TOPS-10
Monitor Calls Manual
Volume 1

AA-0974G-TB

October 1988

This manual describes the functions that the monitor performs
to service monitor calls from assembly language programs.
The TOPS-10 Monitor Calls Manual is divided into two volumes:
Volume 1 covers the facilities and functions of the monitor;
Volume 2 describes the monitor calls, calling sequences,
symbols, and GETTAB tables.

This manual supersedes the previous manual of the same
name, SDC order number AA-0974F-TB.

Operating System: .TOPS-10 Version 7.04
Software: ' GALAXY Version 5.1

digital equipment corporation
maynard, massachusetts

First Printing, November 1975
Revised, May 1977

Revised, January 1978
Revised, August 1980
Revised, February 1984
Revised, April 1986

Revised, October 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.
Copyright ©1975, 1984, 1988 Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The Reader’'s Comments form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

Cl DECtape LA50 SITGO-10
DDCMP DECUS LNO1 TOPS-10
DEC DECwriter LNO3 TOPS-20
DECmail DELNI MASSBUS TOPS-20AN
DECnet DELUA PDP UNIBUS
DECnet-VAX HSC PDP-11/24 UETP
DECserver HSC-50 PrintServer VAX
DECserver 100 KA10 PrintServer 40 VAX/VMS
DECserver 200 Kl Q-bus VTS0
DECsystem-10 KL10 ReGIS

DECSYSTEM-20 KS10 RSX mﬂanuan ™

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

N el
DMDNNNDE
W

NDNNNNONNNNNDNNNNNNNDNDNON N
SooaoaoUiiUrd b D ddWNEFH

WWWLWWWWWuwwww w
WWWWWWNhR =R

abdwWwNhE

WK

NN

N -

wN R

WK

.1

CONTENTS

INTRODUCTION TO MONITOR CALLS

MONITOR CALL SYMBOLS

PROCESSING MODES
User Mode
Executive Mode
User I/0 Mode

MEMORY

MEMORY ALLOCATION . .

USER-MODE EXTENDED ADDRESSING

USER MEMORY .

CONTROLLING PROGRAM SEGMENTS .
Adjusting the Size of Segments
Merging Low Segments . . .o
Writing Into High Segments .
Testing for a Sharable High Segment
Finding the Origin of a High Segment

Modifying a High Segment and Meddllng

RUNNING A PROGRAM .
Functions of RUN and GETSEG
Reading Command Files
CONTROLLING PAGES
Handling Page Faults .
The System’s Page Fault Handler .o
Building Your Own Page Fault Handler
LOCKING AND UNLOCKING A JOB IN MEMORY

JOB CONTROL

EXECUTING A PROGRAM

Starting a Program

Stopping a Program

Suspending a Program
CONTROLLING MULTIPLE JOB CONTEXTS
RUNTIMES, TIMES, AND DATES

Runtlmes

The System Date

The Universal Date

The System Time

Date-Time Elements from GETTAB Tables

THE JOB DATA AREA

JOB DATA IN THE LOW SEGMENT
JOB DATA IN THE HIGH SEGMENT
NETWORKS

ANF-10 NETWORK MONITOR CALLS .
ANF-10 INTERTASK COMMUNICATION

Initiating a Connection . . .
Using the LOOKUP/ENTER UUOs

iii

NMNNMNRONNON
1
’__l
\S]

i

FRNNNDNNDNNDNNDNNN
[l | I
NV OO D WE

WWWWLWWWWWWWwwWw
[
OO WWNDHPE

CHAPTER

CHAPTER

(o))

[e) e)WeWe) We) WeorRerWe) We)
WWWWWNhNbN R
S W

~J

[GEGEGEGEGEGEGROEG RSO EGROLEGROEG RO NG RGN REONG RS RGO RGO RO NE RO NS, R NS |

Rt BN B B B VG IR RN RN BN BEN RN BN BN

QOO UOBEWLWWWLWWWWWWWLWWLWWWWWWWwWwwwwNhNN

OOOJOAUIDWNNNNMNNNR

oJoudbwWhPR

bW+

(VA o

LNV o

N

[\

Using the TSK. UUO .

Sending and Receiving Between Tasks
Breaking the Intertask Communication
TASK TO TASK PROGRAMMING WITH DECnet-10

Specifying a Destination Task
Specifying a Source Task .
Reading the Connect Informatlon
Accepting the Connection
Rejecting the Connection

Reading the Connect Confirm Data
Reading the Status of the Link
Using the PSI System . .
Setting the PSI Reason Mask
Enabling the PSI Interface

Reading and Setting the Link Quota and Goal

Transferring Information Over the Network

Sending Normal Data

Receiving Normal Data

Sending Interrupt Data

Receiving Interrupt Data

Closing a Network Connection

Releasing a Channel

Aborting a Connection

Reading the Disconnect Data
OBTAINING INFORMATION ABOUT DECNET 10
ETHERNET NETWORKS

Transmitting and Rece1v1ng Informatlon

Returned Channel Information

Returned Portal Information

Returned Controller Information

TRAPPING, INTERCEPTING, AND INTERRUPTING

TRAPPING ERRORS AND CONDITIONS
INTERCEPTING ERRORS ..

Using the .JBINT Intercept Block

Examples of Error Intercepts . . .
USING PROGRAMMED SOFTWARE INTERRUPTS

PSI Monitor Calls . .

Interrupt Control Block

Interrupt Conditions

Example Using Programmed Interrupts

COMMUNICATING BETWEEN PROCESSES USING IPCF

PACKETS
FORMAT OF THE PHB

IPCF Instruction Flags

IPCF Packet Descriptor Flags

Process Identifiers .

Symbolic Names

IPCF Capability Word
LONG-FORM MESSAGES
QUOTAS . ..
SENDING AN IPCF PACKET USING IPCFS UUO .
RETRIEVING AN IPCF PACKET USING IPCFR. UUO

QUERYING THE NEXT IPCF PACKET USING IPCFQ. UUO

SYSTEM PROCESSES
[SYSTEM] INFO
[SYSTEM] IPCC

iv

ESIES RS RPN |

5-29

5-37

5-40
5-40

{2 e WerWer W e We Y
[
aANOCYJObd WR

XX
]
[

RS S RS S S PR RN R S S)
e 1

i
RO OVwODODJI~NoAab WN K

CHAPTER

CHAPTER

CHAPTER

8

CODODDODODDODODOODORODDOOOOOOOOOOOEDOD®D

LOWPYLWOVWVWLOVVOVWYLLOLYWY ©

U B WNRREHRRR

HOoOooomooNdJddNJaooaonanUdWNFREPFREFEEFRERRERERPR

o

OdWwWwihE

NRERRERRERBRHRBRMHPBR

WWWWNDNNRFERFF

®WN

B»WN R wWNhE

N =

wN - NP

UOhWWWWWWwiNE

GObwWwhE

RESOURCE CONTROLS: THE ENQ/DEQ FACILITY

REQUESTING A RESOURCE
Sharable Resources
Resource Pools . .
Partitioned Resources ..
Multiple-Lock Requests
ENQ. Quotas
Request Levels .
Granting Locks . . .
ENQ. Software Interruptlon
Time Limits
Deadlock Detectlon

RELEASING RESOURCES .o

PASSING DATA TO OTHER JOBS

ENQ/DEQ MONITOR CALLS

BUILDING REQUESTS .

QUEUEING REQUESTS: ENQ. UUO
Requesting and Waiting for Locks
Requesting Locks Only if Available
Requesting and Interrupting when Locked
Modifying a Previous Request

DEQUEUEING REQUESTS: DEQ. UUO
Cancelling a Specific Request
Cancelling All Requests for a Job

Cancelling Requests Based on Request-id

CONTROLLING ENQ/DEQ: ENQC. UUO .
Obtaining the Status of a Request
Obtaining the Quota for a Job
Setting the Quota for a Job
Dumping the ENQ. Database

ENQ. ERRORS .o

EXAMPLE USING THE ENQ FACILITY

PROGRAMMING FOR REALTIME EXECUTION

CONNECTING REALTIME DEVICES

Normal Block Mode .

Fast Block Mode

Single Mode

EPT Mode .

Exec-Mode Trapplng ..
USING RTTRP AT THE INTERRUPT LEVEL
RELEASING REALTIME DEVICES . .
DISMISSING REALTIME INTERRUPTS
ASSIGNING RUN QUEUES .
SUSPENDING OTHER JOBS

ANALYZING SYSTEM PERFORMANCE

THE PERFORMANCE FACILITY: PERF.
Performance Modes ..
Performance Enable Flags
PERF. Functions
Initializing the Performance Meter
Starting the Performance Meter
Reading the Performance Meter
Stopping the Performance Meter
Releasing the Performance Meter

Background PERF. Functions

PERF. Errors e e e e

THE SNOOP FACILITY: SNOOP.

O WMWK Oom®
!
fary
(6]

1 | B I T |
WNhowvwwoIJaoananOUlbdbWWw

1

| COOO OO MO®O®E
| e T I TN T T | 1

10-1
10-1
10-1
10-2
10-3
10-5
10-5
10-6
10-6
10-6
10-6
10-7

CHAPTER

CHAPTER

10.

10.
10.
10.

NN
b wWwhE

WOWWYWOVOVWOVWOWWOWWOVWOVWYWOVWOWOWOIINIIIIIIOUAWWWWWWWLWWWWWWNE

o
co-

e

AU WN P

U WNNNDNNDNRE

NoOoudas s S sWNR

Qb WwWwN P

wWN -

WN P

Defining Breakpoints

Inserting Breakpoints

Removing Breakpoints .
Deleting Breakpoint Deflnltlons
SNOOP. Error Codes

PROGRAM INPUT AND OUTPUT

OVERVIEW OF THE I/O PROCESS
INITIALIZING A PROGRAM
INITIALIZING A DEVICE
TOPS-10 Devices
Device Names
Generic Device Names
Physical Device Names
Logical Device Names
Ersatz Device Names .
Pathological Device Names
Universal Device Indexes
MPX-Controlled Devices
Spooled Devices .
Restricted Access Dev1ces
MODES .
DEFINING A COMMAND LIST
SELECTING A FILE
TRANSMITTING DATA
Output (Writing a Flle)
Input (Reading a File) .o
Writing a File Using FILOP.
Modifying Files (Update Mode)
Block Pointer Positioning
Super USETI/USETO .
RECOVERING FROM ERRORS
USING BUFFERED I/0 . .
The INBUF and OUTBUF Monltor Calls
The Buffer Control Block
The Buffer Header Block
Using Buffered Input
Normal Buffered Input
Synchronous Buffered Input
Nonblocking Buffered Input
Using Buffered Output .
Normal Buffered Output
Synchronous Buffered Output
Nonblocking Buffered Output

Buffered I/0 for MPX-Controlled Dev1ces

Generating Your Own Buffers

CLOSING A FILE .
Maintaining File Integrlty

RELEASING A DEVICE

STOPPING A PROGRAM . .

THE LOOKUP/ENTER/RENAME ARGUMENT BLOCKS
The Short Form of the Argument List
The Extended Argument List .

ERROR CODES e e e e

DISKS (DSK)

DISK NAMES
Logical Unit Names

Physical Controller and DlSk Unlt Names

Abbreviations

10-8
10-9
10-10
10-10
10-10

11-1

11-2

11-2

11-2

11-3

11-5

i1-6

11-6

11-7

11-8

11-8

11-9

11-9
11-10
11-11
11-12
11-14
11-15
11-15
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-28
11-28
11-29
11-30
11-32
11-32
11-33
11-33
11-35
11-35
11-36
11-36
11-40
11-44
11-45
11-45
11-46
11-46
11-46
11-48
11-59

12-1
12-2
12-2
12-3

CHAPTER

OB EEDDELEDWWWWWWINNNNDN R

wvoJdaaoaoaooaoaaoadwhN

bW PRE

POV N

NNNNR

NRERERRERP P

NNNNNNNMNNNREREBRE
U WN R WN =

1
.2
3

aUdbdwihE

DISK FILE NAMES .
DISK FILE PROTECTIONS
THE FILE DAEMON (FILDAE)
DISK FILE FORMATS

DISK DIRECTORIES

The Master File Dlrectory (MFD)

User File Directories (UFDs)
Subfile Directories (SFDs)
Directory Paths
Pathological Device Names

DISK DIRECTORY PROTECTIONS

JOB SEARCH LISTS

DISK PRIORITIES

DISK I/O .

DISK I/O PROCESSING

DUAL~PORT HANDLING

ERRORS . .

DATA TRANSFER ERRORS
ECC Correctable Error
Non-data Error
Data Error . .

SEEK AND STATUS ERRORS
Drive Powered Down
Drive Powered Up
Seek Incomplete
Hung Device
Rib Errors
RAE Errors

BAT BLOCKS

DSKRAT .

DISK DATA MODES

DETERMINING THE PHYSICAL ADDRESS OF A BLOCK

WITHIN A DISK FILE
Buffered Modes
Dump Modes

DISK I/0O STATUS

DECTAPES (DTA)

DECTAPE DEVICE NAMES
DECTAPE DATA MODES
Buffered Data Modes
Unbuffered Data Modes
Nonstandard Data Mode
Semistandard Data Mode
DECTAPE 1I/0 .o
Monitor Calls for DECtape I/O
Special Argument Lists . . .
Using LOOKUP with DECtapes
Using ENTER with DECtapes
Using RENAME with DECtapes
DECTAPE FORMATS e e
Directory Format

Summary of DECtape Dlrectory Block

Block-to=-File Index
List of File Names
List of File: Extensions
File Creation Dates
DECtape Label
Data Block Format
DECTAPE I/O STATUS

vii

12-3

12-3

12-7

12-8

12-8

12-9
12-10
12-10
12-11
12-12
12-21
12-23
12-24
12-25
12-26
12-28
12-28
12-28
12-28
12-28
12-29
12-30
12-30
12-30
12-30
12-30
12-30
12-30
12-31
12-31
12-31

12-31
12-35
12-35
12-36

13-1
13-1
13-1
13-2
13-3
13-3
13-3
13-4
13-6
13-6
13-7
13-8
13-9
13-9
13-10
13-12
13-13
13-13
13-14
13-15
13-15
13-16

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

14

14.
14.
14.
14.
14.
14.
14.

17

17.
17.
17.
17.

18

18.
18.
18.

18.

b WN

PSR WS IOV O

AWK

wwwoJoaooanaoaUld W
W

RPRRPPER
WNHERPRPO-
N =

BWN B R

N

N =

MAGTAPES (MTA)

MAGTAPE DEVICE NAMES
MAGTAPE DATA MODES
MAGTAPE I/0O . .
MAGTAPE I/O STATUS
MODES SET BY .TFMOD

READ BACKWARDS (TX0l, TMO02, AND TX02 ONLY)

PROGRAMMING I/0 TO LABELLED MAGTAPES

TERMINALS (TTY) AND PSEUDO-TERMINALS (PTY)

TERMINAL DEVICE NAMES

TERMINAL DATA MODES

TERMINAL CHARACTER HANDLING

BREAK CHARACTER SET

LAT TERMINALS e e e e e e e e e

TERMINAL CLASSES, TYPES, AND ATTRIBUTES
Reading and Setting Terminal Class
Reading and Setting Terminal Type

Reading and Setting Terminal Attributes

Terminal Characteristics Definitions
TERMINAL I/0 .
NON-BLOCKING TERMINAL I/O
TERMINAL PAPERTAPE I/O . -«

Using Terminal Papertape Input

Using Terminal Papertape Output
TERMINAL I/O STATUS . .
PSEUDO-TERMINALS

Pseudo-Terminal Names

Pseudo-Terminal I/O
PSEUDO-TERMINAL DATA MODES
PSEUDO-TERMINAL I/O STATUS

LINE PRINTERS (LPT)

LINE PRINTER NAMES
Controller Names
Unit Names
LINE PRINTER DATA MODES
LINE PRINTER I/O . .
LINE PRINTER I/O STATUS

CARD READERS (CDR) AND CARD PUNCHES (CDP)

CARD DEVICE NAMES

CARD READER DATA MODES
CARD PUNCH DATA MODES
CARD DEVICE I/O0 . .
CARD DEVICE I/O STATUS

PAPERTAPE READERS (PTR) AND PUNCHES (PTP)

PAPERTAPE DEVICE NAMES . .
PAPERTAPE READER DATA MODES
PAPERTAPE PUNCH DATA MODES
PAPERTAPE I/O
PAPERTAPE I/O STATUS

viii

14-2
14-2
14-4
14-4
14-6
14-10
14-10

15-1
15-1
15-2
15-7
15-8
15-8
15-8
15-8
15-9
15-10
15-11
15-12
15-12
15-13
15-13
15-13
15-14
15-15
15-15
15-17
15-17

16-1
16-1
16-1
16-1
16-2
16-2

17-1
17-2
17-2
17-3
17-4

18-1
18-1
18-2
18-2
18-3

CHAPTER

CHAPTER

CHAPTER

INDEX

FIGURES

N -
o ©
BWN e BWNH R R

N
H
S WNE

13-4
13-5

13-6
13-7
13-8
13-9

PLOTTERS (PLT)

PLOTTER DEVICE NAMES
Controller Names
Unit Names .

PLOTTER DATA MODES

PLOTTER I/O0 . .

PLOTTER I/0 STATUS

DISPLAY LIGHT PENS (DIS)

DISPLAY LIGHT PEN NAMES
Unit Names .

DISPLAY LIGHT PEN DATA MODES

DISPLAY LIGHT PEN I/0O

DISPLAY I/0O STATUS

REMOTE DATA TERMINALS (RDA)

REMOTE DATA TERMINAL NAMES
REMOTE DATA TERMINAL I/O

REMOTE DATA TERMINAL DATA MODES

REMOTE DATA TERMINAL I/O STATUS

The Software Interrupt Process
Interrupt Control Block

Packet Header Block

ENQ/DEQ Request Block

Flow Diagram ~- I/O Sequence
The Buffer Structure . .
Flowchart for Buffered Input
Flowchart for Buffered Output

One Buffer in Each of Two Device Chalns
Multiple Buffers in Multiple Device Chains
One Buffer Moved Back to Free Chain .

Disk Chain

General Disk Flle Organlzatlon for a Flle

Structure

Directory Paths on a Slngle Flle Structure
Directory Paths on Multiple File Structures

LOOKUP on DSK with No Matches
LOOKUP on DSK for FILE2
ENTER on DSKA for FILEl
ENTER on DSK for FILE6

ENTER on DSK for FILE2

ENTER on DSK for FILE7
DECtape Buffer

DECtape Format .

DECtape Directory Block
Directory Block for FILE.MAC

First 83 Words on the DECtape of the Dlrectory

Block

Words 83 through 104 of DECtape Dlrectory
Words 105 to 126 of the Directory Block
High-Order Three Bits of Creation Date

Data Block Format

ix

19-1
19-1
19-1
19-1
19-2
19-2

20-1
20-1
20-1
20-1
20-3

21-1
21-1
21-2
21-2

. 6-7
6-10
. 1-2
8-12
11-17
11-26
11-31
11-34
11-38
11-39
11-40
12-8

12-9
12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20

13-2

13-9
13-10
13-11

13-12
13-13
13-13
13-14
13-15

TABLES

15-1

RRooooaUinOrn
| sl o I NN I |

11 WNhERE&WNE
N -

PTY I/O-+ « « « « & « « « « « « . . . 15-15

NSP. UUO Functions . . 5-10
Allowable Combinations of Task Descrlptor Values 5-12
Fields in .NSACH (status variables) . « b-18
NSP. Connection States . . e« « « <« .+« . . 5-19
Format of .JBINT Intercept Block e« + + « « .+ . . 6-5
Control Flags . . e R
I/0 Interrupt Condltlons e e e e e e e 6-12
Non-I1/0 Interrupt Conditions 6-12
Ersatz Devices . . 11-7
Data Modes (Bits 32- 35 of the flle status word) 11-11
File Access Protection -- Owner Field . 12-5
File Access Protection -- Second and Thlrd Dlglts 12-6
LOOKUP/ENTER/RENAME Argument Block for DECtape . 13-7
9-Track DEC Dump Mode 14-6
7-Track Dump Mode e .. 147
9-Track Industry- Compatlble Dump Mode . . .« . . 14-8
9-Track SIXBIT Mode e+« « . v . . la4-9
ANSI ASCII Mode« . . 1l4-9
Terminal Handling of ASCII Characters .+« « . . 15-3
Terminal Characteristics 15-10

PREFACE

The TOPS-10 Monitor Calls Manual is a complete reference set for using
the TOPS-10 monitor calls. The set consists of two volumes:

Volume 1 contains descriptions of the facilities available to the
assembly language programmer through the use of calls to the
monitor. It details the requirements for performing various
types of 1I/0, computation, and information processing using
monitor-defined symbols and data. Specific monitor facilities,
such as inter-process communication, programmed interrupts, and
device I/O are each described in relation to the monitor calls
needed to use those facilities.

Volume 2 lists the monitor calls themselves, in alphabetical
order, including coding sequences for calling the monitor and for
reading data returned by the monitor. The data may be returned
on a successful completion of the call, or data on the error will
be returned when an error occurs in the attempt to execute the
monitor call. Volume 2 also contains a 1list of the GETTAB
Tables, which contain data about the monitor and user jobs. The
data stored in these tables is extensive and yet easily
accessible through the GETTAB monitor call. Finally, Volume 2
contains a glossary of the terms used in both volumes, a detailed
description of the format of an executable file, and a
description of the File Daemon program, which provides
user-definable file security measures.

Before you attempt to use the TOPS-10 Monitor Calls Manual, you should

have

a basic familiarity with the structure, paging mechanisms, and

hardware of the DECsystem-10. The TOPS-10 Monitor Calls Manual does

not

attempt to describe the monitor on a general level. You should

also be familiar with the MACRO programming language before you read
this manual. Specifically, it is recommended that you become familiar
with the following manuals and topics before attempting to wuse the
TOPS-10 Monitor Calls Manual:

o The DECsystem-10 MACRO Assembler Reference Manual is very
important to an understanding of the methods for programming
in assembly language on TOPS-10. The TOPS-10 monitor calls
are written to facilitate the task of programming in MACRO,
but the bulk of assembly language programming involves the
operations described in the MACRO Reference Manual.

o Restrictions and capabilities of higher-level programming
languages on TOPS-10 are not described in the TOPS-10 Monitor
Calls Manual. If you are programming in a higher-level
language (FORTRAN, COBOL, and so forth), you should obtain a
copy of the programming language’s specific reference manual
written for TOPS-10.

Xi

o Facilities and capabilities of software products that run on
TOPS~-10 but are distributed as a separate product are not
included in the TOPS-10 Monitor Calls Manual. Many
references to such products (DECnet-10, IBM communication,
and so forth) are made in the TOPS-10 Monitor Calls Manual,
but you need the appropriate product-specific documentation
to use the monitor facilities provided for these products.

The TOPS-10 Monitor Calls Manual is divided into two volumes only
because there 1is a great amount of information that must be included
in the manual. Therefore, neither volume can be used without the
other.

Volume 1 describes the facilities your program can access through
requests to the monitor; and contains specific references to calls,
and calling functions; but only in Volume 2 can you find the detailed
lists of functions available through each call, the specific kinds of
data available after the execution of each call, and the restrictions
and requirements for each.

Volume 2 contains detailed documentation of each monitor call, flag,

argument block, and returned information, with programming
requirements for each call, in a manner similar to the monitor source
file UUOSYM.MAC. However, this information is useless without the

knowledge available in Volume 1l: the order in which calls must be
made to the monitor, methods for handling errors, and the types of
information you can use to make your programs interact smoothly with
the monitor.

The TOPS-10 Monitor Calls Manual is intended to be the primary source
of reference information for the interface between user programs and
the monitor. If you find any errors in the manual, or have difficulty
using the manual for any reason, please detail the problem on the
Reader’s Comment Card provided at the end of each volume and mail it
to Digital Equipment Corporation. This important form of feedback is
vital to the accuracy and usefulness of the documentation, and
complete information about the problem would be greatly appreciated.

xii

CHAPTER 1

INTRODUCTION TO MONITOR CALLS

A program written in MACRO-10 assembly language has four types of
statements:

© Pseudo-op statements, such as BLOCK, TITLE, and RADIX, are
instructions to the MACRO assembler and do not generate code.

o Direct~assignment statements, such as Tl=1 and P=17, resolve
definitions of symbols. Pseudo-ops and direct-assignment
statements are described in the DECsystem-10 MACRO Assembler
Reference Manual.

0 Machine instructions, such as ADD, MOVEM, and JRST, are
direct hardware instructions. Machine instructions and their
symbols are discussed in the DECsystem-10/DECSYSTEM-20
Processor Reference Manual.

o Monitor calls, such as INPUT, CLOSE, and GETSTS, are
directions to the monitor to perform special services for the
program. Monitor calls, also called UUOs (Unimplemented User
Operations), are described in this manual.

An operation code {(opcode) and a symbol representing the name of the
monitor c¢all designates each monitor call. Use operation codes
(opcodes) to direct the TOPS-10 monitor to perform I/O0 and other
services for your program. Opcodes can be divided into the following
groups:

o Opcode 0 always returns your job to monitor command level,
because opcode 0 is an illegal UUO. The monitor displays the
following error message, followed by the monitor prompt.

?Illegal UUO at user PC addr

0 Opcodes 1 through 37 cause the hardware to store the
instruction code and the effective address in location 40,
and to execute the instruction at location 41 in the wuser’s
address space. The original contents of location 40 are
lost. This trap allows your program to gain control when
using these opcodes. These opcodes can be defined by the
system programmer as Local UUOs (LUUOs). If your program
executes one of these opcodes accidentally, the monitor
displays the message:

?HALT at user PC addr

INTRODUCTION TO MONITOR CALLS

The monitor displays this message because relative 1location
41 contains a HALT instruction, wunless the contents of
location 41 were changed inadvertently. The LINK program
provides the HALT instruction. To set or read trap
instructions for an LUUO in a non-zero section, you must use
the UTRP. monitor call. Refer to Volume 2 for a description
of the UTRP. UUO.

o Opcodes 40 through 100 are the opcodes for monitor calls.
The TOPS~-10 monitor defines these opcodes. They are called
Monitor UUOs (MUUOs) . This manual describes all monitor
calls for TOPS-10. A monitor call is stored at location 424,
the new PC is loaded from location 436 of the user’s process
table, and the processor operates in executive mode. The
monitor interprets the opcode; then the monitor performs I/0
and other control functions for your program.

o Opcodes 101 and 104 cause the monitor to stop your program
and display the following message:

?Illegal instruction at user PC addr

o Opcodes 102, 103, 106, and 107 are legal only on the KL
processor. On any other type of DECsystem-10 processor, the
monitor will stop the program and display the following
message if it receives one of these opcodes:

?KL10 only instruction at user PC addr

1.1 MONITOR CALL SYMBOLS

Opcodes 40 through 100 provide the basic set of monitor calls. The
opcodes and names of these calls are listed in Chapter 22, Volume 2.
Three of these calls (CALLI, MTAPE, and TTCALL) offer extended calls
by wusing values in addition to the opcode value. (CALLIs and MTAPEs
use the address field; TTCALL uses the accumulator field.) Each
extended call has a symbol that defines its opcode and its value.
These symbols and their full values are also 1listed in Chapter 22,
Volume 2.

Most monitor calls accept arguments, return values, or both. Almost
all these arguments and values have symbols defined in the monitor
symbol file for UUOs, UUOSYM.MAC. Error codes, flag bits, and

interrupt conditions all have symbols defined in UUOSYM.MAC. The file
MACTEN.MAC contains definitions relating to the hardware, such as the
PC flag bits. The file JOBDAT.MAC defines the job data locations.
User programs should be written to reference all system values
symbolically by these three universal files. That is, a SEARCH
statement should appear near the beginning of the program to search
UUOSYM, MACTEN, or JOBDAT. Refer to the TOPS-10 MACRO Assembler
Reference Manual for a description of universal files and the SEARCH
pseudo-op.

Some of the symbols represent codes that tell the monitor what is
being specified; others are masks that you can use to isolate or test
a returned value. For example, the symbol IO.ERR is defined as
follows:

IO.ERR==17B21
This defines a 4-bit field in the I/O status word, allowing you to
logically AND the returned file status word with the value IO.ERR to
mask out all other bits of the word.

1-2

INTRODUCTION TO MONITOR CALLS

1.2 PROCESSING MODES

The DECsystem-10 hardware defines three processing modes: user mode,
executive mode, and user I/0 mode. Normally, programs run in user
mode, which allows the processor to protect and map data in core
successfully. The processor will switch from user mode to executive
mode when a monitor call is issued. The monitor controls execution
from that point wuntil the monitor call finishes. User I/O mode, a
privileged alternative to user mode, provides the program with direct
access to I/0 devices. This allows real-time device drivers to run
under TOPS-10 in user mode.

1.2.1 User Mode

The majority of user programs execute in user mode. For a user-mode
pr~gram, the processor:

o Performs automatic memory protection and mapping.

o Passes control to the monitor if a monitor call or an illegal
instruction (including HALT) executes. In this case, the
processor enters executive mode.

The hardware traps to location 40 in the job data area if an opcode
less than 40 (but not 0) executes (see Chapter 3).

User mode requires an assigned area of memory. Illegal wuser mode
instructions are:

o I/O instructions (opcodes 700 through 777) except those
giving a device code greater than 734. KS10 I/O instructions
are all illegal.

0 All unimplemented opcodes (those not defined as machine
instructions or monitor calls).

o Any JRST instruction with an accumulator greater than 2,
except JRST 5 (XJRSTF) and JRST 15 (XJRST).

If your program executes an illegal instruction, one of the following
messages prints (and your program stops):

?HALT at user PC addr
?Illegal instruction at user PC addr

Where: addr is the memory location of the illegal instruction.

For the HALT message above, you can continue the execution of your
program at the target address of the JRST 4, (HALT) by giving the
CONTINUE or CCONTINUE monitor command (see the TOPS-10 Operating
System Commands Manual). For the "illegal instruction" message, you
must correct your program and begin execution again.

1.2.2 Executive Mode

A user program switches to executive mode to perform a monitor call
when it encounters an illegal instruction, or on a HALT instruction,.
The monitor always executes in executive mode, giving it special
memory protection and mapping.

INTRODUCTION TO MONITOR CALLS

1.2.3 User I/0 Mode

A program executes in user I/0 mode if bits PC.USR and PC.UIO (bits 5
and 6) in the program counter (PC) word are set. These bits are
defined in the MACTEN.MAC symbol file. I/O mode is the same as user
mode, except that the hardware allows any opcodes or instructions to
be executed except a HALT (JRST 4).

User I/O mode provides some protection against partially debugged
monitor routines, and allows device service routines to be executed as
user jobs. Realtime programs execute in user I/0 mode, allowing them
to gain direct control of devices. Refer to the
DECsystem-10/DECSYSTEM-20 Processor Reference Manual for information
about processing modes, or to Chapter 9 of this manual for information
about programming real-time devices.

To execute in user I/O mode, your job must have the JP.TRP (trap) or
JP.RTT (realtime) privilege set, and you must successfully execute one
of the realtime monitor calls TRPSET or RTTRP. When your program
issues a RESET monitor call or clears it with a JRSTF, user I/0 mode
ends.

CHAPTER 2

MEMORY

Two distinct conventions allow you to reference DECsystem-10 memory:
physical memory addressing and virtual addressing. Physical memory
defines the physical 1limits of the CPU addressing space, and a
physical address refers to an exact physical location within the
memory unit of the processor. However, TOPS-10 is a timesharing
system, characterized by the capability of serving multiple user
programs simultaneously. A single program can be loaded into several
different parts of memory that need not be contiguous. Therefore,
user programs do not normally reference actual physical 1locations in
memory.

Programs reference a self-contained set of "virtual" addresses. While
the program is running, the wvirtual addresses are translated into
physical locations that can be referenced by the hardware.

TOPS-10 provides each user with 512 pages of addressable virtual
memory on the KS processor, and 16384 pages of addressable virtual
memory on the KL processor. Although the conventional usage of the
term "core" on TOPS-10 often is wused to mean any type of memory,
throughout this chapter, references to "memory" are to virtual memory
and references to "core" are to physical memory.

The processor protects the memory needed for monitor-related
functions, and the memory assigned to each job. It manages the
assignment of memory space to each user, and controls the swapping of
jobs into -and out of core.

2.1 MEMORY ALLOCATION

Core memory is a physical and therefore finite space measured in
36-bit words, 512-word pages, or 1024-word K. Virtual memory uses

these three measurements, and also 512-page sections. There are 32
(decimal) sections on the KL. They are referred to as Sections 0-37
(octal). A user’s maximum virtual address space is 512P (pages) on

the KS, and 16384P on the KL.

To accommodate all the users in the timesharing environment, TOPS-10
removes each job from core memory and places it in a special disk area
temporarily to make room for another job. This function is called
"swapping." You can prevent a program or program segment from being
swapped out by using the LOCK monitor call to lock your job in memory.
(This requires that the LOCK privilege be set in the privilege word in
GETTAB Table .GTPRV.) To use realtime devices, you need to LOCK your
job in memory.

MEMORY

A user job need not be entirely in memory or on disk all at once.
Your program can explicitly transfer individual pages of its virtual
address space from core memory into and out of the working set. The
working set is the collection of pages in core that are immediately
accessible to a job, and those in core with the access-allowed bit
off. Alternatively, if your program exceeds the current physical page
limit for your job, it will be subject to paging by the monitor.
Memory limits and paging are discussed later in this chapter. The
TOPS~10 monitor itself always remains in memory.

On the KS, if you need to exceed the virtual memory limit of 512P, you
must wuse an overlay structure. On the KL processor, if your program
requires more than the virtual memory limit of 16384P, or you do not
want to use extended addressing for a program greater than one
section, you can construct your program using an overlay structure.
Using overlays, your program can restrict its current virtual space to
only a portion of the entire amount of references it may require. For
information about using overlays, refer to the TOPS-10 Link Reference
Manual.

The monitor enforces the following limits on memory space:

Symbol Application

GPPL (Global Physical Page Limit) is the maximum amount of
core available to any user.

GVPL (Global Virtual Page Limit) is the maximum amount of
virtual memory available to any user. GVPL is 512P on
the KS and 16384P on the KL. You may change this limit
using the privileged SETUUO function .STMVM.

MPPL (Maximum Physical Page Limit) is the maximum amount of
core available to a given user.

MVPL (Maximum Virtual Page Limit) is the maximum amount of
virtual memory available to a given user.

CPPL (Current Physical Page Limit) is the current amount of
core that is available to the user, a value that must
not exceed the user’s MPPL.

CVPL (Current Virtual Page Limit) is the current amount of
virtual memory available to the user, a value that must
not exceed the user’s MVPL.

The monitor also maintains values to measure the amount of space
currently being used and currently available to your job. Those are:

CPPC (Current Physical Page Count) is the number of physical
pages in core that are being used by your job.

cveC (Current Virtual Page Count) refers to the number of
virtual pages that are being used by your job.

The monitor itself has a virtual address space greater than 256K
because it wuses KL-paging, the default paging method for monitors on
KL and KS systems. Under KL-paging, multiple sets of 256K words each
can be wused by the monitor. Each set is called a "section." The KL
processor supports up to 32 sections. Most of the monitor executes in
Section 0. KL-paging allows the monitor to refer to code and data in
non-zero sections. Refer to the DECsystem-10/DECSYSTEM-20 Processor
Reference Manual for more information about KL-paging.

MEMORY

The user core allocation cannot exceed MPPL, but you can adjust your
program’s limits from O +to MPPL by using various functions of the
SETUUO. You can set the size of CPPL to limit the physical size of
your Jjob. The sign bit of CPPL is symbolized as ST.VSG. If this bit
is off, the limit is interpreted as a guideline by the page fault
handler; if the bit is on, the value is interpreted as a strict limit.
Use the CPPL word to control paging for your job. If your job exceeds
CPPL, the monitor will initiate paging for your job by using the
virtual memory software.

2.2 USER-MODE EXTENDED ADDRESSING

User-mode extended addressing gives you access to all 32 sections of
virtual memory on the KL processor. 30-bit addressing allows you to
reference any address in the 32 sections. Use extended addressing in
situations where your program or data requires more than one section
of virtual memory.

Your program may reference any section from any non-zero section.
However, you may not reference a non-zero section from Section 0,
unless the section has been mapped together with Section 0.
Generally, however, if your program requires inter-section references,
do not execute it in Section 0.

When using user-mode extended addressing, make certain that the UUO
argument list does not cross a section boundary. If it does, the
argument list will wrap around to the beginning of the same section,
overwriting the previous contents of those addresses, instead of
continuing into the next section. To help you identify section and
address within the section more easily, use the following format when
writing the address:

section, ,address

There are four ways to run your program in a section other than
Section 0. They are:

o Using the XJRST or XJRSTF instruction to place your program
in an extended section. See the DECsystem-10/DECSYSTEM-20
Processor Reference Manual for information about these
instructions. The addresses in the program become thirty
bits in the form: section,,18-bit addr.

o Placing a section number before a page number in any UUO that
accepts page numbers as arguments. These UUOs include PAGE.

and IPCFR..

o Supplying a 30-bit argument to a UUO which allows extended
addressing. UUOs that accept thirty-bit addresses include
CTX., NSP., and ETHNT.. Note that the value in the AC 1is

always interpreted as a global address for these UUOs,
regardless of the section in which the UUO is executed.

o Formatting the core argument word to the GETSEG, MERGE, RUN,
or SAVE UUO to include a section number.

MEMORY

2.3 USER MEMORY

You can exert considerable control over the functions of the monitor

as it services your program and memory space. However, it is first
necessary for you to understand the interaction of the monitor and
your program. Before the monitor can run a program, it must be
compiled or assembled, and loaded into core. This is discussed in

more detail in Chapter 3.

The LINK program loads compiled programs (.REL files) into memory. If
you save the core image of the loaded program, it is written to disk
as an executable (.EXE) file, and need not be processed again by LINK.
You can place an .EXE file into core (ready for execution) by using
the GET or RUN monitor command. (See Chapter 3.)

2.4 CONTROLLING PROGRAM SEGMENTS

Programs that are loaded into memory can be divided into high and low
segments. Every executable program has a low segment (lowseg). A low
segment is private. A program can always modify its own low segment.

A program can also have one or more high segments (hisegs)., By
default, high segments start at wvirtual 1location 400000, and are
either private or sharable. Sharable high segments can be wused by
more than one Jjob. By default, the monitor write-protects high
segments so that no users can modify them. However, the owner of the
file can clear the write-protect bit, allowing the program to modify
the hiseg.

Programs written in a high-level language such as FORTRAN commonly use
a sharable high segment. As an example of a program using a single
sharable high segment, suppose several users are executing FORTRAN
programs. Each user has a low segment, containing most of his FORTRAN
program. However, all FORTRAN users share the same high segment that
contains the FORTRAN object-time system FOROTS.

As an example of a program using multiple sharable high segments,
these same FORTRAN users might also share a second high segment
containing FSORT, the FOROTS-callable version of SORT, which
implements the SORT built-in for FORTRAN-10. Using sharable high
segments conserves memory space used by programs that will not be
modified. '

If your program uses multiple high segments, you must use the
SEGOP. UUO to create and control these segments. The SEGOP. monitor
call provides the same functions for multiple high segments as the
separate CORE, SETUWP, GETSEG, and REMAP monitor calls provide for
controlling single high segments. <You may also use the SEGOP. UUO to
control single high segments, or you may use the separate calls
described in the following sections.

The SEGOP. UUO functions, the monitor calls to which they correspond,
and a brief description of the action they perform, are listed below.

Monitor Call Action SEGOP. UUO Function
CORE Dynamically changes CORE . SGCOR

allocation of a low or high

segment.
GETSEG Create a high segment. .SGGET

Replace a high segment. .SGREL plus .SGGET

2-4

MEMORY

SETUWP Sets or clears the high . SGSWP
segment’s write-protect bit.

REMAP : Create a high segment from . SGRMP
already-existing memory in a
program’s low segment.

The following sections describe the monitor calls that allow you to
control the allocation, accessibility, and contents of program
segments. Remember that you must use the SEGOP. UUO to manipulate
multiple high segments.

2.4.1 Adjusting the Size of Segments

The CORE monitor call allows you to dynamically change the core
allocation of your program’s low segment and a single high segment.
You cannot change the core allocation of segments or programs that are
locked in core.

You should use separate CORE calls to change the sizes of the low and
high segments to ensure that your program does not exceed its core
limits. Memory that is allocated by CORE will be cleared before it is
made available, to ensure privacy of user data. A CORE UUO function
that does not alter the size of the program, or which decreases the
program size, will clear any non-contiguous pages. You can use the
CORE monitor call to eliminate a single high segment, thus allowing
you to create a new high segment.

2.4.2 Merging Low Segments

You can merge portions of an .EXE file with the low segment of the
program that is currently in memory by using the MERGE. UUO.

2.4.3 Writing Into High Segments

You can set or clear the high segment write-protect bit for your
program’s high segment by using the SETUWP monitor call. After the
bit is cleared, you can modify your Jjob’s high segment. You can
replace or create a high segment for your job using the GETSEG call to
read a hiseg from an .EXE file or the REMAP call to convert a
contiguous portion of the low segment into the high segment.

The GETSEG monitor call replaces the current program’s high segment
with a new high segment from another .EXE file. The low segment of
the .EXE file, if any, is not changed. This high-segment replacement
is useful for sharing data, overlays, and runtime routines. The
GETSEG monitor call accomplishes this in a manner similar to that used
by the RUN monitor call (refer to Section 2.4.1.).

You can create a high segment from already-existing memory in your
program’s low segment by using the REMAP monitor call. Use REMAP to
specify the virtual address where you want the hiseg to start. This
allows you to define a contiguous portion of the low segment as the
high segment. The specified portion of the low segment is removed and
placed at the address in the REMAP call, which is the new hiseg origin
address.

MEMORY

If your job uses multiple high segments, use the .SGGET function of
the SEGOP. monitor call to create an additional high segment for your

job. .SGGET creates a new high segment without discarding any
previous high segments. In order to replace one high segment with
another, you must first create a new one using .SGGET and then release
the o0ld one using the function .SGREL. To convert a contiguous
portion of the low segment into a specified high segment, use the
.SGRMP function of the SEGOP. UUO. .SGRMP will create a new high

segment without discarding any previous segments.

2.4.4 Testing for a Sharable High Segment

The bit SN%SHR in GETTAB Table .GTSGN is set for each job that has one

or more sharable high segments. The following code sequence shows how
to use this bit to determine whether your own job’s high segment is
sharable. Note that -1 is used here for the job number to refer to

your own job.

MOVE AC1, [XWD -1, .GTSGN] ;Set up GETTAB

GETTAB AC1, ;Get hiseg parameters
JRST ERROR ;GETTAB failed

TLNN AC1l, (SN%SHR) ;Is it sharable?

JRST NOTSHR ; No

JRST SHAR ;Yes

2.4.5 Finding the Origin of a High Segment

The usual origin for a program high segment is location 400000;
however, the origin can be at a different location. If you need to
find the origin for a program’s high segment (for example, to access
the vestigial job data area), you can get the address from the GETTAB
Table .GTUPM.

The following example shows how to obtain the high segment origin.
Note +that -2 is used here for the segment number to refer to the
program’s own high segment.

MOVE AC, [XWD -2, .GTUPM] ;Set up GETTAB
GETTAB AC, ;Get origin
JRST NOHIGH ;GETTAB failed
HLRZ AC,AC ;Set up origin
JUMPE AC,NOHIGH ;If 0, no high segment
MOVEM AC, HIORGN ;Store hiseg origin

;Code for no hiseg

2.4.6 Modifying a High Segment and Meddling

The monitor sets the write-protect bit for each new high segment. You
can clear this bit using the SETUWP monitor call if your program uses
a single high segment. If your program uses multiple high segments,
use the .SGUWP function of the SEGOP. monitor call. You can increase
or decrease the shared core using either the CORE monitor call if your
program uses a single high segment, or the .SGCOR function of the
SEGOP. monitor call if your program uses multiple high segments.

MEMORY

These calls are legal from either the low or high segment if the
following is true:

o You have write privileges for the file from which the high
segment was loaded.

o The segment has not been "meddled." Meddling occurs when a
program attempts to modify a sharable hiseg, because such
modifications might interfere with the other jobs wusing the
hiseg.

A sharable high segment is considered to be meddled if any of the
following is true:

o The program was started with a RUN monitor call that
specified an offset start address other than 0 or 1, or with
a START or CSTART command that supplied an address.

0 The D (deposit) monitor command was used.

o The high segment was obtained with a GETSEG monitor call, or
the .SGGET function of the SEGOP. monitor call.

It is not considered meddling if you perform any of the above commands
or calls with a nonsharable high segment.

If you have privileges to write to the file from which the sharable
high segment came, you can use the D monitor command and the SETUWP
and CORE calls for that high segment without meddling. For a program
that wuses multiple high segments, you can use the .SGSWP and .SGCOR
functions of the SEGOP. monitor call. You can write a program that
accesses a sharable high segment using the GETSEG monitor call, and
then turn off the write-protect bit with the SETUWP call. For a
program that uses multiple high segments, use the .SGGET function of
the SEGOP. monitor call to access a specified high segment, then turn
off the write-protect bit of the specified segment with the .SGSWP
function.

When a sharable program has been meddled, the monitor sets the meddle
bit for the meddling user. If the wuser attempts to clear the
write-protect bit with a SETUWP (or .SGSWP when there is more than one
high segment) monitor call, or to change the high-segment core
assignment with a CORE monitor call (or .SGCOR when there is more than
one high segment), without removing the hiseg completely, the monitor
takes the error return. If the meddling user attempts to modify the
high segment with a D monitor command, the monitor prints the
following message:

?0ut of bounds

Whenever the hiseg has been meddled, the monitor resets the user-mode
write-protect bit to protect the high segment.

If you are suitably privileged, you can supersede a sharable high
segment. When you wuse a CLOSE, OUTPUT, or RENAME monitor call, or
some of the functions of the FILOP. UUO, on the file from which the
sharable high segment was initialized, the monitor zeros the word
containing the segment name in the GETTAB Table .GTPRG. Jobs
currently using that high segment can continue to do so, but after
those jobs are completed (that is, when the segment becomes dormant),
the monitor deletes that segment. Meanwhile, new users are able to
share the new (superseding) segment.

MEMORY

If your program modifies a sharable hiseg, you are responsible for
coordinating the changes with other users of the hiseg. Remember that
your program can be interrupted within the execution of instructions
that require multiple services, such as monitor <calls, and a
concurrent user program can be started at that time. On a
multiple-CPU system, your program can be running simultaneously with
another user program. Generally, when modifying a shared hiseg, you
should refer to shared data with non-interruptable instructions, or
under the protection of an interlock such as that provided by the
ENQ/DEQ facility (see Chapter 8).

Because a sharable hiseg can exist on the swapping space after all
users have released 1it, your program must be prepared to handle
inconsistencies in data or "stale" interlocks left by previous user
programs that ended prematurely.

2.5 RUNNING A PROGRAM

The RUN monitor call transfers control to another program by replacing
both segments of the current program with the specified program, and
starting execution of that program at its normal start address or at a
specified offset from the start address. The new program completely
replaces the calling program, so that there 1is no return to the
calling program (unless you RUN it later).

When the RUN monitor call is executed, the monitor clears all of your
job’s memory. Your programs, however, should not assume that this
action will occur. You must initialize memory to the desired values
to allow your programs to be restarted by the CTRL/C and START
sequence.

If you want to call a program from a system library, your program
should <call it by wusing device SYS, and a zero project-programmer
number. The extension you specify for these programs should also be
zero.

The RUN UUO executes a RESET monitor call, which (among other
functions) releases all user I/0O channels.

The RUN call uses the following information in its ac:
start-addr-offset, ,addr

Where: start-addr-offset is the offset to the starting address of the
program that is being called.

addr is the address of the first word in the RUN UUO argument
block.

Before the monitor transfers control to the program you call, it adds
the program’s starting address to the left half of the wvalue in the ac
and starts the program at this address. If you set the starting
address offset to be anything other than 0 or 1, you are considered to
be meddling with the program, unless the program being executed is an
execute-only program for your Jjob. For execute-only programs, the
monitor ignores any value other than 0 or 1.

MEMORY .

2.5.1 Functions of RUN and GETSEG

To successfully program the RUN monitor call on systems of all sizes
and for ‘programs whose size ' is not known at the time of the RUN
monitor call’s execution you must understand the sequence of
operations initiated by the RUN monitor call. Note that the RUN
monitor call can be executed from either the high or the low segment.

Before calling a new program with the RUN monitor call, you should
change your low segment core allocation to one page, and delete your
high segments (if any).

The GETSEG and RUN monitor calls perform the following functions:

1. Using the file name you specify in the argument block, the
monitor searches for a sharable high segment that is already
in core that has the same name as the program you specified.
If a sharable high segment already exists, it is attached to
your job.

If there is no existing sharable high segment, the monitor
looks up the program on disk, searching for the same file
name with the extensions .EXE, .SHR, and .HGH, in that order.

If it finds a file with one of these extensions, the monitor
loads the high segment of the file into memory, starting at
the high end of your current low segment. If it does not
find a file, it goes to Step 5.

It then remaps the hiseg, placing the hiseg origin at the
.JBHGH location.

However, if the current low segment contains any pages that
would conflict with the new high segment, the monitor call
takes the error return, with error code 31 in the AC.

2. Then the monitor adjusts its internal data base to include
the new information. Either a new user for the sharable high

segment or a new high segment must be added. (If the UUO was
a GETSEG, the monitor returns control to the user program at
this point.)

3. Information from the vestigial job data area is copied into

the low segment’s job data area. The vestigial job data is
always loaded into the high segment (see Chapter 4).

4. Part of the job data area is the .JBCOR word. If the left
half of .JBCOR is less than or equal to 137, the monitor does
not have to read data into the low segment because it 1is a
null low segment. Then the monitor reads the right half of
.JBCOR to determine how much space to allocate for the low
segment. For a null low segment, control is passed to the
user program at this point.

5.

MEMORY

If the left half of .JBCOR is greater than 137, the monitor
loads the program’s low segment, using one of the following
procedures:

o If the original file contained both segments, the monitor
continues reading the currently open file, loading the
data from its low segment into memory starting at
location 140. The user program is started.

o If the original file contained only the high segment, the
monitor looks up the file using the same file name and
one of the extensions .EXE, .SAV, .LOW, or the extension
specified in the argument block, in that order.

If found, the file is opened and read into memory
starting at location 140. The user program is started.

If a low segment file is not found, the monitor returns
control to the user, giving an error return. The monitor
handles the error in either of the following ways:

a. If the call came from the high segment, or if there
is a HALT in the error return after the UUO, the
monitor prints one of the following error messages:

?Not a save file
?filename.SAV not found
?Transmission error
?LOOKUP failure n

?nP of core needed

?No start adr

b. If the call came from the low segment and there is no
HALT in the error return, the monitor puts the LOOKUP
error code into the ac and passes control to the user
program.

The GETSEG monitor call works like the RUN monitor call, except for
the following differences:

O

No attempt is made to read the low segment of the file. If
an .EXE file is found, only the pages representing the high
segment will be merged into the user’s address space.

The only changes made to the Job Data Area are:

1. the left half of .JBHRL is set to zero.

2. the right half of .JBHRL is set to the highest legal high
segment address.

3. .JBSA and .JBREN in the Job Data Area are set to zero by
the monitor if they point to a high segment that is being
removed. If this should occur, the following message 1is

printed on your terminal when the START or REENTER
command is issued:

?No start adr

If an error occurs, control is returned to the error return
location, -unless the left half of the error return location
contains a HALT instruction; in this case, the monitor
displays an error message and the program is HALTed.

MEMORY

o The call should be made from the low segment unless the
normal return coincides with the starting address of the new
high segment.

o User channels are not released. Channel 0, however, is
released because it was used by the GETSEG monitor call.

o The contents of the job’s accumulators are not preserved.
Therefore, any AC wused as a stack pointer will become
invalid.

2.5.2 Reading Command Files

Programs that accept commands can input those commands from a terminal
or a file, depending on how the program is started. If a program is
started at the normal starting address (.JBSA), it should display a
prompt, such as an asterisk, and read commands from the terminal input
buffer. With a CCL entry, commands are read from a file on disk or
from a list of commands stored in memory.

CCL entry is determined by the argument to the RUN monitor call. If
the RUN UUO has a 0 in the left half of the ac, the normal start
address will be used. If the RUN UUO has a 1 in the left half of the
ac, - the CCL entry will be used; the program is started at the address
found in .JBSA+1, and should read commands from TMPCOR or from an
indirect command file on disk. TMPCOR is the name for the section of
memory that is searched first. The format of a command file 1is
defined by the program that must read it.

The TMPCOR area is limited in size; therefore, programs should also
search for the command file on disk. If TMPCOR does not contain the
command list, it should contain a file specification for an indirect
command file. The file specification is usually preceded by @ to
indicate indirection. Note that the PIP program expects the @ to
follow the file specification. By convention, the file name on disk
is of the form:

nnnabc . TMP
Where: nnn is your job number in decimal, including leading =zeros.
The job number is included to allow users to run more than one
job under the same PPN.
abc is usually the name looked for in TMPCOR.

For example:

009PIP.TMP ;Job 9 commands to PIP
039MAC.TMP ;Job 39 commands to MACRO

These files are temporary and will be deleted by the LOGOUT program.
If a command file does not exist, or the program does not support CCL

entry, the program should display a command prompt and accept commands
from the terminal.

MEMORY

2.6 CONTROLLING PAGES

By using the PAGE. monitor call, you can manipulate pages in your
program’s virtual address space and manipulate or obtain data about
those pages.

2.6.1 Handling Page Faults

When your program refers to a page of memory that i1s either not in
physical memory or has the access-allowed bit turned off, a page fault
occurs. Program control then passes to a page fault handler. The
page fault handler can be either the system’s internal page fault
handler or your program’s page fault handler, if you have defined one
by setting .JBPFH in JOBDAT. (See Chapter 4 for more information on
.JBPFH.) Refer to Section 2.6.3 for information on building your own
page fault handler.

2.6.2 The System’s Page Fault Handler

Unless your program has its own page fault handler, the monitor wuses
its internal page fault handler when a page fault occurs. This
default page handler selects the page to swap out of memory to make
room for a needed page that is not in memory.

Each page has an access-allowed bit associated with it. Periodically
the page fault handler clears every page’s access-allowed bit. When
the page fault handler clears the access-allowed bit, a page fault
occurs the next time your program references that page. After the
reference is made, the monitor sets the access-allowed bit and
execution of the program continues.

The system’s page fault handler selects the page that has been in core
the longest since the last reference to it. This selection method
assures that frequently-referenced pages are 1likely to remain in
memory, while seldom-referenced pages are likely to be paged out
sooner. By using an age-ordered list and a periodic check of the
access-allowed bit, the page fault handler pages on a modified
firgt-in/first-out basis.

2.6.3 Building Your Own Page Fault Handler

You can override the system’s page fault handler by setting the
location .JBPFH to point to your program’s page fault handler (left
half = end address and right half = start address). Setting .JBPFH to
zero returns your program to using the system’s page fault handler.
If the area of core containing your own page fault handler is
destroyed, a reference to the page fault handler will result in an
illegal memory reference error.

NOTE

Use the system’s page fault handler if your program
will execute in a non-zero section or contain
thirty-bit addresses. The format given below for your
own page fault handler can accept only eighteen-bit
addresses, and is restricted to programs executing in
Section 0.

MEMORY

The format of your page fault handler must be:

The instruction "JRST .+.PFHST".

0l1ld PC and flags. That is, the flag/PC word used for
JRSTF, same as .JBTPC, .JBOPC, and so on.

Fault word, filled in by the monitor on each page
fault. The fault word is described below.

Highest PSI vector in use (in left half); address of
PSI vector (in right half).

Version number of the page fault handler.

Reserved for runtime statistics.

Word Symbol Contents
0 .PFHJS
1 .PFHOP
2 .PFHFC
3 .PFHVT Virtual time.
4 .PFHPR Paging rate.
5 .PFHPV
6 .PFHUR
7-11
12 .PFHST

The fault word (.

Origin of the page fault handler (first instruction)

PFHFC) contains the following information:

Working set was changed by a routine other than this
page fault handler.

Working set has been scrambled.

Reserved for use by DIGITAL.

Page number of the page causing the fault.

Fault code, described below,

1t code (PF.HFC) is one of the following:

Page is inaccessible (access-allowed bit is cleared)

Page has been paged out and is not in memory.
A page containing a monitor call argument has been
paged out. This is a monitor-detected fault.
A virtual timer trap has occurred. The monitor will
cause this kind of trap every n units of time, if
requested by the .STTVM function of the SETUUO

The page has been allocated, but 1is a =zero page,
occurring after a user instruction.

Bits Symbol Contents
0 PF.HCB
1 PF.HBS
2-8
9-17 PF .HPN
18-35 PF.HFC
The fau
Code Symbol Meaning
1 .PFHNA
but in core.
2 .PFHNI
3 .PFHUU
4 .PFHTI
monitor call.
5 .PFHZT
6 .PFHZU

The page has been allocated, but 1is zero after a,
monitor call is executed.

2.7 LOCKING AND UNLOCKING A JOB IN MEMORY

When a job is "locked" in memory, it is not available for swapping.
You can lock a job in user memory by using the LOCK monitor call. You
t to lock a job for any of the following reasons:

may wan

o}

The job is a realtime job that should respond to interrupts
promptly, without the delay of swapping.

The job uses a display device that must refresh the display
from a buffer without flickering.

The job analyzes system performance, and must be invoked

quickly.

The job uses the SNOOP. UUO.

2-13

MEMORY

You must have the lock privilege to use the LOCK UUO. This is set by
the JP.LCK bit in GETTAB Table .GTPRV.

Using the LOCK call, you can lock either or both program segments into
memory, and you can specify whether the memory must be physically
contiguous.

A job can be unlocked (made available for swapping) using either the
RESET or UNLOK. monitor call. Execution of a RESET monitor call
automatically performs several other functions. You may want to
unlock the job without resetting everything. You can do this by using
the UNLOK. monitor call.

The UNLOK. call allows you to unlock either or both segments of your
job. Note, however, that a locked high segment that is shared by
several jobs will not be unlocked until the SN%LOK bit in the GETTAB
Table .GTSGN is off for all those jobs. The shared high segment will
not be unlocked until every job sharing the segment has issued either
a RESET or UNLOK. monitor call for that segment.

CHAPTER 3

JOB CONTROL

This chapter discusses initializing, starting, stopping, and
suspending programs, timing considerations, and other functions
pertaining to jobs.

3.1 EXECUTING A PROGRAM

After you write a program, it must be compiled and 1loaded before it
can be executed. The compilation process depends on the programming
language used in the source program, but the COMPILE monitor command
will initiate compilation of any program in a supported language.
Refer to the TOPS-10 Operating System Commands Manual for information
about the COMPILE command and all monitor commands.

The compiled program exists on disk in relocatable format; this stage
of program preparation is known as the .REL file. The LINK program
(the linking loader) processes the .REL file by resolving symbol
definitions and by loading the program into user core memory. After
it has been loaded successfully, the program is ready to be executed
or saved in its executable format. LINK offers switches to initiate
execution or saving. LINK is described in detail in the TOPS-10 LINK
Reference Manual.

Each time the source program is changed, it must be recompiled and
reloaded before it can be executed.

Once the program is loaded into memory, execution can start
immediately, but it 1is more common to write the core image of the
program to disk, thus saving it in executable format as an .EXE file.
This .EXE file <can be loaded from disk and executed using the RUN
monitor command.

Programs can be called from within another program as well as <from
monitor command level.

3.1.1 Starting a Program

You can start a program from the monitor level by using any of the
following monitor commands:

o RUN loads an .EXE file from disk and starts execution at the
address given by .JBSA in the job data area.

o EXECUTE starts execution of a specified program at its normal
start address. This command loads the program from its .REL
file. If no .REL file exists, EXECUTE compiles the source
file and then loads the .REL file.

3-1

JOB CONTROL

o START starts (or restarts) execution of an already-loaded
program at its normal start address.

o CSTART starts execution of an already-loaded program at its
normal start address, but leaves the terminal at monitor
level.

o DDT starts execution of the debugging program specified by
the right half of .JBDDT. (Refer to Chapter 4 for
information about JOBDAT locations.)

You can continue execution of an already-loaded program from monitor
level by using either of the following monitor commands:

o CONTINUE continues execution of an already-loaded program at
the place where the program was interrupted.

o CCONTINUE functions like the CONTINUE command, except that it
leaves your terminal at monitor level.

You can start a program from within another program with any of the
following monitor calls:

o RUN transfers execution control to the specified program.
The calling program is overwritten in core, and control is
passed to the new program. The RUN call allows you to
specify an offset to the normal starting address.

o GETSEG replaces the high segment of the calling program with
a specified high segment.

o MERGE. merges specified pages of an .EXE file into the low
segment of the current program.

The RUN and GET monitor commands are often used in the same session.
Therefore, for these commands, the monitor saves the argument to the
command (that is, the program name) in a GETTABable form. If you use
one of these commands without an argument, the saved argument is

assumed by the monitor. To read the argument that is currently being
stored, see GETTAB Tables 135-137 and 145-151.

3.1.2 Stopping a Program

You can stop execution of your program by using any of the following
commands or monitor calls:

o CTRL/C, if your program is waiting for terminal input, or if
your program is running but your terminal is at monitor
level.

o Two CTRL/Cs, if your program is not waiting for terminal
input, but is attached to your terminal.

o The HALT monitor command.

o The EXIT monitor call in your program code.

o The LOGOUT monitor call in your program code.
o The FRCUUO monitor call in your program code.

If a fatal error occurs (including a HALT), the monitor will stop your
program.

3-2

JOB CONTROL

3.1.3 Suspending a Program

You can suspend execution of a program until some event occurs, or
until some time has elapsed, by using the following monitor calls in
your program:

o The HIBER monitor call suspends execution of your program
until some specified event occurs or until a specified amount
of time has elapsed. The program will be continued by the
monitor.

o The SLEEP monitor call suspends execution of your program
until a specified time has elapsed.

You can also use the PSI system, which can interrupt a job when a
particular event occurs. (Refer to Chapter 6.)

3.2 CONTROLLING MULTIPLE JOB CONTEXTS

The core image of a job, some system resources such as ENQ/DEQ locks,
some terminal parameters, and monitor overhead data constitute a job’s
context. The CTX. UUO allows you to save and retrieve information
about contexts, and manipulate them in ways that give you control over
multiple jobs. For instance, using contexts, you can halt and save a
running program to perform some other task, and later restore the
context and continue the program. For jobs that have set a program to
run automatically at login, you must use the RUN. UUO from within the
captive program to transfer execution control to another program.

Using CTX., you can create two kinds of contexts: inferior and
parallel. Creating either an inferior or a parallel context halts the
current job and saves the current context. However, when you work in
an inferior context, returning to the original (superior) context
causes the system to automatically delete the inferior context. When
you create a parallel context, it co-exists with the original context
-until you explicitly delete it. You may switch between parallel

contexts without deleting any of them. Under the system default, you
may work with a maximum of four parallel and/or inferior contexts at
any one time. This value may be changed in the user’s accounting file
entry.

Once the system has swapped a Jjob’s core image out to disk, the
context i1s considered idle. The items saved in a context are:

o Program run; from physical SYS bit (JB.LSY from JBTLIM(J))
o Monitor mode bit: LDLCOM from LDBDCH (U)

o SAVCTX word in the PDB: .PDSCX (W)

o Break mask words: LDBBKM(U), LDBBKB(U), and LDBCSB (U)

o PSI data base address: JBTPIA(J)

o All IPCF-related words in the PDB

o Enqgueue block chain address: .PDEQUJ (W)

o Selected words in the TTY DDB

JOB CONTROL

o Job status word: JBTSTS (J)

o Swapped out disk address: JBTSWP (J)

o Swapped in image size: JBTIMI (J)

o Swapped out image size: JBTIMO(J)

o High segment number: JBTSGN(J)

o Funny space (per-process space) page count: JBTPDB (J)

o Swapped out checksum: JBTCHK (J)

o Program name: JBTNAM (J)

o User PC: JBTPC(J)

o I/0 wait DDB: JBTDDB (J)

o Program run data: .PDNAM (W), .PDSTR(W), .PDDIR(W), .PDSFD (W)

o Time of last reset: PDSTM(W)

0 Address of user-defined commands: PDCMN (W)

o0 Address of UNQTAB for user-defined commands: PDUNQ (W)

o Address of DECnet session control block: PDSJB (W)
The ENQ/DEQ, IPCF, and PSI facilities can all work in conjunction with
multiple contexts. The Job/Context Handle (JCH) allows a facility to
uniquely identify a job and one of its contexts. JCH storage requires
18 bits. ENQ/DEQ, IPCF, and PSI have 18 bits reserved for this
purpose. If you have not enabled the context facility, the JCH equals
the Jjob number. If the JCH has a zero context component, the system
translates it into the JCH for the job’s current context. A non-zero
context component allows a program to target a job at a particular

context. Refer to Chapter 22, Volume 2 for a description of the
CTX. monitor call.

3.3 RUNTIMES, TIMES, AND DATES

The TOPS-10 monitor calculates runtimes, the time of day, and the
date. You can obtain any of these either from your terminal or for
use in your programs.

3.3.1 Runtimes

The TOPS-10 monitor has several ways of monitoring runtimes. The
runtimes available to you depend on the type -0of processor your system
uses, and on system parameters.

The KS and KL processors simulate a clock, called the APR clock, which
is based on the frequency of the system power source (either 50 or 60
Hz). The APR clock may be used to keep the system time of day,
because it is accurate over long periods of time. The APR clock may
also be used for job accounting. However, it may not be completely
accurate, as its tick may be longer than the runtime period for a Jjob.
The KS and KL processors simulate the APR clock by setting up internal
timers to simulate the jiffy clock.

3-4

JOB CONTROL

The DK10 clock has higher resolution than the APR clock, and is
therefore more reliable for job accounting. High-precision runtime
simulates the DK10 clock time.

EBOX/MBOX runtime is computed from KL10 accounting meters (to the
nearest 10 microseconds). This runtime is not related to any other
runtime, and it is not directly related to real time.

Runtimes returned by the monitor (by the RUNTIM call; the TIME,
USESTAT, or CTRL/T monitor commands; or the .GTTIM GETTAB Table) are
all either high-precision runtime or EBOX/MBOX runtime (selectable
with MONGEN) . The type of runtime reported depends on the value of
the ST%ERT bit in item $%$CNST2 of the .GTCNF GETTAB Table. (The value
1 selects EBOX/MBOX runtime; 0 selects high-precision runtime.) The
RUNTIM call reads RN.PCN in its accumulator to initiate high-precision
runtime. A program that wuses high-precision runtime can run
successfully even though the ST$ERT bit is on. The time returned will
be approximated to simulate high-precision, but the low-order bits of
the high-precision word will be zero.

Monitor overhead can optionally be included in these runtimes,
depending on MONGEN parameters.

3.3.2 The System Date

The DATE monitor call returns the system date as a 15-bit integer that

must be decoded to obtain a calendar date. (See the DATE call in
Volume 2 of this manual for an example showing how to decode the
date.) This 15-bit date 1is 1in multiple-radix form, so that the

difference between two dates is usually not the number of days between
them. The format of the code is:

v

(day of month - 1) + 31 * [(month - 1) + 12 * (year - 1964)]

3.3.3 The Universal Date

The monitor also keeps the date in an alternate format, the universal
date standard. This fullword value is in the form:

day, , fraction

Where: day is the number of days since November 17, 1858 (where
November 17th is day 0, the 18th is day 1, and so on).

fraction represents the fractional part of the day elapsed
since midnight, to approximately 1/3 of a second. The
fraction is the numerator of a fraction whose denominator is
2**18, so that the following expression gives the portion of
the day elapsed since midnight:

fraction/ (2**18)

The arithmetic difference between two universal dates gives the number
of days and the portion of a day between the dates.

The universal date is stored in item %CNDTM in GETTAB Table .GTCNF and
is taken from the Smithsonian Universal Date/Time Standard (UDT) .

JOB CONTROL
To obtain the local time (at your time zone), add the contents of item
%$CNGMT in the same GETTAB Table (.GTCNF) to UDT.

You can derive the day of the week from the UDT by dividing the left
half by 7, and using the remainder to determine the day of the week.

Where: O = Wednesday, 1 = Thursday, 2 = Friday,... 6 = Tuesday

3.3.4 The System Time

You can obtain the system time in jiffies (one jiffy = 1/60 second) by
using the TIMER monitor call. (For 50 Hz power supplies, 1 jiffy =
1/50 second.)

You can also obtain the system time in milliseconds (one millisecond =
.001 seconds, to the nearest jiffy) by using the MSTIME monitor call.
This call is preferable to the TIMER call, because the returned time
is the same, regardless of the type of power supply (50 or 60 Hz).

3.3.5 Date-Time Elements from GETTAB Tables

The GETTAB Table .GTCNF contains the parts of the date and time.
These items are:

Symbol Contents

%CNYER Local year.

$CNMON Local month.

%¥CNDAY Local day of the month.
$CNHOR Local hour.

$CNMIN Local minute.

$CNSEC Local second.

The cautious programmer should assume that individual items can change
between successive GETTABs. If a date and time must be guaranteed to
be consistent, your program should test values returned from the items
above until it obtains two consecutive, identical readings, or you
should derive the date and time from the UDT (available with a single
GETTAB) .

CHAPTER 4

THE JOB DATA AREA

Memory locations 20 through 137 (octal) and the high segment origin to
hiseg origin + 7 (normally locations 400000-400007) are allocated for
specific monitor and program uses. This area is called the Jjob data
area. Your program sets some locations in the job data area for the
monitor’s use; the monitor sets other locations for your program’s
use.

During a program load, LINK loads the job data area symbols if they
are required to satisfy global references. In your program, refer to
job data area locations by their symbol names (of the form .JBxxx).
These symbols are defined as external symbols in UUOSYM.MAC, and are
given values in JOBDAT.MAC.

Section 4.1 lists important JOBDAT locations. The JOBDAT locations
that are not 1listed in this table are either unused or used only by

the monitor. Your program should be written to reference only the job
data area locations described in Section 4.1.

4.1 JOB DATA IN THE LOW SEGMENT

The low-segment job data area is in locations 20 through 137 (octal) .
Locations relevant to your job are:

Word Symbol Contents

40 . JBUUO Used by hardware for processing local UUOs (opcodes
0 through 37); the hardware stores the opcode and
the effective address in this location.

41 .JB41 Executed to start the user-programmed monitor call
(LUUO) stored in .JBUUO; this location usually
contains a JSR or PUSHJ instruction. LINK puts a
HALT here if the user does not explicitly load
anything else.

42 . JBERR System program error count. The left half is
reserved; the right half is the number of errors in
the previous compilation.

44 .JBREL The left half is reserved; the right half is the
highest physical memory location available to the
user program (low segment).

45 .JBBLT First location of three words used by LINK to move
the program before calling the exit routine. This
location is used by the PA1050 program to store the
return address for the user program.

4-1

74

74

75

76

112

115

116

117

.JBDDT

.JBPFI

. JBHSO

.JBBPT

. JBEDV

. JBHRL

.JBSYM

.JBUSY

THE JOB DATA AREA

The left half is the first address after DDT, if
DDT is 1loaded. If any other debugging program is
loaded, this halfword is zero. The right half is
the start address of the debugging program. .JBDDT
can be set only with the SETDDT monitor call. If
.JBDDT is =zero, DDT has not been loaded and the
monitor will attempt to read SYS:VMDDT.EXE when you
execute a DDT command. If successful, VMDDT.EXE is
brought into the program’s virtual address space.
The left and right halves of .JBDDT will be set
appropriately.

The highest location that is protected from wuser
access. User programs cannot write into locations
up to .JBPFI.

Reserved for use by DIGITAL.

The unsolicited breakpoint address. Use the
instruction JSR @.JBBPT to invoke this facility
from a program. It 1s necessary to explicitly

search JOBDAT to define this symbol.

The Exec Data Vector, which the monitor uses as a
pointer to EDDT. This location is valid only in
exec mode.

High-segment addresses. If zero, there is no high
segment.

The left half is the first free location in the
high segment, relative to the high-segment origin.
This value is the same as the high segment length.
This address is initially set by LINK and then set
by the monitor on subsequent GETs, regardless of
whether there is a file to 1initialize the low
segment. The address is a relative quantity so
that .JBHGH can be changed. The SAVE monitor
command uses this value to determine how much to
write from the high segment.

The right half is the highest legal address in the
high segment. This wvalue 1is set by the monitor
each time a wuser program begins execution or
executes a CORE or REMAP monitor call.

Pointer to the program symbol table created by
LINK. The left half is the negative length of the
symbol table, and the right half is the starting
address of the symbol table. If 0, this table does
not exist. If this word is a positive number, it
contains a pointer to the extended symbol table for
LINK.

Pointer to the table of undefined symbols created
by LINK. The left half is the negative length of
the symbol table, and the right half is the
starting address of the symbol table. If .JBUSY is
0, .JBSYM contains a pointer to an extended symbol
table for LINK.

120

121

123

124

125

126

127

130

.JBSA

.JBFF

.JBPFH

. JBREN

.JBAPR

. JBCNI

.JBTPC

. JBOPC

THE JOB DATA AREA

First free low-segment address and program starting
address: the left half is the first free location
in the program low segment, as set by LINK. The
right half is the starting address of the user
program, unless an entry vector is in use. (Refer
to the ENTVC. monitor call in Volume 2.)

The first free address in the program’s low
segment. The left half is zero. The right half is
the address of the first free location after the
program data in the 1low segment. On a RESET
monitor call, the value of the left half of .JBSA
is moved to this location.

When the monitor builds a buffer, it allocates the
buffer at the . address given by .JBFF, and then
changes .JBFF to the address at the end of the
buffer. Note that .JBFF may point to a non-legal
user address 1if your program occupies every
location in the last page of your low segment.

Pointer to page fault handler. The 1left half is
the last address of the page fault handler. The
right half is the address of the start of the page
fault handler. If this address is 0, the user
program has no page fault handler; on a page fault,
the monitor calls its internal page fault handler.
This location remains zero when virtual under the
above circumstances.

The left half is zero. The right half is the start
address for the REENTER monitor command, unless an
entry vector is in use. (Refer to the ENTVC.
monitor call in Volume 2.) This value is set either
by the user program or by LINK.

The left half is zero. The right half is the
address of a trap routine to handle APR traps. See
the APRENB monitor call.

The state of the APR as stored by the monitor
instruction from a user trap.

The PC of the next instruction to be executed after
a user-enabled trap occurs. This value is set by
the monitor. Use the JRSTF @.JBTPC instruction to
continue execution.

The last user-mode program counter for the Jjob.
The monitor sets this value on each DDT, REENTER,
START, or CSTART monitor command. Location .JBOPC
contains the effective address of the HALT
instruction, when the user program contains a HALT
instruction followed by the execution of a START,
DDT, CSTART, or REENTER command. After an error
has occurred during execution of a monitor call
followed by a START, DDT, CSTART, or REENTER
command, .JBOPC will point to the address of the
monitor call. To resume execution, type the
following command to DDT:

@1308G

131

133

134

135
136

137

140

. JBOVL

. JBCOR

.JBINT

.JBOPS

.JBCST

. JBVER

.JBDA

THE JOB DATA AREA

The left half is the negative number (count) of the

root segment overlays. The right half is the
pointer to the header block for the root link of an
overlay structure. You may also reference .JBOVL
as .JBCHN.

LINK-written low segment break and monitor-written
SAVE or GET argument. The left half is the highest
non-zero address 1in the program low segment,
supplied by LINK. If this address is less than 140
octal, no low segment will be written by a SAVE or
SSAVE monitor command. The right half is the
user-specified argument for the last executed SAVE
or GET command. The value in the right half is set
by the monitor.

The left half is reserved. The right half is the
address of the error-intercepting block. For a
description of the format of the block, see Chapter
6.)

Reserved for object-time systems.

Reserved for customers.

Program version number (in octal) and flags, in the
format shown below. The version number of any
program can be obtained using the VERSION monitor

command.

Bits Meaning

0-2 Modifier flag:

Flag Meaning
0 DIGITAL development group last
modified the program.
1 Other DIGITAL employees last
modified the program.
2-4 A customer last modified the
program.
5-7 A customer’s user last modified

the program.

3-11 DIGITAL’s latest major revision number,
usually incremented by 1 for each release.

12-17 DIGITAL’ s minor revision number, which is

usually 0, wunless the program has been
modified since the last release.

18-35 The edit number, increased by 1 after each

edit to the program. This value is never
reset.

First location available for user program,

THE JOB DATA AREA

4.2 JOB DATA IN THE HIGH SEGMENT

Some job data area locations are in your program’s high segment.
These are loaded at the high-segment origin (usually 400000), so that
your program actually begins at the origin + 10 (usually 400010).
Refer to Section 2.4 for information about accessing the information
in the high segment.

In the following description of the format of this area, all offsets
are from the high-segment origin, wusually .JBHGH (400000).

The format of the vestigial job data area is:

Woxrd Symbol Contents
0 . JBHSA Copy of .JBSA in the job data area.
1 .JBH41 Copy of .JB41 in the job data area.
2 .JBHCR Copy of .JBCOR in the job data area.
3 . JBHRN LH: wused to set LH of .JBHRL
RH: wused to set RH of .JBREN
4 . JBHVR Copy of .JBVER in the job data area.
5 . JBHNM High segment name set on execution of SAVE command.
6 . JBHSM Pointer to high segment symbol table, if any. In

the left half is the length of the symbol table.
In the right half is the address of the first word

in the symbol table. If 0, there is no symbol
table.

7 . JBHGA GET address page number (bits 9-17).

10 . JBHDA First word in high segment that is available to the

user program.

CHAPTER 5

NETWORKS

TOPS-10 supports four types of data networks:

(e]

ANF-10, the TOPS-10 native communications software, supports
communication among DECsystem-10s and certain remote
stations. ANF-10 provides terminal concentration, remote job
entry, and front-end services for the monitor. Using ANF-10,
you can perform data transfers between Jjobs running on
different systems, and the same facility allows data
transfers among jobs running on the same system. The ANF-10
software 1is bundled with the TOPS-10 monitor. This chapter
discusses the monitor calls and facilities available in the
ANF-10 communications environment.

DECnet-10 allows data communication among many of DIGITAL's
operating systems, for the purpose of file transfer, network
virtual terminal capability, and intertask communication.
(DECnet-10 must be purchased separately.) DECnet-10 is
TOPS-10’s implementation of the Digital Equipment Corporation
Network Architecture. DECnet-10 Version 4 supports the
standards defined in the DECnet Phase IV Architecture
Specification, for Level 1 routing. Three monitor calls deal
directly with DECnet-10:

1. The NTMAN. call is wused only by the DECnet Network
Management Layer.

2. The NSP. call is used for task-to-task program
communication over DECnet network links. Section 5.3
discusses the NSP. monitor call.

3. The DNET. call 1is used to access monitor~stored
information about DECnet nodes, 1links, and networks.
Section 5.4 discusses the DNET. call.

IBM Emulation/Termination facility provides communication
with IBM systems wusing batch job submission. IBM E/T, a
separately purchased product, interacts with the GALAXY
spooling and batch subsystem (Versions 4.1 and 1later),
allowing users to submit TOPS-10 batch jobs from IBM remote
stations, or to submit IBM-style batch jobs from the TOPS-10
host. This facility runs on a DN60 front end. IBM
communication is described in the TOPS-10 IBM
Emulation/Termination manual,

NETWORKS

o Ethernet, which allows you to implement foreign Ethernet
protocols using the ETHNT. monitor call. For example, if you
wish to communicate with a printer that is on the Ethernet,
but 1is unreachable with ANF-10 or DECnet, you could use
ETHNT. to develop software that would communicate with the
printer over the Ethernet. ANF-10 and DECnet-10 also
function on the Ethernet hardware. Section 5.5 discusses the
ETHNT. monitor call. See Volume 2 for a full description of
ETHNT. functions. Refer to The Ethernet: Data Link Layer
and Physical Link Layer Specifications for a description of
the Ethernet hardware.

Each computer processor in a network is called a node. A node is
either a host or a remote station. A host node is capable of running
user programs. A remote station, also known as a server, 1is a node
with more limited capabilities. It contains software that controls
specific I/O functions, such as terminal concentration, remote batch
job entry, network communications links, and more.

A TOPS-10 system operates as a host node in any network. A KL-based
DECsystem-10 can operate as a host node in any of the network
environments described above. The RSX-20F front end is not a separate
node in the network. IBM E/T is not supported on KS-based
DECsystem-10s.

Each node in the network has a node name of six characters or less,

and a node number, sometimes known as the node address. For ANF-10,
the node number 1s octal. You can use either the node name or node
number in most cases when referring to an ANF-10 node. You must refer

to a DECnet node by its node name.

The terms local node and remote node distinguish the host system that
is interpreting your commands (the local node) from the other nodes in
the network (the remote nodes). Your terminal 4is automatically
connected to the host system by the remote station or front end to
which your terminal is physically connected.

5.1 ANF-10 NETWORK MONITOR CALLS

A MACRO program can include the following monitor calls to accomplish
intertask communication in the ANF-10 network environment.

o GTNTN. UUO returns the line and remote station number of a
terminal.

© GTXTN. UUO returns a terminal name for a physical node and
line number.

o LOCATE UUO allows your job to send direct spooled output to
the device at the node you specify.

o NODE. UUO can perform several network functions. 2Among them
are:

- Assign a logical name to a device and assign the device
to your Jjob. The device may be connected to a remote
system.

- Return a node number for a node name, or node name for
node number.

NETWORKS

- Send station control messages.
- Receive boot request messages.

- Return system configuration information (similar to the
NODE command) .

- Connect or disconnect a terminal to or from a remote
system.

~ List the known nodes.
- Return node data block information.
- Return and clear the ungreeted node flag.

o TSK. UUO allows you to use intertask communication, which may
include tasks on the same system or on different systems.

O WHERE UUO returns the name of the node to which a terminal or
other peripheral device is connected.

You perform I/0 in the ANF-10 environment using UUOs such as IN, OUT,
INBUF, OUTBUF, FILOP., and OPEN.

The following sections discuss the use of monitor calls to establish
intertask communication between nodes on an ANF-10 network.

5.2 ANF-10 INTERTASK COMMUNICATION

Two tasks running in the same ANF-10 network can communicate with one
another. For example, one task may wish to transfer a file to another
task at another node. This communication between tasks is called
intertask communication. Intertask communication can be used between
Jjobs on the same system or between jobs on on different systems in the
network. In this discussion, the term task is used to refer to a
program.

Initially, both programs must open a channel for I/O for intertask
communication. This is accomplished using the OPEN UUO with SIXBIT
/TSKnn/ in the argument block (Word 1), for the device name, where nn
is the node number of the node where the other task is running.

The appropriate calling sequence for opening a channel for intertask
communication is:

OPEN channo, argblk
error return
normal return

.

argblk: EXP mode
SIXBIT /TSKnn/
XWD outblk, inblk

NETWORKS

In this example, channo is the channel number, argblk is the address
of the argument block. The first word of the argument block allows
you to define the data mode. The I/0O modes used for data transfer
between tasks are:

0 ASCII and ASCII line modes, in 7-bit ASCII

0 Byte mode, in 8-bit bytes

o Image and image binary modes, in 36-bit words
Refer to Section 11.4 for information about I/O modes.

The second word specifies the device and node number of the other task
(TSKnn) .

The third word of the argument block specifies the addresses of the
output (outblk) and input (inblk) buffer control blocks.

After opening the I/0 channels for communicating data, the tasks must
initiate the connection. The passive task describes the desired
connection, and then waits for I/0 to start. The active task
initiates a connection and may start I/O.

Since interactive task-to-task communication is always buffered, vyou
should wuse one buffer for each data request when sending data. When
receiving data, use multiple buffers, so that all incoming data
requests can be accommodated.

5.2.1 Initiating a Connection

The intertask connection can be initiated by either of the following
methods:

o The passive task uses the LOOKUP UUO to specify the task
name, and then performs an IN or INPUT. The passive task
then waits for the active task to initiate I/O. The active
task wuses the ENTER UUO to initiate the connection, and then
performs OUT or OUTPUT calls to start data transfer. This
procedure is described in the following section.
LOCKUP/ENTER blocks are described in more detail in Chapter
11. Either the short argument block (shown here) or the
extended argument block may be used to initialize intertask
communication.

o0 The passive task uses the TSK. UUO with the .TKFEP function
code. The active task uses the TSK. function .TKFEA. Both
tasks must provide Network Process Descriptor (NPD) blocks.
This method of intertask communication is described in
Section 5.3.1.2.

NETWORKS

5.2.1.1 Using the LOOKUP/ENTER UUOs - After OPENing the I/O channel,
the passive task must declare the task name in the LOOKUP monitor
call. By specifying the task name in the argument block, the passive
task ensures that only the appropriate active task can initiate I/0.
The task names specified by the passive and active tasks are compared
and must be equivalent before I/0 can begin.

The LOOKUP calling sequence is:

LOOKUP channo, argblk
error return
normal return

argblk: éIkBiT /tsknam/
0
0

ppn

In this sequence, channo is the same channel number used in the OPEN
UUO, and argblk is the address of the argument block. In Word 0 of
the argument block, tsknam specifies the task name in SIXBIT. Words 1
and 2 are unused. Word 3 contains the ppn of the active task, if
different from that of the passive task. (You must have privileges to
specify a PPN.) A PPN of 777777,777777 indicates full wildcard
acceptance of a connection from any PPN.

The passive task can then issue an IN or INPUT monitor call for the
given channel to initiate a wait state until connection is made from
an active task, or, if the program has the PSI system enabled, it can
act on an appropriate interrupt condition (refer to Chapter 6).

The active task uses an ENTER UUO to specify the task name for which
to establish a connection. The following calling sequence is used:

ENTER channo, argblk
error return
normal return

argblk: SIXBIT /tsknam/
0
0

Ppn
Where: channo is the channel number used in the OPEN call.
argblk is the address of the argument block.

tsknam is the name of the task (same used in LOOKUP by the
passive task).

ppn is the project-programmer number of the active task, which
you should include only if it is different from that of the
passive task. You must have privileges to specify the PPN.
If you specify 0 for the PPN, it defaults to the task’s own
PPN.

NETWORKS

5.2.1.2 Using the TSK. UUO - Both the passive and active tasks can
use the TSK. UUO to initiate the connection. First you must OPEN an
I/O channel for task-to-task communication, Jjust as with the
LOOKUP/ENTER method. However, the TSK. call gives your program
greater control over the communication, and allows many functions
useful in performing task-to-task communication.

TSK. UUO operates by reading a Network Process Descriptor block (NPD)
for each task. 1In this description, the word "process" is equivalent
to "task." Both tasks must specify an NPD for both the passive and
active tasks. The NPD that each task specifies for the remote task
must match the other task’s local NPD. The format of the NPD is:

Word Symbol Contents

0 . TKNND Node number of the task

1 . TKLNL Length of task name

2 . TKNPN First word of task name

n . TKLNL+n Last word of task name
An NPD describes a task (process). The first word (. TKNND) contains
the node number of the node on which the task is running, and could be
-1 to indicate any node (-1 is not wvalid when connecting to a remote

passive task) .

The second word specifies the length (in characters) of the task name.
The maximum length of the task name is 100 (decimal) characters; this
maximum is defined as .TKMNL in UUOSYM.MAC.

The third word contains the first word (in ASCII) of the task name.
The length of the NPD, therefore, is the result of adding 2 + the
contents of .TKLNL (the number of characters divided by 5 and rounded
up) . The wildcard characters listed here can be used in the task
name:

Character Meaning

* Matches 0 or more characters.

? Matches any one character.

v Quote next character, allowing you to specify
asterisks and question marks (for wildcard

characters) in the task name.
The TSK. call is invoked as shown in the following calling sequence:

MOVE ac, [XWD length, argblk]
TSK. ac,

error return
normal return

argblk: EXP function-code
EXP channo
EXP locnpd
EXP remnpd

In the TSK. calling sequence, the ac is first loaded with a word
consisting of the length of the argument block (in this case, 4) and
the address of the first word in the argument block (argblk) . The
argument block contains the following words.

NETWORKS

In Word 0, the function code is indicated by function-code. For the
passive task, (similar to LOOKUP, above) this 1is .TKFEP. For the
active task, (similar to ENTER, above) the function code is .TKFEA.
Although a monitor call must be issued by each task, both tasks need
not use the same calling procedure. That is, one task may initiate
the connection using a LOOKUP or ENTER call, and the other task may
use the appropriate TSK. function.

In Word 1, the channel number is indicated by channo. This is
identical to the channel number used in the OPEN UUO.

In Word 2, the address of the local ©Network Process Descriptor,
indicated here by locnpd. This is the task’s own NPD.

In Word 3, the address of the remote Network Process Descriptor,
indicated here by remnpd. For the passive task, this is the NPD of
the task from which it will accept a connection. For the active task,
this is the NPD of the task with which to attempt a connection.

After using the TSK. UUO with the .TKFEP function, the passive task
can wait for input from the active task.

After using the TSK. UUO with the .TKFEA function, the active task can
begin data transfer.

5.2.2 Sending and Receiving Between Tasks

When task-to-task communication is established with LOOKUP/ENTER
calls, the monitor generates NPDs for the tasks. Thus, the programs
can use TSK. call functions even though communication was not
initiated with the TSK. monitor call. The monitor generates a local
NPD and a remote NPD for each program.

The local NPD of each task consists of the node number of the local
node (the node on which it is running), and the task name consists of
the program name (obtained from .GTNAM) and the task’s [PPN].

The remote NPD for each task consists of the node number generated
from the OPEN call

Where: TSKnn would contain the node number as nn, or -1 if only TSK
was specified (implying that connections from any node will be
accepted). The task name would be generated by the file
specification in the LOOKUP/ENTER block.

Because of this facility, two tasks can communicate wusing different
calling procedures. One task can use the appropriate LOOKUP or ENTER
call, and the other task can use the complementary TSK. function.
Note, however, that the TSK. call must include references to NPDs
that are equivalent to those generated by TSKSER for LOOKUP/ENTER
sequences. The LOOKUP/ENTER NPD contains a file specification for the
task name. This must be matched exactly by the program issuing the
TSK. «call.

When the intertask communication is established, the two tasks can
send and receive data using the normal I/O monitor calls (IN, INPUT,
OUT, and OUTPUT) for the open channel.

Your program should require the communicating tasks to verify the
intertask communication by sending and receiving identifying codes;
these codes should be unique among tasks on the network so that no
mistaken communication occurs.

NETWORKS

The TSK. call offers several functions useful for performing I/0 as
well as establishing the task-to-task link. The TSK. functions are:

Fcn-code Symbol Meaning

1 . TKFRS Returns the state of the communications
link specified in the argument block. The
link can be idle, waiting for a connection,
waiting for a connect confirmation, active,
or waiting for a disconnect confirmation.

2 . TKFEP Creates a passive link.

3 . TKFEA Creates an active link.

4 .TKFEI Enters idle state. This allows the monitor
to CLOSE the connection.

5 . TKFWT Enters wait state.

6 . TKFOT Outputs messages with control of message
disassembly.

7 .TKFIN Inputs messages with control of message
reassembly.

10 . TKFRX Returns the state of the 1link and the

maximum data message size.

5.2.3 Breaking the Intertask Communication

Either the active task or the passive task can break the intertask

communication. When one task issues a CLOSE monitor call for the
communication channel, the other task receives an end-of-file on its
channel. When the task issues a RELEAS monitor call for the channel,

the communication is completely broken. Both tasks should close and
release their channels.

5.3 TASK TO TASK PROGRAMMING WITH DECnet-10

You can write MACRO programs to communicate with tasks on another

DECnet node. When doing so, you use the NSP. monitor call to
interface to DECnet-10. This section describes the functions of the
NSP. monitor call. These functions allow you to:

o Declare a network task as willing to accept connections.
o Initiate a request for a connection to another network task.

0 Accept or reject a request for a connection from another
network task.

o Transmit data to and receive data from another network task.
o Request the status of a logical link.
o Read the connect attributes of a network task.

o Exchange interrupt messages with other network tasks.

NETWORKS

o0 Set buffer quotas for the link.
o Set a reason mask for PSI interrupts.
o Disconnect a network connection.

The basic form of the NSP. monitor call is:

MOVEI AC, ADDR ;Arg block pointer
NSP. AC, ;Do the UUO

Error return ;AC contains error code
Normal return ;UUO succeeded, AC unchanged

The AC always points to a data block that has the general form:

Word Symbol Contents
0 17 18 35
0 _NSAFN | FlagstFen | Length |
1 _NSACH | Status | Channel § |
2 NSAAL . First Argument |
3 NSAAZ v second Argument |
4 .NSAA3 o Third Argument |
On an error (non-skip) return, AC always contains an error code. The

error codes and their meanings are listed in Volume 2, in the
description of the NSP. UUO. On a normal (skip) return, the AC is
unchanged.

You may set two flags in the NSP. monitor call.

0 NS.WAI (bit 0 of .NSAFN) indicates whether the program should
wait for the function to be completed before returning from
the monitor call. If the bit is set, the monitor waits.

o NS.EOM (bit 1 of .NSAFN) indicates whether an end of message
is to be sent with a message. DECnet-10 returns the NS.EOM
flag as appropriate on a data read. If the program sets
NS.EOM on a normal data read call, DECnet-10 truncates data
that overflows the program’s buffer.

The NSP. UUO has the functions listed below. The function code must
be in Bits 9 through 17 of the first word of the argument block
(.NSAFN) . The NSP. status variable and channel number are always the
second word (.NSACH). All functions return the after-function status
of the link in the left half of .NSACH. All functions ignore the
status in .NSACH when reading arguments, so the program can pass an
old status along with a channel number if that is convenient. The
interpretation of the argument words varies with the function.

NETWORKS

Table 5-1: NSP. UUO Functions

Fcn-code Symbol Meaning

1 .NSFEA Enter Active State

2 .NSFEP Enter Passive State

3 .NSFRI Read Connect Information
4 .NSFAC Accept Connect

5 .NSFRJ Reject the Connect

6 .NSFRC Read Confirm Information
7 .NSFSD Synchronous Disconnect)
10 .NSFAB Abort and Release

11 .NSFRD Read Disconnect Data

12 .NSFRL Release Channel

13 .NSFRS Read Channel Status

14 .NSFIS Send Interrupt Data

15 .NSFIR Receive Interrupt Data
16 .NSFDS Send Normal Data

17 .NSFDR Receive Normal Data

20 .NSF'SQ Set Quotas

21 .NSFRQ Read Quotas

22 .NSFJS Set Job Quotas

23 .NSFJR Read Job Quotas

24 .NSFPI Set PSI Conditions

5.3.1 Specifying a Destination Task

A task declares that it is ready to accept a connection by executing
the Enter Passive function (.NSFEP). The .NSFEP argument list has the
format:

.NSAFN Flags+XWD .NSFEP, 3
.NSACH XWD Status, Channel number (assigned by this call)
.NSAAL Connect block pointer

The link is put into Connect Wait state (.NSSCW) and remains in this
state wuntil a connect initiate message is received that matches the
connect block, or until the link is released.

DECnet-10 uses the connect block specified by the connect block
pointer (.NSAAl) as a pattern for incoming connect initiate messages.
The connect block has fields for pointers to source and destination
task descriptor blocks, and pointers to string blocks for the node
name, user-id, password, account, and user data. Fields that are zero
in the connect block are considered wildcards and match anything. The
only field that must be specified is the pointer to the destination
task descriptor.

NETWORKS

The connect block has the following format:

Word Symbol Field Type

0 .NSCNL 0 , Length length of this argument block

1 .NSCND Node name pointer to string block (max 6 bytes)
2 .NSCSD Source pointer to task descriptor block

3 .NSCDD Destination pointer to task descriptor block

4 .NSCUSs User-id pointer to string block (max 39 bytes)
5 .NSCPW Password pointer to string block (max 39 bytes)
6 .NSCAC Account pointer to string block (max 39 bytes)
7 .NSCUD User Data pointer to string block (max 16 bytes)

The connect block contains pointers to other blocks, such as those
containing the node name or accounting information, and those
containing information describing the source and destination tasks.

The blocks for the node name, user-id, password, account, and data are
called string blocks. A string block has the following format:

Word Symbol Field Type

0 .NSASL NS.ASC,NS.ASL ©LH: byte count; RH: block
length in words

1 .NSAST cl,c2,c3,¢c4,0 8-bit bytes of data
NS.ASL-1 c¢n-1,cn,0

The user-id, password, account, and user data are optional. They can
be used by the destination task to validate a network connection or to
perform any other handshaking functions agreed to by both tasks.
Except for the data (which can be up to 16 characters long), these
strings can be up to 39 characters 1long. They must consist of
alphanumeric ASCII characters (including the hyphen, dollar sign, and
underscore) .

The task descriptor block identifies the source or destination task.
Its format is shown below:

Word Symbol Field Type

0 .NSDFL 0 , Length length of the argument block

1 .NSDFM Format type 0, 1 or 2

2 .NSDOB Object type integer

3 .NSDPP PPN 2 half words (16 bits, 16 bits)

4 .NSDPN task name pointer to string block (max 16 bytes)

By including the proper combination of values in the task descriptor
block, you identify the task and specify whether it is a system
program or a user program. Table 5-2 shows the information you must
supply for each type of program.

NETWORKS

Table 5-2: Allowable Combinations of Task Descriptor Values

Kind of Program Format Type Object Type PPN Task Name

DECnet system 0 1-127 0 0
Customer system 0 128-255 0 0
User, name only 1 0 0 string pointer
User, with PPN 2 0 n,n string pointer

Use format type 0 only with a non-zero object type to specify a system
program. Object types 1 through 127 identify DECnet utilities or
control programs. Only a privileged program can have an object type
of 1 through 127, Object types 128 through 255 identify customer
system programs and are assigned by the system manager. A program
need not be privileged to have an object type of 128 through 255.
Refer to UUOSYM.MAC for a list of the currently-defined object types.

Use Format types 1 and 2 to specify user programs. With Format types
1 and 2, you must specify an object type of 0 and a pointer to the
task name. With Format type 1, you specify a task name of up to 16
characters, but not a project-programmer number. Format type 2 allows
you to specify both a task name and a project-programmer number, but
there are restrictions on each. The task name can only be up to 12
characters long because DECnet-10 adds the project-programmer number
to it. Also, your project-programmer number must fit into 16 bits, or
your program must be privileged (so it does not require a PPN).
Otherwise, your program must identify itself using format type 1.

When DECnet-10 receives a connect initiate message, it matches the
message against the connect blocks of successive destination tasks
until it finds a match. When a match succeeds, DECnet-10 puts the
link in the Connect Received (.NSSCR) state, and passes control to the
destination program. At this point the program can read the connect
data and accept or reject the connection.

Example of Specifying a Destination Task

This example shows use of the NSP. UUO to declare that a program is a
destination task. It also shows the connect, task descriptor, and
string blocks for the Enter Passive function.

; Begin by using the NSP. Enter Passive function to wait
; for a program on some other host to send a message.

ENTPAS:
MOVEI T1l,EPBLK ; Pointer to Enter Passive arg block
NSP. T1, ; Enter Passive
JRST [OUTSTR [ASCIZ /?Can’t Enter Passive /]; Error
JRST EREXIT] ; return
; Argument block for Enter Passive
EPBLK: NS.WAI+XWD .NSFEP,3 ; Wait bit, function, block length
XWD 0,0 ; No status or channel number yet
XWD CONBLK ; Pointer to Connect Block

; Connect block for Enter Passive

CONBLK: EXP 4 ; Length of block in words
EXP 0 ; Accept connects from any host
EXP 0 ; Accept connections from any source
EXP TDB1B ; Destination task descriptor block

5-12

NETWORKS

; Destination task descriptor block
TDB1B: EXP 5 ; Length of TDB

14

EXP 2 ; Format type 2

EXP 0 ; Object type 0

XWD 20,7200 ; Project-programmer number

EXP STRB1C ; String block for destination name
; String block for destination name
STRB1C: XWD 4,2 ; Number of bytes, number of words

BYTE (8) "P", "G“, "M", ngw

5.3.2 Specifying a Source Task

A task declares that it is a source program by executing the Enter

Active function (.NSFEA). The .NSFEA argument list has the format:
.NSAFN Flags+XWD .NSFEA,length (length = 3 to 5)
.NSACH XWD Status, Channel number (assigned by this call)
.NSAALl Connect block pointer
.NSAA2 Segment size (optional; default: maximum allowed)
.NSAA3 Flow control (optional, privileged; default: segment)

DECnet-10 sends a connect initiate message using the information in
the connect block pointed to by .NSAAl, and the link enters the
Connect Sent state (.NSSCS). The source connect block has the same
format as that used for a destination task.

When DECnet-10 is transmitting data across a physical link, the data
is in the form of segments whose maximum size is set during network
generation. The actual segment size used for a particular logical
link is negotiated by the two hosts when the link is being set up.
So, when transmitting a message, DECnet-10 will try to fit it into a
segment, breaking it if the message is larger than a segment, or
sending a partial segment if the message is smaller than a segment.

To enhance performance, you may wish to find out the segment size and
set the program’s buffers to that size. Then each segment transmitted
would contain a complete message. The program can find the segment
size of a logical link by executing the Read Channel Status function.

Flow control is necessary because it may take some time for a message
segment to travel through ‘the network from the source node to the
destination node. Therefore, it is desirable for a node to be able to
transmit a number of segments, one after another, without waiting for
an acknowledgement of one segment before transmitting another. DECnet
recognizes three types of flow control:

0 Segment flow control (.NSFCS) - The receiving node sends a
request for data that includes the maximum number of message
segments it can accept at one time. This is the default for
DECnet-10. '

© Message flow control (.NSFCM) - The sending node transmits
all the segments necessary to form a complete message.
DECnet~10 supports this type of flow control for sending
messages.

NETWORKS

No flow control (.NSEFCO)

waiting for a data request from the receiving node.

receiving node fills its
segments, it sends an OF
node to stop the flow.

will not send

any more

without
When the
buffers and cannot handle any more
F link service message to the sending
The sending node stops sending and
segments until the receiving node

- A node sends segments

signifies that it can again accept segments by sending an ON.

If the connection attempt succeeds,

Running (.NSSRN); if the attempt
to Connect Rejected (.NSSRJ).

DECnet-10 sets the link state to

fails, DECnet-10 sets the link state

Example of Specifying a Source Task

; Begin by using the Enter Active
; a logical link with PGMB on sys

function to attempt to establish
tem HOSTB.

MOVEI T1l,EABLK ; Point to Enter Active arg block
NSP T1, ; Enter Active
JRST [OUTSTR [ASCIZ /?Can’t Enter Active /]; Error
JRST EREXIT] ; return

; Argument block for Enter Active

EABLK: NS.WAI+XWD .NSFEA,3 ; Wait bit, function, block length
XWD 0,0 ; No status or channel number yet
XWD CONBLK ; Pointer to connect block

.
r

Connect block for Enter Active

CONBLK: EXP 4 ; Length of block in words
EXP STRB1A ; Pointer to string block of node name
EXP TDB1lA ; Source task descriptor block
EXP TDB1B ; Destination task descriptor block

7

STRB1A: XWD

14

String block for node name
5,3 ;
(8) "H", "o", "S",

Number of bytes,
"T"’ "B"

number of words

BYTE Name of destination node

Source task descriptor block

TDB1lA: EXP 5 ; Length of TDB
EXP 2 ; Format type 2
EXP 0 ; Object type 0
XWD 20,7100 ; Project-programmer number on HOSTA
EXP STRB1B ; String block for source name

14

STRB1B: XWD

r

String block for source name
4,2 ‘
(8) "P", lIG", "M",

Number of bytes,
"All

number of words
BYTE

Destination task descriptor block

TDB1B: EXP 5 ; Length of TDB
EXP 2 ; Format type 2
EXP 0 ; Object type 0
XWD 20,7200 ; Project-programmer number on HOSTB
EXP STRB1C ; String block for destination name

14

STRB1C: XWD

String block for destination name

4,2 ;
(8) "P'l, ||G"’ "M",

Number of bytes,
"B"

number of words
BYTE

NETWORKS

5.3.3 Reading the Connect Information

After DECnet-10 has matched the source and destination tasks, it puts
the link into Connect Received state.' The destination task can accept
or reject the connection at this point, or it can execute the Read
Connect Information function (.NSFRI) to move the connect initiate
data into the connect block supplied .in the call. The program can
then examine +the data to decide whether to accept or reject the
connection. The .NSFRI argument list has the format:

.NSAFN Flags+XWD .NSFRI, length (length = 3 to 5)
.NSACH XWD Status, Channel number
.NSaAl Connect block pointer
.NSAA2 Segment size (optional)
.NSAA3 Flow control (optional)
The program must specify a pointer to each Dblock. However, it can

gspecify the length of the block as zero, and DECnet-10 ignores the
data. If the program uses 0 instead of a pointer, DECnet-10 accepts
it as the pointer to AC 0 and stores the data starting at AC 0.

If the Jestination program has included fields for segment size and
flow control, DECnet-10 stores those values for the source node.

The UUO takes the error return if the 1link 1is not in one of the
following states:

.NSSCR Connect Received
.NSSCW Connect Wait
.NSSRN Running

If the link is in Running state and the program has issued neither
read nor write functions, DECnet-10 passes the connect initiate data
to the program.

Example of Reading the Connect Information

; When control reaches this point, a program is attempting to initiate
; a connection with this program. The Read Connect Info function

; determines information about the job trying to establish contact.
EVALCN:

HRRM CHAN, RIBLK+.NSACH; Store channel number into arg block
MOVEIL T1l,RIBLK ; Point to Read Connect Info arg block
NSP. T1, ; Read Connect Info
JRST [OUTSTR [ASCIZ /?Can’t Read Connect Info /]; Error
JRST EREXIT] ; return

; Here the program checks to make sure that the source PPN is [20,*].

HLRZ T1l, SRCPDB+.NSDPP; Get left half of source PPN field
CAIE T1,20 ; Test for project number 20

JRST REJCON ; Reject connection if not

JRST ACCCON ; Accept connection if so

; Argument block for Read Connect Info

RIBLK: NS.WAI+XWD .NSFRI,3 ; Wait bit, function, block length
XWD 0,0 ; Code supplies channel number
XWD SRCCNB ; Pointer to source connect block

NETWORKS

; Connect Block for Read Connect Info

SRCCNB: EXP ~D8 ; Length of block in words
EXP STNODE ; String block for node name
EXP SRCTDB ; Source task descriptor block
EXP DSTTDB ; Destination task descriptor block
EXP STUSID ; String block for user id
EXP STPSWD ; String block for password
EXP STACCT ; String block for account
EXP STDATA ; String block for user data

; String block for node name

STNODE: XWD 0,3 ; Number of words -- max 6 bytes
BLOCK 2

; Source task descriptor block

SRCTDB: XWD 0,5 ; Number of words
EXP 0,0,0 ; Format type, Object type, PPN
EXP STNAME ; String block for task name

;Destination task descriptor block
DSTTDB: XWD 0,0 ;Block is zero-length; no info wanted

; String block for user id
STUSID: XWD 0,”D1l1 ; Number of words -- max 39 bytes
BLOCK ~“D10

; String block for password
STPSWD: XWD 0,”D11 ; Number of words -- max 39 bytes
BLOCK ~D10

; String block for account
STACCT: XWD 0,7D1l1 ; Number of words -- max 39 bytes
BLOCK ~“D10

; String block for data

STDATA: XWD 0,5 ; Number of words -- max 16 bytes
BLOCK 4

; String block for source name

STNAME: XWD 0,5 ; Number of words -- max 16 bytes
BLOCK 4

5.3.4 Accepting the Connection

Once the link is in Connect Received state, the destination task can
accept or reject the connection, whether or not it reads the connect
initiate information. By executing the Accept Connect function
(.NSFAC), the destination task declares that it will exchange data
with the source task. The .NSFAC argument list has the format:

.NSAFN XWD .NSFAC, length (length = 2 to 5)

.NSACH XWD Status, Channel number

.NSAAL Pointer to user data (string block pointer, optional)
.NSAA2 Segment size (optional; default: maximum allowed)
.NSAA3 Flow-control (optional, privileged; default: segment)

If execution of the Accept Connect function succeeds, DECnet-10 sends
a connect confirm message to the source task and puts the link in
Running state (.NSSRN). The connect confirm message contains the
optional data supplied by the destination task, the segment size
agreed to by both nodes, and the flow control to be used by the
destination node.

NETWORKS

If the link is not in Connect Received state when the Accept Connect
function executes, the UUO takes the error return.

Example of the Accept Connection Function

; The program comes here to accept the requested connection
ACCCON:

HRRM CHAN, ACBLK+.NSACH; Store channel number into arg block
MOVEI T1l,ACBLK ; Point to Accept Connection arg block
NSP. T1, ; BAccept Connection
JRST [OUTSTR [ASCIZ /?Can’t Accept Connection /]; Erxrror
JRST EREXIT] ; return
; Argument block for Accept Connection
ACBLK: NS.WAI+XWD .NSFAC,2 ; Wait bit, function, block length
XWD 0,0 ; Code supplies channel number

5.3.5 Rejecting the Connection

Once the link is in Connect Received state, the destination task can
accept or reject the connection, whether or not it reads the connect
initiate information. By executing the Reject Connect function
(.NSFRJ), the destination task declares that it will not exchange data
with the source task. The .NSFRJ argument list has the format:

.NSAFN XWD .NSFRJ, length (length = 2 or 3)
.NSACH XWD Status, Channel number
.NSaAl String block pointer to user data (optional)

If the link is not in Connect Received state upon execution of the
Reject Connect function, the UUO takes the error return.

Example of the Reject Connection Function

; The program comes here to reject the requested connection
REJCON:

HRRM CHAN, RUBLK+.NSACH; Store channel number into arg block
MOVEI T1l,RJIBLK ; Point to Reject Connection arg block
NSP. T1, ; Reject Connection
JRST [OUTSTR [ASCIZ /?Can’t Reject Connection /]; Error
JRST EREXIT] ; return

; After it has rejected the connection, the program goes back and
; executes the Enter Passive function again

JRST ENTPAS

; Argument block for Reject Connection

RJIJBLK: NS.WAI+XWD .NSFRJ, 2 ; Wait bit, function, block length
XWD 0,0 ; Code supplies channel number

NETWORKS

5.3.6 Reading the Connect Confirm Data

If the destination task accepts the connection, the DECnet software at
the destination node sends a connect confirm message to the DECnet
software at the source node. The source task can (optionally) read
the data in the connect confirm message by executing the Read Connect

Confirm Data function (.NSFRC). The .NSFRC argument list has the
format:

.NSAFN Flags+XWD .NSFRC,length (length = 2 to 5)

.NSACH XWD Status, Channel number

.NSAAl String block pointer to user data (optional)

.NSAAZ2 Segment size (optional)

.NSAA3 Transmit flow control mode (optional)

If the link is in Running (.NSSRN) state but the program has not
executed any read or write functions on this link, the UUO returns the
connect confirm data. However, if the program has executed a read or
write function on this link, DECnet-10 discards the connect confirm
data, and the UUO takes the error return. If the link is in any state
other than Connect Sent (.NSSCS) or Running (.NSSRN), the UUO also
takes the error return.

5.3.7 Reading the Status of the Link

The program can check the status of an assigned channel (and therefore
the link) by executing the Read Channel Status function (.NSFRS). The
.NSFRS argument list has the format:

.NSAFN XWD .NSFRS, length (length = 2 to 4)

.NSACH XWD Status, Channel number

.NSAAl Segment size for this link (optional)

.NSAA2 XWD Remote flow control, local flow control (optional)

The left half of the second argument (.NSACH) contains the status
variable, which contains the following fields:

Table 5-3: Fields in .NSACH (status variables)

Bits Symbol Meaning

0 NS.IDA Single bit. If set, interrupt data can be read.

1 NS.IDR Single bit. If set, interrupt data can be sent.

2 NS .NDA Single bit. If set, normal data can be read.

3 NS .NDR Single bit. If set, normal data can be sent.

12-17 NS.STA 6-bit field that contains the state of the
connection. State values are listed in Table
5-4.

The four data flags are set only if the 1link is in an appropriate
state for the indicated functions. Table 5-4 lists the NSP. UUO
connection states.

NETWORKS

Table 5-4: NSP. Connection States

Code Symbol

Meaning

1 .NSSCW
2 .NSSCR
3 .NSsCs
4 .NSSRJ
5 .NSSRN
6 ~ .NSSDR
7 .NSSDS
10 .NSSDC
11 .NSSCF

Connect wait:

The task has executed the Enter Passive function
and is awaiting the &receipt of a connect
initiate message.

Connect Received:

The task has executed the Enter Passive function
and has received a connect initiate message; it
may now read the connect data and must either
accept or reject the message.

Connect Sent:

The task has performed an Enter Active function
which sent a connect initiate message, and is
now awaiting either a connect confirm (and entry
into the Running state) or a connect reject (and
entry into the Reject state).

Reject:
The remote node has rejected this node’s connect
initiate attempt. The task should read the

disconnect data and release the channel.

Running:
The link is up and may be used for the transfer
of data.

Disconnect Received:

The task has received a disconnect initiate
message. The task should read the disconnect
data and release the channel.

Disconnect Sent:

The task has performed a Synchronous Disconnect
function and is awaiting a disconnect confirm.
During this time, the task should be prepared to
read data from the link (the other end having
not yet received the disconnect), but may not
use the link for the transmission of new data.

Disconnect Confirmed:
This state is entered from the Disconnect Sent
state when the disconnect is finally confirmed.
At this point, the only 1legal functions are
Release and Read Status. The task should
release the channel.

No Confidence:

DECnet has no confidence in this 1logical 1link
because the remote node is not acknowledging
messages. The local node has retransmitted a
message more than the retransmit factor number
of times without receiving an acknowledgment.
The retransmit factor is a system parameter set
by the system manager. The task should release
a channel in this state.

NETWORKS

12 .NSSLK No Link:
There is no link because the remote node no
longer recognizes this logical link. This can
happen if the remote node is reloaded quickly,
or if the remote task is aborted without sending
a disconnect initiate message for some reason.
The task should release a channel in this state.

13 .NSSCM No Communication:
There is no communication between this node and
the remote node. A connect initiate cannot
succeed because there is no communication with
the requested node. This state can only be
entered from Connect Sent state. The task

should release a channel in this state.

14 .NSSNR No Resources:
This state is entered from Connect Sent state
when a No Resources message is received from the
destination node, which had insufficient
resources to make the requested connection. The
task should release a channel in this state.

Other functions can provide the same information as .NSFRS. However,
a program could use the Read Channel Status function if it were a
destination node that required the segment size. It could also use

this function if it became wuncertain of the link status (perhaps
because it had not recently received data).

Example of Read Link Status

; If there’s a channel number, read the status of the channel and
; analyze it

REDSTS:
HRRM T2,RSBLK+.NSACH ; Store channel number into arg block
MOVEI T1l,RSBLK ; Point to Read Status arg block
NSP. T1, ; Read Status
JRST [OUTSTR [ASCIZ /?Can’t Read Status /]; Error
JRST TYPRET] ; return
; Argument block for Read Status
RSBLK: XWD <(NS.WAI)>+.NSFRS,2 ; Wait bit, function, block length
XWD 0,0 ; Code supplies channel number

NETWORKS

5.3.8 Using the PSI System

A task source or destination task can be programmed to perform
intertask 1I/O synchronously or asynchronously. With synchronous
programming, the task sets a bit, called the wait flag (NS.WAI), so
that each time the task executes the NSP. UUO it waits (blocks) until
the I/0 has been entirely completed. With asynchronous programming,
the task does not set ‘the wait bit so that the task can continue
executing even if the NSP. function has not completed. The task must
check the status variable to determine when the requested function is
completed, or use the PSI (Programmed Software Interrupt) system so
that it will be interrupted when the status changes, indicating that
the NSP. function is completed. However, the program must enable the
PSI system and set a PSI reason mask before DECnet-10 can cause an
interrupt.

5.3.9 Setting the PSI Reason Mask

The PSI reason mask 1is an 18-bit wvalue that contains fielids
corresponding to the fields in the DECnet-10 status variable. A
program can set this mask Dby executing the Set PSI Reason Mask
function (.NSFPI). The .NSFPI argument list has the format:

.NSAFN Flags+XWD .NSFPI,3
.NSACH XWD Status, Channel number
.NSaAl XWD 0, reason mask

In the right half of the third argument, the program sets to 1 those
bits that correspond to the status or states that will cause an
interrupt. All DECnet programmed interrupts come through a single PSI
interrupt condition. You cannot assign a different interrupt to each
DECnet channel, as you can for normal TOPS-~10 I/O.

When a program executes the Set PSI Reason Mask function, DECnet-10
simulates a status ' change from =zero to the current status for the
affected link. Thus, if the program has enabled the PSI system and
set that DECnet-10 condition in the reason mask, when the program
executes the .NSFPI function, DECnet-10 causes a PSI interrupt. This
"free" interrupt enables a PSI-driven program to do all its DECnet
checking in the PSI routine.

For any bit set in the reason mask corresponding to a status (a
single-bit field), only changes from false to true cause PSI
interrupts. For example, Normal Data Available changing from false to
true causes an interrupt, but not vice versa. For the bit fields set

in the reason mask corresponding to a state (more than one bit in the
field), all changes cause PSI interrupts. For example, changing the
state from .NSCCS (Connect Sent) to .NSCRN (Running) means that a
connect confirm message has arrived.

NETWORKS

5.3.10 Enabling the PSI Interface

The program can enable the PSI system for any DECnet-10 channel by
doing the following:

MOVEI AC, IVB ;address of Interrupt Vector Block
PIINI. AC, ;initiate PSI system

error return
normal return

MOVE AC, [PS.FON!PS.FAC,PSIARG]

PISYS. AC, ;enable PSI
error return

normal return

MOVEI AC,NSPARG
NSP. AC, ;NSP. argument list

error return ;to specify reason for interrupt
normal return :

IVB: BN ;interrupt vector: allow one
;4-word control block per channel
ICB: EXP HANDLER ;interrupt control block
0 ;specifies address of code
0 ;to handle interrupt
0
PSIARG: EXP .PCNSP ;NSP.-type interrupt
XWD <ICB-IVB>,0 ;offset in IVB to ICB
XWD priority,O ;priority of NSP. interrupts
NSPARG: XWD .NSFPI,3 ;function code length
XWD 0,channel ;status word (status,channel number)
XWD 0, reason mask ;reason word
HANDLER: ... ;code to handle NSP. interrupt

When DECnet-10 interrupts the program, the status word of the
interrupt control block contains:

XWD status, channel

Note that the PISYS. status word has the same format as the second
argument (.NSACH word) of the NSP. function argument block.

A program that has several links open at one time can include tables
indexed by the channel numbers of the 1links. DECnet-10 assigns
consecutive channel numbers starting with the lowest number available.
Note, however, that DECnet-10 also reassigns channel numbers if the
program releases channels; therefore, the channel numbers may not be
sequential according to the order that the program first opened the
channels.

If the status word for a DECnet-10 PSI interrupt is zero, the program
should ignore the interrupt.

NETWORKS

5.3.11 Reading and Setting the Link Quota and Goal

The DECnet-10 administrator allocates monitor buffers that DECnet-10
uses to hold message segments being sent or received, and also sets a
default number of buffers to use for each logical link. The Set Quota
function allocates a portion of those buffers to a particular link.
The Set Quota function also allows the program to set the percentage
of buffers allocated to a link for input (receiving).

If the program has privileges, it can also use the Set Quota function
to establish the data request input goal. DECnet-10 uses segment flow
control, in which the receiving node must request data before the
sending node can send it. To keep message segments flowing smoothly,
DECnet-10 can be asked to send data . requests before the receiving
program issues a read request. DECnet-10 queues message segments that
arrive before the receiving program issues a. read function for them.

The input goal controls the number of data requests that DECnet-10
will try to keep outstanding at the remote node. Whenever DECnet-10
receives a message segment, it will send enough data requests to the
remote node to bring the total outstanding data requests to the goal.

If the input goal is larger than the link quota, this creates a pool
of T"cached" messages that have been received but not yet acknowledged
("committed"). DECnet-10 allows cached messages to be discarded at
any time because the source node will resend them after a timeout.

To change the 1link quota, percent input, or input goal (if
privileged), . the program can execute the Set Quota function (.NSFSQ).
The .NSFSQ argument list has the format:

.NSAFN Flags+XWD .NSFSQ,length (length = 3 to 5)
.NSACH XWD status, channel number

.NSAAl Link quota

.NSAA2 Percent of input (optional)

.NSAA3 Input goal (privileged optional)

The program can set the link quota for each link to any wvalue wup to
the maximum number of buffers in the pool. DECnet-10 will allocate
that number of buffers but will not necessarily use them all for that
link.

The percent input can optionally be set to any number between 0 and
100; the default is 50.

To find out the number of buffers allocated to the 1link, the
percentage of those buffers allocated for input, and the input goal,
the program can execute the Read Quota function (.NSFRQ). The .NSFRQ
argument ligt has the format:

.NSAFN Flags+XWD .NSFRQ,length (length = 3 to 5)
.NSACH XWD status, channel number

.NSAAL Link quota

.NSAA2 Percent of input (optional) ,

.NSAA3 Input goal (privileged, optional)

If the argument block contains five words, all the wvalues (quota,
percent input, and input goal) will be returned.

NETWORKS

5.3.12 Transferring Information Over the Network

Once a network connection has been established, the task at either end
of the logical link can send information to the task at the other end.
DECnet-10 provides functions for data messages and interrupt messages.
Data messages are primarily used by network tasks to move blocks of
data. Interrupt messages are used by network tasks to exchange small
amounts of data (16 bytes or less) that are not sequentially related
to the main data flow.

Data transfers over a logical 1link involve the segmenting and
reassembling of data at both the logical and physical link levels.
The network software accepts data from the user program, segments it
to conform to the maximum segment size allowable on that logical 1link,
precedes each segment with a header, and passes these segments to the
physical 1link management layer. This layer segments the data to
conform to the maximum segment size allowable on the physical link and
proceeds each segment with a header to form a packet. These packets
are then sent over the physical line to the destination node. At the
destination node the reverse procedure takes place: headers are
stripped and segments reassembled.

Occasionally, errors or status changes in a task require bypassing the
normal flow -of data so the message is delivered promptly. DECnet-10
allows for the transmission and reception of short messages called
interrupt messages. An interrupt message is sent and accounted for
independently of any buffered data messages and its delivery is
usually prompt. Interrupt messages are limited in length to 16 bytes.
They are most effectively used as event indicators and usually require
the subsequent exchange of data by the two processes owning the
logical link.

5.3.13 Sending Normal Data

To send a data message to another task, the program executes the Send

Normal Data function (.NSFDS) . The .NSFDS argument list has the
format:

.NSAFN FLAGS+XWD .NSFDS, 4

.NSACH XWD status, channel number

.NSAAl EXP byte count

.NSAA2 Byte-pointer to data

The program must include a count of the number of bytes in the message
and a byte pointer (.NSAA2) to the data in a program buffer. As
DECnet-10 moves the data from the program buffer to the monitor
buffers, it decrements the byte count and advances the byte pointer.
DECnet-10 then sends the data to the remote node, segmenting it as
necessary to comply with the segment size.

If the program sets the NS.EOM flag, the program buffer represents a
message or the final portion of a message. This can force DECnet-10
to send the data even if it does not fill a segment. Note that the
program must set the NS.EOM flag before executing the Synchronous
Disconnect function or the disconnect function fails.

If the program sets the NS.WAI flag, it waits until the UUO returns.
The UUO returns when DECnet-10 transmits the entire buffer of data.
If the program does not set the NS.WAI flag, the UUO returns when the
program’s quota of monitor buffers is exhausted. If the entire buffer
of data has not been sent, the byte count is non-zero. The program
must check the byte count to determine whether all the data was sent,
and execute the Send Normal Data function again if necessary.

5-24

NETWORKS

If the link is in a state other than running (.NSSRN) or Connect Sent
(.NSSCS), the UUO takes the error return. If the link is in Connect
Sent state, the NS.WAI flag must be set so that the program can wait
for the state to change to Running, otherwise the UUO takes the error
return.

Example of Send Normal Data Function

SNDMSG.
HRRM CHAN, DSBLK+.NSACH; Store channel number into arg block
MOVE1l T1l,DSBLK ; Point to Send Normal Data arg block
NSP. T1, ; Send Normal Data
JRST [OUTSTR [ASCIZ /?Can’t Send Normal Data /]; Error
JRST EREXIT] ; Return
; Argument block for Send Normal Data
DSBLK: NS.WAI+ NS.EOM+XWD .NSFDS,4 ;Wait and end-of-message bits
; Function, block length
XWD 0,0 ; Code supplies channel number
EXP 33 ; Number of bytes in message
POINT 7,MESSAG ; Byte pointer to message to be sent

; Message to be transmitted
MESSAG: ASCII /HI! THIS IS HOSTA SPEAKING!/

5.3.14 Receiving Normal Data

To receive a data message from another task, the program executes the
Receive Normal Data function (.NSFDR). The .NSFDR argument list has
the format:

.NSAFN Flags+XWD .NSFDR, 4

.NSACH XWD status, channel number
.NSAAl EXP byte count

.NSAA2 Byte pointer to data buffer

The program must include a count of the number of bytes expected and a
byte pointer to the buffer that will hold the incoming data.

As DECnet-10 moves data from the monitor buffers to the program
buffer, it decrements the byte count and advances the byte pointer.
To determine the number of bytes received, the program must subtract
the value of the byte count after execution from the value specified
in the call.

The program will never receive data from more than one message in a
single execution of this function. If the program does not set the
NS.EOM flag, (or clears it from a previous call), DECnet-10 returns as
much of the message as will fit into the buffer. If the program sets
the NS.EOM flag, DECnet-10 returns as much of the message as will fill
the buffer and discards the excess data. If DECnet-10 discards any
data, it sets the byte count to the negative of the number of bytes
discarded. Thus, a byte count of =zero or greater means that the
message fit into the buffer. If the program sets NS.EOM and does not
set NS.WAI as well, the .NSFDR function will fail.

NETWORKS

If the program sets the NS.WAI flag, the program waits