
programming language 



DEC-15-GXZC-D 

MUM P S 

Programming Language 



ii 
: . 
: 
; 

First printing January 1971 

Second printing October 1971 

Revised 

Information in this document is subject 
to change without notice and should not 
be construed as a commitment by Digital 
Equipment Corporation. 

Reproduction of this document in whole 
or in any part is permitted. 

For additional copies, order No. DEC-15-GXZC-D from 
Software Distribution Center, Digital Equipment 
Corporation, Maynard, Massachusetts, 01754 

Price $4.00 

it 

April 1972 



FOREWORD 

MUMPS (~assachusetts General Hospital gtility 

~ulti-~rogramming ~stem) is a single-language 

interactive time sharing system developed for 

a medium scale computer. 

This language was developed by the Laboratory 

of Computer Science of Massachusetts General 

Hospital and Harvard Medical School, Boston, 

Massachusetts. This development was supported 

by research grants from the National Center for 

Health Services Research and Development 

(HS 00240) and from the National Institute of 

General Medical Sciences (GM 15287). This 

manual is adapted from a users' manual printed 

by the Laboratory of Computer Science. 

This edition of the MUMPS Programming Language 

manual is a revision of manual number DEC-15-GXZB-D. 

Technical changes in the program as documented 

have been marked with a solid line: editorial 

changes have been marked with a broken line. 

Examples: I ~ 
Pages changed: ii, 1-2, 4-5, 4-6, 4-10, Chapter 5 

all pages, 6-3, 7-2, A-I, Readers Comments page. 

The Index has been updated accordingly. 

iii 





CONTENTS 

INTRODUCTION 

CHAPTER 1 BASIC LANGUAGE FEATURES 

1.1 ARITHMETIC OPERATORS 

1.2 OUTPUT - THE TYPE COMMAND 

1.3 RECOVERY FROM TYPOGRAPHICAL ERRORS 

1.4 NUMBERS IN MUMPS 

1.S PRECEDENCE OF ARIT~M~TIC OPERATORS 

1.6 VARIABLES IN MUMPS - THE SET AND KILL COK~NDS 

1.6.1 Subscripts 

1.7 USE OF THE FOR CLAUSE 

1.8 FORMAT CONTROL 

CHAPTER 2 WRITING MUMPS PROGRAMS 

2.1 STEPS AND PARTS 

2.1.1 Steps 

2.1.2 Parts 

2.2 THE DO STATEMENT 

2.3 THE IF STATEMENT 

2.3.1 Arithmetic Comparison Operators 

2.3.2 Boolean Operators 

2.4 MULTIPLE CLAUSES 

2.5 BRANCHING -- THE GOTO COMMAND 

2.6 THE QUIT COMMAND 

2.7 INPUT -- THE ASK COMMAND 

v 

1-1 

1-1 

1-1 

1-2 

1-3 

1-4 

1-6 

1-7 

1-8 

2-1 

2-1 

2-2 

2-2 

2-5 

2-5 

2-6 

2-7 

2-7 

2-8 

2-9 



2.8 ERROR HANDLING 2-10 

2.9 CREATING AND CHANGING A MUMPS PROGRAM 2-10 

2.10 CHANGING OR DELETING LOCAL VARIABLES 2-11 

2.11 SINGLE-LETTER COM.~NDS 2-12 

2.12 MULTIPLE COMMANDS ON A LINE 2-12 

2.13 PROGRAM COMMENTS 2-13 

2.14 PROGRAM DEBUGGING -- BREAK AND GO COMMANDS 2-13 

CHAPTER 3 STRING HANDLING OPERATIONS 

3.1 STRING VARIABLES 3-1 

3.2 STRING CONCATENATION (.) 3-3 

3.3 STRING INPUT -- THE READ COMMAND 3-3 

3.4 STRING COMPARISONS ( =, [, ],) 3-4 

3.5 PATTERN VERIFICATION (:) 3-6 

CHAPTER 4 MORE ABOUT MUMPS PROGRAMMING 4-1 

4.1 MUMPS PROGRAM LIBRARIES -- CALL AND OVERLAY 4-1 
COMMANDS 

4.2 INPUT/OUTPUT DEVICES 4-2 

4.3 SECONDARY STORAGE 4-4 

4. 3.1 DECtape I/O 4-4 

4.3.2 PaFer Tape I/O 4-5 

4.3.3 Saving Programs Usinq READ and WRITE Commands 4-5 

4.4 SPECIAL (SYSTEM) VARIABLES 4-6 

vi 



4.5 SPECIAL COMMANDS AND COMMAND FORMS 4-7 

4.5.1 The HANG and HALT Commands 4-7 

4.5.2 More About the QUIT Command 4-8 

4.5.3 More About the DO Command 4-8 

4.5.4 UNTIL and WHILE Terminators in the FOR Clause 4-9 

4.5.5 The PRINT Command 4-10 

4.5.6 The XCOM Command 4-10 

CHAPTER 5 USING FUNCTIONS IN MUMPS 

5.1 NUMERIC FUNCTIONS 5-1 

5.1.1 $ROOT(NVE) 5-2 

5.1.2 $LENGTH(SVE) 5-2 

5.1.3 $VALUE(SVE) 5-2 

5.1.4 $INTEGER(NVE) 5-3 

5.1.5 $FIND(SVE1,SVE2,NVE) 5-4 

5.1.6 $BOOLEAN(BOOL1,NVE1;BOOL2,NVE2; ... ;BOOLn,NVEn) 5-4 

5.1.7 $DEFINE (variable name) 5-5 

5.1.8 $NEXT(NVE) 5-5 

5.1.9 $HIGH(VAR(SUBSCRIPT» 5-6 

5.1.10 The $OBTAIN and $QUERY Functions 

5.1.10.1 $OBTAIN (GLOBAL NAME (SUB1 , ... SUBn » 

5.1.10.2 $QUERY (GLOBAL NAME (SUB1 , ... ,SUBn » 

5.1.11 $Z(NVE) 

5.1.12 $KORE 

5.2 STRING FUNCTIONS 

5.2.1 $ CHARACTER (NVE) 

5.2.2 $EXTRACT(SVE,NVE1,NVE2) 

5.2.3 $PIECE(SVE1,SVE2,NVE1,NVE2) 

5.2.4 $STEP(NVE) 

5.2.5 $TEXT(NVE) 

5.2.6 $MONEY(SVE[operator]SVE[operator]SVE ... ) 

CHAPTER 6 THE GLOBAL DATA BASE 

6.1 USE OF OPEN AND CLOSE COMMANDS 

6.2 USE OF THE $DEFINE FUNCTION 

6.3 USE OF THE $HIGH FUNCTION 

vii 

5-6 

5-7 

5-7 

5-8 

5-8 

5-9 

5-9 

5-9 

5-10 

5-11 

5-11 

5-11 

6-2 

6-2 

6-3 

I 

I § 
I 

. 
I 

I 



I 

6.4 STORAGE OF DATA IN GLOBAL ARRAYS 6-3 

6.5 RETRIEVAL OF DATA FROM GLOBAL ARRAYS 6-4 

6.6 NAKED GLOBAL VARIABLES 6-4 

6.7 THE JOIN COMMAND 6-6 

CHAPTER 7 PROGRAM AND DATA PRQTECTION SCHEME 

7.1 DEFINITIONS 7-1 

7.1.1 Mode of User Interaction 7-1 

7.1.2 program Status (D or I) 7-2 

7.1.3 Terminal Privileges 7-2 

7.1.4 Protection Keys 7- 3 

7.2 DEVELOPING, FILING, AND USING MUMPS PROGRAMS 7-3 

7.2.1 Scratchpad Operation 

7.2.2 

7.2.3 

7.2.4 

7.2.5 

7.2.6 

7.2.7 

7.3 

7.3.1 

7.3.2 

APPENDIX A 

4-1 

4-2 

5-1 

7-1 

7-2 

Creating and Filing New Programs 

Modifying Existing Programs 

Changing Program Status (D, I, and X) 

Changing a Program Name 

Using Programs in I-Mode 

Slli~mary of Program Protection Rules 

PROTECTION OF GLOBALS 

OPEN Key 

READ Key 

EXPLANATION OF MUMPS MESSAGES 

TABLES 

SPECIAL VA~IABLES THAT MAY BE 

SPECIAL VARIABLES THAT MAY BE 

LEGAL FUNCTIONS FOR NESTING 

LOG-IN CONVENTIONS 

LOG-IN EXAMPLES 

viii 

REFERENCED 

REFERENCED 

OR SET 

ONLY 

7-5 

7-10 

7-11 

7-12 

7-12 

7-14 

7-14 

7-15 

7-15 

A-I 

4-6 

4-7 

5-15 

7-5 

7-6 



INTRODUCTION 

MUMPS (the ~assachusetts General Hospital gtility ~ulti-~rograrnrning 

~stem) is a user-oriented, general-purpose programming language inte

grated with an interactive time-sharing system. The MUMPS language 

is user-oriented in that it is a high-level language that is easy to 

learn and use. The MUMPS environment allows a programming session to 

center around a reactive terminal, thus minimizing the user's time in 

programming a problem, the computer's time needed in checking it out, 

and, most important, the elapsed time required to obtain a final run

ning application program. The system is especially powerful in on

line data management applications requiring interactive terminals 

structured to provide a general information system. The MUMPS language 

has the capability to manipulate character strings and data files with 

the same ease and flexibility that it handles numeric and Boolean 

expressions. 

The hardware system is composed of three basic elements -

1) A medium scale central processor. 

2) Scanners capable of interfacing to local or remote 
Teletype1like terminal devices. 

3) At least one high-speed disk memory system. 

MUMPS was originally conceived as a special purpose problem-oriented 

system for medical information processing at Massachusetts General 

Hospital. It was soon realized that the general-purpose character 

of the system indicated that it could serve as the foundation of a 

clinical data management system. The general objective of using the 

system for the acquisition, storage, and retrieval of medical record 

information gained impetus as a growing number of particular applica

tion areas were integrated into the structure. 

The MUMPS system functions in a variety of on-line clinical applica

tions - automated interpretive patient histories, laboratory informa

tion processing, medical diagnosis, entries of physical examination 

notes and radiology reports, medical records, hospital care health 

planning, critical data management, and others. As the system 

evolved, it became clear that it could provide a reliable service 

function in a wide range of applications areas. 

ITeletype is the registered trademark of the Teletype Corporation. 

I-I 



Unlike other on-line information systems, MUMPS language programs are 

not compiled into machine language, but are executed by an interpreter 

that is resident within the time-sharing system. This approach not 

only facilitates the development of programs in an interactive environ

ment, but also permits implementation of several novel features in the 

language. 

In the first three chapters, the reader is introduced to the basic 

structure and components of the MUMPS language. These chapters are 

structured to enable the reader to readily acquire a working knowledge 

of the language. Important points are occasionally repeated for em

phasis, and examples are abundant. Most examples are self-contained 

programs that the reader can actually type in and run while learning 

the language, thus reinforcing the concepts that are introduced. 

Learning MUMPS at a Terminal 

The best way to learn the MUMPS language is at a terminal connected 

to a MUMPS system. The command and program examples in the following 

chapters can be typed in and executed. If you are in doubt about the 

effect of a command or a form of syntax, try it out to see how MUMPS 

interprets it. 

The status of every terminal is set up beforehand by the MUMPS system 

manager, through the MUPAK utility package. Usually, a practice 

terminal is set up in the IIscratchpadll mode of operation, which per

mits you to type in commands for direct execution, compose program 

steps, and execute programs in "indirect" mode. A limited storage 

area ("user partition") is reserved for your program steps and vari

able data. Access to other programs or the MUMPS global data base is 

usually restricted, and you cannot file your programs permanently. 

A typical log-in procedure for a scratchpad user is as follows (check 

with your MUMPS system manager to obtain your user name, scratchpad 

key, and the current procedures): 

1. Press the BREAK key. MUMPS responds by typing: 

tv1J~PS LINE 1 
ID 

2. Type your user name, scratchpad key fin brackets], and an 
asterisk: 

trcUfV;PS LINF 
ID STFC3.2J* (User inputs are underlined) 

If the scratchpad key is 0.00, it and the brackets are 
omitted (close up the space). 

I-2 



3. Press the ENTER key. (The ENTER key may also be labeled 
ESC, ALT MODE, or PREFIX, depending on the type of 
terminal.) If your ID codes are valid, MUMPS responds 
with a CRLF (carriage return-line feed) and types a right 
caret: 

MUMPS LINE 1 
ID 5TE[3.2J* 
> 

The right caret (» indicates that you are communicating with MUMPS in 

the "direct ll mode of operation. You can type in any of the command 

examples or program steps that appear in the following chapters, or 

compose and execute your own programs. It is possible to become stuck 

accidentally in the "indirect" mode of operation (executing numbered 

program steps) so that you are unable to enter more commands from the 

keyboard. If MUMPS fails to type the right caret after you enter a 

command, you are probably in that condition. To regain control, press 

the BREAK key. MUMPS prints out an error message and returns to 

direct mode. 

To terminate a session at the terminal, enter a HALT command (Chapter 4) 

or press the ENTER key after the terminal has requested your ID. MUMPS 

types out THANK YOU to indicate the end of the session. 

Fully detailed sign-on, sign-off, and file protection descriptions 

appear in Chapter 7. Once you are acquainted with the advanced 

features of the MUMPS language, you can generate and file your own 

programs, use these and the programs of other users, and use and 

modify the MUMPS global data arrays. 

I-3 





CHAPTER 1 

BASIC LANGUAGE FEATURES 

1.1 ARITHMETIC OPERATORS 

MUMPS allows four arithmetic operators. They are: 

+ addition 

* 
/ 

subtraction 

multiplication 

division 

Any "well-formed" combination of these operators and numerical oper

ands constitutes a number-valued expression (NVE) (see 1.4l. 

1.2 OUTPUT - THE TYPE COMMAND 

MUMPS can be used to evaluate and TYPE the answer to an arithmetic ex

pression. To use the TYPE command, type "TYPE", followed by 

one space, followed by the numeric expression desired, and then 

press the ENTER key. MUMPS evaluates the expression and types out 

the result. For example: 

>TYPE 1+(2*3)-4/10 
6.60 
> 

The system types a carriage return and line feed followed by a right 

caret (» to indicate that it has returned control to the user and is 

waiting for the next command to be ENTERed. In the example above and 

in other examples throughout this manual, all input typed by the user 

is underlined; system output is not underlined. 

1.3 RECOVERY FROM TYPOGRAPHICAL ERRORS 

Occasionally, when entering data or writing a MUMPS statement, the 

user may make a typographical error. There are two wa~s to correct 

errors of this sort: character rubout or line deletion. 

1-1 



I 

I 

One or more characters in the line may be deleted by striking the 

RUBOUT key. This causes the system to type out a backslash ( \ ) and to 

delete the last non-deleted character from the line. The user may then 

continue entering text. For example: 

>TYKDY\\\PE 1+3*4 
13 
> 

MUMPS recognizes the above statement as "TYPE 1+3*4" and executes it 

correctly. 

Every character typed in since the last ENTER may be deleted by typing 
1 Control U. The system responds by echoing up-arrow U ({U) followed by 

a carriage return and line feed, and then waits for the correct text 

to be typed in. 

1.4 NUMBERS IN MUMPS 

MUMPS calculations are performed in fixed-point arithmetic and numbers 

retain an accuracy of TWO decimal places. Results of calculations 

that produce more than two decimal places are truncated (as opposed to 

being rounded). The largest number value allowed in MUMPS is 1310.71, 

positive or negative. It is important to note that these restrictions 

apply to intermediate as well as to final results; if the magnitude of 

any result exceeds 1310.71, MUMPS detects the error, prints the error 

message MAXIM, a-nd enters direct mode. 2 

For example: 

>TYPE 100*100/99 

? MAXIM 
> 

> 

? MI NI M 
> 

The intermediate result 
(10,000) is too large. 

The intermediate result 
(0.66) was truncated to 2 
decimal places. 

The second number has too 
many decimal places. Numbers 
in MUMPS are limited to two 
places. 

lControl U (CTRL U) is formed by pressing the CTRL key while striking 
the letter U. 
2The range of MUMPS numbers can be extended by the $MONEY function 
described in Chapter 5. 

1-2 



It is vital that the programmer understand the limitations of MUMPS 

arithmetic; the truncation of results (as in the second example above) 

is the cause of many logical errors in MUMPS programs. 

NOTE 

NO ERROR MESSAGE IS OUTPUT WHEN A TRUNCATION 
IS PERFORMED. 

1.5 PRECEDENCE OF ARITHMETIC OPERATORS 

MUMPS evaluates arithmetic expressions from left to right, with two 

exceptions. First, multiplications or divisions occurring immediately 

to the right of an addition or subtraction are performed prior to the 

addition or subtraction. (Note that multiplication following division 

is performed after the division, in the normal left-to-right order.) 

Secondly, the user may change the order of evaluation by the use of 

parentheses. For example: 

EXPRESSION RESULT 
1+3*4/12 2 
(1+3)*4/12 1.33 
1+3*(4/12) 1.99 
(1+3)*(4/12) 1.32 
(1+3*4)/12 1.08 

3+2/4+ 1 4.50 
(3+2)/4+1 2.25 
3+2/( 4+ 1) 3.40 

3+2*4+1 12 
(3+2)*4+1 21 
3+2*(4+1) 13 

1/2*3/4 0.37 
1/( 2*3) /4 0.04 
1/( 2*3/4) 0.66 

1*2/3*4 2.64 
1*2/( 3*4) 0.16 

The subtraction operator (-) may also be used for arithmetic negation 

(i.e., it may be used as a lIunary minus ll
). For example: 

>TYFE - C 3+4) 
-7 
> 

1-3 



1.6 VARIABLES IN MUMPS - THE SET AND KILL COMMANDS 

MUMPS can assign values to variables by means of the SET command. 

The user can specify the ~ of a variable by using from one to three 

letters. More than three letters may be used, but those after the 

third are ignored. Thus VAR, VARIABLE, VARI&~CE, and VARIANT are all 

recognized by MUMPS as VAR. % is legitimate as the first character 

of a variable, but certain % variables are predefined and have a 

special meaning (see Table 4-1). 

To use the SET command, type "SET", followed by a space, followed by 

the variable name to be set, followed by an equal sign (=), followed 

by the expression whose value is to be assigned to the variable name, 

and then press the ENTER key. MUMPS evaluates the expression and, if 

legal, assigns the result to the variable name. For example: 

SET may also reference values previously assigned to a variable. For 

example: 

A single SET command may be used to SET several variables: 

>SET A:l,B:4+A,D:A+B,C=D-B 

As can be seen, arguments (e.g., A=l) are separated by a single comma 

(,). Once a variable has been defined, it may be used to define other 

variables, as above, or its value may be typed out using the TYPE com

mand. 

When used with the SET command, the equal symbol (=) does not mean 

"equality" in the usual mathematical sense. Rather, its meaning is 

more akin to "assign this value to". For example, once defined, a 

variable may be set to the value of an expression containing itself: 

1-4 



>S£1 A=23 

>TYPF A 
23 
>SFT ~=.A+3 

>TYPF A 
26 
> 

The value of a variable may be changed at any time by giving it a new 

value with a SET command: 

>SET A=L4 

>TYPF A 
4 
>SFT A=23 

>TYPF A 
23 
> 

When a variable is given a new value, MUMPS "forgets" the old one and 

assigns the new one to it. Often, it is desirable to eliminate a vari

able completely rather than give it a new value. This may be done by 

the KILL command: 

>KILL A 

>TYPE A 

? UNDEr 
> 

Here MUMPS was made to "forget" the existence of the variable A by 

execution of the "KILL A" command. Like the SET command, KILL may 

take a list of arguments. When the command is executed, all the vari

ables in the list are deleted or "forgotten". 

>KILL A,r,ABC,SUM 

> 

variables which are not defined may be KILLed without causing an 

error. 

1-5 



If no arguments follow a KILL command, all locally defined variables 

(i.e., those defined within your user partition) are deleted. In like 

manner, if no arguments follow a TYPE command, all locally defined 

variables are typed. 

1.6.1 Subscripts 

Variables in MUMPS may be subscripted. Subscripts can be used to 

indicate different "cases" or "examples" of a variable, or different 

positions in a matrix, etc. To use subscripts in any expression, 

simply type the name of the variable, followed by an open parenthesis, 

followed by the expression whose numerical value is to be taken as 

the subscript, and a close parenthesis. Subscripted variables must 

always have only ONE level of subscripting, and the value of the sub

script must be a positive number from 0.00 to 327.67. Subscripts 

themselves may contain variables, provided any such variables are 

assigned numerical values. Subscripted and nonsubscripted variables 

may not use the same name, e.g., Nand N(l) cannot be defined at the 

same time. 

The following are all legal subscripted variables: 

AGE(2) 

AGE(Q) 

AGE (O+3*B) 

ABC (25.08) 

ABC (N) 

ABC (4+ (B+2 *N) ) 

Subscripts can themselves be subscripted variables: 

ABC(ABC(AGE(3») NUM(AGE(I+4}} 

An entire array may be deleted by killing the array name. 

>KILL ABC 

> 

An individual array member may also be killed. 

1-6 



1.7 USE OF THE FOR CLAUSE 

Ofterr it is desirable to repeat the same calculation over and over 

again with the only difference being the value of some number in the 

calculation. The use of the FOR clause allows the useful tool of 

iteration to be implemented with a minimum of program space. Essen

tially, the FOR clause causes the command(s) following it on the same 

line to be executed FOR a specified set of values of the same variable. 

>TYPE XC L!) 

14 
> 

>FOR 1=1: 1: 9 TYPE 2* I," " 
2 4 6 8 10 12 14 16 18 
> 

In the first example above, the FOR clause sets 1=1 (the first number 

in the FOR list) and then executes the command following the FOR 

clause. It then repeats the execution of the SET command for the other 

values of I as specified in the FOR list. 

In the second example, the FOR clause sets 1=1, the first number in the 

FOR list specification, and tests the value of I (INDEX) against the 

third number (TERMINATOR) in the FOR list (9). Since the value of 

the INDEX variable I is NOT LARGER than the value of the TERMINATOR (9), 

the command following the FOR clause is executed. Next, FOR increments 

the INDEX by the value of the INCREMENT (1) (between the colons), and 

again tests the value of the INDEX to see if it exceeds the TERMINATOR. 

The sequence is repeated until the value of the INDEX is greater than 

the value of the TERMINATOR. 

The two types of FOR lists may be combined in the same FOR clause. The 

following example illustrates such a combination: 

>FOR I:5,E.33:6:57 TYPE I+I/3,! 
6.66 
10.66 
44 
52 
6C 
68 
76 

1-7 



The STARTING VALUE, INCREMENT, and TERMINATOR may be numbers, arithmetic 

expressions, or numerically defined variables: 

>SET A=5 

>FOR I=1+1/2:A:33.40 TYFE I," It 

1.50 6.50 11.50 16.50 21.50 26.50 31.50 
> 

1.8 FORMAT CONTROL 

Often it is necessary to present large amounts of data in some well

formatted manner. MUMPS allows three special format characters: 

# page-feed (or form-feed) 

carriage-return line-feed (CRLF) 

?N tabulate (start typing N spaces from left margin) 

These characters, as well as quoted text literals, may appear in a 

TYPE statement (as well as in certain other statements discussed 

later). When MUMPS scans the TYPE command's list of arguments, if it 

finds one of the above format characters, it outputs the appropriate 

formatting operation as well as the quoted text string. 

>FOR A= 1, 2, 4: 4: 12 TYPE uvALUE:", A*A, ! 
VALUF= 1 
VALUF=4 
VALUE= 16 
VALUF=64 
VALUF=1L.!4 

> 

In the above example, note that a comma is used following "A*A" and 

before the CRLF character (1). Commas that are normally used as de

limiters in an argument string may not be omitted preceding and/or 

following format control characters. (However, 11 is permitted.) 

The tabulation character t?Nl is particularly useful for preparing 

columns of data: 

1-8 



>F0R R=0.5:0.1: 1.2 TYPE "R=""R,,?10,,"A=",,3.14*R*R,,! 
R=0.50 A=0.78 
R=0.60 A=1.12 
R= (3 • 7 (7; A= 1 • 53 
R=0.R0 
R=0.9~ 

B= 1 
R=1.10 
}1.=1.2r, 

> 

A=2 
A=2.53 
A= 3. 1 LJ 

A=3.79 
A=4.51 

In the above example, the format expression ?10 causes the "A=" column 

to start on the 10th character from the absolute left margin (i.e., the 

margin that is in effect when %M=~). If %M and ?N conflict, %M takes 

precedence. For example, if %M is set to 10 and a piece of text is 

formatted to start at position ?8, the text will start at character 

position 10 from the absolute left margin. 

In any line of text, if one text string overlaps the starting position 

for a ?N-formatted string, the ?N string starts on the next available 

character position. For example: 

>SET tM=0 

>SFT A= 17 

>TYPF ,A" 76" "METERS" 
17 METERS 

>SFT A="SEVENTEFN" 

>TYFE A, 76" "METERS" 
SEVENTEE~WFTERS 

> 

1-9 





CHAPTER 2 

WRITING MUMPS PROGRAMS 

2.1 STEPS AND PARTS 

The simple commands presented as examples in Chapter 1 are considered 

"direct" steps -- that is, they are executed by MUMPS as soon as they 

are entered. You can see the result of a direct command immediately, 

but a direct command must be retyped every time it is performed. The 

real power of MUMPS lies in the automatic sequential execution of 

commands stored in memory. Commands executed in this manner are con

sidered "indirect" steps. 

2.1.1 Steps 

Indirect steps are composed and entered while you are still {n direct 

mode (identified by the right caret that MUMPS types after each ENTER) . 

To compose a step, type a positive two-place decimal number followed 

by a space and the command string that you wish to have "remembered": 

> 

The fractional part of the step number must be non-zero (i.e., "1.00" 

is not legal). 

After typing the command string, press the ENTER key (also known as 

ESC, ALT MODE, or PREFIX). MUMPS does not execute the command at 

this time; it stores the step in its memory and responds by typing a 

CRLF followed by a right caret. MUMPS is then ready for entry of 

another step or a direct command. 

The STEP NUMBER is the label by which the step may be referenced in 

other sections of the program. Steps are stored in step number order. 

If you wish to change the contents of a STEP after you have ENTERed it, 

you may simply retype it, using the same STEP number. MUMPS replaces 

the old STEP with the new one having the same step number. Similarly, 

if you have defined STEPS 2.34 and 2.50, and now wish to INSERT a new 

step between the two old ones, you may do so by using a step number 

between 2.34 and 2.50. The new step will be inserted in the program 

memory between the old STEPS 2.34 and 2.50. 

2-1 



2.1.2 Parts 

MUMPS also handles groups of steps as PARTS. The PART that a STEP 

belongs to is indicated by the integer portion of the step number. 

For example, step 2.35 is one of the steps in PART 2. PART numbers 

may range from a to 999. Within a PART, steps may take decimal 

values of from .01 to .99. By convention, MUMPS programmers write 

their own programs so that a PART contains all the coding necessary 

for a specific task. Thus, if a program were designed to perform many 

different tasks, each PART in the program would be written to perform 

just one of those tasks. 

2.2 THE DO STATEMENT 

The DO statement causes MUMPS to execute indirect parts or steps 

automatically in step number sequence. Consider the following short 

program to calculate the area of circles of radius R: 

1.10 TYPE "E=", R,? 10, "A=" 
1.15 SET A=3.14*R*R 
1.20 TYFE P>,! 

The three STEPS (1.10, 1.15, and 1.20) are stored in numerical order 

by MUMPS. Together, they form a program that has a single part 

(PART 1). To start the program, load the variable R with a numerical 

value and use a DO' command: 

. >SET ~= 1 .? 5 

>DO 1 
E= 1 .? 5 

>5£,1 R=1+3/R 

>DO 1 
R~7 A=5.R9 

In executing the DO command, MUMPS "does" each step, in numerical order, 

in the part referred to by the DO command. When there are no more 

steps in PART 1, MUMPS does a CRLF and types the right caret, indicat

ing that it is ready to accent another command string or store a new 

step. 

The DO command, like the TYPE command, may be modified by one or more 

FOR statements. For example, you could use the program of STEP 1 to 

type the areas corresponding to several radius values by entering the 

following statement: 

2-2 



>FOR R=1.00:0.25:2.50 DO 1 
R=l A=3.14 
R=I.25 A=4.90 
R= 1 .50 A=7 • 06 
R= 1 .75 A=9 .60 
R=2 A=12.56 
R=2.25 A=15.88 
R=2.50 A=19.62 

Remember, a FOR clause causes repeated execution of whatever command 

string follows it on the same line. Above, the command string follow

ing the FOR is a DO statement, and thus all of PART 1 is executed for 

each value of R, the INDEX of the FOR clause. 

Note that although STEP 1.15 requires a value for the variable R for 

successful execution, the variable need not be defined when the step 

is typed in. In MUMPS, variables need not be defined with a value 

until the time they are actually referenced or used. In this example, 

the initiating FOR clause assigns a new value to R for every repetition 

of PART 1. 

DO statements may also be stored as command strings within steps of a 

MUMPS program. For example, the following program (PART 2) makes 

reference to a single step of PART 1: 

2.15 SFT R=2.3 
2.20 DO 1.15 
2.25 TYPE "AHEA=""A,,! 

>DO 2 
~16.60 

A DO statement could reference all of PART 1 as well as a single 

step: 

3.10 SET L=15.25 
3.15 SET R=2.75 
3.20 DO 1 
3.25 TYPE "VOLUMF=",A*L, ! 

>DO 3 
R~5 A=23.73 
VOLUME=361.88 

> 

2-3 



A DO statement that references another part may also be controlled by 

a FOR clause, so that the other part is executed repeatedly, as in 

the following program. 

4.10 SET SUM=A+B,DIF=A-B 
4.39 TYPE "SUM= ",SUM 
4.40 TYPE" DIFFERENCE=. ",DIF,! 

6.10 SET A=10 
6.30 FOR 8=2,5,15 DO 4 

>~ 
SUM= 12 DIFFERENCE= 8 
SUM= 15 DI FFERENCE= 5 
SUM= 25 DIFFERENCE= -5 

> 

MUMPS begins this program at STEP 6.10, the first step in PART 6. 

When it encounters the FOR and the DO statements in STEP 6.30, it 

"does" each step in part 4 for the three values of B. After PART 

has been "done" for each value of B, MUMPS does not find any more 

steps in PART 6 (called by the DO 6 command string in direct mode) 

4 

and so it types out the right caret and waits for the next corrunand. 

In computer terminology, the 00 command allows MUMPS to execute a PART 

of a progra~ written as though it were a subroutine within the main 

program. Usually, subroutines are written so that many different 

sections of the program may cause the execution of the subroutine at 

different times and with different sets of data. In a statistical 

program, for example, PART 34 may be the subroutine for computing 

the standard deviation of N numbers about an arithmetic mean of MU. 

A single DO command may refer to a LIST of steps or parts. For 

example, provided that the user has previously defined all of the 

steps and parts referred to below, all of the following statements 

would be legal DO commands. 

DO 2,3,67,56.14 
DO 1.34 
DO 3.45,5,9 
FOR I=1:2:46 DO 3,15 
FOR ABC=34,56,104,200:1:250 DO 3.45,6 

2-4 



2.3 THE IF STATEMENT 

In executing a program, MUMPS can make decisions as to what action 

to take depending on the current value of variables or expressions 

within the program. An IF clause specifies the condition for which 

the command string following it on the same line is to be executed. 

Changing the example of sums and differences above, we can write a 

program to only type out the differences of the two numbers A and B 

if they are positive. If the difference is less than zero, the pro

gram types fl. 

4.10 SET SU~1=A+B,DIF=A-B 
4.20 TYPE "SUM= ·,SUM 
4.24 IF DIF<0 SET DIF=0 
4.26 TYPE" DIFF= ",DIF,! 

6.28 FOR A=20 FOR 8=10,18,34,50 DO 4 

>~ 
SUM= 30 01 FF= 10 
SUM= 38 01 FF= 2 
SUM: 54 D1 FF= 0 
SUM= 70 D1 FF= 0 

> 

In this example, the SET command in step 4.24 is executed only when 

the value of DIF is less than zero. Thus the program makes a decision 

based on the value of the variable DIF. 

2.3.1 Arithmetic Comparison Operators 

In general, the decision in an IF clause is made upon examination of 

a comparison of two expressions, variables, constants, etc. In the 

example above, the comparison made in step 4.24 is whether or not the 

value of DIF is less than zero; the specific comparison operator is 

"less than" «). The complete set of arithmetic comparison operators 

in MUMPS is as follows: 

equals 

< less than 

> greater than 

<> or >< greater than or less than (not equal) 

=< <= less than or equal 

=> >= greater than or equal 

2-5 



2.3.2 Boolean Operators 

In the example above, the general form of an IF clause is "IF" followed 

by a comparison sub-clause based on a comparison operator. The power of 

IF statements may be greatly increased by using another kind of operator, 

the Boolean Operator, to modify or link together two comparison sub-

clauses. In ML~PS the three types of Boolean operators (in order of 

precedence) are: 

NOT 

& AND 

OR (inclusive OR) 

For example: 

IF A=B&C>D DO 2 

Part 2 is "done" if A equals B, AND C is greater than D; i.e., only if 

both comparison clauses are TRUE. 

IF A=B!C>D DO 2 

Part 2 is done if either or both sub-clauses are true. 

IF' A=B DO 2 

Part 2 is done if A is NOT equal to B. Note that this is equivalent to 

either of the following statements: 

IF '(A=B) DO 2 

IF A><B DO 2 

Finally, using the three Boolean operators, many different comparison 

sub-clauses may be linked together to form complex Boolean expressions: 

IF A=BIC=3IB=2*<A+B)&'A=C DO 2 

The decoding of this complex Boolean is left as an exercise to the 

reader. 

2- 6 



2.4 MULTIPLE CLAUSES 

IF and FOR clauses may be combined in modifying a MUMPS command string. 

You may use as many modifying clauses as can fit on one line. THE 

ORDER OF EVALUATION IS FROM LEFT TO RIGHT. 

FOR 1=1:1:23 IF I*2=B-C FOR J=3,4,9 FOR K=2,3 DO 5,3,7 

MUMPS takes the following action on this command string. The first 

(left-most) INDEX variable I is stepped through the specified values. 

For each value of I, IF the conditions specified in the Boolean sub

clause are met, then J (the second INDEX variable) is stepped through 

its values. Again for each value of J, the last INDEX variable K is 

stepped through its values and for each value of K, parts 5, 3, 7 are 

"done" . 

2.5 BRANCHING -- THE GOTO COMMAND 

In general, MUMPS executes the steps in a part in ascending numerical 

sequence. One exception to this rule is the DO command which causes 

the normal sequence of control to be interrupted, transferred for a 

time to another section of the program, and then returned to continue 

the normal sequence. 

GOTO is another command in MUMPS that alters the normal sequence of 

execution. In programming terminology, GOTO is a command that trans

fers control from one area of a program to another. When MUMPS en

counters a GOTO command, it "goes" to the beginning of the referenced 

part or step. Execution then continues in the normal manner. Unlike 

DO, however, the GOTO command does not imply that control will be re

turned after execution of the referenced PART or STEP. 

For example, let us assume that a program has defined an array of num

bers called XCI) for values of I from 1 to 12. The following program 

first finds the sum of the 12 numbers in PART 1 and then transfers con

trol to PART 2 where the mean is computed and typed out. 

1.10 SET SUM=0 
1.20 FOR 1=1: 1: 12 SET SUC'1=SUM+X(I) 
1.30 TYPE !,"THE SUM EQUALS ",SUM 
1.35 GOTO 2 

2.10 TYPE n AND THE MEAN IS ",SUM/12 

>DO 1. 

THE SUM EQUALS 85.80, AND THE MEAN IS 7.15 
> 

2-7 



In the example above, there could have been another GOTO statement in 

STEP 2.20 that transferred control to another PART or STEP. This is 

perfectly legal. In fact, STEP 2.20, if it existed, could have been 

GOTO 1.10, for example, and control would simply cycle through the 

above sequence over and over again~ 

The GOTO statement may be modified by an IF clause, producing the ef

fect of conditional branching. Clearly, however, the GOTO statement 

should not be modified by a FOR clause since the GOTO does not return 

control. For the same reason, a GOTO may not have a list of STEPs or 

PARTs to "go" to. Also, GOTO may be used only in a stored command 

string, and not in direct mode. Thus, you could not start a program 

from direct mode by typing "GOTO 1". 

2.6 THE QUIT COMMAND 

In the previous examples, a PART was considered "finished" by MUMPS 

when there were no more STEPs in the PART. A program may abort exe

cution of sections of a PART or STEP by the use of the QUIT command. 

For example: 

4.10 FOR I=I:1:100 IF AGECI)=91 QUIT 

In STEP 4.10, the search through array AGE stops when 100 values have 

been searched, or when an array member having the value 91 has been 

found. The following program illustrates conditional termination of a 

PART. 

17 • 3 1 TYP E ! ~ tt S OM:: " 
17.35 SET SUM=0 
17.40 DO 19 

19.20 FOR KI=1:1:50 SET SUM=SUM+AGECKI) 
19.30 IF SUM=0 QUIr 
19.40 TYPE SUM~" MEAN= "~SUM/50~! 

>12Q....!.1 

SUM=1275 MEAN= 25.50 

> 

2-8' 



The last step in PART 19 is only executed if the sum of the array AGE 

is not zero. 

2.7 INPUT -- THE ASK COMMAND 

In the examples considered thus far, all of the variables used in the 

expressions have been SET by commands stored within the program. The 

power and flexibility of MUMPS is ,greatly increased by allowing the 

user to define numerical data in an interactive mode with the computer. 

Let us assume for the moment that a program is needed to form the sum 

of N arbitrary numbers. The following program will do the job: 

2.10 SET SUf1: 0 
2.15 ASK "WHAT IS THE NUMBER OF ITEMS? ·,N,!! 
2.20 TYPE ,"THANK YOU, LET·S BEGIN:",! 
2.30 FOR I:l:l:N 00.3 
2.50 TYPE !,"SUM ",SUM 

.3.10 ASK "ITEM:",ITMCI),! 

.3.20 SET SUM:: SUM+- ITMC I) 

When Part 2 is "done" via the DO command, the program allows the user to 

define the number (N) of items in his list. It then waits for the 

user to define each of the items in that list. When N items have been 

entered by the user (to terminate each item, press the ENTER key) the 

program types out the sum. 

>DO 2 
WHATI S THE NUMBER OF I TEMS? ~ 

THANK YOU, LET'S BEGIN: 
ITEM:.! 
ITEM:4 
ITEM=9 
ITEM:T6 
ITEt1=25 
ITEM:'.36 
ITEM:ll.2 

SUM 140 
> 

In the above example, an item might have been expressed as a sum (e.g., 

ITEM:6+3 rather than~), since the ASK Command evaluates the expression 

input. $ROOT(X) is also legal as long as X is defined (for discussion 

of $ROOT see Chapter 5). 

2-9 



ASK, like TYPE, KILL, and SET, will accept a list of variables to be 

entered. Like TYPE, it also accepts format characters (line-feed, 

form-feed, and tab (?N» and outputs any text strings enclosed in 

quotes. 

>ASK 15,"AGE OF SAMPLE = ",AGE, ! .. 113 .... TYPE = .... TYP 
AGE OF SAMPLE = ~ 

TYPE = -1 

2.8 ERROR HANDLING 

When MUMPS is unable to process a command for any reason, it outputs 

a five-character error message. If it is executing a step (rather 

than a direct command) the step-number precedes the message. The 

message is followed by CRLF and a caret to indicate that the user has 

control in direct mode. For example: 

>TYPE HH;'*100 

7 r·1AXIM 
> 

> 1.10 Y OG 
>DO 1.10 

7 1.10 CMMND 
> 

Refer to Appendix' A for a complete list of MUMPS messages. 

2.9 CREATING AND CHANGING A MUMPS PROGRAM 

If you type a MUMPS command string preceded by a legal step number 

(0.01 to 999.99), MUMPS interprets it as a step and stores it in the 

Step Buffer (an area of your user partition). To change the contents 

of a step, simply redefine it using the same step number, and MUMPS 

will update it in the buffer. 

To verify the contents of a step or a part or a list of steps and 

parts, you may use the WRITE command in direct mode: 

> WR I T E 2 , .3. 1 t 6 

2-10 



MUMPS prints out on the terminal all of the steps in PART 2, the 

single STEP 3.1, and all of the steps in PART 6. When MUMPS finishes 

writing all of the steps and parts, it returns control to direct mode. 

To delete any step or part in the program, you may use the ERASE com

mand. Like WRITE, it accepts a list of steps or parts to be erased. 

ERASE and WRITE, WHEN USED WITHOUT A LIST OF STEPS OR PARTS FOLLOWING 

THEM, REFER TO ALL PROGRAM STEPS IN YOUR USER PARTITION. Be very 

careful in the use of the ERASE command; know exactly which sections 

of the program you are deleting. 

2.10 CHANGING OR DELETING LOCAL VARIABLES 

Local variables are the variables defined during the execution of 

program steps or direct commands. They are stored in the symbol table 

portion of your user partition. To verify the contents of any vari

able, use the TYPE command: 

>S FT 1= 123.2 

>TYFE I 
123.20 
> 

Any local variable may be changed by a SET command. 

When it is used without a list of variable names as argument, the TYPE 

command causes your terminal to type out all the variables that are 

defined in your user partition. In addition, several permanent 

system variables ($L, etc.) are typed out for your reference. 

(These are defined in Chapter 4.) 

To delete any variable in your partition, use the KILL command. KILL 

can take a list of variables to be deleted. 

KILL 'and TYPE, WHEN- USED WITHOUT A LIST OF VARIABLE NA!·mS, REFER TO 

ALL VARIABLES IN YOUR USER PARTITION. Be careful in the use of the 

KILL command; know exactly which variables you are KILLing. (The 

special system variables ($L, etc.) are not changed by the KILL command. 

2-11 



2.11 SINGLE-LETTER COMMANDS 

In all the examples thus far, the full name was used to specify each 

command. In actual fact, however, MUMPS makes use of ONLY THE FIRST 

LETTER of a command word. For example, the statement: 

FOR 1=1:1:10 IF !<QTY FOR ARG=2,4 DO 5 

can also be expressed as follows: 

F 1=1:1:10 1 1<QTY F ARG=2,4 D 5 

In the above command string, note that the second "I" (standing for 

IF) is distinguished from the third I (the variable I) by position 

only. When MUMPS scans a command string, it "remembers" the first 

letter and ignores all other characters until it finds a space or 

reaches the end of the line. If it finds a single space and the 

command requires arguments, MUMPS interprets the characters following 

the space as arguments. 

2.12 MULTIPLE COMMANDS ON A LINE 

With the exception of modifying clauses like FOR and IF, the above 

examples have been restricted to one command per line. In MUMPS, this 

restriction is unnecessary. The number of MUMPS commands per line is 

limited only by the 72 characters allotted for a Teletype line. The 

sequence of execution is as fOllows: beginning at the first command 

word on the line, all commands are executed from LEFT to RIGHT, one 

after the other. When there are no more commands left on the line to 

execute, MUMPS continues with the next Step in numerical order. Of 

course, this numerical sequence may be altered by the DO and GOTO 

commands. 

The following example illustrates the use of multiple, single-letter 

commands within a step. 

2-12 



.3.10 S A=0 A !"N:",N F I=I:1:N T 1,1,"=" A C S A=A+C 

.3.20 T !"MEAN=" S C= A/N I C< 10 T" ", C Q 
3.30 I C<100 T" ",e Q 
3.40 T C 

N:~ 
1=,!. 
2=3 
3:2 
4:T 
MEAN: 2.50 

A double space convention allows a WRITE-all, ERASE-all, KILL-all, or 

TYPE-all to be followed by other commands in the same step: 

>1.10 W T "END OF PROGRAM" 
>!2Q.2 

1. 10 \11 T "END OF PROGRAM" 
FND OF PROGRAM 
> 

The double space following TYPE is interpreted by MUMPS as "type all". 

Without the double space, MUMPS might attempt to type the contents 

of the variable ASK. 

2.13 PROGRAM COMMENTS 

The MUMPS programmer can insert comments in his program simply by 

preceding the desired comment with a semicolon ( ; ). However, it 

should be noted that comments occupy space that could otherwise be 

used by the program. The following statement illustrates the manner 

in which the individual lines may be commented. 

5.10 S AGE=22 ;SET TO SEARCH FOR ALL 22-YR OLDS. 

>DO 5.10 

>TYPE AGE 
22 
> 

When MUMPS encounters such a statement, it considers all characters 

following the semicolon (up to the end of the line) to be a comment. 

2.14 PROGRAM DEBUGGING -- BREAK AND GO COMMANDS 

Often, for debugging purposes, a user may wish to interrupt the opera

tion of his program at predetermined points to examine his program data 

in some detail. After examining the data, he may then wish to resume 

the normal sequence of operation from the point of interruption. This 

technique is especially useful in the early stages of program debugging. 

2-13 



The BREAK command interrupts execution of the program, prints out ?, 

the number of the step where the BREAK command was found, and the 

word BREAK, and returns control in direct mode. The user has the 

option of examining local variables as well as other data at this 

point. He may, for example, change the value of some local array, by 

executing a statement in direct mode. When the user wishes to resume 

execution of the program, he issues the command GO in direct mode and 

presses the ENTER key. MUMPS then continues from where it left off: 

1.05 TYPE "BREAK EXAMPLE" 
le 10 SET 1 =0 
1.15 BREAK 
1.20 TYPE "1=",,1 

>DO 1 
BREAK EXAMPLE 
? 1.15 BREAK 
>TYPE 1 
o 
>GO 
1=0 

If you introduce an error while inspecting results or, for example, 

you hit BREAK during a TYPE ALL, you lose the breakpoint. MUMPS types 

an error message and returns you to direct mode. If you attempt to 

continue with a GO, a STACK error is created: 

>DO 1 
BREAK EXAMPLE 
? 1.15 BREAK 
>~ 

D=1.10 
I=0 
TYP=4 
AGE=36 
A=SEVENTEEN 
$H 

? IOINT 
>GO 

? STACK 
.> 

+ BREAK key pressed 

2-14 



CHAPTER 3 

STRING HANDLING OPERATIONS 

In Chapters 1 and 2 of this manual, you were introduced to the basic 

features of the MUMPS language as well as some of the commands. In 

this chapter, we will discuss the STRING capabilities of MUMPS. 

3.1 STRING VARIABLES 

By now you may have realized that the main purpose of MUMPS is not to 

perform complex arithmetic with high accuracy. The language has only 

basic arithmetic operations and its decimal accuracy of two digits is 

not very impressive when compared to the eight or more place accuracy 

of scientific languages like FORTRAN. In fact, the main power of MUMPS 

lies in its ability to perform powerful and flexible operations on 

STRING data. This capability allows MUMPS to be used with great success 

in information processing applications. 

To begin with, we need a working definition of a string datum. If we 

consider the set of printing characters that can be typed by a Tele

type, we have the universe of elements that can be combined to make a 

string datum. Exceptions are that @ and'\ may not be used in a MUMPS 

string. For example, consider the following series of Teletype charac

ters: 

ABCDEFGHI&**%0084-156= ./?JG" #*) (, 

The thirty-four printing characters above constitute a STRING datum. 

Of course, the particular string used above may make no sense to any

body, but it is still a string, since it is made up of a sequence of 

characters "strung" to~ether. That is all there is to a definition 

of a string datum -- a string of printing characters that are considered 

as a single identifiable quantity. Other examples of strings are: 

MY NAME IS 
ABCDEFGHIJKLMNOPQRSTUmvXYZ 
$HSL JMVM %$O/MM 
XXXXXXXPPPPPQQQQQKKKKK 
10774992784993774552.HH GGY08 
23.78 
0.27 
1 
5678.9953 

Note that space is considered 
a string character. 
Note that printing 
nmnerals may be "strung" 
together to form a 
STRING datum. 

The maximum length of any string is 73 characters. 

3-1 



Of course, the concept of string data would be of little use if 

there were no way to store and reference the particular string value 

of interest. Just as MUMPS allows the programmer to define a variable 

name that has a numeric value, it also allows him to define a string 

variable -- which naturally enough has a string value. 

In order to define a string variable having a particular string value, 

you may use the SET command in much the same way that you used it to 

SET a numeric valued variable. For strings, however, you must notify 

MUMPS that the variable is to be assigned a string value rather than a 

numeric value. This can be accomplished by typing SET, followed by a 

space, followed by the name (which may be subscripted or unsubscripted) 

of the variable to be assigned a string value, followed by an equal 

sign (=), followed by a quotation mark ("), followed by the actual 

string to be assigned to the variable, followed by a closing quotation 

mark. For example: 

>SET NME="JOHN DOE"" AGE=22" STH="22" 

>TYPE NME,," If" STH" !" AGE 
JOHN DOE 22 
22 
> 

In this example, a single SET command has three arguments to consider. 

First, it SETs the variable NME to the string value "JOHN DOE". Second

ly, it SETs the variable AGE to the numeric value 22. Note that there 

are no quotation marks in the AGE=22 portion of the statement. MUMPS 

assumes that the user means to assign the numeric value twenty-two to 

the variable named AGE. When MUMPS encounters the argument STR="22", 

it interprets it to mean SET the variable called STR equal to the 

string value formed by the concatenation of two numeral "2"IS. To 

understand the difference between the numeric value 22 and the string 

value "22" consider the two expressions below: 

AGE+IO*(I-I)/S.78 

1+3*2.S+STR 

The first expression can be evaluated and the result of the calculation 

could be used to SET some variable or type out the numeric result. The 

second expression, where STR is a defined STRING variable, is meaning

less. One cannot combine a number value and a string value. When 

evaluating the second expression MUMPS would output the error message 

MIXED (both string and numeric values in the same expression). However, 

3-2 



the members of an array need not be of the same data type. For ex

ample: 

SET ID(I):"JOHN DOE",ID(2):22,ID(3):"22" 

is perfectly legitimate. 

3.2 STRING CONCATENATION (.) 

String values may be combined (concatenated) by use of the concatena

tion operator which is a period (.). For example: 

>SET A:"NME: ",B:"FRED " 

>~ET A:A.B 

> TYPE A." JONES" 
Nt'1E: FRED JONES 
> 

3.3 STRING INPUT -- THE READ COMMAND 

String data can be ENTERed and stored in the MUMPS memory with the 

READ command; READ is analogous to the ASK command used to input 

numeric data. In both cases, MUMPS waits for the user to ENTER a 

value, which is then stored as a variable. With the READ command, 

however, whatever data the user enters is assumed to be a string 

datum. The syntax for using the READ command is the same as for ASK. 

Like the ASK command, READ can force output of quoted text literals 

separated from the variable names by delimiting commas. For example, 

if you wanted to request the user's name, age, and address, you 

might use the following program: 

9.10 READ !,"WHAT IS YOUR NAME PLEASE? ",NAM 
9.12 ASK I,"AND YOUR AGE? ",AGE,! 
9.40 READ "AND WHERE DO YOU LIVE? ",I,ADO 

>~ 

WHAT IS YOUR NAME PLEASE? JOHN DOE 
AND YOUR AGE? 28 
AND WHERE DO YOU LIVE? 
1204 SOUTH BAY STA_~~_-B OAD,_B.9S.TON. MASS. 
> 

When MUMPS encounters the READ statement above, it outputs the special 

format characters and the quoted text-literals, and then waits for the 

3-3 



user to ENTER a character string as the answer to the question, When 

the user presses the ENTER key, MUMPS assigns the string value to the 

variable. 

3.4 STRING COMPARISONS (=, [, J ,) 

String values may be tested against other string values in much the 

same way that numeric values may be tested. The examples below assume 

an array named ID in core containing 20 names (held as strings) and 20 

numbers (held as numerics). ID(l) contains the first string, ID(2) 

the first nUQber, and so on up to ID(39), which contains the last string 

and ID(40) which contains the last number. String equality can be 

tested by using the equals operator (=). For example, the program: 

4.10 READ "NAME=",NAM,! 
4.20 FOR 1=1:2:39 IF ID(I)=NAM TYPE 1D(1+1),! 
4.30 TYPE "END OF SEARCH" 

will search the table and print out the number associated with the 

name that was input, providing that the name is found. 

>DO 4 
~JAr·1E=JACK JONES 
103 
END OF SEARCH 
>DO 4 
NAME=HARRY TRUMAN 
END OF SEARCH 
> 

To make this program more useful, the contains operator ([) might be 

used; this tests whether the string value on the right side is contained 

in the string value on the left side. For example, assuming the pro-

gram 5.10 READ" NAME=", NAM,! 
5.20 IF NAM="" Q 
5.30 FOR 1=1:2:39 IF 1D(I)[NAM T ID(1)," ",ID(I+1),! 
5.40 TYPE "END OF SEARCH",! GOTO 5.10 

is stored, then the following might occur 
>~ 
NA ME= JA CK JONES 
JA CK JONES 1 '~3 
END OF SEARCH 

. NM1E=JACK 
JA CK JO'N'Es 103 
ALFRED JACKSON 104 
JA CK 0 StH T H 105 
Ei'JD OF SEARCH 
NA t1E= E..QQ. 
END OF SEARCH 
NAr'JE= E 
JACK JOrJES 103 
ALFRED JACKSON 104 
BILL RODGERS 101 
END OF SEARCH 
NA r'1E= 

3-4 



The user simply strikes ENTER to return to direct mode; this inputs 

the null character represented in 5.20 by"" (that is, nothing en

closed in quotes) . 

Note that "JACK" ["JACK" would match, and that "JOACK" ["JACK II would not. 

Suppose we wished to output all the names starting with G or H. The 

follows operator (]) can be used; this tests whether the string value 

on the left IIfollows" that on the right (i.e., whether the value on 

the left would appear after the value on the right if both were in a 

dictionary). To extend this to the full set of characters that MUMPS 

can store in a string, the following collating sequence is used: 

null 

A through 

[ ] t -+-

space 
II # $ % 

~ through 

i < = > 

Z 

& ( ) * , 
9 

? 

+ 
, - . / 

reading from left to 
right and from top to 
bottom 

Thus 11#11 follows "A", "ABC" follows IIABII (the "CII is compared with 

null), etc. By convention, II FRED II does not follow IIFREDII. 

To return to the example, the program 

6.10 FOR 1=1:2:39 DO 7 
6.20 TYPE "END OF SF.ARCH",! 

7.25 IF ID(I)]"I" Q 

7.30 I ID(I)]"G" TYPE 1D(I)," ",ID(I+1),! 

will achieve the desired result. 

>DO 6 
GFO'RGE S!'~1 TH 12L! 
GERALD JACKSON 144 
HARRY THORT 165 
}!-JD OF SEAHCH 

> 

Inequality Conditions can be tested by use of the Boolean NOT operator 

('). For example: 

3-5 



1.10 READ "CODE = ""C 
1.15 IF 'C="272B" TYPE' " ." ILLEGAL",,! GOTO 1.10 
1.20 TYPE !,,"BEGIN" 

>DO 1 
CODE = ~ 
ILLEGAL 
CODE = ROGER 
ILLEGAL 
CODE = 272B 
BFGIN 
> 

In STEP 1.15, "ILLEGAL" is typed only if the contents of Cequals 

something other than 272B (i.e., '(C=272B». 

The "not" operator can be used with the contains (I) and follows (]) 

operators as well. 

3.5 PATTERN VERIFICATION C:} 

Very often, in response to a stored READ command, the user will ENTER 

a string datum that is different from what the MUMPS program may be ex

pecting. If the need for exact specification is real, the program may 

examine the value of a variable and make some decision based on the 

type of characters that the user entered. An example for this type 

of pattern recognition is the entry of a date in a program that is 

assigning hospital beds to incoming patients. For reasons of uni

formity, the programmer may wish to insist that the user enter the 

date in the following pattern: two numbers for the month, a slash, 

two numbers for the day, a slash, and two numbers for the year; for 

example, 10/07/46 or 12/08/68. The pattern verification operator (:) 

can be used for this purpose. 

The following program will REAO the date and check it to make sure 

that the string value ENTERed corresponds to the pattern required: 

1.33 READ !,"DATE OF ADM: ",OAT,! 
1.40 IF DAT:2N"/"2N"/"2N QUIT 
1.50 TYPE "NO GOOD, PLEASE FIX" GOTO 1.33 

In Step 1.33, the string value of OAT is entered by the user. Step 

1.40 checks the value of OAT to see if it is of the pattern 2N (two 

numerals), followed by a slash mark (the quoted text-literal "/"), 

followed by 2N (another two numerals), etc. If the value entered for 

OAT fails to meet the pattern specifica~ions, control passes to Step 

1.50 and a message is printed out. 

3-6 



>DO 1 

DATE OF ADM: JAN 1 70 
I\lO GOOD, PLEASE FIX 
DATE OF ADM: 1 JAN 70 
NO GOOD, PLEASE FIX 
DATE OF ADM: ~1/01/70 

> 

In actual fact, specific patterns such as that described above are 

rarely used. More often, it is desired to determine if the user has 

entered a specific type of string character. The pattern codes 

recognized by MUMPS are: 

A Passes alphabetic characters only (A-Z). Does not 
pass numbers or punctuation. 

N Passes numerals (0-9) only. 

M Mixed. Passes combinations of alphabetics and 
numerals. 

P Passes only punctuation marks. Includes all print
ing characters (including a space) except the num
bers and the alphabetic characters. 

Q Passes combination of alphabetic and punctuation. 

Z Passes combination of numbers and punctuation. 

U Universal. Passes any character. 

NOTE 

A quoted text literal passes only 
the characters enclosed in the 
quotes (specifies an exact match) . 

In the example above, the pattern specification follows the single 

colon and contains numbers as well as the numeric pattern code (N for 

numerals). If the programmer does not care exactly how many numerals 

are entered, but merely wishes that only numerals will be passed, he 

rna'}.· indefinite pattern match N, which is simply the code let-

ter without any numbers in front of it. For example, if the program

mer wishes to test whether or not the variable DAB is composed of an 

indeterminate number of alphabetic characters followed by precisely 

four numbers and one punctuation mark (and nothing else), the pattern 

A4NlP will serve the purpose. Notice that any number of alphabetics 

3-7 



(even zero) will satisfy the first code letter. Some additional ex

amples may be found below. Note that any given string can be passed 

by several different patterns. The more specific the programmer is 

in setting up his pattern match, the finer a filter will be implemented. 

String 

1234DD 

JOHN DOE 

Some of the Patterns that will pass it 

NA, 4 NA , 4 N 2A , "1234 "A , "1" 3N lA " D", U 

U, APA, A" "A, AIP3A 

Note that in using the pattern verification operator (also called the 

syntax analyzer) the string value must be on the left of the operator, 

and the pattern on the right. For example: 

IF' STH: N DO 7 

IF QTY:2AIP3N DO 7 

IF ABC:2N&MON:3AIP5N DO 7 

In the first two examples, IF the variable name before the colon has 

the pattern coded after the colon, Part 7 will be "done". If the 

pattern does not match the value of the variable, Part 7 will not be 

done. In the third example, there are two pattern matches, connected 

by the Boolean operator & (AND). Both patterns must be satisfied in 

order to execute Part 7. Note that spaces may not explicitly appear 

in the pattern, except in a quoted text literal. 

Strings can be tested for a "no match" condition by use of the 

Boolean NOT operator ('): 

2.10 READ !,,"LAST Nt'a..ME" FIRST NAME ""N 
2.15 IF 'N:Au

" "A GOTO 2.10 
2.20 READ !,," I D "" I D 

This format ~s more convenient if you want to continue within a 

single part whether or not the "match" condition occurs. 

MUMPS functions, which are identified by the $ prefix, are not 

described until Chapter 5. However, the $VALUE function is introduced 

here to show its use with string comparisons. The $VALUE function 

converts a string value to a numeric value. 

3-8 



Thus, $VALUE(1l33") will have the numeric value 33. If the string 

value does not represent a number, the value zero is returned. Both 

$VALUE(ll~~ll and $VALUE("FRED") will have the numeric value~. When 

MUMPS executes a function it only examines the first character of the 

name after the $, and thus function names may be abbreviated in much 

the same way as commands. For example: 

3.17 S A=$V(AGE) 

The following example operates as an enquiry program for an array of 

names and numbers similar to that used in previous examples. If the 

user inputs a number, each name associated with that number is output 

(but in alphabetical order); if the user inputs a string containing a 

space, the number associated with first instance of that name is found. 

If a string not containing a space is input, every name containing that 

string is output, along with its associated number. Such a program 

might allow enquiries to an internal telephone directory; as it is 

coded for this example, it does not represent the best way of implement

ing such an application, but is given solely to illustrate the concepts 

discussed in this section. The example is coded in short form to give 

you an idea of how terse the MUMPS language can be. Note that the ac

tual strings are not sorted, but rather only the pointers to them in 

array L. 

1.10 R I,"QUERY :",S I S="" Q 
1.20 I S: N D 2 G 1.10 
1 • 3 0 1 S: A" "A DO 3 G 1. 1 0 
1.40 S J=0 F 1=1:2:39 I ID(I)[S T !,ID(I)," ",ID(I+1) S J=J+l 
1.50 I J= 0 T !," NONE" 
1.60 G 1.10 

2.25 S N=$V(S),J=1 F 1=2:2:40 1 ID(I)=N S L(J)=I-l,J=J+l 
2. 3 1 1 J = 1 T !," NON E" Q 
2.32 1 J=2 G 2.50 
2.39 S T=0 
2.40 F I=1:1:J-2 1 ID(LCI»JID(L(I+I» S T=1 D 2.61 
2.42 1 T=1 G 2.39 
2.50 F I=I:1:J-l T !,ID(LCI» 
2.51 Q 
2:61 S K=LCI)7L(J):;L(!+!),LCI+l)=K 

3.50 F 1=1:2:39 I ID(I)=S T !,ID(I+l) Q 
3.69 1 1=41 T !,"NOT FOUND" 

3-9 



f-DO 1 

QUERY :MIKE 
NONE 
QUERY:1004 
DAN B. --
DON U. 
QUERY :1010 
NANCY K-.-
WILLY W. 
QUERY : llitli 
DON U. T01f4 
DON W. 1038 
QUERY :BILL 
BILL S.~6 
QUERY :JOHN 
JOHN Q.1030 
JOHN M. 1042 
QUERY:1060 
NONE 
QUERY: 

3-10 



CHAPTER 4 

MORE ABOUT MUMPS PROGRAMMING 

In previous chapters of this manual, little or no prior knowledge or 

experience with MUMPS was assumed. This chapter, however, as well as 

Chapters 5 and 6, assumes some familiarity with the MUMPS language. 

Basically, the purpose of this chapter is to introduce to the reader 

several additional commands and capabilities, and to tie up any loose 

ends created in the previous chapters. 

4.1 MUMPS PROGRAM LIBRARIES -- CALL AND OVERLAY COMMANDS 

The amount of core space allocated to any user is limited in size, and 

each program must fit into this space. However, a program may cause 

execution of other filed programs by use of the CALL and OVERLAY com

mands. When a program is brought into core by a CALL or OVERLAY com

mand, it replaces the invoking program and MUMPS begins executing it at 

the first non-zero part. A program accessed in such a manner is treated 

like any other program by MUMPS, and it may CALL or OVERLAY still more 

programs. The effective size of the user's program is thus extended 

indefinitely. 

CALL is treated in the same manner as the DO command, except that it 

takes program names as arguments instead of part numbers. When the 

program that was CALLed is finished executing, the original CALLing 

program is read back into core and re-entered at the point immediately 

following the invoking CALL command. However, the calling program 

itself must be filed, or MUMPS will be unable to find and return to it. 

(For details, see Chapter 7. 

The second command, OVERLAY, is used like the GOTO command previously 

discussed. Unlike CALL, the OVERLAY command cannot take more than one 

program name as an argument, since MUMPS does not "remember" the name 

of the OVERLAYed program, but simply reads in the OVERLAYing program 

and begins execution of it at the first non-zero part. 

When programs are CALLed or OVERLAYed local data is available and re

mains unchanged; execution begins at the first non-zero part. When a 

program is brought in by OVERLAY in direct mode, control remains with 

the user in direct mode. Since each use of the OVERLAY command takes 

an average of one Disk access time, and since each CALL command takes 

two Disk accesses (one for the CALLed program, and one to return to the 

CALLing program), care should be exercised in the planning of program 

segments. 

4-1 



4.2 INPUT/OUTPUT DEVICES 

MUMPS timesharing allows multiple users to have access to the same 

central processor via separate remote terminals. It also allows one 

user to have access to many terminals from one program. In addition 

to terminals, MUMPS systems also include ancillary Input/Output de

vices such as the high-speed paper tape reader and punch, DECtape 

transports, etc. Each of these I/O devices is assigned an identifica

tion number. To use one of these devices, you must perform the 

following: 

First, you must establish "ownership" of the device since, in a time

sharing environment, many programs may be competing for a single de

vice. Ownership is established through use of the LOCK command. 

Before sending output to a device, you must LOCK to it. In direct 

mode this is done by entering: 

LOCK DEVICE 

where DEVICE is a numeric expression that represents the number of the 

device in question. Note that in direct mode the LOCK command must be 

the last command on a line. If the LOCK procedure is successful, that 

is, if no other user has already LOCKed to the device specified, MUMPS 

responds with a Carriage-Return and Line Feed and prints the usual right 

caret (>1. If the device has already been LOCKed to, MUMPS responds by 

typing IOLOK, which indicates that the device is "owned" by some other 

program. If there is no such device, a MAXIM error printout occurs. 

MUMPS follows a different procedure when the LOCK command is a stored 

command (i.e., in a Step). If the LOCK is successful, MUMPS ignores 

the rest of the line after the LOCK command and proceeds to the next 

Step in the program. If the LOCK procedure is unsuccessful, MUMPS 

continues on the same line and proceeds to execute any further com- , 

mands. The usefulness of this procedure may best be illustrated by 

examples: 

1.20 LOCK 12 TYPE "DEVICE 12 IS BEING USED" QUIT 
2.39 LOCK «5 TYPE "6 IS IN USE, TRY ANOTHER" GOTO 5 
4.56 LOCK 6 GOTO 4.56 

In the first example, if the LOCK is unsuccessful, MUMPS continues on 

the same line, outputs the quoted message, and then QU~Ts the part 

it was executing. In this case, the programmer has decided that if 

he cannot have device number 12, then he does not want any device 

4-2 



(so he QUITs). In the second example, the same thing happens, except 

that in this case the programmer decided to try another, presumably 

in Part 5. The technique illustrated by the third example is much 

more common; if the LOCK is unsuccessful, the program continues trying 

until it is successful. (Note that a program may be required to wait 

for an indeterminate amount of time using this technique.) In each of 

the three examples, if the LOCK is successful, control passes to the 

next Step. A program may own more than one I/O device at a time, but 

a LOCK command takes only one argument. 

After the program has established OWnership of a device, it must 

then inform MUMPS that it wishes to use the device for actual I/O. 

A program may not communicate simultaneously with more than one 

input/output device. The device identification number is stored in 

a local variable called %I. This variable may be treated as any 

other numeric variable in local storage. It may be referenced in a 

number-valued expression, and it may be SET. In order to change 

the device being used for I/O, one need only SET the value of %I 

to the desired ID number. Each I/O command references the device 

whose ID number equals the current value of %I. 

The PRINCIPAL I/O DEVICE is defined as the device (usually a Teletype

like terminal) that originally calls up the program. When %I is equal 

to zero, MUMPS uses the principal device, whatever it happens to be. 

It is the custom when using the terminal to SET %I equal to zero. 

When a user signs on from the terminal, %I contains the actual 

device number divided by one hundred (this allows the program to 

identify the terminal being used). When MUMPS detects an error, the 

value of %I is SET equal to zero so that error messages are output 

to the principal I/O device. 

When an I/O device is no longer required by a program, it can be re

leased for use by other programs by means of the UNLOCK command. UN

LOCK may take a list of arguments and UNLOCKs are always successful; 

MUMPS continues on the same line of code after executing the UNLOCK. 

When a program is halted, all devices "owned" by that program are 

UNLOCKed automatically. LOCKing and UNLOCKing the principal 

I/O device are ignored. 

4-3 



4.3 SECONDARY STORAGE 

Obviously, the limited amount of fast core memory available can not be 

allocated for applications requiring vast amounts of storage. Conse

quently, core is partitioned among the users, and only a limited amount 

of fast local storage space is available per user. MUMPS provides 

three types of secondary storage systems; Global arrays stored on 

Disk, linear storage tracts stored on DECtape, and paper tape. 

The structure and use of Global arrays is discussed in Chapter 6. For 

the time being, let us turn our attention to the use of DECtape devices. 

4.3.1 DECtape I/O 

Multiple DECtape transports are available for use under program control. 

Access to a DECtape is obtained by setting the Input/Output device 

variable (%I) equal to the appropriate device identification number. 

Subsequent READ, WRITE, ASK, and TYPE commands operate on the DECtape 

unit specified by the value of the %I variable. Since the DECtape is 

organized as a linear storage device, one additional control variable 

is needed. The address variable %ADDRESS (%A) , which can be set by the 

user, points to the next word position that will be accessed by any of 

the commands that require I/O. The value of %A is in terms of DECtape 

words divided by one hundred so that %A=24.0S means that the next word 

position to be referenced is number two thousand four hundred and five. 

Each DECtape word holds three MUMPS characters. As MUMPS accesses 

words, the value of %A is updated so that it always points to the next 

available location. The range of %A is 0.00 to 1310.71. The avail

ability of the address variable permits extensive use of address 

arithmetic in applications needing large amounts of data for long term 

storage. 

All output to DECtape must be followed by an EOM, symbolized by an 

exclamation point (1) or a page feed (#). For example: 

>TYPE X~!~Y~!~Z~! 

If a TYPE command is not followed with an EOM, the next attempt to 

TYPE onto DECtape will cause an error (even though that next statement 

is correct). 

4-4 



4.3.2 Paper Tape I/O 

The paper tape station is programmed in much the same way as terminals. I 
After LOCKing to the device and setting up the %1 variable, TYPE, 

PRINT, READ, WRITE, and ASK commands are all legal. Paper tape 

provides a convenient off-line storage medium for programs during 

early stages of development. 

4.3.3 Saving Programs Using READ and WRITE Commands 

Programs may be saved and retrieved on either paper tape or DECtape 

mediums by means of READ and WRITE commands without arguments. It is 

only necessary to LOCK to the device and set the %1 variable appro

priately. For example, let us assume that in a particular MUMPS con

figuration the paper tape station is assigned as device number 12. 

The following command sequence, then, will "dump" any locally held 

MUMPS program onto paper tape. 

>LOCK 12 

>5 ET %1 = 1 2 VJ 

The same program may be retrieved at a later time and restored within 

the user's partition by the following sequence. 

>L0CK 12 

>5ET %1= 12 R 

Programs can be saved on DECtape by similar setup commands. However, 

the %A variable may need to be set to a starting value, and it is 

advisable to add an "end-of-program" marker. For example, assuming 

the DECtape is device No. 14, the commands: 

>LOCK 14 

>5ET %I=14,%A=24.05 

>v] T "*",! 

I 

cause the local program to be written on DECtape unit 1 starting at I 
word 2405. After the "write all" (WRITE followed by double space), 

an asterisk is added as an "end-of-program" marker. 

The program may be retrieved and restored in the user's partition by 

the following sequence: 

>LOCK 14 

>5ET %I=14,toA=24.05 R 

When the program is read back, the asterisk creates an error because 

it is not a step number. The error stops the tape at the point where 

one program ends and the next begins. 

4-5 



I I 

4.4 SPECIAL (SYSTEM) VARIABLES 

A number of special system variables are defined within MUMPS to con

trol the flow of information and to provide system information to indi

vidual users. Two of these variables (%A and %I) have already been 

discussed; all of the special variables are listed and defined in 

tables 4-1 and 4-2. Table 4-1 defines variables that may either be 

referenced or SET by the user. Table 4-2 defines special variables 

that may only be referenced by the user. You will note that each vari

able shown in Table 4-1 begins with a "percent" character (%), and each 

variable in Table 4-2 begins with a "dollar sign" ($) character. 

VARIABLE 

%ADDRESS 

%ERROR 

%IODEVICE 

% FORMAT 

%MARGIN 

%PAGE 

%KEY 

Table 4-1. Special Variables that may be 
Referenced or SET 

ABBREVIATION 

%A 

%E 

%I 

%F 

%M 

%P 

%K 

DEFINITION 

Address of next word to be accessed 
on DECtape. (Automatically updated 
after a DECtape access.) 

Controls action of independent pro
gram when errors or interrupts occur. 
(Initiallv -.01) 

%E=~ BREAK is ignored. 

%E=-.~l BREAK terminates the program. 

%E=-.~3 Set %E to ~ on a BREAK. (Use 
for implementation of user 
defined operations.) 

Contains the number of the I/O device 
to be used by MUMPS. When the 
job is first started, %I contains 
the device number divided by 100. 

Contains the number of characters from 
the left margin that define the loca
tion of the right margin. (Initially 
set to 72.) CRLF occurs on first spac 
following the %F-th character. 

Controls where the first character 
on a line will occur; can be used 
for tabbing. %M should be less than 
%F for proper operation. (Initially ~.) 

Controls where a carriage return and 
a form-feed control character is out
put in lieu of a CRLF. %P=~ disables 
this feature. (Initially ~.) (Form
feed is not available on all types of 
terminal. ) 

Contains protection key for globals or 
programs. (Initially ~.) Refer to 
CDapter 7 for more detailed informa
tion on key protection. 

4-6 



Table 4-2. Special Variables that may be Referenced Only 

VARIABLE 

$LOCATION 

$STORAGE 

$TIME 

$DATE 

$X 

$Y 

ABBREVIATION 

$L 

$S 

$T 

$D 

$X 

~ $Y 

DEFINITION 

Equals the number of the Step that 
is being executed at any time. 

Equals the number of free characters 
of storage left in the partition. 

$TIME contains the number of seconds 
since midnight, divided by 100. 

$DATE contains a six character string 
with year, month, and day; "yymmdd". 
This form allows convenient collating 
operations. 

X-coordinate. Equals the number of 
characters typed since the last car
riage-return line-feed on the princi
pal output device only. 

Y-coordinate. Equals the number of 
carriage-return line-feeds since the 
last PAGE feed on the principal out
put device only. 

4.5 SPECIAL COMMANDS AND COMMAND FORMS 

In addition to the commands described in preceding sections of this 

manual, MUMPS provides several other special commands and command forms 

that are described in the following paragraphs. 

4.5.1 The HANG and HALT Commands 

The HANG command provides for a program to II HANG II for a specified num

ber of seconds during which time no attention is given to the program 

calling for a HANG. This facility is especially useful in applications 

where the programmer periodically wants to check the status of a vari

able and take action when the variable has changed; in the event that 

it has not, the program goes into II limbo II for another period of time. 

The number of seconds to HANG is specified as an argument to the HANG 

command. Consider the following examples: 

HANG 0.04 The next command is not executed until four 
seconds have elapsed. 

HANG 1.20 The next command is not executed until 120 
seconds have elapsed. 

HANG 0 Give up the rest of your current processor 
time slice. 

HALT Terminates the user's session at the terminal. 



The reader will note the similarity between HANG and HALT; that is, both 

commands begin with the letter H. If a command begins with an H and has 

no argument after it, MUMPS interprets it as HALT. If there is an argu

ment following the command, MUMPS interprets it as a HANG command and 

takes the appropriate action. 

4.5.2 More About the QUIT Command 

To better understand the QUIT command, it may be helpful to think of a 

program's execution as occurring at different levels. Each time a DO 

command, a CALL command, or a FOR modifier is encountered the level of 

the program is raised by one. The normal termination of the above com

mands and FOR modifier decreases the current level by one. When QUIT 

is executed, the current level is also decreased by one and the invok

ing command or FOR modifier is terminated. 

The QUIT command is used if a program is in the range of a DO or CALL 

command and it completes its computation; control then returns to the 

code immediately following the invoking command. If the invoking com

mand was a DO from direct mode, control is returned to direct mode. 

If the program is currently in a FOR loop, the repetitive loop ends 

when a QUIT command is executed, and the program continues from the 

QUIT statement. For example: 

1-01 F I=I:1:10 R !"ACI) I ACI)="DONE" Q T !!,,"THANKS" 

>D 1.01 

10 
20 
30 
40 
50 
OONE 

'IHANKS 
> 

The array A(I) is READ until A(I) is equal to "DONE", at which point 

the FOR is terminated, and the message "THANKS" is typed. 

4.5.3 More About the DO Command 

There are two additional points that should be made concerning the use 

of the DO command that were not covered in Chapter 2. First, for some 

editing applications, the user may wish to create a new program Step 

under program control rather than by ent"ering the new Step via direct 

mode. This may be accomplished by use of the DO command if the argument 

4-8 



is a STRING of the proper format. The use of this facility may best 

be illustrated by examples: 

Statement Effect 

DO "1.20 TYPE X+3" A Step 1.20 is created containing 
the command TYPE X+3. 

DO 3.l1J,$C(I)." ".STP,3.21J Step 3.l1J is "done", a Step 
created whose contents are the 
value of the string STP, and then 
Step 3.21J is "done". 

DO $ C (I) ." ". S TP , I 

The Step number of STP is the 
value of the number variable Ie 
Note the mandatory space between 
the Step number $C(I) and the 
contents STP. 

As above, Step I is created. But 
in this case, the DO command has 
a second argument, I. Therefore, 
this command will create the Step 
and then immediately execute it. 

Secondly, it was stated in Chapter 2 that if the argument of a DO com

mand was a Step number, then MUMPS would execute that Step and then 

return to the next argument, if any, in the DO command. This is 

strictly true only if the Step that was "done" does not have any GOTO 

command in it. If the invoked Step does have a GOTO in it, MUMPS will 

honor the GOTO and will not return to the invoking DO command until the 

end of a Part or a QUIT command is encountered, after which it returns 

as usual. In effect, this gives the programmer the ability to DO a 

Part starting with a Step that is not necessarily the first Step in 

that Part. 

4.5.4 UNTIL and WHILE Terminators in the FOR Clause 

The FOR statement has been described as having two different formats 

(Range and List) that may be intermixed. For example: 1:1:200 (Range), 

1,4,2,8,45 (List), 1: 1: 4,8,12 (intermixed), and 1,5,2: 4: 12,3,6,1: 1: 5 

(intermixed) . 

In the Range format, the limit may be replaced by a WHILE or UNTIL 

clause. For example: 

For K=l:1J UNTIL X=2 ... MUMPS will do everything in the range 
of the FOR statement UNTIL the Boole
an condition (X=2) is TRUE. It then 
stops and goes on to the next Step. 

4-9 



FOR K=l:l WHILE X=2 ..• 

4.5.5 The PRINT Command 

In this case, MUMPS will do every
thing in the FOR statement WHILE 
the Boolean condition (X=2) is TRUE. 
In other words, when the Boolean 
condition fails to be true, the 
FOR statement will be stopped and 
control passes to the next line. 

Although MUMPS has been created with a great deal of device independence, 

it is very often desirable to take advantage of special features of 

certain I/O devices. The PRINT command accepts numeric arguments, the 

low-order seven bits of which are taken as an ASCII character. This 

character is transmitted without any conversion to the device specified 

by %I. Using this command, it is possible for the programmer to take 

advantage of the control functions for a particular device, such 

as the bell (PRINT .07), a carriage return without a line feed 

(PRINT .13), or a line feed without a carriage return (PRINT .10). 

Multiple codes ban be specified by separating them with commas. For 

example, 

>PRINT .10,.10,.10,.07 

results in three line feeds (without a carriage return) and ringing the 

bell. 

4 • 5 • 6 XCOH Command 

This command permits a MUMPS program to access specific disk blocks 

on either DECdisk or Disk Pack. The command is provided primarily 

for use by system programming or management personnel and is key 

protected for system security. Complete information on the use of t 

this command is provided in Chapter 7 of MUMPS Operator's Guide 

(DEC-15-Mr·1UPA-A-D) . 

4-10 



CHAPTER 5 

USING FUNCTIONS IN MUMPS 

MUMPS contains a number of useful functions. By convention, MUMPS 

function names are always preceded by a Itdollar sign" ($) and, like 

commands and special variables, only the first letter of the actual 

name is required. Expressions that are to be evaluated as "arguments" 

by the function are specified in parentheses and separated by commas 

as part of the function call. The form for using functions is best 

illustrated by an example: 

1.13 FOR 1=1: 1:10 SET ARY(I)=(2*1)*(2*I) 
1.20 FOR 1=1:1:10 TYPE" ",$ROOTCARYCI» 

>QJL.! 
2 4 6 8 10 12 14 16 18 20 

> 

MUMPS provides for two basic types of functions that are classified 

according to the type of value that is returned. The Numeric Func

tions are those that return numeric values. Similarly, functions 

that return string values are termed String Functions. Numeric 

functions may be used anywhere numeric values are legal. String 

functions may also be used where string values are legal. However, 

except for $ BOOLEAN , they may not be nested within other functions. 

Table 5-1 (at the end of this chapter) shows functions which may be 

legally nested. 

In the function descriptions that follow, SVE refers to a string valued 

expression and NVE refers to a numeric valued expression. In cases 

where a function has more than one argument of the same type, the 

arguments are numbered according to position. 

5.1 NUMERIC FUNCTIONS 

Numeric functions included in MUMPS are: 

$ROOT 

$LENGTH 

$VALUE 

$ INTEGER 

$FIND 

$ BOOLEAN 

5-1 

$DEFINE 

$NEXT 

$HIGH 

$OBTAIN 

$QUERY 

$Z 

$KORE 

I 



Each of these functions is described in paragraphs that follow. 

5.1.1 $ROOT(NVE) 

This function first forms the value of the numeric valued expression 

specified by NVE. NVE may be a number, a numeric variable, or an ex

pression such as AGE+3/YRS, provided that the variables AGE and YRS 

both have numeric values. In any case, if the NVE results in a legal

ly defined MUMPS number, $ROOT(NVE) returns the value of the square 

root of NVE. If NVE is a negative valued expression, MUMPS types the 

error message MINUS. $ROOT may be used in the same manner as any 

other numeric expression, for example, to compute and store the value 

of the hypotenuse of a right triangle of sides A and B one might use 

$ROOT in the following way: 

SET C=$ROOT(A*A+B*B) 

To determine if the hypotenuse is an even multiple of 5, one might 

use the following: 

1.13 SET D=$RCA*A+B*B)/5 
1.50 IF D/100*1~0=D TYPE "MULTIPLE" QUIT 
1.60 TYPE "NOT MULTIPLE OF 5" 

5 5.1.2 $LENGTH(SVE) 

The $LENGTH function ($L) returns the number of characters contained 

in the string valued expression SVE. For example: 

$L ("HELLO") 

$L(NAM) 

i 5.1.3 $VALUE(SVE) 

Returns the numeric value 5. 

Where the argument NAM has 
the string value "JOHN DOE", the 
numeric value returned is 8. 

The $VALUE function ($V) evaluates the string argument SVE and attempts 

to convert it to a number equal to the value represented by the digits 

in the string. If the leftmost characters of the string represent 

a valid number, $V returns that number; otherwise, $V returns~. The 

user should check for SVE="~" before using $V to avoid ambiguity. 

The following are all valid SVE's for the $V function: 

5-2 



$V ( " 1. 1.0" ) 

$V ( " 1+ 3/4" ) 

$V(AGE) 

Returned as the numeric l.l~. 

Returned as the numeric 1.75. 

Where AGE = 1159", $V returns 
the numeric 59 

$V ('I $T/6.0 ,FRED") Number of minutes since midnight/lOa 

The following examples cause $VALUE to return the numeric value ~. 

$V ("JOHN DOEll) This string does not represent a 
number. 

$V(AGE) Where AGE does not contain a string 
that can be evaluated as a number 
(e. g., "FIFTY-NINE YEARS. ") 

The $V function is useful after checking the syntax of a response to a 

query. In the followinq example, assume that a two-digit number is 

required: 

1.111 READ nNUf1BER PLEASE ",STR! 
1.12 IF STR:2N TYPE "THANK YOU·· GOTO 1.16 
1.14 TYPE "USE ONLY T\~O DIGITS PLEASE",! GOTO 1.10 
1. 1 6 SE T NU M= $ V ( S T R) 

>00 1 
NUMBER PLEASE 365 
USE ONLY TWO DIGITS PLEASE 
NUMBER PLEASE ~ 
THANK YOU 
> 

The reader will note that in applications programs it is safer to 

use a READ command followed by appropriate syntax checking than to 

use an ASK command. This technique allows programmed recovery from 

input errors. 

5.1.4 $INTEGER(NVE) 

This function returns the integer portion of the numeric valued ex

pression NVE (i.e., the fractional part, if any, is not returned). 

For example: 

$1(30.26) 

$1 (AGE/5) 

Returns the numeric value 30. 

If AGE contains the numeric 
value 59, the integer value 
returned is lla 

5-3 



5.1.5 $FIND(SVEl,SVE2,NVE) 

The $FIND function ($F) searches for the occurrence of the string 

SVE2 within SVEI. NVE is an optional argument and, if present, the 

h h h 1 b · . h h th h th' th searc t roug SVE eg~ns w~t t e NVE c aracter; 0 erw~se, e 

search begins with the first character of SVEI. If $F "finds" SVE2 

within SVEl, it returns a number that represents the character posi

tion following the last character of SVE2. If $F does not find SVE2 

within SVEl, it returns a zero. For example, where 

STR="ABCDEFGHIJKLMNOP" 

the following $F functions will return the values indicated. 

$F (STR, "A" ,1) 

$F(STR,"A",3) 

$F (STR, "EFG" ,1) 

$F (STR, "ACD" , 1) 

returns 2. 

returns ~; A does not occur after 
the third character in STR. 

returns 8. 

returns ~; the string ACD is 
not found. 

5.1.6 $BOOLEAN(BOOLl,NVEliBOOL2,NVE2; ... iBOOLn,NVEn) 

Very often it is desired to type one of two messaaes or to branch to 

different Steps depending on some condition in a program. This type 

of operation, where it is desired to do "A" if one thing is true, "B" 

if something else is true, or "e" if another condition is true, can 

be achieved with the $BOOLEAN function. The $B function tests 

multiple Boolean expressions and as soon as it finds one of the 

expressions true, returns a corresponding numeric value. For example, 

assuming X=l, Y=2, E="ABE", then 

>1' ~P(X>Y, 1;;.(=3,X+¥;FC It {-l",X-Y; 1,(7,) 

-1 
> 

results in evaluation of the expression X-Y and typing of -1. 

If the returned numeric value is a part or step number, it can be 

I used as the argument to a GOTO, in which case a controlled branch is 

executed. It could also be used as the third argument of a $PIECE 

function where the string variable contains multiple messages and the 

$B controls which message the $PIECE would return. For example, if 

the variable X contains "HELLO, GOOD BYE", and the variable D controls 

the typing of either HELLO or GOOD BYE, depending on whether it 

5-4 



contains a 2-digit number, then: 

Ie 10 T $P (X" "" "" $B ( D: 2N .. 1; 1 .. 2) ) 

would result in typing HELLO if D contains a 2-digit number, and GOOD 

BYE otherwise. 

The $B function allows argument pairs to be separated by either commas 

or semicolons. The advantage in using semicolons is that the eye 

more easily can spot the separation of pairs than it can with commas. 

The function does not evaluate any of the numeric arguments except 

those within the NVE which it is returning. This allows the other 

NVE's to contain undefined variables. One requirement of the function 

is that there must be at least one TRUE Boolean expression; therefore, 

it is suggested that the last Boolean argument contain an always 

TRUE value, such as the number 1. 

5.1.7 $DEFINE (Variable name) 

The $DEFINE function ($D) can be used to check the data type of either 

local or global variables. The variable to be checked is simply named 

as an argument to the $D function. $D returns one of six number values 

as follows: 

~ undefined 

1 string valued datum 

2 numeric valued datum 

3 (spare} 

} 
returned 

4 pointer to structure at lower level for global 

pointer and string valued datum 
variables 

5 only (Ch. 

6 pointer and numeric valued datum 

5.1.8 $NEXT(NVE) 

$N returns the number of the first MUMPS Step following the Step 

specified by NVE. For example: 

$NEXT(~} 

$NEXT (~. 99) 

returns the Step number of the 
first Step in the program. 

returns the Step number of the 
first Step in Part 1. 

If there are no Steps after the value of NVE, $N retur~s zero (~). 

5-5 

6) 



5.1.9 $HIGH(VAR(SUBSCRIPT» 

$HIGH returns the value.of the lowest subscript numerically greater 

than the specified subscript of the given array. For example, if 

the array name ABC has the following defined values: 

ABC (1) 

ABC(1.5) 

ABC(3.l2) 

then the following values are returned by $H: 

$H (ABC (~) ) 

$H(ABC(l.l» 

$H (ABC (3.12) ) 

returns 1. 

returns 1.5. 

returns ~. 

Notice that if there are no numerically greater subscripts, $H returns 

zero (~). 

5.1.10 The $OBTAIN and $QUERY Functions 

It is frequently useful to retrieve information from a global accord

ing to its physical arrangement rather than the logical arrangement. 

MUMPS does not physically sort a new entry at a level into ascending 

subscript order, but finds a "convenient" place within the file at 

that level. Therefore, while a file may logically consist of 

entries at subscripts 1, 3, 7, and 15, the physical layout may very 

wel_l be_ 3, 1, 15, 7; in that order. As the file at that level gets 

larger, several disk blocks may have to be allocated for it, and it 

would· be useful to know the physical order of the entries to minimize 

the number of disk accesses. 

In many cases, it is necessary to consult every entry of a file at a 

certain level, in order to establish a successful "hit" (e.g., in 

the case where the first three letters of a surname are mapped to 

the first three levels, and the balance of the surname is stored, 

along with others having the same first three letters, in a 4th 

level sequential file). The $OBTAIN and $QUERY functions have been 

designed to aid the MUMPS programmer when he encounters this need. 

5-6 



5.1.10.1 SOBTAIN (GLOBAL NAME (SUBl, •.• ,SUB
n

» -- $OBTAIN causes a 

search of the specified global array to be performed to determine if 

a level of subscripting exists below that specified in the argument 

(SUBn ). If the search is successful, the number of the (physically) 

first subscript or node is returned. If only an empty node exists 

(all data has been KILLed), a -1 is returned. If there is no lower 

level present, an UNDEF error results. For example, if there exists 

a global called "All having the following physical structure: 

tA (3) (pointer only) 

tA(3,7) IIString A" 

tA(3,2) IIString B" 

tA(3,4) "String ell 

tA(3,1) IIString nil 

The command: 

SET J=$OBTAIN (tA(3» 

causes J to be set to the numeric value 7 and sets up the global for 

access at this level (i.e., naked syntax references can now be made 

at this level). If, in the above example, the command: 

SET J=$OBTAIN (tA(3,4» 

is issued, an UNDEF will be caused since there are no lower levels 

defined in the structure. In practice, the user should utilize the 

$DEFINE function if there is any doubt as to the existence of a lower 

level. 

5.1.10.2 $QUERY (GLOBAL NAME (SUBl, .•. ,SUB
n

» -- $QUERY causes a search 

of the specified global array to be performed at the current level to 

obtain the next (physically sequential) subscript. If the search is 

successful, the number of the next subscript is returned; otherwise, 

a -1 is returned. 

This function is typically used in conjunction with the $OBTAIN 

function to sequentially search a level completely in the physical 

order of subscript occurrence. The following example shows a typical 

application of both functions. 

5-7 



Assume the global name is tA, and that I, J, and K are 

subscript values for the first three levels. Further, 

assume that X contains the string to be searched for at 

the fourth level. D is a temporary variable for inter

mediate results. 

19.10 
19.20 
19.30 

20.10 
20.20 
20.30 
20.40 

Comments: 

SET D=$D(tA(I,J,K») 
IF D=4! D=5! D=6 DO 20 QUIT 
TYPE "NOTHING TO SEARCH" 

SET D=$OBTAIN(t(K» 
IF D=-l TYPE "NOTHING FOUND" "_QUIT 
IF X=(D) TYPE "FOUND IT" QUIT 
SET D=$QUERY(t(D» GOTO 20.20 

1. Part 19 proves there is a structure to search and 
calls on part 20 to do the search. 

2. Step 20.10 causes the global to advance to the 
fourth level as well as get the first physical 
subscript at that level. 

3. Step 20.20 checks for end of file. 

4. Steps 20.30 and 20.40 can use the naked access 
at the fourth level. 

5.1.11 $Z(NVE} 

The $Z function returns a pseudo random number of modulus NVE. 

5.1.12 $KORE 

The $KORE function is a feature of MUMPS which permits a program to 

access any specified core location. $KORE should only be used in 

conjunction with an assembly listing of the operating system and is 

provided primarily for use by system programming or management 

personnel. This command is key protected for system security. Com

plete information on the use of $KORE is provided in Chapter 7 of 

MUMPS Operator's Guide (DEC-15-MMUPA-A-D). 

5-8 



5.2 STRING FUNCTIONS 

String Functions included in MUMPS are: 

$CHARACTER 

$EXTRACT 

$PIECE 

$STEP 

$TEXT 

$MONEY 

NOTE 

String functions'cannot be nested 
together. 

Each of these functions is described in the paragraphs that follow. 

5.2.1 $CHARACTER(NVE) 

The $CHARACTER function ($C) converts the number value NVE to a 

character string. For example: 

$C(33) yields the character string "33". 

$C (X) yields the character string "1,0.92" 
where X=lO. 92. 

The resulting string expressions can be evaluated by string com

parison operators (:, =, [, ]) for format control, etc. 

5.2.2 $EXTRACT(SVE,NVEl,NVE2) 

$E EXTRACTS all the characters from SVE that are between the NVElst 

and NVE2 ndcharacter locations, inclusive. If NVEI is greater than 

NVE2, $E returns a "null string". The null string can be represented 

in MUMPS programs by the notation "" If NVE2 is equal to NVEI or if 

NVE2 is omitted, $E returns the NVElst character only. If the length 

of the string is such that $E runs out of characters before satisfying 

both NVEl and NVE2, then the function returns any characters between 

the NVElst character and the end of the string. Only the integer parts 

of NVEI and NVE2 are considered. 

5-9 



This function is frequently used in editing routines. By combined use 

of the $EXTRACT function with the concatenation operator (.), any seg

ment of a string may be extracted and replaced by another. For example, 

assume that the string variable NAM="JOHN DOE" and we want to change 

it to last-name first, comma, first-name last. The following state

ments will do it: 

SET LST=$EXTRACT (NAM, $FIND (NAM," ",1), $LENGTH (NAM) ) 
SET FIR=$EXTRACT(NAM,l,$FIND(NAM," ",0)-2) 
SET NAM=LAS.",".FIR 

5.2.3 $PIECE(SVEl,SVE2,NVEl,NVE2) 

Often, to save space, a programmer will pack several "pieces" of data 

in a single string, thus cutting down on overhead space and access 

time. The $p function examines the string variable SVEl, which is 

assumed to be divided into "fields" delimited by the first character 

of SVE2. $p returns the text in the fields specified by the two 

arguments NVEI and NVE2. If NVE2 is equal to NVEl, or if NVE2 is 

omitted, $P returns only the NVElst field without delimiters. If 

there is no NVEI field, then a null string is returned. If $P runs 

out of fields before satisfying NVE2, it returns any characters be

tween the SVE2 delimiter and the end of the string. For example, where 

STR="34,6.~9,JOHN DOE,BOSTON,JUNE,22" 
DEL=" ,II 

then the following would be true: 

$P(STR,DEL,3) 

$P(STR,DEL,2) 

$P(STR,DEL,3,4) 

$P(STR,DEL,4,1~) 

$P(STR,DEL,8) 

$P(STR," ",1) 

returns "JOHN DOE" 

returns "6.~9" 

returns "JOHN DOE,BOSTON" 

returns "BOSTON,JUNE,22" 

returns a null string, since there 
is no eighth field in SVEl 

returns "34,6.~9,JOHN" 

5-10 



The delimiter may be specified literally, as well as by a variable. 

If the delimiter within the argument is a punctuation mark, the same 

mark can be used as the delimiter in the $p statement without quota

tion marks: 

$p (STR, 3) returns "JOHN DOE" 

5.2.4 $STEP(NVE} 

The $STEP function ($S) returns the string value of the Step specified 

by NVE, without the STEP NUMBER. This function may be useful in edit

ing applications where it is necessary to treat the contents of a Step 

as a string. 

5.2.5 $TEXT(NVE) 

The $TEXT function evaluates the numeric argument NVE to return three 

ASCII characters. $T is used primarily by MUMPS system programmers. 

For example, assume NBR is equal to 61~1~28. Then 

$T (NBR) 

returns the three-character string lAB . 

......... -- 0 P t i 0 na Z ----I.~ 

$MONEY extends the normal range of MUMPS numbers (±13l0.71), to 

permit operations on numbers which contain up to nine significant 

digits and exponents in the range from 10 46 to 10- 30 . 

The $M function allows the arithmetic operations +, -, *, I, where 

each of the operations has its normal arithmetic meaning. The $M 

function accepts only string valued expressions (SVE's), not 

actual nlli~eric valUeS. Hence, constants used in $M expressions 

must be enclosed in quotes and variables must have been previously 

set to string values. For example: 

SET X="1.5" 
SET Y="-2.3" (Sign needed 9nly if negative) 
SET Z="4" (Decimal point may be omitted) 
SET SUM=$M· (X+Y+Z) 

5-11 



The value of SUM will be the string "3.2". 

SET T=$M (SUM + "1.2") 

Since 1.2 is a constant used in a $M expression it must be enclosed in 

quotes. Further, other MUMPS functions must not be nested within $M 

expressions. This means that the expression: 

1.23 SET A=$M("123.4"+$C(72» 

is illegal. However, the following will solve this problem: 

1.23 SET B=$C(72) 
1.33 SET A=$M("123.4"+B) 

Unlike normal MUMPS arithmetic operations, a $M expression is 

evaluated STRICTLY from left to right, in the order in which the 

operations appear. Parentheses are NOT permitted. Thus, a $M 

expression containing multiplication and division may indeed yield 

a different result from that given by normal MUH.PS arithmetic. For 

example: 

SET A=6, B=9, C=3 
SET X=A+B/C 

SET A="6", B=19", C=13" 
SET X=$M (A+B/C) 

iRESULT X=9 

iRESULT x=1I5 11 

In the first example, because it is normal H.UMPS arithmetic, B/C is 

evaluated prior to addition to A. Hence, B/C = 3, A+3 = 9. In the 

second example, because it is $M evaluation, A + B is evaluated first 

and then that result is divided by C. Hence A + B "15", lS/C = "5", 

which is the STRICT left to right application of the arithmetic 

operations. 

If the desired result was X A + E' two solutions are possible: 

or 

SET 
SET 

SET 

T 
X 

X 

$M (B/C) 
$M (A+T) 

$M (B/C + A) 

In many instances the second solution, which is obviously more 

desirable because it is shorter, will suffice. In complicated 

expressions it may be necessary to defined sub-expressions and 

then use these in a $M function involving only addition and sub

traction. 

5-12 



In addition to nine digits and an optional sign and decimal point, 

string values to be used in $M functions may include an exponent. 

The exponent portion consists of an up arrow (t), a sign, and one 

or two digits indicating a power of 10. 

1.11 
1.21 

SET 
SET 

x="15t+5" 
Y="-1.275t-12" 

In the first example the result is 15 x 10
5 

or 1500000. In the 

second example the result is -1.275 x 10-12 (or -0.000000000001275). 

When it is necessary to input a value to be used in a $M function, it 

should be input via a READ command rather than an ASK, since the READ 

allows the input of string valued variables. When entering data via 

READ, the string may contain up to nine significant digits, an 

optional decimal point, and sign, and an exponent. When more than 

nine significant digits are entered all digits following the ninth 

are interpreted as an equivalent number of zeroes. 

INPUT VALUE 

"1234.56 i1 

"36942305.009" 

"123456789123t-13" 

"600430009523760" 

".00032405619342" 

VALUE USED FOR CALCULATION 

123.456 

36942305 

.0000123456789 

600430009000000 

.000324056193 

When values calculated by $M functions are to be printed, they 

are entered in TYPE statements just as any other numeric output. Up 

to nine significant digits are output with a sufficient number of 

leading or trailing zeroes to adjust for the power of ten required. 

RESULTS OF CALCULATION 

1.23456 

1.5XI015 

6.78XIO- 12 

OUTPUT VALUE 

1.23456 

1500000000000000 

.00000000000678 

The following examples illustrate many of the features of the 

$M function. 

Example A: 

The following program will input a value N and compute N 

factorial. N factorial is defined as the product of all 

5-13 



integers between 1 and N. It is written syrnbolicially as N! 

Hence 51 = 1 X 2 X 3 X 4 X 5 = 120. 

Example B: 

l.l~ 
1.2.0 
1.25 
1.3~ 
1.35 
1.4~ 

DO 1 

READ !," ENTER N. PROGRAM WILL COr-1PUTE N! ", N , ! 
SET X="l",FAC="l" 
SET NN=$V(N) 
FOR I=l:l:NN SET FAC=$M(F*X) ,X=$M(X+"l") 
TYPE N,"FACTORIAL=",FAC,! 
GO TO l.l~ 

ENTER N. PROGRAM WILL COMPUTE N! 5 
5 FACTORIAL=12~ 

ENTER N. PROGRAM WILL COMPUTE Nl 1.0 
l~ FACTORIAL=36288~.0 

ENTER N. PROGRAM WILL COMPUTE N! 15 
15 FACTORIAL=13~767436~~.0~ 

The following program allows the user to enter a value R which is the 

radius of a circle. The program calculates the area of a circle of 

radius R from the equation A=nR2 

Example C: 

l.l~ SET PI="3.14l59" 
1. 2~ READ" ENTER R ", R, ! 
1.3~ SET A=$M(PI*R*R) 
1.4.0 TYPE "FOR A CIRCLE OF RAD IUS ", R, "THE AREA IS ", A, ! ! ! 
1.5~ GOTO 1.2~ 

The program is a compound interest problem. The input is a rate of 

interest as a percentage. The program determines the number of years 

it takes to double $100 at the given rate by compounding interest 

annually. 

1.~5 
l.l~ 
1.2~ 
1.3~ 
1.4~ 
1.5~ 
1.6~ 
1.7~ 

SET DBL="2~~" 
READ !!!!, "ENTER INTEREST RATE ", R, ! 
SET C="l~~",y=~ 
TYPE !!, "CAPITAL INTEREST YEAR",! 
SET INT=$M(C*R) ,C=$M(C+INT) ,Y=Y+l 
TYPE C," " , INT , " " , Y , ! 
SET X=$M{C-DBL) IF $E(X,l}="-" GOTO 1.4 
GOTO 1.1 

5-14 



U1 
j 
~ 
U1 

PRIMARY 

FUNCTION 

TABLE 5-1 

LEGAL FUNCTIONS FOR NESTINGYi· 

FUNCTION TO BE tlESTED 

N U MER I C 

$BOOLEl\N $DEFINE $FINO $HIGII $INTEGER $KORE $LENG'l'1I $NEX'l' $OB'l'l\IN $QUEHY $HOOT $VALUI: $Z 

S T R I N G 

$CIll\RACTER $EXTRACT $MONEY $PIECE $STEP $TEX'l' 
-- .... - --.-- .. ----- ----+----+-

N 

U 

M 

E 

R 

C 

s 

T 

$ BOOLEAN 

'j' 
$DEFINE 

$FIND 

-'-1'
$HIGlI 

$INTEGER 

$KORE 

$ LENGTH 

$NEXT 

-r 
$OBTAIN 

·-;;·~;;-RY t 

$ ROOT 

$VALUE 

$Z 

$CHAR

ACTER 

$ EX'l'RACT 

R $MONEY 

I $PIECE 

N $STEP 

G $TEXT 

x 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X X X X X X X 

X X X X X X X X 

X X X X X X X X 

X X X X X X X X 

X X X X X X X X 

X X X X X X X X 

X X X X X X X X 

X X X X X X X X 

X X X X X X X X 

i"Nesting is permitted only within the subscript portion of the argument. 

i"t X = legal cOrnbina.tion. 

X X X X X X X X X X 

X X X 

X X X 

X X X 

X X X 

X X 

X X X 

X X X X 

X X X 





CHAPTER 6 

THE GLOBAL DATA BASE 

The MUMPS language allows local data required by a program to be refer

enced symbolically and space for it to be allocated as needed. Local 

data is the set of variables established within the domain of a parti

cular program, and available and defined only within that program. 

The data actually resides within the user partition, and functions as 

scratch or transient data. Local arrays are treated as if they are 

intended to be sparse i.e., only subscripts for which data are defined 

are allocated space. A symbolic variable used in a program may be 

given either a numerical value or a variable length string value. When 

it has a string value, only that space required by the string is actu

ally allocated. Thus, for both strings and sparse arrays, the over

head of a compiler system does not exist (i.e., maximum sizes of ar

rays and maximum lengths for string variables are not allocated) . 

This philosophy is extended to data management on disk. Elements 

stored in data files are referenced entirely symbolically; the file 

name is similar to that of a local variable name in a program. Fields 

in the data file are treated as array elements and referenced by means 

of subscripts; subfields are referenced by appending additional sub

scripts. Data files on the disk thus comprise an external system of 

arrays, which provides a common data base available to all programs. 

The arrays that make up this external system are called global vari

ables, and are identified by global array names. A global name (or 

file name) consists of the character up-arrow (t) followed by one to 

three alphabetic characters. The form of the subscript portion of an 

array reference consists of an arbitrary number of numeric expressions 

separated by corrmas and enclosed by parentheses. 

Like local arrays, the range of legal subscript values for global ar

rays is 0.00 to +327.67. Use of values outside this range will be 

treated as an error (MAXIM). Each addressable element of a global ar

ray is called a node. Thus; tA(l); tGHC(7;3;4); and tB{1:2:9:3:7.46) 

are all nodes. The structure of these arrays is hierarchical, and any 

node within an array tree may possess either a numeric or a string data 

value and/or a pointer to a lower level in the tree. Data may be 

stored at any level, and there are no constraints to the dimension or 

size of the array. In addition, the quantity and magnitude of sub

scripts for an array are dynamic so that both the content of an array 

and its structure may vary. 

6-1 



6.1 USE OF OPEN AND CLOSE COMMANDS 

To avoid time-sharing conflicts, a program must use the OPEN command to 

prevent other programs from changing global arrays which i~ is in the 

process of altering. The argument of OPEN may be one array name or a 

list of array names. For example: 

OPEN tG 

or 

OPEN tA,tB,tC 

OPEN prevents any other program from altering data in any of the speci~ 

fied arrays. The effect of OPEN is cancelled when the program halts 

or at the occurrence of the command CLOSE, which does not allow any 

arguments, and releases all opened arrays to other users in the system. 

If an OPEN is unsuccessful, all open arrays will be CLOSEd, and MUMPS 

continues trying to open the arrays until it is successful. Also, a 

program error will CLOSE all globals. A program may not alter a global 

array it has not OPENed. 

If the CLOSE command is combined with other commands on the same line, 

C must be followed by a double space: e.g. >C~~~l. If a single 

space were used, MUMPS would attempt a "CALL G". 

Since modification of content and structure of a global array may be 

caused by a variety of programs in the system, a particular program 

must sometimes examine the current configuration of an array before 

attempting to access or update it. MUMPS provides a set of functions 

to determine the type and structure of a global array. These functions 

($D and $H, described in Chapter 5) permit the programmer to locate 

the nodes where information is stored within an array as well as empty 

nodes that are available for data storage. 

6.2 USE OF THE $DEFINE FUNCTION 

The program may determine the data type of a specified node by applica

tion of the function $DEFINE as $DEFINE(tARRAY(NVEl,NVE2, ... )). The 

numeric value returned represents the current status as follows: 

~ - undefined with no datum or structure associated 
with it 

1 - string valued datum only 

2 - numeric valued datum only 

6-2 



3 not used 

4 pointer to structure at lower level only 

5 pointer plus string valued datum 

6 pointer plus numeric valued datum 

6.3 USE OF THE $HIGH FUNCTION 

The program may determine the next sequential node at a given level by 

means of the function $HIGH as in $HIGH(tARRAY(NVEI,NVE2, •.. ,NVEn». 

The function returns the lowest subscript value which is on the same 

level as NVEn and which is higher than NVEn. To determine the exact 

state of that defined node the $DEFINE function must be used. If, upon 

completing the scan of a file, no subscript value greater than that 

specified is found, $HIGH returns a value of zero (~). Thus, when $HIGH 

is used as an instruction in an iterative process, the value returned 

must always be checked for zero as an escape. Consider the following 

example where tA consists of nodes tA(I), tA(I,I), tA(I,2), and 

tA(I,I,2) . 

>T $HCtACl,l» 
2 
>T $H(tA(l,l,l» 
2 
>T $HCtA(1,2» 
o 
> 

6.4 STORAGE OF DATA IN GLOBAL ARRAYS 

The storage of data into an array is accomplished solely by the assign

ment command, SET (i.e., READ and ASK may not be used to directly store 

data in a global array). Consider the following statement: 

SET tAPR(UN,NAME):"JOHN DOE",tAPR(UN,AGE):34 

Assume the global array name tAPR is reserved as an active patient 

record file. Each patient entry in the file is accessed through his 

hospital unit number, in this case a local variable UNa Both NAME and 

AGE are also local variables whose values indicate the appropriate cate

gory at the second level of the array. This statement then assigns the 

string value IIJOHN DOEll and the numeric value 34 to the specific second 

level categories, name and age respectively. Subsequently, a statement 

such as: 

6-3 



SET TAPR(UN,CHEM,N):$DATE.",".TEST 

might define the Nth laboratory test in the Chemistry Lab with the 

double field entry of the date concatenated with the test name. 

6.5 RETRIEVAL OF DATA FROM GLOBAL ARRAYS 

Retrieving data from global arrays is no different from retrieving 

data from local arrays. The statement: 

TYPE "THE AGE OF ",TAPR(UN,NAME)," IS ",TAPR(UN,AGE) 

could result in outputting the following. 

THE AGE OF JOHN DOE IS 34 

To print out a list of a patient's laboratory tests (assuming tAPR(UN,CHEM) 

is the total number of tests defined), the following statement miqht be 

used: 

FOR I:l:l:tAPR(UN,CHEM) T ITAPR(UN,CHEM,I) 

The KILL command when applied to a specific node in a global array, 

prunes the array tree at that node. Any data value and/or array point

ers to lower level nodes are removed, and that node reverts back to 

an undefined status. The statement KILL +APR(UN) would delete all in

formation for the patient defined by the local variable UN. 

6.6 NAKED GLOBAL 'VARIABLES 

Included in the global array syntax is the "naked" global variable. 

The form of the naked variable consists of the up-arrow followed by a 

subscript (or a series of subscripts) enclosed in parentheses. This 

notation is equivalent to the last previously used global array refer

ence, except that the value of the last referenced subscript is replaced 

with the value of the first subscript in the naked variable. For ex

ample, the statement: 

TYPE" THE AGE OF ",tAPR(UN,NAME)," IS ",tCAGE) 

6-4 



is equivalent to the previous example that typed NAME and AGE. 

Once a block of data accommodating a single level of subscripting is 

referenced, it is maintained in core memory until a reference is given 

to a different level by the program. Use of the naked variable then 

permits other data at the same level to be referenced merely by speci

fying a terminal subscript, so that once a level is reached often no 

further disk access need be made to manipulate associated information. 

If any data in a block is altered, it is only written back on the disk 

when a reference is made to a block other than the one that is in core 

memory, when a CLOSE or HALT command is given, or when an error causes 

a program to crash. 

By far the most common errors that occur in the use of global arrays 

stem from the use of the so-called "naked" variable syntax. The fol

lowing examples illustrate some of the problems that may be encountered. 

These examples represent only a few of the many possibilities for pro

ducing erroneous results when using naked variables. It is a powerful 

syntax but one that must be used cautiously. 

Example A. 

IF $DCtA(I,J»=0 SET t(J)=VALUE 

In this case, the user is testing the status of tA(I,J) by means of the 

$DEFINE function. If $DEFINE returns a zero value, that node is unde

fined. The user then reasons that since $DEFINE has brought him to the 

desired level, he is safe in using the naked variable. Incorrect!! 

The user has no way of knowing where the search has ended and thus can

not know the current level. For example, the search may have ended at 

the first level if no tA(I) node was defined. To be safe, the user 

should spell out the full name as in: 

IF $DCtACI,J»=0 SET tA(I,J)=VALUE 

Of course, if $DEFINE returns a non-zero result, the use of naked vari

ables is perfectly safe. 

Example B. 

OPEN tG SET tCI)=VALUE 

6-5 



To avoid time sharing conflicts, the first global reference after an 

OPEN may not be a naked reference. 

Example C. 

SET tG(I,J,K)=t(K)+l 

This command string is legal, but the result may not be what the user 

expects. The problem lies in the order of evaluation that MUMPS uses 

for processing a SET command string. The first side of the equal sign 

(=) that is evaluated is the right side. The use of the naked variable 

in this case will reference the last used level, not necessarily the 

same as tG(I,J,K) on the left side of the equal sign. 

A more proper use would be: 

SET t(X)=tG(I,J,K)+l 

This command string will cause the appropriate node to be incremented 

by one. 

Example D. 

FOR I=l:!:N SET t(I,D)=VAL(I) 

While this example seems benign enough, it is not. Each time MUMPS 

goes through the FOR loop, it will go down another level in the global 

array!!! The referenced nodes will look like: 

6.7 THE JOIN COMMAND 

... 1, D 

... 1,2,D 

.•• 1,2,3,D 

... 1,2,3,4,D 
.. ,.1,2,3,4,5,D 
etc. 

Frequently, nodes may share data at a lower level. For example, there 

may be a node for each of the proprietary names of a particular job 

while lower-level data remains the same in each case. The JOIN command 

can be used to allow nodes to "share" the same data at a lower level. 

For example: 

6-6 



JOIN tA(1,3,2)+tA(7,S,6,4) 

"joins" the A(1,3,2) node to the A{7,S,6,4) node; as a result, the 

statement 

TYPE tA(1,3,2,S) 

will actually output tA(7,S,6,4,S). 

There are presently several implementation restrictions on use of the 

JOIN command. In particular, JOINs can only be made within a single 

global array (i.e., the names must be the same). Also, the node on the 

left may not have a pointer to a lower level. 

6-7 





CHAPTER 7 

PROGRAM AND DATA PROTECTION SCHEME 

Program and data file protection is an important part of the MUMPS 

system. Through the use of the MUPAK utility package, the system 

manager can control every aspect of application program and data 

filing and retrieval. Programs are protected from unauthorized use, 

inspection, or modification by a sign-in scheme involving user name 

codes, program name codes, and program access keys. Global data is 

protected by access keys that prevent unauthorized reading or data 

modification. 

MUMPS and MUPAK together provide a comprehensive protection scheme, 

but the number of protection features that are actually applied may 

be determined by the installation manager. Some installations may 

require absolutely no protection -- others may require considerable 

protection due to their public nature. 

Most of the protection scheme is established through the MUPAK 

utility package. program protection keys, however, are assigned by 

the MUMPS program author when the program is filed. 

7.1 DEFINITIONS 

Some of the terms that describe users, terminals, programs, and data 

files in the MUMPS system are defined below. 

7.1.1 Mode of User Interaction 

Direct: In direct mode, the user can enter MUMPS commands for 

immediate execution, or compose and enter numbered MUMPS program 

steps. Direct mode is available only at terminals that are 

assigned developmental status (defined below). Different log-in 

procedures give the user scratchpad privileges, permission to 

create new programs, or permission to use or modify existing 

programs. 

Indirect: Indirect mode is in effect while stored program steps 

are being executed sequentially by MUMPS. The program may type 

out conversational queries and allow the user to enter data, but 

the user cannot enter direct MUMPS commands or compose program 

steps. 

7-1 



iii 

: 

7.1.2 Program Status CD or I) 

Programs are assigned D or I status by log-in procedures. The MUPAK 

utility package can also assign certain I-status programs to operate 

as "autoload" programs for specified users. 

D-Status (Developmental): D-status programs may be requested by 

name during log-in at a developmental terminal. If aD-status 

program is requested during log-in at an operational terminal, 

MUMPS prints the message NOT FOUND. 

I-status (Independent): I-status programs may be requested by 

name at operational as well as at developmental terminals. 

D-status programs can be converted to I-status by a special 

log-in procedure. 

Load and Go: All I-status programs are considered "load and goll. 

When a user logs in in I-mode and requests a library program by 

name, the program begins execution automatically at the lowest 

non-zero step number. The terminal remains in I-mode, so the 

user cannot stop execution and examine or modify the program 

itself. 

Autoload: An autoload program is an I-status program that has 

been assigned by MUPAK to begin execution when a particular 

user signs in. The user does not specify a program name. An 

autoload program can also be assigned to begin execution in 

response to the operation of the BREAK key at a IItied" 

terminal. 

7.1.3 Terminal Privileges 

Each MUMPS terminal can be assigned by the MUPAK utility package to 

serve in one of four privilege categories -- developmental, opera

tional, tied, or closed. Developmental terminals have unrestricted 

privileges but log-in is elaborate. Other terminal classes have 

progressively fewer privileges but simpler log-in procedures. 

Developmental: Developmental terminals are allowed access to 

direct mode for execution of direct MUMPS commands and composi

tion and filing of MUMPS applications programs. Other programs 

of D or I status can be brought in for execution or inspection 

in direct mode. A developmental terminal can also execute D- or 

I-status programs in indirect mode. Direct or indirect mode is 

7-2 



established at the time of log-in, not by the type of program 

that is in effect. 

Operational: Operational terminals are restricted to I-status 

programs. Through specific log-in procedures, the user can re

quest load-and-go programs by name, or begin execution of an 

"autoload" program associated with his user name code. 

Tied: Tied terminals are restricted to a single autoload program 

that begins execution when the BREAK key is pressed. No other 

log-in is necessary. 

Closed: Closed terminals are the most restricted from the user's 

standpoint, in that he cannot log in or otherwise request service 

However, closed terminals can be controlled by a MUMPS applica

tion program that prints out instructions and requests information 

input to be entered at the keyboard. 

7.1.4 Protection Keys 

A key is a positive MUMPS number in the range 0.01 through 1310.71 in

clusive. If the key associated with any key-protected item is zero, 

then the item is considered to be unprotected. All previous descrip

tions in the body of this manual have assumed no protection for the 

sake of simplicity. 

7.2 DEVELOPING, FILING, AND USING MUMPS PROGRAMS 

MUMPS applications programs are developed, debugged, and modified in 

the D (direct) operating mode at a terminal that has been assigned 

developmental status. To prevent unauthorized users from filing new 

programs or modifying existing ones, the user's intent must be es

tablished at the time of log-in. 

By citing a scratchpad (SP) key during log-in, a user can gain access 

to a developmental terminal for direct command execution or the 

creation of short temporary programs. 

By citing a nonexistent program key (NE) during log-in, the user can 

establish a program name, create the program, and file it permanently 

in the program library. A protection key can be assigned at the time 

the program is filed. 

Users can request an existing program for execution by specifying a 

program name during log-in. However, access in D-mode to key-protected 

7-3 



programs is denied unless the correct key is specified. Thus, programs 

cannot be examined or modified by unauthorized users. Any program can 

be executed on request without citing the key, but a protected program 

cannot be inspected or changed unless the key is cited. 

Operational terminals can only request and execute I-status programs. 

(However, these programs may call or overlay programs which are filed 

in D-status.). 

Codes and symbols used during log-in are defined in Table 7-1. Log-in 

examples are described in Table 7-2. 

7.2.1 Scratchpad Operation 

Log-in: Scratchpad log-in permits a user to operate a terminal 

without filing any programs. Log in as follows: 

1. Press the BREAK key. MUMPS responds by typing: 

MUMPS LINE 
ID 

2. Type user name, scratchpad key [in brackets], and an 
asterisk: 

MUMPS LINE 1 
ID ABC[3.2J* 

(User input is 
under lined. ) 

If no scratchpad key has been assigned, the key 
number and brackets are omitted and the asterisk 
is typed after the user name: 

MUMPS LINF 
ID ABC * 

3. Press the ENTER key. (The ENTER key may also be 
labeled ESC, ALT MODE, or PREFIX, depending on 
the type of terminal you have.) If your ID codes 
are valid, MUMPS responds with a CRLF (carriage 
return-line feed) and types a right caret: 

MUtv1PS LINE 1 
ID ABC[3.2J* 
> 

The right caret indicates that the terminal is in 
direct mode and will accept direct MUMPS commands 
or indirect step entries. 

Scratchpad Capabilities: The commands, example programs, and 

demonstrations appearing in the body of this manual assume that 

the terminal is in ilscratchpadli mode of operation; the terminal 

is in direct mode and the user is able to execute direct com

mands, create new program steps, execute these programs, or 

7-4 



Item 

User Name 

Program Name 

Mode 
Designator 

Scratchpad 
Key 

Nonexistent 
Program Key 

Protection 
Key 

Table 7-1 

Log-In Conventions 

Example 

ABE 

ABE:TIM 

* 

[SP] 

[NE] 

[N. NN] 

Explanation 

Established throuqh MUPAK (usually 
three letters). 

User ABE's program TIM. (Program 
name, following colon, can be up to 
three letters. Numbers are not 
permitted. ) 

Asterisk specifies log-in to direct 
mode. If asterisk is omitted, only 
I-Status programs can be invoked. 

Authorizes use of a terminal in 
scratchpad mode. Actual key is 
assigned through MUPAK. 

Authorizes use of a terminal in 
creating and filing a new program. 
This key is also assigned through 
MUPAK. 

Authorizes a D-mode user to examine 
or modify a protected program. Keys 
are assigned to programs by the usp.r 
when the program is filed. 

NOTE 

Keys are positive MUMPS 
numbers (0.01 through 
1310. 7l) • 

7-5 



(BREAK) 
--
ID STE[3.25J* 
> 

(BREAK) 
MUt>"PS LINE 
ID STE:TIM[2.50J* NEW D 
> 

(BREAK) 
MUMPS LINE 
ID~ 
THE TIME IS 7:55 
THANK YOU 

lBREAK) 

~r"JPS LINE 
ID STF:TIM 
THE TI ME IS 7: 56 
THAl\JI{ YOU 

(BREAK) 
MUMPS LINF 1 
ID STE:TIM[37.2J*I 
>\.; 

1. 1 (iI T 
1. 15 S 
1.20 S 
1.25 T 

"THE TIME IS " 
HR=~hI ($-T/36) 

H "-' II ... _:-, -

Table 7-2 

Log-In Examples 

User STE logs in for a session of D-mode 
scratchpad operation. The [SP] key can 
be omitted if set to 0.00 by MUPAK. 

User STE logs in to create program STE:TIM. 
MUMPS responds by authorizing the NEW 
program and classifying it in D-status. 
The INE] key can be omitted if set to 0.00 
by MUPAK. 

User STE logs in for his autoload program, 
which executes and terminates automatically. 
(MUPAK assigns the Program STE:TIM as STEIs 
autoload program.) 

Any user logs in in I-mode for the STE:TIM 
I-status program. The program operates 
as a load-and-go (executes automatically 
and terminates) • 

User STE logs in for his I-status program 
STE:TIM, specifies the protection key, and 
requests D-mode (*). Note that MUMPS prints 
out the filed status of the program (I). The 
program enters his user partition where it 
can be run, inspected, or modified. 

1.30 
1.35 

I 
T 

!Io I N < 1 r T "(1 " " V I )J Q 

MIN Q 

>D 1 
'rHETIME IS q:01 
> 

7-6 



call and overlay other filed programs. While programs are being 

executed automatically by MUMPS, the "indirect" mode is in effect: 

everything that takes place is under control of the progra~. (To 

interrupt execution of a long or repetitive program, press the 

BREAK key. The terminal will stop executi~g and return to the 

direct mode.) 

In the scratchpad mode, programs cannot be filed, since the log-in 

procedure does not specify a program name. When a session at a 

terminal is ended by a HALT command, the programs and any 

associated local variables in the user partition are erased. Even 

if the same user logs in again in scratchpad mode, the partition 

is empty. 

Scratchpad-mode programs can be saved on paper tape or DECtape, 

as described in Chapter 4. When the user logs in again he can 

read in the same programs, resume development, and execute them. 

Call and Overlay Commands: A scratchpad user can employ the 

CALL and OVERLAY commands to bring in filed programs for execu

tion. However, an unfiled developmental program in the user 

partition will be lost when the CALL or OVERLAY takes place. 

MUMPS will attempt to return to the developmental program, but 

will not find it in the file. An OVERLAYed program simply remains 

in the partition after it has been completed. No attempt is made 

to retrieve the original program. 

The effects of CALLing or OVERLAYing key-protected programs in 

D-mode are discussed later. 

7.2.2 Creating and Filing New Programs 

Log-in: The intent to create and file a new program must be de

clared at the time of log-in. After the BREAK key is pressed and 

MUMPS responds with the request for ID, type the user name, a 

colon, the proposed program name (also one to three letters), 

the NE key, and an asterisk followed by (ALT). For example: 

!'I'U~PS LII'\£ 1 
IV STE:GNG[2.50J* 

If the user name is accepted, the program name is legal, and the 

key is valid, the system responds "NEW D" and enters direct mode 

(indicated by a right caret): 

7-7 



MUMPS LINE 1 
ID STE:GNG[2.50l* NEW D 
> 

The "NEW D" response indicates permission to develop a program of 

the specified name, and that the program is classified as a 

developmental program (D-mode) (the log-in method for changing 

the program to I-mode appears later). 

Filing a New Program: Once the program has been composed and 

debugged to the user's satisfaction, it can be stored using the 

FILE command (usable only in direct mode), for example: 

>F 

The program is filed under the user name and program name speci

fied at log-in. 

Assigning Protection Key: Protection keys prevent other D-mode 

users from examining, altering, or deleting filed programs. A 

protection key may be assigned at the time the file command is 

given, for example: 

>F (2. 5J 

A new progrw~ initially has a key of zero (no protection). If 

no key is assigned, it remains zero. 

Changing and Re-Filing: After a program has been filed, it re

mains in the user partition until the use of the terminal is 

HALTed. The user can continue to run it, or even modify it and 

re-file. Every time a FILE command is entered, the program 

currently present in the user partition replaces the previous 

program in the file. If the new program has fewer steps, unused 

steps of the old program are erased. However, a program must 

contain at least one step in order for the FILE command to take 

effect. 

Once a key has been assigned, it need not be repeated. The FILE 

command leaves the previous key intact. To change a key, simply 

use a FILE co~~and with the new key specified. To remove a key 

from a previously protected program, use: 

7-8 



Using Calls and Overlays: While developing a program, the user 

may want to CALL or OVERLAY another filed program. The develop

mental program must be filed before a CALL or OVERLAY command 

is entered. Otherwise, MUMPS will be unable to retrieve the 

original program. 

To CALL or OVERLAY programs filed under another user name, the 

form ABC:DEF (user name:program name} may be used. For example, 

the command: 

>CALL A~SAM:CHG 

CALLs current user's program A and user SA1\1 , s program CRG. If no 

user name is given, MUMPS assumes that the user name is the last 

one specified by a CALL or OVERLAY. In the example above, if the 

program SAM:CRG contains the statement 

>CALL DJB 

SAM's program DJB will be CALLed. The current user name is stored 

on each CALL and restored on return. 

Referencing Key-Protected Programs: If a program referenced by 

CALL or OVERLAY is protected, the key may be cited either in %K 

or in the command itself: 

>CALL ROG:ERT[19.?J 

In a CALL to a protected program, citing the key allows the user 

to inspect the CALLed program in direct mode if there is an error 

or interrupt. If a program CALLs a protected program without 

citing the key, the protected program will run in load-and-go 

fashion, but the terminal cannot be returned to direct mode until 

the protected program is done and an unprotected program level is 

reached. If there is an error, or if the user attempts to 

interrupt execution with the BREAK key, MUMPS will erase the 

partition and return to direct mode. 

Every OVERLAY attempt in direct mode is by definition an intent to 

"peek" at the program, since the OVERLAYing program is loaded into 

the partition and the terminal is returned to direct mode. There

fore, the key of a protected program must be cited in an OVERLAY. 

If the user attempts to OVERLAY to a protected program without 

citing the key, the partition is erased and a ?KEY error message 

is printed. 

7-9 



Programs intended for execution in I-mode may themselves CALL or 

OVERLAY D-status or I-status programs without specifying keys, 

even though these programs are key-protected. Since an opera

tional terminal user cannot stop execution and take control in 

direct mode, keys can be disregarded. Keys prevent programs from 

being inspected by unauthorized users. 

Notes on Keys: 

1. Where a key is not required (the key is zero) citing a key 

is not an error. Thus %K need never be cleared. (%K is 

set to 0.00 during log-in.) 

2. A key cited syntactically (within brackets) takes 

precedence over the %K value. 

3. Although I-mode programs are not protected from being ~, 

the program may contain an internal "password" scheme to 

prevent unauthorized use. 

7.2.3 Modifying Existing Programs 

Once a program is created and filed, the originator can run it and 

modify or update it. So can any other D-mode user, if he knows the 

program name and protection key. 

Lo~-In: To obtain an existing program and retain control in 

D-mode, the user must specify the program name and protection 

key, if any, at the time of log-in: 

BREAK 
MUMFS LINE 1 
ID STF:A(12.5J*D 
> 

If MUMPS finds a program of that name and the protection key is 

correct, MUMPS prints the program status (0 or I) and the caret 

indicating that the program is present in the user partition. 

Changing a program and Re-Filing: The User can execute the program 

and add, modify, or delete steps just as when developing new pro

grams. A new version can be filed using the FILE command. A new 

protection key can be assigned when the program is re-filed. (If 

no key is specified, the previous key stays in effect.} 

7-10 



IN USE Condition: In order to prevent time-sharing conflicts, a 

program is considered to be IN USE as soon as any terminal logs in 

specifying that program and getting control in direct mode. Until 

that terminal logs out no other terminal may log in for that pro

gram in direct mode. Thus, it is impossible for two terminals to 

simultaneously change and file the same program. 

7.2.4 Changing Program Status (D, I, and Xl 

Programs are assigned D(developmental) status when they are created. 

D-status programs cannot be invoked for execution by I-mode users. If 

a user attempts to log in for use of a D-mode program in I-mode (i.e., 

autoload or load-and-go), MUMPS will respond "NOT FOUND". ' 

Changing D to I: In order to release a D-status program to the 

program library for autoload or load-and-go use, it must be 

changed to I-status. This is done at log-in time by adding an I 

after the asterisk in the identification entry: 

(BREAK) 
MUMPS LINE 1 
ID STF:AC12.5J*I OK 

ID 

MUMPS types OK, indicating that the named program has been changed 

to I status, and asks for a new ID. 

CAUTION 

Before releasing a program in I status, the user 
should make sure it contains a quit or HALT 
command or other means of graceful exit. Since 
an I-mode user's ability to interrupt execution 
depends on the condition of the %E system variable, 
he may not be able to terminate a program that 
loops endlessly. 

Changing I to D: An I-status program can be changed back to 

D status (withdrawn from autoload or load-and-go use) by adding 

a D after the asterisk during log-in. 

Expunging (X): Any existing program can be expunged (deleted 

from the file) at log-in by adding an X after the asterisk: 

(BREAK) 
MU~PS LINE 1 
ID STE:AC12.5J*X OK 
ID STF:A[1?5J* ~OT FOU~D 
II) 
THANK YOU 

7-11 

Program has noW been deleted. 
Replying with a null string 

logs out the terminal. 



An expunged program disappears from the file. The program name 

can be used again. 

7.2.5 Changing a Program Name 

The following procedure changes a program named XYZ:A*D to the name 

SDH:B*D 

1. Log in to create the new program SDH:B* 

2. When MUMPS responds 

NEW D 

bring in the existing program with a direct OVERLAY 
command, i.e.: 

>OVEHLAY XY?: A 

or, if there is a key: 

>OVFRLAY XY7.:A(13.21J 

3. When MUMPS responds with the right caret, indicating that 
the called program is in the user partition, enter a FILE 
command. The program will be filed under the name speci
fied at log-in. Assign a protection key, if desired. 

4. Sign off (HALT). 

5. Log in again using the name of the old program and add an 
X to expunge it from the file. 

7.2.6 Using Programs in I-Mode 

In actual practice, the direct mode is restricted to users who are 

authorized to create programs and file them. Day-to-day users, at 

operational terminals, do not compose programs. Such terminals are 

limited to conversational data entry and message printout under control 

of an applications program. The terminal never leaves the I-mode to 

permit direct command insertion or program composition. I-mode users 

cannot invoke developmental CD-mode) programs by name for execution. 

Log-In: I-mode users may obtain programs in three ways: by user 

name/program name (load-and-go), by user name only (autoload), 

or by operation of the BREAK key (at tied terminals}. I-mode 

log-in codes (user names and keys) are controlled through MUPAK 

by the MUMPS system manager. If the name and key given at log-in 

are legal, MUMPS loads the program and begins execution at the 

first non-zero step. The terminal is never released to direct 

control. The result of an error or an attempt to stop the program 

by pressing the BREAK key depends on the value of the %E system 

variable (Table 4-1}. When the program runs out of steps, or 

reaches a quit or halt command, MUMPS terminates the session at 

7-12 



the terminal. To obtain another program, the user must log in 

again. 

Requesting Programs by Name (Load-and-Go): An I-mode user signs 

in for a specific I-mode program by entering user name and program 

name. The asterisk is not used: 

MUMPS LINE 
ID STE:TIM 

Since I-mode users cannot inspect programs, the key numerals (if 

assigned) and brackets are omitted. 

Autoload Program: Any I-mode program may be assigned by MUPAK to 

a particular user name as that user's lI autoload" program. For 

example, program ABE:TIM[37.3]I could be assigned as the autoload 

program for user ABE. User ABE only needs to enter his user name 

in order to obtain the program, which begins immediate execution. 

The same I-status program may be run by anyone who enters the 

proper user name and program name at log-in without citing a key; 

since direct mode cannot be entered, the program cannot be 

examined or changed. An I-status program may always be loaded via 

autoload or load-and-go even if it is IN USE or other terminals 

have invoked it via autoload or load-and-go. 

Tied Terminals: MUPAK can also assign an I-mode program to act 

as the autoload program for a specific tied terminal. The program 

will load and begin execution in response to an operation of the 

BREAK key; no log-in is required. For example, program SDH:A[3~2]I 

might be assigned as the autoload program for terminalS. Whenever 

the terminal 5 BREAK key is pressed, that program begins execution. 

End Use of I-Status Programs: The purpose of MUMPS application 

programming is to develop a set of programs useful to the ultimate 

user (e.g., the nurse, clerk, etc.) These users must be given 

entry to the system through passwords used during log-in. These 

passwords are usually names of programs filed in the I-status. 

A practical application program structure always contains a set 

of programs and subroutines calling and overlaying each other. 

The bulk of these routines should remain in D-status to preclude 

inadvertent sign-in to a subroutine or a piece of the overall 

package in the wrong sequence. 

7-13 



It is possible that all users may sign in for the same root 

program, or sub-executive, which routes the user to appropriate 

D-status pieces of the package. Thus, the only program in the 

system to be filed in I-status might be that root progra~ 

Hence the guideline: the only program(s) that must be filed in 

I-status are autoload programs and those which must be known by 

name by the ultimate users during log-in. If such programs are 

not I-status, the error message "NOT FOUND" will be given in 

response to log-in. 

7.2.7 Summary of Program Protection Rules 

1. The status of a program (i.e. Independent or Developmental) 

only has meaning at log-in time. In particular, the program 

status determines the action in case of error or BREAK key 

operation. If the log-in command string does not include 

the asterisk, the program must be filed in I-status or execu

tion will not begin. If there is an error or the BREAK key 

is pressed, %E will be interpreted according to Table 4-1. 

If log-in does include the asterisk, the program may be 

filed in either I or D status. If there is an error or the 

BREAK key is pressed, %E will be ignored and control will 

revert to the uSer in direct mode. 

2. Assume a user has logged in for development. As he composes 

his program he may invoke any program he knows by name, using 

CALL and OVERLAY commands, and they will execute. However, 

he will not be allowed inspection privileges unless he also 

cited the program's key. (Program protection keys only have 

to do with inspection privileges, not execution.) 

3. The purpose of operational and tied terminals is to absolutely 

preclude development from those terminals. 

4. The purpose of closed terminals is to absolutely preclude any 

log-in procedure. 

7.3 PROTECTION OF GLOBALS 

A global may be key-protected to prevent unauthorized examination and/or 

alteration of global data. A global has two keys in order that author

ization can be given to examine data without implying authorization to 

7-14 



change it. Since a global must be open in order to change it, these 

keys are known as the READ KEY and the OPEN KEY. Since altering a 

global implies reading (or examining) it, the OPEN key is sufficient 

for any legal operation on the global. Both keys are set by the MUMPS 

Utility Package (MUPAK). 

7.3.1 OPEN Key 

A key protected global may be opened either by loading the key into 

the system variable %K, or by using the key within the syntax of the 

OPEN command. For example, to open global ABC which has an OPEN key 

of 1.27, either of the following will suffice: 

S %K=1.27 0 tABC 

or 

o tABC[1.27] 

The second form is necessary when it is required to open more than 

one key-protected global in a single statement; for example: 

o tABC[1.27], tBCA[7.21] 

Once a global is open, no key need be cited to perform any legal opera

tion on that global. 

If the global has an OPEN key value of ~, no key need be cited in order 

to open the global (the global is considered to be unprotected). 

7.3.2 READ Key 

The READ key is used to enable examination of a global by a user who 

is not authorized to alter it (does not have the OPEN key). For 

example, where ABC had a READ key of 99, either of the following will 

suffice: 

S %K=99,A= $D( tABC(1,2)) 

or 

S A=$D( tABC[99] (1,2)) 

As with the OPEN key, the second form is useful where reference is 

made to more than one global; for example: 

7-15 



S A= tAB C [99] ( t X [1] (4) ) 

or 

S A= t ABC 19 9 J (3) , B= tx I1J (4) 

However, if tABC and tX were OPEN in the above examples, the keys 

would not be required. 

Since the OPEN key implies permission to read, it may be used wherever 

the READ key would otherwise be required. 

7-16 



APPENDIX A 

EXPLANATION OF MUMPS MESSAGES 

When execution of a MUMPS program is terminated by an error or a 

break, the program executive outputs a short message to indicate the 

reason for termination. This message is preceded by the number of 

the Step being executed unless the error occurred while in Direct 

mode. It is useful to categorize the types of messages which may be 

printed: 

1. MUMPS programming error messages 

This class of message results from errors associated 
with programming problems (either in the language 
syntax or semantic misunderstandings) . 

2. Operating System error messages 

This class results from various troubles which are 
detected by the operating system and which are beyond 
the control of the MUMPS application programmer. 

3. Voluntary program termination message 

There is only one message of this type, and it is 

?IOINT 

indicating the Break key has been activated for a 
voluntary termination of execution. 

4. Debugging Aid message 

The ?BREAK message is an indication that a BREAK 
command has been encountered in the program. 

All errors are considered terminal. After encountering any error, 

it is not possible to resume execution of the program from the point 

of error. 

However, the BREAK decoding aid is associated with a GO command which 

permits execution to resume at the step following the BREAK. 

Each of the MUMPS messages is explained below. 

Message 

CLOSE 

CMMND 

DISK! 

MUMPS PROGRAMMING ERROR MESSAGES 

Explanation 

An attempt has been made to store into an unopened 
Global. 

Indicates illegal use of a command. This includes 
using a command that normally takes an argument and 
omitting the argument, as well as using a command that 
has not been defined in the language. 

Hardware error encountered during disk transfer. 

A-I 

I 



FRACT 

FUNCT 

GLOBE 

IOLOK 

KEY 

MAXIM 

MINIM 

MINUS 

MIXED 

STACK 

STEPS 

STORE 

SYMBO 

SYNTX 

Indicates that a fractional number was encountered 
when the process being executed was expecting an 
integer number. Also invoked when a step number has 
no fractional part. 

Indicates illegal use of a function. Includes the 
use of an undefined function as well as an illegal 
use of an argument for a legal function. 

Improper Global access. 

A reference has been made to a device that is not 
"owned" by this partition. 

An attempt has been made to perform an operation 
without citing the required key. 

Indicates that the value of a number has exceeded 
the positive bounds set by the MUMPS system. The 
maximum value for a number is +1310.71. Also used 
to indicate that a string has exceeded 73 characters. 

Indicates that a number has too many digits follow
ing the decimal point. 

Indicates that a negative or zero number was en
countered when a positive number was expected. 
For example, MUMPS will cause a MINUS error if 
the user tries to call a subscripted variable with 
a negative subscript. Only positive subscripts are 
allowed. 

Indicates that the user has mixed string and numeric 
arguments in the same expression. For example, if 
the variable NAME contains the text "JOHN DOE" and 
the variable NUM is equal to the numeric value 3, 
the expression NAME+NUM would cause a MIXED error. 

Indicates that the available stack space is used up. 
Generally indicates nesting is too deep in DO, FOR, 
or CALL statements, or that a GOTO is executed 
while in the range of a FOR clause. 

Indicates that user has tried to reference steps 
that are not defined in the program buffer. Also 
invoked when an attempt has been made to modify 
the step currently being executed. 

The amount of free space in the user's partition 
is too small to allow increased allocation of 
space to the symbol table or step buffer. The 
variable $STORAGE contains the amount of free 
space, in terms of characters, left in the partition 
buffer. For example, $STORAGE equal to 0.72 indicates 
that there are seventy-two characters of free space 
left. 

Indicates misuse of a symbol (e.g., a non-subscripted 
reference to an array). 

Indicates that the current step being executed has 
an error in syntax. Syntax errors include illegal 
punctuation, illegal use of operators, illegal use 
of parentheses, as well as errors encountered in 
editing a step. Syntax errors comprise a great 
majority of errors made in the MUMPS system and usually 
the user will be able to determine the exact cause of 
the error by merely looking at the step concerned. 

A-2 



TRAP 

UNDEF 

Message 

?IOINT 

Message 

BLOCK 

CHPNT 

IODSK 

IODT 

IOERR 

IOPTP 

IOPTR 

Message 

? N BREAK 

Your terminal has been disabled. 

Indicates that the program has tried to reference 
a variable that is currently undefined. 

VOLUNTARY PROGRAM TER~INATION MESSAGE 

Explanation 

Signifies an attempt to interrupt execution by press
ing the break key. 

OPERATING SYSTEM ERROR MESSAGES 

Explanation 

Unspecified error. 

The free list is too low to allow setting globals or 
filing programs. Call the computer operator. 

Bad data on the disk; call the computer operator. 

Disk error. 

DECtape error. 

Line Printer or Card Reader error. 

Paper Tape Punch error. 

Paper Tape Reader error. 

DEBUGGING AID MESSAGE 

Explanation 

Indicates that program control has reached a BREAK 
command at step N. BREAK commands are used to interrupt 
execution of the program to allow the user to more 
easily debug his program. 

ERRORS DURING CALL AND OVERLAY 

If errors are detected in a program other than the program name (and 

user name) specified at log-in, beca.use a call or overlay is in 

effect, the error message is expanded. 

Example: 

Suppose user JOE logs in for his program AXE, and an error occurs in 

A-3 



JOE:AXE. The printout is: 

?ERROR 2:10 (Error detected during Step 2.10) 

Now suppose JOE:AXE had been error free, but called JOE:BAD which 

contained an error. The printout is: 

?ERROR : BAD 3.20 

indicating that JOE:BAD step 3.20 caused the error (the "JOE" is 

suppressed since it is assumed the user remembers what user code he 

entered at log-in. 

Furthermore, suppose program JOE:AXE calls a general system program 

filed under user code SYS and named GEN, and that an error occurs while 

it is executing. The printout is: 

?ERROR SYS:GEN 4.40 

A-4 



%A (%ADDRESS), 4-4 
A pattern verification code, 3-7 
Abbreviation 

of commands, 2-12 
of function name, 3-9, 5-1 

Access to core location, 5-8 
Access to programs, I-2, 7-3 
Addition (+1, 1-1 
ALT MODE see ENTER key 
Ampersand ( & } usage, 2-6 
Analyzer, syntax, 3-8 
AND ( & ) sign usage, 2-6 
Angle bracket, right see Caret 
Apostrophe sign t ' } usage, 2-6, 

3-5, 3-6, 3-8 
Arrays, 6-1 

INDEX 

Arrays, storage of global, 6-3 
Arithmetic comparison operators, 2-5 
Arithmetic operators, 1-1 

precedence, 1-3 
Arithmetic negation, 1-3 
ASK command, 2-9, 2-10 
Asterisk (*) usage, 4-5, 7-14 
At sign (@) nonusage, 3-1 
Autoload programs, 7-13 

status, 7-2 

Backslash (\) nonusage, 3-1 
Bell, 4-10 
Boolean operators, 2-6, 3-5, 3-6, 

3-8 
$BOOLEAN numeric function, 5-4 
Brackets I ] string comparison 

operators, 3-4 
Branching 

$BOOLEAN function, 5-4 
conditional, 2-8 
GOTO command, 2-7 

BREAK command, 2-13, 2-14 
Breakpoint, loss of, 2-13 

CALL command, 4-1 
scratchpad mode, 7-7 

Calls, 7-8 
Caret, right, I-3, 1-1 
Carriage return without line feed, 

4-10 
Changing program, 2-10 

name, 7-12 
status, 7-11 

Changing and refiling 
existing programs, 7-10 
new programs, 7-8 

Changing variables, 2-11 
Character count, $LENGTH func

tion, 5-2 

X-I 

$CHARACTER string function, 5-9 
Characters 

format, 1-8 
null, 3-5 
string, 3-1 

Clauses 
combined in one string, 2-7 
FOR, 1-7, 2-2, 2-3 
format, 4-9 
terminator, 4-9 
UNTIL, 4-9 
WHILE, 4-9 

CLOSE command, 6-2, 6-5 
Closed terminals, 7-3 
Codes for pattern verification, 3-6 
Codes, log-in, 7-5 
Collating sequence, 3-5 
Colon (:) usage, 3-6, 3-8 
Combining clauses in one string,2-7 
Comma e,l usage, 1-4, 1-8 

in Boolean numeric function,5-5 
in expressions, 5-1 
string comparison operator, 3-4 

Command execution sequence, 2-12 
Commands 

single letter, 2-12 
special, 4-7 

Cornmands 
ASK, 2-9, 2-10 
BREAK, 2-13, 2-14 
CALL, 4-1,7-7 
CLOSE, 6-2, 6-5 
DO, 2-2, 2-4, 4-8, 4-9 
ENTER, 1-1 
ERASE, 2-10, 2-13 
FILE, 7-8 
GO , 2 -13, 2 -14 
GOTO, 2-7, 2-8, 4-9 
HALT, 4-7, 4-8, 6-5 
HANG, 4-7, 4-8 
JOIN, 6-6 
KILL, 1-4, 1-5, 1-6, 2-11, 

2-13, 6-4 
LOCK, 4-2, 4-3 
OPEN, 6-2 
OVERLAY, 4-1, 7-7 
PRINT, 4-10 
QUIT, 4-2, 4-8 
READ, 3-3 
SET, 1-4, 2-11, 3-2, 6-3, 6-6 
TYPE, 1-1, 1-8, 2-11 
UNLOCK, 4-3 
WRITE, 2-10, 2-11, 2-13 
XCOM, 4-10 

Comments to program, 2-13 
Communication with device, 4-3 
Comparison operators, 2-5, 3-4 



concatenation operator (.), 3-3, 
5-10 

Conditional branching, 2-8 
Conditional termination, 2-8 
Contains operator ([), 3-4, 3-6 
Control transfer (GOTO), 2-7 
Control (CTRL) U (+U), line 

deletion, 1-2 
Conventions for log-in, 7-5 
Core space, 4-1 
Core location access, 5-8 
Core storage, secondary, 4-4 
Creating a program, 2-10 

D (Developmental) status, 7-2, 7-11 
Data 

ile protection, 6-2, 7-1 
reference, 6-1 
referencing at same level, 6-5 
retrieval from global arrays, 

5 - 6 to 5 - 8, 6 - 4 
sharing by nodes, 6-6, 6-7 
storage, 6-2 
type determination, $DEFINE, 6-2 

Debugging, 2-13 
message, A-3 

Decimal places, 1-2 
DECtape 

output, 4-4 
transports, 4-2 
word capacity, 4-4 

$DEFINE numeric function, 5-5, 6-2 
Defining string variable, 3-2 
Definitions of terms in MUMPS 

system, 7-1, 7-2, 7-3 
Deletion of 

character, RUBOUT (\}, 1-2 
line, CTRL U (+ U) , 1-2 
program, 7-11 
step or part, ERASE command, 2-11 
variables, 2-11 
variables (KILL command), 1-6 

Delimiter 
$PIECE function, 5-10, 5-11 
space used as, 2-12 

Developing, filing and using 
programs, 7-3 

nonexistent program key (NE}, 7-3 
scratchpad key (SP) , 7-3 

Developmental (D) status, 7-2, 7-11 
Developmental terminals, 7-3 
Device communication, 4-3 
Direct mode, 2-10, 7-1, 7-12 

LOCK command, 4-2 
Disk access time 

CALL command, 4-1 
OVERLAY command, 4-1 

Division (/l, 1-1 
DO command, 2-2, 2-4, 4-8 
Dollar sign ($) usage, 4-6, 4-7, 5-1 
Double space usage, 2-13, 6-2 

X-2 

Editing contents of string, 5-11 
Editing routines, 5-10 
ENTER command, 1-1 
ENTER key, 2-1 
EOM (end of page marker), 4-4, 4-5 
Equals sign (=) usage, 1-4 

as string comparison operator, 3-4 
ERASE command, 2-10 
Error handling, 2-10 
Error messages summary, A-I 
Errors 

in call and overlay, A-3, A-4 
in global arrays, 6-5, 6-6 
logical, 1-3 
MAXIM, 1-2 
MINUS, 5-2 
MIXED, 3-2 
STACK, 2-14 
typographical, 1-1, 1-2 

ESC key see ENTER key 
Evaluation order SET command 

string, 6-6 
Exclamation point (!1 usage 

Boolean operator, 2-6 
in format control, 1-8 
!! usage in format statement, 1-8 

Execution levels of program, 4-8 
Execution of program, 7-4 
Execution sequence of commands,2-l2 
Expunging (Xl or deleting 

program, 7-11 
$EXTRACT string function, 5-

$FIND, nlli~eric function, 5-4 
FILE command, 7-8 
Filing new programs, 7-8 
Follows operator (J ), 3-5, 3-6 
FOR clause, 1-7, 2-2, 2-3 

terminators, 4-9 
Format control, 1-8 

characters, 1-8 
precedence of characters, 1-9 

Function names in MUMPS, 5-1 
abbreviated names, 3-9 

Functions 
$DEFINE, 6-2 

Functions, numeric 
$BOOLEAN, 5-4, 5-5 
$FIND, 5-4 
$HIGH, 5-6, 6-3 
$INTEGER, 5-3 
$KORE, 5-8 
$LENGTH, 5-2 
$NEXT, 5-5 
$OBTAIN, 5-6, 5-7 
$QUERY, 5-6, 5-7 
$ROOT, 5-2 
$VALUE, 3-8, 5-2, 5-3 
$Z, 5-8 



Functions, string 
$CHARACTER, 5-9 
$EXTRACT, 5 - 9 
$HONEY, 5-11 
$PIECE, 5-4, 5-10 
$STEP, 5-11 
$TEXT, 5-11 

Global data protection, 
7-15 

7-1, 7-14, 

Global array storage, 6-3 
retrieval of data, 5-6 to 5-8, 6-4 

Global variables, 6-1 
naked, 5-7, 6-4, 6-5 

GO command, 2-13, 2-14 
GOTO command, 2-7, 2-8, 4-9 

HALT command, 4-7, 6-5 
HANG command, 4-7 
Hardware system, I-I 
$HIGH numeric function, 5-6, 6-3 
High-speed paper tape reader 

and punch, 4-2 

I (Independent) status, 7-2, 7-4 
%1, device identification number, 
I mode 

autoload, 7-13 
end use of I status programs, 7-13 
log-in, 7-12 
requesting program by name (load

and-go), 7-13 
tied terminals, 7-13 
using programs in, 7-12 

ID number (device identification}4-3 
IF statement, 2-5 
IN USE condition on existing program, 

7-10, 7-11 
Increment, 1-7 
Index variable, 1-7 
Independent (I) program status, 7-2, 

7-4 
Indirect mode, 1-3, 7-1, 7-7 

LOCK command, 4-2 
Indirect steps, 2-1 
Inequality conditions, 3-5 
Input, ASK command, 2-9 
Input/output devices, 4-2 

principal device, 4-3 
Inserting a step, 2-1 
$INTEGER numeric function, 5-3 
Interactive mode, 2-9 
Interruption of program, 2-13 

JOIN command, 6-6 

Key changing, in new program, 7-8 
Key-protected programs, 7-9 
Key, protection, 7-1, 7-3, 7-8 
Key = zero, 7-10 
KILL command, 1-4, 1-5, 1-6, 2-11, 

6-4 
$KORE numeric function, 5-8 

$LENGTH numeric function, 5-2 
Length of Teletype line, 2-12 
Levels of program execution, 4-8 
Libraries, program, 4-1 
Line deletion, CTRL U ( t U), 1-2 
Line feed without carriage return, 

4-10 
Linear storage device, 4-4 
List format of FOR clause, 4-9 
Load and go programs, 7-12 

status, 7-2 
Local data reference, 6-1 
LOCK command, 4-2 
Logical errors, 1-3 
Log-in, 1-2 

conventions, 7-5 
examples, 7-6 
on existing programs, 7-10 
I mode, 7-12 
new programs, 7-7 

M pattern verification code, 3-7 
MAXIM error message, 1-2, 4-2, 6-1 
Messages, explanation of, A-I 
MINUS error message, 5-2 
HIXED error messaqe, 3-2 
Mode 

direct, 2-10, 7-1, 7-12 
indirect, 1-3, 7-1, 7-7 
interactive, 2-9 
scratchpad, 1-2, 7-7 

$MONEY string function, 5-11 
Multiplication (*), 1-1 
Multiple clauses, 2-7 
Hultiple codes in PRINT command,. 4-10 
Multiple commands on one line, 2-12 

N pattern verification code, 3-7 
?N (tabulate) in format control, 1-8 
Naked global variables, 5-7, 6-4, 6-5 
$NEXT numeric function, 5-5 
Node, 6-1, 6-3, 6-4 

data sharing, 6-6, 6-7 
Nonexistent program key (NE) , 7-3 
NOT, Boolean operator, 2-6 
Null character, 3-5 

X-3 



Number sign (#) usage lpage/form 
feed), 1-8, 4-4 

Number valued expression (NVE) , 1-1, 
5-1 

Numbering of steps and parts, 2-2 
Numbers in MUMPS, 1-2 
Numeric 

data, 2-9 
evaluation, 5-8 
functions, 5-1 through 5-6 
value, 3-2 
valued expression, 5-1 

$OBTAIN, numeric function, 5-6, 5-7 
Off-line storage, 4-5 
OPEN command, 6-2 
OPEN KEY, 7-15 
Operating system error messages, A-3 
Operational terminals, 7-3, 7-4 
Operators 

arithmetic, 1-1, 1-3 
arithmetic comparison, 2-5 
Boolean, 2-6 
concatenation (.l, 3-3, 5-7 

OR, Boolean operator, 2-6 
Output devices, see input/output 
Output partial string, $PIECE 

function, 5-10 
Output, the TYPE command, 1-1 
O\~RLAY co~mand, 4-1 

scratchpad mode, 7-7 
Overlays, 7-9 

P pattern verification code, 3-7 
Paper tape I/O, 4-5 
Parentheses ( ) usage, 1-6, 5-1 
Partial string output $PIECE 

function, 5-10 
Parts I 2-2 
Pattern verification ( : ), 3-6 

codes, 3-7, 3-8 
Percent sign (%) usage, 1-4, 4-6 
$PIECE string function, 5-4, 5-10 
Pound sign (i) see Number sign 
Precedence of arithmetic 

operators, 1-3 
Precedence in format, 1-9 
PREFIX key see ENTER key 
Principal input/output device, 4-3 
PRINT command, 4-10 

mUltiple codes, 4-10 
Program access, 1-2, 7-3 
Program debugging, 2-13 
Program comments, 2-13 
Program crash, 6-5 

x-4 

Program creating and changing, 2-10 
changing and refiling, 7-8 
filing, 7-8 
log-in, 7-7 
protection key, 7-8 
referencing key-protected 

programs, 7-9 
using Calls and Overlays, 7-9 

Program deletion, 7-11 
Program execution, 7-4 
Program execution levels, 4-8 
Program,filing new, 7-8 
Programs in I mode, using, 7-12 
Program interruption, 2-13 
Program libraries, 4-1 
Program location $NEXT function,5-5 
program,modification of existing, 

changing and refiling, 7-10 
IN USE coridition, 7-11 
log-in, 7-10 

Program name, changing, 7-12 
Program protection keys, 7-1 
Program protection rules, summary, 

7-14 
Program retrieval, 4-5 
Program status 

autoload, 7-2 
changing, 7-11 
D - developmental, 7-2 
expunging (X), 7-11 
I - independent, 7-2 
load-and-go, 7-2 

Protection of data, 6-2 
Protection, filet 7-1 
Protection of globals, 7-14 
Protection keys, 7-1, 7-3, 7-8 
Protection rules summary, 7-14 

Q pattern verification code, 3-7 
$QUERY numeric function, 5-6, 5-7 
QUIT command, 4-2, 4-8 
Quotation mark (") usage, 3-2 
Quoted text literals, 1-8, 3-3 

Random number, ~ function, 5-6 
Range format in FOR clause, 4-9 
READ command, 3-3 
READ KEY, 7-15 
Reentry from subprogram, 4-1 
Referencing data at same level, 6-5 
Remote terminals, 4-2 
Retrieval of data from global 

arrays, 5-6 to 5-8, 6-4 
Retrieval of program, 4-5 



Right angle bracket, see Caret 
Right caret see Caret 
$ROOT numeric function, 5-2 
RUBOUT ( \), character deletion,1-2 

Scratchpad (SP) key, 7-3 
Scratchpad mode, I-2, 7-7 
Scratchpad operation 

capabilities, 7-4 
log-in, 7-4 

Search function $FIND, 5-4 
Secondary storage, 4-4 
Semicolon usage, $BOOLEAN func-

tion, 5-5 
Sequence of command execution, 2-12 
SET command, string evaluation, 

1-4, 2-11, 3-2, 6-3 
Sharp sign (#) usage, 1-8, 4-4 
Single letter commands, 2-12 
Space as printing character, 3-1 
Space usage in commands, 2-12 
Space usage, double, 2-13 
Special commands, 4-7 
Special system variables, 4-6 

referenced only, 4-7 
referenced or SET, 4-6 

Square root function, $ROOT, 5-2 
STACK error, 2-14 
Status of program, 7-14 
Status of terminal, I-2 
$STEP string function, 5-11 
Steps, 2-1 

step numbers, 2-1 
Storage, I-2, 4-1 

data, 6-1, 6-2 
global arrays, 6-3 
off-line, 4-5 
secondary, 4-4 

String characters, 3-1 
String comparison operators, 3-4 
String concatenation (.), 3-3, 5-7 
String data, 3-2, 3-3 

definition, 3-1 
String functions, 5-1, 5-9 to 5-14 
String input, READ command, 3-3 
String pattern, 3-6 
String replacement, $EXTRACT 

function, 5-9 
String value, 3-2 
String valued expression (SVE), 

5-1, 5-11 to 5-1J 
String variables, 3-1 

definition, 3-2 
Subscripts, 1-6 
Subscript value identification, 

$HIGH function, 5-6, 6-3 
Subtraction (-), 1-1 
Symbols, log-in, 7-5 
Syntax analyzer, 3-8 
System variables, 4-6 

referenced only, 4-7 
referenced or SET, 4-6 

X-5 

Teletype line length, 2-12 
Terminal privileges, 7-2, 7-3 

closed, 7-3 
developmental, 7-2 
operational, 7-3 
tied, 7-3 

Terminal status, I-2 
Terminals, remote, 4-2 
Termination, conditional, 2-8 
Termination message, A-3 
Terminator, 1-7 
Text literals, qU9ted, 1-8, 3-3 
$TEXT string function, 5-11 
Tied terminals, 7~3, 7-13 
Timesharing, 4-2, 6-2, 7-11 
Transferring control (GOTO), 2-7 
Truncation, 1-2 
TYPE command, 1-1, 1-8, 2-11 
Typographical errors, I-I, 1-2 

U pattern verification code, 3-7 
t U see Control U 

Unary minus, 1-3 
Undefined variables, 1-5 
UNLOCK command, 4-3 
UNTIL terminator in FOR clause, 4-9 
Up arrow (t) usage, 6-1 
User partiti~n, I-2 

Variables, 1-4, 2-11 
defining string, 3-2 
deletion of, 1-6 
index, 1-7 
name definition, $DEFINE, 4-6 
referenced only, 4-7 
referenced or SET, 4-6 
string, 3-1 
subscripted, 1-6 
undefined, 1-5 

Value, numeric, 3-2 
$VALUE numeric function, 3-8, 5-2, 

5-3 
Value, string, 3-2 

WHILE terminator in FOR clause, 4-9 
WRITE command, 2-10, 2-11 
Writing a program, 2-10 

x (expunging or deleting 
programs), 7-11 

XCOM command, 4-10 

Z pattern verification code, 3-7 
$Z numeric function, 5-8 
Zero key, 7-10 





HOW TO OBTAIN SOFTWARE INFORMATION 

Announcements for new and revised software, as well as programming notes, 
software problems, and documentation corrections are published by Software 
Information Service in the following newsletters. 

Digital Software News for the PDP-8 & PDP-12 
Digital Software News for the PDP-II 
Digital Software News for the PDP-9/15 Family 

These newsletters contain information appl icable to software available from 
Digitalis Program Library, Articles in Digital Software News update the 
cumulative Software Performance Summary which is contained in each basic 
kit of system software for new computers. To assure that the monthly Digital 
Software News is sent to the appropriate software contact at your installation, 
please check with the Software Specialist or Sales Engineer at your nearest 
D igita I office. 

Questions or problems concerning Digital's Software should be reported to 
the Software Specialist. In cases where no Software Specialist is available, 
please send a Software Performance Report form with details of the problem to: 

Software Information Service 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 

These forms which are provided in the software kit should be fully filled out 
and accompanied by teletype output as well as listings or tapes of the user 
program to faci I itate a complete investigation. An answer will be sent to the 
individual and appropriate topics of general interest will be printed in the 
newsletter. 

Orders for new and revised software and manuals, additional Software Per
formance Report forms, and software price lists should be directed to the 
nearest Digital Field office or representative., U.S.A. customers may order 
directly from the Pro:;rnm Library in Maynard. When ordering, include the 
code number and a brief description of the software requested. 

Digital Equipment Computer Users Society (DECUS) maintains a user library 
I . I I' I • I,. II .1 " .......... ,. ..... _...... • ana puollsnes a cara log or programs as well as rne UtLU~LUt't magazme 

for its members and non-members who request it. For further information 
please write to: 

DECUS 
Digital Equipment Corporation 
146 Main Street, Bldg. 3-5 
Maynard, Massachusetts 01754 



MUM P S 
Progr~~ing Language 
DEC-15-GXZC-D 

READER'S COMMENTS 

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness 
of its publications. To do this effectively we need user feedback -- your critical evaluation of 
th is manua I . 

Please comment on this manual's completeness, accuracy, organization, usabil ity and read
abil ity. 

Did you find errors in this manual? If so, specify by page. 

How can th is manua I be improved? 

Other comments? 

01 _____ L_l._ . __ •• _ ___ !'L!____ "'"' I 

ru:::u!)t: !)IUIt: yUUI PU!)tI'UII, ______________________ uare: ______ _ 

Name: Organization: --------------------- --------------------
Street: Department: ------------------------- -----------------------

. City: State: Zip or Country --------------------- ------------- ----------



Fold Here 

- - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - -

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATl-S 

Postage will be paid by: 

mamaoma 
Digital Equipment Corporation 
Software Information Services 
146 Main Street. Bldg. 3-S 
Maynard. Massachusetts 01 7 S4 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	0_01
	0_02
	0_03
	0_04
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	A-01
	A-02
	A-03
	A-04
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	replyA
	replyB
	replyC

