
VAX 6000 Model 400 System 

Digital Technical Journal 
Digital Equipment Corporation 

Volume 2 Number 2 
Spring 1990 



Cover Design 
Our cover depicts some of the common equations and terminology 

used in vector processing, which is one of the featured topics in 

this issue. The v.-IXl'ector processor extends the VAX 6000 family to 

address the compul ing need� (if numerically intensiue applications. 

The VAX 6000 Model •iOO systern is a bright star in Digital's family 

of midrange multiprocessors and this issue's main product thenU!. 

The couer was des(rt,ned by David Comberg and Randy Ziegler of the 

C01porate Design Group. 

Editorial 
Jane C. Blake. Editor 
Rarhara Lindmark, Associate Ediwr 
Richard W. Hcane, Managing Editor 

Circulation 
Catherine M. Phillips, Administrator 
Suzanne ,I. Babineau. Secretary 

Production 
Hden L. l'allcrson. Production Editor 
Nancr Jones. Typographer 
Rebecca A. Barker, Typographer 
l'ct<:r Woodhury, Illustrator �nd Designer 

Advisory Board 
S:unud H. Fuller. Chairman 
Robert M. Glorioso 
John W. M cCredie 
Mahendra R. Patel 
F (;rant Saviers 
Robt:rt K. Spitz 
William D. Strecker 
Victor A. Vyssotsky 

The Ui!iila/ Tecbnica/joumal is puhlished quarterly by Digi tal 
Equipment Corporation, J46 M:tin Street MLOI-5JB68. Maymrd. 
Massachusetts 01754-2571. Subscriptions 10 the Journal are 
S·iO.OO for four issues and must he prepaid in li.S. funds. Univer
si ty and college professors and Ph. 0. students in the electrical 
engint:ering and computer science fields receive complimen
tarr suhscriptions upon request. Orders. inquiries. and address 
changes should be sent to The Di!!ita/'lecbnical}oumal at the 
published-by address. Inquiries on also be sent electronically on 
NI:ARNET to DlJ@CRL.DEC.COM. Single copies and back issues are 
3vaibhk for S 16.00 each from Digit:! I Press of Digital Equipmc:nt 
Corporation, 12 Crosby Drive, Hcdlord. MA 01-_�0- 149.'1. 

Digital employees may send subscription orders on the ENET 10 
RDVAX JOliRNAL or by interoffice mail to mailstop MLO 1- 5/ll68. 
Orders should include badge number, cost center, site location 
code and address, and group name. ll s. engineers in Enginen
ing and Manufacturing receive complimt:mary subscriptions; 
enginc:er� in tht:se organizations in countries outside the: lJ.S. 
should com act the journal office to receive: their complimemary 
subscriptions. All employees must advise of changes of address. 

Commt·nts on the content of any paper are wdcomed and may 
be sem 10 the editor at the published-b\' or nc:t work address. 

Copyright' 1990 Digital Equipment Corporation. Copying 
without fcc is perm itJed provided that such copies are made for 
use in educational institutions by faculty members and are not 
disJributed for comml'rcial ad,·antage . Abstracting "'ith credit 
of Digital Equipment Corporation's authorship is permitted . 
All rights reserved. 

The information in this journal is suhject 10 change without 
no tice and should not be construed as a commitment by Digital 
Eq uipment Corporation. Digital Equipmem Corporation 
assumc:s no responsibility for any errors that may appear in 
this journal. 

ISSN 0898-90 I X 

Documentation Number EY-<:1971:-0P 

The following are trademarks of D igital Equipment Corpora
tion: CJ, OECnet, DECst:uion .'1100, OH:wimlows, Digital, the 
Digital logo, HSC. MicroVAX , llZ'i'), ThinW ire, VAX, VAX-11/780. 
VAX 6000, VAX 8700, VAX HHOO, VAX 9000, VAXBJ, VAXcluster, 
VAX FORTRAN, VAXveclOr(J000, V.\1S, !ILTRtX, XMI. 

!IN IX is a registered trademark of American Te lt:phone & 
Telegraph Company. 

dbx is a registered trademark of dbx, Inc 

,\Ill'S is a trademark of MIPS Computer Systems. I nc. 

Book production was done by Digital 's Educational Services 
Media Communications Group in Hedfortl, MA. 



I Contents 

9 Foreword 
Pauline A. Nist 

VAX 6000 Model400 System 

11 Vector Processing on the VAX vector 6000 Model400 
Debra L. Slater, David M. Fenwick, D. John Shakshober, and Douglas D. Williams 

27 The VAX 6000 Model400 Scalar Processor Module 
Patrick Sullivan, Michael A. Callander, Sr. ,James R. Lundberg, Rebecca L. Stamm, 
and William). Bowhill 

36 An Overview of the VAX 6000 Model400 Chip Set 
W. Hugh Durdan, William). Bowhiii,John F Brown, William V. Herrick, 
Richard C. Marcello, Sridhar Samudrala, G. Michael Uhler, and Nicholas Wade 

52 VAX 6000 Model400 Physical Technology 
john T. Bartoszek, Robert). Hannemann, Stephen P. Hansen, Robert]. McCarty, 
and john C. Sweeney 

64 VAX 6000 Model 400 CPU Chip Set Functional Design Verification 
Richard E. Calcagni and Will Sherwood 

73 Test and Qualification of the VAX 6000 Model400 System 
John W Croll, Larry T. Camilli, and Anthony]. Vaccaro 

84 Development of the DECstation 3100 
Thomas C. Furlong, Michael). K .  Nielsen, and Neil C. Wilhelm 

89 Compiler Optimization in RISC Systems 
Larry B. Weber 



I Editor's Introduction 

jane C. Blake 

Editor 

This Spring 1990 issue marks the second issue to 
be published on the new quarterly schedule of the 
Digital Technicaljournal. This is also the ftrst year 
that the Journal is available by subscription- a 
service our readers have asked for and which we are 
glad to be able to offer. 

The journal will continue to focus each issue on a 
product theme. In fact, two products are featured in 
this issue. The main theme is the latest addition to 
the V�'l: 6000 family, the Model400. With its multi
processing capabilities, this midrange family of 
systems provides a highly conf igurable and expand
able computing environment. Because the same 
cabinet, buses, and power systems are used by aU 
family members, systems can easily be upgraded to 
achieve higher levels of performance. Papers in this 
issue describe VAX 6000 Model 400 innovations and 
additions, including a new vector processor and a 
higher performance scalar processor module, chip 
set design and verification, physical technology 
advances, and system test. The second theme com
prises two papers related to Digital's workstation 
development, specifically the DECstation 3100, and 
compiler optin1ization in RISC systems. 

Opening this issue is a paper on one of Digital's 
first vector processors. Dave Fenwick,  john 
Shakshober, Debra Slater, and Doug Williams 
review the design alternatives for the VAXvector 
6000 Model 400 processor and describe its function 
units. They then give examples of how the units 
combine to deliver high performance for computa
tionally i ntensive applications. 

The Model 400 also has a new scalar processor, 
with nearly twice the performance of its prede
cessor, the Model 300 . In their paper, Pat Sullivan, 
Mike Callander, Jim Lundberg, Rebecca Stamm, and 

2 

Bill Bowhill discuss the module design and give 
particulars on how difficu lt signal integrity prob
lems were resolved. 

The five system chips that reside on the module 
are the topic of our next paper by Hugh Durdan, B ill 
Bowhill , John Brow n, Bill Hl:rrick, Rich Marcello, 
Sri Samudrala, M ike Uhler, and Nick Wade. From 
their  d iscussions of the chip designs, we learn 
how the best features of the VAX 8700 ECL-based , 
pipelined system and of previous VLSJ designs were 
incorporated i n  the chip set, which achieves a cycle 
tinle of 28 nanoseconds. 

This fast cycle time was one of several require
ments that drove a significant design effort for 
the physical technology. Joh n  B a rtoszek, Rob 
Hannemann ,  Steve Hansen, Bob McCarty, and 
John Sweeney describe the technological advances 
ach ieved in a n u m ber of a reas, including tape
automated bonding, semicustomized ceramic 
single-chip package design, and testabil ity. 

The two papers that close this collection of papers 
on the VAX 6000 Model 400 address chip design 
verification and system test. Rick Calcagni and 
Will Sherwood explain the engineers' multipronged 
approach to design verification, an approach neces
sitated by the complexity of the chip set. Then, 
John Croll ,  larry Camilli , and Tony Vaccaro present 
a paper on the methods and tools designed to com
pletely test the i nteraction of VAX 6000 Model 400 
system's hardware and software. 

In the last rwo papers, the topic turns to work
statio ns. Tom F u rlong, Mike N ielsen, and Neil 
Wi.lhelm provide an overview of the successful 
project undertaken to bui.ld a fast ,  competitively 
priced, RJSC-based, ULTRIX workstation, called the 
DECstation 3 100. The Journal is fortunate also to 
have a related paper on compiler optimization in 
RISC systems by Larry Weber, vice president, MIPS 
Systems , I nc .  MIPS Systems built the RJSC chip set 
incorporated in the DECstation 3 1 00 workstation. 

I thank Steve Holmes of the M id range Systems 
Busi ness Group for his help in selecting topics on 
the Model 400, and Gillian Scholes of Digital and 
joanne Hasegawa of MIPS Systems, Inc., for their 
help in obtai ning the workstation and RISC papers in 

this issue. 



Biographies 

John T. Bartoszek john Bartoszek currently manages the Physical Technology 
Group within the SDE that is responsible for physical technology applications 
and product designs. John previously managed the PTG physical technology pro
gram that spawned the physical technology used on the VAX 6000 Model 400 
CPU module. He joined Digital in 1981 and has a B.S. in nuclear engineering from 
Lowell Technological Institute. He holds two patents for thermal control devices. 
john has authored several papers on spacecraft thermal control, solar energy, and 
electronics cooling and interconnect technologies. 

William). Bowhill As a principal engineer with the Semiconductor Engineer
ing Group, William Bowhill is project leader for an engineering team that is 
designing an execution unit section of a large CMOS-based microprocessor. He 
has applied for two patents for his design work on the vector interface and 
backup control chip on the VAX 6000 Model 400 system. Bill also holds a patent 
for his work in relation to the Model 400's floating poinr accelerator chip. He 
joined Digital in 1985. Bill was educated in Great Britain and received a B.Eng. 
(honors) in electronic engineering from Liverpool University. 

John F. Brown After receiving an M. S.E.E. from Cornell University in 1980, 
John Brown joined Digital's engineering staff. At present, he is a principal engi
neer and design team manager for the instruction decode section of the next 
generation CMOS-based VAX microprocessor. John's previous responsibilities 
include technical contributions to both the VAX 6000 Model 400 and the Model 
200 chip sets. He was also the hardware engineer for the extended floating point 
data type enhancement to the VAX-11/780 system. John currently holds one 
patent, has two patent applications pending, and has authored technical papers 
for several publications. 

Richard E. Calcagni A member of the Semiconductor Engineering Group's 
VLSI microprocessor verification group, Richard Calcagni has contributed to the 
design of several VLSI microprocessors in the areas of microcode, verification, 
and prototype system debugging. He has published several papers on CPU 
design, modeling, and verification. Prior to his work with microprocessors, he 
worked on module test process development for Digital's Customer Services 
Manufacturing organization. Before joining Digital in 1979, Rick worked for 
Burroughs Corporation. He received a B.S. (1976) in electrical engineering 
from the University of Rhode Island. 

Michael A. Callander, Sr. Michael Callander is a principal engineer in Digital's 
Semiconductor Engineering Group. At present, he is responsible for the archi
tecture of a future VAX CPU module. Mike led the VAX 6000 Model 400 system's 
REXMI chip set design project. His previous experience with Digital includes 
the design and verification of the CPU module for the VAX 8200 system and 
the VAX 8300 system. Mike received his B.S.E.E. degree from the University of 
Massachusetts in 1982. He joined Digital upon graduation. 

I 

3 



Biographies 

4 

Larry T. Camilli Since joining Digital in 1979, Larry Camil l i  has been a member 
of several product development projects. He is currently a software cnginL"ering 
supervisor and project leader for the architecture verification software 
development project ,  which focuses on the development and maintenance of 
test software for current and future architectures. Larry's previous responsi
bilit ies include the development of components for a microcode compiler, 
and a software trace and analysis package. He holds a B.S . E . E .  from Clarkson 
University and is a student in t he M.S.C .S.  degree program at Worcester Poly
technical Institute. 

john Croll John Croll is a principal software engineer in the Midrange Systems 
Engineering Group. In this pos ition, he is responsible for developing systems test 
tools for a future hardware prod uct. John was a team leader in tht: Systems 
Integration Group for the VAX 6000 Model 400 system. He was also a project 
leader for the development of the VAX 6000 Model 400 console software. John 
joined Digital in 1978, and his previous responsibilities include the development 
of device drivers and other system software. He received a B.S. E. E. ( 1978) from 
Drexel University and is a member of IEEE and ACM . 

W. Hugh Durdan A grad uate of the Rensselaer Polytechnical I nstitute, Hugh 
Durdan is a consulting engineer in the Semiconductor Engineering Group. In this 
position, his major responsibil ity is management of chip development. Hugh 
became involved in the VAX 6000 Model 400's chip design at its earliest begin
ni ngs in 1984 . He led the behaviora l modeling effort and the cache controller 
chip design project .  He also managed the development of the custom chip set for 
t he VAX vector procL"ssor and aFChitected and specified the vector interface bus. 
Hugh joined Digital in 19HO and worked on the chip design of the VAX 8200 
processor. 

David M .  Fenwick The architect of the VAX vector 6000 Model 400 processor, 
David Fenw ick joined Digital's United Kingdom office in 1980 and transferred to 
the Cnited StatL"s in 1985. He is a principal engineer for the Low End Midrange 
Systems Group. His previous experience with Digital includes field service 
regional support in the 'nited Kingdom and project leadership for the DMB32 

communications controller for the European engineering office. He also worked 
on the VAXBI and XMI programs in the United States. Dave received a B.Sc. 

(Honors) from Loughborough University of Tech nology in England. 

Thomas C. Furlong The development of Digital's RISC-based workstations is 
the responsibility of Engineering Manager Thomas Furlong. It was Tom's Palo 
Alto-based design group that brought the MIPS RISC technology into Digital and 
deve loped the OECstation 3100 workstation . Tom has been with D igital for ten 
years. In addit·ion to his work with RISC-based workstations, he was a member of 
the start-up te:tm for the VAXstation group. Tom is originally from Detroit, 
Michigan, and earned a B.S.E.E. from Michigan State University.  He holds two 
patents related to graphics workstation design and has three patents pending on 
the next-generation products. 



Robert J. Hannemann Robert Hannemann is group manager of the SCIT 

Design and Engineering Physical Technology Group. His group is responsible 
for the delivery of IC packaging, module, physical design and test technology 
for Digital's microprocessor-based systems. A senior consultant engineer, Rob 
joined Digital in 1978. His prior experience includes positions at Bell Telephone 
Laboratories and the University of Maryland, where he was a member of the 
faculty. Rob holds the Sc.D. degree in mechanical engineering from MIT. He also 
holds two patents and has published several papers on heat transfer engineering 
and electronics packaging. 

Stephen P. Hansen Senior Manager Stephen Hansen manages the SDE/PTG 
Technical Office. In this position, he coordinates programs related to cost
effective packaging for future CMOS-based products, defines technical solutions 
for the next generation of semiconductor packaging, and provides technical 
coordination for external packaging and interconnect-related activities. In his 
twelve years with Digital, Steve has developed several packages and assembly 
processes for internally manufactured CMOS products, including the tape
automated bonding process. He holds two patents in the areas of tape-automated 
bonding and packaging. 

William V. Herrick Senior Consultant Engineer William Herrick is currently 
managing a new generation VAX chip design project in the Semiconductor 
Engineering Group. He joined Digital in 1977 and has been a member of many 
ZMOS- and CMOS-based product development projects, including the PDP-11123 
system and the VAX 8200 system. Before coming to Digital, Bill worked for 
Raytheon and GTE Sylvania. He has coauthored several papers on sol id-state 
physics and MOS chip design. Bill received a B.S.E.E. ( 1969, magna cum laude) 
from Tufts University, and an S.M.E.E. (1971) and E.E. (1971) from MIT and is a 
member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi. 

James R. Lundberg James Lundberg joined Digital in 1985. Initially, he was a 
product engineer with the MOS Product Engineering Group and worked on 
many projects, including BIIC and CQBIC. Jim is currently a senior engineer in 
Digital's Semiconductor Engineering Group. He was responsible for the signal 

integrity on the VAX 6000 Model 400 system and is now working on the signal 
integrity for an advanced CMOS CPU chip set and module. Before coming to 
Digital, Jim operated his own business. He is a member of Tau Beta Pi and Phi 
Kappa Phi. He received a B.S.E.E. (1985, honors) from the University of Illinois. 

Richard C. Marcello A contributor to the design of the VAX 6000 Model 400 
system, Richard Marcello is currently an engineering manager for a new
generation VAX chip design project. Rich was involved with reliability analysis of 
semiconductor devices before moving into design five years ago. He worked for 
Fairchild Semiconductor before joining Digital in 1981 . Rich coauthored the 
paper "System, Process and Design Implications of a Reduced Supply Voltage 
Microprocessor," which he recently presented at the ISSCC . He received B.B.A. 

and B.S.E.E. (1980) degrees from the University of Notre Dame and a M.S.C.S. 
(1985) degree from Boston University. 

I 

5 



Biographies 

6 

Robert j. McCarty Since joining Digital in 1982 , Robert McCarty has hn:n 
involved in several major product development efforts. He managed the 
VAX 6000 Model 400 system's physical design project and M31 console and 
instrumentation module development, and led the PDP-11184 system engineer
ing project. Before coming to Digital, Bob worked for AM International as the 
project leader for a laser-based document printer that was part of a document 
communication system. He holds a B.S. in electrical engineering from the 
University of Michigan and an M.B.A. in marketing from the University of 
Chicago. He is a member of Tau Beta Pi and Eta Kappa Nu. 

Michael j. K. Nielsen A consultant engineer in the Workstation Systems 
Engineering Group, Michael Nielsen is presently completing his responsibilities 
as architect and chief designer of the DECstation 5000 Model 200 workstation 
base platform. Mike joined Digital in 1 984. Among the many projects he has 
worked on since that time are the DECstation 3100 workstation, for which he 
was the architect and chief designer, and the VAXstation 3520/3540, for which he 
was a member of the architecture and design team. Mike holds B.S.E.E., M.S.E.E. ,  
and Ph .D.E.E. degrees from Stanford University. He is a member of Tau Beta Pi 
and Phi Beta Kappa. 

Sridhar Samudrala Currently acting as project leader for a floating point 
unit, Sridhar Samudrala is a principal hardware engineer in the Semiconductor 
Engineering Group. Sri joined Digital in 1977. Since that time, he has worked on 
testing and diagnostics, as well as the VAX 8200 system microcode, and floating 
point architecture and design. He holds two patents for his work in floating 
point design. Sri has an M.Sc. (Technology) from Andhra University in India and 
an M.S. E. E. from the University of Wisconsin. 

D. john Shakshober John Shakshober is a senior hardware engineer in the 
Low End Midrange Systems Group. Previously involved in the hardware design 
of M31, a VAX parallel processor, John is now a member of the VAX 6000 

Model 400 hardware group, where his particular focus is vector processor 
design. He joined Digital in 1984 after receiving a B.S. in computer engineering 
from the Rochester Institute of Technology. John received a M.S.E.E. from 
Cornell University in 1988. He is a member of IEEE and Tau Beta Pi. John's latest 
published technical paper, "Parallel Algorithms for Super Performance," was 
presented at SuperComputing 89. 

Will Sherwood As a software consulting engineer, Will Sherwood manages 
the Semiconductor Engineering Group's VLSI microprocessor verification group. 
Previously, he managed the DECSlM logic simulation group. Will joined Digital in 

1975 after receiving B.S.E.E. and M.S.E.E.  degrees from Carnegie-Mellon 
University. In addition to his contribution to the Digital Technicaljoumal, he 
has published 15 technical papers and is a contributing author to three books. 

Will is a member of the I FlPS 10.2 working group on computer hardware descrip
tion languages and has served as publicity chairman and program committee 
member for several international conferences. 



Debra L. Slater In her position as principal software engineer, Debra Slater 
leads a group that provides performance modeling and analysis support to hard
ware development teams. She and her group were integral members of the 
VAX vector 6000 Model400 vector processor design team. Prior to joining Digital 
in 1987, Debra worked for the Montreal Engineering Company, initially as a pro
grammer/analyst and later as an independent consultant. She received a B.Sc. in 
mathematics and computer science in 1980 from Bishop's University in Quebec. 
In 1981, Debra received a master's degree in applied mathematics from the 
University of Waterloo in Ontario . 

Rebecca L. Stanun Rebecca Stamm is a principal hardware engineer in the 
Semiconductor Engineering Group. She is currently leading the design of the 
backup cache, bus interface, and pin bus for a new VAX CPU chip. Rebecca was 
the architect of the backup cache controller chip for the VAX 6000 Model 400 
system. She has also worked on design and verification of a RISC microprocessor. 
Rebecca joined Digital in 1983. She is a member of Eta Kappa Nu and I EEE, holds 
one patent, and has coauthored several technical papers for the ISSCC. She 
received a B.A. (1979) in history from Swarthmore College and a B.S.E.E. ( 1983) 
from MIT. 

Patrick Sullivan The project leader for the VAX 6000 Model400 CPU module 
development, Patrick Sullivan is a hardware consultant engineer in Digital's 
Semiconductor Engineering Group. Pat is now managing a new CPU module 
development project. Before his work on the VAX 6000 Model 400, he led the 
group effort that brought MCA emitter-coupled logic (ECL) into the corporation. 
He is also responsible for the development of a number of Digital's main memory 
products and participated in the development of several 36-bit CPUs. Pat holds a 
patent for a memory controller interface. He received his B.S. and M.S. degrees 
from Northeastern University. 

john C. Sweeney Currently a principal engineer, John Sweeney is working on 
the testability and test process development for a future Digital product. His 
previous experience includes being part of the test process development for the 
VAX 8600 and VAX 8800 systems . .John was an application engineer for GENRAD 

before joining Digital in 1981. He has authored several papers on boundary scan 
and fault isolation, and has one patent pending in relation to the VAX 6000 Model 
400 system's test structures. john received a B.S. E. E. (1980) from Rensselaer Poly
technical Institute and has taken graduate courses at Northeastern University. 

G. Michael Uhler G. M ichael Uhler is a consulting engineer in the Semi
conductor Engineering Group, where he is currently leading the architectural 
definition for a new CPU. As the CPU architect for the VAX 6000 Model 400 
system, M ike was responsible for the CPU architecture, performance evaluation, 
and CPU microcode. Since joining Digital in 1978, he has also worked on the 
development of symmetric multiprocessing in the TOPS-10 operating system, and 
on the microcode and hardware development for PDP-10 CPUs. Mike received a 
B.S.E.E. (1975) and M.S.C.S. ( 1977) from the University of Arizona and is a member 
of I EEE, ACM, Tau Beta Pi, and Phi Kappa Phi. 

I 

7 



Biographies 

8 

Anthony J. Vaccaro A senior engineer in the Midrange Systems Evaluation 
Group, Anthony Vaccaro is at present responsible for several evaluation projects. 
These projects include the FV64A VAX 6000 Model 400 vector processor and 
KDM70 mass storage controller. Tony joined Digital in 1976 as a field engineer. 
Some of his earlier project responsibilities include product evaluations for the 
CIBCA-B VAXcluster Cl adapter and KA825 VAX processor. He was also a member 
of the team that developed a certification process for new VAXBI adapters. Tony 
holds a B.S. (1975, cum laude) from Suffolk University and is studying for an 
M.S.C.S. at Rivier College. 

Nicholas Wade The implementation of the backup cache control for the next
generation VAX CPU chip is being led by Nicholas Wade. Nick is a senior engineer 
in the Semiconductor Engineering Group. He joined Digital in 1986 and has 
worked on several projects, including the VAX 6000 Model 400 chip set. He 
performed the engineering evaluation and debugging for the system support 
chip on the VAX 3500 and VAX 6000 Model 200 systems. Nick was also a member 
of the behavioral design and implementation feasibility project for a CPU-XMI 
interface. He holds B.S. (1985) and M.S. (1986) degrees from Cornell University 
and is a member of IEEE. 

Larry B. �ber As vice president of software development for MIPS Computer 
Systems, Inc., Larry Weber is responsible for the development, quality assurance, 
and integration of all systems software products. Larry is one of M IPS first 
employees, having joined the company in 1984. Prior to joining MIPS, he worked 
for Dialogic Systems and for IBM. Larry helped develop a PASCAL compiler for 
both the IBM mainframe and IBM RISC project. He has authored and coauthored a 
number of articles on compilers and languages. Larry holds a B.S. in mathematics 
from the State University of New York and an M.S. in computer science from the 
University of Colorado. 

Neil C. Wilhelm Neil Wilhelm, a senior consultant engineer, is responsible for 
the development and maintenance of the Workstation Systems Engineering 
Group's CAD system and the design engineering of a low-cost workstation. Neil 
also designed Digital's first RISC-based system. Neil brought an extensive tech
nical background to Digital when he joined the company in 1982. He has worked 
for Hewlett-Packard and Xerox Corporation, founded Ridge Computers, and 
taught at the University of Rochester. Neil holds a B.S. (1970) in engineering from 
Harvey Mudd College, and an M.S. (1971) and a Ph . D. (1973) in electrical engi
neering from Stanford University. 

Douglas D. Williams MIT graduate Douglas Williams is a principal engineer 
in the Midrange Systems Engineering Group. He worked on the architectural 
definition of the VAXvector 6000 Model 400 processor. He also supervised 
performance modeling and vector control chip development efforts for that pro
cessor. Among the many other projects on which Doug has worked since joining 
Digital in 1981 are the RISC processor development, memory interconnect 
design, and VLSI design. He holds an S .B .  and S.M. in electrical engineering and is 
a member of Eta Kappa Nu and Tau Beta Pi .  Doug holds a number of patents and 
has several patent applications pending. 



I Foreword 

Pauline A. Nist 

Group Engineering Manager 

Midrange Systems Business 

Because microprocessor-based computer systems 

are complex, the work to design and architect cus

tom chips must be initiated long before module and 

systems work begins. 

Looking back at recent history, Digital intro· 

duced the VAX 6000 family of computers in April 

1988 with the Model 200 series, which utilized the 

ftrst generation of the CMOS-based VAX micropro

cessor. The Model 200 was fabricated in Digital's 

CMOS-1 (complementary metal oxide semiconduc

tor) process. A single-processor Model 210 pro

vided 2.8 times the performance of a VAX-11/780 

system. One to four processor configurations pro

vided up to a total of 1 1  times the performance of a 

VAX-11/780 system. (Papers discuss these chips and 

systems in the August 1988 issue of this journal.) 

In January 1989, Digital introduced the second 

generation of the VAX 6000 family, the Model 300 

series. The Model 300 increased single-processor 

performance from 2.8 to 3.8 times the VAX-11/780 

system and total performance for a six-processor 

system to 22 times the VAX-11/780 system. The 

30 percent increase in single-processor perfor

mance was made possible by a direct shrink of the 

die from Digital's 2.0 micron CMOS-1 process to 

Digital's 1.5 micron CMOS-2 process. The new pro

cess supported a 25 percent reduction in lateral and 

key vertical dimensions and a 78 percent improve

ment in circuit density. Together, these changes 

improved chip performance by approximately 

30 percent. 

However, a simple shrink of the existing die did 

not permit full exploitation of the new circuit den

sity. Newly architected and designed parts had to 

be tailored to take full advantage of the density and 

speed available with the CMOS-2 process. 

The VAX 6000 Model 400 series was formally 

introduced in July 1989, a mere SLX months after the 

Model 300 was introduced. The Model 400 utilized 

this newly architected chip set to provide single

processor performance of 7 times that of the 

VAX-11/780 system and up to 36 times the 

VAX-11/780 system for six-processor systems. The 

performance of the Model 400 was over twice 

the single-processor performance and more than 

three times the multiprocessor performance of the 

Model 200 series, which had been announced only 

a short 15 months earlier. 

To support such aggressive product introduction 

cycles, advanced development work on the new 

generation of CMOS-2 chips began in mid-1984, 

within months of the start of the CMOS-I designs. 

Actual design work began approximately a year 

later. During this period, Digital made a major deci

sion to formally extend the VAX architecture to 

incorporate full support for vector processing into 

the base instruction set for aU future VAX proces

sors. To provide this support, the chip designs 

already under way had to be modified to incorpo

rate the new instructions. 

The scalar chip set developed consists of ftve cus

tom VLSI parts. They are the CPU chip, the floating 

point accelerator chip, the vector/cache controller 

chip, the system support chip, and the clock chip. 

The development of the custom chips required a 

team of over 40 people, including logic, circuit, and 

layout designers, and verification engineers. The 

scalar CPU module design, standard cell interface 

design, and associated verification team comprised 

an additional eight engineers. Additionally, the new 

vector coprocessor module required three new cus

tom parts, a new gate array, and a separate module 

design effort. 

Since the direct shrink of die from the CMOS-1 to 

CMOS-2 process would account for only a 30 per

cent performance increase, the processor architec

ture had to be substantially changed to achieve 

more aggressive performance. Early in the project 

the chip design team established a clear goal to meet 

or exceed the performance of the VAX 8700 proces

sor, which has a performance of five times that of 

the VAX-11/780 system. Some of the architectural 

changes included the following: 

• A more pipelined architecture, specifically, a six

level pipelined engine built around three auto

nomous pipes 

• A 64-bit wide data bus with 27 separate address 

lines versus a 32-bit multiplexed data/address 

bus used for the CMOS-I chip 

9 



I 

• Support for decode of the new VAX vector 
instructions and transfer of instruction operand 
information to the vector interface bus and onto 
the vector coprocessor module 

• A 2 kilobyte (KB) primary on-chip cache with 
single-cycle access supported by a 128KB off
chip secondary cache 

• A 16-byte instruction prefetch queue 

• Two quadword write buffers in the bus interface 
unit 

Experience with the CMOS- I chip showed that 
the fabrication line was capable of producing a dis

tribution of die across a performance range of 80 to 
100 nanoseconds (ns). As a result, whereas all 
CMOS-2 new designs supported the target of a 40 ns 
CPU cycle time, it was an explicit goal to support 
devices as fast as 28 ns, should chip yields produce 
sufficient quantities of faster parts. The yields at 
28 ns actually exceeded predictions and permitted 
faster parts to be used in all products produced. 

First passes of all scalar CPU chips were available 
in April 1988. These chips could successfully boot 
both the VMS and ULTRIX operating systems. This 
success was due in large part to the aggressive use of 

computer-aided design (CAD) techniques. Func
tional design verification efforts alone represented 
25 person-years of work on the scalar chip set. An 
additional 39 person-years were necessary to com
plete the scalar CPU module and the vector copro
cessor verification efforts. 

The power-on of first-pass parts represented a 
significant accomplishment to those who worked 
on the chips and the module. However, much 
"behind the scenes" work was necessary to achieve 
this milestone. The success in this area represents 
the culmination of work across a number of disci
plines. Besides the semiconductor devices, a new 
224-lead multilayer ceramic package was devel
oped. New techniques, including tape-automated 
bonding (TAB), were explored to attach the die to 
the package, and new specifications were necessary 

for the actual printed wire board material and board 
layup. Finally, new manufacturing processes were 
necessary to permit surface-mount assembly and 
test of these devices on both sides of the module. 

Although initializing the operating system on the 
ftrst CPU modules marks a key deliverable for the 
chip and board designers, it is only a starting point 
for the systems activity that is necessary to fully test 
and qualify a new product prior to the start of high-

10 

volume manufacturing. It is often difficult to under
stand the time lag between the availability of the 
first prototype unit running the operating system 
and a product that can be shipped to the customer. 
However, a substantial amount of work must be 
done between these two events. As the formal qual
ification process for new semiconductor devices 
begins, a parallel effort is undertaken to build a large 
number of early systems. These systems are used to 
identify any problems that may occur when the 
pieces of the system are assembled into configura
tions typical of those used by actual customers. 
Testing is divided across several aspects, including 
actual beta test of prototype un.its at customer sites, 
formal testing by any required government agencies 
(e.g., FCC , Ul, V DE), systems design verification 
tests, and architectural testing that ensures that the 
new system complies with the formal VAX architec
ture standards. Once the majority of testing is in 
process and the required interim milestones have 
been met, manufacturing begins turning the assem
bled inventory into fin.ished products to support 
volume availability of the system. 

When a series of systems such as the VAX 6000 
family has established a history in the market, it 
becomes increasingly important to ensure that the 
announcement of the latest family member coin
cides with manufacturing's ability to quickly deliver 
a high volume of product on a worldwide basis. If 
manufacturing cannot do so, a demand will have 
been created that cannot be filled. Revenue and 
sales are lost. The full payback from the many per
son-years of design, simulation, design verification, 
and systems test is only finally realized when vol
ume manufacturing has begun. 

The papers in this issue of the journal will 
provide insight not only into how microprocessors 
and systems are designed and architected, but also 
into the multidisciplinary efforts necessary to bring 
a successful product to market. The design of one of 
the first VAX vector coprocessors is also reviewed. 
This review offers a summary of how new architec
tural issues are resolved and how design trade-offs 
are made. 

Moving a product from advanced development 
to engineering, through manufacturing, and into 
the customer site, over a five-year period, requires 
the efforts of many people around the world. 
Although only the direct work of a small percentage 
of those people are represented in these papers, the 
credit for the success of the products goes equally 
to all members of the team. 



Debra L. Slater 
David M. Fenwick 

D. john Shakshober 
Douglas D. Williams 

Vector Processing on the 
VAXvector 6000 Model400 

The VAX vector 6000 Model 400 processor extends the VAX 6000 family of midrange 

CMOS-based multiprocessors to address the computing needs of numerically inten

sive applications. The three function units of the vector processor combine to form an 

overall vector pipeline that operates at speeds of up to 90 MFLOPs for single-precision 

calculations and 45 MFLOPs for double-precision calculations. The processor's per

formance can also be enhanced by taking advantage of overlapping and out-of 

order instruction execution, as well as chaining. Further, applications can be tuned 

to the VAX vector 6000 hardware through algorithm optimizations in areas such as 

equation solvers and signal processing routines to achieve optimal performance. 

Using the VAX vector 6000 Model 400 system, performance increases ranging from 

3 to 35 times that of the VAX 6000 Model400 scalar system have been realized. 

Vector processing has significantly evolved over the 
past t wo decades. In the late 1960s and early 1970s, 
it was pioneered as a way to increase scient ific 
applicat ion  computer performance over t hat 
achieved by more traditional scalar computers. 
However, t he technology was limited to an elite 
few who could afford mult imill ion-dollar super
computer systems and who were w ill ing to sig
nificantly re-engineer software applicat ions. 

I n  the early 1 980s, more sophisticated 
vectorizing compil er technology was developed. 
This technology allowed users to effect ively pro
gram in h igh-level languages , such as FORTRAN, 
rather than to manually vectorize using low-level 
assembly language. During t his period ,  t here 
were also significant developments in computer 
algorithms t hat were better matched to t he paral
lel ism available in vector hardware. 

Over t he past few years, a new breed of vector 
processor, the mini-supercomputer, has emerged. 
This class of machine includes many of t he perfor
mance features of traditional supercomputers, but 
at costs more commonJy associated wit h  super
minicomputers. Because vector processing is now a 
mainstream sty le of comput ing t hat is applicable to 
a wide range of uses, the VAX architecture was 
recent ly extended to include vector operat ions. 
Furt her, the VAX product l ine has been expanded t o  
include vector processing in both t he VAX 6000 
midrange systems fami ly and the VAX 9000 main
frame family of systems.l 

Digital Tecbnicaljournal Vol. 2 No. 2, Spring 1990 

VAX Vector Processing Overview 
The extension of t he VAX architecture to include 
vector processing features was done in a manner 
that permitted a wide range of possible implemen
tations2 The extension also allowed exist ing VAX 
processors to execute code utilizing the new vector 
instructions under software emulation. 

The vector extensions to the VAX architecture 
include: 

• The addition of 1 6  vector registers, each contain
ing 64 64-bit elements 

• A set of load/store instructions used to move up 
to 64 elements of a vector register to and from 
memory 

• A set of vector register-to-register arithmetic and 
logical instruct ions, operating on up to 64 ele
ments at a t ime 

• A set of instructions for sy nchronizat ion 
bet ween scalar  and vector processing 
subsystems 

Con ceptually , the implementat ion of vector 
instructions w it hi n  the VAX family of processors is 
similar to that of float ing point instruct ions. To 
implement float ing point arithmet ic, some systems 
use dedicated floating point hardware, some sys
tems use microcode, and others emulate fl oat ing 
point in macrocode. In vector processing, vector 
instructions differ from float ing point instructions 

11 



VAX 6000 Model 400 System 

in that they are designed to be executed in a semi
autonomous manner with scalar instructions. Thus, 
vecror instmctions can be executed in parallel with 
scalar instructions or in parallel with other vector 
instructions. Although the scalar and vector units 
operate somewhat independently, tht: units art: 
closely coupled to ensure that memory manage
ment exceptions are precisely reported. Special 
operations ensure floating point exceptions and 
coherence between vector and scalar memory ref

erences are synchronized. 
From a vector perspt:ctive, a typical VAX vector 

implementation can bt: reduced to five hasic units. 
The latter four units arc collectively rderred to as a 
vector processor or vector unit. The hasic units are: 

• A scalar processor that executes scalar instruc
tions, decodes vector ·instructions, which may 
contain multiple internal function units 

• A vector instruction-sequencing control and reg

ister scoreboard 

• A vector register file 

• An arithmetic pipeline or pipelines that consist 
of one or more arithmetic/logic units 

• A load/store unit for memory references 

The vector control and scoreboard logic accepts 
instructions and operands from the scalar processor 
ami dispatches them to the individual function units 

within the processor. It also reports exceptions and 
interrupts to the scalar processor. Since multiple 
vector instructions can be executt:d in parallel , the 
unit may contain scoreboard logic ro identify and 
manage resource conflicts between instructions. 

The vector register file contains the 16 vector reg
isters, each of which consists of 64 64-bit elements. 
The register file has multiple ports that permit loads 
or stores to operate while operands are sent to the 
arithmetic pipes and results are received . 

The vector arithmetic/logic pipelines implement 
all the integer, logical, and floating point instruc
tions. These pipelines may be composed of separate 
pipelined add, multiply, and logical units. Or, they 
may be composed of multiple pipes that operate in 
parallel, with each pipe consisting of a pipelined 
add/multiply/logic unit. 

The load/store unit is responsibk for memory 
references. It generates the required virtual 
addresses (VA), performs translation from virtual 
to physical addresses, and loads or stores the data 
to or from the register files to memory . The load/ 

1 2  

store unit controls a cache memory and contains a 
virtual-to-physical address translation buffer (TB). 

Depending on the design of the scalar and vector 

units, then: are two ways to implement the design 
memory interface for the scalar and vector 
processors: 

• A combined scal.ar and vector processor that 
shares a common cache, address translation 
logic, and path to memory subsystem 

• Separate scalar and vector units with separate 
caches and address translation buffers 

Both of these approaches have their relative 
merits and disadvantages. When significant data
sharing between scalar and vector units exists, the 
combined approach provides more favorable cache 
performance because the common cache is updated 
on both scalar and vector references. Separate 
caches may result in additional cache misses as 
data is "sloshed" between scalar and vector caches. 
For limited data-sharing instances, the separate 
approach may offer more favorable cache perfor
mance. In a combined cache, vector references can 
displace needed scalar data and vice versa. This 
problem does not arise with separate caches 
because the scalar and vector data each has a 
dedicated cache. The separate cache approach also 
allows scalar and vector cache operations to occur 
in parallel. 

In implementing a vector processor, the selection 
between the above alternatives is often driven 
more by technology constraints than issues of archi
tectural elegance. The VAX 9000 system, which is 
implemented in emitter-coupled logic (EC L), chose 
the combined approach. This approach supported 
sharing costly cache RAMS and a common path 
to memory. The VAXvector 6000, which is imple
mented in complementary metal oxide semi
conductor (CMOS) technology, chose the separate 
approach for two reasons. First, module space and 
package pin count constraints made it difficult to 
implement both scalar and vector functions on a 
single module. Second, the cost penalties for sepa
rate scalar and vector cache RAMS and separate 
paths to memory were not prohibitive. 

VAX 6000 Vector Processor 
Description 

System Block Diagram 

The system block diagram for a vector-capable 
VAX 6000 Model 400 machine is shown in Figure 1 .  

Vi>/. 2 Nu. 2, Spring 1990 Digital Technicaljournal 



Vector Processing on the VAX vector 6000 Mode/ 400 

SCALAR I- VECTOR SCALAR I-- VECTOR 
PROCESSOR PROCESSOR PROCESSOR PROCESSOR 

I I I ... 
XMI SYSTEM B U S  

I 1 I 
32MB l · · · 32MB Bl . . .  DISK I ME MORY M E MORY PORT CONTROL 

( U P  TO 256MB OR 8 MODULES) I CABLE f-- RA 70 
STRIPESET 

ETH E R N E T  VAXBI 
BI PORT DEBNI  ESE20 

L.. SOLID- STATE 
DISK 

RAXX 
DISKS 

KDB 1--

Figure 1 VAXvector 6000 Mode/ 400 System Block Diagram 
with Dual Scalar and Vector Processors 

The vector processor occupies a slot adjacent to the 
scalar processor, and both are interconnected by a 
short interface cable. The vectOr processor receives 
all instructions from and returns status tO the scalar 
processor across this cable. For memory references, 
the vectOr processor has its own independent path 
to main memory . The VAX 6000 Model 400 system 
supports configu rations of up to six scalar proces
sors. However, vectOr systems have additional 
configuration constraints because of the increased 
memory bandwidth and XMI slot requirements of 
the scalar/vectOr processor. The VAXvector 6000 
Model 4 00 system supports configurations of single 
or dual scalar/vector processors. or configurations 
of one scalar/vectOr processor and up tO three addi
tional scalar processors. To satisfy memory band
width requirements, VAXvectar 6000 systems with 
a single scalar/vector processor require at least two 
memory controllers. Dual scalar/vector systems or 
single scalar/vector systems with additional scalar 
processors requ ire at least four memory controllers. 

VAX 6000 Mode/ 400 Vector Processor 
The block diagram for the vector processor is 
shown i n  Figure 2.  The machine is divided into 
three separate function u nits that can operate in 
combination or independently: 

• A vector controller, implemented as a single chip 

• Arithmetic pipelines implemented by four pairs 
of chips , i . e . ,  register fi le and vector data path 

Digital Tecbnicaljournal Vol. 2 No. 2, !>/JI"ing 1990 

• A load/store unit, implemented by one chip, 
which also controls a 1 megabyte (MB) cache 

Vector Control Chip 

When the scalar processor encounters a vector 
opcode, it parses and fetches the operands. 
The opcode and all its operands are dispatched 
through the instruction bus to the vector processor. 
For arithmetic instructions, the scalar processor 
will proceed to decode the next opcode in the 
instruction stream. However, for load and store 
instructions, the scalar processor is stalled until all 
address translations are completed. Stalling guaran
tees that any memory management violations are 
synchronous and that the scalar processor can 
restart the fault ing instruction correctly. Within t he 
vector unit the vector control chip is responsible 
for all scalar vector communication. When instruc
tions are received by the vector controller chip, 
the vector controller buffers the instructions and 
controls instructions issuing to the other function 
units within the vector processor. 

An important aspect of the vector control chip 
is the register scoreboard logic, which identifies 
potential register conflicts when vector instructions 
are executed in parallel .  By maintaining accurate 
register usage data, the vector control chip can 
optimize parallelism with the vector processor. 
Optimal performance is ach ieved by executing 
arithmetic operations in parallel with load and store 
operations, chaining the results of arithmetic opera-

1 3  



VAX 6000 Model 400 System 

SCALAR PROCESSOR 

FPU CHIP 

SCALAR XMI 
INTERFACE 

DUPLICATE 
TAG STORE 

VECTOR PROCESSOR 

VECTOR 
CONTROL 
C H I P  

64 

INTERNAL CACHE B U S  

LOAD/STOR E 
A N D  

X M I  INTERFACE 

VECTOR 
REGISTER 
FILES 

ARITH METIC 
PIPELINES 

X M I  SYSTEM BUS 

Figure 2 VAX vector 6000 Mode/ 400 Scalar/Vector Processor Block Diagram 

tions into store operations, and even dynamically 
re-ordering the execution of arithmetic instructions 
relative to load and store instructions to improve 
parallelism. 

The vector control chip sends aU error status 
and machine checks to the scalar processor. When 
an error is encountered, the control chip attempts 
to retry the failing transaction. If the retry is suc
cessful ,  a soft error interrupt is sent to the scalar 
processor. If the retry fails, either a hard error 
interrupt or a machine check is sent to the scalar 
processor. Read operations that fail result in 
machine checks. Write operations that fail result 
in hard error i nterrupts. 

Although not part of the overall control function, 
the vector control chip also contains logic to imple
ment the IOTA instruction . The IOTA instruction 
builds a set of offsets in a vector register. This func
tion did not fit conveniently i n  any other vector 
function. The control chip was selected because it 
had the space available to contain the function. 

Vector Register File and Arithmetic 

Pipeline 
The VA.Xvector 6000 processor's arithmetic pipe
l ine is organized as four pipes. Each pipe consists of 
a quarter of the register file (every fourth element of 
the vector registers), and an associated arithmetic/ 
logic unit .  Each i nd iv idual pipel ine c a n  retire 
one single-precision calculation every cycle or one 

1 4  

double-precision calculation every two cycles. The 
four pipes collectively retire fou r single-precision 
calculations every cycle, or two double-precision 
calculations every cycle. Thus, a much h igher float
ing point performance is achieved than w it h  only 
one individual pipeline. 

The register file chips receive instructions from 
the vector controLler and data from the cache or 
load/store unit .  The register file chip provides read 
operands to the arithmetic pipeline and stores write 
results and mask information. To maximize the use 
of cache bus bandwidth, two 32-bit operands can 
be combined i nto a single 64-bit transfer that is 
simultaneously read or written to two separate reg
ister file chips. The register file internally has four 
64-bit ports. (One is a read/write port for memory 
data; two are read ports for operands; and one is 
a w rite port for resu lts. While one i ns truction is 
writing its results, a second can start reading its 
operands. Thus, the instruction pipeline delay is 
hidde n .  Variations in pipeline length between 
instructions are smoothly handled to ensure that 
no gaps exist in the flow of write data. 

The register file can hold two outstanding arith
metic instructions in its internal queue. Therefore, 
the vector controller can preload the arithmetic 
instruction queue w ith a second instruction, i . e. , 
deferred instruction. Preloading allows the vector 
controller to free the cache data bus, which is 
also used for instruction issuance, for use by a sub-

Vol. 2 No. 2, Spring 1990 Digital Tecbnicaljournal 



sequent load or store i nstruction.  This feature 
improves performance because the arithmetic 
pipeline can execute two arithmetic instructions 
in the time it takes to execute one load or store 
instruction. 

The register file's operand and result ports are 
used by the vector arithmetic pipeline chip. 
Operand data is sent over a 32-bit bus that is driven 
twice per cycle. Results are returned on a separate 
32-bit bus that is driven once per cycle. The two 
operands for single-precision instructions can be 
passed in one cycle, w h ile doub le-precision 
operands take two cycles to transfer. Each arith
metic pipel ine chip has a throughput of one single
precision operation per cycle, one double-precision 
operation per 2 cycles, and one single-precision or 
double-precision divide per 10 or 22 cycles. The 
arithmetic chip has a pipeline delay of six cycles for 
double-precision multiplications, and five for all 
others (except divides), including the data transfer 
cycles. Integer operations are recoded internally as 
double-precision floating point data types. The 
vector arithmetic pipeline chip is a full custom 
implementation largely based on the design of the 
scalar processor's floating point unit:' 

Load/Store Unit 

The control chip uses the vector processor's inter
nal bus to issue instructions to the function units. 
However, once a load or store instruction is issued, 
the load/store chip becomes bus master and con
trols the internal bus. Either the load/store chip, 
vector register files, or the cache can drive the bus. 
Once a load or store instruction starts execution, 
no further instructions can be issued until it com
pletes. This rule simplifies the control chip score
boarding because once a load or store instruction is 
started, no further instructions can start. Therefore, 
scoreboarding of these instructions against the out
standing load or store instruction is not necessary. 
Because scoreboarding of outstanding instructions 
requires considerable logic complexity in the 
vector control chip, i t  was important to keep the 
complexity of this operation minimal. An addi
tional benefit was the simpl ification of the internal 
bus protocol. I t  was excessively complex to imple
ment the capabil ity to stop load or store instruc
tions in progress. This alternative was not pursued 
because the resulting performance benefit was 
minor in comparison to the amount of work 
involved . 

The load/store chip executes the vector load, 
store, scatter and gather memory reference instruc-

Digital Tecbnicaljournal Vol. 2 No. 2, Spring 1990 

Vector Processing on the VAX vector 6000 Mode/ 400 

tions. These instructions involve virtual-to-physical 
address translation, cache management, and inter
action with the memory bus. If a load or store 
i nstruction requires an offset register, such as 
scatter or gather, the offset register is first read into 
a buffer and then added to the instruction's base 
address. This process eliminates turning around the 
internal bus for each offset read, which would add 
more overhead. For strided load or store instruc
tions, the address is generated by adding the stride 
to the instruction's base address. 

Load or store instructions can operate on either 
32-bit (i.e. ,  long word, single-precision) or 64-bit 
( i .e. ,  quad word , double-precision) data types. 
When executing unity-stride 32-bit load or store 
instructions, the load/store chip operates on two 
elements at a time. Two 32-bit elements are com
bined into a single 64-bit cache reference. This 
combination significantly enhances performance 
enhancement in unity stride single-precision data 
operations. 

Virtual-to-physical address translation is per
formed using an on-chip, 136-entry, 68-way-asso
ciative translation buffer (TB). This configuration 
maximizes address translation efficiency, which is 
very important because only l imited chip space was 
available. To optimally service TB m iss conditions, 
the load/store chip contains dedicated logic that 
directly references page table entries upon a TB 
miss. A simpler alternative would have been to use 
microcode in the scalar processor to fetch new 
page table entries upon a TB miss. However, the 
dedicated logic approach was chosen to enhance 
performance for applications that exceed the size 
of the TB.  Under certain TB miss conditions, the 
vector processor may be unable to compute a new 
virtual-to-physical address translation. This situa
tion can occur when the addressed page is invalid or 
has been paged-out to disk. When such a miss 
occurs, the vector unit reports an exception back 
to the scalar processor. Once the scalar processor 
corrects the situation, the instruction is retried from 
the beginning. 

Since the scalar processor must be able to restart 
the faulting vector instruction, it is important to 
precisely identify any vector memory management 
exception with the associated vector load or store 
instruction. This identification is achieved by block
ing issuance of further instructions until the vector 
unit notifies the scalar processor that the vector 
instruction is free of memory management faults. 
The vector unit contains memory management 
prediction logic, called MMOK logic. MMOK logic 

1 5 



VAX 6000 Model 400 System 

a l lows the scalar processor to issue additional 
instructions in parallel with the execution of the 
vector load or store instruction. During execution 
of a strided vector load or store instruction, once 
it is established that the current vector element 
references the same TB entry as the last element 
of the load or store instruction, and that the associ
ated TB entry is free of memory-management 
exception conditions, the load/store unit can safely 
report " address translation successful," i . e . ,  MMOK , 
to the scalar processor. Early prediction of success
ful address translation permits the scalar processor 
to be released and allows it to operate asyn
chronously with the remainder of the vector load 
or store instruction. 

Once a physical address is obtained, the load/ 
store chip references its 32K entry tag store. The 
address is delayed and passed to the 1 MB cache data 
store. This delay permits cache tag lookup and com
pare to complete before data is written to the cache 
on store operations. In parallel, the corresponding 
register file address is presented to the four register 
file chips. The data and addresses are automatically 
al igned for load and store operations to permit 
correct reading and writing of the register file and 
cache data RAMs. Upon cache miss, the load/store 
unit queues the associated 32-byte block read oper
ation with the memory interface logic and contin
ues processing other elements. Up to four cache 
misses can be outstanding before the read data for 
the first miss returns. H its continue to be processed 
while the misses are outstanding. On vector proces
sors, the most important factor is the time required 
to complete the entire load or store operation, 
rather than the time needed to fetch an individual 
element. The cache miss handling feature permits 
the vector processor to m:vdmize its use of available 
XMI bandwidth . 

The vector cache tag and data are parity-pro
tected. Should a cache parity error occur, the cache 
is disabled and the instruction retried from the 
beginning. This method was the simplest option for 
soft recovery of cache parity errors. The operating 
system receives a soft error i nterrupt and can, at 
its option, re-enable the cache. 

The load/store chip contains a 32-element write 
buffer to enhance performance of store operations. 
Since the vector cache operates at higher band
widths than the system bus, the buffer isolates the 
store performance from the slower X M I  memory 
bus. Furthermore, a subsequent load instruction 
that hits in cache can execute while the write buffer 

1 6  

i s  being written t o  memory. I f  the l oad instruction 
takes a cache miss, the load stalls until the store 
completes. This simple scheme improves instruc
tion overlap when load instructions follow store 
instructions without adding undue complexity to 
the load/store unit design. 

Performance Characteristics 
The interaction between the different functional 
u nits of the vector processor creates a number of sit
uations that affect the performance and execution 
of vector instructions. These include: 

• Overlapping instructions 

• Out-of-order instructions 

• Chaining 

Overlap of Instructions 

Arithmetic and load/store instruction execution 
may overlap because the functional u ni ts are inde
pendent. In order to achieve this overlap, the 
following conditions must be met. 

• The arithmetic instruction must be issued before 
the load or store instruction. 

• There must be no register conflict between the 
arithmetic and load/store instructions. 

In the following examples of arithmetic and load/ 
store instruction interactions, an " 1 "  represents 
i nstruction issue time, and a n  " E "  represents 
instruction execution time. The " V R "  represent 
vector registers. The expression "std" is used to 
represent the stride. A series of periods " . . .  " repre
sents wait time in the arithmetic u nit for deferred 
i nstructions. (Note: These e x amples are not 
intended as timing diagrams.)  

VVADDx V R 1 , VR2 , VR 3  I E E E E E E E E  

V L D x  A , s t d , VR 1  I E E E E E E E E E E E E E E  

A s  can be seen i n  the example above, the execu
tion of the vector load instruction (VLDx) can 
overlap the vector add i nstru c t ion (VVADDx) 
because there are no register conflicts between the 
two instructions. In the next example, instruction 
overlap is inhibited because the VVADDx instruc
tion is writing to the register to be loaded, VR3 .  

VVADDx VR 1 , V R2 , V R 3  I EE E E E E E E  

V L D x  A , s t d , V R3 I E E E E E E E E E E E E E E  

I n  comparing these two examples, i t  i s  clear that 
the overlap of the execution of the VVADDx and the 

Vul 2 No. 2, Spring 1990 Digital Technical]ournal 



VLDx greatly reduces the total execution time of 
the instruction sequence. By raking advantage of 
this hardware feature, application codes can show 
greatly improved performance. 

Out-oforder Instruction Execution 

The arithmetic unit includes a deferred instruction 
queue of length 1 .  This queue allows the vector 
control and scoreboard logic to queue one instruc
tion to the arithmetic unit while that unit is still 
executing a previous instruction. The vector con
troller checks the queue's status for an instruction 
when it checks the function unit 's availabi l i ty .  Both 
the deferred and currently executing instructions 
are checked for register availabi l i ty .  This queue 
frees the issue unit to process another instruction 
rather than waiting for the arithmetic unit to com
plete its current instruction. 

For the fol lowing instruction sequence, 

VVADDx V R 1 , VR 2 , VR 3  

VVMUL x  VR3 , VR 1  , VR 4  

V L D x  A , s t d , VR 2  

execution w ithout a deferred instruction queue 
would resemble this example: 

I s s u e  VVADD x  I E E E E E E E E  

I s s u e  VVMU L x  I E E E E E E E E  

I s s u e  V L D x  I E E E E E E E E E E E E E E  

Execution with a deferred instruction queue 
would look like the following: 

I s s u e  VVADD x  

I s s ue d e f e r r e d  VVMU L x  

I s s ue V L D x  

I E E E E E E E E  

I . . . . . . .  E E E E E E E E  

I E E E E E E E E E E E E E E  

These examples i l lustrate the use of  a deferred 
arithmetic instruction. If a deferred instruction 
queue was not implemented, the VVMULx instruc
tion could not be issued until the VVADDx was 
either completed or nearly completed. The VLDx 
instruction would not issue until after the VVMULx 
was issued and would complete much later than 

I s s u e VVADDx 

I s s u e  d e f e r r e d  VVM U L x  

I s s u e  V S T x  

Vector Processing on the VAX vector 6000 Model 400 

in the deferred instruction case. Once the VLDx 
instruction is issued, no other instructions may be 
issued. The instruction overlap execution made 
possible by the deferred instruction queue signi
ficantly reduces total execution time. 

Comparing the last two examples, in the case 
where a deferred instruction queue was used, the 
VLDx instruction can begin executing before the 
VVMULx. It  a lso could complete before the VVMULx 
instruction completes simply because the VVMULx 
instruction is sent to the deferred arithmetic 
instruction queue. This out-of-order execution of 
instructions al lows increased overlap of instruc
tions, which again reduces the total execution t ime 
of the instruction sequence. 

Chaining 

Vector operands are general ly  read from and writ
ten to the vector register file. An exception to this 
process occurs when a store instruction is waiting 
for the results of a currently executing arithmetic 
instruction. (Divide instructions are nor included in 
this exception because they do not have the same 
degree of pipelining as the other instructions.) As 
resul ts are generated by the arithmetic instruction 
and are ready to be written to the register fi le, they 
are also inunediately available for input to the wait
ing store instruction. Therefore, the store instruc
tion can begin processing the data before the 
arithmetic instruction has completed. This process 
is cal led "chain into store." The srore instruction 
will not overrun the arithmetic instruction because 
the srore instruction can process data faster than the 
arithmetic unit can generate results. 

The following instruction sequence 

VVADDx VR 1 , VR 2 , VR3 

VVMU L x  VR 1 , VR 2 , VR 4  

VSTx VR3 , A , s t d  

would resemble the example i n  Figure 3 i f  executed 
without the chain into store process. 

I E E E E E E E E  

I .  . E E E E E E E E  

I E E E E E E E E E E E E E E  

Figure 3 Sample Instruction Sequence without Chain into Store 

Digital Teclmical]ournal Vol. 2 No. 2. Spring 1990 1 7  



VAX 6000 Model 400 System 

If t he instruction sequence were executed with 
t he chain i nto store process, however, it would 
follow t his example: 

I s s u e  VVADDx 

I s s ue d e f e r r e d  VVM U L x  

I s s u e  V S T x  

I E E E E E E E E  

I . . . . . . .  E E E E E E E E  

I E E E E E E E E E E E E E E  

In  these examples, t he VSTx instruction requires 
t he result of t he VVADDx instruct ion. Without t he 
chain into store operation, the VSTx instruction 
must wait for t he VYADDx to complete before 
beginning. The chain into store operat ion allows 
the VSTx instruction to begin while the VYADDx 
is st ill execut ing, increasing t he amount of instruc
t ion execution overlap. As a result , the inst ruction 
sequence requires a shorter period of t ime to com
plete execut ion. 

Load and Store Unit Performance 

Memory access instructions are typically slower 
t han arit hmetic instructions and wil l  frequent ly 
dominate the performance of vectorized appli
cations. Certain coding techniques help minimize 
t he t ime spent waiting for load and store instruc
t ions to complete and reduce t he resulting impact 
on performance. 

Maximize Instruction Execution Overlap Three 
important hardware features help maximize 
instruction execution overlap in t he load/store unit . 
First , a load or store instruction can execute in 
parallel with up to t wo arithmetic instruct ions, pro
vided the arithmetic instruct ions are issued first. 
Second, t he chain into store sequence can reduce 
t he perceived execution t ime of a store instruction. 
Finally, early detect ion of no memory faults allows 
scalar-to-vector unit communications to overlap 
w ith  load or store instruction execut ion . 

In t he instruct ion sequence shown in Figure 4, 
t he main loop of a SAXPY or DAXPY BLAS 1 routine, 
t here is very little instruction overlap. 1 

In t he reordered instruction sequence shown in 
Figure 5 ,  t he VVMULx and second VLDx instruc
t ions overlap, and less t otal execut ion t ime  is  
required t han in the first example. 

The only real difference between the instruction 
sequences in Figures 4 and 5 is t he order in which 
t hey are issued. By recognizing t hat t he VVMULx 
does not require the result of t he second VLDx and 
can precede t hat instruct ion , a significant reduct ion 
in execut ion time is achieved. 

The overlap of load and store instructions can 
also be effect ively maximized by preceding, 
wherever possible, all load and store instructions by 
at least two arithmet ic instructions. In t his way, 
both t he load and store pipeline and t he arithmet ic 
pipeline are in use. 

Minimize Register Conflict Waits A load i nstruc
t ion cannot begin execution u nt i l  t he register t o  
which it w ill write i s  free. A register conflict may 
occur if the dest inat ion register of a load i nstruct ion 
is t he same as the register for a preceding arithmetic 
instruct ion . If  using a different register for t he load 
instruction would permit instruct ion execution 
overlap to occur, t he dest inat ion register should, if 
possible, be changed. 

Locality of Reference of Data The locality of ref
erence of data is important i n  determining t he per
formance of load and store operat ions. Because 
unity  stride load and store instruct ions are the most 
efficient memory access instruct ions . whenever 
possible, data should be stored in t he sequent ial 
order in which it is usually referenced. 

Non-unity st ride load and store operat ions can 
have a significant ly higher impact t han unity stride 

V L D x  X , s t d , VR 1  I E E E E E E E E E  

1 8  

V L D x  Y , s t d , VR 2  I E E E E E E E E E  

VVM U L x  VR3 , VR 1 , VR 1  I E E E E E  

VVADDx V R 1  , VR 2 , VR 2  I .  . .  . E E E E E  

V S T x  VR 2 , Y , s t d I E E E E E E E E E  

Figure 4 Sample Instruction Sequence of Main Loop of a SAXPY or DAXPY BIAS 1 Routine 

Vol. 2 No. 2, Spring /')')() Digital Technical journal 



Vect01· Pmcessing on the VAX vector 6000 Model 400 

V L D x  X , s t d , V R 1 I E E E E E E E E E  

VVMU L x  V R 3 , V R 1 , VR 1  I E E E E E  

V L D x  Y , VR 2  I E E E E E E E E E  

VVADDx VR 1 , V R 2 , VR 2  I E E E E E  

V S T x  VR2 , Y , s t d I E E E E E E E E E  

Figure 5 Sample Instruction Overlap Sequence of a Main Loop 
of a SAXPY or DAXPY BLAS 1 Routine 

operations on the performance level of the XMI 

memory bus. More memory references are required 
for non-unity stride operations of the same vector 
length .  If the ratio of cache miss load and store 
instructions to arithmetic instructions is sufficiently 
high and non-unity stride is used, bus speed and 
bandwidth can limit performance. 

Load and store operations that hit in cache are 
less costly than those that miss cache. Any piece of 
data must be loaded from memory to cache the first 
time it is referenced. If data that is referenced more 
than once remains in the cache, i .e. , is not displaced 
by subsequent data accesses, other references to 
that data will not incur memory access costs, and 
better performance results. 

On any cache fi l l ,  a 32-byte data block is read i nto 
the cache. (Note: This is equivalent to 8 long words 
or 4 quadwords. Single-precision data is a long 
word; double-precision data requ ires a quadword . )  
When non-unity stride loads are used, performance 
can be improved by using the additional data read 
in to cache. This improvement can be achieved by 
fol lowing cache miss non-unity stride loads w ith 
non-unity stride loads that reference the additional 
data and will, therefore, hit in cache. 

Large data arrays and strides can also have an 
impact on the efficiency of the translation buffer. 
For large strides, i .e . ,  greater than 256 s ingle-preci
sion elements or 1 28 double-precision elements, 
a translation buffer m iss can occur for each vector 
element. Even with unity stride, the translation 
buffer miss rate will be higher for large data arrays. 

Algorithms I t  is sometimes necessary to consider 
the algorithm that is represented by the code to be 
optimized because some algori thms are not as well 
suited to vector processing as others. It may be more 
effective to change the algorithm used or the way 
it is implemented than to optimize the existing 

Digital Tecbnical]ournal Vul. 2 No. 2, Spring 1990 

code. Several examples that i llustrate effective opti
mization methods are discussed in the Algorithm 
Optimization section of this paper. 

Arithmetic Unit Performance 

Once an instruction begins execution i n  the vector 
arithmetic uni t ,  it continues executing until all  
results are completed . A deferred arithmetic 
instruction may only begin execution after the 
instruction in the pipeline completes, or if the first 
results of the deferred instruction will not complete 
before the last resu lts from the current instruction 
are completed. The instruction overlap will be 
particularly significant for shorter vectors because 
the startup t ime, i . e. ,  the time that can be 
overlapped , for an arithmetic instruction is fixed 
overhead that represents an increasing portion of 
the execution time as vector length decreases. 

Peak Performance 

The Model 400 vector processor has a cycle time 
of 44.44 nanoseconds. For single-precision opera
tions, this cycle time translates to a theoretical peak 
performance of 90 MFLOPs. For double-precision 
operations, the theoretical peak performance is 45 
MFLOPs. Theoretical peak performance is calculated 
from the number of results per cycle and the cycle 
time as follows: 

Single-precisionpeak =4 / (44 .44 x 101) 

Double-precision peak =2 I (44 .44 x 103) 

Crossover Point 

For any given instruction or sequence of instruc
tions, there is a particular vector length where both 
the scalar and vector processing of equivalent oper
ations yield the same performance. This vector 
length is the crossover point between scalar and 

1 9  



VAX 6000 Model 400 System 

vecror processing and is unique to the particular 
instruction or sequence. Scalar operations are faster 
for vector lengths below the crossover point. Vector 
operations are more efficient for vector lengths 
above the crossover poi nt .  A low crossover point is 
considered a benefit because it indicates that it is 
easier to take advantage of the power of the vector 
processor. A low crossover point means that more 
code can benefit from the vector processor. 

For any single, isolated vector instruction, the 
crossover point on the Model 400 system is quite 
low, generally about 3 or 4. However, an instruction 
is not performed in isolation . Jn a routine or 
application, other factors affect the performance of 
the operations on short vectors. These effects are 
particularly seen when the short vector's data is 
used in several vector operations. 

On the Model 400 system, performing as much 
code as possible on the vector processor, including 
short vector length sections, can mean higher 
system performance. Performance is improved 
because the cache is used more optima l ly .  Speci
fically, once vector instructions have referenced a 
piece of data, that data is included in the vector 
u nit's cache. Subsequent scalar operations on that 
data will  require moving the data from the vector 
cache into the scalar cache. Continued code sec
tions of vector references fol lowed by scalar 
references tend to invalidate the two caches too 
frequently . Therefore, a vector operation is usually 
more efficient than a scalar operation. The cross
over point on the Model 400 system is low enough 
that scalar processing is the faster alternative only 
for isolated operations on short vectors. 

Algorithm optimization Examples 
The previous section of this paper discussed how 
the characteristics of the VAX vector 6000 Model 400 
system's vector processor can affect performance. 
The following examples il lustrate how that perfor
mance information can be used to build optimized 
routines. The examples also show how an algorithm 
and its implemenration can change the performance 
of an application on the VAX vector 6000 processor. 

Algorithm changes can alter the data access pat
terns to use the memory subsystem more efficiently, 
can increase the average vector length, and can min
imize the number of vector operations required. 
By applying Amdahl's Law of vectorization, we can 
improve performance by increasing rhe percentage 
of code that is vectorized. 

20 

To rake advantage of the processing power of the 
VAX vector 6000 Model 4 00 system,  we concen
trated on four basic optimization mer hods: 

• Rearrange code for maximum vectorization of 
the inner loop and remove data dependencies 
within the loop 

• Vecrorize across contiguous memory locations to 
produce unity stride vectors for increased cache 
hit  rates and optimized cache miss handling 

• Reuse the data already loaded i nro the vector reg
isters as freq uently as possible to reduce rhe 
number of vector load and store operations 

• Maximize instruction execution overlap by pair
ing arithmetic instructions between load and 
store instructions wherever possible 

(Note:  Further i nformation on optimization 
techniques in FORTRAN can be found in the VA X 
FORTRA N Performance Guide available with the 
FORTRA N-High Performance Option." Additional 
information on macrocoding for the VAXvector 
6000 Model 400 vector processor can be found in 
the VAX 6000 Vector Processor Programmer's 
Guide. 6) 

By analyzing the groups of applications that have 
high vector process ing potent ia l ,  we identified two 
basic areas where optimization techniques can be 
most useful: equat ion solvers and signal process
ing routines. For example, computational fluid 
dynamics, finite element analysis,  molecular 
dynamics, circuit simulation, quantum chromody
namics, and economic modeling applications use 
various types of simultaneous or differential equa
tion solvers. Applications such as air pol lution 
modeling, seismic analysis, weather forecasting, 
radar imaging, speech and image processing, and 
many other scientific and engineering applications 
use signal processing routines, such as fas t  Fourier 
transforms, to obtain solutions. 

Equation Solvers 
Equation solvers generally fal l  into four categories : 
general rectangle, symmetric, hermitian, and tri
diagonal .  The most common benchmark used to 
measu re a computer system 's abil i ty to solve a 
genera l rectangular system of linear equations is 
Linpack.� The Linpack benchmarks, developed at 
Argonne National Laboratory, measure the perfor
mance across different computer systems while 
solving dense systems of 100, 300, and 1000 linear 
equations. 

Vol. 2 No. 2. Sprin!!, 1990 Digital Technical journal 



These benchmarks are currently written to call 
subroutines from the Linpack library . The subrou
tines , in turn , call the basic linear a lgebra subrou
t ines (BLAS) at the lowest level . For each benchmark 
size, there are d ifferent optimization rules which 
govern t he type of changes permitted in t he Linpack 
report. Optimizations to the BLAS routines are 
a lways a l lowed . Modi fications can be made to t he 
FORTRAN source or by supplying the routine in 
macrocode. A lgorithm changes are only a l lowed for 

the largest problem size, the solution to a system of 
1000 linear equations. 

The smallest problem size uses a two-dimensional 
array that is 100 by 100. The benchmarks are writ
ten to use Gaussian elimination for solving 100 
simultaneous equations. This two-step method fea
tures a factorization routine, xGEFA ,  and a solver, 
xGESL . Both are column-oriented algorithms and 

use vector-vector level 1 BLAS routines. Column 
orientation increases program efficiency because 
it improves locality of data based on the way 
FORTRAN stores arrays. 

As shown in Figure 6, the BLAS level I routines 
allow the user to schedule the instructions opti
mally in vector macrococle. Deficiencies in BLAS I 
routines include frequent synchronization, a large 

ca l l ing overhead , and more vector load and store 
operations in comparison to other vector arithmetic 
operations. 

x A X P Y  - comp u t e s  Y (  I )  • Y <  I l • aX ( I )  

Vector Processing on the VAXuector 6000 Mode/ 400 

The performance of t he Linpack IOO by IOO 
benchmark , which calls the Figure 3 routine, shows 
how an algorithm with approximately 80 percent 

vectorization can be l im ited by the scalar portion . 
One form of Amdahl's Law relates the percentage of 
vectorizecl code compared to the percentage of 
scalar code to define an overall vector speedup. This 

ratio between scalar runtime and vector runtime is 
described by the following formula :  

Vector speedup = time scalar I ( % [scalar I x 
time scalar) + ( I %  vector I x time vector )  

Under Amdahl's Law, the ma.:ximum vector 
speedup possible, assuming an infinitely fast vector 
processor, is :  

Vector speedup = 1 .0 I (0. 2) X 1 .0 + (0.8) X 0 = 

1.01 0.2 = 5.0 

As shown in Figure 7, the Model 400 processor 
achieves a vector speedup of approximately 3 for 

the 100 by 100 Linpack benchmark w hen using the 
BLAS 1 subroutines. It follows Amdahl's Law closely 

because it is small enough to fit t he vector proces
sor's 1 Mbyte cache and, t herefore, incurs very little 
overhead clue to memory hierarchy. 

For t he Linpack 300 by 300 benchmark, opti
mizations include the use of routines that are 
equivalent to matrix-vector level 2 BLAS routines. 

w h e r e  x .  p r e c i s i o n F ,  D ,  G 

L O O P : 

M S Y N C  

V L D x  X ( I l , s t d , VR O  

V S M U L x  a , VR O , VR O  

V L D x  Y < I l , s t d , VR 1 

VVADDx V R O , V R 1 , V R 1  

V S T x  VR 1 , Y < I ) , s t d 

I NC 

I F  < I < S I Z l  GOTO L O O P  

M S Y N C  

; s y n c h r o n i z e w i t h  s c a l a r  

; X (  I )  i s  l o aded i n t o  V R O  

; VR O  ge t s  t h e  p r o d u c t  o f  V R O  

; an d  t h e  s c a l a r  va l ue " a "  

; Y <  I )  g e t  l oaded i n t o  VR 1 

; VR 1  g e t s  V R O  s ummed w i t h  VR 1 

; VR 1  i s  s t o r ed b a c k i n t o Y <  I )  

; i n c remen t I b y  v e c t o r  l e n g t h  

; L o o p  f o r  a l l va l u e s  o f  I 

; s y n c h r o n i z e w i t h  s c a l a r  

Figure 6 Core Loop of a BLAS 1 Routine Using Vector- Vector Operations 

Digital Technicaljournal Vol. 2 No. 2, .vJrin� /'J'JO 2 I  



VAX 6000 Model 400 System 

0.. 
::J 
0 
w 
w 
0.. 
(f) 
a: 
12 
u w 
> 

35 
30 
25 
20 
1 5  
1 0  
5 

0 200 400 600 800 1 000 1 200 
DIMENSION OF PROBLEM S I Z E  

Figure 7 Linpack Performance Graph, 
Double-precision BLAS Algorithms 

Figure 8 details the core loop of a BLAS 2 routine. 
BLAS 2 routines make better use of cache and trans

lation buffers than the Bl.AS I routines do. Also, 
BLAS 2 routines have a better ratio between vector 
arithmetics and vector load and stores. The larger 

matrix size increases the average vector lengt h .  Per
formance is improved by amortizing the t ime to 

decode instruct ions across :t larger work load . 
By removing one vector load and one vector store 

from the innermost loop, t he BLAS 2 routine has a 
better ratio of arithmetic operations to load and 

store operat ions than B LAS I routines. Although the 
300 by .300 array fits into the vector processor's 

I MB cache, not al l  t he cache can be mapped by i ts 
translation buffer. By changing the sequence in 

which this routine is called in the program ,  the data 
access patterns can be altered to better use the 

vector unit 's translation bu ffer. Thus,  higher per
formance is obtained. 

The percent of vectorization increases primarily 
because of the increase in  the matrix size from 100 

by 100 to 300 by 300. With a vector fraction of 
approximately 95 percent ,  F igure 7 shows the 
speedup impron.:ment in the 300 by 300 bench
mark w hen using methods based on BLAS 2 rou

tines. With a matrix vector algorithm, the 300 by 
300 benchmark yields speedups of between 10 and 
12  over its scalar counterpart. 

There are no set rules to follow when solving the 

largest problem size, a set of 1000 simultaneous 
equations. One potential tool for optimizing this 
benchmark is the LAPACK l ibrary developed by 
Argonne National Laboratory, in conjunction with 
the University of I ll inois Center for Supercomputing 
Research and Development (CSRD).  The LAPACK 
library features equation solving algorithms t hat 

w il l  block the data array i nto sections that fit into 

x G EMV - c omp u t e s  Y C  I ) = Y C  I )  + X ( J ) • M (  I , J )  

w h e r e  x = p r e c i s i o n = F ,  D ,  G 

! LO O P : 

J L O O P . 

M S Y N C  

V L D x  Y ( I )  , s t d ,  V R O  

V L D x  M ( I , J )  , s t d ,  VR 1 

VSMU L x  X C J )  , VR 1  , VR 2  

VVADDx V R O , VR 2 , VR O  

I NC j 
I F  ( J  < S ! Z )  G O T O  J LO O P  

V S T x  

I NC 

VR O , Y ( ! ) , s t d  

I F  ( I < S I Z )  GOTO I LOOP 

M S Y N C  

; s y n c h r o n i z e w i t h  s c a l a r  

; Y (  I )  i s  l o a d e d  a s  V R O  

; VR 1  g e t s  c o l umn s o f  M (  I , J ) 
; VR 2  g e t s  t h e  p r o d u c t o f  VR 1 

; an d  X ( J )  as a s c a l a r  

; VR O  g e t s  V R O  s ummed w i t h  V R 2  

; L o o p  f o r  a l l va l u e s  o f  J 

; VR O  g e t s  s t o r e d  i n t o Y C  I )  

; L o o p  f o r  a l l va l ue s  o f  I 

; s y n c h r o n i z e w i t h  s c a l a r  

Figure 8 Core Loop of a BLAS 2 Routine Using Matrix-Vector Operations 

2 2  Vol. 2 No. 2, Spring 1?90 Digital Tecbnicaljounlal 



a given cache size. The LAPACK library calls not 
only the BLAS 1 and BLAS 2 routines but also a t hird 
level of BLAS , cal led matrix-matrix BLAS or the BLAS 
level 3.

" 

Figure 9 shows that a matrix-matrix multiply is at 
the heart of one BLAS 3 routine.  The matrix multi
plication computation can be blocked for modern 

architectures with cache memories. H ighly efficient 
vectorized matrix m u ltipl ication routines have 

been written for the VAX vector architecture. For 
example, a double precision 64 by 64 m atrix 

multipl ication achieves over 85 percent of t he peak 
MFLOPs on the Model 400 system. 

Performance can be further improved with other 
methods that increase the reuse of data while it is 

contained in t he vector registers. For example, loop 
unrolling can be done until  all the vector registers 
have been ful ly utilized . Partial results can be 
formed within the innermost loop to minimize the 
loads and stores required. Because both rows and 
columns are traversed, the algorithm can be blocked 

for cache size. The VAXvector Model 400 system 

Vector Processing on the VAX vector 6000 Mode/ 400 

exhibits vector speedups greater than 35 for t he 64 

by 64 matrix mult ipl ication described above. 

Although the overall  performance of the 1000 by 
1000 size benchmark is less than a single 64 by 64 

matrix multiplication, it does indicate the potential 
performance when blocking is used . Improving the 
performance of th is benchmark is most challenging 
because the 1000 by 1000 matrix requires about 
eight times the vector cache size of l l\-18 .  Further 
analysis is being conducted to determine the most 
efficient block size that would maximize t he use of 
BLAS 3 and remain within the size of the cache for a 
given block of code. 

The vectorized fraction i ncreases to approxi
mately 98 percent for the 1000 by 1000 benchmark. 

The proportion of vector arithmetics relative to 
vector loads and stores is much improved for the 
BLAS 3s. Although the cache is exceeded , perfor

mance more than doubles when using a method that 
can block data based on the BLAS 3 algorithms. 
Therefore, the VAXvector 6000 Model 400 pro
cessor's performance for Linpack 1000 by 1000 

x G EMM - c omp u t e s  Y <  I , J )  = Y <  I , J )  • X (  I , K l * M ( K , J )  
w h e r e  x = p r e c i s i o n = F ,  D ,  G 

I J L O O P : 

K L O O P : 

M S Y NC 

V L D x  Y (  I , J )  , s t d , VR O  

V L D x  M ( K , J l  , s t d , VR 1  

VSMU L x  X ( I , K )  , V R  1 , VR 1 

VVADD x V R O , VR 2 , VR O  

I N C K 

I F  ( K  < S I Z l G O T O  K L D D P  

R E S E T 

V S T x  

I NC 

K 

V R O , Y < I , J )  , s t d  

I 

I F  ( I  < S I Z l G O T O  I J L O O P  

I NC J 

R E S ET 

I F  ( J  < S I Z l  GOTO I J L O O P  

M S Y N C  

; s y n c h r o n i z e  w i t h  s c a l a r  

; Y ( 1 : N , J )  g e t s  l o a d e d  i n t o  V R O  

; K ( 1  : N , K ) g e t  l oa d e d  i n t o  VR 1 

; VR 1  ge t s  V R 1  s ummed w i t h  

; X ( I , K ) a s  a s c a l a r  

; VR O  g e t s  V R O  s ummed w i t h  V R 2  

; i n c r eme n t  K b y  ve c t o r  l e n g t h  

; r e s e t  I t o  S I Z  

; VR O  g e t s  s t o r ed i n t o  Y (  I , J )  

; i n c r e me n t  I b y  ve c t o r  l en g t h  

; i n c remen t J b y  ve c t o r  l en g t h  

; r e s e t  I t o S I Z  

; s y n c h r o n i z e w i t h  s c a l a r  

Figure 9 Core Loop of a BLAS 3 Routine Using Matrix-Matrix Operations 

Digital Technical journal Vol. 2 No. 2, Spring 1990 23 



VAX 6000 Model 400 System 

obtained a vector speedup of approximately 2 5 ,  as 

shown in Figure 7. 

Signal Processing- Fast Fourier 

Transforms 

The Fourier transform decomposes a \vaveform , 
or more general l y. a collect ion of data, into com
ponent sine and cosine representation . The discrete 
Fourier transform (DFr) of a data set of length .v 
performs the transformation fol lowing the strict 
mathematical definit ion which requires U (N2) 

floating point operations. Jn 1965 , the fast Fourier 
transform (FFT) was developed by Cooley and 
Tukey. FFT reduced the number of operations 
to O (N x LOG [N l) ,  which is a significant improve

ment for computational speed .H 

As shown in Figure 10, the complex data in the 
bottom but terfly is multipl ied in each stage by the 
appropriate weight .  The result  is then added to the 

top burterfly and subtracted from the bottom 
butterfly. If the algorithm is left in  this configura
tion, it must use non-unity stride vectors, very short 

vectors, or masked arithmetic operJtions to per
form the very small  buttertl ies. 

Optimized One-dimensional Fast Fourier 

Transforms 

The bit-reversal process that permutes the data to a 
form that enables the Coolcy-Tukey a lgorithm to 
work i s  also show n in Figu re 10 .  When using 
vectors, a common approach to performing the bit

reversal reordering is to use vector gather or vector 
scatter instructions.<) These instruct ions al low 
vector loads and stores to he performed using an 
index register. Vector loads and srorcs require a con

stant stride. However, vector gather and scarter 
operations a l l ow the user to build a vector of offsets 

to support ind irect addressing in vector mode. Both 
gather and scatter instruct ions are available with 
VAX vectors. 

A vector implemenration of the FIT algorithm has 
been developed that is wel l  suited for t he VAX vector 
architecture. One optimization made to the algo
rithm involves moving the bit-reversal section of the 
code to a place where the data permutation will 

benefi t  vector processing. By doing so, two goals 

are accomplished . First ,  the slower vector gather 
operations are moved to the center of the algorithm 
such that the data w i l l  a lready be in the vector 

cache. In Figure 10 ,  t he first FFT stage starts out with 
large butterfly distances. After each stage the butter
fly distance is halved. For the optimized ,·ersion 

24 

BIT 
REVERSAL CORRECT 
R EORDER R ESULT 

0 0 0 
1 8 1 
2 4 2 
3 1 2  3 

4 2 4 

5 1 0  5 
6 6 6 
7 1 4  7 

8 1 8 
9 9 9 

1 0  5 1 0  

1 1  1 3  1 1  

1 2  3 1 2  

1 3  1 1  1 3  

1 4  7 1 4  

1 5  1 5  1 5  

LOG (N) STAGE 1 STAGE 2 STAGE 3 STAGE 4 

STAGES 

Figure 10 The Cooley-Tukey Butterfly Graph, 
One-dimensional Fast Foun·er 
Transform for N = Hi) 

shown in Figure I I ,  the hit-reversal permutation is 
performed as dose to the cenrer as rossible, when 
the stage number = LOG (N)/2 .  To complete the 

algorithm, the butterfly distances now increase 
again . Second , this process ent ire l y  e l iminates the 

need for short butterfl ies. 
Another optimization made to t he FFT algorithm 

is the use of a table lookup method to access the sine 
and cosine factors, which reduces repetitive calls to 
the computatiorul ly inrensive trigonometric func
tions. The init ial ization of this trigonometric table 
has been ful l y  vectorized hut shows only a modest 
factor of 2 performance gai n .  ·ro bu i ld  the table, a 
first-order l inear recurrence loop is formed that 
severely  limits vector speedup. Because this cal cula
tion is only done once, i t  becomes negligible for 
multiple ca l ls to the one-dimensional FI ·Ts and for 
al l h igher dimensional FFTs. The benchmark shown 
in Figure 1 2  was looped and includes the ca lcu lation 
of the trigonometric table performed once for each 
FFT data length . 

Reusing data in the vector registers also saves 
vector processing time. The VAX vector architecture 
provides 16 vector registers. If  a l l  16  registers are 
used careful ly, data can be reused by two successive 

butterfly stages without storing and reloading the 
data. With half the number of loads and stores, the 
vector performance almost doubles. 

Vol. 2 No. l. .\jJrinJ< I'J'JO Digital Technicaljournal 



0 

1 

2 

3 

4 

5 

6 
7 

8 
9 

1 0 
1 1  

1 2  

1 3  

1 4  

1 5  

BIT 
R EVERSAL CORRECT 
REORDER RESULT 

0 0 

1 8 
2 4 

3 1 2  

4 2 

5 1 0  

6 6 
7 1 4  

8 1 
9 9 

1 0  5 
1 1  1 3 
1 2  3 
1 3 1 1  

1 4  7 
1 5  1 5  

STAGE 1 STAGE 2 
(HAS 

STAGE 3 STAGE 4 

R EG-REUSE) 

0 

1 

2 

3 

4 

5 

6 
7 

8 
9 

1 0  

1 1  

1 2  

1 3  

1 4  

1 5  

Figure I I  Optimized Cooley-Tukey Butterfly 
Crapb, One-dimensional Fast 
Fourier Transform for N = 16 

Optimized Two-dimensional Fast Fourier 

Transforms 

The optimized one-dimensional F FT can be used to 
compute multidimensional FFTs. Figure 13 shows 
how an N by N two-dimensional FFT can be com
p u ted by performing N one-dimensional col u m n  
FfTs and then N one-dimensiona l row F FTs. The 
same routine can be called for column or row access 

FFTs by simply varying the stride parameter that is 
passed to the routine. (Note: In FORTRAN, the 
column access is unity stride and the row access has 
a stride of the dimension of the array.) 

For improved performance on VAX vector 
systems, the use of a matrix transpose can dra

matica l ly increase the vector processing perfor
mance of two-dimensional FFTs for large values of 
N, i .e. , N > 256. The difference between unity stride 
and non-unity stride is the key performance issue. 
Figure 14 shows that a vecrorized matrix transpose 
can be performed after each set of N one-dimen
sional F FTs. The computation will  be equivalent to 

Figure 10 but with a matri.,x transpose: each one
dimensiona l FFT will be column access which is 

unity stride. The overhead of transposing the matrix 

becomes negl igible for large values of N 
When the value of N is relatively small ,  i . e . ,  

N < 256, the two-dimensional F F T  can b e  com
puted by call ing a one-dimensional FFT of length N2 

Digital Technical journal Vol. 2 No. 2, Spring /'J<JO 

Vector Processing on the VAX vector 6000 Model 400 

1 6  
1 4  

(l. 
5 1 2  

tlj 1 0  (l. 
Cf) 8 
a: 
� 
&l 4 
> 

0 1 000 2000 3000 
LENGTH OF DATA S IZE 

KEY: 

& WITH R EG-REUSE 

0 NO REG-REUSE 

4000 5000 

Figure 12 One-dimensional Fast Fourier 
Transform Performance Graph, 
Optimized Single-precision 
Complex Transfonns 

The smal l  two-dimensional FFT can achieve per
formance equal to that of the aggregate size one
d imensional F FT by l inearizing the data array. 
Figure 15 shows the trade-off between using the lin

earized two-dimensional rou tine (for smaiJ N) and 
the transposed method (for large N )  to maintain 
high performance across all  data sizes. 

The optimization of an algorithm that vectorizes 
poorly in its original form has been shown. The 

result ing algorithm yields much h igher perfor

mance on the VAX vector 6000 Model 400 processor. 
H igh performance is due to the unique way the 
algorithm touches contiguous memory locations 
and its effort to maximize the vector length .  The 
implementation described above always uses unity 
stride vecrors and always results in a vector length of 
64 for F FT lengths greater than 2 K  (2 x 1024). 

N 1 -0 FFTS N 1 -D FFTS 

COL U M N  ROW 

Figure 13 Two-dimensional Fast Fourier 
Transfonns Using N Column and 
N Row One-dimensional Fast 
Fourier Transfonns 

25 



VAX 6000 Model 400 System 

1 4  

(l_ 1 2  
::::l 
5J 1  0 
w 
BJ 8 

� 6 
f-
� 4 
> 

2 

N 1 -D FFTS TRANSPOSE 

COLUMN 

N 1-D FFTS TRANSPOSE 

COLUMN 

Figure 14 Two-dimensional Fast Fourier 
Transforms Using a Matrix 
Transpose between Each Set of N 
Column One-dimensional Fast 
Fourier Transforms 

0 200 400 600 800 1 000 1 200 
DIMENSION OF PROBLEM SIZE 

KEY: 

AI. TRANSPOSED 

0 LINEARIZED 

Figure 15 Two-dimensional Fast Fourier 
Transform Performance Graph, 
Optimized Single-precision 
Complex Transforms 

Summary 
The VAXvector 6000 Model 400 processor delivers 
high performance for computational ly  intensive 
applications. The CMOS-based VAX vector 6000 is 
capable of operating at peak speeds of 90 :\!FLOPs 
single precision and 45 MFLOPs double precision. 

26 

Linear algebra and signal processing applications 
that util ize the various hardware features have 
demonstrated vector speedups between 3 and 35 
over the scalar VAX 6000 Model 400 CPU times. 
With the integrated vector processing available on 
the VAX vector 6000 Model 400, the performance of 
computationally intensive applications may now 
approach that of supercomputers. 

Acknowledgments 
The authors would l ike to acknowledge the tech
nical contribution of the following people: Paul  
Brodeur ,  Doug Burns, Giao Dau , Bob Dickson, 
Darrel Donaldson, Hugh Durdan, Bill Gist, Ani! 
Jain ,  Chandrika Kamath, Dwight Manley, Mike 
Pl ine, John Redford , Sean Reilly, Tim Stanley, and 
M ike Uh ler. 

References 

1 . ] .  Crol l ,  " VAX 6000 Model 400 Multiprocessor 
System Overview," Proceedings of COMPCON 
'90 ( IEEE ,  forthcoming 1990). 

2. D. Bhandarkar and R. Brunner, " Vector Exten
sions to the VAX Architecture," Proceedings of 
COMPCON '90 ( IEEE , forthcoming 1990). 

3. M. Gavrielov et al . "A 50 MHZ Uniformly Pipe
l ined Floating-Point Arithmetic Processor," 
Proceedings of ISSCC '89 (IEEE, February 1989): 
50-5 1 .  

4 . ] . Dongarra, Performance of Various Computers 
Using Standard Linear Equations Software in a 
FORTRAN Environment, (Argonne, IL :  Argonne 
National Laboratory, June 1989). 

5. VAX FORTRAN Perfonnance Guide (Maynard: 
Digital Equipment Corporation, Order No. 
AA-P B75A-TE , forthcoming 1990). 

6.  VAX 6000 Vector Processor Programmer's Guide 
(Maynard : Digital Equipment Corporation, 
Order No . EK60VAA-PG,  forthcoming 1990). 

7. C .  Bischof et al . ,  LAPA CK, (Argonne, IL :  Argonne 
National Laboratory, April 1989). 

8. ] .  Cooley and J. Tukey, "An A lgorithm for 
Machine Calculation of Complex Fourier Series ," 
Mathematical Computing, no. 1 9  ( 1965):  
297-301 . 

9. P. Swartztrauber, "Vectorizing the FFT 's ,"  
Parallel Computing (Academic Press, 1982) :  
5 1 -85.  

Vol. 2 No. 2, Spring 1990 Digital Tecbnicaljournal 



Patrick Sullivan 
Michael A. Callander, Sr. 

james R. Lundberg 
Rebecca L. Stamm 
lJ!illiam� ll�bill 

The VAX 6000 Model400 
Scalar Processor Module 

The VAX 6000 klodel 400 CPU module is the latest generation of the compatible 

VAX 6000 family of computers. The Model 400 is a single-board, OvtOS-based CPU that 

significantly extends the performance of the VAX 6000 series. The system provides 

nearly 7 VAX units of performance {VUPs) in single-processor applications and up to 

36 VUPs in six-processor systems. The Model 400 module is a plug-in replacement for 

the Model 200 a1ul Model 300 processors. Chip set and module designers of this new 
system cooperated closely to meet aggressive timing and performance goals. Several 

enhancements were made to the cache and bus interface units to improve multipro

cessor petformance. A vector interface was included for connection to a companion 

vector processor module. Signal integrity was an important consideration for both 

chip and module design. 

When the Midrange Systems Business (MSB) Group 
began to develop the VAX 6000 series, the Semi
conductor Engineering Group (SEG) had started 
development of a new CMOS-based CPU chip set. 1 

The project 's goals were the following: 

• Achieve CPU performance at least equal to the 
'5 .  '5 YUPs of the VAX 8700 system 

• Support a 28-nanosecond (ns) module cycle t ime 

At that time, the VAX 8700 system was the fastest 

VAX available and used emiuer-coupled logic (ECL) 
to achieve a 45-ns cycle t ime.  SEG designers 
believed a system implemented in CMOS technology 
could meet or exceed that performance level and at 
a much lower manufacwring cost . With reference 
to the second goa l .  a 28-ns cycle time would take 
advantage of chip sets that could run faster t han the 
projected 40 ns cycle time. 

In discussions with MSB , we realized our module 
project could be mod i fied to include an XMI inter
face and , therefore, become another member of the 
VAX 6000 series 2 We then agreed to undertake a 
joint development effort between MSB and SEG , 
w hich resulted in the VA){ 6000 Model 400 scalar 

CPU .  Development of this scalar processor module 

is the focus of this paper. 
Halfway t hrough the project, support for a vector 

processor module was included because the VAX 
architecture was extended to include vector 

Digital Technical journal Vol. 2 No. 2, Spring 1990 

instructions:1 The vector processor module, which 
was developed by MSB, can provide a significant 

performance boost for certain classes of vector 
problems. 

The first Model 400 systems were shipped in 

July 1 989. This delivery was made just 15  months 
after t he introduction of the initial 6000 Model 200 
series. 

Design Challenges 
The aggressive 28-ns cycle time goal for the module 
design required a tight coupling of the chip set and 
module design efforts. With this short 28-ns cycle 
time goal , the module interconnect had to be 
treated as transmission lines. Consequently, signal 
integrity considerations were critical to design suc

cess and would i mpact all areas of the design 
chip, package, and etch board . The approach taken 
to address signal integrity is described in more 
detai l  in the Signal Integrity section . 

The performance goals also dictated a change i n  
the VAX 6000 Model 400 data and add ress line (DAL) 

pin bus. The older, less complex multiplexed 32-bit 
bus would have to be separated into a separate 

27-bit address bus (A-bus) and a 64 -bi t  data bus 

(D-bus). That  decision in turn resulted in the need 
for h igh pin count packages (224 pins) and the asso
ciated signal integrity challenges of dealing with as 
many as 90 output drivers switching simulta-

27 



VAX 6000 Model 400 System 

neously. while driving transmission lines with a low 
effective impedance of 60 ohms. 

Two new technologies were needed to meet 
these cha llenges. First,  new chip packages had to be 
developed to supply the increased number of signal 
pins. The packages use multi layer ceramic sub
strates to provide signal planes, as well as separate 
power and ground planes for both internal logic 
and pad ring power. The packages have 2 24 pins on 
a 25-mil pitch and are surface mounted for better 
module routabi l i ty .  Second. the 25-mil package pin 
pitch required the use of a finer geometry etch 
board : 1 3-mil module vias and 10-mil routing pitch . 
This specification required the physical design team 
to initiate a very close development and qual
ification effort with the etch board vendors. ' 

Major Module Subsections 
The Model 400 module, or XR P ,  is a single-board 
VAX CPU implemented with the Model 400 chip set 
and a REXMI interface to the XMI bus.2 The chip set 
includes five chips: a CPU chip (RFX 520), a floating 
point accelerator chip (F-chip), a backup cache 

R EX520 CONTROL 
CPU WITH F-C H I P  

CAC H E  

DAL 

control ler chip (VC), a clock d istribution chip 
(CLK), and a system support chip (RSSC). The R EXMI 
interface consists of three chips: two copies of the 
data path chip (XDP),  and a controller/interface 
chip (XCA). 

A block diagram of the XRP module is shown 
in Figure 1 .  The module consists of four m ajor 
sections: 

• CPU and F-chip floating point accelerator 

• VC chip and backup cache RAM array 

• The RSSC system support chip 

• The XMI interface, including REXMI 

The REX520 is the first VAX microprocessor chip 
to implement a fully pipelined microarchitecture. 
The F-chip has (-,4-bit-wide data paths and a pipe
l ined execution uni t .  These chips cooperate to 
implement the base instruction group of the VAX 
architecture. The two chips represent the CPU sec
tion of the XRP module, and both chips connect 
directly to the DAL .  Both chips also have a private 
8-bit bus for control and status information . 

I 
SYSTEM A N D  AUXILIARY CONSOLE 

DATA ROM 
RSSC A N D  

EEPROM 

ADORE� 
�DACSS 

I CLOCK I 
DATA 

BACKUP 
CACHE 
RAMS 

VECTOR 
I NTERFACE 
BUS (CABLE) 

l I 
CONTROL 

VC C H I P  
I -BUS 

R EXMI 

I 
XCI , - -+ - - - - - - -t - - - , 

I I XMI I X CLOCK XLATCHES (7) : CORN 
I I L - - � - - - - - - �- - - _j  

Figure 1 XRP Module Block Diagram 

XMI 

ER 

2H Vol. 2 No. 2, .\j!rinp, /1.)')0 Digital Technicaljournal 



The REX520 provides the hardware and 
microcode necessary to parse specifiers, execute 
instructions, handle exceptions, and otherwise 
implement the VAX architecture. The REX520 
also provides full  VAX memory management, a 
4 -gigabyte (GB) vi rtual address space, and support 
for 5 1 2  megabytes (MB) of physical memory . The 
chip contains a (">4-eorry, fully associative transla
tion buffer. Both process and system-space map
pings are stored in the buffer. The chip also includes 
a 2-ki lobyte (KB), direct-mapped instruction and 
data cache (primary cache) with an 8-byte block 
and fill size. 

The F-chip enhances the computation phase of 
floating point and certain integer instructions in  
conjunction with the R EX 520 chip. The F-chip exe
cutes the F- , D- ,  and <�-format floating point instruc
tions, as well as the long word variants of integer 
multiply .  The chip receives operands from the 
REX520, computes the result , and passes the result 
and status back to the HEX520. The REX520 chip 
completes the instruction. 

The V\. chip implements a 2 K  tag store and neces
sary control for a 1 28KB backup cache. The cache 
uses 1 5 -ns , 16K-by-4 static random-access mem
ories (SIV\Ms) on the module. The vc chip also 
includes a copy of the primary cache tag store, the 
invalidate bus ( 1 -bus), and an interface to the vector 
interface bus (V I  B). The 1 -bus connects to the REXMI 
and boosts performance by doing inval idate filter
ing. The cache design is discussed in more detail in 
the Model 400 Caches section. 

The RSSC chip is a modification of the sse chip 
used in a number of previous \.PUs .  It incorporates 
the common core of functions that support the chip 
set in the XMI system environment.  The RSSC chip is 
discussed in detai l  in the Model 400 System Support 
Chip section. 

The XMl interface consists of the standard XML
corner components and the REXMI chip set. The 
HEXMI chip set interfaces the DAL to the XCI , which 
is the user side of the XMI corner. The XMI interface 
is discussed further in the XM I interface and R EXM I 
section. 

DAL operations are synchronous on the XRP 
module. Therefore, a very low skew clock distri
bution system was required . The c lock chip and 
control led , equal-length clock l ines to each of the 
chips provide this distribution . The clock chip 
receives a 1 43-megahertz (,\1Hz) osci llator input and 
provides two sets of synchronous four-phase 
clocks. Each clock phase driver output can drive 
four 50-ohm lines in para l lel . In the XRP design, 

Digital Tecbnicaljournal Vol. .! No . .!, Sprin!( 1<)<)0 

The VAX 6000 Model 400 Scalar Processor Module 

there are eight chips that require all four phases, 
and each set of clock outputs drives four chip loads. 
Discrete Schottky diodes are used at the receiving 
ends of a l l  the clock l ines for termination. This 
design achieved a clock skew of less than 0.5 ns at 
the receiving chips. 

The DAL pin bus is a ful ly synchronous, hand
shake protocol bus. The DAL is nonpended in that it 
has only one transaction outstanding at a time, and 
it is also nonmultiplexed w ith separate address and 
data l ines. The design consists of a 27-bit address 
bus (A-bus), a 64-bit data bus (D-bus) , and associated 
control signals. The OAL runs at a 28-ns cycle time, 
synchronous with the Model 400 chip set . The tim
ing is controlled by 4 overlapping 1 4 -ns-wide clock 
phases, which are separated from each other by 
7 ns. The P-chip, F-chip, vc chip, backup cache 
RAMs, and the REXMI communicate through the 
DAL .  The P-chip is the default bus master and 
contains the arbiter for the bus. The P-chip uses the 
OAL to initiate reads and writes to the backup cache 
and main memory through the REXM I .  The backup 
cache and the R EXMJ send read data to the P-chip . 

The bus master notifies other bus nodes of the 
start of a transaction. The receiving node can termi
nate a transaction in one of three ways. It can 
indicate a successful completion, indicate an error, 
or request that the transaction be retried . Once the 
receiver indicates one of the transaction termina
tion signals, the bus master deactivates. 

One DAL transaction takes a minimum of three 
cycles. The maximum transaction time depends 
upon the system response to read and wri te 
requests. The RSSC includes a bus timeout mecha
nism that prevents the system from hanging. 
Most DAL signals are transferred in three phases, 
a lthough some control signals are t ransferred 
in two. 

As noted earl ier, vector interface capabi lity was 
added after the VAX architecture was extended to 
support vector operations. The vector functionality 
was added to the Y\. chip because that chip could 
accommodate the extra pins required for the inter
face, i .e . , 224 pins versus 164 . 

The major units of the XRP module are described 
in the following sections. 

Mode/ 400 Caches 
The XRP module incorporates a two-level cache 
hierarchy that maximizes CPU performance. The 
first-level cache is the primary cache, called the 
P-cache, which is contained entirely in the P-chip. 
The second-level is the backup cache or B-cache, 

29 



VAX 6000 Model 400 System 

and it consists of rhe vc chip and 24 1 5-ns, 16K-by-4 
static HA:-.-ts. The vc chip contains the rag store and 
the control logic for the B-cache. The SRAMs store 
the cache data. The P-cache and the B-cachc contain 
both instructions and data. 

The P-cache is a 2KB cache and is direct-mapped, 
with an 8-byre block size. The cache is read
al locate, no-write-allocate, and write-through . In 
write-through, writes that hit in the cache are 
simul taneously written to the cache and to main 
memory. The P-cache can perform a new access 
once every cycle. 

Each P-cache rag entry includes an 18-bit tag, one 
val id bit ,  and one parity bit .  There arc 256 tags cor
responding to 256 data blocks. Each data block con
tains 8 data bytes and 8 parity bits, w ith parity was 
implemented on each byte. Parity permits a byte 
write to be done wi thout the need to reca lcul ate 
parity across the other bytes. This process avoids 
the performance penalty that occurs when all byres 
are not written at once, as in the read-modify-write 
process. 

The B-cacl1e is a 128KB cache and is direct
mapped, with an 8-byte access size. It has a 16-byte 
sub-block size and a 64-byre block size. The cache is 
also read-allocate, no-write-allocate, and write
through. There arc 2048 entries in the B-cache tag 
store. Each entry comains a 1 2-bit tag, 4 valid bits, 
and a parity bit .  

Backup Cache Hit 
Designers optimized access t ime to the backup 
cache by connecting the cache RAMs directly ro the 
DA L .  The chips, the bus, and the specialized hit sig
nals are shown in Figure 2 .  

When the P-chip issues a read o n  the DA L ,  it 
drives the address on the A-bus to the vc chip and 
cache RAMs. The P-chip asserts memory read 
(ME.\LR D_L). The VC chip uses MEivLRO_L to 
enable the assertion of the cache RAM chip select 
l ines (BC_cs_L< 7 : 0 >  ).  This process accomplishes 
two things. The chip select l ines are valid by the 
time the P-chip has driven the A-bus to a val id state. 
Further, the total time to perform the read from the 
RAMs is minimized . 

The RAM access begins in parallel with the tag 
store access. If the vc chip finds a match in the tag 
store, it asserts BC_H IT _L to notify the P-chip. By 
the time BC_ H !T_L is asserted, the data from the 
cache RAMs is valid on the 0-bus , and the P-chip 
then accepts the data . 

If the vc chip does not find a match in the tag 
store, it asserts BC-MISS_L . This signal notifies the 

30 

F-C H I P  

24  1 6K-BY-4 SRAMs 
BC_CS_L<7:0> 

r{]· . .  y 
BC_WE_L 

A-BUS 

D-B US I 
BC_HIT_L I I 

P-C HIP 
MEM_RO_L 

VC CHIP 

� BC_MISS_L 

1--
REXMI  1-----

X M I  

Figure 2 Backup Cache Access Diaf!,ram 

REX M !  to send the read request to memory . At the 
same time, the VC chip asserts the cache RAM wrire 
enable (BC_ WLL) and waits for the data to return 
from memory . When the REX1vl ! returns the data, it 
asserts a transaction termination signa l .  This signal 
informs the P-chip, the VC chip, and the F-chip that 
data is  ready on the bus. All three chips receive the 
data simultaneously, and the data is written into the 
cache RAMs. The transaction ends when the P-chip 
accepts the data. 

XMI Interface and REXMI 
The XRP module accesses all memory and 1 /0 
devices over the X M I  bus . The R E X M !  interfaces the 
chip set to the XM!  bus by means of two data path 
chips (XDPs) and one control/address chip (XCA). 
Each X DP is responsible for 32 bits of the H EX M I  's 
64-bit data path .  The XCA is responsible for the 
add ress data path,  DAL control logic, Xl\1!  control 
logic, and control of the two XDPs. Both chips are 
implemented in CMOS-2 standard cells. 

The primary tasks of the XMI interface are to 

• Forward REX520 references to the X l\1 1  

• Impl ement a write bu ffer that reduces traffic to 
main memory 

• Sup port control of cache fills and cache 
invalidates 

• Sup port Xl\1! interrupt logic 

Vul. 2 No. 2. 5jJring 1<)<)1! Digital Technical journal 



CMOS-2 Standard Cell Technology 
Custom chips were not used to implement the XCA 
and XDP chips. Instead, two alternatives were 
investigated . These alternatives were to use either 
gate arrays or standard cells from external vendors, 
or internally built CMOS-2 standard cells. 

A number of external vendors offered products 
with the density and internal gate speeds needed to 
implement the REXMI chips. However, none offered 
the performance and flexibility needed to interface 
to the DAL. Therefore, we chose the C MOS-2 stan
dard cells, which could interface to the DAL .  

We added a number of new cells to the standard 
cell library : several versions of a high-performance 
3. 3-volt output driver, input latch with the required 
0-ns set-up time, and a low skew internal clock 
buffer capable of driving over 30 picofarads of 
capacitance. These new cells were largely based on 
circuits designed for the custom CMOS-2 CPU chips, 
which met the high performance goals set by the 
Model 400 program. 

Performance Considerations 

Performance bottlenecks in high-speed computer 
systems most often occur in the path ro and from 
main memory . The X R P 's two cache levels greatly 
reduce the number of reads required. However, 
since both caches are write-through, all writes must 
be forwarded to main memory by the REX1'vl l .  To 
improve performance. the REXMI implements a 
write buffer with four octaword ( 1 6-byte) entries. 

The write buffer improves performance in two 
ways. First, it decouples the REX520 write rate from 
the slower XMI write rate. The REX520 can transfer 
8 bytes of write data to the REXMI every three 
cycles. This data is loaded into the write bu ffer and 
later transferred to main memory at XMI speeds. 

Second, the write buffer combines multiple 
REX520 writes into a single X M I write. The most 
efficient write transaction is a full octaword write. 
The R EXMI always tries to combine multiple 
R EX520 writes into full octaword writes. The 
REX.MI loads write data into a write buffer entry. 
The write data is held umil either a new octaword 
address is received or a purge write buffer condi
tion occurs. When the REXMI receives a write to a 
new octaword address, the current write bu ffer 
entry is marked fu l l .  A new write buffer entry is 
then opened with the new octaword address. Write 
buffer entries are transmitted as they are marked 
fu l l .  To guarantee that the write buffer data is writ
ten to main memory in a timely manner, the write 
buffer is flushed before the following conditions: 

Digital Technical journal Vol. 2 No. 2, Spring 19<)0 

The VAX 6000 Model 400 Scalar Processor Module 

• XMI l/0 space read or write 

• Interlock read or unlock write 

• lnterprocessor interlock 

• XMI read to an octaword location that includes 
data contained in the write buffer 

• In response to a clear write buffer conunand 

Combining P-chip writes reduces the number of 
write transactions needed by over 40 percent. This 
reduction certainly improves single-processor per
formance. However, the greatest improvement is in 
multiprocessor performance where the XMI band
width required by each CPU is reduced. 

Cache Coherence 
The XRP module allows data to be shared among 
mu ltiple processors. The XRP design assures that 
the most recently written copy of any data is pro
vided to a running process. This process is cal led 
cache coherence. 

In multiprocessing systems, coherence can be 
ensured in two ways. Cached copies of data that 
have been written can be inva lidated, or each cache 
can be updated with more recent data . Since it is 
simpler to invalidate than to update, an invalidation 
scheme was implemented on the XRP module. 

Every X R P  processor write is sent to XM I mem
ory . When an XRP module broadcasts a write on the 
X M I ,  the command, address, and data are captured 
in memory . Other XRP modules capture the com
mand and address to invalidate any valid B-cache or 
P-cache entries that correspond to the address. 

We could have opted to broadcast all XMI  writes 
as invalidates on the DAL. However, this method 
would have greatly i ncreased the DAL traffic and 
would have reduced the processor's performance. 
To increase the performance of multiprocessor 
systems, the vc chip provides a low-overhead 
invalidate mechanism through the J -bus. The REXMI 
can determine through the ! -bus if data is currently 
cached. The REXMI sends an inval idate on the DAL 

only if the data is cached. 
The vc chip maintains a duplicate copy of the 

primary cache tag store. The chip accesses the copy 
in parallel with the backup cache tag store 
whenever invalidate addresses are placed on the 
1-bus. When an !-bus address match is detected in 
either tag store, the chip notifies the REXMl of the 
hit. The REXM! broadcasts the invalidate address 
onto the DAL .  The inval idate address notification is 
recognized by both the VC chip and the REX520. 

3 1  



VAX 6000 Model 400 System 

The !'-chi p  inv:.tl id;.tt<:s th<: !'-cache entry. and the vc 

chip inval idates the entries in both the B-cache and 

in the copy of the I'-cache tag store. 

If the 1'-ctChe were a subset of the B-cache, we 

would not han: had to implement the P-cache tag 

stor<: copy on the VC chip.  In this design. any 

address that hit in th<: B-each<: would ha\'e been sent 

to the DA L. hut this process wou ld h:t\T caused an 
in\'al idate request to be sent to the P-each<: as wel l .  

However. \V i th  t h is approach, the vc chip wou ld 

have ro send i m·alidares ro the P-cache whenever a 

R-cache block was d isplaced . The transmission to 

the !'-cache wou ld have been required because the 

1'-cach<.: and B-cachc block sizes ar<: d i ffcrt:nt .  It  was 

simpler to impl<.:mem the copy of the P-cache tags 

and i rs control . 

Anorhn alternative wou ld have lx:en ro use a 

dupl icate copy of the B-cache and I'- cache rag stores 

impll'mented i n  cx tt:rnal logic on the module. The 

R I'X:VI I  then wou ld havt: interrogated the tag stores 

d irectly .  This a l ternative was rejected because it 

would have used too much space on the module.  

The Mode/ 400 System Support Chip 
A \'ariety of su pport logic is  required to complete 

the fu nctionality of a VAX C l'l i module. The Model 

400 S\ S tt:m support chip ( RSSC) integrates the com

mon core of funnions ncn:ssary to support the VAX 

system em·ironmt:m onto a single chip .  It prov idt:s 

th<: operat ing system with the hardware primitives 

nt:nlu.J to implement the hoot a nd console rou

t ines. Tht: chip a lso pro\' idt:s st:n:ral nect:ssary t im

ing mechanisms. Th<: RSSC is designed to interface 

direct ly with the Modcl · iOO chips. 1 It is based on t he 

systt:m support chip (SSe) t hat  v.·as design<:d for use 

w i t h  tht: earl ier C . '<IOS-hased VAX systt:ms.' 

The Vector Interface Bus 
The vector intt:rbce bus connects the Model 400 

C P l l  mod uk to :�n opt ional vector modu k 5 The 

vector mod ule can perform fast ct'lculat ions on 

vector data. This capabi l i ty  gready increases the 
execution spt:ed of certain applications. 

There art: two levels to the i nterface. Th<: first is 

the microcode that implements the vector instruc

tions defined by the VAX architecture. The second is 

the hardware imp lementation features required by 

the microcod<:. 

Tht: REX';20's microcode vector support is l im

itt:d to decoding vector instruct ions , p3rsing the 
sp<:c i fiers ,  and passing operand and control infor

mation to the vector u n i t .  The sc;�.la r CPU module 

dot:s not pass th<: actual  vector elements ro the 

vector mod ule through the vector int t:rface. Ratht:r, 
the vector module rt:ft:rt:nccs t he ,.t:ctor data 

directly over the X :\11 bus. To perform this  [XOC<:�s. 

the vector mod ule implemt:nts rh<: fu l l  \'A X memory 

management ;�.rch i tectur<:. 

The opcodc and operand informat ion is tra ns

ferred to the vector module  through tht: \'ector 

i nterface The RF.X')20 uses in ternal processor rt:gis

ters ( I I'Rs) for read and write operations to transfer 

the information ro the vector interface. I P Rs  ar<: a lso 

used to read and w rite register information stored 

both in t he interface hardware and on the \'ector 

modu le. 

The vector unit  <:x<:cutt:s most vector instructions 

in parallel with the sc:�lar Cl'l l execlltion of subs<:

quent i nstructions. For som<: v<:cror i nstructions, 
particularly memory transfer i nstruct ions , th<: 

R EX')20 m icrocode reads a vector unit  register at 

the end of the i nst ruction . At th is point , the R EX ')20 

sta l l s  unti l  the vector unit r<:sponds and eff<:ctively 

forces synchronous <:xecution of instructions. 

The hardware implementation of the vector 

i nterface consists of two pieces. The first is an i nt<:r

face to the Model 400 DA L .  This interfac<: al lows 

microcode-generated orcode, orcrand, and regis
ter data to be received from ami driven to t he 

f{ f.X')20.  The second p ice<.: is the vector interface 

bus ( V J B) that connects the vector and scalar mod

uks together over :1 cable.  This interface and th<: 

connection to the V I B  arc imp kmented in the VC 

chip on the scalar side and in the VECTL chip on the 

vector s ide. 

Thc vector module clock sysr<:m is  asynchronous 

to the scalar  mod ule.  The V ! B  runs synchronousl y  

with respect t o  the \'ector mod ule  clock system for 
design simplicity.  The vc chip im rlements a l l  t h<: 

asynchronous control  l ogic that is required to trans

fer data between the two clocking sysr<:ms. 

Signal Integrity 
The X R P  design had very aggressi\'c rimi ng goals .  

For example,  1 4 -ns and 2 1 -ns data t ransft:rs wt:re 
required to meet the 2H-ns ta rgt:t cycle t i me. These 

requirements were mad<: more difficult  by the 

potential noise problems that could be caused by 

over 90 drivers swi tching simul tant:ou s l y  in on<: 
package. 

Conseq uent ly, signal i ntegrity assu m<:d a major 

role in the XHP des ign . Signal in tt:grit y  rroblems 

were compounded by fast CMOS-2 edge rates (i . c . ,  
1 . '; ns). long interconnects ( u r  to 2 5  i nch<:s w i t h  as 

many as 8 loads per signal), and im pedance mis

matches associated with capacit ive CMOS n-:c<:i vers. 

Vol. 1 No . .!. .\firing I')<)( I Digital Teclmicaljournal 



The XRP signal integrity methodology was 
developed early in the design process. Al l  simula
tions were made in the SPICE program (' Ideally, the 
entire module wou ld have been modeled . However, 
the complexity of the module environment and 
computer resource constraints precluded that 
approach . Instead, only one driver was used in the 
simulations. The effects of intersignal coupling and 
parallel switching were included by appropriately 
scaling interconnect and package impedances. Even 
with this simpl ified method , an estimated 1 500 CPU 
hours on a VAX H700 system were required to per
form rhe XRP signal integri ty  simulations. 

Simulations and Models 

A typical simu lation included all circuits and any 
accompanying parasi!ICS from the external 
enabl ing clock edge through to the receivers. A ll 
simulations modeled a three-stage clock receiver, 
on-chip resistance capacitance delay, the output 
driver, package impedance models for signals and 
internal/external power, receivers, and module 
interconnect. 

The c lock receiver model generated the on-chip 
clock phases from rhe low-skew double phases 
received from the clock chip. The model also con
tained an internal switching model .  It switched 
several capacitances that were simi lar to the chip 
internal loading. Over a cycle, th is modeling met 
the chip's maximum internal power. The switching 
model, together with the chip package impedance 
model for internal power, produced worst-case 
noise on rhe chip internal power rails and substrate. 

The module interconnect was modeled as trans
mission l ines. The impedance of a transmission l ine 
accounted for the coupling of adjacent signa ls 
switching. For example, if adjacent lines were 
switching in the same direction , the effective 
impedance would be increased; whereas switching 
in the opposite d irection would lower the effective 
impedance. 

Finally, the signal and external power impedance 
models were scaled to reflect worst-case coupling, 
and size and number of drivers switching in paral
lel . Collectively, these models accounted for the 
effects of an entire hus switching. 

Worst-case Conditions 

There are two distinct subsets of the simulation 
models. One set simulates worst-case signal noise or 
ringing. The other simulates worst-case, i . e . ,  slow
est, settling times. These subsets are, for the most 
parr , mutually exclusive. In other words, parame-

Digital Tecbnica/journal Vol .! No . .!, .�fJrin[!, f<J')I! 

The VAX 6000 Mode/ 400 Scalar Processor Module 

rers that  rend to suppress ringing generally increase 
settling t imes and vice versa . 

The overall design had ro satisfy the criteria for 
achieving specified sett l ing times and s imulta
neously reduce ringing to an acceptable level. 
Several modeling parameters were simulated to 
worst -case starus. These parameters are listed in 
Table 1 .  The impact of these parameters can be fur
ther understood by referring to Figure 3 .  This figure 
represents the same simulation under worst-case 
slow and fast conditions. 

Table 1 Worst-case Modeling Parameters 

Simulation 

Worst-case Worst-case 
Parameter Settl ing Noise 

CMOS process corner Slow Fast 

CMOS j u nction Max i m u m  M in im u m  
temperatu re 

I nternal power supply M i n i m u m  M ax i m u m  

Output series resistor M ax i m u m  M i n i m u m  

N u mber o f  d rivers Maxi m u m  M ax i m u m  
switch i ng 

Mod u l e  interconnect M ax i m u m  Maxi m u m  
length 

I ntercon nect M i n i m u m  Max i m u m  
effective ZO 

6.0 

5.0 

4.0 

(f) 3.0 
VIH f-_J 

0 
> 

2.0 

1 .0 WORST-CASE SETTLING T IME 

(SLOW) 

- 1 . 0 ":---:'-::--�-�--!:--::'::-----'----::':-----:'-__J 
45 50 55 60 65 70 75 80 85 90 

NANOSECONDS 

KEY 

V I H - I N PUT VOLTAGE H IGH 
V IL - I N PUT VOLTAGE LOW 

Figure 3 Simulation under Worst-case 
Slow and Fast Conditions 

33 



VAX 6000 Model 400 System 

Signa/ Integrity Constraints 

The signal integrity analysis had a direct impact on 
the design of the scalar CPU at the chip. package, 
and module levels. The impact at the chip kvel was 
seen in three areas. The first was the design of the 
I/O buffers. The second was the determination of 
the optimal series output resiswrs (on-chip) for 
different drivers. The third was the segregation of 
the external power buses to eliminate noise at 
quiescent drivers. 

At the package level, two design decisions were 
made. The external power reference planes were 
split to prevent coupling of asynchronous buses. 
Power was del ivered to the lower bonding tier to 
reduce power supply loop inductances. At the mod
ule level, several specifications were developed , 
which incl uded the following: 

• All discrete terminations and their placement 

• The maximum allowable etch length per signal 
and order of connection 

• The maximum allowable package dispersion 
etch length 

• The module etch technology tO best reduce 
coupling 

Cross-organizational cooperation was essential 
to the successful production of these design levels. 
For example, a joint review of the chip packaging 
technology in the design stage ensured that the 
design met stringent signal integrity requirements. 
Working closely with the module PC designer 
ensu red optimal component placement and inter
connect routing. Cooperative efforts such as these 
helped ensure the reliability and performance of the 
design . 

Results 
Two correlations of bench versus simulation results 
were used for verification purposes. The first corre
lation was run on a test module early in the design 
phase. The difference between simulated and bench 
resu lts averaged 4 .4 percent. The correlation on the 
final X R P  implementation presented an average dis
crepancy of 2 percent, which is less than 200 pico
seconds (ps). These results strongly validated the 
modeling methodology . Figures 4 and 5 show the 
results of the bench and simulation of the REX520 
driving the 0-bus. The waveforms exemplify the 
excellent correlation obtained on the final module. 
(Note: The results shown in these figures represent 
nominal rather than worst-case conditions.)  

34 

7 .0 
6.0 
5.0 
4 .0 

� ��----�--��--� � 3 01---+----1-
> 2 .0 

1 .0 
0 .0 1--+--+--

KEY: 

VIH - INPUT VOLTAGE HIGH 
VIL - IN PUT VOLTAG E LOW 

6.0 
5.0 
4 .0 

Figure 4 Bench Results of the REX520 
Driving the D-bus 

43 200 

� 3.0 
t:::; VIH 

� 2 0  
1 .0 
0.0 

- 1 .0 L_�'-------'------'-----'------'----'----'----'---' 
0 0 1 0 .0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 

NANOSECONDS 

KEY 

VIH - INPUT VOLTAGE HIGH 
VIL - INPUT VOLTAGE LOW 

Figure 5 Simulation Results of the REX520 
Driving the D-bus 

Signal integrity had a major impact on the design, 
performance, and reliability of the Model 400 scalar 
CPU.  All critical signals were carefully s imulated 
and anal yzed prior to chip and module implementa
tion . The Model 400 is currently the fastest VA X 
system in production . The Model 400 also has the 
distinction of needing no revisions, from prototype 
tO final product, for signal integrity purposes. 

Performance 
The VAX 6000 Model 400 system , based on the XRP 
module, represents the highest performance VA X 
system yet released .  Performance ranges from 
nearly 7 VUPs in a single-processor system to 
36 VUPs in a six-processor system. The VAX 6000 

Vol. 2 No. 2, Spring 1990 Digital Technicaljountal 



Model 4 1 0 system provides roughly twice the 
performance of the previous generation CMOS

based system , the VAX 6000 Model 3 10.  It also 
represents a 28 percent performance gain over the 
previous generation EC L system , the VAX 8700 sys
tem. (Note: One V U P  is equal to the performance of 
the VAX- 1 1 /780 system . )  

Table 2 compares the performance o f  t h e  
VAX 6000 Model 4 10 system to other VAX systems. 

Table 2 Single-processor Performance 
Comparison 

System 

VAX 1 1 /780 

VAX 6000 Model 2 1 0  

VAX 6000 Model 3 1 0  

VAX 8700 

VAX 6000 Model 4 1 0  

VUPs 

1 .00 

2 . 53 

3.38 

5 . 20 

6.64 

Up to six X R P  modules may be configured in a 
single VAX 6000 Model 400 system . These modules 
deliver up to 36 V UPs. Ideally, a linear performance 
increase is expected as more processors are added 
to a multiprocessor system . However, a number of 
factors l imit the overal l  system performance, such 
as contention for bus bandwidth, increased mem
ory latency, and additional software overhead. 

A great deal of effort was expended in the 
Model 400 design to limit the amount of perfor
mance lost in a multiprocessor system. 

A nu mber of multistream benc h marks were 
assembled. These benchmarks were run on the 
VAX 6000 Model 400 system to efficiently measure 
performance by simulating real work environments 
across a number of areas. The results for each 
system are shown in Table 3 .  

Table 3 Mu lti processor Performance 
Comparison 

Work Area 1 CPU 2 CPUs 4 CPUs 6 CPUs 

E ngineeri ng 1 .00 1 .92 3.71 5.31  

Scientific 1 . 00 1 . 92 3 . 74 4 . 78 

Commercial 1 .00 1 . 98 3.80 5 . 25 

Acknowledgments 
The authors would l ike to acknowledge the follow
ing people for their contributions to the XRP mod-

Digital Tecbnical]Otlrnal Vol. 2 No. 2, Spring 1990 

The VAX 6000 Model 400 Scalar Processor Module 

ule development effort: Dick Bagley, Jean Basmaji ,  
Rick Calcagni, Glenn Garvey, John Gu ildoo, Andy 
Ladd, Bill LaPrade, Bob McCarty, D ina McKinney, 
Curt Miller, Roland Ouellette, Dave Rouille, John 
Sweeney, M ike Uhler, M i ke Warren, and Joh n  
Wilson. 

References 

1 .  H .  D urdan et al . ,  "An Overview of t he VAX 
6000 Model 400 Chip Set," Digital Technical 
journal, vol. 2 ,  no. 2 (Spring 1990, this issue): 
36-51 .  

2 .  B. Allison, "An Overview of the VAX 6200 Family 
of Systems ," Digital Technical journal, vol. 1 ,  
no. 7 (August 1988): 1 0- 18.  

3 .  D .  Slater et a l . ,  "Vector P rocessing on the 
VAXvector 6000 Model 400," Digital Technical 
journal, vol. 2 ,  no. 2 (Spring 1990, this issue): 
1 1 -26. 

4. ] .  Bartoszek et a\ . ,  " VAX 6000 Model 400 Physical 
Technology," Digital Tecbnicaljournal, vol. 2 ,  
no. 2 (Spring 1990, this issue): 52-63 . 

5 . ] .  Winston, "The System Support Chip, a Multi
function Chip for CVAX Systems, "  Digital 
Technical journal, vol. 1 ,  no. 7 (August 1988): 
1 2 1 - 128.  

6. SPICE is  a general purpose circuit  simulator 
program developed by Lawrence Nagel and El lis 
Cohen of the Department of Electrical Engi
neering and Computer Sciences, University of 
California, Berkeley. 

35 



An Overview of the VAX 6000 
Model 400 Chip Set 

W. Hugh Durdan 
William]. Bowhill 

john F. Brown 
William V. Herrick 

Richard C. Marcello 
Sridhar Samudrala 

G. Michael Uhler 
Nicholas Wade 

The VAX 6000 Model 400 processor is a CMOS implementation of Digital's V,4X 

architecture, offering an average of seven times the performance of the VAX-111780 
processor at a cycle time of 28 ns. The processor comprises five custom chips imple
mented in Digital's proprietary CMOS-I and CMOS-2 semiconductor processes. The 
chip set design incorporates the best features of the previous VAX 8700 and VLSI VAX 
designs and in addition implements new performance features. Among these are a 
larger translation buffer and primary cache, a de-multiplexed 27-bit address and 
64-bit data bus, and a tight�y coupled 128KB backup cache. The five chips, which are 
designed for multiprocessing environments, are the REX520 CPU, the floating point 
accelerator, the vc vector and cache controller chip, the RSSC systen1 support chtjJ, 
and the CLK clock chip. 

Introduction 
The VAX 6000 Model 400 chip set consists of five 
custom V LSI (very large scale integration) chips 
implemented in Digital's CMOS- I and CMOS-2 pro
cesses. The five chips are the CPU chip {REX520), 
the floating point accelerator chip {F-chip), the vec
tor and cache controller chip (VC chip), the system 
support chip (RSSC), and the clock chip (CLK chip). 
These chips are designed to be used in multiple
system environments, of which the VAX 6000 
Model 400 series is one such example. ' 

T he REX520 chip i s  a pipelined VAX CPU that 
implements the VAX base instruction group and 
controls the operation of all other chips 2 The 
design for the REX520 is an evolution of both the 
previous generation CMOS processor chip and the 
VAX 8800 processor:H The REX520 is logically 
divided into four sections: the 1-box, E-box, M-box, 
and bus interface unit (BtU). The 1 -box fetches and 
decodes VAX instructions, and provides this infor
mation to the E-box. The microcode-controlled 

E-box parses instruction specifiers, executes VAX 
instructions, and processes interrupts and excep
tions. The M-box contains a 64 -entry, fully associa
tive translation buffer, and a 2-kilobyte (KB) on-chip 
primary cache. The BIU acts as the interface 
between the REX520 and the interchip environ
ment described below. 

36 

The F-chip is a companion chip to the REX520. 
It accelerates the computation phase of the VAX F- , 
D-, and G-format floating point instructions, and 
the longword-length integer multiply instruction. 
The F-chip receives control information from the 
REX520, operands from either the REX520, the 
backup cache, or memory, and returns status and 
results to the REX520. 

The vc chip provides the tag store and necessary 
control for a 128KB backup cache that is imple
mented in external random access memory (RAM) 
on the CPU module. The chip implements a dupli
cate tag store for the REX520 primary cache and an 
interface through which the system environment 
can determine if data is cached at a particular 
address. Through a vector interface bus (V I B), the 
vc chip also provides the control and status inter
face between the CPU module and an optional 
vector module. 

The RSSC chip incorporates the common core 
of functions required to support the VAX 6000 
Model 400 chip set in a system environment. RSSC 
supports read-only memory (ROM) and electri
cally erasable programmable read-only memory 
(EEPROM), and contains 1 KB of battery hacked-up 
RAM, the console terminal universal asynchronous 
receiver/transmitters (UARTs), interval and pro
grammable timers, and a time-of-year clock. 

Vol. 2 No 2, Spring 1990 Digital Tecbnicaljournal 



The CLK chip receives a 143-megahertz (MHz) 
osciUator input. The chip provides four low-skew 
clock phases to the chip set and the module 
environment. 

Interchip and Module Environment 

The chips in the Model 400 chip set are connected 
together and to the rest of the module environment 
a5 shown in Figure 1 .  

Unlike the previous generation CMOS processor 

design," the Model 400 chip set implements sepa
rate 27 -bit address and 64-bit data buses. Backup 
cache reads, writes, and fills are done with the 
address on the A-bus. The data is driven to or 
received from the parity protected D-bus . Control 
for the backup cache RAMs is provided by the vc 
chip on dedicated control l ines . 

Memory , 110 space, and external processor regis
ters are accessed by driving the address to the A-bus 
and the data to the D-bus. ROM and EEPROM control 
is provided by the RSSC on dedicated control J ines. 

F-chip operands are driven to the D-bus from the 
R EX520, backup cache, or memory to the F-chip . 
Results are driven back to the R EX520 on the 0-bus. 
Control and status information for these transfers 
is performed on a private bus between the REX520 
and F-chip. 

Vector instructions are decoded by the REX520. 
The opcode and instruction operand information is 
transferred from the R EX520 to the vc chip. From 
there, the information is transferred to the V!B cable 
and then to the optional vector unit .  Note that only 
status and scalar operands (contained within the 
instruction stream) are transferred on the V IB .  Data 

A-BUS 

D-B US 

INTERRUPT 
REQUESTS 

CLOCKS 

I-BUS 

VIB CABLE 

1 43 MHZ 
OSCILLATOR 

An Overview of the VAX 6000 Mode/ 400 Chip Set 

transfers into and out of the vector register file are 
performed by the vector processor through a direct 
port to the memory subsystem . 

Interrupt requests are received by the REX520 
from the module environment on nine dedicated 
interrupt request l ines . Five of these J ines are for 
requests for special purpose interrupts, such as 
interval timer requests. 

Performance Goals and Design 

Considerations 
The goal of the design was to meet or exceed the 
performance of the v AX 8700 processor. To meet 
this goal ,  a 40-nanosecond (ns) cycle time was 
required under worst-case conditions. As the design 
progressed , it became clear that the CMOS-2 pro
cess, in which most of the chip set is implemented, 
offered enough performance to al low the target 
cycle time to be decreased. 

As a result ,  the cycle time was reduced from 40 ns 
to 28 ns. At this cycle time, the VAX 6000 Model 4 10 
system runs at  nearly 7 VUPs in  most applica
tions, or roughly 1 .3 times the performance of the 
VAX 8700 processor. (The acronym vurs stands for 
VAX units of performance; 1 VUP equals the perfor
mance of a VAX- 1 1 /780 system.)  The performance 
of the system may be further expanded by adding 
processors to the system, to a maximum of 35 VUPs 
in the VAX 6000 Model 460.  

To achieve the performance goals, a number of 
microarchitectural trade-offs were made relative to 
the VAX 8700 and previous VLSI VAX designs .  I n  
essence, the best features o f  each were incorporated 
into the design of the VAX 6000 Model 400 chip set . 

Figure I VAX 6000 Mode/ 400 lnterchip Environment 

Digital Technical journal Vol. 2 No. 2, Spring 1990 37 



VAX 6000 Model 400 System 

For example, the REX520 chip and the F-chip are 

fu lly pipelined designs that make shorter cycle 
times possible and improve performance. The 
REX520 design also includes read-and-run and 
write-and-run features. These features decouple 
subsequent execution in the CPU pipeline from the 
completion of references to cache and memory . As 
opposed to previous VLSI  designs, a larger transla
t ion buffer and primary cache and a de-multiplexed 
27-bit address and 64-bit data bus in the REX520 
also improve performance. The tightly coupled 
1 28KB backup cache significantly reduces the read 
latency seen by the CPU when a read misses in the 
primary cache. It also reduces the read traffic seen 
by the memory subsystem .  

The chip set was designed from the beginning 

with multiprocessing in mind. Because caches must 
remain coherent across all CPUs in a syste m ,  a 
method must be provided to invalidate cached loca
tions in all other caches when one CPL writes to 
that location. One option would have been tO mir
ror all writes done by any CPU in the system onto 
the A-bus of all C l'l ·s .  However, mirroring is a rela
tively expensive operation, especially when most of 
these addresses are not cached in any other CPU .  

Instead of the mirroring method, we chose to 
implement a duplicate copy of the primary cache 
tag store in the vc chip and to implement a low
overhead port, the 1-bus. The module environment 
uses the 1-bus to determine if the address is actually 
cached by either the primary or the backup cache. 
With this method, only those invalid addresses that 
correspond to cached locations must be mirrored 
onto the A-bus. 

CMOS and Packaging Technologies 
The chip set was implemented in  Digital's proprie
tary second-generation complementa ry metal 
oxide semiconductor technology, CMOS-2 .  We 
selected CMOS as the chip processing technology 
because it offers high density, high rel iabi li ty, low 
power, and low-cost performance. 

Table 1 Summary of Chip Statistics 

Signal 
Chip Pins Die Size 

R EX520 C P U  1 57 1 2m m  x 1 2m m  

By developing the technology in-house, Digital 
has gained competitive performance and time-to
market advantages for its low-end and midrange 
products . A summary of the transistOr and pin
count statistics for the chip set is shown in Table I . 

CMOS-2 is an N-wel l ,  P-epitaxia l ,  double-metal, 
5-volt process with 1 .5 micron minimum feature 
sizes. With respect to CMOS- I ,  the ftrst generation 
process, CMOS-2 offers a 25 percent reduction in 
la teral and key vertical dimensions, a 78 percen t  
improvement in circui t  density, and nomina l ly a 
33 percent improvement in chip performance. The 
VAX 6000 Model 400 chip set cycle time and cir
cuit density requirements helped drive the develop
ment of the process that has been optimized for 
microprocessor chip performance. Details of the 
process features and capabi l i t ies are shown i n  
Table 2 .  

Metal oxide semiconductor field effect tran
sistors (MOSFETs) are built in a P-epitaxial layer 
(30 ohm-em) grown on a low-resistance P+ si l icon 
substrate (0.02 ohm-em). The high resistance of the 
epitaxial layer keeps parasitic junction capacitance 
low and allows better transistors to be fabricated. 
The low-impedance substrate dramatically reduces 
latchup, a phenomenon in which parasitic bipolar 
transistors are triggered into a sustained high cur
rent mode. Latchup disrupts normal circuit opera
tion and often destroys the chip. 

The P-channel MOSFETs are made in the N-doped 
well regions of the epitaxial layer. The N-channel 
MOSFETs are made in the as-grown P-regions of 
the epitaxial layer. This process optimizes the 
mobility of the N-channel MOSFETs and overall 
circuit speed. 

An N+ polysilicon (polycrystalline sil icon) and 
tungsten-disil icide sandwich materia l ,  polycide, 
forms the MOSFET gates. Polycide resistance is in 
order of magnitude lower than that of the poly
s i l icon used in CMOS- 1 .  The resulting smaller para
sitic delays across the MOSFET gates and loca l 
interconnections help improve circuit speeds. 

Transistor Cou nt 

Power Control & 
Dissipation Memory Data Path 

6W 1 80K 1 40 K  

V C  cache control ler 1 78 1 0 . 7 m m  x 1 0 . 8 m m  2 . 5W 1 84 K  34K 

F-chip floating point 1 03 1 2 . 7 m m  x 1 1  m m  4W 1 34 K  

CLK clock 20 5mm x 5 m m  2W 5K 

Total:  364K 3 1 3 K  

38 Vol 2 No. 2, Spring 1990 Digital Tecbnicaljournal 



An Overoiew of the VAX 6000 Mode/ 400 Chip Set 

Table 2 CMOS-2 Process Features and Capabilities 

Effective channel length 

Metal 1 

Metal 1 contact 

Metal 2 

M etal 2 contact 

Gate oxide thickness 

Metal 1 f ield oxide 

M etal 2 field oxide 

Polycide resistance 

Typical gate delay 

Polycide equ ivalent gate delay length 

Metal 1 equ ivalent gate delay length 

Metal 2 equ ivalent gate delay l e ngth 

O ther interconnections are accompl ished 
through two layers of aluminum. The first layer, 
metal 1 ,  can connect to either polycide or the 
N+/P+ source/drain regions via metal 1 contacts. 
The upper layer, metal 2, can connect to metal I 
through metal 2 contacts. No other connections are 
al lowed . Based upon its parasitic delay charac
teristics, polycide is used only for local interconnec
tions. Metal 1 is used for signals communicating 
across distances less than half of the chip dimen
sions. Metal 2 is used for global signals, clock dis
tribution, and power and ground distribution. 

Because of the speeds and complexities of the 
VAX 6000 Model 400 chips , noise is a particularly 
difficult problem for the chip designer. CMOS-2 
contains a deep P+ implant that can be used to 
provide a very low resistance connection between 
the tap surface of the chip and the P+ substrate. The 
chip designer uses this deep P+ implant to reduce 
substrate noise that can upset the operation of 
dynamic circuits. 

The VAX 6000 Model 400 chips were packaged in 
custom-designed, rigid perimeter-leaded, single
chip ceramic packages. The packages included four 
power and ground planes to help maintain inter
chip signal integrity and allow full-speed operation 
of the chip set . 'i 

The REX520 CPU Chip 
The REX520 CPU chip is a third-generation, single
chip VAX m icroprocessor. The R EX520 provides the 
hardware and microcode sufficient to parse 
operand specifiers, execute instructions, and han
dle interrupts and exceptions. It cooperates with 
the F-chip to implement the base instruction group 
of the VAX architecture. 

Digital Technical journal Vol. 2 No. 2, Spring 1990 

0.9 m icrons 

3.0 micron wid th, 1 . 5  m icron space 

1 . 5 micron x 1 .5 m icron 

3.75 micron wid t h ,  1 . 5 m icron space 

1 .5 m ic rons x 1 . 5 microns 

225 angstroms 

1 . 1 m icrons 

1 .9 microns 

2-4 ohms/sq uare 

300-500 picoseconds 

400 m ic rons 

5000 m icrons 

8000 m icrons 

Although the REX520 hardware organization 
and placement resemble that of the previous gener
ation microprocessor, the REX520 performance 
goals were met by tailoring the microarchitecture 

' . more closely tO the VAX 8700 processor. · ·" Any 
deviations from the microarchitecture of the ECL
based V�'< 8700 system were made in  the CMOS
based REX520 to compensate for technology 
differences and to exploit the beneficial aspects of 
VLSI design. A photomicrograph of the R EX520 is 
shown in Figure 2 .  

The chip employs a si..'c-level pipelined engine 
built around three autonomous pipes. These pipes 
provide simultaneous instruction prefetch and 
decode, instruction formatting, operand reference, 
execution, address translation and result stare, and 
110 access. 

As shown in Figure 3, the major hardware 
functions of the R EX520 are partitioned into the 
following: 

• An instruction box (!-box) that contains the 
instruction decoder and a 16-byte prefetch 
queue (PFQ) 

• A microcode-controlled execution box (E-box) 
that provides the capability for data manipu
lation in a 32-bit data path 

• A memory box (M-box) that implements VAX 
memory management by utilizing a 64-entry, 
fu lly associative translation buffer 

• A 2KB write-through, direct-mapped primary 
cache (P-cache) with a quadword (8 byte) fiU size 

• A bus interface unit (BIU) that controls a fully 
handshaked, synchronous chip bus 

39 



VAX 6000 Model400 System 

• • • 
• • 

. . : . 
: :  

Figure 2 Photomicrograph of the REX520 Chip 

REX520 Pipeline 
The R EX 520 p ipeline contains si,x functional seg
ments that cooperate in the execution of instruc
tions. As shown in Figure 4 ,  there are two segments 
in the !-box, three microcode-controlled segments 
in the E-box and M-box, and a single segment for the 
BIU and P-cache control. 

The !-box decodes the VAX instruction strea m .  
A 16-byte prefetch queue (PFQ) is filled with the 
instruction stream asynchronously to the pipeline 
control during otherwise unused bus cycles. !-box 
segment 1 updates the PFQ and parses the next 
piece of the instruction stream. This segment sends 
microcode addresses to the E-box microsequencer. 
Segment 2 formats immediate data, the opcode, 

40 

and the instruction data length for the E-box. 
Collectively, this information is called the context 
for the instruction. 

The !-box divides each VAX i nstruction into a 
microcode subroutine, or microflow, for each 
specifier, and a microflow for the execution of the 
instruction. The control programmed logic arrays 
( P LAs) in the !-box cause it tO sequence through the 
specifiers of each instruction, sending a microflow 
address to the m icrosequencer, and immediate data 
(if needed) to the E-box for each specifier. When the 
last specifier is parsed , the !-box sends a microflow 
address, the opcode, and the data length of the 
instruction ro the E-box for the execution of the 
instruction. 

Vol. 2 No. 2, Spring 1990 Digital Technical journal 



MICROFLOW 
ADDRESS 

MICROI NSTRUCTION 

INSTRUCTION 
1---1- CONTEXT 

INTERCHIP BUS 

Figure 3 REX520 Block Diagram 

The !-box pipeline runs autonomously to the 
E-box pipeline. That is, the 1 -box segments con
tinuously parse instruction stream data, making 
microt1ow addresses avai lable. The I-box pipeline 
advances whenever the microsequencer accepts a 
microtlow address. 

The microsequencer in the E-box performs a read 
of the 1696 word control store each cycle, overlap
ping in time with 1-box segment 2 .  It presents the 

An Overview of the VAX 6000 Model 400 Chip Set 

fetched microinstruction to E-box segment 1 .  The 
microinstruction is pipelined forward to E-box seg
ments 2 and 3 in consecutive cycles. 

The microsequencer fetches one or more 
microinstructions of a microflow starting at the 
initial microflow address supplied by the !-box. 
I f  a microflow contains more than one micro
instruction, the microsequencer computes subse
quent intrafl.ow microaddresses and fetches the 
corresponding microinstructions. A field within 
t he microinstruction indicates the end of each 
microflow. 

The E-box performs all the address and data 
manipulation required for the REX520 to adhere to 
the VAX architecture. The three E-box segments 
operate under microinstruction control ; the 
operand fetch segment reads operands from gen
eral-purpose registers (GPRs) or from the memory 
data (MD) fi le and presents them to the functional 
units; the execution segment performs data manip
u lation on the operands; and the result store seg
ment writes results to registers or memory. The 
E-box pipeline segments are fully folded, i . e . ,  each 
segment simultaneously operates on a different 
microinstruction. 

The performance of memory read accesses is 
improved using a read-and-run technique in the 
E-box. The destination for data stream memory 
reads is the E-box MD file. Microinstructions that 
initiate a memory read simply queue the request to 
the B IU .  The microfl.ow may then continue, without 
waiting for the request to complete. In this manner, 

I-BOX I-BOX E-BOX/M-BOX E-BOX/M-BOX E-BOX/M-BOX 
SEGMENT 1 SEGMENT 2 SEGMENT 1 SEGMENT 2 SEGMENT 3 

INSTRUCTION I N STRUCTION OPERAND EXECUTION RESULT STORE 
PARSE AND f.-- DATA AND 

f- FETCH ,._ ,. DECODE CONTEXT 
FORMATTING 

VIRTUAL 
M ICROFLOW ADDRESS 
ADDRESS CONTROL STORE SELECTION AND ACCESS 
GENERATION ACCESS TRANSLATION CHECKING 

BIU/P-CACHE 
SEGMENT 1 

BUS 
ARBITRATION 

CAC H E  ACCESS 

Figure 4 REX520 Pipeline Segments 

Digital Tecbnicaljournal Vol. 2 No. 2, Spring 1990 4 1 



VAX 6000 Model 400 System 

some or all of the time required for memory 
accesses is hidden during productive microflows. 
The request completes when the BIU and memory 
subsystem return data to the MD file. 

Because subsequent microinstructions may refer
ence an MD file location for which a memory read 
has not yet completed, MD file accesses are syn
chronized through a valid bit mechanism. Each lviD 
file location has a valid bit that is reset when a mem
ory read is started . The bit is then set when data is 
written to the file. If a microinstruction attempts to 
reference an MD file location whose valid bit is not 
set, the pipeline stops advancing (stalls) and waits 
for the data to be returned . 

T he three M-box segments are m icrocode
controlled and typically run synchronously with  
the E-box segments. M-box segment 1 decodes the 
current microinstruction. Segment 2 then selects 
an appropriate address source and performs a vir
tual to physical address translation if required. The 
final segment issues the physical memory request to 
the BIU .  

During normal pipeline flow, the BIU and P-cache 
operate in a single pipeline segment which is over
lapped with segment 3 of the E-box/M-box pipeline. 
The BIU acts as an arbiter for the external and some 
internal buses, and supplies control to the P-cache. 
The BIU receives address and memory request 
information from the M-box . The B IU then decides 
whether the M-box or an external reference should 
receive service from the P-cache and sends the 
appropriate information to the P-cache to process 
the request . The BIU sends read and write requests 
that cannot be serviced by the P-cache to the off
chip memory subsystem. 

Write buffers in the BIU improve the perfor
mance of memory write operations. Microinstruc
tions that initiate memory writes queue the request 
to the BIU ,  and the microflow continues without 
waiting for the request to complete. In this manner, 
the time required for memory writes can be hidden 
under productive m icroflows. The BIU can store up 
to two quadword writes (32 bytes) in its buffers 
while waiting for the memory subsystem to become 
available. 

Adaptations for VLSI 

VLSI designs have relatively good signal integrity on 
the major bus structures within a chip .  However, 
signal integrity diminishes when crossing a chip 
boundary because off-chip bandwidth is incapable 
of sustaining the internal data rates. This character
istic of VLSI design influences microarchitecture 

42 

greatly, as demonstrated by the P-cache and control 
store designs. 

The VAX 8700 system uses cache memory to 
decrease the effective memory access time by 
employing a 64 KB cache in ECL RAM with a single
cycle access. It was not possible to implement a 
RANI of this size on the REX520, and signal integrity 
constraints dictated a minimum of three cycles to 
access off-chip RAM . The REX520 compensates by 
using a two-level cache. The REX520 has a 2KB pri
mary cache on the chip with a single-cycle access, 
and there is a 128KB off-chip secondary cache. The 
cache hierarchy reduces the effective memory 
access time sufficiently to meet the performance 
goals,  and it keeps the off-chip bandwidth within 
reasonable rates. 

Similar signal integrity constraints are imposed 
on the REX520 control store design. The VAX: 8700 
system uses a 1 6K entry control store implemented 
in ECL RAM .  The VAX 8700 system designers use the 
large control store address space to improve per
formance and simplify hardware. The control store 
access of the VLSI REX520 cannot  cross a chip 
boundary and keep pace w ith the fast internal cycle 
time. Because of these limitations, an on-chip con
trol store ROM was used. Chip area limitations con
strained the size to 1696 entries. The designers of 
the REX520 compensated for the lack of control 
store address space by altering the coding style to 
make microflows more serial than the v AX 8700 
system microflows. Additional hardware features 
also helped to absorb some of the work previously 
done in microcode. 

The operand specifier m icroflows offer an exam
ple of microcode space compression facil i tated 
through hardware enhancements. The REX520 
microflows group similar specifier types together 
and provide a general routine for each . The general 
routines are parameterized in hardware to resolve 
the differences in specifier types within each group. 
In this way, the size of the m icroflow is minimized, 
and the performance characteristics of a dedicated 
microflow are preserved . 

Each general specifier microflow performs the 
function appropriate to t he specifier mode by using 
a parameterized access type and data length . For 
example, a microinstruction in the specifier flows 
may make an access-type dependent memory 
request. If the 1-box supplied a read access type, the 
memory request hardware initiates a read . If the 
!-box parsed a result store specifier, the write access 
type parameter causes hardware to initiate a write . 
Operand data length is supplied in a s im ilar fashion . 

Vol. 2 No. 2, Spring 1990 Digital Technical journal 



The general microflows leave operands in fixed 
locations in the E-box MD fi le .  The exact location in 
the MD file is also supplied by the !-box . 

Parameterizing the microflows w ith the access 
type, data length, and MD file location allows the 
generalized specifier microflows to be shared. 
The MD file parameter creates an independence 
between the specifier and execution microflows. 
The same specifier microflow can then be used for 
each speci fier mode, independent of w here i t  
actually appears in the instruction . The execution 

An Oven;iew of the VAX 6000 Mode/ 400 Chip Set 

microflow also needs to know nothing about the 
kind of specifier that supplied the operand. 

Tbe F-cbip 
The floati ng point accelerator chip ,  F-chip,  is 
the companion processor chip to the REX520 for 
floating point operations in VAX 6000 Model 400 
systems. A photomicrograph of the chip is shown 
in Figure 5. 

The F-chip implements all VAX base instruction 
group floating point instructions and the longword 

Figure 5 F-chip Photomicrograph 

Digital Tecbnicaljournal Vol. 2 No. 2, Spring 1990 43 



VAX 6000 Model 400 System 

integer multiply instruction. The data types imple
mented by the F-chip are F-floating ( 1 -bit sign, 8-bit 
exponent, 24-bit fraction), D-floating ( I -bit sign, 
8-bit exponent ,  56-bit fraction), G-floating ( ! -bit 
sign, 1 1 -bit exponent, 53-bit fraction), and integers 
(8-bits, 16-bits, and 32-bits). 

Unlike the VAX 6000 Model 200 floating point 
chip, the F-chip employs a uniformly pipelined 
architecture that has performance which is inde
pendent of the operand values. Early in the design it 
was decided to use a pipe l ined m icroarchitecture in 
order to use the same execution core in future 
designs, such as the VAX 6000 Model 400 vector 
processor floating point unit .  Consequently,  the 
execution core of the F-chip was designed to 
include low latc.:ncy for scJiar applications and high 
throughput for vector pron:-ssing (' The core exe
cutes most instructions in four cycles. Double
precision and integer multiply instructions take 
five cycles, and divide operations take 13 to 24 
cycles, depending upon the datJ type . 

Microarchitecture and Implementation 
The F-chip is composed of an interface section and a 
five-stage execution core. A block diagram of the 
F-chip is shown in Figure 6. The F-chip interfaces to 
the rest of the VAX 6000 Model 400 system th rough 
the D-bus , eight status and control l ines, and four 
bus control signals. The imerface section receives 
the opcode from the REX520,  the operands from 
the CPU chip, and cache and memory data on the 
D-bus. The interface section decodes the opcode 
and receives the required number of operands. It 
assembles the different pieces of the operands and 
supplies formatted operands to the execution core. 
After the execution of the floating point operation , 
the output interface transfers the formatted result 
back to the CPU chip. 

The execution core consists of a divider, which is 
bypassed in all operations except division, and four 
pipelim:-d stages that are uniformly util ized in the 
execution of all instructions. Each stage has a frac
tion data path , control , and sign and exponent data 

I N PUT IN TERFACE 

44 

I 

J t 
DIVIDER 

t t 
FRACTION I [3 II MULT I PL I E R  I DETECTION ADDER RECODE 
LOGIC LOGIC 

t t 

t 
*---- CONTROL 

t 
- CONTROL 

t I, MULTIPLIER I � ':LEADING 1 OR1 - CONTROL 
AR RAY ST ICKY BIT 

I 

I 
:t t t 

ADDER I I NORMALIZER I 1- CONTROL 

+ + t 

� 1- CONTROL 

+ � 
OUTPUT I NTERFACE 

Figure 6 F-chzp Execution Core 

t 
1--- EXPONENT 

LOGIC 
DIVIDER 

+ 
1--- EXPONENT 

PROCESSOR 
STAGE 1 

t 
- EXPONENT 

PROCESSOR 
STAGE 2 

t 
- EXPON ENT 

PROCESSOR 
STAGE 3 

t 

f-4- EXPONENT 
PROCESSOR 

STAGE 4 

l 
I 

Vnl. 2 Nn. 2, Spn·ng /C)')() Digital Techllicaljournal 



paths. The fraction data path,  the most complex 
portion of the chip, is 60 bits wide. 

The divider fraction data path consists of the 
hardware divider array and q uotient logic .  The 
divider array implements an iterative radi.x-2 SRT 
nonrestoring d ivision scheme, and generates three 
signed quotient bits per cycle.7 The quotient and 
remainder are driven on consecutive cycles to 
stage 1 of the pipeline. 

The stage 1 fraction data path consists of a 60-bit 
adder, the multiplier recode logic, and the fraction 
detection logic. Stage 1 receives its inputs from the 
i nterface section, or from the divider for divide 
operations. In add and subtract operations, stage 1 
is used primarily to comp u te the d ifference 
between the exponents of the two operands. In 
paral lel ,  stage I is also used to determine the frac
tion difference for exponent d ifferences of 0 and I .  

FR ACTION 1 FRACTION 2 

I ADDER I 
� 

: I  SELECT I 
I 

I I  SHIFTER-R r 
I I  L 1 D/STICKY BIT I 

SIGN 1 
SIGN 2 EX PONE I EXIO 

CONTROL SIGN AND 
EXPONENT 

I 

B SIGN A N D  
EXPONENT 

NT 1 

N ENT 2 

> • SHIFT AMOUNT • I I NORMALIZER I 
I ADDER I CONTROL 

SIGN A N D  
EXPONENT 

� 
I SELECT J 
� 

+ I 
ADDER I CONTROL 

SIGN A N D  
EXPONENT 

� � � 
FRACTION RESULT SIGN EXPONENT 

R ESULT R ESULT 

Figure 7 F-chip Hardware for Addition 
and Subtraction 

Digital Technical journal Vol. 2 No. 2, Spring 1990 

An Overoiew of the VAX 6000 Mode/ 400 Chip Set 

(See Figure 7.)  For the effective subtract operation, 
stage 1 uses an exponent difference prediction 
scheme in which the least significant two bits of the 
two exponents are examined to determine whether 
0 or 1 bits of al ignment are required. 

If the actual exponent difference is 0 or 1 ,  stage I 
selects the adder result. Otherwise, stage 1 passes 
the original operands to the next stage for align
ment .  In multiplication flows, the stage 1 adder is 
used to compute three-times the multiplicand, and 
the recode logic generates the recoded multiplier 
bits for stage 2. In divide operations, stage 1 is used 
to assimilate the redundant quotient and remainder 
vectors into a two's complement form. 

The stage 2 fraction data path consists of a 
dynamic 57-bit right shifter, unified leading one or 
sticky-bit detection logic, and a mult iplier array. 
(The sticky-bit indicates whether a " 1 "  was shifted 
out of the data path during alignment operations .) 
The shifter is used in add-like operations for align
ing the fractions. The leading one or sticky-bit logic 
determines the normalization amount during sub
tract operations and integer-to-floating-point con
versions. This logic also determines the sticky-bit 
during alignment in effective subtract flows. The 
multiplier array implements a radix-8 modified 
Booth algorithm and consists of nine carry save 
adder (CSA) rows. It is traversed once for single
precision formats and twice for integer and double
precision formats. The hardware organization for 
the multiply operation is shown in Figure 8 .  

Stage 3 of the pipeline consists of a 60-bit adder 
and a 57-bit dynamic left shifter for normalizing the 
intermediate results. The fraction adder is used in 
multiply operations to assimilate the product sum 
and carry vectors, and in add-like flows to add or 
subtract the aligned operands. 

Stage 4 of the pipeline consists of a 60-bit adder 
used for rounding and negation of the final result , 
and the exception detection logic. The exception 
handling is done w ith a PLA which detects and sig
nals overflow, underflow, zero results, and invalid 
operands. 

The control is hardwired (no microcode is used) 
and distributed among the pipeline stages. Each 
stage has autonomous control implemented with 
comrol decoder PLAs. Each stage supplies control 
information to the next stage one cycle ahead of the 
data. This enables the data path control signals to 
set up before the data is propagated to the i nput of 
the stage. The distributed control scheme permits 
simultaneous execution of a divide and four other 
instructions in the pipeline. 

4 5  



VAX 6000 Model 400 System 

w 
(') 
� (f) 

N 
w 

� (f) 

I 
I 

[ 
I 

M 
w 

� (f) {1 
" 
w 
(') 
� (f) {1 
KEY: 
SF, C F  
T C  
IPP 
S, C 
PR 
FP 

FRACTION DATA PATH 

M U LTIPLIER M U LTIPLI 

ADDER I 
3X M U LTIPLICAND 

RECODER/IPPR I 
R ECODE 

TC IPP 
SF C F  

SELECT I 
s c 

MULTIPLIER I 1 -9 ROWS 

ADDER I 
PR 

ADDER (RND/N EG) I 
�FP 

SUM AND CARRY OUTPUTS 
TWO ' S  COM PLEMENT VECTOR 
INITIAL PARTIAL PRODUCT 
SUM AND CARRY INPUTS 
PRODUCT 
FRACTION PRODUCT 

CAND 

Figure 8 F-chip Multiplication Fraction 
Data Path 

The exponent data path i n  each stage is 1 3  bits 
wide. Each stage has a 1 3-bit adder and detection 
logic for detecting zero operands, exponent differ
ences, and exception conditions. To compute the 
absolute value of the exponent difference i n  add, 
subtract, and convert operations, the stage I expo
nent data path has an additional 1 3-bit adder and 
selection logic. 

The microarchitecture and the hardware orga
nization of the F-chip were chosen to efficiently 
implement the three basic operations add/subtract, 
multiply, and divide. As an example of this effi
ciency, the adder i n  stage 1 is used i n  both the 
effective subtract flow and the mul tiplication and 
division flows. This flow overlap permits the execu
tion of effective subtraction in only four steps, inde-

46 

pendent of the data,  as opposed to five steps 
without the overlap. 

For multiplication, this organization enabled the 
use of a radi.x-8 algorithm , w hich requ i res the 
computation of three-times the multiplicand . The 
implementation of all other operations was realized 
with the addition of minimal logic. 

1be VC Chip 
The vc chip, or the backup cache controller and 
vector interface chip, implements the second level 
of a two-level cache structure and the interface to 
an optional vector processor. A photomicrograph 
of the vc chip is shown in Figure 9 .  

Cache Control Functions 

The REX520 contains a 2KB primary cache data and 
tag store. The vc chip contains the tag store and 
control logic to perform reads, writes, and invali
dates to a 128KB secondary, or backup, cache. The 
backup cache is direct-mapped and write-through. 

The vc chip backup cache tag store is organized 
such that one tag and four valid bits correspond to 
every four-octaword (64 -byte) block of the cache. 
Each valid bit corresponds to a one-octaword sub
block,  as illustrated in Figure 10.  When a cache tag 
miss occurs on a read,  a block is allocated, a sub
block is fi lled , and the corresponding valid bit is set. 
When a cache tag compare is successful but the 
valid bit is not set, a sub-block is filled from memory 
and the corresponding valid bit is set . 

The Backup Cache Data Store 
The bach.CJp cache data store is built with off-the
shelf CMOS static RAMs, which are located on the 
module.  The discrete cache data RAMs are orga
nized as 8 bytes wide (the width of the D-bus) by 
16, 384 locations deep. I n  addition, there are eight 
bits of parity, with one bit corresponding to each 
data byte. Fourteen bits of the VAX physical address 
are needed to access the cache, as shown in Fig
ure 1 1 .  When the backup cache returns data to the 
REX520 primary cache, it returns one quadword, 
the fill size of the primary cache. 

The Invalidate Filter Bus, /-bus 

As mentioned, the chip set implements a special
purpose bus, the !-bus, that allows the memory 
subsystem filter invalidates. In addition to this bus, 
the vc chip also implements a copy of the REX520 
primary cache tag store for invalidate flltering. 

Vol. 2 No. 2, Spring 1990 Digital Technical journal 



An Overview of the VAX 6000 Mod.e/ 400 Chip Set 

VC CHIP 
TAG STORE 

Figure 9 VC Chip Photomicrograph 

VALID BITS 

FIRST VALID 
BIT 

SECOND VALID 
BIT 

T H I R D  VALID 
BIT 

FOURTH VALID 
BIT 

BACKUP CAC H E  

OCTAWORD 0 

OCTAWORD 1 

OCTAWORD 2 

OCTAWORD 3 

} ONE SUBBLOCK 
(FILL S I Z E) 

ONE BLOCK 
(ALLOCATION 
SIZE) 

Figure 10 Tag, Valid Bits, and Backup Cache Store 

Digital Tech-nical journal Vol. 2 No. 2, Spring l<J<)O 47 



VAX 6000 Model 400 System 

29 28 

ADDR ESS BIT 

1 1 1 0 

I I CACHE ENTRY TAG 

4 3 

1/0 SPACE. NOT CAC H E D  LJ 
BAC KUP CACHE I N DEX 

U N US E D  

Figure 11 VAX Physical Ad£lress and Backup 
Cache RAMs 

0 

When an address is sent to the vc chip on the 
! -bus, the VC chip notifies the memory interface as 

to whether or not the address produced a hit  in 
either cache. The memory subsystem broadcasts 
the invalidate onto the A-bus only if  a match was 
detected. This mechanism significantly improves 
performance in mult iprocessor systems by reduc
ing the overa ll traffic on the processor buses. 

The Vector Interface 

The vc chip implements the interface logic that 
a l lows an optional vector unit  to be connected to 
the scalar processor module. The vector unit has 
the potential to signific:mtly increase the perfor
mance of many analytical applications. 

If the vector unit is present in the system, the 
REX520 scalar CP chip decodes vector instruc
tions and passes operand and control information 
to the vector module through the VC chip vector 
interface. The vector unit ,  using its own memory 
interface, accesses vector data from memory. 

The vector and scalar modules are connected 
through the vector interface bus (VIB).  The VC chip 
is the sole master of the V I B .  The V I B  is asyn
chronous to the vc chip and synchronous to the 
vectOr module. The vc chip implements the asyn
chronous control logic required for transferring 
data between the two modules. The decision to 
operate the V I B  asynchronously with respect to the 
VAX 6000 Model 400 module was made in order to 
simplify the design of the vector module. 

The RSSC Chip 
A variety of support logic i s  requ ired to com
plete the functionality of a VAX CPU module. The 
VAX 6000 Model 400 system support chip (RSSC) 

integrates on a single chip the common core of 
functions necessary to support the VAX system 
environment. A photomicrogra ph of the RSSC is 
shown in Figure 1 2 .  

48 

The RSSC provides the operating system W•ith the 
hardware primitives needed to implement the boot 
and console routines, and with several necessary 
timing mechanisms. The RSSC is designed to inter
face directly with the VAX 6000 Model 400 chips, 
and is based on the system support chip, or sse s 

The decision to base the RSSC chip on the previ
ous sse design was made because we could take 
advantage of an existing core of logic which already 
implemented the required functions. The sse was 
fabricated in the CMOS- I process and had been thor
oughly debugged and qualified for the MicroVAX 
3500/3600 syste m .9 The chal lenge faced b y  the 
RSSC team was to design a new pad ring and bus 
interface unit (Bll ) that would interface the exist ing 
sse core to a much different and faster interchip 
environment . 

RSSC Functions 

The functions that the RSSC provides for the VAX 
6000 Model 400 module can be grouped into two 
categories : boot and console code support , and 
timer functions to support the operating system. 

Some of the important console and boot code 
support functions contained in the RSSC are the 
ROM/EEPROM interface, CPU halt-request protec
t ion, ARTs with programmable baud rates, I K B  of 
standby RAM , and input and output ports which 
interface to several console and module-level 
switches and LEOs. The RSSC also impl ements three 
timer functions: the bus timeout counter, a I 0-milli
second interval timer, and a time-of-year cloc k .  

1be CLK Chip 
Clock generation for the VAX 6000 Model 400 chip 
set was placed in a separate chip, the CLK chip, to 
better control interchip skew. By separating the 
clock, we elimi nated power, pin count, area, and 
noise problems from the other possible home of the 
clocks, the R EX520. Three main factors were taken 
into account in designing the CLK chip. These fac
tors were the number of clock edges, clock skew, 
and signal integrity. A photomicrograph of the CLK 
chip is shown in Figure 13. 

In determining the optimal configuration for 
the n u mber of clock edges, t he CMOS m icro
architecture was examined closely. The number of 
clock edges per microcycle determines the granu
larity avai lable to the designer. Increased granular
ity can simplify the design process by reducing the 
need for self-timed design techniques. However, 
the usefulness of partitioning the design cycle is 
limited. Granularity on the order of a gate delay is of 

Vol. 2 No. 2, Spring 1990 Digital Technical journal 



An Overview of the VAX 6000 Model 400 Chip Set 

Figure 12 RSSC Photomicrograph 

l ittle use, whereas granularity on the order of a 
microcycle imposes the use of self-timed circuits. A 
decision was made to distribute four 14 -ns pulses 
phased in time by 7 ns to faci l i tate the design of 
regular arrays, data path structures, and IIO func
tions. This distribution made master-slave clock 
generation and single-phase generation easy, and 
complementary clocks for latches more avai lable. 

C lock skew was minimized through logic and 
circuit techniques. The clocks are generated from a 
143-M Hz crystal oscillator. The frequency is imme
diately divided by two to generate an even duty 
cycle 7 1 .  5-MHz signal and its complemem (PHI and 
PHLBAR). The divide circuitry, which comprises 

Digital Technical journal Vol. 2 No. 2, Spring 1990 

four 0-type flip-flops, is shown in Figure 1 4 .  CLK is 
the clock input, 0 is the data input, Q is the latched 
true data output, and QB is the latched complemem 
data output .  

CLK  is the 1 4 3-MHz crystal oscillator clock . The 
circuit consists of a 0-type fl ip-flop with one mas
ter, 0 1 ,  and three slaves 02,  03 ,  and 04 . 02 pro
v ides local feedback for the divide-by-two function 
in order for 03 and 04 to match identically. 03 is 
the Q slave and 04 is the QB slave. 

03 allows the inversion in the feedback path to 
be absorbed and the Q and QB to see the same num
ber of gate delays. This logic technique works for 
all d ividers used in  the design . However ,  the 

49 



VAX 6000 Model 400 System 

Figure 13 CLK Chip Photomicrograph 

div iders feed a series of large ourpur drivers i n  
which skew could not be controlled th rough logic 
techlliques. In these cases, skew was minimized 
by matching the capacitance on each node. The end 
result was a design in which the skew between any 
two edges generated by the CLK c h i p  was not 
greater than 0 . 3  ns. 

Signal integrity was carefully considered i n  the 
design.  The clocks had to be distributed to eight 
different loads, and the total skew between any two 
edges could not exceed 0. 5 ns. This design imp lied 
that the CLK chip package and the clock module 
interconnect could not contribute more than 0.2 ns 
of skew. To minimize the electrical impact of the 

50 

package, three power pins, three ground pins, and 
two signal pins were used for each driver. 

This pin design reduced the inductance seen by 
each driver by approximately a factor of two. In 

CLK 

Figure 14 CLK Chip Divide Circuitry 

Vol. 2 No . .!, 5/Jrin[?, 1()()0 Digital Technicaljounwl 



addition, the clocks were radially distributed, and 
diode termination was used on each clock leg. The 
length of each leg was identical .  

Conclusions 
The VAX 6000 Model 400 chip set represents a suc
cessful mapping of the ECL-based VAX 8700 system 
microarchitecture into a CMOS-based VLSI  chip set . 
The ful ly folded pipeline, on-chip cache and control 
store, and read and run/write and run strategies of 
the processor chip, combined w ith a h igh perfor
mance floating point processor and a second-level 
cache, enabled the VAX 6000 Model 400 to exceed 
the original performance goals for the system. 

Acknowledgments 
The authors would l ike to acknowledge the fol low
i ng people for their contributions to the VAX 6000 
Model 400 c h ip set deve lopment effort :  Randy 
Allmon, Brad Benschneider, Mary Jo Butler, Sandy 
Carroll ,  Gerry Cheney, Larry Commodore, Beth 
Cooper, Amnon Fisher, Nannette F itzgerald ,  
Annette Flohr, Moshe Gavrielov, Ed Gomes, Pau l  
Gronowski, Bil l Grundmann, Ellen Kagan, David 
Kravitz, Liam Madden, Vijay Maheshwari, Steve 
Martin, Karen McFadden, Roger Meeks, George 
Mills, Mike Minardi ,  Mi l l ind M ittal, Dave Morgan, 
Victor Peng, Jeff Pickholtz, Jim Reinschmidt, Doug 
Sanders, Katie S iege l , Rebecca Stamm ,  Pete 
Starvaski, Bob Supnik, Bil l  Wheeler, Jeff Winston, 
and Bi l l  Upham. 

References 

1 .  P. Sul l ivan et a l . ,  "The VAX 6000 Model 400 
Scalar Processor Module," Digital Technical 

journal, vol . 2 ,  no. 2 (Spring 1990, this issue): 
27-35 . 

2 .  T. Leonard , ed . ,  VAX A rchitecture Reference 

Manual (Bedford : Digital Press, Order No . 
EY-34 59E-DP,  1987). 

3. T. Fox et a l . ,  "The CVAX 78034 Chip, a 32-
bit Second-generation VAX Microprocessor,"  
Digital Technical journal, vol . 1 ,  no.  7 (August 
1988): 95- 108. 

4 .  S. Mishra,  "The VAX 8800 M icroarchitecture," 
Digital Technical journal, vol. 1 ,  no. 4 (February 
1987): 20-33. 

5. ]. Bartoszek et a l . ,  " VAX 6000 Model 400 Physical 
Technology," Digital Technicaljoumal, vol . 2 ,  
no .  2 (Spring 1990, this issue): 52-63 . 

Digital Tecl.micaljoumal Vol. 2 No. 2, Spring 1990 

An Overview of the mX' 6000 Model 400 Chip Set 

6. B .  Benschneider et a! . ,  " A  Pipelined 50-M H z  
CMOS 64b Floating Point Arittunetic Processor," 
IEEE journal of Solid State Circuits, vol . 24 , 
no. 5 (October 1989): 1317- 1323. 

7 .  D. Atkins, " H igher Radi,-x Division Using Esti
mates of the Divisor and Partial Remainders ,"  
IEEE Transactions on Computers, vol . C-17 
(October 1968): 925-934. 

8. ]. Winston, "The System Support Chip, a Multi
function Chip for CVAX Systems," Digital 
Technical journal, vol .  1 ,  no. 7 (August 1988): 
12 1- 1 28. 

9 G .  Lidington, "Overview of the M icro VAX 3500/ 
3600 Processor Module," Digital Technical 

journal, vol . 1 ,  no. 7 (August 1988): 79-86. 

5 1  



VAX 6000 Model 400 
Physical Technology 

john T. Bartoszek 
Robert]. Hannemann 

Stephen P. Hansen 
Robert]. McCarty 

john C. Sweeney 

The physical realization of the VAX 6000 Model 400 microprocessor design offered a 

number of significant challenges at both the chip package and the module Levels. 

In meeting the requirements for a robust and manufacturable midrange imple

mentation, the VAX MOO Model 400 physical technology approach broke new ground 

for Digital, and, in some cases, for the industry. New developments included 

the first tape-automated bonding (JAB} interconnected semiconductors, extensive 

board-level physical simulation, and the use of advanced testability features on 

a microprocessor-based midrange product. This paper provides details of the physi

cal technology used in the �'lL-Y 6000 Model 400 project to achieve system-level 
product goals. 

Introduction 
As sh ipped beginning i n  July 1 989 , the VAX 6000 
Model 400 microprocessor chip set is one of the 
fastest and highest performance complex instruc
tion set computer (CISC) CPLJs offered by the indus
try. Its m icrocycle time is 28 nanoseconds (ns). 
Such performance makes the chip set one of the 
most demanding in terms of physical technology 
design at the chip package and si ngle-board
computer (SBC) leve l .  This paper details the req uire
ments that drove the VAX 6000 Model 400 physical 
technology and describes the resulting technology 
solutions. The range of solutions included the 
design process, module assembly, and advanced 
test features. 

The VAX 6000 Model 400 project was the first 
Digital m icroprocessor-based system effort that 
re4u ired developers to use l a rge-computer 
design tools and p ro cesses. During the project, a 
number of firsts, for either Digital or the industry, 
were ach ieved . 

• The use of advanced rape-automated bond
ing (TAB) technology in a manufact uring 
environment 

• The development of innovative su rface-mount
able chip packages th:H provide high lead count 
and a controlled electrical environment for the 
custom CMOS CPU and bus interface chips 

52 

• The design and development of an advanced 
printed wiring board (PWB) technology that 
al l owed over 5000 i nches of i n terconnecting 
wiring on only four routing layers of a 9-inch by 
1 1 -inch board, with two d ifferent controlled 
impedance levels 

• The extensive use of electrical and thermal s imu
lation at the chip package and mod ule levels 

• The employment of an advanced surface-moum 
technology (SMT) that al lows the use of m ixed 
component styles (50-mil SMT devices and fine
pitch, 25-mil  devices, and a l imited nu mber of 
through-hole mounted devices); and attachment 
of both active and passive components on both 
sides of the board 

• The use of advanced rest techniques, most nota
bly an innovative continuity transistor strucwre 
(CTS) for assembly verification and boundary 
scan design for the core CPU chips 

AU of the project's technology developments wil l  
be employed on follow-on products, in both mid
range and entry-level systems. Ensuring this kind of 
technology extensibility was our explicit goal .  

In the remainder of this paper, physical tech
nology refers to the chip packaging and i n ter
connection technologies at the ind ividual device 
and module levels. 

Vol. 2 No. 1, Spring !'.NO Digital Technical journal 



Technology Requirements 
The physical technology requirements that drove 
the VAX 6000 Model 400 technology effort arose 
from two primary sources: architectural and per
formance requirements, and manufacturing and 
reliab ility related needs. 

Architectural and Performance 

Requirements 

The CMOS-2 semiconductor process technology 
and the microarchitecture were chosen to satisfy 
the system performance goal of at least six VAX units 
of performance (VU Ps). That choice established the 
baseline physical technology performance and elec
trical requirements. 

One processor design goal in particular had a 
significant effect on the physical interconnect tech
nology. The processor was to operate at a CPU 
microcyclc time of 28 ns at the SBC level. Although 
the nominal target of the chip set design was opera
tion at 40 ns, early indications were that the CMOS-2 

process would allow significantly faster operation . 
Therefore, the rest of the physical technology 
needed to support the 28-ns goa l .  

Table 1 sununarizes the major features of CMOS-2 

and the VAX 6000 Model 400 architecture that 
drove the physical technology requirements. Chip 
packaging and module technology requirements 
were affected in two ways: 

• The wide data bus could result in many drivers 
switching simultaneously. Coupled with the rel
a t ivel y  fast d river rise times, simultaneous 
switching significantly increased package elec
trical performance. Our major concern was the 
high current draw from local (within the pack
age) power planes. The electrical performance 
required of the chip packages clearly indicated 
that simple cerquad packages would not work. 
The primary shortcoming of the cerquad pack
ages was the high inductance of the signal and 
power connections. Performance levels required 
multilayer ceramic packages with features that 
were at the limit of available ceramic technology. 

A w ireability estimation technique used early i n  
the program indicated that four to sLx routing 
layers would be needed in the PWB, using 5-mil 
line widths and 5-mil spacing between l ines, to 
route the core CPU chips with associated cache. 

• The relatively high power dissipation require
ments contained in the initial design specifica
tion posed considerable development difficu lty. 

Digital Technical journal Vol. 2 No. 2. .vJring 1990 

VAX 6000 Model 400 Physical Technology 

The core chip set was expected to be used in 
low-end products with limited air-flow capabil
ities. However, a junction temperature limit of 85 
degrees Celsius at the DEC standard 102 Class B 
environmental limits had to be maintained . 

How we addressed these problems is described 
in the later sections, Chip Packaging and Module 
Technology. 

Table 1 VAX 6000 Model 400 CMOS-2 
Features Affecting Interconnect 
Technology 

Driver rise time 1 ns 

Clock cycle 28 ns 
- 4 phase cycle 

Data bus width 64 bits 

Cache access t ime 7 clock 
phases 
(49 ns) 

Max. chip pin count 224 

Max .  chip power 6 watts 

Table 2 lists the key CMOS-2 chips developed for 
the VAX 6000 Model 400 processor and the key 
characteristics of these chips that affected the 
physical architecture of the design . 

Table 2 VAX 6000 Model 400 Chip Set 
Characteristics 

Chip 

P-chip/DC520 

F-chip/DC523 

VC-chip/DC592 

XDP/DC550 

XCA/DC551 

Lead Maximum Lines 
Count Switching 
(Actual) (Approximate) 

224 81 

224 80 

224 60 

224 1 00 

224 70 

Power 
(W) 

6 . 1  

4 . 5  

4 . 2  

3 . 6  

3.6 

A more direct measure of the electrical perfor
mance required from the VAX 6000 Model 400 
physical interconnect system can be derived by 
examini ng the timing budget al located to some of 
the signal transfers that occur within the CPU.  
Three of the most critical are the clock distribution 
system, the cache access loop, and the data bus 
between the core CPU chips. The clock signals need 
to be valid and synchronized within 0 .5 ns at the 
end points of all clock l ines. The clock electrical 
performance relied heavily on the uniformity of the 
distribution system. 

5 3  



VAX 6000 Model 400 System 

The cache access loop timing was sl ightly more 
complicated. The cache access loop timing budget 
that was established for the 28-ns version of the CPU 

is shown in Table 3. The interconnect system pri
mari ly  affects the address bus (A-bus) settling time 
(20.5 ns). 

Table 3 Cache Access Loop Timing Budget 

Address bus settled 

Buffer 

RAM access 

Total 

Manufacturing and Reliability 

Requirements 

20.5 ns 

7.0 ns 

2 1 .0 ns 

48 . 5  ns 

Certain manufacturing and reliability goals estab
lished for the VAX 6000 Model 400 product  also 
influenced the physical technology selection and 

design. The major goals were as follows: 

• The use of TAB as the off-chip interconnect tech
nology, which was viewed as an appropriate 
entry point for TAB 

• An all surface-mount technology (SMT) module 
assembly approach 

• A robust test strategy, including significant use of 
fault  diagnosis using boundary scan and other 
test features 

• Maintenance of the ability to perform engineer
i ng changes using etch cuts on the PWB by 
restricting signal routing to the second and ninth 

layers, with clock lines only on the remaining 
two signal layers 

• Achievement of the required 85 degree Celsius 
junction temperatures 

Most of these goals were met : 

• The worst-case A-bus and data bus (D-bus) 

settling times were 19.6 ns and 20.2 ns, respec
t ive l y .  These settling t imes met the timing 
requirements as defined in Table 3. 

• A nearly total surface mount assembly was 
achieved, with only connectors, oscillators, and 

erasable progranunable read-only m emories 

(EPROMs) in  through-hole configurations. 

• Boundary scan was designed into the core CPU 
chips. Observe-only scan latches were used at  

54 

the chip boundaries as opposed to the original 
target of ful l  scan at all logic boundaries. 

• Test transistor structures for interconnect verifi
cation at module assembly were implemented 

for the custom chips. 

• Separate, system-specific micro heat sink designs 

allow all chips to operate at a maximum of 
85 degrees Celsius, with  one excep tion : the 
6. 1 watr P-chip reaches 89 degrees Celsius under 
absolute worst-case conditions. A lthough not 
specifically meeting the defined goal ,  overall 

system reliability and operations were not fel t  to 
be impacted to any significant degree by aUow

ing this exception .  

Some goals were not met . 

• T he interchip rout ing included over 1000 sig
nal nets and over 1800 routed nets within the 

PWB. This large number of nets required t he use 
of the clock routing layer to complete the inter
connect of the CPU module. Although the PWB 

technology supported 5-mil lines and spaces, the 
signal  integrity constraints of t he system 
required more than 5-mil spaces between signal 
lines. In addition, the ability to do etch cuts on a 
5-mil l ine was determined to be too difficult and 
risky to pursue. Engineering changes were per
formed by doing cuts in the surface etch , which 

connects each surface-mount pad to its associ

ated via, which in turn connects to an internal 
signal layer. 

• TAB tape and packages were designed, proven, 
and sourced for six of the 224-pin CMOS-2 chips 

in the VAX 6000 Model 400 processor. However, 
for manufacturing logistics and line-loading rea

sons, TAB is currently used in only a subset of 
these devices. A series of wire-bonded backup 
packages was designed and is now in use for the 
remainder of the 224-pin devices. 

Nonethekss, the physical interconnect technology 
used did result in package designs and a module 
design that supports 7 VUPs, 224 1/0, fine-pitch 
devices, with associated cache, operating at 28 ns. 

The details of the chip packages, the PWB tech
nology and module design are presented in the 

following sections. Also described are the test struc

tures required to satisfy the performance needs and 
other established goals of the VAX 6000 Model 400 
CPU product. 

Vol. 2 No. 2, Spring /'J'JO Digital Tecbnicaljournal 



Chip Packaging 
In March 1989, Digital's Semiconductor Intercon

nect Technology Group (SCIT) completed quali

fication of the Model 400 processor advanced chip 

packaging technology. 

This qualification consisted of two primary ele

ments, which are discussed in the sections below. 

The first element is the initial implementation of 

our internally developed perimeter tape-automated 

bonding (PTAB- 1)  process. The process serves as the 

interconnection medium from the semiconductor 

device to the chip package. The second element is 

the chip package itself, which is an advanced 224-
Jead multilayer ceramic (MLC) surface-mount com

ponent.  The TAB/MLC combination provides an 

effective chip package solution for the VAX 6000 
Model 400 products. Moreover, TAB/MLC serves as a 

technology springboard for further TAB-based 

packaging solutions currently in development for 

future CMOS systems. 

A fundamental decision was made early in the 

TAB technology program.  To reduce risk, we 

wanted to introduce TAB in an environment that 

al lowed a convenient wire-bonded backup to be 

developed in  parallel. The TAB/MLC solution proved 

ideal for this approach, and a set of wire-bonded 

packages was designed and qualified. Subsequently, 

several of the VAX 6000 Model 400 chips were 

moved to the backup wire-bonded packages for 

manufacturing logistics and line-loading reasons. 

Wire-bonded technology is not described in this 

paper because the package designs are very similar 

to the TAB/MLC packages detailed below. 

Tape-automated Bonding Technology 

The connections from a semiconductor chip to the 

package have traditionally been made with wire

bonding technology. In this process, free-floating 

wires are placed individually from the aluminum 

chip termination pads to the package internal con

nections. Although this technology is versatile, it 

has some limitations in high pin count, high-density 

applications. Bonding becomes very time-consum

ing at high pin counts; package and manufacturing 

tolerances become critical; and package choices 

with wire bonding have increasingly narrowed to 

newer and more expensive technologies, such as 
precision thin films. 

From 1980 to 1981 , exploratory work was per

formed within Digital on alternative interconnec

tion technologies. In 1982, the decision was made to 

pursue TAB technology. The rationale for this deci

sion included TAB 's easy testability, compatibility 

Digital Technical journal Vol. 2 No. 2, Spring 1990 

VAX 6000 Model 400 Physical Technology 

with a wide variety of packaging formats (both sin

gle chip and multichip ), and improved pin density. 

The technology also had the potential for electrical 

enhancements with multiconductor TAB tape, and 

indications were that the industry as a whole would 

embrace TAB technology. 

Unl ike the wire-bonding process, TAB ut i l izes 

photolithographically defined copper conductors 

stabil ized by a dielectric film made of polyamide. 

As shown in Figure I ,  the TAB tape consists of an 

inner set of connections for the chip-to-tape or 

inner lead bonds (ILB). External to the dielectric 

material is the outer lead bond (OLB) region where 

the tape-to-package connection is made. The leads 

then fan out to a set of test pads. These pads permit 

full electrical testing of the semiconductor device at 

this level of assembly. Sprocket holes serve as han

dling and alignment features. 

Unlike wire bonding, in which the wires may be 

bonded directly to the aluminized bonding pad on 

the chip, the planar TAB tape requires a raised pillar, 

or bump, on each bond pad. The bump, usually 

made of gold,  is typically 25 microns high. In addi

tion to acting as a standoff, the bump provides a 

surface that is appropriate for the bonding of the 

gold-plated tape. Figure 2 shows a bumped and 

bonded device. The bump process may be thought 

of as an extension to the wafer fabrication process 

in which the construction of the bond pads is con

tinued vertically. 

Figure I TAB Tape Configuration 

55 



VAX 6000 Model 400 System 

Figure 2 TAB Bumped and Bonded Device 

As shown in Figure 3, after the semiconductor 
wafer has completed the standard diffusion, metal
lization , and passivation steps, the wafer is metal
lized again over the entire surface with a sputtered 
barrier metallization of titanium/tungsten. In the 
same process step, a top seed layer of gold is 
applied . The total thickness of these films i's 10,000 
angstroms. The barrier prevents diffusion between 
the aluminum pad and the gold bump. Such diffu
sion would, w ith time and temperature, seriously 
degrade the mechanical strength of the interface. 
The seed layer forms the ba'\e upon which the bump 
will be plated during a subsequent step. 

Metallization is followed by the deposition of a 
thick layer, typically _)0 microns of photo resist . 
This layer is then photolithographically patterned 
w ith a bump mask. Subsequent etching opens a 
hole over the bond pads down to the barrier and 
seed layer. At this point, the wafer is electroplated 
with pure gold. The gold is deposited only in the 
resist openings. Finally, the resist is stripped and a 
series of etches are performed to remove the seed 
and barrier metallizations from the areas between 
the bumps. 

After the wafer processing steps are complctccl, 
the devices may be electrically tested by probing 
the bumps. Assembly of the functional die consists 
of sawing the wafer, selecting the good devices, and 
bonding the bumped chips to the TAB tape. The 
bonding process is very similar to wire bonding. 

56 

Once the TAB tape has been aligned with the 
bumps, a tool supplies pressure and u l trasonic 
energy to the interface and creates a strong gold
gold metallurgical bond . 

In 1985, the VAX 6000 Model 400 processor wa� 
identified a-; the first product that would incorpo
rate TAB technology. Consequently, the TAB pro
gram 's goals were set to meet the product's needs : 

• CMOS-2  ( I .  5-micron technology) compatibility 

• 150-micron pad pitch 

• 2 24 pins 

• 35-mm format TA B tape 

• Assembly in ceramic package 

The program was designated PTAB 1 ,  the first 
implementation of TAB w ith chip pads in a peri
meter or single row format. The PTAB 1 process was 
formally qualified in March 1989 

VAX 6000 Model 400 Multilayer Ceramic 

Packaging 

The custom semiconductor packages implemented 
for SCIT 's ZMOS- and CMOS-1 -based systems have 
been either cofired mult i layer ceramic (MLC) 
through-hole pin grid array (PGA) packages, or the 
simpler lead-frame-based cerquad surface-mount 
packages. The maximum pin counts in use up 
through CMOS- I are 132 pins for PGA style packages 
and 164 pins for fine-pitch cerquads. 

Figure 3 Semiconductor Wafer 

Vol. 2 No. 2, Spring I'J'JO Digital Tecbnicaljounwl 



The VAX 6000 Model 400 P, F, VC, X DP, and XCA 

chips require a packaging solution consistent with 
their electrical and thermal performance needs as 
well as compatibility with a lead count of 224 pins. 

The solution chosen for these components was a 
blend of the PGA and cerquad technologies: a multi
layer ceramic body with 25-mil pitch perimeter 
leads for surface mounting. The resulting 224-pin 
MLC is depicted in Figure 4 .  

There are several significant features in the 224 
MLC fami ly of packages. In  wire-bond packages ,  
maximum wire span constraints require a different 
layout for each chip configuration. The TAB format, 
however, has more routing flexibility and permits 
one basic package layout. The package has five 
internal interconnect layers with assignments, as 
shown in Figure 5. 

In cofired MLC technology, the conductor traces 
are made with screen-printed , tungsten-filled vias. 
To specialize the package interconnect for each 
chip, a programmable approach was developed in 
which only one via layer would have to be changed 
for each package design. The combination of TAB 

interconnect and the programmable package con
cept considerably reduces design time, design com
plexity, tooling costs, and lead times. 

Another feature of the 224 MLC is the provision 
for eight chip capacitors for power decoupling. The 
heat-sink design for the 224-pin MLC package is 

Figure 4 The 224-pin MLC 

Digital Technical]ounral Vol. 2 No. 2, Spring 199() 

VAX 6000 Model 400 Physical Technology 

KEY: 

MPl - SEAL RING AND LOGO 
MP2 - VSS EXTERNAL (GROUND) 
MP3 - SIGNAL LAYER AND BON D SH ELF 
MP4 - VDD EXTERNAL (POWER) 
MPS - SPACER LAYER 
M P6 - VSS I NTERNAL (GROUN D), D I E  ATTACH AREA 
MP7 - VDD I NTERNAL (POWER) 
MPB - CHIP CAPACITOR SOLDER LANDS. LEAD 

BRAZE PADS. HEAT S INK ATTACH AREA 

Figure 5 Package Itself with Internal 
Interconnect Layers with 
Assignment 

shown in Figure 6. The thermal performance of the 
package is shown in Figure 7. 

The 224 MLC package is assembled by mounting 
the TAB chip into the package cavity with si lver
ftlled die attach epoxy. Outer lead bonding of the 
TAB film to the gold-plated package pads is accom
plished with the same pressure or ultrasonic pro
cess used for inner lead bonding. Final steps consist 
of lid sea l ,  lead plating, chip cap and heat-sink 
attach, and lead trim. The part is then ready for 
electrical testing. 

Module Technology 

Printed Wiring Board Technology 

The VAX 6000 Model 400 processor's printed wir
ing board (PWB) requirements offered a significant 
challenge to hoard fabricators. The primary d iffer
ence between the Model 400 processor's boards and 
previous boards is 10-mil finished vias, resulting 
in a 7 to 1 aspect ratio. We were initially very con
cerned whether our vendors could produce boards 

Figure 6 MLC Package Heat Sink 

57 



VAX 6000 Model 400 System 

>=' 
1-

w � 
u 
z a:  
<( W 
1- (L 
'!2 m  
(f) :::J w -a: rn  _j _j w  
<( U 
::::; (/) a: w  w w I a: 
1- (.9 w 

9. 

20 

1 5  

1 0  

5 

0 200 400 600 800 

AIR VELOCITY 
(LINEAR FEET PER MINUTE) 

1 000 

Figure 7 Thermal Performance of Package 

that met our specification i n  the volu mes we 
needed . Table 4 lists some of the primary features 
of the Model 400 PWB specification. 

The most severe environment the boards would 
see was the assembly plant. Because the module 
used a variety of component types, it was put  
through several process steps, each step requiring 
general or localized heating to solder reflow tem
peratures. We wanted to ensure that the boards 
would survive multiple assembly and repair cycles 
and sti l l  be reliable. We established a "fit for use" 
plan that required the boards to undergo a series of 
thermal cycles. In these cycles, temperatures and 
times were set to match intended assembly process 
steps. The boards were then cross-sectioned and 
examined for defects. Once manufacturing began 
building modules, a few of these were also cross
sectioned. With this strategy, we could quickly 
determine the q uality of each lot of boards. More
over, we could begin to correlate board structure 
with board quality in each lot. This process allowed 
us to assess each vendor's capability to provide 
boards that would meet our specifications. 

Because module assembly process temperatures 
typically exceed 200 degrees Celsius, questions 
arose over what was the appropriate board mate
ria l .  The more commonly used FR4 material, with 

58 

an average glass transltton temperature (tg) of 
1 20 degrees Celsius, was suspected to be incapable 
of surviving the assembly process. 

The alternative to FR4 was polyamide, which has 
a tg of 240 degrees Celsius. In response to the con
cern over FR4 , a PWB material selection task force 
was convened, which was composed of board 
experts from throughout the company. 

The task force discovered that board material 
actually is not the primary consideration. Either FR4 
or polyamide is acceptable (both were eventually 
used in production). However, other board parame
ters become critical when FR4 is used. Primarily, 
minimum barrel copper plating thickness should be 
one mil for FR4 boards. 

Variation in barrel copper should not exceed 50 
percent .  In addition, there can be no smearing or 

Table 4 VAX 6000 Model 400 Printed Wiring 
Board Specifications 

Parameter 

General : 

Board size 

Layer count 

Material options 

Copper foil type 

Testing 

Electrical :  

C haracteristic 
impedance 

DC resistance 

P hysical: 

Via type 

Via size 

Maximum 
aspect ratio 

SMT pads 

Etch widths 

Prox i m ity to 
next feature 

Solder 
requirement 

Tin/lead al loy 

Value 

9.2 inch x 1 1 .0 inch 

1 0  layers: 4 s ignal ,  
4 power/ground 

FR4, polyamide 

Class I l l  

100% data-driven 

50 ohms ± 10% for 10-m i l l i nes 

4 ohms m ax i m u m  

Through 

10 mil  f in ished 
13.5 mil d ri l led 

7 : 1 

50-m il  pitch:  0 .030 i n c h  x 
0.076 inch 
± 0.001 inch 

25- m i l  pitc h :  0 .016 inch x 
0 . 076 inch 
± 0.001 inch 

Signal :  5 m i ls 
Clock: 10 m i l s  

5 m i l s  

0 . 1 5  m i l  m i n i m u m  

63/37 ± 1 0 %  

Vol. 2 No. 2, Spring [<)!)() Digital Tecbnicaljournal 



other defects in the vias from the drill i ng process. 
To maintain tight control over these parameters, we 
included statistical process control as a vendor 
requirement. Table 5 summarizes the results of the 
task force findings. 

Because of recent board quality problems and the 
aggressive nature of the Model 400 specification, 
we ran a product-specific board qualification. The 
goal was to verify that each vendor could consis
tently produce the Model 400 boards in volume 
before the vendor was placed on the qualified 
vendor list .  The four key components of the plan 
were as follows: 

• Incoming inspection 

• Electrical test 

• Cross-section analysis 

• Assembly verification 

I ncoming inspection testing was nondestructive 
and covered plating thickness, plating composition, 
and characteristic impedance. 

Using an internally developed tester, we could 
verify 100 percent connectivity between pads and, 
thus, detect both shorts and opens. We also used 
this test to verify prototype boards , ensuring that 
the boards were good before valuable prototype 
parts were committed to them. 

D igita l 's Component Evaluation Laboratory 
performed bare board and assembled module 

Table 5 VAX 6000 Model 400 PWB Materials 
Task Force S u mmary 

Laminate: 

Polyamide should be used for prototypes. 

Polyamide and FR4 are acceptable for vol ume.  

Long-term, vendor capabi l i ty and cost may favor 
polyamide. 

Copper: 

Class 3 foi l  should be used . 

For polyamide, standard plated-through-hole (PTH) 
copper is acceptable. 

For FR4, min imum barrel plat ing thickness is 1 m i l .  

Barrel plating thickness variation m ax i m u m  is 5 0  
percent. H o l e  qu ality m ust b e  good . 

Process Control :  

Vendor should provide test coupon cross-sections 
with each lot.  

Vendor should institute statistical process control. 

Vendor site should be monitored regul arly. 

Dig ital Technical journal Vol. 2 No. 2, Spring 1990 

VAX 6000 Model 400 Physical Technology 

cross-sectioning. This testing process uncovered 
inadequate or nonuniform plating, pad-to-copper
plating separations and misregistration. The infor
mation gained from this procedure was given to the 
vendor as a basis for corrective action on future 
board production. 

Assembly verification was final proof that the 
board would make a reliable module. Each board 
went through the ful l  assembly and test process, 
including burn-in, to ensure it could survive the 
process and pass all functional tests. 

Surface-mount Assembly Technology 

The surface-mount assembly technology (SMT3) 
used for the VAX 6000 Model 400 processor is the 
latest in a series of electronic assembly technologies 
developed by Digital since 1 985 . The SMT3 tech
nology allows double-sided mounting of high lead
count and fine-pitch devices on a printed wiring 
board, with surface-mounted passives and mixed 
component styles. The VAX 6000 Model 400 pro
cessor uses essentially all of the SMT3 features. 

High pin count and fine-pitch devices presented 
new problems to the surface-mount attach process 
team. The small ,  tightly spaced leads require a 
smaller pad and less solder than their 50-mil pitch 
predecessors. The smaller, more fragile pins can 
become misaligned and no longer coplanar where 
they meet the board surface. 

Our primary goal was to find the correct pad size 
and solder volume for attaching 25-mil pitch com
ponents. Once the fine-pitch pad size and solder 
volume were determined, it became apparent that 
the correct solder amount could not be delivered to 
both ftne-pitch and standard pads in a single oper
ation using the standard solder-paste screen 
approach. The smaller, fine-pitch screen openings 
could not consistently pass the correct amount of 
solder. The solution was to use a laminated stepped 
stencil that places a thinner solder deposit on the 
fine-pitch pads than on the rest of the pads. 

The initial approach for attaching fine-pitch 
devices was to use the existing vapor-phase mass
reflow process. However, if pin noncoplanarity 
exceeded 2 mils, some pins would not be soldered 
adequately. The best that could be guaranteed was 
4 mils. 

The development team turned to solder-in-place, 
which uses a thermode fixture to place the compo
nent ,  push the pins into the paste, and reflow the 
solder, forming a good solder connection for each 
pin. An advantage of this process is that it does not 

59 



VAX 6000 Model 400 System 

hear the entire board, and the pn.:viously attached 
components, ro solder-reflow temperatures. 

The surface-mount  module process was b y  
necessi ty developed concurrently with the Model 
400 product design. As the design progressed, a 
problem with the primary assembly equipment 
developed.  Suppliers for h igh-volu me thermode 
pick, place, and solder equipment d id nor keep pace 
with our schedule requirements. We were then 
faced with the choice to develop equipment inter
nally or switch the process to a more developed 
technology. 

The Midrange System Manufacturing Group's 
most readily available backup process was vapor
phase mass-reflow. This pron:ss guards against 
coplanarity problems by including careful inspec
tion of all fine-pitch components before commit
ring them to a board . The pins that do nor solder 
are manually repaired . Since it was nor possible to 
develop solder-in-place equipment internally in 
time to meet our schedule, the program decided to 
use vapor-phase mass-ref! ow. 

Module Design 
Several board design requirements combined to 
make the design task challenging. These require
ments included signal integrity constraints, finer 
layout and routing grids, and short dispersion etch.  
Figures 8 and 9 show the complete module. Most 
of the module area is composed of the six large 
224-pin devices that form the processor core and 
interface to the XMI corner. These devices had 
critical placement requirements. Their 25-mil pin 
pitch forced very dense etch runs. 

To attain maximum use of available routing area, 
the design used tenth-mil grid instead of the previ
ously used one-mil grid. The new grid allowed opti
mum etch channel placement. Similarly, v ias were 
placed on a 25-mil grid with 50-mil spacing. This 
allowed the designer more flexibility in placing vias 
so the available space was used most effectively. 

The VAX 6000 Model 400 processor introduced 
new routing parameters and stringent signal 
integrity constraints. The density of the design 
required 10-mil vias. Signal integrity considerations 

Figure 8 Processor Module - Side One 

60 Vol 2 No. 2, Spring 1990 Digital Tecbnicaljournal 



imposed component spacing and electrical connec
tion requirements that resulted in components 
being closer than suggested by current standards. 
Surface etch was needed to keep connections short. 
Components on side two were placed underneath 
fine-pitch devices on side one for electrical prox
imity. New manufacturability rules were generated 
tO cover these situations as the design progressed . 

Because surface layers are not used to route sig
nals, these layers were not designed to have good 
signal integrity characteristics. However, a signal 
has to travel a short distance from its pin p�1d to its 
dispersion via which connects to an inner routing 
layer. Therefore, it is essential to keep surface etch 
as short as possible to minimize the distance the sig
nal travels outside a controlled impedance environ
ment . To meet this distance requirement, each 
critical component was placed very precisely and 
its dispersion pattern was individually designed. 

S ignal integrity considerations placed other con
straints on the design. Critical signals had to be kept 

VAX 6000 Mode/ 400 Physical Technology 

less than a specified maximum to meet perfor
mance specifications. To avoid skew problems, 
clocks were routed equal lengths to within a tight 
tolerance. Table 6 details the resulting design 
parameters. 

Test Technology 

Assembly and Test Process Development 

Assembly and test process issues were tracked 
throughout the development and selection of the 
Model 400 physical technology. The manufacturing 
impact of each physical technology choice was 
quantified in a spreadsheet analysis of cost and qual
ity metrics. 

These metrics were estimated by using integrated 
assembly and test process models for each possible 
physical technology implementation. Two issues 
became evident during the physical technology 
selection process. 

Figure 9 Processor Module -Side Two 

Digital Technicaljournal Vn/. 2 No. 2, Spring 1')90 6 1  



VAX 6000 Model 400 System 

Table 6 VAX 6000 Model 400 Processor 
Board Design Statistics 

Parameter Value 

General : 

Board size (i nches) 9.2 X 1 1 . 0 

Board thickness (inches) .093 

Layers 1 0  

I n itial route area (square inches) 99 

Rou ting vias 1 699 

Dispersion vias 38 1 3  

Total components 623 

Total component pins 4976 

Total used component pins 42 1 8  

Total networks 1 005 

Total etch length ( inches) 5002 

First, the high number of signals and the fine 
pitch of those signals in all of the possible product 
implementations significantly increased the risk 
of manufacturing defects, such as shorts between 
signals or open faults along a signal. A continuity 
transistor structure (CTS) is designed into each of 
the VLSI (very large scale integration) devices to 
help test and diagnose these open faults. 

Second, high-speed operation and reduced phys
ical access would make diagnosis of processor fail
ures difficult. To alleviate this problem, test features 
and a test system were developed. T he test feature 
was a form of boundary scan, called observe 
boundary scan (OBS). The test system, the VAX 6000 
Model 400 scan monitor, utilized the OBS in a 
system test environment. 

Continuity Transistor Structure 
Because the devices are surface-mounted to the 
module, a large percentage of the manufacturing 
defects were expected to be open faults between 
the module and the chips. Typically, these open 
faults are difficult to detect and diagnose because 
they usuaUy require the development of a set of 
complex test vectors that will be applied to the 
chip. To simplify the test for open faults, a continu
ity transistor structure (CTS) is designed into each 
chip. The CTS tests for open faults by using simple 
instruments such as voltage sources and current 
meters on an in-circuit tester (ICT). 

The Module 400 CPU module is placed on a bed
of-nails fe<.ture chat gives the tester electrical access 
to at least one point on each internal module signal 
network. The tester then applies digital stimulus to 

62 

the internal module and verifies correct contact by 
reading current flow. 

T he CTS is shown in Figure 10. Pins 1 through N 
represent aU signal pins on the chip. The design uses 
minimum-sized transistors. The CTS design does 
not require any dedicated pins because the test pin 
is a normal device signal pin. There is no perfor
mance penalty because the transistors are placed in 
paraUel to the normal system logic, which results in 
a negligible load on those signals. 

The use of the CTS in the processor module 
manufacturing process has been very successful. 
The ICT very quickly isolates open connections to 
the device pin and differentiates them from device 
test pattern failures. T his process allows the open 
connection to be repaired rather than replacing 
the device. 

Further, CTS testing allows prototype modules 
to be fully tested for assembly defects, even if the 
V LSI in-circuit test patterns are not available. This 
advantage is possible because designers can fully 
develop CTS tests without any knowledge of the 
VLSI device internal structure or function. 

Observe Boundary Scan 

Modules that pass ICT testing are then tested at a 
"system like" test station. Self-tests and boatable 
diagnostics are run, and the VMS system is booted. If 
a module fails any of these tests, skilled technicians 
diagnose the failures by attaching logic analyzer 
probes to the module. Because of the fine-pitch 
surface-mount devices and the high-speed opera
tion, it is very difficult to attach logic analyzer 
probes to many nodes on the processor module. 

OBS allows the CPU module to be observed as it 
executes VAX macrocode on board self-test stimu
lus at the module's full clock rate. T his additional 
observation is used by the scan monitor to help test 
and diagnose module-level faults in a system test 
environment in stage-one manufacturing. 

TEST PIN (ALSO A NORMAL 
DEVICE SIGNAL PIN) 

N-CHA N N E L  MOSFET 

: : :r3 N-CHANNEL MOSFET 

G N D  · · ·  P I N  N 

Figure 10 Continuity Transistor Structure 

Vol. 2 No. 2, Spring J<)<JO Digital Technicaljournal 



Designing OBS into a custom VLSI device is more 
complex than adding CTS , but is still relatively sim
ple. OBS is simply a parallel- load, serial-shift register 
with one bit  of the register on each device pin .  
Although i t  i s  not negligible, the OBS uses a rela
tively small amount of sil icon area and also does not 
affect product performance. The total area used by 
both the CTS and OBS was estimated at about one to 
two percent of the chip area. Unlike CTS , which 
does not require any dedicated device pins, OBS 

uses two dedicated pins on each device in which 
it is implemented. To fully utilize the OBS test fea
ture, the VAX 6000 Model 400 scan monitor was 
designed and built .  

The scan monitor controls and reads the OBS on 
the Model 400 module. A host computer system 
interfaces with the monitor. The scan moni.tor 
control program (SMCP) operates the scan moni.tor, 
makes  pass/fail  decisions on the data received , 
and diagnoses failures. SMCP also includes many 
features that allow it to perform as a virtual logic 
analyzer, including waveform displays that high
l ight faulty behavior, as we.ll as full triggering 
functionality. 

Conclusion 
The aggressive performance goals and advanced 
semiconductor technology used for the VAX 6000 
Model 400 processor meant a signi.ficant develop
ment effort for packaging and interconnect techno
logy. The technology requirements included high 
lead count, electrically tailored single-chip pack
ages, very dense controlled impedance printed 
w iring boards , a state-of-the-art surface-mount  
assembly process, and advanced test features. 

The physical technology achievements in the 
VAX 6000 Model 400 project represent an effort in 
the packaging and interconnect disciplines more 
akin to mainframe and supercomputer develop
ments than to traditional microprocessor-based 
system approaches. The accomplishments of the 
efforts include: 

• Development and implementation of an 
advanced TAB technology for the high lead
count custom chips 

• Design of an innovative semi customized ceramic 
single-chip package that combines the best fea
tures of surface-mount devices and traditional 
pin grid arrays 

• Development, sourcing, and qualification of 
very dense printed wiring boards with multiple 
controlled impedances 

Digital Tecbnicaljournal Vol. 2 No. 2, Spring 1990 

VAX 6000 Mode/ 400 Pbysical Tecbnology 

• Achievement of a technology set capable of 
28-ns clock cycles through the use of full elec
trical simulation at the device, package, and 
module levels 

• Development and implementation in manufac
turing of the SMT3 module assembly technology, 
which al lows double-sided mounting, high 
lead-count fine-pitch surface mounting, surface
mounted passive components, and mixed com
ponent types 

• Introduction of innovative testabil ity features, 
including the continuity transistor structure for 
assembly verification and observe boundary scan 
for diagnosis in engineering debug and module 
manufacturing 

As intended at the outset of the project, these 
technologies will be employed on a significant num
ber of follow-on midrange and low-end products. 

Acknowledgments 
A large number of people contributed to the success 
of the VAX 6000 Model 400 physical technology 
program. It is not possible to name all these impor
tant contributors in this space. Therefore, the 
authors want to acknowledge that the VAX 6000 
Model 400 project could not have been undertaken 
nor have succeeded without significant efforts by 
members of the SCIT Physical Technology Group, 
Semiconductor Assembly Group, Midrange Systems 
Engineering Group, Corporate PWB Group, Mid
range Systems Integration Group, and the SCIT 

Semiconductor Engineering Group. 

63 



Richard E. Calcagni I 
Will Sherwood 

VAX 6000 Model 400 CPU 
Chip Set Functional 
Design Verification 

Tbe VAX 6000 Model 400 system is Digital's first VLSI CPU to employ a ful�y micro

pipelined architecture. The CPU chip set for this system posed verification challenges 

Jar beyond those of previous designs. The major problem was the large number of 
complex control sequences and combinations that could exhibit design errors. A 
single verification strategy would not suff'icient(v handle this complexi�y. Therefore, 

t:et�(ication engineers developed a multipronged approach for simulation modeling 

and functional clesign verij'ication. They also employed CPU diagnostic programs, 

hand-generated tests, and directed pseudo-random techniques to verify that the 

design conformed to the VAX architecture. These techniques helped them find bugs 

prior to committing the design to masks. As a result, the first-pass versions of the CPU 
chip set successfully booted em operating system. Simulation also minimized chip 

rework and delays in bringing the product to market. 

The Design Verification Project 
The VAX 6000 Model 400 chip set verification pro
ject had two goals :  find implementation bugs in the 
design and verify that the design performed as a VAX 
system. The design verification tasks involved about 
25 person-years of effort in the areas of system 
microcode, custom V LSI  (very large scale integr::t
tion) chips, and the VAX 6000 Model 400 sc::tlar pro
cessor module. 

The chip set verification team coordinated a set 
of simulation models origin::tlly written by the chip 
logic designers. At various stages of the project, 
models were available at the gate/transistor, behav
ioral, and architectural performance levels. The 
verification team used these models to run a wide 
assortment of both basic and sophisticated tests. 
The use of simulation models is described in more 
detail in the next section. 

The CPU design was partitioned into functional 
units, and one or more units were assigned to each 
member of the verification team. A list of specific 
tests or testing activities was produced for each sec
tion of the CPU chips' specifications. This list was 
;wgmented by project-wide brainstorming sessions. 
These sessions were used to analyze obscure or sub
tle combinations of events in the design . Often, the 
thinking process would identify that a bug existed 
before any testing had been done. Verification engi-

64 

neers used the Jist to create tests for the functional 
units of each chip. These tests were implemented in 
either microcode, macrocode, pin-stimulus, or 
some combination of the three. Tests were imple
memnl in the priority determined by the design 
ream's identification of the most complex areas of 
the design and those most susceptible to bugs. 

Simulation Models 
Functional design verification using software simu
lation is inherenrly s low in a design as large and 
complex as a VAX CPU. 1 To use resources most 
efficiently, the verification team specified and coor
dinated a project-wide modeling methodology that 
incorporated a number of different modeling levels, 
trading off detai l versus other factOrs such as speed. 
These trade-offs allowed us to match the testing of 
each phase of the design to a model that met its 
specific needs and characteristics. Thus, simula
tions were only as detailed as necessary for a parti
cu lar test situation, and the overall efficiency of the 

verification effort was increased. Most levels of 
modeling could contain different levels of descrip
tion detail for different areas of the design, which 
further optimized simulation performance. 

There were three major phases of the design: 
architecture, detai led block diagram, and logic/ 

Vol. 2 No. 2, Spn·ng 1')<)0 Digital Technical journal 



VAX 6000 Mode/ 400 CPU Chip Set Functional Design Verification 

transistor schematic. To match these design levels, 

architectural ,  behavioral ,  and structural models 

were written . Each model section was written by its 
designer and then integrated into a whole-chip 

model, a system model,  or both models for chip 
and system testing. In addition the design method 

ensured that the overal l  organization of each 

modeling level was faithfu l  to  the hardware design 

level it represented. 

Architectural Model 

The architectural-level model is the highest level of 

modeling for this project. !.I 1 This model describes 
only the control algorithms and abstract data paths 

in the microarchitecture. The VAX 6000 Model 400 
CPU architects wrote this model in PASCAL for exe
cution performance reasons. The PASCAL program 

avoids most of the simulation-oriented overhead 
because it is a standalone program .  

I n  the architectural model , actual microcode i s  

used. However, because much o f  the detail o f  the 
m icroarc hitecture is abstracted in this mode l ,  
cm tches (additional simulation aids) are required 

to execute the microcode flows. Model simulations 

are dri ven from inst ruction traces. Opcode, 
operand , and address information are extracted 

from user programs and system software running 

on actual VAX systems. Special fields in each 
microword make use of the information from these 

traces and direct the flow of microcode execution 

accordingly .  These special fields are only used for 
simu lation and are not incl uded in the actual 

microcode implemented in hardware. The use of 

trace data extracted from real VAX systems permits 
actual machi ne loads to be reproduced, and the 

architect can evaluate implementation trade-offs 

from these reproductions. 
Signals in the architectural model are correct to 

within a machine cycle, which al lows execution 
t imes to be accurately measured . Microarchitec

tural parameters, such as cache or translation buffer 

size, can be easily adjusted to anal yze their effects 

on system performance. More complex design fea
tures, such as bus protocols and pipeline control 
algorithms, can also be modi fied relatively easily. 

The model describes most of the hardware sec
tions that wil l be in the final design. Therefore, i t  

serves as a prototype system debugging tool to 
predict and tune system performance. The model 
also uncovers design flaws before implementation 
begins. About a hundred bugs were found at this 

preliminary s tage by using the architectural model.  

Digital Tecbnica/]ournal Vol. 2 No. 2, Spring /')')() 

Behavioral Model 

The behavioral level model describes each chip sec
tion's logic i n  detai l .  It is  written in the DECSIM 
behavioral mode l i ng Janguage.'u' 7 DECSIM pro
v ides a high- level computer-hardware description 

language that executes procedurally rather than 
using event-driven algorithms .  Models written in 
such a language generally simplify both model and 
design debugging. 

The modeling methodology req uires that, i n  the 
behavioral model ,  every signal in the design be 
explicitly modeled, with its timing accurate to the 
clock-phase boundary. This met hodology maxi
mizes the probability that timing problems will be 
found at this level of simulation . (Note: No addi
tional logic timing verification was done on this 
project .) Each designer writes the section's model in 
parallel with writing the chip's specification. The 
writing must be done before detailed schematics are 
started. This method ensures that the model accu
rately represents the real hardware behavior. 

The model executes hierarchically . The system 
clocks are advanced at the beginning of each phase, 
then the top-level routines for each section are 

cal led . These routines, in turn, call the routines for 

each subsection. The subsection routines do the 
actual work. 

The DECSIM behavioral model is the basis for 
many model variations. These variations range from 
the simplest single-CPU mod ule ro elaborate multi
processor versions that include peripherals and I/O 

adapters. 
The basic version of the behavioral model is non

ported; i .e. , the model is implemented as a single. 
self-contained hierarchy of procedures that does 
not use or connect to any other models. The non
ported model contains detailed descriptions of the 
three custom VLSI chips: C P U  processor, secondary 
cache controller, and floating point accelerator. 
This model also i ncludes a representation for 
back'Up cache RAMs connected to the DAL (data and 
address lines). Also modeled are a system support 
chip and a simple memory that can return data as 
fast as the protocol allows. 

This nonported model was used for extensive 
testing of the microcode, microarchitectu re, and 
logic design of the VLSI chips and their i nterfaces. 
A majority of the verification tests did not need 

detailed memory timing or I/0. Tests could be run 
faster on the nonported model than on one that 
simulated the actual memory access delays. These 
delays would have increased the testing time with
out adding value to the testing process. 

65 



VAX 6000 Model 400 System 

Another version of the behavioral model is 
ported. This model was constructed to test the 
DAL and the interaction of the core chips with the 
system support chip (RSSC) and bus interface stan
dard cell (REXMI) chips.H Ported models have ports 
at the boundaries of procedural model compo
nents. Ports are used where chip pins or similar 
boundaries appear in the design. Ported model 
components are i ntegrated for simulation through a 
structural wire list derived from module (printed 
wiring board) schematics. The main ported model 
consists of the core CPU chips with a ported repre
sentation of the DAL .  This model connects to ported 
models of the other chips on the VAX 6000 Model 
400 module, which in turn connect to memory and 
IIO models. Several different combinations of these 
ported models were used for various specific 
verification test applications as shown in Table I .  

The combined ported models run several times 
slower than the less complex nonported model. 
The slower time is offset by increased testing granu
larity. The ported models also al low asynchronous 

behavior, which in turn allows chip- and module
level interactions to be tested. 

Table I lists more usages of the ported core chip 
set behavior model as compared to the nonported 
architectural performance model .  

Structural Models 

The structural models were derived automatically 
from the designers' transistor-level schematics. The 
wirelists, or network descriptions, were translated 
for the two simulator systems: DECSIM MOS and 
the ZYCAD simulation engine 9' 1 0  1 1  

DECSIM MOS is a 
transistor-level simulator based on RSIM and ESIM 

that models R-C delays, undefined-state initiali
zation, and charge sharing.1 2' 1 u �  The hardware
accelerated ZYCAD system abstracts transistors into 
a three-state, gate-level model. The DECSIM MOS 

model was used for standalone chip sections and 
whole chip simulations to find initialization and 
charge-sharing bugs. Both DECSIM MOS and ZYCAD 

were used to find logic and schematic bugs. Both 
systems used pin-level pattern stimulus that was 

Table 1 Combinations of Behavioral Model Configurations 

Number of Module Nu mber and Level 
Ported Modules Abstraction of Memory 

No Architectural leve l ;  1 Abstract memory 
per-cycle detail module 

No Behavioral level for 1 Abstract memory 
su pport chips; per- mod u l e  
phase detail 

Yes Behavioral level for 1 Detailed memory 
support chips mod u l e  

Yes 2 Behavioral level for 2 Detailed memory 
support chips modules 

Yes Behavioral su pport 1 Detailed memory 
chips module with gate-

level bus i nterface 

Yes Gate level for 1 Detailed memory 
bus i nterface chips mod u l e  with gate-

level bus interface 

Yes Gate level for 1 Detailed memory 
bus interface chips modu le with gate-

level bus interface 

Yes 2 Gate level for 2 Detailed memory 
bus interface chips mod ules with gate-

level bus interface 

66 

Performance 
(Microcycles/ 

Peripherals Applications Second) 

None Architecture 600 
debugging and 
performance 
tuning 

None CPU verification 7 
and generating 
chip test patterns 

None Self-test code 2 . 5  
debugging and 
bus interface 
verification 

None Mu ltiprocessor 
verification 

1 RL02 disk Booting VMS 2 
(high level) system 

None Bus interface 
verification and 
generating chip 
test patterns 

None Mod u le 
verification 

Bus adapter System 0.5 
verification in 
mult iprocessor 
mode 

Vul. 2 No. 2, Spn·ng 1990 Digital Tecbnical]oumal 



VAX 6000 Mode/ 400 CPU Chip Set Functional Design Verification 

generated from the nonported behavioral model. 
Signals traced in the behavioral model matched 
the boundary of the section of logic or chip being 
simulated at the gate level. Test results were com
pared on a cycle-by-cycle basis. The tests uncovered 
many bugs in the logic design implementation. 

Gate-level Fault Simulation 

In addition to ZYCAD true-value simulation, single 
stuck-at fault simulation was done. Fault simulation 
measured verification and manufacturing test 
coverage, and provided guidance for verification 
engineers to enhance tests. The fault simulation 
effort for the CPU processor chip alone was almost 
six months long. As a result of this effort, five new 
tests were written, and manufacturing fault  
coverage was subsequently increased from 83 per
cent to 94 percent. 

Verification Strategies 
CPU chip set verification engineers had two 
explicitly stated and somewhat overlapping goals. 
We had to prove that the hardware design intent 
adhered to the VAX architecture standard in every 
respect, and that the logic implementation adhered 
to the intent . ' 5  We strongly believed that any bugs 
in prototype hardware (first-pass silicon for the 
custom VLSI chips) would negatively impact our 
ability to meet time-to-market for the product. Bugs 
found at a later stage of the design process are 
more expensive to fix for custom VLSI chips. I t  is 
expensive because we are severely restricted in our 
ability to isolate and work around bugs in the hard
ware. Therefore, for custom VLSI chips, verification 
explicitly meant proving the design and finding the 
bugs in simulation. No single verification strategy or 
technique can find all of the bugs in something as 
complex as a VAX CPU. Therefore, a breadth of veri
fication strategies were flexibly applied . 

In addition to technical strategies, the verifica
tion team cultivated a "bugs are good " philosophy 
throughout the project. 16 Past experience has 
shown us that bugs will always creep into the 
design of something as complex as a VAX CPU. 

Instead of being viewed as mistakes or failures, bugs 
were celebrated because a bug found in simulation 
was a bug that didn' t  make it into prototype hard
ware. This subtle shift in how the finding of a bug 
was regarded had , we believe, a strong motivational 
impact on members of the design and verification 
teams and increased the probability of finding bugs 
during verification. 

Digital Teclmtcaljournal Vol. 2 No. 2, Spring 1990 

Existing Design Verification Tests 

The VAX architecture has undergone a number of 
implementations since the first VAX- 1 1 /780 system 
was designed in the mid- 1970s. Over the years, a 
substantial body of knowledge regarding the key 
areas and problems associated with designing a VAX 
processor has been accumulated from various VAX 
implementations. We put these past lessons to use 
in the VAX 6000 Model 400 verification effort . We 
actively sought out bug lists, test plans, and actual 
test code used by previous VAX system design 
teams. One key example of this is HCORE,  a self
checking VAX macrocoded diagnostic program. 
HCORE specifically focuses on the high-risk areas 
that are common across VAX designs. The HCORE 

test program was originally developed from 
another basic field-diagnostic program. It was later 
modified many times, throughout several projects, 
to focus on testing potential high-risk instructions 
and functional areas that had been identified in past 
designs. Existing design verification tests (DVT) 
such as this are almost always VAX macrocoded 
tests. Macrocoded tests transport more easily across 
implementations than microcoded tests because 
the microword formats are usually different from 
implementation to implementation. 

We derived three benefits from using existing 
DVTs. They provided a strong level of confidence 
in the basic functional operation of the design . Sec
ond, they found any functional bugs that might be 
hiding in obscure or seldom used areas of the VAX 
instruction set . Third , when used with demons 
(explained later), they were useful in finding bugs in 
very implementation-specific areas, such as error 
recovery logic. 

Custom Design Verification Tests 

Although all VAX CPU designs implement the same 
architecture and run the same software, the hard
ware and firmware implementation details of each 
are unique. Therefore, generic VAX diagnostic tests 
did not necessarily cover the specific critical paths 
and functions in the VAX 6000 Model 400 design. 
Existing DVTs often could not provide a clear 
picture of what had and had not been covered . To 
solve these problems, we used custom DVTs to test 
specific, obscure, and hard-to-get-at areas of the 
design. There were several techniques for imple
menting custom DVTs: 

• Handwritten macrocode 

• Handwritten microcode 

67 



VAX 6000 Model 400 System 

• Manipulation of pins and imernal signals under 
simulation comrol 

These techniques could be used individually and 
in combination, within a single custom DVT. For 
example, although custom DVTs for the instruction 
fetch and parse logic (!-box) were written primarily 
in microcode, a custom macrocoded instruction 
stream was written to give the 1-box something to 
parse. Explicit manipulation of pins in simulation 
was used to generate asynchronous events, such as 
interrupts, when necessary. 

Custom DVTs provided confidence in areas of the 
design that could not easily be tested with existing 
DVTs. We made the tests as focused and efficient as 
possible. However, in doing so, the generation of 
such tests required large amounts of development 
time and people resources. Although these tests 
uncovered several bugs in all areas of the design, we 
now believe that many of these same bugs could 
have been found with less labor-intensive methods, 
such as pseudo-random tests. At the time, the pri
mary advantage of custom DVTs was the clear 
indication they gave that specific functional areas 
of the design had been tested and were working 
as specified . 

Pseudo-random Design Verification Tests 

Each new VAX CPU design aspires to improve on 
the price or performance of the previous design. 
Improvemems are sought by pushing the limits of 
available technology to package hardware into 
smaller and , if possible, less expensive spaces. At 
the same time, a decrease in the cycle time or an 
i ncrease in the work done per cycle in the func
tional design is also sought. In particular, this last 
item has substantially increased design complexity 
by imroducing techniques such as pipelining and 
special-case hardware. As a result of this complex
ity, we often encoumer very obscure bugs when 
debugging new VAX implememations. These bugs 
involve unamicipated interactions in the logic, 
between seemingly unrelated functional areas, and 
interactions dependem on intricate combinations 
and sequences of evems. We were concerned about 
these types of bugs because it is extremely difficult 
to write tests for unanticipated problems. The 
method we chose to address these problems was 
pseudo-random testing. 

The intent of pseudo-random testing is to exer
cise the design in ways that are likely to find bugs 
without necessarily knowing in advance what those 
bugs are or where they might be. Pseudo-random 

68 

testing implies simulating many cycles and trad
ing off test efficiency to address the problem of 
unanticipated bugs. 

It is absolutely necessary to automate the pseudo
random test process, both test generation and test 
scoring, as much as possible since pseudo-random 
tests are much longer than focused tests. 

A powerful tool already available for pseudo
random testing VAX designs is the VAX architectural 
exerciser tool suite (AXE and MAX).17 Originally 
intended as hardware prototype verification tools, 
AXE and MAX have proven to be even more effec
tive as design verification tools in a simulation 
environment. They provide a virtually inex
haustible source of unique, interesting macrocode 
test cases, and require a minimum of intervention 
and effort by the user. 

Although AXE and MAX provide some control 
over test case parameters, they still aspire to be gen
eral, architecturaUy focused exercisers. We also 
wanted pseudo-random test case generation that 
could be targeted at specific, risky areas of the 
implememation. These areas were the most likely 
locations for unanticipated bugs. Custom pseudo
random exercisers were developed for these areas. 
These exercisers provided very detai led control 
over test case parameters, yet retained many of the 
features and advamages of AXE and MAX .  

A powerful techni�ue for pseudo-random test is 
the use of demons. ' ' A demon is a n y  a u tomated 
imervention of a simulation model's normal execu
tion behavior. For example, a bus demon can imer
ject one or more bus commands, error conditions, 
or interrupts at random intervals in order to aggra
vate normal system operation . By doing this, a 
dense environment of unusual or uncommon event 
combinations can be created to stimulate the design 
with worst-case situations. Demons typically 
slowed model execution by a factor of ten, but they 
often found bugs that had not been considered by 
the designers or architects. Without demons, it 
could have taken many months of field testing to 
find and characterize these bugs, if they would have 
been found at all . 

Pseudo-random testing with A.,'\E,  MAX, custom 
exercisers, and demons was used throughout the 
development cycle of the CPU chip set . All four 
uncovered obscure interaction bugs, as expected. 
Unfortunately, they did not find them all .  Some 
unanticipated bugs slipped through verification and 
into the first-pass silicon stage. These bugs were 
eventual ly found after running many more cycles in 
real prototype hardware. The fai lure to find all 

Vol. 2 No. 2, Spring 1990 Digital Tecbnicaljournal 



VAX 6000 Model 400 CPU Chip Set Functional Design Verification 

unanticipated bugs in the simulation stage illus
trates a fundamental problem in the use of pseudo
random testing. The effectiveness of testing is  
closely coupled to the number of cycles run,  and 
simulation speed severely restricts this number. 

Our application of pseudo-random testing to the 
problem of unanticipated bugs was largely success
ful for this project. However, we learned that we 
must do more in the future to increase the 
efficiency and scope of these tests. To provide this 
increase, we are looking toward more d irected 
pseudo-random testing. 

Booting the VMS Operating System 

A major milestone in the development of any new 
VAX CPU is booting the VMS operating system on 
prototype hardware. Not only does this demon
strate significant functionality in the design, but it 
also provides a platform from which further testing 
can proceed . As previously stated, increased com
plexity in these designs can produce very subtle 
bugs. Often, such bugs do not even appear until the 
hardware is run under a heavy system load in a large 
multiprocessing or I/O-intensive environment .  Suc
cessfully booting VMS on prototype hardware is 
necessary before any such system load testing can 
begin .  The sooner such resting begins, the better the 
chance of finding subt le bugs. For this reason , boot
ing the VMS system in simulation was an important 
goal of the VAX 6000 Model 400 chip development 
and verification effort. 

At first glance, it  would seem impossible to boot 
the VMS system on a simulation model in a reason
able amount of t ime. Simu lation speeds on the 
fastest of our models were many orders of magni
tude slower than actual hardware. However, careful 
analysis of the macrocode modules involved in the 
boot process revealed that by optimizing or remov
ing large, iterative sections of code, we could sub
stantially reduce the number of cycles in the boor 
path without losing significant coverage for veri
fication . For example, the primary bootstrap mod
u le contains code that creates a bit map of all 
physical memory in the system . The code tests each 
memory location for errors. By reducing this code 
to test fewer memory locations, the number of 
cycles executed is vastly reduced. 

Another key optimization involved speeding up 
simulated transfers from clisk. At several points dur
ing the boot process, code and data are pulled into 
memory from a mass storage device (usually a disk). 
For simulation, a special " turbo" disk model was 
written by the verification team. This model arti-

Digital Tecbnicaljournal Vol. 2 No. 2, Spring 1?90 

ficially processes model requests for block data 
transfers and performs rhe transfers instantly. This 
technique eliminated wasting simulated CPU cycles 
while waiting for transfers to complete. 

With model and code optimizations in place, 
booting the VMS system to the point of printing the 
VMS banner and starting the process scheduler was 
actually achieved in simulation. It took approxi
mately seven CPU days on a host V�'< 8800 system . 
One model bug and one real design bug were found 
during this effort . Booting the VMS system in simu
lation requi red a large amount of verification 
resources. The process was worthwhile in terms of 
the bugs that were found and the confidence it gave 
us that we could boot VMS on first-pass hardware. 

Analysis of the Functional Bugs Found 
To demonstrate where the verification project was 
successful and where it needed improvement, we 
discuss here the bugs that were found both before 
and after the chip set first-pass design was commit
ted to masks. (Note: The milestone of this commit
ment is called PG , for mask data preparation's 
pattern generation . )  Only the bugs pertaining to 
architecture, microcode, functional design, and 
logic design are discussed. Layout and circuit prob
lems, as well as modeling and tool bugs, are outside 
the scope of this paper. 

During the design period, several hundred bugs, 
with a variety of complexity levels, were found in 
all sections of the design. These bugs were found 
through the verification techniques described in 
previous sections and are detailed in Table 2 .  

The prototype chips were first tested on a Takeda 
3381 chip tester. This tester a l lowed prototype 
chips to be tested in a standalone environment .  The 
chips were then i nserted into a prototype CPU 
module, which was part of a custom-designed engi
neering tester. The prototype module provided a 

Table 2 Methods Used to Find Design Bugs 
before First-pass Silicon 

Number of 
Verification Process Bugs Found 

Custom DVTs, DVT reviews, 273 
microcode assertions 

Existing macrocode test programs 1 71 

Pseudo-random macrocode tests 90 

Boot VMS operating system on the 
behavioral model 

Total of bugs found prior to 535 
f irst-pass si l icon 

69 



VAX 6000 Model 400 System 

true system environment for the chip set 1H During 
p rototype debugging, 1 1  bugs were found.  The 
characteristics of these bugs are shown i n  Table 3.  

None of these bugs was a "show-stopper" in 
terms of prototype debugging or field testing. In 
fact, most of them were so obscure that the proba
bility they would appear during normal use was 
very low. Several generalizations and conclusions 
can be drawn from the types of bugs found and how 
they were found, particularly whether they could 
have been found earlier. 

• Bugs 1 ,  2,  6, and 9 were simple, but were missed 
because of overlooked test coverage. The sim
plest test, if identified and written, would have 
found them. We learned that we needed more 
discipline and thoroughness in generating lists of 
tests as guided by test coverage indicators. 

• Bugs 4, 5, and 11 were found on the simulator 
after prototypes were available. It is questionable 
w hether these bugs would ever have been 
noticed, much less isolated , on shipped systems 
because the conditions triggering them were 
obscure. For example, six conditions, including 
a parity error interrupt ,  had to happen simul
taneously to reveal bug 4 .  It was acceptable to 
find these bugs after PG because the impact from 
such bugs on prototype debugging was minimal.  

• Bug 3 was found using prototype hardware 
rather than simulation . A new version of MAX 
was released duri ng the prototype debugging 
time frame. This version had some new test 
coverage features, and we decided to run them 

Table 3 Bugs Found after Pattern Generation 

Bug 

on the hardware at-speed as opposed to using 
simulation. One of the new features stimulated 
the conditions for bug 3. Had this lV1AX feature 
been avai lable p rior to PG , we would have 
encountered the bug in simulation within the 
first few tests. Typically, 90 percent of the bugs 
uncovered by using the 1V1AX tool are found with 
the first 1 00 tests generated . 

• The verification methodology for bug 10 was 
correct, but had not been followed . Appropriate 
gate-level comparison testing would have found 
this bug prior to PG . 

• Bugs 7 and 8 were extremely obscure and d iffi
cult to find . The first symptom of these bugs was 
a series of unexplained system crashes over a 
period of several weeks. The situation was finally 
resolved by attaching a logic analyzer to a system 
and waiting for days for the right combination 
of events to trigger the failure. Unfortunately, it 
is highly unlikely that we would have found 
ei ther bug i n  simulation, even with  a broader 
scope of directed-random verification, given the 
limited amount of simulation that was done. The 
architectural, microcode, and pipeline combi
nations required to trigger these bugs were just 
too complex. 

Conclusions 
Although there were 1 1  bugs in the ftrst-pass chip 
set, the verification efforts were considered quite 
successful .  Prototype debugging was never stopped 
because of a bug, and system field testing was able 

Number Chip Type Bug Type Complexity How Found 

1 CPU Microcode First order Inspection 

2 CPU Microcode First order I n spection 

3 CPU Logic Sequential MAX on prototype 

4 CPU Microcode Second order Pseudo-random on s imu lator 

5 CPU Microcode Second order Pseudo-random on s i m ulator 

6 CPU Microcode First order Self-test o n  prototype 

7 CPU Logic/microcode Second order Field test system crash 

8 CPU Microcode Second order Field test system crash 

9 CPU Logic First order Prototype debugging 

10 Floating point Logic Sequential Chip tester comparison 
accelerator 

1 1  Cache Logic Second order System verification test o n  s imu lator 
control ler 

70 Vol. 2 No. 2, Spring 1990 Digital Technical journal 



VAX 6000 Model 400 CPU Chip Set Functional Design Verification 

to complete on schedule. The modeling and veri
fication methodologies contributed to this success. 

• All logic, functional ,  and microcode bugs could 
be reproduced in the behavioral model. There
fore, the bugs found after PG could have been 
found with simulation had the appropriate com
bination of events been tested. 

• Complex pipeline activity, an area of concern 
from the beginning, was the primary problem 
area in the design. Compromising design com
p lexity to make thorough verification more 
achievable should be considered. 

• In general, the tool or test that first exercised a 
chip section or functional area with a bug found 
the bug. We believe this indicates that it is more 
p roductive to first debug using existing 
macrocode tests or automatically generated tests 
before writing new tests. 

• Although the effort to boot the VMS operating 
system on the simulator was comparatively 
large, one bug was found that would not have 
been found through other means. We had not 
considered the combination of events that 
caused the bug. Finding this bug clearly showed 
the benefit of running this application on the 
simulator. Further, it gave us confidence that the 
VMS operating system would boot on the first
pass prototype hardware to ensure that proto
type debugging could proceed unimpeded. 

• The flexible and wide-ranging modeling meth
odology served the design team well . The source 
code of the CPU chip set model has been reused 
in system verification and chip set application 
development projects at least ten times. The cor
porate standard DECSIM logic simulator made 
this modeling effort savings possible. 

Acknowledgments 
The verification of the CPU chip set design was 
a team effort performed by the Semiconductor 
Engineering Group's m icroprocessor verification 
team. Members of this team included David Asher, 
Rick Calcagni ,  Liza Hudepohl, George Mills, Rick 
Pekkala, Ed Rocha, Wi l l  Sherwood, and Chris 
Spear. Part of our success is attributed to our CAD 
tool development groups, including the SEGCAD 
DECSIM team and the VAX Architecture Group AXE/ 
MAX team. We would also like to thank Mike Uhler 
for his technical guidance throughout the project. 

Digital Technical journal Vol. 2 /Vo. 2, Spring 1990 

References 

1 .  ] . Basmaji et  a l . ,  "The Role of Computer-aided 
Engineering in the Design of the VAX 6200 
System," Digital Technical journal, vol . 1 ,  no. 7 
(August 1988): 47-56. 

2. C. W iecek, "The Simulation of Processor 
Performance for the VAX 8800 Family," Digital 
Technical journal, vol. 1 ,  no. 4 (February 
1 987): 100-1 10.  

3 .  C. Wiecek and S. Steely, "Performance Simu
lation as a Tool in Central Processing Unit  
Design," Performance Evaluation Review, vol. 
1 1 ,  no. 1 (August 1979): 4 1 -47 . 

4 .  B. Moses and K .  DeGregory, " Performance 
Evaluation of the VAX 6200 Systems," Digital 
Technical journal, vol. 1 ,  no. 7 (August 1988): 
64-78. 

5 .  M. Kearney, " DECSIM : A Multilevel Simulation 
System for Digital Design," Proceedings of 
ICCAD (October 1984). 

6. R. Gries and ]. Woodward, "Software Tools 
Used in the Development of a VLSI VAX 
Microcomputer," Proceedings of the MICR0-17 
Conference (October 1984). 

7 .  W. Sherwood, "An Interactive Simulation 
Debugging Interface," Computer Hardware 
Description Languages and Their Appli
cations, Breuer and Hartenstein, editors, 
(Amsterdam: North-Holland Publishing, 198 1 ) :  
1 37- 144 .  

8 .  P .  Sullivan et  a! . ,  "The VAX 6000 Model 400 
Scalar Processor Module," Digital Technical 
journal, vol . 2 ,  no. 2 (Spring 1 990, this issue): 
27-35 .  

9. B .  Milne, "Put the Pedal to  the Metal with Simu
lation Accelerators," Electronic Design, vol. 35 ,  
no.  21  (September 1987): 39-52. 

10 .  M. McMahon, "Accelerators for Faster Logic 
Simulation: The ZYCAD Approach ," Proceed
ings of VLSI and Computers, First Interna
tional Conference on Computer Technology, 
Systems and Applications (COMPEURO '87 Cat. 
No . 87CH24 17-4 , 1987): 98 1 .  

1 1 .  D .  Jenkins and S .  Morton, "Transistor-Level 
Logic S imulation Using the ZYCAD Logic 
Evaluator," Proceedings of the Conference 
on A utomated Design and Engineering for 

Electronics ( 1985):  1 54- 163. 

7 1  



VAX 6000 Model 400 System 

1 2 .  C. Terman,  " Timi ng Simulation for Large 
Digital MOS Circuits," Computer-aickd Design 
of VLSI Circuits and Systems, (Grc<:nwich : 
JAI Press, 1986). 

1 3 .  C.  Terman, " RSI M - A  Logic-Level Timing 
S imulator,"  International Conference on 
Computers and Design ( 1983). 

14 . C .  Terman, "Simulation Tools for Digital LSI 
Design," Technical Report TR-304, M IT/LCS 
(Cambridge: MIT Laboratory for Computer 
Science, 1983). 

1 5 .  T. Leonard, ed . ,  \1,4X A rchitecture Reference 
Manual (Bedford : Digital Press , Order No . 
EY-3459E-DP, 1 987). 

16.  D.  Clark , "Bugs are Good: A Probkm-oriented 
Approach to the Management of Design Engi
neering," Research - Technolof!Y Management 
(forthcoming 1990). 

17. D. Bhandarkar, "Architecture Management 
for Ensuring Software Compatibility in the 
VAX Family of Computers," IEEE Computer 
(February 1982): 87-93.  

18 .  W. Sherwood , "The V LSI VAX Chip Set Micro
architecture," Microarchitecture of VLSI Com
puters, P. Antogneui, ed . ( 1 985): 103-1 26. 

72 ViJI. 2 No. 2, Spring 1990 Digital Tecbntcaljournal 



john W. Croll 
Larry T. Camilli 

A nthony]. Vaccaro 

Test and Qualification of the 
VAX 6000 Model400 System 

Computer-aided design simulation, which is used in the design of the VAX 6000 
family, finds most problems during the hardware design phase. Simulation, 

however, cannot test a complex system running under system software control. For 

the VAX 6000 Model 400 system, a qualification process was designed to completely 

test the interaction of the system s hardware and software components. The benefit of 

such a process is clearly shown in the results. Nearly all the problems found in the 

qualification stage could not have been found in the simulation process. The testing 

and qualification of the Model 400 was a multigroup effort. This paper describes the 

methods and tools of three Midrange Systems Engineering groups who were involved 

in the project. 

The VAX 6000 Model 400 system is the third in the 
VAX 6000 series. The Model 400 is designed to 
enhance CPU performance using the same platform, 
that is cabinetry, buses, and power systems, as a l l  
models in  the VAX 6000 fami ly. The basic architec
ture of the VAX 6000 Model 400 is unchanged from 
that of the earlier Model 200 and 300 systems 1 2' 1 

The Model 400 is distinguished from earl ier models 
primari ly by two additions: J. new processor design, 
which offers over twice the performance of the 
original VAX 6000 Model 200 processor, and by the 
addition of a vector coprocessor. ' · ' The interfaces in 
the Model 400 to the common platform remain the 
same. However, the processor is an entirely new 
design, and is the first Digital system to use semi
conductors designed with the CMOS-2 process 6 

A l l  VAX 6000 systems use a common design pro
cess that relies heavi ly upon simulation ro detect 
and correct design errors. This simulation process is 
designed to ensure that first-pass hardware, or the 
initial engineering prototypes, will run the operat
ing system at speed.

-
The VAX 6000 Model 400 

processor is an excellent example of the effec
tiveness of simulation techniques. The elapsed time 
from power-on of the first prototype to reliable 
login under both the VMS and LJLTRIX operating 
systems was less than six weeks, w hich is sub
stantial ly  less time than has been seen for previous 
VAX processors. 

Current computer systems are very complex, 
especially when hardware and software interac
tions are considered. Simulation cannot adequately 

Digital Tecbnicaljournal \11/. 1 No. 1, Spring J<J90 

test hardware executing under operating system 
control . A companion system test and qualification 
process, executed on hardware prototypes, is 
required to thoroughly test the complete system 
and ensure its reliability. 

A key goal of the VAX 6000 common-platform 
design strategy was to al low new processor tech
nology to be brought to the market quickly. To 
achieve this goa l ,  we had to minimize the time 
required for system test and qualification without 
compromising the quality or rel iabi lity of the final 
product.  By reusing common platform compo
nents, we could primaril y  focus on testing the new 
components. 

This paper addresses the system test and qual
ification process used for the VAX 6000 Model 400 
system. This process was designed to maximize test 
effectiveness and minimize test time. The first cus
tomer shipments of the VAX 6000 Model 400 system 
occurred onl y  six months after the introduction of 
its predecessor, the VAX 6000 Model 300 system . 

System Test and Qualification Process 
The VAX 6000 Model 400 System Integration Group 
is responsible for the overal.l design and manage
ment of the system test and qualification process. 
This group comprises engineers who reside within 
the hardware design group, but have not directly 
participated in the design of the components being 
tested. Therefore, any problems found during the 
test period can be rapid ly  communicated and 
resolved,  w hereas the possibi l i ty of " testing to 

73 



VAX 6000 Model 400 System 

implementation" versus " testing to specification" is 
avoided . 

l imitations prohibit an in-depth discussion of each 
function. Therefore, we wi ll examine in-depth the 
roles of three of the Midrange Systems Engineering 
Groups - the VAX 6000 Model 400 System Integra
tion Group; the VAX Architecture Verification 
Group; and the Midrange Systems Evaluation Engi
neering Group. We wi l l  also describe the tests and 
tools used in the qualification of the VAX 6000 
Model 400 system. 

A distributed test process was developed for the 
VAX 6000 Model 400 system that used the resources 
and expertise of a variety of groups within Digital .  
The test process also allowed many tests to be exe
cuted in parallel to minimize time. Additionally, 
some of these groups have special ized test facilities 
that are required to satisfy standards imposed by 
D igital and various government regulatory bodies, 
e .g. , the FCC and U L .  System Integration Group 

The groups that participated in testing the 
VAX 6000 Model 400 system, together with a brief 
description of each group's function, are shown in 
Table 1 .  Each group played a valuable role in testing 
a particular aspect of the system. Initially, a very 
aggressive test schedule of six months for the entire 
test and qualification process was planned. How
ever, clue to some delays in planned prototype 
availability, all testing had to be completed in about 
five months to allow systems to ship as scheduled in 
July 1 989. The expertise of all the groups involved 
was required to meet this schedule. However, space 

Planning for the system test and qualification of the 
VAX 6000 Model 400 system began approximately 
one year prior to scheduled availability of the first 
prototype systems. During this period, the overa l l  
qualification plan was developed, and individual 
test plans were solicited from each group that  
would participate in the testing. Each plan was 
reviewed by the System Integration Group for test 
coverage, as well as for minimization of overlaps 
and duplication in the component plans. In parallel, 
the System Integration Group developed plans for 
hardware-specific system design verification tests 

Table 1 Organizations I nvolved in System Qual ification 

Organization 

System I nteg ration 

VAX System Arch itecture 

M id range Systems Eval u ation 
Eng inee ring 

VAXcluster Validation 

Mechan ical Tec h nology 

E lectromagnetic Compatib i l ity 
E ng ineering 

P roduct Safety Laboratory 

Diagnostic Qual ity Assurance 

M an ufacturing P roduct 
Verification 

Central Characterization G roup 

System Performance Analysis 
G roup 

Customer Services Systems 
Engineering 

Software Qual ity Mai ntenance 

Systems Rel iabi l ity E ng ineering 

74 

Function 

M anage qual ification process; perform DVT, system test, rel iabi l ity 
confidence test; manage field test 

Exercise new system to find d iscrepancies with the VAX arch itectu re 

Test a variety of system configu rations for proper operation , 
concentrating on 1/0 configu rations 

Test complex VAXcluster envi ronments with new products to find 
p roblems i n  new or existing VAXcl uster com ponents 

Demonstrate successful product operation whi le  exposed to specific 
environmental conditions (e. g . ,  vibrat ion, h u m id ity, alt itude) 

Test new p roducts for electromagnetic compliance to various 
government regu latory requ i rements (e. g . ,  FCC , VDE) 

Test various aspects of new product safety and ensure compliance 
to safety standards (e . g . ,  U L ,  GSA) 

Test various diagnostic programs to ensu re correct operation 

Provide the necessary data to verify and i m p rove the man ufact u ring 
process to enable consistent production of a q ual ity product 

Characterize performance of industry and appl ication-specific 
workloads 

Model and measure performance of m i d range products 

Develop service del ivery and training p rograms, test d iagnostic and 
repair features of products 

Test software-layered product operabi lity with new hardware and 
operating system versions 

Predict, test, and analyze hardware and system rel iabil ity 

Vol. 2 No. 2, Spring 1990 Digital Tecbnicaljournal 



Test and Qualification of the VAX 6000 Model 400 System 

(DVTs) and for external field test.  Prowtype plans 
specified the number, distribution, and cost of the 
prototyped systems that would be required during 
the test period. 

The System I ntegration Group also acted as the 
problem-reporting center. In implementing a dis
tributed test process, two functions are essential. 
There must be a central focus that disseminates 
information regarding observed problems to all  
test groups. Second, an established method for 
tracking status and resolution of these problems 
must be maintained. An internally designed system 
maintained a complete audit hiswry of each prob
lem. There were 1 2 1  problems reported during 
VAX 6000 Model 400 testing. Each step in the reso
iution process was tracked for each problem in the 
problem database. This database was available to all 
test groups. The database was supplemented by 
weekly cross-functional meetings, at which repre
sentatives from engineering, manufacturing, and 
customer services reviewed and updated each 
problem's status. 

The complex VAX 6000 Model 400 project sched
u le was developed and tracked by the group. Due to 
the number of groups involved in testing and the 
delays involved when problems were found, the 
critical path tended to be very dynamic during the 
test phase. A project management tool, which was 
developed within Digital and which used PERT, 

tracked status against milestones and modeled dif
ferent scenarios to prevent overall schedule slip
page as changes occurred. 

The System Integration Group performed four 
major types of test. These were system test, reli
ability confidence test, design verification tests, and 
field test. The following sections describe each of 
these tests. 

System Test 

There are two forms of system testing, directed and 
random. Most testing groups use directed tests, 
which test hardware or software features, or follow 
a strict test sequence. Directed tests seek specific 
results and are well defined . 

The System Integration Group performed many 
directed tests on the Model 400 system. Some of 
these tests were done to sat isfy the requirements of 
external regulatory agencies, or internal Digital 
development standards. Other directed tests 
include system DVT tests, which are discussed in 
more detail later in this paper. 

Many aspects of complex systems cannot be ade
quately tested i n  a directed fashion . For example, 

Digital Tecbnicaljournal Vol. 2 No. 2, Spring 1990 

an operating system and a processor can operate in 
a nearly i nfinite number of states. It  is impossible to 
design a series of tests to verify each of these states. 

Random tests exercise the system in more com
prehensive ways than directed tests. They do not 
seek specific results. I nstead, random tests attempt 
to push the system into as many different states as 
possible, as quickly as possible. Greater test cover
age results from these tests, but problem diagnosis 
and isolation are more difficult. 

Because random testing does not look for specific 
results,  it is effective only if done for extended 
periods of time. Even i f  identical test scripts are run 
repeatedly, system activity becomes unpredictable 
over time, due to events such as network activity or 
disk fragmentation . This unpredictability is impor
tant because it means more system states are being 
exercised. 

The System Integration Group developed a ran
dom test package, called the Systems I ntegration 
Test Package (SITP), to test the VAX 6000 Model 400 
system. This package consists of a comprehensive 
collection of test programs and a script-driven 
mechanism that controls their execution. SITP is 
d iverse and flexible. The test programs were 
obtained from many sources. The System Integra
tion Group also wrote some test programs to exer
cise specific aspects of the Model 400 system that 
were not fully exercised by other tests. 

The test programs used with SITP are high level. 
Each high-level test uses many lower level functions 
within the system. Many of these programs are run 
together, with varying test parameters and run
times. The programs are self-checking. If an action 
does not complete properly, the program nores the 
error immediately. The program does not attempt 
to identify the cause of an error; rather, it gathers as 
much information about the error as possible. This 
information is later examined by a test engineer. 

SITP is easy to use, restarts automaticaUy after 
system crashes or power failures, and includes mon
itoring tools. Periodic reports , with details about 
system activity and error log data, are generated by 
the test package. With this i nformation, the test 
engineer can gauge the effectiveness of the tests and 
adjust them as necessary. The test engineer can 
also control and monitor tests on many d ifferent 
machines. Machines can be located locally and 
remotely. 

A number of SITP scripts were developed to 
provide different workloads for testing the Model 
400 system. Each set of scripts emphasized a dif
ferent type of system activity. Some were com-

75 



VAX 6000 Model 400 System 

pure i ntensive, some I/O intensive,  and some 
stressed parallel and multiprocessing activity. The 

scripts were modified to suit system configurations 
as needed . 

SITP and the test scripts were installed on all the 
Model 400 system prototypes in the system integra
tion lab . Tests under the control of SITP were run 
on the prototypes as protot ypes were avail:lble. 
Because the prototypes were heavily used during 
daytime hours for various debugging tasks, SITP 

tests were run overnight and on weekends. Tht: test 
scripts were designed to run for a specific number 
of hours and thm stop. The prototype was then 
avai lable for the next user. This procedure a llowed 
otherwise idle prototype hours to be used in system 
testing and ensured a clean shu tdown of the tests. In  
this way, test data could be retrieved without inter

ference from other prototype users. 
SITP was used on the earliest Model 400 system 

prototypes and was continually used throughout 
the qualification period. as prototype time was 
avai lable. Scripts wen: t:�ilored to cause test con
centration in specific areas and were modified as 
necessary to suit various prototype configurations. 
Typical SlTP runs would last for 16 or 19 hours 
(overnight), or 58 or 60 hours (over weekends). 
Processor, memory, and 1/0 configurations varied 
from run to run, and depended on test needs and 
equipment availability. 

The overal l  results from system testing were very 
positive. Over 6700 CPU hours were accumulated 
on various prototypes and configurations. Many 
errors were encountered during this period, but 
most were due to SITP bugs (SITP was still under 
development for most of this period) or to errors in 
setting up test scripts. Hardware errors occurred in 
peripheral devices, principally disks and com
munications devices, and were corrected as they 
occurred. 

Of the mort: serious problems found, one was a 
hardware problem that would cause a system hang. 
The problem was identified as a bug in a bus inter
face chip on the CPU module, which was operating 
in an untested mode. It was resolved by modifying 
the system console to ensure that this mode was 

never used. An error was found in the VMS machine 

check handler, which was corrected in a subse
quent release of the VMS operating system . 

Five other serious bugs were found in the new 
CPU modu les. A lthough none of these bugs were 
found by the System Integration Group's testing, 

each took time to invcstipte, resolve, and test the 
fixes. As a result, there was less time available on 

76 

protOtype machines for other testing. Two of these 
bugs were fixed by modifications to the CPU mod
ule. The other three required changes to the proces
sor chip. As corrected processor chips became 
available, SITP was used tO ensure the fixes had not 
introduced further bugs. 

It is interesting to note that fou r  of these five 

problems occurred in system areas not simulated 
during hardware design . Of these four ,  two 
occurred in the handling of external system events. 
One was in system reset handling. The other was in 

handling "control/P" interrupts. Conrrol/P is the 
standard method an operator uses to get the atten
tion of the system console on VAX systems H Two 
bugs were caused by interactions between the new 
processor and other system components. These 
interactions were not simulated during hardware 
design. The fifth bug was not found during simula
tion because of a deficiency in a s imulation test tool. 

Reliability Confidence Test 

To accu m u late uninterrupted ru n-time on the 
Model 400 system, five identically configured sys
tems were set up in an isolated area. The mach ines 

were isolated to protect them from outside inter
ference while rhe confidence test was running. 

The purpose of this test was to derermine the 
actual reliability parameters of the Model 400 
system hardware and to compare the results to the 
system's actual reliability requirements. A second
ary goal of the test was to determine the long-term 
system reliability, both for the hardware and oper
ating system software. 

The du ration of the test was planned for SL'X 

weeks, which was sufficient to show the hardware 
reliability. Once this six-week period was over, 
we planned to continue to run the machines in 
the same environment with the same workload for 
as long as possible to accumulate further system 
run-time. 

The test started at the beginning of May 1989, 
when enough CPU modules became available to 
populate the five mach ines. The formal test period 
ended two months later, in late June. T h ree of 
the machines continued to run for two and a half 
months, until mid-September. Of the other two 
machines, one machine was needed for other pur
poses, and another's C P U  modules were removed to 
change the configurations of the remaining three. 

The systems ran identical SITP scripts that con
centrated on exercising the new CPUs. Tests 
included compute-intensive programs, programs 
that explicitly tested various aspects of the new 

Vol. 2 No. 2, Spring /'J'.JO Digital Tecbnicaljoun1.al 



Test and Qualification of the VAX 6000 Mode/ 400 System 

CPUs (e.g. , multiprocessor cache coherency), some 
decomposed parallel appl ications, and tests that 
generated many VMS processes. 

The overall results of these tests were very good. 
The systems demonstrated a hardware reliability of 
over a year between hardware fai lures. 

Only two module failures occurred. One had a 
bad cache tag store, which was discovered very 
early in the test .  As a result of this discovery, the test 
process for the CPU module's cache control chip 
was changed. The other module fai lure was a float
ing point chip fai lure. One specific test program 
began generating wrong answers late in the formal 
period of the confidence test. This module was 
removed for repair. 

Of the other failures that occurred during this 
test, all were attributable either to test script or 
set-up errors, or to software or hardware prob
lems which were corrected prior to shipment to 
customers. 

Once the formal test period was completed, the 
t hree machines that  continued to run u ntil m id
September exhibited no new failures and eventu
ally accumulated a year's run-time. The reliability of 
the VAX 6000 platform and the Model 400 CPU was 
successfully demonstrated. 

Design Verification Tests 
Part of the System I ntegration Group's responsibil
ity is to ensure that parts of the system not covered 
by tests from other groups are tested. In general ,  
these parts are specific either t o  the n e w  hardware 

or to how the new hardware fits into the existing 
system. These tests are called design verification 
tests (DVTs). 

A complete test plan for the Model 400 system 
DVTs was written and reviewed by the group. The 
list of DVTs performed is shown in Table 2 .  

The Model 400 DVTs complemented those tests 
performed on the new hardware components. The 
parts of the system tested were those in which other 
testing was weak or nonexistent. These tests were 
conducted i n  a formal manner, w it h  a w ritten 
sequence of events and formal reports of results. 
Any problems found were noted and reported to 
the relevant development groups for analysis and 
eventual correction . 

The DVTs executed for the Model 400 u ncovered 
two system bugs and some minor documentation 
problems. Both bugs were related to power failure 
recovery. O ne was i n  the console and one i n  the 
VMS operating system . Both bugs were eventually 
fixed. The minor documentation problems in the 
system installation gu ide were also fixed. All other 
design verification tests fou nd no problems with 
the system. 

Field Test 

Field tests are made on prototypes of new products 
provided to customers. The purpose of field test 
is to gain experience with the new products before 
production; new products are actual ly u sed as  
opposed to tested. 

Table 2 VAX 6000 Model 400 System Design Verification Tests 

Test Fu nction 

Keyswitch Verifies front panel fu nctions with new hardware/software 

Voltage marg i n  

Thermal 

Power-fail/battery backup 

I nterlocks 

X M I  saturation 

Queue contention 

M u lti processing 

Load test 

System instal l ation 

Boot 

System configuration 

Remote services console 

Console input 

Verifies proper operation over allowable voltage range 

Verifies proper operation over al lowable temperature range 

Tests battery backup operation with hardware and software 

Tests memory interlock fu nctions 

Tests system operation u nder very heavy bus loads 

Tests proper operation under very heavy worst-case memory loads 

Tests proper operation of all  multiprocessing features 

Runs system for extended period under heavy com pute and 1/0 load 

Verifies overall manufacturing process, and i n stal lation documentation 

Verifies that system boots all operat ing systems from all devices 

Verifies that al l  al lowable configu rations work properly 

Verifies that remote services console hardware and process works with 
new system 

Verifies that console term in al hardware and software work properly 

Digital Tecbnicaljournal Vol. 2 No. 2, Spring 1990 77 



VAX 6000 Model 400 System 

For VAX system products, field test h istorically 
has lasted a m inimum of four months. This period 
was determined from tracking problem reports 
from field test s ites. General ly, a month was 
required for the new product to be installed and for 
usage to reach a level where meaningfu l testing 
occurred . The next three months provided useful 
data about the new system. After three months, the 
amount of useful data declined. 

In field testing the VAX 6000 Model 400 system, 
we shortened this four-month period to three. The 
p lan was to check on field test results two months 
into the test. If field test was not progressing wel l  
at this point, we were prepared to  extend the test 
period. 

The System Integration Group did two things to 
eliminate the field test startup time. First, because 
the Model 400 system was an upgrade from earlier 
VAX 6000 systems, Model 200 systems were 
shipped to each field test site in advance of the 
Model 400 field test start . These systems were 
installed and running approximately a week before 
the official field test started . A considerable amount 
of t ime was saved in site preparation and system 
installation. 

Second, the startup of the field test sites was 
performed by system integration engineers, w ho 
brought Model 400 CPU modules and new VMS 
software to each site.  These engineers supervised 
the installation of the new CPl 's in the previously 
installed systems, installed the VMS operating sys
tem, and ensured that the systems were available to 
the customer before leaving the site. 

A total of seven field test sites were started up in 
early April 1989. Six of these sites were located in 
the United States. Five of these sites were insta l led 
and turned over to the customers within two days. 
The sixth site was ready in four days. The seventh 
site was located in Europe, and was started up by 
mid-April . 

Once the site systems were running, the System 
Integration Group maintained regular contact with 
each site. Each site was assigned a "captain" (a sys
tem i ntegration e ngineer), who polled the site 
weekly, talked to the users, and received first-hand 
information about machine usage. This method was 
used instead of the traditional dial-up problem 
reporting method for two reasons. First, technical 
problems existed in making reliable connection to 
the dial-up system. Second, many people are reluc
tant to report problems, unless the problem is so 
large that work stops or is severely impaired .  

Overal l ,  field test went smoothly. Most of the 
problems that occurred were minor and easily cor-

78 

rected . Two problems arose because the Model 400 
system was different from the other VAX systems in 
use at two of the sites. One site reported m inor dif
ferences in results from a benchmark program, 
which was due to differences between run-time 
libraries used for full VAX architecture implementa
tions and subset implementations.H The other prob
lem resu lted because a customer program was 
referencing an internal processor register that does 
not exist in subset implementations. 

Field test progress was assessed two months into 
the test, at the beginning of June. The results of field 
test were then examined , together w i t h  the data 
obtained from other qual ification testing. Since no 
major problems had been found, we decided to pro
ceed with plans to ship the Model 400 system as 
scheduled in mid-July. 

Some improvements could have been made in the 
field test process. First, site audits prior to instal
lation of the prototypes were not very thorough . 
Many of the sites were not running the neces
sary software revision levels .  Therefore, the new 
machines cou ld  not be immediately put into 
VA.Xcluster environments with existing machines. 
Second, some pieces of hardware were missing and 
had to be supplied later. Better communications 
with the site prior to shipping prototypes would 
have reduced these problems. 

The System Integration Group wrote some moni
toring software that was to be installed on each field 
test machine. Because this was written at the last 
minute, it was not properly tested and did not work 
properly. The problems were fixed , but the moni
toring software was not run at a l l  the sites. Final ly, 
how to get data from the monitoring software back 
to the engineering groups was not wel l  defined. 
Thus, usage data obtained from field test machines 
was spotty. These tools and methods are being 
improved for use in the field test of future products. 

VAX Architecture Verification Group 
The Architecture Verification Group ensured that 
the Model 400 CPU conformed to the VAX architec
ture specification.H 

Test Process Overview 

The architectural verification process consists of 
running two programs - AXE (architecture exer
ciser) and MAX (mult i - instruction architecture 
exerciser) - in various modes for a given number of 
test cases. The tests are simple to run. However, the 
test programs are quite complex and required many 
years to develop. The Architecture Verification 

llri/. 2 No. 2, Spn'np, /l)'JO Digital Tecbnicaljournal 



Test and Qualification of the VAX 6000 Mode/ 400 System 

Group maintains and enhances these test p rograms 
and the databases used to verify the architecture. 

When one of the tests fails, the group identifies 
the problem and helps resolve it. Once the problem 
is fixed, the group repeats the tests. 

AXE andMAX 
The VAX instruction set consists of over 360 instruc
tions and 21 addressing modes. Most modes are 
valid for up to six operands per instruction . Con
ceptually, both AX E and MAX d ivide an instruction's 
context into several components. These com
ponents include opcode, operand specifiers, oper
ands, page protection and validity, and processor 
status long word (PSL). For each component, valid 
and invalid values are pseudo-randomly selected to 
create a test case. The exerciser continues to create 
unique cases for as long as it is run. 

The VAX architecture has a clearly defined excep
tion and instruction restart structure. Much of the 
VAX arch itecture's complexity is in those opera
tions. Therefore, both AXE and MAX favor values 
that cause faults. Each program establishes a situa
tion with faults, starts the instruction or sequence, 
verifies that the fau lt occurs, ftxes the fault ,  restarts 
the instruction, and verifies that it completes cor
rectly. Upon completion, AXE or MA)( compares the 
results from the unit under test to a known good 
reference, and reports any differences. The known 
good references contain the correct results of each 
test case. These references have been accumulated 
over the years of testing VAX systems and have 
changed as the VAX architecture changed. 

AXE AXE is the older and simpler exerciser. It cre
ates test cases that consist of a single instruction. A 
typical instruction stream would be: 

ADDF3 R 1 , R 2 , 5 " ' 1  R 1  . 0 0 0 0 8 0 0 0 , R 2 = 462468 1 1 

When this instruction is first executed, either a 
reserved operand fau lt (on Rl)  or a reserved 
addressing mode fault (short literal destination) 
should be reported. AXE w ill fix whichever fault  i s  
reported and restart the instruction. 

Assuming the reserved addressing mode fault  
was reported , the instruction might then look like 
this: 

ADDF3 R 1 , R 2 , R 3  R 1 . 0 0 0 0 8 0 0 0 , R 2 : 4 6 2 4 68 1 1 

If the reserved operand fault is reported, AXE will 
change R 1 to a valid floating point value and restart. 

Digital Tecbntcal]ournal Vol. 2 No. 2, Spring 1990 

When the instruction completes, AXE compares 
the i nstruction stream and the re levant data to 
reference data. In this example, the relevant data 
includes the three general purpose registers. 

Both AXE and MAX ignore a machine state 
defined to be unpredictable for a given condition. 
Therefore, allowable differences between imple
mentations do not cause erroneous fai lure reports. 

Limiting AXE's testing to single instructions pre
cludes meaningful testing of the pipelining that i s  
common in today's CPU designs. MAX overcomes 
this l imitation . MAX currently acts as an adjunct to 
AXE. However, it will eventually replace AXE .  

MAX MAX is similar to a compiler in that it creates 
complete instruction streams. However, MAX does 
not have source code to ensure that the resultant 
machine code is logically consisten t .  

To test how a CPU handles inter-instruction data 
dependencies, MAX must create test cases with 
instructions that share registers and memory loca
tions. Creating sensible instruction streams can be 
difficult .  For instance, the result of one instruction 
could be used as part of an address calculation for 
a subsequent instruction. However, the l ikelihood 
is slim that the result of a randomly selected arith
metic calculation w ill be used within the test case's 
virtual address space. 

MAX first creates and executes sensible cases i n  
logical steps. I t  then assembles and executes each 
case as a whole. 

After selecting the fi.rst instruction, MAX executes 
the instruction, including fault restarts , and saves 
the final results. MAX next selects and places the 
second instruction in memory following the first 
instruction.  Where possible, i t  uses the results of 
the first instruction for operands and operand 
specifiers of the second instruction. MAX selects 
new values for operands and specifiers for wh ich 
old values cannot be used. 

MAX includes the new values in the initial state of 
the entire case. It then executes only the second 
instruction. This process repeats until an instruc
tion stream of the desired length is created. At this 
point, the entire stream is executed. Once the 
stream is run, the results of all of the instructions are 
compared . This comparison is made against the 
results of the single-step execution and the results of 
the known good reference. 

Test Process 

The minimum testing requirements for sh ipment 
of VAX systems were developed from experience 

79 



VAX 6000 Model 400 System 

gain<.:tl from testing all  previous VAX systems. The 
requirements are a compromise between the num
ber of bugs l ikely to be found and the time required 
for the tests. The testing program consists of over 
200 million test cases. 

The use of AXE and 1'<lAX in the syst<.:m qualifi
cation process is a continuation from the CPU 

design process. Both exercisers were used <.:xten
sively to test simulations of the CPU d<.:sign . How
ever, this testing is limited by simulation speed. 
Test ing on hardware at speed is necessary for more 
thorough coverage. 

Testing of rhe VA X 6000 Model 400 started in late 
April .  To com plete verification in less than two 
months, four machines were used. The mach ines 
executed different test cases in parallel. 

The VAX 6000 Model 4 00 CPU was the ftrst VAX 
CPU for which no hardware bugs were found by 
AXE or MAX during final qualification. This result is 
a testament ro the careful design and extensive test
ing during the simu lation and chip debug phases of 
the CPU design. 

However, a bug was found in the VMS operating 
system's floating point emulation code that calcu

lates the POL Yx instructions.H Because the Model 
400 CPU is the first thar did not include the POL Yx 
instruction in the CPU microcode, it was the first 
CPU that required use of the VMS emulator for this 
instruction. For this reason, the bug had never been 
seen before. 

The Archi tecture Verification Group traced the 
bug and confirmed that a patch to the emulator 
fixed the bug. The group then reran all of the test 
cases that exercised the floating point emulator to 
confirm that no new bugs 'ivcre introduced. The 
patch was included in the VMS version 5.2 manda
tory update. 

Midrange System Evaluation 
Engineering Group 
The Midrange System Evaluation Engineering 
Group tests new products to isolate design faults 
and configuration incompatihil ities. This group 
examines various system configurations, rests inter
action between components, and tests special situa
tions. such as power failure and recovery. 

Test Process Overview 

System evaluation typically begins when the first 
hardware and software prototypes become avail
able and continues through to product shipment. 
Evaluation planning often begim six to nine months 
prior ro the actual pron:ss with the creation and 

80 

review of a test pla n .  The rest plan is based on 
product specifications and information from devel
opment groups. It identifies the test tools, configu
rations, and strategy the System Evaluation Group 
will use. 

The System Evaluation Group exposes new 
products to a wide range of hardware and soft
ware configurations. This exposure is achieved by 
combining a stable, well-equipped, and versatile 
laboratory with special ized rest software and test 

procedures. These tests a re done before system 
shipment to customers, when modifications can be 
made at minimal expense. The group complements 
the qualification efforts of the product develop
ment groups by allowing these groups to focus 
attention on product-specific engineering issues. 

Test Strategy and Test Software 

The overal l  VAX 6000 Model 4 00 test strategy 
involved the installation of the new processors in a 
wide range of system configurations. The group 
subjected these configurations to a series of inter
active load experiments, which used i ntern a l l y  
designed and developed software tools. These tools 
concurren t ly stressed aU configured processors , 
memory arrays, 110 adapters, and communication 
devices. Stress in this context means heavy loads 
in terms of 1/0 bandw idth used for a given data bus, 
and minimal idle CPU time for processors. This test 
strategy has proven successful since it was first used 
in the mid- 1 970s for PDP- I I  systems. 

The processor and memory tests exercise VAX 
instructions, the floating point processor, and the 
cache subsystem. Configurations with large mem
ories are tested with a special ly developed memory 
exerciser. This program references memory in the 
least efficient manner to force high page fault and 
low cache hit rates. 

1/0 adapter tests exercise specific devices. The 
rests include a system exerciser that can generate 
various !10 rates to disk, tape, and terminal devices. 
while verifying data integrity. 

Communication tests i nclude a DECnet exerciser 
and an Ethernet local area network program. These 
tests generate a high level of network activity and 
check data integrity. 

Configuration Selection and Test 

The System Eval uation Group selects configurations 
according to many factors, includ ing 

• VMS operating system restrictions 

• Bus architectures and slot placement limitations 

Vol. 2 No. 2, Spring 1990 Digital Tecbnical]ournal 



Test and Qualification of the VAX 6000 Model 400 System 

• Power and packaging restrictions 

• Marketing requirements 

The maximum number of each supported option 
is tested within laboratory resource limits .  Because 
the Model 400 CPU is a higher performance proces
sor for the existing VAX 6000 platform, it was tested 
w ithin established VAX 6000 family configuration 
gu idelines. The System Evaluation Group chose 
nine Model 400 system configurations to test from 
one up to six processors, 32 to 256 megabytes of 
memory, and from two to six VAXBI channels. 

An important part of configuration testing for a 
new processor involves verification of proper sys
tem initial ization and operating system boot using 
various load paths. With the Model 400 system, this 
testing meant loading the operating system through 
different VAXBI channels, disk or CI adapters, and 
load devices. Several problems were noted with 
bus adapter initial ization and self-test while testing 
certain VAX BI channel configurations. These con-

MODEL 400 PROCESSORS 
1 TO 6 PER SYSTEM 

X M I  

I 

figuration-dependent problems were corrected by 
modifying console and operating system software. 

As shown i n  Figure 1 ,  VAXB I  channels on the 
Model 400 were also configured with all  currently 
supported VAX 6000 system 1/0 adapters. Although 
testing with large and diverse system configurations 
poses logistical challenges, these envirorunents wil l  
often succeed i n  exposing device compatibility 
problems. 

The device compatibility problems found during 
the Model 400 evaluation occurred either during 
operating system initialization or when interactive 
workloads concurrently exercised al l  system 
devices. One such problem resulted from the 
i ncreased processing speed of the Model 400 pro
cessor and would occur only when an adapter was 
tested in a specific configuration under a certain 
workload . 

More specifically, this problem was due to a race 
condition between a VMS application level program 
issuing I/O requests and the adapter hardware pro-

MEMORY ARRAYS 
1 TO 8 PER SYSTEM 
(32 TO 256MB) 

2 TO 6 VAXBI CHANNELS 

I 
VAXBI 

I I I I 
CONSOLE PARALLEL ASYNCHRONOUS 

UNIBUS 
LOAD Cl PORT COM M U N ICATION 

ADAPTER 
DEVICE ADAPTERS ADAPTERS ADAPTERS 1 PER VAXBI 
1 PER SYSTEM 

1 PER SYSTEM 4 PER VAXBI 2 PER VAXBI 1 PER SYSTEM 8 PER SYSTEM 3 PER SYSTEM 

DEC net DISK TAPE SYNCHRONOUS 
COM M U NICATION ADAPTERS ADAPTERS COM MUNICATION 
ADAPTERS 2 PER VAXBI 2 PER VAXBI ADAPTERS 
2 PER VAXBI 12 PER SYSTEM 4 PER SYSTEM 2 PER VAXBI 
4 PER SYSTEM 2 PER SYSTEM 

� 
LAVC/LAN VA Xcluster 

Figure I Adapters/Options Tested during VAX 6000 Model 400 Evaluation 

Digital Tecbnical]ournal Vol. 2 No. 2, Spt"ing 1990 8 1  



VAX 6000 Model 400 System 

cessing and returning a response. With s lower 
machines, the adapter hardware won the race; but 
with the faster Model 400 processor, the host won 
hy issuing commands faster than the adapter hard
ware could process them. The problem was cor
rected with a modification to the device driver 
software. 

Complete configuration test coverage for the 
Model 400 processor also required VAXcluster/local 
area VAXcluster (LAVC) and DECnet/local area net
work (LA�) evaluation using each of the supported 
CI and DEC net communication adapters. To accom
plish thest: tests, a 1 3-node VAXcl uster was estab
lished composed of t:ight VAX host systems, four 
HSC mass storage servers, and the VAX 6000 Model 
4 00 system under test. 

Primarily, the VAXcluster/LAVC and OECnet/LAN 
testing verified the functional compatibility of the 
Model 400 processor with the VAX 6000 series C I  
and NI adapters. Cluster and LAN activity were used 
simply as adapter loads. Interactive experiments 
were designed to emphasize stress at the local sys
tem level . Cluster- level verification was deferred to 

another group. 

Evaluation of the VAX 6000 Model 400 system 
also verified the Model 400 system-level power-fail/ 
warm-restart capability in large configurations with 
high compute and 1/0 loads. These tests ensured 
that battery backup units would maintain supply 

voltages for the guaranteed duration. Further, these 
tests ensured that error reporting and recovery pro
cedures operated properly. 

Interactive Test Method 
The interactive test method first selects test soft
ware. It then modifies parameters such as VMS 
queue 1/0 (QIO) request size, number of outstand
ing conunands, and device mode of operation. 

Using this method, three system workloads were 
generated. 

The first workload used small VMS QIO request 
s izes and maximum QIO request queue lengths to 
a c hieve high l/0 rates. This workload minim ized 
idle CPU time and maximized time on the inter
rupt stack. 

The second workload used large VMS QIO request 
sizes w ith sequential disk accesses and device loop
back to generate high bus utilization rates (bytes 

per second). This workload saturates 1/0 buses and 
interconnects by generating large amounts of direct 
memory access activity. 

The third workload combined CPU/memory and 
I/O adapter test software w ith a d istribution of 
small ,  moderate, and large VMS QJO request sizes. 

82 

Memory arrays were also configured in a non

interleaved mode to degrade memory access time 
and aggravate potential bus timeout conditions. 

The System Evaluation Group ran interactive test 

experiments for a minimum of four hours and a 

maximum of three days. A typical experiment 
lasted 18 hours. Most long duration experiments 
were performed using the combined CPU/memory 

and l/0 adapter workload . The longer run-times 

provided adequate time for adapter exercisers 
to step through a preprogrammed range of trans

fer sizes. 
Following each test, VMS error counters, test soft

ware status reports, and VMS error log entries were 

exami ned for system or device errors. The group 
then characterized problems in terms of their fre

quency, repeatability, and the system environment 

in which they occurred. The system environment 
incl uded detai led information regarding hardware 
configuration, the software test tools and parame
ters used, and module, operating system, device 
driver, and firmware versions. 

Although some of the problems noted during the 
Model 400 evaluation were easy to reproduce and 
occurred frequently, others were intermittent in 
nature and not so easily induced. For example, the 

configuration-dependent problems occurred each 
time a specific configuration was tested, whereas a 
particular device compatibility problem was inter

mittent and required long duration runs before 
appearing. 

The detailed problem descriptions, along with 

pertinent error log or crash dump data, were pro
vided to the appropriate development groups for 

analysis. Also, descriptions were logged in the pro
ject-specific problem reporting databases to ensure 
that problems were properly tracked and resolved. 

The System Evaluation Group then worked with the 
development group to fix the problem.  

From a total of six problems noted during the 

Model 400 evaluation, four were configuration
dependent and corrected through modifications to 
the VMS operating system or console microcode. 
Two problems were device compatibility bugs that 

occurred during operating system initialization and 
interactive testing. These problems were fiXed 
through modifications to the VMS operating system 
or device driver software. 

When the VA X 6000 Model 400 system evaluation 
was completed, a final report was distributed. The 
report summarized the configurations and test tools 
used, the specific experiments performed, and the 
current status of a l l  problems that were identified. 

Vol. 2 No. 2, Spring /<)<)0 Digital Tecbnical]ounwl 



Test and Qualification of the VAX 6000 Model 400 System 

Summary 
System qualification is the last stage in the system 
development process. The qualification process for 
the Model 400 system was designed specifically  to 
take into account computer-aided design and simu
lation used by the hardware design process. 

As our experience with the Model 400 system has 
shown, nearly all of the problems found during 
system qualification were in areas of the system that 
could not be simulated. As a result, the qualification 
process is most effective when focusing on testing 
those parts of the system that cannot be simulated 
because of their complexity, which presents both a 
chaUenge and an opportunity. 

The challenge is to design test processes and 
tools that can adequately test a complex system in a 
reasonable time. With SITP and other test tools ,  
such as  those used by Midrange System Evaluation 
Engineering, we have made a significant start in  
developing these tests. However, there i s  still much 
room for improvement, and work is continuing in 
this area. 

The opportunity is to shorten the qual ifica
tion process. Because first-pass hardware is  more 
robust, more system testing can occur earlier. Also, 
better test tools enable us to provide more test 
coverage in less t ime and with fewer resources, 
both in prototypes and number of people. We took 
advantage of this opportunity in the Model 400 
system qualification to cut the length of field test 
by 25 percenr, thereby bringing the Model 400 
system's new technology to market faster. 

Digital Tecbnicaljournal Vol. 2 No. 2, Spring 1990 

References 

1 .  B .  Al l ison, "An Overview of the VAX 6200 Family 
of Sys terns, "  Digital Technical journal, vol . 1 , 
no. 7 (August 1988): 10-18. 

2. B. Allison, "The Architectural Definition Process 
of the VAX 6200 Family," Digital Technical 
journal, vol . 1 ,  no . 7 (August 1988): 1 9-27. 

3. R .  Gi l lett, " Interfacing a VAX Microprocessor 
to a High-speed Multiprocessing Bus," Digital 
Technical journal, vol . 1 ,  no. 7 (August 1988): 
28-46. 

4. P. SuUivan et al . ,  "The VAX 6000 Model 400 
Scalar Processor Modu le," Digital Technical 

journal, vol. 2 ,  no . 2 (Spring 1990, this issue): 
27-35 .  

5 .  D.  Slater et a l . ,  "Vector Processing on the VAX 
6000 Model 400 System , "  Digital Technical 
journal, vol . 2 ,  no . 2 (Spring 1990, this issue): 
1 1 -26. 

6 .  H .  Durdan et a l . ,  "An Overview of the VAX 6000 
Model 400 Chip Set," Digital Technical journal, 
vol. 2 ,  no. 2 (Spring 1990, this issue): 36-5 1 .  

7 .  ] .  Basmaji et al . ,  "The Role of Computer-aided 
Engineering in the Design of the VAX 6200 
System," Digital Technical journal, vol .  1 ,  no . 7 
(August 1988): 47-56. 

8. T. Leonard, ed . ,  VAX Architecture Reference 
Manual (Bedford : Digital Press, Order No. 
EY-3459E-DP, 1987). 

83 



Development of the 
DECstation 3100 

Thomas C. Furlong 
Michael]. K. Nielsen 

Neil C. Wilhelm 

The DECstation 3100 is the jlrst member of Digital's family of high-perfonnance 
ULTRIX workstations. Built with the R2000 chip set from .HIPS Computer Syste�m� 
Inc. , and highly integrated 110 and graphics subs_ystems, the Dtestation 3100 imple

ments 12 mips of RISC-based computing, workstation 110, and e.ycellent bit-map 
graphics on a single module. The DECstation 3100 workstation runs Digital's ULTRIX 
opi-�ating system (compatible with UNIX software) as well as DEC windows software, 
TCP!IP, DECnet software, and Network File Services (NF!:J). The workstation can be 
configured with 8MB to 24;HB of parity-protected memory, monochrome or 8-plane 
color graphics, 15-ilu'h or 19-inch monitors, and SCSI disk and tape devices. This 

paper describes the DECstation 3100 product, the design effort, details of the s_ystem, 
and measured benchmark performance. 

System Overview 
Packaged in a desktop system box, the DECstation 
3 100 workstation is implemented as a single mod
ule that contains CPU/I'PU, separate instruction and 
data caches, memory control logic, Ethernet and 
small computer systems int<.:rconnect (SCSI) con
trollers. four serial lines, and video display logic .  
Con nectors on the module accept as many as 12  
memory modules of 2 megabytes (MB) apiece as 
well as a single monochrome or color frame buffer 
module. The box optiona lly contains 3 . 5-inch, 
104 MB SCSI disk driv<.:s. An SCSI connector on the 
back of the system box supports t he attachment of 
additional SCSI devices, such as the 332MB disk 
drive, the 95 M B  tape drive, and the 600M B  CDROM 
disk drive. 

Background and Project Goals 
Digi tal 's research and developmen t  groups in 
Palo Alto had used a UNIX operating system in a 
client/server compu ting env ironmen t  for more 
than three years. The clients were various VAX 
workstations. The servers were VA X systems and 
RISC-technology research machines, called Titans, 
which were developed by D igital 's Western 
Research Laboratory . 

The major frustration in this  environment was 
the lack of proct'ssing power at the workstation. 
Computer room servers dt'livered up w 12 million 
instructions per second (mips), but most office 
workstations del ivered only I mips. This disparity 

84 

caused many workstations to be used only as rather 
expensive tt'rminal emulators for the larger 
machines. The slow workstations also meant that 
window applications were often bogged down in 
screen update activity, and that NFS performance 
was l imited not by device or network speeds but by 
the workstation's processing power. 

The primary goal of the DECstation ) 100 project 
team was £O produce a fast RISC lJLTRIX workstation 
that would bring processing and windowing perfor
nunce to the user's desk at a competitive price. The 
product would run the ULTR I X  operating system , 
DECwindows products, and network software for 
both TCP/IP and DEC net networks. 

In early May of 1988, we received approval 
tO build an ULTRIX workstation that featu red 
increased processing power. The remaining design 
goals were time to market, packaging, reuse of 
existing designs, and system cost and price. The 
aggressive schedule called for the fi rst workstation 
to s h ip in m id-January 1989. We were asked to 

use the new desktop system hox designed for 
product to be later announced as the VAXstation 
3 100. We were also asked to reuse any hardware 
or software elements of the VA Xstation 3 100 that 
we possibly could. Our own view of the market
place caused us to choose an entry-level price of 
approximately $ 10 K .  

At the end of the project, we achieved all of our 
goa ls. We shipped the first system in the desired box 
on the very day we had promised. We reused most 

Vol. 2 No. 2, Sprin[i fl)')O Digital Technical journal 



of the existing ULTR I X ,  windowing, and network 
software, and supported the same internal disk 
drives as the VA Xstation :1 100. We held the entry
level price within 20 percent of the S lO K  goa L 

System Cost Issues 
We needed to control the high-cost items of proces
sor, caches. and memory . We also had to resist the 
tendency to add things, either because other groups 
requested them or because we had ourselves 
wanted them . 

The processor choice was based more on cost per 
mips than the absolute cost of the processor ch ip set 
i tself. The cost per mips consideration led us to 
select a RISC processor instead of a VAX processor in 
order to obtain at least a two-to-one performance 
advantage. Since we were building a product for 
users of the LJLTRIX operating system, the lack of 
VA X instruction compatibility was not an issue. We 
chose the R2000 chip set from M I PS Computer 
Systems as the best CMOS HISC technology on the 
market. 

Even though caches contribute significantly to 
system performance, we still considered the use of 
small caches to reduce cost. Simulations of system 
designs indicated that the higher expense of large 
caches was necessary to achieve fast desktop 
performance. 

Our most difficult challenge was determining 
how to implement memory . We did not want to 

burden the entry-level systems with more memory 
than was necessary, but we did want the opportu
nity to add memory to systems that could use i t .  We 
considered memory on the system modu le, mem

ory on daughter cards, memory on commodity 
single in-l ine memory modules (SIM Ms), and fi nally 
memory on custom-designed SIMMs.  In the end, we 
chose the custom-designed SIMMs because of their 

density, cost, and configurability. 

Basic Project Rules 
To succeed at this project we kept the size of the 
team to the minimum and isolated the team from 
outside influences. We settled on a minimal product 
focus team and a minimal design team. The five
person product focus team would manage the pro
ject while the three-person hardware design team 
would build the machine. Everyone would work 
from the Palo Alto base. 

The first machine was running two months 
after the project start dare. 13y that rime the design 
team had expanded to about twenty people 
developing the electronics package, diagnostics, 

Digital Tecbnicaljoumal Vol. 1 No . .2, Spring 1990 

Development of the DECstation 3100 

software, and doc umentation . M any designers, 
particularly software engineers, tempora rily relo
cated from New Hampshire to part icipate in the 

project. Researchers from Digital's two Palo Alto 
research laboratories gave generously of their time 
in reviewing the design, developing new software, 
and testing prototype systems. 

The product focus ream built extended support 
groups for functions such as manufacturing, mar
keting, sales, and appl ication development . 

Basic Design Rules 

From the beginn ing we agreed upon some basic 
design guidelines. We strictly adhered to these deci
sions throughout the design phase of the project. 
We would develop all functions on one system 
module. Anything that did nor fit would not be part 
of the product. 

We would do no ASIC or other IC design; the 

schedule did not allow for i t .  So we would use lots 
of random , low-cost, standard logic functions, PALs 
in particular. Opportunities for lower cost integra
tion wou ld be saved for follow-on products. 

We would build dumb J/0 controllers. This deci
sion eliminated the use of secondary processors, 
microcode, and hardware coordination of intel
ligent devices. Various-sized buffers on every con
troller would allow devices to run at their own 
speeds independent of general processor activity. 
Software drivers running on the genera l CPU would 
interact with industry- or Digital-standard con
trol. ler chips for the I/O subsystems. 

We would build dumb graphics - no pipeline, no 
graphics processors , no rendering chips . bur simply 
a frame buffer configured as part of the main mem
ory address space. The onl y exception was to add a 
color p lane mask for use by the color software. 

We wou ld aim for ease of manufacturing by 

keeping the option choices low. The only choices 
to be made in manufacturing the system box were 
how many memory modules to insert. wh ich frame 
buffer module to insert, and whether to add one 
or two i nternal disks. This decision kept the total 
manufacturing permutations down to 30. (Earlier 
Digital workstations were up around 1000.) 

We would try to let experienced computer users 
upgrade and service their own workstations. The 
choice of system box l imited this capabil ity since 
the VAXstation 3 100 box was not originally 

designed for user access. We simplified the original 
box design and left much of the box empty to make 
the electronics more accessible. 

85 



VAX 6000 Model 400 System 

Conflicts and Resolutions 

At project starr, t he design team resisted the idea of 
offering both monochrome and color graphics 
options. We bel ieved in the value of provid ing color 

wherever and whenever possible on workstations: 
customers prefer color, and it provides addit ional 
functionality. However, we were not confident 

we could develop both graphics options and sti l l  
remain on schedule. We decided to usc a simple 
frame buffer along with a single, configurable video 
output design. We would bear the cost of an u nnec

essary V DAC in the monochrome system, but we 

on ly had to design one system . 
A l though the hardware design team was confi

dent that  cost/performance trade-offs were the 

right ones, other project members voiced t heir con
cern . Some issues were memory size and I/0 and 
graphics performance. Woul d  t he maximum mem
ory size of 24 MB he large enough for applications 

such as computer-aided design {CAD) and model
ing� How would Ethernet and disk performance 
compare to VAXstat ion and competitors' work
stations� Would the choice of frame buffer matched 
with a fast RISC processor deliver adequate graphics 
performance, particularly in color systems� 

These questions were answered once the soft
ware development was complete and performance 
measurements could be made on late prototype 
systems. Sec the Product Qualification section of 

th is paper. 
Another topic we debated was whether to anow 

peripheral devices in the box ,  which was clearl y 
dt�signed for such devices. Various combinations of 
disks and tapes in the box presented three prob
lems: more complicated options in manufacturing, 

a heavy drive plate and complex cabling for the user 
to remove during system upgrade, and a power 
problem if an internal rape drive was present. 
Eventually we permitted onl y  the internal 3 . 5-inch 
disk drives and simpl ified the drive mounting plate 
to be easier to remove. 

Product Qualification 
S i nce the entire project time was only eight 

months,  we needed to m a ximize the test time of 

the DECstarion 3 100. The hardware was an entirely 
new design. The software was a port from a VAX 

base to a RISC base, and much of the lower level 
graphics software was completely new code. 

To test modules and the hardware system, we 
sent many early prototypes to a local testing lab
oratory for stress testing. While running both diag
nostics and the ULTRI X  operat ing system, we shook 

H6 

the systems ,  power-cycled them, temperature

cycled them, even submitted them to rainfall due 
to an environmen tal  fai lure. We recorded every 
failure and traced it back to its source. Many of 
these fai lures led to changes in diagnostics, compo
nents, placement, and mechanical solutions. This 
early stress resting did not uncover any problems 
nor seen elsewhere, but with a small number of 

machines, it validated al l  problems seen in the other 
test situations. 

To test the total system with its software, we 
i nven ted a quali fication team nicknamed the 

" wrecking crew," a group of about twenty-five 
senior engineering researchers and developers. 
They agreed to accept early protOtypes and to sub
ject them w heavy use for a period of three months. 

Their goal was to break the systems, as often and in 
as many ways as they could .  During the wrecking 
period , we constantly instal led t he latest soft
ware changes, replaced diagnostic ROMs, added 

hardware, and moved systems from person to per
son to a l low everyone to try different configura
t ions. Each crew member was responsible fur an 

exhaustive test of a subset of the ULTRIX commands 
and uti l ities. 

The wrecking crew was a huge success. Team 
members reported 785 p roblems, comp lained 

mightily and usefully, ported CAD tools, window 
applications, and compilers in their spare t ime. 
Th<.:ir constant demand for the performance they 
expected exposed many bugs that were artificial ly 
limit ing performance. Best of a l l ,  the wreckers 
al most doubled the number of software experts 
k nowledgeable about the workstation from an 

early stage and thus contributed significantly to 
system quality. 

Processor Subsystem Details 
The DECstation 3 100 CPU consists of the M I PS 
R2000 integer processor, the R2010 floating point 
coprocessor, a nd fou r  R 2020 write b u ffers. The 
chip set operates at 16.67 megahertz. 

In the DECstation 3100, the R2000 chip set runs 
in " Litt le End ian" mode. In other words, bits wit hin 
bytes and words are counted from right to left , and 
the low-order bit is t he rightmost bit in  a word. 
" Little Endian" mode means that the integer data 
format of the OECstation 3100 is identical to t he 

i nteger data format of any VAX processor. The 
floating point data format is compliant with IEEE 
standards. 

The R 2000 CPU implements the instruction set , 
processor registers, virtual memory, and interrupt 

Vol. 2 No. 2. Spring i'J'JO Digital Technicaljournal 



system as defined by the R 2000 architecture. The 

CPU maintains the direct-mapped, write-through 

data cache. Each cache is 64 kilobytes (KB) in capac

ity with a 4 -byte l ine size. The tag and data stares of 

each cache are byte-parity protected, and cache 

parity errors transparently generate cache misses ro 
reload the cache from memory. 

The R 20 10 floating point coprocessor i mple

ments the IEEE arithmetic functions and coproces

sor registers defined by the R 2000 architecture. 

The R 2020 write buffer implements a four-stage 

write buffer for the CPU . This write buffer allows 

the CPU to write to its write-through cache without 
stall ing the CPU as long as the write buffer is not ful l .  

Graphics 
Graphics on the DECstation 3 100 is implemented in 

a tightly integrated subsystem. Frame buffer mem

ory is a region of memory in the processor address 

space - 256KB in a monochrome system and 1 M B 

in a color system. Less than half of the monochrome 

frame buffer and three quarters of the color frame 
buffer are displayed on the workstation monitor. 

The remaining frame buffer memory may be used 

for storage of graphics data structures such as fonts. 
The frame bu ffer memory is not parity protected. 

At boot time, the l JLTRIX operating system 

detects the size of frame bu ffer memory and 

whether the system is monochrome or color. 

Because frame buffer memory is cacheable and 

addressable in the same way as the dynamic ran

dom access memory (DRAM), the software is able 

to ach ieve extremely high performance without 

any special-purpose graphics hardware. 

A color plane mask a l lows processor writes to the 
color frame buffer to a ffect only specific bits of a 

pixel .  This design al lows modi fication of a given 

plane of the color frame buffer using only write 

cycles, which increases performance significantly. 
The graphics programmable cursor supports a 

16-hy- 16 pixel ,  two-plane cursor. The cursor can 

take two forms : a 1 6-hy- 16 bit pattern or a crosshair 
whose l ines may extend to the edges of the visible 
raster or may be clipped to a programmed region. 

The cursor in a color system may have up to three 

colors, and the cursor in a monochrome system 
may have up to three gray-scale values. 

Memory 
The DECstation 3 100 supports 8MB to 24 M B  of byte
parity protected memory in 4 M B  increments. The 
memory system includes both the DRAM array and a 

video random access memory (YRAM) frame buffer. 

The video frame buffer has the same memory access 

Dtgitul TeclmicaljourrUll Vol. J No. 2. Spring 199() 

Development of the DECstation 3100 

characteristics as memory and may be cached if 
desired. The memory system supports byte, half
word, word writes, and word reads. 

The memory system control logic is optimized 

for m inimum memory read latency, at a sl ight cost 
in memory write latency. On a memory read, the 
CPU incurs a five-cycle stall in the absence of mem

ory refresh contention. The memory system can 
sustain five-cycle reads, which results in a peak read 
bandwidth of 13 .3MB per second . 

Memory writes to an empty write buffer com
plete in eight cycles, but do not stall the CPU . Suc
cessive memory writes complete at the rate of six 
cycles, and the CPU stalls whenever the write buffer 

is ful l .  The memory system can sustai n  six-cycle 
writes, which results in a peak write bandwidth of 

1 1 . 1 MB per second. 

The DRAM and VRAM arrays are implemented 
with SIMMs. Each DRAM array contains 2 M B  of 

memory on a double-sided modu le. The VRAM 
arrays contain either 1 megabit (Mb) (monochrome) 

or 8Mb (color) of frame buffer memory on single
sided modules. 

Ethernet 
The Ethernet interface on the DECstation 3 100 con

sists of a CMOS controller chip and a 64 KB buffer. 

The controller chip manages transmission and 

reception of packets through ring descriptors and 

packet buffers located in the Ethernet buffer. The 

buffer is time-multiplexed between the controller 

chip and the workstation CPU . 
Connection to the Ethernet is by a thick-wire or 

ThinWire cable. A push-button switch on the rear of 

the system box selects the appropriate connector. 

SCSI 
The DECstation 3 100 supplies a small computer 

system interconnect (SCSI) as the interconnect for 
storage peripherals. The workstation's SCSI i nter

face consists of a gate array controller chip and a 

1 28KB buffer. The controller chip manages the SCSI 
bus through selection, DMA data transfer, and dis
connect commands. The interface supports com

mand d isconnect/reconnect and synchronous data 

transfers at 4 MB per second on the SCSI bus. The 
buffer is time-multiplexed between the controller 
chip and the workstation CPU . 

An SCSI connector on the rear of the DECstation 

3 100 system box allows connection of external SCSI 

peripheral devices. Digital offers a 332 M B  disk , a 

95 MB tape, and a 600MB CDROM reader. Each of 

these devices is packaged with power in its own 

sidecar box . 

87 



VAX 6000 Model 400 System 

Table 1 Comparison of RISC System Performance 

DECstation 
3 1 00 

D h rystones/second 22.7K 

Li npack single precision 3.7 
(M FLOPs) 

Unpack double precision 1 . 6 
( MFLOPs) 

Stanford small i nteger bench mark 0 . 1 1 5  
(seconds) 

Digital Review's CPU 2 benchmark 6.91  
suites (seconds) 

X L I B  graphics performance rate 4.9K 

Serial Lines 

Four serial line interfaces are present and are pro
grammable from SO to 9600 bits per second. The 
serial transmittt:rs art: double buffered , and the 
receivers shart: a 64 -entry FIFO. The workstation 
uses one serial line for the kt:yboard and another for 
the mouse. One serial line, designed for modem 
use, supports data-terminal-ready/data-set-ready 

( DTR!DSR) control signals. 

Software 
The DEC :station 3 100 runs the standard software 
expected by w;ers of N I X  operating systems as 
well as software that al lows easy networking and 

windowing of VAX and 3 100 systems. Digital's 
U LTRIX operat ing system is compatible with 
Bt:rkeley v4 .3 ,  AT&T System V, and is compliant 
with POSIX standards. OECwindows software runs 

on the DEC:station 3 100 in both the monochrome 
and color configurations and integrates searnlessly 
with DEC:windows running on VAX systems with 
VMS operating systems. ULTRIX supports DE\.net, 
TCP/IP, and NrS .  Compilers include t he C, 
FORTRA N ,  and PASCAL compilers adapted from the 
compilers from MIPS Computer Systems. 

Performance 
Table 1 l ists key performa nce measu res of the 
OECstation 3100 workstation. For comparison pur
poses, the table also l ists the performance of other 
R ISC systems, namely the Sun 4 / 1 10 and 4/260 and 
t ht: MIPS M / 1 20-S.  

l:tble 2 l ists the SCSI and network subsystem 
periphera ls 1/0 performance of the DE< :station 3 100. 

88 

Sun Sun MIPS 
4/1 1 0  4/260 M/1 20-5 

1 2. 8 K  1 6 .7K 24.7K 

0.95 1 . 3 4.0 

0.57 0.89 2 . 1  

0. 220 0 . 1 50 0 . 1 1 8 

1 8.99 1 3. 7 1  N A  

NA 0.7K NA 

Table 2 DECstation 3100 1/0 Performance 

Subsystem 

Peripheral 110 Performance 

RZ55 file reads 930KB per second 

(with read-ahead 

microcode) · 

RZ55 fi le reads 330 KB per second 

RZ55 writes 320KB per second 

NFS file reads 450KB per second 

(with read-ahead 

RZ55 microcode) 

NFS file reads 330KB per second 

N FS fi le writes 320KB per second 

I P/ U D P  1 500-byte 800 K B  per second 

packets 

I P/U DP 64-byte 1 000 packets per second 

packets 

I PfTCP end-to-e nd 350KB per second 

• RZ55 read-ahead microcode has not yet been 

released by Digital Equipment Corporat ion.  

Conclusion 
One of the delights of the DECstation 3 100 project 

was that we were building the machine that we 
ourselves had wanted for a very long time. By using 
a smal l, focused core design team and resisting 
incremental additions, we achieved t he aggressive 

time-to-market goal .  

Vol. 2 No. 2, Spring 1990 Digikll Tecbnicaljournal 



Larry B. Weber I 

Compiler Optimization 
in RISC Systems 

Compiler optimization detennines the level of RJSC system performance. The archi

tectural design of compilers from MIPS Computer Systems, Inc., combined with sup

port tools facilitates compiler optimization and overall system throughput. The 

compiler design takes advantage of small and high-speed cache memory to enhance 

performance. The cord tool positions the program in memory to ensure that the most 

frequently used memory locations never compete for the same cache locations. 

Portability is crucial to compiler effectiveness. MIPS compilers implement many 

industry-wide extensions to the standard languages to make them compatible with 

other implementations. 

RISC (reduced instruction set computer) system 

performance embodies many components. In addi

tion to the performance of individual instructions, 

the processor architect must consider how the 
compiler combines the instructions, how system 

vendors construct the memory system, and how the 

user writes programs. Of particular importance is 

how well the compiler optimizes programs for a 

given hardware architecture. In addition, program 

portability is essential to ease the burden of moving 

applications to new systems. By considering all 
such aspects of system performance, the processor 

architect can use the full  potential of a RISC system. 

Traditional CISC (complex instruction set com

puter) processors were developed without signifi

cant information on how high-level programming 

languages would use them. In contrast, RISC archi

tects make trade-offs between microprocessor 

structures and compiler complexity, with the goal 

being overall system performance. 

The compiler is the key link between the archi

tect and the system user. Therefore, it is essential 

that the processor architect completely understand 
the compiler and its capabilities. 

Compilation is the process of converting high
level source code w ri tten in a programming 

language into machine code for a target machine. 

This process must consider translating the instruc

tions correctly into machine language, as well as 
into optimal machine language. Often, the high

level language masks the primitive level of the target 

machine by providing programming tools that do 

Reprinted with the permission of f:.SD Magazine, December 
1989, Digital Design Publishing, Westborough , MA 0158 1 .  

Digital Tecbnical]ournal Vol. 2 No. 2, Spring 1990 

not directly correspond to the machine's features. 

Compilers must also deal with programs that do not 

take best advantage of these features. The optimizer 

is the portion of the compiler that deals with perfor
mance issues. 

Optimization Boosts Performance 
Optimization occurs at many stages within the 

compiler. Some optimizations are best done at the 

front end of the compilation process when first 

processing the source program. These optimi
zations are called language-dependent optimiza

tions because they rely on features unique to a 

specific programming language. Other optimiza

tions, called machine-dependent optimizations, are 

performed late in the process because they require 

detailed information about the target machine and 

how the program actually uses that machine. Stil l ,  

other optimizations are independent of both the 

source language and the target machine. 

Compilers from MIPS Computer Systems consist 

of several independent front ends that convert 

individual languages into a common intermediate 

code called ucode. (See Figure 1 .) MI PS currently 

supports six programming languages: ADA ,  c ,  
COBOL, FORTRAN, PASCAL, and PLI ; ANSI C and C++ 

will be available in 1990. The common back end 

performs the bulk of the optimization and generates 

machine code. 

The common back end of the compiler uses a 

variety of optimization tech niques that require 

varying amounts of information. The compiler 

must gather the information from the source code 

and analyze it. Peephole optimizations require the 

89 



VAX 6000 Model 400 System 

1 986 

1 986 
UCODE LINKER 

} 
I NTERCOMPI LATION UNIT 
OPTIMIZATION 

FU NCTION IN-L INE 

GLOBAL OPTIMIZER GLOBAL OPTIMI ZATION 

CODE GENERATOR LOCAL OPTIM IZATION 

P IPELINE SCHEDULER PEEPHOLE OPTI M IZATION 

Figure 1 Compiler Structure 

least a mount of information - usual ly only an 
instruction or two. Global optimization requires 

the most information; it must take into account 
control tlow (the branching and looping stmcture 
of a program) and data tlow (the data usage within 
each section of the program). l ntercompilation unit 

optimizations represent an extreme form of global 

optimization that occurs between i ndependent 
source files. Local optimization requires an interme
diate amount of information - usually data usage 
within a group of consecutive statements. Table I 

lists optimiz:.�tions shared in the MIPS compilers. 
One of four optimization levels (-00, - 0 1 , -02 , or 

-0:)) can invoke the MIPS compiler. The levels 

indicate the relative compilation speed - not the 

importance - of the various optimization classes 

that the compiler can implement. for example, a 
program compiled at the -00 level, which specifics 
no optimization, would compile faster than a pro
gram compiled at the -03 level, which offers the full 
range of optimizations. These optimization kvels 
also correspond closely to rhe components i nvoked 

during the compilation process. 

90 

The -00 option disables the optimization nor
mal ly  performed by the code generator and 

assembler. The -01 option (the defau lt) designates 
minimal and fast optimization. Under this option, 

the code generator and assembler perform local 
optimizations within basic blocks. Apart from tradi

tional local optimizations such as local common 
subexpression , expression simplification, constant 

folding, dead code elimination , and peephole opti
mizations, the code generator performs branch and 
label optimization, and the assembler performs 
architecture-dependent pipeline scheduling. Com
pilation speed does not lengthen noticeably 
between -00 and -01 . Thus, -00 is sddom needed 

and is used mostly for comparison studies. 
Option -02 adds the uopt phase to the compi

lation stream to perform global optimization and 
register al location within the ful l  range of individ

ual procedures. Compilation time might lengthen 

substantially because global data-tlow analysis and 
coloring register-al location algorithms are invoked . 

Supporting optimizations across mu ltipl e  source 

files is the -03 option. This option adds the uld 

Vol. 2 No. 2. Spring 1990 Digital Tecbnicaljournal 



Ta ble 1 Optim ization Methods 

Peephole 
opti mization 

Local 
optimization 

G lobal 
opt i mization 

l nterco mpilation 
u nit optim ization 

I nstruction sched u l ing 
I nstruction sel ection 
Instruction su bstitution 

Call/return selection 
Branch-to-branch optim ization 
Local subexpression e l i m ination 
Constant folding 
Expression simpl ification 
Dead code el imination 
Local register assignment 
Short-c i rcuit evaluation 

I nvariant code removal 
Strength reduction 
G lobal register assignment 
G lobal su bexpression el im ination 
Shrink-wrapping register saving 
Linear test replacement 
Loop u nro l l i ng 
Tai l  recursion 
Copy propagation 
Redundant store el imination 

l nterprocedural register allocation 
I n-l ine expansion of procedures 

phase, which comhines separate compilation units 
into a single fi le at the ucode level. Thus the option 
enables mu ltimodule programs to achieve the same 
degree of optim ization as single-module programs. 
The umerge phase selectively expands procedure 
calls by in-line substitution. The resulting ucode 
object is then sent into normal back-end optimi
zation and compilation stream starting w ith uopt. 
The -03 option causes uopr to perform interproce
dural register al location; uopt also benefits from the 
complete information in the linked ucode file to 
perform the other global optim izations normally 
associated with this phase. 

Local Hardware Architecture 
MIPS'  architectural design facil itates compiler opti
mization and overal l  system throughput. Important 
to system performance is the memory hierarchy. A 
split cache provides independent access to both 
instructions and data in a single cycle. A single com
bined cache would l imit the processor ro obtaining 
only a single instruction or data item each cycle. 

The compiler design takes into consideration the 
effect of cache memory. On average, instruction 
references cache miss less frequently than data ref
erences ; this observation allows the compiler to 
prefer slightly longer instruction sequences if they 
avoid extra data references. The instruction cache 
miss rate is lower because the hardware loads multi-

Digital Tecbnicaljournal Vol. 2 No. 2, Spring 1990 

Compiler Optimization in RISC Systems 

pie contiguous words into the cache on a m iss , and 
the sequential nature of instruction execution takes 
advantage of this locality. 

Register optimization makes the most significant 
architecture/compiler performance enhancement . 
Because the optimizer knows that data a l located i n  
registers can b e  accessed without delay, i t  places the 
most frequently used variables into registers. The 
optimizer computes the l ifetime of individual data 
items and replaces the memory usage with a register 
usage. The relatively large nu mber of registers 
makes it l ikely that the optimizer can su ccessfu lly 
promote the most frequently referenced variables 
into a register. (There are thirty two 32-bit integer 
registers and sixteen 64-bit floating-point registers. )  

One of the most important archi tectural features 
used to improve performance is the instruction 
pipeline. Although several cycles arc required to 
actually complete the instruction, the processor can 
be viewed as if each instruction takes only one cycle 
because a new instruction is started each cycle. The 
compiler is aware of several exceptions; for exam
p le, load instructions require one instruction 
between the load and the use of the data loaded. 
This load-delay s lot is  used by the compiler for 
another instruction - effectively, the cache mem
ory access of the load executes in parallel with the 
other instruction. This tech nique is called instruc
tion schedul ing. Other examples of paral lel  instruc
tion execution include 

• Overlapping a branch instruction with another 
operation 

• Testing for division by zero while the divide is in 
progress 

• Executing several different floating point oper
ations simultaneously (The MIPS processor has 
separate fl oating point ad d,  mu ltiply, and d ivide 
u nits.) 

The MIPS architecmre does not have condition 
codes. Although this seems unusual compared with 
many other machines, this design actually improves 
performa nce. The architecture provides branch 
instructions that both rest a condition and then 
branch. Thus , the compiler must generate only one 
instruction for conditional branches rather than the 
two instructions usually required (one to test for the 
condit ion, then another to perform the branch). 
Only comparisons that compare larger (or smal ler) 
values between two registers , or a register and 
inuned iate value, cannot be handled this way. The 

9 1  



VAX 6000 Model 400 System 

compiler restrucrures most comparisons ro avoid 
t h is case, rhus decreasing average test time. 

Instructions in a C ISC processor often have 
widely varying execution times. This di fference 
makes it hard to determine which of several alterna
tive sequences is actually fastest. Because almost all 
RISC instruct ions take the same time. the optim izer 
can select the fastest sequence with relative ease. 

Program Portability 
To make a system useful ,  programs must be ported 
onto t he processor. The usc of UNIX operat
ing systems and standardized languages such as 
FORTRAN has tremendously improved program 
portabili ty. However, incorrect programs may have 
latent bugs that are masked by a nain: compiler. 
Thus, an optimizing compiler tends to expose more 
of these problems. A naive FORTRAN compiler may 
assign all variables to memory locations, giving 
variables predictable initial values. An incorrect 
program that relics on these i nitial values will fa i l  
when an optimizing compiler assigns a variable to a 
fast register that tenets to have unpred ictable values. 

An optimizer converts the program (as written) 
into ont> that is kkntical except that it executes 
faster. To do this,  tht> optimizer must make assump
t ions about what the programmer intended . Often 
the programmer tlepcnds on experience with previ
ous compiler implementations rather than the rules 
of the language. 

The :vi i i'S compiler suite provides a number of 
options to allow a program to run without modifi
cation in the presence of such common errors. This 
permits a program to be ported quick ly, giving the 
programmer a choice as to when to correct the 
problem. 

Traditionally, system vendors have added unique 
extensions t o  t heir language implementations. 
While these may be a boon to a programmer when 
writing the program ,  they can be a bane when it 
comes time to port the program. The MIPS com
pilers implement many industry-wide extensions to 
the stanclarcl languages to make them compatible 
with other implementat ions. An important set of 
extensions is the support of Digital's VAX FORTRAN 

extensions. Another is the inclusion of I BM 's PL l 
extensions to permi t  an i ndependent software 
vendor to port a 1 . 8-mill ion-line PL l progr:tm to the 
M I PS architecture. 

Wherever extensions arc required, M i l'S chooses 
proposed extensions for similar functions that are 
being considered by the standards committees. An 
example of this last situation is the need to repre-

92 

sent hardw:.�re 110 structures when being refer
enced by an optimizing com piler. Consider an I/0 

device register that is used to define the status of 
the I/0 device. The optimizing compiler would see 
multi ple references to t he address without inter
vening assignments. The compiler would cleverly 
(bur incorrectly) optimize all references to a proces
sor register. M I PS has added the key word volatile to 
indicate to the compiler that this variable changes in 
ways that the compiler cannot detect. This exten
s ion was recently incorporated i nto t he current 
ANSI standard for c, bur it was added to the M I PS c 

compi ler four years ago . 

Tools to Development 
Fundamental to system development is a tool set 
that aids in compiling, debugging, performance tun
ing, and system construction (bring-up). M I PS' tool 
set includes those tools traditionally found in UNIX 

operating systems, as  well as  tools unique to M I PS .  
The mult iple front-end, common back-end con

struction of the M I PS compilers provides a consis
tent set of languages to the developer. Options and 
flags :tre the same across all languages. In fact ,  cc 

can usually be used to compile programs i n  the 
other languages. All languages share a common 
linkage convent ion that makes it easy ro write or 
port programs written i n  two or more languages. 

The l " \I I X  tool make provides a convenient 
method of program development. This tool iden
t ifies which source modules of a program changed 
and recompiles onl y those modules. In recom
pi ling, make provides the correct compilation 
options. It also provides the complete set of compi
lation options; for example, the debugging option 
can be enabled t hrough a make target to trou
bleshoot a program. Later, the debugging options 
can be disabled, and higher levels of optimization 
can be speci fied in compil ing the production 
version of the program. The make rules file, which 
accompanies the source program modules, deter
mines how the modules are to be combined into the 
final run program. This prior determination elimi
nates the need for detailed written documentation 
or programmer support , making it simpler for 
developers to exchange source programs. 

Crucial to efficient program development is 
a source-oriented deb ugger. M I PS provides an 
extended version of dbx which supports a l l  pro
gramming languages. (ADA has a special debugger. )  
The debugger provides features such as  print
ing variables as they change, or replaying a debug
ging session to a certain point before con tinu ing 

Vol 2 Nn. 1. .\jJring /'J'JO Digital Tecbnica/journal 



the debug session. The user can view and ed it the 
source, as well  as see each statement as i t  i s  
executed . 

The debugger also lets the user view the program 
in both the high-level language in which it was 
written and in the generated machine language. 
Thus, the user can set a breakpoint on a specified 
statement or instruction. Full debugging facilities 
are available only when the debugging option i s  
specified. However, the compiler (by default) main
tains the l ine number tables in a compressed format 
in the load module even w hen the option is not 
speci fied . Retention of the line number tables per
mits panial debugging without the need to recom
pile the program using the debugging option. Line 
number information is kept for each instruction, 
perm itting the instruction sched uler to move the 
instruction whi le  keeping track of the l ine that 
originated it .  

Specification of both debugging and optimization 
options can create confl icts. For example, it  i s  possi
ble for a bug to appear only when a h igher level of 
optimization is specified . Moreover, optimizations 
such as register allocation can confuse the debug
ger, because variables are not at the locations that 
it assumes. To avoid this situation, the M I PS compil
ers disable any optimization that interferes with 
debugging when both debugging and optimization 
options are specified. To debug the problem that 
shows up onl y  in optimized code, a special option 
permits both the debugger and optimization to be 
enabled . This technique requi res the developer to 
use caution when inquiring about the contents of 
a variable. 

To tune a program for optimal performance, the 
developer must learn where in a program the time 
is spent and why. Traditional UNIX systems provide 
a method called pc sampling. With this technique, 
the system m ust interrup t  a program at regular 
intervals (usually 60 or 1 00 t imes per second) and 
i ncrement a per-location counter. After enough 
sample points are taken, a pattern of execution time 
emerges. This method has a severe flaw because 
modern processors execute 10 to 20 mill ion instruc
tions per second; this means the number of samples 
is less than 1 in  100,000. The method requires a very 
long execution time ro collect a statistical ly mean
ingful sample. 

Although MIPS provides the pc sampling tech
nique, it  also furnishes a more exacting method . 
Pixie is a tool that takes an executable load module 
and prepares it for measurement by inserting a 
counrer i n  every basic block. A fter running the 

Digital Teclmical]ournal Vol. 2 No. 2, Spring 1990 

Compiler Optimization in RISC Systems 

instrumented program, the counters are dumped 
to a file for analysis by several programs. Prof dis
plays tables of interesting information such as the 
following: 

• Number of CPU cycles for each source l ine 

• Number of times each function is called 

• Average number of cycles in each call to a function 

Figure 2 shows examples of prof output Listi ngs. 
A second program, pixstats , takes the same counts 
and disp lays information about the program in 
architectural terms, such as : 

• Number of cycles used for each instruction 

• Number of unused delay slots 

• Number of FLOPS 

• A general indication of cache locality 

These two programs assume a perfect memory 
system, that is ,  no effect due to cache misses. 

For a complete analysis, a cache simulator is also 
available that uses p ixie to provide a memory 
add ress trace to the simu lator to model the mem
ory system. MIPS uses this technique to plan new 
machine designs. Each proposed change to the 
system requires a detailed simulation to exhibit its 
effect. When a MIPS designer is convinced that a 
balanced and optimal point has been found, imple
mentation begins. Experience w ith this technique 
has shown an accuracy of better than 4 percent 
when comparing predicted performance ro actual 
performance. 

An Optimization to Improve Cache 

Performance 
An area seldom add ressed in compilers is the opti
mization of programs in memory to improve cache 
hit rates. Modern microprocessor performance has 
been increasing faster than the supporting memory 
systems. Taking advantage of this higher perfor
mance without introducing costly memories has 
required the use of small and high-speed cache 
memory. Cache memory contains recently used 
instructions and data. H ardware substitutes cache 
memory if the desired word is in the cache. This 
substitution is  invisible (other than performance 
improvements) to the program . Each main memory 
location must share a cache location with other 
memory locations because the cache is smaller than 
main memory. For a cache to be effective, it must 
contain enough of the program or data to ensure 
multiple reuse of the instructions or data. 

93 



VAX 6000 Mode1 400 System 

�1751 cyc le�>-.. ot-----1 TOTAL NUMBER OF 
PROGRAM CYCLES 

cycles \cyc les cum \ cycles bytes procedu re ( f i l e )  
/c, li l  / l l/'\e _________ _ 

JO H eQln L . /t.cxt. "iput • • C) 

23 2"1 nt.-d ehdt" I . . . ext input .e) 
8 w r i t. ; ch.Hs I . /texto t.pu L . c l  

l � wr it. e- i n teger ( . .  /t�xtoUlJJut . c) r:..::..._-=..:.:._ __ ___:_o:c:__:..:..,:rltt:-st. r i l'lg . , /telOI�O'-ltpUt. . c )  

9 0  0 . 0 0  1 0 0 . 0 0  

82 o.oo 100.00 

" o.oo 100.00 
" 0 . 00 lOO.CO 
1> 0 . 00 lOC.OO 
lJ 0 . 00 100 • .00 
l l  0 .00  1 00 , 00 

6 0 . 00 1 00 . 00 

> 0 . 0 0  1 00 . 00 
0 . 00 100 .00  

o:�odl;;- 1 . .  / t . e  . l nput . c: l  
f l t c: J n  ( . .  I t  xt.output . c )  
o f  ( . .  /tex t i  :>ut . c l  

f h b u f  ( . .  / f  11bu{ . c )  
�" f \ \ I  I I � , ( \ l 1 r- 1 

STATISTICS DESCRIBE CALLS 
TO wrile_char COMPILED FROM 

SOURCE FILE lexloutput.c. 

9 p.1d ( . .  /tt•xtoutput . c )  �. / r e s et . c l  . / {open .c l 
ll I /11brk. sl 
" 

> 

THE MOST HEAVILY USED LINE 
IS 1 20. LOCATED IN PROCEDURE 
write_char, COMPILED FROM 

SOURCE FILE lexloutpul.c. 

write d�.1r ( , . /text.output .c) 
w r I t <!:

-
cho\ r I . . /t.ext.out.put. . c) 

�oln ( . .  / t. lt iC l  I n put. . c) 
read ch<H ( . .  /taxt Input. . c )  

!Tia i n
-

f ( J IC!ont . p l  
w r ! to ch.-rs ( . .  / t e " t Oi.l t pu L . c )  
w r i t o

-
c h <l r  ( . .  /tc"tout.pu l . c )  

writ.tt-Ch,H ( , , /t.I!:ICLOlllp�l t . C )  
writ.tt�Lnt:eqer ( . .  /teiCtoutput . c l  

m a l n  C f l d o n L p )  
w r i te i n t e q e t  ( , , /t .exto'.lt.pu t . c )  

:!�< � I n  ( H x ! ont . p )  
eo l n  { . .  /tc.ut i n p u t . C )  
J:",a i n  l ! l x f o n t . p )  
!'YI 1 n  ( f l "fonl.pl 
write ' t r i :-:q (. . /text.out put. . c J  
w r i t e-

ch.- rs { . . /t.ext.out.put. . c) 

wrJte
-

eh,us ( . .  /t.ttxt.output. .c) 
w r i t e=ch.:tr:� ( • .  /t.e"toutpu t. . c )  
w r ! te chars 1 . .  / t e"t.out.po t . c )  

m• i n  ( f ! J dont. .pl 

I l l  2 

eycl<lll \ cu'" \ 

l ' L 0 9  1 9 . 0 9  

27 12 21369lb 1 . 85 8 4 . 88 

·------���----------, 
19 LINE 36 OF texlou1put.c HAS 6 
J BYTES OF CODE, USED 1 .795.672 
2 CYCLES. OR 1 .21% OF TOTAL 

��.�P�RO�G=R�A�M�C�Y�C=LE�S�·--------� 
J > O  .. 5 7 1 050 O . J'J  95 . � 6 
.. 561855 0 . 38 9 5 . 8 4 

" . 561855 0 . 38 96..21 

" 28 481387 0 . 3 3  9 6. . 55 

J8 10 3 4 8 1 5 0  0 . 24 96.1'} 
) J  100 3 4 8000 0 . 23 97 . 0 2  

Figure 2 Examples of prof Output Listings 

A valuable optimization is to position the pro
gram in memory so that the most frequently used 
memory locations never compete for the same 

cache locations. MIPS has built a tool called cord 
that rearranges the program to improve instruction 
cache utilization. This tool is made possible through 

the existence of precise profiling tools. 
To use cord, the programmer compiles the pro

gram in the usual way. Pixie is used to add counters 
to the program for each basic block. After exe
cuting the instrumented program, prof is run with 
an option that creates a file containing dynamic 
execution information. That file is given to cord, 
along with the original executable module. 

Cord computes the density for each function 
(procedure). The density is defined as the average 
number of cycles executed by each i nstruction in 
the function. Figure 3 is a n  example of eight 
functions, their sizes, cycle counts,  and density. 
Cord then creates a new executable module after 
sorting the functions according to density. Figure 3 
also shows the order of the functions in the rear

ranged program. 

This sort improves cache h i t  rat e  because it  
places the functions that use t he most cycles in 
memory so they do not compete for the same cache 
location as other frequently executing functions. 

The effectiveness of sort is helped by two other 
features in the MIPS architecture. First, t he caches 
are d irect-mapped to memory so that each memory 
location corresponds to a single cache location. Sec-

94 

ond, the MIPS operating system places v irtual pages 

in physical memory so that adjacent virtual pages 
map to adjacent cache pages. As a result,  the place
ment of functions by cord has very predictable 
effects on the cache. 

Figure 3 also shows the arrangement in an 
unexpected way. Rather than placing the densest 
function (A) at the beginning of memory, it is placed 
farthest from the start of the cache. This arrange-

80 

70 

60 >-
f-

50 (j, 
z 

40 c UJ Cl D 

B 

30 

20 

1 0  
OK 64K 

MEMORY ADDRESSES 

KEY 

NAME S IZE CYCLES DENSITY 
A 1 2K 960K 80 
B 24K 1 680K 70 
c 20K 1 200K 60 
D 8K 400K 50 
E 1 6K 640K 40 
F 1 2K 360K 30 
G 1 6K 320K 20 
H 20K 200K 1 0  

Figure 3 Cache Performance Improved by cord 

Vol. 2 No. 2, Spring 1990 Digital Technical journal 



ment has the effect of making the densest func
tion share cache locations with the function 
1 28 kilobytes (twice the cache size) away (H). Cord 
improves performance by as much as 20 percent to 
30 percent on programs exceeding the size cache. lt 
works solely by improving the efficiency of the 
instruction cache. Methods to improve data cache 
accesses are not available yet because of the more 
random nature of data accesses and difficulty in get
ting accurate data reference i nformation. 

An advanced architectural simulator, Sable mod
els (in C) the processor, including TLB, pipeline, 
register set, and system design, incorporating the 
cache subsystem, main memory, and 110 interface. 
Developers can customize Sable for a unique system 
design. Sable has been used routinely at MIPS to 
bring up the UNIX operating system before hard
ware is available. Simulation with Sable assures that 
the software is reliable and performs optimally 
when the hardware is actually available. Sable can 
be used with the deb ugger to provide full symbolic 
debugging in the simulation environment. Also, 
Sable can provide the same add ress traces that pixie 
provides to analyze operating system performance. 
After a system has been brought up using Sable, 
other tools can assist in  constructing the system on 
the real hardware. A simple debug monitor is 
available to work with the symbolic debugger to 
provide a symbolic debugging environment on the 
real hardware. 

Digital Tecbnicaljow71al Vol. 2 !Vo. 2, Spt·ing 1990 

Compiler Optimization in RISC Systems 

Trends in Compilers 
Compilers are taking better advantage of the paral
lelism in today's RISC processors. Evidence of this 
can be seen in the schedul ing of instructions to 
capital ize on load and branch delays and multiple 
floating point units. This trend will continue as it 
becomes feasible to build effective multiprocessor 
systems. In this area, compilers that wi l l  partition a 
problem across multiple processors - each per
forming a portion of the iterations of a loop - will 
be seen. A major challenge wil l  be to find ways to 
use this kind of parallelism in nonengineering prob
lems. These problems tend not to be loop intens ive 
and will require a breakthrough in compiler tech
nology for automatic parallelism. 

Over the past five to ten years, the programming 
language C has come to the forefront as a major 
systems language. While C offers many advantages, 
it requires a user to deal with fairly primitive struc
tures rather than abstractions. C++ will offer much 
of the flexibility of C with the added capability of 
data abstraction. 

It is expected that future compilers w il l  take 
ad vantage of optimizations that red uce cache 
misses. These optimizations include loop inter
change, which reorders the accesses to an array to 
improve locality of data references, and software 
pipelining, which takes better advantage of over
lapping memory accesses and computation. 

95 



I Further Readings 

The Digital Tec hnicti Jouroal 
publishes papers that e.\jJ/ore 

the technologiculjimndatitms 

of Digitals maj( >r pn Jducts. 
Each journal focuses on at least 

one product area and presents 

a compilation ojj;apers written 
by !be engineers who det,eloped 
the product. The content for t be 

journal is selected by the journal 

Advis01y Board. 

Topics covered i n  previous issues of t he IJ(�ital 
Tecbnicaljournal are as fol lows: 

VAX 8600 Processor 
Vol. I, No. 1, August NH5 

MicroVAX I I  System 
vbl. 1, No. 2, J'vlarch 1')86 

Networking Products 
HJ/. I . .  Yo. 3, 5>eptenzber Jl}86 

VAX 8800 Family 
Vol. I, No. 4, Februcny N8' 

VAXcluster Systems 
Vol. I, No. 5, September 1')87 

Software Productivity Tools 
Vol. I, No. 6, Februmy 1988 

CVAX-based Systems 
HJI. 1, No. 7, A ugust /988 

Storage Technology 

Vol. I, No. 8, February 1989 

Distributed Systems 
Vol. I, No. 9, june 1989 

Compound Document Architecture 
Vol. 2, No. 1, Winter 1990 

See the inside front cover of this issue for subscrip
tion information . 

Single copies and past issues of the Digital Technical 
journal can be ordered from Digital Press at a cost 
of S 16.00 per copy. 

96 

Digital Press is Digital Equipment Corporat ion's 
imcrnat.ional publ isher of books for computer pro
fessionals .  Copies of t he new tit les now avail able 
from Digital Press that are listed below can he 
ordered by writing ro Digital Press, Department 
DTJ, 12 Crosby Drive, Bedford, MA 01 730, U.S .A .  

COMMON LISP: The Language 
Guy Steele J r . ,  Second Edition. 1990 

(538.95 in soft cover. 544 .95 in clothcover) 

The Matrix: Computer Networks and 
Conferencing Systems Worldwide 

John Quarterman, 1990 (549 .95 )  

UNIX for VMS Users 
Phil ip Bourne, 1990 (S2B.95) 

The VMS User's Guide 
James Peters and Patrick Holmay, 1990 ($23 .00) 

A Beginner's Guide to VAX VMS Utilities 
and Applications 
Ronald Sawey anu Troy Stokes, 1989 ($23 .00) 

VMS Internals and Data Structures: 
Version 5 Update X press 
Ruth Goldenberg and Lawrence Kenah, 
Volumes I ,  2 ,  and 3, 1989 ( 5 3 5 .00) 

VAXNMS Internals and Data Structures: 
Version 4.4 
Lawrence Kenah ,  Ruth Goldenberg, and 
Simon Bate, 1988 ($75.00) 

Digital Guide to Software Development 
Corporate l ser Publ ications Group of D igital 
Equipment Corporation, 1990 ($27.95) 

Technical Aspects of Data Conununication 
John McNamarJ, Third Edition, 1988 (S42 . 00) 

Infonnation Technology Standardization: 
Theory, Practice, and Organizations 
Carl Cargi l l ,  1989 (S24 .95 )  

Computer Programming and Architecture: 
The VAX 
Henry Levy and R ichard Eckhouse, 
Second Ed ition, 1 989 ($24 .95)  

ABCs o f  MUMPS: An Introduction for Novice 
and Intennediate Programmers 
Richard Walters, 1989 ($24 . 95) 

\lui. 2 Nn. 2. Spring /'J'JIJ Digital Tecbnicaljournal 



ISSN 0898-90 1X 

Printed in U.S.A. EY-C 197E-DP/')(} Oi 0 2  30.0 RUO Copyright 1990 Digital Equipment Corporation All Rights Reserved 


	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Vector Processing on the VAXvector 6000 Model 400
	The VAX 6000 Model 400 Scalar Processor Module
	An Overview of the VAX 6000 Model 400 Chip Set
	VAX 6000 Model 400 Physical Technology
	VAX 6000 Model 400 CPU Chip Set Functional Design Verification
	Test and Qualification of the VAX 6000 Model 400 System
	Development of the DECstation 3100
	Compiler Optimization in RISC Systems
	Further Readings
	Back cover

