
LINK-IO Programmers Reference Manual

DEC-lO-ULKMA-B-D

LINK-10
PROGRAMMER'S
REFERENCE MANUAL

This document reflects the software as of Version 2

digital equipment corporation · maynard. massachusetts

1st Printing May 1973
2nd Printing (Rev) July 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can b7 copied
(with inclusion of DIGITAL's copyright notice) only for use 1n such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supported by
DIGITAL.

Copyright (C) 1973, 1974, by Digital Equipment Corporation.

THE FOLLOWING ARE TRADEMARKS OF DIGITAL EQUIPMENT CORPORATION.

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KA10 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 OS/8 RT-ll
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

10/74-15

CONTENTS
Page

Chapter 1 INTRODUCTION TO LINK-10

1.1 INPUT TO LINK-10 1-1
1.1.1 Re1ocatab1e Code 1-1
1.1.2 Symbols and Libraries 1-2

1.2 OUTPUT FROM LINK-10 1-2

1.3 OVERLAY FACILITY 1-3

1.4 MISCELLANEOUS FEATURES 1-3

1.5 INITIALIZATION OF LINK-10 1-4
1.5.1 Using LINK-10 Automatically 1-4
1.5.2 Using LINK-10 Directly 1-5

Chapter 2 AUTOMATIC USE OF LINK-10

2.1 GENERAL COMMAND FORMAT 2-1

2.2 COMPIL SWITCHES 2-3

2.3 SPECIFYING DISK AREAS OTHER THAN SYS 2-5

2.4 SAVE AND SSAVE SYSTEM COMMANDS 2-6

2.5 EXAMPLES 2-7

2.6 SUMMARY 2-10

CHAPTER 3 USING LINK-10

3.1 LINK-10 COMMAND STRINGS 3-1

3.2 CHANGING DEFAULTS 3-3

3.3 LINK-10 SWITCH ALGORITHMS 3-4
3.3.1 Device Switches 3-4
3.3.2 File Dependent Switches 3-4
3.3.3 Output Switches 3-5
3.3.4 Immediate Action Switches 3-6
3.3.5 Delayed Action Switches 3-6
3.3.6 Switches that Create Implicit File 3-7

Specifications
3.4 LINK-IO SWITCHES 3-7

CHAPTER 4 LINK-10 SWITCHES

/BACKSPACE 4-1
/COMMON 4-2

iii

/CONTENTS
/CORE
/COUNTER
/CPU
/DEBUG
/DEFAULT
/DEFINE
/ENTRY
/ERRORLEVEL
/ESTlMATE
./EXCLUDE
/EXECUTE
/FOROTS
/FORSE
/FRECOR
/GO
/HASHSIZE
/INCLUDE
/LINK
/LOCALS
/LOG
/LOGLEVEL
/MAP
/MAXCOR
/MPSORT
/MTAPE
/NODE
/NOENTRY
/NOINITIAL
/NOLOCAL
/NOREQUEST
/NOSEARCH
/NOSTART
/NOSYMBOL
/NOSYSLIB
/NOUSERLIBRARY
/ONLY
lOTS
/OVERLAY
/PATCHSIZE
/PLOT
/REQUEST
/REQUlRE
/REWIND
/RUNCOR
/RUNAME
/SAVE
/SEARCH
/SEGMENT
/SET
/SEVERITY
/SKIP
/SPACE
/SSAVE
/START
/SYMBOL
/SYMSEG
/SYSLIB
/SYSORT
/TEST
/UNDEFINED

iv

Page
-:r=3

4-5
4-6
4-7
4-7
4-8
4-9
4-10
4-11
4-11
4-12
4-13
4-14
4-14
4-15
4-16
4-17
4-17
4-19
4-20
4-21
4-22
4-22
4-23
4-24
4-25
4-26
4-28
4-28
4-29
4-30
4-31
4-31
4-32
4-32
4-33
4-34
4-35
4-36
4-38
4-39
4-41
4-42
4-42
4-43
4-44
4-44
4-45
4-46
4-47
4-48
4-49
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-56

Chapter 5

5.1

5.2
5.2.1

5.3

5.4

Chapter 6

Appendix A

A.l

A.2

A.3

A.4

Appendix B

B.l

B.2

B.3
B.3.l
B.3.2
B.3.3

B.4
B.4.l
B.4.2
B.4.3

Appendix C

Appendix D

D.l

D.2

Appendix E

Appendix F

GLOSSARY

INDEX

/UNLOAD
/USERLIBRARY
/VALUE
/VERBOSITY
/VERSION
/XPN
/ZERO

LINK-10 OVERLAY CAPABILITY

Page

4-57
4-58
4-59
4-60
4-61
4-62
4-63

USING LINK-IO OVERLAY CAPABILITY 5-1

DESIGNING AN OVERLAY CAPABILITY 5-3
Designing an Overlay Structure for an
Existing Program 5-7

SPECIFYING AN OVERLAY STRUCTURE TO LINK-IO 5-9

LOADING AND EXECUTING THE OVERLAY STRUCTURE 5-11

LINK-IO EXAMPLES 6-1

LINK ITEM TYPES

Link Item Types 0-37

Link Item Type 400 FORTRAN

Link Item Type 401 FORTRAN

Link Item Types 1000-1777

LINK-IO OVERLAY HANDLER

Overlay Handler Subroutines

Overlay Handler Messages

Overlay File
Link Number Table
Link Name Table
Entry Name Table

Individual Links in the Overlay File
Preamble
Actual Code
Relocation Tables

FUNCT. SUBROUTINE

MIXFOR FEATURE

Switches

Description of Software

LINK-IO MESSAGES

LOADER AND LINK-IO DIFFERENCES

v

A-l

A-l

A-10

A-10

A-10

B-2

B-3

B-7
B-7
B-8
B-8

B-8
B-8
B-9
B-1l

C-l

D-l

D-2

D-3

E-l

F-l

GLOSSARY-l

INDEX-l

FOREWORD

This manual is the reference document on the DECsystem-10 Linking
Loader, LINK-10. It is aimed at the intermediate-level applications
programmer and contains complete documentation on LINK-10, including
descriptions of the LINK Item Types generated by the DECsystem-10
Translators.

Chapter 1 is an introduction to LINK-10 and describes the two methods
of initializing the Linking-Loader. Chapter 2 discusses the automatic
use of LINK-10 through the COMPIL-class commands, and Chapter 3
discusses the direct use of LINK-10 through the R LINK system command.
LINK-10 switches are described in alphabetical order in Chapter 4. The
overlay capability of LINK-10 is described in Chapter 5. Chapter 6
illustrates via examples the many uses of LINK-10. The Appendices and
Glossary contain supplementary information.

A beginning user of LINK-10 can benefit from this manual by reading
Chapters 1 and 2, whereas an advanced user would be more interested in
Chapters 3, 4, and 5. A user who has been employing the LOADER program
will find Appendix F a valuable aid in the transition to the LINK-10
program.

vii

CHAPTER 1

INTRODUCTION TO LINK-IO

LINK-lO, the DECsystem-lO Linking Loader, is
program that merges independently-translated
program into a single module. Its main function
link this input with other modules required by
that can be executed by the operating system.

1.1 INPUT TO LINK-IO

the system utility
modules of a user's
is to prepare and
the user into a form

LINK-IO accepts as its primary input the output from the DECsystem-lO
translators in order to produce an executable version of the user's
program. This output, known as object modules, is in the form of
binary files which contain the user's programs and additional
information generated by the translators. This additional information
is necessary for linking separately-translated modules, for debugging,
and for generating auxilary output such as map, log, and save files.

1.1.1 Relocatable Code

Most object modules contain relocatable code so that the module's
position in core can be determined by LINK-IO. Relocatable code is a
benefit to both the user and the system. The user benefits because he
is able to code all of his modules without regard to where they will
be located in core. He need not be concerned with the location where
one module ends and another one begins. The system benefits because a
module written in relocatable code can be placed anywhere in core
memory. When moving the relocatable object modules into the areas of
core memory at which they will be executed, LINK-IO adjusts all
relocatable addresses in the modules into actual machine locations.
In reality, LINK-IO places the modules in a user virtual address space
(refer to the Glossary) and the operating system, as it schedules the
usage of the system, transfers the modules to and from core memory.
However, for simplicity, the user virtual address space is referred to
as core memory in the remainder of the manual.

1-1

Introduction to LINK-IO

1.1.2 Symbols and Libraries

In addition to relocating and
LINK-IO is also responsible
modules required for execution.
through the use of symbols. By
user is delaying the assignment
This method of assigning values

loading the user's object modules,
for linking these modules with other
Linkages among modules are provided

including symbols in his programs, the
of actual values until load time.
is advantageous because:

It allows the user to change only the definition of the
symbol instead of changing every occurrence of the value,
and

Only the module containing the definition of
must be retranslated when a change occurs.
modules using the symbol are bound to it at
they do not have to be retranslated.

the symbol
Since other
load time,

Although a user can define and use a symbol entirely within a single
module, he usually refers to additional symbols that are defined in
other modules. It is these modules that must be linked to the user's
program for execution. In most cases, these required modules are
contained in a library of relocatable binary programs. Modules within
a library can either be created and translated previously by the user
or be part of the system's repertoire of programs. For instance, most
higher-level languages have associated with them a library containing
commonly-used mathematical, input/output, and data conversion
routines. The user refers to modules in the library via symbols in
his program and these symbols are then linked to the proper location
in the library modules themselves. By linking these symbols and
loading the required modules, LINK-IO provides communication between
independently-translated modules and library routines.

In order to satisfy any undefined symbols, the required system
libraries are usually searched after all loading specified by the user
has been performed. However, the user can indicate that libraries be
searched at a particular point in the loading procedure by specifying
the appropriate switch to LINK-IO (refer to /SEARCH and /SYSLIB in
Chapter 4). When LINK-IO processes the switch, the indicated libraries
are searched and the required modules are loaded. The user also has
the option of specifying by name which modules he wants (or does not
want) loaded from a library or of inhibiting the search of the library
altogether.

1.2 OUTPUT FROM LINK-IO

When LINK-IO has performed the tasks of loading the user's object
modules in core, bringing in and linking any other modules required
for execution, and adjusting all the addresses, there is in core an
executable version of the user's program. This executable version is
the primary output of LINK-IO. Since the loaded program at this point
reflects the state of the user's core memory, it is usually referred
to as his core image. Having arrived at this state, the user can
request LINK-IO to either:

1-2

Introduction to LINK-IO

Transfer control to the core image for immediate
execution (using the EXECUTE or START system commands, or
the /DEBUG, /EXECUTE, or /TEST switches in LINK-lO), or

Output the core image to a device for storage (using the
SAVE or SSAVE system commands, or the /SAVE or /SSAVE
switches in LINK-lO) in order to avoid the loading
procedure in the future.

If the complete, loaded program is saved on a device in core image
form, it can be brought into core and executed at a later time (using
the GET and RUN system commands). The loading process does not have to
be repeated since the results of all of LINK-lO's actions are
contained in the core image. However, if the user wishes to revise
the modules that made up his core image, he must once again use
LINK-IO.

While the primary output of LINK-IO is the executable version of the
user's program, the user can request auxilary output from LINK-IO in
the form of map, log, save, symbol, and expanded core image files (XPN
files). Thi' additional output is not automatically generated by
LINK-IO and the user must include the appropriate switches to obtain
this output (refer to Chapter 4 for a description of the switches).
This output is for the user's convenience when debugging his program.

1.3 OVERLAY FACILITY

LINK-IO has an overlay facility to be used when the total core
required by a program is more than the core available to the user.
The user organizes his program so that only some parts of the program
are required in core at anyone time. The remaining parts reside in a
disk file and are transferred in and out of core. During execution,
these transferable parts are brought into core as required. The part
brought into core may overlay the part currently in that area.
Because these parts of the program reside in the same area of core at
different times, the amount of core required for the entire program is
reduced.

When using the overlay facility of LINK-lO, the user must have a good
understanding of how his program operates. He then diagrams! via a
tree-like structure, the relationships among the modules 1n his
programs. Once he has decided on his overlay structure, the user can
invoke overlays via runtime routines called from his user program or
automatically via calls to subroutines outside the current overlay.
Most programs do not need to explicitly call a runtime routine since
LINK-IO attempts to define all external references to symbols
automatically. Refer to Chapter 5 and Appendix B for additional
information on LINK-lO's overlay capability.

1.4 MISCELLANEOUS FEATURES

LINK-IO has a large number of options in order that the user can gain
precise control over the loading process. The user can set various
loading parameters and can control the loading of symbols and modules.
By setting switches in his input command strings to LINK-lO, he can
specify the core size of LINK-IO modules, the start address of

1-3

Introduction to LINK-10

modules, the size of the symbol table, the messages that he will see
on his terminal or in his log file, and the severity level and
verbosity of the messages. He can control the loading of modules by
specifying the modules that should be loaded and the files that should
be searched for symbol definitions. He has control over the number of
segments to be allowed and the segment into which the symbol table
will be placed.

The user has control over file specifications that LINK-10 examines to
determine device names and filenames. He can accept the LINK-10
defaults for components in a file specification or he can set his own
defaults which will be used automatically when he omits a component
from his command string. He can also position devices, allocate space
and assign protections to output files, and clear directories of
DECtapes.

Some options available to the user are interactive. In the process of
producing a core image, LINK-10 attempts to satisfy all requests for
symbols defined in other modules and allows the user to interactively
ask for a list of undefined symbols during the loading procedure. The
user then has the opportunity to define them without reloading.

1.5 INITIALIZATION OF LINK-10

LINK-10 is initialized by the user in one of two ways:

•

•

Automatically through the use of the LOAD, EXECUTE, or
DEBUG system commands. This is the most common usage of
LINK-10.

Directly through the use of the R LINK system command •
This is recommended for very large and relatively complex
loading procedures.

1.5.1 Using LINK-10 Automatically

LINK-10 is automatically initiated when the user issues one of the
system commands LOAD, EXECUTE, or DEBUG. These commands are known as
COMPIL-class commands because they use the COMPIL program to control
the actions of DECsystem-10 translators and LINK-10. COMPIL's job is
to accept the command string typed by the user, interpret it, and
construct and pass new command strings to various system programs,
including the translators and LINK-10. This action taken by COMPIL is
a convenience to the user since it saves him from typing the command
strings to LINK-10. Once-the command string to COMPIL is processed,
the user does not interactively communicate with the translators or
LINK-10. LINK-10 processes th~~appropriate command strings passed to
it by COMPIL and supplies intell~'g~nt defaults for any parameters not
specified by the user. If LINK-10 'obtains an error condition, it
terminates the load and returns control to the operating system for
further instructions. Otherwise, it loads the program and, depending
on the COMPIL-class command used, either exits or starts the loaded
program. Refer to Chapter 2 for the descriptions and use of the
COMPIL-class commands.

1-4

Introduction to LINK-IO

In general, the extremely fine control of the loading process that is
provided by manually running LINK-IO is not required for the average
user because the COMPIL program supplies reasonable defaults to
LINK-IO.

1.5.2 Using LINK-IO Directly

Direct use of LINK-IO is useful for those who are developing large and
complex programs, loading from devices other than disk, using the
overlay capability, manipulating symbol tables for complex debugging
situations, and performing segment manipulations.

The user runs LINK-IO directly by using the system command R LINK.
LINK-lO responds with an asterisk which indicates that the user can
type his input as a series of specifications which are to be used in
the loading process. LINK-10 accepts input until the user specifies
the exit condition; at which point it finishes all of its tasks and
exits or begins the program, as specified by the user.

This method of running LINK-IO gives the user access to its full
capability. The user does not have to accept LINK-lO's default
conditions, but can supply his own set of defaults. He can
interactively monitor the loading process by setting internal
parameters, requesting values of particular items, specifying modules
and files to be loaded, and controlling the format and contents of
output files. Refer to Chapter 3 for the description of the LINK-10
command string, and Chapter 4 for the switches used when directly
running LINK-IO.

1-5

CHAPTER 2

AUTOMATIC USE OF LINK-IO

The user causes LINK-IO to be run automatically whenever he types the
LOAD, EXECUTE, and DEBUG system commands. These commands accept a
simple command string format and are converted internally to a series
of more complex command strings that are directly processed by various
system programs, including language translators and LINK-IO. The
aforementioned commands are used to compile, load, and execute
programs, to obtain output in the form of maps, to search files in
library search mode, and to invoke the various debugging aids. The
foll~ling paragraphs describe each of these system commands.

NOTE

The information in this chapter is a
subset of the material available on the
LOAD, EXECUTE, and DEBUG commands. The
subset presented here assumes that the
source files have previously been
translated, and thus only the switches
directly applicable to loading the
binary files are listed. Complete
reference documentation on the
COMPIL-class commands, their valid
command formats, and all available
switches can be obtained from the
appropriate command descriptions in
DECsystem-IO OPERATING SYSTEM COMMANDS,
DEC-10-l-IRDD-D, located in the
DECsystem-IO SOFTWARE NOTEBOOKS and in
the DECsystem-10 USERS HANDBOOK,
DEC-10-NGZB-D.

The LOAD command translates the user-specified source files into
relocatable object modules (if necessary) and loads these object
modules to form a core image. This command does not cause execution
of the resulting core image. After completion of this command, the
user can either execute his program (START system command) or save the
core image (SAVE or SSAVE system command) for future execution.

2-1

Automatic Use of LINK-IO

The EXECUTE commmand translates the user-specified source files (if
necessary), loads the object modules into a core image, and, in
addition, begins execution of the program. The action of this command
is the same ~s that of the LOAD command followed by the START system
command.

The DEBUG command translates the user-specified source files (if
necessary), loads the object modules into a core image, and prepares
for debugging by additionally loading a system debugging program.
Usually this debugging program is loaded first, followed by the user's
program and other information required by the debugging program (e.g.,
the symbol table). However, when COBOL programs are being loaded,
COBDDT (the COBOL debugging program) is loaded after the user's
program. Upon completion of loading, control is transferred to the
debugging program, rather than the user's program, so that the user
can check out his program by examining and modifying the contents of
locations. This examination and modification can occur both before
program execution begins and during execution if the user specifies
breakpoints in the program at which execution is to be suspended.

The debugging program can be COBDDT, MANTIS, or DDT, depending on the
first source file in the command string. If the first file is a COBOL
file, COB DDT (the COBOL debugging program) is loaded. If the first
file is a FORTRAN source file, FORDDT (the FORTRAN debugging program)
is loaded. If the first file is any other file, DDT (the Dynamic
Debugging Technique) is loaded. When the first file has previously
been compiled (i.e., the file has an extension of .REL, meaning
relocatable binary object module), COMPIL does not determine the type
of source file from which it came so DDT is loaded with the binary
files. In this case, if the user desires COB DDT or FORDDT, he must
explicitly specify this debugging program via the appropriate switch
(refer to the /COBOL and /FORDDT switches in DECsystem-lO OPERATING
SYSTEM COMMANDS).

2.1 GENERAL COMMAND FORMAT

The LOAD, EXECUTE, and DEBUG system commands have the same general
command format. They all accept a list of file specifications.

LOAD output file spec = concatenated input file specs

EXECUTE output file spec = concatenated input file specs

DEBUG output file spec = concatenated input file specs

An input or output file specification consists of a device name, a
filename with or without a filename extension, and a directory
enclosed in square brackets. Only one output file specification can
be given on the left of each equals sign, but any number of input file
specifications can occur on the right. Input file specifications are
separated from each other by commas or plus signs. If commas are
used, the translator produces separate relocatable object modules for
each output file. If plus signs are used, the input files separated
by plus signs will be translated into a single relocatable object
module. Plus signs must be used when a collection of files must be
concatenated to produce an acceptable module as input to a translator.
The sequence of "output file spec = concatenated input file specs" can
be given repeatedly in a command string by separating each sequence
with a comma.

2-2

Automatic Use of LINK-IO

The output file specification and the equals sign can be omitted, in
which case the object .module is placed in the user's default directory
on the disk with a name derived from the source file and the extension
.REL. The filename given to the output file depends upon the form of
the user's input file specifications. If the user has only one input
file, the output file is given the name of the input file. If the
user has more than one input file and the files are separated by
commas, the name of each output file is the name of the corresponding
input file. If the user has plus signs separating the file
specifications, the name given to the output file is the name of the
last input file in the series of files separated by plus signs.

2.2 COMPIL SWITCHES

Switches can be included on the LOAD, ~XECUTE, and DEBUG command
strings to direct LINK-IO in its process1ng. These switches are used
to generate listings, to create libraries, to search user libraries,
and to obtain loader maps. Each switch is preceded by a slash and can
be either temporary or permanent. A temporary switch applies only to
the file immediately preceding it. Characters (including spaces or
commas) cannot separate the filename and the switch. A permanent
switch applies to all files following it until modified by a
subsequent switch. It is separated from the file it precedes by a
space or a comma.

LINK-10 switches described in Chapter 4 can be passed on the
COMPIL-class command strings by preceding the switch specification
with a % character instead of a / character. Following the %
character is the LINK-IO switch specification preceded and followed by
a delimiter. The delimiter can be any character; however, the user
must be careful that the character he uses does not have a specific
meaning to the COMPIL program. For example, the @ character indicates
an indirect command file, and the semicolon causes the remainder of
the line to be treated as a comment and thus ignored. The recommended
delimiter is a single or double quote character. The beginning and
ending delimiter must be the same character. A LINK-IO switch
specification consists of the switch name and optionally a keyword and
a value. The items in the specification are separated by colons.
(Refer to Chapter 4 for the formats of the individual LINK-IO
switches.) Note that LOADER switches (those beginning with a % but
without enclosing delimiters) are illegal when passed to LINK-IO. As
an aid to users, a warning message is printed if the LINK-10 switch
delimiter is one that could be interpreted as a LOADER switch
(e.g.,A-Z,a-z,O-9,&, and -).

Since the first function of each of these three commands is to
determine if the 'source files need translating (;.e., compiling or
assembling), there are many switches that pertain to the translating
process. The purpose of this manual is to describe the use of LINK-IO
and switches pertaining to the translation of the source file are not
included. All switches that can be placed on the command string are
described in DECsystem-lO OPERATING SYSTEM COMMANDS.

2-3

Automatic Use of LINK-10

Switch

/OOT

/FOROTS

/FORSE

/LIBRARY

/LINK

/LMAP

/LOADER

/MAP

/NOSEARCH

Table 2-1
COMPIL Switches Pertaining to Loading

Meaning

Loads DDT regardless of the extension of the first
file in the command string. This is a permanent
switch in that it applies to all subsequent files
regardless of its position in the command string.

Loads the file with FOROTS (the FORTRAN-10
time system) instead of FORSE. This
affects FORTRAN files only.

object
switch

Loads the file with FORSE (the F40 object time
system) instead of FOROTS. This switch affects
FORTRAN files only.

The action is identical to that of the /SEARCH
switch. The use of the /SEARCH switch is
recommended since it is the complement of
/NOSEARCH.

Causes the files to be loaded by the LINK-10
program instead of the LOADER program. Since this
the default action, this switch is needed only if
the installation has specified LOADER as the
default linking-loader.

Produces a loader map during the loading process
(same action as /MAP) containing the local
symbols.

Causes the file to be loaded by the LOADER program
instead of the LINK-10 program. If used, this
switch must be placed before any file
specifications (either implied or or explicit)
since the COMPIL program may have to g,'enerate
load-control switches. r
Produces a load map during the loading process.
The map does not contain local symbols. When this
switch is encountered, a loader map is requested
from LINK-10. After the library search of the
default system libraries, the map is written in
the user's disk area with the filename specified
by the user (e.g., /MAP:dev:file.ext[directory])
or the default filename (e.g., the name of the
last program seen with a start address or
nnnLNK.MAP (where nnn is the user's job number) if
there is no such program). This switch is an
exception to the permanent switch rule in that it
causes only one map to be produced even though it
may appear as a permanent switch.

Loads all routines of the file whether the
routines are referenced or not. Since this is the
default action, this switch is used only to turn
off library search mode (/LIBRARY or /SEARCH).

2-4

Automatic Use of LINK-lO
Table 2-1 (Cont.)

COMPIL Switches Pertaining to Loading

switch Meaning

/NOSEARCH (Cont.) This switch is not equivalent to the /NOSYSLIB
switch of LINK-lO, which does not search any
libraries, including the default system libraries.
The /NOSEARCH default is to search the default
system libraries.

/SEARCH Loads the files in library search mode. This mode
causes a module in a special library file to be
loaded only if one or more of its declared entry
symbols satisfies an undefined global request.
The default system libraries are always searched
regardless of the state of this switch.

2.3 SPECIFYING DISK AREAS OTHER THAN SYS

When translating his source files, the user has the option of
selecting the disk area from which the language translator is
obtained. The disk areas are [1,3] for OLD, [1,4] for SYS, [1,5] for
NEW, and the user's area for DSK and are specified by the switches
/OLD, /SYS, /NEW, and /SELF, respectively. (These four switches are
described in DECsystem-10 OPERATING SYSTEM COMMANDS.) For example, if
the user is translating his source files with a FORTRAN compiler that
is on the OLD disk area of [1,3], he gives the following command
string:

COMPILE/OLD FILEA.F4,FILEB.F4,FILEC.F4

The FORTRAN compiler is then obtained from area [1,3].

The first disk area seen in the command string is also the area from
which LINK-10 is obtained. Thus, in the command string:

LOAD /OLD FILEA.F4,FILEB.F4,FILEC.F4

not only is the FORTRAN compiler obtained from OLD, but also the
LINK-10 linking-loader. If LINK-10 is not found on the specified
area, then the SYS disk area of [1,4] is searched. However, if the
first disk area seen is the user's area (as indicated by the /SELF
switch), only the areas specified in the user's job search list, which
may include a user library (LIB), are searched. The searching does
not continue onto the NEW, OLD, and SYS areas. Thus, a . user who is
using a copy of a translator in his disk area but who does not have a
copy of LINK-10 in that area must use two disk area specifications.
For example,

LOAD /SYS /SELF FILEA.FOR,FILEB.FOR,FILEC.FOR

LINK-10 is obtained from the SYS disk area and the FORTRAN compiler
from the user's disk area. Since SYS will be searched for LINK-10 on
all disk specifications other than SELF, the user needs to specify two
disk areas only when he is using a translator from his area.

2-5

Automatic Use of LINK-10

2.4 SAVE AND SSAVE SYSTEM COMMANDS

After loading is completed, the loaded program may be written onto an
output device so that it can be executed at some future date without
rerunning LINK-10. The SAVE and SSAVE system commands output the core
image onto the specified device as one or two files. If the SAVE
command is used, the program will be nonsharable when it is later.
loaded into core. When the SSAVE command is used, the high segment
(if any) of the program will be sharable when the program is loaded.
The general command format of the two commands is the same:

where

SAVE dev:file.ext[directory]core

SSAVE dev:file.ext[directory]core

dev: is the name of the device on which to write the saved file.
If omitted, DSK: is assumed.

file is the name of the saved file. If omitted, the job's
current name is used. This name is set by the last R, RUN, GET,
SAVE, or SSAVE system command, the last command which ran a
program (e.g., DIRECT), or the last SETNAM UUO •

• ext is the extension of the low segment file. If omitted, the
following extensions are assigned:

If the program has one segment, the extension .SAV is
assigned.

If the program has two segments, the low segment file has
the extension .LOW, and the high segment file has the
extension .HGH when a SAVE command is used and the extension
.SHR when a SSAVE command is used.

[directory] is the area in which to save the file.
the user's default directory is used.

If omitted,

core is the amount of core in which to save the program. If
omitted, the minimum required is assigned.

Refer to DECsystem-10 OPERATING SYSTEM COMMANDS
descriptions on the SAVE and SSAVE commands.

for complete

2-6

Automatic Use of LINK-10

2.5 EXAMPLES

In the following example, the user is translating, loading, and
executing a MACRO program. The /LINK switch requests that tile LINK-10
linking loader be used instead of the LOADER •

• ~X~~CUTE IS !i'lpLr:. t>iAC)
t1 A C R 0: SIt·' P L E
LINK: LOADING
[~~ X I:~C UTI ON .1

THIS IS A VERY sIMPLE TWO-SEGMENT MACRO PROGRAM.

EXIT

In the example below, the user is compiling, loading,
three COBOL programs. The /MAP:PROGMP.MAP switch
generation of a map file with the name PROGMP.MAP •

• ~x~Cur~ IMAP:PROGNP FILA,FILB,fILC)
COBoL: CBS08A [FILA.CBL]
COBOL: CBS08R [FILS.CBL]
CORaL: C8S08C (FILC.CBL]
LIN K : L a A D HJ G
[EXECUTION]
RUNNING caS08A
RUNNING CBS08R
RUNNING CBS08C

EXIT

and executing
requests the

The map file is now on the user's disk area. He can print the file
with the following command:

.PRINT PROGHP.1>Il\P)
TOTAL of 3 BLoCKS IN LPT REQUEST

The following is a listing of the map file generated.

').-7

t\l
I

en

LIN~-10 SYMROL MAP OF PROGMP PAGE 1
E'RODUCED BY LINK-lO VERSION (32) ON 2-APR-73 AT 8:25:10

LO~ S~GM~NT STARtS AT U ~NDS AT 2416 LENGTH 241b = 2K
STARTING ~DDR£Ss IS 1i50, LOCATED IN PROGRAM C~S08A

JOBOAT-INITIAL-SYMSOLS

ZERO LENGTH ~iODULE

LIBOL-STATIC-AREA
LOW SEGMENT STARTS AT 140 ENOS AT 1200 LENGTH 1040 (OCTAL), 544 (D~CIMAL)

.COHiv1. 140 COMr·WN LENGTH 544 (DECIMAL)

CBS08A fROM DSK:fILA.REL(27,~3~J CREAT~D BY COBUL ON 2-APR-73 AT 8:24:00
LOw SEGMENT ST~RTS AT 1200 ENDS AT 1355 LENGTH 155 (OCTAL), 109 (DECIMAL)

Ct:3S08A 1270 ENTRY pOINT R£LlJCATABLE=:

CBS08S FROM DSK:FILB.R~L[27,235] CREATED fiY COBOL ON 2-APR-73 AT 8:24:00
LOJ SEGMENT STARTS AT 1355 ENDS AT 2040 LENGTH 463 (OCTAL). 301 (DECl~AL)

CBS08B 1464 ENTRY POINT REIJOCATABLE

~
rt

~
PJ
rt ..,.
o
Cl
m
CD

o
~

t'f
H

~
I
~
o

~
I

\.0

CBS08C FROM DSK:fILC.REL[27,~3~] CREATED BY cnHOL O~ 2-APR-73 AT H:2~:OO

LUW SEGMENT STARTS AT 2040 ~NDS AT 2407 LE~GTH 347 (OCTAL). 231 (D~CIMAL)

Cl3S08C 2140 I:;NTRY PO JrJT RELOCATABLE

TRACED FROM S,{S:LIBOL.REL[1,4] CREAT~~D ON 23-HAR .. 73 AT 16:40:00
r,Oiv SEGi'ir:NT STARTS AT 2407 ENDS AT 2416 I,ENGTH 7 (UCTAL). 7 (DECI~AL)

bTRAC. 2412 Er~TRY POINT R~LOCATABLE

CBDDT. 2413 ENTRY POINT R ~:IJUC A T AS LI::
PTFLG. 2414 GJJOBAL SYMBOL RELOCATABLE
TRACE. 2407 E~TRY POINT' R E II fJ CAT A B L E
TRPO. 2412 Er~TRY POINT Rl':LOCATARLE
TR?OP .. 2412 ENTRY POINT R E L 0 CAT A H L ~:

[~~ i'J l> 0 f L Hi K ... 1 () ~1 A P 0 F PH 0 G /'i P)

~
cT o a
~
cT ..
Q

C
CIl
CJ)

o
Hl

t-t
H
Z
~
I
~
o

Automatic Use of LINK-10

2.6 SUMMARY

The LOAD, EXECUTE, and DEBUG system commands, along with the switches
described in Table 2-1, are sufficient for loading and executing most
programs. The user can load separately-compiled programs and
debugging programs, obtain maps, search files in a library search
mode, and execute the program. To produce a saved file of his core
image, the user can employ the system commands SAVE and SSAVE. More
cornplex loading procedures can be performed by directly using LINK-10,
as described in Chapter 3.

2-10

CHAPTER 3

USING LINK-10

The user runs LINK-10 directly by issuing the system command

R LINK

LINK-10 responds with an asterisk at which point the user types in his
command strings. The LINK-10 program interprets all of the input
typed by the user up to the end of the command string. A command
string is defined as a series of characters terminated by a carriage
return-line feed. A carriage return-line feed is generated when the
user depresses the RETURN key on his terminal. The RETURN key is
represented in this manual by the symbol). If the user needs to
continue a command string on another line, he can place a hyphen as
the last non-blank, non-comment character before the carriage
return-line feed. Continuation lines are considered part of the
current command string, and the current string is not considered
terminated until a carriage return-line feed is seen without a
preceding hyphen. Comments may be added to any line by preceding the
comment with a semicolon. Trailing spaces and tabs (including those
before comments) are always ignored.

When the command string is terminated, LINK-lO processes the data in
the command string by performing the actions specified by the user.
This usually entails setting relevant internal conditions and storing
information for later use. Each command string is completely scanned
and processed before LINK-IO accepts a new one. After scanning and
processing the current command string, LINK-10 returns with another
asterisk signifying its readiness to accept more input. The program
accepts command string input until the user gives the exit condition
switch (/GO) indicating that LINK-10 is to finish all loading tasks.
At this point control is either returned to the operating system or
given to the loaded program for execution, depending upon the
preceding command strings.

3.1 LINK-10 COMMAND STRINGS

Command strings to LINK-10 contain a series of input and/or output
file specifications and non-conflicting switches to direct the loading
process. The general command string format is as follows:

*output specifications=input specifications

3-1

Using LINK-10

Any number of specifications can be included in the command string by
separating each specification from other specifications with a comma.
Although the equals sign is not required, it is recommended that the
user include it so that he can distinguish his output specifications
from his input ones. If the user does not include an equals sign, he
must use a comma to separate the specifications. The input and output
specifications are then distinguished by the type of switch associated
with the specification, and the specifications can appear in any order
(e.g., input specifications can precede output specifications).

An input or output specification consists of a file specification and
switches appearing before and/or after the file specification. A file
specification is in the form

dev:file.ext[directory]

and the individual switches that can be used in the command string are
described in Chapter 4.

When items in a file specification are missing, LINK-10 has a set of
initial values to be used as defaults. On input specifications, the
default values assumed for missing items in a file specification are
as follows:

Device
Filename
Extension
Directory

DSK:
A blank filename
.REL
The user's default directory

On output specifications, the default values are as follows:

Device

Filename

Extension

Directory

DSK:

Name of the last program containing a start
address. If there is no program with a start
address, the name nnnLNK, where nnn is the
user's job number, is used.

Dependent on the type
requested via switches.

of output

Log file
Map file
Overlay file
Plotter file
Saved file
Symbol file
Expanded save
file

.LOG
• MAP
.OVL
.PLT
.SHR,.HGH,.SAV,.LOW
.SYM

.XPN

The user's default directory.

These defaults are applied just prior to initializing the device and
opening the file, and are used only if the user has not given values
for items in a file specification. The initial LINK-IO defaults for
items in a file specification are used only when a value for the item
does not appear in the command string or until the value is seen if it
is after the beginning of the string.

3-2

Using LINK-10

If a component of a file specification is given before the filename,
it remains in effect until changed by a value given subsequently by
the user for the same component or until the end of the command
string. For example, a user can specify a device name at the
beginning of the string and not have to repeat the device name for
each specification if he is using the same device for all
specifications in the command string. However, once the device name
is changed, the new name is used as the default device for the
reaminder of the command string.

As another example, the user can specify an extension and a directory
to be used by issuing a command string such as

*.BIN[10,7]DSKB:FIL1,DSKC:FIL2.REL[10,20],DSKA:FIL3

The extension .BIN and the directory [10,7] are used for any
specifications that do not include an extension or directory. The
above command string is equivalent to

*DSKB:FIL1.BIN[10,7],DSKC:FIL2.REL[10,20],DSKA:FIL3.REL[10,7]

3.2 CHANGING DEFAULTS

The /DEFAULT switch is used to change the initial values that are
assumed when the user does not include a component of a file
specification in his command string. The values specified with this
switch remain in effect for the entire load unless changed by another
/DEFAULT switch. The form of the /DEFAULT switch is as follows:

where

components of file specification /DEFAULT:keyword

components of file specification are the components which
the user wants as his default components.

keyword is either INPUT or OUTPUT to change the default
components for the input or output specifications,
respectively. If this argument is omitted, INPUT is
assumed.

For example, the following specification

DSKB: .BIN[10,20]/DEFAULT

changes the values to be used as defaults for the input specifications
to be DSKB: for the device, .BIN for the extension, and [10,20] for
the directory.

-'~-NOTE

Because the extensions for output files
depend upon the types of file being
requested, the user cannot change the
output extensions. Any attempt to do so
is ignored.

3-3

Using LINK-10

3.3 LINK-10 SWITCH ALGORITHMS

LINK-10 allows the user to request various loading parameters via
switches in the command string. Switches are used to specify output
files, to set defaults, to control the loading of programs, to set
values, to format maps and symbol tables, to request values of
symbols, and to position devices. Some switches merely change the
status of LINK-10 by setting internal values; others request
immediate action to be taken.

LINK-10 has several categories of switches with a specific algorithm
for the handling of each categorye These categories are:

•

•

Device Switches
File Dependent Switches
Output Switches
Immediate Action Switches
Delayed Action Switches
Switches that create implicit file specifications

3.3.1 Device Switches

Switches in this category (e.g., /SKIP, /REWIND) affect the device
within an input or output specification. The switch is in effect
after the device is initialized and, depending on its position, either
before or after the file is read or written. If the switch appears
before the filename, the appropriate action is taken before the file
is processed, and if it appears after the filename, action is taken
after the file is processed. Switches in this category apply only to
the current input or output specification and do not carryover to
subsequent devices. In other words, once the requested action is
performed, it is not performed again unless another device switch is
given.

For example, the following specification may be given by the user:

/SKIP:2 MTAI:MYFILE/UNLOAD,

After the magnetic tape is initialized, LINK-10 skips forward over two
files (/SKIP:2), reads the file called MYFILE, and after reading the
file, rewinds and unloads the tape (/UNLOAD).

3.3.2 File Dependent Switches

Switches belonging to this category (e.g.,/NOLOCAL, /SEARCH) modify
the loading or the contents of a file. These switches are either
temporary or permanent in nature. A temporary switch applies only to
the file specification immediately preceding it. An intervening comma
cannot separate the file specification and the switch. A permanent
switch appears before the file specification and applies to all file
specifications following it until modified by a subsequent switch or
until the end of the current command string is reached. (Remember
that continuation lines are considered part of the current command
string). This means that permanent file-dependent switches, unlike
device switches, continue to apply to following specifications (i.e.,
the action requested by the switch is not terminated at the comma

3-4

Using LINK-IO

which separates specifications).

For example, the following specifications may be issued by the user:

,/NOLOCAL DTA3 :MAINI ,X1AIN2 ,HYLIB/SEARCH,

Two files, MAINI and MAIN2, are loaded in their entirety from DTA3
without their local symbols. The file ~crLIB is searched and parts of
it are loaded only if required (i.e., they are required to satisfy any
undefined symbol requests); if needed, they are also loaded without
local symbols.

3.3.3 Output Switches

Switches in this category (e.g.,/MAP, /LOG, /OVERLAY, /SAVE)
initialize the output devices and create the output files. Each
output specification must contain one of these switches because
LINK-IO does not create output files unless explicitly requested to do
so. Each switch represents a specific type of output file and is used
with a file specification to indicate the device and filename of the
file. Only one output switch can be used with each output
specification. If the switch is the only item appearing in the output
specification, the device name and filename are taken from the
previous specification or from the LINK-IO defaults for output.

For example, if the user desires a saved file and a map file on DSKB:
and both with the name OUTPUT, he can issue the following
specifications:

DSKB:OUTPUT/SAVE,/MAP=

The two files will have the same filename (OUTPUT) but, by default,
the extensions will be different (refer to Paragraph 3.1). The comma
separating the two switches is required to indicate that two output
files are desired. If the user is satisfied with accepting the
LINK-IO defaults for output specifications, he can give the following

/SAVE,/MAP=

NOTE

Although the /LOG switch is considered
an output switch, it is handled in a
slightly different fashion from the
remaining output switches. By assigning
a device the logical name LOG before
initializing LINK-lO, the user receives
the log file on the device assigned as
LOG, even if he does not include the
/LOG switch in his command string. The
filename associated with the log file is
nnnLNK.LOG, where nnn is the user's job
number. The /LOG switch can then be
used in the LINK-IO command string to
change the filename of the log file.
For example,

3-5

Using LINK-10

.ASSIGN DSKC:LOG:)

.R LINK)
*DSKC:MYLOG/LOG)

renames the log file on DSKC: from
nnnLNK.LOG to MYLOG.LOG. If the logical
device is not assigned, then the
building of the log file begins when the
/LOG switch is seen. This results in
the initialization timings not being
included in the file.

3.3.4 Immediate Action switches

Switches in this category (e.g., /UNDEF, /VALUE, /NOINITIAL, /NOSYM)
are processed by LINK-10 as soon as they are seen. These switches are
divided into two types:

Those that request typeout from LINK-10.

Those that change the status of the loading procedure.

Type-out switches (e.g., /UNDEF) request information from LINK-10 and
are not dependent upon a particular specification. For this reason,
they can appear anywhere in the command string but are usually on a
command line by themselves because the user is interactively
requesting information to determine if he may have forgotten to
specify needed parameters. After processing the switch (i.e., at the
end of the command string), LINK-10 returns the requested information
immediately. Once the information is returned to the user, the switch
is cleared.

status changing switches (e.g.,/NOINITIAL, /NOSYM) are related to the
entire loading procedure and not to an individual specification. They
are placed in the command string at the point at which the user wants
the action to be performed. Once the action has been taken, it is in
effect for the entire loading process and cannot be overridden. For
example, once the user gives the /NOSYM switch to notify LINK-10 not
to generate a local symbol table, he cannot, in the same load, give a
switch to LINK-10 to nullify this action.

3.3.5 Delayed Action Switches

Switches in this category (e.g., /MAXCOR, /HASHSIZE) are used to
change operational parameters of LINK-10 to the specified values.
When the switch is seen, LINK-10 accepts the value but does not use it
until it is needed. For example, there is a preset value for the
maximum core LINK-10 can occupy during loading. Use of the /MAXCOR
switch changes this value immediately but LINK-10 does not examine the
value until it needs to expand its core size.

3-6

Using LINK-IO

3.3.6 Switches that Create Implicit File Specifications

Switches in this category (e.g., /DEBUG, /SYSLIB) cause LINK-IO to
create one or more input file specifications for programs that must be
loaded along with the user's program and to set various other switches
related to the implicitly specified file. As an example, the /DEBUG
switch indicates that a debugging program is to be loaded and that
subsequent modules are to be loaded with local symbols, unless
otherwise specified by the user. If one of these switches appears
before the file specification, the program implied by the switch is
loaded before the current file. If the switch is after the file
specification, the program is loaded after the current file. Once the
program implied by the switch is loaded, the switch is cleared.

3.4 LINK-IO SWITCHES

switches to LINK-IO have one of the following forms:

where

/switch
/switch:arg
/switch:(arg, ••• ,arg)
/switch:value
/switch:arg:value
/switch:(arg:value, ••• ,arg:value)

/switch is the name of the desired switch. This name can be
truncated to a unique abbreviation. The first six
characters of the name are sufficient to ensure
uniqueness.

arg

value

is a keyword or a symbol name.
truncated to a unique abbreviation.

Keywords can be

is either a decimal or octal number. An octal value
can be used with a switch that accepts decimal values
by preceding the octal value with a number sign (#).

is the separator be t''le en components in a switch
specification and must be present if more than one item
is given.

are used to enclose multiple keywords and/or values to
a switch. They are required if more than one argument
appears with the switch.

Each switch specification must be terminated with a space; - however,
spaces cannot appear within a switch specification (i.e., between the
slash and the end of the value). If spaces do appear within the switch
specification, the command scanner will either interpret the switch
specification incorrectly or return an error message if it cannot
decipher the switch. For example, in the switch specification

/SEA RCH FILEI

the command scanner interprets the characters RCH as a filename and
complains about two filenames, RCH and FILEI.

3-7

Using LINK-IO

Table 3-1 briefly describes the switches that can be
LINK-IO command string, and Chapter 4 contains
descriptions of the switches in alphabetical· order.

used on the
the complete

switch

/BACKSPACE

/COMMON

/CONTENTS

/CORE

/COUNTER

/CPU

/DEBUG or /D

/DEFAULT

/DEFINE

/ENTRY

/ERRORLEVEL

/ESTIr,1ATE

/EXCLUDE

/EXECUTE or /E

/FOROTS

/FORSE

Table 3-1
LINK-IO switches

3-8

Meaning

Spaces backwards over the
specified number of files.

Allocates a COMMON area.

Specifies the types of symbols
to be output in a map.

Specifies LINK-lO's initial
low segment size.

Lists the relocation counters
and their values.

Specifies the processor on
which the program will run.

Loads and specifies execution
of a debugging program.

Changes default values for
missing components in a file
specification.

Assigns values to undefined
global symbols interactively.

Lists library search symbols.

Selectively suppresses
messages to the terminal.

Allocates disk space for an
output file.

Inhibits the loading
specified modules.

of

Specifies
program
loading.

execution of the
upon completion of

Loads FOROTS, if required,
during default system library
searching.

Loads FORSE, if required,
during default system library
searching.

using LINK-IO

Switch

/FRECOR

/GO or /G

/HASHSIZE

/INCLUDE

/LINK

/LOCALS or /L

/LOG

/LOGLEVEL

/MAP or /M

/l-1AXCOR

/MPSORT

/11TAPE

/NODE

/NOENTRY

/NOINITIAL

/NOLOCAL or IN
/NOREQUEST

/NOSEARCH

/NOSTART

/NOSYMBOL

Table 3-1 (Cont.)
LINK-IO Switches

3-9

Meaninq
Specifies the amount of free
core guaranteed after each
expansion.

Terminates
progress.

the loading

Specifies the size of
global symbol table.

the

Forces the loading of
specified modules from a
library.

outputs the current core image
to the overlay file.

Loads with local symbols.

Causes a log file
generated.

to be

Suppresses messages to the log
file.

Causes a map file
generated.

to be

Specifies LINK-lO's maximum
low segment core size.

Sorts the symbol table for
output to the map file.

Performs
functions.

magnetic tape

Returns LINK-lO to the end of
the specified link.

Causes LINK-IO to ignore the
specified symbol as a library
search symbol.

Clears the initial
symbol tables.

global

Loads without local symbols.

Prevents generation of
references to other links.

Turns off user library search
mode.

Ignores starting addresses.

Inhibits the generation of a
symbol table in core.

Using LINK-10

/NOSYSLIB

/NOUSERLIBRARY

/ONLY

JOTS

/OVERLAY

/PATCHSIZE

/PLOT

/REQUEST

/REQUIRE

/REWIND

/RUNCOR

/RUNAME

/SAVE

/SEARCH or /S

/SEGMENT

/SE.T

/SEVERITY

/SKIP

/SPACE

/SSAVE

switch

Table 3-1 (Cont.)
LINK-10 Switches

3-10

Meaning

Prevents a search of the
default system libraries.

Terminates the
searching of the
user library.

automatic
specified

Loads only the high, or the
low, segment of a .REL file.

Indicates the segment for the
object time system. I

Causes an overlay file to be
generated.

Allocates patch space.

Causes a plotter file to be
generated.

Types references
links.

to other

Generates global requests for
the specified symbols.

Rewinds the
magnetic tape.

DECtape or

Assigns the initial low
segment core size for the
program.

Assigns the program name.

Causes a saved file to be
generated.

Turns on user library search
mode.

Specifies the segment in which
to load the modules.

Defines the values
relocation counter.

of a

Defines the fatality level of
errors.

Spaces forward on a magnetic
tape.

Allocates core at the end of
the current link.

Causes a sharable saved file
to be generated.

Using LINK-10

Switch

/START

/SYMBOL

/SYMSEG

/SYSLIB

/SYSORT

/TEST

/UNDEFINED or /U

/UNLOAD

/USERLIBRARY

/VALUE

/VERBOSITY

/VERSION

/XPN

/ZERO

Table 3-1 (Cont.)
LINK-10 Switches

3-11

Meaning

Specifies the start address of
a program.

Causes a symbol file to be
generated.

Moves the symbol table to the
specified segment.

Performs a search of the
default system libraries.

Sorts the symbol table for
output to the symbol file.

Loads a debugging program.

Types undefined global symbols
on the terminal.

Rewinds and unloads the
DECtape or magnetic tape.

Searches the specified user
libraries automatically.

Lists the current values of
the specified global symbols.

Specifies the amount of text
to be printed for a message.

Sets or changes the version
number of a file or the core
image.

Creates or saves the expanded
core image file.

Clears the specified DECtape
directory.

CHAPTER 4

LINK-IO SWITCHES

/BACKSPACE

Function

The /BACKSPACE switch is used to space backwards over the
specified number of files. This switch has an effect only on
tape devices and is ignored for non-tape devices.

Switch Format

/BACKSPACE:n

n is a decimal
backspace over.

number representing the number of
If n is omitted, n=l is assumed.

Category of Switch

Device Switch (refer to Paragraph 3.3.1)

Examples

,MTAO:/BACK:3,

Backspace MTAO by three files.

4-1

files to

LINK-lO switches

/COMMON

Function

The /COMMON switch is used to allocate an area of storage of the
specified size before loading any more code. An array of storage
(a COMMON area) is reserved into which data can be placed in
order that it may be shared by several programs and routines.
Because the FORTRAN language contains a statement that reserves
space for a COMMON area, this switch is used to reserve COMMON
arrays when loading non-FORTRAN programs or to allocate a
different size area than given via the COMMON statement in a
FORTRAN program. However, if this switch is used to allocate a
larger size area of the same name as that given in the FORTRAN
program, the switch specification must be given before the
FORTRAN program is loaded.

The name of each labeled area of co~mON storage is defined as an
internal symbol whose value is the address of the first word of
the COHMON area. These symbols may be used by other programs as
external symbols.

Switch Format

/COMMON:name:n

Name is the symbolic name of up to six SIXBIT characters of the
cor1HON area. Blank COr.fl.iON can be designated with either the
symbolic name n .COMM. n or a null name as in /COr-U10N: :n.

n is a decimal number representing the size of the area in words.

Restrictions

Although various modules may redefine COMMON areas of the same
name, the size of a COMMON area cannot be increased during the
loading process. Therefore, the largest definition of a given
COW10N area must be loaded first. Any attempt to increase the
size of a COr·1MONarea by redefinition will result in a fatal
error. This applies to both modules defining COHMON areas and
the /COMMON switch.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

4-2

LINK-IO Switches

Examples

/COMMON: .COl1M. :1000

Allocate blank COMMON to be 1000 words.

/CONTENTS

Function

The /CONTENTS switch gives the user control over the contents of
the map file by allowing him to specify the types of symbols to
be included in the file. Each symbol is marked as to its type by
the translator that processed the module containing the symbol.
Some symbols may be of more than one type. For example, a symbol
m~y be both a global symbol and a relocatable symbol. To insure
the inclusion of such a symbol in the map file, the user must
specify both the GLOBAL and the RELOCATABLE keywords in the
/CONTENTS switch.

Each specification of the /CONTENTS switch is cumulative;
keywords set by the first specification are not automatically
cleared by the second specification. If the user desires to
clear . a keyword set in a previous specification, he must
explicitly specify its complement.

NOTE

This switch does not produce a map file.
The user must specify the /MAP switch on
an output specification in order to
obtain the file. Unless the /MAP is
given, the /CONTENTS switch has no
meaning and is ignored.

switch Format

/CONTENTS:keyword

/CONTENTS:(keyword,. . .,
Keywords are as follows:

keyword)

ABSOLUTE include all
accumulators,
NOABSOLUTE.

absolute
and

symbols
masks).

(usually flags,
Complement of

ALL

COMr10N

include all symbols. Complement of NONE.

include all COMMON
NOCOMMON.

4-3

symbols. Complement of

LINK-IO Switches

DEFAULT

ENTRY

GLOBAL

LOCALS

NOABSOLUTE

NOCOMMON

NOENTRY

NOGLOBAL

NOLOCAL

NONE

include the symbols according to LINK-IO's default
setting, that is: COMMON, GLOBAL, ENTRY,
ABSOLUTE, RELOCATABLE, NOLOCAL, and NOZERO. This
keyword is used to reset the /CONTENTS switch to
the original default setting.

include all entry name symbols.
NOENTRY.

Complement of

include all global symbols including COMMON and
ENTRY symbols unless these symbols are suppressed
with the NOCOMMON and NOENTRY keywords.
Complement of NOGLOBAL.

include all local symbols. Complement of NOLOCAL.

do not include absolute symbols (i.e., turn off
the condition corresponding to absolute symbols).
Complement of ABSOLUTE.

do not include COMMON symbols.
COMMON.

Complement of

do not include entry name symbols. Complement of
ENTRY.

do not include global symbols including COMMON and
ENTRY symbols unless these symbols are requested
with the COMMON and ENTRY keywords. Complement of
GLOBAL.

do not include local symbols.
LOCALS.

Complement of

do not include any symbols of any kind. However,
header information is still output in the map.
Complement of ALL.

NORELOCATABLE do not include relocatable symbols. Complement of
RELOCATABLE.

NOZERO

RELOCATABLE

ZERO

do not include symbols from zero length programs.
Complement of ZERO.

include symbols that are relocatable (usually
addresses). Complement of NORELOCATABLE.

include symbols from zero length modules (usually
parameter files). A zero length module is one
which defines symbols but generates no code.
Complement of NOZERO.

If the /CONTENTS switch is not specified, the default setting is
COMMON, GLOBAL, ENTRY, RELOCATABLE, ABSOLUTE, NOLOCAL, and
NOZERO. When the user specifies a keyword, the keyword is either
added to the default setting or deleted from the default setting.
For example, if the user issues the /CONTENTS:ZERO switch, the
condition for symbols in zero length programs is added to the

4-4

LINK-10 switches

default setting. However, the keywords ALL, NONE, and DEFAULT
reset the default setting to their respective meanings.

This switch applies to all files loaded, not just to those which
appear after it in the command string.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

/CORE

Examples

/CONTENT:(ZERO,LOCAL),

Include in the map local symbols
length modules, in addition to
LINK-10's default setting.

Function

and
the

symbols from zero
types of symbols in

The /CORE switch is used to specify the initial size of LINK-10's
low segment. Generally, this size is less than or equal to
MAXCOR (the maximum size of LINK-10's low segment). If the size
specified in the /CORE switch is greater than MAXCOR, the core
will be assigned. However, the next time LINK-10 needs to expand
core, the size will be reduced to MAXCOR.

Switch Format

/CORE:n

n is a decimal number that represents the initial low segment
core size for LINK-10. An octal value can be given by preceding
it with a number sign (#). N is expressed in units of 1024 words
or 512 words (a page) by following the number with K or P
respectively. If K or P is omitted, K (1024 words) is assumed.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

4-5

LINK-10 Switches

Examples

/CORE:17K

Specify 17K words as the initial size of LINK-10's low
segment.

/COUNTER

Function

The /COUNTER switch is used to output to the terminal the
relocation counters, their initial and current values, and for
undefined counters, the length of code depending on them. When a
relocation counter is not known, a count of the amount of core
used by the counter is kept so that loading can- be resolved.
Code depending on the counter is stored on the disk until the
counter is defined.

Although LINK-10 is designed to handle an indefinite number of
relocation counters to provide efficient program construction, it
currently uses only two relocation counters, the low segment
counter (.LOW.) and the high segment counter (.HIGH.). These
counters are listed in a map file with their initial and final
value.

Switch Format

/COUNTER

Category of Switch

Immediate Action Typeout Switch (refer to Paragraph 3.3.4)

Examples

/COUNTER

[LNKRLC RELOC. CTR. INITIAL VALUE
• LOW. 0
.HIGH. 400000

4-6

CURRENT VALUE(OCTAL)]
140

400010

LINK-10 Switches

/CPU

Function

The /CPU switch is used to indicate the central processor on
which the program will run once it has been loaded.

switch Format

/CPU:keyword

Keyword is either KA10 or KIlO. If the keyword is omitted, KA10
is assumed. If the /CPU switch is omitted, the machine on which
the program is loaded is assumed.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/CPU:KI10

Run the program on the KIlO processor.

/DEBUG

Function

The /DEBUG switch is used to load a debugging program and to
specify that execution of the load will begin at the normal start
address of the debugging program instead of the user's program.
The debugging programs available are DDT, l1ANTIS, and COBDDT.
This switch does not cause termination of the loading procedure 1
the /GO switch is needed for termination. The /EXECUTE switch is
not used for execution when the /DEBUG switch is given.

The /DEBUG switch turns on the load with local symbols mode and
causes it to be in effect for the remainder of the load unless
overridden by the /NOLOCALS switch. However, since the /NOLOCALS
switch is file dependent, it is cleared at the end of the command
string in which it appears and local symbols mode is reinstated.
Note that the /LOCALS switch is also file dependent1 therefore,
the use of the /LOCALS switch and the implicit use of the /LOCALS
switch in the /DEBUG switch context have different results (i.e.,
the /LOCALS switch is cleared at the end of the command string
and the load with local symbols mode implied by the /DEBUG switch
is not).

4-7

LINK-10 Switches

The /DEBUG switch does
debugging program to
/LOCALS switch.

switch Format

/DEBUG:keyword

not cause the local symbols of the
be loaded, regardless of the state of the

Keyword is one of the following: COBDDT, COBOL, DDT, FORTRAN,
MACRO, MANTIS. (COBOL can be abbreviated to the single letter
C.) SAIL and FAIL can also be given as keywords and cause a
special version of DDT (called SOOT) to be loaded. However,
SAIL, FAIL, and SOOT are not DEC-supported programs. When a
compiler or the assembler is specified, the debugging aid
associated with that translator is used. For example, if r~CRO
is specified, the loading of DDT is implied. If the keyword is
omitted, DDT is assumed.

Category of Switch

Creates an implicit file specification (refer to Paragraph 3.3.6)

Examples

,/DEBUG:DDT DTA3:FILEA.MAC,

/DEFAULT

Function

The /DEFAULT switch is used to change LINK-lO's initially-assumed
values for components missing in a file specification. A file
specification is in the form dev:file.ext[directory]. The initial
defaults for input specifications are

DSK:.REL [user's default directory]

and for output specifications are

DSK:narne of main program. ext dependent on type of output
file [user's default directory].

Thus, the user cannot change the extensions of output files, and
any attempt to do so is ignored.

Values specified via the /DEFAULT switch are in effect for the
entire loading process or until the user issues another /DEFAULT
switch.

4-8

LINK-10 switches

Switch Format

/DEFAULT:keyword

Keyword is either INPUT or OUTPUT to specify default conditions
for input and output specifications, respectively. If the
keyword argument is omitted, INPUT is assumed.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

DSK:MAIN,/DEFAULT .BIN[10,7],

/DEFINE

Load the file MAIN.REL from the user's default directory of
the disk and then change the input defaults to load .BIN
files from the [10,7] area of the disk.

Function

The /DEFINE switch is used interactively by the user to assign
values to undefined global symbols in order to satisfy global
requests before LINK-10 terminates the load with undefined
symbols. The user can employ the /UNDEF switch to obtain a list
of the undefined symbols and then use the /DEFINE switch to
satisfy the requests for these symbols.

Switch Formats

/DEFINE:symbol:value

/DEFINE:(symbol:value, ••• ,symbol:value)

Symbol is the name of the symbol to be defined. If the name
given is one of an already-defined symbol, the user receives an
error message.

Value is the decimal number to be associated with the symbol. An
octal value can be given by preceding it with a number sign (#).

4-9

LINK-IO Switches

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

*/UNDEF
1 UNDEFINED SYMBOL
NOW 400123
*/DEFINE:NOW:897
*/DEFINE:OCT:#1234

/ENTRY

Function

The /ENTRY switch is used to type out all library search symbols
(i.e., entry points) that have been loaded up to the time the
switch is given. These symbols are recognized by a specific
condition set in the first word of the symbol by the translator
that processed the module containing the symbol. The user
defines symbols as library search symbols with an ENTRY statement
in a MACRO-IO or BLISS-IO module, with a SUBROUTINE, FUNCTION, or
ENTRY statement in a FORTRAN module, or with a SUBROUTINE
statement in a COBOL module.

When used with the overlay facility, the /ENTRY switch lists the
library search symbols in the current link. The symbols that are
both listed and referenced in other links appear in the INTTAB
table (refer to Appendix B) for this link.

Switch Format

/ENTRY

Category of Switch

Immediate Action Typeout Switch (refer to Paragraph 3.3.4)

Examples

*/ENTRY
[LNKLSS LIBRARY SEARCH SYMBOLS (ENTRY POINTS)]

SQRT. 3456

4-10

LINK-10 Switches

/ERRORLEVEL

Function

The/ERRORLEVEL switch is used to selectively suppress LINK-10
messages to the user's terminal. Associated with each message is
a decimal number from 0 to 31 called the message level. Via this
switch, the user can decide that messages with a message level
less than or equal to a specific number are not to be output to
his terminal. A user would normally want to suppress informative
messages rather than error messages. The higher the message
level, the more serious the message. Refer to Appendix E for the
message level of each LINK-lO message.

Switch Format

/ERRORLEVEL:n

n is a decimal number from 0 to 30. Messages with a message level
less than or equal to n will not be output to the terminal. Note
that a message with a level of 31 cannot be suppressed. If this
switch, or the value of the switch, is omitted, informative
messages are suppressed.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/ERRORLEVEL:10

/ESTIMATE

Function

The /ESTIMATE switch is used to reserve disk space for an output
file and must be associated with an output specification.
Because each occurrence of the switch allocates space for only
one file, the user must issue an /ESTIMATE switch for each file
that needs space reserved.

This switch is not required for space allocation for an output
file, but its use can both help the user stay within his quota
allotment and reduce the number of (RIB) pointers associated with
the file.

4-11

LINK-IO Switches

switch Format

/ESTIMATE:n

n is a decimal number representing the estimated number of blocks
of 128 words of the output file. A warning message is given if
LINK-IO fails to allocate the requested size.

If this switch is omitted, or if· an insufficient estimate is
given, space is allocated automatically as needed.

Category of Switch

output switch (refer to Paragraph 3.3.3)

Examples

DSKC:OUTPUT/MAP/ESTIMATE:50,/SAVE/ESTIMATE:200,

/EXCLUDE

Allocate 50 blocks for the map file and 200 blocks for the
save file.

Function

The /EXCLUDE switch is used to inhibit the loading of certain
modules in a file when loading the file in the current mode
(either search or nonsearch mode). This switch is useful when the
user is searching a library file and definitely knows he does not
want certan modules, even though his program may reference the
names of these modules. For example, if a library file has
several modules with the same library search symbols (e.g., as in
dummy routines) and the user wants to load a module other than
the first one, he can use this switch to prevent the loading of
the modules not desired. Another use of the /EXCLUDE switch is
to satisfy global symbol definitions during library searching by
excluding the modules that would cause multiply-defined symbols.

When the user specifies an overlay structure, he can use the
/EXCLUDE switch to delay the loading of certain modules. Since
the default system libraries are searched after every /LINK
switch, a module for a library may be loaded in a link before the
user actually wants it loaded. Thus, he can use the /EXCLUDE
switch to inhibit the loading of the module for that link.

The /EXCLUDE switch is file dependent and applies to all modules
in the link if it is placed before a file specification. Each
specification of a permanent /EXCLUDE switch is cumulative for
the command string in which it appears~ modules excluded by the
first permanent specification are added to the modules excluded

4-12

LINK-IO Switches

in the second specification. If the user desires to include a
module that has been permanently excluded in the command string,
he must specify its inclusion with the /INCLUDE switch. Refer to
the /INCLUDE switch description for the relationship of these two
switches when they are used together to control the placement of
subroutines in individual links.

Switch Formats

/EXCLUDE:subroutine

/EXCLUDE: (subroutine, ., subroutine)

Subroutine is the name of the module.

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

,/SEARCH LIBFIL.REL/EXCLUDE:(MODl,MOD2),

Search the file LIBFIL as a library
modules MODI and MOD2 from the
referenced.

but do not load the
file, even if they are

/EXECUTE

Function

The /EXECUTE switch is used
to be started at the normal
upon completion of loading.
termination of loading;
loading.

to specify that the loaded program is
entry point (i.e., the start address)

This switch does not cause the
the /GO switch is needed to terminate

The /EXECUTE and /DEBUG switches cannot be used together because
one switch specifies execution of the user's program (/EXECUTE)
and the other switch specifies execution of the debugging program
(/DEBUG).

Switch Format

/EXECUTE

4-13

LINK-10 Switches

category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/EXE

/FOROTS

Function

The /FOROTS switch is used to specify the object time
FOROTS, instead of FORSE, for use with FORTRAN programs.
is then loaded, if required, when LINK-10 searches the
system libraries.

Switch Format

/FOROTS

Category of Switch

system
FOROTS

default

Creates an implicit file specification (refer to Paragraph 3.3.6)

Examples

,/FOROTS DSK:MAIN,SUB1,

/FORSE

Function

The /FORSE switch is used to specify the object time system
FORSE, instead of FOROTS, for use with FORTRAN programs. FORSE
is then loaded, if required, when LINK-10 searches the default
system libraries.

Switch Format

/FORSE

4-14

LINK-IO Switches

category of Switch

creates an implicit file specification (refer to Paragraph 3.3.6)

Examples

,DSK:MAIN.F4/FORSE,

/FRECOR

Function

The /FRECOR switch guarantees that the specified amount of free
core will remain after LINK-IO expands specific areas in its low
segment. Since LINK-lO's default amount of free core is 2K,
users do not need this switch when loading most modules.
However, when the modules being loaded are quite large (e.g.,
monitor modules), a larger amount of FRECOR will result in a
faster loading process because LINK-IO will not have to move
areas around in core as often.

During the loading procedure, LINK-IO has five areas that can be
expanded beyond their initial sizes. These areas are: the
user's low segment code area (LC), the user's high segment code
area (HC), the local symbol table area (LS), the fixup area (FX),
and the global symbol table area (GS). Each area has a lower
boundary, a maximum upper boundary, and an actual upper boundary.
LINK-IO tries to maintain space between the actual upper boundary
and the maximum upper boundary at all times. However, as the
loading procedure progresses, LINK-IO may have to expand an area
to accomodate the user's input. If the sum of the amount of free
core between the actual upper boundary and the maximum upper
boundary for all areas minus the size required for the expansion
is less than FRECOR, core is expanded to an amount large enough
to maintain FRECOR. If the required size of the low segment
becomes greater than MAXCOR (the user specified limit) or CORMAX
(the system limit) allows, no further expansion is attempted and
core is obtained from the free space recovered by shuffling
areas. When all of the free space has been obtained, some or all
of the above-mentioned areas must overflow to the disk. Note
that free core is not maintained when areas overflow to the disk.

switch Format

/FRECOR:n

n is a decimal number representing the number of words of free
core rounded to the next l28-word multiple. If this switch, or
the value of this switch, is omitted, 2K words is assumed.

4-15

LINK-10 Switches

/GO

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/FRECOR:3K

Function

The /GO switch is used to terminate the loading process and is
the only termination switch available. When LINK-10 executes the
/GO switch, it finishes loading the current specification,
searches default libraries (if this action has not been
suppressed with the /NOSYSLIB switch), produces the requested
output files, and either exits to the monitor or runs the core
image produced depending upon the switches appearing in the input
command strings. If the /DEBUG switch has been specified,
execution begins at the normal start address of the appropriate
debugging program. If the /EXECUTE or /TEST switch has been
specified, execution begins at the normal start address of the
user's program. If one of these switches has not been specified,
LINK-10 exits to the monitor.

Switch Format

/GO

category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Example

/GO

EXIT
•

4-16

LINK-10 switches

/HASHSIZE

Function

The /HASHSIZE switch is used to specify the initial size of the
global symbol table. LINK-10 uses the lowest prime number in its
internal list that is greater than or equal to the given value as
the hashsize for the symbol table. This switch can be employed
by a user who knows before loading that the number of global
symbols used by his program is going to be quite large. By
setting the hashsize of the symbol table to a larger number, the
user can save LINK-10 time and space that would be used in
expanding the hash table. When the user receives the message
REHASHING GLOBAL SYMBOL TABLE on a load, it serves as an
indication that he should use the /HASHSIZE switch at the
beginning of subsequent loads of the same programs. Refer to the
LINK-10 Design Specification for the hashing technique used in
symbol tables.

Switch Format

/HASHSIZE:n

n is a decimal number representing the estimated hashsize of the
global symbol table. A recommended hashsize is a number 10%
larger than the total number of global symbols in the load. The
default size (initially 251) is an assembly parameter.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/HAS:1000

LINK-10 uses the prime number 1021.

/INCLUDE

Function

The /INCLUDE switch is used to force the loading of specified
modules in that file whether or not the user's program actually
references them. For example, if the user does not have a global
request for a desired module, he can use this switch to cause
that module to be loaded.

4-17

LINK-10 switches

The primary use of the /INCLUDE switch is with the overlay
facility in order to load a required module into a link closer to
the root link. For example, if two different links reference the
same module, normally that module will be duplicated in each link
when the default libraries are searched after the /LINK switch is
given. However, by using the /INCLUDE switch to force the
loading of the module into a link common to both links requiring
it, the user saves overhead table space in the individual links.

The /INCLUDE switch is file dependent and as such, applies to all
modules in the current link if it is placed before a file
specification. When the user specifies search mode (i.e.,
/SEARCH), the subroutines given as arguments to the /INCLUDE
switch, plus the subroutines normally loaded in search mode, are
loaded. If the user has not specified search mode, only the
subroutines given as arguments to the switch are loaded.

Each specification of a permanent /INCLUDE switch is cumulative
for the command string in which it appears; modules included by
the first permanent specification are added to the modules
included in the second specification. If the user wants to
exclude a module that has been permanently included in the
command string, he must specify its exclusion with the /EXCLUDE
switch.

The /INCLUDE and /EXCLUDE switches, with the same arguments, can
be used together in the specification for the current link. If
this is the case, the last one seen will be in effect if both
switches are used as permanent or both used as temporary.
However, if one is used as a permanent switch and one as a
temporary one, the following rules apply.

1. If the user has specified search mode and there is a matching
request, the subroutine will be loaded unless

a. An /EXCLUDE switch is used as a temporary switch, or

b. An /EXCLUDE switch is used as a permanent switch and
there is not a temporary /INCLUDE switch for the same
subroutine.

2. If the user·· has specified search mode and there is no
matching request, no subroutines will be loaded unless

a. An /INCLUDE switch appears as a temporary switch, or

b. An /INCLUDE switch appears as a
there is no temporary /EXCLUDE
subroutine.

permanent switch and
switch for the same

3. If the user has not specified search mode, no subroutines
will be loaded except ones specified as arguments to a
temporary /INCLUDE switch or ones specified as arguments to a
permanent /INCLUDE switch but not to a temporary /EXCLUDE
switch.

4. If the user has not specified search mode and has not given a
temporary /INCLUDE switch, all subroutines will be loaded
except those specified as arguments to an /EXCLUDE switch.

4-18

LINK-10 Switches

Switch Format

/INCLUDE:subroutine

/INCLUDE:(subroutine, • •• , subroutine)

/LINK

Subroutine is the module name of the desired module.

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

,SYS:FORLIB/INCLUDE:(SIN,COS,TAN),

Search the library FORLIB, but always load the modules SIN,
COS, and TAN.

Function

The /LINK switch is used to output an overlay link to the overlay
file. When LINK-10 processes this switch, it searches the
default libraries (unless this action has been suppressed),
writes the current core image to the file, and then returns to
the user for more input. The current core image is that code
loaded either from the time of the last /LINK switch or, if no
/LINK switch has been seen, from the beginning of the load.
LINK-10 also assigns the link a link number. The user can
additionally assign a name to the individual link for the purpose
of referring to it from other links.

Each specification of an overlay link must be terminated with the
/LINK switch.

Switch Format

/LINK:link name

Link name is the name the user wants associated with this link.
This argument is optional. If used, it can then appear as an
argument to the /NODE switch. It is recommended that the /LINK
switch be the last switch on the command line for the specified
link. If this switch is not given by the user, links will not be
output to the overlay file. When the switch is given without the
user assigned link name argument, LINK-10 assigns only an
absolute link number to the individual link.

4-19

LINK-IO Switches

category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

SPEXP/LINK:ALPHA

Load the module named SPEXP, output the core image to the
overlay file, and call the link ALPHA.

/LOCALS

Function

The /LOCALS switch is used to load local symbols with the
specified programs. Local symbols are not processed by LINK-IO,
but are useful to the user when debugging.

This switch does not· cause local symbols to be saved as part of
the core image requested by the /SAVE or /SSAVE switch. The
/SYMSEG switch or an entry in the JOBDAT location .JBDDT is
required if local symbols are to remain in core.

switch Format

/LOCALS

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

,MYFILE,/LOCAL MYDATA,MYSUB,MYLIB,

Load local symbols with the programs MYDATA, MYSUB, and
MY~IB.

4-20

LINK-lO Switches

/LOG

Function

The /LOG switch is used to specify an output log file into which
LINK-lO places information that is useful for the user when he is
debugging his program. This file is a report of LINK-lO's
progress in loading the user's program because the actions taken
by LINK-lO are shown. The times at which these actions took
place are also indicated.

This switch is not required to obtain a log file if the user
assigns a device the logical name LOG before running LINK-lO.
Then all log information will be recorded in a file on this
assigned device. The file is named nnnLNK.LOG where nnn is the
user's job number. In this case, the /LOG switch merely causes
the file to be renamed to the user's specifications.

If the user does not assign a device the logical name LOG prior
to running LINK-lO, he must use the /LOG switch in order to
obtain a log file. However, any times and messages output before
the /LOG switch is seen in the command string will not appear in
the log file.

switch Format

file specification/LOG

File specification is in the form dev:file.ext[directory] to
specify the device and name associated with the log file. The
default file specification is DSK:name of main program. LOG
[user's default directory]. The user's terminal may be specified
as the log device.

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

Examples

DSKB:MYLOG/LOG

Create a log file on DSKB: with the name MYT40G.

4-21

LINK-10 switches

/LOGLEVEL

/HAP

Function

The /LOGLEVEL switch is used to suppress LINK-10 messages to the
user's log file. This switch permits the user to set the level
of messages that are to appear in the log file. Refer to the
/ERRORLEVEL switch and Appendix E.

If the log file is output to the user's terminal (i.e., the log
device is the user's terminal), the messages outp~t are
determined by the lower of the arguments specified 1n the
/ERRORLEVEL and /LOGLEVEL switches. The user would rarely set
the log device as the terminal because the /ERRORLEVEL switch
with a low number allows him to obtain all messages on the
terminal.

Switch Format

/LOGLEVEL : n

n is a decimal number from 0 to 30. Messages with a message level
less than or equal to n will not be output to the log file. The
user cannot suppress messages with a level of 31. If this switch,
or the value of the switch is omitted, a message level of 0 is
assumed (i.e., all messages are output to the log file).

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/LOGLEVEL:5

Do not output any message to the log file with a message
level less than or equal to 5.

Function

The /r.1AP switch is used to specify an output map file which
consists of the types of symbols requested by the user with the
/CONTENTS switch. The map file is useful to the user when he is
debugging his program because it lists the symbols used by his
program along with their values. Header information (e.g.,
relocation counters with their lengths and starting addresses) is
also included in the map.

4-22

LINK-lO Switches
Switch Format

file specification/MAP:keyword

File specification is in the form dev:file.ext [directory] and
specifies the device and name associated with the map file. The
default specification is DSK:name of main program. MAP [user's
default directory].

Keyword is one of the following:

END to produce a map file at the end of loading.

ERROR to produce a map file of the code loaded if a fatal
error occurs (i.e.,an error from which LINK-IO cannot
recover) •

NO~l to produce a map file at the time this keyword is seen.
The map contains all of the information up to and including
the last file loaded. Default libraries will not be searched
unless specified. This keyword is normally used during
debugging to determine how the load is progressing.

If the /MAP switch is not issued by the user, no map file will be
generated. If the switch is given, but the keyword is omitted,
the keyword END is assumed.

Category of Switch

Output Switch. Also, /MAP:NON is an immediate action switch.

Examples

DSKB : MYl·1AP /MAP

Specify a map file on DSKB: with the name MYMAP.

/MAXCOR

Function

The /MAXCOR switch is used to specify the maximum amount of core
LINK-IO may use as its low segment while loading. LINK-lO will
expand to this size if required and then will overflow to the
disk, rather than expanding in core, when it reaches the maximum
core size allowed. When LINK-lO must overflow to the disk, it
writes out part or all of the symbol area, the low code area,
and/or the high core area in order that loading can continue. If
the current amount of core used is greater than the size
specified by the user, the next time LINK-IO requests more core,
the size will decrease to the amount specified by the user and
the remaining code will overflow to the disk. If the amount
specified by the user is less than the minimum amount required by

4-23

LINK-10 Switches

LINK-10, he receives a
required. He should
argument.

warning message
then respecify

indicating the amount
the switch with a larger

Switch Format

/MAXCOR:n

n is a decimal number that represents the, maximum low segment
core size for LINK-10. An octal value can be given by preceeding
it with a number sign (#). N is expressed in units of 1024 words
or 512 words (a page) by following the number with K or P
respectively. If K or P is omitted, K (1024 words) is assumed.

The maximum size is l28K (~.e., less than the origin of the high
segment). The m~n~mum s~ze is dependent upon the code already
loaded. The user receives a warning message if the value of
MAXCOR is not within the required range.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/f.1AXCOR: 30K

Allow LINK-10 to expand its low segment to 30K before
overflowing to the disk.

/MPSORT

Function

The /MPSORT switch is used to arrange the symbol table for output
to the map file in the order most convenient to the user.

switch Format

/MPSORT:keyword

Keyword is one of the following:

UNSORTED to print the symbols in the order in which they are
placed in the symbol table. This keyword is the default.

ALPHABETICAL to arrange the
order for each module
block-structured module.

4-24

symbol table in
or for each

alphabetical
block in a

LINK-lO switches

NurmRICAL to arrange the symbol table in numerical order
according to the values of the symbols for each module.

NOTE

UNSORTED is the only keyword currently
implemented. The other keywords listed
above are ignored and a warning message
is output.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

MYlviAP /I-tAP /MPSORT: UNSORTED

Specify a map file with the name MYMAP and print the symbols
in the order in which they appear in the symbol table.

/MTAPE

Function

The /MTAPE switch allows the user to perform magnetic tape
functions such as rewind, backspace, and skip. If this switch is
given in an input specification, the action is performed
immediately. However, when the switch is part of an output
specification, the action requested is not performed until the
output device has been initialized.

Switch Format

/MTAPE:keyword

Keyword is one of the following:

MTWAT to wait for spacing and I/O to finish,

MTREW to rewind the tape to load point.

MTEOF to write an EOF,

MTSKR to skip one record.

4-25

LINK-lO Switches

INODE

MTBSR to backspace one record.

MTEOT to space to the logical end-of-tape.

MTUNL to rewind and unload the tape.

MTBLK to write 3 inches of blank tape.

HTSKF to skip one file.

MTBSF to backspace one file.

MTDEC to initialize for Digital-compatible 9-channel
tape.

MTIND to initialize for industry-compatible 9-channel
tape.

Category of Switch

Device Switch (refer to Paragraph 3.3.1)

Examples

MTAO:/MTAPE:MTEOT/MAP

Output the map file to MTAO: after spacing to the logical
end of tape (i.e., to the first free block).

Function

The INODE switch is used to return LINK-IO to the end of a
previously specified link in order to specify a new path or to
complete the specification of an existing path. The argument to
this switch will be considered the immediate ancestor of the link
to which the switch is applied. For example, if the user has
defined his root link and one path consisting of three links, he
can use the INODE switch to return LINK-10 to the end of the root
link in order to define a second path originating from this link.
This switch in effect places LINK-10 in the same position as if
the user had just issued a ILINK switch for the specified link,
in this case, for the root link.

Switch Format

INODE:arg~ent

4-26

LINK-IO switches

Argument is one of the following:

1. The name of the link the user wishes to position LINK-IO
after. This name is the one previously assigned by the
user as the argument to a /LINK switch.

2. A negative number,-n, indicating that the user wishes to
move back over the specified number of links on the path.
For example, -2 backs up over two links.

3. The number of the link the user wishes to position
LINK-IO after. This number is the one previously
assigned by LINK-IO. The user can also use 0 to position
LINK-IO after the root link. It is recommended that the
user use a link name or 0 and not a positive link number
as an argument to the /NODE switch because of the
potential danger of the number being different with
different loads of the overlay structure.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4).
Also a required switch for specifying an overlay structure.

Examples

The command sequence:

.R LINK
* /OVERLAY = 11AIN/LINK: ROOT
*SUBI/LINK:OVERI
*SUB2/LINK:OVER2
*/NODE:-I SUB3/LINK:OVER3
*/NODE:ROOT SUB4/LINK:OVER4
*/NODE:O SUBS/LINK:OVERS

generates the following overlay structure.

---ROOT

-- OVERI - -OVER4

-- OVER2 -- OVER3

4-27

--OVER5

LINK-lO Switches

/NOENTRY

Function

The /NOENTRY switch allows the user to indicate symbols that will
be ignored as definitions of library search symbols (i.e., entry
points) when referenced from other links. Therefore, these
symbols are not placed in LINK-IO's overhead tables. For
example, the user can give the /ENTRY switch to list the library
search symbols in the current link. Of the symbols listed, the
ones referenced by other links will appear in the INTTAB table
for the current link (refer to Appendix B). If the user kno\,Ts
that for this execution of his program, he will not reference
certain symbols, he should use the /NOENTRY switch to suppress
their placement in the overhead tables.

Switch Format

/NOENTRY:symbol

/NOENTRY: (symbol, ••• ,symbol)

Symbol is the name of the symbol in ASCII.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

*/ENTRY

[LNKLSS LIBRARY SEARCH SYHBOLS (ENTRY POINTS)]

.SQRT 3456

*/NOENTRY: .SQRT

*
INOINITIAL

Function

The /NOINITIAL switch is used to clear LINK-lO's initial global
symbol table. This initial global symbol table consists of the
.JBxxx symbols in JOBDAT. (Refer to DECsystem-IO Monitor Calls
for a description of JOBDAT.) This switch is normally employed
when the user is loading LINK-lO itself (in order to get the
latest copy of JOBDAT), when the user wants to load a private
copy of JOBDAT in order to use new values, or when the user is
loading a program (for the purpose of creating a core image file)
that will eventually run as an exec mode program (e.g., the
monitor, diagnostics, a bootstrap loader). This switch must

4-28

LINK-10 switches

appear before the first file specification in the command string
or else the ini-tia1 LINK-10 global symbol table (JOBDAT) will be
loaded. If the /NOINITIAL switch is specified, JOBDAT will be
searched when the default system libraries are searched.

Switch Format

/NOINITIAL

If this switch is omitted, LINK-lO's internal JOBDAT area symbols
are used as the initial global symbol table.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

/NOINITIAL,COMMON,COMDEV,COHMOD,TOPSlO/SEARCH/GO

Load the monitor without LIID<-lO's initial global symbol
table.

/NOINITIAL,DTBOOT,EDDT/GO

Load the exec mode program ,.,i thout LINK-lO' s initial global
symbol table.

/NOLOCAL

Function

The /NOLOCAL switch is used to load the programs without their
local symbols. This is the default action.

Switch Format

/NOLOCAL

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

4-29

LINK-10 Switches

Examples

/LOCAL FIRST, SECOND, THIRD, FOURTH/NOLO CAL

/NOREQUEST

Load the programs FIRST, SECOND, and THIRD with their local
symbols and load the program FOURTH without its local
symbols.

Function

The /NOREQUEST switch allows the user to indicate symbols that
should not be considered as references to other links and
therefore should not be placed in LINK-10's overhead tables. For
example, the user may decide that during a particular run of his
program he does not require certain links in his overlay
structure. He informs LINK-10 of this fact by specifying the
names of the symbols defined in these unnecessary links, but
referenced from the required links, as arguments to the
/NOREQUEST switch. By eliminating the references to these links,
the user causes reductions in the sizes of the overhead tables
(refer to the EXTTAB table in Appendix B).

Switch Format

/NOREQUEST:symbol

/NOREQUEST:(symbol, ••• ,symbol)

Symbol is the name of the symbol in ASCII.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

*/REQUEST
[LNKRER REQUEST EXTERNAL REFERENCES]

ROUTN.
SQRT.

*/NOREQUEST:SQRT.
*

The user has decided that for this particular execution of
his program he does not require definition of the symbol
SQRT •• Thus, to save space in the overhead tables, he tells
LINK-10 to ignore the reference to SQRT ••

4-30

LINK-10 Switches

/NOSEARCH

Function

The /NOSEARCH switch is used to turn off library search mode
(i.e., to always load the entire indicated file or files whether
or not the files are required). The files are not searched to
determine if they are needed. This switch is normally used after
a /SEARCH switch has set library search mode. This is the
default action.

switch Format

/NOSEARCH

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

PARTA,/SEARCH LIBHAC,LIBCBL,LIBFOR,/NOSEARCH PARTB,PARTC

The files LIBMAC, LIBCBL, and LIBFOR are searched as
libraries. The files PARTA, PARTB, and PARTe are loaded in
their entirety.

/NOSTART

Function

The /NOSTART switch indicates ·to LINK-10 to ignore all start
addresses in the binary input programs. The start address for
the current program is not changed.

switch Fonnat

/NOSTART

If this swi·tch is omitted and more than one start address is
encountered, the last one seen is used.

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

4-31

LINK-lO Switches

Examples

MAINl,/NOSTART MAIN2,HAIN3

Start addresses are ignored in files MAIN2 and r1AIN3.

/NOSYMBOL

Function

The /NOSYMBOL switch signals LINK-IO not to construct a table of
the symbols used by the user's program. This switch affects the
speed of loading in that LINK-lO is not required to spend time in
generating a symbol table for the user. If this switch is given,
tile user is not able to obtain output symbol files or output map
files containing symbol listings. A map file can be
obtained,however, with header information only.

switch Format

/NOSYHBOL

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

/NOSYM

/NOSYSLIB

Function

The /NOSYSLIB switch is used to inhibit the searching of one or
more of the system libraries upon completion of the loading
process. The system libraries required by the loaded modules are
usually searched at the end of the load in order to satisfy
undefined global requests. These libraries are LIBOL for COBOL
modules, FORLIB for FORTRAN-lO modules, LIB40 for F40 modules,
and ALGLIB for ALGOL modules.

4-32

LINK-IO Switches

Switch Format

/NOSYSLIB:keyword

/NOSYSLIB:(keyword, ••• ,keyword)

Keyword is one or more of the follovTing:

AI.lGOL to suppress the searching
BCPL to suppress the searching

by DEC).
COBOL to suppress the searching
E'O RT RAN to suppress the searching
F40 to suppress the searching
NELIAC to suppress the searching

by DEC).

of ALGTJIB.
of BCPLIB (not supported

of LIBOL.
of FORLIB.
of LIB40.
of LIBNEL (not supported

If the ke~lord is omitted, the searching of all system libraries
is suppressed.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/NOSYS LIB: (ALGOL, COBOL)

Do not search ALGLIB and LIBOL.

/NOSYSLIB

Do not search any system libraries.

/NOUSERIJIBRl\RY

Function

The /NOUSERLIBRARY switch allows the user to terminate the
automatic searching of a user library. The name of the specified
library is then removed from the list of libraries that are
searched by LINK-IO. For example, the user may have specified,
with the /USERLIBRARY switch, that a particular library is to be
searched each time he gives the /LINK switch. If he now decides
that he does not need this library searched, he gives the
/NOUSERLIBRARY switch to terminate the searching.

4-33

'LINK-IO Switches

Switch Format

file specification/NOUSERLIBRARY

File specification is in the form dev:file.ext [directory] and
specifies the device and name associated with the user library.
If the specified file has not been defined as a user library, the
switch is ignored. If the file specification argument is
omitted, all user libraries, including ones assembled into
LINK-lO, are removed from the list of libraries searched.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

USERLIB/NOUSERLIBRARY

No longer search the file USERLIB automatically at the end
of each link.

/ONLY

Function

The /ONLY switch is used to load the low segment portion or the
high segment portion of a two segment module. Its primary use is
in generating systems that consist of multiple high segments
which may share common code and symbol definitions. This switch
is ignored for one segment modules.

Switch Format

file specification/ONLY:keyword

File specification is in the form dev:file.ext [directory] and
specifies the device and name associated ,,,ith the two segment
module.

Keyword is one of the following:

BOTH

HIGH

to allow both segments to be loaded. This keyword
effectively turns off the switch.

to only load code and symbols for the high
segment.

LOW to only load code and symbols for the low segment.

4-34

LINK-IO switches

lOTS

Category of Switch

File Dependent Switch Crefer to Paragraph 3.3.2)

Examples

10NLY:HIGH FILEA,FILEB,FILEC/ONLY:BOTH

Load only the high segment code for modules FILEA and FILEB:
load code for both segments for FILEC.

Function

The lOTS switch is used to specify the way in which the
appropriate object time system is loaded and the time when it is
bound to the user's program. The object time system can either
be obtained from a .REL file and bound at load time or be
obtained from a saved file and bound at execution time via a
GETSEG UUO.

Switch Format

10TS:keyword

Keyword is one of the following:

DEFAULT to load the object time system via a GETSEG UUO at
runtime unless code already exists in the high segment and
ISEGMENT: high is not set. If this is the case, a
nonsharable object time system is loaded as part of the
user's core image. FORTRAN, NELIAC, and ALGOL specify the
high segment. This keyword is used to reset to normal
conditions after specifying a lOTS switch with either the
SHARABLE or NONSHARABLE keywords.

NONSHARABLE to load the object time system at load time,
into the user's core image. The user's program may be in
both the high and low segments, and parts of the object time
system may also be in both segments.

SHARABLE to load the object time system at execution time
via a GETSEG UUO. The user's program is in the low segment,
and the object time system is in the high segment.

If this switch, or the value of this switch, is omitted, the
default action is to bind the object time system via a GETSEG UUO

4-35

LINK-10 Switches

at execution time unless code already exists in the high segment
and /SEGMENT:HIGH is not set.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

FILA.REL/SYSLIB/OTS:NONSHAR

/OVERLAY

Load the required object time system as part of the user's
core image instead of executing a GETSEG UUO at execution
time.

Function

The /OVERLAY switch informs LINK-10 that the user is going to
build an overlay structure for his program (refer to Chapter 5)
and as such is a prerequisite for using the overlay capability.
This switch causes LINK-10 to load the overlay handler, the
routine responsible for ensuring that all required links are in
core as needed, into the user's address space. This switch does
not specify each individual link (refer to the /LINK switch).

The /OVERLAY switch also defines the characteristics of the
overlay structure. In Version 2 of LINK-10, the individual links
are absolute or relocatable, tree-structured, and non-writable.
This means:

1. Each link has an assigned area of the user's address
space and will be loaded in the same location on every
call (absolute link). If the link cannot be loaded into
its optimal absolute area, then its address will be
relocated by the difference between the optimal and
actual addresses (relocatable link).

2. Each link has only one ancestor but may have more than
one successor (tree-structured link).

3. Each link is loaded in its original form; any changes
that have been made to the link are destroyed once the
link is overlaid (non-writable link).

In addition, the path of any link is loaded when that particular
link is loaded.

This switch must be associated with the root link, which must be
the first link specified in the command string. It may also be
associated with a file specification, in which case LINK-lO uses
that file specification as the name of the overlay file.

4-36

LINK-ID Switches

Any permanent file-dependent switches (e.g., /EXCLUDE, /LOCALS,
/SEARCH) given by the user before he gives the /OVERLAY switch
become link-permanent switches. That is, these switches
automatically will be in effect at the beginning of each link,
even if they had been disabled in a previous link. (Normally,
permanent file-dependent switches are only in effect until
modified by a subsequent switch or until the end of the command
string; refer to Paragraph 3.3.2.) This method of handling
permanent file-dependent switches saves the user from repeatedly
typing switches that he wants to be in effect for every link.

Switch Format

file specification/OVERLAY:keyword

file specification/OVERLAY: (keyword, ••• ,keyword)

File specification is in the form dev:file [directory] and
specifies the device and name associated with the overlay file.
The default specification is DSK: filename.OVL [user's default
directory]. The filename is either the name of the main program
or the name of the save file, if the /SAVE switch has been given
by the user. The file specification argument is optional.

Keyword is one or more of the following:

ABSOLUTE to specify that the links will be absolute
(default). The complement of this keyword is RELOCATABLE.

LOGFILE to output a log file of the run time messages on the
user's terminal. The complement of this keyWord is
NOLOGFILE.

NOLOGFILE to inhibit the generation of a log file of the run
time messages (default). The complement of this keyword is
LOGFILE.

NONWRITABLE to specify that the links will be nonwritable
(default). The complement of this switch is not implemented
in Version 2 of LINK-ID.

NOWARNING to suppress the output of the
warning messages on the user's terminal.
this keyword is WARNING.

overlay handler's
The complement of

PATH (LOADING) to specify that all links from the current
one to the root will be loaded when the current link is
loaded (default). The complement of this keyword is not
implemented in Version 2 of LINK-ID.

RELOCATABLE to specify that the links will be relocatable.
The complement of this keyword is ABSOLUTE.

TREE (STRUCTURE) to specify that the overlay structure will
be tree structured (default). The complement of this keyword
is not implemented in Version 2 of LINK-ID.

4-37

LINK-10 switches

WARNING to output all of the overlay handler's warning
messages on the user's terminal (default). The complement of
this keyword is NOWARNING.

If the /OVERLAY switch is given without any
keywords ABSOLUTE, NONWRITABLE, PATH, TREE,
NOLOGFILE are assumed. If the /OVERLAY switch is
the user, no overlays will be generated.

Category of Switch

keywords, the
WARNING, and

not given by

Output Switch (refer to Paragraph 3.3.3). Also a required switch
for specifying overlays.

Examples

TEST/OVERLAY,TEST/MAP=MAIN/LINK

/PATCHSIZE

Load the overlay handler, produce a map file and an overlay
file both with the name TEST (i.e., TEST.MAP and TEST.OVL),
and write the first overlay (MAIN) to the overlay file.

Function

The /PATCHSIZE switch is used to allocate space between the top
of the loaded code and the bottom of the symbol table. This
space is then used for new symbols defined by the user with DDT
and/or for patching. Note that when the user defines symbols
with DDT, each symbol will occupy two words. The space is
allocated in either the high or low segment, depending upon the
placement of the symbol table as specified with the /SYMSEG
switch. The default is to place the symbol table in the low
segment.

Switch Format

/PATCHSIZE:n

n is a decimal number representing the number of words to be
allocated as patching space. An octal value can be given by
preceding it with a number sign (i) •• A global symbol, PAT •• , ~s
defined to be equal to the first location in the patching system.

If this switch, or the value of this switch, is omitted, the
default allocation is 64 (decimal) or 100 (octal) words.

4-38

LINK-lO Switches

category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/SYMSEG:HIGH/PATCHSIZE:200

Load the symbol table into the high segment and allocate 200
words between the loaded code and the symbol table.

/PLOT

Function

The /PLOT switch is used to generate a line drawing of the user's
overlay structure. This drawing can be output on the plotter or
simulated on the line printer.

Because of the plotter's limitation in the horizontal direction
(i.e., in the carriage movement), it is not-possible to draw an
arbitrarily wide tree on the plotter paper. Thus, the user may
have to divide his overlay structure into subtrees. He controls
this division by specifying appropriate values as arguments to
the /PLOT switch. The arguments that control the size of the
diagram are LEAVES and INCHES. The value of LEAVES specifies the
maximum number of links with no successors that can appear in one
subtree. The value of INCHES specifies the width in inches of
the desired drawing.

The values of INCHES and LEAVES also define the size of the
drawing of each individual link (approximately INCHES/LEAVES
wide). The user must be concerned with the values he assigns to
avoid a distorted diagram. If he specifies too many LEAVES per
subtree, the drawing will be distorted. If he does not specify
enough LEAVES, time and paper will be wasted drawing the diagram
and the diagram will be more difficult to read. The following
values are recommended to generate a nondistorted drawing.

1.

2.

If the drawing is going to
INCHES/LEAVES should be
LEAVES=15).

be output to the plotter,
about 2 (e.g., INCHES=29 and

If the drawing is going
printer, INCHES/LEAVES
INCHES=12 and LEAVES=8).

to be simulated on the line
should be about 1.5 (e.g.,

Switch Format

file specification/PLOT: (LEAVES:value, INCHES:value, STEPS:value)

4-39

LINK-lO Switches

File specification is in the form dev:file.ext [directory] and
specifies the device and name associated with the plot. The
default specification is DSK: name of main program.PLT [user's
default directory].

LEAVES is the maximum number of links with no successors that
will be allowed in one subtree. The default value for the
plotter is 16 (decimal) and for the line printer, 8.

INCHES is the width in inches of the plot. The default value for
the plotter is 29 and for the line printer, 12 (decimal). It is
recommended that this value be at least one inch less than the
physical width of the plotting surface.

STEPS is the number of movements per inch of the plotting device.
For the plotter, the default step size is 100 (decimal) steps per
inch. This argument also applies to the line printer. The
plotting surface of the line printer is composed of a large
number of boxes, each box being the size of a character
(approximately 1/6 X 1/10 inches). During simulation to the line
printer, a box is filled with a character each time the current
position of the pen is on the paper and in the box. To avoid
having the same box filled a number of times, it is recommended
that the STEPS argument for the line printer be much smaller than
it would be for the plotter, but be greater than the inverse of
the dimensions of the boxes. The default step size for the line
printer is 20 (decimal).

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

Example

TEST/OVERLAY,TEST/MAP,LPT:TEST/PLOT = MAIN/LINK

Refer to Example 7 in Chapter 6 for the output generated by
this command string.

4-40

LINK-10 switches

/REQUEST

Function

The /REQUEST switch is used to type out all references to other
links that obey the standard calling sequence. (If the user
calls a subroutine with other than the standard calling sequence,
LINK-10 ca~not recognize the global symbol as a reference to a
subroutine.) The references listed will normally be to links in
the extended path of the current link. If the user decides that
he does not need the referenced link for this particular
execution of his program, he should then give the /NOREQUEST
switch in order to reduce the overhead tables (refer to the
EXTTAB table in Appendix B). If he does need these links, he
should load the missing programs. Thus, the user can
interactively satisfy requests to links before the execution of
his program is terminated because of undefined references.

switch Format

/REQUEST

category of Switch

Immediate Action Typeout Switch (refer to Paragraph 3.3.4)

Examples

*/REQUEST

[LNKRER REQUEST EXTERNAL REFERENCES]
ROUTN.
SQRT.

4-41

LINK-lO Switches

/REQUIRE

Function

The /REQUIRE switch is used to generate global requests for the
indicated symbols. Thus, this switch can be used to load library
modules out of their normal loading sequence or to force the
loading ,of modules for overlays.

The /REQUIRE switch is used to load a module by specifying one or
more of its library search symbols (entry points), whereas the
/INCLUDE switch is used to load a module by specifying its name.
Thus, the /REQUIRE switch is useful when the user knows the
function he wants loaded (e.g., SQRT) , but does not know the name
of the module containing that function. Like the /INCLUDE
switch, the /REQUIRE switch can be used to load a module
referenced by several links into a link that is common to all
links referencing the module.

Switch Format

/REQUIRE:symbol

/REQUIRE:(symbol, ••• ,symbol)

Symbol is the SIXBIT symbol name for which the user wants a
global request generated.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

/REQUIRE:NAME

Generate a global request for the symbol called NAME.

/REWIND

Function

The /REWIND switch is used to rewind the current input or output
device. The device associated with this switch must be a DECtape
or magnetic tape. If the device is not a tape device, the switch
is ignored.

4-42

LINK-10 Switches

Switch Format

/REWIND

Category of Switch

Device Switch (refer to Paragraph 3.3.1)

Examples

,/REWIND MTAO:,

/RUNCOR

Function

The /RUNCOR switch is used to specify the amount of core to be
assigned to the low segment of the program when it is executed.
The effect of this switch is identical to that produced when the
program is run by the system run commands (R or RUN) with the
given core argument.

Switch Format

/RUNCOR:n

n is a decimal number that represents the amount of core to be
used as the initial core size for the program when obtained with
the GET system command. An octal value can be given by
preceeding it with a number sign (#). N is expressed in units of
1024 words or 512 words (a page) by following the number with K
or P respectively. If K or P is omitted, K (1024 words) is
assumed. If n is omitted or is less than the amount required,
the number of blocks required by the core image area is assumed.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/RUNCOR:50P

4-43

LINK-IO Switches

/RUNAME

/SAVE

Function

The /RUNAME switch is used to assign the name to the program that
is to be used while the program is running. This name is stored
in a job-associated table in the Monitor and is used by the
SYSTAT program and the VERSION system command. This switch
affects high segment programs only.

Switch Format

/RUNAME:symbol

Symbol is the name to be assigned to the program. Only the first
six characters specified are used. If this switch is omitted,
the default name is the name of the module with the last start
address. If there is no module containing a start address, the
name used is nnnLNK, where nnn is the user's job number.

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/RUNAME:PRIV,MYPROG/SSAVE

Save the file with the name MYPROG (i.e., MYPROG.SHR), but
the program is run with the name PRIV.

Function

The /SAVE ~witch is used to define an output save file which will
contain -the core image generated by LINK-IO. The core image is
saved as one or two files: a low segment file and/or a high
segment file. After the core image is saved on the specified
output device, it can later be brought into core and executed as
a non-sharable program (by using the RUN or GET system commands)
without rerunning LINK-IO.

Before writing low segment files (i.e., files with extensions
.SAV or .LOW), LINK-IO compresses the core image by eliminating
all zero blocks. High segment files are not compressed. This
action is known as zero-compression and is used to save space on

4-44

LINK-IO Switches

the storage device.
essence, identical
command.

switch Format

The resulting zero-depressed file is, in
to the one produced by the SAVE system

file specification/SAVE:n

File specification is in the form dev:file[directory] and
specifies the device and name associated with the save file. The
default specification is:

DSK:name of main program [user's default directory].

User-supplied extensions are ignored and the extension given to
the file depends on the number of segments saved. If there is
only one segment, the extension .SAV is used. If there are two
segments, the extension .LOW is used for the low segment and .HGH
for the high segment.

N is a decimal number that represents the amount of core (sum of
high and low segments) in which the program is later to be run.
An octal value can be given by preceding it with a number sign
(#). N is expressed in units of 1024 words or 512 words (a page)
by following the number with K or P respectively. If K or P is
omitted, K (1024 words) is assumed.

If the /SAVE is not used, a save file will not be generated. If
the switch is given but the core argument is omitted, the minimum
core required by the core image is used.

category of Switch

output Switch (refer to Paragraph 3.3.3)

Examples

DTA3:MYPROG/SAVE:4K=

Define a save file on DTA3: with the name MYPROG. The
program will be run in 4K.

/SEARCH

Function

The /SEARCH switch is used to turn on library search mode (i.e.,
to search specified files in order to load only those modules of
the file that are required to satisfy undefined global requests).
The user gives this switch to search either library files that he
may have created or ones that are not part of the required system

4-45

LINK-IO Switches

libraries.
search mode.
unless the
switch.

The /NOSEARCH switch is used to turn off library
The required system libraries are still searched

user has inhibited the searching with the /NOSYSLIB

switch Format

/SEARCH

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

PARTA,/SEARCH LIBMAC,LIBCBL,LIBFOR,/NOSEARCH PARTB,PARTC

/SEGMENT

The files LIBMAC, LIBCBL, and LIBFOR are searched as
libraries. The files PARTA, PARTB, and PARTC are loaded in
their entirety.

Function

The /SEGMENT switch is used to indicate to LINK-IO the segment
into which to load the input modules.

Switch Format

/SEGMENT:keyword

Keyword is one of the following:

DEFAULT to follow the specifications in the program. The
typical case is to load pure code into the high segment and
impure code into the low segment. This keyword is used to
reset to normal conditions after specifying a/SEGMENT
switch with either the HIGH or LOW keywords.

LOW to load code into the low segment.

HIGH to load code into the high segment, even if the code is
impure.

If this switch, or the value of the switch, is omitted, high
segment code is loaded into the high segment and 1m.., segment code
into the low segment. An exception to this rule is the action

4-46

LINK-IO Switches

/SET

taken with two segment (reentrant) code produced by FORTRAN-IO.
The default is to load both segments into the low segment unless
one of the following conditions is true:

1. Non-reentrant FOROTS was requested via the /OTS:LOW
switch.

2. Code was forced into the high segment with the
/SEGr.1ENT:HIGH switch.

3. Loading of two segment code was forced with the
/SEGlvlENT: DEl?AULT switch.

4. Code currently exists in the high segment.

5. The 1m., segment is greater than 128K.

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

/SEGMENT:LOW TESTPRG,ANSWER,ROUTIN/SEGrreNT:HIGH,

Load the modules TESTPRG and ANSWER into the low segment and
the module ROUTIN into the high segment.

Function

The /SET switch is used to set the value of a relocation counter
to a specified number. Although LINK-IO will handle many
relocation counters, only two relocation counters are currently
implemented: the counter for the low segment (.LOW.) which
begins at zero, and the counter for the high segment (.HIGH.)
which begins· at location 400000 or the end of the low segment,
whichever is greater. Other counters can be set, but they are
currently not used by LINK-IO.

Switch Format

/SET:symbol:n

Symbol is the name of the relocation counter.

n is an octal number representing the value of the counter. For
the first release of LINK-lO, only two relocation counters can
usefully be given, .LOW. and .HIGH.

4-47

LINK-10 Switches

category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

Examples

.SET:.LOW.:1000,/SET:.HIGH.:400000

/SEVERITY

Function

The /SEVERITY switch specifies to LINK-10 the level at which
messages are to be considered fatal. Associated with each
message is a decimal number from 0 to 31 called the severity
level. with this switch, the user can specify that messages with
a severity level less than or equal to a specific number are not
to cause his job to be terminated. Any message with a severity
level above the specified number will cause his job to abort.

Switch Format

/SEVERITY:n

n is a decimal number from 0 to 30. LINK-10 messages with a
severity level above n will cause a user's job to be aborted.
Even though the highest severity level is 31, the user cannot
indicate that a message with this severity level is to be
considered non-fatal. If this switch, or the value of the
switch, is omitted, a fatal error for a timesharing job is one
whose severity level is greater than 24 (decimal), and for a
batch job, one whose level is greater than 16 (decimal).

Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/SEVERITY:30

4-48

LINK-IO switches

/SKIP

Function

The /SI<IP switch is used to space forward over the specified
number of input or output files. This switch is implemented for
magnetic tape only and is ignored if it is given for any other
device.

switch Format

/SKIP:n

n is a decimal number representing the number of files to skip
over.

Category of Switch

Device Switch (refer to Paragraph 3.3.1)

Examples

/SKIP:4 MTA3:

/SPACE

Function

The /SPACE switch is llsed to reserve a specific amount of core at
the end of the run time representative of the current link. This
additional core is used at execution time, mainly in the root
link for I/O buffers and runtime tables of the object time
system. If the amount of space reserved for dynamic allocation
is too small, the link will not be able to be loaded at its
optimal location and will have to be relocated, if possible.
However, if the link was loaded as an absolute link, an
allocation of too few words results in a fatal error condition.
t'1hen the space allocated is larger than necessary, core will be
wasted because it is not used. Since the core reserved by this
~litch is not actually allocated until execution time, it does
not increase the size of the overlay file.

Switch Format

/SPACE:n

4-49

LINK-IO Switches

n is a decimal number that represents the size of the reserved
area in words. An octal value can be given by preceding it with
a number sign (#). If this switch, or the value of this switch,
is omitted, the default allocation is 2000 (decimal) words in the
root link and 0 words in the remaining links.

category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

OVERFL/OVERLAY = /SPACE:3000 MAIN/LINK

/SSAVE

Load the overlay handler and give the overlay file the name
OVERFL.OVL (OVERFL/OVERLAY), reserve 3000 decimal words in
the root link for use during execution time (/SPACE:3000),
and output the module named MAIN to the overlay file
(MAIN/LINK).

Function

The /SSAVE switch is used to define an output save file which
will contain the core image produced by LINK-IO. It is similar to
the /SAVE switch except that the high segment will be sharabl
when it is brought into core and executed. The saved file
produced by this switch is the same as the one produced by the
SSAVE system command. Refer to the /SAVE switch.

Switch Format

file specification/SSAVE:n

Arguments are the same as for the /SAVE switch except for the
following difference: when there are two segments, the extension
.LOW is assumed for the low segment and .SHR for the high
segment.

category of Switch

output Switch (refer to Paragraph 3.3.3)

4-50

LINK-lO Switches
Examples

DTA:SHRPRG/SSAVE,

Define a sharable save file with the name SHRPRG on the
user's DECtape. The minimum core required by the core image
is assigned.

/START

Function

The /START switch is used to specify the start address of the
loaded program or to allow a program to specify its own start
address. When a start address is specified, all subsequent start
addresses are ignored. This is the default action.

Switch Format

/START:n

n is either of the following:

an octal number preceded by a number sign (#) representing
the starting address of the program, or

a SIXBIT global symbol whose value is the start address.
The global symbol specified must be defined.

If n is omitted, LINK-IO does not change the current start
address but will accept all start addresses from the following
modules (i.e., the action is to turn off a /NO S TART switch
setting).

Category of Switch

File Dependent Switch (refer to Paragraph 3.3.2)

Examples

,MAINPG/START,/NOSTART PROGl,PROG2,

Use the start address in MAINPG and ignore the start
addresses in PROGl and PROG2.

4-51

LINK-10 Switches

/SYMBOL
Function

The /SYMBOL switch is used to specify an output symbol file which
will consist of local symbols (if loaded), information stored in
the local symbol table, such as module names and lengths, and
global symbols sorted for DDT.

Via keywords, the user can specify that the symbol file is to be
either in radix-50 representation or in triplet format. These
two symbol table formats can be distinguished from each other in
several ways:

1. The first word of the radix-50 symbol table is always
negative. The first word of the triplet symbol table is
always zero.

2. The listing of each radix-50 symbol requires two words;
the first word is the symbol name in radix-50
representation, and the second word is the value.

3. The listing of each triplet symbol requires three words;
the first one contains flags, the second is the symbol
name in SIXBIT, and the third is the value.

This switch is useful when DDT is not loaded with the user's
program because it guarantees that the symbols will be available.
Note that if the user issues the /NOSYMBOL switch in the command
string, he is not able to obtain the output symbol file.

Switch Format

file specification/SYMBOL:keyword

File specification is in the form dev:file[directory] and
specifies the device and name associated with the symbol file.
The default specification is

DSK:name of main program .SYM[user's default directory]

If there is no main program, the filename nnnLNK, where nnn is
the user's job number, is used.

Keyword is one of the following:

RADIX-50 to obtain the symbols in radix-50 representation.

TRIPLET to obtain the symbols in triplet format.

If the /SYMBOL switch is not issued by the user, no output symbol
file will be generated. If the keyword is omitted, RADIX-50 ,is
assumed.

4-52

LINK-IO Switches

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

Examples

DSKB:SYMFIL[20,235]/SYMBOL,

/SYMSEG

Define a symbol file with the name SYMFIL on the [20,235]
area of DSKB: • The symbols \>1ill be output in the RADIX-50
format.

Function

The /SYMSEG switch causes symbols to be loaded with the program
and indicates the segment into which the symbol table is to be
placed. with this switch, the user insures that his program when
loaded with DDT will run in as much core as is available without
overwri ting the symbol ·table. Loading DDT or setting the JOBDAT
location .JBDDT to a non-zero value also causes the symbols to be
loaded.

switch Format

/Syr·1SEG: keyword

Keyword is one of the following:

DEFAULT to move the symbol table from its current position
at the top of core to the first free location after the
patching space. The JOBDAT location .JBFF, which points to
the first free location, is adjnsted to point to the first
free location after the symbol tahle. This keyword is used
to reset to the normal action after invoking the /Syr,lSEG
swi tch with ei ther t.he HIGH or LOW keY\'lords.

HIGH to place the symbol table into the high segment.

LOvl to place the symbol table into the low segment.

If the switch, or the value of the s,.,itch, is omitted, the symbol
table is moved from its current position in the segment to -the
first free location in that segment. The first free location is
determined after the allocation of space (default allocation is
64 decimal or 100 octal ",ords) for patching of symbols. A global
symbol, PAT •• , is defined to be equal to the first location in
the patching space.

4-53

LINK-lO Switches

category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/SYMSEG:HIGH

/SYSLIB

Function

The /SYSLIB switch forces the system libraries to be searched in
order to satisfy any undefined global requests. LINK-lO examines
the main program first and, depending on the compiler used,
searches the appropriate library (e.g., an ALGOL main program
causes ALGLIB to be loaded). Then LINK-lO looks at any remaining
programs and searches the relevant libraries.

A system library is not automatically searched unless its
corresponding compiler-produced code has been loaded. This means
that a user must explicitly request a system library when he is
not loading the corresponding compiler-produced code for that
library. For example, if the user is loading only MACRO-lO
programs and he wants the LIB40 library searched, he must specify
it in the switch format; LIB40 is not automatically searched
unless F40 code has been loaded.

The normal action taken by LINK-lO. is to search all required
libraries at the end of the loading procedure; however, this
switch without any keywords causes the libraries to be searched
at the time the switch is given. If keywords are specified on
the switch, the searcing of the indicated libraries occurs at the
end of the loading procedure or on a subsequent /SYSLIB switch
with no arguments, whichever occurs first.

Switch Format

/SYSLIB:keyword

/SYSLIB:(keyword,

Keyword is one of

ALGOL to
BCPL to
COBOL to
FORTRAN to

.,keyword)

the following:

search ALGLIB
search BCPLIB (not supported by DEC)
search LIBOL
search FORLIB

4-54

LINK-IO Switches

F40

NELIAC

to search LIB40 or FORLIB. The library searched
depends upon the /FOROTS or /FORSE switch, if
given, or on the default FORTRAN library, which is
normally FORLIB, if neither switch is given.
to search LIBNEL (not supported by DEC)

If the keyword is omitted, only
corresponding compiler-produced code
searched.

the libraries for which
has been loaded will be

Category of Switch

Creates an implicit file specification (refer to Paragraph 3.3.6)

Examples

/SYSLIB

/SYSORT

Function

The /SYSORT switch is used to arrange the symbol table for output
to the symbol file into the order most convenient to the user.

Switch Format

/SYSORT:keyword

Keyword is one of the following:

UNSORTED to leave the symbols in the order in which they are
placed in the symbol table. This is the default.

ALPHABETICAL to arrange the
order for each module
block-structured module.

symbol table in alphabetical
or for each block in a

NUl4ERICAL to arrange the symbol table in numerical order for
each module according to the values of the 'symbols.

NOTE

UNSORTED is the only keyword currently
implemented. The other keywords
described above are accepted but
LINK-la's action is the same as that
taken with the UNSORTED keyword.

4-55

LINK-lO Switches
Category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/SYSORT:UNSORTED

/TEST

Function

The /TEST switch is used to load a debugging program; thus it is
similar to the /DEBUG switch except that execution is not
specified. For execution of the user's program to begin, the
/EXECUTE switch must be given; without /EXECUTE, the debugging
program will be loaded, but execution will not occur. In
addition, the /TEST switch does not cause termination of the
loading; the /GO switch is required to terminate loading.

switch Format

/TEST:keyword

Keyword is one of the following: COBDDT, COBOL, DDT, FORTRAN,
MACRO, MANTIS. When a compiler or the assembler is specified,
the debugging aid associated with that translator is used (e.g.,
if r1ACRO is specified, the debugging program DDT is loaded).

Category of Switch

Creates an implicit file specification (refer to Paragraph 3.3.6)

Examples

,MAINl,/TEST:COBOL DATPRG,DATA,TEST/EXECUTE/GO

/UNDEFINED

Fnnction

The /UNDEFINED switch is used to type all undefined global
requests on the user's terminal. The user can employ this s\,1itch
to determine the undefined symbols and then use the /DEFlNE
switch to satisfy the requests for these symbols. Thus, the user
can interactively satisfy requests before LINK-lO terminates the
load with undefined symbols.

4-56

LINK-10 switches

Switch Format

/UNDEFINED

Category of Switch

Immediate Action Typeout Switch (refer to Paragraph 3.3.4)

Examples

*/UNDEF
[IJNKUGS 1 UNDEFINED SYMBOL]

NAME 400100

400100 is a word in the chain of fixups depending on the
symbol.

/UNLOAD

Function

The /UNLOAD switch is used to rewind and unload the current input
or output device. The device associated with this switch must be
a DECtape or a magnetic tape1 the switch is ignored for non-tape
devices.

Switch Format

/UNLOAD

Category of Switch

Device Switch; however, the action of this switch is always
performed after the file is processed regardless of its position
in the specification (refer to Paragraph 3.3.1)

Examples

,/REWIND DTA3:FILNAM/UNLOAD,

4-57

LINK-IO Switches

/USERLIBRARY

Function

The /USERLIBRARY switch allows the user to specify a list of user
libraries that are to be searched before the system libraries.
These user libraries are placed at the front of the list of'
libraries searched by LINK-lO. This switch is useful with the
overlay facility in order to indicate that user libraries be
searched automatically when the /LINK switch is given. Thus, the
user does not have to include the file specifications of his user
libraries in the command line for each individual link. The
searching of the user libraries remains in effect until the user
gives the /NOUSERLIBRARY switch.

Individual installations can assemble their own user libraries
into LINK-IO. If this is the case, the user libraries will be
searched automatically, and the user does not need to use the
/USERLIBRARY switch. However, if the user gives the
/NOUSERLIBRARY switch without an argument, all user libraries,
including the ones assembled into LINK-IO, will be removed from
the list of libraries searched.

Switch Format

file specification/USERLIBRARY:keyword

file specification/USERLIBRARY:(keyword, ••• , keyword)

File specification is in the form dev:file.ext [directory] and
specifies the device and name associated with the user library.

Keyword is one of the following:

ALGOL to define this user library as an ALGOL library to be
searched only if ALGOL programs are loaded.

ANY to define this user library as a library to be searched
always, no matter what type of programs are loaded.

BCPL

COBOL

FORTRAN

to define this user library as a BCPL library to be
searched only, if BCPL programs are loaded (not
supported by DEC).

to define this user library as a COBOL library to be
searched only if COBOL programs are loaded.

to define this user library as a FORTRAN-IO library to
be searched only if FORTRAN-IO programs are loaded.

F40 to define this user library as a F40 library to be
searched only if F40 programs are loaded.

NELIAC to define this user library as a NELIAC library to be
searched only if NELIAC programs are loaded (not
supported by DEC).

4-58

LINK-IO Switches

If this keyword is omitted the specified user library will always
be searched regardless of the types of programs loaded. -

category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

TEST/OVERLAY = MAIN, USERLIB/USERLIBRARY, SUBPRG/LINK

/VALUE

Load the overlay handler, produce an overlay file called
TEST.OVL, write the modules MAIN and SUBPRG to the overlay
file, and search the user library USRLIB before searching
the system libraries. The user library will automatically
be searched at the end of all following command lines unless
the user gives the /NOUSERLIBRARY switch.

Function

The /VALUE switch allows the user to interactively type in the
names of global symbols in order to find out their current
values. The output given to the user consists of the requested
symbol, its current value, and its status. The status can be one
of: DEFINED (i.e., in the symbol table with its final value),
UNKNOWN (i.e., not in the symbol table), UNDEFINED (i.e., in the
symbol table as undefined), COMMON (i.e., in the symbol table and
defined as COMMON).

Switch Format

/VALUE: symbol

/VALUE:(symbol, ••• ,symbol)

Symbol is the name of the symbol in ASCII.

Category of Switch

Immediate Action Switch (refer to Paragraph 3.3.4)

4-59

LINK-10 Switches
Examples

/VALUE:(TAG1,START)

LNKVAL TAGl

LNKVAL START'

400010

o

DEFINED

UNDEFINED

The symbol TAGl is defined to be the value 400010, and the
symbol START is undefined.

/VERBOSITY

Function

The /VERBOSITY switch gives the user control over the amount of
text transmitted to both his terminal and his log file whenever
he receives a message from LINK-10. Associated with each message
is a verbosity indicating the amount of text contained in the
message. A verbosity of SHORT indicates that the message
consists only of a 6-letter code (e.g., LNKSTC). A message with a
verbosity of MEDIUM consists of the 6-letter code and one line
that explains the code (e.g., LNKSTC Symbol Table Completed). A
message with a verbosity of LONG consists of the 6-letter code,
the one line of explanation, plus a more detailed explanation of
the message. Thus, the user can specify via this switch the
amount of explanation output to his terminal and log file.

LINK-10 has the following feature to aid users rece~ving fatal
messages (i.e., ones preceded by?). If the user rece1ves a fatal
message but has not indicated that he wants to see the detailed
explanations (i.e., verbosity LONG), he can give the CONTINUE
system command after he receives the message. LINK-10 then types
out the remainder of the message (if there is more information
available) on the user's terminal. This additional information
is not included in the user's log file nor is the job continuable
after the message is output.

Switch Format

/VERBOSITY: keyword

Keyword is one of the following:

SHORT
MEDIUM
LONG

6-letter code only.
6-letter code and a one-line explanation.
6-letter code, a one-line explanation, and a
detailed explanation.

The default value is MEDIUM if this switch, or the keyword to the
switch, is omitted.

4-60

LINK-IO Switches

If the user specifies a verbosity greater than the one available
for the message, the specified keyword is ignored for that
message and only the available text is output. For example, if
the user specifies MEDIUM as the verbosity but the message only
has a 6-letter code available (i.e., SHORT), only the 6-letter
code will be output because there is no additional information
available for that message.

category of Switch

Delayed Action Switch (refer to Paragraph 3.3.5)

Examples

/VER:SHORT

/VERSION

Function

The /VERSION switch is used to set a version number in the file's
retrieval information block (RIB) or to change .JBVER (location
137) in the job's data area. When the switch is associated with
an output specification, the version number is entered only in
that file's RIB. When the switch is associated with an input
specification (or no specification), the version number is
entered in .JBVER and .JBHVR (location 4 in the vestigial job
data area). It is also entered in the RIBs of all output file
specifications unless an explicit /VERSION switch has been given
for a particular output specification. If an explicit switch has
been given for an output file, the setting implied by that switch
is used.

Switch Format

/VERSION: ,major minor (edit)-modifier

Major is the major version number represented as an octal number
of up to 3 digits.

Minor is the minor version number represented as one or two
alphabetic characters.

Edit is the edit number represented by 6 or fewer octal digits.
This number must be enclosed in parentheses, and if it is the
only argument given, the entire quantity must be enclosed in
double quotes to avoid conflict with repeated values (e.g.,
/VERSION: II (23) ") •

4-61

LINK-lO SWitches

/XPN

Modifier is an octal number designating the group who last
modified the file (0 - DEC development, 1 - other DEC personnel,
2-7 - customer use). This number, if given, must be preceded by a
hyphen.

If this switch, or the value of this switch, is omitted, the
version number is the contents of location 137 (.JBVER).

category of Switch

Delayed Action Switch when used on an input specification (refer
to Paragraph 3.3.5).

Immediate Action Switch when used on an output specification
(refer to Paragraph 3.3.4).

Function

The /XPN switch is used to create or save on the disk the
expanded core image file (XPN file) of the low segment, If the
program has not been loaded onto the disk, this switch causes the
file to be created with the name specified by the user. If the
program has been loaded onto the disk, the file already exists,
but with the name nnnLLC.TMP where nnn is the user's job number.
Since this extension indicates a temporary file, the expanded
file is normally deleted upon the completion of LINK-IO's
processing. Thus, in this case, the /XPN switch is used to
rename the file with the .XPN extension, so that it will not be
deleted.

Switch Format

file specification/XPN

File specification is in the form dev:file[directory] and
specifies the device and name to be associated with the expanded
core image file. The default specification is

DSK:name of main program.XPN[user's default directory]

If there is no main program, the filename nnnLNK, where nnn is
the user's job number, is used.

Category of Switch

Output Switch (refer to Paragraph 3.3.3)

4-62

LINK-10 Switches

/ZERO

Example

DSKC:XPNFIL[20,270]/XPN

Save the expanded core image file on the [20,270] area of
DSKC: and with the name XPNFIL.

Function

The IZERO switch is used to clear the directory of the associated
DECtape. The directory is always cleared before the file is
written, regardless of the switch's position in the current
specification. This switch is ignored for all non-DECtape
devices.

Switch Format

file specification/ZERO

File specification is an output specification.

category of Switch

Output switch (refer to Paragraph 3.3.3)

Examples

DTA3:MYPROG/SAVE/zERO

4-63

CHAPTER 5

LINK-lO OVERLAY CAPABILITY

Because of the size of some programs and the availability of core
memory, the user may find it beneficial to be able to partition his
program into segments called overlay links. When using overlays, the
user can cause the system to dynamically replace currently unneeded
portions of his running program with currently needed portions,
thereby using less core than normally required.

without an overlay capability, all of the modules of the user's
program are simultaneously in core during execution. Thus, the amount
of core required to run the user's program is the sum of all of the
module's lengths. In addition, a module will always be occupying core
even if it is used only a small percentage of the total run time. In
an environment of unlimited resources, this method of utilizing core
is the most efficient as far as execution speed is concerned because
when a module is requested by a second one, it is already in core.

However, an overlay capability eliminates some of the disadvantages
that arise when all of the user's program must be in core. First, the
user can run a program larger than the mnount of available core, thus
eliminating the restriction on the maximum size of a program. Second,
by dividing the program into overlays, the disadvantage of maintaining
in core modules that are not currently being used disappears. This is
a benefit to all users of the system in that more user jobs can be in
core at the same time because of the core saved by overlaying the
program. These advantages outweigh the small increase in loading and
execution times that result from using the overlay capability,
particularly when the system as a whole is heavily used.

5.1 USING LINK-10'S OVERLAY CAPABILITY

In order to use LINK-10's overlay capability, the user must have a
good understanding of the operation of his program and the
relationships among the modules in his program. He must organize his
overlay structure so as to retain in core the links that contain the
more commonly used modules and place the infrequently used modules in
links that can overlay each other. For example, a specialized error
recovery procedure would have to be in core only when the specialized
error occurred. Each link should be a collection of modules that are
functionally related; each should be as self-contained as possible
and call other links as infrequently as possible. In particular,

5-1

LINK-lO Overlay Capability

references to links that will cause the overlaying of existing links
should be minimal.

A tree-like structure, called an overlay structure, is used to
illustrate the dependencies among overlay links. In a tree structure,
each link has only one immediate ancestor and may have more than one
inunediate successor. The link that contains the parts of the program
that are always required, and thus must always remain in core during
execution, is called the root link. The root link receives control at
the start of execution and therefore does not have an ancestor. The
remaining links branch away from the root link and are structured
according to their dependencies upon each other.

Links ~at do not have to be in core at the same time are called
independent links. For example, two modules that do not reference
each other and do not pass data directly to each other are
independent. Once one link is no longer needed in core, the second
one can overlay it when it is brought into core.

An overlay link that receives control from, or whose data is contained
in, another link is dependent on this first link. The dependent link
must have the link on which it depends in core at the same time and
thus cannot overlay it. All links are dependent on the root link.

As an example, assume the user has a FORTRAN program, EXAMPL. This
program consists of a main program, MAIN, and six subroutines, SUB1,
SUB2, SUB3, SUB4, SUBS, and SUB6. The subroutines are related in the
following ways:

1. SUBl and SUB6 are called directly from the main program and
are independent of each other.

2. SUB2 and SUBS are called directly from SUBl and are also
independent of each other.

3. SUB3 and SUB4 are called directly from SUB2 and are
independent of each other.

After analyzing these relationships, the user can draw the following
tree structure to illustrate the dependencies of the subroutines.

independent overlays
(third level)

I
I ,
\

I
I
I
I
I

,---'-----. - -- - - -
\
" '----.-----' --- --- ---

.....

,--"-----. \

--- root link

--- ,....-_.1.-----, \

~-- - independent overlays
"-=------'/ (first level)

)-- - - -independent overlays
=-------'/ (second level)

S-2

LINK-IO Overlay Capability

By studying the dependencies in the diagram, the user can see that
when a specific link is executed, all links between it and the root
link must be in core. For example, SUB4 depends on SUBI and SUB2;
therefore, these two links must be in core for the execution of SUB4.
This chain of links is called the path of the link currently being
executed. The action of bringing these links into core is termed path
loading. The chain of links beginning with the current link and going
away from the root is called the extended path. Thus, in the previous
example, the path of SUB4 is MAIN, SUBl, SUB2. There are three
extended paths of SUBl:

1. SUB2, SUB3

2. SUB2, SUB4

3. SUBS

Links may communicate with other links if they lie in a common path or
extended path. This communication is via references to global
symbols. References from the current link to a global symbol in
another link on the path are called backward references. Ref~rences
from the current link to a global symbol in another link on the
extended path are called forward references. Since all links from the
current link back to the root link must be in core, a backward
reference does not cause any links to be brought into core. However,
with a forward reference, the referenced link may not be in core and
therefore must be brought in, possibly overlaying a link currently
residing in core.

5.2 DESIGNING AN OVERLAY STRUCTURE

The first step the user takes when designing his overlay structure is
to draw a tree-like diagram showing the functional relationships among
the modules in his programs. The tree begins with the root link which
contains the main program and which remains in core throughout
execution. The remainder of the program is contained in the overlay
links that support the root link.

Links that are functionally related lie in the same path. Links tha~
can overlay each other are at the same level in different paths and
thus are not functionally related.

The user should remember several points when drawing his overlay
structure.

1. References that will cause overlaying of existing links
should be minimized.

2. Independent links cannot reference each other; communication
is by way of a common link.

3. As a general rule, calls should be forward references, and
returns should be backward references.

4. If data is modified during execution, the modification is
destroyed once the link is overlaid. Therefore, if data
required by another link is modified, it must be returned to

5-3

LINK-IO Overlay Capability

the link requiring it before the link containing the changed
data is overlaid.

5. Addresses or references should not be left to links that will
be overlaid.

6. l-todules or data areas used by several links should be
explicitly loaded into a link that is common to all links
using these modules or data areas. For example, a COMMON
data area should be in a link just before the first link
referencing it. In addition, COMMON should be positioned in
such a way that it never gets reinitialized after the first
call.

Tree-structured overlay systems can be one or more levels deep. The
amount of core required is at least the amount needed for the longest
path. The length of the longest path is not the minimum requirement,
however, since special tables must be included when a program is
divided into links.

As an example of designing an overlay structure, assume that the user
wants to divide the following FORTRAN program, consisting of a main
program and 11 subroutines, into overlay links.

C MAIN PROGRAM IN ROOT LINK FOR. OVERLAY
C STABT WITH S[NGLE PRECISION EXpONENTIATION

TYPE 1
1 fORMAT C' INPUT SINGLE PRECISION NUMBER X=',S)

ACCEPT 2,X
2 FORMAT (G)

CALL SPF~XP (X)
C NOW fOR DOUBLE PRECISION

OOUBLE PRECISIUN Y
TYPE 11

11 FORMAT (' INPUt DOUBLE PRECISION NUM8ER Y=',S)
ACCF~PT 2, Y
CALL DPEXP (Y)

C NO~ fOR TRIG FUNCTIONS IN DEGREES
TYPE: 30

30 FORMAT (' INPUT ANGLE IN DEGREES T=',S
ACCEPT 2,T
CALL TRIG (T)

C E.~X I T
CALL EXIT
END

SUBROUTINE SPEXP (X)
C 0 ~H'iU N / X 2 / X 2
CALL SP~X2 (X,X2)
TYPE 1,X,X2
fORMAT (, X=',G,4X,'X**2=',G)
CALL SPEX3 (X,X3)
TYPE 2,X,X3

2 FORMAT (' X=',G,4X,'X**3=',G)
CALL SPEx4 (X,X4)
TYPE: 3,X,X4

3 FORMAT (' X=',G,4X,'X**4=',G)
RETURt\
END

5-4

LINK-10 Overlay Capability

SUBROUTINE SPEX2 (X,XX)
COMMON IX2/X2
X2=X*X
RETURN
END

SUBROUTINE SPEX3 (X,X3)
C 0 r~ M Cl NIX 2 1 X 2
X3=X2*X
RETURN
END

SUBROUTINE SPEX4 (X,X4)
C 0 ~I M U NIX 2 1 X 2
X4=X2*X2
RETURN
END

SUBHOUTINE DPEXP (Y)
DOUBLE PRECISION Y,Y2,Y3,Y4
COHMON ly2/Y2
CALL DPEX2 (Y,Y2)
TYPE 1,Y,Y2

1 FORMAT C' Y=',G,4X,'Y**2=',G)
CALL DPEX3 (Y,Y3)
TYPE 2,Y,Y3

2 fORMAT C' Y=',G,4X,'Y**3=',G)
CALlI OPEX4 (y,Y4)
TYPE 3,Y,Y4

3 fORMAT (' Y=',G,4X,'Y**4=',G)
RETURN
END

SUBROUTINE DPEX2 (y,YY)
DOUBLE PRECISION Y2
COt"1f.l0N ly2/Y2
Y2=Y*Y
RETURN
~:ND

SUBROUTINE DPEX3 (Y,Y3)
DOUBLE PRECISION y2
COMMON ly2/Y2
Y3=Y2*Y
RETURN
END

SUBROUTINE DPEX4 (Y,Y4)
DOUBLE PRECISION Y2
COtvl~10N /y2/Y2
Y4=Y2*Y2
RETURN
END

SUbROUTINE TRIG (T)
Sl=SINDCT)
TYPE 1,T,S1

1 fORMAT (' SIN l',G,')=',G)
CALL SlN02 (T,S2)
TYPE 2,T,52

5-5

LINK-10 Overlay Capability

2 FORMAT (' SIN (2*',G,')=',G)
CALL SIN03 (T,S3)
TYPE 3,T,S3

3 fORMAT (' SIN (3*',G,')=~,G)

RETURN
END

SUBROUTINE SIND2 (T,S2)
S2=SIND(2*T)
RETURN
END

SUBROUTINE SIND3 (T,S3)
S3=SIND (3*T)
RETURN
~jjD

The above program has three phases of execution. The first phas7 is
single precision exponentiation; the, second is double prec~sion
exponentiation; the third is trigonometric calculations of an angle.
Each phase is completely independent of the other two, and once it has
finished its calculations, it can be overlaid by one of the other
phases. The subroutines performing the actual calculations for each
phase have common subroutines that specify the FORMAT statements for
the calculations.

The overlay structure for the program is shown below.

= Root link

Figure 5-1 Sample Overlay Structure

5-6

LINK-IO Overlay Capability

5.2.1 Designing an Overlay Structure for an Existing Program

The user who has an existing program and wants to use the overlay
facility without redesigning his program should follow the procedure
below to determine the feasibility of this task.

1. Compile or assemble all components (subroutines) of the
program.

2. Run the GLOB program (or a similar one) to determine the
order of the calling sequences among the components.

3. Draw the overlay structure based on these calls. This is a
sta.tic structure illustrating the dependencies among the
components. The dynamic structure shol.-Ting the number of
calls among components can be obtained by writing a program
that traces these calls, by manually proceeding through the
program and counting the calls, or by loading the program and
r(~ques ting a log file for analyzing.

4. Load the overlay structure and request a map file.
the map to determine the follo\'ring:

a. The total runount of core the program takGs.

Examine

b. The percentage of the total core needed for each path of
the structure. Ideally, these percentages ~hould be
about the same for each path.

c. The nmnber of calls causing overlaying of links already
in core. These calls should be ,minimized, if possible,
so that 'VThen links in one path have completed executing,
links in a second path are called and execution is not
passed back to the links in the first path.

If the user finds that a large percentage of the total core required
by the program (e.g., 55-60%) is in two links in the same path, he
should try to equalize the sizes of the paths. For (~xample, consider
the following structure where I4AIN uses 30% of the total core and
ROUTC uses 25%.

5-7

LINK-IO Overlay Capability

One possible method for balancing the paths is to place the two links
(MAIN and ROUTC) in separate paths by creating a new root link and
placing the main program in a link off the root link. Now the two
large links can overlay each other. To do this, two items must be
feasible:

1. It must be possible to simulate the call and the passing of
arguments from !1AIN and ROUTC since independent overlays
cannot directly call one another.

20 Any C01-ll'10N that was in MAIN must be promoted to the new link.

MAIN --------
COMMON

Argument Ii s1

New root Ii nk
COMMON

A rgument I i sf

__ fiOllI.C __
COMMON --------

Argument list

If the user finds that he has a large numbr of overlaying calls (i.e.,
calls that result in the overlaying of an existing link), he should
try to combine the links that overlay each other into one link. This
is reasonable when the links are relatively small or when the number
of links at the same level is greater than the number of links with
overlaying calls. For example, in the overlay structure shown above,
if ROUTA and ROUTB are continually overlaying each other, they can,
and should, be placed in one link.

5-8

LINK-IO Overlay Capability

5.3 SPECIFYING AN OVERLAY STRUCTURE TO LINK-10

Once the user has drawn his overlay structure, he must then specify
this structure to LINK-IO with the appropriate switches on the LINK-IO
command string. Three switches, /OVERLAY, /LINK, and /NODE, are
required when specifying overlays.

/OVERLAY signifies that overlays are to be generated and that the
overlay handler must be loaded. This switch must be included with the
specification of the root link, which has to be the first link
specified in the command string. The /OVERLAY switch may be
associated with a file specification, in which case the file
specification will be used for the overlay file. Refer to /OVERLAY in
Chapter 4 for more information.

/LINK designates the end of an overlay link. When LINK-lO processes
this switch, it writes the current core image to the overlay file. At
this point, LINK-IO assigns the link a number. In addition, the user
can assign a name to the link by giving the name as an argument to the
switch. After LINK-lO processes the /LINK switch, it returns to the
user for more input.

/NODE causes LINK-IO either to back up on the current path to the end
of the link specified as an argument or to move to the end of the
specified link in a separate path. The result of this switch is the
same as if the user had issued a /LINK switch for the specified link.
The recommended arguments to this switch are the following:

1. The name of the link that the user wishes to position LINK-IO
after. This name is the one previously assigned by the user
with the /LINK switch.

2. A negative number, -n, indicating that the user wishes to
move back over the specified number of links on the path.
For example, -2 backs up over two links. A zero indicates
that the user wishes to position LINK-10 after the root link.

The following command sequences illustrate various ways of specifying
the overlay structure in Figure 5-1. The user is giving his overlay
file the name TEST and is also requesting a map file.

NOTE

The tabs at the beginning of the command
lines are used only to illustrate the
levels of the overlay structure. They
do not have to be included in the
command line. However, their use is
recommended in command files in order to
make the files easier to read.

5-9

LINK-lO Overlay Capability

Command Sequence 1

.H LI~!K)

*TEST/OVERLAy,LPT:/MAP=MAIN/LINK)
* SPEXP/LINK:ALPHA~
* INODE:O DPEXP/LINK:BETA)
* INODE:O TRIG/LINK:GAMMA)
* /NODE:ALPHA SPEX2/LINK)
* /NODE:ALPHA SPEX3/LINK~
* /NODF;:ALPHA SPEX4/LINK)
* /NODE:BETA DPEX2/LINK)
* /NODf::8ETA DPEX3/LINK)
* /NODE:BETA DPEX4/LINK)
* /NODE:GAMMA SIND2/LINK)
* INODE:GAMMA SIND3/LINK)
*/GO)

Command Sequence 1 specifies and outputs the links to the overlay file
in the order shown below:

This command sequence builds the overlay structure by specifying each
level completely before proceeding to the next level. The user has
given names to the links in the first level (ALPHA, BETA, GAMMA) and
has used these names as arguments to the /NODE switch.

Command Sequence 2

.R LINK) .
*TEST/nVERLAY,LPT:/MAP=MAIN/LINK)
* SPEXP/LINK:ALpHA)
* SP~X2/LINK)
* /NOOE:ALPHA SPEX3/LINK)
* /NOOE:ALPHA SPEX4/LINK)
* /NOOE:O DPEXP/LINK:BETA)
* DPEX2/LINK)
* /NODE:~ETA OPEX3/LINK)
* /NOO~:BETA DPEX4/LINK)
* /NODE:O TRIG/LINK:GAMMA)
* SlND2/LINK)
* INODE:GAMMA SJN03/GO)

Command Sequence 2 specifies and outputs the links to the overlay file
in the order below:

5-10

LINK-10 Overlay Capability

This command sequence builds the overlay structure by specifying each
path completely before specifying the next path. Again, names have
been given to the links in the first level and used as arguments to
the /NODE switch.

Command Sequence 2 is more efficient than Command Sequence 1 since
LINK-10 knows all the links back to the root. Because the links are
already in core, LINK-10's task of defining global symbols is much
faster.

5.4 LOADING AND EXECUTING THE OVERLAY STRUCTURE

During the loading process of the overlay structure, LINK-10 creates
two files instead of the single file that it normally creates. One
file is a save (.SAV) file that contains the root link, the low
segment of the appropriate object time system, and the overlay handler
(refer to Appendix B). This save file contains the start address of
the program and remains in core throughout execution. The second file
is an overlay file containing the overlay links that constitute the
remainder of the program. The overlay file is a contiguous disk file
and is subdivided into the actual individual links and header blocks
by the internal control information that LINK-IO places in the file
(refer to Paragraph B.3).

During execution, only t~e required portions of the program are loaded
into core. When a link 1n the overlay file is, referenced, either from
the root link or a link already in core, that link is then brought
into core if it is not already there. Depending on the overlay
structure and the run time state of the program, the new link may be
appended to the path of a current link or may replace a link that is
no longer needed in core.

Links in the overlay file are not modified during the execution of the
program. Each time a link is brought into core, it appears in its
original from; no part of a replaced link is ever saved. Because of
this, data in the form of temporary results should never be part of a
link that can be overlaid.

5-11

CHAPTER 6

LINK-IO EXAMPLES

EXAMPLE 1 Loading and Executing COBOL Programs

The following files are on the user's disk area:

,DIRr:cr

FILA CRt 1 <U55> 6-F~B-73 ()SKB: [27,235J
FILB CBL 2 <055> 6-FEB-73
fILe CBt 1 <055> 6-fEB-73
006J.JNK LOG 1 <055> 28-FEB-73
S V1PLE HAC 1 <055> ~8-Ft;B-73

TOTAr, OF' 6 BLOCKS IN 5 fILES UN DSKb: (27,235J

In the command string shown below, the user is automatically
compiling, loading, and executing the programs and generating a map.
The /CONT:ZERO switch is passed to LINK •

• ~X~CUT~ /LINK/MAP
COBOL: CBS08A
COBOL: CBSOBB
COaOL: ChSOAC
LINK: LOADING
[EXECUrlON]
RUNNINf, CBS08A
RUNNINf, CBSl>8B
RUNNINf, CBSU8C

EXIT

FILA,FILB,fILc%rCQNT:Z~Rur

[fILA,eBCJ
[[;ILB"CBL]
[f' I J.JC • C 1:3 L J

6-1

LINK-lO Examples

In the following command sequences the user is compiling the files and
then directly loading and executing them through LINK-IO.

,COM FrLA,FILB,FILC
COBOL: CBSOBA
COBOL: CBS088
COBOL: C13S08C

EXIt

(FILA.CBL]
[FII,B .CSL]
(FILC,CBLJ

,R LINK

*FILA,FILB,FILC,/MAP/CONT:ZERO/~XECUTE/GO
[EXECUTION]
RUNNIPr, CBS08A
RUNNINr, CBS08B
RUNNINC; casoec

EXIT

EXAMPLE 2 Loading and Executing a MACRO Program

The user assembles the following r.1ACRO program:

.COMPIJ,~: Srr-IP.LE.MAC
MACRO: SIMPLE

EXIT

In the following command sequences, the user loads the MACRO program,
interactively requests a listing of the relocation counters, library
search symbols, and undefined global symbols, and then executes the
program.

,R LINK

*SI r1PLf:
*/COUNTER
RELOCArION COUNTER
,LOW.
.HIGH.
*/ENTRX

INITIAL VALUE
o

400000

NO LIBRARY SEARCH SYMBOLS (ENTRY POINTS)
*/UNDEFINE

NO UNn~fINED GLOBAL SYMROLS
*/EXECtTTE/GO
[EXECU1:10NJ

CURRENT VALUE (OCTAL)
140

400025

THIS IR A VRRY SIMPLE TWO-SEGMENT MACRO PROGRAM,

EXIT

6-2

LINK-IO Examples

EXAMPLE 3 Loading COBOL Programs and Creating a Saved File

In the following example, the user is individually loading each file
and requesting a listing of undefined global symbols after each file
is loaded. He also is requesting the searching o£ the default system
libraries. After searching has been performed, the user creates a
saved file and executes the core image.

*FILA/rJ

6 UNDEF'l N~;D GLOBAL SY~lHoLS
BTRAC. 1212
TRACE. 1277
TRPD. 1214
TRPOP. 1213
CBS08B 1327
CBDDT. 1260
*f'ILB/tJ

6 UN DE F' I H t: D G LOB A L S Y [;1 B 0 L S
BTHAC" 1367
TRACE. 1473
TRPD. 1371
CBS08C 1615
TRPOP. 1370
CHDD!" 1454
*FILC/rJ

5 UNCSFINED GLOBAL SYMBoLS
BTRAC. 2052
TRACE. 2147
TRPD. 2054
TRPOP. 2053
CBLIOT. 2130
*/S~SLH3/U

*FILZ/SAV/EXECUTE/GO
[EXECU'1'IClN]
RUNNING CBS08A
RUNNItJr, CBS08B
RUN N J :1 G C 13 S 0 8 C

EXIT

FILZ SAV 5 <055> 23-APR-73

6-3

DSKC: (27,235]

LINK-10 Examples

Example 4 Loading LINK-10

The Command File

INOINITIAL ILOGLEVEL:l OSK:LINK/MAP/CONT:NOABS =/RUNAM~:LINK~
IHASHSIZE:1500/TEST:DUT/SYMSEG:HIGH,LNKEXO,SCAN,H~LPER-
,LNKINI,/NOSTART LNKstN,LNKOV1,LNKWLD,LNKFIO,LNKLOD,LNKHSH,LNKOLD,LNKF40.
,LNKNEW,LNKCST,LNKCUR,LNKbOG,LNKMAP,LNKOV2,LNKOVS,LNKXIT,LNKPLT,LNKSU~/S-

,PLTDCL,PLTUTL,PLTGLS,PLTMTH,PLTIO/GU

Running LINK-10 With the Disk as the Log Device

LINK-10 LOG FILE 2!)-JUN-74
9 07 42 1
9 07 44 1
9 07 48 4
9 07 48 1
9 07 49 1
9 07 49 1
9 07 49 b
9 07 49 4
9 07 50 4
9 07 50 1
9 07 50 1
9 07 50 1
9 07 50 6
9 07 50 6
9 07:50 b
9 07:51 4
9:07:51 1
9-07:51 1
9 07:51 1
9 07:51 4
9 07 51 1
9 07 51 1
9 07 52 4
9 07 52 1
9 07 52 6
9:07 52 6
9 07 52 b
9 07 52 1
9 07 52 6
9 07 52 6
9 07 52 4
9 07 52 1
9 07 53 6
9 07 53 6
9 07 53 6

1 LIM LINK-10 INITIALIZATION
1 SNL SCANNING NEW COMMAND LINE
1 EXP EXPANDING LOW SEGMENT TO 13P
1 MOV MOVING LOW SEGMENT Tu EXPAND AREA DY
1 LOS LOAD SEGMENT
1 MOV MOVING LUW SEGMENT TO EXPAND AREA DY
1 LMN LOADING MODULE UDDT
1 EXP EXPANDING LOW SEGMENT
1 EXP EXPANDING LOW SEGMENT
1 MOV MOVING LOW SEGMENT Tu
1 MOV MOVING LOW SEGMENT TO
1 MOV MOVING LOW SEGME~T TO
1'LMN LOADING MODULE LNKEXO
1 LMN LOADING MODULE SSCNDC
1 LMN LOADING MODULE .SCAN
1 EXP EXPANDING LOW SEGMENT
1 MOV MOVING LOW SEGMENT TO
1 MOV MOVING LOW SEGMENT TO
1 MOV MOVING LOW SEGMENT TO
1 EXP EXPANDING LOW SEGMENT
1 MOV MOVING LOW SEGMENT TO
1 MOV MOVING LOW SEGMENT TO
1 EXP EXPANDING LOW SEGMENT
1 MOV MOVING LOW SEGMENT TO
1 LMN LOADING MODULE .VERBO
1 LMN LOADING MODULE .TNEWL
1 LMN LOADING MODULE .TOUTS

'£0 17P
TO 21P
EXPAND AREA LC
EXPAND AREA LC
EXPAND AREA LC

TO 25P
EXPAND
EXPAND
EXPAND
TO 29P
EXPAND
~XPAND

'1'0 33P
EXPAND

AREA He
AREA He
AREA He

Al{f;A He
AREA LS

AREA LS

1 MaY MOVING LOW SEGMENT To EXPAND AHEA HC
1 LMN LOADING MODULE .STOpa
1 LMN LOADING MODULE .CNTDT
1 EXP EXPANDING LOW SEGMENT TO 37P
1 MOV MOVING LOW SEGMENT TO EXPAND AREA LS
1 LMN LOADING MODULE .GTPUT
1 LMN LOADING MODULE .SAVE
1 LMN LOADING MODULE- • HELPR

6-4

LINK-1O Examples

9:07:53 6 1 LMN LOADING MODULE LINK
9:07:53 1 1 MOV MOVING LUW SEGMENT TO EXPAND AREA He
9:07:53 1 1 MOV MOVING LOW SEGMENT TO EXPAND AHEA HC
9:07:53 4 1 EXP EXPANDING LOW SEGMENT 'ro 41 P
9:07:53 1 1 t~OV MOVING LOW SEGMENT TO EXPAND AREA LS
9:07:54 6 1 LMN LOADING MODULE LNKSCN
9:07:54 1 1 MOV MOVING LOW SEGMENT TU EXPAND AREA HC
9:07:54 4 1 EXP EXPANUING LOW SEGMENT TO 45P
9:07:54 1 1 MOV MOVING LOW SEGMENT TO EXPAND AREA LS
9:07:54 6 1 LMN LOADING MODULE LNKUVl
9:07:54 1 1 MOV MOVING LOW SEGMENT TO EXPAND AREA HC
9:07:54 1 1 MOV MOVING LOW SEGMENT TO EXPAND AREA HC
9:07:55 4 1 EXP EXPANDING LOW SEGMENT 1'0 49P
9:07:55 1 1 MOV MOVING LOW SEGMENT TU EXPAND AREA HC
9:07:55 , 1 1 MUV MOVING LOW SEGMENT TO EXPAND AHEA LS

9:08:07 6 1 LMN LOADING MODULE FLOAT
9:08:07 6 1 LMN LOADING MODULE FLOAT.
9:08:07 6 1 LMN LOADl.NG -MODULE IF IX
9:08:07 6 1 LMN LOADING MODULE INT
9:08:07 6 1 LMN LOADING MODULE If IX.
9:08:07 b 1 LMN LOADING MODULE FLT.O
9:08:07 6 1 LMN LOADING MODULE FLT.14
9:08:07 6 1 LMN LOADING MODULE IfX.O
9:08:07 6 1 LMN LOADING MODULE EXP2
9:08:07 6 1 LMN LOADING MODULE EXP
9:08:07 6 1 LMN LOADING MODULE EXP.
9:08:07 6 1 LMN LOADING MODULE A.Loe;
9:08:07 6 1 LMN LOADING, MODULE ALOGIa
9:08:07 6 1 LMN LOADING MODULE ALOG ..
9:08:08 6 1 LMN LOADING MODULE SIND
9:08:08 6 1 LMN LOADING MODULE COSO
9:08:08 6 1 LMN LOADING MOJ)ULE SIN
9:08:08 6 1 LMN LOADING MODULE CUS
9:08:08 6 1 LMN LOADING MODULE SIN.
9:08 08 1 1 MOV MOVING LOW SEGMENT TO EXPAND AREA LS
9:08 Olj 6 1 LMN LOADING MODULE LiNE
9:08 O~ '* 1 EXP EXPANDING LOW SEGMENT 'f0 109P
9:08 08 1 1 MOV MOVING LOW SEGMENT TO EXPAND AREA HC
9:08 08 6 1 LMN LOADING MODULE PLOT
9:08 08 1 1 MOV MOVING LOW SEGMENT TU EXPAND AREA He
9:08 08 1 1 MOV MOVING LOW SEGMENT TO EXPAND AREA LS
9:08 08 {) 1 LMN LOADING MODULE JOBJ)AT
9:08:10 1 1 [.IPS MAP SEGMENT
9:08:13 1 1 EMS END OF MAP SEGMENT
9:08:15 1 1 EXS EXIT SEGMENT
9:08:16 1 1 SST SORTING SYMBUL TABLE
9:08:16 1 1 MOV MOVING LOW SEGMENT TO EXPAND AREA HC
9:08:16 1 1 STC SYMBOL TABLE CUMPLETED
9:08:16 1 1 fIN LINK-10 F'INISHED
LNKELF EN)) OF LOG FILE]

6-5

0\
I

0\

UDDT

LINK-I0 SYMBOL MAP OF LINK VERSION 2(210)
PRODUCED BY LINK-10 VERSION 2(205) ON 25-JUN-74 AT 9:08:11

LOW SEGMENT STARTS AT 0 ENUS AT 5355 LENGTH 5356
HIGH SEGMENT STARTS AT 400000 ENDS AT 400535 LENGTH 00530
274 WORUS FREE IN LOW SEGMENT, 162 WORDS FREE IN HIGH SEGMENT
1065 GLOBAL SYMBOLS LOADED, THEREFORE MIN. HASH SIZE IS 1184
START ADDRESS IS 407261, LOCATED IN PROGRAM LINK

FROM SYS:ODT.REL[1,4] CREATED ON 21-0CT-13 AT 16:21:00

PAG~ 1

= 6P = 49p

LOW SEGM~NT STARTS AT 140 ENDS AT 4557 LENGTH 4420 (OCTAL),

DO 'I' 140 ENTRY RELOCATABLE DDTEND
$1 13 4431 GLOBAL RELOCA'1' ABLE S2B
$313 4437 GLOBAL R):;LOCATABLE $4B
S5t:) 4445 GLOBAL RELOCATABLE $oB
S7B 4453 GLOBAL RELOCATABLE $8B
$1 4425 GLOBAL R~LOCATABLE $M

2320. (DECIMAL)

4560 GLOBAL
4434 GLOBAL
4442 GLOBAL
4450 GLObAL
4456 GLOBAL
4430 GLOBAL

LNKEXO FROM DSK:LNKEXO.REL[10,131] CREATED BY MACRO ON 24-JUN-74 AT 13:52:00
HIGH SEGMENT STARTS AT 400010 ENDS AT 400017 LENGTH 10 (OCTAL),

sSCNDC FROM DSK:SCAN.REL[10,131]

ZERO LENGTH MODULE

CREATED ON 20-MAY-74 AT Y:09:00

8. (DECIMAL)

t:"t
H
Z
~
I,

0

~

~,
(D
01

RELOCATABLE
RELOCATABLE
RELOCATABLE
RELOCATABLE
RELOCATABLE
RELOCATABLE

PLOT FRUM USK:PLTIO.HEL[10,131) CREATED ON 22-MAY-74 AT 11:39:00 t"t
H HIGH SEGMENT STARTS AT 4!>6424 t:NDS AT 460535 LENGTH 2112 (OCTAL), 10Y8. (DECIMAL) Z
~
I LPTOUT 460321 ENTRY RELOCATABLE NUl-mER 460155 ENTRY R~LOCATABLE

0 PLUT 456471 ENTRY RJ::LOCATABLE PLOT. 456537 ENTRY RE.LOCATABLE
t::l PLUTI 460430 ENTRY RJ::LOCATABLE PLOTS 456425 ENTRY RELOCATABLE X SYMBOL 456661 ENTRY RJ!:LUCATABLE WhERE 4b0147 ENTRY RELUCATABLE ~ XY2CHH 46045t> El'JTHY RELOCATABLE to
CD

************* til

JOBDAT FROM SYS:JOBDAT.RELl1,5j CREATED BY MACRU ON 26-DEC-73 A1 9:37:00

ZEHO LENGTH MODULE

INDEX TU LINK-to SYMBOL MAP Of' LINK VERSIUN 2(210) PAGE 17

0'\ NAl-'iE PAGE l'4AME PAGJ:: NAME PAGE NAME PAGE I
~

ALUG 15 IFX.O 14 LNKNEW 9 SIN. 1b
ALOG. 15 INT 14 LNKoLD 9 SIND It>
ALUG10 15 JOBDAT 16 LNKOV1 5 UOOT 1
coS 15 LINE 16 LNKOV2 11 SSCNDC 1
COSD 15 LINK 4 LNKOVS 11 .CN1'Dl' j
EXP 14 LNK005 12 LNKPLT 12 .GTPUT 3
EXP. 15 LNKCOR 10 LNKPRM 12 .HELP£{ 4
EXP2 14 LNKCST 10 LNKSCN 5 .SAVE 4
FLOAT 13 LNKEXO 1 LNKWLD b .SCAN 1
FLUAT. 13 LNK(o'40 9 LNKXIT 12 .STUPS 3
.£o"LT.O 14 LNKFIU "I PLOT 16 .'fNEWL 3
FLT.14 14 LNKHSH 8 PLTGLB 13 .TOUTS 3
FORMSC 13 LNKLOD 7 PLTO •• 12 .TSUBS 1:l
II'" IX 13 LNKLOG 11 PLTUTL 13 .VERBO :l
Il'" Ix. 14 L~KMAP 11 SIN 1!>

[END Of LINK-l0 MAP Of LINK]

LINK-10 F,:xamples

Example 5 Loading the Monitor

The Command File

INOINITIAL ILOGLEVEL:l IHASH:6000 RI6HO/SAVE ,R16HO/MAP =
ILOCALS IMAXCOR:45K COMMUN.RLl,COMD~V.RLI,COMMOD.HLl
,TOPll0/SEARCH IPATCHSIZE:200 IGO

The Log File

[,INK-10 LOG file 25-Jun-74
9:20::'.3 1 1 LIM LINK-lO initialization
9:20::'.4 1 1 SNL Scanning new command line
9:20::'.7 1 1 LDS LOAD segment
9:20::'.7 4 1 EXP Expanding low segment to 13P
9:20:~n 1 1 MOY Moving low segment to expand area DY
9:20::'.8 6 1 LMN [,oading module COMMON
9:20::'.8 4 1 f<:XP Expanding low segment to 17p
9:20:/.8 1 1 ~lOY Moving low segment to expand area I.,C
9:20:"8 1 1 MOY ~'ov ing low segment to expand area LC
9:20:/.8 4 1 EXP Expanding low segment to 29P
9:20::'.8 4 1 F~XP Expanding low segment to 33P
9:20::'.8 1 1 MOY Moving low segment to expand area LC
9:20:/.9 4 1 EXP fo.:xpanding lOW segment to 37P
9:20:"9 1 1 I~OY rv10ving low segment to expand area LC
9:20::'.9 1 1 MOY r'10v Ing low segment to expand area LC
9:20:~O 4 1 EXP Expanding low segment to 41p
9:20:~O 1 1 MOY MoVing low segment to expand area LS
9:20:~O 4 1 EXP Expan d1ng low segment to 45p
9:20:~O 1 1 MOY Hoving low segment to expand area [,S
9:20:~1 4 1 EXP Expanding low segment to 49P
9:20:~1 1 1 MOY Hoving low segment to expand area LS
9:20:~2 4 1 EXP Expanding low segment to 53P
9:20:~2 1 1 MaV MOving low segment to expand area LS
9: 20: .~ 2 4 1 EXP Expanding low segment to 57p
9:20:.~2 1 1 MOY Moving low segment to expand area [,S
9:20:~3 4 1 EXP Expandinq low segment to 61P
9:20:~3 1 1 May ~10V in9 low segment to expand area LS
9:20:~4 4 1 f.XP Expanding low segment to 65P
9:20:]4 1 1 May Moving low segment to expand area LS
9:20:~5 6 1 Lr4N Load1ng module COMDEV
9:20:~5 1 1 MOY Moving low segment to expand area LC
9:20:]5 1 1 ~10Y Hoving low segment to expand area LC
9:20:~5 4 1 EXP Expanding low segment to 69p
9:20:]5 1 1 r·1QV Hoving low segment to expand area LS
9:20:~6 4 1 EXP Expanding low segment to 73p
9:20:~6 1 1 HOV Moving low segment to expand area IJS
9:20:~8 6 1 Lf;lN LoadIng module COMNOO
9:20:~8 4 1 EXP Expanding lOW segment to 77p
9:20:~8 1 1 r~ov Moving low seqrnent to expand area LC
9:20:~8 1 1 !10V r~ov Ing low segment to expand area LC

6-8

LINK-lO Examples

9:21:~4 1 1 i-10V f.lov Ing loW segment to expand area [,5
9:21:~4 1 1 :~OV I'lov Ing lo'~ segment to expand area 1,S
9:21:~4 1 1 r~ov ~oving low segment to expand area GS
9: 21 : .~ 4 1 1 i-10V Hoving low segment to expand area LS
9:21:~4 1 1 MOV f.lOV 1 nq low segment to expand area LS
9:21:.l4 1 1 MOV l·jOV ing low segrnent to expand area LS
9:21:]4 1 1 ~10 V MOVing low segment to expand area LS
9;21:l5 1 1 /·1QV t~ov Ing low segment to expand area LS
9:21:::l5 1 1 MOY MOving low segment to expand area LS
9:21:.lS 6 t LMN Loading module SYSCHK
9:21:~5 1 1 MaY Moving low segment to expand area L5
9:21:]5 1 1 MOV r-10V ing low segment to expand area LC
9:21:~5 1 1 MOV MoVing low segment to expand area LC
9:21:~5 1 1 MOY HOVing low segment to expand area LC
9: 21 : .~ 5 1 1 MOV Hoving low segment to expand area LC
9:21:~!:> 1 1 MOV Moving low segment to expand area LC
9:21:l5 1 1 fvWV MoVing low segment to expand area LS
9:21:.l5 1 1 MOV ,~ov i ng low segment to expand area LS
9:21:.l5 1 1 ~1OV Moving low segment to expand area LS
9:21:.~5 1 1 ''''0 V l·lOV in9 low segment to expand area I.,S
9:21:l5 1 1 '>10 V Novlng low segment to expand area LS
9:21:.~6 1 1 t·1OV Moving low segment to expand area LS
9:21:~6 1 1 MOV MOVing low segment to expand area LS
9:21:~o 1 1 MOV HoVing low segment to expand area f'X
9:21:.l6 6 1 LMN Loading module ONCMOD
9;21:l6 1 1 MOV HOVing lo'~ segment to expand area LC
9 : 21 : :~ 6 1 1 HOV 1,10 V Ing low segment to expand area LC
9:21:~6 1 1 MOV Hovinq low segment to expand area LC
9:21:~6 1 1 tl:OV ~"oving low segment to expand area LC
9:21 :~7 1 1 fYl0V Moving 10''''' segment to expand area LC
9:21:.17 1 1 MOV MOVing low segment to expand area LC
9:21:~7 1 1 ~tOv tv~ov inq low segment to expand area LC
9:21:.l7 1 1 MOV MoVinq low segment to expand area LC
9:21:.17 1 1 MOV t'lov ing low segment to expand area 1,5
9:21:~7 1 1 HOV Moving low segment to expand area LS
9:21::~7 1 1 MOV Moving low seqment to expand area LS
9:21:.l7 1 1 1'10 V Moving low seqment to expand area LS
9:21:.l7 1 1 t'10V Moving low seqment to expand area GS
9:21:.l8 1 1 MOV MOving low seqment to expand area 1,5
9:21:1B 1 1 MUY l~ov ing low se<.lment to expand area GS
9;21:l8 6 1 LMN Loading module RE:FSTR
9:21:l9 6 1 LMN Loadinq module ONCE
9:21:46 1 1 fCF' final core flxups
9:21:56 1 1 MPS [.lAP segment
9:21:57 1 1 I-\()V i·lOV lng low segment to expand area LS
9:22:l0 1 1 Et1S End of t-IAP segment
9:22:.l8 1 1 ~:XS EXIT segment
9:22:]8 1 1 SST Sorting symbol table
9:22:47 1 1 STC symbol table completed
9:22:48 1 1 CSF Creating SAY tile
9:23:16 1 1 FIN IJ INK -10 finished

[LNKELF END 01" LOG FJL~~]

6-9

0'\
I
~
a

LINK-I0 symbol map of RI680 version 507(10671) page 1
Produced by LINK-I0 version 2~205) on 25-Jun-74 at 9:21:57

LOw segment starts at 0 ends at 157160 length 157161 = 112P
399 words free In LOW segment
4984 Global symbols loaded, therefore mIn. hash size Is 5538
Start address Is 11244, located in program COMMON

COMMON from DSKICOMMON.RLI[10,1311 created on 17-Jun-74 at 15:14:00
Low segment starts at' 140 ends at 14474 length 14335 (octal), 6365. (decImal)

ONCMOD

A
AOOCLH
AOODLN
AOOMVN
AOOVER
AI070S
ADRPT1
ADRPT3
ALLJSP
APOBCK
APOCHN
APOJEN
APOPDP
APORST
APOSAV
APR1SN
APRSTS
ASSCON
AUAVAL
AUUSER
AVTBMQ
BATMIN

S •• ERD
S,.ERS
S"IDC
S. ,NMC
S. ,NR4

o
o

77
507

50677
o

11734
11740
11526
13437

3
12453
12512

323733
12433

o
11266

400000
14210
14224
14204
10267~

Global
Global
GlObal
Global
Global
Global
Global
Global
Global
Global
Global
GlObal
Global
GlObal
GlObal
Global
Global
Global
Global
Global
Global
Global

LINK-10 symbol map of

143170
143232
144645
143745
145026

Global
Global
Global
Global
Global

Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute

Suppressed
Suppressed
Suppressed
suppressed
suppressed
suppressed

suppressed

suppressed
Suppressed
Suppressed
suppressed
suppressed
suppressed

suppressed

suppressed

AO,NOC
AOOCVN
AOOMCO
AOOSVN
AOOWHO
ABSTAB
ADRPT2
AL
ANYRUN
APOCHL
APOINT
APONUL
APORET.
APOSAC
APROSN
APRSN
ARFLAG
ASSPRG
AUQ
AVALTB
BATMAX
BATNUM

RI680 version 507(10671)

Relocatable Suppressed
Relocatable Suppressed
Relocatable suppressed
Relocatable suppressed
Relocatable Suppressed

S •• ERM
S .. EWR
S .. JDJ
S .. NNU
S, .NRS

77000
o

10671
6
o

410
11136

1
11524
12431
13433

123733
12446
12472

1002
1002

11506
200000

4
14210
10266
10272

page 51

144406
143162
147104
143253
143240

Global
Global
GlObal
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
GlObal
Global
Global
Global
Global
Global
Global
Global
Global

Global
Global
Global
Global
Global

Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute

t"f
H
Z
~
I
~
o

t:J
X

~
~
CD
en

Suppressed
Suppressed
suppressed
suppressed
suppressed

suppressed
suppressed
suppressed

suppressed
Suppressed
Suppressed
suppressed
Suppressed

suppressed
Suppressed

Relocatable suppressed
Relocatable suppressed
Relocatable Suppressed
Relocatable Suppressed
Relocatable Suppressed

S •• UIF 146745 Global Relocatable Suppressed SCONMS 147604 GlObal Relocatable t"1
H SETKON 142745 Global Relocatable SHRTGO 142742 Global Relocatable Z

SHRTID 142657 Global Relocatable SHRTPM 142645 Global Relocatable ~
I SHRTRF 142643 Global Relocatable SHRTST 142611 Global Relocatable

SHUTUP 143204 Global Relocatable SOPOUT 147572 Global Relocatable 0

SPUNAM 147566 Global Relocatable SVMOUT 147624 Global Relocatable tlj
.SVOSET 147555 Global Relocatable TEST22 143665 Global Relocatable X
VONCMD 627 Global Absolute Suppressed WRTRUN 150103 Global Relocatable ~

to
*************

CD
til

REFSTR from DSK:TOPII0.REL[10,~311 created on 17-Jun-74 at 16:30:00
Low segment starts at 152075 ends at 154220 length 2i24 (octal), 1108. (decimal)

CHKBIT 153175 Global Relocatable RBIUN 11 Global Absolute Suppressed
RBLUN 5 Global Absolute Suppressed REFSTR 152075 Entry Relocatable
S •• CAS 153655 Global Relocatable Suppressed S .. CIO 154026 Global Relocatable suppressed
S .. ERB 153126 Global Relocatable Suppressed S •• ERH 152126 Global Relocatable Suppressed
S •• ERP 153671 Global Relocatable suppressed S .. EWB 154034 Global Relocatable suppressed
S .. EWH 153070 Global Relocatable suppressed S •• HSE 153037 Global Relocatable suppressed
S .. NMU 152506 Global Relocatable Suppressed S •• NSR 153511 Global Relocatable Suppressed
S •• NSS 152307 Global Relocatable Suppressed S •• TMR 153662 Global Relocatable Suppressed
S •• ZSC 152133 Global Relocatable Suppressed SCNSAT 153133 Global Relocatable

0"\ VREFST 71 Global Absolute suppressed
I

t-'
t-' *************

Index to LINK-10 symbol map of RI680 vers10n 507(10671) page 52

Name Page Name Page Name Page Name Page

CORSRX 32 DTASRN 37 LPTSER 40 REFSTR 51
CLOCKl 32 EODT 50 METCON 40 REMDLX 42
COMCON 34 EJBDAT 28 MSGSER 40 RTTRP 43
COMDEV 16 ERRCON 37 MTXSER 41 SCHEDl 43
COMMOD 19 FHXKON 32 ONCE 51 SCNSER 44
COMMON 1 FILFND 28 ONCMOD 50 SEGCON 46
COREl 35 FILIO 29 PATCH 49 SWPSER 47
D76INT 37 FILUUO 30 PLTSER 41 SYSCHK 50
OATMAN 36 FSXKON 32 PSISER 41 SYSINI 49
DLOINT 36 IPCSER 38 PTPSER 42 TMPUUO 47
DL1INT 37 KILOCK 39 PTRSER 42 UUOCON 47
DPXKON 31 KISER 39 PTYSER 42

[End of LINK-I0 map of RI680)

LINK-10 Examples

Example 6 Using the Overlay Capability

The user has the following overlay structure:

One command file to build the above structure is:

TEST/OV8RLAY,LPT:/MAP= MAIN/LINK
S p r~ X P I LIN K

SPEX2/L:{NK
If·) orH~ : -1 S P E X 31 LIN K
INODE:-1 SPEX4/LINK

INODE:-2 DPEXP/LINK
DP~X2/LINJ<
INODE:-1 DPEX3/LINK
INODE:-l DPEX4/LINK

INODE:-2 TRIG/LINK
SIND2/LrNK
INODE:-1 SIND3/GO

The user then loads and executes his program.

,R LINK

EXIT

.RU TE~T
INPUT SINGLE PRECISION NUMBER X=2.0
X= 2.nooooo X**2= 4.000000
X= 2,nooooo X**3= ij.OOOOOO
X= 2.000000 X**4= 16.00000
INPUT nOUBLE PRECISION NUMBER"Y=3.0
y= 0.~OUOOOOOOOOOOOOOOOD+01 Y**2=
y= 0.100000000000000000D+01 Y**3=
y= O.~OOOOOOOOOOOOOOOOOD+Ol Y**4=
INPUT ANGLE IN DEGR~ES T=30,O
SIN (30.00000) = 0.5000000
SIN (2* 30.00000) = 0.~6bO~54
SIN (3* 30.00000) = 1.000000

ENj) OF l::XECUTION
CPU TIME: 0.32 ELAPSED TIME: ~7.90
EXIT

6-12

0.900000000000000000D+Ol
0.270000000000000000D+02
CJ.81000000000Q OOOOOOD+02

0\
I

w

Below is a partial map file of the program

L :£ t; K - 1 () S yIn b 0 1 IT a p 0 f 1·\ A I t. P a q Po I
Produced ty LJ~K-I0 Version 2(210) on 2b-Jun-14 at 10:03:37

Overlay no. () name ROOT
LOW segment starts at 0 ends at 3650 length 3651 = 2K
control Block address 1s 3621, length 30 (octal), 24. (decimal)
87 words tree in LOw segment
76 Global symbols loaded, therefore min. hash size is 85
Start address js 115, located In program MAIN.

JOBDAT- I r·; 1 T I A11-S Y r'IBIJLS

MAIN.

OVRIIAY

Zero length module

ffom DSK:MA[N.REL[10,131J
IJ 0 'W S e 9 men t s tar t sat
High segment starts at

created bY FORTRAN-IO IKIIO on 25-Jun-74 at 9:37:00
110 ends at 174 length ~5 (octal), 29. (deClmal)
17S endS at 323 length 127 (octal), 87. (deCimal)

rORQT% 400010

from SYS:OVRLAY.RELrl,5J
LOw segment stArts dt
High segment stArts at

GETOV. 1301
I..OGOV. 2064
RUNDV. 1342
• OV faJO 2777
.OVHv-iA 2776

Glooal Absolute

created bY MACRO on 24-JUn-74 at 1:25:00
2771 ends at 3533 length 543 (octall,

324 endS at 2737 length 2414 toctal),

EntrY Relocatable INlOV.
(:;ntry Relocatable RENCW.
r:ntry Helocatable .OVRLA
Global Relocatable .OVRLU
Global Relocatable

3:'5. (decimal)
1292. (deClmal)

1267 Entry
1320 Entry
2772 Entry
1641 Entry

1:"1
H
Z
~
I

I-'
o

tzj
~

~
I-'
CD
Ol

Relocatable
Relocatable
Relocatable
Relocatable

************* t"'
fORINI from SYS:rORLIB.REL[1,5J created on 25-Jun-74 at to:51:00 ~

I
1.oW segment starts at 3534 ends at 3605 lenqth 52 (octal), 42. ~decim?l)

0

ALCHN. 400034 Global Absolute ALCUR. 400032 Global Absolute t:tJ
X

CLOSE. 400013 Global Absolute DEC" 400022 Global Absolute ~
DECHN" 400035 Global Absolute DECOR. 400033 Global Absolute tcS

f=:NC" 400021 Global Absolute F:XIT. 400031 Global Absolute ~
FIN. 400026 Global Absolute fIND" 400030 Global Absolute til

rOR£-:R. 3574 Global Relocatable FUNCT. 400037 Global Absolute
l~. 400015 Global Absolute 10LST. 400025 Global Absolute
r·1TOP. 400027 Global Absolute NLI. 400023 Global Absolute
NI,D. 400024 Global Absolute OPEN. 400012 Global Absolute
OUT. 400016 GlObal Absolute RELE;A. 400014 GlObal Absolute
RES£<:T. 3534 EntrY Relocatable RTB. 400017 GlObal Absolute
TRACE, 400036 GlObal Absolute WTS, 400020 Global Absolute

0\
I index to overlay numbers of MAIN page 15
~

overlay Page overlay Page overlay Paqe overlay Page

#0 3 #3 b #6 ~ #9 12
1 4 #4 7 #7 10 #10 13
#2 5 #5 8 #8 11 #11 14

index to overlay names of MAI~

:·Jr.\me Paqe

ROOT 3

[End ot LINK-iO map ot ;"A IN)

LINK-IO Examples

Suppose the user removes subroutine SPEX4 from his overlay structure:

I L I (J V t~ R J.J A Y , IJ P T : I t~ .0. P = l'~ A I f\J I T I II INK
SPEXP/LINK

Sp£X2/LINK
INODE:-l SPEX3/LINK

INODE:-2 DPEXP/LINK
Dp£X2/LINK
INOD£:-l DPEX3/LINK
INODE:-l DP~X4/LINK

INODE:-! rRrG/LINK
SIN () 2 I L ! r~ K
IRESET:-l SItJD3/GO

He now loads and runs his program.

"R LINK

.jt·rarEST

The user removed SPEX4.

%JdH~USC UNDEF I NF~D SUB ROUT r NE SPEX4 IN LIN K ~JU I-1RER 1
LINK-10 notifies the user that the subroutine is missing.

F.XIT

.RU TEST

INPUT SINGLE PRECIsION NUMBER X=1.0
X= 1.000000 X**2= 1,,000000
X= 1.000000 X**3= 1.000000
%nVLUSC UNDEFINED SUBROUTINE SPEX4 CALLED fROM 017516

INPUT DOUBLE PRECISION NUMHER
y= 0.20000000000000000+Ul
y= 0.20000000000000000+U1
y= 0.20000000000000000+01
INPUT ANGLE IN DEGREES T=30.0

Y=2.0
Y**2=
y**3=
Y**4=

SJN (30.00000) = 0.5UOOOOO
SJN (2* 30.00000) = 0.86660254
SlN (3* 30.00000) = 1.000000

END OF EXECUTTON
CPU TIN f:: O.!> 4 E LAp S E [) T H1 E: 1: 3 0 • 5 .,
EXIT

6-15

0.40000000000000000+01
0.80000000000000000+01
0.16000000000000000+02

LINK-lO Examples

Example 7 Obtaining a Diagram of an Overlay Structure

The following command file produces on the line printer a line drawing
of the overlay structure in Example 6. Plotter output can be obtained
by substituting device PLT: for device LPT: in the first line of the
command file.

TEST/OV~RLAY,TEST/MAP,LpT:fEST/PLOT = MAIN/LI~K

IGO

SPEXP/LINK:SP~Xp

SP~X2/LINK:SP~X~
INODE:-l SPEX3/LINK:SPEX3'
INODE:-l sPEx4/LfNK:SPEX4

INODE: -2 J)PEXP/ll!NK: DPEXP
DPEX2/LINK:DP~Xi

INOUE:-1 DP~X3/LINK:DPEX3
I ~J 0 DE: - 1 [) P E X 4 I LIN K : 0 P E X 4'

INODE:-2 TRIG/LINK:TRIG
SIND2/LINK:SIND2
INODE:-l SIND3/LINK:SIND3

Both the plotter and line printer drawings are shown below.

SPEXP

2 3

SPEX2 SPEX3

4

SPEX4

6

DPEX2

ROOT

5

DPEXP

7 8 10

DPEX3 DPEX4 SIND2

6-16

9

TRIG

11

SIND3

LINK-1O Examples
• •• • •• • • * • • • • • • • • II It II II • "'. • Q* • • • • • • • • z. • • • P4 I-f'. • • • .-4 CIl. • • * • •• • •• • • II II II II II • .. II II

It • l!).
II • •••••• • II • 0::. • • II • 0\

[-4. • • " • • • • II • • • • •• • • • If • • II II II II It • N·.
II • o.
II • z.
" • 0 ~.
II • P4 . CIl. ... • • • • • • • II

" II
n • • • • • • • II • • " • • II • • II • •
" • • II II II II II • ~ • " • x • II • tal • tI • a. •
" • co o.
" ••• • • •• II

" II
II • • • :$ • :$ • • • • • • • • II • • • • " • • • • " • • • • II • • • • II • • • • " II II II II • o.fI II II II II II " • '" • II -. x. • x. • • • • • • • II • tal. • tal. • • II • a.. • a.. • • II • \I') o. • ,... o. • • " • • • • • • • • • •• ••• • • II • II II • [-4.

• o. • • • • • • • • o. • • • 0 0::. • • • • • • • • • • • •• • • • • II II II /I • N • • X • • tal • • a.. • \0 o. • • • • • ••
t
II • • • • • • • II • • It • • II • • II • • II • • \I It II II II II • .". • II It • X • \I It • tal • II It • a. • II II • .". CIl •

" II • • •• ••• II II
II
II
II • • •• •• • • • • • •• • II • • • • It • • • • II • • * • It • • • • It • • • • It II II II II • o.u

" 11
It II II II • rt'I • • ><. • x. • tal. • tal.

* a.. • a.. • Ill. • '" Ill. • • • • • • • • • * • • ••
• • • • • • •
* • • • • • • • • • It II II II • N * • ><. • tal.

* a..
* N III • • • • • • • *

6-17

APPENDIX A

LINK ITEM TYPES

Input to LINK-IO is in the form of relocatable binary (.REL) files.
Each .REL file is composed of link items of varying lengths. Each
link item contains a specific type of information for LINK-IO. The
first word of these items is a header word containing, in the left
half, an octal code for the item type and, in the right half, usually
the number of words in the item. For item types 0-37, the count of
words does not include overhead words (i.e., relocation words); for
item types 1000-1777, the count does include these words. The format
of the remaining words depends upon the individual link item. The
link items are as follows:

Link Item Type

0-37

40-77

100-377

400

401

402-777

1000-1777

2000-3777

4000-777777

A.l LINK ITEM TYPES 0-37

Use

Reserved for DEC

Reserved for customers

Reserved for DEC

FORTRAN-IV (F40) marker block

FORTRAN-IV (F40) with FORDDT information

Reserved for customers

Reserved for DEC (not used in the ---first
release of LINK-lO)

Rese~ed for customers

Reserved to avoid conflict with ASCII
text

Link items in this range are the LOADER program block types a'nd all
have an identical format. The first word of the item, the header
word, contains the item type in the left half and the count of data

.A-l

LINK-IO Item Types

words in the right half. Following the header word is a relocation
word containing up to 18 2-bit bytes which specify the relocation bits
for the 18 words or less that follow. The relocation bits are
left-justified and have the following meanings:

Byte Value

o
1
2
3

Meaning

Do not relocate
Relocate right half of word
Relocate left half of word
Relocate both halves of word

Following the relocation word are up to 18 words of the item. If
there are more than 18 words in the item, there is another word of
relocation bytes for the next 18 words. The relocation words are not
included in the count of data words appearing in the left half of the
header word. Thus, an item with a word count of 23 decimal would be
as follows:

link item t~pe code , , 23
18 relocation bytes ~

word 1
_word 2

word 18~
word l7TI I

18 words

5 relocation bytes

5 words

A.l.l Link Item Type 0

This item type is ignored by LINK-10 and
store information not required by it.
this item type.

A.l.2 Link Item Type 1 CODE

therefore can be used to
Totally null words look like

This item type contains code and data. The first data word specifies
the beginning address into which the item is to be loaded. The
remaining words of the item are loaded into contiguous locations
starting at that address. All words, including the load address, are
relocated as specified by the relocation bytes.

If bit 0 of the first data word is 1, the word is assumed to be a
Radix-50 symbol. The load address is then the value of this symbol
plus the next word. Thus, in this case, there is one less actual data
word than is indicated by the count in the header word.

A-2

LINK-IO Item Types

A.l.3 Link Item Type 2 SYMBOLS

This item type consists of symbols, with each symbol occupying two
words. The first word of each symbol contains 4 bits of code (bits
0-3) and 32 bits of the Radix-50 representation of the symbol (bits
4-35). Unless stated otherwise, the second word is the value of the
symbol.

The code bits are as follows:

00 This symbol is a program name. It is entered into the
symbol table by a link item type 6, not a item type 2. The
right half of the second word contains the relocation
constant for the program, and the left half contains the
number of words of symbol table space used by that program.
However, for the last program loaded, the left half of this
word is zero. (This code should never happen.)

04 This symbol is a global definition. Its value is available
to other programs. Two global symbols with the same name
but different values cause an error message.

10 This symbol is a local symbol and is not loaded unless the
user requests the loading of local symbols. Local symbols
of the same name can occur in different modules without
causng an error, even though the values may be different.

14 This symbol is a block name and is used by translators that
are block structured. The second word is the block level
and is placed in the symbol table with no additional
processing. This symbol is not loaded unless the user
requests loading of local symbols.

24 This symbol is a global symbol which will have the right
half of its value fixed up to satisfy a global request
symbol.

44 (l)Same as code 04, with the addition that the global symbol
is suppressed to DDT typeout, or
(2) This symbol is a global symbol which will have the left
half of its value fixed up to satisfy a global request
symbol.

50 Same as code 10, with the addition that the local symbol is
suppressed to DDT typeout.

60 This symbol is a global request.

If bit 0 of the second word in the pair is 0, then bits
18-35 contain the address of the first word 1n a chain of
requests for the global. In each request, the right half of
the second word contains the address of the next request.
The chain is terminated when the right half of the second
word contains zero.

If bit 0 of the second word in the pair is 1, the request
involves additive global processing. When bit 2 of this
word is 0, bits 18-35 contain an address of a word of code.
The right half of the value of the symbol requested is added
to the left or right half of this word of code according to

A-3

LINK-10 Item Types

the following rule:
If bit 1 of the second word in the pair is 1, the add
is to the left half.
If bit 1 of the second word is 0, the add is to the
right half.

The result is stored back into the word of code. (Note that
there is no full word add; that result must be accomplished
by a left and a right add.)

When bit 2 of the second word is 1, bits 3-35 contain the
Radix-50 representation of a second symbol, whose value
depends upon the global being requested. The second symbol
must be the last symbol defined before the global request or
else it will be treated as a local symbol and no action will
occur, unless local symbols are being loaded. When the
value of the requested global is determined, it is added to
the right half of the value of the second symbol if bit 1 of
the second word is 0, or to the left half if bit 1 is 1.
Since the actual value of the symbol is not determined until
the definition of the global upon which it depends, the code
bits of the symbol indicate that the value of the symbol
will change and cannot be used to satisfy bepudcps until the
symbol is fully defined.

64 (1) This symbol is a global symbol which will have both the
left and right halves of its value fixed up to satisfy a
global request symbol, or
(2) Same as code 24, with the addition that the global
symbol is suppressed to DDT txpanut.

Symbols are placed into the symbol table in the order in which they
are seen by LINK-10. However, DDT expects to see them in the following
order. For nOnblock-structured programs, the order is:

program name

global and local
symbols for that

program

higher core location

lower core location

For a block-structured program setup as

Begin bl (same as program name)

[begin b2
end b2

~
begin b3

[begin b4
end b4

end b3
End bl

A-4

LINK-IO Item Types

the order is:

A.l.4 Link Item Type 3 HISEG

This item type indicates to LINK-IO that code is to be loaded into the
high segment. This item type has either one or two data words. The
right half of the first data word is the initial address in the high
segment (usually 400000). When the left half of the data word is zero,
subsequent CODE items are assumed to have been produced by the HISEG
pseudo-op in MACRO-IO. This means that the addresses are relative to
zero but are to be placed into the high segment. When the left half
of the first data word is negative (i.e., greater than the right half)
, subsequent CODE items have been generated by t~e TWOSEG pseudo-op in
MACRO-IO. This requires that addresses greater than the right half be
placed into the high segment and addresses less than the right half be
placed into the low segment. The left half is interpreted as the high
segment break (i.e., the first free location after the high segment)
with the maximum length of the high segment being the difference
between the left and right halves of the word. One-pass translators
that cannot determine the high segment break should set the left half
of the data word equal to the right half.

If there is a second data word (e.g., as in FORTRAN-lO), the right
half of this word is the low segment origin (usually 0) and the left
half is the low segment program break.

A.l.5 Link Item Type 4 ENTRY

This item type is the entry item and must be the first item in a .REL
file if the .REL file is to be loaded in a library search. It
consists of a list of Radix-50 symbols which are sepc3.ra't:ed every 18
words by a relocation word of zeroes. When LINK-IO is in library
search mode, each global symbol in the list is checked against the
undefined global requests for the load. If one or more matches occur,
the following module is loaded. If a match does not occur, the module
is ignored. If LINK-IO is not in library search mode, this checking
of undefined global requests is not performed.

The entry items are stored. If the module is not loaded, these items
are ignored. If the module is loaded, the entry items are scanned
again and the entry point bit is turned on for the corresponding
symbol in the symbol table.

A-5

LINK-10 Item Types

A.l.6 LINK Item Type 5 END

This item type is the end item and is the last link item in the .REL
file. It contains two words whose meanings depend on whether the file
contains two segments or one. If the file has two segments, the first
word is the high segment break and the second word is the low segment
break. If the file has only one segment, the first word is the first
free location above the program (this word is relocatable) and the
second word is the highest absolute address seen, if higher than
location 137.

A.l.7 Link Item Type 6 NAME

This item is the name item and must appear before any type 2 link item
(SYMBOL), The item has one or two data words. The first word is the
program name in Radix-50 symbol format. The second word, if it
appears, contains in bits 6-17 a code for the translator that produced
the binary file, and in the right half the length of blank COMMON.
(FORTRAN programs use both named and blank COMMON. COBOL uses blank

COMMON to indicate the length of LIBOL's static area. Thus, the
length has meaning for FORTRAN and COBOL programs.) The octal codes
(bits 6-17) for the various translators are as follows:

octal
Code

o
1
2
3
4
5
6
7
10
11
12

Translator

UNKNONN
F40
COBOL
ALGOL-60
NELIAC
PL/l
BLISS-10
SAIL
FORTRAN-10
MACRO
FAIL

Bits 0-5 of the second word indicate the processor on which the
program will execute. If the value of these bits is 0, the program
will execute on either processor, if the value is 1, the program will
execute only on the KA10 processor, and if the value is 2, the
program will execute only on the KIlO processor. Remaining values are
reserved for the future.

A.l.8 Link Item Type 7 START ADDRESS

This item type contains in the right half of the data word the address
at which execution of the program is to begin. The start address for
a relocatable program may be relocated by means of the relocation
bits. The last link item of this type encountered by LINK-10 is the
one used, unless LINK-10 is ignoring start addresses (indicated by the
user via switches). If the program is not to specify a start address,
no item of this type should be included.

A-6

LINK-10 Item Types

A.l.9 Link Item Type 10 INTERNAL REQUEST

This item type is provided for one-pass language translators when
internal symbols are used before they are defined. The item type
consists of a series of data words where each word represents one
request. Each data word has a value in the right half and a pointer
to the last request in the chain of requests for that value in the
left half. Each quantity may be relocatable. The symbols are chained
in a manner similar to the global requests which have bit 0 in the
second word of each pair equal to zero (i.e., the value is substituted
in the right half of each location in the chain). However, if a data
word is -1, then the next data word indicates a chained request to the
left half of the word specified rather than the right half.

A.l.10 Link Item Type 11 POLISH

This item type is provided for Polish fixups involving arithmetic and
logical operations on relocatable or externally-defined quantities.
Each item contains only one Polish string. The data words in each
item are a series of half-words consisting of operators and operands
followed by store operators and store addresses. The operators and
operands are as follows:

o
1
2

3
4
5
6
7

10
11
12
13
14

The next half word is an operand.
The next two half-words form a 36-bit operand.
The next two half-words form a ~dix-50 symbol which is
a global request. The operand is the value of the
global.
Add.
Subtract.
Multiply.
Divide.
Logical AND.
Logical OR.
Left shift.
Logical XOR.
One's complement (not).
Two's complement (negative).

The store operators are as follows:

18 bit value

-1
-2
-3

Right half chained fixup (777777).
Left half chained fixup (777776).
Full word chained fixup (777775). The entire word
pointed to is replaced and the old right half points to
the next full word.

The half word following the store operator is used as the address of
the first element in the chain.

A-7

LINK-lO Item Types

·A.l.ll Link Item Type 12 LINK

Data words in this item type occur in pairs. The first word of the
pair is a link number and the second word is an address. There are 20
(octal) links numbered from 1 to 20. When LINK-lO is initialized, the
value of each link is set to zero. Each time a specific link is seen,
the current value of the link is stored in the address specified by
the second word of the word pair, and the specified address becomes
the new value of the link. If the number of the link seen is
negative, the address is saved as the end of the link • At the end of
loading, the current value for each link is stored in the address
indicated by the end of each link. If the end of the link is 0, no
storing is done.

A.l.12 Link Item Type 13 LVAR

This item type is used in LVAR fixups and is not currently handled by
LINK-IO. It is not supported by DEC and is not needed because the
TWOSEG pseudo-op is superior. The first data word is the location of
a variable area in the low segment. The second data word is the
length of the area needed. The low segment relocation counter is
incremented by the area needed. Data words after the first two data
words occur in pairs. If bit 2 of the first word of the pair is zero,
then the second word contains, in its left half, the address of a
fixup chain, and in the right half, the relative location in the
variable area to use for this fixup. The chaining occurs with the
right half of the words if bit 0 of the first word is 0; otherwise,
chaining occurs with the left half of the words.

If bit 2 of the first word of the pair is one, then the pair is '--used
to make a symbol table fixup. The right half of the first word is the
value of the fixup. The second word is the Radix-50 represeneation
for the symbol.

A.l.13 Link Item Type 14 INDEX

This item ·type is produced by FUDGE2 to identify an index to LINK-lO.
The index is a list of all entry points (Link item type 4) in a
library .REL file with pointers to the beginning of the individual
modules. The index is 200 octal words long and if there are more
entries in the library than will fit in 200 words, other item types 14
are created to contain the remainder of the entries •. Each index is
divided into sub-items of various lengths. The sub-items do not
include the relocation word normally found in entry items of a
library. Each sub-item has a header word with the word count in the
right half and the link item type 4 in the left half. Following this
header is the list of Radix-50 entry symbols. After the list of
entries, there is a pointer to the individual module within the
library file. The right half of the pointer is the block number of
the module, and the left half is the word count within the block for
the start of the module. The last word of the index item type
contains a -1 in the left half to signal the end of the index item and
the block number of the next index item in the right half. If LINK-lO
is not in library search mode, index items are ignored.

A-a

LINK-lO Item Types

A.l.14 Link Item Type 15 ALGOL

This item type is the special ALGOL OWN item. The first data word is
the length of the OWN area to be allocated in the low segment. The
remaining words are chained with the right half of the OWN fixups.

A.l.lS Link Item Type 16 REQUEST LOAD

This item type is produced by the SAIL compiler and is used to request
the loading of programs. Thus, a .REL file can request libraries and
other files to be loaded, thereby keeping the command string to
LINK-lO simple. LINK-lO maintains a table for the names of libraries
to be loaded and another table for the names of standard relocatable
binary files to be loaded. ~~en a new file is requested by link item
type 16 or 17, LINK-lO searches the appropriate table to verify that
the file has not already been specified. If it has not be"en
specified, an entry is made in the appropriate table. After all files
in the LINK-IO command string have been loaded, the files specified in
the two tables are loaded. The relocatable binary files are loaded
first; the libraries are loaded last.

The data words in this link item type appear in triplets.
word contains the filename in SIXBIT (the extension
assumed). The second word is the UFD number in binary, and
word is the SIXBIT name of the device containing the file.

A.l.16 Link Item Type 17 REQUEST LIBRARY

The first
of .REL is
the third

This item type is the same as item type 16 except that the specified
files are loaded only if they are needed to satisfy global requests.
That is, the files are loaded in library search mode. The data words
are identical to those in item type 16.

A.l.17 Link Item Type 20 COMMON ALLOCATION

This item type is used to allocate named COMMON areas. The relocation
word must be present, but the bits should be zero. The data words are
grouped in pairs, where the first word contains the Radix-50 symbol
for the name of the COMMON area and the second word contains the
length of the area required by this program.

This item type causes LINK-lO to search for the specified COMMON area
to determine if it has been previously loaded. If it has, the length
given in this item type must be less than or equal to the length
already allocated. Thus, the first program that defines a CO~~ON area
also defines the maximum size of that COMMON area. No subsequent
program can expand this particular area, although COMMON areas of
different names can be defined.

If the specified COMMON area has not been loaded, the symbol name is
given the current low segment relocation value, and the length of the
area is added to the low segment relocation counter.

A-9

LINK-10 Item Types

A.l.18 Link Item Type 21 SPARSE DATA

This item type is used to load data into arrays when link item type 1
~s inefficient for this purpose. The data words are grouped in
sub-items and each sub-item is treated in the same manner as link item
type 1. The first word of each sub-item contains in the left half a
count of the number of data words in the sub-item, and in the right
half the beginning address into which the data words are to be loaded.
The remaining words of each sub-item are the data words.

If bit 0 of the first word of a sub-item is 1, the first word. is
assumed to be a Radix-50 symbol. The left half of the second word is
the count of data words and the right half contains an offset. The
load address is then the value of the symbol plus the offset.

A.l.19 Link Item Types 22-36

These item types are not yet defined and return an error message if
used.

A.l.20 Link Item Type 37 DEBUG

This item type is used for the debugging symbol table for COB DDT (the
COBOL debugging program). If debugging is requested in local symbol
mode, the data from this item type is loaded in the same manner as the
data from link item type 1. If local symbols are not required, this
item type is ignored.

A.2 Link Item Type 400 FORTRAN (F40)

This item type is output by the old one-pass FORTRAN-IV complier
(F40). It does not contain a word count, relocation words, or data
words. It contains only the one word indicating the item type code.

A.3 Link tern Type 401 FORTRAN (F40)

This item type is similar to link item type 400 and in addition it
indicates that the file contains FORDDT debugging information.

A.4 Link Item Types 1000-1777

Link items in this range do not have identical formats. There is a
general pattern in that the first word of each item contains an item
type number in the left half and a word count in the right half.
However, unlike link item types 0-37, the word count of item types
1000-1777 is a count of all following words including overhead words
(relocation words). The structure of the relocation words depends upon
the link item; there may be any number of relocation bits from 1 to
18 per half or full word. Link items that do not need relocation do
not have relocation words. These item types are not currently used.

A-10

LINK-lO Item Types

A.4.l Link Item Type 1000

This item type is ignored by LINK-lO and thus can be used to store
information not required by it.

A.4.2 Link Item Type 1001 ENTRY

This item type is the simple entry item and consists of a list of
SIXBIT symbols. Each data word contains one left-adjusted symbol
which can be a maximum of six characters in length. There are no
relocation words, thus distinguishing this item type from item type 4.
However, the two item types are used in the same manner.

A.4.3 Link Item Type 1002 LONG ENTRY

This item type contains one extended symbol (i.e., the symbol contains
more than six characters) in SIXBIT, which is tested to determine if
it is required as an entry point. This link item type is used in the
same manner as link item type 1001.

A.4.4 Link Item Type 1003 NAME

This item type contains information about the file and the translator
that produced it. The information in this item is stored in the
symbol table and can be output on a map listing.

The data words occur in triplets. The left half of the first word of
each triplet contains flag bits for that triplet and the right half is
unused. The first triplet of data (the primary triplet) contains the
program name in SIXBIT in the second word. This program name is taken
from the TITLE statement in a MACRO-lO program. If the program name
is longer than six characters, one or more triplets follow containing
the remaining characters of the name. Triplets following the program
name are identified by the flag bits in the first word of each
triplet. The triplet after the name triplets contains the low segment
relocation counter in the second word and the high segment relocation
counter in the third word. The next triplet has, in the second word,
the SIXBIT name of the translator that produced the file and in the
third word, the version number of the translator. This version number
is taken from location 137. The following triplet contains the
compilation date and time obtained from the LOOKUP UUO block in the
second word, and in the third word, a default code for the translator
used, in case LINK-lO could not determine the translator from the
information in the previous triplet. The default translator codes are
listed in Paragraph A.l.7. The next triplet contains in the second
word, the name of the device on which the source file is stored, and
in the third word, the SIXBIT filename of the source file. The
information in the next triplet is the source filename extension in
the second word and the name of the UFO containing the source file in
the third word. The next triplet contains sub-file directory
information. The following triplet contains the version number of the
source file as obtained by the translator that processed the file.
The information in the last triplet is interpreted as ASCII text and
is stored in the format in which it is given.

A-II

LINK-IO Item Types

More than one NAME link item may be seen per module for programs made
from several source files. The program and compiler name triplets
must be the same in the the NAME link items, but the source filename
and any remaining triplets can be different.

A.4.5 Link Item Type 1004 RELOCATION

This item type consists of groups of words (usually pairs) without any
relocation words. The first data word of the item type contains the
total number of relocation groups in the item in order that sufficient
space can be allocated. The first word of each relocation group has a
relocation level in the left half and the count of the number of words
in the relocation counter name in the right half. The remaining words
in each group are the relocation counters. The relocation level is
the position in the table of relocation counters, such that for any
word needing relocation, the value of the relocation byte will receive
the correct constant for addition.

If a relocation counter is not yet defined (or a complex Polish
expression not yet resolved), it must be placed in the undefined
table, and its slot in the relocation tables is marked as undefined.
All code referring to the undefined counter is stored in the fixup
area or on tile disk. In other words, if the location into which code
is to be loaded is not yet defined, all the code under the relocation
counter must be placed in the fixup table or on the disk. Link item
type 1004 can appear anywhere and must be used whenever a new
relocation counter is used. The standard name for the low segment
relocation counter is .LOW. and the standard for the high segment
counter is •• HIGH. These counters normally occupy positions 1 and 2
in the table of relocation counters.

A.4.6 Link Item Type 1005

This item type is undefined and reserved for future definition.

A.4.7 Link Item Type 1006 START

This item type contains the start addresses for the program. It
consists of a relocation word with 4-bit bytes for full word
relocation, followed by the list of re10catable start addresses in
order of their use. These addresses are used or ignored depending on
the switches given by the user. Currently, only one start address per
program is recognized.

A-12

LINK-10 Item Types

A.4.8 Link Item Type 1007 START

This item type is used for additional start addresses or external
symbolic start addresses. The link item is divided into groups of
words for each start address. The first word of each group contains
flag bits in the left half and the count of the number of words in the
group in the right half. Currently, bit 0 is the only flag bit. If
this bit is 1, a Polish expression follows; if it is 0, a symbol
follows. This item type does not include relocation words.

A.4.9 Link Item Types 1010-1017 CODE

The link items in the range 1010-1017 are similar except for the size
of the relocation byte. The most general case uses 18 bits per half
word, but this method consumes too much space for simple programs.
Item type 1010 has a byte size of 2 bits, thereby allowing three
relocation counters and absolute code. Relocation occurs only on the
right half of the word and is positive; the left half is considered
absolute. Since in most programs the code consists of constants in
the left half (op-codes, indexes, ACs) and relocatable addresses or
constants in the right half, this item type should be sufficient for
most programs.

Item type 1011 also has 2-bit bytes but has relocation for the left
half as well as the right half of the word. This item type allows
three relocation counters plus absolute code. Link item type 1011 is
used mainly for table generation.

Item type 1012 allows relocation only for the right half of the word
(similar to item type 1010) but has a byte size of 4 bits, giving
allowances for 15 relocation counters.

Item type 1013 allows relocation for both the left and right halves of
the word (similar to item type 1011) but uses a 4-bit byte size.

Item types 1014-1016 are reserved for future use.

Item type 1017 has 18 bits of relocation per half word.

A.4.l0 Link Item Types 1020-1027 SYMBOL

All symbols are in triplet format. The link items in the range
1020-1027 differ only in the size of the relocation byte. This byte
is the same as the byte size for the corresponding CODE item. For
example, symbol type 1020 and code type 1010 use 2-bit bytes, symbol
type 1022 and code type 1012 use 4-bit bytes, and so forth. The
relocation word applies only to the third word of the triplet (the
symbol value). Thus, for example, in the case of symbol type 1020,
each relocation word is followed by up to 18 triplets rather than 18
words.

A-13

LINK-IO Item Types

A.4.ll Link Item Type 1030 POLISH

This item type is provided for Polish fixups and consists of operators
and operands, including store operators and store operands in
pre-fixup form. Each item contains only one Polish string, but may
contain many different store pointers. Operators are stored one per
half word, and symbols are stored in contiguous half words. Store
pointers are in the form of either an address in a halfword or a byte
pointer in a full word. Associated with store pointers are store
operators that shift the value to the correct field and store
operator. The store operator may also point to a symbol that is to be
stored in the symbol table.

The operators and operands are as follows:

o
1
2

3

4

5
6

7

10-77
100
101
102
103
104
105
106
107
110
III
112
113

The next half word is an operand.
The next two half words form a 36-bit operand.
The next two half words form a 36-bit symbol which is a
global request. The operand is the value of the global.
The next half word is the count of half words in an extended
symbol. The subsequent half words are the symbol.
The next half word is a numeric relocation counter for the
program.
The next two half words are a symbolic relocation counter.
The next half word is a count of the number of half words in
an extended symbolic relocation counter. The following
halfwords are the relocation counter.
The next two half words are a byte pointer to code already
loaded.

'Reserved for future use.
Add
Subtract
Multiply
Divide
Logical AND
Logical OR
Left Shift (LSH)
Logical XOR
One's complement (not)
Two's complement (negate)
Get contents (HOVE)
Reserved for future use

The store operators are as follows:

18 Bit Value

-1
-2
-3
-4

-5

-6

-7

Right half chained fixup (777777).
Left half chained fixup (777776).
Full word chained fixup (777775).
The next two half words are a byte pointer
(777774).
The next two half words are an instruction plus an
address (ANDM,XORM) (777773).
The next two half words are a symbol and the value
is stored in the half words (777772).
The next half word is the count of the number of

A-14

LINK-IO Item Types

half words in an extended symbol. The half words
following are the extended symbol and the value is
stored in these half words (777771).

-10 The next half word is a numeric relocation counter
(777770).

-11 The next two half words are a symbolic relocation
counter (777767).

-12 The next half word is a count of the number of
half words in an extended symbolic relocation
counter. The following half words are the counter
(777766).

-13 Reserved for future use.

The store operators obtain their arguments from a stack; the first
word is usually the value and the second is the memory address.
Addresses can be built using other Polish operators. For chained
fixups, the half word preceding the store operator is used as the
address of the first element in the chain.

A.4.l2 Link Item Type 1031 POLISH

This item type is similar to item type 1030 except that Polish
notation in post-fixup form is used. The operators and operands are
the same.

A.4.l3 Link Item Types 1032-1033

These item types are reserved for future use.

A.4.·l4 Link Item Types 1034-1037 CONDITIONAL

There are three kinds of conditonal loading item types: the Begin
conditional, the End conditional, and the Else conditional. The Begin
conditional has a unique number assigned by the translator which is
matched with the unique number in the End and Else conditionals. It
also contains a conditional operand and operator. The End conditional
cancels the conditional loading, updates the relocation counters, and
generates the next implicit relocation counter, if it is not
explicitly defined by the userTso that following code can be--loaded.
The Else conditional is the inverse of the condition in the Begin
conditional in that code is loaded if the condition is false. The
three kinds of condition items can be nested.

A.4.l4.l The Begin Conditional - Link Item Type 1034 - This item type
has four relocation bits per half word thereby allowing 15 possible
relocation counters. The first data word contains the unique
conditional number. If a number is not specified, zero is assumed and
LINK-10 matches the Begin with the first End or Else conditional at
that level. The second data word contains the conditional operator in
the left half and the conditional operand in the right half. The
remaining words contain the rest of the operand.

A-15

LINK-10 Item Types

The conditional operators are coded as follows:

o null
1 if zero
2 if greater than zero
3 if greater than or equal to zero
4 if less than zero
5 if less than or equal to zero
6 if not equal to zero
7 if defined

10 if not defined
11 if global
12 if local

The operand is either a symbol or a Polish expression. If the operand
cannot be evaluated, the words are stored on the disk. The operands
are:

100 The next two half words contain a SIXBIT symbol.
101 The next half word is a count of the number of

half words in an extended symbol. The following
words contain the SIXBIT symbol.

102 A pre-fixup Polish expression follows (refer to
Paragraph A.4.ll).

103 A post-fixup Polish expression follows (refer to
Paragraph A.4.l2).

If the condition is met, all code up to an End or Else conditional is
loaded. When the condition is not met, the code is not loaded.

A.4.l4.2 The Begin Conditional - Link Item Type 1035 - This item
type is similar to Link Item Type 1034 except that it has half word
relocation per half word.

A.4.l4.3 The Else Conditional - Link Item Type 1036 - This item type
contains no relocation words and has one data word containing a unique
number matching the one in the Begin conditional. If the condition in
the Begin conditional is true, the code in the current Else
conditional to its matching End conditional or to the next matching
Else conditional is ignored. If the condition is not true, the code
is loaded.

A.4.14.4 The End Conditiona1- Link Item Type 1037 - This item type
also has no relocation words. The first data word is a unique number
matching the one in the Begin conditional. If the condition in the
Begin conditional is false and no Else conditional is seen, the End
conditional is ignored. However, if code was loaded, the End
conditional is read. The item type contains one data word for each
relocation counter used in the same order as specified in the last
relocation setting link item. The data words are the highest value of
the relocation counter used in the conditionally-loaded code. These
values are added to the current values, and to the accumulation of
such values, until the final END item type of the REL file.

A-16

LINK-IO Item Types

A.4.lS Link Item Type 1040 END

This link item marks the end of a link module. It does not contain
relocation words but does contain a list of all relocation counters
used and their final values. Any conditional code that was loaded
plus other overhead items, such as the ALGOL item, are added to the
final values. The resulting values are then added to the current
values of the relocation counters to obtain the value for tile next
module. The beginning and ending addresses are stored in the symbol
table in order that DDT has the range of the program and that they can
be output in a map listing.

A.4.l6 Link Item Type 1041 Special FORTRAN-IO Block

This link item defines a call to a special once-only routine that is
to be executed by LINK-IO after all code has been loaded.

A.4.l7 Link Item Type 1042 Program Request

This link item requests the loading of .REL files required for this
program. It is similar to link item type 16; however, there are no
relocation words. This item replaces the need for library searches
and is useful when loading real and dummy routines because it
specifies filenames rather than modules names.

The data appears in groups of four or more words. Each group contains
the following words:

Name of the device in SIXBIT containing the file.

Name of the file in SIXBIT.

Extension of the file in SIXBIT in the left half, and the length
of the directory in the right half.

UFO in octal.

Remaining words in the group are sub-file directory names in SIXBIT.

The requests are stored until the end of loading and are loaded before
the default libraries and requested libraries (link item type 1043).
Any number of files can be requested.

A.4.lS Link Item ~ype 1043 Library Request

This item type requests the searching of libraries, either in search
mode for all unresolved entries or for particular modules. The data
is identical to that in item type 1042.

A-17

LINK-10 Item Types

A.4.l9 Link Item Types 1044-1047

These item types are reserved for future use.

A.4.20 Link Item Type 1050 Global Data

This item type contains data that is common to many programs (i.e.,
constants, argument lists, literals in MARCO-10 language). The global
data item consists of two other link items: the relocation setting
item (type 1004) and a code item (types 1010-1017). The initial global
data item has no relocation words. The first data word is the header
of the relocation item and only the relocation actually used should
appear in this word; all other entires should be zero. The next data
words are the data for the relocation item. Following these data
words is a code item with relocation bits and data which may be
relocatable or absolute. LINK-10 collects all the global data blocks,
compares them, and keeps only one copy of those with the same data and
relocation. The global data items are loaded at the end of loading or
immediately after a /DATA switch is seen. These items should reduce
the size of loaded progr.ams because of pooling of literals.

A.4.2l Link Item Types Greater Than 3777 ASCIZ

This item type is recognized by the first 7-bit byte of the item being
in the range 40 through 172, inclusively (i.e., an ASCIZ character).
There is no word count in the item, and termination of the item occurs
with a null byte. ASCIZ items are generated by translators and
contain ASCIZ corrullands similar to those typed on t.he user's terminal.
ThuH, 1:hey act like an indirect command file. One use of ASCIZ items
is to embed the overlay structure in the file to simplify the
maintenance of large overlay programs. Any switches in ASCIZ items
that are not associated with a file specification are considered part
of the file specification currently being processed. For example, if
the user has the following command line

DSK:CO~lliAN.REL,FrLEA.REL

and embedded in CO~1AN.REL are the ASCIZ items

/LOCAL,SYS:SPEDDT.REL

the user's command line is effectively

DSK: COMMAN • REIJ/LOCAL, SYS : SPEDDT • REL, DSK: FILE. REL

A-IS

APPENDIX B

OVERLAY HANDLER

The routine that determines when overlaying is to occur is the overlay
handler. It initiates overlays during execution of the program if a
module in core references a module that is not in core. (No overlays
occur if the module refers to another module already in core.) It is
responsible for checking forward references to insure that all
required links are in core when needed. The overlay handler resides
on device SYS: as a REL file and is moved into the root link of tile
user's overlay structure when the user gives the /OVERLAY switch.

The overlay handler consists of self-modifying code and data plus two
l28-word buffer areas. One area, IDXBFR, holds a l28-word section of
the link number index table. This allows 256 links to be referenced
directly at any given time. The second area, INBFR, contains the
preamble and relocation tables, if required, of the individual links.

Overlays can be initiated in one of two ways, either explicitly by
calling an overlay handler subroutine \,li th a link name as an argument
or implicitly as the result of a global reference which calls a
subprogram outside the current overlay. The explicit call gives the
user complete control over the core image and allows him to specify
exact paths when an implicit call might prove ambiguous due to the
same subroutine being in different links. However, it does require
explicit calls to be included in the source language program, and
these calls must obey the standard calling sequence (see below). In
particular, the user is responsible both for the calling of the
overlay handler and of the overlay structure. Most programs do not
need to use the explicit call; instead they should let LINK-IO define
all external references by default. Implicit calls-to--links--require
no special calls since LINK-IO generates all those required. However,
this method does require the user to build the overlay structure.

The overlay handler has several entry points,
available to user programs via explicit calls.
use any of the entry points whose first letter is
entry points whose first letter is a period
system. All calls to the- overlay handler must
calling sequence:

MOVEI 16, address of argument list
PUSHJ 17, entry point name

B-1

some of which are
The user program can
not a period. The
are reserved for the
use the following

LINK-10 OVERLAY HANDLER

B.l OVERLAY HANDLER SUBROUTINES

The overlay handler subroutines are called from a FORTRAN program when
the user includes a statement of the form

CALL xxxOVL (argl, arg2, ... , argn)

where xxx are the first three letters of the subroutine.

argl ••• argn are either file specifications or link names.
File specifications are ASCII strings consisting of a
device, file. ext, and directory name. Link names are
either names in ASCII or integer numbers.

The following subroutines are available to the user program.

CALL INIOVL (file specification)

The initialization routine is used to specify the location of the
overlay file if the load time specification is incorrect. The
argument list is:

-1, ,0
code" file specification

CALL GETOVL (namel, name2, ••• , namen)

This subroutine is used to change the core image by inputting the
specified links and their path. It is useful for prefetching an
extended path when the choice may otherwise be ambiguous. Since
the user returns to the next instruction after the calling
instruction, the link called and its path must not overlay the
calling link. Any attempt to do so results in a run time error.
The argument list is

-n" 0
code" namel
code" name2

•

•
code" namen

CALL RUNOVL (name)

This subroutine changes the core image by loading the specified
link into core and transferring control to the start address of
the link. Since a return is not required, any link except the
root link can be overlaid. However, a runtime error occurs if
there is no start address in the specified link. Normally a
start address is in the main program, but FORTRAN main programs
must reside in the root link. To use the RUNOVL subroutine, but
to avoid having a main program in a link other than the root, the
user has two options:

1. He can use FORTRAN subroutines in the links other than
the root and, to specify a start address, give the /START

B-2

LINK-IO OVERLAY HANDLER

switch to LINK-IO with the name of the subroutine as an
argument.

2. He can write small dummy MACRO main programs since MACRO
main programs can appear in links other· than the root.

The argument list is

-I" 0
code" name

CALL REMOVL (namel, narne2, ••• , narnen)

This subroutine removes the specified links from the core image.
This action is essentially the reverse of path loading on the
extended path of the link. The current link cannot be removed.
This subroutine is used to reduce the core image size in order to
obtain better response. The argument list is

-n" 0
code" narnel
code" narne2

code" narnen

CALL LOGOVL (file specification)

This subroutine is used to specify an output log file
specification for runtime messages and to cause LINK-IO to output
them. The format of the messages include the elasped run time
since the first call to the overlay handler. A 0 argument list
closes the log file and turns off the feature to output run time
log file messages. The argument list is

-1" 0
code" file specification

The device code for the user's terminal is TTY.

B.2 OVERLAY HANDLER MESSAGES

The overlay handler messages can be recognized by the first three
letters, OVL, of the six-letter code. (Load time messages have LNK as
the first three letters and are described in Appendix E.) All messages
except log file information are output to the user's terminal.

The column labeled SEVERITY indicates the severity level associatp-d
with each message. The severity level is the point at which LINK-IO
considers a message to be fatal and is controlled by the user with the
/SEVERITY switch. Refer to the /SEVERITY switch in Chapter 4 and to
Appendix E for additional information on severity' levels.

B-3

LINK-lO OVERLAY HANDLER

CODE

ACF

AOC

ARC

ARL

CDL

SEVERITY

%W or
%F

%F

%F

%W

%F

HEANING

ABSOLUTE CORE REQUEST FAILED, FUNCT. RETURN
STATUS (xxx)

Relocation will be required because the link
cannot be loaded at its optimal address. The
error is fatal if the link was loaded with
/OVERLAY:ABSOLUTE; otherwise the error is a
warning message. The status is one of the
following:

2 - CORE ALREADY ALLOCATED
3 - ILLEGAL ARGUMENT TO FUNCT. MODULE

ATTEMPT TO OVERLAY CALLER FROM LINK{NUMBER} {number}
NAME name

The named link attempted to replace the link from
which it was called. Dependent links cannot
overlay each other. The user must redefine his
overlay structure.

ATTEl1PT TO REl-10VE CALLER FROM T .. INK {NUMBER} {number}
NAME name

The named link attempted to remove the link from
which it was called. This message occurs when the
user calls the REMOVL subroutine and the routine
tries to remove the current link.

AMBIGUOUS REQUEST IN LINE [number] FOR [symbol],
USING LINK [number]

Hore than one successor link satisfies a call from
an ancestor link. Since none of the successor
links are in core and all their paths are equal,
the overlay handler randomly picked the named
link.

CANNOT DELETE LINK {NUlffiER} {number~ FUNCT.
STATUS (xxx) NAME name f

RETURN

This is an internal LINK-IO error and is not
expected ~o occur. If it does, please notify your
Software Specialist or send a Software Performance
Report (SPR) to DEC. Status is one of the
following:

1 - CORE ALREADY DEALLOCATED
3 - ILLEGAL ARGUMENT TO FUNCT. MODULE

B-4

LINK-lO OVERLAY HANDLER

CGC %F

CNA %F

DLN %I

DOE %F

IAT %F

lEO %F

ILN %F

IMP %F

IVN %W

CANNOT GET CORE FROM OTS, FUNCT.
(xxx)

RETURN STATUS

The system does not have enough free core to load
the link. The status (3-ILLEGAL ARGUMENT) is
returned from the object time system.

I/O CHANNEL NOT AVAILABLE, CHANNEL 0 USED

The specific I/O channels are not available from
the object time system.

DELETING LINK {NUMBER}{number}AFTER time
NAME name

A log file message indicating that the link has
been removed from the user's address space. The
time is the incremental runtime time since the
first call to the overlay handler.

DEVICE OPEN ERROR FOR [file specification]

The OPEN UUO failed for the log file device. The
device could be in use for another user.

ILLEGAL ARGUMENT TYPE ON CALL TO (subroutine]

The user gave an invalid argument when explicitly
calling the named overlay handler subroutine.

INPUT ERROR FOR OVERLAY FILE, STATUS (xxxxxx)

An error occurred when reading from the overlay
file. The file is closed at the end of the last
data that was successfully input. The status is
represented by the right half of the file status
word. Refer to DECsystem-lO Monitor Calls for the
explanation of the file status bits.

ILLEGAL LINK NUMBER (number1

The user gave an invalid link name or number whf3n ___ _
calling an overlay handler subroutine.

IMPOSSIBLE ERROR CONDITION AT PC= (nLwmer]

An internal error caused by error returns from
UUOs that should not occur. This message is
output instead of the usual HALT message.

INCONSISTENT VERSION NUMBERS

The overlay file (.OVL) was not created at the
same time as the save file (.SAV). Thus, the two
files may not be compatible.

B-S

LINK-10 OVERLAY HANDLER

NRT %F

NSA %F

NYA %F

OEO %F

RLL %I

RLN %I

usc %W

NO RELOCATION TABLES FOR LINK {~~ER}

The link was loaded as an absolute link and
therefore cannot be relocated.

NO START ADDRESS FOR LINK {NUMBER}{number}
NAME name

The start address is zero because
to load a module that contains
This message occurs when the
subroutine RUNOVL and it finds
for the link.

the user failed
a start address.
user calls the
no start address

SUBROUTINE [subroutine] NOT YET AVAILABLE

The user has called an overlay handler subroutine
that is not yet implemented. The unimplemented
subroutines are SAVOVL, CLROVL, and TMPOVL.

OUTPUT ERROR FOR OVERLAY FILE, STATUS (xxxxxx)

An error occurred when writing to the overlay
file. The file is closed at the end of the last
data that was successfully output. The status is
represented by the right half of the file status
word. Refer to DECsystem-10 Monitor Calls for the
explanation of the file status bits.

RELOCATING T.lINK {number}
name

AT [location]

A log file message indicating that the named
relocatable link has been loaded into the user's
address space.

READING IN LINK {NUMBER}{nl.'lrober}AFTER [time]
NAME name

A log file message indicating that the named link
has been loaded into the user's address space.
The time is the incremental run time since the
first call to the overlay handler.

UNDEFINED SUBROUTINE [name] CALLED FROM [pc]

A reference to the named subroutine has occured at
the specified program counter location. Since the
subroutine is required for execution, the user
should load the module in which it is contained.

B-6

LINK-10 OVERLAY HANDLER

B.3 OVERLAY FILE

In addition to creating the conventional SAV format file, LINK-10
creates an overlay file containing the entire overlay structure,
including the root link. However, the root link cannot be accessed
from this file; it is accessed from the SAV file. The overlay file
resides on disk and is about twice the size of the total core images
of all the links contained in it. Links in the overlay file are
brought into core during execution as they are required by links
already in core.

The first block of the overlay file is the directory block, which has
pointers to all links in the overlay structure. The contents of the
directory is as follows:

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

The left half is 0 (reserved for the future).
The right half is the number of words in this
directory block.

The number of regions
structure. For Version
word is o.

in the oVerlay
2 of LINK-lO, this

The version number of the corresponding save
file.

The left half is the negative of the number
of links. The right half is the pointer to
the block containing the link number table.

The left half is the negative of the number
of names. The right half is the pointer to
the block containing the link name table.

The left half is the negative of the number
of entries. The right half is the pointer to
the block containing the entry name table.

The remainder of the directory block and all blocks up to the block
containing the link number table are reserved for the future. The
link number table would normally be block 2.

B.3.1 Link Number Table

The link number table, usually the second block of the overlay file,
consists of half-word entries, each of which points to the preamble
block of a specific link. This table is usually all that is required
to locate a desired link. The half-word entries are arranged in
ascending numerical order starting with the root link, e.g.,

pointer to link 0" pointer to link 1
pointer to link 2" pointer to link 3
etc.

The last block of the table contains zeroes for all nonexistent links.

B-7

LINK-10 OVERLAY HANDLER

B.3.2 Link Name Table

The link name table consists of word groups. The left half of the
first word contains the number of words required for the name and the
right half contains the link number. The remaining words in the group
contain the SIXBIT name of the link.

B.3.3 Entry Name Table

The entry name table consists of the SIXBIT entry name followed by
pointers to a list of the links that contain the entry name. If there
is only one link that contains the entry name, then that link's number
is in the right half of the word following the entry name, and the
left half of that word is zero. Thus, the format of entries in this
table is either

name
0" link number

or

name
-n" [link 1

link 2

.
link n]

B.4 INDIVIDUAL LINKS IN THE OVERLAY FILE

Each link area has the following format:

Last locatio
assigned by
program

n

preamble

actual code

~

link header section
EXTTAB

INTTAB
symbols
relocation table
other relocation tables

B.4.l PREAMBLE

I link control
section

Although the preamble is not used during execution of the user's
program, it is read by the overlay handler into its own area before

B-8

LINK-10 OVERLAY HANDLER

the actual code is read. The preamble has the following entries:

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 10

Word 11

Word 12

Word 13

Word 14

Word 15

Word 16

Word 17

Word 20

Word 21

Word 22

B.4.2 Actual Code

LH=O (reserved for the future)

RH= length of preamble

LH=O (reserved for the future)

RH= region number (0 in Version 2 of LINK-10)

LH=O (reserved for the future)

RH= link number

Link name

Pointer to list of linlcs bound to this link
starting with the root.

Pointer to list of links bound to this link
starting with link furthest from root.

Pointer to list of links equivalent to this link
(future)

Address of link control section

Future

Absolute address at which this link was loaded

Length of the link

Block number of the start of the actual code

Block number of the start of the symbols (future)

Block number of the start of the relocation table
for this link

Block number of the start of the relocation tables
for bound links

Block number for global symbols in triplet format
(unused)

Block number for Radix-50 symbols

Block number for the relocation of
symbols

RADIX-50

This section contains the loaded code plus the link control section.
(For Version 2 of LINK-10, it also contains the symbol table, if
requested.) The code is read into core with a single dump mode read.
When the code is read into the address at which it was loaded, the
only action is to connect the link into the overlay structure of the

B-9

LINK-IO OVERLAY HANDLER

existing links. If it is not read into the address at which it was
loaded, relocation has to be performed.

The link control section follows the last location assigned by the
program. It contains the link header section, EXTTAB, INTTAB, and for
Version 2 of LINK-lO, the symbols.

The link header section has the following format:

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 10

Word 11

Word 12

Word 13

Word 14

LH=O (reserved for the future)

RH= Number of words, including this one, in the
header

LH=O (reserved for the future)

RH= Number of the region (0 in versinn 2 of
LINK-lO)

LH=O (reserved for the future)

RH= Number of the link

SIXBIT name of the link if the user has assigned
one

LH= Pointer toward the root to the preceeding link

RH= Pointer forward to the next link in the path

Pointer to the symbols for this link (0 if symbols
are not loaded)

LH=O (reserved for the future)

RH= start address of the link if one was supplied

LH= Length of the core required to load the link.
This includes actual code, symbols, and the link
control section.

RH= First address in link

LH= The negative of the number of items in EXTTAB

RH= The address of the first item in EXTTAB

LH= The negative of the number of items in INTTAB

RH=The address of the first item in INTTAB

Pointer to the DDT symbol table on disk (future)

LH=Negative count of the RADIX-50 symbols

RH=Disk block number of the start of the symbols

The offset if the link had to be relocated.

B-IO

LINK-IO OVERLAY HANDLER

The remaining items in the link header section are reserved for the
future.

EXTTAB contains references to routines that are referenced by this
link but are defined in other links. INTTAB contains references to
routines defi'ned in this link, but referenced from other links.

The EXTTAB table has a slightly different format depending on whether
the subroutine exists or is undefined. If a call is made to an
existing subroutine the EXTTAB entry contains the following four
words:

Word 1 JSP 1, .OVRLA

Word 2 FLAGS " INTTAB ADDRESS

Word 3 LINK # " THIS HEADER ADDRESS

Word 4 BACKWARDS PTR " FORWARD PTR

If a call is made to an undefined subroutine, the EXTTAB entry
contains the following words:

Word 1 JSP 1, .OVRLU

WORD 2 o " 0

WORD 3 o " THIS HEADER ADDRESS

Word 4 SUBROUTINE NAME

Each entry in the INTTAB table, if defined, has the words:

Word 1 FLAGS " ADDRESS

Word 2 o " FORWARD POINTER

B.4.3 Relocation Tables

All relocatable addresses are stored as absolute addresses on disk.
If all previous links have been loaded into their optimal location, no
relocation is perfo~med and the relocation constant is zero. However,
when some of the links have been relocated, the overlay handler must
relocate all references to these links by adding to or subtracting
from the absolute address to obtain the actual address.

The relocation table for this link consists of 2-bit bytes, one bit
for each half word in the code section. If the bit is 0, the
corresponding half word is absolute. If the bit is 1, the half word
is relocatable.

B-11

LINK-lO OVERLAY HANDLER

The relocation table to other links on the path has word groups for
each link back to the root link. Each word group has the following
format:

Word 1 = The number of words (n) following for this link.

Word 2 = LH- the link number
RH- the absolute address the link should have been
loaded into.

Word 3-Word n-l = relocation words

The relocation words have the form:

LH= 9 * 2-bit bytes
RH= address of 1st word in the current link

B-l2

APPENDIX C

FUNCT. SUBROUTINE

In order for the overlay handler to have facilities for performing
I/O, core management, and error message handling, each DEC-supplied
object time system has a general-purpose subroutine (FUNCT.) to serve
as an interface for these facilities. The subroutine has one entry
point FUNCT. and is called by the calling sequence

MOVEI 16, ARGLIST
PUSHJ 17, FUNCT.

The general form of the argument list is as follows:

where

-arg count" 0
list: type" [function]

type" [error code]
type" [status]
type" [argl]
type" [arg2]

type" [argN]

type is the FORTRAN argument types.

function is one of the required functions described below.

error code is the 3-letter mnemonic
time system after the ?, %, or

output
[.

by the -object

status is undefined on the call and set on the return with
one of the values below:

-1 Function not implemented
o Successful return
l, ••• ,n Specific error message

Function 0 (ILL)

This function is illegal. The argument block is ignored, and the
function always returns a status of -1.

C-l

FUNCT. SUBROUTINE

Function 1 (GAD)

This function gets core from a specific address. The arguments are

argl
arg2

address at which to allocate core
size of core to allocate

The returned statuses are

o core allocated (argl and arg2-unchanged)

1

2

not enough core
arg2-unchanged)

available in system

cannot allocate core at specified address
arg2-unchanged)

(argl

(argl

and

and

3 illegal arguments (i.e., address+size is greater than 256K)
(argl and arg2-unchanged)

Function 2 (COR)

This function gets core from any address. The arguments are

argl
arg2

undefined
size of core to allocate

The returned statuses are

o core allocated (arg2-unchanged, argl-beginning address of
the allocated core)

1 not enough core available in system (arg2-unchanged)

3 illegal argument (i.e., size is greater than 256K)

Function 3 (RAn)

This function returns core at the specified address.
are

argl
arg2

address of core to be returned
size of core to be returned

The returned statuses are

o core deallocated

1 core cannot be deallocated

The arguments

3 illegal argument (i.e., both the address and the size are
greater than 256K)

C-2

FUNCT. SUBROUTINE

Function 4 (GCH)

This function gets an I/O channel. The argument is

argl undefined

The returned statuses are

o I/O channel allocated (argl-channel number)

1 no I/O channels available

Function 5 (RCH)

This function returns an I/O channel. The argument is

argl I/O channel number to be returned

The returned statuses are

o channel returned

1 invalid channel number

Function 6 (GOT)

This function gets core from the object time system list. The
arguments are

argl
arg2

address at which to allocate core
size of core to allocate

The returned statuses are

o core allocate (argl and arg2-unchanged)

1 not enough core
arg2-unchanged)

available in system

2 cannot allocate core at specified address
arg2-unchanged)

3 :i._ll.~gC1l arguments

(argl and

(argl and

This function differs from function 1 in that if the object time
system has two free core lists, then function 1 is used to allocate
space for links, and this function is used to allocate space for I/O
buffers. Function 1 uses the free core list for LINK-lO, and function
6 uses the list for the object time system.

Function 7 (ROT)

This function returns core to the object time system.
are

argl
arg2

address of core to be returned
size of core to be returned

C-3

The arguments

FUNCT. SUBROUTINE

The returned statuses are

o core deallocated

1 core cannot be deallocated

3 illegal argument

Function 8 (RNT)

This function returns the initial runtime from the object time system.
The argument is

argl undefined

The returned status is

o always (argl-runtime from the object time system)

This function is used only if the user desires a log file.

Function 9 (IFS)

This function returns the initial runtime file specification from the
object time system. The specification is obtained from accumulators
0, 7, and 11 after the initial RUN command. The arguments are

argl, ••• ,arg3 undefined

The returned status is

o always (argl-device from accumulator 11, arg2-filename from
accumulator 0, and arg3-directory from accumulator 7)

This function tells the overlay handler which file to read after the
ini.tial RUN command.

Function 10 (CBC)

This function cuts back core if possible and is used to reduce the
size of the user job. There are no arguments. The returned status is

o always

C-4

APPENDIX D

MIXFOR FEATURE

Normally, it is not possible to load a mixture of FORTRAN-10 and F40
programs. However, if both the FMXFOR feature test switch is on and
the user has given the /MIXFOR switch, he can load any combination of
FORTRAN subroutines with either a FORTRAN-10 or a F40 main program.

D.l SWITCHES

Two switches are available to the user in order that he can load a
mixture of FORTRAN programs. The /MIXFOR switch informR LINK-IO that
a combination of FORTRAN-IO and F40 programs will be loaded together.
It must appear in the command string before any FORTRAN programs are
loaded. This switch is a delayed action switch (refer to Paragraph
3.3.5) and has no arguments.

The /NOMIXFOR switch specifies that the user does not want to load a
combination of FORTRAN-IO and F40 programs. Since this is the default
case, this switch is needed only when the installation has made the
default setting of FMXFOR equal to -1 (i.e., prepare for loading a
combination of FORTRAN programs unless the user specifies otherwise).
The /NOMIXFOR switch is also a delayed action switch (refer to
Paragraph 3.3.5) and must appear in the command string before any
FORTRAN programs are loaded.

D.2 DESCRIPTION OF SOFTWARE

In order to load a combination of FORTRAN programs, the MIXFOR
subroutine must be included in the FORTRAN library FORLIB. When the
FMXFOR feature test switch in LINK-IO is 0, LINK-10 does not reference
the MIXFOR subroutine and does not change any code. When the FMXFOR
switch is +1, LINK-10 references the MIXFOR subroutine and changes
code if the user gives the /MIXFOR switch. When the FMXFOR switch is
-1, LINK-10 always references the HIXFOR subroutine and changes the
code, unless the user gives the /NOMIXFOR switch. (The setting for
the FMXFOR switch in Version 2 of LINK-lO is -1.)

D-l

MIXFOR Feature

To implement the MIXFOR feature, LINK-10 has modifcations to recognize
either type of FORTRAN subroutine and change its code in the following
ways:

1. The ENTRY points are remembered and the global fixups are not
done when the global definitions are seen.

2. After loading the subroutine, LINK-10 appends the following
words of code for each entry point.

CAIA
PUSHJ 17, .MXFOR##
PUSHJ 17, .SAV15##
JRST entry point instruction

where the entry point instruction is the instruction of the
entry point as defined by the compiler, and the entry point
address is the address of the corresponging CAIA instruction.

After it appends the four words of code, LINK-10 performs the global
fixups and then examines the loaded code for the return instructions.

LINK-10 makes different changes to the return instructions depending
on whether the subroutine was compiled by FORTRAN-10 or F40. If the
subroutine was compiled by FORTRAN-10, LINK-10 searches for the
multiple return instruction HRRM 1,0(17) and replaces it with a HRRM
1,-2(17) instruction. (Single return instructions are not changed.)
The POPJ instruction following the HRRM instruction causes a return to
.SAV15## or .MXFOR## depending on the caller, which then restores the
stack and returns to the correct location.

When the subroutine has been compiled by F40, LINK-10 changes both the
single return and multiple return instructions. The single return
instruction JRA 16,n(16) is replaced by a POPJ 17, instruction, and
the mUltiple return instruction JRA 16,@-1(16) is replaced by SOJA 16,
.JRA 16##.

If LINK-10 cannot find the return instructions, the following warning
message is output and the fixups are not done:

%LNKFSF FORTRAN SUBROUTINE xxxxxx NOT IN
EXPECTED FORM, MIXFOR FIXUP NOT DONE

This message is not expected to occur. If it does, please notify your
Software Specialist or send a Software Performance Report (SPR) to
DEC.

At the end of loading, LINK-lO generates a request for the symbol
FORSE if a FORTRAN-10 main program and at least one F40 subroutine
were loaded. This request causes the FORJAK routine in FORLIB to be
loaded in case F40 subroutines perform I/O using F40 UUO's. In
addition, the MIXFOR routine, which contains the entry points .MXFOR,
.SAV15, and .JRA16, is loaded during the library search of FORLIB.

0-2

APPENDIX E

LINK-IO MESSAGES

The following table of LINK-IO messages consists of four columns:
CODE, LVL, SEV, and MESSAGE. The leftmost column (CODE) contains a
code, which represents a terse, abbreviated form of the message. This
code, when output to the user, is actually six letters. However, since
the first three letters are always LNK, only the last three unique
letters of the code are shown in the manual. The user can indicate,
via the /VERBOSITY:SHORT switch, that he desires only the 6-letter
code to be output whenever he receives a LINK-IO message. Refer to
the /VERBOSITY switch in Chapter 4 for additional information.

The second column of each message (LVL) indicates the message level
associated with that message. The message level is the factor that
determines if the message is to be output. Normally, informative
messages are suppressed to the user's terminal and all messages are
output to the log file, if the user has designated one. However, the
user can override this action with the /ERRORLEVEL and /LOGLEVEL
switches. These switches accept a decimal number and indicate to
LINK-IO that messages with a message level less than or equal to the
specified number are not to be output to the user's terminal
(/ERRORLEVEL) or to his log file (/LOGLEVEL). Messages with a message
level greater than the specified number will be output. The two
switches are independent if the user's log file is not being output to
his terminal. That is, he can have one set of messages printed on his
terminal and another set listed in his log file. ~~en the device for
the log file is the user's terminal, only one set of messages is
output. This set is the one generated by the lower argument in either
the /ERRORLEVEL or /LOGLEY:EL switch.

There are currently representations for three message levels:

%I informative, message levels 1-9
%W warning, message levels 10-30
%F fatal, message level 31

Note that the messages with an asterisk (*) for the message level
cannot be suppressed. These messages are output only to the user's
terminal. Refer to the /ERRORLEVEL and /LOGLEVEL switches in Chapter
4 for additional information.

The third column (SEV) contains the severity level associated with
each message. The severity level is the point at which LINK-IO
considers a message to be fatal (i.e., one which will terminate the

E-l

LINK-10 Messages

load). The predefined LINK-10 severity levels can be overridden by the
user via the /SEVERITY switch. This switch accepts a decimal number
and indicates to LINK-10 that messages with a severity level less than
or equal to the specified number are not to be considered fatal.
Messages with a severity level greater than the specified number will
cause the load to be terminated. (Note that messages with a severity
level of 31 are always fatal and that the user cannot override the
action taken with these messages.) If the user does not give a
/SEVERITY switch, or does not give an argument to the switch, a
severity level of 24 is considered fatal for a timesharing job and a
severity level of 16 is considered fatal for a batch job.

currently the representations for the severity levels are as follows:

%I severity level 1. The message is enclosed in square brackets
(informative).

%W severity level 10. The message is preceded by a percent sign
(warning).

%E severity level 30. The message is preceded by a percent sign
and followed by a line requesting the user to re-edit the
current file specification, if he wishes. This option is
available only to a timesharing user (editing).

%F severity level 31. The me$sage is preceded by a question mark
(fatal).

Refer to the /SEVERITY switch in Chapter 4 for additional information.

The rightmost column (MESSAGE) contains a more detailed explanation of
the message than the one appearing in the CODE column. This message,
along with the six-letter code, is normally output. However, the user
can override this action with the /VERBOSITY switch. Refer to the
/VERBOSITY switch in Chapter 4 for further information.

E-2

LINK-IO Messages

CODE LVL SEV

ARL %W %W

AMP %W %W

ANC %F %F

AZW %F %F

B4R %W %W

MESSAGE

AMBIGUOUS
[symbol]
number]

REQUEST
DEFINED

IN
IN

LINK
LINKS

[number]
[number

FOR
, ... ,

More than one successor link satisfies a call
from an ancestor link. At run time, the link
in core, or the one with the longest path in
core, will be used to satisfy the call. No
message will be given. However, if none of
the successor links are in core, the overlay
handler picks one with the longest path in
core. If all paths are equal, the overlay
handler picks one at random and gives a
warning message to the user. To avoid this
situation, the user should promote, to a
common link, the module containing the called
subroutine.

ALGOL MAIN PROGRAM NOT LOADED

The user has loaded ALGOL procedures without
a main program. Execution will be terminated
because of missing start address and
undefined symbols.

ADDRESS NOT IN CORE (1)

LINK-IO expected a particular user address to
be in core, but it is not there. This is a
LINK-IO internal error.

ALLOCATING ZERO WORDS (1)

LINK-lO's space allocator was called with a
request for zero words. This is an internal
error in LINK-IO.

BAD F40 PRODUCED REL FILE FOR [name]

Either the compile~_p;9duced incorrect code
--or-tlie-fi~ewas-modified so that the code is

no longer valid. The REL file may contain
tables longer than 2t18 words or tables known
to contain word pairs but that actually have
an odd length. Although this message is not
fatal, it is usually followed by a fatal one.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

B-3

LINK-10 Messages

CEF %F %F

CLF %I %I

CMF %F %F

CNW %F %F

CSF %I %I

DEB * %I

CORE EXPANSION FAILED

All attempts to obtain more core, including
writing files onto disk, have failed. The
program is too big for available user core,
probably because of too many global symbols.
A future version of LINK-10 will overflow
global symbols to the disk. However, there
will always be a minimum size below which
LINK-10 will not operate.

CLOSING LOG FILE,
specification]

CONTINUING ON [file

This message occurs when the user changes the
device on which the log file is being
written. The log file is closed on the first
device and the remainder of the file is
written on the second device.

COBOL MODULE MUST BE LOADED FIRST

The COBOL-produced file must be the first
file loaded when loading COBOL modules.
COBDDT, the COBOL debugging program, or any
other modules, such as a MACRO routine,
cannot be the first file in the command
string. The user should begin loading again
and place the COBOL main program or routine
as the first file in the command string.

CODE NOT YET WRITTEN AT [label] (1)

The user attempted a feature that is not yet
implemented. This is an internal error in
LINK-10.

CREATING SAV FILE

LINK-10 is generating the requested save file
by running the core image through a zero
compressor routine in order to produce a SAV
format file.

[name] EXECUTION

The loading process is complete and the named
debugging program (e.g., DDT, COBDDT) has
begun execution.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

E-4

LINK-IO Messages

DLT * %F

DNS %I %I

DRC %W %W

DSC %F %F

DSL %F %F

EXECUTION DELETED

A program was prevented from being executed
because of errors detected during translating
or loading or because of no start address.
Loading is performed but LINK-IO exits to the
monitor. Messages output previous to this
one indicate the reasons for failure.

DEVICE NOT SPECIFIED FOR /switch

A device switch, such as /REWIND or
/BACKSPACE, has been given, but there is no
device to be associated with it. The switch
is ignored. This occurs when the user does
not give a device name in the specification
containing the switch or has not specified a
device name in the current line. (Remember
that devices are cleared at the end of the
line.) LINK-IO's default device DSK does not
apply to device switches nor does a device
specified in a /DEFAULT switch apply. The
user should respecify the command line and
include the appropriate device name with the
switch.

DECREASING RELOCATION COUNTER [symbol] FROM
[value] TO [value]

The user is reducing the size of an already
defined relocation counter via the /SET
switch. The new value is accepted. The user
should be extremely careful when he does this
because code previously loaded under the old
relocation counter may be overwritten. This
practice of reducing counters is dangerous
unless the user knows exactly where modules
are loaded.

DATA STORE IN COMMON [symbol] NOT IN
NUMBER [number] FOR [module] IN
specification]

LINK
[file

The user--has--a-DATA statement in FORTRAN
which sets up a COMMON area, but the COMMON
area is in another link closer to the root.
The user should set up the COMMON area in the
link in which it is first defined.

DATA STORE TO LOCATION [address] NOT IN LINK
[number] FOR [module] IN [file specification]

The user has
absolutely-defined
the specified link
data in JOBDAT).
module to the root

E-5

a data store to an
location that is not in

(e.g., the user is storing
The user should move the

link.

LINK-10 Messages

DSO

DUZ

EID

E~

l
ELC)
EHC(
ELS

J
EFX
EGS

EOV

%F %F

%F %F

%F %F

%I %I

%F %F

%F %F

DATA STATEMENT OVERFLOW (1)

Incorrect code has been generated by the F40
compiler.

DECREASING UNDEFINED SYMBOL COUNT BELOW ZERO
(1)

On an internal check of the counter for
undefined symbols, LINK-10 determined that
the counter was negative. This is an
internal error.

ERROR ON INPUT DEVICE STATUS (xxxxxx) FOR
[file specification]

A read error has occurred on the input
device. Use of the device is terminated and
the file is released. The status is
represented by the right half of the file
status word. Refer to DECsystem-10 Monitor
Calls for the explanation of the file status
bits.

END OF LOG FILE

Notification that the LINK-lO module LNKLOG
has completed the writing of the log file.
The file is now closed.

ERROR CREATING OVERFLOW FILE FOR AREA

LINK-lO could not make the named file on the
disk (LC=user's low segment code, HC=user's
high segment code, LS=local symbol table,
FX=fixup area, and GS=global symbol table).
The user could be over quota, or the disk
could be full or have errors.

ERROR CREATING OVERLAY "FILE
specification]

FOR [file

LINK-10 could not create the overlay file on
the disk. The user could be over quota, or
the disk could be full or have errors.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software performance Report (SPR)
to DEC.

E-6

LINK-IO Messages

EMS %1 %1

ESN %F %F

EXP %1-4 %I

EXS %I %1

FCD %F %F

FCF %I %1

END OF MAP SEGMENT

Notification that the LINK-IO module LNKMAP
has completed the writing of the map file.
The map is now closed.

EXTENDED SYMBOL NOT EXPECTED (1)

The code to handle symbols longer than six
characters has not been completed. This code
will be available in a future release.

EXPANDING LOW SEGMENT TO [n] K

LINK-IO needs more core and is expanding to
the specified amount. In future loads of the
same programs, the user can run LINK-IO more
efficiently by requesting this amount of core
at the beginning of the load with the /CORE
switch.

EXIT SEGMENT

LINK-IO is entering the completion stages of
the loading process. These stages include
the creation of save and symbol files and, if
required, the execution of the core image.

FORTRAN CONFUSED ABOUT DATA STATEMENTS (1)

Incorrect code was generated
compiler for a data statement in

DATA A(I) ,1=1,4/1,2,3,4/
as opposed to a data statement in

DATA (A(I),I=1,4)/1,2,3,4/

FINAL CODE FIXUPS

by the F40
the form

the form

LINK-IO is now reading the low and/or high
segment overflow files backwards in order to
do all_remai~ing cod~.fixups. This process
may cause considerable disk overhead. Note
that the message occurs only if the load was
too large to fit entirely in core.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

E-7

LINK-10 Messages

FIA %F %F

FIN %I %I

FON %F %F

FOV %F %F

%F %F

CANNOT MIX KIlO AND KA10 FORTRAN-10 COMPILED
CODE

The FORTRAN-10 compiler generates different
output for the KA10 and the KIlO processors
(e.g., double precision code) and the user
cannot load this mixture. He should decide
which processor he wants to use and then
recompile the appropriate programs.

LINK-IO FINISHED

LINK-10 has completed its task of loading the
user's program and other required programs.
control is either returned to the monitor or
given to the user's program for execution.

CANNOT MIX F40 AND FORTRAN-10 COMPILED CODE

output from the F40 and FORTRAN-10 compilers
cannot be used together in the same load.
The user should decide which compiler he
wants and then recompile the appropriate
program with that compiler. (1)

CANNOT OVERLAY F40 COMPILED CODE FOR [file
specification]

output from the F40 compiler cannot be used
with the overlay facility. The user should
recompile his program with the FORTRAN-10
compiler.

{ ENTER}
RENAME

ERROR (0) ILLEGAL FILENAME FOR
[file specification]

One of the following conditions occurred:

1. The filename given was illegal.

2. When updating a file, the filename
given did not match the file to be
updated.

3. The RENAME UUO following a LOOKUP
UUO failed.

(1) If the feature test switch FMXFOR is on and the user has given the
/MIXFOR switch, FORTRAN-10 and F40 compiled subroutines can be loaded
together and this message is not valid. For additional information,
refer to Appendix D.

E-8

LINK-10 Messages

{FLE}
GSE

' FLE) FRE
(FEE I
~ GSE

FRE

IFEE I FLE
FRE
GSE

(FEE I
' FLE) FRE
~ GSE

%F %E

%F %E

%F %E

%F %E

%F %F

%F %F

{
LOOKUP}
GETSEG ERROR (0) FILE WAS NOT FOUND

The file requested by the user was not found.
The user should respecify the correct
filename.

(ENTER I J LOOKUP
) RENAME
~ GETSEG

ERROR (1) NO DIRECTORY FOR
PROJECT-PROGRAMMER NUMBER FOR [file
specification]

The UFD does not exist on the named file
structure, or the project-programmer number
given was incorrect.

(ENTER)
) LOOKUP (
) RENAME (
~ GETSEG)

ERROR (2) PROTECTION FAILURE FOR
[file specification]

The user does not have the correct privileges
to access the named file.

ENTER ERROR (2) DIRECTORY FULL

The directory on the DECtape has no room for
the file.

LOOKUP ERROR (3) IENTER I FILE WAS BEING MODIFIED
specification] RENAME FOR [file

GETSEG

Another user is currently modifying the named
file. The user should try accessing the file
later.

I ENTER I LOOKUP
RENAME
GETSEG

ERROR (4) RENAME FILENAME
ALREADY EXISTS FOR [file
specification] (1)

The specified filename already exists, or a
different filename was given on the ENTER UUO
following a LOOKUP UUO.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
TO DEC.

E-9

LINK-IO Messages

l F~~l FJ • .',
FRE
GSE

~;:l
}FRE
{ GSE

~~~l )FRE 
t GSE 

(FEE) 
) FLE t 
l~:j 

%F %F 

%F %F 

%F %F 

%F %F 

(BNTEE ) 

~~~~~ 
{GETSEG)

ERROR (5) ILLEGAL SEQUENCE OF
UUOS FOR [file specification] (1)

The user specified an illegal sequence of
monitor calls, ooOs, (e.g., a RENAME without
a preceding LOOKUP or ENTER, or a LOOKUP
after an ENTER).

1
~~~p l ERROR ( 6 ) BAD UFD OR BAD RIB 
RENAME ( FOR [file specification] (1) 
GETSEG) 

One of the following conditions occurred: 

1. Transmission, device, or data error 
occurred while attempting to read 
the UFO or RIB. 

2. A hardware-detected device or data 
error was detected while reading the 
UFO RIB or UFO data block. 

3. 

(ENTER ) 
'LOOKUP t 
) RENAME ( 
~ GETSEG) 

A software-detected 
inconsistency error was 
while reading the UFO RIB 
RIB. 

data 
detected 
or file 

ERROR (7) NOT A SAV FILE FOR 
[file specification] (1) 

The named file is not a core image file. 
This message can never occur and is included 
only for completeness of the LOOKUP, ENTER, 
and RENAME error codes. 

(ENTER ) 
) LOOKUP t 
l:~~) 

ERROR (10) NOT ENOUGH CORE FOR 
[file specification] (1) 

The system cannot supply enough core to use 
as buffers or to read in a program. This 
message can never occur and is included only 
for completeness of the LOOKUP, ENTER, and 
RENAME error codes. 

(1) This message is not expected to occur. If it does, please notify 
your Software Specialist or send a Software Performance Report (SPR) 
to DEC. 

E-10 



LINK-10 Messages 

l~:l GSE 

IFEEI FLE 
FRE 
GSE 

(FEEl )FLE 
)FRE 
~GSE 

'1~:1 FRE( 
GSE) 

l ~:l-GSE 

%F %F 

%F %F 

~F %F 

%F %F 

%F %F 

(ENTER ) 

~~~~} 
~ GETSEG }

ERROR (11) DEVICE NOT AVAILABLE FOR
[file specification] (1)

The device indicated by the user is currently
not available. This message can never occur
and is included only for completeness of the
LOOKUP, ENTER and RENAME error codes.

l ~~~~~p 1 ERROR (12) NO SUCH DEVICE FOR
RENAME [file specification] (1)
GETSEG

The device specified by the user does not
exist. This .message can never occur and is
included only for completeness of the LOOKUP,
ENTER, and RENAME error codes.

I
ENTER)
LOOKUP (ERROR (13) NOT TWO RELOC REG
RENAME (CAPABILITY FOR [file specification]
GETSEG J (1)

The machine
relocation
never occur
completeness
error codes.

does not have a two-register
capability. This message can

and is included only for
of the LOOKUP, ENTER and RENAME

(ENTER 1) LOOKUP
) RENAME
~GETSEG

ERROR (14) NO ROOM OR QUOTA
EXCEEDED FOR [file specification]

There is no room on the file structure for
the named file, or the user's quota on the
file structure would be exceeded if the file
were placed on the structure •

. -- -f-·_· -- -·----l ENTER ----
LOOKUP ERROR (15) WRITE LOCK ERROR

)RENAME FOR [file specification]
~GETSEG

The user cannot write on the specified device
because it is write-locked.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

E-ll

LINK-10 Messages

I !~! GSE

If:! GSE

jFEE! FLE
FRE
GSE

jFEE! FLE

,~:

I ~:) FRE (
GSE)

%F %F

%W %W

%F %F

%F %F

%F %F

LOOKUP IENTER ! ERROR (16) NOT ENOUGH MONITOR
RENAME
GETSEG

TABLE SPACE FOR [file specification]

There is not enough table space
monitor's (FILSER) 4-word blocks
specified file. The user should try
the job at a later time.

in the
for the
running

(ENTER!) LOOKUP

(
RENAME
GETSEG

ERROR (17) PARTIAL ALLOCATION
ONLY FOR [file specification]

Because of the user's quota or the available
space on the device, the total number of
blocks requested could not be allocated and a
partial allocation was given.

(ENTER !) LOOKUP ERROR (20) BLOCK NOT
)RENAME ALLOCATION FOR [file
~ GETSEG (1)

FREE ON
specification]

The block required by LINK-10 is not
available for allocation. This message can
never occur and is included only for
completeness of the LOOKUP, ENTER, and RENAME
error codes.

) LOOKUP ERROR (21) CAN'T SUPERSEDE (ENTER) (ENTER I
)RENAME AN EXISTING DIRECTORY FOR [file
~GETSEG specification] (1)

The user attempted to supersede an existing
directory. This message can never occur and
is included only for completeness of the
LOOKUP, ENTER, and RENAME error codes.

j~~~~~p! ERROR (22) CAN'T DELETE (RENAME)
RENAME A NON-EMPTY DIRECTORY FOR [file
GETSEG specification] (1)

The user attempted to delete a directory that
was not empty. This message can never occur
and is included only for completeness of the
LOOKUP, ENTER, and RENAME error codes.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

E-12

LINK-IO Hessages

~~:l)FRE
{GSE

f~~l)FRE
~GSE

lFEEl FLE
FRE
GSE

~~~l )FRE 
{ GSE 

%F %F 

%F %F 

%F %F 

%F %F 

%F %F 

(ENTER) 

{~~~~ 
~GETSEG) 

ERROR (23) SFD NOT FOUND FOR 
[file specification] 

The required sub-file directory 
specified path was not found. 

in 

(ENTER) 

I
) LOOKUP ( 

RENAME ( 
GETSEG J 

ERROR (24) SEARCH LIST EHPTY FOR 
[file specification] 

the 

A LOOKUP and ENTER UUO was performed on 
generic device DSK and the search list is 
empty. 

(ENTER ) 

{~~~~ 
{GETSEG J 

ERROR (25) SFD NEST LEVEL TOO 
DEEP FOR [file specification] (1) 

An attempt was made to create a subfile 
directory nested deeper than the maximum 
level allowed. This message can never occur 
and is included only for completeness of the 
LOOKUP, ENTER, and RENAME error codes. 

f ~~~~~p 1 ERROR (26 ) NO-CREATE ON FOR ALL 
)RENAME SEARCH LIST FOR [file specification] 
{GETSEG 

No file structure in the job's search list 
has both the no-create bit and the write-lock 
bit equal to zero and has the UFD or SFD 
specified by the default or explicit path. 

1 
~~~~~P 1 ERROR (27 ) SEGMENT NOT ON SWAP 
RENAME SPACE FOR [file specification] (1)
GETSEG

-A-GETSEG UUo was issued from a locked low
segment --to a high segmen£-wnicli -is not-a
dormant, active, or idle segment. This
message can never occur and is included only
for completeness of the LOOKUP, ENTER, and
REN~m error codes.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC. .

E-13

LINK-IO Messages

l ~:l GSE

GSE

lFEE I FLE
FRE
GSE

FSF

FSI

HSL

%F %F

%W %W

%F %F

%W %W

%W %W

%F %F

l
ENTER)
LOOKUP (ERROR (30) CAN'T UPDATE
RENAME (FILE (1)
GETSEG)

A LOOKUP and ENTER UUO was given to update a
file, but the file cannot be updated for some
reason (e.g., another user is superseding it
or the file was deleted between the time of
the LOOKUP and the ENTER).

GETSEG ERROR (31) LOW SEGMENT OVERLAPS HIGH
SEGMENT (1)

The end of the low segment is above the
beginning of the high segment.

(ENTER I) LOOKUP ERROR (nn) UNKNOWN
)RENAME CAUSE FOR [file specification]
~GETSEG

(1)

This message indicates that a LOOKUP, ENTER,
or RENAME error occurred which was larger in
number than the errors LINK-IO knows about.

FORTRAN SUBROUTINE [name] NOT IN EXPECTED
FORM, MIXFOR FIXUP NOT DONE (1)

LINK-IO cannot find the return instructions
in the F40 compiled subroutine.

FORTRAN-IO REQUIRES
IGNORED

FOROTS,/FORSE SWITCH

The user gave a /FORSE switch while loading
FORTRAN-IO compiled code.

ATTEMPT TO SET HIGH SEGMENT ORIGIN TOO LOW

The user is trying to set the beginning of
the high segment below the end of the last
page of the low segment. The user can either
specify a /SET:.HIGH. switch or in the case
of MACRO-lO, reassemble the module. (Note
that the setting of the beginning of the high
segment below 400000 will fail on all KIlO
monitors previous to 5.07 and on all KAlO
monitors.)

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

E-14

LINK-10 Messages

HSO

HTL

lI4D ~
I4S (
I4T)

IBC

ICI

IDM

%W

%F %F

%F %F

%F %F

%F %F

%F %E

ATTEMPT TO CHANGE HIGH SEGMENT ORIGIN FROM
[value] TO [value]

The user is attempting to change the starting
address of the high segment. The specified
value is ignored. The cause may be that the
user gave a /SET:.HIGH.: value switch which
does not agree with the first LINK item type
3. The user should recompile the incorrect
files or use the correct value on the
/SET:.HIGH. switch.

SY~mOL HASH TABLE TOO LARGE (1)

The user has more global symbols than can fit
in the maximum hash table (about 2SK in size)
LINK-10 can generate. Possible action is to
increase the maximum allowable size of the
hash table.

ILLEGAL F40
jDATA CODE I
) SUB-BLOCK (xxxxxx) (1)
(TABLE ENTRY

Incorrect code was produced by the F40
compiler.

ATTEMPT TO INCREASE SIZE OF BLANK COr-1MON

An attempt was made to expand the blank
COMMON area. Once a COMMON area is defined,
th'3 size cannot be expanded. The user should
load the module with the largest blank COMMON
area first or specify the larger area with
the /COMMON switch before loading either
module.

INSUFFICIENT CORE TO INITIALIZE LINK-10

There is not enough core in the system to
initialize LINK-10.

ILLEGAL DATA MODE FOR DEVICE

The data mode specified for a device is
illegal, such as dump mode for the terminal
(e.g., TTY:/SAVE). The user should respecify
the correct device.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

E-1S

LINK-10 Messages

IFD

(ILC)
) IHC (

t
ILS f IFX
IGS

ILl

lMA

INS

IOV

%F %F

%F %F

%F %F

%I %I

%F %F

%F %F

INIT FAILURE FOR DEVICE [dev]

The OPEN or IN IT UUO failed for the specified
device. The device could be in use by
another user.

ERROR INPUTTING AREA 1 ii 1- STATUS (xxxxxx)

An error occurred while reading in the named
area (LC=user's low segment code, HC=user's
high segment code, LS=loca1 symbol table,
FX=fixup area, and GS=globa1 symbol table).
The status is represented by the right half
of the file status word. Refer to
DECsystem-10 Monitor Calls for the
explanation of the file status bits.

ILLEGAL LINK ITEM TYPE (xxxxxx) ON
[file specification]

The input file either was generated by a
translator that LINK-10 does not recognize
(e.g., a non-supported translator) or is not
in proper binary format (e.g., is an ASCII or
SAV file).

INCREMENTAL MAPS NOT YET AVAILABLE

The INCREMENTAL keyword for the /MAP switch
is not implemented. The switch is ignored.

I/O DATA BLOCK NOT SET UP (1)

LINK-10 attempted to do I/O (LOOKUP, ENTER
UUOs) for a channel that has not been set up.
This is an internal LINK-10 error.

INPUT ERROR FOR OVERLAY FILE, STATUS (xxxxxx)

An error occurred when reading the overlay
file. The status is represented by the right
half of the file status word. Refer to the
DECsystem-10 Monitor Calls for the
explanation of the file status bits.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

E-16

LINK-IO l-1essages

IPO %F %F

ISD %F %F

ISO %F %F

ISP %F %F

IST %F %F

ITT %W %W

IUU * %F

IVC %F %F

INVALID POLISH OPERATOR (1)

An incorrect link item type 11 was seen.
This is an internal LINK-IO error.

INCONSISTENT SYMBOL DEFINITION FOR [symbol]

An already-defined symbol has been given a
second "partial" definition. The user should
examine the usage of the named symbol.

INCORRECT STORE OPERATOR (1)

An incorrect link item type 11 was seen.
This is an internal LINK-IO error.

INCORRECT SYMBOL POINTER (1)

The current symbol pointer does not point to
a valid symbol triplet. This can occur if an
extended symbol does not terminate properly.
This is an internal LINK-IO error.

INCONSISTENCY IN SWITCH TABLE (1)

An internal error occurred in the switch
tables built by the SCAN module.

ILLEGAL TYPE 12 IN LINK NUMBER [number] IN
MODULE [name]

A number other than 1 through 20 was used in
a link item type 12.

ILLEGAL USER UUO AT PC [value] (1)

This is an internal LINK-IO error.

INDEX VALIDATION CHECK FAILED AT [address]
(1)

The range checking of LINK-10's internal
tables and arrays failed. The address output
is the point in the appropriate LINK-IO
segment at which this occurred.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

E-17

LINK-lO Messages

LDS %I %I

LII %W %I

LIM %I %I

LIT %F %F

LHN %I-6 %I

LNA %W

LNC %F %F

LNL %W %W

LOAD SEGMENT

Indication that the LINK-10 module LNKLOD has
started its processing.

LIBRARY INDEX INCONSISTENT, CONTINUING

The index (link item type 14) on a FUDGE
library file is not correct. The file will
be searched as if the index were absent.

LINK-10 INITIALIZATION

LINK-10 has begun its processing of the
user's input.

LINK ITEM TYPE (xxxxxx) TOO SHORT FOR [file
specification]

An error occurred in the named link item.
This could result from incorrect output
generated by a translator (e.g., no argument
is seen on an END block when one is
required). The user should retranslate the
module.

LOADING MODULE [name]

LINK-10 is in the process of loading the
named module.

LINK [name] ALREADY ASSIGNED

The user has previously assigned the
specified name to another link. This attempt
is ignored. The user should specify a
different name if he wants one associated
with the link.

LINK NUMBER [number] NOT IN CORE (1)

The named link could not be found in core.

LINK NU~IDER [number] NOT LOADED

The indicated link has not yet been loaded.
This can happen if the user specifies link
numbers, instead of link names, as arguments

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

E-l8

LINK-lO Messages

LNN %W %W

LSS * %I

MDS %W %W

MNS %I %I

MOV %I %I

MPS %I %I

to the INODE switch and then forgets the
numbers. The INODE switch is ignored. The
use of link numbers as arguments is not
reconunended.

LINK [name] NOT ASSIGNED

The user specified a name of a link on the
INODE switch and LINK-lO has not yet loaded a
link with that name. The INODE switch is
ignored.

LIBRARY SEARCH SYMBOLS (ENTRY POINTS)

This is the response to the IENTRY switch.

MULTIPLY-DEFINED GLOBAL SYMBOL [symbol] IN
HODULE [name] DEFINED VALUE = [value], THIS
VALUE = [value]

The user has given an existing global symbol
a value different from its original one. The
second occurrence of the global symbol is in
the named module. The currently defined
value is used. The user should change the
name of the symbol or reassemble one of the
files with the correct parameters.

MAP SORTING NOT YET IMPLEHENTED

Alphabetic and numeric sorting of the map
file is not yet implemented. The symbols
appear in the order in which they were placed
in the symbol table.

MOVING LOW SEGMENT TO EXPAND AREA [area]

This message indicates that LINK-IO is making
inefficient use of core. In future loads of
the same programs, the user should allocate
more core to LINK-IO at the beginning of the
load. Area is one of the following:
LC=user's low segment code, HC=user's high
segment code, LS=local symbol table, FX=fixup
area, GS=global symbol table, and DY= dynamic
data area.

MAP SEGMENT

Indication that the LINK-lO module LNru1AP has
begun to write a map file.

E-l9

LINK-10 14essages

MRN %I %I

MSS %W %W

MTB %W %W

MTS %W %W

NCL %W %\'1

NCX %W %I

NEB %W %W

MULTIPLE REGIONS NOT YET IMPLEMENTED

Overlay structures consisting of more than
one region are not yet supported.

MAXCOR SET TOO SMALL, INCREASING TO nK

The current value of MAXCOR is too small for
LINK-10 to operate. In future loads of this
program, the user can save LINK-IO time by
setting MAXCOR to this new expanded size at
the beginning of the load.

MAXCOR TOO BIG,nK USED

The user attempted to set MAXCOR to a value
so large that the low segment would be
greater than the start of the high segment.
The value of n is usually l28K.

MAXCOR TOO SMALL, AT LEAST nK IS REQUIRED

The user specified the /MAXCOR switch with an
argument that is below the minimum size
LINK-10 requires as its low segment. The
switch is ignored. The minimum size is
dependent upon the code already loaded. The
user should respecify the switch.

NOT ENOUGH CORE TO LOAD JOB, SAVED AS [file
specification]

The user's program was too large to load into
core. Thus, LINK-IO created a saved file on
disk and cleared user core. The user can
perform a GET or RUN operation on the program
to load it into core. If the core image is
still too big, the user can either employ a
bigger machine or obtain a larger core limit
(e.g., increase CORMAX).

NOT ENOUGH CORE TO LOAD AND EXECUTE JOB, WILL
RUN FROM [file specification]

The user's program was too large to load into
core and LINK-10 created a saved file on
disk. It automatically executes the program
by performing a RUN UUO. However, the saved
file remains on disk and the user must delete
it, if he wishes.

NO END BLOCK SEEN FOR [module]

The end block (type 5) has not been seen for
the named module. This can happen if two
name blocks (type 6) are seen without an

E-20

LINK-10 Messages

NED

NSA

NYI

) ORC (OLC I
t

OLS
OFX
OGS

(OEL)
)OEM ~
)OES (
~ OEX)

%F %E

* %1

%W %W

%F %F

%W %W

intervening end block, or if the end of the
file was seen before the end block. Although
this message is not fatal, usually fatal
errors follow.

NON-EXISTENT DEVICE [dev]:

The user has specified a device that does not
exist in the system. The user can re-edit
the input files to correct the device name or
type control-C to abort the load.

NO START ADDRESS

The start or reenter address is zero because
the user failed to specify a start address
either in the END statement of the source
program or with the /START switch.

NOT YET IMPLEMENTED - /switch

The user issued a switch that is not
implemented in this version of LINK-1D.

ERROR OUTPUTTING AREA I ~i I_STATUS (xxxxxxl

An error occurred while writing out the named
area (LC=user's low segment code, HC=user's
high segment code, LS=local symbol table,
FX=fixup area, and GS=global symbol table).
The status is represented by the right half
of the file status word. Refer to
DECsystem-10 Monitor Calls for the
explanation of the file status bits.

OUTPUT ERROR ON
FILE CLOSED.
[xxxxxx]

JOB
I ~OLI XPN FILE.
CONTINUING STATUS

An error has occurred on the output file.
The output file is closed at the end of the
last data that was successfully output. The
status is represented by the right half of
the file status word. Refer to DECsystem-1D
Monitor Calls for the explanation of the file
status bits.

E-2l

LINK-IO Messages

OFN %F %F

OHN %F %F

OMN %F %F

OOV %F %F

OS2 %I %I

PBI %W %W

OLD FOR'r.:?AN (F40) Iv10DULE NOT AVAILABLE

The standard released version of LINK-IO
includes the LNKF40 module that loads F40
code. However, the installation has removed
it by loading a dummy version of LNKF40 and
thus LINK-lO is unable to handle F40 compiler
output. The user should request his
installation to load a version of LINK-lO
with the real LNKF40 module.

OVERLAY HANDLER NOT LOADED (1)

The internal symbols in the overlay handler
could not be referenced. This is either an
internal error or a user error if the user
supplied his own overlay handler.

OBSOLETE MONITOR WILL NOT SUPPORT LINK-lO

I,INK-lO requires a monitor that contains the
DEVSIZ UUO.

OUTPUT ERROR FOR OVERLAY FILE-STATUS (xxxxxx)

An error has occurred while writing the
overlay file. The status is represented by
the right half of the file status word.
Refer to DECsystem-lO Monitor Calls for the
explanation of the file status bits.

OVERLAY SEGMENT PHASE 2

Indication that the LINK-lO module LNKOV2 has
begun its second phase of writing the overlay
file.

PROGRAM BREAK [address] INVALID IN [module]
FOR [file specification]

The last address allocated by the specified
module is greater than 256K. The user should
modify the modules of his load list to reduce
the program size to less than 256K. This
error condition is usually caused by the user
dimensioning arrays too large.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

E-22

LINK-IO Messages

lPLC I PHC
PLS
PFX
PGS

PSF

RCF

RED

RER

RGS

RLC

RME

%I %I

%F %F

%F %F

%I %I

%I %I

%I %I

* %I

* %F

A~A Il! I OVE~LOWING TO DSK

The job is too large to fit into the allowed
core and the named area is being moved to
disk (LC=user low segment code, HC=user high
segment code, LS=local symbol table, FX=fixup
area, and GS=global symbol table).

POLISH SYMBOL FIXUPS NOT YET IMPLEMENTED

The requested feature is not yet available.

RELOCATION COUNTER TABLE FULL

The relocation counter table is a fixed
length and cannot be expanded in the current
version of LINK-10. This restriction will be
eliminated in a future release.

REDUCING LOW SEGMENT TO [n] K

LINK-10's internal tables have
and core has been reclaimed.
occurs near the end of loading.

REQUEST EXTERNAL REFERENCES

been deleted
This message

This is the response to the /REQUEST switch.

REHASHING GLOBAL SYMBOL TABLE FROM [old size]
TO [new size]

LINK-10 is expanding the global symbol table
either to the next prime number as requested
by the user (via /HASHSIZE) or to its next
expansion of about 50%. In future loads of
this program, the user can save LINK-10 time
by setting the hash table to this new
expanded size at the beginning of the load.

RELOC.CTR. [initial value] [current value]
(octal)

This is the response to the /COUNTER switch.

REMAP ERROR (1)

The REMAP UUO failed.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report to DEC.

E-23

LINK-lO Messages

RPR %F %F

RUC %F %F

SIF %F %F

SFU %I %I

SNC %F %F

RESET PAST ROOT NOT ALLOWED

The user attempted to move LINK-IO backwards
from its current position on the path to a
position beyond the root link. For example,
if LINK-IO is positioned after the fourth
link in a path, the largest negative number
the user can specify as an argument to the
/NODE switch is -3.

RETURNING UNAVAILABLE CORE (I)

LINK-IO's space allocator received some words
that did not fit into the area to which they
were to be returned. This is an internal
error in LINK-IO.

SYMBOL INSERT FAILURE, NON-ZERO HOLE FOUND
(1)

An internal LINK-IO error. LINK-IO's hashing
algorithm failed. A symbol already exists in
the location in which LINK-IO needs to place
the new symbol. The error may disappear if
the user loads the files in a different
order.

SYMBOL TABLE FOULED UP (1)

An internal LINK-IO inconsistency. LINK-IO
cannot locate the TITLE triplets in order to
store the lengths of the control sections.
The loading process continues. Any maps
requested by the user will not contain the
lengths of the control sections.

SYMBOL [symbol] ALREADY DEFINED, BUT NOT AS
COMMON

The user has defined a non-COMMON symbol with
the same name as a COMMON symbol. The user
should decide which symbol definition he
wants. If he uses the COMMON definition, the
COMMON area should be loaded first.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report (SPR)
to DEC.

E-24

LINK-IO Messages
SNL %I %I

SNP %W %W

SOE %F %F

SSN %I %I

SST %I %I

STC %I %I

T13 %F %F

SCANNING NEW COHHAND LINE

LINK-IO has completed the scanning and
processing of the current command line and is
ready to accept the input on the next line.

SUBROUTINE [name] IN LINK NUMBER [number] NOT
ON PATH FOR CALL FROM LINK NUMBER [number]

The named subroutine is not in a successor on
the same path as the calling link, but is in
another path. The user should reconstruct
his overlay structure and place the
subrout~ne on the correct path. Otherwise, a
call to an undefined subroutine will occur at
run time.

SAVE FILE OUTPUT ERROR - STATUS (xxxxxx)

An error has occurred on the save file. The
file is closed at the end of the last data
that was successfully output. The status is
represented by the right half of the file
status word. Refer to DECsystem-l0 Monitor
Calls for the explanation of the file status
bits.

SYMBOL TABLE SORTING NOT YET IMPLEMENTED

Alphabetic and numeric sorting of the symbol
table is not yet implemented. The symbols
appear in the order in which they were placed
in the symbol table.

SORTING SYMBOL TABLE

LINK-IO is arranging the
order specified by the
switch, and if required,
symbols from the new
indicated on the /SYMSEG,
switch.

SYMBOL TABLE COMPLETED

symbol table in the
user via the /SYSORT
is converting the
to old format as
/SYMBOL, or /DEBUG

The symbol table has been sorted and moved
according to the user's request via the
/SYMSEG, /SYMBOL, or /DEBUG switch.

LVAR (TYPE 13) CODE NOT IMPLEMENTED

LINK item type 13 (LVAR) is not implemented
in LINK-IO nor supported by DEC. The TWOSEG
pseudo-op in the MACRO-IO language should be
used.

E-25

LINK-10 Messages

TDS %W %W

TEC %F %F

TSO %F %F

TTF %W %W

UGS * *

URC %I %I

TOO LATE TO DELETE INITIAL SYMBOLS

The /NOINITIAL switch was placed in the
command string after the first file
specification. Because this switch was not
first in the command string, LINK-IO's
initial symbol table was loaded.

TRYING TO EXPAND COMMON

An attempt was made to expand a COMMON area.
The largest occurrence of the COMMON area of
a given name must be linked first. Once
defined, the size cannot be expanded although
new COMMON areas of different names can be
defined. The user should -load the largest
occurrence first.

CANNOT LOAD TWO SEGMENT MODULE INTO ONE
SEGMENT

The user attempted to force two segments into
one segment via the /SEGMENT switch.
However, the binary file dos not contain the
necessary information (i.e., the length of
the high segment) in LINK item type 3. This
situation is usually caused by a one-pass
compiler (e.g.,ALGOL).

TOO MANY TITLES FOUND (1)

An internal LINK-10 ERROR. WHEN LINK-10
produces the index for the map it has found
more program names than actually exist. The
symbol table is in error.

UNDEFINED GLOBAL SYMBOLS

This message can occur for two reasons. If
it is the response to the /UNDEFINED switch,
the severity level is %I. If it occurs at the
end of loading, the message and severity
levels are %F.

UNKNOWN RADIX-50 SYMBOL CODE

Bits 0-3 of the first word of the link item
contain an unknown symbol code. Either the
translator is generating incorrect code or
the binary file is bad. The user should
recompile the file.

(1) This message is not expected to occur. If it does, please notify
your Software Specialist or send a Software Performance Report to DEC.

E-26

LINK-lO Messages

USA %W %W

USC %W %W

VAL * %I

XCT * %I

UNDEFINED STARTING ADDRESS

The user has given a global symbol as the
start address and the symbol is currently
undefined. The user should load the module
that defines the symbol.

UNDEFINED SUBROUTINE [name] CALLED IN LINK
NUMBER [number]

A reference to the named subroutine has
occurred in the specified link, and LINK-lO
has not yet loaded the referenced subroutine.
If this subroutine is required for execution,
the user should reload and include the
required modules on the path on which they
were referenced.

[symbol] [value] [status]

This is the response to the /VALUE switch.

[name] EXECUTION

The loading process is complete and the
user's program has begun execution.

E-27

APPENDIX F

LOADER AND LINK-IO DIFFERENCES

This appendix is intended as an aid for users who have been employing
the LOADER program and who are now converting to the LINK-IO program.
Both programs are linking loaders. Both have the same basic functions
of loading and relocating user's object code modules and resolving
references among the modules. But LINK-IO is not just an updated
version of LOADER. It is a completely new, more sophisticated, and
more flexible piece of software. This appendix itemizes the
differences between the two programs in order to facilitate conversion
to LINK-lO.

LOADER

The default output device is
TTY.

The default name of the MAP
file is MAP.MAP.

Command files are specified
in the form

* file @
The default extension of
the command file is .TMP.

Input and output specifications
are separated by a back-arrow
(~). Thus, an output file
is defined as being on the
left side of the back-arrow.

F-l

LINK-10

The default output device is
DSK.

The default name of the MAP
file is the name of the last
program with a start address.
If there is no program with a
start address, the default name
is nnnLNK.MAP, where nnn is
the user's job number.

Command files are specified
in the form

* @ file
The default extension of
the command file is .CCL.

Input and output specifications
may be separated by an equals
sign (=), but this is not
required. An output file is
specified by giving a file
specification followed by an
output switch.

LOADER and LINK-IO Differences

The only output file
produced by LOADER is
a map file.

Exit conditions are /G,
altmode, and tZ.

Line terminators
(e.g. <carriage return, line feed»
are treated in the same way
as commas (i.e., they terminate the
specification). File dependent
switches remain in effect until
overridden by a subsequent switch
or until the end of the load.
The most recently specified
source device remains the default
until a new device is specified
or until the end of the load.
Defaults carry across lines.

To load local symbols for
FILEI and FILE2 and
then load DDT, the following
sequence could be used:

*/S
*FILEI,FILE2
*/W/D$

To search FILEA and FILEB
in library search mode, the
sequence:

*/L
* FILEA,FILEB

could be used.

F-2

LINK-IO can be instructed
to produce map, save, log,
symbol, and XPN files.

The only exit condition is
/GO.

LINK-IO has a line oriented
scanner. All file-dependent
switches are turned off at the
end of the line to which
they belong. The most recently
specified source device remains
the default until a new device
is specified or until the end
of a line is reached. Standard
defaults are restored at the
beginning of each line. In
general, it is best to place all
the commands for loading a
program on a single line. A
hyphen is used as the line
continuation character.

To load mcql symbols for
FILEI and FILE2 and then
to load DDT, the following
sequence is used:

*/LOCALS FILEI,FILE2,
*/TEST /GO

Note that if the /LOCALS switch
had appeared on a line by
itself, it would have had no
effect.

To search FILEA and FILEB
in library search mode, the
sequence is:

*/SEARCH FILEA,FILEB
The sequence

*/SEARCH
*FILEA,FILEB

does not cause FILEA and FILEB
to be searched. Instead, they
are loaded in their entirety.

LOADER and LINK-lO Differences

When performing a search of
the default libraries at the
end of the load, LOADER
makes one pass through all
required libraries. In
addition, LIB40 is always
searched.

The /D and /T switches
load with local symbols.
This mode remains in effect
until it is turned off with
the /W switch, and remains
off until another switch
which loads local symbols
is given.

If there is no code in
the low segment, LOADER
will not save the
symbols.

LINK-lO performs multiple passes
through all required libraries
until no undefined symbols
remain or until no additional
routines have been loaded. In
addition, LIB40 is not
automatically searched unless it
is required by an F40 program.
Thus, when loading MACRO
programs which utilize routines
in LIB40, the user must
explicitly request that LIB40 be
searched. Also, JOBDAT.REL is
not searched unless the
/NOINITIAL switch is used.
LINK-IO automatically
initializes its global symbol
table to include JOBDAT symbols.

The /TEST and /DEBUG switches
instruct LINK-IO to load all
subsequent files with their
local symbols. The /NOLOCAL
switch can be used to suppress
the loading of local symbols.
However, since the /NOLOCAL
switch is file dependent, it is
cleared at the end of the line
and load with local symbols mode
is reinstated.

If there is no code in the low
segment, LINK-IO will save
the symbols only if .JBDDT is
non-zero or user gave the

/SYMSEG switch.

The following table lists each LOADER switch and the LINK-IO switch
which performs the nearest equivalent action. Note that there is not
always a one-to-one correspondence between the action performed by the
LOADER switch and by the LINK-IO switch. Refer to Chapter 4 for the
complete descriptions of the LINK-lO switches.

F-3

LOADER and LINK-lO Differences

LOADER

/A

/B

/lB

/nnnnB

/C

/D

/E

/F

/IF

(2F

/G

/nnnG

/H

/lH

/nnnnH

/-H

/I

/J

InK

/-K

/L

/M

/1M

/N

/nnnO

/P

/Q

LINK-lO

/CONTENT:ZERO

/SYMSEG:LOW

/SYMSEG:HIGH

/PATCHSIZE:nnnn

No equivalent switch. LINK-lO does
not support the old CHAIN facility.

/TEST:DDT or /TEST:MACRO

/EXECUTE

/SYSLIB

/FORSE

/FOROTS

/GO

/START:nnn

/SEGMENT:LOW

/SEGMENT:HIGH

/SET:.HIGH.:nnnn

/SEGMENT:DEFAULT

/NOSTART

/START

/RUNCOR:n

No equivalent switch. Use /RUNCOR.

/SEARCH

/MAP:END

/MAP:END/CONTENT:LOCALS

/NOSEARCH

/SET: • LOW. :nnn

/NOSYSLIB

/SYSLIB at the end of the command
string.

F-4

LOADER and LINK-IO

/R

/S

/T

/U

/V

I-v
/W

/X

/y

/Z

Differences

No equivalent switch. LINK-IO does
not support the old CHAIN facility.

/LOCALS

/DEBUG:DDT or /DEBUG:MACRO

/UNDEFINED

/OTS:HIGH

/OTS:LOW

/NOLOCALS

/CONTENT:NOZERO

/REWIND

/RUN:LINK

F-5

GLOSSARY

Absolute Virtual Address

A fixed location in user virtual address space which cannot be
relocated by the software. However, it can still be translated
to a physical address by the hardware. For example, the
high-speed accumulators on the DECsystem-lO occupy locations 0
through 17 (octal) in the user's virtual address space. All
modules that reference the accumulators must reference these
locations. Thus the addresses 0 through 17 (octal) are absolute
virtual addresses.

Absolute-Module

A module whose program counters are set to absolute addresses
only.

Absolute Overlay

A link that is assigned a fixed location in user virtual address
space. It must be loaded into that location on every call.

Address Mapping

The assignment of user virtual address space to the physical
address space in computer memory. This is automatically
performed by the DECsyst~m-IO monitor and is completely invisible
to user programs. .

Assemble

To prepare a machine-language module from a symbolic-language
module by substituting the actual numeric operation ,codes for
symbolic operation codes, and the absolute or relocatable
addresses for symbolic addresses.

Assembler

A program which accepts symbolic assembly code and translates it
into machine instructions. ~~CRO-lO is the standard DECsystem-lO

GLOSSARY-l

Glossary

assembler supplied by DEC.

Backward Reference

A reference to a global symbol that is not in the current link,
but is in a link on the path from the current link back to the
root link.

Base Address

An address used as a basis for computing the value of some other
address. This computation is usually of the form

final address = base address (+ or -) offset.

Bound Backwards

The requirement that for any link, all other links bound to that
link are on the same path to the root link.

Bound Path

The required path to be loaded when a particular link is loaded
into the user's virtual address space. In other words, path
loading will be performed on links on the bound path.

Call Reference

A reference to another link via the standard calling sequence

Clear

MOVEI l6,ARGLIST
PUSHJ l7,ADR

To erase the contents of a location, a block of memory, or a mass
storage device by replacing the contents with blanks or zeroes.

COMMON Area

A section in a program's address space which is set aside for
common use by many modules. COMMON is usually set up by modules
written in the FORTRAN language. It is used by
independently-compiled modules to share the same data locations.

Conflicting Lateral Reference

A lateral reference to a link that occupies either all or a
portion of the address space of the current link.

GLOSSARY-2

Glossary

Control section

A unit of code (instructions and/or data) that is considered an
entity and that can be relocated separately at load time without
destroying the logic of the program. Control is passed properly
from one Control section to another regardless of their relative
positions in user virtual address space. A Control section is
identified by a relocation counter and thus is the smallest unit
of code that can be relocated separately.

Current Link

The link pointed to by the program counter.

Default Directory

The directory in which the Monitor searches when a directory
specification has not been given by the user. Typically, this is
the UFD (User-file directory) corresponding to the user's
logged-in project-programmer number but it may another UFD or a
SFD (sub-file directory).

Directory

A file which contains the names and pointers to other files on
the device. The MFD, UFDs, and SFDs are directory files. The
MFD is the directory containing all the UFDs. The UFD is the
directory containing the files existing in a given
project-programmer number area. The SFD is a directory pointed
to by a UFD or a higher-level SFD. The SFDs exist as files under
the UFO.

Executable Reference

A reference that causes a memory reference or PC transfer to
another link when the instruction at the location referenced is
executed (e.g., MOVE 1,AOR). Call references are a subset.

Extended Path

One of the many paths of the links that occupy non-conflicting
address spaces beginning with the current link and going away
from the root.

External Symbol

A global symbol which is referenced in one module but defined in
another module. The EXTERN statement in MACRO-10 is used to
declare a symbol external. A subroutine name referenced in a
CALL statement in a FORTRAN module is automatically declared
external.

GLOSSARY-3

Glossary

File

An ordered collection of characters or 36-bit words containing
computer instructions and/or data. A file is stored on a device,
such as disk or magnetic tape, and can be of any length, limited
only by the available space on the device and the user's maximum
space allotment on that device.

File Specification

A list of identifiers which uniquely specify a particular file.
A complete file specification consists of: the name of the
device on which the file is stored, the name of the file
including its extension, and the name of the directory in which
the file is contained.

Forward Reference

A reference to a global symbol that is in a link on the path
beginning with the current link and going away from the root
(i.e., is on the extended path).

FUDGE2

GET

GLOB

A system utility program used to update libraries containing one
or more relocatable binary modules and to manipulate modules
within these libraries.

To transfer a saved program from a file into core memory using a
loading program or the Monitor. The GET command places a program
into memory. The RUN command performs the same operation and, in
addition, starts the program. The GET operation differs from the
LOAD operation (refer to LOAD).

A system utility program used to read collections of relocatable
binary modules which have been loaded together (from both library
files and separate files) in order to generate an alphabetical
cross-referenced list of all the global symbols encountered.
Mlen a program is composed of many modules which communicate via
global symbols, it is useful to have an alphabetical list of all
global symbols with the names of the modules in which they are
defined and referenced.

Global Request

A request to LINK-IO to link a global symbol to a module.

GLOSSARY-4

Glossary

Global Symbol

A symbol that is accessible to modules other than the one in
which it is defined. The value of a global symbol is placed in
LINK-lO's global symbol table when the module containing the
symbol definition is loaded.

High Segment

That portion of the user's addressing space, usually beginning at
relative location 400000, which generally is used to contain pure
code that can be shared by other users. This segment is usually
write-protected in order to protect its contents. The user can
place information into a high segment with the TWOSEG pseudo-op
in MACRO-lO. Higher-level languages, such as COBOL and FORTRAN,
also have provisions for loading pure code in the high segment.

Initialize

To set counters, switches, or addresses to zero or other starting
values at prescribed points in the execution of a computer
routine, particulary in preparation for reexecution of a sequence
of code.

Internal Symbol

A global symbol located in the module in which it is defined. In
a MACRO-IO program, a symbol is declared internal with the INTERN
or ENTRY pseudo-op~ These pseudo-ops generate a global
definition which is used to satisfy all global requests for the
symbol. In FORTRAN programs, internal symbols are generated to
match the names of SUBROUTINEs, FUNTIONs, and ENTRYs. An
internal symbol is similar to a library search symboll however,
it will not cause a module to be linked in search mode.

Job Data Area (JOBDAT)

Label

The first 140 octal locations of a user's virtual address space.
This area provides storage for certain data items used by both
the Monitor and the user's program. Refer to the DECsystem-lO
Monitor Calls Hanual.

A symbolic name used to identify a statement or an item of data
in a program.

Lateral Reference

A reference to a global symbol in a link that is not on the path
or on an extended path of the current link.

GLOSSARY-S

Glossary

Library

A file containing one or more relocatable binary modules which
may be loaded in Library Search Mode. FUDGE2 is a system utility
program which enables users to merge and edit a collection of
relocatable binary modules into a library file. PIP can also be
used to merge relocatable binary modules into a library, but it
has no facilities for editing libraries.

Library Search Hode

The mode in which a module (one of many in a library) is loaded
only if one or more of its declared entry points satisfy an
unresolved global request.

Library Search Symbol (Entry Symbol)

Link

A list of symbols that are matched against unresolved symbols in
order to load the appropriate modules. This list is used only in
library search mode. A library search symbol is defined by an
ENTRY statement in MACRO-lO and BLISS-lO and a SUBROUTINE,
FUNCTION, or ENTRY statement in FORTRAN.

1. To combine independently-translated modules into one module
in which all relocation of addresses has been performed
relative to that module and all external references to
symbols have been resolved based on the definition of
internal symbols.

2. A contiguous section of user virtual address space.
known as an overlay.

Also

Link Name

The (optional) name assigned by the user to a link.
can be any number of SIXBIT characters; however;
characters are recommended.

Link Number

This name
six or less

An arbitrary number of 18 bits assigned by LINK-10 to each link.

Linker

A program that combines many input modules into a single module
for loading purposes. Thus, it allows for independent
compilations of modules. Typically, it satisfies global
references and may combine control sections.

GLOSSARY-6

Glossary

Linking Loader

Load

A program that provides automatic loading, relocation, and
linking of compiler and assembler generated object modules.

To produce a core image and/or a saved file from one or more
relocatable binary files (REL files) by transforming relocatable
addresses to absolute addresses. This operation is not to be
confused with the GET operation, which initializes a core image
from a saved file (refer to GET) •

Local Symbol

A symbol known only to the module in which it is defined.
Because it 1S not accessible to other modules, the same symbol
name with different values can appear in more than one module.
These modules can be loaded and executed togetiler without
conflict. Local symbols are primarily used when debugging
modules; symbol conflicts between different modules are resolved
by mechanisms in the debugging program.

Low Segment

The segment of user virtual address space beginning at zero. It
contains the Job Data Area and I/O buffers. The length of the
low segment is stored in location .JBREL of the Job Data Area.
When writing two-segment programs, it is advisable to place data
locations and impure code in the low segment.

Main Program

The module containing the address at which object program
execution normally begins. Usually, the main program exercises
control over the operations performed and calls subroutines to
perform specific functions.

Module

- - The smallest entity that can be loaded by LINK-IO. It is composed
of a collection of control sections. In MACRO-IO, the code
between the TITLE and END statements represents a module. In
FORTRAN, the code between the first statement and the END
statement is a module. In COBOL, the code between the
IDENTIFICATION DIVISION statement and the last statement is a
module.

Module Origin

The first location occupied by the module in user virtual address
space.

GLOSSARY-7

Glossary

Non-automatic Overlay

Each link is controlled exclusively by source level code, as in
CALL CHAIN (arg,arg2). The user is responsible both for the call
to the overlay handler and for the overlay structure.

Non-executable Reference

A reference to a location in another link that is not directly
executable, for example,

JRST @TABLE(AC)

where TABLE is

TABLE:EXP ADR,ADR1,ADR2

Object Hodule

The primary output of an assembler or compiler, which can be
linked with other object modules and loaded into a runnable
program. This output is composed of the relocatable machine
language code for the translated module (i.e., link items),
relocation information, and the corresponding symbol table
listing the definition and use of symbols within the module.

Object Time System

The collection of modules that supports the compiled code for a
particular language in order to perform various utility
functions. This collection usually includes I/O and
trap-handling routines.

Offset

The number of locations or bytes relative t.CJ 'i:Jle base of an
array, string, or block. For example, the number of locations
relative to zero that a Control Section must be moved before it
can be executed.

Operating System

The collection of programs that administer the operation of the
computing system by scheduling and controlling the operation of
user and system programs, performing I/O and various utility
functions, and allocating resources for efficient use of the
hard\1are.

Overlay

1. The technique of repeatedly modifying the user's virtual
address space by replacing one or more links. When one link
is no longer needed in storage, another link can replace all
or part of it.

2. Refer to Link(2.).
GLOSSARY-8

Glossary

Overlay Handler

Path

The routine responsible for ensuring that all required links are
in core when needed.

The address space occupied by all links beginning with the
current link and going back to the root link.

Path loading

The requirement that the path from a link be loaded whenever a
particular link is loaded into the address space.

Physical Address Space

A set of separate memory locations where information can actually
be stored (i.e., core memory) for the purpose of program
execution.

Program

A collection of routines which have been linked and loaded to
produce a saved file or a core image. These routines typically
consist of a main program and a set of subroutines, some of which
may have come from a library.

Promote

To move a data area from its current link into a link closer to
the root link. This promotion is often used for COMMON areas.

Pure Code

Code which is never modified in the process of execution.
Therefore, it _ is}2ossible to_ let_maIly __ users_share _the--same copy -----------of -a program.

Read Only Link

A link in which changes are not preserved. The original copy of
the link is loaded each time the link is called.

GLOSSARY-9

Glossary

REL File

A file containing one or more relocatable object modules. These
object modules are composed of li items (refer to Appendix A).

Relocatable Address

An address within a module that is specified as an offset from
the first location in that module.

Relocatable Control Section

A control section whose addresses have been specified relative to
zero. Thus, the control section can be placed into any area of
core memory for execution.

Relocatable Overlay

A link that is not assigned a fixed location in user virtual
address space, and thus it may be loaded in any unoccupied
location. All required relocation is done at execution time.

Relocation Counter

1. The number assigned by LINK-10 as the beginning address of a
Control Section. This number is assigned in -the process of
loading specific Control Sections into a saved file or a core
image and is transformed from a relocatable quantity to an
absolute quantity.

2. The address counter that is used during the assembly of
relocatable code.

Relocation Factor

The contents of the relocation counter for a control section.
This number is added to every relocatable reference within the
Control Section. The relocation factor is determined from the
relocatable base address for the control section (usually 0 and
400000) and the actual address in user virtual address space at
which the module is being loaded.

Root Link

The code that-must always be in the user's virtual address space.
In addition to containing part of the user's program, it contains
the overlay handler.

Routine

A set of instructions and data for performing one or more
specific functions.

GLOSSARY-10

Glossary

Segment

An absolute Control Section.

Source Language Program

The original, untranslated version of a program written in a high
level language (e.g., FORTAN, COBOL, MACRO). A translator
(assembler, compiler, or interpreter) is used to perform the
mechanics of tranlating the source program into a machine
language program that can be run on the computer. Source
programs, when translated, produce object modules as their
primary output. A program may exist as a source program, an
object module, and a runnable core image.

Symbol

Any identifier (composed of SIXBIT characters) used to represent
a value that mayor may not be known at the time of its original
use in a source language program. Symbol appear in source
language statements as labels, addresses, operators, and
operands.

Symbol Binding

To resolve references in one module to symbols which are defined
(i.e., are assigned a value) in another module.

Symbol Table

A table containing entries and binary values for each symbol
defined or used within a module.

Translate

To compile or assemble a source program into a machine language
program, usually in the form of a (relocatable) object module.

Tree Structure

The method of arranging links such that each link has only one
immediate ancestor but may have more than one successor.
However, the root link has no ancestor.

User Virtual Address Space

A set of memory addresses within the range of 0 to 256K words.
These addresses are mapped into physical core addresses by tne
paging or relocation-protection hardware when a program is
executed. On a KAlO processor, the range of addresses is limited
by the amount of physical core available to a given user.

GLOSSARY-ll

Glossary

User's Program

All of the code running is a user virtual address space.

Zero Length Module

A module containing symbol definitions but no instruction or data
words (e.g., JOBDAT). Note that the word "length" in this context
refers to the program length of the module after loading.

GLOSSARY-12

Absolute link, 4-36
Absolute symbols, 4-3
Action switches,

Delayed, 3-6, 4-5, 4-7,
4-11, 4-14, 4-16, 4-17,
4-22, 4-24, 4-25, 4-33,
4-34, 4-36, 4-39, 4-43,
4-44, 4-48, 4-50, 4-54,
4-56, 4-59, 4-61, 4-62

Inunediate, 4-2, 4-5, 4-6,
4-9, 4-10, 4-16, 4-20,
4-27, 4-28, 4-29, 4-30,
4-32, 4-41, 4-42, 4-48,
4-57, 4-59, 4-62

Address,
Ignoring start, 4-31
Specifying start, 4-51
Start, 2-4, 3-2, 3-11,

4-13, 4-31, 4-51, B-2
ALGLIB, 4-32
AlgorithrllS,

LIHK-lO Switch, 3-4
Allocating cm"U·ION, 4-2
Allocating disk space, 4-11
Allocating patching space,

4-38
Area,

cormaN, 4-2
DSK Disk, 2-5
NEW Disk, 2-5
OLD Disk, 2-5
SYS Disk, 2-5

Areas,
Expanding, 4-15

Arranging symbol table,
4-55 /

Assigning 10\'1 segment size,
4-43

Assigning program name,
4-44

Assigning valueR, 4-9
Assignment d l3lay, 1-2
Automatically,

Using LINK-10, 1-4, 2-1
Auxiliary output, 1-1, 1-3

/BACKSPACE, 3-8,4-1 -
Backspacing tapes, 4-1
Backward referenGes, 5-3
ninary files, 1-1
Binary files,

Relocatable, A-l
Binding,

Object time system, 4-35
Blank COr-maN, 4-2
Block,

Directory, B-7

INDEX

Calling sequence,
Standard, 4-41, B-1

Central processor,
Specifying the, 4-7

Changing defaults, 3-3, 4-8
Changing switches,

Status, 3-6
Characteristics of overlay

structure, 4-36
Clearing DECtapes, 4-63
Clearing directory, 4-63
Clearing initial symbol

table, 4-28
COBDDT, 2-2, 4-7
COBOL programs,

Loading, 6-1
Code,

Impure, 4-46
Pure, 4-46
Relocatable, 1-1

• COr·1N., 4-2
Command,

COHPIL-class, 1-4
DEBUG, 1-4, 2-2
EXECUTE, 1-3, 1-4, 2-1
GET, 1-3, 4-43
LOAD, 1-4, 2-1
R LINK, 1-4, 1-5, 3-1
RUN, 1-3
SAVE, 2-1, 2-6
SSAVE, 2-6
START, 1-3, 2-1

Command Format,
COMPIL-class, 2-2

Con~and string, 3-1, 3-4
Conunand Strings,

LINK-10, 3-1
Comments, 3-1
/COHHON, 3-8, 4-2
COr.·1MON,

Allocating, 4-2
Blank, 4-2

COHi'10N Area, 4-2
Cornmon overlay modules, 5-4
CONHON Symbols, 4-3
COH~IL r~ogram,1-4-
COMPIL Switches, 2-3, 2-4
COHPIL-class Command, 1-4
COMPIL-c1ass Command Fonnat,

2-2
/CONTENTS, 3-B, 4-3
Contents,

Hap file, 4-3
Continuation lines, 3-1,

3-4
Controlling message

verbosity, 4-60

INDEX-l

/CORE, 3-8, 4-5
Core,

Free, 4-15
Reserving, 4-49
Specifying free, 4-15

Core image, 1-2, 2-1, 2-6,
4-44, 4-50

Core image file,
Expanded, 3-11, 4-62

Core memory, 1-1
CORMAX, 4-15
/COUNTER, 3-8, 4-6
Counters,

Listing relocation, 4-6
Relocation, 3-8, 3-10,

4-6, 4-47
/CPU, 3-8, 4-7
Creating a saved file, 6-3
Creating XPN File, 4-62
Current link, 4-28

/D, 3-8
DDT, 2-2, 2-4, 4-7
IDDT, 2-4
/DEBUG, 3-7, 3-8, 4-7
DEBUG Command, 1-4, 2-2
Debugging, 1-3, 4-20, 4-21,

4-22
Debugging program, 2-2, 3-7,

3-11, 4-7, 4-56
Debugging program,

Loading a, 4-7, 4-56
DECtapes,

Clearing, 4-63
/DEFAULT, 3-3, 3-8', 4-8
Default values,

Initial, 3-2, 3-3, 3-8
Defaults,

Changing, 3-3, 4-8
Input, 3-2
Output, 3-2

/DEFINE, 3-8, 4-9
Defining save file, 4-50
Defining symbol file, 4-52
Definitions,

Suppressing symbol, 4-28
Delay,

Assignment, 1-2
Delayed action switches,

3-6, 4-5, 4-7, 4-11,
4-14, 4-16, 4-17, 4-22,
4-24, 4-25, 4-33, 4-34,
4-36, 4-39, 4-43, 4-44,
4-48, 4-50, 4-54, 4-56,
4-59, 4-61, 4-62

Delimiter, 2-3
Dependent link, 5-2
Designing overlay programs,

5-3, 5-7

Determining global symbol
names, 4-59

Device name, 2-2, 3-2
Device switches, 3-4, 4-1,

4-26, 4-43, 4-57
Differences,

LOADER and LINK-10, F-l
Directly,

Using LINK-10, 1-5, 3-1
Directory, 2-2, 3-2
Directory,

Clearing, 4-63
Directory block, B-7
Disk Area,

DSK, 2-5
NEW, 2-5
OLD, 2-5
SYS, 2-5

Disk overflow, 4-23
Disk space,

Allocating, 4-11
Drawing an overlay

structure, 5-3
DSK Disk Area~ 2-5

/E, 3-8
/ENTRY, 3-8, 4-10
Entry name symbols, 4-4
Entry name table, B-8
Entry points, 4-10, 4-28,

4-42
Entry points,

Overlay, B-1
ENTRY Statement, 4-10
Entry symbols, 2-5
/ERRORLEVEL, 3-8, 4-11, E-l
/ESTIMATE, 3-8, 4-11
Example of plotter output,

6-15
Example of using overlays,

6-12
Examples, 2-7, 6-1
Examples,

Overlay, 5-10
/EXCLUDE, 3-8, 4-12, 4-18
EXCLUDE/INCLUDE,

Permanent, 4-18
Temporary, 4-18

Exec mode program, 4-28
Executable version, 1-1;

1-3
/EXECUTE, 3-8, 4-13
EXECUTE Command, 1-3, 1-4,

2-1
Executing overlays, 5-11
Execution,

Specifying, 4-7, 4-13,
4-16, 4-56

INDEX-2

Exit condition switch, 3-1
Expanded core image file,

3-11, 4-62
Expanding areas, 4-15
Extended paths, 4-41, 5-3
Extension,

Filename, 2-2, 3-2
External symbols, 4-2
EXTTAB Table, 4-30, 4-41,

B-ll

Fatality of messages,
Specifying, 4-48

Feature,
MIXFOR, D-l

File,
Creating XPN, 4-62
Defining save, 4-50
Defining symbol, 4-52
Expanded core image, 3-11,

4-62
Log, 3-5, 3-9, 4-21, 4-22,

B-3
Map, 3-9, 4-22, 4-24
Overlay, 3-10, 4-19, 5-11,

B-2, B-7, B-8
Plotter, 3-10, 3-11
Save, 3-10, 4-44, 4-50
Saving XPN, 4-62
Specifying log, 4-21
Specifying map, 4-22
Symbol, 3-11, 4-52
XPN, 4-62

File dependent switches,
3-4, 4-13, 4-19, 4-20,
4-29, 4-31, 4-32, 4-35,
4-37, 4-46, 4-47, 4-51

File specification, 2-2,
3-1, 4-8

File specification switches,
Implicit, 4-8, 4-14, 4-15,

4-55, 4-56
Filename, 2-2, 3-2
Filename extension, 2-2,

3-2
Files,

Binary, 1-1
Output, 3-2, 3-4, 3-5,

----4--8-,- 4-16--
.REL, A-l
Relocatable binary, A-l

FMXFOR, D-l
FORLIB, 4-32
Format,

COMPIL-class Command, 2-2
Triplet, 4-52

FOROTS, 2-4, 3-8, 4-14
/FOROTS, 2-4, 3-8, 4-14
FOROTS,

Loading, 4-14

FORSE, 2-4, 3-8, 4-14
/FORSE, 2-4, 3-8, 4-14
FORSE,

Loading, 4-14
Forward references, 5-3
Forward tapes,

Spacing, 4-49
FRECOR, 4-15
/FRECOR, 3-9, 4-15
Free core, 4-15
Free core,

Specifying, 4-15
FUNCT. Sw)routine, C-l
FUNCTION Statement, 4-10
Functions,

Performing magnetic tape,
4-25

/G, 3-9
Generating global requests,

4-42
GET Command, 1-3, 4-43
GETOVL Subroutine, B-2
Global requests, 2-5, 4-42
Global requests,

Generating, 4-42
Undefined, 4-45, 4-54,

4-56
Global symbol names,

Determining, 4-59
Global symbol table, 3-9
Global syr~ol table,

Initial, 4-28
Global synfuols, 4-3, 4-4,

4-59, 5-3
Global symbols,

'l'yping in, 4-5 9
Undefined, 4-9

Globals,
Typing undefined, 4-56

/GO, 3-9, 4-16

Handler,
Overlay, 4-36, B-1

Hash table, 4-17
/HASHSIZE, 3-9, 4-17
lIashsize,

Recorrunended, 4-17
- -- Header 'llord, A-l

.HIGH., 4-6, 4-47
Hyphen, 3-1

Ignoring start address,
4-31

Image,
Core, 2-1, 2-6, 4-44,

4-50
Image file,

Expanded core, 3-11, 4-62

INDEX-3

Immediate action switches,
4-2, 4-5, 4-6, 4-9,
4-10, 4-16, 4-20, 4-27,
4-28, 4-29, 4-30, 4-32,
4-41, 4-42, 4-48, 4-57,
4-59, 4-62

Implicit file specification
switches, 3-7, 4-8,

4-14, 4-15, 4-55, 4-56
Impure code, 4-46
/INCLUDE, 3-9, 4-17
Independent link, 5-2
Inhibiting library

searching, 4-32
Inhibiting loading of

modules, 4-12
INIOVL Subroutine, B-2
Initial default values, 3-2,

3-3, 3-8
Initial global symbol table,

4-28
Initial low segment size,

4-5
Initial symbol table,

Clearing, 4-28
Initial symbol table size,

4-17
Initialization of LINK-lO,

1-4
Initiating overlays, B-1
Input defaults, 3-2
Input specifications, 3-2,

4-8
Input to LINK-lO, 1-1
Interactive options, 1-4,

3-6
Internal symbols, 4-2
Introduction to LINK-lO,

1-1
INTTAB Table, 4-10, 4-28,

B-ll
Item Types,

LINK, A-I

.JBDDT, 4-20
Job's current name, 2-6
JOBDAT, 4-28

Key,
RETURN, 3-1

/L, 3-9
Level,

Message, 4-11, E-l
Severity, 4-48, E-l

LIB40, 4-32
.LIBOL, 4-32
Libraries,

Searching, 4-54
System, 1-2, 2-4, 2-5,

3-10, 3-11, 4-16, 4-32,
4-45, 4-54

Library, 1-2
/LIBRARY, 2-4
Library,

User, 2-5, 3-10, 3-11,
4-33, 4-58

Library modules, 1-2
Library search mode, 2-5,

3-9, 3-10, 4-31, 4-45
Library search mode,

Suppressing, 4-31
Library search symbols, 3-8,

4-10, 4-28, 4-42
Library search sy~)ols,

Typing, 4-10
Library searches, 1-2, 2-5
Library searching,

Inhibiting, 4-32
System, 4-16

Line drawing, 4-39
Lines,

Continuation, 3-1, 3-4
/LINK, 2-4, 4-19, 5-9
Link,

Absolute, 4-36
Non-writable, 4-36
Overlay, 4-36
Relocatable, 4-36
Root, 4-36
Tree-structured, 4-36

Link control section, B-lO
Link header section, B-lO
LINK Item types, A-I
IJink name, 4-19
Link name table, B-8
l.ink number, 4-19
Link number table, B-7
Link permanent switches,

4-37
Link references,

Suppressing, 4-30
LINK-IO,

initialization of, 1-4
input to, 1-1
Introduction to, 1-1
Loading, 6-4

Link-lO,
Loading low segment core,

1-1
LINK-lO,

Output from, 1-2
LINK-IO Conunand Strings,

3-1
LINK-IO Differences,

LOADER and, F-l
LINK-IO Messages, E-l
IJINl,-lO J.1essages,

Suppressing, 4-11, 4-22
LINK-IO Switch Algorithms,

3-4

I~DEX-4

LINK-IO Switches, 2-3, 3-7,
4-1

Linking modules, 1-2
Linking symbols, 1-2
Links,

outputting, 4-19
Typing references to,

4-41
I.list,

Search, 2-5
Listing relocation counters,

4-6
/LMAP, 2-4
LOAD Command, 1-4, 2-1
Load time messages, E-l
LOADER and LINK-IO

Differences, F-l
LOADER Switches, 2-3, F-3
Loading,

Terminating, 4-16
Loading a debugging program,

4-7, 4-56
Loading COBOL programs, 6-1
Loading FOROTS, 4-14
Loading FORSE, 4-14
Loading high segment code,

4-34
Loading LINK-lO, 6-4
Loading local symbols, 4-20
Loading low segment code,

4-34
Loading low segment core

link-lO, 1-1
Loading MACRO programs, 6-2
Loaqing object time system,

4-35
Loading of modules,

Inhibiting, 4-12
Loading overlays, 5-11
Loading specified modules,

4-17
Loading symbols, 4-53
Loading the monitor, 6-8
Local symbol mode, 4-7
Local symbols, 2-4, 3-9,

4-4, 4-7, 4-20, 4-29,
4-52

Local symbols,
Loading, 4-20

/LOCALS, 3-9, 4-20
/LOG, 3-5, 3-9, 4-21
LOG,

Logical Name, 3-5, 4-21
Log file, 3-5, 3-9, 4-21,

4-22, B-3
Log file,

Specifying, 4-21
Logical Name LOG, 3-5, 4-21
/LOGLEVEL, 3-9, 4-22, E-1
LOGOVL Subroutine, B-3

• LOW , 4-47
Low segment size,

Assigning, 4-43
Initial, 4-5
Maximum, 4-23

• LOW., 4-6

/1'I., 3-9
MACRO programs,

Loading, 6-2
Hagnetic tape functions,

Performing, 4-25
MANTIS, 2-2, 4-7
Map, 2-4, 2-8, 3-4
/r:.1AP, 2-4, 3-9, 4-3, 4-22
Map file, 3-9, 4-22, 4-24
Map file,

specifying, 4-22
Map file contents, 4-3
MAXCOR, 4-5, 4-15
/M&~COR, 3-9, 4-23
Maximum low segment size,

4-23
Hemory,

Core, 1-1
Message level, 4-11, E-l
Message verbosity,

Controlling, 4-60
Messages,

LINK-10, E-l
Load time, E-l
Overlay handler, B-3
Run time, B-3
Specifying fatality of,

4-48
Suppressing LINK-10, 4-11,

4-22
Methods of designing

overlay programs, 5-7
Miscellaneous features, 1-3
/MIXFOR, D-l
MIXFOR Feature, D-l
Mode,

Library search, 3-9, 3-10,
4-31, 4-45

Local symbol, 4-7
Search, 4-18
Suppressing library

search, 4-31
Module,

Two segment, 4-34
Modules,

Common overlay, 5-4
Inhibiting loading of,

4-12
Library, i-2
Linking, 1-2
Loading specified, 4-17
Object, 1-1, 2-1

Monitor,
Loading the, 6-8

INDEX-5

/HPSORT, 3-9, 4-24
/HTAPE, 3-9, 4-25

/N, 3-9
Name,

Device, 2-2, 3-2
Program, 4-44

/NEW, 2-5
NEW Disk Area, 2-5
/NODE, 3-9, 4-19, 4-26, 5-9
/NOENTRY, 3-9, 4-28
/NOINITIAL, 3-9, 4-28
/NOLOCAI .. , 3-9, 4-29
/NOMIXFOR, D-l
Non-writable link, 4-36
Nonsharable, 2-6
/NOREQUEST, 3-9, 4-30
/NOSEARCH, 2-4, 3-9, 4-31
/NOSTART, 3-9, 4-31
/NOSYMBOL, 3-9, 4-32
/NOSYSLIB, 3-10, 4-32
/NOUSERLIBRARY, 3-10, 4-33
Number,

Prime, 4-17
Version, 3-11

Object modules, 1-1, 2-1
Object system, C-l
Object time system, 4-35,

4-49
Object time system,

Loading, 4-35
Object time system binding,

4-35
Obtaining a plot, 4-39
/OLD, 2-5
OLD Disk Area, 2-5
/ONLY, 3-10, 4-34
Options,

Interactive, 3-6
lOTS, 3-10, 4-35
Output,

Auxiliary, 1-1, 1-3
Output defaults, 3-2
Output files, 3-2, 3-4, 3-5,

4-8, 4-16
Output from LINK-10, 1-2
Output specifications, 3-2,

4-8
Output switches, 3-5, 4-12,

4-21, 4-23, 4-38, 4-40,
4-45, 4-50, 4-53, 4-62,
4-63

Outputting links, 4-19
Overflow,

Disk, 4-23
Overhead tables, 4-30
/OVERLAY, 3-10, 4-36, 5-9
Overlay entry points, B-1

Overlay examples, 5-10
Overlay facility, 1-3, 4-10,

4-18, 5-1
Overlay file, 3-10, 4-19,

5-11, B-2, B-7, B-8
Overlay handler, 4-36, B-1
Overlay handler messages,

B-3
Overlay handler subroutines,

B-2
Overlay link, 3-9, 3-11,

4-12, 4-18, 4-19, 4-26,
4-30, 4-36, 5-1, 5-2,
5-4, 5-9, B-8

Overlay paths, 4-36, 5-3
Overlay paths,

Specifying, 4-26
Overlay programs,

Designing, 5-3
r1ethods of designing, 5-7

Overlay structure, 4-12,
4-36, 5-1, 5-6

Overlay structure,
Characteristics of, 4-36
Drawing an, 5-3

Overlay switches, 4-19,
4-26, 4-28, 4-30, 4-36,
4-39, 4-41, 4-49, 4-58,
5-9

Overlays,
Designing, 5-7
Example of using, 6-12
Executing, 5-11
Initiating, B-1
Loading, 5-11
Specifying, 5-9
Using, 5-1

PAT, 4-38
PAT •• , 4-53
Patching space, 3-10
Patching space,

Allocating, 4-38
/PATCHSIZE, 3-10, 4-38
Path, 4-26
Paths,

Extended, 4-41
Overlay, 4-36, 5-3
Specifying overlay, 4-26

Performing magnetic tape
functions, 4-25

Permanent EXCLUDE/INCLUDE,
4-18

Permanent switches, 2-3,
3-4

/PLOT, 3-10, 4-39
Plotter, 4-39
Plotter file, 3-10, 3-11
Plotter output,

Example of, 6-15

INDEX-6

Points,
Entry, 4-10, 4-28, 4-42

Preamble, B-8
Prime number, 4-17
Program,

COMPIL, 1-4
Debugging, 2-2, 3-7, 3-11,

4-7, 4-56
Exec mode, 4-28
Loading a debugging, 4-7,

4-56
Program name, 4-44
Program name,

Assigning, 4-44
Programs,

Designing overlay, 5-3
Pure code, 4-46

R LINK Command, 1-4, 1-5,
3":'1

Radix-50 representation,
4-52

Recommended hashsize, 4-17
References,

Backvlard, 5-3
Forward, 5-3

• REL Files, A-I
Relocatable binary files,

A-I
Relocatable code, 1-1
Relocatahle link, 4-36
Relocatable symbols, 4-3,

4-4
Relocation counters, 3-8,

3-10, 4-6, 4-47
Relocation counters,

Listing, 4-6
Relocation table, B-ll
Relocation word, A-2, B-ll
REHOVL Subroutine, B-3
/REQUEST, 3-10,' 4-41
Requests,

Generating global, 4-42
Global, 2-5, 4-42
Undefined global, 4-45,

4-54, 4-56
/REQUIRE, 3-10, 4-42
Reserving core, 4-49
RETURN Key, 3-1
/REl'1IND, 3-10, 4-42
Rewinding tapes, 4-42, 4-57
Root link, 4-18, 4-26, 4-36,

5-2, 5-9, 5-11, B-7
RUN Command, 1-3
Run time messages, B-3
/RUNAr.ffi, 3-10, 4-44
/RUNCOR, 3-10, 4-43
RUNOVL Subroutine, B-2

Is, 3-10
/SAVE, 3-10, 4-44
SAVE Command, 2-1, 2-6
Save file, 3-10, 4-44, 4-50
Save file,

Defining, 4-50
Saved file,

Creating a, 6-3
Saving XPN File, 4-62
/SEARCH, 2-5, 3-10, 4-45
Search list, 2-5
Search mode, 4-18
Search mode,

Library, 2-5, 3-9, 3-10,
4-31, 4-45

Suppressing library, 4-31
Search symbols,

Library, 3-8, 4-10, 4-28,
4-42

Typing library, 4-10
Searching,

Inhibiting library, 4-32
System library, 4-16
Terminating user library,

4-33
Searching libraries, 4-54
Searching user libraries,

4-58
Section,

Link control, B-lO
Link header, B-lO

/SEGrillNT, 3-10, 4-46
Segment sizp.,

Initial low, 4-5
Maximum low, 4-23

/SELF, 2-5
/SET, 3-10, 4-47
Setting version numbers,

4-61
/SEVERITY, 3-10, 4-48, E-2
Severity level, 4-48, E-l
Sharable, 2-6, ~-50
Size,

Initial low segment, 4-5
Initial symbol table,

4-17
Haximmu 10~(1 segment, 4-23

/SKIP, 3-10, 4-49
Sorting symbol table, 4-24,

4-55
/SPACE, 3-10, 4-49
Space,

Allocating disk, 4-11
Allocating patching, 4-38
Patching, 3-10

Spacing fonlard tapes, 4-49
Specification,

File, 2-2, 3-1, 4-8
SltTit.ch, 2-3, 3-7

INDEX-7

Specification switchAS,
Implicit file, 4-8, 4-14,

4-15, 4-55, 4-56
Specifications, 3-2
Specifications,

Input, 3-2, 4-8
Output, 3-2, 4-8

Specified modules,
Loading, 4-17

Specifying disk areas, 2-5
Specifying execution, 4-7,

4-13, 4-16, 4-56
Specifying fatality of

messages, 4-48
Specifying free core, 4-15
Specifying log file, 4-21
Specifying map file, 4-22
Specifying overlay paths,

4-26
Specifying overlays, 5-9
Specifying start address,

4-51
Specifying the central

processor, 4-7
/SSAVE, 3-10, 4-50
SSAVE COW-lAND, 2-1
SSAVE Command, 2-6
Standard calling sequence,

4-41, B-1
/START, 3-11, 4-51
Start address, 2-4, 3-2,

3-11, 4-13, 4-31, 4-51,
B-2

Start address,
Ignoring, 4-31
Specifying, 4-51

START Command, 1-3, 2-1
Statement,

ENTRY, 4-10
FUNCTION, 4-10
SUBROUTINE, 4-10

Status changing switches,
3-6

String,
Command, 3-1, 3-4

Strings,
LINK-10 Command, 3-1

Structure,
Overlay, 4-12, 4-36, 5-1,

5-6 r

Tree, 5-2
Subroutine,

FUNCT., C-1
GETOVL, B-2
INIOVL, B-2
LOGOVL, B-3
REMOVL, B-3
RUNOVL, B-2

SUBROUTINE Statement, 4-10
Subroutines,

Overlay handler, B-2

Subtrees, 4-39
Suppressing library search

mode, 4-31
Suppressing link references,

4-30
Suppressing LINK-10

Messages, 4-11, 4-22
Suppressing symbol

definitions, 4-28
Suppressing symbol table,

4-32
Switch,

Exit condition, 3-1
Switch Algorithms,

LINK-10, 3-4
Switch specification, 2-3,

3-7
Switches,

COMPIL, 2-3, 2-4
Delayed action, 3-6, 4-5,

4-7, 4-11, 4-14, 4-16,
4-17, 4-22, 4-24, 4-25,
4-33, 4-34, 4-36, 4-39,
4-43, 4-44, 4-48, 4-50,
4-54, 4-56, 4-59, 4-61,
4-62

Device, 3-4, 4-1, 4-26,
4-43, 4-57

File dependent, 3-4, 4-13,
4-19, 4-20, 4-29, 4-31,
4-32, 4-35, 4-37, 4-46,
4-47, 4-51

Immediate action, 4-2,
4-5, 4-6, 4-9, 4-10,
4-16, 4-20, 4-27, 4-28,
4-29, 4-30, 4-32, 4-41,
4-42, 4-48, 4-57, 4-59,
4-62

Implicit file
specification, 3-7,

4-8, 4-14, 4-15, 4-55,
4-56

Link permanent, 4-37
LINK-10, 2-3, 3-7, 4-1
LOADER, 2-3, F-3
Output, 3-5, 4-12, 4-21,

4-23, 4-38, 4-40, 4-45,
4-50, 4-53, 4-62, 4-63

Overlay, 4-19, 4-26, 4-28,
4-30, 4-36, 4-39, 4-41,
4-49, 4-58, 5-9

Permanent, 2-3, 3-4
Status changing, 3-6
Temporary, 2-3, 3-4
Type-out, 3-6

/SYMBOL, 3-11, 4-52
Symbol definitions,

Suppressing, 4-28
Symbol file, 3-11, 4-52
Symbol file,

Defining, 4-52

INI:EX-8

Symbol table, 2-2, 3-4,
4-24, 4-53, 4-55

Symbol table,
Arranging, 4-55
Clearing initial, 4-28
Global, 3-9
Initial global, 4-28
sorting, 4-24, 4-55
Suppressing, 4-32

Symbol table size,
Initial, 4-17

symbols, 1-2
Symbols,

Absolute, 4-3
COMMON, 4-3
Entry, 2-5
Entry name, 4-4
External, 4-2
Global, 4-3, 4-4, 4-59,

5-3
Internal, 4-2
Library search, 3-8, 4-10,

4-28, 4-42
Linking, 1-2
Loading, 4-53
Loading local, 4-20
Local, 2-4, 3-9, 4-4, 4-7,

4-20, 4-29, 4-52
Relocatable, 4-3, 4-4
Typing in global, 4-59
Typing library search,

4-10
Undefined, 1-4, 3-5, 4-56
Undefined global, 4-9
Zero length, 4-4

/SYMSEG, 3-11, 4-53
SYS Disk Area, 2-5
/SYSLIB, 3-11, 4-54
/SYSORT, 3-11, 4-55
System,

Loading object time, 4-35
Object time, 4-35, 4-49

System libraries, 1-2, 2-4,
2-5, 3-10, 3-11, 4-16,
4-32, 4-45, 4-54

System library searching,
4-16

Table,
Arranging symbol, 4-55
Clearing initial symbol,

4-28
Entry name, B-8
EXTTAB, 4-30, 4-41, B-ll
Global symbol, 3-9
Hash, 4-17
Initial global symbol,

4-28
INTTAB, 4-10, 4-28, B-ll
Link name, B-8

Link number, B-7
Relocation, B-ll
Sorting symbol, 4-24
Suppressing symbol, 4-32
Symbol, 2-2, 3-4, 4-24,

4-53, 4-55
Table size,

Initial symbol, 4-17
Tables,

Overhead, '4-30
Tape functions,

Performing magnetic, 4-25
Tapes,

Backspacing, 4-1
Rewinding, 4-42, 4-57
Spacing forward, 4-49
Unloading, 4-57

Temporary EXCLUDE/INCLUDE,
4-18

Temporary switches, 2-3,
3-4

Terminating loading, 4-16
Terminating user library

searching, 4-33
/TEST, 3-11, 4-56
Tree structure, 5-2
Tree-structured link, 4-36
Triplet format, 4-52
Two segment module, 4-34
Type-out switches, 3-6
Typing in global symbols,

4-59
Typing library search

symbols, 4-10
Typing references to links,

4-41
Typing undefined globals,

4-56

/U, 3-11
/UNDEFINED, 3-11, 4-56
Undefined global requests,

4-45, 4-54, 4-56
Undefined global symbols,

4-9
Undefined globals,

Typing, 4-56
Undefined symbols, 1-4, 3-5,

4-56
/UNLOAD, 3-11, 4-57
Unloading tapes, 4-57
User libraries,

Searching, 4-58
User library, 2-5, 3-10,

3-11, 4-33, 4-58
User library searching,

Terminating, 4-33
User virtual address space,

1-1
/USERLIBRARY, 3-11, 4-58

INDEX-9

Using LINK-10 Automatically,
1-4, 2-1

Using LINK-10 Directly, 1-5,
3-1

Using overlays, 5-1
Using overlays,

Example of, 6-12

/VALUE, 3-11, 4-59
Values,

Assigning, 4-9
Initial default, 3-2, 3-3,

3-8
Verbosi ty, 4-60
/VERBOSITY, 3-11, 4-60, E-l,

E-2
/VERSION, 3-11, 4-61
Version number, 3-11
Version numbers,

Setting, 4-61

Word,
Header, A-l
Relocation, A-2, B-ll

/XPN, 3-11, 4-62
XPN File, 4-62
XPN File,

Creating, 4-62
Saving, 4-62

/ZERO, 3-11, 4-63
Zero length symbols, 4-4
Zero-compression, 4-44

INDEX-10

READER IS COM!vlENTS

DEC-IO-ULKMA-B-D
LINK-IO
PROGRAMMER'S REFERENCE MANUAL

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Report (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFO~ffiTION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer

o Non-programmer interested in computer concepts and capabilities

Name Date ________________________ _

Organization __ ___

Street __ _

City ___________________________ State _____________ Zip Code ______________ _

or
Country

If you do not require a written reply, please check here. 0

.--Fold lIere--

.--- Do Not Tear - Fold lIcre and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

