

© Eneoono
geipeloceld

prepared
by

| software documentation
software engineering department
| digitalequipment corporation

pdps handbook series

FIRST PRINTING, APRIL 1974

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in this manual.
The software described in this document is furnished to the pur-
chaser under a license for use on a single computer system and
can be copied (with inclusion of DIGITAL’s copyright notice) only
for use in such system, except as may otherwise be provided in
writing by DIGITAL. Digital Equipment Corporation assumes no
responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright © 1974 by Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation:

DEC . LAB-8 PDP
DECtape LAB-8/¢ PS/8
Digital Omnibus SABR
EduSystem 0S/8 Unibus

Teletype is a registered trademark of the Teletype Corporation.

ERROR REPORTING

If you find any errors in this handbook, or if you have any ques-
tions or comments concerning the clarity or completeness of this
handbook, please direct your remarks to:

Digital Equipment Corporation
Software Communications, Parker Street
Maynard, Massachusetts 01754

ADDITIONAL COPIES

Additional copies of this handbook may be obtained by order-
ing DEC-S8-OSHBA-A-D. Please send your order to the address
below. ‘ ‘

Digital Equipment Corporation
Communications Services, Parker Street
Maynard, Massachusetts 01754

il

Thie OS/8 Operating System is a sophisticated operating system
- designed for the PDP-8/E computer. This system perinits’ use of
- a wide range of peripherals and all available core up to 32K. OS/8
offers a versatile Keyboard Monitor that supervises a comprehen- .
sive library of system programs. These features make OS/8 a sig-
nificant improvement in small computer operating systems.

0S/8 SYSTEM PROGRAMS .
' Besides the Monitor facilities, OS/8 includes a library of power-
ful system programs which allow the user to do program develop-
ment using FORTRAN II or assembly language. A brlef summary
of the system programs follows: ~

1.

Concise Command Language (CCL)

CCL provides the user with an extensive set of terminal
commands. Typical commands available in CCL include:
COPY, DIRECTORY, HELP, RENAME LIST, DE-
LETE, etc.

Symbolic Editor (EDIT)

EDIT is used to create or modify source files for use as in-
put to language processing programs such as PALS, SABR,
or FORTRAN. EDIT contains powerful text manipulation
commands for quick and easy editing.

PALS8 Assembler

PALS is the assembler for the OS/8 system. PALS accepts
source files in the PAL language and generates absolute
binary files as output. PALS also generates listing files which
can be used as input to CREF.

Peripheral Interchange Program (PIP)

PIP allows the user to-transfer files between devices which
are in the OS/8 system. Complete file and directory main-
tenance functions are available in PIP.

z

iii

10.

11.

12,

13,

14,

Absolute.Binary Loader. (ABSEDR).
ABSLDR accepts the bimary output filtes produced by PALS
and loads them into core.

Octal Debugging Technique (ODT)

ODT is a powerful octal. debugging tool. All of the fea-
tures of older versions of ODT are implemented, but the
0S/8 version is designed so that no user core is needed.

File-Oriented Transfer Program (FOTP)

FOTP allows the ‘user to transfer groups of files between
two OS/8 file-structured devices withh minimal terminal
interaction and device .overhead, e.g., all ASCII files can
be transferred between a DECtape and .disk with one ter-
minal command.

Cross Reference (CREF)

CREF operates on the listings produced by PAL8 and
SABR. It produces a sequence numbered listing and a table
indicating where each user-defined tag and literal is
-referenced.

DIRECT
DIRECT allows the user to print extended directory listings.

BOOT
The BOOT program loads the standard hardware boot-
straps into core.

Cassette/Magtape Positioner (CAMP)
CAMP allows the user to manipulate cassettes and mag-
netic tapes.

Resources (RESORC)
RESORC integrates system monitor tables and prints a
listing of active device handlers.

Magtape/Cassette PIP (MCPIP)
MCPIP is a file transfer program to be used with cassettes

and magnetic tapes

PIP10
PIP10 is a file transfer program which reads and writes
PDP-10 ASCII DECtape files using a TCO8 or TDSE

DECtape controller.

iv

15.

16.

17.

FORTRAN II

- The OS/8 system contains an extensive and powerful

FORTRAN package, consisting of the FORTRAN com-

piler, SABR assembler, Linking Loader, and Library func-

tion routines. Some of the many features of FORTRAN II

are: .

a. FORTRAN II is very easy to use. If desired, a FOR-
TRAN source program can be compiled, loaded, and

executed with a single terminal command.
b. Implied DO loops are permitted in FORTRAN II.

"c. FORTRAN 1I contains facilities to do program chain-

ing; this technique can be used to increase the effective
program size.

d. Device independent I/0 is available, as well as the stan-
dard devices (comsole terminal, high-speed reader/
punch, card reader, and line printer). |

Library Setup (LIBSET)

OS/8 LIBSET allows the user to create his own FOR-

TRAN II run-time libraries. The standard library supplied

with the system is LIB8. By using LIBSET, the user can

write his own routines in SABR and create a library.

System Build (BUILD)

BUILD allows rapid and easy alteration of the device con-

figuration in the system. New devices can be inserted by

simple keyboard commands. BUILD also makes interfacing

- user-coded device handlers a quick and easy job.

OTHER PROGRAMS AVAILABLE WITH OS/8

In addition to the standard OS/8 system programs listed previ-
ously, the following programs are available with OS/8:

BASIC
BATCH
TECO
FORTRAN IV

BASIC, BATCH, and TECO are provided in a single extension

kit. OS/8 BASIC is an interactive language with a variety of ap-
plications. It contains such features as chaining, string manipulation,
and file-oriented input/output. Also included with BASIC are cer-

tain func_tions for use on the LAB-8/E.

v

OS/8 BATCH provides the user with a batch processing mon-
itor that is integrated into the OS/8 Monitor structure. The system
is organized in such a way that it may be used in either a keyboard
input configuration or as a batch stream processor. BATCH per-
mits the user to prepare his job on punched cards, high-speed
paper tape, or the OS/8 system device and leave it for the com-
puter operator to start and run.

0O§/8 TECO is a powerful text editing and correcting program
‘that runs under the OS/8 operating system. TECO may be used
to edit any ASCII text such as program listings, manuscripts, cor-
respondence, etc.

OS§/8 FORTRAN IV provides full ANSI FORTRAN IV under
the OS/8 operating system. The system is highly optimized with
respect to memory requirements, and an overlay feature is in-
cluded that can permit programs requiring up to 300K of virtual
storage to run on a PDP-8 or PDP-12. The library functions per-
mit the user to access a number of laboratory peripherals, to evalu-
ate a number of transcendental functions, to manipulate alpha-
numeric strings, and to output to a standard incremental plotter.

0S/8 1/0 DEVICES

OS/8 provides true device-independence. For the first time on
a PDP-8 computer, programs can be written without concern for
specific I/0 devices. In running a program, the user can select the
most effective 1/0O devices available. Further, if the system con-
figuration is altered, programs need not be rewritten to take advan-
tage of the new configuration.

The OS/8 system controls the copying of data from any medium
to any other medium by means of subroutine calls to execute [/0
routines. Logical names can be assigned to devices within the sys-
tem to enable symbolic referencing of devices.

Variable length 1/0 buffers can be specified by the user program.
Large buffers ensure efficient use of storage devices and a minimum
of time spent in data transfer operations by minimizing disk and
tape motion. OS/8 takes full advantage of the RK8E disk pack for
fast bulk storage, yet full system services are possible with a single
DECtape. | '

vi

HARDWARE CONFIGURATIONS
The OS/8 system can operate with a wide variety of dev1ces as
the system device.! The devices which can be used are:

TC01/TCO08 DECtape
LINCtape (PDP-12)
TDS8E DECtape
DF32/RF08 disk
RKS8E disk

RK8 disk

TDSE DECtape can be used either with 12K words of core
-memory or with 8K words of core memory and 256 words of -
Read-Only-Memory (ROM).

If DF32 is the system device, at least 64K (2 platters) must be
available. In addition; if disk is the system device, cassettes or the
high-speed reader/punch provides a very useful tool.

The minimum OS/8 configuration is a PDP-8 series computer
with 8K words of core memory. one DECtape used as the system
device, and a console terminal. A multiple DECtape system per-
forms appreciably faster than a single DECtape system. The mul-
tiple DECtape system reduces DECtape motion since it is possible
to copy directly (without intermediate searching) from the system
DECtape to another DECtape (or vice Versa) when editing or
assembling.

A typical medium-sized system might contain a PDP 8/E with
at least 8K words of core memory, TD8E DECtape and control,
and an RK8E disk pack and control. A disk system offers the addi- -
tional convenience of easy and fast access to files and large
amounts of storage.

Up to 15 devices can be interfaced to a smgle OS/8 system.
These optional devices include:

As many as 8 DECtape units (TCO1 /TU55 TC08/TU56 or
TDSE/TUS6.

TASE/TUG60 cassette units
TMSE/TU10 magnetic tape units

- 1The term system device refers to the device on which the OS/8 system
resides and which it utilizes for system functions. Thus, DECtape unit 0 .
is the system device for a DECtape-based system. A nonsystem device is
any peripheral not specifically used for system functions, such as LPT:,
PTR:, DTA2:, etc.

vil

High-speed paper tape reader/punch.

Up to four RK8E disks.

Up to four RK8 disks.

Up to four RSO8 disks.

Up to four DF32 disks.

Card reader (optical mark or punched cards).
Line printer.

PDP-12 LINCtape.

PDP-12 scope.

Any other device for which it is impossible to write a device
handler in one or two pages of core.

~ SYSTEM SOFTWARE COMPONENTS
The main software components of the OS/8 system are five:

Keyboard Monitor
Command Decoder

Library of system programs
Device handlers
User-Service Routine (USR)

The Keyboard Monitor provides communication between the
user and the OS/8 executive routines by accepting commands from
the console terminal. The commands enable the user to create log-
ical names for devices, run system and user programs, save pro-
grams, and call ODT.

The Command Decoder allows the user to communicate with a
system library program by accepting a command string from the
keyboard indicating input/output files. Following the keyboard
command to run a system library program, the Command De-
coder prints an asterisk (*) and then accepts the command line
containing the files to be used as input, file name, and destination
of output, etc. ,

The library of system programs contains the programs mentioned
previously and any of the extension programs chosen by the user.

Device handlers are subroutines designed to transfer data to
and from peripheral devices. OS/8 is able to interface with as many
as 15 different peripherals at a time. During system generation,
device handlers become an integral part of the system; both system
and user programs have access to any available device. (The
BUILD program allows quick and easy alteration of any avail-
able device.)

viil

The User Service Routine (USR) control the directory operations
for the OS/8 system. A program can use the USR by means of
standard subroutine calls such as those used to activate device
handler subroutines. Some of the functions performed by the USR
are loading device handlers, searching file directories, creating and
closing output files, calling the Command Decoder, and chaining
of programs. The details on the operation and use of the USR are
contained in the OS/8 Software Support Manual (DEC-S8-
OSSMB-A-D). For normal OS/8 usage, the USR function is un-
seen by the user and need be of no concern.

When OS/8 is operating, the Command Decoder, Keyboard
Monitor, and USR are swapped into core from the system device
as required, and when their operation has been completed, the
previous contents of core are restored.

The core-resident portion of OS/8 is extremely small (256
words), allowing for a maximum use of core by user programs.

USING THE 0S/8 HANDBOOK

The OS/Handbook provides a complete user’s guide for the
OS/8 operating system and system programs. The handbook is
divided. into three parts. Part one contains detailed instructions for
getting a new OS/8 system running. Also included in part one are
vthe fundamentals of OS/8, including the Keyboard Monitor, Con-
cise Command Language (CCL), Command Decoder, the Abso-
lute Loader (ABSLDR), Octal Debugging Technique (ODT), and
Peripheral Interchange Program (PIP). The user must have a
complete understanding of the material contained in Chapter 1 to
use the OS/8 operating system.

Part two contains complete descriptions of the OS/8 utility
programs. These programs allow the user to perform a variety of
editing, I/0 transfers system generation, and ﬁle oriented oper-
ations. -

Part three describes the assemblers available with OS/8: PALS,
SABR, FLAP, and RALF.

Part four describes the higher-level languages which can be run
under OS/8: BASIC, FORTRAN II, and FORTRAN 1V.

ix

conktents

CHAPTER 1 O0S/8 FUNDAMENTALS

Getting On Line With OS/8 ... 1-1
DECtape Systems PRSP UPPP R PRUPR 1-1
TC01/TC08 DECtape Userscooeeee.ee. reee e 1-2
TD8E DECtape USEISccccoveiriveieioneniiiiireerennancnieneeenes 1-4
LINCtape (PDP-12) USerscccceeevvvevevennn. ST 1-9
Building OS/8 From Cassetteccccccoiviciiiiiiiinninens 1-10
Loading System Programs From Cassette 1-15
Building OS/8 From Paper Tapeccccoccviviiinniiinnnn. 1-17
. Loading System Programs From Paper Tape 1-20
Disk as the System Devicecccccrecoriinindiciniinncnnn, 1-25
RFO08 and DF32 DiSKSc.ovcuveveviiveieeeeeeeiseeeeeneiesesaenes 1-26
RKBE DiSK .cooviiiiiiiiiiicitiecte et 1-26
RKS8 DISK ..vvvevveeereeeeeeceeteeeceece e eeeesen e es e 1-28
Restarting OS/8ccooiiviiiiiii teveeeenenens 129
Keyboard Moniforcccooooiiiiiieiiiiiiiiinenniniieeeennn, e 1-30
System Conventionscce.ccceeeerecvrrernenenas Crvveererrenseenen 1-30
Permanent Device Namesccc.liviviiiiinriiiniceeenrenane 1-30
File Names and Extensionscccccccvvveeennnene. e 1-32
Using the Keyboard Monitorccccecccevevrnnenns eeeerreerenes 1-33 -
Keyboard Monitor Commandsccccocvivuienennnnnn. 1-35
Keyboard Monitor Error Messagescccceeecvvveeeernerienens 1-42
~Command Decoderc..cccoooiiiiiinineniecieee 1-45
- Command Decoder Input Stringcccceciiiiiinnnnnnninnns 1-45
Examples of Command Stringsc..ccoccvvvienerveecnnens 1-48
Input/Output Specification Optlons SUUTUURN 1-49
Command Decoder Error Messages e 1-51

Xi

CCL (Concise Command Language)eccounneeee. 1-52

© CCL Commandsc.coeeeeimriiiiiiiiieeecieie e eeiiiireee e 1-53
CCL Command FOrmatc.c.coocoveeeeevevereeineserenn. 1-53
CCL Command Optionscc.cccceeeerriireennnieeeanieeee e 1-54
Wild Card Construction ST 1-55
Indirect Commands (@ Construction)ccceevvvunen 1-56
Nonstandard File Names (# Construction) 1-57

CCL Error Messagesccocceeeiriiieiiiiniciiiiiceeeiiecccnne 1-75
Symbolic Editorc...... e 1-78
Calling and Using the Editorcc.occceeviiiiiiininnininnnn, 1-78
Editor OPLiONScooveeeviieeiieeieieeiereeeereieeseveeeseaenes 1-79
Special Key Commands to the Editorcccoviennnnnn. 1-80
- Editor Text Buffercc.ccccceeinnen. [ERRTRTRURR e 1-82
Text Collectionccceviiuiiiiiiiiieeniiiee e, 1-82
Search Modeccccceeeiininnns et e e e a e ea e 1-83
Single Character Searchcccooieeiiiiiiiiiiiiiicieen, 1-83
Character String Searchccccviiinienieeniiiiieiee 1-84
Editor Error Messagescccoveevevviiivreecieeeenieeeiresenveesnens 1-89
Example Using the Editorccccovriviiiiinneee 1-91
Summary of Editor Commandsccoccoverienencicennnn 1-92
Peripheral Interchange Program (PIP) 1-97
Calling and Using PIPcooiiiiiiiree e, 1-97
PIP Optionscccocoviieeinieiriee e s 1-98
Examples of PIP Specification Commands 1-102
Additional Information Words in File Directories 1-105
PIP Error MeSSagescccoccveriierivivniieneesiveesiveeniennneesnenns 1-106
Absolute Binary Loader (ABSLDR)ccccooevevveeeennnnen. 1-108
Calling and Using ABSLDR erer e e 1-108
ABSLDR Optionsccccccvvrmrierniiiiiniissincea e 1-110
Examples of Input Linesccocccvvvviiiviiicinininnnnnn, 1-111
Notes on Using ABSLDR Correctlycoceveviieiiiinninns 1-112
ABSLDR Error MeSSagesccveeverureeeersireerncneneeerneeeenns 1-113
Octal Debugging Technique (ODT)coovveeverernnnn, 1-113
Featuresccocoiiiiiiniice e 1-113
Calling and Using ODTcioviieiiiincie e 1-114

Commandscevervvnverennnn rereeaieeruaeeenm—va . —orn st anneraneranns 1-115 .

Special Characterscccccevviiieiiiiiiccnncnnnennn. crereessns 1-115
Illegal Characterscccocveeeeiiiniieenennn. treenae e L 1-117

~ Control Commandscccoveererereevericiereriereesseesennns 1-117
Additional Techniquescccccoovcrreeiiiniiiiiiiierreceicsieeeeaes 1-121
Current Location deveeereresettissnrnassnrassacaees 1-121
Indirect Referencescceeueeennne erererereres e rneaaeaeans 1-121
EITOTS oottt e s ceerennans 1-122
Programming Notes SUmMmaryc...... e 1-122
Summary of ODT Commands creeeree e e . 1-122

CHAPTER 2 UTILITY PROGRAMS

CBATCH 2-1°
INtroduction cooeiveeeiiee e e 2-1
Batch Processing Under OS/8 et r e e e aaeeees 2-2
BATCH Monitor Commands JERT P e 274
The BATCH Input Filecccooviiiiiiiiiiieiceieieeen, 2-7
BATCH Error Messagesccceeveuvveeereenivineceeennn. rrer e 2-10
Running BATCH From Punched Cardsc.ccoee.e. 2-12 |
Restrictions Under OS/8 BATCHc..ccooecocuniieniacencnn. 2-13

-~ BATCH Demonstration Programc.cccoocoiiiinnnnn 2-16
Loading and Saving BATCHc.oocooiiieieiiieeeee, 2-22

) Loading and Saving Programs for Use Under BATCH .. 2-22
Transferring the System Software from

Cassette to the System Devicecc.coccveiiiiiiiiiie 2-22
BITMAP. ..o ar s 2-26

- Hardware and Software Requirementsccc.ccceu.... 2-26
- Loading BITMARPcocoiiiiieeeie et 2-26
BITMAP OULPUL .oevniiieiiieiceiie et 2-28

- BITMAP Error Messagesccoocoveieniiniiiiinnininnceienncns 2-30
Assembly InStructionsccccoeveiieiiiiiiiiiiee e 2-30
BOOT . 2-32

BUILD ..., e 2-34

0OS/8 Device Handlersccovvvvvvivvoviieeieeorrececineeeneenns 2-34
DECtape (LINCtape) SYStemSccoeveeervsmeeerseenens 2-35
Cassette SYSIEMSccoovvviiiiiirieer it eere s s 2-36
Paper Tape Systemscccoeevveeeirieernriiinesiciee e 2-36

Calling and Using BUILDc.ccoovviiiviiiieee e, 2-38

BUILD Commands e sennnenss 240
The Hyphen Construction e e — 2-41
PRINT ... e, et e anr—teeeraneraaeeeans 2-41
(0] 513 LSOO 2-42
LOAD ..ottt 2-42
INSERT ..ot 2-44
DELETE ...t 2-45
REPLACE ..ot e 2-46
UNLOAD ..ottt 2-47
NAME ..ottt 2-48
ALTER oottt 2-49
EXAMINEccooviiiiininininiiirineresssessse s sseens 2-49
DSK oo et s 2-49
CORE ..., e 2-50
DCB oo 2-51
CTL oottt ettt 2-51
VERSION oot 2-52
SYSTEM oot 2-52
BUILD B U PPV PPURPTSTURRPPPRPPP 2-33
BOOTSTRAPccccvveeene et 2-54

BUILD Error Messagescoccvvviereeivniniiinneernsneeeeeeenanens 2-55

BUILD Device Handler Formatcccccecevvniiiinnnnnnn 2-56
Header BIoCKoooooiiiiiiiiiiiiiiiee e 2-57
Descriptor BIOCKcocvvvvieviiniiieieeeeie e 2-57
Breakdown of DCB Wordooevvvieeiiiiiiiiiiiriiceee 2-59
Entry Point Offsetccooovvein i 2-60

CAMP ... e 2-62

CAMP Commands e 2-62
BACKSPACE ...ttt reeevaee e 2-62
EOF oo e 2-63
HELP oottt e e 2-64
REWIND .o it 2-64

SKIP oot 2-64

Xiv

UNLOADcccvvviniiiiinncniinnnee, e 2-66

'CAMP Error Message Summary reerererereneraneneness 2766
Cross-Reference Program (CREF)ccoceovinnnnnn. 2-69
Calling and Using CREFc.coccoiiiiiiiiiininiinnen, 2-69
CREF OpLIONS .vcvveviieriieiiirenereeseiesnceesnsessnncesanens 2-69
Examples of CREF Usageccccoevevinniiiiniirenneennne. 2-70
Pseudo-Op Handlingccccccveriiiiiiininiiiniiiciineec e, 2-71
Interpreting CREF Outputcccocooeliiinniiiinnicccneecneen 2-72
RESIIICHONS ..ooeevviiiiiiieie et csseee e 2-73
CREF Error Messages reeere et 2-76
DIRECT ...t n s 2-77
Calling and Using DIRECTc.ccooovveeuiiereeeerereeeeresenenas 2-77
DIRECT OPptionscccccoeeiviueerieeenirieneiieeesreee e 2-78
DIRECT Examples e et nre e 2-79
DIRECT Error Messagesccccciveeeereiveirnopieeenneennnnes R 2-81
EPICoooiee et eeeerte ettt e aeeearaen 2-83
Introductionccccccovvvvveenneee. et e et e enans 2-83
Loading EPIC et te e s eensennennesnens 2783
Restart Procedurecccoovvviiioieiiniienenieceee e 2-84
Paper Tape Facilityc.ccoovevvveemeereieeeeccee e, 2-84
Command Format e et e e e 2-84
-~ Default Optionsccccoeeviiiieiieecee e 2-85
Error Conditionsccceccciciiiiniineieeeniriininieee e seeiinnaen e 2-86
Low-Speed I/O ..oiiiiiiiiii et 2-86
Device COAES ocvrivireiririiirecirectieeteeee st 2-87
Editing Capability ettty 288
Initial Command Format e -2-88
Editing Commandsc.ccoovveiiiieeeeerieeee e e 2-88
Compare Capabilitycccceoemn.... eraee e e 2-91
Command Formatcccccoeeeeveenviennenen. e 2-91
EITOr MESSAgES .ovvicveeeieeieieeee ettt 2-92
Paper Tape Formatcccoovvviiincniiniicircieenn SR 2-95
Loading EPIC From Paper Tape e e - 2-95
EPIC Assembly Instructionscccccceceevvercevrenenn. 2-96

FOTP ...t 2-97

Calling FOTPccooviiiii e 2-97
Input Specificationscccoceviieciieeiieeciececiienee 2-97
Output Specificationscccccccvevevvvierrerieeesercireee e 2-99

Using FOTP ..ottt 2-99
Advantages of Predeletionccccoooevinnniiiiiiiinnnnn. 2-103
Advantages of Postdeletioncccceveveeiereerieiinnenne 2-103
Control Characterscceeeeevveiveeieeesieeee e eveeeeenens 2-103

FOTP Optionscccoceevvieiiiiieeeciiecreecieen e SUUT 2-104
Examples of FOTP Specification Commands 2-106

EITOT MESSAZESooveevveiieeeieeeeeeeie e eevenn e aeerean 2-108

Magtape/Cassette Peripheral Interchange Program

(MCPIP) ...ttt e 2-110
Calling and Using MCPIP ... o..cccoiiniininninicie e 2-110
MCPIP OpPLiOnscccccvvvereiiieiiiiiniiee e eecree e e 2-111-
MCPIP Error MesSSagescccveevrveeieereaierenieeaseessvenns '2-113
PIPLO ..ot 2-116
Calling and Using PIP10ccccoovvvimvrrrrnnnn, S 2-116
PIP10 OPHOMS .ecvvoeeeeeeeeeeeeiseeeeeeeeesee s s esseesesnenaens 2-117
PIP10 EXamplescccccoooeemiiiniieicenee e 2-118
Error Messagescoccovveeeeriiiiiiieeeninesieseceee e s 2-119
RESORCcccccviivieiee, e e e e 2-121
Calling and Using RESORCc...cccoiiniiniiiniinn, 2-121
RESORC OPLIONScvveeeriiiieeeinniiieciireceneresesineesssneneenns 2-122
Fast Mode (/F Option)ccccovviiiicmnnnniennnecren e 2-122
Limited Mode (/L Option)c.covvemrrvvvvvevineeinricanenn 2-122
Extended Mode (/E Option)ccccceevvvvvreecncennninnnnni. 2-124
RESORC Error Messagescc.ooocuvvieeermiiiniieneiiicninannnnne, 2-127
Source Compare (SRCCOM)ooovvreeeiiiceininiineinne, 2-128
SRCCOM Assembly Instructionsc.cceeceerveiviniinnnnnn. 2-128
Loading SRCCOM ettt reaan 2-128
SRCCOM OUutputoocevvvieierieecieiiiiree s esiireceeee s e 2-129
Error MessSagesccccvreeeeeeinciicneniiiiin i 2-131

TECO ...ttt snn e

2-132
INtrodUCHIONcoceeveeierieeiecierr et 2-132
Introductory Commands et eee s 2-132
TECO Character Setcoccevevereeerevienrinennieenaseesaesnnns 2-142
File Specification Commandsccccvevrvererverennnnnns e 2-144
Page Manipulation Commandscccveuene.... S 2-146-
Buffer Pointer Manipulation Commandsc..ccee.. 2-147
Text Type-Out COMMANGSc.erereeverererecrurreserrnnneereeeesens 2-148
~ Deletion Commands oottt eten b anaas 2-149
Insertion COMMANGScecererereerevreeeeeeieererereeeesenenans 2-150
Search Commandsccccoviveiiiiiiininniie e 2-151
‘Match Control ChAractersc...ocevverveeenrreseresnsncecsrenens 2-154
Command LOOPSveeeverireereeessiesseessesessssesasssesessesanns 2-155
Q-RegiStersccevvevrerirrecreerrennnnne. e et raens 2-155
Branching Commandsccecceeviernieisiveenienicennensnieneens 2-157
Conditional Execution Commands reeerreeeraans 2-158
Numeric Arguments rneecteerreeettiess e orane e e s sias 2-160
Programming AidSc..cccoeevvevveieererreerrssenesiossssesaenes 2-164
EITOr MESSAZES ...cvovvevrereerereteverevevetesesescreaeseseiesesescsesenees 2-166
Manipulating Large Pages e 23 L)
Techniques and Examples S 2-168
Running TECO on the PDP-12ccooviiiiieiiieeeennne 2-172
Using TECO to Retrieve Lost Filescccoooovivviiiirceennen. 2-171
Incompatibilities Between OS/8 TECO and
DECsystem-10 TECOcocvveeeivveeeeninnnn, eeereraan 2-178
Assembly Instructionsc.ccccivevveiieeeeeiiciveccececeeeeens 2-183
Error MeSSagescccovireriiieiiierieeeeeeeciiee e esieeenee e 2-184
CHAPTER 3 PALS

Introduction st e e s e ra e aeeas 3-1

Calling and Using PALScoooiiiiiiiiieeeteeeeeerein 3-1

Character Setccccvvveiiiiiiciiiiecieeeeeeeeee e 3-5

SEACINENES oooiiiiii e 3-6
Labels oo e 3-6
INStructionscccccecvvvieeiiiiiiiieee e, trerreerenaaans 3-6
Operands cooooeeriiiiiieee e 3-6 -
Commentscoccvverieeeeieeenieccenenns e aaeaareeeaa s 3-7

Format Effectorscc....coevvvveennnnen. R 3-7
Form Feed J T SRRSO PPREROP 3-7
Tabulationsc.cccceeiiiiieeiiii et e 3-7
Statement Terminatorsccccoveeveeieevvioreennnsennn. e 3-7

NUIMDEISoooiiiiiiiiiiiice e s 3-9

SYmMbBOISocoviiiiiiii e cerreerereesennee 329
Permanent Symbols ... 3-9
User-Defined Symbolsccccoviviiiniiiiitinnnn. goeeer 379
Current Location COunterccceveveeeeriiineninseeccinienesenes 3-10
Symbol Tableccccooviiiiiiiccie e 3-11
Direct Assignment Statementscccccceeivveeicneeennnnn. 3-12
Symbolic InStructionsccecevvevveveveveeeereennnes e 3-13
SYMbOlic OPErandscoveeeveeveereeeeereereeeesresenenas ... 3-14
Internal Symbol Representation for PALS 3-14

EXPressionsccocoviiiiiieiiiiiieiecciiiieiee s eeesnee e eesnrane e e 3-14
OPEratorsccceeeecevieeeorcnreeeessveceas e 3-14
Special Characterscccocovviineieeeriiiiiciecceceeeee s 3-18

PALS INStructionsccccoveeiiiieineeeeneiiineeesnnineeeeesnnnns 3-22
Memory Reference Instructionscccoeviviiiiiniininnn 3-22
Indirect AdAIessingccocceeevvvrrevueeeriieeeniiees o neeeenns 3-23
MICTOINSIIUCLIONS ..vvvvivierireiiieiiierereeeeeeeeeereaeeraeraeaseeesaeenne 3-23

Operate Microinstructions et e 3-24
Input/Output Microinstructionscccoovvivinnnne 3-26
AUtoindeXingccovvvririireininine e 3-26

Psetndo-OPeratorsccocoovereercuiieieemnsnonnsessssesnenes 3-26
Indirect and Page Zero Addressingccccevieiiineianns 3-27
Radix Controlc.ccoooviiiieeienneiii e 3-27
Extended MEMOTYcocovnimiiiiiiiiiiiiiiiireeeeciiree e snrreeeens 3-27
End-of-File ...cooviiiiieiiiiiie et 3-29

Resetting the Location Counterc..cccvvevveeenierinnennnn 3-29

. Entering Text Stringscccccvveiriviiiiiirienierieireereeeeeneeens 3-29
Suppressing the Listing e 3-30
- Reserving Memory ettt ee e ner e e seanane e e oo 3-30
Conditional Assembly Pseudo-Operatorscccceueeee. 3-30
‘Controlling Binary Outputcccccveviviiiicieiienrieneeeeeenans 3-31
Controlling Page Format et e e e e ———tae e e senaraeeeeas 3-31
Typesetting Pseudo-Operator e 3-32
- Calling OS/8 User Service Routine SUPPUTOI JERRR 3-32
Relocation Pseudo-Op ..o, 3-33
Altering the Permanent Symbol Tablecccccvveuneneen. -3-33
Link Generation and Storage ST e 3-35
Coding PractiCescocooveveeeeeesieeeeeeeeeeeeeeseeeeseeene 3-36
Program Preparation and Assembler Qutput 3-37
Terminating Assembly e e 3-38
PALS Error Conditions 3239
PALS Permanent Symbol Tablecc........... ererrereees 3-41 .

CHAPTER 4 SABR

Introduction e e eeretttererranneeerrnaaeeerraraaeranan 4-1
Calling and Using'OS/8 SABRcccceoeieersiinrinenienienns 4-1
OS/8 SABR Optionsc.cceevvevieeciiieeeceeeeeeiieeeenne - 4-2
Examples of OS/8 SABR 1/0 . -
Specification Commands e e 4-3
The Character Setccoovvveeeiveeeieereeeenn, reerree e —— 4-4
Alphabeticcocccoevevieiiirnn. [RTER e 4-4
NUETIC oovieiiieeeeeerieeeeeeee et et e e ae e 4-4
Special Characters «u.ceeeeeeereeeeeiriririraeieniieeeeireeeeeenenas. T 4-4
SEACIMENLScoeeeeerreeieeie e ee e 4-5
Labels oo, 4-6

Operators:ccccevevenneen. et e e nnae s eeeereeernrenreeens 4-6

Operands occciveiciiei e 4-7
S CONSLANES .ot 4-7
Literalsc.ccoooomniiiniiienee. ereeeeenes veererrrarrra—eaeans 4-8
Parametersccccoovieiiiere et 4-9
SYmDbOIS ccooeiiiiii e 4-9
Commentscocoviiimiiiv e SRR "4-10
Incremrenting Qperandsc.ccocorviireiiienieeie e, 4-11.
Pseudo-Operatorsc.ocooveieeireciieeciec e 4-12
Assembly Controlccoccvveueeneenen. et 4-16
Symbol Definitionccceoveeeevieeiverieecreeecsveeen. I 4-20
Data Generatingcceeveeeerriveereeiiiireeseieereeeiveeseeeenns 4-27
SUbroutinesc.ccoocivieriicie e 4-24
CALL and ARG ..ottt 4-25
ENTRY and RETRNcccoiiiiiiircceneeeeee e 4-27
Examplecccoooiiiiens SO UPRRUSPRRTR 4-28
Passing Subroutine Argumentsc.ccoeriieeineeennene. 4-29
SABR Operating Characteristicsccoceeveeiveieene 4-32
Page-by-Page Assemblyccccocoiieiiiiiiniiiiicireeeceen e 4-32
Page Formatcccooviiiiviiiiieiieececteeeee e eieannns 4-33
Page ESCAPES ...cooveveevieceereeeeeseseaenesessesssssesesssnsassesees 4-33
Multiple Word Instructionscccceereverceririenecrecnnenesnnnens 4-34
Run-Time Linkage Routinesccccccceiviiiriinniiniiiiieninns 4-34
Skip INStructionscccooevieeiiniereenniee e 4-37
Program Addressesccoecevieeeiienccneeeeenineennne. eereeeeanes 4-38
The Symbol Tablecccovreiiiiiiie v 4-38
Symbol Table Flagsiccceeiiiniiiinnnnnns e 4-38
The Subroutine Libraryccoccoviiiininniininn. 4-39
INPUt/OULPUL ..oooiieiieiicr et 4-40
Floating-Point Arithmetic ..ot " 4-41
Integer Arithmetic eeevertbreeert e teraeenaneraaaa 4-43
SUDSCIIPHNG ...oovviviiiiiieeice e, 4-43
FUNCHIONS oovvveeeeiinteeeieriiiesersnsneaesnensesesnsasasssansseneenesnn L, 4-44

Utility ROULINES ..c..voueenveneeneenaenn e e reeereeeny 4-45

"DECtape I/0 Routines eeeeeeeeraeeesraeeeenaneeaesanns 4-47
The Binary Output Tape S e 449
Loader Relocation Codes s SUUTOT 4-49
Sample Assembly Listingscc.cionninni 4-53
SABR Programming Notes e ORI 4-57
Optimizing SABR Codeccoocviiimieiiiiirenieiiicnneeens 4-57
Calling the OS/8 USR and_Device Handlersc....... 4-60
The Linking Loader T R Ny
Calling and Using the Linking Loadercccccocenee. 4-62
Linking Loader Options ettt oo e e s ae e 4-63
Examples of I/O Command Stringsccccocevninnn 4-66
Linking Loader Error Messagesccocoeiieiiiiniennnn, 4-67
Library Setup (LIBSET)ooooooooooooeoeooeoeooeoeoeoeoeoeoeeeoe . 4-68
Calling and Using LIBSETcccoovvinrrirenrinennnn. e 4-68 -
LIBSET Options E PSPPSR RRPPP 4-69
Examples of LIBSET Usage OO 4-69
Subroutine Namesc..cccceinnns rrreeereraraeeeeara—ieeraa, 4-70
Sequence for Loading Instructionscc.ceeveeerevenen. 4-70
LIBSET Error Messagesccccccoveenievuianenneninnieeninenenn 4-71
Library Programsc.cccooeviiiiiiiiniieeeeieeeeeeeeen 4-71
Demonstration Program Using Library Routines 4-73

CHAPTER 5 FLAP/RALF

Introduction e S 5-1
Hardware Requirements e 5-1
Statement Syntax e et 5-2

TS ettt e 5-2

| §a118 40 ol 0 (o) o - SNSRI 5-2

ExXpressionsc.c.c... e s 5-2
COMMENES ...vvviieeiiieee ettt 5-3
Arithmetic and Logical Operators s 5-3
PDP-8 Operation Codesccoooeiviniecnrencnnecree 5-4
PDP-8 Mode Addressing e e e 5-6
FPP Symbols eeetrrr et e rarraaaareaanaeananananan crerens 5-7
Data Reference Instructions et 5-7
Special Format 1 ... 0ocooiiiiieecceccee s 5-9
Special Format 2cc.ococciiviiiii e 5-9
Special Format 2—Conditional Jumpscccceeennnee. -5-10
Special Format 2—Pointer Movescc...cooeeneen.. 5-10
Special Format 3 e et —————————— 5-11
Special Format 3—Operatecccooccemvirniicivennnnne 5-12
FPP Mode Addressing S e 5-13
Literals ... 5-15
LANKS ..o e 5-16
Data Specificationcccccccoooiiiii e, 5-16
Pseudo-Operatorscccccvvvieveeiiiieeinit e 5-16
= (EQUALE) cevveeiiiee ettt e 5-17
OCTAL et e e 5-17
DECIMAL ...oooiiiiiiiiieeee et e 5-17
PAGE ..ottt 5-17
BASE i 5-17
TEX T et 5-17
END e e 5-18
INDEX oottt 5-18
ORG it 5-18
ZBLOCK it 5-18
LISTOF e §-18
LISTON oottt ree st 5-18

TE oo eee e v e s e s e e s s ssseseneseseseseneseneae e tesenenenean . 5-19

REPEAToooooieeeeteeerrecseetre e teeeessneen e s et ae s nne 5-20

S e s et e e e et ee s ane e eae e baeearare e e e s annas 5-20
B oot e e s e s s ae e s e ann s 5-21
B sttt ae e e 5-21
ADDR oot ae e e s 5-21
COMMON ...ttt es st e e e e e rn e s s 5-21
COMMZ reetee e e e essnree s e reaaen eeerare e evesas 5-21
DPCHKccceiiiiiiiereeeeceeeennes teerreareeereressnneersserrennres 5-21
ENTRY oo eeeeeeieesnenas et ee s 5-21
EXTERNooiiciiiiiiirteeecicreteeseieesessraeeeesineeesesneeesensbesasens 5-21
FIELDI ... ettt b ettt aneatn 5-21
SECT it e e e e ane e e e s 5-22
SECTS8 ... 3PSO UTSPRRTOTRUPPPPPOL 5-22
 Referencing Memoryc.ccccceevevivniiiieenciieereneen, raees 5-22
RALF Feattiresc.cccoooeiviiieeieiieiesiieeeecieeeecvaeeesevneans 5-24
Core ALIOCALIONeeeveeecniiiiieeeeccirreeer e eecreeeeeeenraseeaens 5-25
RALF Programming NOEScccccceeevreeriicerieenssenencnenas .. 5-29
Using the Assemblericccieeeieevcceeiee e e 5-37
Error MeSSagescccccoeeevveveeeiiiiieieninireseeseeesisnsaessensesns 5-38

CHAPTER 6 BASIC

Introduction to OS/8 BASICccooovveovveeeeireeiiciennnn, 6-1
Running BASIC ..ottt 6-1
Entering the New Programccccceceiivvnienvinnnnnnen. 6-2

- Executing the Programc.coccoeveoeriveenesvernneenrvennes 6-3
Correcting the Programccccocvveevineeeevveeceenennnns 6-3
Interrupting Execution of the Program 6-4
Leaving the Computercccoeceeiioinennicenissieneree e, 6-4
Example of an OS/8 BASIC Run eveennes 6-4
OS/8 BASIC OVEIVIEW ...cceeevvriiriieiririecereccieeeneenreeenee 6-5
General System Descriptioncccceeeeerueueuenn. s 6-5

- OS/8 BASIC Statements and Commands 6-5

Xxiii

OS/8 BASIC Arithmeticcooovveoeieeieesieeeeee e 6-6

INUIMDEIS .ooiiveviiee ittt 6-6
Variablescccovevviiieiiiieeiieec e e e e 6-8
Arithmetic OPerationsccocceevcveerreeinieeeeieeenneeee e 6-8
Priority of Arithmetic Operationscccccceeveveeecnnnnne. 6-9
Parenthesesc.cccoviveirniieeniiie e e s 6-9
Relational Operatorscccooeevviviieeviniieieeiir e 6-10
Rules for Exponentiationccccconviviveiiiieeninineennnn 6-11
OS/8 BASIC Statementscccoccveeeeeeieiieeeeeeeereneeeeanees 6-11
Statement Numberscoocciviiiiccc e, 6-13
REMARK—The Commenting Statement 6-14
Statements for Terminating a Program s 6-14
END (et iivrrereeeneireere s 6-14
STOP e e 6-14
LET—The Assignment Statementc..cccceecercrennen. 6-15
Input/Output Statements and Functionsccoceeeee 6-15
The INPUT Statement SO 6-15
The PRINT Statementcccccocoeveveeveiieereereeneeranen. 6-16
The TAB(X) FUnCtion «....coooeeeveeeeeeeeeeeeeeeeeeeeveeeeesnn 6-21
The PNT(X) Functionc.ccccocvevveeveemeerirecrreeeeieanens 6-21
The READ and DATA Statementsc...ccccoceeeveeeereneenn. 6-22
RESTORE OO U URRTUOUPRRRPII Bereeeeneeenee 6-23
Control Statementsccccoevviiiiriminerrrieie e 6-25
GOTO oot 6-25
IF-THEN and IF-GOTOcc.ccoeviivinniirencnee e 6-26
LOOPS ..o e 6-27
FOR and NEXT Statementscccoceieiiinrenniiiiienninneennn, 6-27
- Nesting Loopsccccocivviiiniinninine, e 6-29
Lists and Tablescccccceoiiiiiiviiic e 6-30
Subscripted Variablesccccoievniiiiiieinniinii s 6-30
The DIM Statementccccoeevverrviiiiriirereeinreeeeiniee e 6-31
0S/8 BASIC Functions and Subroutinescc.......... 6-33
General Information on OS/8 BASIC Functions 6-33
Arithmetic Functionsccccocveiiiiieiniietennieieneecninees 6-34

The Random Number Function—RND(X) 6-34

XX1V

. The Sign Function—SGN(X)ccccccvvvnivininniiiiiinnninnns 6-36

The Integer Function—INT(X)cccccovinviniinnnennnn. 6-37
The Absolute Value Function—ABSX) wvevvevveveevenines 6-37
The Square Root Function—SQR(X)ccccceviiiniiiinnns 6-38
Transcendental Functionscc.c.ccveeeuiceencnes ST 6-38
The Sine Function—SIN(X)ccoooiiiiiiiiiiiiiiiriineeeeeereee 6-38

The COSINE Function—COS(X) creerreeennees e 6-38 -
- The Arctan Function—ATN(X)ocoviiniiiniienn v 6-39
The Exponential Function—EXP(X)cccccermrvennnn ... 6-39
The Natural Logarithm Function—LOG(X) 6-39
User Defined Functionscceceevvveiivieeiieeeniieeeneesenienns 16-39
The FNA(X) Function and the DEF Statement 6-39
~ The UDEF Function Call and the USE Statement 6-40
' The Debugging Function—TRC(X) ..covvmmmrenminrinnniennnns 6-42
SUDIOULINES ..veeeeiioeieeeeeeie et e e et eeae e e veens 6-43
GOSUB and RETURNccccooeiiiiriiiiiiinens JUSUOR ... 643
Nesting Subroutinescccoccevereeeriiiieeeeivnniicenee e .. 6-45
Alphanumeric Information (Strings)ccco...liveverennne. 6-46
String CONVENTIONSccovvveeeriuirerriirieeaaireeeesieeeaseeeeeeies 6-46
Constants and Variablescooeereeeeereresreereesreenns 6-46
Dimensioning Stringsccceceviviivciiiniienninininenn. ... 6-46
Inputting String Dataccccceevevieivveieeeerenennn, e, 6-47
- Strings in LET and IF-THEN Statements 6-49
String Concatenation etreeeieerererr———————. aieneeadin 6-50
String Handling Functions S et 6-50
The LEN Functioncccccccceeviiiiiiiiiieiieieeeee e 6-50
The ASC and CHRS$ Functions rieee e 6-51
The VAL and STR$ Functionscccovimeeviinieannnneenn. - 6-52
-The POS Function SO SO SURRRPRTORNY T K.
The SEG$ Function e ee e reveeeenns 6-53

- The DATS$ Function SOOI ¢ . 7 S
Editing and Control Commands STRNOSUPRUE. SUPSERTTUUROPUO . 6-54
Correcting Programsccccceceeeveeeeiiieiiiieeeiieieeennens e 6-55
Erasing Characters and Lines ereeeeeenessenns 0-535
The RESEQ Programccceeeveceencecenceciieeeneeannes 6-55
The LIST and LISTNH Commandsccccovuvuunne.. v.rnt 6-56

The SCRATCH Commandccccccooveevveveemnnnnnnn. Vevveeens 0-5T7
The NEW Commandcccoooveirieenoeeeeeeeeeeeeeeee, wr. 6-58

The NAME Commandcccccovuiiviinieeeeereeeeeereesennn 6-59
The SAVE Commandcccccooeevvvviioiveee e sseeee e 6-59
The RUN and RUNNH Commandscooeeeveremrerennnnen. 6-60
The BYE Commandccccceeevviiiiieeeeisceeereeenneenas 6-60
Files, File Statements, and Chainingc.............. 6-60
General Information on OS/8 BASIC Flles 6-60
System DEVICESccovvereriiciriririeeeecceereerecceeeeereeee s 6-60
File Statementscccccoevvueviiiirieiieeeeeieercerereeseeeivereeseaenns 6-61
Creating Assembly Language Functions 6-69
Introduction “.........cccoeeeeieeiiieiiieceeeeeee e 6-69
The OS/8 BASIC SYSLEIMcoovuvreeienreiiceiieeecceeecccneeeeeens 6-70
The OS/8 BASIC Run-Time System 6-71
BRTS Core Layoutcccceviuveeieeeieneeeeerireeeieeeneen 6-71
BRTS OVerlaysccccooevvieeriiniiiiiiiesccsiereee e ccvene e 6-72
BRTS Symbol Tablesccccccceeieniieniniiecieeeeieeeeene 6-73
Data FOrmatsccccocvvivveeevveeeeiee e eeane s 6-73
Variablesc.oooovieeieiiiiiccee e e 6-73
SEENES c.vevvveeeceeeeeeereeee e et 6-74
INCOre DATA LISt evoviieieeeeeeieeeeeeeeeeeeeeeeee e, 6-75
The String Accumulator (SAC)covevvereirerreireireerenennne 6-76
BRTS Symbol Table Structure et e enerennes 6-76
The Scalar Tableccocovveeieeeeeieeeeeeeeee e esneaeerens 6-77
The Array Symbol Tableccccoceivirierveerierererieeeenens 6-77
The String Symbol Table0.cc.coocviiiiiiiniececiiienn, 6-78
The String Array Tablecccocvevereeeierereneeeecrcenas 6-79
Floating-Point OPerationscceceeveecerreerireresnressenes 6-80
Floating-Point ACCUMUIALOTcccovrereererrerirerereenenens 6-80
Floating-Point ROULINESc.ccoveveeererereeneuererererenees 6-81
Floating-Point OpPerationsccceverrerereriersueresernenens 6-85
BRTS SUDIOULINES ...viioveereerreenieeieseiearesseeeeesseseseesaesennes 6-85
Subroutine ARGPREccccoooiiimieiiiiiiiii e 6-85
Subroutine XPUTCHccoceiiieiiierrereeenreeecnveenns 6-86
Subroutine XPRINTccccovvvviecirerreenn. e e—— 6-87
Subrouting PSWAPooocoiiceiieree e ceee et 6-87
Subroutine UNSFIX ..ot eennn 6-88
Subroutine STFINDcccooviiiiiiiiiiniiininenns errerr—— 6-88
Subroutine BSWcovvviiiiiiiisiiieeiecirieceeeevnrnreniean, ... 6-90

Subroutine MPY et re e et e en—r e entteaeareeans
Subroutine DLREADcccciiiiiiiiiiiniee
Subroutine ABSVAL ..o e
Passing Arguments to the User Function S -
Using the USE Statement e aaaes
BRTS I/O .o, e et eaane e
Terminal I/ O oo e,
BRTS File Formatscccocceiiiiiiiiiiiiiiiiiecenen,
BRTS Buffer Space et e
BRTS Device Driver Spaceccoccveeiiiecineeciinainnns .
The BRTS 1/0 Tablec.cccecviienieen. e
Interfacing the Assembly Language Function to BRTS ..
General Considerations and Hintsccccoviiiiinnne
Routines Unusable by Assembly Language
Functions S S U PPRREOUU SRS APUPPRPRIN
USING OS/8 oottt e e eaaen e
Page O Usageicceeen et e e e annaaeeas
Assembly Language Function Examplesiccc........
Compile-Time Diagnostics U
Run-Time Diagnosticsccccoeeoecieeriinnane, eeeerea s |
‘0S/8 BASIC System Build Instructionsc.................
Optimizing System Performance ceerrreeaens ‘
LABS/E Functions for BASICcc.ccooiiiennne,
Introductioncccceeviveveeniecieee, et
General DeSCriptioncccocoovvevererriuirriecsivenrinsinnns N
Preparing BASIC for LAB8/E Functions SUUR
Definition of LAB8/E Support Functionscc.........
LABS8/E Examplesccccccevveremerrnucnnnnn.n. e,
- Getting on the Air with BASIC et —————

LABS8/E Function Summaryc.cccccooveunnn. T

CHAPTER 7 FORTRAN II

XXVii

FORTRAN Optionscccccouveevieeiieeeeiinecieee e eveeens 7-1

Example Programcccccoeviviiiiieiiini, e 7-3
Examples of FORTRAN I/0
Specification Commandsccccceevvvieieeiiiereccieer e 7-4
Using FORTRAN or SABR with the Interrupt On 7-6
Using PALS with SABR or FORTRAN e Ry
FORTRAN 1II Source Languagecccooeevereenennnnn. 7-8
TCharacter Stcoocvevieieiieeeeeeeee e 7-8
" FORTRAN Constants rrrree e Ceeteer e ree e e e 7-8
Integer Constantscccoceciieiiiiiiiiciiiieeeeee e, 7-8
Real Constantsccccceeviviieiiieeviiiececees e 7-9
Hollerith Constantscccccceeeviviieeciie e 7-9
FORTRAN Variables 7-9
Integer Variablesccccooiviiiiiiiiiiieeee, - 7-10
Real Variablescccc oo 7-10
Scalar Variablescccoccoeeiiiiiiiiiiiiiiieeeeee e 7-10
Array Variablesccoocooiiiiiiiiii e 7-11
SUDSCIIPING ..oovviiiiiiiiiiiiii et 7-11
EXPIESSIONS ...voveeireiieieieeeeeeeeeseeeeeesieneesseesensnessnenneneis =12
FORTRAN Statements et ——aaaeraaa s v 7-14
Line Continuation Designatorc..ccccovcvveviierenvenenen. 7-14
COMIMENES ...ttt et ere e s e eens 7-15
Arithmetic Statementscocccceerieeiieiiiiieer e 7-16
Input/Output Statementsccceeveeiiiiiinnciiiieece 7-16
Data Transmission Statementscccccccevvivecvnenieeeen. 7-17
FORMAT Statementccccoceeveiiveiiiiiniiiiinenineee, 7-21
Control Statementsc..coceevvrereiiieeiiieiinieeecienrieriiniens e 7-29
GO TO Statement ..o....cc.cooovrimiiiiiiiiiiieiee e, 7-29
IF Statementcooooviiimiiiiii e 7-30
DO Statementcccoeeeiiiieiiiiiiircr e, 7-30
CONTINUE Statement SR TUTURUS SORNOPPRRRURRRON 7-32
PAUSE, STOP, and END Statements 7-32
Specification Statementsccccoerivviieriiienniinniins 7-33
COMMON Statementccccvveerveiieininereeeennneieninann, 7-34
DIMENSION Statementcccccovrviiveeireeiiiiesssenneens 7-34
EQUIVALENCE Statementocoveeevininieinieeennee, 7-35
Subprogram StatemMENLtSceeeeueeeuereremearrerereerinensinnnnss 7-35
. Function Subprogramsccoeemmieiniinniiininnan. 7-36

XXviii

Subroutine Subprograms_........'.................'. 7-37
Function Callscoceieereieeeeneencereneennene ereeereeninen 7-40
FORCtON LIDFAIYocccoroeereoecerrsecrnsosnss ensteseces o 740
Floating-Point AFHMENCcoorrrervvvverrsernessseesanss 7-42
Device Independent 1/0 and Chaining,c.cc. 7-42
The IOPEN Subroutingccoceveveverenene e 7-42
The OOPEN Subroutine rerrtereereeesenere et aeeesires 7-43
The OCLOSE Subroutinec.ccccoeeommerieicireunrrisensnnns 7-44
The CHAIN SUbroutinecccceceveveeviiuneeerivnereeirenieeeennnnns 7-44
The EXIT Subroutine e e e e e aeresanaaeeas 7-44
DECtape I/O Routines ..., 7-44
0S/8 FORTRAN Library Subrouinesccoo........ 7-47
Mixing SABR and FORTRAN Statements 7-50
Size of 2 FORTRAN Prograimccoooovvveeerosroveveerrrsie 7-50
FORTRAN Statement Summary e e 7-51
FORTRAN Error MESSAZESccvvveeereeeeeeicee e 7-54
Compiler Error Messages ererrenireereesnennneeness 1-54

Library Error Messagesccccoccceverevrereneeennn, e e 7-55

CHAPTER q FORTRAN' IV

FORTRAN 1V System Overviewc.....coceneeee... 8-1

The FORTRAN IV Compilercoccoovivvreoeonenn.. 8-9
Examples e ettt et e e 8-12
Compiler Error Messagescccoeceernene ST 8-13

The RALF Assemblerccccccoeveiiiiinneiiiirceieene. 8-15
Examples ... e 8-19
RALF Assembler Error Messagesccccceeeeecnnevereennns 8-20

XXix

FORTRAN IV Run-Time System (FRTS)c.ccccc.......
Run-Time System Error Messagescccocvevvevieeveernnnnn.

FORTRAN 1V Library ettt
Library Functions and Subroutinesccceceenennne.

FORTRAN 1V Source Languageccccoeovveniennnn.
Constants, Variables, and Expressionsc...c........
Constantscco....... et et et e e ——
Variableso.oovoeiiiiiii e

.
uV‘I‘\V'QC‘CII\ﬂ(‘
LJI\P.I. WIFIEANIALD seaseacssesscastsssvronvssvasenne R R

Assignment Statementscoccccveeiiieeiiieiiere e
Arithmetic Statementscccocoeevvvvnnnnne.. e
The GO TO Assignment Statementc..ccuvenee.

Control Statementsccccoeeeviiiiiiiriieeeieieeee e
GO TO Statementsoceeveiiiiiee e ieeniann
IF Statements ettt e e —e e e et a e eenaeanaaas
DO Statementooeeiiiiiiiiiiiee e

DEFINE FILE Statement FPUPORSUINI
Input/Output Statementsccccceeiiiiiiiininnn,
Device Control Statementsccccoocuverrrirnienns
Specification Statementscccccoceiiiiiiiiiinieinn,
Storage Specification Statements
The DATA Statement e e
Type Declaration Statementscccccoeeiiieiinnii..

Subprogram Statements ..o A
Functionsccccvviiiiiiriiiniins SUTUUOURPRN -

Subroutine SUbProgramsccccocevvriiueieeesiceeneeienne.
RETURN Statement ...,
BLOCK DATA Statement ST RPN

EXTERNAL Statementocooiviviiiviiiiiiieiieeineeannnn,

\

Paper Tape Loading Instructionscocooeiinien, 8-124
FORTRAN IV Plotter Routinescccoceovvvevvneeevnneennnn, 8-127
Plotter Operationcccccveeeriiiiericeeeinnieieeeee e 8-129
Plotter Commandscccceeeeee. et ere——— e e e e 8-129
PLOTS e vereeena 8-129
XPLOT ottt 8-130
FACTOR ..ottt 8-131
WHEREccocvveee e et e s e e 8-131
SYMBOL ..., e eeeeerra e e 8-132
NUMBER ..o rereeerreeaa 8-136.
PSCALE itereeieennereahreteesreeerantaseeasanarens 8-138
AXIS e ST 8-139
LINE et 8-141

- PLEXIT ..oooeies et e et e e et e e ren e e eenbaee e ee s 8-142

Implementing the Plotter Routinescc.occcceinniinn. 8-142
Getting Startedcocooeeveveeeeeeeeeeeeceeeieeetee e 8-142
Adding the Plotting Routines e 8-142
Examplesccccooevvriennnnne e PUSUTUUSUUSURUR . 8-144

APPENDICES

Appendix A Character Codesccoccivemrieiniiiieieerninne, A-1
Appendix B Loading Procedurescccceovvveireurrnnnenen. B-1
Appendix C Permanent Symbol Tablec...c........ e C-1
Appendix D OS/8 Demonstration Runccieeeeeens D-1
Appendix E OS/8 Error Message Summary E-1
Appendix F OS/8 File Name Extensionsc...ccevennn.. F-1
Appendix G OS/8 Device Handlersccooveveieninne. G-1

Appendix H Obtaining OS/8 Version Numbers................. H-1

LIST OF TABLES

Table 1-1 TCO01/TCO08 DECtape Bootsfrap 1-3

Table 1-2 TDS8E Initialization Error Messages 1-6
Table 1-3 12K TD8E DECtape Bootstrap erennie 1-8

XXX1

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Tabie

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table

Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table
Table
Table

) 1 1 i i -L

ok ek bl ek ek ek ek ek e e fd e et bk ek ped
1
B bt it ek e b Ed el = = D 00] O\ N

OO0~ N AW~ O

b
I I
NN
DD

1-23-

1-24
[-25
1-26
1-27
1-28
2-1

2-2

2-4
2-5

2-7
2-8

2-9

2-10
2-11
2-12
2-13
2-14

Cassette Bootstrapcccceeecvvevcvreniinnnnnen. 1-11
System Devicescccccocvvveiiiivvennnnn.. v 1-12
System Devicescccccvvirrvereeennenn... creeeeee. . 1-18
RFO08/DF32 Disk Bootstrap e 1-26
Single RK8E Disk Bootstrapc............ 1-27
Multiple RK8E Disk Bootstrap 1-27
Single RK8 Disk Bootstrapc..cccceeueee. 1-28
Multiple RK8 Disk Bootstrap ROTTOR 1-29
Permanent Device Namesccccceeinnn 1-31
Assumed EXtensionscoocceeevevevrennn. e 1232
Keyboard Monitor Error Messages 1-43
Command Decoder Error Messages 1-51
CCL Options e e e e raees 1-55

- Compiler/Assembier Extensions 1-59
CCL Error Messagescccccceeeveerireennecnns 1-75
Editor Optionscc.ccoeecvivvvereeeiiirieeee e 1-79
Editor Key Commandscccceeevuvveeennnenn. 1-80
Special Charactersccocceemveirvveeniinanns 1-81
Editor Error Codesccccccvviiveeiniinennnn. 1-89
Symbol Editor Commandsccccecureennen. 1-93
PIP Oplionsc.cccceeevvmeiereiiiecenieie e 1-98
PIP Error Messagesccccooceeeveerciennneeeinne 1-106
ABSLDR Optionsccccecrvrmreecenneinenieens 1-110
ABSLDR Error Messagesc..cccoovvenennn 1-113
ODT Command Summarycceevvveennn. 1-122
Run-Time Optionsc.ccccceiviniiiiciiiiinnnnn, 2-3
BATCH Monitor Commands 2-5
BATCH Error Messagescccoeverreereeeens - 2-10
BITMAP Optionscccccovevcmiieiininiieccnne, 2-27

- BOOT Mnemonics errrrereinnrrrreeeraanees 2-33

Standard DECtape System Device Handlers 2-35
Standard Cassette System Device Handlers 2-36
Standard Paper Tape System Device

Handlerscccccceeeniennnin. e 2-37
0S/8 Device Handlersccooeeecviivniiiennnnnn. 2-38
BUILD Editing Characters T 2-39
BUILD Error Messagescccccovreinunirinnnn. 2-55
DCB WOrdcoeeieiiiiiiceeiece e 2-59
CAMP Error Messagesccccccovevvveieninns 2-67
CREF Optionscccccceoviviveerennnennn grereereenens 2-69

Table 2-15

Table 2-16

Table 2-17
Table 2-18
Table 2-19
Table 2-20
Table 2-21
Table 2-22
Table 2-23
- Table 2-24

Table 2-25
Table 2-26
Table 2-27
Table 2-28
Table 2-29
Table 2-30
Table 2-31
Table 2-32
Table 2-33
Table 2-34
Table 2-35
Table 2-36
Table 2-37
Table 2-38
Table 2-39
Table 2-40

Table 2-41
Table’ 2-42
Table 2-43

Table 2-44.

Table 2-45
- Table 3-1
Table 3-2
Table 3-3
- Table 4-1
Table 4-2

Table 4-3

Table 4-4
Table 4-5

CREF Error Messages S

.................. 2-76
DIRECT Optionscccooueenene.. SO ..-2-78
DIRECT Error Messagesc...ccccceveenvemnnen. 2-81
EPIC Commandscccv.... IR 2-89
- EPIC Error Messagescccooeveveveeruennnes 293
FOTP Optionsccccceeevviieiinnreneieeeeivenenn, 2-104
FOTP Error Messagescccceevvereeeeeennnnnn. 2-108
MCPIP Optionsccccoviiereeemercencneernnneens 2-111
MCPIP Error Messagesc.cocooveernccnnes 2-114
RESORC Device Types ORI 2-123
Kinds of Handlersccccoccceirniiiniicrnnnenn. 2-125
" RESORC Error Messagescccoeverveenin, 2-127
Run-Time Optionsccccevioeieniiienceicneenne 2-129
Restrictions .on Special Characters 2-142
File Specification Commandsc....c........ 2-145
Page Manipulation Commands 2-146
Buffer Pointer Manipulation Commands 2-147
Text Type-Out Commandscoceeenneee. 2-148
Text Deletion Comm_ands 2-149
Text Insertion Commandsccccovcueiennnns 2-150
Search Commandsccccooiveeerieniiinnienn, 2-151
Match Control Charactersc..ec........ 2-154
Q-Register Loading Commands 2-156
.Q-Register Execution Commands e 2-157
Conditional Execution Commands - 2-159
Characters Associated with Numeric
_Quantitiesccocvvveeeeiiiiiiieeee 2-161
Arithmetic Operatorsccceeecvevevennnen. 2-163
Radix Control Commands 2-164
Form Feed Processing Output Commands .. 2-168
TECO Command Summarycc............. 2-179
TECO Error Messagesccceveeveereeenn 2-184
PALS Run-Time Optionsc.cccevcevvenunenns 3-3
Use of Operatorscocecevveeeeeeiiueneeennnn. 3-16
PALS Error Codesccoeeeuevecuverineccniie, 3-39
SABR Optionscccccocveeveieeevrieiciieceecniee. 4-2
SABR Pseudo-Operators 4-13
SABR Error Codescccoeevvivieieeenne. 4-61
Linking Loader Optionscccooceeurreennainn. 4-63
Linking Loader Error Messages 4-68

XXXiii

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

4-6
4-7
5-1

5-2

5-3
6-1
6-2
6-3
6-4
7-1
7-2
7-3
7-4
7-5
7-6
7-7
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16

Table 8-17

Table
Table
Table

8-18
8-19
8-20

LIBSET Error Messagesccccccvvervennee. 4-71
Library Error Messagescccccceeeveerreennen. 4-72
PDP-8 Operation Codesccccceeruveennn, 5-4
FLAP/RALF Error Codescccceeeerveennnee. 5-38
FLAP/RALF Pseudo-Operators e 5-40
0S/8 BASIC Language Summary 6-108
Compile-Time Diagnosticscccceene... 6-115
Run-Time Diagnosticscccceevvvivrennnn.. 6-117
LAB 8/E Function Summary 6-148
FORTRAN IT Optionscccccovervvevenrneeennen. 7-2
Device Designationscccecevveeeviviereennen. 7-20
Numeric Field Codescccoveveviiriiiennnenne. 7-22
FORTRAN Function Library 7-41
FORTRAN II Library Subroutines 7-48
"FORTRAN II Language Summary 7-51
FORTRAN Library Error Messages 7-56

Standard FORTRAN 1V File Extensions 8-9
FORTRAN IV Compiler Run-Time Options 8-12
FORTRAN IV Compiler Error Messages 8-14

RALF Assembler Run-Time Options 8-18
Loader Run-Time Optionscceceveennnn. 8-25
Loader Error Messagescccccovveeinnnnn, 8-29
Run-Time System Option Specifications 8-35
Run-Time System Error Messages 8-38
FORLIB Calling Relationships 8-44

FORLIB Multiple Entry Points by Section 8-45
CLOCK Subroutine FUNCTN Arguments 8-52

Truth Table for Logical Expressions 8-77
Conversion Rules for Assignment Statements - 8-79
Numeric Field Codescccoovuiviviiiiiiinnenn.. 8-93
Magnitude of Internal Data R 8-94
Device Control Statementscccoe.... . 8-106
FORTRAN IV Statement Summary 8-121
FORTRAN IV Plotter Routines 8-128
Special Symbolsccevviiiiiiii 8-132

Regular Charactersc..e..... e 8-133

XXXV

Figure
Figure
Figure
Figure
Figure
Figure
Figure
_ Figure

Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figure

Figure
~ Figure

Figure .

Figure
Figure
Figure

2-1
2-2
2-3
2-4
2-5
2-6

2-7

2-8

2-9
2-10
3-1
3-2

3-3

LIST OF ILLUSTRATIONS

Sample BATCH Input File

Punched Card Input File
. TECO Command String for Example 2 ...

......................

TECO Flowchart for Example 2

TECO Macro for Example 3

‘Loading and Executing a TECO Macro

File Packing Macro

......................

Loading and Running the File Packmg

MaCIO .eveviieiiiieiieeeee e
‘Unpacking Macro
Loading and Running the Unpacking Macro

......................

......................

Memory Reference Bit Instructions
Group 1 Operate Microinstruction

Bit Assignments

........................

Group 2 Operate Microinstruction

Bit Assignments

......................

Group 3 Operate Mlcromstructlon

Bit Assignments
AMOD Function

......................

Preparing a FORTRAN IV Source File

Compiling a Source File

......................

Assembling, loading, and Executmg a

RALF File ..ooooviiiiiiiainan,

......................

FORTRAN IV Coding Form

Nested DO Loops
Spiral Plotter Example

Histogram Plotter Example

XXXv

......................

......................

XXXVi

AUncicnencols

~ gettingonline

~ keyboard monitor

command decoder
ccl
editor
~ pip
~ dbsldr
odt

chooter

| oé/a fundamentals

GETTING ON LINE WITH OS/8

0OS/8 software is distributed to the user in a form appropriate
for his particular hardware configuration. The general system
categories are DECtape (LINCtape), cassette, and paper tape.
This section pfovides the information that the user of any of these
types of systems needs to start using OS/8. The procedures for
bootstrapping a disk system and for restarting OS/8 are also con-
tained in this section. To get on line with OS/8 when the system
- is first installed, refer to the section on the specific dlstrlbutlon

media. :

DECtape Systems

This category includes TCO1/TCOS, TDSE and LINCtape
(PDP-12) hardware configurations. Since the software is supplied
on a system DECtape (or LINCtape), it is- not necessary to build
‘an initial system, as it is when using cassettes or paper tapes. ‘

‘Two tapes are distributed with each DECtape (LINCtape)
svstem. System Tape #1 contains the system programs and all
0S/8 Monitor functions: System Tape #2 contains TDINIT.SV
(used in TD8E system initialization) and two TD8E DECtape
monitor images (8K ROM and 12K). Other files on this second
tape are the device handlers in a format suitable for the OS/8
BUILD program. Each file contains a handler for a specific device
type. These files are to be used as input for the LOAD command
in BUILD and are described in the BUILD section of Chapter 2.
In addition to these files, the tape also contains relocatable binary
files of the FORTRAN II library subroutines. LIBSET, the FOR-
TRAN II librarian, is used to create a FORTRAN II library as
described in Chapter 7.

Finally, the tape contains several OS/8 help files (.HL exten-
sion). These help files are intended to provide the user with a

1-1

quick command summary for most OS/8 programs. They can be
printed with either OS/8 PIP or the CCL command HELP.

TCO1/TC08 DECTAPE USERS
The following short procedure is used to start OS/8 on a
TCO01/TCO8 system:

1. Mount the system DECtape (DEC-S8-OSYSB-A-UC1) on
unit 0 (this appears as unit 8 on some DECtape units), mak-
ing certain to wind at least 10 feet of tape onto the empty
reel. Set the tape unit switches to REMOTE and WRITE
LOCK. _ :

2. Bootstrap the OS/8 DECtape by following one of two methods.
If the system includes an MI8-E hardware bootstrap option:
a. Place the terminal on line. Raise the SING STEP swiich

on the PDP-8/E console. Press the CONT switch. Then
lower and raise the HALT switch. At least one console
indicator lamp should light. |
b. Having mounted the OS/8 System Tape #1 on unit O as
described above, lower and raise the SW switch on the left
side of the console.
If the system does not include a hardware bootstrap, this
procedure will have no effect. In this case, execute step 1
above, place the terminal on line, and then perform the switch
manipulations shown in Table 1-1. For each step in the table,
place each of the PDP-8/E console SWITCH REGISTER
switches numbered O to 11 either in the up position if the
corresponding table entry is a 1, or in the down position if
the corresponding table entry is a 0. When all 12 switches have
been set to correspond to a line in the table, follow the instruc-
tions in the right hand column and proceed to the next line. In
step 4, for example, place switches 2, 4, 7, and 10 in the up
position; place switches 1, 3, 5, 6, 8, 9, and 11 in the down
position; lift the DEP switch; and proceed to step 5. The
table also includes octal values of the binary switch settings for
the benefit of users familiar with octal numbers.

1-2

Table 1-1 TC01/TC08 DECtape Bootstrap

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING '
012 345 678 91011 :
| 0000 000 000 000 000 press EXTD ADDR LOAD
2 7613 i1 110 001 01l press ADDR LOAD '
3 6774 110 111 111 100 lift DEP key
4 1222 001 010 010 OIO0 liftt DEP key
5 6766 110 111 110 110 lift DEP key
6 6771 110 111 111 00t lift DEP key
7 5216 101 010 001 110 lift DEP key
8 1223 001 010 010 Oltl lift DEP key
9 5215 101 010 00! 101 lift DEP key
10 0600 000 110 000 000 lift DEP key
11 0220 000 010 - 010 000 lift DEPKey
12 7754 111 111 101 100 press ADDR LOAD
i3 7577 111 10t 1it 11i liftt DEP key
14 7577 111 101 111 11l lift DEP key
15 It 110 001 Of1l press ADDR LOAD and

7613

press CLEAR and
press CONT

Either bootstrapping procedure first rewinds the DECtape on
“unit O to the end zone, then starts it moving forward, reading
block O into locations beginning at 7600 in field 0. In block
0 of the DECtape is a larger bootstrap which continues reading
the tape, installing the resident Monitor code, and finally
turning control over to the OS/8 Keyboard Monitor.
DECtape unit 0 will rock and the console terminal will respond
by printing a dot (.) at the left margin. At this point, OS/8 is
active; DECtape unit 0 must be set to WRITE ENABLE. -

NOTE
If the terminal does not respond properly,
check that the bootstrap was' loaded cor-
rectly, that unit O is selected and set to
REMOTE, that the correct tape is mounted,
and that the terminal is set to REMOTE or
LINE. If trouble persists, contact the local
Digital sales office.

1-3

TDSE DECTAPE USERS

OS/8 supports TD8E DECtape hardware in two conﬁguratlons
TD8E DECtape and 12K or more core, and TD8E DECtape and
8K core and 256-word Read-Only-Memory (ROM).

TD8E DECtape users must run a special initialization program
before OS/8 can be used. This program need only be run once to
create the proper configuration; thereafter, the appropriate TDSE
bootstrap (discussed shortly) can be used to start OS/8.

TDSE Initialization Program

Use the following procedures to initialize the TDS8E DECtape

system.

1. Mount the binary DECtape (DEC-S8-OSYSB-A-UC2) on
DECtape unit (. Set the tape unit sthches to REMOTE and
WRITE LOCK.

2. Turn the console terminal to LINE or REMOTE.

3. Execute one of the TD8E bootstraps (see TDSE Bootstraps in
this section).

4. When the bootstrap is executed correctly, the message:

-

TDBE INITIALIZER PROGRAM VERSION 4

is printed on the terminal. Then depending upon which type
of TD8E configuration is present, one of the following mes-
sages is printed to indicate the system on which OS/8 will be
built.

4. 8K ROM SYSTEM
is printed if the user has the 256-word ROM.

b. 12K SYSTEM
is printed if the user has no ROM but does have 12K or

more of core memory.

NOTE
If neither the ROM nor 12K of memory
exists, the message:

NEED ROM OR 12K

appears, and the machine halts. This indi-
cates that the configuration is not suitable
for running the TD8E version of OS/8.

1-4

5. After the message specifying the hardware cohﬁguration (a or
b above), the following instructions to the user appear:

‘MOUNT A CERTIFIED DECTAPE ON WNIT 1 NRIIE-ENAELED
ALWAYS KEEP ORIGINAL SYSTEM DECTAPES WRITE-L OCKED
- STRIKE A CHARACTER TO CONTINUE

Perform the specified operations. At this point, the current

OS/8 Monitor is written onto a blank DECtape on unit 1.

Note that the original tape (on unit 0) is not written upon.
6. When the copy operation is complete, the following instruc-
tions are printed: |

DI SMOUNT TAPE #2 FORM UNIT @ AND SAVE IT
MOUNT ORIGINAL SYSTEM TAPE #1 ON UNIT @
PREPARE TO CCPY FILES OVER

STRIKE A CHARACTER TO CONTINUE

The system programs will now be copied from System Tape
#1 (DEC-S8-OSYSB-A-UC1) to the tape being created.

Perform the specified operations and type any character except

CTRL/Z to continue. PREPARE TO COPY FILES OVER
means to expect copying to take place; no additional prepara-
tion is implied. The following message is printed:

COPYING FILES FROM UNIT 8 TO UNIT 1

~and the system copies the files and updates the DECtape
directory.

NOTE
If the user wishes to perform nonstandard
special processing, he can respond with a
CTRL/Z to the preceding dialogue. If
CTRL/Z is typed, the following messages
appear: '

TYPE 1 TO COPY FILES FROM UNIT @ TO UNIT 1|
TYPE 2 TO ZERO THE DIRECTORY OF UNIT 1

TYPE 3 TO LEAVE THE DIRECTORY OF UNIT 1 ALONE
STRIKE A CHARACTER TO CONTINUE

1-5

]

Reply with either a 1, 2, or 3 (which will
not echo) to indicate the desired option.
Typing any character other than those indi-
cated will repeat the request message. One
of the following confirmatory messages will
appear, to indicate the options 1, 2, or 3,
respectively:

CCPYING FILES FROM UNIT B TO 1
ZEROING THE DIRECTORY ON TAPE UNIT 1
DIRECTORY ON UNIT 1 PRESERVED

7. When the files have been copied, the following instructions
appear: '

REMOVE AND SAVE TAPE ON UNIT @

TAKE NEW TAPE (ON UNIT 1) WHICH WAS JUST CREATED
AND PLACE IT ON UNIT @

IT IS YOUR NEW 0Ss8 SYSTEM TAPE

STRIKE A CHARACTER TO CONTINUE

Remove the original OS/8 tape and save it for later use. Set
DECtape unit 0 to WRITE-ENABLE, and type any character
to continue. The tape on unit O will be initialized to a TD8E
configuration.
When the initialization is completed, a dot (.) is printed at the
left margin of the terminal. OS/8 is active on a TD8E based
system.

TDSE Initialization Error Messages
The messages listed in Table 1-2 may appear during the TDS8E

- initialization process.

Table 1-2 TDS8E Initialization Error Messages

Message ' Meaning

FATAL 10 ERROR Unable to read from newly
copied system tape.

MOUNT CORRECT TAPE ON UNIT 0 Cannot copy tape currently
mounted.

NEED ROM OR 12K | Improper hardware config-
_uration.

1-6

Table 1-2. TDSE Initialization Error 'Méssages (Cont.)

Message _ Meaning
NOT ORIGINAL OS/8 SYSTEM The tape copiéd from was
TAPE #2 ’ not an original OS/8 tape
' supplied by Digital.
STRIKE A CHARACTER TO An I/O-error occurred on-
CONTINUE ' ‘ the DECtape. - Type any -
_ character to retry the oper-
. ation. :
TYPE ANY OTHER CHARACTER TO First retry failed. Type any
RETRY THIS 1I/0 OPERATION other character to retry an-
other time.
TYPE A TO ABORT AND Return to Step 1.
START OVER AGAIN

TDSE Bootstraps :
8K ROM Bootstrap (PDP-8/E)

1. Set the switch register on the PDP-8/E console to 7470
(octal), i.e., set switches 0, 1, 2, 3, 6, 7, and 8 in the up posi- -
tion, and set switches 4, 5, 9, 10 and 11 in the down position.

2. Raise the SING STEP switch. Lower and raise the HALT
switch. . :

3. Press the EXTD ADDR LOAD, ADDR LOAD, CLEAR, and
CONT switches. The tape bootstrap will be executed and a mes-
sage will be printed (if initializing) or the OS7 8 Keyboard Monitor
will print a. dot (.) to indicate that it is active. If initializing,
set DECtape unit 0 to WRITE-LOCK. If OS/8 is already
active, set DECtape unit 0 to WRITE ENABLE.

12K TD8E Bootstrap

The contents of the 12K TDSE bootstrap are included in Table
1-3, | o

The tape bootstrap will be executed and a message will be
printed (if initializing) or the OS/8 Keyboard Monitor will print
a dot (.) to indicate that it is active. If initializing, set DECtape
unit 0 to WRITE-LOCK. If OS/8 is already active, set DECtape
unit 0 to WRITE ENABLE.

1-7

Table 1-3 12K TDSE DECtape Bootstrap

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING

: 012 345 678 91011
7300 111 011 000 000 press ADDR LOAD and
press EXTD ADDR LOAD

P

2 1312 001 OIl 001 010 . lift DEP key
3 4312 100 011 001 010 lift DEP key
4 4312 100 011 o001 010 lift DEP key
5 6773 1o 111 tt1 Ol lift DEP key
6 5303 101 O1t 000 Otl lift DEP key
7 6777 110 11l 111 111 lift DEP key
8 3726 Oi1 11t 010 110 lift DEP key
9 2326 010 01t 010 110 lift DEP key
10 5303 10t 011 000 011 lift DEP key
11 5732 10t 111 Ott 010 lift DEP key
12 2000 010 000 000 000 lift DEP key
13 1300 001 011 000 000 lift DEP key
14 6774 110 111t 111 100 lift DEP key
15 6771 110ttt 11y 00! lift DEP key
16 5315 101 01l 001 101 lift DEP key
17 6776 110 111 111 110 liftt DEP key
18 0331 000 011 011 001 lift DEP key
19 1327 001 011 010 11l lift DEP key
20 7640 111 110 100 000 lift DEP key
21 5315 101 011 00t 101 lift DEP key
22 2321 010 o011 010 001 lift DEP key
23 5712 101 111 ©01 010 lift DEP key
24 7354 111 Ol1 101 100 lift DEP key
25 7756 111 111 10l 110 lift DEP key

1-8

Table 1-3 12K TDSE DECtape Bootstrap (Cont.)

STEP OCTAL SWITCH REGISTER AND THEN
VALUES - SETTING

26 - 7747 111 111 100 111. lift DEP key
27 0077 000 000 111 111 lift DEP key
28 7400 111 160 000 000 lift DEP key ,
29 7300 111 011 000 OO0O0- press ADDR LOAD and
: ‘ press CLEAR and
press CONT

Both the 8K ROM and 12K TDSE bootstraps perform the
same function, reading record 0 of the system tape into memory
and then starting it at location 7400 in field 0. The code that is
- read into 7400 is a larger bootstrap which installs all resident

~ tables and then turns control over to the OS/8 Keyboard Monitor
or the TDS8E initialization program. The 12K system must move
down to tape block 154 to accomplish the full bootstrap, which ex-
plains the extra tape motion.

When the TDSE system (either 8K ROM or 12K) is initialized,
only TDS8E DECtapes 0 and 1 (DTADOQ, DTA1) are available on
the system. The others (DTA2-DTA7) are not in the system. To
~ make other drives available, the user must run the BUILD pro-
gram. Reference the BUILD section of Chapter 2 for details con-
cerning reconfiguring a system.

LINCTAPE (PDP-12 USERS) |
The following is the bootstrap procedure for PDP-12 systems:

1. Mount the system LINCtape (DEC-12-OSYSB-A-AC1) on
LINCtape unit 0. Set the LINCtape switches to WRITE LOCK
and REMOTE. Set the terminal to LINE or to REMOTE.

2. Set the left switches to 0700. Set the right switches to 0000.
Set the MODE key to LINC.

3. Press I/O PRESET.

4. Press DO.

‘The LINCtape bootstrap will be executed causing unit 0 to
move. When tape movement stops, ensure that the AC con-
tains -1 (has all lights on). If the AC does not contam -1,
return to step 1 above

1-9

5. Press the START 20 key.
The LINCtape on unit O will move again, and a dot (.) will
be printed at the left margin of the terminal. OS/8 is now
active. '

6. Set LINCtape unit 0 to WRITE ENABLE.

Building OS/8 From Cassette ‘

When OS/8 software is supplied on cassettes, the BUILD sys-
tem library program is used to create the initial OS/8 system. The
following procedures are used to build OS/8 onto a mass storage
device. '

1. The OS/8 cassette containing BUILD (DEC-S8-OSYSB-A-
TC1) supplied by Digital is WRITE protected (lugged red
‘tabs expose write protect holes). Open the locking bar on the
right side of cassette transport unit O by pushing it to the right.
Hold the cassette so that the DIGITAL trademark in large
letters is upright and to the front. Insert the cassette into trans-
port unit 0, rotating it over the drive sprockets without forcing
it, so that the locking bar closes over the back edge.

Press the rewind button on the cassette transport unit once

to rewind the tape to the beginning of its leader/trailer seg-

ment. When the unit stops moving, the tape is positioned for

data transfer operations. 4

2. Bootstrap the OS/8 cassette by following one of two methods.
If the system includes an MI8-E hardware bootstrap option:
a. Place the terminal on line. Raise the SING STEP switch

on the PDP-8/E console. Press the CONT switch. Then
lower and raise the HALT switch. At least one console
indicator lamp should light. .

b. Having mounted the OS/8 system cassette on unit 0 as
described above, lower and raise the SW switch on the
left side of the console.

If the system does not include a hardware bootstrap, this. pro-

cedure will have no effect. In this case, execute step 1 above

and then perform the switch manipulations in Table 1-4. For
each step in the table, place each of the PDP-8/E console

SWITCH REGISTER switches numbered 0 to 11 either in

the up position if the corresponding table entry is a 1,.or in

the down position if the corresponding table entry is a O.

When all twelve switches have been set to correspond to a line

1-10

in the table, follow instructions in the right hand column and
proceed to the next line. In step 3, for example, place switches
2, 4,9, and 10 in the up position; place switches 0, 1, 3, 5, 6,
7, 8, and 11 in the down -position; lift the DEP switch; and
proceed to step 4. The table also includes octal values of the -
- binary switch settings for the benefit of users familiar with
octal numbers. '

Table 1-4 Cassette Bootstrap

STEPOCTAL SWITCH R;PGISTER : AND THEN
VALUES SETTING

012 345 678 91011 i, -
I~ 40000 100 ‘000 000 000 press ADDR LOAD and

- press EXTD ADDR LOAD
2 1237 001 010 Of1 111 lift DEP key
3 1206 001 010 000 110. lift DEP key
4 6704 110 111 000 100 - lift DEP key
5 6706 110 111 000 110 _ lift DEP key
6 6703 110 111 000 OI1 ¥ lift DEP key
7 5204 101 010 000 100 lift DEP key
8 7264 111 010 110 100 lift DEP key
9 6702 110- 111 000 010 lift DEP key
10 7610 111 110 001 000 lift DEP key
11 3211 011 010 001 001 lift DEP key
12 3636 O0I1 110 Of1 110 lift DEP key
13 1205 001 010 000 101 lift DEP key
14
15
16
17
18
19
20

g

6704 110 111 000 100 lift DEP key
6706 110 111 000 110 lift DEP key
6701 110 111 000 001 lift DEP key
52i6 101 010 001 110 lift DEP key
7002 . 111 000 000 010 lift DEP key.
7430 111 100 Ol11 000 lift DEP key
1636. 001 110 011 .110 lift DEP key
21 7022 111 000 010 010 lift DEP key
22 3636 011 110 011 110 lift DEPkey
23 7420 111 100 010 000 lift DEP key .
24 2236 010 010 Ol 110 lift DEP key
25 2235 010 010 O11 -101 lift DEP key
26 5215 101 010 001 101 lift DEP key
27 7346 111 011 100 110- lift DEP key
28 7002 111 000 000 010 lift DEP key
29 3235 011 010 011 101 lift DEP key"
30 5200 101 010 000 001 lift DEP key
31 7737 111 111 011 M1 lift DEP key

1-11

Table 1-4 Cassett_e Bootstrap (Cont.) -

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING :
32 3557 011 101 101 111 lift DEP key
33 7730 111 11t 01t 000 liftt DEP key
34 4000 100 000 000 000 press ADDR LOAD key and

press CLEAR and
press CONT

Either bootstrapping procedure should cause the system cas-
sette to move and BUILD to print a $ at the left margin of the
console terminal. If there is no response, check that the system
cassette is properly mounted on transport unit O and repeat the
bootstrapping procedure, paying particular attention to the
switch manipulations. Be careful not to bounce the DEP
switch.

When BUILD prints:

$

respond with the system device on which OS/8 is to be built.
(At this point, the usual command editing features of BUILD
are available; see Table 2-10 in the BUILD section of Chapter
2.) This response must be in the following form:

$SYS dev=n

where “dev” represents one of the legal replies taken from
Table 1-5. The “n” is optional and need only be used to indi-
cate the number of physical disk platters which are present if
the system device is RFO8 or DF32. The possible replies and
the maximum value of n which can be used for each one are
indicated below. “

Table 1-5 System Devices

Device Maximum n

DF32 (DF32 disk)

RKS (RKS disk)

4
RFO08 (RFO08 disk) 4
1
1

RKS8E (RKS8E disk)

1-12

n must be a digit in the range 1 to 4. If no value for n is speci-
fied, a value of 1 is assumed. If a response other than a digit
is entered, the message:

2SYNTAX

is printed and the SYS command must be typed again. If n is
specified as a digit but is too large for the device specified, the -
SYS command must be retyped. For example:?

$SYS RFR8=5

IPLAT
$SYS RFe@8=4

4. When a correct SYS'commahd has been entered, e.g.,

$SYS RKSE

BUILD prints another $. At this time, insert the desired de-
vices for the initial system. The minimum system for cassettes
- must have inserted the terminal handler, the mass storage de-
vice, and the cassette handlers. (See the BUILD section of
Chapter 2 for detailed information.) |
In response to the $ printed by BUILD (indicated here by an
underline), type the following; each command line should be
followed by typing the carriage return key.

SIN TA8A:CSA@-1 : (cassette unit 0, drives O and 1)'
2IN KL8E: TTY | (terminal keyboard)

5. The user should also specify the device that is to be the default
mass storage device by entering the DSK command. For ex-
ample: ' | |

SDSK=SY S

Ariy device other than SYS (or carriage return) specified in the
DSK command must be the permanent name of a device which
appeared in one of the INSERT commands.

1 Characters printed by the system are underlined to eliminate confusion
with characters typed by the user.

1-13

6. When:all desired devices have been entered with INSERT com-
mands, type the following in response_to the $:

$BUILD
BUILD responds by printing:
LOAD 0S/8:

type CSAO, followed by carriage return, in response to this
message, i.e.,

LOAD 0S5,8: CSAD

BUILD loads and writes the various parts of OS/8 onto the -
system device. If a SYS ERR message occurs at any time dur-
ing the load, ensure that the system device is write-enabled and .
press the CONT switch to retry. If the retry is unsuccessful, re-
turn to step 2.

7. After writing OS/8, BUILD prints:

LOAD CD:

Respond with a carriage return. BUILD loads the Command
Decoder from cassette umt 0 and writes it onto the system de-
vice.

8. When BUILD responds with another $, type the following:

$BOOT

to initiate the final system creation process BUILD creates
OS/8 on the system device, writes ABSLDR on the system
dewce and prints:

SYS BUILT

-~

L4
—

The dot indicates that the OS/8 Keyboard Monitor is activated.
BUILD is still in memory at this time and must be written onto
the system device. To save the copy of BUILD just used with
the current date, type:

1-14

DATE mm/dd/yy (mm=month, dd=day, yy=year)

¢

+<SAVE SYS BUILD

- This copy of BUILD reflects the current configuration of the
system. It can be loaded and rerun with the command:

<RUN SYS BUILD

~9.. The OS/8 system programs must now be loaded from their re-
spective cassettes. To load these programs, it is first necessary
to load MCPIP (Magnetic Tape/Cassette Peripheral Inter--
change ‘Program). Type the following commands to load
MCPIP. ’

.GET SYS BUILD,

. START 17 400
. SAVE SYS MCPIP; 12000=6400

Loading System Programs From Cassette :

After creating an OS/8 system from cassettes, the user must
transfer the system programs from cassette to the system device..
This transfer operation is performed with MCPIP which the user
has saved on the system device. :

: NOTE :
Users with OS/8 software supplied on DEC-
tape (LINCtape) already have core images
of the system programs on the system de-
vice. This section concerns only users with
software supplied on cassettes.

Each cassette supplied with OS/8 contains several OS/8 system
programs. To transfer the programs to the system device, the user
mounts the appropriate cassette on a cassette drive and types
MCPIP commands as shown below. Use the following procedures
to load the system programs.

1. Mount the system cassette DEC-S8-OSYSB-A-TC2 on cassette
drive O.

2. Mount the system cassette DEC S8-OSYSB-A-TC3 on cassette
drive 1.

1-15

3. Type the following to call MCPIP from the system device:

<R MCPIP

MCPIP responds with an asterisk,‘ indicating that it is ready to
, receive a command line of I/0 specifications.
- 4. Respond as follows to the asterisks printed by MCPIP:

%SY S CCL. SV<CSAB: CCL. SV
*SY S: DIRECT. SV<CSAB: DIRECT. SV
%SYS: FOTP. SV<CSAQ: F OTP. SV

*SY St PIP. SV<CSAD: PI P, SV
*SYS:LIBg. SV<CSA@:LIBS8. SV
*SYS:EDI T. SV<CSAQ: EDI T. SV
*SYS: PALR. SV<CSAB: PAL8. SV

£SY St CREF. SV<CSAQ: CREF. SV

*SY S BI TMAP. SV<CSA@: BI TMAP, SV
%SYS:BOOT. SV<CSAB: BOOT. SV ,
*SY St CAMP. SV<CSAB: CAMP. SV
#SYS: RK8FMT. SV<CSAB: RKEFMT. SV
% SY St RKEFMT. SV<CSA@: RKEFMT. SV
*SYS: FORT. SV<CSA1: FORT. SV

%SY S: SABR. SV<CSA1: SABR. SV

#SY S:L OADER. SV<CSA13L OADER. SV
*SY St SRCCOM. SV<CSA12 SRCCOM. SV
*SYS: EPIC. SV<CSA1: EPI Co SV
*SYS:PIP1@.SV<CSA1:PIP1@. SV
%SY S: RESORC. SV<CSA1: RESORC. SV
*SY S: DTCOPY .+ SV<CSA1: DTCOPY. SV
*SYS: TDCOPY. SY<CSA1: TDCOPY. SV
#SYS: TDFRMT. SV<CSA1: TDFRMT. SV
*5YS: DTFRMT. SV<CSA1:DTFRMT. SV

5. The source file of CCL should be written onto the system de-
vice if the user desires to add his own CCL commands. To
write this file on the system device, mount the system cassette
DEC-S8-OSYSB-A-TC6 on cassette drive 0. Respond as fol-
lows to the asterlsk printed by MCPIP,

*SY S: CCL+ PA<CSA@: CCL. PA

This completes the building of the OS/8 system. If the OS/8 ex-
tension cassette is available, see the appropriate chapters for load-
ing instructions. Additional device handlers may be loaded and
made active using BUILD. See the BUILD section of Chapter 2
for this procedure.

1-16

Building OS/8 From Paper Tapes

An OS/8 system can be initially constructed on a mass storage

device from the paper tapes supplied with each OS/8 kit. The
paper tapes can be loaded from a low-speed reader on a Teletype
or from a high-speed reader. This initial construction is only neces-
sary when the software is not supplied on DECtape or cassettes.

The system library program BUILD is used to construct an

OS/8 system from paper tapes in the following manner.

1.

'Load the RIM and Binary loaders into ﬁeld O (refer to Appen-
dix B for instructions on loading programs manually and on

paper tape).

Using the Binary Loader, load the BUILD binary tape (DEC-_

S8-OSYSB-A-PB1) into memory.

After the entire BUILD binary tape has been loaded with no
checksum errors (i.e., AC=0), set the switch register to 200
(octal), ie., set switch 4 in the up" position, set all other
switches in the down position. Press the ADDR LOAD and
CONT switches. BUILD prints: -

§

(At this point, all the usual editing features of BUILD are

~available; see Table 2-10 in the BUILD section of Chapter 2.)

Respond with the system (mass storage) device on which
OS/8 is to be built. This response must be in the following
form:2

$SYS dev=n

where “dev” represents one of the legal replies taken from
Table 1-6. The “=n” is optional and need only be used to
indicate the number of physical disk platters which are present
if the system device is an RF08 or DF32 disk. '

The “n” must be a digit in the range 1 to 4. If no value for n
is specified, a value of 1 is assumed. If a response other than
a digit is entered, the message: |

2SYNTAX

2 Characters printed by the system are underlined to eliminate confusion
with characters typed by the user.

1-17

is printed and the SYS command line. must be typed again. If
n is specified as a digit but is too large for the device specified,
the SYS command must be retyped. For example:

$SYS RFP8=5
2PLAT
$SYS RF@8=4

Table 1-6 System Devices

Device ' Maximum
DF32 (DF32 disk) _ 4

RK8 (RKS disk)

RF08 (RFO08 disk) 4
I
RKS8E (RKSE disk) |

4. When a correct SYS command line has been entered, e.g.,
$5YS RKBE

BUILD prints another $. At this time, insert the desired
devices for the initial system. The devices listed below must
be inserted for a minimum system with paper tape. Type the
following commands, followed by carriage returns, to insert a
low-speed paper tape configuration.

$IN KS33:PTP,PTR (low-speed paper tape punch/reader)
$IN KLSE: TTY (terminal keyboard)

Type the following commands, followed by carriage returns,
to insert a high-speed paper tape configuration.

$IN PT8E:PTP,PTR (high-speed paper tape punch/reader)
$IN KL8E:TTY (terminal keyboard)

5. At this time, the user must specify the device that is to be the
default mass storage device by entering the DSK command.
For example:

$DSK=SYS

1-18

Any device other than SYS (or carriage return) specified in
the DSK command must be .the permanent name of a mass
storage device ‘which appeared in one of the. INSERT com-
mands. : _ .

6. When all desired devices have been entered with IN commands,
type the following in response to BUILD’s $.

SBUILD
BUILD responds by printing:

LOAD 0S/8:

At this point, load the OS/8 Keyboard Monitor tape (DEC-
S8-OSYSB-A-PB4) in the proper reader and respond PTR
foliowed by a carriage return, i.e.,

LOAD 0S/8: PTR

BUILD loads and writes the various parts of the OS/8 Key-
board Monitor onto the system device. If a SYS ERR message
occurs at any time during the load, ensure that the system
device is write-enabled and press the CONT switch on the
PDP-8/E console to retry. If the retry is unsuccessful, return
to step 2.

| NOTE
When building- from the low-speed reader
(KS33), remember to turn off the reader
when it reaches the leader/trailer at the end
- of the paper tape.

7. When the Keyboard Monitor has been successfully written onto
the system device, BUILD prints:) |

LOAD CD:

Place the Command Decoder binary tape (DEC-S8-OSYSB-A-
PBS5) in the proper paper tape reader and respond PTR fol-
lowed by a carriage return, i.e.,

1-19

LOAD CD: PTR

BUILD loads and writes the Command Decoder.
8. When BUILD responds with another $, type the following:

$BOOT

to initiate the final system creation process. BUILD creates
OS/8 on the system device, writes ABSLDR on the system
device, and prints:

SYS BUILT

[d

The dot indicates that the OS/8 Keyboard Monitor is activated.

9. At this time, BUILD is still in memory and it is necessary to
copy it onto the system device. To save the copy of BUILD
with the current date, type:

.DATE mm/dd/yy (mm=month, dd=day, yy=year)
SAVE S§YS BUILD ‘

This copy of BUILD reflects the current configuration of the
system. It can be loaded and rerun with the command:

RUN SYS BUILD

See the BUILD section of Chapter 2 for details of using BUILD
effectively.

ABSLDR (which resides on the system device) must now be
used to load the various system programs. Refer to the following
section for instructions.

Loading System Programs From Paper Tape

After an OS/8 system has been created from paper tapes using
BUILD, the system programs must be loaded using ABSLDR.
When loaded, the system programs are written onto the system
device with the SAVE command.

1-20

NOTE
~ Users with OS/8 software supplied on DEC-
tape (LINCtape) or cassettes need not be
concerned with this section. The information
_in this section is only for users with software
supplied on paper tape.

Use the following procedures to load the various system.pro-
grams. The binary tape identification number is indicated in paren-
theses after the program name. When the Command Decoder prints
an uparrow (1), high-speed reader only, type any character on the
keyboard to cause the tape to be read into memory.

In response to the dot (.) prmted by the Keyboard Monitor,

type:
R ABSLDR * (followed by the RETURN key)

ABSLDR prints an asterisk when it is ready to receive a command
line. Enter the command as specified for each program, ending the
command with an ALTMODE. ALTMODE echoes a $. When the
Keyboard Monitor responds with a dot, enter the SAVE command.
When the Keyboard Monitor responds with another dot, the system
program has been written onto the system dev1ce and ABSLDR
may be called again.

FORTRAN II (DEC-S8-OSYSB-A-PB6)

Place the FORTRAN II Compiler binary tape in the reader, and-
type the following responses to the . and * printed by the Keyboard
Monitor and ABSLDR, respectively. :

R ABSLDR
*PTR: (SP) $
+SAVE SYS FORT

SABR (DEC-S8- OSYSB A-PB7)
Place the SABR Assembler binary tape in the reader, and type
the following responses to load and save SABR.

"R ABSLDR’

2PTR: (SP) §
= SAVE SYS SABR

1-21

LOADER (DEC-S8-OSYSB-A-PB8) :
Place the Linking Loader binary tape in the reader, and type the
following responses to load and save LOADER.

+R ABSLDR
*PTR: /9§
2+ SAVE SYS LOADER

LIBSET (DEC-S8-OSYSB-A-PB9)
Place the Library Setup binary tape in the reader. Type the -
following:

+R ABSLDR
*PTR: 12600$
+SAVE SYS LIBSET

LIB8 (DEC-S8-OSYSB-A-PR)
Place the LIB8 relocatable binary tape in the reader and type the
following:

«R LIBSET
* /5%

The tape is read and a LIB8.RL file is created on the system
device.

CREF (DEC-S$8-OSYSB-A-PB10)
Place the CREF binary tape in the reader, and type the follow-
ing responses to load and save CREF.

<R ABSLDR
*PTR: 798
« SAVE SYS CREF

EDIT (DEC-S8-OSYSB-A-PBI11)
Place the Editor binary tape in the reader, and type the follow-
ing responses to load the tape and save EDIT on the system device.

<R ABSLDR
*PTR: 79 %
2+ SAVE SYS EDIT

1-22

" PAL8 (DEC-S8-OSYSB-A:PB12):: :
Place the PALS8 Assembler: binary tape in the reader and type
the following responses to load and save PALS.

s R ABSLDR
*PTR: /98
+SAVE SYS PALS

PIP (DEC-S8-OSYSB-A-PB13)
Place the PIP binary tape in the reader, and type the following
responses to load and save PIP.

<R ABSLDR
*PTR: 13080¢89P) $
.SAVE SYS PIP

MCPIP (DEC S8-OSYSB-A-PB14)
Place the MCPIP binary tape in the reader, and type the follow-
ing responses to load and save MCPIP. -

R ABSLDR :
*PTR 12000¢89P) §
.SAVE SYS MCPIP

BITMAP (DEC-S8-OSYSB-A-PB15) ‘
- Place the BITMAP binary tape in the reader, and type the follow- |
v mg responses to load and save BITMAP.

«R ABSLDR
*PTR: 12000/9 %
+ SAVE SYS BITMAP

EPIC (DEC-S8-OSYSB-A-PB16)
Place the EPIC binary tape in the reader, and type the followmg
responses to load and save EPIC.

+R ABSLDR
%PTR: $
+SAVE SYS EPIC

1-23

SRCCOM (DEC-S8-OSYSB-A-PB17)
Place the Source Compare binary tape in the reader, and type
the following responses to load and save SRCCOM.

+R ABSLDR

X2PTR: 8
. +SAVE 5YS SRCCOM

CCL (DEC-S8-OSYSB-A-PB18) |
Place the Concise Command Language binary tape in the reader,
and type the fcllowing responses to load and save CCL.

<R ABSLDR
APTR: 12001(89) $
.« SAVE SYS CCL

FOTP (DEC-S8-OSYSB-A-PB19)
Place the File Oriented Transfer Program binary tape in the
reader, and type the following responses to load and save FOTP.

+R ABSLDR
*PTR: 14600(89P) 4
+SAVE SYS FOTP

RESORC (DEC-58-OSYSB-A-PB20)
Place the Resources binary tape in the reader, and type the fol-
lowing responses to load and save RESORC.

+R ABSLDR
*PTR: 12008(89) $
"TSAVE SYS RESORC

DIRECT (DEC-S8-OSYSB-A-PB21)
Place the DIRECT binary tape in the reader, and type the fol-
lowing responses to load and save DIRECT.

<R ABSLDR
*PTR: 14600(89P) §
U SAVE. SYS DIRECT

1-24

PIP10 (DEC-S8-OSYSB-A-PB22) |
Place the PIP10 binary tape in the reader, and type the following
" responses to load and save PIP10.

»R ABSLDR

*PTR: $
s+ SAVE 5YS PIP1P

CAMP (DEC-S8-OSYSB-A-PB23)

Place the Cassette and Magnetic Tape Positioner program binary
tape in the reader, and type the following responses to load and
save CAMP.

+R ABSLDR
*PTR: $
& SAVE SYS CAMP

BOOT (DEC-S8-OSYSB-A-PB24)
Place the BOOT binary tape in the reader, and type the followmg
responses to load and save BOOT.

+R ABSLDR
*PTR:
~ISAVE SYS BOOT

This completes the building of the OS/8 system. If the OS/8
extension kit paper tapes are available, see the appropriate chapters
for loading instructions. Additional device handlers may be loaded
and made active using BUILD. See the BUILD section in Chapter
2 for this procedure.

" Disk as the System Device
If disk is to be the OS/8 system dev1ce an 0S/8 system must
be built onto the disk from the distribution media, i.e., cassettes,
paper tape, or DECtape (LINCtape). The disks available as sys-
tem devices are RF08, DF32, RK8, and RKS8E. Refer to the ap-
propriate part of this section for the cassette or paper tape building
procedure. For DECtape or LINCtape distribution, refer to the
BUILD section of Chapter 2. ‘

125

Once an OS/8 system has been built on a disk, it may occasion-
ally be necessary to start (bootstrap) the system into operation
when nothing is in memory. For example, whenever an RK8E disk
- cartridge is placed into its slot and is to be used, the system should
be bootstrapped. Also, if a program error is encountered such that
the contents of locations 7600-7777 in either field O or field 1 are
in doubt, the system should be bootstrapped. The following sec-
tions detail the specific bootstrap used for each type of disk.

RF08 AND DF32 DISKS _
If the OS/8 system device is an RFO8 or DF32 disk, use the
bootstrap shown in Table 1-7.

Table 1-7 RF08/DF32 Disk Bootstrap

STEPOCTAL SWITCH REGISTER AND THEN
VALUES SETTING _

012 345 678 91011

1 0000 000 000 000 000 press EXTD ADDR LOAD

2 7750 111 111 101 000 press ADDR LOAD

3 7600 111 110 000 000 lift DEP key

4 6603 110 110 000 OI11 lift DEP key

5 6622 110 110 010 010 ° lift DEP key

6 5352 101 011 101 010 lift DEP key

7 5752 101 111 101 010 lift DEP key

8 7750 111 111 101 000 press ADDR LOAD and
press CLEAR and
press CONT"

When the bootstrap has been loaded, the OS/8 Keyboard Mon-
itor should respond with a dot (.). If it does not, repeat the boot-
strap procedure. If an error persists, consult the local Digital sales
office. '

RKS8E DISK
 If only one RKS8E disk unit is present on the OS/8 system, use
the bootstrap shown in Table 1-8.

NOTE
If a PDP-12 computer is being used, execute
an I/0 PRESET in 8 mode before perform-
ing step 5 of the bootstrap in Table 1-8.

1-26

Table 1-8 Single RKSE Disk Bootstrap

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING
012 345 678 91011
1 0000 000 000 000 000 press EXTD ADDR LOAD .
2 0030 000 000 OI1 000 . press ADDR LOAD
3 6743 1104 111 100 Ol1 lift DEP key
4 5031 101 000 011 001 lift DEP key
5 0030 000 011 press ADDR LOAD and

000

000

press CLEAR and
press CONT

If more than one- RK8E disk unit is present on the system, the
user may choose which unit (0-3) he wishes to be the system de-
vice. To specify the correct RK8E unit as the system device, load
the OS/8 disk cartridge in the desired unit and enter the bootstrap
shown in Table 1-9. -

Table 1-9 Multiple RKSE Disk Bootstrap

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING
012 345 678 91011
1 0000- 000 000 000 000 press EXTD ADDR LOAD
2 0025 .000 000 010 10t press ADDR LOAD
3 7604 111 110 000 100 lift DEP key
4 6746 110 111 100 110 lift DEP key.
5 6743 110 111 100 O11 lift DEP key
6 7604 111 110 000 100 lift DEP key
7 5031 101 000 011 001 lift DEP key
8 0025 000 000 010 101 press ADDR LOAD

Enter the désired unit number (0-3) in switch register settings 9
and 10 as follows:

- unit O all switches down
unit 1
unit 2 switch 9 up; all others down
unit 3

Press CLEAR and CONT.

switch 10 up; all others down

switches 9 and 10 up; all others down

1-27

When either of the bootstraps has been loaded, the OS/8 Key-
board Monitor should respond with a dot (.). If it does not, re-
peat the bootstrap procedure. If an error persists, consult the local
Digital sales office.

RKS8 DISK
If the user has only one RK8 disk unit on his OS/8 ‘system, the
bootstrap in Table 1-10 is used to start OS/8. &

Table 1-10 Single RK8 Disk Bootstrap

STEP OCTAL SWITCH REGISTER

VALUES SETTING AND THEN
612 345 678. 21011
| 0000 000 000 000 000 press EXTD ADDR LOAD
2 0030 000 000 O11 000 press ADDR LOAD
3 6733 110 111 O11 Ol11 lift DEP key
4 5031 101 000 011 001 lift DEP key
5 0030 000 000 O11 000 press ADDR LOAD and

press CLEAR and
press CONT

NOTE
If a PDP-12 computer is being used, execute
an I/0 PRESET in 8 mode before perform-
ing step 5 of the above bootstrap.

If more than one RK8 disk unit is present on the system, the
user may choose which unit (0-3) he wishes to be the system de-
vice. To specify the correct RK8 unit as the system device, load the
0OS/8 disk cartridge in the desired unit and enter the bootstrap
shown in Table 1-11.

1-28

Table 1-11 Multiple RK8 Disk Bootstrap

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING

: 012 345 678 91011 ‘

0000 000 000 000 000 press EXTD ADDR LOAD
0026 000 000 010 110 press ADDR LOAD

7604 111 110 000 100 lift DEP key

6732 110 111 011 010 lift DEP key

6733 110 111 011 011 lift DEP key

5031 101 000 011 001 lift DEP key

0026 000 000 010 110 press ADDR LOAD

NN R W -

Enter the desired unit number (0 3) in the sw1tch register set-
tings 9 and 10 as follows:

unit 0 all switches down

unit 1 switch 10 up; all others down

unit 2 switch 9 up; all others down

unit 3 switches 9 and 10 up; all others down

Press CLEAR and CONT.

When either of the above bootstraps has been loaded, the OS/ 8.
Keyboard Monitor should respond with a dot (.). If it does not,
repeat the bootstrap procedure. If an error persists, consult the
local Digital sales office. |

Restarting OS/8

If the OS/8 system ever ceases apparent response to the user,
the computer can be restarted by loading a restart address of either
7600 or 7605. To load a restart address, set the console switches
to 7600 or 7605, press the HALT, ADDR LOAD, EXTD ADDR,
CLEAR, and CONT switches. A period should be printed on the
terminal. If there is no response, OS/8 is no longer in memory and
‘must be bootstrapped in.

Starting at location 7600 causes the contents of locations 0-1777
to be saved on the system device. These locations are then available
when the Keyboard Monitor resumes operation. Starting at 7605
does not save the core locations, but does save time on a DECtape
configuration.

1-29

KEYBOARD MONITOR

The Keyboard Monitor provides communication between the
user and the OS/8 executive routines by accepting commands
from the terminal Keyboard. The Keyboard Monitor allows the
user to create logical names for devices, run system and user
programs, save programs and to call ODT.

System Conventions

The OS/8 system has various conventions which are quickly
mastered by even the novice programmer. Naming procedures
for devices and file extensions have been designed as simple
mnemonics. OS/8 makes use of the terms: “word”, “page”,

13 ” 1 2] : 5 Ticts
record”, and “block” as units of storage. In directory listings

and elsewhere file lengths are referenced in terms of blocks (or
records). The terms are defined as follows:

1 block = 1 record = 2 pages = 256,, words

Each word is composed of 12 bits. The internal structure of the
- PDP-8 words and pages is described in detail in Chapter 2 of

Introduction to Programming

PERMANENT DEVICE NAMES
Each device in the OS/8 system is referenced by means of a
standard permanent device name. These names are used in all
I/0 designations and are listed in Table 1-12. '
These names are the device names assigned when the OS/8
- system is configured. They may be changed by reconfiguring the
system; however, caution should be observed when doing so.
Certain system programs operate on the premise that a specific
device name will be present in the system; for instance, PIP makes
use of the device name TTY: as the default device when doing
directory listings, CREF assumes LPT: as the default output
device, and the Command Decoder uses device DSK: as the
general default output device. Therefore, it is suggested that the
following device names remain present on the system:
SYS:
DSK:
TEY:
LPT:

1-30

Table 1-12 Permanent Device Names

Permanent Name

I/0 Device

SYS
DTAn

LTAn

DSK

TTY
PTP
PTR

CDR
LPT
CSAn
MTAn
DF
RF

RKAn

TV
BAT

System device (disk if the system has a large disk

—RKS8 or RF08; otherwise DTAO).

DECtape n, where n is an integer in the range 0

to 7, inclusive.

When using BUILD, LINCtapes may be called

LTA rather than DTA. n is an integer in the range

0 to 7 inclusive.

‘The default storage device for all files. The assign-

ment of DSK is specified at system generation
time. Usually DSK is the disk on a single disk sys-
tem or DTAO on a DECtape system.

Terminal keyboard and printer.
Paper tape punch.

Paper tape reader (before accepting input, the sys-
tem prints an up-arrow (1), to which the user re-
plies by typing any key). :

Card Reader

Line printer (performs a form feed before it be-
gins printing output from a new program).

Cassette drive n, where n is an integer in the range
0 to 7, inclusive. ' '

Magnetic tape drive n, where n'is an integer in the
range O to 7 inclusive.

DF32 disk.
RFO08 disk.

RKO1 or RKO5 disk unit n, where n is an integer
in the range O to 3.

VR12 scope (PDP-12 only).

Pseudo device which reads from BATCH input
stream (see BATCH section in Chapter 2).

1-31 ' ' .

FILE NAMES AND EXTENSIONS

Files are referenced symbolically by a name of up to six alpha-
numeric characters followed, optionally, by a period and an ex-
tension of two alphanumeric characters. The extension to a file
name is generally used as an aid for remembering the format of
a file. Some commonly used extensions are given in Appendix G.
Some programs (e.g., FOTP) also accept the characters * and ?
in file names. These characters have special meanings to the pro-
grams involved. :

In most cases the user will want to conform to the standard
file name extensions established for OS/8. If an extension is not
specified for an output file, some system programs append assumed
extensions. Where an extension for an input file is not specified
by the user, the system does a search for that file name with the
default extension. Failing to find such a file, a search is then
done for the original file without an extension. For example, if
PROG were specified as an input file to PAL8, the Command
Decoder would first look for the file PROG.PA (since .PA is the
standard extension for PALS input files). If PROG.PA were
not found, the Command Decoder would try to find the file PROG
(with no extension). As not all system programs utilize default
extensions, reference the following table and the individual system
programs for details:

Table 1-13 Assumed Extensions

Extension Meaning

SV Core image file or SAVE file; appended to a file name
by the R, RUN, SAVE, and GET Keyboard Monitor
commands. '

FT 8K FORTRAN source file.
.SB 8K SABR source file.
PA PALS source file.

.BN Absolute binary file (default extension for ABSIL.DR,
BUILD, and BITMAP input files. Also used as the de-
fault extension for PALS binary output file).

1-32

Table 1-13 Assumed Extensions (Cont.)

Extension : - Meaning

RL Relocatable binary file (default extension for a Lmkmg
Loader input file. Also used as the default extension for
-an 8K SABR output file).

.MP File containing a loading map (used By the Linking
Loader). Also used as default extension for BITMAP
output files.

.LS Assembly listing output file (default extension for PALS
and SABR). _

TIM Temporary file generated by FORTRAN or SABR for
“system use (default extension for CREF input files and
PALS output files).

For example, if the user types:
-RUN DSK PROG

the ﬁle PROG SV (on device DSK) is run if found If the user
types:)

«RUN DSK PROG.A

then PROG.A (on device DSK) is run, if found.

Usmg the Keyboard Monitor :
Each command to the Keyboard Momtor is typed at the
terminal keyboard. If corrections -are necessary, they must be
made before entering the command line to the system. A com-
mand line is entered to the system by typing either the RETURN
key, which causes a carriage return/line feed operation but no
printed character, or -an ALTMODE (ESCAPE on some Tele-
type Keyboards), which prints a $, but causes no carriage return/
line feed. Correcting mistakes is accomplished by typing the RUB-
OUT key, which deletes the last character typed and causes a
backslash (\) character to be printed followed by the character

1-33

which was deleted. Successive RUBOUTS each cause one more
character to be printed and deleted. The first non-RUBOUT
character typed (after the last RUBOUT in a sequence) causes -
a closing backslash (\) to be printed, thus enclosing the deleted
characters with backslashes. For example: :

User types: .RUN DSK (RUBOUT) (RUBOUT) (RUBOUT) DTAI1:FILE

Teleprinter

Shows: <RUN DSK\KSD\DTAl:FILE
Keyboard

Monitor sees: RUN DTA1:FILE

If at any time an input line becomes so corrected that it is no
longer intelligible to the user, he can verify the contents of the
line by typing the LINE FEED key. This causes the entire input
line to be echoed as the Keyboard Monitor would see it at that
point. The line is not considered to be entered to the system, and
the user can proceed to edit, delete, or enter the line at his
discretion.

For example:

User types: .RUN DTA3\3\2:PRG \G\OG (LINE FEED key typed)
System echoes: RUN DTA2:PROG

A command line may be deleted completely before it is en-
tered by typing a CTRL/U (produced by pressing the CTRL key
and U key simultaneously). This echoes as a tU, and returns con-
trol to the Keyboard Monitor without accepting the current input
~line. Typing a CTRL/U causes a dot (.) to be printed at the left
margin and the Keyboard Monitor is ready to accept commands. .

Control can be returned to the Keyboard Monitor while under
any of the system library programs by typing a CTRL/C (pro-
duced by pressing the CTRL and C keys simultaneously). This
echoes as a 7C and the Keyboard Monitor signals that it is ready
to accept input by printing a dot (.) at the left margin of the ter-
minal screen or paper.

1-34

'KEYBOARD MONITOR COMMANDS

The user has a choice of nine commands which he may type in
response to the dot (.) printed by the Keyboard Monitor. These
are: ASSIGN, DEASSIGN, GET, SAVE, ODT, RUN, R, START,
and DATE. Commands may be abbreviated by typing only the
first two characters. Execution occurs after typmg the RETURN .
or ALT MODE key

Any errors the user may make while utilizing these commands
result in an error message being printed by the Keyboard Monitor.
After occurrence of an error, control returns to the Keyboard
Monitor and the command must be retyped. The error messages
and their explanations are listed in Table 1-14, following the de- .
scriptions of the commands.

‘In addition to the Keyboard Monitor. commands discussed in
this section, certain extended commands and features are available
to the user through the Concise Command Language (CCL). CCL
simplifies the entry of certain commands and performs operations
which could not be performed otherwise. See the CCL section in.
this chapter for further 1nformat10n

ASSIGN Command
The ASSIGN command is of-the form:

ASSIGN dev udev
or
.AS dev udev

This: command causes a new, user-defined device. name (udev)-
to be considered equivalent to the pérmanent device name (dev).
Only one user name can be associated with a single device at a
time. For example: - :

«AS5 DTAl 1IN

causes all future references to IN to refer to DECtape unit 1,
(references can still be made to the device DTAI1 .also).
If a user-defined device name is not indicated, any existing

1-35

user-defined name is removed and only the permanent device name
is valid. For example:

+AS DTAL IN
:AS DTAIl

The above sequence changes the name of DECtape 1 to IN and
then back to simply DTAT1 again.

The user-defined name is composed of up to four alphanumeric
characters; the user-defined name takes precedence over the per-
manent name. Device-independent programs are easily possible
since a change in the user name of a device by means of the AS-
SIGN command can change the operation of a routine without
changing the code.

Alihough user-defined names may be four characters long, the
name may not be unique in the OS/8 system. (This is due to the
fact that the device name is internally coded in only one word.)
A three or four character name may be tested for uniqueness by
typing an ASSIGN command as follows:

.AS name

If a ‘name NOT AVAILABLE’ message results, the name is
unique within the current system, is not in the system tables, and
therefore may be used.

All user-defined device names of one or two characters in
length are unique.

DEASSIGN Command
The DEASSIGN command is of the form:

.DEASSIGN
or
.DE

and causes all permanent device names to be restored, dis-
carding all previous user-defined device names. For example:

+AS DTAl IN
- DE

causes DECtape 1 to be assigned the name IN. The DEASSIGN
command removes the name IN from the system tables; DTAI
can no longer be referenced as IN.

1-36

GET Command | ' o
The GET command is of the form:

.GET dev file.ex |
or .
.GE dev file.ex

The GET command loads core image files (.SV format, not
ASCII or binary) into core from a device. This device (dev) is
specified along with the file name (file) and an optional file name
extension (.ex). The file is loaded into core with its core control
block; the core control block is then moved to a special area on
the system device, where it is maintained on the system device
and contains information about the file such as its starting ad-
dress and areas of core occupied by the file. Also contained is a
Job Status Word, which is saved (with the SAVE command) and

-loaded in location 7746 of field O with the file to indicate what
parts of core the file uses and how, as follows: -

Job Sfatus Word

Bit Condition Meaning

Bit0 =1 ~ File does not load into locations 0-1777 in
field 0, (0000-1777).

Bitl=1 File does not load into locations 0-1777 in
field 1, (10000-11777).

Bit2=1 Program must be reloaded before it can be

' restarted because it modifies itself during exe- -

cution.

Bit3=1 Program being run will no; destroy the BATCH
monitor. '

Bits4 — 9 .Unused, and reserved for future expansion.

Bit10=1 ~ Locations 0-1777 in field O need not be saved
- when calling the Command Decoder overlays.

Bit11 =1 Locations 0-1777 in field 1 need not be saved
when calling the USR.

1-37

A core control block is created for each core-image file when the
file is created by the Linking Loader, ABSLDR, or the SAVE
command.

If a file name extension is not specified to the GET command,
the extension .SV (for core-image file) is added automatically to
the file name. For example: ‘

-GE DTA3 OH

attempts to fetch the-file OH.SV from device DTA3.

The GET command is typically used before a debugging ses-
sion with ODT. GET is used to load the object program into
core, then ODT is called, and the program can be altered and/
or debugged (see the section on ODT for more details).

SAVE Command
The SAVE command is of the form

.SAVE dev file.ex a-b,c,...;s=n

or
SA dev file.ex a-b,c,...;s=n
where:

a-b,c,... are the addresses of the areas and locations in core to
be saved. (In this case, locations a through b, loca-
tion c, and any other specified locations.) a, b, and ¢
are five digit locations. (The first digit represents the
field.) When a single location is indicated (c) the
entire page on which c is located is saved.

;S is the starting address of the file.

=n n is a four digit octal number representing the con-

tents of the Job Status Word (see the GET command).

The program currently in core is saved on the device (dev)
specified, with the file name indicated (file.ex). If an extension
is not specified, the extension .SV is automatically added by the
system. If the remaining arguments are not given, the required
information is taken from the current core control block (refer
to the GET command).

1-38

There are some restrictions on the.SAVE arguments which
should be noted: -

1. Each set of limits (a-b) must be in the same field and not
- cross field boundaries. For example:

« SAVE SYS FOO 0200-20200

is illegal since the limits transcend a field boundary.
2. No two sets of limits can overlap; (i.. a-b, c-d must not
overlap). In fact, once a location.on a specific page .is in-
cluded in the limits, any other location on that.core page,
whether overlapping or not, will produce an error message. .
For example:

- SAVE-SYS F00 @-177,280-377 is legal, but

-SAVE SYS FOO @-200,201-377 is illegal.

3. In SAVEs involving‘m-emory fields other than field O, the
field must be specified before-each of the two core limits.
If the field is unspecified, field O is assumed. Thus:

- SAVE SYS FOO 20200-0377 is illegal, while

+SAVE SYS FOO 20200-20377 is legal.

4. SAVE files can include 7600 in any field. However, extreme
care must be taken when manipulating these areas, particu-
larly in fields O and 1, as the system resident code could
be destroyed by GETting area 07600-07777. It is sug-
gested that SAVEs involving 7600 be limited to fields above
field 2.

5. If the first location of a page is not a multiple of 400, that
page cannot be saved without the previous page. Thus the
following commands are equivalent:

.SAVE DSK PROG 2634
:SAVE DSK PROG 2488-2777

1-39

If an error message is printed in response to a SAVE command,
the program currently in core has not yet been saved. The core
1mage however, is still intact.

Examples of SAVE commands are:

;SAVEbDSK CPROG 55, 105008-10577510582

This statement saves the program in core on the disk as a file
named CPROG.SV. The areas of core saved are locations O to
177 in field O and locations 400 to 577 of field 1 (when a single
‘core location or part of a page is indicated, the entire page on
which the locations occur is saved). The starting address of the
program is 502 in field 1. The core control block is updated to
contain this information and the old Job Status Word is taken
intact from the original core control block.

- SAVE DSK CPROG

The above statement causes the program in core to be saved on
device DSK under the name CPROG.SV where the areas of core
to be saved are taken from the core control block currently
available.

ODT Command
The ODT command is of the form:

.ODT
or
.OD

This command causes the system ODT to be loaded into core
and started. ODT is a system overlay, and as such takes up none
of the user’s program area unless the breakpoint feature is used,
in which case ODT uses locations 4, 5, and 6 of every field in
which a breakpoint had been placed. When using ODT to debug
programs, the user-defined device names cannot be used; each
1/0 device must be called by its permanent device name. -

ODT is described in greater detail later in this chapter.

1-40

RUN Command o
The RUN command is of the form:

.RUN dev file.ex
or :
.RU dev file.ex

The RUN command, like the SAVE command, handles only
core-image files. The file indicated (file.ex) on the device speci-
fied (dev) is loaded into core and its core control block is moved
to the system scratch area. The program is started at its starting
address. The RUN command is equivalent to a GET and a START
command. ' ' :
- If an extension to the file name is not specified, the extension
SV is automatically added to the file name. For example:

«-RU DTAl PROG

causes the file PROG.SV on DECtape 1 to be loaded and started.

R Command ,
The R Command is of the form:
.R file.ex .
and is s-irn_ilar to
.RUN SYS file.ex

This command handles only core image files from the system
device. The file is loaded and started. If the file name extension
is not specified, the extension .SV is automatically added.

The R command differs from the RUN command in that a core
control block is not written to the system device. In order to save
a program which does not have its core control block in the usual
location on the system device, all the optional arguments of the

SAVE command must be explicitly stated. System programs are
~most often called using the R command, since they need not be
‘resaved.

To call a program which is to be later updated and saved, use
. of the RUN or GET commands is suggested.

START C omm_and
The START command is of the form:

1-41

.START nnnnn
or
- .ST nnnnn

The program currently in core is started at location nnnnn. If the
argument nnnnn is omitted, the program is started at the starting
address specified in the core control block.

For example:

.ST 108555

-

,starts the program in core at location 555 in field 1.

2 ST,

starts the program at the starting address given in the core control
block.

The START command clears certain areas of core—the device
handler in core table and the Command Decoder output area.

DATE Command
The DATE command is of the form:

DATE mm/dd/yy
or
DA mm/dd/yy

The DATE command sets up the date in the system for purposes
of dating directory entries and listings, printing on program output,
etc. For example:

«DA 3/,13/74

indicates that the date is March 13, 1974.

Keyboard Monitor Error Messages

Table 1-14 lists the generalized and command Keyboard Monitor
errors. All errors return control tc the Keyboard Monitor and the
command must be retyped. xxxx indicates the core location where
the error was detected.

1-42

Table 1-14 Keyboard Monitor Error Messages

‘Message

Meaning

~BAD ARGS

BAD CORE IMAGE

BAD DATE

ILLEGAL ARG.

MONITOR ERROR 2 AT xxxx
(DIRECTORY I/0 ERROR)

MONITOR ERROR 5 AT xxxx
(/O ERROR ON SYS)

MONITOR ERROR 6 AT xxxx
. (DIRECTORY OVERFLOW)

name NOT AVAILABLE

name NOT FOUND

NO!!

The arguments to the SAVE com-
mand are not consistent and violate
restrictions listed in 1, 2, 3 under
SAVE command.

The file requested was not a core-
image file (it could have been an
ASCII or binary file).

The date has not been entered cor-
rectly (using slashes), or incorrect
arguments were used, or the date
was out of range.

The SAVE command was not ex-
pressed correctly; illegal syntax used.

Attempt made to output to a
WRITE-LOCKed device, usually
DECtape; or an error has occurred
reading/writing a directory.

An error occurred while doing 1I/0
to the system device. This error is
normally the result of not WRITE-
ENABLing the system device.

This message results if a directory
overflow. has occurred (no room for
tentative file entry in directory).

The device with the name given is
not listed in any system table, or it
is not available for use at the moment
(check the device in question), or
the user tried to obtain input from

“an output-only device (such as the

high-speed paper tape punch).

The file with the name given was not
found on the device indicated, or the
user tried to input from an output-
only device.

The user attempted to start (with
ST) a program which cannot be
started. The user must not restart
any user program or system library

1-43

Table 1-14 Keyboard Monitor Error Message (Cont.)

Message

Meaning

NO CCL!

SAVE ERROR

SYSTEM ERR

TOO FEW ARGS

USER ERROR 0 AT xxxx

abcd?

program which modified itself while
in core (bit 2 of the Job Status Word
is set; see the GET command for
details). ;

The command was not a legal key-
board monitor command. It was, how-
ever, a valid CCL command, but the
file CCL.SV was not found or an
I/0 error occurred while trying to
read the file.

An I/O error has occurred while
saving the program. The program re-
mains intact in core.

An error occurred while doing /0
to the system device. The system
should be restarted at 7600 or 7605.
Do not press CONTinue, as this is
sure to cause further errors.

An important argument has been
omitted from a command. For ex-
ample,

<RUN DSK

would generate this message, as the
program to be run has not been
entered in the command.

An input error was detected while
loading the program. xxxx refers to
the Monitor location where the error
was generated.

Where abcd is not a legal command;
for example, if the user typed:

<HELLO
the system would echo:

HELLO?

1-44

COMMAND DECODER ,

Once a system program has been called via the Keyboard Mon-
itor, that system program may make use of the Command Decoder
by permitting the user to enter a list of I/O files and devices. The
- Command Decoder prints an asterisk (*) at the left ‘margin to
indicate it is ready to accept a command string.

The Command Decoder uses the same keyboard characters as
the Keyboard Monitor for the purpose of correcting typing mis-
takes. The RUBOUT key deletes one character per rubout. The
CTRL/U (tU) combination deletes an entire line. CTRL/C re-
turns the user to the Keyboard Monitor, and the LINE FEED key
causes the entire line (preceded by an asterisk) to be prlnted on
the terminal as it appears in the TTY input buffer.

The description of files, file names, extensions, devices, and de-
vice names is contained in the section concerning the Keyboard
Monitor; this description pertains to the Command Decoder as
well. ’

Command Decoder Input String
The expected string for I/O specification takes the form:

DEV:OUTPUT FILES<DEV:INPUT FILES

(While the left angle bracket (<) is the accepted divider character
between output and input files, the back arrow (<) may also be
used.) There may be 0-3 output files and 0-9 input files, depending
.on the requirements of the individual system program. The par-
ticular I/O string used with each system library program is de-
scribed in its respective section.

For example:

>!<_DTA1 tXY1,LPT:<DSK:PROG

The PALS assembler would use the first output file (DTA1:XY1)
for the binary output of the assembly and the second output. device
(LPT:) for the listing. DSK:PROG or PROG.PA 1s the input
source file.

Multiple file specifications are separated by commas. If no out-
put files are indicated, the left angle bracket can be omitted. For
example:

1-45

*DSK: PROG

would cause the file PROG on device DSK to be accepted as an -

input file.

The forms in which I/0 files may be specified in a command

string are illustrated below:

File Specifications

Form . Example

DEVICE:FILE %DTA3:FILEL
NAME :

DEVICE: *LPT:

FILENAME- xNaAME<DTA2:PROG

Meaning

The I/0 file is to be found
under the specified name
(FILE1) on the device indi-
cated (DTA3:)

When a device is indicated
without an associated file name,
the device is usually a non-
directory device. (If a direc- .
tory device is used, the device
can be read, but not written;
for example, referencing DTAO

~causes the entire DECtape
Unit O to be used as the input
file. DSK: is always the default
output device.)

A file name used without an
associated device indicates
that the file will be found on
an assumed device. For all
output files and the first input
file, the device is assumed to
be DSK:. The example indi-
cates DSK:NAME as an out-
put file. For input files after

1-46

File Specifications |

-

Form Example

Meaning

the first, the device is assumed

to be the device of the pre-

vious entry. For example:

*DSK:PROG1<DTAl:FILEl,FILE2,FILE3"

causes the three input files to

‘be taken from DTAL. |

- NULL FILE
*>LPT<DTA1:QUEST,DTA2: STAR

The absence of an explicit
file specification has different
meanings in context, and is in-
dicated by a comma which is
not preceded by a file desig-
nation. For output files, a null

file indicates that there is no
output file for this position. If

the example given were an in-

‘put line to PALS, the first out-

1-47

put file (binary) would not
be generated, but the listing
would be output to the line
printer. ‘For input files, a null
file indicates that the device
of the most recent entry is to
be used as a mnon-directory
device:

#DSK:A<PTR:,,

This input string allows three
paper tapes to be read from
the high-speed reader.

EXAMPLES OF COMMAND STRINGS

Some examples of command strings specifying I/O are shown
below with appropriate explanations.
Example 1:

*DSK:BINARY,LPT:<S0URCE

The file named SOURCE is the input file on device DSK: The
two output files are BINARY on DSK, and a second file on the
line printer (LPT). The PALS8 assembler uses this format; how-
ever, the assembler also adds the extension .BN onto the file
labeled BINARY. Thus, the output file on device DSK: will be
named BINARY.BN.

Example 2:

*INPUT1, INPUT2, INPUT3,PTR:?,

This is a string of input files with no output file. Notice that the
left angle bracket is not necessary if there are only input files spec-
ified. This type of input might be given to one of the loaders
(which do not require output files). Three files are taken from
device DSK and then two are taken from the paper tape reader
(PTR:)). '

Example 3:

*DTA2:A,B<XYZ:C»>D

The input files C and D aée taken from device XYZ (which could
be any device with the user-defined name XYZ). The- output
files are a file named A on DTA2 and a file named B on DSK.

Example 4:

*,LPT:<SRC

The input file is named SRC and is on DSK. The two output files
specified are one null file (no output file in that position) and a
file to be sent to the line printer (LPT).

Example 5:

*PTR:,,DTAL:X

1-48

As in Example 2, this is another input only file string. The first

input file comes from the paper tape reader, as does the second

(PTR:,,). The third input file is named X and is on DTAL.
Example 6: ' '

*A<TTY:

Both input files in ihis example come from the Teletype (gener-
ally the low—speed reader). The single output file is named A and
is stored on DSK. _

INPUT/OUTPUT SPECIFICATION OPTIONS

In addition to output and input files which are indicated on the
file specification line to the Command Decoder, there are various
options which can also be indicated on this line. These options
are interpreted by the individual system programs and are covered
in detail in the sections describing the various programs. Options
are ‘either numbers or alphanumeric option characters.

Numbers used as options are generally contained in the
command line with the equal sign (=) or square brackets ([.])
construction. The alphanumeric option characters are set off from
the 1/0 specifications by the slash (/) character for single char-
acter options, and parentheses for a string of single characters.
The usage of the slash, parentheses, equal sign, and square
- brackets is explained below. These explanations will serve as
references and format specifications once the user has learned from
reading about each individual program which options he will be
needing. |

The format for input to the Command Decoder looks generally
like the following: :

DEV:OUPUT FILES<DEV:INPUT FILES/OPTIONS

The Slash Construction ‘ ‘

A single alphanumeric option character is preceded by a slash
and can occur anywhere in the input line, even in the middle of a
name, although the usual position is after the file specification. For
example:

*TTY:/L<DSK:AB

1-49

is equivalent to:
*TTY:<DSK:AB/L

The option specified is L, which PIP interprets as a command to
list the DSK directory beginning at file AB.

The Parentheses Construction

Any number of option characters can be grouped together in-
side parentheses. This construction is also valid anywhere in the
input line. For example: |

*¥0UT:X<IN:Y(AQZ)

is equivalent to:

*OUT: X<IN:Y/A/Q/Z

The Equal Sign Construction

An octal number up to seven digits long and preceded by an
equal sign (=) may optionally be used as an indicator. This
construction is often used to set a starting address, but may be
assigned other functions as well. It may only occur once in a line
and must be followed by a separator character (comma, left
angle bracket, back arrow, ALT MODE key or RETURN key)
or by other options and a separator character. The following
example uses the equal sign construction and indicates three sep-
arate options:

*FILE1=1002(ARX),FILE2

Interpretation of oﬁtions and = sign numbers varies depending
upon the program which called the Command Decoder. See the
individual system programs for details.

The Square Bracket Construction

The square bracket conmstruction can only occur immediately
after an output file name and consists of an open bracket, a decimal
number between 1 and 255, and a close bracket. The square

1-50

bracket construction is generally only used by the more sophis-
ticated user to optimize file storage.

The open bracket ([) is produced by holding down the SHIFT
key while typmg a K (i.e.,, SHIFT/K); the close bracket (]) is
produced by typing a SHIFT/M. This construction is used to
provide an upper limit on the numbér of blocks (256 words per
‘block) to be contained in the output file in order to allow the
system to optimize file storage. For example:

*BINARY[191,LISTINGL2001<SOURCE/ 8

The output files are a file named BINARY on device DSK: having
a maximum length of 19 blocks, and a file name LISTIN (only
six characters are significant) on the device DSK with a maximum
length of 200 blocks. The input file is SOURCE on device DSK;.
the option spec1ﬁed is 8, which is interpreted by the program
- being run.

Command Decoder Error Messages

The following is a complete list of the error messages which the
Command Decoder generates if a command string is improperly
input.

Table 1-15 Command Decoder Error Messages

Message _ v : Meaning

ILLEGAL SYNTAX The command line was formatted .in-
- correctly or contains illegal characters.

name DOES NOT EXIST The device with the name specified
could not be found in the system tables.

name NOT FOUND The file with the name specified does
. - not exist on the device indicated.
TOO MANY FILES More than three output files or nine

input files were specified. Some pro-
grams may restrict the user to fewer
files. :

1-51

CCL (CONCISE COMMAND LANGUAGE)

CCL (Concise Command Language) provides the OS/8 user with
an extended set of Keyboard Monitor commands. Some CCL
commands allow the user to call a system program indirectly, per-
form an operation, and return to the Keyboard Monitor. These
commands are more concise than the usual calling sequence of a

program. For example, instead of typing the following to call
PALS:

+R PALB
*FILE,LPT:<FILE

CCL can be used by typing the following command:

«PAL FILE-L

Other CCL commands perform functions not performed by
other OS/8 programs. : :

The user may write his own CCL commands and add them to
CCL. See the OS/8 Software Support Manual for instructions on
adding CCL commands.

CCL Commands

CCL commands are entered at the terminal in the same manner
as Keyboard Monitor commands, in response to the dot printed.
Normally, CCL commands are terminated with a carriage return.
Depending upon the command being used, control may return to
the Monitor when the operation is completed or may remain within
another OS/8 program. If the user wishes to remain within control
of another program when control would normally return to the
Monitor, he can terminate the CCL command with an ALTMODE.
This termination procedure is the reverse of the way in which most
OS/8 programs operate.

CCL COMMAND FORMAT

The full CCL. command keyword need not be typed; each com-
mand has letters that are required. The CCL commands are listed
below in alphabetic order. Letters that are not required are printed
in italics, e.g., the CREATE command is shown as follows:

1-52

CREATE -
to indicate that only the letters CREA are required.

BACKSPACE
BOOT

" CCL
COMPARE
COMPILE

- COPY

CORE

- CREATE

'CREF

DATE

DEASSIGN

DELETE

DIRECT

EDIT

EOF

EXECUTE :
HELP | | -
LIST)
LOAD

MAKE

‘MAP

- MUNG

PAL

PRINT

PUNCH

RENAME

RES

REWIND

SKIP

- SQUISH

SUBMIT
TECO
TYPE
UA
UB
uC
UNLOAD
VERSION
ZERO
1-53

In some cases, there are two commands to run a program. For
example, the MAKE and TECO commands both run the TECO
program, as does the R TECO command.

Most CCL commands are entered by typing the command fol-
lowed by an argument of the form:

dev:output files<dev: input files/options

This is the I/O specification format used by the Command
Decoder. The slash construction and the parentheses construction
can be used to include options in the program being run by CCL.
If no input device is specified, DSK is assumed. If a file name is
specified with no extension but is followed by a dot, no default
extensions are tried. The actual format for each command is shown
in the command discussion. ‘

CCL remembers arguments used by some CCL commands, e.g.,
" COMPILE, and can use these arguments in other commands.
(This procedure is explained for each CCL command to which it
applies.) If, however, the DATE command is used to change the
current date, the remembered arguments are erased. Commands
which require remembered arguments produce a BAD RECOL-
LECTION message if no previous argument existed.

CCL COMMAND OPTIONS

Some CCL commands assume the inclusion of options that
would have to be specified if the OS/8 program were called
directly. The DELETE command, for example, runs the FOTP
program, including the /L and /D options. Other options may be
included in the command line with the slash or parentheses con-
struction. |

CCL also has options that may be ‘included in a CCL command
line. These options are of the form: '

—ex
where “ex” is one of the options specified in Table 1-16.

1-54

Table 1-16 CCL Options

Option ' Meaning

-L Send output to LPT.

-LS Generate a listing file (used with the COMPILE EX-
ECUTE, and PAL commands). The listing file is written
onto SYS if no output device is specnﬁed and is given a
.LS extension.

-MP Generate a core map (used with the COMPILE, EX-
ECUTE, and PAL commands).

-NB Do not create a binary file (used with the COMPILE, EX-
ECUTE, and PAL commands).

-P Send output to PTP.

-S Send output fo TV.

-T Send output to TTY.
WILD CARD CONSTRUCTION

Certain CCL commands that run the FOTP or DIRECT pro-
grams may use a wild card construction. These commands are
COPY, DELETE, DIRECT, LIST, RENAME, and TYPE.

The wild card construction means that the file name or. the ex-
tension in a CCL command may be replaced totally with an
asterisk or partially with a question mark to designate certain file
names or .extensions. The asterisk is used as a wild field to
designate the entire file name or extension. For example:

- TEST1.* All files with the name TEST! and any extension. -
*BN . All files with a BN extension and any file name.
* ¥ All files.

The question mark is used as a wild character to designate part
of the file name or extension. A question mark is used for each
character that is to be matched; e.g., PR?? matches all files begin-
ning with PR that are two to four characters long. For example:

TEST2:B? All files with the name TEST2 and any extension -
_ beginning with B.
TES??.PA All files with a PA extension and any file name
from three to five characters long beginning with
TES. _ .
7.7 ‘All files with file names of two characters or less.

1-55

The asterisk and the question mark can be specified together in
the same command line:

7279, % All files with file names of three characters or less.

A specification may not contain embedded *’s, e.g., A*B.* is
an illegal specification and will produce the following message:

ILLEGAL SYNTAX

If an * or ? is included in a command other than COPY,
DELETE, DIRECT, LIST, RENAME, or TYPE, the following
message appears: '

ILLEGAL * OR ?

See the FOTP section of Chapter 2 for more detail about using
the wild card construction. '

INDIRECT COMMANDS (@ CONSTRUCTION)

When many file names and options are to be included in a
single CCL command, they can be put into a file and thus need
not be typed each time they are required. This is accomplished by
the use of the @ file construction, which may appear anywhere
within the argument portion of a CCL command. The (@ con-
struction is of the form:

(wdev:file.ex

If dev: is omitted, DSK: is assumed. The word file must be a file
name. If the extension (ex) is omitted, .CM is assumed.

The information in the specified file is then put into the com-
mand string to replace the characters (@ file.ex. For example, if the
file FLIST.CM contains the string:

FILEB,FILEC/L,FILED
then the CCL command

+«COMPILE FILEA,FILEB,FILEC/L,FILED, FILEZ
could be replaced by the CCL command

«COMPILE FILA,@FLIST,FILEZ
1-56

Carriage returns and line feeds within the file are ignored, but nulls
are not; the nulls signify end-of-line. Command files may not ex-
ceed one block in length. If a command line is more than 512
characters in length, the following message is printed:

COMMAND LINE OVERFLOW

NONSTANDARD FILE NAMES (# CONSTRUCTION)

In rare instances, a user may create a file that has a file name
unacceptable to OS/8. For example, a file name could contain
embedded spaces: ABC D.EF. CCL provides an alternate means
of specifying an 8-character file name (6 characters of name and 2
of extension, separated by a dot). The alternate specification is a
16-digit sequence of octal numbers which represent the internal
" packed 6-bit representation for the file name. These octal digits are
preceded by a # to identify them as an alternate file name.

For example, the file name:

ABC D.EF
could be replaced by:
#0102036404000506

The 64 is the octal representation for a space. Note that all 16
digits must be given to use the alternate specification even though
the file name does not contain 16 digits. This is done by specifying
00 for any nonexistent characters. If all 16 digits are not present,
.CCL prints the message: ‘ "

BAD NUMBER

See Appendix A for a table listing the 6-bit octal code to be
used in the alternate file name construction.

BACKSPACE Command

The BACKSPACE command runs the OS/8 CAMP program
and spaces a magnetic tape or cassette backward a specified num-
ber of files or records. This CCL command works in exactly the
same way as the CAMP BACKSPACE command. When CAMP
has completed a backspace operation, control returns to the Key-
board Monitor. See the CAMP section of Chapter 2 for a detailed
explanation of the BACKSPACE command.

1-57

BOOT Command ‘ ’

The. BOOT command chains to the OS/8 BOOT program,
allowing the user to bootstrap onto another device or onto another
PDP-8 system. The BOOT command is of the form:

BOOT/dv

where dv is a mnemonic listed in Table 2-5 in the BOOT section of
Chapter 2. For example, the command:

« BOOT /RF

bootstraps onto the RFO8 disk. _
If the user wishes to halt before performing the actual bootstrap,
he can type the BOOT command followed by a period, e.g.

« BOOT #CA.

The computer will halt, allowing the user to mount a new device.
Pressing the CONT switch completes the bootstrapping operation.
This form of the BOOT command is particularly useful when only
a single disk or DECtape drive exists on the system.

. CCL Command

The CCL command disables the CCL program on the OS/8
Keyboard Monitor residing on the system device. This command
has no arguments and is of the form:

«CCL

When the CCL command is used, the CCL feature of OS/8 is
deactivated; OS/8 will not accept CCL commands. If CCL is
desired at a later time, it must be reactivated with the R command,
ie.,

+R CCL

COMPARE Command

The COMPARE command runs SRCCOM and compares two
source files line by line and prints all their differences. This com-
mand has the form:

1-58

.COMP dev:ﬁle.ex<dev:ﬁle.ex,dev:ﬁle..ex

See the SRCCOM section of Chaptef 2 for a complete descrip-
tion of SRCCOM.

COMPILE Command
The COMPILE command produces binary files and/or compﬂa- _
tion listings for the specified program files. The assémbler or com-
piler used is determined by the source file extension.
The COMPILE command is of the form:

.COM file.ex<file.ex

Table 1-17 lists the extensions and the compiler or assembler to
~ which the COMPILE command will chain.

Table 1-17 Compiler/ Assembler Extensions

Extension Program
.BA BASIC
FT FORT if present on SYS when CCL was enabled; other-
wise F4,
.PA PALS
.RA RALF
.SB SABR

~ If no extension is explicitly given, each possible extension is
tried in order until one is found and the appropriate compiler is
invoked. If no output file name is specified, the name of the first in-
put file is assumed.

If -a nonstandard OS/8 file extension is used i.e., other than
those listed in Table 1-17, a processor switch of the form.

-€X

can be included in the command line to indicate the compiler/
assembler to which COMPILE must chain. This processor switch
must be a legal 2-character OS/8 extension. For example, to
assemble a file named HANDLR 03 with the PALS8 assembler, the .
user would type:

« COMPILE HANDLR.23-PA

1-59

Each time the COMPILE, LOAD, PAL, or EXECUTE com-
mand is executed, the command with its arguments is remembered
in a temporary file. Therefore, the file name used last can be
recalled for the next command Wwithout specifying the arguments
again. If, for example, the EXECUTE command:

« EXECUTE TEST1.PA

was entered previously, thén the COMPILE command to specify
TEST1.PA could be:

« COMPILE

COPY Command

The COPY command transfers files from one OS/8 1/0 device
to another. The command string ¢an contain one output specifica-
tion and from one to five input specifications. This command runs
FOTP and includes the /L option among any other options
specified by the user.

The COPY command is of the form:

.COPY dev:file.ex<dev:file.ex

. When the user enters a COPY command, the message:

FILES COPIED:

is printed and each file copied is listed on the terminal.
Examples:
The following command copies all files with .FT extensions from

DTAO to DSK.

«COPY DTAB:*.FT
FILES COPIED:
PROG1.FT
DTA3.FT

TEST.FT

The following command transfers all files from four to six char-
acters long beginning with FILE and having any extension.

1-60

+COPY DTA2:<DTAB:FILE??.%
FILES COPIED:

FILE1.PA
FILE2.PA

~ FILEX.DA

FILEZ+BN

- To understand the COPY operatlon see the FOTP SCCthI‘l of
Chapter 2. :

CORE Command

The CORE command can be used in two different ways. One
way is the same as the CORE command in BUILD to specify the
highest core field available to the OS/8 system. This form of the -
CORE command is:

.CORE n

where n is an octal number in the range O to 7, specifying the num-
" ber of 4K core banks-available to OS/8. The following table indi- -
cates the value of n for the available core sizes. :

core

all available core
8K

12K
16K

20K

24K

28K

32K

<

NN WD ~=O B

For example a system which is to use only 20K of a 32K system
‘would have the following CORE command:

«CORE 4

The other form of the CORE command is the command typed .
without an argument. When this form is used, the amount of core
actually in use by OS/8 is printed on the terminal. For example, if
a 32K system has been restricted to 20K by the. CCL or BUILD

CORE command, the following would appear:

+« CORE
2PK 732K CORE!

1-61

If all available core is in use on a 32K system, the following would “
be printed.

« CORE
32K CORE!

CREATE Command

The CREATE command runs EDIT (the OS/8 Symbolic
Editor) and opens a new file for creation. The file specification -
must consist of a single output file only. For example:

« CREA TEST1.FT

is the same as

+R EDIT
*TEST1.FT<

If no argument is given, the argument used in the last CREATE or
EDIT command is assumed. See the Symbolic Editor section in
this chapter for a detailed explanation of EDIT.

CREF Command _

The CREF command runs the PAL8 assembler, including the
/C option which causes PALS8 to chain to the CREF program.
CREF produces a cross-reference listing file. If no listing file is
specified, the listing is sent to the line printer. For example, the
following command produces a CREF listing of the file DSK:
PROG.PA on the line printer.

« CREF PROG

DATE Command

If an argument is given with the DATE command, it is treated
as the standard Keyboard Monitor DATE command. If no argu-
ment is given, this command prints the current day and date on
the terminal or prints NONE if no date was specified. For example:

« DA
THURSDAY JANUARY 31, 1974

If the user has created a file named DATE.SV, the DATE com-
mand runs that program, allowing the user to implement messages
of the day.

1-62

DEASSIGN Command

The DEASSIGN command is exactly the same as the Keyboard
Monitor DEASSIGN command. If CCL is enabled, CCL performs
. this function instead of the Monitor.

- DELETE Command

The DELETE command deletes one or more files from disk or
DECtape. The command string can contain one output specifica-
tion and from one to five input specifications. This command runs
FOTP and includes the /D and /L options among any other
options specified by the user.

The DELETE command has the form:

.DEL dev:file.ex<dev: file.ex/options
When the user enters a DELETE command, the message:

FILES DELETED: . -

is printed and each file deleted is listed on the terminal.
Examples: - :

The following example deletes any DSK file with a .BN exten-
sion if a file with the same name and a .PA extension exists on
DSK.

« DEL *.BN<x.PA
FILES DELETED:
TEST1.BN
TEST2. BN

The following example deletes from DTAOQ aﬁy file of five or
less characters that begins with DATA and has any extension.

+DEL DTABR:DATA?.*

FILES DELETED: .

DATAl1.PA . ' .
DATAY.LS

DATA3. BN

DATAG6. PA

To understand the DELETE operation, refer to the FOTP
section of Chapter 2. :

1-63

DIRECT Command _

The DIRECT command produces listings of OS/8 device
directories. The directories produced can be of several varieties,
depending upon the options specified in the DIRECT command
line. The standard directory listing consists of the following
columns: file name, file name extension, length in blocks written,
and creation date. The DIRECT command runs the DIRECT
program. See the DIRECT section of Chapter 2 for a complete
description of DIRECT and the available options.:

In addition to the DIRECT options specified, the CCL options
-L, -P, -T, and -S .can be used in the DIRECT command line. For
example, the command: '

.DIR DTAl:/sC-L
is the same as

« K DIRECT
x|, PT:<DTA1: /C

Both these commands will list on the line printer all files with
the current date that exist on the DECtape on DTAL.

EDIT Commands-
The EDIT command runs EDIT (the OS/8 Symbolic Editor)

and opens an already existing file for editing. For example, the
CCL command:

«EDIT DATAL

is the same as:

«Fk EDIT
*DATA1<DATAL

For a detailed explanation of EDIT, refer to the Symbolic Editor
section in this chapter.

If no argument is given, CCL assumes the argument used in the
last CREATE or EDIT command. If the EDIT command is used
with the < option, e.g.,

«EDIT TEST3<TEST2

1-64

CCL remembers the argument up to but not including the <. Thus
the next EDIT command_ with no argument will edit the file TEST?3.

EOF Command

The EOF command runs the CAMP program and writes a single
mark (file gap) on the specified magnetic tape or cassette. The
EOF command has the form:

.EOF dev:

where “dev” may be either MTAn or CSAn, signifying the device
on which the file mark is to be written. For example:

.EOF MTA3:

writes an end-of-file mark on the magnetic tape mounted on MTA3.

The CCL EOF command operates in the same way as the
CAMP EOF command. See the CAMP section of Chapter 2 for a
detailed explanation of the CAMP commands. ‘

EXECUTE Command

The EXECUTE command produces binary files and/or com-
pilation listings for the specified program files, loads the binary
file, and executes the program. The EXECUTE command has the
form:

.EXE file.ex file.ex

The assembler or compiler used is determined by the source file
extension. In addition to the extensions listed in Table 1-17, the
EXECUTE command includes the following:

Extension | Program
.BN ABSLDR
.RL - LOADER or LOAD

If no file is specified, a search is made for a file with one of the
above extensions. The first such file found is executed.

The EXECUTE command, like the COMPILE command, will
accept processor switches in the -ex form to control the compiler or

assembler used.
Each time the EXECUTE, LOAD, PAL, or COMPILE com-
mand is executed, the command with its arguments is remembered

- 1-65

in a temporary file. If no argument is specified in a EXECUTE
command, CCL remembers the argument of the last COMPILE,
PAL, or LOAD command. For example, if the COMPILE com-
mand:

+COMPILE FILEl.PA

was previously executed, thén the EXECUTE command to specify
FILE1.PA could be: .

« EXECUTE

UEsrp Cnrnrnnn/f

The HELP command prmts useful information on specified
OS/8 programs. Each OS/8 program has a HELP file (.HL ex-
tension). It is these HELP files that are printed when a HELP
command is issued.

If OS/8 software was supplied on DECtape (or LINCtape), the
HELP files are present on System Tape #2 and can be run by
mounting that tape and specifying the unit in the HELP command.
For example, to print the HELP file for FOTP from the DECtape
mounted on DTAI, type: .

+HELP DTA1l: FOTP

If the OS/8 software is supplied on paper tape, the HELP files
are on DEC-S8-OSYSB-A-PA. The HELP file tape is composed
of separate segments with a short length of leader/trailer code be-
tween them. The files are listed below in the order that they appear
on the tape. These file segments must be separated and labeled be-
fore they can be used.

DIRECT.HL
BATCH.HL
SABR.HL
PIP.HL
FOTP.HL
ABSLDR.HL
PIP10.HL
BOOT.HL
LOADER.HL

1-66

BITMAP.HL
EDIT.HL
CREF.HL
BUILD.HL
PALS.HL
ODT.HL
SRCCOMHL
CCL.HL
TECO.HL
FORT.HL
LOAD.HL
LIBRA.HL
EPIC.HL

The HELP files must be transferred onto the system device.
This is done by using PIP to load the paper tape and save the file
on the system device. For example, to load and save CCL.HL, the
user puts the appropriate tape in the reader and types the following:

«R PIP ' -
*CCL.HL<PTR:$ $=ALTMODE

If the OS/8 software is supplied on cassettes, the HELP files
must be transferred onto DSK with MCPIP. OS/8 HELP files are
supplied on the system cassette DEC-S8-OSYSB-A-TC4. To load
and save a HELP file, mount this cassette on cassette unit 0, drive
0. For example to load CAMP.HL from the cassette mounted on
CSAOQ, type:

«R MCPIP
*DSK: CAMP.HL<CSA@: CAMP.HL

Once the desired HELP file is present on DSK, the HELP com-
mand can be issued by specifying the desired file name. If no ex-
tension is specified, the .HL extension is assumed. If no file name is
specified,, CCL.HL is assumed. The HELP file is prmted on the
terminal if no output device is specified.

LIST Command .

 The LIST command lists the contents of the specified file on the -
specified device. This command runs FOTP and includes the /U
option. The LIST command has the form: |

1-67

LI dev:file.ex<dev:file.ex

If no output device is specified, LPT is assumed.

LOAD Command
The LOAD command runs one of the OS/8 loaders, depending

on the extension of the first speaﬁed input file. The LOAD com-
mand is of the form:

.LO file.ex

A BN extension runs ABSLDR. A .RL' extension runs
LOADER (or LOAD). If no extension is given, a search is made
for a file with one of these extensions. The /G option may be
specified to start execution of the program after it is loaded. If no
argument is given, CCL remembers the argument of the last COM-
PILE, PAL, or EXECUTE command.

MAKE Command
The MAKE command runs TECO and opens the specified file
for output. The MAKE command has the form:

.MA dev:file.ex

If no device is specified, DSK is assumed. If no file extension is
specified, .PA is assumed. If the ﬁle specified aiready exists, CCL
prints the message:

%ZSUPERCEDING

Example:
The CCL command:

«MA DTA1: TEXT.TX

is the same as the following:

+«kR TECO
*EWDTA1: TEXT. TX $8

1-68

To use the MAKE command, the llser. must be familiar with
TECO as explained in Chapter 2. -

MAP Command
The MAP command runs BITMAP and produces a core map of
the specified file. The MAP command is of the form:

MAP dev:file.ex

If no output device is specified, TTY is assumed. If no extension
is specified, .BN is assumed.

Example:
The CCL command:

«MAP TEXT,DATA
is the same as

« R BITMAP
*TTY:<TEXT.BN,DATA. BN

See the BITMAP section of Chapter 2 for a complete explana-
tion of the BITMAP program.

MUNG Command _
The MUNG command allows the user to operate on source files
and text using a predefined TECO macro. This command has the
- form:

.MUNG dev:file.ex text

The MUNG command runs TECO which reads the first page of
the specified file into Q-register Y. The contents of this file are
assumed to be a TECO macro. If no extension is specified, .TE is
~assumed. If a dot is typed after the file name, no extension is
assigned.

After the page is read in, all text between the comma and the
end of the line is entered into the TECO text buffer. This text is
presumed to be an argument to the macro. If no text is desired, no
comma is necessary. With the text pointer at the end of the buffer,
the macro in Q-register Y is executed. In the following example, the
text will specify source files to be edited by the TECO macro.

If the text argument is too long, CCL prints the error message:

COMMAND TOO L NG

1-69

Example:

This example assumes that the user wishes to remove the line
feeds from several files that contain carriage return and line feed
characters at the end of each line. This operatlon is desirable for
certain data files. "

To perform this operation, the user has created a file called
MACRO.TE. This file contains the following.

HX ! Argument to Q-register 1
! HKGY! Move macro into text buff
! J2SFILE$-4DG1! Enter argument into macro
! J2SSTART!$0, .K! Remove preamble
!SI HKXYS! Insert command to kil Y
! HXIM1! Move text buff into Q-register 1
and execute as macro
11START!
EBFILES! Open file

* * * Any user TECO code may be substituted here * * *

1 <N

§-D> ! Search for and remove line feeds
! EX! Exit back to Monitor

To remove the line feeds from a series of files, the user specifies
the name of the above file (MACRO.TE) and the name of the file
from which the line feeds are to be removed. For example:

.MUNG MACRO,FILEl.DA
.MUNG MACRO,FILEZ2.DA
.MUNG MACRO,FILE1@.DA

PAL Command

This command runs PALS8 and assembles the source file specified
as the argument of the PAL command. The PAL command has the
form:

PAL file.ex

If no extension is. given, a search is made for a file with a .PA
extension. If no argument is given, CCL remembers the argument
of the last COMPILE, EXECUTE, or LOAD command.

See Chapter 3 for a detailed explanation of PALS.

1-70

PRINT Command

The PRINT command runs a program named LPTSPL, if the
user has such a program on his OS/8 system. This can be a user-
written program or a program obtained from DECUS. .

PUNCH Command ‘
The PUNCH command runs PIP and punches the file spec1ﬁed
on paper tape. This command has the. form:

PU dev:file.ex<dev:file.ex
If no output is specified, PTP is assumed.

RENAME Command
- The RENAME command renames one or more files on disk or
" DECtape. The command can contain one output specification and
one input specification. RENAME changes the name of the file
from the input file name to the output file name. This command
runs FOTP and includes the /R optlon The form of the RENAME
command is:

.REN dev:ﬁle_.ex<dev:ﬁle.ex

When the user enters a RENAME command, the message:

FILES RENAMED:

is printed and each file renamed is listed on the terminal.
Examples:

«REN DTAG:FILE@.TX<DTA@:FILE1.TX
FILES RENAMED:
FILE1.TX

« REN NEWONE. BN<OLDONE. BN
FILES RENAMED: :

OLDONE.« BN

RES Command
- The RES command runs the RESORC program and lists the

device handlers present on an OS/8 system. This command has the
form: '

.RES dev:file.ex<dev:file.ex/options
1-71

Any option allowed on a RESORC command line is allowed
with the RES command. See the RESORC section of Chapter 2 for
a detailed explanation.

REWIND Command

The REWIND command runs the CAMP program and issues a
rewind command to a specified OS/8 device controller. This com-
mand operates in the same way as the CAMP REWIND command.
See the CAMP section of Chapter 2 for a complete descrlptxon of
the REWIND command.

SKIP Command

The SKIP command runs the CAMP program and advances
over the number of files or records specified on a magnetic tape.
" See the CAMP section of Chapter 2 for a complete description of
the SKIP command.

SQUISH Command
The SQUISH command runs PIP, including the PIP /S option.
This command has the form:

SQ dev:<dev:

If no output device is specified, the output device is assumed to
be the same as the input device. The following example:

« SEUISH SYS:

is the same as the PIP command:

*5Y St <SYSs /5%

SUBMIT Command
The SUBMIT command runs the BATCH program. This com-
mand is of the form:

SUBMIT dev:file.ex<dev:file.ex

where the output dev and file.ex are the optional spooling output
file and the input dev and file.ex are the BATCH input file. If no
device is specified, DSK is assumed. If no input extension is speci-
fied, .BI is assumed. See the BATCH section of Chapter 2 for a.
complete description of the BATCH program.

1-72

TECO Command

The TECO command runs the TECO program which then opens
the specified input file for reading and creates an output file. The
TECO command may have one output file and at least one input
file as arguments. If no argument is specified, the argument used in
the last TECO or MAKE command is assumed. If no output file
is specified, TECO does an edit backup on the spemﬁed file. If no -
file extension is specified, .PA is assumed.
Examples:

The CCL command:

« TECO FILE. BA

is equivalent to

«R TECO
*EBFILE. BASY §% .

and the CCL command:

«TECO WINZ2« PA<LTAZ: WIN.PA

is equivalent to

«Rk TECO
WIN2. PASERLTAZ: WIN.PASY $%

The first page of the 'input file is read into the text buffer before
control is returned to the user.
If the TECO command is used with the < optlon e.g.,

«TECO FILEI<FILEZ2

CCL remembers the argument up to but not inclﬁding the <. Thus
the next TECO command with no argument will edit the file
FILEL.

TYPE Command
The TYPE command runs the FOTP program, including the /U
option, and prints the specified file. The form of this command is:

1-73

TY dev:file.ex<dev:file.ex

If no output deviceis specified, TTY is assumed. Thus the CCL
command:

.TY DTAQ: TEST1.DA

is the same as

«R FOTP
*TTY:<DTA@: TEST1.DA/L /U

UA UB, UC Commands

The TTA TTR and UC commands are used to remember and
recall arguments. When one of these commands is typed with an
argument, CCL remembers the argument in a temporary file. This

argument must be a legal CCL command. For example:

«UA COPY DSK:<DTABG:*.FT

If the UA command is then typed without an argument; the last
UA argument is recalled and executed as a CCL command.

UNLOAD Command _

The UNLOAD command runs the CAMP program and jissues a
rewind and turn off line command to the specified magnetic tape
controller. This command may also be used to rewind a DECtape
or to write-lock an RK8E disk. See the CAMP section of Chapter
2 for a complete description of the UNLOAD command.

VERSION Command

The VERSION command prints the version numbers of both the
0S/8 Keyboard Monitor and CCL. This command has no argu-
ments and is of the form:

« VER

ZERO Command
The ZERO command runs PIP, including the /Z option, and
zeroes the device specified. Only file structured devices can be

1-74

specified in a ZERO command. The CCL command:

«ZERO DTA7:

is equivalent to

.R PIP
4DTAT:/2<5%

CCL Error Messages

The following error messages may appear in response to a CCL
command.
Table 1-18 CCL Err(_)r Messages
Messa'ge - Meaning
BAD DEVICE . The d;evice specified in a CCL

BAD EXTENSION

BAD MONITOR

BAD NUMBER

BAD RECOLLECTION

BAD SWITCH OPTION

command is not of the correct
form, (e.g., DTAO.PA:).

Either an extension was specified
without a file name (e.g,
DTA1:.PA) or two extensions

_were specified (e.g.,, DTAT1:

1-75

FILE.PA.BN).
The version of the Keyboard .
Monitor being used is not com-
patible with CCL. A newer ver-
sion of the monitor must be
obtained from Digital before
CCL can be used.

A CCL command which uses
the # construction does not
have the full 16-digit specifica-
tion that .is required.

An attempt was made to use a
previously remembered argu-
ment when no argument was
saved. This error occurs when
no argument was previously
saved or when the DATE com-
mand has been used since the
argument was saved.

The character used with a slash
(/) to indicate an option is not a
legal option.

Table 1-18 CCL Error Messages (Cont.)

Message

Meaning

CANNOT CHANGE CORE

CAPACITY WHILE RUNNING

BATCH
% CAN'T REMEMBER

CCL 3X OVERLAY &
MONITOR INCOMPATIBLE

COMMAND LINE
OVERFLOW

COMMAND TOO LONG

CONTRADICTORY
SWITCHES

name DOES NOT EXIST

ERROR IN COMMAND

ILLEGAL * OR?

ILLEGAL SYNTAX

INPUT ERROR READING
INDIRECT FILE

A CORE command was issued
while the BATCH program was
running,

The argument specified in a
CCL command line is too long
to be remembered or an I/0
error occurred.

The version of CCL being used
is not compatible with the Key-
board Monitor present on the
system. Type R CCL to retry.
The comman line
with the (@ construction is more
than 512 characters in length.
The length of a text argument
in a MUNG command is too
long.

Either two CCL processor
switches were specified in the
same command line (e.g., FILE-
PA-FT) or the file extension and
the processor switch do not
agree (e.g., FILE.FT-BA).

The device with the name given

specified

“is not present on the OS/8

1-76

system,

A command not entered directly
from the console terminal is not
a legal CCL command. This
error occurs when the argument
of a UA, UB, or UC command
was not a legal command.
An*or ? was used in a CCL com-
mand that does not accept the
wild card construction. Only
CCL commands that run FOTP
or DIRECT allow the wild card
construction.

The CCL command line was
formatted incorrectly.

CCL cannot read the file speci-
fied with the (@ construction.

Table 1-18 CCL Error Messages (Cont.)

‘Message

Meaning

I/0 ERROR ON SYS:

I/0 ERROR TRYING TO
- RECALL

NO CCL!
NOT ENOUGH CORE

name NOT FOUND

%SUPERCEDED .

SWITCH NOT ALLOWED
HERE -

TOO MANY FILES

An error occurred ‘while doing
I/0 to the system device. The
system must be restarted at
7600 or 7605 (see Restarting
OS/8 in the Getting On Line
With OS/8 section of this chap-
ter). Do. not press CONT, as

. that will surely cause further

errors.
An I/0 error occurred while

CCL was trying to remember an,

argument.
CCL.SV is not present on the
system device. Refer to the Get-

-ting On Line section of this

chapter for instructions on
loading programs onto the sys-
tem device.

The number. specified in a
CORE command is larger than
the number of 4K core banks
on the system.

The file with the name given is
not present on the specified

device, or the user tried to
input from an output-Only
device.

The file specified in a MAKE

- command already exists. This is

a warning message indicating
that the file is being replaced.
Either a CCL option was speci-
fied on the left side of the < or

. was used when not allowed.

For = example:
FILE-NB.

Too many files were included in
a CCL command.

COMPARE

1-77

.....

SYMBOLIC EDITOR" |

The Symbolic Editor is used to create and modify ASCII source
files so that these files may be used as input to other system pro-
grams (such as FORTRAN, SABR, and PALS).

The Editor considers a file to be divided into logical units called
pages. A page of text is generally 50-60 lines long, and corresponds
approximately to a physical page of a program listing. (Note that
this is nof the same as a core memory page.) The Editor reads
one page of text at a time from the input file into its internal buf-
fer where the page becomes available for editing. The Editor con-
tains commands for creating, modifying, or deleting characters,
lines, or complete logical pages of text.

Calling and Using the Editor
To call the Editor from the system device, type:

R EDIT

in response to the dot (.) printed by the Keyboard Monitor. The
system prints an asterisk (*) at the left margin, and in answer to
the asterisk, the user types the device designation and the output
file name, a left angle bracket, and the input device and file desig-
nation(s). For example:

*DSK:ABC<PTR:,DSK:AAl

causes input from the paper tape reader and from a file named
AA1l on DSK. The output file is named ABC and is stored on
DSK. ‘

Once 1/0 file designations are entered, the Symbolic Editor is
ready to accept commands from the keyboard and signifies its
readiness by printing a number sign (#) at the left margin. This
symbol occurs whenever the Editor is waiting for a command.

Any device which operates in ASCII mode and has a device
handler in the system is available for use by the Editor. For ex-
ample, the high and low-speed reader/punch, DECtape, disk,
card reader and line printer are each legal devices. The Editor
only operates properly on ASCII files, however. No error message
is given if non-ASCII files are input to the Editor, but the results
of operations are garbled. |

1-78

As many as nine and as few as zero input files are permitted.
If the number of input files is zero, (that is, a new file is to be
created using the terminal keyboard) the Editor allows input from
the keyboard via the Append command.? The Editor uses a key-
board input routine which is independent of the OS/8 terminal
handler, thus it is not necessary to specify TTY: as an input device
if text is to be created. (It is, in fact, recommended that TTY: not
be used as an input device, as input buffering may cause a loss of
characters on input.) Commands which attempt to read from any
other device (when no file name is specified) are dlsabled and a
question mark (?) appears when a Read command is attempted..

The Editor allows only one output file. If no output file is speci-
fied, the only output operations which may be performed are: L
(list buffer on TTY) or V (list buffer on LPOS8 line prmter)
EDITOR OPTIONS)

The following three options are the valid 1I/0 spemﬁcatlon op-
tions for the Editor. (The format for I/O specification options has
been previously described in the section detailing the Command
Decoder. After reading these options, the reader is advised to turn
to that section to review the various formats.)

Table 1-19 .Editor Options

| Option Meaning

/A Return control to the Editor after the file is closed (calls
Command Decoder for new files). If /A is not used, con-
trol returns to the Keyboard Monitor.

/B Convert two or more spaces to a TAB when reading from
input device. :

/D Delete the old copy of the output file (if one exists) before
- opening the new output file on the device. If /D is not-
used, the old copy of the output file is not deleted until all
data has been transferred to the new file by an E or Q

" command. :

3 See Example Using the Editor for an illustration of using the Editor to
create a program.

1-79

For example, the I/O specification line:

*DTA2:FILE<DTAl:ARG/D

deletes FILE on DTA2 (if such a file ex_istS) before creating a new
FILE on DTA2.

Special Key Commands to the Editor

The Editor can be considered as operating in two different
modes. During command mode, the Editor prints a # at the left
margin indicating that it is waiting for a command from the key-
board. Text mode is the condition of the Editor when it is process-
ing various editing and I/O commands (such as Insert and Ap-

pend).

The following commands allow the user to transfer between
modes. (These commands are produced by pressing the CTRL
key and the appropriate character key simultaneously.)

Table 1-20 Editor Key Commands

Mode in Which
Command Used Meaning
CTRL/C Text and command Returns control to the Key-

mode

1-80

board Monitor. The text buffer
is retained and the Editor re-
mains accessible to the user
with the START command. In
text mode, text between the last .
carriage return and the 1C is
lost.

The START command can be
used to restart the Editor as
follows:

1C

+ START.

*

START recalls the Command
Decoder to accept new I/0

Table 1-20 Editor Key Commands (Cont.)

Mode in Which |
Command Used : - Meaning

- file designations. When the
START command is given, and
- the previous output file is not
- closed, that output file and the
contents of the output. buffer
are deleted.

CTRL/O Text Mode ~ Stops the listing of text. Re-
: turns control to Command
~ Mode.

CTRL/FORM Text Mode Returns the Editor to Com-

' ‘ mand Mode. .

CTRL/U Text Mode Typing CTRL/U while enter-

ing text from the keyboard
causes text in the current line
to be ignored. A carriage re-
turn/line feed is generated and

* the line may be retyped. (The
command is equivalent to typ-
ing rubouts back to the begin-
ning of the line.)

Other special Editor characters used to represent numbers or
perform erasures are listed in Table 1-21.)

Table 1-21 Special Characters

Character Example k Meaning
«+1C The dot (.) character is used as the
«=TL current line counter character. The
L dot can be used alone, with 4+ or —

an integer, or any place where a
number can be used.

/ /-7L The slash character is similar in use
/=5L to the dot and represents the high-
est numbered line in the text buffer.

. # ' Typing the # in response to Edi-
tor’s prompting # prints the cur-
rent version number of the Editor.

1-81

Table 1-21 Special Characters (Cont.)

Character Example Meaning

RUBOUT Key Typing the RUBOUT key in text
mode deletes one character from
the text buffer and causes a back-
slash to be printed. The erasure is
done right to left up to the last
CR/LF. Typing the RUBOUT-key
in command mode causes the entire
command line to be deleted.

Editor Text Buffer _

In text mode, the Editor performs I/O operations on text stored
within the text buffer. Text is input to the Editor buffer until a
form feed is encountered on input. A line of text is terminated by
a carriage return. If no carriage return is present, the text entered
on that current line is ignored. The buffer has room for approxi-
mately 5600 (decimal) characters. When text has been input to
the extent that there are only 256 decimal locations available in
the buffer, the TTY rings a warning bell. From this point on,
whenever a carriage return is detected during text input, control
returns to the Editor command mode and the TTY bell is rung.
This line-at-a-time input may continue until the absolute end of
buffer is encountered. At this point, no more text will be accom-
modated in the buffer; a ‘?’ is printed and control returns to com-
mand modg. |

'TEXT COLLECTION
The OS/8 version of the Editor contains an automatic text col-
lector which reclaims buffer space following the use of a D (delete),
S (Search), or C (Change) command. Formerly, deleted text was
not physically removed from the buffer; now this text is removed
by the text collector, and the necessary pointers updated. If a full-
buffer condition is reached, the user may output lines of text
(using the Punch command, for example), and then delete these
lines from the buffer—text collection is automatic and always oc-
curs on the three commands mentioned above.

1-82

- NOTE

If extremely large amounts of text are de-
leted, the text collection process could take
several seconds. For small amounts of text,
no appreciable time is lost. |

Search Mode :

There are two types of searches available in the Editor. The
first is_the standard character search, and the second is the char-
acter string search which allows the user to search for a combina-
tion of characters. Each is explained in turn.

SINGLE CHARACTER SEARCH
The single character search is of the form:

or #S
or #nS
#m,nS

where m and n represent’line numbers (m<n), and S initiates the
search command.* This search command searches the entire text
buffer or the line(s) indicated for the search character. The search
character is typed by the user after he types the RETURN key
which enters the command, and does not echo on the terminal
The Editor prints the contents of the entire buffer or the indicated
line(s) until the search character is found. When the search char-
acter is found, printing stops and the user may type one of the
following: : .

Option _ Result
text Enter text at that point at

which the search character was
found and printing stopped.

CTRL/G (TTY bell rings) Change the search character
to the next character typed;
search continues. If the char-
acter is not contained in the
line, the remainder of the line
will be printed and control will
- be returned to command mode.

A command summary is included in Table 1-23 at the end of this section.

1-83

| Option | Result

CTRL/FORM Continue searching for the next
’ occurrence of the character.
RETURN key End line here, deleting all sub-
sequent text on that line.
- LINE FEED key Make two lines out of the cur-

rent line by inserting a car-
~ riage return at this point.

RUBOUT key Delete characters from this
line. Each rubout echoes a
backslash (\) for each char- .
acter deleted. When all char-
acters have been deleted,
echoing of “\’ stops.

CHARACTER STRING SEARCH

The character string search can identify a given line in the buf-
fer by the contents of that line or any unique combination of char-
acters. This search returns the line number as a parameter that can
be used to further edit the text. There are two types of string search
available: intra-buffer search and inter-buffer search.

Intra-Buffer Character String Search

The intra-buffer search scans all text in the current buffer for
‘a specified character string. If the string is not found, a ? is printed
and control returns to command mode. If the string is found, the
number of the line which contains the string is put into the current
line counter and control waits for the user to issue a command.

Thus, searching for a character string in this manner furnishes a
line number which can then be used in conjunction with other
Editor commands. This provides a useful framework for editing,
as it eliminates the need to count lines or search for line numbers
by listing lines.

An intra-buffer search is signalled by typing the ALT MODE
key (which echoes as $) in response to the Editor’s #. The user
then types the string to be found (up to 20 characters long—any
additional characters typed are echoed but not included in the
search). The search string cannot be broken across line boundaries.

1-84

Typing a single quote (”) terminates the character string and
causes the search to be performed beginning at line 1 of the text
buffer.- Use of the double quote (”) causes the search to begin
at the current line +1. (Use of ' and ” as command elements pro-
hibits their use in the search string.)

For example, assume the text buffer contains the following text:

ABC DEF GJO
1A2B3C4D5E6
» STRINGABCD

The user wants to list the line that contains ABC; he types:

#SABC'L
The search begins with line 1 and continues until the string is
found. The current line counter is set equal to the line in which

the string ABC occurred, and the L-.command causes the line to be
printed as follows:

ABC DEF GJO

- Control returns to command mode, awaiting further commands. If
the user wanted to find the next reference to ABC, he could type:

.#I'L

In this case, ” is a command which causes the last “string searched
for to be used again, with the search beginning at the current line

+1. It is not necessary to enter the search string again. The com-

" mand may be used several times in succession. For example, if the
user wanted to find the fourth occurrence of a string containing the
characters FEWMET he could type:

ASFEWMET' »'''"'L

1-85

This command will list the line which contains the fourth occur-
rence of that string. The L. (List) command (or any other com-
mand code) can be given following either ' or ”. The L command
causes the line to be listed when and if it is found.

To clear the text string buffer, the user can type:

o
The system responds with a question mark and the text string
buffer is cleared.

The properties of the commands * and " allow for easy and
useful editing, as the following example illustrates. In order to
change the CIF 20 to CIF 10, the. user can give the following
commands:

#$DUM» ' $CIF 28"'C S '
CIF 10 /NEW FIELD (CTRL/FORM)

The above set of instructions first causes the Editor to start at line
1 and search for the line beginning with DUM,. A search is then
made for CIF 20, starting from the line after the line containing
DUM,. When this string is found, the line number of the line con-
taining the string CIF 20 becomes the current line number. The C
(Change) command is given, and the user then changes the line
to the correct instruction.

Since this search feature produces a line number as a result,
any operations which can be done by explicitly specifying a line
number can be done by specifying a string instead. For example:

#SSTRING' +4L

Will list the fourth line after the first occurrence of the text STRING
in the text buffer. '

#3LABEL 1, '»>SLABEL2, "L

will list all lines between the two labels, inclusive.

#SPFLUG'S

1-86

will do a character search on the line which contains PFLUG. (The
user types the search character after typing the RETURN key that
enters the line.)

- In cases where both strings and exp11C1t numbers are used,
strings should be used first. For example, the following commands:

#1+3BAD! 'L

will not list the next line after the string BAD! occurs. The correct -
syntax is:

#SBAD!'+1L

Inter-Buffer Character Strmg Search :

The inter-buffer search scans the. current text buffer for a char-
acter string. If the string is not found, the current buffer is written
to the output file, the buffer is cleared, and the next buffer is read
from the input device. The search then resumes at line 1 of the new
buffer. This procéss continues until either the string is found or no
more input is left. If input is exhausted, control returns to com-
mand mode with all the text having been written to the output file.
If the string is found, control returns to command mode with the
current line equal to the number of the line containing the first
occurrence of the string. For example, a command to find the
character string GONZO may appear as follows:

#J
$GONZO'
#-—@@24

The J command . initiates an inter-buffer search;.the $ is printed
automatically by the Editor, and the -user types in the character
string to be sought. The search proceeds, and when' the string is
found, control returns to command mode. The user types the .=
construction to discover the number of the line in the current buffer
on which the string is contained. To find further occurrences of the
string GONZO, the user can use the F command. The F command
uses the last character string entered to search the buffer starting
from the current line count + 1.

1-87

#F

;#_-=®1®6

The above example causes a search for the string GONZO starting '
at the current line + 1. If no output file is specified to the J or F
commands, the Editor reads the next input buffer without attempt-
ing to produce any output. This provides an easy way of paging
through text for a particular string.

After the J or F commands have processed the ¢ntire input file,
it is necessary to execute either an E or Q command to close the
output file. If this is not done, the file will-be deleted by the
Monitor. _ :

The following two commands may be used to abort the string
search command, once given:

Command Explanation
CTRL/U A CTRL/U will return control to the Editor com-

mand mode if executed while entering text in a
string search command; the string search com-
-mand is ignored, as in the following example:

#J
SWORDTU
#

The inter-buffer search for the characters WORD
was aborted by the user typing tU before ter-
minating the string with * or ”.

RUBOUT Executing the RUBOUT key while entering text
for a string search causes the text so far entered
to be ignored and allows a new string to be in-
serted. Editor answers the command by printing
$, as in the following example:

$CHAR

({2 Y £

An example of the use of the character string search is contained
in the OS/8 Demonstration Run in Appendix D.

1-88

Editor Error Messages

Errors made by the user while running the Editor may be of two
types. Minor errors (such as an Editor command string error, an
attempt to execute a read or write command without assigning a
device, or a search for a nonexistent string) will cause a question
mark to be printed at the left margin. The command may be re-
typed. Major errors cause control to return to the Keyboard Moni-
‘tor and may be due to one of the causes listed in Table 1-22. These
errors cause a message to be printed in the form:

Mm1C

where n is an error code and 1C indicates that control has passed
to the Keyboard Monitor.

Table 1-22 Editor Error Codes

Error .Code

Meaning

0 .

Editor failed in reading a device. Error occurred in
device handler; most likely a hardware malfunction.

Editor failed in writing onto a device; generally a
hardware malfunction.

File close error occurred. For some reason the-out-
put file could not be closed; the file does not exist
on that device.

File open error occurred. This error occurs if the
output device is a read-only device or if no output
file name is specified on a file-oriented output device.

Device handler error occurred. The Editor could not
load the device handler for the specified device. This
error should never occur.

During the editing of a file, the output device specified in the
command string may become full before the editing process is com-
plete. If this is the case and a write is attempted on that device,
an error occurs. The output file is closed, the message:

FULL
*

1-89

is printed; control returns to the Command Decoder for a new
set of 1/0 specifications. The user must indicate a new output file
which will contain the text that would not fit on the output device,
and any further editing the user wishes to do. Since the contents
of the text buffer are retained through this procedure, no text
will be lost if this error occurs.

NOTE

If no output file is specified when control
returns to the Command Decoder, the Edi-
tor returns to the Command Decoder again;
this continues until an output device is spe-
cified. However, specifying an improper
output device (such as PTR:) will cause a
fatal error and the output buffer will be
destroyed. |

Assuming the output device is valid, the Editor will continue
the operation which filled the old file, putting all output into the
new output file. After editing is completed, the output files should
be combined with PIP. The entire process may appear as follows:

<R EDIT
*0UT<IN
#Y
#J

$STRING - . : o :
FULL Device DSK: is full; DTA3: is specified

*DTA3:0UT2< as the new output device, and editing

#.L continues.
TAD STRING

‘T4 f
S

(w
-

Device DTA3: has become full; DTA4:
is now specified as the output device, and
editingy continues.

*DTA4:0UT3<

At this point the output “file” is the series of files—DSK:OUT,
DTA3:0UT2, and DTA4:0UT3. When output is split like this,
the split may have occurred in the middle of a line. Therefore, the
output files should never be edited separately as the split lines will
then be lost. In a case such as this, the files should be combined
with PIP as follows: '

1-90

.R PIP
*¥DTA2:0UT<DSK:0UT,DTA3:0UT2, DTA4:0UT3

The new file, OUT, may then be edited.

Example Using the Editor

The following example illustrates both the use of the Edltor to
create a new file, and a few of the commands available for editing.
Sections of the printout are coded by letter—corresponding ex-
planations follow:

A The user calls EDIT; the output file will be called FILE and
will be stored on the default device.. There is no input file
since one will be created from the terminal keyboard. The
Append command is used to insert text into the empty buffer.

B Text is inserted.

C. The user makes a mlstake and uses the RUBOUT key to cor-
rect it.

D More text is added.

E The user notices a typing mistake he has made several lines
back in the text. He types a CTRL/FORM to finish the Ap-
pend command, searches for the illegal character, corrects it,
and then lists the line.

F The P command writes the current buffer into the output file
placing a form feed after the last line. The K command deletes
all text in the current buffer, in preparation for a new page
of text. .

G The user inserts new text using the Append command. When
he is finished, he types a CTRL/FORM to end the command.

H The E command closes out the file. Control is returned to the
Keyboard Monitor.

1-91

«R EDIT
*FILE<

#A
PTP, PTR HANDLER FOR THOSE
{?WITHOUT HIGH SPEED 1/0

IFZERO NOHSPT+LIST <XLIST>
IFNZRO NOHSPT <
PTP> 0
f CLA CLL CMX\L /SET LINK
L JMS PSETUP
PTPLP, KSF .
(JMP PTPCNT /KEYBOARD FLAG OFF
KRT
AND PTP177
TAD PTPM3

}I
#-‘25
KRT\S

KRS

#A .
S5ZA CLA
JMP PTPCNT

Summary of Editor Commands

The commands discussed in Table 1-23 can each be given when-
ever the Editor prints a # at the left margin. These commands are
of the general form:

1-92

#X
#n X

- #m,nX

where m and n represent the line number designation, (m<n) and
X represents the command letter. The command is entered to the
Editor with the RETURN key Numbers used in Editor commands

are decimal numbers

Table 1-23 Symbolic Editor Commands

Meaning

Command Format
A HA
B #B
C #nC
#m, nC
D #nD
Fm, nD

- Append the following text being typed

at the keyboard until a form feed
(ASCII 214 or CTRL/FORM) is
found. The form feed returns control
to command mode. Text input follow-
ing the A command is appended to
whatever is present in the text buffer.

List the number of -available core lo-
cations in the text buffer. The Editor
returns the number of locations on the
next line. To estimate the number of
characters that can be accommodated
in this area, multiply the number of
free locations by 1.7.

‘Change the text of line n to the line(s)
typed after the command is entered
(typing a form feed terminates the
command)

Delete lines m through n and replace '

. with the text line(s) typed after the

command is entered. (Typing CTRL/
FORM indicates the end of the in-
serted lines.) The C command utilizes

‘the text collector in altering text.

Delete line n from the buffer.

Delete- lines m through n from the
buffer. The space used by the line to
be deleted is reclaimed as part of the
DELETE function. (Refer to Text
Collection in the section entitled Ed-
itor Text Buffer.)

1-93

Table 1-23 = Symbolic Editor Commands (Cont.) .

Meaning

Command Format
E #E
F #F
G #G
#nG
)| #1
#nl
J #J
K #K

Output the current buffer and transfer
all input to the output file, closing the
output file.

Follows a string search. Look for next
occurrence of the string currently be-
ing sought. (See section under Search
Mode concerning Inter-Buffer Charac-
ter String Search.)

Get and list the next line which has a
label associated with it. A label in this
context is any line of text which does
not begin with one of the following:

space (ASCII 240)
/. (ASCII 257)
TAB (ASCII 211)

RETURN (ASCII 215)

At the termination of a G command,
control goes to command mode with
the current line counter equal to the
line just listed.

Get and list the first line which begins
with a label, starting the search at
line n.

Insert whatever text is typed before
line 1 of the text buffer. The form feed
(CTRL/FORM) terminates the enter-
ing process and sends control to the
command mode where Editor prints’

a #.

Insert whatever text is typed (until a
form feed is typed) before line n of
the text buffer.

Inter-buffer search command for char-
acter strings (see section under Search
Mode concerning Inter-Buffer Charac-
ter String Search).

Kill the buffer. Reset the text buffer
pointers so that there is no text in the
buffer.

1-94

Table 1-23 Symbolic Editor Commands v(Cont.)

Command - Format

Meaning

 #nL

#m, nL

M #m, n$xM

#nN

#nP

#m, nP

NOTE
The Editor ignores the commands
nK or m,nK. This is to prevent
the buffer from accidentally being
destroyed if the user means to
type a List command (m,nL).

List entire contents of the .text buffer
on the terminal.

List line n of the text b_uffer on the
terminal. '

List lines m through n of the text buf-'
fer on the terminal. Control then re-
turns to command mode.

Move lines m through n directly be-
fore line x in the text buffer. The $
character represents typing the dollar
sign key (SHIFT/4). The old occur-
renee of the moved text is removed;:

- no buffer space is lost.

Write the current buffer to the indi-
cated output file and read the next
logical page. '

* Write the current buffer to the output

file, zero the buffer, and read the next
logical page. This is done n times until
the nth logical page is in the text buf-
fer. Control then returns to command
mode.

The N command cannot be used with

an empty text buffer. ? is printed if -

this is attempted. .

Write the entire text buffer to the out-
put buffer.

Write line n of th¢ text buffer to the
output buffer.

- Writes lines m through n, inclusive, to

the output buffer. When this buffer is
1-95

Table 1-23 Symbolic Editor Commands (Cont.)

Command

Format

Meaning

#Q

#R

#S

full, the text is output to the indicated’
output file. The P command auto-
matically outputs a FORM character
(214) after the last line of output.

Immediate end-of-file. Q causes the text
buffer to be output. All text written
into the output buffer is then written
into the output file and the file closed,
with control returning to the Keyboard
Monitor.

Read from the specified input device
and append the new text to the current
contents of the buffer. If no input file
was indicated or if no input remains,
a ? is printed and control returns to
command mode. '

Character search command (see the
section entitled Search Mode).

Punch trailer tape. Causes 32 frames
of blank tape to be written into the
output buffer (only to non-directory
devices).

If an LPO8 line printer is available,.
the V command causes the entire text
buffer to be listed on the line printer.

List line n of buffer on the line printer.

List lines m through n inclusive on the
line printer.

Skip to a logical page in the input ﬁle,
without writing any output. For ex-
ample:

#5Y

reads through four logical pages of
input, deleting them without prpducing
output. The fifth page is read into the
text buffer and control automatically
returns to command mode.

1-96

Table_ 1-23 Symbolic Editor Commands (Cont.)

Command Format - _ Meaning.
$ -~ #$TEXT” Perform a character string search for
#S$TEXT the string TEXT. (See the section un-
#” der Search Mode concerning Intra-

Buffer Character String Search). Fol-
lowing a string search, #” causes a
search for the next occurrence of the

string. ‘
~=or .. " By typing these characters the user
/=or/: : : can obtain the current line number

(.=) and the last line number in the
text buffer (/=). The number is
printed by the Editor immediately
after the user types the equal sign.
(The colon character is equivalent to
the equal sign.) '

> > - Equivalent to .-+1L; list the next line
: in the text buffer on the teleprinter.

< $< EQuivalent to .—1L; list the next line
. ' _ in the text buffer on the teleprinter.
LINE FEED Equivalent to .+1L; list the next line
Key ' : in the text buffer on the teleprinter.
. Print the current Editor version num-
‘ ber.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP is the OS/8 system program which is used to transfer files
between devices, merge and delete files, and list, zero, and com-
press directories.

Calling and Using PIP
To call PIP from the system device the user types

R PIP

in response to the dot printed by the Keyboard Monitor. The Com-
mand Decoder then prints an asterisk at the left margin of the tele-

printer paper and waits to receive a line of I/0 files and options.
PIP accepts up to nine input files and performs output to a single.

output file; options generally are placed at the end of the com-

mand string.

1-97

Since PIP performs file transfers for all file types (ASCII, Image
or SAVE format, or Binary), there are no assumed extensions as--
signed by PIP to file names for either input or output files. All
extensions, where present, must be explicitly specified.

Following completion of a PIP operation, the Command Pe-
. coder again prints an asterisk at the left margin and waits for
another PIP 1/0 specification line. The user can return to the Key-
board Monitor by typing CTRL/C or by terminating the specifica-
tion line with ALTMODE. ’
PIP OPTIONS

The various options allowed on a PIP I/O specification line
are detailed in the following table. Either /A, /B, or /I is gen-
erally indicated for each transfer; if none of these are specified,
the system proceeds as though /A had been typed.

Table 1-24 PIP Options
Option Meaning

/A Transfer files in ASCII mode. The file is modified as it is
copied: embedded blank tape and rubouts are deleted and
leader/ trailer code is reducd to a standard length. PIP may
also do some editing of the input file under control of the
/C and /T options (see below).

/B Transfer files in Binary mode (used for absolute and re-
locatable binary files). Leader/trailer code is reduced to a
standard length, but the checksum is not recalculated.

NOTE
If several absolute binary files are combined
into one, the /S option must be indicated to
the Absolute Loader in order for the files to
load properly. (The Linking Loader will not
load combined files.)

/C Eliminate trailing blanks. Valid in ASCII mode only.

/D Delete the old copy of the output file before doing any
data transfer. If /D is not used, the old copy is not deleted
until all input has been processed. For example:

*DTA1:OFILE<DTA2:NFILE/D

will first delete file OFILE on DTAI1, and then transfer the
data from NFILE to a new OFILE. /D is useful when in-
sufficient room exists on the output device for both the old
file and the new file.

1-98

‘Table 1-24 - PIP Options (Cont.)

Option

Meaning

/E

/F
/G

/1

/L

/D may be used to delete up to three files at a time by
specifying the files to be deleted as output files and not
specifying any input files. For example:

*0LDABC,DTA3:FILES/D<

This command string deletes OLDABC from DSK and
FILES from DTA3. .

List directories in extended form (the lengths of the empty
files are also listed). "

List directories in short form (file names only).

Ignore any errors which occur during a file ‘transfer and
continue copying.

Transfer files in image mode. Used to transfer core image
(SAVE format) files, and any other files which do not fall
into either ASCII or Binary categories.

~ This option always opens the oﬁtput file even if no input

files were specified. Thus, the /I combined with the —n
option allows the user to substitute a named file for an
empty one. For example, a 23-block file named IMPORT. .
PA was accidentally deleted. It can be recovered with the
following command:

Note that 2310 =27s.

List the directories of the input devices onto the output
file starting at the file specified. Notice that in this case the
input file itself is not transferred, only the directory. The

~directory listing is in extended form, but empty files are
excluded. If no output file is specified, TTY: is assumed if

it- exists.

Save n extra words per file entry in the directory to con-
tain descriptive information about the file (only the 2 low
order octal digits on nnnn are. significant). For use with
the /Z and /S options only. Typing =1 allows the date of

1-99

Table 1-24 x «P Options (Cont.)

Option

Meaning

/0

/S

the file creation to be automatically stored in the directory.
(=1 is assumed after /Z or /S options unless otherwise
specified. Specifying =0 will still reserve one extra word
per entry.) Specifying =100 will reserve no extra words
per entry. .

If an = option is included with an image mode (/1) trans-
fer, the low order 12-bits of the = option specify the de-
sired length with which to close the output file. The out-
put file is given this length except in the following two
cases:

1. If the data written is greater than the specified length,
the output file is given its correct size.

2. If the length specified is greater than the empty space
available, the data is transferred but the file is not
closed. The error message:

MONITOR ERROR 6 AT xxxx
(DIRECTORY OVERFLOW)

is printed and control returns to the Keyboard Monitor.
Data in the file following the EMPTY is not destroyed.

Okay to compress files or to zero the directory. When used
with the /S or /Z option, /O prevents the messages ARE
YOU SURE? and ZERO SYS? from printing. The system
assumes that the user really wants the /S or /Z option.

Move all files from the input device to the output device,
eliminating any embedded empty files. All device names
should be explicitly stated, as no default devices are as-
sumed. The directory of the output device will contain only
those files that appeared on the input device. Whenever a
/S is initiated, PIP asks: :

ARE YOU SURE?

The user responds with a “Y” if he wishes the compression;
typing any other character aborts the command.

1-100

Table 1-24 PIP Options (Cont.)

Option Meaning
NOTE
When the /S option is used, the output de-
vice directory is read to determine whether
it is a system directory. If a system exists on
the output device, that system will be pre-
served on the /S transfer. To eliminate the
system directory, a /Z must be performed
before the /8. '
In addition to compressing directories, /S provides a means
of copying one device to another. DECtapes, for example,
can be copied by compressing one DECtape onto another
‘ tape. :
/T Perform the following conversions of special characters:.
' Character ' Is Converted To:
TAB enough spaces to reach the next
TAB stop (every eighth position)
Vertical ") '
TAB 5 LINE FEEDs
FORM FEED 9 LINE FEEDs
/T option is valid in ASCII mode only.
/V Print the current version number of PIP. This option
- should be included in the first command line entered after
PIP is called. The version number is printed on the con-
sole terminal. _

/Y Copy the OS/8 System ‘Area (records 0, 7-67) between
the output and first input file. Both devices must be file
structured devices. If no file name is specified after a device
name, the System .Area of that device is assumed. If the
/Z option is used with /Y, a zeroed system directory is
placed on the output device before the system transfer
takes place. A system directory indicates that file storage
starts at record 70 rather than-record 7. _

/Z Zero directory of output device before file transfer. Before

using a DECtape for the first time, the /Z option should
always be used to create an empty file directory. No input
files are specified. For example:

1-101

Table 1-24 PIP Options (Cont.) -

Option Meaning

*DTA2:/Z<=1

One extra word per entry is used if no "=" is specified.
Thus, the DATE word is always left available in a new
directory. -

If an attempt is made to zero the directory of the system
device, the message:

ZERO SY57?

is printed. A response of Y’ will zero the directory; any
other response will abort the command and return control
to the Command Decoder.

No data transfer occurs if no input files are specified. Thus, as
mentioned previously, /Z can be used to zero a directory, and /D
can be used to delete a permanent file without creating a file. For
the three directory listing options (/E, /F, /L), if no output de-
vice is specified, the device TTY: is assumed. If no input device is
specified, device DSK: is assumed.

EXAMPLES OF PIP SPECIFICATION COMMANDS

The following are legal command strings to PIP. When PIP
has completed an operation, control returns to the Command De-
coder for additional input. : ‘
Example 1 (ASCII Transfer):

R PIP
 *SYS:BLACK<PTR:

This command string transfers a tape from the paper tape reader
to a file on the system device under the name BLACK. PIP as-
sumes that the input tape is in ASCII format. (Control returns
to the Command Decoder, therefore, the .R PIP command need
only be given once.)

1-102

Example 2 (ASCII¥File Merge):

*DTA3:MERGE<DTAITFILEIL,FILE2 .

This commahd string instructs PIP to merge the ASCII files FILE1
and FILE2 on DTAI into one ASCII file, MERGE, on DTA3.
-Example 3 (Blnary Transfer) :

*BIN.BN<PTR:/B

The above command reads -a binary paper tape from the paper -
tape reader and creates a binary file BIN.BN on the device DSK.
Example4 (Image Transfer):

%*SYS:GAG. SU<PALS. SU/ 1

PIP transfers thé core image file PAL8.SV from the device DSK
to GAG.SV on the system device.

NOTE

A problem occurs when files longer than
255 blocks are transferred in Image Mode
from a directory device. If this is attemped,
the transfer will not end with the real end-
of-file, but will continue until the output -
limit is reached; an error message will occur.
For example, trying to transfer FORT.PA
or SABR.PA from the directory device us-
ing Image Mode will cause this error.
ASCII mode must be used for all PIP trans-
fers of this type, or the FOTP program may
be used.

Example 5 (Directory Listing):
*TTY:</E

This command string produces an extended listing of the device
DSK on the Teletype. An extended listing contains all files with

1-103

their associated lengths, and all empty spaces in the directory. For
example, an extended listing might appear as follows. (The cur-
rent date is printed before the file listing provided the DATE com-
mand has been given; see the section concerning the Keyboard
Monitor for a description of the DATE command.): |

27177172 .
EDIT .SV 12 1718772
TEST2 4 1710772
ABCD .DA 1 27177172
<EMPTY> 7

TEST2 «RL 4 lr1@rs172
<EMPTY> 702
709 FREE BLOCKS

The file lengths and number of free blocks are designated as
decimal values. The date of file creation is printed if at least one
additional information word is present in the directory (refer to
the section Additional Information Words in File Directories).
Example 6 (Directory Listing):

*/F

This command produces a directory listing of file names only. Thus,
the preceding directory would appeadr on the teleprinter as follows:

2717772
EDIT .SV
TEST2
ABCD DA -
TEST2 .RL
709 FREE BLOCKS

Example 7 (Directory Listing) :
*LPT:<DTA2:FETCH/L

A command such as the above produces a listing of the DTA2
directory on the line printer; however, the files that occur before
FETCH are not listed. The /L option gives the regular listing
which includes the file name and extension length, and date (if a
date is contained in the directory). Empty files are not indicated
in the listing.

1-104

Example 8 (System Area Transfer):
- *DTA1:HEAD</Y

Records 0 and 7-67 .are'transferred from SYS: to a file named
HEAD on DTAL. N :
Example 9 (System Area T ransfer)

*5YS:<DTA1:HEAD/Y

" The contents of the file HEAD on DTAI1 are transferred to the
~ System Area (records O and 7-67) of the system device. The input
file is checked for validity before the transfer occurs.
Example 10 (System Transfer with Directory Zero):

- %*DTA1:<DTAD: (YZ)

This first creates a zero system directory on DTAI1, and then
transfers the system area from DTAO to to the System Area on
DTAIL. A system directory indicates that file storage begins at
record 70 rather than record 7.

Example 11 (System Area Transfer):

*DTA1:TRAN<DTA2:TRAN/Y

- This command string instructs PIP to transfer TRAN from DTA?2
to DTAL. Since the /Y option is used, TRAN must be a copy
of the OS/8 System Area. However, since transfers of this type
involve files on both the I/0 devices, and not the System Area, the
transfer is treated as an image transfer and elther the /Y or /1
options can be used. '

Additional Information Words in File Directories

If a device has any additional information words specified in its
directory, OS/8 automatically enters the last date specified in a
DATE command into the first of the additional information words
when a file is created on that device. Dates put into these additional
- words. appear in directory listings. Words after the first are not
currently used by the OS/8 system.
Whenever a /Z or /S is given, additional words can be specified-
by a /Z=n or /S=n construction. The number of additional
- words can be changed by compressing a device onto itself. The

1-105

first additional information word is used by the system for the

file’s creation date.

- NOTE

T_hé system is initially created with one
additional word in the file directory.

PIP Error Messages

‘The following messages are printed by PIP in response to user
errors or improper command strings:

Table 1-25 PIP Error Messages

Message

Meaning

ARE YOU SURE?

BAD DIRECTORY ON
DEVICE # n

BAD SYSTEM HEAD

CAN'T OPEN OUTPUT
FILE

DEVICE # n NOT A
DIRECTORY DEVICE

Occurs when using the /S option. A re-
sponse of ‘Y’ will compress the files.

Error message occurs when:
1. PIP is trying to read the directory,
but it is not a OS/8 directory.
2. The output device does not have
a system directory, i.e., file storage
begins at record 7 (occurs during
a /Y transfer).
n is the number of the file in the input
file list. .

If the /Y option is used and the area
being transferred does not contain OS/8,
this error message results. -

Message has occurred due to one of the
following:
1. Output file is on a read-only device.
2. No name has been specified for
thexqutput file.
3. A /Y transfer has been attempted
_ to a non-directory device.
4. Output file has zero free blocks.

Message occurs when:

1. Trying to list the directory of a
non-directory device.

2. The input designated in a /Y
transfer is not on a directory de-
vice.

n gives the number of the device in the
input list. :

1-106

‘Table 1-25

PIP Error Messages (Cont.)

" Message

Meaning

DIRECTORY ERROR

ERROR DELETING
FILE

ILLEGAL BINARY
INPUT, FILE # n

INPUT ERROR,
FILE # n

10 ERROR IN (file name)
" _CONTINUING

LINE TOO LONG IN
FILE # n

NO ROOM FOR
OUTPUT FILE

NO ROOM 1IN (file name)
—CONTINUING

OUTPUT ERROR

PREMATURE END OF
FILE, FILE # n

SORRY—NO
INTERRUPTIONS

An error has occurred while reading or
writing the directory during a /S op-
tion. The option is aborted; output is
likely to be garbled.

An attempt was made to delete a file
that does not exist. Check that the de-
vice name was explicitly given for all
files.

Self explanatory; n is the number of the
file in the input file list. '

An input error occurred while reading
file number n in the input file list.

An error has occﬁrréd during a /S
transfer. The name of the file being
transferred is indicated.

In ASCII mode a line has been found
greater than 140 characters. Make cer-
tain the file is an ASCII file. n is the
number of this file in the input list.

Self-explanatory; either room on device
or room in directory is lacking.

Occurs during use of the /S option. The
‘output device cannot contain all of the
files on the input device. The message is
printed for each file which will not fit
into the output device. The file name is
indicated. '

-Output erroré-possibly a WRITE
LOCKed device, parity error, or at-
tempt to output to a read-only device.

Message occurs in Binary Mode (/B)
only. A physical end-of-file has been
found before the final leader/trailer.

Error message occurs if:
1. 2C (CTRL/C) is typed while com-
pressing a file onto itself; the
transfer continues.

1-107

L4

Table 1-25 PIP Err‘or Messages (Cont.)

Message Meaning

2. A /Y transfer is done with system
device as the output device, or if
the transfer has both input and
output on the same device.

ZERO SYS? . If any attempt is made to zero the sys-
tem device directory, this message oc-
curs. Responding with ‘Y’ causes the
directory to be zeroed. Any other char-
acter aborts the operation.

ABSOLUTE BINARY LOADER

The Absolute Binary Loader is used to load the binary output
created by the PALS8 assembler. Input files are loaded according
to the options discussed in this section, and a core control block
is constructed (see the section concerning the GET command).
The standard input devices are the paper tape reader, DECtape,
LINCtape, the default storage device (DSK:), and SYS:, which
represents the system device. Any other device which can contain

absolute binary files can be used as an input device if a device
handler exists. The terminal (TTY:) should not be used, as the

binary code may appear as control characters to the TTY handler.

Calling and Using ABSLDR

ABSLDR normally accepts absolute binary files (relocatable
files must be loaded with the Linking Loader); however, save
(.SV) format files can be loaded with ABSLDR providing the
/1 option is used. If no extension to the input file name is typed,
ABSLDR assumes the .BN extension. Up to nine input files are
allowed, but if more than one program is present in a file, only the

first program is loaded unless the /S option is used. (This feature
allows ABSLDR to ignore any ‘noise characters’ which might be

caused by reading over the end of a paper tape.)
The user calls the Absolute Binary Loader from the system
device by typing:

R ABSLDR
1-108

in response to the dot printed by the Keyboard Monitor. The sys-
tem responds by printing an asterisk at the left margin. The user.
then types an input line to ABSLDR, indicating input files and any
options desired. ABSLDR does not recognize any output files,
since the purpose of the loader is to load and optionally start
binary output files. The format of the input line is:

*DEV:INPUT.EX/(Options)

By typing the RETURN key at the end of an input specification
line, the loader is signalled that more input is to be given on the
next line. If the ALT MODE key is used as a line terminator, no
more input is expected, the Command Decoder is not recalled,
and control returns to the Keyboard Monitor. For example:

<R ABSLDR | o
*DTA1:FILEl,FILE2,FILE3,FILE4 (Carriage RETURN)

FFIRES " (ALT MODE)

The preceding lines cause FILE1, FILE2, FILE3, and FILE4
to be loaded at their absolute locations in core from DECtape 1.
A file is then to be read from the paper tape reader. The $ char-
acter is printed by the ALT MODE key which indicates a return
to the Keyboard Monitor. | |

_ NOTE ; _

If- the /G option (load and begin execu-
tion) is specified, control always passes to
the program just loaded, regardless of which
line terminator was typed.

When ABSLDR has completed loading and control has returned
to the Keyboard Monitor, the program loaded may not be physi-
cally in core at that moment. ABSLDR utilizes system scratch
blocks to store those locations which would overlay various parts
of the Monitor. To examine core locations after using ABSLDR,
use ODT (see the section concerning ODT for instructions detail-
ing its use). i

1-109

ABSLDR OPTIONS
The various options accepted by ABSLDR are descrlbed in

Table 1-26.
Table 1-26 ABSLDR Options
Option Meaning
/8 Used when locations 0-1777 of field O are not being used

/9

/R

/S

/P

by the program. Eliminates extra DECtape motions to save
these locations, hence saves time. See the OS/8 Software
Support Manual for details of Job Status Word.

Similar to the /8 option; used when locations 0-1777 of
field 1 are not to be saved.

Treat the input file(s) as a core-image-file to be overlaid
with the input of succeeding lines. (If this option is not
used in the first command line, it cannot be used unless
ABSLDR is recalled from the Keyboard Monitor level.)
The /1 option can be used to make patches to an already
saved program without reassembling the entire program.

Reset internal core map of ABSLDR to appear as though
nothing has been loaded into core.

Load all binary programs in the specified input file(s)
(instcad of loading only the first program in each file,
which is normally done). /S and /I operate on a line-at-a-
time basis. Each successive command line must have the
option respecified if it is required. For example:

fPTR=) »/5
ﬂ‘_DTAl tA>B,C

These command strings instruct ABSLDR to take three files
from PTR (loading all binary programs in each file) and
three files from DTA1 (loading only the first binary pro-
gram in each file). /S is not implemented on the second
line. :

Sets bit 3 of the Job Status Word (location 07746) and
prevents the Keyboard Monitor from reading a fresh ver-
sion of the BATCH monitor into core every time the mon-
itor level is reentered from the program level. This option
can be used with system programs that never use more
than 8K of core (PIP, FORTRAN 1II, SABR). The /P
option should not be used with any program that occupies
or modifies core above field 1. (See the BATCH section
for further information.)

1-110

Table 1-26 ABSLDR Options (Cont.)

Option ' Meaning

/G Start program execution upon finishing the loading pro-
cedure. Normally, control returns either to the Monitor or
Command Decoder (depending on the terminator key). If
/ G is specified, control is given to the program just loaded.
The starting address is assumed to be 200 unless specified
in the input string. Control stays with the user’s program

- until it is released to the Monitor from within the program.
No automatic return to Monitor or the Command Decoder
occurs.

/n Force loading of all files specified on this input line into
- field n (where n is an octal integer).

=n Set the starting address of the program in core to n, where
n is a 5 digit octal integer. ABSLDR inserts a starting ad-
dress of 0200 in field O if no other address is indicated.
Specifying O as a starting address is equivalent to not spec-
ifying a starting address, thus ABSLDR would insert a
starting address of 0200.

EXAMPLES OF INPUT LINES
Example 1:

«R ABSLDR
*SYStPROG. SU/ I
*DTA1:PATCHS

« SAVE SYS:PROG

The above commands load the core-image file PROG.SV and then
overlay part of that program file with a binary patch from DTAI.
Control then returns to Monitor, at which time the user saves the
patched program on the system device.

When using the /I option, the starting address and Job Status
Word of the core image being loaded are ignored by the Loader.
The user must specify the starting address and contents of the Job
Status Word (unless the starting address is 200 in field 0, in which
case it need not be specified).

Example 2:
<R ABSLDR
*PIP.SU/ 1

" *PTR:=13202(89)%
=+ SAVE SYS PIP

1-111

In this example, the user overlays. PIP with a binary patch which
will not change its starting parameters. This could also be accom-
plished using an explicit SAVE:

+R ABSLDR

*¥PIP.SU/I

*xPTR:S

+SAVE SYS PIP;13002=6023

Example 3:

-R ABSLDR
*PTR: (89G)$

One binary tape is loaded from the paper tape reader. Areas
00000-01777 and 10000-11777 of core are not used by the pro-
gram. The starting address of the program is considered to be
00200; control is transferred to the user program.

Notes On Using ABSLDR Correctly
ABSLDR is a complex program which, when used incorrectly,

can give unrecoverable errors. Points to remember when using
ABSLDR are: ’

1. If an erroneous starting address is specified, control will be
passed to that address, however random it may be. Thus,
specifying a starting address in non-existent memory, for
example, will very likely produce erroneous results, and
should not be attempted.

2. Trying to load a program into non-existent memory should
not be attempted. _ '

3. Programs which load into 07600 or 17600 are ignored by
ABSLDR. No error is generated, but these locations are
never loaded. (It is a good idea not to use 7600 in any

field.)

4. Old versions of ABSLDR should not be used with a new
monitor.

5. New versions of ABSLDR should not be used with old mon-
itors.

1-112

ABSLDR Error Messages

Table 1-27 lists the error messages output by ABSLDR. In each
case, control returns to the Command Decoder; the entire pro-
cedure may be attemped again by resetting the loader (with the-
/R optlon) and using dlﬁerent inputs. :

Table 1-27 ABSLDR Error Messages

Message _ Meaning
BAD CHECKSUM, File number n of the input file list has
FILE # n ' a checksum error.

BAD INPUT, FILE # n Attempt was made to load a nonfbinary
file as file number n of the input file

list, or a non-core image with /I option.

I0 ERROR FILE # n ‘An I/ O error has occurred in input file
- number n.
NO INPUT ' No input file was found on the desig-

nated device.

NO /1! ~ Use of /1 is prohibited at this point.

OCTAL DEBUGGING TECHNIQUE (ODT)
ODT allows the programmer to run his program on the com-
puter, control its execution, and make alterations to the program by

typing instructions at the keyboard.

Features :

ODT f{features include locatlon examination and modification;
and instruction breakpoints to return control to ODT (break-
points). ODT makes no use of the program 1nterrupt fac111ty and Is-
invisible to the user program. ’

The breakpoint is one of ODT’s most useful features, When de-
bugging a program, it is often desirable to allow the program to
run normally up to a predetermined point, at which the program-
mer may examine and possibly modify the contents of the accumu-
lator (AC), the link (L), or various instructions or storage loca-
tions within his program, depending on the results he finds. To
accomplish this, ODT acts as a monitor to the user program,

"~ 1-113

L]

The user decides how far he wishes the program to run and ODT
inserts an instruction in the user’s program which, when encoun-
tered, causes control to transfer back to ODT. ODT immediately
preserves in designated storage locations the contents of the AC
and L at the breakpoint. It then prints out the location at which
the breakpoint occurred, as well as the contents of the AC at that
point. ODT will then allow examination and modification of any
location of the user’s program (or those locations containing the
AC and L). The user may also move the breakpoint, and request
that ODT continue running his program. This will cause ODT to
restore the AC and L, execute the trapped instruction and continue
in the user’s program until the breakpoint is again encountered
or the program is terminated normally

Calling and Using ODT
As explained in the section concerning the Keyboard Monitor,
ODT is called into use by typing:

OCT

in response to the dot printed by the Keyboard Monitor. Before
ODT is called, the user should have a running version of his pro-
gram in memory. None of the user’s memory is disturbed by the
running of ODT, because the sections of the program which ODT
may occupy when in memory are preserved on the system device
and swapped back into memory as necessary. ODT uses the Job
Status Word of the particular program to determine whether or
not swapping occurs. If the program does not use locations 0-1777
in field O, less swapping occurs during use of the breakpoint
feature.

If the user is typing any amount of a program directly into
memory (in octal), the memory control block of the program may
not reflect the true extent of the program. If octal additions are
made below location 2000 in field 0, ODT may give erroneous
results. The user can correct this condition by correcting the Job
Status Word, which is location 7746 of field 0, and which can be
examined and changed using ODT. Location 7745 of field 0 is the
12-bit starting address of the program .in memory and location
7744 contains the field designation in the form 62n3, where n is
the field designation of the starting address. .

When using the breakpoint feature of ODT, the user should
keep certain operating characteristics in mind:

1-114

1. If a breakpoint is inserted at a location which contains
an auto-indexed instruction, the auto-indexed register is
bumped immediately after the breakpoint is hit. Thus, when
‘control returns to the user in ODT, the register will have
been increased by one. The breakpoint instruction is ex-
ecuted properly, but the index register, if examined may ap-
‘pear one greater than it should. '

2. -ODT keeps track .of the TTY flag and restores the TTY

-~ flag when it continues from a breakpoint.
3. The breakpoint feature uses locations 4, 5, and 6 in the
) memory field in which the breakpoint is set. :

4. The breakpoint feature of ODT uses the table of user-de-
fined device names as scratch storage, destroying any device
names the user may have created. After a session with ODT
in which breakpoints are used, the user should give a DE-
ASSIGN command to clear out the user-device name table.

5. Breakpoints must not be set in the Monitor, in the device
handlers, or between a CIF and the following JMP instruc-
tion. : :

The user is advised not to use user-defined device names in pro-
- grams being developed with ODT breakpoints.

If any operations are attempted in non-existent memory, ODT
ignores the command and types “?”. Thus, assuming the machine
in use has 8K (fields 0 and.1) and the user attempts to examine
locations in field 2 and above, ODT responds with ?.

ODT should not be used to debug programs which use inter-
rupts. Typing CRTL/C returns control to the Keyboard Monitor;
the program can be saved on any device.

Commands :
- SPECIAL CHARACTERS
- Slash(/)—Open Preceding Location

The location examination character (/) causes the location ad--
dressed by the octal number preceding the slash to be opened and
its contents printed in octal. The open location can then be modified
by typing the desired octal number and closing the location. Any
octal number from-1 to 4 digits in length is legal input. If more
than 4 digits are entered, only the last 4 entered are accepted by
ODT. Typing / with no preceding argument causes the latest
named location to be opened.

1-115

For example:

4QR/1540

4p@/ 1540 24637 .
40071540 12345

72345

Return—Close Location

If the user has typed a valid octal number after the content of a
location is printed by ODT, typing the RETURN key causes the
binary value of that number to replace the original contents of the
opened location and the location to be closed. If nothing has been
typed by the user, the location is closed but the content of the lo-
cation is not changed. For example:

400s6046 location 400 is unchanged.
408/6046 2345 location 400 is changed to contain 2345.
/2345 6046 replace 6046 in location 400. -

Typing another command will also close an opened register. For
example:

400/6046 401/6831 2346 location 400 is closed and unchanged
400/6046 48172346 and401is opened andchanged to2346.

Line Feed—Close Location, Open Next Location

The LINE FEED key has the same effect as the RETURN key,
but, in addition, the next sequential location is opened and its con-
tents printed. For example:

400 /1540 location 400 is closed unchanged and 401 is
Sg jg; ;322; 1234 opened. User types change, 401 is closed con-
e ' taining 1234 and 402 is opened.

*(Shift/N)—Close Location, Take Contents as Memory Reference
and Open Same |

The up arrow will close an open location just as will the RE-
TURN key. Further, it will interpret the contents of the location as
a memory reference instruction, open the location referenced and
print its contents. For example:

1-116

4G4/3270 1 3270 symbolically is “DCA, this page,
PB4T0 /4512 00B0 relative location 70,” so ODT opens loca-
tion 470.

<(Shift/0) Close Location, Open Indirectly :

The back arrow will close the currently open location and then
interpret its contents as the address of the location whose contents
it is to print and open for modification. For example: .

365/3263 't
20203 /3572 «.
#3572 /0216
ILLEGAL CHARACTERS

Any character that is neither a valid control character nor an
octal digit causes the current line to be ignored and a question
mark printed. For example:

43 ? - :

42 ODT opens no location.

48671136 6TK? ODT ignores modification and closes
/1136 location 406.

CONTROL COMMANDS

nnnnG—Transfer Control to User at Location nnnn

Clear the AC then go to the location specified before the G. All
indicators and registers will be intialized and the breakpoint, if
any, will be inserted. Typing G alone will cause a jump to loca-
tion O.

nnnnB—Set Breakpoint at User Location nnnn
Instructs ODT to establish a breakpoint at the location spec-

ified before the B. If B is typed alone, ODT removes any previ-
ously established breakpoint and restores the original contents of
the break location. A breakpoint may be changed to another loca-
tion whenever ODT is in control, by simply typing nnnnB where
nnnn is the new location. Only one breakpoint may be in effect at
one time; therefore, requesting a new breakpoint removes any pre- -
viously existing one.

A restriction in this regard is that a breakpoint may not be set
on any of the floating-point instructions which appear as argu-
ments of a JMS.

1-117

The breakpoint (B) command does not make the actual ex-
. change of ODT instruction for user instruction, it only sets up the
mechanism for doing so. The actual exchange does not occur until
a “go to” or a “proceed from breakpoint” command is executed.

When, during execution, the user’s program encounters the loca-
tion containing the breakpoint, control passes immediately to ODT
(via location 0004). The C(AC) and C(L) at the point of the
interruption are saved in special locations accessible to ODT. The
user instruction that the breakpoint was replacing is restored, be-
fore the address of the trap and the content of the AC are printed.
The restored instruction has not been executed at this time. It will
not be executed until the “proceed from breakpoint” command is
given. Any user location, including those containing the stored AC
and Link, can now be modified in the usual manner. The break-
point can also be moved or removed at this time.

An example of breakpomt usage follows the section “Continue
and Iterate Loop . .

A—Open C(AC)

When the breakpomt is encountered the C(AC) and C(L) are
saved for later restoration. Typing A after having encountered a
breakpoint, opens for modification the location in which the AC
was saved and prints its contents. This location may now be modi-
fied in the normal manner (see Slash) and the modification will be
restored to the AC when the “proceed from breakpoint” command
is given.

Open C(L)

Typing L opens the Link storage locatlon for modification and
prints its contents. The Link location may now be modified as usual
(see Slash) and that modification will be restored to the Link when
the “proceed from the breakpoint” command is given.

C—Proceed (Continue) From a Breakpoint

Typing C, after having encountered a breakpoint, causes ODT
to insert the latest specified breakpoint (if any), restore the con-
tents of the AC and Link, execute the instruction trapped by the
previous breakpoint, and transfer control back to the user program
at the appropriate location. The user program then runs until the
breakpoint is again encountered. '

1-118

. NOTE
If a breakpoint set by ODT is not encoun-
tered while ODT. is running. the object
(user’s) program, the instruction which
causes the break to occur will not be re-
moved from the user’s program.

nnnnC—Continue and Iterate Loop nnnn Times Before Break
The programmer may wish to establish the breakpoint at-some
location within a loop of his program. Since loops often run to
. many iterations, some means must be available to prevent a break
from occurring each time the break location is encountered. This
is the function of nnnnC (where nnnn is an octal number). After
having encountered the breakpoint for the first time, this command
specifies how many additional times the loop is to be iterated be-
fore another break is to occur. The break operations have been

.described previously in the section on the B command.

Given the following program, which increases the value of the
AC by increments of 1, the use of the Breakpoint command may
be illustrated. '

*200
@200 *200
20 7300 CLA CLL
PP201 1206 A, TAD ONE
00202 2207 B, . 1SZ. CNT
00203 52¢2 JMP B
Pp204 5201 JMP A
PR265 7402 HLT
00206 @081 ONE, 1
00207 @@2P CNT, @
s
*200
A B201
B - 0202
CNT 0207
ONE 2206
22018
2006
20201 (0 PO
C
20201 (230001
C _
00201 (0; 0002
4C

20291 (0502006

1-119

ODT has been loaded and started. A breakpoint is inserted at
location 0201 and execution stops here showing the AC initially
set to 0000. The use of the Proceed command (C) executes the
program until the breakpoint is again encountered (after one com-
plete loop) and shows the AC to contain a value of 0001. Again
execution continues, incrementing the AC to 0002. At this point,
the command 4C is used, allowing execution of the loop to con-
tinue 4 more times (following the initial encounter) before stop-
ping at the breakpoint. The contents of the AC have now been
incremented to 0007.

M—Open Search Mask

Typing M causes ODT to open for modification the location
containing the current value of the search mask and print its con-
tents. Initially the mask is set to 7777. It may be changed by open-
ing the mask location and typing the desired value after the value
printed by ODT, then closing the location.

M Line Feed—OQOpen lower search limit

The word immediately following the mask storage location con-
tains the location at which the search is to begin. Typing the LINE
FEED key to close the mask location causes the lower search limit
to be opened for modification and its contents printed. Initially the

lower search limit is set to 0001. It may be changed by typing the
desired lower limit after that printed by ODT, then closing the

focation.

M Line Feed—OQOpen upper search limit

The next sequential word contains the location with which the
search is to terminate. Typing the LINE FEED key to close the
lower search limit causes the upper search limit to be opened for
modification and its contents printed. Initially, the upper search
limit is the beginning of ODT itself, 7000 (1000 for low version).
It may also be changed by typing the desired upper search limit
after the one printed by ODT, then closing the location with the-
RETURN key.

nnnnW-—Word Search

The command nnnnW (where nnnn is an octal number) will
cause ODT to conduct a search of a defined section of memory,
using the mask and the lower and upper limits which the user has

1-120

specified, as indicated above. The word searching operations. are
used to determine if a given quantity is present in any of the loca-
tions of a particular section of memory.

The search is conducted as follows: ODT masks the expression
nnnn which the user types preceding the W and saves the result as
the quantity for which it is searching. (All masking is done by per-
forming a Boolean AND between the contents of the mask word,
C(M), and the word containing the instruction to be masked.)
ODT then masks each location within the user’s specified limits
and compares the result to the quantity for which it is searching.
If the two quantities are identical, the address and the actual un- .
masked contents of the matching location are prmted and the
search continues until the upper limit is reached.

A search never alters the contents of any location. For example:
search locations 3000 to 4000, for all ISZ instructions, regardless
" of what location they refer to (i.e. search for all locations begin-
ning with an octal 2).

M/7777 71000 Change the mask to 7000, open lower

Change the lower limit to 3000, open
upper limit.

745471335 4000 Change the upper limit to 4000, close
iggg /72331 location.

4 _ « .) . .
P0006 /2324 Initiate the search for ISZ .1nstru.ct101}s
9BB11 s2222 These are 4 ISZ instructions in this
0PB33 /2575 : section of core.

Additional Techniques

CURRENT LOCATION

The address of the current location or last location examined is
remembered by ODT and remains the same, even after the com-
mands G, C, and B are typed. This location may be opened for in-
spection merely by typing the slash (/) character.

INDIRECT REFERENCES
When an indirect memory reference instruction or an address

constant is encountered, the actual address may be opened by

typing 1 and < (SHIFT/N and SHIFT/O, respectively).

1-121

Errors

The only legal inputs are control characters and octal digits. Any
other character will cause the character or line to be ignored and
a question mark to be printed by ODT. Typing G alone is an
error. It must be preceded by an address to which control will be
transferred. This will elicit no question mark also if not preceded
by an address, but will cause control to be transferred to location 0.

Programming Notes Summary ‘ _

~ ODT will not turn on the program interrupt, since it does not
know if the user’s program is using the interrupt. It does, however,
turn off the interrupt when a breakpoint is encountered, to prevent
spurious interrupts. ‘

Breakpoints are fully invisibie io “open location” commands;
however, breakpoints may not be placed in locations which the
user program will modify in the course of execution or the break-
point will be destroyed. Caution should be used in placing a break-
point between a call to USR function code 10 and the following
call to USR function code 11.

If a trap set by ODTis not encountered by the user’s program,
the breakpoint instruction will not be removed. ,

ODT can be used to debug programs using floating-point in-
structions, since the intercom location is 0004, and since break-
points may be set on a JMS with arguments following,.

Summary of ODT Commands

The following table presents a brief summary of the ODT com-
mands. All addresses can be input as 5 digits, and are printed as
5 digits. -

Table 1-28 ODT Command Summary

Command Meaning ‘

nnnnn/ _ Open location designated by the octal number
: nnnnn, where the first digit represents the mem-

ory field. ODT prints the contents of the loca-

tion, a space, and waits for the user to enter a

new value for that location or close the location.

Reopen latest opened location.

1-122

Table 1-28 ODT Command Summary (Cont.)

Command

Meaning

 nnnn;

RETURN key

" LINE FEED key

n+

tor A
(up-arrow or
circumflex)

“<~or
(back-arrow
or underline)

nnnnnG

nnnnnB

) Deposit nnnn in the currently opened location,

close that location and open the next sequential
location for modification. A series of octal

values can be deposited in sequential locations
through use of the ; character. Multiple ;’s skip
a memory location for each ; typed and pre-

- pare to ‘insert subsequent values beyond the

one(s) skipped.
Close the previously opened location.

Close location; open'the'next sequential loca-
tion for modification, and print the contents of -
that location.

Open the current location plus n for modifica-
tion and print the contents of that location.

Open the current location minus n for modi-
fication and print its contents.

Close location, take contents of that location
as a memory reference and open the location
referenced, printing its .contents.

NOTE
No distinction is made between instruction
op-codes when using 1. Thus, all op-codes
(0-7) are treated as memory reference
instructions. Also, great care should be
exercised when using 1 with indirectly ref-
erenced auto-index registers. If 1 is used
in this case, the contents of the auto-index
- register is incremented by one. The user
must check to see that the register contains
the proper value before proceeding.

Close location, take contents of that location
as a 12-bit address and open that address for
modification, printing its contents.

Transfer control of program to location nnnnn,
where the first digit represents the memory field.

Establish a breakpoint at location nnnnn, where
the first digit represents the memory field. Only
one breakpoint is allowed at any given time.

1-123

- Table 1-28 ODT Command Summary (Cont.)

Command

Meaning

B
A

nnnnC

M
LINE FEED

LINE FEED

nnnnW

CTRL/O

RUBOUT key

Remove the breakpoint. -

Open for modification the location in which
the contents of the accumulator were stored
when the breakpoint was encountered.

Open for modification the location in which
the contents of the link were stored when the
breakpoint was encountered.

Proceed from a breakpoint.

Continue from a breakpoint and iterate past the
breakpoint nnnn times before interrupting the
user’s program at the breakpoint location.

Open the search mask, initially set to- 7777,
which can be changed by typing a new value.

Open the lower search limit. Type in the loca-
tion (4 octal digits) where the search will begin.

Open the upper search limit. Type in the loca-
tion (4 octal digits) where the search will
terminate.

Search the portion of core as defined by the
upper and lower limits for the octal value nnnn.

" Search can only be done on a single memory

field at a time. See the F command.

Open for modification the word containing the
data field which was in effect at the last break-
point. Contents of D always appear as mul-
tiples of 104—i.e., 10 means field 1, 20 field

2, etc.

~ Stop any printing currently in progress.

Open for modification the word containing the
field used by ODT in the W (search) com- -
mand, in the < and % (indirect addressing)
commands, or in the last breakpoint (depend-
ing upon which was used most recently. The
contents of F are always expressed as multiples
of 104 (as in the D command).

Cancels previous number typed, up to the last
non-numeric character typed.

1-124

ey
CIME

‘batch epic
bitmap Fotp
boot = mcpip
buld pipt1o
camp resorc
cref srccom

direct teco

~ cdhoplera
utility programs

BATCH

Introduction L

0OS/8 BATCH provides PDP-8 users with a batch processing

" monitor that is integrated into the OS/8 monitor structure. The
system is organized in such a way that it may be used in either a
keyboard input configuration or as a batch stream processor.

BATCH may be run on any OS/8 system equipped with at least
12K of memory. A line printer, although optional, is highly de-
sirable. BATCH will support up to 32K of memory and any 1/0
devices that are present in the system.

0OS/8 BATCH processing is ideally suited to frequently run pro-

_duction jobs, large and long-running programs, and programs that
require little or no interaction with the user. BATCH permits the

- user to prepare his job on punched cards, high-speed paper tape or
the OS/8 system device and leave it for the computer operator to
start and run. Output is returned to the user in the form of line
printer and/or teleprinter listings that include program output as
~ well as a comprehensive summary of all action taken by the user
program, the monitor system and the computer operator.

BATCH provides optional spooling of output files. This feature
serves to increase throughput on any system, but it is particularly
valuable when a line printer is not available. BATCH also performs
extensive command analysis and error diagnosis, as well as detailed
interaction with the user/operator to facilitate initializing the sys-
tem and establishing system parameters.

Almost any program that runs under interactive OS/8 may also
be run under BATCH. Since BATCH is called from the keyboard
in the same manner as any other system program, interactive users
may use BATCH to execute multiprogram utility routines, even
when continuous batch processing is not desired. |

i

~ 2-1

With a few exceptions, BATCH uses the standard OS/8 com-
mand set. BATCH assumes that the reader is familiar with the
operation and use of OS/8.

BATCH Processing Under OS/8

0S/8 BATCH maintains an input file and an output file. The
BATCH input file may be a punched card, high-speed paper tape,
disk or DECtape file consisting of a series of BATCH commands.
If the input file is a disk or DECtape file, it must reside on the

OS/8 system device or on a device whose handler is co-resident
with the OS/8 system device (e.g., RKBO on RKO05 systems).

Each command in the BATCH input file occupies one file record.
If the file is a punched card file, each punched card constitutes one
record, which must contain one complete BATCH command. If
the file resides on paper tape, disk or DECtape, each record con-
sists of one logical line, or all the characters between two line
terminators, including the second terminator.

The BATCH output file is a line printer listing on which BATCH
prints job headers, certain messages that result from conditions
within the input file, an image of each record in the input file and
- certain types of user output. If a line printer is not present in the
system, the output file is printed on the terminal.

BATCH accepts user input files (i.e., program and data files)
from any device in the OS/8 system, with the exception that high-
speed paper tape input files are not allowed when the BATCH
input file also resides on high-speed paper tape. User output files
may be directed to any output device in the system.

BATCH also permits optional spooling of output files. When
spooling is requested, every non-file-structured output file is as-
signed a file name from a list' of names maintained by BATCH
and directed to a file-structured spool device instead of the user
specified device. Spooling of output files increases BATCH through-
- put when system resources are scarce and permits slow output
operations to be postponed until a more favorable time. For ex-
ample, a batch processing run that generates many output listings
may be initialized to re-route all listings from the terminal or line
printer to a specified DECtape unit. This DECtape may be dumped
onto the appropriate hard copy device after the run, when more
time is available.. The spool dev1ce may be any file-structured de-
vice selected by the user.

2-2

0S/8 BATCH is called from the keyboard by typing:

R BATCH

(terminated by a carriage return) in response to the dot generated
by the OS/8 monitor. BATCH then calls the OS/8 Command
-Decoder to obtain its parameters, input device and file name (if
file-structured) . If CCL is enabled, BATCH may also be invoked
via the SUBMIT command, in which case the BATCH parameters,
input device and file name (if file-structured) are specified on the
same line as the SUBMIT command.
The format for a BATCH command string is:

*SPDV:«-DEV: INPUT/option/option

where SPDV: is the device on which to spool non-file-structured
output. If SPDV: is not specified, no spooling is performed. Note
that spooling applies only to non-file-structured output devices
specified to the Command Decoder. The output of programs such
as FOTP, which use a special mode of the Command Decoder, is
not spooled by BATCH. DEV : INPUT is the input device and file
if the input is from SYS: or a device whose handler is co-resident
with SYS:. The default extension for BATCH input files is .BI.
The Run-Time Options are used to specify input from the paper
tape reader or the card reader. The Run-Time Options and their
meanings are 11sted in Table 2-1.

Table 2-1 Run-Time Options

Option S Meaning

/C The input file is to be read from the card reader (CR8/I or
CR8/E)

/JE Treat OS/8 Keyboard Monitor and OS/8 Command Decoder

' errors as non-fatal errors. If /E is not specified, OS/8 Key-

board Monitor and OS/8 Command Decoder errors cause the
current job to be aborted.

/P The input file is to be read from the paper tape reader.

/ Do not output a BATCH log. $JOB and $MSG are the only
line output to the terminal.

/T Output the BATCH log to the terminal. This option need be
specified only if a line printer is available. If a line printer is
not available, the BATCH log is automatically output to the
terminal.

2-3

Table 2-1 Run-Time Options (Cont.)

Option ‘ Meaning

/U BATCH will not pause for operator response to $MSG lines.
Any attempt to use TTY:, PTR:, or CDR: as input devices to
the Command Decoder in an unattended BATCH stream will
cause the current job to be aborted.

/V Print the version number of OS/8 BATCH on the terminal.

/6 Accept card input in DEC 026 format. This option is used
only when the /C option is speaﬁed The default card input
format is DEC 029.

BATCH Monitor Commands

A BATCH command is a character or string of characters that
begins with the first character of a record in the BATCH input
file. If the input file is a disk, DECtape or paper tape file, each
BATCH command must be followed by a carriage return/line feed
combination. If the input file is a punched card file, each command
must begin in the first column of a punched card. Disk and paper
tape files may contain form feed characters. Form feed characters
are ignored by BATCH on input.

0S/8 BATCH recognizes four monitor level commands. These
commands allow routine housekeeping operations in a multi-job,
batch processing environment and provide communication between
the BATCH programmer and the computer operator. Table 2-2
lists the BATCH monitor commands, which may be considered as
an extension of the OS/8 Keyboard Monitor command set. Note
that the first character of the $JOB, $MSG and $END commands .
is a dollar sign (shift/4). The BATCH monitor does not recogmze
the ALT MODE character.

In the current version, any record that begins with a dollar sign
character but is not one of the BATCH monitor commands listed
above is copied onto the output file and ignored by BATCH.

- A BATCH processing job consists of a $JOB command record
and all of the commands that follow it up to the next $JOB or
$END record. Normally, all the commands submitted by one user
are processed as a single job, and all output from these commands
appears under one job header.

Table 2-2 BATCH Monitor Commands

Command - Meaning

$JOB Initialize for a new job and print a job header on the
- output file. The remainder of the $JOB record is included
in the job header but ignored by BATCH. It should be
- used for job identification, to provide correlation between - -
Teletype output, line printer output and spool device
output. -

$MSG Ring the terminal bell and print an image of the record
at the teleprinter. If the /U option was not specified, im-
plying that an operator is present, BATCH will pause
until any key is struck at the keyboard. If the /U option -
was specified, processing continues uninterrupted.-

- $END Terminate batch processing and exit to the OS/8 Key-
board Monitor. A $END command record should 'be the.
last record of every BATCH input file.

/o Copy the record onto the output file, then ignore: it.-
“BATCH assumes that every record beginning with a slash
_is a comment.

R

After BATCH encounters a $JOB command, it scans the input
file until the next Keyboard Monitor command is read. Any records
that follow the $JOB command and precede the first Keyboard
Monitor command are written onto the output file and ignored by
BATCH.

The first character of every Keyboard Momtor command record
is a dot (.). The rest of the record contams an OS/8 Keyboard
- Monitor command, which should appear in standard OS/8 format;
however, commands that would be terminated with an ALT
MODE under interactive OS/8 should be terminated with- a dollar
sign under BATCH. Every standard OS/8 Keyboard Monitor com-
mand is legal input to BATCH; however, the ODT command. will
go to the terminal for input instead of the BATCH file. Typing
CTRL/C to ODT will terminate BATCH. Type: 7600G to ODT

- to resume the BATCH run. '

BATCH executes a Keyboard Monitor command by stripping

off the initial dot character and loading the remainder of the record
_into the Keyboard Monitor buffer. BATCH then passes control to -
the Keyboard Monitor, which executes the command as though it

2-5

had been typed at the keyboard. Keyboard Monitor commands that
return control to the monitor level should be followed by a BATCH
monitor command or another Keyboard Monitor command. Key-
~ board Monitor commands that transfer control to the program level
should be followed by a Command Decoder file specification when-
ever the running program calls the Command Decoder. All OS/8
V3 CCL commands are legal under BATCH, including the SUB-
MIT command (which can be used to chain from one BATCH
stream to another).

When a running program calls the Command Decoder, the Com-
mand Decoder determines whether batch processing is in progress
and, if so, instructs BATCH to read the next record of the BATCH
input file. .BATCH expects this record to contain a Command
Decoder file specification. _

The first character of every Command Decoder file spec1ﬁcatlon
record is an asterisk (*). The rest of the record contains an OS/8
Command Decoder file (and/or option) specification, which should
appear in standard OS/8 format. As with BATCH monitor com-
mands and Keyboard Monitor commands, any Command Decoder
specification that would be terminated with an ALT MODE under
interactive OS/8 should be terminated with a dollar sign under
BATCH.

BATCH executes a Command Decoder file specification by
stripping off the initial asterisk character and loading the remainder
of the record into the Command Decoder buffer. BATCH then
passes control to the Command Decoder, which decodes the file
specification as though it had been typed at the keyboard and re-
turns control to the running program.

If BATCH reads a record from the input file, expecting to find a
Command Decoder file specification, and finds a Keyboard Monitor
command instead, BATCH returns control to the monitor level by-

recalling the Keyboard Monitor to execute the command. The run-
ning program is terminated and control remains at the monitor
level. If BATCH encounters a BATCH monitor command when it
expects to find a Command Decoder specification, it executes the
BATCH monitor command and continues processing the input file.
As long as a Command Decoder file specification is finally read
before the next Keyboard Monitor command, control will eventu-
ally return to the running program, and the file specification will be
executed.

2-6

- A BATCH monitor command is legal at any level of command
execution, and the BATCH monitor returns control to the level
from which it was entered. Keyboard Monitor commands are also
legal at any level (under BATCH, but not under interactive OS/8);
however, the Keyboard Monitor terminates any program that may
be running when it is called and returns control to the monitor
level.

The computer operator may type CTRL/C at any time during a
batch processing run. Typing CTRL/C at the program level causes
an effective jump to location 07600, which recalls the BATCH
monitor. The BATCH monitor then recognizes the CTRL/C and
terminates the BATCH run.

The BATCH Input File

Figure 2-1 shows a listing of a BATCH mput file. This listing
was produced by using PIP to transfer the BATCH input file from
disk to the console terminal, and the output has been reproduced
intact. Assume that OS/8 BATCH is loaded on a 12K system con-
taining one TUS6 dual DECtape transport, a line printer, a Tele-
type terminal, and a disk as the system device. If the disk file shown
in Figure 1 is specified as an input file, BATCH will begin pro-
cessing by printing a job header and executing the DATE com-
mand.

Control remains at the monitor level, so BATCH executes the
next command by calling and starting the Peripheral Interchange
Program. PIP, in turn, calls the.Command Decoder, which accepts
and decodes the file/option specification that occupies the next
executable record (following the comment) of the input file. The
- Command Decoder passes control to the program level, and PIP
lists the short form of the system disk directory at the terminal.

If spooling is active, BATCH will intercept this output and store
it in a temporary file on the spool device. Assuming that DTAO is
the spool device and this listing is the first non-file-structured out-
put file intercepted by BATCH, the output will be stored in a file
named BTCHAL1. BATCH then prints the message:

#SPOOL TO FILE BTCHAI

on both the console terminal and the line printer. The next file that
is rerouted to the spool device will be assigned the file name
BTCHAZ2, and successive files will be named:

2-7

BTCHA3
BTCHAA4

BTCHAS9
BTCHBO
BTCHB1

BTCHZ9

$JOB DS/8 BATCH PROCESSING EXAMPLE #1
LUATE 3/5/74

WR PIP

JLIST SYSTEM DEVICE DIRECTORY ON TELETYPE
xTTYICSYS/F

/NOw LIST THE DIRECTORY OF DECTAPE #3 ON THE LPT
SMSG MOUNT TAPE #3 ON UNIT 1§
*LPT1<DTALL/L

/NOW TRANSFER FURTRAN SQURCE PROGRAM
/FROM DISK TO DECTAPE #3 (UNIT 1)
$MSG WRITE ENABLE UNIT |
*UTAL3FURTSL,FT<DSKIFORTSL FT

/COMPILE FORTRAN SOURCE

WR FORT:

*DTALIFORTS] ,RL,FORTSL ,LS<FORTSY,FT

/THAT CUNCLUDES JOB #1

$JOB 0S/8 BATCH PROCESSING EXAMPLE #2
$MSG MOUNT TAPE #2 ON UNIT 1, WRITE ENABLED
LR PALB

*PTP1,DTALIPROG,LS<DTALSPROG,PA

LRUN DSK CPREF

*OTALIPROG,LS
/END DF EXAMPLE #2 AND END OF INPUT FILE
SEND

Figure 2-1: Sample BATCH Input File

allowing a total of 260 spool device files, which is more than ade-
quate in view of the limited maximum size of the OS/8 file direc-
tory (about 240 entries). If output to a spool device file is generated
by a program that appends a default extension to output file names,
the spool device file will be assigned a standard default extension.
All of the spool device files may then be transferred to the terminal
or line printer by using the program FOTP, with the input file
specification dev:BTCH??7.*.

2-8

‘Returning to the example of Figure 2-1, PIP executes the file
specification that appears in the fifth record, of the input ﬁle .and
recalls the Command Decoder.

The Command Decoder then instructs BATCH to scan the input
file for the next file specification record. BATCH processes the
comment record by copying it onto the line printer, then processes
the $MSG command by ringing the. terminal bell, copying the
$MSG record onto the terminal, and, assuming that an operator
is present, pausing until any key is typed at the terminal.

Once the operator has resumed processing by typing any char-
acter, BATCH reads the eighth record in the file, recognizes it as a
Command Decoder specification record, and transfers control back
to the Command Decoder.

Processing continues in this manner until the third Command "

Decoder specification record is read. When BATCH searches for
the next file specification record, it reads and executes the last
$MSG command, then encounters a Keyboard Monitor command..
BATCH passes this command to the Keyboard Monitor, which
terminates PIP and calls the FORTRAN compiler to load and com-
_pile source program FORTSI. Upon completion of these opera-
tions, FORTRAN routes its output to the specified files and. returns
control to the monitor level. BATCH then encounters the second
$JOB record, causing it to terminate the current job and print a
new header.

The second job calls PAL8 to assemble a source program from
disk. The output listing is directed to the user’s DECtape #?2,
mounted on unit 1, while the binary output file is dumped onto
high-speed paper tape. The job concludes by running CREF to
produce a cross-referenced listing of the assembled program.

This job illustrates how OS/8 BATCH may be used to execute
multiprogram utility routines. If user #2 is a programmer who
- usually follows a PALS8 assembly by running CREF, job #2 could
be a utility routine that combines the call to PALS, the call to
CREF and both file specifications into a single software package
which may be run under batch processing or in an interactive en-
vironment.

The $END record that appears as the last record in Figure 2-1
serves as a signal that batch processing has concluded and causes
BATCH to recall the Keyboard Monitor and re-establish interactive

2-9

processing under OS/8. This command is always the last record of
the BATCH input file.

BATCH Error Messages - _
BATCH generates two types of error messages. BATCH gen-
erates run-time error messages which appear in the form:

#BATCH ERR

the second type of error message is generated when the Keyboard
Monitor or the Command Decoder recognizes a command error in
the BATCH input file. When this occurs, either the Keyboard
Monitor or the Command Decoder will transmit a standard OS/8
error message and BATCH will append a “#” character to the

haoinn o'p tha maoacenaa on that 1+t annaare in tha fAarm -
U\ﬂslllllllls L Ll 111\100“5\4 oV Lllul- AL UPP\JQ O il UV AV AL .

#SYSTEM ERROR

Any occurrence of a Keyboard Monitor or Command Decoder
error normally causes BATCH to abort the current job and scan
the input file for the next $JOB command. If the /E option was
specified, BATCH treats Keyboard Monitor and Command De-
coder errors as non-fatal and continues the BATCH run.

Table 2-3 lists the BATCH error messages, their meanings, and
the probable cause for the error. .

Table 2-3 BATCH Error Messages

BATCH Error Message Meaning

. #MONITOR OVERLAYED The Command Decoder attempted to
call the BATCH monitor to accept
and transmit a file specification, but
found that a user program had over-
layed part or all of the BATCH
monitor. Control returns to thy mon-
itor level, and BATCH executes the
next Keyboard Monitor command.

#BAD LINE. JOB ABORTED The BATCH monitor detected a rec-
ord in the input file that did not
have one of the characters dot, slash,
dollar sign or asterisk as the first
character of the record. The record
is ignored, and BATCH scans the

- input file for the next $JOB record.

2-10

Table 2-3 BATCH Error Messages. (Cont.)

BATCH Error Message

Meaning

#SPOOL TO FILE BTCHAL -

#MANUAL HELP NEEDED

#ILLEGAL INPUT

#INPUT FAILURE

Where the “A” may be any character
of the alphabet and the “1” .may be
any decimal digit. This message in-
dicates that BATCH has intercepted
a non-file-structured output file and
rerouted it to the spool device. This

- is not, generally, an error condition.
Spool device file names are assigned
sequentially, beginning with file
BTCHA1. Standard default exten-
sions may be assigned by some sys-
tem programs. :

BATCH is attempting to operate an -
I/0. device, such as PTR or TTY,
that will require operator interven-
tion. If the ‘initial dialogue indicated
that an operator is not present, this

message is suppressed, the current
job is aborted, and BATCH scans the
input file for the next $JOB com-
mand record. If an operator is pres-
ent, he should have been notified
what action to take by a $MSG com-
mand. -

A file specification designated TTY
or PTR as an input device when the
initial dialogué indicated that an op-
erator is not available. The current
job is aborted, and BATCH scans
the input file for the next $JOB com-
‘mand record.

Either a hardware problem prevented
BATCH from reading the next rec-
ord of the input file, or BATCH

- read the last record of the input file

without encountering a $END com-
mand record. If a hardware problem
exists, correct the problem and type
any character at the Teletype to re-
sume processing. -

2-11

Table 2-3 BATCH Error Messages (Cont.)

BATCH Error Message ' Meaning_

#SYS ERROR A hardware problem prevented
‘) - BATCH from performing an I/0O
- operation. Program execution halts,
and the system must be restarted
manually. This message often indi-
cates ‘that the system device is not
write enabled.

INSUFFICIENT CORE FOR 0S/8 BATCH requires 12K of core
BATCH RUN to run. Control returns to the OS/8
Monitor.

BATCH.SV NOT FOUND ON A copy of BATCH.SV must exist on
SYS: the system device. Control returns to
the OS/8 Monitor.

WRONG 0S/8 MONITOR 0S/8 BATCH requires an OS/8
Monitor no older than version 3.

DEV NOT IMPLEMENTED BATCH cannot accept input from
' the specified input device because its
handler is not permanently resident
(SYS: or co-resident with SYS:).
Control returns to the Command

Decoder.

ILLEGAL SPOOL DEVICE The device specified as a spooling
- output device must be file-structured.
Control returns to the Command

Decoder.

Running BATCH From Punched Cards

The carriage return and ALT MODE characters are not defined
in the punched card character set. BATCH permits terminating
carriage return characters to be omitted from punched card input
files. Thus, when BATCH reads a punched card input file, it
appends a carriage return to the content of each card, immediately
following the last character on the card that is not a space char-
acter. As with disk, DECtape or paper tape input files, BATCH
considers the dollar sign character to be equivalent to an ALT
MODE when it appears on a punched card in any column except
the first.

2-12

When BATCH is run with a punched card input file, it is possible
for user input files to be embedded in the BATCH input file. User
~ input files should be inserted into the' BATCH input file in such a
way. that BATCH will never attempt to read a record of the user
file. That is, user fifes should follow a command record that trans-
fers control to the program level, and the running program must.
exhaust all records of the user file before returning to the monitor
level. ' - :

]

Figure 2-2 illustrates how the second sample job of Figure 2-1
may be modified to run from a punched card input file with an
embedded user file. In this example, PALS reads the punched card
user file and assembles the source program, then returns control
to the monitor level. BATCH reads the next card of the input file,
which should contain the .R CREF command. If PAL8 has not
- read every record of the user input file, however, BATCH will en-

counter a record from this file rather than the Keyboard Monitor
command record. This results in the message:

"#BAD LINE. JOB ABORTED

and causes BATCH to scan the input file until the next $JOB
record is read.

Restrictions Under OS/8 BATCH

0S/8 BATCH is a “friendly” system; that is, one which is
largely unprotected from user errors. The BATCH monitor resides
in locations 5000 to 7577 in the highest memory field available.
BATCH also uses the following locations in field 0 and the memory
field in which it resides: | | |

LOCATION - USED AS:
07777 Batch processing flag.
N7774-N7777 Internal pointers.

Both the Keyboard Monitor and the Command Decoder check the
batch processing flag whenever they are entered from the program
level. Any user program that modifies location 07777 may cause
batch processing to be terminated prematurely before the next
record of the BATCH input file is read.

2-13

y1-¢

/ $END

{ /END OF EXAMPLE #£2

EMBEDDED f‘ DTAL: PROG. LS ~ .
USER FILE /RUN DSK CREF :

N

/* PTP:,DTA): PROG.LS CDR:

/.R PALS

/wsc MOUNT TAPE #2 ON UNIT 1

/ $JOB 05/8 BATCH PROCESSING EXAMPLE # 2 U |}

Figure 2-2 Punched Card Input File

When the Keyboard Monitor is entered from the program level
(effective JMP to 07600 or 07605) it checks the batch processing
flag and reads a new copy of the BATCH monitor into core if
~ batch processing is in progress. The Command Decoder, however,
" does NOT perform this operation, Thus, the'Command Decoder
must not be called unless the BATCH monitor is already in core.

This means that large user programs may be loaded over the
BATCH monitor as long as they do not modify the last four loca-
tions in the highest memory field; however, once a user core load
has overwritten the BATCH monitor, execution must remain at
the program level until the Keyboard Monitor has been re-entered
and a new copy of the BATCH monitor is read into core. The
Command Decoder must not be called after a user program has
been loaded over the BATCH monitor.

In general, this restriction applies only to loader programs and
only when the loader calls the Command Decoder more than once
while building a large core load. Multiple calls to the Command
Decoder may be avoided when loading large programs during batch

processing if the core load is first built in a stand-alone environment
- and then saved for subsequent execution under BATCH.

-

In conjunction with this, note that it is impossible to save the
core image of any program that overlays the BATCH monitor
under BATCH. After the load operation but before the save is
executed, the BATCH monitor will be read back into core, destroy-
ing part of the user program. Thus, the Keyboard Monitor SAVE
operation will cause part of the BATCH monitor to be saved in-
stead of that part of the user program which originally overlayed
the BATCH monitor. .

2-15

BATCH Demonstration Program

The following listing was produced by running BATCH on a
12K PDP-8/E system containing a disk, DECtape and a line
printer. Only the Teletype output is reproduced here, and page
breaks were inserted arbitrarily to divide the listing into convenient
segments. The same BATCH input file has been processed twice,
with two different system configurations.

Notice that the first BATCH processing run begins by listing the
BATCH input file, and that the three demonstration programs are

listed shortly thereafter.

waa

«R BATCH
#SYS:DEMO/U

$JOB 0S/8 BATCH DEMO

$MSG BEGIN BY LISTING BATCHW INPUT FILE ON TERMINALS
R PIP

*«TTYI<DEMO,BI

«DATE 3/5/74

$MSG SYSTEM DEVICE ASSIGNED LOGICAL NAME "IN®
«ASSIGN SYS IN

$MSG MDUNT SCRATCH UECTAPE ON UNIT
K PIP

/IERD DECTAPE DIRECTORY

SMSG WRITE ENABLE UNIT 1

*DTAl1e/2

/LI3T SYSTEM DIRKECTORY ON LINE PRINTER
% PTI<INI/E

/TRANSFER DEMO PROGRAMS TO DECTAPE
*OTA13DEMOL,PACDEMD),PA

wOTALIDEMUR FTCDEMDZ ,FT
*DTALSDEMOI , FT<DEMO3 FT

/LISYT THE FIRSY DEMO PROGRAM
*TTYS<INSDEMOL ,PA/T

FLIST THE SECONU DEMO PROGRAM
«TTYLSINIDEMOE,FT/T

/LIST THE THIRD DEMO PROGRAM
*TTYS<INIDEMO3,FT/T

JASSEMBLE DEMOL1,PA

«R PALB

*INIDEMOL1,BN,DEMDI ,LS<INIDEMO],PA
/PRINT CROUSS REFFRENCE LISTING

+R CREF

wLPTICINIDEMOL, LS

/L.0AD ASSEMBLED BINARY INTO CORE

«R ABLSUR

- 2-16

*wDEMOL ,BNS
/RUN FIRST DEMO PROGRAM
JSTART 2@¢
. /NOw SAVE CURE IMAGE OF DEMOYPA, BUT MUST
" /RELOAD FIRST, SINCE DEMOY IS SELFeMODIFYING
R ABSLDR
«IN:DEMO1 BNS
.SAVE 3YS DEMOY 0,200
/RUN DEMD1,SV TO BE SURE THAT IT WAS SAVED CORRECTLY
LRUN SYS ueno1
/NON COMPILE FOKTRAN MAINLINE PROGRAM
R FORT
*IN DEMOR2+BN,LPT2<INZDEMODZ, FTS
/COMPILE FORTRAN FUNCTION ROUTINE
. R FORT
*IN' EMO3,BN,LPT2<IN: DEMns FTS
/TRANSFER ROTH dINARY FILES YO DECTAPE
R PIP
sDTALS DEMD2,BN<JEMDR ,BN/B
*DTAL:DEMO3,.BN<DFMO3,BN/B ,
/L0AD AND EXECUTE FORTRAN PACKAGE
.R LOADER '
*DEMOR BN, DEMO3,BN/G
/RENAME 0&MO3,BN FOR FUTURE REFERENCE
LR PIP
*«FACT<DEMODZ,BN/I
xDEMO3 , N</U
/ADD FORTRAN FUNCTIDN TO FORTRAN LIBRARY
+R LIBSET
*LIB& BN/S
*FACTS :
JFINALLY, DELETE TEMPURARY FILE “FACT"
LR PIP . ’
*FACT</D
/NOW CLEAN UP DISK AREA
*DEMO1,58N, DEMOYL,SV,DFM0E,BN</D
SMSG DEVICE NAMES DEASSIGNED
LDEASSIGN
SEND

$MSG SYSTEM DEVICE ASSIGNED LOGICAL NAME ™ IN"
$MSG MOUNT SCRATCH DECTAPE ON UNIT 1.
$MSG WRITE ENABLE UNIT |

2-17

*19
R1, 300
. %200
START, CLA CLL
TLS
TAD I IRI
JMS TYPE
JMS TEST
JMP =4
TYPE, @
TSF
JMP o-l
TLS
CLA
JMP I TYPE
TEST, 2 -
TAD IRI1
TaD M235
SZA CLA
JMP I TEST
ISF
JMP -1
JMP 7600
M335, -335
*301
2153212321232413241324133053330;3853303
325332433113317331632403383331733153322
314330533243385324132413241321532123212

c FORTRAN DEMONSTRATION PROGRAM
DIMENSION AC35) 2
DO 10 N=2,34,2
ACN)= FACT (N)

12 WRITE C1,68) N,A(N)
STOP

60 FORMAT (I3,°Y = *,E14.7)
END

C FORTRAN FUNCTION TO COMPUTE FACTORIALS
FUNCTION FACT(N)
IF (N-34) 1,5,5

1 IF (M) 2,4,2

2 M=N-2
FACT=N
DO 3 K=1,M
C=N=-X

3 FACT=FACT*C
RETURN

) FACT=1.
RETURN

5 WRITE (1,6) N

2-18

FACT=0. o
- RETURN
6 FORMAT (I5,°! EXCEEDS CAPACITY' OF PROGRAM. *)
EVD |

111 EXECUTION COMPLETE!!!

111 EXECUTION COMPLETE!!!

21 = 0.2000020E+81 | | ~
41 = B.24C0000E+22
61 = 0.7202080E+83
81 = 2.4032903E+85
18! = ©.3628802E+07
12! = 8,4790016E+89
14! = 2.8717829E+!1
161 = 0.2092279E+14’
181 = B.648237AE+16
201 = 8.2432982 B19
221 = 0,1124001 E+22
241 = @.6204484E+24
261 = 8.4032915E+27
28! = ©,3048883 E+30
33! = 0.2652529E+33
321 = .B.2631308E+36

34! EXCEEDS CAPACITY OF PROGRAM.
341 = 0,0200200E+22
$MS3 DEVICE NAMES DEASSIGNED

#END BATCH

The next run is initiated via the SUBMIT command.

.SUBMIT SYS:<SYS:DEMO/U/T
$JOB 0S/8 BATCH DEMD

$MSS BEGIN BY LISTING BATCH INPUT FILE ON TELETYPE:
R PIP : - :
*TYYI<DEMQ,BI

#3P00L TO FILE BTCHAI

- JDATE 8/3/72

$MSG SYSTEM DEVICE ASSIGNED LOGICAL NAME ”IV'
LASSIGN SYS IN

$§S;IﬂOUNT SCRATCH DECTAPE ON UNIT |

. P

/ZERO DECTAPE DIRECTORY

2-19

$MSG WRITE ENABLE UNIT |

*DTAls «/Z ' :

/LIST SYSTEM DIRECTORY ON LINE PRINTER
*LPTs el N2 /E

#SPOOL TO FILE BTCHA2

/TRANSFER DEMO PROGRAMS TO DECTAPE
*DTAl ¢ DEMOl ,PA«DEMO1, PA

*xDTAl: DEM®R2 ., FT<DEM® ., FT

*DTAl: DEMO3 ,FT«DEMO3,FT

/LIST FIRST DEMO PROGRAM

*TTY: «INe DEMOL ,PA/T

#3P00OL TO FILE BTCHA3
/LIST SECOND DEMO PROGRAM
*TTYs «I Ne DEMO2 FT/T

#SP0O0L TO FILE BTCHAA

/LIST THIRD DEMO PROGRAM
*TTY: «INe DEMO3,FT/T

#SPOOL TO FILE BTCHAS

/ASSEMBLE DEMO1,PA

R PALS

%I N¢ DEMO! ,BN,DEMO] ,LS«IN: DEMO! ,PA
/PRINT CROSS REFERENCE LISTING

S CREF

*LPT:«IN: DEMOIL ,LS

#SPOOL TO FILE BTCHAS

/LOAD ASSEMBLED BINARY INTO CORE
R A3BS5LDR

*DEMO! B NS

/RUN FIRST DEMO PROGRAM
START 202 .

11 1 EXECUTION COMPLETE!!! '
/NOW SAVE CORE IMASGE OF DEMOl.PA, BUT MUST
ARELOAD FIRST, SINCE DEMO! IS SELF-MODIFYING

R ABSLDR
*I N: DEMO! .B N

«SAVE SYS DEMO! 8,200 : : :
RUN DEMO1.SV TO ENSURE THAT IT WAS SAVED CORRECTLY

L UN SYS DEMO!

11" TEXECUTION COMPLETE!!!
/NOW COMPILE FORTRAN MAINLINE PROGRAM
R FORT

*INs DEM® .BN,LPT: «IN: DEM® ,FT$

2-20

*

#SPOOL TO FILE BTCHA?
/COMPILE FORTRAN FUNCTION -ROUTINE

R FORT |
_*INg DEMO3 ,B N, LPT: «IN: IEMO3 . FT$

#SPOOL TO FILE BTCHAS
JTRANSFER BOTH .BINARY FILES TO DECTAPE
R PIP

*DTAl s DEMC2 .BN«DEMQ® .BN/B

*DTAl s DEMQ3 ,B NeDEMO03..BN/B

/LOAD AND EXECUTE FORTRAN PACKAGE
R LOADER

' xDEM® .B N, DEMO3 ,3N/G

2! = B.2002000E+01
4! = 0.,2400000E+22
6! = 0.72000900E+33
8l = B.,4232000E+25
18! = 0,3628880E+87
12! = B.4799016E+29
141 = 2.8717829%k11
161 = @.2092279E+14
18y = B.64023T4E+16
201 = 0.2432502 B-19°
221 = 0.1124081 B+22
241 = B.6204484E+24
26! = B.,4032915E+27
281 = 0.3348883E+38
38! = 0,2652529E+33
321 = B.2631388E+36

34! EXCEEDS CAPACITY OF PROGRAM.
341 = 0 ,7000200E+00
/RENAME DEMO3,BN FOR FUTURE REFERENCE
R PIP
*FACT#%EMOG.BN/l ' .

7ADD FORTRAN FUNCTION TO FORTRAN LIBQ%RY
A LIBSET

*LIBB BN/S

*FACTS '

/ZFINALLY, DELETE TEMPORARY FILE " FACI”
LR PIP

*FACT!—/D

/NOW CLEAN UP DISX AREA

*DEMO! ,BN,DEMO! ,SV,DEMO2 ,BN«/D

$MS5 DEVICE NAMES DEASSIGNED

DEASSIGN

$END

#END BATCH

2-21

Loading and Saving BATCH

The paper tape binary version of OS/8 BATCH may be loaded
and saved on the OS/8 system device by typing the following com-
mands in response to the dot generated by the OS/8 monitor:

«R ABSLDH
*PThk: (9P) 3¢
« SAVE SYS BATCd

Once the ALT MODE ($) has been entered, the system will
print an uparrow and pause. Load the binary paper tape into the
high-speed reader, turn the reader on, and type any character at the
keyboard to continue.

Loading and Saving Frograms
For Use Under BATCH

A program that never uses more than 8K of core can never de--
stroy the BATCH monitor. When this sort of program is loaded
from a DECtape system, considerable time is saved through use of
the /P option.

The /P option is a new ABSLDR option designed for use under
OS/8 BATCH. It causes the 400 bit of the job status word (loca-
tion 07746) to be set and prevents the Keyboard Monitor from

- reading a fresh version of the BATCH monitor into core every time
the monitor level is re-entered from the program level.

For example, OS/8 PIP never uses more than 8K of core. Thus,
the best method of loading PIP would be:

«R ABSLDR -
*PTR: (89P)=13000$%

The /P option is not really necessary on a disk system, because
very little time is required to refresh the BATCH monitor from
disk. The /P option should not be used with any program that
occupies or modifies core above field 1.

Transferring the System Software From Cassette to the System
Device

~ The following BATCH file can be used to transfer the OS/8

System Software from cassette to the system device.

2-22

$JOB JOB YO LOAD SYSTEM CASSETTE * 270 SYSTEM DEVICE
+R MCPIP
*SYS:ICCL,8v<C8AQICCL,SY
*SYSIDIRECT,SV<CSA@QIDIRECT,SV
*SYSIFOTP,SV<«CSARIFOTP,SV
*SYSIPIP,8V<CSAGIPLIP,SV
wSYS:LIBB,RL<CSADILIBA,RL
*SYSIEDIT,SVSCSABIEDIT,SV
*SYSIPAL8,8v<«CSADIPALS,SY
*SYSICREF ,8V<CSAQICREF,SV
«SYSIBITMAP ,SV<CSAGIBITMAP,8Y
*SYSIBOOT,S5V<«CSAQ:IBOOT,SY
*SYSICAMP,8V<CSARICAMP,SV
*SYSIRKAFMT ,SV<CSAQIRKAFMT,SV
.*SYSIRKEFMT ,SV<CSADIRKEFMTY SV
SEND

$JOB JOB TO LOAD SYSTEM CASSETTE #3 TO SYSTEM DEVICE
+R MCPIP
*SYSIFORTY,SV<«CSAJIFORY,SV
*SYSISABR,8V<«CSAL1ISABR,SY
#SYSSILOADER ,Sv<CSAL L QADER,SY
wSYSISRCCOM,SV<CSAL1ISRCCOM,S8Y
*SYSIEPIC,SV«CSALIEPIC,SV
*SYSIPIP1D,SV«CSALIPIPLD,SV
*SYSIRESORC,8V<CSA1 IRESORL,SV
*SYSIDYCOPY,S8V<CSALIDTCOPY,SV
*SYSITDCOPY,SV<CSA13TDCOPY, 8V
*SYS!TOFRMY ,SVCCSALETDFRMT,SV
iSYS!DTFRMT SV<CSA1IDTFRMY,SV
SEND

$JOB JDB TO LOAD SYSTEM #4 TO SYSTEM DEVICE -
«R MCPIP
tsvszrczasv s~<c5Az,Tcaasv BN
*SYSITDBESY,BN<CSAQ:TDSESY,BN
iSYsiLINCSY.BN<CSAZSLINCSY.BN
*SYSIDF32SY BN<CSARIDF3I28Y,BN °
*SYSIRFPBSY,BN<CSAQIRFB8SY,.BN
*SYSIRKPS8SY BN<CSAPIRKOBSY BN
*SYSIRKSESY BN<CSARIRKBESY, BN
*SYSIROMMSY ,BN<CSAQ:ROMMSY,BN
*SYSILINCNS ,BN<CSADILINCNS,.BN
*SYSITCQOANS ,BN<CSAQITCRANS, BN
*SYSIRKBENS ,BN<CSAGIRKBENS,BN
*SYS!PTBE,BN<CSARIPTRE,BN
wSYSILSPT,BN<CSABSLSPT,BN

2-23

#SYS:,645,BN<CSARSLO645,BN
*SYSIASR3I3 ,BN<CSARSASRS3,BN
*SYSIRKOBNS ,BN<CSAQIRKOBNS,BN
*SYSICRBE,BN<CSAQICRAE,BN
*SYSIBAT ,BN<CSARIBAT BN
«SYSITDBEA,BN<CSA2ITDBEA,BN
«SYSITDBEB,BN<CSACITDBEB,.BN
*SYSSTDB8EC,BN<CSAGITDBEC BN
*SYSITDBED,BN<CSADITDRED,BN
*«SYStVR12,BN<CSAQIVR{2,BN
*SYS:RFOBNS ,BN<CSABIRFBBNS,BN
*SYSIDF32NS,BN<CSAQIDF32NS, BN
#SYSIKLBE ,BN<CSAQIKLBE,BN
*SYSILPSV,BN<CSAQSLPSV,BN
#SYSSTMBE,BNCCSAQITMBE,BN
wSYSSICSA . BN<CSAPECSA, BN
*SYS:CSB,BN«C3AQ:CSB BN
*SYSICSC,BN«CSAQ:ICSC, BN
#SYSICSD,BN«CSAQ:CS8D,BN
*SYSIDIRECT HL<CSAQIDIRECT ,HL
*SYSIBATCH HL<CSAQIBATCH, HL
#SYSISABR, HL<CSAQ:SABR,HL
“SYSIPIP,HL<CSAQIPIP,HL
*SYSIFOTP ,HL<CSABIFOTP,HL
*SYSLABSLDR HL<CSARIABSLDR,HL
*SYSIPIPIO,HL<CSAQIPIPIO,HL
*SYSIBOOT HL«<CSAQELBOOT, HL
*SYSILOADER HL<CSAQ:LOADER,HL
*SYSIBITMAP HL<CSAQIBITMAP ML
wSYSIEDIT,HL<CSAQIEDIT,HL
“SYSICREF ,HL<CSAQICREF HL
#SYSIBUILD,HL<CSAGIBUILD,HL
*SYSIPALB HL<CSAQIPALB,HL
wSYSIODT,HL<CSAQ:0DT HL
«3YSISRCCOM, HL<CSARESSRCCOM, HL
*SYSICCL ,HL<CSAQICCL ,HL
*SYSITECO,HL<CSAQSTECO,HL
*SYSIFORT ,HL<CSAQIFORT, HL
*SYSILOAD,HL«CSADBILOAD,HL
*SYSILIBRA HLSCSADIL IBRA KL
#SYSIEPIC HL«CSAQIEPIC,HL
SEND :

SJOBCJUB TO LOAD SYSTEM CASSETYE # 5 YO SYSTEM DEVICE
«R MCPIP

wSYSILIBB, RL<CSALLIBB,RL
*SYSIGENIOX,RL<CSALIGENIOX,.RL

*SYSHI0H RL«CSALII0OH, RL -

*SYSIFLOAT RL<CSALIFLOAT,RL
*SYSIINTEGR,RL<CSAL I INTEGR,RL

2-24

*SYSIUTILTY, RL<CSALIUTILTY,RL
#SYSIPOWERS,RL<CSA11POWERS ,RL
*SYSIIPOWRS ,RL<CSALIIPOWRS,RL
#SYS1SQRT ,RL<CSA{ $SGRT,RL
*SYSITRIG,RLCCSALITRIG RL
#SYSIATAN,RL<CSAL3ATAN,RL
‘wSYSIRWTAPE ,RL<CSALIRWTAPE, RL
*SYS1IOPEN,RL<CSALSIOPEN,RL
#SYSILIBSET,SV<CSALILIBSET,SV
*«SYSIKLAE ,PACCSALIKLBE PA
SEND _

$JOB JOB TO LOAD SYSTEM CASSETTE #6 TO SYSTEM DEVICE
"«R MCPIP

*«SYSICCL,.PA«CSABICCL,PA

SEND

_ $JOB JOB TO LOAD 08/8 EXTENSION CASSETTE TO SYSTEM DEVICE
R MCPIP .
#SYSIBATCH,SVCCSALIBATCH,SV
#wSYSIBASIC,8V<CSAL1BASIC,SV
*SYSIBCOMP,SV2CSALIBCOMP,SV
wSYSIBLOAD,SV<CSAL1IBLOAD,SV .
*SYSIBRTS,SV<CSALIBRTS,SV
ASYSIBASIC.AF<CSAL1B8ASIC,AF
»SYSIBASIC.SF<CSAL11BASIC,SF
iSYSIBASIC.FF‘CSAilEASIC.FF
*SYSIBASIC.UF<CSALtBASIC, UF
*SYSIEAEOVR,BN€CSA{ 1EAEOVR,BN
*SYSIRESEQ.,BA<CSALIRESEQ,BA
*SYSITECO,SV«CSAYITECO,SV
*SYSIMSBAT,SVCCSALIMSBAT, SV
#SYSIGENIOX RL<CSALIGENIOX,RL
SEND

2-25

BITMAP _
BITMAP is an OS/8 utility program which constructs a table
(map) showing the memory locations used by given binary files.

Hardware and Software Requirements

BITMAP runs on the standard OS/8 configuration and requires
the OS/8 software package. BITMAP uses 8K of core to map
programs that use up to 16K of core, but requires 12K of core to
map programs using more than 16K of core.

. Loading Bitmap
Type

«R BI TMAP

to call the BITMAP program from the system device!. The sys-
tem responds by printing an asterisk (*) at the left margin. Type
the input line to BITMAP, indicating input devices and file name
(if input is from a mass storage device), any options desired, and
an output device and file name (if output is to a mass storage
device). '

The standard input devices for BITMAP are: PTR, DTAn, DSK,
and SYS. Any other device which can contain absolute binary files
can be used as an input device if a device handler exists. TTY
should not be used, as the binary code may appear to the TTY
handler as control characters.

BITMAP accepts only absolute binary files. Relocatable and
core image files may not be used. If no extension to the input
file name is typed, BITMAP assumes the .BN extension. If more
than one program is present in a file, only the first program is bit-
mapped. (This feature allows BITMAP to ignore any noise char-
acters which might be caused by reading over the end of a paper
tape.) This feature can be overridden by the /S switch.

Type the RETURN key at the end of an input specification line
to signal that more input is to be given on the next line. Use the
ALT MODE key as a line terminator when there is no more input;
the Command Decoder is not recalled, and control returns to the
Keyboard Monitor. The last line typed specifies the output device

1 System output is underscored throughout this manual.
= carriage return. ’

2-26

on which the bit map is to be prodl:.l_ced.' Any legal OS/8 output
device may be specified. If no output device is specified, output is
to the console terminal. For example:

_+«R BITMAP
*DTA1: FILEI:FILEZ:FILE:B: FILEA4
*LPT: <PTR: $1

If an output file is specified without an extension, BITMAP inserts
a .MP extension. The preceding lines cause FILE1, FILE2, FILE3,
and FILE 4 from DECtape 1 to be considered. Then a file is read
from the highspeed paper tape reader. The $ character is printed
by the ALT MODE key which indicates a return to the Keyboard
Monitor. The resulting bit map combining all the files read is pro- -
duced on the line printer.

The various options accepted by BITMAP are given below:

Table 2-4 Bitmap Options

Option . Meaning

/R Reset internal bit map of BITMAP to look as though
R nothing has been input.
/S Consider all binary programs in the specified input
file(s) (instead of only the first program in each file, -
which is normally done).

/n Where n is an integer, forces mapping of all files spe-
cified on this input line as if it were initially n field n.
/T This is used to change the style of output—i.e., put tele-«

- type style output on non-teletype or non-teletype style
~ output on teletypes.

Examples of command lines to BITMAP:

<R .BI TMAP
*SY S: PROG. @1
*DTA1:MAP<DTAS: PATCHS

The abové commands create a bit map of the combined files
PROG.01 on the system device and PATCH.BN on DECtape 5
‘and stores the output in the file MAP.MP on DECtape 1.

2-27

» R BI TMAP
*LPT:<A,B,CS

This example shows a bit map being produced on the line printer
for the combination of three binary files (A, B, and C) on the
device DSK:.

+R BITMAP
*TTY: <PTR: /5%t

‘One binary tape is read from the high-speed paper tape reader, and
a bit map is produced on the terminal combining all binary files on
that paper tape.

BITMAP Output
The output of BITMAP is a series of lines, each of which is

comprised of a string of digits. Each digit represents a single core
. location, and can have the value 0, 1, 2 or 3. The value is assigned
as follows:

"0 means that the location was not loaded into.

1 means that the location was loaded into once.

2 means that the location was loaded into twice.

3 means that the location was loaded into three or more
A times. :
- Appearance of a 2 or 3 may imply a programming error (e.g., two
separate routines are each trying to load values into the same loca-
tion).

Each line of digits represents 100, core locations and lines are
blocked in pairs to represent pages. On teletype output, the bit
map is bordered by a set of octal coordinates which associates
one core location to each digit. For any given entry in the map
the corresponding core location can be determined by adding the
horizontal and vertical coordinates that lie directly to the left and
above the entry.

2-28

The following is an example of teletype style output:

BITMAP V& FTELL @

NACR2¢Ae11111111222222223333333344444444555555556666666677TT7T77
7123456721234567012345670123456701234567012345670123456704234567

eeage 22?2???2?11111111@ﬂ@mﬂﬂ%02@2ﬂeﬂ@ﬂﬂﬂﬁbﬂﬁﬂﬂ@ﬂﬁGGEGOGGBGBBGOGGBBDGD
oizn

PP2p0 2282
PP3Ip0 22222222222222222211111111 1111141143182 8422181111831811111122221

P40 22222222P222 |
na50e0 22222222222222222222722222222222222°2222222222222222222222222222

20622 13111111111218438312333043211493¢81842038443281183142 318128884288
POTER 11111113101 10101301242022213302238 42428381 221881314@13811311248114

e1ce0
21100

n12ee
g13e0

2t4ce
0150

n162@
21702

neeee
aziea

The following is an example of ndn—teletype style output:

BITMAP V4 FIELD 2
PEOR3 22222222 21111111 10000QAP AZCCEECC COGEPR00 200GAAGM 20002 CAPAAL0A
eRled

20200 22222222 22222222 22222222 22222222 22222222 22222222 22222222 22222222
20300 22222222 22222222 22111111 11111111 111909141 111114101 19111111 1112222}

ROap@ 22222222 22222222 22222222 22222222 22222222 22222222 22222222 22222222
Q0500 22222222 22222222 22727222 222222227 22222222 22222222 22222222 22222222

‘epeee 131111111 11113111 $f111111 11111111 11111111 18148111 11101881 1111111
2722 11111111 11191301 11110981 1319381 11882188 $1111090 14401118 11111911

21222
21120

01200
Q1322

21402
215¢@2

ai60e
f170Q

na2ece
@212

2-29

BITMAP Error Messages

After each error message control returns to the Command De-
coder and the user can try the procedure again, or reset the pro-
gram (using the /R option) and try again using different inputs.

Message Meaning

I/0 ERROR An I/0 error occurred in input file number
FILE #n n.

BAD INPUT, = A physical end of file has been reached be-
FILE #n i fore a logical end of file, or extraneous char-

acters have been found in binary file n.
BAD CHECKSUM, File number n of the input file list had a

FILE #n checksum error. .

NO INPUT No binary file was found on the designated
device.

ERROR ON Error occurred while writing on output de-

OUTPUT vice, i.e., output error on DECtape write.

DEVICE

NO /I Cannot produce a bitmap of an image file.

Assembly Instructions

Use PALS to make BITMAP.BN from BITMAP.PA as follows

+R PALS
*DEV: BI TMAP<DEV: BI TMAP

The listing file shown in parentheses is optional. ‘
Use ABSLDR to make BITMAP.SV from BITMAP BN on a
DECtape file:

«R ABSLDR
*DEV: BI TMAP=12PP8/9 %

« SAVE DEV BITMAP

2-30

Toload and save the binary paper tape (DEC—SS—O_SYSA—C—PB 17):

«R ABSLDR
PTR:=12000/9 $

- «SAVE DEV BITMAP

and store in the file MAP.MP on DECtape 1.

2-31

BOOT

BOOT is an OS/8 program used to bootstrap from one PDP-8
- system to another and to bootstrap from one device to another by
typing commands on the keyboard. BOOT can run conveniently
from OS/8 and COS 300 and can also run from any other PDP-8
monitor system (e.g., CAPS-8).

. To run BOOT from COS 300, see the COS 300 System Refer-
ence Manual, Chapter 9 (DEC-08-OCOSA-E-D).

To run BOOT from OS/8, type:

R BOOT/dv

or
"~ RUN DEV:BOOT/dv

where dv is a 2-character mnemonic which must immediately fol-
low a slash. This mnemonic represents the device type and the
system to be bootstrapped. Do not attempt to bootstrap onto a
device which is not ready or does not exist.

To run BOOT from an OS/8 device with CCL enabled, type:
.BOOT/dv

If the above form of call is used, BOOT.SV mustbe present on
the system device.
If the following is typed:

«R BOOT

the system responds with a slash and the user can respond with
the dv mnemonic.
If an illegal mnemonic is typed, the system prints:

NO
/

to allow a new mnemonic to be entered. Type RUBOUT to erase
the line, then enter the command correctly.

If the device mnemonic is followed by a period, the program
loads the correct bootstrap into core and then halts. Press CONT
to branch to the bootstrap.

- Table 2-5 lists the legal mnemonics for BOOT.

2-32

Table 2-5 Boot Mnemonics

Mnemonic Device) System or Comments
CA TABSE cassette CAPS-8
DK Any disk (RFO08, 0S/8, COS 300
DF32, RK8E, RK8) e

DL LINCtape _ DIAL-V2, DIAL-MS

DM RFO8orDF32 Disk Monitor

DT Any tape (TCOS8, 0S/8, COS 300

: TDSE, LINCtape) _ N |

LT LINCtape ~ 0S/8,COS300

PT PT8E paper tépe ‘Loads BIN/loader into field O
'RE RKSEdisk 0S/8, COS 300

RF RFO08, DF32 disks 0S/8, COS 300

RK RKS8disk 0S/8, COS 300

TC TCO8 DECtape = 0S/8, COS 300, Disk Monitor,

DEC library system, and.others

TD . TDSE DECtape .. 0S/8, COS 300)
TY TCO8 DECtape unit4 - Typeset bootstrap

VE Types BOOT’s version number
ZE | . Zeroes core (field 0)

More than one device of a particular type (e.g., disk, DECtape)
may be present on the OS/8 system. When the DK or DT
mnemonic is used, BOOT assumes the following priorities:

Disk . DECtape
1. RFO8 or DF32 1. TCO8
2. RKSE 2. TDSE
3. RKS 3. LINCtape

- 2-33

BUILD :
BUILD is the system generation program for OS/8 which allows
the user to:

1. Create an OS/8 monitor system from cassettes or paper tapes.

2. Maintain and update device handlers in an existing OS/8
system. _

3. Add device handlers supplied by Digital to a new or existing
system. ' .

4. Add user-written device handlers to a new or existing system.

With BUILD, simple keyboard commands are used to manipulate
the device handlers which make up the OS/8 peripheral configura-
tion. BUILD allows the user to quickly and easily insert devices

QAT

W T TR P I
which are not standard on the system.

0OS/8 Device Handlers

Each OS/8 configuration has certain device handlers that are
available within BUILD when the system is supplied by Digital.
The handlers supplied with BUILD depend on the distribution
media of OS/8 software, i.e., DECtape (LINCtape), cassettes, or
paper tape. The device handlers supplied with BUILD are detailed
for specific distribution media in Tables 2-6, 2-7, and 2-8. (See
Appendix H for more detailed information concerning OS/8 device
handlers.)

Device handlers that are included with BUILD must be made
active before they can be used by the OS/8 system. The BUILD
commands INSERT, REPLACE, and SYSTEM are used to make
device handlers active. A maximum of 15 handlers can be made
active, including the system device (SYS) and the default mass
storage device (DSK). |

Inactive devices, even though they are included with the original
BUILD, cannot be used on the system until they are made active.
For example, several system handlers may be supplied with BUILD,
but only one may be marked active.

All other device handlers supported on OS/8 are supplied with

©_ every configuration but those not included in the original BUILD

must be loaded into BUILD before they can be used. This is ac-
complished with the BUILD command LLOAD. See Table 2-9 for
a complete list of the device handlers available with OS/8.

2-34

Handlers in BUILD are identified by two names, the first of
which is the group name. This is the name assigned to an entire

- group of handlers all of the same type. For example, the nonsystem
- TCO8 DECtape handler as supplied with a DECtape system, which
has four separate handlers internally, has the group name TC.

-In addition to the group name, a device also has a permanent
device name. This is the name by which OS/8 identifies the physi-
cal device. For example, TCO8 DECtape unit 3 has the group
name TC and the permanent name DTA3.

DECTAPE (LINCTAPE) SYSTEMS
When OS/8 software is supplied on DECtape or LINCtape, the
- device handlers shown in Table 2-6 are included in BUILD. The
handlers in Table 2-6 can be made active with the INSERT, SYS-
TEM, or REPLACE commands.
Table 2-6 Standard DECtape System Device Handlers

- Group ~ Permanent
Handler L Name . Name(s)
TCO08 DECtape system handler TCOS8 SYS
TCO08 nonsystem DECtape TC DTAO0-DTA3
drives 0-3 “
12K TDS8E DECtape system TDSE SYS, DTAO, DTA1

handler and drives 0 and 1 _
8K ROM TDSE DECtape system ROM SYS, DTAO, DTA1
handler and drives 0 and 1

TDS8E nonsystem DECtape TDSA DTAQ, DTA1
“drives O and 1 - ' _

TDS8E nonsystem DECtape - TDSB DTA2, DTA3
drives 2 and 3

RKSE disk system handler RKSE SYS, RKBO

RKS8E disk nonsystem handler RKOS RKAQ, RKAL,

: v RKBO, RKB1 -
RK8 disk system handler RK38 SYS, RKA1
RKS8 disk nonsystem handler RKO1 RKAQ, RKA1
" LINCtape system handler - LINC SYS

LINCtape nonsystem handler LNC LTAO-LTA3

RFO08 disk system handler RFO08 SYS '

Console terminal (2-page handler) KLSE. TTY

High-speed I/ O simulated on KS33 PTR, PTP
ASR-33 Teletype '

High-speed reader/punch PT8E PTR, PTP

LPO8, LS8E, LV8E line printers - LPSV LPT

TAS8E cassette drives0and1 = TAS8A CSAQ, CSA1

PDP-12 scope VR12 TV

2-35

~Other device handlers available with OS/8 but not included in
BUILD are listed in Table 2-9. The handlers supplied with a
DECtape or LINCtape system are on the System Tape #2 (DEC-
S8-OSYSB-A-UC2). To include extra handlers in BUILD, mount
this tape and use the LOAD command.

CASSETTE SYSTEMS

When OS/8 software is supplied on cassettes, the device handlers
shown in Table 2-7 are included in BUILD. These handlers can be
made active with the INSERT, REPLACE, or SYSTEM com-
mands.

Table 2-7 | Standard Cassette System Device Handlers

Group Permanent

Handler Name Name(s)
RKS8E disk system handler RKS8E SYS, RKBO
RKS8E disk system handler RK38 SYS, RKA1
RFO08 disk system handler RFO08 SYS
DF32 disk system handler DF32 SYS
Console terminal (2-page handler) KL8E TTY
High-speed 1/ O simulated KS33 PTR, PTP

on ASR-33 Teletype

High-speed reader/ punch PT8E PTR, PTP

TASE cassette drives 0 and 1 TABA CSA0Q, CSA1
LP08, LS8E, LV8E line printers ~ LPSV LPT

Other handlers supplied with OS/8 but not included in BUILD
are listed in Table 2-9. These handlers are present on the system
cassette DEC-S8-OSYSB-A-TC4. To include extra handlers in
BUILD, build an OS/8 system, use MCPIP to move specific device
handlers onto the system device, then use the BUILD command
LOAD. -

PAPER TAPE SYSTEMS

When OS/8 software is supplied on paper tape, the device hand-
lers shown in Table 2-8 are included in BUILD. These handlers
can be made active with the INSERT, REPLACE, or SYSTEM
commands.

2-36

Table 2-8 Standard Paper Tape System Device Handlers

' Group Permanent

Handler Name . Name(s)
RKS8E disk system handler RKSE SYS, RKBO
RKS8 disk system handler RKS8 SYS, RKA1

- RFO08 disk system handler RFO08 SYS
‘DF32 disk system handler DF32 SYS
Console terminal (2-page handler) KLSE TTY
High-speed I/ O simulated KS33 PTR, PTP
on ASR-33 Teletype

High-speed reader/ punch PTSE PTR, PTP

TASE cassette drives 0 and 1 TASA CSAOQ, CSA1l
LPO08, LS8E, LVSE line printers LPSV LPT

Other handlers supplied with OS/8 but not included in BUILD
are provided on two binary paper tapes. DEC-S8-OSYSB-A-PB2
‘contains the"ﬁle.-structured handlers. DEC-S8-OSYSB-A-PB3 con-
tains character-oriented handlers. These tapes contain handlers
which can be loaded into core using the BUILD command LOAD.

The BUILD device handler tapes are composed of separate seg-
ments, with a short length of leader/trailer code between them.
(All of these handlers are in the special format described in BUILD
Device Handler Format in this section.) Table 2-9 contains a list |
of the handlers that are included on the tapes. The handlers are
listed in the order that they appear on the tapes. The TCO8 handler
is the first segment on handler tape #1 and the KL8E terminal
- handler is the first segment on handler tape #2. It is suggested that
either the segments be labeled or separated for easier use.

" To utilize a binary handler file, place the desired segment into
the paper tape reader. Use the BUILD command LOAD to load
that segment as follows:

$LOAD PTR[:] = Type a colon (:) after the device name if
0 BUILD was loaded from an OS/8 system
$ ~ device. The 1 allows time to place the tape
| in the reader. Type any keyboard charac-
ter to load the tape. When the $ reap-
pears, the handler has been loaded into
BUILD’s table. Type the BUILD com-
mand PRINT to verify that the handler

has been loaded.

2-37

Table 2-9

0S/8 Device Handlers

File Name
on DECtape
Group Permanent LINCtape or
Handler Name Name(s) ~ Cassette
TC08 DECtape system handler TC08 SYS, DTAO TCO08SY .BN
12K TDS8E DECtape system TD8E SYS,DTAOQ, DTA1 TDSESY .BN .
handler
8K ROM TDSE DECtape ROM SYS,DTA0,DTA1 ROMMSY .BN:
system handler
LINCtape system handler LINC SYS,LTAO LINCSY .BN
RKS8E disk system handler RK8E SYS,RKA0, RKBO0 RKSESY .BN
RKS8 disk system handler RK8 SYS, RKAO,RKA1 RKO08SY .BN
RFO08 disk system handler RF08 SYS RF08SY .BN
DF32 disk system handler DF32 SYS DF32SY .BN
TD8E DECtape drives0and 1 TD8S8A DTAQ, DTA1 TDSEA .BN
TD8E DECtape drives 2 and 3 TD8B DTA2, DTA3 TDSEB .BN
TDS8E DECtape drives4and 5 TD8C DTA4, DTAS TDSEC .BN
TD8E DECtape drives 6 and 7 TD8D DTA6, DTA7 TDSED .BN
TC08 DECtape drives 0-7 TC DTAO0-DTA7 TCO8NS .BN
LINCtape drives 0-7 LNC LTAO-LTA7 LINCNS .BN
RKBE disk nonsystem handler RKO05 RKAO0-3, RKB0-3 RKSENS.BN
RKS8 disk nonsystem handler =~ RKO01 RKAO0-RKA3 RKO8NS .BN
RFO08 disk nonsystem handler RF RF,NULL RFO8NS .BN
DF32 disk nonsystem handler DF DF DF32NS .BN
Console terminal (2-page KIRE TTY KL8E .BN
handler)
Console terminal (1-page AS33 TTY ASR33 .BN
handler)
High-speed I/O simulated on- KS33 PTR, PTP LSPT .BN
ASR-33 Teletype _
High-speed reader/punch PT8E PTR,PTP PT8E .BN
LPO8, LS8E, LVSE line LPSV LPT LPSV .BN
printers
Anelex 645 line printer L645 LPT L645 .BN
Card reader CRS8E CDR CRS8E .BN
BATCH handler BAT BAT BAT .BN
PDP-12 scope VR12 TV VR12 .BN
TU10 magnetic tape drives 0-7 TM8E MTAO-MTA7 TMSE .BN
TASE cassette drives0and 1 TAS8A CSA0, CSA1 CSA .BN
TASE cassette drives2 and 3 TASB CSA2, CSA3 CSB .BN
TASE cassette drives4and 5 TA8C CSA4, CSAS CSC .BN
TASE cassette drives 6and 7 TAS8D CSA6, CSA7 CSD .BN

Calling and Using BUILD

BUILD is distributed as both a binary paper tape or cassette and
as a core image file (BUILD.SV) on the system DECtape or LINC-
tape. The binary BUILD file should be loaded and saved on the

2-38

system device when the initial system is built (see Getting On Line
with OS/8 in Chapter 1). To use the BUILD.SV file on the system
device, type the following command in response to the dot printed
by the OS/8 Keyboard Monitor: :

RUN SYS BUILD

NOTE

It is important that the user specify the RUN
or RU command, rather than the R com-
mand, when loading BUILD into core. This
will allow the use of the SAVE command
without specifying SAVE arguments.

BUILD responds by printing a $, signaling that it is ready to accept

commands.

BUILD uses a keyboard monitor similar to that contained in
the OS/8 system. Text is input from the terminal and interpreted
by BUILD. Table 2-10 lists the special characters that are avallable

- for editing.

Table 2-10 BUILD Editing Characters

Character

Function

ALT MODE key
CARRIAGE RETURN

CIRL/C

CTRL/O
CTRL/U

LINE FEED key
RUBOUT key

Terminate command; begin command ex-
ecution. No carriage return/ 11ne feed is gen-
erated.

Terminate command; beom command ex-
ecution. Also generate carriage return/line
feed combination.

- Terminate command; return immediately to

the OS/8 Keyboard Monitor.

Terminate printing; return control to BUILD.
Ignore line; the line may be typed again.
Examine contents of the command line.
Delete the last typed character from the
command.

The standard characters permitted in a BUILD command line

arc:

A-Z, 0-9, SPACE, PERIOD, =, COMMA, COLON, HYPHEN .

2-39

Typing any other character causes the error message:

SYNTAX ERROR

BUILD Commands
The commands available in BUILD are:

ALTER
BOOT
BUILD
CORE
CTL

DCB
DELETE
DSK
EXAMINE .
INSERT
LOAD
NAME
PRINT
QLIST
REPLACE
SYSTEM
UNLOAD
VERSION

The general format of the command string is:
$command args

where command represents a legal command from the list and
args represents a file name, device, group name, or other argu-
ment associated with the command. The command can be typed in
full or abbreviated to the first two characters. For example:

$PRINT
$PR

are the same. If fhe user attempts to issue an illegal command.
BUILD replies by printing the illegal command preceded by a ?.
- Thus the illegal command ERASE would appear:

2-40

SERASE .
?ERASE
$.

THE HYPHEN CONSTRUCTION

Certain BUILD commands (DELETE, INSERT 'REPLACE)
- allow the use of the hyphen construction to specify more than one
permanent name. These permanent names must be four characters
long and must differ only in the last character. Permanent names
which nieet this restriction can be inserted with the hyphen con-
struction so long as the last characters form a- sequence of consecu-
tive' ASCII characters. .

For example, if the user wishes to delete DECtape handlers :
DTAOQ, DTA1, DTA2, and DTA3, he can type:

 SDELETE DTA®,DTA1,DTA2,DTA3
- or he can use the hyphen construction and type:

SDELETE DTAB-3

PRINT
Syntax: $PRINT or $PR .
Function: Prints the detailed list of the BUILD devices tables.
The following example shows five handlers. |

RF@8: SYS :
RKBE: *SYS *RKBO
KLBE: *TTY

PT8E: PTR *PTP
LPSV: LPT

-Group names are printed first in each line followed by a colon.
Following the group name are the list of permanent names available
with each group. If one of the permanent names in a group is SYS,
then this handler can be a system handler. An OS/8 system must
have just one system handler. Some system handlers have other
handlers coresident with them.

Any handler that is active is marked with an asterisk to the
left of its permanent name (RKBO, TTY, PTP in the printout), and
the devices will be included in the new OS/8 system. (i.e., these
handlers were inserted with the INSERT, SYS, or REPLACE

2-41

- commands. Other commands are available for removing, loading,
and deactivating handlers.) The preceding printout indicates that
RKS8E is the system device. The handler RK8E:RKBO is also
marked as being active.

After printing the list of available handlers, the PRINT com-
mand might also print some additional information. If, for example,
the user specified RK8E:RKBO with the DSK command, the fol-
lowing is printed:

DSK=RKB E: RKBQ

If the user specified that core is to be restricted to 12K with the
CORE command, the message:

CORE=2

is printed, indicating that field 2 is to be the highest core field
available to the OS/8 system.

QLIST
Syntax: $QLIST or $QL
Function: List the active permanent names on the system No *
is printed and the system device is the only group name printed.
For example:

$OLI ST
PTR DTA3 RKP8:SYS LPT DTA4

LOAD

Syntax: $LOAD activename or $L.OAD dev:filename
_ Function: LOAD is used to load a new device handler into

BUILD. This handler can be one supplied by Digital or one writ-
ten by the user. See the OS/8 Software Support Manual (DEC-
S8-OSSMB-A-D) for instructions on writing device handlers. This
handler is input into BUILD as a binary file or image.

If BUILD is being run stand-alone, e.g., to create an initial OS/8
system, the LOAD command has the form:

$LOAD activename
2-42

where activename is the permanent name of an input device han-

dler that has been made active with the INSERT, REPLACE, or

SYSTEM command. It must be a handler for a non-file structured

~ device. For example, to load a new handler from a binary paper
tape with the PTR handler already in BUILD, type:

$LCAD PTR

IF BUILD is being run under control of OS/ 8, the LOAD com-
mand has the form:

$L.OAD dev:filename

where dev is an input device handler that exists in the current OS/8

system. (These are not the same as the handlers which are marked
active by BUILD.) If no dev: is specified, DSK: is assumed.

"~ If dev: is non-file structured (i.e., paper tape), the filename may

be omitted. The filename has the form

‘name. extension

Filename is the binary file of the new handler to be loaded, The -
default extension is .BN. If no extension is used, the dot (.) may
be omitted.

Example:

$LOAD DTA3:HANDLR.0O3 A file ﬁaméd HANDLR, with an
extension of 03 is loaded from
DTA3.

Several files to be loaded may be specified on one line, sepa-
rated by commas. A device must be specified for each file or DSK
-will be assumed. If multiple files are specified, each file must con-
tain a separate handler to be loaded. For example:

SLOAD DTA3:FILE1,DTAS: FILE2

Once the LOAD command has been successfully issued, the new
device handlers are available for further manipulation. The new
handlers will appear in the PRINT output but will not be marked
as active.

2-43

INSERT

Syntax: $INSERT gname, pname

Function: After a LOAD command has made a handler or
group of handlers available for insertion in the OS/8 system, the
INSERT command is used to make particular entry points active.
The INSERT command uses two arguments; gname and pname.
Gname is the group name of the handler, for example, the gname
for TCO8 DECtape is TC. Pname is the permanent name by which
the device is currently known to BUILD. See Table 2-9 for a com-
plete list of permanent device names. TCO8 DECtape thus has the
group name TC and the permanent names DTAO-DTAT.
Examples:

SIN KLBE, TTY
SIN TCPB,SYS

If no permanent name is specified (and no :), the first name in
the device group is assumed. For example:

SINSERT TC

would assign DTAO as the permanent name.

Several handlers in the same group can be inserted in the same
command by separating the permanent names with commas. For
example:

$IN TC>DTAG,DTA3,DTAT7

If several permanent names (each four characters long) differ
only in the last character, they can be simultaneously inserted with
the hyphen construction so long as the last characters form a
sequence of consecutive ASCII characters.

Example:

SINSERT TC,DTA2-5
is the same as
$INSERT TC,DTA2,DTA3,DTA4,DTAS

2-44

and

S$INSERT RK21, RKAG-2

is the same as

SINSERT RKB1,RKAD> RKA1, RKA2

If the permanent name specified is not part of the group name
specified or if the group name does not exist, the following message
is printed:

-name NOT FOUND

If disk is the device being inserted, the group name can be fol-
lowed by a construction of the form:

pname=n

Where n is a digit in the range 1 to 7 and represents the number
of platters available. This option is used for the RF08 and DF32
disks. For example:

$IN RF,RF=2

If no such option is specified, =1 is assumed. If n is too large for
the device specified, the following message is printed:

?PLAT

DELETE

* Syntax: $SDELETE aname

Function: DELETE taKes a device which is currently marked
as active and makes it inactive. (Devices which are active are
marked with an * in the PRINT command output and are printed
by the QLIST command.) '

The argument for DELETE is the permanent name of the device.
The current permanent name can be obtained from the PRINT or
QLIST output. The major function of DELETE is make device
slots available to BUILD.

2-45

For example, assume that the QLIST command output is:
DTAR DTAIl R;<8E: SYS RKB@ TTY LPT CSA@ CSA1 CSA2 CSA3
- If the following command is issued to BUILD:
$SDELETE CSA®s CSA1,CSA2, CSA3

CSAQ, CSA1, CSA2, and CSA3 will no longer be permanent
devices and the slots used by the TA8A and TA8B device groups
will be made available to BUILD. The QLIST output after the
above command will be:

DTA® DTA1 RKBE:SYS RKB@® TTY LPT

Note that, as previously explained, the hyphen construction can
be used in DELETE to remove a sequence of devices. Thus the
command to make the cassette handlers inactive could also be
typed as follows:

$DELETE CSAB-3

REPLACE |

Syntax: $SREPLACE pname=gname, pname2

Function: REPLACE combines the functions of DELETE and
INSERT to provide a means of deleting one device and activating
another in a single step. The arguments for REPLACE are:

pname The permanent name of the device to be de-
leted. (Same as are argument of the DELETE
command.)

gname, pname2 The group name and permanent name of the
particular device to be inserted into the system
(see INSERT for more details).

Example: Assume the PRINT output is:

PTSE: *PTP *PTR

CR8E: *CDR
RKB5: RKAR RK BB RKA1 RKB1

2-46

REPLACE can be used to delete the card reader (CDR) and insert
the RK05 group handler for RKAO:

$REPLACE CDR=RK@5,RKAB

»

The output of PRINT after this REPLACE is:

PT8E: *PTF *PTR

CRBEs CDE
RKP5: *RKAR RKBE@ RKA1 RKE!1

The hyphen construction can be used with REPLACE to delete
and insert more than one device handler. For example, assume .
that LINCtape handlers LTAO, LTA1, LTA2, and LTAS are to
be replaced with DECtape handlers DTAQ; DTA1, DTA2, and
DTAS. This replacement could be accomphshed w1th the com-
mand:

SREPLACE LTA@-2,LTAS=TC,DTAB-2, DTAS

UNLOAD -

Syntax: $UNLOAD gname, or $UNLOAD gname, pname

Function: UNLOAD is used to physically delete a handler group
(gname) or a permanent name (pname) from the BUILD system.
(This differs from DELETE, which does not physically eliminate
a device.) UNLOAD is primarily used when the NO ROOM error
occurs during a LOAD command. _

For example, assume that the entire group of LINCtape han-
dlers is to be removed. The command is typed as: S

SUNL-OAD LNC

This command unloads the LINCtape handler LNC and-all per-
manent names (LTAO, LTAI1, LTA2, LTA3, etc.) associated with
it.

To remove a particular permanent name’ from BUILD, e.g.,
DTA3, type:

$UNL OAD TC,DTA3

2-47

This command does not unload the haﬁdler, just-the entry point
name.

'To remove several permanent names, but not the entire group,
the UNLOAD command is used with commas separating the per-
manent names. For example:

$SUNL OAD TC,DTA®,DTA2

The hyphen construction cannot be used with the UNLOAD
command.

NAME

Syntax: $NAME pname=pname?2

Function: The NAME command allows the user to alter the
device name which will be used by OS/8. The first argument,
pname, must be the current name of a device marked active in
the PRINT output. Pname2 is the name the user wishes to call
this device. Only 4-character device names may be used in the
NAME command. If longer names are entered, all characters be-
yond the first four are ignored. After the NAME command is used,
pname2 is -the current permanent name; pname is unknown to
BUILD.
Example: Assume that the PRINT output is:

TC : *DTA® *DTAI DTAZ2 DTA3
RKBE: %*5YS *RKB@

To change the paper tape reader so that it is recognized by the
permanent name READ, the following command is used:

SNAME PTR=READ

The output from PRINT would then be:

TC : *DTAB *DTAl DTA2 DTA3
RKBE: *SYS *RKB®@

KK8E: *TTY
PTBE: *PTP *READ

2-48

If the permanent name specified as pname is not a currently
active dev_ice, the message:

pname NOT FOUND

s printed. If this message appears, check the PRINT output to
determine the correct permanent name. .

ALTER .

‘Syntax: $ALTER gname, loc=newvalue

Function: The ALTER command allows the user to change
locations in device handlers. The arguments are:

~ gname Group name of the handler.

loc Relative octal location to be altered. If the han-
dler is a 1-page handler, loc must be an octal
number in the range 0-0177. If it is a 2-page
handler, loc must be an octal number in the

: range 0-0377.
newvalue An octal number specifying the new contents of
~ the location specified by loc. If no =newvalue
is entered, BUILD prints the old value of loc
followed by a slash. Newvalue can then bBe en-
tered or a carriage return can be typed to retain

the old value.

 EXAMINE |
Syntax: SEXAMINE gname, loc
Function: EXAMINE allows the user to examine, but not

“modify, a location within a device handler. See the ALTER com-

mand. ,
DSK. ' -
Syntax $DSK=gname, pname or $DSK=aname
Function: The DSK command is used to specify which device
is to be designated as DSK, the default storage device for OS/8. If
the first form of the command is used, i.e., '
$DSK:gname,bname

the gname is the group name of the device and pname is the per-
manent name. For example:

$DSK=TCP8: DTAQ

2-49

assigns DTAO as the device called DSK.

When the DSK command is issued, the permanent name need
not have been entered. However, the permanent name must be
entered, via an INSERT, REPLACE, or SYSTEM command be-
fore the BOOT command is issued.

If the second form of the command is used, i.e.,

$DSK=aname

aname must be a permanent name marked as active by BUILD.
For example, the following command specifies the already active
device RKAQO as the default device DSK:

oy

SDSK=RKAB

If no DSK command is entered, or if the command is issued
without an argument, i.e.,

$DSK=

or

$DSK

BUILD specifies SYS as DSK when a BOOT command is issued:

- CORE

Syntax: $CORE n _

Function: The CORE command is used to specify the highest
core field available to the OS/8 system being built. The n is
an octal number in the range 0 to 7. If n is O or omitted, or if the
CORE command is not used, the system built will use all of the
available core. If n specifies more core than is physically available,
the following message is printed:

?CORE

2-50

The following table mdlcates the value of n for the avallabln

core sizes:
corc

all available core
8K

12K

16K

20K

24K

28K

32K

For example, a system which is to use only 24K of a 32K system
would have the following CORE command:

QOB WN=O | B

" SCORE 5

DCB
- Syntax: $DCB aname or $DCBaname=newvalue -

- Function: The DCB .command allows examination or modifica-

tion of the DCB word associated with a permanent name. (See the

section .on BUILD Device Handler Formats for mformatlon on

DCB words. _
The DCB word is the first word after the permanent name in a

descr1pt10n (from the handler header information words). Aname.

must be the permanent name of a device currently marked as active

in the PRINT output.

Example:

$DCB DTA4=6160

changes the DCB of DTA4 so that this handler becomes a read-
only device. This command could also be typed as:

$DCB DTA4
416076160

CTL .
- Syntax: $CTL aname=loc
Function: The CTL command allows modification of the control

2-51

word which is the word after the DCB word in the handler header
block. For example:

SCTL LTA3=24

changes the entry point of the LTA3 handler to be relative loca-
‘tion 24. '

VERSION

Syntax: $VERSION or $VE

Function: The VERSION command prints the version number
of BUILD on the terminal.

SYSTEM

Syntax: $SYSTEM sname=n

Function: The SYSTEM command specifies devices which are
system handlers or coresident with system handlers. The number
n reflects the number of platters included in the system device
(valid only for multiple platter RFO8 and DF32 disks). The avail-
able system handlers and their ¢ssociated values for n are listed
‘in Table 1-6). The argument sname must be one of the legal device
system names. If it is not, BUILD prints:

?25YS

thus requesting a new system specification.

Action is not taken on the SYSTEM command until the BOOT-
STRAP command is given, so the user may respecify a device
with SYS. The system device used is the last one issued prior to
the BOOT command. Specifying a new system device is not always
necessary. For example, if the user wishes to insert new peripheral
handlers, then this command is not needed. If it is not issued, the
0OS/8 system which is resident is not affected beyond altering the
device tables.)

The SYSTEM command is included only for compatibility with

older versions of BUILD. The system device can be specified with
~ the INSERT command. For example, the command:

$SYS RFO8=2

2-52

is the same as the command:
SINSERT RF@8,SYS=2

If the device specified in the SYS command is not the current
system device, the user ‘will have an opportunity to have a zero
directory placed on his new system device. If the system device
is the same as the current system device, no new directory will be
written.

BUILD

Syntax: $BUILD or $BU

Function: The BUILD command is used only when building an
initial OS/8 system from cassettes or paper tape When the BUILD
command is typed, BUILD prints:

LOAD 0S/8:

to which the user must respond with the device that contains the
new OS/8 monitor, e.g.,

LOAD 0S/8: CSAR

BUILD then loads and writes the various parts of OS/8 onio_ the -
~ system device. After writing OS/8, BUILD prints:

L CAD CD:

‘to which the user responds with the appropriate device, or types
carriage return to specify that the device is the same as that specified
in the LOAD OS/8: message. BUILD loads the Command Decoder
and writes it onto the system device.

The BUILD command must not be used at any time other than
while building an initial OS/8 system. When this command is typed, -
OS/8 assumes that the user is building a new OS/8 system and
automatically zeroes the system device direcfory. See Getting On .
Line With OS/8 in Chapter 1 for instructions on bulldmg an initial
system.

2-53

BOOTSTRAP.

Syntax: $BOOTSTRAP or $BO

Function: BOOTSTRAP is the command which finally imple-
ments all the changes that have been made using BUILD. BOOT
rewrites all relevant Monitor tables and device handlers to reflect
the updated system status. The devices which BUILD had marked
active now become device handlers in the system.

When a BOOTSTRAP command is typed, the system device
must have been explicitly specified with either the SYSTEM or
INSERT command. If no SYS is specified, the message:

SYS NOT FOWND

is printed.

If the system device specified is different from the current system
device, BUILD copies the system from the current system device to
the new system device. After the copy is complete, BUILD asks:

WRITE ZERO DIRECT?

to determine whether a new (zero) directory is to be written on the
new system device. If the reply is YES, a zero directory will be
placed on the device. Any other reply causes the old directory to be
retained.

NOTE
Care should be exercised if the old directory
is to be retained. The directory must be that
of an OS/8 system device.

After this question has been answered, BUILD updates the system
and prints: '

SYS BUILT

Control returns to the Keyboard Monitor. When the BOOT-
STRAP command has performed its functions and the Keyboard
Monitor is once again active, it is a good idea to save the copy of
BUILD just used. In this way, an image of the current system
status is preserved, and the saved copy of BUILD can be used

2-54

again. When it is used again, the devices which were initially
marked active are still marked active. To save BUILD, type:

. SAVE SYS BUILD

" in response to the dot printed by the Keyboard Monitor. This as-
sumes that the user originally loaded BUILD into core with a RU

or RUN command.

BUILD Error Messages
The following is a list of error messages which may appear when
using BUILD. These messages are usually indicative of a syntax or

user error.
Table 2-11 BUILD Error Messages
Message Explanation
?BAD ARG No device name was included in the LOAD
command.
?BAD INPUT An error was detected in the bmary file; it is
not a proper input for the LOAD command.
?BAD LOAD An attempt was made to load a binary handler
' _ that is not in the correct format.. .
?BAD ORIGIN The origin in a binary file is not in the range
200-577.
?CORE A CORE command spec1ﬁed more memory
' than is physically available, or the BOOT com-
mand was. issued on an 8K system with a 2-
page system handler active. Two page system
handlers require at least 12K of core to be
present on the OS/ 8 system.
DSK - The device specified in a DSK command is not
a file-structured device.
THANDLERS More- than 15 handlers, including SYS and
« DSK, were active when a BOOT command was
issued.
I/0 ERR An error occurred while reading from an 1nput
device during a LOAD command.
INAME A device or file name was not designated in a
command that requires one to be present.
NO ROOM Too many device handlers were present on the

system when a LOAD or BUILD command was
typed. The UNLOAD command must be used
to remove a handler before another can be
loaded.

2-55

Table 2-11 BUILD Error Messages (Cont.)

Message

Explanation

name NOT FOUND
7PLAT
2SYNTAX

2SYS

SYS ERR

SYS NOT FOUND

The device or file name designated in the com-
mand was not found. :

The =n in a SYS command is too large for the
device specified, e.g., RF08=5.

An illegal character was typed in a BUILD
command line. The line must be retyped.

This message appears when one of the follow-
ing conditions exists.

a. A permanent name in a SYS command was
not a system handler or coresident with one.

b. A BOOT command was issued when two or
more system handlers were active.

c. A BOOT command was issued when an ac-
tive handler which must be coresident with a
SYS handler did not have the system handler
active. , _

An 1/0 error occurred with a system handler.
The computer halts. Press CONT to retry or
restart the BUILD procedure from the begin-
ning. Do not assume that a valid OS/8 system
remains in core.

No active handler with the name SYS was pres-
ent when a BOOTSTRAP command was issued.

BUILD Device Handler Format

The BUILD command LOAD is used to load device handlers
not provided by BUILD into core where they can be inserted into
the OS/8 system. The format of the input to LOAD is a binary file
containing the handler, as well as a header block which contains
information pertaining to the devices included in that file. The user
should code the handler in PAL8 machine language according to

the following format.

" The structure of the source for a BUILD device handler is:

*0
HEADER BLOCK
*200

BODY OF DEVICE

HANDLER
2-56

The origins at 0 and 200 are vital to BUILD. The *0 is an im-.
portant part of the header block and, if it is omitted, no load is
done. The *200 is also necessary for the load. If the handler con-
tains an origin outside the range 200-577, an error message is -
generated and the load is aborted.

HEADER BLOCK
‘The header block contains the following information:

Word 1:

Words 2-9:

Words 10-17:

-X, where X is the number of separate handlers
contained in this file. Thus a handler for TC08
has the first word equal to —10(octal).

Descriptor block for the first handler in the
group. -

Description block for second handler in the
group.

Descriptor block for second handler in the

_group. If the handler is a system handler, this

is followed by the length of the bootstrap and -
the bootstrap itself.

Thus, each handler in the group must have an 8-word block
describing its characteristics.. If more than 12 handlers are in a
-group, an error is generated during the LOAD.

DESCRIPTOR BLOCK e
Each 8-word descriptor block contains the following information.

Words 1,2:

" Device type name. This name is the group

name, or type, of all the handlers in this group
and is usually designated by the DEVICE
pseudo-op.

~ Example: DEVICE RK8

2-57

Words 3,4:

Word 5

Word 6:

Word 7:
Word 8:

OS/8 device name. This is the name (perma-
nent name) by which the particular device will
be recognized in the OS/8 system to be con-
figured. It can be altered by the NAME com-
mand.

Example: DEVICE RKAQ

Device Control Block. This word reflects the
type of device, in accordance with Table 2-12.
Bits 9-11 specify the maximum number of plat-
ters on the device (0=1).

Example: 4050

Entry point word. This word must contain the
entry point offset in bits 5-11 (see ENTRY
POINT OFFSET). Bit O should be a 1 if the
handler is a 2-page handler. Bit 1 should be a
1 if the entry point is SYS. Bit 2 should be a
1 if the entry point is coresident with SYS.

Example: 0020
Must be 0.

Must be 0, except for a system handler which
uses it to specify the block length of the device.

As an example, consider the handler for the nonsystem RKO05
handlers. This file contains four separate handlers; the source code
would appear as follows:

/4 DEVICES

DEVICE RKO05; DEVICE RKAO0; 4050; 0020; ZBLOCK 2
DEVICE RKO0S5; DEVICE RKBO; 4050; 0021; ZBLOCK 2
DEVICE RKO05; DEVICE RKA1; 4050; 0022; ZBLOCK 2
DEVICE RKO05; DEVICE RKB1; 4050; 0023; ZBLOCK 2

*200

" (HANDLER BODY)
2-58

The device type of the group is RKO5 (Words 1-2). The perma-
nent device names are RKAQO, RKBO, RKA1, RKB1. Since each
device is RKO0S, the device control block (DCB) word for each is
identical.

The entry point word indicates where the entry point for that
particular device occurs relative to the top of the page. Thus, in the
above example, RKAO enters at the 20th location from the top of
the page, RKBO at the 21st, etc.

It is vital that this information be accurate. If errors are made in
this data, unpredictable results occur when the system is generated.

BREAKDOWN OF DCB WORD
The DCB word for a device provides specific information which
is used in the OS/8 Monitor. Its structure is detailed in Table 2-12.

Table 2-12 DCB Word

-Bit ‘ Meéning

0 1 if ﬁle-s_tructured deviceA
1 if read-only device (e.g., PTR)
2 _ 1 if write-only‘device (e.g., LPT)
| . Device Type

3-8 00 = console terminal
' 01 = high-speed paper tape reader

02 = high-speed paper tape punch
03 = card reader
04 = line printer

05 = RK8 Disk

06 = RF08 (1 platter)

07 = RFO08 (2 platter)

10 = RF08 (3 platter)

11 = RF08 (4 platter)

12 = DF32 (1 platter)

13 =DF32 (2 platter)

14 = DF32 (3 platter)

15 = DF32 (4 platter)

16 = TC08 DECtape

17 = LINCtape _

20 = TM8E magnetic tape

21 = TD8E DECtape

22 = BAT—BATCH handler

23 = RKS8E disk

2-59

Table 2-12 DCB Word (Cont.)

Bit Meaning

24 = NULL—NULL handler
25-26 = Unused
27 = TASE cassettes
30 = PDP-12 scope
31-37 = Unused by Digital
40-77 = Reserved for user-written handlers

9-11 Used only by OS/8 Monitor

Whenever a device is to be inserted into 0S8/38, this structure
~ must be followed to obtain correct results.

ENTRY POINT OFFSET |

- Word 6 of each device descriptor block specifies the relative
entry point of that particular handler. Devices supplied by Digital
have a fixed set of entry points, described below.

Care should be used when coding new device handlers for in-
sertion into the system. The entry point offset for the new handler
must not be the same as that for any other file-structured device in
the system. For example, OS/8 currently uses relative entry points
7-23 for file structured devices. No new handler should have entry
points at 7 to 23 of the page. If this occurs, the system may perform

-iIncorrectly.
Current file device and entry point offsets are listed below:

Device Entry Relative to Top of Page
TC08 DECtape 10-17 -
TDSE DECtape 10-17
LINCtape 10-17
System device 7
RKS8 disk ' 20-23

~ Thus, the user-coded file devices should use entry points other
than 7-23.

If a new file-structured user device is added to the system, it will
be necessary to alter the device length table in PIP to permit zeroing
of the device directory. To do this, ODT is used as follows:

2-60

.GET SYS PIP

.ODT

136nn/0000 xxxx

1C user types CTRL/C
SAVE SYS PIP

The nn represents the 2-digit device indicated in Table 2-12.
The xxxx is the negative of the last block number on the device.
Both nn and xxxx are octal numbers.

For example, if the new device is assigned a code of 40 (cur-
rently the first unused entry), and the last OS/8 block on the device
- was block 1000, PIP would be changed as follows:

«GET SYS PIP
-« ODT

13649/0000 7000
1C
« SAVE SYS PIP

2-61

CAMP (CASSETTE AND MAGNETIC TAPE POSITIONER)

The CAMP (Cassette and Magnetic Tape Positioner) program
is used to position cassettes, magnetic tapes, and certain other
devices. To call CAMP from the system device, type:

R CAMP

in response to the dot printed by the Keyboard Monitor. CAMP
prints a # to indicate that it is ready to receive a command. The
command line entered may be terminated with a carriage return
(CAMP retains control) or an ALTMODE (control returns to
the Keyboard Monitor).

CAMP Commands

EBEach CAMP command begins with a keyword, consisting of
two or more letters. The full CAMP command need not be typed;
each command has letters that are required. The CAMP com-
mands are listed below in alphabetic order. Letters that are not
required are printed in italics.

BACKSPACE
EOF

HELP
REWIND
SKiIP
UNLOAD
VERSION

BACKSPACE COMMAND

The BACKSPACE command spaces a magnetic tape or cas-
sette backward a specified number of files or records. This com-
mand may also be issued indirectly with the CCL BACKSPACE
command. (See the CCL section of Chapter 1.)

The BACKSPACE command has the form:

Records

BA dev: nnnn { Files

Where “dev” is the permanent name of a cassette or magnetic
tape drive. The “nnnn” is an unsigned decimal number represent-
ing the number of records or files to backspace. This number must
be in the range 0-4095. If no number is entered, nnnn=1 is as-
sumed. This number is followed by a keyword beginning with

2-62

either an R, indicating records or an F indicating files. If neither
- F nor R is entered, F is assumed.
Examples:

#BA CSA®: 2 F
positions the cassette mounted on CSAO backward two files.

#BA MTAI1:

positions the magnetic tape mounted on MTA1 backward two files.
If a file mark is read before the proper number of records have
been spaced over, the message:

% CAN'T - AT BOF

is printed and the device is moved forward one record to leave the
device positioned at the beginning of the file (j]llSt before a data
record).

The file at which the device is currently positioned is not counted
when an attempt is made to backspace a number of files. For ex-
ample, the command:, ‘ : '

#BA MTAl1: 3 F

moves backward over four file marks and then moves forward one
record, leaving the tape positioned at the beginning of the file. If
nnnn=0, this command backspaces to the beginning of the file at
which the tape is currently positioned.

EOF COMMAND :

The EOF command writes a single file mark (file gap) on the
specified magnetic tape or cassette. This command may also be
- issued indirectly with the CCL EOF command.

The EQOF command has the form:

EOF dev:

where “dev” is the permanent name of a cassette or magnetic tape
drive,

2-63

Example:

#EOF CSAtl:

HELP COMMAND

The HELP command prints a short message on the console
terminal, reminding the user of the CAMP command syntax. This
command is of the form: | '

#HELP

REWIND COMMAND

The REWIND command issues a rewind command to one of the
following OS/8 device controllers: cassette, magnetic tape, or
TCO8 DECtape.

The REWIND command is of the form:

REWIND dev:

where “dev:” can be any OS/8 file-structured device. If “dev” is a
cassette, control returns to CAMP while the cassette is rewinding:
CAMP prints another #, indicating that it is ready to receive an-
other command. If “dev” is magnetic tape ot TCO8 DECtape, the
device rewinds immediately and control returns to the OS/8 Key-
board Monitor while the device is rewinding. If a REWIND com-
mand is issued to any other OS/8 device (e.g., LINCtape), control
returns to CAMP after the device is rewound. .

Example:

#RE DTA1:

SKIP COMMAND

The SKIP command advances over the number of files or records
specified on a magnetic tape. This command may also be issued
indirectly with the CCL SKIP command. The SKIP command is not
implemented for cassettes.

The SKIP command has the form:

_ nnnn Records
#SKIP MTAn: Files
EOD

2-64

where MTAn may be any magnetic tape drive, depending upon the
number of magnetic tape drives on the. OS/8 system. The “nnnn”
is an unsigned decimal number representing the number of files or
records to be advanced over. This number must be in the range
0-4095. EOD indicates that the tape is to be advanced to the end
of data. The end of data on a magnetic tape is a point between two

file marks. If EOD is specified, the tape must be rewound before

issuing the command if it is already past the end of data. If neither
“nrinn” nor EOD is specified, nnnn=1 is assumed. :

If a number is specified, it may be followed by a keyword be-
ginning with either an R, indicating records, or an F, indicating
files. If neither F nor R is entered, F is assumed. "
Examples:

#SKIP MTAG: 2 RECORDS

advances the magnetic tape on MTAOQ forward two records.
#SKIP MTA1: 6 F s

- advances the magnatic tape on MTA1 forward six files.
If a file mark is read before the proper number of records have
been advanced over, the warmng message: -

. 2 CAN'T - AT EOF

is printed and the tape is moved backward one record to position
the tape at the end of the file (just after the last data record but
- before the file mark). If nnnn=0, nnnn=1 is assumed when skip-
ping records. |

The file at which the tape is currently positioned is counted when
an attempt is made to advance over a number of files. Thus nnnn=1
means to advance to the beginning of the next file. If nnnn is

~ greater than O, the tape is positioned at the beginning of a file (just

after a file mark but before any data records). If nnnn=0, the tape
-is advanced to the end of thefile at which it is currently positioned
(before a file mark, but after all data records).

If the end of data is encountered before the specified number of
files have been skipped, the warning message: '

2-65

Z CAN'T - AT EOD

is printed and the tape is positioned at the end of data. If a tape is
already positioned at the end of data, the SKIP command produces
meaningless results.

- UNLOAD COMMAND

The UNLOAD command rewinds and turns off line a magnetic
tape controller and returns to CAMP for another command while
the tape rewinds. Since the magnetic tape is turned off line, it must
be manually turned on line to be used after a UNLOAD command.

The UNLOAD command may also be used to unload TCO8 and
TDSE DECtapes off of their reels. When used on DECtapes, the
UNLOAD command rewinds the DECtape on the unit specified,
selects a different unit, and returns control to CAMP for another
command. This DECtape unit cannot be used until another legal
command, e.g., the Keyboard Monitor ASSIGN command, is issued
to the DECtape controller.

The UNLOAD command can also be used to write-lock an
RKSE disk.

The UNLOAD command is of the form:

#UNLOAD dev:

where “dev” may be any one of the followmg
magnetic tape
TCOS8 DECtape -
TD8E DECtape
RKB8E disk

VERSION COMMAND
The VERSION command prints the version number of CAMP
on the terminal. This command is of the form:

#VERSI ON

CAMP Error Message Summary :
The error messages listed in Table 2-13 may appear during a
CAMP operation.

2-66

Table 2-13 CAMP Error Messages

Messages

Explanation

% CAN'T—AT BOF

? CAN'T—AT BOT
% CAN'T—AT EOD

% CAN'T—AT EOF

? CAN'T—DEVICE DOESN'T EXIST

? CAN'T—DEVICE IS READ-ONLY

? CAN'T—DEVICE IS WRITE-ONLY

? CAN’T FOR THIS DEVICE

2-67 .

A file mark was read before

‘the specified number of rec-

ords were read over in. a
BACKSPACE command.
The device is moved for-
ward so that it is positioned

- at the beginning of the file.

A BACKSPACE command
cannot move the device
backward the specified
number of files because the
device is positioned at the
beginning of .the first file.

The specified number of
files cannot be advanced
over because the end of
data was encountered. .The
tape is positioned at the
end of data.

A file mark was read be-
fore the specified number
of records were advanced
over in a SKIP command.
The tape is moved back-
ward one record to leave it
positioned at the end of the
file.

The device specified in a
CAMP command is not
present on the OS/8 sys-
tem.

The device specified in a
CAMP command is a read-
only device, e.g., PTR.
The device specified in a
CAMP command is a
write-only device, e.g.,
TTY.

The - operation specified
does not make sense for the
device specified, e.g., RE-
WIND LPT:.

Table 2-13 CAMP Error Messages (Cont.)

Messages

Explanation

? CAN'T I/0 ERROR

? NUMBER TOO BIG

? SYNTAX ERROR

This message is followed by
a brief explanation of the
input/output error that oc-
curred.

The “nnnn” specified in a
BACKSPACE or SKIP
command is greater than
4095.

An illegal character was
typed in a CAMP com-
mand or a command was
formatted incorrectiy. The
command must be retyped.

2-68

CROSS-REFERENCE PROGRAM (CREF)

CREF aids the programmer in writing, debugging and mamtam—
ing assembly language programs by providing the ability to pin-
point all references to a particular symbol. CREF .operates on
output from either the PALS, SABR, or RALF assembler.

Calling and Using CREF
To call CREF from the system device, type -~ ——

R CREF

in response to the dot printed by the Keyboard Monitor. The
Command Decoder is loaded and replies by printing-an asterisk
at the left margin. The user enters one output file spemﬁcatlon and
one input file specification.

NOTE .
The input to CREF must be the listing pass
output from either the PALS, SABR, or
RALF assembler. If this is not the case,
CREF will not operate properly.

If no output file is specified, CREF assumes the output is to be
sent to the line printer. If no input file extension or output file
extension is specified, the extension .LS is assumed. If no input file
is specified, control returns to the Command. Decoder until an in-
put file is specified. The CREF version number is printed at the
end of the CREF table in the form Vn, where n is the current
version number.

CREF OPTIONS
The following options are available to the user. The option is
placed in the command string, along with the file specifications.

Table 2-14 CREF Options
Option Code Meaning

/P Disable pass one listing output. The output is re-
enabled when $ (or END if SABR code) is en- .
countered. Thus the $ (END) and symbol table
are printed if the /P option is used. Inoperable.
for RALF output.

/U ' Disable pass one listing output and the symbol
~ table. Inoperable for RALF output. -

2-69

Table 2-14 CREF Options (Cont.)

Option Code Meaning
/R Interpret input as RALF code.
- /Q Interpret input as SABR code. Signal CREF to

accept special SABR characters. If the /Q option
is used, the /X option is forced on.

/X Do not process literals. For programs with too
many symbols and literals for CREF, this option
may create enough space for CREF to operate.

/E Do not eliminate the file CREFLS.TM. If the /E
option is not specified, and CREF was chained
to from PALS, the filc CREFLS. TM is eliminated.

/M Cross-reference mammoth files in two major
passes. Pass one processes the symbols from A
through LGnnnn; pass two processes the symbols
from LHnnnn through Z and literals. This permits
significantly large files to be cross-referenced. If
the /M option is used, the file CREF.SV must be
on the system device. '

EXAMPLES OF CREF USAGE
Examples of calling and using CREF are given below.

Example 1:

«R CREF
*CTEMP

The Command Decoder prints an *, CREF assigns LPT: as the
output device. The input file is PTEMP, assumed to be on device
SYS, with the extension .LS. If the file SYS:PTEMP.LS is not
found, a search for SYS:PTEMP is attempted. .

2-70

Example 2:

+ 7 CREF
*SBRLS/R

Given to the Command Decoder, this command string causes
output to be sent to the line printer. The input is expected to be
a SABR listing file named SBRLS. LS or SBRLS from device
SYS:.

Example 3:

«R CREF
wDTAl LIST<NTAZ: PALIST/X

This command string causes output to be sent to DECtape unit

1, as a file named LIST.LS. Input is expected to be a PALS list--

ing file called PALIST.LS or PALIST. No literals appear in the
CREF output table.
Example 4:

«R CREF
*DTA2:LIST<SYS:BIGLST

The source listing, symbol tab_le,— and cross-reference of symbols

in the file BIGLST or BIGLST.LS on SYS is in the file LISTLS

on DTA2. To list the CREF output the user may now run PIP.SV
as follows: _

+R PIP
*LFT:<DTA2:LIST.LS

Pseudo-Op Handling

CREF recognizes certain pseudo -ops of the PAL8 and SABR
assemblers, these certain pseudo-ops cause CREF to perform ac-
tions similar .to those taken by the assembler whose output is
being processed. These pseudo-ops are described below:

2-71

PALS Pseudo-Op

EXPUNGE
FIXTAB

TEXT
$

SABR Pseudo-Op

END
OPDEF

SKPDF

TEXT

Action Taken by CREF

CREF purges its current symbol table of all per-
manent and user-defined symbols. If any literals
were in the symbol table, they are not deleted.

Causes all symbols (except literals) to be marked
as permanent symbols. After a FIXTAB, no ref-
erences will be reported by CREF.

Ignores characters between delimiters.

End-of-input signal.

Action Taken by CREF

End-of-input signal.

Creates a new permanent symbol table, a non-

“skip type instruction.

Creates a new permanent symbol table, a skip
type instruction.

NOTE
Symbols entered by OPDEF and SKPDF
are processed by CREF. All references to
these defined symbols are listed. However,
no reference is flagged as a definition (i.e.,
no reference is followed by a # in the CREF
listing).

Ignores characters between delimiters.

Interpreting CREF Output

The output of CREF consists of two parts. ‘On the first pass
through the input file CREF generates a sequence numbered list-
ing file. The sequence numbers are decimal. The /P and /U
options disable this part of the output.

The cross-reference table appears after the listing. This table
contains every user-defined symbol and literal, sorted alphabetical-
ly. Each literal is indicated by an underline (or back-arrow on
most DEC terminals) and followed by the field and address at
which the literal occurs. For each symbol and literal there appears
a list of numbers specifying the line in which each is referenced.

If CREF finds too many references to fit into core at one time,

2-72

multiple passes are required to process all symbols. The minimum
number of passes is two. The maximum number of passes depends.
on the size of the input file, and the amount of core available.
CREF calculates the number "of core fields available.and uses all
available space for reference tables. If there is not enough core
available, three or more passes are required. For example, the
current OS/8 SABR assembler (5518 source lines, 849 symbols)
requires four passes through CREF on an 8K machine.

The following example illustrates a program which has been
assembled with PAL8 and listed with CREF. Form feeds on the
terminal have been converted to a series of carriage return/line
feed combinations and a dotted tear line. Notice that in the CREF
table the line where the symbol is defined is followed by a # .
Symbols defined by OPDEF or SKPDF in SABR, and all literals .
do not have a # following them.

/EXAMPLE PROGRAM

/ EXAMPLE PROGRAM PAL8=VSB 1©3/05/74 'PAGE 1
] / EXAMPLE PROGRAM
2 o/ ILLUSTRATING DETAILS OF LISTING FORMATY
3 / USING PALS AND CREF
[2200 200
S Q0202 732@ START, CLA CLL
6 20201 1207 TAD A /CURRENT PAGE SYMBOL
7 gez2e2 1717* . TAD B /QFF=PAGE SYMBOL, LINK GENERATED
-] og2e3 1177 TAD (2 /PAGE ZERC LITERAL
9 R%204 1376 TAD (3 /CURRENT PAGE LITERAL
10 ge2es 3T77°* DCA LINK . /OFF«PAGE SYMBOL, LINK GENERATED
11 20206 S610 JMP 1 ADDRP2 JUSER CREATED LINK ’
12 00207 0eii A, 2011]
13 9021@ 2402 ADDRPZ2, P2 /INDIRECT ADDRESS
14 20376 o003
1S 00377 o407
16 - 2400 =ace
17 pR4d2 1207 P2, TAD LINK /PAGE 2 START
i8 2p4eoy 1377 TaD (3 /NOTE THAT THIS IS A NEW LITERAL
19 Po4se 1177 TAD t2 /NOTE THAT THIS IS SAME OLD LITERAL
20 ©R4O3 1377 TAD (3 /SAME AS CURRENT PAGE LITERAL
21 ovaR4 3207 0CA B /CURRENT PAGE SYMBOL
22 00425 6213 COF CIF 12 /CHANGE FIELDS)
23 Po4R6 S776* JMP FLDY /0FF PAGE SYMBOL, LINK GENERATED
24. 00427 Q00 LINK, @
2% o407 BeL INK
26 80576 @200
27 20STT @e03
28 22477 oo
29 2p@el FIELD 1t '
30 18280 1377 FELDY, TAD (3 /FIELD 1, DEFAULT TO PAGE | w200
34 10201 1177 . TAD (2 /NEW LITERAL, BECAUSE IN PAGE @ OF NEW FIELD
32 10232 6283 CIF CDF 0 /CHANGE FIELDS AGAIN
33 10203 5200 JMP START /NO LINK GENERATED, SAME PAGE, OTHER FIELD
34 10377 eeel3 : .
3S -

36 12177 Qo022

273

/

EXAMPLE PROGRAM PAL.B=Y9B @3/385/74 PAGE 2 .

2ee7

ADDRFE 2210

8
FLOY
LINK
L]

2407 =
0200
qae7
B4p0

STARY degn

ERRORS DETECTED: ©
LINKS GENERATED: 3

A 6 12#

ADDRPR 11 138

8 7 21 258

[tBé 23 30#

19

P2 12 }‘Zz 2w B

START s¢ 13
©.ee1T? 8 19

L8837 9

L29577 18 20

o7y 31

Y 304 30

v3

) ® -
Restrictions

CREF has the following restrictions:

CREF can handle a maximum of 896 (decimal) symbols in one
major pass. (In 8K, PALS is limited to 897 symbols while
SABR is limited to fewer than 800 symbols.) If more than 896
symbols are found, an error message is generated.

If any symbol in the input file has more than 2044 (decimal)
references, an error message is generated.

If more than 8192 (decimal) source lines are input, sequence
numbers return to 4096, not 0.

If the /D option is used in PALS (to generate a DDT com-
patible symbol table) and the output listing is put through
CREF, no symbol table listing will appear.

Use of semicolons—This is a restriction which, when not ob-
served, could cause errors in the CREF table. It is recom-
mended that the user follow these suggestions when preparing
source files in order to insure a proper CREF listing. Semi-
colons should not be used on lines with pseudo-ops. In parti-
cular, a combination such as the following must not be used:

2-74

*3240 i
TEST YERRQRY 7 TAD [42

EXPR=Q

In this case, CREF does not process the page zero literal
properly. A literal is generated which is derived from the ex-
panded TEXT message. No error message is generated, but
the literal table entry is meaningless. As a general rule, semi-
colons should not be used as line terminators inside condi-
tional assembly brackets (<>). For example:

EXOR=Q
IFNZRO EXOR<CLA;TAND B8; HLT \ERRDR>»
\THIS IS THE NEXT LINE PAST IFNZRO

The conditional code is not assembled; however, CREF does
not realize this and tries to process the bracketed instructions.
As a result of these semicolons, extra symbols may be pro-
cessed and some valid references missed. However if the code
had been assembled CREF would operate properly. There
are two ways around this:

a. Write straight line code:

EXAOR=2

IFNZRO EXOR <

CLaA

TAD B o .

. HLT ERROR -
> .

b. Use XLIST around conditional code, in the above example:

IFZERQ EXOR <XLIST» . _
IFNZRO EXQOR «<CLAITAD B: HLT\ERROR>
IFZERQ EXOR <XLIST»>»

XLIST turns off the listing if the code does not assemble and
turns it back on after the conditional code.

Formats—There are several output formats that can be used
in generating a PALS listing file:

/T Form feeds converted to carriage return/line feeds.

/H No heading or form feeds generated. -

/D DDT compatible symbol table is generated. _
For best results with CREF, none of these switches should be

2-75

used. This generates a heading and form feed in the output.
CREF automatically converts form feeds to carriage return/
line feeds if output is to the terminal.

7. PALSB generated links do not cause a reference to a link to be
noted by CREF. Only literals specifically generated W1th (and
[are processed by CREF.

CREF Error Messages

CREF errors are non-recoverable errors, and control returns to
the Keyboard Monitor through location 07605 (no core saved).
Table 2-15 lists the error messages printed by CREF.

Table 2-15 CREF Error Messages

Error Message

Meaning

SYM OVERFLOW

ENTER FAILED

OUT DEV FULL

CLOSE FAILED
INPUT ERROR
DEV LPT BAD

2045 REFS

HANDLER FAIL

More than 896 (decimal) symbols and literals
were encountered during a major pass.

Entering an output file was unsuccessful—
possibly output was specified to a read only
device.

The output device is full (directory devices
only). '

CLOSE on output file failed.
A read from the input device failed.

The default output device, LPT, cannot be
used, as it is not available on this system.

More than 2044 (decimal) references to one
symbol were made.

This is a fatal error on output, and can occur if
either the system device or the selgcted output
device is WRITE-LOCKed.

276

DIRECT

DIRECT is an OS/8 program that produces listings of OS/8
device directories. The directories produced can be of several
varieties, depending upon the options specified in the DIRECT
~ command line. The standard directory listing consists of the follow-
ing columns: file name, file name extension, length (dec1mal) in
blocks written, and creation date.

DIRECT supports. the wild card construction, usmg in place;,
of the file name or extension or ? in place of a character. See the
FOTP section of this chapter for a descnptlon of wild card

construction.

Calling and Using DIRECT
To call DIRECT from the system device, type:

-R DIRECT

in response to the dot printed by the Keyboard Monitor. DIRECT
may also be called via the CCL command DIR (see the CCL sec-
tion in Chapter 1). The Command Decoder prints an asterisk at
the left margin, indicating that it is ready to accept a line of I/0O
files and options. One output specification and one to five input
specifications can be entered in a DIRECT command line. The
I/O command line may be terminated with a carriage return
(DIRECT retains control) or with an an ALTMODE +(control
returns to the Keyboard Monitor).

The output specification consists of a device upon which the
directory is to be produced, a file name, and a file name extension.:
All parts of the output specification are optional, as is the output
specification itself. A file name and extension should be specified
if it is desired to save the directory for listing at a later time. If no
output device is specified, TTY is assumed. If a file name is given
without an extension, the extension .DI is assumed. The wild card
? and * are not perm1tted in DIRECT output file names or
extensions.

A DIRECT input specification consists of a device, an optional
file name, and an optional extension. The wild card * and ? are
permitted in input specifications. If an input device is specified
with no file name or extension, *.* is assumed. DIRECT deter-
mines which files have the form specified and prints a directory
listing of just those files.

2-77

DIRECT OPTIONS -
The following table lists the options that may be used in a

DIRECT 1I/0O specification line. Examples of the use of these
options are shown following Table 2-16.

Table 2-16 . DIRECT Options

Option

Meaning

/B

/C

/E
/F

/1

/L

/0
/R

/U

/V
/W

Include the starting block numbers (octal) for each file in
the directory.

List only files with the current date, i.e., the date entered
with the most recent DATE command.

Include empty file spaces in the directory listing.

List a short form of the directory, omitting file lengths and
dates.

List additional information words in octal, other than the
first which is listed as the date.

List the standard form of the directory, including file name,
extension, length in blocks, and creation date. The /L
option is assumed if none is specified.

List only the empty spaces in the directory.

Use n columns in the directory listing. This option allows
the user to specify the number of directory entries per line
of output. The “n” must be in the range 0 to 7. The =n
option is useful when a wide column printer, e.g., 132
columns, is being used.

List only files with other than the current date.

List the remainder of the files after the first one found.
This option causes DIRECT to find the first file that
matches the specifications given and then list a directory
that includes the first matching file and all files that follow
it on the device. The /C and /O options are still considered
when listing these remaining files. If /R and /V are used
in the same command, only the first file of the form speci-
fied is listed.

Treat each input specification separately. The /U option
creates a separate directory listing for each input specifi-
cation. ‘

List files not of the form specified.

Print the version number of DIRECT.

2-78

DIRECT EXAMPLES

The following are legal command stnngs to DIRECT and the
resultant DIRECT output. To facilitate understanding of the
DIRECT options, the same device (DTAO) is used for each of the
examples, and the current date is 21-JAN-74.
- When DIRECT has completed an operation, control returns to

the Command Decoder for additional input. '

Example 1:

This example shows a directory of all the files on DTAQ, listed in
two columns on the terminal (TTY).

«R DIRECT
*DTAB: =
21-JAN-74

'MTPALA. PA 1 18-JAN-T4 WNTSTA. BA 1 18-JAN-T4
"MTPALB.PA 1 18-JAN-74 WNTSTB. BA 1 19-JAN-T4
WNTSTC.BA 1 19-JAN-74 WNPALA.PA 1 19-JAN-T4
WNPPPAZPA 1 19-JAN-74 WNTSTD. BA 1 21-JAN-74
WNPALB. PA 1 21-JAN-T4 MTPALC.PA 1 21-JAN-74
UNXX «BA 1 21-JAN-T4 WNXY . BA 1 21-JAN-T4

718 FREE BLOCKS

Example 2:

This example shows all files that have a file name beginning
with WN, have any file extension, and do not have the current
date. The directory is listed in two columns on TTY.

*DTABE UN 22220 % /0= 2

21-JAN-T4

WNTSTA. BA 1 18-JAN-T4 WNTSTB. BA 1 19-JaN-74
UNTSTC.BA =~ 1 19-JAN-T4 WNPAL A. PA 1 19-JAN-T74
WNPPPA. PA 1 19-JAN-T4

718 FREE BLOCKS

Example 3

This example shows files that have any file name, have a .BA
extension, and have the current date. The directory is listed in a
single column on TTY.

2-79

x*DTA@:*. BA/C
21-JAN-74
WNTSTD. BA 1 21-JAN=-74

WNXX . BA 1 21-JAN=-T74
WNXY «BA 1 21-JAN-T74

718 FREE BLOCKS

Example 4:

This example demonstrates the use of the /U option to pro-
duce separate directories for each input spcification. The command
specifies that all files beginning with WN and having .BA exten-
sions be listed first, and that all files beginning with WN and having

.PA extensions be listed next. The short form of the directory is to
be listed on the line printer (LPT) in three columns.

*LPT:<DTAR:WN?222.BA, WMN???22. PA/F/U=23

2l=JAN=T4
WNTRTA,BA WNTSTH ,BA WNTSTC ,BA
WNTSTD.t84 WNXX B4 WNXY LEA

718 FREE RLOCKS
2l=JAN=T4

WNPALAPA WNPPPA PA WNPALB,PA

718 FREE BLOCKS

Example 5:

This example demonstrates the use of the /V option to print
files not of the form specified and the use of the /O option to
exclude files with the current date. All files except those beginning
with WN are to be printed in a single column on TTY.

*DTAG: WN?2?22.%/0/V
21-JAN-T4

MTPAL A. PA 1 18-JAN-T4
MTPALE. P& 1 18-JAN-T74

718 FREE BLOCKS

- 2-80

Example 6: N A : '

This example demonstrates the use of the /R option to list part
of the directory. DIRECT is to find the first file that begins with
WN and has a .PA extension; that file and all files that follow are
to be listed. The directory is listed in two columns on TTY.

*DTAP: WN?7?22, PA/R=2

21-JAN-T74
WNPALA. PA 1 19-JAN-T4 WNPPPA.PA 1 19-JAN-T74
WNTSTD. BA 1 21-JAN-T74 WNPAL E.PA 1 21-JAN-T74
MTPALC: PA 1'21-JAN-T74 WNXX +BA 1 21-JAN-T4
WNXY < BA 1 :

21-JAN-T4

718 FREE BLOCKS

Direct Error Messages ,
The following error messages may appear when running the DI-
RECT program.

Table 2-17 DIRECT Error Messages.

Message _ Meaning

BAD INPUT DIRECTORY This message occurs when
: ' the input device has-a bad
directory, e.g., the device
is not an OS/8 device, or
a DECtape has not been

zeroed.
DEVICE DOES NOT HAVE A The input device is a non-
DIRECTORY _ directory device, e.g., PTR.

DIRECT can only read
directories from file-struc-
tured devices.

EQUALS OPTION BAD The =n option is not in
' the range 0-7.

ERROR CLOSING FILE System error.

ERROR READING INPUT An error occurred while

DIRECTORY reading the directory.

- 2-81

Table 2-17 DIRECT Error Messages (Cont.)

Message

Meaning

ERROR WRITING FILE

ILLEGAL *

ILLEGAL ?,

NO ROOM FOR OUTPUT FILE

THERE IS NO HOPE—THERE IS NO
TTY HANDLER IN YOUR SYSTEM!

An error occurred while
writing the output file.

An asterisk (*) was in-
cluded in the output file
specification or an illegal
* was included in the in-

. put file name.

A question mark (?) was
included in the output file

iRrnti.
Speliiitation.

Self-explanatory; the out-
put device does not have
sufficient space for the di-
rectory to be written.

A command was issued to
print a directory on the
terminal when no TTY
handler is present on the
0S/8 system. Use BUILD
to insert a TTY handler in
the system.

2-82

EPIC

Introduction , _

EPIC, the Edit, Punch and Compare utility program for OS/8, is
designed primarily to assist users by performing the following
functions:

1. Read and punch paper tape ﬁles and patches
2. Edit arbitrary files
. 3. Compare files in any format

When EPIC is loaded, the command line determines which func-
tion is desired. Each of these functions is discussed as a separate
topic in these next few pages. This section assumes an elementary
knowledge of OS/8.

Loading EPIC
To load the EPIC program type R EPIC in response to the
OS/8 monitor’s dot (.). Specify the EPIC function desired by in-
cluding one of the following numeric options in the file command
line:
0 paper tape

-R EPIC C1edit
*TRANS. AS</8$ 2 compare
punch the file TRANS stored
on SYS.
+R EPIC
. fetch FILEA from DTAI1 for
*DTA1: FILEA.SV</18$ editing

- compare file ABC on the disk

with file XYZ on DTA1 and

«R EPIC . output block numbers and lo-
' cations of each non-match on

*DSK: ABC. SV<DTA1:XYZ. SV/2% "the Teletype. -

After one of these numeric options has been included in a com-
mand, it need not be specified again in subsequent sequential
commands requiring the same option. Specifying the number puts
EPIC in a mode and it remains in that mode until another number
is specified. Initially, EPIC is set to option 0. The character ALT-
MODE, which prints as $ on the terminal, is used to end a com- .
mand that includes a numeric option.

2-83

Restart Procedure
EPIC can be restarted at location 0200. Default options remain
active. The default options are discussed later in this section.

Paper Tape Facility

The paper tape option (/0) of EPIC punches OS/8 files and file
patches onto paper tape and creates OS/8 files from paper tapes.
Whole files or patches (blocks) of files can be read or punched.
Parity checks are punched to assure accurate reads. Note that a
unique paper tape format is used so that tapes must be both
-punched and read by EPIC. A file punched by PIP, for example, is
not acceptable to EPIC.

Command Format

To request the paper tape facility, the option 0 must be spe-
cified. The form of the response to the command decoder’s * de-
termines whether a tape is to be punched or read. In both cases,
no input files or devices are specified. To punch a tape, the file
name is specified; to read a tape, no file name is required (that in-
formation is encoded on the paper tape). The command line spec-
ifying the mode of EPIC is terminated by ALTMODE.
To punch a tape, the response is:

*dev:name < /0/other options$
To read a tape, the response is:
*dev: < /0/other options$

If a file name is specified, EPIC looks up the name on the specified
device and punches the file (including the file name) onto paper
- tape. If no file name is specified, EPIC reads in a paper tape and
enters it onto the output device under the name it read in from
the tape. |
The other options for handling paper tape are:

L Use low speed paper tape reader or punch

E Do not punch end of tape upon completion

P Punch or read a patch (instead of the whole file)
Z Set relative block to 0

=n Punch relative block n

Y Clear default name

2-84

These options can be combined to achieve the desired results.

L Option: If the /L option is not specified, EPIC assumes a
: high-speed paper tape device. Thus, SYS:</0
means read a tape from the high-speed reader to
device SYS but SYS:</0/L means read it from
- the low-speed device.
E Option: The /E option can be used to punch a series of
patches to a file for all patches except the last one.
With the /E option the end of tape mark is not
. punched. The end of tape must have the “end of
tape” punch, a 377 punch and a length of leader/
. trailer tape. ‘

P Option: The /P option is required to indicate the tape to
‘be read or punched is a patch, not an entire file.
Generally, the command required to read in a patch
is simply dev:</P. File name and block specifica-

tions are already punched on the tape.
Option /Z or —n must be used with the /P option
to indicate punching block O or some other block
(relative block n), respectively. The patch is read
on top of an existing file on the specified output
device, i.e., modifying an old file, not creating a

new one.

Y Option: The /Y optlon is used to clear the default file name
: when switching from punching to reading paper
tape and when reading more than one paper tape.

Default Options

Throughout EPIC, if options, files, or devices are not specified,
the program defaults to the last such item specified. There is an
- initial default.device: SYS is assumed if no output device is spec-
ified. No options are assumed initially, however, except for relative
block 0. Note hat device and file name options carry between
.EPIC modes 0, 1 and 2. Specifying an option (i.e., L, P, E, Z,
etc.) in a command string disables default to any options from the
previous command (except 0, 1, 2).
For example, to punch blocks 0, 1 and 30 of the file TRANS on -
the SYS device and read them back onto that file on DTA3, the
commands are:

2-85

Punch block 0 of TRANS on
high-speed punch with no end
- of tape punch. Note that
EPIC defaults to the paper-
tape option initially so 0 is
not required in this case.

Punch block 1 of file TRANS
with no end of tape character

«R EPIC on high speed device.

*TRANS</P/E/Z $ Punch block 30 of the file
‘TRANS on high-speed punch.

*=1 : Punch end of tape (P dis-
ables E).

*x=3@/P .
Read the tape from the high

*DTA3: < /Y » speed device and put out to

file whose name is encoded
in the patch on device DTA3
until end of tape is reached.
File name and relative block
are punched on the tape so
this information is not neces-
sary. Y clears the default
name. (TRANS)

Error Conditions

If an error occurs while reading a block of paper tape, EPIC
outputs an appropriate error message (the error messages are
listed at the end of this section), and halts; the user should reposi-
tion the paper tape to the leader/trailer just in front of the block
just read before continuing (refer to the section on Paper Tape
Format); three consecutive read errors terminate the command.
When EPIC is reading in a non-patch file it checks the initial
block read of every tape and every block that is reread because
of error to determine if the read was accurate up to name and
block number. If the wrong block number or file name is read,
EPIC outputs an appropriate message indicating the type of error
and halts with AC=7777 to allow the user to reposition the tape
over the correct block or enter the correct tape before continuing.

Low Speed I/0
The execution of EPIC differs for low speed I/0. Before start-
ing a low speed punch EPIC halts with 7777 in the AC to allow

2-86

the user to turn on the low speed punch and then press the CONT
key on the computer console. Upon completion of a punch com-
mand EPIC halts with the AC=0 to allow the user to turn off
the punch. When the CONT key is pressed, EPIC recalls the
command decoder. For low speed input EPIC halts only upon
completion of the read. '

If a file or a series of files to be punched exceeds 32 blocks,
EPIC segments it by punching end of tape after 32 blocks. This
end of tape punch is done automatically and independently of
the E option; its purpose is to keep tapes physically short enough
to fit into a paper tape tray. Upon physical end of tape, EPIC
halts with the AC=0 if the low speed punch is being used to allow
the user to turn off the punch before continuing. As soon as the
punch is turned off, EPIC outputs the message END OF TAPE
ENTER NEXT and then halts with the AC=7777 to allow both
high and low speed users to remove the paper tape. Note that low
speed users get both halts, but high speed users only get the 7777
halt. In general, a halt with AC=0 means turn paper tape device
off and a halt with AC=7777 means turn device-on. All halts are
terminated by depressing the console CONTinue key. If EPIC
encounters end of tape while reading a non-patch file it outputs
the message END OF TAPE ENTER NEXT and halts with
AC=7777 indicating that the file is segmented across a number
of tapes and that the user should enter the next tape.

Device Codes .

Most of the execution time is spent waiting for paper tape devices.
During 1/0 wait, EPIC holds the device code and version number
in the AC. The device code is in bits 3-5 and the version number
is in bits 6-11. The codes are as follows:

1 high speed reader
2 high speed punch
3 low speed reader (console TTY)
4 low speed punch (console TTY)

If the user forgets to-turn on the high speed reader, EPIC hangs
with Ixx in the AC. EPIC can always be restarted at 0200. The
0S/8 CTRL/C is normally in effect; the exceptions are when
EPIC is waiting for a paper tape device or when input is from the
low speed reader.

2-87

'NOTE
When input is from the low speed reader
EPIC forces the output device to be SYS
because it is the only OS/8 I/O handler
that does not check for CTRL/C.

Thus, if the user were to enter the command:

DTAZ2: < /L

EPIC would force it to be

SY Ss <rL

Editing Capability

Option 1 of EPIC is the file editing and searching fac1hty With
this feature, patches can be added directly to the file by spec1fy1ng
relative blocks and locations in the file.

INITIAL COMMAND FORMAT
The general format of a command for the editing option is:

+R EPIC

*DEV:NAME</OPTI ONS /15

“The /18 specifies edit mode for EPIC.
As with the paper tape option, default conditions apply. If no
device and/or file name is specified, the last one mentioned is used.
When editing, the only option available in the initial command is

/Y Clear default name (if one exists)

Editing is performed one block at a time. The relative block cur-
rently being processed is the current block; the location currently
being processed is the current location (0-377). Relative block O is
the first block of the file if a file name is spemﬁed or-block 0 of
the device if no ﬁle name is specified.

2-88

EDITING COMMANDS A
After the initial (file specification) command, a series of key-
board commands are used to perform the editing. The general

format of an editing command is
X
x,nl,n2

where x is a command letter and nl,n2 are octal numeric argu-
ments. If a numeric argument is used, the letter is followed by a
comma. Up to 321 characters can be typed on a line. Default con-
ditions apply to these commands as well. If carriage return is the
only character typed as an editing command, the last command
specified is executed. The commands availabie are as follows:

Table 2-18 EPIC Commands

Command Meaning

E ' Exit .to command decoder; write out current block of
file if it has been modified.

R,n - Read relative block n (octal) of file and set current loca-
tion to 0. Do not write current block. If n is not spec-
ified, the current block is read. If the relative block is
out of range, a ? is printed. There are 1341 blocks per
OS/8 tape and 6260 per RKS8 disk platter.

W Write the current block of file if it has been modified
and read in the next sequential block of the file. If the
current block is the last block of the file, a ? is printed
and the current location is unmodified.

S,nl,n2 Search the current block for the value n1 with the mask
n2. If either nl or n2 or both are omitted, the last value
specified is used. The initial mask is 7777. Masking
is performed in a logical AND fashion. If the S com-
mand is terminated by the RETURN key the search is
for the current block only. If terminated by the LINE
FEED key, the search continues to the end of the file.
If the search fails (either in the block for a carriage
return or at end of file for line feed) EPIC prints a ?.
If the search is successful EPIC prints

2-89

*

Table 2-18 EPIC Commands (Cont.)

Command

Meaning

ml m2
m3 /

where m1 is the relative block, m2 is the relative loca-
tion within the block and m3 is the contents of the loca-
tion. (m1 is omitted if a previous match was found in
the same block.) To change the contents, type the new
contents (octal) after the slash. To continue the search
type the LINE FEED key; to terminate the search type
the RETURN key. (If the contents are not to be
changed, type one of the terminators.)

Open location n of the current biock. If n is not spec-

ified, the last opened location is the default. If there

is no default, location O is opened. EPIC responds with
ml /

which is the contents of location n. This location may

_be modified as in search. Terminating with the LINE

FEED key closes the current location and opens the
next. If the current location is the last one in the block,
location O of the next block is opened and the current
block is written out as if it had been modified.

Print current status, as:

ml (F or B) m2 m3 m4

‘where m1 is the current block, m2 is the current loca-

tion, m3 is the search word and m4 is the mask word.
If F is typed, the file has been modified since option 1
was requested; B indicates the current block has been
modified. Once a modified block has been written to
the file, the F is the only code output.

2-90

Thus a reasonable sequence is:

«R EDIT .
*DSK: I SOMER</183

R, 2 ‘
$,3126,7770 .

?

>

2004 2110
3124 s3121
521777
0004 @132
3126 s 3127

c
Pee4 B 8132 3126 7771

~w =

Rs2 -
0,10
1367 /1364>

3324 .
E
*

Compare Capability

Call EPIC.
Edit file ISOMER on DSK.
Read block 2.

* Search for a 312x in that

block.

Not there.

Search for it throughout the
file. _

Found at block 4, location
110.

Change contents to 3121.
Search for 31xx throughout

the rest of the block (loca-

tions 110-377).

Found at location 132 of
block 4. ' .
Contains 3126. Change to
3127. '
Check status.

At location 132 of block 4
which has been modified; the
current search word is 3126
and mask is 7777.

Write block 4.

Block 4 written but file is
only four blocks long, no
block 5 to read.

Read block 2.

Open location 10.

Contains 1367. Change to
1364.

Check next location. No
modifications.

Exit editing option.

A third feature of EPIC is file compare (/2). Because EPIC
uses an absolute compare technique, there are no limitations in
the data format or the length of the file. The files to be compared

must reside on the system device.

COMMAND FORMAT

Option 2 of EPIC requires only one command, specified as

follows:

SYS:filel <SYS:file2/options/2$

The first file to be compared is specified to the left of the angle
bracket, the second file to the right. The options are:-

A Abort when the first non-match is found.

B List physical block number for each file where a non-match
exists.

If no options are specified, the block numbers and locations of
. each non-match are listed on the terminal.

For example, to compare files PYTHG1 and PYTHG?2 and find
all unequal locations, the sequence is as follows:

*SYS:PYTHGI<SYSIPYTHG2/2S
$YS:@174 SYSipe3l

@152 74502 3421

2153 5741 2v2l

M154 3del 302¢

*

"To compare them and list unequal blocks the command is:

ASYSIPYTHGISYSIPYTHG2/B/2S

If this block match followed the preceding locations match com-
“mand, a sufficient command and its results are:

*/B
SYS:EiT4 SYS:i@e3]

To abort after the first non-match, the sequence is:

A/A
SYS:@174 SYS30631

Error Messages
EPIC can print one of the following error messages when per-
forming paper tape (option 0) operations.

2-92

'Table 2-19 EPIC Error Messages

Message

" Explanation

BAD =BLK

END OF TAPE
END OF TAPE
ENTER NEXT
I/0 ERROR

L/T ERROR

NEED:namel
FOUND nameZ

- When EPIC is punching a patch it checks

the block specified by “=n” to see if it is
within range. If the block is out of range
EPIC outputs this error message and returns
to the command decoder. For example if a
file JOE were two blocks long and the user
requested: '

 JOE:</P=3

the error message would be prmted

EPIC was expecting a block of tape and
found end of tape instead. EPIC halts with
AC=7777 to allow the user to reposition -
the tape. When the user depresses CONT-
inue EPIC attempts to read the block.

When EPIC is reading a file that is seg-
mented across a number of paper tapes and
encounters the end of a segment, it outputs
this message and halts with AC=7777 to
allow the user to enter the next segment of
paper tape. Press the Console CONT key
to continue reading.

If EPIC encounters an error while reading
or writing a mass storage device, or a paper.
tape read fails three consecutive times, it
outputs this error message, deletes the out-
put file if one exists, and returns to the com-
mand decoder. ‘

EPIC was expecting leader trailer and found
non-leader trailer while attempting to read a
block. The program prints this error message
and halts with AC=7777 to allow the user

'to reposition the tape then press the Com-

puter Console CONT key.

EPIC read a block of tape for the file
NAME?2 when it was expecting a block of
the file NAME]. This error would typically
occur when a user comes to the end of a
segment for NAMEI1 and enters some seg-
ment of NAME?2 instead of the next seg-
ment for NAMEI1. EPIC halts with AC=
7777 to allow the user to enter the correct -
paper tape.

2-93

Table 2-19 EPIC Error Messages (Cont.)

Message . Explanation

NEED:n1FOUND:n2 EPIC read block n2 of the file when it was
expecting block nl of the file. EPIC halts
with AC=7777 to allow the user to reposi-
tion the paper tape. This error typically
occurs when the user repositions the tape
to the wrong block after a read error.

PARITY ERROR EPIC failed to read a block correctly, e.g.
the reader dropped some bits. EPIC halts
with AC=7777 to allow the user to reposi-
tion the tape so that it can try the read
again,

PTR:NAME IS TOO The paper tape file NAME will not fit on

BIG FOR dev: the specified output device DEV:. EPIC
aborts the command and returns to the com-
mand decoder. EPIC makes the check for
size before writing on the output device..

USR n dev:name The USR encountered an error while at-
tempting to perform a fetch, lookup, enter,
or close on the file NAME on device DEV.
n=1 is a fetch, n=2 is lookup, n=3 is enter,
n=4 is close. EPIC aborts the command and
returns to the command decoder. For ex-
ample, if the user requests EPIC to punch
a file on SYS that does not exist:

SYSsNILL«e

EPIC outputs the message

USR Qe SYSINILL

indicating that it could not find the file
NILL on the device SYS.

2-94

Paper Tape Format
Paper tapes punched by EPIC have the followmg format

2 8 8 2
DATA DATA
FEET INCHES INCHES [---+--f | FEET -
uT BLOCK | Ty | [BLOCK T v
| START OF BLOCK I END OF TAPE -

PUNCH i PUNCH

Leader trailer is any string of 0 or 200 punches; usually it’s just
200 punches; leader trailer is terminated by a 201 punch which
indicates the start of a data block. The first punch after the last
- data block is 377 which is end of tape. Each data block has the
following format:

HEADER DATA

DATA DATA
BYTE P IBYTE PICRC} (CRC

Pl ayme (Plroeeereeee BYTE

Each byte is 12 punches (96 bits) and corresponds to 8 12 bit
words; each byte is followed by an even odd parity punch of the
eight words in the byte. Each block is terminated by two CRC
punches of longitudinal parity.

The header byte contains information about the file e. g file name
and relative block number. The data bytes constitute the actual
data of the block; there are 32 data bytes per 256 word block.

 Loading EPIC From Paper Tape
For users who receive EPIC on paper-tape use the following
procedure to load the tape and save it on a mass storage device.

Use ABSLDR

-:-g T :E : ’1'. uk . Read from reader; after 1 is

- - output, type any key to start
reader

«SA SYS EPIC ©=7577;0200%0 Save on mass storage with

starting address of 200

2-95

EPIC Assembly Instructions ..
The PALS (version 9) assembler is used to assemble EPIC as fol-
lows:

K PALS
tDEVIEPIC BN, DEVIEPIC,LS<DEVIEPIC,PA

To create the save file, use ABSLDR:.

.R ABSLDR Call ABSLDR.
*DEVIEPIC,BNS Load EPIC.BN on device
254 DEV EPIC 0=75773020080 speciﬁed_
Save EPIC on device speci-
fied.

0-7577 = area in core used
during execution. 0200 = re-
start address.

2-96

FILE ORIENTED TRANSFER PROGRAM (FOTP)

FOTP is an OS/8 program used to transfer files from one device
to another, to delete files from a device, and to rename files. FOTP
is significantly faster than PIP and performs certain functions not
available with PIP. For example, FOTP can transfer files longer
than 256 blocks and can perform multiple file transfers and
deletions without requiring multiple accesses of the directory.

FOTP copies files in image mode, i.e., it copies the file word for
word, character for character, without making any changes in the
file. (This corresponds to the /I option in PIP.) Thus FOTP may be
used to copy core image and binary files as well as ASCII files,
without specifying options to identify the type of file. :

Calling FOTP
To call FOTP from the system device, type:

R FOTP

In response to the dot printed by the Keyboard Monitor. (FOTP
may also be called indirectly by several CCL commands. See the
CCL section of Chapter 1.) The Command Decoder prints an
asterisk at the left margin and waits to receive a line of I/0O files
and options. FOTP accepts one output specification and up to five
input specifications. The I/O specification line may be terminated
with a carriage return (FOTP retains control) or with an
- ALTMODE (control returns to the Keyboard Monitor).

INPUT SPECIFICATIONS
- FOTP input specifications consist of a device, a file name, and -
a file name extension. Input specifications are optional but must be .
present if no output specification is included.

Within the input specification, FOTP allows a wild card con-
struction to be used. This means that the file name or the extension
may be replaced totally with an asterisk or partially with a question
mark to designate certain file names or extensions. The asterisk is
used as a wild field to designate the entire file name or extension.
For example:

TEST1.* All files with the name TEST1 and any extension.
* BN All files with a BN extension and any file name.
* kL All files.

2-97

The question mark is used as a wild character to designate part
of the file name or extension. A question mark is used for each
character that is to be matched; e.g., PR?? matches on four char-
acters or less. For example: '

TEST2.B? All files with the name TEST2 and any extension
beginning with B.

TES??.PA All files with a PA extension and any file name up
to five characters beginning with TES.

77N All files with file names of two characters or less.

‘The asterisk and the question mark can be specified together in
the same command line.

M7.* All files with file names of three characters or less.
The following are examples of legal FOTP input specifications:

DSK:

SYS:A

LTA3:TEST1A
DTA7:A.BN

FILE

FILE3.DA

4
NAME?.TX,NAM??.BN
N?ME.

*®

* BN
PRN:*.7?
"WIB?Z.7A

A specification may not contain embedded *’s, e.g., A*B.* is an
illegal specification. The following are illegal input specifications:

AB,C
A:B:C
A?T* B

AB
DAT:A.*B
A?B:C
*.BIN

2-98

For each input specification given, if no device is explicitly
given, then the device associated with the previous specification is
assumed. If no device is explicitly given for the first specification,
then DSK: is assumed. Thus, the following input specifications are
equivalent:

DSK:B B . _
SYS:B.*,C.*,D.* - SYS:B.*,SYS:C.*SYS:D.*
'B *DTAO:,SYS:* BN DK:B.*,DTA0:,SYS:*.BN

As many as five input spec1ﬁcat10ns can be included in a single
command line. If all the files are on the same device, the input
device need be specified only once. For example:

DTAO:*,BN *.SV *RL

refers to files on DTAO that have .BN, .SV, or .RL extensions with
any file name.

OUTPUT SPECIFICATIONS

FOTP output specifications consist of a device, a file name, and
a file extension. Output specifications are optional. The wild card

asterisk may be used in output specifications, but the questlon
* mark is illegal.

If no output device is specified but a ﬁle name is given, then
'DSK: is assumed. If no file name is specified, then *.* is assumed.
Thus the following output specifications are equivalent: -

A | DSK:A

A* DSK:A.*

DTA3: | DTA3:*.*
Using FOTP

Since FOTP performs file transfers in a different manner than
other OS/8 transfer.programs, the following is a detailed descrip-
tion of the way in which FOTP works. One of the main uses of
FOTP is to copy files from one device to another. The following
examples are used to show how FOTP examines each aspect of a
command to determine what operation will actually take place.

2-99

Example 1:

To copy the file SMILE.PA from DTA3 to DTAS changing its

name to FROWN PA, type:

DTAS: FROWN« PA<DTA3: SMILE.PS

in response to the # printed by the Command Decoder.

1.

NO

If FOTP does not find the file SMILE.PA on DTA3, the
message:

FILES OF THE FORM SMILE.PA

is printed and no transfer 1s performed.

FOTP examines DTAS to determine whether it already con-
tains a file FROWN.PA. If FROWN.PA is already on DTAS,
FOTP deletes it before beginning the transfer. This process is
known as predeletion.

The /N option is used to specify that no predeletion is desired.
Thus the command:

DTAS: FROWN. PA<DTA3: SMILE. PAN

begins to copy SMILE.PA to DTAS without deleting the old
FROWN.PA. FOTP does this by opening a tentative file
named FROWN.PA on DTAS. When the transfer operation is
successfully completed, the tentative file is closed. Closing this
tentative file makes it a permanent file and, at the same time,
deletes any old files of the same name. This process is known
as postdeletion.

FOTP assigns the creation date of SMILE.PA to FROWN PA.
This is an advantage over PIP, which would assign the current
date to the new file. If files are always transferred with FOTP,
the original creation date of the file is preserved. Thus this
feature of FOTP allows the user to differentiate between ver-
sions of a file since the more recent version should have a later
date.

The /T optlon of FOTP can be used to assign the current date
to a file. For example, if SMILE.PA is undated, FOTP assigns -
the current date to the newly created FROWN.PA.

2-100

DTAS: FROWN.PA<DTA3: SMILE. PA/T

6. Advanced users may be using the additional information words

feature of OS/8. This feature allows the knowledgeable user
to associate additional information (other than the creation
date) with each file entry in a device directory. FOTP transfers
such additional information words from SMILE.PA to
FROWN.PA. (PIP does not perform this function.) '
If the file structure on DTAS5 has space for more addmonal
information words than appeared with SMILE.PA, then those
extra words are set to 0.
If the file structure on DTAS does not have enough space for
all ‘the additional information words associated with
SMILE.PA, then FROWN.PA is given as many as can fit (from
the left). Excess information words (on the right) are not
transferred.

Example 2:

‘Normally, one copies files from one device to another without
changing the file name. For example, to copy the file TEST.PA
from DTAI1 to DTA2, type:

DTA2: TEST. PA<DTA1: TEST.PA

in response to the * printed by the Command Decoder. Since this
transfer operation is so common, FOTP allows the output file
name to be abbreviated to *.*. The *.* means that the input file
name is to be used as the output ﬁle name. Thus the preceding
command could be typed as:

DTA2=*.*<DTA1:TEST.PA

Since the *.* speciﬁcatidn is so frequently used, it is the default,
i.e., if no output file name is specified, *.* is assumed. Thus the
preceding command may be further simplified to:

DTA2: <DTA1: TEST.PA

Example 3:
One of the more attractive features of FOTP is that it allows
multiple files being transferred from one device to another to be

2-101

included in the same command line. For example, to transfer five
FORTRAN source files from SYS to RKA2, the user could type:

RKA2:*.*x<SY S: DATA1.FT,DATA2.FT, DATA3. FT, DATA4.FT>DATAS.FT

The wild calfd characters * and ?, explained previously, are
particularly useful when doing multiple file transfers. For example,
to transfer all FORTRAN II source files from SYS to RKA2,

type:

RKA2:*.%<SYS:*. FT

The specification * FT means files with any name that have the
FT extension.
To copy all files from DTAL1 to DSK, type:

DSKs*ex<DTAls ke %

Note that the *.* specification has different meaning when
placed on the left side of the < than it does when placed on the
right. When used on the output (left) side, *.* means that the
output file name is the same as the input file name. When used on
the input (right) side, *.* means transfer or consider all files on
this device. For example:

RKA23 <SYS: TEST1.PA, TEST2. PA, TEST3.PA

copies three files from SYS to RKA2. PIP would require three
commands, each transferring one file, to perform the same opera-
tion.

Note that in the preceding example, no output file name is
specified, so *.* is assumed. No device is specified for the files
TEST2.PA and TEST3.PA, so the device specified as the prev1ous
input device (SYS) is assumed.

Frequently, several files with similar names (as above) are to be
copied from one device to another. In many cases, these files can
be referenced by a single file specification by using the ? wild
character. For example the command:

DTA2:*.#<DTA1: TEST?. PA

2-102

transfers all files on DTA1 that have the extension'.PA and that
have names beginning with TEST followed by one other character. -

ADVANTAGES OF PREDELETION

The default mode (and the recommended one) of FOTP is to
use predeletion when copying files. Predeletion creates space on
- the output device for the new file. Suppose that, in Example 1
above, DTAS were almost full. There might not be enough space
on DTAS for SMILE.PA. If, however, FROWN.PA is first deleted,
this could create enough space for SMILE.PA

Predeletion normally places the new file in the space occupied
by the file being replaced. In Example 1 above, if FROWN.PA is
first deleted, the space where it resided is empty. This empty space
could then be used for the new copy of FROWN.PA (the former
SMILE.PA). If predeletion were not used, the new tentative file
for FROWN.PA would probably be placed at the end of the tape.
This procedure would create a gap (EMPTY) when the old copy
of FROWN.PA was deleted; thus the files on DTAS would be
ordered differently. '

ADVANTAGES OF POSTDELETION

Postdeletion is a slightly safer method of transferring files since
. the original file is not deleted until a transfer is successfully com-
pleted. Suppose that, in Example 1 above, SMILE.PA is an up-
dated version of the FROWN.PA that exists on DTAS and that
these are the only two copies of a certain source file. If predeletion
is performed and SMILE.PA is discovered to have a permanent
input error, that source file will have ceased to exist because
SMILE.PA will be unreadable and FROWN.PA will have been
deleted. The use of postdeletion in this case would save the original
copy (FROWN.PA) even though the updated version (SMILE.PA)
could not be read.

CONTROL CHARACTERS

The special characters CTRL/C and CTRL/P are used to
terminate FOTP operations. When CTRL/C is typed, FOTP con-
tinues operation until the files on the output device are the same as
those in the output device directory. Control then returns to the
0S/8 Keyboard Monitor.

CTRL/P causes FOTP to terminate the current operation but
FOTP retains control. The output device directory is updated to

2-103

reflect the operations completed before the termination occurred.
FOTP prints an asterisk and can receive another I/O specification

line.
If CTRL/C or CTRL/P is typed when deleting (/D) or renam-
ing (/R), no FOTP operations are performed and the message:

ORIGINAL DIRECTORY PRESERVED

is printed.

FOTP Optlons
The options listed in Table 2-20 may be used in a FOTP speci-
fication line.

Table 2-20 FOTP Options

Option Meaning

/C Current date. Consider only those input files with the cur-
' rent date when performing a FOTP operation. For ex-
ample, if the command:

*DSKI<OTAQ:x ,»/C

Is typed, FOTP transfers from DTAOQ to DSK only those
input files that have the current date.

/D Do not perform any I/0O transfers, i.e., perform only dele-

tions. /D is not an abbreviation for delete although it
usually performs that operation. This option compares the
input specification with the output specification, if any, for
matching files. If a match is made, FOTP performs as
though transferring the file, and then deletes the trans-
ferred file.
If no transfer occurs, no postdeletion occurs. Predeletion
might still occur -unless the /N option is included. If no
output device is specified, FOTP assumes the first input
device specified as the output device. If no output files or
extensions are specified, i.e., *.* is specified or assumed,
the input file names become the output file names. If no
input files are specified, no deletion takes place.

/F Failsafe. The /F option protects files during a transfer
operation. It is particularly useful when transferring a great
number of files from disk to DECtape. The /F option al-

- lows a new volume to be mounted if a large file will not

2-104

Table 220 FOTP Options (Cont:)

Option

Meaning

/L

/N

/0

/Q

fit on the output device or if all files will not fit on the:
output device. If, for example, a user wishes to transfer.
all .BN files from DSK to DTAGQ, he types:

DTAD: <DSKs* . BN/F

If the output device becomes full before transfer is com-
plete (or if a large file will not fit), FOTP prints:

MOUNT NEXT OUTPUT VOLUME: -

Dismount the current tape and mount a new tape-on the
same unit. Type any character to. continue. The device
mounted must have a good OS/8 directory. FOTP then
continues the transfer on the new: Volume and updates
the dlrectorles of both volumes.

List on the terminal the names of files affected du-ringA the
FOTP operation. Note that neither the device nor the out-
put file is listed.

No predeletion. Delete output file names after a successful
I/ O transfer occurs. If an I/0 transfer proceeds, any other
files of the same name will automatically be deleted when
the file is closed.

Other than the current date. Consider only those input
files with a date other than the current date when perform-
ing a FOTP operation.

Query the user about each relevant file name to determine
whether he wants the specified operation to occur for that
file. This relevant file name could be either an input or out-
put file name depending upon thé type of FOTP operation
being performed. For example, if input files are being re-

- named, FOTP prints the affected input file names. If out-

put files are being deleted, FOTP prints the output files
that will be affected. FOTP prints each relevant file name on
the terminal and waits for the user to respond. A response
of Y causes the specified operation to be performed. Any
other response causes that file to be ignored and FOTP

~ prints the next relevant file name.

2-105

5

Table 2-20 FOTP Options (Cont.)

Option

Meaning

/R

/T
/U

/V

/W

Rename the output file without performing any transfer.
This operation is performed by specifying the same device
as both the input and output device. For example:

DSK: TEST3. PA<DSK: TEST2. PA/R

would change the name of the DSK file TEST2.PA to
TEST3.PA without performing any transfer.

Assign the current date to the corresponding input file.

Treat each input specification separately. This option causes
FOTP to find files in the same order as they are entered
in the input specifications. For example, the command:

DTA@: <DSKs TEST. PA>DATA1.FT, TEST2. PA/U/L

TEST.PA
DATA1.FT
TEST2.PA

S
finds the files in the order that they were specified in the
command, not in the order in which they may appear on
DSK.

Consider only input files which do not have ihe form spe-
cified by the input specifications. For example, the com-
mand:

DTAR: <SYSt*x.SVyx.HL /V

transfers to DTAOQ all files on SYS other than those with
.SV or .HL extensions.

Print the version number of FOTP on the terminal.

EXAMPLES OF FOTP SPECIFICATION COMMANDS

The following are legal command strings to FOTP. When FOTP
has completed an operation, control returns to the Command
Decoder for additional input, unless the ALTMODE is used to

.terminate the FOTP command line. -

2-106

Example 4:

DTAB: <A.B

This command string transfers the file A.B from the device DSK
to DTAO.
Example 5:

DTA3:<SYS:tA,B»CrDyE

- This command string transfers the files A, B, C, D, and E from
the system device to DTA3. '
Example 6:

DTA2: <DTAS:*.FTAL

This command string transfers all FORTRAN source files from
DTAS to DTAZ2, producing a log of those copied.
Example 7: |

LPTi<k.FT>*.BA/U

This command string lists all FORTRAN files, then all BASIC
_ files on the line printer.
Example 8:

DSK$<DTA3s*. SVox« BN»DTA2:K?22222.,%/V/L

This command string copies from DTA3 to DSK all files other
than core image (.SV) and binary (.BN); it then copies from DTA2
to DSK all files other than those with names beginning with K. A
listing is printed of all files copied.

Example 9: |

DTA1:Ce D<A.B/T

The above command copies the file A.B from DSK to DTAI,
changing its name to C.D, and assigns the current date to the file.

2-107

Example 10:

SYSt%.PL<LTA2:%.PA/N

The above command copies from LTA2 to the system device all
files with .PA extension, changing the extension to .PL.

Example 11:

XelLSso*aTMua% o BK, TMP?272?2.%x/D/0

This command string deletes any disk file which has an exten-
sion of .LS, .TM, or .BK or has a name beginning with TMP if the

file does not have the current date,

W AW LAV

Error Messages

The error messages listed in Table 2-21 may appear during a

FOTP operation.

Table 2-21 FOTP Error Messages

Message

Meaning

ALREADY EXISTS (file name)

BAD INPUT DIRECTORY

BAD OUTPUT DEVICE

BAD OUTPUT DIRECTORY

DELETES PERFORMED
ONLY ON INPUT
DEVICE GROUP 1
CAN'T HANDLE
MULTIPLE DEVICE
DELETES

An attempt was made to rename
an output file with the name of
an existing output file.

‘The directory on the specified

input device is not a valid OS/8
device directory.

Self-explanatory. This message
usually appears when a non-file
structured device is specified as
the output device.

The directory o;i the specified
output device is not a valid
0S/ 8 device directory.

More than one input device was
specified with the /D option
when no output specification
(device or file name) was in-
cluded.

2-108

Table 221 FOTP Error Messagés (Cont.)

Message ~

Meaning'

ERROR ON INPUT DEVICE,
SKIPPING (file name)

ERROR ON OUTPUT DEVICE,

SKIPPING (file name)

ERROR READING INPUT
DIRECTORY

- ERROR READING
OUTPUT DIRECTORY

ERROR WRITING
OUTPUT DIRECTORY

ILLEGAL *

ILLEGAL ?

NO FILES OF THE
FORM xxxx

NO ROOM, SKIPPING
. (file name)

SYSTEM ERROR-CLOSING
FILE :

USE PIP FOR NON-FILE
STRUCTURED DEVICE

The file specified is not trans-
ferred, but any previous or sub-
sequent files are transferred and
indicated in the new directory.

The file -specified is not trans-
ferred, but any previous or sub-
sequent files are transferred and
indicated in the new directory.

Self-explanatory.

Self-explanatory.

Self-explanatory.

- An * was entered as an embeded

character in a file name, e.g.,

- TMP*.BN.

A ? was entered in an output

. specification.

No files of the form (xxxx) spe-
cified were found on the current
input device group.

No space is available on the out-

put device to perform the trans-

- fer. Predeletion may already.

have occurred.

Self-explanatory.

An input device specified is not
a file-structured device, e.g.,
PTR.

2-109

- MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE
PROGRAM (MCPIP) o

MCPIP is an OS/8 program that is used to transfer files between
standard cassettes or magnetic tapes and other OS/8 system de-
vices, delete such files, and transfer directories. MCPIP allows the
OS/8 user to read or write any standard cassette file on a cassette
or magnetic tape. In particular, MCPIP can read or write any file
created by or to be used by the CAPS-8 system or by the OS/8
system (using any OS/8 device handler). MCPIP can also read
or write any magnetic tape file that is in standard cassette file for-
mat, i.e., a file created by MCPIP or by CAPS-8.

MCPIP may be run on any OS/8 system equipped with at least
8K of memory and TAS8E cassette or TM8E magnetic tape drives.
MCPIP supports any OS/8 system device. Before running MCPIP,
the user must load the OS/8 cassette or magnetic tape handlers as
described in Getting On Line with OS/8 in Chapter 1.

Calling and Using MCPIP
To call MCPIP from the OS/8 system device, the user types:

R MCPIP

in response to the dot printed by the Keyboard Monitor. The
Command Decoder then prints an asterisk at the left margin of the
terminal and waits to receive a line of I/O files and options.
MCPIP accepts one input file and performs output to a single out-
put file. The contents of the input file are transferred to the output
file in image mode. In response to the asterisk, the user types an
I/0 specification of the following form:

*outfile<infile/ (option’s) = size

Each file specification consists of a device and an optional file
name (for file-structured devices). To perform I/0O on a given cas-
sette drive, the user’s OS/8 system should be configured with an
OS/8 cassette handler for that drive. '

The permanent device names for cassettes are CSAQ-CSA7.
Magnetic tapes have the permanent device names MTAO-MTA7.
Permanent device names for other OS/8 devices are listed in the
Keyboard Monitor section of Chapter 1. These device names are
used in the 1/0O specification, along with any file name that is

2-110

necessary. For example, to transfer a CAPS-8 file named
DATAOLI to the disk, the user types: |

*DSK: DATAB1<CSA1: DATABGI

if the standard cassette is mounted on drive 1 and if the user’s
0S/8 system has a handler for drives 0 and 1 (unit 0) with entry
point names of CSAO and CSAl. If a cassette handler is specified
without any file name, MCPIP uses the handler without modi- -
fication, i.e., it uses the cassette as a non-file structured device
similar to a paper tape reader or punch. Thus, the command:

*CSA2: <DSK: SI 5C0. BN

would perform the same operation with MCPIP as the command:

#CSA2: <SI SCO. BN /I

would perform with OS/8 PIP.

If the user specifies a magnetic tape handler with a file name,
MCPIP considers the magnetic tape as a file-structured device and
assumes that it has the same format as a standard cassette.

Since MCPIP performs file transfers for all file types, there are
no assumed extensions assigned by MCPIP to file names for either
input or output files. All extensions, where present, must be ex-
plicitly specified, except when the /B option is used.

Following completion of a MCPIP operation, the Command
Decoder again prints an asterisk at the left margin and waits for
- another MCPIP I/0 specification line. The user can return to the
Keyboard Monitor by typing CTRL/C or by endlng a MCPIP
specification line with an ALTMODE

MCPIP OPTIONS _
The various options allowed on a MCPIP 1/0 specification line

are detailed in Table 2-22.
2-111 .

Table 2-22 MCPIP ‘Options -

Option

Meaning

/B

L]

/D

~ Transfer files in special CAPS-8 binary format. If the /B

option is used and no extensions are specified, MCPIP as-
sumes .BN for OS/8 files and .BIN for cassette files. If
input is from PTR: (high-speed paper tape reader), the .
paper tape must be positioned on the leader.

The square bracket ([]) option allows the user to specify a
decimal file type on a cassette output file. The notation in
brackets does not refer to the file sizes in this case. Hence,

to create a file with the name CAS50.BI on cassette drive 1
and give it a file type of 3, the user types:

*CSA1: CASS@P.BI[31<

For output files other than cassette, square brackets have
the same meaning as in OS/8 PIP. For information on file
types, see the Cassette Programming System User's Manual
(DEC-8E-OCASA-B-D), Appendix E.

Delete the file specified from the output cassette or mag-
net:c tape. The /D option is only valid if the output device
is a cassette or magnetic tape. For example:

*MTAl: OFILE< /D

will delete OFILE from the magnetic tape on drive 1.

Specify in the low order 12 bits of n the number of words
(characters) per record which occur in the cassette or mag-
netic tape output file. The low order 12 bits of the n spec-
ification may be between 0 and 1000 (octal), inclusive.
If not specified, 200 is assumed.

The = option need not be specified for cassette or mag-
netic tape input files because MCPIP will determine the
record size from the file’s header record. If the output
record size specified is greater than 1000 or if an input
record size is 0, MCPIP prints an error message since it
cannot handle variable-length records. The high order 11
bits of the = option are used to specify the version num-
ber for the file. The = option is ignored if the output file
is not a cassette or magnetic tape file.

2-112

Table 2-22 MCPIP Options (Cont.)

Option : Meaning

/L Read the input cassette or magnetic tape directory and
write it onto the output file. Notice that in this case the
input file itself is not transferred, only the directory. The
/L option applies.only if the input device is a cassette or
magnetic tape.

/Z If no filename is specified, zero the cassette or magnetic
tape on the drive specified as output, by writing a sentinel
file on it. Every magnetic tape or cassette should be zeroed
before it is used for the first time. If a filename is speci-
fied (for a cassette or magnetic tape drive), write a sentinel
file after the file specified.

Although cassette or magnetic tape file names may have 3-
character extensions, OS/8 allows only 2-character extensions.
Thus, when looking up a cassette file, although all three characters
may be specified, only the first two are significant. For example,
CSAO:FILE.PAL might match a file called FILE.PAT. All files
on a standard cassette must be unique with respect to the file name
and the first two characters in the extension. On output, the third
character of the extension is always a space (unless the /B option
is specified).

. NOTE :

. If CTRL/C is typed while a write operation
is in progress on a cassette or magnetic tape,
MCPIP writes an end-of-file before return-
ing to the Keyboard Monitor.

MCPIP Error Messages : ‘
Error messages which appear while MCPIP is running are
shown in Table 2-23. If an output file is specified on a cassette or
magnetic tape and a file by that name already exists, the file on
the output drive is deleted before any transfer is performed. If
MCPIP detects an error while a cassette or magnetic tape output
“file is open, it tries to close the output file by writing a sentinel
file on the output cassette or magnetic tape.

2-113

Table 2-23 MCPIP Error Messages

Message

- Meaning

CANNOT HANDLE VARIABLE The records on the input and

LENGTH RECORDS

CLOSE ERROR

device DOES NOT EXIST

ENTER ERROR

FETCH ERRCR

file NOT FOUND

ILLEGAL * OR ?
ILLEGAL SYNTAX

INPUT ERROR

output files specified are not the
same size. MCPIP cannot han-
dle variable length records.

MCPIP is not able to close the
file. A bad file just created on
magnetic tape or cassette must
be removed by placing a sentinel

“file after the preceding file. (See

the /Z option.)

The device specified does not
exist on the OS/8 system. “De-
vice” is a set of four characters
given when MCPIP expected an
OS/8 device name such as
DTAO.

Error occurred while trying to
enter an output file. This mes-
sage usually means that the cas-
sette or magnetic tape has no
sentinel file.

Error occurred while trying to
fetch an OS/8 device handler.

The file specified cannot be
found. “File” is the actual name
of the file that was not found.

Wild card * or ? was specified
in a MCPIP command line.
MCPIP does not accept the
wild card construction,

The command line to the Com-
mand Decoder contains an ille-
gal character or was incorrectly
formatted.

An input error occurred while
reading the file.

2-114

Table 2-23 MCPIP Error Messages (Cont.)

Message

Meaning

NO INPUT FILE
NO OUTPUT FILE

OUT-IN

OUTPUT DEVICE FULL

OUTPUT ERROR

RECORD SIZE TOO BIG

TOO MANY FILES

No. inpui file was specified
when one was required.

No output file was specified
when one was required.

Both the input and the output
devices were specified as the
same cassette or magnetic tape
drive. :

Either room on device or room
in the directory is lacking.

Output error—possibly a
WRITE LOCKed device, parity
error, or attempt to output to a -
read-only device.

The output record size specified
is greater than 1000 or an input
record size is O.

More than 1 output device was
specified or more than 1 input
device was specified.

2-115°

- PIP10

PIP10 is an OS/8 utility program used to provide file com-
patability with the DECsystem-10 computer. PIP10 is capable
of transferring files to and from DECsystem-10 formatted DEC-
tapes. PIP10 provides the facilities for transferring ASCII, Image
(PAL10 binary output), and sequenced ASCII (LINED output)
files. :
PIP10 uses an internal DECsystem-10 DECtape routine. This
routine optimizes file storage in the same way that the DECsystem-
10 Monitor does, thus resulting in the most efficient algorithm for
block storage. _

PIP10 has the following features:

® Auntomatically determines which of the specified DECtapes
1s a DECsystem-10 tape (384(10) words/blocks).

® Works interchangeably on TCO8 and TD8E DECtape con-
trollers. .

® Reads and writes to DECsystem-10 tapes in both forward
and reverse directions on TCO8 tapes, forward only on
TDSE.

e Keeps the DECsystem-10 DECtape directory in. core during
the file-copying operations of PIP10, thus eliminating the neces-
sity for rereading the directory. The directories are purged from
core when PIP10 reads another command line.

® Permits transfers between two OS/8 devices as well as trans-
fers between two DECsystem-10 tapes.

® Zeroes DECsystem-10 DECtape directories, deletes DEC-
system-10 files, and lists DECsystem-10 directories.

Note that PIP10 cannot be used while running the OS/8 BATCH
program.

* Calling and Using PIP10
To use PIP10, type:

+R PIF10

PIP10 respond's with an asterisk (*) and waits to receive a com-
mand line of I/0 files and options. The command line must have
one output specification and may have from zero to nine input
specifications. Multiple input files are merged onto the output file.

2-116

A DECsystem-10 file name may have a 0- to 3-character file ex-
tension; an OS/8§ file name may have a 0- to 2-character extension.
Remember that PIP10 automatically determines which DECtape
mounted is a DECsystem-10 tape. Thus no indication of that na-
ture is necessary.-
. Following completlon of a PIP10 operation, the PIP10 com- -
mand decoder again prints an asterisk at the left margin and waits
for another PIP10 I/O command line. To return to the Keyboard
Monitor, type CTRL/C.

NOTE
PIP10 uses its own command decoder, not
‘the standard OS/8; however, the command
decoders are functionally the same.

PIP10 Optlons -

The various options allowed on a PIP10 I/O command line are
detailed in the following table. The general format for PIP10 com-
mand lines is the same as that for the standard OS/8 Command
Decoder. |

Option | - Meaning

/B Transfer files in DECsystem-10 binary mode. The out-
put device must be a DECsystem-10 DECtape.

/D Delete the old copy of the output file before continuing
the transfer. If /D is not used, the file is copied before
the old copy is deleted.

/F List the short form of DECsystem-10 DECtape _direc-

~ tory. - '

/T Copy in Image mode (compatible with PAL10 bmary

' files) rather than ASCIL mode :

/L List the directory of the input device. This input device

must be a DECsystem-10 DECtape. If no output device
is specified, TTY is assumed to be the output device..

/P Preserve LINED sequence numbers in DECsystem-10 - |
format. Sequence numbers are normally deleted.

/L Zero the output device directory. The output must be
a DECsystem-10 DECtape. :

2-117

PIP10 Examples

The following examples assume that a DECsystem-10 DECtape
is mounted on DTA7. In an actual operation, any unit may be used
since PIP10 can access any of the tape drives.
Example 1:

*DTA7T3FILE. EXT<FILE.EX /Z

The command line in Example 1 zeroes the DECsystem-10
directory on DTA7 and transfers FILE.EX from DSK to the
DECsystem-10 DECtape on DTA7. If /Z is not specified, the
DECsystem-10 tape should always have a valid directory on it

Tanf, ¥
before transfers are attempted,

Example 2:

*DTAT:FILE. EXT<DTA1:P1,PTR: ,, DTA7:PARZ,TTY:

In Example 2, five input files are merged onto one DECsystem-
10 output file (FILE.EXT). The first input file is an OS/8 file
(P1) on DTAL1; the second and third files are read from the paper
tape reader; the fourth is a DECsystem-10 file named PARZ on
DTAT7; and the fifth is from the terminal. This example shows that
input files need not be all OS/8 or all DECsystem-10.

Example 3: .

*DTA1SFILE.BNL18)<DTAT: FILE.BIN/I

The command line in Example 3 copies the DECsystem-10 file
(FILE.BIN) in Image mode since the DECsystem-10 file is a
binary file. /I must be used to copy DECsystem-10 binaries. Note
the use of square brackets [] in the command; they have the same
meaning as in the OS/8 command decoder.

Example 4:

*DTA7: FILE. EXT</D

Example 4 indicates the deletion of a DECsystem-10 file
(FILE.EXT) from a device. '

2-118

- Example 5:

«DTAT: /L

‘ If DTA7 has a DECsystem-10 DECtape mounted, the command -
line in Example 5 will produce a directory listing of the device.

Error Messages

All errors cause PIP10 to abort the current command and print
another asterisk. The command can then be entered correctly.

" "Message
DEVICE FULL

ERROR DELETING FILE

FILE NOT FOUND
I/0 ERROR
NO SUCH DEVICE

NOT OSS FILE

NOT PDP-10 FILE

2-119

Meaning

DECsystem-10 ran out
of space on the output
file during a transfer.

The output file of a /D
command was not found,

or an error occurred
which deleted the file.

The requested file was
not found on the speci-
fied device.

I/O device error, e.g.,
parity, write lock, out -of
paper.

Device name used is not
legal in this OS/8 sys-
tem. ,

The output device speci-
fied with a /L or /F op-
tion was not an OS/8 de-
vice or file,

The output device speci-
fied with a /Z option was
not a DECsystem-10
tape, or the input device
specified with a /L or /F
option was not a DEC-
system-10 tape.

Message
OUTPUT FILE OPEN ERROR

PIP10 CANNOT BE CHAINED TO

'SYNTAX ERROR

2-120

. Meaning

The output file could not
be opened. Check output
directory to ensure that
enough space exists on
the device.

. Self-explanatory.

Invalid PIPIO command
line.

RESOURCES (RESORC) A

RESORC is an OS/8 program that is used to determine the
device handlers present on a given OS/8 system. Other informa-
tion about the handlers is available through the use of RESORC

options.

Calling and Using RESORC" .
To call RESORC from the system dev1ce type

R RESORC

in response to the dot printed by the Keyboard Monitor. RESORC
may also be called via the CCL command RES (see the CCL
section in Chapter 1). The Command Decoder prints an asterisk at
the left margin and waits to receive a line of I/O files and options.
RESORC accepts up to nine input files and performs output to a
single output file; options generally are placed at the end of a com-
mand string.

-The output spec1ﬁcat10n is the device, and optionally the file
name and extension, to which the RESORC listing is sent. TTY is
assumed if no output device is specified: If no file name is specified,
RE is assumed. If no file name extensmn is specified, .LS is as- -
sumed.

The input specification may be one of three types:

A. No input specification _
If no input specification is entered, the OS/8 system dev1ce '
is assumed.

B. A device name only (dev:)

If the input specification is a device name only, the device
must be file-structured and is presumed to contain a valid
0S/8 directory and Keyboard Monitor. The device handlers
built into the system on that device are the ones listed by
RESORC. These handlers are not available to the user
unless he bootstraps onto the specified device (see the
BOOT program in this chapter).

C. A device and a file name (dev:file.ex)

If this type of input specification is used, the file must be
what is known as a system-head file. (Such files are created
by the /Y option in PIP and are copies of the system por-
tions of devices.) If no file name extension is specified, the

2-121

extension .SY is assumed. RESORC prints the handlers in
the system that were saved on the specified file. System-head
files are 50 (decimal) blocks long.
RESORC Options
RESORC has three operating modes which are specified by
options in the command line. These modes are:

Option Mode

/E Extended mode—detailed handler information
/F Fast mode—1-line printout (default).
/L Limited mode—3-column printout

FAST MODE (/F OPTION) .

If the /F option is specified in a RESORC command line, or
if no options are specified, RESORC prints the permanent device
names for handlers which exist on the system. If RESORC cannot
determine the ASCII device name for one of the devices, it prints
the internal octal representation of the device name and encloses it
in parentheses. (This octal representation is included in the OS/8
Software Support Manual.) For example:

+R RESORC

*/F
SYS,DSK,DTA2,DTAB>DTA1,C4667), TTYLLPT

The first two devices are always SYS and DSK. When the fast
mode is used, the devices are separated by commas and listed in
order of their internal device numbers.

LIMITED MODE (/L OPTION)
If the /L option is used in a RESORC command line, the

handler information is printed in three columns. For example:

«R RESORC
* /L

128 FREE BLOCKS

NAME TYPE USER

SYS RKS8E
DSK RKS8E IN
DTAD® TCO8 @
TTY TTY

LPT LPTR LPT

0S/8 V3F
2-122

Preceding the table of device names, RESORC prints the num-
ber of free blocks on the device. This information is not given for
system-head files since it is not available.

The first column (NAME) lists the permanent names of devices
on the system. The second column (TYPE) lists the physical type
of the handler. Each type of device is assigned a unique number by
0OS/8. RESORC associates this number with a name as listed in
Table 2-24. Note that physically different devices which are
similar in function have the same intérnal type code. For example,
line printers LP08, LS8E, and L645 have an internal code of 04.

The third column (USER) lists the name given to the device with
the Monitor ASSIGN command. If RESORC cannot determine the
name from the internal octal, it prints the octal code enclosed in
parentheses.

Table 2-24 RESORC Device Types

Internal RESORC :
Type Code . Name Explanation

00 TTY Console terminal

01 PTR ' Paper tape reader

02 PTP Paper tape punch

03 CRSE Card reader

04 ~~ 'LPTR Line printer

05 RK RKS disk

06 - RF08 RFO08 disk (1 platter)
07 RFO08 : RFO8 disk (2 platter)
10 - RFO08 RFO8 disk (3 platter)
11 RFO08 RFO08 disk (4 platter)
12 DF32 DF32 disk (1 platter)
13 - DF32 DF32 disk (2 platter)
14 DF32 - DF32 disk (3 platter)
15 DF32 DF32 disk (4 platter)
16 TCO8 TC08 DECtape

17 LINC LINCtape

20 TMS8E . Magnetic tape
21 TDSE TDSE DECtape

22 - BAT Batch input handler
23 RKSE.- RKS8E disk

24 NULL NULL handler

27 TASE Cassette

30 VR12 PDP-12 scope

2-123

Codes 25-26 and 31-37 are reserved for future use by Digital.
Codes 40-57 are reserved for user handlers.

EXTENDED MODE (/E OPTION)

When the /E option is used in a command line, RESORC pro-
vides more detailed information about the handlers configured into
. the system. The /E option produces a table with the following

headings. -

Heading

Mearning

i
-+

NAME

TYPE
MODE

SIZ

BLK

KIND

) YN 1 Aaxrin yvsmnluneww Fam 4lan TansmATawe T -
ANTCTiar GCVICC NUNIOCT 107 tic nanducr. If a3 number

is missing, there is no internal number for this
handler. -
Permanent device name for the handler. If RESORC
cannot determine the name, it prints the internal.
coding.

Type of device as listed in Table 2-24.

One or more of the following three letters:

R The handler may be used for réading.
W The handler may be used for writing.
F The handler controls file-structured devices.

" The size of the device in decimal OS,/8 blocks. This

is only applicable for file-structured devices.

The block on the system device in which this handler
resides. If this number is followed by a +, this
indicates that the handler is two pages long. If this
entry is SYS, the handler is permanently resident in -
core location 07600.

This entry tries to differentiate the handler more
specifically than the TYPE column. Since several
devices of the same type have the same device code,
there may be several handlers for the same device. If
the device type has only one handler, this entry may
be blank. The KIND specification has no meaning for
user-written handlers, Table 2-25 details the kinds of
handlers that may be on the system.

2-124

Table 2-25 Kinds of Handlers

Kind Type Description How Identified
AS33 TTY 1-page handler by number of pages
KL8E TTY 2-page handler by number of pages
KS33 PTR ~ low-speed reader by IOT codes
PTS8E PITR high-speed reader by IOT codes
KS33 - PTP low-speed punch - by IOT codes
- PTS8E PTP high-speed punch by IOT codes
026 CR8E DEC-026 card codes by table codes
029 CRSE DEC-029 card codes by table codes
LPO8 LPTR old LPO8 handler location dependent
ILSSE LPTR old LS8E handler location dependent
LVSE LPTR LP08/LSSE/LVSE location dependent
handler
LVSE LPTR LPSV altered for location dependent
' - LVSE
L645 LPTR Anelex line printer location dependent
U Unit—the particular unit number of a multiple unit

device handler. For example, the RK8E disk can
have as many as four physical drives (0, 1, 2,:3) on
an OS/8 system. OS/8 considers the disk cartridge
in each drive as two logical units. The lower half is
the A unit and the upper half is the B unit. Thus
drive 2 consists of two logical units called A2 and
B2. -

Since the U column in the printout has space for only
one character, RESORC numbers the logical units
from 0 to 7. The following table shows the cor-
respondence between the U printout, the loglcal unit,
and the physical device.

Logical Physical
Unit -Device
A0 0
BO 0
Al 1
B1 1
A2 2
B2 2
. A3 3
B3 3

2-125

ENT
USER

Version number (letter) of handler. No entry means
the handler predates OS/8 Version 3. Version num-
bers are of the form A-Z. The 6-bit of the ASCII
representation of the handler version letter resides
in the handler’s entry point location. For example, a
handler with a version of A has a representation of
01. (See Appendix A for a list of the 6-bit octal
codes.)

The relative entry point of the handler.

Same as for /L option. Current user name for the
handler as assigned by the Monitor ASSIGN com-
mand. - :

In addition to the preceding, the /E option aiso provides the
following information. If a device was specified, as opposed to a
system-head file, RESORC prints: .

number of files in directory

number of blocks used

number of segments used

number of free blocks

number of empties

number of additional information words

RESORC also lists the following:

o number of free device slots
e number of free block slots |
¢ version number of Monitor if device is a system device

«R RESORC

*/E

164 FILES IN 1025 BLOCKS USING 6 SEGMENTS
2167 FREE BLOCKS (14 EMPTIES)

NAME TYPE
@1 SYS RKSE
@2 DSK .RKSE
@3 DTA@ TDSE
@4 DTA1 TDSE
@5 RKB® RKSE
@6 TTY . TTY

-

MODE SIZ BLK KIND U V ENT USER
RWF 3248 SYS 2 B @7
RWF 3248 SYS e B @7
RWF 737 16+ TDBA @ A 10
RWF 737 16+ TDSA 1 A 14
RWF 3248 SYS 1 B 21
RW C 176

17+ KLS8E

2-126

Y

87 PTP PTP W 20 PISBE A 00
18 PTR- PTR R 20 PTSE A 112
11 LPT LPTR W 21 LPSV B 83
FREE DEVICE SLOTS: @6, FREE BLOCK SLOTS: @4
0S/8 V3F : -
RESORC Error Messages .
The following messages may appear during a RESORC opera—
tion.
Table 2-26 RESORC Error Messages
Message Meaning
?BAD DIRECTORY Input device directory cannot be read.

% BAD MONITOR

%DEV IS NOT FILE
STRUCTURED
7INPUT ERROR

~ %NON SYSTEM DEVICE

%NOT A SYSTEM HEAD

90UTPUT DEVICE FULL

70UTPUT DEVICE IS
READ ONLY
0UTPUT ERROR

?TTY DOES NOT EXIST

The input device may be a system de-
vice but the Monitor cannot be ac-
cessed.

The input device specified is not a file-
structured device, e.g., PTR.

An input error occurred during a
RESORC operation. _

The input device specified in a RE-
SORC command line is not an OS/8
system device. '
The file name specified is not a system-
head file.

The output device specified does not
have enough room to copy the RE-
SORC file.

The output device specified is a read-
only device, e.g., PTR. '
An error occurred while attempting to
output during a RESORC operation.
An output device was not specified in
the RESORC command line and the
TTY handler does not exist on the
OS/8 system. See the BUILD section

“of this chapter for instructions on in-

serting TTY handlers.

2-127

SRCCOM

SRCCOM is an OS/8 utility program which compares two source
files line by line and prints all their differences. Usually, the two
files are different versions of a single program, in which case
SRCCOM prints all the editing changes which transpired between
the two versions, making it a useful debugging tool.

SRCCOM Assembly Instructions
To make SRCCOM.BN from SRCCOM.PA, type

.R PALS
*dev:SRCCOM (,dev:SRCCOM.LS) «<dev:SRCCOM

The listing file shown in parentheses is optional.
To make SRCCOM.SV from SRCCOM.BN; type

.R ABSLDR
*dev:SRCCOM$
.SA dev SRCCOM

To load and save the binary papertape (DEC-S8-OSYSA-<-PB19)

.R ABSLDR :
*PTR: $1 (Type and character in response to 1)
.SAVE dev SRCCOM

Loading SRCCOM
To use SRCCOM, type

«k SRCCOM _
* QUTPUT<INPUT1,INPUT2

INPUT1 and INPUT? are the source files to be compared and the
input devices. Both files must be specified and be non-empty. If an
input device is omitted, it is assumed to be DSK.

OUTPUT specifies the output file and device where the differences
will be listed. If an output file name is specified, the default output
device is DSK. If the output device is non-file structured, a file name
is unnecessary. If output is to a file-structured device, an output.
file name must be specified. If no output specification exists, TTY
is assumed. ,

The following run-time options are accepted by SRCCOM:

2-128

Table 2-27 Run-Time Options

Option Meaning
/C Do not count differing comment fields as a difference.
/S Do not compare tabs and spaces when considering lines
different.
/T Convert tabs to spaces on output.
/B ‘Count blank lines in the comparison. A blank line is con-

considered as a carriage return only. In particular space
~carriage return combination under / S/B is not treated
as a blank line.

/X ‘Like /C, but does not print comment fields on the out-
put file. :

Examples : -

.R SRCCOM
*DSK: DI FFIL<DTA1: ORI G, DTA2: COPY. |

Compare the source files ORIG on DTA1 and COPY on DTA2,
and store the differences on DSK as DIFFIL.

.R SRCCOM
*DI FFIL<FIRST» SECOND

Compare the source files FIRST and SECOND on DSK, and out-
put the differences to DIFFIL on DSK.

R SRCCOM
*LPT:<DTA1: FILE1, PTRs
4 .

Compare source files FILE 1 o.n DTA1 and one from the high-
speed paper tape reader, and output the differences to the line
printer :

SRCCOM Output

The first line of output pnnted by SRCCOM is “SRCCOM Vx,
where x is the current version number, then two header lines fol-
lowed by as many difference groups as necessary. The header lines
are printed as follows:

file 1) header line of file 1
file 2) header line of file 2

2-129

A difference group has the form:
1) /nnn line 1, file 1

1) line 2, file 1
1) line 3, file 1
1) line n, file 1
*’l:**

2) /nnn line 1, file 2
2) line 2, file 2
2) line m, file 2

where nnn is the number of the difference group and lines 1
through n-1 of file 1 and 1 through m-1 of file 2 did not agree.
SRCCOM compares areas of the two programs, and prints differ-
ences until it finds 3 lines which agree. The last lines printed (line
n of file 1 and line m of file 2) are the first lines that agreed. The
number of consecutive lines to check for agreement may be changed
to any number (k) with the option —k in the command line.

Example:
File 1 File 2 SRCCOM OUTPUT
filel) A
A A file2) A
B X 1) B
C C 1) C
D D Rk kok
E E 2) X
F G 2) C
G H Aookosk kR k ok
H J 1) F
I 1) G
J 1) H
1) I
1) J
kkokok
2) G
2) H
2) J

2-130

Occasionally a -decimal number appears following the close pa-
renthesis after the file number. This decimal number indicates the
source page in this file from which this line and all following lines
(until the next such number) come. '

If the two files are identical, SRCCOM prints the message:

NO DIFFERENCES

in the output file.

Error Messages
SRCCOM eérror messages are of the form:

Vs : . § ' .
where n is a single digit. The meaning of the various digits are

20 Insufficient core; this means that the differences be-
tween the files are too large to allow for effective com-
parison. Use of the /X option may alleviate this

problem. _
71 Input error on file #1 or less than 2 input files specified.
72 Input error on file #2.
73 - Output file too large for output device.
24 Output error. - |
75 Could not create outpuf file.

- 2-131

TECO
Introduction

0S/8 TECO is a powerful text editing and correcting program
that runs under the OS/8 operating system. OS/8 TECO may be
used to edit any form of ASCII text such as program listings, manu-
scripts, correspondence and the like. Since OS/8 TECO is a
- character-oriented editor rather than a line editor, text edited with
0S/8 TECO does not have line numbers associated with it, nor
is it necessary to replace an entire line of text in order to change
one character.

Because OS/8 TECO is very versatile, it is necessarily com-
plex. This chapter is, therefore, divided into two parts. The first
part contains basic information and introduces enough OS/8
TECO commands to allow the novice OS/8 TECO user to begin
creating and editing text files after only a few hours of instruction.
The introductory commands are sufficient for any editing applica-
tion; however, they are less convenient, in most cases, than the ad-
vanced commands presented later.

The second part introduces the full OS/8 TECO command set,
including a review of the introductory commands presented earlier.
This part also introduces the concept of OS/8 TECO as a pro-
gramming language and explains how basic editing commands may
be combined into editing “programs” which are sophisticated
enough to handle the most complicated editing tasks.

Specific examples of the use of OS/8 TECO commands have
been de-emphasized throughout this manual. This was done be-
cause all of the OS/8 TECO commands have a consistent, logical
format which will quickly become apparent to the novice user.
However, each section of the chapter is concluded with one or
more elaborate examples which employ most of the commands
introduced up to that point. Users who are learning the TECO
commands should experiment with each command as it is intro-
duced, then duplicate the examples on their computer. Hereafter,
0S/8 TECO will be referred to as simply TECO.

Introductory Commands

TECO considers text to be any string of ASCII codes. Text
is broken down into units of pages, lines and characters. A page
of text consists of all the ASCII codes between two form feed -

2-132

characters, including the second form feed. A line of text consists
of all the ASCII codes between two line feeds, including the second
line feed. A character is one ASCII code. Thus, every page of text
contains one form feed character, which is the last character on
the page. Every line of text contains one line feed, which is the
last character on the line. |

"~ TECO maintains -a text buffer in which text is stored. The buffer
usually contains one page of text consisting of up to 4000 charac-
ters, but the terminating form feed character never appears in the
buffer. TECO also maintains a buffer pointer. The pointer is sim-
ply a movable position indicator which is always located between
two characters in the buffer, before the first character in the buffer,
or after the last character. The pointer is never located oh a char-
acter.

Line feed and form feed characters are inserted automatically by
TECO. A line feed is automatically appended to every carriage
return entered into the buffer, and a form feed is appended to the
content of the buffer by certain output commands. Additional
line feed and form feed characters may be entered into the
buffer as text. If a form feed character is entered into the buffer,
it will cause a page break upon output. That is, all text preceding
the form feed will appear on one page, and the text following the
form feed will appear on the next page.

Finally, TECO also maintains an input-file and an output file,
both of which are selected by the user through use of file specifi-
catton commands. The input file is any device except the keyboard
from which text may be accepted. For example, if a block of text
is stored on paper tape, the paper tape reader would be specified as
an input device when the tape is edited.

The output file is any device except the user terminal on which

‘edited text may be written. If the paper tape file mentioned above
were to be edited and written onto DECtape, for example, the out-
put file would be a user-named DECtape file (with optional file ex-
tion) on a specified DECtape transport unit.

If TECO resides on the system device it may be called from the
keyboard by typing:

R TECO

(terminated with a carriage return) in response to the dot gene-

rated by the OS/8 monitor. TECO will respond by printing an as-
terisk at the left margin to indicate that it is ready to accept user .

2-133

commands. At this point, one or more commands may be typed
at the keyboard, and TECO will execute the commands upon re-
ceipt of two consecutive ALT MODE characters. The ALT MODE
is a non-printing character which may be labelled ESCAPE on
some keyboards. TECO echoes a dollar sign ($) whenever an ALT
MODE is received.

A TECO command consists of one or two characters which
cause a specific operation to be performed. Some TECO com-
mands may be preceded or followed by arguments. Arguments may
be either numeric or textual. A numeric argument is simply an in-
teger value which might be used to indicate such things as the

number of times a command should be executed. A text argument
1S a Stl‘ing of ASCIT phm‘smfprq which n—nnhi- be words of text, for

PE UL

example, or the OS/8 designation of a storage file.

If a command requires a numeric argument, the numeric argu-
ment always precedes the command. If a command requires a text
argument, the text argument always follows the command. All
text arguments are terminated by a special character (usually an
ALT MODE) which indicates to TECO that the next character
typed will be the first character of a new command.

If more than one command is typed in response to the asterisk
generated by TECO, the command string will be executed from
left to right until either all commands have been executed or a
command error is recognized. When an error is encountered, a
message is printed and the rest of the command string is ignored.
In any case, TECO prints another asterisk at the left margin as
soon as it finishes execution of a command string, so that addi-
tional commands may be entered.

The extensive text editing capability of TECO implies a large
and versatile command set. However, the novice TECO user will
find that little more than a dozen basic commands suffice for most
editing requirements. The following section introduces the basic
TECO commands. The full command set will be described later in
this chapter.

TECO will accept input text from any input device in the OS/8
system. If input is supplied from any device except the keyboard,
the input device must be specified by means of an ER command
terminated by an ALT MODE. If the input device is a file-struc-
tured device such as disk or DECtape, the file name and extension

2-134

(if any) should also be supplied. If a file name is specified but no
device is explicity defined, the OS/8 default device is assumed. The
ER command causes TECQ to search for the specified file and print
an error message if the file is not found. This command does not
cause any portion of the file to be read into the text buffer, how-
ever. The following examples illustrate use of the ER command.

Command ' Function

ERdev:filnam.ex$§ General form of the ER command where “dev:
filnam.ex” is the OS/8 designation of the input
file. The command is terminated by an ALT
MODE, which echoes as a dollar sign.

ERPTR:$ Prepare to read an input file from the reader.

ERPROG.PA$ Prepare to read input file PROG.PA from the
0OS/8 default device DSK.

ERDTA1:PROGS$ Prepare to read input file PROG from DTAI.

TECO will write output text onto any device in the OS/8 sys-
tem. If output is written onto any device except the user terminal,
the output device must be specified by means of an EW command
terminated by an ALT MODE. If the output device is a file-struc-
tured device, a file name and extension (if any) must also be sup-
plied. If a file name is specified but no device is explicitly defined,
the OS/8 default device is assumed. The following examples illus-
trate use of the EW command, which has the same format as the
ER command.

Command Function

EWdev:filnam.ex$§ General form of the EW command where “dev:
' filnam.ex” is the OS/8 designation of the output
file. The command is terminated by an ALT

MODE, which echoes as a dollar sign.

EWSYS:<TEXT.LS$ Prepare to write output file TEXT.LS on the
system device.

EWDSK:PROG$ Prepare to write output file PROG on the OS/8
default device DSK.

EWTEXT.AS$ ‘Prepare to write output file TEXT.AS on the
0OS/8 default device DSK.

It is not always necessary to specify an input file. If the user de-
sires to create a file without using any previously edited text as

2-135

input, he may insert the necessary text directly into the text buffer
from the keyboard and, at the end of each page, write the content
of the buffer onto an output file. Since all input is supplied from
the keyboard, no input file is necessary.

An output file is unnecessary if the user desires only to examine
an input file, without making permanent changes or corrections.
In this case, the content of the input file may be read into the text
buffer page by page and examined at the terminal. Since all output
is printed on the user terminal, no output file is needed.

TECO will only keep one input file and one output file open at a -
time. The current input file may be changed by simply using the
ER command to specify a new input file. Before an output file may
be changed, it is essential that the current output file be closed by
‘means of an EF command (or one of the other file closing com-
mands presented later). If this is not done, the content of the file
may be lost. The EF command is presented below, along with sev-
eral examples of file specification command strings.

EF :

Close the current output file. If the last EW command specified
a directory device file which already existed on the device (so that
TECO created a second file with the same file name and exten-
sion), the old version of the file is deleted at this time.

ERDTAL:INPUT. TX$SEWDTA2:OUTPUT.TXS$$

Open an input file “INPUT.TX” to be found on DECtape unit 1
and an output file “OUTPUT.TX” on DECtape unit 2. If the file
OUTPUT.TX does not already exist, it will be created. The double
ALT MODE ($$) terminates the command string and causes th
string to be executed. '

EFEWTEXT.AS$$

Close the current output file and open an output file “TEXT.AS”
on the OS/8 default device. Note that the ALT MODE which ter-
minates the EW command may be one of the two ALT MODE:s
which terminate the command string.

ERPTR:$SEFEWSYS:FILE$$,
Read the input file from the high-speed paper tape reader, then
close the current output file and open “FILE” on the system device
as an output file.

The following commands permit pages of text to be read into
the TECO text buffer from an input device or written from the buffer

2-136

onto an output device. Once a page of text has been written onto
the output file, it cannot be recalled into the text buffer unless the
output file is closed and then opened as an input file.

Command Function
Y Clear the text buffer, then read the next page of the input

file into the buffer.

P - Write the content of the text buffer onto the next page of
the output file, then clear the buffer and read the next page
of the input file into the buffer. _

nP Execute the P command n times, where n must be an in-
teger in. the range 0<<n<<4095. If n is not spec1ﬁed a value
of 1 is assumed.

The buffer pointer provides the only means of specifying the lo-
cation within a block of text at which insertions, deletions or cor-
rections are to be made. The following commands permit the buffer
pointer to be moved to a position between any two adjacent char-
acters in the buffer. TECO positions the pointer before the first
character in the buffer after every Y or P command.

Command . : Function
L Move the pointer forward to a position between the next

line feed and the first character on the next line. That is,
advance the pointer to the beginning of the next line.

nL Execute the L command n times, where n may be any
integer. A positive value of n moves the pointer to the
beginning of the nth line followmg the current pointer posi-
tion. A negative value moves the pointer backward n lines
and positions it at the beginning of the nth line preceding
the current position. If n is zero, the pointer is moved back
to the beginning of the line on which it is currently posi-

tioned.
C * Advance the pointer forward across one character.
nC Execute the C command n times, where n must be an in-

teger in the range —2048<n<2047. A positive value of n
moves the pointer forward across n characters (carriage
return/line feed counts two characters). A negative value
‘of n moves the pointer backward across n characters. If n
is zero, the pointer position is not changed.

These commands may be used to move the buffer pointer across
any number of lines or characters in either directions, however they

2-137

will not move the pointer across a page boundary. If a C com-
mand attempts to move the pointer backward beyond the begin-
ning of the buffer or forward past the end of the buffer, an error
message is printed and the command is ignored.

If an L command attempts to exceed the page boundaries in this
manner, the pointer is positioned at the boundary which would
have been exceeded. Thus, the command “-2000L” would position
the pointer before the first character in the buffer. The command
“2000L” would position the pointer after the last character in the
buffer. No error message is printed in either case.

The following commands permit portions of the text in the buffer
to be printed out for examination. These commands do not move
the buffer pointer. :

Command Function

T Type the content of the text buffer from the current posi-
tion of the pointer through and including the next line feed
character.

nT Execute the T command n times, where n must be an in-
teger in the range —2048<n<2047. A positive value of n
causes the n lines following the pointer to be typed. A neg-
ative value of n causes the n lines preceding the pointer to
be typed. If n is zero, the content of the buffer from the
beginning of the line on which the pointer is located up to
the pointer is typed. This facilitates locating the buffer
pointer.

HT Type the entire content of the text buffer.

The OT command is particularly useful for determining the po-
sition of the buffef pointer. This command should be used fre-
quently to determine that the pointer is actually located where the
user expects it to be.

The following commands permit the user to insert or delete text
from the buffer.

Command Function
Itext$ Where “text” is a string of ASCII characters terminated by

an ALT MODE, which echoes as a dollar sign. The spec-
ified text is inserted into the buffer at the current position
of the pointer, with the pointer positioned immediately after
the last character of the insertion. Insertion commands
should be limited to a maximum length of 10 to 15 lines.

2-138

Ed

Command . Function

K Delete the content of the text buffer from the current posi-
tion of the pointer through and including the next line feed
character.

nK Execute the K command n tlmes, where n may be any in- -

teger. A positive value of n causes the n lines following the
pointer t0 be deleted. A negative value of n causes the n
lines preceding the pointer to be deleted. If n is zero, the
content of the buffer from the beginning of the line on
which the pointer is located up to the pointer is deleted.

HK Delete the entire content of the text buffer.
Delete the character following the buffer pointer.

Execute the D command n times, where n may be any
integer. A positive value of n causes the n characters fol-
lowing the pointer to be deleted. A negative value of n
causes the n characters preceding the pointer to be deleted.
If n is zero, the command is ignored.

%,U

Like the L command, D and K commands may not execute
across page boundaries. If any D or K command attempts to delete
text up to and across the beginning or end of the buffer, text will
be deleted only up to the buffer boundary and the pointer will be
positioned at the boundary. No error message is printed.

The following commands may be used to search for a specified
string of characters which may occur somewhere in the input file.
They cause the buffer pointer to be positioned immediately after
the last character in the specified string, if it is found.

" Command . Function

Stext$ Where “text” is a string of from 1 to 31 ASCII characters
terminated with an ALT MODE, which echoes as a dollar
sign. This command searches the text buffer for the next -
occurrence of the specified character string following the
current pointer position. If the string is found, the pointer
is positioned after the last character in the string. If it is
not found, the pointer is positioned immediately before the
first character in the buffer and an error message is printed.

Ntext$ Performs the same function as the S command except that
the search is continued across page boundaries, if neces-
sary, until the character string is found or the end of the
input file is reached. If the end of the input file is reached,
an error message is printed and it is necessary to close the
output file and reopen it as an input file before any further
editing commands may be executed.

2-139

- Both the S command and the N command begin searching for
the specified character string at the current position of the pointer.
Therefore, neither command will locate any occurrence of the char-
acter string which precedes the current pointer position, nor will it’
* locate any character string which continues across a page bound-
ary. ’ . ' \

Both commands execute the search by attempting to match the
- command argument character for character with some portion of
the buffer contents. If an N command reaches the end of the buffer
without finding a match for its text argument, it writes the content
of the buffer onto the output file, clears the buffer, reads the next
page of the input file into the buffer, and continues the search.

At this point, all of the basic TECO commands have been
introduced. Recall that TECO indicates it is ready to accept user
commands by printing an asterisk (*). Once TECO has printed an
- asterisk, one or more commands may be typed at the terminal. Er-
rors may be corrected by typing the RUBOUT key to delete char-
acters. Each depression of the RUBOUT key deletes one cliarac-
ter, beginning with the last character typed, and then prints the
deleted character at the terminal. An entire command string may
be deleted in this manner, if necessary. Once the correct com-
mand(s) have been entered, typing a double ALT MODE ($$)
causes TECO to execute the command(s) in the order they were
entered, and print another asterisk so that additional commands
may be typed. P _

If TECO encounters an erroneous command, it prints an error
message and ignores the erroneous command as well as all com-
mands which follow it. All error messages are of the form:

-

where n is a number which references the list of error codes that
appears at the end of this chapter. Every error message is followed .
by an asterisk at the left margin, indicating that TECO is ready to
accept additional commands. If the first command entered after a
TECO-generated error message is a single question mark character
(7), TECO will print the erroneous command string up to and
including the character which caused the error message. This facil-
itates locating errors in long command strings and determining how
much of a command string was executed before the error was en-
countered.

2-140

-

At the conclusion of an editing job, users nray type control-C to
exit TECO and return to the keyboard. Control-C- may be typed
at any time during an editing run; it will cause an immediate exit
to the monitor as soon as it is recognized by TECO. Control-C
should not be typed while any output file is open.

The following example illustrates how TECO may be used to
create an OS/8 FORTRAN program for immediate execution. The
same procedure may be employed to create and execute programs
-under PALS, SABR, and onso. < ’

T=4:
«k TECO
*EWATEST. FT§S
*[WRITEC15 1) .
1 FORMATC(C* COMPILER TEST")
RJ=3 : - User calls TECO, spec-
RK=7 - ifies output file, and cre-
=¢5 ates FORTRAN source
RII=RK/RJ*(2-RK*RK/(3.xRJ)) program_ .
R=10@. 6 .
S=3+5
RI=S : . He then closes the file
RJ=2 and exits to the mon-
RN=7 _ itor.
Z=R+S*K!l /RIJ*xRN/3 User calls FORTRAN
: WRITEC1,2)RI1,Z
1 FORMATCF18e 2, F12. 5) and executes test pro-
~ END | gram. :
SPEFS$S FORTRAN lists two er-
*x1C rors, so user calls
«R F4 TECO and edits correc-
*ATEST/A ' B tions into new output
us 2 file.
ML P@17
«R TECO '
*ERATEST. FTSEWBTEST. FTSY §% User finally calls FOR-
*SF10. SPLDI 2$0LTS$ TRAN and successfully
2 FORMAT(F 18+ 2, F12.5) executes the text pro-
*PEF$$ gram.
%1 C
.R F4
*BTEST.FT -
COMPILER TEST
-8.04 31.21667

The remainder of this chapter is devoted to a detailed descrip-
tion of the full TECO command set. It is assumed that the reader
is familiar with the elementary TECO commands presented earlier.

2-141

TECO Character Set

TECO accepts the full ASCII character set, which is presented
in Appendix A. Most terminals will not transmit and receive all of
the ASCII codes; however, characters that are not available on the
user’s terminal may be inserted into the TECO text buffer by means
of special commands which will be presented later in this section.

TECO command strings may be entered by using upper case
characters, as indicated throughout this chapter, or by using the
corresponding lower case characters. A file which contains upper
and lower case text may be edited in the same manner as a file
which contains only upper case text. If such file is edited from a ter-
minal that does not accept lower case characters, all characters will
be printed at the terminal as their upper case equivalents. |

TECO considers certain ASCII characters to be special charac-
ters. Most of the special characters are immediate action com-
mands. Typing these characters in a command string causes TECO
to perform a specified function immediately, without waiting for
the double ALT MODE which terminates the command string. Im-
mediate action commands may be entered at any point in a com-
mand string—even in the middle of a command or text argument.
For this reason, the special characters should not be used in text
arguments, except where specifically indicated throughout this
chapter.

Table 2-28 lists the special characters, their functions and the re-
strictions associated with each character.

Table 2-28 Restrictions on Special Characters

Character ‘ Restriction

ALT MODE The ALT MODE character is a command termin-
ator. It may not be used in the argument of any
command except where noted specifically through-
out this chapter. TECO echoes a dollar sign when
an ALT MODE is received. ALT MODE may be
labelled ESCAPE on some terminals.

RUBOUT Typing a RUBOUT character causes the last char-
acter typed to be deleted. Typing consecutive RUB-
OUTs deletes one character for each RUBOUT
typed, beginning with the last character typed.
TECO echoes the deleted character whenever a
RUBOUT is typed.

2-142

-

Table 2-28 Restrictions on Special Characters (Cont.)

Character : Restriction

CTRL/U CTRL/U causes the current line to be deleted, and
eches a tU and a carriage return/line feed. '

CTRL/C CTRL/C causes an immediate exit from-TECO to
the OS/8 Keyboard Monitor. If an output file is
open when the CTRL/C command is executed, the
contents of the file will be lost. '

CTRL/P CTRL/P causes an immediate branch to the start- =

ing address of TECO.

CTRL/G Typing two.consecutive CIRL/G characters causes
all commands which have been entered but not
executed to be erased. (If the terminal has a bell, it
will ring.) This command is used to erase an.entire

. command string. '

CTRL/S If CONTROL/S is typed as the first character of a
new command string, the entire previous command
string, even if it was in error, is saved as a text
string in Q-Register Z. The previous contents, if
any, of Q-Register Z are destroyed.

The CTRL/Z character is used as an end-of-file terminator.
Inserting this character into a file may cause the file to be termin- -
ated prematurely the next time it is read as an input file.

TECO also attaches special significance to the carriage return,
line feed, space and null characters. A line feed is appended to
every carriage return entered into the text buffer. Thus, it is neces-
sary to type a carriage return and then a RUBOUT in order to en-
ter a carriage return character which is not followed by a line feed.

Carriage return, line feed and space characters are ignored be-
tween commands in a command string; they may be inserted for
clarity or convenience whenever necessary. The null character
(CTRL-shift-P) is ignored by all TECO input commands. '

Control characters which are not special characters (i.e. imme-

~diate action commands) may be included in the text argument of any

TECO command. When used in this manner, the control character
must be produced by striking the CONTROL key and a character
key simultaneously. TECO will echo an uparrow followed by the

2-143

character which was typed whenever most control characters are
entered, however, some control characters do not echo, while
others, such as CTRL/L (form feed) or CTRL/G (bell) echo as
the function they perform.

Many control characters are also TECO commands. When a
control character is entered as a command, it may be produced by
striking the CONTROL key and the character key simultanteously
or else by typing an uparrow followed by the desired character.
This is advantageous because all control characters echo normally
when typed in the uparrow/character format.

File Specification Commands

An input file must be specified whenever TECO is requested to
accept text from any source except the keyboard. An output file
* must be specified whenever a permanent change is made to the input
file. Input and output files are selected by means of file specifica-
tion commands, which always include the OS/8 designation of the
input or output device. If the device is a directory device, the file
specification command also includes a file name and extension. If a
file extension is not explicitly defined, the null extension is 1ssumed.
If a file name is specified but no device is explicitly defined, the OS/8
default device is assumed.

Almost every editing job begins with at least one file specification
command. Additional file specification commands may be executed
during an editing job whenever required; however, TECO will only
keep one input file and one output file active at a time, and the
same file may not be used for both input and output. When an out-
put file is opened on a directory device, it is essential that the file
be closed by a TECO file closing command before any other output
file is opened. If this is not done, the content of the file will be lost.

Note that a bulk storage (directory device) input file must be a
file that presently exists on the system. A bulk storage nutput file
may be a file which presently exists, in which case TECO will cre-
ate a second file with same name and extension, then delete the
original file when the file is closed. It may also be a nonexistent file,
in which case TECO will create the specified file. Table 2-29 lists
the full file specification command set. '

2-144

Table 2-29 File Specification Commands

Command

Function

ERdev:filnam.ex$

EWdev:filnam.ex$

EBdev:filnam.ex$

EF
EC

EG

"EX

CTRL/G

Opens a file for input where “dev:filnam.ex” is

the OS/8 file designation and “$” signifies an
ALT MODE.

Opens a file for output where “dev:filnam.ex” is
the OS/8 file designation and “$” signifies an
ALT MODE.

The EB command may be used for directory de-
vice files only. It opens file “dev:filnam.ex” for
input and file dev:filnam.BK for output then,
upon receiving any file closing command, switches
the file names before closing the files. Thus,
dev:filnam.ex is always the current, updated file -
and “dev:filnam.BK” is the previous version of
the file, which may be fetained as a backup file.

Closes the current output file.

Moves the remainder of the current input file to
the current output file, then closes the output file.

Performs the same function as the EC com-

-mand, but then .transfers control .to the OS/8

CCL Processor to re-execute the most recently
typed CCL-command of the group: PAL, COM-
PILE, EXECUTE, and LOAD. This allows the
user to go from TECO to a compiler and then
to execution of a program without returning to
the OS/8 Keyboard Monitor.

Performs the same function as the EC command,
but then returns control to the OS/8 monitor.

Typing CTRL/G causes an exXit to the OS/8
monitor as soon as all previous commands have

been executed. It is equivalent to the uparrow
form of CTRL/C. '

Many editing jobs are most conveniently accomplished by using
‘the EB command to open the designated input file and backup file,
then terminating the job with either an EC command, which re-
turns control to TECO, or an EX command, which returns control
to the OS/8 monitor. Note that once a directory device output file
has been opened with an EW or EB command, it must be closed

2-145

with an EF, EC, EG or EX command or else the content of the
file will be lost.

Page Manipulation Commands

The following commands permit whole pages of text to be read
into the text buffer from an input file or written from the buffer
onto an output file.

Table 2-30 Page Manipulation Commands

Command - Function

A Appends the next page of the input file to the current con-
tent of the text buffer, thus combining the two pages of
text on a single page with no intervening form feed character.

Y Clears the text buffer and then reads the next page of the
input file into the buffer. '

PW Writes the content of the buffer onto the output file and
appends a form feed character. The buffer is not cleared
and the pointer position remains unchanged.

nPW Executes the PW command n times, where n must be an
integer in the range 0<<n<<4095.

m,nPW Writes the content of the buffer from the m+Ith character
through and including the nth character onto the output
file. M and n must be integers in the range 0<n<4095 and
m should be less than n. A form feed is not appended to
this output, nor is the buffer cleared. The pointer position
remains unchanged.

- HPW Equivalent to the PW command except that a form feed is
not appended to the output.

P Writes the content of the buffer onto the output file, ap-
: pending a form feed, then clears the buffer and reads the
next page of the input file into the buffer.

nP Executes the P command n times, where n must be an
integer in the range 0<n<<4095. ’

m,nP Equivalent to m,nPW.

HP Equivalent to HPW.

All of the input commands listed in Table 2-30 assume that the
input file is organized into pages of less than 3800 characters each.
If any page of the input file contains more than 3800 characters,
the input commands will continue reading characters into the buffer

2-146

until either the first line feed following the 3800th character is
read or the 4000th character is read, whichever comes first. Special
techniques for handling files with pages in excess of 4000 charac-

ters in length will be developed later in this section. '

Buffer Pointer Manipulation Commands

Table 2-31 summarizes the complete buffer pointer manipulation
command set. These commands may be used to move the pointer
to a position between any two characters in the buffer, but they will
not move the pointer across either buffer boundary. If any R or C
command attempts to move the pointed backward past the begin-
ning of the buffer or forward past the end of the buffer, the com- -
mand is ignored and an error message is printed. If any L command
attempts to exceed the buffer boundaries in this manner, the pointer
is positioned at the boundary which would have been exceeded. No
error message is printed. "

Table 2-31 Buffer Pointer Manipulation Commands

Command o Function

J Moves the pointer to a position immediately preceding the
- first character in the buffer.

nJ Moves the pointer to a position immediately following the
nth character in the buffer. N must be an integer in the
range 0<n<4095.

Z) Moves the pointer to a position 1mmed1ately followmg the
last character in the buffer.’

C Advances the pointer forward across one character.

nC _ Executes the C command n times, where n must be an
integer in the range —2048<n<2047. If n is positive, the
pointer is moved forward across n characters. If n is neg-
ative, the pointer is moved backward across n characters.
If n is zero, the pointer position is not changed.

Equivalent to —IC.

Moves the pointer backward across one character.

s L

Executes the R command n times, where n is an integer in
the range —2048<n<<2047. If n is _positive, the pointer is
moved backward across n characters. If n is negatlve the

- pointer is moved forward across n characters. If n is zero,
the pointer position is not changed. - ~

2-147

Table 2-31 Buffer Pointer Manipulation Commands (Cont.)

Command

Function

—R
L

nlL

—-L

Equivalent to —IR.

Advances the pointer forward across the next line feed and
positions it at the beginning of the next line.

Executes the L command n times, where n is an integer in
the range —2048<n<2047. A positive value of n advances
the pointer to the beginning of the-nth line following its
current position. A negative value of n moves the pointer
backwards to the beginning of the nth line preceding its
present position. If n is zero, the pointer is-moved to the
beginning of the line on which it is currently positioned.

Equivalent to —IL.

Text Type-Out Commands

Table 2-32 summarizes the commands which may be used to type
out part or all of the content of the buffer for examination. These
commands do not move the buffer pointer. '

Table 2-32 Text Type-Out Commands

Command

Function

T

nT

Types out the content of the buffer from the current posi-
tion of the buffer pointer through and including the next
line feed character.

Executes the T command n times, where n is an integer
in the range —2048<n<2047. If n is positive, the n lines
following the current position of the pointer are typed. If
n is negative, the n lines preceding the pointer are typed.
If n is zero, the content of the buffer from the beginning
of the line on which the pointer is located up to the pointer

is typed.

. Equivalent to —IT,

Types out the content of the buffer from the m-Ith char-
acter through and including the nth character in the buffer.
M and n must be integers in the range 0<n<4095, and m
should be less than n.

Types out the n characters immediately following the buf-
fer pointer. N should be greater than zero.

Types the n characters immediately preceding the buffer
pointer. N should be greater than zero (i.e. —n should be
less than zero).

Types out the entire content of the buffer.

2-148

.

Users may stop the execution of any T command by typing
CTRL/O at the keyboard. Typing CTRL /O terminates execution
of the current T command, causes all subsequent T commands to be -
ignored while the rest of the current command string is executed.
When used in this manner, the CTRL/O must be entered while
TECO is actually in the process of typing out text at the terminal.

Deletion Commands :

Table 2-33 summarizes the text deletion commands, which per-
mit deletion of single characters, groups of adjacent characters,
single lines or groups of adjacent lines. -

-

" Table 2-33 - Text Deletion Commands

Command ‘ Function

D Delete the first character following the current position of
the buffer pointer. |

nD Execute the D command n times, where n is an integer in
~ the range —2048<n<2047. If n is positive, the n char-

acters following the current pointer position are deleted. If

n is negative, the n characters preceding the current pointer

position are deleted. If n is zero, the command is ignored.

-D Equivalent to —1D.

K Deletes the content of the buffer from the current position
of the buffer pointer through and including the next line
feed character.

nK Executes the K command n times, where n is an integer in
' the range —-2048<n<2047. If n is positive, the n lines
following the current pointer position are deleted. If n is
negative, the n lines preceding the current pointer positiorr
are deleted. If n is zero, the content of the buffer from the
beginning of the line on which the pointer is located up to

the pointer is deleted.

—-K Equivalent to —IK.

m,nK Deletes the content of the buffer from the m-+1th character
through and including the nth character. M and n must be
integers in the range 0<n<4095, and m should be less
than n. B

HK Deletes the entire contents of the buffer.

2-149

Insertion Commands

Table 2-34 lists the full text insertion command set. All text in-
sertion commands cause the string of characters specified in the

command to be inserted into the text buffer at the current position
of the buffer pointer. Following execution of an insertion command,
the pointer will be positioned immediately after the last character
of the insertion.

The length of an insertion command is limited primarily by the
amount of core available for command string storage. During nor-
mal editing jobs, it is most convenient to limit insertions to about
10 or 15 lines each. If a very long insertion command begins to ex-
ceed the TECO command storage capacity, TECO will ring the
terminal bell once when ten characters of storage remain and once
alter each additional character that is eniered. When this occurs,
the command string should be terminated immediately. Attempting
to enter more than 10 additional characters into the current com-
mand string causes a fatal error.

With the exception of the nI$ command, insertion command ar-
guments may contain any ASCII characters that are not special
characters. The nI$ command will insert any character into the
buffer. including the special characters.

Table 2-34 Text Insertion Commands

Command Function

Itext$ Where “text” is a string of ASCII characters terminated
by an ALT MODE, which echoes as a dollar sign. The
specified text string is entered into the buffer at the current
position of the pointer, with the pointer positioned 1mme-
diately after the last character of the insertion.

nl$ Where n is any ASCII code. This form of the I command
: inserts the single character whose ASCII code is n into the
buffer at the current position of the buffer pointer. It may
be used to insert characters that are not available on the
user’s terminal or special characters such as RUBOUT
which may not be inserted with the standard I command.

<I>text§ Where <I> is a tabulation, produced by pressing the
CONTROL key and the I key simultaneously. The TAB
character echoes as from one to eight spaces on most
terminals. This command is equivalent to the I command
except that the tabulation is also inserted into the buffer
immediately preceding the specified text string.

2-150

Table 2-34 Text Insertion Commands (Cont.)

Command o Function

@1/text/ Equivalent to the I command except that the text to be
inserted may. contain ALT MODE characters as long as it
does not contain two consecutive ALT MODEs. A delimi-
ting character (shown as a slash here) must precede and
follow the text to be inserted. This delimiter may be any
character which does not appear in the insertion except for
the special characters.

Search Commands _

In many cases, the easiest way to position the buffer pointer is
by means of a character string search. The search commands cause
TECO to scan through text until a specified string of characters,
from 1 to 31 characters in length, is found and then position the
. ‘buffer pointer, at the end of the string. A character string search al-
ways begins at the current position of the pointer and proceeds in
the forward direction.

Table 2-35 Sear_ch Commands

“Command - _ Function

Stext$ Where “text” is a strmg of 1 to 31 characters ter-
minated by an ALT MODE. This command
searches the text buffer for the next occurrence of
the specified character string following the current
position of the buffer pointer. If it is not found, the
pointer is pos1t10ned immedately before the first
character in the buffer and an error message is
printed.

FStext1$text2$ The FS command is used to search for a character
‘ string within the current editing buffer (function of
the S command) and replace it with another string.
If the string to be replaced is not found after the
current position of the buffer pointer and before the
end of the buffer, the search fails and no replace-
ment is made. Textl is the string to be deleted and
text2 is the string to be imserted in its place. If
text2 is omitted, textl is deleted without any string
replacing it. However, even when text2 is omitted,

its terminating ALT MODE must be present.

2-151

Table 2-35 Search Commands (Cont.)

Command Function

FNtext1$text2§ The FN command is used to search for a character
string in a page of the input file which may not yet
have been read into the buffer (function of the N
command) and replace it with another string. If
the search fails no replacement occurs. Textl is the
string to be deleted and text2 is the string to be in-
serted in its place. If text2 is omitted, textl is de-
leted without any string replacing it. However, even
when text2 is omitted, its terminating ALT MODE
must be present.

<text$ The backarrow command is identical to the N com-
- mand except that the search is continued across
page boundaries by executing effective Y commands
instead of P or HPY commands, so that no output
is generated.

1Rtext1$text2$ The 11R command is identical to the FS command,
and is included only for compatibility with older
-versions of OS/8 TECO.

If a search command is entered without a text argument, TECO
will execute the search command as though it had been entered with
the same character string argument as the last search command ex-
ecuted. For example, suppose the command “STHE END$” results
in an error message, indicating that character string “THE END”
was not found on the current page. Entering the command “N$”
causes TECO to execute an N search for the same character string.
Although the text argument may be omitted, the command termina-
tor (ALT MODE, in this case) must always be entered.

Any of the TECO search_commands may be preceded by the
number n, in which case TECO will search for the nth occurrence
of the specified text string. "

Any of the search commands listed above may be preceded by a
colon (:). The colon is a search command modifier which sup-
presses error message generation and causes the next sequential
command to be executed with an argument of zero, if the search
fails. If the search succeeds, the next sequential command is ex-
ecuted with an argument of -1. If the next sequential command be-
longs to the class of commands which require a positive argument
(0<n<4095), the -1 is interpreted as a positive 4095. If the next

2-152

sequential command does not require an argument, it is excuted as
it stands. The following examples illustrate use of the colon modi-
fier. '

~

COMMANDS: :Stext$

' :nStext$
:Ntext$
:nNtext$
: «text$
1n<text$
:FStext1$text2$
:nFStext] $text2$
:FNtext1$text2$
:nFNtext]$text2$

FUNCTION: In each case, execute the search command. If the
search is successful, execute the next sequential
command with an argument of —1 (or 4095, if it
is a command which must have a positive argu-
ment). If the search fails, execute the next com-
mand with an argument of zero. If the next com-
mand does not require a numeric argument, execute
it as it stands.

The @ character is another search command modifier. Inserting
an (@ character between the numeric argument-of any search com-
mand and the command itself causes TECO to accept the first char-
acter following the command as a delimiting character which will
will also be the command terminator. This character may be any
character which does not appear in the search command argument,
except for the special characters. When the @ command modifier
is used, search command arguments may contain ALT MODE
characters, as long as they do not contain two consecutive ALT
MODE:s. The following examples illustrate use of the @ command
modifier.

COMMANDS: @S/ text/

n@S/text/
@N/text/
n@N/text/

@ </ text/

. n@ </text/

(@FS/textl/text2/
n@FS/ text1/ text2/

.(@FN/textl/text2/
n@FN/textl/text2/

2-153

FUNCTION: In each case, execute the search command with
text string “text” as an argument. This argument
must be preceded and followed by a delimiting
character which does not appear in the argument
(a slash is shown here). The search command argu-
ment may contain ALT MODE characters, as long
as it does not contain two consecutive ALT
MODEs.

Match Control Characters

TECO executes a search command by attempting to match the
search command argument character-for-character with some por-
tion of the input file.

There are four special control characters that may be used in
search command arguments. These characters alter the usual
matching process that occurs when a search is executed. TECO
considers match control characters to be single characters (they
echo as two characters) and counts them as one of the maximum
31 characters in the search command argument. Table 2-36 lists the -

match control characters and their functions.

Table 2-36 Match Control Characters

Character Function

CTRL/X A CTRL/X character indicates that this position in the
character string is unimportant.” TECO accepts every
other character as a match for control-X.

CTRL/S A CTRIL/S character indicates that any separator char-
acter is acceptable in this position. TECO accepts any
character that is not a letter (upper or lower case A to
Z) or a digit (0 to 9) as a match for CTRL/S.

CTRL/N The CTRL/N character and the character following it
are treated as a single character in the_search command
argument, but counted as 2 of the maximum 31 char-
acters. TECO accepts any character as a match for the

- control-N/ character combination EXCEPT the character
which follows the CTRL/N. The combination CTRL/N/
CTRL/S is legal; TECO accepts any character which is
not a separator as a match for 1N1S.

CTRL/Q A CTRL/Q character in a search command argument
indicates that the character following the CTRL/Q is to
be interpreted literally rather than as a command. This
character may be used to search for 1X, 1N, and 1S char-
acters. It does not count as one of the maximum 31
characters in the search command argument.

2-154

As with all other control characters entered into text arguments,
match control characters must be typed by holding the CONTROL
key depressed while striking the character key. The uparrow con-
struction may not be used.

Command Loops

The user may cause a command string to be executed any num-
ber of times by placing the command string within angle brackets
and preceding the brackets with a numeric argument which des-
ignates the number of iterations. Iterated command strings are
called command loops. Loops may be nested in such a way that
one command loop contains another command loop which, in
turn, contains other command loops, and so on. Command loops
should not be nested to more than about 15 levels.

The general form of a command loop is:

n<command string>

where “command string” is the sequence of commands to be
iterated and n is the number of interations. N must be a positive
integar. If n is not supplied, a value of 4096 is assumed.

If a search command which is not preceded by a colon modifier
is entered into a command loop and the search fails, the command
loop is exited immediately and the command following the right
angle brackets of the loop is the next command to be executed.
No error message is printed.

Q-Registers

TECO prov1des 36 data storage registers, called. Q-registers,
which may be used to store single integers and/or ASCII character
strings. Each Q-register is divided into two storage areas. In the
number storage area, each Q-register can store one integer in the
range -2048<n<2047. In the text storage area, each Q-register
can store an ASCII character string of up to 2000 characters which
may be either text or a TECO command string. Each Q-register
has a single character name which is one of the upper case letters A
to Z or one of the digits O to 9. In this manual, a Q-register name
is indicated by a lower case “q”, which stands for any one of the
36 Q-registers.

Table 2-37 lists the commands which permlt characters to be
loaded into the Q-registers.

2-155

Table 2-37 Q-Register Loading Commands

Command Function

6,92 2

tUgstring$ Where 1U is an uparrow-U character, “q” is the name
of a user-specified Q-register, “string” is a string
of ASCII characters, and “$” signifies an ALT
" MODE. This command inserts character string
“string” into the text storage area of Q-register “q”.
(Do not confuse uparrow-U with CTRL/U; CTRL/U
is an editing command.)’

@1U/ string/ Equivalent to the U command except that the char-
acter string to be inserted into Q-register q may con-
tain ALT MODE characters as long as it does not
contain two consecutive ALT MODE characters.
The insertion must be deilimited before and after by
any character (a slash is shown here) which does
not appear in the insertion.

nUq Load n into the number storage area of Q-reg-
ister q, where n must be an integer in the range
-2049<n<2048.

n%q$ Add n to the contents of the number storage area of

Q-register q, where n should be an integer that will
not cause overflow. If n is not present, it is assumed
to be equal to 2. :

n%$ Equivalent to n%q$ except that the resulting value
contained in Q-register q is used as a numeric argu-
ment for the next command. If the next command
does not require a numeric argument, this value is
discarded.

Xq Copy the contents of the buffer from the current
position of the pointer through and including the
next line feed character into the text storage area
of Q-register q.

nXq Execute the Xq command n times, where n is an
integer in the range -2048<n<2047. If n is positive,
the n lines following the current pointer position are
copied into the text storage area of Q-register q. If
is negative, the n lines preceding the pointer are
copied. If n is zero, the contents of the buffer from
the beginning of the line on which the pointer is

~ located up to the pointer is copied.

m,nXq " Copy the contents of the buffer from the m-+lth
character through and including the nth character
into the text storage area of Q-register q. M and n
must be positive, and m should be less than n.

2-156

Table 2-38 lists the commands which permlt characters to be
retrieved from the Q-registers.

Table 2-38. Q-Register Execution COmmands

Command - Function

Gq Copy the contents of the text storage area of Q-register
' q into the buffer at the current position of the buffer
pointer, leaving the pointer positioned after the last char-

acter copied.

Qq -Use the integer stored in the number storage area of
.Q-register q as the argument of the next command. The
characters “Qq” may be considered as equivalent to “the
value contained in the number storage area of Q-register
q”, where “q” is any Q-register name.

Mg Execute the contents of the text storage area of Q-reg15ter
q as a command string.

nMgq Execute the contents of the text storage area of Q-register
as a command strmg and use n as a numeric argument
for the first command in this string. '

Branching Commands :

TECO commands may be combmed in sophisticated command
strings which are capable of solving even the most complex editing
problems. In fact, TECO might be considered a programming
language which accepts an input file as data and processes this
input to produce an output file. As with most programming lan-
guages, TECO provides an unconditional branch command and a
set of conditional execution commands.

To provide for branching within a command string, there must
be some means of naming locations inside the string. TECO per-
mits location tags which have the form: -

!tag'!

to be placed between any two commands in a command string. The
name “tag” will be associated with this location when the com-
mand string is executed. Tags may contain any number of ASCII
characters and any character except for special characters and
exclamation points. Since tags are ighored by TECO except when
a branch command references the tagged location, they may also
be used as comments within complicated command strings.

2-157

The unconditional branch command is the O command which
has the form:

Otag$

where “tag” is a named location elsewhere within the command
string and “$” signifies an ALT MODE. When an O command is
executed, the next command to be executed will be the command
following the tag referenced by the O command, and command exe-
cution continues normally from this point. -

If an O command is stored in a Q-register as part of a command
string which is to be executed by an M command, the tag refer-
enced by the O command must also reside in the same Q-register.

An important restriction on the O command prevents any O
command which is inside a command loop from branching to a
tagged location preceding the command loop. However, it is always
possible to branch out of a command loop to a location which
follows the command loop.

Conditional Execution Commands
All conditional execution commands are of the form:

n“Gcommand string’

where “n” is a numeric argument on which the decision is based,
“G” may be any of the conditional executional commands listed in
Table 2-39, and “command string” is the command string which
will be executed if the condition is satisfied. If the condition onn is
not satisfied, the command string will not be executed. Note that
the numeric argument is separated from the conditional execution
command by a double quote () and the command string is
terminated with an apostrophe ().

Conditional execution commands may be nested in the same
manner as iteration commands. That is, the command string which
is to be executed if the condition on n is met may contain con-
ditional execution commands, which may, in turn, contain further
conditional execution commands.

Table 2-39 lists .the conditional execution commands. Each
conditional execution command must be followed by a command
string (not shown in Table 2-39) which will be executed only if
the condition is satisfied. This command string must be terminated
by an apostrophe. If the condition is not satisfied, the first com-
mand following the apostrophe will be the next command executed.

2-158

Table 2-39 Conditional Execution Command

Command ‘ Function

n-m”A Execute the following command string (terminated by an
apostrophe) if n is greater than or equal to m. Otherwise
skip the following command string. N and m should be

integers in the range 0<n<4095.

n-m”B Execute the following command string (terminated by an
' apostrophe) if n is less than m. Otherwise sk1p the fol-
lowing command string. N and m should be integers in

the range 0<n<4095.

n’G Execute the followmg command strmg (terminated by an
apostrophe) if n is greater than zero. Otherwise skip the
~ following command string. N must be an integer in the

- range -2048<n<2047.

n”L Execute the following command string (terminated by an
apostrophe) if n is less than zero. Otherwise skip the fol-
lowing command string.

n”"E Execute the foliowing command string (terminated by an
apostrophe) if n is equal to zero. Otherwise skip the fol-
lowing command string.

n”C Execute the following command string (terminated by an
apostrophe) if n is the decimal ASCII code of any char-
acter which is one of the upper or lower case letters A to
Z or one of the digits 0 to 9. Otherw1se skip the following
command string.

113 ”

In general, integers “n” and “m” will be variables (e.g. the con-
tent of a Q-register) whose value.s are computed during execution
of the command string. :

There is one further conditional execution command which is
not related to the commands listed in Table 2-39. The n; command,
where n is any integer, may be inserted between any two commands
in an iterated command loop. It has the general form:

m<string1n;string2>string3

where “m” is the iteration count, “stringl”, “string2”, and “string3”
are command strings and “n;” is the conditional exit command.
When the n; command is executed, it will cause TECO to exit the
command loop so that “string3” will be executed next if n is in
the range 0<n<2047. If n falls outside this range, the n; command

2-159 -

is ignored anmd “string2’*is executed-next. The semicolon may be
preceded by an argument such as.Qq (the value. of the numeric
part of Q-register q), or-the argument may be omitted if the semi-
colon command is preceded by a command.that generates an
argument, such as any colon-modified search command:

Note that all unmodified search commands entered within com-
mand loops are executed as though they were preceded by-a colon
and followed by a semicolon. If the search-command is preceded
by a colon modifier, however, it will be executed as it stands.

The conditional execution commands will accept user-supplied -
numeric arguments (n and m Table 2-39) of the same form as-
most other TECO commands. This is generally a trivial case, how-
ever, because the user will know in advance whether the condition
is satisfied, and need not use the conditional execution command.
The following section introduces run-time numeric quantities‘com-’
puted by TECO which may also be used as numeric arguments.

Numeric Arguments

Almost all TECO commands may be preceded by a numeric
argument which generally indicates the number of iterations; or
how many times the command should be executed. Some numeric
arguments must be positive, while others may be negative or zero.
In any case, every numeric argument is stored as a single, 12-bit
word. ,

This leads to an important restriction on the maximum size of
any numeric argument, Commands which require positive argu-
~ ments must have an argument in the range 0<n<4095, since 4095
is the largest.number which may be stored in one 12-bit word.
Commands which may have positive or negative arguments require
an argument in the range -2048<n<2047, because -2048 is the
smallest number which may be stored in 12 bits using 2’s comple-
ment notation, while 2047 is the largest number which may be
stored in this manner. .

TECO maintains several internal counters which record con-
ditions within the text buffer. Each of the counters has a one-
character name which is equivalent to the current contents of the
- counter. These characters may be entered as numeric arguments to
TECO commands. When the command is executed, the current
value of the designated counter is substituted for the character and
used in the numeric argument of the command.

b 2-160

Some of the characters which stand for specific values associated
with the text buffer have been introduced earlier in this section.
For example, the dot character (.), which references a counter that
always contains the number of characters between the beginning
of the buffer and the current pointer position, may be used in the
argument of a T command. The command “., .+5T” causes the
5 characters following the buffer pointer to be typed out. When
this command is executed, the number of characters preceding the
buffer pointer is substituted (twice) for the character “dot.” The
addition is then carried out, and the command is executed as
though it were of the form “m,nT”. :

Table 2-40 lists all of the characters which have special
numeric values. Any of these characters may be used as numeric
arguments in place of the values they represent.

Table 2-40 Characters Associated with Numeric Quantities

Character Function

B Always equivalent to zero. Thus, B represents the position
at the beginning of the buffer, preceding the first character
in the buffer.

z Equivalent to the number of characters currently con-
tained in the buffer. Thus, Z represents the position at the
end of the buffer, following the last character in the buffer.

Equivalent to the number of characters between the be-
ginning of the buffer and the current position of the
pointer, thus represents the current position of the pointer.

H Equivalent to the numeric argument pair, “B,Z”, or “from
the beginning of the buffer up to the end of the buffer.”
Thus, H represents the whole buffer.

17 CTRL/Z (or uparrow/Z) is equivalent to the number of

’ characters presently stored in the entire Q-register storage
area, including storage requirements for the command string
" containing the 1Z character. Maximum capacity of the
Q-register storage area is 2000 characters on an 8K sys-
tem, or 2944 characters on a 12K system.

- nA Where n is a positive integer. Equivalent to the ASCII code
for the n+1th character following the current position of
the pointer.

2-161

Table 2-40 Characters Associated with Numeric Quantities (Cont.)

Character

Function

1E

tF

MX

1T

%

Mq

CTRL/E (or uparrow/E) is equivalent to 4095 (-1) if
the buffer currently contains a full page of text (which was
terminated by a form feed in the input file) or O if the
buffer contains only part of a page of text (which filled
the buffer to capacity before the terminating form feed
was read). The 1E flag is tested by N, EC and EX com-
mands to determine whether a form feed should be ap-
pended to the content of the buffer on output.

CTRL/F (or uparrow/F) is equiValent .to the current
value of the console switch register.

The combination of CTRL-shift-N (or a doubie uparrow)
followed by any character is equivalent to the value of the
ASCII code for the character. The “X” in-this example
may be any character except CTRL/C and CTRL/P.

A backslash (shift-L) character which is not preceded by
a numeric argument is equivalent to the value of the digit
string (if any) that begins with the character immediately
following the buffer pointer and is terminated by the next
character that is not a digit. The first character may be a
digit or one of the characters 4+ or —. As each backslash
is evaluated, TECO moves the buffer pointer to a position
immediately following the digit string. If there is no digit
string following the pointer, the backslash is equivalent
to zero and the pointer position remains unchanged.

CTRL/T (or uparrow/T) is equivalent to the ASCII code
for the next character typed at the terminal. CTRL/T
(or uparrow/T) may be entered in the numeric argument
of any command. When TECO executes a command string,
every 1T character encountered causes it to pause and
accept one character typed at the terminal. The ASCII
code for this character is then Substituted for the 1T.

CTRL/V (or uparrow/V) is equivalent to the version num-
ber of the version of TECO which is currently being run.
This manual describes TECO version 3.

CTRL/H (or uparrow/H) is equivalent to zero.

The Mq command (execute the content of the text storage
area of Q-register “q” as a command string) may return
a numeric value if the last command in the string returns
a numeric value and is not followed by an ALT MODE.

2-162

The numeric argument of a TECO command may consist of a
single integer, any of the characters listed in Table 2-40, or an
arithmetic. combination of integers and the characters listed in
Table 2-40. If an arithmetic expression is supplied as a numeric
argument, TECO will evaluate the expression. All arithmetic ex-
pressions are evaluated from left to right. Parentheses may be used
to override the normal order of evaluating an expression. If par-
entheses are used, all operations within the parentheses are per-
formed, from left to right, before performing operations outside
-the parentheses. Parentheses may be nested, in which case the
innermost expression contained by parentheses will be evaluated
first. Table 2-41 lists all of the arithmetic operators that may be
used in arithmetic expressions. All arithmetic is two’s complement
‘arithmetic modulo 4096.

Table 2-41 Arithmetic Operators

Operator Example o Function
4 +2=2 Ignored if used before the first term in an
' expression.
+ 5+6=11 ~ Addition, if _used‘between terms.
- —2=4094 Negation, if used before the first term in an
expression.
— 8—2=6 . Subtraction, if used between terms.
* 8*2=16 Multiplication. Used between terms.
!/ 8/3=2 Integer divide and drop the remainder. Used
between terms. :
& 12&10=8 Bitwise logical AND of the binary repre-
- sentation of the two terms. Used between
terms. :
12#10=14 Bitwise logical OR of the binary representa-

tion of two terms. Used between terms.

Table 2-42 lists three .commands which may be used to facilitate
entering arithmetic expressions into TECO command strings.

2-163

Table 2-42 Radix Control Commands

Command Function

n= Where n is an arithmetic expression which may contain
the operators listed in Table 2-12B. Upon execution,
~ this command causes the value of the expression to be

typed out at the terminal.

CTRL/O The CTRL/O command causes all subsequent numeric
input to be accepted as octal numbers and all subse-
quent numeric output to be transmitted in octal. This
command must not be typed while TECO is executing
a T command. The octal radix will continue to be used
until the next CTRL/D command is executed or a
command error is encountered. All error messages are
prmted as decimal numbers, and the decimal radix re-
mains set after any error message is printed.

CTRL/D The CTRL/D command causes all subsequent numeric
input to be accepted as decimal numbers and all subse-
quent numeric output to be transmitted in decimal.
This is the initial setting.

o\ Where n is any arithmetic expression. The backslash
command (preceded by an expression) inserts the value
of n into the text buffer at the current position of the
pointer, leaving the pointer positioned after the last
digit of the insertion. The octal value of n will be in-
serted if the octal radix is set.

Some TECO commands generate numeric arguments which they
pass on to subsequent commands. An example is any colon-modi-
fied search command, which causes the next sequential command
to be executed with an argument of -1 or 0, depending upon the
outcome of the search. Commands of this sort are very useful, but
occasionally it may be undesirable to have arguments passed in
this manner. A single ALTMODE character may be inserted be-
tween any two commands in a command string, as long as it is not
placed adjacent to another ALTMODE character. This ALT-
MODE has no effect on the individual commands, however a
numeric argument will never be passed across the extraneous ALT-
MODE.

Programming Aids
The characters carriage return, line feed, vertical tab and space
are ignored in command strings, except. when they appear as pan

2-164

of a text argument. These characters may be inserted between any
two TECO commands to lend clarity to a long command string.
The carriage return/line feed combination is particularly useful
for typing command strings which are too long to fit on a singl
line. ' -
One of the most powerful features of TECO is its ability to store
very long command strings so that a given sequence of commands
may be executed whenever needed. Long command strings may be
thought of as edited programs and, like any other type of pro-
gram, they should be documented by means of comments.
- Comments may be inserted between any two commands by
using a tag construction of the form: '

ITHIS IS A COMMENT!

Comments may contain any number of characters and any char-
acters. except the special characters. It is often convenient to in-
clude carriage return and line feed characters within the com-
ments so that the command string looks like:

TECO commands! ~ This comment describes line 1 .

ITECO commands! This comment describes line 2
!more commands! : '
1$8! end of command string!

The CTRL/A command may be used to print out a statement
at any point during the execution of a command string. The
CTRL/A command has the general form:

rAtexttA

where the first tA is the actual command, which may be entered by
striking the control key and the A key simultaneously or by typing
an uparrow followed by an A character. The second CTRL/A
character is the command terminator, which must be entered by
" typing the control key and the A key simultaneously. The message
which appears between the CTRL/A characters may contain any
characters except the special characters and the tA character.
Upon execution, this command causes TECO to print the speci-
fied message at the terminal.

The tAmessagetA command is particularly useful when it pre-
cedes a command whose numeric' argument contains 1T or 1F

2-165

characters. The message may contain instructions notifying the
computer operator what sort of input is required. "

A question mark character entered between any two commands
in a command string causes TECO to print all subsequent com-
mands at the terminal as they are executed. Commands will be
printed as they are executed until another question mark character
is encountered. The second question mark character may be in
the same command string as the first question mark, or it may
appear in a later command string. It may not be first character
typed after a TECO-generated error message, however.

If an error is typed while entering a command string, the error
may be corrected at any time before the double ALT MODE
which terminates the command string is typed. Characters may be
deleted individually by striking the RUBOUT key. Each depression
of the RUBOUT key deletes one character, beginning with the last
character typed, and causes the deleted character to be printed at
the terminal. If an entire command string is deleted in this manner,
TECO responds by printing a new asterisk at the left margin.

Typing two successive CTRL/G characters causes the current
command string to be erased completely. The double CTRL/G
command should not be confused with the single G command.
The double CTRL/G must be produced by holding the control
key depressed while striking the G key twice (if the terminal has
a bell, it will ring). The uparrow form of CTRL/G may not be
used for the double CTRL/G command.

Error Messages

When TECO encounters an illegal command or a command
that cannot be executed, a numeric error message is printed at
the terminal. Error messages are of the form: '
n _
where “n” is a 1- or 2-digit decimal number that references an '
error message from the list contained at the end of this section.
“ When an error message is generated, the command to which it re-
fers is not executed, the rest of the.current command string is
ignored, and TECO prints an asterisk at the left margin to indicate
that it is ready to accept further commands.

The 1S character can be very useful. For instance, if a long
insertion is typed without the “I” in front of it and an error re-
sults, 1S can be. used to save the insertion, and the GZ command

2-166

-

can be used to put it into the text buffer (including the trailing ALT
MODEs). :

In some cases it may be difficult to determine which command
in a long command string resulted in an error message. Typing a
question mark immediately after the TECO-generated error mes-
sage causes TECO to print current command string up to and
including the erroneous character. When used in this manner, the
question mark must be the first character typed after the error
message is printed. It is not necessary to follow the question mark
with an ALT MODE.

In general, TECO command strings should be limited to a maxi-
mum of 2000 characters. Command strings exceeding 2000 char-
acters in length should be split into smaller strings. Long command
strings are impractical because the probability of a command error
is increased and because a string which contains more than 2000
characters is too long to be stored in a Q-register.

TECO 'reserves a limited amount of core for command string
storage. If a very long command string (or a long insertion com-
mand) uses all but the last 10. command string storage locations,
TECO prints one CTRL/G character as soon as only 10 storage
locations remain and another CTRL/G after every additional
character that is entered. (CTRL/G “prints” as a bell ring if the
terminal has a bell.) Should this occur, the current command string
must be terrrinated. Attempting to enter more than 10 additional
characters results in a fatal error.

Manipulating Large Pages

TECO is designed to operate most efficiently when edited files
that contain no more than 3800 characters per page. If any page
of an input file contains more than 3800 characters, the various
- TECO input commands will terminate reading that page into core
when the first line feed following the 3800th character is read or
when the 4000th character is read, whichever occurs first. Thus, it
is never possible for a page which contains more than 4000 char-
acters to reside entirely within the text buffer. _ A

Most of the- TECO output commands append a form feed to the
content of the buffer whenever a page of text is written onto the
output file. If an input file contains pages which are more than
4000 characters long, these output commands will cause form feed
characters to be inserted into the file at locations where they may

2-167

not be desired. To prevent this, the user must understand exactly

how the output commands operate. These commands are descrlbed
briefly in Table 2-43.

Table 2-43 Form Feed Processing Output Commands

Output Command Form Feeding Processing

P, nP, PW and nPW Always append a form feed character to the
text contained in the buffer, regardless of
whether this text actually constitutes a com-
plete page of the file. That is, a form feed
is appended on output even though one may

~ not have been present upon input.

HP, HPW, m,nP and Never appends a form feed character to the
m, nPW text contained in the buffer.

N, EC and EX If the text contained in the buffer was fol-
lowed by a form feed character in the input
file, a form feed will be appended to this
text upon output. If this text was not fol-
lowed by a form feed character (i.e. if input
was terminated because the buffer had
reached the prescribed capacity), no form
feed will be appended.

If it becomes necessary to edit text that consists of large pages
without introducing extraneous form feed characters into the out-
put, this may be accomplished by avoiding all output commands
except the N, EC and EX commands. For example, if use of a P
command would introduce an extraneous form feed, use an N
command, instead, to search for a character string contained in
the next page of the input file.

Techniques and Examples

TECO may be used in three ways. The most elementary appli-
cation involves using TECO to create and edit ASCII files on-line.
The user enters short command strings, often consisting of a single
command, and proceeds from task to task until the file is com-
pletely edited.

Since every edited job is simply a sequence of TECO com-
mands, an entire job may be accomplished with one long command
string consisting of all the short command strings placed end to
end with the intervening double ALT MODE characters removed.
This leads to the concept of a TECO editing program, which is

2-168

simply along.command string that performs a certairr editing task. -
Editing ‘programs may be ‘written {using TECO) and stored-in- the' ..
same manner as any other ASCII fite. Whenever the program is -

needed, it may be read into the buffer astext, stored in a Q-register,

and executed by an Mq command (where “q” is the Q-register -
name).

This is fine for. clear-cut editing a551gnments such as converting
from one format to another or editing-certain characters out of a
file, but many .editing jobs are so complex that-a given editing
program will only solve a small class of.problems. The solution,.
in this case, is to write very specialized “editing subroutines.”
TECO subroutines might. perform such elementary functions as
replacing every occurrence of two or more consecutive spaces with
a tabulation character, for example, or ensuring that words are
not hyphenated across a page boundary. When an editing problem
arises, the right combination of subroutines may be loaded into
- various Q-registers, augmented with. additional commands if -
necessary, and.called by a “mainline” command string. .

Editing subroutines are essentially macros; that is, sequences of
commands which perform commonly required editing functions.
Thus, the third and most powerful application of TECO is the
creation and use of a macro library. As each editing job is under-
taken, the user may look for sequences of operations which might
be required in future editing asignments. All of the TECO com-
mands required to perform such an operation may be loaded into
a Q-register and executed by means of an Mq or nMq command.
When the job is finished, the content of any Q-register which con-
tains a ‘useful macro may be written onto an output file (via the
buffer) and saved in the macro library. The nMq command, which
was designed to facilitate use” of macros, permits one run-time
numeric argument to be passed to the macro.

The following examples are intended to illustrate some of the
techniques discussed earlier. It would not be practical to include
~ examples of the use of every TECO command, since most of the
commands admit to many diverse applications. Instead, users are
encouraged to experiment with the individual commands.

Example 1: Splitting, Merging, and Rearranging Files

Assume that the user has a file named PGM.PA on the system
device and this file contains data in the following form:

2-169

AB FORM CD FORM EF FORM GH FORM IJ FORM KL
FORM MN FORM OP where each of the letters A, B, C, etc.,
represents 20 lines of text and FORM represents a form feed char-
acter. The user intends to rearrange the file so that it appears in
the following format:

AOB FORM D FORM MN FORM EF FORM ICJ FORM KL
FORM P FORM GH

The following sequence of commands will achieve this rearrange-

ment. (Search command arguments are not listed explicitly.)

.R TECO Call TECO.

*EBPGM.PASY$$ Specify input file and get first page.

*NC$$ Search for a character string in C to write A
and B on the output file.

*J20X1$$ Save all of C in Q-register 1.

*20K$$ Delete C from the buffer. :

*NGS$$ Search for a character string in G to write D,
E and F on the output file.

*HX2$$ Save G and H in Q-register 2.

*Y$$ Delete GH from the buffer and read IJ.

*20L$$ Move pointer to the beginning of J.

*G1%$$ Insert C, which was stored in Q-register 1.

*NM$$ Search for a character string in M to write ICJ
and KL on the output file.

*HX1$$ Save MN in Q-register 1 (the previous content
is overwritten).

*Y$$ Delete MN and read OP.

*J20X3$3 Save all of O in Q-register 3.

*20K$$ Delete O from the buffer.

*P$$ Write P onto the output file, leaving the buffer
cleared (the input file is exhausted).

*G23$ Bring GH into the buffer from Q-register 2.

*HPEF$$ Write GH on the output file and close it.

*EBPGM.PA$Y$$ Open the partially revised file.

*20L$$ Move the pointer to the beginning of B.

*G3$$ Insert all of O from Q-register 3.

*ND$$ Search for a character string in D to write
AOB on the output file.

*PWHKS$$ Write D on the output file and clear buffer.

$G1$$ Bring all of MN from Q-register 1 into the
buffer.

*EX$$ Write MN onto the output file, then close the

file and exit to the OS/8 monitor.

At this point, the file has been rearranged in the desired format.
Of course, this rearrangement could have been accomplished in

2-170

fewer steps if the commands listed above had been combined into
longer command strings. Note that the asterisks shown at the left
margin in this example are generated by TECO, and not typed by
the user. - '

Assume, now, that the same input file mentioned earlier, con-
taining data in the form: |
AB FORM CD FORM EF FORM FORM OP
is to be split into two separate files, with the first file containing
AB FORM CD and the second file containing KL. FORM M, while
the rest of the data is to be discarded. The following commands
could be used to achieve this rearrangement:

.R TECO Call TECO.

*ERFILESEWFILE.1$$ Open ‘the input file and the first output
file.
*Y$$ - Read AB into the buffer.
*P$$. - Write AB FORM onto the output file and
read CD into the buffer. .
*HPEF$$ 3 Write CD onto the output file (without.
- appending a form feed), and close the
first output file.
- *<KSS Search for a character string in K. After

this command has been executed, the
buffer will contain KL. No output i is gen-
erated by the search.

*EWFILE.2$P$$ Open the second output file and write
KL onto.it. Read MN into the buffer.
_*20L0,.P$$ Move the pointer to the end of M, then
write M onto the output file.
© *EF1C$$ ' Close the second output file and exit to

the OS/8 monitor.

As a final example of file manipulation techniques, assume that
_the user has two files. One file is MATH.BK, which contains in-
formation in the form:

AB FORM CD FORM EF FORM GH FORM 1IJ FORM KL

and the other is MATH.FT, which contains:

MN FORM OP FORM QR

If both of these files are stored on DECtape unit 1, the following
sequence of commands may be used to merge the two files into a-
single file, MATH.NW, which contains all of MATH.FT followed
by the latter half of file MATH.BK in the following format:
MN FORM OP FORM QR FORM GH FORM 1J FORM KL

2-171

*R TECO Call TECO.

*ERDTA1:MATH. FT$$ Open the first input file.

*EWMATH.NWS$$ Open the output file on the OS/8 default
device.

*Y$$ Read MN into the text buffer.

*NR$$ Search for a character string in R to write
MN and OP onto the output file.

*PWSS$ Write QR onto the output ﬁle, appending

. *ERDTA1:MATH.BK$$
*Y$$

*<G$$

a form feed.

Open the second input file.

Read AB into the buffer. QR is over-
written.

Search for a character string in G to de-

lete AB, CD and EF, leaving GH in the
buffer.

Search for a character string in K to
write GH and 1J on the output file, leav-
ing KL in the buffer.

Write KL onto the output file (without
appending a form feed) and close the
file, then exit to the OS/8 monitor.

*NK$$

*HPEF1G$$

Example 2: Alphabetizing by Binary Search

Assume that TECO is running and the buffer contains many
short lines of text, each beginning with an alphabetic character at
the left margin (i.e. immediately following a line feed). The lines
‘might consist of names in a roster, for example, or entries in an
index. Figure 2-3 shows a command string which will rearrange the
lines into rough alphabetical order. This command string groups
all lines which begin with the character “A” at the beginning of the
page, followed by all lines beginning with “B,” and so on.

Figure 2-4 is a flowchart showing the sequence of operations
performed by this command string. The algorithm could be ex-
tended to place the entries in strict alphabetical order by having it
loop back to perform the same binary sorting operation on suc-
cessive characters in each line.

Example 3: An Elementary TECO Macro
Figure 2-5 shows a TECO macro which right justifies the content
of the text buffer on a 60-space line. This macro assumes that the
buffer contains paragraphs of text in manuscript form, and that
every line which is not the last line of a paragraph contains be-
tween 40 and 60 characters.)
When the macro is run, it counts the number of spaces and the

2-172

number of characters in each line. It then adds spaces between
words until the line contains a total of 60 characters. Lines which
contain fewer than 40 characters are assumed to be’paragraph
terminators. These lines are not justified. Figure 2-6 shows how the
macro may be stored, loaded and executed using DECtape unit 1
as the storage device. In this example, DECtape file “TEXT.AS”
is the file to be justified. '

TECO FIGURE 1

ISTART! J BAUA! ’
FICONT! L GAUB!

1QA-QB"G XA K -L GA 1UZ*!
1 QBUA!

1L Z-."G -L OCONTS'!

1QZ''G QPUZ OSTARTS'!
18%

Figure 2-3 Command String for Example 2

2-173

FIND FIRST LINE AND
PUT ASCII CODE FOR
INITIAL CHARACTER IN
Q-REGISTER A

A

FIND NEXT LINE AND
PUT ASCII CODE FOR

INITIAL CHARACTER IN
Q-REGISTER B
YES SWITCH THE LINES |
NO
MOVE CONTENT OF SET A FLAG TO
Q-REGISTER A INTO INDICATE THAT A
Q-REGISTER B SWITCH WAS MADE
DONE

ALL LINES
?

[crear switcH FLAG

C STOP)

Figure 2-4 Flowchart for Example 2

2-174

J 117 2UN @uS!

1Z-."G!

1<@NA-32"E 1758%°!
'ONA-13"E OJUSTIFYS"'!
11AN$> !

V1IJUSTIFY ! GN-40"G!
160-6N-QS"G ©S<S $SI $S*N %!
1L OSZNS OS%ZS$ OJUSTIFYS'!
16P-ON"G 60-ON<S $I $StN $> ' !
L 018°$%! '

Figure 2-5 TECO Macro for Example 3

«k TECO

*ERDTA1:MACRO.TES Y HXI HK$3
*ERDTAL1: TEXT. AS% Y M1%%

. ,

Figure 2-6 Loading and Executing a TECO Macro

Example 4: Managing a Macro Library _

A TECO macro library is most conveniently stored with TECO
on the OS/8 system device. Macros are usually short enough to
require a small amount of storage space, however it is impractical
to store each macro in a separate named file, because a large macro
library stored in this manner would make the device directly un-
manageably large and might even exhaust the available directory
entries. _

Figure 2-7 illustrates a macro that packs the user’s TECO macro
library (or any other set of short ASCII files) into a single file
requiring only one directory entry. This macro could be stored on
the system device in a file named PACK.TE (the extension indicates
a TECO command string file). The user must also create a sep-
rate file containing the name of each file to be packed. This file must
be formatted as follows: |

2-175

filel:ex
file2.ex
file3.ex

filen.ex

where each file specification after the first is preceded and followed
by a carriage return/line feed combination. Assume that such a.
file is created and stored as INDEX.AS on the .system device. If.
macro PACK.TE is also on the system device, the following com-
mands will pack all files listed in INDEX.AS into file MACLIB.PK

on f}ﬁn axrcform
11 WL oy divill

.
oY o - M
du vViCe.

Y 18<A> HXP HK QuUl @u2
<GP @1J S

$; Ul 2R 0X4 HK

IERDSK: $ G4 8Il+%. HX3

M3 HK INE G4 INS @US

'A! AZ'N PW HK @US5 pAS®
%Z2%> Q2"E OB%' EF

!B! HK €2\ I FILES PACKED
$ HT HK

Figure 2-7 File Packing Macro

-k TECO

*ERSY St PACK. TESY HXP HKS$$

* ERSY S: INDEX. ASSEWSY S:MACLI B« PK SMPS$
FILES PACKED

Figure 2-8 Loading and Running the File Packing Macro

U2 <Y -Z3 9A-92'E ‘
$2S\$'"L .-13"L 1s.-1X4
2,.K Q2"E OAS$' EF

1AY X2% TEWDSK:S G4
@l«%. 0,.X3 M3 B5.K"'"*
PW> Q2"E OBS' EF

B! @2\ I FILES UNPACKED
$ HT HK

Figure 2-9 Unpacking Macro
2-176

+R TECO
" %ERSY St UNPACK.TESY HXU HK$%
*ERINCEX. ASSMPS$$

N FILES UNPACKED

b 3

Figure 2-10 Loading and Running the Unpacking Macro

The packing macro prints a message, as shown, where “n” is
the number of files that were packed. The files to be packed will be
taken from the system device. Files PACK.TE, INDEX.AS and
" MACLIB.PK may reside on any file-structured device if the file
designations in the above command summary are changed accord-
ingly. .

Once the packing macro has packed all' the files into
MACLIB.PK, the individual files may be deleted. Alternatively,
macros could be saved in individual files on, say, DTA1 and the
packing macro could be used to pack the files into one system
device file simply by replacing the imbedded “ERDSK:” command
in the macro body with “ERDTAL:”. If the library index is also
saved on the system device, an unpacking macro may be used to
create an unpacked copy of the macro library whenever required,
and the original library tape may be saved as a backup.

- Figure 2-9 illustrates a macro. that unpacks the output file pro-
duced by the packing macro. This macro accepts a packed ASCII
file (such as MACLIB.PK), then unpacks the file and restores each
entry as a discrete file with the appropriate specification.

Assume that a user desires to access a macro or other ASCII
file that was packed into file MACLIB.PK, as shown in the pre-
vious example. If file UNPACK.TE contains the unpacking macro,
the following commands will unpack the entries and restore them -
as individual, named files. |

The unpacking macro prints a message, as shown, where “n” is
the number of files that were unpacked. Once the files are un-
packed, they will be directed to the system disk. Alternately, the
unpacked files could be directed to, say, DECtape unit 5 by modify-
ing the “EWDSK:” command in the macro body to read
“EWDTAS:”. ' '

Using TECO to Retrieve Lost Files

Inevitably, through user error, hardware error, or o'perating
' system error, valuable files may be deleted or directories destroyed.

2-177

A two-word patch to TECO creates a program known as SUPER
TECO which may be a considerable aid in these situations. The
patch is:

«GET SYS TECO
+« CCT

2034/7420 Té10
211777450 74190
tC

« SAVE SYS STECO

To use STECO, mount the device on which you want to retrieve
the file, then type: :

<R STECO

*ERDEV: $%

*<STRINGS S

where “string” is part of the first page of the desired file (for in-
stance, the title line). STECO will search the entire device for the
first occurrence of the specified strings. The device may contain
many old copies of the desired file. The user should examine the
text following each occurrence of the string; if it is an earlier ver-
sion, or a listing file, the user should continue searching until the
correct occurrence is found. Once the correct file is found, type:

*ERDEV: SEWDEV2: FILESS
*N<STRINGSNENDSTRINGSPWEF$S

where n is the number of times you had to search for the specified
string on your investigation pass, and “endstring” is a string located
at the end of the file. This operation retrieves your file and copies
it onto another device. There may be meaningless characters pre-
ceding the first good line of your file, if so, delete them.

Incompatabilities Between OS/8 TECO and DECsystem-10 TECO
0S/8 TECO is a proper subset of DECsystem-10 TECO with
the following exceptions:

1. The tU and tR commands do not exist on DECsystem—lO

TECO.
2. The 1S command as described on page 2-154 is implemented
differently on DECsystem-10 TECO (refer to the DECsys-

tem-10 Users Handbook).
2-178

0S/8 TECO assumes a semicolon after failing search com- .
mands in interation brackets, DECsystem-10 TECO does
not. A ' ’

The EC, 1D, 10, and tW command do not exist in DEC-
system-10 TECO.

DECsystem-10 TECO ignores the number n in the nA

command and is equivalent to the OS/8 TECO OA com-

mand. :

The “A and “B compares are not needed by DECsystem-10
TECO because “G and “L are adequate to compa.re char-
acter pointers. :
The 1Z and 1V numeric values are not 1mp1emented by
DECsystem—lO TECO. '

Table 2-44 TECO Command Summary

Command - Function

ERdev:filnam.ex$ Input file selection.
EWdev:filnam.ex$ = Output file selection.
EBdev:filnam.ex$ - I/0 file selection with backup protection.

Y
A

Clear buffer and read one page of input file.
Read one page of input file and append to current
buffer content.

- BUFFER POINTER POSITIONS

B

oz
m,n

H

Before first.character. o

Current pointer position (number of characters
to left of pointer).

After last character (number of characters in
buffer. -

From m+1* character through and including n**
character.

Entire buffer; equ1valent to B,Z.

ARITHMETIC OPERATORS

—n"
m-+n
m—n
m*n
m/n
mé&n
m#n

()

Negation.

Addition.

Subtraction.

Mutltiplication.

Divide and truncate.

Bitwise logical AND.

Bitwise logical OR.-

Perform enclosed operations first.

2-179

Table 2-44 TECO Command Summary (Cont.)

Command Function

POINTER POSITIONS

nJ Position pointer between n* and n+-1* characters.
nC Move pointer forward across n characters.

nR Move pointer backward across n characters.

mL Position pointer at beginning of n* line following

current position.
TYPE-OUT COMMANDS

aT Type buffer content from pointer position to be-
' ginning of n** following line.

m,nT Type m+1*" character through and including n*

character.

n= Type the integer equivalent of expression n.

TAtexttA Type the enclosed text.

10 Inhibit typeout.

DELETION COMMANDS

nD Delete the n characters following the pointer.

—nD Delete the n characters preceding the pointer.

nK Delete the n lines following the pointer.

m,nK Delete the m+1*" character through and including

the n** character.
INSERTION COMMANDS

Itext$ Insert text delimited by I and ALT MODE.

<I>text$ Insert tabulation, then text. <I> is a TAB (con-
trol-I) character.

nl Insert character whose ASCII code is n.

@1/ text/ Insert text delimited by arbitrary character shown

- as a slash.

n\ Insert the ASCII code for integer n.

OUTPUT AND EXIT

PW Write current page and append form feed.

P Write current page, append form feed, clear buf-
fer, and read next page.

m,nP Write m+1* through n* characters without ap-
pending a form feed.

EF Close the current output file.

1G Close the current output file and exit to the OS/8
monitor.

1C Immediate exit to the OS/8 monitor.

1P Exit to the monitor and do a START 200.

EX Write the rest of the input file on the output file

: and exit to the monitor. .
EC Write the remainder of the input file on the output

file and close the file.
' 2-180

Table 2-44° TECO Command Summar.y_ (Cont.)

Command _ - Function
SEARCH COMMANDS
nStext§ -Begin at the pointer and search for the n* occur-

rence of the text delimited by the S and the ALT
MODE on the current page.

nNtext$ Equivalent to nStext$ except that the search is
continued across page boundaries.
n <text$ - Equivalent to nNtext$ except that no output is
generated. :
" nFNtestl $text2$ Do nNtext1$ and then replace text1 with text2.
:nStext$ Equivalent to nStext$ except that it returns a

value of —1. If the search succeeds, or 0, if the
search fails. The colon may be used with N and

<« searches.

n@$S/text/ $ Equivalent to nStext$ except that the text is de-

. limited by the arbitrary character followmg the S,

instead of ALT MODE.

X Accept any character in this position.

S : Accept any separator in this position. Save last
typed command.

N ~~ Accept any character except the following char-

' acter in this position.
1Q- Interpret the next character literally, rather than

-as 2 command.
ITERATION AND FLOW CONTROL

n< > Perform enclosed commands n times.

n; If n is positive, jump out of the current iteration
field.

'tag! Define a position named “tag” at this location.

Otag$ ‘ Jump to the position defined by “tag.”

n”E ’ If n=0, execute the following command string.

n"N If n0, execute the following command string.

n”L . If n is less than zero, execute the followmg com-
mand string.

n”G If n is greater than zero, execute the followmg

_ . command string. :
n”C - If nis the ASCII code for an alphanumeric char-
: acter, execute the following commands.

n—m”A If n is greater than or equal to m, execute the

following commands.
—m”B _ If n is less than m, execute the following com-

mands.

Q-REGISTER COMMANDS

nUq Store n in Q-register q. -

Qq Equivalent to the value stored in Q-register q

2-181

Table 2-44 TECO Command Summary (Cont.)

Command Function

n%l1 ' Add n to the content of Q-reglster q and return
this value.

tUqgtext$ ~ Insert text into Q-reglster q.

nXq Load the n following lines into Q-register q

m,nXq Load the m+1*" character through the n** char-

‘ acter into Q-register q.

Gq Insert the content of Q-register q into the buffer.

Mq Execute the content of Q-register q as a command
string.

NUMERIC VALUES L

nA ASCII value of n* character following pointer.

1E Form feed flag.

1F Console data switches.

tH Always equals zero.

MX - Equivalent to the ASCII code for character “X.”

1Z Command and Q-register storage words in use.

10 Set octal radix.

1D . Set decimal radix.

N - Equivalent to the value of the digit string follow-
ing the pointer.

1T Equivalent to the ASCII code for the next char-
acter typed.

1V Equivalent to the number of the version of TECO

' being run.

PROGRAMMING AIDS

? After an error message, identifies erroneous char-
acter.

? Except after an error message, toggles in and out
of trace mode. >~

1G1G Erases current command string.

Running TECO On The PDP-12

When TECO is run on a PDP-12, part of the content of the text
buffer is displayed on the console scope. Initially, TECO displays
the three lines immediately preceding and following the buffer
pointer. An uparrow character (1) is displayed below the current
position of the pointer.

The ntW command, where n is a small positive integer and tW
is a control-W or uparrow/W character, causes TECO to display
the n lines preceding and following the current position of the
pomter on the scope. If a value of n greater than 7 is specified, the

‘ 2-182

display will wrap around the scope and produce flicker on it. N
- is assigned an initial value of 3.

The tW command (CTRL /W with no numeric argument) causes
TECO to execute one scope display cycle. This command may be
entered into long command strings for the purpose of displaying
part of the buffer at a given point in the command string.

When a 1F character is entered in a numeric expression on the
PDP-12, TECO considers the 1F to be equivalent to the current
value of the right-hand switch register. :

Assembly Instructions _

The source tape of TECO may be assembled with the PALS
assembler, in the same manner as any other PALS source program.
For example, if a TECO source DECtape is mounted on unit 1,
typing:

«R PALS
*TECO.BN<DTA1: TECO. PA

will produce a TECO binary file on the system device.

Once a TECO binary file has been created on the system device,
the following commands will create a core image file called TECO.
SV on the system device:

«R ABSLDR
*TECO.BN %
« SAVE SYS TECO

The binary paper tape of TECO (DEC-S8-UEXTB-A-PB8) may
be loaded and saved on the system device by the following sequence

of commands:

«R ABSLDR
*PTR: $
« SAVE SYS TECO

The system will print an uparrow after the ALT MODE character -
to indicate that a paper tape should be loaded into the reader.
Strike any key at the terminal to continue.

KSR-35 Teletype users who want to take advantage of the KSR-
35 hardware tabulation feature should change the starting address
of TECO to location 5200 ‘This may be accomplished by the
commands:

«GET SYS TECO
« SAVE SYS TEC®5 5200

2-183

Error Messages

TECO error messages consist of a question mark followed by a
number. Typing a second question mark immediately after an
error message printout causes the command string to be printed
up to and including the character which caused the error message.

Table 2-45 = TECO Error Messages

Error Cause
1 Illegal command.
2 Incomplete command. Can mean e1ther
a. Character missing from command.
b. Iteration brackets do not match.
c. Conditional delimiters (double quote and apostrophe) do
match. _
d. O command references nonexistent tag.
3 Non-alphanumeric Q-register name.
4 Command iterations or macro calls nested too deeply.
5 Text buffer overflow.
6 Search string longer than 31 characters.
7 Numeric argument missing before comma, equals sign, U, or
quote (7).
8 Illegal file name in ER, EW or EB command.
9 Semicolon or failing search encountered on command level.
10 Iteration close (>) without matching open (<).
11 Attempt to move pointer outside of text buffer.
12 Q-register storage overflow.
13 Incomplete command.
14 Output file too large, or else output panty erTor.
15 Input file parity error.
16 File error; can mean either:
a. Input file not found by ER command.
b. Cannot enter output file with EW or EB command
c. Device specified for file does not exist.
d. EB command specifies a file on a non-file-structured device.
17 An output command was encountered which would have
caused TECO to overflow its current output file. User should
close the current output file and write all further output onto
one (or more) additional files. These files may be combined
if necessary.
18 Attempt to execute an output command without opening an

output file.

2-184

. os8
@SSEme® e

pals

sabr
Flap/ralf

INTRODUCTION

PALS is an 8K, twoe pass assembler designed to run under the . ‘

OS/8 Operating System. Pass 1 reads the input file and sets up the
symbol table. Pass 2 reads the input file and uses the symbol table
created in pass 1 to generate the binary (object) file. The binary
file is an absolute binary tape and may be loaded into core with
the Absolute Loader or Binary Loader. As an optional third pass,
a side-by-side octal and symbolic listing and the symbol table are
output. (Using the options available, the three passes may be
automatically executed. However, if the source file is to be read
from the paper tape reader, the user must reload the tape for each
pass.) The listing file may be used as an input to the Cross Refer-
ence Program (CREF), and the symbol table may be requested to
be in a form suitable for input to DDT. If a listing file, but no
binary file or /L or /G option was specified, PAL8 does not exe-
cute pass 2, but instead goes directly from pass 1 to pass 3.

PALS can handle I/O from any OS/8 device which handles
ASCII text, and has pseudo-ops and options not available in the
-other PDP-8 assemblers. It is loaded and saved by way of the OS/8
Monitor and Absolute Loader. It will accept input generated by
the Editor and will generate output acceptable to Absolute Loader
and CREF. ‘

CALLING AND USING PALS
. PALS is called from the system device by typing:

R PALS
in response to the dot printed by the Keyboard Monitor. The sys-
tem replies by activating the Command Decoder, which in turn
prints an asterisk (*) at the left margin of the teleprinter paper. At
this point a command string is entered which indicates the binary

3-1

and listing output devices and file names, the input devices and file -
names, and any options selected by the user. 1 to 9 input files may
be specified. The format of the command string is:

*DEV:BINARY ,DEV:LISTING,DEV:CREFLS<DEV:INPUT/ OPTIONS

If the extension to the file name is omitted, the following assumed
extensions are assigned:

.PA for input file.

.BN for binary output file.

.LSfor listing output file.

.TM for intermediate CREF file (if the /C option was speaﬁed)

A null output file indicates no output file of that type is to be
- generated. For example, to assemble, load and run a PALS pro-
gram named PROGRM which is stored on DECtape unit 1, the
user would type:

R PALS
*BIN<DTA1:PROGRM/G

. After the assembly, the program will be loaded and run with the
starting address assumed to be location 0200 in field O, and the
binary stored on the system device as BIN.BN. '

The assembler prints any error messages encountered in the
program on the teleprinter. Typing CTRL/O at the keyboard
during an assembly will suppress the printing of error messages on
the teleprinter; however, messages are still printed in the output file
and occur immediately before the line that is in error.

‘PALS OPTIONS
Table 3-1 lists the options available in PAL8 which can be in-
dicated in the command string typed to the Command Decoder.
When the /L or /G option is specified, the user can also include
any option to the Absolute Loader in the I/O specification line for
PALS, such as = starting address option. If no address is specified,
execution begins at 200. If no binary output file is specified with
/L or /G a temporary file, PALS8BN.TM, is created and loaded.

3-2

Table 3-1 PALS Run-Time Options

Option

Meaning

/B

/C

/D
/E

/F
/G
/H
L
/K

/L
/N
/0

/S

This option makes the operator ! a 6-bit left shift instead of
an inclusive OR. (A!B equals At100+-B)

Chain to SYS:CREF.SV after assembly. The second output
file specified is: the output file passed to CREF. The third
output file is where PALS generates its output. If no third
output file is given, SYS:CREFLS.TM is assumed. The /C

option supersedes the /G and /L options if specified in the

same command string.

- Generate a DDT compatible symbol table (applicable only if

a listing file is specified).

~Enable error messages if a link is generated. The LG error

message would be generated as weil as the link being flagged.

Disable extra zero fill in TEXT pséudo-op. If the text in the

. TEXT pseudo-op contains an even number of characters, no

Word of zeroes will be added to the end.

Call the Absolute Loader, load the binary file, and begin exe-
cution at the indicated starting address. If no starting address
is indicated, start at 200.)

Generate non-paginated output. Header, page numbers and
page format are suppressed (applicable only if a listing file is
specified).

Do not list lines containing code in conditional brackets
which is conditionalized out.

-

Used in assembling very large programs;cauées systems con-

.- taining 12K or more of core to use field(s) 2 and up as symbol

table storage.

Call the Absolute Loader at the end of the assembly and load
the binary file (applicable only if a binary file was specified).

Generate the symbol table, but not the listing (applicable
only if a listing file is specified. The /H option is assumed).

Disable origining to 200 after pseudo-op. The origin remains
what it was before the FIELD pseudo- op. -

Omit the symbol table normally generated with the listing
(applicable only if a listing file is specified).

3-3

Table 3-1 PAL8 Run-Time Options (Cont.)

Option | Meaning
/T Output a carriage return/line feed in place of the form feed
character(s) in the program (applicable only if a listing file is
specified).

/W Do not remember the number of literals that were previously
stored on a page after origining off page and then back on
again.

EXAMPLES OF SPECIFICATION STRINGS
Example 1:

.R PALS
*PTP:,LPT:<SOURCE

The above lines cause the PALS assembler to be loaded from the
system device and the program SOURCE.PA (or SOURCE) to be
assembled. The binary output of the assembly is put onto the paper
tape punch, and the listing and symbol table on the line printer.
Example 2: -

.R PALS
* LISTIN<KPROG/S

The above specification line causes PALS to assemble PROG.PA
for PROG), putting the listing only into the file LISTIN.LS on the
default device DSK. No binary output and no symbol table are
generated.

Example 3:

.R PALS
*BIN<INPUT.XY/G=600

The above specification line assembles INPUT.XY, putting the
binary output into a file named BIN.BN, and then calls the Abso-
lute Loader, which loads the file BIN.BN and starts it at 600.
(=600 is an option to the Absolute Loader specifying the starting
address.)

“ Example 4:

.R PALB
*DTA1:PROG

34

The preceding lines will assemble the file PROG from device
DTALI, checking for errors, which are listed on the teleprinter.
There are no output files.

RESTARTING AND TERMINATING PALS
PALS8 may only be restarted if the Command Decoder has not
been dismissed. For example:

R PALS

*C

ASSIGN DTA7 DSK
ST : -

ES

If a restart is attempted after the Command Decoder has been dis-
missed, NO! ! is typed and control returns to the Keyboard Moni-
tor. The user must call PALS for each assembly.

CHARACTER SET ' | i}
* The following characters are acceptable as input to PALS:

1. - The alphabetic characters: A through Z.
. The numeric characters: 0 through 9.
3. The characters described in following sections as special
characters and operators.
4. Characters which are ignored during assembly such as LINE
FEED, FORM FEED, and RUBOUT.

~ All other characters are illegal (except when used in a comment)
and cause the error message: '

IC nnnn

to be printed during pass 1; nnnn represents the location at which
the illegal character occurred. (As assembly proceeds, each instruc-
tion is assigned a location determined by the current location
counter, detailed later in this chapter. When an illegal character or
any other error is encountered during assembly, the value of the
current location counter is returned in the error message.) Illegal
characters do not generally cause assembly to halt. If an illegal
character occurs in the middle of a symbol, the symbol is ter-
minated at that point. |

3-5

STATEMENTS - :

PALS8 source programs are. usually prepared on the console
terminal (using the OS/8 EDITOR) as a sequence of statements.
Each statement is written on a single line and is terminated by
typing the RETURN key. There are four types of elements in a
PALS statement which are identified by the order of their appear-
ance in the statement and by the separating (or delimiting) charac-
ter which follows or precedes the element. These are:

1. label,

2. instruction

3. operand

4. /comment

A statement must contain at least one of these elements and may
contain all four types. The assembler interprets and processes: the
statements, generating one or more binary instructions or data
words, or performing an assembly process.

Labels

A label is the symbolic name created by the programmer to
identify the location of a statement in the program. If present, the
label is written first in a statement. It must begin with.an alphabetic
character, contain only alphanumeric characters, and be terminated
by a comma; there must be no intervening spaces between any of
the characters and the comma.

Instructions

An instruction may be one or more of the mnemonic machine
instructions or a pseudo-operation which directs assembly process-
ing. (Assembly pseudo-ops are described later in-this chapter.)
Instructions are terminated with one or more spaces (or tabs if an
operand follows) or with a semicolon, slash, or carriage return.

Operands

Operands are the octal or symbolic addresses of an assembly
language instruction or the argument of a pseudo-operator, and
can be any expression. In each case, interpretation of an operand
depends upon the instruction or the pseudo-op. Operands are ter-
minated by a semicolon, slash, or carriage return.

3-6

Comments

The programmer may add notes or comments to a statement by
separating these from the remainder of the line with a slash. Such
comments do not affect assembly processing or program execution
but are useful in the program listing for later analysis or debugging.
The assembler ignores everything from the slash to the next carriage
return. _ v

It is possible to have only a carriage return on a line, resulting
in a blank line in the final listing. No error message is given.

FORMAT EFFECTORS

- The following characters are useful in controlling the format of
an assembly listing. They allow a neat readable listing to be pro-
duced by providing a means of spacing through the program.

Form Feed _

The form feed code causes the assembler to output blank lines in
order to skip to a new page in the output listing during pass 3; this
is useful in creating a page-by-page listing. The form feed is gen-
erated by typing a CTRL/L on the console terminal.

‘Tabulations

Tabulations are used in the body of a source program to separate
fields into columns. For example, a line written:

GO, TAD TOTAL/MAIN LOOP
is much easier to read if tabs.are inserted td form:;
GO, TAD TOTAL /MAIN LOOP

Statement Terminators

The RETURN key is used to terminate a statement and causes
a carriage return/line feed combination to occur in the listing. The
semicolon (;) may also be used as a statement terminator and is
considered identical to.a carriage return except that it will not ter-
minate a comment. For example:

TAD A /THIS IS A COMMENT; TAD B

The entire expression between the slash and the carriage return is
considered a comment. Thus in this case the assembler ignores the
TAD B. If, for example, the user wishes to write a sequence of

3-7

instructions to rotate the contents of the accumulator and link six
places to the right, it might look like the following:

RTR
RTR
RTR

However, the programmer can alternatively place all three instruc-
tions on a single line by separating them with the special character
semicolon and terminating the entire line with a carriage return.
The above sequence of instructions can then be written:

RTR;RTR;RTR

NOTE
- If an OS/8 CREF listing is desired, there
are certain restrictions on the use of semi-
colons. Refer to the section on CREF in
Chapter 2 of this handbook.

These multi-statement lines are particularly useful when setting
aside a section of data storage for use during processing. For ex-
ample, a 4-word cleared block could be reserved by specifying
either of the following:

LIST, 0; 0; 0; 0

T or

LIST, 0
0
0
0

Either format may be used to input data words (data words may be
in the form of numbers, symbols, or expressions, explained next).
Each of the following lines generates one storage word in the object
program: "
DATA, 7777
A+C—-B
S
- 1234-B2

3-8

NUMBERS . '
Any sequence of digits delimited by either a SPACE, TAB, semi-

colon, or carriage return forms a number. PALS initially interprets

numbers in octal (base 8). This can be changed to decimal using a

special pseudo-operator (explained later in this chapter). Numbers

~ are used in conjunction with symbols to form expressions. '

SYMBOLS

A symbol is a string of alphanumeric characters beginning with a
letter and delimited by a non-alphanumeric character. Although a
symbol may be any length only the first six characters are recog-
nized; since additional characters are ignored, symbols which are
identical in their first six characters are considered identical.

Permanent Symbols

The assembler contains a table (called its permanent symbol
table) which lists the symbols for all PDP-8 pseudo-op codes, mem-
ory reference instructions, operate and IOT (input/output transfer)
instructions. These instructions are symbols which are permanently
defined by PALS and need no further definition by the user; they
are summarized at the end of the chapter. For example:

HLT This is a symbolic instruction assigned the value 7402
by the assembler and stored in its permanent symbol
table.

User-Defined Symbols

‘All symbols not defined by the assembler (and represented in its
permanent symbol table) must be defined within the source pro-
gram.

A symbol may be used as a statement label, in which case it is
assigned a value equal to the current location counter; it is called a
symbolic address and can be used as an operand or as a reference
to an instruction. Permanent symbols (instructions, special char-
acters, and pseudo-ops) may not be used as symbolic addresses.
The following are examples of legal symbolic addresses:

ADDR,
TOTAL,
SUM,
Al,

3-9

The following are illegal symbolic addresses:

AD>M, (contains an illegal character)

7TABC, (first character must be alphabetic)

LA BEL, (must not contain imbedded spaces)

D+TAG, (contains a legal but non-alphanumeric character)

LABEL , (mustbe terminated by a comma with no interven-
ing spaces)

Current Location Counter

As source statements are processed, PALS8 assigns consecutive
memory addresses to the instructions and data words of the object
program.

The current location counter contains the address in which the
next word of object code will be assembled and is automatically
incremented each time a memory location is assigned. A statement
which generates a single object program storage word increments
the location counter by one. Another statement might generate six
storage words, incrementing the location counter by six.

The user sets or resets the location counter by typing an asterisk
followed by the octal absolute address value in which the next pro-
gram word is to be stored. If the origin is not set by the user, PALS8
begins assigning addresses at location 200.

*300 /SET CURRENT LOCATION COUNTER

TC 300
TAG, CLA
JMP A
B, 0
A, DCA B

The symbol TAG (in the preceding example) is assigned a value

“of 0300, the symbol B a value of 0302, and the symbol A a value

of 0303. If a symbol is defined more than once in this manner, the
assembler will print the illegal definition diagnostic:

ID address

where address is the value of the location counter at the second
occurrence of the symbol definition. The symbol is not redefined.

3-10

(For an explanation of diagnostic messagés refer to the section
on PALS Error Conditions.) For example:

: *300
START, ~ TAD A
DCA COUNTER
CONTIN, JMS LEAVE

: JMP START
A, —74
COUNTER, - 0 '
START, CLA CLL

The symbol START would have a value of 0300, the symbol
CONTIN wouid have a value of 0302, the symbol A would have a -
value of 0304, the symbol COUNTER (considered COUNTE by
the assembler) would have a value of 0305. When the assembler -
processed the next line it would print (during pass 1):

ID COUNTE+0001

Since the first pass of PALS is used to define all Symbols, the as-
sembler will print a diagnostic during pass 2 if reference is made
“to an undefined symbol. For example: '

*7170
A, TAD C
CLA CMA
CHLT |
| JMP Al
C, 0 | -

This would produce the undefined symbol diagnostic:
US A+0003 o

Symbol Table

Initially, the assembler’s symbol table contains the mnemonic
op-codes of the machine instructions and the assembler. pseudo-op
codes; this is its permanent symbol table. As the source program is
processed, user-defined symbols along with their binary values are
added to the symbol table. The symbol table is listed in alphabetic
order at the end- of pass 3.

3-11

During pass 1, if PALS8 detects that the symbol table is full (in-
other words, there is no more memory space in which to store sym-
bols and their associated values), the symbol table exceeded diag-
nostic is printed: |

SE address

and control returns to the OS/8 Monitor. If the system contains
more than 8K of memory, the user may choose the /K option with
the Run command, or more address arithmetic may be used to re-
“duce the number of symbols. It is also possible to segment a pro-
gram and assemble the segments separately, taking care to generate
proper links between the segments (see LINK GENERATION
AND STORAGE). PALS8’s symbol capacity is 992 symbols.
The permanent symbol table contains 24 pseudo-operations
and 71 symbols, leaving space for 897 possible user-defined sym-
bols. Each additional 4K allows 992 new symbols.
Instructions concerning altering the permanent symbol table are
discussed later in this chapter should the user wish to add instruc-
tions more suitable to his programming needs. ‘

Direct Assignment Statements

The programmer may insert new symbols with their assigned
values directly into the symbol table by using a direct assignment
statement in the form:

SYMBOL=VALUE -

VALUE may be a number or expression. No spaces or tabs may

appear between the symbol to the left of the equal sign and the

equal sign itself. The following are examples of direct assignment
statements:

A=6"
EXIT=JMP I O
C=A+B

All symbols to the right of the equal sign must be already defined.
The symbol to the left of the equal sign is subject to the same re-
strictions as a symbolic address, and its associated value is stored
in the user’s symbol table. The use of the equal sign does not incre-
ment the location counter; it is, rather, an instruction to the assem-
bler itself.

3-12

A direct assignment statement may also equate a new symbol to
the value assigned to a previously defined symbol. For example:

- BETA=17
GAMMA=BETA

The new symbol, GAMMA is entered into the user’s symbol table
with the value 17. The value assigned to a symbol may be changed
as follows:

ALPHA=5
- ALPHA=7

The second line of code shown changes the value assigned to -
ALPHA from 5 to 7. |

Symbols defined by use of the equal sign may be used in any valid
expression. For example: :

200
A=100 /DOES NOT UPDATE CLC
B=400 /DOES NOT UPDATE CLC
A+B /JTHE VALUE 500 IS ASSEMBLED AT
- LOC. 200
TAD A - /THE VALUE 1200 IS ASSEMBLED AT
LOC. 201

If the symbol to the left of the equal sign is in the permanent
symbol table, the redefinition diagnostic:

RD address

will be printed as a warning, where address is the value of the loca-
tion counter at the point of redefinition. The new value will be
stored in the symbol table; for example:

CLA=7600 .
will cause the diagnostic:
RD +200 ,
Whenever CLA is used after this point, it will have the value 7600.

Symbolic Instructions

Symbols used as instructions must be predefined by the assembler
or defined in the assembly by the programmer. If a statement has
no label, the instructions may appear first in the statement and must

3-13

be terminated by a space, tab, semicolon, slash, or carriage return.
The following are examples of legal instructions:

i

TAD (a mnemonic machine instruction)

PAGE (an assembler pseudo-op)

ZIP (an instruction defined by the user)
Symbolic Operands

Symbols used as operands normally have a value defined by the
user. The assembler allows symbolic references to instructions or
data defined elsewhere in the program. Operands may be numbers
or expressions. For example:

TOTAL, TAD ACI + TAG

The values of the two symbols ACI and TAG (already defined by
the user) are combined by a two’s complement add (see the section
on Operators). This value is then used as the address of the
operand.

Internal Symbol Representation for PALS

Each permanent and user-defined symbol occupies four words
in the symbol table storage area. A PDP-8 instruction has an op-
eration code of three bits as well as an indirect bit, a page bit, and
seven address bits. The PALS8 assembler distinguishes between
pseudo-ops, memory reference instructions, other permanent sym-
bols, and user-defined symbols in the symbol table.

EXPRESSIONS

Expressions are formed by the combination of symbols, numbers,
and certain characters called operators, which cause specific arith-
metic operations to be performed. An expression is terminated by
either a comma, carriage return, or semicolon.

Operators
There are seven characters in PALS which act as operators:
+ - Two’s complement addition
— Two’s complement subtraction
0 Multiplication (unsigned, 12-bit)
%o Division (unsigned, 12-bit)
! ' .Boolean inclusive OR
& Boolean AND

3-14

Space Treated as a Boolean inclusive OR except
(or TAB) in a memory reference instruction

Two’s complement addition and subtraction are. explained in .
detail in Chapter 1 of INTRODUCTION TO PROGRAMMING;
the user should refer to that handbook if he wishes more infor-
mation. No checks for overflow are made during assembly, and -
any overflow bits are lost from the high order end. For example:

7755+24 will give a result of 1

The operators + and — may be used freely as prefix operators.

Multiplication is accomplished by repeated addition.No checks for
sign or overflow are made. All 12 bits of each factor are considered
as magnitude. For example:

300012 will give a result of 6000

Division is-accomplished by repeated subtraction. The number of
subtractions which are performed is the quotient. The remainder is
not saved and no checks are made for sign. Division by 0 will
arbitrarily yield a result of 0. For example:

7000% 1000 will yield a result of 7
This could be written as:
—1000% 1000

In this case the answer might be expected to be —1 (7777), but all
12 bits are considered as magnitude and the result is still 7.

Use of the multiplication and division operators requires an at-
tention to sign on the part of the programmer beyond that which is -
required for simple addition and subtraction. Table 3-2 con--
tains examples of operators.

The ! operator causes a Boolean inclusive OR to be performed bit
by bit between the left-hand term and the right-hand term. (The
inclusive OR is explained in Chapter 1 of INTRODUCTION TO
PROGRAMMING.) There is an option which can be given to the
assembler to have “!” interpreted as a 6-bit left shift of the left
term prior to the inclusive OR of the right. According to this inter-
pretation: '

if A=1 and B=2
then A!B=0102

3-15

Table 3-2 Use of Operators

Expression . Also written as: Result
777742 —142 +1

7776—3 ' —2—3 7773 or —5
012 ' ‘ 0

210 ' ' 0

100017 | ‘ - 7000 or —1000
0%12 0

12%0 » 0

7777% 1 —1%1 7777 or —1
7000% 1000 —-1000% 1000 7 ,
1%2 . 0

Under normal conditions -A!B would be 0003. The & operator
causes a Boolean AND to be performed bit by bit between the left
and right values. The operation is the same as that indicated by the
memory reference instruction AND.

SPACE has special significance depending on the context in
which it is used. When the symbol preceding the space is not a
memory reference instruction as in the following example:

SMA CLA

it causes an inclusive OR to be performed between them. In this
case, SMA=7500 and CLA=7600. The expression SMA CLA is
assembled as 7700. When SPACE is used following pseudo-opera-
tors it merely delimits the symbol. When it is used after memory
reference operators it also signals the assembler that a memory
reference instruction must be assembled.

User-defined symbols are treated as operate instructions. For
example: -

A=333
*200
B, CLA

Possible expressions and their values using the symbols just defined
are shown below. Notice that the assembler reduces each expres-
sion to one 4-digit (octal) word:

3-16

0333

A

B 0222
A+B 0555
A-B 0111
—A 7445
1-B 7557 -
B-1 0221

~AlB 0333 (an inclusive OR is performed)
~71 7707

If the information generated is to be loaded, the current location .
counter is incremented. For example: '

B—-7;,A+4;,A—B

produces three words of information; the current location counter
is incremented after each expression. The statement:

HLT=HLT CLA

“produces no information to be loaded (it produces an association in
the symbol table) and hence does not increment the current location
counter.

*4721
TEMP,
TEM2, 0

The location counter is not incremented after the line TEMP,; the
two symbols TEMP and TEM?2 are assigned the same value, in this
case 4721.]

Since a PDP-8 instruction has an operation code of three bits as
well as an indirect bit, a page bit, and seven address bits, the as-
sembler must combine memory reference instructions in a manner
somewhat differently from the way in which it combines operate or
IOT instructions. The assembler differentiates between the symbols
in its permanent-symbol table and user-defined symbols. The fol-
lowing symbols are used as memory reference instructions:

AND 0000 Logical AND

TAD 1000 Two’s complement addition
ISZ 2000 Increment and skip if zero =
DCA 3000 Deposit and clear accumulator
IMS 4000 Jump to subroutine

IMP 5000 Jump '

3-17

When the assembler has processed -one of these symbols, the space
following it acts as an address field delimiter.

*4100
JMP A
A, CLA

A has the value 4101, JMP has the value 5000, and the space acts
as a field delimiter. These symbols are represented as follows:

A 100 001 000 001
JMP 101 000 000 000

The seven address bits of A are faken, e.g.
000 001 000 001

The remaining bits of the address are tested to see if they are zeros
(page zero reference); if they are not, the current page bit is set:

000 011 000 001

The operation code is then ORed into the JMP expression to form:
101 011 000 001

or, written more concisely in octal:

5301

In addition to thé above tests, the page bits of the address field
are compared with the page bits of the current location counter. if
the page bits of the address field are nonzero and do not equal the
page bits of the current location counter, an out-of-page reference
is being attempted and the assembler will take action as described
in the section on Link Generation and Storage.

Special Characters
In addition to the operators described in the previous section,

PALS recognizes several special characters which serve specific
functions in the assembly process. These characters are: .

= equal sign
comma

* asterisk

. dot

“ double quote

3-18

() parentheses
[T square brackets

/ slash
3 semicolon
< > angle brackets _
. $ - dollar sign :

”

The equal sign, comma, asterisk, slash, and semicolon have been
previously described. The remainder will be described next.

The special character dot (.) always has a value equal to the
value of the current location counter. It may be used as any integer
or symbol (except to the left of an equal sign), and must be pre-
ceded by a space when used as an operand. For example:

*200
IMP .42

is equivalent to JMP 0202. Also,

*300
.+2400

will produce in location 0300 the quantity 2700. Consider:

*2200
CALL=JMS L.
0027

The second line (CALL=JMS 1.) does not increment the current
location counter, therefore, 0027 is placed in location 2200 and
CALL is placed in the user’s symbol table with an associated value
_of 4600 (the octal equivalent of JMS I).

If a single character is preceded by a double quote (*), the 8-bit
value of ASCII code for the character is used rather than interpret-
ing the character as a symbol (ASCII codes are listed in Appendix
A). For example:

CLA
TAD (“A

The constant 0301 is placed in the accumulator. The code:

[13

3-19

will be assembled as 0256. The character must not be a carriage
return or one of the characters which is ignored on input (discussed
at the end of this section).

Left and right parentheses () enclose a current page literal
(closing member is optional).

%200

CLA

TAD INDEX
TAD (2)
DCA INDEX

The left parenthesis is a signal to the assembler that the expres-
sion following is to be evaluated and assigned a word in the con-
stants table of the current page. This is the same table in which the
indirect address linkages are stored. In the above example, the
quantity 2 is stored in a word in the linkage and literals list begin-
ning at the top of the current memory page. The instruction in
which the literal appears is encoded with an address referring to the
address of the literal. A literal is assigned to storage the first time
it is encountered; subsequent reference to that literal from the cur-
rent page is made to the same register. The use of literals frees
symbol storage space for variables and makes programs much more
readable.)

If the programmer wishes to assignliterals to page zero rather than
to the current page, he may use square brackets, [and], in place of
parentheses. This enables the programmer to reference a single
literal from any page of memory. For example:

*200
TAD [2]

3-20

The closmg member is optional. Literals may take the followmg
forms: constant term, variable term, instruction, expressmn or
another literal.

| NOTE
Literals can be nested, for example:
*200
TAD (TAD (30

This type of nesting may be continued in
some cases to as many as 6 levels, depending
on the number of other literals on the page
and the complexity of the expressions within
the nest. If the limits of the assembler are
reached, the error messages BE (too many
levels of nesting) or PE (too many literals)
will result.

Angle brackets are used as conditional delimiters. The code en-
‘closed in the angle brackets is to be assembled or ignored contingent
upon the definition of the symbol or value of the expression within
the angle brackets. (The IFDEF, IFNDEF, IFZERO, and IFNZRO
pseudo-operators are used with angle brackets a.nd are described
later in thls chapter.) :

NOTE
Programs which wuse conditionals. should
avoid angle brackets in comments as they
may be interpreted as beginning or termi-
nating the conditional.

The dollar sign character ($) is optional at the end of a program
and is interpreted as an unconditional end-of-pass. It may however
~ occur in a text string, comment or “ term, in which case it is inter-
preted in the same manner as any other character.

The following characters are handled by the assembler for the
pass 3 listing, but are otherwise ignored:

FORM FEED Used to skip to a new page

LINE FEED Used to create a line spacing without causing
a carriage return

RUBOUT Used by the EDITOR to allow corréctions in
the input file

3-21

Nonprinting characters include:

SPACE
TAB
RETURN

INSTRUCTIONS

There are two basic groups of instructions: memory reference and
microinstructions. Memory reference instructions require an op-
~erand, microinstructions do not.

Memory Reference Instructions

In PDP-8 computers, some instructions require a reference to
‘memory. They are appropriately designated memory reference in-
structions, and take the following format:

o 1 2 3 4 5 & 7 8 9 10 N
ORERATION ADDRESS

1 1 1 ! 1 [| 1
INDIRECT ADDRBSING_}
MEMORY PAGE

" Figure 3-1 Memory Reference Bit Instructions

Bits 0 through 2 contain the operation code of the instruction to be
performed. Bit 3 tells the computer if the instruction is indirect.
Bit 4 tells the computer if the instruction is referencing the current
page or page zero. This leaves bits 5 through 11 (7 bits) to specify
an address. In these 7 bits, 200 octal (128 decimal) locations can
be specified; the page bit increases accessible locations to 400 octal
or 256 decimal. A list of the memory reference instructions and
their codes is given at the end of the chapter.

In PAL8 a memory reference instruction must be followed by a
space(s) or tab(s), an optional I or Z designation, and any valid
expression. It may be defined with the FIXMRI ‘instruction. (See
pg. 3-33; Altering the Permanent Symbol Table.) Permanent sym-
bols may be defined using the FIXTAB instruction and may be
used in address fields as shown below:

A=1234
FIXTAB
TAD A

3-22

Indirect Addressing

When the character I appears in a statement between a memory
reference instruction and an operand, the operand is interpreted as
the address (or location) containing the address of the operand to
be used in the current statement. Consider:

TAD 40

which is a direct address statement, where 40 is interpreted as the
location on page zero containing the quantity to be added to the
accumulator. References to locations on the current page and page
zero may be done directly. For compatibility with older paper-tape
assemblers the symbol Z is also accepted as a way of 1nd1cat1ng a
page zero reference, as follows: | \

TAD Z 40

This is an optional notation, not differing in effect from the pre-
vious example. Thus, if location 40 contains 0432, then 0432 is
added to the accumulator. Now consider: '

TAD I 40

which is an indirect address statement, where 40 is interpreted as
the address of the location containing the quantity to be added to
the accumulator. Thus, if location 40 contains 0432, and location
432 contains 0456, then 456 is added to the accumulator.

) NOTE
‘Because the letter I is used to indicate in-
direct addressing, it is never used as a vari- -
able. Likewise the letter Z, which is some-
times used to indicate a page zero reference
is never used as a variable.

Microinstructions

Microinstructions . are divided into two groups: operate and
Input/Output Transfer (IOT) microinstructions. Operate micro-
instructions are further subdivided into Group 1, Group 2, and
Group 3 designations.

3-23

NOTE
If a programmer mistakenly specifices an
illegal combination of microinstructions, the
assembler will performr an inclusive OR be-
tween them; for example:

CLL SKP is interpreted as SPA
(7100) (7410) (7510)

OPERATE MICROINSTRUCTIONS

Within the operate group, there are three groups of microinstruc-
tions which cannot be mixed. Group 1 microinstructions perform
clear, complement, rotate and increment operations, and are des-
ignated by the presence of a 0 in bit 3 of the machine instruction
word.

1 1 1 0 {CLA| CLL [CMA]CML BSW | 1AC

ROTATE AC AND L RIGHT $ T
ROTATE AC AND L LEFT
ROTATE 1 POSITION IF A 0, 2 POSITIONS IF A 1 :

(BSW IF BITS 8,9 ARE 0)

LOGICAL SEQUENCE: 1-CLA, CLL 2-CMA, CML
3-1AC 4 - RAR,RAL,RTR RTL,BSW

Figuré 3-2 Group 1 Operate Microinstruction Bit Assignments

Group 2 microinstructions check the contents of the accumulator
and link and, based on the check, continue to or skip the next in-
struction. Group 2 microinstructions are identified by the presence
of a1 in bit 3 and a 0 in bit 11 of the machine instruction word.

i i 1 T | CLA|SMA|SZA [SNL OSR {HLT | O

REVERSE SKIP SENSING OF BITS 5,6,7 IF SET -———}

LOGICAL SEQUENCE: 1(BIT 8 IS 0)-SMA OR SZA OR SNL
(BIT 8 IS 1) - SPA AND SNA AND SZL

2-CLA .
3-OSR,HLT

Figure 3-3 Group 2 Operate Microinstruction Bit Assignments

'

3-24

Group 3 microinstructions. reference the MQ register. They are
differentiated from Group 2 instructions by the presence of a 1 in
bits 3 and 11. The other bits are part of a hardware arithmetic
optlon .

o 1 2 3 4 5 6 7 -8 9 10 1

. RATION
%PSDE 7 CLA | MQA MGL |-

') 1 1
[.
(- —~—

CONTAINS A1 TO ___ : _
SPECIFY GROUP3 : j
KES-E EXTENDED ARITHMETIC ELEMENT

CONTAINS Al TO SPECIFY GROUP 3

Figure 3-4 Group 3 Operate Microinstruction Bit Assignments

Group 1 and Group 2 microinstructions cannot be combined since
bit 3 determines either one or the other. Within Group 2, there are
two groups of skip instructions. They can be referred to as the OR
group and the AND group.

OR Group - ~ AND Group
SMA SPA
SZA | SNA
SNL . : SZL

The OR group is designated by a O in bit 8, and the AND group
by a 1 in bit 8. OR and AND group instructions cannot be com- -
bined since bit 8 determines either one or the other.

If the programmer does combine legal skip instructions, it is
important to note the conditions under which a skip may occur.

1. OR Group—If these skips are combined. in a statement, the
inclusive OR of the conditions determines the skip. For
example:

SZA SNL

" The next statement is skipped if the accumulator contains
0000 or the link is a 1 or both.

2. And Group—If the -skips are combined in a statement, the
logical AND of the conditions determines the skip. For
example:

SNA SZL

The next statement is skipped only if the accumulator differs
from 0000 and the link is 0.

325

INPUT/OUTPUT TRANSFER MICROINSTRUCTIONS

These microinstructions initiate operation of peripheral equip-
ment and effect an information transfer between the central pro-
cessor and the Input/Output device(s); i.e., console terminal, and
line printer. :

Autoindexing

Interpage references are often necessary for obtaining operands
when processing large amounts of data. The PDP-8 computers
have facilities to ease the addressing of this data. When one of the
absolute locations from 10 to 17 (octal) is indirectly addressed, the
contents of the location is incremented before it is used as an
address and the incremented number is left in the location. This
allows the programmer to address consecutive memory locations
using a minimum of statements. It must be remembered that
initially these locations (10 to 17 on page 0) must be set to
one less than the first desired address. Because of their char-
acteristics, these locatiens are called autoindex registers. No
incrementation takes place when locations 10 to 17 are ad-
dressed directly. For example, if the instruction to- be executed
next is in location 300 and the data to be referenced is on
the page starting at location 5000, autoindex register 10 can be
used to address the data as follows:

0276 1377 TADC4777 /=5000-1

0277 3010 DCA10 /SET UP AUTO INDEX
0300 1410 TADI10 /INCREMENT TO 5000
/BEFORE USE AN AN
ADDRESS

0377 4777 C4777,4777

When the instruction in location 300 is executed, the contents
of location 10 will be incremented to 5000 and the contents of
location 5000 will be added to the contents of the accumulator.
When the instruction TAD I 10 is executed again, the contents
of location 5001 will be added to the accumulator, and so on.

PSEUDO-OPERATORS
The programmer uses pseudo-operators to direct the assembler
to perform certain tasks or to interpret subsequent coding in a

3-26

certain manner. Some pseudo-ops generate storage words in the
object program, other pseudo-ops direct the assembler how to pro-
ceed with the assembly. Pseudo-ops are maintained in the per-
manent symbol table. The function of each PALS pseudo—op is
described below.

Indirect and Page Zero Addressing

The pseudo-operators I and Z are used to specify the type of
addressing to be performed. These were discussed earlier in the -
- chapter.

Radix Control

Numbers used in a source program are initially considered to be
cctal numbers. However, the programmer may change or alternate
the radix interpretation by the use of the pseudo-operators
DECIMAL and OCTAL. The DECIMAL pseudo-op interprets all
following numbers as decimal until the occurrence of the pseudo-op.
OCTAL. The -OCTAL pseudo-op resets the radix to its original
octal base.

Extended Memory

The pseudo-op FIELD instructs the assembler to output a field
setting so that it may recognize more than one memory field. This
field setting is output during pass 2 and is recognized by the Abso-
lute Loader which in turn causes all subsequent information to be
loaded into the field specified by the expression. The form is:

FIELD n

n is an integer, a previously defined symbol, or an expressio’n with-
in the range Gto 7.

This field setting is output on the binary file during pass 2
followed by an origin setting of 200. This word is read by the
ABSLDR when it is executed and begins loading information into
the new field. | .

The field setting is never remembered, in binary, by the assem-
bler and no initial field setting is output. However, it appears as
- the high-order digit of the Location Counter on the listing. A
binary file produced without field settings will be loaded into field
0 when using the ABSLDR.

A symbol in one field may be used to reference the same location
in any other field. The field to which it refers is determined by the

3-27

use of the CDF and CIF instructions. (The programmer who is
unfamiliar with the IOTs but wishes to use them should refer to-
the PDP/8E SMALL COMPUTER HANDBOOK and experi-
ment with several short test programs to satisfy himself as to their
effect.) CDF and CIF instructions must be used prior to any in-
struction referencing a location outside the current field, as shown
in the following example:

*200
TAD P301
DCF 80
CIF 10
JMS PRINT
CIF 10.
JMP NEXT
P361, 321
FIELD 1
* 200
NEXT, TAD P302
CDF 10
JMS PRINT
HLT
P32, 3p2
PRINT., 7]
TLS
TSF
JMP .-1
CLA
RDF
TaD PCDIF
DCA o+ 1
14191 %]
JMP I PRINT -) *
PCDI F» CDF CIF ©

When FIELD is used, the assembler follows the new FIELD
setting with an origin at location 200. For this reason, if the pro-
grammer wants to assemble code at location 400 in field 1 he must
write: '

FIELD1 /CORRECT EXAMPLE
*400
The following is incorrect and will not generate the desired code:
*400 /INCORRECT
FIELD 1 '

3-28

Specifying the /O option to PALS inhibits the ongln to 200 after
a FIELD pseudo-op.

End-Of-File
PAUSE signals the assembler to stop processmg the file being
read. The current. pass is not terminated, and processing continues

with the next file. The PAUSE pseudo-op is present mainly for: .

compatability with paper tape assemblers, and its use is optional.

Resetting The Location Counter

The PAGE n pseudo-op resets the location counter to the first
address of page n, where n is an integer, a previously defined sym-
- bol, or a symbolic expression, whose terms have been defined pre-
viously and whose value is from 0 to 37 inclusive. If n is not speci-
fied, the location counter is reset to the next loglcal page of mem-
ory. For example:

PAGE 2 sets the location counter to 00400
PAGE 6 sets the location counter to 01400

If the pseudo-op is used without an argument and the current loca-
tion counter is at the first location of a page, it will not be moved.
In the following example the code TAD B is assembled into
location 00400:

*377 .

. JMP .-3
PAGE
' TAD B

If several consecutive PAGE pseudo-ops are given, the first will
cause the current location counter to be reset as spemﬁed The rest
of the PAGE pseudo-ops will be ignored.

Entering Text Strings

The TEXT pseudo-op allows a string of text characters to be
entered as data and stored in 6-bit ASCII by using the pseudo-op
TEXT followed by*a space or spaces, a delimiting character (must
be a printing character), the string of text, and the same delimiting
character. Following the last character, a 6-bit zero is-inserted as a
stop code. For example:

TAG, TEXT/123*/
3-29

The string would be stored as:

6162
6352
0000

The IF option inhibits the generation of the extra 6-bit zero char-
acter.

Suppressing The Listing _

Those portions of the source program enclosed by XLIST
_pseudo-ops will not appear in the listing file; the code will be
“assembled, however.

Two XLIST pseudo-ops may be used to enclose the code to be
suppressed in which case the first XLIST with no argument will
suppress the listing, and the second will allow it again. XLIST
may also be used with an expression as an argument; a listing will
be inhibited if the expression is equal to zero, or allowed if the ex-

“pression is not equal to zero. XLIST pseudo-ops never appear in
the assembly listing.

Reserving Memory

ZBLOCK instructs the assembler to reserve n words of memory
containing zeroes, starting at the word indicated by the current-
location counter. It is of the form:

ZBLOCK n
For example:
ZBLOCK 40

causes the assembler to reserve 40 (octal) words. The n may be an
expression. If n=0, no locations are reserved.

Conditional Assembly Pseudo-Operators
The IFDEF pseudo-op takes the form:

IFDEF symbol <source code>

If the symbol indicated is previously defined, the code contained
in the angle brackets is assembled; if the symbol is undefined, this
code is ignored. Any number of statements or lines of code may be
contained in the angle brackets. The format of the IFDEF state-
ment requires a single space before and after the symbol.

3-30

The IFDEF pseudo—op is similar. in form to IFDEF and is ex-
pressed:

IFNDEF symbol <source code>

If the symbol indicated -has not been previously defined, the
source code in angle brackets is assembled. If the symbol is defined,
the code in the angle brackets is 1gnored The IFZERO pseudo—op
is of the form:

IFZERO expression <source code>

~If the evaluated (arithmetic or logical) expression is equal to
zero, the code within the angle brackets is assembled, if the expres-
sion is non-zero, the code is ignored. Any number-of statements or
lines of code may be contained in the angle brackets. The expres-
sion may not contain any imbedded spaces and must have a single
space preceding and following it. IFNZRO is similar in form to
the IFZERO pseudo-op and is expressed:

IFNZRO expression <source code>

If the evaluated (arithmetic or logical) expression is not equal
to zero, the source code within the angle brackets is. assembled; if
the expression is equal to zero, this code is ignored. Pseudo-ops can
be nested, for example:

IFDEF SYM <IFNZRO X2 <...> >

The evaluation and subsequent inclusion or deletion of statements
is done by evaluating the outermost pseudo-op first.

Controlling Binary Output o

NOPUNCH causes the assembler to cease binary output but
continue assembling code. It is ignored except during pass 2.

ENPUNCH causes the assembler to resume binary output after
NOPUNCH, and is ignored except during pass 2. For example,
these two pseudo-ops might be used where several programs share
the same data on page zero. When these programs are to be loaded
and executed together, only one page zero need be output.

Controlling Page Format
The EJECT pseudo-op causes the listing to jump to the top of
the next page. A page eject is done automatically every 55 lines;

3-31

EJECT is useful if the user requires more frequeﬁt paging. If this
pseudo-op is followed by a string of characters, the first 50 (octal)
characters of that string will be used as a new header line.

Typesetting Pseudo-Operator

DTORG is used in typesetting to output a two frame DECtape
block number (4 digits) in the binary tape. The form of this pseudo-
op is as follows:

DTORG expression

The first frame on the binary tape includes channels 7 and 8
punched (in the same manner as a FIELD setting) as a signal to a
special typesetting loader that the following data is to be loaded
into DECtape block n. The DTORG setting is added into the
checksum, unlike the FIELD setting, which is not included.
DTORG and FIELD should not be used in the same program.

Calling OS/8 User Service Routine :
The pseudo-operators DEVICE and FILENAME may be used

by calls to the OS/8 User Service Routine, but have no other

meaning to the assembler. The form for these pseudo-ops is:

DEVICE name
FILENAME name.extension

When using DEVICE, the name can be from 1 to 4 alphanumeric
characters. These are trimmed to 6-bit ASCII and packed into 2
words, filled in with zeroes on the right if necessary. With
FILENAME (FILENA is also acceptable) the name (or name.-
extension) may be from 1 to 6 alphanumeric characters and
the optional extension may be 1 or 2 characters. The characters are
trimmed to 6-bit ASCII and packed 2 to a word. Three words are
allocated for the filename, filled with zeroes on the right if less than -
6 characters are specified, followed by one word for the extension.

For example:
L, FILENAME ABC.DA

is equivalent to the following coding:

L, 0102
0300
0000
0401

3-32

Relocation Pseudo-Op
It is ‘sometimes desirable to assemble code at a given location
and then move it to another location for execution. This may result
in errors unless the relocated code is assembled in such a way that
the assembler assigns symbols their execution-time addresses rather
than their load-time addresses. The RELOC pseudo-op establishes
a virtual location counter without altering the actual locatlon
‘ counter The line:

RELOC expr
sets the virtual location counter to expr. The Hne:
RELOC

sets the virtual location counter equal to the actual location counter
and terminates the relocation section. :

Example:

0400 *400

2000 ' RELOC 2000
02000* 1377 CODE, TAD (CODE
02001* 3005 | DCAS
02177* 2000 . . PAGE

0600 ' RELOC

The location marked CODE is loaded into location 400, but the
assembler treats it as if it were loading into location 2000. The
asterisks after the location- values indicate that the virtual and the
actual location counters differ for that line of code. RELOC always
causes current page literals to be dumped.

Altering The Permanent Symbol Table

PALS8 contains a table of symbol definitions for the PDP-8 and
OS/8 peripheral devices. These are symbols such as TAD, DCA,
and CLA, which are used in most PDP-8 programs. This table is
considered to be the permanent symbol table for PALS.

If the user purchases one or more optional devices whose instruc-
t'on set is not defined among the permanent symbols (for example
EAE or an A/D converter), he would want to add the necessary
symbol definitions to the permanent symbol table in every program
he assembles.

3-33

Conversely, the user who needs more space for user-defined
symbols would probably want to delete all definitions except the
ones used in his program. For such purposes, PAL8 has three
pseudo-ops that can be used to alter the permanent symbol table.
These pseudo-ops are recognized by the assembler only during
pass 1. During either pass 2 or pass 3 they are ignored and have
no effect. _
EXPUNGE deletes the entire permanent symbol table, except
pseudo-ops.

FIXTAB appends all presently defined symbols to the perma-
nent symbol table. All symbols defined before the occurrence of
FIXTAB are made part of the permanent symbol table for the
current assembly.

To append the following instructions to the symbol table, the
user generates an ASCII file called SYM.PAL containing:

MUY=7405 /MULTIPLY
DVI=7407 ~ /DIVIDE .
CLSK=6131 /SKIP ON CLOCK INTERRUPT
FIXTAB /SO THAT THESE WON'T BE
: /PRINTED IN THE SYMBOL TABLE

The ASCII file is then entered in PALS’s input designation. The
user may also place the definitions at the beginning of the source
file. This eliminates the need to load an extra file. Each time the
assembler is loaded, PALS’s permanent symbol table is restored.

The third pseudo-op used to aiter the permanent symbol tabie in
PALS8 is FIXMRI. FIXMRI is used to define a memory reference
instruction and is of the form:

FIXMRI name=value

The letters FIXMRI must be followed by one space, the symbol
for the instruction to be defined, an equal sign, and the value of the
symbol. The symbol will be defined and stored in the symbol table
as a memory reference instruction. The pseudo-op must be repeated
for each memory reference instruction to be defined. For example:

EXPUNGE

FIXMRI TAD=1000
FIXMRI DCA=3000
CLA=7200

FIXTAB

3-34

When the preceding program segment is read into the assembler
during pass 1, all symbol definitions are deleted and the three sym-
bols listed are added to the permanent symbol table. Notice that
- CLA is not a memory reference instruction. This process can be
performed to alter the assembler’s symbol table so that it contains
only those symbols used at a given installation or by a given pro-
gram. This may increase the assembler’s capacity for user-defined
symbols in the program. '

LINK GENERATION AND STORAGE _

In addition to handling symbolic addressing on the current page
of memory, PALS8 automatically generates links for off-page refer-
ences. If reference is made to an address nof on the page where an
instruction is located, the assembler sets the indirect bit (bit 3) and
an indirect address linkage will be generated on the current mem- .
ory page. If the off-page reference is already an indirect one, the
error diagnostic II (illegal indirect) will be generated. For example:

*2117
A, CLA

2600
IMP A

In the example above, the assembler will recognize that the register
labelled A is not on the current page (in.this case 2600 to 2777)
and will generate a link to it as follows:

1. In location 2600 the assembler will place the word 5777
which is equivalent to JMP 1 2777.

2. In address 2777 (the last available location on the current
- page) the assembler will place the word 2117 (the actual
address of A).

During pass 3, the octal code for the instruction will be followed by
an apostrophe () to indicate that a link was generated.

Although the assembler will recognize and generate an indirect
address linkage when. necessary, the programmer may indicate an
explicit indirect address by the pseudo-op 1. The assembler cannot

3-35

generate a link for an instruction that is already specified as being
an indirect reference. In this case, the assembler will print the error
message II (illegal indirect). For example:

*2117
A, CLA

*2600 .
JMPITA

The above coding will not work because A is not defined on the
page where JMP I A is attempted, and the indirect bit is already
set.

Literals and links are stored on each page startmcr at page
address 177 (relative) and extending toward page address 0
(relative). Whenever the origin is then set to another page, the
literal buffer for the current page is output. This does not affect
later execution. There is room for 160 (octal) literals and links on
page zero and 100 (octal) literals on each other page of memory. -
Literals and links are stored only as far down as the highest in-
struction on the page. Further attempts to define literals will result
‘in a PE (page exceeded) or ZE (page zero exceeded) error message.

CODING PRACTICES

A neat printout (or program listing, as it is usually called) makes
subsequent editing, debugging, and interpretation much easier than
if the coding were laid out in a haphazard fashion. The coding
practices listed below are in general use, and will result in a
readable, orderly listing.

1. A title comment begins with a slash at the left margin.

2. Pseudo-ops may begin at the left margin; often, however,
they are indented one tab stop to line up with the executable
instructions.

3. Address labels begin at the left margm They are separated
~ from succeeding fields by a tabulation.

4. TInstructions, whether or not they are preceded by a label
field, are indented one tab stop. :

3-36

5. A comment is separated from the precedihg field by one or
' two tabs (as required) and a slash; if the comment occupies
the whole line it usually begins with a slash at the left mar-

gin. .

- PROGRAM PREPARATION AND ASSEMBLER OUTPUT
The following program was generated using the OS/8 EDITOR
and was assembled with PALS.

/SAMPLE PAL8 PROGRAM
/GETS INPUT FROM KBD,HALTS WHEN "E" IS TYPED
* 200
BEGIN, KCC
"~ KSF '
JMP -1 /WAIT FOR FLAG
KRB /READ IN CHARACTER
TAD (-"E N
SNA CLA /1S 1T E?
HLT :
JMP BEGIN+1
/END OF EXAMPLE

s

The program consists of statements and pseudo-ops and is
terminated by the dollar sign ($). If the program is large, it can be
segmented by placing it into several files; this often facilitates the
editing of the source program since each section will be physically
smaller. r
The assembler initially sets the current location counter to 0200.
This counter is reset whenever the asterisk (*) is processed.

The assembler reads the source file for pass 1 and defines all
symbols used. During pass 2, the assembler reads the source file
and generates the binary code using the symbol table equivalences
defined during pass 1. The binary file that is output may be loaded
by the Load command. This binary file consists of an origin setting
and data words. -

During pass 3, the assembler reads the source file and generates
the code from the source statements. The assembly listing is output
in ASCII code. It consists of the current location counter, the
generated code in octal, and the source statement. Unless options
are chosen to suppress paging or to change the header, the first 50
(cctal) characters of the first line of the source program will be used

3-37

as a heading for each page followed by the assembler version num-
ber, the date and the listing page number. The 5-digit first column
is the field number and 4-digit octal address (current location
counter); the 4-digit second column is the assembled object code.
The symbol table is printed at the end of the pass. The pass 3 out-
put is:

/SAMPLE PAL8 PROGRAM

/SAMPLE PALS8 PROGRAM
/GETS INPUT FROM KBD,HALTS WHEN "E" IS TYPED

0202 ®200
geee? 6@32 BEGIN, KCC
geeel 6031 KSF
pe2e2 Se201 JMP =1 /WAIT FOR FLAG
20203 6836 KRB /READ IN CHARACTER
eoeQd 1377 TAD (~"E
peeas 7652 SNA CLA /1S 1T E?
po206 7T4pe HLT
peee? S2o1 JMP BEGIN¢1

/END OF EXAMPLE
20377 7473

3
/SAMPLE PALS PROGRAM

BEGIN 2200

TERMINATING ASSEMBLY
PALS will terminate assembly and return to the Monitor under
any of the following conditions:

1. Normal exit: The end of the source program was reached
on pass 2 (or pass 3 if a listing is being generated).

2. Fatal error: One of the following error conditions was found
and flagged (see the next section):

BE DE DF PH SE

3. CTRL/C: If typed by the user, control returns to the Monitor.
3-38

'PALS ERROR CONDITIONS . o
PALS will detect and flag error conditions and generate error
messages on the console terminal. The format of the error message

is: . | ' :

CODE address

where code is a 2-letter code which specifies the type of error, and
address is either the absolute octal address where the error occurred
-or the address of the error relative to the last symbolic tag (if there
was one) on the current page. For example, the following code:

BEG, TAD LBL
%TAD LBL

would produce the error message:
IC BEG+0001

since % is an illegal character.

On the pass 3 listing, error messages are output as 2-character
messages on the line just prior to the line in which the error oc-
curred. The following table lists the PALS8 error codes. Those
labeled Fatal Error are followed immediately by an effective
CTRL/C.

Table 3-3 PALS Error Codes

Error Code | : Meaning

BE. Two PALS internal tables have overlapped. This situa-
tion can usually be corrected by decreasing the level of
literal nesting or the number of current page literals used
prior to this point on the page. Fatal error: assembly
cannot continue. '

CF Chain to CREF error. CREF.SV was not found on
SYS:. |

DE . Device error. An error was detected when trying to read
or write a device. Fatal error assembly cannot continye.

DF Device full. Fatal error: assembly cannot continue.

IC Illegal character. The character is ignored and the as-

sembly is continued.

3-39

Table 3-3 PAL 8 Error Codes (Cont.)

Error Code

Meaning

ID
IE
II

IP

1Z

LD
LG

PE

PH
RD

SE

Illegal redefinition of a symbol. An attempt was made
to give a previous symbol a new value by means other
than the equal sign. The symbol is not redefined.

Illegal equals. An attempt was made to equate a variable
to an expression containing an undefined term. The vari-

- able remains undefined.

Illegal indirect. An off-page reference was made; a link
could not be generated because the indirect bit was al-
ready set.

Illegal pseudo-op. A pseudo-op was used in the wrong
context or with incorrect syntax.

Illegal page zero reference. The pseudo-op Z was fouhd
in an instruction which did not refer to page zero. The Z
is ignored.

The /L or /G options have been specified and the Abso-
lute Loader is not present on the system.

Link generated. This code is printed only if the /E option
was specified to PALS.

Current non-zero page exceeded. An attempt was made

tc:

1. Override a literal with an instruction,
2. Override an instruction with a literal.
3

. Use more literals than the assembler allows on that
page.
This can be corrected by decreasing either the number of
literals on the page or the number of instructions on the
page. _
Phase error. A conditional assembly bracket is still in

effect at the end of the input stream. This is caused by
non-matching < and > characters in the source file.

Redefinition. A permanent symbol has been defined
with =. The new and old definitions do not match. The
redefinition is allowed.

‘Symbol table exceeded. Too many symbols have been

defined for the amount of memory available. Fatal error:
assembly cannot continue.

3-40

Table 3-3 PALS Error Codes (Cont.) . '

Error Code - Meaning

Uo Undeﬁned origin. An undeﬁned symbol has occurred in
an origin statement.

US Undefined symbol. A symbol has been processed during
pass 2 that was not defined before the end of pass 1.

ZE Page 0 exceeded. This is the same as PE except w1th
reference to page 0.

PALS PERMANENT SYMBOL TABLE |

The following are the most commonly used elements of the
PDP-8 instruction set and are found in the permanent symbol table
within the PALS Assembler. For additional information on these -
instructions and for a description of the symbols used when pro-
gramming other optional devices, see THE SMALL COMPUTER
HANDBOOK, available from the DIGITAL Software Distribution
Center. (All times are in microseconds and representatlve of the

PDP 8/E.)

Mnemonic ~ Code ~~ Operation Time

" Memory Reference Instructions

AND 0000 Logical AND SR 2.6
TAD 1000 = Two’s complement add 2.6
ISZ 2000 Increment and skip if zero 2.6
DCA 3000 Deposit and clear AC 2.6
JISM 4000 Jump to subroutine | 2.6
JMP 5000 - Jump | 12
IOT 6000 In/Out transfer | —
OPR - 7000 Operate , 1.2

Group 1 Operate Microinstructions (1 cycle = 1.2 microseconds)

NOP 7000 No operation

IAC 7001 Increment AC

BSW 7002 Byte swap

RAL 7004 Rotate AC and link left one
RTL 7006 Rotate AC and link left two

3-41

AW |

Mnemonic Code

'RAR 7010
RTR 7012
CML 7020
CMA 7040
CLL 7100
CLA 7200
Group 2 Operate M
HLT 7402
OSR 7404
SKP 7410
SNL 7420
SZL 7430
SZA 7440
SNA 7450
SMA 7500
SPA - 7510

Operation

Rotate AC and link right one
Rotate AC and link right two
Complement the link
Complement the AC

Clear link

Clear AC

3 vyt mime (1 aceald
roinstructions (1 cycle)

Halts the computer

Inclusive OR SR with AC
Skip unconditionally

Skip on non zero link

Skip on zero link

Skip on zero AC

Skip on non zero AC

Skip on minus AC :
Skip on positive AC (zero is
positive)

Group 3 Operate Microinstructions

Multiplier Quotient OR into AC

Load Multiplier Quotient

Sequence

== NN AR

Ptk ek el ek () D

fo—ry

Swap AC and Multiplier Quotient

Combined Operate Microinstructions

MQA 7501
- MQL 7421
SWP 7521
CIA 7041
STL 7120
GLK 7204
STA 7240
LAS 7604

" Complement and increment AC

Set ink to'1

Get link (put link in AC, bit 11)

Set ACto —1
Load AC with SR

3-42

2.3
1.2
1.4
2.0
2.3

Mnemonic Code Operation Time

Internal IOT Microinstructions
SKON . 6000 Skip with interrupts on and turn

them off -
ION 6001 ‘Turn interrupt processor on 1.2
I0OF - 6002 Turn interrupt processor off 1.2
GTF 6004 Get flags
RTF 6005 Restore flag, ION
SGT - - 6006 Skip if “Greater Than” flag is set

CAF 6007 Clear all flags
Keyboard/Reader (1 cycle)

KCF 6030 ‘Clear keyboard flags |
KSF 6031 Skip on keyboard/reader. flag i.2

KCC 6032 Clear keyboard/reader flag and
AC; set reader run 1.2
KRS 6034 Read keyboard/reader buffer
_ (static) ~ 1.2
KIE 6035 Set/clear interrupt enable

KRB 6036 ‘Clear AC, read keyboard buffer :
‘ (dynamlc), clear keyboard flags 1.2

Teleprlnter/ Punch (1 cycle)

TFL 6040 Set teleprinter flag
TSF 6041 Skip on teleprinter/punch flag 1.2
TCF 6042 Clear teleprinter/punch flag 1.2
- TPC 6044 Load teleprinter/punch and

print 1.2
TSK 6045 Skip on keyboard or teleprmter

flag 1.2
TLS 6046 Load teleprinter/punch, print,

and clear teleprinter/punch flag 1.2

343

Mnemonic

Code

Operation

High Speed Perforated Tape Reader

RPE

RSF
RRB

6010

6011
6012

6014

Set Reader/Punch interrupt en-
able

Skip if reader flag=1

Read reader buffer and clear
flag

Clear flag and buffer and fetch
character

High Speed Perforated Tape Punch

PCE

PSF
PCF
PPC
PLS

6020

6021
6022
6024
6026

Clear Reader/Punch interrupt
enable :

Skip if punch flag=1

Clear flag and buffer

Load buffer and punch character
Clear flag and buffer, load buffer
and punch character

3-44

Time

1.2
1.2

1.2

1.2

1.2
1.2
1.2
1.2

1.2

INTRODUCTION

The OS/8 SABR assembler is a modified version of the 8K
SABR assembler which is designed to run under the OS/8 Oper-
ating System.

The OS/8 SABR assembler can be used as the automatic sec-
ond pass of the FORTRAN compiler, called separately to do
assemblies of FORTRAN compiled files, or used as an independent
assembler with its own assembly language. In addition, SABR
statements may be used in an OS/8 FORTRAN program, expand-
ing the capabilities of the FORTRAN language. '

Calling and Using OS/8 SABR

Unless otherwise specified, the SABR assembler is called auto-
matically by the system to assemble the output of a FORTRAN
compilation. At other times the user can call SABR by typing:

R SABR

in response to the dot printed by the Keyboard Monitor. When
- the Command Decoder prints an asterisk at the left margin, the
user types the appropriate device assignations, I/O files, and any
of the acceptable options.

The line to the Command Decoder consists of O to 3 output de-
vice and file designations, 1 to 9 input device and file designations,
and the desired option(s). The form is:

*BINARY,LISTING,MAP<INPUT FILE(S)/OPTION(S)

where BINARY represents the binary output, LISTING the list-
ing output, and MAP the Linking Loader loading map input. Un-
less alternate extensions are indicated, SABR assumes the following
extensions:

4-1

File Type Extension

input file | .SB
binary output .RL
listing output LS

If no binary output file is indicated, no binary output will be gen-
erated. However, if the /L or /G options are specified, a binary
file will be generated under the assigned name SYS:FORTRL.TM.

0S/8 SABR OPTIONS |
The options which can be included in a command string to OS/8
SABR are listed in Table 4-1.

Table 4-1 SABR Options.

Option - Meaning
/F Indicates that the input file is an 8K FORTRAN
output file.
/G Calls the Linking Loader, loads the program into

core and begins execution. If a binary output file is
not specified, then FORTRL.TM is loaded into core
and deleted from the file device. If a starting address
is not specified (using the options to the Linking
Loader), controi is sent to the program eniry point
MAIN (the FORTRAN compiler gives this name
automatically to the main program).

/L Calls the Linking Loader at the end of the assembly
and loads the specified binary file. If a binary out-
put file is not specified, then the temporary file
FORTRL.TM is loaded into core and deleted from '
the file device. The Loader then either returns to the
Keyboard Monitor with a core image or asks for
more input, depending on whether an ALT MODE
or RETURN key has terminated the input line.

/N Outputs the symbol table but not the rest of the list-
ing (applicable only if a listing file is specified).

/S Omits the symbol table from the listing "(appiicable
only if a listing file is specified).

4-2

When the /L or /G options are specified,any options to the
- Linking Loader (described. in the seetion concerning.the Linking
Loader) can be included in the command string for SABR. This
does not include the /L (Library) option of the Linking Loader,
- since it would conflict- with the SABR /L option.

NOTE

The FORTRAN compiler. automatically.
generates an entry point named . MAIN
.whose address is the beginning of the pro-
gram. When writing a main program in
SABR, the user should specify the entry
point MAIN with the entry pseudo-op in
order to symbolically specify the starting ad-
dress to the Linking Loader. (Otherwise the
starting address must be specified to the
Loader as a five digit address.)

EXAMPLES OF 0S/8 SABR 1/0 -
SPECIFICATION COMMANDS
Example 1:

R SABR
*FORTRN. TM/F/G

DSK:FORTRN.TM is assembled as a FORTRAN output file and
the relocatable binary is loaded and started at the entry point
MAIN.

Example 2:

+R SABR
*SYS TEERL>TTY:<TEE/S

The input file TEE.SB (or TEE) on DSK: is assembled. The re-
locatable binary goes to the output file TEERL.RL on SYS:, the
listing without a symbol table goes to the terminal .

4-3

THE CHARACTER SET

ALPHABETIC
In addition to the letters A through Z, the followmg are con-

s1dered by SABR to be alphabetic:

NUMERIC

[left bracket
] right bracket
\. back slash

t up arrow

SABR recognizes the numbers:

0-9

SPECIAL CHARACTERS
The following printing and non-printing characters are legal:

ne~ N

Comma

Slash

Left parenthesis
Quote

Minus sign

- Number sign

RETURN

- (carriage return)

Semicolon
LINE FEED
FORM FEED
SPACE

TAB
RUBOUT

delimits a symbolic address label
indicates start of a comment
indicates a literal

precedes an ASCII constant
negates a constant

increases value of preceding sym-
bol by one

terminates a statement

terminates an instruction

ignored

ignored

separates and delimits items on
the statement line

same as space

ignored

All other characters are illegal except when used as ASCII
constants following a quote (), or in comments or text strings.

Legal characters used in ways different from the above, and all
illegal characters, cause the error message C (Illegal Character) to
“be printed by SABR.

4-4

STATEMENTS

SABR symbolic programs are written as a sequence of state-
ments and are usually prepared on the terminal, on-line, with the -
aid of the Symbolic Editor program. SABR statements are virtually
format free. Each statement is terminated by typing the RETURN
key. (Editor automatically provides a line feed). Two or more
statements can be typed on the same line using the semicolon as a
separator.

A statement line is composed of one or all of the following ele-
ments: label, operator, operand and comment, separated by spaces
or tabs (labels require a following comma). The types of elements
in a statement are identified by the order of appearance in the line.
and by the separating or delimiting character which follows or
~ precedes the element.

Statements are written in the general form:

label, operator operand /comment (preceded by slash)

SABR generates one, or possibly more, machine (binary) in-
structions or data words for each source statement. -

An input line may be up to 72,, characters long, including
spaces and tabs. Any characters beyond this limit are ignored.

" The RETURN key (CR/LF) is both an instruction and a line
terminator. The semicolon may be used to terminate an instruction
without terminating a line. If, for example, the programmer wishes
to write a sequence of instructions to rotate the contents of the
accumulator (AC) and link (L) six places to the r1ght it might
look like this: :

RTR
RTR
RTR

Using the semicolon, the programmer may place all three RTR’s on

a single line, separating each RTR with a semicolon and termi-
nating the line with the RETURN key. The preceding sequence of .
- instructions could then be written:

4-5

RTR;RTR;RTR (terminated with the RETURN key)

This format is particularly useful when creating a list of data:

200 02029 LIST> 203505-30562
@281 @050 B

page2 7750

8203 go62

Null lines may be used to format program listings. A null line
is a line containing only a carriage return and possibly spaces or
tabs. Such lines appear as blank lines in the program listing.

Labels-

A label is a symbolic name or location tag created by the pro-
grammer to identify the address of a statement in the program.
Subsequent references to the statement can be made merely by
referencing the label. If present, the label is written first in a state-
ment and terminated with a comma.

BI22 SAVE, 2

1280 ABC., TAD SAVE

R
8
¢
¢
[y

S RN
n W
NS BN

SAVE and ABC are labels -ref.erencing the statements in location
0200 and 0201, respectively.

Operators

An operator is a symbol or code which indicates an action or
operation to be performed, and may be one of the following:

1. A direct or indirect memory reference instruction

2. -An operate or IOT microinstruction

3. A pseudo-operator

All SABR operators, microinstructions and memory reference
instructions are summarized in Appendix C.

4-6

Operands

An operand represents that part of the statement which is manip-
ulated or operated upon, and may be a numeric constant, a literal
.. or a user-defined address symbol.

In the example ‘last given, SAVE represents an operand.

CONSTANTS :

Constants are data used but not changed by a program and are
of two types: numeric and ASCII. ASCII constants are used. only
as parameters. Numeric constants may be used as parameters or as
operand addresses, for example:

2200 1412 _ TAD I 12

~ Constant operand addresses are treated as absolute addresses,
just as a symbol defined by an ABSYM statement (see Symbol
Definition). References to them are not generally relocatable,
therefore, they should be used only with great care. The primary
use of constant operand addresses is to reference locations on page
0 (see Linkage Routine Locations for free locations on page 0 of
each field). All constant operand addresses are assumed to be in
the field into which the program is loaded by the Linking Loader.
Constants may not be added to or subtracted from each other or
from symbols. -

Numeric Constants _

A numeric constant consists of a single string of from one to
four digits. It may be preceded by a minus sign (—) to negate the
constant. The digit string will be interpreted as either octal or
decimal according to the latest: permanent mode setting by an
- OCTAL or DECIM pseudo-operator (explained under Assembly
Control). Octal mode is assumed at the beginning of assembly.
The digits 8 and 9 must not appear in an octal string.

2200 5020 As 5320
201 7575 . - -203

DEC IM
3202 0120 ' 80
ASCII Constants

Eight-bit ASCII values may be created as constants by typing
the ASCII character immediately following a double quotation

47

marks (). A minus sign may be used to negate an alphabetic con-
stant. The minus sign must precede the quotation mark.

2200 8273 As , s
21 7477 -"'a /=301

G202 0207 " /BELL FOLLOWS "

The following are illegal as alphabetic constants: carriage return,
line feed, form feed and rubout. ‘

LITERALS

A literal is a numeric or ASCII constant preceded by a left
parenthesis. The use of literals provides a special and convenient
way of generating constant data in a program. The value of the
literal will be assembled in a table near the end of the core page on
which the instruction referencing it is assembled. The instruction it-
self will be assembled as an appropriate reference to the location
where the numeric value of the literal is assembled. Literals are
normally used by TAD and AND instructions, as in the following
examples:

2200 83376 _ As AND (777
#2231 1375 TAD (-50
n2p2 1374 TAD ("'C

0374 @303
@375 7739
#376 @777

The numeric conversion mode is initially set to octal, but is con-
trollable with the DECIM and OCTAL pseudo-operators. This
mode can be changed on a local basis by inserting a D (decimal)
or a K (octal) between the left parenthesis and the constant. For
example:

(D32 becomes 0040 (octal)
(K-32 becomes 7746 (octal)

This usage is confined only to the statement in which it is found
and does not alter the prevailing conversion mode.

A literal may also be used as a parameter (i.e., with no opera-
tor). In this case the numeric value of the literal is assembled as

4-8

usual in the literal table near the end of the core page currently
being assembled, and a relocatable pointer to the address of the
literal is assembled in the location where the literal parameter
appeared. | -

2200 0376 21 a, 20

2376 0029

This feature is intended primarily for use in passing external
subroutine arguments with the ARG pseudo-operator, which 1s
explained in greater detail later in the chapter.

PARAMETERS

'A parameter is generally either a numeric constant, a literal or
a user-defined address symbol, which is intended to represent data
rather than serve as an instruction. It appears as an operand in a’
statement line containing no operator. (An exception to this is a
parameter used in conjunction with the ARG pseudo-operator, ex-
plained in Subroutines.) In the following example, 200 and 320

M, and PGOADR all represent parameters.

0200 0200 © ABCS 00 -3203"N
0201 T460 .
@202 @215 B -
2203 0176 "POINTR, PGOADR
SYMBOLS

Symbols are composed of legal alphanumeric characters and are
delimited by a non-alphanumeric character. There are two major
types of symbols: permanent, and user-defined.

Permanent Symbols

Permanent symbols are predefined and maintained in SABR’s
permanent symbol table. They include all of the basic instructions
and pseudo-operators in Appendix C. These symbols may be used
without prior definition by the user.

4-9

User-Defined Symbols

A user-defined symbol is a string of from one to six legal alpha-
numeric characters delimited by a non-alphanumeric character.
User-defined symbols must conform to the following rules:

1. The characters must be legal alphanumerics—
ABCD...XYZ, []\1T and 0123456789.

2. The first character must be alphabetic.

3. Only the first six characters are meaningful. A symbol
such as INTEGER would be interpreted as INTEGE.
Since the symbols GEORGE1 and GEORGE?2 differ only
in the seventh character, they would be treated as the
same symbol: GEORGE.

4. A user-defined symbol cannot be the same as any of the
pre-defined permanent symbols.

5. A user-defined symbol must be defined only once. Sub-

 sequent definitions will be ineffective and will cause SABR
to type the error message M (Multiple Definition).

A symbol is defined when it appears as a symbolic address label
or when it appears in an ABSYM, COMMN, OPDEF or SKPDF
statement (see Pseudo-Operators). No more than 64 different user-
defined symbols may occur on any one core page. |

Equivalent Symbols

When an address label appears alone on a line—with no instruc-
tion or parameter—the label is assigned the value of the next ad-
dress assembled.

TAGL
TAGZ2, 30
TAG3.,

TAG1 and TAG2 are equivalent symbols in that they are as-
signed the same value. Therefore, a TAD TAG]1 will reference the
data at TAG2. TAG3, however, is not equivalent to TAG2. TAG3
would be defined as 1 greater than TAG2.

Comments :

- A programmer may add notes to a statement by preceding them
with a slash mark. Such comments do not affect assembly or pro-
gram execution but are useful in interpreting the program listing

4-10

for later analysis and debugging. Entire lines of comments may be
present in the program.

None of the special characters or symbols have significance
when they appear in a comment.

/THLS IS A COMMENT .LINE.
/THIS ALSO. TAD3;CALL3#"-2C+=!
A, TAD SAVE /SLASH STARTS COMMENT

INCREMENTING OPERANDS o
Because SABR is a one-pass assembler and also because it
sometimes generates more than one machine instruction for a
single user instruction, operand arithmetic is 1mp0551ble State—
ments of the form:

TAD TAG+3 .
TAD LIST-LIST2
JMP . +6

are illegal. However, by appending a number sign to an operand
the user can reference a location exactly one greater than the
location of the operand (the next sequential location): TAD
LOC# is equivalent to the PAL language statement TAD LOC+1.

0200 0020 LOC» 20

%20t 0030 30

goge 1200 START, - TAD LOC /GET 20

P23 1201 TAD LOC# /GET 30
_ PAGE

0400 0200 As L.Qoc

gapl 0201 . B - LOC#

In assembling #-type references SABR does not attempt to de-
termine if multiple machine code words are generated at the sym-
bolic address referenced. |

STARTs TAD I LOC /LOC IS. OFF-PAGE
NOP /USER HOPES TO MODIFY
TAD (7500 /SMA
DCA START#

4-11

In the preceding example the user wishes to change the NOP in-
struction to an SMA. However, this is not possible because TAD
I LOC will be assembled as three machine code words; if START
is at 0200, the NOP will be at 0203. The SMA will be inserted at
0201, thus destroying the second word of the TAD I LOC execu-
tion. '

To avoid this error, the user should carefully examine the as-
sembly listing before attempting to modify a program with #-type
references. In the previous example the proper sequence is:

202 4067 START, TaD I LOC

9203 0200 01

0204 1407

8205 17000 VAR NOP

0206 1377 TAD (7500
2207 3205 ‘ DCA VAR
@377 1500

The #-sign feature is intended primarily for manipulating
DUMMY variables when picking up arguments from external sub-
routines and returning from external subroutines (see Passing Sub-
routine Arguments).

PSEUDO-OPERATORS

Table 4-2 lists all the pseudo-operators available in SABR,
whether used as a free-standing assembler, or in conjunction with
the Fortran compiler. The pseudo-operators are categorized and
explained in the following paragraphs.

4-12

Table 4-2 SABR Pseudo-Operators

Mnemonic Code ~ Operation

"ABSYM = Direct absolute symbol definition, used to indi-
cate an absolute core address. For example:

ABSYM TEM 177 /PAGE ZERO -ADDRESS

ARG Argument for subroutine call, indicating a value
to be transmitted, one value per ARG state-
ment. Used only with CALL. For example:

N1, . ARG (50

N2, ARG LOCATN
BLOCK Reserve storage block; reserves n words of core

by placing zeros in them. For example:

BLOCK 200 /RESERVE 300
BLOCK 100 /(OCTAL)> LOCATIONS
CALL Call external subroutine. For example:

CALL 2, SUBR

. where 2 is the number of arguments to be
passed and SUBR is the subroutine name.

COMMN Common storage definition, used to name loca-
tions in field 1 as externals to be referenced by
any program. For example:

As COMMN 22 /20 WORDS IN COMMON

CPAGE ‘Check if page will hold data, followed by the
number of words of code which must be kept
together in a unit on a page. That number of
words following the CPAGE will be assembled
“as a unit on the next available core page.

DECIM Decimal conversion,- numeric conversion in-
terprets all numbers input as being decimal
numbers.

4-13

Table 4-2 SABR Pseudo-Operators (Cont.)

Mnemonic Code

Operation

DUMMY

EAP

END
ENTRY

FORTR

=

LAP

Dummy argument definition, used in passing
arguments to and from subroutines. DUMMY
variables are defined in the subprograms which
reference them. For example:

ENTRY Al
DUMMY X
DUMMY Y

Enter automatic paging mode, restore-automatic
paging (See LAP).

‘End of program or subprogram.

Define program entry point, used at beginning
of subprograms to give name of entry point for
the Linking Loader. For example:

ENTRY SUBROU
SUBROU, BLOCK 2

Assemble FORTRAN tape.

Symbolic represeniation for indirect addressing.
For exampie:

DCA I ADD

Conditional assembly, of form:

IF NAME, 7

If the symbol NAME has been previously de-
fined, the statement has no effect. If NAME is
not defined, the next 7 symbolic instructions
are not assembled.

Leave automatic paging. Assembler is initially
set for automatic jumps to the next core page
when the current page is full (or upon REORG
or PAGE statements). This feature can be sup-
pressed with LAP.

4-14

Table 42 SABR Psendo-Operators (Cont.)

Mnemonic Code

Operation

OCTAL

OPDEF

PAGE -

PAUSE

REORG

RETRN

SKPDF

- TEXT

Octal conversion, numeric conversion is orig-
inally set to octal and can be changed back to
octal after a DECIM pseudo-op has been used.

Define non-skip operator. For example:
OPDEF DTRA 6761
Terminate current page, begin assembly of suc-

ceeding instructions on next core page.

Pause for next tape, designed to allow large
source tapes to be broken into several smaller -
segments. Assembly is continued by pressing
the CONT switch.

Terminate page and reset origin; origin settings
are always to the first address of a page. For
example:

REORG 1000

Return from external subroutine, the name of

‘the subroutine being left must be specified. Be-

fore the RETRN statement is used, the pointer
in the second word of the subprogram entry

‘must be incremented to the point following all

arguments. in the calling program (after the
CALL statement). ' _ :

Define skip-type operator. For éxample:
SKPDF DTSF 6771

Text string similar to BLOCK, except that the
argument is a text string. Characters are stored
in six-bit stripped .ASCII with a printing char-
acter used to delimit the string. For example:

TAG» TEXT 7123%/

the string would be stored as:

6162
6352

4-15

Table 4-2 SABR Pseudo-Operators (Cont.)

Mnemonic Code - 'Operation

Odd characters are filled with zeros on the

‘right. :
The floating-point accumulator (in field 1).
ACH High-order word. | |
ACM Middle word. -
ACL .Low-order word.
Assembly Control -
END - Every program or subprogram to be assembled

must contain the END pseudo-op as its last line.
If this requirement is not met, an error message
(E) is given. ‘

PAUSE The PAUSE pseudo-op causes assembly to halt
and is designed to allow the programmer to break
up a large source tape into several smaller seg-
ments. To do this, the programmer need only
place a PAUSE statement at the end of each sec-
tion of his source program except the last. Each
of these sections of the program is then output as
an individual tape. When assembly halts at a
PAUSE, the user removes the source tape just

read from the reader and inserts the next one.
- Assembly may then be continued by pressing the
CONTinue switch.

WARNING
The PAUSE pseudo-op is designed specifi-
cally for use at the end of partial tapes and
should not be used otherwise.

The reason for this is that the reader routine may
have read data from the paper tape into its buffer
that is actually beyond the PAUSE statement.

4-16

DECIM

OCTAL -

LAP

EAP

Consequently, when CONTinue is pressed after
- the PAUSE is found by the line interpreting rou-

tine, the entire content of the reader buffer fol-
lowing the PAUSE is destroyed, and the next tape
begins reading into a fresh buffer. Thus, if there
is any meaningful data on the tape beyond the
PAUSE statement, it will be lost.

Initially the numeric conversion mode is set for
octal conversion. However, if the user wishes, he
may change it to decimal by use of the DECIM
pseudo-op. '

If the numeric conversion mode has been set to
decimal, it may be changed back to octal by use
of the OCTAL pseudo-op.

No matter which conversion mode has been per-
manently set, it may always be changed locally
for literals by use of the (D or (K syntax described
earlier. For example: |

0200 0320 ~ START, 320
: DECIM

0201 0500 _ 320
0202 0377 01 (K320

203 1000 512
- : OCTAL

0204 @512 . 512
2205 @376 81 (D512

0206 0320 320

. END

2376 1000

@377 0320

The assembler is initially set for automatic genera-
tion of jumps to the next core page when the page
being assembled fills up (Page Escapes), or when
PAGE or REORG pseudo-ops are encountered.
This feature may be suppressed by use of the
LAP (Leave Automatic Paging) pseudo-op.

If the user has previously suppressed the auto-
matic paging feature, it may be restored to op-
eration by use of the EAP (Enter Automatic
Paging) pseudo-op.

4-17

PAGE

REORG

CPAGE

The PAGE pseudo-op causes the current core
page to be assembled as is. Assembly of succeed-
ing instructions will begin on the next core page.
No argument is required. _

The REORG pseudo-op is similar to the PAGE

pseudo-op, except that a numerical argument

specifying the relative location within the sub-
program where assembly of succeeding instruc-
tions is to begin must be given. A REORG below
200 may not be given. A REORG should always
be to the first address of a core page. If a REORG
address is not the first address of a page, it will
be converted to the first address of the page it
is on.

209 7200 START, CLA

PAGE
G400 1040 cMA

REORG 1000
1000 17041 Cia

The CPAGE pseudo-op followed by a numerical
argument N specifies that the following N words of
code! must be kept together in a single unit and
not be split up by page escapes and literal tabies.
If the N words of code will not fit on the current
page of code, the current page is assembled as if a

PAGE pseudo-op had been encountered. The N
words of code will then be assembled as a unit on
the next core page. An example follows.

NOTE
N must be less than or equal to 200 (octal)
in nonautomatic paging mode or less than or
equal to 176 octal in automatic paging mode.

INormally data. However, if these N words are instructioﬂs, for example
a CALL with arguments, it is the user’s responsibility to count extra
machine instructions which must be inserted by SABR. »

4-18

IF

209 7200 START, CLA

LAP /INHIBIT PAGE ESCAPE
CPAGE 208 /CLOSES THE

0403 QB2 : NAMEl . /CURRENT PAGE

341 0020 . NAME2 /BND ASSEMBLES

/THE NEXT PAGE

The conditional pseudo-op, IF, is used with the
following syntax: ‘

IF NAME, 7

The action of the pseudo-op in this case is to first
determine whether the symbol NAME has been
previously defined. If- NAME is defined, the
pseudo-op has no effect. If NAME is not defined,
the next seven symbolic instructions (not counting. -
null lines and comment lines) will be treated as
comments and not assembled. "

/ABSYM NAME 176

IF NAME, 2 . /THE NEXT LINE
CLL RTL /TO BE ASSEMBLED
RAL /WILL ‘BE ""DCA LOC"

/1F THE SLASH BEFORE '"'ABSYM NAME 176"
/1S REMQOVED, THE "'CLL RTL"™ AND ''RAL"
/WILL BE ASSEMBLED.

s20s 3201 i DCA LOC
@201 0000 LOC» @

Normally the symbol referenced by an IF state-
ment should be either an undefined symbol or a
symbol defined by an ABSYM statement. If this
is done, the situation mentioned below cannot
occur.

WARNING
In a situation such as the following, a special
restriction applies.

4-19

NAME., 9]

IF NAME, 3

The restriction is that if the line NAME, 0 hap-
pens to occur on the same core page of instruc-
tions as the IF statement, then, even though it is
before the IF statement, NAME will not have been
previously defined when the IF statement is en-
countered, and on the first pass (though not in the
listing pass) the three lines after the IF statement
will not be assembled. The reason for this is that
location tags cannot be defined until the page on
which they occur is assembled as a unit.

Symbol Definition

ABSYM

OPDEF
SKPDF

An absolute core address may be named using the
ABSYM pseudo-op. This address must be in the
same core field as the subprogram in which it is
defined. The most common use of this pseudo-op
is to name page zero addresses not used by the
operating system. These addresses are listed under
Linkage Routine Locations.

Operation codes not already included in the sym-
bol table may be defined by use of the OPDEF or
SKPDF pseudo-ops. Non-skip instructions must
be defined with the OPDEF pseudo-op and skip-
type instructions must be defined with the SKPDF
pseudo-op.

Examples of ABSYM, OPDEF and SKPDF syn-
tax: |

B177 ABSYM TEM 177 /PAGE 0 ADDRESSES

2010 ABSYM AX 10

6761 OPDEF DTRA 6761 /NON-SKIP INSTR.

6771 SKPDF DTSF 6771 /SKIP-TYPE INSTR.
- 7548 SKPDF SMZ 7540 ’

4-20

. COMMN

, NOTE
ABSYM, OPDEF and SKPDF definitions
must be made before they are used in the
program.

The COMMN pseudo-op is used to name loca-
tions in field 1 as externals so that they may be
referenced by any program. If any COMMN state- -
ments are used, they must occur at the beginning

- of the source, before everything else including

the ENTRY statement. Common storage is always
in field 1 and is allocated from location 0200
upwards. Since the top page of field 1 is reserved,
no more than 3840,, words of common storage
may be defined. :
A COMMN statement normally takes a symbolic
address label, since storage is being allocated.
However, common storage may be allocated with-
out an address label.

A COMMN statement always takes a numerical
argument which specifies how many words of
common storage are to be allocated; however, a

0 argument is allowed. A COMMN statement =~

with O argument allocates no common storage;
it merely defines the given location symbol at the
next free common location. ' _
The syntax of the COMMN statement is shown
as follows:

pendz A, CCMVN 27

p2209 B> COMMN 10
2230 - COMMN 370
@530 C, CCMMN O

2530 D> COMMN 10

ENTRY SUERUT

In this example-20 words of common storage are
allocated from 0200 to 0217, and A is defined
at location 0200. Then, 10 words are allocated

4-21

from 0220 to 0227, and B is defined at 0220.
Notice that if A is actually a 30 word array, this
example equates B(1) with A(21).

The example continues by allocating common
storage from 0230 to 0527 with no name being
assigned to this block. Then 10 words are al-
located from 0530 to 0537 with both C and D
being defined at 0530. '

Data Generating

BLOCK

The BLOCK pseudo-op given with a numerical
argument N will reserve N words of core by
placing zeros in them. This pseudo-op creates
binary output, and thus may have a symbolic
address label.

Before the N locations are reserved, a check is
made to see if enough space is available for them
on the current core page. If not, this page is as-
sembled and the N locations are reserved on the
next core page. The action here is similar to that
of the CPAGE pseudo-op. Similar restrictions on
the argument apply.

/EXAMPLE OF HOW LARGE BLOCK STORAGE
/MAY BE ACHIEVED WITHIN A SUBPROGRAM AREA

LApP /INHIBIT PAGE ESCAPES
BLOCK 208 /RESERVE 5@0

BLOCK 208 /¢BCTALY LOCATIONS
BLOCK 100]

EAP /RESUME NORMAL CODING

As a special use, if the BLOCK pseudo-op is used
with a location tag (but with no argument or a
zero argument), no code zeros are assembled; in-
stead the symbolic address label is made equiv-
alent to the next relative core location assembled.
(This is equivalent to using a symbolic address
label with no instruction on the same line.)

4-22

TEXT

p2ge ©oee - LISTs» BLOCK 3 /ASSEMBLES AS

0201 0000
p202 . 000
' /THREE ZEROS
/WITH "LIST"
/DEFINED AT THE
’ . /FIRST LOCATION
" NAMEl., BLOCK /DEFINES NAMEl=
NAMEZ2, BLOCK 0 /NAME2=NAME3=
NAME3 » /NAME4
2203 0000) NAME4, BLOCK 2
204 00020 ’

~ The TEXT pseudo-op is used to obtain packed

six-bit ASCII text strings. Its function and use
are almost exactly the same as for the BLOCK
pseudo-op except that instead of a numerical ar-
gument, the argument is a text string. In partic- -
ular, a check is made to be sure that the text
string will fit on the current page without being
interrupted by literals, etc.

The text string argument must be contained on
the same line as the TEXT pseudo-op. Any print-
ing character may be used to delineate the text
string, This character must appear at both the be-
ginning and the end of the string. Carriage return,
line feed and form feed are illegal characters

‘within a text string (or as delineators). All char-

acters in the string are stored in simple stripped
six-bit form. Thus, a tab character (ASCII 211)
will be stored as an 11, which is equivalent to the
coding for the letter I. In general, characters out-
side the ASCII range of 240-337 should not be

 used.

2200 2485 TAG, TEXT /TEXT EXAMPLE 123%372/
2201 3024
page 4885
2203 3001
B2@g4 1520
9285 1425
G286 4061
@287 6263
2219 5273
gerl 7728

4-23

SUBROUTINES ,

A subroutine is a subprogram which performs a specific opera-
tion and is generally designed so that it can be used more than
~ once or by more than one program. Direction of flow goes from the
main, or calling, program to the subroutine, where- the action is
performed, followed by a return back to the address following the
subroutine call in the main program.

Internal subroutines are those subroutines which can only be
called from within a program. This type of subroutine is used
extensively in nearly all PDP-8 programs, and is handled through
the use of the JIMS, JMS I, and JMP I instructions. An example of
an internal subroutine call follows:

0200 7300 START» CLA CLL
201 1204 TAD N /GET NUMBER IN AC
202 4206 JMS TWO /TRANSFER TO SUB-
. /ROUT INE
@203 32085 DCA RESLT /STORE NUMBER
. /(CONTROL RETURNS
/HERE)
204 Q001 N> 1
3205 @500 RESLT, @
/SUBROUT INE
0206 0F00 TWO, o
0207 7104 CL1. RAl. /ROTATE LEFT AND
/MULTIPLY BY 2
32138 74230 SzZL /CHECK FOR OVERFLOW
@211 7482 HLT /STOP IF QUERFLOW
212 6201 85 JMP I TWO /RETURN TO MAIN
@213 5606 :
_ /PROGRAM
END -

The main program picks up a number (N) and jumps to the
subroutine (TWO) where N is multiplied by two. A check is made,
and if there is no overflow, control returns to the main program
through the address stored at the location TWO.

External subroutines are distinguished from internal subrou-
tines by the fact that they may be called by a program which has
been compiled, or assembled, without any knowledge of where the
subroutine will be located in core memory. Thus, external sub-
routines must be loaded with a relocatable linking loader. This
makes it possible for a programmer to build a library of frequently

4-24

&

used programs and subroutines which can be combined in various
configurations, and eliminates the need to reassemble, or recompile,
each individual program when a minor change is made in the
system. | .

A call to an external subroutine can be illustrated using the
following FORTRAN programs:

" IPARM=5 : (Calling Program)
CALL TWO(CIPARM)
WRITE (1,108) IPARM
100 FORMAT (I5)
END -

SUBROUTINE TWOCIARG) (Subroutine)
1ARG=IARG+IARG : :
RETURN

END

NOTE
Care should be exercised when naming a
function or subroutine. It must not have the
same name as any of the assembler mne-
monics or pseudo-ops or FORTRAN/SABR
library functions or subroutines, as errors are
likely to result. The symbol table for SABR
Assembler is listed in Appendix C, and the
library functions are described in the section
The Subprogram Library.

Any time a subroutine is called, it must have data to process.
This data is contained in parameters in the calling program which
- are then passé_d to the subroutine. The data is picked up by the
subroutine where it is referred to as arguments. (The subroutine
actually picks up the arguments by a series of TAD I’s, and one
final TAD I for an integer argument, or by a call to the IFAD
subroutine if a floating point argument. This is illustrated in the
section entitled SABR Programming Notes.) SABR has special
pseudo-operators which facilitate the passing/handling of argu-
ments, and each will be explained in turn.

CALL and ARG | __
The CALL pseudo-op is used by the main program to transfer
control to the subroutine and is of the form:

425

CALL .n,NAME

where n represents a one or two-digit number (62;, maximum) -
indicating the number of parameters to be passed to the subrou--
tine, and NAME (separated from n by a comma) represents the
symbolic name of the subroutine entry point. -

The Assembler must know the number of parameters which
follow the call so that enough room on the current page can be
allowed. The CALL pseudo-op and its corresponding parameters
must aiways be coded on the same memory page; that is, there
must be no intervening page escapes. (Page format and page: es-
capes are discussed later in the chapter.)

The ARG pseudo-op is used only in conjunction with CALL
and consists of the symbol ARG followed by one of the para-
meters (referred to as arguments in the subroutine) to be passed.
One ARG statement must be coded for each parameter.

In the previous FORTRAN example, the main program. (or it
may have been a subroutine) called a subroutine named TWO, and
supplied one argument:

CALL 1,TWO
ARG IPARM

SABR actuaily assembles the above instructions as follows (the
user may wish to consult the section concerning the Loader Relo-
cation Codes):

6200 0©00BY IPARM> BLOCK 1

2206 4033 : CALL 1,TWO
@207 0103 66
0210 6201 @5 ARG IPARM

021l o200 21

END
4-26

ENTRY and RETRN -

In the subroutine, the ENTRY statement must occur before the
name of the entry point appears as a symbolic address label. The
actual entry location must be a two-word reserved space so that
both the return address and field can be saved when the routine
is called. Execution of the subroutine begins at the first location
following the two-word ENTRY block. For example, the TWO
subroutine mentioned in the previous example would begin as fol-
lows: D

: ENTRY TWO
3200 0000 © TWO,» BLOCK 2
g201 0000
P227 4p4D RETRN TWC
0230 POR1 06
END

When a subroutine is referenced in a CALL statement, the
Run-Time Linkage Routine LINK executes the transfer to the sub-
routine. It assumes that the entry point to the routine is a two-
word block. Into the first word of this block it places a CDF in-
struction which specifies the field of the calling program. In the
second word it places the address from which the CALL occurred.
(This is analogous to the operation of the JMS instruction.) In
the previous example, if the MAIN program had been in field 0,
a 6201 would have been deposited in the location at TWO, and a
0210 at TWO #. ,

The RETRN statement allows the user to return to the calling
program from the subroutine. The name of the subroutine being
returned from must be specified in the RETRN statement so that
the Return Linkage Routine can determine the action required,
and also because a subroutine may have differently named ENTRY -
points. (This is analagous to the operation of a JMP I instruction.)

When a subroutine is entered, the second word of the entry name
block contains the address of the argument or next instruction -
immediately following the subroutine call in the calling program,
and it is to this address that control returns. -

4-27

Example .

A user wishes to write a long main program, MAIN®, which
uses two major subroutines, S1 and S2. S1 requires two arguments
and S2 one argument. The user writes MAIN, S1, and S2 as three
separate programs in the following manner:

ENTRY MAIN
MAIN. CLA /START OF MAIN

CALL 2,51
ARG X
ARG Y
CALL 1,52
ARG Z

END

ENTRY S1
Sl BLOCK 2

RETRN S1
END

ENTRY S2
S2, BLOCK 2

RETRN S2
END

S1 could also contain calls to S2, or S2 calls to S1. Each of these
programs is independently assembled with SABR and loaded with
the Linking Loader. During the loading process, all of the proper
addresses will be saved in tables so that when the user begins
execution of MAIN, the Run-Time Linkage Routines {see SABR

2 A useful procedure in SABR programming is to provide an ENTRY
point named MAIN in the main program at the address where execution
is to begin. This assures that the starting address of the program will
appear in the Linking Loader’s symbol print-out where it may be easily
referenced. If using OS/8, execution will begin at this address auto-
matically, eliminating the need to specify a 5-digit starting address.

4-28

Operating Characteristics),-which were automatically loaded, will
be able to execute the proper reference. Thus, MAIN will be able
to fully use S1 and S2 and be able to pass data to and receive it
from them. :

Passing Subroutine Arguments

DUMMY

A DUMMY pseudo-op- is used in SABR to deﬁne a two word
block which contains an argument address. Indirect instructions
are used to pass arguments to and from subroutines through these
DUMMY variables. If a DUMMY variable is referenced indirectly,
it causes a CALL to the DUMMY Variable Run-Time Linkage
Routine (see Run-Time Linkage Routines) which assumes that
the DUMMY variable is a two-word reserved space where the
first word is a 62N1 (CDF N), with N representing the field of
the address to be referenced, and that the second word contains a
12-bit address.

As.an example, consider the FORTRAN subroutine TWO
~ shown earlier. This could be written in SABR as follows (the user

may wish to refer to the section concerning the Subprogram
Library):

/CALLLED BY: CALL TWO (IARG)

.. ENTRY TWO /DEFINE THE
/ENTRY PT. USED
DUMMY IARG /T0O PICK UP ARG.

0200 0000 IARG, BLOCK 2
0201 0300 X .
0202 0000 TWO, BLOCK 2 /ENTRY POINT
0203 0000 : -
p204L 4B67T - TAD I TWO

. 92085 0202 01
2206 1407 : .
0207 2203 INC TWO# ~ /GET ARG ADDRESS
2210 3200 DCA IARG
6211 4067 TAD I TWO
212 0202 91 :
213 1407 _
214 2203 : INC TWO#
215 3201 DCA IARG# . ,
0216 4067 : TAD I IARG /GET ARGUMENT
3217 020001 ‘ : :
0220 1407

4-29

ga21
p222
paa3
paz4
2225
gaze

B227
22309

4867
2200
1407
4067
2200
3437

4849
9091

a1

21

26

TAD I IARG

DCA I IARG

RETRN TwO

END

/INTO AC
/ADD IT AGAIN

- /ZRETURN ARG. TO

/CALLING PROGRAM

A second example may be one in which a user has written a
FORTRAN program which contains a call to a SABR subroutine

ADD:

29

A=2

N=3

CALL ADD(A,N.,C)
WRITE (1,28)C

FORMAT ('

STOP

END

THE SUM IS',F6.1)

The FORTRAN program is compiled and the resulting SABR

code translates the subroutine call as follows:

8223
@224
#225
2226
0227
2230
2231
2232

4933
@365
62081
2200
6201
9283

6201
0204

26
25
21
@5
21
@5
21

CALL 3,ADD

ARG A

ARG N

ARG C

The CALL statement defines 3 parameters—A, N, and C, and the -
subroutine name ADD. The subroutine itself would appear as
follows (the DUMMY wariables X, K, and Z facilitate the passing

of the arguments to and from the subroutine) :

4-30

/CALLED BY: CALL ADD (XsK»Z)

ENTRY ADD
DUMMY X
DUMMY K
‘DUMMY Z
6208 0000 X BLOCK 2
2201 0209
2202 0000 Ks BLOCK 2
0203 0000 _
G204 QGG Zs BLOCK 2
2205 0000 :
P206 @200 01 XPNT. X
2207 0002 PNTR> O
2210 00200 CNTR» 2
?211 0000 ADD, BLOCK 2 /ENTRY POINT -
6212 0090 N _
@213 1206 - TAD XPNT
@214 3207 DCA PNTR
215 1377 TAD (-6
2216 3210 DCA CNTR
3217 4067 al, TAD 1 ADD
3220 0211 21
@221 1407
222 2212 INC ADD#
2223 6201 25 DCA I PNTR
@224 3607 '
@225 2207 INC PNTR
226 2218 1SZ CNTR
@227 5217 ' JMP Al ')
@230 4067 ' TAD I K /GET 2ND ARG
#231 0292 21
8232 1407 . _
@233 4@33 CALL @,FLOT /CONVERT TO
@234 0002 26 :
. /FLOATING PT.
@235 4033 CALL 1,IFAD /ADD 1ST ARG
?236 81063 06
8237 6201 @5 ARG X
@240 . 0200 81
. 8241 4033 CALL 1,ISTO /RETURN RESULT
@242 0104 26 .
@243 6201 @5 - ARG Z.
0244 0204 91)
@245 4040 RETRN ADD
@246 0001 06 :
8377 7772 .
END

431

The COMMN pseudo-op may be used to specify variables as
externals so that they may be referenced by any program. This
pseudo-op has been explained under Symbol Definition; an exam-
ple of its usage is included here.

2200 - C» COMMN 3 /RESERVES COMMON
/STORAGE :

‘ - ENTRY CSQR /DEFINES ENTRY PT.
P200 Q000 CSQR, BLOCK 2 s/ACTUAL ENTRY POINT
po@l 0Ooo ' '
@og2 4033 : CALL 1,FAD /GET THE ARGUMENT
p203 @lg2 96 :
goga 6211 ARG C
7205 7200
@206 4p33 CALL 1,FMP /MULTIPLY IT
@287 01083 26 .
g218 6211 ARG C
g211 8200 : . :
@212 a4p33 CALL 1,STO /REPLACE WITH RESULT
2213 0104 96 :
gela 6211 ARG C
g215 02080
2216 4040 RETRN CSQR /RETURN TO CALLING

@217 0001 06
_ /PROGRAM
END

. This subroutine computes the square of a variable C. C resides
in field 1 in common storage where it can be referenced by any
calling program through argument passing. The above is equivalent
to the FORTRAN subroutine:

SUBROUTINE CSQR
CoOMMON C

C=Cx*C

RETURN

END

SABR OPERATING CHARACTERISTICS
Page-by-Page Assembly

SABR assembles page-by-page rather than one instruction at a
time. To accomplish this it builds various tables as instructions
are read. When a full page of instructions has been collected
(counting literals, off-page pointers and multiple word instruc-
tions) the page is assembled and punched. Several pseudo-opera-
tors are available to control page assembly.

4-32

PAGE FORMAT
A normal assembled page of code is formatted as below:

X 000 [~

"~ ASSEMBLED
INSTRUCTIONS

JUMP TO
PAGE ESCAPE

LITERALS
AND

OFF - PAGE

POINTERS

X317 PAGE

ESCAPE

Literals and off-page pointers are intermingled in the table at
the end of the page.)

PAGE ESCAPES - :

SABR is normally in automatic paging mode: it connects each
assembled core page to the next by an appropriate jump. This is
called a page escape. For the last page of code, SABR leaves the
Automatic Paging Mode and issues no page escape. The LAP
(Leave Automatic Paging) pseudo-operator turns off the auto--
" matic paging mode, EAP (Enter Automatic Paging) turns it back
on if it has been turned off.

Two types of page escape may be generated depending on
whether or not the last instruction is a skip. If the last instruction
is not a skip, the page escape is as follows:

last instruction (non-skip)
5377 (JMP to x177)
literals
and
off-page
" pointers
x177/NOP

4-33

If the last instruction on the page is a skip type, the page escape
takes four words, as follows:

last instruction (a skip)
5376 (JMP to x176)
5377 (JMP tox177)
literals
. etc.
x176/SKP
x177/SKP

Multiple Word Instructions

Certain instructions in the source program require SABR to
assemble more than one machine language instruction (e.g., off-
page indirect references and indirect references where a data field
re-setting may be required). In the listing, the source instruction
will appear beside the first of the assembled binary words. .

A difficulty arises when a multiple word instruction follows a
skip instruction. The user need be aware that extra instructions
are automatically assembled to enable the skip to be effected cor-
rectly.

Run-Time Linkage Routines

These routines are loaded by the Linking Loader and perform
their tasks automatically when certain pseudo-ops or coding se-
quences are encountered in the user program. The user needs
knowledge of them only to better understand the program listing.
(The user may wish to refer to the section entitled Loader Relo-
cation Codes.)

There are seven linkage routines:

1. Change data field to current and skip CDFSKP

2. Change data field to 1 (common) and skip =~ CDZSKP

3. Off-page indirect reference linkage OPISUB

4. Off-bank (common) indirect reference OBISUB
linkage :

5. Dummy variable indirect reference linkage DUMSUB

6. Subroutine call linkage | LINK

‘7. Subroutine return linkage » RTN

4-34

The md1v1dual linkage routines functlonas follows: .

1. CDFSKP is called when a direct off-page- memory refer-
ence follows a skip-type instruction requiring the data field to be
reset to the current:field.

. ~ Assembled
Program Code : - Meaning-
SZA 7440 :
- DCA LOC 4045 call CDESKP A
- 7410 SKP in case AC=0 at .—2
3776 . execute' the DCA via a
pointer near the end of the
- page.

2. CDZSKP is called when a direct memory reference is made .
to a location in common (which is always in Field 1). The ac-
tion of CDZSKP is the same as that of CDFSKP except that it
always executes a CDF 10 instead of a CDF current (see Loader
Relocation Codes). | '

Assembled |
- Program Code - ’ : Meaning
SZA 7440 |
DCA CLOC 4051 call CDZSKP
7410 SKP in case AC=0 at .—2
3776 - execute the DCA via a
pointer near the end of .the
page. :

3. OPISUB is called when there is an 1nd1rect reference to an
off-page location.

Assembled
Program Code Meaning-
DCAIPTR 4062 call OPISUB
0300 01 relative address of PTR
3407 execute the DCA 1 via 0007

4. OBISUB is called when there is an indirect reference to a
location in common storage. In such a case it is assumed that the

4-35

location in common which is being indirectly referenced points to
some location that is also in common.

Assembled ,
Program Code , Meaning
DCA I CPTR 4055 call OBISUB
' 1000 address of CPTR in Field 1
3407 execute the DCA 1 via 0007

5. DUMSUB is called when there is an indirect reference to
a DUMMY variable. In such a case, DUMSUB assumes that the
DUMMY variable is a two-word vector in which the first word is
a 62N1, where N = the field of the address to be referenced, and
the second word is the actual address to be referenced.

Assembled
Program Code Meaning
DCA IDMVR 4067 call DUMSUB
0300 01 relative address of DMVR °
3407 execute DCA 1 via pointer

in location 0007

6. LINK is called to execute the linkage required by a CALL
statement in the user’s program. When a CALL statement is used,
it 1s assumed that the entry point of the subprogram is named in
the CALL and that thig entry point is a two-bit word, free block fol-
lowed by the executable code of the subprogram. LINK leaves the
return address for the CALL in these two words in the same format
as a DUMMY variable.

, Assembled
Program Code Meaning
“CALL 2, SUBR 4033 call LINK
0205 G6 - code word
ARG X 62M1 X resides in field M
0300 01 relative address of X
ARG C 6211 Cis in common
1007 absolute address of C

7. RTN is called to execute the linkage by a RETRN state-
‘ment in the user’s program.

4-36

Assembled

Program = Code : Meaning
RETRN SUBR 4040 call RTN
0005 06 number of the subprogram

being returned from (SUBR)

Skip Instructions

In page escapes and multiple word instructions, skip-type in-
structions must be distinguished from non-skipping instructions.
For this reason both ISZ and INC are included in the permanent
symbol table. ISZ is considered to be a skip instruction and INC
is not. INC should-be used to conserve space when the program-
mer desires to increment a memory word Wlthout the possibility
of a skip.

The first example below shows the code which is assembled for
an indirect reference to an off-page location following an INC in-
struction. The second example shows the same code following an
ISZ instruction. :

Example 1:

INC POINTR 7220 " 2376
TAD 1 LOC2 @221 4062
: 3222 9520 P1 /OFF PAGE INDIRECT EXECUTION

 pe23 1497
Example 2:
1SZ COUNTR @228 2376 : .
TaD I LOC2 0221 7410 /SKIP TO EXECUTION -
B222 5226 /JUMP OVER EXECUTION
3223 4062
@224, @520 @1 /QFF PAGE INDIRECT EXECUTION

pe25 1487

A special pseudo-operator, SKPDF, must be used to define skip
instructions used in source programs but not included in the perma-
nent symbol table. For example:

~ SKPDF DTSF 6771

4-37

Program Addresses

Since each assembly is relocatable, the addresses specified by
SABR always begin at 0200, and all other addresses are relative
to this address. At loading time, the Linking Loader will properly
adjust all addresses. For example, if 0200 and 1000 are the relative
addresses of A and B, respectively, and if A is loaded at 2000,
then B will be loaded at 2000 + (1000-0200) or 2600.

All programs to be assembled by SABR must be arranged to fit
into one field of memory, not counting page O of the field, or the
top page (7600 — 7777). If a program is too large to fit into one
field, it should be split into several subprograms.

Explicit CDF or CIF instructions are not needed by SABR pro-
grams because of the availability of external subroutine calling and
common storage. Explicit CDF or CIF instructions cannot be as-
sembled properly.

“The Symbol Table

Entries in the symbol table are variable in length. A one or two-
character symbol requires three symbol table words. A three- or
four-character symbol requires four words, and a five- or six-
character symbol, five words. Thus, for long programs it may be
to the user’s advantage to use short symbols whenever possible.

The symbol table, not counting permanent symbols, contains
2644,, words of storage. However, this space must De shared
when there are unresolved forward and external references tem-
porarily stored as two-word entries.

If we may assume that a program being assembled never has
more than 100, of these unresolved references at any one time,
this leaves 2464,, words of storage for symbols. Using an average
of four words per symbol, this allows-room for 616;, symbols.

The OS/8 version of SABR has a smaller space for symbol
tables, leaving 1364,, words of storage, or 1620,, if used as the
second pass of FORTRAN II.
~ Symbol table overflow is a fatal condition which generates the
~ error message S.

SYMBOL TABLE FLAGS ‘

Symbols are listed in alphabetic order at the end of the assembly
pass 1 with their relative addresses beside them. The following
flags are added to denote special types of symbols:

4-38

ABS The address referenced by this symbol is -absolute.

COM " The address is in common.
OP The symbol is an operator. -
- EXT The symbol is an external one and may or may not

be defined within this program. If not defined, there
is no difficulty; it is defined in another pr’ogram.

UNDF The symbol is not an external symbol and has not
: been defined in the program. This is a programmer -
error. No earlier diagnostic can be given because it
is- not known that the symbol is undefined until the
end of pass 1. A location is reserved for the unde-
_fined symbol, but nothing is placed in it.

THE SUBPROGRAM LIBRARY

The Library is a set of subprograms which may be CALLed by
any FORTRAN/SABR program. These subprograms are auto-
matically loaded with the OS/8 FORTRAN/SABR system; in the
paper tape system they are provided on two relocatable binary
paper tapes with part 1 containing those subprograms used by
almost every FORTRAN/SABR program. This allows the user
to load only those. routines which his program makes use of, thus
conserving symbol space.

Many of the subprograms reference the Floating-Point Accumu-
lIator located at ACH, ACM, ACL (20,21,22 of field 1). The
0OS/8 Subprogram Library is summarized in the FORTRAN 11
- chapter. The organization of the library programs, as they are pro-
vided in the paper tape system, is described in the following pages.

Part 1. “IOH” contains IOH, READ, WRITE -

“FLOAT” contains FAD, FSB, FMP, FDV, STO,
FLOT, FLOAT, FIX, IFIX,
IFAD, ISTO, CHS, CLEAR

“INTEGER” contains IREM, ABS, IABS, DIV,

, ' MPY, IRDSW

“UTILITY” contains TTYIN, TTYOUT, HSIN,
HSOUT, OPEN, CKIO

“ERROR” contains SETERR, CLRERR, ERROR

4-39

Part 2. “SUBSC” contains SUBSC
“POWERS” contains IIPOW, IFPOW, FIPOW,
FFPOW, EXP, ALOG

“SQRT” contains SQRT
“TRIG” contains -SIN, COS, TAN
“ATAN” contains ATAN

Input/ Output

READ is called to initialize the I/O handler before reading data.
WRITE is called to initialize the I/O handler before writing data.
IOH is called for each item to be read or written. IOH must also
be called with a zero argument to terminate an input-output se-
quence. '

Ail of the programs require that the Floating-Point Accumu-
lator be set to zero before they are called. |

CALL 2, READ

ARG (n /n=DEVICE NUMBER
ARG fa /fa=ADDR OF FORMAT
[X X J

CALL 1, IOH

ARG data 1 /data 1=ADDR OF HIGH

/ORDER WORD OF
/FLOATING POINT

| /NUMBER
CALL 1, TOH
ARG data 2
00
[X X]
CALL 1, IOH /TERMINATES READ
ARG 0
o000 ‘
CALL 2, WRITE /INITIALIZES WRITE
ARG (n |
ARG fa

4-40

The following device numbers are -curréntly implemented:
» 1 (Teletype keyboard/printer)
2 (High-speed reader/punch)
3 (Card reader/line printer)
_ - 4 (Assignable device)
Floating Point Arithmetic
FAD is called to add the argument to the Floating-Point Ac-
cumulator.

CALL 1, FAD
ARG addres

FSB is called to subtract the argument from the Floatmg—Pomt
Accumulator.

CALL - i, FSB
ARG . addres

FMP is called to multiply the Floating-Point Accumulator by
the argument.

CALL 1, FMP
ARG addres

FDV is called to divide the Floating-Point Accumulator by the
argument. y

CALL 1, FDV
ARG addres

CHS is called to change the 51gn of the Floatmg—Pomt Accu-
mulator.

CALL 0, CHS

All of the above programs leave the result in the Floating-Point
Accumulator. The address of the hlgh-order word of-the floating-
point number is “addres”.

STO is called to store the contents of the Floating-Point

4-41

Accumulator in the argument-address. The floating-point accumu- -
lator is cleared.

CALL 1, STO
ARG storag /storag=ADDRESS WHERE
' /RESULT IS TO BE PUT

IFAD is called to execute an indirect .ﬂoating—pbint add to the
Floating-Point: Accumulator.

CALL 1, IFAD |

ARG ptr /ptr=2 WORD POINTER
/TO HIGH ORDER
/ADDRESS OF FLOATING
/POINT ARGUMENT

ISTO is called to execute an indirect floating-point store.

CALL 1, ISTO
ARG ptr

CLEAR is called to clear the Floating-Point Accumulator. The
AC is unchanged.

CALL 0, CLEAR

FLOAT and FLOT are called to convert the integer contained
in the AC (processor accumulator) to a floating-point number and
store it in the Floating-Point Accumulator.

CALL 1, FLOAT
ARG addr

IFIX and FIX are called to convert the number in the Floating-
Point Accumulator to a 12-bit signed integer and leave the result
in the AC.

CALL 0, FLOT or

CALL 1, IFIX

CALL 0, FIX ARG addr

ABS leaves the absolute value of the floating-point number at
“addr” in the Floating-Point Accumulator.

CALL 1, ABS
ARG addr

4-42

Integer Arithmetic
MPY is called to ml_.lltlply the integer contained in the AC by
the integer contained in “addr.” The result is left in the AC.

CALL 1, MPY
ARG addr ~

DIV is called to divide the integer contained in the AC by the
integer contained in “addr.” The result is left in the AC.

CALL 1, DIV_
ARG addr

| IREM leaves the remainder from the last _execilted integer divide
in the AC.)

CALL 1, IREM,
ARG 0

(The argument is ignored.)

IABS leaves the absolute wvalue of the integer contained in
“addr” in the AC.

CALL 1, IABS
ARG addr

IRDSW reads the value set in the console switch register into
the AC.

CALL 0, IRDSW

Subscrlptmg

SUBSC is called to compute .the address of a subscrlpted vari-
able, and can be used for doubly or singly subscripted arrays. On
entry, the AC should be negative for floating-point variables—any
negative number for singly subscripted variables, and 1’s comple-
ment of the first dimension for doubly subscripted variables. For
doubly subscripted integer variables, the AC must be the first
dimension.

The general calling sequence for SUBSC is as follows:

4-43

*TAD (M . /1ST DIMENSION (USED ONLY
/IF 2 DIMENSIONS)

*CMA /USED ONLY IF ARRAY IS
/FLOATING POINT

_ 2,SUBSCy /SINGLE SUBSCRIPT
CALL[]
3,SUBSC! /DOUBLE SUBSCRIPT
*ARG J /2ND DIMENSION
ARG 1 /1ST DIMENSION .
ARG BASE /BASE ADDRESS OF ARRAY
LOEA /ADDRESS OF TWO WORD DUMMY

/ADDRESS: LOCATION

FRAVLVY - Y LAY

* Optional Statements.

For example, to load the I,J* element of a floating-point arrayv

whose dimensions are 5 by 7: .

TAD (5

CMA /DIMENSIONS ARE 5 BY 7
CALL 3,SUBSC -

ARG J /ADDRESS OF 2ND SUBSCRIPT
ARG 1 /ADDRESS OF 1ST SUBSCRIPT
ARG ARRAY /BASE ADDRESS OF ARRAY
LoC /MUST BE A DUMMY VARIABLE
CALL 1,IFAD :

ARG LOC

Functions

SQRT leaves the square root of the floating-point number at
“addr” in the Floating-Point Accumulator.

CALL 1, SORT
ARG addr

SIN, COS, TAN leave the specified function of the floating-point
argument at “addr” in the Floating-Point Accumulator.

-CALL 1, SIN
ARG addr

ATAN leaves the arctangent of the floating-point number at
“addr” in the Floating-Point Accumulator.

CALL 1, ATAN
ARG addr -

4-44

ALOG leaves the natural logarithm of the ﬂoatmg—pomt num-
ber at “addr” in the Floating-Point Accumulator. ‘

CALL 1, ALOG
ARG addr

EXP raises “e” to the power specified by the floating-point num-
ber at “addr” and leaves the result in the floating-point accu-
mulator. \

CALL
ARG -

All of these subprograms require that the floating-point accu-
mulator be set to zero before they are called.

The POWER routines (IIPOW, IFPOW, FIPOW, FFPOW)
are called by FORTRAN to implement exponentiation. The first
operand is in the AC (floating-point or processor depending on
mode), and the address of the second is an argument. The address
of the result is in the appropriate AC upon return.

1, EXP
addr

FUNCTION

MODE OF

MODE OF

| mooE oF
OPERAND 1, | OPERAND 2
NAME (BASE) (EXPONENT) RESULT
I1POW INTEGER INTEGER INTEGER
| 1FPOW INTEGER FLOATING POINT | FLOATING POINT
FIPOW FLOATING POINT | INTEGER FLOATING PQINT
FFPOW FLOATING POINT | FLOATING POINT | FLOATING POINT
CALL 2, FFPOW
ARG addr 2 -/ ADDRESS OF OPERAND 2
Utility Routines

OPEN is called at the beginning of every FORTRAN program
to start the high-speed reader/punch and teleprinter, and to initial-
ize the 1/0 routines for device code 4 if using the OS/ 8 FOR—.
TRAN/SABR system The form is:

CALL @,O0PEN

4-45

When an error is encountered in a program, the ERROR rou-
tine is called. The program passes to the ERROR routine the
address of the error message to be printed. The format of the
error message is 4 characters i stripped ASCII and packed into
2 words:

ENTRY ABC
2343 0182 XYZ, P10253304
2344 0304
2345 0@0ad ABC. BLOCK 2

2346 0000 .

CALL I,ERROR
ARG XYZ

When control passes to the ERROR routine, the parameters
passed are picked up. In the case above, the parameters are as
follows:

62N1 ‘ ARG XYZ
2343

EJ

where N is the field that XYZ is in, and 2343 is the address of

U T DD PR S-S Te vem amcas an T cem v e o~ Tl
XYZ. The ERROR routine then prinis tne message at 1ocation

2343 plus a 5-digit address which is 2 greater than 2343.

ABCD ERROR AT N2345

Since XYZ is 2 locations before ABC, the address printed will be
the address of ABC.

The error message is usually placed just before the entry point
of the routine in which the error was detected—thus the address
printed by ERROR will be the address of the entry point. This
provides a convenience to the programmer since the entry point
will appear in the Loader Map.

CKIO is a subroutine which waits for the TTY flag to be set. It
is called by the OS/8 EXIT subroutine to eliminate the possibility
of a garbled TTY output. It may be used in FORTRAN:for pos-
sible expansion with interrupts, and is of the form:

4-46

- CALL 9,CKIO

The following subroutines—IOPEN, OOPEN, OCLOSE,
CHAIN, EXIT, and GENIO—are used by the OS/8 FORTRAN/
SABR Operating System for device independent 1/O and chaining,

\DECtape 1/0 Routines

RTAPE ‘and WTAPE (read and write tape) are the DECtape
read and write subprograms for the 8K FORTRAN and 8K SABR
systems. The subprograms are furnished on one relocatable binary-
.coded paper tape which must be loaded into field O by -the 8K
Linking Loader, where they occupy one page of core.

RTAPE and WTAPE allow the user to read and write any
amount of core-image data onto DECtape in absolute, non-file-
structured data blocks. Many such data blocks may be stored on a
.single tape, and a block may be from 1 to 4096 words in length.

'RTAPE and WTAPE are subprograms which may be called |
with standard, explicit CALL statements in any 8K FORTRAN or
SABR program. Each subprogram requires four arguments sep- -
_ arated by commas. The arguments-are the same for both subpro-
~ grams and are formatted in the same manner. They specify the
following: -

1. DECtape unit number (from O to 7)

‘2. Number of the DECtape block at which transfer is to
start. The user may direct the DECtape service routine to
begin searching for the specified block in the forward direc-
tion rather than the usual backward direction by making
this argument the two’s complement of the block number.

3. Number of words to be transferred (1<N<4096)

4. Core address at which the transfer is to start. .

'DECtape 1/0 Routines for the FORTRAN II system are ex-
plained in Chapter 7. In 8K SABR, the CALL statements to
RTAPE and WTAPE are written in the following format (argu-
ments may be either octal or decimal numbers):

4-47

CALL 4,WTAPE /WOULD BE SAME FOR RTAPE

ARG (6 /DATA UNIT NUMBER
ARG (200 /STARTING BLOCK NUMBER
’ /IN OCTAL
ARG (604 /WORDS TO BE TRANSFERRED
: /IN OCTAL
ARG LOCB /CORE ADDRESS, START OF
/TRANSFER

In these examples, LOCA and LOCB may or may not be in com-
mon. :
~As a typical example of the use of RTAPE and WTAPE, as-
sume that the user wants to store the four arrays A, B, C, and D
on a tape with word lengths of 2000, 400, 400, and 20 respectively.
Since PDP-8 DECtape is formatted with 1474 blocks (numbered
0-2701 octal) of 129 words each (for a total of 190,146 words),
A, B, C, and D will require 16, 4, 4, and 1 blocks respectively.
(The block numbers used by RTAPE and WTAPE should not be
confused with the record numbers used by OS/8. A OS/8 record
is 256 words—roughly twice the size of a DECtape block.)

Each array must be stored beginning at the start of some DEC-
tape block. The user may write these arrays on tape as follows:

CALL WTAPE (8,1,2000,A)>
CALL WTAPE (@,17,400,B)
CALL WTAPE (0,21.,400:C)
CALL WTAPE (@.25:220.D)

The user may also read or write a iarge array in sections by
specifying only one DECtape block (129 words) at a time. For
example, B could be read back into core as follows:

CALL RTAPE (0,17,258,B¢1))
CALL RTAPE (0,19,129,B(259))
CALL RTAPE (0,20,13,B(388))

As shown above, it is possible to read or write less than 129
words by starting at the beginning of a DECtape block. It is im-
possible, however, to read or write starting in the middle of a
block. For example, the last 10 words of a DECtape block may
‘not be read without reading the first 119 words as well.

A DECtape read or write is normally initiated with a backward

4-48

search for the desired block number. To save searching time, the
user may request RTAPE or WTAPE to start the block number
search in the forward direction. This is done by specifying the
negative of the block number. This should be used only if the
number of the next block to be referenced is at least ten block
numbers greater than the last block number used. For example,
if the user has just read array A and now wants array D, he may
write:

CALL RTAPE (0,1,2000,A7)
CALL RTAPE_(2,-27,20,D)

THE BINARY OUTPUT TAPE |

SABR outputs each machine instruction on binary output tape
as a 16-bit word contained in two 8-bit frames of paper tape. The
first four bits contain the relocation code used by the Linking
Loader to determine how to load the data word. The last 12 bits
contain the data word itself.

] L | |] L] L] | |
RELOCATION | HIGH ORDER OF
_ " CODE DATA WORD FIRST FRAME

LOW ORDER OF DATA WORD SECOND FRAME

The assembled binary tape is preceded and followed by leader/
trailer code (code 200). The checksum is contained in the last two
frames of tape before the trailer code. It appears as a normal 16-bit
word, as shown below.

' HIGH ORDER OF B AN
1 0 0 © CHECKSUM FIRST FRAME

LOW ORDER OF DATA WORD SECOND FRAME

All assembled progréms have a relative origin of 0200.

Loader Relocation Codes -
The four-bit relocation codes issued by SABR for use by the
Linking Loader are explained below. The codes are given in octal.
00" Absolute Load the data word at the current
loading address. No change is re-
quired.

4-49

nens 5277

01 Simple
- Relocation

376 0520 21 As

03 External
Symbol
Definition*

JMP LOC /WHERE LOC IS

/AT @377 (OF
/CURRENT PAGE)

Add the relocation constant to the
word before loading it. (The relo-
cation constant is 200 less than the
actual address where the first word
of the program is loaded.) Items
with this code are always program
addresses.

Locea

In the above example, LOC2 is at
relative address 0520. If the first
word of the program (relative ad-

-dress 0200) is loaded at 1000,

then the actual address of A is
1176 and location 1176 will be
loaded with the value 1320, which
will be the actual address of LOC2

when loaded.

The data word is the relative ad-
dress of an entry point. Before en-
tering this definition in the Linkage
Tables so that the symbol may be
referenced by other programs at
run-time, the Linking Loader must
add the relocation constant to it.
The six frames of paper tape fol-
lowing the two-frame definition are
the stripped ASCII code for the
symbol.

* Does not appear in assembly listings.

4-50

04

@300
9301

. B376

Re-origin*

CDF
Current

6201 85
1776

9520 91

As

03 ADDRESS.,

ADDRESS LOW ORDER

Change the current loading address
to the value specified by the data
word plus the relocation constant.

The data word is always a 6201
(CDF) instruction which has been
generated automatically by SABR.

~ The code 05 indicates to the Link-
ing Loader that the number of the
field currently being loaded into
must be inserted in bits 6-8 before
loading.

TAD LOC2
/WHERE LOC2 IS
/OFF PAGE SO
/THAT THE TAD
/INSTR. MUST BE
/INDIRECT

<

If the program containing this code
is being loaded into field 4, relative
location 0300 will be loaded with
6241. .

Such an instruction is referred to
in this document as CDF Current.
It is generated automatically by

* Does not appear in assembly listings.

4-51

06

2200
2201

SABR when a direct reference in-
struction must be assembled as an

indirect, and there.is the possibility
that the current data field setting is
different from the field where the
indirect reference occurs.

Subroutine The data word is a special con-
Linkage stant enabling the Linking Loader
Code to perform the necessary linking
for an external subroutine -call.
(cf., CALL Pseudo-op). The
structure of the data word is shown
below.
BITS 0-5 BITS 6-11
NUMBER OF LOCAL PROGRAM
ARGUMENTS NUMBER ASSIGNED
FOLLOWING TO THE EXTERNAL
THE CALL SUBROUTINE
BEING CALLED
- —Pig -
Before the 12-bit, two-part code
word is loaded into memory, a
global external number will be sub-
stituted for the local external sym-
bol number in the right haif of the
data word.
4033 CALL 3,SUB
0307 06
ARG X
ARG Y
ARG Z

Here, SUB has been assigned the
local number 06 during assembly.
At loading time this number will
be changed to the global number
(for example, 23) which is as-
signed to SUB. In this example,
0323 would actually be loaded at
relative address 0201.

4-52

10 Leader/Trailer* This code represents normal ~

and = leader/trailer. The checksum is

Checksum contained in the last two frames
of paper tape preceding the trailer
code.

12 High Common* The data Word is the hlghest loca-
. tion in Field 1 assigned to com-

mon storage by the program. This

- item will occur exactly once in

- every binary tape and it must be

the first word after the leader. If

no common storage has been al-

located in the program, the data

word will be 0177.
17 Tranéfef* Signifies that reference. to an ex-
Vector ternal symbol ‘occurs in the as-

sembled program. The 12-bit data
word is meaningless. The next six
. frames contain the ASCII code for
the symbol.
The Linking Loader uses this def-
inition to create a transfer table,
whereby local external symbol
numbers assigned during assembly
of this particular program can be
changed to the global external
symbol number when several pro-
grams are being loaded.

SAMPLE ASSEMBLY LISTINGS
The following examples are offered to illustrate many of the
features and formats of the SABR Assembler. |

When a multiple word instruction occurs, the actual instruction
line is typed bemde the first 1nstruct10n

* Does not appear in assembly listings.

4-53

06650 6281 @5 Locz2, JVMP NAME /OFF PAGE
@651 5774 '

p652 17186 ' CLL RTL3RTL;RTL
@653 70806
654 7206

When there is an erroneous instruction, the error flag appears
in the address field. The instruction is not assembled.

0700 7200 N2 CLA
1 CLL SKP
@781 7402 HLT

The page escape and literal and off-page pointef table are typed
with nothing except the correct address, value and loader code.

8778 7006 N3, RTL

@771 7500 SMA

@772 5376

@773 5377

8774 0200 01

@775 0020

8776 17410 /SKP TO 1ST LOC.-

/NEXT PAGE (AC IS
/NOT MINUS)

@777 7410 /SKP TO 2ND LOC.-
/NEXT PAGE (AC IS5

/MINUS)S

Locations 0772, 0773, 0776 and 0777 make up the page escape
since the last instruction is a skip instruction (SMA). Refer to the
section concerning Page Escapes.

The following program has been assembled and listed. It cannot
be run without first debugging and editing it.

Durmg the first pass, SABR outputs the bmary tape and prints
error messages as they occur. In this case, none of the errors are
fatal, and assembly continues. The symbol table is printed, and
undefined symbols, external symbols, or any other special types of
symbols which cannot be determined until the end of the pass
“are flagged in the symbol table. '

The optional second pass of the Assembler produces a listing.
The 4-digit first column contains the octal address, while the

4-54

second column contains the octal code for each line of instructions.
Errors are also printed during the listing pass at the line in which
« they occur. Meanings of error codes are described later in the
chapter.
The reader is also referred to Demonstration Program Using
Library Routines.

C AT PUNCH +2203

'COUNT @302
DECIMA Q@QGUNDF

LT p264
MAIN OQBOEXT -
MESG 2243
ORG 03083

PTAPE P20 1EXT
PUNCH 2274
REF @L17TABS
RPT ‘0267
START 2285
TYPE POBBEXT

/PROGRAM TO PUNCH RIM FORMAT PAPER TAPES

6026 OPDEF PLS 6026 /DEFINE HI SPEED
6021 _ SKPDF PSF 6821 /IOTS
2177 ABSYM REF 177
ENTRY MAIN
0200 0000 , DECIMAL .
LAP
0201 0000 PTAPE, BLOCK 2 /PUNCH LEADER
2202 0po0
/TAPE (200 CODE)
P203 1377 TAD (-32 /32 LOCATIONS
p204 33p2 DCA COUNT
0CTAL
. 0205 1303 START, TAD ORG
0206 7132 CLL CML RTR3;RTR;RTR
@207 7812
@216 17012

4-55

g211 @376 AND (€177

gale 4274 JMS PUNCH /PUNCH LEADING
213 1323 TAD ORG /DIGITS OF ADDRESS
214 9376 AND (177 /PUNCH SECOND
@215 4274 JMS PUNCH /DIGITS OF ADDRESS
@216 1703 TAD I ORG /NOW PUNCH CONTENTS
p217 7iie CLL RTR;RTR;RTR ~/OF THAT LOCATION
go2@ 7@12
po21 7812
p2e2 @375 AND (<77
p223 4274 JMS PUNCH
pe24a 1793 TAD I ORG - /GET SECOND DIGITS
225 ©375 AND (€77 /0F THAT LOCATION
p226- 4274 JMS PUNCH
@227 2383 INC ORG . /POINT TO NEXT

; /CORE LOCATION
@233 232 1SZ COUNT /DONE YET?
3231 5205 © JMP START /NO
2232 4833 CALL 1,TYPE /YES, TYPE MESSAGE
2233 0102 06
2234 6201 05 ARG MESG
3235 @243 01
@236 4264 : JMS LT /ENDING 208 CODE
2237 7404 0SR /GET NEW ADDRESS
@24¢ 3383 DCA ORG /FROM SWITCH REGISTER

_ : /PUT IT IN ORG
po4ai 742 HLT /PAUSE
0242 5774 JMP MAIN /PUNCH NEV TAPE
p243 2491 MESG, TEXT “TAPE PUNCHED. ENTER ORIGIN & CONT."
@244 2005
P245 4620
p246 2516
2247 02310
B258 @504 ;
251 5640
p252 @516
@253 2405
@254 2240
@255 1722
pos6 1187
@257 1116
0260 4046
2261 4003
262 1716
@263 2456
0264 QOO0 LT, ? -
OCTAL

@265 1373 TAD (~40
@266 3382 DCA COUNT /32 FRAMES OF
@267 1372 RPT, TAD (2080 /LEADER/TRAILER
2270 4274 JMS PUNCH /PUNCH IT
@271 23g2 1SZ GCOUNT /DONE?
@272 5267 JMP RPT /NO
@273 5664 JMP I LT /RETURN

4-56

B274 0000 PUNCH, &

0275 6026 PLS : /PUNCH -
2276 6021 PSF /WAIT FOR FLAG
C - JMP 0-1
. @877 4B45 JMP I PUNCH - /EXIT
- 0380 7410 :
@301 5674
2302 0000 COUNT, O .
@303 7309 ORG > 7300
B304 4040 RETRN PTAPE
2305 8003 06
@372 2200)
8373 7740
B375 0877
@376 B177
@377 7746
END

SABR PROGRAMMING NOTES

Optimizing SABR Code

There are generally two types of programmers who W111 use the -
SABR Assembler—those who like the convenience of a page-
boundary-independent code and need not be concerned with pro-
gram size, and those who need a relocatable assembler, but are
still very location conscious. These optimizing hints are directed
to the latter user.

One way to circumvent the cost of non-paged code is to make
use of the LAP (Leave Automatic Paging) pseudo-op and the
PAGE pseudo-op to force paging where needed. This saves 2 to
4 instructions per page by elimination of the page escape. In addi-
tion, the fact that the program must be properly segmented may
save a considerable amount.

Extra core-may be reduced by eliminating the CDF instructions
which SABR inserts into a program. This is done by usmg “fake
indirects”. Define the following op codes:

4-57

OPDEF ANDI 0400
OPDEF TADI 1400
OPDEF ISZI 2400
OPDEF DCAI 3400

These codes correspond to the PDP-8 memory reference instruc-
tions but they include an indirect bit. The difference can best be
illustrated by an example:

If X is off-page, the sequence:

LABEL, SzZaA
DCA X

is assembled by SABR into:

LABEL, S5ZA
JMS 45
SKP
DCA I (XD

or four instructions and one literal.
The sequence:

PX,

.« e ><

LABREL, SzZaA
DCAI PX

assembles into three instructions for a saving of 40 percent. Note,
however, that the user must be sure that the data field will be cor-
rect when the code at LABEL is encountered. Also note that
SABR assumes that the Data Field is equal to the Instruction Field
after a JMS instruction, so subroutine returns should not use the
JMP I op code. :

The standard method to fetch a scalar integer argument of a
subroutine in SABR is: ,

4-58

DUMMY X

0200 0000 IARG, 0

@201 0000 Xs BLOCK 2
0202 000C

2203 0000 SUBR» BLOCK 2
2204 0000

0205 4067 | TAD 1 SUBR
7206 0203 01 |

0207 1487

@210 3201 DCA X

P211 2204 INC SUBR#
p212 4067 TAD 1 SUBK
@213 @203 01

o214 1407 o .
¢215 3202 DCA X#
#216 2204 ‘ INC SUBR#
0217 4067 TAD I X
@220 0201 01 a

0221 1407 :
@222 3200 DCA IARG

This is the method the FORTRAN compiler uses, and although
it is standard, it is also the slowest. This code requires 19 words
of core and takes several hundred microseconds to execute.

The fastest way to pick up arguments within a SABR coded
external subroutine is as follows (this takes approximately one
fifth of the time of the previous method and four less locations) :

@200 0093 ~ 1ARG, 0
0201 @000 ~ SUBR, BLOCK 2
6202 0800 -
0203 1201 TAD SUBR
@204 3205 i DCA X1
0205 7402 X1, HLT /REPLACED
/BY CDF
0206 1602 ' TADI SUBR#
7207 3214 DCA X2
0210 2202 INC SUBR#
g211 1602 TADI. SUBR#
g212 3200 DCA IARG
2213 2202 INC SUBR#
p214 7402 X2, HLT ~ /REPLACED
| /BY CDF
0215 1600 TADI IARG -
7216 3200 DCA IARG

4-59

To pick up multiple arguments, the locations from X1 to X2+1
inclusive can be made into a subroutine.

Calling the OS/8 USR and Device Handlers

One important point to remember is that any code which calls
the USR must not reside in locations 10000 to 11777. Therefore,
any SABR routine which calls the USR must be loaded into a field
other than field 1 or above location 2000 in field 1. To call the
USR from SABR use the sequence:

CPAGE N /N=T7+(# OF ARGUMENTS?

6212 /CIF 10

JMS 7700 /70R 200 IF USR IN CORE

REQUEST

ARGUMENTS /0PTIONAL DEPENDING ON REQUEST
ERROR RETURN /OPTIONAL DEPENDING ON REQUEST

To call a device handler from SABR use the sequence:

CPAGE 12 - /1@ IF "HAND" IN PAGE @
6202 /CIF @
JMS 1 HAND /DC NOT USE JMSI
FUNCT .
ADDR
BLQCK
ERROR RETURN
SKP
HAND, 2 " /'"HAND'" MUST BE ON SAME PAGE
/865 CALL, OR IN PACE @

SABR ERRORS
In case of error, SABR prints the following codes in the address
field of the instruction line:

4-60

Table 4-3 SABR Error Codes

Error Code

Meaning

A

i e

UNDF

Too many or too few ARG statements follow
a call statement.

An illegal character appears on the line.
A device handler has returned a fatal condition.

/L or /G option was indicated, but the
LOADER.SV file does not exist on the system
device.

A symbol is multiply defined. Listing of pro-
grams with multiple definitions have unmarked
errors.

~ An illegal syntax has been used, (as one of the

following) :
1. a pseudo-op with improper arguments,
2. a quote mark with no argument,
3. a non-terminated text string,
4. an improper address,
5. an-illegal combmatlon of micro-instruc-

tions.
There is no END statement.

Either the symbol table has overflowed, com-
mon storage has-been exhausted, more than 64
different user-defined symbols occurred in a -
core page, or more than 64 external symbols
have been declared. Could also indicate a sys-
tem error such as overflowed output file.

No symbol table is being produced, but there
is at least one undefined symbol in the pro-
gram.

Undefined symbol, printed in the symbol table

" listing.

4-61

LINKING. LOADER

The Linking Loader is the system program used to load and
link a user’s program and subprograms in any field(s) of memory.
It can be called automatically to load or load and start a FOR-
TRAN or SABR program, or independently to load or load and
start a relocatable binary file stored on a device. It is capable of
loading programs over itself, and has options which allow the user
to obtain storage map listings of core availability.

The Linking Loader has the capability of searching program
libraries for subroutines which are referenced by the program in
core and to load those subroutines needed. (A library is a collec-
tion of relocatable “subroutines—FORTRAN or SABR output—
with a directory at the beginning to facilitate searching.) Any
library can be searched by using the /L option to the Loader, but
the system library, LIB8.RL, is searched automatically just before
the Loader completes the building of a core image of the user’s
program. If LIB8.RL is not on the system device, there is no auto-
matic library search. (The system program LIBSET is available
to allow the user to build his own subroutine library.)

The Linking Loader is capable of loading any number of user
and library programs into any field of memory. Several programs
are usually loaded into each field. Because of the space reserved
for the Linkage Routines, the available space in field O is three
pages smaller than in all other fields. _

Any common storage reserved by the programs being loaded is
aliocated in fieid 1 from iocation 200 upwards. The space reserved
for common storage is subtracted from the available loading area
in field 1. The program reserving the largest amount of common
storage must be loaded first.

The Run-Time Linkage Routines necessary to execute SABR
programs are automatically loaded into the required areas of every
field by the Linking Loader as part of its initialization. The user
needs to know nothing more about these routines than the par-
ticular areas of core they occupy.

Calling and Using the Linking Loader

The user can automatically call the Linking Loader following
assembly of either a SABR program or a SABR-assembled FOR-
TRAN program by use of the /L or /G options. For details on

4-62

AN
automatic calling of the Linking Loader, see the FORTRAN sec-
tion of this chapter. K
When the user wishes to call the Linking Loader specifically to
load or load and start a relocatable binary file, he issues the
command:

R LOADER

in response to the dot printed by the Keyboard Monitor. The Com- .
mand Decoder replies by printing an asterisk at the left margin;
‘the user then indicates input and output files and any desired op-
tions. 0 to 1 output files and 1 to 9 input files are possible. Only
one binary program per file is permitted. The assumed extension
for input files is .RL. The output file, if 1ndlcated is used to hold
a map of the loaded program.

The user has the ability to either spec1fy all options and oper-
ations to be performed on one line or to have various operations
performed individually. Where all options are being specified at
one time the line to.the Command Decoder contains the complete
instructions for the Linking Loader. If operations are to be done
individually, the user can type a command, enter it with the RE-
TURN key, and that command will be executed, with another

command expected when the first is completed. To indicate the
last command, the user types an ALT MODE character, or ends

the last command with a /G option to start the program.

LINKING LOADER OPTIONS ’
The options to the Linking Loader are as shown in Table 4-4.

Table 4-4 Linking Loader Options

Option ' Meaning

/1 A progfam doing device-independent input is to be loaded.
(This feature costs the user 3 pages of core.)

/0 A program doing device-independent outputv is to be loaded. -
- (This feature costs the user 3 pages of core.)

4-63

Table 4-4 Linking Loader Options (Cont.)

Option

Meaning

/H

/G

/M

If both /I and /O are indicated, 6 pages of core are used
to handle device-independent I/ 0.

/1 and /0, if used, must be given before or on the first
input line specifying files to be loaded. For example:

*#INPUT, FILES/0%

is acceptable, but

*INPUT
*/0 FILES

i
is not legal and will generate an error message.

A program doing device-independent I/0O requires two-
page device handlers at run-time. (This feature costs the
user one additional page if he is doing just input or output,
and two additicnal pages if he is doing input and output.

If /1, /O, and /H are indicated, 8 pages of core are used
to handle device-independent 1/0O. /H, if used, must be in-
dicated on or before the first line containing / I or /0, and
is meaningless without /I or /O also being specified.

Start the program after processing the rest of the command
string. Execution starts at the symbol MAIN unless other-
wise indicated.

Specifies the starting address of the program if other than
the entry point MAIN; n is an octal number up to 5 digits
long.

Output a map of the loaded programs onto the output file
specified, followed by a count of the free pages in each
field. If no output is specified, the map is put onto the tele-
printer. The assumed extension for map output file is .MP.
The map is printed after the rest of the command iine is
processed.

4-64 .

Table 4-4 Linking Loader Options (Cont.)

Option

Meaning

/U
/P

/n

/R

/L

Similar to /M, but only oufputs undefined symbols.

Similar to /M, but only outputs counts of free pages in
each field.

Search through the available fields starting at field n for
space large enough to hold each input file; n is an integer
in the range O to 7, inclusive. Only one binary program
can be in each input file. If n is not specified, the Loader
starts looking at field O.

Restart loading process (forget all previously loaded pro-
grams). This command is equivalent to restarting the Link-
ing Loader, but is much faster for DECtape systems since -
no tape motion is involved.

Load the first input file as a library file (Loader expects a
Library Directory as the first block of the file). All other
input files on the line are ignored.

The Core Availability option (/P) causes the number of free
pages of memory in every field of memory to be printed in a list
on the teleprinter. For example, if the user has a 16K configura-
tion, a list like the following might be printed: '

0002 (number of free pages in field 0)
0010 (number of free pages in field 1)
0030 (number of free pages in field 2)
0036 (number of free pages in field 3)

The number of pages initially available in field O is 0033 and in

all other fields is 0036.

The Storage Map option (/M), when selected, causes a list of
all program entry points to be printed along with the actual ad-
dress at which they have been loaded. Entry points of programs
which have been called but which have not been loaded are also

4-65

listed along with U flag for “undefined”. Such flagged programs
must. be loaded before execution of the user’s programs are pos-
sible. The core availability list is automatically appended to the
storage map. A sample is shown below for an 8K machine:

-MAIN 12200
READ 01050
WRITE 01066
IOH 23031

ERROR 00000 U
GENIO 2220 U

FDV P4a722
CLEAR 05247
IFAD 95131
FMP 04632
ISTO 05074
STO paaaT
FLOT 05210
FAD 04010
DIV 00000 U
IREM 00000 U
FSB = 04000
FLOAT 05046
FIX 24513

IFIX 04561
CHS #5231
0011
AARR

LR IR

EXAMPLES OF I/O COMMAND STRINGS
The following are examples of possible input command strings:

fPROG:DTA2:SUB1,SUB2/G

- This string loads DSK:PROG.RL, DTA2:SUBI1.RL,
DTAZ2:SUB2. RL, loads any necessary library routines requested,
and starts the program at the entry point MAIN. The same process
could have been done as follows:

4-66

Load DSK:PROG.RL ;-

Get a list of undefined symbols on the teleprinter;

*PROG

*/U
(Symbols go here)

' *DTA2: SUBRI, SUBR2

Load DTA2:SUBR1.RL,SUB2.RL ;

*LPT:/M<$

Put loading map on the line printer, load the binary of any
library routines requested by the program, and exit ($ is
printed by the ALT MODE key);

+ SAVE DTAZ2 FORTPG -

Save the core image on DTA2 as FORTPG.SV;

Start the core image at its starting address (entry point MAIN
in this case).

. START

Linking Loader Error Messages

The Linking Loader outputs error messages in the form
ERROR nnnn

where nnnn represents a 4-digit error code. Table 4-5 lists the
meanings of these error codes.

4-67

Table 4-5 Linking Loader Error Messages

Error Code Meaning

0000 /T or /0 specified too late.

0001 Symbol table overflow; more than 64 subprogram
names.

0002 Program will not fit into core.

0003 Program with largest common storage area was not
loaded first.

0004 Checksum error in input tape.

0005 Illegal relocation code.

0006 An output error has occurred.

0007 An input error has occurred (either a physical device
error, or an attempt was made to read from a write-
only device such as LPT:).

0010 No starting address has been specified and there is
no entry point named MAIN. '

0011 An error occurred while the Loader attempted to load
a device handler.

0012 I/ 0 error on system device.

LIBRARY SETUP (LIBSET)

LIBSET, the FORTRAN Library Setup program, creates a
library of subroutines from the relocatable binary output of SABR.
These library files can be quickly and effectively scanned by the
- Linking Loader, thus saving a great deal of the time involved in
loading frequently used subroutines. (Refer to the section con-
cerning the Linking Loader for information pertaining to relo-
catable library files, automatic loading of the LIB8.RL file, and
the /L option.)

Calling and Using LIBSET
To call LIBSET from the system device, the user types

R LIBSET

4-68

in response to the dot printed by the Keyboard Monitor. The Com-
mand Decoder then prints an asterisk at the left margin of the
teleprinter paper and waits to receive a line of input. The general
form of input required to build a library file is:

*DEV:OUTPUT FILE <DEV:INPUT FILE(S)
- *(additional input files) $

No more than nine input files are allowed on any one line, but
several input lines -can be entered. The last input line must end
with the user typing the ALT MODE key (which echoes as $).
Only the first line can contain an output file. If no output file is
specified, a file named LIB8.RL is created on the system device.
The assumed extension for both input and output files is .RL.

NOTE
Files output from LIBSET are in a special
relocatable library format and must not be
copied with the /B option in PIP. Instead,
they should be copied by PIP in image (/I)
mode.

LIBSET OPTIONS
Only one option is allowed in the use of LIBSET, and this is
described below:

Option " . Meaning |
/S The /S option means that all input files on a line are

to be regarded as containing more than one relocatable
binary file. (This is analogous to the /S option in
ABSLDR.

_ NOTE
If /S is used on a line that contains no input
files, input from PTR: is assumed.

EXAMPLES OF LIBSET USAGE
Example 1:

*DTA2: SUBS<DTA! : SUB1, SUB2, SUB3, PTR:
1*SYS:FUNC1,FUNC2.V5$

4-69

This example creates a relocatable library file on DTA2 named
SUBS.RL. This library will contain six FORTRAN (or SABR)
subroutines built by combining the relocatable binary file SUB1.RL,
SUB2.RL, and SUB3.RL from DTAI1 together with one relocata-
ble binary paper tape (note the t printed by OS/8 before loading
from PTR:) and the files FUNC1.RL and FUNC2.V5 from the
system device.

Example 2:

%XASIN,ACOS -
*/SS1

Since no output file was specified, this example creates a relocat-
able library file LIB8.RL on the system device. This produces a
new FORTRAN library including the subroutines contained .in
the files ASIN and ACOS on device DSK, and several subroutines
combined on a single paper tape loaded from the high-speed reader.

Subroutine Names

It is important to distinguish between the OS/8 file name of a
relocatable binary program and its assigned Entry Point name.
The file name has meaning only to the Command Decoder; the
Entry Point name (or names) are the true subroutine names that
are meaningful to the Loader.

Further details on the format of relocatable binary ﬁles and re-
locatable library files can be found in the OS/8 Software Support
Manual (DEC-S8-OSSMA-A-D).

- Sequence for Loading Subroutines

LIBSET can combine files in any sequence to form a relocat-
able library file. However, the subroutines in any single library are
loaded by the Loader in the order in which they were originally
specified to LIBSET. Therefore, it is important to make sure that
subroutines are specified in order of size, with the largest sub-
routine being loaded first. If this is not done, cases can occur in
which insufficient core is available in any single field to load a
subroutine, whereas space would have been available if the sub-
routine had been loaded earlier.

4-70

LIBSET Error Messages

All errors are fatal. LIBSET recalls the Keyboard Momtor upon
encountering any of the following error conditions, and must be
recalled in order to enter another command string.

Table 4-6 LIBSET Error Messages

Error Message Meaning
BAD FORMAT OR Error in reading relocatable binary file.
CHECKSUM— :
- TRY AGAIN

' ERROR WHILE WRITING Fatal output error occurred.
OUTPUT FILE

INPUT ERROR | Parity error on input.
LIBRARY DIRECTORY Too many subroutines were specified.
OVERFLOW Every subroutine name in the input file

requires four words, and every relocat-
able binary file read requires two words.
If the total number of words exceeds
250, the library must be split into two
separate files.

LIBRARY PROGRAMS
During execution, the Library programs check for certain errors
and type out the appropriate error messages in the form:

XXXX ERROR AT LOC NNNN

where XXXX specifies the type of error, and NNNN is the loca-
tion of the error. When an error is encountered, execution stops,
and the error must be corrected.

When multiple error messages are typed, the location of the
last error message is relevant to the user program. The other erroer
messages are relevant to subprograms.called by the statement at
the relevant location.

4-71

Table 4-7 Library Error Messages

Error Message:

Explanation

ALOG
ATAN
DIVZ
EXP
FIPW
FMT1
FMT2
FMT3
FMT4
FMT5
FLPW
FPNT

SQRT

Attempt to compute log of negative number
Result exceeds capacity of computer
Attempt to divide by O

Result exceeds capacity of computer

Error in raising a number to a power
Multiple decimal points

E or. in integer

Illegal character in I, E, or F field

Multiple minus signs

Invalid FORMAT statement

Negative number raised to floating power
Floating-point error; may be caused by
division by zero; floating-point overflow; at-
tempt to fix too large a number.

Attempt to take root of a negative number

0S/8 includes, in addition, the error message:

USER ERRCR 1 AT 00537

which means that the user tried to reference an entry point of a
program which was not loaded.

To pinpoint the location of a Library execution error:

1. From the Storage Map, determine the next lowest numbered
location (external symbol) which is the entry point of the
program or subprogram containing the error. :

2. Subtract in octal the entry point location of the program or
subroutine containing the error from the LOC of the error
in the error message.

3. From the assembly symbol table determine the relative ad-
dress of the external symbol found in step 1 and add that
relative address to the result of step 2.

4, The sum of step 3 is the relative address of the error, which

+ can then be compared with the relative addresses of the
numbered statements in the program.

4-72

!

DEMONSTRATION PROGRAM USING LIBRARY ROUTINES

~ The following demonstration program is a SABR program show-
ing the use of the library routines. The program was written to add
two integer numbers, convert the result into floating-point, and
type the result in both integer and floating-poi