be either numeric or character, but must both be the same

type.

In the function AcB, A4PL determines whether or not all of the elements
of the left argument A, are contained in the right argument, B. The
result of the subset function is always a single-digit boolean vector
(0 or 1), regardless of the shape of the arguments. A value of 1
indicates that A is a proper subset of B; a value of 0 indicates that
A is not a subset of B. Several examples of the subset functions are
included below.

'MISS'c'MISSOURI'

1
01 2c1 20013
1
0 1c10 2 O
0
'BLISS'c'INVISIBLE!
1
Every occurrence of a distinct element in the left argument must be
matched by an occurrence in the right argument. In the last example
above, 1 is returned even though the letter S occurs twice in 'BLISS'
and only once in 'INVISIBLE'., A match need not be found for every

occurrence of an element in the left argument; thus, "SS" in "BLISS"
will be matched by "S" in "INVISIBLE".

The subset function can be expressed in terms of the and, compression,
ravel, and membership functions as the following: AcB<«+A/AcB.

2.7.30.1 <¢: Determining a Subset - The description for a subset (cg)

is the same as for a proper subset (c), except that now a true
result (1) is returned if the arguments contain the same elements.

o)

*Both arguments must be either character or numeric; argument

types cannot be mixed in the same function.

THE APL LANGUAGE

2.7.31 o5: Determining a Strict Superset

Function: dyadic superset (@); R<>X>Y

Argument Domain:
left: any*
right: any*

Argument Shape:
left: any
right: any

Result Range: Booleans (0,1)
Result Shape: 1-element vector
Origin-Dependent? no

Take Dimension Argument? Nno

The dyadic superset (o) function is a set function that determines
whether or not the left argument is a strict superset of the right
argument. It is the converse of the subset function described in
Section 2.7.30. Both arguments in the superset function may be
scalars or arrays of any dimension. The arguments may be either
numeric or character, but must both be the same type.

In the function A>B, APL determines whether or not the left argument,
A, contains all of the elements of the right argument, B. As with
the subset function, the result of the superset function is always

a single-digit boolean vector (0 or 1), regardless of the shape of
the arguments A value of 1 indicates that A is a superset of B; a
value of 0 indicates that A is not a superset of B.

In the superset function, every occurrence of a distinct element in
the right argument must be matched by an occurrence in the left
argument; this is illustrated in the examples below.

O®inl 3 7 9 11
0

21 2 3 4024 2
1.

PMEBEBOURL ' T MLISS !
4

el @23 49
0

Tpe superset function can be expressed in terms of the and, compres-
sion, ravel, and membership functions as the following: A/,BeA.

2.7.;1.1 2: Determing a Superset - The description for a superset
(2) is the same as for a strict superset (o), except that now a true
result (1) is returned if the arguments contain the same elements.

0

*Both arguments must be either character or numeric; argument
types cannot be mixed in the same function.

THE APL LANGUAGE

2.7,32 ¥: Formatting an Array

Function: monadic format (¥); R<3%Y
Argument Domain:

left: -

right: any
Argument Shape:

left: ~

right: any
Result Range: characters
Result Shape: array
Origin-Dependent? no
Take Dimension Argument? no

The monadic format (¥) function is used to convert numeric arrays to
character arrays. Whereas the right argument of the dyadic form of
this function (Section 2.7.33) may only be a numerical array, the
right argument of the monadic version may be a scalar or an array of
any shape, and the value of the argument may be numeric or character.
The symbol 7 is formed by overstriking the job character (o) with the
symbol T.

When applied to a scalar or a character array, the result of the
format function R<¥4 is an array identical to 4 - for example:

7')VARS'
) VARS

If 4 is a numeric, then the character array represented by R will be
identical to 4 as it appears when displayed by APL. However, the
blank characters displayed along with the values of 4 will actually
be a part of the new array R, The format of a scalar number is
always a vector. The following example illustrates the difference
between the shapes of a displayed numeric array and a formatted
character array.

Ae 4P 1R
B g i
2]

2 3 4
5 4 7 8
" Ry
? 4
i
1 2 3 4
b , 78
B
&2 13
EBEG™)+3x 140
1234
B678

2-79

THE APL LANGUAGE

2.7.33 @®: Formatting a Character Array with Width and Precision

Function:dyadic format (¥); R<X7Y
Argument Domain:

feft: integers

right: numbers

Argument Shape:
left: scalar or vector
right: any

Result Range: characters
Result Shape: array
Origin-Dependent? no

Take Dimension Argument? no

The dyadic format (3) function is used when control of output exceed-
ing that available with the monadic format is required by the user.

It offers a number of formatting options but does not provide the
comprehensive formatting capabilities available with the format (v)
function described in 2.7.32. The right argument of the dyadic format
function may only be a numeric array. The left argument is used to
control the format of the result. This argument may be a scalar, a
pair of numbers, or a vector whose length is twice the number of
columns in the numerical array.

Two numbers are normally supplied as the left argument of the format
function. The first specifies the width of a numeric field and the
second sets the precision of that field. Precision is expressed
differently for decimal and scaled or exponential forms of output.
The form is determined by the sign of the precision argument. For
decimal output, precision is a positive number, expressed as the
number of digits to the right of the decimal point. For scaled out-
put, precision is negative and is considered the number of digits in
the multiplier. Following are several examples of output using
different width and precision specifications.

0 0700
8 T235.561
P
&
[he-ve 12 BaH
Il 146G 0,000 L0V
T1E.E7E &, 000 TR235.410
P
236
Aed e
£y
1. lé 0. 00 L. 07
15,58 8,00 T235,61
f 2]
Fredy Qe
Fi;
LY 0 ~1
1é g 236
.(.\ ’f
218
Eegap U 3
B
. 1EQL 0.0BEQO ™1 LEQO
T1.6EQL G.0EQD0 T2,4EQ0D
Hece7 14

JEQL OEQQ TIEQQD
TREGL BEOO TR2EQZ2

2~-80

THE APL LANGUAGE

If the width specification is zero or is omitted from the function,
APL provides a default width such that at least one space is inserted
between pairs of numbers. If only one number is provided as the left
argument of the function, the number is assumed to represent the pre-
cision of the result, not its width. An example is shown below,
using array X as presented above.

P&
31.16 0.00 “1.07
715,58 8.00 T235.61

2 20

The user may also specify width and precision arguments for each
column of the array to be formatted. Following is an example of
column formatting of array X.

I8 O 0 T2 8 Oex
31 0,0E00 ~1
T146 8.0EQD 234

~ 2 24

A format function may also be specified for a multi-dimensional array
and applied to the last coordinate - for example:

[Temed 2 2018

D
B R3

Vo den
1,00 2.00
3.00 4,00

5400 46,00
7,00 8,00

In general, the width specified by the user must be large enough to

laccommodate the number field. However, APL does not require that

space be inserted between columns, as is illustrated by the following
-y logical array.

i 0 ¢
i 0 1
1 1 1
1 O¢E
100
101
111

The dyadic format function provides a powerful facility for formatting
tables and providing headings and labels. Following is an example
of a table prepared using the format function.

THE APL LANGUAGE

FROWS e 7p ' OFL FORTROHRCOEOL. EAsSITC Fl. X '
COL.Se ! USERS FROGS SYSTS!
FORMeS ZpA
(" 'yL1IROWS),COLS,[117 OeFORM
USERS FROGS SYSTS
AFL 112 608 14
FORTRAM 306 588 26
coEOL 596 821 45
EASIC 622 960 30
FLI 18 35 3

Note that array 4 contains the data formatted for inclusion in the
table.

THE APL LANGUAGE

2.7.34 B: performing Matrix Inversion

Function: monadic domino (B); R<EY
Argument Domain:

left: —

right: numbers
Argument Shape:

left. -

right: scalar or array; (ppY)s2
Result Range: numbers
Result Shape: array; pR<->pY
Origin-Dependent? no
Take Dimension Argument? no

The monadic domino (H) function inverts a matrix and thus facilitates
matrix division and a variety of other matrix operations. The domino
symbol, B, is formed by overstriking the quad (0) character with the
division (:) symbol. The right argument may be a scalar, a vector, or
a matrix. The most useful applications of the domino function include
the following:

® finding the inverse of a matrix
® solving sets of linear equations

® determining a least squares solution to an overdetermined
set of linear equations

Only the first application is discussed in this section. The dyadic
version of the function is described in Section 2.7.28 and is used in
performing more sophisticated matrix operations. The monadic inver-
sion function operates as shown below.

¥
g2
31
B
1z
o
[1¢H g
® T34 30

36 192 7180
30 7180 180

A, X
1.000000000 T7.1054273BRETIE 6.646133B148ET1E
3.:33066F074E7146 1,000000000 2,442490654E715
2.775857562E716 T1.5954312234E715 1.,000000000

THE APL LANGUAGE

The monadic expression fx is equivalent to the dyadic IBx, where I is
an identity matrix whose order can be described as 1+px. If the argu-
ment of the monadic function is a scalar, the expression BX is equiva-
lent to =X.

The argument of the matrix inversion function may be non-square, but
the matrix must have at least as many rows as columns. In a non-square
situation, the result is a left inverse of the argument. If the matrix
has no inverse, a DOMAIN ERROR results.

THE APL LANGUAGE

2.7.35 H: Performing Matrix Division

Function: dyadic domino (B); R<XHEY
Argument Domain:

left: numbers

right: numbers
Argument Shape:

left: scalar or array; (ppY)<2

right: scalar or array; (ppY)<2
Result Range: numbers
Result Shape: array
Origin-Dependent? no
Take Dimension Argument? no

The dyadic domino (B) function performs more complicated matrix opera-
tions than the inversions described in Section 2.7.34 - for example,
solving linear equations and finding a least squares solution. Both
arguments of the B function may be scalars, vectors, or matrices. In
the expression XHY, X and Y must conform, fulfilling all of the condi-
tions described below.

iFe Y must have a rank of 2 or less.

2 If the dimensions of Y are ¥ by N, then M2N.

3. X must have a rank of 2 or less and (l4pY) = 1l4pX.
This implies that for matrices, X and Y have the same number of rows
and the columns of Y are linearly independent. If Z+XHY, then

ppZ«+ppX and +/((Y+.xZ)-X)*2 is minimized.

The following example illustrates the use of the matrix division
function in solving a set of linear equations. The equations are:

30+E
DAk =

#

4
1

In expression XfY, Y is a matrix whose values are the coefficients of
the equations, and X is a vector containing the values 9 1.

Hed]
Te2 203 1 2 71
PR

23

The result is a vector in which the first element is the value of 4
in the linear equation, and the second is the value of 5.

The domino function treats scalar arguments as matrices containing

one row and one column. The expression XBY is equivalent to scalar
division X+Y, except that the operation 0EH0 produces an error
condition. If the arguments are vectors, they are treated as matrices
with a single column. As mentioned in Section 2.7.35, if I is an
identify matrix of the same dimension as X, then BX is equivalent to
ITHEX.

A more general statement of the relationship between the monadic and
dyadic forms of the domino function is the following. The expression
HX, where X is a matrix, is equivalent to ((1Y)e¢.=1Y)BX, where Y is
the number of rows in X.

THE APL LANGUAGE

Following are several examples of the use of the dyadic domino func-
tion, including a least squares solution.

Oeded2 1p2 Tl

2 1
5 1
Eel10 19
PReEBEA
2
A, X34
10 19
Hdeme (S Lr1S)eldl
11
2 1
X 1
4 1
5 01

62,001 2,998 4,002 4,997 6,01
e e-R A
1.0017 0.9965
Bl , X3
2,800000029E™3 ~1,B99999947E"3 4,00000077E"4 ~6,299999899E"3
5, 00000012563
[l e B
“1,999999993E~1 ~1,000000023E71 4.557563223E710 1,000000032E7 1
1,999999979E~1
0.799999994 0,500000008 2,000000020E~1 ~1,000000043E~1
"3, 999999999E™1
M, XA
1.000000000 6,938893904E718
“4,1633346342E717 1,000000000

THE APL LANGUAGE

2.8 OPERATORS

The operators described in this section are APL functions that take
primitive scalar functions such as + or x as their arguments.

2-87

THE APL LANGUAGE

2.8.1 f/: Reducing an Array

Function: monadic reduction (f/); R<f/[K]Y
Argument Domain:

feft: -~

right: same as for function f
Argument Shaps:

left: =

right: vector or array
Result Range: same as for function £
Result Shape: array (ppR)<«—or |+ppY
Origin-Dependent? no
Take Dimension Argument? yes

The monadic reduction (f/) operator combines the elements of a vector
or the elements along a specified dimension of an array.

The following example illustrates the use of reduction in obtaining a
sum, product, maximum, and minimum value for vector X.

Hesxe1d
1234546

PN
21

% /it
720

I
&

LAx
1

The general requirement for reduction is that the function (f) to the
left of the reduction symbol (/) be a scalar dyadic function (see
Section 2.6). If f/V represents a reduction, then an equivalent form
is the following:

VILIfVI2]f. .. fVIpV]

where the expression is evaluated from right to left in the conven-
tional way. The result of reducing any vector is a scalar value.

If V is a scalar or a vector with a single element, then f/V<«»V. If
V is an empty vector, then the result of a reduction is the identity
element of the function, if one exists - for example:

+/5 7 8
20

-/ & 7
2

/7
7

X/0

1

Table 2-6 summarizes the identity elements for the primitive scalar
dyadic functions presented in Section 2.6 that may be returned by the
reduction function.

2-88

THE APL LANGUAGE

Table 2-6

Identity Elements of Scalar Dyadic Functions
Dyadic Identity
Function Symbol Element
Plus + 0
Minus - 0
Times x 1
Divide + il
Power * 1
Residue | 0
Maximum [T1.70141F+38
Minimum L 1.70141E+38
Logarithm @ None
Out of L 1
Circle o None
And A 1
Or v 0
Nand ~ None
Nor ¥ None
Less < 0
Not greater < 1
Equal = g
Greater or equal 2 1
Greater > 0
Not equal # 0

A reduction operation may also be specified for one particular
coordinate of a multi-dimensional array by including the coordinate

number in brackets.

is one less than the
of a matrix yields a
that +/[1]4 operates
sum; +/[2]4 operates

The result of reducing an array has a rank that
rank of the original array. Thus the reduction
vector, as shown in the examples below. Note

on the first dimension of 4 and produces a column
on the second dimension and produces a row sum.

The following examples also illustrate the defaults which APL supplies
when the coordinate number is omitted from the function.

[leteld 4016
12 3 4
5 06 1 2
+A2AA
10 14
+/010a
6 8 4 6

THE APL LANGUAGE

2.8.2 f\: Scanning an Array

Function:monadic scan (f\); R<f\[X1Y
Argument Domain:

left: -

right: same as for function f
Argument Shape:

left: -

right: vector or array
Result Range: same as for function £
Result Shape: ayray; pR<>pY
Origin-Dependent? no
Take Dimension Argument? yes

The monadic scan (f\) operator is used to derive partial results in
calculating the reduction of an array. For example, if V is a vector,
the expression +\V produces a vector of the partial sums of V. An
example of this is shown below.

+\3 4 5
3 7 12

Here each element of the resulting vector can be considered a reduc-
tion of the original vector up to that point. In the resulting
vector, the first element is always identical to the first element of
the original vector, and the last element is equivalant to a reduction
of the entire original vector.

The general requirement for the scan is that the function (f) to the
left of the scan symbol (\) be a scalar dyadic function (see Section
2.6). Following are several other examples of the use of the scan
function.

x\2 2 2

vANQ L O O

01 11
XN\NV7

1 2 6 24 120 720 5040
+\g

il

If Ff\V represents a scan of a vector, then the scan of any given ele-
ment in terms of reduction is the following.

R[K] = f/K+V

The shape of the result of a scan is the same as the shape of the
original vector (pR=pV). If the right argument of the scan is a
scalar or a vector with a single element, then f\V<«»V. If ¥V is an
empty vector, then the result of a scan is the empty vector.

A scan operation may also be specified for one particular coordinate
of a multi-dimensional array by including the coordinate number in
brackets. Several examples of scan functions are included below.
These examples also illustrate the defaults which APL supplies when
the coordinate number is omitted from the function.

2-90

THE APL LANGUAGE

eAel 3r16

1 2 3

4 5 6
+N\NL 1A

1 2 3

5 7 09
+\[20A

1 3 é

4 g 15
4\

i 4 3 é

4 ? 15
o4 g £

12 3

Ho7 09

If the dyadic function being performed by a scan is associative (e.g.,
+, x), APL performs the scan in a way that is different from the con-
ventional scan in order to increase efficiency by reducing the number
of operations performed. The definition of R<«f\4 in this case is
equivalent to R[I1l=f/I+4 as follows:

R[1]=A[1]
R[I1=R[I-1]1fA[I]1 for Iel4ip4d

This definition requires fewer operations than the traditional scan.
It is possible that the result of an associative function of this
kind may differ slightly from the non-associative approach and should
be used carefully if the results require a high degree of precision -
for example

AelESH TIES LETLS
+\A
L000000 O O
+ /8
0
+/ A
1ET16

2-91

THE APL LANGUAGE

2.8.3 f.g: Computing the Inner Product of an Array

Function: dyadic inner product (f-.g);
Argument Domain: AF<Xf.gY

left: same as for functions f and g

right: same as for functions f and g
Argument Shape:

left: any

right: any
Result Range: same as for_functions f and g
Result Shape: array pR<>(| vpX),| 4pY
Origin-Dependent? no
Take Dimension Argument? ho

The dyadic inner product (f.g) operator returns the common algebraic
matrix product and also extends this capability to other arithmetic

operations and other array dimensions. The following example illus-
trates the use of the inner product function in calculating a matrix
product.

[lefe Ir1é
1 2 3
4 5 4
[JeEe1 3
1 23
g, XE
14 32

Here the corresponding elements of B and each row of 4 are multiplied
(g function) and then summed (f function). Thus (1lx1l) + (2x2) +
(3x3) = 14 and (1x4) + (2x5) + (3x6) = 32.

The inner product operation is expressed as R<Af.gB, and functions
f and g may be any dyadic scalar functions (see Section 2.6).

In APL, this matrix product capability is generalized and may be
expressed in terms of reduction. If 4 and B are both vectors, then
the result is a scalar as shown below.

(1334, %13
14

The expression R<A+.xB in this case yields the scalar +/4xB. If 4

is a vector, B is a matrix, and I and J are element indices, then

R is a vector in which R[J] is equivalent to +4/xB[;J]. If 4 is a
matrix and B is a vector, as illustrated in the first example in

this section, then R is a vector and R[I] equals +/A[I;]1xB. If 4

and B are matrices, then R is a matrix and R[I;J]<«>f/A[I;]1gBl:J].
Following are several examples of inner product functions with differ-
ent argument dimensions. Note that the last two examples illustrate
alternative solutions to the same problem.

Ael]e2 Zr1bh
3
é

A, X133

D
R

2 b4 4R

2-92

THE APL LANGUAGE

A"‘ * XQA
14 32
32 77

(1304 x1 3
14

/0L 2 B2
14

It is often very useful to specify an inner product operation in
which an operation other than ordinary multiplication is performed.
It is possible to locate values containing specific characters by
this method or to search for a row of one array in which all the
elements are equal to those in a column of another array. The follow-
ing example returns a logical vector in which 1 indicates that the text
string SIX has been located in the corresponding row of array X.
OHE
TWEO
R
TE M
P
4 3
T P HLM
P
3
A Y

0 010

In general, 4 and B may be scalars or any arrays. If either argument
is a scalar or a l-element vector, it is extended so that its length
matches the length along the first (last) dimension of the other
argument. The result of an inner product function has dimensions
such that pR is equal to (p4).,pB, except for the last dimension of

A4 and the first dimension of B(the two inner dimensions); these can
be expressed as 1+p4 and 14pB, and the shape of the result is
pR<>("1vpA),14pB. (See the take and drop functions, Sections 2.7.11
and 2.7.12) If pA<«>M N and pB<-L, then L=N and pR=M.

A and B must conform in order to be used in an inner product
operation. A4 and B conform if any of the following characteristics
is true:

1. A or B is a scalar.
2. The results of "14p4 and 1+tpB are equal.
3 s Either “1+tp4 or 1+pB equals 1.

If the third characteristic is true, then the corresponding argument
is extended so that the arguments have equal lengths along the
specified coordinate. The basic test for conformability is whether
or not the last dimension of the left argument matches the length

of the first dimension of the right argument. The dimensions of

the result can then be considered all except the last dimension of
A, catenated to all except the first dimension of B. Table 2-7 may
be helpful in determining the conformability of two arrays.

2-93

THE APL LANGUAGE

Table 2-7
Inner Product Definitions

Conformability Definition
pA pB pAf.gB Requirements Z<Af.gB
Z<f/AgB
E 7<F/AgB
D Z<f/AgB
D E D=E Z«f/AgB
E F F Z[Il«f/AgBl;I]
cD & ZLIl<«f/ALI;1gB
D EF F D=E ZLIl«f/4gBl;I1]
cD E c D=E 72LI1«f/ALI;1gB
c D EF C F D=E ZLI;J1«f/ALT;1gBL;J]

2.8.4 o.f: Computing the Outer Product of Two Arrays

Function: dyadic outer product (o.g); R<Xeo.gY
Argument Domain:
left: same as for function g

right: same as for function g

Argument Shape:
left: any
right: any

Result Range: same as for function g
Result Shape: array; pR<> (p_Y) 5 pX
Origin-Dependent? no

Take Dimension Argument? No

The dyadic outer product (o.g) operator specifies an operation to
be performed between every element of one array and every element
of another array. The form of the function can be expressed as
R<Aeo.gB, where A and B are any arrays and g is any dyadic scalar
function (see Section 2.6). Note that the o symbol is the jot
character (upper-case J on APL terminals). R is an array that
results from applying g to every pair of elements of 4 and B. The
shape of B is the dimensions of 4 catenated to the dimensions of
B, or (pA),pB. The following example illustrates the use of this
function when 4 and B are both vectors.

L2 3e,x2 3 45
2 3 5
4

&
& k4

4 5
8 10
12

15

Unlike the inner product operator, the outer product performs only
one operation - in this case, multiplication. The resulting array
is a matrix with three rows (p4) and four columns (pB). It is
formed by multiplying each element of 4 by each element of B in
turn - for example, 1x2=2, 1x3=3, 1xy=4, 1x5=5 for the first row,
2x2=4, 2x3=6, 2x4=8, 2x5=10 for the second row, and so on. The
example included below illustrates the use of the outer product
operator in searching for the occurrence of particular numbers.

2-94

THE APL LANGUAGE

Ael 23 22 3

Lol

(13) 0,20

L 0 0 0 0 ¢
0O 1 0 1 1 0
O o 1+ 0 0 1

VAR NS R I]<
132

If A is a vector and B is a matrix, then the result of R<«A-.fB
contains R[I;J;K] <> ALIJfBLJ:K].

Table 2-8 may be helpful in determining the definition of a variety
of outer product results.

Table 2-8
Outer Product Definitions

Definition
pA pB pAeo.gB Z<Ae.gB

Z+<AgB
Z[I1<«AgBLI]
z[I1<A[IlgB

Z[I;J1«ALI1gBLJ]
Z20I;J1«AgB[I;J]
Z[I;J1«LI;J1gB
ZLI;J3K1«[I]gBLJ:K]
ZlI;J3K1«[I;J1gBLK]
14 ZLI3J3K;0]<ALT;Jd1gBLK;L]

QQ Q
[SRv Ao} e !
By By By By by

<
OO ol
oMU &
<

2-95

CHEAPTER 3

DEFINING AND EXECUTING APL PROGRAMS

3.1 MODES OF OPERATION
APL language statements operate in either of two modes:

® Immediate or execution mode: in this desk-calculator mode, APL
statements and expressions entered by the user are executed
immediately.

® Function-definition mode: in this mode, APL programs and func-
tions are developed, edited, named, and saved for use at a
future time.

The APL user can shift conveniently from one mode to the other by
typing a mode-transfer "del" (V) symbol. The mode in which APL state=-
ments are to be executed does not affect the syntax of language state-
ments and expressions. However, there are a few special APL characters
available for use in function-definition mode and a variety of practi-
cal considerations to be taken into account when constructing a func-
tion to be executed at some future time. This chapter discusses the
use of function-definition mode in detail. It focuses on:

® Function definitions, headers, and variables
® Editing procedures for revision and line-editing modes

® Branching and the use of labels, trace vectors, stop vectors,
and the state indicator

® Use of locked and suspended functions

3.2 DEFINING THE FUNCTION

APL provides a comprehensive facility for defining, changing, and in-
voking user functions that supplement the large set of primitive func-
tions that exist in the language. Once the user has developed or re-
written a program in 4PL function~definition mode, that program may be
used with the convenience of a primitive function.

A defined program or function is constructed in two parts: a function
header and a function body. The function header defines the name of
the program or function and the syntax of the function call. The func-
tion body consists of a number of program statements that define the
actions to be performed by the function when it is executed. The user
enters function-definition mode by specifying a del character (v), fol-

DEFINING AND EXECUTING APL PROGRAMS

lowed by the function header and a carriage return. This signals the
APL processor not to execute subsequent lines as they are entered, as
it would in immediate mode.

In function-definition mode, APL prompts the user for successive state~
ments of the function body by displaying successive bracketed line num-
bers for every line. Lines entered by the user are treated as function
lines until APL encounters another V character, which signals a return

to immediate mode. The format of a function definition is shown in the
following:

V funection header

[11 .
(21 .
[31 .
[4] funetion body
[sl1 .
[6] .
71 .
(gl v

There are no restrictions on the type of statements that can be in-
cluded in a function definition. System commands may be included in a
definition, and function definition and execution are permitted in quad
input mode (Section 2,5.1). In this case, the input request remains
pending until the user returns from function-definition mode to im-~
mediate mode,

3.2.1 The Function Header

The function header specifies the name of the function and the syntax
of its call. There are six distinct types of functions; a function
may have zero, one, or two arguments and the function may or may not
return a result value. If a defined function has an explicit result
value associated with it, this value must be assigned during execution
of the function. Defined functions that return results may occur in
exXpressions; those that do not return explicit results must appear
alone in statements or be the last function to be executed in an APL
statement line.

befined functions may be classified as:
e niladic (no arguments)
e monadic (one argument)
e dyadic (two arguments)

Examples of function headers in these three categories are included
below. Note that each type may or may not return a result value (Z).

Type Explicit Result No Explicit Result
Niladic V Z<FNAME V FNAME
Monadic V Z<«FNAME ARG V FNAME ARG
Dyadic V Z+LARG FNAME RARG Vv LARG FNAME RARG

Sample niladic, monadic, and dyadic functions are included in Section
3:2.5

DEFINING AND EXECUTING APL PROGRAMS

3.2.2 Variable Classifications

There are three types of variables that may be used in function defini-
tions:

e dummy variables
e local variables
® global variables

Characteristics of these classes of variables are described in the sub-
sections that follow, along with an explanation of dynamic localization.

3.2.2.1 Dummy Variables - Variables specified in the header component
of a defined function (e.g., Z, ARG, LARG, RARG in the examples above)
are considered dummy variables. These dummy variables are included in
the header to define the syntax of the function call. In the function
body, they hold places for the actual arguments supplied at the time
the function is called.

The scope of dummy variables is local to the execution of the function,
and the values of all dummy variables except the result (Z in the ex-
amples above) are provided on calling the function.

3.2.2.2 Local Variables = Variables that have significance only during
the execution of a particular function are called local variables. 1If
variable 4 is used in functions F and G, execution of function F does
not affect the value of 4 within function ¢. Variables may be designa-
ted as local by specifying each variable, preceded by a semicolon, in
the function header. The following function header:

CRES¢As T § TEME
establishes I and TEMP as local variables.

During execution of a function, the local value of a variable is al-
ways dominant. Local variables are not automatically initialized when
a function is called, and any local values are lost upon exit from the
function.

Function line labels (Section 3.4.2) are treated as local variables
and are also initialized when the function is called; however, labels
may not be assigned a value.

3.2.2.3 Global Variables - Variables that have essentially the same
significance inside and outside a function definition are considered
global variables. If a variable is not explicitly defined as a dummy
or local variable, it is treated as a global variable. A global vari-
able has the same significance regardless of where it is used, except
in certain cases of dynamic localization (Section 3.2.2.4) and sus-
pended execution (Section 3.4.3).

3.2.2.4 Dynamic Localization - The following description provides an
example of dynamic localization, which is actually a dynamic form of
block structuring., If there exist global variables 4 and B, and a
function F is called with local variables B and (¢, then the global
value of B is not accessible during the execution of F. If function

F calls another function named ¢, with local variable ¢, then within &

3-3

DEFINING AND EXECUTING APL PROGRAMS

any value assigned to ¢ within F is not accessible. Upon return to
function F, local variable C resumes its former significance. Finally,
upon exit from F, variables A and B resume their global significance
and C becomes undefined.

The name of a function used in function-definition mode refers to the
most global value of the name.

3.2.3 Function Input and Output

The input and output of data values and results of function execution
are handled by means of the standard APL input/output operators. All
of the quad symbols implemented in APL can be used in both immediate

and function-definition mode. File input and output are discussed in
Chapter 6. The other varieties of input and output are described in

detail in Section 2.5.

One aspect of APL I/0 is particularly relevant to a discussion of func-
tion execution. An input request may be included within an infinite
loop in a function. In this case, the user may escape from input mode
by typing the following:

O<backspace>U

in APL mode or the mnemonic .0OU in ASCII mode. This has the same ef-
fect as function suspension (Section 3.4.3); it causes function execu-
tion to be interrupted but does not result in an exit from the function.

3.2.4 Comment Lines

Current lines may be included anywhere in an APL program; they are
particularly appropriate when included in function definitions to

annotate the statements included in the definition. Comments may

appear on separate lines or be included on the right end of lines

containing APL statements.

The first character in a comment line must be a lamp (s) character,
formed by overstriking the down union (n) and jot (e¢) characters. If
an ASCII terminal is being used, the first character in a comment line
must be a double quote ("). The text that follows the comment char-
acter is treated as a comment and may consist of any combination of
valid APL characters. A comment ends at the end of the line and cannot
extend across a line boundary. Examples of comment lines are shown in
the function included in Section 3.3.

3.2.5 Examples of Defined Functions

This section contains examples of the three categories of defined
functions.

3.2.5.1 Niladic Function - The following niladic function returns no
explicit result.

¢ AVG
ri3 VECMTTER: THE VECTOR TO BE AVERAGEID !
L2 VEGCT Q]
[:3:] PPHE RESULT 348 ' 5 (4 /VEQTOR Y «p, VEIQTOR
r41 v

ave

DEFINING AND EXECUTING APL PROGRAMS

ENTER THE VECTOR TO EE AVERAGEDS
0:

35 4 6 7
THE RESULT I8 §

VTR
35 467

3.2.5.2 Monadic Function - The following monadic function returns an

explicit result in AN¥S. Note that the name of the function, AVERAGE,

can be used in an arithmetic expression just as an APL primitive func-
tion could be.

¢ NS EAVEROGE VEC

. BB e (4 /VEC Y +p y VED
2E
21 0w
BVERODGE % 5 4 & 7
bl
1OQXAVERMGE F % 4 & 7
500

3.2.5.3 Dyadic Function - The dyadic function included below returns
an explicit result. AVER is the function name, and NUM and VE(C are
global variables used as function arguments.

¢ AMSHUM AVER VEC
[11 'COMPUTATIONM. HRUMEBER ', eilUM
L2 ARG (4 VED) ap VED

2] %

L1 avER 3 3 3 8 5§
COMPUTATIONAL MUMEER 117
4

L1Z aAvER & g 9 ¢ 4
COMPUTATIONAL HUMEBER {13
7

L4 Aver 7 % 3 G j
COMPUTATIONAL MUMEER |14
2.4

3.3 EDITING THE FUNCTION

A function definition may be altered by the user in a variety of ways.
Definition lines can be added, deleted, and changed, and the function
header can be altered. The user must be in function-definition mode
in order to perform any of the editing functions described in this
section.

The function to be edited is "opened" by typing:
Vfunction name

The user may not attempt to enter or change the entire function header
at this time; there is a special method for changing the header, de-
scribed in Section 3.3.6. After an addition, replacement, insertion,
deletion, or display operation, APL displays a line number to allow the
user to add or enter additional text. If the user does not wish to
enter text, he can type a del character (V) to close the function and
thus shift from function=-definition to immediate mode. The user may
also type the vV character on an edit line - for example:

3-5

DEFINING AND EXECUTING APL PROGRAMS

vsTAT
[77 (571 MEAHNKeSUMMEHNSURJISY

APL replaces line [5] and then exits immediately from function-defini-
tion mode.

If the user intends to edit only a single function line, it may be con-
venient to open the function, specify the line change, and close the
function, all in a single statement. The replace operation illustrated
above could be specified in the following way:

vETAT 5 ME AN SUMMHAMNBURJISY
|

The V character can be included on any line except a comment line.

3.3.1 Adding Function Lines

Lines can be added to the end of a function-definition in a very con-
venient manner. When an existing function is opened, and an editing
command is not included on the same line as the del character, APL as-
sumes that new lines are to be added and displays the next available
line number. For example, the function name STAT may exist in the fol-
lowing form before it is edited to remove errors.

v STAMDM&MSUEJ STAT X
ri1 SUMMeM

e SUMK2e¢+/(Hx2)
37 ACOMFUTE MEAM, VARIAMCE, STOMOARD DEVIATION
r47 MEANNHeBUMMAMBURIS
£57 MEAMNMESUMM L HBURD
v

The user adds two lines in response to the bracketed line numbers dis-
played by APL.

VETAT
L& AFURCTION RETURMNS VALUE OF STAMIARD DEVIATION OF
£7] STAMDXEVARMX0,S

[81 w

The user terminates the specification of additional lines by entering a
V character to transfer from function-definition to immediate mode.

3.3.2 Replacing Function Lines

Existing lines in a function-definition can be replaced by specify%ng
the affected line number, followed by the new text of the line. Line
number [8], displayed by APL below, is simply overridden by specifying
line [1].
vETAT
£81 11 SUMMet+/X
£23 w»

The new specification replaces the erroneous contents of line [1]. APL
then displays the next line number after the replaced line - in this
case, [2}. The user can enter new text for line [2], can specify
another line number, or can escape from function-definition mode by
typing V. This same action could have been performed in a single
editing line, as shown below.

USTAT[1] SUMXed/H @

DEFINING AND EXECUTING APL PROGRAMS

i t
replacement operation mus
gitive number less than 1000,

than three decimal

ded in a function bod
line and must be a po
1 point but may have no more

The line number inclu
refer to an existing
It may have a decima
places.

3.3.3 Inserting Function Lines

ines between existing lines of the function
definition by specifying a new line number, followed by the text of
the new line. To insert a line between [5] and [6], for example, the
user might specify line number [5.5]. To insert a line before the
start of the existing function body, any line number in the range [0]
(function header line) to [1] is valid, as shown below.

The user can insert new 1

SETAT
rgl CO.51 aSUM ELEMENTS OF ARRAT X
FO.61 [5.57 VARMe (SUMHD-MSURY) ~MEAM %2
F9.61 @

The new specifications are inserted between existing lines [0] and [1]
and [5] and [6] respectively. 1In each case, APL displays the next

line number after the inserted line. To derive the line that is "next"
in an inserted sequence, APL adds 1 to the rightmost digit of the user-
specified line number. The next line after [0.5] is thus [0.6], the
next line after [5.5] is [5.61, and the next line after [8.29] is
[8.3]. The user may enter new text for the line number displayed, may
escape from function-definition mode by typing VvV, or may override the
line number displayed by specifying another 1line,

After the function definition is closed, the function lines are re-
numbered by APL. As in the case of replacement lines, the numbers of
l}nes to be inserted must be positive numbers less than 1000, with or
without a decimal point, and with no more than three decimal places.
The renumbered function definition now exists in the form shown below.

¥ BTAMHDReHHUERY STAT X

13 ASUM ELEMENTS OF arkEaT X
ral SUMM ¢ /3
31 BUMHD 64/ (KD)
41 ACOMFUTE MEAM, VARIANCE, STAMNDARD DEVIATION
[513 MEAQMM ¢ SUMM2HSURJIS
61 ME QMM e SUMMH - NBURY
71 VAR 6 (SUMKDEMSURD) MEBMM D
81l AFUNCTION RETURMNS VALUE OF S$TAOMDARD LEVIATION OF X
L9 STANDHEVARN KO, 5
v

3.3.4 Deleting Function Lines

Existing lines in a function definition ma ifyi
y be deleted by specifying an
irase character (a), followed by the line number of the line to ge ge—
lgted. In_the following example, line [5], an incorrect duplicate of
ine [6], is deleted from the function definition.

vETAT
2101 [Lakl
LS5l v

APL disp}ays the number of the line just deleted to give the user an
opportunity to specify a new version of the deleted line. The user can
enter'new text, can specify another line number, or can escape from
function-definition mode by typing V. After the function is closed

the function-definition lines are renumbered by APL. '

NOTE

Do not use CONTROL/C to delete a function line.

3~T7

DEFINING AND EXECUTING APL PROGRAMS

3.3.5 Displaying Function Lines

The user may display individual lines of the function definition, the
function definition from a specified line to the end, or the entire
function definition. To display an individual line, the user specifies
in brackets the line number of the line to be displayed, followed by a
quad character (0). In the example included below, line [3] is displayed.

CETAT
[e1 301
£31 SUMK Db / (HXD)
£31 w«

APL displays the number of the line just displayed to give the user an
opportunity to specify a new version of the existing line or to over-
ride the line number with a new line specification. The user can enter
new text, can specify another line number, or can escape from function-
definition mode by typing V.

To display the function definition from a particular line to the end,
the user reverses the sequence described above by specifying the brack-
ets the quad character, followed by the line number from which lines
are to be displayed. The following is an example of such a technique.

gsTAT

£e1 [£Ozi

£71 AFUMHCTION RETURNS VALUE OF STAHDARD DEVIATION OF X
rgl STAHNDHeVARKRO , 5

el v

APL displays the number of the next line after the final line of the
function definition - in this case [9] - to give the user the oppor-
tunity to add more text or to specify a different line number.

To display the entire function definition, the user simply types a
bracketed quad character with no line specification, as shown below.

vETAT
91 ©od
U STAMDMEMSUERYD STAT M
£11 ABUM ELEMEMTS OF ARRAT X
21 BUMMe+ /X
£31 SUMMD ¢+ / (Hx2)
C41 ACOMFUTE MEAM, VARIAMCE, STAMNDARD DEVIATION
Cs1 MEAMM&SUMMAMSUR
Cé VAR (SUMMLHBUR) —MEOMN KD
C77 AFURCTION RETURNS VALUE OF STAHNDARL DEVIATION OF X
£81 HSTAMNDHKEVARN K, 5
v
[e1 w

The V characters preceding line [1] and following line [8] are displayed
by APL. They indicate the delimiters of the function and identify its
name. They are not true user-specified del characters and therefore

do not change the mode. APL displays the number of the next line after
the final line of the function definition to give the user the opportu-
nity to add new text or to specify a different line number.,

NOTEG
Any display of a user-defined function

can be terminated by entering a CTRL/O
character.

DEFINING AND EXECUTING APL PROGRAMS

3.3.6 Editing the Function Header

The name or arguments stored in the function header can be edited by
accessing line number [0] of the function definition. The header line
can be replaced, displayed, or even deleted temporarily. The following
example illustrates the display of the function header.

GETAT
21 Lol
[OISTAHDNEHSUED STAT X
o1 v

The user must include a valid specification for the header before
leaving function-definition mode.

3.3.7 Renumbering Function Lines

In function-definition mode, the user is free to include fractional
line numbers and line numbers that are not immediately consecutive
(e.g., line [15] followed by line [60]). He may also delete existing
lines., When the user leaves function-definition mode by entering a

del character, APL automatically renumbers the lines of the function

as consecutive integers, starting at line number [1]. The user should
ordinarily display the current version of the function at this time, to
avoid referencing the wrong line numbers the next time he edits the
function.

3.3.8 Line-Editing Procedures

APL allows the user to edit a function definition in the revision mode
described in Sections 3.3.1 through 3.3.7 or in the line-editing mode
discussed below. In line-editing mode, the user can alter individual
characters in an existing line. To modify an APL statement in this
mode, the user specifies the line number, followed by a quad character,
followed by the estimated character position at which editing is to
begin:

YRIESEL
L7131 Cin0191
L1131 AeR g GAMMA - 1 + (IMAXXY)

4

APL displays the statement and then on the next line indents to the
number position specified in the command. The position at which
editing is to begin is represented by the up-arrow (+) character in

the example above; it is the 19th position in the line, counting from
the first character in the line (e.g., the [character). The user

then begins entering edit control characters according to the following
rules.

1. Type a slash (/) beneath each character to be deleted.

2. Type a digit or letter beneath each character before
which blanks are to be inserted; the particular digit
or letter represents the number of blanks to be inserted.
For example, a '2' will insert two blanks to the left
of the corresponding character in the function line.
The alphabetic characters are used to insert multiples
of five blanks. TFor example, 'A' will insert five

3-9

DEFINING AND EXECUTING APL PROGRAMS

blanks, 'B' will insert 10 blanks, and so on., If the
number of spaces specified plus the current 1ength of
the line exceeds the current length of the terminal
line, a DEFN ERROR is displayed.

3. All other characters typed on the edit control line
are ignored by APL.

4. The normal rules of correction-before-entry apply.
Thus backspacing to insert characters is permitted,
and creating illegal overstrikes to facilitate retyp-
ing of the line is allowed.

When the carriage returns after the user has finished with the edit
control line, the function line is displayed without the deleted char-
acters and with the inserted spaces. The carriage is positioned at
the first inserted blank or, if no blanks were inserted, at the end

of the line. The user can then enter new text in the blanked area or
can make further modifications to the existing text. In this case as
well, backspacing to insert new characters and creating illegal over-
strikes to facilitate retyping of the line are allowed.

Line editing is a multiple-step process. The first step involves de-
leting characters no longer needed and inserting sufficient blanks in
the line to allow additional desired text to be typed. The second step
involves typing in the new text. Repetition of these steps is often
necessary. The final appearance of the function line should be iden-
tical to a function line just entered from the keyboard.

If the user alters the statement number while editing the line, the
function line corresponding to the new number is altered and the origi-
nal line remains unchanged. This facilitates the movement to or repli-
cation of statements in other parts of the program.

Special processing is also performed if the user specifies a character
position of zero to the right of the quad character, as shown in the
following example:

VSECANT
[12] L2001
(21 SECSPEC<ISEC-1I4

The function line requested by the user is displayed, and the carriage
stops at the next available character position at the end of the line,

as shown by the up-arrow (+) in the example above. The effect is as if
the line had been entered by the user from the keyboard. The user can
now add text to the line or can backspace to make corrections. The
carriage also stops at the end of the line if the number to the right

of the quad character is larger than the number of characters in the line.

The following example illustrates the use of line~editing in correcting
the line:

[1] T« (LETTR=STRING/\8P,STRING
There are several errors in this line:
le LETTER 1s misspelled LEITER,
2., The right parenthesis has been omitted after STRING.
3. "8" should not appear after the 1 character.
4. "P" should be a p character.

3-10

DEFINING AND EXECUTING APL PROGRAMS

Because the first error occurs in LETTR, the following command can be
supplied:

VEUNC
(51 (10141
{13 T«(LETTR=STRING/18P,STRING

The user now enters the necessary control characters, and APL displays
the corrected line.

[1] T<(LETTR=STRING/18P, STRING
1 1 //1
[11 T<«LETT R=STRING /1 ,STRING

The carriage is positioned at the space between T and R, and the user
simply enters the new characters, spacing over the text to be preserved.
He types:

1. "E" in the space between LETT and R.
2. ")" in the space between STRING and /.
3. "p" in the space between 1 and ,.
The new function line is therefore:
[11] T«(LETTER=STRING)/1p,STRING

This line is entered as a replacement to the existing function line
[1] when the user presses the carriage return.

If the user alters the statement number while editing the line, the
function line corresponding to the new number is altered and the origi=-
nal line remains unchanged. This facilitates the movement to or dupli-
cation of statements in other parts of the program.

3.4 EXECUTING THE FUNCTION

In function-definition mode, the APL statements that make up a function
definition are neither executed nor checked for syntactic validity when
entered. The user simply enters statements, edits them to correct ob-
vious mistypings and inconsistencies, and saves them for future use.
The process of defining a function associates the function header pro-
vided by the user with the statements entered as the function body.
When the user decides to execute the defined function, he uses the
function name as he would a primitive APL function. The information
provided in the function header specifies the number of arguments to

be supplied in the function call and determines whether or not a value
will be returned. Section 3.2.5 provides examples of defined functions
and their corresponding function calls. It is, of course, also possible
to issue function calls from within other functions. In the implemen-
tation of APL described in this manual, function calls may be nested

to a depth of about 30 functions.

This section provides information on function execution. It focuses

on branching, suspending, tracing, and locking functions, and using
the state indicator,

3-11

DEFINING AND EXECUTING APL PROGRAMS

3.4.1 Branching Within a Function

APL statements included in a function definition are normally executed
in the order determined by their line numbers. Execution begins at the
first statement following the function header, terminates after the
last statement in the definition, and is performed only once. It is
possible to modify this standard order of execution by including
branching statements in the function definition. The use of branching
also facilitates the specification of execution loops within the body
of the function definition.,

The simplest form of an APL branch statement consists of a branch sym-
bol (»), followed by the number of the function line to which control
is transferred. For example:

¢ FOO
51 21

causes an unconditional branch from line [5] to line [1]. Line [1]
is thus the next statement executed.

The object of the branch symbol can be a constant, a variable, or an
expression; it must evaluate to an integer line number within the cur-
rent function definition to allow execution to continue. If the in-
teger does not reference a line number in the current function, the
branch statement causes a return from the function. Users often de-
liberately specify an out-of-range-number in order to stop execution.
A common specification is:

20

because 0 references the function header and cannot legitimately be ac-
cessed by a branch. If the object of the branch is a non-empty vector,
control passes to the line referenced by the first element of the vec-
tor. If the vector is empty, the branch statement is not meaningful
and the normal order of execution within the function definition con-
tinues.

Several kinds of conditional branches can be specified in function
definitions. In APL, a conditional branch is executed as the result of
evaluating a logical expression, not in response to any specific IF
logic. An example of one form of an APL conditional statement is

shown below. The value of the expression evaluated in the branch
statement determines either that control will pass to a specified line
number or that the function will return.

439X Ty IMAX

The logical expression to the right of the »9 specification is evalu-
ated. If I is greater than IMAX, the value of the expression will be
9x1 and control will pass to line number [9]., If I is not greater than
IMAX, then the value of the expression will be 9x0; because line [0] is
not a legal specification, function execution will return.

In the second version of the conditional branch, the value of an evalu-
ated expression determines whether execution will branch to a specified
line number or continue at the next statement. For example, in:

S{VALMNIVALIY /JINIT

3-12

DEFINING AND EXECUTING APL PROGRAMS

control will pass to the line labeled INIT if the value of the paren-
thesized expression is true. If it is false, execution will continue
at the next line after the branch statement.

3.4.2 The Use of Statement Labels

Because APL automatically renumbers function lines as consecutive in-
tegers when the user exits from function~definition mode, branch state~
ments should generally not refer explicitly to function line numbers.
Instead, the user can associate a label with a particular statement in
a function definition and then branch to this statement using the label,
not the explicit line number, as the object of the branch ~ for example:

C15] THCRE Tel+]
+*
+

+

L2777 -IHCORXECIMAM

As shown in this example, a statement label consists of an identifier,
followed by a colon (:). The internal value of the label is the number
of the function line with which it is associated - in this case, line
number [15]. Here a branch to the line associated with the INCR label
is performed, if I is less than IMAX.

Labels defined within a function must be distinct identifiers. The
scope of a label is local to the function in which it occurs, and
label values are internally respecified upon each exit from function-
definition mode. The user cannot explicitly define a value for a
statement label, and a label cannot appear in the function header.

The following are two examples of defined functions that use branching
and statement-labeling techniques. Note that function lines containing
labels are automatically exdented (i.e., begun one character position
to the left of the rest of the APL text) when the function-definition
is displayed.

gR«FACTORIAL M

L1l Fel
[23 20x1Q=H (Branch to line [01 (halt) if 0 is
[3] FRerxn equal to W)
47 Med-i
[51 42 (Unconditional branch to line [21])
Lé61 v

GEEFAC M
1] AHEZEROXH=((Branch to the line labeled NZERO
[2] ReHXFAC M-l if N is equal to 0)

[371 AMOTICE THAT RECURSIVE DEFIHITIONS
[4]1 RARE FERMITTED,

[51 =0 (Unconditional branch to line [0]
61 HIERO] ¢ (halt))
L7231 v
Fac 5
120

DEFINING AND EXECUTING APL PROGRAMS

3.4.3 suspending Function Execution

Function execution is suspended before normal completion if an error
occurs, if the user types a CTRL/C character, or if a stop vector (see
Section 3.4.6) is set. When execution is suspended, the name of the
suspended function and the line number of the statement that would
have been executed next are displayed. APL then begins a new line,
indents six spaces, and awaits input in immediate mode. The user can
perform virtually any APL operation at this time, except for editing
or erasing the suspended function.

The suspended function remains active until terminated or until the
current state indicator or active workspace is cleared. The user can
resume execution at any time by typing:

~>line

where line identifies the statement number at which execution is to be
continued. A suspended function can be terminated by typing:

+Q

The local variables associated with the suspended function remain
active. The user can examine these variables and can specify their
values by means of an immediate-mode assignment.

3.4.4 Examining the State Indicator

The state indicator, a status vector that resides in the user's active
workspace, can be examined to determine the status of all active func-
tions in the APL system. The user can specify an)SI system command
(Section 5.3.9) to obtain a listing of the active functions, as in the
following:

YHT
TLLD %
571
R4
FL31 »

The listing displays functions in the order in which they were most re-
cently active. The example included above indicates that execution

was suspended just before executing statement [1] of function T, which
was called during line [7] of function S, which was called during line
[6] of function R. Before this sequence of calls, execution was sus-
pended just before executing line [3] of function F,

In the)SI display, an asterisk (*) following the name and line number
indicates a suspended funection, and a blank indicates a pendent func-
tion. A pendent function is usually one which is awaiting return from
another function - possibly a suspended one - which it called.

The user can also determine from the)SI listing when quad input re-
quests are pending or an execute operation (e¢) has been invoked. Ex-
amples of both of these special conditions are shown below.

)RR
TL13 &
B[71
BL6]

FL31 %

3-14

DEFINING AND EXECUTING APL PROGRAMS

b4

TCLT %
Sr70
FL6
FL3T

The user can clear the state indicator by terminating the execution of
each suspended function in the list, There are several ways to accom-
plish this. The user may type one right arrow (=) for each function
marked by an asterisk (each right arrow on a separate line); he may
issue an 130 I-beam function to clear the state indicator completely
(Section 4.3.14); or he may clear the state indicator by saving the
active workspace, then clearing and loading it again (see the)SAVE
and)LOAD system commands, Sections 5.2.3 and 5.2.4). A cleared state
indicator is displayed in the form of a blank line.

The)SIV system command (Section 5.3.10) can be used to obtain a more
extensive display of the state indicator. In addition to the informa-
tion accessible to J)SI, J)SIV returns a list of local variables for
each function displayed. The following is an example of an)SIV
display.
JHIV

TRIGE]T &« & @ K

TELD x M

@71

B4

FEET &

This indicates that the variable N local to function T is currently
dominant, and that the variable ¥ local to function § is currently in-
accessible.

3.4.5 The Trace Vector

The user may find it helpful for debugging purposes to obtain an auto-
matic display of the intermediate results of function execution. As a
program tracing aid, the values computed by one or more function state-
ments can be output each time those statements are executed. To estab-
lish a trace for function F, the user specifies a vector in the
following format:

TaFed & 7

For each execution of the line numbers [4], [6]1, and [7]1, this command
causes the following information to be displayed, in the order shown:

) function name

bracketed statement line number

® final value returned by the statement
If the statement being traced is a branch statement, then the value
printed is the value to which control is passed by the branch.
To trace all the statements of a function 7, the following specification
can be supplied if the index origin is currently set to 1:

TaF &M

DEFINING AND EXECUTING APL PROGRAMS

where ¥ is a number at least as large as the number of statements in
F of the index origin is 0, the user issues the statements.

because the function neader (line 0) cannot be traced. To disable the
trace vector for function F, the user includes either of the following
statements:

TaF &0
TaFe 0

A new trace vector does not override an existing specification. If
lines [4], [61, and [7] are currently being traced, the user may add
line [5] to this list simply by entering trace vector:

TaF&5

However, to omit line [6] from an existing trace vector, the user must
disable the trace vector for the function and then enter a new trace
vector, as shown in the following:

TAaF+ 10
TaFed § 7

NOTE
Editing a line for which a trace vector
has been defined causes the trace to be
disabled for that line.

The following is an example of a function definition followed by two
executions of that function, the first with the trace vector enabled.

v AHSWR«FACTORIAL M §COUHT
Cidl ACALCLATES FACTORIAL OF il
£21 AHEWR 1
31 4¢02H) /0
47 AMNSWReHXFACTORIAL M-

<

TAFALTORIALED 3 4

FACTODELAL 4
FOCTORIALL2T 1
FACTORIOLEI]
FACTORIALLZY 1§
FACTORIALLZ]
FACTORIALLZY 1
FACTORTALLZ]
FACTORIALL2]
FACTORIALLZ]
FACTORIALL S
FACTORIALLZ]
FACTORIALL4])
FACTORIALL 4]
FACTORIALL 4]
FACTORIAL[4]
24

b

RO R = O

4

TAFACTORTAL &1
FACTORIAL 4

DEFINING AND EXECUTING APL PROGRAMS

3.4.6 The Stop Vector

APL allows the user to suspend execution of a function from within the
function itself by specifying a stop control vector. The syntax of
this vector is similar to that of the trace vector. The stop vector
can be used to suspend function execution just before execution of one
or more specified statements. To cause function F to be suspended
before executing line [12] and line [191, the user includes the
following statement in the function definition:

SaFel12 19

For each suspension, this command displays the function name and line
number that was about to be executed. To disable the stop vector for
function F, either of the following specifications may be supplied:

BAF QO
HAF &0

After function execution has been suspended by means of the stop con-
trol vector, the system is in the normal suspended state. An entry is
included in the state indicator, identifying the suspended function
and the line at which it was suspended. Execution can be resumed by
specifying a branch to the desired line number.

Execution of a function cannot be suspended before line 0 (the function
header). The stop control vector can be set from within a function to
cause suspension only under certain circumstances.

NOTE

Editing a line for which a stop vector
has been defined causes the stop vector
to be disabled for that line.

An example of the use of the stop vector is included below.

SAFAUTORE S ¢ %
FaaTOm Lol &4

FOCTORIALLZ]
IPHE
FACTORIALL XY

FaCTORIALLI]

FacTORIALLS]
*3

FACTORIALZ]
+3

FACTORIAL[Z]

24
GAFOCTORE AL & O
FaCTORLSL 4

DEFINING AND EXECUTING APL PROGRAMS

3.4.7 Locking a Function

It may be desirable to prohibit users from changing and possibly damag-
ing existing function definitions. APL allows a user to lock a func-
tion definition in order to protect it from unauthorized use, to main-
tain security, or to treat a function as a proprietary program. To
create a locked function or to lock an existing function, the user
closes the function~definition with a del-tilde (®) character rather
than a simple del (V). The # is created by overstriking Vv and ~. The
following example illustrates the locking of a previously unlocked
function-definition.

vV TRIG
[19] B

A locked function cannot be edited in the manner described in Section
3.2. Punction lines cannot be added, changed, deleted, or displayed
for locked functions. Trace and stop control vectors cannot be defined
or changed for the function. Any trace or stop settings in effect at
the time a function-definition is locked are automatically nullified.

If an error occurs during execution of a locked function, the function
name and the line number at which the error occurred are displayed,
but the contents of the statement are not included in this display.
APL then causes an exit to immediate-mode.

CHAPTER 4

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

4.1 INTRODUCTION

There are a variety of ways in which the user may communicate with the
APL system in order to change system parameters, determine hardware or
operational characteristics, and modify processing methods. The system
commands documented in Chapter 5 facilitate many of these system
operations. The system elements described in this chapter allow APL
users to communicate with the system from within the 4APIL language
itself. These elements are subject to the APL language syntax and
rules of function definition. They may be included in 4PI functions
and defined in conjunction with other language operations.

The system elements described in this chapter can be grouped in two
categories: system variables and I-beams. In some cases, system
variables and I-beams perform related functions. In other cases, these
system features provide alternative ways of performing operations
invoked by the APL system commands.

4.2 SYSTEM VARIABLES
System variables have been implemented in this version of APL to

facilitate communication with the APL system. They are used to perform
such operations as the following:

° set the index origin and relative fuzz

® change the output precision and line width

° reference the characters in the collating seguence

® report on executing functions and available workspace area

System variables are syntactically similar to ordinary variables and
may be used in any language expression or function. System variables
differ from ordinary variables because of their special significance
to the system. System variable names are distinguished names; they
begin with a quad () character and cannot be used for user-defined
purposes. They cannot be copied, erased, or collected in a group by
means of the APL system commands (see Chapter 5).

The system variables described in this section are considered shared
variables because they are shared by the user's workspace and the APL
processor and serve as an interface between the two. The sharing
facility is invoked automatically when (he workspace 1S activated.
Sharing implies that the workspace and processor may each use values
specified by the other, as appropriate to the particular operation
being performed. It also implies that the value of a variable being
used in a workspace may sometimes be different from the value last
specified by the user of the workspace. The variables described in
this section fall into two categories:

4-1

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

® System variables that assume the value provided by the
user and retain it until the user overrides the value or
clears the workspace. These variables are described in
Sections 4.2.1 through 4.2.5 and have default values in
effect when the workspace is loaded. An example of such
a variable is 0OPP, which is used to determine the precision
of numeric output. If the value specified by the user is
invalid for the operation, APL will return a DOMAIN ERROR
when the assignment is attempted.

e System variables that retain the values supplied by the
APL system. Because of their syntactic similarity to
ordinary variables, these system variables can be set by
the user; however, they will continue to have the values
supplied by the system. These variables are described in
Sections 4.2.6 through 4.2.8.

4,2.1 [CT: Establishing the Comparison Tolerance

Default: 5E_15 (double-precision)
58 7 (single-precision)
Example: _fdcr
1E 13 _
OCT«1E 15
The [OCT system variable is used to set the degree of tolerance or rela-
tive fuzz to be applied in performing comparisons. It is used in con-
junction with the relational operators: (<, <, =, 2, >, #) and with

the dyadic-index (1) and membership (¢) functions and floor (L) and
ceiling ().

The [JCT value specified by the user is saved when the active workspace
is saved. See the description of fuzz in Section 2.4.3. The value
for OCT must be in the range 0<[]JCT< approximately .38.

4.2.2 [710: Setting the Index Origin
Default: 1
Example: [0I0
1

010<0
23
01 2

The [I0 system variable is used to change the setting of the index
origin. This setting is important in array operations and in conjunc-
tion with roll and deal (Sections 2.7.19 and 2.7.20) and iota (Sections
2.7.5 and 2.7.6). The value of 0JI0 is saved when the active workspace
is saved and is only meaningful if it is 0 or 1. This variable is
equivalent to the JORIGIN system command (Section 5.4.1).

4,2.3 [0OPP: Determining the Output Precision

Default; 10 (double-precision)
6 (single-precision)

Example: gpp
10
OPP+15

APL. SYSTEM VARIABLES AND I-BEAM FUNCTIONS

The [0PP system variable is used to determine the precision of non-
integer output by setting the number of significant digits to be
displayed. It is also relevant to the expression of characters by
means of the monadic format (¥) function (Section 2.7.32). Legal
values for [JPP are integers in the range 1 through 7 for single-
precision systems and 1 through 17 for double-precision systems.
This system variable does not affect the precision of internal
calculations or the display of numerical constants. The precision
specified by the user is saved when the active workspace is saved.
0PP is equivalent to the)DIGITS system command (Section 5.4.2).

4.2.4 [OPW: Determining the Width of the Output Line
Default: 120

Example: [0PW
120
O0rPw<130

The [PV system variable is used to set the maximum number of characters
that may appear in an output line. Legal values for 0PV are integers
in the range 30 through 384. It does not affect the display of messages
on the terminal or the allowable length of input lines. The width
specified by the user is saved when the active workspace is saved.

0P¥ is equivalent to the)WIDTH system command (Section 5.4.3).

4.2.5 [JRL: Setting a Random Link
Default: 0
Example: ORL< 1+2%15

The URL system variable is used to set the sequence used by the pseudo
random number generator in APL. This random number generator is used
in the 4PL roll and deal functions (Sections 2.7.19 and 2.7.20). The
value of ORL is the starting point of the chain used to generate the
numbers. This system variable has a meaningful range of 0 through

142x15. The value of [JRL specified by the user is saved when the
active workspace is saved.

4.2.6 [JAV: Storing a Vector of Characters
Example: LINEFD<[AV[99]

The [0AV (atomic vector) system variable is a vector containing all
possible characters; AV is 256 elements in length and is used to
express the binary representation of any character in the APL system.
For example, if the index origin setting is 0, the following expression
refers to the carriage return, backspace, and line feed characters:

04vi10 8 131

APIL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

The indices associated with any of the APL characters can be retrieved;
if the index origin is 0, the following expression returns the elements
shown below.

JAV1*ABCABCT
97 98 99 150 151 152

Many of the elements of the atomic vector are non-printing characters,
and some do not even exercise control.

See the discussion of relational functions in Section 2.6.4.

4.2.7 [0LC: Reporting on Executing Functions

Example: =[LC

The [OLC (line counter) system variable is used to obtain a partial
report on functions that are currently being executed. It is stored
as a vector of the line numbers contained in the state indicator,
arranged in order of most recently suspended function first. [LC is
particularly useful in branch statements; the user can simply specify
that execution is to resume immediately following the line number at
which function execution was most recently suspended, as shown in the
example above. [LC is related to the following 1-beams:

I-beam Meaning

127 Vector of line numbers of functions in
the state indicator

I26 Current value of the first line number
in the state indicator

4.2.8 [WA: Reporting the Available Working Area

Example: WA
20000

The [JW4 system variable is used to determine the maximum amount that
the active workspace may increase. The size is given in bytes and is
obtained by subtracting the current low-segment size from the maximum
low-segment size. [OWA is equivalent to r-beam 22, which also returns
the available working area.

4.3 I-Beams

There are two types of I-beam functions. The first type consists of
functions used to return information about the user's workspace and
the APL system. The following are examples of information returned by
the T-beams in this category:

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

(] Symbol table size

e Date and time of day

® Terminal character set

® Line numbers of functions in the state indicator
] Precision of APL version

Some of these I-beams report general system characteristics (e.g.,
date) and others return information relevant only to the particular
user's workspace and session (e.g., line numbers of suspended func-
tions).

The second type of I-beams consists of functions used to perform
system actions and to change workspace parameters. The following are
examples of actions performed by the I-beams in this category:

° Turning on and off error displays for the execute operator
® Clearing the state indicator

° Terminating the APL session

° Changing the random number sequence

I-beam functions are initiated by means of the following format:

A

where the 1 character is formed by overstriking the T and 1 characters.
The A argument is a number identifying the particular function to be
invoked. A may be a constant or a variable. It must be a scalar or

a one-element array.

4.3.1 115: Reinitiating Error Displays for the Execute Function

Example:

xlé
€ 'BeDix9!
=l5
g 'Eelix9!

VALUE ERROR
¥eDxQ
4

I-beam 15 turns on the display of error messages for the execute (¢)
function after these messages have been suppressed by I-beam 16
(Section 4.3.2). If an error is encountered while APL is processing
an execute string, the system does not display an error message or
echo the line in which the error occurred if I-beam 16 has been
issued. To reinitiate error displays for the execute function, the
user may specify an 115 function. The execute function is described
in detail in Sections 2.7.24 and 5.6.

4-5

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

4.3.2 1I16: Suppressing Error Displays for the Execute Function
Example:

£ ')COFY FOO!
Can‘t find file or account

xlé
Aeg ' HCOFY FOO!

I
P

I-beam 16 turns off the display of error messages for the execute (¢)
function. If 1-beam 16 has been issued and an error is encountered
while APL is processing the execute string, execution is interrupted
but the system does not display an error message and echo the line in
which the error occurred. This allows the user to retain control, to
handle the error condition under program supervision, and to continue
executing the function if desired. After an error has been detected,
the value returned by the execute string is a null array whose shape
is 0 F, where F is a number indicating the error that was encountered.

In the example at the beginning of this section, error number
occurred, because the specified file could not be located. Appendix D
contains a complete description of all APL error conditions.

To turn on the display of execute error messages after they have been
suppressed, the user may issue I-beam 15 (Section 4.3.1).

4.3.3 118: Returning the Condition of the Workspace

Example:

18

I-beam 18 returns the condition of the active workspace. A value of 0
indicates that the workspace is intact, and a value of 1 indicates
that the workspace has suffered some kind of damage. If I-beam 18
returns a value of 1, the user should correct the damage by clearing
the active workspace with a JCLEAR system command (Section 5.2.1) or
replacing it with a JLOAD (Section 5.2.3) command.

4.3.4 120: Returning the Time of Day
Example:
20
28087057

24 60 60 60520
13 22 11 40

4-6

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

I-beam 20 returns the current time of day as time since midnight in
60ths of a second (50ths of a second in Europe). The user may apply
an APL encode (7) function to the returned value to format the time in
hours, minutes, seconds, and 60ths of seconds. This is illustrated in
the second example above.

4,3.5 121: Returning the CPU Time (RSTS/E Only)
Example:

2l
B844

24 60 40 60Tzl
0 1 37 24

I-beam 21 returns the CPU time expended since the user signed on in
the current APL session. Time is expressed in 60ths of a second
(50ths of a second in Europe). As illustrated in the second example
above, the user may apply an encode (1) function to the returned
value to format the CPU time in hours, minutes, seconds, and 60ths of
seconds.

I-beam 21 is useful in comparing the execution times of different
programs. It may also be included in a function, and the execution
of that function made dependent on the compute time used so far in
the session.

I-beam 21 1s a RSTS/E function; under RT-11, RSX-11lM and IAS, it
returns a "NOT YET IMPLEMENTED" error.

4.3.6 122: Returning Workspace Availability
Example:

iR

s S

16354

I-beam 22 is used to measure the maximum amount that the active work-
space may increase. The size is given in bytes. 1I-beam 22 may be
used in a function whose execution is dependent on the amount of free
space available in the workspace.

4.3.7 123: Returning the System Job Number (RSTS/E Only)

Example:

11

I-beam 23 returns the system job number associated with the user's
current APL session in base 10 notation. This I-beam is a RETS/E
function; under RT-11, RSX-11M, and IAS, it returns a value of zero.

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

4.3.8 125: Returning Today's Date
Example:

2

30579
AE(ZP 100y 28
)

X5 79

I-beam 25 returns today's date in base 10 notation in the form MMDDYY.
As illustrated in the second example above, the user may apply encode
(t) and rho (p) functions to this returned value to format the date

as a three-element vector.

4.3.9 126: Returning a Line Number

Example:
FLUre

FUMC2i2]
361

FURNC2L2T x

FURcCirtd
QLTS

I-beam 26 returns the line number of the statement currently being
executed or about to be executed. The scalar returned by I-beam 26

is the first line number in the state indicator (Section 3.4.4) and
the first element of the vector returned by I-beam 27 (Section 4.3.11).
This number represents the line at which the innermost function was
suspended. If APL displays a blank line, this indicates that the
state indicator is empty and no functions are currently suspended.

I-beam 26 is particularly useful in branch statements. The user can
simply resume execution of the innermost function by specifying -»126,
as shown in the example, rather than entering the line number displayed
at the time the last function was suspended. To branch two lines from
the current line in the suspended function, the user specifies ~»2+126.

4,3.10 127: Returning a Vector of Line Numbers

Example:

IHE
FUMC2[2] x
FURCi[1]

xd?

21

I-beam 27 returns a vector of function line numbers currently in the
state indicator (Section 3.4.4). The first element of the array is
the line number that would be returned by I-beam 26 and represents
the line at which the innermost function was suspended. If APL

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

displays a blank line, this indicates that the state indicator is
empty and no functions are currently suspended.

I-beam 27 is an aid in resuming function execution without including
a specific line number at which the function was suspended. The user
may define function RES, as shown in the example below, and then
resume execution of the second function in the state indicator by
entering ->RES.

v OReFER
13 Ae(e27002]
K21 v

SRES
i

MEQUTION $TOP
- g by
4

4.3.11 128: Returning the Terminal Character Set
Example:

28

I-beam 28 returns a value indicating the character set specified for
the user's terminal. The value returned by this I-beam is one of the
following:

Value Meaning
0 APL character set
1 ASCII character set

The character set is selected at the time the user begins the APL
session (Section 1.5).

4.3.12 129: Returning the User's Project-Programmer Number
(RSTS/E Only)

Example:

29
129 149

I-beam 29 returns the project~programmer number of the APL user as a
two-element vector in base 10 notation. This I-beam is a RSTS/E
function; under RT-11, RSX-11M, and IAS, it returns two zeroes.

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

4.3.13 130: Clearing the State Indicator

Example:

x30
YSI

I-beam 30 clears the state indicator. It is equivalent to typing a
series of right arrows (»), one for each suspended function. 1I-beam
30 removes all pendent and suspended function calls from the system.
As shown in the example, an)$I system command (Section 5.3.9) issued
after the 1-beam results in the display of a blank line, or null
vector.

I1f several errors have occurred during function execution, I-beam 30
should be specified before a)SAVE system command (Section 5.2.3) is
issued for that function. See Section 3.4.4 for a discussion of
alternative ways of clearing the state indicator.

4.3.14 136: Terminating the APL Session
Example:
x3dH

e a ol

I-beam 36 exits from the APL system and returns control to command
level. This I-beam performs the same function as the JOFF system
command (Section 5.5.1). Under RT-11l, the APL user returns automat-
ically to system command level after issuing I-beam 36. RSTS users
return automatically to the BASIC environment, as illustrated in the
example above. RSX-11M users return to the Monitor Console Routine
(MCR). IAS users return to the Program Development System (PDS).

4.4 SYSTEM FUNCTIONS

The version of APL described in this manual supports a variety of sys-
tem functions, implemented as part of the APL shared variable facility.
The six system functions described in this section allow the user to
perform such operations as the following:

e Express the canonical representation of a function
and store function definitions as data

) Erase a named object

® Construct a name list of labels, variables, or func-
tions and return the classification of a named object

System functions are an integral part of the APL language and may be
used freely in all APL function definitions. They can be clearly dis-
tinguished from the primitive functions available in the AFPL language;
like system variables, the names of the system functions described in
this chapter begin with a guad ([J) character and are reserved for the
use described below. And like system variables, these functions can-
not be copied, erased, or collected in a group.

4-10

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

4.4.1 [CR: Obtaining a Canonical Representation

Format: OCR 4
Rank: 12pph
Example: QCR 'TRIG'

The [JCR system function is used to obtain a canonical representation
of a defined function. [JCR operates on a character array that identi-
fies the name of the function; this array is represented by 4 in the
format above. A canonical representation of a defined function is a
character matrix with rows consisting of the original lines of the
function definition, reformatted to be of equal length. The V symbols,
line numbers, and brackets are removed from the definition. Lines that
contain labels are shifted to the right so all text begins at the same
character position. Lines are then right-padded with blanks to make
all lines equal in length to the longest line of the function. This
reformatting allows the function definition to be treated as data.

The example shown below illustrates the original function to be refer-
enced by [OCR and the matrix or canonical representation that results
from the operation of the system function.

YMEANL]V
V MEANX<NSUBJ MEAN X
(1] ASUM VECTOR X
[2] SUMX++/X
ral MEANX<«SUMX+NSUMT

A<[JCR "MEAN'

A
MEANX<NSUBJ MEAN X
ASUM VECTOR X
SUMX<+/X
MEANX<SUMX+NSUBJ

pA
L 18

X«<8 6 3 9 5 4 2 1 7 4

10 MEAN X
4.9

If the 4 argument in the [ICR function does not represent the name of

a defined and unlocked function, the resulting matrix is of dimension
0 by 0. APL returns a RANK ERROR if A is not a vector or scalar and

a DOMAIN ERROR if the argument is not a character array.

4.,4,2 [OFX: Establishing a Function

Format: Orx M

Rank: 2=ppM

Example: DFx A
TRIG

The 0FX (fix) system function effectively reverses the operation per-—
formed by OCE. This function operates on a character matrix that
contains a canonical representation of a function; this array is
represented by ¥ in the format above. It establishes in the user's
workspace a function that has the name of the function associated with

4-11

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

the canonical representation M. If a function with the same name
already exists in the active workspace, [OFX will replace it. The
matrix identified by ¥ is not affected by the [FX operation. The
following example can be considered a continuation of the example
begun in Section 4.4.1.

AL3;6]«"x"

OFx A
MEAN

VMEANLO1V

V MEANX<NSUBJ MEAN X

13 ASUM VECTOR X
[21] SUMX<x/X
[3] MEANX<SUMX+NSUBJ

v
X
8 6 3 9 5 4 2 1 7 4
10 MEAN X
145152

Another example of the use of [FX in conjunction with the execute
operator is shown below.

e('10 ' ,O0FX 4),"' X'
145152

The normal rules about local names apply to the names of any functions
established by the [OFX function. If the BG function is fixed within
function Z and the name BG is a local one, the BG definition is not
preserved after execution of the Z function comes to an end. Standard
function-definition mode applies only to global names.

0FX will not establish a function if the name of the function to be
established is the same as that of an existing label, variable, or
group or an existing function that is currently pendent or suspended.
A pendent function is usually one that is awaiting return from another
function. [FX will execute properly if the matrix referenced by [0OFX
is identical to a canonical representation except for the addition of
blank characters in rows other than those consisting only of blanks.
If (JFX cannot establish a function, a scalar index representing the
row in ¥ where an error was found is returned. No change is made to
any function or matrix in the user's workspace. APL returns a RANK
ERROR if M is not a matrix and a DOMAIN ERROR if the argument is not
a character array.

4.4.3 [FX: Erasing a Named Object

Format: JEX A
Rank: 2zppA
Example: O0FXx 'ABMAX'

1

The [EX (expunge) system function is used to erase an existing use of
a name. [JEX operates dynamically on a character array that identifies
the name to be erased; this array is represented by 4 in the format
above. This function has capabilities similar to those of the)ERASE
system command, except that it cannot erase a named object that refers
to a label, a group, a suspended or pendent function, or a system
variable. In addition, [OEX operates only on global or dominant local

4-12

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

variables. It is used particularly to avoid conflicts that may occur
because of duplicate occurrences of the same name in the APL workspace.
[JEX applies to a matrix of names and produces as a result a logical

vector. It returns a value of 1 if an existing version of a name is
successfully erased and the name is now free to be used, as shown in

the example above. If the name cannot be erased for any of the reasons

described, a result of 0 is returned. A 0 result is also returned if
the 4 argument does not represent a legal 4APL variable name. APL
returns a RANK ERROR if A has a rank higher than that of a matrix and
a DOMAIN FRROR if the 4 argument is not a character array.

4.4.4 [NL: Constructing a List of Labels, Variables, or Functions

Monadic Form:

Format: ONL N
Rank: 12pphN
Example: LIST<[NL 2

Dyadic Form:

Format: A ONL N
Rank: 12pphN

12pp4d
Example: 'GKM' ONL 1 3

The ONL system function is implemented in both monadic and dyadic
form. Both forms of the function are used to construct a list of
named objects residing in the active workspace. The N parameter is
included in both forms of the function to identify the type of named
objects to be included in the name list. The parameter is an integer
scalar or vector that can have one of the following values:

values Meaning
1 Labels
2 Variables
3 Functions

For example:

X<ONL 1 2
causes the names of all labels and variables in the workspace to be
included in name list X in alphabetical order. Each row of the matrix
will contain the name of one label or variable.
The dyadic form of the ONI function allows the user to restrict the
name list to names beginning with specifled characters Dy 1ncludlng
an A parameter in the command. For example:

NLIST<'ABCDEF' [NL 3

4-13

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

causes a name list to be constructed of function names whose initial
letters are A through F; the list is arranged in alphabetical order.
The A parameter must be a scalar or vector of alphabetic characters.
The letters supplied in the character string must be included in
alphabetic order.

The [ONL system function can be used for a variety of purposes. Some
of these are described below.

° ONL can interact with [JCFR in creating functions that
can automatically display the definitions of all or a
subset of functions in the workspace. It can also be
used to analyze interactions between variables and
functions.

® In its dyadic form, (NI can guide the user in choosing
names while developing or interacting with a workspace.

°® In conjunction with [0FX, the ONL function can cause
all of the named objects in a certain category to be
erased dynamically. It also facilitates the design
of a function that can be used to clear a workspace
of all but a preselected collection of named objects.

The following example illustrates the construction of a matrix contain-
ing the names of variables in the active workspace that begin with the
letter V.

NLIST<'V' ONL 2
NLIST

VAR1

VAR?2

VAR203

VAR204

VARS9

VBMAX

4.4.5 [NC: Returning a Name Classification

Format: one 4
Rank: 2>2ppd
Example: gvc 'VAR99?

2

The [ONC system function is used to return the classification of a
name or series of names. [INC operates on the matrix, vector, or
scalar represented by argument 4. If 4 is a character matrix, 0ONC
returns the class of the name represented by each row of A. If 4
is a vector or scalar, [ONC returns the classification of a single
name. The ONC function returns a numerical value representing each
name classification as follows:

N
1

14

APL SYSTEM VARIABLES AND I-BEAM FUNCTIONS

Value Meaning
o] Name available for any use
1 Label name
2 Variable name
3 Function name
4 Not available for use as a name

A value of 4 implies that argument 4 is not a valid name or that it
is currently in use as a group name.

4-15

SYSTEM COMMANDS

CHAPTER 5

SYSTEM COMMANDS

5.1 OVERVIEW OF SYSTEM COMMANDS

A wide variety of system commands have been implemented to provide
a means of communicating with the APL system and controlling the
operational environment in which an APL session is conducted.
System commands allow the user to examine or change the state of
the system in such ways as the following:

® Clear, name, and save the active workspace.

® Load and delete a workspace from a secondary storage
device.

°® List variable and function names.

® Display the status of functions and local variables in

the workspace.

) Set and display the index origin, maximum number of
significant digits, output line width, and comparison
tolerance.

System commands are not considered a part of the APL language itself,
but can be viewed as an interface between the user and the language
processor. System commands implemented for use with the APL file
system are described in Chapter 6. Appendix B provides a summary

of the format of all system commands, in alphabetical order.

This chapter is structured in the following way. Section 5.1
provides an overview of the format, function, and interaction of
system commands. Sections 5.2 through 5.5 describe the system
commands implemented for use with APL in the following categories:

Section Commands
5.2 Basic workspace-control commands
5.3 Workspace-content commands
5.4 Workspace-environment commands
5.5 APL termination commands

Section 5.6 discusses the special function of the execute operator (e¢)
in relation to system commands.

SYSTEM COMMANDS

5.1.1 System Command Format

System commands begin with a right parenthesis, as shown in the
following format:

)ecommand-name [parameter-list]

Some system commands require the inclusion of one or more parameters
or arguments in the command line. If required or optional parameters
are included, at least one space must separate the individual elements
of the system command.

The examples included below illustrate the format of several system
commands.

Y CLEAFR (No parameters required)
YRIGITS & (Parameter required)
IVARS @

(Parameter optional)

IEFASE & B W O (One or more parameters required)

5.1.2 Action and Inquiry Commands

APL system commands may be used in two distinct modes: action and
inquiry. Action commands invoke some change in the state of the

APL system. Inquiry commands report on the state of the system but
do not change this state in any way. The)JORIGIN command is an example
of an action command. It indicates the index origin to be used
during the current APL session and is specified in the following

way:

RIS R N 2 S

Was

The)SI command, on the other hand, operates in inquiry mode and is
used to report on the status of 4PL program execution. It is issued
as shown below:

)5 I
FURCILLD %
FUMCLC1]

The)JWSID command may be used in both action and inguiry mode. In ac-
tion mode,)WSID assigns the name included in the command line as the
new name of the active workspace and returns the previous name of the
workspace. In inquiry mode,)WSID is issued without an argument and
returns the current name of the active workspace. The following ex-
amples illustrate the two forms of the)W¥SID command.

IWBID
EDOZO0

5.1.3 APL Workspaces

The APL system uses a buffer in the user's memory area to store func-
tions, variables, values, information on the status of functions, and

5-2

SYSTEM COMMANDS

any temporary results obtained while executing APL statements. When
available in memory, this buffer area is known as the active workspace.

The user may issue system commands that cause this active workspace
to be saved on a secondary storage device; the saved workspace can
subsequently be loaded into the buffer area to function as the active
workspace once again. The term "workspace" is used to refer either
to the active workspace or to a version of an active workspace now
saved on secondary storage.

Many of the system commands described in this chapter have been
implemented to facilitate workspace-manipulation operations. The
APL user has extensive control over the activity and characteristics
of the workspace in his system. The workspace can be cleared, named,
saved, loaded, and deleted. The names of functions and variables in
the active workspace can be displayed. The user can change such
active workspace characteristics as index origin setting, number of
significant digits in output, and comparison tolerance.

Each APL workspace defined in a user's disk area has a unique name
associated with it. This workspace name is represented by the
filename parameter in many of the system command formats included
in this chapter and in Chapter 6.

In RT-11 systems, filename has the following format:
device:name.extlsize]

All of these fields are optional. The name component must usually

be supplied, but can be omitted if an output device name is specified,
as in the filename LP:. If a file size is specified, it must be
enclosed in square brackets.

In RSTS/E systems, several additional components may be included in
the filename format, as shown in the following example:

device:name.ext<prot>Lpri,prgl/SIZE:size/CLUSTER: clus/MODE :mode
As in the RT-11 format, all fields are optional.
In RSX-11M and IAS systems, filename has the following format:
device:luielname.ext;version

In all systems, a comma should be inserted instead of a period to
separate the name and ext components when an ASCII terminal is being
used (see Section 1.3.2).

Table 5-1 summarizes the characteristics of each filename component.
Alphanumeric characters included in device, name, and ext fields
may be letters (4-Z) and numbers (0-9).

Detailed information on these filename components is included in the
BASIC-PLUS LANGUAGE MANUAL.

Examples of legal filenames are included below.

RTFILE.TXTL3]
RETSFL TXT/SI7ZE:1 3
REXFIL.TXTi2
(RT-11 only)
(RSTS/E only)
(RSX-11M and IAS only)

SYSTEM COMMANDS

Table 5-1
Filename Components

Component

Meaning

All systems:

device

name

ext

RT-11 only
size

RSTS/E only:

prot

prj, prg

Valid device name with optional unit number,
followed by a colon - for example:

Ll
DTS #

The default device name is SY:.

Filename consisting of a maximum of six alpha-
numeric characters (nine for RSX~-11M), begin-
ning with a leter - for example:

TEMP
FILOO1

There is no default.

Period or comma, followed by a maximum of three
alphanumeric characters - for example:

.TMP
,APL

For most system commands, the default exten-
sion 1is .4PL. For the)SAVE and JLOAD
commands, the default is .4PC.

Size of the file in blocks of 512 bytes each.
The size is used in reserving room for output
files and by the JCREATE command (Section
6.3.2) to allocate space for new files. It
must be enclosed in square brackets - for
example:

rao48]

Protection code used in creating a new file.

A code of <40> allows other users to read but
not to alter a file. It must be enclosed in

angle brackets - example:

<L Q0>
Default is the system default.
Project-programmer number (in decimal) of the
disk area in which the file is stored. It
must be enclosed in sguare brackets - for
example:

[7,381]

Default is the user's project-programmer
number.

SYSTEM COMMANDS

Table 5-1 (Cont.)
Filename Components

Component Meaning
size Slash, followed by the size of the file in
blocks of 512 bytes each. It must be speci-
fied as a /SIZE switch - for example:
/SIZE:16
There is no default.
clus Slash, followed by the cluster size associated
with the file. It must be specified as a
/CLUSTER switch -~ for example:
/CLUSTER: 64
There is no default.
mode Slash, followed by the mode associated with

RSX-11M and IAS
only:

uie

version

the file. It must be specified as a /MODE
switch - for example:

/MODE: 1

There is no default.

Project-programmer number (in octal) of the
disk area in which the file is stored. It
must be enclosed in square brackets - for
example:

100,117
Default is the current user default.

A single octal number in the range 1-77777
representing the desired version of the file.
(Note that RSX-11M and IAS allow multiple
versions of a single file to be stored.)
Default is the highest available number.

5.2 BASIC WORKSPACE-CONTROL COMMANDS

This section describes the basic workspace-control commands, which
allow the user to manipulate APL workspaces in a variety of ways:

® Clear and name the active workspace

® Save the active workspace on a secondary storage device
and retrieve it when required

e List workspace names

® Delete workspaces or files when no longer needed

SYSTEM COMMANDS

5.2.1)CLEAR: Clearing the Active Workspace
Format: JCLEAR

Example:) CLEAR
CLEAR WS

The JCLEAR system command operates in action mode. It closes all open
files and clears the active workspace by replacing it with a special
workspace known as the clear workspace. There are a number of charac-
teristics associated with this special workspace. The clear workspace:
1. contains no functions, variables, or open files
2. has an index origin of 1

3. has an output line length of 72

4. displays numbers with six (single-precision) or ten (double-
precision) significant digits

5. has a_comparison tolerance (fuzz) of 5 7 (single-precision)
or 5E 15 (double-precision)

6. has a clear symbol table and state indicator
In RSTS/E systems, the file named SAPLCLR.APC is used to clear the ac-
tive workspace. If this file cannot be found in the system, the 4PL

session will immediately be terminated and control will return to BASIC,
which will display the "Ready" message.

5.2.2)WSID: Identifying the Active Workspace

Format: JWSID [filenamel
Examples: YWSHID EOXO (Names the active workspace)
WHS CLEAR WS
) W3 T (Returns name of active work-
BOZO Space)

The JWSID system command may be used in both action and inquiry mode.
As an action command, /WSID allows the user to change the name of the
active workspace. As an inquiry command, the)WSID command returns
the current name of the active workspace. The filename parameter is
required in action mode, but the user need not specify all components
of the workspace name (see Section 5.1.3). When parts of the name are
omitted, the default values summarized in Table 5-1 are assumed.

As illustrated in the examples above, the)WSID system command returns
a workspace name in both action and inquiry mode. In inquiry mode, the
name displayed is the current name of the workspace. In action mode,
the name displayed is the workspace name before the user changed it by
means of the)WSID command. When)WSID returns a workspace name, it
displays only the name, not the other parts of the filename.

5-6

SYSTEM COMMANDS

Format:)SAVE [filename)

Examples:

3 BOVIE
HOT SAVED, WS IS CLEAOFR WS
FEOME BOZ0O

5.2.3 JSAVE: Saving a Copy of the Active Workspace

(Clear workspace cannot be
saved)
(Change name of active

SAVED 14105116 S-MAR~TY ROTO workspace)

) B AVE (Save active workspace under
HOVED 141058 0" B M- BOE default name)

YIWH LI FOoRARE (Change name of active
Was EBODO workspace)

3 HAVE (Save active workspace under
SOVED 14105137 goMar-79 Foopar Gefault name) .

Y8 L (Change name of active
Was FOORARK workspace)

(Duplicate of existing file
cannot be saved unless the
specified name is also the
name of the active workspace)

1AV
REOET ERAVEN,

The)SAVE system command is an action command that saves a copy of

the active workspace on a secondary storage device. The saved
workspace may be stored as a file in core-image format on disk,

floppy disk, DECtape, or magnetic tape. If a filename parameter is
included,)SAVE stores the active workspace under the specified name.
If the filename parameter 1is omitted, JSAVE stores the workspace under
the current name of the active workspace. 1In both cases, the default
file extension is .APC. APL substitutes the default components
described in Table 5-1 for any other missing filenagme components.

APL does not allow the user to save the clear workspace (see the first
JSAVE in the sequence of examples above). APL also attempts to pre-
vent users from accidentally destroying saved files. If the filename
specified in the)SAVE command is identical to the name of an existing
file but different from the workspace filename of the currently active
workspace, then APL refuses to save the workspace (see the last
example above).

The)SAVE system command responds to the user's specification by
displaying the time and date.

When a workspace is)SAVEd, the following values are preserved:

@ symbol table

® current contents of state indicator
® value of index origin

° output line width

® number of significant digits

) relative fuzz factor

* current random number seguence

All open files are closed automatically before the workspace is saved.
Once a file has been saved in core-image format, it may only be re-
trieved from secondary storage by the JLOAD system command (Sec-

tion 5.2.4).

5=17

SYSTEM COMMANDS

If the user saves the active workspace while a function is executing,
the function will be interrupted before the)SAVE is performed. When
the workspace is subsequently loaded, execution of the interrupted
function will resume automatically.

5.2.4 JLOAD: Retrieving a Workspace

Format: JLOAD filename
Examples: {Save active workspace)
TEAVE STE LY .
BOVEDR 14146159 S AR 29 BTRDFET (Clear active workspace)
FATLEAE . .
CLEOE WS (Reload file as active

SLOAD BTRDET workspace)

HAVED 14344159 MO 7O

The JLOAD system command operates in action mode and retrieves a
workspace from such secondary storage devices as disk, floppy disk,
DECtape, and magnetic tape. The workspace that is loaded becomes

the active workspace, replacing the currently active workspace.

The workspace specified in the filename parameter must be a core-
image file that was saved by means of a)SAVE command (Section 5.2.3).
The default extension for the file being loaded is .APC. APL sub-
stitutes the default components described in Table 5-1 for any other
missing fZlename components.

The JLOAD system command responds to the user's specification by
displaying the word S4AVED, followed by the time and date when the
workspace was saved.

5.2.5)LIB: Listing Workspace Names (RSTS/E, RSX-11M, and IAS only)
Format: YLIB [filename]

Examples:

JLIE

JEAVE WS4
SAVED 15121334 S-MAR-79 WS4
Vi LK
WS4

JLIE WSHO, %
Ws50,
WSSO, FIL
WET O, VAR

WLIE D05, MAC
COS, MAC

The)LIB system command operates in ingquiry mode. It is used to
display a list of workspaces in the user's disk area or selected
files on any directory device.)LIB assumes that any file in the
user's disk area with the extension .APC contains a workspace.

SYSTEM COMMANDS

The files displayed by)LIB need not be APL workspaces. If the
filename parameter is included in the command, the user can

specify the filename or category to be displayed. The filename
specification can identify a particular file or can serve as a
"wild~-card" reference when an asterisk is substituted for the file-
name and/or the file extension. The asterisk matches any name. For
example:

YLIB W340.x*
will list the names of all files that have WS40 as their filename.
Another example of this usage is shown in the third)LIB in the
sequence of examples above. The command:

YLIB DSKH:%.x%

will list the names of all files on device DSKH:.

If the filename is omitted from the)LIB command, all workspaces
in the user's disk area will be displayed.

5.2.6 JDROP: Deleting Stored Workspaces or Files
Format: JDROP filename

Example:
3 DO T Y
14351104 M AR Y

The)DROP system command operates in action mode and allows the user
to delete from secondary storage the workspace or file identified in
the filename parameter.)DROP can be used to delete any system file
for which the user has the necessary protection privileges. A default
extension is not supported for the)DROP command, so an explicit
extension name must be supplied in the filename parameter.

5.3 WORKSPACE-CONTENT COMMANDS

This section describes the system commands that facilitate the
examination of functions and variables in the user's workspace. The
following operations can be performed:

® Display a list of variables defined in the active workspace
® Display a list of functions defined in the active workspace
® Erase defined functions and variables

® Display the APL state indicator to report on the execution

of functions in the workspace.

5-9

SYSTEM COMMANDS

5.3.1 JVARS: Displaying a List of Global Variables
Format: JVARS [letter]

Examples: YVAES
A AAN AKRC B O I IaX
IVARS A
A AAA ARC R OO In ZET
aVARS ©
S O dd

Y VAR

2]

The)JVARS system command operates in inquiry mode and displays an
alphabetical list of names defined as global variables in the
active workspace. The optional parameter specification identifies
the letter at which the alphabetical listing is to begin. If

the parameter is omitted, the entire set of global variable names
is displayed.

5.3.2)FNS: Displaying a List of Functions
Format:)FNS [letter]

Examples Y E S
LMD THETR MMD HUM WUMPUS
YFMES M
HUM WUMFUS

The JFNS system command is an inguiry command. It displays an
alphabetical list of global names used as defined function names

in the active workspace. The optional parameter specification
identifies the letter at which the alphabetical listing is to begin.
If the parameter is omitted, the entire set of global function
names is displayed.

5.3.3)GROUP: Defining or Dispersing a Group
Format: JGROUP group-name [group-member-1list]

Examples: YGROUP FINANCIAL INTEREST FUTUREVAL PRESENTVAL
YGROUP FINANCIAL
YJGROUP FINANCIAL TAX FINANCTIAL

The)GROUP system command operates in action mode. It is used to
place a collection of named objects under one group name and to
disperse an existing group. The objects may be variables, functions,
and other group names. The)GROUP command is used primarily in
conjunction with the)COPY and)PCOPY commands. After collecting a
set of functions and variables under one group name, the user can
specify this name in a)COPY or)PCOPY command in order to copy the
entire collection at one time. 1In the first example above, the
functions and variables named INTEREST, FUTUREVAL, and PRESENTVAL

are collected under the group name FINANCIAL.

In addition to its function in establishing a new group, the)GROUP
system command can be used to disperse an existing group. If the
group-member~1list parameter is omitted and only the group-name is
included in the command line, then the named group will be dispersed.

5-10

SYSTEM COMMANDS

The group name will no longer be defined, but the individual members
of the group will be preserved under their original names. In the
second example above, the group named FINANCIAL is eliminated. The
members of the group, INTEREST, FUTUREVAL and PRESENTVAL are
unaffected.

The)GROUP command can be used to add a new member to an existing
group. To accomplish this task, the user specifies the group name
itself as an element in the member list, as illustrated in the third
example above. In this case, the function named TAX is added to the
existing group named FINANCIAL. The following example illustrates
another use of this feature.

) GROUP GEOMETRY ANGLE ACUTE OBTUSE
) GROUP GEOMETRY GEOMETRY PYTHAG ANGL1 ANGL3

5.3.4)GRP: Displaying the Members of a Group

Format:) GRP group-name
Examples:) GROUP ROOTS TRAPEZOID REGFALSI NEWTON SECANT
YGRP ROOTS
TRAPEZOID REGFALSI NEWTON SECANT

The)GRP system command is an inquiry command used to display the
members of the group named in the command line. The members are
listed in the order in which they were entered into the group.

5.3.5)GRPS: Displaying a List of Groups

Format: YGRPS [letter]
Examples:)GRPS
FINANCIAL ROOTS
YGRPS G
ROOTS

The)GRPS system command operates in inquiry mode and is used to dis-
play an alphabetical list of global names used as group names in the
active workspace. The optional parameter specification identifies
the letter at which the alphabetical listing is to begin. If the
parameter is omitted, the entire set of group names is displayed.

5.3.6)COPY: Copying Objects from a Workspace
Format: YCOPY filename [named-object-list]

Examples:)COPY MYWORK
SAVED 9:43:10 3-0CT-75

)COPY MYWORK EXAM A B REG
SAVED 13:22:10 5-SEP-75

FOOFY MYWORK XY

MO SUCH FILE

SYSTEM COMMANDS

The)COPY system command operates in action mode. It is used to
retrieve functions, variables, and groups from a workspace called the
copy workspace and to copy them into the active workspace. The user
may copy all of the named objects in a workspace, or may copy only a
subset. The named-object-1list parameter can be used to identify the
specific objects to be copied. If this parameter is omitted, all
functions, variables, and groups in the workspace will be copied.

)COPY does not have the effect of copying the workspace itself. Local
variables, the state indicator, and the width, origin, and significant
digit settings are not transferred.

If objects in the copy workspace are homographs of (i.e., have the
same name and characteristics of) objects in the active workspace,
the objects in the active workspace will be replaced by their copy
counterparts. However, homographs in the active workspace that are
pendent functions or are functions in the process of being defined
are not replaced. See the third sample command above for an example
of a function of this kind.

If a group name is included in the named-object Llist, then all of the
members of the group are copied along with the group name.

Named objects that cannot be found in the copy workspace or cannot be
copied to the active workspace are displayed, as shown in the third
example above. The format of the)COPY command response is identical
to that of the)L0OAD command described in Section 5.2.4.

5.3.7)PCOPY: Copying from a Workspace with Protection
Format:)PCOPY filename [named-object-1list]

Examples:)PCOPY MYWORK F PLUSROW PRIMES A
SAVED 11:02:21 21-APR-75
NOT COPIED: A

YPCOPY MYWORK G B F
SAVED 11:02:21 21-APR-75
NOT FOUND: G

The)PCOPY system command operates in action mode. 1Its format is
identical to that of)COPY, but it is used to protect functions, vari-
ables, and groups in the active workspace from accidental destruction.
Unlike)COPY, the)PCOPY command does not replace objects in the active
workspace that are homographs of objects in the copy workspace.

When copying groups, the)PCOPY command does not copy any members of
the group that have homographs in the active workspace. If the group
name itself has a homograph in the active workspace, then)PCOPY will
not copy the group name but will copy all members of the group that
do not have homographs in the active workspace.

The format of the)PCOPY command response is identical to that of the
)COPY (Section 5.3.6) and)LOAD (Section 5.2.4) commands. Named

objects that cannot be found in the copy workspace or cannot be copied
to the active workspace are displayed, as shown in the examples above.

SYSTEM COMMANDS

5.3.8 JERASE: Erasing Global Names
Format: JERASE name-1list

Examples:

Ael X 4
A

23 4
EeCeQ
YERASE A K
a

VALUE ERROR

#
YEMS
i} Fo
YBY
F2U11 x
1021
JERGHE 1
HOT EF.‘ASED: K
30
B e (Clear the state
YEROBE B D
YEHS

The)EFRASE system command operates in action mode.
from the active workspace by undefining the global
ables specified in the name-1list parameter. There
of names in the list. The names must be separated
space.

indicator)

It erases names
functions and vari-
may be any number
by at least one

JERASE may not be used to erase a function whose name appears in the
state indicator (see Section 5.3.9). Examples of such attempts to

erase pendent and suspended functions are included
the beginning of this section.

5.3.92 J)SI: Displaying the State Indicator
Format:)ST

Example:

Y&
EHSTR 2] &
WUMFUSBT 3T &

in the sequence at

The)SI system command is an inquiry command that displays the state
indicator associated with the active workspace. The state indicator
serves as a report on the execution of functions in the workspace.
By analyzing the JSI listing, the user can determine such function

status conditions as the following:
° pendent functions

° suspended functions

H

5-13

SYSTEM COMMANDS

® pending quad input requests
) operations involving the execute operator

The format of the)SI display line indicates the particular status

of the function. A function name followed by a bracketed line number
indicates that the function stopped at that line number. If an
asterisk (*) follows the bracketed line number, the function is
currently suspended. If the asterisk is omitted, the function is
pendent, that is, awaiting a return from another function.

The order in which function names are displayed in the)SI list is
significant; the function that was most recently active is listed
first. 1In the example included at the beginning of this section,
WUMPUS called INSTR at line number [1]. Function INSTR was then
suspended at line [3]. Execution of INSTR can be resumed by typing

* .

The state indicator also reports on pending quad input requests and

pending execute operations (Sections 2.7.24 and 5.6). A guad input
request is indicated by a guad character ([J) in the)S5I display
line, and an execute request by an epsilon character (¢). Both of

these conditions are illustrated in the example included below.

s 1 (Execute an evaluated input)
[

1EI (List the state indicator)
i1

s
1

The use of the state indicator is discussed in terms of function
execution in Section 3.4.4.

5.3.10)SIV: Displaying the State Indicator and Local Variables

Format:)SIV

Examples: (Local variables B and I defined for

\ function IMAX)
aREV
iHELa] & 8 2 (Local variables 4 and B defined for

i function 2)

BL2] ok A E

The)S5IV system command operates in inquiry mode. Like the)ST
command (Section 5.3.9), it displays the state indicator associated
with the active workspace and reports on pendent and suspended
functions, pending quad input requests, and execute operations. In
addition to this information, however,)SIV also displays a list of
local variable names defined for each pendent or suspended function.
The names of global variables used in the function are not displayed.

5.4 WORKSPACE-ENVIRONMENT COMMANDS
This section describes a variety of system commands that allow the

user to display and control the characteristics of the workspace
environment. These commands perform such tasks as the following:

5-14

SYSTEM COMMANDS

° Specify the index origin setting

® Specify the maximum number of significant digits to be
displayed in APL output

e Set the width of the output line

) Set the fuzz or comparison tolerance

5.4.1)ORIGIN: Determining the Index Origin

Format YORIGIN [g:l
Examples: 15
1 2 3 4 5
JORIGIN ©
WAS 1
15

6o 1 2 3 4

JORIGIN

The)ORIGIN system command can be used in either action or ingquiry
mode. As an action command,)ORIGIN allows the user to change the
setting of the index origin for array operations and returns the
previous setting. In inquiry mode, the)ORIGIN command returns the
current setting of the index origin. A parameter (0 or 1) is
required in action mode. The default setting is 1.

The effect of the)ORIGIN system command is to renumber the elements
of arrays to begin at zero or one, depending on the index origin
setting. This command is particularly relevant when used in conjunc-
tion with the APL iota operator (Sections 2.7.5 and 2.7.6)for a

more detailed discussion of the index origin, see Section 2.4.2.

JORIGIN is equivalent to the [I0 system variable (Section 4.2.2).
The index origin setting is preserved when the active workspace is
saved.

5.4.2)DIGITS: Determining the Output Precision
Format:)DIGITS [nl

Examples:)JDIGITS
7
B
1.2345867

JDIGITS 3
WAS 7

B
1.23

5-15

SYSTEM COMMANDS

The)DIGITS system command operates in either action or inquiry mode.
As an action command,)DIGITS can be used to specify the maximum
number of significant digits to be displayed in APL output;

it returns the previous maximum number. In inguiry mode, the

)DIGITS command returns the number of significant digits currently
being displayed. A parameter must be included in action mode to
specify the number of significant digits to be displayed. The
default number of digits is 10 for double-precision systems and 6 for
single-precision. Legal values are integers in range 1 through 17
for double-precision systems and 1 through 7 for single precision.

The)DIGITS system command does not affect the precision of internal
calculations or the display of numeric constants. See Section 2.2
for an example of formatting numeric output.

JDIGITS is equivalent to the [PP system variable (Section 4.2.3).
The precision setting is preserved when the active workspace is
saved.

5.4.3)WIDIH: Determining the Width of the Output Line
Format: YWIDTH [n]

Examples: YWIDTH 50
WAS 120
115
1 2 3 4 5 6 7 8 9 10 112 12 13 14 15

JWIDTH 30
WAS 50
115
1 2 3 4 5 6 7 8 9
10 11 12 13 14 15

JWIDTH
30

The)WIDTH system command can be used in either action or inquiry
mode. As an action command,)WIDTH allows the user to set the
maximum number of characters that may appear in an output line and
returns the width previously in effect. In inquiry mode, the
YWIDTH command returns the current width of the output line. The
n parameter must be included in action mode to specify the maximum
number of characters in the output line; it must be an integer in
range 30 through 133 inclusive. The default setting is 72, except
in the RSTS/E environment, in which APL defaults to the current
user width.

The)WIDTH system command does not affect the display of messages

on the terminal or the allowable length of input lines.)WIDTH is
equivalent to the OPW system variable (Section 4.2.4). The width

setting is preserved when the active workspace is saved.

