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Abstract

Neuroscientists have studied the relationship between nerve cell morphology and
function for over a century. To pursue these studies, they need accurate three
dimensional models of nerve cells that facilitate detailed anatomical measurement
and the identification of internal structures. Although serial transmission electron
microscopy has been a source of such models since the mid 1960s, model reconstruc
tion and analysis remain very time consuming. We have developed a new approach
to reconstructing and visualizing 3D nerve cell models from serial microscopy. An
interactive system exploits recent computer graphics and computer vision techniques
to significantly reduce the time required to build such models. The key ingredients
of the system are a digital "blink comparator" for section registration, "snakes," or
active deformable contours, for semi-automated cell segmentation, and voxel-based
techniques for 3D reconstruction and visualization of complex cell volumes with in
ternal structures.
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Figure 1: A hippocampal pyramidal cell with the soma and the dendrites (den)
visible. The axons are from other hippocampal cells that form synapses with these
dendrites. At higher magnification the dendritic spines are seen protruding from the
dendrite. Bars:c- lllll,m. (Reproduced from (Harris et al., 1980) with permission from
the publisher.)

1 Introduction

Neuroscientists search for links between neuronal dendritic morphology and behavior,
and morphology and disease by studying the relationship between the morphology and
function. Detailed morphological studies require accurate three-dimensional models
of nerve cells that facilitate anatomical measurement and identification of internal
structures. Neuronal dendrites and their protruding dendritic spines can be seen with
a light microscope (Figure 1), but the resolution is insufficient for detailed anatomical
measurement and the internal structures are not visible. To date, the only method
available for detailed measurement and study of internal cell structure is through 3D
reconstructions from serial electron microscopy, or serial EM (Figure 2) (Harris and
Stevens, 1988; Harris and Stevens, 1989; Stevens and Trogadis, 1984; Wilson et al.,
1987).

Reconstructions from serial EM have been produced almost since the invention of
the electron microscope. Initially, the reconstructions were purely manual, but over
the years they have relied increasingly on computers. Even with current computer
assisted tcchn iques , the reconstruction of a SILm dendritic segment with all of its
spines and synapses, along with the quantitative analysis of the reconstructed model,
can take up to three rnonths of work. By contrast, the tissue preparation and EM
photography take only about two days! It is remarkable that so many neuronal
reconstructions have been made because "... the incredible investment in time and
energy necessary to reconstruct cells is nothing short of heroic" (Stevens and Trogadis,
1984).



2 1 INTRODUCTION

We present a new interactive approach to reconstructing and visualizing 3D nerve
cell models from serial microscopy, and describe an interactive system which exploits
recent computer graphics and computer vision techniques to reduce significantly the
time required to build such models. After presenting a more detailed review of the rel
evant neurophysiological motivation for our work and its relationship to prior efforts,
we describe the key components of our approach to reconstruction and analysis of neu
ronal dendrites. Our prototype system currently features a digital "blink comparator"
for section registration, "snakes," or active deformable contours, for semi-automated
cell segmentation, and voxel-based techniques for 3D reconstruction and visualization
of the 3D morphology of dendrites along with their internal structures.

1.1 Background

A nerve cell, or neuron, has four constituent parts: the cell body (soma), the dendrites,
the axon, and the presynaptic terminal of the axon (Kandel and Schwartz, 1985).
The soma. is the metabolic center of the cell, the dendrites are the receiving units,
the axon is the conducting unit, and the presynaptic terminals are the transmitting
units. The areas of contact between the presynaptic axonal terminals of one cell and
the dendrites of another cell are ca.lled the synapses. Most synapses are located at
the end of protrusions on the dendrites, called the dendritic spines (see Figure 1).

In humans, the dendritic spines are lost or change shape both with aging (Feldman
and Dowd, 1975) and with diseases that affect the nervous system, such as dementia
(Catala et 0.1., 1988), brain tumors (Spacek, 1987), Down's syndrome (Marin-Padilla,
1976), epilepsy (Scheibel, Crandall and Scheibel, 1940), Huntington's disease (Grav
eland, Williams and DiFiglia, 1985), and alcoholism (Ferrer et 0.1., 1986). Detailed
anatomical descriptions of the synapses and dendritic spines will provide new under
standing about their function, thus improving opportunities for understanding the
underlying causes and effects of these diseases.

The dendritic spine is positioned so that changes in its morphology could modu
late the transfer of information from the synapse to the dendrite (Brown et 0.1., 19880.;
Wickens, 1988). Direct physiological study of the relationship between dendritic spine
morphology and function has been impossible because of their small size. Several sim
ulations with theoretical models have shown, however, that small changes in morphol
ogy could change the biophysical properties of the spines (RaIl, 1974; Crick, 1982).
Several laboratory studies have shown that dendritic spines change shape during mat
uration, following experience, and in response to direct physiological stimulation of
the presynaptic axon. Repeated, or "tetanic," stimulation causes an enhanced synap
tic efficacy, which is referred to as long-term potentiation (LTP), a leading candidate
for a synaptic explanation of behavioral learning (Brown et 0.1., 1988b). Anatomical
analyses of stimulated dendrites have revealed swollen spines and changes in the size
of synapses (for a review see (Harris, Jensen and Tsao, 1989)). Thus, a change in
morphology might contribute to, or represent, the increase in synaptic efficacy which
is observed after stimulation.

Research has also shown that the cytoskeleton and the organelles internal to the
neuron, such as neurofilaments, microtubules, mitochondria, and smooth endoplasmic
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Figure 2: An EM photomicrograph from a section of a rat hippocampus. The dendrite
(den) is located in the center, and a large spine is protruding from its right side. The
mitochondrion (me), microtubules (mt), some smooth endoplasmic reticulum (ser),
and the synapse (syn) are indicated. Bar = 111m.

reticulum (see Figure 2) may control the shape of the nerve cell (Harris and Stevens,
1988; Harris and Stevens, 1989). The challenge is to find links between neuronal
morphology and physiological function in the normal and diseased brain (Brown et al.,
1988a).

1.2 Previous work

Registration and Reconstruction: Early EM reconstruction techniques were en
tirely manual (Stevens et al., 198n). A photograph from an electron microscope was
illuminated from below and the outline of the structures of interest were traced on a
sheet of acetate positioned on top of the print. Next a photograph of an adjoining
section was illuminated and aligned with the trace from the previous section, and its
structures were then traced on a new sheet of acetate. This process was repeated
for all sections. The thickness of the acetate and the magnification were chosen so
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that a fairly accurate model would result by inserting a number of blank sheets of
acetate between each trace. Finally, an artist would produce a 2D illustration of the
3D model.

Over the years, reconstruction from serial EM has become increasingly computer
assisted. In a system developed by Stevens et at. (1980; 1984), the EM negatives are
first rephotographed onto a 35mm filmstrip. Next, the filmstrip is mounted on a film
transport, which in turn is mounted on a stage driven by two computer-controlled
stepping motors. The first image is digitized and stored in image memory. The
second image is continually digitized while the user moves the film transport, and a
video switcher alternately displays the stored and "live" images on a graphics screen
at a frequency of about 4 Hz. There is an illusion of movement when the images
are misaligned, and the movement is reduced as they are brought into alignment.
When the motion is minimized between the two images or features of interest, the
second image is stored. Next, serial sections two and three are aligned, followed
by pairwise alignment of the remaining sections. Once the images are aligned, the
features or boundaries of interest are traced manually using a bitpad. The traces
can be displayed as a set of contours, as contours with the hidden lines removed, or
tessellated to form a surface which can be displayed as a solid object (Harris and
Stevens, 1989).

Using motion to compare photographs of the same or similar objects is not a
new idea. Astronomers have used blink comparators since early this century to study
astronomical plates (Croswell, 1990). A blink comparator holds two plates of the
same part of the sky, and alternately displays them to the user. Stationary objects
such as stars remain fixed, but objects such as comets or planets appear to move.

The problem of image alignment appears in many disciplines. Cartographers need
to align aerial photographs, and in robot vision much effort is devoted to registration
of stereo pairs and temporal image sequences (Horn, 1986). In both these disciplines,
the images are different views of the same object, and in robot vision one can often
assume that, at least locally, images are only misaligned translationally. The align
ment of neural sections, however, is a. considerably more difficult problem because the
EM images are misaligned both translationally and rotationally and there is gener
ally a large discrepancy between consecutive images. The latter is due both to the
integration over the thickness of the section in the EM photographic process and to
distortions of the tissue by its preparation and by the EM process.

Giertsen et at. (1990) propose a method to automatically align electron micro
graphs. They manually trace the membrane and internal substructures of a pancreatic
cell in serial sections and specify connectivity relations among successive contours.
Using contour shape features (centroids and mean radii), they determine linear trans
formations between successive contours and refine the alignment using residuals be
tween the original and smoothed data. Aligned contours are tessellated and rendered
as polygonal surfaces.

Segmentation: Many techniques have been developed for 3D image segmenta
tion. One of the simplest techniques, intensity thresholding, has been used by (Drebin,
Carpenter and Hanrahan, 1988) and (Hahne et al., 1989) and works relatively well
for separating soft and hard tissue in MR and CT scans. Surface normals are needed
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for high-quality rendering, and they may be computed using 3D generalizations of
2D edge detectors; e.g., the Zucker-Hummel operator (Hohne et al., 1989). When the
3D volume cannot be segmented by simply looking at single intensity values, a larger
voxel neighborhood can be used, by applying a 3D generalization of the Mart-Hildreth
operator (Hohne et al., 1988; Hohne et al., 1989). Other 3D generalizations of edge
detectors have also been used for segmentation (Liu, 1977; Zucker and Hummel, 1981;
Morgenthaler and Rosenfeld, 1981).

Another technique for constructing polygonal representations of constant density
surfaces from volumetric data is marching cubes (Lorensen and Cline, 1987). The
data is assumed to be defined on a 3D lattice, and an iso-surface is approximated
by finding all intersections between the iso-surface and the edges of the lattice. The
technique dictates how to fill in the surface between the edges of a cube for each of the
14 different types of intersections that can occur between the surface and a cube in
the lattice. The gradients are determined at each corner of the cube, and the surface
is rendered using the gradients to estimate the surface normal.

Unfortunately, because of the complexity of EM images of neuronal tissue (see Fig
ure 2), straightforward segmentation using any of the aforementioned techniques does
not appear promising for 3D reconstruction of dendritic models. Therefore, we aim
at introducing a higher level of automation into the section-by-section manual tracing
methodology currently practiced by neuroscientists. A recently proposed model-based
image feature localization and tracking technique known as snakes (Kass, Witkin and
Terzopoulos, 1987) is well suited to this goal. This interactive technique is consistent
with the manual tracing methods, but is considerably faster and more powerful.

The ability of snakes to conform to complex biological shapes such as cells and
to track their nonrigid deformations across image sequences makes them attractive
tools for biomedical image analysis. In (Leymarie, 1990), snakes are used to track
living cells moving on a planar surface. Assuming modest interframe motion, snakes
can exploit frame-to-frame coherence to track the moving cell and also follow the
deformations which occur as the cell moves. Ayache et al. (1989) use snakes to find
edges in cross sections of MR data. The user draws an approximate contour around
the region of interest and the snake deforms to fit the regions more accurately. Once
the snake has reached an equilibrium, it is used as a starting point for the next cross
section. A 3D model is built from the the resulting set of contours using Delauney
triangulation (Boissonnat, 1988). Variations on snakes based on B-splines have been
applied to the segmentation of 3D CT and MR data (Leitner et al., 1990).

Visualization: Volume visualization is an area in computer graphics that has
received a great deal of attention in recent years (Upson, 1989). Much work has been
devoted to high-quality rendering of CT, PET, and MR data (Drebin, Carpenter
and Hanrahan, 1988; Levoy, 1990) and seismic data (Sabella, 1988; Wolphe, Jr. and
Liu, 1988). Specialized software and hardware has been developed to facilitate real
time manipulation of both medical data (Meagher, 1982; Meagher, 1984) and seismic
data (Chakra.varty, Nichol and Ono, 1986). More recently, general-purpose software
for volume rendering has become available. Examples are ISO Technologies' ICAR
System (Stevens and Trogadis, 1990), Stardent's AVS system (Upson et al., 1989) and
Vitallmages' VoxelView system (VitalImages, Inc., 1990). In our work, we use the
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VoxelView system on a Silicon Graphics workstation to visualize the 3D reconstructed
dendrites.

2 Reconstruction of Neuronal Dendrites

2.1 Data Acquisition

Using routine tissue processing, a slice (400JLm thick) of well-preserved hippocampus
was obtained from the brain of a male rat, and the slice was embedded in epoxy
resin. The slice was further sectioned with an ultramicrotome, at an average section
thickness of about O.06JLm. (The dendritic segment used in this paper is dendrite
number 24 of reference (Harris and Stevens, 1989)). Each section was photographed
at 10,000 times magnification in a JEOL 100B transmission electron microscope and
printed on 8xlO inch photographic paper (see Figure 2).

The EM photomicrographs were digitized on an ECRM Autokon flat-bed laser
scanner capable of digitizing reflection copy images at a wide range of resolutions
(Ulichney, 1982). The scanner has a fixed spot size and the intensity can be quantized
at one or eight bit.sj pixel. We digit.ized the images at a resolution of 2560x1983 pixels,
approximately twice the sampling rate of the smallest features of interest, and with
eight bits of intensity per pixel. The images were low-pass filtered and subsampled
to a size of 640x496 pixels.

2.2 Image R.egistration

We chose a manual approach to image registration for two reasons. First, the au
tomatic alignment of successive EM images is a very difficult problem; because the
images are displaced both translationally and rotationally and usually there is a large
disparity between consecutive images. Second, even if an automated solution can be
found, user intervention will be necessary when the tissue has been distorted during
preparation; for example, when a section has a fold.

We have implemented an interactive digital blink comparator. One image is held
stationary and the user translates and rotates the other image while the stationary
and moving images are alternately shown on a graphics screen. The user can translate
the image in the x- and y-directions and can rotate the image about its center by using
a three-button mouse, each but.ton controlling one type of motion. The user moves
the image until the motion between the two images is minimized and the images are
aligned. By using double buffering a.nd by pre-computing x- a.nd y-components of the
composite transformation, we obtain comparisons at a frequency of about 1 Hz for
a 640x496 pixel image on a Silicon Graphics 4D /220GTX using one of the R-3000
processors. We found this frequency adequate to obtain good alignment, although a
higher speed would be desirable.

When all images are aligned by pairs, we find the composite transformation for
each image relative to the first image in the EM series and resample the images using
a spatially varying digital shift filter. This finite impulse response (FIR) filter is
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designed with a conventional windowing technique (Oppenheim and Schafer, 1975).
The resulting aligned images are input to the segmentation processes described in the
next section.

2.3 Extracting Models from Electron Micrographs

The extraction of neuronal dendrites from a set of aligned EM images reduces to
three subproblems: (i) the localization of dendritic profiles in digital micrographs,
(ii) the segmentation of the interiors of dendrites bounded by profiles, and (iii) the
identification of profiles of the same dendrite across serial micrographs. The density
and geometric complexity of neuronal features in micrographs make the first and third
subproblems especially difficult to automate fully.

We take a semi-automatic approach which exploits recently developed physically
based vision techniques for interactively localizing and tracking extended features in
images. We employ a variant of snakes, the interactive deformable contour models
introduced in (Kass, Witkin and Terzopoulos, 1987). Snakes provide significant as
sistance to t.he user in accurately locating the membranes that bound the dendrites
in EM images. Using a mouse, the user quickly traces a contour which approximates
the dendrite boundary, t.hen starts a dynamic simulation that enables the contour to
locate and conform to the true membrane boundary. Where necessary, the user may
guide the contour by applying to it simulated forces using the mouse. Through mini
mal user intervention, snakes quickly produce accurate dendritic profiles in the form
of complete, closed contours that facilitate the segmentation of dendritic interiors.
Finally, with some guidance, snakes are able to exploit the coherence between serial
micrographs to quickly extract a sequence of profiles of the same dendrite.

2.3.1 Deformable Contour Models

A snake can be t.hought of as a dynamic deformable contour in the x-y image plane.
We define a discrete deformable contour as a set of n nodes indexed by i = 1, ... , n,
with time varying positions Xi(t) = [Xi(t),Yi(t)]'. The behavior of an interactive
deformable contour is governed by the first-order dynamic system of equations

i=1, ... ,n, (1)

where, is a velocit.y-dependent damping constant, O!i(t) are "compression" forces
which make the snake act like a series of unilateral springs that resist compression,
(3i( t) are "rigidity" forces which make the snake act like a thin wire that resists
bending, and f t ( t) are forces in the image plane applied to the contour.

Let li be the given reference length of the spring connecting node i to node i + 1
and let ri( t) = X,+l- Xi be the separation of the nodes. Given the deformation
ei(t) = Ilrill- l., we define

(2)
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(3)

To obtain contours that can stretch arbitrarily but resist shrinking past a prespecified
amount, we set

() {
a if e, < 0,

ai t = o otherwise,

so that each spring resists compression with constant a only when its actual length
Ilrill is less than [i. To give the contours some rigidity, we introduce the variables b,
and define rigidity forces

f3i = bi+ l(Xi+2 - 2Xi+l + Xt) - 2bi(Xi+l - 2Xi + Xi-l)

+ bi-1(Xi -- 2Xi-l + Xt-2)' (4)

Note that in the absence of external forces, if the nodes are separated more than l.,
are equally spaced, and lie on a straight line, ai and f3i vanish and the contour will
be at equilibrium. Compression and rigidity are locally adjustable through the c,
and bi variables. In particular, by setting a, = b, = 0, we are able to break a long
deformable contour into several shorter contours on an image.

To simulate the deformable contour we integrate the system of ordinary differential
equations (1) forward through time using a semi-implicit Euler procedure (Press et al.,
1986). Applying the forward finite difference approximation dxddt ::::: (x:+At

- xD/!:it
to (1) and collecting linear terms in the x, on the left yields the pentadiagonal system
of algebraic equations

(5)

for the subsequent node positions X~+Llt in terms of the current positions x~. Since the
system has a constant coefficient matrix, we factorize it only once at the beginning of
the deformable contour simulation using a direct LDU factorization method and then
efficiently resolve with different right-hand sides at each time step (see (Terzopoulos,
1987) for details).

After each simulation time step we draw lines between the new node positions
X~+At to display the deformable contour as a dynamic curve in the image plane.

2.3.2 Image Segmentation using Deformable Contours

The deformable contour is responsive to an image force field which influences the
contour's shape and motion. It is convenient to express the force field as the gradient
of a potential function P1.(x,y) computed from the image I 5 (x , y) of EM section s:

(6)

where \7 - [0/Ox, 0/ oy ]'. By simulating (1) with (6), the ravines (extended local min
ima) of PI" act as attractors to deformable contours. The contours "slide downhill"
and stabilize at the bottoms of the nearest ravines.

In the present application, we are interested in the localization of cell membranes,
which appear dark in positive micrographs. We therefore convert I 5 ( x, y) into a 2D
potential function whose ravines coincide with dark cell membranes:

(7)
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3: Cell segmentation using a. deformable contour (see text). (a) Initial sketched
contour. (b) Initial equilibrium position. (c)-(d) Manipulating the contour with
interactive springs (green lines) and constraints (blue lines). (e) Final profile. (f)
Segmented cell.
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where Grr * denotes convolution with a 2D Gaussian smoothing filter of width a . The
filter broadens the ravines of PI. so that they attract the contours from some distance
away.

In practice, 1.. is not a continuous function, but a digital image. Therefore, we first
convolve the image with a discrete smoothing kernel, then compute (6) by bilinearly
interpolating the smoothed image gradients evaluated at the four pixels surrounding
Xi. The user can set the degree of smoothing a and select the display of image III or
potential functions Pi, through a menu-driven interface.

The user initializes a closed deformable contour by quickly sketching with a mouse
an approximate trace around the dark membrane of a dendrite of interest. Figure
3(a) shows an initial deformable contour sketched near a cell membrane (nodes are
created automatically so that they are spaced about one pixel apart, and an additional
spring is inserted between the first and last nodes to close the contour). The user
then initiates the snake simulation (5). In a few simulation time steps the deformable
contour equilibrates at the bottom of the nearest ravine in PI. (Figure 3(b)). By
interacting with the contour (see below), the user can help it quickly localize the
membrane ravine conform to its shape to produce an accurate profile of the dendrite
(Figure 3(e)).

Because the dendritic profile is a closed continuous contour, it is easy to segment
the interior of the cell from the rest of the image. We accomplish the segmentation by
applying a standard region-fill algorithm (Foley et al., 1990) which starts from a seed
point inside the profile and sequentially accesses the pixels of III that are bounded
by the profile. Figure 3(f) shows the cell segmented from the dendritic profile of
Figure 3(e).

2.3.3 User and Constraint Forces

Often the user will sketch an initial trace which deviates too much from the membrane
ravine to descend into the ravine properly. This is the case for the initial contour
in Figure 3(a) which reaches the equilibrium configuration shown in Figure 3(b). As
can be seen, the deformable contour may fall prey to nearby dark features inside the
cell (or to nearby features of neighboring cells) which act as false attractors. In such
a case, the user may apply interactive simulated forces f i

m(t) by using the mouse to
guide deformable contour towards the ravine of interest as it is stabilizing (see (Kass,
Witkin and Terzopoulos, 1987) for details about user forces). A useful force is the
interactive spring

Xi -- m(t) if Ilx, - m(t)11 is minimal for node i,
I) otherwise.

(8)

which pulls the nearest node towards the time-varying mouse position m( t) in the
image plane. Figure 3(c) shows the effect of a user stretching the contour towards the
right with an attached interactive spring (green line) from the mouse position (blue
circle ).

To localize a profile accurately, the user may want to constrain points on a de
formable contour by attaching them with springs to selected anchor points on the
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image. Such constraints prevent the deformable contour from straying far from these
points, regardless of the image forces and the user's other mouse manipulations. The
mechanism for adding constraints is simply to fix m(i) = ak in the spring force (8) to
create an anchor point ak in the image. The constraining spring then applies a force
ft". Figure 3(d) illustrates a constraint spring (blue line) which pulls the contour
back towards an anchor point on the cell membrane as the user tugs on the contour
with an interactive spring (green line). Note the two constraints (blue dots) in the
final profile contour in Figure 3(e).

Combining the three types of forces, we have

r, = q\7 PI.(Xi) + cmf,m + Ca I: ft",
k

(9)

where Lk is a summation over all the anchor constraints in force and where CI, cm,
and Ca are the strength factors of the image forces, user spring forces, and anchor
spring forces.

2.3.4 Exploiting Coherence Across Serial Sections

Our interactive technique for extracting cell profiles from EM images benefits from
the fact that snakes can exploit the coherence of profile positions and shapes across
adjacent images. Often, the user need not reinitialize the deformable contours when
progressing from image to image to extract adjacent profiles of a dendrite.

Once the deformable contours equilibrate into the membrane ravines in PI" we
replace this potential function with the potential function PI.±! of an adjacent member
of the image sequence. Continuing from their previous equilibrium positions, the
contours automatically slide downhill to regain their equilibria in the new ravines,
quickly localizing the new positions of the cell membranes in the adjacent image and
conforming to their shapes.

This simple mechanism for exploiting image-to-image coherence works so long as
the perturbation is small enough to maintain the deformable contours within the
membrane ravines as we switch to adjacent images. Should part of a contour escape
the ravine, however, the rest of the contour will usually pull it back into place due
to the rigidity of the model. Nonetheless, deformable contour reinitializations are
normally required when portions of the dendritic spines are no longer connected to
the parent dendrite.

3 Visualizing Neuronal Dendrites

During image segmentation, the user can visualize what takes place in two graphics
windows (Figure 4). The left window shows the current EM image overlayed with
the deformable contour simulation. The right window displays a stack of dendritic
profiles and their interiors. The user can also see the current contour with the (partial)
model, thereby monitoring progress. The stacked set of contours and interiors can
be rotated and viewed from different vantage points. When all the dendritic profiles
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Figure 4: To the left, the current EM image with a deformable contour (snake); to the
right, a stack of dendritic profiles and their interiors. The current snake is displayed
in red.

have been found, we use the segmented dendritic interior to build a volumetric voxel
model. We apply volume rendering techniques to visualize the volumetric model.

Volume rendering refers to the direct rendering of scalar data sampled in three
dimensions. These techniques differ from traditional computer graphics techniques
in that explicit surfaces need not be extracted from the data before display. Rather,
the entire 3D volume of data is used for display. Yet, by displaying only the portions
of the volume that have a given density or a high gradient, features and surfaces may
be elicited without explicit representation (Foley et al., 1990).

We use the VoxelView system (Vitallmages, Inc., 1990) to reconstruct a 3D vol
umetric model of a dendrite from the dendritic interiors that have been segmented
from the serial sections. The segmented dendrite in each image is enclosed by a rect
angular array of black pixels. The resulting arrays, or images, are stacked in order.
The sizes of the rectangular arrays are chosen so that the stack yields a rectangular
parallelepiped. Since the sampling rate is less in the stacking direction (z-direction)
than in the x- and y-directions of the images, the VoxelView system linearly inter
polates an additional number of sections. In the examples shown below, we have
reconstructed 41 sections of a. dendrite, and interpolated three sections between each
pair of original sections to get approximately the correct proportions along the z-axis
as we view all the sections.

By rapidly moving from one image to the next, we generate an interactive "movie"
that enables us to follow certain features of interest through the dendrite. We can
also slice the stack of images along planes perpendicular to the stacking direction,
and along any arbitrary plane. Because of the tissue cutting direction, the dendrite
is positioned obliquely in the image volume; therefore, we must cut the image volume
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Figure 5: Oblique slice through model of a dendrite reconstructed from 41 serial
sections. The mitochondrion can be seen extending through the length of the dendrite
and some smooth endoplasmic reticulum is visible in the large spine.

Figure 6: Sha.ded model of the reconstructed dendrite.
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obliquely to slice the dendrite lengthwise. One such oblique slice is shown in Figure 5,
where we can see the shape and extent of the mitochondrion through the dendrite,
and also some smooth endoplasmic reticulum.

By default, the volume is rendered without any shading; however, the user can
specify the position of a light source and obtain a shaded view of the model. In
Figure 6, we have rendered the dendrite model with shading. The shading helps
accentuate the 3D shape of the dendrite. Other features of the VoxelView system that
we find useful are the ability to tumble the model interactively and to make portions
of the model transparent by adjusting the opacity values of the pixels (Vitallmages,
Inc., 1990).

By using a volumetric representation of the dendritic model, we can represent the
3D shape of the model with accuracy limited only by the original sampling of the EM
images. Furthermore, we ca.n visualize the cytoskeleton and the organelles interior to
the dendrite.

4 Summary and Future Research

We have described a prototype system for the reconstruction and analysis of neu
ronal dendrites. Our goal is to reduce the effort required to reconstruct and analyze
a complete dendrite from a few months to a few days. We are approaching this goal
by exploiting three recently developed techniques for volume reconstruction: a digital
blink comparator for EM section registration, snakes, or active energy-minimizing
contours, for dendrite segmentation, and volume rendering to visualize both the over
all morphology of ~D dendrites and their cytoskeleton and internal organelles.

Much work remains to be done to improve the reconstruction process. The digital
blink comparator opens a way to use direct digitization from electron microscopes
for serial microscopy. This would eliminate the need for rephotographing and digi
tizing EM photomicrographs, thus reducing the reconstruction time and eliminating
distortions and quantization errors introduced by these processes. Direct digitization
from an electron microscope has been used for single section studies, but has until
now been impossible to use for serial microscopy, which requires section alignment
(Stevens and Trogadis, 1984).

We need to provide (at least) a semi-automatic approach to image registration,
with the user intervening only for optional fine-tuning. Currently, during manual
alignment, we resarnple the image using nearest pixel sampling. It would be desirable,
however, to allow subpixel alignment and resampling by using a spatially varying shift
filter, but this is computationally prohibitive with our current equipment. Despite the
sampling limitations, we have found the resulting alignments to be quite satisfactory.

We need to improve upon the snakes' behavior at spine branching points, to reduce
the amount of user assistance required when dendritic spines are no longer connected
to the parent dendrite.

We need to improve upon interslice interpolation to allow fractional section inter
polation; that is, proper resa.mpling of the volume to get accurate proportions in the
x-, y-, and z-directions. Similarly, we need to provide better inter-pixel interpolation
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at volume slicing and rendering in order to reduce aliasing without compromismg
image accuracy.

We have not yet begun to tackle anatomical analysis of the dendrites. We ex
pect, however, that through (semi- )automated approaches for dendrite decomposi
tion, anatomical measurements, and statistical analysis of these measurements, we
can achieve reductions in analysis times similar to those that we are beginning to
realize in the reconstruction phase.

When we have reached our goal, the time required to reconstruct and analyze
neurons or parts of neurons will be reduced from a few months to a few days. It will
then be possible to oht.ain a sufficiently large number of reconstructions to evaluate
quantitatively the functional consequences that alterations in neuronal morphology
have for both the normal and diseased brain.
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