
•

•

Multimedia
Application Control

Digital Technical Journal
M

Digital Equipment Corporation

.

.

.

.
.
.
.

.

.
.
.

.
.

.
.

.•.....

Volume 5 Number 2
Spring L993

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator
Do rot he a B. Cassady, Secretary

Production
Terri Auricri, Production Editor
Anne S. Karzeff, Typographer
Peter R. Woodbur)', Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald Z. Harbert
Richard .f. Holling,worth
Alan G. Nemeth
Jeffrey H. Rudy
Stan Smits
Michael C. Thurk
Gayn B. Winters

Cover Design
Dithering and color space conversion are two

of the concepts discussed in "Video Rendering,"

which opens this issue's set of papers on multi

media technologies. On the cover, the band

of blue across the bottom of the cover graphic

shO'ws the rectanf!.ular patterning created

by an ordered dither process using a popular

t·ecursive tessellation array The band of bur

gundy across the top shows the superior pat

terning of the same ot·dered dither process

with a newly designed void-and-cluster array,

which produces a higher quality image for dis

play by eliminating the rectangular patterns

and the textures of white noise. The line illus

tration overlaying these two arrays presents

two color spaces, one within the other: RGB

and YUV (lumincmce-chrominance space used

by television systems; Y axis not shO"wn). In the

color conversion process, data transmitted

in YUV space is converted to RGB space. The

cover design shows three faces of the RGB

space "lifted off" and infused with the colot·s

noted at each comer of the parallelepiped.

The cover concept and illustrations are

derived from the paper "Video Rendering"

by Bob Ulichney The design was imple

mented by Linda Fa/vella ofQuantic

Communications, Inc.

The Digital Technical journal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road LJ02/D 10, Littleton, Massachusetts 01460.
Subscriptions to thejoumal are $40.00 (non-U.S. $60) for four issues and $75.00 (non
U.S. $ll5) for eight issues and must be prepaid in U.S. funds. University and college pro
fessors and Ph.D. students in the electrical engineering and computer science fields
receive complimentary subscriptions upon request. Orders, inquiries, and address
changes should be sent to the Digital Technical journal at the published-by address.
Inquiries can also be sent electronically to OTJ®CRL.DEC.COM. Single copies and back
issues are available for $16.00 each from Digital Press of Digital Equipment Corporation,
129 Parker Street, Maynard, MA 01754. Recent back issues of the journal are also
available on the Internet at gatekeeper.dec.com in the directOry /pub/DEC/DECinfo/DTJ.

Digital employees may send subscription orders on the ENET to ROY AX :JOLRNAL.
Orders should include badge number, site location code, and address.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright © 1993 Digital Equipment Cor poration . Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty mem
bers and are not distributed for commercial advantage. Abstracting with credit of
Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in the journal is subject to change without notice and should nor be
construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in the journal.

ISSN 0898 -901X

Documentation Number EY-P963E-DP

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, CDA,
COD/Repository, COHESION, CX, DDJF, DEC, DEC 3000 AXP, DEC �ilaGlance, DEC OSF/1
AXP, DECaudio , DECchip 21064, DECimage, DECnet, DECNIS, DECpc, DECspin,
DECstation, DECvideo, DECwindows, Digital, the Digital logo, GIGASWITCH, HSC50,
Megadoc, Open VMS, Open VMS AXP, Q-bus , RA, RV20, SQL Multimedia, TURBOchannel,
ULTRIX, UNIBUS, VAX, VAXstation, and VMS.

Apple, Macintosh, and QuickDraw are registered trademarks and QuickTime is a trade
mark of Apple Computer, Inc.

Display PostScript is a registered trademark of Adobe Systems Inc.

DYI and JNDEO are registered trademarks and Intel is a trademark of Intel Corporation.

HP is a registered trademark of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines Corporation.

Kodak is a registered trademark of Eastman Kodak Company.

Lotus and 1 -2-3 are registered trademarks of Lotus Development Corporation.

Microsoft, M5-DOS, and Excel are registered trademarks and Video for Windows,
Windows, and Windows NT are trademarks of Microsoft Corporation.

MIPS is a trademark of MIPS Computer Systems.

Motif, OSF, and OSF/ 1 are registered trademarks and Open Software Foundation is a
trademark of Open Software Foundation, Inc.

Perceptics is a registered trademark and LascrStar is a trademark of Perccptics
Corporation.

SCO is a trademark of Santa Cruz. Operations, Inc.

Solaris, Sun, and Sun OS are registered trademarks and SPARCstation is a trademark of
Sun Microsystems, Inc.

SPARC is a registered trademark of SPARC International, Inc.

System V is a trademark of American Telephone and Telegraph Company.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X video is a trademark of Parallax Graphics, Inc.

X Window System is a trademark of the Massachusetts Institute of Technology.

Book production was clone by Quantic Communications, Inc.

I Contents

7 Foreword
John A. Morse

9 Video Rendering
Robert Ul ichney

19 Software Motion Pictures
Burkhard K. Neidecker-Lutz and Robert Ul ichney

28 Digital Audio Compression
Davis Yen Pan

41 The Megadoc Image Document Management System
Jan B . te Kiefte, Robert Hasenaar,]oop W Mevius, and Theo H . van Hunnik

50 The Design of Multimedia Object Support in DEC Rdb
Mark F. Riley, James]. Feenan,)r. , John L.Janosik, Jr. , and T. K. Rengarajan

65 DECspin: A Networked Desktop Videoconferencing Application
Lawrence B. Palmer and Rid.)' S. Palmer

77 LAN Addressing for Digital Video Data
Peter C. Hayclen

Multimedia

Application Control

84 CASE Integration Using ACA Services
Pau l B . Patrick, Sr.

100 DEC @aGla.nce-Integration of Desktop Tools and
Manufacturing Process Information Systems
David Ascher

I Editor's Introduction

Jane C. Blake

Managing Editor

This issue of the Digital Technical journal features
papers on mult imedia technologies and applica
tions, and on uses of the Appl ication Control

Architecture (ACA), D igital's implementation of the
Object Management Group's CORBA specification .

The h igh quality of today's television, film, and
sound recordings have set expectations for com
puter-based multimedia; we expect h igh-quality

i m ages, fast response t imes, good quality aud io,
avail abil ity-including network transmission, and
aU at "reasonable" cost . Bob Ulichney has written

about video image- rendering methods that are i n
fact fast , simple, and inexpensive to implement. H e
reviews a color rendering system and compares
techniques that address the problem of insufficient
colors for d isplaying video images. Dithering is one

of these techniques, and he describes a new a lgo
rithm wh ich provides good qual ity color and h igh
speed image rendering.

The dithering algorithm is utilized in Software
Motion Pictures. SMI' is a method for generating
digital video on desktop systems without the need
for expensive decompression hardware. Burkhard
Neidecker-Lu tz and Bob Ul ichney d iscuss issues
encountered in designing portable video compres
sion software to d isplay d igital v ideo on a range of
d isplay types. SMP has been ported to Alpha AXP,

Sun, IBM, Hewlett-Packard, and Microsoft platforms.

D igit ized data-video or audio-must be com

pressed for efficient storage and transmission.
Davis Pan surveys audio compression techniques,

beginning with analog-to-digital conversion and
data compression. He then discusses the Motion

Picture Experts audio algorithm and the interesting
problem of developing a real- time software imple
mentation of this algorithm.

Even compressed, d igitized data takes up tre
mendous amounts of s torage space. A relational

2

database can not only store this data but provide
fast retrieval Mark Riley, Jay Feenan, John Janosik ,
and T. K. Rengarajan describe DEC Rdb enhance

ments that support mult imedia objects, i .e ., text,
st i l l frame images, compound documents, and
binary large objects.

Managing image docu ments is the subject of a
paper by Jan te Kiefte, Bob Hasenaar, Joop Mevius,

and 'I'heo van Hunnik. Megadoc i s a hardware and
software framework for bui lding customized image
management applications qu ickly and at low cost.

They describe the UNIX file system interface to
\VORJ'vl drives, a storage manager, ami an image
application framework.

Distributing multimedia over a network presents

both engineering challenges and opportu nities for
appl ications. DECspin is a rea l - t ime, desktop video
conferencing application that operates over LANs or
\VANs, using TCP/IP or DECnet protocols. Larry and
Ricky Palmer present an overview of the DECspin

graphical in terface. They then address network
issues of real-t ime conferencing on non- real-time
networks and a solution to network congestion.

The transmission of fu l l-motion video programs
to mult iple users requ ires adaptations i n many
parts of a cl ient-server, LAN environment. Peter

Hayden's paper focuses on t he specific problem of
efficient allocation of network addresses for the
transmission of d igital v ideo data on a LAN. He
revie,vs alternatives and describes a technique for
the dynamic al location of mu l t icast addresses.

The common theme of the two final papers is

ACA Services, D igital's implementation of the OMG's
Common Object Request Broker Architecture. Pau l
Patr ick has written an instructive paper o n CASE

environment development uti I izing ACA. Assuming
a multivendor, d istributed environment, he d is
cusses model ing of appl ications, data, and opera
tions; application interfacing; and environment
management.

DEC @aGlance software is an implementation of
ACA that supports the integration of manufacturing
process information systems. David Ascher d iffer
ent iates between generic integration software and

@aGlance, and describes how ACA is used to inte
grate independently developed applications.

The editors thank John Morse, engineering man
ager, Corporate Research, and Mary Ann Slavin,
engineering manager, ACA, for their help in prepar
ing th is issue.

Biographies

David Ascher Dave Ascher joined Digital's Industrial Products Software

Engineering Group in 19 77 to work on the DECDataway industrial m u ltidrop

network. Since then, he has worked on distributed manufacturing systems as

a developer, group leader, and technical consultant, and as an architect of the

DEC @aGlance produ ct . As a principal software engineer, Dave leads an effort to

develop DEC @aGlance service offerings. He holds a B.S. in psychology from C ity

Col lege of New York and a Ph.D. in psychology from McMaster University,

Hamilton, Ontario.

James J. Feenan, Jr. Principal engineer Jay Feenan has been implementing

application code on database systems since 19 78. Present ly a technical leader for

the design and implementation of stored procedures in DEC Rdb version 6.0, he

has contributed to various Rdb and DBMS projects. Prior to joining D igital in

19 84, he implemented Manufacturing Resource Planning systems and received

American Produ ction and Inventory Control Society certification. Jay holds a B.S.

from Worcester Polytechnic Institute and an M.B.A. from Anna Maria Col lege.

He is a member of the US. National Rowing Team.

Robert Hasenaar Bob Hasenaar is an engineering manager for the Megadoc

optical file system team , part of D igital's Workgroup Systems Software

Engineering Group in Apeldoorn, Hol land. He has seven years' software engi

neering experience in operating systems and image document management sys

tems. Bob was responsible for the i mplementation of the first Megadoc optical

d isk file system in a UNIX context. He has an M.Sc . degree in theoretical physics

from the University of Utrecht, Holl and.

Peter C. Hayden Peter Hayden is an engineer in the Windows NT Systems

Group. He joined D igital in 19 86 as a member of the FDDI team and l ed several

efforts contributing to the development of the l'DDI technology and product set.

He then led the Personal Computing Systems Group's mul timedia projects

before joining the Windows NT Systems Group in 199 2 . Before coming to Digital,

Peter worked on PBX development at AT&T Bell Laboratories. He holds a B.S. in

electrical engineering and an M.S. in computer science from Union College in

Schenectady, NY, and has several patent applications pending.

I

3

Biographies

4

John L. Janosik, Jr. A principal software engineer, John Janosik was the proj

ect leader for DEC Rdb version 5.0, the Alpha AX I' port version. John has been a

member of the Database Systems Group since joining Digital in I9R 8. Prior to

this, he was a senior software engineer for Wang Laboratories Inc. and worked

on PACE, Wang's relational database engine and application development envi

ronment. John received a B.S in computer science from Worcester Polytechnic

Institute in 19 83.

Joop W. Mevius A systems architect for the Mega doc system , Joop Mevius has

over 25 years' experience in software engineering. He has made contributions

in the areas of database management systems, operating systems, and image

document management systems. Joop has held both engineering management

positions and technical consultancy positions. He has an M.Sc. degree in mathe

matics from the Technical University of Delft, Holland.

Burkhard K. Neidecker-Lutz Burkhard Neidecker-Lutz is a principal

engineer in the Distributed Multimedia Group of Digital's Campus-based

Engineering Center in Karlsriihe. He currently works on d istributed multimedia

services for broadband networks. Burkhard contributed to the Xi\lled ia layered

product. Prior to that work he led the design of the NESTOR d istributed learning

system. He joined D igital in 19 88 after working for PCS computer systems.

Burkhard earned an M.S. in computer science from the University of Karlsriihe

in 19 87

Lawrence G. Palmer Larry Pa lmer is a pr incipal engineer with the Networks

Engineering Arch itecture Group. He currently leads the DECspin project for the

PC and has been with Digital since 19 84. Larry is one of three software develop

ers who initiated the PMAX software project for the DECstation 3100 product by

porting the ULTR.lX operating system to the MIPS architecture. He has a B.S. (high

est honors, 19 82) in chemistry from the University of Okl ahoma and is a member

of Phi Beta Kappa. He is co-inventor for five patents pending on enabling soft

ware technology for aud io-video teleconferencing.

Ricky S. Palmer Ricky Palmer is a principal engineer with the Computer

Systems Group. He joined D igital in 19 84 and currently leads the DECspin proj

ect. Ricky is one of three software developers who initiated the !'MAX software

project for the DECstation 3100 product by porting the U LTRIX operating system

to the MIPS arch itecture. He has a B.S. (h igh honors, 19 80) in physics, a BS. (19 80)

in mathematics, and an M.S. (19 82) in physics, all from the University of

Oklahoma. He is co- inventor for five patents pending on enabling software tech

nology for aud io-video teleconferencing.

Davis Yen Pan Dav is Pa n jo ined Digital in 1986 after receiv ing a Ph .D. in elec

trical engineer ing from MIT. A pr incipa l engineer in the Alpha Perso na l Systems

Group, he is responsible for the development of audio signa l processing a lgo

rithms fo r mu ltimedia products. He was project lea der fo r the Alpha/O SF base

aud io dr iver. He is a pa rticipant in the Intera ctive Mult imedia Association Digita l

Audio Tech nica l Work ing Grou p, the AN SI X3L3 .1 Tech nica l Wo rk ing Group on

MPEG standards activ i ties, and th e I SO/ MPEG standards commit tee. Dav is i s a lso

cha ir of the ISO/ MPEG ad hoc committee of MPEG/a udio software verifica tion .

Paul B. Patrick, Sr. Pau l Patrick i s a pr inc ipal software engineer in the ACA

Serv ices Group. He leads D igital's implementat io n of th e Ob ject Management

Group's Co mmon Object Request Broker Arch itecture. P rev iously, Pau l helped

design COHESION , an integrated CA SE env iro nment based on the DECset architec

ture. He a lso co ntribu ted to the development of IPSE, an integrated project sup

port env iro nment based on the CO D/Repository software, a nd designed and

i mplemented the M icroVAX 2000 synchro nous co ntrol ler diagnostic. Prior to

joining Digital , Paul held positions a t GenRacl Inc. and Norand Cor p.

T. K. Rengarajan T. K. R engarajan , a member of the Da tabase Systems Group

since 1987, works o n the KO DA software kernel of the DEC Rdb system. He has

co ntrib uted in the areas of b uffer management, h igh ava i lab il ity, OLTP perfor

ma nce on Alpha AXP systems, and multimedia da tabases. Presently, he is work ing

o n high-per fo rma nce logging, recoverab le la tches, asynchronous ba tch writes,

and asynchro nous prefetch for DEC Rclb v ersion 6.0. Ra nga holds M.S. degrees in

co mputer-a ided design and co mputer science fro m the University of Kentucky

a nd the University of Wi sconsin, respectively.

Mark F. Riley Co nsult ing softwa re engineer Ma rk R iley has been a member of

the Databa se Sy stems Group since 1989 a nd wo rks o n mu ltimed ia data type

extensio ns in R db/V MS. Prior to this, he worked for five yea rs in the Image

Systems Group and develo ped par ts of the DECimage Appl ica tio n Serv ices

too l k it. Mark received a B.S. E. E. from Wo rcester Polytechnic I nstitute in 1980 a nd

a n M.S. in engineer ing fro m Dartmou th Co l lege in 1982.

jan B. te Kiefte Jan te Kiefte is tech n ica l director for D igital's Wo rkgroup

Systems Softwa re Engineering Gro u p in Apcldoo rn, Holland. He has ov er 20

yea rs' software engineering exper ience in co mpiler development and in th e

development of office automatio n products. Jan has held both engineering man

agement po sitions and technica l consu ltancy positio ns. He has an M.Sc. degree

in mathematics from the Techn ical University of Eindhov en, Ho lland.

I

Biographies

6

Robert Ulichney Robert Ul ichney rece ived his Ph. D. (1986) i n electr ical engi

neering and computer sc ience from the Massach usetts Inst itute of Technology

and h is B.S. (1976) in physics and comp uter sc ience from the Un ivers ity of

Dayton, Oh io. He is a consul t ing eng ineer in Alpha Personal Systems, w here he

manages the Codecs and Algor ithms Group . Bob h as n ine patents pending for

his contribu tions to a variety of Dig ital products, is the author of Digital

Halftoning, publ ished by The MIT Press , and serves as a referee for several tech

n ical soc ieties in clud ing IEEE.

Theo M_ van Hunnik Theo van Hunn ik is an eng ineering project manage r fo r

Dig ital 's Workgroup Systems Software Engineer ing Group in Apel doorn, Hol lan d.

He has ov er 20 years' software engineer ing exper ienc e in comp iler development

and the development of office automat ion prod ucts. Theo has part icipated in

several internat ional systems arch itec ture task forces. He manage d the develop

ment team for Retr ievAl ! , the Megadoc i mage appl ication framework.

I Foreword

John A. Morse

S1: Engineering Manager,
Corporate Research &
Architecture

In the la te '80s, "mu l t imedia" was a ma gic wo rd .

I t seduced us with glimpses of a b rave ne w wo rld

wh ere au dio a nd v ideo tech no logy merged with

compu ter tech nology. It promised us eve ryth ing

fro m instant h igh-i mpact bu siness presentations

to v i rtua l rea lity. Wo rds l ike "paradigm sh ift" and
'· mul tibi ll io n-dollar industry" were enough to snare
bo th the te ch no ph iles a nd the eager entrepreneurs

into bel iev ing that th e world had su ddenly

changed, a nd we were a l l go ing to get rich in the

process.

Somewhe re on th e way to the ba nk, rea l ity set in,

and i t wasn't v irtual. The rea l ity is tha t mu ltimedia is

a lot harder tha n i t looks. Su ccessful mu lt imedia
requ ires a marriage between a nalog TV tech nology

a nd digital computer tech no logy; it requi res reco n

cil ia tion between a tech nical/professional marke t

place and a co nsumer marketplace. As in any

ma rriage, a lot of hard wo rk is requ ired to make i t

su cceed, and mu ch of that wo rk is yet to be do ne.

Fo r certa in segments of the co mpu ter industry,

mu ltimedia was rela tively eaS}' to implement and so
caught o n quickly. Th e first successes hav e been a t
th e extremes of th e cost spectrum-v ery low-e nd
desk top mul timedia on the one hand, and very
h igh-e nd v irtual rea lity systems o n th e other. Th is
has le ft Digita l, with its traditio na l focus on the

midd le, te mporarily ou t of the game.
Fo r desk top mu lt imed ia, all that is requ ired is the

abil ity to capture and display v ideo a nd audio. Since

mach ines l ike the Commodore Am iga were al ready

based more on TV technology than on compu ter
technology (for cost reasons), they cou ld be quickl y
a nd cheaply adapted to ha ndle au dio and motio n

v ideo. Thus desktop mu lti media was bo rn. The

CD-ROM, adapted fro m audio CD techno logy, was the
perfect storage med iu m fo r distribu tion of mu lti

media content; and so fo r th is ma rket segment,

CD-ROM and multimedia became almost synonymous.
There has emerged a whole industry based arou nd
the production of multimedia titles on CD-ROM.

At the h igh end, for pu rposes such as full -real ism

a ircra ft simu lation or v irtual rea l ity applicat io ns,

th e solu tion wa s to use th e h igh est performance

hardware avai lable, a t wha tev er expense. Typically,

h igh -end, three-dimensional gra ph ics systems were

cou pled eith er to su perco mpu ters or to massively

para llel processo r arrays. The resu lt was, and stil l is,

impressive. Bu t the cost is still so h igh that su ch v ir

tual real ity systems a re no t yet co mmercia lly v iable

except in special ized low-vo lu me markets.

The vast area in the m idd le, into wh ich aJ! of
Digita l's business falls, bas developed very slowly.

The p rob lem is tha t our business is based on a

model of enterprise-wide compu tat ion . Th e com

puter systems we design ancl sell not o nl y include

processo rs and d isplays bu t inco rporate networks

a nd servers as wel l. To introdu ce mu ltimed ia into

such a mo del, one touches every aspect of the sys

tem, from the desk top, th rou gh th e netwo rk, a nd

back to th e serve rs. At ev ery tur n , we have fou nd

that th e tech nology that has evolved over 30 to 40

years for ha nd I ing nu mbers, text, and (more

recently) two -dimensional and th ree-d imensio na l

graph ics i s not qu ite righ t fo r v ideo and aud io .

Every com ponent of the system, both hardware a nd
software, needs to cha nge in so me way. We need tO

evolve to a mode.! o f networked client-server multi

media compu ting. Change of th is magnitude is a

slow process.

Two chal le nges are so pervasive tha t almost

every paper in th is issue addresses them, each fro m

a d ifferent perspective . F irst of a l l , mu ltimedia

involves th e ha nd l ing of large qua ntities of da ta .

Second, for ma ny applications, tha t data must be

handled u nder very t igh t t ime constraints. The
resu lting stress and strain on a l l compo nents of the
system tra nslates into a set of tech nica l cha l lenges

that has occu pied us fo r th e last four years and
prom ises to keep us busy th rough a t least the rest of
th is decade.

D epending o n the p ictu re qual ity chosen, it may

requ ire from one m i l l io n to o ne hu ndred m i l l io n

byres o f stOrage to save each second of l ive v ideo in

digita l fo rm. Since ma ny app lica tio ns of mu lti
media, su ch as a rch iv ing telev ision foo tage fo r

research or h isto ric preservat ion purpo ses, will

need to save ma ny hours of v ideo, it is easy to see

7

Foreword

that mult imedia qu ickly builds demand for many

gigabytes (1,000,000,000 bytes) of magnetic or opt i

cal disk storage. But storage is only part of the prob

lem. Once such enormous amounts of data arc

stored , the challenge becomes how to retrieve a

particular item of interest . Standard database tech

n iques are oriented toward retrieval of text and

numbers. Retrieval of audio and video information

wi l l require new file and database techniques that

are only beginning to be understood.

An obvious application of mu lt imedia technol

ogy, once the networks are in place, is telecon

ferencing. We can envision a day when we can

connect to anyone any place in the world via the

network and carry on a conversation with them,

while each of us sees the other in full-motion video,

using the audio ami video capabi l i t ies of our desk

top workstations and PCs. But real i zing this vision

8

has proved surprisingly hard . People expect the

images they see to be synchronized with the sounds

they hear, and they expect delays to be no worse

than those experienced on a long-distance tele

phone call. Unfortunately, data networks have been

designed to maximize throughput and rel iabi l i ty.

They do this at the expense of some delay in trans

mission-delay that is annoying at best, and unac

ceptable at worst, for teleconferencing applications.

Successful infusion of mul t imedia technology

into enterprise-wide computation is proving to

requ ire change on a scale that almost no one antici

pated. We at D igita l are in the midst of this process

of change, and this issue of the Digital Technical
journal is a snapshot, taken at one point in time, of

that process. Together, the papers describe some of

the toughest technical challenges that we face and

in many cases give gl impses into possible solutions.

Robert Ulichney I

Video Rendering
Video rendering, the process of generating device-dependent pixel data from

device-independent sampled image data, is key to image quali�y System compo

nents include scaling, color adjustment, quantization, and color space conversion.

This paper emphasizes methods that yield high image quality, are fast, and yet are

simple and inexpensive to implement. Particular attention is placed on the deriva

tion and analysis of new multilevel dithering schemes. While permitting smaller

frame buffers, dithering also provides faster transport of the processed image to the

display-a key benefit for the massive pixel rates associated with full-motion video.

Perh aps the m ost influent ial ch ar acteris tic g overn

ing the perce ived v alue of a sys tem th at d ispl ays

im ages is the w ay the p ictures l ook. Im age appe ar

ance is l argely dependent up on the qu al ity of render

ing, th at is, the pr ocess of tak ing dev ice- independent

d at a and gener at ing dev ice-dependen t d ata tail ored
f or a p articul ar target d ispl ay .

The t opic of th is p aper is the pr ocess ing of s am

p led im age d at a and n ot synthe tic gr aph ics. F or

gr aphics render ing, p r im it ives such as spec if ic a
t i ons of tr iangles are c onver ted t o displ ay able p ic

ture elements or p ixels. The at om ic elements

h and led by a v ide o rendering system are dev ice

independen t pixels. Where as a p rerendered gr aph

ics i m age c an be c omp actly represented as a

c ol lecti on of t r iangle vert ices, prerendered vide o

achieves c omp act ion by me ans of c ompressi on

techn iques.

S ampl ing br oadc ast vide o requ ires a d at a r ate of

m ore th an 9 m i l l i on c ol or pixels per sec ond ; the

need of s ome rel ief f or s tor age and netw orks is

cle ar. Vide o c ompressi on reduces redund ancy in

the s ou rce i m age and thereby red uces the am oun t
of d at a t o be tr ansmi tted . Dr am atic red uc ti ons i n

d at a r ate c an b e ach ieved with l it tle degr ad ati on i n

im age qu al ity . The J oint Ph otogr aph ic Exper ts
Gr oup (]PEG) st and ard f or st il l fr ame and the

M ot ion Pic tu re Experts Gr oup (MPEG) and Px64

st and ards f or m otion v ide o are current c om m i ttee

c ompressi on techn iques l Sever al other n on

st and ard schemes ex is t, includ ing a s imple c om

press ion meth od c onduc ive t o s oftw are- only

implement ati on 2

V ide o rendering receives dec ompressed im age

d at a as input. S ince every dec ompressed pixel must
be pr ocessed, speed is essent ial . This p aper f ocuses

Digital Technical journal Vol. 5 No.2 Spring 1993

on rendering me th ods th at are f ast, simple, and

inexpensive to implemen t. Perf orm ance at vide o

r ates c an be achieved wi th minim al h ardw are or

even s oftw are- only s olu t i ons.

The Render ing Arch itecture sec tion reviews the

c omp onents of a render ing system and ex amines

des ign tr ade- offs. The p aper then presents det ails

of new and eff icient d ither ing implement ati ons.
F in al ly, v ide o c ol or m apping is d iscussed .

Rendering Architecture

Figure 1 il lustr ates the m aj or ph ases of a vide o ren

dering system: (l) filter and sc ale, (2) c ol or adjust,

(3) qu an tize, and (4) c ol or sp ace c onver t.
I n the f irst st age, the or igin al im age d ata must be

res ampled t o m atch the target w ind ow si ze . A sep a

r ate sc al ing sys tem sh ould be used f or the h or iz on

tal and vert ic al d irec ti ons t o h andle the c ase where

the pixel asp ec t r at io must be ch anged. F or ex am

ple, such asymmetr ic sc al ing is needed when the
target d ispl ay expects squ are pi...'Cels and the orig in al

p ixels are n ot squ are .

The best fi lters t o use in c omb in at ion wi th sc al
i ng h ave been determ ined fr om a perceptu al p oint
of view.:� \Vhen l imiting the b andwidth t o reduce

the d ata r ate, a G aussi an f il ter w ith a s tand ard dev i
at ion a = 0.30 X ou tp ut peri od is rec om mended.

F or in terp ol ati on , the fi l ter preferred (bec ause the
f il tered resu l ts l ooked m os t l ike the origin al) w as

a c asc ade of t w o: first, sh arpen with a L apl aci an

f il ter, and sec ond , f ol l ow by c onv olu ti on wi th a

G aussi an f ilter w ith a = 0.375 X i nput per iod.

A typ ic al sh arpen ing scheme c an be expressed
by the f ol l owing equ ation :

/simp [x,y] = l[x,y] - l3'l'[x,y] •l[x,y], (1)

9

Multimedia

DECOM PRESSED
I MAGE DATA

- -�--
F I LTER
AND SCALE

+
COLOR
ADJ U ST

+
QUANTIZE

+
COLOR
SPACE
CONVERT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-- t --__ j

RENDERED PIXELS

Figure 1 Image Rendering System

where J[x,y] is the input image, 'l'[x,y] is a d igital

Laplacian filter, and "•" is the convolution operator4

The nonnegative parameter � controls the degree

of sharpness, with � = 0 indicating no change in

sharpness. When enlarging, sharpening should

occur before scali ng, and when reducing, sharpen
ing should take place after scal ing. The fi ltering d is

cussed here is assumed to be two-dimensional ,

which requires image l i ne buffer ing. For economy,

horizontal-only fi l tering is sometimes used.

The simplest means of sca l i ng is known as
nearest-neighbor scal ing, and its simplest imple

mentation is based on the Bresenham scan conver

sion a lgorithm for drawing straight l i nes.' This
algori thm can be applied to i mage scal i ng and per
formed with only three registers and one adder6
Further optimizations make this algorithm espe

cially su ited for real-time use.7

The second stage of rendering is color adjust,
most easily achieved with a look-up table (LlJT).
Each color component uses a separate adjust l.UT.
In the case of a luminance-chromi nance color, an

adjust LUT for the luminance component controls

contrast and brightness, and LUTs for the chromi

nance components control saturation.

For so-cal led true-color frame buffers with 2 4-bit
depths, visual artifacts that can result from insuffi

cient amplitude reso lution do not occur. With

smal ler frame buffers, restricting the amplitude of

10

the color components red , green, and blue (RGB)

with a simple uniform quantizer causes fa lse con

tours to appear in slowly varying regions. This issue

leads to the third stage in the rendering system,

quantization.

The three basic classes of techniques for cir

cumventing the problem of i nsufficient colors or

color memory are (l) h istogram-based methods,

(2) chrominance-subsampled frame buffers, and
(3) d ithering. All h istogram-based methods, some

t imes cal led palette selection, require two passes of

the entire image data: the first to acquire the h is

togram statistics to fabricate a three-dimensional

quantizer to N colors and the second to perform

the pixel assignments. Perhaps the fastest method

i s the popularity a lgorithm, where a simple sort

finds the N colors with the h ighest frequency, and
all other colors are mapped to those.s

A more compute- intensive method, but one that

in general performs much better, is the often-used,
median-cu t algorithm.H In this method, the color

space is repeated ly subdivided i nto smal ler rectan

gular solids at the median planes, with the goal that

each of the selected colors represent an equal num

ber of colors in the image. The average of the colors

in each of the fina l regions is the color used i n the
quantizer. A later, less compute-intensive variation

i s the mean-spl i t algorithm. Nso, several c lustering

techniques have been reported that resu l t in less

quantization error than the above-mentioned meth

ods. One method, for example, min imizes the sum

of the squares of the errors9 In all cases, however,

color problems can occur in other application win

dows because each frame requires a d ifferent color

map; the colors in the other windows become

scrambled in a different way for each color map.

One advantage of representing image data in a

luminance-chrominance space is that chrominance
requi res less spatial resolution than luminance to
achieve exce l lent image qual i ty. Visual perception

of differences in chrominance is much Jess than that
for luminance. The television standards have been
exploit ing this fact for decades. The quantization

approach of using chrominance-subsampled frame

buffers is bui l t on th is fact, deferring conversion to

the RGB components unti l just after the data is read

for display.10· 1 1·12
Typical implementations of chrominance

subsampled frame buffers average each of the

two chrominance values in a given luminance

chrominance color representation over a region

that is e ither 2 by 2 or 4 by 4 pixels. Assuming 8 bits

Vol. No.2 Spring I'J'J.i Digital Tee/mica/ journal

of ampli tude resolution per color component, the

2-by-2-pixel case results in an average of ((2 X 2 X 8

luminance bits) + (8 + 8 chrominance b its))/

(2 X 2 pixels) or 12 bits per pixel; similarly, the
4-by-4-pixel case results in 9 bits per p ixel. This

approach requ ires expensive hardware to up-sam

ple the chrominance components a nd convert the

color space at v ideo rates. These nonstandard

frame buffers can a lso cause severe incompatibi l i ty
problems with most appl ications that expect RGB

frame buffers. W h i le chromi nance subsampled
frame buffers can accommodate most sampled nat

ura l images, thin-l ine graphics can be ann i h i la ted .
The third alternative for quantization is to use

a d ithering method . Several methods exist that are

designed primarily for binary output, but a l l are

extendable to multilevel color. '' 1H1 1' A " level" is a
shade of gray, from black to white, or a shade of

a color component, from black to the brightest

value. The basic principle of dithering is to use the

avai lable subset of colors to produce, by jud icious

arrangement, the i l lusion of any color in between.

Although neighborhood operations, most notably
error d iffusion, produce good-qual ity d i thering,

they are computationally complex and require

additional storage. For v ideo p rocessi ng, where

speed is essential , we turned our focus to t hose

dithering methods that are point operations, that is,

methods that operate on the current pixel on ly

without considering i ts neighbors. Each color com

ponent of every pixel in the image has an associated

" noise" or d i ther amplitude that is added to it before
that component is passed to a uniform quantizer.

H istorical ly, t he first d ithering method used for

video processing was white noise dithering, where

a pseudorandom number was added to each lumi

nance value before quantizat ion. This method was

practiced soon after the dawn of television. 1('

However, the low-frequency energy in white noise
causes undesirable textures and graininess.

A preferred method is the point process of
ordered d i thering, where a deterministic no ise
array t i les t he plane in a period ic manner. Dither

arrays can be designed to m inimize low-frequency
texture. The most popular are the so-called recur
sive tessel lation arrays. 17. JH These arrays yield results

superior to those of white noise d i thering but suf

fer from structured rectangu lar patterns.

A new ordered dither array design, cal led the

"void-and-cluster" method, el iminates both the low
frequency textures of white noise and the rectangu

lar patterns of recursive tessellation arrays. 19 The

Digital Technical jour11al Vol. 5 No. 2 SjJring 1993

Video Rendering

name describes the d i ther array design process i n

which voids and clusters are located and mitigated.

For the h igh-speed case of motion video, an

ordered d ithering scheme has important advan

tages over chrominance-subsampled frame buffers

and h istogram-based approaches. Quantization by

d ithering al lows the use of conventional frame

buffers, does not require the t ime-consum ing pro

cess of making two passes over each frame (or

every Nth frame), does not cause other appl ication�

to change color maps with every Nth frame, and

allows any number of colors to be selected at ren

der time. Also, experiments have shown that the
image qual i ty ach ieved by dithering is very compet

i t ive with the other methods, when compared over

a range of sample images. Even when 24-bit frame

buffers are ava i lable, the increased speed of loading

three or four 8-bit color pointers or index values in

the time required to load a single 24-bit pL'(el makes

d ithering a viable a lternative in the design of desk

top video systems.

By way of comparison , Figure 2 i l lustrates some

of the methods described in this section. A 240-by-

360-pixel, 8-bit monochrome i mage was rendered

to only two levels and d isplayed at 100 dots per inch

(dpi) . Figure 2a depicts an image that was d i thered

with white noise; in Figure 2b, the same image was

d i thered using an 8-by-8 recursive tessel lation

d ither array; and Figure 2c shows the image

d ithered with the new 32-by-.')2 void-and-cluster

array To i l lustrate the effect of sharpening, Figure

2d shows the image i n Figure 2c presharpened

using a digital Laplacian fil ter as in equation (1),

with a sharpening factor of 13 = 2.0. The goal of this

coarse example is tO amp l ify the different effects.

The same methods apply to m u lt i level and color

output, where the resulting quality is much h igher.

Fast Multilevel Dithering

This section presents the detai ls of simple, yet pow

erful new designs to perform multilevel ordered
d ithering. The simpl icity of these methods al lows
for i mplementation with minimum hardware or

software only, yet guarantees output that preserves
the mean of the input. The designs are flexible in

that they al low di thering from any number of input

levels tv;, to any number of output levels �· pro

vided N; � IV,,. Note that JV, and N,, are not restricted

to be powers of t\VO.

Each color component of a color image is treated
as an independent image. The input image Li can

have values

l l

Multimedia

(a) Dither with a White Noise Threshold

(c) Dither with a 32-by-32 Void-and-cluster
Threshold A rray

(b) Dither with an 8-by-8 Recursioe
Tessellation Threshold A rray

(d) Same as (c) with Laplacian Shm1Jening,
i3 = 2. 0

figure 2 Examples of Rendering to Two Output Levels

L1 E {0, 1 ,2, . . , C« - 1)},

a nd the output image L, ca n have values

L" E {0, 1 , 2, . , (1�, - 1)) .

A dete rm inistic d ither array of size M X N is used

that is pe rio d ic a nd tiles the entire input image . To

si mpl ify addressing of th is array, J\11 a nd N should
each be power s of two. A d i ther template defines

the orde r in which d i ther va lues are ar ranged. Th e
elements o f the d ith er templa te T have values

T E {0, 1,2, . . . , (� - 1)),

1 2

wh ere ;� is the number o f tem plate leve ls, wh ich
represe nt the levels against wh ich image inpu t
va l ue s are compared to de termine the ir mapping

to the ou tput va lues. The dither templa te is thus

central to deter mining the na tur e of the re su lting

dither pa t te rns.

F igure 3 shows a dithering system tha t co mprises
two me mor ies and an adde r. Th e system tak es a n
i npu t level L 1 a t image loca tio n [x,y] a nd produces
ou tput level L0 at the corre spo nding locat ion in the

dithered output image. The dither array is addresse d

by x ' and y ', wh ich represent the low-o rde r b its of

Vol. 5 .Vu. 2 Spring I'J'Ji Digital Technical jounlCII

x · -

y · -
DITHER
ARRAY l d [x ' ,y 'J

1'7'\ s [x,y[
L ; [x ,y i - �.V • QUANTIZER

LUT

Figure 3 Dithering .S)stem with Two L UTs

the image address. The selected dither va lue

d[x ; y '] is added to the input level to produce the

sum s. Th is sum is then q ua ntized by addressing a

q uant izer LUT to produce the o utpu t level L0.
The trick to ach ieving mean-preserving dith ering

is to properly genera te the LUT val ues. The dith er

array is a nor ma lized version of the dither templa te

specified as fol lows:

(2)

,·vhere 8.." , the step size between normal ized dither

values, is defined as

(3)

a nd b..Q is the q ua ntizer step s ize

(4)

Note tha t 8..0 a l so defines the range of d ither values.

The q uanti�e r LUT is a unifo r m qua ntizer with /1.�
equa l steps of size 8..0.

The precise expressions in eq ua tions (2) , (3) , and

(4) were arrived at through extensive a nalysis of the

average o utput resulting from processing input

images of a co nsta nt va lue, over a wide ra nge of N,,
fV.,, ami N, .

x · -

y · -

Video Rendering

One-mem.ory Dithering System

Using the above expressions, it is possible to sim
pl ify the system by excha nging one degree of free

do m for a nother. A bi t sh ifter ca n replace the

qua ntizer LUT a t the expense of fo rcing the number
of input levels N, , to be set by the system . For bard

ware implementa tions, th is design affords a consid

erable cost reductio n .

The system and method of Figure 3 assume that

1� is given as a fixed para meter, as is usua l ly th e case

with most i maging systems a nd file fo rmats.
However, for image sources such as hardware that

genera tes synthetic graph ics, arb i trar ily setting N,
often has no effect on the amount of co mputa tio n

invo lved. I f an adjust LUT is used to mo dify the

image data , including a ga in makes a "mod ified

adjust LUT." Figure 4 depicts such a system, wh ere

L,. is th e raw input level. The unadjusted or raw
input image can have the values

L,. E {0, 1 ,2 , . . , (N, - 1)},

where N,. is the n u mber of ra w input levels, typi

cal ly 256. Therefore , the modified adjust LUT must

impart a ga in of

�� - J
N,. - l

.

To solve for N, , reca l l that in the method of Figure

3 the q ua ntizer was defined to have equal steps of

size b..Q as defined in equat ion (4) . The q ua ntizer

LUT ca n be replaced by a simple R -b i t sh ifter, if the

variable b..Q can b e forced to be a n exact b inary

number,

A = ? II I..J.Q - .
N, can then be set by the expression

N1 = (Nu - 1)211 + 1.

(5)

(6)

The integer R is the nu mbe r of bits the R-b it
sh ifter sh ifts to the righ t to achieve q uantizat ion.
Specifying R i n ter ms of /\�, , equa tion (6) becomes

DITHER
ARRAY

MODIFIED
ADJUST
LUT

1 d [x ' ,y ' [

17\ s [x.y) f--.-- L; [x,y)- \V--'--'-'-- R-BIT
SHIFTER

L0 [x,y]

Figure 4 One-menwry Dithering System with an Adjust L UT and Bit Shifter

Digital Technical journal l'r>f. 5 No. 2 Spring 1993 1 3

Multimedia

=
, (N; - 1) R 1og2 (N - 1) .

"

(7)

To completely specify th is problem requires speci
fying the range for fY;. It is reasonable to do this by
specifying the number of bits b by wbich the i mage
input values are to be represented. Specifying b
l i m its 1\� to the range

(S)

Parameter b w i l l be a key value in specifying the
resulting system.

Given the two expressions, (7) a nd (S), and the
two unknowns, R and fY;, a u n ique solution exists
because the range of N; is less than a factor of two.
and R and 1\� are i ntegers. To solve fo r R, substitute
equation (6) for 1� in equation (8). The result ing
equation is

or

2'' - 1 < (N0 - 1)2 11 + I :S: 2'' (9)

(2/J- l lj (2/J 1) log , < R ::;; log , --- .
- N - 1 - N - 1 u 0

(10)

Since 2 ::;; f\, ::;; i\j , the range of the expression i n
equation (10) m ust be less than one . Hence. given
that R is an integer,

{ (2'' - 1)}
R = int log2 ,�, _

1
. (I I)

N, i n equation (6) i s now specified.
As an exa mple, consider the case where N,,

equals H7 (levels), b equals 9 (bits), 1\j equals 1 ,024
(levels, for a 32- by-32 template). a nd /�. equals 2')6
(levels) 'fhus, R equals 2, and the R-bit shifter drops
the least-significant 2 bits . N, equals 345 (levels);
the dither array is normal ized by equation (2) with
t:..d = l/256; and the gain factor to be incl u ded i n the
modified adjust LUT is :')44/255. This data is loaded
i nto the system represented by Figure 4 ami u n i
formly maps i nput pixels across the 87 true output
levels, giving the il l usion of 2i6 1evels.

The output image that result s from eit her of the
dithering systems i l lustrated in Figure 3 or F igure 4
appears to contain more effective levels than are
actua l l y d isplayed . An effective level is either a per
ceived average level that is (l i thered between two
true output levels or shades or an actual true out
put level . A small nu mber of template levels 1\j d ic
tates the resul ting number of effective levels. When
N, is large, the number of e ffective levels is equal
to the nu mber of input levels 1� , because it is not

1 4

possible to display more effective outputs than
inpu ts. More precisely,

t:,.Q CA;, - 1) N1 + 1 > l 1�
Effective Levels = (12)

Note that 6.0!1\j in equation (12) is equal to t:.." .
\Vhen /:::,." < 1 , the norm a l i zation of the dither array,
i .e . , equation (2), resu lts in in teger tru ncated values
that are not al l u n ique. At th is point, the number of
effective levels saturates to 1\j .

Data Width Analysis

The design of an efficient dithering system, particu
larly in hardware, depends on knowing the num ber
of bits required for a l l data paths in the system. This
section presents an analysis of the o ne-memory
dithering system shown in Figure 4.

The system input b, i . e . , the bit depth of the
image input values, l i m its the data path fo r l)x,y] .
The analysis shows the derivation of the precise bit
depths for the other data paths. In summ ary, the
derivation proves that the dither values in the
di ther matrix memory require R bits, where R111a,· =
(b - I) and s = L1 + d (and thus the R- bit shifter)
require only b bits.

Bits Needed for Ditber J'vlatri:x The amount of
memory needed to store the dither mat rix is an
important concern; d"'"·'· denotes the maximum
va lue . To determine d11w.\' ' substitu te the maximum
value of n:x : y '] , which is (1\j - 1) , into equation
(2). The resulti ng equation is

(13)

d'""" ' which depends on 1\j , thus has a value in the
range

(14)

For the case of a dither matrix with one value,
namely !\ = 1 , d11w.,· equals the lower end of this
range . d"w ' equals the high end of the range for
large d i t her matrices. wh ere 2R- t ::;; 1\j . An i m por
tant observation is that h>r al l va lues in the range of
expression (14), the number of bits needed is
exactly R.

Vul.) Nn. 2 Spring !')'),? D igital Tech n ical journal

From equation (1 1) , the value of R increases as N0
decreases. The smallest possible value of 1� is 2 ,
which is for bitonal output . In this case, the maxi
mum value ofR is

R""'x = int { logz(2v - 1)) = (b - 1). (15)

So, the number of bits needed for the dither values
is R, which can be as large as (b - 1).

Bit Width ofAdder Recall that s[x, y] = L1 [x, y] +
d [x, y] . The number of bits needed for this sum
determines the s ize of the adder and the size of
the R-bit shifter. L1 can be at most (1� - 1) and, as
determined in the last section, dmax can be at most
(2'/ - 1) . So,

Snwx = (JV; - 1) + (2 11 - 1). (16)

From equation (6),

(N1 - 1) = (.Y0 - 1)211, (17)

which gives

-\wx = 211(N, - 1) + (2 11 - 1) = 211N,, - 1. (18)

We can express R in terms of N0 by using equa
tion (1 1) :

R = int {log/2'' - I) - Jog2 (1�, - 1)). (19)

Each of the two terms in the equation (19) can be
expressed in terms of an integer part and a frac
tional part:

log/2'' - 1) = (b - 1) + E 1 , (20)

where

O < E , < 1 ,

and

(21)

where K is an integer, and

0 :::; E2 < 1 .

Now equat ion (19) can be rewritten as

R = (b - 1) - K + i nt { E 1 - E2). (22)

E2 is largest when N,, (an integer) is a large power of
2. Because N0 cannot be greater than N,. ,

2'' � /\�.

This fact, combined with equations (20) and (21),
yields the further condition

Digital Technical journal Vol. 5 No. 2 Spring 1993

Video Rendering

Therefore, int {E 1 - E2) i n equation (22) m ust be
equal to zero, and the value of R becomes

R = b - 1 - K. (23)

We can express N,; in equation (18) in terms of the
same integer K of equation (21) by noting that

(24)

where

0 < E� :::; 1 . (25)

Observe that E3 is equal to J , where N0 is an exact
power of 2. Subst ituting

and equation (23) into equation (18) gives

(26)

Because of the range of E3 in equat ion (25), the
range of s,."''x must be

2b- ! - 1 < < 2'' - 1 5max - ,

which requires exactly b bits.

(27)

As a check, the size of the shift register shou ld
equal the number of bits required for N0 plus R. The
number of bits needed for 1�, is

int { 1 + logiN,, - 1)) . (28)

Using the expression in equation (21) , this value
becomes

int { l + K + E2) = K + 1 . (29)

So, the size of the shift register must be

(K + 1) + (b - 1 - K) = b bits,

which matches the maximum size of the sum s.

Color Space Conversion

Referring once again to Figure 1 , consider the final
subsystem of a v ideo rendering system-color
space convert. Assuming a frame buffer that is
expecting RGB data, color space conversion is not
necessary if the source data is a l ready represented
in RGR, as in the case of graphics generation
systems. However, motion video is essential ly
always transmitted and stored in a luminance
chrominance space . Such a represen tation a l lows
subsampling of the chrominance, as mentioned ear
l ier, which reduces bandwid th requirements; all
v ideo standards exploit this method of bandwidth
red uction. It is also more intuitive to color adjust in
a luminance-chrominance space .

1 5

Multimedia

Prior to proceeding to the quantize subsystem

shown in Figure 1 , all color components m ust be at
the same final spatial resolu tion for a d ithering
method to work correctly. Chrominance compo

nents, then, need to be up-sa mpled to the same rate
as luminance components.

Although the chromaticities of the RGB primaries
of the major television standards vary sl ightly. all
television systems transmit and store the color data

v
R

L
\, I

'

(M)

(RJ_ - -

8
u

c

in YUV space. Y represents the achromatic compo
nent that is loosely cal led the luminance com

ponent. (The term luminance has a specific
photometric definition that is not what is repre
sented in a video Y component.) U and V are color
d ifference components, where U is proportional to
(Blue - Y) and V is proportional to (Red - Y)

Figure 5 i s a n orthographic projection o f YUV
space. Inside the YUV rectangular solid is the

y
w

(LJ

M

(V-axis in) (U-axis out)

Figure 5 Feasible RGB Values in the YVV Color Space

1 6 Vol. 5 Nn. 2 Spring 1993 Digital Technical journal

paral lelepiped of " feasible" RGB space. Feasible RGB

points are those that are no nnegative and are not
greater than the maximum supported value. For ref
erence, the corners of the RGB para l le lepiped are
labeled black (K) , wh i te (W), red (R) , green (G) ,
blue (B), cyan (C), magenta (M), and ye l low (L). RGB

and Y1.N values are related l inearly and can be inter
converted by means of a 3-by- 3 matrix mult iply.

In the Un ited States v ideo broadcast system , the
chrom ina ncc plane (i .e . , the U-V plane in Figure 5)
is rotated 33 degrees by introducing a phase in the
quadrature modulation of t he chromi nance signal .
The resu lting rotated chrominance signals are
renamed I and Q (for i nphase a nd quadrature), but
the unmodu lated color space is sti l l YLN.

Figure 6 shows the back end of a rendering sys
tem that uses dithering as a quantization step prior
to color space conversi o n . A serendipitous conse
quence of dithering is that color space conversion
can be achieved by means of table look-up. The
col lective address formed by the d ithered Y, U, and
V values is s m a l l enough to require a reasonably
sized color mapping LUT. There are two advantages
to this approach. First, a costly dematrixing opera
t ion is not requ ired , a nd second, i nfeasible RGB val
ues can be i n tel l igently mapped back to feasible
space off- l ine during the generation of the color
mapping Ll iT.

This second advan tage is an important one,
because 77 percent of the val id Y1.N coordinates
are in inva l id RGB space, i .e . , the space around the
RGB paral lelepiped in Figure 5. Color adjustments
such as increasing the br ight ness or saturation can
push otherwise val id H<d3 values into infeasible
space. In a l ternative systems that perform color
conversion by dematrixing, out -of-bou nds RGB val-

y
DITHER �
SYSTEM

u
DITHER �
SYSTEM

v
DITHER �
SYSTEM

COLOR
MAPPING
LUT

�
RGB
COLOR
INDEX

Figure 6 System for Dithering Three-color
Components and Color Mapping
the Collective Result

Digital Techuical jounwl \>(>/. 5 Nu. 2 Spring 1993

Video Rendering

ues are simply truncated. This operation effectively
maps colors back to feasible RCfl space along l i nes
perpendicular to a para l l elepiped surface i l lus
trated in Figure 5, which can change the color in an
undesi rable way. The use of a color mapping UJT
avoids these problems.

Summary

Video is becoming an increasingly important data
type for desktop systems. This is especia l ly true as
dist inctions between computing, consumer elec
tronics, and communications continue to blur.
While many factors contribute to the i mpression
one has of the value of a product that d isplays infor
mation, the way the i mages look can make the
biggest difference. This paper focuses on rendering
system designs that are fast, low cost, produce
good-qual ity v ideo, and are conducive to hardware
or software implementation.

References

1 . Special Issue on Digital Multimedia .\ystems,
Communications of the AOvl, vol . 34, no. 1

(April 199 1)

2. B. Neid ecker-Lu tz and R. U l i chney, " Software
Motion Pictures,'' Digital Technical journal,
vol . 5, no. 2 (Spring 1993, this issue): 19-27.

3. W Schreiber and D. Troxel, "Tra nsformation
between Continuous and D iscrete Represen
tat ion of Images: A Perceptu a l Approach,"
IEEE Transactions on Pattern A na�ysis and
Machine Intelligence (PAM!), vol. PAM I-7, no. 2

(1985): 178-186.

4. R. Ul ichney, Digital Halftoning (Cambridge ,
MA: The M IT Press, 1987).

5.]. Bresenham, "Algorithm for Compu ter Con
trol of a D igital Plotter,'' mM Systems journal,

vol . 4, no. l (1965): 2'5-30

6. F. G l azer, " Fast Bitonal to Grayscale Im age
Scal ing," DECfR-50'5 (Maynard , MA: Digital
Equipment Corporation, June 1987)

7. R . U l ich ney, " Brese nham-st y le Sca l i ng," Pm
ceedings of the IS[.., T A n nual Conference
(Cambridge, 1'vlA , 199:1) 10 1 - 103

8. P Heckbert, '· Color Im age Quantiza tion for
Frame Bu ffer D ispl ay," Computer Graphics
Ak!C Stc;·cRA PH '82 Conference Proceedings,
vol . 16, no. 3 (1982) 297-307.

1 7

Multimedia

9. S. Wan, K . Wong, and P Prusink iewicz, "An

Algorithm for M u l t id imensional Data Cluster
ing," ACkl Transactions on Mathematical
Sojtware, vol. 14, no. 2 (1988) : 153 -162.

10. C. Sigel , R. Abruzzi, and]. Munson, "Chro
matic Subsampl ing for D isplay of Color
Images,'' Optical Society of Arnerica Topical
Meeting on Applied Vision, 1989 Technical
D igest Series, vol . 16 (1989) : 158-161 .

1 1 . A . Luther, Digital Video in the PC Environ
ment (New York , iVY: Intertext Publ icatio ns,
McGraw-Hi l l , 1989): 193 -194.

12. L. Gl ass, " D igital Video I nteractive," Byte (May
1989): 284.

1 3 . P. Roetling, " Binary Approximation o f Contin
uous-tone Images," Photograpbic Science
and Engineering, vol . 21 (1977): 60-65

14. J. Stoffel and J. Moreland, "A Survey of
Electronic Techniques for Pictorial Reproduc
t ion," IEEE Transactions on Communica
tions, vol. 29 (1981) : 1898-1925.

1 8

15.) . Jarvis, C. Judice, and W Ninke, "A Survey of
Techniques for the Display of Continuous
tone Pictures on Bilevel D ispl ays,'' Computer
Graphics and Image Processing, vo l. 5

(1976) 13-40.

16. W Goodall , 'Television by Pulse Code Modu
lation,'' Bell Systems Tecbnical journal, vol .
30 (1951) : 3 3 -49.

17. B. Bayer, "An Optimum Method for Two Level
Rend ition of Continuous-tone Pictures, Pro
ceedings of the IEEE International Confer
ence on Communications, Conference
Record (1973) : (26 -1 1)-(26 -1'5).

18. R. Ul ichney, " Frequency Analysis of Ordered
D ither," Proceedings of the Society of Photo
optical lnstrU1nentation Engineers (SPIE),
vol . 1079 (1989): 3 61-373 .

19. R. Ul ichney, "The Vo id-and-cluster Method for
Dither Array Generation,'' The Society for
Imaging Science and Technolog)'/�)nnpo
sium 011 Electronic Imaging Science and
Technolog)' (IS&T/SPIE) (February 1993).

Vol. 5 No. 2 Spring 1993 Digital Teclmicaljournal

Burkhard K. Neidecker-Lutz
Robert Ulichney

Software Motion Pictures

Software motion pictures is a method of generating digital video on general

purpose desktop computers without using special decompression hardware. The

compression algorithm is designed for rapid decompression in software and gener

ates deterministic data rates for use fron1 C�ROll'l and network connections. The

decompression part offers device independence and integrates well with existing

window systems and application programming interfaces. Software motion pic

tures features a portable, low-cost solution to digital video playback.

T he necessary in itial investment is one of the major

obstacles in making video a generic data type, l ike

graphics and text, in general-purpose computer
systems. The ability to display video usual ly requires

so me comb inatio n of spec ialized frame buffer,

decompression hardware, and a high-speed network.

A software-on ly method of generating a video

display provides an attractive way of solving the
problems of co st and general access but poses chal

lenging questions in terms of effic iency. Al though
several digital video standards either exist or have

been proposed, their co mputatio nal co mplexity

exceeds the power of most current desktop sys

tems 1 I n addition, a co mpressio n algorithm a lone

does no t address the integration with ex isting win
dow system hardware and so ftware.

Software mo t io n pictures (SMP) is bo th a video

compression algorithm and a co mplete software

implementation of that algorithm. SMP was specifi

cally designed to address all the issues co ncerning

integration with desktop systems. A typical applica
tio n of SMP o n a low-end workstation is to play back

color digital video at a resolution of 320 by 240

pL'\:els with a coded data rate of 1 .1 megab its per

second. On a DECstatio n 5000 Model 240 HX work
station , this task uses less than 25 percent of the
overall machine reso urces.

Together with suitable audio support (audio sup
port is beyond the scope of this paper), software

mot io n pictures provides po rtab le , low-cost d igital

video playback.

The SMP Product

D igital supplies SMP in several fo rms. The most

complete versio n of SM P co mes with the XMedia
Tool kit. This too lkit is primarily designed for devel

opers of multimed ia appl ications who i nclude the

D igital Teclmical journal Vol. 5 No. 2 SjJring 1993

SMP functional i ty inside t heir own applicat io ns.

F igure 1 shows the user controls as displayed on a

workstatio n screen. SMP players are also available

on D igital 's freeware compact disc (CD) for use

with Alpha AXP workstatio ns running the DEC

OSF/ 1 AXP operating system. In additio n , SMP play

back is included with several Digital prod ucts such

as the video help uti li ty on the SPIN (sound p icture

information networks) application, as well as other

vendors' products, such as the Mediaimpact multi

media authoring system 2
In the XMedia Toolkit , access to the SMP hmctions

is possible through X applicatio ns, co mmand l ine

uti l it ies, and C language l ib raries. The applications

ancl uti l ities support simple editing operations,

frame capture, compressio n, and other functio ns.

Most of these features are intenclecl fo r use by pro

ducers of simple file formats called SMP cl ips.

T he decompression functional i ty is offered as an

X tool ki t widget that readily integrates into the

Open Software Fou ndation 's (OSF) Mo t if-based

appl ications. M u l tiple SMP coclecs (compressors/

decompresso rs) on a given screen a l l share the
same color resources with one ano ther and with

the D isplay PostScript X-server extension , which is
offered by a l l major workstation vendo rs. It also

plays wel l with the standard colo r allocations used
in the Macintosh QuickDraw rendering system and
Microsoft Windows standard co lor al locations.

To facil itate flexible b u t simple access to entire

fil ms of SMP frames, SMP defines SMP c lips. Rather
than publishing that file fo rmat d irec tly, all appl ica

tions and widgets are accessed through an encap

sulating l ibrary. Th is method allows future releases
to have application- transparent changes to the
underlying file structure and co mpletely different

ways to store and obtain SMP frames.

19

M u ltimedia

SMI' Player 1

!:ile !:_ink Q_ptions

o� ---1 0 Start Range I S>' I H(!t;Ht<l" J

1 repeat

I 1 I
!:!_elp

VVh.Uilt

color bw I ____, ·

Figure I User Controls as DisjJlc�yed on tbe
Workstation Screen

An example of the latter is the storage of SMP
cJ ips d irectly i n a relational database system in
which no files exist, such as SQL Multimed ia. The
video data is stored directly in database records,
and the c lient receives the data through the stan
dard remote database access protocols. At the
receiving c l ient, the SMP c l ip l ibrary is used to gen
erate a virtua l SMP c l ip for the application program
by substitu ting a new read function.

The SMP product a lso contains im age converters
that translate to and from the popu lar PBMPLUS fam
i ly of image formats, a l lowing import and export to
about 70 d ifferent image formats, includ ing the
D igita l Document Interchange Format (DDIF) . This
a l lows the use of almost any image format as input
for creation of SMP c lips.

Historical Background and
Requirements

In 1989 Digita l 's D istribu ted M u ltimedia Group
experimented briefly with an a lgorithm called
color cell compression (CCC) that had been

20

described in 1986 by Campbel l et af..l CCC is a cod
ing method that is optimized for rapid decom
pression of color images in software. We bui l t a
demonstrator that rapid l y d isplayed ccc-coded
images in a loop to create a motion video effect.
The demonstrator then served as our study
vehicle to create a usable product for digital video
playback.

Performing digital video entirely i n software
would stress the systems at a l l levels (I/0, proces
sor, a nd graphics), so we needed to establ ish upper
bounds for what we cou ld hope to achieve with our
desktop systems and workstations.

From the user's perspective, large sizes and high
frame rates are desirable. These features need to be
balanced with the l imitations of real hardware. We
modeled t he data path through wh ich d igital video
would have to flow in the system and measured the
avai lable resources on the slowest system we
woul d use, a DECs tation 2100. This workstation has
a 12.5 -megahertz (MHz) MIPS R2000 processor and
a simple, 8-bit color frame bu ffer.

B y merging this measurement with user feedback
concerning the smal lest acceptable i mage size and
frame rate, we set our performance goa l to play
back movies of size 240 by 320 on the slowest
DECstation processor with an 8-bit display at 15
frames per seco nd. Smaller viewing sizes are a lmost
invisible on a typical high-resolution workstation
screen.

We settled for a frame rate of 15 frames per sec
ond. This rate is reasonably smooth: to the human
eye, i t appears as motion rather than separate
images. I t can be generated easily from 30 -frame
sou rce m aterial, such as standard video used i n
North America a n d Japan, b y taking every other
frame. Consequently, on the DECstation 2 100 we
would have at most

12 .5 X 10(' clock cycles/second
(320 X 240 x 15) p ixels/second = 10.85 clock

cycles
per pi.:xeJ

Thus, we must average no more than (approxi
mately) ten machine instructions to decode and
render each pi.,.,\.el to the screen.

I n order to set our t arget for compression
efficiency, we looked at the volume of data and pos
sible d istribution methods. CD-ROM looked promis
ing, and this data rate was also chosen by the
Motion Picture Experts Group (MPEG)-1 standard. �
Hence our coded d a t a rate goa l was to maintain

Vol. 5 No. 2 Sp·ring 1993 Digital Techllica{ journal

a coded data rate for this s ize and frame rate

that would a l low playback from a CD-ROM. To

achieve th is goa l , we l imi ted the coded data rate

for the video component to 135 to 142 ki lobytes

per second for video, leaving 8 to 15 ki lobytes per

second for aud io. In addit ion, we had to I imit fluc

tuations of the coded data rate to a l low sensible

use of bandwidth reservation protocols for play

back over a network wi thout complex buffering

schemes.
More interesting were the issues t l1at became

apparent when we attempted to use the prototype

for real appl ications. The d igital video material had
to be usable on a wide range of d isplay types, and

due to its large volume, keeping special ized ver

sions for different d isplays was prohibit ive . \Ve

wou ld have to adapt the ren di tion of the coded

material to the device-dependent color capabi l ities

of the target display a t run time.
Our design center used 8-bit color-mapped d is

plays. These were (ami s t i l l are) the most common

color d isplays, and the demonstrator was based

on them. Integration of the video i nto appl ications

in a multitasking environment necessitated that

computational as wel l as color resources were

avai lable for use by other appl ications . The system
would have to perform cooperative sharing of

the scarce color resources on displays with l imi ted
color capabi l it ies.

From the perspective of portabil i ty, we needed

to conform to exist ing X l l interfaces, wi thout any

hidden back doors into the window system. The

X Window System affords no direct way of writ ing
into the frame bu ffer. Rather, the MITSHM extension

is used to write an image into a shared memory seg

ment, and then the X server must copy it i nto the

frame buffer. This method would impact our

a l ready strained CP\ J budget for the codec opera

t ion. We would need to decompress video in our
code and have the X server perform a copy opera

tion of the decompressed video to the screen, again

using the main CPU . Qu ick measurements showed
that the copy alone would use approximately 50

percent of the CPU budget for an 8-bit frame buffer,
and another 5 to 10 percent would be used by react
ing the coded data from l/0 devices.

With approximately five clock cycles per pixel

yet to be rendered, it became clear why none of the

standard v ideo algorithms was of any use for such a

task. We wenr back to the original CCC a lgori thm
and started the development of software motion

p ictures.

D igital Technical journal vbl. 5 No. 2 Spring I'J93

Sojfll'(lre Jl!!otion Pictures

Comparison with Other
Video Algorithms
Today (early 1993), a number of d igita l video com

pression a lgorithms are in use. All of them are

guarded closely as proprietary and therefore

closed , and only one algorithm predates the devel

opment of SMP. Although we cou ld not b u i ld on

experiences with these for our work, we bel ieve

the internal working on most of them is s imi lar to

SMP with some addit ions.

A popular method for video compression is

frame differencing. Rather than each frame being
encoded separately, only those parts of the images

that have changed relative to a preceding (or

future) frame are encoded (together with the i nfor

mation that the other blocks d id not change). This

method works wel l for some i nput materia l , for

example, i n video conferences where the camera

does not move. The method fa ils, however, on

almost a l l other v ideo materia l .

To enable frame d ifferencing on a wider range of

input scenes, a method known as motion estima

tion is used by some algorithms. The encoder for an

image sequence performs a search for blocks that

have moved between frames and encodes the

motion. This search step is computationally very
expensive and usually defeats real-t ime encoding,

even for special-purpose hardware.

One of the earliest a lgorithms was d igital video

i n teractive (DVI) from I ntel/IBM. It comes in two

variations, real-t ime v ideo (RTV) and production

level video (PLV) . RTV uses an unknown block
encoding scheme and frame differencing. PLV

acids mot ion estimation to this. R1V i s comparable
to SMP in compression efficiency, computationa l ly

more expensive , and m uch worse in image qual ity.

PLV cannot be done in software and requi res

special-purpose supercomputers for compression.

Compress ion efficiency of PLY is about twice as
good as SMP, and image qual i ty is somewhat better.

The more recent INDEO video boards from Intel
use RTV.

In 1992 Apple introduced Qu ickTime, which
contains several video compression codecs. The
i nitial RoadPizza (RP) video codec uses simple
frame d ifferencing and a block encoding s imi lar to

CCC, but without the color quantization step. (This

is a guess based on the visual appearance and per

formance characteristics.) Compression efficiency

of RP is three t imes worse than SMP, ami image qual

i ty is comparable on 24 -bit d isplays and much

worse than SMP on 8-bit d isplays. Performance is

2 1

Multimedia

difficult to compare si nce SMP does not yet run o n

Macintosh compu ters.

The newer Compact Video (CV) codec intro

duced in Qu ickTime version 1.5 is sim ilar to CCC
w i th frame d ifferenci ng and has compression

efficiency mu ch closer to SMP. Image quality on

8-bit displ ays is sti l l lower than SMP, and compres

sion t imes are alm ost u nusable (i .e . , long) .

The newest entry i nto the market for software

v ideo codecs is the video 1 codec in Microsoft's

Video for Wind ows prod uct. Very l ittle is know n

about i t , but i t seems to be close t o CCC w i t h frame

d ifferencing. Final ly, Sun M icrosystems has i ncluded

CCC with frame differencing in their upcoming ver

sion of the XIL imaging I ibrary.

Three wel l-known standards for image and video

compression have been establ ished by the Joi n t

Photographic Experts Group (JPEG) a n d the Motion

Picture Expe rts Group (JVIPEG) committees of

the International Organization for Standard izati o n

(ISO) a n d b y t h e Comite Consu ltatif lnternationale

de Telegraphique et Tetep honique (CCITT) . These

standards are computationa l ly too expensive to be

performed in software in a l l but the most powerful

workstations today

The Algorithm

The SMP algorithm i s a pixel-based, lossy compres

s ion algorithm, designed for minimum CPU load ing.

It features acceptable image qual ity, medium com

pression ratios, and a total ly predictable coded data

rate. No ent ropy-based or comp utational ly expen

sive tra nsform-based cod i ng techn iques are used .

The downside of this approach is a l i mited image

qual ity and compression ratio; however, fo r a wide

range of appl ications, S1viP qual ity is sufficien t.

Block Truncation Coding

I n 1978, the method referred to as block truncation

cod ing (flTC) was independently reported i n the
United States by Mitchel l , Delp, and Carlton and i n

Japan by Kish imoto, M itsuya, and Hoshida 5.'i.6.7

BTC is a gray-scale im age compression technique.

The image is first segmented into 4 by 4 blocks. Fo r

each block, the 16 -pixel average is fou nd and used

as a threshol d . Each pixel is then assigned to a h igh

or a low group in relation to this threshold. An

example of the first stage i n the coding process is

shown in Figure 2a, in which the sample mean

is 101 . Each pixel in the block is thus tru ncated to

1 bit, based on this threshold (see Figure 2b).

22

(b) The average of 1 0 1 is used as a threshold
to segment the block.

Figure 2 Block Truncation Coding of
a 4 by 4 Block

For each of the two groups, the average is then

calcul ated again, giving a low average, a, ami a h igh

average, b. Mathematica l l y, the first and second sta

t istical moments of the block are preserved.

Therefore, for a block of m pixels, with q pixels

greater than the sa mple mean X2, and sa mple vari

ance 0-2, i t can be shown that

C/ = X - 0' q/(111 -q)

b = .X + a (m -q)lq

More intuitively, the bit mask represents the

shape of thi ngs in the block, and the average l u m i

nance and contrast of the block contents are pre

served. With this coding method, for blocks of 4 by

4 p.L'<els and 8-bit gray values, a 1 () -bit mask and two

8- bit values encode the 16 pixels in 32 bits for a rate
of 2.0 bits per pixel.

Color Cell Compression

Lema and M i tchel l first extended BTC to color

by employing a lumin ance-chrominance space H

However, the direction taken by Campbel l et a l .

was comp utational ly faster for decode -' I n t h is

approach, a l u mi nance value is compu ted for each

pixel . As in the BTC algorithm, the sample mean of

the l u mi nance i n each 4 by 4 block is used to seg

ment pi.'Xel s into low and high groups based o n

luminance val ues only. The 24-bit color values

assigned to the low and high groups are found by

independently solving for the 8-bit red , green, and

Vol. 5 No. J ,)jJrillg /')'.!,) Digital Tee/mica/ journal

blue values. This al lows each block to be repre
sented by a 16 -bit mask and two 24 -bit color values,
for a coding rate of 4 bits per pi.'<el.

The 24-bit values are mapped to a set of 256 8 -bit
color index values by means of a histogram-based

pa lette selection scheme known as the median cut

a lgorithm.� Thus every block can be represented by
two 8-bit color indices and the 16 -bit mask, yielding

2 bits per pixel ; however, each i mage frame must
a lso send the table of 256 24-bit color values.

Software Motion Pictures Compression

With our goal of 320 by 240 i mage resolution play
back at 15 frames per second, straight CCC coding

would have resulted in a data stream of more than

292 k i lobytes per second, which is well beyond the

capabil i t ies of standard CD-ROM drives. Thus SMP

needed to improve the compression ratio of CCC

approximately twofold .

Given that we cou ld not apply any of the more

expensive compression techniques, we looked for

computational ly cheap data-reduction techniques.

Since most of these techniques negatively impact

image quality, we needed a visual test bed to judge

the impact of each change.

We computed the images off- l ine for a short

sequence, frame by frame, and then preloaded the
images into the workstation memory. The player

program then moved the images to the frame buffer

in a loop, al lowing us to view the resu lts as they

wou ld be seen in t he final version. The use of this

technique provided two advantages. First, we

could d iscover motion art ifacts that were invisible

in any individual frame. Second, we could judge the

covering aspects of motion, which tends to brush
over some defects that look objectionable in a st i l l

frame.

At first, interframe or frame difference coding

looked l ike a reasonable technique for achieving

better compression results without sacrificing

image qual ity, but this was highly dependent on the
nature of the input material . Due to the low CPU

budget, we could not use any of the more elaborate

motion compensation algorithms, so even s l ight
movements in the input video material largely
defeated frame differencing. Typical ly, we achieved

only 10 percent better compression with inter

frame coding, whi le introducing considerable

complexity to the compression and decoding oper

ations. As a result , we dropped i nterframe codi ng

and made SMP a pure intraframe method, simpl ify

ing edit ing operations and random access to

Digital Technical journal lkJI. 5 Nn. 2 Spring 1993

Software Motion Pictures

d igitized materia l . At the same time, this opened up
use of SMP for sti l l i mage appl ications.

To reach our final compression ratio goal of

approximately I bit per pixel, we settled for a com

bination of two subsampl ing techniques. Simi lar

techniques have been independently described by

Pins, who conducted an exhaustive search and eval

uation of compression techniques. 10 His find ings

served as a check on our experiments.

Blocks with a low ratio of foregrou nd-to-hack

ground luminance (a metric that can be interpreted

as contrast) are represented in SMP by a single color

and no mask. This reduces the coded representa

tion to a s ingle byte compared to 4 bytes in CCC,

which amounts to a fourfold subsampl ing of such

blocks. No chrominance information enters into

th is decision. It is surprising, but even very marked

chrominance differences in foreground/background

pairs are readily accepted by the human eye.

With the introduction of a second kind of block,

addit ional encoding information was necessary to

dist inguish normal (structured) CCC blocks from

the subsampled (flat) blocks. I n the SMP encoding,

this is hand led by a bitmap with one bit flagging

each block.

Because the adaptive subsampling alone did not

y ield enough data reduction for our compression

goal , we added fixed subsampl i ng for the struc
tured blocks. The horizontal resolution of the

structured blocks in SMP is halved relative to CCC by

horizontally averaging two neighboring pixels,

which reduces the number of bits in the mask from

16 to 8. Th is reduction leads to blurred vertical

edges but looks reasonable for natural video

images. FL"Xed subsampling al lowed t he encoding of

structured blocks with 3 bytes instead of 4 bytes.

We reappl ied these ideas to the original gray

scale block truncation algorithm. We added a varia

tion to the format that does not use a color look-up

table but interprets the foreground and backgrou nd
colors directly as luminance values. Images com

pressed in this format code gray-scale input mate

ria l more compactly (there is no need to transmit

the leading color look-up table as in CCC); they a lso
clo not suffer from the quantization band effects

inherent in the color quantization used in the CCC

algorithm.

We varied the ratio of flat to structured blocks

to effect a trade-off between image quality and

compression ratio; however, the range of useful set

tings is relatively small . If too few structured blocks

are allocated, the image essential ly is scaled down

23

Multimedia

fourfolu, wh ich makes the i mage look very blocky.

If too many structured blocks are a l l ocated, regions

of the image that have l itt le detail are encoded with

u nnecessary overhea d . Over the wide range of

images we tested, a l locating between 30 percent

and ')() percent of structured blocks worked best,

yie.l d i ng a bit rate of 0.9 to 1 .0 bits per pixel. For

color images, the overhead of the color table (768

bytes) must be ad ded.

Decompression

The most challenging part of t he design of the

S,\1 P system , given the perform ance requ irements,

is the decompression step. Efficient renderi ng

techniques of block- tru nca tion coding are wel l

known for certain cl asses of o u t p u t (levices .'

SMP improves o n the implementations described

in the l iterature by complement i ng the raw algo

rithm with efficient, device-i ndependent rendering

engines -' 'i H. Io 1 1 To maxim ize code efficiency, a sepa

rate decompression routine is used for each d isplay

situation, rather than using condi tionals i n a m ore

generic routine. The cmrent implementation can

render to 1 -, 8-, and 24 -bit displays.

Decompressi o n of BTC involves fi l li ng 4 by 4

blocks of p b.:els with two colors u n der a mas k.

Because the size ancl a l ign ment of the blocks is

known, a very fast, ful l y unrol led code sequence

can be used . Changes of brigh tness and contrast of

the image can be rapid ly adapted to d i ffe rent view

ing condit ions by manipulat ing the en tries of the

colormap of the SMP encod ing. Most of the work

I ies in adaptation of the color co ntent of the decom
pressed data to the device characteristics of the

frame bu ffer.

For d isplays with fu l l-color capabi l i ties (24-bit

true color) , the process is straightforward. The

main problem is perform ing the copy of the decom

pressed video to the screen. Since 24 -bit data is usu

a l ly a I . located in 32-bi t wor(IS, the amount of data to

copy is four times the 8-bit case. Typical ly, SMP
spemls 90 percent of the CPU t i me i n the screen

copy on 24-bit systems.

The more common and i n teresting case is to

decompress to an 8-bit color representat ion. Given

that SMP is an 8 - bit, color- i ndexed fi.>rmat, i t would

seem straightforward to download the SMP frame

color table to t he wi ndow system color table ancl

fi l l the image with the pixel ind ices d i rect l y. This

metbc)(l is i mpractical for two reasons. First, m ost

wi ndow systems (including X I 1) do not a l low

reservation of a l l 256 colors in the hardware color

24

tables. Typical ly, applications and window m a n

agers use a few of the entries for system colors and

cursors. Quantizing down to a smal ler number of

colors (such as 240) could overcome this drawback

to a certain degree; however, it wou ld make the

S M P-coded material dependent on the device char

acteristics of a particular window system .

The second a n d m u c h more problematic aspect

is that the SMP frames i n a sequence usua l l y have

ditferent color tables. Consequently, each frame

requ i res a change of color table that causes a kalei

doscopic effect for the windows of other appl ica

tions on the screen . I n fact, flash ing cannot be

el i minated within the SMP window i tsel f.

Nei ther X l l nor other popu l ar window systems

such as M icrosoft Wi ndows al low re load of the

color table a n d the content of an i mage at the same

time. T'herefore, regard less of whether the color

table or image contents is modified first, a flashing

color effect takes p l ace in the SMP window. lt may

seem that the update wou ld have to be done in a

si ngle screen refresh time as opposed to s i m u l tane

o usly. This is true but i rrelevant. Most win dow

systems do not a ll ow for such f ine-gra in synchro

n izatio n ; and for performance reasons, it was u nre

al istic to expect to be able to update the i mage i n a

single, vertical blanking periocl.

Al ternat ive suggestions to avoid this problem

have been proposed i n the l i terature. One sugges

tion is to use a s i ngle color table for the ent ire

sequence of frames. 1 11 · 1 1 This method is computa

t iona l ly expensive and fails for long sequences and

edit ing operations. Another p roposes quantization

to less than half of the available colors or p a rt ia l

updates of the color map and use of plane masks. 1 1

This alternative i s n o t particu larly portable

between d i fferent wi ndow systems, and the use of

plane masks can have a d isastrous impact on perfor

m a nce for some frame-b u ffer i mplementations

such as the ex adapter i n the DECstarion procl uct
l ine .

Neither of these methods addresses the issue of

monochrome d isplays o r the use of m u ltiple s i m u l

taneous SMP movies on a single display. (This effect

can be witnessed in Sun Microsystems' recen t audi

tion of CCC couing to their XIL l ibrary.) To keep

device influence o u t of the compressed material

and to enable the use of SMP o n a wide range of

devices and window systems, a generic decoupl i ng

step was added between the colors i n the SMP
frame and the device colors used for rend ition on

the screen .

Vol. 5 No. l .\jJring 1993 Digital Technical journal

A wel l-known techn ique for matching color
images to devices with a l imited color resolution is

d ithering. Dithering trades spatial resolution for an
apparent increase in color and luminance resolu

tion of the d isplay device. The decrease in spatial

resolu tion is less of an issue for SMP i mages because
of their inherently l i mited spatial resolution capa

bi l ity. Thus the only chal lenge was the computa

t ional cost of performing d ithering in real t ime.
Fortunately, we found a d ithering algorithm that

al lowed both good quality and high speed . 12 It

reduces quantization and mappi ng to a few table
look-up operations, which have a trivial hardware

implementation (random access memory) and a

reasonable software implementation with a few

adds, shifts, and loads.

The general software implementation of the

d ithering algorithm takes 12 instructions in the

lVIIPS i nstru ct ion set to map a s ingle p ixel to its out

put representation. For SMP decodi ng, two d iffer

ent colors at most are in each 4 by 4 block. With this

distribution, the cost of d ithering is spread over the

16 pL'I:cls in each block.

Another optimization used heavily in t he 8-bit

decoder is to manipulate 4 p ixels simul taneous.ly

with a s ingle machine instruction. This technique

increases performance for decompressing and

dithering to 3.2 instru ct ions per pixel in the MIPS

i nstruction set, i ncluding al l loop overhead, decod

i ng of the encoded data stream, and adjusting con
trast and brightness of the i mage (2.7 i nstructions

per pixel for gray-scale). This efficiency is achieved

by carefu l merging of the decoding, decompres

sion, and d ithering phases into a single block of

code and avoid ing intermediate results written to

memory. The cost of the 1 -bit and 24-bit decoders i s

the same or lower (3.2 and 2.9 instructions per
pixel, respectively).

Compression

The SMP compressor takes an input image, a desired
coded image size, and an output buffer as argu

ments. It operates in five phases:

• Input sca l ing (optional)

• Block truncation (luminance)

• Flat block selection

• Color quantization (color SMP only)

• Encodi ng and output writing

Digital Technical]ounwl Vol. 5 Nu. 2 Spring 1993

Software Motion Pictures

Although the in itial scal ing is not strictly part of

the SMP algorithm, i t is necessary for different input

sources. Fast seal ing is offered as part of both the

l ibrary and the command- l ine SMP compressors.
Instead of simple subsampl ing, true averaging is

used to ensure maximum input image quality.

The block truncation phase makes two passes

through each 4 by 4 block of the input . The first

pass calcu lates the luminance of each individual

pixel and sums them to find the average luminance

of the entire block. The second pass parti t ions the

pLxel pairs i nto the foreground and background

sets and calculates their respective luminance and

chrominance averages.

The flat-block-selection phase uses the desired

compression ratio to decide how many blocks can

be kept as structured blocks and how many need to

be converted to flat blocks. The luminance differ

ence of the blocks is calculated , and blocks i n the

low-contrast range are marked for transition to flat

blocks. Because the total average was calculated for

each block in the preceding phase, no additional

calcu lations are needed for the conversion of

blocks, and the mask is thrown away. Colors are

entered into a search structure during this phase.

The color quantization phase uses a median cut

a lgorithm, b iased to ensure good coverage of the

color contents of the image rather than m inimize

the overall quantization error. The bias method
ensures that smal l , colored objects are not lost due

to large, smoothly shaded areas gett i ng the l ion's

share of the color al locations. These small objects
often are the important features in motion

sequences and have a h igh visibil ity despi te their

small size.

The final encoding phase builds the color table
and matches the foregrou nd/background colors of

the blocks to the best matches in the chosen color

table.
The gray-scale compression can be much faster

because neither the quantization nor the match ing

step need be performed. Also, only one-thiJ·d of the

u ncompressed video data is usually read in, making

gray-scale compression fast enough to enable real

time compression on faster workstations and video
conferenciog type applications.

This speed is partly due to the R-bit restriction in

the mask of each structured block. This restriction

permits the algori thm to store all intermediate

resu lts of the block truncation step in registers on

typical reduced i nstruction set computer (!USC)

machines with 32 registers. The entire gray-scale

25

Multimedia

compression algorithm can be done on a MIPS

R3000 with 8 machine instructions per input p ixel

o n average, a l l overhead (except input scal ing)

included.

Unfortunately, for color processing, SMP com

pression remains an off- l ine, non-real-time pro

cess, a lbeit a reasonably fast one at 220 instructions

per p ixel . A 25 -MHz R3000 processor can process

more than 40,000 frames in 24 hours (DECstation

5000 Model 200, 320 by 240 at 15 frames per sec

ond, TX/PlP as frame grabber), equivalent to 45 min

u tes of compressed video material per day. The

more recent DEC 3000 AXP Model 500 workstation

improves this number threefold, so special-purpose
hardware for compression is unnecessary even for

color SMP.

Portability

A crucial part of the SMP design for portabil ity is the

placement of the original SMP codec on the cl ient

side of the X Window System. This a l lows porting
and use of SMP on other systems, without being

at the mercy of a particular system vendor for i n te

gration of the codec into their X server or window

system.

This placement is enabled by the efficiency of the

SMP decompression engine, which al lows many

spare cycles for performing the copy of the decom

pressed, device-dependent video to the window

system.

Currently, SMP is offered as a product only on the

DECstation family of workstations, but i t has been

ported to a variety of platforms, i ncluding

• DEC AXP workstations running the DEC OSF/ 1
A X P operating system

• Alpha AXP systems running the OpenVMS oper
ating system

• DECpc AXP personal computers running the

Windows NT AXP operat ing system

• VAX systems running the VMS operating system

• S u n SPARCstation

• IBM RS/6000 system

• HP/PA Precision system

• SCO UNL'{;'Intel

• Microsoft Windows version 3.1

26

General ly, porting the SMP system to another plat

form support ing the X Window System requires the

selection of t wo parameters (host byte order and

presence of the MITSHM extension) and then a com

pi lat ion. The same codec source is used on a l l the

above machines; no assembly language or machine

specific optimizations are used or needed .

The port to Microsoft Windows shows that

the same base technology can be used with other

window systems, although parts specific to the win

dow system had to be rewritten . The coclec code is

essential ly ident ical , but the extreme shortage of

registers in the 80x86 arch i tecture and the lack of

reasonable handl i ng of 32-bit pointers i n C lan

guage under Windows warrant a rewrite in assem

bly language on this platform. We do not expect

this to be an issue on Windows version 3.2, clue to

be released later in 1993.

Conclusion

Software motion pictures offers a cost-effective,

totally portable way of bringing digital video to the

desktop without requiring special i nvestments for

add-on hardware. Combined with audio faci l it ies,
SMP can be used to bring a complete video playback

to most desktop systems. The algorithm and imple
mentation were designee[to be used from CD-ROrVIs

as well as network connect ions. SMP seamlessly

integrates with the existing windowing system soft

ware. Because of its potentially u n iversal avai labil

i ty, SMP can serve an important function as the
lowest common denominator for d igital video

across mul tiple platforms.

Acknowledgments

We wou ld l ike to thank a l l the people who have

contribu ted to making software motion pictures a

real ity. Particular thanks go to Paul Tal lett for writ
ing the original demonstrator and i nsisting on the

importance of a color version. He also implemented

the VMS versions. Thanks also to European External
Research for making the in i t ia l research and later

product transition possible. Last but not least,

thanks to Susan Angebrannclt and her engineer ing

team for their help and confidence in this work.

References

1 . Special Issue o n D igital Mult imedia Systems,

Communications of the ACJVJ, vol . 34, no. 4

(April 1991).

Vol. 5 No . .! .\fJrin,� /'J')J Digital Technical journal

2. L. Palmer and R . Palmer, " DECspin : A Net

worked Desktop Videoconferencing Appl ica
t ion," Digital Technicaljournal, vo l . 5, no. 2

(Spring 1993, this issue): 65-76.

3. G. Campbell et a l . , "Two Bit/Pixel Ful l Color
Encoding," SIGGRAPJ-1'86 Conference Pro
ceedings, vol. 20, no. 4 (1986): 215- 223.

4. D. LeGal l , "MPEG: A Video Compression Stan

dan.l tor Multimedia Appl ications," Communi
cations of the AD\1, vol . 34, no. 4 (April 1991) :
47-58.

5. 0. Mitchell , E. Delp, and S. Carlton, "Block

Truncation Cod ing: A New Approach to

Image Compression," Conference Record,
IELE International Conference Communica
tirms, voJ . I Oune 1978) : 12B.l .l - 12B.l .4.

6. T. Kishimoto, E . Mitsuya, and K. Hoshida, "A

Method of Still Picture Codi ng by Using Statis

tical Properties" (in japanese), Proceedings of
the National Conference of the Institute of
Electronics and Communications Engineers
of japan, no. 974 (March 1978) .

7 E. Delp and 0. M itchel l , " Image Compression

Using Block Tru ncation Coding," /El;E Trans-

Digital Technical journal V!;l. 5 No. 2 Spriny, l<J'J.i

Softu.x/re Motion Pictures

actions on Communications, vol . COM-27
(1979): 1335 - 1342.

8. M . Lema and 0. Mitchell , "Absolute Moment

Block Tru ncation Coding and I ts Appl ication

to Color Images," ltEH Transactions on Com
munications, vol . COM-32, no. 10 (1984) :

1 148-1 157

9. P Heckbert, "Co lor I mage Quantization for

Frame Butler D isplay," Computer Graphics
(A!HC SJGGRAPH'82 Conference Proceedings),
voJ . 16, no . 3 (1982): 297-307

10. M. Pins, "Analyse und Auswab l von AJgorith

men zur Datenkompression u nter besonderer
Berucksichtigung von Bildern und Bildfol

gen ,'' Ph.D. thesis, University of Karlsruhe,

1990.

1 1 . B. Lamparter and W Effelsberg, "Digitale

Fi lmiibertragung unci Darste l lung im x
Window-System," Lehrstuhl fiir Praktische

Informatik rv, University of Mannheim, 1991 .

12 . R . Ul icbney, ''Video Rendering," Digital Tech
nical journal, vol . 5, no. 2 (Spring 1993, th is
issue): 9-18.

27

Davis Yen Pan I

Digital Audio Compression
Compared to most digital data types, with the exception of digital uideo, the data

rates associated with uncompressed digital audio are substantial. Digital audio

compression enables more efficient storage and transmission of audio data. The

many forms of audio compression techniques offer a range of encoder and decoder

comple:xit)� cornpressed audio quality, and differing amounts of data compression.

The J.L-law transformation and ADPCM coder are simple approaches u •itiJ low

complexi�y, low-compression, and medium audio quality algorithms. The JJPEG!
audio standard is a high-complexit)� high-compression, and high audio quality

algorithm. These techniques apply to general audio signals and are not specifically

tuned for speech signals.

Digital audio compression al lows the efficient stor
age and transmission of audio data . The various

audio compression techniques offer d ifferen t levels

of complexity, compressed audio qual ity, and

amount of data compression .

This paper is a survey of techniques used to com

press digital audio signals. Its i ntent is to provide

usefu l information for readers of a l l levels of experi

ence with d igital audio processing . The paper

begins with a summary of the basic audio d igit iza

t ion process. The next two sections present

detailed descriptions of two relat ively s imple

approaches to audio compression: p.- law and adap

t ive d ifferential pu lse code mod u l at ion. In the fol
lowing section , the paper gives an overview of a

third , much more sophisticated, compression
audio a lgorithm from the Motion Picture Experts

Group. The topics covered in this section are quire
complex and are i ntended for the reader who is

fami l iar with d igital s ignal processing. The paper

001 1 01 1 1 000 . . .

concludes wi th a discussion of software-only real

time i mplementations.

Digital Audio Data

The digital representation of audio data offers

many advantages: h igh noise immunity, stabi l i ty,

and reproducibi li ty. Audio i n digital form a lso

a l lows the efficient implementation of many audio

processing functions (e . g . , mixing, fi l tering, aJl(l

equal ization) through the d igital computer.

The conversion from the analog to the digital

domain begins by sampling the audio input i n regu

lar, d iscrete i ntervals of t ime ancl quantizing the

sampled values into a discrete number of evenly

spaced levels. 'The d igital audio data consists of a

sequence of binary values representing the number

of quantizer levels for each audio sample. The
method of representing each sam ple with an inde
pendent code word is called pulse code modu lation

(PCM). Figure I shows the d igital audio process.

1 1 001 1 00 1 00 .. "11 1 1 1 1 1 1 1 1 1 '
. 1 1 1 1 1 1 1 1 1 1

ANALOG ANALOG
AUDIO
I N PUT ANALOG-TO- DIG ITAL

CONVE RSION

PCM PCM
VALUES DIG ITAL S I G NAL VALUES

PROCESS I N G

Figure 1 Digital Audio Process

AUDIO
D I G ITAL-TO-ANALOG OUTPUT
CONVERSION

28 1-•b/. 5 No. 1 Spri11g I'J'JJ D igital Techuical journal

According to the Nyquist theory, a time-sampled

signal can fa ithfu l ly represent signals up to half the
sam pi ing rate. 1 Typical sampling rates range from
8 ki lohertz (k Hz) to 48 kHz. The 8-kHz rate covers

a frequency range up to 4 kHz and so covers most of
the frequencies produced by the hu man voice. The
48-kHz rate covers a frequency range up to 24 kHz
and more than adequately covers the entire audibl e
frequency range, which for humans typ ical ly
extends to only 20 kHz. In practice, the frequency
range is somewhat less than half the sampl ing rate
because of the practical system limitations.

The number of quantizer levels is typica l ly a

power of 2 to make ful l use of a fixed number of
bits per audio sample to represent the quantized
values. With uniform quantizer step spacing, each
add itional bit has the potential of increasing the
signal- to-noise ratio, or equivalently the dynamic

range, of the quantized amplitude by roughly
6 decibels (dB). The typical number of bits per sam
ple used for digital audio ranges from 8 to 16. The
dynamic range capabil ity of these representations
thus ranges from 48 to 96 dB, respectively. To put

these ranges into perspective, if 0 dB represents the
weakest audible sound pressure level , then 25 dB
is the minimum noise level in a typical recording
stud io, 35 dB is the noise level inside a quiet home,
and 120 dB is the loudest level before d iscomfort
begins 2 In terms of audio p erception, 1 dB is the

minimum audible change in sound pressure level
under the best cond itions, and doubl ing the sound
pressure level amounts to one perceptual step i n
loudness.

Compared to most d igita l data types (d igital
video excluded), the data rates associated with
uncompressed d igital audio are substantial . For
example, the audio data on a compact disc (2 chan
nels of audio sampled at 44.1 kHz with 16 bits per
sample) requ ires a data rate of about I .4 megabits

per second. There is a clear need for some form of
compress ion to enable the more efficient storage
and transmission of this data.

The many forms of audio compression tech
niques differ in the trade-offs between encoder and
decoder complex ity, the compressed audio qual ity,
and the amount of data compression. The tech
niques presented in the fo l lowing sections of this
paper cover the fu l l range from the p.- law, a low

complexity, low-compression, and med ium audio
qua l ity algorithm, to M P EG/audio, a h igh-complex
ity, high-compression, and high audio qua l ity algo
rith m . These techniques apply to general audio

Digital Tecbnical jom'lutl Vol. 5 No. 2 Spring 19')1

Digital Audio Compression

signals and are not specifically tuned for speech sig

na ls. This paper does not cover audio compression
algorithms designed specifical ly for speech signals.
These algorithms are generally based on a model
ing of the vocal tract and do not work wel l for non
speech audio signals . 1.-i The federal standards 1015
LPC (l inear predictive coding) and 1016 CELP (coded

excited l inear pred iction) fall into this category of
audio compression.

j.L-law Audio Compression

The p.- law transformation is a basic audio compres

sion technique specified by the Com ite Consu ltatif
Internationale de Telegraphique et Telephonique
(CCITI) Recommendation G.71 P The transfor
mation is essential l y logarithmic in nature and

al lows the 8 bits per sample output codes to cover a
dynamic range equivalent to 14 bits of l inearly quan
tized values. This transformation offers a compres
sion ratio of (nu mber of bits per source sample)/
8 to 1 . Unlike l inear quantization, the logarithmic
step spacings represent low-ampl itude audio sam

ples with greater accu racy than h igher-ampl itude
values . Thus the signal-to-noise ratio of the trans
formed output is more uniform over the range of
ampl itudes of the input signal . The p.-law transfor
mation is

_ 255 -
ln(l + J.L)

X In (1 + J.L I X I) for x � 0
l 127

y - 127
127 -

ln(l + J.L)
X In (1 + J.L i x l) for x < 0

where m = 255, and x is the value of the i nput sig
nal normal ized to have a maxim u m value of 1. The
CCITI Recommendation G.71 1 also specifies a simi
Jar A-law transformation. The p.-law transformation
is in common use in North America and Japan for

the Integrated Services D igital Network (ISDN)
8-kHz-sampled, voice-gracle , d igital telephony ser
vice, and the A- law transformation is used e lse
where for the ISDN telephony.

Adaptive Differential Pulse
Code Modulation

Figure 2 shows a simpl ified block d iagram of
an adaptive differential pu lse code modulation

(ADPCM) coder6 For the sake of clarity, the figure
omits details such as bit-stream formatting, the pos
sible use of side information, and the adaptation
blocks. The ADPCM coder takes advantage of the

29

Multimedia

(ADAPTIVE)
OUANTIZER

qn]

(ADAPTIVE)
PREDICTOR

(ADAPTIVE)
DEQUANTIZER

(a) ADPCM Encoder

Cjn) (ADAPTIVE) Dq[n) +
DEOUANTIZER

(ADAPTIVE)
PREDICTOR

(b) A DPClvl Decoder

Figure 2 ADPCM Compression and
Decompression

Xp[n]

fact that neighboring audio sam ples are genera l l y
s imi lar t o each other. Instead o f repres enting each
audio sample independently as in PGvl , an A D PCM

encoder compu tes the d ifference between each
audio sample and its pred icted value and o u tp u ts
the PCM value of the differe ntiaL Note that
the ADPCM encoder (Figure 2a) uses most of the
components of the ADPCM decoder (Figure 2b) to
compute the predicted values.

The quantizer output is genera l l y only a (signed)
representation of the nu mber of quantizer levels.
The requantizer reconstructs the value of the quan
tized sample by mu ltiplying the number of quan
tizer levels by the quantizer step size and possibly
add ing an offset of h a l f a step size. Depe nding on
the quantizer implementation, th is offset may be
necessary to center the requantized value between
the quantization thresholds.

The ADPCM coder can adapt to the characteristics
of the audio signal by changing the step size of
either the quantizer or the pred icto r, or by chang
ing both. The method of computing the predicted
val.ue and the way the pred ictor and the quantizer
adapt to the audio signal vary among differe nt
ADPCM coding systems.

Some ADPCM systems requ ire the encoder to
provide side i n formation with the different ia l

30

PCM val ues. This side information can serve
two pu rposes. First, in some ADPCM schemes
the decoder needs the additional information to
determine either the predictor or the quantizer
step size, or both . Seco nd , the data can provide
redundant con textual i n form ation to the decoder
to enable recovery from errors in the bit stream
or to a l low random access entry i nto the coded bit
stream.

The fol lowing section describes the ADPCM
algorithm proposed by the I n teractive M u l ti media
Association (IMA). This algorithm offers a compres
sion factor of (number of bits per source sample)/
4 to I. Other ADPCM audio compression schemes
include the CCXII Recommendation G.721 (32 k i lo
bits per second com pressed data rate) and
Reco m mendation G.723 (24 ki lobits per second
compressed data rate) standards and the compact
disc i nteractive audio compression algorithm.<H

TI1e IMA ADPCM Algorithm The IMA is a consor
t ium of compu ter hardware a n d software vendors
cooperating to develop a de facto standard for com
puter m u l t i media data . The JMA's goa l for its audio
compression proposal was to select a publ ic
domain aud io compression a lgorithm able to pro
vide good compressed audio qual i ty with good
data compression performance. In addit ion. the
algorithm had to be simple enough to enable
software-only, rea l - t ime decompression of stereo,
44.1- kHz-sampled , audio signa ls on a 20-megahertz
(MHZ) 386 -c lass computer. The selected ADPCM

a lgo rithm nor only meets these goals , but is also
simple enough to enable software- only, rea l - t ime
encoding on the same computer.

The si mpl icity of the JMA ADPGv1 proposal l ies in
the crudity of its predictor. The predicted value of
the audio sample is si mply the decoded value of the
immedia tely prev ious audio sample. Thus the pre
dictor block in Figure 2 is merely a ti me-delay
element whose output is the input delayed by one
audio sample interva l. Since this pred ictor is not
adaptive , side information is not necessary for the
reconstruction of the pred ictor.

Figure 3 shows a block d iagram of the quantiza
tion process used by the IMA algorith m . The quan
tizer outputs fo ur bits representing the signed
magnitude of the number of quantizer levels for
each input sample.

Adaptation to the audio signal takes place only in
the quanrizer block. The quantizer adapts the step
size based on the current step size an'! the quan
tizer output of the i m mediately previous input.

Vol. 5 No. 2 Sj;ring 1993 Digital Techuicaljounwl

BIT 3 = 1 ;
SAMPLE = - SAMPLE

BIT 3 = 0 ..

BIT 1 = 0 ..

Digital A udio Compression

BIT 1 = 1 ;
SAMPLE =

SAMPLE - STEP SIZE/2

Figure 3 IMA ADPCM Quantization

This adaptation can be done as a sequence of two
table lookups. The three bits representing t he
nu mber of quantizer levels serve as an index i nto
the first table lookup whose ou tput is an index
adjustment for the second table lookup. Th is adjust
ment is added to a stored i ndex va lue, and the
range-l i mi ted resu lt is used as the i ndex to the sec
ond table lookup. The sum med index value is
stored for use i n the next i teration of the step-size
adaptation. The output of the second table lookup
is the new quantizer step size . Note that g iven a
starting value for the index into the second table

LOWER THREE
B ITS OF
QUANTIZER
OUTPUT FIRST

TABLE
LOOKUP

INDEX
ADJUSTME�0--

+ ..._+
+

�

lookup, the data used for adaptation is completely
deducible from the quantizer outputs; side i nforma
tion is not required for the quantizer adaptation .
F igure 4 i l l ustrates a block d iagram of the step-size
adaptation process, and Tables 1 and 2 provide the
t able lookup contents.

IMA ADPCM: Error Recovery A fortunate side
effect of the design of this ADPCM scheme is
that decoder errors caused by isolated code word
errors or e d its, spl ices, or random access of the
compressed bit stream general ly do not have a

STEP
LIMIT VALUE SECOND SIZE
BETWEEN TABLE I--0 AND 88 LOOKUP

DELAY FOR NEXT
ITERATION OF f-STEP-SIZE
ADAPTATION

Figure 4 IiviA ADPCM Step-size Adaptation

Digital Technical jou r11al Vn/. j No. 2 Sj>ring 1993 3 1

Multimedia

Table 1 First Table Lookup for the IMA
ADPCM Quantizer Adaptation

Three Bits
Quantized I n dex
Magnitude Adj ustment

000 -1

001 -1

010 -1

011 -1
1 00 2

1 01 4

1 1 0 6

1 1 1 8

disastrous impact on decoder output. This is usu
ally not true for compression schemes that use
prediction. Since prediction rel ies on the correct
decoding of previous audio samples, errors in
the decoder tend to propagate. The next section
explains why the error propagation is general ly

l imited and not d isastrous for the IMA algorithm.
The decoder reconstructs the audio sample, Xp [n] ,
by adding the previously decoded audio sample,
XjJ[n - 1] , to the result of a signed magnitude prod
uct of the code word, C[n] , and the quantizer step
size plus an offset of one-half step size:

Xp[n] = XjJ[n - 1] + step_size [n] X C '[n]

where C' i n] = one-half plus a suitable numeric
conversion of C[n] .

An analysis of the second step-size table lookup
reveals that each successive entry is about 1 .1 times
the previous entry. As long as range l im iting of the
second table index does not take place, the value
for step_size [n] is approximately the product of the
previous value, step_size [n - 1], and a function of
the code word , F(C[n - 1]) :

step_size [n] = step_size [n - l j X F(C[n - 1])

The above two equations can be manipulated
to express the decoded audio sample, Xp[n], as a

Table 2 Second Table Lookup for the I MA ADPCM Quantizer Adaptation

Index Step Size I ndex Step Size I n dex Step Size I n dex Step Size

0 7 22 60 44 494 66 4,026

8 23 66 45 544 67 4,428

2 9 24 73 46 598 68 4,871

3 1 0 25 80 47 658 69 5,358

4 1 1 26 88 48 724 70 5,894

5 1 2 27 97 49 796 71 6,484

6 1 3 28 1 07 50 876 72 7,1 32

7 1 4 29 1 1 8 51 963 73 7,845

8 1 6 30 1 30 52 1 ,060 74 8,630

9 17 31 1 43 53 1 ,1 66 75 9,493

1 0 1 9 32 1 57 54 1 , 282 76 1 0,442

1 1 21 33 173 55 1 ,411 77 1 1 ,487

1 2 23 34 190 56 1 ,552 78 1 2,635

1 3 25 35 209 57 1 ,707 79 1 3,899

1 4 28 36 230 58 1 ,878 80 1 5,289

1 5 31 37 253 59 2,066 81 16,818

16 34 38 279 60 2,272 82 1 8,500

17 37 39 307 61 2,499 83 20,350

1 8 41 40 337 62 2,749 84 22,358

19 45 41 371 63 3,024 85 24,623

20 50 42 408 64 3,327 86 27,086

21 55 43 449 65 3,660 87 29,794

88 32 ,767

32 Vol. 5 No. 2 Spring 1993 D igital Technical journal

function of the step size and the decoded sample
value at time, m, and the set of code words
between time, m, and n

Xp [n] = Xp [m] + step_size [m)

n X �
i= m+ l

i
!IT F(C [j))) X C' [i)
j= m + l

Note that the terms in the summation are only
a function of the code words from time m + 1

onward. An error in the code word, C[q], or a ran
dom access entry into the bit stream at time q can
resu lt in an error in the decoded output, Xp[q], and

the quantizer step size, step_size [q+ 1) . The above

equation shows that an error in Xp [m] amounts to
a constant offset to future val ues of Xp [n] . This
offset is inaudi ble unless the decoded output

exceeds i ts permissible range and is cl ipped .

Clipping resu lts in a momentary audible distortion
but also serves to correct partial ly or fu l ly the offset

term. Furthermore, d igital high-pass filtering of the

decoder output can remove this constant offset

term. The above equation also shows that an error

in step_size [m + 1] amounts to an unwanted gain or
attenuation of fu ture values of the decoded output

Xp[n]. The shape of the output wave form is

unchanged unless the index to the second step-size
table lookup is range l imited. Range l imiting resu lts

in a partial or ful l correction to the value of the step

size.

The nature of the step-size adaptation I imits the

impact of an error in the step size. Note that an
error in step_size [m+ 1) caused by an error in a sin

gle code word can be at most a change of (1 . 1)\>, or

7.45 dB in the value of the step size. Note also that
any sequence of 88 code words that a l l have magni
tude 3 or less (refer to Table 1) completely corrects

the step size to its minimum value. Even at the low

est audio sampling rate typically used, 8 kHz, 88
samples correspond to 11 m i l l iseconds of audio.
Thus random access entry or edit points exist
whenever 11 mi l l iseconds of low-level signal occur

in the audio stream.

MPEG/Audio Compression

The Motion Picture Experts Group (MPEG) audio

compression algorithm is an International Organi

zation for Standardization (ISO) standard for high
fide l ity audio compression. It is one part of a

three-part compression standard. With the other
two parts, video and systems, the composite

Digital Techllicaljournal Vol. 5 No. 2 Spring 1993

Digital A udio Compression

standard add resses the compression of synchro
nized v ideo and audio at a total bit rate of roughly
1.5 megabits per second.

Like p,- law and ADPCM, the MPEG/audio compres

sion is lossy; however, the MPEG algorithm can
achieve transparent, perceptua l ly lossless com

pression. The MPEG/audio com mittee conducted

extensive subjective l istening tests during the

development of the standard. The tests showed

that even with a 6-to-1 compression ratio (stereo,
16-bit-per-sample audio sampled at 48 kHz com
pressed to 256 k i lobits per second) and under opti
mal I istening condit ions, expert l isteners were

u nable to distingu ish between coded and original

audio cl ips with statist ical significance. Further

more, these cl ips were specia l ly chosen because

they are difficult to compress. Grewin and Ryden

give the details of the setup, procedures, and
results of these tests 9

The h igh performance of this compression algo

rithm is due to the exploitation of aud itory mask
ing. Th is masking is a perceptual weakness of the

ear that occurs whenever the presence of a strong

audio signal ma kes a spectral neighborhood of
weaker audio signals imperceptible. This noise
masking phenomenon bas been observed and cor

roborated through a variety of psychoacoustic
experiments. Jo

Empirical results also show that the ear has a l im

ited frequency selectivity that varies in acuity from

less than 100 Hz for the lowest aud ible frequencies

to more than 4 kHz for the highest. Thus the audible
spectrum can be partitioned into critical bands that
reflect the resolving power of the ear as a function

of frequency. Table 3 gives a l ist ing of critical band

widths.
Because of the ear's l im ited frequency resolving

power, the threshold for noise mas king at any given

frequency is solely dependent on the signal activity

within a critical band of that frequency. Figure 5
i l l ustrates this property. For audio compression,
this property can be capitalized by transform ing
the audio signa l into the frequency domain, then
d iv iding the resulting spectrum into subbands that
approximate critical bands, and final ly quantiz ing
each subband according to the audibil ity of quanti

zation noise within that band . For optimal compres

sion, each band should be quant ized with no more

levels than necessary to make the quantization
noise inaudible. The fol lowing sections present

a more detailed description of the MPEG;audio
algorithm.

3 3

Multimedia

Table 3 Approx imate Critical Band
Boundaries

Band Frequency Band Frequency
Number (Hz)* Number (Hz)*

0 50 1 4 1 ,970
1 95 1 5 2,340
2 1 40 16 2,720
3 235 17 3,280
4 330 18 3,840
5 420 19 4,690
6 560 20 5,440
7 660 21 6,375
8 800 22 7,690
9 940 23 9,375

1 0 1 ,1 25 24 1 1 ,625
1 1 1 ,265 25 1 5,375
1 2 1 ,500 26 20,250
1 3 1 ,735

• Frequencies are at the upper end of the band.

MPEG/Audio Encoding and Decoding

Figure 6 shows block d iagrams of the MPEG/
audio encoder and decoder. 1 1 12 In th is high- level
representation, encod i ng c losely para l lels t he pro
cess described above. The i npu t audio stream
passes through a fi l ter bank that d ivides the i npu t
into m u l t iple subbands. The input audio stream
sim u l taneously passes through a psychoacoustic
model that determines the signal - to -mask ratio of
each subband . The bit or noise a l location block
uses the signal - to-mask ratios to decide how to
apportion the total nu mber of code bits available
for the quantization of the subband signal s to mi ni
mize the audibi l i ty of the quantization noise.

34

/ STRONG TONAL SIGNAL

FREQUENCY

Figure 5 A udio Noise Masking

Final ly, the l ast block takes the representation of
the quantized audio sa mp.les and formats the data
into a decodable bit stream. The decoder simply
reverses the formatting, then reconstructs the
quantized su bband values, and fi nal ly transforms
the set of subband values into a t ime-domain audio
signa l . As specified by the ,vi i'EG requirements,
ancil lary data not necessari ly related to the aud io
stream can be fi tted within the coded bit stream.

The MPEC;;a udio standard has three distinct lay
ers for compression. Layer l t<>rms the most basic
algori thm, and Layers r r and 111 are enhancements
that use some elements found in Layer I. Each suc
cessive layer improves the compression perfor
mance but at the cost of greater encoder and
decoder complexity.

Layer I The Layer l algo rithm uses the basic filter
bank found in a l l layers. This filter bank d ivides the
audio signal into 32 constant-w idth frequency
bands. The filters are relat ively simple and prov ide
good time resol ution with reasonable frequency
resol u tion relat ive to the perceptual p roperties of
the h u man ear. The design is a comprom ise with
three notable co ncessi ons. First, the 32 constant
width bands do not accurately reflect the ear's criti
cal bands. Figure 7 i l l us trates this discrepancy. The
bandwidth is too wide for the lower frequencies so
the number of quantizer bits cannot be specifica l ly
tu ned for the noise sensitivity within each cri tical
band. Instead , the incl uded critical band with the
greatest noise sensitivity d ictates the nu mber of
quantization bits required for the entire fi lter band.
Second, the fi lter bank and its i nverse are not loss
less transformations. Even without quantization,
the inverse transformation wou ld nor perfectly
recover the original input signa l . Fortunately, the
error introduced by the fi lter bank is smal l and
inaudible. Final ly, adjacent fi lter bands h�tve a sign if
icant frequency overlap. A signal at a si ngle fre
quency can affect two adjacent fi lter bank outputs.

The filter bank provides 32 frequency samples,
one sample per band, for every 32 input audio sam
ples. The Layer l algorithm groups together 12 sam
ples from each of the 32 hands. Each group of 12
sa mples rece ives a bit a l location and, if the bit al lo
cation is not zero, a sca le factor. Cod ing fo r stereo
redu ndancy compression is sl ightly diffe rent and is
discussed later in this paper. 'T'he bit a l l.ocation
determines the nu mber of bits used to represent
each sample. The scale factor is a m u l t ipl ier that
sizes the samples to maxim ize the resol u tion of
the quantizer. The Layer I encoder fo rmats the

V!JI. 5 No. 2 Spring I'J'J3 Digilal Tecbuica/ jourual

Digital Audio Compression

PCM AUDIO
I NPUT

T
ENCODED
BIT STREAM

BIT/NOISE
TIME-TO-FREQUENCY

� ALLOCATION, � BIT-STREAM
MAPPING FILTER OUANTIZER, AND FORMATIING
BANK CODING - · I

I
I
I

PSYCHOACOUSTIC I ANCILLARY DATA

MODEL

BIT-STREAM
UNPACKING

(OPTIONAL)

(a) MPEG/Audio Encoder

FREQUENCY

r---- SAMPLE
- RECONSTRUCTION

I
I
I y

ANCILLARY DATA
(I F ENCODED)

f------.

(b) MPEG/Audio Decoder

FREQUENCY-TO-TI M E
MAPPING

Figure 6 MPEG/ A udio Compression and Decompression

MPEG/AUDIO FILTER BANK BANDS

ENCODED
BIT STREAM

DECODED
PCM AUDIO

I ,
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 19 20 21 22 23 24 25 26 27 28 29 30 31

CRITICAL BAND BOUNDARIES

Figure 7 MPEG/Audio Filter Bandwidths versus Critical Bandwidths

32 groups of 12 samples (i .e . , 384 samples) inro a
frame. Besides the audio data, each frame contains

a header, an optional cycl ic redundancy code (CRC)

check word, and possibly ancil lary data.

Layer II The Layer I I algorithm is a simple
enhancement of Layer I. I t improves compression

performance by coding data in larger groups. The

Layer I I encoder forms frames of 3 by 12 by 32 =

1 , 152 samples per audio channeL Whereas Layer I
codes data in single groups of 12 samples for each

subband, Layer I I codes data in 3 groups of 12 sam

ples for each subband. Again d iscounting stereo
redundancy coding, there is one bit al location and
up to three scale factors for each trio of 12 samples.

The encoder encodes with a unique scale factor for

each group of 12 samples only if necessary to avoid

audible distortion. The encoder shares scale factor

values between two or a l l three groups i n two
other cases: (1) when the values of the scale factors
are sufficiently close and (2) when the encoder

anticipates that temporal noise masking by the ear

Digital Technical journal vbl. 'i No . .! Spring 1993 3 5

Multimedia

wil l hide the consequent d istortion . The Layer ll
algorithm a lso improves performance over Layer I
by representi ng the bit a l location, the scale factor
val ues, and the quantized samples with a more effi

cient code.

Layer lll The Layer I l l algorith m is a much more
refined approach. 1 ·1 1 i Although based on the same
fi l ter bank found in Layers I and I I , Layer I I I compen
sates for some filter bank deficiencies by process

i ng the fi l ter outputs with a mod ified d iscrete

cosine transform (MDCT) . Figure 8 shows a block

diagram of the process.
The MDCTs further subdivide the filter bank out

puts in frequency to provide better spectral resolu

t ion . Because of the inev itable trade-off between

time and frequency reso lution, Layer Ill specifies

two d ifferent M DCT block lengths: a long block of 36
samples or a short block of 12. The short block length

improves the t ime reso lution to cope with tran
sients. Note that the short block length is o ne- th ird

that of a long block; when used, three short b locks

replace a single long block. The switch between

long and short b locks is not instantaneous. A long

block with a special ized long- to -short or short -to

long data window prov ides the transition mecha
n ism from a long to a short block. Layer I l l has three

blocking modes: two modes where the outputs of

the 32 fi l ter banks can a l l pass through MDCTs with

the same block length and a mi.,'l:ed block mode

where the 2 lower-frequency bands use long blocks
and the 30 upper bands use short blocks.

Other major enhancements over the Layer I and

Layer II algorithms include:

PCM
AUDIO
I N PUT

--

LAYER I
AND
LAYER I I
FILTER
BANK

SUBBAND 0

SUBBAND 1

SUBBAND 31

• Alias reduction - Layer I I I specifies a method of

processing the MDCT values to remove some

redu ndancy caused by the overlapping bands of
the Layer I and Layer I I fi l ter bank.

• Nonuniform quantization - The Layer III quan
tizer raises its input to the 3/4 power before
quantization to provide a more consistent signal

to-noise ratio over the range of quantizer values.
The requantizer in the MPEG/audio decoder

rel inearizes the values by raising its output to

the 4/3 power.

• Entropy codi ng of clara values - Layer J I I uses

Huffman codes to encode the quantized samples

for better data compress ion. 1"

• Use of a bit reservoir - The design of the Layer Ill
bit stream better fits the variable length nature of

the compressed data . As with Layer I I , Layer I I !
processes the audio data i n frames of 1 , 152 sam
ples. Unl ike Layer I I , the coded data representing
these samples does not necessari ly fit into a

fixed-length frame in the code bit stream. The

encoder ca n donate bits to or borrow bits from

the reservoir when appropriate .

• Noise a l locatio n instead of bit a l location - The

bit a l location process used by Layers l and II only
approximates the amount of noise caused by
quantization to a given number of bits. The Layer
III encoder uses a noise a l location iterat ion

loop. I n this loop, the quantizers are varied in an

orderly way, and the resu lting quantization noise
is actua l ly calcu lated and specifica l ly a l located

to each subband.

LONG, LONG-TO-SHORT
SHORT, SHORT-TO-LONG
WINDOW SELECT

LONG OR SHORT BLOCK
CONTROL (FROM
PSYCHOACOUSTIC MODEL)

Figure 8 MPEG/ Audio Layer Ill Filter Bank Processing, Encoder Side

36 Vol. 5 No . .1 Spring 19'J3 Digital Technical journal

The Psychoacoustic Model

The psychoacoustic model is the key component of

the MPEG encoder that enables its h igh perfor

mance. 1�> n!u� The job of the psychoacoustic model

is to analyze the input audio signal and determine

where in the spectrum quant ization noise wil l be

masked and to what extent. The encoder uses th is

information to decide how best to represent the

input audio signal with its l imited number of code

bits. The MPEG/audio standard p rovides two exam

ple implementations of the psychoacoustic model.

Below is a general outl ine of the basic steps

involved in the psychoacoustic calcu lations for

either model.

• Time align audio data - The psychoacoustic

model must account for both the delay of the

audio data through the fi lter bank and a data

offset so that the relevant data is centered within
its analysis window. For example, when using

psychoacoustic model two for Layer I , the delay

through the fi lter bank is 256 samples, and the

offset required to center the 384 samples of a

Layer I frame in the 512-point psychoacoustic

analysis window is (512 - 384)/2 = 64 points.

The net offset is 320 points to t ime al ign the

psychoacoustic model data with the fi lter bank
outputs.

• Convert audio to spectral domain - The psy

choacoustic model uses a t ime- to-frequency

mapping such as a 512 - or 1 ,024-point Fourier

transform. A standard Hann weighting, appl ied

to audio data before Fourier transformation,

cond itions the data to reduce the edge effects of

the transform window. The model uses this sep

arate and independent mapping instead of the

filter bank outputs because it needs finer fre

quency resolution to calculate the masking

thresholds.

• Partition spectral values into crit ical bands - To

simpl ify the psychoacoustic calculations, the
model groups the frequency values into percep
tual quanta.

• Incorporate threshold in quiet - The model

includes an empirically determined absolu te

m asking threshold. This threshold is the lower

bound for noise masking and is determined in

the absence of masking signals.

• Separate into tonal and nontonal components -

The model must identify and separate the tonal

Digital Techuical jounwl Vol. 5 No. 2 Spring 1993

Digital Audio Compression

and noisel ike components of the audio signal

because the noise-masking characteristics of the

two types of signal are d ifferent .

• Apply spreading function - The model deter

mines the noise-masking thresholds by applying

an empirical ly determined masking or spread ing
function to the signal components.

• F ind the minimum masking threshold for each

subband - The psychoacoustic model calculates

the masking thresholds with a higher-frequency
resolution than provided by the filter banks.

Where the fi lter band is wide relative to the criti

cal band (at the lower end of the spectrum), the

model selects the minimum of the mask ing

thresholds covered by the filter band. Where the

fi lter band is narrow relative to the critical band,

the model uses the average of the masking
thresholds covered by the filter band.

• Calculate signal - to-mask ratio - The psycho

acoustic model takes the minimum masking

threshold and computes the signal-to-mask

ratio; i t then passes this value to the bit (or

noise) allocation section of the encoder.

Stereo Redundancy Coding

The MPEG/audio compression algorithm supports

two types of stereo redundancy coding: intensity

stereo coding and middle/side (MS) stereo coding.

Both forms of redundancy coding exploit another

perceptual weakness of the ear. Psychoacoustic

results show that, within the critical bands cover
ing frequencies above approximately 2 kHz, the
ear bases its percept ion of stereo imaging more

on the temporal envelope of the audio signal than

i ts temporal fine structure. Al l layers support inten

sity stereo coding. Layer I l l also supports MS stereo

coding.

In intensity stereo mode, the encoder codes

some upper-frequency filter bank outputs with a

single summed signal rather than send independent
codes for left and right channels for each of the 32
filter bank outputs. The intensity stereo decoder
reconstructs the left and right channels based only
on independent left- and right-channel scale fac

tors. With intensity stereo coding, the spectral

shape of the left and right channels is the same

within each intensity-coded filter bank signal, but

the magnitude is d ifferent.

The MS stereo mode encodes the signals for left
and right channels in certain frequency ranges as

middle (sum of left and right) and side (difference

37

Multimedia

of left and right) channels. In this mode, the

encoder uses special ly tuned techniques to further

compress side-channel signal .

Real-time Software Implementations

The software-only implementations of the J.L-law

and ADPCM algorithms can easily run in real t ime. A

single table lookup can do J.L-law compression or

decompression. A software-only implementation

of the IMA ADPCM algorithm can process stereo,
44.1-kHz-sampled audio in real time on a 20-MHz
386 -class computer. The challenge l ies in develop

ing a real-time software i mplementation of the

1\'IPEG/audio algorithm. The MPEG standards docu

ment does not offer many clues in this respect.
There are much more efficient ways to compute

the calcu lations required by the encoding and

decoding processes than the p rocedures outl ined
by the standard. As an example, the fol lowing sec

tion details how the number of mult ipl ies and addi

t ions used in a certain calcul ation can be reduced

by a factor of 12.

Figure 9 shows a flow chart for the analysis sub

band filter used by the MPEG/audio encoder. Most

of the computational load is clue to the second

from- last block. This block contains the following

matrix mult iply:

� [(2 X i+ 1) X (k - 16) X TI]
S(i) = .::.., Y(k) X cos

64 k=O
for i = 0 . . . 31 .

Using the above equation, each of the 31 values of

S(i) requires 63 adds and 64 multipl ies. To optimize
this calculation, note that the M(i,k) coefficients

are similar to the coefficients used by a 32-point,

un-normal ized inverse discrete cosine t ransform
(DCT) given by

31 [(2 X i+ 1) X k X TI]
f(i) = � F(k) X cos 64 k=O

for i = 0 . . . 31 .

Indeed, 5(1) is identical toj(1) if F(k) is compu ted

as fol lows

F(k) = Y(16) for k = 0;

= Y(k+ 16) + Y(l6-k) for k = 1 . . . 16;

= Y(k + 16) - Y(80-k) for k = 17 . . . 31

38

SHIFT IN 32 N E W SAMPLES
INTO 51 2-POINT FIFO BUFFER. X ;

�
W I N DOW SAM PLES:
FOR i = 0 TO 5 1 1 , DO Z ; = C; X X ;

�
PARTIAL CALCULATION

7
FOR i = 0 TO 63, DO yl = L z l + 64j

1 = 0

�
CALCULATE 32 SAMPLES BY

63
MATR I X I N G S ; =L Y; x M ;,k

k = O

�
OUTPUT 32 SUBBANO SAM PLES

Figure 9 Flow Diagram oftbe MPEG/Audio
Encoder Filter Bank

Thus with the almost negl igible overhead of com

puting the F(k) values, a twofold reduction in mul

t ip l ies and additions comes from halving the range

that k varies. Another reduction in m u l tiplies and

additions of more than sixfold comes from using

one of many possible fast algorithms for the compu

tation of the inverse DCT .20 2122 There is a similar

optimization appl icable to the 64 by 32 matrix mul

t iply found within the decoder's subband filter

banJ<.

Many other optimizations are possible for both
MPEG/audio encoder and decoder. Such optimiza

tions enable a software-only version of the MPEG/
audio Layer I or Layer 1 1 decoder (written in the C
program ming language) to obtain real-time per

for mance for the decoding of h igh-fidelity mono
phonic audio data on a DECstation 5000 Model 200.

This workstation uses a 25-MHz R3000 MIPS CPU
and has 128 k i lobytes of external instruction

and data cache . With this optimized software, the

MPEG/audio Layer I I algorithm requ ires an average

of 13.7 seconds of CPU t ime (12.8 seconds of user
time and 0.9 seconds of system t ime) to decode 7.47

Vol. 5 No. 2 Spring 1993 Digital Technical jou rnal

seconds of a stereo audio signal sampled at 48 kHz

with 16 bits per sample.

Although real -t ime M PEG/au cl io decoding of

stereo audio is not possible on the DECstation 5000,

such decoding is possible on D igital 's workstations

equ ipped with the 150-MHZ DECchi p 2 1064 CPU

(Alpha AXP architecture) and 512 kilobytes of exter

nal instruction and data cache. I ndeed, when this
same code (i .e . , without CPU-specific optimization)

is compi led and run on a DEC 3000 AXP Model 500

workstation, the MPEG/audio Layer II algorithm

requires an average of 4 .2 seconds (3.9 seconds of

user t ime and 0.3 seconds of system time) to

decode the same 7.47-second audio sequence.

Summary

Techniques to compress general d igital audio sig

nals i nclude p.-law and adaptive differential pulse

code modulation. These s imple approaches apply

low-complexity, low-compression, and medium

audio qual i ty algorithms to audio signals. A third

technique, the MPEG/aucl io compression algorithm,

is an ISO standard for high-fidelity audio compres

sion. The MPEG/audio standard bas three layers of

successive complexity for improved compression

performance .

References

1 . A . Oppenheim and R . Schafer, Discrete Time
Signal Processing (Englewood Cliffs, N) :
Prentice-Ha l l , 1989): 80-87

2 . K . Pohlman , Principles of Digital Audio
(Indianapolis , JN : Howard W Sams and Co. ,

1989).

3.). Flanagan, Speech A nalysis Synthesis and

Perception (New York: Springer-Verlag, 1972).

4. B . Atal , "Pred ictive Codi ng of Speech at Low
Rates," IEEE Transactions on Communica

tions, vol . COM-30, no. 4 (Apri l 1982).

5. CCJTF Recommendation G. 711: Pulse Code
Modulation (PCM) of Voice Frequencies
(Geneva: International Telecommunications

nion, 1972).

6. L. Rabiner and R . Schafer, Digital Processing
of Speech Signals (Englewood Cliffs, NJ :
Prentice-Hal l , 1978).

Digital Technical journal Vol. 5 No. 2 Spring 1993

Digital Audio Compression

7. M. N ishiguchi , K. Akagiri , and T. Suzuki,

"A New Audio Bit Rate Reduction System
for the CD-I Format," Preprint 2375, 8Jst
Audio Engineering Society Convention, Los

Angeles (1986).

8. Y. Takahashi , H . Yazawa, K. Yamamoto, and

T. Anazawa, " Study and Evaluation of a New

Method of ADPCM Encoding," Preprint 2813,
86th Audio Engineering Society Convention,

Hamburg (1989).

9. C. Grewin and T. Ryden, "Su bjective Assess

ments on Low Bit -rate Audio Codecs," Pro
ceedings of the Tenth International A udio
Engineering Society Conference, London

(1991) : 91 -102.

10.]. Tobias, Fou ndations of Modern A uditory
Theory (New York and London: Academic

Press, 1970): 159-202.

1 1 . K . Brandenburg and G. Stoll , "The ISO/MPEG
Audio Codec: A Generic Standard for Codi ng

of H igh Qual ity D igital Aud io," Preprint 3336,
92nd Audio Engineering Society Conven
tion, Vienna (1992)

12. K . Brandenburg and]. Herre, " D igital Audio

Compression for Professional Applications,"

Preprint 3330, 92nd A udio Engineering
Society Convention, Vienna (1992).

13. K. Brandenburg and]. D. Johnston, "Second

Generation Perceptual Audio Codi ng: The

Hybrid Coder," Preprint 2937, 88th Audio
Engineering Society Convention, Montreaux

(1990).

14. K . Brandenburg,). Herre ,). D. Johnston ,

Y. Mahieux, and E. Schroeder, "ASPEC : Adap

t ive Spectral Perceptual Entropy Coding of

High Qual i ty Music Signals," Preprint 301 1 ,

90th Audio Engineering Society Convention,
Paris (1991) .

15. D. H u ffman, "A Method for the Construction
of Minimum Redundancy Codes," Proceed
ings of the IRE, vol. 40 (1962) : 1098-1101 .

16.). D. Johnston, " Estimation of Perceptual

Entropy Using Noise Masking Criteria," Pro
ceedings of the 1988 IEEE International Con
ference on Acoustics, Speech, and Signal
Processing (1988): 2524 -2527

39

Multimedia

17). D. Johnston, "Transform Coding of Audio

Signals Using Perceptual Noise Criteria," IEEE
journal on Selected Areas in Communica
tions, vol. 6 (February 1988) : 314 - 323.

18. K. Brandenburg, "OCF-A New Coding Algo
rithm for High Quality Sound Signals," Proceed
ings of the 1987 IEEE ICASSP (1987): 141 -144.

19. D. Wiese and G. Stol l , "Bitrate Reduction of

High Quality Audio Signals by Model ing the

Ear's Masking Thresholds," Preprint 2970,

89th Audio Engineering Society Convention,
Los Angeles (1990).

40

20.) . Ward and B. Stanier, "Fast Discrete Cosine

Transform Algorithm for Systolic Arrays," Elec
tronics Letters, vol. 19, no. 2 Oanuary 1983).

2 1 .) . Makhoul, "A Fast Cosine Transform in One

and Thro Dimensions," IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol .

ASSP-28, no. 1 (February 1980).

22. W-H. Chen, C. H . Smith, and S. Fral ick, "A Fast

Computational Algorithm for the Discrete

Cosine Transform," IEEE Transactions on
Communications, vol. COM-25 no. 9 (Septem
ber 1977).

Vol. 5 No. 2 Spring 1993 D igital Techuica/ journal

jan B. te Kiefte
Robert Hasenaar

joop W. Mevius
Theo H. van Hunnik

The Megadoc Image Document
Management System

Megadoc image document management solutions are the result of a systems

engineering effort that combined several disciplines, ranging from optical disk

hardware to an image application framework. Although each of the component

technologies may be fairly mature, combining them into easy-to-customize solu

tions presented a sigmficant systems engineering challenge. The resulting applica

tion framework allows the configuration of customized solutions with low systems

integration cost and short time to deployment.

Electronic Document Management

In most organizations, paper is the main medium
for information sharing. Paper is not only a commu

nication medium but in many cases also the carrier
of an organization's vital information assets. Whereas

the recording of information in document format is

done largely with help of electronic equipment,
sharing and d istribution of that information is i n

many cases st i l l done o n paper. Large-scale, paper

based operations have l im ited options for tracking
the progress of work.

The computer industry thus has two opportunities:

I . Capture paper documents in electronic image

format (if using paper is a requirement)

2. Provide better tools for sharing and distribution

among work groups (if the use of paper can be

avoided)

Organizations that use electronic imaging, as

compared to hand l ing paper, can better track work
in progress. Productivity increases (no time is
wasted in searching) and the quality of service

improves (response t imes are shorter and no infor
mation is lost) when vital information is repre
sented and tracked electronically.

Imaging is not a new technology (see Table 1) .
Moreover, this paper does n o t document new base

technology. Instead, we describe the key compo

nents of an image document management system in

the context of a systems engineering effort. This

effort resulted in a product set that a l lows the con

figuration of customized solutions.

Those who first adopted the use of image tech
nology have had to go through a long learning

Digital Tecbuiclll]ournal Vol. 5 No. 2 Spring 1993

curve-a compu ter with a scanner and an optical

d isk does not fu lly address the issues of a large

scale, paper-based operation. Early adopters of

electronic i maging experienced a chal lenge in

defining the right electronic document indexing

scheme for their appl ications. Even though the

technology is now mature, the introduction of a

document i maging system frequently leads to some

for m of business process reengineering to exploit

the new options of electronic document manage
ment. The Megadoc image document management

system al lows the configuration of customer

specific solutions through its build ing-block archi
tecture and its built-in customization options.

The Megadoc system presented in this paper is

based on approximately 10 years of experience

with base technology, customer projects, and

everything in between. In those years, Megadoc

image document management has matured from

the technology delight of optical recording to an
application framework for i mage document man

agement. This framework consists of hardware and
software components arranged in various architec

tural layers: the base system, the optical file server,
the storage manager, and the image application

framework.
The base system consists of PC-based work

stations, running the Microsoft Windows operating

system, connected to servers tor storage manage

ment and to database services for document index

ing. Specific peripherals include image scanners,

image printers, optional ful l-screen d isplays, and
optional write once, read many (WORM) disks.

The optical file server abstracts from the differ

ences between optical WORM disks and provides

4 1

Multimedia

Table 1 H i story of I mage Document Management

1975 Phi l ips Research combines a 12-inch (30.48-centimeter) videod isk for analog storage of facsim ile
documents and high-resolution video mon itors with a min icomputer for indexing in an experimental
image management system.

1979 Phi l ips' image management system switches to dig ital technology through the avai lability of
WORM disks and random-access memory (RAM) chips (for refreshing a fu l l -page video monitor).

1983 At the Hannover Fai r (Hannover, Germany), Phi l ips shows Megadoc, an image document
management system with WORM disks containing compressed document images. Dedicated
image document management solutions are introduced.

1988 I mage document management transitions from ded icated image display technology as part of a
proprietary computer architecture to an open systems platform with PC-based image workstations.

1993 The image becomes just another document format that is used next to text-coded electronic
documents.

the many hundreds of gigabytes (GB) of storage

required in large-scale image document manage

ment systems.

The storage manager provides storage and

retrieval functions for the contents of documents.

Document contents are stored in " containers," i .e . ,

large, one-dimensional storage areas that can span

multiple optical disk volumes.

The Megadoc image application framework con·
tains three sublayers:

1. Image-related software l ibraries for scanning,

viewing, and printing

2. Application templates

3. A standard folder management application that

provides, with some tailoring by the end-user

organization, an "out-of-the-box" image docu

ment management solut ion

The optical file server and the storage manager

store i mages in any type of document format.

However, to meet customer requirements with

respect to longevity of the documents, images

should be stored in compressed format according
to the Comite Consultatif Internationale de Tele

graphique et Telephonique (CCITT) Group 4

standard.
In addit ion to image document management

solutions, Megadoc components are used to "image

enable'' existing data processing appl ications. In

many cases, a data processing appl ication uses

some means of identification for an appl ication

object (e .g . , an order or an invoice). This identifica

tion relates to a paper document. Megadoc reuses

the appl ication's identification as the key to the

i mage version of that document. Appl ication pro

gramming interfaces (APis) for terminal emulation

42

packages t hat are running t he original application

in a window on the Megadoc image PC work
stations a l low integration with the unchanged

application.

The following sections describe the optical file

server, the storage manager, and the i mage applica

tion framework.

Megadoc Optical File Server

The Megadoc optical file server (OFS) software pro

vides a UNIX file system interface for WORM d isks.

The OFS automatically loads and u nloads these

WORM volumes by jukebox robotics in a completely

transparent way. Thus, from an API perspective, OFS

implements a UNIX file system with a large on-l ine

file system storage capacity. Currently, up to 800 GB

can be reached with a single jukebox.

We implemented the OFS in three layers, as

shown Figure 1 :

1 . The optical clisk filer (ODF) layer, which enables

storing data on write-once devices and provid
ing a UNIX fi le system interface.

2. The volume manager (VM), which loads and
unloads volumes to and from drives in the juke
boxes and communicates with the system opera
tor for hand ling off- l ine volumes.

3. The device layer, which provides device-level

access to the WORM drives and to the j ukebox

hardware. This layer is not d iscussed further i n

this paper.

Optical Disk Filer

When we started to design the ODF, the chief

prerequisite was that it should adhere to the UNIX

file system interface for applications. The obvious

Vol. 5 No. 2 Spring 1993 Digital Technical journal

STORAGE
MANAGER OR
OTHER UNIX
APPLICATION

OPTICAL
FILE SERVER

HARDWARE

Figure 1 n1e Three Software Layers of the
Optical File Server

benefit was that the designers would not have to

write their own ut i l i ties to, for example, copy data,

create new files, and make new directories. Al l

UNIX uti l ities wou ld work a s well on WORM devices

as on any other file system.
Current UNIX implementations provide two ker

nel interfaces for integrating a new file system type

into the kernel: the file system switch (FSS), in UNIX

versions based on the System V Release 3; and the

virtual file system (VFS), in UNIX implementations

l ike the System V Release 4, Sunos, and OSF/1 oper

ating systems. We introduced the optical disk filer

in the FSS and later ported i t to the VFS.

The key chal lenge for the design of a file system

for write-once devices is to a l low updates without
causing an "avalanche" of updates. Note that any

update to a sector on a WORM device forces a
rewrite of the ful l sector at another location . If
pointers to an updated sector exist on the WORM
device, sectors that contain those pointers have to
be rewritten, also. For example, if a file system

implementation is chosen where the l ist of data
blocks for a file, or just the sector location of such a

l ist, is part of the file's d irectory information, any

update to that file would cause a rewrite of the

directory sector and the sectors for the parent

directories, al l the way up to the root directory.
A second issue to be addressed for removable

optical disks is performance. Access time for on-line

d isks is at least eight times slower than for current

Digital Tecb11ical]ournal Vol. 5 No. 2 Spring 1993

The Megadoc Image Document Management System

magnetic d isks. (The average seek time for a WOR.NI

device is 100 mill iseconds; rotational delay is about

35 m i l l iseconds.) Fetching a disk from a ju kebox

storage slot, loading i t , and waiting for spin-up

takes between 8 and 15 seconds, depending on the

type of jukebox.
Caching solves both issues. We decided that the

usual i n-memory cache would not be sufficient for

the huge amounts of WORM data, and therefore, we
use partitions of magnetic disks for caching.

ODE WORM Layout To avoid duplicating previ

ous efforts, we used classical UNIX file systems as

a guidel ine for the definition of ODF's WOR.JVI Iayout.

However, we had to add some indirect pointer
mechanisms to avoid update avalanches. Each file

system is mapped onto a single WOR.J\tl partit ion.
These partitions are written sequentially, reducing

the free block administration to maintaining a cur

rent write point.

The ODF reuses many notions from UNIX file sys

tems, such as i-nodes, superblock, and the func

tional contents of directory entries. 1 Applying

these UNIX notions to the optica l fi le system

resulted in the fol lowing ODF characteristics:

• The superblock contains all global data for a file

system.

• Each i-node contains the block l ist and all the

attributes of a file except t he fi le's name.

• An i-node number identifies each i-node.

• A directory is a special type of file.

• Entries in a directory map names to i-node

numbers.

A new notion in the ODF, as compared to UNIX

file systems, is the admin istration file (admin file).

One such file exists for each file system. The file is

sequential, and i ts contents are similar to the first

disk blocks in classical UNfX file systems: the first
extent contains the superblock, and a l l other

extents form a constantly growing array of i -nodes;
the i-node's number is the index of the i-node in the
file's i-node array. An important difference between
UNIX file systems and the ODF is thar the 2-kilobyte

(kB) , fixed-size extents of the ODF admin file are

scattered over the WORM device, instead of being

stored as a sequential array of disk blocks, as in

UNIX systems. As a result, any update to an i-node,

as a consequence of a file update, causes the invali
dation of at most one admin file extent. Since

the logical index i n the admin file of this i-node, i .e . ,

43

Multimedia

the i- node number, does not change, the parent

directories do not have to be updated.

However, this scheme needs an additional indi

rect pointer mechanism: a l ist of block numbers

representing the location of the admin file extents.

The ODF stores this l ist in the admin file 's i- node

(aino). The aino is a sequential file that contains

sl ightly more than block numbers and is a sequence

of contiguous blocks on the WORM disk that con

tain the same information. Hence, an update to an

admin file extent always inval idates the entire aino
on the WORM device, which makes the aino a more
desirable candidate for caching than the admin file

extents.

The fol lowing example, shown in Figure 2, i l l us

trates the steps involved in reading logical block N
from the file with i-node number 1:

1. Read the aino to obtain the block number of /'s
admin file extent.

2. Read the admin file extent to get file I, which is

used to translate the logical block number N into

the physical block number I(N).

3. Read physical block I(N).

If the file system is in a consolidated state, i .e , a l l

data on the WOR..i\1 disk is current, the aino and the

superblock are the last pieces of information writ
ten to the WOR..i\1 device, directly before the current

write point. Blocks written prior to the aino and

the superblock contain mainly user data but also

an occasional admin file extent , ful ly interleaved.

Figure 3 shows the WORM layout. Since ODF

requires the first admin file extent and the com
plete aino to be in the cache, introducing a disk

with consol idated file systems to another system
requires searching the current write point, reading

the superblock, determining the a ino length from
the superblock, and finally reading the aino itself.

AI NO

r--
L....-

1-

ADMIN F ILE EXTENTS

SUPERBLOCK

i-NOOE BLOCK 1

I
I

I
I

I

i -NODE BLOCK K c:=il _ _ _

Searching the current write point is a fairly fast

operation implemented through binary search and

hardware support, which al low the ODF to distin
guish between used and unused data blocks of I K
bytes.

ODF Caching Caching in the ODF is file oriented.

We suggest a magnetic cache size of approximately
5 percent of the optical disk space. lf data from a

file on a WORM disk is read, the ODF creates a cache

file and copies a contiguous segment of file data

from the WORM disk (64 kB in size, or less in the

case of a small file) to the correct offset in the cache

file. The cache file is the basis for a l l i!O operations
until removed by the ODF, after having rewritten al l

d irty segments (i .e . , updated or changed segments)

back to the WOR..i\1 device. The ODF provides special

system calls (through the UNIX fcntl(2) interface)

to flush asynchronously d irty file segments to the
WOR..i\1 device and to remove a fi le's cache file. The

flusher daemon monitors high and low watermarks

for dirty cache contents. The daemon flushes dirty

data to the optical disks. The flusher daemon

flushes data in a sequence that minimizes the num

ber of WORM volume movements in a jukebox . The
ODF deletes clean data (i .e . , data a lready present on

the optical disk) on a least- recently-used basis.

The admin file has its own cache file . The mini

mum amount of aclmin file clara to be cached is the

superblock. The ODF gradually caches the other

aclmi.J1 file extents, which contain the i-nodes, while
the file system is in use. The ODF writes i-node

updates to the WOR.ivl device as soon as aU i-nodes in

the same actmin file extent have their dirty file data
wri t ten to the WORM device. The aino has its own

cache file, also, and is always completely cached.

If all file clara and i-nodes have been written to the

WOR..i\1 device, the file system can be consol idated
by a special util ity that writes aino and superblock

EXTENTS OF FILE I

EXTENT 0
EXTENT 1

EXTENT N

Figure 2 Steps Involved in Getting from tbe Aino to Extent N of File I

44 Vol. 5 No. 2 Spring 199) Digital Tee/mica/ journal

The Megadoc Image Document Management System

WORM PARTITION: I
PREVIOUS CONSOLIDATION POINT

C U R RENT CONSOLIDATION POINT \

PREVIOUS AI NO
AND SUPERBLOCK

CURRENT AINO I
AND SUPERBLOCK

EMPTY SECTORS

Figure 3 WORN! Layout for a Consolidated ODF File System

to the WORM device, hence creating a consol ida
tion point.

For reasons of modularity and ease of implemen
tation , we chose the UNIX standard magnetic disk
file system implementation to perform the caching.
An al ternative would have been to use a magnetic
disk cache with an optimized, ODF-specific struc
ture. We opted for a small amount of overhead,
which would allow us to add a faster file system,
should one become available. Our performance
measurements showed a loss of less than 10 percent
in performance as compared to that of an ODF
specific solution. The cache file systems on mag
netic d isk can be accessed o nly through the ODF
kernel component. Thus, in an active OFS system,
no application can access and, therefore, possibly
corrupt the cached data.

Volume Manager

In addition to h iding the WORM nature of the under
lying physical devices, the OFS transparently moves
volumes between drives and storage slots in juke
boxes that contain many volumes ("platters"). The
VM performs this function.

The essential characteristic of the volume man
agement l ayer is its simple functionality, which
is best described as a "volume fault ing device."
The interface to the VM consists of volume device
entries, each of which gives access to a specific
WORM volume in the system. For example, the vol
ume device entry /dev/WORM_A gives access to the
WORM volume WORJVI_A. This volume device entry
has exactly the same interface as the usual device
entry such as /dev/worm, which gives access to
a specific WOR.J\1 drive in the system, or rather
to any volume that happens to be on that drive at
that moment. Any access to a volume device, e .g . ,
/dev/WORM_A, either passes d irectly to the drive on
which the volume (WOR.!vi_A) is loaded, or results in
a volume fault . This last situation occurs when the

Digital Technical journ al Vol. 5 No. 2 Spring 1993

volume is i n a jukebox slot and not in a directly
accessible drive. Note that since /dev/WOR.J\1_A has
the same interface as /dev/worm, the OFS could
function without the VM layer in any system that
contains only one worm drive and one volume that
is never removed from that drive. However, since
this configuration is not a realistic option, the OFS
includes the VM layer.

The internal architecture of the VM is more com
pl icated than its functional i ty might indicate. The
VM consists of a relatively small kernel component
and several server processes, as i l lustrated in Figure
4. The kernel component is a pseudo-device driver
layer that receives requests for the volume devices,
e .g . , /dev/WOR.JVI_A, and translates these requests
into physical device driver (!dev/worm) requests
using a table that contains the locations of loaded
volumes. If the location of a volume can be found in
the table, the 1/0 request is directly passed on to the
physical device. Otherwise, a message is prepared
for the central VM server process, and the volume
server and the requesting application are put in a
waiting state.

The volume server uses a file to translate volume
device numbers i nto volume names and locations.
I t communicates with two other types ofVM server
processes: jukebox servers and drive servers. The
jukebox servers take care of all movements in
their jukebox. Drive servers spin up and spin down
their drive only on request from the volume server.

Storage Manager

The storage manager implements containers, as
mentioned i n the Electronic Document Manage
ment section. Large-scale document management
uses indexing of multiple storage and retrieval
attributes, typically with the help of a relational
database. Once the contents of a document are
identified through a database query on its attri
butes, a single pointer to the contents is sufficient.

4 5

Multimedia

VOLUME MANAGEMENT

STORAGE
MANAGER OR
OTHER U N I X
APPLICATION

I UNIX USER SPACE

I U N I X KERNEL SPACE
VOLU ME
MANAGER
KERNEL
COMPONENT

I
I

Figure 4 Global Architecture Showing the VM Component

Also, there is l itt le need for a hierarchically struc
tured fi le system. Containers provide large, fl at
structures where the contents of a document are
uniquely defined by the container identification
and a u nique identification within the container.
TI1e document's contents identification is translated
by the storage manager in a path to a directory where
one or more contents files can be written. For mu lt i
page image documents, the .Megadoc system stores
each page as a separate image file in a directory
reserved for the document. This scheme guarantees
localit y of reference, avoiding unnatural delays
while browsing a multipage image document.

A container consists of a sequence of file sys
tems, typically spanning multiple volumes. Due to
the nature of the OFS, no d istinction has to be made
between WOR.ivl disk file systems and magnetic disk
fi le systems. The storage manager fi ll s containers
sequential ly, up to a configurable threshold for
each file system, a l lowing some degree of local
updates (e.g . , adding an image page to an existing
document). As soon as a container becomes fuJ I , a
new fi le system can be added.

Containers in a system are network-level
resources. A name server holds container locations.
Relocation of the volu me set of a contai ner to
another jukebox, e .g . , for load balancing, is possible
through system management ut i l ity programs and
can be achieved without changing any appl ication's
indexing database.

RetrievAll-The Megadoc Image
Application Framework

Early Megadoc configurations required extensive
system integration work. RetrievAl! is the second
generation image application framework (IAF). The

46

first generation was based on delivery of source of
example appl ications. However, tracking source
changes appeared to be too big of an issue and ham
pered the introduction of new base functional i ty.

In cooperation with European sales organi
zations, we formulated a J ist of requirements for a
second-generation IAF. The framework m ust

1 . AJlow for standard appl ications. Standard appli
cations, i .e . , scan, index, store, and retrieve, cover
a wide range of customer requirements in folder
management. Ta i loring standard applications
can be accomplished in one day, without pro
gramming effort.

2. Be usable in system i ntegration projects. The
IAF m ust provide AP!s for folder management,
al lowing the field to build appl ications with
functional i ty beyond the standard applications
by reusing parts of the standard applications.

3. Al low image enabling of existing appl ications.
RetrievAl! should aUow tbe l inkage of electronic
image documents and folders with entities, such
as order number or invoice nu mber, in existing
applications. Existing appl ications need not
be dunged and run on the image workstation
using a terminal emulator running at the image
workstat ion .

4. Accommodate internationalization. Al l text pre
sented by the application to the end user should
be in the native language of the user. RetrievAl!
should support more than one language simul ta
neously for multi l ingual countries.

5. Al low upgrading. A new fl.mctional release of
RetrievAl ! should have no effect on the customer
specific part of the appl ication.

Vol. 5 No. 2 5jJring 1993 Digital TeciJuical jourual

6. Provide document routing. After scanning the
documents, RetrievAl [should route references
to new image documents to the in-trays of users
who need to take action on the new documents.

Image Documents in
Thei1· Production Cycle

Image documents start as hard-copy pages that
arrive in a mail room, where the pages are prepared
for scanning. Paper cl ips and staples are removed,
and the pages are sorted , for example, per depart
ment. An image batch contains the sorted stacks of
pages. The scanning application identifies batches
by a set of attributes. The scanning process offers
a wide variety of options, including scanning one
page or multiple pages, accepting or rejecting the
scanned image for image qual i ty control, batch
importing from a scanning subsystem, browsing
through scan ned pages, and control l ing scanner
settings.

The indexing process regroups image pages of an
image batch into mul tipage image documents. Each
document is ident ified with a set of configurable
attributes and optional ly stored in one or more
folders. Folders also carry a configmable set of
attribu tes. On the basis of the attri bute values, the
document contents are stored in the document's
storage location (container).

Many users of RetrievAl l appl ications use the
retrieve functions of the appl ication only to
retrieve stored folders and documents. Folders and
docu ments can be retrieved by specifying some of
the at tributes. RetrievAl ! a l lows the configuration
of query forms that represent different views on the
indexing database. The result of a query is a l ist of
documents or folders. For documents, the opera
tions are view, edit, delete , print, show folder, and
put in folder. The Megadoc editor is used to view
and to manipulate the pages of the document
including adding new pages by scanning or import
ing. For folders, the operations are I ist documents,
delete, and change at tributes.

Document Routing Applications

A RetrievAll routing appl ication is an extension to a
folder management application. A route defines
how a reference to a folder travels a long in- trays of
users or work groups.

Systems Management

The following systems management fu nctions sup
port the RetrievAl I package:

Digital Techllical journal lkil. 5 No . .! SpriiiU 199)

The Megadoc Image Document Managernent System

• Container management

• Security, i .e . , user and group permissions

• Logging and auditing

• Installation, customization, tai loring. and local
ization

Ar·chitecture and Overview

As i l lustrated in Figure 5, the Retr ievAl I image appli
cation framework consists of a number of modu les.
Each module is a separate program that performs a
specific function, e.g. , scanning or document index
ing. Each modu le has an API to control its function
al ity, and some modules have an end-user interface.
Modu les can act as build ing bricks under a control
module. For example, an image document capture
application uses

J . Scan handl ing, to let an end user scan pages into
a batch.

2. Scanner settings, to al low t he user to set and
select the settings for a scanner. The user can
save specific settings for later reference.

3. Batch handling, to a l low the end user to create,
change, and delete batches.

These three modules can operate together under
the control of the scan control module and in this
way form a document capture appl ication. The
scan control module can, under control of a main
module, perform the document capture function
in a folder management application.

Modules commu nicate by means of dynamic data
exchange (DOE) interfaces prov ided in the
Microsoft Wi ndows environment. Each module,
except the main module, can act as a server, and a l l
modu les can act a s cl ients i n a DOE communication.

Main Module Any RetrievAl ! application has a
main module that controls the act ivation of major
functions of the appl ication. These functions
include scanning pages into batches, identifying
pages from batches into mul tipage image docu
ments and assigning documents to fo lders, ancl
retrieving documents and folders. The main mod
ule presents a menu to se.lect a major function. The
main module activates the control modu les of the
major functions in an asynchronous way. For exam
ple, the main module can activate a second major
fu nction, e.g. , retrieve, when the first major func
tion, e .g. , identification, is sti l l active.

47

Multimedia

Figure 5 RetrievAl! Module Overview

Control Modules Each major RetrievAl ! function
has a control module that can run as a separate
appl ication. For example, when a PC acts as a scan
workstation, i t is not necessary to offer all the func
tionality by means of the main module. Control
modules can be activated as a server through the
DDE API with the main modu le as cl ient or as a pro
gram item from a Microsoft Windows program
group .

Server Modules All modu les, with the exception
of the main mod ule, act as DOE server modules.

Configuration files hold environment data for
each module. An appl ication configuration file
describes which modules are in the configuration.
The layout of the configuration files is the same as
the WlN.I N I file used by the Microsoft Windows
software, al lowing the reuse of standard access
functions.

Making an Application

An appl ication can be made by selecting certain
modules. Figure 5 gives an overview of the modules
used for the standard folder management appl ica
tion. The installation program, which is part of the
standard appl ications, copies the appropriate mod
u les to the target system and creates the configura
tion files.

Modules can a lso be used with applications other
than the standard ones. Image enabling an existing
(i .e . , legacy) appl ication (see Figure 6), such as an
order entry application where the scanned images of
the orders should be incl uded, entails the fol lowing:

48

• The existing application is controlled by a termi
nal emulator program running in the Microsoft
Windows environment. This terminal emulator
program must have programming faci l it ies with
DDE functions.

• While entering a new order into the system, the
image document representing the order is on
the screen . The function to include the image
can be mapped on a function key of the emula
tor. Pressing the function key results in a DDE
request to the identification function of the
RetrievAl! components. This DDE request passes
the identification of the document (as known in
the order entry application) to the identification
function.

Summary

This p aper has provided an overview of the many
components and discipl ines needed to build an
effective image document management system. We
discussed the details of the WORN! file system, the
storage manager technology, and the image applica
tion framework. Other aspects such as WORJ\1

peripheral technology, software compression and
decompression of images, and the integration of
facsimile and optical character recognition tech
nologies were not covered .

From experience, we know that different cus
tomers have d ifferent requirements for image docu
ment management systems. The same experience,
however, taught us to discover certain patterns
in customer applications; we captured these pat
terns in the application framework. The resulting

Vol. 5 No. 2 Spring 1993 Digital Technical journal

The Megadoc image Document Management c�ystem

ENCAPS ULATED
LEGACY
APPLICATION

Figure 6 image Enabling a Legacy Application

Reference framework a l lows us to bu ild h ighly customized
appl ications with low system integration cost and

short t ime to deployment. Future d irections are in
the area of enhanced folder management and i n te
grated distributed work flows.

1 . M. Bach, The Design of the Unix Operating .�ys
tem, ISBN 0-13-201757-1 (Englewood CJ iffs, NJ:

Digital Techuicnl jour11nl Vol. 5 No. 2 Spring 199.)

Prentice-Hal l , 1986).

49

Mark F. Riley
james] Feenan,j1:
john L. janosik,jr.

T. K. Rengarajan

The Design of Multimedia
Object Support in DEC Rdb

Storing multimedia objects in a relational database ojfers aduantages Ol'er file

system storage. Digital's relational database software product DEC Rdb supports the

storing and indexing of multimedia objects-text, still frame images, compound

documents, audio, video, and any binary large object. After evaluating the existing

DEC Rdb version 3. 1 for its ability to insert, jetcb, and process multimedia data, soft

ware designers decided to modify many parts of Rdb and to use write-once optical

disks configured in standalone drive or jukebox configurations. Enhancements

were made to the buffer manager and page allocation algorithms, thus reducing

wasted disk space. Performance and capacity field tests indicate that JJLC Rdb can

sustain a 200-kilobyte-per-second SQL fetch throughput and a 57. 7-kilobyte-per

second SQL!Seruices fetch throughput, insert and fetch a 2-gigabyte object, and build

a 50-gigabyte database.

To accommodate the increasing demand for com

puter storage and indexing of mul t imedia objects,

D igital supports mul timedia objects in its DEC Rdb
relational database software product. Th is paper

d iscusses the improvements over version 3.1 and
presents deta i l s of the new features and a lgorithms

that were developed for version 4.1 and are used in
version 5.1 . This advanced technology ma kes the

DEC Rdb commercia l database product a precursor

of sophisticated database management systems.
M u l timedia objects, such as large amounts of

text, st i l l frame images, compound documents, and

d igit ized audio and video, are becomi ng standard

data types in computer appl ications. Devices that
scan paper, i .e . , facsimile machines, are inexpensive
and ubiqu i to us. Devices that capture and play back
ful l -motion video and audio are just beginning to
reach the mass market. Capturing these objects for
use within a computer resu l ts i n many large data
fi les. For example, one minute of d igitized and com

pressed standard TV-quality video requires approxi

mately 50 megabytes (M13) of storage'

To date, relat ional databases have been used
successfu l ly in storing, io<.Jex ing, and retrievi ng
coded n umbers and characters. Relationa l a lgebra

is an effective tool for reorganizing queries to
reduce the n umber of records, e.g. , from 1 m i l l i o n

t o 70 records, that an appl ication program must
search to obtain the desired inform ation. Other

50

database features, such as transaction processing,

lock ing, recovery, and concurrent and consistent
access, are essential to the successhd operat ion of

n umerous businesses. Electronic ban k i ng, credi t
card, a irl ine reservat ion, and hospi ta l information

systems all rely on these features to query, main

tain, and susta in business records.
However, a l though a busi ness might have its

numbers and characters organized, control led , and

managed in a compu ter database, maintaining the
paper and fi lm storage media associated with

database records can be costly, both in dol lars and

in human resources. Some estimates place the

worldwide data storage business at $40 bil l ion, and
as much as 95 percent of the information is stored
on either paper or fi lm . Curre nt ly, busines:-;es such
as insu rance, bank ing, engineering, and medicine
depend on human beings to manage the filing and

retrieval of these extensive paper and fi lm archives.
Human error can resu l t in the Joss of paper and
fi lm . Clearly, scanning the paper, storing the infor

mation in a computer, and making th is i nformation

available over computer networks is a better way

to manage paper records. This scheme al lows
(1) multiple copies to be distributed at once; (2) a
customer file to be electro nica l ly located and

retrieved in seconds, whereas to materia l ize a
paper folder can rake days; and (3) properly
programmed computers to maintain these types

Vol. 5 No. .! .\j!ri11� I'J')i Digital Tecbuica/]ourunl

of information more efficiently and accurately than

humans can.

The idea of el iminating paper-based storage of
business records in favor of computer storage is

long-standing. However, only recently have techni
cal developments made it practical to consider cap

turing, storing, and indexing large quantities of

multimedia objects. Storage robots based on mag

netic tape or optical disk can be configured in
tl1e range of multiple terabytes (TB) at the low cost
of 45 cents per MB. Central processors based on

reduced instruction sets are getting fast e nough to

process multimedia objects without having to rely
on digital signal. coprocessors. Processor main

memory can be configured in gigabytes (GB).
Document management systems, which have

thrived over the past few years, deliver computer
scanning, indexing, storage, and retrieval across

local area networks.

Until now, most mu ltimed ia objects have been

stored in files. Document management systems
generally use commercial relational database tech

nology to store the documents' index and attribute

information, where one attribute is the physical

location of the file. This approach has several disad

vantages: considerable custom software must be

written and maintained to make the system appear

logica lly as one database; appl ication programs

must be written against these proprietary software

interfaces; a system based on both files and a rela

tional database is difficult to manage; two backup

and-restore procedures must be learned and
appl ied; and complications in the recovery process
can occur, if the d atabase and file system backups

are executed independently.

Notwithstanding these disadvantages, storing

multimedia objects in a relational database offers

several advantages over file system storage.

• Coding an application aga inst one standard

interface structured query language (SQL) to
store object attribute data as wel l as mu ltimedia
objects is easier than coding against both SQL to

manage attribute clata and a file system to store
the multimedia object.

• The database requires only one tool to back up

and monitor data storage rather than two to

maintain the database and the file system.

• The database guarantees that concurrent users

see a consistent v iew of stored i nformation. In
contrast to a file system, a database provides a

Digital Techuical journal Vol. 5 No. 2 Spring 1993

The Design of Multimedia Object Suppo1·t in DEC Rdb

locking mechanism to prevent writers and read

ers from interfering with one another i n a gen

eral transaction scheme. However, a file system

does offer locks to prevent readers and writers

from simultaneous file access.

• The database guarantees, assuming that proper

backup and maintenance procedures are fol

lowed, that no information is lost as a result of

media or machine fai lure. Al l transactions com

mit ted by the database are guaranteed. A file sys

tem can be restored only up to the last backup,

and any files created between the last backup

and the system failure are lost.

In the sections that fol low, we present (1) the

results of an evaluation of DEC Rdb version 3.1 for

its ability to insert, fetch, and process multimedia

objects; (2) a discussion of the impact of optical

storage technology on multimedia object storage;

a nd (3) design considerations for optical disk sup
port, transaction recovery, journal ing, the phys ical

database, language, and large object data storage

and transfer. The paper concludes with the results

of DEC Rdb performance tests.

Evaluation of DEC Rdb as a
Multimedia Object Storage System

Given the premise that production systems need to

store multimedia objects, as wel l as numbers and

characters, in databases, the SQL Multimedia engi

neering team members evaluated the following DEC

Rdb features to determine if the product could sup

port the storage and retrieval of mu ltimedia
objects:

• Large object read and write performance

• Maximum large object size

• Maximum physical capacity available for staring

large multimedia objects

The DEC Rdb product has always supported a

large object data type called segmented strings,
also known as binary large objects (BLOBs). The evo

lution from support for BLOBs to a multimedia
database capabil ity was logical and straightfor
ward. In fact, the DEC Rdb version 1 .0 developers

envisioned the use of the segmented string data

type for storing text and images in the database.

In eval uating DEC Rd b version 3.1 , we came to a

variety of conclusions about the existing support
for storing and retrieving multimedia objects.

Descriptions of the major findings follow.

5 1

Multimedia

The DEC Rdb SQL, which is compl iant with the

standards of the American National Standards

Institute (ANSI) and the International Organization

for Standardization (ISO), and SQL/Services, which

is client-server software that enables desktop com

pu ters to access DEC Rdb databases across the net

work, did not support the segmented string data

type. Note that the most recent SQL92 standard

does not support any standard large object mecha

nisms i Object-oriented relational database exten

sions are expected to be part of the emerging SQL3

standard 2
The total physical capacity for storing large

objects and for m apping tabular data to physical
storage devices is insufficient. Al l segmented string

objects have to be stored in only one storage area in

the database . This specification severely restricts

the maximum size of a multimedia database and
thus impacts performance. One cannot store a large

number of X-rays or one-hour videos on a 2- to 3-GB

disk or storage area. Contention for the disk would
come from any attempt to access mult imedia

objects, regard less of the table i n which they are

stored. Although multiple discrete d isks can be

bound into one OpenVMS volume set, thereby

increasing the maximum capacity, data integrity

would be uncertain. Losing any d isk of the volume

would result in the loss of the entire volume set.

The maximum size of the database that DEC Rdb

can support is 65,535 storage areas, where each area

can span 2:12 - 1 pages. That translates to 256 tera

pages (i .e . , 256 X 10 12 pages) or 128 petabytes (PB)

(i .e . , 128 X 10 1' bytes). At a penny per megabyte, a

128-petabyre storage system would cost 1 .28 bi l lion
dol lars'

The largest BLOB that DEC Rdh can maintain is 275
TB (i .e. , 275 X 10 12 bytes). A data storage rate of
1 megabyte per second (MB/s) for motion video and

DATABASE KEY LOCATES
FIRST PAGE OF BLOB

•
BLOB

POINTER

PAGE 1
TO BLOB
PAGE 2

BLOB
PAGE 2

audio translates into 8.7 years of video. However, as

mentioned previously, the maximum size and the

total number of objects that can be stored are l im
ited . As part of system testing, we successfu l ly

stored and retrieved a 2-GB object in a DEC Rdb data

field.

DEC Rdb uses a database key to reference individ
ual segments stored in database pages. A BLOB

belongs to only one column of one row of a rela

tion. The database key value that locates the first

segment is stored in the column of a table defined

to represent the BLOB data type . DEC Rdb imple

ments segmented strings as singly I inked l ists of

segments. Therefore, version 3.1 must read a seg
ment in order to find the next segment. This pro

cess has two d isadvantages: (1) random positioning

with a BLOB data stream is extremely slow, and (2)

BLOB pages cannot be prefetched asynchronously.

Figure 1 i l lustrates a DEC Rdb version 3.1 singly

linked l ist segmented string implementation .

BLOB data transfer performance of DEC Rdb ver
sion 3.1 was promising. We were able to code a load

test that sustained 65 kilobytes per second (kB/s); a

fetch test sustained 125 kB;s. To put these measure
ments in perspective, DEC Rdb is capable of insert

ing more than one A4-size (210 mill imeters [mm]

by 297 mm, i .e. , approximately 8.25 by 1 1 .75 inches)
scanned piece of paper per second and capable of

fetching more than two A4-size pieces of paper per

second. The test was conducted by writing and
reading 50-kB memory data buffers to and from

magnetic storage areas defined by the DEC Rdb soft

ware. This experiment ignores the overhead of net

work delays and compression.
DEC Rdb version 3.1 can write mu ltiple copies

of BLOBs, one to the target database storage area
and one to each of the database journal fi les. The
journal files provide for transaction recovery and

POINTER
TO BLOB
PAGE N f--

BLOB
PAGE N

0

Figure 1 Rdb Version 3. 1 Singzy Linked List Segmented String Implementation

52 Vol. 5 No. 2 .Spring 1993 Digital Tee/mica/ jourua/

system failures, such as disk drive fai lures. Database
journal files tend to be bottlenecks, because every

data transaction is recorded in the journal.

Therefore, writing large objects to journal files dra

matically i mpacts both the size of the journal file

and the I/0 to the journal file.

The volume of storage required for most modest

multimedia appl ications can be measured in tera

bytes. A magnetic d isk storage system 1 TB in size

is expensive to purchase and maintain. An alterna

tive storage device that provided the capacity at a

much lower cost was required. We investigated the

possibil ity of using D igital's RV20 write-once opti

cal d isk drive and the RV64 optical l ibrary ("juke

box") system based on the RV20 drives. We quickly

rejected this solution because the optical disk

drives were interfaced to the Q-bus and UNIBUS
hardware as tape devices. Since relational databases

use tape devices for backup p u rposes only and not

for d irect storage of user data, these devices were
not su itable. Note that physically real izing and

maintaining a large data store is a problem for both

file systems and relational databases.

DEC Rdb version 3.1 does not support large

capacity write once, read many (WORJ\1) devices,

which are su itable for storing large mu ltimedia

objects. Version 3.1 has no optical j ukebox support

e ither.

Storage Technology Impact

When we evaluated DEC Rdb version 3.1 , a 1 -TB mag

netic d isk farm was orders of magnitude more

expensive than optical storage. Large format 12- or
14- inch (i .e . , 30.5- or 35.6 -centimeter) WORM opti

cal disks have a capacity of 6 to 10 GB. The WORM

drives support removable media. These drives can

be configured in a jukebox, where a robot transfers

platters between storage slots and drives. A fu l ly

loaded optical jukebox, which includes optical disk
drives and a fu l l set of optical d isk p latters, of

approximately 1-TB capacity costs about $400,000,

i .e . , $0.40 per MB. By comparison, D igital 's RA81
magnetic disk drive, for example, has a capacity
of 500 MB and costs $ 20,000. Thus, to store 1 TB of

data wou ld require 2 ,000 RA81 d isk drives at a total
cost of $40 m i l l ion, i .e . , $40.00 per MB!

How big is one terabyte? Assume, conservatively,

that a standard business letter scanned and com

pressed results in an object that is 50 kB in size.

Therefore, 1 TB can store 20 mi l l ion business let

ters, i . e . , 40,000 reams of paper at 500 sheets per

ream. A ream is approximately 2 inches (51 m m)

Digital Technical journal Vol. 5 No. 2 Spring 1993

The Design of Multimedia Object Support in DEC Rdb

high, so 1 TB is equivalent to a stack of paper 80,000

inches or 6,667 feet or 1 .25 mi les (2 kilometers)

h igh! The total volume of p aper is 160 cubic yards

(122 cubic meters). A 1 -TB optical d isk jukebox is

about 3 to 4 cubic yards (2.3 to 3 cubic meters).

Assuming TV-quality v ideo, 1 TB can store 308

hours or approximately 12 days of video. Full

motion video archives su itable for use in the broad

cast industry require petabytes of mass storage.

The gap between affordable and practical config

u rations of optical d isk jukeboxes and magnetic

d isk farms has closed considerably since late 1992.

Juxtaposing equal amounts (700 GB) of magnetic
and optical storage, including storage device inter

connects, instal lation, and interface software,

reveals that magnetic d isk storage is about five

t imes more expensive than optical storage. The

major d isadvantage of optical jukebox storage is

data retrieval latency related to platter exchanges.

This latency, which is approximately 15 seconds,

varies with the jukebox load and how data is

m apped to different platters.
Mass storage technology, including device inter

connects, combines different classes of storage

devices into storage h ierarchies. Storage m anage

ment software continues to be a chal lenging aspect

of large multimedia databases.
To provide 1 TB of m ass storage capacity for rela

tional database multimedia objects at reasonable

cost, we conducted a review of third-party optical

d isk subsystems, hardware, and device drivers for

VAX computers running the OpenVMS operating

system . A characterization of the available optical

disk subsystems revealed three basic technical alter
natives.

1 . Low-level device drivers provided by the drive

and jukebox manufacturers.

2 . Hardware and software that model the entire

capacity of an optical disk jukebox as one large

virtual address space.

3. Write-once optical disk drives interfaced as stan
dard u pdatable magnetic d isks. The overwrite
capabil ity is provided at either the driver or the
file-system level, where overwritten blocks are

revectored to new blocks on the disk. For exam

ple, consider a file of 100 blocks created as a sin

gle extent on a WORM device. When requested to

rewrite blocks 50 and 51 , the WORM file system

writes the new blocks onto the end of alJ blocks
written. The system also writes a new file header

that contains three file extents: blocks 0 to 49

53

Multimedia

stored in the original extent; blocks 50 to 51

stored in the new extent; and blocks 52 to 100
stored as the third extent. Obviously, files that

are updated frequent ly are not candidates for

WOR!YJ storage. However, immutable objects,

such as digit ized X-rays, bank checks, and hea lth
benefit authorization forms, are ideal candidates

for WORM storage devices.

As a resu l t of this investigation, we decided that

using write-once optical devices, interfaced as stan

dard d isk devices, was the best sol ution to provide

optical storage for multimedia object storage. This

functional ity is being met with commercially avai l

able optical disk file and device drivers.

In rhe future, WORM devices may be superseded
by erasable optical or magnetic d isks. However,

experts expect that WORM devices, l ike microfilm,

will continue to be useful for legal purposes.

Design Considerations

The tamperproof nature of WORM devices is an

asset bur causes special problems in database sys

tem design . The eval uation of DEC Rdb version 3.1

ind icated that several features needed to be added
to the DEC Rdb product to make it a viable mult ime

d ia repository. Th is section describes the design of

the new multimedia features included in DEC Rdb

versions 4. 1 through 5 .1 .

Mass Storage

DEC Rdb version 4 .1 supports WOR M optical disks

configured in standalone drive or jukebox configu

rations. DEC Rdb permits database columns that

contain mul timedia objects to be stored or mapped

to either erasable (magnetic or optical disk) or
write-once (optical disk) areas. The write-once

characteristic can be set and reset to permit the
m igration of the data to erasable devices. No
changes to application programs are required to
use write-once optical d isks, incl ud ing jukeboxes.

The main design goals for WORN! area support

were to

• Reduce wasted optical d isk space by taking into

account the write-once nature of WORi\11 devices

• Not introduce DEC Rdb application program

ming changes for WORi\1 areas

• Maintain the atomicity, consistency, isol ation,

and durabil ity (ACID) propenies of transactions

for WORJ\11 devices

54

• Maintain comparable performance, al lowing for
hardware differences between optical and mag

netic devices

DEC Rdb uses the optical d isk file system to cre
ate, extend , delete, and close database storage fi les

on WORM devices. Although this approach uses the

block revectoring logic in the optical disk file sys
tem, minimal space is wasted. When writ ing blocks

to WORM devices, DEC Rdb exp licitly knows that

blocks can be written only once and bypasses the

revectoring logic in the optical d isk file system.

Nonetheless, DEC Rdb software could waste
space in t wo major ways. First, when DEC Rd b cre
ates a storage area on an erasable medium (e.g . ,

a magnetic or erasable optical d isk), t he database

pages are init ial ized to contain a standard page for

mat, with page numbers, area IDs, checksums, etc.

Preinitial ized database pages help to determine cor

rupted database pages. However, prein i tial izing

database pages on write-once media makes l ittle

sense. The second way in which DEC Rdb could

waste write-once optical disk pages is to use sror

age a l location bit maps for space management

(SPAJ\11). SPAM pages are used to keep track of free

and used pages. As records are a deled to and deleted
from the database, the SPA.M bit maps are constantly

updated. SPAM pages are mainta ined within each

database fi le. With write-once devices, a page can

be usee! only once. Again , it makes no sense to

update SPAM pages for write-once media .

To el iminate needlessly wasting space on wri te

once media, DEC Rdb does not preinitial ize WORM

pages. As a general rule, WORM areas should not

contain any updatable data structures. DEC Rdb

maintains WORM storage space a l location in the

database root fi le. The database root file should

always reside on a magnetic d isk, because the root
file is frequently updated and magnetic d isks yield

h igher performance. The clusterwicte object man
ager mechanism ensures that the pointer to the end
of the written area is consistent across a cluster.

SPAM pages, a lthough d isabled for write-once
areas, are in fact a llocated anyway. The reason

for al locating SPAM pages in a write-once area is to

provide the abi l i ty to m igrate the contents of the

storage area to an erasable device. The SPAM pages

s imply need to be rebu ilt to reflect the space uti

) ization at the point of conversion.
This write-once characteristic was the basis for

several enhancements to the buffer manager and

page al location algo rithms. Given that a free WORM
page has never been written to, the buffer manager

Vol. 5 No. 2 .\jJring 1993 D igital Techuical jourual

simply material izes an init ial ized bu ffer in main

memory for write operations without having to
first read the page from disk . In the case of page

a l location for magnetic disks, DEC Rdb must scan

SPAM pages in search of enough free storage space
to satisfy a write operation. The scanning algorithm

is much simpler for write-once areas; to store new

records, DEC Rd b al locates one more page at the

end of the writ ten portion of the area to a process.

DEC Rdb maintains such al located pages in a queue

cal led the marked WORM page queue on a per

process basis. Whenever a WOIZLVI p age is written

to disk. that page is taken off the marked WORM

page queue. An attempt to store a record checks

the queue before a l locating new WORM pages to

storage. Facil i t ies exist to al locate many WOIU<l

pages in one operation, thus m inimizing the num

ber of writes to the root file.
By expl icitly tak ing into account the write-once

characteristic of the device, DEC Rdb greatly

reduces wasted space, keeping optical disk read

and write performance high.

Transaction Recovery

To understand the d iscussion of transaction recov
ery, the concepts of first- and second-class records

must be u nderstood. Both alphanumeric records

and BLOB segments are stored in database pages.

Alphanumeric records are first -class records and
thus have identities in tables; these records are the

rows. First-class records are required to be on a

med i u m that permits update (either magnetic disk

or erasable optical disk). Al l relation tuples are first

class records. Second-class records, such as BLOBs,

have no identities of their own. BLOBs can exist only

within the domain of an alphanu meric record and

are pointed to by first-class records. Second-class
records may be located in WO!Zt\1 areas.

Mu ltimedia objects can be stored as second-class

records in either write-once or erasable areas.
However, due to transaction recovery constraints,

the rows of relations must be stored in m agnetic

disks as first-class records.

If an update transaction against the database is
aborted, then the database must restore the state of

a l l database areas to pretransaction state. Regard

less of the transaction recovery scheme employed,

e .g . , hybrid undo-redo, the effects of an u ncom

m it ted transaction to write-once media may h ave to

be undone.

By definit ion, a write transaction on write-once

med ia, once complete, can never be u ndone. In

Digital Technical journal l·bl. 5 No. 2 Spring J'J'J.)

The Design of Jl!Iultimedia Object Support in DEC Rdb

cases where a transaction fails and the transaction

has written data to a write-once area, DEC Rdb

employs a logical undo operation. This operation

de-references t he database key that points to t he

BLOB data written as part of the failed transaction.

An example helps to il lustrate how the logical u ndo

operation works.

1 . Consider row R of table T, which contains a col

umn defined as data type BLOB.

2. The BLOB storage map ind icates that the large
objects are stored i n a write-once area.

3. A process starts a transaction and updates the

row storing a BLOB in the write-once area.

4. For some reason the transact ion aborts.

5. Recovery null ifies t he value of the database key
that locates the first page of the BLOB.

The write-once pages can never be reused and

will never again be a l located . Nothing points to or

references data wri t ten as part of an aborted

transaction.

This transaction recovery scheme introduces the

interesting phenomenon of WORM holes. Consider

the fol lowing scenario:

• A write-once area has the first 106 pages written
and al located .

• Process X starts a transaction that writes a BLOB

segment to the write-once area.

• Page 107 is al located for process X.

• Later in t ime, process Y starts a transaction to

store a BLOB in the same write-once area.

• Process Y causes pages 108 to 120 to be aJ Jo

cated, data is writ ten, the transaction commits,

and process Y d isconnects from t he database .

• At th is point, process X decides to roll back i ts

transaction.

• Page 107 remains in a preinit ial ized state.

Page 107 can never be al located to store BLOB data .

Recal l that DEC Rd b manages space on write-once
devices by maintaining an end-ofarea pointer to

keep track of pages that have been written. Zero

fil led p ages that wi l l never be a l located are cal led

WORiv! holes. WORJ.vl holes are interesting because

DEC Rdb ut i l i t ies, such as verify, expect to find al l

al located pages in a standard format . The u til i t ies

have been modified to ignore empty pages on

write-once areas.

5 5

Multimedia

]ournaling Design Considerations

An effect ive database m anagement system guar

a ntees the recovery of a database to a consistent

state i n the event of a major system fa i l ur e , such

as medi a fai l ure. Hence, fu l l a nd incremental back

ups must be performed at regular i n tervals, a n d

the database must record or keep a j o u rn a l file o f

transactions t h a t o c c u r between backups. I n DEC:

Rdb, the after i mage jou rnal (A l.f) file records a l l

t ransactions aga inst the database si nce t h e last

back up. Also, to recover from a system fa i l u re. the

database must keep track of a l l outstanding or

pend i ng transact ions. The recovery u n i t journal

(IU J. I) fi le records the state and data associated with

al. l pending transactions.

Journal files are heavi ly uti! ized in a da tabase

management system. Contenti o n h>r t he journal.

fi les comes from every process that is u p d a t i ng

the database. To be completely recoverable, the

database m anagement system must record 13! .0!1
data, as weli as alphanumeric data, to both the Al.f

and the RUJ files. Because m u l t i media objects are

large, e l i m i na t i ng the need to write these objects to

the journal files i s desi.rable. The double-write trans

action negatively i mpacts the p e rfo r m a nce of the

appl ication storing the object and taxes the journa l

file, one of the most b u rdened resources in the

da tabase .

A s d iscussed in the Transaction H.ecovery sec

tion, DEC Rdb uses logical undo operations to undo

aborted transactions. I n add it ion to the m i n i ma l

p rocessi ng req u i red t o de- reference a database key
point ing to the WORM area pages, Dt:C Rd b au tomat

ically d isables RUJ log writes for WORM a ret records.

This is a nother advan tage of u s i ng WORM (l evices

for m u l t imedia objects.

Record ing m u l t i med ia objects in the AIJ fi l.e is

not so straightforward . DEC Rdb uses the AU f i le
fo r m e d i a recovery, as we l l as for transact io n

recovery. B y defin it ion. keep i ng a media recoven·

journal forces twice the number of 1/0 opera t i o ns,

each to a separate device. DEC Rdb must w r i te

the m u l t i med i a object to t he sto rage a rea desig

nated for the m u l t i medi a object a nd wri te a copy of

the object to the AU f i le . If the p ri m ary storage

device that conta i ns the object fa i ls , the database

administrator can app ly the last full bac J,;:up of

the storage area, fol lowed by any subsequent i n cre

mental backups, and rol l for ward thro ugh the

A I.J journa l fi le to recover the data. If a m u l t i

media database is to be com plete l y recoverable

and consistent, then m u l t i media objects must be

reco rded i n the A lJ fi le . S i n ce they can never be

e rased, WOR,\·1 opt i cal disks m ight be the best

dev ices to write an object (or a journal file) to. Even
though a jukebox can m i s feed and permanently

da m age the media, d isb i n a j u kebox can be d isk

shadowe d . The t rade-off i s doubl i ng the l/0 versus

r isking data i ntegri ty. Rather than legi s l ate a policy,

DEC Rclb perm i t s app l icat io ns to d isable Al.f Joggi ng

for BLOBs, thus transfe rr i ng the r i s k to i n d iv id u a l

applications.

Database Physical Design Considerations

The original design of segmented strings spec i fied

a s ingly l i nked l ist , where the segments were

written one at a t i me . as s hown i n Figure 1 . \Vhen

writ i ng a new segment, the previous segmen t

had to be u p dated w i t h a p o in ter v a l u e that iden ti

fied the loca t ion of the new segme n t . For exa mple,

to store a BLOB wi t h t wo segments R l and R2.
the old a lgorithm stored R 1 , stored R2, a n d then

mod ified R I to point to R2. Although this a lgorithm

docs not v.:aste srace on a m agnet ic d i sk, i r does

waste space on w r i te-once opt ical disk. Segmen t

R l m u s t h e rewrit ten t o d is k with a po i n te r t o

segment R 2 .

I f we i mpose t h e depe n den cy between t h e two

stores that R2 mu:-;L be stored h ·fore R l . the store

dep enden cy for BLOBS becomes a reverse o rder

of segments. Storing segments in reverse order

requ ires bu ffni ng a l l segments of a m u l timedia

o bject . \.Vherc:ts bu ffi: r i ng the e ntire object i n m a in

memory may be feasible for smal l m u l timedia

objects, main m e m o ry is not large enough to bu ffer

a u d i o and v ideo data objects . The s i ngly l i n ked

J ist met hod t h a t DEC Rcl b used prior to ve rsion •t. l
i s not \ve i l s u i ted for WORi\·1 d evices. The refore, we

redesigned the fi > r m a t o f BLOU in WOfL\•1 areas to

e l i m i nate t h e need to bu ffer l :lrge amounts of d a r a .

T h e new design rep l aces t h • s ingly I i n ked I ist

with I I I .OB segment pointer arrays and ULOB data

segments . The segment p o i n te r array mainta ins

a l ist of database keys that locate each segment, i n

order, for a B LOI\ , a s i l lustrat ed in Fig ure 2 . Because
segmen t p o i nter arrays are stored as a s i ngly l i nked

l ist, the pointer arrays can become large.

App l i c a t i o n data is stored in BLOB data segmcnt s.

The new met hod bu tTers and wri t cs the BLOB seg

ment p o i n ters to d isk a fter ass igning the segmented

string to a record .

llesides cl i m i nat ing t he waste problem fo r wri te

once devices, the segmen t p o i n ter array has other

advant :tgcs. DEC Rdh reads the pointer array i n to

\'r1/ . . 'i ,\"() . .! .\jJ1"i11g !1)')3 Digitai Teclmical journal

DATABASE KEY LOCATES
FIRST PAGE OF BLOB
THAT CONTAINS POINTER
ARRAY LOCATING THE
OTH E R BLOB PAGES

+
POI NTER TO SEGMENT 1

POINTER TO SEGMENT 2

The Design of Multimedia Object Support in DEC Rdb

DATABASE KEY

DATABASE KEY

DATABASE KEY � BLOB I POINTER TO SEGMENT 3 PAGE 2 I BLOB I PAGE 3

DATABASE KEY
POINTER TO SEGMENT N I BLOB I ARRAY TERMI NATOR PAGE N

i'lgure 2 Rdb Version 4.2 Pointer Array Segmented String implementation

memory when an application accesses a BLOB . D EC

Rdb can, therefore, quickly and randomly address
any segment in the BLOB. Also, DEC Rdb can begin

to load segments in to main memory before the
app lication requests them. This feature benefits
appl ications that sequentia l ly access an object,
such as playing a v ideo game.

Storage Map Enhancements for BLOBs

Designers addressed several issues related to stor
age mapping. The major problems solved involved

capacity and system management, j ukebox perfor
mance, and the fa ilover of fu ll volumes.

Capaci�y and .'>),stem ,J.Ianagement DEC Rd b can
map user d:Jta, represented logica lly as tables, rows,

ami columns, into mul tiple fi les or storage areas.
Besides i ncreasing the amount of data that can

be stored i n the database, spread ing data across

mu ltiple devices reduces contention for disks and

improves performance. However, as mentioned i n

the section Evaluation of DEC Rdb as a Multi media
Data Storage System, prior to DEC Rd b version 4.1 ,

only one storage area could be used for storing
BLOB data. Al l BLOB co lumns in the database were
impl icitly ma pped into the single area, which
severely l imited the maximum amount of multi
media data that could be stored in DEC Rdb .

Prior to new mu ltimed ia support for BLOBs, DEC
Rdb restricted the direct storage of a particular
table column to one DEC Rdb storage area (i .e . , file).
This partitioning control is accompl ished by means
of the DEC RcJb storage map mechanism, as shown
in the fol lowing code example:

Digilal Technical jourunl Vol. 'i 11 . .2 .�j;riug l')')i

C r e a t e s t o r a g e m a p B L O B_ M A P
S t o r e L i s t s

i n R E S U M E _A R E A
f o r (P L A C E M E N T _ H I S T O R Y ,

C A N D I D A T E S . R E S U M E)
i n P H O T O_A R E A

f o r (C A N D I D A T E S . P I C T U R E)
i n R D B $ S Y S T E M ;

This code directs the BLOB data from the table

PLACEMENT_HISTORY and the column RESUME of

the table CANDI DATES to be stored in the area

RESUME_AREA and the BLOB column PICTU RE of

the table CAl'IDIDATES to be stored in the area
PHOTO_AREA. The remaining BLOB (lata in the

database is stored in the default RDB$SYSTEM area.

Restricting the storage of a l l BLOBs across the
entire database schema to a single fi le or database

area was clearly undesirable. The size of the area
wou ld be l imited to the largest file that could be

created by the OpenVMS operat ing system and the

mass storage devices available. The l imited map

ping of one BLOB area mapped to one disk

can be circumvented by using the OpenVMS sys
tem's Bound Vol u me Set mechanism. This mecha·
nism a l lows n discrete disks to be bound into one
logical d isk . DEC Rdb can then create a s ingle stor
age area on the logical d isk that spans the bound
set of d isks.

However, although the volume set mechan ism
solves the problem of l imited area mapping, serious

l imitations exist in the database system administra

tion and recovery processes. All database-re lated
faci l i t ies operate at the granulari ty of a database
storage area. Thus, if one disk in a 10-disk vol u me
set is defective, DEC Rdb would have to restore al l

')7

Multimedia

10 disks. Not only does restoring data on fu nction

ing disks waste processing time, but during the

restore operation, appl ications are stal led for access

at the area level . This s ituat ion i ntroduces concur

rency problems for on-1 ine system operations.

DEC Rdb version 4.1 and successive versions

solve the capacity problem by (1) permitt ing the

defini t ion of multiple BLOB storage areas, (2) bind

ing d iscrete storage areas into storage area sets, and

(3) providing the abi l i ty to map or to vertical ly

partition ind ividua l BLOB col u m ns to areas or area

sets. Applicat ions can set aside a d isk or a set of

d isks for storing employee photographs, X-rays,

video, etc. The alphanumeric data and indexes

can be stored in separate areas as wel l . Figure 3

depicts the employee photograph column being

mapped to the EMP _PHOT0_ 1 , EMP_PHOT0_2, and

EMP _PHOT0_3 storage area set. Al l a lphanumeric

data i n the table E M PLOYEES is assumed to be

mapped to storage area A .

Coding this example resu lts i n

C r e a t e s t o r a g e m a p B L O B _M A P
S t o r e L i s t s

i n (E M P_ P H O T 0 _ 1 , E M P _ P H O T 0 _2 ,
E M P_P H O T 0 _ 3)

f o r (E M P L O Y E E S . P H O T O G R A P H J
i n R D B $ S Y S T E M ;

This code directs the BLOB data, i .e . , the col u m n

PHOTOGRAPH from the table EMPLOYEES, t o be

TABLE: EMPLOYEES

NAME ADDRESS . . . PHOTOGRAPH

DICK 456 IMAGE OBJECT

FRED 1 23 IMAGE OBJECT

MARY 789 I MAGE OBJECT

\ \ ALPHANUMERIC DATA / ' BLOBS
\ MAPPED TO ,' \ MAPPED 1

' SEPARATE 1 ' TO AREA 1
\ STORAGE , ' \ SET /

\ AREA ,'
\ I

\ I
\ I

\ I
\ I

\ I
\ I

ROB STORAGE
AREA A

\ I
\ I

\ I '
ROB STORAGE
EMP _PHOTO _1

ROB STORAGE
EMP _PHOT0_2

ROB STORAGE
EMP _pHOT0_3

I

STORAGE
AREA
SET

F(�ure 3 DEC Rdb BLOB Storage Area Sets

58

stored in the three specified areas EMP _PHOT0_1 ,

EMP_PHOT0_2, a n d EMP_PHOT0_3.

The abi l i ty to define mul tiple BLOB storage areas

and to bind discrete areas i nto a sto rage set el i mi

nates the BLOB sto rage capacity l imitation in DEC

Rdb . Consider the storage problem of storing 1 MB

of medical X-rays as part of a patient record. Prior to

DEC Rub version 4.1 , the I imited o ne-BLOB storage

area co u ld store approximately 2,000 X- rays on a

2-GB disk device. The features i ncluded in ve rsion

4.1 a l low the creation of a DEC Rdb storage area set

that spans mu ltiple disk dev ices. Also, add ing stor

age areas or d isks to a sto rage area set can expand

the capacity init ial ly defined for the col u m n .

jukebox Performance Problems When a storage

area set is defined using the SQL storage map state

ment, DEC Rdb i mplements a random a lgo rithm

to select a discrete area or disk from the set to store

the next object. Since mul tiple processes access

mult imedia objects across the entire set, a random
algorithm that evenly d istributes data across the

d is ks in the area set reduces contention fo r any

one disk .

Using a random algorithm to select fro m a set

of plat ters in a ju kebox is extremely i nefficit:nt .

A jukebox com prises one to five disk dr ives with '50

to 150 shelf slots where optical d isk media i s stored .

A storage robot exchanges optical d isk plat ters

between drives and storage s.lots. As descri bed ear

l ier, a ful l plat ter exchange-spin down the platter

current ly in the drive, eject the platter, insert a new

platter, spin up the new platter-takes ap proxi

mately 15 seconds. Each optical d isk surface, i . e . ,

s ide o f a platter, i s modeled a s a d iscrete disk t o the

OpenVMS operating system. Consider, for example,

ten sto rage areas defined on optical disks in the

ju kebox and mapped into a storage area set. Al l

patient X- rays from a s ingle table in the database arc

to be stored in this area set. Each new X-ray inserted

in the database causes DEC Rclb to randomly select a

disk su rface in the jukebox, which probably res ults
in a plat ter exchange. Consequent ly, each X-ray

insertion takes 1'5 seconds'

The solution to the jukebox performance prob

lem was not to e l iminate random storage area selec

t ion, which works su ccessfu l l y with fL"ed-spin d le

devices. Rather, the solution was to accommodate
an alternate algo rithm that sequential ly fi l led the

disks in an area set. Using DEC Rdb, applications can

specify random or sequential load ing of storage

area sets as part of the srorage map statemen t.

lkJI.) No . .2 .)jJring I<J').l Digital Technical journal

Contention fo r a s ingle optical disk i n a jukebox i s
a far more desirable situation, with respect to

latency, than causing one platter exchange per

object stored .
When mult iple users simultaneously issue

requests to read mult imedia objects stored in a

jukebox, long delays occur, whether the storage
area is loaded sequent ia l ly or randomly. Us ing a

transaction mon itor to serial ize access to the

database helps eJ im inate jukebox thrashing and

im prove the aggregate performance of the database
engine.

Failooer of Full Volumes The i n troduction of

storage area sets gave rise to another problem:

W hat happens when one area in t he set becomes
fu l l ' Normal l y, within the DEC Rdb environment,

disk errors that result from t ry i ng to exceed the
a l located disk space are signaled to the appl ication
so that the tra nsaction can be rol led back (dis

carded). When related to storage area sets, how

ever, the error is j ust an i n dication that a portion of

the disk space a l located to the column has been
exhausted and that processing shou ld continue.
Also, since mu lt imedia objects tend to be exceed

ingly large, great amounts of data may have a l ready

exhausted cache memory and been written back to

the WORM media, even though the database trans

action has not com mitted. Hand l i ng such an error

by sign a l i ng to the application and expect ing the
app.l ication to roll back a ncl retry the transaction
would resu l t i n the waste of a large number of

device blocks that have a l ready been bu rned . Thus,

DEC Rdb had to implement a new scheme.

DEC Rdb now implements full failover of an area
within the area ser. Thus, when an area becomes

fu l l . DEC Rdb traps the error, selects a new area i n

the set, a n d writes the remain i ng portion o f the

BLOB being written to the new area. This area

failover works whether the storage a l location is
random or sequential . In addit ion, the area that

is n ow fu l l is marked with the attribute of fu l l , and
the clusterwide object manager of DEC Rdb main
tains this attri bu te consistently throughout the
cluster. Consequently, writers to the database wil I
consider the area unavai lable for future B LOB store

operations. Further, the DEC Rdb database manage

ment uti l it ies can remove the attribute if addit io na l

space is made ava i lable to t h e database area (e .g . , i f
DEC Rdb moves BLOBs fro m area A t o another copy
of area A that resides on a device with twice the

capacity).

Digitctl Teclmicaljournal Vol. 5 No. 2 Spring l':J9)

The Design of/Vlultilnedia Object Support in DEC Rdb

Language Design Considerations

SQL, the ISO/ANSI standard rel ational database

structured query l anguage, is wel l suited to
expressi ng queries against a lphanumeric data

yet hard ly begins to address the needs of mu l t i

media objects. Putting aside the fact that sampled

data (i .e . , a scanned i m age) is more difficu l t to

query than coded data (e .g . , text coded i n ASCII),

SQL cannot prov ide data compression and ren

dit ion capabi l i t ies fo r mult imedia objects.
M u ltimedia object processing is better suited to

a la nguage l ike C o r C + + . Idea l ly, SQL wou ld sup
port the abi l i t y to define objects and ro associate

methods with those objects. SQL3 is a new version
of the SQL standard that the standards organ izations

are just beginning to work on. SQJ.3 contains the

mechanism to define abstract data types and to exe

cute externa l p roced ures as part of SQL statements.

However, SQL3 wi l l not become a standard for four

to five years.
As discussed previously, DEC Rdb SQL lacks

support for the segmented string o r BLOB data
type that was ava ilable in the Rdb relational engine.
A new DEC Rclb SQL data type, LIST OF BYTE

VARYlNG, was designed based on the native Rdb

segmented string data type. The data access mecha

nism for the LIST OF BYTE VARYING data type is

a l ist cu rsor. which operates I i ke a table cursor

open the cu rsor, fetch segments of a BLOB, and

close the cursor. This new data type with asso

c iated access mechanism was a lso added to

SQL!Services. SQL/Services software enables remote

cl ients on a network, such as personal com

puters, to attach to remote DEC Rdb databases.
The ability to scro l l or to randomly position the

l ist cursor a l lows positioning at a particular data

segment within the mult imedia object stream with

out having to physically read through t l1e entire

data stream.
Although appl ications can program directly to

l ist cursors, this interface was cu mbersome and did
not offer any object typing o r processing. The l ist
cursor mechanism does not present the straightfor
ward byte- stream i nterface that is com mon i n most

file systems. Appl ications want to store objects,
such as i mages and compound docu ments, not

B LOBs. Data compression was another i mportant

considerat ion . Mult imedia objects should be com

pressed on the c l ient side of the network; then,
compressed bits are transferred through the net

work, servers, and dis ks. The objects should be
clecompressed when they are to be rendered for

59

Multimedia

disp lay. Final l y, the enormous size of m u lt i media
objects satu rates main memory resoHrces o n per

sonal comp u ters, so application developers must
use disk storage to buffer as well as persistent l y
store mu ltimedia objects.

The l im ita tions of the I.IST OF BYTE YAR'\.1N<i data

type and the J ist cu rsor data access mechanism led
to the development of mu lt imedi a object exten

sions. SQL Mult imedia is an object l i brary that oper
ates against SQL and SQL!Services. SQL M u ltimedia

a l lows applicati o n developers to classi fy or type
m u l timedi a data types (e . g . , IMAGE , TEXT, and

COMPOUN D_DOCUM ENT) and to specify the data

format withi n a type or class. Because no widely

agreed upon multimed ia object encodings o r for

mats exist, we decided not to l i mit the types of data

encod ing or formats that could be sto red in the

database. For example, the database can store an

image i n Digital Document In terchange Format

(DDIF) or Tagged Image F ile Format (TIFF) . The
option of defin ing a canonical. encod ing and format
for each object class was too restrictive.

I n both the SQL and the SQL/Services versions,

the SQL MHltimedia i nsert and fetch cal ls operate
within the bounds of a transaction. Al l mult imedia

objects enjoy the same rights and privileges as

alphanumeric data types in the database, with

respect to concurrent access, recovery, etc.

A process that attaches to a DEC Rub database

can specify that an au thorization identifier or a

defa u l t identifier be created and referenced by the

"RDB$HANDLE" symbo l ic label . A transaction can

be started expl ic it ly or a default transaction begins.

To operate withi n the bounds of the defa u l t trans

action, the SQL M u l t imedia routines requ i red

access to the defa u l t au thorization ident ifier

RDB$I-JANDLE. A new SQL compile time switch, for

the SQL module language and precomp i lers, causes
this identifier to be (l efined in a global address
space. The SQL Multimed ia routines can thus access
the value of the identifier. lf a d istributed tran sac
t ion identifier is not passed to the SQL M u l t imedia

rout ines, the SQL Mu ltimed ia operat ion is executed

using the default transaction .

SQL Mul t imed ia improves the cumbersome J ist

cursor interface by supporting the fol lowing object

sources and dest i nations:

• The entire object sourced from o r deposited to
main memory

• The object buffe red th rough main memory

• A file

60

SQI. Multimedia handles fi le l/0 operations

across many diffe rent software environments,

including the MS-DOS, Windows, Macintosh ,
ULfRIX, and OpenYMS operating systems. SQL
Mult imedia preserves fi le attributes on insert oper

ations. For exa mple, the Macintosh fi le system 's

resou rce fo rk, w hich contains the name and ver

sion of the application to be launched when the
object is accessed by a user, is preserved. If another

Maci ntosh user fetches the object to a local file,

then SQL .Mu lt imedia restores the file inclucl i ng
the resource fork . Assuming the second user has
the same appl i cation , the user can now access

and manipul a te the mul t imedia object, e . g . , a com

pound document or a QuickTime v i deo file. Ru les

and default file organizations exist for the case

where a user i nserted a file from an OpenVMS
system and another user causes the object to be

fetched to a d i fferent client file system, say o n a

PC. Appl ication progra m mers can d irect SQL

M u l ti med ia to ove rride the defaul t file attributes.

Although SQL M u ltimed ia hand les d isparate file

system l/0, at present, i t does not convert mu ltime
d ia object formats or encod ings. I m ages captured
and stored i n DEC Rdb in DDIF are del ivered to each

cl ient in DDIF .

S Q L M u lt imedia makes i t easy for appl ication

program mers to i nsert ami fetch compound docu
ments to and from the database. Tbe buffered

I/O data stream conforms to Digita l 's Compound

Document Arch itecture (CDA) stream management
interface . Fetching a compound docu ment using
the buffered 1/0 i nterfac e, SQL Mult imedia returns

the address of a proced u re entry mas k, a data buffer

pointer, and the buffer length. These returned argu

ments can be passed to the CDA v iewer in the

DECw indows enviro n ment . 'T'he viewer then repeat
edly calls the SQL M u l t imedia buffer-fi l l procedure

unt i l the object has been transferred to t he v iewer
and d isplayed.

In addit ion, SQL Mul t imedia provides obj ect
specific processing for image and text objects. Disk
im age objects fo rmatted according to DDIF and

main memory objects formatte(l accord i ng to

Digita l 's image too l k i t DEC: image Ap pl ication

Serv ices (DAS) can be processed on either fetch

o r i nsert operations. SQI. Mult imed i a leverages

the capab i l i t ies of DAS software to provide im age

process ing, e .g . , compression, decompression,
sca l i ng, and d ithering. W hen an image is i nserted
or fetched, SQL M u l t i media object p rocessing

a rguments permit the specificat ion of im age

Vol. 5 No. 2 Spring I'.J'J.i Digital Technical journal

process steps and parameters. The DAS tool k i t
supports Comite Consultatif I nternationale de

Telegraphiquc et Telepho nique (CC!TT) compres

sion (a u biqu itous compress ion standard for fac

simile machines) for bitonal images and Jo int

Photographic Experts Group (JPEG) compression
(an ISO/ANSI sta ndard) for m u l t ispectural images.

To improve appl ication performance, SQL

Mult imedia can generate mu lt iple rendered ver
sions of an image that are stored in a s ingle database

field . Therefore, a user can store the original image,

retaining its fidel i ty, and a lso store a miniature

version of the i mage for fast access o r browsing pur

poses. For example, consider a personnel appl ica
tion where 90 percent of the fetches fo r employee

photographs are to be d isplayed in a passport -size
format on an employee info rmation form. If

the capture portion of the appl ication stored the

o riginal employee photograph and di rected SQL

Mul t imedia to generate and store a passport-s ize
rendered version in addit ion to the origina l , at fetch

t ime, the 1/0 operat ions requ ired to transmi t the

i mage to the employee form wou ld be reduced .

Storing multiple rendered versions wou ld also el im
inate using CPU time to scale the !'etched image.

System Testing and Evaluation

After the mult imed i a engineering of the DEC Rdb

product was complete, we condu cted several test

ing activit ies to determine the perfor mance and

capacity boundaries. The performance work pre

sen ted is not complete bu t is otkred as an ind ica

tion of the m u l timedia object access capabi l i ties of
the DEC Rdb software.

In the debit credit domain, the Tra nsaction

Processing Performance Council ('fPC) tests p ro

v ide a standard procedure to measure the perfor
mance of one database as compared to a nother.
However, no sta ndard mul timed ia database p er

formance tests exist . The performance of a DEC
Rdb mult imed ia database is influenced by many
variables, includ ing the processor, mass storage
med ium, database design, object sizes, and work
load. The performance data presented in this paper
shou ld be used only as a guide.

Performance Testing

For perfo rmance testing we used a V AX 6 360 pro

cessor (rel atively slow by today's standards) config
u red with 12H MB of main memo ry, an HSC50

storage i nterconnect p rocessor with 16 RA 70

Digital Tee/mica(journal Vol. 5 No. 1 .)j;rinr; 1993

The Design of ivlultimedia Object Support in DEC Rctb

magnetic d isks, 6 RA92 m agnetic d isks, and 2 ES£20
sol id-state disks. The total mass storage ava il able

for bui lding databases was 10 c ;B . We eval uated

the SQL performance of DEC Rdb ve rsion 4.2 Field

Test I (FTl) and SQL Mu l ti med ia version 1 .0 Field
Test 2 (FT2), and generated the SQL/Services remote
cl ient data fetch and insert performance data fo r

DEC Rclb version 4 .1 Field Test 4 and SQL .Multimedia
version 1 .0 FT2.

This performance data should be used as a gu ide

l ine, because the field-test software contai ned

i mplementation errors that affected p e rformance

but were corrected in the released prod ucts. As pre

sented in Table 1 , using the released version of DEC

Rd b, we are able to sustain a 300-kB/s throughput

from a magnetic disk DEC Rdb storage area, across
an Ethernet network, to a DECstation 5240 work

statio n . This test demonstrates fetch ing a software

motion p ictu res (SM P) video c l ip out of the data

base for d ispl ay on an 'LILTRIX-based workstation . 1

Although the v ideo was sampled a t 1 5 frames per

second , we can play back the v ideo clip at 20

frames per second! The perfo rmance measured for

an SQL/Services fetch was 57.7 kB/s, as shown in
Ta ble 2 . We expect to conduct s imi lar performance

tests on a DEC 7000 AXP processor.
The performance test inserted and fetched 50-kB

records. Fifty ki lobytes is a conservat ive est i mate of

a compressed A4-size p iece of paper, probably the

most prevalent object to be stored in multimedia
databases. For both the d istribu ted SQL/Services

cl ient and the local SQL interface, 50-kB main mem
ory buffers were the sources a nd destinations for

the inserts and fetches.
We bu i l t several 50-MB databases, varying data

base design para meters such as page and bu ffer

sizes, to determi ne the fastest set of parame ters

for the large object performance test. Using the
largest page and bu ffer s izes y ielded the best perfor

mance. The database table was organized into three
columns: two key columns and a BLOB column. The
BLOB column was mapped to a storage area set con
sisting of mu .l t iple magnetic storage disks.

After we establ ished the best database organ iza
tion , we built many 3- to 10-GB databases by

• Varying the number of processes executing

insert and fetch operations

• Varying the nu mber of tables i n the database

• Varying the number of i n serts and fetches per

transaction

6 1

Multimedia

Table 1 SOL Performance

SOL I nsert Performance

Number of Processes
Perform ing I nsert Number of
Operations Tables

1
1

3 3
6 6

10 10

S O L Fetch Performance

Number of Processes
Performing Fetch Number of
Operations Tables

Table 2 SOL/Services Performance

SOL/Services I nsert Performance

Number of Processes
Performing I nsert Number of
Operations Tables

1
4 4

SOL/Services Fetch Performance

Number of Processes
Performing Fetch Number of
Operations Tables

4 4

• Enabling and di sabl ing Al.f journa l ing

• Inserting and fetching from an SQL/Services

cl ient or using SQL for local database access

When we cond ucted the performance tests, the

compu ter was ded icated to our task ; no other activ
ity was tak ing place. A s i mple contention test,

where multiple readers simulta neously fetch

Number of I nserts Throughput
per Transaction AIJ (kB/s)

No 83.0
10 No 1 03.4

1 Yes 48.0
10 Yes 55.9
32 No 295.3
32 No 533.7
32 No 601 .5

Number of Fetches Throughput
per Transaction AIJ (kB/s)

10 No 194.0
No 184.0
Yes 181.0

10 Yes 192.5

Number of I nserts Throughput
per Transaction AIJ (kB/s)

1024 No 44.0
32 No 91.9

Number of Fetches Throughput
per Transaction AIJ (kB/s)

1024 No 57.7
32 No 1 42.3

objects from a single table, and a more compl icated

update test, where mul tiple writers are s imultane
ously updating one table, have yet to be fabricated
and run .

To p u t some of the perfo r mance resu lts pre·

sen ted in Table 1 i nto perspect ive: the tested config
uration can susta in approximately 600 kB of insert

bandwidth, which translates into twelve 50-kB

Vol. 5 No. 2 .)jm:ng f'J'Ji Digital Technical journal

A4-size pieces of paper per second. Even a single
process scanning paper at 103.4 kB/s can keep up
with some of the fastest paper scanners available.

Also, scanning both sides of a compressed bank
check (scanned at 200 dots per square inch) resu lts
in an object size of about 20 kB. Therefore, the par
ticular configuration we tested could store 30
checks per second with mu ltiple processes, and
6 checks per second with a single process.

Capaci�)J Testing

We conducted two capacity tests. The first stored
and fetched a 2-GB object in a DEC Rdb field, and the
second built a 50-GB database. A 2-GB known pat
tern was generated in virtual memory. DEC Rdb
wrote this object, with no AIJ, to a field in an empty
database . The BLOB column was mapped to three
disks, total ing 2.5 GB of storage. To avoid hav ing to
sustain storage area or file extensions, the storage
area set was defined to be 2.3 GB. DEC Rd b was able
to successfully insert and fetch the 2-GI:l object.

To demonstrate the capacity that could be
achieved with SQL Mult imedia, DEC Rub, and opti
cal storage, we bui l t a 50-GB database. The hard
ware configuration consisted of the fol lowing:

• A VAX 4000 Model 500, with 6 Cdi of magnetic
disk and 12R MB of main memory

• A Kodak Automated Disk Library Model 6800,
with 100 GB of storage (with a maximum capac
ity of 1 .2 TB)

• DEC Rdb version 4.2 F ield Test 0

• SQL Mu ltimedia version 1 .0 FT2

• Perceptics LaserStar optical d isk software

Starting with a backup of a 2-GB manufacturing
database that was used by Digital 's Mass Storage
Group, DEC Rc.lb added an SQL Mu ltimedia column
to a table that contained over 550,000 rows. DEC

Rdb then mapped the column to five platters, mod
eled as ten 9.5 -mill ion-block (5.1- GB) magnetic
d isks to the OpenVMS operating system, using the
sequential load algorithm. An update table cursor
was devised that returned between 2,000 to 3,000
rows. Using SQL Mult imedia, DEC Rdb inserted
i mages representing the d isk assembly process
until the storage was fu l l.

Conclusion

The multimed ia features that have been ac.lc.lec.l to
Rdb are in d irect support of the increasing demand
for compu ter data storage and indexing of multi-

Digital Technical journal Vol. 5 No. 2 �jJring /'}'))

The Design of Multimedia Object Support in DEC Rdb

media object types (i .e . , text, st i I I images, com
pound documents, audio, and video). Re lational
database systems must expand mass storage device
support, database physical database design, lan
guage functionality, and performance to manage
the variety of today's information. The development
of this advanced technology in Digital 's DEC Rdb
product provides desktop computer-to-optical
d isk jukebox integration by means of a commercial
database . As multimedia technology matures, data
bases must address the need to store and index
information beyond numbers and characters.

The work accompl ished to support mult imedia
objects in DEC Rdb is just " the tip of the iceberg."
Current mul timedia capabi l i t ies are able to success
ful ly manage the majority of document and stil l
frame appl ications. However, improvement i n
capacity and performance are required before the
database can serve mu ltiple channels of v ideo and
audio data. As the SQL standard evolves to incorpo
rate a more object-oriented mechanism, much of
the SQL Mul timedia functionality wil l migrate to
using standard interfaces to define, operate on, and
query abstract data types.

Acknowledgments

A large number of people from various discipl ines
contributed to the success of this mult imedia
database project, i ncluding Becky Jacobs, Michael
Sawyer, John Lacey, Cheri Jones, Bruce Mills , Steve
Hagan, Ian Smith, Susan Hillson, Peter Spiro,). M .
Smith, J i m Gray, Dave Lomet, Rudy Downs, Ken
Cross (Perceptics), Chris Eastland, Mase Merchant,
Scott Matsumoto, Paul Carmen (Eastman Kodak),
Jim Lewis (Eastman Kodak), and Marilyn Gul l i.ksen.

References

1 . A merican National Standard for Informa

tion Systems-Database Language-SQL, ANSI

X3.135-1992 (New York, NY: American National
Standards Institute, 1992) and

Information Technology-Database Language

SQL, ISO/IEC 9075 : 1992 (Geneva: International
Organization for Standard ization, 1992).

2 .). Melton , ed . , Database Language SQL (SQL3),

ISO/ANSI Working Draft, ANSI X3H2-93-091 and
ISO/JEC JTC 1/SC21/WG3/DBL YOK-003 (February
1993).

3. B . Neidecker-Lutz and R. Ul ichney, ··software
Motion Pictures," Digital Technical journal,

vol. 5, no. 2 (Spring 1993, this issue): 19-27

63

Multimedia

General References

SQL Extensions

K. Meyer-Wegener, V Lum, and C. Wu, " Image
Management in a Mu l timed ia Database System,"
Proceedings of the IF! P TC 2/WG 2. 6 Working Con

ference on Visual Database Systems, Tokyo, Japan
(1989): 497- 523

M. Stonebreaker, "The Design of the POSTGRESS

Storage System," Proceedings of the 13th Interna

tional Conference on Very Lmge Databases,

Brighton, U K . (1987) : 289-300

M. Stonebreaker and L. Rowe, The POSTGRESS

Papers, Memorandum No. lJCB/ERL J\'186/85 (Berke
ley, CA: University of Cal ifornia , 1986).

Object Storage Management

M. Stonebreaker. " Persistent Objects in a Mu lti
Level Store," Proceedings of the ACM SIGMOD Inter

national Conference on tVlcmagement of Data,

Denver, CO (1991) : 2 - l l .

64

WORM. Devices

D. Ma ier, " Using Write-Once Memory for Database
Storage ," Proceedings of the ACtH S!GMOD/SIGACr

Conference on Principles of Database Systems

(PODS) (1982).

S. Cbristodoulakis et a l , ' 'Optical Mass Storage
Systems and Their Performance." IEEE Database

Engineering (March 19H8).

S. Christodoulakis anu D. Ford, " Retrieval Perfor
mance Versus Disk Space Uti l ization on WORM

Optical D isks," Proceedings of the ACM SIGMOD
International Conference on Management of

Data, Portland. OR (l9H9) 306-314

Storage Managem.ent for Large Objects

A . Bi l iris, "The Performance of Three DatabasL·
Storage Structures for Managing Large Objects,"
Proceedings of the ACM S!GJ'v!OD International

Conference on Management of Data, San Diego,
CA (1992): 276-285

Vol. 5 No. 2 .\)Jriug I'J'J.i Digital Techn ical journal

Lawrence G. Palmer
Ricky S. Palmer

DECspin: A Networked
Desktop Videoconferencing
Application

The Sound Picture Information Networks (SPIN) technology that is part of the

DECspin version 1. 0 product takes digitized audio and video from desktop comput

ers and distributes this data over a network to form real-time conferences. SPIN uses

standard local and wide area data networks, adjusting to the various latency and

bandwidth differences, and does not require a dedicated bandwidth allocation.

A high-level SPIN protocol was developed to synchronize audio and video data

and thus alleviate network congestion. SPIN performance on Digital's hardware

and software platforms results in sound and pictures suitable for carrying

on personal communications over a data network. The Society of Technical

Communication chose the DECspin version 1. 0 application as a first-place recipient

of the Distinguished Technical Communication A ward in 1992.

In late 1990, we began to design a software product

that would al low people to see and hear one

another from their desktop computers. The resu lt
ing DECspin version 1 .0 appl ication takes digitized

audio and video data from two to eight desktops
and d istributes this data over a network to form
real-time conferences. The product name rep

resents the four major communication elements

that unite into one cohesive desktop applica

tion, namely, sound, picture, information, and
networks. The overall technology is referred to as
SPIN . This paper first presents an introd uction to

conferencing and gives a brief overview of the
framework on which SPIN was developed. The

paper then details SPI N's graph ical user interface.
Although the high-level protocol (which is the
application layer of the International Organization
for Standardization/Open Systems Interconnection
[ISO/OSI] model) that SPIN uses to synchronize
distributed audio and video is proprietary, a gen
eral discussion of how SPIN uses standard data
networks for conferencing is presented . Perfor
mance data for DECspin version 1 .0 running on

a DECstation 5000 Model 200 workstation with
DECvideo and DECaudio hardware fol lows the dis

cussion of network considerations. Final ly, the

paper sum marizes the fu ture direction of desktop
conferencing.

Digital Tecbllicaljournal Vul. 5 No. 2 .SjJring 1993

Introduction to Conferencing
When the SPIN project started, standalone telecon

ferencing products were available but not for desk

top computers. Typical ly, the products offered

cost as m uch as $ 150,000, required schedu led con
ference rooms and operators, and needed leased

telephone lines. These systems did not operate as
part of a corporate computer data network but

instead required dedicated, switched 56-ki lobit

per-second (kb/s), T1 (1 .5 -megabit-per-second

[M b/s]), and T3 (45-Mb/s) publ ic telephone compo
nents in order to operate. Originally designed

as two-way conference units, these teleconferenc
ing products later included hardware to mul tiplex

several equal ly equ ipped systems. In addition,
the enhanced systems included custom logic to
i mplement a hardware compressor/decompressor
(codec) that reduced digital video data rates suffi
ciently to use leased telephone l ines.

During the last several years, other conferencing
systems have been demonstrated. The Pandora
research project by Olivetti Research resulted in

an excel lent desk-to-desk conferencing system .
Although the Pandora system was expensive per

user and did not use existing network protocols, it

did prove the viabil ity of using a d igital conferenc
ing system from one's office and demonstrated the

natural progression from room conferencing to

65

Multimedia

office conferencing . This system served as a good

example for our own emerging desktop model,

DECspin version 1 .0.

Throughout this same period, several compres

sion standards sui table for video capture and

playback have evolved and been implemented. The

Joint Photographic Experts Group (]PEG) i ndustry

standard algorithm results i n intraframe compres

sion of frames of h igh-quality video (on the order of

25 to 1) . 1•2 This algorithm is wel l su ited for either

single-frame capture or motion-frame capture of

video information. This form of compression is

most appropriate for real-t ime video capture ami

playback where low (i .e. , frame-by-frame) latency

is required.

The Motion Picture Experts Group (MPEG) stan
dard resu lts in interframe compression of motion

video.5 This algorithm is wel l sui ted for motion
frame capture of video because only the di.fferences

between successive frames are stored. Interframe

compression is appropriate for v ideo capture and

playback where real-t ime low latency is not

required .

The H .26I standard resu lts i n interframe com

pression of motion video that is most responsive to
the demands placed on capturing l ive video for d is

semination over low-bandwidth public telephone

networks.4 This compression is su itable for video

capture and playback with reasonable latency but is

not qu i te real-time in nature. H .26I is the standard

used most in the teleconferencing systems on the

market today.

Finally, the l ast few years have also witnessed

the emergence of dramatic new base computer and

network technologies. Reduced instruction set

computer (RJSC)-based workstations supply the

needed processing power and 1/0 bandwidth to
process large and continuous amounts of data, and
fiber d istributed data interface (FDDI) technology
resul ts i n 100-megabit-per-second local area net
works for the desktop. Consequent ly, the SPIN
development project got under way to provide a
novel and innovative software appl ication that

cou ld take advantage of the powerful new systems

and networks.

Overview of Underlying
Hardware and Software

We came up with the SPIN project i n response to
the question: How can we communicate easily

with graphics, video, and audio on the desktop

as wel l as over both local and wide geographical

66

area networks' Video help documentation, textual
help, and audio help are used on the desktop to
communicate how t he application works. Sound,

p icture, graphics, and network elements are a ll
woven together to provide better communication

among conference participants.

Early in 1991 , we received our first prototype of

the DECvicleo TURBOchannel frame bu ffer, which
included the necessary hardware to input and cap
ture an analog video signal , to digitize the signal ,

and to display the p ixel information on the screen.
The frame buffer was special i n that i t displayed
8-bit pseudocolor, 8-bit gray-scale, and 24-bit true

color graphical data s imultaneously. This feature

al lowed captured video data to be displayed wi th
out data d ithering.

Dithering is the process of converting each pixel
of v ideo data to a form that matches a l imited

number of avai lable colormap entries. Most work

station frame buffers are 8-bit pseudocolor. Hence,

digitized, 24 -bit true-color v ideo data for d isplay

would need pixel-by-pi...'Cel conversion. Algorithms

exist that could be used to accompl ish this conver

sion. However, a better SPIN conference, in terms

of frame rate and picture qua l i ty, was achieved by

performing no software d ithering, thus relying
on the abi l ity of the DECvideo hardware to display

24-bit true-color video or 8-bit gray-scale video.' In

addition, the DECvideo hardware cou ld scale clown

the incoming video image in real time so that fewer

pixels (i .e . , less data) represented the original

image.

Concurrently, SPIN used a DECaudio TURBOchannel

card that could sample an input analog audio signal

from a microphone and del iver an 8-ki lohertz digi

t ized audio bit stream. The DECaudio hardware

could also convert a digital aud io stream for output
to an analog speaker or external amplifier. A
DECstation 5000 Model 200 with DECaudio and

DECvideo components provided the core hardware
capabi l i ty used in SPIN development work.

In addition to these new hardware capabil it ies,

the SPfN effort needed new underlying base soft

ware capabil it ies. The DECvideo hardware required

the Xv video extension to the X Window System to
al low for the d isplay and capture of video data. (The

Xv extension was jointly developed by base system

graphics and MIT Pro ject Athena teams.) The
DECaudio component used the AudioFile audio
server, developed by D igital's Cambridge Research
Laboratory, to capture and play hack d igita l audio

data.

Vol. 5 No. 1 Spring 1993 Digital 1echllicaljourllal

DECspin: A Networked Desktop Videoconjerencing Application

A prototype software base was created to make

fundamental measurements of video and audio data
manipulation within the workstation and over a

network. Testing the prototype over a 100-Mb/s
FDDI network and a 10-Mb/s Ethernet network

demonstrated that a conferencing product running

over existing network protocols was possible.

The SPIN Application

SPIN is a graphical multimedia communications

tool that allows two to eight people to sit at their

desktop computers and communicate both visually
and audibly over a standard computer data net

work. The user interface employs a telephone-like
"push" model that al lows a user to place an audio

only, video-only, or audio-video call to another

desktop computer user. Here, the term "push"
means that SPI N conference participants control all
aspects of the digitized data they send onto a net

work. Thus, users can feel confident about the secu

rity of their audio and video information. A caller
initiates all calls to other users, and a call recipient

must agree to accept an incoming SPIN call. Because
all data is in the d igital domain, this model makes it

almost impossible to use SPIN to eavesdrop on
another person. Placing a wiretap on a person's call
would involve intercepting network packets, sepa
rating data from protocol layers, and then reassem

bling data into meaningful information. If the
network data were encrypted, interception would
be impossible. SPI N also provides other communi

cation services, such as an audio-video answering
machine, messaging, audio-video file creation,

audio help, and aud io-video documentation.

Figure 1 shows a screen capture of a SPIN session in
progress, using the DECspin version 1 .0 application.

The product is easy to learn and to use. The
graphical user interface is implemented on top of
Motif software. Motif provides the framework for
the SPIN international user interface. A model was
chosen in which all actions taken by a user are
implemented by push buttons that activate pop-up
menus. The SPI N application does not use pull
down menus, because they require language
specific text strings to identify the purpose of an
entry and thus require translation for different

countries. Also, pull-down menus are intended for

short-term interaction, and SPIN menus usually

require more long-term interaction. All push
button icons are pictorial representations of the
intended fu nction. For example, the main window

has a row of five push buttons, each of which

Digital Tech11ical journal Vol. 5 No. 2 SjJri11g 1993

activates a specific function of the application and

is shown in Figure 1 .
I n the main window, the first button from the left

contains a green circle with a vertical white bar, the

international symbol for exit. This button appears
i n the same location in each of the pop-up win

dows. It is used to exit the window or, in the main
window, to exit the application.

The second button from the left is labeled with

the communication icon. This button is used to

select the call l ist shown in Figure 2. The call l ist
contains the various buttons and widgets used to

place a call to another user, to create and play back

SPIN files, and to display a I ist of received SPIN mes
sages, if any exist. The list provides a way to play

and manage audio-video answering machine mes

sages. For example, to place a cal l to another user
on the network requires just three steps.

1 . Enter the computer network name of the

machine and user into SPI N 's phone database as

"user@desktop:' A string representing some

thing more understandable to a novice is also
allowed, e.g. , "user@desktopl .dec.com" becomes
"user@desktop l.dec.com Firstname Lastname at
D igital Equipment Corporation."

2. Select whether the call is to be sound only,
picture only, or both. The toggle push buttons

under the large note icon control audio select;

those u nder the l arge eye icon control video
select. Once the call is established, these but
tons can be set or unset by clicking a mouse or

using a touch-screen monitor and are useful

for muting the audio portion or freezing frames
of the video portion.

3. To establish a two-way network connection,
press the call push button under the connection
icon (which is labeled with two arrows going in

opposite directions) that appears next to the
desired call recipient. If the person called is
logged on, a ring dialog box appears on the
call recipient's screen and a bell rings. If the call
recipient is not available, a dialog box appears on
the caller's screen asking whether the caller
wishes to leave a message. The caller can then
choose to leave a message or not.

Depending on the individual settings, users can

see and hear one another in multiple windows
on the screen. To connect all conference partici

pants in a mesh, press the "join" push button,

which has a triangular icon .

67

Multimedia

user@desktop2

user@desktop3

user<Mesktop4 �

[i] Version 1 .0

ls::��!!l
[OJ

266 M 1 92

[3

[i]

in: Overview

Dem onstration

Figure 1 Sample SPIN Session

30.0

v

68 Vol. 5 No. 2 .vJring I'J'J.i D(gilal Technical jourual

DEC�pin· A Networked Desktop Videoconferencing Application

I illlllillll
DECS p l n : Cal l List

I Lise r l ®deskto p l

_j

_j I use r3®deskt o p 3

U user4®desktop4

_j I user5®deskt o p 5

.J use r6@deskt o p 6

_j

_j

JOIN

11-f'JI I�_k- SELECT AUDIO
�� SELECT VIDEO

D
D

I use r7®desktop7 _j c

RECORD --d.J....II
A FILE

I
.J

PLAY �_1_11
BACK _j A FILE

[;us r/tmp/reco rd . s p n

I /usr/t mp/p lay,s p n
� LOOK AT

(_j 11=111 MESSAGES

Figure 2 SPIN Call List Pop-up Window

Returning to the main window, the middk push

button is the SPIN control button. As shown in

Figure 3, the SPIN control pop-up window contains

slide bars that, from top to bottom, al low the cal ler

to set maximum capture frame rate , hue, color sat

u ration, brightness, contrast, speaker output vol

ume, and microphone p ickup gain. At the bottom

of the control window are buttons for selecting
compression and rendering.

To the right of the control button in the main
window is the status icon button. Pressing th is but
ton causes the status pop-up window shown in
Figure 4 to appear. The status window d isplays,

below the camera icon, the active size of the cap
tured video area in pixels. Beneath these dimen

sions is a vertical s l ide bar that ind icates the average

frames-per-second (frames/s) capture rate sampled

over a five-second intervaL To the right of the
camera icon is the connection icon, under which

appears the number of active connections. Below

this number are the sound and picture icons, under

Digital Techuical journal Vc>l. 5 No. 2 SpriJJg /'J'J.i

which appear the number of active audio connec

tions and the number of active video connections,

respectively The second sl ide bar ind icates the

result of sampling the average outgoing bandwidth

consumption (measured in Mb/s) of the application

on the network. This measurement is also updated

every five seconds.

Final ly, the fifth push button (on the far right) in

the main window is the information button . By

pressing this button and selecting the type of on
l ine i nformation desired, the user can access the

documentation pop-up windows, as i l lustrated in
Figure 5. Within each documentation window are

several topics and two columns of toggle push but

tons that can be used to obtain either textual docu

mentation or video documentation. The video

documentation comprises short videos that

contain expert help about the operation of the

application.
As a final level of help, al l push buttons and wid

gets within the appl ication have associated audio

69

Multimedia

D ECspln: CO ntrol

LOW
SAT U RATION � Illll lll ll �;;:..._..,;,;o, __ _

vi�� A� iiiiliiiiiiilii� R ENDE�
BLACK- COLOR
AND-WHITE

ftgure 3 SPIN Control Pop-up Window

tracks that tell the user what the buttons and

widgets do within their context in the application.

To activate the audio tracks, the user must first
select the button or widget and then press the Help
key on the keyboard .

Network Considerations
SPIN uses standard data networks to transport the

information that composes a conference. Data net

works are usually private networks that a user com

munity maintains. Such networks often include a

number of individual networks joined together by

bridges and routers. Unl ike public telephone net

works, which are most frequently used for phone
calls, private networks are used for a variety of
computer data needs, includ ing fi le transfers,
remote log.ins, and remote file systems. However,

70

telephone networks often provide the long

distance l ines used to make up private wide area

data networks.
The use of data networks al lows conferencing

data to be treated as woul.d any other type of data.
SPI N requires no special low-level networking pro
tocols to transmit its data and uses the transmission
control protocol/internet protocol (TCP/IP) or the

DECoct protocol . Also, SPIN requires no changes to
existing operating systems. When performing the

prototype work t()r the SPI N application, we were
not certain whether the real-t ime nature of confer

encing could be accompl ished on inherently

non-real-time networks and operating systems.

Consequently, we developed a special. high- layer

synchronization conferencing protocol, cal led the

SPIN protocol, that uses existing data networks.

Vol. 5 No. 2 .\jJring 1993 Digital Technical jou-rnal

DECspin: A Networked Desktop Videoconjerencing Application

EXIT

PICTURE
SIZE IN
PIXELS

AVERAGE
FRAME RATE
IN FRAMES
PER SECOND

TOTAL NUMBER
OF CALLS

TOTAL NUMBER
OF ACTIVE AUDIO
CHANNELS

TOTAL NUMBER
OF ACTIVE VIDEO
CHANNELS

AVERAGE NETWORK
BANDWIDTH USAGE
IN MEGABITS PER
SECOND

Figure 4 SPIN Status Pop-up Window

This protocol is responsible for the synchronization

of audio and video information. The SPIN protocol
monitors the flow of data to the network in order

to alleviate network congestion when detected. As

the network becomes congested , the protocol

makes the decision to withhold further video data,

since video is the largest consumer of network

bandwidth. This withholding of video data is a key
feature of the SPIN protocol, because it al lows a

conference to vary the video frame rate on a user

by-user basis. Thus, video bandwidth can scale to
the lesser of either the bandwidth available or the
number of frames/s of video bandwidth that a given

platform can sustain.

If the withholding of video corrects the network
congestion, video d:ua is once again al lowed in the

conference. If not, the SPIN protocol delays audio

data and stores it in a buffer unti l the network is

able to handle this data. Jf the network outage lasts

approximately 10 seconds, audio data is lost.

Periods of audio silence are used as a means of
recovery from periods of network congestion.

Digital Tee/mica/ Journal Vol. 5 No. 2 Spring 1993

Thus, variable video frame rates along with this

treatment of audio data allow for the gracefu l degra

dation of a conference as the network becomes

busy.

SPIN has been demonstrated over a variety of

public and private data networks including

Ethernet (10 Mb/s) , FOOl (100 Mb/s) , Tl (1 .5 Mb/s),

T3 (45 Mb/s) , cable television (10 Mb/s, more cor

rectly, Ethernet running over two 6-megahertz
cable television channels), switched multimegabit

data service (SMDS) (1 .5 or 45 Mb/s), asynchronous
transfer mode (ATM) (150 Mb/s), and frame relay
(1 .5 or 45 Mb/s). Some of these networks are local

or metropolitan area technologies, i . e . , local area
networks (LANs), whereas others are wide area
technologies, i . e . , wide area networks (WANs), as

i l lustrated in Figure 6.

Each type of network provides SPIN with differ

ent latency and bandwidth characteristics. SPIN

makes corresponding adjustments to a conference

to account for these differences and does not
require a dedicated bandwidth allocation to carry

7 1

Multimedia

SELECT OVERVIEW POP-UP WINDOW

Overv i e w
g
m;] D

SELECT VIDEO
v Start a Conference

Demonstrati on v DOCUMENTATION

Use a Feature
v Introduction

v
v Netw ork v

SELECT TEXT

v Solve a Problem DOCUMENTATION
v

Gloss:ary
v

B ro w s e

F<� u re 5 SPiN lnformutiun Pop-up Windows

on a conference. If a given net work su pports band

width a l location, this feature on ly enhances SPI N 's

abi l i t y to del iver video and audio inhnmat ion.

WANs may use a router to i n terco nnect two or

more LANs. SPI N has been tested on a n umber of

rou ters with mixed resu lts, i . e . , some rou ters cor

rect ly hand le SPI N 's bic.l irec r ional traffic pattern

whereas others do not. Since some n>u ters c lo not

correct ly hand le bid irectional data traffic w i thout

packet loss, wide area routers m ust be i n d iv id ual ly

tested with SPIN to verify proper operar iun . Some

router problems were traced ru tilt" use of old

firmware or software. Con sequ e nt] }', SI' I N acted

l ike a d iagnosti c tool in poimiug out these prob

lems. For example, runn ing t he SPIN appl icat ion

with audio on ly, across Digita l 's private I I ' net work,

y ields varied results. Digi ta l 's IP network is an exam

ple of an open network, with routers from most

rou ter vendors. We traced must i nstances of poor

SPI N performance to old or obsolete routers (some

in serv i ce fo r the last six years without upgrades).

These routers usua l ly dropped packets wht:n rou t

ing between adjacent Ethernet neL wurks that were

only 10 percent buS}'· After t hese ro urers were

72

upgraded to rhe DECNIS fami ly of routers, the SPIN

appl icat ion fun ctioned correctly, even on con

gested networks.

To demonstrate dai ly use of SPIN, we created a

metropol itan area network (MAN). Figure 7 shows

the network topology, which spanned the states of

New Hampshire and Massachuset ts. The test bed

a l lowed us to demonstrate our FOOl prod ucts,

inc lud ing end-station FDDI adapter cards, mult i

mode FDDI wiring concentrators, and single-mode

FUD! wiring conce nt rators. SPI N was used in :)0

workstat ions, two of which were attached to large

sc reen projection u n i ts in con.ference rooms.

Performance

The con ference qua l i t y achieved when running the

SPIN app l ication depends on many factors. The

avai l able network band width, the processor speed,

the desired fra me- rate specifica t ion, the compres

sion setti ng, the pictu re size, and how the p ictures

are rendered a l l a ffect the qual i ty of the confe rence.

Ta ble l contains performance data for DECspin ver

sion 1 .0 at various combinat ions of sett ings fo r

these factors.

Vol. 5 No . .! .\firing 19').) Digital Tecbuical jountul

IJECspin: A Networked Desktop Videoconferencing Application

(a) LAN Usage of SPIN

ETH E R N ET LAN

ETHERNET LAN

--------1 DECNIS 600

g

ETH E RNET LAN

(b) WAN Usage of SPIN

Figure 6 LAN and WAN Usage of SPIN

FDDI
(54 M I LES, SINGLE-MODE F I BER)

,II II, LITILETON, MA

D
hhhhhh

Figure 7 Digital's MAN Test Bed for SPIN

Digital Techuical journal Vol. 5 No. 2 Spring 199.) 73

Multimedia

Table 1 SPIN Performance on a DECstation 5000 Model 200 with
DECvideo and DECaudio Ha rdware

Width X Height Frames/s (Bit
(Pixels) Render/Compression Network rate in Mb/s)

256 X 192 Black and White/ No FDDI 10 (4.0)
256 X 192 Black and White/ Yes FDDI 16 (1 .5)
256 X 192 Color/ No FDDI 3 (5.0)
256 X 192 Color/ Yes FDDI 10 (4.0)

160 X 1 20 Black and White/ No FDDI 19 (3.0)
160 X 1 20 Black and White/ Yes FDDI 25 (0.9)
160 X 1 20 Color/ No FDDI 12 (6.0)
160 X 1 20 Color/ Yes FDDI 19 (3.0)

256 X 192 Black and White/ No Ethernet 9 (3.8)
256 X 192 Black and White/ Yes Ethernet 16 (1 .5)
256 X 192 Color/ No Ethernet 2 (3.0)
256 X 192 Color/ Yes Ethernet 8 (3.0)

160 X 1 20 Black and White/ No Ethernet 19 (3.0)
160 X 1 20 Black and White/ Yes Ethernet 25 (0.9)
160 X 1 20 Color/ No Ethernet 8 (5.0)
160 X 1 20 Color/ Yes Ethernet 19 (3.0)

Using a DECNIS Router (Ethernet-to-Router-to-T1-to-Router-to-Ethernet)

256 X 192 Black and White/ No
256 X 192 Black and White/ Yes
256 X 192 Color/ No
256 X 192 Color/ Yes

160 X 1 20 Black and White/ No
160 X 1 20 Black and White/ Yes
160 X 1 20 Color/ No
160 X 1 20 Color/ Yes

As shown in Table 1 , we tested SPIN performance
using two basic picture sizes: 256 by 192 pixels and
160 by 120 pixels. The tests were performed over
both Ethernet and FDDI networks for black-and
white and color cases. Also noted in the table is
whether or not software compression was enabled
for a specific test case. The far right column shows
the frame rate achieved for the different combina
tions and also summarizes the network bandwidth
consumed in each test. The table is presented pri
marily to give a sampling of the frame rate and,
hence, the level of visual quality achieved for a spe
cific combination of parameters. Frame rates affect
an observer's ability to detect change within a
sequence of frames. With a slow frame rate, the
resulting video sequence may appear choppy and
incomplete, whereas a normal frame rate (24 to 30
frames/s) leads to a smoothly varying video
sequence with even continuity from one sequence
to another. The frame rates in Table 1 below about 6
to 7 frames/s are considered low qual ity. Those in
the 8-to-19-frames/s range are considered good
qual i ty, and those in the 20-to-30-frames/s range

74

T1 4 (1 .4)
T1 15 (1.4)
T1 1 (1 .4)
T1 4 (1 .4)

T1 10 (1 .4)
T1 25 (0.9)
T1 3 (1 .4)
T1 10 (1 .4)

are high-quality video. The best cases in Table I are
those that used software compression to del iver a
pleasing frame rate with the least amount of net
work bandwidth consumed together with some
degradation of individual frame qual ity. The soft
ware compression was tuned to provide nearly the
same frame qual ity as the uncompressed case.

Table 1 also shows performance data measured
using a DECNIS router. As noted earlier, wide area
usage of SPIN depends on a router with correct algo
rithms for hand l ing of bidirectional continuous
stream traffic. The DECNIS family of routers can
supply the ful l Tl bandwidth when presented with
bidirectional SPIN traffic . Other routers on which
SPIN was tested typically del ivered only 25 to 50
percent of the Tl bandwidth. Note that this was
only true on the particular routers we tested and
that routers other than DECNIS routers may also be
able to del iver fu l l Tl bandwidth for this particu lar
traffic pattern .

Hardware compression technology mentioned in
the section Overview of Underlying Hardware and
Software reduces the bandwidth requirements for

Vvl. 5 No. 2 Spring 1993 Digital Technical]Ollr11al

DECspin: A Networked Desktop Videoconferencing Application

conferencing. Experimentation with motion JPEG

compression (using the Xv extension with com

pression functions on an Xvideo frame bu ffer

board) has shown that at a resolution of 320 by 240
pixels, true-color frames can be used at 15 to 20

frames/s at a bit rate of just u nder 1 .0 Mb/s. This bit

rate produces a good- to h igh-quality conference

with very low latency. H .261 and MPEG technology
resul t in similar frame rates and picture size a t

about one-ha lf the bandwidth but higher overal l

l atency. Using motion JPEG as the example, high

qual ity conferences require about 1 Mb/s per
connection . If a l l conferences are to be high qual

ity, this bit rate a l lows 1 two-party conference

on a T l connection, 5 two-party conferences on an

Ethernet segment, and 50 two-party conferences

on an FDDI network. Using GIGASWJTCH FDDI

switches, more than 500 two-party conferences

can take place simultaneously on a network. More

users cou ld be supported on T l , E thernet, or

GIGASWITCH networks, if lower-quality confer

ences are acceptable.

Conclusion

It became clear during the development and

deployment of SPIN that high cost per user l imits

the widespread use of the application. The cost of

video for DECspin version 1 .0 adds about $8,000 to

the price of a workstation. Audio for version 1 .0

adds about $2 ,000 per workstation . These costs,

which are prohibitive to most potential users of

the technology, do not include the network cost

impact.

D igital 's Alpha AXP family of computers come

with audio input a nd output hardware as part of the
base workstation. In spring 1993, Digital released to

the Internet community a version of DEC:spin that

uses this hardware to carry on audio-only confer
ences and shows the user a voice waveform instead

of a video image. This version el iminates the add-on
hardware cost for audioconferencing. A new low

cost video option would go far to reduce the add-on

cost for video and facil itate a wider use of the SPIN

appl ication .

The SPIN appl ication and i ts associated protocol

have been demonstrated on D igital and non-Digital

computers, operating systems, and networks. In

particular, SPIN has been shown on SPARC worksta

tions run ning Solaris software. Additionally, SPIN

has been demonstrated on a personal computer

using the Microsoft Multimedia Extensions (MM E)

to Windows software. This platform provides a

Digital TecbTtical journal Vol. 5 No. 2 Sjn-ing 199.)

very large user community of potential SPIN users
and dramatica l ly drops the price per user compared

with the original product. lnreroperabil ity among

platforms and a com mon user i nterface give Digital
a leadership position in this fast -forming market.

Today, h igh-quality conferencing can scale to

h undreds of seats on a LAN with lower-quali ty con

ferencing scal ing to larger, more geographical ly dis

persed networks. Several factors wi l l lead to the

w idespread use of this technology: better and less

expensive hardware, programmable codecs, and

h igher-speed and Jess-costly cross-country net

works. Less-expensive video hardware al lows many

users to upgrade their systems to include video,

while programmable compn. 'ssion technology

a l lows users to achieve i mprovements in picture

quality, compression transcoding, and lower net

work needs. Higher-capacity and less-cost ly cross

country networks a l low more users to access

conferencing services. U l t imately, even homes wi l l
have better computer connectivity and bandwidth.

As these changes occur, and we bel ieve they wi l l ,

desktop conferencing can become the interactive

telephone of the twenty-first century.

Acknowledgments

The authors wish to acknowledge and thank a U the

members of the close team that worked on the SPIN

project and made the DECspin version 1 .0 product a

success. Key individuals in this effort were Diane

LaPointe, Beverly Ol iphant, Jonathan George,

Garrett Van Siclen , and Jack lbto. We wou ld also

l ike to thank early supporters of the product

efforts, including J im Mil ler, Karl Pieper, and Jim

Cocks. In addition, we extend our thanks to Wal t

Ronsicki , Videhi Mallela , Nathalie Rou nds, and the

rest of the team who establ ished the FDDI test bed ;

to D ick Bergersen, who hand led the qual i ty assur
ance for DECspin version 1 .0 and gave the team

excel lent feedback on the product ; and to Tom
Levergood and the other members of Digital 's

Cambridge Research Laboratory who gave us sup

port and assistance in regard to the AudioFile audio
server. Final ly, we would also like to offer thanks to
our management, particularly Bi l .l Hawe and Joh n

Morse, who are strong advocates a n d supporters of

our product efforts.

References

1 . Digital Compression and Coding o.f Continuous
Tone Still Images, Part I, Requirements and

75

Multimedia

Guidelines, ISO/ I EC JTC 1 Committee Draft 10918-1
(Geneva: International Organization for Stan

dardization/International Electrochemical Com

mission, February 1991) .

2 . Digital Compression and Coding of Continu

ous-Tone Still /mages, Part 2, Compliance Test
ing, ISO/IEC JTCl Committee Draft 10918-2

(Geneva: International Organization for Stan

dardization/International Electrochemical Com

mission, Summer 1991) .

3 . Coding of Moving Pictures and Associated

Audio, Committee Draft Standard ISO 1 1 172,
ISO/MPEG 90/ 176 (Geneva: International Organi

zation fo r Standardization, December 1990).

4. Video Codec for Audiovisual Services at Px64
Kb/s, CCITT Recom mendation H . 261 , COM XV-R

37-E (Geneva: International Telecommu nica

tions Union, Comite Consultatif Internationale

76

de Tetegraphique et Telephonique [CCITT] ,
August 1990).

5 . R. U lichney, "Video Rendering," Digital Techni

cal}ournal, vol. 5, no. 2 (Spring 1993, this issue):

9- 18.

General References

L. Pa lmer and R. Palmer, " Desktop Meeting," LAN
Magazine, vol . 6, no. 1 1 (November 1991).

TURBOchannel Hardware �pecification (Palo Al to,

CA: Digital Equipment Corporation, TRI/ADD

Program, 1990).

Open Software Foundation, Inc . , OSF/Motif, Pro
grammer's Reference, Release 1. 1 (Englewood

Cl iffs, N) : Prentice-Hal l , Inc . , 1991) .

R. Scheifler,]. Gettys, and R. Newman, X Window

System C Library and Protocol Reference (Bedford,

J\1A Digital Press, 1988).

vbl. 5 No. 2 Spring IY93 Digital Techn-icaljuu rnttl

LAN Addressing for
Digital Video Data

Peter C. Hayden I

Multicast addressing was chosen over the broadcast address and unicast address

mechanisms for the transmission of video data over the LAN Dynamic allocation of

multicast addresses enables such features as the continuous playback of full

motion video over a network with multzple viewers. Design of this video data trans

mission system permits interested nodes on a LAN to dynamically allocate a single

multicast address from a pool of multicast addresses. When the allocated address is

no longer needed, it is returned to the pool. This mechanism permits nodes to use

fewer multicast addresses than are required in a traditional scheme where a

unique address is allocated for each possible function.

The transmission of digital video data over a local

area data network (LAN) poses some particular

chal lenges when multiple stations are viewing the

material simul taneously. This paper describes the

available addressing mechanisms in popular LANs

and how they a l leviate problems associated with

mul tiple viewing. It also describes a general mecha

nism by which nodes on a LAN can dyn amical ly al lo

cate a single multicast address from a pool of

m u lticast addresses, a nd subsequently use that

address for transmitting a digital video program to a

set of interested viewers.

Project Goals

The objective of this project was to design a mecha

nism su itable for providing the equ ivalent of broad

cast television using compu ters and a local area

data network in place of broadcast stations, air

waves, and televisions. The resu lting system had to

provide access to broadcast, closed circuit, and on

demand video programs throughout a n enterprise

• I 1 L

using its computers and data network. The use of

computer equipmen t installed for data transmis

sion wou ld el i minate the need to invest in cable TV
wiring throughout a building.

The basic system would consist of two primary

components. One compu ter, or set of computers,

wou l d act as a video server by transmitting video
program material, in digital form, onto the data net

wor k . Other computers, acting as cl ients, wou ld

receive the transmitted video program and present

it on the compu ter's display. Figure I depicts such a

configuration.

The variety of video source material suggests that

servers may be equipped i n several ways. For exam

ple, accessory hardware can receive broadcast

video programs; hardware and software can con

vert analog video into digital format; and hardware

and software can compress the digital video for effi

cient use on a personal computer and data net

work. 1 ·2 ·� Figure 2 shows a server equipped to

handle different types of video program sources.

LOCAL AREA

l L NETWORK

• TRANSMITTED
DATA STREAM

I SERVER I I CLIENT I I CLIENT I [CLIENT I
TRANSMITTING RECEIVING NOT RECEIVING RECEIVING
DIGITAL VIDEO DIGITAL VIDEO DATA DIGITAL VIDEO

Figure I Client-server System for Video Data Transmission

DiRita l Tecbnical]oun�al Vol. 5 No. 2 Sprinf:!. 1993 77

Multimedi a

LOCAL AREA NETWORK

ANALOG
VI DEO
SOURCES

LASER
DISC 0

0

I

-I

• I
NETWOR K
INTERFACE

t

DIGITIZER

I
MAIN MAGNETIC

PROCESSOR DISK

0 STORAGE

t •
STORED
DIG ITAL

�I COMPRESSION I OB VIDEO

HARDWARE

TV OR
CABLE
TUNER

PERSONAL COMPUTER

Figure 2 Types of Video Program Sources

Video program m aterial is categorized as l ive,

e .g . , the cu rrent program broadcasting on a televi

sion network, or stored and pl ayed on demand,
e.g . , a recorded t raining session . In both cases, it is

desi rable for more than one cl ient to be able to

monitor or view the transmitted video program.

To implement the c l ient-server system described

above, many technical hurd les had to be overcome.

This paper, however, focuses on one narrow but

critical aspect, the addressing method used on the

LAN for del ivery of the d igital video data. The char

acteristics of digital v ideo and the need for m u ltiple

stations to receive programs from a wide ra nge of

possible sources combined to create some interest

ing chal lenges i n devising a suitable addressing

method.

Choosing an Addressing Method

1() transmit digital video over a data network, an

effective addressing mecha nism had to be chosen

that would satisfy the project's goa ls. Most LANs

support three basic data addressing mecha nisms:

broadcast, u nicast, and mu lticast. L o r, ; Each method

of transmitti ng digital video over a LAN has charac

teristics that are both attract ive and undesirable.

Broadcast addressing uses a specia l reserved des

tination add ress. By convention, data sent to this

address is received by all nodes on the LAN.
Transmitting d igital video data to the broadcast

address serves the pu rpose of permitting multiple

cl ients to receive the same transmitted video pro

gram while permitting the server to transmit the

data once to a s ingle address. Viewed another way,

this convention is a significant d isadvantage

7H

because a l l stations receive the data whether they

are interested or not. Compressed d igital video rep

resents from I to 2 megabits per second of data ;

therefore nodes not expecting to receive the video

data are im pacted by its unsol icited arriva l . 1 • 1 As a

fu rther compl ication , when two or more video pro

grams are playing simu lta neously, stations receive I
to 2 megabits per second or more of data for each

video program . This renders many systems inoper

ative. Fu rthermore, LAN bridges pass broadcast

messages between LAN segments and cannot con

fi ne d igita l video data to a LAN segment H As a result

of these drawbacks, use of the broadcast address is

u nsuitable for transmission of d igital video data.

Un icast addressing sends data to one u n ique

node. The use of u n icast addressing e l imina tes the

problems encountered with broadcast addressing

by confin ing receipt of the d igital video data to a

single node. This approach works quite wel l as long

as only one node wishes to view the video program.

ff m u ltiple c l ients wish to view the same program,

then the server has to retransmit the data for each

participating c l ient. As the n umber of v iewing

c l ients increases, this approach quickl y exhausts
the server's capacity and congests the LAN . Because

u ni cast addressing cannot practical ly support one

server i n conjunction with mult iple cl ients, i t too is

unsu itable for transm ission of digital video data.

M u lticast addressing uses addresses designated

to s imultaneously address a group of nodes on a

LAN . Nodes wishing to be part of the addressed

group enable receipt of data addressed to the mu lti

cast address. This characteristic makes mu lt icast

addressing the ideal match for the simu ltaneous

Vol. 5 No. :! Sprin,� 1993 Digital Teclmicaljounwl

transmission of digital video data to multiple client

nodes without sending it to uninterested nodes.

Furthermore, many network adapters provide

hardware-based filtering of mu lticast addresses,

which permits high-performance rejection/

selection of data based on the destination multicast

address.9 Because of these advantages, multicast

addressing was selected as the mechanism for trans

mission of digital video data.

Multicast Addressing Considerations

Together with its advantages, multicast addressing

brought significant problems to be overcome. The

problems were in the assignment of multicast

addresses to groups of nodes, all of which are inter

ested in the same video program. If a single multi

cast address were assigned for all stations

interested in receiving any video program, then

only interested stations would receive data. All par

ticipating stations, however, would receive al l pro

grams playing at any given time. If multiple

programs were playing, each station would receive

data for a l l programs even though it is interested in

the data for only one of the programs. The obvious

solution is to al locate a unique multicast address for

each possible program . The fol lowing sections

examine various allocation methods.

Traditional Address Allocation

Traditional ly, a standards committee allocates mul

ticast addresses, each of which serves a specific

purpose or function. For example, a specific multi

cast address is al located for Ethernet end-station

hello messages, and another is al located for fiber

distributed data interface (FOOl) status reporting

frames. to. t t . L2 Each address serves one explicit func

tion. This static allocation breaks down when a

large number of uses for multicast addresses fall

into one category.

It clearly is not possible to al locate a unique

multicast address for all possible video programs

for several reasons. At any given time, hundreds

of broadcast programs are playing throughout

the world, and thousands of video programs

and clips are stored in video l i braries. Countless

more are being created every minute. Assigning a

unique address to each possible video program

would exhaust the number of available addresses

and be impossible to administer. Furthermore,

it would waste mul ticast addresses since only

those programs currently playing on a given

LAN (or extended LAN) need an assigned address.

Digital Technical journal Vol. 5 No. 2 Spring 1993

LAN Addressing for Digital Video Data

A technique, therefore, is needed by which a block

of multicast addresses is permanently allocated for

the purpose of transmitting video programs on a

computer network, and individual addresses are

dynamically al located from that block for the dura

tion of a particular video program.

Dynamic Allocation Method

A dynamic allocation method should have several

characteristics to transmit video programs on a

LAN. These desired characteristics

1. Must be consistent with current allocation pro

cedures used by standards bodies like the IEEE

2. Should be ful ly distributed and not require a

central database (improves reliability)

3. Must support multiple clients and multiple

servers

4. Must operate correctly in the face of LAN per

turbations like segmentation, merging, server

failure, and client failure

It is clearly desirable to use a dynamic allocation

mechanism that does not require changes to the

way addresses are allocated by standards commit

tees. Changes to protocols only create another level

of administrative complexity. Instead, a single set of

addresses should be allocated on a permanent basis

for use in the desired application. Drawn from a

pool of addresses, these allocated addresses could

be dynamically assigned to video programs as they

are requested for playback. When playback was

complete, the address would be returned to the

pool.

Regard less of which allocation mechanism is

adopted, it needs to support multiple servers and

multiple clients. This implies that some form of

cooperation exists between the servers to prevent

multiple servers from allocating the same address

for two different video programs. One node could

act as a central clearinghouse for the allocation of

addresses from the pool, but the overall operation

of the system would then be susceptible to failure

of that node. The preferred approach is a fu lly dis

tributed mechanism that does not require a central

ized database or clearinghouse.

LANs tend to be constantly changing their config

urations, and nodes can enter and leave a network

at any time. As a result, an allocation mechanism

must be able to withstand common and uncommon

perturbations in the LAN. It must accommodate

79

Mul timedia

events such as the segmentation of a LAN i nto two

LANs when a bridge becomes inactive or d iscon

nected, joining of two LANs into one when a bridge

is instal led or becomes reactivated, and fai lure or

d isconnection from the LAN at a n y t ime by bot h

server a n d c l ient nodes.

Other Multicast Allocation Methods

A variety of different group resource a l location

mechanisms exist, and the one most nearly appl ica

ble to transmi t t i ng d igital video over a LAN is used

in the in ternet protocol (IP) suite. Deering d is

cusses extensions to the internet protocols to sup

port m u l ticast del ivery of i n ternet data grams. 1'

In his p roposal, mul ticast address selection is algo

rithmi cal l y derived from the mul ticast IP address

and yields a many- to-one mapping of m u l ticast

IP add resses to LAN mult icast address. As a conse

quence, there is n o assurance that any given m u l ti

cast address wil l be al located solely for the use of

a single d igital video transmission. This undermi nes

the goal of using mu lt icast addressing to direct the

heavy flow of data to only those stations wishing to
receive the data. Deering d iscusses the need for

al location of transient group address and a.l l u des to

the concepts presented in this paper.

Model for Dynamically Allocating
Multicast Addresses

Give n the overa l l goals of the project and the

desired characteristics of the application, the fol

lowing model was developed. It transmits d igital

video on a data network using dynam i ca l l y al lo

cated m u l ticast addresses. First, simple ope rational

cases on the LAN are described. Then compl icated

scenarios deal ing wit h network misoperations arc

addressed.

It should be noted that the protoco ls described

add ress the location of video program material as

wel l as the a l location of m u lticast add resses for

del ivery of that material . Because of the one-to-one

correspondence between video materi a l and

address a l location, it is convenient to combine

these t wo functions into a single protocol; how

ever, the focus of this paper remains on the address

a l location aspects of the protocol.

Multicast Address Pool

This model assumes a set of n mu lticast addresses

permanently al located and devoted to it . The

addresses are obta ined through the normal process

HO

for al location of m u lticast add resses th rough the

IEEE. All cJ ients and servers participating i n this

protocol use the same set of addresses. For the sake

of this discussion, these addresses are denoted as

A I , A2, . . An. Address Al is a lways used by the par

ticipating stations for exchange of i nformation nec

essary to control the al location of the remaining

addresses for use by the participating stations. The

remai ni ng addresses A2 through An form the pool

of available m u l t icast addresses.

Server A nnouncements

AI I servers capable of tra nsmitti ng d igital video

data continuously announce their presence and

capabil ities by transmitting a message at a predeter

m ined interval; for example, a message is addressed

to A 1 every second. I n these announcemen ts, the

servers include i nformation iden tifying their gen

eral capabil it ies, data streams they are c u rrently

transmitting, and data streams they are capable of

transmitting.

A se rver's general capabilities include its name

and network adclress(es). Other usef-ul i nformation

can al so be announced, but it is not releva nt to

this discussion. To identify the data streams cur

rently being transmitted, the server describes

the data and the mult icast address to which each

data stream is being transmitted . In t h is way, it

annou nces those m u lticast addresses that the sta

tion is cu rrently using, along with a description of

the associated video program. The data streams the

server is capable of transm i t t i ng are identified by

some form of a description of the data stream.

Jdentzfying Servers and
Available Programs

With each server continuously announcing the pro

gram m aterial available for playback, clients wish

ing to receive a particu lar data stream can monitor

the server announcements being sent to add ress

A I. By receiving these annou ncements, a c l ie nt can

ascertain the address of each server active on the

LAN, the data streams currently being transm itted

by each server and the m u l ticast add ress to which

each is being transmitted, and the data streams

available for transmission.

With a large reposi tory of program materia l ,

i t cou l d easily become i mpractical t o annou nce

a l l ava i l able materia l . In this case, the announce

ments could be used only to locate avai lable

servers, and an inquiry protoco.l o r database search

Vol. 5 No. 2 Spring 1993 Digital Technical journal

mechanism could be used to locate available mate

rial more efficiently.

Once a cl ient identifies a server that is offering

the desired data stream, it can request that the

server begin transmission. The cl ient sends a mes

sage identifying the desired p layback program

material. In response, the server allocates a unique

multicast address, includes the new material and

m u lticast address in its announcement messages,

and begins transmitting the program material.

Address Allocation and Tracking

Each server maintains a table containing the usage

of each of the A2 to An addresses. Each ad dress is

t agged as either currently used or available for use.

When a server receives a cl ient's request for trans

mission of a new data stream, the server selects a

currently unused multicast address and includes

the address and data stream description in its

announcements of data streams currently being

transmitted. After sending two announcements,

the server begins transmitting the data to the cho

sen multicast address. Sending two announcements

before beginning transmission provides cl ient

nodes with ample time to ascertain the address to

which the data will be sent and to enable reception

of the video program.

In addition to sending announcement messages,

the servers also l isten to the announcements from

other servers to keep track of al l multicast

addresses currently in use on the LAN. Each time a

server receives an announcement message from

another server, it notes the addresses being used

and marks them a l l as used in its table. This pre

vents a server from allocating an address already

used by another server and elim inates the need for

a central database or clearinghouse.

I f a server observes that it is using the same

address as another server, then the server moves

its data transmission to another address if and only

if its node address is numerically lower than the

other server's node address. The new address is

al located exactly as it would be if the server were

beginn ing to transmit the data stream for the first

time. This algorithm resolves conflicts where two

or more servers choose the same available multi

cast address at the same time. In addition, it

resolves a similar confl ict that occurs when two

separate LA.I'I segments become joined and two

servers suddenly find they are using the same multi

cast address.

Digital Techuical]ournal Vol. 5 No. 2 Spring 1993

LAN Addressing fo r Digital Video Data

Clashing allocations of multicast addresses can be

held to a minimum if servers allocate an address at

random from the remaining pool of add resses rather

than all servers a llocating i n the same fixed order.

Identifying and Stopping Playback

After a client requests playback of new material, it

can then examine the server's announcements, and

when the desired data stream appears as being

transmitted by the server, the cl ient can begin

receiving data from the advertised multicast

address. At this point, any other c lient stations on

the LAN can also receive the same video program by

enabling receipt of the same address.

When no more cl ients wish to view a partic

u lar program, a mechanism is needed to inform

a server to stop transmission and return the asso

ciated address to the free pool. Two alternative

approaches were considered to stop playback; one

was chosen for several reasons.

In the first approach, each server tracks the num

ber of c lients that have requested a particular pro

gram by simply cou nting the number of requests

for that program. In addition, clients are required to

notify the server when they are finished viewing.

The server then continues to transmit the material

until all interested clients have ind icated they are

no longer interested in viewing. This approach has

two problems. If a viewing client node is reset or

disconnected, or iJ its message to end viewing is

lost, the server could lose track of the number of

viewing cl ients and never stop playing a particular

program. The second problem, which is more of a

nuisance, is that cl ients have to request playback of

a program even if it is already playing to enable the

servers to track the number of viewers.

In the preferred approach, interested cl ients

periodically remind the se rver that they wish to

continue viewing the program. Servers then simply

keep playing the m aterial until no cl ient expresses

interest for some period of time. For example,

cl ients could reiterate their interest in a program

every second, and a server could continue transmit

ting a requested program until it d id not receive a

reminder for 3 seconds. This time lapse would

accommodate lost reminder messages from clients,

and cl ient failure would result in transmission ter

mination within 3 seconds. In addition , when a l l

cl ients had finished viewing the m aterial, the

server, multicast address, and consumed network

bandwidth would be released within 3 seconds,

81

Multimedia

making them ava i lable for other uses. Selection of

the actual t imer value depends on the desired bal

ance between ongoing consumption of network
resources (bandwidth and m u lticast addresses)

after all receiving parties have stopped viewing the

data, and network, end system , and server resource

consumption caused by more frequent reminder

messages.

Changing Multicast Add1'esses

Aside from receiving and processi ng the data fo r a

v ideo progra m, c l ient stations must also continue

to examine the server announcement messages and

rem ain alert to possible changes in the mult icast

address to which the received program is be ing

transmitted. As noted above, address al location can

cha nge at any time due to merging of LAN segments

or dupl icate a l locat ion by two servers. An ytime a

cl ient notes a change i n address, it must stop receiv
ing data on the previous address and resume receiv

ing with the new address. A mo mentary disruption

in playback is l ikely to occur, but such disturban ces

are i nfrequent because only merging LANs cause

dupl i ca te a l locations of addresses in the midd le of

playback.

Under the circumstances described earl ier, a

c l ient can find i tsel f receiving two data streams on

the same m u l t icast address fo r some fi nite t ime

period u ntil the servers resolve the al location of

that address. Cl ients can gain immu nity to this si tu

ation by noting the source address of the server that

origina l ly provided the data stream , and d iscarding

al l data received on the multicast address that is not

from the source address. With this i mprovement,

cl ients can eas i ly dist inguish the data strea m of

interest from another which m ight momentari ly

appear addressed to the same m u lticast address.
The a l location and resolution of mul ticast

address use can be improved if servers send t heir

annou ncements at an increased rate for some time

period after a new data stream begins transmitting
or when a data stream changes address. Such accel

erated announcements permit cl ient stations to

more qu ickly ident ify the address of a requested

data stream , and more quickly identify when a data

strea m has moved from one address to ano ther.

They a lso permit servers to more qu ickly identify

instances of cl ashing m u l ticast addresses and

resolve them. For example, t he announcement
interval could be increased from 1 second to one

quarter second fo r a 2-secon<l d u ration and

resumed at !-second intervals.

82

Extension to Interconnected LANs

The described protocols and al location methods

fu nction correctly across mul tiple LANs in tercon

nected by bridges since bridges nomi nally fo rward

mult icast traffic. Many bridge impleme ntations per

mit management control over the fo rwarding of

mu l ticast data . This can unintentional l y i n terfere

with the desired operation of this pro to col, but

i t can al so as serve as a useful tool to confine data

traffic to particular LAN segments. Another prac

tical consideration in the particular application

described here is the abil i ty of a bridge to forward

the la rge amou nts of data traffic involved in digital

vi deo without detrimenta l ly impact i ng the t ime

dependent nature of the data.

Extending the protocols to a w ide area network

is a more difficult procedure. Routers do not for

ward mul ticast traffic, but they could if used as

proxy nodes between LANs. Ro uter fo rwarding

performance teJ1(1 S to be eve n lower than bridge

fo rward ing rates, wh ich d iscourages the operation

of this system over a rou ter.

Conclusions

D ynamic a l location of mul ticast addresses is cri ti

cal to enable features such as t he conti nuous play of

fu ll motion video over a network with multiple

viewers. It is not feasible (or at least is very d ifficult)

fo r a server to transmit a data stream individual ly

to a l l cl ients wishi ng to receive i t . If, o n the other

hand, the desired data stream is transm it ted to the

broadcast add ress, a l l stations on the LAN have to

receive an enormous volume of data whether they

are interested or not. I t is highly desirable not

to inundate uninterested c l ien ts with video data

strea ms, but to sencl them to c l ients that want to

receive spec ific v ideo data streams in which they

are interested.
Multicast addresses are wel l su ited (in fact

designed) for transmission to some arbitrary group

of stations. To prevent a c l ient that is receiving one
v i deo strea m from being inun dated by other video

streams, a unique mult icast address is required

for each u n ique data stream. Since there are infi

nite individual data streams to choose from, it is

i mpossible to a l locare a un ique m u l ticast add ress

fo r every data stream. A mecha nism to a l locate

a unique mul t icast address from a fin i te set of

addresses for the duration of the data stream is the

ideal choice. The described mechanism also has the

attract ive characteristic that it is completely dis

tributed; t here is no central agent for al locat ion of

l!rJ/. 5 No . .2 SjJrinx /')'}.) Digital Tecbnical jour11al

multicast addresses; therefore it is more rel iable as
servers join and leave the LAI'I .

Although transmission of d igital v ideo data has

prompted this system design , the basic mechanism
for dynamically a l locating mult icast addresses can

be applied to any application with similar needs.

Acknowledgments

I would l ike to acknowledge the assistance of
john Forecast of Digital 's Networks and Commu

nications Group in enumerating the necessary
pathological condit ions in this work and for acting

as a sounding board for proposed solutions.

References

1 . K. Harney, M . Keith, G. Lavel le , L. Ryan , and

D. Stark, "The i7'50 Video Processor: A Total

Mul timed ia Solution," Communications of
the AOVI, vol . 34, no. 4 (April 1991).

2 . G. Wal lace, "The]PEG Still Picture Compres

sion Standard," Communications of the ACM,
vol . 34, no. 4 (April 1991).

3. D. Le Gall , "MPEG: A Video Compression Stan
dard for Multimedia Appl ications," Communi
cations of the ACiJ.I, vol . 34, no. 4 (April 1991) .

4 . Carrier Sense !V!ultiple Access with Collision
Detection (CSMA/CD) Access Method and
Physical Layer Specification (New York:

The Institute of Electrica l and E lectronics

Engineers, Inc . , 1986).

5 . Fiber Distributed Data Interface-Token
Ring Media Access Control (New York:

American National Standards Institu te, 1987).

Digital Technical Journal Vol. 5 No. 2 Spring I'J'J3

LAN Addressing for Digital Video Data

6. Token Ring Access Method and Physical
Lc�yer SpeCifications (New York: The Institute
of Electrical and E lectronics Engineers, Inc . ,

1986) .

7 Token-Passing Bus Access Method and Physi
cal Layer Specifications (New York: The Insti

tute of E lectrical and Electronics Engineers,

Inc . , 1986) .

8 . Local Area Network MAC (Media Access
Control) Bridges, IEEE Standard 802 . l (d)

(New York: The Institute of E lectrical and

Electronics Engineers, Inc . , 1990).

9. JV/C68838 Media Access Controller User's
Manual (Phoenix, Arizona: Motorola, Inc . ,
1992).

10. Logical Link Control, ANSI/IEEE Standard

802 .2-1985, ISO/DIS 8802/2 (New York:

The Institute of E lectrical and E lectronics
Engineers, Inc . , 1985).

1 1 . A Primer to fDDf: Fiber Distributed Data
Interface (Maynard, MA: D igital Equipment

Corporation, Order No. EC-H0750-42 LKG,

1991).

12 . FDD! Station Management-Draft Proposed
A merican National Standard (New York:

American Nat ional Standards Institute,

June 25, 1992).

13. S. Deering, " Host Extensions for IP M u lticast

ing," Internet Engineering Task Force, RFC

1 1 1 2 (August 1989).

83

Paul B. Patrick, Sr. I

CASE Integration Using
ACA Services

Digital uses the object-oriented software Application Control Architecture (ACA)
Services to address the problems associated with data access, interapplication com

munication, and work flow in a distributed, multivendor CASE environment. The

modeling of applications, data, and operations in ACA Services provides the foun

dation on which to build a CASE environment. ACA Services enables the seamless

integration of CASE applications ranging from compilers to analysis and design

tools. ACA Services is Digital's implementation of the Object Management Group 's

(Oil{ G) Common Object Request Broker Architecture (CORBA) specification.

Based on work accomplished in many compu ter

aided software engineering (CASE) projects, this

paper describes how Digital 's object-oriented

Appl ication Control Architecture (ACA) Serv ices

can be used to construct a CASE environment. The

paper begins with an overview of the types of CASE

environments currently available . It describes the

object-oriented techn ique of modeli ng appl ica

t ions , data, and operations and then proceeds to

d iscuss design and implementation problems that

m ight be encountered during the i n tegration pro

cess. The paper concludes with a d iscussion of

environment management.

CASE Environment Description

Today's CASE environments are required to operate

in network environments that consist of geogra phi

cal ly d istribu ted hardware manufactured by m u l t i
ple vendors. In such environments, access to data,

metadata, and the fu nctions that operate o n this

data must be as seam less as possible. This can be

accompl ished only when wel l-archi tected proto

cols exist fo r the exchange of information and con
t rol . These protocols need not be defi ned at the

level of network packets, but rather as operations

that have wel l-defi ned, platform-independent inter

faces to pred ictable behaviors.

In addition to u t i l izing the various appl ications,

enviro nments deal with how appl ications are orga

nized or grouped within a project and how work

flows between applications and within the environ
ment as a whole. These concepts are discussed

l ater in the paper as are the different styles of inte

gration that an application can employ.

84

Data integration, i .e . , information sharing, is vita .l

to any CASE enviro nment because it reduces the

amount of information users m ust enter. However,

data i ntegration must be accompanied by a mecha·

nism that a llows control to pass from one app.l ica

rion to another. This mechanism, com monly called

con trol i ntegration, provides a means by which

the appropriate app l i cation can be started a nd

requested to perform a n operation on a p iece of

informatio n . Contro l i ntegration i s also used to

exchange information between cooperating appl i

cati ons, regardless of their geographic locations.

These t wo integration mechanisms used in tandem

can solve many of the problems presented by a d is
tributed, m ult ivendor CASE environment.

ACA Services is D igita l 's implementation of the

Object Management Group's (OMG) Common Object

Request Broker Architecture (CORBA) specification.

ACA Services i s designed to solve problems asso
ciated with appl ication interact ion and remote data

access in d istributed, multivendor environments
such as the CASE environments just described. This

support incl udes the remote invocation of appl ica
tions and components without the need for m u l ti

ple logins or the use of terminal emulators. The

encapsu lation features of ACA Serv ices a l low the

use of applications not designed for distributed

environments. ACA Services can also be configured ,

in a way transparent to the appl icat ion, for use on a

local host.

The central focus of a CASE environment is on

how easily functions such as comp il ing. building,

ami d iagra mming can be performed . The functions

ava i lable form the foundation on which the

Vol. 5 No. 2 Spring 1993 Digital Teclmica/ journal

environment is constructed . Therefore, the first

step in the design of a CASE environment is to deter
mine what functions to offer. The applications cur

rently available to support these functions may be

i ntegrated using one of two paradigms: application

oriented or data-oriented.

Application-oriented Paradigm

CASE environments that fol low the appl ication
oriented paradigm focus o n standalone appl ica

tions used to develop software such as ed i tors,

compilers, and version managers. Appl ication

oriented environments normal ly comprise a col

lection of applications that support the necessary

functions. In application-oriented environments,

integration tends to be focused on d irect commun i

cation between two differen t appl ications. In th is

parad igm, the requesting appl ication knows which

class of appl ication can be used to satisfy a par
t icular request. Environments that present an

appl ication-oriented paradigm to t he user require

the user to have knowledge of the appl ications that

can be used to perform specific tasks.

As the level of task complexi ty i ncreases, i t

becomes increasingly i mportant to build environ

ments that ut i l ize a paradigm focused on the data

associated with the task being done and not on the

applications used to perform the task. The rea l i za

t ion of this problem has brought about the exis

tence of data-centered environments.

Data-oriented Paradigm

CASE environments that use a data-oriented para

d igm arc centered around the data associated with

the task the user is performing. To accompl ish

a task in such environments, operations are per

formed o n a data object. Usi ng the object being
addressed, the operation, and preferences suppl ied

by the user, the environment determines which

application wil l be used to perform the requested
operation. Thus, the requesting appl ication requires

no knowledge about which appl ication implements
an operation. This paradigm is extremely useful in
CASE environments because of the d iversity of

objects and range of appl ications ava i lable to per
form certain operations.

The application and the data parad igms can
coexist in a single CASE environment, and in fact,

tightly in tegrated CASE environments exploit the

strengths of each paradigm. A text editor can be

used to i l lustrate th is point. Typical ly, when the

contents of a source file need to be modified, an

D igital Technical journal Vu/. 5 No. 2 Spring l'J<J3

CASE integration Using ACA Services

edi t operation is sent to the object representing the

fi le. However, a debugger may also use the same
editor to display source code . The operation to

position the cursor on a particu lar l ine is sent

d irectly to the text editor application, rather than

to a data object such as the l ine. An environment

with such a spl i t focus avoids the expense and com

plexity of p resen t i ng a complete object -oriented
interface to the environment and results in the

existence of both appi ication- and data-oriented

paradigms.

Regard less of which paradigms and appl ications
a CASE environment uses, the primary focus of the

environment is on the objects and on the opera

tions that are defined on those objects. Therefore,

after determining what functions to offer, the sec

ond step i n designi ng a CASE environment is to

u nderstand how applications, data, and operations

are modeled using an object-oriented approach, i n

particular the one provided by ACA Services.

CASE Integration in
Object-oriented Terms

Describing environments using object-oriented

techn iques can simpl ify the design of an e nviron

ment. Techn iques such as abstraction and poly

morphism can be used to describe the objects

that comprise the environment, the operations that

can be performed on t hose objects, and any rela

t ionships that exist between objects. Further

more, us ing these techniques makes it possible to
describe an environment as a set of classes and ser

vices for each class. ACA Services performs the role
of the method d ispatcher, matching an object and

an operat ion with the function in an application
that can implement that operation. To real ize the

benefits of this approach requires constructing
models for the applications, data, and operations

that will be present in the environment.

Modeling Applications and
Application Relationships

Appl ications that are integrated into an environ

ment can provide various functions or services to

other members of the environment. The number of
services an appl ication provides depends not only

on the capabil i t ies of the appl ication but also on

the way i t is modeled. These services are stand

alone p ieces that can be plugged into a system to

perform specific functions. An application can

define a s ingle operation whose sole function is to
start the appl ication; an application can export the

85

Application Control

entry points of its cal l able interface; or an appl ica

tion can define sets of operations for each type of

object it manipulates. In support of applicat ion

modeling, ACA Services provides the concepts of

appl ication classes, methods, and method servers.

Figure 1 i l lustrates the rela tionships among the var

ious pieces of information used to model an appl i

cation in ACA Services . 1

ln ACA Services, the definition of an application is

d ivided into two p ieces: interface and implementa

tion. The interface defi n it ion is concerned with the

publ icly v isible aspects of the appl ication. These

include class defin i tions for the objects that the

application manipulates, a class definit ion for the

appl ication itself, and defin itions of operations that

the appl ication supports. The operations, which

represent the functions provided by the appl ica

tion, are modeled as messages on the appl ication

class definition. These messages define a consistent

i nterface to various i mplementations of the opera

tions. Placement of the appl ication class definit ion

affects the behaviors this definition inherits. This is

sometimes cal led classification. The classification

1 , N METHOD 1 . N
SERVER

APPLICATION DATA CLASS CLASS

O,N O,N

METHOD

O,N
MESSAGE

O,N

Figure 1 ACA Services Jl!Ietadata Model

86

of each component of an application depends on

whether a component contains a superset or a sub
set of the functions contained in the components

of other applications in the environment.

Once the appl ication's components have been

classified, the integrator must determine how the

appl ication wil l make i ts capabil i t ies ava i l able to

the environment: as an operating system script, as a

cal l able interface, or as an executable image. The
implementation defin i t ion represents the actual

implementation of the application. An appl ication

may comprise a number of executable files and

shared l ibraries. Typical ly, only the executable file
used to start the appl ication is modeled as a method

server. If the functions of the appl ication are pro

vided through a shared l ibrary or i mage, only the

shared l ibrary is modeled as a method server.

The implementation of the functions or services

exported to the environment are modeled as meth

ods. Methods describe the callable interfaces or

operating system scripts that implement a particu

lar operation and are associated with only one

method server. 2 During the method selection pro

cess, the messages defined for the application ami
the objects it manipulates are mapped onto one or

more methods.

Modeling Data and Data Relationships

Data model ing is another significant aspect of creat

ing CASE environments, especially environments
that ut i l ize a data-oriented paradigm. Identifying

the data objects that the application uses is a key

element in the process of i ntegrating that appl ica

t ion. The l ist of data objects should include those

objects for which the appl ication provides a ser

v ice, as wel l as those objects on which the appl ica

tion makes requests. The variety and quantity of
data objects can vary from appl ication to appl ica

tion and depend on an application's capabi l i t ies

and the paradigm uti l i zed. To support the modeling
of data objects, ACA Services uses the concept of
data classes. Note that, rather than provide instance
management for data objects, ACA Services pro

vides a means to represent the data classes used by
an appl ication as metadata.

Because environments that u t i l ize a data

oriented parad igm may contain m any data classes,
ACA Services organizes the data classes into an inheli

tance h ierarchy. This hierarchy a l lows responsi

bi l i t ies, such as operations and attributes, to be
inherited by other data classes. Data classes found
in an ACA Services inheritance hierarchy are related

Vol. 5 No. 2 Spring 1993 Digital Techuical jou rnal

to one another through an "is-kind-of" relationship.
A class that has an " is-kind-of" relationship with
one or more su perclasses must support a l l opera
tions defined on the superclasses from which i t

inherits .\ A su bclass i s not l imited to those opera
tions and attributes defined by a supercl ass but may

have other operations, as wel l as refinements to
inherited operations and attribu tes.

Modeling Operations

As mentioned previously, operations are modeled

as messages in the CASE environment. The name of
the message describes the type of operation. Some

messages are data oriented, i . e . , Edit, Reserve, and
Copy, whereas other messages are appl ication ori

ented, i . e . , ExecuteCom mand and TerminateServer.

Messages provide a consistent abstraction of the

functions provided by appl ications. This abstrac
tion a l lows the deta i ls of how a function is

implemented to be h idden from the requesting

applicat ion. Since AC:A Services supports more than

one implementation for a single message, it also
provides a means to h ide various i mplementations.

The developer should anticipate di fferent imple

mentations of a message within the environment
and be aware that a message may apply to a variety

of classes. The developer must consider how the
operation on an object might be used by various

app l ications and in fu ture enviro nments. ' In this
way, adding new types of objects to an environment
requ ires only minor changes, if any, to appl ications
that are a l ready integrated.

Operation Interactions The semantics of a mes

sage d ictates which particular interaction model is
to be used. AC:A Services can be used to construct
a number of different interaction models: syn

chronous request, asynchronous request, and

request/reply, as shown in F igure 2. The syn

chronous request interaction model, shown in
Figure 2a, is useful when serial operations originate
from a s ingle source. This model blocks the execu
tion of the cl ient appl ication du ring a request.
Control is returned to the cl ient appl ication only
after the server appl ication receives and executes
the request and outputs data, if any.

The asynchronous request interaction model,
shown in F igure 2b, is usefu l in situations where
the cl ient can process other work unti l the server
application completes the request . This model is

especial ly beneficial when the requested operation

takes a considerable amount of time to complete or

if the server is busy with other requests. Execution

Digital Technical journal Vol 5 No. 2 Sj;ring II.J'J.!

CASE In tegration Using ACA Services

of the c l ient application is blocked only for the
amount of time required to del iver the request.
Cl ient execu tion resumes once the request has
been del ivered. Upon completing the processing of
the request, the server application notifies the

c l ient appl ication of the completion and returns
any output data.

The request/reply in teraction model , shown in

Figure 2c, is most appropriate for requests whose

implementat ions cannot perform the operations
requ ired to obtain the necessary output data.

Gateway and message-forward ing appl ications are

examples of applications for which this type of
interaction model is best su ited. In this model, the

message that represents the request cannot have

any output arguments and m ust pass an application

hand le to itsel f. Tbe server application uses t he
appl ication handle to return any output informa
tion to the requester by sending a message that rep

resents the reply. In a request/reply model, a single

reply message should be defined for returning infor

mation, thus reducing the number of messages an
appl ication must support.

Message Argwnents A message argument for
passing the object being manipu lated need not be

defined . ACA Services automatically passes the

object to which the message was sent to the
method. Each method routine can access the object
through a structure containing context informa

tion for the current invocation.

The a rguments of a message should not be

designed around a specific instance of an applica
tion, nor should they imply how an object is physi

cal l y stored. To help meet these design criteria, a l l
references to an object should be passed as instance
hand les. In this way, the application that receives

the instance reference can use it d irect ly for sub

sequent operations on that object. In addit ion,

when defining the message arguments, developers

should consider other appl ications that cou ld be
instances of a particular class and possibly used as
replacements.

However, a l l instances of an appl ication do not
have the same set of capabili ties. To support the var
ious capabi l it ies, the developer may have to define
additional arguments to represent bit masks and

flags. An argument list or an item l ist can be used

to pass information about different data types or
quanti t ies. The message design should not require
implementation-specific information for proper

application operation; th is design impl ies that rea
sonable defaul ts accommodate any u nspecified

87

Application Control

CLI ENT APPLICATION SERVER APPLICATION

ACAS _lnvokeMethod();
Reserve() - foo.c

CMS _ReserveMthd()

(

if (status '= SUCCESS) · - - - - - - - - - - - - - - - - return(SUCCESS);

)

(a) Synchronous Request

CLIENT APPLICATION SERVER APPLICATION

ACAS_InvokeMethod();
Browse() - foo.c

LSE_BrowseMthd()

: (
return() ; :
)
CompletionCallback() � - - - - - - - - - - - - - - - - return(SUCCESS);

{)

}

(b) Asynchronous Request

CLI ENT APPLICATION SERVER APPLICATION

ACAS_InvokeMethod() ;
Connect() - Gateway

MVS_ConnectMthd()

{ :
return () ; return(SUCCESS) ;
l l
ReplyMthd() Reply() - Client

LU62_ConnectAck() { {
return() ; return() ;
} l

(c) Request/Reply

F(f?ur·e 2 Operation Interaction Jl!Jodels

information. In cases where proper operation of an

appl ication requires implementation-specific i nfor

mation, the most suitable design is to use the con

text object as a place to store the default val ues.

With such a design, the appl ication no longer needs

to use hard-coded default val ues and can be cus

tomized fo r the environment.

Integration Frameworks

A number of issues must be resolved in the con

struction of a CASE environment before the first line

of code can be written . Many of these issues center

88

around the modeling of objects in the environment.

As d iscussed in the previous section, abstraction is

used to hide much of the actu a l implementation of

the operations on objects from the requesting

app l ication. However, additional context may be

requ ired fo r further operations. If the application is

using an application-oriented paradigm, most oper

ations are directed to an application class that pro

vides the service. In cases where a data-oriented

paradigm is used , t he application typical ly directs

operations to the data class of w h ich the object is

an instance.

Vol. 5 No . .! Spring 1993 Digital Techuical]ounutl

Besides the application and data objects found in

the environment, the designer must also take into

consideration the other components of the CASE

environment itself Figure 3 shows the m ajor com
ponents of a CASE environment: activities, applica

tions, appl ication and data interfaces, work flow

management, and handle management. Each com
ponent represents a particular aspect of the overal l

environment. The components are introduced i n

this section and described in detail elsewhere i n

the paper, a s ind icated.

Activities provide the basic work structure for a

particu lar task w ithin an environment . Each activ
ity comprises one or more applications and a num
ber of data objects, forming a single composite

object. Appl ications within an activity operate

through the appl ication interfaces. The section

Appl ication Integration describes the p rinciples of

an activity and includes a d iscussion of the sharing

of appl ications within and among other activities.
Appl ication interfaces, i l lustrated in Figure 3 as

arrows connecting the various applications, form

the primitives by which integration is accom

pl ished . Some of the more general concepts for
application interfaces were d iscussed in the sec

tion Modeling Operations; these concepts are
described in deta i l in the section Sty les of

Appl ication Interfacing.

Fina l l y, the section Environment Management

addresses how to manage the flow of work within

the environment. This section describes the
management of instance and application hand les,

the use of storage classes as a means to provide

data transformations, and the management of

events within the environment. To better u nder

stand each of these topics requires the fol low-

CASE Integration Using ACA Services

ing basic information about various aspects of the
environment.

Adding Ne·w Implementations

Updates to the environment may include adding

new application classes, data classes that the new

appl ication supports, method definitions for the

appl ication, and possibly a method server defini

tion. As described earlier in the paper, ACA Services

uses data and appl ication classes to represent the

d ifferent classifications of data and application

objects found in an environment. Storage classes

represent the classifications of storage and how

objects are referenced in the environment. Each
class, i .e . , data, appl ication, and storage, contains a

l ist of messages that represent the operations that
can be performed on the class.

D igital 's CASE environment, COHESION , was

designed to present a data-oriented perspective to

the user. An initial level of integration was achieved

by u ti l izing this same data-oriented approach to

application integration. Implementation of a data
oriented approach required that method maps for

messages on data classes contain an indirect refer
ence to an abstract appl ication class.' Figure 4 i l lus

trates this concept by s howing two different

messages: the Edit message, which uses an indirect

method reference, and the Browse message, which
uses a direct method reference. An ind irect method

reference has two parts separated by the character
' @ ' : first, the name of the message to be sent; and

second, the name of the class on which to send the

message. Although not commonly done, an indirect

method reference a l lows the original message to be

mapped to another message on a d ifferent class,

given that both messages have arguments of the

CASE E N V I RONMENT

ACTIVITY

Figure 3 Components of a CASE Environment

D igital Tee/mica/ journal Vu/. 5 Nu. 2 Spring I'J'J.i 89

Application Control

OBJECT

I DATA_OBJECT I

I FILE

Text_File

�
�

I

..,. ..,. - - .J - -
," METHOD MAP �

_ �.... Vi Browse ., �
- - _-_ _ _ _

.... ... - - - - - -
- - -," M ETHOD MAP

'
'

Editor
�
�

Browser

- - - - - -
,
" ,�ETHOD MAP' �

_ _ _ ,-"" _v�--C�e�r:..,. ..,. _,

- - - - -
- - _ , , �ETHOD MAP' �

' ... Vi Browse ;
.... - --- - - - - , ' , ��d� �-E-d��, "l

r---�----�----�
Context Object

Table User_Preferences
Edit @ Editor = View @ Vi

End Table

Figure 4 Direct and Indirect Method References

same type, direction, and order. Both messages

must also return the same type of object.

On encou ntering an indirect method reference,

ACA Servi ces first looks at tables in t he context

object for an attribute that matches the reference. If

such an attribute is found, ACA Serv ices uses the

attribute value to determine the c lass and message

that shou ld be checked next. Thus, users can pro

vide a mapping to their preferred application fo r the

operation. If no matching attribu te is fo und, ACA

Services uses the message and class specified in the

indirect method reference as the next place to

check.

The approach used in COHESION has many advan

tages over specifying either a d irect reference to a
method or a n indirect reference to a specific appli

cation class. This approach does nor I imit the user's

abil i t y to specify appl ication preferences associ
ated with using direct references to methods, nor

does it burden the i nstal lation of the application

with determining all the data classes that will need

to be updated (as required with indirect references

to a specific appl ication class). In addit ion, the

approach allows the application developer to do the

least amount of work and stil l prov ide the maximum

level of support for user preferences in applicatio ns.

Using ACA Servi ces, the appl ica tio n developer

must create an appl ication class defin it ion for each

90

CASE app l ication to be added . Consequently, the

class h ierarchy contains both abstract and i nstance

classes. The appl ication class is required to contain

all the messages defined on irs superclass, plus any

add itional messages that the appl ication supports.

The method map of each message o n an appl ication

class should contain a d i rect reference to the

method that im plements the operat ion. Although

better than the other a l ternatives, the COHESION

approach has no default implementation unless one

is explicit ly specified in a context object. To over

come this problem, an entry for each message

defined on the a bstract appl ication class m ust be

created in one of the context objects. The val ues

for these entries point to the corresponding mes

sage on the class of appl ication used as the default

i mplementation.

Common Classes

Common classes for a CASE environment provide

CASE application developers wit h a description

abo u t how a n application fits i n to the environ

ment, the behav iors the appl ication must support,

and the messages that resu lt in those behaviors.

The notion of pl ug-ancl-play in the environment

is achievecl t hrough the use of com mon classes.

An i mplementation that ad heres to the descrip

tion of a part icu lar c lass of appl ications can be

v'r!l. 5 No . .2 .�)!ring I'J9.! Digital Technical journal

easily switched with a nother i mplementation that

adheres to the same app l ication class semantics.

Programs l ike COHESION are working toward

a set of common classes for CASE environments.

The set currently defined conta ins classes for many

types of data and applicatio ns found in CASE envi

ronments focused on the cod i ng and testing phases

of the software development process. A grap hical

v iew of the data portion of the hierarchy is shown

in Figure 5. The h ierarchy is partial ly based on the

h ierarchy fo und in t\TIS, a standard fo r tool integra

t ion, and ut i I izes the strength of the ATIS data

model.r' (Shaded boxes indicate the classes that are

specific to ATIS.) Encompassing the ATIS model, the

h ierarchy presents a u n iform data model for the

CASE Integration U�ing ACA Services

integration of data throughout t he CASE environ

ment. The set of classes, a lthough not exhaust ive,

serves as a basis on which a CASE enviro nment can

be built . Extensions of the hierarchy wi l l occur as

new classes of appl ications and their associated

data objects are i ntegrated i n to the environment by

independent software vendors, cuswmers, and

other CASE vendors.

Most data classes are subclasses of the data class

SOURCE_FILE, because the i ni t ia l data class i mple

mentation was targeted at a CASE environment

consisting of ed itors, compilers, bu i lders, and ana

lyzers. Additional data c lasses fo r both file and

nonfile objects w i l l be added when appl ications

that provide and man ipul ate these objects are

DATA OBJECT

ELEMENT

NAMED
ELEMENT

FILE CONTAINER

DIRECTORY

F ILE
D I RECTORY

Note: Shaded boxes indicate ATtS-specific classes.

EXECUTABLE
FILE

Figure .5 Hierarchy of CASE Common Data Classes

Digital Technical jourual Vol. 5 No. 2 .vJring IY'J:i 9 1

Application Control

integrated i n tO the environment. A number of data

cl asses represent composite objects such as tests

<md activities. These data c lasses are used to hide

how the object is physical ly stored in the enviro n

ment. Classes that represent composite objects

have attributes with va lues that are :�ctualty other

objects. For example, the test data c lass typica l l y

has attributes that represent the resu l t of a rest run,

a n operating system script or program used to per

form the test, and a benchmark aga inst which a test

run is compared . Each of these attributes may have

as a value a reference to the file object that contains

the actua l data .

The portion of the h ierarchy that is used to spec

ify appl ication classes contains only abstract appl i

cation c l asses, as shown in Figure 6. These c l asses

provide structure, bu t more important, they define

the operations that are i n herited by any appl ica tion

that is a n instance of a class. Abstract cl asses are

provided for a n umber of the appl ications found in

CASE environments that deal with the coding and

resting fu nctions. The h ierarchy does not conta i n

a n y c lasses t h a t represent particu lar instances o f an

appl icarion. Suc h appl ication c lasses exist only

when app l i cations are instal led in the environment.

Consistent Integration Interface

Many CASE vendors are b u i lding produ cts fo r a

n umber of d ifferent environments, incl uding elec

tronic p ubl ish i ng, office automation, compu ter

aided design, and compu ter-aided manufa�tu ring,

in addition to CASE. Therefore , vendors m ust decide

how to integrate these applications in to the various

PERFORMANCE
ANALYZER

environments. Unti l now, most i ntegration was

accompl ished by l i nking one appl ication with

another, which res u l ted in tigh t ly coupled appl ica

t ions. However, such appl ications tend to be u nable

to operate independent ly, without the other mem

ber. Also, each coupled member tends to have

its own appl icatio n programming interface (APT).

I n tegrati o n perh>rmed in this m anner resu lts in an

appl ic:�tion that must mainta in code to surport

mu ltiple APis, if the appl ication is to work in a num

ber of environments. Such support can increase the

maintenance cost and t he time and effort required

to integrate witiJ other implementations of appl ica

r ions ami environments. Other by-products of this

approach are an i ncreased image size and a need to
rerelease software when a dependent appl ication

changes. The degree to which rerelease occurs

varies with the platform and operat ing system.

ACA Services can be used to min i mize the num

ber of in terfaces t hat an appl ication must mainta in

withou t removing fu nct ional ity; a common API

prov ides the interface to a l l potential hmctional ity.

The ACA Services API, along with a set of com

mon c lasses, a l lows the same level of i nteraction
between appl ications that can be accompl ished

through a pr ivate API, without the negat ive s iue

effects previously descri bed . Through the use of

comm on classes, an appl. ication can in tegrate with

multiple i mplementations of another app l ication

without requiring a se parate effort for each . On

platforms where uynamic load i ng of l i braries or

shareable images are supported, applications can

use ACA Services to locate the appropriate l i brary,

CONFIGU RATION
MANAGER

OBJECT FILE CONVERTER

.___
M

_
A

_
C

_
Ro

_ __.l l MESSAGE I ._I __ T_P_u _ ___.l l.__ __
u
_

I
_
L

_ ___,

figure G Hiemrcb) ' of CASE Common Applicotion Classes

92 V"l. 5 No . .! .'.)Hing 1')9.) Digital Technicaljourua/

fi nd the proper entry point , a nd transfer control to

the appropriate rout i ne. ACA Serv ices also provides
a transparen t mecha n ism fo r encapsu lating appl ica

t ions that have no cal lable i nterfaces. Use of this
mechan ism extends the n u mber of appl ications

that can be i ntegrated and rem oves the need to

develop operat ing system-specific code to start

app l ications.

Styles of Application Interfacing
Creat i ng an i n terface to a n appl ication that is to be

in tegrateu is d i fferent from i ntegrating an appl ica

tion into a n e nv i ronment. Appl icati o n i n terfacing

deals with the publ ic interface or inte rfaces that

the appl ication p rov ides to another application. In

turn, these interfaces prov ide the pr imit ives that

can be used i n the i ntegrat ion of appl i cations.
Appl ication i nterfaces can be created i n various

ways, with differ ing levels of effort. Software devel

opers can design n ew appl ications to uti l ize a l l the

capabiJ i ties of ACA Services. Existing appl ications

can a lso take advantage of the fu l l capabi l i ty of

ACA Services, i f the source code to the app l ication
is avai l able a nd if the appl ication can be easi l y
adapted t o u s e an event -dr iven model . However,

even if the source code to an app l ication is not

avai l able . appl ications can sti l l be i n tegrated into

the environment using ACA Services. If the appl ica
tion has a cal lable i nterface, a server can be written

that receives messages and calls the appropr iate API

routines. If the appl ication does not have a cal . lable

interface, the a p r li cati on can be i ntegrated by

encapsu lat ion through the use of an operating sys
tem script. The remainder of this section desc ribes

how to use each of these techn iques to create an

i nterface through which the appl ication can be

i ntegrated into a CASE environment.

Application Modifications

An existing appl icat ion can easil y be adapted to use
ACA Services, if the source code to the appl ication
is ava i lable. With min imal cha nges, a n appl ication

that u t i l i zes an eve nt-driven design , l ike that used
by most window-based appl ications, can operate as
an appl ication server. 'T'he actual mod ificat ions

required to provide ACA Serv ices support differ

across appl ications, but for most window-based
app l i cations the cha nges are s imi lar. As an i l lustra
t ion of this style of i ntegrat ion, consider an ed itor.

Most editors are im plemented as event-driven
appl ications, wh ich a l lows easy in tegrat ion

D igital Tecbnical jounwl Vol. 'i No. 2 .\jJring /')')�

CASE Integration Usi11g AC4 Seru ices

because the structure of the code requires no major
changes. To register the current executing instance

of the appl icat ion with ACA Services, a cal l to the
ACAS_RegisterServer rout ine must be added to the
appl i cat ion's in it ia l ization rou tine. During the pro

cess of run-time registration , ACA Services registers

various i nformation about the appl icatio n , inc lud

ing the identifier of the process in wh ich the appl i

cation is execu t i ng , the owner of the process, and
the c lass- and i nstance-un ique iuentifiers for the

app l ication . As part of the registrat ion , a n appl ica
t ion can specify an abstract n a me by which it can
be located and the rout ines to be cal led when an

ACA Services event arrives, e .g . , when the server
is instructed to shut down or when a session ends.

Once registered with ACA Services, the appl ica

tion must enter its event d ispatching loop. Because
m any appli cations have existing even t d ispatcb i ng

mechanisms, ACA Services has been designed t(H·
easy i ntegration with most mecha n isms. ACA

Services provides this support by a ll owing the
appl ication to define a rout i ne cal led the event

notifier, which is called at s ignal level each time an
ACA Services event occurs. The event notifier rou

tine places an event on the appl ications work

queue for the ACA Services event. Upon encou n ter

ing the event , the app l ication 's event d ispatcher
rou t i ne ca l l s the ACAS_Dispatch routine LO a l low

ACA Services to d ispatch the appropriate method or
management routine for the event. A description of

how ACA Serv ices dispatches operati o n requests

fol lows.

Application Servers

When the application to be integrated does not
have a user interface but provides a cal. lable inter

face, integration is best accomp lished by creating

an appli cation server. Considered a fo rm of encap

sulation , an appl ication se rver provides a consis
tent program m i ng i n terface to the ap pl ication . An
appl ication server provides jacket routines that use
the appl icat ion's ca l l able i nterface, hiding the
actu a l details of t h is i n terface. This tech n ique is a lso
used to create appl ications that have a clean separa
tion of presentation and functions.

Appl ications that i mplement persistent data

stores, such as databases, code managers, a nd

repositories, are prime candidates for this sty le of

in tegrat ion. By using an appl ication server to

access persistent data stores, a requesting appl i
cation need not know how the data store is

93

Application Control

implemented and which implementation is to be
used. This technique promotes the reuse of existing
functions contained in the environment regard less
of the actual implementation of the function.

Digital's Code Management System (DEC/CMS) and
COD/Repository software are examples of appl ica
tions that have been in tegrated using the appl i
cation server technique. Figure 7 i l l ustrates the
typical structure of the various components
invo l.ved in this style of i ntegratio n.

As shown i n Figure 7, the integration process
involves the fol lowing steps. (1) An invoke from the
cl ient application of the message " H.escrve" on the
object " foo.c" goes through the resolution code and
(2) out the transport to the server application. This
may resu l t i n starting the server appl ication, if no
server was available to service the request. ()) The
server appl ication's main routine cal. l s the event
d ispatcher and waits for work to arrive, when the

server is started. (4) When the "Reserve" message
arrives on the transport, the transport notifies the
server appl ication , (5) causing the event dispatcher
to dispatch the " Reserve" message by cal l ing the
method d ispatcher routine. (6) The methou u is
patcher routine calls the appropriate method inter
face rou tine. (7) The method interface routine does

any work requi red to cal l the appropriate cal lable

interface routine. (8) When the cal lable interface
routine returns control to the method in terface
rou tine, the rou t ine can perform any work neces
sary before (9) returning control to the method

d ispatcher rout ine . (10) The method d ispatcher
rou tine then puts any arguments to be returned in

APPLICATION PROCESS

CLIENT APPLICATION

DATA TYPE/LIST CALLS ACAS_InvokeMethod(Reserve, foo c)

� .. (1)
RESOLUTION CODE

DATA TYPE/LIST CODE t (2)
TRANSPORT 1-+

the proper format and sends this information to the
transpo rt, which actua l ly sends the information

back to the cJ ient application.
Using the DEC/CMS application server as an exam

ple, the software developer must create a main rou
t ine to (I) pert<>rm any setup requ ired to use the
cal lable interface and (2) register the existence of
the server with ACA Services. Registration includes
specifying the method dispatcher routine, which is
generated by ACA Services, so that the appropriate
method routine wi l l be d ispatched for the message
received.

A method routine exists for each operation that

the server is capable of performing. The set of
method routines is analogous to the operating sys
tem script for compilation used to explain applica

tion encapsu lation later i n this section. Because the
DEC/CMS application server is not an operating sys
tem script, message arguments are passed into the
method rou tine d i rectly. As mentioned earlier in

t he section CASE Integrat ion in Object-oriented
Terms, the object on which the current operation is
to be performed is available to the method rou tine

through the use of the invocation context struc
ture. Information about the object, such as its c lass,
name, and generation, can be obtained by cal l ing

the ACAS_ParselnstanceHaml le routine. The class
of the object can tben be used to determine if the

object is an element u nder version control, a col lec
tion, or a group.

The name of the object and its generation are
contained in the reference data field of the instance
hand le that represents the object. Because each

SERVER PROCESS

APPLICATION SERVER

MAIN ROUTING

J(3) IN ITIALIZATION CODE

.. EVENT DISPATCHER
+ (4)

-... (5) TRANSPORT I t_(10)
I

1(6) METHOD D ISPATC H E R t (9)
'-- � METHOD INTERFACE

I
+ l (7) I (Bl

t
CALLABLE INTERFACE

I

Figure 7 Block Diagram of a Code Management ,\j>stenz Application Server

94 Vol. 5 No . .2 .\j!ri11g /'}';).) D igital Technical journal

different code management system has its own
representation of generation, it was necessary to
create a canonical format to represent all imple
mentations. Therefore, the method must convert
the canonical generation representation to a format
that is native to the implementation, Le . , DEC/CMS

specific In addition, any method that returns a ref
erence to a versioned object must convert the
native generation representation to its canonical
format. Table 1 shows how an object reference can
be mapped between its canonical and D EC/CMS

specific tormats.
Once the necessary information about the object

has been retrieved and converted to a format native
to the implementation, the method can cal l to the
appropriate cal lable interface routine, possibly
based on the object's data class. Once the cal l com
pletes, the method must convert any objects to be
returned into a canonical format, at which point
the method can return the status of the operation
and output arguments.

Application Encapsulation

Encapsulation . the simplest integration technique,
is appropriate for appl ications that do not have a
callable interface or in cases where no source code
is available. Compilers are an ideal candidate for
this style of in tegration, because they perform syn
chronous operations. Encapsu lation of compilers
provides a consistent programming interface to any
compiler that is integrated into the environment,
regardless of the qualifiers used to specify particu
lar compi lation options. This technique can also be
used to provide a generic compile command that is
platform i ndependent. Encapsulation of a compiler
is best accomplished through the use of an operat
ing system script . Figure 8 i l lustrates an example of
an encapsulated compiler.

Table 1 Converting Generation
Represe ntations

Canonical
Format

UTIL.C(1 0:BL7:3)

DISPATCH.C(1)

DUMP.B32(1 :A:8)

GRAPH.BAS

Native Representation
Object Object
Name Generation

UTIL.C

DISPATCH.C

DUMP. B32

G RAPH. BAS

1 083

1 A8

1 +

Digital Tech nical journal Vol. 5 No. 2 Sprint; 1993

CASE Integration Using ACA Services

COMPILE FOO.C - COMPIL E()- FOO.C ACAS SCRIPT
/DEBUG -

SERVER
/NOOPT

$ @ SYS$LIBRARY COMPILE. COM %I NSTANCE()

APPUCONT GET ARG U M E NT DEB UGNALUE = DBG
IF DBG = "TR UE"
THEN

DBG_OUAL = "/DEBUG"
E N D I F

C C 'P1 'DBG_QUAL

Figure 8 Example of em Encapsulated Cornpiler

The purpose of an operating system script for
compi lation is to convert the generic compi lation
qual ifiers, which are passed as message arguments,
into the compiler-specific options. The /DEBUG

and /NOOPT qualifiers shown in Figure 8 are exam
ples of generic compilation qualifiers. Many operat
ing system scripting languages l imit the number of
parameters that can be passed on the command
l ine. The compilation scripts avoid these l imita
tions by passing the name of the file to be com
piled as the only command l ine parameter, as
shown in the command @SYS$ UBRARY:COMPILE.COM

%INSTANCE() in F igure 8. ACA convenience com
mands, such as APPL/CONT GET ARGUMENT, are used
to retrieve and set the values of the message argu
ments in the operating system script. When al l the
switch values are gathered, the operating system
script converts the generic values into speciJic
qual ifiers. Final ly, the actual command l ine is con
structed and executed. This same technique can
also be used to encapsulate l inkers and any other
types of applications where no source code or
callable i nterface is available. When appl ications
provide a cal lable interface, even tighter integration
can be achieved by creating an application server.

Application Integration

I ntegration of appl ications goes beyond the inter
faces that appl ications present to the environment;
it concerns how appl ications interact with one
another. Integration also takes into accou nt the
pol icies used in an environment to al low a col lec
tion of appli cations to be grouped into a s ingle
composite object. This section discusses concepts
such as an activ ity, locating an application within
a n activity, context sharing, and the sharing of
appl ications across multiple activities.

95

Application Control

Activity Participation

Since more than one activity may be active at

any given time, an activity must be able to locate

the other appl ications participat ing in the activ

ity. Data-oriented environments provide a means

to loosely couple the various data and applica

t ion objects into a single composite objec t. The

COHESION integrated environment refers to this

composite object as a n activi ty. The i mplementa

t ion of an activity differs depending upon the envi

ronment: ATIS uses a persisten t process; file

system-based environments general ly use a d i rec

tory h ierarchy; and environments bui l t on a p rivate

data store can use a data fi le. In the COHESION envi

ronment, an activity is represented as an ACA

Services context object that contains att ribu tes that

reference a d irectory hierarchy. The context object

is used to set up the execution environmen t in

wh ich a set of applications w i l l operate and to

locate other applications that are execu ting within

the activ ity.

Locating Activity Applications

The abil ity to locate an appl ica tion that is executing

in an activity al lows for reuse of the appl ication by

other applications executing in that same activi ty.

Such locating provides for better util ization of

applicat ions and reduces the amount of context

that must be propagated from one a ppl ication to

another. To locate an appl ication within an activity,

an application must have registered its presence in

the activity. When registering with ACA Services,

the a pp l ication must specify the activity name as

the value of the attribute ACAS_SERVER_REGISTRY.

The appl ication must a l so register i tsel f with the

event manager to a llow central ized management of

the activity and to partic ipate in the flow of work

within the activity.

CASE applicat ions determine if they are execut

ing within an activity by checking t(>r the existence

of the environment variable ACTI VITY _NANIE. If this

environment variable exists, its val ue is the activity

ident ifier. To a l low a n activ ity to extend beyond a

si ngle host and to support d i fferent activities with

the same name, the activity is identified by a unique

identi fier.

Sharing within Activities

Applications execu t i ng within an activity operate

in a common context . ACA Services provides a set

of mechan isms that can be used to provide

this common context. The env i ronment variable

ACTMTY NM<I E is defined each t ime a method

server is started in the COHESION environ ment. The

method server definit ion specifies as the value of

the start-up environment attribute, the names of

the context tables and attr ibutes t ha t are to be

defined as environment variables upon start-up.

Another way of p roviding a common context

across an activi ty is to propagate context object

tables and attributes as i mplicit arguments to

method servers. Specifying this information as

i mplicit arguments instru cts ACA Services to propa

gate these attributes to the context object of the

method server serv icing the request.

The context object can a lso be used d irectly to

create a common context across an activity, i . e . , by

holding information that needs to be shared. This

information can include references to d irectories,

preferences of applications, and defa u l t values.

Sharing between Activities

Reusing app.l ications that are active within an activ

ity reduces the overa l l system resources requ ired to
perform the activity. However, a problem occurs

when two or more activities are active at the same

t i me and require the same application . With t he

addit ion of windowed i nterfaces and the need to

ut i l ize other services, application sizes have greatly

i ncrease d . Consequently, i t is often imprac tica l to

expect a separate instance of an application to be

associated with each activi ty that is active.

In order for an appl ication to be shared between

m u l tiple activit ies, the application needs a means

by which to determine if a request is part of an

ongo i ng dialog with a nother appl ication or is the

begi nning of a new d ialog. These d i alogs, cal led

" sessions," represent a conversation between a pair

of appl ications. Each time a cl ient appl ication

makes a request to a new app lication server, a ses

sion is establ ished and an identifier is associated

with the sessi on. ACA Services passes the session

identifier to the server appl ication.

The management of sessions can be accom

plished by using the session 1D as a lookup key into

a J ist of stru ctures that represent the acti ve ses

si ons. When the server appl ication locates the

structme associated w ith the sessi o n identifier, the

appl ication can establ ish the appropriate context

for that sessi on. In the example of DEC/CMS applica

tion server, the stru cru re would contain the hand le

to the l ibrary associated with the session .

ACA Services also notifies a n application server

when a session is to be terminated between a client

Vol. 5 No. 2 ,\j>riiiJ< 1993 Digital Tech11 ical]ounwl

ami a server appl ication. When notified, the appl i

cation server determines the appropriate course of
action. Using the CMS example, the server releases

any cached information it has kept about the ses
sion, closes the specific CMS l ibrary, and then frees
the l ibrary data block.

Environment Management

After defining appl ication imerfaces and integrat

ing appl ications into an activ ity, CASE environmem
developers must focus on the management of the

environment as a whole. This includes the manage

ment of references to applications and data, the

transformation of object references into p latform
specific formats, and the flow of work within the

env ironment.

Handle Management

In the CASE environment , objects arc the targets of

all operations. Sending a message to an object
requires understanding how to create and manage
references to the object . S ince ACA Services does
not manage instances of objects, i t uses references
to instances of objects. These references take the

form of instance and application hand les, which
reference data and application objects, respec

tively. Proper management of these hand les leads to

more efficient use of application objects, thus

reducing the amount of network resources and
memory consumed by the appl ication. Appropriate

hand Je management can also enhance performance

and guarantee predictable behavior.

Instance Handles

The creation of an object reference is performed by
cal l ing the ACAS_CreatelnstanceHandle routine.

ACA Services (l) creates an i nstance hand l e from
the information passed as arguments to the routine,

(2) allocates memory to the handle and manages
this memory, and (3) sends a message to a storage
class, if one was specified .

To avoid creating numerous copies o f a n instance
hand le, each with its own memory, a cache
of objects should be used . This is especial ly
true in CASE environments that use the data
oriented paradigm. Each object structure con
tains poimers to both the previous and the next

object strucmre in the queue. The structure also

contains values for the location and reference
data fiel.cls that were passed as arguments to the
ACAS_CreatelnstanceHand le rou tine and, thus,

Digital Techuical jou rnal Vol. 5 No. 2 Spring t<J<J.i

CASE In tegration Using ACA Services

a l lows for the u n ique identification of an object in
the cache across mu ltiple hosts. In add it ion to the

location and reference data, the structure contains

a pointer to the instance handle returned from the
cal l to the ACAS_CreatelnstanceHandle routine.
Reuse of the instance hand le saves the t ime
required to create the hand le, including any over

head associated with using storage classes. Reuse
also reduces the total amount of memory required.
However, instance hand les are not the only hand les

that require management; application handles need

to be managed as wel l .

Application Handles

Appl ication hand les are references to appli

cation objects. Each appl ication hand le can
represent one or more method servers. A method

server can generate a hand le by cal l ing the

ACAS_CreateAppl icationHand le rou tine, or the

ACAS_InvokeMethod routine can return an applica
t ion handle as an output argument. As with

instance hand les, application handles can be
passed as arguments to a message. Management of
appl ication handles is s imi lar to the management

of instance hand les. Each entry in the cache of
application hand les contains the location of the

appl ication and the name of the class of appl i

cation . The entry a lso contai ns a pointer to the

application handle and a count of the number of
outstanding references to the hand le. Freeing an
application handle resu lts in the termination of a l l

sessions between the c l ient and any method

servers referenced by the hand le; it also releases a l l
memory associated with the hand le.

Each instance handle should be associated with a

correspond ing appl ication hand le. This association

al lows the application hand le to be reused when
sending addi t ional requests to the appl ication con
cerning the data object. An appl ication handle asso

cia ted with a cache entry can be used to make the
request. Fai l ure to find the application in the cache
could ind icate that the appropriate invocation flag
should be used to obtain an application when cal l
i ng the ACAS_Invoke.Method routine.

As described , proper hand le management can

resu l t in better performance, bet ter resource u t i
l ization, and predictable behavior within the envi

ronment. However, hand le management does not

deal with how to create an object reference that,
when presented to an application on a remote host,
is in a format native to that p latform. For this capa

bility, we must turn to storage classes.

97

Application Control

Data Transformations Using
Storage Classes

Distributed CASE environments, whether homoge
neous or heterogeneous, must concern themselves
with the representation of object references that
are shared among different appl ications. Fi le speci
fications exemplify this p roblem. Given mu ltiple
hosts, it is u n l i kely that two hosts have the same
path to a specified file, even if both hosts arc of
the same platform type. Consider the scenario i n

which Appl ication A sends the Edit message to the
file object $PRO.J4 : [PRO.JECT SRC] SORTC. result ing
i n a request of Application B to edit the contents of
the file. The problem becomes com pi icated if

Appl icat ion B is executing o n a different platform
type than Application A.

lo solve the problem, the environment can ut i
l ize the functionality provided by ACA Serv ices stor

age classes. Storage classes prov ide a mechanism
for translating an object's reference data from one
file system representation to another. A solution
to the scenario described i nvolves implementing a

set of methods that would be executed when the
object reference uses a storage class.

The SC_COHESION storage class is a CASE-specific
storage class, which is a refinement of the SC_FILE

storage class provided by ACA Services. As a refi ne
ment, SC_COHESION in11erits Jll the messages defined

o n its parent storage class, inc luding the messages
Setlnstance and Getlnstance. The methods for these
two messages provide an implementation for map
ping file system specifications from platform
specific formats to platform-independent formats
and back again. The storage class methods do this by
uti l iz ing device and directory information, cal led
directory mappings, found in the context object .

The directory mappings stored in the context
object provide a means to associate a physically
shared directory path with a network path name.
The network path name is a platform-independent
name that, when presented to a remote platform,
can be mapped i nto a format native to the platform
receiving the request. A network path name Jnd its
mapping are stored as an attribute-value pair in the

PATHNAM E_REGISTRY table of a context object.
The directory mapping function:� l i ty a l lows ref

erences to file objects to be passed between appli
cations on d ifferent hosts in a way independent of
the platform. This same scheme can a lso be used to
convert object references in object identifiers, such
as ATIS element I Ds for use with the CDD/Repository

software. In the implementation for the file system,

9H

the method associated with the Setlnstancc mes
sage must determine the data class of the object ret�
erence, as wel l as transform the reference data into
i ts network format. The determination can be made
in a number of ways, the most common of which
is to base the c lass on the extension of the file.
AJtbough not the most accurate method of deter
min ing the class, this appro<Kh does meet the needs
of many files.

Work Flow Management

ACA Services manages the various i nstances of exe
cuting appl ications but does not u nderstand the
concept of an act ivity. Therefore, managing the
appl ications with in the activity requires the use of

an appl ication that u nderstands this concept. The
event manager, which acts as a central registry of
active applications and their associated activities,

can provide a simpk for m of work flow manage
ment with in the environment. However, the event
manager i s used only i n a l imited capacity in the
COHES ION in tegrated environment. In COl l ESION,

the event manager is not ified each time an appl ica
tion is started or stopped in an activity. The appl ica
tion provides an appl ication hand le to itself, which
is used by the event manager to notify the appl ica
tion of events of interest. The usc of the event man
ager removes the need for an appl ication to forward
certain messages, as a resu l t of an event in the envi

ro nment, to all appl ications with which it has been
communicating. Removing the need to forward
messages reduces both the chances of loops form
ing in a set of appl ications ancl any communication
dead locks between appl ications.

Events and 11'iggers

On registration, an appl ication can express interest
in being not ified about particu lar events. Events
are categorized into two classes: system events
and appl ication events . System events affect the
overa l l operation of the environment. These events
include shutdown and changes in activities. Al l
appl ications i n the C:OHESJO:\i environment are

notified of the system events for activity shutdown ,
icon ificatio n , and deiconificat ion . Appl ication
events occur when the state of an object in the envi
ronment changes. f i le modification or completion
of a bui ld step are typical examples of app l ication
events . Other appl ications in an activity can use
these events for synchron ization or as notifications
that cause a change in behavior. Such notifications
have trad itional ly been cal led triggers.

Vol. 5 No. 2 .\/Jri11g I'J'.J.i Dip,ita/ Teclmical journal

For example, in a simple build system such as the
make ut i l ity, events can create a work flow that
would automatically compile and l ink an appl ica
tion when one module changes. If the build process
completes successful ly, the work flow automati
cal ly starts the debugger to debug the newly bui l t
executable fi le . If the build fa i ls, the work flow
loads the fau l ty module into a program editor and
positions the cursor to the l ine where the error
occurred .

Summary

ACA Services can be used to resolve many problems
encountered in a d istributed, mult ivendor environ

ment. The object -oriented approach provided by
ACA Services can aid in the construction of a CASE

environment that promotes the plug-and-play con
cept across a nu mber of different platforms and
network transports. ACA Services provides a means
of developing client-server appl ications and of
abstracting the network dependencies away from
the developer. This feature, together with the use of
storage classes and data marshal ing, can help to
exchange information in a heterogeneous environ
ment. At the same time, ACA Services can provide a
consistent programming interface to al l compo
nents in the system. The dynamic nature of ACA

Services al lows new components to be added to the
environment without the need to rebu ild the entire
environment. The flexibil ity of ACA Services al lows
its use to construct a CASE environment regardless
of the integration paradigm used and while sup

porting a number of interaction models. ACA

Digital Techuical jourual Vol. 5 No. 2 .Sjn·ing !')'))

CASE Integration Using ACA Services

Services provides the infrastructure necessary to
i ntegrate the large number of existing appl icat ions
into distributed, heterogeneous environments.

Acknowledgments

The author wishes to thank Jackie Kasputy, Chip
Nylander, and Gayn Winters for their inval uable
insights and contributions on d istributed, mul t i

vendor CASE environments .

References

1 . E. You rdon, Modern Structured Analysis (Engle
wood Cliffs, NJ : Yourclon Press, 1989).

2. DEC ACA Services Systern Integrator and
Programmer's Guide (Maynard , MA: Digital
Equ ipment Corporation, Order No. AA-PQKMA

TE, 1992).

3. G. Booch, Object Oriented Design with Applica
tions (Redwood C i ty, CA: Benjamin/Cummings
Publ ishing Company, 1991)

4. R. Wirfs-Brock, B. Wil kerson, and L. Wiener,
Designing Object-Oriented Software (Engle
wood Cliffs, N.J : Prentice-Hal l , Inc. , 1990).

5. DEC ACA Services Reference klanual (Maynard ,
MA: Digital Equipment Corporation, Order No.
AA-PQKLA-TE, 1992).

6.). Liu, "Future Direction for Evolution of I RDS

Services Interface," X3H4/92-161 , Proposed spec
ification submitted to ANSI X3H4 and ISO IRDS,

1992.

99

David Ascher I

DEC @aGlance-Integration of
Desktop Tools and Manufacturing
Process Iriformation Systems

The DEC @a Glance architecture supports the integration of manufacturing process

information systems with the analysis, scheduling, design, and management tools

that are used to impmve and manage production. DEC @aG!ance software com

prises a set of run-time libraries, an application development tool kit, and exten

sions to popular spreadsheet applications, all implemented with Digital's

object-oriented Application Control Architecture (ACA) Services. The tool kit helps

developers produce DEC @aGlance client and server applications that will interop

erate with other independent�y developed DEC @aGlance applications. Spreadsheet

extensions (add-ins) to Lotus 1-2-3 for Windows and to Microsoft Excel for Windows

allow users to access real-time and historical data from DEC @aGlance servers. With

DEC @aGlance software, control engineers and other manufacturing process profes

sionals can use familiar desktop tools on a variety of platforms and have simple,

interactive, and transparent access to current and past process data in their plants.

At a chemical plant that has been producing nylon

using the same process for over 35 years, the lead

contro l engineer told an interviewer that what he
l ikes about h is job is that "it is total ly different every
day." 1 To an outside observer, the operation of a
process plant, such as a refinery or pa per p l an t ,

appears t o b e a n unchanging flow o f m aterials

into a tightly controlled and repet it ive process
that produces a continuous flow of u nvarying

product-24 hours a day, 365 days a year. In real ity,

the operation of these plants is far more complex
and chal lenging, involvi ng constant adjustment to
changing conditions, aging equipment, and varia

t ions in raw materials, as wel l as constant monitor
ing for equ ipment malfunctions.

The operation of a large process plant involves
the functioning of nu merous valves, switches,

pu mps, other actuators, and sensors measuring and

control l ing the levels, pressures, temperatures, and

flows of various materials through a complex series
of pipes, tu bes, tanks, a ncl vessels. Tn add i tion to

detect ing and managing fai lures in these compo
nents, a large proportion of the personnel in the
plant is involved in process and product improve

ment. The personal computer or workstation

and an array of sophisticated desktop tool s a l low

1 00

data to be analyzed, visual ized, manipu lated, and
explored i n ways that support creative problem

solv i ng. Getting timely information about the pro
cess i n to the appropriate problem-solving tools is,
however, d ifficu lt . This paper begins with some

background about manufacturing process infor
mation systems and the need for access to system

data. The paper then describes the development of
DEC @aGlance software and the choi ce and use of

Appl ication Control Architecture (ACA) Services to

solve the problem of integrating independently
developed applications i n the manufactu ring
space . 2

Background
I n large manufacturing faci l it ies, the production
process is contro l led through the use of advanced

automation systems. These systems may track thou

sands of temperatures, flows, pressures, and levels
and can drive hundreds of pumps, valves, and other
actuators. To implement control strategies, such

systems may compute large numbers of complex ,
dynamic control a lgorithms. Usu a l ly, additional sys
tems measure various physical properties of the

product, such as color, weight, viscosi ty. thick ness,

and moisture content. Supervisory control systems

14>1. 5 No. 2 Spring 1')')3 Digital Technical]ounwl

DEC @aGlance-Integration ofDesktop Tools and Manufacturing Process Information Systems

often coordinate parts of a complex process, as

wel l as implement h igher-level control and produc

tion strategies and keep h istorical records of key

process variables.
The control of a large plant is usual ly imple

mented through strategies that al low the control

problem to be d ivided into smal ler parts, as i l lus

trated in Figure 1 . Each piece of the system is

responsible for the control of a subsystem (e .g . ,

steam generation and d istribution, or cool ing flu

ids), a part of the process (e .g. , premix ing, material

storage, or reaction), or an area of the plant (e .g . ,

packaging l ine, product stream, or finished goods

management). Within each subsystem, there is typi

cally a h ierarchy of control. The lowest- level com

ponents control activities that require responses

within less than a second to as much as one minute

(direct control). The next level of systems control

activities that require responses within Jess than

a few m inutes (d istributed control). Above this
level of response are systems that control activities

that may not change for long periods or that i mple

ment control algorithms that involve measurements

from more than one lower-level system (super

visory control). At the plant level, additional

PROCESS
HISTORIAN

HISTORICAL �
PROCESS
DATABASE

REAL·T I M E
PROCESS
DATABASE

DISTRIBUTED
CONTROL
SYSTEM

ADVANCED
CONTROL

LOOP
CONTROLLER

LOOP
CONTROLLER

PUMP GAUGE VALVE

control systems may exist to i mplement control

a lgorithms that reflect changes in the markets for

products, market opportunities, and fluctuations in

raw material avai labi l i ty and composition, a long

with the information about the process that is sup

pl ied by the lower- level systems (h igh-level con

trol). Scattered among these levels may be various
additional systems that schedule p reventive main

tenance, identify equipment fai lures, and advise on

process improvements-al l based on i nformation

about process from the other systems in the plant.
D istributed control systems include an operator

console that consists of mult icolor d isplays, push
buttons, warning l ights and buzzers, a touch screen
or trackbal l , and industrial ized keyboards with as

many as a 36 special function keys. The d isplays

al low an operator to oversee al l parts of the process
for which the operator is responsible. Typical dis

plays show recent trends of key variables and mimic

diagrams showing the current state of the manufac
turing equipment (e.g . , valve positions and tank lev

e ls) and of the material flowing through the

process. The keyboard and other i nput devices

allow the operator to select d isplays, request

reports, and modify control settings. Response to

ARTI FICIAL
INTELLIGENCE
SYSTEMS

H IGH·LEVEL
CONTROL

SUPERVISORY
CONTROL

DISTRIBUTED
DISTRIBUTED CONTROL
CONTROL
SYSTEM

LOOP
CONTROLLER

DIRECT
CONTROL

SENSORS AND
ACTUATORS

Figure 1 Typiectl Levels of Control in a Process Plant

Digital Technical journal vbl. 5 No. 2 Spring 1993 1 0 1

Application Control

problem or a larm concl i tions and modification of

the process to change the product are effected

through the console.

Process operators are responsible for maintain

ing the routine operation of a plant. Operators use
the control system to change process parameters in

order to produce d ifferent mixes or variants of the

product, or to respond to an equ ipment fai lure by

rerouting material around nonoperational process

equipment.
To perform their functions, manufacturing plant

production and engineering support personnel
(e.g. , control engineers, process engineers, produc
tion supervisors, production planners, mainte

nance supervisors, and manufacturing engineers)

also need access to information in the control and

supervisory systems. These professionals regu larly
access inforn�ation contained in mult iple manufac

turing systems and have an occasional interest in

particu lar measurements or parameters within

other parts of t he process. The functions of these

manufacturing plant personnel include

• Complex problem analysis and solut ion.

Locating sources of product or process variation

involves analyzing i nformation from different

parts of the process that may be under the con

trol of d ifferent automation systems. Comparing

the flow that exits one parr of the process

with the flow that then enters the subsequent

part, for example, could disclose a fau l ty flow

meter, a previously unknown temperature con

trol problem, or a leak.

• Product i mprovement. I mproving product qual

ity and consistency involves investigating how
the product is affected by existing variations

in the production process. For example, investi

gation m ay involve the study of a process vari

able that cannot be measured directly but can be
calculated from the values of other process vari
ables. Examining sets of variables over time and
exploring possible relationsh ips m ay resul t in
discovering combinations of process variables

that yield unexpected effects on product

attributes.

• Process improvement. Improvements i n process

yield and process rel iabil ity and reduction of

waste and hazardous by-products may involve
the study of h istorical data va lues from the pro

cess. Studying measurements obtained from

mul tiple control systems may also result in pro

cess improvements.

102

• Resource optimization. Usual ly, process plants

are capable of producing different grades of

product, as we l l as mixtures of end products.

An oil refinery, for example, produces various

grades of fuel oil and also home heating and
lubricating oils, aJJ from a single process. While

the operators adjust the equipment to control

the product mix, a process planner or produc

tion manager determines the best production

schedule based on customer orders and the effi

cient use of the process equ ipment.

Process information is available to operators

and engineers who are trained to work w ith the

various control and management systems in the
plant . Using proprietary tools for each system

a llows reports to be generated and specific types

of analyses to be performed on the data contained

within each of these systems. However, extracting

the data from these systems to an engineer's desk

top for analysis by generic tools, such as spread
sheets and statistical analysis packages, is difficu l t

or even impossible. Lack of console- ami tool

specific tra ining is another obstacle to accessing

process information.

Manufacturing Process Information
Systems and Desktop Systems:
Goals and Barriers

Production and engineering support personnel
want to be able to use the desktop tools of their

choice to explore and analyze data from manufac
turing systems. Spreadsheets, s imulation tools,

report generators, visualization tools, statistical

analysis tools, planning tools, charting tools , and

graphic-generation tools have aJ J become accepted

parts of the array of computer-aided techniques and

tools ava i lable to the contemporary knowledge

worker. The interactive, easy- to-use graphica l user

interface, which can run on relatively inexpensive

platforms under the complete control of the end
user, has not only encouraged the wide use of these

desktop tools but also enhanced their effectiveness.

These tools stimulate professionals to creat ively

explore the character of large amounts of data and

thus support the d iscovery of previously unex

pected patterns and relationships.

The further an end user's primary function is

from production, the more l ikely i t is that such a
user wil l want access to m u l tiple systems. System

interfaces, which may differ widely and arc gener
aLly oriented toward production use, d iscourage

users from making ad hoc inquiries i nto the system.

Vol) No. l Spring /993 Digital Techuical jourual

IJ/;'C @aGlance-Jntegration ufDesktop Tools ancl i'vlcmufacturing Process Information Systems

Conse()uently, manufacturing system data may not

be eas ily accessible to users of the many desktop

tools avai lable for such pu rposes as decision sup

port, resea rch, ana lysis, and simu lation.

Today, the use of data from t he manufacturing

process in planning, reporting, and managing the

operation of a p lant is hampered by the difficulty in

accessing the data from plant control and process

information systems. It is typical fo r a production

supervisor who needs data from a control system

to reCJuest the data from a process operator. Once

in hand, the data is then manual ly entered i nt o a

spreadsheet or other desktop tool for ana lysis. The

results of the analysis often reCJuire entering new

parameter values into the con trol system. Th is task

is typica l ly performed by a nother person, trained

to use the control system, who transcribes the val

ues from a hard copy of the tool 's outpu t . The pro

cess is t ime-consu mi ng, costly, and error prone.

Problem -solving activi ties are l i mited to those that

can just ify the trouble and expense involved in sim

ply accessing the data.

Existing Integration Efforts

The desire to use data from the control systems

to analyze and improve the u nderstanding and con

trol of the manufacturing process has spawned

a variety of efforts since the late 1980s. This work

bas attempted to ease the transfer of information

between computing systems a nd con trol systems.

However, the resu lti ng products and standards are

not orien ted toward supporting ad hoc in()u ir ies

and, therefore, are not widely used .

Many currently avai lable manufactu ring systems

may be connected to the plant network, but w itb

out standard higher-level interfaces, access to these

systems re mains l i mi ted. '-- Through such network

connect ions, some man ufacturing systems pro

vide l imited access to OpenVMS and/or DOS system

users. However, the access is typical ly restricted to

the use of unique, proprietary program ming inter
faces or to proprietary tools targeted at performing

a manufacturing-related fu nction, sucb as statistica l

CJU<d ity contro l . Usual ly, in terfaces are suppl ied

only on a specific operating system or on J im ited

versions of a specific operating system.

In some systems, it is possible to extract a table of

data values into a file using a common representa

tion and fi le format (such as Lotus Development

Corpora tion's WK l) that can then be i mported into

a spreadsheet on an I B M-compatible PC This tech

nique obviates the need for hard-copy outpu t and

D(�ital Technical journal Vnl. 5 No . .! Spri11g 19')3

s impl ifies transcrip tion bur sti l l requires that a

spec ialist extract the data using proprietary in ter

faces. I n addition, the data m ay need to be con

verted from string to numeric fo rmat to be usable

with in a particular spreadsheet.

The In ternational Organization for Standard

ization standard Manufacturing Messaging Speci

fication (IS9506 or MMS) addresses the problem

of data exchange between applications and dedi

cated manufacturing systems (referred to in the

standard as manufacturing devices) .H Although

some manufacturers of programmable contro l lers

(that is, dedicated con trol systems that are pri

marily used in discrete man u facturing industries)

offe r M MS capabi l ities, the process i ndustry manu

facturers and their control system suppl iers have

not widely accepted MMS. Use of the standard

has been perce ived as expensive, inefficien t , ami

oriented primarily toward the needs of discrete

manufacturing. A comm ittee of the Instrument
Society of America (!SA) is developing a companion

standard (ISA 72.02) to use with M M S in com muni

cating with d istri buted control systems in process

manufacturing 9 An important aspect of this pro

posed standard is a data model that describes the

orga nization and types of data in a distribu ted con

trol system.

Requirements for Integration

Digital designed the DEC @a Glance architecture not

to be a generic appl icat ion integra tion mechan ism

but rather to support the integration of popular

desktop too ls with manufacturing process informa

tion systems. An appl ication that complies with the

archi tecture can be instal l ed on any system within

a netwo rk, run, and im mediately exchange data

witb other com pi iant appl ications. Some key char

acteristics of the environment that helped to drive

the architecture are

• M u l tiple vendors. Al though , MS-DOS perso nal
compu ters are the most popular desktop envi

ro nment, VA Xstation , Macintosh, ancl UNIX work

stations have a clear presence in part icular
departments and in certain large customer sites.

• Multiple software developers. The applications

to be integrated are products of many compa

nies that bu i ld manufacturing systems and desk

top tools. The software development groups in

these companies focus on core appl ication and

human interface issues rather than on integra

t ion issues.

1 03

Application Control

• A large variety of desktop applications and user

interfaces. Each class of deskto[) appl ication

has a different way of in teracting with users.
Spreadsheets, for example, have very d ifferent
user interfaces from statistical packages and data

visual ization packages. Some appl ications have
elaborate macro languages, whereas others are
almost entirely graphica lly driven.

• Mult iple types of large networks. I n the typical
process manufacturing faci l ity, large networks
are a l ready in place. Whi le many plants use
DECnet for their network, an increas ing number

of plants are choosing to use the transmission

control protocol/internet protocol (TCP/IP),

and some plan to m igrate to Open Systems
Interconnection (OS!) networks (including

Digital 's DECnet Phase V) from mult iple vendors.
PC LANs are also becoming popu lar.

• Conservative comput ing strategies. Large

manufacturing fac i l i t ies cannot afford to halt

operat ion to make major changes i n their

production-related computing systems a nd net
works. Such faci lities look to standards -based

products as a way of achieving stabil. i ty and of
ensuring confidence in the longevity of a partic

ular technology.

Architectural Issues

Simply stated, the problem that the DEC @aGlance

architecture attempts to add ress is, how can a

set of existing applications running on heteroge
neous platforms, distributed across a variety of

networks, and developed by d ifferent vendors
(with only peripheral interest in integrat ion) be

eas ily i ntegrated' A good u nderstanding of both

the nature of the appl ications involved and how end
users would use them if they were i ntegrated is
importan t for evaluating potential answers to the
question .

The appl ications that we considered integrating
can be divided into two grou ps: those that "own"
manufacturing data , i .e . , the manufacturing control

systems, and those that are consumers of that data,

i .e . , the desktop tools. From the viewpoint of an
end user, some aspects of the relationship between

a desktop tool and a manufacturing control applica

t ion must be considered in order to accompl ish

work goals. End users in this enviro nment are
primarily concerned about the manufacturing
process, the equipment contro l l i ng the process,

1 04

and the state of materials within the process. These
users have l itt le or no interest in such aspects

as network topologies and protocols, operating
systems, and byte ordering on d ifferent hardware
platforms.

Some major concerns of the end user that the
architecture should address are

• The identity of the manufactur ing control sys

tem . General ly, a large plant is contro l led
through the use of several control systems, each

of wh ich might control a part of the process,
such as refin ing or packaging, or an aspect of the
plant operat ion, such as steam distribution or
waste reprocessi ng. A particular data poi nt
resides in a single manu facturing control system.

The user should be able to specify precisely
which manufactur i ng system is to supply the
data values. The architecture should be capable
of establ ish ing a relat ionship with the specific

appl ication that owns the data of interest to the
user. The end user should not have to specify

ei ther the network node, the operating system,

or the hardware platform on which the applica
tion is running. Neither should the end user have
to specify the network communicat ion proto

cols required .

• The length of the rela tionship between the desk
top tool and the manufacturing control appl ica
t ion. The relationship shou ld be able to remain
active for m u l tiple transactions to al low end

users to work i nteractively with desktop tools

to explore possibi l ities. For example, end users

may want to examine d ifferen t data points or the
same data point over various t ime intervals.
Thus, usage of a desktop tool cou ld i nvolve mul

tiple requests for data from a manufacturing
control application . Establ ishing a relat ionship
between applications over a network is t ime
consuming, and therefore establ ishing long
l ived relatio nships would be advantageous. The
abil i ty to continuously monitor a set of points
and have their values reported on a time or

change basis is another desirable feature that
wou ld require the establishment of long-l ived

rela tionships.

• Multiple access to the appl ications. Appl ica

tion relationships sho u ld not be exclusive.
Each application should be able to !lave concur
rent rel ationsh ips with several partner appl ica
tions. Each desktop tool may requ i.re data from

HJI. 5 No. 1 SfJrinf, I'J')i Digital Tee/mica/ jourua/

DEC @aGlance-Jntegration of Desktop Tools and Manufacturing Process Inforrnation Systems

several manufacturing systems, and conversely,

several users of desktop tools may need to

access the same control system simul taneously.
The re lationsh ips between desktop tools and
manufacturing control systems is i l lustrated in

Figure 2.

• The data model. Appl ications should agree about

how to reference data and about data types.
Within the context of this environment , a rela

tively simple data model exists in the draft stan

dard iSA 72.02. Data should a lways be converted

to types appropriate to the local system and to

the application. A spreadsheet user should not

have to manu a l l y convert strings into numeric
values.

• The user interface. Appl ication integration

s hould not require the use of any particu lar

desktop user interface, such as the X Window

System or OECwindows software, or even the

existence of a windowing system. Also, the user

interface of the manufacturing data appl ication

shou ld be of no concern to the desktop user.

Single Client-server Connection

Multiserver Connection

Multiclient Connection

Figure 2 Relationships between Desktop Tools
and Manufacturing Control -�)!stems

Digital Technical journal Vol. 5 No. 2 5/Jring l.'J'J.)

Usage Model

To help us understand how a user might go about

employing the capabil ities that we were consider

ing, we developed a simple usage model. We based

the model on the scenario that an end user makes a
series of ad hoc inquiries into the state of a process.

We assumed that the user was famil iar with the

manufacturing process but not necessarily expert

in a l l the details of the process. The user would

know, for example, what the major areas of the

plant were cal led and what functions they per

formed but m ight not know the internal reference

identifier of every f low meter in each control sys

tem. We focused on how the user of a spreadsheet
tool might reasonably expect to proceed to get data

into a spreadsheet and how services that we m ight

provide could aid in exploring the data.

The information within a manufacturing system

consists of the many parameters and measurements

that the system uses to monitor and control the pro

cess. General ly, this data is organized into blocks,

each one related to a particular part of the process,

such as flow, level, temperature, or pressure. As the

typical data block in Figure 3 i l l ustrates, every

block has a unique name or tag that can be used for
reference purposes.

In control systems, tag names are assigned as part
of the configuration. Large plants use a naming con

vention to ensure the assignment of unique tag
names to the thousands of blocks spread through

out the plant and over several control systems. In

addition to the tag, the block contains attributes
such as the parameters of the control a lgorithm,
measured input values, unit conversion a lgorithm

identifiers. The data model proposed by the !SA

72.02 committee describes seven types of blocks,

each with a standard set of attributes with associ

ated names and data types.

BLOCK TYPE
TAG NAME
DESC R I PTOR
ANALOG PROCESS VALUE
ANALOG CURRENT VALUE
HI ALARM LIMIT
LO ALARM LIMIT
PROPORTIONAL
INTEGRAL
DERIVATIVE
ENGINEERING UNIT

Figure 3 A Typical Data Block in a
Manufacturing Control System

l OS

Application Control

This usage model al lows a user to easily deter
m ine the tag names recognized by a particular

manufacturing system. To examine the data values

associated with a specific tag, the user needs to

know the valid attributes. (Al l blocks do not have

the same attributes, e.g. , an analog loop control
block has more attributes than a simple digital mon

itoring block.) Once the tag names and their val id

attributes are known, the user can inqu ire about

current values as wel l as h istorical va lues.

The use of operating prototypes, includ ing simu
lated servers and a simple spreadsheet, advanced

the development of the usage model. The proto

types were shared with potential end users and

application developers at customer visits and indus

try trade shows. Feedback obtained from demon

strations and discussions of the usage model helped

expand and refine the services.

Architecture

The DEC @aGlance architecture defines two kinds

of appl icat ions, a set of services for accessing data

in the control systems, a data specification model,
and some basic types of data. The appl ication

classes are (1) manufacturi ng data servers and

(2) cl ients. Typical manufacturing data servers are

the manufacturing control system applications.

Typical cl ients i nclude desktop tools such as

spreadsheets and statistical analysis tools, as well as

production p lanning, production schedul ing, and

other production management applications. An

application may be a c l ient in relation to one appli

cation and a server i n relation to another.

A data point is specified to DEC @aGiance appli

cations by the name of a server, a tag name, and an

attribute name. A data point has a current value and

may also have h istorical values (if the manufactur

ing system has a h istorian capabil ity). A current
value is the most recent available value of a parame

ter or measurement within the system. A historical
value is a value that the data point bad at some t ime

in the past. A historical value is specified by the
name of a server, a tag name, an attribute name, and

the t ime associated with the value.

The services defined by the DEC @aGlance archi

tecture fall into one of fou r fu nctional categories:

configuration information, data value exchange,

monitoring, or management . Each service defines
an operation that may be requested by one applica

tion of a partner appl ication. The services defined

are not necessarily the same functions that an end

user requests.

1 06

Configuration Information

One service is defined for requesting the tag names

that the server finds in the control system's
database . An addit ional service returns a l ist of

attribute names tbat are defined for a specified tag

name or a list of tag names.

Data Value Exchange

Serv ices are defined for reading and for wntmg

current and h istorical data point values. For current

values, services support reading or writ ing e ither

a J ist or a table of data point val ues. A read or write
J ist request specifies pairs of tag names and

attributes. A read or write request for a table of (l ata

point values specifies a I ist of n ames and a I ist

of attributes. The table of data points consists of

all tag names paired with their corresponding

attributes. Both the l ist and the table requests can

be used to read or write a single data point, col laps

ing to either a l ist or a table of one data point .

By using the DEC @aGJance services to get l ists of

tag names, at tribute names, and data point values,

and the name of a server, an end user can generate

a wide range of ad hoc queries without knowing

much about the control system in advance. A com

mon data point at tribute is the descriptor, which

characterizes the function of the data point, e . g . ,

south tank level. Thus, i t is a fairly straightforward

task to use DEC c a(; lance services to build a l ist of

tag names and descripto rs that provide a basis for
further inquiries.

The services for historical data values are defined

to deal with tables of historical values for a l ist of

data points. Historical data service requests specify

a I ist of tag name and attribute pairs and a time

specification that is applied to a l l the data points.

The time specification consists of a start t ime, a

time interval, and the number of intervals for which
values are to be returned .

Monitoring

Monitoring is useful for read ing the val ues of a
set of data points at i n tervals in t ime or when a sig

nificant change in value occurs for any of the data

points. A graphical d isplay program can run on

a desktop system a nd make minimal use of the net

work and compu ting resources while maintaining

an accurate representation of what is occurring in

the manufacturing process. Monitoring could also

be used to update a spreadsheet at regu lar t ime

intervals or whenever a particular process variable
changes.

Vul 5 No.] .�jJri11g 1')93 Digital Technical jou rual

DEC @aG/ance-Jntegration of Desktop Tools and Manufacturing Process lnfonnation Systems

No standard defin itions exist for what consti
tutes a significant change in value. Defin it ions sup
ported for various systems include (a) detection of
change outside of a specified range or "dead hand,"
(b) change by more than some percentage of the

previously reported value, and (c) change by more
than some percentage of a fL>:ed value. Therefore,
the service is defined to support moniroring and
report ing of changes on a t ime basis or on some
other basis that is specific to the data server appl i
cation. Whenever the requested monitor condition
is fu lfi l led, the data server application uses a moni

tor update serv ice to send the new data point val
ues to the original cl ient application . Since the

server init iates monitor update requests, the usual
relationship between the cl ient and the server is
temporarily reversed .

Management

Connection management services are provided to
establ ish a connect ion , to terminate a connection,
and to test a connection.

Implementation Considerations

Using existing networking and application i ntegra
tion technologies to implement the DEC @aGlance
arch itecture was important both in terms of
reducing development efforts and improving com
patibi l ity with existing environments. Technol
ogy used in the implementation had to provide
as many as possible of the capabil i t ies described
in the architecture while imposing minimal restric
tions on the end-user operating and network
enviro nments and on the developers of the appl i
cations. In addition, i t was desirable that the under
lying technologies offer capabil ities that could

SPREADSHEETS
STATISTICAL
ANALYSIS

support future enbancements to the DEC @aG lance
architecture.

The DEC @a Glance architecture al lows an existing

desktop tool to be integrated with existing manu
facturing control systems, as shown in F igure 4. The
architecture effectively combines the functional
capabil it ies of the desktop tool for analysis, visual

izat ion, computation, etc . , with the capabi l i t ies of
the manufacturing control system for monitoring
and contro l l i ng a manufacturing process. The i nd i
vidual appl ications were , of course, original ly

designed and written withou t any knowledge of

each other's existence. Therefore, to facil itate i nte
gration efforts, implementation of DEC @aGiance
software shou ld localize and minimize requ ired
changes to the appl ications.

A network protocol such as DECnet, the transmis
sion control protocol/internet protocol (TCP/IP), or

one of the local area network (LAN) protocols could

have provided the network services requi red
for DEC @aG!ance's interappl ication commun ica
tions. However, this approach lacks a mechanism
for locat ing servers on the network, requires
DEC @aGlance to support the mu ltiple network
protocols that exist in the manufacturing environ

ment , requires DEC @aGiance to include data type
conversion between appl ication platforms, and
necessitates the development of monitoring and
management tools unique to DEC @aGlance. A bet
ter approach is to use an existing product that is
available on an appropriate set of platforms, sup
ports an appropriate set of networks, and already
solves these problems.

A remote procedure call (RPC) mechan ism

appears to have many of the capabi l i t ies that

the DEC @aGlance archi tecture requ ires. R.PC

OTH ER
GRAPHICS (AI . AVS, . .)

0��RIX/OSF
u MAC INTOSH� VMS 1

UL TRIX/OSF
VMS MS-DOS I

�
U L TR IX/OSF

._ ._ -

VMS MS-DOS VMS UL TRIX/OSF
ULTRIX/OSF

SUN OS
UL TRIX/OSF VMS

I I I l
I I

PROCESS
SUPERVISORY

PROCESS REAL-TIME
CONTROL

SYSTEM
DATA EXPERT

SYSTEM H ISTORIAN SYSTEM

PROCESS DATA SERVERS

Figure 4 Integrating Desktop Tools and Manufacturing s:vsterns

Digital Teclmical]ourual Vol. 5 No 2 .\)iring !')').) 1 07

Application Control

mechanisms provide for location of a partner or
server appl ication, and they provide data type con

version and reliable network services. The RPC
model of application integration, however, is actu

ally more appropriate for the distribution of a single
application across mult iple systems in a network.

This use implies a simple, static relationship
between the parts of an appl ication: one part is

a lways a c l ient that requests the execution of a pro

cedure, and the other part is always an RPC server

that executes the procedure and returns the results.
In such a relationship, each request generates a sin
gle response. This model would be poorly suited

for supporting the DEC @aGlance mon itoring ser
vice. When DEC @aGiance was being deve loped, no

commercially available RPC implementation ran on

the key platforms, the OpenYMS and M icrosoft

Windows environments. Furthermore, no one had
announced their in tention to produce a portable
implementation that would be available on the

wide range of platforms that we considered impor

tant for future versions of DEC @aGiance software.
Digital 's ACA Services was chosen as the basis

for implementing DEC @aGlance software because

it implements an appl ication integration model
that closely matches the requirements of the
DEC @aGi ance environment. ACA Services supplies

many capabilities requ ired of the integration mech

anism including

• Abstraction of functions from implementations

• The abil ity to encapsulate existing applications

• Location of partner applications o n a variety of

networks

• Establishment and management of re i iable, long

l ived communication l inks

• The abi l i ty to easily add new appl ications to the
system

• The abil ity to easily install new versions of exist

ing applications in the system

• The correct handl i ng of data q'pe conversions
between heterogeneous systems

• Commercial availabi l i ty of portable i n terfaces

on OpenYMS, Microsoft Windows, Macin tosh ,
and a wide variety of UNIX platforms from mult i

ple vendors

The class h ierarchy capabil ities of A CA. Services
al low the creat ion of new combinations of appli

cations integrated to provide new capabilit ies

without additional coding. Thus, a new class of

1 08

server can be defined tO offer the capabil i ties of
a DEC @aGiance data server as wel l as additional

capabi l it ies. The older DEC @aGiance servers would
actua l ly provide the DEC @aG iance serv ices while ,
transparent to the client applications, the new
server wou ld make the new capabi l i t ies available.

ACA Services has been selected as a major com
ponent of the Object Management Group's (OMG)

Object Request Broker, which i n turn has been

selected as a part of the Open Software Founda

tion 's (OSF) D istributed Comput ing Environment
(DCE). ACA Services is designed to be independent

of the type of network that provides the i nterappli
cation com munications services and current ly
works over both DECnet and TCP/IP networks, the

networks most commonly found in manufacturing

environments. Therefore, applications using ACA

Services need not be concerned about network

communications.
ACA Services is supported on the OpenVMS,

Microsoft Windows, Macintosh, and SunOS operat
ing systems, the most often used platforms in this

appl ication space. In fact, ACA Services is the only
application integration mechanism currently avail

able on a l l these platforms. Moreover, ACA Serv ices
supports the kind of asynchronous services

required by DEC @ia(;lance.

Although it provides many important compo
nents of the requ ired integration service, ACA

Services does not completely solve the integration

problem. ACA Services is a tool intended to be used
to integrate appl ications; it does not define the data

model nor does it define the set of services that

applications are to provide. Appl ication integrators

are expected to define (1) the classes of applica

tions that prov ide sets of serv ices, (2) the serv ices,

and (3) the meaning and type of data to be
exchanged by appl ications using the services.

DEC @aGlance Software:
The Tool Kit and Add-ins
As shown i n the DEC @aGlance component diagram
in Figure 5, DEC @aGlance software uses ACA

Services as a basic application integration fac il i ty.
Above ACA Services, DEC @aGlance adds definitions
of a cl ass of manufacturing data server appl ications
(servers), a set of defin itions of the services pro

vided by the servers, and defin itions of the data ref
erence model .

ACA Serv ices provides a general capabi l ity to

in tegrate sets of appl ications. DEC @aGlance soft
ware provides a set of rou ti nes that are specifically

HJ/. No. J .\jJring I'J'J. i Digital Technical jouruaf

DEC @aGlance-lntegration of Desktop Tools and Manufacturing Process Information Systems

DESKTOP APPLICATION

CALLABLE INTERFACE

(SLOTS FOR DATA ACCESS ROUTIN ES)

CLIENT LINK TEMPLATE

ACA SERVICES

I M PLEMENTATION l
DEVELOPER'S KIT J

DEC @AGLANCE
CLIENT

NETWORK TRANSPORT (DECNET, TCP/IP , ETC.)
NAS

ACA SERVICES

S E RVER LINK TEMPLATE

SERVER

1 DEVELOPER'S KIT

DEC @AGLANCE

I MPLEM ENTATION
(SLOTS FOR DATA ACCESS ROUTINES)

CALLABLE INTERFACE

PROCESS DATA SOURCE

Figure 5 DEC @a Glance Components

designed to simp! i fy the implementation of the set
of services that DEC @aGiance supports. For server

appl ications, DEC @aGi ance software supplies a set
of cal lback poin ts, as wel l as callable routines for
declaring cal lbacks, fi ltering strings, and support

ing monitoring activities. For cl ient appl ications,

DEC @aGlance software suppl ies a set of caLlable

routines for requesting each of the defined ser

vices, as well as cal I back points in support of moni
tor updates.

The DEC @aCi lance server I ibrary also supports

a test connectivity capabil ity used to verify that an
interappl ication re lationship can be established to
the server appl ication. This capabi l i ty simplifies
the diagnosis of problems encounrerecl during both
server development ancl client-server instal lation.

To reduce dependence upon properly written

server code, the test connectivity capabil ity oper
ates entirely within the l ibrary. Thus, once a server

calls the DEC c aGiance init ialization routine, and
if the server is sti l l running, this service should

function properly in response to requests from

Digital Technical journal Vol. 5 No. 1 Spring 1993

DEC @aGlance cl ients. Proper functioning includes

verifying the installation and configuration of the
network and of the ACA Services and DEC @a Glance

ru n-time components of the systems on which the

cl ient and server applications reside.

Software add-i ns, i .e. , extensions, for two pop

u lar spreadsheet applications, Lotus 1-2-3 for
Windows and Microsoft Excel for Windows, are

also DEC @aGlance products. These add-ins al low
users of the spreadsheets to request data from man
ufacturing data servers by means of the spread
sheets' m acro faci l it ies. The add-ins provide a
dialog box to gu ide u ntrai ned users through the
process of constructing a DEC @aGiance macro.
Once bui lt , a macro can be executed one or more
t imes, modified i f necessary, and saved in a work

sheet for reuse at some other time.

Tool Kit

The tool kit was developed to encou rage the rapid
and successful development of DEC @a Glance appli
cations by third parties. Successfu I appl ications are

1 09

Application Control

those that interoperate with other DEC @aGlance
appl icat ions upon del ivery to a customer site with

no additional codi ng, no application recompila
tion, and no application rebuilding.

The key components of the tool kit are

• A DEC @aGlance cl ient or server l ibrary

• Example code

• ACA Services definition files for the DEC c aGiance

class and methods

• Simple test facil ities

• Tbe DEC @aGlance Programmer's Guide �<>

The ACt\ Services definit ion fi les contain the

information required to define the manufacturing

data server class and the services that members of
the class support. Supplying the defin it ions in th is

form ensures strict consistency among al l server
and cl ient developers with regard to these defi

ni t ions. The routines in the DEC @aGiance c l ient
and server l ibraries use these definitions. The

DEC c aGiance l ibraries contain a l l the code required
to establish and maintain an ACA Services session .

Server Applications

A server application bui l t with the too l kit has three
major components: an initialization section, the con
trol system-specific section, and the DEC c aGiance

section. The init ia l ization section simply declares

the server's name to the DEC @aGlance application,
declares a set of cal lback points, and enters a dis

patch loop. The server name is the name that cl ient

applications can use to in teract with this server.

The cal l back points are the code entry points ro

wh ich DEC @aGiance d ispatches in response to the

receipt of service requests from the cl ient appl ica
tions. For a server, cal l back points exist for the fol

lowing services:

• Get a I isr of tag names

• Get a l ist of attribute names

• Get a l ist of c!ata point values

• Get a table of data point values

• Put a l ist of data point val ues

• Put a table of data point values

• Get a table of historical values

• Put a l ist of h istorical values

• Register a monitor request

1 1 0

• Cancel a monitor request

• Init iate a session

• Terminate a session

• Execute a server-specific request

• Terminate the server

The contro l system-specific section consists of
code modules that execute calls to the control sys

tem appl ication programming interface (AJ>l). These
modu les have to convert parameters to and from
the DEC @aGlance format and the control system
specific tormat. The entry point of each module is
declared as a cal lback point during i ni t ia l i zation.

In addition, cal lable routines are provided for

sending monitor updates and for session manage

ment . The DEC @aGiance section of the server is

contai ned entirely within a l ibrary of call able

server routines. This sect ion handles a l I inrentc

t ions with ACA Services, including server registra

tion and session management . It also hand les the

dispatch of incoming requests to the cal lback rou
tines and a number of housekeepi ng tasks t()r
which each server developer wou ld otherwise
have to develop and implement solutions. The

DEC @a<Jiance section also responds to test con

nectivity requests.

Almost a l l vendors of manufacturing systems
have applications that execute cal ls to the control

system API, but such appl ications are typical ly
driven off a command language or menu in terface.

Conversion of these applications to a DEC @aGlance

server is relatively easy; some vendors have created

a simple DEC @aGiance server in as l i ttle t ime as
one day.

Client Applications

The typical DEC @aGiance c l ient application is bui lt
on an existing desktop tool . Desktop tools provide
a user interface for performing some class of
generic function such as decision support, statisti
cal analysis, qual ity control. or production schedu l
ing. Other types of appl ications that could make

use of process data, such as report generators,
batch schedu lers, and mai ntenance tracking sys

tems, can also provide the basis of D EC @aGlance
client appl icatio ns. Adding DEC @aGla nce support
to an exist ing tool al lows the user to treat data from
DEC c aGlance manufactur ing data servers l ike data
entered manually or from other data sources.

A DEC @aGlance c l ient appl ication incorporates
the DEC @a Gl ance c l ient rout ine l ibrary, which

Vi>!. 5 No. 2 Spring !1)').) Digital Tee/mica/ journal

DEC @aGfance-Jntegration of Desktop Tools and Manufacturing Process Jnfonnation Systems

provides callable routi nes for initia l ization and for

each of the fol lowing DEC l!!:aGlance services:

• Get a I ist of tag names

• Get a l ist of attribute names

• Get a l ist of data point values

• Get a table of data point values

• Put a l ist of data point values

• Put a table of data point values

• Get a table of h istorical values

• P u t a l ist of historical val ues

• Initiate a monitor request

• Cancel a monitor request

• I nitiate a session

• Terminate a session

• Execute a server-specific request

• Terminate the server

• Te rminate the c l ient

In addition, support routines help mon itor updates.

To support the DEC @aGl ance monitoring capa

bi l ity, a cli ent appl ication must have some server

characteristics. Once a monitoring request has

been initiated, the server issues monitor u pdate

requests when the monitoring condition is satis

fied . The moniwr u p date requests are received by

the cl ient application using the same call back

mechanism that the server uses when servicing

cl ient requests.

A typical client calls the DEC @aGlance initial iza

tion routine ami then continu es to perform its nor

mal functions. When a DEC @aGi ance service is

requested through the u ser interface or other

A B c

1 U N IT4 1 APV ASP

2 TIC001 1 34.7 1 40 . 0

3 LIC001 65.3 50.0

4 FI001 1 85.8 -

5 FRC005 65.6 50.0

6 TRC085 1 45.4 14 5.0

mechanism, the appl icat ion simply formats the

request and calls the appropriate DEC @aGla nce

service request routine. Upon completion of the

rou t i ne, status (and if requested, data) is returned

from the server application. If data is returned that

is to be further processed by the c l ient application,

the application moves the data to its workspace in

preparation for additional processing.

DEC @aGlance Lotus 1-2-3 for
Windows and Microsoft Excel Add-ins

Whereas most manufacturing control systems pro

vide a cal lable l i brary that al lows the development

of applications tha t access t he data in the system,

some desktop tool appl ications have mechan isms

that al low for extension of their capabilities i n the

field . Spreadsheet appli cations such as Lotus 1-2-3

and Microsoft Excel support the use of add-i n mod

u les to add external functions and external macro

capabil ities. Add-ins for these two spreadsheets are

available as DEC @aGi ance software products.

With the add-i ns, spreadsheet users can access

most DEC @aGiance services and thus can

• F i l l a range of cells with a l ist of tag names from

a server

• Fill a range of cells with a l ist of attribute names

associated with a range of tag names in a server

• F i l l a range of cel ls with a l is t of data point values

• F i l l a range of cells with a table of data point

values, as shown i n Figure 6

• Write a list of data point values to a server

• Write a table of data point values to a server

• Fi l l a range of cells with a table of h istorical

values for a specific t i me interval

• Write a l ist of historical values

D E

ALMST DESC

- FEED TEMP

HIGH FEED LEVEL

RATE + FEED RATE

HIGH HIGH REFLUX RATE

NONE RE FLUX TEMP

Figure 6 A Table of Data Point Values in a Spreadsheet

Digital Technical journal Vol. 5 No. 2 SfJring 1993 1 1 1

Application Control

The interface for the add-ins was designed to sup
port ad hoc i nqui ries. A dialog box gu ides the end
user through the process of supplying the approp
riate parameters for a selected function. Where

appropriate, defaults are suggested based upon the

previous inqu iry.

Summary

DEC @aGiance software has been specifica l ly

designed to make i t easy for users of desktop tools
to access, explore, and analyze clata from d is
tributed control systems, supervisory control sys
tems, and other common systems used to run
manufacturing processes. An analysis of the infor
mation environment and the ways i n which end
users want to access the data led to the refinement
of the architectural requ irements. The ana lysis a lso

led to the decision to use ACA Services as the appro
priate mechanism for integrating desktop and man
u facturing control appl ications. The creation of a
usage model and rapid deployment of prototypes
were instrumental in the analysis. To promote
widespread ava ilabil ity of plug-compatible appl i
cations that use DEC @aGiance, a developer's too l
k i t was created . The tool k i t contains l ibraries of
DEC @a(�lance routines that both simplify and
encourage proper ancl consistent usage of ACA

Services to integrate DEC @aGJance appl ications.
DEC @aGiance add-ins for the popu lar spread

sheet programs Lotus 1 -2 -3 for Windows and
Microsoft Excel for Windows were developed also.
With the add-in , users can i nteractively explore
data in plant manufacturing control systems from
within a famil iar spreadsheet, as wel l as write
reusable worksheet macros for perform ing
repeated tasks l ike report generation.

Acknowledgments
The author gratefu l ly acknowledges the contribu
tions of the members of the DEC @aGiance develop
ment team: Judie Dow, Bob Harrison, Nick M i l ler,
Ramesh Swaminathan, Patrick Taber, and the lead
developer, Charl ie Trageser. l wou ld a lso l ike to
thank Steve Dawson, for introducing o ur group to
the problem and general ly educating me about the
process manufacturing environment; Chuck Kukla ,
for introducing me to his research on how people

work in manufacturing and for h is work with cus
tomers and control vendors that helped lead to
the design of the product; J im Thompson, for
push ing and pul l ing al l the strings that it took a t
every stage of the effort to bring the concept to

1 1 2

a m arketable product; ancl Mike Renzul lo and Alan

Ewald of the ACA Services Development Group, for
their support .

References

1 . This quotation was taken from the transcript
of an interview conducted by C. Kukla et a l . ,
who have pub I ished the resu lts of their study
in "Usabi l it y Turning Technology into Tools,"
Designing Effective Systems: A Tool Approac!J,
P Adler and T. Winograd , eds. (New York, NY:
Oxford Univers ity Press, 1992).

2. DI:.'C ACA Services System Integrator and
Programmer's Guide (Maynard, MA: Digi tal
Equipment Corporation, Order No. AA-PFYUA
TE, 1992).

3 . Ovi50N User Manual, Order No. CM 1 1- 320
(Phoenix , AZ: Honeywel l I ndustrial Controls
and Automation, 1991).

4 . Computer/Highway Interface Package
(CHIP) User Guide, Part No. D00109 3XOI2
(Marsha l ltown, lA: Fisher Controls Interna
tional, Inc, 1987) .

5. A IM Connectivizy Software User's Manual
(Houston, TX: W R. Biles and Associates, Inc . ,

1992).

6. 512 SCADA System Description, Document
No. 502.0001 (Da l las, TX: Texas Instruments,
Industrial Systems Division, 1988).

7. PI System Plant Information System Techni
cal Overview (San teandro, CA: Oil Systems,
Inc . , 1990).

8. Manufacturing Messaging Specification,
ISO/IEC 9506 (Geneva: International Organiza
t ion for Standard ization/International E lec
trochemical Commission, 1990).

9 Manufacturing Messaging Specification:
Companion Standard for Process Omtrol,
!SA 72.02 (Research Triangle Park, NC: Instru
ment Society of America, 1993).

10. DEC @aGlance Programmer's Guide (May
nard , MA: Digital Equipment Corporation,
Order No. A A-PQB8A-TK , 1992).

vbl. 5 1\o. 2 Spriug J')'J.i Digital Teclmical jour11al

mamaamar�

ISSN 0898-90lX

Pnntcd i n U . S . A . EY-P9(, 3 E - D P/93 0 8 02 1 7 .0 Copyright () Digital Equipment Corporat ion. A l l R ights Reserved.

· · � : =· ·: :: \:-�·� :::·� ;·�-: r�: � ;=i�:.�
•

•
•

• • • • • • • I • ._ '\ •; ,/' : ._ ._• . . . :· : .
.... : ·: : : : : :-�·:...-:.; �-; � . ·: · . . : . ·. ·:: : =:��- � :· .. ; =:·.:. � :; . .

: : . . : :":·:_:·:\·�=��:
·
; ;-��1 �:�� � �� · - : · . ; . : :-• •

• • : . : • •
•

• • -: '! .. � •
• • ·.-. -. : ... :·; : : :· :. : : :.� � ·.� : · . . - - : · � · ·

• • • • • • • • • • • I • • • , . . .· .· .· . . . ·.· :. ·: ·.·. : ·: � / ,· : . . . · . ·. · .. ·. ·. ·. ·.· �· �·.· .. -. �·.· . . . · ·.· .. ·. · . . · � :

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Video Rendering
	Software Motion Pictures
	Digital Audio Compression
	The Megadoc Image Document Management System
	The Design of Multimedia Object Support in DEC Rdb
	DECspin: A Networked Desktop Videoconferencing Application
	LAN Addressing for Digital Video Data
	CASE Integration Using ACA Services
	DEC @aGlance - Integration of Desktop Tools and Manufacturing Process Information Systems
	Back cover

