
VAX 9000 Series

Digital Technical Journal
Digital Equipment Corporation

Volume 2 Number 4
Fall 1990

Cover Design
Digital s VAX 9000 mainframe system is the theme of this issue.

Our cover depicts several simple instructions flowing through

the VAX 9000 instruction execution pipeline. High performance

was achieved by breaking the VAX instructions into small simple

tasks that could be pipelined efficiently. Concurrent operation

on up to six instructions simultaneously resulted in a execution

rate of one simple VAX instntction per clock period.

Gloria Monroy of the High Performance Systems Group designed

the cover graphic, which was implemented in cooperation

with David Comberg of the Corporate Design Group.

Editorial
jane C. Blake, Editor
Barbara Lindmark, Associate EditOr

Circulation
Catherine M. Phillips, AdministratOr
Suzanne J. Babineau, Secretary

Production
Helen L. Patterson, Production Editor
Nancy jones, Typographer
Peter Woodbury, IllustratOr and Designer

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Robert M. Glorioso
john W. McCredie
Mahendra R. Patel
F. Grant Saviers
Robert K. Spitz
Victor A. Vyssotsky

The Digital Technicaljoumal is published quarterly by Digital
Equipment Corporation, 146 Main Street MLO I-31B68, Maynard,
Massachusetts 01754-2571. Subscriptions tO the journal are S40.00

for four issues and must be prepaid in u.s. funds. University and
college professors and Ph. D. students in the electrical engineering
and computer science fields receive complimentary subscriptions
upon request. Orders, inquiries, and address changes should be
sent 10 The Digital Tecbnicaljournal at the published-by address.
Inquiries can also be sent electronically 10 D'I:J@CRL.DEC.COM

Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 12 Crosby Drive,
Bedford, MA 01730-1493.

Digital employees may send subscription orders on the ENET to
RDVAX::JOURNALor by interoffice mail to mailstop MLO I -3/B68.
Orders should include badge number, cost center, site location
code and address. U.S. engineers in Engineering and Manufacturing
receive complimentary subscriptions; engineers in these organiza
tions in countries outside the u.s. should contact the journal office
to receive their complimentary subscriptions. All employees must
advise of changes of address.

Comments on the content of any paper are welcomed and may
be sent to the editOr at the published-by or network address.

Copyright ll:J 1990 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in educational institutions by faculty members and are not
distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation ·s authorship is permitted.
AU rights reserved.

The information in this Journal is subject 10 change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in
this journal.

ISSN 0898-901 X

Documentation Number EY-E762 E-DP

The following are trademarks of Digital Equipment Corporation:
Cl, DECsystem-10, DECSYSTEM-20, Digital, the Digital logo, HDSC,
MC!J, Micro VAX, Nl, PDP-I, Ul;fRIX, VAX, VAX-11/780, VAX 6000,

VAX 8000, VAX 8600, VAX 8650, VAX 9000, VAXBI, VMS, X MI.

IBM is a registered trademark of International Business Machines
Corporation.

Kapton is a trademark of E. I. duPont de Nemours & Company.

MOSAIC 111 is a trademark of Motorola Corporation.

Micromaster Plus is a registered trademark of t.:rx Company.

Book production was done by Digital's Educational Services
Media Communications Group in Bedford, MA.

I Contents

11 Foreword
Carl S. Gibson

13 Design Strategy for the VAX 9000 System
David B. Fite Jr. , Tryggve Fossum, and Dwight Manley

25 VAX Instructions That Illustrate the Architectural Features
of the VAX 9000 CPU
John E. Murray, R icky C. Hetherington, and Ronald M. Salett

VAX 9000 Series

43 Semiconductor Technology in a High-peiformance VAX System
Matthew J Adiletta, Richard L. Doucette, John H. Hackenberg,
Dale H. Leuthold, and Dennis M. Litwinetz

61 Vector Processing on the VAX 9000 System
Richard A. Brunner, Oileep P. B handarkar, Francis X. McKeen,
Bimal Patel , William). Rogers Jr., and Gregory L. Yoder

80 HDSC and Multichip Unit Design and Manufacture
Peter B. Dunbeck, Richard). Dischler, James B. McElroy,
and Frank J. Swiatowiec

90 The VAX 9000 Service Processor Unit
Matthew S. Goldman, Paul H. Dormitzer, and Paul A. Leveille

102 The Unique Features of the VAX 9000 Power System Design
Derrick). Chin, Barry G. Brow n , Charles F. Butala, Luke L. Chang,
Steven). Chenetz, Gerald E. Cotter, BrianT. Lynch, Thiagarajan Natarajan,
and Leonard J. Salafia

118 Synthesis in the CAD System Used to Design the VAX 9000 System
Donald F. Hooper and John C. Eck

130 Hierarchical Fault Detection and Isolation Strategy
for the VAX 9000 System
Karen E. Barnard and Robert P. Harokopus

I Editor's Introduction

jane C. Blake

Editor

The VAX 9000, Digital's first mainframe computer,
is the topic of papers in this issue of the D(f.{ital

Technical journal. As engineers writing for this
issue relate, the primary goal of the project from the
initial product strategy through manufacture was to
design and build a very high-performance, highly
reliable VAX system.

Design engineers applied both crsc and R!SC
techniques to achieve high levels of performance
for this rightly coupled multiprocessor system.
In the opening paper, Dave Fire, Tryggve Fossum,
and Dwight Manley explain the strategy behind the
design. They begin with an overview of the system,
the technology, and CAD tools, and then describe
the redesign of VAX instructions into small tasks
which can be efficiently pipe lined. The authors
also touch upon three additional aspects of the
VAX 9000 system: the integration of vector process
ing into the VAX architecture, new error handling
techniques, and performance modeling.

One measure of performance is the number of
instructions processed per cycle. The average num
ber of cycles per instruction is less than five, which
is nearly half the instruction execution rate of pre
vious VAX systems. To illustrate the architectural
features that enable this level of performance, John
Murray, Rick Hetherington, and Ron Salett have
selected a small sample of VAX instructions. They
describe the instruction flow through the pipeline,
how instruction features combine to work on a sin
gle macro, and how stages of the pipeline interact.

ln addition to the architectural improvements,
machine performance is enhanced at the semi
conductor level by a new generation of semicustom
and custom integrated circuits that support a low
c ycle time. Matt Acliletta, Dick Doucette, John
Hackenberg, Dale Leuthold, and Dennis Litwinetz
give an overview of the bipolar technology used in
the system. They then describe the methods used to

2

implement the 77 different gate array chips, the five
custom chips, and the self-timed RAM architecture.

An additional performance improvement for
numeric computations is the VAX vector architec
ture and is treated in the paper by Rich Brunner,
Dileep Bhandarkar, Frank McKeen, Bimal Patel, Rill
Rogers, and Greg Yoder. They discuss the architec
tural model and particulars of the VAX 9000 imple
mentation, which affords numerically intensive
applications performance four to five times greater
than can be achieved by the scalar processor.

To ensure that the system performance gains
at the semiconductor level were not diminished
but were instead enhanced by packaging and inter
connects, engineers developed several technologies
unique in the industry. The technology behind the
high-density signal carrier and the multichip unit
are explained in the paper by Pete Dunbeck, Rich
Dischler, Jim i'vlcEiroy, and Frank Swiatowiec.

Equally important to performance in the new
9000 is system reliability as e\'idenced by the intro
duction of the service processor unit. In their paper
about the service processor, Matt Goldman, Paul
Dormitzer, and Paul Leveille relate how the

MicroVAX-based system embedded within the 9000
detects, isolates, and corrects problems without
interrupting the system .

High system availability \Vas also one impetus in
the design of the power system . Some of the unique
features of the power system, such as redundant
regulators, improved load sharing and simula
tion, are discussed by Derrick Chin, Barry Brown,
Charles Butala, Luke Chang, Steve Chenetz, Jerry
Cotter, Brian Lynch, Raj Natarajan, and Len Salafia.

The two papers that close this issue address the
topics of CAD methodology and system diagnosis.

Don Hooper and John Eck describe a CA D method
ology that combines advanced rule-based A! tech
niques with an object-oriented database. The new
methodology saves logic designers significant time
and reduces errors. A complex system such as the
VAX 9000 requires improved system diagnosis capa
bilities to achieve the desired high system availabil
ity. Karen Barnard and Rob Harokopus demonstrate
how a new scan system, in combination with scan
pattern testing, and symptom-directed diagnosis
achieve this necessary diagnosis capability.

The editors thank Rick Hetherington of the High
Performance Systems Group for not only writing a
paper but for his help in coordinating this issue.

Biographies

Matthew J. Adiletta Matthew Adiletta is currently contributing to the

implementation of a new processor architecture and performing a technology

evaluation to determine the technology for the implementation. He joined

Digital in 1985 to work on a high-performance RISC architecture. Matt was not

only the architect for the VAX 9000 system, but he also implemented the integer

and floating point multiply and divide units and developed an ECL custom chip

process. He holds one patent and has several patents pending. Man received a

B . S . E . E. (honors, 1985) from the University of Connecticut.

Karen E. Barnard A senior software engineer with the High Power Business

Unit CPU Development Group, Karen Barnard wrote the read-only memory

based diagnostic for the VAX 9000 service processor unit's scan control module

and developed the scan pattern diagnostic for the VAX 9000 CPU and SCU. Karen

also worked on the debugging structural test process for the VAX 9000 kernel

environment. Prior to joining Digital in 1986, Karen was with Data General

Corporation. She received a B . S . (1983) in computer science from the Worcester

Polytechnicallnstitute.

Dileep P. Bhandarkar As technical director for RlSC systems, Dileep

13handarkar is responsible for leading the architectural direction of RlSC prod

ucts. He joined Digital in 1978 and was responsible for managing the evolution of

the VAX architecture. Dileep was the chief architect for VAX vector processing

and coarchitect of Digital's RISC architecture. He holds one patent for his work at

Digital and has several patents pending. His degrees in electrical engineering

include a 13achelor of Technology from the Indian Institute of Technology and an

M.S . and a Ph. D. from Carnegie-Mellon University.

Barry G. Brown The concept of designing DC-to-DC converters as system

elements rather than individual "power supplies" was introduced into the high

power systems products by Barry Brown. He created and developed a highly

tlexible, high-reliability DC-to-DC conversion system for the VAX 9000 series.

Barry designed, implemented, and verified the power system for the VAX 9000

Model 200 systems. He was a principal engineer for the Codex Corporation

before coming to Digital in 1984. Barry is a graduate of Woolwich Polytechnic

and Harlow Technical College.

I

3

Biographies

4

Richard A. Brunner As 3 principal engineer, R ichard Brunner is the architect

currently responsible for the engineering refinement and control of both

the VAX and VAX vector architectures. He is the editor of the VAX Architecture

Reference Manual and coauthor of the VAX Vector Handbook and several papers

on the VAX vector 3rchitecture. He received a B.S. (high honors, 19R4) in elec

trical e ngineering from Case Western Reserve Un iversity and an M . S . (1987) i n

computer engineering from Rensselaer Polytechnic Institute. H e i s a member of

JEEF. and Tau Beta Pi .

Charles F. Butala Presently responsible for the power system design and

arch itecrure of rhe VAX 9000 Model 4 00 systems, Charles Butala is a consulting

engineer in the Information Systems Business Unit Power Systems Group. Since

he joined Digital in 1976, he has been responsible for several power system design

projects, including the VAX H600 system. He is a member of I EEE and Tau Beta P i ,

and holds honorary society membership i n Eta Kappa Nu . Charles received

a R.S.E.E. (1968) from I l l inois Inst itute of Technology and an M. S . E .E. from

Norrhe3stern University.

Luke L. Chang A fter receiving his M.S. in electrical engineering from Virginia

Polytechnic lnstirute and Stare University in 1988, Luke Chang joined the Power

Sysrems Technology and Regulations Group. He is currently a hardware engineer

and is responsible for developing simulation tools to perform h igh-qual ity

software design veri fication tests for the next generation DC-to-DC power con

verters. Luke's previous responsibil ities include transient analysis :md testing of

the VAX 9000 memory power distribution sysrem, 3nd power system cost reduc

tion studies.

Steven). Chenetz As a principal engineer in the Information Systems Busi

ness Unit Power Systems Group, Steven Chenetz is currently working on the

H7390 for a high-power VAX system. He previously was a member of the design

and development te3ms for the H7380 of the VAX 9000 system, the H71HH envi

ronmental monitoring module for the VAX 8600 power system, the VAX 8600

clock distribution system, and signal integrity for the VAX 8600 system. Steve

joined D igital upon gr3cluation from Rensselaer Polytechnic Institute i n 19RI.

He has 3n M.S . E. E. from Northeastern University (19H7).

Derrick). Chin Derrick Chin is the engineering manager for sever3l Infor

mation Systems B usiness Unit power groups and is design e ng ineer of the

VAX 9000 processor's DC power d istribution system. His 3ssociation with D igital

began in 1961, and he has participated in many projecrs, from the POP-I ami the

DECsystem-10 to the VAX HMO systems. His responsibi l ities have ranged from

development of precision displays, circuit design, and core and semiconductor

memories to environmental monitoring modules and power systems. He holds a

B.S. E. E. (1959) from MIT.

Gerald E. Cotter Principal engineer Gerald Corter is a member of the Infor

mation Systems Business Unit Power Systems Group. He was the project engineer

and coarchitect of the VAX 9000 power control system (PCS). Jerry was the PCS

interface to Customer Service and Support Engineering, Manufacturing, and

Service Processor Unit Groups. He participated in development of the PCS and

power system test strategies and the initial design of the T01060 power and envi

ronmental monitor module. His previous work includes the VAX 8600 system's

power and control subsystem.

Richardj. Dischler In his position of systems engineer for the High Perfor

nunce Systems Group, Richard Dischler worked on the VAX 9000 signal integrity

project. He also was a member of the project team for the electrical design of

HDSC and micropackaging for multichip units, planar boards, and connectors for

the VAX 9000 system. Rich held similar responsibil ities in the development of the

VAX 8600 system. He joined Digital in 1982, and his previous experience was at

Applied Research Laboratories. He holds a B .S .E.E . (1982) from Pennsylvania

State University.

Paul H. Dormitzer As an undergraduate at Harvard University, Pau l

Dormitzer gained experience with the UNIX operating system b y working as a

programmer and operator. Upon receiving his B . A . in computer science in 1987,
he joined D igital 's H igh Performance Systems Group. He is currently an engineer

in the High Performance Business Unit CPU Engineering Group. Pau l 's primary

responsibilities are in the development of error recovery processes for high

power systems, such as the VAX 9000 system.

Richard L. Doucette Since joining Digital in 1979, Richard Doucette has been

a member of severa l high-performance systems project teams. As a senior engi·

neer on the VAX 8600 team, he helped introduce the Motorola Macrocell Array I

(MCA I) technology into D igital and was responsible for its design analysis and

characterization in the system. As engineering manager on the VAX 9000 team,

he was responsible for the incorporation of MCA 3 technology, custom chips, and

self-timed RAM components in the system. He holds a B . S .E .E . (1973) from the

University of Maine.

Peter B. Dunbeck Peter Dunbeck is an engineering manager in the H igh

Performance Business Uni t Technology Research and Engineering Group. He

held various posit ions on the VAX 9000 program between 1985 and 1990, includ

ing technology program manager and design engineering manager for the multi

chip unit . Before joining Digital in 1984 as a manufacturing engineer, Peter

developed energy conservation programs for Thermo Electron. He holds a B . S .

(1977) i n mechanical engineering from Virginia Tech and an s. M . (1979) i n aero

nautics and astronautics from MIT.

I

5

Biographies

John C. Eck The dcvdopment of rhe majority of the physical design CAD tools

used in rhe VAX 9000 system was managed by John Eck. He is a software engi

neer manager in the High Performance Systems CAD and Diagnostics Group.

John was employed as the manager of the Automated Design Department of

Badger Company before coming ro Digital in 1984. He holds a BS (1964) in

physics and an JYI.S. (1966) in aeronautics and astronau t ics from MIT, and an

M.B. A . (h ighest honors, 198--i) from Babson CoJiege.

David B. Fite Jr. Consul tant engineer David Fire was a member of rhe initial

architecture team for the VAX 9000 system. He developed the architecture for the

branch prediction, instruction fetch, and instruction decode for the VAX 9000.

His previous work includes responsibi l ity for prototype debugging on the VAX
8600 system . D:IVe joined Digital in 1982. He has one patent and several patent

applications pending. He is a graduate of Worcester Polytechnic Institute with a

B . S. (honors) in electrical engineering.

Tryggve Fossum Tryggve Fossum is rhe system architect of rhe VAX 9000 sys

tem . He received a B.S. (1968) from the University of Oslo and earned his Ph . D.

(1972) from the University of I l l inois. Tryggve joined D igital in 1973 and worked

on the design of high-end computers, notably the VAX-11/780 system. As a pro

ject leader on the VAX 8600 team, he guided the design of the t1oating point accel

erator. He has also worked on several research projects, including an early raster

scan graphics workstation, and a workstation with an integrated disk system.

Matthew S. Goldman As a senior engineer on the VAX 9000 project team,

Matthew Goldman designed the scan control chip, which contains the control

logic for the VAX 9000 scan system. He was also the responsible engineer for

a l l VAX 9000 service processor h:trdware. Prior to joining Digital's H igh Perfor

mance Systems CPU Group in 1986 , Matt was a design engineer for Raytheon

Company. He is a member of Tau Beta P i and Eta Kappa Nu. M:ut holds a

B.S. (highest honors, 1983) and an M.S. (1988) in e lectrical engineering from

Worcester Polytechnic Institute.

John H. Hackenberg In 1968, John H ackenberg came to D igital as a tech

nician on the Kl- 10 project, leaving after two years to serve in the armed forces.

He returned to Digita l in 1971 and worked on the designs for various h igh-end

systems, including the KL- 10. As a consult ing engineer on the VAX 8600 project,

he worked in the area of signal integrity. John was the project leader for the MCA3

gate array used in the VAX 9000 system and is currently developing a bipolar gate

array. He holds a B.S.E.T. {1979) from the University of Lowel l .

Robert P. Harokopus A cum laude graduate of the University of Michigan,

Robert Harokopus received a B .S. (1986) in computer engineering and is now

studying for an M . S . in computer engineering from Boston University. Bob is a

senior software engineer and joined Digital in 1986. He developed the symptom

di rected diagnosis software used in the VAX 9000 service processor unit. Bob

also developed software for the HIDE CAD tool and SCEPTER automatic test

pattern generator, both of which were used in t he VA X 9000 design project . He is

a member of Tau Beta Pi and Eta Kappa Nu .

rucky C. Hetherington As a principal engineer with the H igh Performance

Systems Group, Ricky Hetherington is currently the project leader of the transla

tion buffer and cache design of the VAX 9000 system. He holds one patent and has

several patents pending on the various design featu res of the VA X 9000 M-box .

Rick jo ined Digital i n 1982 as a senior engineer i n Digi ta l 's Large Computer

Group. He has a B.S . from Pennsylvania State University.

Donald F. Hooper Don Hooper is a consulting engineer in both logic design

and CAD discipl ines. He init i:ued and led the development of the Synthesis of

Integral Design program, Digita l 's first synthesis tool . Before coming to Digital
in 1979, he was architect for the I tel 7031 mainframe and cache designer for the

!tel Advanced System 4. He is a graduate of Don Bosco Technical Institute. Don

holds patents in speech recognition circuits, the tag and queuing system for

Digital's first pipelined CPU, and the control storage pipe for the VAX 8600

system. In addition, he has several patents pending in logic synthesis.

Dale H. Leuthold A member of the technical staff of the Integral Circuit

Design Group, Dale Leuthold led the design team for the VAX 9000 vector regis

ter chip. He is currently working on random-access memory development for

h igh-speed mainframes. Dale was responsible for b ipolar in tegrated circuit

design at Signetics Corporation and Trilogy Systems Corporation before coming

to Digital in l9H6. He holds one patent and has one patent pending. Dale received

a B .S . from Oregon State University.

Paul A. Leveille In his nearly ten-ye:.Jr relationship with Digita l , Paul Leveille

has specialized in the development of high-power systems, particularly the

VA X 8600 and VAX 9000 systems. As a principa l engineer in the High Perfor

mance Business Unit , he helped define the VA X 9000 service processor sub

system and was responsible for developing the scan control fi rmware and

portions of the service processor application software. Pau l's previous responsi

bi l ities include console d iagnostics, fi rmware. and ::�pplication software.

I

7

Bio�raphies

Derutis M. Litwinetz The projecr leader for the design of four standard cell

and custom chips for the VAX 9000, Dennis Lirwinerz is a consuhing engineer

in the High Performance Business Unir. He has previously participated in the

design of rwo standard eel.! chip designs for the VAX 8600 system. He joined

Digital in 1967 as a technician for the DECsysrem- 10 Engineering (;roup. Denni:-;

has a patent pending for the VAX 9000 self-rimed register file design. He received

a R.S.E.E.T. from Lowell Technological Institute and an ,'VI.S.C.E. from the

University of Lowel l .

Brian T. Lynch Brian Lynch is a principal hardware engineer in the Informa

tion Systems Business Unit Power Systems Group. In this position. he designed

and developed the H7382 bias power supply used in rhe VAX 9000 system. He is

presently working on power solutions for future high-performance systems.

Prior ro joining Digital in 1972 , Brian was responsible for power convener and

analog modu le design ar lntronics. He has a B.S. E.E. (1978) from Worcester

Polytechnic lnst irure.

Dwight Manley As a principal engineer on the VAX 9000 project, Dwight

Manley was responsible for all of the perform:mce modeling of the VAX 9000

CPU design. His present responsibi lities inc lude w riting code for a Digital

Extended i'vlarh Library product. Dwight joined Digital in 1979 as a member of

the Systems Performance Ana lysis Group. Prior to that time, he worked as a

systems programmer for the Bel l Telephone System. Dwight has a H.S. (1971) in

mathematics from the University of M assachuseus and an M.S. (1976) from

Northeastern University.

James B. McElroy Jim McElroy is the multichip unit operations manager. H is

work on the VAX 9000 system began with interconnect and packaging, fol lowed

by the management of the physical technology efforts. He then became the

manufacturing systems program manager for the introduction of the VAX 9000

system into manubcturing. Before joining Digital in 1976, Jim worked at RCA on

packaging and interconnect design for mil itary computer systems. He received a

B. S.M.E. and an M.S.M.E. from Northeastern University.

Francis X. McKeen The project leader for the V-box unit of till' VAX 9000

system was Francis McKeen. Prior to working on the VAX 9000 system, he wrote

microcode for the VAX 8600 and VAX 8650 systems. Frank is a principal engineer

and has been with Digital for seven years. He holds one patent and has several

rarenr applications pending. Frank received a B. S. E.E. from Northeastern

University and is a member of IEEE.

john E. Murray T he coauthor of Microarchitecture of the VAX <)000, john

Murray is a consulting engineer in the High Performance Business Unit. He

served as project leader of the design team for the 1-box unit of the VAX 9000. He

joined Digital in 1982. John's previous employer was ICL in the United Kingdom,

where he was a design engineer. He received a B. Sc. (1969) from Warwick

University. He holds one patent and has several patents pending.

Thiagarajan Natarajan T hiagarajan Natarajan is manager of a DC-to-DC

converter group in the Information Systems Business Unit. His group develops

a high-density and highly reliable DC-to-DC converter, associated hybrids, semi

conductor components, and the distribution system for the next generation,

high-performance VAX systems. Raj's prior experience includes positions at

General Electric, Bell Laboratories, and Perkin Elmer Corporation. He has a

Ph.D. in dectrical engineering, has been awarded one patent, and has authored

approximately seventeen technical papers.

Bimal Patel Principal engineer Bimal Patel joined Digital in 1986 as a senior

engineer. His primary responsibility since that time was the design of the V-box

unit of the VAX 9000 system. Bimal was previously employed as a senior engineer

in the CPU Design Group of Prime Computer, Inc. He has an M. S. in computer

engineering from Boston University.

William J. Rogers Jr. William Rogers is an engineer in the VAX 9000 CPU
Group, where he developed the design of the control logic of the V-box unit for

the VAX 9000. Prior to working on this high-performance system, Bill was a

member of the SASE Support Engineering Group. He joined Digital in 1986 and is

a member of IEEE and Tau Beta Pi. He received a B. S. (1986) in electrical engineer

ing from Michigan Technological University.

Leonard j. Salafia The development of the AC front end for the VAX 9000

system was the responsibility of Leonard Salafia. who is the manager of the

AC Power Interface Developmem Group. His previous work at Digital includes

supervising the development of storage system power products for the Central

Power Supply Engineering Group and for the Storage Systems Power Group. Len

worked for General Electric prior to coming to Digital in 1980. He holds a

B.S.E. E. (magna cum laude, 1969) from the University of Hartford and an

M. S.E. E. (1976) from Renssel::ler Polytechnic Institute.

I

9

Biographies

10

Ronald M. Salett As a consulting engineer in the High Performance Systems

Group, Ron Saletr is currently leading the development of a new high-perfor

mance CPU. As a project leader for the VAX 9000 system, he was responsible

for the architecture, design, and m icrocode of the execution unit . Since join ing

Digital in 1977, Ron has also worked as an architect and project leader on

low-end integrated PDP- 1 1 systems. He holds two patents. Ron holds a B . S . E . E .

(1975) from Carnegie-Mellon University and a n M . S . E . E . (1979) from Worcester

Polytechnic Institute.

Frank J. Swiatowiec In 1988, Frank Swiatowiec became H DSC operations

manager, with the primary responsibi lity to transition Digita l 's new H DSC tech

nology to volume production. He was one of the engineering managers responsi

ble for the definition and development of the HDSC . Frank had over 15 years of

experience in the semiconductor industry when he joined Digital in 1986. While

with Motorola Corporation, he was awarded four patents on ECL circui t designs.

F rank holds a B . S . E . E . from the University of I l l inois and an M . S . E. E . from

Arizona State University.

Gregory L. Yoder Gregory Yoder is a senior hardware engineer with the H igh

Performance Systems CPU Engineering Group. His primary responsibi l i ties on

the VAX 9000 system included the design and testing of the V-box unit , and pro

totype system debug, for which he received an excellence award . He also

assisted Manufacturing in producing and instal l ing external field test VAX 9000

machines. G reg joined Digital in 1988, after participating in a one-year co-op

session at IBM. He holds a B.S. E. E. from Pennsylvania State University.

I Foreword

Carl S. Gibson

VAX 9000 Program Manager

This issue of the Digital Technical journal is a
collection of papers describing the technologies,
designs, and design methods employed in Digital's
VAX 9000 mainframe/supercomputer, which was
introduced in the fa l l of 1989.

The VAX 9000 system embodies hundreds of
innovations in most areas of design, manufacture,
and service. In selecting papers for this journal, we
have attempted to reflect the immense scope and
variety of this program, which ranks among the
larges t and most complex in the history of our
industry.

In the summer of 1983, a small group of us set
about to determine what it would take for Digital to
develop a true mainframe. We felt that a mainframe
VAX would be a powerful addition to Digital 's
product family. The products that we have created
took form, changed, and evolved over the months
and years as technical chal lenges yielded to inno
vations, rigor, and d iscipline. An u ndertakjng on
this scale necessarily undergoes numerous transi·
tions as new data emerges, assumptions are tested,
and a l ternat ives are el iminated . Technical break
throughs bui l t upon one another incremental ly
as we pressed the design closer to our goals. The
primary objectives of very high system-level perfor
mance and world-class reliabil ity drove the design
process and the changes that emerged .

The planar logic packaging is illustrative of how
changes and improvements built upon one another.
The reliab i l i ty benefits of m inimal connections
precipitated a .logic packaging design change from
stacked modules in dual backplanes to the planar
array. This change - an optimization for reliabil
ity - in the end actually helped performance and
maintainabil ity. Utimately, though not envisioned
at the time, the adoption of the planar array had

a significant impact in that this structure enabled
impingement air cooling a nd elimination of the
bu lky l iquid system that was par t of t he ini t ia l
design. The final design of the VAX 9000 system
reflects, in myriad forms, this continual process of
successive refinement toward shared goals.

Design changes notwithstanding, our primary
strategy remained constant. The reader wil l note
that, while we innovated aggressively in CPU struc
ture, implementation technologies, and design
methodologies, we preserved ful l compatibility
with the VAX, Digital s torage, and Digital network
ing and cluster architectures. We wanted D igital
and our customers to be able to enjoy very high per
formance levels in a product that was compatible
with prior investments. Therefore, we drew as
much as possible from existing products and
designs from many Digital development groups.
As a resul t , the VAX 9000 system incorporates
Digital's standard XMI bus and popular B l , C l , and
Nl system-level interconnects. The system runs VMS

and ULTRIX operating systems, VAX layered prod
ucts, and all of our customers' and independent
software vendors' tools and applications. This
capability proved especially rewarding when in the
final months of the project , our own VAX 9000

prototypes, running our unmodified CAD tools,
accelerated the processing of the inevitable last
m inute changes.

High-performance computation fundamentally
requires two key ingredients: short machine cycle
t imes and maximum computational work per
formed in each cycle. The semiconductor and
multichip unit papers describe how we m inimized
the VAX 9000 cycle time by use of fast circuits, high
density packaging, and high-speed interconnects.
These papers are complemented by architecture
descriptions through which the authors present the
innovative features that minimize the number of
cycles required to execute the VAX instruction set.
These papers present the sophisticated p ipelining
techniques and vector processing capabilities incor
porated in the VAX 9000 system.

Equal in importance to the computational capa
bilities of the product are the service and control
fea tures of the system. Papers covering the
VAX 9000 service processor and the system 's fault
management capabilities provide the reader with
insights into these important aspects of the
product.

The development strategy for the VAX 9000

system was explicitly formulated to deal with enor
mous technical and project complexity. Complex-

I I

I
i ty itself was the single most formidable challenge
facing the team. Apparent from the outset , was the
fact that such an ambitious product required the
in tegration of a very large number of d iscrete
design objects; each had to be conceived, created,
documented, tested, and ultimately integrated and
verified as part of the whole. The reader will see
the divers i ty of these efforts and recognize t he
challenge of unifying a design from this breadth of
technical advancement.

Centra l t o our strategy was the creation of a
unified design tool suite operating in a seamless,
homogeneous VMS computing environment. The
first few years of the project were devoted to con
struction of this environment in parallel with top
level design formulat ion. The recognition that
rigorous design methods were crucial to our success
was possibly one of the team's most powerful fun
damental notions. Papers included in this journal
i l lustrate some of the legacy of powerful CAD tools
and structured design approaches created by the
VAX 9000 team.

As we have seen for the product, the methodol
ogies were not immune to change as the project
progressed. Working with rapidly evolv ing
technologies, design p rocess experts continual ly

12

adapted to evolving user needs. Concurrent design
permeated every aspect of the project and domi
nated the way people worked together, with many
aspects of the technology and product design
converging and adapting as we learned from our
own processes. When the manufacturing process
needed some help, designs could be reprocessed
with the new rules and rereleased to keep things
moving ahead.

A nd, move ahead they did' Today, the VAX 9000

system is installed at many customer sites where the
systems are exceeding our original goals in both
performance and dependabi l i ty. I t has been
accepted by experienced , high-end computer users
as a bona fide mainframe - a mainframe with the
unique advantage of ful l integration with D igital 's
rich distributed processing architecture.

The VAX 9000 system was created by engineers
working i n many disciplines and col laborating
worldwide to invent hardware, software, and pro
cesses that have significantly advanced the state
of the art of computer design, manufacture , and
service. The papers in this journal describe but a
few representative examples of the creativity and
determination of this large and dedicated team of
professionals.

David B. Fite]r.

Tryggve Fossum

Dwight Manley

Design Strategy for the
VAX 9000 System

The VAX 9000 system is Digital 's newest high-end processor in the VAX fami�y. This

paper describes the design strategy used to achieve high performance and shows how

RISC concepts were applied to a CISC architecture. Neu.• opportunities for parallelism

in VAX program execution were found by breaking the VAX instructions into simple

tasks which could be pipelined efficiently. By using independent, dedicated pipeline

stages, execution rates approach one instruction per cycle.

The task confronting the VAX 9000 design team
was to develop a VAX system that outperformed
any previous VAX system and that was competi
t ive wi th s imi larly sized processors from other
vendors. Although the VAX system is based on one
of the world's most popular computer architec
tures, the VAX architecture's i nstruction complexi
ties preclude efficient macroinstruction pipel ining,
such as that found in reduced instruction set com
puters (RISC) . RISC processors can be bui l t with low
gate counts to handle simple, fi..xed-Jength instruc
tions sets, load/store architectures, and delayed
branching.

To compete with machines based on such archi
tectures and still remain compatible w ith the VAX
architecture, the design team chose to implement
the VAX architecture on the VAX 9000 system by
applying techniques that were similar to those used
in R ISC processors. We redesigned the VAX instruc
tions into small , simple tasks, and designed dedi
cated hardware that was optimized for each task .
The result is a network of special ized processors,
each of which has i ts own data paths and state
machines, that operate in para l lel and execute
VAX instructions quickly. The most common, sim
ple instructions are executed at the rate of one
per cycle.

System Overview
The VAX 9000 system is a tightly coupled multipro

cessor, which runs the symmetric multiprocessing
(SMP) version of the VMS operating system and can
have up to four processors sharing a central main
memory. Figure l shows a simp l ified block diagram
of the system. The major system components
include four CPUs, two memory controllers, two
I/o controllers, and a service processor, which is

Digital Technical journal Vol. .! No. 4 Fall /<)')()

connected through the system control unit (SCU).
Through a cross-bar switch, the SCU provides high
speed, simultaneous transfers among the central
processors, I /O devices, and memory banks. System
cache consistency is maintained with duplicate tag
directories located in the SCU. As references are
made to memory, the addresses are checked against
the tag directories. If a cache hit occurs, the cache in
question is requested to invalidate or write back to
main memory. The scu supplies a bandwidth that
al lows near l inear performance improvement as
new processors are added to the system. The mem
ory is interleaved on cache block boundaries to
provide bandwidth for multiple CPUs and vector
processors.

Four XMI backplane buses provide high band
width paths to I /O devices. Although the XMI is used
as the system bus in VAX 6000 systems, the XMI is
used exclusively for I /O in the VAX 9000 system .
Several new adapters were designed to increase
throughput and reduce latency for I /0 transactions.
These adapters include connections to the CI , the

N I , the BI, and local disk comrollers. Although high
performance IIO features, such as disk striping,
solid-state d isk, and load balancing have been added
to all VAX systems, the VAX 9000 system benefits the
most from these features because it has the I/O back
plane bandwidth ro rake advantage of them. A block
d iagram of a single VAX 9000 CPU connected to the
SCU and the major data paths between the two units
is shown in Figure 2 . 1

Technology Contributions to
Improved Performance

The central processor cycle r ime has been reduced
to 16 nanoseconds (ns) mainly by the use of fast
emitter-coupled logic (ECL) semiconductors and

13

VAX 9000 Series

XMI XMI

D O scu

DODD DOD
DODD D O DODD
DODD D O DOD
DODD

256 MB
DOD

VAX 9000 CPUNECTOR �m� mm VAX 9000 CPU

Figure I VAX 9000 System Diagram

fast sel f-timed random-access memories (RAMs) for
registers and caches, and by decreas ing the inter
connect wire length between components.

Motorola 's Macrocell Array I I I (MCA)) technology
provided both macrocell array and standard cell
capabilities. The emire system is composed of 77

unique MCA 3 options and 5 custom chip types. A
single MCA 3 contains 838 cells (4 14 major, 224
input, and 200 output), which yield 10,000 equiva
lent gates, and 256 I /O pins. Maximum power
dissip:nion is 30.0 watts, with un loaded gate prop
agation delays of 120 picoseconds (ps). Perfor
mance-critical operations, such as mu ltiplication.
division, integer and vector register accesses, and
system clocking, were h!rther aided by employing
custom chips 2

Caches for instruction stream and memory
data, scratch pad registers, ami control stores all
require high-speed local storage. Two versions of
a proprietary self-timed RAM were designed for
these specific applications. A 4 kilobit (Kb) self
t imed RAM , at 5. 5 ns, and a l6Kb self-timed R A M ,
a t I I . 5 ns, provide internal input and output
latches and write pulse generation circuitry. Multi
ple access modes allow highly pipelined operations
to take advantage of shorter access times.

Each new semiconductor generation reduces
cycle time. which increases the re!Jtive importance
of interconnect delay. High density s ignal carriers

14

(H DSC), tape automated bonding, and a single
planar module all reduce the interconnect delay
between active components in the VA X 9000

system. Strict impedance control is maintained
throughout the system. Clock skew is minimized by
employing fi xed-length , differential transmission
and dedicated routing layers.

CAD Contributions to Improved

Performance

Hundreds of computer-aided design (CAD) tools
were used during the design and construction of
the VAX 9000 system. However, none of these tools
was more important in improving performance
than the physical layout and timing analysis tools.
Once the design team had placed large functional
sections, placement tools refined individual macro
cell selection and pin placements. Over 33,000 pins
were selected to minimize overall wire length and
maximize critical interconnections.

Routing presented several chal lenges. A ll levels of
in terconnect included critical signals, differential
pairs, and fixed-length requirements. The H DSC
contains large cutouts that enable die attachment
and allow cooling through the back panel. These
large routing restrictions and special rout ing
characteristics could not be handled by existing
CAD tools. Therefore. we developed Chameleon,

Vol. .2 No. -i Faii i'J')(I Digital Technica/journal

a general-purpose router. With Chameleon, cross
tal k is minimized, and crossing counts are main
tained and used to increase signal integrity, which
improves performance.

To model the timing relationships within the
system, we used sophisticated CAD tools to gener
ate an accurate representation of the VAX 9000
system. Detai led timing models of each macrocell
device were created using the SPICE s imulator
program 5 Chameleon and signal integrity rools
provided delay values for each signal within the
MCA3, H DSC , and planar modules. CPLJDLY , using
the AUTODLY timing tool, tied the various pieces
together and gave the design engineers a powerful
view of the timing domain.

Instruction Processing

VAX systems exist in a variety of env ironments and
run thousands of applications. With any new, high
performance VAX system, it is important to increase
the speed of all applications and to continue to
provide general-purpose computer power. Given
the size of the insta lled VA X base and the nature
of the applications, performance gains should not
require code modi fications. Digital has gathered
substantial information on how VAX processors are

· · · · · -.: INSTRUCTION , • INSTRUCTION r-" CACHE � � (BKB VIC) I • BUFFER I :

: .-----'-'-11 ----,

E-BOX

Design Strategy for the VAX 9000 System

used. This data formed the basis for design deci
sions and trade-offs we made i n the development
of the VAX 9000 system.

Simple Instructions
In many VAX programs, only a few opcodes are
responsible for a large percentage of the i nstruc
tions issued. Most of these opcodes are simple and
l imited tO a single arithmetic or logical operation.
Often, one of the operands is in memory. A typical
example is

ADDL3 < R O) , R 1 , R 2

Because of the high frequency of these instructions,
speeding up these instructions is a top priority.
Most of the high performance achieved on RISC pro
cessors is derived because these instructions are
pipelined. I n a complex instruction set computer
(CISC), such as a VAX system, pipelining macro
instructions is more complex . Therefore, previous
VAX implementations have pipelined operations at
the microinstruction leveL'

Processing simple instructions in a VAX system
involves obtaining and decoding the instruction,
fetching source operands, performing an opera
tion, and storing the result. The most important

· · -INTEGER
UNIT

VECTOR
ADD UNIT

V-BOX

I/O AND
MEMORY
INTERFACE

BRANCH INSTRUCTION .
PREDICTION V<-- DECODE H INSTRUCTION � FLOATING
(1 K ENTRY) jv- (XBAR) I:""Y ISSUE 1 • POINT UNIT

: VECTOR � VECTOR
REGISTERS '---Y MULTIPLy ¢= UNIT

.---'-'-n ____,: . _._
....___,
·.-.-.-.-.

..----_._._._._,..,.--J1·.-.-.- - - · · · · · · · · · .. ·
DATA
SWITCH

: I-BOX

OPERAND . REGISTER
PROCESSING� FILE � MULTIPLY
(OPU/SUFPL) h (SLIST/GPRs) 1 • UNIT

'�'==::::::=��:: :::: �;I:N J . . :: :�::::::;�;N:;:I;::AT=IO=N=I :::::::;:
: :=.£:..!� : �����) �UNIT DIVIDE

UNIT

RETIRE
UNIT

scu

1 K TB)
] : lcr ====��� l ;:::·�-- - - -�-- - - -�- - -�- - - - -�- - - -�- - - - -�- - - - -�- - - - -�- - - - -�- - - -�- - . . -�. . .Jj. . . .

.----> 'l�.c..__---, . . WRITE
QUEUE
(WRTQ)

M-BOX

Figure 2 VAX 9000 CPUNector Block Diagram

Digital Tecbnicaljournal Vol. 2 No. 4 Fa/1 /1)')0 15

VAX 9000 Series

difference between the way a VAX processor and a
!USC processor process simple instructions is how
the variable length instructions and memory speci
fiers are handled . VAX operands may reside in
general-purpose registers (s imi lar to RISC
operands), in memory, or may be embedded in the
instruction stream. The VAX architecture provides
a rich selection of memory operand specifiers,
which often require computations to create the
address. In a R ISC processor, only load and store
instructions access main memory.

The instruction preprocessing stage (1-box)
decodes instructions and fetches operands in the
VA X 9000 system. I n the execution stage (E-box),
simple VAX instructions n.:s<:mble RISC instructions.
A simple opcode describes the operation, a single
register file provides source operands, and a desti
nation queue supplies a result descriptOr. The !-box
operates in parallel as with the E-box, which func
tions as a RISC processor by executing one instruc
tion each cycle. Execution occurs without the need
to identify the operand's source or addr<:ssing com
plex ity. Figure 3 i l lustrates how simple instructions
t1ow through the VAX 9000 pipeline. A lthough al l
VAX implementations perform these tasks, the VA X
9000 implementation uses separate, independent
hardware units to overlap the work because con
current operation is a prerequisite for single-cycle
instruction execution.

Instruction Cache
We used an instruction cache in the 1-box to
decrease instruction stream fetch latency and
reduce the bandwidth requirements on the main
cache. Choosing a virtually addressed cache further
reduced latency and simplified the design by
removing the need for duplicate translation buffers.
The virtual instruction cache is an 8 ki lobyte (KB)
cache with a quadword l ine size, 32-byre blocks,
and a single-cycle access time. Line valid bits are
maintained to al low variable size fills from the main
data cache. Because the average VAX code block size
is 16 to 20 bytes, the block size of the virtual instruc
tion cache provides a good balance between the
instruction decode stage and the main cache.

Table 1 Decode Cycles Req u i red

Instruction

M U LF3 R3,R5,R7

ADDL3 SII#48,R4,@(R2) + [R3)

AOBLEQ SII# 63 , R 1 0 , 1 0$

16

Context switches, translation bu ffer changes, and
instruction stream modifications all require that the
virtual instruction cache be invalidated. Two com
plete sets of block valid bits reduce cache sweeps to
a single cycle, if consecutive sweeps do nor occur
within 256 cycles of each other. Block size and fre
quent sweeping reduce the virtual instruction
cache's hit rate to approximately 96 percent, but by
fi lling through the main cache, the miss penalty is
minimized.

Instruction Decode

Because the majority of instructions executed
require only a single cycle to execute, the instruc
tion decode's task of keeping ahead of the E-box is
not simple. Most instructions must be decoded in a
single cycle to keep the VAX 9000 system's ticks
per-instruction (tpi) low.

For example, VAX instructions may contain up to
si..,x operand specifiers. With 59 different specifier
addressing modes, instruction lengths can vary
from a single byte to more than 50 byres. However,
the overal l average VAX instruction length is 3 .8
bytes, and 98 percent of instructions require only
8 or less bytes.'i Furthermore, 96 percent of VAX
instructions executed use only 3 or less specifiers.

In each machine cycle, a 9-byte instruction buffer
is presented to the decode stage (XBA R). The
instruction buffer contains instruction stream data
prefetched from the virtual instruction cache.
Instruction decoding consists of generating an ini
tial m icroaddress, determining the number of
specifiers for the instruction, including each speci
fier access mode and data type, and forwarding the
appropriate specifier data to the operand process
ing stages. The X BA R can handle up to three specifi
ers. Instructions that contain more than three
specifiers require additional decode cycles. Since
general-purpose register specifiers occur approxi
mately 41 percent of the time, three register specifi
ers can be processed concurrently.1' Short l i terals
comprise nearly 16 percent of the specifiers. How
ever, the XBAR can only decode a single short l iteral
per cycle. The remaining specifiers must all be
processed by the operand processing unit , which

VAX-1 1 /780 VAX 8650 VAX 9000

3 2

5 4

3 3

Vol. 2 No. 4 Fall 19')0 Digital Tecbnicaljournal

OPERATION

PC
GENERATION

VIC ACCESS

INSTRUCTION
DECODE

SPECIFIER
PROCESSING

TRANSLATE
AOORESS

DATA CACHE
ACCESS

MULTIPLY UNIT
EXECUTION

FLOATING UNIT
EXECUTION

INTEGER UNIT
EXECUTION

RETIRE

REGISTER
WRITE

DATA CACHE
ACCESS

Design Strategy for the VAX 9000 System

CYCLE

2 3 4 5 6 7 8 9 10 1 1 12 1 3 1 4 1 5 1 6 1 7 1 8

�
I . ;:::::::��:�:::� I I I
i 1. 1:::'::::::::::1 i i : • . • ·=·:·:·:·:·:·:.� : : ' ' • • 0 • '

i � �·:::::;::::::!!
(R0),#2.5,R1 D I �
4(RO),II3.5,R2 D

LOOP: MULF3

MULF3

MULF3 8(R0),#4.5,R3 [])
ADDF3 R1 ,R2 , R4 BJ
AOOL2 #11xC,RO II
ADDF3 R3,R4,(R5)+ IIIII
SOBGEO R6,LOOP •

Figure 3 The VAX 9000 Instruction Pipeline

DJ
0

I 1:::::::::::::,1 ' ' ' . ' ' 04::::::�:,�::::1 ' . .

: •
m ' ' '

. D
DJ

decodes a single complex specifier per cycle. Unlike
preced ing processors, the XBAR hand les multiple
specifiers in any order. Table I shows the number of
decode cycles required for several VAX processors.

Load/Store A rchitecture
Load/store architectures separate memory accesses
from computation. Loads can be scheduled to place
arriving memory data at a functional unit just as an
operation begins. To achieve this effect with VAX
instructions, memory specifiers are treated as load/
store instructions. VAX memory specifiers describe
the effective addresses of memory operands. VAX
memory specifiers do not contain the source and
destination registers that are specified in R ISC load/
store instructions. Rather, the VAX 9000 system
assigns temporary register file locations to buffer
memory data. By processing specifiers early i n the
pipel ine, data can be scheduled to arrive at the
appropriate time.

Operand Prefetching
Because most simple instrucrions are decoded and
executed in a single cycle by v::trious pipeline stages,
instruction operands a lso must be handled i n a
si ngle cycle. Multiple, specialized operand units
increase operand processing throughput. From one
to three register operands may be forwarded to rhe
E-box by one register unit per cycle. A dedicated
short literal unit expands all VAX data formats. The
operand processing unit performs complex address
calculations and requests memory operand data
from the cache unit (M-box). Both the operand pro
cessing and short literal units can perform multiple
cycle operations.

Digital Technical journal Vol. 2 No. 4 Fall IYYO

Memory specifiers act as independent instruc
tions executed i n the operand processing unit. This
unit creates the operand's effective address and for
wards it to the M-box. For loads, the actual memory

17

VAX 9000 Series

data is returned to the E-box register file. The trans
lated physical address is saved in a queue of write
addresses for store/destination specifiers. W hen
execution results arrive from the E-box, the previ
ously saved address is used to write the data into
the cache.

Conflict Detection and Resolution
Macropipelining in the VA X 9000 system relies on
autonomous units operating in para l lel . Each inde
pendem unit is optimized for an individual task.
However, macropipelin ing does require that mech
anisms be added to resolve data dependencies
among instruction processing units. Data cont1icts
occur when an instruction's results are required by
an earlier pipeline stage. An addressing data conilict
appears in the fol lowing example:

MOVL R O , R 1

MOVB T A B L E (R 1) , R 2

Any dedicated aclclress calculating hardware must
wait for the MOVL instruction results before per
forming the l'viOVB instruction's effective address
computation. A memory conflict is another form
of data dependency.

In the following example,

MOVB R 0 , (R 1)
MOVB (R2) , R 3

a prefetch unit could read the second instruction's
source operand while the E-box wri tes the first
instruction's results, if the values of registers R I and
R2 are different . However, when the registers con
tain identical values, the read must be delayed until
the write occurs. The VAX 9000 system uses several
differem mechanisms w detect and resolve data
dependencies. Passing pointers, scoreboard masks
within the 1-box, the write queue in the M-box , and
architectural restrictions are all used to handle vari
ous confl icts.

Register Conflicts The simplest hardware mecha
nism employed in the VAX 9000 system is the use of
pointers to reference data. The operand processing
unit oversees a 16-entry source queue, an H-entry
destination queue, and a 16-entry source list . A sin
gle pointer is inserted into the source queue for
each source specifier. The pointer represents either
a register number, in the case of general-purpose
register operands, or a tag that indicates an entry in
the source list where the operand data is located . A
pointer is added to the destination queue for e:.�ch
destination. This pointer represents a register num-

18

ber or a flag which indicates that the resu l t should
be written to memory.

The instruction issue unit removes source
pointers from the source queue. These pointers are
used to address either the general-purpose registers
or source list for the actual source data. Destination
pointers from the destination queue determ ine
where resulls should be wrirren. Register conflicts
can be detected by comparing the source pointers
needed to issue an instruction with all issued desti
nation pointers in the dest ination queue. For exam
ple, in Figure 4, the MULL3 's RO source queue entry
would match the ADDL3 's RO destination queue
entry. A write to the general-purpose registers by
the E-box removes the destination queue entry, and
the instruction issue can resume.

SRCQ SLIST DSTQ

R l __. DATA RO

R2 MEM

#0 I-
RO

ADDL3 R 1 , R2 ,RO
MULL3 (R3) ,RO, (R4)

Figure 4 Register Conflict Detection

Addressing Conflicts To resolve addressing data
contlicts, the I-box maintains a read/write register
scoreboard . Two register masks a re c reated for
each instruction decoded . The first register mask
denotes the general-purpose registers that t he E-box
will read for the instruction, and the second register
mask specifies the general-purpose register writes.
Each bit in these register masks refers to a single
VAX general-purpose register. Specifiers that are
being processed in the operand processing unit are
checked against up to six previous instruction
masks. From the fi rst example above, the specifier
[TABLE(R I)] requires that the operand processing
unit read R 1. If the R l bit is asserted in any preced
ing instruction's scoreboard write masks, this effec
tive address calculation must be deferred .

The VAX archi tecture presents a unique address
ing conflict problem because some speci fiers,
such as -(Rn) and (Rn)+, modify general-purpose
registers.

In the fo llowing example,

S U B L 2 R O , R 1

A D D L 2 C R O) . , R 2

Vol .! No. -1 ht/1 1'.)!)0 Digital Technical journal

the (RO)+ specifier modifies the contents of RO.
Therefore, the operand processing un i t cannot

update the general-purpose register without affect
ing the prior instruction. The read masks are used
ro detect this type of conflict. A l l specifiers that

modify general-purpose registers must check the

scoreboard read masks before proceeding with

the instruction. Thus, when a confl ict occurs, the
general-purpose register modification stalls.

W hen an instruction completes execution, the

instruction's read/write mask is removed from the
scoreboard . In all addressing conflicts, specifier
processing continues once the blocking mask is
removed.

Memory Conflicts The write queue is used to
resolve memory conflicts. Physical addresses,

received from the translation buffer, are inserted

into an eight-entry FIFO . These addresses are later

paired with the proper write data from the E-box
and written into the M-box. To avoid prefetching

stale dat:J., :�. I I memory addresses for source memory
oper:�.nds are translated and compared with the
addresses in the write queue. When no address con
fl ict occurs, the data from memory is forwarded

to the source .list . Operand requests that conflict

with a pending write address are stalled until the
contlict is resolved . The conflict is resolved when
the appropriate write data is received. The conflict

ing address is then removed from the write queue.

Miscellaneous Conflicts The VAX architecture

includes instructions with operands that either are

not known w hen the instruction is decoded (e.g. ,

INSQlJE, MTPR), or modify large portions of mem
ory (e.g . , MOVC 5). To avoid conflicts from these
instructions, the 1-box suspends processing mem

ory specifiers unti l the instruction execution is

completed. Self-modifying code presents another
form of conflict, which is solved by an REI instruc
tion that not ifies the hardware of this condition.

Branch Instructions
Branch instructions have a substantial influence on
the overa l l performance of a VAX processor. On
average, a VAX processor executes 3 .9 instructions,

including the branch. before a branch starts a new

instruction sequence. Instructions that modify the

program counter represent nearly 40 percent of t he

total instructions execmed. The VAX 9000 system
uses a 1024-entry branch cache and a two-tiered

prediction schemc to increase the average code

block size and reduce thc branch-takcn Latcncy.

Dif!.ilai Tecbnicaljournal Vol. .! Nu .j hill I'J'JI!

Design Strategy for the VAX 9000 System

Unlike its predecessors, the VAX 9000 system com

mits all its resources to a single branch path . The

prediction hardware selects the path of execution

to resolve memory conflicts for those branch
instructions that are decoded before results are

available. This path selection is based on prior his

tory, if the branch hits i n the branch cache. I f the

branch does not hit in the branch cache, the path
is predicted staticly, based on the instruction's

opcode. When the branch executes, the prediction
is compared to the actual results. The pipeline is

flushed back to the correct code path if the branch
prediction was incorrect .

The entries in the branch cache store the branch

results of the previous execution of the branch and

the target address, if the branch was taken. Because
the branch cache is a one-way associative cache t hat

can store only 1024 entries, the results h ave an aver

age hit rate of approximately 80 percent . However,

correct predictions occur 85 percent of the time
from the cache, as opposed to an average h it rate of

56 percent, when the predictions are based solely

on opcode. Loop branches are always predicted
as taken, which increases the overall correct pre
diction rate to close to 89 percent . By caching

branch targets, the calculation may be avoided and

a latency factor of one-cycle branch taken i s
achieved. The branch cache can store a sufficient
amount of branch context to eliminate the need

to sweep the cache.

The 1-box can process instructions with up to
two conditional branches outstanding. Uncondi
tional branches (e.g . , BSBW , BRB) are processed as

ordinary instructions by simply changing the

instruction flow To reduce the penalty for a bad
prediction, which results in a four-cycle penalty,
operand specifiers that mod ify general-purpose

registers are not processed under a branch predic

t ion and cause the operand processing unit to sta l L
Also, branch instruction execution i s overlapped
with the previous instruction to provide the actual
branch results earlier.

Compute-intensive Instructions
Compute-intensive instructions requ i re multiple
execution stage cycles. Common examples of these
instruct ions are multiplication, division , and float

ing point operations. Al l VAX implementations

employ dedicated logic for compute- intensive

instructions that occur frequently. Less frequently
used instructions depend on microcode-controlled

arithmetic and logical data paths. The VAX 9000
system contains four independent execution pro-

19

VAX 9000 Series

cessors. The integer, floating point . multipl y, and
divide units cxecute the VAX instruction set. The

1 -box p reprocesses i nstructions, w h ich al lows

instruction execution to overlap i n thcst: units. I n
each cycle, a n e w i nstruction c a n b e in i t i ated i n
t h e appropriate unit prior t o the completion of
previous instructions. The t1oating poin t and multi
ply units are pipelined and can accept one instruc
tion each cycle. The in teger unit is pipd i ned for
s im ple instructions. However, complex instructions

must use microcode control to perform multicycle

operations.
Pipel ined instructions are issued in order and

proceed t h rough the d ata path w ithou t further

microcode control . upon completion , instruction
results are retired in thc same instruction order. The
instructions must be p roccsscd in order because the
resu l t of one operation is often needed in a sub

sequent operation. Therefore, the pipelines must be
short and contain data bypasscs to make results
available quickly. The mu ltiply, float, and d ivide
un its' internal data paths are 64 -bits wide. To under
stand how the pipelined and overlapped operations

app l y to the fol lowing opcration.

y (i) = y (i) + C (i)

consider the program:

L O O P . M U LG3 R 6 , < R O) . , R �
MU LG3 R6 , (R Q) . , R 2
ADDG2 R � , (R 1) •
ADDG2 R 2 , < R 1 > .

The two MULG 3/ADDG2 instruction pairs prevent
a pipeline stall that could occur because of data

dependencies. The instructions further reduce the
loop overhea d , which is alread y fair ly smal l

because the loop control instruction was predicted
correctly. I nstructions and source operands are
prefetched . The mul tiply and add units accept the
i nstructions as they become available. The memory
references are made as the operand processing unit
processes memory specifiers. The majority of speci
fier processing is performed independently of the
instruction execution.

Memory-intensive Instructions
Some VAX instruction classes are primari ly memory

operations that require only minor computation .
Typical examples of t hese i nstructions an.: ch ar
acter string, decimal, and privi leged operating sys
tem. Pipel ined execution offers l ink advan tage to
memory-incensive instructions because the number
of memory references is not reduced as the number
of cycles required for execution is reduced by new

20

implementations. Because memory bandw idth is
critical, the VA X 9000 system prov ides features ro

benefit thcsc instructions.
For example, the virtual instruction cache ser

vices most instruction stream references, which
frees the main cache to service prefetched operand
rcf<:rences. Both the virtual i nstruction cache and
the main cache have 64 -bir data paths, important
for charactcr str ing operations and ex tended pre
cision arithmetic . The caches are ful ly pipelined
and al low one read per cycle. The main cache block
size is 64 bytes. exploiting spatial locality. When
cache references do miss. data is wrapped and the
most critical data is rewrned first . A write back,

write al location algorit hm further reduces main
memory and cache bandw idth requirements and
reduces latency.

The VAX system is a virtual memory architecture.

Virtual add resses need to be translated to physical
addresses through page tables in memory. A trans
lation buffer caches the most recen t l y used page
tables entries. VA X systems, such as the VAX- 1 1 /780
system, process trans lat ion buffer misses in micro
code, wh ich can be r ime-consuming. However, the
VAX 9000 system uses a memory management pro
cessor to process translation buffer misses as part

of instruction preprocessing. This operation is per
formed early in the pipeline and is faster than
microcode.

The CALL and RETl 'RN instructions push and pop

registers on the stack, and these instructions can
be memory-bound. The VAX 9000 system contains
both the conrrol logic and the bandwidth to process
these registers at a rate of one per cycle.

Unconventional Instntctions
Spec i a l , dedicated h ardware was added to the
VAX 9000 system to process those VAX i nst ructions
that did not fit into the categories listed above. The
additional hardware operates within the pipeline
architecture and cycle time, and the cost of adding
the hardware was minima l .

In the following example,

MOVL R O , - < S P > < - - - - - - - - - - > PU S H L R O

the MOVL and PUSHL instructions perform identical

operations, but the P l iSHL i nstruction does not

explicitly specify a destination address. On pn:
v ious VAX systems, the i ns t ruction p refetching
would stal l unti l t he current instruction execution
was comp leted . However, t he VAX 9000 modi
fies such instructions during the decode stage by
add i ng the implied specifiers. The benefits of th is

Vol. 2 No. 4 Fall I'J')O Digital Tecbnicaljournal

enhancement are more evident in the fol lowing
instructions.

BSBW 1 0 $ < - - - - - - - - - - > M O V A L R e l u r n _ P C , - < S P l

R S B < - - - - - - - - - - > J M P @ (S P l +

Sim i larly, instructions such as LOCC and CMPC3
impl ici t l y reference the general -purpose registers.
The instruction decode s tage creates a read/w rite

mask with these references, which a l lows instruc
tion prefetching to cont inue.

To aid handling instructions l i ke PUSH R and
CALL, the in reger execution unit conrains special
bit mask manipulation h :trd ware, w hich opti

mizes general-purpose register saves and restores.
The VAX instruction set contains variable-length,
bit-field instructions that handle non-byte data.
These instructions can reference memory within a

'512 megabyte (MB) range. The field referenced is
within the first 8 hytes of the base add ress more

than 9'5 percent of the t ime. Therefore, to a l low
instruction prefctching to con tinue, the operand
processing unit assumes that the field is within the
initial quadword and requests that data. I f, during
execu tion, the field destination actua l ly resides out
side the prefetched quadword, the correct data is
fetched and the pipeline is flushed to avoid poten
tial memory con tlicrs.

Integrating Vector Processing

The VAX 9000 project team was instrumental in
in regrating vector operations and data types inro
the VA X architecture. For many scientific applica

tions, the use of vectors im proves performance in
three ways:

• Vector i nstructions specify many operations in
a single opcode, which el iminates instruction
stream decode as a processing hottleneck.

• Vecwr registers increase available local storage.

• Vector registers support h igh pea k perfor
mance through h igh bandwidth and short access
latency.

The VAX vector archi tecture implements a load/
store architecture, which permits the hardware to
deal w i t h l arge p ieces of m e mory in a uniform
manner and increases the use of para l le l ism.

We added the vector instructions and data types

to the VA X architecture in an integrated fash ion .
Scalar and vector instructions are mixed throughout
the pipdi nes. Systems that do not incl ude vector
processors emulate vector instructions with soft
ware. a tec h n ique especia l ly usefu l for p rogram
development .

-.><

Di�ital Tecbnicaljournal llul. .! Nu . .j Fa/1 /'J'.IO

Design Strategy for the VAX 9000 System

Logical Integration
The VAX 9000 vector processor connects to the
scalar CPU as an additional fu nctional execution
uni t . Vector instructions are processed , and

operands are stored, in queues, the same as are

scalar instructions. As i nstructions are issued , a con
trol word is sent with instruction operands to the

vector processor. The processor contains vector
registers and arithmetic units. Add resses for load ,
store, gather, and scatter operations are also gener
ated by the vector processor. Vector data is stored in

the main cache, and both the scalar and vector pro

cessors have fast, shared access to that dat::t.

Physical Integration
The VAX 9000 scalar and vector processors reside

on a single planar board. Three mu l tichip unit slots
are reserved for the optional vector processor,
wh ich is fie ld- instal l able. The integration of t he vec

tor processor directly with the scalar processor
keeps critical interconnects short and reduces vec
tor instruction overhead.

Error Handling
Rel iabi lity, avai la bility, and integrity are critical fac
tors in a high-performance computer system . These
factors are affected by the quality of t he physical
design (i .e. , worst-case design), effective cool ing,
redundant power supplies, and quality controls
during manufacture. St i l l , fai l u res are possible, and
the VAX 9000 design had to dea l effectively with
errors.

Error handl ing in the VAX 9000 system has two

main goals :

• Minim ize system service disruption from ind i
vidual fai lures

• Maximize the fai lure information col lected for
use in preventive and corrective maintenance

A l arge percentage of hardware fa i lures are inter
m ittent , and many solid hardware fai lures start as
intermittent. The VAX 9000 system was designed to
recover from these fa i lures and to use the fai lure
data to predict (and prevent) future problems.

To gather information effectively, VAX 9000 stor
age elements (i .e . , latches, tli p tlops. and RAM cells)

are v isible to the service rrocessor unit through a

serial diagnostic bus. Most state i n formation that

is relevant to isolate the fai l ing component is avail
able for error analysis programs that can be run at

a convenient time. The result of this processing is
t he n used to isolate the fai l i ng components for
quick repair.

2 1

VAX 9000 Series

To access the storage elements through the visi

bi l ity chain, the system clocks must be disabled,
which disrupts the system operation for a period
of time. The error may also have affected the exe
cution of the instructions in the pipeline. Error

handling minimizes these disruptions by making

them invisible ro the users a lmost a l l the time.
The macroinstruction is the unit of execution in

a program that is v isible to the user. Between

instructions, the program state is clearly defined
in terms of memory contents and register values.
Interrupts and exceptions are handled between
instructions to save this state in an orderly fashion.
It is important to handle errors the same way.

Two problems arose i n trying to provide the
same method of error handling. First, instructions
go through many stages in a pipelined computer,
and several instructions wi l l be in progress at the

same time. It is d i fficu l t to identify a beginning
and end for each inMruction. Second, even when
boundaries are established, errors can occur at any

time and the errors do nor automatically l ine up
with instruction boundaries.

To solve this, we made the E-box the point of syn
chronization between error handling and instruc
tion execution. In the instruction execution model,
the E-box accepts operands, then computes and
delivers resu l ts for storage. If an error occurs that
d irectly affects one of these steps, the error is
synchronous to the execution of that instruction.
Asynchronous errors do not directly affect any of
these steps and are treated as interrupts, i .e. , pro
cessed after the E-box completes an instruction but
before it starts another instruction .

A synchronous error causes a trap to occur in
the E-box when the E-box requests data from t he
subsystem with the error. Since such data can he
unavai lable as a result of virtual access problems,
the E-box is ready to deal wi th exceptions a t
that time, and errors can use the same pipelined
mechanism.

We do not d i fferentiate between those syn
chronous errors that affect computation in the
E-box and those that do not . Instead , if the program

visible state of the machine has not been modi
fied, the instruction is backed up to the beginning
and restarted . Performing this task is not a prob
lem, since the state is normally not changed unti l
the result is stored at the end of the instruction.
Errors occurring in early p ipeline stages are easily
recoverab.le. In a few cases, memory and registers
could have been modified early and, as a result ,
be affected by the error. Status flags indicate if this
has happened.

22

By getting to an instruction boundary, the clocks
can be stopped in an orderly fashion, and the state

can be read out , includ ing temporary data to be
used for failure analysis. The machine can be reset
to start processing at the instruction boundary once
the clocks are started again.

While the clock is stopped , the CPU cannot inter
act with other subsystems or I/0 processors. To
keep these functions from being blocked and possi

bly timing out , we only stop the clock to the CPU in
error, not all the clocks in the system. We also
sweep the cache of written data before the clock is
stopped , and IIO interrupts are directed to other
CPUs in a symmetric multiprocessing system .

Performance Modeling

When multiple features are added to a CPU design
to individual ly enhance performance, some of
those features can interact negatively with each
other to decrease performance. Therefore, we

designed a performance model to help us evaluate

the performance of the design and make trade-offs
where necessary. A lthough instructions were not
executed on the model , it is an accurate cycle-by
cycle model of the system for most instruction oper
ations. Equally important, the model was written at

a high level, which made it easy to modify and use
to experiment with different feawres before they
were added to the design.

Cycle Time

A perennial CPU design issue is the trade-off
between cycle time and cycles per instructions. In
a VAX system , the cycle time is often limited by the

RAM speed in the control store and cache. We mod
eled a machine at 8 ns and one at 16 ns for the VAX
9000 system. At 8 ns, the pipelines became longer.
Although the peak throughput a lmost doubled ,
the model showed that the net performance g:1in
did not offset the risks associated with the shorter
cycle time.

/-stream Synchronization

The VAX architecture requires that changes to the

instruction stream be synchronized with an R EI
instruction . This synchronization makes it easier to
implement an instruction cache that is separate

from the main cache. To synchronize, either all
memory writes can be watched or the J -cache can
he cleared on every REI. The first alternative entails
high hardware costs, and the second c:1n affect
performance. However, the model showed us that
the performance impact would be minimal if the

Vol. J No . .; Fuii i'J'JO Digital Tecbnicaljournal

!-cache was refi l led from the main cache rather than

from main memory because the critical parameters
were the main cache bandwidth and the !-cache
invalidation time, rather than the refill latency.

Branch Prediction
The b ranch p rediction scheme used i n the
VAX 9000 system was analyzed in great detai l .
We investigated the use of multiple history bits to

improve the effectiveness of branch prediction.
In a l l cases, the use of extra bits p rovided less than
a I percent improvement in system performance.
Furthermore, no multiple bit scheme could be

implemented without increasing cycle time
because mu l tiple history bit branch p rediction
schemes update status each time a branch is
encountered . Therefore, we chose to use a single
bit technique in the VAX 9000 design. Unlike multi
ple bit schemes that read and write history bits
for each branch instruction encountered , the single
bit technique updates the history bit only when the

prediction is wrong. The single-bit scheme is both

faster and simpler.

Cache Parameters

The main data cache was accurately modeled. The

VAX 9000 system uses a first-in first-out (FIFO) block
replacement scheme. The performance model pre

dicted that a true least recently used replacement
policy would provide an insignificant improvement

in performance over the FIFO method. Also, a true
least recently used policy requires that status be
read and written for each cache access. In con
trast, the F I FO replacement pol icy updates status

only when a cache miss has occurred . Further, the
update can be done in parallel with the writing of
data into the cache block. Although the 128-byte
cache block provided a better cache hit, we chose

the 64 -byte block because it produced better system
level performance.

We chose two-set associativity because the model

clearly ind icated that performance would degrade
with a direct-mapped scheme. The model also pre
dicted that a four-way set associative cache would
not improve performance enough to justify the
extra hardware, design complex ity, and cycle time

penalty.
The data bypass mechanism, the write queue,

and the parallel translation buffer fix-up mecha
nisms were implemented after the performance
model indicated significant performance gains
would he achieved from these features.

DiJ:itaf Tecbnicaljournaf Vol. .! No . . , htff f')')IJ

Design Strategy for the VAX 9000 5ystem

We also used the performance model as a verifi
cation tool . The model provided us with early
warnings when a feature d id not function in the
model , or when the cycle count differed from the

count in the gate-level simulation . For example,

from the model, we became aware of problems in
the design of how conflicts between instructions

in specifier processing were handled . Periodically,
we compared the performance model to the logical

model . Both models were subjected to the same

instruction sequences. Deviations of more than
±5 .0 percent were investigated. Some design bugs

were found that did not affect the results of the pro

gram but which did keep performance features
from working properly. The average deviation was
on the order of ± 1 .0 percent.

Performance tests are among the first programs
run on a functional prototype. The VAX 9000 sys
tem performed almost as expected. Table 2 com

pares the actual performance of a VAX 9000 system
to its predicted performance for a small sample of
modeled programs. The accuracy of the predictions

h ighl ights the increasing importance of models in

the modern engineering process.

Table 2 Performance M easurements
of a VAX 9000 System

Predicted Measu red
Program Name (VUPs*) (VUPs*)

HANOI 28. 54 25.53

FFT45 36.87 37.85

GAUSS 32.72 32.57

WH ETS 27.78 27. 1 7

WH ETD 34.48 34.89

• Performance measured in VAX un i ts of performance (VUP). where
the performance of the VAX · 1 1 /780 system = 1 .0 VUP.

Vector Performance
Vector processing was modeled using graphical
descriptions of the pipeline. The graphical descrip
tions were essentially critical path method schedul
ing charts. This approach is reasonable because

vector processing makes regular demands on sys

tem resources. In fact, the regularity of resource

demand patterns was a major reason that vector
processing techniques were developed . By using
the pipeline schedules, we realized that data should
he prefetched to ensure good vector performance.

23

VAX 9000 Series

Performance Measurement

Table 5 compares the VAX 9000 scalar and vector

processors performance to other members of the

VAX family of processors.

Table 3 Performance of the VAX 9000
Scalar and Vector Processors

VAX 8550
Program System
Name (VUPs *)

A3D 6.55

DYFESM 5. 1 2

E M IT 5 . 86

C F FT2D 5.52

B M K8A1 5.45

MXM 5 . 93

VAX 9000
Scalar
Processor
(VUPs*)

65.54

3 1 .88

4 1 .65

25.76

30.65

40. 8 1

VAX 9000
Vector
Processor
(VUPs*)

77.45

40.49

79 . 86

64. 1 8

83.84

269. 32

• Performance measured in VAX units of performance (VUP), where
the performance of the VAX-1 1/780 system = 1 .0 VUP.

T he vanattons in these performance numbers
indicate that significant performance improve

ments can be ach ieved by using applications that
rake advantage of machine rcsourccs. T he numbers

also highlight opportunities. By modifying appli
cations ro capitalize on machine features, large per
formance gains may he realized. Performance gains

of 100 to 200 percent are often realized and may
substantially extend the lives of older programs.

Vector applications tend to fall i nto three cate
gories. T he first category generally does not contain

much parallel content. T his category is represented

by A 5 D and DYFESM in Table :� . Vectorizing such
programs improves performance by a modest
0 to 50 percent . Programs E.\IIT and CFFT 2 D in
Table 5 represent the second category, which are
applications of moderate parallel content. Applica
tions in this category realize a 50 ro 150 percent
performance gain when vectorized . A pplications
in the third category, highest parallel content ,

demonstrate performance improvements o f more
t han 150 percent w h en vectorized. Programs

BMK8AI and MXM in Table 3 arc examples of t h is

class of application.
Often, modest code changes can realize dramatic

performance improvements. By simply redefining
array dimensions or loop specifications, an applica
tion can move from t he first category to the third
category.

24

Acknowledgments

Many people contributed to reaching the VAX 9000

p<.:rformance goals. T he authors would especially
like to thank David Orbits, whose advanced devel
opment work on high-performance VAX designs

became t he basis for t he performance model; and
Bill Grundmann , R ick Hetherington, John Murray,
Bill Smi t h , and David Webb, w ho comprised,
with the authors, the origi nal VAX 9000 architec
ture team.

References

I .]. Murray et al., " VAX Instructions T hat Illustrate

the Architectur a l Feat ures of the VAX 9000 C: Pt!,"
Digital Technical journal, vol . 2, no. 4 (Fall
1990, this issue): 25-42.

2. M. Adiletta et a l. , " Semicoml uctor Technology

in a High-performance VAX System," Digital
Technical journal, vol. 2, no. 4 (Fall 1990, this
issue): 43-60.

3. SPICE is a general-purpose circuit s imulator

program developed by Lawrence Nagel and
Ellis Cohen of the Department of Electrical
Engineering and Computer Sciences, Universi t y

of California, Berkeley.

4 . D. Clark , " Pipelining and Performance in the

VAX 8800 Processor," Architectural Support

for Programming Languages and Operating
S:vstems (ACM, October 1987).

5. C. Wiecek, "A Case Study of VAX - I I I nstruction
Set Usage for Compiler Execution ," Proceedings

of the Symposium on Architectural Support
for Programming Languages and Operating
Systems (ACM , March 1982) : 177- 184 .

6 . .J. Emer and D. Clark , " A Characterization of
Processor Performance in the VAX- I l /780 , "
Proceedings of the 11th Annual Symposium on
Computer A rchitecture (A nn Arbor: June 1984):

301 -310.

7. VAX Vector Processing Handbook (Maynard:
Digital Equipment Corporation, Order No.

EC-H04 19-46, 1989).

8. R . Brunner and D. Bhandarkar, " Vector Exten

sions to the VAX Architecture," Proceedings

ofCO!'vtPCON 'YO (San Francisco: Spring 1990).

v'lil. .2 No . .f Fall 11)')0 Digital Technical journal

john E. Murray

Ricky C. Hetherington

Ronald M. Salett

VAX Instructions That
Illustrate the Architectural
Features of the VAX 9000 CPU

The VAX 9000 system is Digital's largest and most powerful VAX system. As such,

it offers many unique features that required the use of advanced technology and
innovative architecture in the design of the system. Overall, the VAX 9000 micro
architecture produces a high level of system performance and the lou'est cycle time

of any VAX processor, i.e., less than five cycles per instruction. Three sections of the

l'ltX 9000 CPU - the instruction fetch and decode unit (!-box), the execution unit

(£-box), and the data cache and main memory inte1jace unit (M-box) - are

illustrated in this paper through descriptions of a small sample of VAX instructions.

These instructions are discussed in relation to their flow through the pipeline, how
their architectural features combine to work on a single macro instruction, and how

various stages of the pipeline interact.

In October 1989. Digital i nrroduced its VAX 9000
family of h igh-performance scalar, vector, and par
:tlld processors. T he VAX 9000 system is designed

ro be expandable from one ro four processors, with
an optional integrated vector facility available on

each processor. T he design team obtai ned high
levels of performance w ith advanced technology
and innovative architectural fearures. u T he tech
nology provided a platform that has the shortest
cycle rime for any VAX processor. Most VAX proces
sors average ten or more cycles per instruction ,

whereas the architectural features of the VAX 9000
system reduce that average below five.

T he VAX architecture is a complex instruction set
arch itecture. VAX instructions vary in length and

number of operand specifiers. T he opcode may be
one or two byres long. T he n umber of spe c i fiers
is implied by the opcode. Each specifier 's length is
determined by the specifier type, and the length can
vary by up to 17 bytes. 1 Although the VAX 9000
implements a large n u mber of instructions i n a
single cycle, some instructions need to be imple

menred in tens of cycles. In these cases, microcode
J.Ssiswnce is required. To increase performance,
many features were i ncluded in the VAX 9000
system that have not been implemented in prev i
ous VAX systems. The system contains a virtual

instruction cache. a branch pn:diction cache,
mult iple specifier evaluation units. deep instruction

DiRilal 1'ecbnicaljournal H>l. .! .Yo. ·I Faii i'J')Ii

preferch, hardware translation buffer fix-up unit,

write address buffer and conflict checker, multi
ported write-back cache, independent arithmetic

u nits, and separate issue and retire queues. T hese
features are pipelined and do not i nteract i n a

straightforward way. Many stages are not directly
linked to the subsequent stage bur feed a queue
or first-in first-out (FIFO) buffer. T he subsequent
stage works on the output of the FIFO buffer. The
pipeline is not a fixed-length and many operations

are done in parallel.
T he architectural features do not function totally

i ndependent of one a no ther. I n fact , the h i ghest

level of performance is achieved when all the units

function in harmo n y. T his paper h ig hlights the
implementation of the macropipeline found in the
three major subsystems of the VAX 9000. T hese
subsystems are the instruction fetch and decode
u n it (1-box), the execution unit (E-box), and the d::tt:1
cache and main memory inrerface (M-box).

T he design team for the VAX 9000 system's
!-box evolved a cost-effective subsystem that our

performs all previous VAX systems. As shown in

Figure 1, the !-box processes the majority of instruc
tions in just one cycle. lt combines a si ngle cycle
access virtual instruction cache with a 25-byre
i nstruction buffer and an instruction clecocle cross

bar that can decode three specifiers per cycle. To
minimize cycle-wasting stalls. a branch prediction

25

VAX 9000 Series

unit handles transitions from one code block to
another. In addition , the operand processing unit
receives and processes specifiers from the decode
unit . The specifiers are passed either to the E-box as
pointers, l i teral data or addresses, or to the M-box
as virtual addresses.

Figure 2 i l lustrates how the front end of the
M-box translates addresses by using either a trans
lation buffer or an autonomous virtual -to-physical
address tra nslation un i t . Physical addresses for
reads are used to access a two-way associative
write-hack cache and to fetch data from memory

through the system control unit (SCU) , if the data
is missing from the cache. Read data is returned to
the E-box . Write addresses from the operand pro
cessing unit are translated and queued by the M-hox

until the E-box provides the data for the write.

The E-box of the VAX 9000 CPU performs aU
scalar operations. As shown in Figure), the E-box
is a pipelioed design that incorporates a micro
sequencer to control functional un i t operation.
Other dedicated control logic directs the flow
through the pipe stages.

A mul t iported register file provides general
purpose registers and temporarily holds memory
data. The data is processed by one of the four
arithmetic functional units. Results pass through a
retirement multiplexer to the register file or the

M-box data cache, as shown in Figure 4. Multiple
VAX instructions arc executed concurrently in the
E-box pipeline. The primary goal of the E-box is
to produce a 32-bit result each cycle, which al lows
the majority of the simple, but most frequent, VAX

instructions ro be executed in one cycle. This goal
is achieved when four requirements are met . First,
the !-box must have conunands available for the
£-box . Second, operand data, often from the M-box
data cache, must be available. Third , pipelined or
single-cycle latency functional units are required
for single-cycle throughput. Finally, results must
be transferred from t he functional un i ts. E-box
features, such as queues, data bypass paths, and
powerful arithmetic units, help the system attain
a h igh-performance level . Stalls arc avoided and

each instruction is executed in a minimal amount
of time.

The M-box of the VAX 9000 CPU is the primary
source of memory data. Therefore, it contains the
virtual address translation buffer and the data
cache. The M-box is multiported ami pipelincd with
two autonomous pipeline segments. Each segment
occupies one machine cycle, and the cache access
latency is, therefore, two cycles long. During the

26

first cycle, the M -box receives and priori tizes v i r
tual ly (or phys ically) addressed memory requests.
The M-box then indexes the translation buffer to
produce a 33-bit physical address and to perform
protection and va l idity checks. The second pipe
l ined cycle i nvolves data cache access, data a l ign
ment, if requ ired , and port response. T here are
numerous architectural features within both seg
ments that are targeted at high bandwidth for
prefetching and storing scalar and vector operands.

To i l lustrate the various features of the VAX 9000
microarchi tecture, we h ave selected the code
sequence shown in Figure 5 . i In the fol lowing sec
tions, we discuss each instruction as it progresses
through the pipel ine as if it were the only instruc
tion in the pipeline. We then sununarize by consid
ering the same instructions as a block of code.

VAX Instruction ADDL2

The A DDL2 instruction uses general-purpose regis
ter R8 as a n address ro memory. The contents of
that location are added to general-purpose register
R7, and the result is written back to the same loca
tion in memory. The instruction is encoded in three
bytes: opcode, register, and base register.

Cycles One through Three
I f we assume that the ADDL2 instruction is the first
instruction either in an interrupt routine or follow
ing a context switch, the program counter is gener
ated by the E-box and passed to the I-box on a 32-bit
bus. The program counter is latched and used to
access the virtual instruction cache during cycle
one. The virtual instruction cache contains up to
8 kilobytes (KB) in 32-byte blocks and 8-byte lines
of instruction stream data.

Bits < 12 : 3> of the program counter's prefetch
buffer are used to access an 8-byte l ine from the
virtual instruction cache. Bits < 1 2 : 5 > are used to
access a tag, a valid block. and four quad word valid
bits. The tag is compared with bits < 31 : 13> of the
program counter's prefetch buffer. If the tag and the
bits match, the block and the quadword within the
block are valid, and the instruction is in the virtual
instruction cache (i .e. , a hit) . B i ts < 2 :0> of the pre
fetch buffer are used to rotate the quadword for the
opcode byte to he loaded into byte 0 of the !-buffer
at the encl of cycle one. Similar to the VAX 8650
system, the first hyte of the ! -bu ffer is the operation
code (opcode) of the instruction."

The ADDL2 is three bytes long and norma l l y
fits i n one l ine of the virtual instruction cache. I f
t he ADDL2 instruction crosses

·
a l ine boundary, a

Vol. .! No . . q Fa/1 1')')0 Digital Technical journal

E-BOX
RESULT

M-BOX IB DATA

S2 POINTER

DEST POINTER

�--------------�--------------------�------------------------�
DECODE STAGE SPECIFIER STAGE FETCH STAGE

KEY
VIR - VIRTUAL I NSTRUCTION CACHE
Sl - SOURCE 1
S2 - SOURCE 2
DEST - DESTINATION
IB - I-BUFFER
P PC - PREFETCH PROGRAM COUNTER

U PC - UNWIND PROGRAM COUNTER
D PC - DECODE PROGRAM COUNTER
S PC - SPECIFIER PROGRAM COUNTER
BP - BRANCH PREDICTION
PC - PROGRAM COUNTER
OPU - OPERAND PROCESSING UNIT

SL - SHORT LITERAL
GPR - GENERAL PURPOSE REGISTER
GPRS - GENERAL PURPOSE REGISTERS
XGPR - X GENERAL PURPOSE REGISTER
YGPR - Y GENERAL PURPOSE REGISTER
OP D - OP DECODE

Figure 1 Block Diagram of the VAX 9000 System /-box

SL D - SHORT LITERAL DECODE
R 1 - REGISTER 1
R2 - REGISTER 2
R3 - REGISTER 3
DISP - DISPENSER

I -BOX DATA

VAX 9000 Series

28

I-BOX QUEUES

::>

9
:::

CONTROL
LOGIC

MICRO
SEQUENCER

REGISTER
F ILE

Figure 2 Front End of the VAX 9000 System M-box

I -BUFFER m � MISS

OPU

E-BOX I I
r:: SEQUENCER � �

f FIX-UP � v

�
�

> � �

r=::> v �

I--

TRANSLATION b BUFFER

TRANSLATION
BUFFER f.-
FIX-UP

Figure 3 Block Diagram of the VAX 9000 .�ystem E-box

V-BOX

M-BOX

Vol. l No. 4 Fall /')')IJ Digital Tecbnicaljournal

VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU

I -BUFFER

OPERAND
PROCESSING
UN IT

E-BOX

WRITE
QUEUE

MAIN MEMORY -f: 64

CACHE

E-BOX
WRITE BUFFER

E-BOX
WRITE BUFFER

FILL BUFFER

E-BOX 64

OPERAND
PROCESSING
UNIT

I-BUFFER

M-BOX

WRITE BACK

32

64

32

Figure 4 Cache Unit of the VAX 9000 System M-box

subsequent cycle is required to access the second
l ine. The average VAX instruction is 3 . 8 bytes long.
Therefore, a virtual instruction cache hit delivers
about two instructions to the l-buffer.6

Other VAX processors general ly require a cycle
to decode the opcode and one or more cycles to
decode each subsequent specifier.7.H However, the
VAX 9000 CPU's instruction decode cross bar can
decode the vast majority of common instructions in
a single cycle.

If the three bytes of the ADDL2 instruction were
loaded into the !-buffer at the end of cycle one, the
bytes would be decoded during cycle two. The
decode unit (XBAR) passes data from the !-buffer to
a short l iteral unit, a register/pointer unit or an
operand processing unit. As the opcode and speci
fier bytes are decoded in paral lel , the X BAR deter
mines in less than a cycle that both specifier bytes

shou ld be routed w the register/pointer unit and
that the memory specifier should be routed to the
operand processing unit .

I n parallel with the XBAR decode process dur
ing cycle two, the program coumer is passed to the
E-box from the 1-box. The opcode is used to address
the fork random-access memories (RAMs) in the
E-box that provide a fork address to the microse

quencer. At the end of cycle two, the decoded bytes
are shifted out of the !-buffer, and the subsequent
instruction is presented to the XBAR in cycle three.

The fork address from the 1-box is then used to
address a fork RAM in the E-box. For each opcode,
the fork RAM provides an entry address into the
control store, i nd icates w h ich functional un i t
should begin the execution , and specifies how
many source operands are needed i n the first cycle.
The fork address is modified when an instruction

68 57

53 6044 00

59 85 9999A999 535940C2 8F

E3 000001 2 1 ' EF OD

co 0080 22

41 0083 23

45FD 0088 24

E4 0095 25

1 $: ADDL2

SUBF3

R7, (R8)
#0,5, (RO)[R4].

M U LG3 #2345.5, (R5)+.

BBSC # 1 3 . BDATA.

R3

R9

1 $

Figure 5 VAX Instructions That Illustrate the Major Features of the VAX 9000 System

Digital Tecbnicaljournal Vol. 2 No. 4 Fall f<J'JO 29

VAX 9000 Series

is restarted after it was interrupted before comple
tion. Memory management faults on the instruction
stream also modify the fork. At the end of cycle two,
the fork RAM data is latched in a fork queue, and the
instruction program counter is latched in the pro
gram counter queue.

The register/pointer unit accepts the register and
specifier byte at the end of cycle two. During cycle
three, the register/pointer unit passes two source
pointers (general-purpose register R7 and memory
data) and the destination pointer (memory destina
tion) to the E-box. The source one pointer points to
general-purpose register R7. The memory data will
be returned eventually to a 16-bit deep circular
queue, called the source list, in the E-box. The regis
ter/pointer unit tracks the source list pointers and
al locates a source l ist entry to the memory data . The
source l ist address is passed to the E-box and the
operand processing unit . The destination pointer
simply indicates that the result of the instruction
goes to memory.

Further, during cycle three, the operand process
ing unit generates the memory address and passes
it to the M-box. For the register deferred specifier
(R8), the operand processing unit accesses its local
copy of R8 and passes it to the M-box , together with
the source list tag received from the register/pointer
unit and a control function that indicates the mem
ory location is to be read and then written.

The fork queue is a cyclical , eight-entry FIFO

buffer that is flushed for interrupts, exceptions,
or i ncorrect branch predictions. For the ADDL2
instruction, the queue passes part of the fork RAM

data to the microsequencer, which i s idle and
awaiting a valid fork, early in the third cycle. Fork
RAM data is used to generate the appropriate con
trol store address for al l control store RAMs. The
remaining fork RAM data is passed to the issue
control by the end of the third cycle.

Cycle Four

At the start of cycle four, the M-box receives a com
mand from the operand processing unit to perform
a read with a write-check . The M-box must read a
longword from memory, send the longword to the

E-box, and check for write access. The command is
accompanied by a 32-bit v irtual address, a tag field,
context (size of operand), and the request signal .

Arbitration for access to the translation buffer
occurs every cycle. If the operand processing unit
wins arbitration, the command is decoded and the
comext is checked against the starting address to
determine if addit ional v i rtua l addresses are

30

required . The M-box includes a feature that adds
four addresses to E-box or operand processing unit

addresses, if the size and alignment of the request
crosses a quadword boundary. Other VAX systems
trap on unaligned accesses using E-box cycles
and require using microcode to generate the incre
mented address and subsequem fetch.

In parallel to the arbitration process, virrual
bits 31, < 17:09> index the 1024-entry translation
buffer. The translation buffer is a d irect-mapped ,
associative memory that contains the results of
the most recent 1024 translations. Bits < 30: 18>
are compared, validated, and protection-checked
against the tag field . The physical frame number is
a 24-bit field that is appended to the virtual address
bits <9:0> to create the 33-bit physical address. The

self-t imed RAM used for the translation buffer is a
1024 by 4 self-timed RAM with a 4 . 5 nanosecond
(ns) access time.

Protection checking occurs during the latter por
tion of cycle four. The example we are discussing is
a request for a read and write check. Therefore,
both read and write access are checked. Fault indi
cation is forwarded with the request to the data
cache and subsequently, with the data, ro the E-box.
If the request has a valid entry in the translation
buffer and no protection violations exist (i .e . , trans
lation buffer hit), a data cache access is required in
cycle five.

The two source pointers and the destination
pointer from the 1-box are latched in the source and
destination queues, respectively, at the start of cycle
four. The source queue holds 16 entries and can
receive 2 entries per cycle. The dest ination queue

holds eight entries. Both queues are circu lar FIFO
queues that can be flushed with the fork queue. The
two source pointers are also latched in the source
operand logic at the start of cycle four. The source
operand logic determi nes w hich two source
pointers to use each cycle. The pointers can come
from the source queue, the 1-box, the microword ,

the register log, and several special functions. In this
example, the two pointers are selected directly
from the latched I-box pointers because using the
source queue would have required an extra cycle.

The selected pointers address the register file
and are passed to the issue logic early in the fourth
cycle. The register file contains t he 15 general
purpose registers, RO through R l4 . These registers
can be written by either the £-box or the !-box for
autoincremem or a utodecremem speci fiers. The
first pointer accesses general-purpose register R7.

The contents of general-purpose register R7 are

Vol. 2 No. 4 Fall /<J<JI! Digital Tecbnicaljom-nal

VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU

passed to the data distribution logic by the end of
cycle four. The second pointer accesses one of the
16 locations in the source lis1 . The source list is a
queue for source operand data that is written by the
!-box, with immediate or short literal data, or by the
M-hox , with memory data. The pointer is used to
access the appropriate source list register, and the
data is passed to the data distribution logic .

The issue control uses the fork RAM data and the
source pointers to determine if the instruction
can he executed . The issue control checks that the
target functional unit is ready and that all the
requ i red source operands a re avai lable. In this
example, the integer unit is ready, the first operand
(i .e. , the general-purpose register R7) is available,
bur the second operand (i .e . , memory data) is not .
Because normal issue cannot occur without the
second operand, we created a special issue control
to handle this case. When issue is prevented only
by the lack of a single memory operand , the instruc
tion is " issued with bypass." To save an operational
cycle, w he n the M -box del ivers the m issing
operand, that operand bypasses the source list and
passes immed iately to the waiting functional unit .
The issue control signals the fork and source queues
that entries were used and can now be removed .

Cycle Five
Cycle five begins with the cache clara and rag self
t i med RAMs latching the p hysical add ress. The
priority request was selected by the cache control
in the latter portion of cycle four. The default prior
ity request selection is the w rite queue. However,
if the defau lt is used and a translation buffer hit
occurs, the current address from the translation
buffer is used. The first stage of the M-box , or the
translation buffer stage, is referred to as the front
end . II provides the cache w ith a 4 -bit cycle-ident ifi
cation field that identifies the command type and
port . In addition , a context field provides the cache
with the data size. The request for the second speci
fier of the A DDL2 is a cache read and a write check.

The write queue is a key feature of the M-hox and
the VAX 9000 system . The write queue is an H-entry
FIFO buffer that holds pretranslated operand mem
ory destination addresses and allows the operand
prou:ssing unit to continue prefetching operands
a fter memory destination operands. The write
queue is designed to be a content-ad d ressable
memory that checks for memory conflicts as sub
sequent memory source operands are accessed.
Entries in the write queue arc discarded when the
E-hox completes execution and a successful cache
w rite occurs.

Digital Technical journal 11•1 . .! :vo. -i Fall /<J'JIJ

A write check inserts the physical address and
a number of status bits into the w rite queue. The
status bits are termed val id, fault , twice (asserted for
the final entry when wri ting una ligned operands
that requ i re more than one address), l ast , PCD

(page crossing danger alert), and blocked. The write
check illustrated in this ex;tmple has a valid and
last flag asserted.

The cache tag is accessed in the middle of cycle
five. The cache tag srore is two-way set associa
tive, with 1024 entries per set . Each entry repre
sents a 64-hyre block of memory data. The tag store
also contains 16 valid bits (i .e. , one per longword)
and a written bit because memory update requires a
write back. The cache rag is used to determine if the
requested data resides in the data cache and , if not ,
whether the cache data held there needs to be writ
ten hack to memory.

If a cache hit occurs, the data, with an asserted
response line and tag, is sent to the £-box. The tag
field tells the E-box where to place the field in the
source list . In cycle five, the issue logic asserts a
m i c roword hold signal t hroughout the E-box .
Because execution did not occur in cycle five
and the latched m icroword was not used, the
microword latches must be held unti l execution
can occur.

Cycles Six through Ten

At the start of cycle six , the M-box data is latched
to the data distribution logic. The data is immedi
ately passed to the integer unit, where the add oper
ation is performed . The results of that operation are
sent to the retire logic by the end of cycle six . The
issue logic deasserts the microword hold signal to
allow subsequent microwords to become latched .
The issue logic also makes an entry in the eight
location result queue. The result queue is used to
maintain write ordering when mul tiple functional
units are operating i n parallel and also acts as a
scoreboard for register conflicts. A general-purpose
register is not a valid source operand if the register is
in the result queue waiting to be updated by a func
tional unit . When the functional unit specified by
the top entry of the result queue completes the
operation, the results are retired and the queue
entry is discarded . The integer unit always com
pletes in a single cycle. Therefore, the A DDL2

instruction is discarded from the result queue by
t he end of cycle six .

I n cycle seven. the retire mu lt iplexer selects the
integer unit result data ami sends it to t he :vi-box to
be written. A request signal for an op write also is

.1 1

VAX 9000 Series

sent for the M-hox to iniri :Hc the write. The :VI-box

indicates that the address translat ion was successful

to ensure that a memory management fau l t does not

occur. A signal that the instruction is done removes

the instruction program cou nter from the program
counter queue and indicates successful add ress

t ranslation completion to the 1-box.
A t the start of cycle eight, the E-box sends the

results of the A DDL2 instruction to the M-box to he
written into the data cache. 'fhe write data i n terface

from the E-hox to the M-hox is :)2 bits w ide. The

M -box has two 32-bit data bu ffers that receive the
write data and hold the data until the tag status is

appropriate for the write to occur. The E-box sig

nals the M-box to perform the write. This signal
docs not affect the front end of the M -box because

address translation has a lready occurred. The s ignal

is a request to the cache control and arbitration for

an op write. The top entry of the w rite queue holds
the status and complete physical add ress for the

write destination of the ADDL2 instruct ion. Because

this is a modify operand, write access is chec ked

and reported to the E-box when the operand i s read
from memory.

A two-cycle cache write starts in cycle nine. The

first cycle is t he lookup cycle. The cache control
selects the w r i te queue add ress to add ress the
cache. Before the write can occur, the cache block

must be ded icated to t h is part icular physical

address.
'fhe cache rag store and data cache are read in

para l le l . I f the operand is unal igned or is less than
a longword , the cache data li ne read during the

lookup cycle is captured and merged i n the next

cycle with the data from the E-box. To ensure data

consistency, data is a l lowed to exist in the cache in

one of two states, read only or written. T he SC L'

controls the data in up to four individual C:Pl 1

caches. Read-on l y data may be valid in mult iple

caches, but w ritten data may only exist in one
cache. Thus, before an M-box can change data, i t
must ask permission from the SCl l .

I n this example, the operand i s longword
al igncd , and the write occurs in cycle ten if the

block in the cache tag store has a val id and w ritten
status. The write also occurs for al igned longwords

and quadwords in cycle ten if the cache b lock is
completel y inva l id . If this cache block has a read
status (i .e . , valid and not written), :1 command is

sent to t he SCLI to request permission to write. The
write is del:J.yed unti l the SCl J responds with
approval to write.

C ycle ten i s the cache d a ta w ri te c ycle. Write

enables to the self-timed I{ AMs in the data cache :1rc

assL"rted in this cycle as a result of the tag store

lookup cycle in cycle n i ne. The tag store is upd:J.tcd

only if a val id bit had to he asserted . However, a

partial ly val id and w ritten cache block that may

req u i re SL"tting the appropriate val id hit c a n be

written . Each l ine of the cache is protected with

byte parity. H owever, because i t i s a w ri te-b:J.ck

cache, the reliab i l ity of the machine is significant l y
enhanced us ing a n error-correcting code. T h e

check-bit pattern for the error-correcting co<.k

storage is generated and stored separately.

VAX Instruction SUBF3

The S l ! BF 3 instruction su btracts one h a l f of t he

F _ tloat format number addressed by general-pur
pose register RH and indexed by general-purpose

register R9. The resultant number is placed into

genera l-purpose register R3. The i nstruction is

encoded in five bytes: opcode, short l i ter:J. l , index
register, base register, and destination register.

Cycle One

As with a l l VAX instructions, the first cycle of the
Sl i BF3 may be either a virtual instruction cache

access or a simple shift to the low-order bytes of the

! -buffer. In a few cases, the instruction not in the

cache. Consider a n example w here the SUBF3

instruction is preceded by a long instruction that
is gradu:J.l ly decoded for sn-cral cycles. As a resul t ,

the S l iBF3 i nstructions cross a virtual i nstruction

cache block boundary. The vi rtual instruct ion cache
is accessed for instruction stream data every cycle,

but the address is incremented only w hen the data

is latched in one of three instruction stream buffers,

! -buffer (9 bytes), I -bex (H byres), or l -hex2 (8 bytes).

If only one byte or if no valid bytes exist in t he

!-buffer, the virtual instruction cache data is loaded

d i rectly into the !-buffer. If the I-bex is empty and
the !-buffer contains between two and eight val id

byres, the v irtual i nstruct ion cache dat:J. is merged

with the the !-buffer d:J.ta and the remaining bytes
are loaded into the I-bex.

If there is a v i rtual instruction cache miss (i .e . , the
data is not in the v irtual instruction cache) and there

are no val i d bytes in the I -bex, the 1-hox passes a
request to the M -hox for data. General ly, the request
wi l l be for a virtual i nstruction cache block, i .e. ,

32 byres, because the 1-box decodes i nstructions
sequential ly across a block boundary. However, a

branch or interrupt nuy direct the decode into the

middle of :1 block. In such a case, t he 1 -box requests

the remainder of the t:J.rget instruction stream in
that block. The first cycle of the S l i BF :) accesses the

virtual instruction cache onl y ro find w hat data is

Vol. .! No. '-1 Fall f<J'JIJ Digital Tecbnicaljournal

VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU

not in the cache. The address and the request then
are passed to the M-box .

In the next cycle, the result of the virtual instruc

t ion cache tag match is signaled to the M -box
through an !-box abort signa l. If a virtual instruc

t ion cache m iss has occurred, the block in t he
virtual instruction cache is cleared and t he !-box

awaits the data from the M-box . The M-box passes
eight bytes of data to the 1-box . The th ird cycle

after a virtual instruction cache miss is found in the
1-box when hits occur in both the translation buffer
and the cache. The data sent to the !-box is written
and read through the virtual instruction cache self

timed RAMs to the !-buffer or the I-bex . The virtual
instruction cache's tag, valid block, and the relevant

val id quadword are written next. If the !-buffer is
empty, the eig h t bytes of SUBF3 i nstruction are
written into the !-buffer. In subsequent cycles, the
fol lowing instruction stream quadwords are writ
ten into the virtual instruction cache, with a new

quadword va l id bit , unt i l the end of t he block is
reached. The data is also ava ilable to the 1-buffer.

Cycle one of the SUHF3 instruction could be
fetching the instruction stream from the virtual
instruction cache, as described for the ADDL2
instruction , or i t could be already in the !-buffer
(e.g. , bytes <8 :3>) fol lowing the ADDL2 instruction

(i .e . , bytes < 2 :0>) . In the latter case, the SUBF3
instruction would be shifted into the lower bytes

as the A DDL2 instruction is shifted out .

Cycles Two through Eight
In cycle two, the SUHF3 instruction is completely

decoded and shifted out of the ! -buffer. As a result,
the following actions occur:

• The fork address is passed to the E-box .

• The short l i teral is passed to the short l i teral

expansion unit .

• The base and index registers arc passed to the

operand processing unit .

• The destination general-pu rpose register R3
and the t\vo sources are passed to the register/
pointer unit .

During cycle three, the register/pointer unit allo
cates the next avai lable entry in the source list ro the

short literal and the subsequent entry in the indexed

memory reference. The E-hox is informed of these

a l locations as pointers to the relevant entries are
passed to the pointer queues in the source one and
source two pointers. The register/pointer unit also

passes t he destination register to the dest inat ion
queue in the E-hox.

Digital Tecbuicaljom·nal Vt>l. 1 No. 4 h71/ /'J'}IJ

The operand p rocessing uni t passes t he tag,
with the address for the indexed memory specifier
request, from the register/pointer un i t to the

M-box. The address is generated by the adder in
the operand processing unit . In parallel wi th the
operand processing unit and register/pointer unit ,

the short literal expansion unit takes the 6-bit field

and expands it to a 32-bit F _floating number.
Duri ng cycle four, the s hort l i teral is wri tten

through the 1-box data bus to the relevant entry
in source list. Issue control can issue with bypass

because only the memory data for operand two is
missing.

The E-box stalls until the memory data arrives.

Because the 1-box and the M-box generally are func

tioning ahead of the E-box, memory stalls are short

or nonexistent. In this example, the memory data
arrives at the end of cycle five, as was the case with
the ADDL2 instruction.

In cycle four, the M-box operates for the SUBF3

instruction in a s imi lar manner to i ts cycle four
activity for the ADDL2 instruction . At the start of
the cycle, a command, address, context, and tag

field are sent from the operand processing unit to

the M-box. The command is a simple operand read.
Arbitration occurs early in the cycle. The trans
lation buffer is then accessed , and the physical

address is sent to the cache.
Cycle five begins when the data cache receives

the p hysical address for the operand processing

unit to read . The tag store lookup and address

matching are performed simultaneously with the
data read , and the data is available to the E-box at

the end of the cycle. If the operand read results in a
cache miss, the M-box must assemble a command
and an address, which are sent to the SCU to enable
the SCU to access a 64-byte block of memory data.

In addition, the data cache tells the scu which set

the cache will replace with t he new cache block. J f

the current cache block contains val id and written
data, the block must be written back to main mem
ory before the new cache block arrives.

The scu sends a command and an address back
to the M-box when the memory data is ready. The
send takes approximately 26 cycles and is fo llowed ,
within a short period of time, by eight cycles of data
transfer. Each cycle is 8 bytes long. The requested

quadword is returned first to respond to the

requesting port during the first cycle of the cache

refi l l . On the eighth cycle of cache refi l l , the tag

s tore is updated.
The floating point functional unit is started in

cycle six, as specified by the fork RAM data. Both
source operands are delivered , and the microword

VAX 9000 Series

ind icates a SUBF operation. The floating point unit
requires two cycles to perform the SUBF operation .
Unpacking and a l ignment occur in the first cycle.
The floating point unit signals the issue control that
the result wiJJ be available at the end of the follow
ing cycle. The issue control enters the general
purpose register R3 destination b u t must wait
another cycle before beginning reti remen t. If the
next instruction requires that the floating point unit
and the operands be available, the instruction
would be issued in this cycle because the floating
point u ni t is ful l y pipelined.

The second execution cyc le occurs in cycle
seven. The floating point unit adds, normalizes,
rounds, and packs. The result is latched in the float
ing point unit at the end of the cycle, and the issue
control discards the top entry from the result queue
to retire the data.

In cycle eight, the retire multiplexer selects the
floating point unit result data and sends that data to
the data distribu tion logic. The data distribution
logic holds the result, which w ill be written into
general-purpose register R3 in the register file dur
ing the next cycle. The write is purposely delayed
to permi t it to be aborted if an arit hmetic faul t
occurs. By holding t he result in the data distribution
logic, resul t bypassing into the data path can act as
a source operand. The result is written into the reg
ister file at the beginning of cycle nine.

VAX Instruction MULG3
The MULG3 instruction takes t he G_format floating
number, addresscd by general-purpose register R5,
from the instruction stream, multiplies it by the
immediate constant 2 3 4 5 .675, which is also a
G_format number, and puts the result in general
purpose registers R9 and R 10. General-purpose
register R5 also is incremented by eight as a side
effect of the specifier evaluation. The opcode is
2 bytes long, the constant is a nine-byte immediate
specifier, and rhe autoincrement and register speci
fiers are each a single byte. Thus, the instruction is
encoded in 13 bytes.

Cycles One through Five
As in cycle one of the SUBF3 instruction, the MULG 3
instruction can either be a v irtual instruction cache
access cycle or part of the instruction already can be
in the !-buffer and shifted to the least significant
byte as the previous instruction is shifted out . For
example, i f the previous instruction is the SUBF3

#0. 5 (RO)[R4] R3 in bytes < 4 :0> of the !-bu ffer, the
first four bytes of the MULG 3 instruction could be

34

in bytes <8 : 5>. The four remaining bytes of the
immediate specifier could be valid in the I -bex and
the rest of the instruction could be contained in the

I-bex 2. At the end of cycle one, the first four bytes
are shifted to the low four byres of the 1-buffer. The
next four bytes are merged from the I-bex to the
high four bytes of the !-buffer. The I-bex is now
empty, and the bytes in the I-bex2 can be loaded
into the I-bex .

Because the MULG 3 instruction has a 2-byte-long
opcode, the only decoding necessary in cycle two is
to note the 2-byte length and shift our the ftrst byte
so as tO align the specifiers to be the same as a single
byte opcode instruction. The specifiers are then in
bytes < I :8> of the !-buffer. As the first opcode byte

(in this case, #FD) is shifted out , the next valid byte
in the I-bex is merged into byte 9 of the 1-buffer,
which leaves seven valid bytes in the I-bex.

Decoding real ly begins in cycle th ree. The fork's
address is sent to the E-box, and bit <8> is set to
indicate a 2-byte-long opcode. The ftrst five bytes
of the immediate spec i fier are passed to the
operand processing uni t . The first byte also is
passed to the register/pointer unit for source list
allocation. The five bytes sh ifted out of the !-buffer
are replenished from the I-bex, which leaves two
valid byres in the I-bex .

In cycle four, the register/pointer unit allocates
the two entries in the source list for the immediate
G_floating number by passing a source one pointer
to rhe E-box and the tag to the operand processing
unit . The operand processing unit passes the first

longword of the immediate G_floating number to
the unit's output bu ffer.

The next four bytes of the immediate are passed
from the !-buffer to the operand processing unir .
The remaining two valid bytes from the I-bex are
merged into the !-buffer. The I-bex is then loaded
with eight bytes from the virtual instruction cache.

In cycle five, the autoincrement and register
speci fiers are decoded and the remaining bytes of
the instruction are shifted ou t . Five bytes from the

I-bex are merged with the four valid byres in the
1-buffer. The autoincrement general-purpose regis
ter R5 is passed to the operand processing unit
and the register/pointer unit, which also receives
general-pu rpose register R9. The first longword of
the immediate specifier is passed from the operand
processing unit output bu ffer, through the 1-box, to
the source l ist entry al located by the register/
pointer unit . The second longword is passed to the
operand processing unit output bu ffer.

Vol. 2 No. 4 Fall /')')() Digital Tecbn icaljounzal

VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU

The first microword is accessed and distributed

throughout the E-box . The m icrosequencer uses

the fast fields of the microword to generate the final

control store address for this i nstruction . The
microinstruction is not issued because it requires

two source operands and the second source pointer

is not yet avail able.

Cycle Six
In cycle six, the register/pointer unit al locates two

source list entries for the autoincrement specifier,
passes this information to the E-box in the source
one pointer, and passes a tag to the operand pro

cessing uni t . T he general-purpose register R9 is

passed to the E-box as the destination pointer.

The operand processing uni t accesses general

purpose register R5 and passes i t , with a tag and a

quadword read request, as an address to the M-box.
In paral le l , the operand processing uni t writes

general-purpose register R5, incremented by 8-byte

lengths in the unit's output buffer. The second long

word of the immediate specifier is written to the
source list at the relevant entry.

The operand processing unit sends the M-box a

read request quadword for the double-precision

floating point operand . If the address is on a quad
word boundary, the front end of the M-box will not

produce any additional virtual addresses because

the operand wi l l not cross a page boundary or a

cache line boundary. If there is a miss in the trans
lation buffer for this reference, all other arbitration

stops and control are given to the state machine of

the translation buffer fL"X-up unit .

Bits < 31 :09> of the request are captured by the
translation buffer's fix-up unit in parallel with the

translation buffer RAM's access to achieve an early

start on m iss processing. The fork to the state

machine is sensitive to bits < 31 :30> of the virtual
address. Therefore, when a translation buffer miss

occurs, a constrained control word flow begins

based on the values of bits < 31 :30>. Because this is
a user mode, the value is zero. Therefore, on the
first cycle following the translation buffer m iss, the

virtual page number is compared against the PO
length register, POLR. On the next machine cycle,

the POBR (i .e. , base register) is added to the virtual
page number ro create the system virtual address of

the process page table entry. The fix-up unit acts the

same as any other port into the translation buffer,

and makes a virtual read request with an aligned
longword context. The state machine is control led
by a microword that branches to itself until one of

three events occurs: a miss in the translation buffer

Digital Tecbnlcal]ournal Vol. 2 No. 4 Fall 1990

(the fix-up unit processes double misses), a memory

management fault, or a cache response. The cache

response, which is the event most likely to occur,

signals the state machine to return to idle and pre
pare for the next miss. Hardware control external

to the ftx-up uni t w ri tes the entry into the trans

lation buffer, and the original request is retried .

This t ime there is a translation buffer hit , and the
physical address is sent to the cache. Single misses

in the translation buffer require seven cycles to pro

cess. A double m iss requires 13 cycles, assum ing

data cache hi ts occur.

The issue control asserts the microword hold

signal to force the microword latches to hold the

first microword until i t can be executed. The micro
sequencer regenerates the control store address of

the second microword each cycle until the execu

tion stall ends.

Cycles Seven through Thirteen

Cycle seven is the data cache read cycle for the

quadword operand processing unit request that
was translated in the previous cycle. The VAX 9000
system has a 128KB data cache, with a block size of
64 bytes and access width of 8 bytes. The 64 -bit

access width matches the 64-bit data path to the
E-box, which was construc ted to p rovide high

bandwidth for double-precision operand transfers.

When a cache hit results for the read of an aligned

quadword, both the normal response line and the
quadword response signal are asserted to alert the

E-box that the M-box is sending a quadword of data .

In cycle seven, general-purpose register R5 of

both the E-box and !-box is written with the incre

mented value. In addition , both source pointers

and the first source operand are available to the

issue control. Because only the second operand is

missing, the microinstruction can be issued with
bypass awaiting memory data.

The quadword operand is available to the M-box

at the end of cycle eight . The low longword is

latched in the data distribution logic of the E-box,
and the high longword is held in the M-box.

In cycle nine, the quadword operand is written

into the register file at the two source list locations

al located by the operand processing unit. However,
the low longword is available as a source immedi

ately. The low longword of the short l i teral operand

and the low longword of the memory operand are

passed to the multiply functional unit at the start of
cycle nine. The multiply unit performs the first

cycle of execution, which includes· unpacking and

multiplying the most significant bits of the two

35

VAX 9000 Series

operands. Issue comrol drops the microword hold
signal to allow the second microword to be latched .

An entry, which specifies general-purpose n:gister

R9 as the destination for the low longword of the
result , is made to the result queue. The second
microword is issued because the multiplier requires

the next half of each source operand and both are

available from the register file.
The microsequencer then attempts to generate a

new control store address from the next entry in

the fork queue. If no new forks are available, the
microsequencer remains idle.

In the tenth cycle. the multiply unit receives the
high longword of both source operands. The sec

ond execution cycle is performed, which includes
unpacking and three simultaneous multiplications

of the appropriate combinations of the most and

least significant bits of the two operands. The multi
plier signals t he issue control that the result will be
available in the following cycle. The issue control

makes an entry, which specifies general-purpose

register R 10 as the destination for the high long
word of the resu l t , in the result queue. The multiply

functional unit is ful ly pipeli ned and could be issued

in this cycle to start subsequent operations.
Cycle eleven is the third and final execution cycle.

The multipl ier accumulates the four products it

produced in the two previous cycles, rounds, and

packs the final double-precision result . The issue
control discards the top entry from t he resuh queue
to retire the low longword of the resu lt .

In cycle twelve, the retire multiplexer selects the
multiply unit result data and sends it to the data dis

tribution logic. The issue control discards another

entry from the result queue to retire the h igh long

word of the result . The low longword of the result is
written into the register file's general-purpose regis
ter R9 in cycle th irteen . The h igh longword of the

result is written into general-purpose register R 10 in
the next cycle as the instruction is completed .

VAX Instruction BBSC
The BBSC instruction tests a bit in memory,

branches if the bit is set , and clears the bit . The

BOATA is the base add ress in memory with the

number 13 position-bit offset. The majority of VAX
field instructions have a posit ion offset of less than
64 bits. Therefore, the VAX 9000 system's J-box

prefetches t he quadword addressed by the base.
As with all conditional branches, the result of the
test is predicted and the VAX 9000 system's J-box

continues to fetch instructions along the rredicted

pat h . The BBSC is encoded in eight bytes: one

36

opcode, one short li teral position, five for the base
address (a 4-byte displacement off the program

counter), and one displacement.

Cycles One and Two

Cycle one for the BBSC can be fetching the instruc
tion stream from the virtual i nstruction cache, as
described for cycle one of t he ADDL2 instruction, or

it a l ready can be in the 1-buffer (e.g . , bytes <8 :3>)
and the I-bex (i .e . , b y tes <7 6>) fol lowing t he

MULG 3 (i .e. , bytes < 2 :0>). In the latter case, the
BBSC i nstruction is shifted into the lower bytes as
the MULG 3 instruction is shifted out .

The decode o f the BBSC begins with passing the
short l i tera l , number 13, to the short literal expan

sion uni t and the program counter/re lat ive base

address to the operand processing unit . Informa

tion on both specifiers is passed to the register/
pointer unit . In this cycle, the fork add ress is also

passed to the E-box . The fork address is modified
for field instructions if t he base is a register. There
fore, passing the fork address is delayed until the

base specifier is decoded . In this example, the base

is decoded in the cycle after the opcode is received.
If the base is a register, the field instruction takes a
different microcode flow.

During cycle two, the decoder passes t he pro

gram counter decoder for the program count of
the instruction to be decoded to the operand pro

cessing unit . The program counter is passed to the

operand processing unit and the E-box in the first
decode cycle. Whenever a specifier is passed to the
operand processing unit, the X I3AR also sends a

specifier offset delta . When the delta is added to the

program counter's decoder, the address of the last
byte of the specifier plus one is produced .

As the short l i teral and program counter/relative
specifiers are decoded , they are d iscarded from the
!-buffer. The BBSC displacement is shi fted to t he
first byte of the !-buffer. The data arriving from the

cache is merged into bytes <8 :2>, and the other

byte is placed in the I-bex.
The branch pred iction un i t begins operat ing

during the first decode cycle. A prediction for the
branch must accompany the fork address sent to
the E-box. The prediction is made by using the
program counter to access a branch prediction

cache and determine how the branch behaved the

last time it was decoded (i .e . , one h istory bit) . If
the branch is in the cache, the prediction is that
the branch wil l behave the same as the last time. If

the branch is not in the cache, a prediction is made
based on the normal behavior of this cond itional

Vol . .2 No. 4 1-Ctff 1')')0 Digital Technicafjournaf

VAX Instructions Tbat Illustrate the Architectural Features of the VAX 9000 CPU

branch. For example, a BEQL (58 percent) and a
BBSC (73 percent) normally do not branch , whereas

a BNEQ (62 percent) normally branches. If the BBSC

instruction is in the cache and branched last time,
this information is indicated to the E-box, with the

I-box prediction given as true.

Cycle Three

In this cycle, the register/pointer unit allocates one

entry in the source list for the position specifier and
three entries for the base specifier. The unit then

passes the source one, source two, and destination

pointers to the E-box.

In the operand processing unit, the address of the
last byte of the specitler plus one is ftrst calculated

using the program counter of the instruction and

the delta provided by the X BA R . The displacement
from the instruction is then added to this calcula

tion. The result is latched in the operand processing

unit's outpur buffer and passed to the M-box. The
operand processing unit also passes a quadword,

field modify function, and the source list tag.

The short l iteral expansion unit extends the size

of the position specitler to a longword and latches it
in the unit's output buffer. In this example, the

extension is done with zeros. The X BA R passes the

branch displacement byte and an updated value of

the program counter's delta to the operand process

ing uni t . The delta of the program counter and the

branch d isplacement are also sent to the branch

prediction unit as instruction lengths. The BBSC

instruction is completely decoded, and the opcode
and displacement are discarded from the !-buffer.

The branch prediction unit does most of its work

during the last decode cycle of a branch . For the

majority of conditional branches, the last decode
cycle is also the first.

The branch prediction cache contains 1024

entries. Each entry has a history bit, a 32-bit target

program counter, a 6-bit instruction length, and a
16-bit branch displacement and its tag . The entries
are addressed by bits 9 through 0 of the program

counter's decoder. If the tag matches bits < 31 : 10>

of the program counter's decoder, the entry is
assumed to be the entry, or a hit, for this branch .

If a hit occurs and the history bit shows that the

branch was not taken last time, the branch predic

tion unit latches this state information and a l lows
the subsequent instruction stream to be decoded .
The operand processing unit produces the target

address as soon as it is not busy. The target address

must be stored in the program counter's unwind
buffer in case the prediction is incorrect. The E-box

Digital Tecbt�icaljounUII VtJ/ . .! Nu. 4 Full 1'}'}0

indicates the correctness of the prediction as soon

as possible. For simple branches, the E-box could

indicate that the prediction is incorrect before the

branch is fully decoded.
If a hit occurs but the history bit shows that the

branch was taken last time, the branch prediction

unit latches this state information and stops the
decoding of the subsequent instruction stream by

clearing the !-buffer and the I-bex. The program

counter of the subsequent instruction is stored in
the program counter's unwind buffer. The program

counter's target address, which is received from the

branch prediction unit cache, is passed to the pro

gram counter's prefetch buffer. The target address
that is later provided by the operand processing

unit may be discarded . The branch displacement

and instruction length from the branch prediction
cache are latched. For the fol lowing discussion on

the remaining cycles in the BBSC instruction, we

have assumed that the BBSC instruction is a branch

prediction hit and that the branch was taken the last

time decoding occurred.

Cycle Four
In cycle four, both the operand processing and

short l i teral expansion units contain data to be

passed to the source list. The operand processing

unit normally has the higher priority of the two.
Therefore, the short literal expansion unit will stall .

The operand processing unit passes the base

address to the source list through the 1-box. In the

operand processing unit , the new delta of the pro
gram counter is added to the program counter, the

sign of the branch's displacement is extended from

a byte to 32 bits, and the two are added to produce

the new target address. The result is latched in the
operand processing unit output buffer.

The virtual instruction cache is accessed for the

target instruction. If the instruction is in the vir

tual instruction cacbe, it is passed to the !-buffer.
However, there is a gap in the pipeline because no

instruction can be decoded this cycle.

The displacement and instruction length from
the branch cache are compared with the actual dis

placement and instruction length. Normally, these

lengths match . However, if they are different, the

target address from the branch prediction unit

cache is p robably incorrect . The fetching and

decoding of instructions must wait until the

operand processing uni t provides the correct

address.

At the start of cycle four, the M-box receives
a request from the operand processing unit. This

37

VAX 9000 Series

req uest d iffers from a l l requests previously
described in that it contains a command that gets
special t reatment i n the M-box . T he command is
an "opu read with write check no block."

The command is used because the VAX 9000 CPU
contains an optimization that enhances the perfor
mance of bit field instructions. With this command,
the op<:rand processing unit prefetches a quadword
of data, starting from the address pointed to by the
base, without looking at the value of the position
operand . Hopefully, the majority of bit fields are
within 64 bits of the base. The special command
tells the M-box that if a fault should occur, i t should
pass the fault , with an operand, to the E-box and
not close down the operand processing unit port or
put a lock on the fault parameters. The command is
an unaligned quadword operand and, as such,
requires that the M-box produce additional virtual
addresses to correctly access the cache. A quad
word is unaligned when bits < 2 :0> are nonzero.
For this example, we have assumed that the starting
add ress is x:x .. "Lxxxx l .

Special ized hardware in the front end of the
M-box detects if the starting address requires
sequencing (i .e. , the addition of a constant of 4 to
the current address) and how many sequenced
addresses are necessary. In this case, three addresses
are required. The first is the starting address (i .e. ,
addr = xxxxxxx l), which is received from the
operand processing unit. As the starting address is
accessing the translation buffer, a constant of 4 is
added and the sequence port requests a virtual
address (i .e. , addr = xxxxxxx5) from the translation
buffer at the start of cycle five.

The issue control uses the fork RAM data to deter
mine that the integer unit and two source operands
are required . Because only the first operand is miss
ing from the source l ist , the instruction is issued
with bypass. The microsequencer generates the sec
ond control store address based on the fast access
fields of the first microword .

Cycle Five

Decoding the target instruction stream begins in
cycle five. The operand processing unit sends the
target address to the branch prediction unit through
the program counter's target address. However, as
noted earlier, the target address sent is discarded.
Because t he operand processing unit does not use
the 1-box data register, the short l itera l expansion
unit can pass the short literal to the source J ist .

The branch prediction unit now waits either for
the E-box to indicate the correctness of the predic-

38

tion or for subsequenr branches to be decoded . The
unit predicts a maximum of three branches before it
stalls decoding to resolve the first branch.

As the address xxxx..xxx5 is accessing the trans
lation buffer, the final address is produced by
adding 4, which makes a translation buffer request
(i .e. , addr = xxxxxxx9) through the sequencer port
in cycle six . The three translation buffer accesses
are contiguous and interruptible. Data alignment is
performed by the M -box, but the alignment is con
strained to longwords. When an unal igned quad
word is detected, the front end of the M -box alters
the context field that it passes to the data cache
unit. The quadword request is effectively broken
into two unaligned longwords, which are properly
rotated into the low longword of the quadword
interface and sent to t he E-box independently.

Cycle five is the data cache read cycle for the first
unal igned longword . Because the starting address is
x:xxxx:xx l , the entire longword is contained in the
cache l ine. Therefore, one additional rotation cycle
is all that is required before the data is sent to the
E-box. The M-box pipe is effectively lengthened by
a cycle when i t is performing unaligned operations.
Because cycle five is a data cache read cycle, no

response is issued to the E-box. In addition to the
data cache read, the physical address is placed in
the write queue. A memory write is required after
the bit is tested . A status bit for a new quadword is
set in the write queue. The new quadword indicates
that this is the starting address of an operand and
writes should not rake place until an entry appears
in the write queue with a last bit assertion.

Because the first operand is written into the
source J ist, t he operand is available ro the integer
unit at the start of cycle six . The microword hold
signal is asserted to hold the first microword during
the stall . The microsequencer regenerates the con
trol store address of the second microword.

Cycles Six through Nine

I n cycle six , the d ata cache is read again with
address xxxxxx:x5, which is the same cache line
read in cycle five. However, because the context is
a longword, one additional byte of data must be
read from the cache to satisfy the request . Also, in
cycle six, rotation of the data read in cycle five is
completed, and the M -box responds to the E-box.
Finally, address xxxxxxx 5 is placed in the write
queue.

By using source pointers from the source queue,
the position and base address operands are selected
by the fork RAM and passed to the integer unit . If

Vol. 2 No. -4 Fall /'J<Jii Digital Tecbnicaljournal

VAX instructions That illustrate the Architectural Features of the VAX 9000 CPU

the base address operand page faul ts, the base speci
fier was an indirect specifier. The M-box returns

the data to the E-box as fau lty, rather than returning

the indirect address to the !-box . The return ro the
E-box results in a memory management page fault .

Both operands are saved in registers within the
integer unit . A lso, the position is divided by eight

by shifting, and is saved . The source pointer used to
get the base add ress as source two is incremented

and used to select the next source l is t entry, w hich
is the low longword of the prefetched quadword
field. Issue control determines that only the source
two operand is missing and issues the second

microword with bypass. The m icroword hold sig
nal is deasserted and the microsequencer generates

the control store address of the t hird microword .
Cycle seven begins with a data cache read of

add ress xxxxxxx9. The rotator is spinn i ng the
three bytes <7:5> of interest from the cache read

in cycle seven to the correct posit ion. No response
is issued to the E-box because this unaligned refer

ence requi res two data cache reads to ful fi l l . The
add ress xxxxxxx9 and the last bit are inserted into
the write queue. The M-box delivers the required
longword, and execution begins immed iately. The

second execution cycle calcu lates the target byte
address. The position, div ided by eight, is added to
the base address. The m icrosequencer generates
the fourth control store address by using the next

address field of the microword. No operands are

selected for the next cycle, and the next instruction
is issued norma l ly.

Cycle eight is a rotation-only cycle. The one byte
<8> of i nterest, read from the cache in the previous
cycle, is rotated i nto the correct position (i .e. , byte
<0:3>) , and the M-box sends the data to the E-box

by issuing a response.
The third execution cycle uses the bit position to

set up the special encoder in the integer unit and
clear the appropriate bit . The source two register
fi le pointer is incremented again to select the high
longword from the source l is t . This microword
branches on th ree comlitions determi ned by hard
ware functions. The first cond it ion indicates if the
low longword of the prefetched field has a page
faul t . If a fau l t does exist , the m i croword flow
checks whether the longword is needed or not. As
noted earl ier, the longword was prefetched i n
the hope that the b i t pos ition was within the first

64 bits of the base. If the bit is not within the first
longword , the page fault can be disregarded . The
second branch c hecks w hether the position is

gr<.:ater t han (l_) hits. If it is greater, the microcode

Digital Tecbnica/jourual Vol. 1 t\iJ. ·I P(/1/ /'J')IJ

must ignore t he prefetched quadword and in itiate
a byte-read directly to the M-box for the appro
priate byte. The third branch checks whether the
position is greater than 31 bits. This check is used to
determine wh ich prefetched longword to use when

the position is in t he 64-bit range. I n this example,
the bit position of 13 means t hat the bit is in the low
longword and no page fault is assumed.

Issue control determines that only the source two

operand, which is the h igh longword, is missing.
The fourth m icroworcl is issued with bypass. and

the microsequencer generates the contro l store
address of the fifth m icroworcl .

In cycle nine, the M-box del i vers the h igh long
word and execution begins inuned iately. The

encoder in the i nteger unit clears the correct bit in
t he low longword of the field. The microsequencer

generates the sixth control store address, and the

next cycle is issued norma lly.

Cycles Ten through Fifteen

I n cycle ten, the E-box initiates a byte write to the
M-box. Data is passed to the M-box , and the appro
priate byte is shifted to the low byte loca tion. The
sixth and final m icroinstruction is issued normal ly.

I n cycle eleven, the M-box receives an explicit
E-box write request to retire t he BBSC instruction
with a memory write. Explicit writes differ from

writes initiated by the 1-box in that the E-box sup

plies a v irtual address with the data, whereas the

I -box provides a virtual address and t he E-box sub
sequent ly provides the clara for 1-box v.·rites. How
ever, three entries exist in the write queue for the

prefetched quad word . These entries were placed in
the queue for memory conflict-checking p urposes
and cannot be used for writing pu rposes because
only a byte of clara is being written and not a quad
word. The write field command from the E-box

forces the write queue control to discard the three
entries. The front end of the E-box accesses the
translation bu ffer and checks for write success
during this cycle. I f the write is successfu l , the phys
ical address and the context of the byte are sent to
the data cache.

The fi n a l execution c ycle determ ines if the
branch prediction was correct. The bit specified
by the correct position is shifted to the least signi
ficant position in the shifter, where i t can be used
for a macrobranch comparison. The macrobranch

result is compared to the I-hox branch p rediction
in cycle twelve. The microword also ind.icates that
the microsequenc<.:r should start forking for new

macroinstructions.

.19

VAX 9000 Series

Cycle twelve is the data cache lookup cycle for
the byte-write operation. The data size is less than a

longword . T herefore, the byte that is to be written

must be merged with t he seven unaffected bytes of
the cache line.

Two signals are sent to inform the 1-box of the

branch prediction status. The branch valid signal
ind icates that a branch prediction validation has
occurred, and the branch signal indicates i f the va l i

dation was correct .
The branch prediction logic receives the branch

valid signal . If the prediction was correct, the pro

gram counter's unwind bu ffer is discarded and the
branch logic state returns to idle. If the prediction
was incorrect , any data for subsequent instructions
is tlushed from the pointer, source list, fork, and

program counter queues and the program counter
is restored from the u nwind buffer.

The byte of E-box data is rotated and merged

with the cache line that was read during the lookup
cycle in cycle thirteen. In cycle fourteen, if the pre
diction was incorrect, the branch prediction cache
is written by using the p rogram counter's unwind
buffer as t he target address. The prediction also is
amended; the branch logic state returns to idle; and
the virtual instruction cache is accessed using the

program counter's prefetch buffer for the sub
sequent instruction . The data cache is then written .

Interactions between Instructions
A short cycle time and features, such as a virtual
instruction cache, multiple specifier decode, multi

ple operand and instruction p refct ch, queues for
decocted instructions, and multiple functional units,

combine to produce a system with several variable

length overlapping pipel ines in terconnected with
various buffers and queues. There are more than
twenty different functions t ha t could be counted as
single p ipeline stages but many operate in parallel
such that the pipeline is considered to vary between
eigh t or nine stages.

We have described each i nstruction as a single
entity moving t h rough the various VA X 9000

pipeli ne stages. However, many interactions exist
between instructions that can decrease the speed of
the system. Bypasses are required in several st:.tges
in case the previous instruction gener:.ttes results
that the current instruction needs. In some cases,
the pipeline must stall as it runs dry, or an upstre:.tm
stage must wait for a result that is in a stage several
cycles downstream. To maximize performance, the
!-box decodes up to five instructions ahead of the

40

E-box. This process c:vens the tlow through the
pipel ine and keeps the E-box busy. Figure 6 i l lus
tratc:s the code block as it moves down the pipe.

The first stage is the virtual instruction cache
:tccess, or fetch. stage as the instruction is read from
the virtual instruction c:.tche. Some instructions
do not need an actual virtual instru ction cache
access but are in the !-buffer from :.t previous v irtu:.tl

instruction c:.tche fetch. The instruct ion decode
takes place in the decode, or X BA R , stage . The

!-buffer is shifted and the fork R AI'<l is accessed in

this stage as wel l .

The specifier, or operand processing u n i t , stage
has several par:.tl lel functional units : the operand
processing unit , the short l i teral expansion unit ,

and the register/pointer unit . The m icroadclress
gener:.ttion occurs in this stage. Together with the
tr:.t ns lation bu ffer cache lookup, the 1-box can pass
dat:.t to the E-box, and the microword access can
occur in the translation bu ffer stage. The cache
stage incl udes issue and source l ist access. The
execute stage can be executed in either the in teger
unit , tloat unit , multiply/div ide unit , or all t hree.

The E-box can retire on l y one issued microinstruc
t ion e:.tch cycle, but not a l l issued i nstructions
need to be retired. The final E-box stage is the w rite

general-purpose registers stage, w here the registers

:.tre upd:.ttecl . However, the M-box can access cache
or queues for writes at the same time. The l:.tst stage

is the cache data write stage.

The ADDL2 instruction flows through nine s t:.tges
without problems, i f there are no previous instruc

tions in the pipeline and all the caches h i t . The

SURF) takes two cycles to execute :.tnd ends i n the
write general-purpose registers stage.

The MULG3 needs four cycles for decoding. The
operand processing unit is busy for three cycles.

The E-box issues two microinstructions, the second
of w hich requires two execute cycles. The MULG 3
includes two retire :.tnd write genera l-purpose regis
ters cycles. The BBSC uses two decode cycles, and

the translation buffer is accessed three times for the
unal igned quadword . The first four bytes of data

from the cache need an extra cycle to p:.tss through
the rot:.ttor, and the second four bytes need two
cache accesses and the rotator cycles. Six micro

instructions are issued in t he BBSC instruction , and
the E-box write needs a translation bu ffer lookup
before the cache lookup can occur. Figure 6 :.tlso

il lustrates the E-box stall that occurs because the
two MULC 3 retire cycles delay the first BBSC retire

cycle and second issue cycle.

Vol. .2 No . .:; Fall /')')0 Digital Technical journal

VAX Instructions That Illustrate tbe Architectural features of tbe VAX 9000 CPU

2 3 4 5 6 7

VIC

XBR/IBUF

OPU/FPL-'-/S
_

L __ _

TBfi_ OATA

CACHE/ISSUE/R EAD_SLIST

EXECUTE- I NT/M U L/FLOAT

R ET I R E

W R ITE-GPRjQU E U E

WR ITE-DATA

KEY:
� ADDL2 � SUBF3 � MU LG3 � BBSC

Figure o VAX 9000 Instruction Pipeline

Overall some part of this set of instructions is
being worked on for 22 cycles. After cycle nine the
!-box can be prefetching and decoding the instruc
tions after the branch , either the instructions
directly fol lowing the branch or instructions that
are branched to. The number of retire cycles used or
wasted by a sequence of instructions is a good mea
sure of the time taken to execute those instructions.
If the prediction is correct, these four instructions
execute in I '5 cycles; but if the prediction is incor
rect, these instructions take 2 1 cycles.

Conclusion

The various advanced architectural features con
tributed to the low number of cycles required for
an average VAX instruction. The virtual instruction

cache provides a high bandwidth of instruction
stream to the ! -buffer (8 bytes per cycle) and
requires a much lower bandwidth from the M-box
(8 bytes every 12 cycles). The large !-buffer presents
9 bytes of instruction stream for decoding. The
instruction decoder (XBAR) delivers up to three
specifiers per cycle. The operand processing unit
calculates operand addresses and branch target
addresses. The branch prediction unit accurately
predicts the majority of branches, and instruction

decoding continues down the predicted path so

that no time is lost waiting for results from com
pares. The !-box prefetches and decodes up to five
instructions ahead of the E-box. The t ranslation
buffer contains up to 1024 v irtua l-to-physical

Di?,ital Teclmicaljournal l!rJ/. l Vo . 1 Fu/1 /')')0

address translations. However, if the required trans
lation is not contained in the translation buffer, the
fix-up unit autonomously creates an entry, which
el iminates the usual latency involved when an
E-box is used to translate addresses. The M-box also
pretranslates write addresses and stores them in the
write queue for subsequent access and conflict
checking. The 128KB, two-way associative, write
back cache provides a very low miss rate, high
bandwidth , and low latency. The q ueues of
decoded instructions al low the 1-box pipeline to
be less tightly coupled to the E-box . The multiple
functional units in the E-box al low multiple VAX
instructions to be executed in paral lel . The archi
tectural features of the VAX 9000 interact to pro
duce a CPU that executes VAX instructions in the
least number of cycles or ticks. The low number of
ticks per instruction, combined with the short cycle
time, produce the h ighest performance VAX system
now available.

Acknowledgments

The design and implementation of the VAX 9000

was a team effort with contributions from many
people, including: Dave Fite, Mark Firstenberg, and
Mike McKeon, who were responsible for the ! -box;
Dave Webb, Maurice Steinman, joe Macri, Brad
Hollister, and Basheer Ahmed , who designed the
M-box; B i l l C rundmann, Larry Herman, Ginny
Lamere, Elaine fi,te, Oan St id ing, hken Samberg,
Mark Haq, ancl .\1att Adilctta, who were members of
the E-box design team.

..J t

VAX 9000 Series

References

I . D. M arsha ll and) . McElroy, " VAX 9000

Packaging-The Mult ichip Unit , " Proceedings
of COJ'v!PCON '90 (San Francisco: Spring 1990):

54-57.

2. T. Fossum and D. Fite, "Designing a VAX for High

Performance," Proceedings of COMPCON '90
(San Francisco: Spring 1990): 36-43.

3. T. Leonard, VAX A rchitecture Reference Manual
(Bedford : Digital Press, D igital Equipment
Corporation, 19H7).

4 .) . Murray et al . , "Microarchitecture of the

VAX 9000," Proceedings <>[COM PCON '90 (San

Francisco: Spring 1990): 44-53.

42

5. M . Troiani et al . , "The VAX 8600 J-box, A

Pipelined Implementation of the VAX Arch i

tecture," Digital Technicaljoumal, vol. 1 , no. 1

(August 1985): 24-42.

6.) . Emer and D. Clark, "A Characterization of

Processor Performance in the VAX- 1 1 /780,"

Proceedings of the 1 1 th Annual SJmlposium on
Computer Architecture (Ann Arbor: June 1984).

7. T. Fossum,). McElroy, and W. English, "An Over

view of the VAX 8600 System," Digital Technical
journal, vol. 1 , no. I (August 1985): 8-23.

8 . S. Mishra, "The VAX 8800 Microarchitecture,"

Digital Tecbnicaljoumal, vol . I, no. 4 (February

1987): 20-33.

Vol 2 No. 4 Fall I'J')O Digital Tecbnicaljoun.al

Matthew]. Adiletta

Richard L. Doucette

john H. Hackenberg

Dale H. Leuthold

Dennis M. Litwinetz

Semiconductor Technology
in a High-performance
VAX System

The VAX 9000 system is the newest member of Digital's VAX family of computer

systems. The 9000 is a high-performance ECL processor, with a very fast, 16-nano

second cycle time. To achieve this high level of performance, a new generation of

semicustom and custom integrated circuits was required for the scalar CPU and the

vector processing option. Goals for circuit density, performance, and skew mainte

nance were fulfilled with the development of a high-speed gate array, special custom
chips used in key applications, and a high-speed RAM employing a new architecture.

The semiconductor requirements for the VAX 9000
system posed a number of challenges for Digital 's

Integrated Circuits Development Group. Those

requirements included a tremendous number of
equivalent logic gates (1 ,037,400 gates) and a large

amount of RAM in the processor (3,280,000 bits) .

Moreover, the project 's performance goal of over

30 VAX- 1 1 /780 units of performance (VUPs)
required the development of state-of-the-art semi

conductors and the use of innovative techniques to

design them.
Given the project's goals, the IC technologists

evaluated several competing semiconductor tech

nologies and decided to i mp lement most of the

logic within the 9000 system in a h igh-speed, high
density, 10,000-gate array. The gate array provides

a broad range of speed and power-dissipation
options. Working with Motorola, the IC Group first
engineered the base 10,000-gate macrocell array

(MCA), which is implemented in Motorola's MOSA IC

II I process. Logic engineers then designed the 77
d ifferent gate array chips (options) on the base

array, using a rich library of logic functions and a set
of automated place and route tools. Additiona lly,

they designed five custom chips, invented a fast
cycle t ime, self-t imed random access memory

(STRAM) architecture, and designed a multichip unit

to imerconnect all these high-performance !Cs. '

Four different design methods were used to

implement the chips. The MCAx chips employ a gate
array design technique. The cnxx, the V RGx, and

the Sl"RAM chips required a full custom approach .

Digital Technicaljournal Vol. .! No . .:j Fall /')90

The STGx chip was implemented using a silicon

compiler technique. The MULx and DJVx chips

mwere implemented using a standard cell design

approach. Statistics on 9000 system chip design are

given in Table 1 .
This paper describes the VAX 9000 MCA I l l gate

array, the development of each of the five custom

chips, and the STRAM architecture. Before our dis

cussion of the gate array, we present a brief

overview of the semiconductor technology used
to fabricate the array and the custom chips.

Semiconductor Technology

In 1985, the VAX 8800 series was Digital's largest

and most powerful system, offering single-CPU per

formance of eight VUPs. The 8800 CPU logic was

Motorola's Macrocell Array I (MCA I) gate array,

which was fabricated in MOSAIC I bipolar technol
ogy. In comparison, the VAX 9000 goal of 30 VlJPs

was aggressive, and the IC Group realized a new

semiconductor technology was required .

At the start of the project, the technologists evalu

ated semiconductor vendors to determine what

was the "best" technology available to implement
the new system. CMOS, BiCMOS , bipolar, and GaAs

IC technologies were evaluated. Among the factors

considered were logic density, gate delays, on- and

off-chip interconnect delays. mam.1facturing risks,

and product delivery.

Although very high gate densities were available

with CMOS technology, the logic gate delays proved

43

VAX 9000 Series

Table 1 VAX 9000 Chip Statistics

Die Size
Chip Description (Mi l l i meters)

MCAx MCA I l l gate array chip 9.8 X 9 .8

CDxx Clock distr ibution chip 6 .2 X 6.2

STGx Self-t imed reg ister file chip 9 .8 X 9.8

M U Lx M u lt ipl ication chip 9.8 X 9.8

D IVx Division chip 9 .8 X 9.8

VRGx Vector register f i le chip 9.8 X 9 .8

1 KSR 1 K x 4 self-t i med RAM 4.9 X 3.6

4KSR 4K x 4 self-t i med RAM 6.4 X 4.2

to be too slow ro meet the cycle time requirement.
Also, the CMOS output circuits could not drive sig
nals off-chip i nto a 50-oh m transmission l i ne as
quickl y as a bipolar transistor, which l imited the
speed of signal between IC :s.

B iCi\·JOS offers the advantage of h igh ly dense
CMOS coupled with bipolar drive capabi lity. How
ever, the technologies available at the time were
optimized for the best CMOS transistors with a com
promised bipolar device. This approach l imited the
overall performance of the circu it to a level roughly
equiva lent to that of previous generation bipolar
devices, which would not be aggressive enough ro
meet the CPU performance needs.

Gallium arsenide (GaAs) ICs offer a theoretical
performance advantage of between two and three
to one over s)licon implementations. The group
found IC densities were lower than those of bipolar
devices, however; and the on-chip speed advantage
was countered by the need for more off-chip sig
nals in the critical paths of the C P U . A lso, because
the manufacturing technology of GaAs ICs was
immature, very few companies had attempted to
sell GaAs into the commercial marketplace. So
while this technology was considered for a rime in
some applications where alternatives also existed ,
GaAs were eventually dropped from consideration
because of the uncenainty of availability.

The IC Group also studied Motorola 's third
generation of their oxide-isolated self-al igned
implanted circu its (MOSAIC I l l) bipolar technology.2
Ir offered a factor of six in speed advantage over
the prev iously used MOSA IC I technology and had
the potentia l of prov iding eight to ten times the
logic density. Although not as dense as CMOS or
BiCMOS, MOSAIC I ll was much faster than either of
those technologies and much denser than any avai l
able GaAs technology I n addition, although many

44

Signal Transistor RAM Power
Pins Count Bits (Watts)

256 40. 1 K 30

1 70 7.2K 1 3.9

1 52 29.3K 1 7 .8

1 82 48.4K 30.9

1 1 2 29 .2K 23.9

1 98 76.0K 92 1 6 24.9

33 28.0K 4096 2 .4

35 1 03 .0K 1 6384 2 .4

of the manufacturing steps were new, most of them
were based on prev iously proven techniques. The
group therefore concluded that MOSA IC 1 1 1 was
best suited tO meet the chal lenges of the VAX 9000
system.

The MOSAIC I l l process is an advanced sil icon
bipolar process which yields a transistor structure
with a polysilicon base. emitter and collector elec
t�·odes, pol ysi licon resistors, and three layers of
metal ization. Compared to the MOSAIC l device
used in the 8800, the critica l col lector-base junction
of this transistor structure takes up approximately
50 percent less area, as shown in Figure I. Com
bined with shal lower junctions and reduced base
resistance, the intrinsic device performance was
improved by a factor of three. Further, the poly
si l icon resistor produced with this process has far
lower parasitic capacitance than the MOSA IC l
monosil icon resistor. Some key performance mod
eling parameters and density metrics are provided
with the figure.

The VAX 9000 packaging imposed other require
ments on the semiconductor technology. Power
dissipation increased from 5 watts for the MCA I to
�0 watts for the MCA I l l because of the increase in
gate density from 1 , 200 to 10,000 gates. Therefore it
was determined that al l ch ips should be mounted
directly to the multichip unit cold plate for opti
mum cooling. For manu facturing economy, it was
desirable to bond the mul tiple leads of the chip
directly to the pads on the h igh-density signal car
rier (HDSC). Consequently, a l l CPU chips must be
provided to the mul tichip unit assembly site in a
tape automated bond (TA B) package. As shown in
Figure 2, ch ips are mounted in a plastic carrier suit
able for automated handl ing, and the surface of the
die is protected from mechanical damage with an
epoxy encapsu lent .

Vn/. .2 filii . ..; Fall 1')')11 Digital Technical journal

Semiconductor Technology in a High-performance VAX System

MCA JOK Gate Array

A high-performance emitter coupled logic (ECL)

gate array with 10,000 equivalent gates and 256

inputs/outputs has been developed for the VAX

9000 system. The gate array design approach used

in the VAX 9000 system ensures the shortest possi

ble turnaround time from option ma-;k to hardware,

thereby reducing the system design time. In this

approach, cell boundaries are defined with all tran

sistors and resistors fu,ed within the cells. When a

cell function is selected from a predefined cell
l ibrary, the cell customization occurs at the metal

between the transistors and resistors. Then, to

define the function of the gate array option, the

metalization between cells is customized. This

approach al lows the semiconductor foundry to

build many wafers up ro the customizarion level ;

when a gate array is to be built, only the custom
metal is required . As noted above, 77 different lOK
ECL gate array options are used in the VAX 9000 sys

tem. This gate array has a rich selection of logic cells

with different power settings for the logicians to
use to meet performance and power requirements.

number of logic cells for a given signal pin count are

available for the logic designers. Technologists eval

uated several key factors to determine the gate array

physical layout and to ensure its success:

Using Rent's Rule, technologists maintained a bal

ance between the number of gates and the package

J /0 count. This balance ensures that a maximum

• Area of the silicon chip versus yield

• 110 pad pitch

• Maximum power dissipation

• Speed of the gates

• Maximum number of logic cells

Successful trial layouts of the IOK ECL gate array

floor plan were completed before any VAX 9000

options were started .

The gate array floor plan, shown in Figure 3,

comprises a central core area of 4 14 major (M) cells,

divisible imo quarter cell functions, arranged in an
array of 20 rows and 21 columns, less 6 sires for the

master bias generators and special clock generator

circuits. The number of transistors used in a quarter

cell is based on the logic cel l most frequemly used

in the lOK ECL gate array, the scan larch. A ring of

200 output (0) cells is interspersed with 224 inter

face (I) cells. The ring surrounds the imernal cells

and imerfaces the pad drivers with the internal

MOSAIC I l l
P+ P O L YSILICO N N + P O L YSILICON

����� � �---- -�
POL YSI LICON R E S ISTOR

_..) NPN TRANSISTOR 1

/ /

/ I
_..... ,... I

_.... ...- I
C-B J U NCTION AREA

MOSA� I _.....

�---��--�)·::::::::::::�
MONOSILICON RESI STOR N P N TRANSISTOR

MOSAIC I

N PN Fr: 5 GHz
R0: 1 475 ohms

CJc: 50 II
CJE: 45 II
CJS: 1 85 ff

DRAWN EMITTER SIZE: 31'm X 41'm
M ETAL 1 PITCH: Bl'm
METAL 2 PITCH: 1 51'm
METAL 3 PITCH: -

MOSAIC I l l

1 6 GHz
400 ohms
20 ff
24 ff
54 If
1 .751'm x 4!Jm
4.5!Jm
71'm
1 21'm

Figure I Comparison of MOSAIC Ill and MOSAIC I Deuices

Di�ilal Tecbnicaljournal Vol. .! No. 4 Fall /')'JIJ 4 5

VAX 9000 Series

cells. The 256 t /0 pad ce l ls a long wi th the J04
power pads are located around the perimeter of the

IOK gate array. The mctal ization system uses three

interconnect layers. The customized routing chan

nels reside on the first and second meta l layers with

interconnecting v ias between the two layers of

meta l . The top metal layer and parts of metal I and 2

provide power and ground distribution.

The lOK ECL gate array used in the VAX 9000 is

approximately ten times more dense than the ECL
gate array used in the VAX 8800 system. The gate

delays in the 9000 are improved six times over gate

delays in the VAX 8800. Table 2 compares the IOK
Ec.L gate array used in the \AX 9000 to the ECL gate

array used in the VAX 8800.

Previous gate array designs. i n general , have

provided only two le,·els of series gating, thereby
l imiting the complexity of functions that can be

designed with one current switch. Within this gate

array, three levels of series gating Jt borh internal

and output macrocel ls provide addition:�! "AND "

(product) gate functions at very high sreed with

one switch delay and at a lower power level . Fig

ure 4 compares three-level series gating and two

level series gating for a " 2-3-4 -4 AND/OR " logic

function (internal gate). Table 3 lists the differences

in typical gate performance for a low power gate.
The table also compares low power gate and high

power gate. Notice the power difference between

the two-level and three-level high power gate.

Figure 2

4 6

Chip in TAB Package Mounted on
Plastic Carrier and Encapsulated

Table 2 Comparison of N u m ber of Cells
and Delays in the VAX 8800 and
VAX 9000 Gate Arrays

VAX 8800 VAX 9000
Gate Array Gate Array

I nternal major 48 4 1 4
cells

Output cells 26 200

I n put cells 25 224

Input cells 1 .05 nano- 1 75 pico-
gate delay seconds seconds

(high power)

Metal delay 2.6 pico- 1 . 3 pico-
(fall delays) seconds seconds

per m i l p e r m i l

Al l current switches with in the array are pow

ered from the main supply voltage VEE I. Three

level-series gated functions are implemented in the

VAX 9000 gate array option, which requires VEE I
to be set to -5 .2 V. Input cells are powered from a

second, lower supply voltage VEE2 (- 3.4 V) to save

power. The output emitter followers of M, I , and
0 cel ls as well as series-terminated ECL (STECL)
output fol lowers employ constant current source

pu l ldowns to VEE2 to save power. The constant cur

rent source pulldowns minimize the sensitivity of
AC performance to variations in power supply. This

same termination scheme was used in VAX 9000

custom chips.

One of the technologists' main goals was ro mini

mize power consumption of each macrocell while

obtaining the highest possible performance from

the IOK ECL gate array. The overa l l !OK ECL Gate

Array power is limited to 30 watts because of the

cool ing requirements, the internal power distribu

tion, and the current density l imits on power pins.

A unique feature included in the !OK ECL gate
array that rrevious gate arrays do not have is series

terminated ECL (STECL) omputs. STECL outputs

Table 3 Comparison of Two-level and

Three-level Series Gating

Gate delay from
input pin A
to output pin YA
(low power)

Low power gate

High power gate

Two Levels
of Gating

300 picoseconds

9.88 m i l l iwatts

1 8 .20 mi l l iwatts

Three Levels
of Gating

250 picoseconds

8.84 mil l iwatts

1 3 .00 mi l l iwatts

Vol 2 No. 4 Fall /'J'Jfl Digital Tecbnicaljom-nal

Semiconductor Technology in a High-performance VAX System

Figure 3 Photomicrograph of the Gate Array

include a constant current source pulldown and a

series terminating resistor. This feature allows the

elimination of off-chip termination resistors used

in conventional 50-ohm EC L outputs. STECL out

puts a llow shorter interconnections between chips

on the mul tichip unit because the chips can be

placed closer to each other, t hm improving perfor

mance. Another advantage of using STECL outputs

over 50-ohm outputs is that less than half of the

simul taneous switching output noise is coupled to
unswitched outputs. A l l custom chips used in the

VA X 9000 employ STF.Cl. termination .

Clock Distribution Chip - CDxx

The major function of the clo c k d istribution c h i p

(CDxx), shown in Figure 5, is to distribute master

and reference clocks to each MCA on a multichip

unit. There are eight pairs of d i fferential master and

Di�ital Tecbuicaljournal 11Jl .! No. q Fa/1 1990

reference clocks. The chip also supplies clocks to

a l l STRAMs on the unit . Each of t he STRA M 's four

groups of SL'< clocks can be programmed to one of

eight possible clock phases. This flexibility in pro

gramming al lows the system designer to select the

appropria t e clocks for STR A M s in order to meet

system timing requirements.

In addition to prov iding the functions above,

the design goals for the CDxx project included the

fol lowing:

• Minimize the space occupied by the chip on the

mul tichip unit

• Provide scan control and scan distribution

• Include a wideb:md amplifier

• Ensure low clock skew

• Provide a temperature-detecting circuit

47

VAX 9000 Series

,----------�

VBB1 VBB 1

.----- vee

VBB3

VEE1 �----------�---------------'

vee

'-------��YA�
------+- vs@

ONE LEVEL OF GATING

vee

THREE LEVELS OF GATING

Figure 4 Two-leuel Functions uersus Three-leuel Functions

48 Vol. .2 No. 4 Fall I')'JI! Digital Tecbnicaljournal

Semiconductor Technology in a High-pe�tormance VAX Syste�n

HOT CIRCUIT

Figure 5 Photomicrograph of CDx.-.: Chip

Minimizing the real estate occupied by the chip
was comp licated by addi tional functions located on
the CDxx, such as scan and the temperature detect
ing circuits. The minimization was accomplished
by employing a custom chip design approach in
which each element (cell) is optimized and then
manual ly placed and routed to ach ieve a compact
des ign. As it turned out, the size of the chip was not
determined by the amount of real estate needed to
implement the circuits, but rather by the number of
pins required to communicate to the rest of t he
multichip unit .

Since a CDxx i s mounted on every multi chip unit
i n the CPU, the scan d istribution and control logic
are located on this chip. The CDxx ch ips i n the sys

tem are chained together on the system scan bus.

Digital Tecbnicaljournal Vol. .! No. · I Fall I'J'JO

Each coxx receives i ts scan control signals from the
previous CDxx in the chain or from the service pro
cessor. As shown in Figure 5, there are three scan
rings located on the CDxx. Ring 1 2 is a 16-bit r i ng
reserved for the CD)C'< STRAM clock generation con
trol ring. This ring controls the STRAl'•l clock phase
selection and enable for each of the four STRAM
clock groups. Ring 1 3 is a 14-bit ring reserved for the
CD)C'< scan control. Data is shifted into this ring and
then loaded i nto CDxx control registers. R ing 14 is a

47-bit r ing reserved for the CDxx i n formation scan

ring. Data is loaded into this ring from CDxx data

registers and shifted out ro the service processor.
The design of the w idebaml ampl ifier was

prompted by the need for the clock distribution
chip to receive two different ia l sinusoidal master

49

VAX 9000 Series

and rcfc.:n:nce c lock signJis as inpurs. These.: signals
arc.: transformer coupled from the clock source.
The master clock runs at one L"ighrh the systL"m
cycle rimL". and the reference clock runs at the sys
tem ncle rime. The wideband amplifier receives
d ifferent ial s inusoidal signalls of relative ly small
ampli tude - less than 125 mi l l i\·olts peak to peak
and transforms them ro lOOK ECL levels on output .
Th<.: design of the input circuits meets these crite
ria and rypic::� l ly functions with inputs less rhan
65 mi l livolts.

All rhe clocks are distributed by the COxx as pairs
of diffcrc:ntial signals. The distribution of these
clocks is, of course, ro be done with minimal clock
s kew. Clock skew is the di fference in del::�y t ime
berw<.:c:n di fferent clock outputs measured from a
com mon point. The common point in this case is
the numbc:r of master dock inputs to the chip. To
maintain low c lock skew, technologists designed
fast gates and minimized the number of cascaded
gates in the clock path. A lso, all the metal that inter
connects the cel ls in the c lock path is control led for
equal delay. As a resu lt , the measured clock skew
is less than 100 picoseconds on a chip for master,
reference, and STRAM clocks. The delay of master
clock input ro output is less than I nanosecond (ns).

The: temperature-detecting circuit on the CDxx
warns rhe system when a device junction tempera
ture approaches rhe maximum al lowed tempera
tun: on a m u lt ich ip u n i r . As i m p lemented, t he
circuit is controlled from t he system console. The
console loads rhe CDxx with a number that repre
sents rhe temperature rhe circuit musr use as a point
of comparison . If rhe junction temperature of rhe
Cl)xx is higher than the programmed value, the cir
cuit trips and notifies the console of a temperature
problem. The console rhen rakes corrc.:crive acrion .

Self-timed Register File Chip - STGx
The self-rimed register file chip (sn; x) is employed
in the VAX 9000 to provide four register banks
accessible through muhirle read and write pons.
·rhe four banks incluJe a microcode scratch-pad
register hank, rhe VA X generJl-purpose register
set, a memory Jara register storage bank , and an
instruction data register ban k . The performance
requirements for rhe STC x were quite rigid and
guided several key design tkcisions, including den
sity and layout . The read access time was ro be less
than ':i ns. The write access time was to be less than
6 ns. Ln orher words. rhe chip must read or write
any one of irs 6.:j locations in ':i or 6 ns. respectively.
Borh goals ha\'e been met . In fact . rhe read access

t ime is typical ly less rhan 4 ns, and rhe write t ime
is typical ly less rhan ':i ns. Figure () is a photomicro
graph of the STG x chip.

The STGx is a 64 -word by 18-bit LCL register file
contain ing three wrire ports and rwo read ports.
The 64 words are separated into four 16-word by
18-bit storage array sect ions. Each of the four stor
age banks has dual read capabi li ty. Storage bank one
has dual write capabi l i ty ; storage banks rwo and
three have triple write capabi l i ty ; and storage bank
four hJs single write capabil i ty. Simultaneous write
access to the array is possible through a l l pons wirh
correct results occurring; the only except ion is in
the case of writes to the same location from multi
ple pons, which is an undefined operation. A write
followed by a read access to the array - even to rhe
same address - is possible w irh correct results
occurring. The chip has two clock inputs for con
trol l ing reads and writes.

One requirement for rhe design was to include a
self-r imed write capabil i ty so that the system need
nor provide properly timed write pulses ro rhe chip.
In rhe system, rhe chip is clocked with STRAM
clocks for read ing and wri t ing . The design uses
these clocks to latch read address information, to
latch write add ress information, and to latch input
data. In addition, the design rakes the leading edge
of the write clock ro generate a delayed write pu lse.
The delayed write pu lse is used to write the appro
priate word in the 64-word by 18-bir array, raking
in to account rhe rime needed ro decode the wri re
address.

The design sryle used to implement r he self-r imc.:d
register file chip is s imi iJr ro a si l icon compiler tech
nique. The chip's storage area is made up of four
arrays. The input add ress register for borh read and
wrire ports, the inpur dara larches. and rhe dat::l out
pur drivers are arrangements of c<:l ls in strips. The
p lacement and rout ing of these arrays and strips was
procedurally performed using custom layom tools.
Once rhe blocks were: assembled and p laced , in ter
connecrions among blocks, strips, and pins were
then routed manual ly.

Multiplication Chip -MULx
The architecture of the scalar processor defined an
integrated floating point p rocessor. U n l i ke most
RISC processors, which off-load all floating poinr
operations ro a separate tloating point processor,
rhe VAX 9000 sysrem handles floating point opera
tions within the E-box . 1 The mult ip l ication unit
therefore supports horh inr<:ger and tloaring point
formats. To ach ieve th is support, a custom chip was

l'n/. .! .\ "o . .; Fall I')<)O Digital Tecbnicaljournal

Semiconductor Technology in a High-JH!r(ornwnce VAX -�),stem

Figure G Photom icrograph ofSTGx Chip

required that provided superior performance. spe

cial logic gates. and improved density. Custom chip
technology provided enough dcnsity to accommo

date a .12-bit by :)2-bit . cight- logic-l<:vcl multipl ica
t ion array in a singlc chip (M l l l . x). To mini mize the
cost and time of custom design . designers employed
standard cell design techniques in which the cell

height was fixcd anu thc width cou ld vary to take
advan tage of packing dcnsity. By constraining

the design i n th is fashion. the H igh Performance
Systems Group's < .A D suitc cou ld be employed to

place and route the ch ip . Specia l logic gates

el iminated t hrcc logic lcvds. and h igh-powered fast
gates provided t he pnfmmancc to permi t a .12-bit

by :)2-bit mult iph· opcra t ion in less than 9 ns. Fig
un: I shows a photomicrograph of t ile \l l l.x chip.

Digital Tecbnicaljournal \ i,f . .! .\iJ. 1 hiii i'J'Jii

Three �l l ' L x chips werc r<:qu ired in the scalar

processm to achieve doubk-prcc ision r<:rformancc

in which every 64 ns a ')6-bit mul tipl ication could

complete. Each M l ' l .x chip has two .12-bit input data
buses. The Ml !Lx chip is also employed to perform
all i nteger multiply operations in a s ingle 16-ns

cycle.

The scal::ir processor, which has .12-bit-wide data

paths, del ivers double-precision input data in two
cycles. In the first cycle, each Ml lLx consumes the

most sign ificant high bits of c:Kh operand . A II three

MULx chips latch this <.bta while also unpack ing

i t , multiply ing i t , and then latching the product.
One of the M l ' L x chips' results is then s:1ved . In the

second cycle. the n.:maining dou hk:-prccision dat:I ,

the least significant low bits. is consumed , and each

') [

VAX 9000 Series

- - - .

�-

-

;--..,..:.--,.. .���.;.,...._:;...,
I M U LTIPLIER ARRAY """"""' ,:....,M,

.-��

..... ...,...

Figure 7 Photomicrograph ofM UL:x Chip

MULx chip unpacks the data and performs a unique
multiply: operand A high bits and operand B low
bits; operand A low bits and operand B h igh bits;
and operand A low bits and operand B low bits.

A n 1\KA I I I gate array accumul ates a l l these
results, and another rounds and packs the bits into a
VAX floating point product. Since each ivl ULx needs
ro know which partial product it must comp ute in

the second cycle, two personality bits are included

that are loaded by means of the system scan chain .
M U Lx chips are also used in the vector processor.

The vector processor (V-box) has 64 -bit-wide data
paths. Four MULx chips are emp loyed ro complete a
double-precision mult ip ly every 16 ns. S i nce the
operand unpacking di ffers between the scalar and
vector processors as a result of how fast operands

52

are delivered, each MLJ L x has an additional person
ality bit for indicating whether t he MULx is in the
V-box or E-box.

The MULx chip, as used in both the scalar and
vector processors, is a 32-bit by 32-bit ECL parallel
multi pl ier which is fully pipelined for a 16-ns cycle
time. It performs both two's complement and sign/
magnitude multiplication. In a single cycle, the chip

unpacks VAX float ing point formats F, D, and G, or
i nteger formats long, word, and byte; performs
exponent calculations and sign handling; and com
pletes up to a 32-bit by 32-bit mult ipl ication .

I f the operation is double precision, the 64 -bit
result is a partial result . It must be accumu lated with
three other part ial results to form t he double-preci
sion, correct ly rounded, and normalized product .

Vol. 2 No 4 Fall 1')')0 Digital Technicaljounwl

Semiconductor Technology in a High-performance VAX System

If the operation is an integer type, then the 64-bit
two's complement result is the VAX integer product.

A long with producing this integer product, MULx

also produces the correct condition codes. Integer
operations require one machine cycle to complete.

Operands are not latched at input . Instead they are

immediately unpacked and sent to the multiplica

tion array. This multipurpose array then produces a
set of sum and carry product vectors. These vectors
are then added in a ful l carry lookahead adder

(CLA). This adder comprises a 31 -bit adder and a
32-bit adder, cascaded . The produced sum is the
64-bit product, which is then latched. The output

of the latch is used to compute i nteger-type con

dition codes.
The integer instructions supported include VAX

MULB , MULW , and MULL. EMUL is also directly sup

ported, along with the Z and N bit condition codes.

Finally, to assist in H format-type multiplications,
a true 32-bit by 32-bit magnitude multiplication is

also supported, called EXTMU L (extended multiply) .

There is a 64-bit data path back into the E-box for
EMUL- and EXTMUL-type operations.

Six features of the MULx design that improve per

formance and minimize logic should be noted .
First , unlike traditional designs, the MULx design

does not include Booth recoding of the multiplier
operand . Booth recoding offers no logic savings

either in timing or real estate when the multiplica

tion array reduction scheme is optimal. Second, a

Baugh-Wooley two's complement algorithm was
used to implement integer multiplication .' Third,

engineers designed special full adder logic gates to

integrate multiplication summand generation into

the full adder cel l and to eliminate the need for an

additional logic level . Fourth, a unique multipli

cation reduction algorithm was developed which

provides the initial routing advantages of a Wallace
tree, with the minimal logic of a Dadda tree."·6 Fifth,

a ripple is formed in the reduction array. The ripple

facilitates the start of the least significant 31 -bit
CLA addition at least one logic level sooner than

the most significant 32 bits and does not require a

carry-in input to the upper 32-bit adder. Finally, by

developing a very fast 4 -3-2 - 1 AND/OR gate, engi
neers were able to remove two additional logic
levels in both CLA adder networks.

To avoid bugs in the array design, since bugs in an

array consisting of 1000 full adders could have sig
nificantly affected the product shipment schedule,

engineers developed a FORTRAN program to logi

cally interconnect and physically place the array.

Any bugs would be algorithmic and not random,

and algorithmic bugs should be obvious. In addi-

Digital Tecbnicafjournuf Vol. 2 No. 4 Fall 19')1!

tion, by algorithmically placing the array, signi

ficant density improvements were realized . This

program provides a Wal lace-Dadda implementa

tion that logically reduces 32 rows in 8 logic levels,

and consumes as many init ial summand bits. It
also uses the least number of full adders as theoreti

cal ly possible, while delivering the least significant
32 bits of sum and carries at least one ful l logic level

sooner than the most significant bits.

Division Chip- D/Vx

The iterative divide function performed by the divi

sion chip , DIVx, requ ires a signi ficant amount of

hardware, the density of which a standard cell chip
affords. Two gate arrays would be required to per

form the same function, in which case a timing
critical path crossing would occur between the two

chips. Therefore, the IC designers implemented the

DIVx chip as a standard cell design by building
on the techniques developed for the MULx chip

described above. Also, like the MULx design, the
goals for the D!Vx design project were to optimize

performance and minimize real estate use by fitting
the iterative divide function in a single chip.

The IC designers employed a standard cell tech

nique in which four horizontal sections are defined ,

each section having a different number of columns.
Reference cells are located in the center row of each

section and provide ECL reference voltages to the

cells above and below in that section 's columns.

Placement was driven for performance, with quo

tient selection logic being distributed to where i t

was required. This method made for an irregular

structure, as can been seen in Figure 8 .
The VAX 9000 system optimizes both multiplica

tion and division by providing separate functional

units . Each functional unit performs both integer

and floating point operations. This approach differs

from the one taken by most processor architects,

who conceptually link multiplication and division .

Usually, algorithms are chosen that can share hard
ware at the expense of the performance of either
operation. The separate division unit in the 9000

provides superior performance for both integer and

floating point operations. The DIVx chip is also
used by the V-box to perform very fast vector divi

sion operations, as shown in Table 4 .
Division is an iterative process. Unlike the case of

multiplication, one cannot predict the summands

and then reduce the summand matrix. The two

approaches to division most commonly used are

the Taylor Series convergence algorithm and a sub

tract and shift algorithm.� The algorithm employed
in the 9000 is a variation on the subtract and shift

53

VAX 9000 Series

Table 4 Division Performance

Time
Data Type Cycles (Nanoseconds)

Integer: byte 3-4 48-64
word 3-5 48-80
long 3-8 48- 1 28

Float ing
point : F-format 7 1 1 2

D-format 1 3 208
G-format 1 2 1 92

method, which al lows for savings in hardware as
wel l as increased performance.

Jn this method, an imprecise quotient is selected
based on a truncated estimated partial remainder

and a truncated version of the exact divisor. This
imprecise quotient digit is corrected when the next
guess quoticnt digit is selected . The selected digits
may be positive or ncgative. The positive digits are
accumulated in a positive-value shift register. The
negative digits are accumulated in a negative-value
shift rcgistcr. The final corrected binary quotient is

then formed by subtracting the negat ive register
from the positive register.

The algorithm is based on a signed d igit notat ion

scheme. To determine two quotient bits, the bits
may be chosen from a d igit set that i nc ludes
{ -2, - I , -0, + 0, + 1, + 2 }. The digit set is simply an
expanded form of the common nonrestoring digit
set that typ ically uses { - 1 , 0, + 1 } . In nonrestoring
algorithms, the quorient is normally corrected as

Figure 8 Photom icrograph of D!Vx Chip

54 Vol. 2 No . . J Fall /')')0 Digital Technical journal

Semiconductor Technology in a High-performance VAX System

needed; whereas here, it is not corrected u nti l the

entire iterative process is completed . The next sig

nificant difference between this division technique

and the nonrestoring method is that the quotient
bits selected are based on an estimate of the partial

remainder and divisor rather than the exact values.

The first advantage of this method is that an esti

mate can be obtained faster than the exact value.

Second, a truncated estimate is acceptable, rather

than a fu ll-width estimate. Consequently, this

method saves a significant amount of hardware and

increases the speed of the operation . If one were to

complete each partial remainder, up to three addi

tional chips would be required and the delay would

more than double.

The trick to the method lies in the quotient selec
tion . The selection is based on partial remainder

range transformations which guarantee that a

quotient digit selected in one iteration may be cor

rected to the exact quotient digit on the next

iteration. Therefore, although six quotient digits

are determined per major iteration, an additional

minor iteration is required to guarantee the least
significant digit of the major iteration. The major

and minor iteration terms refer to the architecture

of the divide iterative hardware. The OIVx produces
six quotient bits per machine cycle. This is a radix
64 division technique. However, the high radix

division is accomplished by overlapping lesser

radLx divisions. In particular, there are three sets of
radix 4 division groups. The first two sets are over

lapped, so that the critical path through the radix
64 division is actually the critical path through two

radix 4 divisions. A minor iteration is the path
through one radix 4 division group. A major itera

tion is the path through the overlapped set of two

radix 4 division groups, followed by the final radix
4 group. It is important to note that extra iterations

do not adversely affect the corrected quotient.

Final ly, to produce the corrected quotient, the set

of negative quotient digits is subtracted from the
set of positive quotient d igits, where each digit is

properly radix 2 weighted, based on the order of

selection. (That is, the first quotient digit selected is
the most significant bit of the correct quotient.)

Vector Register File Chip - VRGx

The VAX 9000 architecture adds vector instructions

to the standard VAX environment, thus a vector

register file was required. There were two primary

design requ irements for the vector register file.
First, the register file and associated cross-bar logic

had to fit in a single multichip unit; and second, the

Digital Techn ical journal Vol. 2 No. 4 Fall f'J'JO

register file had to perform read and write at dif

ferent addresses within a single 16-ns clock cycle.

These requirements could not be met with available

memory and logic chips, thus necessitating the
development of a fully custom vector register chip.

The vector register file is 64 bits wide and con

sists of 16 vector registers with 64 elements each.

The vector register chip, VRGx, was developed as an

8-bit s l ice of the 64-bit vector register file. The chip

contains 9216 bits of RAM for data storage and the

cross-bar logic (6000 equivalent gates) that allows

access from the five read ports and three write

ports. Integrating the register memory and the

cross-bar logic on the same chip allowed timing to

be optimized so that the system timing require

ments were met .

VRGx Chip Physical Features and

Organization

The VRGx chip is fabricated using the MOSAIC I I I ECL

process, which was not designed as a memory pro

cess. Coordination with the vendor resulted in the

addition of an implant step for the memory-cel l

bit line emitters. Key features of the process are

three metal interconnect layers, oxide isolation,

and polysilicon emitters with a drawn width of

1 .75 microns.

Figure 9 shows the locations of the major circuit

blocks in the VRGx chip. The major blocks of the

VRGx chip are five read ports, three write ports,

and 16 vector registers in the RAM bank array. The

block diagram, Figure 10, shows the main data

paths. The 16 vector registers are implemented as
64-word by 9-bit single port RAMs. Eight bits are a

slice of the 64-bit vector register ftle and the ninth

bit is for byte parity.

Timing

A register RAM can be read from one address and

written from a different address in one 16-ns clock
cycle. This dual operation is made possible by a 2
to 1 multiplexer on the RAM address inputs. The

read address is appl ied during the first portion of

the cycle, and the write address is applied during
the second portion of the cycle. Spl itting the clock

cycle i nto read and write portions el iminates

conflict between read and write ports in the event

that a single register RAJVl is selected for both read

and write. Read data is held in a latch during the sec

ond portion of the cycle and is unaffected by the

write operation .
A single clock cycle consists of nonoverlapping

clock phases A ami B. Latches on the read and write

5 5

VAX 9000 Series

Figure 9 Photomicrograph of VRGx Chip

pon inputs are clocked by phase A, and read port
output latches are clocked by p hase B. For a read
operation initiated on phase A, the output read data
becomes valid during phase B.

Cross-bar Logic
Cross-bar logic in the RAM bank array makes each of
the 16 vector register RAMs independently accessi
ble from the read and write ports. Enable inputs on
the ports prevent invalid addresses from contl icring
with intended addresses. Read and write ports may
point to the same register R A M , bur different write
pons may nor point to the same R A M . Also, differ
ent read ports may on ly point to the same RMvl if the
vector element address is the same. Al l conflicts
must be resolved external to the chip.

56

A read port consists of an enable, a 4-bir register
select, a o-bit vector element address, and a 9-bit
output . An enabled read port appl ies a register
select code that points to a particular RA M bank . At
that RAM bank, a ') to I multiplexer selects the vec
tor element address from the active read port and
applies it ro the read add ress of the RAM . Then the
R A M output passes through a 16 to l multip lexer
controlled by the register select code, so that the
selected RAM output reaches the output of the active
read port.

A write port consists of an enable, a 4 -bit register
select, a 6-bir vector element address, and a 9-bir
write data input. An enabled write port applies a
register select code that points to a particular RA.M
bank . At that R A M bank, a 3 to I multiplexer selects

Vol .! 1\'o. 4 Fall /<J<)O Digital Technicaljournal

Semiconductor Technology in a High-performance VAX System

5x

S E L
ADDR<5:0> -

r - -;- - - -

SEL<3:0>
R EAD I -
PORT

ENABLE
ADDR I

-
5 : 1

I M U X

I
3x I

DIN<8:0> -
ADDR I 3 : 1

M U X

I
ADDR<5 0> -

I WRITE

SEL<3:0> -
PORT DATA I 3 : 1

- - - - - - ---,
I

9 1
6

AR DO f-A-I
I
I

6
/ AW I I

I
RAM I 64 X 9

I

5x

SEL

1 6 : 1
M U X

R E
PO
ou

AD
RT
T

___________.. D0 - 8 0 ·

-+ Dl
SEL I

M U X I ENABLE -

I I
t I I

RAM BA N K L - - - - - - - - - - - __j
RAM BAN K ARRAY. 1 6x

Figure 10 VRGx Chip Block Diagram

the vector element address from the active write

port and applies it to the write address of the RAM .

A lso, a 3 to I multiplexer selects the write data

from the active write port and applies i t to the RAM

data input .

RAM Technology

The normal transistors in an ECL process are of the

NPN type, where the collector is a buried N-doped

region . For memory cel ls, a lateral PNP transistor is

placed in the same collector region , and the com

bined structure has the latching characteristics of a
sil icon controlled rectifier (SCR). The memory cell

array in the 64 by 9 register RAMs is implemented

with ECL SCR memory cells.
The SCR memory cel l shown in Figure I I consists

of two cross-coupled SCR structures. Extra NPN
emitters connect to the bit l ines and provide a

means of writing and sensing the celL The "on" side
of the cell saturates, al lowing the bit line emitter to

conduct in the inverse mode. Inverse gain of the bit

l ine emitters must be limited to avoid excessive

leakage into the unselected cells. An added process

step applies a special base implant to the bit line

emitters only to control their inverse gain.

Advantages of the SCR cell include good density,

low standby power, large sense voltage differen-

Digital Tecbnicaljournal Vol 2 No. 4 Fall 1990

tial, and low sensitivity to alpha-particle-induced

soft errors. The cell has one limitation: excess

charge storage due to write current can delay sub

sequent writing to the opposite state. This problem

is el iminated with a special bit line current steering
circuit that makes write current state dependent

(Figure 1 1) .

The SCR memory cel l in Figure 1 1 is written by

applying a high current (four t imes read current) to
the "off' bit line emitter. The current steering tran

sistors prevent this current from reaching a bit line

emitter that is already "on . " Thus, attempting to
write a cell that is a lready in the desired state does

not result i n any additional cell current beyond the

normal read current, and no additional charge stor

age occurs.

Other Chip Features

Other noteworthy chip features include scan logic,
parity error detect logic , and a data pipeline for

write port 0 data. Scan operation gives access to the

register RAMs. In a single scan-in and scan-out oper

ation, it is possible to read five registers and to write

three registers.

Parity checking logic is used to detect input

errors and set error flags. There is a parity check on

the 9-bit write port data inputs. Another parity

57

VAX 9000 Series

1 .51 � � 0.51
.---..----. � 0.51

VA VA

KEY:

WC - WRITE CONTROL
UWL - UPPER WORD L INE
BL - BIT L l N E (LEFT)
BR - BIT LINE (RIGHT)
LWL - LOWER WORD LINE
VA - VOLTAGE R EFERENCE

Figure 11 SCR Memory Cell with Bit Line
Current Steering Circuit

checker is applied to address and control inputs.
These are assigned to three parity groups, with a
parity bit input for each group.

The write port 0 data pipeline al lows a delay of
one. two, and three clock cycles to be selected ,
delaying the write port data as necessary to resolve
register access conflicts.

Self-timed RAM
In the VAX 9000 system - as in any high-perfor
mance CPU - fast memory is used for cache and
control store applications. Engineers traditionall y
use very fast static RAMs within the CPU for mem
ory. Logic designers, however, have long recognized
that CPU performance is often l imited as a result of
the time needed to access data in these RAMs. This
l imitation is not only the result of the access time
and write cycle performance of the devices them
selves, but also of t he off-chip circuitry and inter
connect used for w ri te pulse generation and
distribution . The logic designers and technologists

58

for the VAX 9000 knew that unless some architec
tural improvements were made to the traditional
static RAM , much of the RAM performance improve
ments would be lost in the wiring interconnect.
They also realized that Digita l 's memory suppliers
would have to be convi nced that a new RAM archi
tecture would be marketable to their other cus
tomers. After several design iterations, the tech
nologists submitted a set of specifications for a
synchronous, self-timed RAM (STRAM) to several
suppliers for their review. After extensive market
surveys, our memory suppliers agreed that this new
architecture could eventually become a new stan
dard for high-speed static RAMs.

The VAX 9000 system requires two configura
tions of the basic STRAM dev ice : I K words by 4 bits,
and 4K words by 4 bits. A block diagram of the
STRAM is shown in Figure 12. The STRAM is similar
to the traditional RAM in that it has chip select, input
address and data, and output data . However, the
STRAM also has several nontraditional inputs such

Vol 2 No. 4 Fall /'J'JO Digilal Technical journal

Semiconductor Technology in a High-performance VAX System

as write, a differential clock, and a reference voltage
(Vbb). Latches added to all inputs and ourputs

provide pipelined timing. An internal write pulse

generator controls write operations and eliminates

the need to generate and distribute the write pulse

signal externally on the module. Also two optional

output configurations are provided : a 50-ohm drive

open emitter for standard parallel termination on
the module, and a resistor and pulldown current

source which is wired externa l ly to implement

STECL or on-chip source termination.

The clock buffer design al lows inputs to be

driven differentially from off-chip to m inimize

clock skew. The clock buffer is also designed to

accommodate customers who are not greatly con

cerned about skew or who may be more concerned
about conserving routing area. One input of the

clock buffer may be tied to the output pin of the

reference generator which provides the standard

ECL threshold vol tage (Vbb), a l lowing the other

input of the clock buffer to be driven in a single

ended mode.

DIN<3:0>H

..---------1

ADDR<M-1 :O> H

WRITE L

Input and output latches are clocked on opposite

edges of the internal differential clock buffer. Tim

ing diagrams are shown in Figure 13. On a falling

edge of CLK H , data and address i nputs flow into the

RAM array.

I f w rite is asserted during the next rising edge

of CLK H , then a write cycle is initiated, and the

input data is stored in the memory at the address

presented at the ADR inputs. At the same time, the

data is passed through the multip lexer and the out

put latch.

If write is deasserted on the rising edge of CLK H,

then the STRAM is in a read cycle and input data is

ignored _ The data stored in the RAM at the address

presented at the ADR inputs flows out to the multi

plexer and output latch.
If chip select (CS) is deasserted prior to the rising

edge of CLK H , then write and read operations are

disabled and the output latches are reset low.

For p roper operation of the STRAM , certain

timing requirements must be fulfil led . The write

operation is terminated by either the falling edge of

RAM ARRAY

2M X 4
DIN DOUT
<3:0><3:0>

ADDR WR EN

WRITE

PULSE
GENERATOR

DOUT RAM

<3:0>H

CLOCK H

DO<ST><3:0>H

��-------------� ENABLE H

CS L

CLOCK H

D CLK H

0 CLK L

Figure 12 STRAM Block Diagram

Digital Tecbnicaljournal Vol. 2 No. 4 Fa/1 1990

DLY
CLK

H

59

VAX 9000 Series

NOTE: CLOCK HIGH STATE MUST LAST LONG ENOUGH
TO COMPLETE A WRITE CYCLE

CLK

WRITE

ADDR, D IN , CS

DATA OUT

KEY:

I'" "'I

0 RD - READ OPERATION CYCLE 0
1 WR - WRITE OPERATION CYCLE 1

1 WR W& 2 RD Wffo;l 3 R D I

Figure 13 STRAM Timing Diagrams

CLK H or by the internal write pu lse generator,
whichever occurs first . Therefore CLK H must be
asserted long enough to ensure that data is properly
written into the memory array. The internal write
pulse generator provides an output having the
proper duration as determined by a string of gates.

Also, the assertion of the internal write pulse sig
nal must be delayed by an amount equal to the inter
nal access time of the RAM . In this way. the correct
data is stored , and not the data previously stored in
the input registers. The delay i s accomplished by
the row delay circuit , which is also simply a string
of gates. These featu res give the STRAM i ts "self
t imed" nature.

Acknowledgments

The authors would l ike to acknowledge the follow
ing individuals who participated in and contrib
uted to the success of the VAX 9000 project: Jerry
Weisbach, Andy Moroney, Bob Hal ler, Marc
Lamere, Mark Hamel, Tom Senna, Dave McCall ,
Patty Kroesen, Rick Jones, j im jensen , Terry
Skrypek , Eugene Marteney, Paul Guglielmi, Ela ine
Fire, Larry Herman, Bi l l G rundman n , Mark
Pascarel l i , Fran Richard , Linda Greska, Jack Mason,
Chris Caiazzi, Roger Dame, Mike Normand Steve
Sull ivan, Rob Rcinschmidt, Bob Bechdolt, Mike
Warder, Mike Hickman, Brian Sadler, Wayne
Nunn, Rita Wespi, Gene Yee, Bruce Smith, Alisyn
Emerson, J im Glanvi l le.

60

References

1 . D . Marshal l and]. McElroy, " VAX 9000
Packaging, The Multi-Chip Unit," Pmceedings of

COM PC ON '90 (Spring 1990).

2 . P. Zdebel et al . , "MOSAIC l l l - A H igh Perfor
mance Bipolar Technology with Self-Aligned
Devices," Proceedings of IEEE 1987 Bipolar

Circuits and Technology Meeting

3. D. Fire and T. Fossum, "Designing a VAX for High
Performance," Proceedings of COMPCON '90

(Spring 1990).

4. C. Baugh and B. Wooley, "A Two's Complement
Parallel Array Multiplication Algorithm," Sh011
Note at COMPCON 73, 7th Annual IEEE
Computer Society International Conference

(February 1973) .

5. C . Wallace, "A Suggestion for a Fast Multipl ier,"
1 EEE Transactions on Electronic Computers,
Vol . EC- 13 (February 1964): 14- 17.

6. L . Dadda, "Some Schemes for Parallel
Mult ipl iers," Colloque sur l 'Algebre de Boote
Oanuary 1965).

7. K . Hwang, Computer Arithmetic Principles,
Architecture, and Design (New York: john Wiley
and Sons, 1979): 213-283.

Vol. 2 No. 4 Fall 19')0 Digital Tecbn icaljounwl

Richard A. Brunner

Dileep P. Bhandarkar

Francis X. McKeen

Bimal Patel

William]. Rogersjr.

Gregory L. Yoder

Vector Processing on the
VAX 9000 System

The VAX 9000 system provides the first emitter-coupled logic (ECL) implementation of

the VAX vector architecture. The optional vector processor on the VAX 9000 system

addresses the computing needs of numerically intensive applications with a peak

performance of 125 MFLOPS for double-precision calculations. The innovative

design of the vector register file allows the vector processor to overlap the execution of

up to three vector instructions. Supported by both the VMS and ULTRIX operating

systems, the vector processor on the VAX 9000 system provides four to five times

performance improvement for vectorizable applications over its scalar processor.

For a long time, vector processing was the domain

of large, expensive supercomputers such as the

CRAY - 1 . 1 However, with the availability of low cost,

pipelined floating point arithmetic chips, and the

maturation of vectorizing compilers, vector p ro

cessing has become a mainstream technology for

scientific applications.2 Applications that can bene

fit from vector processing include finite element

analysis, signal processing, and computational fluid

dynamics. The recent addition of integrated vector

processing to the VAX architecture and its imple

mentation on the VAX 9000 system provides these

applications with an improvement in execution

time of four to five times over that of a VAX 9000 sys
tem without vector processing. Vector processing

extends the performance range of VAX systems.

The vector processor on the VAX 9000 system,
referred to as the V-box, is the first emitter-coupled

logic (ECL) implementation of the VAX vector archi

tecture. The definition of the architecture and the
development of the V-box started in 1986, two years

after the design of the rest of the VAX 9000 CPU .

Thus, the design of the V-box was synergistic with
the definition of the VAX vector architecture. The

major goal of the V-box design was to provide

adequate vector performance (four to five times

speed-up over scalar) without impacting the design
of the remainder of the VAX 9000 CPU and the

memory subsystem, which were too far along in

development to change. With vector performance
comparable to a CRA Y -1 and a peak performance of

125 MFLOPS for double-precision calculations, the

V-box fulfi l ls this goal .

Digital TeL·hnicaljournal V!JI. 2 No. 4 Fall 1990

This paper describes the VAX vector architecture

and its implementation by the VAX 9000 V-box. The

first part of the paper discusses the architectural

model that all VAX vector processors must follow.

The second part shows the actual realization of this

architecture in the VAX 9000 V-box and explains the

innovative techniques the V-box uses to achieve

good performance. The paper concludes w i th

preliminary vector performance numbers for the

VAX 9000 system on some standard vector bench

marks and a number of vector code examples.

VAX Vector Architecture

The VAX vector architecture defines the instruction

set , registers, and behavior that all VAX vector

implementations, such as the VAX 9000 V-box, must
follow.' The vector architecture effort started in

December 1985. At that time several CPU develop

ment projects were well underway, including the

VAX 9000 system. With the expectation of provid
ing four to five t imes performance improvement

for vectorizable applications, Digital decided to add

vector p rocessi ng to the VAX 9000 system, even
though the system was in an advanced stage of

development. A decision also was made to provide

a complementary metal oxide semiconductor

(CMOS) implementation of the architecture on the

VAX 6000 Model 400 system."

Because both systems could not tolerate major

changes without a major s l ip in schedule, the archi

tecture required an approach that made few

changes to the scalar processor - that part of a VA,'\

61

VAX 9000 Series

processor that executes the regular VAX instruction
set. Furthermore, because not all applications and

markets can benefit from vector processing, Digital

decided not to require vector processing on every

new VAX processor. Therefore, vector processing is

offered as an optional capability. The scalar proces
sor decodes vector instructions and passed them

to its associated vector processor. All processing

of vector instructions is handled by the vector pro

cessor. Mechanisms are provided for vector-scalar

synchronization and handling of vector exceptions

by the scalar processor.

Although the architecture had to account for the

implementation constraints of both ongoing CMOS

and ECL projects, i t had to be general and flexible

enough to al low future, more integrated implemen

tations at higher performance. The architecture

also had to minimize its impact on the existing VMS

a nd ULTRIX operating systems because major

changes could significantly delay software support

for vector processing.

Basic Architecture

The VAX vector architecture uses a vector-register

based design first pioneered by Seymour Cray. 1

There are 16 vector registers, each of which holds
64 elements; an element is 64-bits. Instructions

which operate on longword integers or F _floating

point data, only manipu late the low-order 32 bits

of each element - sometimes referred to as long

word elements.

A number of vector control registers control
which elements of a vector register are processed

by an instmction. The vector length register (VLR)

limits the highest-numbered vector register ele

ment that is processed by a vector instruction. The

vector mask register (VMR) consists of a 64-bit mask,

in which each mask bit corresponds to one of the
possible element positions in a vector register.
When instructions are executed under control of

the vector mask register, only those elements for

which the corresponding mask bit is true are pro
cessed by the instruction. Vector compare instruc

tions set the value of the vector mask register.

The vector coun t register (VCR) receives t he

number of elements generated by the compressed

IOTA instruction, which is similar to COMPRESSED

IOTA on the CRAY-2.1 All VAX vector instructions use

two-byte extended opcodes. Any necessary scalar
operands (e.g . , base address and stride for vector

memory instructions) are specified by standard VAX

scalar operand specifiers. The instruction formats

allow all VAX vector instructions to be encoded in

62

seven classes. The seven basic instruction groups

and their opcodes are shown in Table l .
Within each class, all instructions have the same

number and types of operands, which allows the

scalar processor to use block-decoding techniques.

The differences in operation between the individ

ual instructions within a class are irrelevant to the

scalar processor and need only be known by the
vector processor. Important features of the instruc

tion set are

• Support for random-strided vector memory data

through gather (VGATH) and scatter (VSCAT)

instructions

• Generation of compressed IOTA vectors (through

the IOTA instruction) to be used as offsets to the

gather and scatrer instructions

• Merging vector registers through the VMERGE

instruction

• The ability for any vector instruction to operate

under control of the vector mask register

Additional control information for a vector

instruction is provided in the vector control word

(shown as cntrl in Table 1) , which is a scalar
operand to most vector instructions. The control

word operand can be specified using any VAX

addressing mode. However, VAX compilers gener

ally use immediate mode addressing (that is, place

the control word within the instruction stream).

The format of the vector control word is shown in
Figure 1 .

The Va , Yb , and Vc fields indicate the source and

destination vector registers to be used by the

instruction. These fields also indicate the specific

operation to be performed by a vector compare or

convert instruction. The MOE bit indicates whether

the particular instruction operates under control of
the vector mask register. The MTF bit determines

what bit value corresponds to " true" for vector
mask register bits. It allows a compiler to vectorize

if-then-else constructs. The EXC bit is used in vector
arithmetic instructions to enable integer overflow
and floating underflow exception reporting. The

Ml bit is used in vector memory load instructions to

indicate modify-intent. Figure 2 shows the encod
ing for some typical VAX vector instructions.

Vector Execution Model
With the addition of vector processing, a typical

VAX processor consists of a scalar processor and an
associated vector processor; the two are referred to

as a scalar/vector pair. A VAX multiprocessor system

Vol. 2 No. 4 Fall 1990 Digital Tecbnicaljournal

Table 1 VAX Vector Instruction Classes

Vector Memory, Constant-stride

opcode cntrl , base, stride

VLDL Load longword vector data

VLDQ Load quadword vector data

VSTL Store longword vector data

VSTQ Store q u adword vector data

Vector Memory, Random-stride

opcode cntrl, base

VGATHL Gather longword vector data

VGATHQ Gather q u adword vector data

VSCATL Scatter longword vector data

VSCATQ Scatter q u adword vector data

Vector-Scalar Single-precision Arithmetic

opcode cntrl, scalar

VSADDL I nteger longword add

VSADDF F _float ing add

VSBICL Bit clear longword

VSBISL Bit set longword

VSCMPL I nteger longword compare

VSCMPF F _float ing compare

VSDIVF F _float ing d ivide

VSMULL I nteger longword m u ltiply

VSMULF F _floating m u lt ip ly

VSSLLL S hift left logical longword

VSSRLL Sh ift r ight logical longword

VSSUBL I ntege r longword subtract

VSSUBF F _floating subt ract

VSXORL Exclusive-or longword

I OTA Generate compressed IOTA

vector

Vector Control Register Read

opcode regnum, destination

M FVP Move from vector processor

Vector Control Register Write

opcode regnum, scalar

MTVP Move to vector processor

Digital Techllicaljournal Vol. 2 No. 4 Fall /990

Vector Processing on the VAX 9000 System

Vector-scalar Double-precision Arithmetic

opcode cntrl , scalar

VSADDD O_floating add

VSADDG G_float ing add

VSCMPD O_floating com pare

VSCMPG G_float ing com pare

VSDIVD O_float ing divide

VSDIVG G_float ing d ivide

VSMULD O_floating m u lt iply

VSM U LG G_float ing m u ltiply

VSSUBD O_float ing subtract

VSSU BG G _floating subtract

VSMERGE Merge

Vector-vector Arithmetic

opcode cntrl or regnum

VVADDL I nteger longword add

VVADDF F _float ing add

VVADDD O_float ing add

VVADDG G_floating add

VVBICL Bit clear longword

VVBISL Bit set longword

VVCM PL I nteger longword compare

VVCMPF F _floating com pare

VVCMPD O_float ing compare

VVCMPG G_float ing compare

VVCVT Convert

VVDIVF F _floating d ivide

VVDIVD D_floating divide

VVDIVG G_float ing d ivide

VVMERGE Merge

VVM ULL I nteger longword m u ltiply

VVMULF F _float ing m u ltiply

VVMULD O_floating m u lt iply

VVMU LG G_float ing m u lt iply

VVSLLL Shift left logical longword

VVSRLL Shift right logical longword

VVSUBL I nteger longword subtract

VVSUBF F _float ing subtract

VVSUBD O_floating subtract

VVSUBG G_floating subtract

VVXORL Exclusive-or longword

VSYNC Synchronize vector memory

access

63

VAX 9000 Series

1 5 1 4 1 3

MOE MTF EXC
Ml

1 2 1 1

0 VNCONVERT FCN

8 7

VB

Figure 1 Vector Control Word

4 3

VC/COMPARE FCN

0

comprises a number of tht:st: scalar/vector pairs.
Asymmetric configurations can exist when only
some of t he VAX processors in a multiprocessor
system contain a vector processor.

For good performance, the scalar processor oper
a tes asynchronously from i ts vector processor
whenever possible. Asynchronous operation allows
the execution of scalar i nstructions to be over
lapped with the execution of vector instructions.
Furthermore, the servicing of interrupts and scalar
exceptions by the sca lar processor does not disturb
the execution of the vector processor, which is
freed from the compk:xity of resuming the execu
tion of vector instructions after such events. How-

ever, the asynchronous execution does cause the
reporting of vector exceptions to be imprecise.
Special instructions, which are described in the
Synchronization section, are provided to ensure
synchronous operation when necessary.

ASSEMBLER FORMAT:
VVEOLF V6,V7

VVADDF/1 V 1 ,V2,V3

VSMULF/U R4,V4,V5

INSTRUCTION FORMAT:

Both scalar and vector instructions are initially
fetched from memory and decoded by the scalar
processor. If the opcode indicates a vector instruc
tion, the opcode and necessary scalar operands are
issued to the vector processor and placed i n its
instruction queue. The vector processor accesses
memory directly for any vector data that it must
read or write. For most vector instructions, once the
scalar processor successful ly issues the vector

; IF V6[i] = V7[i] THEN VMR[i] = 1 , ELSE VMR[i] = 0
; (VVEOLF IS A VVCMPF PSEUDO·OPCODE)
; V3 = V1 + V2. DO ADDITION UNDER CONTROL OF VMR
: WITH MATCH = 1

; V5 = R4'V4 WITH UNDERFLOW EXCEPTION CHECKING ENABLED

VVCMPF
VVADDF
VSMULF

cntrl .rw
cntrl .rw
cntrl.rw, src.rl

; INSTRUCTION CONSISTS OF OPCODE AND CONTROL WORD
; INSTRUCTION CONSISTS OF OPCODE AND CONTROL WORD
; INSTRUCTION CONSISTS OF OPCODE, CONTROL WORD, AND SCALAR SOURCE

ENCODING IN MEMORY:

,-
--, BYTE
FD
C4
8F

0 ::>
: 1
:2
:3
:4

TWO-BYTE OPCODE FOR VVCMPF

OPERAND SPECIFIER FOR IMMEDIATE MODE (FOR CONTROL WORD)
CONTROL WORD <7:0>: COMPARE FCN IS EOL AND V7 IS A SOURCE
CONTROL WORD <1 5:8>: V6 1S A SOURCE

5 J TWO-BYTE OPCODE FOR VVADDF
:6 ...
:7 •- OPERAND SPECIFIER FOR IMMEDIATE MODE (FOR CONTROL WORD)
:8 CONTROL WORD <7:0>: V3 IS DESTINATION AND V2 IS A SOURCE
:9 CONTROL WORD < 1 5:8>: V 1 IS A SOURCE, MASKED OPERATIONS ARE ENABLED, AND MATCH = 1

:: J TWO-BYTE OPCODE FOR VSMULF

:C OPERAND SPECIF IER FOR IMMEDIATE MODE (FOR CONTROL WORD)
:D CONTROL WORD <7 0>: V5 IS DESTINATION AND V4 IS A SOURCE
:E _,_ CONTROL WORD <1 5:8>: VA IS IGNORED. UNDERFLOW EXCEPTION CHECKING IS ENABLED

: F OPERAND SPECIFIER FOR REGISTER MODE WITH SCALAR DATA IN R4

Figure 2 Vector Instruction Encoding

64 Vol. 2 No. 4 Fal/ /<)<)0 Dtgilal Techn ical journal

instruction, it proceeds to process other instruc

tions and does not wait for the vector instruction to

complete. An execution model is shown in Figure 3 .

When the scalar processor attempts to issue a

vector instruction, it checks to see if the vector pro

cessor is disabled - that is, whether it will accept

further vector instructions. If the vector processor

is disabled, then the scalar processor takes a "vec
tor processor disabled" faul t . An operating system

handler is then invoked on the scalar processor to

examine the various error-reporting registers on the

vector processor to determine the disabling con

dition. The vector processor disables itself to report

the occurrence of vector arithmetic exceptions or

hardware errors. The operating system disables the

vector processor, usually to indicate the unavaila
bility of the vector processor, by writing to a privi

leged vector register. If the disabling condition can

be corrected, the handler enables the vector proces

sor and directs the scalar processor to reissue the
faulted vector instruction.

Within the constraint of maintaining the proper

ordering among the operations of data-dependent

instructions, the architecture explicitly al lows the
vector processor to execute any number of the

instructions in its queue concurrently and retire

them out of order. Thus, a VAX vector implementa

tion can chain and overlap instru ctions to the
extent best suited for its technology and cost

performance. In addition, by making this feature an

explicit part of the architecture, software is pro-

PHYSICAL
MEMORY

1 6 GB

INSTRUCTION
STREAM

DATA
STREAM

INSTRUCTIONS

DATA

VAX
SCALAR
CPU

VECTOR DATA

Vector Processing on the VAX 9000 System

vided with a prograrruning model that ensures
correct results regardless of the extent a particular

implementation chains or overlaps. This approach

differs with respect to some other existing vector

architectures, such as the IBM S/370 vector archi

tecture, which give the appearance of sequential

instruction execution.6

A VAX vector implementation may have its own
memory management hardware, translation buffer,

and cache; or i t may share those of the scalar pro

cessor. In high-end vector implementations, such as

the VAX 9000 system, the vector and scalar proces

sors are tightly coupled. The problems of limited

chip area and translation buffer and cache coher

ency can be lessened by allowing high-speed mem
ory management hardware and cache to be shared

by both vector and scalar processors. For other

implementations, such as the VAX 6000 Model 400

system, the vector and scalar processors are not so

tightly coupled, and there is a performance advan

tage in allowing separate memory management

hardware and cache. 1 Little additional effort is nec

essary by an operating system to support separate

vector memory management hardware and cache.

A vector processor can treat vector memory

management exceptions (MME) in a synchronous

manner, as the VAX 9000 V-box does. Once the

scalar processor issues a vector memory instruc

tion, i t pauses until the vector processor deter

mines whether an MME wi ll be encountered by the

instruction. If an MME will occur, then a precise

OPCODE, CONTROL WORD

DISABLE/STATUS

Figure 3 Vector Execution Unit

Digital Tecbnical]ournal Vol. 2 No. 4 Fall 1990 65

VAX 9000 Series

exception is taken on the scalar processor and the
appropriate operating system handler is invoked.

If no MME will occur, the scalar processor proceeds
to process other instructions and the vector proces
sor completes the memory instruction. In the case
of referencing a unity-strided vector, which occurs
most frequently, the MME checking takes only
a short time at the beginning because the vector
is contained in two or less pages. (MME checking is
done at the page level .)

Context Switching

Because of the asynchronous operation of the vec
tor and scalar processors, the vector context state of
a process is separate from its scalar comext state.
Thus, it is possible for an operating system to swap
in a new process to the scalar processor while
allowing the vector context of the previous process
to remain on the vector processor. When the previ
ous process is swapped out, the vector processor is
disabled by the operating system to prevent other
processes from accessing this vector context.

If the subsequent processes do not use the vec

tor processor, then the operating system avoids
the overhead of saving and subsequently restoring
8 kilobytes (KB) of vector context state for the orig

inal process. If another process does use the vector
processor, the operating system must reenable the
vector processor, save the vector state of the origi

nal process, load the vector context of the new
process, and, finally, make the vector processor
available. This full context switch can take up to
100 microseconds on the VAX 9000 system.

Assuming that only a few processes require the
vector processor, it is l ikely that when the original
process is rescheduled to the same scalar/vector
pair, the process will find its vector context state
residing on the vector processor. By using this tech
nique, which is referred to as "cheap vector context
switching," both the VMS and ULTRlX operating sys
tems reduce the time required to swap in a process
that uses the vector processor.

Exceptions
Most of the exceptions encountered by VAX vector
instructions are identical to those that occur for
VAX scalar instructions. The arithmetic exceptions

are exactly the same. The memory management
exceptions have been extended to include two new
vector exceptions: vector IIO space reference and
vector alignment fault. As in the VAX scalar architec
ture, the reporting of floating underflow and integer
overflow exceptions can be disabled by setting the
EXC bit in the vector control word.

66

Vector arithmetic exceptions are reported in an
imprecise manner by vector processor disabled

faults. When an exception occurs in the processing
of a vector element, the vector processor records
the exception in both a privileged exception regis
ter (the vector arithmetic exception register, VAER)
and in the corresponding element of the destination
vector register specified by the instruction. The vec
tor processor then disables itself from receiving
further vector instructions. However, the vector
processor continues to execute the instruction that
encountered the exception to completion by pro
cessing the remaining vector register elements.

As stated earlier, memory management excep
tions can be reported precisely b y a VAX vector
processor to its scalar processor, as the VAX 9000
V-box does, and the scalar processor takes a normal
VAX memory management fault. Exception infor
mation is placed on the stack in the same format as
for scalar memory management exceptions. The
use of the same format minimizes the effort needed

by an operating system to support these exceptions.
Memory management exceptions were extended

for vectors to include two new exception para
meter bits: vector I/O space reference and vector
aligrunent fault. A vector I/O space reference occurs
whenever an attempt is made to load or store vector
data to I/O space. Because of the performance
degrada tion of unaligned memory data, a vector
alignment fault occurs whenever an element being
accessed by a vector memory instmction does not
begin at an address that is an integer multiple of the
length of the element in bytes. For example, a long
word (4-byte) element in memory should begin at
an address which is an integer multiple of 4 bytes.

Synchronization
In most cases, it is desirable for the vector processor
to operate asynchronously with the scalar proces
sor to achieve good performance. However, there
are cases in which the operation of the vector and
scalar processors must be synchronized to ensure
correct results. Rather than forcing the vector pro
cessor to detect and automatically provide synchro
nization in these cases, the architecture provides
special instructions, which software can use, to
accomplish the synchronization. Some of these

instructions are discussed below. Software must
determine when to use these synchronization
instructions to ensure correct results or establish
exception checkpoints. Given the necessary sophis
tication of vectorizing compilers, this requirement
is not onerous.

Vol 2 No. 4 Fall 1990 Digital Tecbnicaljournal

Vector and scalar memory references may be

issued simultaneously. Therefore, these references

must be synchronized to prevent a conflict from

occurring when accessing shared memory loca
t ions. This synchronization is p rovided by the

MSYNC function of the M FVP instruction. Once the

MSYNC function is invoked, the scalar processor
does not issue further instructions until all p re

vious vector and scalar memory references have

completed.

Because the vector and scalar processors execute

asynchronously, software cannot determine when a

vector exception will be reported. However, soft

ware requires that exceptions be reported at certain

checkpoints. For example, exceptions incurred in a

procedure must be reported within the context of

that procedure before another procedure is calJed.

This exception reporting synchronization is pro

vided by the SYNC function of the M FVP instruction.

Once SYNC is invoked, the scalar processor does not
issue further instructions until the exceptions of

previous vector instructions, if any, are reported.

VAX 9000 Y-box Overview

The VAX 9000 V-box is one of four tightly coupled,

parallel function units that compose the VAX 9000

CPU . As such, it shares, with the rest of the CPU,

both the large 128KB data cache and the very fast

address translation hardware. As a result, the V-box

has very fast access to memory data. The V-box is
connected to the CPU through the scalar execution

unit as shown in Figure 4 . This connection consists

VECTOR
CONTROL 1-----l�

1--lloi UNIT

Vector Processing on the VAX 9000 System

of a 64-bit data path, which brings instructions and

data to the vector unit , and a 32-bit path, which
sends data to the scalar unit . AU vector memory

instructions send data through this data path.
As Figure 4 also shows, the V-box is composed of

the folJowing subunits: vector register uni t , vector

add unit, vector multiply unit, vector mask unit,

vector address unit , and vector control unit . Each of

these s ubunits can function i n paralle l , which

allows up tO two vector arithmetic instructions

and one vector memory instruction to be executed

simultaneously. Crucial to this instruction over
lapping ability is the vector register unit , which

supports up to eight simultaneous accesses from

the other subunits.

Physically, the V-box resides on the same planar

board as the remainder of the VAX 9000 CPU . Three

multichip units (MCUs) are reserved for the V-box,

which is a field-installable option. The V-box com

prises 25 ECL Motorola Macrocell Array Ills (MCA3) 7

(For brevity, a macrocell array is referred to as a

"chip" i n this paper.) The operation of these sub

units and the techniques used to enhance their per
formance are described in the following sections.

Vector Control Unit

The vector control uni t receives and coordinates

the execution of vector instructions within the

V-box . The VAX 9000 scalar execution engine

(E-box) transfers both an encoded version of the
vector instruction and the necessary scalar data to

the unit, which loads the instruction and data into a

VECTOR
REGISTER
UNIT

MASK!
ADDRESS

Figure 4 V-box Organization (with VAX 9000 CPU)

Digital Tecbnicaljourna/ Vol. ,! No. 4 Fall /l)'JO 67

VAX 9000 Series

circu lar queue as shown in Figure 5. The queue can
buffer a few pending instructions while the remain
ing Y-box subunits are executing others. Without
the queue, the V-box could not accept pending
instructions when all of its subunits are busy, thus,
propagating a stall condition to the scalar execution
unit and resulting in poor performance.

The scalar data that is required by a vector
instruction is placed in the queue one location
behind the instruction quadword . Whenever the
queue contains two entries, the vector control unit
returns a signal to the scalar execution unit and
requests that subsequent instruction issue be
delayed until the number of entries in the queue
has diminished to one or less. The queue is cir
cular in nature and wraps around to the beginning
automatically.

When an instruction is loaded into the queue, a
pointer directs the instruction to the decode logic
shown in Figure 5. If there is enough instruction
data available in the queue and the necessary sub
unit is not busy, then the vector control unit sends
the instruction data from the queue to the register
conflict logic. The register conflict logic determines
if the vector registers required by the instruction are
al ready in use by the other subunits, a condition
called register conflict. The determination is made
b y comparing the vector register addresses that

E-BOX
VECTOR BUFFER
DATA

are ro be used by already executing vector instruc
tions in the next cycle against the vector register
addresses required by the new instruction . If none
of the addresses overlap then the instruction is free
to issue. If an overlap does exist, the instruction is
held until the next cycle, when it can then be issued
to the appropriate subunit. (The Jack of significant
cycle delay in this case is due to the optimal design
of the vector register unit.) If there are no register
conflicts, the instruction is issued immediately to
the appropriate subunit.

As the vector control unit issues the instruction to
the subunit , it also sends scalar source operands,
if any, and the addresses of the vector registers
required by the instruction to the vector register
unit . The vector register unit latches the scalar data
for the duration of that instruction . For each cycle
of the instruction's execution, the register unit then
sends the necessary scalar and register data to the
appropriate subunit . The vector control un i t also
contains the vector length register and sends a copy
of it with every instruction that is issued to a sub
unit . By supplying each subunit with a copy of
the vector length register, writes to the register by
MTVP instructions do not affect instructions cur
rently executing under the register's previous value.
Without this mechanism, wri tes to the vector
length register would be delayed until previously

SCALAR DATA TO VECTOR
REGISTER FILE SOURCE/DESTINATION VECTOR

REGISTER ADDRESSES

ISSUE NEW
INSTRUCTION

BUFFER BUFFER VALID COUNTER

VECTOR
INSTRUCTION

NO
CONFLICT

INSTRUCTION
ISSUE
DECISION
LOGIC

Figure 5 Vector Control Unit

ISSUE
NEW
INSTRUCTION

ADD

MUL

GEN

VECTOR NO
CONFLICT REGISTER

CONFLICT 1---
'-----1 CHECK

LOGIC

68 Vol. 2 No. 4 Fall /'-)')0 Digital Tecbnicafjounwl

executing instructions had finished, which would

result in poor performance.

Upon reaching the subunit, most vector instruc

tions execute at one cycle per element , after the
initial pipeline latency. However, the vector divide

instructions (VSDIV and V VOJV) execute at a varying

number of cycles, depending on the floating point

format (F, D, or G). (To simplify the vector control
logic, no other vector instructions are issued once

a vector divide s tarts.) Resu lts are returned to the

vector register unit or vector mask unit as they are

generated, depending on the instruction.
As described earlier, microcode in the scalar exe

cution engine encodes vector instructions into an

i nstruction quadword before passing them to the

V-box . Table 2 shows the high-order 32 bits of the
format used for every instruction sent to the V-box.

This quadword contains fields that indicate the

instruction, appropriate V-box subunit to execute

the instruction, and format of the vector control
word . The low-order 32 bits of the instruction quad

word contain the vector control word for the vector

instruction. The instruction quadwords present the

V-box with a fixed format instruction that smoothly
fits into a fiXed-length instruction queue, requires

l ittle subsequent decoding, and has fields that can

be directly gated to selection logic. As a result, the

time needed by the V-box to decode vector instruc

tions is reduced and performance is increased .

Vector Register Unit
The vector register unit or file, as its name implies,

contains the logic and fas t memory that imple

ment the 16 VAX vector registers on the V-box . The

block diagram of the vector register file is shown in
Figure 6. The vector register file has three write

ports and five read ports. By using the innovative

technique described below, these ports provide the

multiple accesses needed to feed two operands per

cycle to the vector add and multiply units, and one

operand to the vector address-mask unit . This unit

is the single largest contributor to the excellent vec

tor performance of the VAX 9000 system.

The file consists of 16 vector registers. Each

register contains 64 elements, and each element is
72-bits wide (64 data , S parity). The vector register

file is implemented as a byte-sliced custom chip,

which has a single parity bit per data port. Three

writes and five reads to the file can occur simulta

neously in any cycle. All writes must be to different

register banks. However, multiple reads can occur

to the same bank if the same element is required by

each read access. Internally to the vector register

Digital Technical journal Vol. 2 No. 4 Falf /')')()

Vector Processing on the VAX 9000 System

unit, reads occur during the first half of the cycle,

and writes occur during the last half. A write and

read enabling signal is generated for each register

bank every cycle. Each cycle, data is selected from
one of the three write ports to be written into any

enabled register banks. Write port 0 has a four-stage

pipe to buffer data coming from the E-box, through

the control logic, which cannot be written due to a

register bank conflict. The vectOr register file also

has three scalar registers (one each for the vector

address-mask unit , vector add uni t , and vector mul

tiply unit) to hold scalar source operands for vector
scalar instructions. Write port 0 is used to write

these registers. Each enabled read port selects an

element from one of the 16 register banks or scalar

registers (for vector-scalar instructions) and trans

fers it to one of the other subunits.

The vector register file uses a technique referred

to as "barber poling" to improve the use of chaining

and overlapped instruction execution . As Figure 7
shows, barber poling spreads each architecturally

defined vector register across all vector register

banks. E lements are laid out such that the first

vector element of each vector register is in location
0 of the same physical register bank and element b

of vector register n is in location b of vector register

bank ({n +b]modulo 16) .

B y using this technique, a vector register conflict

causes the vector control unit to delay the issuing

of a new vector instruction for no more than three

cycles. If the more standard technique of placing all

elements of one vectOr register in the same bank
were used, a vector register confl ict could cause

the execution of a new instruction to be delayed by
64 cycles. The 64-cycle delay would have frustrated
attempts at overlapping and severely degraded the

vector performance of the VAX 9000 system.

Vector Add Unit

The vector add unit executes most vector instruc

tions, including both floating point and integer
addition, subtraction, comparison; vector convert ;

vector shift logical; vector logical operations; and

vector merges. For brevity, these instructions are

referred to as add-class instructions. One of the
challenges in designing the vector add unit was the

need to perform both integer and floating point

arithmetic.

The organization of the vector add unit is shown

in Figure 8. It is a pipelined structure that comprises

two identical chips for unpacking and aligning

operands (VI:'SA and VI'SB); one chip for performing

arithmetic and logical operations (VFAD); and a

69

VAX 9000 Series

Table 2 Encoded I n struction Quadword (bits < 63 : 32>)

Vector OPCODE Control Word Type
I nstruction < 39:32> < 42:40>

VVS U B F!VSSUBF
VVSU BG!VSSU BG
VVS U B D!VSSU BD
VVS U B UVSSU B L
VVC M P L!VSC M P L
VVS LL!VSSLL
VVSR L!VSSRL
VVBI S UVSBISL
VVB I C L!VSBICL
VVXORL!VSXOR L
VVM E R G E!VS M E R G E
VVADDD!VSADDD
VVADDF!VSADDF
VVADDG!VSADDG
VVADDL!VSADDL
VVCM P D!VSCMPD
VVC M P F!VSCMPF
VVCM PG!VSCMPG
VVC M P D!VSCM P D
VVCVTDF
VVCVTDL
VVCVTFD
VVCVTFG
VVCVTF L
VVCVTG F
VVCVTG L
VVCVTLD
VVCVTLF
VVCVTLG
VVCVTDL
VVCVTFL
VVCVTG L
VVM U LL/VS M U L L
VVM U LF!V S M U L F
VVM U L D!VSM LI L D
VVM U LG!VSMLI LG
VVDIVF!VSDIVF
VVDIVD!VSD IVD
VVDIVG!VSDIVG
VLDL
VLDQ
Block load
VSTL
VSTQ
VGATHL
VGATHQ
VSCATL
VSCATQ
IOTA
Load VLR
Load low V M R
Load h igh V M R
Store l o w V M R
Store h igh V M R
Store u nalig ned address
Load VPSR
Load VAE R
Store VAE R
RESET

Bits < 63:47> are reserved.

OF9
ODB
OD2
OF6
OF5
034
026
086
08E
088
OAE
092
089
098
086
OD5
OFD
ODD
OD5
0 1 1
0 1 6
03A
038
03E
0 1 9
0 1 E
032
031
033
0 1 7
03F
0 1 F
003
004
005
006
ooc
OOD
OOE
001
002
ooc
003
004
005
006
0 1 0
0 1 1
0 1 2
007
009
OOA
OOD
OOE
0 1 3
0 1 4
0 1 5
008
OOF

2/6
2/6
2/6
2/6
3/7
2/6
2/6
2/6
2/6
2/6
5/1
2/6
2/6
2/6
2/6
3/7
3/7
3/7
3/7

4
4
4
4
4
4
4
4
4
4
4
4
4

2/6
2/6
2/6
2/6
2/6
2/6
2/6

0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
2

Dispatch Type
< 46:43>

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
4
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
2
3
3
3

70 Vol. 2 No. 4 Fall 1990 Digital Technicaljournal

Vector Processing on the VAX 9000 System

FROM VML FROM CONTROL FROM VAD

VML
RESULT VCT WT DAT VAD RESULT

SREG4 LD

SREG2 LD

SREGO LD

WRPORTO

WPORTS O

CNF SEL

-2

WPORTS 0 -2 --

SCALO SE
SCAL2 SE
SCAL4 SE

L
L
L

WPORT 2 WPORT O WPORT 1

I I LATCH � LATCH

� I SCALAR 4 1
I I SCALAR 21 S4

'
I I SCALAR 0 I S2

I
so

\
I WRITE

I ENABLE
LOGIC l WRITE
ADDRESS
LOGIC

H

-\ /
I

SELECT WRITE DATA FOR EACH REG BANK FROM WRITE PORTS

j �
REG BANKO WT EN REG BANKO AD EN

REG BANK1 5 WT EN
MEMORY REG BANK 1 5 RD EN

REG BANKO WT ADA
ARRAY

REG BANKO RD ADA

REG BANK1 5 WT ADA REG BAN K 1 5 RD ADR

l ! \ SELECT DATA FOR EACH READ PORT FROM REG BANKS I
so --=:J I S2 "-1 I S4 ---r I -\ I -\

I e e e I I I
RPORTO RPORT1 RPORT2

I .\
e � I I

RPORT3 RPORT4
TO MASK LOGIC TO VML LOGIC TO ADDER LOGIC

Figure 6 Vector Register Unit

I

remaining chip for normal izing, rounding, and
packing the result (YFPK). The data paths between
t he chips are a l 1 64 -bits wide.

I
READ
ENABLE
LOGIC

READ
ADDRESS
LOGIC

� A PORTS 0-4

RPORTS 0-4

The pipeline latency through this unit for both
single-precision (integer and F _floating) and dou
ble-precision (G_floating and D_floating) formats is
only three cycles. Thus, the vector/scalar cross-over
number for add-class instruct ions is quite small
(that is, the minimum number of vector elements
needed for the V-box to surpass the performance
of the remainder of the VAX 9000 CPU for this class
of instructions.) As a result , the V-box achieves good
performance for add-class instructions with small
sized vectors and large-sized vectors (large-sized
vectors being naturally favored by the technique of
pipelining). BANK 0 BANK 1 BANK 2 BANK 1 3 BANK 14 BANK 1 5

When the vector add unit begins to execute an
instruction, i t receives two source elements from
the vector register unit each cycle. The elements are
latched i nto the unpacking logic, one clement for

Digital Tecbnical}ournal Vol. 2 No. 4 Fall I'J'JO

Figure 7 Barber Poling

71

VAX 9000 Series

each of the two chips. During the next cycle, each

unpacking chip concurrently unpacks and aligns

its source element, if necessary, and forwards the

result to the addition or logical-operation logic,

depending on the i nstruction . W ithin the same

cycle, the addition chip uses the two sources from

the unpacking logic to generate a result, which is

then latched.
During the final cycle, the result is sent to the

packing chip, which normalizes, rounds, and packs,

if necessary, the result and sends it to the vector

register unit to be written . Exception checking and
reporting are also done in the last cycle by the pack

ing chip, which maintains the vector add unit's

copy of the vector arithmetic exception register

(YAER). When the instruction completes, the vector
add unit sends its VAER copy to the vector mask unit

to be merged with the VAER copy from the vector

multiply unit.

The vector add unit does not differentiate
between masked and unmasked vector instructions.

I VFSA

64 1 SOURCE A -- -- ---

1 I

The complexity of skipping over masked-out ele

ments would have added extra cycles of pipeline

latency and resulted in less performance for small

sized vectors. For masked as well as unmasked

instructions, the vector add unit operates from the

first up to the last element (as indicated by the

vecror length register) of both source registers. The
actual masking of results is handled by the vector

control unit, which blocks the vector register unit

from receiving masked-out results as they are

being sent by the vector add unit . However, the

packing chip does use vector mask register bits to
suppress exception generation for results that are

masked out .

Floating Point Operation When executing vector
floating point instructions, the u npacking logic

takes the various fields of a floating point element

and expands and rearranges it into a more conve

nient format for the addition logic, i .e . , the elemem
is "unpacked." As a result of this process, the addi-

VFSB

����--------__L� �---------L���
MASK BIT I

EXPONENT

VAER TO VMKB

ADDER LOGIC

Figure 8 Vector Add Unit

VFAD

VFPK

I
I

I
I
I

72 Vol. 2 No. 4 Fa/1 1990 Digital Tecbnicaljournal

tion logic is simplified because all VAX floating point

formats (F, D, and G) are unpacked into an identical

format. The unpacking involves decoding the sign,

inserting the hidden bit, and rearranging the frac
tion bits. For all VAX floating point formats, the

fractional part is expanded to 56 bits. (F _floating

and G_floating are expanded with zeros on the

right .) The fractional part is then surrounded on the
right with two guard bits and a rounding bit to

form a 59-bit fraction. The overflow and guard bits

ensure the accuracy of rounded results.

After the elements are unpacked, the unpacking

chips al ign the elements by taking the fractional

part of the smaller magnitude number and shifting

it to the right until its exponent is equal to that of

the larger magnitude number. Each unpacking chip

also receives the exponent bits of the other chip's

element. Therefore, the alignment process can be

done in parallel before the elements are sent to the

addition logic that requires the alignment. If during
the alignment of an element for a vector floating

point subtract instruction, a one is shifted out of the

59-bit fraction field, then a "sticky bit" is generated.
This sticky bit is used by the addition logic in the

next cycle as a carry into the subtraction .

The unpacked, aligned elements are then sent to

the add chip, which produces a result and then par

tially normalizes the result before sending it to the

packing chip. Again, if the shifting during normal

ization shifts a one out of the fraction field, a sticky

bit is generated. Finally the partially normalized
result and the second sticky bit are sent to the pack

ing chip which completes the normalization and

rounding and adjusts the exponent field accord

ingly. To save an extra cycle, the packing chip com
putes two exponents values, one for each value of

the carry-over in the rounding process. Final selec

tion of the exponent and its exception is done using

the actual carry-over of the rounding logic. The
proper exponent and the normalized fraction are

then rearranged into the appropriate floating point

format, and the assembled element is sent to the

vector register unit .

Integer and Logical lnstntctions For vector inte

ger and logical instructions, the elements bypass the

alignment logic and are sent to the add chip (VFAD)
for all but the logical shift right instruction (VVSLRL

and VSSLRL). For logical shift right instructions, the

alignment logic does the shifting because the shift

ing circuitry is already needed for the alignment of
fractions in floating point elements. The exponent

unpacking logic is used to pass on the logical shift

Digita1 1ecbnicaljournal Vol. 2 No. 4 hill I')'JO

Vector Processing on the VAX 9000 System

right count to the aligmnen t logic, which then

sends the shifted result to the add chip. The add

chip operates on the low-order 32 bits of these

elements and passes through the high-order 32 bits

u nchanged to the packing chip. For logical shift

left instructions (VVSLLL and VSSLLL), the low-order

32 bits also pass through the add chip unchanged .

On the packing chip, the floating point normalize
logic performs to do logical shift-left operations.

The shift count is passed to the normalize logic

from the unpacking logic during the first cycle. For

all other integer and logical instructions, the nor

malize count is forced to zero to pass the add chip

result through. Finally, just before sending the result

to the vector register unit , the packing chip checks

for integer overflow exceptions.

Merge lnstrnctions For vector merge instructions

(VVMERGE and VSMERGE), the unpacking chip with

the masked-out element, based on the appropriate
vector m ask register bi t , zeros that element out

before sending it to the addition logic. The addition

logic adds the zero to the other element , which has

the effect of passing the value of the other element

on to the packing chip.

Vector Memory Operation
Because vector applications tend to issue many

vector memory instructions, the execution time of

these instructions is a critical factor in the perfor

mance of a vector processor. Therefore, the V-box
was designed to m inimize the execu tion time by

taking advantage of the VAX 9000 CPU 's large 128KB
data cache, by prefe tching vector data, a nd by

fetching i t in blocks instead of element by element .

Memory requests by the V-box are sent through

the VAX 9000 CPU to the cache and address trans

lation hardware (M-box) of the VAX 9000 CPU . The

M-box translates the 32-bit virtual addresses for vec
tor data into physical addresses and accesses the

proper locations in the data cache. The vector
address-mask unit generates the virtual addresses

for the vector elements. For vector load and gather

instructions, the vector data is returned to the
V-box through the E-box, and written to the proper

vector registers. The M-box returns 64 bits of data

each cycle. For vector store and scatter instructions,

the vector elements are sent through the E-box to

the M-box. Although the vector register unit is

capable of sending 64 bits at a time, the E-box need

only forward 32 bits per cycle to the M-box. The
M-box requires two cycles to write the cache and

does not actually write the 64-bit data unti l the

73

VAX 9000 Series

second cycle. (The first cycle performs the cache tag
lookup.) Because the V-box implements synchro
nous memory management exception reporting,
once a vector memory i nstruction begins execu
tion, no other vector instruction may be issued until
the memory instruction completes.

The VAX 9000 CPU prefetches vector data. This
mechanism is used to move data from the main
memory to cache in a manner which optimizes
memory bandwidth . By using this method, a 25
percent improvement in the performance of vector
load instructions is achieved. The preferching starts
when the scalar microcode on the VAX 9000 CPU
checks the stride of a VLDQ instruction . If this stride
is 8 bytes long (quadwords are contiguous in mem
ory), the microcode converts the instruction into a
block load instruction and sends it to the V-box .
The block load instruction directs the V-hox to issue
a series of block load requests for vector data. A

block load request moves an entire cache block
from the memory into the vector registers. These
blocks are loaded into both the cache and the vector
registers when they come from main memory.
(Bypassing the cached to load the vector registers
direct ly reduces the effect of a cache miss for vector
data.) Otherwise, the memory requests are done for
one register element at a rime.

In addition to converting the VLDQ to a block
load instruction, the scalar microcode also issues
preferch requests ro the M-box. The M-box deter
mines if the data is valid in the cache. If so, no fm
rher action is taken on the request . If not, the data
is requested from main memory. In this manner
severa l prefetch requests are started in successive
cycles. This method results in multiple memory
banks being used in parallel . Vector data comes
back to the cache at a rate of 500 megabytes
{MB) per second . The microcode stops issuing
prefetch requests when all the vector data has been
requested . This ensures that the requests from the
V-box do nor encounter many cache m isses.

Vector Address-Mask Unit
The vector address-mask unit performs the address
generation and memory requests needed to exe
cute the vector memory instructions VLD, VST,

VSCAT, and VGATH . I t also contains the vector mask
register and support logic for masked instructions.
Further, it contains the complete vector arithmetic
exception register {VAER), which it updates based
on the status sent by the vector add and vector mul
tiply units.

74

For vector memory i nstructions, t he vector

address-mask unit receives the base (starting mem
ory address of the vector) and stride (d istance
between vector elements in memory) of the instruc
tion from the vector control un i t in an indirect
manner through the vector register uni r . Both the
base and stride are 32 bits long.

For most vector load and store instructions, the
memory addresses for the vector data are generated
in an iterative fash ion . During the first cycle of exe
cution, the base address bypasses the address adder
and is immed iately sent to the M-box to request the
first element. Concurrently, the base and stride are
added together by the address adder and latched to
provide the address of the next elemenr. In the next
cycle, the latched address is sent to the M-box and
to the address adder, where it is added to the stride
to generate the next address. The process repeats
unti l al l element addresses have been issued . I n
tandem with the address generation, the vector
control unit directs the vector register unit to send
or receive the appropriate vector register element.

For vector gather and scatter instructions, the
memory addresses for t he vector data a re also
issued in an iterative fashion. During the first cycle
of execution, the base address is sent to the vector
address unit . In the second cycle, the vector control
unit directs the vector register unit to send the first
element of the offset vector to the vector address
unit , which adds it to the base and latches the result .
In the third and subsequent cycles, the resulting
address is sent to the M-box while the base and next
offset are added together. The process repeats unti l
all element addresses have been issued. In tandem
with the address generation, the vector control unit
directs the vector register uni t to send or receive the
appropriate vector register element .

For masked vector load and gather instructions,
addresses for all elements, masked and unmasked,
are sent to the M-box. However, for masked-our
elements, the request is modified from read to
read no-op (i .e . , do not actual ly perform the read).
This process prevents the M-box from raking cache
m isses and address translation exceptions on
masked-out elements. For masked-our elements,
the M-box returns a dummy value to the V-box,
which blocks the value from being written to the
vector register unit . The vector address unit directs
the control unit to block writes, based on the value
of the appropriate vector mask register bi t .

For masked vector store and scatter instructions,
although both m asked and unmasked elements

Vol. 2 No. 4 Fall 1990 Digital Tecbnicaljounral

are read from the vector register unit , masked-out
elements are stopped from reaching the M-box. The
vector address unit , based on the vector mask regis
ter, causes the E-box to discard the masked-out
element instead of forwarding it to the M-box.

As described earlier, a VLDQ instmction with a
stride of 8 bytes (unity stride) is converted by the
VAX 9000 scalar processor into a block load instruc
tion when sent to the V-box . The vector address
unit , in turn, issues a number of block toad requests,
each of which is for 64 bytes of data, to the M-box
with the appropriate address and selection bits.
There are eight selection bits, one for each quad
word in the block, which tell the M-box whether to
return the corresponding quadword to the V-box
for that block load request . Generation of these
selection bits by the vector address unit is com
plicated because the starting address of a vector in
memory is not aligned on a block boundary (i.e. ,
starts within the middle of a block). The bits also
depend on the vector mask register (for masked
block loads).

To handle unaligned, masked block loads, the
vector address unit must generate selection bits that
deselect those quad words which are not part of the
vector but l ie with in the same blocks as the first
and last elements of the vector. In addition, it must
deselect those quadwords within the vector that
are masked out by the vector mask register. Both of
the above requirements are handled by using an
extended version of the vector mask register to
generate the selection bits. This process involves
conceptually extending the vector mask register on
both ends with enough selection bits so that each
quadword has a corresponding selection bit . For
example, a vector starting at the last quadword of
one block requires that seven selection bits be
added at the beginning of the vector mask register
and one bit be added after the end .

Vector Multiply Unit
The vector multiply unit performs all of the vector
multiply and vector divide operations defined by
the VAX vector a rchi tecture: VVMU L , VSMUL,
VVDIV , and VSDIV . The uni t can perform either one
multiply instruction or one divide instruction at a
time, but cannot perform both types of instruc
tions simultaneously. In addition, the unit performs
exception checking and reporting, as required,
including floating overflow, floating underflow, and
d ivide by zero exceptions. The uni t consists of
four custom multipliers : a custom divider, a divide
unpack chip, and two packing chips. Physically,

Digital Technical journal Vol. 2 No. 4 ftttl 1990

Vector Processing on the VAX 9000 System

these chips reside on the VML multichip uni t of the
VAX 9000 CPU. The custom multipl iers and divider
are identical to those used in the scalar execution
engine (E-box).H

Multiplication By using four parallel multipli
ers, the pipeline latency through the multiplica
t ion logic for both single p recision (integer and
F_floating) and double precision (G_floating and
D_floating) is only three cycles. Thus, the vector/
scalar cross-over number for multiplication is quite
smal l . As a result , the V-box achieves good perfor
mance for vector multiply instructions with small
sized vectors as well as large. As a double-precision
vector multiply instruction executes, two 64 -bit
elements are received from the vector register unit
each cycle and are latched in the four custom
multipliers, each of which does a 32-bit by 32-bit
multiplication .

As shown in Figure 9, the element bits are dis
tributed in such a way that one multiplier operates
on the h igh-order bits of both elements; one multi
plier operates on the low-order bits of operand one
and the high-order bits of operand two; one multi
plier operates on the high-order bits of operand one
and the low-order bits of operand two; and one
multiplier operates on the low-order bits of both
elements.

During the next clock cycle, each of the four mul
tipliers unpacks its inputs and sends them through
a large multip l ication array, which produces one
64-bit partial product and latches the product .
During the th ird cycle, the pack chips (VMLA and
VMLB) add the four 64 -bit partial products together
to produce one resul t and prepare the result to be
written back to the vector register unit . In this
cycle, the four partial products are shifted accord
ing to their weight . Weight is determined in relation
to wh ich bits the mult ipl ier usee! to produce a
resu lt . For example, the multiplier that operated on
the high-order 32 bits (most significant bits) of both
elemems produces the most significant partial
p roduct bits , and the mult ipl ie r that operated on
the low-order 32 bits (least significant bits) of both
elements produces the least significant partial
product bits . The partial products must be aligned
or sh ifted properly before they are added together.
Once the partial products have been added, the
fina l product is then rounded, normalized , and
packed into the appropriate VAX integer or floating
poim format before being written into the vector
register unit in the next cycle.

The process and pipeline stages for single-preci
sion mult iplication (VYMULF and VSMULF) are

75

VAX 9000 Series

VREG_SOURCE1 [31 OJ VREG SOURCE 1 [63:32J VREG SOURCE 1 [3 10J VREG_SOURCE1 [63 32J

CUSTOM
MULTIPLIERS

VREG_SOURCE2 [31 :OJ VREG SOURCE2 [63 32J

PARTIAL_PRODUCT1 [47:0J PARTIAL_PRODUCT1 [63:0J PARTIAL_PRODUCT1 [63 OJ PARTIAL_PRODUCT1 [63:32J

COMMON
BETWEEN
MULTIPLIERS
AND
DIVIDERS

VMLAIVMLS

RESULTS FROM
DIVISION
ACCUMULATION

(FROM
DIVU)

EXCEPTION DATA AND
FINAL EXPONENT FROM
EXPONENT LOGIC

1 47 ol ���
j63 +

FINAL PRODUCT
3�1

(TO
DIVU)

VML_RESULT [63:0J
TO VREG

Figure 9 Vector Multiply Unit

similar to the process used for double-precision
multiplication. However, in single-precision multi
pl ication, only one multiplier chip is needed ro pro
duce the result and the pack chips do not need to
sum the partial product. Integer mult ipli ca tion is
slightly different from floating point multiplication
because i t does not need to be accumulated or
rounded. Thus, the correct product is produced
by one multiplier. The result bypasses the accumu
lation and rounding logic and proceeds directly
into the packing logic to be sent to the vector regis
ter unjt.

The exponent handling for both multiplication
and division is performed by the same logic on the
packing chips. Depending on the instruction being
executed, the exponent is either added (multipli
cation) or subtracted (division). The resul t of this
operation is then piped to the next stage and the
position of the h idden bit is determined . If the frac
tional portion of the data must be shifted to ensure
the hidden bit is in the correct position, the expo
nent is then incremented or decremented accord-

76

ingly. The normalize count (i.e. , sh ift count) is used
to select the correct final exponent . Overflow and
underflow exception checking can only be detected
and reported after the final exponent is selected . If
an exception is detected, then a reserved operand is
written to the appropriate vector register element.
The first stage of the exponent logic also checks for
divide by zero and reserved operand exceptions.

Division Vector division is a variable-cycle func
tion. The number of cycles depends on the format
of the operands. The custom divider is capable of
producing six quotient bits per cycle. Therefore,
F _floating point division is performed in 7 cycles,
G_floating point in 1 2 cycles, and D_floating
point in 13 cycles. Because of the variable number
of cycles in a divide instruction, no other instruc
tion can execute in the V-box while a divide is in
process. Also, because of the iterative nature of divi
sion (i.e. , one division must be completed before
another can be started), the instruction cannot be
pipelined.

Vol. 2 No. 4 Fa/1 /'J'J{) Digital Tecbnicaljounwl

As a vector d iv ide instruction executes, two
64-bit elements are received from the vector regis
ter uni t each cycle and are latched i n the di vide
unpack chip. The elements are unpacked, and the
fractional portion of the elements is sent to the etJS
tom div ider in 32-bit sl ices. The exponent portion
is sent to the shared exponent logic on the packing
chips, as described in the Multiplication sect ion .
During this cycle, time-critical va lues, such as com
plemented element values and first-cycle quotient
bits, are calculated and forwarded to t he custom
divider.

When t he div ider receives the data, i t uses an
iterative algorithm to produce six quotient bits per
cycle. The quotient bits produced are then sent to
the packing chips, which may have to increment
the quotient, depending on the value of subsequent
quotient bits. The div ider instructs the quotient
accumulation logic whether or not incrementing is
necessary. The partial quotient, once decided, is
held in a bank of l atches unti l a l l the quotient bits
are received . When the entire quotient is available,
the result is rounded, normal ized , and packed by
using the same logic path as multiplication . A mul
tiplexer switches this packing logic between the
multiplication and division logic.

Performance Characteristics

As of this writing, testing of the vccror performance
of the VAX 9000 system has only just begun. How
ever, some preliminmy resu lts are p resented in
Table 3 . We expect that these results will improve
as test ing continues and more code i s opt imized
to take advantage of the chaining and overlapping
provided by the V-box.

Chaining and Overlapping

Because of the design of the vector register un i t ,
the V-box can concurrently execute a vector add-

Table 3 VAX 9000 Model 21 0 P rel imi nary
Performance Double-precision
M FLOPS , U n iprocessor

Size Vector

Peak rate NA 1 25

LFK (Geometric mean) 44 1 1 3. 2
LFK (Arithmetic average) 44 1 20.6

L IN PAC K 1 0002 80

FFT 4096 26
Convolution 1 50 X 1 500 99. 1 5
Matrix mult ip ly 642 1 1 1 .36

Digital Tecbllicaljournal Vol. 1 No. -1 Fall 1990

Vector Processing on the VAX 9000 System

class instruction , vector multiply instruction, and
vector memory instruction. Unlike the VAX 6000
Model 400 system, vector register conflicts between
these instructions have little effect on overlapping. ;

With the VAX 9000 system, a conflict only delays
t he execution of the subsequent vector instruction
by one or two cycles at most.

However, the overlapping behavior of the V-box
is sensitive to the issue order of vector instructions.
If two vector instructions executed by the same
V-box unit are issued one after the other, the second
instruction is delayed until the V-box unit has fin
ished executing the first . In addition, vector i nstruc
tions issued after a vector memory instruction or
divide instruction, do not begin execution unti.l the
previous instruction completes. A general ru le in
scheduling code for the VAX 9000 V-box , is to gen
erate, whenever possible, instruction triples, where
the first two instructions are a vector add-class and
vector multiply instruction and the last instruction
is a vectOr memory or vector divide instruction .
Failing that, at least one vector add-class or vector
multiply instruction should be issued before a vec
tor memory or vector divide instruction.

The following code examples demonstrate the
usage of the VAX vector instruction set and the over
lapping behavior of the VAX 9000 V-box. (Note: It
should be assumed in the examples that all arrays
are 8-byte double precision .)

In the following DAXPY inner loop example, the
first two VLDQ instructions do nor overlap. How
ever, the VSM ULD, VVA DDD , and VSTQ instructions
do overlap.

D o i = 1 , 64
D Y (i) = DY (i) • DA x OX (i)

e n d d o

vecrorizes as:

V L D Q o x , K8 , v o ; L o a d ve c t o r O X
V L D Q / M D Y , K 8 , V2 ; L oad ve c t o r D Y

; w i t h m o d i f y i n t e n t
VSMULD D A , V O , V 1 ; V 1 = D A * D X
VVADDD V 1 , V2 , V3 ; V 3 . V 1 . D Y
V S T Q V3 , D Y ' K 8 ; S t o r e v e c t o r D Y

The first two VLDQ instructions do not overlap in
the fol lowing MERGE example,

Do i = 1 , 64
a (i) = b (l) - c (i)
i f (a (i) . g t . 0) t h e n

b (i) = a (i)
e l s e

b (i) = d i)
e n d i f

e n d d o

77

VAX 9000 Series

vectorizes as:

V L D Q
V L D Q
VVSUBD
V S T Q
V S L S S D

b , #8 , v o
c , #8 , V 1
V O , V 1 , V 2
V2 , a , # 8
#1\ X O , V2

; Lo a d ve c t o r b
; L o a d ve c t o r c
; b - e
; S t o r e v e c t o r a
; Te s t a (•) a n d s e t rna s k
; i n VMR . < VS C M P
; p s e u d o - o p d o i n g L e s s
; T han S i g n e d t e s t)

VVMERGE V 1 , V2 , VO ; Me r g e a and c i n t o b
; u s i ng m a s k i n VMR

V S T Q V O , b , #8 ; S t o r e ve c t o r b

However, the VVSUBD instruction does overlap

with the VSTQ instruction. Both the VSLSSD

(VSCMP) and VVMERGE instructions are executed by

the vector add unit. Therefore, these two instruc

tions do not overlap. However, the VVMERGE
instruction does overlap with the VSTQ instruction.

In an IF-THEN-ELSE example, such as the

following,

Do i = 1 , 64
i f (a (i) . g t . 0) t h en

b (i) c (i)
e l s e

b (i) c (i) I a (i)
e n d i f

e n d d o

vecrorizes as:

VLDQ a , # 8 , VO ; L o a d vee t o r a
V S L S S D #1\ X O , V O ; T e s t a (•) a n d s e t mas k

; i n VMR . < VS C M P
; p s e u d o - o p d o i n g L e s s
; T h a n S i gn e d t e s t)

V L D Q c , #8 , V 1 ; L o ad v e e t o r c
VVD I VD / 0 V 1 , V O , V2 ; Ma s k e d d i v i d e o f c by a

; f o r VMR (i j = 0
V ST Q / 1 V 1 , b , #8 ; S t o r e " t h en " p a r t of b (•)
V S T Q / 0 V 2 , b , #8 ; S t o r e " e l s e " p a r t of b(*)

Nothing overlaps the first V LDQ instruction, but

the VSLSSD instruction does overlap the second

VLDQ instruction. Nothing can overlap with the
VVDIVD instruction. Thus, the VSTQ instruction

does not begin execution until the VVOIVD instruc

tion completes. The remaining VSTQ instruction

waits for the first VSTQ instruction to complete.
In the following scatter-gather example, none of

the instructions is overlapped.

Do i = 1 , 64
i f (a (i) . e q . 0) t he n

b (i) = c (i) / d (i)
e n d i f

e n d d o

78

vecwrizes as:

V L D Q
V S E Q L D

I O TA

MFVCR

MTVLR

VGATHQ

VGATHQ

VVD I VD
V S C A T Q

a , #8 , V O
#J\ X O , VO

#8 , V 1

R O

R O

c ' V 1 , V 2

d , V 1 , V3

V2 , V3 , V4
V4 , b , V 1

; L oad ve c t o r a
; T e s t a (•) f o r z e r o a n d
; s e t ma s k. C VS C M P p s e u d o
; o p d o i n g E q u a l t e s t >
; Ma k e c o mp r e s s e d
; ve c t o r o f o f f s e t s
, w r i t e s i z e o f ve c t o r
; t o V C R
; Move V C R i n t o R O
; C MF V P p s e u d o - o p)
; L o a d n ew V L R v a I u e
; C MTVP p s e u d o - o p)
; Ga t h e r v e c t o r c
; u s i n g o f f s e t s i n V 1
; Ga t h e r v e c t o r d
; u s i n g o f f s e t s i n V 1
; D i v i d e c b y d
; S c a t t e r v e c t o r b u s i n g
; o f f s e t s i n V 1

I t should b e noted i n this example that the

VSEQLD and the IOTA instructions do not overlap.

This lack of overlap occurs because the IOTA

instruction is actually done with microcode on the

E-box, and the IOTA instruction cannot begin exe

cution until the VSEQLD instruction has computed
all the new vector mask register bits. The vector

register access instructions (MFVCR and MTVLR)

take only a few cycles and do not significantly affect
the overlapping of other vector instructions.

Summary

By taking advantage of key features of the VAX

vector architecture, such as instruction overlap

ping, imprecise exceptions, and asynchronous

interaction with the scalar processor, the vector

processor of the VAX 9000 system provides super
computing performance for computationally inten

s ive applications. Through the use of barber poling,

the vector processor can overlap two vector arith

metic instructions with one memory instruction

to deliver a peak double-precision performance of

125 MFLOPS.

Acknowledgments

The authors wish to acknowledge the technical
contributions of the following individuals to the

VAX vector architecture and the VAX 9000 V-box

design : Wayne Cardoza , Dave Cutler, Tryggve

Fossum, Rich Grove, Kevin Harris, Steve Hobbs,

Brian Koblenz, D w ight Manley, Dave Orbits ,

Bob Supnik, Mike Tehranian, Cheryl Wiecek, and

Rich Witek.

Vol. 2 No. 4 Fal/ 1990 Digital Tecbntcaljournal

References

1 . Russel l , "The CRAY - 1 Computer System ,"
ACM Proceedings, vol . 21 , no. 1 (January 1978):
63-72.

2. VAX Vector Processing Handbook (Maynard :
D igital Equipment Corporation , Order No.
EC-H04 19-46/89, 1989).

3. R. Brunner, VAX Architecture Reference Manual

(Bedford: Digital Press, Order No. EY -F576 E- DP,

1990).

4 . D. Fenwick et a l . , "A VlSI Implementation of
the VAX Vector Architecture," Proceedings of
COMPCON '90 (IEEE, Spring 1990).

Digital Tecbntcaljournal Vol. 2 No. 4 Fall 1990

Vector Processing on the VAX 9000 System

5. CRA Y-2 Compute-r System Functional Descrip
tion (Cray Research, Inc , 1985).

6. W. Buchholz, "The IBM System/370 Vector Archi
tecture, " IBM Syste-ms journal, vol. 25, no. 1
(1986): 51 -62 .

7. D. Marshall and]. McElroy, " VAX 9000 Pack
aging- The Multichip Unit ," Proceedings of

COMPCON '90 (!EEE , Spring 1990).

8. M. Adiletta et al . , "Semiconductor Technology
in a High-performance VAX System ," Digital

Technical journal, vol . 2 , no. 4 (Fall 1990, this
issue): 43-60.

79

Peter B. Dunbeck

Richard]. Dischler

james B. McElroy

Frank]. Swiatowiec

HDSC and Multichip Unit
Design and Manufacture

The VAX 9000 system effectively integrates state-ofthe-art packaging and inter

connects with advanced integrated circuits to achieve a short machine cycle time

(16 nanoseconds) and a high rate of instruction execution. To meet highjrequency

electrical signal and pin count requirements for the system, engineers chose tape

automated bonding technology and consequently conceived and developed the high

density signal carrier (HDSC). Tbe HDSC offers densities three to five times greater

than conventional printed circuit boards. This unique technology is manufactured

using semiconductor and advanced printed circuit board tecbniques. The HDSC is

at tbe heart of the multichzp unit, a bigh-performance logic module, with wbicb tbe

VAX 9000 CPUs and system control unit are constructed.

Over the past decade, advances in the performance
of integrated circuits (ICs) have outpaced advances

in packaging and interconnect technologies. Thus a

high-performance mainframe with conventionally

packaged bipolar integrated circuits would experi
ence interconnect delays that account for more

than 50 percent of the system cycle time. Key to

optimizing high-end mainframe performance, then ,
is the effective integration of state-of-the-art pack

aging and interconnects with advanced integrated

circuits. The high-density signal carrier (HDSC) and

the multichip unit (MCU) are proprietary tech

nologies that shrink interconnect paths and thus

reduce the distance and electrical loading of signals

between chips. These technologies use conven

tional semiconductor and p rinted circuit board

(PCB) equipment in many areas of manufacturing

to improve reliability at a competitive cost. The

result is shorter machine cycle time and higher

instruction execution rate. The VAX 9000 CPUs and

system control unit (SCU) are constructed entirely

of multichip units on large planar modules. The SCU
is composed of arrays of 6 multichip units, and the

CPUs are composed of arrays of 16.

Multicbip Unit Design Goals

Beginning at the concept level and throughout the

development and test phase, signal integrity con

siderations guided t he development of the HDSC

and the multichip unit . Designers had to ensure

that the fas t signals woul d not be d isturbed by

noise. The cycle time goal for the VAX 9000 system,

80

16 nanoseconds (ns), al lows the system to operate at
30 VAX units of performance (VUPs).

To transmit electrical signals quickly between

chips, wiring paths must have controlled ratios of
wire size to distance from voltage planes. These

impedance-controlled paths allow radio-frequency

computer signals to propagate with minimal dis

tortion . Prevention of noise on the signals is
paramount and many details of the physical imple

mentation, including spacings between wires, are

critical to ensuring signal integrity.

To meet the cycle time goal, high-frequency elec

trical signal concerns needed to be considered in

the design, concerns that would have been negligi

ble for slower speed signals. Due to the physics of

electrical fields, as electrical signals switch at high

frequencies, they succeed in holding their shape

(data) only if they are fed power extremely quickly,

and if they are given short paths of uniform proper

ties on which to travel . Due to the amount of power

and the short amoum of t ime a signal is given tO
arrive on chip, conventional chip carrier packages

were disallowed for the VAX 9000 system. The sig

nal paths had to be very short to be virtually noise

less. To achieve this objective, engineers decided to
enhance tape automated bonding (TAB) technology

with a ground plane for electrical control of the

wire impedances (paths). This reduction in chip
package size also al lowed all of the chips for the sys

tem to be packaged into a tight area. Consequently,

to fit wires between chips, extremely dense HDSC

technology was conceived and developed .

Vol. 2 No. 4 Fall 1990 Digital Tecbn icaljou,-nal

The multichip unit also required careful thermal
design attention because each chip consumes up to
30 watts. Moreover, most multichip units contain

four to eight of these chips plus self-timed RAMs
(STRA Ms). The key to success for the VAX 9000
program was balancing the trade-offs between per
formance require ments and technology develop

ment risks.
To meet the electrical and density requirements

for the machine, engineers specified the fol lowing

for the multichip unit :

1 . Series-terminated output drivers were required

on chip. Therefore, external resistOrs are not

needed on the mul tichip units or programmed
into the design elsewhere. These external resis

tors take up space and lower re liabil ity.

2 . TA B was specified for manufacturing reasons.
Short TAB tape was required to reduce switching
noise on chips. Noise would have been generated

if the TAB w ires were longer. In the case of the

noisiest chips, a ground plane was added to the
tape to reduce noise.

3 HDSC etch had to be two routing layers of IS
micron by 9-micron w ires on 75-micron centers
to meet the density, resistivity, crosstal k, imped

ance and other goals.

4 . Four power planes, each one powered from two
sides, were required to distribute three voltage

rai ls with acceptably high conductivi ty.

S . Thin d ielectric separates the power planes and

produces h igh capacitance which filters noise

and improves performance. This capacitance

el iminates the need for d iscrete parts which con
sume valuable space and lower rel iability.

6. Impedance control of the connectors on the
multichip unit was needed to prevent signal dis
turbance. Ru les were generated for the number

of ground pins.

The heart of the multichip unit is the H DSC. The
H DSC is an imerconnect technology consisting of
nine metal layers separated by polyimide dielectric
and mounted on a copper baseplate. The top metal
layer is a pad layer used to solder-attach all of the
i ntegrated circuits and connectors. The four metal
layers below make up the signal core. The signal
core is a controlled-impedance, dual buried strip

l ine i nterconnect system used to wire all integrated
circuits to each other and to the connectors. The

power is brought from the perimeter of the H OSC to
the integrated circuits through the bottom four

metal layers.

Digital 1ecbn icaljournal Vol. 2 1\i; 4 Fall /'J'JI)

H DSC and Multichip Unit Design and Manufacture

All i ntegrated circuits i n the multichip unit are
attached to the HDSC by a tape automated bonding
(TAB) process. The VAX 9000 system uses four types

of ch ips, all of which have emitter coupled logic
(ECL): gate arrays, custom chips, and two types of

STRAMs. At each chip site, a cutout in the HDSC
a llows the chip to directly attach to the baseplate.
The signals on and off the multichip unit are carried
by four signal flex connectors which attach to the

perimeter of the H OSC . The signal flex connector

provides a separable interface to the planar board
and extends the controlled-impedance electrical

environment of the HOSC . Power is brough t

through two power connectors attached to oppo
site sides of the HDSC . The signal flexes, the power

connectors, and the baseplate are attached to the

multichip unit housing. The housing provides the
structure for the mult ichip unit and holds the com
ponents needed to position and w ipe the signal

flex. The chips and HDSC surface are covered by a

plastic l id .

The high-powered ch ips are efficiently cooled by

a short conductive path through the back of each

chip. The thermal power is conducted from the
chip to the baseplate and into a pin fin heat s ink
over which air is impinged to remove the heat.

The following sections describe the implementa

tion of the technology.

1be HDSC Design and

Manufacturing Process
The goal for the HOSC project was to produce a

h igh-densi ty, h ig h-performance, manufacturable
printed circuit board . This goal was achieved. The
density of the HDSC is three to five times greater
than that of conventional printed circuit boards.

Even at this density, the HDSC maintains the signal
integrity of bipolar i ntegrated circuits with edge
speeds of 200 picoseconds. This section describes

how the manufacture of the HOSC pushes the l imits

of printed circuit board and semiconductor equip
ment into new types of applications. We a lso
address the integration of computer-aided (CAD)
tools, process controls, and test feedback, which
helped us to achieve the results we sought.

HDSC Technology

As noted earl ier, the H OSC has nine copper layers

for power and signal d istribution . The insulating
materia l , polyimide, has a low dielectric constant

of 3 .5 as compared with oxide or nitrides used in

integrated circuits or as compared w ith ceramic,
which is used for hybrid circuits. The interconnect

is laminated to a copper baseplate to provide

8 1

VAX 9000 Series

mechanical structure as well as attachment of the
multichip unit heat sink.

The conducting layers consist of the following:

• Two layers for signal distribution

• Two layers that serve as signal reference planes

• Four layers for power distribution

• One layer with bonding pads to attach the TA B

and connectors

The signal distribution is a single x-y pair that
uses the reference planes to create a dual strip
l ine interconnect. This interconnect provides a
controlled-impedance signal path with minimal
crosstal k . Table 1 l ists the electrical and physical
design parameters of the HDSC .

Process Overview

The HDSC is manufactured by two types of pro
cesses: core processing and assembly processing.
Figure 1 i s a diagram of the HDSC process flow.

The core process, described funher below, uses
semiconductor manufacturing equipment and is
s imilar to the manufacturing process for the back
end of an i ntegrated circuit . Two cores are manu
factured: a signa l core for strip-line signa l inter
connect, and a power core for the four planes
(or layers) that d istribute power throughouc the
finished HDSC .

The second process, assembly, uses advanced
printed circuit board techniques to laminate and
interconnect the signa l core and power core. The
completed HDSC has solder pads to accept the outer
lead bond of TA B integrated circuits, signal flex, and
power t1ex . The HDSC is tested with a custom flying
probe tester. Tests are made to ensure the HDSC i s
functional and meets electrical parameters.

Table 1 HDSC Physical and Electrical
Design Parameters

Line pitch 75 m icrons

Line width 1 8 microns

Line thickness

Dielectric thickness

Dielectric constant

Line impedance

Line resistance

Crossover capacitance

C rosstalk

Propagation delay

82

1 0 microns

25 microns

3.5
60 ohms

1 /0 oh m/centimeter

3 . 6 femtofarads

5 . 1 percent max im u m

6 6 picoseconds/
centimeter

CORE PROCESS FLOW r - - - - - - - - - - - - - - - - - - -
1 SIGNAL CORE POWER CORE

I

: � � :
I • 4 METAL LAYERS • 4 METAL LAYERS

I
I • 5 POL YIMIDE LAYERS • 5 POL YIMIDE LAYERS I
I • COPPER LINES ETCHED • WHOLE PLANES I
I

• VIAS I
I * * I

: I TEST I 1 I TEST I :
_ _ _ _ _ _ _ _ _ l _ _ _ _ _ _ _ _ _ j

ASSEMBLY PROCESS FLOW - - - - - - - - - -,
I • SUBSTRATE REMOVAL I I • LAMINATION I I • DRILL • LASER CUTTING I I • PAD LAYER
I • BASE PLATE I
- - -�- - J

TO MCU

Figure 1 HDSC Core and Assembly Process Flow

Core Processing The process for the manufacture
of the signal and power cores, or the core process,
consists of alternating between copper deposition
and polyimide coating unti l the completed inter
connect layers are built on the metal wafer. The pro
cess is performed on a metal substrate shaped like a
6-inch semiconductor wafer. Copper layers are
deposited by a combination of sputtering and p lat
ing techniques. Patterns in the copper that become
signal traces are generated by a semiconductor
phorolithographic technique. First, a photoresist is
applied to the metal wafer. The resist is then
exposed to the pattern in the mask that is held by
the semiconductor wafer al igner. This pattern is
then developed in the resist and etched into the
copper. The remaining copper thickness is then
added by plating. Another resist pattern is devel
oped over the plated signal traces to define where
a copper connection between interconnect layers
will occur. This connection is cal led a via post, and
it is also formed by a plating process.

Polyimide is spun on to the wafers by integrated
circuit photoresist spin tracks. The relatively thick
polyimide (25 microns at signal layers) helps to
planarize the surface of the wafers and also to cover

Vol. 2 No. 4 Fall I<J<JO Digital Tecbnicaljountal

the patterned copper l ines and copper posts. Semi
conductor photolithography equipment is also
used to generate patterns in resist through which
holes (extensions of the via post) are plasma-etched
in the polyimide. These vias are filled at the next
copper deposition to create a connection between
patterned layers.

Both signal cores and power cores are electrica l ly
tested to ensure electrical functionality.

Assembly Processing To complete an H DSC , a
signal core is matched to a power core. The metal
wafer that acted as a substrate is then removed, and
the signal and power cores are laminated together.
Connections from the power core to the signal core
are made by dri l l ing and then plating up through
the drilled holes. The plating and etching processes
used to form the plated-through holes also produce
copper pads on the bonding layer. Solder is
screened and reflowed onto the bonding pads. Die
site holes which provide openings for bonding the
chips to the baseplate are cut through the laminated
signal and power cores (HDSC decal). A laser cuts
out the die s ites and trims t he H DSC decal to its
final size. The assembly is complete when the inter
connect is laminated to a baseplate which provides
mechanical structure.

HDSC Test Process

The goal of the HDSC test process was to ensure
that the physical technology met the VAX 9000 sig
nal integrity requirements, discussed earlier in this
paper. Equally important was to ensure that the
technology was manufacturable and ver ifiable
(measurable). Engineers had to accurately convert
design information to masks and to verify HDSC
electrical results by testing. We therefore developed
modeling and measurement techniques to establish
physical and electrical design rules; implemented
CAD tools to verify these design ru les; developed
software to generate test vectors from the CAD data
base; and also developed production HDSC testers.

Modeling and Measurement Techniques To deter
mine what trade-offs wouLd be required between
the VAX 9000 signal integrity and the H DSC physical
manufacturing capabil ities, engineers needed both
modeling and empirical measurement techniques.
A software tool based on Monte Carlo Analysis
was developed that could drive a three-dimensional
capacitance mode l . This tool p redicts electrical
parameter sensitivity to different physical pro
cessing variations. Early in the project, processing

DiRital Technical journal Vnl. 2 Nn. 4 Fall /<J<JO

HDSC and Multichip Unit Design and Manufacture

engineers estimated the expected manufacturing
distribution of critical signal core dimensions. Once
HDSCs were manufactured, actual processing dis
tributions were fed into the model which predicted
yield against the specification. Based on this, the
processes were adjusted to maximize yield. Models
and electrical results were verified by time domain
reflectance (TDR) and resistance-inductance-capaci
tance (RLC) measurements.

The high-frequency measurements necessary to
characterize the interconnect were extremely sensi
tive to probe card inductance and capacitance and
probe contact resistance. Custom test fixtures were
designed to perform the measurements.

H igh-frequency test measurements in the pro
duction environment are not practical , but w e
determined that resistance and capacitance testing
could be used instead to verify the HDSC signal
integrity. A production flying probe tester w as
developed to test H DSCs. Once again, probe para
sitics were large compared to the type of measure
ments necessary. Custom probe design, calibration
methods, and software to drive the tester again
were necessary. From H DSC graphic design files,
test capacitance Limits for every signal net are gener
ated, w hich ensures electrical functionaLity as well
as signal integrity. In addition, the resistance of
every plated-through hole is measured , the integrity
of power planes verified , and resistance and leakage
measurements performed on test structures w ithin
the HDSC .

CAD The VAX 9000 system design includes net
l ists and graphical files of the HDSC masking layers.
To this data is added process control monitors,
al ignment m arks, and pattern modi fications
required to meet the process design rules. After
modifications, all data is verified by software that
checks design rules and electrical rules.

The data is used in a variety of applications. F irst
it is converted to pattern-generation format so that
from this data masks can be written and an inspec
tion file can be generated to verify the mask-making
process. The i nformation is also used to drive
numerical ly controlled equipment, such as the
dril ls and lasers that perform die site cut outs.
Finally, it is used to create a net-capacitance test file
which drives the H DSC production testers.

MCU Design and Manufacturing

The multichip unit (MCU) takes ful l advantage of
the integrated circuit and H DSC technologies to pro
duce a high-performance logic module. The major

83

VAX 9000 Series

components of t he mult ichip un i t are shown in
Figure 2 . The components. their functions. and the
assembly and test process are d iscussed in the next
two sections. Table 2 summarizes the multichip unit
specifications.

A l l units have certain features that are fixed,
regardless of logic design. These include the clock
distribution chip, serialization pattern, signa l con
nector, power connector, housing and heat sink .
The VAX 9000 system uses 20 unique logic design
implementations, or options. The multichip unit
features that make an option un ique are the gate

SIGNAL FLEX
CONNECTOR

ELASTOMER TRAY
SUBASSEMBLY

RETAINER �
SPRINGS IL

ELASTOMER
SUPPORT BEAM

arrays (up to 8), the STRAMs (9 replace I gate array,
24 replace 3 gate arrays), ancl the HDSC .

TAB Semiconductors
All semiconductors in the multichip units are inte
grated circuits. Discrete devices and passives which
consume more space and display lower rel iabil ity
are not used. TAB is a chip-co-substrate interconnect
made of layers of copper and polyimide fi lm . The
copper signal l ines are patterned ro mate with gold
bumps on the IC: perimeter and with solder-plated
pads on the H DSC.

MCU LID

POWER
CONNECTOR

PIN FIN
H EAT SINK

HOUSING

Figure 2 Exploded View of an MCU

84 Vol. 2 No. ·i Fa/1 19')0 Digital Technical journal

Table 2 Summary of MCU Specifications

Maximum power
d issipation

Maxim u m IC junction
tem perature

Maximum number of
VLSI chips

M in imum chip lead
pitch

Size
Plane
Height

M in imum pitch on
planar modu le

Weight

Clock input freq uency

Signal 1/0 per MCU

S igna l rise t ime

Voltage levels

Maximum current

270 watts (air cooled)

85 degrees Celsius
@ 25 degrees Celsius
room temperature

72

200 microns

1 4 . 1 2 x 1 3. 2 1 centimeters
5.44 centimeters

1 4 . 38 x 1 3.46 centimeters

1 .59 ki lograms
(with heat sink)

320 to 580 megahertz

800
600 picoseconds

2 p lus ground

40 am peres per voltage
level

The TA B for the gate array and most of the custom
chips is a two-metal- layer tape with 360 leads. A
cross section of the gate array TAB is shown in
Figure 3. The dielectric layers are polyimide fi lm.
One metal layer contains the etch l ines used for
both power and signal 1/0 and the leads to bond to
the chip and H DSC: . The other layer is a reference
p lane to establish contro l led impedance and to
minimize the inductance of the power and ground
paths. The reference p lane is connectec.J to the
ground leads by vias etched through the Kapton
and plated up. The gate array power is brought in
through 104 power (two voltage levels) and ground
leads. A ll of the signa l leads are 60 ohms control led
impedance. The leads are 35 microns thick and cop
per coated with about 0. 5 m icron of electroless t in.

As shown in Figure 3, the TAB has an inner lead
bond (I LB) pi tch of 100 microns and an outer lead
bond (OLB) pitch of 200 m icrons. The total span of
the TAB when mounted is 2 .4 cent imeters. The leads
are formed near the OLB to provide strain relief for
the !LB and to protect the OLB from thermal stress.
·ro minimize propagation time and noise, the length
of the signal l ines h:.�s been minimized by keeping
the OLB pitch to the min imum compatible with
manufacturing processes. The bond at the IC (at the

ILB) is a gold-tin eutectic formed by gang thermal
compression bonding.

Digital Tecbnicaljournal Vol. .! ,\(>. 4 Fall 1<)<)0

HDSC and Multicbip Unit Design and Manufacture

The clock distribution custom chip (CDxx) and
the STRAM use single-metal-layer tape with poly
imide d ie.l.ectric . The CDxx has 252 total leads
with 84 power and ground leads. The COx:<. has the
same pin pitch as the gate array. The VAX 9000
system uses two sizes of STRAMs (I K by 4 bits and
4K by 4 bits) that have TAB tapes of different sizes.
The STRAJ'vls also use a single-metal-layer tape with
48 leads. The minimum ILB pitch is 250 microns
and the minimum OLB pitch is 4 50 microns. Single
metal-layer tape was selected for these devices
because it was less expensive than two-metal-layer,
and two-metal-layer tape was not needed because of
the shortened lead lengths on the STRAMs. Single
metal-layer tape was acceptable for the CDxx chip
because all the outputs are differential and syn
chronous. Noise cancellation was guaranteed .

Al l devices that use TAB are sh ipped in a 35-mil l i
meter slide carrier. The devices are encapsulated in
epoxy to minimize i nfiltration of moisture or corro
sive ions and to reduce damage due to handling.
The back sides of the chips are bare si l icon because

INTEGRATED
CIRCUIT

ENCAPSULATION

200 MICRON
PITCH

INNER LEAD
BOND

TAB

HIGH DENSITY
SIGNAL CARRI ER

OUTER LEAD
BOND

INTEGRATED
CIRCUIT

Figure 3 Isometric of a Gate A n-ay
Showing Features oftbe TAB

85

\J\X 9000 Series

no plating is required for epoxy die attach. The
epoxy die auach is filled with m icroscopic particles
to enhance the thermal conductivity while main
taining electrical isolation bet ween chips.

Signal Flex Connector

The signal flex connector is a high-density, con
trolled-impedance connector used to transmit sig
nals between the HOSes :md the planar module.
Each multichip unit has four flex connectors with
a combined signal I/O of 800 in an area less than
40 square centimetcrs. Figure 4 shows a cross sec
tion of one signal flex connector. The body of the
connector is a two-metal-layer flex print with 50-

and 60-ohm signal lines. The ground plane in the
flex circuit is used as an AC return path . No power is
carried through the signal flex . The signal plane
contains 200 etch l ines with a raised gold bump on
each at the planar module interface. The connec
tion to the H DSC is a solder bond similar to the sol
der bonds for the TAB devin:. A window is opened
through the polyimidc to al low the formation of
canti levered, exposed, solder-plated leads.

The raised bump on the flex circuit concentrates
the contact force into a smal l area. The bump is
sol id copper that is plated over wi th nickel and hard
gold. The force on the bump is generated by com
pressing a molded sil icone rubber elastomer. The
compression of the connector causes the tkx
frame to engage a cam on the housing and wipe the.:
contacts across the planar module pads. The con
nector is compressed, nominal ly, 1 . 27 mm and
wipes 0.46 mm . The bottom of the elastomer mates
with a tray which has a contoured surface to vary
the compression along the length of the elastomer.
This contoured surface improves the uniformity of
the force that the humps exert on their pads. The
connector has been designed to gem:rate 100 grams
minimum load on all bumps. The wipe action and
the bump force of the connector minimize the
effect of dust and environmental fi lms on the.: mat
ing surfaces.

Power Connector
The power consumed by the mult ichip unit IS
brought in through two power connectors mounted
on opposite sides of the I !DSC . The connector is
composed of a flex circuit , a connector, and decou
pling capacitors. The flex circuit is solder honded to
large pads on the I I DSC surface. The flex has three
copper conductive planes separated by polyimide
dielectric. The connector has st::�mpcd metal con
tacts soldered into the llcx circuit and assembled

into a plastic housing. The connector plugs into flat
blades on the bus bar of the p lanar module assem
bly. The decoupl ing capacitors on the power flex
circuit fi lter the medium-frequency switching noise
on the MCU and the MCU power bus.

Thermal Design
The multichip unit was designed from conception
to provide an efficient cooling path for the inte
grated circuits. Figure 5 shows a cross section of the

SIGNAL FLEX

CIRCUIT

PLANAR MODULE

E LASTOMER FLEX CIRCUIT

BUMP

ELASTOMER

ELASTOMER TRAY

Figure ,j Signal Flex Connector with
Detail of Bump

Vol. 2 No. ·1 Fall /'J')O Digital Tecbn icaljountal

multichip unit . The heat dissipated by the chips is
conducted through the sil icon and the die attach
into the baseplate. As mentioned above, the die
attach is an epoxy heavi ly fil led with microscopic
diamond particles to increase thermal conductivity.
The heat spreads out in the copper alloy baseplate
and is conducted across a dry interface to an alu
minum base of the pin fin heat sink . The heat sink
has 600 aluminum pins, each 0.20 centimeters in
diameter, pressed into the base. Air plenums in the
cabinets direct at least 14 .6 liters per second of air
into each multichip unit heat sink. The thermal
resistance for a 30-warr gate array is less than 2 .0
watts per degree Celsius which gives a junction
temperature of 85 degrees Celsius with room air at
25 degrees Celsius. This low junction temperature
is a critical part of the h igh reliab i l ity of the mul ti
chip unit.

Clock Distribution

The system clock on the VAX 9000 system is
distributed to each of the multichip unit clock
distribution chips (CDxx). The CDxx generates 4 0
differential outputs which are routed through
equal-length etch to the other chips. The CDxx also
distributes and controls the scan l ines that test the
unit both in manufacturing and in the field . The
scan l i nes a lso al low the unit serial number and revi
sion status to be read by the system console.

Multicbip Unit Manufacturing

Figure 6 shows the manufacturing process flow,
which has three major work centers:

• 54 -class assembly and inspection

• P lOOO assembly and inspection

• Test and diagnose

I n the 54-class process, TAB semiconductor
devices arc assembled to the H DSC substrate, result
ing in the subassembly known interm. l ly as a 54-
class module. In the P 1000 process, connector and
housing components are assembled . At the last
major center, the test process, final units are tested
and, if necessary, diagnosed. A shop floor control
system tracks the units through the l ine and pro
vides critical component and process trace infor
mation. In addition, this control system is used to
monitor process parameters to ensure control of
the l ine and consistent product quality.

The fol lowing section provides i nsight into
several of the process technologies we used to meet
the manufacturing goals of the VAX 9000 system.

Digital Teclmicaljournal Vu/. 2 No. 4 Fall /'J'JO

HDSC and MultichtP Unit Design and Manufacture

� - - : '" - · ·
r--'------ - -:'---------'-,

Figure 5 Thermal Path

TAB and Flex Circuit Bonding

BASE
PLATE

PIN FIN
HEAT SINK

The i nsertion and soldering of leads is the most
critical step in the multichip unit manufacturing
process. Single-lead and multiple-lead gang bonding
approaches were both considered . Gang retlow sol
dering is an effective way to achieve repeatable, reli
able connections for both the TAB semiconductors
and the signal tlex circuits. Early development work
on manual machi nes required operator action for
lead forming, lead al ignment, and gang bonding.
Today, critical process parameters - time, pressure,
temperature - are computer controlled to speci
fied values, and the process uses tools to assist the
operator in material movement and vision systems
to improve al ignment of leads. Before bonding, the
leads are covered with a low activation flux which
is removed later in the process.

Die Attach

Another critical manufacturing step is the die attach
process. The excellent thermal performance of the
multi chip unit is achieved by fol lowing these steps:

• Careful control of the die attach materials with
feedback to our suppliers.

• Surface cleanl iness specified and also managed
with our suppliers.

• D ispensing of epoxy. The fi l led epoxy is d is
pensed by an x-y table that is computer con
trolled to supply the correct pattern for the
particular multichip unit type.

87

VAX 9000 Series

END OF 54 CLASS ASSEMBLY

START OF P 1 000 ASSEMBLY

ALIGN HDSC
TO HOUSING

SHIP

Figure 6 Manufacturing Process Flow

• Establishment of bond line thick ness and epoxy
c u re. Bond l ine t h i ckness i s accomplished by
mechan ical l y applying pressure while curing in
a purged belt furnace.

Inspection

To ensure that a l l soldered leads are reliably
bonded, leads must be inspected for shorts, mis
a l ignments, opens, and weak joints. Shorts and mis
al ignments are d iscovered by an automated vision

system that ca l l s marginal points to the operator's
attention . The operator can then determ ine i f
repair action is warranted. Inspection for opens and
weak joints is done by striking the leads with a pu lse
of laser energy and then measuring the thermal
decay profile. Repa ir is typical ly made by localized

H8

short removal or single-point bonding. Over time,
we believe that our materials and processes can be
control led ro the point at w hi c h i nspection and
repair can be dramatically reduced.

Final Test
The goal of our tes t rrocess was to ensure t h a t
m u l t i c h ip u nits wou ld operate successfu l l y i n a
system envi ronme n t . Since no test equ i pment
m:mufacturer offered a system that met our needs,
we developed ou r own by working with several
Digital groups as we l l as outside suppl iers. The
system contains th ree major stations. The first
provides al ignment information and can ;�lso read
visual serial and part nu m bers. In the second sta
tion, low voltage shorts are determined between

Vol. 2 No. 4 Fall 1')')0 Digital Tecbnicaljournal

nearest neighbor leads. This step supplements our
inspection for shorts described above. In the final

station , we test for connectOr opens, thermal mea

surement (die attach integrity), scan chain integrity,
and scan pattern data. The scan pattern testing is

done in several bursts of the clock at system speed .

In addition, diagnose capability is provided by fly
ing probes, voltage and clock margining, and a ther
mal chuck to vary temperature.

Conclusion

Successful use of advanced interconnect teclmolo
gies requires a seamless phased development pro-

Digilal 1i.•cbnicaljournal Vol. .2 No. 4 Full 1'.)')11

HDSC and Multichip Unit Design and Manufacture

cess that begins with advanced development and
continues through volume manufacture. The HOSC
and multichip unit technologies have successful ly

achieved the volume manufacwring phase. Using
the products and technologies described

in this paper, we have played a key role in the intro

duction of the VA X 9000 system to the marketplace.
Extensions of this man u factu ring p rocess wi l l
ensure that this technology base can be applied

across a wide spectrum of products of both higher

and lower performance.

H9

Matthew S. Goldman

Paul H. Dormitzer

Paul A. Leveille

The VAX 9000 Service
Processor Unit

The VAX 9000 service processor unit provides the front-end seruices needed to support

a highly available and reliable mainframe system. The unit is close�y linked to the

VAX 9000 system to provide realtime detection and recovery of system failures.
However, the unit is independent enough to be isolated for maintenance without

affecting normal system processor operation. This combination is a first for VAX
systems. The service processor also provides various debugging features that were
essential for development and ear�)' manufacture of the VAX 9000 system. These

features utilize a system-wide scan architecture to achieve direct access to machine

state, which provides extensive visibility and control of system logic functions. The
inclusion and use of such a scan architecture is a new feature for a Digital processor.

The VAX 9000 service p rocessor un i t (SPU) is
designed w provide a dedicated subsystem for ser
vice and maintenance support for the VAX 9000
fami ly. The SPU serves two distinct roles. It func
tions as the famil iar operator interface (i .e . , VAX
console) and as a maintenance vehicle used lO diag
nose and isolate system processor hardware faults.

The SPU performs the fol lowing major front-end
services :

• System initi:ll ization

• Power system control and monitoring

• Environmental monitoring

• Clock control and monitoring

• VAX 9000 operating system access to SPU mass
storage devices (disk and tape)

• Remote diagnosis port support

• System error detection, recovery, and reponing

The SPU also provides or assists in the following
system diagnosis functions:

• SPU module self-tests

• Scan system diagnostics

• Clock system diagnostics

• Scan pattern structural diagnostics

• Structure cell (e .g. , self-rimed random-access
memory [RAM]) d iagnostics

90

• X MI-ro-system control unit adapter interface test

• Symptom-directed diagnosis support

In addition to its use as the front-end processor
for the VAX 9000 system, the SPU wJs embedded
in several manufacturing and e ngineering rest
vehicles. In the Debugging Features section of this
pJper, we describe how the SPU was used as a
debugging tool during VAX 9000 product devel
opment and the various debugging features we
p rovide to help locate design and fabrication
problems.

A mJjor goal of the SPU WJS to perform system
wide error detection and recovery functions for the
VAX 9000 processor. In the Error Handl ing section
of this paper, we detai l the types of errors that the
SPU handles arid how error detection , reporting,
and recovery occurs.

A nother of our design goals was to be able to
service the SPU without adversely :�ffecting the
operation of the system processor. This feature was
needed to support the h igh avai lab i l i ty requ ire
ments of a mainframe system. To meet this goal , we
designed mechJnisms to enable the VAX 9000 oper
ating system to determine that the SPU is not func
tionJl (whereupon the operati ng system takes the
appropriate action to secure its own operation),
as well as recognize and reintegrate with the SPU

when the SPll is functional again .
If the VAX 9000 operating system Jttempts to

access one of the SI'U -based processor registers and
the SI'U does not respond, the fai lure is detected by

Vol. J No. -i Fall /')')0 Digital Technical journal

using the usual register time-out mechanism. How
ever, because the SPU is responsible for system error
handling, SPU failures must be detected quickly to
enable the SPU to respond to a system error should
one occur. Consequently, we developed a keep
alive protocol with which the VAX 9000 operating
system can determine SPU failures without relying

on operating system accesses to SPU-based pro
cessor registers. The keep-al ive mechanism is
described in more detail under the Error Handling
section of this paper. Both the time-out and keep
alive mechanisms work regardless of whether the
SPU has an unexpected failure or undergoes a sched
uled power-down.

S hould the SPU require service, fie ld u pgrades
may be performed easily and qu ickly because of the
modularity of the hardware, which is primarily
VAXBI bus interface-based adapters. The VAXBI

backplane minimizes downtime because modules
can be removed or inserted without requiring reca
bl ing. When power to the SPU is restored, SPU self-

TO/FROM
REST OF PCS

DISK
CONTROLLER
(1 1 03 1 KFBTA)

POWER AND
ENVIRONMENTAL
MONITOR
(11 060 PEM)

POWER CONTROL SYSTEM

VAX 81

SERVICE
PROCESSOR
MODULE
(12051 SPM)

FI RMWA RE

PlY !-----'

The VAX 9000 Service Processor Unit

tests are performed. The SPU 's operating system
then boots automatical ly and signals its availabil ity

to the VAX 9000 operating system.
The SPU is designed to continue operation even

i f the SPU primary storage device, an R D 5 4

Winchester disk drive, fails, which further increases
the availability of the SPU. For customers who
require data security and high availability, we
designed a system configuration option that does
not use a disk drive. I n this case, the SPU boots from
TK50 cartridge tape. The SPU functions that require
a disk drive for data storage (e.g. , SPU-generated
error logs) are disabled in this configuration .

SPU Architecture

A block diagram of the SPU architecture is shown in
Figure 1 . The service processor module, scan con
trol module, and power and environmental monitor
were designed uniquely for the VAX 9000 system.
The disk controller, tape controller, as well as the
memory daughter board were available from other

SJI

SPU MEMORY
16 MBYTES
ECC

SPU OS

TAPE/NETWORK"
CONTROLLER 14-------'

(11 034 DEBNK) Nl
*

SCAN
CONTROL
MODULE
(12050 SCM)

I FI RMWARE

" N I CONNECTION USED DURING SYSTEM PROCESSOR
DEVELOPMENT ONLY

Figure 1 VAX 9000 SPU Block Diagram and interconnects

DiRilttl Tecbnicaljournal VtJ/. 2 No 4 Fa/1 /'J'J() 91

VAX 9000 Series

Digital products. Every SPl J VAX B I adapter provides

i ts own bu i l t- in self-test diagnostics. 1

SPU hardware is based on eit her i ndustry-proven

(e.g. , 74 00-series TTL components, complementary
metal oxide semiconductor [CMOS] gate arrays)

or Digital-proven technology (e.g. , VAX B I , Digital

custOm CMOS devices) to ensure that the unit is an

effective debugging platform for a system processor
based on leading edge technology. As a resul t , the

inherent risk and learning curve associated with

new technology were avoided and the SPU was

ready and available during the VAX 9000 system
protOtype debugging p rocess.

The SI'U also was made available to manufactur

ing process and tester groups (e.g. , multichip unit

tester) for use with their designs. The advantages to
this approach were that technicians became fami l

iar with the same subsystem that wou ld be used in

the VAX 9000 family, and the test programs could

be transferred for use in other test envi ronments

that also used the SPU , including the VAX 9000 sys

tem itself.

The service processor module is the primary
processi ng element of the SPU and is the VAXBI host

adapter. Based on the MicroVAX 78032 chip and

several custom-designed application-specific inte

grated circuits (e. g . , SPll-to-system control u n i t
adapter, SPU memory control ler) , t h e module con

tains a l l the h ardware necessary to store and

execute the SPU operating system . The on-board

firmware contains a VA X standard console i nterface
to load the SPU operating system during initia l iza

tion and to assist in subsystem debugging. The SPU

to-system control unit interface (SJI) connects the

service processor mod ule to the system control unit
and is the primary communication path between

the SPU and the VAX 9000 operating system.

The scan control modu le is the control interface
to the VAX 9000 scan system , which is the visibil ity
and maintenance path to the system processor. Like
the service processor module, the scan control

module is based on the MicroVAX 780)2 chip ami
s<:veral custom-designed application-specific inte
grated c i rc u i ts (e. g . , scan control c h i p, scan

distribut ion chip). On-board firmware provides

high-level functions that a l low the service processor

module to continue processing while scan-related

operations, including logical - to-ph ysical s ignal

translations, are performed concurrent ly by the

scan control modu le. The scan i nterconnect (SCI)

connects the scan control module to the system
processor (i .e . , one to fou r C :PUs and the system con

trol unit) and t he master clock mod u le. Using this

92

interface, the system processor may also interrupt

the SPU when the processor needs service. This
type of interrupt request is known as an attention.

The SPU is i ntegrated i nto the system cabinet to
better meet the performance req u irements neces

sary for system error recovery and VAX 9000 oper

ating system boot . Cabinet integration substantial ly

decreases i nterconnect distances to processor logic
and ensures that all cables are kept i nternal to the

cabinet. Another reason for choosing the VAXBI

backplane card cage is that its form factor is sma l l ,

which reduces the cabinet area needed (cabinet area
is always in high demand), yet the user-definable

zones provide the high pin density required for

i nterconnects (i .e. , 1 80 110 pins per VAX B I s lot).

Communication Path

The SPU communicates with the system processor

using the SJI . This interface is used to load the pri

mary bootstrap into the VAX 9000 main memory,

t ransfe r error and m ac h i ne-check i n formation to

the VAX 9000 operat ing system , provide file trans

fer access between the VAX 9000 operating system
and the SPU 's R D 54 disk drive, access system main

memory, and access system i /O registers.

The VAX 9000 operating system accesses the SPU

as if i t were a standard J /0 device. T h e SPU is a n
i ndependent subsystem and does not rel y o n the

execution unit of the system processor to be a con
sole processing engine, as was done in previous

VA X systems. There a re several benefits to t h i s
design approach. Each CPU has equal access t o the

SPU and may i nterrupt the SPU to request service.

In addition, the SPU may interrupt any of the CPUs

to request an operating system service. The SPU

may be used as a debugging tool dur i ng system pro

cessor debugging because it does not requ ire that

any portion of the system processor be operational .
The fact that the SPU could be used as a debugging
tool was an extremely important benefit for the

VA X 9000 system debugging effort. The debugger

d i d not h ave easy access to the logic elements
because of the advanced packaging and circuit i n te
gration of the VAX 9000 system . Therefore, SPU ser
vices were ut i l ized in l ieu of logic probes. Further,

because the SPU no longer uses the CPU for system

access, console support microcode (i .e . , the collec
tion of microcode procedures t radit ional l y used for

access to the system processor, memory, and J/0

registers) is not required . The benefit of this p rocess

is that valuable VAX 9000 control store space could
be used for system microcode or to reduce the con

trol store size. For example, in the VAX 8650 system ,

Vol. J No. 4 Fall /<)<)() Digital Tecbnicaljournal

console support m icrocode occupies approxi
mately 180 microword locations.

VAX 9000 operating system access to the SPU is
through the VAX console register set. We extended
the VAX console register set to provide access to the
enhanced capabilities of the S P U . Additional regis
ters include transmit function request and param
eter and receive function request and parameter
(i .e . , TXFCT , TXPRM , !L.'<.FCT , RX PRM) . Table l l ists
the functions provided by these registers.

SJ I communicat ions are in the form of 14 -byte
packers that contain the command (i .e. , function),
address, and data. Packets are sent and received
over two 8-bit data paths that provide fu ll duplex
operation. Data transfers peak at 3. 5 megabytes
(MB) per second for quad word transfers.

When the VAX 9000 operating system executes a
Move_ro/from_ Processor _Register instruction that
specifics an SPU register, the system control unit
sends an I /O command p::tcket, through the SJ I , to
the SPl! to initiate the system request. Then the SPU

typica l ly uses an interrupt command packet, which
generates an i nterrupt to the specified CPU . The

two other packet types are direct memory access
and error correction code.

Visibility Path

I n the development and manufacture of a com
plex computer system, extensive test i ng methods
must be available to ensure functional operat ion
and product quality. Design engineering no longer
can use manu::tl probing techniques in prototype
debugging. Space l imi tations have resu l ted from
advanced packaging and the c lose pitc h of in te
grated circuit ! IO pins, which is due to high i ntegra
tion lewis. Failure isolation must be performed in
the manufacturing process, often without an exten
sive knowledge of the machine design.

A separate visibi lity and control path in the sys
tem processor of the VAX 9000 system provides
nearly 100 percent visibil ity to the machine-state.
The visibility path e l imina tes t he need to select a
subset of v isibility points to meet a l l test needs, as
was done with previous VA X systems. In addition,
the path al lows designers to d irectly a l ter the entire
machine-state, which is a major advantage for
design and process debugging. A VAX 9000 uni
processor (i .e . , one CPU and system control unit)
contains over 26,000 access points.

The path is called the VAX 9000 scan system and
is controlled by the service control modu le. The
scan system is the foundation for d i rect access
by prototype debuggers, system error recovery

Digital Tecbnicaljournal Vol. 1 No. -i Full /'J'J()

The VAX <)000 Sen lice Processor Unit

Table 1 R X FCT/R X P R M and TXFCT/T X P R M
Functions

RX FCT/RXPRM Functions
(SPU to System Processor)

Remove processor

Add processor

Mark memory page bad

Request pages of m emory

Send error log entry

Send OPCOM message

Get datagram buffer

Send datagram

Return datagram status

Set keep-alive state

Abort datal i n k

E rror interrupt

TXFCT/TXPRM Functions
(System Processor to SPU)

Get hardware context (of a halted CPU)

Virtual block f i le operation
(access to SPU disk and tape)

Keep-alive

Send datagram

Return datagram status

Switch primary

Reboot system request

Clear warm start flag

Clear cold start flag

Boot secondary processor

H alt C P U and remove from avai lable set

Halt C P U and keep in avai lable set

Console q u iet

Set i nterrupt mode

Abort datal i n k

Reset 1/0 system

Disable vector u n it

Set keep-alive state

Start processor

M argin power

Margin clock

Fault sig nal

Start error wi ndow

End error w i ndow

Report error in window

Get error log entry

Get u n m arked error log entry and mark

E nable halt restart

Get 1/0 physical address memory map configu ration

Get physical add ress m emory m ap configu ration

9:)

VAX 9000 Series

software, and diagnostics to observe and alter the
VAX 9000 machine-state. Some functions provided
by the scan control module and supporting SPU
software are

• Load and save processor state

• Scan pattern execution

• Continuity testing of the processor's scan
hardware

• M u l tichip un it t ype and revision i n formation
extraction

• Processor attention notification

A block d iagram of the VAX 9000 scan system
is shown in Figure 2. The scan control module
connects to the system p lanar module over the SCI .
Scan and clock distribution logic, contained i n a
macrocel l array on the pl:mar module, distributes
data and control signals over the scan bus to each of
the multichip units. A clock distribution chip at the
hub of each multichip unit further distributes the
scan bus signals to the macrocell arrays, which are
integrated circuits that contain system logic.

As shown in Figure 3 , the state devices within a
macrocell array are scan latches. The latches are
connected serial ly to form a ring or chain by con
necting the Scan_Data_Out line of each latch to the
Scan_Data_ln l ine of the next latch. The end l inks
are connected to the clock distribution chip. When
the system clocks are running, data is loaded into
the latch from the system data input . During scan
operation, system clocks are not active. Generated
by the scan control module, the scan clocks load the
latch with data from the scan data input . Conse
quently, the scan control module reads system state

SERVICE
PROCESSOR

SCAN
CONTROL
MODULE

SCI

scD·
SCAN
DATA
RETURN

MCUn

SCAN DATA IN
AND CONTROL

'SCD - SCAN AND CLOCK DISTRIBUTION LOGIC

by issuing scan clocks, which seria l ly shift system
data to the scan control module. System state is
changed when the scan control module drives new
data to the system latches while issuing scan clocks.

An architectural feature permits each multichip
uni t to generate an attention interrupt d irectly to
the scan control module over the scan data return

l i ne. A ttentions notify the SPU of system events,
such as processor errors, memory self-test comple
tion, CPU halts, and keep-al ive responses.

System diagnostics can diagnose the SCI by using
the same control signals as used for scan system
operation. Dedicated logic and special routing of
the scan l ines provide fai lu re isolation . Stuck-at
faults and disconnect conditions can be isolated to
the multichip unit .

Debugging Features

I n addition to its use as the VAX 9000 front-end
processor, the SPU provides a variety of features
for debugging and troubleshooting multichip unit
logic configurations. These features were required
because all multichip unit logic visibil ity and con
trol is handled through the SC I , which connects
directly to the SPU . The use of scan larches to access
internal logic states is a first for VAX systems and
chal lenged the designers to define and deliver the
necessary tools and features to assist the multichip
unit debugging effort. Furthermore, the features
provided by the SPU had to apply tO various tester
environments, ranging from single mul tichip units
mounted in probe stations to ful l system config
u rations. Addit ional requirements to support the
clock and power system test stations made i t clear
that the SPU would have to be adaptable to a variety
of environments.

PLANAR
MODULE

MCUO

Figure 2 VAX 9000 Scan System

94 Vol l No. 4 Fall f<J'JO Digital Technical]ournal

Generic SPU Environment

To satisfy the SPU 's fundamental requirement of
being adaptive to differing environments, test sta
tions had to comply with the physical interfaces
provided by the SPU in the VAX 9000 system. We did
not have the resources to develop tester-specific
interfaces, so it was agreed by a l l development
groups that testers would comply with the SPU 's

system environment , as shown in Figure 4 .

This generic environment al lowed SPU hardware
:md software development to concentrate on sup
porting the needs of the VAX 9000 system and to
receive valuable feedback and debug time from
rhe test station groups prior to system processor
avai l abi l i ty. Several m ajor benefits were achieved
with this approach :

• Because the SPU software had early exposure
in rhe rest srarion environments, the software
was debugged and tested to an acceptable level

SCAN
LATCH

.._ DO
SYSTEM_DATA - 01 0

HOLD -c HOLD

SCAN_DATA_IN - SOl

- SCK LATCH
D 0

SCAN_A_CLK

-
SYSTEM A CLK (-{ LD - LD

SYSTEM_B_C LK --c
OR

The VAX 9000 Sendee Processor Unit

before ful l system configuration support was
needed. In particular, the command language
interpreter had ro be ready to provide the basic
SPU functions, such as file manipulation, com
mand procedures, symbol and expression evalu
ation , and command reca l l .

• Technicians working a t the test stations had an
opportunity to develop an understanding of the
SPU 's operation that was then carried forward to
other SPU-based debugging environments.

• Economies of scale existed because one front
end development effort supported both in-house
test stations and the final product.

• Many of rhe primitive debugging features devel
oped for rester use were found to be just as
valuable during actual system debugging, partic
u larly the fundamental commands that al low
direct control of the SCl signals.

SYS
OAT

SYSTEM
DATA IN

SCAN DATA IN

D

S O l

T E M
A
PUTS OUT

c..,-. P-J-..

'-

SYSTEM
DATA IN SYSTEM

DATA
OUT

SCAN_B_CLK
SCAN DATA_OUT

(a) Macrocell

SCAN
LATCH

0
HOLD 8

(b) Register Transfer Let,el Boc�JI

Figure 3 Scan Latch

SYSTEM
DATA IN D

SOl O s

SCAN
DATA
OUT

(L) l:xample ofScan Ring Routing

Digital Tecbnicaljournal Vol. .! No. -i Fall I'J'JII 91

VAX 9000 Series

Primitive Debug_f?ing Features

One of the most basic features offered by the SPU is
the ability to directly :1ccess the internal registers of
the clock and power systt:ms by using the FXAMI :-..JE
and DEPOSIT commands. When combined with the
general command language of the SPU , these com
mands al low clebuggers to create p rocedures to
control, rest, or interrogate various components of
the VAX 9000 system. For cx:.�mple, command pro
cedures h:.!\'C been created to monitor and exercise

the power, clock, and SPU subsystems as parr of the

reliability and design verification test plans.

Other low-level commands provide the means

for debugging and troubleshooting the scan paths.
For example, the SET and SHOW commands permit

individual control of the SCI signals. t ·sing these
commands, the SCI can be observed statica l ly and
be stepped through its operations. Precise control

of the SCI signals provides easier debugging of the
scan paths in the early multichip units, primarily

1 T O 5 T E S T STATIONS O R
V A X 9000 SYSTEM

SPU
.. FRONT END ..

CTY ..- TTY CONTROL

RTY .. _ N l

RD54
DISK

scu
CPU3

SCAN
CONTROL CPU2

C P U l

C P U O

MCM

POW ER
CONTROL

KEY:
MCM - MASTER CLOCK MODULE
SCU - SYSTEM CONTROL U N I T
P C I - POWER CONTROL INTERFACE
CTY - CONSOLE TERMINAL
RTY - REMOTE TERM INA L
M C U - M U LTICHIP UNIT
SCI - SCAN INTERCONNECT
N l - NETWORK INTERCONNECT

I
I

I
I
I I

MCU(s) UNDER
TEST

SCI

-

� SCI ADAPTER

-

'--

CLOCK SCII�YSTEM
ADAPTER C LOCK

-
POW E R SUPPLIES

PC I
AND S E NSORS

Figure 4 Generic SPU Environment

CLOCK
SUBSYSTEM

POWER
S U BSYSTEM

96 Vol. 2 No. 4 Fall /'J')O Digital Technical journal

because static signal operation gives more isobred
feedbac k than an i nterconnect that runs at fu ll
speed through many state changes.

Once the s ingle-step operation of the SCI was ver
ified , the ful l-speed operation of the scan logic in
the multichip unit could be tested . Commands that
collectively display and modify the scan latches of
a single macrocell array were an effective way to
veri fy the operation of this logic. Latch data are
displayed in their physical form as a string of hexa
decimal digits, the length of which varies from one
macroce l l array to the next, in the range of 100 to
:)00 bits. Provisions also exist ro select scan clock
rates ranging from 3200 nanoseconds (ns) per bit to
the ful l 100 ns per bit operat ion .

High-level Debugging Features
The use of the scan architecture as a means for
ini t ia l izing and debugging the VA X 9000 processor
was a first for a VAX front-end . Because physical
larch information is cryptic and difficult to use, we
designed the SI'U to provide the necessary trans
lation from a logic signal name to its corresponding
scan larch in the machine. We modeled the SPU 's
user i nterface after the user interface of DECS I M ,

one of Digita l 's logic simulation uti l ities. Engineer
ing used the DECSIM interface during the VAX 9000
design phase and was already familiar with its user
interface.

The majority of the user interface development

work involved the EXA M I N E and DEPOSIT com

mands and their associated data structures that
resemble the procedure usesd in the DECSIM sys
tem. These commands provide access to the more
than 26,000 signals accessible through the scan sys
tem in a uni processor system . The SI'U also main
ta ins the design h ierarchy of the signals, which
permi ts signals to be referenced as they appear on
the pages of rhe logic schematics. A watch point
and trace point capabili ty, modeled after s imi lar

features in the DECSitvl system , simp l i fies the task of
monitoring state changes in the machine. Because
the processor clocks are single-stepped , s ignals
which change state are displayed automatical l y.

Using the DECSiivl system as the model for t hese
Sl'l l features produced two advantages:

• Designers moved from the simu lation environ
ment (i . e . , using the DECSIM system) ro actual
debugging (i .e. , using the Sl'll) with virtually no
t raining. Air hough the precise syntax of the SPU's
commands is not always identical to the syntax

of DFCSI M commands, the concepts are the same.
Therefore, first-time users overcome the differ
ences quickly.

Dip,ital Tecbnicaljoro-nal Vol. .! No . . j Fall /'J'JO

The VAX 9000 Service Processor Unit

• A l l register transfer-level signal names corre
spond with those present on logic schematics,

including the logical design h ierarchy. This cor

respondence makes the relationship of displayed
signal names and schematic signal names easy
(e.g. , % C PU0. VA P . VAPO.ALU_FU NCT!ON_H<O>) .

The translation from a logical signal to its associ-
ated scan latch uses clara structures supplied in a
configuration database file, which is loaded into
SPU memory during SPU initialization . All CPUs

with identical mu lt ichip unit configurations (i .e. ,
same CPU revision) share the same configuration
database memory image. The system control unit
a lways req uires its own database. Only two CPU
revisions can be supported at one time because of
SPlJ memory constraints for storing the separate
configuration databases. However, by providing for
two CPU revisions, the needs of single and dual CPU
configurations were completely satisfied . Further,
i t was possible to upgrade homogeneous triple and
quadruple configurations in a stepwise manner.

Macrocode Execution
Initial system- le\'el multicbip unit configurations
consisted only of a sca lar CPU . The system control
unit was not yet avai lable as a result of the extended
simulation of the design . Fortunately, we had antici
pated the possibility of running partial configu
rations and could provide modes within the SPU
software to red i rect commands that normal ly
access main memory (e .g. , EXAMIN E , LOAD) to
access the CPU's 1 2H kilobyte (KB) system cache
or S K B virtual instruction cache instead . The first
VA X macro-instructions were loaded and executed
on the VA X 9000 system using this technique. An
additional feature, which involved minor hooks in
the system microcode. provided a means for the
VA X instruction set diagnostic, EVKA A , to commu
nicate with the console terminal through scan
attentions rather than by using the system control
unit . Thus, the diagnostic could run to completion.

Advanced Debugging Features
Although not obvious aids to VA X 9000 debug, the
following features were indispensable or, at the
least, reduced debugging time and effort:

• A character-cel l w i ndowing capabi l i ty that
al lows system microcode sources ro be automat
ical ly located , disp layed, and updated on the
screen as the system is single-stepped. We mod

eled this feature after the VAX debugger's win

dowing capabi l ity because most VAX engineers

97

VAX 9000 Series

are fami l iar with t h is capabi l i ty. W i ndowing
eliminated the need for hard-copy microcode
listings and the logistical problems associated
with their use.

• By connecting the SPU to the engineering net
work during development , t imely updates of

SPU software were made possible. This kept the
VA X 9000 debugging effort , which was occur
ring simultaneousl y on several systems, up to
date w i th the latest SPU software fixes and
enhancements. Together w i t h the multisession
capabil ity of the SPU operating system, the use
of the network made remote debugging a real ity
throughout the VAX 9000 debug phase.

• 13ecause the SPU had to init ial ize the VA X 9000
system thousands of times during system debug
ging, the unit was designed to perform system

initial ization as efficiently as possible. For exam
ple, the loading of structures (e.g . , control stores
or cache tags) was optimized by overlapping the
operation of three M icroVAX-based processors :
the service processor module, the scan control
module, and the d is k controller.

The debugging features located early design and
fabrication problems in the clock, power, scan, and
processor logic areas. Ultimately, the features were
used to initial ize and run the first VAX 9000 system .

Error Handling

To support high system availabi l ity, accurate and
t imely error detection a nd loggi ng is required .
Error data collection cannot depend upon host sys
tem availabi lity, and the data must be available when
the system is not functional . Therefore, an indepen
dent service subsystem that can collect data from al l
system components, render i t into a useful format ,
and store and display the information i s needed .

The service subsystem must also be organized in
such a way that if it fails, it does not directly cause
system processor failures. Repair, reboot, and sys
tem reintegration must occur without interfering
with system processor operation . The SPU meets
these requirements; it is a fully independent com
puter that runs its own operating system with dedi
catec.J peripherals. The SPU performs system-wide
error detection and reporting functions and pro
v ides advanced error recovery features for the
system processor.

Error Detection
The SPU reports errors in its own VAX BI adapters,
the service p rocessor module, the scan control

98

module, the power and environmental monitor,
the disk controller, and the tape controller. It also
reports errors in various parts of the VAX 9000
system, such as the system control unit, the CPI ·s ,
the memory system , the master clock module, and
the power and environmental systems. Because fa il
ures in any of these subsystems can incapacitate the
VAX 9000 system, none of them reports its errors
directly to the VAX 9000 operating system .

SPU Errors The disk controller, tape controller,
and scan control module use the VAXBI VAX port
protocol to report errors. The power and environ
mental monitor passes error information to the ser
vice processor module through i ts private bus, the
SPU-to-power control system interface.

Environmental Exceptions The power and envi
ronmental monitor monitors the regulator intelli
gence cards, airflow sensors, and temperature
sensors throughout the system. When it detects any
problems in operating voltages, currents, tempera
tures, or airflow, it notifies the service processor
operat ing system , which logs the error condition.

Clock Exceptions When the master clock module
detects an error in either the clock phase or the
clock frequency lock, it generates an attention to
the scan control module, which interrupts the ser
vice processor module. The SPU operating system
logs the error condit ion.

Memory Error Correction Code Events The main
memory of the VAX 9000 system contains error
correcting logic to correct single-bit errors and
detect double-bit errors. When a memory location
with a single-bit error is read, the system control
unit corrects the error and passes the corrected data
to the requesting device. It also writes an SPU regis
ter with the error type and the fai l ing memory
address. The SPU operating system writes this infor
mation to the error log. I f the system control unit
detects a double-bit error or reads a marked-bad
location , it passes the bad data, marked as bad, to
the requesting device and notifies the service pro
cessor operating system, which logs the error. The
bad dat::1 is handled loca l l y by the requesting device,
usually by generating an error of its own .

CPU and System Control Unit Errors When a CPU
detects an error in a parity checker, it attempts to
come to an instruction boundary and halt . Once
it has halted, the CPU sweeps i ts cache. When the
cache sweep is completed, the C PU asserts an

Vol. 2 No. 4 Fall I'J'JO Digital Tecbnicaljournal

attention to the scan control module to inform the
SPU that recovery is required . When the system
control un i t detects a n error, it first asserts a fatal
error signal to each of the CPUs, and then asserts an
attention. When the CPUs receive the fatal error sig
nal, they attempt to come to an i nstruction
boundary and halt . Once halted, the crus assert
attention lines to the scan control module. The
caches are not swept since their path to memory,
the system control unit, is not working.

Keep-alive, Timeout To ensure that a CPU is not
hung by an undetected error, the SPU periodically
sends a keep-al ive interrupt to each CPU . CPU
m icrocode services the interrupt at the next macro
instruction boundary by asserting an attention to
the scan control module. If the CPU should be hung
by an undetected error, the SPU times out while it
waits for the keep-alive repl y attention and , thus,
determines that there has been an error. Similarly,
the primary CPU monitors the SPU by sending it a
keep-alive request through the TXFCT register. If the
SPU does not respond to this request within a time
out period, the VAX 9000 operating system assumes
that the SPU is hung and reboots i t using a VAXBI

reset . When the SPU reboots, it reintegrates itself
with the rest of the VAX 9000 system without inter
fering with system operation .

Error Reporting

When errors are reported to the SPU operating sys
tem , the error formatting facil i ty logs the error
information local l y and reliably transmits it to all
intended receivers. The error formatter maintains
the error log fi le ERRLOG .SYS on the SPU RD54

drive, passes error log entries to the VAX 9000 oper
ating system to be logged in the system error log,
and also passes the entries to any SPU software that
requests them. The error formatter writes the error
log file using the SPU operating system disk I /O func
tions, passes the error log entries to the VAX 9000

operating system using an RXFCT function. and
passes the error log entries to other SPU processes
using the SPU port protocol . If the RD54 drive is not
available, which prevents access to the SPU error
log, the error formatter continues to send error log
entries to the VAX 9000 operating system and to
other sru processes.

The SPU error log contains a l l the error log entries
collected by the SPU (but not those collected by the
VAX 9000 operating system) and time stamps,
which are logged every ten minutes. Should an SPU
operat ing system crash occur, the time stamps may

Digital Tecbnicaljournal Vol. 2 No. 4 Ful/ 1')90

The VAX 9000 Service Processor Unit

be used to determine the approximate time of the
crash . Errors are logged regard less of the state of the

system processor. As a result , information is avail
able for analysis even in the event of a total proces
sor failure. The error log file may also be transferred
to TK50 tape for off-site analysis.

The error formatter passes error information to
the VAX 9000 operating system by copying the error
log entry to system memory and then invoking the
RXFCT function to notify the VA,'{ 9000 operating
system that the entry is available. Should the operat
ing system not respond to this notification , the
error formatter assumes that the operating system
has crashed and writes the error log entry to a tem

porary data ft.le. When the VAX 9000 operating sys
tem reboots, it notifies the SPU by using a TXFCT
function. The error formatter then reads any saved
error log entries from the data file and transmits
them to the VAX 9000 operating system . This proto
col ensures that all collected error data is eventually
reported in the system error log.

The error formatter also maintains a SPU port to
which any process running on the SPU may con
nect. Connected processes receive copies of all
error log entries as the entries are logged . This port
is used by EWKCA , the symptom-directed diagnosis
tool, which analyzes errors as they occur and
determines which system components might have
caused the failure. The port is also used for system
debugging by the error insertion program to verify
that errors are being logged and analyzed correctly.

Snapshots In addition to its error logging facili
ties, the SPU operating system provides the ability to
take "snapshots" of the system processor state. The
snapshot fi le provides a detai led record of system
context, which al lows engineers to take a snapshot
of a hung system and reboot it, and then analyze the
snapshot file while the system proceeds to perform
other useful work. The snapshot display util ity is
used to examine the data in a snapshot file. In addi
tion to formatting the data in the snapshot file, the
snapshot display utility can be used to examine any
scan latch in the file, by name, in the same fashion as
the console EXAMINE command is used on the
actual hardware. The data availab le in a snapshot
file is summarized in Table 2 .

Error Recovery

The h igh level of visibi l i ty achieved by the scan
system allows the SPU to provide extensive error
recovery faci l ities for the VAX 9000 processor.
SPU-based recovery offers several advantages over

99

VAX 9000 Series

Table 2 S napshot File Contents

Revision Section

All m u lt ichip u n it revisions

All SPU adapter revisions

Microcode revisions

Al l X M I adapter revisions

Al l VAX B I adapter revisions

Power Section

All power control system registers

" Sense power" results

Clock Section

All master clock mod ule registers

SPU Section

All SPU-to-system control un i t adapter registers

1/0 Section

X M I device error registers

VAXBI device error registers

XM I-to-system control u n it error registers

System Control U nit Section

All scan latches

Last 50 entries from system control u n it micro
program counter h istory buffer

All cache tags

All other logical structures (e . g . , control stores)

Configu ration database version

1/0 physical address memory map

M emory physical address memory map

Nonexistent physical address memory map

CPU Section (Repeated Once for Each CPU)

All scan latches

Last 50 entries from program counter h istory buffer

All cache tags

All general-pu rpose registers

All i nternal processor registers

All other logical structures (e . g . , control stores)

Top 50 longwords of cu rrent mode stack

Top 50 longwords of i nterrupt stack

32 bytes of i n struction stream around each
program counter in h istory buffer

Configu ration database version

50 micro program cou nters, col lected by stepping
the clocks

100

traditional microcode-based error handling. The
CPU hardware resources that might otherwise be
used for error handling were available for the logic
designers to improve the system performance.
Because the error data is processed external to the
fail ing component , the recovery process i tself is
not suspect. Finally, because the system clocks are
stopped while recovery takes place, erroneous data
does not propagate throughour the system.

Tradi tionally, many microwords in the CPU
control store (approximately 500 in the VAX 8600
system) are used for error recovery microcode.
However, because the SPU is responsible for
VAX 9000 error recovery, additional control store
space is available for instruction m icrocode. If this
had not been the case, we might have had to make a
space trade-off between instruction and recovery
microcode, which cou l.d h ave resul ted in more
emulated instructions and a performance penalty
for VAX instruction execution speed .

Because the scan system allows the SPU to deter
mine the state of every scan latch in the CPUs and
system control unit , logic designers were able to
place error detectors anywhere in the design
without organizing the detectors into microcode
readable error registers. As a result , significantly
more error detectors were used for precise error
analysis than would have been possible if the scan
system were not available. Each VA.,'\ 9000 CPU con
tains over 450 error detector latches.

Severa l advantages are derived from performing
error recovery independently from a failed compo
nent . The most obvious advantage is that hardware,
which m ay be fail ing, is not used to control t he
recovery. Once the system processor state has been
scanned out into SPU memory, analysis is a function
of software running on a known good processor.
The SPU analyzes the data and then scans a cor
rect state into the system processor. The entire
process is performed while the system clocks have
been stopped . Therefore, processor errors cannot
cause "error loops; " that is, the error recovery
process itself gets errors from a corrupt processor
state. SPU-based error recovery can completely
reset a corrupt system, regardless of the degree of
corruption.

The VA.,'\ 9000 error-handl ing faci l i ty takes
advantage of many advanced software features that
are avai lable i n the SPU operating system. It uses
configuration database information to access sys
tem processor signals by name rather than by scan
ring locations. Thus, one version of the error han
d l ing code can handle several different physical
processor variations. The error handler also uses the

Vol. 2 No. 4 Fall 1<)<)0 Digital Tecbnicaljounwl

SPU operating system structure access routines to
read and write the processor structures, again, by
burying the physical implementation in the config
u ration database. As a resul t , the error handler
can look at the architectural features of the VAX pro
cessor rather than at the gate-level design of the
VAX 9000 system when performing error analysis.
The benefit of this approach is that recovery proce
dures are based on the system architecture, rather
than on the machine implementation .

One of our design goals for the VAX 9000 error
handling system was to recover from most errors
in under 500 mil liseconds. Longer delays increase
the probability that I/0 devices will time out while
waiting for the operating system to respond to
requests and cause the operating system to crash,
even if the error-hand ling system successfu l ly
recovers from the error. The error handler meets
this goal by taking maximum advantage of the
multiprocessing capabilities of the tightly coupled
hardware design of the service processor module
and scan control module. Error recovery is spl it into
a mu ltistep process that keeps both SPU processors
working on the problem simultaneously.

The error handler recovers a failed system in five
phases: data collection, data analysis, error recov
ery, macrostep, and cleanup. In the data collection
phase, the scan control module scans out all scan
rings of the failed CPU or system control unit . In the
analysis phase, the scanned data is used to deter
mine which architectural features of the system
have been corrupted (e.g. , caches, general-purpose
registers, internal processor registers, microcode
stores, and the translation buffer).

In the recovery phase, the error handler attempts
to restore the system to a state in which no soft
ware-visible data is corrupt . Therefore, the soft
ware running on the VAX 9000 system, including
the operating system, is unaware that an error has
occurred. The error handler determines whether
the system state can be restored successful ly or if
a machine check must be generated to a llow the

VAX 9000 operating system to attempt to handle the
error on a higher level . It then restores the CPU to a
known good operating state, by using latch data
from the configuration database, and corrects any
corrupted software-visible data.

In the macrostep phase, the error handler turns
on the system clocks to allow the fai led C P LI to
attempt to macrostep one instruction. I f the
macrostep completes successfu l l y, the recovery is
considered successful and system operation is
al lowed to continue. In the clean-up phase, the SPU

Digital Technicaljournal V(J/. 2 No. ·4 Fall /1.)1.)0

The VAX 9000 Service Processor Unit

processes the data from the data collection phase
into an error log entry, posts the entry, and cleans
up the data structures that will be used to recover
from the next error.

Errors that are too severe for the error handler to
h andle are signaled to the SPU command inter
preter, which can run command scripts to com
pletely reinitialize the machine and reboot the VAX
9000 operating system . Examples of such severe
errors are bard errors that prevent VAX 9000 oper
ating system machine check code from running and
errors that cause a CPU to fail its macrostep.

Summary

The SPU is a dedicated subsystem for service and
maintenance support for the VAX 9000 fami ly. It is
closely linked to the VAX 9000 processor to provide
system error recovery. It also presents a high-level
interface with which debuggers may observe and
control system processor activity. Through the use
of a system-wide scan architecture, the SPU pro
vides access to nearly roo percent of processor
machine-state. Finally, the use of the SPU in various
tester environments greatly assisted the multichip
unit debugging effort and provided advanced train
i ng for VAX 9000 system debuggers.

Acknowledgments

The authors wish to thank Michael Evans, the SPU
project leader, whose drive and ambition provided
the force behind the project's success. We also wish
to acknowledge the other members of the SPU
design team: Karen Barnard , Stephen Conway,
David D'Antonio, Susan DesMarais, and Brian Rost .

Reference

1 . D. Chin et al . , "The Unique Features of the VAX
9000 Power System Design, " Digital Technical

journal, vol. 2 , no. 4 (Fall 1990, this issue):
102-1 17.

101

The Unique Features
ofthe VAX9000
Power System Design

Derrick]. Chin

Barry G. Brown

Charles F. Butala

Luke L. Chang

Steven]. Chenetz

Gerald E. Cotter

Brian T. Lynch

Thiagarajan Natarajan

Leonard]. Salafia

The VAX 9000 series represents Digital's first implementation of a mainframe com
puter system. To be competitive in this market, the power system for the VAX 9000
series had to provide high system availability To meet this goal, the system includes

features neither considered nor found in previous large Digital computer systems.
Some of these features are the use of redundancy in parts of the design and the

addition of more power system diagnosis capabili�y for quicker fault isolation and
faulty unit replacement. Otber features provide competitive advantages in specific

marketplaces, such as meeting low harmonic distortion for A C input current, which

is an emerging European AC power qualiry standard. Simulation tools, wbich are
used more prevalent()' in digital logic, were used to improl!e the power design.

The two key requiremems of the VAX 9000 power
system are h igh avai labi l i ty and the inclusion of
competitive features. High availability for rhe power
system means we had to achieve the highest unit
regulator reliability possible by using the appropri
ate technology avai lable. Further, we had to deliver
both more power system and cabinet environmen
tal monitoring and diagnostic capabi l ity that could
reduce the time spent in isolating and replacing a
ma l functioning u nit . Competitive features mean
designing into the system features that would be
either better than expected or advantageous to the
VAX 9000 system in certain markets.

A ful l discussion of all the methods used to meet
these requirements is too long for this paper. There
fore, the discussion in this paper focuses on some of
the unique applications of the power technology
and tools used in the design of the VAX 9000 system :

• Power system architecture

• Improved load sharing

• Simulation

• Increased control and monitoring

• Low harmonic distortion

One of the issues we had to decide in designing
the power system architecture was how many regu-

102

lators should be used . A large number of regulators
in a power system can cause the mean time between
failures (MTBF) to be lower than desired. Therefore,
we chose to use redundant regulators in the power
system architecture for improved avai labi l ity.

A nother means of increasing the MTBF was
achieved by improving the load sharing among the
parallel regulators that power a low-voltage current
load . W i th this feature, no one regulator operates
at a percentage of maximum rating much higher
than its parallel regulators, which eliminates the
higher operating temperatures that can occur and,
as a result , lowers the MTBF.

High regulator reliability results from good cir
cuit design. Three examples of the unique simula
tion features that were used as checks on circuit
designs are discussed in the Simulation section of
this paper. In one case, simulation pointed the way
to a circuit problem that was not initially apparent.
In another case, simulation was used to verify on
paper that the n umber of regulators chosen to
power a specific load was sufficient .

High availabil ity can be achieved by reducing the
time to isolate a system problem a nd replace the
malfunctioning unit . A power and cabinet moni
toring module, EMM , fulfi l led this p urpose in the

VAX 8000 systems. The power control subsystem,
PCS , used for this purpose in the VAX 9000 systems,

Vol. 2 No. 4 Fall /'J'JO Digital Technical journal

The Unique Features of the VAX 9000 Power System Design

expands on the diagnostic and monitoring features
of the EMM .

Meeting emerging European AC power quality
standards was viewed by the European sales
force as a distinct competitive advantage for the

VAX 9000 system. A proposed standard we wanted
to meet was to achieve low harmoruc distortion of
the input AC current wave form, which was met
in the ut i l i ty power conditioner (UPC) front-end
design of the power system. High availability was
designed into the UPC through such features as
redundancy and increased immunity to power l ine
disturbances from a commonly accepted industry
practice of one AC cycle to teo AC cycles.

VAX 9000 Power System Architecture

The discussion of the power system architecture
wi l l focus on some of the a rchitecture's major

features: power zoning, N + 1 redu ndancy, and
decoupling.

• Power zoning enables parts of the system to be
powered off for maintenance whi le the rest of
the system remains operational .

• N + 1 redundancy provides higher perceived
system availability to counteract the impact of
low system mean time between failures, which is
a result of the large number of regulators.

• Decoupling major sections of the power system
a llows future upgrades to be made wi thout
requiring significant changes to the rest of the
system.

UTILITY
POWER

1 20/208 VAC
3 PHASE

/

/
/

/ ENVIRONMENTAL
MONITORS

The basic power system architecture for the
V�'< 9000 Model 200 and Model 400 series is shown
in Figures 1 and 2, respectively. Power processing in
each model occurs in two distinct stages. First, an
AC front end processes and converts AC utility input
power to h igh-voltage DC , which is then bused
about the power system. Second, DC-to-DC switch

ing regulators convert the h igh-voltage DC to low
voltage outputs, which are then distributed through
high-current-carrying busbars to the various logic
loads. An intell igent power control subsystem (PCS)

provides control, sequencing, monitoring, and
diagnostic capabi l ities. Dedicated bias regulators,
which are powered from the h igh-voltage DC ,
provide housekeeping control (i .e. , low power) and
start-up power to each bank of output regulators.

The high-voltage DC bus permits low-voltage out
put regulators to be added or removed for different

system configurations. The high-voltage DC bus also
can be backed up with a battery unit that produces
high-voltage DC from 48-volt batteries through a
step-up switching regulator. This approach allows
any specific low-voltage output to be produced , as
needed, during the battery back'l.lp period without
using specific battery-to-logic voltage output DC-to
DC regulators. The battery required to backup the
entire computer system wou ld be larger than the
computer itself. Therefore, diodes are inserted into
the h igh-voltage DC distribution to partition the
high-voltage DC bus, and only sections, such as the
memory refresh operation and PCS control , are
backed up.

PCS
(POWER CONTROL SUBSYSTEM)

� �

Figure 1 VAX 9000 Model 200 Series Power System

Digital Tecbnicaljournal Vol. 2 No. 4 Fall 1990 103

VAX 9000 Series

PCS
(POWER CONTROL SUBSYSTEM)

Figure 2 VAX 9000 Mode/ 400 Series Power System

Power Zoning

The power-zoning feature meers rhe maintain
abi l i ty and high avai labi l i ty goals in the VAX 9000
Model 400 series of triple and quadruple proces
sors. In the power system's configuration, a pair of
dual processors can be powered off for mainte
nance, while the remaining powered-on processors
maintain system operation.

A quadruple processor configuration is not com
posed of two identical dual processors. Some func
tions of a quadruple processor are not replicated.
The system control unit , the memory, the service
processor unit, and the PCS are common ro both
dual processors. Therefore, these functions are
powered up by either front end . The h igh-voltage
DC power bus is diode OR 'd from either AC power
source, through the dual d iode, CR 1 , and then fed to
the ourput stages that power the common elements
l isted above.

The diode-OR process i n the VAX 9000 system
does not provide for active loads haring. Active
loadsharing between each AC from end increases
the overall actual power system reliabi l i ty because

it ensures that each AC front end supplies half the
load. Othenvise, one AC front end could take most
of the load (and be stressed h igher), which wou ld
leave the other unit roo lightly loaded . However,

acrive load sharing is complicated by the physical
distances between the AC front ends and the com
plex handl ing of faults and parcial fau lts in each
AC front end . The load of the common elements in
the VAX 9000 system is only 20 percent of the total

104

system. Therefore, the worst load imbalance does
nor justify the added complexi ty.

The diode does nor have a signi ficant impact on
overall power load re liabi l i ry because conservarive
deraring of rhe diode results in a lower diode oper
aring temperature and hence higher rel iabi l i ry.

We were concerned that power zoning could
have an impact on rhe resr of rhe system as a result
of powering down part of the system. However,
analysis of the results showed rhar such a concern
was unfounded. The h igh-voltage DC bus has rela
tively long time cons tams (i .e . , slow to react to
changes). Therefore, turn-on and turn-off transients
on the bus are smooth and gradual and do not
generate quick-changing electromagnetic fields that
coul d affect the operation of t he sections of the
system that are stil l functioning.

N + 1 Redundancy
Each processor in the VAX 9000 power system uses
approximately 400 amperes from each of the two
supply voltages. T he ratings of the power semi
conductors used in the outputs of the OC-ro-DC
regulators del iver an optimal regulator rating of
approximately 240 amperes. Based on these rat
ings, powering a CPU in the VAX 9000 system would
require two regulators for each voltage. However,

in a large system, such as the VAX 9000 system, the
number of regularors can quickly add up, w hich
would result i n an equally quick d rop in overal l
system reliabil ity. Powering two CPUs from the
same voltage bus reduces the number of regulators.

Vol. 2 No. 4 Fa/1 19')0 Digital Tecbnicaljournal

The Unique Features of the VAX 9000 Power System Design

Redundancy is then used to minimize the impact
of t he large n um ber of regu lators in the b u s.
By using redundancy, addit ional regu lators on a
voltage bus increase the perceived time between
com rlere fa il ures.

For example, consider a voltage bus that requires
t wo regulators to supply t he load current. A fai l
ure in either regulator causes a complete fail ure.
If another parallel regulator is added to supply
the load c u r rent, the probabil i t y of a complete
fai lure significantly decreases. I n this case, if one
regu lator fa ils , the other two could supply the load.
The statistical proba b i l i t y that another fai l u re
would occur before the fa i led regu lator is replaced
is very small .

A system of N regu lators at an individual fai lure
rate of lambda (i\) would have a system fai lure rate
of N rimes i\, or an MTBF of 1 divided by N t imes i\ . 1
The actual calculations are

i\ (total) = N X i\

or

MTBF = l li\ (total) = 1 /(N X i\)

The failure rate calcu lation for a system that con
tains one regulator more than req u i red (N + l) is

i\ (total observed) = (N + I) X N X i\ X i\ I
I { (N + l) x i\ } + (N x i\) + u)

MTT3F (observed) = (((N + 1) X i\] +
(N X i\) + u) I I (N + I) X N X i\ X i\)

It shoukl be noted for the above equation, that u
equals I d iv i ded hy the t ime between fau l t and
repair (service interval).

Using this calculation, if a bus requ ired 4 regu

lators and each regulator had an MTBF of 400,000
hours, the observed MTBF would be 100,000 hours.
T"he observed MTBF with five regu lators (i .e . , N + I)
wou ld be 23,9H9,000 hours, w h i c h is 239 t i mes
longer than the four regulator case. The maximum
time between the fault occurrence and repair would
be 2 weeks, or 336 hours. T he observed MTBf is
so large, compa red to other elements in the system,
the redundant regulators have an extremely small
effect on the overall reliabi l ity.

The number of redundant regulators per output
voltage bus is l imited to one in the VAX 9000 power
system for sp:.tee, weigh t, and cost reasons. N is the
number of regulators required to supply the maxi
mum current of a bus, and the addition of one more
regulator is cal led N + I redundancy.

N + I redundancy relies on the good regu lators
on the output bus to pick up the load from the fa i led

Digital Tecbniculjournal v,,r 2 No. ·I Fa/1 1')')0

unit. This reliance has a significant impact on the
design of the regu lator, the regulator response time,
and how the regulator handles the faul ts that can
cause a fai lure. Fast regulator response (the time it
takes to respond to a change in input or output) is
needed to ensure that the output volt age does not

dip roo much when each regu lator picks up its
share of the load from the f:J.iled regulator. How
ever, the faster response time makes it more diffi
cult to keep the control functions of the unit stable.
M oreover, t he regulator i n p u t voltage range is
designed to be relatively wide to tolerate w ide
swings in the high-voltage DC input.

When one regulator in a bank of regulators oper
ated in paralle l fa i ls , the output bus voltage d i ps
unt i l the other regulators, which are connected in
paral lel , can react and pick up the load currents.
The magn itude of the dip depends on the time the
input fuses i n each regulator take t o open and o n
the values o f the input capacitors and the distribu

tion impedances.
Fast-opening fuses al low smaller voltage dips but

are more p rone to fa lse n u isance openi ngs. S low
opening fuses do nor open for normal or nuisance
su rges, but allow a greater voltage dip. Large values
of input capacitance provide the energy to open the
fuses quickly, but the voltage recharging of the
capacitors is longer. A high distribution im pedance
decouples the faults from other units but has a high
power loss.

Simu lation and resting showed that the wide
inpm range design of the regulators is su fficient to
tolerate the high-voltage input dips caused by other
fa ul ts. The regu lator control and response rime
keep the low-voltage OC outputs within speci fica
tion when the input vol tage is within its range.

Other faults within the regulator can cause it to
fa i l , but the load i s picked up by the other regula
tors, operating in parallel , on the bus. Clearly, faults
such as a permanent short on the output bus, cannot
be survived . Because the low-vol tage output regula
tors operate in parallel and in an N + I redundancy
mode, the output voltage is not affected by most
common single-fault cond itions in the power sys
tem hardware.

Decoupling
A key feature of the power system 's architecture is
that each major subsystem is relatively decoupled
from the other subsystems. Decoup l i ng perm its
e:1ch subsystem to be designed for its own require

ments and to be c h anged or upgraded as the
req u i rements change (e. g . , more cost effective,
improved tech nology, or different output vol tage).

10)

VAX 9000 Series

provided the interface and critical function remain
the same. For example, two significant ly differ
em cost and performance options, H7392 or H7390,
for the AC front end can be used in different config
urations, and the rest of the power system does not
need to be changed . Thus, power p latforms can be
flexibly tailored to meet the needs of different com
puter systems.

Achieving Low Harmonic Distortion
The AC front end of the VAX 9000 power system
processes and converts public util ity AC power to
high-vol tage DC. Our goal was to design the AC
front end to be highly reliable, have a high avai labil
i ty, and meet the emergi ng European AC power
quality standards. One of those standards is to have
low harmonic distOrtion of the input AC current
waveform . These featu res were essent ial to support
the VAX 9000 system 's entry into the mainframe

computer marker . We also decided tO meet the low
harmonic distOrtion standard of the AC front end
because the European marketing and sales force
viewed compliance with this standard as a distinct
competitive advantage.

Design Factors

The dominating design factor for the AC front
end was the size of the input power level , which
was approximately 20,000 watts. This size signifi
cantly exceeded the power levels of previous AC

circuit designs for a s ingle un i t . The high power
consumption was a result of the use of 250,000
emitter-coupled logic (ECL) gates in the CPU and
512 megabytes (MB) of memory.

High Reliability and Availability To achieve high
rel iabil ity, we used conservative power derating lev
els and good thermal management for key devices.
Typical ly, the device voltage ratings used are 80
percent of rating. The main switches and rectifiers
used in the power stages used 40 percent of rating.
Current derating is also conservatively placed at 40
percent. Stress is lessened because of lower device
function temperatures, which results in a longer
operational l ife, which equates to h igher rel iabi lity.

We designed t wo approaches to attain high
availabi l i ty. First, redundant circuitry was used for
the AC-to-DC circu i t function. Second, we increased
immunity-to-line outage from the standard practice
of one cycle of outage protection to ten cycles. The
increase from one cycle to ten cycles of outage
immunity provides the VAX 9000 system with a
300 percent improvement in mean rime between

106

observed system power outages over standard
Digital systems This feature improves system
availability to the customer.

Harmonic Distortion The power system's design
had to meet the increasing restrictions on the inrn
face with the publ ic power ut i l i ty and be able to
withstand the occasional avai labil ity of only poor
power. Uti l i ty power is generated as a relati vely
pure (i .e . , low harmonic distortion) s ine wave.
AC front ends and power suppl ies must convert this
sine wave of voltage ro a ripple-free DC voltage for
ultimate consumption by the logic chips within the
computer system . Standard methods used for this
conversion create a nonlinear load on the sine wave
of voltage. This nonlinear load distorts the uti l ity's
sine wave of voltage for other users, because of the
distribution system impedance, and usually appears
as i nterference for other users. In Eu rope, the
occu rrence of this type of interference is planned
to be limited by restricting how much nonlinear
load current an AC front end can have. Therefore.
we had to design a unique circuitry that could
convert AC power to DC power at 20,000 watts
without high levels of current distortion to meet
this European requirement .

A design based on commercial ly avai lable conrrol
technology could not meet the stringenr technical
requirements of high overal l conversion efficiency
and stabi l i ty of operation because conventional
AC-to-DC circui try produces up to 30 percent dis
tortion. Our goal was to comply with emerging
European requirements of harmonic current distor
tion levels in the 5 percent range. However, at the
time we were designing the system, no circui try at
this power level existed in the power conversion
industry. Therefore, we had to develop a unique
pulse-width modulator (PWM) circuit and control
equations for the input power conversion stage,
which is shown in Figure 3 .

The pulse-width modulator combines the advan
tages of low switching frequency, which reduces
switching losses in the converter, with exception
al ly short response time to all i nput l ine voltage
d isturbances and to rapid changes i n the required
computer power. The fina l design produces
less than 5 percent total harmonic distortion of
the input l ine current when the UPC is operated
at 20,000 watts load. The uniqueness of the PWM

increased the immunity-to-l ine voltage outages
from one cycle of outage protection to ten cycles.
Furthermore, the increase was achieved w i th
out a corresponding tenfold increase i n storage
capacitors.

Vol. 2 No. 4 Fall /')')0 Digital Technicaljournal

The Unique Features of the VAX 9000 Power System Design

AC
INPUT

AUX AC POWER AND
POWER LINE MON ITOR

AC
F ILTER RECTIFIER

OUTPUT
SWITCH

�
o-----

FAST
DISCHARGE

TO UPC
CIRCUITS

DIGITAL POWER BUS
AND TOTAL CFF BUS

RIC
INTERFACE

Figure 3 UPC Block Diagram

Flexible Line Cora
The high power level and the requirements for a
flexible l ine cord and plug required that the Under
writers Laboratory (UL) and Canadian Standards
Association (CSA) agencies expand the regulations
that governed the size of power cordage allowed in
a computer room . A flexible l ine cord connected to
the AC service is a requirement by D igital for all i ts
products. This feature is deemed valuable because it
is used both to facil itate the initial installation of the
compmer and possible relocation at the cuswmer\
site. Although delays can occur while waiting for a
national agency to amend one of its national regula
tory codes, the approvals were received in time w
maintain the project's schedule.

Improving Load Sharing

Detailed stress analyses show that when regulators
are operated in parallel, maximum reliability is
achieved when the load current is shared equally
among them .

Traditional Approach
A traditional approach to running regulators in par
a l lel may be seen in VAX 8000 series machines.
In these processors, regulators that are designed for
standalone operation are placed in a parallel con
figuration. Current sharing is forced by mod ifying
each supply's individual reference voltage through
external moni tori ng and control . In the case of
VAX 8000 machines, a maximum of four units
may be coupled in this way. Figure 4 shows that

Digital 'fecbnicaljournal Vol. 2 No. 4 Fa/1 /'J'JO

this method essentially uses equipment that
was designed to function as standalone regulated
voltage sources. By adding external control loops,
the equipment is forced to provide identical out
put voltages, as measured at some defined point
in the system . If precise voltage matching is not
achieved, whichever supply had the higher voltage
consumes the load, up to i ts overcurrent sense
point. Thus, equal load sharing cannot happen.
Individua l external controllers are requ ired for
each converter, which makes the system more
complex. The VAX 9000 system requires up to five
converters per bus, and we could not achieve better
than 20 percent power sharing between modules
by using this method. No traditional methods could
support the number of converters in the VAX 9000
system. A lso, most methods had a master-slave rela
t ionship that precluded maximizing a regularor's
reliability potential .

New Approach
As a result of the l imitations of the trad itional meth
ods, we developed a new, less complex approach
to current sharing between paral lel converters.
A lthough developed specifically for the VAX 9000
program, the features and util ity of this approach
have universal application . The essential techno
logical shift from prior practice is that in this system
the regulators are current sources rather than
voltage sources.

We designed the current sources to have a com
pliance range that covers a band of voltages thar are

107

VAX 9000 Series

I
CONVERTER

?
INTERNAL
REFERENCE
AND ERROR
AMP

RRENT ·�
NSE -

cu
SE

CONVERTER

INTELLIGENT
CONTROL UNIT
(ONE PER
MODULE) �

I NTERNAL
REFERENCE
AND ERROR
AMP

<

LOAD

I
CONVERTER

INTELLIGENT INTELLIGENT
CONTROL UNIT CONTROL UNIT
(ONE PER (ONE PER
MODULE) ? MODULE)

I I NTERNAL
REFERENCE
AND ERROR
AMP

�
POWER
CONTROL
SYSTEM VOLTAGE CONTROL

Figure 4 Load Sharing by Voltage Control of Voltage Sources

norm:t l l y found in logic circui ts. By making the
regulato r o u t p u ts ful l y floating, the VA X 9000
system requ irements for + ') -vol t , -).4 -vol t , and - 5. 2-volt buses are met with only one regulator
design, rather than a separate design for each
voltage. The VAX 9000 design is s impler and has a
lower manufacturing cost . The regu l a tor is vol tage
and polarity "blind" over i ts compliance range, and
any nu mber of regu lators may operate in paral lel
to provide a n y amoun t of power req u i red at any
vol tage w i t h i n the compl i a nce range. Also, this
method automatical ly compensates for the effects
of stray resistances and different path lengths from
individual regulators on a bus.

The basic fea t u res of t h i s new a p p roach are
shown in Figure '). Individual regulators behave as
extcrnal ly programmed current sou rces controlled
by a common control signal , such that each regu
lato r dcl ivers the same current . If the outputs are
connected to a common load , the current in that
load is the sum of the individual regu lator ou tput
curn:nts. The resulting voltage that appears across
the load is the product of that current and the eq uiv
alent resi s ta nce of the load . F u rthermore , i f that
voltage is compared with a reference voltage in a
convenrional error amplificr and thc result ing error
signal is used to derive the regulators· external pro
gramming source, then a volrage control loop exists
around the regulator system . Thus, al though each

IOH

regulator acts as a cu rrent source, the system acts as
a control led and regulated voltage source. Because
the voltage control loop only contains one pole, the
bandwidth of the control loop can be i ncreased by
u p to a factor of at least 1 5 . As a res u l t , the substan
tially h igh current change requ irements i mposed
by high-speed memories, such as those used in the
VAX 9000 system, can be accommodated.

Principle of Operation

A two-transisto r forward reg u lator is show n i n
Figure 6. I n this regulator, S I and S2 are switched

CONVERTER CONVERTER CONVERTER

CD () CD \.)
t 1 , l2 t l3
L------ --------+------------�

V = (l 1 + l 2 + l3) x Z LOAD

LOAD

� � CUORE'T i' �CO,TROC
Figure 5 Load Sharing by Current Control

of Current Sources

Vol. .! No. ·4 Fa// 1')')1! Digital Technicaljournal

The Unique Features of the VAX 9000 Power System Design

into conduction simultaneously, which causes the
current to flow in the primary winding of trans
former Tl at a level that is directly proportional to
the output currenr lout plus the slope of the current
due to Lour . This current also flows in the primary
wind ing of current sense transformer T2 . The
resulting current that flows in T2 secondary wind
ing develops a voltage across the load resistor, RL,
which is amplified in Al and applied to the input of
comparator CI . Therefore, at this point, a voltage
pulse appears, the amplitude and shape of which
a re directly p roportional to the current flowing
in the output choke Lout during the S l -to-S2 con
duction period .

A conventional reference source/error amplifier
combination is p laced across the output of the sup
p ly. The resul t ing error signal , cal led Vcontrol, is
applied to the other input of comparator Cl as a DC
leve l . The comparator is followed by gating a nd
drive circuits to the power switches.

Switching is initiated by a pulse within the gating
circuit that drives the power switches on . The cur
rent flows in the output choke, Lout , and a propor
tional vol tage appears at the output of the amplifier
A I . As this voltage ramps, it crosses the threshold
set by Vcontrol at the Cl input . The comparator
output then changes state and causes the drive pulse
to the switches ro cease.

If Vcontrol were a fL-xed value, the system would
be a constant current source. Therefore, the voltage
that would appear at its output would be the result

TO C2
THROUGH N

lOUT

Figure 6 Two-transistor Forward Regulator

Digital Technical journal Vol. 2 No. 4 Fall /'J')Ii

of that constant current , and w hatever load is
placed across those terminals (i.e. , Your) would be
determined by the load value. By using an error
amplifier and reference, Vcontrol can be made a
variable quantity. Therefore, rhe regulator transfer
function can control its output current to any level
necessary to produce the desired voltage. In such a
system, a control vol tage, which is derived from a
single error amplifier and reference, can be used as
the control input for severa l regulators that are
running in paralle l . Thus, the current from multiple
regulators that feed a common bus can be shared.

Increased Control and Monitoring

In the VAX 8000 series, power and environmental
monitoring and control is provided by the H7188
environmental monitoring module (EMM). In the
VAX 9000 system, these functions are provided by
the power control system (PCS).

Basic Design of EMM and PCS

The EMM monitors the DC-to-DC regulator contro l ,
a i r flow sensor, and cabinet temperature. I t i s also
the interface between the system console and the
power system. Conceptually, the EMM functions as a
peripheral device to the console similar to the way
an intelligent disk conrroller is a peripheral ro a
CPU . The EMM is a single module that plugs into a

power back panel .
The res is a d istributed data acquisition a nd

control system. I t also interfaces between the
power and environmental systems and other parts
of the computer system. The PCS takes commands
from, a nd reports status changes ro, the service

processor unit .
However, in the PCS, the conceptual model of

the EMM is extended to provide additional support
in hardware and firmware to off-load the service
processor unit and to simplify the software inter
face to the PCS . The PCS includes many features that
enhance testability, fault coverage, fault isolation,
and system availabi l ity. The relationship of the res
modules to one another and to other system com
ponents is i l lustrated in Figure 7. There are five
PCS modules:

• Power and environmental monitor (PEM)

• CPU regulator intelligence card (crURIC)

• l/0 regulator intelligence card (JOR IC)

• Signal interface panel (SIP)

• Operator control panel (ocr)

109

VAX 9000 Series

I

POWER BACKPLANE .

� TO OTHER POWER BACKPLA�ES

� POWER BACKPLANE

(f)
a: (.) <(Cll 0 a: a D O D O (f) (f) :::J � CX) CX) CX) CX) (f) (f) z a: "' "' "' "' <(<(w 0 (l_ ('- 1'- 1'- 1'- 1'-

U I I I I I ai m (l_ (f) 1-> 3: (f) 0 0 :.E N --' a: CXl LL "' a: w
1'- I I ;;:{ 1-

IORIC BACKPLANE BULKHEAD f.tt IORIC BACKPLANE �
! l l l l l l l !

0
Ol 1- 1-"' 1'- w w
I z �
a: [ij (lJ 0 <(�
(.) (.) (.)
(l_ X X
:::J [ij [ij

...._ _ _

(f)
a: 5l � Cll '<t U1 <ti � (.)
dJ � � � � ��� a: (f) Cll aJ I I I [J: Q
3:
g IL.....l-'-r'-r Y- r'-_. LL '
a:
.3 i

XMI . [XMI
BACK BACK

PANE L PANEL

a:
w � Cll 1- (f) (f) (l_ � Cll � Cll � <(<(

(f) (f) (f) (f) 0 m m � <(� � � m m ai m 0
g '-'-

(f)
a: 0 u <t U1 '<t U1 <(Cll (f)

a: C\i N N � (f) (f) z
o "- 1'- 1'- � � � w
- I I I I aJ aJ (f)

3: 0 --'
LL
a: �� ;;:{ '--

XMI
BACK

PANEL

r-� � (f)
3: 1-

(.) a: (f) w
a: z (l) <(w

1-w z (f) (f) (l_
r- 3: 0 <(� �

0 (.) ai m 0
(l_ (f) <(

:::;: :::J 0 0
(.) (l_ (.) 0 0 :::;: (f) 0 '<t � TO .__� H4000S � Lf ,(,-1 TO - I

I BBU I
TEST SW _.J OCP I. SIP 1-J BBU 1 H BBU 2

KEY:

D
D

- H72 1 4

R ICBUS

,....... �I"""T"""'t"""T""'T"t t----1
PEM t-_0 ��,_:___ SPM 1 -

OTHER

SPU

MODULES

SPU Bl BACKPLANE

• TWO-WAY SERIAL COMMUNICATION
• POWER SYSTEM MASTER CLOCK
• CONTROL SIGNALS

PCS MODULES

OTHER SYSTEM COMPONENTS

Figure 7 PCS Block Diagram

H4000S �

BULKHEAD I
J J J
0 1- 1-Ol "' w w 1'- z z I [ij [ij
a: � � 0 (.) (.)
(.) X X
(l_ [ij [ij :::J

'--'- -

1 10 Vol. 2 No. 4 Fall /')')IJ Digital Tecbnica/journal

The Unique Features of the VAX 9000 Power System Design

Comparison of PCS and EMM
The differences between a power system that uses
an EMM and one that uses the PCS are il lustrated in
Table 1 , which details the functions of each system.
Five-to-ten EMMs would be required to control and
monitor a system of the size and complexity of the
VAX 9000 system. Addi tional mod u les would be
required to support some of the functions provided
by the signal interface panel and PEM module.

Command Set Enhancements In comparison to
the EMM, the PCS offers an enhanced command set .
The I'Ei'<'l commands of R EA D , WRITE, BIS, BIC , and
MEASURE provide the same capabi l i t ies that the
seven EMM commands R EA D , WRITE, BIS, BIC ,
MEASURE , EXA M I N E , and DEPOSIT do. In addition ,
the PEM supports six commands that are not imple
mented by the EMM command set : DOWNLOAD,
MAH G L N , SENSE , POWERON, POWEROFF, and
PASSTHRU .

The regulator interface card firmware supports
the DOWN LOAD command, which a l lows t he
service processing unit's software to update, with
some restrictions, the PEM 's or regulator interface
card's on-board EEPROM with new firmware. Thus,
the need for Customer Services to replace EPROMs
in the field if the firmware needs to be updated is
reduced because the latest PCS firmware is stored
on the service processor unit's load device.

The MARG I N , SENSE, POWERON, and POWEROFF
commands off-load work and complexity from the
service processor unit's software. By using these
commands, the service processor unit never needs
to interact directly with the regulator interface card
modules during normal system operation. Thus, the
amount of software required by the service proces
sor unit to perform these functions is reduced. A l l
regulator interface card interaction is handled by
the PEM firmware.

The MARGI N command causes the PEM to margin
the specified bus voltages by ± 5 percent for fault
isolation pu rposes, such as trying to aggravate an
i ntermittent CPU hardware problem by reducing a
logic supply voltage by 5 percent. In response to the
SENSE command, the PEM returns a record that con
tains the specified pO\:ver or environmental data to
the service processor unit.

The I'OWERON and POWEROFF commands cause
the rEM firmware to turn the specified power buses
on or off in the proper sequence. When executing
all of these commands, the PEM firmware must send
messages to one or more regulator interface card
modules and perform extensive error checking to
verify that the power sequencing is proceeding cor-

Digital Tecbnicaljounzal vbl .2 No. 4 Fall /'J'JII

rectly. The PEM then returns a status byte, wh ich
describes any error that occurred during command
execution, to the service processor unit.

The PASSTHRU command al lows the service pro
cessor uni t 's software to send commands d i rectl y
to the specified regulator interface card modules.
This command bypasses the PEM and al lows the
operator to use other PCS fault isolation functions
that are not used by the service processor unit in
normal operation . The PASSTHRU command is used
for fault isolation purposes only and is not required
for normal system operation .

Measurement Accuracy The EMM. 's best measure
ment of accuracy is ± 54 m i l li volts, which is
achieved when it is using an 8-bit analog-to-digital
converter. The CPURIC measurements are sub
stantially more accurate and repeatable for several
reasons. The CPURIC uses a 12-bit analog-to-digital
converter that is calibrated for offset and gain by the
automatic calibration routines that run during
power-up self-test . To filter out noise, each parame
ter is measured 64 times. These measurements are
averaged by the firmware before the parameter i s
used by the monitoring or sense commands.

Through comparison measurements with a volt
meter and a thermometer, the CP RIC measure
ments have proven to be repeatable. A lso, the
measurements are accurate to better than 10 milli
volts, when measuring voltage, and to within one
degree Celsius, when measuring temperature.

Diagnostics una Testabili�y Support The EMM
provided some visibility into the power and envi
ronment system of the VAX 8000 series of computer
systems to aid diagnostic and testing. The res hard
ware and firmware extend the functionality of the
EMM with features such as hardware loopback
circuitry which, when combined with di;tgnostics
included in the firmware, provide better fault detec
tion and isolation than the EMM .

Enhanced Support for Increased SystemAvailabili�J'
The features designed into the power system and
the res hardware and firmware support N + 1
power buses and bias power supplies. The PCS also
supports the partitioning of power. The PCS allows
certain cabinets in a VAX 9000 Model 430 or Model
440 system to be powered-off for maintenance or
repair, while the remainder of the power system
continues to function to provide system availabil ity
at reduced performance. The PCS recognizes when
power is reapplied to these cabinets ancl notifies the
service processor uni t . The system then can be
reconfigured to include these cabinets.

I l l

VAX 9000 Series

Table 1 Com parative Functions of the Environ mental Monitori ng Module
and the Power Control System

EMM in the VAX 8600 System

Digital ly controls seven DC-to-DC regu lators
configu red in five buses

Measures and monitors fou r cabinet air
temperature therm istors

Monitors two air flow sensors

Controls and mon itors one H 7231 battery
backup u n it

Measures and mon itors one ground current input

Provides voltage sequencing in hardware

Displays up to 1 6 unique sh utdown codes on four
magnetic indicators

Measurement accuracy
voltage: ± 54 mi l l ivolts
temperatu re: ±2 degrees Fahrenheit

D igitally controls ±5 percent voltage margin ing
for eight DC-to-DC regu lators

Measu res and mon itors 1 2 DC-to-DC regu lator
voltage outputs

Monitors ten DC-to-DC regu lator "mod ule OK"
signals

The VAX 8600 system consists of two cabinets
of which one was monitored by a s ing le E M M .

1 12

PCS in the VAX 9000 Model 440

Provides analog and d ig ital control of up to
29 H7380 DC-to-DC reg ulators, configu red in eight
power buses

Measures and monitors ten cabinet air temperature
thermistors

Mon itors 20 air flow sensors

Controls and mon itors two H723 1 battery
backup un its

Measures and mon itors two ground current inputs

Provides voltage sequencing in hardware
and software

Displays over 80 unique shutdown codes on a
d iagnostic display

Measu rement accuracy
voltage : ± 1 0 mi l l ivolts
temperature: ±1 degree Fahrenheit

Provides analog and d ig ital control of ±5 percent
voltage margining for eight power buses

Measu res and monitors eight power bus
voltage outputs

Mon itors 29 H 7380 DC-to-DC reg ulator
" module OK" signals

Mon itors 36 H 7382 bias power supply
"module OK" signals

Monitors up to ten H72 1 4 and H 721 5 "module OK"
signals used for 1 /0 and service p rocess ing un it
power

Mon itors up to 1 6 H71 89 "mod ule OK" signals in
the optional bus interface expansion cabi nets

Provides bus overcurrent protection and monitoring
for eight power buses

Measu res the output current from 29 H7380
DC-to-DC converters

Provides N + 1 support for eight power buses

Monitors the environmental status from four
opt ional bus interface expansion cabinets

Monitors the status from three H 7386
overprotection modu les

Monitors seven status l i nes from each of the two
uti l ity port condit ioners

Controls and mon itors the operator control panel

The VAX 9000 Series 440 is a q u adruple CPU
configu ration o f up to eleven cabi nets. A PCS
configu ration composed of eight CPU RICs, two
IORICs, one operator control panel , one signal
i nterface panel , and one PEM is requ i red to
support this system.

Vu/ 1 Nu. i Fa/1 /')1)(1 Digital Tech nicafjournal

The Unique Features of the VAX CJOOO Power System Design

Desif!.n for Further !mprouement The Ei"vHvl uses
the acrual analog-to-digital converter ro represent
tem peratu re, voltage, and c u rrent. However, the
PCS represents voltage, temperature, and current in
a format rhar is i ndependent of the actual analog
ro-digical converter val ues. Future upgrading of
measurement circuitry can be done wi thout modi
fying the service processor unit 's software.

Power .�)!stem Test Programs We developed exten
sive power system test p rograms by using the
programmable console command la nguage. These
scripts provided step-by-step con trol of power
sequencing and margining, and proved extremely
inva l uable in processor system debugging, system
qualification, and manufacturing and fidd resting.
The rests were developed through a cooperative
effort of design engineering, manufactu ring engi
neering, and field engineering.

Simulation
The usc of simulation in power converter design
is not as advanced as the use of simu lation tools i n
digital circuits. The level o f complexity a n d number
of paras itic clements in power devices have pushed
computer C P U requ irements beyond the reach of
many power c ircuit design groups. However, as
more computer power is becoming avai lable ar a
lower cost. s imulation is being used increasingly ro
improve power circuit design . The simulation tool
most widel y used is S imu lation Program with Inte
grated Circuit Emphasis (SPICE) bec:.t use of its abi lity
to be configured ro :.tny circuit configuration.2

In this section, we i l lustrate the benefits of sim
u l:.t r ion in the VAX 9000 power system design . We
provide examples of the use of simulation for cor
recting designs, improving circuit designs through
inclusion of parasit ic e lements, and tra nsient
analysi.'i.

Simulation to Correct a Design

Simula tion was used to correct a design in the l inear
post regul:.ttor rhar was dn·doped for the H7:)H2
bias supp l y used in the VA X 9000 power system .
The design requi red that rwo regulators operate in
parallel for redundancy purposes. We w:.tnted ro
achieve good transient response b y keeping the
output volt:.tge within operating tolerance should
one of the rwo regulators fa i l . fkcause good tran
sient response depends on good frc..:qucncy loop
response, we had ro determine the optimum fre
quency response for the circui t .

Di�ita/ 'f(:chnicaljournal l ·bl. .! Nn. · I /·/ill I'J'JO

Because simu l a tion mode l s for many of the cir
cuit components were nor yet avai lable, we cou ld
nor s imulate t he design . Therefore, we b u i l t the
circuit withou t simu lation . The resulting frequency
response was lower than expected, and the circuit
tended to oscillate ar the maximum output current
limit . Multiple attempts to improve the hardware
proved i neffective and time-consuming because we
did nor know the cause of rhe problem. Then, rhe
act ual schematic of the l inear regu lator control ler
internal circuit became available, as d id SPICE mod
els of components.

We ran an accurate SPICE model bur did not find
anything outstanding on the gain/frequency plots.
Nex t, we tried ro find rhe cause by exaggerating
some simu l:.tred changes. such as removing the
current l imit ampl i fier portion of the circuit from
the controller. With this change, we found that the
gain was close to being the same ar two different
frequencies, '5 kilohertz (K H z) and 40 K H z . This
simi larity meant that if the phase margins were
correct, instabi l i ty might exist . To p revent this
possibi l ity, we decided ro increase the gain of the
regulator circuit belo'vv 30 K H z by making simu
lated mod ifications ro t he c irc u i t . W ith these
modifi cat ions, the gain plot below 30 K H z
increased and rhe waveform evened out close to
what we wanted it to be. We then modi fied the
hardware and achieved the desired performance.
However, we would h ave saved a substantia l
amount of rime if we cou ld have simu lated the cir
cuit before we built i t .

Improving Simulation Accuracy

I n switc h ing regu lator des ign, parasit ic (smal l ,
undesirable but existing) elements o f seemingly
negl igible values, such as printed circuit board etch
ind uctances and transistor capacitances, can have
a significant impact on the behavior of rhe circui t .
For accurate s imulation t hese elements m u s t be
incl uded in the simu lation models. An example is
shown in the design of the output stage of rhe
H73HO regu lator.

We wanted the regu lator ro rake a high-vol tage
DC i nput and produce a low-voltage (i .e . , 3 .4-volt
DC to 5 . 5-volt DC) regulated ou tput. Figure 8 shows
how this process is done by changing the high
vol tage DC input voltage to an AC square wave
th rough turning the transistors, Q I and Q2, on and
off. The trans former. T I. steps down the AC square
wa\·e and is followed by an output section for recti
fication and fi l tl'ring .

I I.)

VAX 9000 Series

300VDC ---,---------,

D2
MU R460

D 1
MU R460

T 1

. .

I I
TO RECTIF IER
AND FILTER

Figure 8 H7380 Output Switching Stage

The initial model of the H7380 inverter stage used
simple component models and did not consider any
printed circuit board i n ductances or transistor
capacitances because they seemed negligible com
pared to other elements. We noted a discrepancy in
the voltage across the transistor Q 1 (Vds) during the
tu rn-off process between the simulated waveform ,
shown in Figure 9 , and the measured waveform ,
shown i n Figure 10.

Figure 9 shows that the voltage is initial ly zero
while the transistor is conducting but rises to 200
volts when the transistor is turned off. Figure 10
shows that ringing occurs as the voltage approaches
200 volts, w i t h an overshoot to 2 4 0 volts. The
ringing and overshoot, not shown in Figure 9,
are caused by the circuit board inductance, trans
former leakage inductance, and the capacitance of
the transistor.

PLOT 1 TIME V(40,3)

2.50

2.00

X
1 .50

(f)
� 1 . 00

�
0.50

o.oo L..... __ __,_...�.____. ___ _._ __ _.

1 14

0 2

Figure 9

4 6 8

SECONDS X 1 0'7

Vds (Ql) Simulated Turnoff
without Parasitics

1 0

50V 5V

w
0
>
Ci
(jj
s
0 >
0
�
(f)

s
0 >

OV

TIME (200 NANOSECON DS/DIVIDE)

Figure 10 Vds (Ql) Measured Turnoff

Figure 1 1 shows a more accurate model of the
output stage because the L 1 through L4 etch induc
tances and C 1 and C2 transistor capacitances are
i ncluded. The c u rren t source, !PULSE , and the
resistor, RT , approximate the transformer. Figure 1 2
shows t h e resul t o f the simulation model that
includes the L and C values shown in Figure 10.

When the simulation and the measured data are
correlated, the advantage of accurate simulation
becomes apparent . By using worst-case values for
the circuit parameters, the simulation can deter
mine the maximum peak voltage. The model
depicted in Figure 12 shows that a device capable
of withstanding the expected 240 volts is needed.
Rel iance on a less accurate model without para
sitics could lead to the selection of a device capable
of withstanding only 200 volts. Thus, accurate
simulation al lows the correct components and
component ratings to be chosen and ensures a
robust design.

Transient Analysis
A memory system that i ncludes dynamic random
access memory (RAM) chips presents a difficult
transient load problem to its power supply. The
problem arises from a combination of very high
changes in dynamic RAM supply current and cur
rent change rise times that are typically more than
a thousand t imes faster than the reaction t ime of a
power system . The result is a temporary change in
the load supply voltage. To handle these fast current
edges, high-frequency capacirors are mounted on
memory boards near the dynamic RAMs. Also, low
frequency, electrol ytic capacitors, which provide a
source of local charge storage, are mounted on the

Vol. 2 No. 4 Fal/ 1')')0 Digital Tecbnicaljoumal

The Unique Features of the VAX 9000 Power System Design

L1
1 5NH

D2
MUR460

+

L2
25NH

SIMULATION MODEL OF OUTPUT
CIRCUIT WITH PARASITICS

L 3

25 NH

D1
MUR460

L4
1 5NH

Figure 1 I Final Model of H7380 Output
Switching Stage

memory boards to handle the magnitude of the
change. The capacitors help keep the supply voltage

within its operating range until the power supply

can react and sufficiently change the current it sup
pl ies to the memory to stabil ize the supply voltage.
An adequate supply design with specified capaci

tors can keep the supply vol tage within its operat
ing tolerance. Simulation is used to determine the
correct mi..'< of high and low frequency capacitors

and the number of regulators required to support
this high transient load .

Another power supply problem arises from the

use of N + l redundancy for paral lel regulators.

When one of the regulators in a paral lel regulator
configuration fails, the remaining regulators must
be able to rake on the load from the fa i led regulator
and keep the supply voltage within operating toler
ance. Because the remain ing regulators cannot
react instantaneously, the load voltage drops until a
sufficient increase in current can be provided by the

remaining regulators.
For the VAX 9000 series memory system, a pro

posed dynamic RAM power supply design consisted
of three H7380 DC-ro-DC regu lators, which would

operate in parallel (including N + I redundancy)
and be connected to the memory through power
dist ribution busbars. The numbers of high- and low-

Digitlll Technical journal Vol. J No. 4 Fa/1 11)')0

0
X

Ul

�
0
>

PLOT 1 TIME V(40.3)

2.50

2.00

1 .50

1 .00

0.50

0.00

0

Figure 12

2 4 6 8

SECONDS X 10 7

Vds (Q I) Simulated Turnoff
with Parasitics

1 0

frequency capacitors were also proposed. The
power supply was expected to be ready for load
testing before the memory or the busbars would

be available. Therefore, we had to verify that this

design could keep the memory supply voltage
within operating tolerance. We verified the design
by simulating the performance of the power system

and measuring the performance of the actual power

supply with a simulated load .

Power Supply Operating Voltage Tolerance The

memory designers specified the operating tolerance
of the dynamic RAM supply as + 5 volts, ± 10 per
cent . Using 10 percent as the supply tolerance

budget, the supply designer made the allocations

shown in Table 2 to all the factors that would cause
the load voltage to deviate from its nominal value of

+ 5 volts. As can be seen from this table, the sum of
x and y must be less than 350 mil l ivolts or 7 percent
of + 5 volts.

Memory Load The dynamic RAM supply current

was calculated ro be a steady-state pulsed current
of 2 56 amperes that would last for 92 nano

seconds (ns) and with rise and fal l times of 20 ns,

as shown in Figure 13. The initial pulse magnitude
was 1024 amperes.

Table 2 Supply Tolerance Budget Al location

Causes of
Voltage Deviation

Regulator tolerance

Back panel d istribution

Tra nsient load with two
reg ulators

Failure of one reg ulator

Total deviation budget

Percentage
Mi l livolts of +5 Volts

1 00

50

X

y

500

2

1 0

l i S

VAX 9000 Series

OA

I-288 N S�
f--12.96 MICROSECONDS �

KEY:
A - AMPERES
NS - NANOSECONDS

Figure I3 VAX 9000 Model 400 Series Memory
Power System Dynamic RAM Load

Memory Power System SPICE Model In the SPICE
model of the supply, busbar, load and capacitors
that is shown in Figure 14 , the three regulators are

-.l, lA -j., IR

C2

V R =
DC

--
KEY:

R1 1 2 1 0 K
C1 2 0 0.6N IC=2.5
R2 2 3 1 0K
R3 3 4 20K
C2 3 4 1 8 P IC=5.0
R4 4 5 1 K
VR 6 0 DC 5
R5 5 7 2K
C3 7 8 68N IC=3.0
VG 8 9 DC 2.5
R7 9 0 1 0MEG
R6 9 1 0 10K
C4 1 0 0 0.757N
GOUT 0 20 POLY(1) 1 0 0 0 678
D1 20 21 DIODE
ROUT 21 0 1 7K

modeled as a current source, Gout, controlled hy
the regulator feedback vol tage, Yf Cout and Rout
represent the regulators combined output capaci
tors and resistors. Most of the other elements in the
model are determined from component specifica
t ions. The rela tionship between Gout and Vf was
determined by laboratory measurements on a regu
lator and resulted in the fol lowing equations. For
two regularors,

Gout = 339 X VJ = 339 X (V8 - 2 . 5)

For three regu larors,

Gout = 678 X Vf = 678 X (V 8 - 2 . 5)

The load is represented as two current sources, lA
and I R , the characteristics of which were obtained
from the loads shown in Figure 13.

21

ROUT

RESR
GO U T

GOUT 21 22 1 2300U IC=5.0
RESR 22 23 1 M
LESL 23 0 2.4N
RBB 21 24 300U
LBB 24 1 1 50N
CHF 1 26 1 .3M
RHF 26 27 2 1 U
LHF 27 0 1 .4P
CLF 1 25 1 08.8M
RLF 25 28 400U
LLF 28 0 0.3N
\A 1 0 PULSE 0 5 1 2 A O N S

20 NS 20 NS 92 NS 288 NS
IR 1 0 PULSE 0 5 1 2 A 0 NS

20 NS 20 NS 92 NS 1 2.961' S

Figure I4 SPICE Model of VAX 9000 MemOtJI Power System

1 16 Vol. 2 No. 4 Fa/1 1')')0 Digital Tecbnlcaljournal

The Unique Features of the VAX 9000 Power System Design

Simulation and Lahoratmy Measurements The
two previously stated conditions of interest result
ing in large load voltage changes are the transient
load wi th two regu lators and the fa i lure of one
regulator.

For transient loads, a larger voltage change
occurs with two regulators rather than with three
because two regu l ators take longer than three to
adjust the supply current to the new load value.

Simulated Load For laboratory measurements,
the actual dynamic RM•I load, as shown in Figure 13 ,
i s difficult to design and build i n a reasonable time
because of the magnitude and rise t ime combina
tion. However, a load with a much slower rise time
could be easi ly bui l t . Such a load , (I in Figure 14) is
expected through the busbar as the capacitors and
busbar s lowed down the fast edges of the dynamic
RAI'vl loacl . This s imulated load w as bui l t and con
nected to two regulators. The predicted waveform
and the measured waveform showed that the initial
shapes of the peak change, the peak magnitudes
(80 mi l l ivolts), and the times of occurrence of the
peak (300 microseconds) were all simi lar. However,
we could not measure the overshoot and ringing
after the peak because the busbar was not available.

Digital Tecbnicaljounzal Vol. 2 No. 4 Fall 1')')0

Failure of One Regulator When one of the three
regulators fai l s , t he other two regulators cannot
meet the increased load instantaneously. As a result,
the load voltage drops unt i l the two regulators can
increase their output current sufficiently to reverse
the d irection of the drop. The SPICE model for th is
condition was run and the load voltage of the drop
was predicted . Laboratory measurements were
then taken with the simulated load and one regu
lator was turned off. Both the predicted and mea
sured waveforms had the same shapes, peak
magnitudes (100 mil l ivolts), and times of occur
rence of the peak (200 microseconds) after the
regulator was turned off. Therefore, we concluded
that the proposed design cou ld meet the load

requirements.

References

I . P. O'Connor, Practical Reliabili�J' Engineering
2d ed . (New York: John Wi ley and Sons, 1985).

2. SPICE is a general-purpose circuit s imu lator
program developed by Lawrence Nagel and

Ellis Cohen of the Department of Electrical Engi
neering and Computer Sciences, University of
California, Berkeley.

1 17

Donald F. Hooper j
John C. Eck

Synthesis in the CAD
System Used to Design
the VAX 9000 System

The design of the VAX 9000 system represents a sixfold increase in complexity over the

VAX 860018650 system. This increased complexi�y posed a significant challenge

because of the concurrent need to shorten the duration of the project design cycle and

convert all high-performance systems computer-aided design (CAD) software from

the DECSYSTEM-20 system to the VAX system. As part of the task of meeting these

challenges, the CAD Group proposed the implementation of a design methodology

that used logic �ynthesis for the first time in the development of a major product for

Digital. The primary objectives of this methodology were to increase the productivi�J'

of the logic designers and to reduce the number of errors introduced during

conversion of high-level designs into gate-lel!e/ structural designs.

Methodologies

Previous Methodology

I n the prev ious development methodology, as
shown in Figure I , logic designers specified high
level designs on paper, and simulation engineers
transferred this rendition i nro a behavioral model .
Tech nology engineers developed the gate-level
cells. After the cells were defined and characterized
for fu nction and timing, the logic designers gener
ated schematic drawi ngs by using graphical bodies
that represented the cel ls.

As changes were made to the schematics, the sim
u lation engineers attempted to reflect these in the
behavioral model . Finally, a gate-level simulation
model was assembled from the completed schemat
ics to verify that the design represented a valid VAX
syste m . This process was extremely laborious,
error-prone, and ri me-consuming. Therefore, we
concluded it could nor be used to develop the VAX
9000 system , which is a 700,000 gate design and for
which the technology cel ls would not be defined
and characterized until late in the design stage.

Logic Synthesis

Our early research i nt o logic synthesis began in
1982 . Over the next two years, we explored new

syn thesis ideas and constructed p rototypes to

determine the feasibility of those ideas. For exam
ple, one of our early logic minimization efforts was
a program that emulated Brown's Laws of Form for

1 18

transformations of Boolean logic to reduce gate
counrs and improve critical timing paths.1 How
ever, this program has had only limited success and
is not really usable as a released computer-aided
design (CAD) product. For example, t he program
does not deal w i th selections of cel ls for com
binational logic nor does it consider the myriad
problems i nvolved in assembli ng a database for a
buildable gate array chip.

During 1984 and 1985, new artificial intell igence
(AI) and synthesis ideas were being developed. Uni
versities and technical communi ties were exploring
the potential of object-oriented databases, rule
based AI, data flow design entry, and algorithmic
minimizations. We began the prototype develop
ment of our system for in tegral design (SID) at
approx imately the same time as the ideas for the
VAX 9000 hardware architecture were beginning to
be developed. In 1985, the SID program became an
internal CA D product for use in the development
of the VAX 9000 system. By combining the most
ad vanced rule-based AI techniques with an object
oriented database, the core SID was designed to be
a repository of logic design knowledge. We hoped
that, over the years, SID wou ld mature to perform
many highly repetit ive logic design tasks a t a n
expert level .

From 1985 to 1988, the capabilities of the SID sys
tem gradually improved u ntil it was producing gate
array chips that met the VAX 9000 machine cycle
time, power, and electrical rules requirements.

Vol. .2 No. 4 Fall 1990 Digital Tecbnicaljournal

Synthesis in the CAD System Used to Design the VAX 9000 System

TECHNOLOGY
CELL DEFINITION

TECH NOLOGY
CHARACTERIZATION

BEHAVIOR MODEL
TEXT EDIT

BUG
REPORT

GATE-LEVEL
SCHEMATIC
ENTRY

PLACE ROUTE

BUG
REPORT

BUG
REPORT
GEN ERATED

Figure 1 Previous Design Methodology

New Methodology
The VAX 9000 development methodology, shown
in Figure 2, circumvents the need to wait for the
technology cells to be completely specified before
begi n n i ng logic design . This methodology uses
schematic entry and simulates the technology
independent, register transfer level (RTL) bodies.

The RTL l ibrary for this type of entry includes
MUXes, latches, adders, comparators, incrementers,
decoders, and simple Boolean gates. The entry is
extracted to a common database format, cal led
CADEX , from which a simulation model is built . A
behavior modd sti l l exists, hut its h ierarc h y
matches the RTL schematic hierarchy at key physi
cal boundaries. Thus, si m u lation models can be
built that consist of a hierarchy of m ixed behavior
and RTL models.

While logic designers are creating the RTL design,

Digital Teclm.icaljournal Vol. 2 No. 4 Fa/1 /'J()O

technology engineers are defining the technology
cel ls. In parallel w i t h these activities, s ynthesis
knowledge engineers are writing rules to transform
the RTL design into technology cells. These three
activities should be completed at the same time,
at which point, synthesis produ ces each of the
VAX 9000 system's 77 gate array chips. The goals
for the synthesis program were to

• Simplify design entry and thereby reduce sche
matic complexity by a factor of 4

• Generate 90 percent of the VAX 9000 system's
logic through synthesis

• Reduce the n umber of simulation errors i ntro
duced in the design

• Reduce the number of electrical ri1les violations
in the design

1 19

VAX 9000 Series

To generate a database for a buildable gate array
chip, the synthesis tool is required to

• Read tec h nology-i ndependent input standard
net list format, which can be in OECSIJVI behav

ioral notation or CADEX common database
format

• Minimize Boolean gates through state-of-the-art

minimization techniques

• Improve timing-critical paths through Boolean
transformations, cell/pin selections, power set

tings, and net load a l locations

• Choose the best avai lable technology cel ls based
on timing, size (area), and power estimates

• Insert the clock system for the gate array chip

• Insert testability access logic for the service pro
cessor unit

• Obey all electrical design rules for the gate array
chip

TECHNOLOGY
CELL DEFINITION

TECHNOLOGY
CHARACTERIZATION

SYNTHESIS RULES
TEXT EDIT

SYNTHESIZE
PLACE
ROUTE
SET POWER

• Make it easy to detect whether the tool has per
formed well

• Simplify the improvement of the tool

SID Database
The design of the SID database is fundamental to the

robustness of the CAD system. Previous CAD data
bases have all assumed that the data is stable at the

time that the CAO tools are working with it. Simu

lat ion, t imi ng veri fica tion , design ru le checkers
(ORCs), and many other CAD tools assume that net
lists and components are fixed and unchanging.

In synthesis, although the data is maintained in
a form that makes i t easy to u pdate its parameter

values, the basic structure of gates, pins, and nets

remains the same. However, throughout most of the
synthesis process, the basic structures are in a state
of change. In fact, it is a characteristic of synthesis

that logic functions are removed and replaced with

new, functionally equivalent logic. Because of this
d i fference, we designed basic data structures and

BEHAVIOR MODEL
TEXT EDIT

RTL
SCHE MATIC
ENTRY

(LOOP BACK)

BUG REPORT

BUG REPORT

BUG REPORT GENE RATED

Figure 2 VAX 9000 Deuelopment Methodolof!J'

120 Vol. 2 No. 4 Fall f<J'JO Digital Technical journal

s:vnthesis in the CAD System Used to Des�£!.11 the VAX <JOOO System

manipulation functions that would allow efficient
removal and replacement of logic .

We d i d use the prima ry objects o f o ther CAD
systems: gates, pins, and nets. However, we made a
distinction between the definition of an object and
its use or instance. Also, because we wanted these
objects to be used at very high (i .e. , behavioral and
RTL) levels and at the gate level , we renamed them
as models, ports, and signals. The primary database
objects for Sll) are

• Modeldef. The modeldef is the defini tion of a
logic function element . Analogous to a vendor
data sheet, modeldef contains parameters that
describe i ts funct ion, t i ming, power, size, and
other general informat ion. All bounded blocks
of logic function, from high levels of hierarchy
(e. g . , floating point un i t) to low levels (e.g . ,
simple Boolean gates), are kept as modeldefs.
Typicall y, modeltlefs are used multiple times and
used more at the lower levels of the database
hierarchy. For example, in the VAX 9000 system,
there are two cache data multichip units, eight
mul t ip l ier ch ips, and many thousands of two
input NOR gates.

• Modelinst. The modelinst is a use of a modeldef
that contains only those parameters unique to
itself. For example, two instances of a two-input
OR cel l may be in d ifferent p laces on a chip
and, therefore, have different placement desig
nators and t i ming characteristics. Each mod
elinst points to its motleldef definition to inherit
the set of common definition parameters.

• Porrdef. The portdef is the definit ion of an inter
face to or from a modeldef. Portdef contains
parameters that describe i ts fu nct ion , t iming ,
data width, and other general informat ion .

• Portinst. The porrinst is an interface to and from
a modelinsr. Portinst contains parameters unique
to i tself, such as t iming and power settings.
Each poninst points to its corresponding portdef
definit ion to inherit the set of common defini
tion parameters.

• Signa l . The signal is the means of connectivity
among modc l insts and between h ierarchica l
partitions. As shown in Figure 3, this connection
is established through the interface portinsr or
portdef. For behavioral logic, the signal acts as a
data flow arc; for RTL logic, the signal acts as a bus ;
and for gate-level logic, the signal acts as a net .

Synthesis rules must he able to wal k the database

in any direction (i .e. , backward , forward, through

IJig ilal Tecbn icaljournal \'()/. J tYo. -1 Fall 1')')11

hierarchy) looking for electrical rules v iolations or
logic function redundancy, and resting for t iming
crit ical path relationsh ips. To perform these tasks,
we added a series of mult idirectional pointers to the
SID database objects by using LISP capab i l i t ies.
When an object is declared as a symbol in the LISP
p rogramming language, pointer management is
included automatically. The LISP langu:tge is well
known in the industry for i rs use in AI applications,
bur it has a reputation as being slow. Our special

handl ing of direct database pointers enabled us to
produce a LISP app lication that resulted in excellent
run-rime performance.

Once the data structures and their pointers were
defined, we began to create a rich set of database
access functions that had to be failproof. Therefore,
we wrote functions to i nsert and remove the
instance objects to ensure that t he database pointer
connect ivity was properl y maintained . These func
tions a l lowed us to effect ively perform a many
for-many replacement of modelinsts with a single
command .

Other secondary objects were defined to contain
such types of information as synthesis knowledge
(i .e. , rules and groups of rules), general technology
characteristics (i .e. , the maximum number of cel ls
on a chip), and general project-specific character
istics (i .e . , the cycle rime of the machine).

The synthesis knowledge in the form of rules
occupies the majority of S l D-compiled code and
over 10 megabytes (MB) of run-rime memory.

Rule Language
Based on research and the perceived complexity of
the task at hand, we estimated that, to perform syn
thesis at an expert level. possibly thousands of rules
wou ld have to be written.

Jn researching cu rrent AI l i terature, we deter
m ined that existing rule languages were ei ther too
cryptic or too verbose to allow us to write and
maintain a large rule set in a short time frame. A lso,
we preferred to write more powerfu l rules than
those of p revious ru le-based systems. We wanted
each rule ro be used for making complex decisions
and logic transformations based on t iming, size,
power, and logic connectivity. The rule does not
" think . " Instead, it mimics a logic designer looking
at the characteristics of some p re-existing design,
who then changes the design to improve it or make
it more compatible with the new technology. The
rule, for example, tests whether A and B are true,

and if so, performs transformation C.
Based on these needs, we began deve.loping the

language Ru ldorm as the means for approxi-

12 1

VAX 9000 Series

KEY:

P = PORTDEF
p = PORTINST

Figure 3 SID Database Objects

mating the designer decision and logic synthesis
task . Wi th this approach , the rule would mim ic
what a logic designer had done once and that action
could be repeated again automatica l l y in simi lar
circumstances.

In Ru leform, ru les have a left side for decisions
and a right side for transformations, e.g . , OPS-5, as
do other rule-based languages. However, to make
rules easier to read and write, Ruleform uses English
language sentence structures to describe both tests
and actions. The fol lowing predicate forms are used
for left-side rests:

• Dbobjecr verb

• Dbobject verb dbobjecr

• Adjective dbobjecr verb

• Adjective dbobject verb dbobject

Verbs are words such as IS , ARE , = , >,
IS_BOOLEAN , !S_A_NUMBER ; adjectives are words
such as ANY, ALL, NO. Dbobjects are database
objects or the parameters of these objects.

The command forms used for right-side actions
are corrunaml dbobject and command dbobject
preposition dbobjecr. Commands are words such as
INSERT, REMOVE , REPLACE, MODIFY ; prepositions
are words such as WITH, TO , FROM . The dbobject
can be any of the primary database objects, sec
ondary objects, or their parameters.

122

For more complex operations, we a lso al lowed
LISP functions to be cal led by prefixing them with
the keyword LISP , or by insertion of a LISP expres
sion. Thus, if the ru le language cannot implement
a required function, a LISP a lgorithmic rout ine is
cal led. We used algorithmic transforms in the gener
ation of adder carry-lookahead.

Ruleform Database Access

Because the database could be traversed in any
direction for any arbitrary distance through the
multidirectional pointer system, rules had to have
the same traversal capab i l ity. Therefore, t he
dbobject of the Ru leform language is a shorthand
notation of the " database walk . " Dbobject can be
used in a sentence to compare two database objects
by walking to both of them and using a predicate
for the comparison.

Had the database access been implemented in
p u re LISP programmi ng notation, the sentence
form would be lost in the many levels of expres
sions enclosed in parentheses. One test wou ld
occupy many l ines of code and would read more
like a software program than an Engl ish sentence.
In this case, the chain of thought of the rule writer,
the purpose of which is to capture the step-by-step
thoughts of a logic designer in words, would proba
bly be broken.

Vol. 2 No. 4 Fall 1990 Digital Tecbnicaljournal

Synthesis in the CAD System Used to Design the VAX 9000 System

To improve the comprehension of the notation
used for identifying the database object , we devel
oped an <object> <dash> <object><dash> <object> . .
notation for the walk to a database object. We also
developed functions that would compile this nota
tion into a LISP expression, complete with all the
appropriate declarations for the most efficient run
time performance. Figure 4 shows the use of this
notation .

Further, we incorporated into Ruleform a param
eter definition mechanism that al lowed us to define
any arbitrary parameter, name wha t object i t
would attach to, and then use the name of the
parameter in the Ruleform database access. This
greatly expanded the role of synthesis in that it
could now be used for passing controls and infor
mation to other CAD cools through parameters.
Parameters rel ieved the designers of much tedious
work, such as identifying clocks, logically equiva
lent signals to the placement program CUT , and the
parity generator and checker signals to the diagnos
tic program , called HIDE .

Writing the Rule

Many of the tasks logic designers perform become
automatic and intuitive over time. However, for a

m e a n s

MOD E L

I N P U T S

S I G MAL - 2 M D - I M S

I M S T A M C E S - DR I V E R S - S I G M A L - 2 1'1D - I M S

S O U R C E S

D U S T S

M OD E L - S O U R C E S

computer-based tool to develop a design, it must be
able to measure cel l counts, power and timing, and
compare al ternative implementations against bud
gets of cell counts, power, and timing. To find the
critical path, a computer-based synthesis tool must
perform timing analysis in the same way that the
traditional timing verification tool does. In a sense,
the synthesis tool must preverify the decision
before casting the synthesis transformation in con
crete. Therefore, for a computer to do logic design,
we had to analyze the steps that had become auto
matic and intuit ive, break those steps down, and
formalize them in minute detai l .

Rule Example
Consider an example of a simple cell-mapping rule.
The purpose of this rule is twofold : pick the most
appropriate cell for a configuration of Boolean
gates and attach the most critical path signals to
those input portinsts that have the fastest propaga
tion delays through them.

A designer might determine the critical path from
experience or through trial and error. The designer
also might actual ly count loads on signals and add
estimated signal delay to gate delay of a l l paths
that might involve the timing-critical piece of logic.

g e t t h e n ame of t h e m o d e l d e f of t h e

c u r r e n t i n s t a n c e

g e t t h e i n p u t s o f t h e c u r r e n t mo d e l i n s t

g e t t h e s i g n a l o f t h e s e c o n d i n p u t o f t h e

c u r r e n t m o d e l i n s t

g e t t h e i n s t an c e s w h o s e o u t p u t s a r e t h e

d r i v i n g p e r t i n a c i t i e s o f t h e s i g n a l o f t h e

s e c o n d i n p u t o f t h e c u r r e n t mod e l i n s t

g e t t h e i n s t a n c e s w h o s e o u t p u t s a r e t h e

d r i v i n g p e r t i n a c i t i e s o f t h e s i g n a l s o f

t h e i n p u t s o f t h e c u r r e n t mo d e l i n s t

g e t t h e i n s t an c e s w h o s e i n p u t s a r e t h e

l o a d p e r t i n a c i t i e s o f t h e s i g n a l s o f

t h e o u t p u t s o f t h e c u r r e n t m o d e l i n s t

g e t t h e n am e o f t h e m o d e l d e f s o f t h e

s o u r c e mod e l i n s t s o f t h e c u r r e n t m o d e l i n s t

Figure 4 Example of a LISP Expression

Digital Tecbnicaljozwnal Vol. 2 No. 4 Fall 1')')0 123

VAX 9000 Series

These al ternatives are all very time-consuming. We
decided a computer is best suited to do this type of
work. In SID , a timing analysis routine is run repeat
edly, as the database changes, to set timing parame
ters on every portinst of the design. The product of
these calculations is a timing debt n u mber set on
ewry portinst . If the number is positive, the path is
over budget (i .e . , is in timing trouble) by the number
in picoseconds given. If the number is negative, the
path is u nder budget (i . e. , has slack). The t iming
debt number allows the rules to access the timing
debt paramctl'fS to find crit ical paths.

In the example shown in Figure 5. four Boolean
gates exist as a tree in the middle of a gate array cel l .

The dest-side gate is a three-input OR , and t he
source-side gates are two-input ANDs. The entire
cycle time of the machine depends upon the most
t iming-critical path , which runs through the first
input of the second AND gate.

Because this rule replaces four gates, it has higher
priority over other rules that replace fewer gates.
When the rule arbiter is called with the OR as the
current instance, the arbiter executes the left side of
the rule (i .e . , the first part up to the arrow). The left
side of the rule checks that the current instance is a
three-input OR and a l l source instances are two
input ORs. It then chooses the most crit ical path
from among the inputs of the sources and notes the
other inputs of the sources that were not critical .
Because a l l of the tests i n the left side of the rule
returned true, the rule is said to have " fired . " The
right side of the rule may now be appl ied .

The right s ide removes the current instance,
i . e . , OR , and i nserts the cell with the most crit
ical path connected to the input that has a fast
propagation delay to the output. By removing the
OR , the destination of the A N Ds is removed .
l�Ei'v!OVLI F_NO_DESTS then removes these r\NDs.

The actual rule that does this transformation is

C d e f r u l e " ma p C E L L n ")

124

(mo d e l h a s _ p r o f i l e ' (o r 3))
(a l l m o d e l s - o f - 1 s t - s o u r c e s - o f - i n p u t s

have _ p r o f i l e ' (a n d 2))
(f o u n d { c r i t i c a l } - i n p u t s

i s _ m o s t - c r i t i c a l 1)
(any { t ag g e d } - i n p u t s

a r e _no t _ i n { c r i t i ca l })
- - >
(r e p l a c e * i n s t a n c e • w i t h

o u t = < C E L L n
(n o t i n s - s o u r c e s - { t ag g e d })
(n o t i n s - s o u r c e s - { c r i t i c a l }))

(r e m o v e _ i f _ d e s t s s o u r c e s)

The rule also checks whether signal outputs of
the AND� have more than one load. The rule allows
the transformation if the cri t ic1l path has more than
one load , but disal lows the transformation if the
noncritical paths have more than one load at the
output of the AN Ds. Thus, duplication of the source
AND logic is prevented except when absolutely nec
essary. e.g . , to remove a wire delay to increase the
speed of a critical path.

Organization of Rules into Rule Bases
The quantity of rules required that the ru les be orga
nized into groups, c:t l led rule b:�ses. As we defined
the minute s teps of the logic design tasks, it was
apparent that groups of rules were separated by
levels of abstraction , as depicted in Figure 6. For
example, a sequence of logic design can be charac
terized as a progression through the levels:

behavior ---7 RTL ---7 Boolean ---7 technology map ---7
wiring, tweak ---7 parameter set ---7 placement ---7
route ---7 power au just

We organized the rules by type of act ivity into
rule bases. We also developed a run-frame sequene<:
process that would apply these rule bases. in order,
from behavior through deta iled adjustments :u the
technology level . The rule bases are

• Behavior rule base, w hich contains ru les to
expand behavior and RTL instances. T hese
rules transform high-level instances of adders,
incrementers, comparators, decoders, encoders,
and DECSIM behavior expressions into generic
Boolean instances. They a lso perform s imple
bit replication for data path instances, such as
32-bit MliXes.

• Optimize rule base, w hich contains ru les to
transform Boolean logic for min imization or
timing improvements. These ru les performed
the well-known !)' morgan , distr ibutive. and
:�ssociative transformations to mold networks
of generic Boolean instances into a configuration
that is best su i ted to map into t he cel ls of the
target technology.

• Map rule base, which contains rules to transform
generic Boolean and bit data path instances to
technology cel ls. This rule base actual ly w as
d iv ided into two ru le bases, one that mapped
I /O cells and one that mapped in ternal gate
array ce.lls.

• Wiring rule base, w hich contains ru les to
improve timing by loading and logic adjustments

Vol. 2 No. 4 Falf J<J'JO Digital Technical journal

Synthesis in the CAD System Used to Design the VAX 9000 System

- - - -

MOST CRITICAL PATH
CELL N

Figure 5 Critical Path Map

and rul<::s to detect and correct electrical rules
(ERC) v iolations.

• Tuning rule base, which contains rules to adjust

power on intersections of multiple timing-criti
cal paths.

• Parameter rule base, which contains rules to set

parameters for the placement and route pro
grams. These r ules include setting p a rameters

to identify logica l ly equivalent signals, setting

p i n groups to force col lections of rins to be

near each other in placement, and weighting
parameters to force t i m ing-critical signals to
be shortened.

• Placement a nd route, w h i c h are not rule bases

but CAO tools separate from the synthesis tool .

Pl acement a n d route of Motorola Macrocell

Array I l l (MCA 3) gate arrays occur here in the
overal l design sequence.

• Power rule base, which contains rules to adjust
power on gate array cel ls and cell output fol low

ers. After initial placement and routing, a more
accurate assessment of signal delay can be made.

The power rules track the power distribution

of the gate a rray cel ls and the contribution of

each cell ·s current settings to the power budgets

for ten regions of the chip . These ru les adjust

current upward to improve the sreed of critical

Digital Tecbnicaljournal 1-'r>/. 2 No. 4 Fall 1990

paths. The timing calculations for t h is rule base
use actual routed wire delays.

The Larger Physical Design Process

SlO is part of a larger chip physical design process

that i nc ludes synthesis, p laceme n t , a nd rou t i ng .

The entire process is l inked together i n a two-pass

process, cal led loopback.
The first pass of loopback accomplishes t h ree

goals: the initial synthesis of the chip based on esti

mated i nterconnect delays, p lacement of those syn

thesis results, and routing, which includes accurate
interconnect delay calculations.

The second pass of loopback accomplishes the

fin a l synthesis w ith much more accurate i nter

connect delays and a h igh probabi l ity that the subse
quent physical instantiation wi l l achieve a l l design
goals for timing, space, and power. The final synthe

sis made changes only where required. Final place
ment began with the results of the first pass of

loopback, except where ch:mges were made, and
rout i ng rerouted only those nets that had been

modified. Our objective was to limit the number of
passes through loopback to two and avoid endless

cycles through the CAD tools.

The p l acement process itself consists of t hree

major phases. The global phase, cal led gravity col

lapse, a ttempts to ach ieve relat i ve orientation of

the various gates and disregard density. The distri-

125

VAX 9000 Series

BEHAVIOR
RULE BASE

ADDER. INCREMENTER,
COMPARATOR, ETC.
RULES

DIAGNOSTIC
LOGIC RULES

DATA PATH BIT
REPLICATION
RULES

OPTIMIZE
RULE BASE

Q Q Q I (I
I I

BOOLEAN TRUTH TABLE M U LTIPLEXER
RULES RULES RULES

SPECIAL
RULES

Figure 6 Knowledge Representation Hierarchy

bution phase, called regridding, attempts to assign
the gates to available positions and maintain the
desired orientation. The multipass final placement
phase swaps cell locations, gates, nets, and pins to
reduce weighted net lengths but still adhere to the
technology-supplied design rules.

During the local placement phase, synthesis-sup
plied net weightings and equivalent net parameters
are utilized. The net weightings are part of the com
plex algorithm used to determine whether a poten
tial swap of a cell location, gate, pin, or equivalent
net is beneficial . The equivalent net parameters
a l low the placement program to detach a net from
one pin and reattach it to another pin to supply an
equivalent signal . This process was a particularly
common occurrence because synthesis had to sup
ply the same or complementary signals to many
destinations and still adhere to a technology-driven
l imitation of no more than four loads from any
one source.

Because the placement process introduces so
many changes in p ins , gates, and nets, we felt it
was prudent for the placement program to simply
regenerate the CADEX database format when it

126

was finished. This approach avoided the problem
of developing a "back-annotation" process, which
would be required if modification of the existing
database were attempted and would be a complex
process, given the number of changes made. Also,
because most of the schematic source design is in
RTL format , many, if not most, of the placement
introduced changes are not visible in the schematic.

P lacement results were entered into our
internal ly developed rout ing CAD tool, cal led
Chameleon because of its ability to adjust to its
environment. Chameleon is a h ighl y rules and
parameter-driven tool . I t was used to route a l l
77 gate arrays, all 22 multichip units, and both the
CPU and system control unit planar boards of the
VAX 9000 system. For the 77 gate arrays in the
VA..'(9000 system, the router achieved berrer than
99 percent completion . Further, the average net
was routed to between 101 and 102 percent of
its Manhattan net length. (Note: Determination of
Manhattan length is somewhat ill-defined when
copper-sharing is allowed, and some net segments
are common to multiple source-destination paths.)
The routing was so efficient, with regard to length,

Vol. 2 No. 4 Fall /990 Digital Technical journal

Synthesis in the CAD System Used to Design the VAX 9000 System

that the synthesis and placement programs could
assume that determination of a net's end points
would effectively determine its eventual routed
length and, by extension, its interconnect delay.

Upon completion of the actual rout ing , in ter
connect delay calculations were made for every net
source-load combination by a router-related pro
gra m . We d id these calculations at this point i n
the process for two reasons. First, a l l the necessary
data was readily available in the router's database.
Second , accurate delay calculations were needed
by synthesis during the second pass of loopback to
verify the assumptions made during the first pass
and make any adjustments necessary to achieve tim
ing and power constraints. For those few connec
tions that were not routed completely, calculations
were made based on the M anhattan length and a
small contingency factor.

Problems

Developing and using the new synthesis design
methodology was not without problems. We were
able to fix some of t hese problems for the first
VAX 9000 system generation. However, because of
time and resource problems, others were deferred
to the next project.

Digital's previous CAD system ran on a combina
tion of 36-bit DECSYSTEM-20 computers and 32-bit
VAX computers. In switch ing completely to the VAX
system for a l l CAD processes, we had to rewrite
much of t he DECSYSTEM-20 computer's existi ng
code and replace the Stanford University design
system (SUDS) schematic drawing program with the
CAE2000 system. In replacing SUDS, we lost nearly
one mi l lion l ines of code, which was used for such
tasks as wire l isting, drawing, back annotation, and
electrical rules checks. Some of these were available
in the CAE2000 system, but others had to be devel
oped external to that system.

We designed a common database format, called
CADEX , that al lowed the CAD tools to communi
cate with one another. for example, a design could
be extracted from CAE2000 drawings to CADEX ,
which would supply the design to SID . I n turn,
SID would write CADEX output, which would be
read by the placement program cut. This program
woul d then write CADEX output. and the cycle
would continue. New l ibraries had to be created for
HTL schematic bodies and MCA 3 cells. Data formats
and parameters had to be defined for passing infor
mation between the CAD tools.

In SUDS , resu lts coul d be written back to the
drawing program (i .e. , back annotation). We had

Digital Technical journal Vol. 2 No. 4 Fall 1990

hoped to be able to use the same process in the new
process, but were prohibited from doing so by defi
ciencies i n the CAE2000 system . As a resul t , t he
overall CAD process had to be repeated from the
beginning many t imes.

As with any new development tool, we experi
enced setbacks. for example, we developed the gen
eration of an adder that algorithmical ly picked each
gate of the carry-lookahead for optimum configura
tion of the Boolean trees with respect to fan-out and
path delays. We then w rote Boolean optimization
rules that attempted to merge ORs together as if no
fan-out existed between them. However, when we
did this, the carry-generate, least-critical OR paths
merged, which forced the more critical AND-OR
combinations into simple one-stage cells, with extra
levels of w ire delay between them. Within a few
weeks, we were able to correct the fau lty rules to
a lso consider the t iming-critical paths, which
allowed the adder to improve along the carry
propagate paths. Eventually, by working on the cell
selection, load allocations, and power setting, we
were able to produce a 64-bit adder at 3 .2 nano
seconds (ns) in the MCA3 technology. The best hand
design was 3 .3 ns for a 59-bit adder. At the time,
the logic designers estimated that a n e xtra stage
delay, or 3.7 ns for the 64-bit manual design, would
be required.

Since synthesis was new, there was a great deal of
skepticism as to whether it could perform as wel l as
a manual design. Some logic designers never gave i t
a chance. Other designers encountered early prob
lems with it or experienced schedule pressures and,
as a resul t , resumed using h and-design methods.
However, most designers stayed w ith the process
u nti l it produced acceptable results. In the process,
they supplied feedback and algorithms that were
converted into additional SID rules. This work was
crucial to the evolution of the program. Only by
adding new rules provided by logic designers could
SID be improved for future designs. The successors
to the VAX 9000 system wi l l reap the major benefits
from this work , through improved designer pro
ductivity and time savings.

The effect of timing constraints and the general
accuracy of timing calculations on synthesis results
cannot be underestimated. We required that timing
budgets be specified to every chip to indicate the
timing criticality of each I/O pin . The budgets were
specified from the i/O pin to latches of either of the
two clock phases (TA or TB). Default budgets were
applied on paths between latches that were con
tained on the same chip. If a budget was missing,

127

VAX 9000 Series

SID considered rhar the speed of the path did nor
matter. However, as we ran the paths without
budgets, we frequently found that SID had designed
the path to bt: too s low. Wt: then had ro specify a
budgt:t for that path and repeat the testing process.
A better a lternative would have been to have a tool
set the initial budgets for a l l I/O pins and for the user
ro modify budgets as necessary.

The accuracy of t iming calculations is another
factor in the design resu lts. Because SID used worst
case gate delays rather than rise and fal l delays,

its calcula tions of timing debt genera l ly produced
incorrect numbers that indicated timing problems
that did nor actual ly exist . Triggered by this inac
curate timing datJ, the rules generated duplicated
logic to reduce signal load fan-outs and needlessly
increased chip power.

U l ti mate ly, synthesis methodology enabled the
CAD system to produce accurate gate array designs.
With the Ru ldorm language, we improved the rules
to meet the changing necds. In the mJjority of cases,
rules that were not in time for one designer bene
fited many other designers at a later design stage.
Using an ECO (engineering change order) process,
we adjusted thc placements and power and
improved the riming-critical paths by requesting
specific power sctt ings or fan-outs that the regular
execution of SI I) does nor normal ly generate.

Results

Approximately 9.) percent of the gate-level database
was synrhesiZL:d from source RTL design, DECSIM,
and m icroco<.k truth tables. The other seven per
cent was implemented in the source schematics in
the form of technology cel ls, known as CLEGOs.
Since the RTL often is quite similar to the finished
gates, this percentage is not an accurate reflection
of the amount of work involved . The RTL bodies
were qui te s imple and w i t hout technological
aspects, such as strange polarity inversions and
clock connections. However, they did require that
the designer specify a I. I data paths and control logic
in the true and false sense; e.g . , A and B but not C
feeds the select to 32-bit data path MUX .

The ratio of database size for RTL bodies com
pared to synthesized gates is a better measure of
how the design entry was s impl ified through the
use of RTL. schematics and SID synthesis. The com
parison was done for CADEX fi le sizes of the RTL
designs versus the synthesized gate designs just
prior to placement . The ratio of RTL logic complex
ity versus gate logic complexity, for each CPU box,
is shown in Table I .

128

Table 1 Ratio of RTl log ic Com plexity to
Gate Logic Complexity

RTL Logic
Complexity

Gate Logic
Complexity

E-box

1-box

M-box

V-box

Average

4 . 73

4 .92

4 . 40

3 . 1 7

4 .30

The average ratio of 1 to 4 . 3 is interpreted to
indicate that 23 percent of the logic design work
(not counting placement, routing, simulation , and
timing verification) was done by logic designers and
77 percent by synthesis.

Another perspective is gained when we consider
the amount of synthesis rules that were applied.
The number of ru les varies tremendous ly in relation
to the impact. For example, the adder-generation
rule which takes about 1 CPU minute to complete
for

'
a 32-bit adder, performs the equivalent of

approximately 4 person-days of work . On the other
extreme, a parameter-setting rule that is rested and
applied in . 1 CPU seconds performs the equivalent
of 15 to 30 person-seconds of work .

Table 2 shows the approximate number of SID
rules applied during synthesis runs. The rules per
formed different categories of activit ies for the 77
VAX 9000 system MCA 3 gate array chips.

Thirteen bugs caused by s ynthesis were found
in the gate-level simulator. These bugs were either
typographical errors in the rules or incorrect
interaction within a set of rules. A lthough each rule
was tested independently for correctness through

Table 2 Activity Categories for the
VAX 9000 Gate A rray Chip

Rules Number

Expand behavior instances to bit level
M i n i m ize and opt imize Boolean logic

I n it ial ly select macros and macropins
Detect and correct electrical and design

rule violations

I m p rove t iming by load ing and logic
adjustments

Set high-power on com mon-critical paths
Set parameters needed by other CAD

tools
Set high-power on t i m ing-critical paths

Total number of ru les applied

28,567
1 1 ,550

58,597
7, 392

85,008

3 ,850
1 65,000

24,024

383,988

Vol. 2 No. 4 Fall f<J<JIJ Digital Tec
.
bnica/jounzal

Synthesis in the CA D System Usea to Design the VAX 9000 System

fu l l -pattern simu lation, it was not possible to com
p letely test the interact ion of several ru les. The
simulator found approximately '500 designer-intro
duced hugs, and the breadboard found another
41 bugs. The breadboard was an early version of the
VAX 9000 system that was built with printed wiring
board technology for the purpose of faster simula
tion and debugging of the design.

These numbers transl:lte to about 1 bug per 200
gates designed by hand, compared to 1 bug per
20,000 gates designed by synthesis, when v iewed
from the above ratio of 23 percent hand design
versus 77 percent synthesized design, us ing the
4 00,000 gate VAX 9000 source design. The fu lly
real ized VAX 9000 system is 700,000 gates when
multiple uses of chips are considered.

I n addition to the more traditional syn thesis
funct ions of logic minimization and technology
cell mapping, we used the tool to insert clock logic,
scan logic, AC test circuits, parameters to control
placement and routing, information to the test pat
tern generation tool , diagnostic isolat ion tool , and
simulation tools. A l l these functions made the logic
designers' job much easier through automation of
some tedious and error-prone work.

We also found a unique appl ication for synthesis
rules in the improvement of wire delays on the chip
by rearranging and rebuffering signal nets, based on
timing debts. A set of nearly 15 rules resul ted in a LO
percent path delay improvement across the board
for al l gate a rray chips, including the 7 percent of
logic done in CLE<;o technology cells.

S ID-synthesized gate arrays were found to have
no electrical rules violations caused by the tool. A
few e lectrical ru les errors were, however, intro
duced by manual EC.Os. An example of electrical
rules error is the connection of two incompatible
technology gates, such as an internal chip cell to a
chip output pad .

As shown in Table 3, the run-times for synthesis,
placement , and route for MCA chips varied great ly,
depending on design complexity.

Ta ble 3 Average Ru n-times for MCA Chips

MCA Chip Average Run-time

Synthesis 30 minutes to 3 hours

Placement

Route

Delay calc

4 to 1 0 hou rs

4 to 1 2 hours

1 to 2 hours

Digital Teclmicaljournal Vol. 1 No. ·i Fall /')')(!

Acknowledgments
The authors wou ld like to acknow ledge the devel
opers of the 51 D, CUT, and Chameleon programs for
their contributions and dedication to the develop
mem of the VAX 9000 product : Ron Bossler, Mike
Boucher, Ed Fortmil ler, Herb Kol k , Snehamay
Kundu, Nevine Nassif, Jayanth Rajun, Steve Root,
Dave Tonge] , Dave Wa ll, Yu Wang, and Greg Zima.

Reference

I . G. Brown, Laws of Form (New York: E .P. Dutton
Publishers, 1979).

General References

R. Brayton et a l . , Logic Minimization Algorithms
for VLSI Synthesis (Boston : Kluwer Academic
Publishers, 1984).

). Darringer et al . , " LSS : A System for Production
Logic Synthesis,'' 18tH journal of Research ana
Development, vol . 28, no. '5 (September 1984) :
537-545.

T. Kowalski and D. Thomas, "The VLSI Design Auto
mation Assistant : What's in a Knowledge Base," 22na
Design Automation Conference (1985) : 252-258.

K. Bartlett et a l . , "Synthesis and Optim ization
of Multi level Logic under Timing Constraints,"
IEEE Transactions on Computer-aid.ed Design,

vol . CAD-S, no. 4 (October 1986): 582-595.

A. Goldberg and D. Robson, Smalltalk 80, The
Language ana Its Implementation (Reading, i'vlA :
Addison-Wesley, 1983).

M. Burstein and M. Youssef, "Timing Influenced
Layout Design," 22na Design A utomation Confer
ence (1985): 124- 1 36.

R. Brayton et al . , " M IS : A Mult iple-Level Logic
Optimization System," IEEE Transactions on
Computer-aided Des(f!,n, vol. CA0-6, no. 6
(November 1987): 1062- 1081 .

1 29

Karen E. Barnard I Robert P. Harokopus

Hierarchical Fault Detection
and Isolation Strategy for
the VAX 9000 System

The VAX 9000 system was designed to compete in the mainframe market. Mainframe

customers not on�y require high processor pe1jormance and throughput, but also a

system which is reliable and always available. This paper demonstrates how the

newly implemented scan system, in conjunction with scan pattern testing and

symptom-directed diagnosis (SDD), is essential to satisfy these needs. SDD is the use

of on-line error detectors and state information saved at the time of an error to

isolate the fault that caused the error. The scan system of the VAX 9000 system allows

individual state elements in the processor to be set and sensed, and is the basis for

fault detection and isolation.

As computer technology becomes more advanced,
designs are becoming more dense. Density implies
volume. For example, the typical chip on Digita l 's
most advanced CPU, the VAX 9000 system, contains
8000 gates. The VAX 9000 logic packaging also
compounds the diagnostic problems by making the
gates physically impossible to reach with a logic
analyzer.

As the gate volume increases and t he logic
becomes less accessible, the problems increase for
manufacture of the design, debug of the prototypes,
and repair of the machine in the field . The debug
ging stages and the hardware repair process require
that fau l ts be found quickly and accurately to
ensure that downtime is minimal and valuable
resources and inventory are not wasted. This paper
presents the solution used in the VAX 9000 system
for detecting and isolating hard and intermittent
fau lts. The diagnostic solution for the VAX 9000
system comprises the scan system, tools to generate
test data, uti l it ies to submit the rest data to the scan
nable logic, and an expert system to record symp
toms and produce a cal lout over time.

Traditional Fault Detection and

Isolation Methods

Excluding the Micro VAX chip, all VAXCPl s designed
prior to the VAX 9000 CPU are supported by macro
diagnostics and microdiagnostics.

Macrodiagnostics execute from the system's main
memory and verify that the CPU can successfully

behave as the VAX architecture mandates. Micro
d iagnostics execute from control store random
access memory (RAM) and have access to internal
state elements of the CPU . A lthough microdiagnos
rics were intended ro provide better fault isolation
than macrodiagnostics, isolation is sti l l not optimal
because the access points comprise only a fraction
of the total CPU . Since both types of diagnostics
provide imprecise fau l t isolation, an engineer must
be h ighly skilled i n the analysis of both the code
and the internal workings of the CPU to repair a bro
ken machine.

To avoid the rime-consuming process of manual
fault isolation, the field engineer often extensively
replaces modules, which is a costly repair method .
H istorically, this practice has been a problem not
only for Digital but for the entire computer indus
try. Another disadvantage is that these diagnostics
are executed using the suspect logic, which can
produce incorrect test results. Final ly, both diagnos
tics often fai l ro provide the desired fault resolution
because of fault propagation. The fault spreads
across module boundaries because a typical test
executes several instructions and each instruction
requires one or more CPU cycles before the results
are analyzed.

Solution for a High-volume Design

The solut ion used in the VAX 9000 system to
improve fault detection and isolation preserves the
role of the functional diagnostics and addresses the

Vol. 2 No. 4 Fa/1 1990 Digital Techn icaljom-nal

Hierarchical Fault Detection and Isolation Strategy for the VAX 9000 System

inherent problems of those diagnostics. An integral
scan system addresses the density and packaging
issues. The CA D processes that automatica l ly gener
ate test data address the complexity and schedule
issues. The scan system also reduces the problem
of fault propagation by providing a mechanism to
stimulate the machine and examine the results after

just one machine cycle. Further, more direct control
over most of the internal logic elements improves

test coverage and fault isolation.

Increased Visibility

In the VAX 9000 CPU design, multichip unit technol
ogy created a machine that could not be built or

diagnosed without a marked increase in visibility
points. I n previous VAX systems, the number of visi
bility points for microdiagnostics varies from one
machine to another. For example, the VAX 8700
system has just over 150 visibility points, and the

VAX 8600 and 8650 systems have over 3000 visibil
ity points. Most points are read-only points, and the
diagnostic processor has l imited direct control over
in it ializing individual CPU state elements. I n con
trast, the VAX 9000 scan system provides access to
over 20,000 internal machine state elements for
both reading and writing and direct access to al l
internal RAM and register structures. The design of
the VAX 9000 system sign i ficant ly improves CPU
and system control un i t logic visibil ity.

The scan system is used for diagnostic purposes
ancl to initial ize the state of the CPU and system
control unit . Because the number of windows into
the system are increased, the design can be parti
tioned into smaller regions, which improves fault
isolation. The fault detection and isolation strategy
depends on components that vary in complexity
from a simple scan latch to automatic generation of
the test data.

An important feature of the scan system is that
the scan latches can be infl uenced by the scan sys
tem and by the system logic. Therefore, the scan
system functions can be tested and verified inde
pendently of the system logic. However, if the scan
system is not functioning properly, the scan pattern
diagnostic cannot produce valid results. Therefore,
scan system fau l ts must be fixed before running the
scan p::merns.

Testing Hierarchy

Testing for the VAX 9000 system begins with d iag
nostics that Jre run automatical ly when the system
is powered up. These tests ensure that the service

DiJ!,ital Tecbnicaljournal Vol. 2 No. 4 Fall /<)<)()

processor unit and the scan system's basic compo
nents do not contain any fau lts.

After the tests are executed , the service processor
unit's operating system is booted and the scan hard
core diagnostic is mn. The hard -core d iagnostic
assumes that the system has passed the power-up
diagnostics and, therefore, the scan controller wi l l
operate properly. The hard-core diagnostic tests the
components of the scan system that reside on the
CPU and system control uni t planar modules. I f
the scan system is broken, the machine cannot be
initial ized. When the system passes the hard-core
diagnostic, the scan pattern diagnostic tests the
integrity of the scannable system logic.

The functional diagnostics and system exercisers
are run Jfter the scan pattern diagnostic has verified
that no structura l p roblems exist . In the testing
hierarchy of the VAX 9000 system, functionJl d iag
nostics are as important as structural testing. Func
tional diagnostics verify that the design represents
a valid VAX system.

Timely Testing

I n the course of developing a system design, several
revisions of the system components are usual ly
required . Each revision represents a d i fferent
machine for testing purposes. To test each revision
of the VAX 9000 design in a timely manner, a tool,
ca l led Scan Environment Patterns for Test Jnd
Repair (SCEPTER), wJs developed to generate test
data . SCEPTER, an automatic pattern and test gen
erator, takes JS input the data used to manufacture
the multichip units and structural models that simu
late the design. Both inputs are produced during
the logic design process.

SCEPTER Process

Pattern generation for the VAX 9000 system is a
recursive p rocess that i nitial izes the scannable
latches in a logic model, simulates one or more
system clocks, and reads the contems of the scan
latches. The contents are read as variable-length
vectors, one bit for each scan latch in the design .
The vectors to initiJlize the logic, the timing defini
tions Jnd the expected resul t , and mask vectors Jre
written by SCEPTER into an ASCII file. The scope of
the testing for J particular fi le is determined by the
scope of the model that was input to SCEPTER .

SCEPTER i s quite flexible and cJn generJte data files
thJt target a Motorola Macrocell Array I I I (MC:A :)),
a multichip unit , or CPU .

The SCEPTER data files are translated into binary
formats to reduce the size of the fi les and to al low

1 3 1

VAX 9000 Series

one pattern generator to satisfy the requirements
and abili ties of every test environmenr . The envi
ronments that usc data generated by SCI:PTER arc

• Tri l l ium's Micromastcr Plus, the MCA tester used
by the MCA3 ,·endor and Digital for the manufac
turing test process. The tester ensures that the
chip internal logic is fault-free prior 10 mounting
it on the multichip uni£ .

• MCU tester, which is a comprehensive multichip
unit testn Digital developed for the manufactur
ing test process. This multistation high-volume
tester has access ro the multichip unit's J /0 pins
and can probe the mul tichip unit and MCA pins.

• Manual probe station, which started out as an
engineering tool but has evolved into auxi l iary
diagnosis too in the multichip unit test process.
It is used ro diagnose mu ltichip units that have
been removed from a VAX 9000 system because
of suspected faults.

• VAX 9000 kernel environment is used by Engi
neering, Manufacturing, and Customer Services
to verify MCU installation.

Pattern Generation Process
The automatic test ami pattern generation (ATPG)
process begins by determining what portion of
the design is to be tested. A computer-aided design
(CAD) tool partitions the models into chunks
before SCEPTER is run . A chunk can consist of an
MCA , a multichip unit , one crt · , or any portions of
these units.

Typically, one multichip unit is considered to be
the targeted device for tt'st ing, and any multichip
units that communicate with the targeted multichip
unit also are included in the rest process.

Once the model is established, the recursive pro
cess of initializing, simulating the system clock, and
reading the results continues until the generation
algorithms are satisfied that no additional faults can
be detected. The simulation time can be lengthy in
this process, and, therefore, reduced coverage l im

i t s are set for multichip unit pattern generation .
MCA pattern generation usual ly produces better
than 98 .5 percent coverage.

Basic Theory of Structural Testing

As discussed earlier, the scan system narrows the
scope of testing to an area as small as one system
clock cycle. If the scan latches are strategically
placed, a fault 's source can be pinpointed to a rela
tively small region. The size of the region is directly

132

related ro how far apart the scan latches arc placcu .
The spacing of the scan latches also affects the isola
tion cal lout. The number of components involved
in a callout can be decreased i f scan latches arc situ
ated such that, on input to a chip, a signal feeds a
scan latch prior to the signal being used in combi
national logic . Figure I i l lustrates the cal lout that
occurs if a fault is detected on either of the two sig
nals shown.

The callout for signal A, where the chip is insu
lated with scan latches, is 30 percent smal ler than
the callout for signal B, which does not have
boundary scan latches. The difference is even larger
for signals that converge on a common area of com
binational logic.

Using Boundary Scan to Improve

Fault Isolation
The example in Figure I does nor i l lustrate what
happens to the isolation callout in t he case of a
multibit signal that communicates with several
chips. Figures 2 and 3 demonstrate the effect that
fan!N has on fault isolation . Figure 2 has boundary
scan, and Figure 5 does not. The fo l lowing discus
sion centers on these two figures.

The callout in Figure 3 includes an extra compo
nent, i .e . , combinational logic, for each chip. If a
scan latch is placed between the combinational
logic and the chip boundary, the cal lout l ist can
be reduced . The reduction between the callouts in
Figures 2 and 3 is 55 percent.

The hierarchical test strategy, which was detailed
earlier, confirms the following items as good on the
MCU tester prior to instal l ing the multich ip unit on
the planar module:

• Chips I, 2, 5, and 5

• MCUx H DSC

• MCUy HDSC

• MCUx flex connectors

• MCUy flex connectors

A lthough these items are confirmed as good, a
fault can still exist on the planar module or in the
flex connectors. Because the flex connectors are
moving connectors and subject to abrasion, they
have the highest probability of break ing and are,
therefore, the weakest l ink in the mulrichip unit
assembly.

As such, these connectors require the greatest
protection and deserve a high-level of suspicion

Vol. 2 No. 4 Fall I'J'JO Digital Tecbn icaljournal

Hierarchical Fault Detection and Isolation Strategy for the VAX 9000 System

MCU 1

"SIGNAL A:

MCAx
MCU 1 HDSC
CPU PLANAR
MCU 2 HDSC
MCAy

MCAx

FAULT"

MCAx

SIGNAL_A_H <0>

1 CLOCK CYCLE

SIGNAL_B_H <0>

1 CLOCK CYCLE

MCU 2
MCAy

MCAy

··siGNAL B:

MCAx
MCAx COM BI NATIONAL LOGIC
MCU 1 HDSC
CPU PLANAR
MCU 2 HDSC
MCAy COMBI NATIONAL LOGIC
MCAy

Fz�e,ure 1 Example of Two Faults with and without Scan Latches
on the Module Boundaries

when isolating faults. As a result of testing in the
manufacturing process, the chip's internal logic and
the H DSC systems can now be temporari ly removed
from the callout . If a fault occurs, boundary scan
latches can isolate the fault to one signal . Without
boundary scan, all three signals have to be included
in the callout because the fault source cannot be
accurately pinpointed .

In this example, provided that no other faults are
present, each multichip unit 's flex connector has
an equal probabil ity of having caused the fault . For
every inch of flex connector, there are 30 signal
connections. A m inor piece of debris on a con
nector can potentially cause a number of fai lures.
Therefore, the least costly repair strategy is to reseat
the multichip unit after cleaning the flex connector
and the pads on the planar module.

If the fault is still present after reseating the multi
chip unit, the multichip units are swapped and the

Digital Tecbnicaljournal Vol. 2 No. 4 Fall 1990

patterns are rerun. If the run is fai lure-free, then the
cause of the fault is on the removed multichip unit .
The defective unit is sent to a repair depot for diag
nosis and repair.

For discussion purposes, if additional faults are
detected on one of the multichip units during the
testing, then that multichip unit should be the first
one to be reseated or swapped . Thus, the highest
number of fau l ts can be el iminated for one MCU
replacement. The remainder of the repair veri fica
tion procedure would be the same as in the case
where no other faults existed.

Scan Pattern Diagnostic

The scan pattern diagnostic is a utility that resides
on the service processor unit 's system disk and
processes the structura l test data generated by
SCEPTE R . The scan pattern d iagnostic runs each fi le
based on the user's input.

VAX 9000 Series

MCUx

CHIP l

CH IP 2

C H I P 3

CALLOUT FOR SAME FAULT
USING BOU NDARY SCAN 5 ITEMS

1 CHIP 1

2. CHIP 5
3. MCUx H DSC
4. MCUy HDSC 5. PLANAR

FAULT

MCUy

KEY:

D

CHIP 4

CHIP S

CHIP 6

SCAN LATCH -+ DETECTION POINTS
FOR FAULTS

-D OR CL -+ COM B I NATIONAL LOGIC

Figure 2 Fan/ N with Boundm�)' Scan

'T'h<.: interface supports flexibility for testing the
scmnahle logic in the system control unit and one
to four Cl'l ·s. The scan p:mcrn data files contain the
dat::t required to test the hardware as discussed ear
lier in the Pattern Generation Process section .

The diagnostic packages the test data into sun
operations that ::tre submitted to the scan control
modu 1<: through the service processor unit sys
tem calls. The scan pattern diagnostic checks the
returned status; and if fau l ts are detected , saves
the physical location of each faull in an internal
database.

SCEPTEf{ provides iso lation maps. which an: lists
of the components that may he responsible for the
fau l t detected by a given scan latch. There is one
isolation map for each scan latch involved in the
testing. When a scan larch detects a fai lure, the
scan patlern diagnostic uses its physical location
to access the isolat ion map provided by SCEPTE R .
The contents of the maps arc used in the isolat ion
callout .

Proper Niche for Structural Testing

We did nor design the structural test process for the

Vol. 1 No. -i Fall I'J'JO Digital Technicaljournal

Hierarchical Fault Detection and lsolat ion Strategy for the VAX 9000 System

MCUx

CHIP 1

-� FAULT

-

CHIP 2

��
'------

CHIP 3

��
1.---

CALLOUT WITHOUT BOUNDARY SCAN

1 1 ITEMS

1 . CHIP 1
2. CHIP 2
3. CHIP 3
4. CHIP 5
5. CHIP 1 CL
6. CHIP 2 CL
7. CHIP 3 CL
8. CH IP 5 CL
9. MCUx HDSC
1 0 . PLANAR
1 1 MCUy HDSC

MCUy

CHIP 4

CHIP S

r--

D-

KEY

D

'------

CHIP 6

SCAN LATCH -+ DETECTION POINT
FOR FAULTS

-D OR CL -+ COM BI NATIONAL LOGIC

F(f!,ure 3 Fan!N ll'ithout Boundary Scan

VAX 9000 system to cover every test proble m .
I nstead, we designed the process to ensure that the

hardware can physica l ly operate as described by

the design data . Structural testing cannot be used to
determine if the VAX 9000 system is operating as a

VAX system. that is the job of the fu nctional diag

nostics. Furt her, structural test ing cannot be used

to determine if the system is robust enough to sup

port mult iuser tra ffic; the User Env ironment Test
Package (l i FT!') exercises the system hardware and

operating system. The structural test process a l so

Digital Tedmicaljournal V!JI. .! Nn. 1 f-'a/1 /')90

cannot be used to find problems with the design.
Architectural verification tests perform that func

tion. Final ly, structural testing cannot be used to

detect intermittent fau lts. Because this type of fau l t

requires t h e presence o f special cond it ions which

the test data may not provide, on-l ine error detec

tors and symptom-d irected d iagnosis are more

effective alternatives.

Structural testing must be performed at a low
level . It shou l d be done \vhen power fai l u res o r

power surges occur. w hen multichip units o n the

VAX 9000 Series

CI'U or system conrrol unit planar are swarped , or
when signal-carrying cables arc instal led . The scan
patterns also should be run i f the system crashes
or applications begin to behave erratically for no
apparent reason. Initial ly, w hen a system problem
occurs, the cause must be isolated ro either the soft
ware or hardware to in itiate the correct remedial
action. If the hardware appears to be the cause. then
the hardware d iagnostic strategy must be fol lowed
to obtain opt imal fau l t isolation in a m i n i m al
amount of time.

Structural Test Process

The VAX 9000 system's structural test process
s h ows that, given the p roper pattern data files,
faults can be detected and isolated faster than with

tradi tional methods that usc the symptoms from

the functional diagnostics. Structural resting not
only fills a gap in Digital 's rest h ierarchy, bur also
preserves the benefits derived from the functional
diagnostics. As a resu lt, logic designers and mJnu

facruring engineers can concentrate on higher level

problems, and field engi neers can repair and bring a
broken machine bJck on- l ine faster.

The structural test process has also produced an
automatic rest data generator. T his generator is tlex
ible enough to support testing for Digital's fut u re

processor designs, which include a scan system .

This tool wi l l prove ro be essential in bringing the
next innovative complex design to marker on rime.
It makes design testing, prototype debugging, and
repair more t horough and efficient .

Structural test ing cannot address the u nique
problems presented by intermittent fa u l ts. T hese
fau lts require constant monitoring and a mecha

n ism to log the symptoms and isolate over time.

Symptom-directed Diagnosis
As computer systems have become more complex .
the occurrence of intermittent faults hJs increased
dramatically. This phenomenon results mJ in ly from
the increasing densities of chips and interconnec
tions. Traditional test-directed diagnostics are inef
fective in isolating intermittent faults because they
rel y on the abi l ity to re-create the fa ilure cond i tion,
which is seldom possible to do. Inrermirrent fau l ts

are usual ly as a result of marginal components and
may on ly occ ur when certain conditions are mer,

such as the specific workload on the systcm . In con

trast to rest-directed diagnostics, symptom-di rected
d iagnosis uses symptom information saycJ at the
t ime of the fail ure ro isolate the bult . Symptom
information includes useful machine stares, such as

136

error t.lerector states, multiplexer selccr vJl ues,
memory addresses, and register values.

The VA X 9000 s y mp rom-d i rcc red d iagnosis
st rategy is composed of fou r major components.
First, on-l ine hardware error detectors are used to
achieve mJximum coverage and an error-reporting
p rocess logs the necessary symptom i nformation

when errors are detected . Second , hardware error
detecrors and secondary syndromes are used to
build symptom-directed d iagnosis fault isolation

rules that achieve the mi nimum possible callout of
faulty field replaceable units. Third , symptom
directed diagnosis CAD tools calcu!Jre the coverage

provided by on- l ine error detection and evaluate
the qual i ty of fau l t isolation provided by t hese
detectors. Fourth, on-l ine, symptom-directed d iag
nosis software performs fault isolation for both
single-error and multiple-error events.

Fault Detection Coverage and

Error Logging

On-line hardware error detection is essential for
detecting interm ittent faults. On h igh availabi l i ty
mainframes such as the VAX 9000 system, it is essen
tial ro detect or " cover" a high percentage of inter

mittent fJ ults. This section discusses the coverage
measurement of on-l ine error detection for the
VAX 9000 system. The VAX 9000 system error

logging process is also discussed.

On-line Error Detection
Hardware components are subject ro temporary
fJ i lures because of signal noise, environmental devi
ations, marginal devices, and other factors. To com
pensate for these inevitabi l i ties, the VAX 9000
kernel includes over 450 error latches, which store
the results from hardware error-detection circuits,

such JS parity and error-correcting code checkers.
The detection of faults is critical to an orderly and
predictable error-handl ing process. Error-detection
circuits nor only ensure the data integrity of the sys
tem , but also provide information that can be used
for symptom-d irected diagnosis fau lt isolation.

The p lacement of error-detection hardware is
cr i t ica l to the effectiveness of the process. The
goals for error detector placement on the VAX 9000
system incl uded :

• M a x i m izing coverage of higher fai l u re
components

• Minim izing the callout of fa ulty field replaceable
units

Vol. 1 No. -1 Fall J<)<JIJ Digital Technical journal

Hierarchical Fault Detection and Isolation Strategy for the VAX 9000 System

• Minimizing pin use and cell count

• Minimizing effects on system performance

Coverage Calculation
One of the purposes of hardware error detection is

to ensure that the VAX 9000 system behaves in a
predictable manner when a faul t occurs. Therefore,

a h igh percentage of errors must be covered by on

l i ne e rror detection . If a fau l t is not detected , t hen
the machine may operate or fail i n an unpredictable

manner. U ndetected faults comp lic::tte t he error

reporting and recovery processes and l i m i t the
qual ity of the symptom information available for

symptom-directed diagnosis fault isolation.

Reliability Weighted Coverage The coverage
provided by on-l ine error detectors is measured i n

terms of the rel iabil ity o f the various components

in the design. In other words, t he coverage calcula
tion is weighted according to the probabil i ty of fai l

ure of each device in the logic.

Re l iabi l i t y weighting is performed by first

assigning a relative fai lure weight to each primitive
physical element. Examples of primitive physical

elements are gate array cells, self-timed RAM cells,

the h igh-density signal carrier, mult ichip u n it
flex connectors, and planar mod u le etch . A weight

of one is assigned to the most reliable pr imitive

physical element and all others are scaled propor

tionally upward .
Each signal io the machine is then assigned a fai l

ure weight by calculating the sum of the weights of

each of the primitive elements that compose t he
signal . For example, a mulrichip unit i nterconnect
signal is composed of rwo mu l t ichip un.it flex con
nector primitive elements ami one planar module

etch p rimi t ive eleme n t . Therefore, the weight of
th is signal would he two rimes the multichip unit

flex connector weight p lus one times the planar

module etch fai lure weight .

Probability qf Detection The second aspect
of the coverage calculation is the probabil ity that a
fault on a given signal wi l l be detected by an on-l ine
error detector. This aspect is cal led the signal proba

bi l i ty of detection and is calculated hy computing

an error domain for each on-l ine error detector in

the system . The error domain of a given detector is
t he sum of a l l of the signals in rhe design that have a

greater than zero probabi l i ty of being detected if

they are faul ted . The detector covers each signal in
its error domain.

Digital Technicaljournal Vol. 2 No. ·i Fa/1 /'J')fi

Computation of the error domains for each on

l i ne error detector in rhe design resu lts in a signal

probabil ity of detection for each covered s ignal .

Uncovered signals are assigned a zero signal proba
bil ity of detection .

Coverage Formula The sign<d probabil i ty of

detection d<tta and the signal rel iabi l i ty weight cal

culations are used to determine t he system on- l ine

error detector coverage. The formula for this calcu

lation is
" �(P, X RW;)

c = -' ,-, '------
�(100, X RW;)
' I

where n equals the number of signals in the system ,

p equals t he signal p robabi l i t y of detection, RW
equals the signal reliabi l i ty weight , and C equals the
system coverage.

A symptom-directed diagnosis CAD tool , cal led

the hardware isolation domain eva l uator (HIDE),

was developed to automate the process of deter
mining the signal rel iab i l ity weights, probabil it ies

of detection , and overal l system coverage. HIDE is

d iscussed in more detai l in the CAD Tools and

Processes section of this paper.

VAX 9000 Error-reporting Process
The error-reporting process on the VAX l)OOO sys
tem faci l i tates symptom-d irected diagnosis by sav

ing critica l symptom information that can he used

for fau lt isolation . The VA X 9000 service processor
unit initiates and controls the error-reporting pro
cess. The service processor uni t monito rs each of

the VAX 9000 subsystems and reports conditions

that deviate from normal operation . The service
processor unit recovers the fai led status from the

subsystem in error <md generates an error log entry,

wh ich contains important machine-stare symptom

information saved at the time that the error was
detected . This i n formation is analyzed by symp

tom-directed diagnosis fau l t isolation tools to deter
mine the source of the error.

Fault Isolation Rules

The symptom-directed d iagnosis fault isolation
tools use a knowledge base of fault isolation rules to
determine bow to analyze the data inside the error
log entry. The fault isolation rules were designed by

reliabi l i ty engineering experts who understand the

behavior of the machine when it fails.

1:)7

VAX 9000 Series

Thl're are two basic types of faul t isolation ru les.

single event and multiple even t . Single-event rules

arc used for analyzing single error events (i .e. , one

error log entry). Mult i ple-even£ rules arc used for

analyzing m u lt iple error events that occur over a

specified inrerval of rime.

Single Event Fault Isolation Rules

There arc several categories of single evenr fault iso

lation ru les. These rules are derived from rhe on- l ine
error derection designed into the VAX 9000 system .

Prinuuy 5>)mdrome Fault Isolation Rules Primary
syndromes are the error larches rhat detect and

report error events. Each error latch stores the

result of an on- l ine error derector. Each error detec

ror covers a secrion of logic in rhe system. By map

ping t h is logic to the physical parr it ion (i .e. , field

replaceable units), the values of set error latches can

be ust"d as a first-pass fau l t isolat ion. I n m a n y
instances, this anal ysis a lone i s sufficient to deter

m ine rhe fau l ty field replaceable unit .

Secondary .'l)•ndrome Fault Isolation Rules In some
i nstances, the fau l t isolat ion provided by the pri

mary synd romes may nor local i ze the fault s u ffi

ciently. For example, if the primary synd rome field

FRU 1
FRU 3

00 - 07
PARITY

�8
/ / GENERATOR /

DO - 08 � , / MUX /

FRU 2
00 -�8

/ 01
/ l,....--. DO;D7 08 PARITY /_

/ GENERATOR /

replaceable unit callout results i n more than one
field replaceable unit hav ing a significant possibi l i ty

of fai l u re, then secondary syndromes must be used

to reduce the cal lout . Secondary syndromes are key
m a c h i ne states, other than error l atches. that are

stored in rhe error log entry. Examples of secondary

synd romes include mulriplexer select l i nes, mem
ory :tddress values, and orher p�nh-sensit ive control

signals. These s ignal stares are used to derermine

rhe specific parh rhar was S(;nsit ized w hen an error
occu rred . T he nonsensit ized path(s) can t he n be

removed from the callour . An example of how sec

ondary syndromes are used for fault isolarion is

shown in Figure 4 .

Fault Propagation Rules Sometimes a single-error

event can trigger multiple error detectors because

of fau lt propagation or domain intersection .

Fault propagation occurs when a fault i n :.1 given
error domain (i .e. , the propagation source) propa

gates into other error domains (i .e. , the propagation
destinations). 'J() identify the real sou rce of the

error, the possible fault propagation paths must be

found and the precedence of the error detectors in
each propagation path must be ident ified . When

multiple error latches are set, the propagation rules

can then be applied to e l i m i nate a l l p ropagat ion

r- PARITY - ERROR PARITY _ERROR
CHECKER LATCH

MUX_SELECT

PARITY _ER ROR MUX_SELECT CALLOUT

1 :)8

UNKNOWN FRU 1
FRU 2
FRU 3

0 FRU 1
FRU 3
FRU 2
FRU 3

Figure 4 Secondary 5)1ndrome Example: MUX Select Usedfor rciUlt Isolation Reji'nement

Vol. .! No. Fa/1 1')')11 Digital Tecbnicaljournal

Hierarchical Fault Detection and Isolation Strategy for the VAX <)000 System

destinations for each propagation source in the call
out. An example of faul t propagation is shown in
Figure 5 .

Domain Intersection Rules Domain intersection
results when two or more error detectors cover a
common piece of logic. This information is used to
refine the callout when multiple error latches are set
in the VAX 9000 system as shown in Figure 6.

Multiple Event Fault Isolation Rules
Multiple-event rules attempt to correlate separate
error events to fine! a common problem. This type
of analysis is beneficial when an i n termittent or
transient problem i s not diagnosed sufficiently by
single-event symptom-directed diagnosis rules.

For example, if a logic fault were analyzed with
single-event , symptom-directed diagnosis rules, an
intermi ttent logic fault could be concluded as hav-

FRU 1

ing occurred. Such an analysis would result in a ull
out of the faulty field replaceable unit . However,
mult iple-event rules include checking for certain
environmental deviations in close proximity to a
logic fau l t . In this case, multip le-event analysis
would attempt to correlate the logic fault with the
envi ronmental deviations to determine if the fault
is transient in nature. I f this were the case, a callout
would not be required.

Mul tiple-event rules can also be used to enforce
the cal lout refinement provided by secondary
syndromes, fau lt propagation, and domain inter
section . For example, in a VAX 9000 system that
repeatedly generates identical or similar error log
entries, multiple event analysis can correlate these
entries to a single intermittent fault . It can provide
a scenario of which is the most l ikely secondary
syndrome path to be sensitized and the most likely
error domain to detect the error first. In this case,

PARITY _ERROR_ 1 OG-07/ PARITY 08L OG-08/ PARITY -- ERROR / GENERATOR / L v- -- CHECKER LATCH /

/ OG-08 /

FRU 2

LOGIC

OG-08 /

PARITY

CHECKER

PARITY _ E R ROR_1 PARITY _ERROR--2 CALLOUT

NO PROPAGATION FRU 1
INFORMATION FRU 2

WITH PROPAGATION FRU 1

INFORMATION

,- ERROR

LATCH

Figure 5 Fault Propagation Example

PARITY _ER ROR_2

Digital Tecbnicaljournal Vol. 2 Nu. 4 Fal/ 1<)90 139

VAX 9000 Series

FRU 1 FRU 2

00-07
PARITY

0� 00-08/
/ GENE RATOR /

n
FRU 3

PA R ITY _ERROR_1 PARITY _ERROR_2 CALLOUT

0
0

FRU 1

FRU 2

FRU 1

FRU 3
FRU 1

PAR ITY --- ERROR PARITY _ERROR_1

CHECKER LATCH

PARITY PARITY _ERROR_2 ERROR
CHECKER r---- LATCH

Figure 6 Domain Intersection EwmljJle

multiple-event analysis can view these events as a

s ingle prob lem rather t h a n seeing each error log

entry i n isolat ion .

CAD Tools and Processes

'J(> ensure that t he VAX 9000 symptom-d irected

diagnosis fault coverage and isolation goals were

achien:d , CAD tools were needed to measure the

quality of the on- l ine error detection in the design.

Tools a lso were needed ro help develop symptom

d i rected d iagnosis fau l t isolation rules and to faci l i

tate t he conversion o f these rules into a format that

cou ld he used by the fa ult isolation software.

Some of the significant sy mptom- directed diag

nosis CAD tools that were devdoped and used for

the VAX 9000 system are discussed below.

Hardware Isolation Domain Evaluator
The hardware isolation domain ev:tl uaror (H I I)E)

CAD roo! was developed to prov ide sy mptom
directed diagnosis fault coverage and isolation

information to the VA X 9000 logic designers. H l l)E
a lso can generate simp!<: symptom-d i rec ted d iag

nosis fa u l t isolat ion rules for usc in the system fa u l t

isolation matrices.

One of the:: goals for H ID E was to provide ea rl y

fec::dback to logi c designers on the quality of on-l ine

1-i ()

error detection in designs. Ea rly feed back gave

dc::signers r i me to make design changes i f cm·erage

or isolation goal s were not achieved . Further. the

information prov ided by H I OE helps designers

select locations for error detectors and gave design

ers quick feedback on the impl ications of detector

placement and design changes.

Symptom Diagnosis Information
Language
The symptom-d i rected d i agnosis fa u l t isola tion

rules for t he VAX 9000 system were coded into a set

of system fault isolation matrix fi les, cal led symp

tom diagnosis i n formation files. Symptom diagnosis

information is a language t hat is designed to express

hoth single-event and mulrip le-c::vent , symptom

di recrc::d diagnosis fault isolation rules in an objec

tive and consistent manner.

In c::arl ier VAX systems, new fau l t isolation tools

were needed for each new computer system . In the

VAX 9000 system, the sym ptom diagnosis informa

tion language provides a general-purpose means to

specify symptom-directed d iagnosis fault isolation

ru les. The fi les a rc used as t he ru le base for t he

sy mptom-di rected d iagnosis fau l t isola t ion tools.

w h ich means that the tools can be used for furure

computer system designs .

Vol. J No. -i Fall I')')() Digital Technical journal

Hierarchical Fault Detection and Isolation Strategy for the VAX f)OOO S)'slern

On-line Fault Isolation Software
The VA X 9000 system contains on-l i ne sym rrom

direcred diagnosis sofrwan: rhar auromatica l l y diag

noses faults as they occur. The software produces

an isolation c a l lout of the possib le fau l t y fie l d

replaceable units t h a t i s automatica l l y received by

Digital customer s<.:rvice centers through a symp
rom-di rected d iagnosis reporting process. T h i s

rrocess i s design<.:d (() mini mize the repair time

for VAX 9000 systems. I t a u tomatica l l y noti fies

Digital of problems and provides a rerair plan to

Customer Services before personnel arc sent to the

customer's sire.

Service Processor Diagnostic
The VA X 9000 sen·ice rrocessor unit contains a

symptom-directed diagnosis fa ult isolation process

t h a t rerforms single-event a n a l ysis. This pro

cess runs in the background waiting for error log

entries. \V hen an error log entry is generated. the

process analyzes the error log entry and rroduces

an encoded ca l lou t of possible fa u l t y field rerlace

ahle un its.

The symptom-d irected diagnosis fault isolation

algorithm is rerformed by a general-purpose diag

nos t i c engine. T h is engine uses a binary version
of the s y m prom di agnosis i n fo r m a t ion fi le, i . e. ,

binary-coded matri x , as a rule base for its analysis.
The d i agnostic engine can anal yze a n y error log

entry that has a va l id corresponding binary-coded
matrix file.

In addition to the encoded callou t , the single

event fa ult isolation rrou:ss produces status infor

m at i on from each error event t h a t is used for

mult i ple-event analysis.

VAXsimPL US

The Vr\X sim l'Ll 'S tool runs on the VAX 9000 CPU and
performs symptom-direcred diagnosis mulriple

e,·cnt analysis. The tool analyzes information gen

erated by the si ngle-eve n t , symptom-d i rected

diagnosis process using multiple-event. hinary
coded matrix files. The VA Xsim P L LIS tool uses the
same general-purpose d iagnost i c engine as the

single-event. symptom-directed diagnosis process.

The outrur of the VA Xsim PLliS tool is a syndrome
entry that col l apses several error even t s into a single

error analysis theory.

Summary
A complete rest and diagnosis strategy for a large

computn system, such as the VAX 9000 system,

1-equi res off- l ine resting and its on- l i ne cou nterpa rt .

s�·mptom-direcred d iagnosis. Off-li ne test ing rro-

Di�ilal Tt.•cbuicatjounwt \'ul. 1 N". 4 Foil /'J')Ii

vides a hierarchical mechanism for testing each

component before it is assemb led into the next

level . I n off-l ine resting, the usc of the scan system

rrovidcs high coverage and accurate fa ult isolation .

Scan test ing also has p roven e ffective du ring a l l

p h ases o f the VA X 9000 system product develop

ment: desi g n , manufacturing, prototype debug ,

and customer support.

Sy mptom-di rected d iagnosis is a sophisticated

tool that provides detection and isolation of inter

mittent faults. Intermi ttent fau l ts have heen a signif

icant problem i n t he past because of the d i fficu lty to

re-create the conditions that lead to such fau l ts .

Symptom -directed diagnosis solves t he problem of
intermittent faults by analyzing symptom informa

tion generated by on- l ine error handlers rather t han

by attempting to re-create the fault . Thus. the use

of symptom-dir<.:cted d iagnosis p rov i des greater

machine avai labil ity for the VA X 9000 system .

Acknowledgments
The im plementat ion of the VA X 9000 fault detec

tion and isolation strategy wou ld have been impos

sible if not for the perseverance and dedication to

high qual ity shown by the fol lowing peorle: Jeff
Barry, Dom inic Carr, Steve Conway, Ed Crowley,

Betty Daley, Tony [)ancona, Dave D'Antonio, Chris

Demos, Sue DesMarais, Pa u l Dorm irzer, Rick

Dusek, M i ke Evans. S kip Gaede. M i ke Gavronsky,

Phil ipre Girard, Matt G oldman, Francis (; ravel ,
C h ris josep h , D a l e Kec k , Tom Kreh e l , C harl ie

Kretz, Burch Leitz, Helen Lenane. Paul Leveil le.

Keith Mayhue, Ch ris McCabe, Robert Nobrega.

Mi ke Newman , Paul Paternoster, Brian Rosr, Dan

Schu l l m a n , Scott Si tte rly, Norm Sozio, Tamar
Wexler. Tom W inter, Ted Wojcik , Richard Wood .

Eugene Xia. and t he members of thc MCU rester and

tviC A :) rest develormenr t<.:ams.

General References

A . M iczo, Digital Logic Testing (New York : H arper

and Row Publ ishers, I nc . , 1986).

N. Tendoikar and R . Swan n , " Au to mated Diag

nostic Met hodology for the I BM 3081 Processor

Complex , '' IRM journal of Research and Det,el

opment. \'OI. 26. no. 1 (.January 1982) : 78-HH.

H. Tanaka er a l . . " System Level Fault Dicrionary

Generation ." IEEh. International Test Conference

Proceedinp,s (New York, 198H): H84 -HH7.

M . C oldman et a l . , "The VAX 9000 Sen·ice Pro

cessor Unit ," Digital Technical .Journal. vol . 2 .

no. -+ (Fal l 1990, this issue): 90- 101 .

l.:i l

I Further Readings

The Digital Technical .Journal

publishes papers that explore the

technological foundations of Digital s
major products. Each journal focuses

on at least one product area and

presents a compilation of papers

written by the engineers who devel

oped the product. The content for

the journal is selected by the journal

Adl'isory Board, which includes four

vice presidents and fiue senior engi

neering managers.

Topics covered in previous issues of the Digital

Technical journal are as fol lows:

DECwindows Program
Vol. 2, No. 3 Summer I990

An overview and descriptions of the enhancements

Digital 's engineers have made to MIT's X Window

System in such areas as the server, toolkit , interface

language, and graphics, as well as contributions
made to related industry standards

VAX 6000 Model 400 System
W>l. 2, No. 2, Spring 1990

The highly expandable and configurahle midrange

family of VAX systems that includes a vector proces

sor, a high-performance scalar processor, and
advances in chip design and physical technology

Compound Document Architecture
W>l. 2, No. I, Winter 1990

The CDA family of architectures and services that

support the creation, interchange, ancl processing

of compound documents in a heterogeneous net

work environment

Distributed Systems
W>l. 1, No. 9,]une 1989

Products that al low system resource sharing
throughout a network, the methods and tools

to evaluate product and system performance

Storage Technology
W>l. 1, No. 8, February 1989

Engineering technologies used in the design, manu

facture, and maintenance of Digital 's storage and

information management products

142

CVAX-based Systems
li>l. 1, No. 7, A ugust 1988

CVAX chip set design and multiprocessing architec

ture of the midrange VAX 6200 family of systems

and the MicroVAX 3500/3600 systems

Software Productivity Tools
W>l. 1, No. 6, February 1988

Tools that assist programmers in the development

of high-quality, reliable software

VAXcluster Systems
W>l. 1, No. 5, September 1987

System communication architecture, design and
implementation of a distributed lock manager, and

performance measurements

VAX 8800 Family
Vol. 1, No. 4, February 1987

The microarchitecture, internal boxes, VAXBI bus,

and VMS support for the VAX 8800 high-end multi

processor, simulation , and CAD methodology

Networking Products
Vol. I, No. 3, September 1986

The Digital Network Architecture (DNA), network

performance, LANbridge 100), DECnet-UL'TRIX and

DECnet-DOS , monitor design

MicroVAX I I System
\1)/. /, No. 2, March 1986

The implementation of the microprocessor and

floating point chips, CAD suite, MicroVAX work

station , disk controllers, and TK 50 tape drive

VAX 8600 Processor
Vol. I, No. 1, August 1985

The system design with pipelined architecture,
the !-box, F-box, packaging considerations, signal

integrity, and design for rel iabi lity

Suhscriptions to the Digital Technical journal are

available on a yearly, prepaid basis. The subscrip-

tion rate is S40.00 per year (four issues). Requests

should be sent to Cathy Phillips, Digital Equipment
Corporation , MLO I -3/B6R, 146 Main Street, Maynard,

MA 01754, US. A. Subscriptions must be paid in u .s.
dol lars, and checks should be made payable to Digital

Equipment Corporation.

Single copies and past issues of the Digital Technical

journal can be ordered from Digital Press at a cost

of $16.00 per copy.

lk>/. l No. 4 Fall 1?90 Digital Technical journal

Technical Papers and Books by Digital Authors

Di leep Bh:mdarkar and R ichard Brunner, " VAX
Vector Architecture," Prnceedings of 1 7th Annual

International Symposium on Computer Architec

ture (IEEE, May 1990): 204 -215

David G. Shurtleff and Col in Strutt , " Extensibi l
ity of an Enterprise Management Director," in
Network Management and Control, edited by
A . Kershenbaum, M . Ma lek , and M . Wal l (New York :
Plenum Press, 1990): 129- 14 1 .

Xi-Reo Cao, " System Representations and Per
formance Sensit ivity Estimates of Discrete Event
Systems, " Mathematics and Computers in

Simulation, vol . 3 1 (1989): 1 13- 122 .

Xi -Ren Cao, "On a Sample Performance Function of
jackson Queueing Networks, " Operations Research,

voL 36, no. I (19S8): 128- 136.

Xi-Ren Cao and Y. C. Ho, " Estimating Sojourn Time
Sensitivity in Queueing Networks Using Perturbation
Analysis,"journa/ of Optimization Theory and

Applications, voL 53, no . 3 (1987): 353-375

Xi-Reo Cao, " First-Order Perturbation Analysis of a
Single Multi-C lass Finite Source Queue," Performance

Eualuation, vol . 7 (1987): .1 1 -4 1 .

D . Lomet and B . Salzberg, " Access Method for Multi
version Data," Proceedings of A CM SIGMOD Confer

ence (May 1989): 315-324 .

D. Lomet and B. Salzberg, " A Robust Multi-attribute
Search Structure," Proceedings of International

Conference on Data Engineering (February 1989):
296-304 .

D. Lomet, "A Simple Bounded D isorder File
Organization with Good Performance," A CM

Transactions on Database Systems 13, vol . 4
(December 1988): 525-55 1 .

P. Bernstein and 0 . Lomet, "CASE Requirements
for Extensible Database Systems, " Data Engineer

ing, voL 10, no. 2 (June 1987) : 2-9.

W. Lin win and D. Lomet, "A New Method for Fast
Data Search with Keys," IEEE Software, vol . 4 , no. 2
(March 1987): 16-24 .

D. Lomet, " Partial Expansions for Fi le Organizations
with an Index , " A CM Transactions on Database

Systen1s, voL 12 , no . l (March 19R7): 65-84 .

Digital 'f'ecbnicaljournnl l·'tJ/. .! ,\b. - 1 Fall JIJ'Jii

Digital Press

Digital Press is the book publishing group of Digital
Equipment Corporation. Digital Press publishes
books internationally for computer professionals,
specializing in the areas of networking and data
communication, artificial intell igence, computer
i ntegrated manufacturing, windowing systems, and
the VMS operating system. Digital Press welcomes
proposals and ideas in these and related areas.

VAX/VMS: Writing Real Programs in DCL
Paul C. Anagnostopou los, 1989, softbound ,
409 pages ($29.95)

X WINDOW SYSTEM TOOLKIT:
The Complete Programmer's Guide
and Specification
Paul) . Asente and Ralph R . Swick, 1990, softbound,
1 ,000 pages ($44 .95)

UNIX FOR VMS USERS
Phi l ip E. Bourne, 1990, softbound ,)68 pages
($28.95)

INFORMATION TECHNOLOGY
STANDARDIZATION: Theory, Practice,
and Organizations
Carl F. Cargi l l , 19R9, softbound, 252 pages ($24 .95)

THE DIGITAL GUIDE TO SOFTWARE
DEVELOPMENT
Corporate User Publication Group of Digital
Equipment Corporation, 1990, softbound,
239 pages ($27.95)

VMS INTERNALS AND DATA STRUCTURES:
Version 5 Update Xpress, Volumes 1 ,2 ,3 ,4,5
Ruth E . Goldenberg and Lawrence J . Kenah , 1989,
1990, 199 1 , a l l softbound (S27.95)

VAX/VMS INTERNALS AND DATA
STRUCTURES: Version 4.4
Lawrence J Kenah , Ruth E. Goldenberg, ami
Simon F. Bate, I9SR, softbound, 979 pages ($75 .00)

THE USER'S D IRECTORY OF COMPUTER
NETWORKS
Tracy L. LaQuey, 1990, softbound, 630 pages
($34.95)

COMPUTER PROGRAMMING AND
ARCHITECTURE: The VAX, Second Edition
Henry M . Levy and Richard H . Eckhouse, Jr. , 1989,
hardbound, 4 4 4 pages (S38 .00)

143

Further Readings

USING MS-DOS KERMIT: Connecting

Your PC to the Electronic World

Christin� M. Gianon�. 1990, softbound, 244 pages,
with Kermit Diskerte (529.95)

SOLVING BUSINESS PROBLEMS WITH MRP II

Alan D. Luber, 199 1 , hardbound,)00 pages (534 .95)

VMS FILE SYSTEM INTERNALS

Kirby McCoy, 1990, softcovcr, 460 rages (S·i9.95)

TECH NICAL ASPECTS OF DATA

COMMUNICATION, Third Edition

John E. McNamara, 1988, hardbound, 38:1 pages
(542 .00)

LISP STYLE and DESIGN
Mol ly ivl. Miller and Eric Benson , 1990, softbound ,
2 14 rages ($26.95)

THE VMS USER'S GUIDE

James F. Peters I I I and Patrick J. Holmay, 1990,
softbound, .104 pages (528.95)

THE MATRIX: Computer Networks and

Conferencing Systems Worldwide

joh n S. Quarterman . 1990, softbound, 719 pages
($49.95)

X AND MOTIF QUICK REFERENCE GUIDE

Randi J Rost , 1990, softbound , 369 pages (524 .95)

FlFTH GENERATION MANAGEMENT:

Integrating Enterprises Through

Human Networking

Charles M. Savage, 1990, hardbound, 267 pages
(528.95)

14-l

A BEGINNER'S GUIDE TO VAXNMS

UTILITIES AND APPLICATIONS

Ronald M . Sawey and Troy T. Stokes, 1989,
softbound, 278 pages (S26.95)

X WINDOW SYSTEM, Second Edition

Robert Scheifler and James Geuys, 1990, softbound ,
851 rages (S49.95)

COMMON LISP: The Language,

Second Edition

Guy L. Steele jr. , 1990, 1 ,029 pages
($38.95 in softbound , £46.95 in hardbound)

WORKING WITH WPS-PLUS

Charlotte Temple and Dolores Cordeiro, 1990,
softbound, 235 rages (£24 . 95)

ABCs OF MUMPS: An Introduction for Novice

and Intermediate Programmers

Richard F. Walters, 1989, softbound, 303 pages
(525 .95)

To receive i nformation on these or other publ ica
tions from Digital Press. write:

Digital Press
Department 01:1

12 Crosby Drive
Bedford , MA 01730
617/276- 1 536

Vol. 2 No. 4 Fall /')')II Digital Tecbnicaljournal

ISSN 0898-90 1X

Printed i n USA EY -E762E-DPI90 09 02 26.0 BUO Copyright © 1 990 Digital Equipment Corporation AU Rights Reserved

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Design Strategy for the VAX 9000 System
	VAX Instructions That Illustrate the Architectural Features of the VAX 9000 CPU
	Semiconductor Technology in a High-performance VAX System
	Vector Processing on the VAX 9000 System
	HDSC and Multicbip Unit Design and Manufacture
	The VAX 9000 Service Processor Unit
	The Unique Features of tbe VAX 9000 Power System Design
	Synthesis in the CAD System Used to Design the VAX 9000 System
	Hierarchical Fault Detection and Isolation Strategy for the VAX 9000 System
	Further Readings

