

Building ULTRIX-32TM Systems
With Config

Order No. AA-BG60A-TE

digital equipment corporation, merrimack, new hampshire

First printing, May 1984

Copyright © 1984 by Digital Equipment Corporation.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The postage-paid READER'S COMMENTS form on the last page of this docu
ment requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECUS
MASSBUS
PDP
ULTRIX
ULTRIX-11

ULTRIX-32
UNIBUS
VAX
VMS
VT

mD~DD~DTM

UNIX is a trademark of AT&T Bell Laboratories.

Information herein is derived from copyrighted material as permitted under a
license agreement with AT&T Bell Laboratories.

This software and documentation is based in part on the Fourth Berkeley Soft
ware Distribution under license from the Regents of the University of California.
We acknowledge the Electrical Engineering and Computer Sciences Departments
at the Berkeley Campus of the University of California for their role in its
development.

iii

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California. We ack
nowledge the following individuals for their role in its development:

Eric Allman, Ken Arnold, Ozalp Babaoglu, Scott B. Baden, Jerry Berkman, John
Breedlove, Earl T. Cohen, Robert P. Corbett, Mike Curry, Steve Feldman, Tom Fer
rin, John Foderaro, Susan L. Graham, Charles Haley, Robert R. Henry, Andy
Hertzfeld, Mark Horton, S.C. Johnson, William Joy, Howard Katseff, Peter Kessler,
Jim Kleckner, J.E. Kulp, James Larus, Kevin Layer, Mike Lesk, Steve Levine, Jeff
Levinsky, Louise Madrid, M. Kirk McKusick, Colin L. McMaster, Mikey Olson,
Geoffrey Peck, Ed Pelegri-Llopart, Rob Pike, Dave Presotto, John F. Reiser, Asa
Romberger, Bill Rowan, Jeff Schreibman, Eric P. Scott, Greg Shenaut, Eric Shien
brood, Kurt Shoens, Keith Sklower, Helge Skrivervik, Al Stanberger, Ken Thompson,
Michael C. Toy, Richard Tuck, Bill Tuthill, Mike Urban, Edward Wang, David Was
ley, Joseph Weizenbaum, Jon L. White, Glenn Wichman, Niklaus Wirth.

Building an ULTRIX-32 System
with Config

Table of Contents

v

Overview ... 1

SECTION 1 The Configuration File ... 3

1.1 Existing Configuration Files .. 3
1.2 Contents of the Configuration File .. .4
1.2.1 Global Configuration Parameters4
1.2.2 System Image Parameters .. 6
1.2.3 Device Specifications ... 8
1.2.4 Required Pseudodevices ... 11
1.2.5 Adding the Network Support .. 11

SECTION 2 Using config to Build the System ... 13

2.1 Making a Directory for the System .. 13
2.2 Running the config Program ... 13
2.3 Constructing Source Code Dependencies .. 14
2.4 Building the System ... 14

SECTION 3 Sample Configuration Files ... 17

3.1 VAX-11/780 System ... 17
3.1.1 Filling in Global Configuration Parameters .. 17
3.1.2 Specifying System Images ... 18
3.1.3 Specifying Hardware .. 18
3.1.4 Example Configuration File for VAX-11/780 ... 19

3.2 VAX-11/750 System .. 21
3.2.1 Filling in Global Parameters ... 21
3.2.2 Specifying System Images ... 21
3.2.3 Specifying Hardware .. 22
3.2.4 Example Configuration File for VAX-11/750 ... 22

3.3 VAX-11/730 System .. 24
3.3.1 Filling Global Configuration Parameters .. 24

vi Building an ULTRIX-32 System with Config

3.3.2 Specifying System Images ... 25
3.3.3 Specifying Hardware .. 25
3.3.4 Example Configuration File for VAX-11/730 ... 25

APPENDIX A. Configuration File Grammar .. 27

APPENDIX B. Rules for Defaulting System Devices ... 31

APPENDIX C. VAX Kernel Data Structure Sizing Rules ... 33

Overview

Building an ULTRIX-32 System with Config 1

Building an ULTRIX-32 System
with Config

This document describes how to configure and create a bootable ULTRIX-32 system
image using config (8). Based on a configuration file of tunable parameters and
hardware support, config generates a collection of files used to build a copy of the
ULTRIX-32 system appropriate to that configuration. config simplifies system
maintenance by isolating system dependencies in a single, easy-to-understand file.

This document is divided into three sections:

• Section 1 discusses the system configuration file in which you define the system's
tunable parameters and specify hardware support. It is critical that you tailor the
configuration file to reflect the state of your system. A major portion of this docu
ment discusses the configuration file and how to edit it with ed (1).

• Section 2 outlines the two remaining steps to build your system: running config,
and using make (8) to compile and load the system.

• Section 3 contains example configuration files for a VAX-II/780, VAX-II/750, and
VAX-II/730 processor. This section also discusses how each file was constructed.
You should refer to this section if you need additional information to tailor the
configuration file to your system.

The appendixes cover these subjects:

• Appendix A discusses configuration file grammar.

• Appendix B outlines the rules config uses for defaulting system devices.

• Appendix C, geared for sophisticated users, describes data structure sizing rules.

Building an ULTRIX-32 System with Config 3

1. The Configuration File

These are the basic steps for building an UL TRIX -32 system:

1. Create a configuration file for your system. (subsection 1.1)

2. Make a directory in which you will construct the system. (subsection 2.1)

3. Run config on the configuration file. config generates the files required to compile
and load the system image. (subsection 2.2)

4. Construct source code dependency rules for the configured system. (subsection 2.3)

5. Compile and load the system with make (1). (subsection 2.4)

Steps 1 and 2 are usually done only once. If you are reconfiguring your system to add,
delete, or switch hardware, you only need to repeat the last three steps.

Section 1 describes how to create a configuration file for a standard configuration. It
outlines the contents of the configuration file, and describes the rules for writing the
file.

1.1. Existing Configuration Files

The first step for building an UL TRIX-32 system is to create a configuration file. It is
easier to copy and edit an existing configuration file with ed (1) rather than to create
an entirely new file.

The ULTRIX-32 system is distributed with four configuration files you can use as a
basis for configuring your system. The files are located in the / sys / conf directory.
The files are:

File Name:

MY780
MY750
MY730

E I

Configured for:

VAX-11/780
VAX-11/750
VAX-11/730

r

To create a configuration file for your system, first change directory to / sys / conf.
Then copy the appropriate template file to a file that reflects your V AX processor
name. By convention, the configuration file name is always in uppercase letters. For

4 Building an ULTRIX-32 System with Config

example, to copy the MY780 file to a new file called MYV AX, type:

cd /sys/cont
cp MY780 MYVAX

Do not move the new file out of the / sys / cant directory.

1.2. Contents of the Configuration File

This section describes basic and additional configuration file information.

After making a copy of the appropriate configuration file, modify the new file using
the ed (1) editor to reflect your system's configuration. See The ed Command Sum
mary Sheet, in The ULTRIX-32 Installation Guide for a quick lesson on how to use
ed.

Your configuration file must contain this information:

• Machine type

• CPU type

• System identification

• INET and QUOTA options

• Maximum number of users

• Location of the root filesystem

• Available hardware

• Pseudo devices pt, loop, INET and ETHER

A configuration file is broken up into three logical parts:

• Global configuration parameters for all system images specified in the
configuration file

• Parameters specific to each system image to be generated

• Device specifications

1.2.1. Global Configuration Parameters

Specify each global configuration parameter with a separate line in the configuration
file. The following lists and explains how to specify each parameter:

machine type

This parameter indicates the system is going to run on a VAX-II computer. To

cpu

Building an ULTRIX-32 System with Config 5

identify the machine type, make sure your configuration file contains this line:

machine vax

config uses the machine type to locate machine specific data files, and to select
rules used in constructing resultant configuration files.

This parmeter indicates the CPUs on which the system will operate. You must
enclose type in quotation marks. You can specify more than one CPU type, but
you should configure your system to run on all the CPUs you list here. Legal
CPU types are: VAX780, VAX750, and VAX730.

For example, to configure the system for a VAX-II/780, this line must be in your
configuration file:

cpu "VAX780"

ident name

This parameter identifies the system, and is often the name of the machine run
ning the system. The ident name you chose must contain all alphabetic charac
ters, and must be the same name as that in the configuration file you created.
For example, the following line identifies your system as MYV AX:

ident MYVAX

GENERIC is an identifier for a system that runs on any VAX CPU. Do not use
GENERIC as a system identifier unless you want to configure a generic system.

timezone number [dst [x]]

This parameter identifies your timezone, which is measured by the number of
hours west of Greenwich Mean Time (GMT). For example, Eastern Standard
Time is five hours west of GMT, and Pacific Standard time is eight hours west of
GMT. Negative numbers indicate hours east of GMT. If you specify dst, the
system operates under daylight savings time.

You can include an integer or floating point number (x) to request a particular
daylight saving time correction algorithm. The default value is 1, indicating the
United States. The other values are: 2 (Australia), 3 (Western Europe), 4 (Cen
tral Europe), and 5 (Eastern Europe).

For example, to indicate you are in the Eastern time zone and use daylight sav-

6 Building an ULTRIX-32 System with Config

ings time, a line in your configuration file should read:

timezone 5 dst

In this example, x is the default of 1, indicating the United States.

The timezone parameter supplies the information returned by the gettimeof
day (2) system call.

maxusers number

The maximum number of simultaneously active users is set by your license
agreement. Do not alter the maxusers parameter in your configuration file.

options optionlist

The example configuration files distributed with the ULTRIX-32 system include
the INET and QUOTA options. The INET option provides internet communi
cation protocols; the QUOTA option allows disk quotas to be set. You need both
options to create a new kernel for your machine. You should leave the options
as they appear in the example configuration files (see section 3.0).

There are additional options associated with certain peripheral devices. These
are listed under the Synopsis of each device description in Section 4 of the
ULTRIX Programmer's Manual (for example dz(4))

1.2.2. System Image Parameters

The second part of the configuration file pertains to the system image parameters.

You can generate more than one system image with a single configuration file. Using
one file allows you to create two kernels that differ only on the location of the root
filesystem. The system image parameters are:

• System image name

• Root file system location

• Number and location of swapping and paging areas

• Device to use for system dumps

• Device used for argument processing with execve (2)

System image parameters are specific to each system image generated. Specify the

Building an ULTRIX-32 System with Config 7

system image parameters by editing your configuration file, adding a line of this form:

config image-name configuration clauses

The image-name field is the name you assign to the loaded system image; name this
field vmunix.

In addition to the image-name called vmunix, you can specify alternate config lines,
provided that each image-name is unique. This allows you to configure one of multi
ple kernels with different root and/or swap devices to be run on the same system.

The configuration clauses are:

root [on] device
swap [on] device [and device] [size x]
dumps [on] device
args [on] device

on is optional. The configuration clauses all appear on the same line, however, you
should separate multiple configuration clauses by a blank. Begin each continuation
line of a specification covering multiple lines with a tab character.

Further details on the components that make up the configuration clauses are:

root [on]

The system must know the location of the root file system at boot time. Follow
the root on clause with the name of the device which contains the root filesystem.

swap [on]

The kernel must know what devices to use for swapping. Follow the swap on
clause with the device name and partition that will be used for the paging and
swapping areas.

dumps [on]

To force system dumps on a particular device, follow this clause with the name
of the device where the dump should be taken.

args [on]

You can specify the device on which the system should process arguments during
system calls. However, most sites let config determine this device based on the
rules for selecting default locations for system devices.

device

A complete device specification consists of a device name, unit, and file system
partition.

You can specify complete device names in the configuration clauses, or you can
rely on config's default rules to select unit numbers and file system partitions.
The rules depend on the overall system configuration. Appendix B contains a

8 Building an ULTRIX-32 System with Config

size

complete list of the default rules for selecting system configuration devices.

contig translates the device names to major and minor device numbers on a per
machine basis. It uses specifications in the / sys / cont / devices. vax file to map a
device name to its major block device number. It calculates the minor device
number using standard disk partitioning rules.

You can state explicitly the major/minor device in the configuration clause if the
default mapping of device name to major/minor device number is incorrect for
your configuration. To do this, substitute:

major x minor y

for the device name in the configuration clause. For example, here is a device
name substitution:

config vmunix root on major 99 minor 1

The system sizes the areas configured for swap space at boot time. You can
specify a non-standard partition size for one or more swap areas. To do this,
append size and the appropriate size in sectors to the device name specification.
For example:

config vmunix root on hpO swap on hpOb size 1200

In this example, config forces swapping in partition b of hpO, with the swap par
tition size set to 1200 sectors. A swap area sized larger than the associated disk
partition is trimmed to the partition size.

swap generic

Specify this clause to create a generic configuration. Any extra clauses will cause
an error.

1.2.3. Device Specifications

When the system boots it goes through an autoconfiguration phase. During this
period, the system searches for all the hardware devices that the system builder indi
cated might be present. This search requires information such as register addresses
and bus interconnects.

You can configure the system's hardware to be very flexible, or to be totally inflexible.
Most system managers configure hardware devices into the system for these reasons:
1) the devices are currently present on the machine, 2) the devices will be present
shortly, 3) to guard against a hardware failure somewhere else at the site. You should
configure in extra disks in case an emergency requires moving one disk off a machine
with hardware problems.

Building an ULTRIX-32 System with Config 9

Hardware devices specified in the configuration do not need to be present on the
machine where the generated system will run. The system only uses the hardware it
finds at boot time.

Specification of hardware devices in the configuration file parallels the interconnection
hierarchy of the machine to be configured. Thus, the configuration file must indicate
which MASSBUS and UNIBUS adapters are present and which NEXUSes they might
be connected to.

NOTE: Although VAX-ll/750s and VAX-ll/730s do not actually have NEXUSes, the
system treats these systems as having simulated NEXUSes to simplify device
configuration.

Devices and controllers must indicate possible connections to one or more adapters.

A device description may either provide a complete or incomplete definition of the
possible configuration parameters. For an incomplete definition, the system probes for
all the possible values. Leaving a parameter undefined allows a single device
configuration list to match many possible physical configurations.

For example, a disk may either be indicated as present at MASSBUS adapter 0, or at
any MASSBUS adapter located at boot time. The latter scheme, termed wildcarding,
allows more flexibility in the physical configuration of a system; if a disk must be
moved around for some reason, the system still locates it at the alternate location.

A device specification takes one of these forms:

controller device-name device-info [interrupt-spec]

controller is a disk controller, a UNIBUS tape controller, a MASSBUS
adapter, or a UNIBUS adapter.

device device-name device-info interrupt-spec

device is an autonomous device which connects directly to a UNIBUS adapter
(as opposed to a disk, for example, which connects through a disk controller).

disk device-name device-info

disk identifies disk drives connected to a controller or master.

master device-name device-info

master is a MASSBUS tape controller.

tape device-name device-info

tape identifies tape drives connected to a controller or master.

The variable device-name is one of the standard device names, indicated in Section 4
of the ULTRIX-32 Programmer's Manual, followed by the logical unit number
assigned the device. The logical unit number may differ from the physical unit
number indicated on the front of the device. The logical unit number refers to the

10 Building an ULTRIX-32 System with Config

ULTRIX-32 device, not the physical unit number. For example, hpO is logical unit 0
of a MASSBUS storage device, even though it might be physical unit 3 on MASSBUS
adapter 1.

The variable device-info specifies how the hardware is connected in the interconnec
tion hierarchy. The UNIBUS and MASSBUS adapters are connected to the internal
system bus through a NEXUS. Thus, you should edit your configuration file, and you
could use one of these specifications:

controller mbaO at nexus x
controller ubaO at nexus x

To tie a controller to a specific NEXUS, supply x as the number of that NEXUS; oth
erwise specify x as ? and the system will probe all NEXUSes present, looking for the
specified controller.

The remaining interconnections are:

• A controller can be connected to another controller (for example, a disk controller
attached to a UNIBUS adapter)

A master is always attached to a controller (for example, a MASSBUS adapter)

A tape is always attached to a master (for example, MASSBUS tape drives)

• A disk is always attached to a controller

Devices are always attached to controllers (for example, UNIBUS controllers
attached to UNIBUS adapters).

These are examples that you could add to your configuration file:

controller hkO at ubaO ...
disk rkl at hkO ...
master htO at mbaO ...
tape tuO at htO ...
device dzO at ubaO ...

You can wildcard any piece of hardware accross multiple controllers which can be con
nected to a specific controller except drives on a MASSBUS.

For the system to configure devices, it needs an indication of where or how a device
will interrupt. For tapes and disks, simply specify the slave or drive number to locate
the control status register for the device. For controllers, you must explicitly state the
control status register, as well how many interrupt vectors are used and the names of
the routines to which they should be bound. Thus you could complete the example
lines given above as:

controller
disk
master
tape

hkO
rkl
htO
tuO

at ubaO csr 0177440
at hkO drive 1
at mbaO drive 0
at htG siave 0

vector rkintr

Building an ULTRIX-32 System with Config 11

device dzO at ubaO csr 0160100 flags Oxff vector dzrint dzxint

Some device drivers require extra information passed to them at boot time to tailor
their operation to the actual hardware present. For example, the line printer driver
needs to know how many columns are present on each non-standard line printer (that
is, a line printer with other than 80 columns). The drivers for the terminal multiplex
ors need to know which lines are attached to modem lines so that no one can use them
unless a connection is present. For this reason, you can specify one last parameter
called the {lags field. It follows csr, and has this syntax:

flags number

number is passed directly to the associated driver. See Section 4 of the ULTRIX-32
Programmer's Manual to determine how each driver uses this value (if at all).

Communications interface drivers commonly use the flags to indicate whether modem
control signals are in use.

For further information about a specific device, see its synopsis section in Section 4 of
the ULTRIX-32 Programmer's Manual, for example dmf(4).

1.2.4. Required Pseudodevices

Many drivers and software subsystems are treated like device drivers without any
associated hardware. This type of driver is called a pseudodevice. The ULTRIX-32
system requires several pseudodevice specifications in the configuration file. The
example configuration files distributed with the ULTRIX-32 system include the fol
lowing pseudodevice specifications:

pseudo-device
pseudo-device
pseudo-device
pseudo-device

pty
loop
inet
ether

Your configuration file must also contain these specifications.

1.2.5. Adding the Network Support

The Internet protocols use the INET pseudo-device in addition to the global INET
option. You need pseudo terminals to allow users to log in across the network.

You also need to add the DEUNA Ethernet device to your configuration file, if it is

12 Building an ULTRIX-32 System with Config

appropriate for your system. The specification is:

device deO at uba? csr 0174510 vector deintr

Optional pseudodevice specifications include imp, which is needed if you configure a
ess of ACC imp.

Building an ULTRIX-32 System with Config 13

2. Using config to Build the System

Section 1 of this document describes the first step in building an ULTRIX-32 system,
that is, how to set up and edit a configuration file for your system.

Section 2 describes the remaining four steps for building a bootable system image for
your system with the config program. When your configuration file edits are complete,
proceed with the steps described in this section.

2.1. Making a Directory for the System

The second step for building an ULTRIX-32 system is to build a directory in which
you will construct the system.

The configuration file must have the same name as the directory you build. Use
uppercase letters for both the configuration file and the directory names. Also, config
assumes that both the directory containing the configuration file and the directory
where you will construct the system are subdirectories of the same parent directory.

For example, if your configuration file is called / sys / conf / MYV AX, you need to create
a directory called / sys / MYV AX in which to construct the system. You should now be
in the / sys / conf directory. Create the new directory using this command:

mkdir .. /MYVAX

Do not move configuration directories out of / sys. Most of the system code and the
files config creates use pathnames of the . ./ form.

2.2. Running the config Program

The third step for building an ULTRIX-32 system is to run config on the
configuration file.

Once you have completed the configuration file and created a configuration directory,
you are ready to run the config program. You should still be located in the I sys I conf
directory.

To run config on a a configuration file called MYV AX, type:

config MYV AX

Check for any errors that config may report. In general, the error diagnostics are self
explanatory. Do not use a system in which config has reported errors; the results are
unpredictable.

A successful run of config on your configuration file generates a number of files in the
configuration directory. These files are:

The makefile, which is used by make (1) in compiling and loading the system.

14 Building an ULTRIX-32 System with Config

• One file for each possible system image for your machine which describes where
swapping, the root filesystem, and other miscellaneous system devices are located.

• A collection of header files, one per possible device the system supports, which
define the hardware configured.

• A file containing the i/o configuration tables used by the system during its
autoconfiguration phase.

• An assembly language file of interrupt vectors which connect interrupts from your
machine's external buses to the main system path for handling interrupts.

2.3. Constructing Source Code Dependencies

The fourth step for building an ULTRIX-32 system is to construct the source code
dependency rules.

After config has finished generating the files you need to compile and link your sys
tem, it reports:

Don't forget to run "make depend"

This message reminds you to run the make (1) program. make is a tool for maintain
ing program groups. You run make to build the rules that recognize dependencies in
the system source code. These rules ensure that any changes to a piece of the system
source code results in the proper modules being recompiled when you use make to
rebuild a bootable system image.

To construct these source code dependencies, first change directory to the
configuration directory. For example, if your configuration directory is I sys I MYV AX,
change directory with:

cd .. /MYVAX

Then type:

make depend

The result is a report on the progress of the make program. The system eventually
responds with a # prompt:

make depend
grep '''#include' ...

rm eddep makedep

Building an ULTRIX-32 System with Config 15

2.4. Building the System

The last step for building an ULTRIX-32 system is to compile and load the system.

After you have constructed the source code dependencies, use the make program to
build the new system. To do this, type;

make image-name

image-name is the name you gave the system image in your configuration file. For
example, if you named your bootable system image vmunix, then type the following to
generate a bootable image named vmunix:

make vmunix

The make program prints several lines, reporting its progress. The system eventually
responds with a # prompt.

If you have multiple kernels on your system (see subsection 1.2.2), you should do a
make on each specific image-name. For example, suppose you configured vmunix with
the root filesystem on an hp device, and hkvmunix with the root file system on an hk
device. In this case, you can generate the binary images for each root filesystem by
typing;

make vmunix hkvmunix

NOTE: vmunix must precede any other image-name. Also, the name of a bootable
image is diJferent from the system identifier. All bootable images are configured for
the same system; but the information about the root filesystem and paging devices
differ.

You have now built a new system image. You should make a copy of the new system
image, and bring the system up to multi-user mode to make sure it functions properly.

Return to Section 3.3 of the ULTRIX-32 Installation Guide for the procedures to do
this.

Building an ULTRIX-32 System with Config 17

3. Sample Configuration Files

Section 3 describes how to configure a sample VAX-11/780 system so the hardware
can be reconfigured to guard against various hardware mishaps. It then outlines the
configuration for a VAX-11/750 and a VAX-11/730.

Read this section if you need examples on how to edit the configuration file to reflect
your system's configuration.

3.1. VAX-ll/780 System

This subsection outlines the steps for configuring a basic VAX-l1/780 system. Table
3.1 lists the hardware to be configured.

Table 3.1 Example VAX-11/780 Hardware Support

cpu "VAX780"
MASSBUS adapter nexus? mbaO
disk mbaO hpO hp(4)
disk mbaO hp1
MASSBUS adapter nexus? mba1
tape controller mba! htO ht(4)
tape drive htO tuO
UNIBUS adapter nexus? ubaO
line printer ubaO lpO lp(4)
DZ multiplexor ubaO dzO dz(4)
DMF multiplexor ubaO dmfO dmf(4)

The rest of this section describes step-by-step how to construct a configuration file.

3.1.1. Filling in Global Configuration Parameters

The first step is to edit your configuration file. Using the ed (1) editor (a summary
sheet of how to use ed is included in this binder), fill in the global configuration
parameters. The machine is a VAX; therefore, machine type is vax. Assume this sys
tem runs only on one processor; therefore, cpu type is V AX780. For this example,
system identifier is EXAMPLE780.

Do not alter the maxusers option; it was determined by the license agreement, and it
specifies the maximum number of simultaneous users on the system. After editing the

18 Building an ULTRIX-32 System with Config

configuration file, the beginning of it looks like this:

EXAMPLE780 (an example configuration for a VAX-11 /780)

machine
cpu
timezone
ident
maxusers
options
options

vax
VAX780
5 dst
EXAMPLE780
32
INET
QUOTA

3.1.2. Specifying System Images

Now add to the configuration file the specifications for three system images.

The first specification is the standard system with the root on hpO and swapping on
the same drive as the root. The second has the root file system in the same location,
but the swap space is interleaved between hpO and hp1. The third is a generic system,
to allow us to boot off either disk drive. These are the appropriate specification lines:

config
config
config

vmunix
hpvmunix
genvmunix

3.1.3. Specifying Hardware

root on hpO
root on hpO swap on hpO and hp 1
swap generic

Now add the hardware specifications to the configuration file.

Transcribe the information from Table 3.1. Refer to the Synopsis section for each
device description in Section 4 of the ULTRIX-32 Programmer's Manual for the dev
ice name and other information needed in the configuration file. The device
specifications could look like this:

controller mbaO at nexus?
disk hpO at mbaO drive 0
disk hp 1 at mbaO drive 1

controller mba 1 at nexus?
master htO at mba 1 drive 0
tape tuO at htO slave 0
controller ubaO at nexus?
device IpO at ubaO csr 0177514 vector Ipintr
device dzO at ubaO csr 0160100 flags OxOO vector dzrint dzxint
device dmfO at ubaO csr 0160340 flags Oxff

vector dmfsrint dmfsxint dmfdaint dmfdbint dmfrint dmfxint dmflint

Building an ULTRIX-32 System with Config 19

device deO at ubaO csr 0174510 vector deintr

This configuration file suffices, but leaves little flexibility. Suppose the first disk con
troller were to break. You would want to recable the drives on the second controller so
that you could still use all the disks without reconfiguring the system. To recable the
drives, wildcard the MASSBUS adapter connections and also the slave numbers. The
revised device specifications are:

controller mbaO at nexus ?
disk hpO at mba? drive?
disk hp 1 at mba? drive?
controller mba 1 at nexus?
master htO at mba 1 drive?
tape tuO at htO slave 0
controller ubaO at nexus ?
device IpO at uba? csr 0177514 vector Ipintr
device dzO at uba? csr 0160100 flags OxOO vector dzrint dzxint
device dmfO at uba? csr 0160340 flags Oxff

vector dmfsrint dmfsxint dmfdaint dmfdbint dmfrint dmfxint dmflint
device deO at uba? csr 0174510 vector deintr

3.1.4. Example Configuration File for VAX-ll/780

The following is an example of an edited configuration file for a VAX-11/780 proces
sor:

MY780 Configuration file.

machine vax
cpu "VAX780"
ident MY780
timezone 5 dst
maxusers 32
options INET
options QUOTA

con fig vmunix

controller mbaO
controller mba 1
controller mba2
controller mba3
controller ubaO
controller uba1
controller uba2

root on hpO swap on hpO and hp 1

at nexus?
at nexus?
at nexus?
at nexus?
at nexus?
at nexus?
at nexus?

20 Building an ULTRIX-32 System with Config

controller uba3 at nexus?
disk hpO at mba? drive 0
disk hpl at mba? drive 1
disk hp2 at mba? drive 2
disk hp3 at mba? drive 3
disk hp4 at mba? drive 4
master htO at mba? drive?
tape tuO at htO slave 0
tape tul at htO slave 1
master mtO at mba? drive?
tape muO at mtO slave 0
tape mul at mtO slave 1
controller hkO at uba? csr 0177440 vector r kintr
disk rkO at hkO drive 0
disk rkl at hkO drive 1
device IpO at uba? csr 0177514 vector lpintr
device dzO at uba? csr 0160100 flags OxOO vector dzrint dzxint
device dzl at uba? csr 0160110 flags Oxfi' vector dzrint dzxint
device dz2 at uba? csr 0160120 flags OxOO vector dzrint dzxint
device dz3 at uba? csr 0160130 flags Oxfi' vector dzrint dzxint
device deO at uba? csr 0174510 vector deintr
pseudo-device pty
pseudo-device inet
pseudo-device loop
pseudo-device ether

Building an ULTRIX-32 System with Config 21

3.2. VAX-11/750 System

This subsection presents a sample configuration file for a VAX-l1/750 with network
ing support. Table 3.2 lists the hardware to be configured.

Table 3.2 Example VAX-11/750 Hardware Support

cpu
MASSBUS adapter
RM05 disks
UNIBUS adapter
UDA50-a controller
RA81 disks
DZ multiplexer

nexus?
mbaO
nexus?
ubaO
udaO
ubaO

3.2.1. Filling in Global Parameters

VAX750
mbaO
hpO
ubaO
udaO
raO
dzO

hp(4)

uda(4)

dz(4)

The machine is a VAX; therefore, machine type is vax. Assume this system runs only
on one processor; therefore, cpu type is VAX750. For this example, the system
identifier is EXAMPLE750.

Do not alter the max users option; it was determined by the license agreement.

You must specify the INET option for networking support. After editing the
configuration file, the beginning of it looks like this:

EXAMPLE750 (an example VAX-11 /750 with networking support)

machine
cpu
ident
timezone
maxusers
options
options

vax
"VAX750"
EXAMPLE750
5 dst
32
INET
QUOTA

3.2.2. Specifying System Images

Now add to the configuration file the specifications for the system image.

22 Building an ULTRIX-32 System with Config

For this example, swapping will be on the RM05 (hpO):

config vmunix root on hpO

3.2.3. Specifying Hardware

Now the hardware specifications to the configuration file.

Transcribe the information from Table 3.2, and refer to the Synopsis for each device
description in Section 4 of the ULTRIX-32 Programmer's Manual for the device
name and other information needed in the configuration file. Remember to allow for
flexibility.

The configured hardware looks like this:

controller mbaO at nexus?
disk hpO at mba? drive 0
controller ubaO at nexus?
controller udaO at uba? csr 0172150 vector udintr
disk raO at udaO drive 0
device dzO at uba? csr 0160100 flags Oxff vector dzrint dzxint
device deO at uba? csr 0174510 vector deintr

3.2.4. Example Configuration File for VAX-ll/750

The following is an example of an edited configuration file for a VAX-II/750 proces
sor:

MY750
Configuration file for a VAX-II/750

machine
cpu
ident
time zone
maxusers
options
options

config

controller
controller
controller
disk
disk

vax
"VAX750"
MY750
5 dst
32
QUOTA
INET

vmunix

mbaO
mbaI
ubaO
hpO
hpI

root on hpOa swap on hpOb dumps on hpOb args on hpOb

at nexus?
at nexus?
at nexus?
at mba? drive 0
at mba? drive?

Building an ULTRIX-32 System with Config 23

master htO at mba? drive ?
tape tuO at htO slave 0
controller hkO at uba? csr 0177440 vector rkintr
disk rkO at hkO drive 0
disk rk1 at hkO drive 1
device dzO at uba? csr 0160100 flags Oxfi' vector dzrint dzxint
controller zsO at uba? csr 0172520 vector tsintr
device tsO at zsO drive 0
device dmfO at uba? csr 0160340 flags Oxfi'

vector dmfsrint dmfsxint dmfdaint dmfdbint dmfrint dmfxint dmflint
pseudo-device pty
pseudo-device loop
pseudo-device inet
pseudo-device ether
device IpO
device deO

at uba? csr 0177514
at uba? csr 0174510

vector lpintr
vector deintr

24 Building an ULTRIX-32 System with Config

3.3. VAX-11/730 System

This subsection describes the steps for configuring a basic VAX-11/730 system. The
configuration file for a VAX-11/730 with networking support is similar to the VAX-
11/750 described in subsection 3.2, but without a MASSBUS. Table 3.3 lists the
hardware to be configured.

Table 3.3 Example VAX-11/730 Hardware Support

I
cpu VAX730
UNIBUS adapter nexus? ubaO
UDA50-a controller ubaO udaO uda(4)
RA80 udaO raO
RA81 udaO ra1
IDC ubaO idcO
RL02 udaO rbO
tape controller ubaO zsO ts(4)
tape drive zsO tsO
line printer ubaO IpO Ip(4)
DZ multiplexor ubaO dzO dz(4)
DMF multiplexor ubaO dmfO dmf(4)

3.3.1. Filling Global Configuration Parameters

The machine is a VAX; therefore, machine type is vax. Assume this system runs only
on one processor; therefore, cpu type is V AX730. For this example, the system
identifier is EXAMPLE730.

Do not alter the max users option; it was set by the license agreement.

Set the disk quota option. For information on this option, see Disk Quotas Ln a
UNIX Environment in the ULTRIX-32 Programmer's Manual, Volume 2C.

The global variables for this configuration file look like this:

EXAMPLE730

machine
cpu
ident
timezone
maxusers
options

vax
"VAX730"
EXAMPLE730
5 dst
16
INET

options

Building an ULTRIX-32 System with Config 25

QUOTA

3.3.2. Specifying System Images

Now add to the configuration file the specifications for the system image. In this
example, swapping and the root filesystem are on raO. This is the appropriate
specification line:

config vmunix root on raO swap on raO

3.3.3. Specifying Hardware

Now add the hardware specifications to the configuration file.

Transcribe the information from Table 3.3 and refer to the Synopsis for each device
description in Section 4 of the ULTRIX-32 Programer's Manual for the device name
and other information needed in the configuration file.

The configured hardware looks like this:

controller
controller
disk

ubaO
udaO
raO

at nexus?
at ubaO csr 0172150 vector udintr
at udaO drive 0

disk ra 1 at udaO drive 1
controller ideO at ubaO csr 0175606 vector idcintr
disk rbO at ideO drive 0
controller zsO at ubaO csr 0172520 vector tsintr
device tsO at zsO drive 0
device IpO at ubaO csr 0177514 vector Ipintr
device dzO at ubaO csr 0160110 flags Oxff vector dzi"int dzxint
device dmfO at ubaO csr 0160400 flags Oxff

vector dmfsrint dmfsxint dmfdaint dmfdbint dmfrint dmfxint dmflint
device deO at ubaO csr 0174510 vector deintr

3.3.4. Example Configuration File for VAX-11/730

The following is an example of an edited configuration file for a VAX-11/730 proces
sor:

MY730
Configuration file for VAX 11/730

machine
cpu
ident
timezone

vax
"VAX730"
MY730
5 dst

26 Building an ULTRIX-32 System with Config

maxusers
options
options

config

16
INET
QUOTA

vmunix root on raO swap on raO

controller ubaO at nexus?
controller hkO at ubaO csr 0177440 vector rkintr
disk rkO at hkO drive 0
disk rkl at hkO drive 1
controller udaO at ubaO csr 0172150 vector udintr
disk raO at udaO drive 0
disk ral at udaO drive 1
controller idcO at ubaO csr 0175606 vector idcintr
disk rbO at idcO drive 0
disk rbl at idcO drive 1
controller hlO at ubaO csr 0174400 vector rlintr
disk rIO at hlO drive 0
controller zsO at ubaO csr 0172520 vector tsintr
device tsO at zsO drive 0
device dmfO at ubaO csr 0160400 flags Oxfi'

vector dmfsrint dmfsxint dmfdaint dmfdbint dmfrint dmfxint dmflint
device dzO at ubaO csr 0160110 flags Oxfi' vector dzrint dzxint
pseudo-device pty
pseudo-device loop
pseudo-device inet
pseudo-device pup
pseudo-device ether
device deO at ubaO csr 0174510 vector deintr

Building an ULTRIX-32 System with Config 27

APPENDIX A. Configuration File Grammar

The following grammar is a compressed form of the actual yacc (1) grammar config
uses to parse configuration files. All uppercase indicates terminal symbols; bold indi
cates literals; brackets ([]) indicate optional clauses; and asterisks (*) indicate zero or
more instantiations.

Configuration ::= [Spec;]*

Spec ::= Config spec
I Device spec
I trace
I /* lambda * /

/* configuration specifications * /

Confif spec :: = machine ID
cpuID

I options Opt list
I ident ID
I System spec
I timezone [-] NUMBER [dst [NUMBER]]
I timezone[-] FPNUMBER [dst [NUMBER]]
I maxusers NUMBER

/* system configuration specifications * /

System spec :: = cortfig ID System parameter [System parameter] *

System parameter ::= swap spec I root spec I dump spec I arg spec

swap spec ::= swap [on] swap dev [and swap dev]*

swap dev :: = dev spec [size NUMBER]

root spec ::= root [on] dev spec

dump spec ::= dumps [on] dev spec

arg spec ::= args [on] dev spec

dev spec :: = dev name I major minor

28 Building an ULTRIX-32 System with Config

major minor ::= major NUMBER minor NUMBER

dey name ::= ID [NUMBER [ID]]

/* option specifications * /

Opt list :: = Option [, Option] *

Option :: = ID [= Opt value]

Opt value ::= ID I NUMBER

/* device specifications * /

Device spec ::= device Dev name Dev info Int spec
I master Dev name Dev info
I disk Dev name Dev info
I tape Dev name Dev info
I controller Dev name Dev info [Int spec]
I pseudo-device Dev [NUMBER]

Dev name ::= Dev NUMBER

Dev::= uba I mba lID

Dev info ::= Con info [Info] *

Con info ::= at Dev NUMBER
I at nexus NUMBER

Info :: = csr NUMBER
I drive NUMBER
I slave NUMBER
I flags NUMBER

Int spec :: = vector ID [ID] *
I priority NUMBER

Lexical Conventions

The terminal symbols are loosely defined as:

ID ~

One or more alphabetic characters, either uppercase or lowercase, and an under-
score ().

Building an ULTRIX-32 System with Config 29

NUMBER
Approximately the C language specification for an integer number. That is, a
leading Ox indicates a hexadecimal value, and a leading 0 indicates an octal
value. Otherwise the number is expected to be a decimal value. Hexadecimal
numbers may use either uppercase or lowercase alphabetic characters.

FPNUMBER
,A floating point number without an exponent. That is, a number of the form
nnn.ddd, where the fractional component is optional.

In special instances you can substitute a question mark (?) for a NUMBER token.
The question mark effects wildcarding in device interconnection specifications.

To indicate comments in a configuration file, use a # character at the beginning of the
line; the remainder of the line is not interpreted.

To have a specification interpreted as a continuation of the previous line, make the
first character of the line a tab.

Building an ULTRIX-32 System with Config 31

APPENDIX B. Rules for Default System Devices

When config processes a config rule which does not fully specify the location of the
root file system, paging area(s), device for system dumps, and device for argument list
processing, it applies a set of rules to define those values left unspecified. The follow
ing list of rules are used as defaults for system devices:

1) If a root device is not specified, the swap specification indicates building a generic
system.

2) If the root device does not specify a unit number, it defaults to unit O.

3) If the root device does not include a partition specification, it defaults to the a par
tition.

4) If no swap area is specified, it defaults to the b partition of the root device.

5) If no device is specified for processing argument lists, the first swap partition is
selected.

6) If no device is chosen for system dumps, the first swap partition is selected

The following summarizes the default partitions selected when a device specification is
incomplete, for example, hpO:

T~pe EartitiQn
root a
swap b
args b
dumps b

Multiple Swap/Paging Areas

When multiple swap partitions are specified, the ULTRIX-32 system treats the first
partition specified as the primary swap area. The remaining partitions are interleaved
into the paging system when a swapon (2) system call is made. Interleaving usually
happens at boot time with a call to swapon (8) from the / etc / rc file.

System Dumps

System dumps automatically happen after a system crash, provided the device driver
for the dumps device supports this. The dump contains the contents of memory, but
not the swap areas. Normally the dump device is a disk, in which case the informa
tion is copied to a location near the back of the partition. The dump is placed there
because the primary swap and dump device are commonly the same device and this
allows the system to be rebooted without immediately overwriting the saved informa
tion.

32 Building an ULTRIX-32 System with Config

If a dump occurs, the system variable dumpsize is set to a non-zero value indicating
the size (in bytes) of the dump. The savecore (8) program then copies the informa
tion from the dump partition to a file in a crash directory, and also makes a copy of
the system which was running at the time of the crash (usually /vmunix).

The offset to the system dump is defined in the system variable dumplo (a sector
offset from the front of the dump partition). savecore (8) operates by reading the
contents of dumplo, dumpdev, and dumpmagic from / dev / kmem. It then compares
the value of dumpmagic read from / dev / kmem to that located in the corresponding
location in the dump area of the dump partition. If a match is found, savecore (8)
assumes a crash occurred and reads dumpsize from the dump area of the dump parti
tion. This value is then used in copying the system dump.

dumplo is defined as:

dumpdev-size - DUMPDEV

dumpdev-size is the size of the disk partition where system dumps are to be placed,
and DUMPDEV is 10 megabytes. If the disk partition is not large enough to hold a
10 megabyte dump, dumplo is set to 0 (the front of the partition).

Building an ULTRIX-32 System with Config 33

APPENDIX C. VAX Kernel Data Structure Sizing Rules

NOTE: Do not follow the procedures described in Appendix C unless you are experi
enced with the UL TRIX -32 operating system.

Some system data structures are sized at compile time according to the maximum
number of simultaneous users expected, while others are calculated at boot time based
on the physical resources present; for example, memory.

This appendix lists both sets of rules and also includes some hints on how to change
built-in limitations on certain data structures.

Compile Time Rules

The file / sys / conf / param.c contains the definitions of almost all data structures sized
at compile time. This file is copied into the directory of each configured system to
allow configuration-dependent rules and values to be maintained. The rules implied
by its contents are summarized in this appendix.

NOTE: MAXUSERS refers to the maximum number of simultaneous users defined in
the configuration file. It is set by your license agreement. Do not alter this parameter.

nproc
The maximum number of processes which may be running at any time. It is
defined to be 20 + 8 * MAX USERS and referred is to in other calculations as
NPROC.

ntext
The maximum number of active shared text segments. It is defined as 24 +
MAXUSERS + NETSLOP, where NETS LOP is 20 when the Internet protocols
are configured in the system; otherwise it is o. The added size for supporting the
network is to take into account the numerous server processes which are likely to
exist.

nino de

nfile

The maximum number of files in the file system which may be active at any
time. This includes files in use by users, as well as directory files being read or
written by the system, and files associated with bound sockets in the ULTRIX-
32 ipc domain. ninode is defined as (NPROC + 16 + MAXUSERS) + 32.

The number of file table structures. One file table structure is used for each
open, unshared, file descriptor. Multiple file descriptors may reference a single
file table entry when they are created through a dup (2) call, or as the result of a

34 Building an ULTRIX-32 System with Config

fork (2.) nfile is defined to be

16 • (NPROC + 16 + MAXUSERS) / 10 + 32 + 2 • NETSLOP

NETSLOP is defined as it is for ntext.

neallout
The number of callout structures. One callout structure is used per internal sys
tem event handled with a timeout. Timeouts are used for terminal delays,
watchdog routines in device drivers, protocol timeout processing, and so forth.
neallout is defined as 16 + NPROC.

nelist
The number of c-list structures. C-list structures are used in terminal i/o.
nelist is defined as 100 + 16 * MAXUSERS.

nmbelusters
The maximum number of pages which may be allocated by the network. This is
defined as 256 (a quarter megabyte of memory) in / sys / h / mbuf.h. The network
rarely requires this much memory. It starts off by allocating 64 kilobytes of
memory, then requests more as required. nmbelusters represents an upper
bound.

nquota
The number of quota structures allocated. Quota structures are present only
when disc quotas are configured in the system. One quota structure is kept per
user. nquota is defined as (MAXUSERS * 9) / 7 + 3.

ndquot
The number of dquot structures allocated. Dquot structures are present only
when disc quotas are configured in the system. One dquot structure is required
per user, per active file system quota. That is, when a user manipulates a file on
a file system on which quotas are enabled, the information regarding the user's
quotas on that file system must be in-core. This information is cached, so that
not all information must be present in-core all the time. ndquot is defined as
(MAXUSERS * NMOUNT) / 4 + NPROC, where NMOUNT is the maximum
number of mountable file systems.

In addition to the above values, the system page tables (which map virtual memory in
the kernel's address space) are sized at compile time by the SYSPTSIZE definition in
the file /sys/vax/param.h. SYSPTSIZE is defined as 20 + MAXUSERS pages of
page tables. Its definition affects the size of many data structures allocated at boot
time because it constrains the amount of virtual memory which the running system
may address. This is often the limiting factor in the size of the buffer cache.

System Size Limitations

The sum of the virtual sizes of the core-resident processes is limited to 64M bytes.
The size of the text, and data segments of a single process are currently limited to 6M
bytes each. The stack segment size is limited to 512K bytes as a soft, user-changeable

Building an ULTRIX-32 System with Config 35

limit, and may be increased to 6M with the setrlimit (2) system call. If these limits are
insufficient, they can be increased by changing the constants MAXTSIZ, MAXDSIZ
and MAXSSIZ in Isys/vax/vmparam.h, You must also change the definitions in
Isys/h/dmap.h and Isys/h/text.h.

Be careful in making the changes; be sure that you have adequate paging space. As
normally configured, the system has only 16M bytes per paging area. The best way to
get more space is to provide multiple, thereby interleaved, paging areas.

To increase the amount of resident virtual space possible, you can alter the constant
USRPTSIZE in Isys/vax/vmparam.h). To allow 128 megabytes of resident virtual
space, change the 8 to a 16.

Because the file system block numbers are stored in page table pg blkno entries, the
maximum size of a file system is limited to 2"19 1024 byte blocks. Thus no file system
can be larger than 512M bytes.

There can be no more than 15 mountable file systems. If you have many disks, you
should make some of them single file systems, and the paging areas do not count in
this total. To increase the total, it is necessary to change the core-map
I sys I h I cmap.h since there is a four bit field used here. The size of the core-map will
then expand to 16 bytes per 1024 byte page. Remember to change MSWAPX and
NMOUNT in Isys/h/param.h.

You can raise the maximum value NOFILE (open files per process limit) to 30 because
of a bit field in the page table entry in I sys I machine I pte.h.

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and Puerto Rico
call 800-258-1710

In Canada
call 800-267-6146

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager

c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

• Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575

Reader's Comments

ULTRIX - 32
Programmer's Manual

AA-8G60A-TE

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a writ
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please
make suggestions for improvement. __________________ _

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer

D Higher-level language programmer

D Occasional programmer (experienced)

D User with little programming experience

D Student programmer
D Other (please specify) _________________ _

Name Date ___________ _

Organization ___________________________ _

Street __________________________________ _

City _____________________ State ___ Zipofode ____ _

Country

1
1
1

- - - - - - Do Not Tear· Fold Here and Tape --'

IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N033 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Documentation Manager
ULTRIX-32H" Documentation Group
MK02-1/H10
Continental Blvd.
Merrimack, N.H.

03054

No Postage

Necessary

if Mailed in the

United States

- -----Do Not Tear· Fold Here and Tape - - - - - -- ---- ----------------- - - ---- ---I
1
1
1
1 ~
1.5
l...:l
1'2
~
Q
till
C
Q

;(
~
U

Notes:

Notes:

