VAXcluster Disk I/0 Internals Manual
Order Number:

March 1988

This Manual describes the Internals of performing MSCP access to disks

AUTHOR: Roy G. Davis
Updated By: Robert A. Premovich

Revision/Update information:

This manual supersedes the Disk
I/O Internals Manual, Version 1.0
Last Update (16-Sep-1992)

Operating System and Version:

VMS Version 5.5

Software Version:

Version 5.5

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not suppliéd by Digital
Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. -

Copyright © March 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user’s critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem—-10 PDP VT
DECSYSTEM-20 PDT

DECUS RSTS ™
DECwriter RSX dlilgliltlall

October 1990

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

PREFACE

CHAPTER 1 SCA AND SCS CONCEPTS
INTRODUCTION

MASS STORAGE COMMUNICATIONS
INTER-SYSTEM COMMUNICATIONS
INFORMATION EXCHANGE

1.1
1.2
1.3
1.4

15

1.6

1.7

141
1.4.2
143

Datagrams
Messages
Block Data Transfers

COMMUNICATION MECHANISMS

1.5.1

15.2

153

154

SCA Ports

1.5.1.1 Definition « 14

15.1.2 Port Drivers « 1-5

15.1.3 Local Controllers « 1-6

15.14 Port Descriptors « 1-6

SCA Virtual Circuits

1.5.2.1 Definition « 1-7

15.22 Virtual Circuit Data Structures « 1-7
1.5.2.3 System Blocks « 1-7

15.24 Path Blocks « 1-8

1.5.25 Virtual Circuit Data Organization « 1-8
SCA Connections

1.5.3.1 Definition « 1-8

15.32 Connection Descriptors « 1-9
15.3.3 Connection Structures « 1-9
Communications Mechanisms Example

ARCHITECTURAL LAYERS OF SCA

1.6.1

1.6.2

163
164

SYSAP Layer
1.6.1.1 Definition ¢ 1-12

SCS Layer
1.6.2.1 Port Independent SCS Services « 1-12
1.6.2.1.1 Connection Management Services » 1-12

1.6.21.2 Directory Services « 1-13

1.6.2.1.3 SCS Process Polling Services « 1-14
1.6.2.1.4 SYSAP Connection Analogy « 1-15
1.6.2.2 Port Dependent SCS Operations » 1-16
PPD Layer

Pl Layer

VMS IMPLEMENTATION OF SCA ARCHITECTURAL LAYERS

174

DUDRIVER CONNECTSs to MSCP Disk Server
1.71.1 Local Node « 1-20

1.71.2 Remote Node « 1-20

1713 Connection Data Structures « 1-21

Xv

1-1
1-1
1-1
1-3

1-3
1-3
1-4
1-4

1-4
1-4

1-8

1-10
1-11
1-12

1-12

1-17
1-17

1-17
1-20

Contents

1.7.2

1.73

174

175

1.7.6

1.7.7

DUDRIVER Sends MSCP Command to MSCP Disk Server

1.7.2.14 Buffer Allocation « 1-23

1.7.22 Identifying the Receiving Sysap and Connection » 1-23

MSCP Server Sends END Message to DUDRIVER

1.7.3.1 Locating the Connection Associated with an End
Message « 1-23

Response IDs and Command Reference Numbers

1.7.41 Class Driver Request Packet « 1-24

1.7.4.2 Request Descriptor Table Entries « 1-24

1.7.4.3 MSCP Server End messages « 1-25

DUDRIVER and Block Data Transfers

1.7.5.1 Buffer Descriptors « 1-26

1.7.5.2 Buffer Handles « 1-27

Concept of Flow Control

1.7.6.1 Credit Scheme « 1-28

1.7.6.2 Piggybacking + 1-29

MSCP Server in a Controller

1.7.7.1 Local Server Handles SCA Events Essentially the
Same ¢ 1-30

CHAPTER 2 DUDRIVER /O DATABASE

v

2.1
2.2

23

INTRODUCTION

DATA STRUCTURES

2.21

222

223

224

2.2.5
2.26

SB - System Block

2211 Configuration List of System Blocks » 2-3

22.1.2 System Blocks and Cl Ports « 2-3

2213 System Blocks and NI Ports « 2—4

2214 System Blocks and Local DSA Controllers « 2-5

DDB - Device Data Block

2221 DDBs and Remote DSA Controllers « 2-5

2222 DDBs and Remote MSCP-Served Disks + 2-6

2223 DDB Chain for Local DSA Disks « 2—-7

2224 DDB for Boot Device * 2-8

UCB - Unit Control Block

2.2.31 Linked Lists of UCBs « 2-8

2232 UCBs for DSA and MSCP-Served Disks + 2-8

CDDB - Class Driver Data Block

2241 Linkage From UCBs to CDDB for Controller » 2-12
2242 Linkage from CDDB to UCBs on that Controller « 2—14
22.43 Linkage from CDDB to DDBs on that Controller = 2-14
2244 Extensions to Disk Class Driver CDDB « 2-15

CRB - Channel Request Block

Dual-Pathed Disks

DUDRIVER /O DATABASE INITIALIZATION

231

DUDRIVER'’s Controller Initialization Routine
2.3.1.1 DU_CONTROLLER_INIT « 2-24

1-22

1-23

1-24

1-26

1-28

1-30

2-1
2-1

2-1
2-2

2-5

2-8

2-1

2-16
2-20

2-24
2-24

24

23.2

233

234

23.5

Overview of DUDRIVER’s Controller Initiatization Routine

23.21 CDDB Creation and Initialization « 2-29

2322 MAKE_CONNECTION Establishes a Connection to MSCP

Server « 2-29

2323 Poll for Disk Units « 2-29

2324 Check for Controller Based Shadow Set « 2-29

2.3.25 Handling of Secondary Path Discovery « 2-30

Determine Access Paths Processing

2.3.3.1 Determination of Topology of Disk Units « 2-32

23.3.2 Access Path Attention Messages » 2-32

23.33 Setup of Dual Path if Found « 2-32

2334 DAP Scheduling « 2-32

23.34.1 DAPBSY Flag Set in the CDDB if DAP Processing in
Progress « 2-33

23342 DAPBSY Flag Checked for DAP Already in
Progress « 2-33

23343 DAPCOUNT Field used to Determine Frequency of DAP
Processing * 2-33

Attention Messages

2.3.4.1 Unit Available Attention Message * 2-34

2342 Duplicate Unit Attention Message - 2-34

2343 Access Path Attention Message « 2-34

The CONFIGURE Process

2.3.5.1 Configure uses SCS Process Polling to Discover MSCP

Servers » 2-35
2352 Requesting Polling « 2-36
2353 Discovery of MSCP Controllers « 2-36

DUDRIVER I/O DATABASE INITIALIZATION ROUTINES

24.1

24.2

243

24.4

245

246

247

DU_CONTROLLER_INIT

2411 Routine Process « 2-39

MAKE_CONNECTION

2.4.21 Establishing a Connection « 2-41
DUTUSPOLL_FOR_UNITS

2.4.31 Polling Loop « 2-43

2432 Polling for Units Complete « 2—-45
DUTUSNEW_UNIT

2.4.41 Determines if Unit Already Seen on Controller » 2-46
2442 Unit Already Seen On This Controller » 2—46
2443 Unit Not Already Seen On This Controller « 2-47
DUTUSDODAP

2451 Preparations for Performing DAP Processing » 2—-48
2452 Issues DAP Commands to Controller » 249
ATTN_MSG

2.4.6.1 Unit Available Attention Message * 2-50

2462 Duplicate Unit Attention Message « 2-51

2463 Access Paths Attention Message » 2-51

Routines in the CONFIGURE Process

2471 Polling for MSCP Servers on Other Nodes » 2-51
2472 CONFIGURE Notified of Discovery of MSCP$DISK - 2-52

Contents

2-28

2-32

2-34

2-35

2-38
2-39

2-41

2-43

2-45

2-48

2-49

2-51

Contents

CHAPTER 3

vi

3.1
3.2

3.3

3.4

3.5

3.6

$QIO SYSTEM SERVICE AND DUDRIVER
INTRODUCTION
ASSIGNING AN /O CHANNEL TO A DISK

3.2.1 Assign System Service
3.2.2 Channel Control Blocks
3.2.2.1 Maximum Channel Limit » 3-2
3222 Channel Number « 3-2
3.2.23 Numerical Representation of Access Mode ¢ 3-3
3.23 Volume Set Considerations
3.24 Overview of Steps Taken by SYS$ASSIGN
OPENING A FILE
3.3.1 Window Control Blocks and Mapping a File
3.3.1.1 Virtual Blocks * 3-5
3.3.1.2 Logical Blocks * 3-6
33.1.3 Bad Block Replacement » 3-6
33.14 Window Control Blocks * 3-6
3.3.2 Mapping Situations Requiring Special Handling

3.3.2.1 Window Turns « 3-8
3.3.22 Bound Volume Sets « 3-8
3.3.23 File Fragmentation « 3-9

DRIVER DATA STRUCTURES, THE IRP, DDT AND FDT

3.4.1

3.4.2
3.43

/O Request Packet

34.1.1 Class Driver Request Packet « 3-10
Driver Dispatch Table

Function Decision Table

3.4.3.1 Valid /O Function Mask « 3-13

3.4.3.2 Buffered 1/0 Function Mask ¢ 3—13
3.433 Applicability and Routine Entries « 3-13

OVERVIEW OF THE FLOW OF A $QIO

3.5.1

3.5.2

The Process’s Point of View

3.5.1.1 Queuing the Request to the Driver « 3-16
35.1.2 Driver Handles $QIO Request « 3-17

35.1.3 AST Notification « 3-17

35.1.4 Event Flag Notification « 3—-17

What VMS Sees

35.21 C! and DSSI Ports * 3-19

35.22 Local Ports » 3-19

35.23 NI Ports 3—-19

35.24 - /O Pre-processing * 3-19

35.25 DUDRIVER Builds MSCP Command « 3-20
3.5.2.6 Transmission of the Command to the Controller « 3-20
3.5.2.7 End Message Received from Controller « 3-20
3.5.2.8 Class Driver Processes End Message « 3-20
35.29 YO Postprocessing and AST Delivery « 3-21

DETAILS OF THE FLOW OF A $QlO

3.6.1
3.6.2
3.6.3

Device Independent /O Pre-processing
Device and Function Dependent I/O Pre-processing
Class Driver SCS Resource Allocation

3-1
3-1

3-1
3-1
3-2

34

3-5
3-5

3-8

3-9
3-9

3-11
3-12

314
3-16

3-18

3-21
3-23
3-24
3-26

3.7

3.64 DUDRIVER Builds MSCP Command

3.6.5 Transmission of Message by SCS and PPD Layers
3.6.6 End Message Received by PPD and SCS Layers
3.6.7 Disk Class Driver Message Input Dispatching Routine
3.6.8 Class Driver Thread Resumes

3.6.9 I/O Postprocessing and AST Delivery

IMPACT ON $QIO FLOW DUE TO LOCAL DSA CONTROLLER
3.71 Allocating an SCS Message Buffer

3.7.11 Ring Buffer Count Calculation » 3-34
3.7.2 Mapping the IRP
3.7.21 The Case of the UDA50 « 3-37
3.7.2.2 Other DSA Controllers « 3—42
3.73 Transmission of SCS Message Buffer Containing MSCP Command
3.7.31 Use of the Command Ring « 3—43
3.7.3.2 Reclaiming Descriptors and Buffers from the Command
Ring * 3-46
3.74 Receiving MSCP End Message from a Local DSA Controller
3.75 Deallocating the SCS Message Buffer

CHAPTER 4 DISK CLASS DRIVER ERROR HANDLING AND BUGCHECKS

4.1
4.2

4.3

4.4

4.5

INTRODUCTION

DUDRIVER TIMEOUT MECHANISM

4.21 Overview of the Timeout Mechanism

4.2.2 Detailed Flow of DU$TMR
4.2.2.1 No Commands active for Controller « 4-3
4222 Commands Are Still active for Controller » 4-4

MSCP END MESSAGES WITH ERROR STATUS CODES

4.3.1 Detecting File Read/Write Errors and Dispatch
4.3.2 Errors Returned in End Messages for File Read/Write Requests
433 Handling Errors Returned in Read/Write End Messages

4.3.3.1 Specially Handled Error Conditions » 4—14

433.1.1 Invalid Command Major Status Code « 4-14
4.3.3.1.2 Host Buffer Access Error Major Status Code » 4-15
433.13 Available Major Status Code ¢« 4-15

433.14 All Other Errors « 4-15

434 Errors Returned in Other End Messages

4.3.5 Error Logging and Error Count Incrementing
SYNCHRONIZING WITH AN "MSCP SPEAKING" CONTROLLER
4.41 Errors Causing Resynchronization with an MSCP Server
4.4.2 Overview of Resynchronization Due to Errors

443 DU$RE_SYNCH and DU$CONNECT_ERR Detail

MOUNT VERIFICATION

4.5.1 Circumstances Leading to Mount Verification

4.5.2 Disks Which Qualify for Mount Verification

453 Failover of Dual-Pathed Disks

Contents

3-37

3-43

3-50

4-1
4-1

4-1
4-2
4-3

4-10
4+-1
4-13

vii

Contents

4.6

45.4

455
456

45.7
458
459
4.5.10

Mount Verification Volume Validation

4541 Pertorm_Validate Routine « 4-36 .

4542 PACKACK_VOLUME Routine « 4-37

4543 VALIDATE_VOLUME Routine « 4-39

Mount Verification Timeout

Disks Requiring Special Handling

4.5.6.1 Foreign Disks ¢ 4-40

45.6.2 System Disk and Quorum Disk « 4-40

Stalling and Unstalling /O During Mount Verification

Aborting Mount Verification

Mount Verification - The Big Picture

Mount Verification Routines

45.10.1 DUTU$REVALIDATE - 4-45

45102 EXESMOUNTVER - 4-47

45.10.3 PACKACK_VOLUME -« 4-54

45104 EXE$SMNTVERSIO and Handling 10$_PACKACK
MVIRP - 4-55

45105 Restarting CDRPs * 4-57

45.10.5.1 DUTU$SRESTART_NEXT_CDRP and

DUTUSEND_SINGLE_STREAM - 4-57
45.10.5.2 Preventing an Infinite Loop * 4-58

DUDRIVER BUGCHECKS FOR NON-SHADOWED DISKS

CHAPTER 5 THE VMS BASED MSCP SERVER
INTRODUCTION
MSCP DISK SERVING

viii

5.1
5.2

5.3

5.4

5.21
5.2.2
5.23
5.2.4

Automatic Disk Serving
Selective Disk Serving
Dual Ported Disks

The MSCP Server

MSCP SERVER DATABASE AND INITIALIZATION

5.3.1

MSCP Server Data Structures

5.3.1.1 HRB - Host Request Block » 5-5
53.1.2 HQB - Host Queue Block * 5-6
53.1.3 UQB - Unit Queue Block « 5-7
53.14 HULB - Host Unit Load Block « 5-8
5.3.15 DSRYV - Disk Server Structure « 5-8

MSCP UNIT NUMBERS AND IDENTIFIERS

5.4.1
5.4.2

5.4.3
5.4.4

5.45
5.4.6

MSCP Media Identification

Unit ldentifier

5421 MSCP Class Number » 5-16

5422 MSCP Model Number 5-16

5423 MSCP Unique Device Number * 5~-16
Host Numbers

Transfer Buffers

54.4.1 Transfer Buffer Allocation « 5-21
VMS based MSCP server Flow Control
Controlier Timeout

5-1
5-1

5-1
5-2
5-2
5-2

5-4
5-5

5-11
5-11
5-13

5-19
5-20

5-25
5-25

55

5.6

5.7

Contents

5.4.7 MSCP Server Initialization Overview 5-25
5.4.8 Loading and Starting the MSCP Server 5-26
5.4.9 Serving Devices 5-27
5.4.10 ACCEPTing an SCS CONNECT From a Remote Host 5-28
MSCP SERVER LOAD BALANCING 5-30
5.5.1 Static Load Balancing 5-30
5§.5.2 Load Monitoring Thread 5-31
MSCP SERVER’S HANDLING OF READ AND WRITE COMMANDS 5-32
5.6.1 Overview of MSCP Server Handling READ Command 5-35
5.6.2 Overview of MSCP Server Handling WRITE Command 5-39
56.3 Command Status 5-40
56.4 Details of the Routines for Handling READ and WRITE Commands 542

5.6.4.1 MSG_IN - Receiving Command and Server Resource
Allocation « 5-42

5.6.4.2 NONSEQB - Verifying that Command Processing may
Continue « 5-43

5.6.4.3 READ - Processing MSCP READ Command « 5-44

5.6.4.4 IOC$IOPOST - I/0 Postprocessing for READ « 5-46

5.6.45 Read Request Resumes Following DO_DISK « 5-46

5.6.4.6 WRITE - Processing MSCP WRITE Command « 5-48

5.6.4.7 IOCS$IOPOST - I/O Postprocessing for WRITE « 5-50

5.6.4.8 Wirite Request Resumes Following DO_DISK « 5-50

5.6.4.9 SEND_END - Send End Message and Cleanup * 5-51

OTHER CLASSES OF COMMANDS HANDLED BY THE SERVER 5-51

5.71 Overview 5-52
5.7.1.1 Immediate Commands « 5-52
571.2 NonSequential Commands « 5-52
57.1.3 Sequential Commands « 5-53
57.2 Immediate Class Commands 5-54
5.7.2.1 Routines for Handling Immediate Commands « 5-58
5.7.2.1.1 ABORT - 5-58
5.7.21.2 GET_COMMAND_STATUS - 5-60
5.7.21.3 GET_UNIT_STATUS « 5-60
5.7.214 SET_CONTROLLER_CHAR - 5-61
5.73 Non-Sequential Non-Buffered Class Commands 5-62
5.7.3.1 Access Command + 5-63
5732 Replace Command « 5-63
5.7.3.3 Compare Controller Data and Flush Commands « 5-63
5734 Erase Command - 5-63
5.7.4 Routines for Handling Non-Sequential Non-Buffered Commands 5-65
5.7.41 ACCESS Routine 5-65
5.7.4.2 COMP_CTRL_DATA Routine +» 5-65
5.7.43 ERASE Routine + 5-65
5.7.44 FLUSH Routine ¢« 5-67
5.7.45 REPLACE Routine » 5-67
575 Sequential Class Commands 5-67

ix

Contents

5.8

APPENDIX A
A1
A.2
A3
A.4
A5

APPENDIX B
B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19

5.7.6 Routines For Handling Sequential Commands
5.7.6.1 AVAILABLE -+ 5-71
5.7.6.2 ONLINE - 5-72
5.7.6.3 SET_UNIT_CHR « 5-73
5.7.6.4 DET_ACC_PATH « 5-74

5.7.7 Sequential Commands, Nonsequential Commands, and Blocking

57.7.1 Basic Scenario « 5-75
5.7.7.2 Special Case * 5-81

ERROR HANDLING

SYMBOL TABLES AND DATA STRUCTURES
SDA SYMBOL TABLES

PUBLIC LIBRARIES

SDL FILES

USER CREATED SYMBOL TABLES

DATA TYPE NAMING CONVENTIONS

DATA STRUCTURES

CCB - CHANNEL CONTROL BLOCK

CDDB - CLASS DRIVER DATA BLOCK
CDRP - CLASS DRIVER REQUEST PACKET
CRB - CHANNEL REQUEST BLOCK

DDB - DEVICE DATA BLOCK

DSRYV - DISK SERVER STRUCTURE

HQB - HOST QUEUE BLOCK

HRB - HOST REQUEST BLOCK

HULB - HOST UNIT LOAD BLOCK

IRP - VO REQUEST PACKET

SB - SYSTEM BLOCK

UCB - UNIT CONTROL BLOCK

UCB ERROR LOG EXTENSION

UCB DUAL PORT EXTENSION

UCB DISK EXTENSION

UCB MSCP EXTENSION

UCB DUDRIVER EXTENSION

UQB - UNIT QUEUE BLOCK

VCB - VOLUME CONTROL BLOCK COMMON DEFINITIONS

5-71

5-74

5-82

A-1

A-2
A-4
A-6
A-7

B-1

B-2

B—4
B-11
B-15
B-19
B-21
B-29
B-31
B-35
B-36
B—43
B—46
B-58
B-60
B-61
B-62
B-68
B-70
B-74

APPENDIX C

INDEX

FIGURES
1-1
1-2

1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10

1-11
1-12
1-13
1-14
1-15

2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
3-1
3-2

Contents

B.19.1 Volume Control Block fields for Disks B-76
CROSS REFERENCE C1
Cl Node, Port and Physical Interconnect relationship 1-5
Port Driver, Port and Physical Interconnect configuration for both the Cl and NI

model 1-6
System Block and Path Block linkage 1-8
MSCP Server to Class Driver Message Flow 1-10
Telephone System Analogy to Systems Communications Architecture 1-11
The Architectural Layers of SCA 1-11
Example of a SYSAP in a Listening State 1-14
SCS Process Poll Block Linkage 1-15
SCA Flow as Implemented on VMS 1-19
The Message Flow of a Disk Class Driver Forming a Connection with an MSCP

Server 1-21
Data Structures for a Formed Connection 1-22
Fork Process Thread association through the RSPID 1-25
Layout of the Buffer Descriptor 1-26
Example of a Buffer Descriptor for a Three Page Transfer 1-27
The Buffer Handle 1-28
System Block List ' 2-3
DDB Linkage off of the System Block 2-6
DDB Linkage for a Local Served Disk 2-7
DDB Linkage Showing Four Disks ' 2-9
UCB Extensions for MSCP Served Disk 2-11
CDDB Linkage Maintained by each UCB 2-13
CDDB Format and Class Driver Extensions 2-16
CRB Timeout Linkage 2-17
CRB Linkage and the General Related Data Structures : 2-19
Data Structures Supporting Secondary Paths) 2-21
Provisions for Secondary Paths Offered by Muitiple Servers 2-23
Configuration of Devices by Sysboot and Init 2-27
Configuration of Devices by Sysinit and Startup 2-28
DU_CONTROLLER_INIT flow 2-31
Attention Message Dispatching 2-35
Configure Process Polling and Device Configuration 2-37
Window Control Block Fields for VBN to LBN Translation 3-7
Window Control Block Mapping ' 3-7
IRP/CDRP pair organization 3-1

xi

Contents

xii

3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-156

PELILE

4-7

4-9
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21

FDT layout

FDT processing

QIO Flow Through the Class Driver

Local Port Buffer Initial Layout

Vax 11/780 Adapter Configuration

Unibus to SBI Mapping

Buffer Handle for a UDA buffer

Unibus to CMI Mapping

Command Ring Format

Command Ring Descriptors

Local Port SCS Message Buffer Format

Response Ring Buffer Pointers

CRB Timeout Mechanism and linkage

MSCP End Message Status Return Format

MSCP Read Request Message Flow

MSCP Write Request Message Flow

DUDRIVER resynchronization flow

Mount Verification Validation Flow

Dual Pathed Disk Device Configuration

Failover of a Dual Pathed HSC disk

Volume Validation Flow

MSCP Server Flow

HRB fields

HRB relationship to the Host Queue Block

Disk Server Structure Layout

Server Local Unit Number

MSCP Unit Number for the VMS based MSCP Server

64 bit Unique Identifiers

Unit Identifier Format for VMS Based MSCP Servers

Host Index Bitfield at DSRV$B_HOSTS in the DSRV

UQB’s Online Field Bitmap of Hosts Accessing a Specific Unit
Free Transfer Buffer Linkage

Initial State of the Transfer Buffer

Transfer Buffer Allocation and Deallocation

General Flow of VMS based MSCP server Reads and Writes
Data Structures and Linkage Invoived in a Server Receiving a Command
Data Structures Involved with MSCP Read and Write Commands
General Flow of Inmediate Class Commands

NonSequential NonBuffered Command Flow

General Flow of Sequential Commands

Processing NonSequential Commands with No Sequential Commands Issued
Sequential Command Received While Processing NonSequential Commands

5-10
5-12
5-12
5-13
5-19
5-20
5-20
5-21
5-22
5-23
5-34
5-36
5-38
5-57
5-64
5-70
5-75
5-76

5-22
523
5-24
5-25
5-26

TABLES
341
3-2
41
51

5-2
5-3
5-4
5-5
5-6

5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15

IS G 4

c-7

c-9

Sequential Command Pending With NonSequential Commands Arriving
Currently Executing Commands Have Completed With Commands Queued
Sequential Command Begins Execution

Sequential Command Executing with NonSequential Commands Arriving
Sequential Command Completes and NonSequential Commands Resume

QIO System Service Parameters

SCS message buffer fields

MSCP to VMS Error Code mapping

Sysgen Parameter MSCP_LOAD settings
Sysgen Parameter MSCP_SERVE_ALL settings
MSCP Server Data Structures

DEC Standard 144 Disk Device Codes

Default Load Capacity

Routines Invoked by the SEND_DATA Macro
Routines Invoked by the REQUEST_DATA Macro
Supported Immediate Class Commands
NonSequential NonBuffered Commands
Supported Sequential Class Commands

VMS Error Status to MSPC Status Translation
Expected Opcodes for immediate Commands
Expected Opcodes for Sequential Commands
Expected Opcodes for NonSequential NonBuffered Commands
Acceptable Request States for Connection Failures
Data Type Definitions

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

VMS Routine and Module Cross Reference

Contents

5-77
5-78
5-79
5-80
5-81

3-15
3-45
4-11

Cc-1
C-13
C-16
C-19
C-22
C-25

xiii

Preface

COURSE DESCRIPTION

Overview

This course covers the internals of performing a $QIO to a disk on an "MSCP speaking”
controller (e.g. HSCs, ISEs, KDBs, and KDMs), and to a disk which is being served to other
VAXes by means of the VMS-based MSCP server. The main focus is on DUDRIVER and the
VMS-based MSCP server.

It begins with a brief introduction and overview of SCA and SCS concepts which support
the disk class driver communicating with the MSCP disk server in an HSC, ISE, local DSA
controller, or remote VAX.

A survey is made of the VMS I/O database related to DSA disks and controllers, and how
that database is configured. Then the flow of a typical $QIO for both a read and a write is
presented in detail. Included in this flow are the major differences that arise from VMS’s point
of view due to the different types of DSA controllers.

Next, disk class driver error recovery topics such as mount verification, disk failover, controller
reset, the handling of MSCP error status codes, and loss of the SCS connection with the server
are studied.

The course then delves into the internals of the VMS-based MSCP server in terms of both
functionality and error handling.

Course Format
Lecture/Lab.

Course Length
Five days.

Digital Equipment Corporation / Confidential and Proprietary xv

Preface

Prerequisites

Formal Training
For Software Specialists or Field Service Engineers, at least one of the following is required:

1. VAX/VMS Internals and Data Structures.
2. VAX/VMS Level II.

Experience
At least one year supporting clusterable VAXes.

Curriculum Map

VAX/VMS Internals
and Data Structures

VAXcluster
OR Disk I/O
Internals

VAX/VMS Level II

CXN-0000-01

xvi Digital Equipment Corporation / Confidential and Proprietary

Preface

Course Goals

The overall objective of this course is to provide an in depth knowledge of how VMS handles
I/O requests and error recovery for disks on "MSCP speaking" controllers. The information
presented here should be particularly useful to senior level Field Service and Software Services
employees involved in high level technical support, troubleshooting, and VMS crash analysis.

The three major topics to be covered are as follows:

¢ $QIO flow for both non-shadowed DSA disks and shadow set virtual units.
¢ Error recovery for both non-shadowed DSA disks and shadow sets.
¢ VMS-based MSCP server operations.

The emphasis of this course is on the VMS disk class driver and the VMS-based MSCP
server. An introduction to SCA, and selected information about DSA controllers and MSCP
are provided, but only to the extent that they support an understanding of DUDRIVER,
DSDRIVER, SHDRIVER and the MSCP server. This is not a course on the internals of SCA,
DSA controllers, or MSCP; there are other courses that cover those topics.

Digital Equipment Corporation / Confidential and Proprietary xvli

Preface

Topic Outline

1. SCA and SCS Concepts Which Support DUDRIVER/DSDRIVER Operations
1. Datagrams, Messages, and Block Data Transfers
2. Ports, Virtual Circuits, and Connections
3. Overview of SCA Architecture
4. Selected Topics from VMS Implementation of SCA
2. Disk Class Driver Database
a. Major Data Structures and Their Use
b. DUDRIVER Database Initialization
3. $QIO Flow for Read and Write Operations
a. Overview of I/O Channel Assignment and Related Data Structures
b. Overview of Opening a File and Related Data Structures
c. Flow of a $QIO for Non-shadowed DSA Disk
4. Error Recovery for Non-shadowed DSA Disks
a. Disk Class Driver Timeout Mechanism
b. MSCP End Messages with Error Status Codes
c. Synchronizing/Resynchronizing with a DSA Controller
d. Mount Verification
5. VMS-based MSCP Server
a. MSCP Server’s Database
b. Handling of Commands from Disk Class Drivers in other Hosts
¢. Error Handling

xviii Digital Equipment Corporation / Confidential and Proprietary

Preface

Acknowledgments

The author wishes to express his appreciation to those who have either reviewed the drafts of
the material in this book, or contributed with their suggestions. In particular, special thanks
goes to Bruce Kelsey of VMS CSSE. Bruce spent an enormous amount of time personally
reviewing this material, as well as securing the services of others in this endeavor. Special
thanks also goes to Randy Elmer of HSC CSSE for serving as a technical resource in resolving
issues related to DSA controllers. Finally, special thanks to Tom Gonzales and Don Smith of
the Colorado Springs Training Department for their review of selected chapters.

- Digital Equipment Corporation / Confidential and Proprietary xix

SCA and SCS Concepts

Chapter 1

SCA and SCS Concepts

1.1

1.2

Introduction

Systems Communications Architecture (SCA) was originally designed to serve as an /O
architecture for systems and controllers. The modularity and transportability of its implemen-
tation on the VMS operating system has made it the mechanism of choice for inter-system
communications for other non-I/O entities as well.

SCA has been optimized for high performance through the creation of specialized commu-
nications services and by imposing stringent constraints on topologies. SCA provides the
framework for communication among drivers and servers that manipulate devices conforming
to the Digital Storage Architecture (DSA) standards.

Systems Communications Architecture defines the following:

e The functional layers into which SCA is organized, and their role in providing or support-
ing the communications services

¢ The topology (types of configurations) supported

¢ The types of information exchange

¢ The "logical" concepts that support the information exchange, such as ports, virtual circuits
and connections

* The systems communications services provided
¢ The interface between each pair of layers.

Systems Communication Services (SCS) is the VMS operating system’s implementation of

SCA and provides the services to allow the communication of entities within a VAXcluster
environment.,

Mass Storage Communications

I/0 requests are generated as the result of a need by a host system to communicate with a
mass storage device. These I/O requests are passed to a device driver that handles a given
"class" of devices. The class driver formats the request into Mass Storage Control Protocol
(MSCP) packets. The class driver utilizes SCS to pass the request to a software layer called
the MSCP Server in the device’s controller where it is resolved.

Digital Equipment Corporation / Confidential and Proprietary 1-1

SCA and SCS Concepts

Class drivers are responsible for the following types of activities:

¢ Initializing and maintaining the operating system’s database for those devices
¢ Converting I/O requests into commands to be sent to controllers for those devices

* Passing such commands to the software component within the operating system which
actually transmits them to the controllers

* Handling responses received from the controller for such commands

* Activating the host operating system’s mechanism for passing completion status and other
related information to the initiator of an I/O request

* Handling errors related to its class of devices and their controllers on behalf of the host
operating system.

MSCP Servers are responsible for the following types of activities:

* Initializing and maintaining various components of the controller’s database related to the
devices which it is serving.

¢ Transferring data between a host and a device on the controller.

¢ Returning to a host current execution or completion status of a command received from
that host.

¢ Maintaining and/or altering the status of a device.
* Reporting controller and device status information to a host.

The VMS class driver for handling disk devices ported to DSA controllers is called
DUDRIVER. Certain software extensions to the disk class driver are required to support
the controller based shadowing (shadowing phase I) product. When these extensions are
required, DSDRIVER is used as the disk class driver in lieu of DUDRIVER.

Several DSA controllers are available. Some examples of controllers which provide the server
function are indicated in the following table:

Controller Application

HSC CI based Hierarchical Storage Controller
ISE DSSI based Integrated Storage Element
UDA UNIBUS based local controller

KDA QBUS based local controller

KDB BI based local controller

KDM XMI based local controller

A VMS host system is capable of emulating a DSA controller through software and can
provide the MSCP server function on behalf of its local disks. This action is referred to as
MSCP serving and is not limited to DSA compliant devices. The VMS emulation of the server

is transparent to the disk class driver and provides access to local disks to all VAXcluster
members.

1-2 Digital Equipment Corporation / Confidential and Proprietary

13

1.4

SCA and SCS Concepts

The class driver for the DSA compliant tape devices is TUDRIVER. As with the disk class
driver, the tape class driver is responsible for formatting an I/O request into the Mass Storage
Control Protocol. To distinguish the tape protocol from the disk protocol it is referred to as
Tape MSCP or simply TMSCP.

Once the TMSCP packet has been created, the tape class driver utilizes SCS to send the
packet to a TMSCP server in a DSA controller.

VMS provides for the software emulation of a DSA tape controller in VMS V5.5. Prior to that
release, VMS was incapable of providing access to local tape devices to VAXcluster members
other than the local host. This access is provided through a TMSCP server SYSAP. As with
the disk server, it is transparent to the tape class driver.

inter-System Communications

VAXcluster members function in a cooperative and coordinated manner. This requires the
exchange and sharing of information between all members.

The VMS Lock Manager software provides the tool that allows cooperating processes to
synchronize their access to shared resources. Within the context of a VAXcluster, there is a
distributed component of the Lock manager which provides this synchronization on a cluster-
wide basis. Lock management information is exchanged among the hosts in a VAXcluster
within the framework of SCA.

The VMS Connection Manager provides the tool that coordinates and controls the membership
in a VAXcluster (the connectivity of the cluster). The connection manager software on all
active nodes (VMS nodes) collectively maintain the connectivity of the cluster. The connection
managers ensure that all active nodes in the VAXcluster can communicate and consequently
coordinate their activities.

When a VAXcluster is first formed, the Connection Manager on one of the hosts assumes the
role of "coordinator”. The coordinator steps all remaining Connection Managers through the
formation of the VAXcluster. When a host joins or leaves a VAXcluster, one of the Connection
Managers will act as coordinator in transitioning the other Connection Managers through
the change. Connection Manager information is exchanged among the hosts in a VAXcluster
within the framework of SCA.

Information Exchange

Systems Communication Architecture defines three forms of information exchange.

1.4.1 Datagrams

Datagrams are units of information exchange whose delivery is on a "best effort” basis.
There is a "high probability" that datagrams will arrive at their destination, but there is no
guarantee that they will. Furthermore, there is no guarantee that a sequence of datagrams
will be delivered in the same order that they were sent. A user of the datagram service (e.g.
DEChnet if it is Tun on the CI) typically performs its own message loss detection and recovery.

Digital Equipment Corporation / Confidential and Proprietary 1-3

SCA and SCS Concepts

1.4.2 Messages

Messages are units of information exchange whose delivery is guaranteed without loss or
duplication. Furthermore, the SCA message service is said to be "sequenced”. This guarantees
that a series of messages all sent with the same priority will be delivered in the same order
that they were sent in. The disk class driver uses messages for issuing commands to an MSCP

disk server. An MSCP disk server uses messages to send completion status for commands to
the disk class driver.

1.4.3 Block Data Transfers

Block data transfers are the direct transmission of data between a named local buffer and a
named remote buffer. The block data is guaranteed to arrive completely, or an error condition

is indicated to the sender. Typical uses of block data transfers are DSA disk read and write
operations.

1.5 Communication Mechanisms

Definitions of three fundamental concepts are essential to the understanding of Systems
Communication Architecture: the port, the virtual circuit, and the connection. These terms
have specific meaning in the context of SCA and may differ from traditional translations.

1.5.1 SCA Ports

1.5.1.1 Definition

On a given node, an SCA port is the interface between that node and the interconnect provid-
ing a physical communication path to the other nodes/servers.

The following table lists some examples of SCA ports:

Interface Application

CIXCD XMI bus to CI, VAX 9000 etc.

CI780 SBI bus to CI, VAX 780, 8600 etc.

CIBCA BI bus to CI, VAX 8350 etc.

SHAC 4000 Cpu module to DSSI, VAX 4000
KDM70 XMI bus to local controller, VAX 9000 etc.
DEMFA XMI bus to FDDI, VAX 9000 etc.

Figure 1-1 depicts the relationship between the node, the port and the physical interconnect
for a typical CI model.

1-4 Digital Equipment Corporation / Confidential and Proprietary

SCA and SCS Concepts

Figure 1-1: CI Node, Port and Physical Interconnect relationship

CIXCD CI
VAX-9000 HARDWARE -t o TO OTHER NODES
AND U-CODE

CXN-0001-01

1.5.1.2 Port Drivers

The VMS operating system provides a software interface to the port called a Port Driver.
The port driver is responsible for controlling the port as well as exchanging commands and
information with the port.

The Computer Interconnect (CI) and some Digital Storage Systems Interconnect (DSSI) based
SCA ports are completely implemented through a combination of hardware and microcode.
The port driver for these ports, (PADRIVER), is capable of directly manipulating the port
hardware and passing information directly to the host memory.

For some implementations of the DSSI port and for the Network Interconnect (NI), an addi-
tional layer of software is required to interact with the physical port.

For the DSSI, this additional layer is required for transferring information from the port’s
local memory to the host’s memory. For the NI, the additional software layer is referred to

as the Port Emulator (PEM) and is used to communicate with a network interconnect device
driver.

The port driver for the NI, (PEDRIVER), implements this additional PEM software layer. The
NI port driver through its Port emulator actually communicates with the physical interconnect
through an ethernet (NI) driver. It is the NI driver that is capable of directly manipulating
the physical interconnect.

The port driver for some DSSI implementations, (PIDRIVER), includes an additional software
layer to transfer information between the port and the host’s memory. The transferrence

requires the host’s assistance since the port is incapable of performing the transfer through
DMA as does the PADRIVER.

Figure 1-2 depicts the relationship between the port driver and the interconnect for a typical
CI implementation and contrasts it with a typical NI implementation:

Digital Equipment Corporation / Confidential and Proprietary 1-5

SCA and SCS Concepts

Figure 1-2: Port Driver, Port and Physical interconnect configuration for both the Cl and NI
model

CI Implementation:

CI PORT
CI TO
PADRIVER - 3> HARDWARE j<tmmmmmeds- OTHER
NODES
& U-CODE
NI Implementation:
TO
NETWORK -f T
SOFTWARE N
I
NI PORT
PEDRIVER D NI TO
l R |—ewmei»] HARDWARE [OTHER
I NODES
NON-PEM v & U-CODE
COMPONENT | PEM =% 1 E
R
|
|
CXN-0001-02

1.5.1.3 Local Controllers

Local DSA controllers are also handled in a similar manner. Local DSA controllers provide
both the port functions and the MSCP server functions combined in one controller. The port
driver for local devices, (PUDRIVER), performs the same type of manipulation of the hardware
controller as its CI, DSSI and NI counterparts.

1.5.1.4 Port Descriptors

Corresponding to each port on a node, VMS builds a data structure known as a Port Descriptor
Table (PDT). Each PDT contains the following types of information:

¢ Identification of the type of port and characteristics
¢ The addresses of various queues associated with the port

1-6 Digital Equipment Corporation / Confidential and Proprietary

SCA and SCS Concepts

¢ The addresses of port specific routines to perform the following types of operations:
¢ Buffer allocations for building commands
¢ Buffer deallocations
* Accepting of connections
¢ Sending data
* The UCB address for the port

1.5.2 SCA Virtual Circuits

1.5.2.1 Definition

A Virtual Circuit is a communication path between two nodes over a physical interconnect. To
establish a virtual circuit, the nodes must successfully enter into a dialogue and complete the
following three tasks:

¢ Each node’s port identifies itself to the other node

¢ Each node identifies itself to the other node

* The integrity of the physical path between the nodes is verified.

The virtual circuit will exist as long as the integrity of the communication path remains intact.

The path is periodically verified by exercising it in the absence of actual communications
traffic.

1.5.2.2 Virtual Circuit Data Structures

VMS utilizes two data structures to maintain the virtual circuits to other active nodes and
to Passive Nodes (remote DSA controllers). A System Block (SB) exists for each node with
which the node has communications and a Path Block (PB) exists for each port over which
the communication may occur. These data structures are maintained by both active nodes
as well as passive nodes. Local DSA controllers do not require such structures since their
communication is restricted to a local host.

1.52.3 System Blocks

The System Blocks are used to describe each of the nodes that are accessible over a physical
interconnect. A system block also exists for the local system as well as for each local DSA
controller. The following types of information are found in each system block:

¢ The node’s hardware type (e.g. 8800, 9000, HSC90, ...)

* The node’s operating system and version (e.g. VMS V5.5-2, HSC V650, ...)
¢ The node’s name

Digital Equipment Corporation / Confidential and Proprietary 1-7

SCA and SCS Concepts

1.52.4 Path Blocks

The Path Blocks are used to describe each virtual circuit between the current node and the
other nodes. A path block exists for each local system block as well, but contains minimal
information since the need for virtual circuit formation does not exist with local devices. The
following types of information are found in each path block:

¢ Indication of the state of the virtual circuit (e.g. open, closed, etc.)

¢ The address of the port descriptor table

¢ The local port name

¢ The remote port type

1.5.2.,5 Virtual Circuit Data Organization

Figure 1-3 depicts how the system blocks are linked together off of the system location
SCS3GQ_CONFIG. The corresponding path blocks are linked from each system block describ-
ing the possible paths to the associated node.

Figure 1-3: System Block and Path Block linkage

SCS$GQ_CONFIG: : <

5B SB - SB

sb$1l_pbfl sb$1l_pbfl sb$1l_pbfl

CXN-0001-03

1.5.3 SCA Connections

1.5.3.1 Definition

To exchange information between entities on two nodes, a logical communication path must

exist between the entities involved in the communication. This logical communication path is
known as a Connection.

Whereas the virtual circuit represents communication between ports, the connection repre-
sents communication between entities. Connections utilize virtual circuits as their communi-
cations path. An example of a connection would be a disk class driver communicating with an

MSCP server. This communication would be performed over a virtual circuit between the two
ports involved.

1-8 Digital Equipment Corporation / Confidential and. Proprietary

SCA and SCS Concepts

1.5.3.2 Connection Descriptors

As connections are formed, Connection Descriptor Table (CDT) entries are allocated on each
node and an associated entry is made in the Connection Descriptor List (CDL) to contain a
pointer to this CDT structure. The offset into this list is the Connection Identifier (CONID).
Since this operation occurs on each node for a single connection, two connection identifiers
result (the local and the remote identifiers). Only the low order 16 bits of these longword
connection identifier values is used for the index into the list.

Each CDT contains the following types of information:

¢ The state of the connection (e.g. open, closed, ...)

* The addresses of the ASCII text strings which provide the names of the two "entities"
which are exchanging information by means of the connection.

¢ The addresses of the routines to which messages and datagrams are to be passed when
they are received from the "entity” at the other end of the connection.

* The address of the PB describing the virtual circuit supporting the connection.

e The Local Connection Identifier (LCONID) which identifies the corresponding CDT on the
local node

* The Remote Connection Identifier (RCONID) which identifies the corresponding CDT on
the remote node.

1.5.3.3 Connection Structures

When a message is to be sent from a remote node across a connection, the RCONID value is
copied from the remote node’s CDT into a destination CONID field within the message. The
sending node also copies its local connection id into the message so that the receiving node
knows where the message is from.

When this request is received on the local node, the low order 16 bits from the destination
CONID are used to locate the associated CDT. Within the CDT will be the address of the
routine which is to be executed based on the type of message that was received. Between
the node identifiers (SCS system ids) and the connection identifiers, a specific connection
can be uniquely identified within a VAXcluster. The CDT and CDL structures are the VMS
implementation of the SCA concept of connection blocks.

Figure 14 illustrates an example of an MSCP server sending the disk class driver a message:

- Digital Equipment Corporation / Confidential and Proprietary 1-9

SCA and SCS Concepts

Figure 1-4: MSCP Server to Class Driver Message Flow

CDT

cdt$l_msginput

ROUTINE
TO HANDLE
RECEIVED
MESSAGES
(DUSIDR}

cdt$l_dginput

ROUTINE

TO HANDLE
RECEIVED
DATAGRAMS
{(DUSDGDR)

cdt$l_lprocnam

—jcdt$l_rprocnam

.Max # CDTs .
.First Free .
. slze/type .
.Alloc Fails.

SCS$GL_CDL::

> UMS$DISK_CL_DRVR

MSCP$DISK

(From RCONID field in
MSCP servers CDT)

DEST‘CONID

[[vee

CXN-0001-04

1.5.4 Communications Mechanisms Example

The telephone system provides a good analogy to emphasize the distinction between the
concept of a virtual circuit and a connection. Consider the situation wherein three people in
one city wish to have phone conversations with three people in another city. Next to each
city is a microwave tower. The microwave beam between the towers represents a virtual
circuit. The cities represent two nodes, and the microwave towers represent SCA ports. The
people then represent the "entities” within the nodes, and their phone conversations represent

connections.

Figure 1-5 illustrates the SCA concepts of Virtual Circuits and Connections as applied to the

telephone system.

1-10 Digital Equipment Corporation / Confidential and Proprietary

SCA and SCS Concepts

Figure 1-5: Telephone System Analogy to Systems Communications Architecture

CXN-0001-05

The communication between entities is not restricted to a single protocol (format) , much as
telephone conversations are not restricted to a given language.

1.6 Architectural Layers of SCA

The traditional model for SCA is organized into four major levels as shown in Figure 1-6.

Figure 1-6: The Architectural Layers of SCA

SYSAP LAYER System Application Layer

S8CS LAYER Systems Communication Services Layer
PPD LAYER Port to Port Driver Layer

PI LAYER Physical Interconnect Layer

CXN-0001-06

When extended to support the NI, the SCA model was modified such that the Port to Port
Driver (PPD) and Physical Interconnect (PI) layers were replaced by seven functionally equiv-
alent layers. For the purposes of this discussion, the traditional model of SCA will be used.

Digital Equipment Corporation / Confidential and Proprietary 1-11

SCA and SCS Concepts

1.6.1 SYSAP Layer

1.6.1.1 Definition

The "entities" in a host or controller which utilize the communication facilities defined by SCA
to exchange information with their counterparts in other hosts and controllers are known as
System Applications (SYSAPs).

DUDRIVER and the MSCP disk server are examples of SYSAPs. TUDRIVER and the MSCP
tape server are another pair of SYSAPs. The VMS Connection Manager, the distributed
portion of the VMS Lock Manager, and a few other VAXcluster specific software components

are combined into one SYSAP called SYS$CLUSTER. This SYSAP was formerly known as
CLUSTRLOA.

SYSAPs may be implemented in software. Such is the case for DUDRIVER and TUDRIVER
residing on a VAX, and the disk and tape servers residing on an HSC controller. SYSAPs may
also be implemented by microcode. Such is the case for the MSCP disk server in the KDM70.

1.6.2 SCS Layer

The SCS (Systems Communications Services) layer defines the actual services necessary

to establish, use, and maintain logical communication paths (connections) among SYSAPs.
SCS operations are classified as being either "port independent” or "port dependent”. Within
VMS, the port independent operations are implemented in module SYS$SCS (SCSLOA),
and the port dependent operations are implemented in certain portions of the port drivers
(PADRIVER, PEDRIVER, PIDRIVER and PUDRIVER).

1.6.2.1 Port Independent SCS Services

Some of the port independent SCS services are as follows:

1.6.2.1.1 Connection Management Services

There are five SCS services invoked directly by a SYSAP to govern the creation and existence
of a connection.

CONNECT Used by a SYSAP to request the creation of a connection with another SYSAP.

ACCEPT A SYSAP which is the target of a connect request uses this SCS service to
accept that request.

REJECT Instead of accepting a connect request, a SYSAP can reject a connect request
and optionally supply a "reject reason".

1-12 Digital Equipment Corporation / Confidential and Proprietary

SCA and SCS Concepts

DISCONNECT Once a connection has been established between two SYSAPs, either SYSAP
may terminate communication by using the DISCONNECT service.

LISTEN Before one SYSAP can "connect” to another, the other must declare its willing-
ness and ability to handle incoming connect requests.

1.6.2.1.2 Directory Services

The SCS Directory Service allows a SYSAP to determine if a particular SYSAP exists on a
remote node. A name is associated with each SYSAP to facilitate this lookup. The following
table lists some examples of SYSAP names:

SYSAP SYSAP Name

Disk Class Driver VMS$DISK_CL_DRVR
Tape Class Driver VMS$TAPE_CL_DRVR
MSCP Disk Server MSCP$DISK

MSCP Tape Server MSCP$TAPE
SYS$CLUSTER/CLUSTRLOA VMS$VAXcluster

When a SYSAP on one node (host or controller) uses the SCS LISTEN service to declare

its willingness and ability to handle connect requests, its name is registered into a "list of
listening SYSAPs" on that node. When a message containing a connect request is received
from another node, the SCS layer scans this list. If the name of the SYSAP specified in the
message as being the target of the request is in the list, the request is passed to that SYSAP.
If, however, the name is not in the list, then the SCS layer rejects the request.

SCA also specifies that each node maintains a special SYSAP to respond to inquiries from
other nodes seeking to know if a particular SYSAP name is in its "list" of listening SYSAPs.
The name of this special SYSAP is SCS$DIRECTORY, and the inquiry is called a "directory
lookup”.

The implementation of the directory service depends upon the type of host or controller
involved. When a SYSAP in VMS invokes the LISTEN service, two data structures are
allocated:

* a special "listening CDT"
¢ an SCS Directory Entry (SDIR).

The address of the SYSAP’s routine for handling incoming connect requests, (supplied by the
SYSAP as an argument to the LISTEN service), is stored in the listening CDT. The CONID of
the listening CDT is stored in the SDIR along with the name of the SYSAP, and the SDIR is
inserted into a queue. Figure 1-7 shows these results for a local VMS MSCP disk server after
it has used the SCS listen service.

Digital Equipment Corporation / Confidential and Proprietary 1-13

SCA and SCS Concepts

Figure 1-7: Example of a SYSAP in a Listening State

SCS$GQ_DIRECT::
{SDIRs) -
SYSAP A MSCP$DISK SYSAP B

CONID

cDL
SCS$GL_CDL: :

LISTENING
CDT

cdt address

cdt$l_msginput

ROUTINE TC HANDLE
INCOMING CONNECT
REQUESTS

CXN-0001-07

If the local host receives a connect request for the MSCP disk server, it scans the queue of
SDIRs looking for one containing the name MSCP$DISK. From the SDIR it extracts the
pointer to the address of the listening CDT. From the listening CDT it obtains the address of
the server’s routine to which the connect request is to be passed.

1.6.2.1.3 SCS Process Polling Services

The SCS Process Poller Service allows SYSAPs to be notified of the existence of their coun-

terpart SYSAPs that are in a listening state on other nodes. The name of this SYSAP is
SCS$DIR_LOOKUP.

A SYSAP such as VMS$VAXcluster wishing to be notified of the discovery of a companion
SYSAP on another node registers its interest with the local SCS$DIR_LOOKUP service
through a call to the SCS$POLL_PROC routine. The SCS process poller will periodically con-
nect to the remote node’s SCS directory service to determine if the given SYSAP is available in
a listening state. If an affirmative response is received, the inquiring SYSAP is notified and a
connection request is sent.

The SCS process poller keeps a list of SYSAPs to be polled for in a queue of data structures
called SCS Process Polling Blocks (SPPBs). Each SPPB is assigned an index number to be
used as a bit offset into each System Block’s Enabled Mask (SB$B_ENBMSK).

When process polling is due, the process poller checks the next scheduled System block’s mask
to determine which SYSAPs are to be polled for on that remote system. For each bit set in
the mask, the associated SYSAP name is placed in a SCS Process Name Block (SPNB). The
name block is then used by the SCS$DIR_LOOKUP service to inquire as to the existence of

the given SYSAP on the remote node. Figure 1-8 illustrates the data structures associated
with process polling.

1-14 Digital Equipment Corporation / Confidential and Proprietary

SCA and SCS Concepts

Figure 1-8: SCS Process Poll Block Linkage

scs$gq_poll:: SPPB SPPB SPPB
sppb$l_flink sppb$l_flink sppb$l_flink
- -
sppb$l_blink sppb$l_blink sppb$l_blink
MSCP$DISK MSCPSTAPE VMS$VAXcluster
sppb$l_rtn sppb$1l_rtn sppb$l_rtn
sppb$l_ctx sppb$l_ctx sppb$l_ctx
sppb$w_bit (2) sppb$w_bit (1) sppb$w_bit (0)
System Routine System Routine Notification
For Write to For Write to Routine in
Configure Configure Connection
MailBox MailBox Manager
Unit Control
Block for
Notification
Mailbox
CXN-0001-15
NOTE

The term "process” is used in this context because the VMS implemenation of
SYSAPs is as fork processes.

Locating MSCP disk servers is a bit more complex. As will be explained in the
next chapter, the CONFIGURE process requests SCS$DIR_LOOKUP to poll for
disk servers through a call to the SCS$POLL_MBX routine. When CONFIGURE is
notified by SCS$DIR_LOOKUP that one is found, it builds certain data structures.
It then calls the disk class driver’s controller initialization routine, passing it these
data structures.

1.6.2.1.4 SYSAP Connection Analogy

The act of a remote SYSAP attempting to connect with a local SYSAP is somewhat analogous
to a person placing a telephone call to a person in another city. The SCS system id is used to
route the request to the appropriate node similar to the telephone caller using an area code
to specify the destination city. The SCS SYSAP name is likewise analogous to the specific
telephone number within the destination city.

Digital Equipment Corporation / Confidential and Proprietary 1-15

SCA and SCS Concepts

A SYSAP performing the listen service is similar to the act of requesting that a person’s
telephone number be placed into the local telephone book. The SCS directory service then
performs similarly to the directory assistance that is provided by the telephone company. The
list of listening SYSAPs can be thought of as a telephone book.

1.6.2.2 Port Dependent SCS Operations

There are a number of SCS operations which by their nature are best handled in the port
driver. In fact, some of these are actually port dependent. Here are three SCS operations
implemented by port driver routines:

¢ Allocation and Deallocation of Command and Message Buffers.

For local DSA controllers, all buffers are pre-allocated during controller initialization.
When a message buffer is needed by a SYSAP, an attempt is made to allocate the buffer
from a free queue. If the free queue is empty, a "command ring" of buffers containing port
commands is searched for a buffer whose "ownership" has been returned by the port to
VMS. When a SYSAP releases a received message buffer, the buffer is either placed in a
"response ring" for receiving packets from the port, or into the free queue if the "response
ring" is full.

For remote DSA controllers, buffers are dynamically allocated from nonpaged pool for
SYSAPs wishing to send messages. When a SYSAP releases received message buffers,
they are either inserted into a free queue of buffers for receiving messages from remote

nodes, or deallocated to nonpaged pool if that free queue already has a sufficient number
of buffers.

¢ Mapping and Unmapping Block Data Transfers.

Given a UDA5Q, traditional UNIBUS mapping registers are used for mapping block
data transfers. For a KDA50, QBUS map registers are used. For a KDB50, a software
emulation technique using "pseudo-map registers” allows the KDB to be treated similarly

to a UNIBUS controller. This is covered in the chapter entitled "$QIO System Service and
DUDRIVER".

When the block data transfer involves a remote controller, then a CI-SCA, a DSSI-SCA
or NI-SCA port is involved. The block data transfer is first mapped to system space. A
special buffer descriptor is then initialized to indicate where in system space the transfer
begins and how large the transfer is. This descriptor is later included in a command
passed to the port for processing. A separate section in this chapter provides details on
this subject.

* Handling SCS routing information.

Port driver code is responsible for inserting SCS routing information, such as source and
destination CONIDs, into packets being handed to the port for transmission. The port
driver also uses that same SCS routing information to deliver received packets to the
SYSAPs to which they have been sent.

1-16 Digital Equipment Corporation / Confidential and Proprietary

SCA and SCS Concepts

1.6.3 PPD Layer

The PPD layer provides a number of services, among which are the following:

Passing packets to and receiving packets from a port.

Processes commands from the port dependent portion of the SCS layer.
Initiates the actual transmission of data to remote ports.

Handles the physical reception of data from remote ports.

Has responsibility for insuring the integrity of data packets exchanged across the physical
communication path between ports.

Implements the protocol necessary to insure the guarantees associated with messages and
block data transfers discussed in an earlier section of this chapter.

Provides for virtual circuit control.
Manages the physical communication path between ports.

In general, most PPD activities are implemented primarily by the port. Only the first of those
listed above are actually performed by the port driver. The name of this layer is subsequently
a bit misleading.

1t should be noted that some of these tasks only "appear” to be performed by the "port” for a
local DSA controller. This is due to the controller’s dual role as both controller and port. With
a local DSA controller, there really isn’t a remote port.

1.6.4 Pl Layer

The PI layer provides the physical communication path managed by the PPD layer. It is
implemented by the medium (e.g. CI, DSSI, NI) over which packets are sent and received.

1.7 VMS Implementation of SCA Architectural Layers

The block diagram on the next page illustrates the VMS-specific implementation of SCA as it
relates to disk class driver and VMS-based MSCP server operations.

The following items should be kept in mind as the diagram is examined:

This book is concerned with Systems Communications Architecture only in so far as

it supports the activities of the disk class driver and the VMS-based MSCP server.
Consequently, SYSAPs such as CNDRIVER (which optionally implements DECnet on
the CI) are omitted since they are not germane to the subject at hand. TUDRIVER has
been included only because it has been referenced earlier in this chapter.

The SCS Process Poller and SCS Directory Service are SYSAPs. Hence, architecturally
they belong in the SYSAP layer. The VMS implementation actually places them as part of
module SYS$SCS (SCSLOA).

It is important to understand that an architecture defines a unifying functionality and
coherent structure to which its different implementations must conform. Implementations
may vary on the details of how they provide this functionality and structure.

Digital Equipment Corporation / Confidential and Proprietary 1-17

SCA and SCS Concepts

Consider the VAX 11/785, 8200, 8650, and 9000. They are varying implementations of the
same VAX CPU architecture; however, they all implement the same VAX instruction set.
This conformity is also true with software.

Both a VAX and an HSC implement the SCS Directory Service such that it provides the
same architecturally defined functionality; but the details of these implementations vary.

* As was pointed out earlier in this chapter, the VMS Connection Manager, the distributed
portion of the VMS Lock Manager, and certain other VAXcluster specific software compo-
nents are combined into one SYSAP called SYS$CLUSTER (CLUSTRLOA). It should be
emphasized that the only interaction the non-distributed portion of the Lock Manager has
with SYS$CLUSTER is with its distributed component. There is no interaction between
the non-distributed portion of the Lock Manager and the remainder of SYSSCLUSTER.

¢ VMS supports both shadowed and non-shadowed disks. Only the disk class driver for
non-shadowed disks, (DUDRIVER), is shown in the diagram. If controller based volume

shadowing is in use, then DSDRIVER replaces DUDRIVER to handle both the shadowed
and non-shadowed disks.

The next few sections of this chapter are intended to "tie together" what has been presented
thus far about SCA, and do so within the context of how it relates to the disk class driver and
the VMS-based MSCP server.

Figure 1-9 provides an overall view of the flow of information for the VMS implementation of
SCA:

'1-18 Digital Equipment Corporation / Confidential and Proprietary

SCA and SCS Concepts

Figure 1-9: SCA Flow as Implemented on VMS

| USER WRITTEN PROGRAM

$ENQ, $DEQ, $GETLKI

RMS I

NON-DISTRIBUTED
PART OF LCK MGR

HrIHZma
nx<

I$QIO SYSTEM SERVICEI

S L

YA

MSCP SERVER DUDRIVER TUDRIVER SYS$CLUSTER S Y
(CLUSTRLOA) A E

| i P R

sYs$scs
{SCsSLOA) L
S A
cy
S E
R
PORT DRIVERS
(PADRIVER, PEDRIVER, PUDRIVER)

PIDRIVER | e

L

P A

PY

D E

CI-SCA PORT, DSSI-SCA PORT, NI-SCA PORT R

LOCAL CONTROLLER

L

P A

CI, DSSI OR NI BUS IY

(NOT APPLICABLE IF LOCAL CONTROLLER) E
R
CXN-0001-08

Digital Equipment Corporation-/ Confidential and Proprietary 1-19

SCA and SCS Concepts

1.7.1 DUDRIVER CONNECTs to MSCP Disk Server

1.7.1.1 Local Node

When the local SCS Process Poller has discovered a "listening” MSCP disk server on a remote
VAX, the CONFIGURE process will be notified. The Configure process will in turn call the
class driver’s controller initialization routine.

The controller initialization routine will call the SCS Connect service (implemented in
SYS$SCS (SCSLOA)) to attempt to form a connection with the remote server.

As indicated in the following diagram, SCS will build a "connect request” message and will
pass it to the appropriate port driver for transmission.

1.7.1.2 Remote Node

The remote port physically receives the message and passes it to the port driver. The port
driver in turn passes it to the remote SYS$SCS (SCSLOA) where the list of listening SYSAPs
will be scanned for a corresponding MSCP disk server entry.

If a corresponding entry is found, the connect request is passed to the servers routine for
handling connects as found in the listening CDT. The remote SYS$SCS (SCSLOA) will also

generate and transmit a connect response to notify the local SYS$SCS (SCSLOA) of the
successful reception.

NOTE

If the remote list of listening SYSAPs did not include the server, the response would
be a "no such SYSAP" message, and an error would be returned to DUDRIVER by
the local SYS$SCS (SCSLOA).

The remote server will check the MSCP protocol being used by the disk class driver against its
own and if it is deemed compatible, it will generate an "accept” message.

The remote SYS$SCS (SCSLOA) will build an "accept request” message and will pass it to the
appropriate port driver for transmission back to the local VAX,

The local port physically receives the message and passes it to the local port driver. The local
port driver in turn passes it to the local SYS$SCS (SCSLOA).

The local SYS$SCS (SCSLOA) notifies the class driver that the connect has succeeded and will

also generate and transmit an accept response to notify the remote SYS$SCS (SCSLOA) of the
successful reception.

1-20 Digital Equipment Corporation / Confidential and Proprietary

SCA and SCS Concepts

Figure 1-10 illustrates a disk class driver forming a connection with a VMS based MSCP
server:

Figure 1-10: The Message Flow of a Disk Class Driver Forming a Connection with an

MSCP Server
CONNECT P P

- O A CON_REQ PO M
D »1 R N »1 O R o 1 S
U S T D RT S [
D [CON_RSP T C P

R S - D P j= D j—— S
I L R O A R L ACCEPT S
v o] IR ACC_REQ NI [e] E
E NOTIFY A p=E V T j=e D V pe- A R
R E E v
R ACC RSP R E
-1 — R
CXN-0001-09

1.7.1.3 Connection Data Structures

A CDT will be built on each VAX that was involved in the connect request to describe the
resulting connection. Each VAX will store the following information in its own CDT:

¢ The CONID identifying the other VAX’s CDT. This is called the "remote CONID", and is
kept in the RCONID field

¢ The name of the SYSAP at the other end of the connection on the other VAX. This is called
the "remote process name", and is kept in the RPROCNAM field.

¢ The CONID identifying this VAX’s CDT. This is called the "local CONID" and is kept in
the LCONID field

¢ The name of the its own SYSAP involved in the connection. This is called the "local
process name", and is kept in the LPROCNAM field

Figure 1-11 illustrates these relationships:

Digital Equipment Corporation / Confidential and Proprietary 1-21

SCA and SCS Concepts

Figure 1-11: Data Structures tor a Formed Connection

ON LOCAL SYSTEM ON REMOTE SYSTEM

scs$gl_cdl:: CDL scs$gl_cdl:: CDL

] cdt address

cdt address =

CDT CDT
. e
cdt$l_rconid cdt$l_rconid
cdt$l_rprocnam cdt$l_rprocnam
cdt$l_lprocnam cdt$l_lprocnam
- YMS$DISK_CL_DRVR MSCP$DISK
r—- MSCP $DISK VMS$DISK_CL_DRVR e
CXN-0001-10

1.7.2 DUDRIVER Sends MSCP Command to MSCP Disk Server

A user program may request an I/O operation for a disk either by directly using the $QIO
system service, or by indirectly using $QIO through RMS. Based on the parameters it is
supplied, $QIO builds an I/0 Request Packet (IRP) describing the operation to be performed.
This IRP is then passed to the driver responsible for the type of disk involved. For disks

handled by an MSCP server, that driver would be DUDRIVER (or DSDRIVER if the I/O
operation is for a controller based shadow set).

1-22 Digital Equipment Corporation / Confidential and Proprietary

SCA and SCS Concepts

1.7.2.1 Buffer Allocation

DUDRIVER allocates a buffer in which to build an MSCP command for the remote server.
The routine which does this also copies the RCONID field from the CDT into the buffer’s
"destination CONID" field; this will facilitate directing the command to the proper SYSAP on
the remote node. Using the information contained in the IRP, the routine will complete the
build of the MSCP command. Finally, it passes the buffer to the port driver for transmission
to the remote node.

1.7.2.2 Identifying the Receiving Sysap and Connection

On the remote node, the port driver extracts the destination CONID field from the buffer
containing the received command. The low order 16 bits of the destination CONID are used as
an index into the CDL to obtain the address of the CDT used by the remote node to represent
the connection. Within the CDT is the address of the MSCP server’s message input routine.

The message input routine is called, passing it the command received from the class driver on
the local VAX,

1.7.3 MSCP Server Sends END Message to DUDRIVER

Mass Storage Control Protocol defines that for each command received by an MSCP server,
the server must return an END message upon completion of the command. This END message
contains completion status and other information, depending on the type of command sent by
the disk class driver.

The VMS-based MSCP server doesn’t need to allocate a message buffer for this purpose. It
merely re-uses the buffer containing the received command, changing selected fields to reflect
that what it is sending is in fact the corresponding END message.

When DUDRIVER sent the MSCP command to the server, it not only included a destination
CONID, but also a source CONID. The server must also interchange the contents of these
fields. It can then pass the buffer containing what is now an END message to its port driver
for transmission back to the local VAX.

1.7.3.1 Locating the Connection Associated with an End Message

When the END message is received by the local port, it is passed to the local port driver.
The local port driver uses the END message’s destination CONID field (which now contains
the local CONID) to index into the CDL to fetch the CDT on the local VAX representing the
connection with the remote server. It then passes the END message to DUDRIVER’s message
input routine, the address of which is in the CDT.

Digital Equipment Corporation / Confidential and Proprietary 1-23

SCA and SCS Concepts

1.7.4 Response IDs and Command Reference Numbers

VMS utilizes a Response Identifier Service to distinguish which I/O request is associated with
each MSCP request. This identifier is part of the VMS implementation of SCS.

1.7.4.1 Class Driver Request Packet

A data structure called the Class Driver Request Packet (CDRP) is used by the class driver for
each IRP it receives to define a request to be passed to the SCS layer. The IRP will be located
at negative offsets from the CDRP information.

1.7.4.2 Request Descriptor Table Entries

The class driver’s STARTIO routine will allocate an entry called a Request Descriptor Table
Entry (RDTE) from the Request Descriptor Table (RDT) to keep track of each IRP/CDRP pair.
The RDTE consists of two longword values.

The first longword is initialized with the address of the requests CDRP.

The second longword will hold a value called the Response Identifier (RSPID). The low order 16
bits of the RSPID will be an index into the RDT to identify this particular request. This value
will be passed in the MSCP command as the Command Reference Number field to uniquely
identify this request. '

The class driver also stores in the CDRP the address of the buffer in which it has built the
MSCP command.

When the port driver actually transmits the command, the I/O request is suspended with the
PC of where to resume (along with other data) being stored in the CDRP. (Each 1/0 request is
handled within the context of a fork process. 1t is this fork process which is suspended here.)
Figure 1-12 illustrates how the correct fork thread is located.

1-24 Digital Equipment Corporation / Confidential and Proprietary

SCA and SCS Concepts

Figure 1-12: Fork Process Thread association through the RSPID

..............

. Wait Q Fl1
. Wait Q Bl
. Size/Type
WITHIN DUDRIVER . First Free .
. Max # RDTs .
.Waited Rgsts. RSPID
SCSSGL_RDT: :
Iseqlidxl
IRP/CDRP I
LAST INSTRUCTION cdrp address
BEFORE SscCs Askgep;p ¢ o ¢+ 1} - =- - — = =
l TO SEND MSCP CMD seq/flg
TO MSCP SERVER SAVED PC
I (fork PC/R3/R4)
WHERE TO RESUME = jwwwd ey = | - - = = = -
WHEN END MESSAGE
RECEIVED
cdrp$l _msg_buf

MSCP CMD R e

CXN-0001-11

1.7.4.3 MSCP Server End messages

When the MSCP server sends an END message to DUDRIVER corresponding to some MSCP
command, it includes in the END message the command reference number supplied in the
command. As was pointed out above, this command reference number is actually a RSPID.

Once the class driver determines that the message it has received is an END message, it does
the following:

¢ Uses the low order 16 bits of the RSPID to index into the RDT, and then fetches the RDTE
associated with the RSPID.

¢ From this RDTE it obtains the address of the CDRP (and hence also the IRP) associated
with the I/0 request.

e From the CDRP it obtains the address of where to resume the I/O request, processing the
status and other information contained within the END message.

The command reference number also serves another purpose. In situations wherein
DUDRIVER must inquire with the MSCP server about the current status of a command,
it includes the command reference number (RSPID) in the inquiry. In this way the server
knows which command DUDRIVER is concerned with.

Digital Equipment Corporation / Confidential and Proprietary 1-25

SCA and SCS Concepts

1.7.5 DUDRIVER and Block Data Transfers

Two additional concepts from the VMS implementation of SCS services need to be explained:
the Buffer Descriptor, and the buffer handle. The information presented here is specific

to DUDRIVER's dealing with remote DSA controllers (or remote VAXes emulating DSA
controllers). Equivalent information for local DSA controllers is presented at the end of the
chapter entitled "$QIO System Service and DUDRIVER".

1.7.5.1 Buffer Descriptors

When data is to be transferred to or from a disk, a buffer for holding the data must be locked
in host physical memory and a description of the buffer needs to be built. This description,
known as a Buffer Descriptor Table Entry, consists of four longwords. The buffer descriptors
are kept in a Buffer Descriptor Table whose listhead is at system location SCS$GL_BDT.
Fields in the buffer descriptor that are relevant to this discussion are illustrated in the next

diagram. These fields are explained in the paragraphs which follow. Figure 1-13 displays the
layout of the buffer descriptor.

Figure 1-13: Layout of the Buffer Descriptor

| orFser

BUFFER LENGTH

SVAPTE

CDRP ADDRESS OR LINK TO NEXT UNUSED DESCRIPTOR

CXN-0001-12

When locked in physical memory, the buffer is also mapped to one or more consecutive pages
of system virtual address space. The system virtual address of the first system page table

entry (PTE) used to do this mapping is stored in the SVAPTE (System Virtual Address Page
Table Entry) field.

The total length of the buffer in bytes is stored in the Buffer Length field.

The buffer does not have to begin on a page boundary. The buffer descriptor provides an Offset
field to indicate the byte offset into the first page where the buffer actually begins.

The fourth longword serves a dual purpose. For active buffer descriptor entries, it contains
the address of the CDRP for the I/0 request with which this descriptor is associated. For non-
active buffer descriptors, the longword contains a link to the next free buffer descriptor. The

listhead of free buffer descriptors is kept at negative offset CIBDT$L_FREEBD from location
SCS$GL_BDT.

Figure 1-14 illustrates the use of a buffer descriptor to map a 1533-byte transfer beginning at
byte 2 of the of the first buffer page.

1-26 Digital Equipment Corporation / Confidential and Proprietary

SCA and SCS Concepts

Figure 1—14: Example of a Buffer Descriptor for a Three Page Transfer

.....................

Wait Q FL .
Wait Q BL . BUFFER NAME
Size/Type .
. Pre 4.4 Backlink . }seq indx
First Free BDT . FIRST BYTE = BYTE 2
Max # BDTs .
Queued BDT Cnt
scs$gl_bdt:: =
510 3J2]1}0 ==
bytes
buffer
-t page 1
boff 2
bent 1533
SVAPTE

512 buffer e
cdrp address bytes page 2
] spte buff 1

spte buff 2

spte buff 3

511 buffer |-
bytes page 3

S0 PAGE TABLE

LAST BYTE = BYTE 510 OF THIRD BUFFER PAGE J

CXN-0001-13

1.7.5.2 Buffer Handles

The low order 16 bits of the Buffer Name contains an index into the buffer descriptor table
to locate a particular buffer descriptor. The buffer name is used as part of still another data
structure called a Buffer Handle, which consists of three longwords as seen in Figure 1-15:

Digital Equipment Corporation / Confidential and Proprietary 1-27

SCA and SCS Concepts

Figure 1-15: The Buffer Handle

SECONDARY OFFSET INTO BUFFER

BUFFER NAME

REMOTE CONID

CXN-0001-14

The buffer name and remote CONID have previously been explained. The Secondary Offset
Into A Buffer may be modified for "third party I/0", but is set to 0 by the class driver at the

beginning of an I/O request. The secondary offset field is used for segmented data transfers
which will be discussed later.

The buffer handle is inserted into commands that are queued to the local port for the trans-

fer of data to or from a disk on a remote DSA controller (or remote VAX emulating a DSA
controller).

The local port functions as a DMA device capable of directly accessing local host memory., It is
also capable of performing VAX virtual to physical address translations. Consequently, using
the buffer name contained in the buffer handle, the local port can access the buffer descriptor
which identifies the transfer address of the buffer in memory.

The local port can extract data directly from or write data directly into the buffer when
requested to do so by a remote controller or VAX.

1.7.6 Concept of Flow Control

SCS Flow Control is a mechanism for preventing a SYSAP on one node from sending messages
to a SYSAP on another node when that other node is not prepared to accept them. This

is accomplished by having the SCS layer on each node "know" how much buffer space is
available on the other node for receiving messages.

When two SYSAPs form a connection, each SYSAP requests the SCS layer to allocate to its
own port a certain number of buffers for receiving messages from the other SYSAP. As part
of the connection formation dialogue, the SCS layer in each node tells its counterpart in the
other node how many message receive buffers it has allocated.

1.7.6.1 Credit Scheme

Each SYSAP is said to be extending "send credits” to the other. Thus, by requesting the SCS
layer to allocate 5 message receive buffers for a connection, the local SYSAP is extending 5
send credits to the SYSAP at the other end of the connection.

1-28 Digital Equipment Corporation /- Confidential and Proprietary

SCA and SCS Concepts

Free buffers to receive messages are kept in a common pool, regardless of which SYSAP
requested them; but the buffers are managed on a "per connection” basis. This is somewhat
like a bank keeping all of its depositors’ money in one vault, but assigning an individual non-
interest bearing account to each depositor. A person can withdraw from such an account only
as much money as he/she has on deposit in that account.

So it is with SYSAPs. At any point in time, a SYSAP should be allowed to receive only as
many messages on a connection as it has buffers "on deposit" for that connection in the free
buffer pool. Furthermore, SYSAPs should not be allowed to "borrow" receive buffers from
one connection to be used for another connection; and they certainly should not be allowed to
practice "deficit spending”.

\ NOTE

\

For CI-SCA ports, DSSI-SCA ports and NI-SCA ports, this pool is a queue called the
Message Free Queue. For a local DSA controller, a "Buffer Ring" serves this purpose.

Details of this ring are presented in the chapter entitled "$QIO System Service and
DUDRIVER".

The SCS layer in each node has the responsibility for enforcing the rules of flow control. It
uses the CDT as a "passbook” to keep track of the number of available buffers "on deposit”
for the connection. Specifically, the CDT’s send credit field indicates the number of mes-
sage receive buffers the local SCS layer "believes” are available in the remote node for the
connection.

To request a buffer in which to build a message, a SYSAP calls a routine in the SCS layer.
This routine checks the send credit field in the CDT for that connection. If no send credits are
available, the SCS layer suspends the request. If there is at least one send credit, the field is
decremented and the buffer is allocated to the requesting SYSAP.

1.7.6.2 Piggybacking

As the remote node processes received messages, it returns the buffers back to its SCS layer.
The remote SCS layer records in its CDT associated with the connection the send credits
possessed by the local node for that connection. When the remote SYSAP sends the local
SYSAP a message, the remote SCS layer stores in a protocol defined field within the message
the actual send credits available to the local SYSAP. The local SCS layer updates its CDT with
this information. This technique is sometimes called "Piggybacking”.

If most of the message traffic is "one way", then another mechanism must be used to update
the local node. As the remote SYSAP releases buffers back to its SCS layer, the local node
won’t be updated if there is no traffic returning to the local node. Each time the remote
SYSAP releases a message buffer, its SCS layer checks to see if the local node’s send credit is
getting "dangerously low". If so, it will generate a "special credit” message to update the local
SCS layer about send credits it has for this connection. The definition of "dangerously low" is
SYSAP dependent, but it is typically around 2.

Digital Equipment Corporation / Confidential and Proprietary 1-29

SCA and SCS Concepts

NOTE

Each node uses the CDT "receive credit” and "pending credit” fields to keep track of
the other node’s send credits. The receive credit field reflects the other node’s send
credit. Each time a message is received, the receive credit field is decremented. The
pending credit field counts the number of buffers returned by the SYSAP to the SCS
layer, but which the other node does not yet know about. Any time one node updates
another node’s send credit, it computes the sum of the receive credit and pending
credit fields, and sends this sum as the "actual send credit" to the other node. It

also stores this sum in its own CDT receive credit field, and zeros the pending credit
field.

1.7.7 MSCP Server in a Controller

1.7.7.1 Local Server Handles SCA Events Essentially the Same

These sections presenting the "VMS Implementation of SCA Architectural Layers" presumed
that the disk class driver resides in the local VAX, and that the MSCP disk server with which
it communicates resides in a remote VAX, If, instead, the server resides in a remote or local
DSA controller, then the events just described would remain essentially unchanged except
where explicitly noted.

The controller would have its own equivalent microcode and/or software implementation for
the tasks described here as being performed by remote VAX’s SYS$SCS (SCSLOA) and port
driver. But it would still all look the same from the class driver’s point of view since the
remote VAX’s VMS-based MSCP server is merely emulating a DSA controller.

1-30 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER /O DATABASE

Chapter 2

DUDRIVER /O DATABASE

2.1

2.2

Introduction

There are four major VMS data structures used by the disk class driver to keep track of
"MSCP speaking” controllers, VMS systems which emulate such controllers, and the disks
they make available to the nodes on the CI, DSSI and/or NI

System blocks and class driver data blocks provide information about controllers DUDRIVER
deals with. Device data blocks contain information about classes of devices on a controller.
Unit control blocks provide the disk class driver with information specific to particular units.

To follow the details of a $QIO operation for a disk handled by DUDRIVER, it is essential to
understand what is in each of these structures and how they are linked together. It is also
very useful to understand the steps involved in building DUDRIVER’s database as "MSCP
speaking” controllers are discovered by the local VAX.

Data Structures

System Blocks contain the identifying hardware and software information about "systems”
which is essential in facilitating SCS communication between SYSAPs in those systems. These
system blocks are created and maintained by the SCA layers of software beneath the SYSAPs.
They do not contain SYSAP specific information, but rather "system level” hardware and
software information needed by Systems Communication Services to support communication
between any pair of SYSAPs.

Different SYSAPs, such as disk and tape class drivers, must maintain information about a
system which is specific to the SYSAP’s nature and function, and beyond that which is kept in
a system block. The Class Driver Data Block (CDDB) serves this purpose for DUDRIVER. It
supplements the information contained in a system block with queues and information specific
to the handling of MSCP commands issued by DUDRIVER to the system represented by a
system block.

A Device Data Block (DDB) contains information applicable to a generic class of devices
attached to a single controller. For example, DUDRIVER would maintain one DDB for all
disks called "DUA" on one controller, another DDB for all disks called "DJA" on that same
controller, and a third DDB for all disks called "DUA" on some other controller.

-Digital Equipment Corporation /- Confidential and Proprietary 2-1

DUDRIVER I/O DATABASE

A Unit Control Block (UCB) contains information specific to a particular unit within a generic
class of units attached to some controller.

For each system/controller with which DUDRIVER is speaking, there will be one SB and one
CDDB. For each generic class of disks on that system/controller pair, there will be one DDB.
And for each disk within a generic class, there will be one UCB.

There will be additional DDBs and UCBs supporting shadow set virtual units. However, while
some references to volume shadowing are made in this chapter, the topic in general is covered
in a later chapter.

2.21 SB - System Block

VMS maintains a "configuration list" of System Blocks to describe the local host, as well as
"remote systems” with which it communicates via Systems Communication Services (SCS).
The phrase "remote system" here is not limited just to other VAXes. However, in the event
that the remote system is a VAX, here are some of the typical items of information about that
system found in its corresponding SB:

* Nodename (assigned when the software is installed on that node).
* Hardware type (e.g. "9000", "8800", "780", ...).

e Hardware version.

¢ Software type (i.e. "VMS").

¢ Software version.

¢ When the system was initialized.

* Queue of path blocks describing available SCS communication paths between the local
host and the remote system.

As indicated above, the term "system” is used here in a more general sense than just the
traditional notion of a host VAX CPU running the VMS operating system. For example,
HSC40, HSC50, HSC60, HSC70 and HSC90 intelligent controllers have SYSAPs which
communicate with VAX-based SYSAPs by means of the standard SCS services and associated
protocol. An example of this would be the VMS disk class driver, VMS$DISK_CL_DRVR,
communicating with the MSCP disk server, MSCP$DISK, in an HSC90. (VMS$DISK _CL_
DRVR is implemented by the VMS DUDRIVER code.)

VMS maintains an SB for each HSC with which it communicates. The system block for an
HSC is functionally equivalent to one for a VAX; but certain fields reflect obvious differences.

For example, the hardware type for an HSC50 would be "HS50", and the software type would
be "HSC".

HSCs are merely one category of DSA controllers containing SYSAPs with which the VMS
SYSAPs communicate via SCS. Other DSA controllers, such as UDAs, KDAs, KDBs, and
KDMs also implement SYSAPs. This implementation is done by means of controller microcode
rather than software. VMS SYSAPs communicate with the SYSAPs in local DSA controllers
using SCS services in the same manner as they would with SYSAPs in remote VAXes and
HSCs. For example, there is a microcoded SYSAP called MSCP$DISK in a local UDA50 to
which the local disk class driver issues commands for RA-type disks on that local controller.

2-2 Digital Equipment Corporation / Confidential and. Proprietary

DUDRIVER /O DATABASE

By means of SCS services, the local UDA50 "appears” to DUDRIVER as if it were a remote
system running an MSCP disk server. Consequently, VMS maintains an SB for each such local
DSA controller. Certain fields within this SB are not used (e.g. software and hardware types,
software and hardware versions, node name, etc...).

2.2.1.1 Configuration List of System Blocks

As pointed out at the beginning of this section, all the system blocks maintained by VMS are

kept in a queue called a "configuration list" as depicted in Figure 2-1. The head of this queue
is location SCS$GQ_CONFIG.

Figure 2-1: System Block List

P : :SCS$GQ_CONFIG: : ~&

sb$l_flink sb$l_flink sb$l_flink

sb$l_blink sb$l_blink sb$l blink

CXN-0002-01

A system block representing the local VAX is setup during VMS initialization by module INIT,
and begins at global location SCS$GA_LOCALSB. Consequently, it is the first SB placed in
this queue and is called the permanent local System Block.

System blocks corresponding to remote VAXes and HSCs are allocated and initialized when
these remote systems are discovered on the SCS communication medium (CI, NI, ...). How
remote systems are discovered depends on the type of communications port used.

2.2.1.2 System Blocks and Cli Ports

If a pair of systems are using CI ports to communicate, then each system’s CI port driver
(PADRIVER in VMS, and CIMGR in an HSC) periodically polls for all other possible ports on

the CI. Each VAX and HSC periodically issues a Request ID (REQID) packet for every other
possible node on the CI.

When a CI port in an enabled state (or any of the maintenance states) receives a REQID,

it responds with a packet which identifies itself to the system which issued the REQID.
Virtual circuit formation dialogue occurs between two CI-based nodes as a result of each node
receiving a response (IDREC) to its REQID. During this dialogue, each node describes its own
CPU and operating system to the other node. As a result of this dialogue, each node allocates

Digital Equipment Corporation /. Confidential and Proprietary 2-3

DUDRIVER I/0O DATABASE

and initializes a system block corresponding to the other. The information in the system block
comes from the packets exchanged during this dialogue.

2.2.1.3 System Blocks and NI Ports

A system using an NI port for SCS communication has an NI port driver which interfaces be-
tween the SYSAPs and the NI controller software. In VMS, the NI port driver is PEDRIVER,
but the NI controller software depends upon which NI controller is used. Two examples would
be XEDRIVER for a DEUNA and DELUA, and EXDRIVER for the DEMNA. For purposes

of this discussion, the name "NIDRIVER" will be generically applied to the NI controller
software.

PEDRIVER consists of an SCS component and a PEM (port emulator) component. When

a SYSAP on one system wishes to use SCS to exchange information across the NI with its
counterpart SYSAP on another system, it interfaces with the SCS component of PEDRIVER
in the same way it would with PADRIVER or PIDRIVER. Thus, it is effectively transparent to
the SYSAP whether a CI, DSSI or NI is being used. The PEM component of PEDRIVER has
the responsibility of emulating a CI port; it makes the NI controller and associated NIDRIVER
appear like a CI port to the SCS component of PEDRIVER.

When a local SYSAP wishes to send a message to a remote SYSAP, it builds the message
in a buffer formatted according to its own SYSAP-dependent protocol and then passes the
buffer to the SCS component of PEDRIVER. PEDRIVER’s SCS component adds standard "CI
port style" SCS protocol bytes and inserts the packet into what "appears” to be a standard
CI port command queue. The PEM portion of PEDRIVER, emulating a CI port, removes the

packet from the command queue and passes it to NIDRIVER in the appropriate manner for
transmission on the NI.

When NIDRIVER receives an incoming SCS packet from the NI controller, it passes it to the
PEM component of PEDRIVER. There the packet is reformatted to look like it was received
from a CI port and inserted into a standard CI response queue. The SCS component of
PEDRIVER removes the packet from the response queue, strips away the "CI port style"
SCS protocol bytes, and passes the remaining buffer to the SYSAP for which it is intended.

The PEM layer of a system’s PEDRIVER periodically issues multicast HELLO messages for
two purposes. One is merely to inform other nodes on the NI that the local node is still "alive
and well". The other purpose is to initiate the dialogue and exchange of information necessary
to establish communication between the NI port drivers in the two nodes.

Based on this exchange of information, the PEM component of PEDRIVER fabricates a "CI
port style" IDREC and passes it to the SCS component. From this point on, SCS virtual
circuit formation across the NI appears the same as on the CI. The SCS components of the two
nodes’ PEDRIVERs exchange the CPU and operating system information necessary for each

node to build a System Block describing the other node’s CPU and operating system using the
Start/Stack /Ack dialogue.

2-4 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER /0 DATABASE

2.2.1.4 System Blocks and Local DSA Controllers

The disk class driver uses SCS for the exchange of MSCP packets with the disk server in a
local DSA controller’s microcode. To make this possible, SCS routines must have access to the
same data structures that would be present with a normal SCS virtual circuit.

One of the initialization steps performed for each local DSA controller by routine INIT_
CTLR in module PUDRIVER is the building of a system block for the controller. However,
this is done without the dialogue that is present in virtual circuit formation across the CI,
DSSI, or NI. Such dialogue is unnecessary since these steps are taken as part of the normal
configuration of local devices performed by VMS as it boots.

2.2.2 DDB - Device Data Block

A Device Data Block (DDB) identifies a generic class of devices and associated controller
name (e.g. DUA, DJA, DRB, DIA, ...) attached to a single controller. Some of the items of

information found in a DDB are:

¢ Generic name of the class of devices represented by the DDB.
¢ Name of the device driver for the controller.

¢ Allocation class.

2.2.2.1 DDBs and Remote DSA Controllers

For a remote DSA controller such as an HSC90, the DDBs for that controller’s disks are kept
in a list which is linked to the system block representing that controller. The head of the list,
at offset SBSL_DDB in the SB, contains the address of the first DDB in the list. At offset
DDB$L_LINK of each DDB is the address of the next DDB in the list.

Figure 2-2 illustrates a case of where the DSA controller is an HSC40 having RA81s (DUA),
RA90s (also DUA), and RA60s (DJA).

Digital Equipment Corporation-/ Confidential and Proprietary 2-5

DUDRIVER I/O DATABASE

Figure 2-2: DDB Linkage off of the System Block

DDB DDB for
SB for HSC40 RA81ls and RA90s RA60s
peessemd>] (ddb$1_1ink) 0
DUA DJA
sb$l_ddb DUDRIVER DUDRIVER
CXN-0002-02

Each DDB also contains at offset DDB$L_SB the address of the SB to which it is linked.

2.2.2.2 DDBs and Remote MSCP-Served Disks

By default, any disk on an HSC is available to any VAX on the CI. However, a VAX may also
make one or more of its own disks available as cluster-wide resources as well. That VAX
merely has to run the VMS based MSCP disk server (MSCP.EXE), and then explicitly set
"served” those of its own disks which it wishes to make available to other VAXes. A VAX may
set served only its own disks, and not those attached to some other VAX or HSC. Furthermore,
this may be performed across both the CI and the NI.

As an example, assume that a remote VAX is serving a MASSBUS disk to the cluster. A user
process on the local VAX wishing to read or write that disk merely issues a $QIO request just
as if that disk was being served by an HSC. After certain initial I/O pre-processing, the $QIO
system service code passes the request to DUDRIVER. DUDRIVER then builds an MSCP
command corresponding to the request and passes that command to the SCS routines for
transmission to the MSCP server on the remote VAX.

There is no difference between the format of an MSCP command sent to an HSC and one sent
to a remote VAX running the VMS based MSCP server. The remote VAX is "emulating” an
DSA controller for such I/O requests.

Suppose that a remote VAX is serving two MASSBUS disks (DRA2 and DRA3) and one RA81
(DUADB) to the cluster. Then the local VAX allocates and links two corresponding DDBs to the
SB it maintains to describe the remote VAX. This is illustrated by Figure 2-3.

2-6 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER VO DATABASE

Figure 2-3: DDB Linkage for a Local Served Disk

SB for DDB DDB for
Remote VAX for RAS81ls MASSBUS disks
> ddb$l_link o 0
pua DRA
sb$l__dd.b DUDRIVER DUDRIVER
CXN-0002-03

Note in the above diagram that the local VAX still uses DUDRIVER when dealing with a
remote VAX’s MASSBUS disks. If the remote VAX receives an MSCP command for one of its
MASSBUS disks, it will convert the command into an equivalent MASSBUS operation and
pass it to its own DRDRIVER (the MASSBUS disk driver).

Also note that if the remote VAX had been serving another MASSBUS disk called DRB3 in
addition to the above, the local VAX would allocate a third DDB corresponding to "DRB" and
link it in with the other two.

2.2.2.3 DDB Chain for Local DSA Disks

If a VAX has a local DSA controller (UDA, KDA, KDB, KDM, ...), it will have an SB corre-
sponding to that controller. However, there will be no DDBs linked to that SB, and the SB$L_
DDB field will contain a 0.

DDBs for local DSA disks will be included in the list of DDBs for all local devices. The head of
that list is at offset SB§L_DDB in the system block that the local host maintains to describe
itself.

Location JOC$GL_DEVLIST traditionally served as the head of the list of all DDBs for local
devices before clustering. It still continues to serve in that role. Therefore, offset SB$L_DDB
in the local system block and location IOC$GL_DEVLIST should be expected to contain the
same address, namely the address of the first DDB in the chain of DDBs for all local devices.
The DDB$L_LINK field of each DDB is a forward pointer to the next DDB in the list, with the
last DDB in the list having a 0 in this location.

Digital Equipment Corporation / Confidential and Proprietary 2-7

DUDRIVER /O DATABASE

2.2.2.4 DDB for Boot Device

Location SYS$AR_BOOTDDB contains the address of the DDB for the boot device, no matter
what type of controller that device is on.

2.2.3 UCB - Unit Control Block

VMS creates and maintains a Unit Control Block (UCB) corresponding to each device unit
it accesses. The general purpose of a UCB is to specifically identify the unit, describe its
characteristics and status, and provide information as to the controller, driver, and current
outstanding I/O activity. Here are some of the most frequently referenced items in a UCB:
Media identification (i.e. RA60, RA92, ...).

Unit number.

Characteristics flags that indicate such things as whether the device is

2.2.3.1

Directory structured.
Shareable.

Capable of providing input.
Capable of providing output.
Available cluster-wide.
Dual-pathed.

A member of a shadow set.
MSCP-served. '

Status flags that indicate such things about the device as the following:

Device is online.

Unit has timed out.

Power failed while unit was busy.

Volume on this unit is software valid.

Mount verification is in progress for the volume on this device.

For traditional non-DSA disks, the address of the IRP currently being processed on this
device; and for DSA disks, the address of another data structure (the CDDB) containing
the queue of all active IRPs for this and other units on this unit’s controller.

Linked Lists of UCBs

UCBs are kept in linked lists. The head of each such list is at offset DDB$L_UCB in the DDB
describing the generic device class and linked to the SB corresponding to the controller to
which the unit is attached. Offset UCB$L_LINK in each UCB provides the address of the next
UCB in the list. A UCB with its LINK field being 0 is at the end of a UCB list.

2-8 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER /O DATABASE

Figure 2—4 shows an example of an HSC90 with four disks: an RA82 called DUA10, an RA90
called DUA11, and two RA60s called DJA1 and DJA4.

Figure 2—4: DDB Linkage Showing Four Disks

DDB DDB for
SB for HSC90 RA82s and RA90s RA60s
»{ ddbs1_link 0
ddb$1_ucb ddb$1l_ucb
DUA DJA
sb$1_ddb DUDRIVER DUDRIVER

UCB for DUA1lO

UCB for DJAl

ucb$1l_link ucb$l_link

UCB for DUAll UCB for DJAM

CXN-0002-04

Each UCB also contains at offset UCB$L_DDB the address of the DDB to which it is linked.

2.2.3.2 UCBs for DSA and MSCP-Served Disks

The length of a UCB depends on the type of device it describes. All UCBs begin with a
common set of fields. Beyond those common fields are various UCB extensions based on the

device type.

There are five UCB extensions for UCBs representing DSA disks (both remote and local),
and also UCBs representing disks on remote VAXes which are serving those disks to the
VAXcluster. These extensions are as indicated in the following list:

¢ Error Log Extension.

'Digital Equipment Corporation / Confidential and Proprietary 2-9

DUDRIVER I/O DATABASE

Common to all disks, this region contains information useful for logging errors related to
the unit represented by the UCB, such as the address of an error message buffer. However,
most of the fields in this region are not used for DSA disks.

¢ Dual Port Extension.

This UCB is present for all disks, even if they are not dual ported. It indicates if they are
dual ported. And if so, it provides secondary path information, such as the address of a
secondary DDB linked to the SB representing the other controller.

¢ Standard Disk Extension.
Common to all disks, this extension of the UCB contains items such as:
— The number of times this unit has been placed online since VMS booted.

— Maximum number of logical blocks on a random access device. (For DSA disks, this is
the number of logical blocks available for host data storage.)

— Maximum transfer byte count.
¢ MSCP Extension.
This extension is appended to a disk UCB if either
— The disk is a DSA-type disk (remote or local), or
— The disk is on a remote VAX which is serving it to the cluster.

Some of the items of information provided by the MSCP UCB extension include the
following:

— Address of active/primary class driver data block (CDDB) containing the queue of all
active IRPs for the controller currently handling this disk.

— Address of a secondary CDDB for failover to another controller, if there is a secondary
controller ported to this unit.

— Address of the CDT representing the connection between the disk class driver on the
local node and the MSCP disk server in the controller handling this disk (or the MSCP
server in the remote VAX which is acting as a "logical controller” by MSCP-serving this
unit to the cluster).

— MSCP unit number.

— Various MSCP unit flags which indicate such things as whether the disk is formatted
for 512 bytes or 576 bytes per sector, if the media is removable, if the unit is write
protected, etc.

— Virtual Unit Pointer to Host Based Shadowing SHAD (discussed in a later chapter)
* "Special" DUDRIVER Extension.

This is DSA specific information. Much of it relates to the geometry of DSA disks and is
used by volume shadowing to insure that proposed members of a shadow set in fact have
the "same geometry". Three of the items of information are:

— Number of LBNs per track.
— Number of tracks per group.
— Number of groups per cylinder.

SDA currently does not display this information pertaining to this extension with the UCB
format command, but the symbolic offsets are globaly available.

2-10 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER I/O DATABASE

Figure 2-5 illustrates the general format of a UCB representing a DSA disk, or a disk which
is MSCP-served by its remote VAX host.

Figure 2-5: UCB Extensions for MSCP Served Disk

FIELDS COMMON TO
EVERY UCB

ERROR LOG
EXTENSION

DUAL PORT
EXTENSION

STANDARD DISK
EXTENSION

MSCP
EXTENSION

"SPECIAL" DUDRIVER
EXTENSION

CXN-0002-05

2.2.4 CDDB - Class Driver Data Block

A class driver data block contains parameter and status information specific to an "MSCP
speaking” controller and its MSCP server. It also keeps a queue of active MSCP commands
issued to that controller but for which no corresponding end messages have been received.
Some of the specific items of information kept in a CDDB are:

¢ Queue of active MSCP commands (CDRP/IRP pairs) issued to the controller but for which
corresponding MSCP end messages have not yet been received.

¢ Whether or not controller is making progress with oldest active command.

Digital Equipment Corporation / Confidentiat and Proprietary 2-11

DUDRIVER 1/O DATABASE

* Controller’s class, model, unique device number, and system ID.

¢ Controller flags such as if the controller supports volume shadowing, if it supports disks
formatted with 576-byte sectors, and if it handles bad block replacement by itself.

¢ Status flags related to the controller’'s MSCP server, such as:

Currently no connection exists between local disk class driver and controller’s MSCP
server.

Connection between the local disk class driver and the controller’s MSCP server is
being initialized.

Local disk class driver is reconnecting to controller’s MSCP server.

Connection closed for Port Load Balancing

Local host is currently polling controller’s MSCP server for units to determine what
units the local host should include in its I/O database.

MSCP server is being handed I/O requests by the local host in single stream mode.

¢ Allocation class of the controller (or 0 if none).

2.24.1 Linkage From UCBs to CDDB for Controller

Figure 26 illustrates that each UCB contains the address of the CDDB corresponding to
the DSA controller currently handling its I/O requests. This address is stored at UCB offset
UCB$L_CDDB.

2-12 Digital Equipment Corporation / Confidential and Proprietary

Figure 2-6: CDDB Linkage Maintained by each UCB

DUDRIVER /O DATABASE

DDB DDB for
SB for HSC90 RA80s and RAS81s RA60s
»] ddbs$l_link > 0
ddb$1_ucb ddbsl_uch
DUA DJA
sb$1l_ddb DUDRIVER DUDRIVER

UCB for DUAlO

ucb$l_link

ucb$l _cddb

' UCB for DUAll

UCB for DJAl

ucb$l_link

ucb$l_cddb

UCB for DJA4

0 0
ucb$l_cddb - ucb$l_cddb
CDDB
1 cddb$l_cdrp je==—p={cdrp =] cdrp <=1 cdrp

Queue of Active I/0
Requests (IRP/CDRP Pairs)

CXN-0002-06

If a remote VAX is running the VMS based MSCP server and is serving disks to the
VAXcluster, then that remote VAX appears to the local VAX as a "logical DSA controller”.
The local disk class driver issues MSCP commands to the remote VAX’s VMS based MSCP
server in exactly the same way that it would to the server on an HSC.

Digital Equipment Corporation / Confidential and Proprietary 2-13

DUDRIVER 1/0 DATABASE

The preceding diagram applies to such a situation. The SB in the diagram would actually be
for the remote VAX rather than a DSA controller. The UCBs could be for any type of disk on
the remote VAX that have been "set served”. And the CDDB would play the same role for the
remote "logical DSA controller” as it would for an HSC.

The preceding diagram also applies if the DSA controller is local (such as a KDM70 on a local
VAX.) However, remember that while there is an SB representing the local DSA controller,
the DDBs are not linked to that SB. DDBs for the local DSA controller are linked to the
permanent local SB instead.

2.24.2 Linkage from CDDB to UCBs on that Controller

By means of its UCB$L_CDDB field, each UCB keeps track of the particular CDDB for the
controller currently handling its I/0 requests. However, it is also necessary for the CDDB to
keep track of all UCBs that can give it /O requests. This is facilitated by a linked list. At
offset CDDB$L_UCBCHAIN is the address of the first UCB in this list. Then, within each
UCB, offset UCB$L_CDDB_LINK provides the address of the next UCB in the list. The list
ends with a UCB whose CDDB_LINK field contains a 0.

This linkage proves useful when DUDRIVER needs to determine if a particular disk is already
known to be on a controller. It merely fetches the CDDB corresponding to the controller and
then scans this list looking for a matching UCB. (This also applies to the case where the
"controller” is actually a VAX running the VMS based MSCP server.)

2.243 Linkage from CDDB to DDBs on that Controlier

All DDBs for disks handled by a DSA controller are kept in a singly linked list. The address
of the first DDB in this list is kept at offset CDDB$L_DDB in the CDDB associated with the
controller. Each DDB then contains the address of the next DDB in this list at offset DDBSL_
CONLINK. A DDB whose CONLINK field is set to 0 represents the last DDB in the list.

One application for this list occurs when a UCB is created for a newly discovered unit on a
DSA controller which will provide the primary path for the unit. The list of DDBs attached to
the CDDB is searched for one with a matching generic name (DUA, DJA, ...). If one is found,
the new UCB is linked into that DDB’s list of UCBs. If a matching DDB is not found, it is
created and then the new UCB becomes the first in the DDB’s list of UCBs. (Again, this also
applies to CDDBs associated with a disk on a remote VAX acting as a "logical controller" by
running the VMS based MSCP server.)

2-14 . Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER /O DATABASE

2.2.4.4 Extensions to Disk Class Driver CDDB

There are two extensions to the disk class driver CDDB. The first is the "permanent
IRP/CDRP", and the second is the "DAP IRP/CDRP".

The permanent IRP/CDRP is used by DUDRIVER’s timeout mechanism for two purposes:

* During periods of inactivity, DUDRIVER will issue what effectively amounts to a NOP to
the controller so that it knows the local host is still "alive and well".

¢ If the oldest active MSCP command to a controller has been pending for an "excessively
long period of time", DUDRIVER issues a GET COMMAND STATUS to the controller to
see if any progress has been made on that command.

The DAP IRP/CDRP is used by DUDRIVER for Determine Access Paths processing. This is a
mechanism for finding out if a unit is dual pathed between two DSA controllers (e.g. an RA81
statically dual pathed between two HSC90s).

See the discussions on DUDRIVER’s timeout mechanism and Determine Access Paths process-
ing elsewhere in this book for details.

Figure 2-7 illustrates the general format of a CDDB used by the disk class driver., This in-
cludes the two special class driver extensions. Symbolic offset names relative to the beginning
of the CDDB indicate where the basic CDDB ends and where each of the two extensions
begin.

Digital Equipment Corporation / Confidential and Proprietary 2-15

DUDRIVER 1/0 DATABASE

Figure 2-7: CDDB Format and Class Driver Extensions

Basic CDDB Fields

CDDBSL_RSVD4 (reserved longword)

CDDBSL_PERMCDRP or CDDB$A_PRMIRP

First CDDB Extension

(Permanent IRP/CDRP)

CDDBSL_DAPCDRP or CDDB$A DAPIRP

Second CDDB Extension

(DAP IRP/CDRP)

CXN-0002-07

2.25 CRB - Channel Request Block

Within a generic channel request block is the head of a queue of waiting fork blocks, each of
which represents the suspended context of a driver fork process waiting to gain control of a
controller data channel. A generic CRB also holds the addresses of entry points for driver
interrupt service routines as well as device and controller initialization routines.

While port drivers make use of these generic CRB fields, DUDRIVER is essentially uncon-
cerned with them. This is because no device directly interacts with or interrupts DUDRIVER.
The disk class driver exchanges information with the controllers for its disks through the SCS
and port driver layers of software between it and the controllers.

DUDRIVER still creates a CRB for each controller to which it "talks”. The purpose of each

such CRB is to trigger periodic tasks which DUDRIVER needs to perform for the controller
associated with the CRB. These tasks include:

2-16 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER IO DATABASE

Determining if progress has been made on the oldest active command issued to that
controller and taking appropriate action.

If no commands are active, issuing a NOP to the controller so that it knows that
DUDRIVER on this host is still "alive and well".

Invoking DAP (determine access paths) processing to find secondary paths to dual-ported
disks.

Thus, there are three fields in a CRB that are of principal interest to DUDRIVER:

DUETIME

All CRBs are kept in a list whose head is at location JOC$GL_CRBTMOUT-2C. Scanning
the list for timed out CRBs is one of the "once a second" tasks performed by routine
EXE$TIMEOUT in module TIMESCHDL. A CRB’s DUETIME field (crb$l_duetime)
contains the time in seconds when the CRB will time out. If the content of this field is less
than or equal to the content of EXE$GL_ABSTIM, then the CRB has timed out and the
routine to perform periodic tasks associated with this CRB is called.

Figure 2-8 illustrates the CRB timeout list. Location IOC$GL_CRBTMOUT contains
the address of the field CRB$L_TIMELINK in the first CRB in the list. The CRB$L_
TIMELINK field of each CRB contains the address of the next CRB timelink field in the
list. A zero value in the CRB$L_TIMELINK field terminates the list.

Figure 2-8: CRB Timeout Linkage

CRB CRB CRB
IOCS$GL_CRBTMOUT: : =1 crb$l_timelink crb$l_timelink jemeds 0
CXN-0002~-08
NOTE
All CRBs created by all drivers are in this same CRB timeout list, and not just
CRBs created by DUDRIVER.

TOUTROUT

The TOUTROUT field of a CRB contains the address of the routine to be called when the
CRB times out. This routine performs the periodic tasks associated with the CRB. For
DUDRIVER, these are the tasks described on the previous page.

Digital Equipment Corporation / Confidential and Proprietary 2-17

DUDRIVER /O DATABASE

The CRB’s timeout routine should also reset the DUETIME field to reflect the next
wakeup time for itself. For DUDRIVER, this is done by merely adding to the current
time the "controller delta" stored in the CNTRLTMO field of the CDDB associated with
the controller.

e AUXSTRUC

This field contains the address of an "auxiliary structure” to be passed to the routine whose
address is in the TOUTROUT field.

DUDRIVER has one common timeout routine for all controllers, namely DUSTMR. It is
therefore necessary to identify to that routine the particular controller for which it is being
called. This is accomplished by having the CDDB associated with the controller be the
"auxiliary structure” for the CRB also associated with that controller.

When DUDRIVER creates and inserts a CRB for the controller into the IOC$GL_

CRBTMOUT list, it stores the address of the controller’s CDDB in the CRBSL_
AUXSTRUPC offset of the CRB.

Figure 2-9 illustrates the relationship of the CRB to the DUDRIVER I/O database diagram
which has been evolving in this chapter.

2-18 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER 1I/0 DATABASE

Figure 2-9: CRB Linkage and the General Related Data Structures

DDB DDB for
SB for HSC90 RA80s and RAS81ls RA60s
1 ddb$l_link [r——————— 0
ddb$1_ucb ddb$1l_ucb
DUA DJA
sb$1l_ddb DUDRIVER DUDRIVER
UCB for DUALO UCB for DJAl
ucb$l_link ucb$l_link
ucb$l_cddb ucb$l_cddb
UCB for DUAll UCB for DJAM4
0 0
- ucb$l_cddb - ucb$l_cddb
CRB -
CDDB
crb$l_auxstruc y 1 cddb$l_cdrp jee=—p=|cdrp cdrp === cdrp

Queue of Active I/0
Requests (IRP/CDRP Pairs)

CXN-0002-09

Digital Equipment Corporation./ Confidential and Proprietary 2-19

DUDRIVER 1/O DATABASE

2.2.6 Dual-Pathed Disks

Thusfar in this chapter, data structures have been presented on the assumption that there is
only one controller for each disk. However, it is often desirable to port a disk to two different
controllers, thus providing two different paths to that disk. The objective in doing so is to
avoid the situation wherein a controller is a single point of failure for software needing that
device.

No new data structures are needed to handle dual-pathed disks. In fact, the impact on the
previously introduced data structures involves merely a few more fields in those structures.

The following diagram is a simplified illustration of data structure linkages for a disk, (DUA1),
dual-pathed between two controllers named TOM and DON. Controllers TOM and DON are in
allocation class 255. Note the following points in this illustration that facilitate dual-pathing:

¢ There are two DDBs for the generic class of disks "DUA". One of them is in the SB$L_
DDB list for controller TOM, and the other is in the SB$L_DDB list for controller DON.
The DDB$L_NAME fields for both DDBs contain the generic "DUA". The DDB$L_
ALLOCLS field for both contain the quantity "255".

¢ Both DDBs for generic DUA "point" to a UCB whose UCB$W_UNIT field contains "1".
Hence, the disk is named DUA1 regardless of which controller is used to access the disk.

However, the local VAX will direct its I/O to the disk using only the "primary path". The
"secondary path" exists strictly for failover of the disk in the event that the primary path
to the disk is lost for some reason. Since the primary path for the disk is controller TOM,
the UCB for the disk is in the DDB$L_UCB list for controller TOM. But since controller

DON provides the secondary path, the UCB for this disk is in the DDB$L_2P_UCB list for
DON’s DDB.

¢ Within the UCB, the DDB field contains the address of the primary path DDB, and the
2P_DDB field contains the address of the secondary path DDB.

¢ Within the UCB are pointers to two CDDBs. The UCB$L_CDDB field contains the address
of the primary path CDDB, whereas the UCB$L_2P_CDDB field contains the address of
the secondary path CDDB.

All CDRPs representing I/0 requests for this unit are queued to the primary path CDDB.
It will be seen in the chapter presenting the detailed flow of a $QIO that the primary path

is always selected by the disk class driver. Figure 2—-10 shows the data structures involved
for secondary paths.

2-20 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER I/O DATABASE

Data Structures Supporting Secondary Paths

Figure 2-10

onxjysxne 14qio

«NOQ. ¥ITIONINOD

¥od 9ud

13bdapa” 1$app2

qon~dz" T$9PP

qpp” T$9s

sueuspou 3§qs
wNOQu

UTT3 T44aS

€a4dd Hi1vd
XAVANODES

_auvu T.‘—n»vu—"'

(T)3TUn mgqgon

uSSZu
qs” 1$9PP
W¥0da
qppo_ dz T$qon
qpPpo” 1§9on qon” T§9pPP
qpp dz Téqon 900 HIV¥d
AYYANODES

qpp_ T$qon

13bdapo” T¢qpPpP2

§4¥00 FAILOV
40 3Indnd

€aad HLVYd
AYYWIYd

onx3isxne 14qIo

qon”dz T$qpP

s Hivd
A¥VQONODIS

qPp T$ds

wHOL. ¥ITIONINOD

¥od €0

gaon

wGSCw

qs T$9PP

sweudpou” 3§qs
wWHOL

AUTTF T$as

w¥Nau

qon” 1$9qpPP

€00 HIVd
AYVWIYNd

€s HLVd
AMYWIN¥d

SIJINOD 0O$SIS: utgmmaned

CXN-0002-10

Digital Equipment Corporation / Confidential and Proprietary 2-21

DUDRIVER 1/0 DATABASE

As has already been pointed out, the diagram on the previous page is somewhat simplified. Here is
an explanation of those simplifications.

Only the two system blocks corresponding to HSC controllers TOM and DON are shown to
be in the SCS$GQ_CONFIG queue. The first entry in this queue would actually be the local
system’s SB, and the SBs for TOM and DON would be linked off of that entry.

There would also be system block entries for all other nodes, such as other VAXes and HSCs
with which the local VAX communicates via SCS. There would be still more SBs for local DSA
controllers, such as a local KDM70.

The next simplification is that only one DDB is shown to be present in each system block’s
SB$L_DDB list. In fact, these DDBs may merely be the first DDBs in these lists. For example,
if controller TOM had disks called DJA7 and DJAS, then the DDB$L_LINK field of TOM’s
DUA DDB would contain the address of another DDB with generic name "DJA".

What if there were more DUA disks for which controller TOM were providing the primary
path? In this case, the UCB shown would be only one of several in a list linked to TOM’s
DDB. The DDB$L_UCB field of controller TOM’s DDB would contain the address of the first
UCB in this list. The UCB$L_LINK field of each UCB in this list would contain the address
of the next UCB in this primary path list. A zero value in the UCB$L_LINK field would
terminate the list.

Similarly, if controller DON were providing the secondary path to more than just one DUA
disk, then there would be a secondary path list of UCBs linked to DON’s DDB. The DDBS$L_
2P_UCB field of DON’s DDB would contain the address of the first UCB in this list. The
UCB$L_2P_LINK field of each UCB in this list would contain the address of the next UCB in
the list. The UCB$L_2P_LINK field is not part of the basic UCB, but is found in the dual path
extension. -

It is even permissible for a controller to provide the primary path for some disks and provide
the secondary path to other disks. Figure 2-11 shows a simplified illustration of how controller
TOM provides the primary path for DUA1 and DUA2, and the secondary path for DUA3.
DON, on the other hand, provides the secondary path for DUA1 and DUA2, but the primary
path for DUAS3.

2-~22 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER /O DATABASE

Figure 2-11: Provisions for Secondary Paths Offered by Multiple Servers

System Block System Block
for TOM for DON
sb$l_ddb sb$1l_ddb
"DUA" DDB "DUA" DDB
e L
ddb$1l_ucb ddb$1l_ucb
ddb$1l_2p_ucbh = - == - - -| r == - =]ddb$l_2p_ucb
| |

UCB - DUAl
et — + - d

ucb$l link |
|

ucb$l_2p linkje = UCB - DUA3
L.l

ucb$1l_link(0)
UCB — DUA2

ucb$l 2p link
(0)

ucb$l link(0)

ucb$l_2p_link
(0)

CXN-0002-11

Digital Equipment Corporation / Confidential and Proprietary .2-23

DUDRIVER /O DATABASE

2.3 DUDRIVER I/O Database Initialization

The disk class driver’s database consists of CDDBs and CRBs associated with "MSCP speak-
ing" controllers, and the DDBs and UCBs associated with the disks on those controllers.

In general, DUDRIVER initializes these data structures within the context of two general
scenarios:

Controller Initialization.

Once VMS has become aware of the existence of an "MSCP speaking” controller, it estab-
lishes an SCS connection with the MSCP disk server (MSCP$DISK) on that controller.
Based on the information exchanged between the disk class driver and the server, a CDDB
and CRB are initialized. Then the class driver queries the server regarding disks and
builds UCBs and DDBs corresponding to them. As a result of the dialogue that occurs
during controller initialization, the server is set to a “controller online” state from the class
driver’s point of view.

Attention Messages Received by DUDRIVER from MSCP$DISK.

An MSCP server sends an AVAILABLE ATTENTION message to a disk class driver which
it considers "controller online" anytime a unit asynchronously becomes available to that
class driver. An ACCESS PATHS ATTENTION message is used by an MSCP server to
report an alternate (i.e. secondary) access path for a disk. When DUDRIVER receives
such messages, it builds new UCBs to reflect newly discovered units, or alters existing
UCBs to reflect secondary paths to already known units.

A third type of attention message, DUPLICATE UNIT NUMBER, is used to notify hosts
that two or more units have conflicting unit numbers so that an operator can take appro-
priate action.

The next few sections of this chapter are concerned with when these scenarios occur, and what
happens during each.

2.3.1 DUDRIVER’s Controller Initialization Routine

23141

DU_CONTROLLER_INIT

DU_CONTROLLER_INIT is DUDRIVER’s top level controller initialization routine. It is
called whenever it is necessary to establish an SCS connection with the MSCP disk server on
an "MSCP speaking” controller. It then proceeds to modify the local host’s /O database to re-
flect disk units accessible to this host through the server in that controller. This can typically
happen under any of four circumstances which are described in this section and illustrated by
the flowchart which follows. The following list indicates some of these circumstances:

System disk for local host is on an "MSCP speaking” controller.

VMS initialization begins when SYSBOOT transfers control to module INIT. At location
INI_BOOTDEVIC, INIT performs the allocation and initialization of the database to
describe the system disk.

2-24 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER /O DATABASE

If the system disk is handled by a DSA controller, then SYSBOOT has loaded the port
driver and disk class driver into nonpaged pool at locations BOO$GL_PRTDRYV and
BOO$GL_DSKDRYV, respectively.

INI_BOOTDEVIC calls routine IOC$INITDRYV twice: once to initialize the port driver
(which also causes port microcode to be loaded and started), and the second time to
initialize the disk class driver. It is this second call to IOC$INITDRYV that invokes DU_
CONTROLLER_INIT. It should be observed, however, that the calling of IOC$INITDRV
twice here pertains only to the controller handling the system disk, and no other controller.

NOTE

If this host has been booted from a remote system (i.e. this host is participating
in a VAXcluster via the ETHERNET), then IOC$INITDRYV will also allocate and
initialize a System Block for the remote system.

¢ Local Host Participates in a VAXcluster.

When INIT completes its work, it transfers control to the scheduler which selects the
swapper to run. The first time the swapper runs, it creates the SYSINIT process. At
location SIP_CLUSTER_INIT, the SYSINIT process tests to see if the local host is going
to participate in a cluster. If this test proves true, SYSINIT creates the "stand alone
configure” process (STACONFIG). STACONFIG calls BOO$CONFIGALL to autoconfigure
all local adapters and devices specified by a list it passes to the routine.

— If the local host does not have NI cluster potential, (NISCS_LOAD_PEAO sysgen pa-
rameter equals zero), then the list includes only devices (and hence drivers) beginning
with the letters D, P and M1,

— If the local host does have the potential to use the NI for cluster communication
(NISCS_LOAD_PEAOQ nonzero), then the list includes all devices (and hence drivers)
beginning with the letters X, E and F2as well as D, P and M.

NOTE

If the local host booted from a local disk, then the NI or CI port driver would
not have been started (and hence port microcode not loaded and started) by
INIT. However, here is where that task would be done in such a case if the
local VAX is going to participate in a cluster.

Within BOO$CONFIGALL, a call is made to IOGEN$LOADER to load the database and
driver if necessary. And from within IOGEN$LOADER, DU_CONTROLLER_INIT would
be called.

1 Device code for TAPE drivers has been included in VMS V5.4-3
2 Device code for FDDI drivers has been included in VMS V5.4-3

Digital Equipment Corporation / Confidential and Proprietary 2-25

DUDRIVER I/0O DATABASE

NOTE

If the SYSGEN parameters for the local host indicate that a quorum disk is
being used, then STACONFIG also starts fork threads to autoconfigure MSCP-
and HSC-served disks so that the quorum disk can be found.

e "Autoconfigure All" in STARTUP.COM .

SYSINIT eventually invokes the STARTUP.COM procedure. Among the many operations
performed by this procedure is to perform an "autoconfigure all” for local adapters and
devices. Thus, even if the stand alone configure process was not created, SCS port drivers
and their associated ports would be loaded and started. This would also subject local DSA
controllers to the processing done by DU_CONTROLLER_INIT if not already done by
STACONFIG.

¢ Remote "MSCP Speaking” Controllers Discovered by CONFIGURE.

After doing the "autoconfigure all", STARTUP.COM then creates the CONFIGURE process
if either the local host is participating in a VAXcluster or at least one of the following ports
are present (CI, DSSI, or a local DSA port).

The role of the CONFIGURE process is to discover remote DSA controllers which have
not as yet been found. This applies both to HSCs and remote VAXes running the VMS
based MSCP server. Once found, these controllers will also be subjected to local DU_
CONTROLLER_INIT processing.

CONFIGURE performs its remote MSCP Server locating by establishing a periodic polling
mechanism with the assistance of SCS routines. Thus, anytime an HSC makes an unex-
pected appearance on the CI, or a DSSI based device becomes known, it will be seen and
subjected to DU_CONTROLLER_INIT by CONFIGURE. This also applies to a remote VAX

on the CI or NI running the VMS based MSCP server. Figure 2-12 and Figure 2-13 depict
the fiow of device configuration.

2-26 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER /O DATABASE

Figure 2-12: Configuration of Devices by Sysboot and Init

SYSBOOT
Y
SYSTEM DISK ON I
"MSCP SPEAKING" YES i | SYSBOOT LOADS PORT DRIVER]
CONTROLLER ?

NO

A

SYSTEM DISK ON
"MSCP SPEAKING" YES ememmmiml INIT INITIALIZES PORT
CONTROLLER ? AND PORT DRIVER
INIT CALLS DUDRIVER'’S
CNTRL INIT RTN

NO

SWAPPER

e

SYSINIT

e

CXN-0002-12

Digital Equipment Corporation / Confidential and Proprietary 2-27

DUDRIVER I/0 DATABASE

Figure 2-13: Configuration of Devices by Sysinit and Startup

SYSINIT

e

WILL LOCAL HOST
PARTICIPATE IN ‘——YES'-—’I SYSINIT CREATES STACONFIG PROC I
A VAXcluster ?

Y

STACONFIG AUTOCONFIGURES ALL
LOCAL DEVICES BEGINNING WITH
THE LETTERS "D" AND "P" (AND
"E" and "X" IF CLUSTER
PARTICIPATION VIA ETHERNET)

NO

STACONFIG INVOKES DUDRIVER'’S
- CNTRL INIT ROUTINE

Y

STARTUP.COM

Y

AUTOCONFIGURE ALL
TO CONFIGURE ALL
LOCAL DEVICES

Yy

CREATES CONFIGURE PROCESS TO
FIND DEVICES ON REMOTE "MSCP
SPEAKING" CONTROLLERS

CONFIGURE PROCESS SETS UP A
PERIODIC POLLING MECHANISM
(DUDRIVER'S CNTRL INIT RTN
WILL BE CALLED IF POLLING
DISCOVERS REMOTE "MSCP
SPEAKING" CONTROLLER)

CXN-0002-13

2.3.2 Overview of DUDRIVER’s Controlier Initialization Routine

2-28 Digital Equipment Corporation-/ Confidential and Proprietary

DUDRIVER /O DATAI

2.3.2.1 CDDB Creation and Initialization

First, DU_CONTROLLER_INIT allocates and initializes a CDDB for the controller. The
controller’s system ID is copied into the CDDB. Among the flags which get set here are the
INITING and NOCONN flags. These indicate that the CDDB is being initialized and that

there is as yet no SCS connection between the local disk class driver and the controller’s
MSCP server.

2322 MAKE_CONNECTION Establishes a Connection to MSCP Server

Next, DU_CONTROLLER_INIT calls MAKE_CONNECTION to establish an SCS connection
with the MSCP server. At this time, the addresses of routines within DUDRIVER for receiving
datagrams and messages from the controller are declared. And various controller characteris-
tics such as its timeout period, controller flags, software and hardware versions, and allocation
class are established and recorded in the CDDB.

Upon return from MAKE_CONNECTION, DU_CONTROLLER_INIT sets up the timeout
routine address and duetime fields in the CRB associated with the controller.

2.3.2.3 Poll for Disk Units

It then calls DUTU$POLL_FOR_UNITS to query the controller’s MSCP$DISK about disks
which it may access. The polling mechanism is "conceptually” quite simple. A series of GET
UNIT STATUS commands (each with the "next unit” flag set) is issued to the server.

A UCB will be setup by one of the two following routines based on the content of the end
messages corresponding to the commands.

* Routine DUTU$NEW_UNIT sets up the UCB if the disk reported in the end message is
not the system disk.

¢ Routine DO_ORIG_UCB sets up the UCB if the disk is the system disk. This routine will
complete filling in the original UCB created by the INIT process.

2324 Check for Controller Based Shadow Set

If the Restart Parameter Block indicates that the system disk is part of a CONTROLLER
based shadow set, DO_ORIG_UCB creates a shadow set virtual unit consisting of this one
member. (The remaining members of the system disk shadow set virtual unit should be added
by a MOUNT/SHADOW command in the SYSTARTUP_V5.COM procedure.) DDBs will also
be created as needed. For HOST based shadow sets, this would have been performed when we
configured the secondary class driver in Init.

At the end of the polling procedure, units which have never been seen before will have their
UCB:s linked into the database such that the controller just polled will be the primary path
for these units. Such would be the case for single ported units, and units which are statically
dual-ported.

Digital Equipment Corporation / Confidential and Proprietary 2-29

DUDRIVER 1/0 DATABASE

2.3.2.5 Handling of Secondary Path Discovery

If the unit is dynamically dual-ported, then polling may find a secondary path to an already
known unit. While there is some special casing here (see the detailed routine description),
in general this latter case will result in an already existing UCB having its secondary path
linkages setup. However, secondary path linkages for shadow set virtual unit UCBs are not
setup by this procedure.

Finally, the INITING and NOCONN flags in the CDDB are cleared.
Figure 2-14 illustrates the general flow of the events that occur in DU_CONTROLLER_INIT.

'2-30 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER /O DATABASE

Figure 2-14: DU_CONTROLLER_INIT flow

DU_CONTROLLER_INIT

Y

Allocates and initializes CDDB,
sets INITING and NOCONN flags.

Y
MAKE_CONNECTION

Establishes SCS connection
with server. Determines
and records the controller
characteristics in CDDB.

]
DUTUS$POLL_FOR_UNITS

Loops, issuing GET UNIT STATUS commands with "next unit"
flag set. For unit reported in each end message, checks
if it is the system disk.

If unit not system disk If unit is system disk
DUTUSNEW_UNIT DO_ORIG_UCB
Initializes new UCB Already existing UCB
if unit not already filled in. If system
known. Sets up dual disk is to be a
path linkages for UCB controller based
if unit already known shadow set, create
on other controller. virtual unit with one
member.

INITING and NOCONN flags in CDDB cleared.

CXN-0002-14

Digital Equipment Corporation / Confidential and Proprietary 2-31

DUDRIVER /O DATABASE

2.3.3 Determine Access Paths Processing

2.3.3.1 Determination of Topology of Disk Units

Determine access paths (DAP) processing is used by class drivers to determine the topology of
units that are ported to more than one controller.

2.3.3.2 Access Path Attention Messages

For the disk class driver, DAP processing involves issuing a Determine Access Paths MSCP
command for each unit on the controller whose UCB indicates that it is online and that it is
not a shadow set virtual unit. Upon receipt of the DAP command, the unit will identify itself
to any other controller to which it is connected; and that other controller’s MSCP server will
then issue Access Path Attention messages to all disk class drivers to which it is "controller
online".

Observe that in this situation, only the first controller knows who issued the Determine Access
Paths command, and not the second. Therefore, the second controller must send the Access
Path Attention messages to all disk class drivers to which it is "controller online".

Because of this, the local DUDRIVER may receive an unsolicited Access Path Attention
message. In fact, there is the possibility that the local DUDRIVER may receive an Access
Path Attention message for a unit it does not yet even know about (i.e. that it has not yet
discovered and for which it has not yet set up a primary path).

2.3.3.3 Setup of Dual Path if Found

Upon receipt of an Access Path Attention message from any controller for any unit,

- DUDRIVER will call routine DUTU$SETUP_DUAL_PATH to search out the UCB corre-
sponding to the unit reported in the message. If DUTU$SETUP_DUAL_PATH finds the UCB,
then it sets up the appropriate dual-path linkage for it. If the UCB is not found, the message
is merely ignored. (For further details, see the detailed description of routine ATTN_MSG
near the end of this chapter. Also, an overview of routine DUTU$SETUP_DUAL_PATH is
presented in the detailed description of routine DUTU$NEW_UNIT.)

2.33.4 DAP Scheduling

DAP processing is performed by routine DUTUSDODAP in DUDRIVER for non emulated
MSCP servers. It is invoked as part of the disk class driver timeout mechanism driven by
routine DU$TMR. Periodically, the CRB associated with a particular controller times out and
invokes DU$TMR. Routine DUSTMR invokes DAP processing if either of two conditions is
true:

¢ It finds that there are no MSCP commands active for that controller.

2-32 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER I/O DATABASE

® The oldest active command has been around a "very long time"; but, nevertheless, the
controller is "making progress" on this command. (Details of DUSTMR and a detailed
description of this routine are presented in a later chapter of this book dealing with
DUDRIVER error handling.)

2.3.3.4.1 DAPBSY Flag Set in the CDDB if DAP Processing in Progress

DAP processing is, in fact, not done every time DUTU$DODAP is called. If DUTU$DODAP
actually initiates DAP processing, the DAPBSY flag is set in the CDDB associated with the
controller. The address of this CDDB is in the AUXSTRUC field of the CRB associated with
the controller. The DAPBSY flag is not cleared until DAP commands have been issued for all
UCBs which are online and do not represent shadow set virtual units.

2.3.3.4.2 DAPBSY Flag Checked for DAP Already in Progress

Since each invocation of DUTU$DODAP is actually a fork thread, it is possible under certain
very heavy load situations that a previous DAP processing fork thread has not completed by

the time a new fork thread is initiated. Consequently, if this flag is found to be still set, the

new fork thread terminates itself without doing anything. Also, there is a DAPCOUNT field
in the CDDB. Each time DUTU$DODAP is called, it decrements this field. If the field is still
greater than or equal to zero, DAP processing is not done.

2.3.3.4.3 DAPCOUNT Field used to Determine Frequency of DAP Processing

The DAPBSY flag and DAPCOUNT field serve to strike a balance between the desirability of
quickly finding secondary paths to units and the undesirability of inducing excess overhead
and a negative performance impact by doing DAP processing too often.

NOTE

Each time the DAPCOUNT field in the CDDB becomes negative and DAP process-
ing is therefore actually done, the DAPCOUNT field is reset to the value of the
parameter DAP_COUNT. In VMS V5.5 the value of DAP_COUNT is hard coded as
11 (decimal) at the beginning of routine DUTU$DODAP.

One final observation should be made about DAP processing. This technique serves to detect
new or changed alternate paths to a disk. However, the loss of a previously existing alternate
path will not be detected.

Digital Equipment Corporation / Confidential and Proprietary 2-33

DUDRIVER 1/0 DATABASE

2.3.4 Attention Messages

MSCP servers use attention messages to report certain asynchronous events relevant to a
unit’s availability and/or status to class drivers.

DUDRIVER'’s attention message processing routine, ATTN_MSG, dispatches based on the
OPCODE field of the message buffer for the following three valid attention message types:
Unit Available, Duplicate Unit, and Access Paths.

Otherwise, the message is considered invalid and logged as such, and the ATTN_MSG
branches to DUSRE_SYNCH to reset what is assumed to be a "very ill" controller.

2.3.4.1 Unit Available Attention Message

ATTN_MSG dispatches to UNIT_AVAILABLE_ATTN to handle a unit available attention
message. Routine DUTUSNEW_UNIT will either add a new unit to the local I/O database

if the unit is not as of yet known, or it will alter the database to reflect the discovery of a
secondary path to a known unit.

2.3.4.2 Duplicate Unit Attention Message

ATTN_MSG dispatches to DUPLICATE_UNIT _ATTN in the duplicate unit case. The only
action taken upon receipt of a duplicate unit attention message is the notification of the
operator about the discovery of two units on the same controller with the-same MSCP unit
number. The operator is then expected to resolve the situation.

2.3.4.3 Access Path Attention Message

ATTN_MSG dispatches to ACCESS_PATH_ATTN if an access paths attention message is
received. This results in the calling of routine DUTU$SETUP_DUAL_PATH to alter the I/O
database to reflect a secondary path to a known unit if that secondary path has not yet been
found. (The flow of routine DUTU$SETUP_DUAL_PATH is presented within the detailed
description of DUTUSNEW_UNIT.) Figure 2-15 illustrates the attention message dispatching.

2-34 Digital Equipment ‘Corporation / Confidential and Proprietary

DUDRIVER /O DATABASE

Figure 2-15: Attention Message Dispatching

ATTN_MSG

i Y l
UNIT_AVAILABLE_ATTN DUPLICATE_UNIT ATTN ACCESS_PATHS_ATTN
Setup new UCB or Notify the operator Set up secondary
a secondary path about the condition path if none has
for existing UCB been found yet

CXN-0002-15

2.3.5 The CONFIGURE Process

The CONFIGURE process has the responsibility for discovering remote "MSCP speaking"
controllers not found during the early stages of VMS initialization, and then subjecting them
to DU_CONTROLLER_INIT processing.

Additionally, if the sysgen parameter MSCP_SERVE_ALL indicates that automatic disk
serving is to be performed, the main routine of the configure process (CONFIGMN) establishes
an executive mode timer AST to perform routine AST_REC. This routine executes every 15
seconds (VMS V5.5) and examines the local IO database using routine SCAN_ALL_DEVICES
to determine if there are any new local devices that need to be MSCP served. If any are found,
routine MSCP$ADDUNIT is called to perform the addition.

2.3.5.1 Configure uses SCS Process Polling to Discover MSCP Servers

To accomplish this, CONFIGURE requests the SCS process poller to seek out MSCP servers
on remote nodes (HSCs, DSSI nodes and other VAXes). When one is found, the SCS process
poller notifies the CONFIGURE process of this discovery, and also on what node the server
is running. CONFIGURE then calls routine BOOSCONNECT, which in turn invokes DU_
CONTROLLER_INIT.

The CONFIGURE process consists of two major components: one to request the SCS process

poller to poll for MSCP servers (disk and tape), and a second to handle the discovery of such
servers.

Digital Equipment Corporation / Confidential and Proprietary 2-35

DUDRIVER /O DATABASE

2.3.5.2 Requesting Polling
Routine BOO$CONFIGURE requests SCS process polling. It does so in three steps:

¢ First, it creates a mailbox which is to be used by the SCS process poller to notify the
CONFIGURE process when an MSCP server is found.

e Second, it calls routine REQ_POLL to request process polling by the SCS process poller.
In so doing, BOO$CONFIGURE passes to the SCS process poller the I/O channel number
of the mailbox, and also the names of the SYSAPs for which to poll.

* Finally, it uses the $QIO system service to create a "write attention” AST by which it will

be notified anytime the mailbox is written (i.e. anytime a message is placed in the mailbox
by the SCS process poller).

NOTE
The CONFIGURE process requests polling for both the disk and tape servers.
However, only the disk server MSCP$DISK is of concern here.

The SCS process poller sends inquiries to what "appear to be logical remote
controllers” from its point of view. This clearly includes actual remote controllers
such as HSCs and ISEs. It also includes other VAXes in the cluster since, by

means of the VMS based MSCP server code, these VAXes may appear as logical
controllers.

If the SCS process poller receives a reply indicating that the desired server is

"listening” for incoming CONNECT requests, then it delivers the write attention
AST to the CONFIGURE process.

2.3.5.3 Discovery of MSCP Controllers

Writing to the mailbox triggers the delivery of the write attention AST. Routine FOUND_
PROC in the CONFIGURE process is invoked to handle messages in the the mailbox. For
each such message, FOUND_PROC calls BOO$CONNECT to do the following:

¢ Allocate a DDB corresponding to node_name$DUA .

¢ Initialize NAME, DRVNAME, SB, and ALLOCLS fields in DDB.

e Allocate and initialize a CRB for the controller.

¢ Allocate a UCB and initialize its UNIT field to 0.

¢ Call DU_CONTROLLER_INIT, passing it these data structures.

The interactions between the CONFIGURE process poller, the SCS process poller, and DU_
CONTROLLER_INIT are illustrated by Figure 2-16.

2-36 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER /O DATABASE

Configure Process Polling and Device Configuration

Figure 2-16

9 TIONLNOD YITTONINOD 9ITTONINOD
¥gTI0d _ SSTIONd FUNOTJINOD
$53008d A€ Qds0 XOETIVW
sos MSIA$3OSK
aNnod :9SW —
|

NOILYZITYILINI
YITTOALNOD ¥IAIYNANG

LINI ¥ITIONINOD na

g0 pue ‘gar ‘€y¥d osTe
‘yngs$oweu epou 103 €ad
STILYD0TIV ¢ (pepeol 213K
jou FT) ¥IAINEQNA SAYOT

LOINNODSO0OE

v

(butieuraqrH ATTeuIoN)

SSE00¥d F¥NDIJINOD

(XgW T10d$S2S)

NSIA$dISKW 103 DUTTTOd SsaD01d SIS sisanbey

CXN-0002-16

Digital Equipment Corporation / Confidential and Proprietary 2-37

DUDRIVER 1/O DATABASE

2.4 DUDRIVER I/0 Database Initialization Routines

The remainder of this chapter presents detailed descriptions of the major routines involved in
configuring the principal components of the VMS I/O database referenced by DUDRIVER.

DU_CONTROLLER_INIT

MAKE_CONNECTION

DUTU$POLL_FOR_UNITS

DUTU$NEW_UNIT

DUTU$DODAP

ATTN_MSG

DUDRIVER's controller initialization. Invoked when it is necessary
to add an "MSCP speaking" controller to the local node’s database.

Called by DUDRIVER to establish a connection to the MSCP disk
server in a controller. Also called during certain error handling when
it is necessary to reconnect to a disk server.

After a connection has been made with an MSCP server, this routine
queries the server for disks it is making accessible to the local VAX.

Invoked to search the I/O database to see if a unit is already known.
If it is not, then this routine will add the unit into the database. If it
is already known on some other controller, DUTU$NEW_UNIT will
dual-path it if appropriate.

Issues Determine Access Paths commands to facilitate discovery of
secondary paths for dual-ported disks.

Processes incoming attention messages.

2-38 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER I/O DATABASE

241 DU_CONTROLLER_INIT

2411

Routine Process

Controller initialization begins with creating and initializing the CDDB to be associated with
the controller. Next, it calls a routine to make a connection with the MSCP disk server in that
controller. It then sets up the MSCP timeout mechanism. And finally, it polls the MSCP disk
server for information with which it builds disk data structures within its I/Q database.

Routine DU_CONTROLLER_INIT sets the ONLINE flag in the UCB which it was passed.

NOTE

The UCB passed to DU_CONTROLLER_INIT may be for the boot device. If it is
not, it will be deallocated shortly.

The system id of the controller is stored in the UCB$Q_UNIT _ID field for later use in
creating a CDDB corresponding to the controller.

DU_CONTROLLER_INIT then creates a fork thread to perform the remainder of controller
initialization at IPL$_SCS.

NOTE

This is done since numerous time consuming messages will be exchanged
between this host and the remote controller. The number of tasks here increases
with the number of disks on the controller.

It calls DUTU$CREATE_CDDB to create and initialize a CDDB corresponding to con-
troller. DUTU$CREATE_CDDB does the following:

— Allocates a CDDB from nonpaged pool and zeros it.
— Copies the controller’s system id from the UCB into the SYSTEMID field of the CDDB.

— Sets the INITING and NOCONN flags in the STATUS field of the CDDB to indicate
that it is initializing the CDDB, but also that a connection has not yet been established
with the MSCP disk server in the controller.

— Sets ATTN (enable attention messages), MISC (enable miscellaneous error log entries)
and THIS (enable this host’s error log messages) flags in the CNTRLFLGS field of the
CDDB for later use when setting controller characteristics.

— Initializes empty CDDB queues: CDRP, RSTRT, and CANCL.
— Initializes the failover control block within the CDDB. ~

— Initializes permanent and DAP CDRPs within CDDB by clearing each CDRP’s
RWCPTR field and setting each CDRP’s PERM flag.

— Stores addresses of CRB and DDB into CDDB.
— Clears CONLINK field in the DDB.

Digital Equipment Corporation / Confidential and Proprietary 2-39

DUDRIVER I/O DATABASE

— If UCB is not for the boot device, (i.e. if its VALID flag is not yet set), unlinks the UCB
from the DDB by clearing the DDB$L_UCB field and then deallocates the UCB.

— If UCB is for the boot device (i.e. its VALID flag is already set and its address is
already in location SYS$GL_BOOTUCB), the UCB address is stored in the ORIGUCB
field of the CDDB.

— Searches chain of CDDBs, DU$DATA+DUTUS$L_CDDB_LISTHEAD, to verify that
there is no other CDDB with the same system id (i.e. to verify that this controller is
not already known).

o If some other CDDB with the same system id is already in the chain, then the
CDDB just allocated would duplicate an already known controller’s CDDB. Thus,
this CDDB and associated UCB and CRB are deallocated so as not to make a
second connection with the same MSCP$DISK, and this controller initialization
fork thread terminates here without performing further work.

o If no other CDDB with the same system id already exists in the chain, then the
controller has just been discovered. So the newly allocated CDDB is inserted at
the end of the CDDB chain and this controller initialization thread proceeds on.

— Calls IOC$THREADCRB to insert CRB on IOC$GL_CRBTMOUT list. CRB set to
"infinite" timeout for now.

— Address of CDDB stored in AUXSTRUC field of CRB.

e DU_CONTROLLER_INIT calls MAKE_CONNECTION to establish an SCS connection
with the MSCP disk server, MSCP$DISK, in the controller, and to determine the con-
troller’s characteristics. '

e It tests the CDDB$W_CNTRLFLGS field to determine if the controller handles bad block
replacement by itself. The MSCP$V_CF_REPLC bit will be set if so. If not, DUSINIT _
HIRT is called to initialize the HIRT (Host Initiated Replacement Table) if the HIRT is not
already initialized.

¢ (Clears HIRT’s Replacement Request Queue (RPLQ).

¢ Allocates permanent CDRP, RSPID, and MSCP command buffer to HIRT.

¢ Allocates 4 pages of memory needed by replacement algorithm.

¢ The permanent timeout routine for this controller is established.

¢ The CRB$L_TOUTROUT field is set to contain the address DU$TMR.

¢ The CRB$L_DUETIME field is set to the current time plus the content of the
CDDB$W_CNTRLTMO field, which was just set up by "set controller characteristics”
transactions which occurred in MAKE_CONNECTION.

NOTE

The permanent CDRP in the CDDB is used only by routine DU$TMR.

DU$TMR always resets the DUETIME field in the CRB to the "then current”
time plus the "controller delta” stored in the CNTRLTMO field of the CDDB.

2-40 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER I/O DATABASE

e DUTU$POLL_FOR_UNITS is called to poll MSCP$DISK for units known to the controller
and to alter the I/O database accordingly.

NOTE

DUTU$POLL_FOR_UNITS uses the DAP CDRP. The DAPBSY flag is set

in the CDDB prior to the call to DUTU$POLL_FOR_UNITS so as to inhibit
coincidental DAP processing requests for the controller from this host during
polling.

¢ The NOCONN, DAPBSY, and INITING flags are cleared in the CDDB, and the controller
initialization fork thread terminates itself.

24.2 MAKE_CONNECTION

2.4.2.1 Establishing a Connection

DUDRIVER establishes an SCS connection with the MSCP disk server in a controller. It then
determines and records the controller’s characteristics.

* Using the SYSAP name VMS$DISK_CL_DRVR, DUDRIVER uses the SCS service
CONNECT to establish communication with SYSAP MSCP$DISK in the controller.

Routine DUDRIVER Routine Name
MSGINP DUS$IDR
DGINP DU$DGDR
ERRADR DU$CONNECT_ERR
NOTE

If the CONNECT fails, the code pauses here retrying the CONNECT every
CONNECT_DELTA seconds using a CRB-based timeout. (The CONNECT_
DELTA parameter is hard coded at the beginning of DUDRIVER to be 10
seconds in V5.5 of VMS.)

The Path Move bit in the CDDB status word indicating an entry resulting from
a forced move request is cleared to allow the failover code to attempt to locate
an alternate path.

— The address of the CDT associated with the connection is stored in the CDT field
within the permanent CDRP in the CDDB, and also in DAPCDT field within DAP

Digital Equipment Corporation / Confidential and Proprietary 2-41

DUDRIVER 1/0 DATABASE

CDRP in the CDDB. The address of the PDT corresponding the port supporting this
connection is also stored in the CDDB.

* The MSCP command SET CONTROLLER CHARACTERISTICS is issued to MSCP$DISK.
— Allocates RSPID and message buffer in which to build command.
— Builds command.
o Host settable characteristics from CDDB$W_CNTRLFLGS inserted into command.
o Time from EXE$GQ_SYSTIME inserted into command.
o Host timeout temporarily set to "infinite" via this command.
— Sends command.

¢ The data from SET CONTROLLER CHARACTERISTICS end message received from
controller is recorded in the CDDB:

— CNTRLFLGS.

— Sets/clears BSHADOW flag depending on whether or not controller supports volume
shadowing.

— CNTRLTMO.

— CNTRLID.

— CSVRN (software and hardware version).
— MAXBCNT.

* The correct allocation class for the controller is stored in the CDDB and all DDBs currently
linked to the CDDB.

NOTE

End message returns the allocation class (or 0 if none set) for controller.

During controller initialization, only one DDB should be linked to the CDDB at
this time.

* The message buffer containing the end message is recycled, as is the RSPID.
* The correct host timeout interval is determined and set in the controller.

— For controllers which have dual path capability, it is computed as the larger of the
value of the controller timeout just returned in the end message and the constant
HOST_TIMEOUT as fixed in module DUDRIVER (30 seconds for VMS V5.5).
Another SET CONTROLLER CHARACTERISTICS is issued to properly set the final
host timeout in controller. The data from the associated end message is recorded in
the CDDB and the RSPID and Message buffer are recylced.

— For controllers which do not have dual path capability the timeout field is set to an
infinite value (zero).

2-42 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER /O DATABASE

2.4.3 DUTUSPOLL_FOR_UNITS

Polling an MSCP server for units is performed by DU_CONTROLLER_INIT calling routine
DUTU$POLL_FOR_UNITS after it has established a connection with the MSCP disk server
within a controller. This operation is also invoked during error recovery after a connection has
been re-established with the MSCP server.

The purpose of this routine is to determine which units are available through the MSCP
disk server in the controller. This is accomplished by issuing GET UNIT STATUS commands
with the "next unit" flag set until all available units have been reported by the server. The
operation begins with unit 1 and works its way "uphill” until it wraps around to unit 0.

As each unit is reported, routine DUTU$NEW_UNIT is called to modify the I/O database to
account for the reported unit. DUTU$NEW_UNIT may create new UCBs (and possibly DDBs),
and it may setup secondary path linkages for existing UCBs.

There is a special limited form of mount verification performed for the system disk. If the
system disk is to be a member of a controller based shadow set, then the associated shadow
set virtual unit is created at this time.

2.43.1 Polling Loop

¢ First, DUTU$POLL_FOR_UNITS sets the POLLING flag in the CDDB$W_STATUS field
to indicate that polling is in progress for this CDDB.

e Next, it allocates a RSPID and a message buffer in which to build a GET UNIT STATUS
command.

e Looping, it issues GET UNIT STATUS commands with the MD_NXUNT modifier set.
Starting with unit number 1, DUTU$POLL_FOR_UNITS works "uphill”. For each end
message received, it does the following:

— If the ORIGUCSB field of the CDDB has been zeroed or if the Unit number/Server Local
Unit Number (SLUN) returned in the end message does not match the unit in the
ORIGUCSB, then this is not the boot device.

In this case, if the end message STATUS field is any of SUCC, AVLBL, or DRIVE, or
if the end message Status field is OFFLN with either the NOVOL or EXUSE subcodes
set, then the following steps are taken:

o Load Balancing information is copied from the end message to the CDDB.

o DUTU$NEW_UNIT is called to modify the I/O database for a possible newly
discovered disk unit or a second path to an already known unit.

o If DUTU$NEW_UNIT either creates a new UCB or reports an already existing
one, and if the unit is online (end message STATUS = SUCC), then the UNT_FLGS
field of the end message is copied to the UNIT_FLAGS field in the UCB.

If the STATUS of the end message is not one of these four, then the message (and
hence also the unit) is merely ignored.

Digital Equipment Corporation / Confidential and Proprietary 2-43

DUDRIVER /O DATABASE

— If the UNIT/SLUN field in the end message matches the the ORIGUCB field in the
CDDB, then the unit is the boot device and routine DO_ORIG_UCB is invoked to
perform "special handling™:

o The media and MSCP unit numbers are copied from the end message into the
MEDIA_ID and MSCPUNIT fields of the UCB.

o If the Restart Parameter Block (RBP BootR3) indicates that the system disk is part
of a controller based shadow set, then routine DU$SYSTEM_SHADOW_SET (in
module DUMNTVER) is invoked for the first time to create a shadow set virtual
unit for the system disk:

* Creates a UCB to serve as the the system disk shadow set virtual unit UCB by
calling DUTU$NEW_UNIT

* The system images WCB’s UCB pointers are changed to point to the new
system disk shadow set virtual unit UCB.

* Updates the logicals SYS$DISK and SYS$SYSDEVICE to reflect shadow set
usage.

* Changes location EXE$GL_SYSUCB to point to the new system disk shadow
set virtual unit UCB.

* Issues an internal I0$_CRESHAD IRP to effect shadow set creation.

o An IO$_PACKACK function (ONLINE, GET UNIT STATUS) is issued to the disk
as a limited form of mount verification.

NOTE

If the system disk ivs a member of a shadow set, then the IO$_PACKACK
is issued to the shadow set virtual unit.

o If no JIO$_PACKACK error occurs, then the LCL_VALID flag (local valid flag for
system device) is set in the STS field of the UCB.

NOTE

In the event that an error occurs, the code loops reissuing the 10$_
PACKACK until it succeeds.

o If the Restart Parameter Block (RPB) indicates that the system disk is part of a
shadow set, then routine DU$SYSTEM_SHADOW_SET is invoked for a second
time to copy disk geometry information from the system disk virtual unit UCB
to the member UCB used by DU$SYSTEM_SHADOW_SET the first time it was
called to create the virtual unit UCB:

* Device dependent information (DEVDEPEND).
* Total user visible blocks (MAXBLOCK).
* LBNs per track (LBNPTRK).
* Tracks per group (TRKPGRP).
* Groups per cylinder (GRPPCYL).
o ORIGUCB field in CDDB is cleared.

2-44 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER I/O DATABASE

If the end message is not for unit 0, then the RSPID and message buffer are recycled and
the code branches back up to issue the next GET UNIT STATUS.

2.4.3.2 Polling for Units Complete

After unit numbers in the end messages wrap around to 0 and the unit 0 end message is
processed:

The RSPID is released and the message buffer is deallocated.
The POLLING flag in the CDDB is cleared.

244 DUTUSNEW_UNIT

DUTUSNEW_UNIT is called to ‘perform "new unit processing” each time any one of three
events occurs:

When the class driver’s controller initialization routine DUSCONTROLLER_INIT estab-
lishes a connection with the MSCP disk server in the controller, it calls DUTU$POLL_
FOR_UNITS to determine what disks the controller is serving to the cluster. This is done
by a series of GET UNIT STATUS commands, each with its "next unit" flag set. For each

corresponding end message received from the controller indicating the existence of another
disk, DUTU$NEW_UNIT is called.

After controller initialization, the receipt of a UNIT AVAILABLE ATTENTION message
from the MSCP disk server in a controller indicates that a unit has asynchronously become
available via that controller to this class driver. DUTUSNEW_UNIT is called upon receipt
of each such message.

During the creation of a shadow set, routine DUSCRESHAD_FDT (called during the IO$_
CRESHAD function) invokes DUTUSNEW_UNIT to create a UCB to represent the shadow
set virtual unit.

NOTE

DU$CRESHAD_FDT constructs a skeleton message containing data equivalent
to what would have been received in the above messages. This constructed

message is then passed to DUTUSNEW_UNIT as if it had been received from a
controller.

DUTUSNEW_UNIT scans the chain of UCBs linked to the CDDB associated with the con-
troller looking for a UCB corresponding to the unit described in the message:

If a matching UCB is found, then the unit is already known and DUTU$NEW_UNIT does
nothing more than report to its caller the UCB’s address.

If a matching UCB is not found, then CDDBs corresponding to other controllers are
considered. If a matching UCB is found linked to some other CDDB, then appropriate
dual pathing linkages are established by a call to routine DUTUSSETUP_DUAL_PATH.

Digital Equipment Corporation / Confidential and Proprietary 2-45

DUDRIVER I/O DATABASE

¢ If no matching UCB is found, then a new UCB is created.

NOTE

Secondary pathing linkages are not established for shadow set virtual unit
UCBs.

2.44.1 Determines if Unit Already Seen on Controller

Searches down chain of UCBs for this controller looking for a UCB which matches UCB
described in the message passed to DUTUSNEW_UNIT (Call to routine DUTUSLOOKUP._
UCB .

¢ If the SHADOW flag (bit 15) is set in the UNIT field of the message (indicating that
the unit is actually a shadow set virtual unit) but the class driver does not support
volume shadowing, then the message is merely ignored and an SS$_IVDEVNAM status is
returned.

* DUTU$NEW_UNIT calls DUTU$LOOKUP_UCB to search down the chain of UCBs
linked to this CDDB trying to find an already existing UCB for this unit. In essence, it is
checking whether or not the unit reported in the message is already known to be on the
controller associated with this CDDB.

— CDDBS$L_UCBCHAIN is the list head. Linkage is via the UCB$L_CDDB_LINK field
in each UCB.

— To have a match, the following conditions must be satisfied:

o The MSCPUNIT field in the UCB and the UNIT field in the message must be
identical.

The D0 and D1 media id fields must match
If the device’s Server Local Unit Number (SLUN) bit is set indicating a served
unit, then the device type (DJ, DU, ...) in the UCB and message must also be the

same. If the SLUN bit is clear, then we assume this is the same unit without the
device type check.

2.44.2 Unit Already Seen On This Controller

If DUTU$LOOKUP_UCB does find a matching UCB linked to this CDDB, then the unit is
already known to be on the controller associated with this CDDB. So DUTU$NEW_UNIT
merely performs some minor bookkeeping tasks and returns to its caller without doing any
further work for this unit.

2-46 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER I/O DATABASE

2.4.4.3 Unit Not Already Seen On This Controller

If DUTU$LOOKUP_UCB does not find a matching UCB linked to this CDDB, then this is the
first time the unit has been seen on the controller corresponding to this CDDB. However, it
may have already seen this unit on some other controller. If so, what has now been found is
actually a secondary path to the same unit.

e Thus, DUTU$SETUP_DUAL_PATH is called to investigate the "secondary path possibil-
ity" and set up appropriate secondary path linkages if a secondary path has just been
discovered.

— Searches all other CDDBs (i.e. CDDBs corresponding to other controllers) for a combi-
nation of a CDDB and UCB which satisfies three conditions:

o The other CDDB is in the same nonzero allocation class as the CDDB passed to
this routine.

NOTE

This necessitates two controllers supporting a dual pathed disk to be in
same allocation class.

o The UCB linked to the other CDDB has the same device type (DJ, DU, ...) as the
UCB in the message.

o The MSCPUNIT field of the UCB matches the unit number of the unit reported in
the message.

A CDDB and UCB combination satisfying all three of these conditions represents an
already established primary path.

— If a matching UCB and CDDB combination is found but the UCB represents a shadow
set virtual unit (i.e. UCB has SHAD flag set), then secondary path linkages are not
established here and DUTU$SETUP_DUAL_PATH does no further work for this unit.

However, DUTU$SETUP_DUAL_PATH does report to its caller that it has found a
matching UCB in this case. Thus it will "appear” as if it had set up dual pathing, even
though it hasn’t.

— If matching UCB and CDDB are found and the UCB does not represent a shadow set
virtual unit, then UCB secondary path linkages in the I/O database are established. If
a DDB corresponding to the device type (DJ, DU, ...) is not already linked to the SB
corresponding to the secondary path controller, then one is created and linked to the
SB at this time.

NOTE

If secondary path linkages do not already exist for the matching UCB, then
the newly discovered path will become the secondary path. However, if
secondary path linkages already exist for the UCB, the newly discovered
path replaces the old secondary path if and only if the new path is not for an
MSCP emulator or if this was a Load Balance Message.

In this case, again DUTU$SETUP_DUAL_PATH reports to its caller that it has found
a matching UCB, thus indicating that it has set up dual pathing for the unit.

Digital Equipment Corporation / Confidential and Proprietary 2-47

DUDRIVER 1/0 DATABASE

If DUTU$SETUP_DUAL_PATH reports finding the UCB (and thus dual pathed it, or at

least "appears" to have done so), then DUTU$NEW_UNIT merely performs some minor

bookkeeping tasks and returns to its caller without doing further work for this unit.

If DUTU$SETUP_DUAL_PATH reports not finding a UCB with same unit number linked

to some other CDDB in same allocation class as this CDDB, then DUTUS$NEW_UNIT:

— Calls IOC$COPY_UCB to create a new UCB from the "template" UCB pre-allocated in
the class driver itself.

— Invokes LINK_NEW_UCB to link the new UCB into the database. (A new DDB will
also be created if necessary.)

2.4.5 DUTUSDODAP

Determine Access Paths processing is invoked to find as yet unknown secondary paths to
dual-ported disks. It is invoked periodically by DUDRIVER’s CRB-based timeout mechanism
in routine DU$TMR.

2451

Preparations for Performing DAP Processing

DUTU$DODAP begins by verifying that DAP processing should actually be performed at this
time.

It examines the DAPBSY flag in the CDDB$W_STATUS field.

— If this flag is already set, then previous DAP processing for this CDDB has not yet
completed. So this fork thread merely terminates itself.

— If the DAPBSY flag is not already set, then it is set here and this fork thread contin-
ues.

If this is a VMS MSCPserver (emulator) then exit
The DAPCOUNT field in the CDDB is decremented.

— If the DAPCOUNT field is still greater than or equal to 0, the DAPBSY flag is cleared
and this fork thread terminates itself without doing further work.

— If decrementing the DAPCOUNT field has now made it negative, then it is reset to the
value of parameter DAP_COUNT and this fork thread is allowed to proceed. -

It allocates a RSPID and associated RDT entry for DAP processing.

2-48 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER I/O DATABASE

2.45.2 Issues DAP Commands to Controller

DUTU$DODAP now loops through the chain of UCBs linked to the CDDB. It issues a DAP
command to the controller associated with the CDDB for each "qualified” unit on that con-
troller.

* For each UCB linked to the CDDB:
— Verifies that the unit is qualified for DAP processing. To be qualified, two conditions

must both be met:
o VALID flag is currently set in the UCB$L_STS field (indicating unit is currently
MSCP online).

o UCB does not represent a shadow set virtual unit (i.e. MSCP$V_SHADOW bit is
not set in the MSCPUNIT field of the UCB).

— If the unit is not qualified, this routine merely skips it and branches back to consider
‘ the next UCB in the chain.

— If the unit is qualified for DAP processing:
o A message buffer is allocated.
o A DAP command is built for this unit in the message buffer.

o The message buffer is passed to the SCS and PPD layers for transmission to the
Server.

NOTE

This fork thread is suspended here until the end message corresponding to the
DAP command is received from the controller. Then the fork thread resumes by
deallocating the buffer containing the end message, recycling the RSPID, and
branching back for the next UCB linked to CDDB,

e After the chain of UCBs linked to the CDDB is exhausted:
— The RSPID is released.
— The DAPBSY flag is cleared.
— This fork thread is terminated.

2.4.6 ATTN_MSG
ATTN_MSG in the class driver’s Input Dispatching Routine (DU$IDR) dispatches to one of

three specific attention message handler routines based on the type of attention message if the
message is valid. If the type is not valid, it branches to a routine to reset the controller.

¢ Dispatch is made to a specific routine based on the type of attention message if it is one of
the valid types:

Digital Equipment Corporation / Confidential and Proprietary 2-49

DUDRIVER /0 DATABASE

Type of Attn Msg DUDRIVER Routine
Unit Available UNIT_AVAILABLE
Duplicate Unit DUPLICATE_UNIT _ATTN
Access Paths ACCESS_PATH_ATTN
NOTE

Just prior to dispatching, ATTN_MSG pushes onto the stack the address EXIT
ATTN_MSG to which specific routines will return for deallocation of the buffer
containing the attention message. If the attention message is not valid, the code
to handle the invalid case merely pops this address from the stack.

¢ If the attention message is not valid (i.e. is not one of the above types):
— The invalid attention message is logged with error code EMB$C_INVATT.
— The buffer containing invalid attention message is deallocated.

— A branch is taken to routine DUSRE_SYNCH to reset the controller on the presump-
tion that the controller must be "very ill" if it issued an invalid attention message.

2.4.6.1 Unit Available Attention Message

This routine processes unit available attention messages. It calls a routine which either adds
the unit to the I/O database if is unknown, or alters the I/0 database to reflect a secondary
path to a known unit.

* DUTU$NEW_UNIT is called to alter the /O database to reflect a new unit or a secondary
path to an already known unit, as appropriate.

* If DUTUSNEW_UNIT returns the address of a newly created UCB or the address of a
UCB for which a secondary path has just been established, the AVL (unit available) flag in
the UCB is set.

NOTE

If the I/O database already reflects a known unit as being dual pathed,
DUTU$NEW_UNIT may ignore this path. In such a case, it will not return
the address of any UCB. See the section detailing routine DUTU$NEW_UNIT

2-50 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER /O DATABASE

2.4.6.2 Duplicate Unit Attention Message

MSCP$DISK in a controller is notifying this host that two or more units of the same device

class on that controller have the same unit number. Thus, the operator is notified of this
condition.

¢ Message is sent to operator.
e EMBS$C_DUPUN error is logged.

2.4.6.3 Access Paths Aitention Message

This routine simply calls DUTU$SETUP_DUAL_PATH to alter the I/O database to properly
reflect a secondary path to an already known unit.

NOTE

There once was code here to log an EMB$C_ACPTH error in the event that
DUTUS$SETUP_DUAL_PATH could not find a UCB corresponding to the unit
which was supposed to already be known. In V4.6-V5.5 of VMS, however, this code

is effectively NOPed and the access paths attention message is merely ignored. This
may be changed in later releases.

2.4.7 Routines in the CONFIGURE Process

The CONFIGURE process consists of two major routines. The first, BOO$CONFIGURE,
requests the SCS process poller to locate MSCP servers (disk and tape) on other nodes. The
second, FOUND_PROC, handles messages received from the SCS process poller via a mailbox
when a sought after server is found.

2.4.7.1 Polling for MSCP Servers on Other Nodes

BOO$CONFIGURE requests the SCS process poller to poll for MSCP$DISK on other nodes by
making a call to SCS$POLL_MBX.

¢ Using the $CREMBX system service, BOO$CONFIGURE creates a permanent mailbox to
communicate with the SCS process poller.

— Assigns an I/O channel Channel Control Block (CCB).
— Allocates and initializes the mailbox UCB.
o Flags set in UCB: MBX, PRMMBX, ONLINE
o Fields initialized in UCB: OWNUIC, UNIT, DEVBUFSIZ

Digital Equipment Corporation / Confidential and Proprietary 2-51

DUDRIVER /O DATABASE

— Address of UCB stored in CCB.
— UCSB linked into mailbox controller’s device list via UCB$L_LINK field.

— 1/O channel number returned to the CONFIGURE process by the $CREMBX system
service,

NOTE

The mailbox is effectively treated as a virtual device.

¢ Next, BOO$CONFIGURE calls REQ_POLL to request SCS process polling. REQ_POLL
loops, calling SCS$POLL_MBX for each SYSAP name for which polling is to be requested.
The MSCP disk server name to poll for is MSCP$DISK.

— SCS$POLL_MBX is passed the I/0 channel number of the mailbox which the SCS
process poller will use to notify CONFIGURE when a sought after SYSAP is found.

— SCS$POLL_MBX returns the address of the SCS Process Polling Block (SPPB) it cre-
ates for each SYSAP to be polled for, and this SPPB address is saved by CONFIGURE
in a process information block.

NOTE

Each process information block contains a SYSAP name, associated device name
(e.g. DU) and driver name (e.g. DUDRIVER), and SPPB address field. The
addresses of these process information blocks are kept in list at PROC_INFO.

* Using the $QIO system service (FUNC = I0$_SETMODE!IO$M_WRTATTN), BOO$CONFIGURE
creates a "write attention” AST by which it will be notified anytime the mailbox receives a
message.

— Creates ACB (AST address = FOUND_PROC) and queues it to UCB$L_MB_W_AST.
— MB_W_AST and ASTQFL are both overlays of FPC field in the UCB.
¢ CONFIGURE then hibernates.

2.4.7.2 CONFIGURE Notified of Discovery of MSCP$DISK

AST routine FOUND_PROC is invoked when the mailbox is written by the SCS process poller.
FOUND_PROC requeues the "write attention” AST, reads and processes messages from the
mailbox until the mailbox empty, and then resumes hibernating.

e Using the $QIO system service, it requeues the "write attention” AST to the mailbox UCB.
* Loops, processing all messages in the mailbox.

Using the $QIO system service (FUNC = I0$_READVBLK!'IO$M_NOW), FOUND_PROC
reads a message from the mailbox into a local buffer, MSGBUF, and then calls PROCESS_
MSG to process the message as follows:

— Calls routine BLDNAME to construct a cluster device name of the form: Node_
name$DUA)

2-52 Digital Equipment Corporation / Confidential and Proprietary

DUDRIVER VO DATABASE

Calls routine BOO$CONNECT to build the class driver database, load the class driver
if it has not already been loaded, and call the class driver controller initialization
routine DU_CONTROLLER_INIT.

To build the class driver database, BOO$CONNECT performs various minor supporting
tasks and then calls IOGEN$LOADER to do the real work. IOGEN$LOADER performs
the following tasks:

If DUDRIVER has not yet been loaded, it is loaded here.
Allocates a DDB corresponding to Node_name$DUA (actually just DUA).
Initializes NAME, DRVNAME, SB, and ALLOCLS field in the DDB.

NOTE

ALLOCLS field initialized at this time to local node’s allocation class.
Changed to correct value later by controller initialization in DUDRIVER.

Allocates and initializes CRB and IDB.

Allocates a UCB and initializes the UCB$W_UNIT field to 0 at this time.

Address of UCB placed in list of UCB addresses starting at offset UCBLST in IDB.
UCB queued to DDB.

Initializes UCB and ORB based on DUDRIVER prologue table.

Calls controller initialization routine, DU_CONTROLLER_INIT, in DUDRIVER.

Digital Equipment Corporation / Confidential and Proprietary 2-53

$QI0 System Service and DUDRIVER

Chapter 3

$QI0 System Service and DUDRIVER

3.1

Introduction

This chapter presents the flow of a typical file read and write request for devices handled
by the Disk Class Driver (DUDRIVER). DUDRIVER’s immediate involvement in these $QIO
operations will be covered, as well as the "pre-processing” and "post-processing” surrounding
this involvement.

To properly set the stage for doing file reads and writes, a user process "assigns" an I/O
channel to the disk on which the file resides. This act establishes a logical path to that device.

The user process then "opens" the file through the use of an ACP QIO function. This function
will return mapping information about the file. The mapping information describes the
location on the disk of the blocks associated with the particular file

Certain major steps performed by these tasks are also presented in this chapter since they are
essential to the topic.

3.2 Assigning an /O Channel to a Disk

3.2.1 Assign System Service

Before a process performs input or output with a device, a logical software path must first be
established between the process and the device. This logical software path is called an I/O
channel. In essence, the collection of information maintained by the operating system which
describes the device and how to access it must be looked up and made available to the process.

However, it would be extremely inefficient to perform this lookup as part of every I/O opera-
tion. Consequently, VMS provides the system service SYS$ASSIGN to perform this task once
for a process. In so doing, SYS$ASSIGN returns to the process what amounts to a "pointer” to
the information. This "pointer” is known as an I/O channel number.

Digital Equipment Corporation / Confidential and Proprietary 3-1

$QIO System Service and DUDRIVER

The collection of information referred to in this conceptual explanation is the Unit Control
Block (UCB) associated with a device. As was pointed out in the chapter on DUDRIVER’s
I/O database, the UCB identifies the media, unit number, characteristics, and status of a disk
unit.

The UCB also maintains the address of the CDDB containing the queue of active MSCP
commands for this unit, and class driver specific information about the controller.

The address of the DDB which provides the name of the driver for the disk is found in the
UCB as well. The DDB also points to a Driver Dispatch Table (DDT) containing the addresses
of entry points in the driver for such tasks as starting an I/0O operation, canceling an I/O
operation, and performing unit initialization.

3.2.2 Channel Control Blocks

One of the tasks of the SYSPASSIGN system service is to lookup the UCB for the device and
store its address in a data structure known as a Channel Control Block (CCB). Each process
has its own collection of CCBs. They are kept in an array in the process’s P1 space, the base
address of which is in location CTLSGL_CCBBASE. The channel control blocks are allocated
toward decreasing memory addresses.

NOTE

CTL$GL_CCBBASE is not itself the base address of this array, but rather is a P1
address location containing the base address of the array.

3.2.2.1 Maximum Channel Limit

Sysgen parameter CHANNELCNT determines the number of CCBs allocated in this array
when a process is created. The value of this parameter is stored in location SGN$GW_
PCHANCNT.

3.2.2.2 Channel Number

The I/O channel number returned to the process by the SYS$ASSIGN service is an offset rela-
tive to the "base address" of this array, identifying the particular CCB in which SYS$ASSIGN
stored the UCB address.

CCBs are stored at negative offsets relative to this base address. Thus, for example, if the I/O
channel number returned by SYS$ASSIGN is 100, then the address of the associated CCB is
computed as follows:

<Content of CTL$GL_CCBBASE> - 100

The CCB corresponding to I/O channel number 0 is never given out to a process by
SYS$ASSIGN. This CCB is reserved by the operating system for error detection.

3-2 Digital Equipment Corporation./ Confidential and Proprietary

$QI0 System Service and DUDRIVER

There are three fields in the CCB of particular interest to the general flow of a disk read or
write:
e CCBSL_UCB

This is where SYS$ASSIGN stores the address of the UCB describing the disk for which
an I/O channel has been assigned.

e CCB3L_WIND

The address of a Window Control Block (WCB) providing mapping information used to
determine where on the disk each of the blocks of the file are located.

This field is not filled in by the SYS$ASSIGN, but rather when the file is opened. It is
discussed later in this chapter.

e CCB$B_AMOD

This field contains the mode plus 1 of the process at the time the I/O channel was assigned,
or 0 if the CCB is not in use.

3.2.2.3 Numerical Representation of Access Mode

Value Access Mode
0 Kernel

1 Executive

2 Supervisor

3 User

SYS$QIO system service code can simultaneously verify that a CCB is in use and that the
process is currently allowed to access the I/O channel in one operation. If the access mode
of the process at the time it attempts a $QIO operation is numerically less than the content
of the CCB$B_AMOD field, then both conditions are true. Otherwise, either the the CCB
corresponding to the channel is not in use, or the process is not in a sufficiently high access
mode.

For example, assume that the process was in executive mode when the channel was assigned.
Then the AMOD field will contain a 2 (1 higher than the mode when the channel was as-
signed). If the process is now in kernel (0) or executive (1) mode, then its current mode is
numerically less than the content of the AMOD field; so the CCB is in use and the channel
may be accessed. However, it the process is in supervisor (2) or user (3) mode, then the pro-
cess’s current access mode is greater than or equal to the content of the AMOD field; so the
process may not access the channel.

This test is one of those applied toward validating parameters supplied by a process when it
attempts a $QIO to read or write a disk file.

Digital Equipment Corporation / Confidential and Proprietary . 3-3

$QIO System Service and DUDRIVER

A related P1 space location of general interest is CTL§GW_CHINDX. It contains the highest
I/0 channel number (CCB index) assigned during the life of the process.

3.2.3 Volume Set Considerations

A volume set is a collection of volumes that are treated as if together they constitute a large
single volume. Created through "binding" two or more volumes together at mount time, they
handle situations such as where a database is too large to fit on a single volume, or where it is
desirable to have a "very large" public file space. In a volume set, one volume takes on special
importance by virtue of having the Master File Directory (MFD) for the entire volume set; this
volume is called the "root volume”.

When a process assigns an I/O channel to a volume set, it will be the UCB for the root volume
whose address gets stored in the CCB$L_UCB field. Also, the logical name for a volume set is
associated only with the root volume.

3.24 Overview of Steps Taken by SYS$ASSIGN

The following is a brief summary of the steps taken by routine EXE$ASSIGN to implement
the assignment of an I/O channel to a disk.

* Routine JOC$FFCHAN is called to search the array of CCBs in the process’s P1 space for
an unused CCB (i.e. one whose CCB$B_AMOD field contains a 0).

* Routine JOC$SEARCH is called to search the I/O database for the UCB associated with
the device.

If a logical name is specified, it is translated to a device name. The search then commences
in routine JOC3SEARCHINT. The steps taken in the search depend on whether the device
name involves the node name of the controller, or an allocation class.

— Assume that the node name of the controller is used, and not an allocation class. As
an example, consider the device name HSC001$DUA2.

o The SB for HSC001 is found by scanning the queue of SBs whose head is SCS$GQ_
CONFIG.

o The list of DDBs attached to this SB (list head at offset SB$L._DDB) is searched
for the generic controller type DUA..

o The list of UCBs attached to this DDB (list head at offset DDB$L_UCB) is
searched for the UCB corresponding to unit number 2.

The secondary path linkage via the offset DDB$L_2P_UCB is not searched.

— If the allocation class format is used, for example 255DUAZ2, then these are the steps
used in the search:

o The first SB in the queue of SBs is selected for consideration.

o The DDB list attached to the SB is searched for the generic controller type DUA
and allocation class 255. If a matching DDB is found, then the UCB lists (first the
primary, and then the secondary) are searched for a UCB corresponding to unit 2.

o If the DDB and UCB are not found, the preceding step is repeated for each suc-
ceeding SB until either they are found or the queue of SBs is exhausted.

¢ The address of the UCB and the process’s "access mode + 1" are written into the CCB.

3-4 Digital Equipment Corporation / Confidential and Proprietary

$QI0 System Service and DUDRIVER

e The index of the CCB is returned to the process to serve as the /O channel number.

3.3 Opening a File

After an /O channel is assigned for a disk, the process opens a file on that channel using a
$QIO. In doing this $QIO, the process specifies a major function of IO$_ACCESS to request a
directory lookup, and a function modifier of JO$M_ACCESS to actually open the file.

By means of other parameters, the process may also specify whether it desires both read and
write access, or just read access, whether to allow others to read or write the file, if write
checking should be enabled, etc.

Opening a file involves a great many file system operations. Most of these operations are
unimportant to understanding the flow of file reads and writes. They belong to the domain
of file system internals, and are thus not presented in the context of this book. However, the
"mapping” information made available by opening a file is essential.

3.3.1 Window Control Blocks and Mapping a File

As a result of the $QIO to open a file on an already assigned I/O channel, a data structure
known as a Window Control Block (WCB) is allocated. The address of the WCB is stored in
the CCB$L_WIND field of the CCB associated with the channel. The purpose of this data
structure is to assist in determining where on the disk the blocks of the file are located. This
then brings up the terminology of Virtual Blocks, Logical Blocks, and Physical Blocks.

3.3.1.1 Virtual Blocks

To the user process, a file appears as a contiguous stream of "virtual blocks”, that is, the
blocks are numbered "uphill” relative to the beginning of the file, starting with virtual block
number 1. The placement of a file’s blocks may not be physically contiguous on the disk; this
is referred to as File Fragmentation.

A virtual block number does not directly indicate the actual location of the block on the disk. A
translation mechanism is required to convert a virtual block number to an actual disk address;
and this mechanism is dependent on the type of disk used. These issues are transparent to
the process. It continues to have the "illusion" of the file being an unbroken stream of blocks
starting with a block numbered 1.

Digital Equipment Corporation / Confidential and Proprietary. 3-5

$QIO System Service and DUDRIVER

3.3.1.2 Logical Blocks

On DSA disks, actual disk addresses are called "logical block numbers”. To a VAX host, a DSA
controller presents its disk as a consecutive stream of blocks numbered from 0 through N-1,
where N is the number of logical blocks on the disk. The blocks are called "logical” because
the controller, and not the host, manages the actual geometry of the disk.

The host operating system does not have to deal with the traditional concepts of "cylinder",
"track"”, and "sector” that are associated with the older MASSBUS and UNIBUS disks. For
normal disk reads and writes, there are basically only two geometry and addressing issues the
host is concerned with:

¢ The total number of logical blocks available to the host on the particular disk.

* Translating a virtual block number (VBN) relative to the beginning of a file into a logical
block number (LBN) relative to the beginning of a disk.

3.3.1.3 Bad Block Replacement

Another feature of DSA disks is that Bad Block Replacement (BBR) is handled by the con-
troller if that controller is "sufficiently intelligent”; otherwise, BBR is handled as a cooperative
effort between the disk class driver and the controller.

BBR on DSA disks is accomplished by maintaining a pool of Replacement Blocks used to
replace host area logical blocks containing media defects leading to hard errors or large
numbers of correctable errors. When DUDRIVER references a logical block number which has
been "replaced”, the reference is "revectored” to a Replacement Block Number (RBN) by the
controller without further intervention by DUDRIVER.

What about disks being served on a remote VAX? Since the VMS based MSCP server on the
remote VAX is emulating an HSC, other VAXes send MSCP read and write commands to it
just as they would to an HSC. Consequently these commands contain logical block numbers,
regardless of the type of disk being served.

If that disk is on a DSA controller, the LBN is passed unaltered to the remote node’s
DUDRIVER by the remote MSCP server. If it is a MASSBUS or UNIBUS disk, the logical
block number is first converted by the MSCP server to a traditional "physical block" number
involving a cylinder, track, and sector. Then it is passed to the driver for that particular
device.

3.3.1.4 Window Control Blocks

Given this explanation of VBNs and LBNs, the role of the Window Control Block can now
be summarized by saying that it provides the mechanism used by the $QIO system ser-
vice for mapping (i.e. converting) VBNs to LBNsl. In essence, it is a cache of VBN-to-LBN
translations contained in 48-bit entries, each with the format as in Figure 3-1:

! The 24 bit LBN field in the WCB limits the maximum disk size currently to approximately 16.7 million blocks

3-6 Digital Equipment Corporation / Confidential and Proprietary

$QI0 System Service and DUDRIVER

Figure 3-1: Window Control Block Fields for VBN to LBN Translation

WCBS$L_LBN WCBSW_COUNT
47 40 39 16 15 0
RVN LBN BLOCK_COUNT
{8bits} {24bits} {l6bits}
CXN-0003-12
BLOCK_COUNT Number of consecutive logical blocks represented by this entry.
LBN Starting logical block number.
This is the LBN of the first block in the set of consecutive logical blocks repre-
sented by this entry.
RVN Relative volume number.

An RVN field of 0 indicates that the disk involved is not part of a volume set. If
this field is nonzero, then it is the relative volume number of a unit within the
volume set. The volumes within a volume set are numbered in ascending order,
starting with the root volume being relative volume 1.

Each entry represents a set of consecutive logical blocks. The entire collection of valid entries
in the WCB represents a set of consecutive virtual blocks, starting with the VBN stored at
offset WCB$L_STVBN. Consider as an example the case of where the WCB$L_STVBN field
contains a 1 and the first three entries are as shown in Figure 3-2.

Figure 3-2: Window Control Block Mapping

wcb$l_ 1lbn wcb$w_count
o] 1001 4
0 \ 2001 8
0 5001 2
CXN-0003-13

In this situation, the file is fragmented. The first entry in this WCB maps the file’s virtual
blocks 1, 2, 3, and 4 to disk logical blocks 1001, 1002, 1003, 1004, respectively. The second
entry takes up with the file’s virtual blocks where the first entry left off. The second entry
maps the next 8 virtual blocks, namely 5 through 12, to disk logical bilocks 2001 through 2008
respectively. And finally the third entry maps only 2 virtual blocks, 13 and 14, to logical blocks
5001 and 5002, respectively.

Digital Equipment Corporation / Confidential and Proprietary 3-7

$QI0 System Service and DUDRIVER

The actual number of currently valid entries in a WCB is stored at offset WCB$W_NMAP.,
The maximum number of entries, however, depends on the values of three parameters. The
default number of entries is the value of the sysgen parameter ACP_WINDOW. This value is
stored in location ACP$GB_WINDOW. This default may be overridden for a disk by using the
"/WINDOWS" qualifier when it is initialized. Both of these may optlonally be overridden for a
particular file when it is opened by the $QIO system service.

3.3.2 Mapping Situations Requiring Special Handling

There are special cases whereby multiple WCBs are chained together to form a cathedral win-
dow for mapping an entire file. The average user generally uses only one WCB. Furthermore,
that WCB usually has only a moderate number of mapping entries.

The default number of entries in a WCB is set by the Sysgen Parameter ACP_WINDOW and
equals seven. Since the block count field of each WCB entry is limited to 16 bits in size, file
extents exceeding 65535 contiguous blocks require multiple WCB entries. When the $QIO
system service code goes to map a VBN to an LBN, it can run into three additional situations
which require a bit of special handling:

3.3.2.1 Window Turns

The VBN to be mapped is out of the range of VBNs handled by the current entries in the
Window Control Block.

This is resolved by invoking the XQP to refill the WCB from the file header with a new set of
entries. The first entry will map the desired VBN. This event is known as a window turn.

3.3.2.2 Bound Volume Sets

The UCB whose address is stored in the CCB is for the root volume of a volume set, but the

entry mapping the VBN indicates the corresponding LBN is on one of the other volumes in the
set.

This is actually handled automatically by the routine, IOC$MAPVBLK, which maps VBNs to
LBNs. If it finds the RVN field of the WCB entry is nonzero, it merely uses the RVN as an

index into a list of UCB addresses stored in another data structure called the Relative Volume
Table (RVT).

The UCB corresponding to the proper unit in the volume set is located using the Relative

Volume Number as an index into the list of UCB addresses that are stored starting at location
RVT$L_UCB.

From this point on, the processing of a $QIO uses this new UCB address. This does not alter
the content of the CCB$L_UCB field; this longword continues to contain the address of the
UCB corresponding to the root volume of the volume set.

NOTE
The address of the RVT is found at offset WCB$L_RVT within the WCB.

3-8 Digital Equipment Corporation / Confidential and Proprietaty

$QI0 System Service and DUDRIVER

3.3.2.3 File Fragmentation

3.4

Quite frequently, IOC$MAPVBLK is called upon to map a set of consecutive VBNs rather than
just one. Due to file fragmentation, this may involve more than one entry in the WCB. Each
entry taken by itself represents a set of consecutive LBNs, but there are gaps between the sets
of LBNs represented by a pair of entries. Alternatively, the current WCB may map the first
few VBNSs, but mapping the remainder would require a window turn.

Starting with the first VBN, routine IOC$MAPVBLK will map as much of the $QIO request
as it can to a set of consecutive logical blocks called a segment. It will return to its caller the
"starting LBN" (i.e. the LBN corresponding to the first in the set of VBNs it mapped). The
number of bytes which were not mapped due to being unable to map the entire set of VBNs to
consecutive LBNs will also be returned.

If a $QIO request cannot be mapped to a single consecutive set of LBNs without a window
turn, DUDRIVER will be asked to handle the request in portions called transfer segments. As
each segment completes, the next segment will be mapped and passed to DUDRIVER until
the request is completely satisfied. This activity, however, is transparent to the process; so the
process does not have to issue repeated $QIOs if file fragmentation exists.

Driver Data Structures, the IRP, DDT and FDT

Three more data structures play an essential role in the flow of a $QIO: the I/O Request
Packet (IRP), the Driver Dispatch Table (DDT), and the Function Decision Table (FDT).

3.4.1 /O Request Packet

When a process queues an I/O request for some device, the $QIO system service code allocates
and initializes an I/O Request Packet (IRP). The purpose of this data structure is to describe
the request to the particular driver which will handle it. Here are some of the typical items of
information found in an IRP:

* Process identification of the process which issued the request represented by the IRP.

¢ Address of the process’s quadword I/0 Status Block (I0SB) into which final completion
status is to be written.

¢ Function code identifying the type of I/O operation (read, write, etc.).
¢ 1/O channel number for the request (representing the Channel Control Block).

¢ Address of the UCB corresponding to the device for which the I/O operation is to be
performed.

¢ Address of, or "pointer" to the buffer for holding the data to be read from or written to the
device.

¢ Number of bytes to be transferred.

Digital Equipment Corporation / Confidential and Proprietary = 3-9

$QIO System Service and DUDRIVER

These data items are fairly generic in the sense that they apply to most any device driver. In
fact, most of the fields of an IRP are driver independent. They are initialized on the basis of
parameter values supplied by the process making the I/O request. Then the IRP is passed to
the driver which will actually handle the request.

In describing an I/O request, it is very common for a driver to supplement the information in a
generic IRP with additional data which is specific to the type of device involved. Thus an IRP

often has a driver specific extension, the address of which is stored in a longword near the end
of the IRP itself. Data contained in the extension is placed there by the driver. In the case of

DUDRIVER, this extension is a Class Driver Request Packet (CDRP).

The information contained in the IRP is common to most devices. A driver must translate
that information into a command format which is meaningful to the controller for the device
to which the request is directed. Thus, the disk class driver allocates another buffer, builds an
MSCP command in that buffer based on the content of the IRP, and then stores the address of
that buffer in the CDRP. This address is a major component of the driver specific information
supplementing the content of the IRP.

3.4.1.1 Class Driver Request Packet

The CDRP is chosen as DUDRIVER’s extension to the IRP rather than some other data
structure for the following reason. From the chapter covering SCA concepts, the purpose of a
CDRP is to facilitate a SYSAP making a request for service from the SCS layer of software;
hence the name "Class Driver Request Packet”. The disk class driver is performing that
function.

In addition to the address of the MSCP command buffer, the class driver also places in the
CDRP information identifying the node (or controller) and server to which the MSCP command
is to be sent. It then passes the CDRP to the SCS layer, requesting transmission of the MSCP
command. In essence, the MSCP command is the "letter", the CDRP is the "envelope”, and the
SCS layer of software is the "postal service".

IRPs are allocated using the standard nonpaged pool allocation routine. So that two separate
operations are not required for the allocation of IRPs and CDRPs, each IRP pre-allocates

the extra space for a CDRP. The fields in an IRP can be treated as negative offsets from the
beginning of the CDRP since the first byte of the CDRP immediately follows the last byte of
the generic IRP. Thus, when the $QIO system service allocates an IRP, it implicitly allocates a
CDRP. For this reason, together they are often referred to as a IRP/CDRP pair. Some of the
major fields of the IRP/CDRP pair are displayed in Figure 3-3.

3-10 Digital Equipment Corporation / Confidential and Proprietary

$QI0 System Service and DUDRIVER

Figure 3-3: IRP/CDRP pair organization

o PID

o IOSB address

o I/0 function code

o I/0 channel number

o UCB address

o Buffer pointer/address

o Number of bytes to xfer

o Address of MSCP command
buffer

o Information used by the
SCS "postal service" to
route MSCP command to
destination server

CDRP

]

CXN-0003-01

It should be noted that IRPs and CDRPs are really distinct data structures, and that the
pairing just described is done for purposes of convenience and efficiency. Other SYSAPs also
use CDRPs to make requests of SCS. Some SYSAPs such as the Connection Manager have no
use for IRPs. They utilize a facility for allocating just CDRPs by themselves.

3.4.2 Driver Dispatch Table

There exists a generic class of operations and corresponding routines common to most device
drivers in VMS. For example, device drivers typically have the following routines:

Routine Application

Start 1/0 Location to which IRPs are initially handed by $QIO system service code
Cancel 1/0 Invoked to cancel requested I/O operations before they complete

Register Dump Used to obtain the contents of various registers for diagnostic and error logging

Unit Initialization

Used to setup initial data structures and conditions for the device

By their very nature, such routines are specific to a particular device or class of devices. It
is therefore necessary that each driver have a table listing the entry points for its own set of
these routines. This table is called a Driver Dispatch Table (DDT).

Digital Equipment Corporation / Confidential and Proprietary 311

$QI0 System Service and DUDRIVER

Normally, the DDT should be defined at the beginning of the driver; and its address is always
stored in the UCBs and DDBs associated with that driver.

3.4.3 Function Decision Table

Another very important quantity kept in the DDT is the address of another driver specific
table called the Function Decision Table (FDT).

A driver’s FDT provides a mechanism for validating the I/O function code by verifying that the
requested function is valid for the devices handled by the driver. It also contains the addresses

of routines to process device and function dependent $QIO parameters and then pass the IRP
to the driver.

Figure 3—4 illustrates an FDT, and is the basis for the discussion which follows it.

Figure 3-4: FDT layout

r— VALID I/0 FUNCTION MASK ——

roe— BUFFERED I/O FUNCTION MASK —

e "APPLICABILITY" MASK —

"ACTION" ROUTINE ADDRESS

r— "APPLICABILITY" MASK —

"ACTION" ROUTINE ADDRESS

o "APPLICABILITY" MASK el

"ACTION" ROUTINE ADDRESS

CXN-0003-02

3-<12 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

3.4.3.1 Valid I/0 Function Mask

The first quadword forms a bit mask called the Valid I/0O Function Mask. It represents a
legal function bit mask of all I/O function codes which are valid for the devices handled by this
driver. A function code, being a 6-bit unsigned quantity, has a numerical value in the range of
0 to 63. Thus it is used as an index into the quadword Valid I/O Function Mask to determine
whether or not the requested operation is legal. If the bit corresponding to the function code is
set, then the operation is legal; if the bit is clear, the operation is illegal. ($QIO system service
code uses a BBC instruction to make this determination.)

For disk devices, this is sufficient validation of the function code since they normally do direct
I/0. The process pages containing the buffer into which data is to be read from disk, or from
which data is to be written to disk, are locked in physical memory and mapped to system
space. In this way the buffer is always addressable by the driver.

3.4.3.2 Butffered I/0 Function Mask

Some devices such as line printers perform buffered I/0. Data is transferred from the process’s
buffer to an intermediate system buffer which is always available to the driver, even when the
process is not in physical memory. The second quadword is a Buffered I/0 Function Mask for
validating those I/0 functions that are buffered.

3.4.3.3 Applicability and Routine Entries

After the two validation bit masks, each entry consists of three longwords. The first two
longwords collectively form a 64-bit Applicability Mask. If the bit in the mask corresponding
to the function code is set, then the entry applies to that function code; otherwise, it doesn’t.

$QIO system service code loops, scanning these entries. For each entry it finds that applies
to the requested function, it calls the "action" routine whose address is in the entry’s third

longword. These are the routines that have the responsibility for processing the device and
function dependent $QIO parameters.

The action routine that completes device and function dependent parameter processing has
the added responsibility of branching to code which hands off the IRP to the driver’s Start I/O
routine; it does not return to the loop which called it. Function Decision Table processing is
illustrated in Figure 3-5.

Digital Equipment Corporation / Confidential and Proprietary 3-13

$QIO System Service and DUDRIVER

3.5

Figure 3-5: FDT processing

EXES$QIO

. FDT

- ROUTINE
CODE IMPLEMENTING
$QIO i FDT
SYSTEM SERVICE

(e} (e} [¢]

> FDT
ROUTINE

Driver’s Start 1/0

CXN-0003-03

NOTE

With some drivers and some operations, the last FDT routine may instead branch to
code to complete or abort the request.

The preceding discussion of FDT processing is intended to explain the general case. But in
the sections which present the flow of a $QIO later in this chapter, it will be seen that there is
only one FDT routine for each of the basic disk read and write functions.

Overview of the Flow of a $QIO

A queued I/O operation to transfer data to or from a disk file begins with a process specifying
parameters which define the operation. Then it invokes the $QIO system service to pass these
parameters to VMS, and to request that the operation actually be performed.

There are various approaches to setting up system service parameters and calling the system
service. If a program is being written in VAX/VMS Assembly Language, then a rather straight
forward mechanism is to use various macros defined in the system libraries provided with
VMS. One such macro, defined in SYS$LIBRARY:STARLET.MLB, is $QIO_S.

3-14 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

At the point in the program where a file read or write is desired, the programmer uses this
macro to specify the parameters to be passed to the routines in VMS which implement the
$QIO system service. Keywords are used to specify which parameters are being used. At
assembly time, the macro expands into a sequence of instructions which set up an argument
list based on the specified parameters, and provide default values for unspecified optional
parameters. The macro then generates the instruction for actually calling the $QIO system
service.

Here is the generic format for setting up a file read or write $QIO using this macro:

$QIO S CHAN
FUNC
10SB
EFN
ASTADR
ASTPRM
Pl
P2

D R

P6

Parameters passed to the $QIO system service code are listed in Table 3-1:

Table 3-1: QIO System Service Parameters

Parameter Description

CHAN Address of the longword containing the I/O channel number assigned to the device
on which the file resides. (This I/O channel is also associated with with the file
which has already been opened on the channel.)

FUNC I/O function code which specifies if the requested operation is a read (10$_
READVBLK) or a write (I0$_WRITEVBLK).
I10SB Address of the quadword I/O status block into which will be stored a system service

completion status code and the number of bytes transferred. (While technically
optional, good programming practice dictates that this always be supplied.)

EFN Event flag that is to be set upon completion of the system service. ([Optional
parameter]. Usually considered redundant if a programmer specifies an AST to be
used for signaling completion of the request.)

ASTADR Address of the entry mask for a programmer specified AST service routine which
is to be executed upon completion of the system service. ([Optional parameter].
Usually considered redundant if a programmer specifies an event flag to be used for
signaling completion of the request.)

ASTPRM AST parameter. A longword passed to the programmer specified AST service
routine, if there is one defined by the ASTADR parameter. ([Optional parameter].
One application of this parameter arises when different $QIOs use a common AST
service routine. If each $QIO uses a different value for this parameter, then the
AST service routine can easily determine for which particular $QIO’s completion it
is being executed.)

P1 [Optional parameter], device and function dependent parameter. For a Disk transfer
QIO, this contains the buffer address.

Digitai Equipment Corporation / Confidential and Proprietary 3-15

$QIO System Service and DUDRIVER

Table 3—1 (Cont.): QIO System Service Parameters

. Parameter Description

P2 [Optional parameter], device and function dependent parameter. For a Disk transfer
QIO, this contains the size of the transfer in bytes.

P3 [Optional parameter], device and function dependent parameter. For a Disk transfer
QIO, this contains the starting Virtual Block number.

P4 [Optional parameter], device and function dependent parameter.

P5 [Optional parameter], device and function dependent parameter.

P6 [Optional parameter], device and function dependent parameter.

The following example shows a $QIO set up specifically to read two consecutive virtual blocks
starting at virtual block 3 from a file into a BUFFER . The /O channel number returned

by a previously executed $ASSIGN is stored in the longword at location DEV_CHN, and the
address of the quadword I/0 status block is IO_STS_BLK. An ACP QIO IO$_ACCESS function
has also been executed already to identify the file for the transfer.

DEV_CHN: . WORD 1
IO _STS_BLK: .QUAD 1
BUFFER: .BLKB 1024
$QIO S CHAN = dev_chn, -
FUNC = $#I0$_READVBIK, -
IOSB = io_sts blk,-
EFN = #1,-
Pl = buffer, -
P2 = #1024, -
P3 = #3

3.5.1 The Process’s Point of View

From the process’s point of view, the execution of a $QIO occurs in two major phases: queuing
the I/O request to the driver, and the driver handling the request. Associated with each phase
is a separate condition value returned to the process at the end of that phase.

3.5.1.1 Queuing the Request to the Driver

First, the parameters defining the request are validated. The I/O channel specified by the
CHAN parameter must already be assigned and accessible to the process, and a file must
currently be open on that channel. The operation requested by the FUNC parameter must be
valid for the device associated with the I/O channel, and that device had better be online.

If parameter validation is successful, the $QIO system service code passes the request to the
driver which handles the device.

3-16 Digital Equipment Corporation / Confidential and Proprietary

$QI0 System Service and DUDRIVER

The end of this first phase is signaled by a condition value being returned to the process in
register RO and control being passed back to the instruction following the $QIO request.

This condition value reflects whether or not the request was successfully passed to the driver.
In the event of an error, the condition value returned will indicate the reason for the failure.
It does not in any way indicate how successful the driver was in handling the request. Such

information will be returned to the process later in a second condition value returned in the
IOSB field.

Before proceeding further, the process should now examine the condition value returned in
RO. If the condition value indicates that an error occurred, then the request never made it
to the driver. The process should invoke an error handling routine which takes appropriate
corrective action based on this condition value.

If no error is indicated, then the process may proceed to do other work. The process should not
presume anything about the success or failure of its request until it has explicitly been notified
by VMS that its request is complete. This notification occurs at the end of the second phase
and will be in the form of the Event Flag being posted or the delivery of the requested AST.

3.5.1.2 Driver Handles $QIO Request

During the second phase, the driver handles the I/O request. The process remains totally
oblivious as to how this is done. There are two preferred mechanisms for notifying the process
about the completion of its request (i.e. once the driver has done as much with the request as
it can).

3.5.1.3 AST Notification

One of the two preferred mechanisms is an AST which the process may have optionally
specified when invoking the $QI0. Upon completion of the request (successful or otherwise),
VMS delivers the AST to the process. "Somewhat like" a device interrupting the CPU, the
AST is invoked asynchronously relative to the normal flow of instructions within the process.
VMS builds a call frame on the stack in much the same way as the process would if it had
used a CALLS to invoke the AST. The current PC of the process is preserved on the stack and
the process finds itself in the AST service routine. Because of how ASTs are delivered, they
should generally end with a RET instruction.

3.5.14 Event Flag Notification

The second preferred mechanism is the event flag which the process may have optionally
specified. This flag is cleared upon entry to the $QIO system service code, and it is set upon
completion of the request. The process could periodically poll this flag to see if it is set; but
this is wasteful of CPU cycles. If the process can do no further work until the $QIO completes,
then it is generally considered preferable that the process request VMS to place it in a wait
state until the event flag is set.

Digital Equipment Corporation / Confidential and Proprietary 3-17

$QI0 System Service and DUDRIVER

The wait can be performed by means of system services such as $SYNCH and $WAITFR. In
selecting an event flag for this purpose, the process should take care that no other events are
also using this same event flag,

Once the AST is delivered or the event flag is set, the process should examine the I/O status
block whose address was specified by the IOSB parameter. This quadword is cleared prior to
the request being handed to the driver. The second condition value returned to the process is
stored in the low order 16 bits of this quadword upon completion of the request, and just prior
to the delivery of the AST or setting of the event flag.

This second condition value indicates how successful the request was handled after it was
passed to the driver.

NOTE

Condition values are 32-bit longwords. However, all condition values returned in an
I/O status block have zeros for their high order 16 bits. Only the low order 16 bits
of these quantities are actually returned in an I/O status block. It is therefore very
common to extract the low order word from the status block and zero extend it into
a 32-bit longword before using it.

In the case of a disk read or write operation, the actual number of bytes transferred
is returned in bits <47:16> of the IOSB, and bits <63:48> are currently cleared by
routine EXE$FINISHIOC as of this writing.

3.5.2 What VMS Sees

For read and write requests directed to disks on "MSCP speaking” controllers, the steps taken
by the operating system fall into six major phases:

¢ 1/O pre-processing prior to passing the request to DUDRIVER.

* DUDRIVER building an MSCP command describing the request.

¢ Transmission of the MSCP command to the controller by the SCS and PPD layers

* Receipt from the controller of an MSCP end message corresponding to the MSCP com-
mand.

¢ DUDRIVER processing the end message.
* 1/O postprocessing and AST delivery.

Except for exchanges across the NI, VMS never actually sees the data transfer. Briefly, here is
an explanation of why for each type of port:

3-18 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

3.5.2.1 Cl and DSSI Ports

The different implementations of the CI port hardware (e.g. C1780, CIBCA, CIXCD etc.) and
some DSSI port implementations are Direct Memory Access (DMA) devices. They can read and
write VAX memory without the direct involvement of VMS.

For a write operation, the MSCP command is sent to the remote controller, which is either an
HSC, ISE, or another VAX running the VMS based MSCP server. When the remote controller
is ready to accept the data, it sends a message to the local CI/DSSI port hardware requesting
the data. The local CI/DSSI extracts the data directly from local VAX memory and transmits
it. For a read operation, the local CI/DSSI port writes the data directly into local VAX memory
when it receives it from the remote controller.

3.5.2.2 Local Ports

Local DSA controllers (e.g. UDA50s, KDB50s, KDM70s, etc.) are also DMA devices. Once
given an MSCP command, they too can extract data directly from or write data directly into
local VAX memory.

3.5.2.3 NI Ports

With NI ports, remember that PEDRIVER has a CI Port Emulator (PEM) component. Part
of the emulation performed by this component is the transfer of data to and from local VAX
memory that would otherwise be done by real CI port hardware. Thus, VMS directly sees
these transfers, but only to the extent that they pass through the NIDRIVER and the PEM
component of PEDRIVER.

Here, then, is a summary of the tasks performed by each of the six major steps.

3.5.2.4 1/O Pre-processing

The I/O pre-processing step is responsible for allocating and initializing the IRP to describe
the request. In part, this is consistent with what the process perceives as the first phase of
handling a $QIO. The event flag is cleared, the CHAN and FUNC parameters are validated,
and the IOSB is probed to see that it is writeable. Then the IRP is allocated and filled in with
various quantities such as the ASTADR, ASTPRM, and EFN parameters, the process’s PID,
and function code. These tasks, however, are all device and function independent.

Next, device and function dependent pre-processing tasks are performed. The data transfer
buffer specified by the P1 and P2 parameters is probed for proper read/write access, locked
in physical memory, and also mapped to system space. The total requested transfer size (P2
parameter) and starting VBN (P3 parameter) are stored in the IRP. Then the first segment of
the transfer is mapped, and the starting LBN and segment size is stored in the IRP.

Now the IRP is queued to DUDRIVER for MSCP specific processing.

Digital Equipment Corporation / Confidential and Proprietary 3-19

$QI0O System Service and DUDRIVER

3.5.2.5 DUDRIVER Builds MSCP Command

An SCS message buffer is allocated, and in this buffer is stored SCS routing information
necessary to send its contents to the controller. MSCP protocol information describing the
segment represented by the IRP is constructed and stored in the message buffer. This includes
the MSCP unit number, the MSCP op code, and a "buffer handle" by which the controller
can access the data transfer buffer in VAX host memory. Then the message buffer is passed
to the SCS and PPD routines in PADRIVER (CI), PIDRIVER (DSSI), PEDRIVER (NI), or
PUDRIVER (Local) for transmission.

3.5.2.6 Transmission of the Command to the Controller

What happens here is dependent upon the type of port used. In general, SCS code verifies
that there is an open connection with the controller’s disk server. Next, SCS/PPD header
information is inserted into the message buffer. This would include such items as the SCS
message length, the fact that this is an application message bound for a remote SYSAP as
opposed to a control message to be handled by the controller’s SCS layer, and an op code of
("send message” as opposed to "send datagram”) for the transmitting port.

The message buffer is handed to the port for transmission, and the request is suspended. The
context of the request is saved within the CDRP portion of the associated IRP/CDRP pair.

The contents of the message buffer is transmitted by the port to the controller. When the
controller is "ready”, the data to be transferred for this segment is exchanged between the con-
troller and local VAX memory. As explained above, this exchange is effectively transparent to
the VMS operating system. However, once all the data for this segment has been transferred,
the controller releases the MSCP end message corresponding to the data transfer segment.

3.5.2.7 End Message Received from Controller

The port level software verifies that there were no local port hardware errors associated with
the reception of the message from the CI, DSSI or NI. Then the end message is passed to SCS
code for routing to the disk class driver.

3.5.2.8 Class Driver Processes End Message

Using the RSPID mechanism discussed in the first chapter, DUDRIVER associates the end
message with the CDRP containing the suspended context of the request, and then resumes
the request. The MSCP status code is checked to see that no errors were reported by the
controller. IOSB information is constructed based on the last segment transferred. Various
SCS resources are released. Finally, the IRP is passed to I/O postprocessing.

3-20 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

3.5.2.9 /0O Postprocessing and AST Delivery

3.6

If more data remains to be transferred for this request, then the IRP is updated to reflect the
next segment. This involves setting up a new starting VBN and a new starting LBN, mapping
as much of the remaining request as possible into another segment, and specifying a new
segment transfer size. Then the IRP is passed back to DUDRIVER.

If the entire request is complete, buffer pages are unlocked, the event flag is set, and AST
delivery occurs.

Details of the Flow of a $QIO

The remainder of this chapter presents in detail the steps involved in VMS handling a $QIO
request to read or write a disk on an "MSCP speaking" controller.

First the presentation presumes that the "MSCP speaking” controller is either an HSC or a
remote VAX running the VMS based MSCP server, and that the local host is using a CI780 or
C1750 port for SCS communication.

Had the local host been using one of the other CI ports, then the name of the interrupt service
routine would be different. For example, in the case of the CIXCD, the interrupt service
routine would be INTERRUPT_CIXCD. The CI port interrupt service routines all perform
functionally the same tasks. They check port specific registers for local port hardware errors
associated with the receipt of a packet, and then converge to common code to pass the received
packet to its destination within the local host.

For an NI port, it should be remembered that the PEM component of PEDRIVER is emulating
the functions of a CI port. It is also interfacing with the NIDRIVER to accomplish the actual
transmission and reception on the NI. These additional layers of software exist "beneath" the
SCS layer of PEDRIVER and are transparent to the class driver.

Because of this, PEDRIVER’s "pseudo interrupt service" routine, PESINT, has no port registers
to check for possible hardware errors. Thus, it promptly branches to its copy of the common
code to which CI port drivers would; and from that point on, there is no difference in the flow
of what is presented here.

There are some noticeable differences if the $QIO request involves a local DSA controller.
These differences are confined strictly to SCS and port driver functionality. They are com-
pletely transparent to DUDRIVER and do not affect the overall flow of the $QIO.

For exchanging MSCP commands and end messages with local DSA controllers (UDA50,
KDB50, KDM70 etc.), PUDRIVER uses a Command Ring in place of the CI port command
queues. It also uses a Response Ring in place of the CI port response queue. These concepts
and their impact are presented after the sections detailing $QIO flow involving CI ports.

It should be remembered that what happens in the port drivers is transparent to DUDRIVER,
and beyond the scope of this book. Port driver details presented here are provided merely
for the sake of completeness, and for those who may wish to have some understanding of the
interactions of a class driver with a port driver. Figure 3-6 displays the general flow of the
Qio through the disk class driver.

Digital Equipment Corporation / Confidential .and Proprietary :3-21

$QIO System Service and DUDRIVER

QIO Flow Through the Class Driver

Figure 3-6

ﬁom IN 10 ISsa ;u

| santinow aaassos |

ONISSIDOAUL
TIATT dVYSAS
¥IAIYA SSYID

SIRASTY $SID0¥d
M¥O0d YIAIYA SSVID

ONISSIO0¥dLS0d

¥aAIdanda

o/1

1S0d0I$201

UNILNOY 1IQd

dNILNOY 1ad

INILNOY IGd

LSV TIN¥EA
NOILITIROD O/I

LSO4yId

ONISSIDOU4dI™d
o/1

INFGNIJIANI FDIAHA

0I10$IXA

OI0$ SWHOJUEd

§5900¥d dISN

AIYMQAYH

LXALNOD WHLSAS

dOVdS WILSAS

IXJIINOD S$SID0Ud

‘dOVdS WALSAS

IXJLNOD SS3FD0Ud

43¥ds ss3IAZ0Y¥4

CXN-0003-14

3-22 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

3.6.1 Device Independent I/O Pre-processing

Execution of a $QIO begins with routine EXE$QIO. This routine is primarily responsible for
validating the function code and device Independent parameters (those other than P1, P2,
etc.). EXE$QIO also allocates an IRP/CDRP pair, initializes the device independent fields in
the IRP, and then enters the loop for Function Decision Table processing. The following list
details the steps taken by EXE$QIO:

* (lears the event flag specified by the EFN parameter.
* Validates the I/O channel number specified by the CHAN parameter.
— First, the /O channel number is range checked by verifying that it is greater than 0
but not greater than the content of CTL§GW_CHINDX. (Remember that CTL$GW_

CHINDX contains the highest I/O channel number assigned thusfar during the life of
the process.)

— Then it simultaneously checks that the CCB associated with the I/O channel number
is "in use" and that the process is allowed to access the channel.

This is done by verifying that the access mode of the process at the time it requested
the $QIO is numerically less than the content of the CCB$B_AMOD field.

* Fetches the address of the UCB from the CCB, the address of the DDT from the UCB, and
then the address of the FDT from the DDT.

¢ Validates the function code supplied as the FUNC parameter against the FDT’s "valid I/0
function mask”. (Since this is not a buffered I/O operation, the second quadword function
mask is not used.)

¢ Examines the status field, UCB$W_STS, to verify that the device is online.

e If an I/O status block was specified using the IOSB parameter, then EXE$QIO makes sure
that the status block is writeable and clears it.

e JPL is now set to IPL$_ASTDEL.

System space data structures are about to be allocated and/or modified based on a request
from some process. Therefore, IPL needs to be high enough to block deletion of this
process. Process deletion is accomplished by a special kernel mode AST. Raising IPL to
IPL$_ASTDEL (or higher) prevents deletion of the process which issued the $QIO request.

¢ Charges appropriate process quota for transfer
* Calls EXE$ALLOCIRP to allocate an IRP from nonpaged pool if IRP lookaside list is

empty.
NOTE

The process is placed in REN$_NPDYNMEM resource wait if insufficient non-
paged pool is available.

IPL is temporarily raised to IPL§_SYNCH during this allocation.

¢ Initializes device and function independent fields in the IRP.
— PID (from PCB of process).
— AST address and parameter ($QIO parameters ASTADR and ASTPRM).

Digital Equipment Corporation / Confidential and Proprietary 3-23

$QIO System Service and DUDRIVER

— WCB address (from CCB).
— UCB address (from CCB).
- — Function code ($QIO FUNC parameter).

— Event flag ($QIO EFN parameter).
— Process base priority (from PCB).
— Address of process’s I/O status block ($QIO IOSB parameter).
— /O channel number ($QIO CHAN parameter).

* At this point, EXE$QIO falls into the loop which calls FDT routines. For standard read

requests, there is only one FDT routine: ACPSREADBLK. For standard write requests,
again there is only one FDT routine: ACP$WRITEBLK.

Since there is only a single FDT routine invoked for either read (ACPSREADBLK) or write
(ACP$WRITEBLK) operations, the FDT routine will pass the IRP to the driver rather than

returning to its caller. Once the IRP has been queued to the driver, a branch is taken to
return to the process which issued the request.

3.6.2 Device and Function Dependent I/O Pre-processing

Device and function dependent I/O pre-processing involves handling the device and function
dependent parameters (P1, P2, etc.), initializing function and device dependent fields in the
IRP, and then passing the IRP to the driver.

The FDT routines which perform these tasks for standard read and write requests,
ACP$READBLK and ACP$WRITEBLK, differ only in their initial step. They then converge to
common code.

¢ Both routines check the accessibility of the I/0 buffer whose address is passed as the
value of the P1 parameter. In so doing, they also lock in physical memory the pages
containing the buffer. For a request to read from a disk to the buffer, this is done by
calling EXESREADLOCK. For a write to disk from the buffer, this is done by calling
EXE$WRITELOCK.

— Verifies that the buffer is write accessible if this is a "read from disk" request, or that
the buffer is read accessible if this is "write to disk” request.

— The buffer is not required to start on a page boundary. Therefore the byte offset into
the first buffer page for the actual start of the buffer is stored in the BOFF field of the
IRP. (This byte offset is merely the low order 9 bits of the P1 parameter.)

— Locks buffer pages in physical memory.

In the process of doing so, consecutive system virtual pages are mapped to this buffer.
The system virtual address of the first of the associated consecutive system PTEs
(Page Table Entries) is stored in the SVAPTE field of the IRP.

If necessary, this operation will fault the buffer pages into physical memory.
¢ Initializes the OBCNT field of the IRP to contain the total number of bytes to transfer.

This is the value of the P2 parameter. However, it is actually copied from the BCNT field
of the IRP where it was left by routine EXE$READLOCK or EXE$§WRITELOCK.

This is known as the original byte count of the transfer.

3-24 Digital Equipment Corporation / Confidential and Proprietary

$QI0 System Service and DUDRIVER

Clears the accumulated byte count (ABCNT) field, of the IRP, indicating that no bytes have
as yet been transferred for this $QIO request.

If the entire request does not map to a single set of consecutive logical blocks, then it will
be broken down into transfer segments. Each of these segments will consist of a set of
consecutive logical blocks. As a transfer segment completes, the sum of the size of that
segment and the content of the ABCNT field is computed. If this sum is less than the
quantity stored in the OBCNT field, then the request is not yet complete.

The ABCNT field is updated by storing this sum there, and the IRP is recycled through
the driver again to transfer the next segment. The segments are processed in ascending
order according to the starting VBN of each segment. (This segmentation is often referred
to as split I/0).

For virtual I/O functions, checks the IRP to verify that a WCB exists, indicating that the

process has "accessed” (i.e. opened) the file. Flags in the WCB are also checked to verify
that the process has proper read/write access to the pages mapped by the WCB.

Sets the VIRTUAL function flag in the IRP’s I/O request status field, IRP$W_STS.

Saves the starting VBN of the transfer (i.e. the value of the P3 parameter) in the IRP$L_
SEGVBN field of the IRP.

If the request is broken down into segments due to fragmentation of the file, then this
field reflects the starting VBN of the segment currently being transferred. Thus, upon
completion of each segment, the SEGVBN must be updated to contain the starting VBN of
the next segment.

Calls JOC$MAPVBLK to map the starting VBN to an LBN, and also as much of the
request as possible.

— Searches through the WCB for an entry mapping the starting VBN and determines
how much of the transfer maps to consecutive logical blocks. (This depends on the
extent of disk file fragmentation.)

— Returns starting LBN, number of unmapped bytes, and the address of the "proper”
UCB. (If there is a volume set involved, then the UCB whose address is in the CCB is
for the root volume. However, the starting VBN may map to some other unit in the
set.)

Address of the "proper" UCB is stored in the IRP at offset IRP$L_UCB.

Computes the actual number of bytes to transfer (i.e. the length of this segment) as the
original byte count less the number of unmapped bytes. The result of this computation is
stored in the BCNT field of the IRP.

Observe at this point that the BCNT field contains only the size of the first segment of the
request, whereas the OBCNT contains the total size of the request. These are equal if and
only if the entire request mapped to a single set of consecutive logical blocks; thus, there
would be only one segment.

If, however, the request had to be broken into two or more segments due to file frag-
mentation, then the content of the BCNT field will be less than that of the OBCNT
field.

The starting LBN is stored in the JRP$L_MEDIA field of the IRP. (This is done by a call
to routine JOC$CVTLOGPHY which would convert a logical block number into a physical
block number if the disk were not DSA.)

Digital Equipment Corporation / Confidential and Proprietary 3-25

$QI0 System Service and DUDRIVER

¢ Branches to routine EXE$QIODRVPKT to "queue" the IRP to the driver.

— First, EXE$QIODRVPKT calls routine EXE$INSIOQ to actually pass the IRP to the
driver. Routine EXE$INSIOQ takes out the FORK spinlock while it manipulates the
I/0 queue. Upon return from EXE$INSIOQ, it then branches to EXE$QIORETURN,
which sets its IPL to 0 and effects a return to the process which issued the $QIO.
EXE$QIORETURN also supplies the SS$_NORMAL status returned to the process in
RO (as opposed to the status returned in the IOSB).

NOTE

It is key to observe that all subroutine calls and returns have been done

by instructions which merely save and restore the PC, such as JSB/RSB
combinations, but do not alter the FP. FDT processing routines, for example,
are invoked by a JSB. The return done by EXE§QIORETURN is done by a
RET, which makes use of the FP to return to the system service dispatching
mechanism. From there, a return is made to the process.

— Routine EXE$INSIOQ calls routine JOC$INITIATE, which verifies that the operation
is allowed on this CPU (check for affinity) and then branches to the driver specific start
I/0 routine whose address is at offset DDT$L_START in the Driver Dispatch Table for
the driver. The start I/O routine in DUDRIVER is DU_STARTIO.

NOTE

EXE$INSIOQ uses the FORKLOCK macro to take out the FORK spinlock.

The BSY flag in the STS field of the UCB has no effect with DSA disks since
the start I/O routine immediately clears it. This flag pertains only to older
disks, such as MASSBUS disks, whose controllers can deal with only one
operation per disk at a time.

General Note -

If IOC$MAPVBLK fails to find the necessary mapping information in the WCB as de-
scribed above, a branch is taken to EXE$QIOACPPKT which hands off the IRP to the
XQP. (It would pass it to the ACP if the disk had been ODS-1 format.) The XQP performs
a window turn. Then the XQP proceeds in the same manner as FDT processing would
have, had IOC$MAPVBLK been able to map the starting VBN and at least part of the
request. The XQP initializes the UCB, BCNT, and MEDIA fields of the IRP and then
"queues” the IRP to the driver.

3.6.3 Class Driver SCS Resource Allocation
This is where the $QIO request enters the disk class driver. Here, routine DU_STARTIO
allocates SCS resources necessary to support the request. These resources are a RSPID and

a message buffer in which to build an MSCP command to be sent to the "MSCP speaking"
controller. (Remember that the CDRP was allocated as an extension of the IRP)

* The fork IPL field of the CDRP, CDRP$B_FIPL, is set to contain SPL$C_SCS.

3-26 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

If the RWAITCNT field in the UCB is nonzero, normal I/O requests for this unit are being
stalled. Under such conditions, the IRP is queued to the UCB and DUDRIVER will take
no further action for this request at this time. The request remains suspended at this
point until the RWAITCNT field is reset to 0, indicating that normal I/O on this unit has
been resumed.

One example of this situation would be when the unit is undergoing mount verification.
The address of the CDT is copied from the UCB into the CDRP.
A RSPID and associated RDT entry are allocated, and the RSPID is placed in the CDRP.

NOTE

If no RSPIDs are available, the current context is saved in the CDRP, the
CDRP is queued to the RDT, and a return is made to the "caller’s caller". This
facilitates a return being made to the process while leaving the fork thread
representing the request suspended. The fork thread is resumed at this point
when some other fork thread releases a RSPID and RDT entry, making them
available to this thread.

Allocates from nonpaged pool an SCS message buffer in which to build the MSCP com-
mand to describe this request to the "MSCP speaking” controller. This is done by calling
routine FPC$ALLOCMSG in PADRIVER.

— Verifies that there is an open connection with the MSCP server in the controller.
— Verifies that there is at least one send credit.

— Allocates a buffer from nonpaged pool. The PPD$B_TYPE field of this buffer is set to
DYN$C_CIMSG (as opposed to DYN$C_CIDG).

— Copies destination CONID from RCONID field of the CDT into the message buffer.
— Stores the address of the message buffer in the CDRP at offset CDRP$L_MSG_BUF.
— Decrements the send credit field in the CDT.

NOTE

If no send credits are available, the CDRP is inserted into a credit wait
queue on the CDT, and the fork thread for this request is suspended at this
point until a send credit is available.

If nonpaged pool is unavailable, the CDRP is queued to the PDT’s wait
queue, and the fork thread is suspended at this point until pool is available.

If the connection with the MSCP server in the controller is not open, the
fork thread is effectively "terminated" here.

Stores RSPID in the message buffer. (The RSPID will serve as an MSCP command
reference number in situations such as where the local DUDRIVER must inquire with the
controller’s server as to the status of the command.)

MSCP unit number is copied from the UCB to the message buffer.
Dispatches on the basis of the I/O function code in the CDRP:

— START _WRITEPBLK - if write operation

Digital Equipment Corporation / Confidential and Proprietary 3-27

$QI0 System Service and DUDRIVER

— START_READPBLK - if read operation

3.6.4 DUDRIVER Builds MSCP Command

Routines START_WRITEPBLK and START_READPBLK differ only in their initial step, and
then converge into common code. They have the responsibility for constructing and storing the
MSCP protocol information in the message buffer. Then they pass the CDRP containing the
address of the MSCP message buffer to the SCS layer, and from there the MSCP command
will be transmitted to the server.

* Sets the MSCP op code field in the message buffer to MSCP$K_OP_WRITE or MSCP$K_
OP_READ.

* Maps the IRP by invoking macro MAP_IRP.

— Removes a buffer descriptor from the linked list of free buffer descriptors in the BDT
and initializes the descriptor based on SVAPTE, BCNT, and BOFF fields in the IRP.
— Builds the buffer handle in the CDRP.
o Transfer offset set to 0.

o Buffer name based on sequence number and index of the BDT entry used for the
buffer descriptor.

o The RCONID is copied from the CDT.

NOTE

If no free buffer descriptor is available, the CDRP is queued to the BDT wait
queue, and this driver fork thread is suspended at this point until a free
buffer descriptor is available.

* Copies the buffer handle from the CDRP into the SCS message buffer.

* Copies into the SCS message buffer the "byte count to transfer”" and starting LBN from
the BCNT and MEDIA fields of the CDRP.

¢ Passes the message buffer to the SCS layer for transmission.

— Inserts the CDRP into the queue of active CDRPs on the CDDB associated with the
controller.

— Executes a JMP @PDT$L_SNDCNTMSG({pdt address)) to actually send the buffer.

NOTE

The class driver thread is folded into the CDRP fork block and suspended
until the MSCP end message corresponding to this request arrives from
the controller. The end message will contain a copy of the RSPID passed
to the controller in the MSCP command. The RSPID will be used by the

class driver input dispatcher routine to identify and resume this particular
thread.

3-28 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

3.6.5 Transmission of Message by SCS and PPD Layers

Routine FPC$SNDCNTMSG in PADRIVER inserts SCS header information into the mes-
sage buffer containing the MSCP command. Next it calls the routine in the PPD layer to
insert PPD header information into the message buffer and queue the buffer to the port for
transmission. Finally, it suspends the driver fork thread representing this $QIO request.

¢ Verifies that the SCS connection with the disk server to which the message is about to be
sent is still open.

® (Clears the register containing the value to be used for the RETFLAG since a RSPID is
associated with this message. This will indicate to the port that the message buffer should
be returned to the MFREEQ, and not the RSPQ, if no errors occur during transmission.

(The presence of a RSPID tells the port driver that a response is expected to this message.
The port should insert an extra buffer into the MFREEQ in anticipation of receiving the
response; and the buffer containing this message is just as good as any other.)

¢ Increments the PENDREC field in the CDT.
e Establishes the SCS message length in the SCS§W_LENGTH field of the message buffer.

¢ Sets the SCS$W_MTYPE field in the buffer to SCS$C_APPL_MSG. (This is an application
message intended for a SYSAP on the destination node/controller, and not an SCS control
message intended for the destination’s SCS layer.)

¢ Copies the content of the PENDREC field in the CDT to the CREDIT field in the
SCS header portion of the message buffer to extend pending receive credits to the re-
mote SYSAP. Adds the PENDREC field into the REC field of CDT, and then clears the
PENDREC field.

* Copies the local CONID from the CDT into the SCS$L_SRC_CONID field in the message
buffer.

e Calls SCSCI$SNDMSG to fill in the PPD header and transmit the message.

— Sets the PPD$§W_MTYPE field to PPD$C_SCS_MSG (as opposed to SCS_DG, START,
ete.)

— Sets the PPD$B_OPC field to PPD$C_SNDMSG (as opposed to SNDDG, SNDDAT,
ete.)

— Copies the destination port number from the RSTATION field in the PB to the PPD$B_
PORT field in the buffer.

— Inserts the setting (0 in this case) of the RETFLAG into the PPD$B_FLAGS field.
— Queues the buffer to COMQHIGH (Command Queue 1).

* C(Clears the MSG_BUF field in the CDRP. (The SCS message buffer has been given to the
port; the CDRP no longer "owns" it.)

¢ Suspends this driver fork thread.

— Stores the current contents of R3 and R4, as well as the PC at which to resume this
fork thread, in the CDRP.

— Inserts the CDRP into the CDRP wait queue (CDDB$L_CDRPQFL) for the controller
to which the MSCP command is being sent. The CDRP will remain in this queue until
the corresponding MSCP end message is received from the controller’s disk server.

Digital Equipment Corporation / Confidential and Proprietary 3-29

$QIO0 System Service and DUDRIVER

3.6.6 End Message Received by PPD and SCS Layers

INTERRUPT_CI780 is the routine in PADRIVER which fields interrupts from a CI780 com-
puter interconnect. It removes the packet containing the MSCP end message from the CI's
response queue, and then passes it to the class driver.

¢ INTERRUPT_CI780 verifies that there are no local CI port hardware errors associated
with interrupt produced when the CI inserted the received packet into the RSPQ. Then it
calls SCSCI$FORK (an alternate name for routine HANDLE_INT).

e HANDLE_INT verifies that no errors are reported in the PPD status field in the received
packet and passes it to the SCS layer based on the PPD op code.
— Creates a fork process to handle packet(s) in the RSPQ.
— Pokes the maintenance timer in the CI.

— Removes the entry from the RSPQ and verifies that no errors are indicated in the
PPD$B_STATUS field.

— Branches to subroutine SCSCI$PROCESS_RSP_PPD to process this entry
— Routine SCSCI$PROCESS_RSP_PPD branches to REC_MSGREC on the basis of the
PPD op code (PPD$C_MSGREC in PPD$B_OPC field).
¢ REC_MSGREC passes the packet to the SCS layer by branching to SCS$REC_MSGREC.
* Routine SCS$REC_MSGREC does SCS bookkeeping and passes the packet to the disk
class driver.

— Differentiates this packet from an SCS control message by observing that the SCS$W_
MTYPE field contains SCS$C_APPL_MSG.

— Verifies that the destination CONID field is valid. First it range checks the 16-bit
index portion against the length of the CDL. Then it compares the destination CONID
field in the received message with the LCONID field in the CDT pointed to by the
index portion of the destination CONID. (If the destination CONID is not valid,
the buffer is effectively discarded by being placed in the MFREEQ, and no further
processing is done for this packet.)

— The CDT$W_REC field (local receive credit, i.e. send credit held by remote server) is
decremented.

— Credit extended by the remote node (SCS$W_CREDIT in received packet) is added to
the local send credit, CDT$W_SEND.

-— The packet (i.e. buffer containing MSCP end message) is passed to the the disk class
driver SYSAP by calling the SYSAP message input routine whose address is in the
MSGINPUT field of the CDT.

3-30 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

3.6.7 Disk Class Driver Message Input Dispatching Routine

This routine, DUSIDR, is to the disk class driver what an interrupt service routine is to a
conventional device driver. The end message is passed here by the port driver (SCS layer).

DUSIDR first verifies that the end message is still "of interest”, and then resumes the class
driver thread which issued the MSCP command associated with this end message.

* Uses the RSPID to determine if the end message is still "of interest".

— Fetches the RSPID from the MSCP3L_CMD_REF field in the end message and range
checks the index portion of the RSPID, (The maximum value allowed for this index is
stored in the RDT$L,_MAXRDIDX field of the RDT.)

— Using the RSPID, DUSIDR fetches the RDT entry and verifies that the RSPID is still
valid. It compares the sequence numbers and checks that the RD$V_BUSY flag is set
in the RDT entry.

NOTE

If the end message is no longer "of interest”, or if the RSPID is not valid,
DUSIDR merely logs an EMB$K_BADRSPID (bad or stale RSPID) error and
deallocates the message buffer.

* Fetches the address of the CDRP from the RDT entry, and the address of the CDDB from
the AUXSTRUC field of the CDT.

* Compares the CMD_REF field of the end message with the OLDRSPID field of the

CDDB. If the end message corresponds to the oldest active command for the CDDB,
the OLDRSPID field is cleared.

* The associated class driver thread is resumed by dispatching through the FPC field of the
CDRP. (The thread resumes immediately after the point where the MSCP command was
passed to the SCS and PPD layers for transmission.)

3.6.8 Class Driver Thread Resumes

Resuming immediately after the SEND_MSCP_MSG macro, the driver thread constructs the
information to be returned in the IOSB, releases SCS resources, and branches to the routine
to initiate I/O postprocessing.

* Verifies that there was no MSCP error reported in the MSCP end message STATUS field.
* Constructs quadword IOSB information based only on the the segment just completed:
— Bits <15:00> are set to contain the status code SS$_NORMAL, indicating success.

— Bits <47:16> are set equal to the actual number of bytes transferred by the segment
Jjust completed. This quantity is obtained from the BYTE_CNT field of the MSCP end
message.

Digital Equipment Corporation / Confidential and Proprietary 3-31

$QI0 System Service and DUDRIVER

3.6.9

If the the request mapped to a single set of consecutive logical blocks, then the segment
just completed represents the entire request. This quantity should be equal to the
content of the OBCNT field in the IRP.

If the request involves more than one segment, then this quantity is less than the
content of the OBCNT field since the segment just completed represents only part of
the request.

— Bits <63:48> are set to 0.
Calls DUTU$DEALLOC_ALL to release SCS resources held by the CDRP.

— UNMAPs the buffer (and resumes any CDRPs waiting for BDT entries). This is done
by calling routine SCS$FPC_UNMAP to release the buffer descriptor in the BDT.

— Deallocates/releases the message buffer containing the end message.

— Releases the RSPID (and resumes any CDRP queued to the RDT and waiting for a
RSPID).

Branches to IOCSALTREQCOM to initiate I/O postprocessing.
— Stores I0SB quadword constructed above into the MEDIA field of the IRP.

NOTE

The IRP$L_MEDIA and IRP$L_IOST1 fields are overlays of each other; and
the IRP$L_IOST?2 field immediately follows the IRP$L_IOST1 field. Thus, if
the request was not segmented, the IOST1 and IOST2 longwords have been
loaded with the final I/O status information to be later transferred to the
process’s IOSB. :

— Inserts the IRP into the I/O postprocessing queue IOC$GQ_POSTIQ.
— Generates an IPL$_IOPOST software interrupt.
— Terminates this class driver thread.

I/0 Postprocessing and AST Delivery

Invoked by an IPL$_IOPOST software interrupt, routine IOC$IOPOST determines if the
entire request is complete. If the request was segmented but is not yet complete, then it
adjusts various IRP fields to reflect the next segment and passes the IRP back to the class
driver. If the request is complete, IOC$IOPOST performs all appropriate /O completion
activity.

Removes the IRP from the I/O postprocessing queue.
Determines if the entire requested I/0 transfer is complete.

The number of bytes transferred by the most recent segment was just stored in the IOST1
and IOST? fields of the IRP by routine IOC$ALTREQCOM. This quantity is compared
with the quantity in the OBCNT field.

— If the two quantities are equal, then the request is complete. This could only be true
if the request did not have to be broken up due to file fragmentation into multiple
segments. ’

Digital Equipment Corporation / Confidential and Proprietary

3.7

$QIO System Service and DUDRIVER

— If the two quantities are not equal, then the number of bytes transferred by the most

recent segment represents only part of the entire request. The accumulated number
of bytes transferred is updated by adding the number of bytes transferred by the most
recent segment into the IRPSL_ABCNT field. Then, the new content of the ABCNT
field is copied to bits <47:16> of the quadword made up of the IOST1 and I0ST2
longwords.

If the contents of the ABCNT and OBCNT fields are now the same, then the most
recent segment was the last and the request is complete. If not, then the request is
not complete and there is at least one more segment to transfer.

If the I/O request is not complete, then IOC$IOPOST does the following:

Adjusts the IRP$L_SEGVBN to contain the starting VBN of the next segment by
adding the number of blocks just transferred into the SEGVBN field.

Adjusts the IRP$L_SVAPTE field to contain the system virtual address of the system
PTE pointing to buffer page corresponding to beginning of the next segment.

Calls IOC$MAPVBLK as before to map as much of the remaining transfer as possible
into this next segment. The actual number of bytes to transfer by this next segment
and associated starting LBN are stored in the BCNT and MEDIA fields of the IRP.

NOTE

The IRP now represents the next segment in the request.

Routine EXE$INSIOQ is called as before to pass the IRP to back to the disk class
driver (routine DU_STARTIO) again.

If the I/O request is complete, then IOC$IOPOST takes the following steps:

Buffer pages are unlocked and the associated system virtual PTEs released.
The event flag specified by the $QIO parameter EFN is now set.
Using an IPL$_ASTDEL software interrupt, a kernel AST (address = DIRPOST) is

delivered to the process to write status to the IOSB and deliver any user specified AST
to the process.

Impact on $QIO Flow Due to Local DSA Controller

There are some significant differences in the flow of a $QIO when a local DSA controller is
involved, instead of a CI, DSSI or NI port. The remainder of this chapter provides an overview
of these differences.

For all intents and purposes, these differences are transparent to the disk class driver. They
depend upon the type of port used to support SCS communication with the DSA controller, and
the internals of that controller. As such, these differences are confined to port driver routines
invoked by DUDRIVER. The port driver for local ports is PUDRIVER.

Digital Equipment Corporation / Confidential and Proprietary 3-33

$QI0 System Service and DUDRIVER

3.7.1 Allocating an SCS Message Buffer

The first noticeable difference is when DUDRIVER calls the routine to allocate an SCS
message buffer in which to build an MSCP command. These message buffers are allocated
from a different pool of buffers than for that of a remote port.

During controller initialization, PUDRIVER sets up a pre-allocated pool of buffers within the
Port Descriptor Table (PDT) for each local DSA controller. These buffers are used to exchange
MSCP commands and end messages between itself and the controller. The number of these
buffers is dependent upon the type of adapter being used with the count being stored at
offset PDT$L_NO_BUFFS within the PDT. The size of each of these buffers is found at offset
PDT$L_UDAB_LEN.

3.7.1.1 Ring Buffer Count Calculation

The number of buffers is calculated in routine BUILD_PDT based on the size of both the
command ring and response ring plus some padding to handle stalled requests (VMS V5.5
specifies 8 additional buffers). The command and response ring sizes are derived from an
array of entries contained in (RINGEXP_ARRAY) which is indexed by the adapter type. The
default number of each buffer type is 2**4 buffers for VMS V5.5. The KDM70 specifies 2**5
buffers when the array is created using the Create_device_entry macro.

The size of the buffers is calculated using another array of entries contained in (MSGLENGTH _
ARRAY). This array is also indexed by the adapter type. The buffer header overhead (20 bytes)
is added to the base message size (default 80 bytes) to provide the total size of a UDAB buffer.
The message text within the UDAB buffer is pointed to by the UDAB$T _TEXT offset. The
KDM?70 specifies a base message size of 108 bytes when the array is created using the Create_
device_entry macro.

The address of the start of these buffers is stored at offset PDT$L_BUFARY within the PDT.
They are indexed by buffer number starting with 0 and going up to PDT$L_NO_BUFFS - 1.

NOTE

While these buffers were originally structured for use with the UDA50, they are
actually used with all controllers handled by PUDRIVER.

At offset PDTS$L_CRCONTENT is an array of longwords, each of which will contain the
starting address of one of these buffers in the command ring when required. At controller
initialization, these are preset to contain a value of minus one representing an unused entry.

At offset PDT$L_RRCONTENT is an array of longwords, each of which will contain the
starting address of one of these buffers in the response ring. At controller initialization, these
are preset to contain the address of the first ringexp_array (2**4 or 2**5) number of buffers
based on the adapter type.

Both of these lists are allocated with UDASK_MAX_RINGSIZE entries regardless of the type
of controller being handled. For VMS V5.5, this value equates to 2**5 entries.

When the PDT is initialized, the remaining portion of these buffers are placed in a message
buffer free queue whose head is at offset PDT$L_PU_FQFL.

3-34 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

For VMS V5.5, the default number of buffers set up in this way is 40 1, and the number set
aside in the response ring is 16. Figure 37 is based on these values.

1 The number of buffers for the KDM70 is 72

Digital Equipment Corporation / Confidential and Proprietary 3-35

$QI10 System Service and DUDRIVER

Figure 3-7: Local Port Buffer Initial Layout

pdt$l_pu_faqfl

pdt$l_pu_fgbl

[AipdtSl—pu_buqul I

Message Free
Queue

CDRP wait Queue for no
available buffers

uda$k_max_ringsize I -1 I
entries

offset PDTSL_CRCONTENT
0

+15

+31
offset PDTSL_RRCONTENT

buffer 0 addr

| . .
|

. uda$k_max_ringsize l buffer 15 addr l
entries

] . .
| [S
[--{ pdt$l_bufary I

buffer 0
initially allocated
to
response

ring

buffer 15

buffer 16

buffer 17

buffer 18

buffer 39

+ 0

+15

CXN-0003~04

When DUDRIVER allocates an SCS message buffer to build an MSCP command for a local
DSA controller, it does not go to nonpaged pool as it would with a CI. Instead, it calls the
routine FPC$ALLOCMSG in PUDRIVER to fetch one from the message buffer free queue in

the controller’s PDT.

3-36 Digital Equipment Corporation / Confidential and Proprietary

$QI0 System Service and DUDRIVER

If this queue is empty, it will try to reclaim one from what is known as the command ring,
(another concept to be explained a bit later). If it still can’t get one, then the $QIO request is
suspended until a message buffer becomes available.

Suspending the request in this case consists of inserting the CDRP representing the request
in a PDT message buffer wait queue (PDT$L_PU_BUFQFL). The PC at which to resume the
request, namely within this allocation routine, is saved in the CDRP. When some other request
relinquishes a buffer to the queue, then the suspended request at the head of the wait queue
is resumed.

If the request succeeds in acquiring a buffer, the address of the text portion of the buffer is
stored in the CDRP at offset CDRP$L_MSG_BUF. The text portion of the buffer begins where
the first byte of the MSCP command would be stored.

3.7.2 Mapping the IRP

Assume that DUDRIVER was able to obtain the message buffer. The steps used by
DUDRIVER to build the MSCP command are the same as in the CI case, except for map-
ping the IRP. This is done by DUDRIVER calling the appropriate routine in PUDRIVER based
on the following table:

Routine Application
FPC$MAPIRP Map a user buffer
FPC$MAPIRP_UV2 Map a buffer for uVax II
FPC$MAPIRP UV1 Map a buffer for uVax I
FPC$MAPIRP _BDA Map a buffer for BDA
FPC$MAPIRP_KDM Map a buffer for KDM

3.7.2.1 The Case of the UDAS0

First, consider the UDA50. This is a UNIBUS device. Consequently there exist UNIBUS
adapters to interface a UNIBUS with the main bus structure of a VAX CPU. For example,
the DW780 UNIBUS adapter serves this purpose on VAX-11/780s and VAX-11/785s; and the
DW750 serves the same purpose for a VAX-11/750.

Figure 3-8 illustrates the relationship between the UDA50 and the rest of the VAX-11/780.
(Of course, there can be many more device adapters and devices than are shown here.)

Digital Equipment Corporation / Confidential and Proprietary 3-37

$QI0 System Service and DUDRIVER

Figure 3-8: Vax 11/780 Adapter Configuration

Other Devices

10T

OTHER PHYSICAL
DEVICE MEMORY
ADAPTER
[|
VAX-11/780 T SBI BUS \
CPU - >
1
Y
DW780 UNIBUS
UNIBUS | -
ADAPTER 1
UDASO

RA-type Disks

CXN-0003-05

A UNIBUS address is composed of only 18 bits, whereas the 780’s Synchronous Backplane
Interconnect (SBI) supports 28-bit addressing. One of the roles of the DW780 is to translate
from an 18-bit UNIBUS address to a 28-bit SBI address whenever one of the devices on the
UNIBUS wishes to read or write VAX memory. Here is a brief and very simplified explanation
of how this is done.

As Figure 3-9 indicates, within the DW780 is a collection of 496 mapping registers which
facilitate this translation. The high order 9 bits of a UNIBUS address serve as an index to
select one of the mapping registers. From this register comes the SBI page address, which is
actually a VAX Page Frame Number (PFN) identifying the page of VAX physical memory being
referenced. Bits <8:2> identify a longword within that page.

If all transfers between VAX memory and UNIBUS devices were longword aligned, this would
be sufficient. However, they aren’t. So given the longword in physical memory identified by
the 28-bit SBI address, how does the SBI addressing logic determine if the transfer begins with
the high order word, or the low order word, within that longword? The answer is UNIBUS
address bit 1.

3-38 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

If this bit is set, then the transfer begins with the high order word. If this bit is clear, then
the transfer begins with the low order word.

Figure 3-9: Unibus to SBI Mapping

UNIBUS ADDRESSING of VMS Physical Memory

17 9 8 21 0
MAP REGISTER NUMBER LONGWORD BYTE
cl c0 control
[]
0 0 DATI 1
0 1 DATIP 2
1 0 DATO COLLECTION OF
11 DATOB MAP REGISTERS
WITHIN DW780 -
cljco .
....... 495

mask-func
encode

3l 0 311 27 v 76 \ 0

[%asklfunc VAX PHYSICAL MEMORY PFN LONGWORD

SBI ADDRESS

See the VAX maintenance handbook (EK-VAXV2_HB-003) for additonal information.

CXN-0003-06

Getting down to a particular byte provides a special problem. This is because the UNIBUS
does not use address bit 0 for addressing, but rather for control. UNIBUS addresses are
always on word boundaries. To solve this problem, a special bit, called the BYTE OFFSET bit
, is provided in each of the 496 map registers. If this bit is set, the transfer begins with an
"odd" byte; but if this bit is clear, then the transfer begins with an "even" byte.

In essence, the BYTE OFFSET bit and UNIBUS address bit 1 combine to form an offset
relative to byte 0 of the longword specified by the SBI address.

As an example, assume that 32 bits have been assembled in the DW780 for transfer to VAX
memory, and that the map register selected by UNIBUS address bits <17:9> contain the PFN
1000. Further assume that UNIBUS address bits <8:2> are all 0.

Digital Equipment Corporation / Confidential and Proprietary 3-39

$QIO System Service and DUDRIVER

If the BYTE OFFSET bit is 0 but UNIBUS address bit 1 is a 1, then bytes 0, 1, 2, and 3 of
the data will be written to bytes 2, 3, 4, and 5, respectively, of physical memory page 1000.
However, if both the BYTE OFFSET bit and UNIBUS address bit 1 are both set, then bytes 0,
1, 2, and 3 are written to bytes 3, 4, 5, and 6, respectively, of physical memory page 1000.

NOTE

As stated earlier, this is a very simplified explanation. Consider that the example
just presented would really involve two UNIBUS transfers and two SBI transfers.
Thus, for further detail, the reader is referred to the VAX-11/780 DW780 UNIBUS
Adapter Technical Description.

In this way, the DW780’s map registers provide translation between the UNIBUS addressing
used by the UDA50 and the SBI physical addressing used by the 11/780 CPU and memory.
Now consider how these map registers are used by PUDRIVER’s routine FPC$MAPIRP (or
FPC$MAPIRP_xxx) to map a segment of a $QIO request represented by an IRP/CDRP pair.
This is performed in three major steps:

First, [OC$REQMAPUDA is called to allocate enough map registers to map this segment.
One register is allocated per page of data to be transferred. These registers must be
consecutive. Also, one additional register is allocated to denote the end of this set of map
registers. The byte count (BCNT) and buffer offset (BOFF) fields from the CDRP are used
to compute the number of registers allocated.

NOTE

If enough consecutive registers are not available, the CDRP is placed in a map
register wait queue until they are. This queue is in a data structure not covered
in this book called an Adapter Control Block (ADP).

Next, IOC$LUBAUDAMAP is called to load the map registers for this segment. This step
involves two tasks:

— A data path must be selected. This is basically a 32-bit buffer within the DW780
wherein two 16-bit UNIBUS transfers can be accepted from the UDA50, and then
assembled into a single 32-bit longword before being passed to the SBI. This is also
where a 32-bit longword can be buffered and broken into two 16-bit UNIBUS transfers
destined for the UDA50. The DW780 has 15 such data paths. (There is one more; but
this is used for single word exchanges between the UNIBUS and the SBI.)

— Then the map registers allocated by routine IOC$REQMAPUDA are loaded. Into each
map register is placed the PFN corresponding to one of the process’s buffer pages, and
also the data path just selected. If the BOFF field of the CDRP indicates that the
transfer is going to start with an "odd" byte, then the BYTE OFFSET flag is set in
each of these registers.

The extra map register allocated at the end of the set is cleared to 0.

Finally, the local buffer handle is constructed and stored in the MSCP message buffer, the
address of which is found at offset CDRP$L_LBUFH_AD in the CDRP.

3-40 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

Like the buffer handle that would be used had the port been a CI, this buffer handle also
consists of three longwords. But they have a very different format. In fact, the second
and third longwords both contain zero. See Figure 3-10 for an illustration of the buffer
handle.

Figure 3-10: Buffer Handle for a UDA buffer

UNIBUS ADDRESS OF BEGINNING
OF PROCESS BUFFER

31 24 23 18 17 9 8 0
DATA PATH 0 lst MAP REG LOW 9 BITS OF
NUMBER NUMBER CDRP$W_BOFF
0
0

CXN-0003-07

The DW750 is the adapter for interfacing the UNIBUS with the 32-bit Cpu Memory
Interconnect (CMI) bus on the VAX-11/750. VMS speaks to the UDA50 via the DW750 in
the same way as it would via the DW780. However, there are two noticeable differences.

* First, the DW750 provides only three buffered data paths for the conversion between a
single 32-bit CMI data transfer and two 16-bit UNIBUS data transfers. (The DW750 does
have a fourth data path to facilitate single word exchanges between the CMI and the
UNIBUS.)

¢ The CMI supports only 24-bit physical addresses. So while UNIBUS address bits <8:2>
still match up with CMI address bits <8:2>, the map registers supply only 15-bit PFNs to
be used as CMI address bits <23:9>.

Figure 3-11 illustrates UNIBUS to CMI address conversion.

Digital Equipment Corporation / Confidential and Proprietary 3-41

$QI0 System Service and DUDRIVER

Figure 3-11: Unibus to CM! Mapping

UNIBUS ADDRESS

17 9 8 21 0
MAP REGISTER NUMBER LONGWORD BYTE
0
1
2
COLLECTION OF .
MAP REGISTERS
WITHIN DW750 -t
495
23 v 98 § 21 o
VAX PHYSICAL MEMORY PFN LONGWORD / /

CMI ADDRESS

CXN-0003-08

3.7.2.2 Other DSA Controllers

With other DSA controllers, such as the KDB50 on the BI bus or the KDA50 on the microVAX
Q-BUS, the steps for mapping the IRP are similar, but with some notable exceptions.

The Q-BUS does not allow DMA transfers to or from odd byte aligned buffers. If the buffer
is not word aligned, then the data is copied into a page aligned buffer in non-paged pool first.
Thus, a direct I/O is essentially turned into a buffered I/O. Also, with the KDA50, Q-bus map
registers are used to map transfer buffers.

The map registers used by PUDRIVER for the KDB50 are also quite different. In fact,
PUDRIVER refers to them as pseudo map registers. While initializing the PDT associated
with the port for each of these controllers, PUDRIVER allocates 4 physically contiguous pages
of memory. Since each page contains 512 bytes, that’s a bit more than enough to hold 496
contiguous longwords of physical memory which will serve as these pseudo map registers.

When mapping the IRP, these pseudo map registers are allocated and loaded by the very same
routines that map an IRP in the case of a UDA50. The buffer handle loaded into the SCS
message buffer containing the MSCP command has the same format as with the UDA50. It
can be concluded that these controllers process what appear to be UNIBUS map registers and

3-42 Digital Equipfnent Corporation / Confidential and Proprietary

$QI0 System Service and DUDRIVER

MSCP commands in functionally the same way as a UDA50. However, the concept of buffered
data paths do not apply.

3.7.3 Transmission of SCS Message Buffer Containing MSCP Command

In the case of CI port, SCS message buffers ready for transmission are placed in a port
command queue within the port’s PDT. Given a port for a local DSA controller, the role of a
command queue is replaced by that of a command ring.

3.7.3.1 Use of the Command Ring

The command ring consists of a set of consecutive longwords, called descriptors, which are
used in a round robin fashion. The number of descriptors in the command ring is kept in the
PDT offset PDT$L_RINGSIZE and is based on the type of controller being configured. (As of
VMS V5.5, the value for most controllers is 16 and is 32 for the KDM70.)

These descriptors begin at the address pointed to by offset PDT$L_CMDRING. The index
of the next available descriptor to use is kept at offset PDT$B_CRINGINX and the count of

currently used descriptors is kept at offset PDT$B_CRINGCNT. Figure 3-12 illustrates the
Command Ring.

Digital Equipment Corporation / Confidential and Proprietary 3-43

$QIO0 System Service and DUDRIVER

Figure 3-12: Command Ring Format

l pdt$b_cringinx I——-—

I pdt$b_cringent I

r pdt$l_cmdring I

[r— — Descriptor 4]

Descriptor 1

Descriptor 2

USED IN Descriptor 3
ROUND
ROBIN
ORDER

Descriptor 14

- C——— Descriptor 15

CXN-0003-09
Figure 3—13 illustrates the format of each descriptor:
Figure 3-13: Command Ring Descriptors
31 30 18 17 0
Owner AN ENVELOPE ADDRESS
CXN-0003-10

The "Owner" bit indicates the ownership of this descriptor. When the host sets up a descriptor
for processing by the controller, the host sets the "Owner" bit. When the controller returns
ownership of the descriptor back to the host, the controller clears the "Owner" bit.

The ENVELOPE ADDRESS field is set by the host to contain the UNIBUS address of the
beginning of the text portion of a buffer being passed to the port. Unibus mapping of the
buffers is accomplished at port initialization time in routine INIT_UDA_BUFFERS and is
stored at offset UDAB$L_DESCRIP within each buffer.

3-44 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

The format of each SCS message buffer is detailed in Figure 3—14 and described in Table 3-2.

Figure 3-14: Local Port SCS Message Buffer Format

31 0

UDABSL_FLINK Forward link longword

UDABSL_BLINK Backward link longword

Buffer| Ring | Ring
Number] Number] Index

UDABSL_DESCRIP UNIBUS virtual address of this buffer
CONID [Msg|Cre Message Controller message envelope
typldit length

<= UDABS$T_TEXT

Contents of an MSCP Packet

CXN-0003-15

Table 3-2: SCS message buffer fields

Field

Description

1
2

A FLINK and a BLINK for queuing the buffer on the free queue and also on the SEND Q.

UDAB$B_RINGINX which contains the index into a ring on which this buffer has been
placed (valid only if the buffer is NOT on the free queue).

UDAB$B_RINGNO which contains the number (0 => command ring and 1 => response ring)
of the ring on which the buffer is currently residing.

UDAB$B_BUFFNO which contains the number of this buffer. There are PDT$L_NO_
BUFFS in total, and they are numbered from zero to PDT$L_NO_BUFFS-1.

UDABS$L_DESCRIP which contains the UNIBUS virtual address of the text portion of this
buffer in the low order 30 bytes of this longword, and which also has the two high order
bits (ownership and full bits) set. This is the precise value that must be placed in a ring
longword so as to present the buffer to the controller.

The controller header which contains a word of length (of the following text portion only), a
byte containing two four bit fields encoding the credit field and the message type field, and a
byte of Connection ID.

The message text portion.

When DUDRIVER wants to pass the SCS message buffer containing the MSCP command to
the local DSA controller, it calls PUDRIVER’s routine FPC$SNDCNTMSG. This routine does
the following:

Digital Equipment Corporation / Confidential and Proprietary 3-45

$QI0 System Service and DUDRIVER

¢ First, it verifies that the connection is still open.

e It then verifies that a descriptor is available in the command ring by examining the
PDT$B_CRINGCNT field of the PDT. This field contains the number of command ring
descriptors in use. If this number is less than the value found at offset PDT$L_RINGSIZE,
then at least the next descriptor is available. If not, then the SCS message buffer will be
left queued to the PDT’s queue of "backed up" buffers until one is available. (The head of
this queue is offset PDT$L_PU_SNDQFL.)

¢ Next, it places the buffer address into the CRCONTENT array in the PDT at the offset
indicated by the PDT$B_CRINGINX field.

e It then copies the UNIBUS address of the "text portion" of the SCS message buffer into
the next available command ring descriptor, i.e. the descriptor pointed to by the PDT$B_
CRINGINX field.

The text portion of the SCS message buffer begins with the first byte of the actual MSCP
command. The UNIBUS address of the text portion of each such buffer was stored within
the buffer at offset UDAB$L_DESCRIP when the PDT for the port was initialized.

As part of this step, the host also set the "Owner" bit in the descriptor.

e Then, FPC$SNDCNTMSG reads/writes the IP (Initialization and polling) register for the
port. This has the effect of "waking up" the controller’s microcode to the fact that there is
something for it to do in the command ring.

NOTE

Dependent upon the type of controller, either a write to the IP register will
force the port to poll the command ring or a read from the IP register will. The
low order bit of the PDT$L_PU_PORTCHAR field in the PDT will determine
whether a read (low bit clear) or write (low bit set) should be performed.

* Finally, it sets the PDT$B_CRINGINX field to point to the next descriptor, and it incre-
ments the PDT$B_CRINGCNT field.

3.7.3.2 Reclaiming Descriptors and Buffers from the Command Ring

Once the controller has copied the MSCP command from the message buffer pointed to by the
command ring descriptor to its own internal storage, it returns ownership of the descriptor
back to the host. In order for the host to reclaim such buffers, it must "poll" the command ring
for these descriptors. Since descriptors are released in sequence, the host need only traverse
the ring until it finds one still owned by the port.

If a descriptor is found to have been returned to the host, then any buffer queued to the PDT’s
message buffer send queue, PDT$L_PU_SNDQFL, has priority for obtaining it.

If there are no waiting message buffers, then the buffer pointed to by the command ring
descriptor is given to the response ring if that ring is not full. The response ring is the
mechanism whereby the controller returns MSCP end messages corresponding to commands it
received through the command ring.

3-46 Digital Equipment Corporation / Confidential and Proprietary

$QIO System Service and DUDRIVER

The response ring is structured the same way as the command ring. However, PUDRIVER
endeavors to keep a buffer assigned to every one of its response ring descriptors at all times.
This is so that the host is always prepared to receive an incoming message from the controller.

If there are no waiting message buffers and if the response ring is full, then the buffer is
placed in the queue of free message buffers, PDT$L_PU_FQBL.

There are three times when this polling is done in attempt to "shake loose" some buffers:

* When FPC$ALLOCMSG is called to allocate a buffer from the queue of free message
buffers, but the queue is empty.

* When FPC$SNDCNTMSG is called to send a message, but finds no free descriptors in the
command ring.

* When routine POLL_RSPRING removes a buffer from the response ring to give it to a
class driver. It attempts to replace this buffer with another from the message buffer free
queue. If that queue is empty, then this routine is called in an attempt to reclaim one for
that purpose.

3.7.4 Receiving MSCP End Message from a Local DSA Controller

The Response Ring is used by the port to pass messages from the controller to the VAX host.
Starting at offset PDT$L_RSPRING in the port’s PDT, this ring is structured the same as the
command ring. It consists of a set of consecutive descriptors which have the same format as
those in the command ring. The number of descriptors in the response ring is kept in the PDT
at offset PDT$L_RINGSIZE. (As of VMS V5.5, the value for most controllers is 16 and is 32
for the KDM70.)

Unlike command ring descriptors, each response ring descriptor is given one of the pre-
allocated buffers during PDT initialization.

The response ring is traversed by the port in a "round robin" fashion. When a local DSA
controller wishes to pass an MSCP end message to the host, it copies the data into the buffer
whose UNIBUS address is in the next available response ring descriptor (pointed to by
PDT$B_RRINGINX. It then releases ownership of the descriptor to the host by clearing the
"Owner" bit of the descriptor. Finally, it generates a hardware interrupt at IPL 21.

PUDRIVER’s interrupt service routine, PUSINT, calls routine POLL_RSPRING to examine
the response ring looking for descriptors that have been released to the host. The port releases
descriptors in sequence; and ownership of a descriptor is returned to the port as soon as the
host is finished processing it.

Routine POLL_RSPRING need only traverse the response ring until it encounters the first
descriptor not owned by the host. The PDT$B_RPOLLINX field contains the index of the next
response ring descriptor to be considered by POLL_RSPRING.

In essence, the host uses routine POLL_RSPRING to logically "chase" the port around the
ring. As the port fills buffers and releases their associated descriptors to the host, the port
gets further ahead of the host. As the host processes descriptors, the host catches up with the
port.

Digital Equipment Corporation / Confidential and Proprietary 3-47

$QIO0 System Service and DUDRIVER

The next illustration shows that routine POLL_RSPRING obtains the index of the first
response ring descriptor released in sequence to the host from the PDT’s RPOLLINX field.

This response ring index is also used as an index into an array of longwords beginning at
offset PDT$L_RRCONTENT.

There is a one to one correspondence between the entries in this array and the response
ring descriptors. As a descriptor is given a buffer by placing the UNIBUS address of that
buffer in the descriptor, the buffer address is also stored in the corresponding longword of the
RRCONTENT array.

For example, if PDT$B_RPOLLINX contains the number 2, then it is referencing descriptor
number 2 in the response ring. It is also referencing the second longword in the PDT$L_
RRCONTENT array. The RRCONTENT array provides the address of the buffer contain-
ing the MSCP end message from the controller. Figure 315 illustrates the Response Ring
configuration:

3-48 Digital Equipment Corporation / Confidential and Proprietary

$QlO System Service and DUDRIVER

Figure 3-15: Response Ring Buffer Pointers

I pdt$l_cmdring }-—-—-—

‘ pdt$l_bufary }
(pdtsl_rspring)CD'
RESPONSE RING descriptor 0
RPOLLINX FIELD
(pdt$b_rpollinx) descriptor 1
2 i Ownl \ I UNIBUS ADDRESS [
RRINGINX FIELD
{(pdt$b_rringinx) descriptor 3
E——» descriptor 4
pdt$l_crcontent .
CRCONTENT +0
ARRAY descriptor n
+1
COMMAND RING descriptor 0
+2
+3
I descriptor n l
+31

pdt$l_rrcontent

RRCONTENT +0 buffer number 0
ARRAY

+1

buff 1 buffer number 1 [l Buffer 1 + UDABST_TEXT

+3

buffer number 2 } (pdt$l_udab_len)

+31

buffer number
(pdt$l_no_buffs)

CXN-0003-11

The message buffer containing the MSCP end message is then passed to DUDRIVER.
However, the mechanism for passing this buffer to DUDRIVER is different from what is
employed for CI, DSSI and NI ports. The low order 2 bits of the destination CONID in the

buffer are used as an index into a table of longwords beginning at offset PDT$L_PU_CDTARY
in the Port Descriptor Table for the controller.

This table contains the address of CDTs representing connections between SYSAPS in the local
host and SYSAPs in the controller. In particular, the address of the CDT for the connection
between DUDRIVER and the controller’s disk server is fetched. From the CDT is extracted

the address of DUDRIVER’s message input routine, and the message buffer is passed to that
routine.

It is undesirable that the response ring descriptor containing the UNIBUS address of the
message buffer just passed to DUDRIVER be unavailable to the port while DUDRIVER
handles the message. During the process of passing the buffer to DUDRIVER, a new buffer
is given to the descriptor. A message buffer is removed from the buffer free queue (PDT$L_
PU_FQFL) if this queue is not empty; otherwise, one is reclaimed from the command ring

Digital Equipment Corporation /- Confidential and Proprietary 3-49

$QIO System Service and DUDRIVER

(routine POLL_RSPRING). The UNIBUS address of this buffer is then stored in the response
ring descriptor.

3.7.5 Deallocating the SCS Message Buffer

DUDRIVER calls routine FPC$DEALLOMSG in PUDRIVER to release an SCS message buffer
in which it received a packet from a local DSA controller. This routine decides whether to give
the free buffer to the response ring, or to the message buffer free queue (PDT$L_PU_FQFL).
The response ring has priority; it is selected over the free queue whenever it is not completely
full.

When inserting a buffer on the message buffer free queue, FPC$DEALLOMSG may find that
the queue is otherwise empty. If so, there may be requests suspended because this queue was
empty when those requests needed buffers in which to build MSCP commands. Thus, in this
case, FPC$DEALLOMSG enters code to resume such requests. Their context will be found
saved in CDRPs in the message buffer wait queue (PDT$L_PU_BUFQFL).

3-50 Digital Equipment Corporation / Confidential and Proprietary

Disk Class Driver Error Handling and BUGCHECKS

Chapter 4

Disk Class Driver Error Handling and BUGCHECKSs

4.1

4.2

introduction

Errors handled by DUDRIVER fall into three general categories:

¢ A command which has timed out after being issued to a controller.
¢ An MSCP end message received from a controller indicating that an error occurred.
* Loss of the SCS connection with the MSCP server in a controller.

This chapter deals with the detection of such errors, and DUDRIVER’s response to them. For
errors related to a particular unit, only non-shadowed disks will be considered here; error
detection and handling for shadow set virtual units is covered in a later chapter.

Also presented are the details of DUDRIVER’s synchronizing activity with a controller’s MSCP
disk server, the handling of a broken SCS connection between DUDRIVER and an MSCP
server, and mount verification of non-shadowed disks.

DUDRIVER Timeout Mechanism

During disk class driver controller initialization performed by routine DU_CONTROLLER_
INIT, a channel request block (CRB) is initialized and inserted in the CRB timeout list,
IOC$GL_CRBTMOUT. This CRB is setup to periodically timeout every N seconds, where

N is the content of the CNTRLTMO field of the CDDB associated with the controller. DU_
CONTROLLER_INIT also sets the TOUTROUT field of this CRB to contain the address of the
disk class driver timeout routine, DU$TMR.

By means of a Timer Queue Entry (TQE), routine EXE$TIMEOUT in module TIMESCHDL

is called once a second to perform the "once a second functions”, such as checking for device
and lock management request timeouts, and updating the system absolute time in seconds.
One of these "once a second functions” is to scan the CRB timeout list for CRBs which have
timed out. In particular, when the CRB associated with a particular DSA controller times out,
routine DU$TMR in DUDRIVER is called. Figure 4-1 illustrates the relationship of the CRB
and the Timeout Links:

-Digital Equipment Corporation / Internal Use Only 4-1

Disk Class Driver Error Handling and BUGCHECKs

Figure 4-1: CRB Timeout Mechanism and linkage

: :IOC$GL_CRBTMOUT

(ioc$gl_crbtmout-2c:) CRB

crb$l_auxstruc

1 crb$l timelink - (TO NEXT CRB}

crb$l_duetime

crb$l_toutrout CDDB QUEUE OF
(DUSTMR) ACTIVE CDRPs

cddb$l_cdrpqfl
o e c
cddb$l_cdrpgbl

cddb$l_oldrspid

CXN-0004-01

4.2.1 Overview of the Timeout Mechanism

DU$TMR begins by extracting the address of the CDDB associated with the controller from
the AUXSTRUC field of the CRB. It then determines if any commands are currently active for
this controller by checking the CDRP queue in the CDDB.

If no CDRPs are queued to the CDDB, then no commands are active for the controller. In this
case, DUSTMR merely issues what is effectively a NOP (Get Unit Status) to the controller so
that the controller does not timeout this host due to inactivity between them. After issuing the
NOP, DU$TMR then branches to routine DUTU$DODAP to perform determine access paths
processing.

If one or more CDRPs are queued to the CDDB, then for each such CDRP there is an active
MSCP command which has been issued to the controller, but for which no corresponding end
message has been received from the controller. DU$TMR examines the oldest active CDRP
and determines if it was queued after the last call to DUSTMR. If so, then it is not considered
to be "very old", and DU$TMR does nothing on this call other than reset the CRB’s timeout.

If, however, it was queued prior to the last time DU$TMR ran, then it is considered to be
"very old", and possibly "too old"; thus, DU$TMR issues a GET COMMAND STATUS to the
controller for this command. If the end message for the GET COMMAND STATUS indicates
that the controller has made progress on this command since it received it (or since the last
GET COMMAND STATUS), then DUSTMR merely branches to DUTU$DODAP.

4-2 Digital Equipmént Corporation / Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

If the end message from the controller indicates that no progress has been made, then
DUS$TMR branches to DUSRE_SYNCH_PKT to reset the controller on the presumption that
the controller is "very ill".

When issuing the NOP or a GET COMMAND STATUS, DU$TMR sets a flag to "remember"
that it has done so. If the controller is unable to respond to either, then this flag will still
be set the next time DU$TMR is called. This will also cause DU$TMR to branch to the
code to reset the controller. The NOP (which is really a GET UNIT STATUS) and the GET
COMMAND STATUS are both immediate class commands; they should have been responded
to by the next time DU$TMR is called.

4.2.2 Detailed Flow of DUSTMR

DU$TMR Determines whether or not any CDRPs representing MSCP commands are queued
to CDDB, and branches accordingly.

¢ Fetches address of the CDDB associated with the controller from the AUXSTRUC field of
the CRB.

* Checks to verify that we still have a connection

* Tests to see if the immediate pending flag (CDDB$V_IMPEND) in the CDDB$W_STATUS
field is set and branches to DUSRE_SYNCH if it is (catch timeout routine collisions)

NOTE

If the IMPEND flag is found to be set here, then an immediate command issued
from this routine during the previous pass has not yet been responded to by the
controller. The controller is presumed to be "very ill". DU$TMR takes no further
action here, but rather branches to DUSRE_SYNCH to reset the controller. The
error code EMB$K_CLTRES_IMTMO is passed to DUSRE_SYNCH.

¢ Checks if any CDRPs are queued to the CDDB. (Such CDRPs represent commands issued
to the controller for which end messages have not yet been received.)

4.2.2.1 No Commands active for Controller

DUS$TMR issues a NOP to the controller so that the controller does not timeout this host due
to inactivity between them, and then invokes DAP processing for units on that controller.

¢ Clears OLDRSPID field in CDDB since no MSCP commands are active. (Prevents a rare
"inadvertent comparison error” in the case of where commands are active.)

¢ Tests to see if the DAP CDRP is currently in use by testing the DABBSY bit in the status
field. If it is, further tests will be performed to determine why and what action is required.

¢ The IMPEND flag is now set since an immediate command is about to be sent to the
controller.

Digital Equipment Corporation / Internal Use Only 4-3

Disk Class Driver Error Handling and BUGCHECKsS

¢ Allocates the DAP CDRP by setting the DAPBSY flag in the CDDB$W_STATUS field of
the CDDB to send the immediate command

¢ Establishes the Credit_stall routine as the new timeout routine and sets the crb$l_duetime
(45 seconds in VMS V5.5).

¢ Allocates an RSPID and a Message Buffer
¢ Resets the normal Timeout routine (DU$TMR) and duetime in the CRB.

¢ Issues a GET UNIT STATUS command to controller for unit 0, even if there is no unit 0.
(state 2)

NOTE
Effectively serves as a NOP so that the controller won’t timeout this host due to
inactivity, »
Fork thread suspended here until corresponding End Message received from
controller.

¢ When the end message corresponding to GET UNIT STATUS is received,
— Saves Load Available information returned from the controller in the CDDB$W_
LOAD_AVAIL field
— Message buffer and RSPID recycled.
— The IMPEND flag and DAPBSY flag are cleared.

— This routine branches to DUTU$DODAP to perform determine access paths process-
ing.

4.2.2.2 Commands Are Still active for Controller

If the oldest active command has been around for a long time (since the last timeout),
DUSTMR interrogates the controller to see if any progress has been made on this command.
It also invokes DAP processing.

e If one or more CDRPs are queued to the CDDB, then the CDRP at the head of the queue
represents the oldest active command (new CDRPs are inserted at the tail of the queue).
This oldest CDRP is examined to see how long it has been around.

e If this CDRP’s RSPID field is different from the OLDRSPID field in the CDDB, then
the oldest command was queued to the CDDB since the last call of the timeout routine.
Consequently, the oldest active command is not considered to be "very old".

— DUS$TMR resets the OLDRSPID field in the CDDB to contain a copy of the content of
the RSPID field from the CDRP. It also sets the OLDCMDSTS field in the CDDB to
contain -1.

NOTE

If this same CDRP is found at the head of the queue on the next pass
through DU$TMR, it will then be considered "very old". Then, as will be

4-4 Digital Equipment Corporation / Internal Use Only

Disk Class Driver Error Handling and BUGCHECKS

explained later in this section, a GET COMMAND STATUS will be issued to
the same controller to which the command was sent. The command status
returned in the corresponding end message will be compared against the
OLDCMDSTS to determine if the controller has made any progress on the
command.

If the controller type indicates an HSC, proceed to perform a Get Unit Status as for an
empty CDRP queue

If Load information is specifically requested (as indicated by bit MSCP$V_CF_LOAD
in the CDDB$W_CNTRLFLGS field) then perform a Get Unit Status as for an empty
CDRP queue.

DUS$TMR resets the CRB$L_DUETIME field to contain the current time plus the
"controller delta" stored in the CDDB$W_CNTRLTMO field.

Clears the IMPEND flag to indicate no immediate commands are pending
Branchs to DUTU$DODAP to perform determine access paths processing.

If this CDRP’s RSPID field matches the OLDRSPID field in the CDDB, then the oldest
active command has been queued to the CDDB for at least one full controller timeout
period and is considered to be "very old" (perhaps "too old").

Tests to see if the DAP CDRP is currently in use by testing the DABBSY bit in the
status field. If it is, further tests will be performed to determine why and what action
is required.

Allocates the DAP CDRP by setting the DAPBSY flag in the CDDB$W_STATUS field
of the CDDB to send the immediate command

Sets the IMPEND bit to indicate that an immediate mode command is about to be
issued (Get Command Status)

Establishes the Credit_stall routine as the new timeout routine and sets the crb$l_
duetime (45 seconds in VMS V5.5).

Allocates an RSPID and a Message Buffer
Resets the normal Timeout routine (DU$TMR) and duetime in the CRB.

Issues GET COMMAND STATUS command to the controller to ask if the controller
has made any progress on this command since it was sent to the controller (or since the
controller received the last GET COMMAND STATUS inquiring about this command.)

o If the UCB actually represents a shadow set virtual unit (MSCP$V_SHADOW
flag is set in the MSCPUNIT field of the UCB), or if the oldest active com-
mand’s function code in the CDRP$W_FUNC field 1s IO$_CRESHAD, then rou-
tine DUSSHADOW_GTCMD_UNIT is called to fetch the shadow set virtual unit
number.

o The command reference number inserted into the GET COMMAND STATUS
packet is fetched from the OLDRSPID field of the CDDB.

Issues the Get Command Status to the controller
NOTE

Digital Equipment Corporation / Internal Use Only 4-5

Disk Class Driver Error Handling and BUGCHECKSs

The fork thread is suspended here until the corresponding end message
received from controller.

— When the end message corresponding to GET COMMAND STATUS is received from
the controller, a 32-bit unsigned comparison of the CMD_STS field of the end message
with the OLDCMDSTS field in the CDDB is made.

If the CMD_STS is smaller, then progress has been made by controller on the com-

mand in question:

o CMD_STS field in message copied to OLDCMDSTS field in CDDB.

o Buffer containing end message and RSPID both recycled.

o The IMPEND flag and DAPBSY flag are cleared.

o If the controller type indicates an HSC or if the MSCP$V_CF_LOAD flag is set
indicating Load Availability information is required, then branch back to perform a
Get Unit Status

o Branch made to DUTU$DODAP to perform "determine access paths" processing.

If the CMD_STS is not smaller, then no progress has been made by the controller since
it received the command, or since the last GET COMMAND STATUS. The controller
is presumed to be "very ill", and a branch is made to DUSRE_SYNCH_PKT to log an
EMB$K_CTLRES_TMO error due to no progress being made on the MSCP command.
The RE_SYNCH_PKT routine will also reset the controller.

4.3 MSCP End Messages With Error Status Codes

DUDRIVER's involvement with a file read or write request is triggered by its start [/O routine,
DU_STARTIO, being handed an IRP. This IRP represents a single transfer segment, that is,
a set of consecutive virtual blocks which map to a set of consecutive logical blocks. Due to file
fragmentation, it may be necessary for DUDRIVER to transfer several segments in order to
satisfy one $QIO request.

For each transfer segment, DUDRIVER builds and sends an MSCP Command to the primary
path controller for the disk. (Where there is only one controller for the disk, by default that

controller is the primary path controller.) The data is then exchanged between VAX memory
and the controller when the controller is ready.

Upon completion of the exchange, the controller sends an MSCP End Message to DUDRIVER.
The End Message provides the disk class driver with a completion status code for the segment.
Based on this status code, DUDRIVER will decide whether to enter an error handling routine,
or to continue with normal processing of the $QIO request.

Assuming that the status code indicates "SUCCESS", then normal processing would be to
enter I/0O postprocessing. There, a determination is made to see if more transfer segments
must be exchanged with the controller to complete the request. If so, then I/O postprocessing
updates the IRP to reflect the next segment, and passes the updated IRP to DUDRIVER’s
start I/O routine. If the entire request has been satisfied, then I/O postprocessing passes the
IRP to the I/O completion routines for AST delivery and event flag posting.

4-6 Digital Equipment Corporation / Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

Figure 4-3 and Figure 44 illustrate the flow of MSCP Commands, Data, and End
Messages for a read request and a write request. Except for a couple of "request data”
messages, port level protocol has been left out of the diagrams since it contributes nothing to
the discussion at hand.

In both the read request and write request, eight blocks are to be transferred. Due to file
fragmentation, both requests must be broken up into two segments. Each segment consists
of four blocks. The important point to notice in both of these diagrams is that an MSCP
Command and matching End Message are associated with each segment of the request.

It is NOT the case that there is a single MSCP Command and End Message for the entire
request unless the request can be mapped to a single transfer segment.

The status code returned in an MSCP End Message is 16 bits wide and consists of two fields.
The low order 5 bits constitute a Major Status Code, and the high order 11 bits are called a
Sub-Code.

The major status code conveys the normal information needed by class drivers; therefore, all
controllers must return the same major status codes for similar situations.

Sub-codes exist for unusual situations, and to refine a major status code. They are primarily
used for diagnostic purposes, and should not generally be needed by a host. Unlike VMS
condition values, MSCP status codes indicate success if the low bit is a "0". In fact, the major
status code for success is 0. Figure 4-2 depicts the format of the 16-bit status code returned in
an MSCP End Message:

Figure 4-2: MSCP End Message Status Return Format

i5 5 4 0

I SUB-~-CODE l MAJOR STATUS CODE I

CXN-0004-04

- Digital Equipment Corporation / Internal Use Only 4-7

Disk Class Driver Error Handling and BUGCHECKs

MSCP Read Request Message Flow

Figure 4-3

LSOH Ol JOVSSIW (NI SANZIS 1¥0d
INIWDIS ANODES YOI IDVSSIW
aNZ dOSW SOTINE YIATTOULNOD

1SOH Ol SAD01d€ ¥NOd SANIS L¥0d

MSIQ WOdd INIWDHES QNODES ¥Od
SH00Td ¥N0Od STHOLII YATTOULINOD

ANYHWOD dOSW STEAIFOHY l1HOd

1SOH O EHVSSTW NI SANIS 1¥0d
INIWO9AS 1S¥Id ¥O0d FDVSSHW

aN¥ dI2SW saT1Ing ¥ITIOHINOD
LSOH Ol S¥D0T€ ¥N0Jd SANIS Id¥0d
MASIA WO¥d INIWOES LSYId ¥0d
S¥D0Td ¥NOJd SHHOIII YATTIOUINOD

UNVRWOD dOSK SEAIEDHEY Lyod

INIWSES GNODES ¥OJd FOVSSIW AONF

ILSOH O INYUS S)J0T8 dnod aNodds

INGWOES GNODES ¥Od ANYWWOD dOSW

INIWOES LSUYIJd ¥Od IOVSSHW ONI

LSOH Ol IN3S S3D07T€ ¥NOd IS¥Id

YITTOULNOD

INBWOES LSYId YOd ANVYAWOD dISH

1s3n0Td qvayd

(13s S¥1d INIAE
ANV ‘aE¥IAITIC LSY) NOILITIWOD
0/1 SHEMNOANI SNISSHO0¥d LsOd O/I

HNISSIDOUISOd O/I SHINOANI ‘MO
S1S OSW GN® SHEIJIYEA ¥d3AI¥ANd

¥IAIYANA OL LI SHASSVd
‘FOYSSAN ONE JOSW SHAIEDEY I¥O0d

A¥OWHEW LSOH Ol VIvd
SELIYM ‘VIVA STAIFIOFY 1¥0d

ANYWHROD dOSW SANES 1¥0d

1¥0d Ol GNYWWOD dOSW sdSSvd
‘1s3N03¥ 30 INIWDYS CANODHES ¥Od
ANYWWOD dOSW SUTIINg ¥EAI¥NANG

¥IAINANG Ol dOvd 4yl aIlvadn
SASSYd ‘INIWDES QNODES LOITJIFY OL
d¥I sEIVAAN ONISSID0UdLSOd O/I

SNISSEIO¥ALSOd O/I SHANOANI ‘MO
SLS 9SW ONZ SEIJAIYEA JIAINANG

¥IAI¥ANd O LI SASSVd
‘IOVSSEIW ONI dOSW SHAIIDEY L¥od

AYORAW LSOH OL YIVd
SALIYM ‘YIVA SIAIFDTY 1¥O4

ANYRWOD dJSW SONIS 1¥0od

1¥0d Ol ANYWHOD dOSW SESsvd
‘1saANdFY 40 LNIWOHS IS¥Id ¥Od
ANYRROJ dDOSH Sa1Ind ¥IAI¥Anag

YEAINANA Ol dY¥I SESSVd
“1sEN0EY JO INIWOHES I1SYId YO4 dAI
SATINg FACD FOIAYES WILSAS OI0S

LsSEN®3IY OI0$ SUNSSI SSIDOUdL

XVA 1LSOH

CXN-0004-02

4-8 Digital Equipment Corporation / internal Use Only

Disk Class Driver Error Handling and BUGCHECKS

MSCP Write Request Message Flow

Figure 44

LSOH OL dOVSSEW QNI SANIS Iy¥0d

ASIA Ol VIVA SHLIIYM YITIOUINOD
LSOH FHI WO¥d

SMD01d ¥NOd SIAIFDIY L¥0d
AQVIY JATTOYLNOD

NEHM V¥1Va S1sandday I¥od

ANYAWOD dOSW SIAIIADIY 1¥0d

LSOH Ol 39V¥SSAW NI SANIS IL30d

ASIG Ol VYIVA SALIYM JYATTIOUINOD
LSOH FHLI WO¥J

SAD0Td ¥NOd SIAIIOEY I¥Od
AQYEY ¥IATIOUINOD

NIHM VIVQ SIsEnd3y 1¥0d

ONYHHOD dDOSW SHAIZDIY Lu0d

INIWOES QONODIS ¥Od HOVSSIAW (NI

YITTOUINOS OL ILNIS SMD0TE ¥NOd ANODIS

INIWNOES ANOJDHS ¥OJ Ww¥VIVA ISINVEUw

INEWDEIS ANODES ¥0d ANVWHWOD dISW

INIWOFIS LS¥II ¥OAd FOVSSHIW ANI

YITTOYLINOD Ol INIS SMDOTE d¥nOd IS¥Id

INIWOES LSHUIL ¥Od WwVIVA LSINOTHa

YATTOULNOD

ILNEGWOIS IS¥Id ¥Od UNVWWOD dISH

ISIN0EY FLIdM

(138 9¥13 INIAT
ANV ‘QEFYEAITIA 1SY) NOILITAWOD
0/1 SEMOANI HNISSHEOOUd 1S04d O/I

ONISSIO0¥dLS0d O/I SHENOANI ‘MO
SIS OSW (ONd SITIJIYIA YIAI™ANG

YIAIYANA O LI SISSVd
‘FOV¥SSEN NI dOSH SIAIIDEY 1¥0d

YATTOYLNOD O (LNIWOES
GNODJES) $MD07d ¥NOJ SANIS I¥Od

u¥IVAd 1S3NDIdw STAITIAY L1dOd

ANVAWOD dOSW SUNJAS L¥0d

1¥90d Ol ANVWROD JdOSW SISSVd
‘LSENOHEY 40 INIWOES ANOIDFS HOJ
ANVYRROD dOSW SATING ¥TAINANG

YIATEANG OL XAOVE J¥I a3ilvadn
sdSs¥d ‘INIWOES ANODFS IDITJITFY Ol
d¥I SALVAdN ONISSII0YdLIS0d O/I

ONISSHO0¥dIS0d O/I SHAMOANI ‘MO
S1S OSW (ONI SEIJI¥IA dIAIYANC

YIAI¥ANQ OL LI SISSVd
‘dOYSSHW GNE dOSW SIAIEDIM I¥od

YITTOYINOD OI (INIWDIS
IS¥Id) $32078 ¥NOJ SANIS 1¥04

wYIVQ ISEN0T™n STAIIDEY IYOd

QONYWHOD dOSW SANES 1304

L¥0d Ol UNVWWOD dJdDSW SISSVd
‘1s3n08Y 40 INIWOIAS ISYId ¥od
ANYWROD dOSW SATIng dIAI™NANG

YIAIN¥ANA OL d¥I SISSVd
‘1SENOHAY 40 INIWOES ISHIA YOd d¥I
SA1INd FAOD FIIA¥IS WILSAS OID$

1sdnddy¥ OIV$ SANSSI SSIDOUd

XYA LSOH

CXN-0004-03

Digital Equipment Corporation / internat Use Only 4-9

Disk Class Driver Error Handling and BUGCHECKS

4.3.1 Detecting File Read/Write Errors and Dispatch

When DUDRIVER’s start /O routine, DU_STARTIO, is passed an IRP representing a file read
or write transfer segment, it allocates a RSPID and associated RDT entry. The address of the
CDRP attached to the IRP is stored in the RDT entry, and the RSPID is stored in the CDRP.
It also allocates an SCS message buffer in which to build an MSCP Command to be sent to the
controller. The RSPID is copied into the message buffer, and the address of the message buffer
is saved in the CDRP.

Some of the fields in the CDRP are filled in, and then DU_STARTIO branches either to
START _WRITEPBLK or START READPBLK. There, data is supplied for the remaining
fields of the CDRP, the MSCP Command is built, and the CDRP (containing the address of
the MSCP Command buffer) is passed to the SCS layer to effect transmission of the MSCP
Command to the controller.

Passing the CDRP to the SCS layer is done by the macro SEND_MSCP_MSG. This macro
calls routine FPC$SNDCNTMSG in the SCS layer of the appropriate port driver (PADRIVER,
PIDRIVER, PEDRIVER, or PUDRIVER). SCS and PPD routing information is added to

the buffer containing the MSCP Command, and the buffer is then passed to the port for
transmission.

The request is then suspended, with its context saved in the CDRP. Part of this context is
the PC at which to resume when the End Message corresponding to the MSCP Command is
received. This will be the address of the instruction following the SEND_MSCP_MSG macro.

The controller and port(s) exchange the data in the transfer segment to be read from or
written to the disk. The controller then releases an End Message to the host containing both
the 16-bit MSCP status code and a copy of the RSPID in the MSCP Command. The SCS layer
of the host’s port driver routes the End Message to DUDRIVER’s message input dispatching
routine, DUSIDR.

DUSIDR fetches the address of the CDRP contained in the RDT entry identified by the RSPID.
It then resumes the request represented by the CDRP at the address in the "saved PC" field of
the CDRP.

The request resumes immediately after the SEND_MSCP_MSG macro. Here, the IF_MSCP
macro is used to test the major status code returned in the End Message. If any of the
low order five bits of the MSCP$W_STATUS are nonzero, the controller is indicating to the
host that something went wrong with this transfer segment. A branch is taken to routine
TRANSFER_MSCP_ERROR to determine how to handle the error.

At routine TRANSFER_MSCP_ERROR is a macro called, DO_ACTION, followed by an "Action
Table". For each possible 5-bit major status code returned in the End Message, the action
table specifies a routine to which a dispatch is to be made. The instructions generated by the
DO_ACTION macro cause the dispatch to actually happen.

NOTE

The instructions generated by the DO_ACTION macro varies with the values spec-
ified for its parameters. In this particular case, it generates a call to a subroutine,
DUTUS$INTR_ACTION_XFER, which uses the stack in a "rather crafty” fashion.

4-10 Digital Equipment Corporation / Internal Use Only

Disk Class Driver Error Handling and BUGCHECKs

The subroutine causes the dispatch to occur as if it were a "branch” directly from
location TRANSFER_MSCP_ERROR instead of a call through this intermediate

subroutine. The reader is referred to module DUTUMAC for the definition of this
macro as well as others used in DUDRIVER.

4.3.2 Errors Returned in End Messages for File Read/Write Requests

The first thing TRANSFER_MSCP_ERROR does is select a VMS condition value to correspond
to each of the possible MSCP major status error codes. Table 4-1 lists the major status codes,
the corresponding VMS condition values and descriptions of each.

Table 4-1: MSCP to VMS Error Code mapping

(hex)-MSCP Major Status
Code

(hex)-VMS Condition
Code

Description

(00)-MSCP$K_ST_SUCC

(04)-MSCP$K_ST_AVLBL

(03)-MSCP$K_ST_OFFLN

(08)-MSCP$K_ST _DATA

(0B)-MSCP$K_ST_DRIVE

(0A)-MSCP$K_ST_CNTRL

(0001)-SS$_NORMAL

(01AC)-SS$_MEDOFL

(008C)-SS$_DRVERR
(01A4)-SS$_MEDOFL

(2144)-SS$_FORCEDERROR

(2144)-SS$_FORCEDERROR
(01F4)-SS$_PARITY
(008C)-SS$_DRVERR

(0054)-SS$_CTRLERR

Normal successful completion

Unit identified by unit number field in
End Message is in the "unit available”
state.

If drive inoperative

Unit identified by unit number field in
End Message is in the "unit offline" state.

There are several reasons that make

this possible: unit unknown or online to
another controller, no volume mounted,
drive disabled by RUN/STOP switch, unit
disabled by internal diagnostic, etc.

Transfer data error. Invalid or uncor-
rectable data was obtained from a drive.
Typical causes are valid header not
found, data sync timeout, one through
eight symbol ECC errors, and the "forced
error” condition.

if "forced error” condition
If not forced error condition

The controller has discovered an error
within the drive. The error is typically,
but not always, mechanical in nature,
since most non-mechanical errors are
reported as "data errors".

The controller has encountered an inter-
nal error.

Digital Equipment Corporation / Internal Use Only 4-11

Disk Class Driver Error Handling and BUGCHECKS

Table 4-1 (Cont.): MSCP to VMS Error Code mapping

(hex)-MSCP Major Status (hex)-VMS Condition
Code Code

Description

(06)-MSCP$K_ST_WRTPR (025C)-SS$_WRITLCK

(07)-MSCP$K_ST_COMP (005C)-SS$_DATACHECK

(05)-MSCP$K_ST_MFMTE (00BC)-SS$_FORMAT
(02)-MSCP$K_ST_ABRTD (002C)-SS$_ABORT

(01)-MSCP$K_ST_ICMD (0054)-SS$_CTRLERR

(09)-MSCP$K_ST_HSTBF (034C)-SS$_IVBUFLEN

4-12 Digital Equipment Corporation / Internal Use Only

Command required that data be written
to a write protected unit.

COMPARE HOST DATA command, read
compare operation, or write compare
operation found differences in the data
on the unit and in the host buffer; or
COMPARE CONTROLLER DATA com-
mand found different data on different
members of a shadow set.

Volume mounted on unit appears to be
formatted incorrectly.

Command aborted by ABORT command.

Invalid command. A controller returns
this status code because it believes the
host made an error in one of two ways:

* Host supplied invalid parameter
values in an MSCP Command (e.g.
nonexistent logical block number, ...).

¢ Protocol error in MSCP Command
controller received from host (e.g.
reserved field does not contain proper
quantity, command too short to
contain all the required parameters,

)

Host buffer access error. The controller
encountered an error while trying to
access a buffer in host memory. This
error is also returned when an MSCP
Command’s buffer descriptor or byte
count violate any communications mecha-
nism dependent restrictions.

It is not, however, used to report errors
encountered by the port(s) when trans-
ferring packets between the host and the
controller. Those are handled by termi-
nating the connection between the class
driver in the host and the server in the
controller.

Two typical causes would be a local DSA
controller getting a nonexistent memory
error or host memory parity error.

Disk Class Driver Error Handling and BUGCHECKS

Table 4-1 (Cont.): MSCP to VMS Error Code mapping

(hex)-MSCP Major Status (hex)-VMS Condition

Code

Code Description

(0C)-MSCP$K_ST SHST (2284)-SS$_SHACHASTA Shadow set state change. Member must

be removed from shadow set because host
requested removal or member is no longer
operative.

4.3.3 Handling Errors Returned in Read/Write End Messages

Once routine TRANSFER_MSCP_ERROR has selected the appropriate VMS condition value,
it executes common steps for handling all errors except the "Invalid Command”, the "Host
Buffer Access Error" and the "Available" error with a subcode of "Inoperative”. The handling
of these special cases can be found in Section 4.3.3.1.

For the normal error path, the following is performed:

* First, a branch is taken to routine TRANSFER_RTN_BCNT. At this routine, the actual
number of bytes transferred is extracted from the BYTE_CNT field of the End Message,
and combined with the VMS condition value to form a quadword in the proper format for
an I/O status block.

* If the controller reports a "bad block" in the FLAGS field of the End Message, then a
branch is taken to XFER_REPLACE to consider performing host initiated bad block
replacement.

NOTE

If this is the case and a branch to XFER_REPLACE is made, then the flow of
handling the error does not return here, and no further processing will be done
by these steps. This, however, should happen only with controllers which do not
perform their own Bad Block Replacement (BBR) , namely most local controllers.
This should not happen with controllers which, from local VMS’s point of view,
handle their own BBR (i.e. HSCs, ISEs, KDM70s and remote VAXes running
the MSCP server).

* If the controller does not report a "bad block”, then this flow continues by branching to
routine FUNCTION_EXIT where the following occurs:

— If the translated VMS status code indicates that an error condition exists (low bit

clear) and this is not the mount verification IRP, then a branch subroutine is taken to
routine DU$MSG_ERR_HNDLR! to determine whether the devices error count should
be incremented and/or whether to log an error. See Section 4.3.5 for a description of
routine DUSMSG_ERR_HNDLR.

— The error logging in progress bit CDRP$M_ERLIP is cleared

1 This routine was introduced in VMS V5.4-3 to identify the correct conditions under which to increment a device’s error
count and when to log the error

Digital Equipment Corporation / Internal Use Only 4-13

Disk Class Driver Error Handling and BUGCHECKS

— SCS resources held by this CDRP are released.
— FUNCTION_EXIT branches to IOC$ALTREQCOM to request I/O completion activity.
¢ JOC$ALTREQCOM performs the following tasks:

— VMS condition values corresponding to errors have the low order bit clear.
IOC$ALTREQCOM tests for this, and, finding it to be the case, calls EXESMOUNTVER
to force mount verification to be performed for the unit.

Mount verification is covered later in this chapter. It is important however to realize
that this procedure may result in the transfer segment being successfully retried. It is
possible for mount verification to change the VMS condition value to "success” (SS$_
NORMAL).

— Once mount verification completes (or is terminated), the final I/O status block quad-
word is stored in the MEDIA field of the IRP. IOCSALTREQCOM then passes the IRP
to I/O post processing.

If the VMS condition value that emerges from mount verification indicates other than
"success”, the request will be terminated without attempting further segments, and
the error will be stored in the I/O status block specified by the process which issued
the $QIO request. If the condition value does indicate "success”, then the request
continues on as if the error had never occurred. The problem should be transparent to
the process, other than of course, the delay due to mount verification.

4.3.3.1 Specially Handled Error Conditions
4.3.3.1.1 Invalid Command Major Status Code

For most cases of the "Invalid Command", DUDRIVER is given a second chance to "get

it right". For LBN and BYTE_CNT subcodes or Invalid MSCP Modifier errors, control is
transferred to FUNCTION_EXIT. For all other errors, control is passed to routine DU_
BEGIN_IVCMD where an Invalid Command Sequence is set, an Errorlog entry is made and
the function code and modifiers are extracted from the CDRP and are used to dispatch to the
appropriate routine (ie: START_READPBLK). Each routine will test to see if IVCMD handling
is in progress (macro IF_IVCMD) and will transfer control to routine TRANSFER_IVCMD_
END if appropriate. /

TRANSFER_IVCMD_END will deallocate all SCS resources held by the CDRP, and then
resubmit the request to DUDRIVER. This resubmission is not to the ordinary start I/O entry
point, but rather to an alternate "restart I/O" entry point called DU_RESTARTIO.

DU_RESTARTIO begins directly with the step of copying the address of the CDT from the
UCB into the CDRP. It then executes exactly the same steps that DU_STARTIO would from
that point on.

If this second attempt also results in an End Message with a major status code of MSCP$K_
ST_ICMD, then the VMS condition value SS$_CTRLERR is selected to form an I/O status
block quadword with a byte count of 0. Routine FUNCTION_EXIT is entered, and the flow
proceeds as in the previous cases.

4-14 Digital Equipment Corporation / internal Use Only

Disk Class Driver Error Handling and BUGCHECKSs

4.3.3.1.2 Host Buffer Access Error Major Status Code

There are two possibilities for a "host buffer access error":

If the sub-code indicates an Odd Byte Count error caused the problem, then error handling
branches to TRANSFER_RTN_BCNT and proceeds as already described above.

For any other subcode, a branch is taken to INVALID_STS where routine DU$RE_SYNCH
is called to reset the controller. (Details of resetting a controller are presented later in this
chapter.)

4.3.3.1.3 Available Major Status Code

For the Available status code, the VMS condition code SS$§_DRVERR is placed in the high
order word of RO if the subcode indicates that the device is inoperative. For all other subcodes
the VMS condition value is left as SS$§_MEDOFL. This test occurs at label TRANSFER_
MEDOFL. Control is then transferred to routine TRANSFER_RTN_BCNT

4.3.3.1.4 All Other Errors

All values for the major status code in an End Message other than what is listed in Table 4-1
are considered "unexpected". If one is received, the controller is presumed to be "very ill"; so
the code branches to DUSRE_SYNCH to reset the controller.

4.3.4 Errors Returned in Other End Messages

There are three other situations wherein DUDRIVER checks for an invalid major status code
returned in an End Message. These three situations arise when issuing an

I0$_NOP for a unit.

This function is turned into a SET UNIT STATUS, using current status, by routine
START _NOP.

I0$_PACKACK for a unit.

Routine START PACKACK performs this function by issuing an ONLINE followed by a
GET UNIT STATUS for the unit. It is typically done when a unit is first discovered on an

"MSCP speaking" controller, or when trying to establish a path to the unit during mount
verification.

I0$_AVAILABLE for a unit.
The I0$_AVAILABLE function causes an AVAILABLE command to be issued to the

controller for a unit. This is typically done as part of dlsmountmg the unit, and can
involve optionally spinning down the volume

The following is a table of valid major status error codes which may be returned by a DSA
controller for each of these situations. These codes are a subset of those already listed for file
read/write End Messages.

Digital Equipment Corporation / Internal Use Only 4-15

Disk Class Driver Error Handling and BUGCHECKs

IO$_NOP

10$_PACKACK

I0$_AVAILABLE

MSCP$K_ST_OFFLN
MSCP$K_ST_AVLBL
MSCP$K_ST CNTLR
MSCP$K_ST DRIVE
MSCP$K_ST_SHST
MSCP$K_ST_ICMD

MSCP$K_ST_OFFLN
MSCP$K_ST_AVLBL
MSCP$K_ST_CNTLR
MSCP$K_ST_DRIVE
MSCP$K_ST_SHST

MSCP$K_ST_ICMD

MSCP$K_ST_ABRTD

MSCP$K_ST_OFFLN
MSCP$K_ST_AVLBL
MSCP$K_ST_CNTLR
MSCP$K_ST_DRIVE
MSCP$K_ST_SHST
MSCP$K_ST_ICMD
MSCP$K_ST_ABRTD
MSCP$K_ST _MFMTE
MSCP$K_ST_DATA

Any other major status error codes are considered as "unexpected”. The controller is presumed
to be "very ill" if one is received; so a branch is made to DUSRE_SYNCH to reset the controller.

4.3.5 Error Logging and Error Count Incrementing

~

4-16 Digital Equipment Corporation / internal Use Only

Error logging and device error count incrementing is handled by routine DUSMSG_ERR_
HNDLR. It determines under what conditions errors are to be logged to the Errorlog file
(SYS$ERRORLOG:ERRLOG.SYS) and under what conditions the device error count (UCB$W_
ERRCNT) is to be incremented. It is called when an error condition is detected in an MSCP

End Message from routine FUNCTION_EXIT.

The general flow through the routine is as follows:

e Test bit MSCP$V_EF_ERLOG to determine if the Errorlog entry was expected. If so,
the device error count will not be incremented, but an Errorlog entry will be recorded
(by calling routine ERLSLOGSTATUS). Control is then returned to FUNCTION_EXIT to

continue processing.

¢ Determine if error logging is already in progress (bit CDRP$V_ERLIP. If so, the device
error count will not be incremented, but an Errorlog entry will be recorded (by calling
routine ERL$LOGSTATUS). Control is then returned to FUNCTION_EXIT to continue

processing.

¢ Determine if the device error count is really to be incremented and/or if an Errorlog entry

is to be made:

— If the MSCP major status code indicates an Invalid Command (ICMD) the VMS
condition value is set to SS§_CTRLERR and a return is made without incrementing

the device error count or logging the error.

— If the MSCP major status code is Available (AVLBL), a test is made to see if the actual
error was due to the device being inoperative. If so, the VMS condition value will have
been set to SS$_DRVERR as described in Section 4.3.3.1.3 and an Errorlog entry will
be logged as well as the device error count will be incremented.

— If the MSCP major status code is Offline (OFFLN) or it is the Available code with a
subcode other than inoperative, only an Errorlog entry will be logged.

Disk Class Driver Error Handling and BUGCHECKS

— If the MSCP major status code indicates a Controller Error (CNTLR), a Forced Error
(DATA) or a Format Error MFMTE) and this is not a bad block replacement, both the
device error count will be incremented and an Errorlog entry will be logged. For bad
block replacement, only the Errorlog entry will be generated.

— For Drive Errors (DRIVE), both the device error count will be incremented and an
Errorlog entry will be created.

¢ All other errors are ignored by this routine and control is passed back to routine
FUNCTION_EXIT.

4.4 Synchronizing with an "MSCP Speaking" Controller

Anytime an SCS connection is established between the local disk class driver and an MSCP
disk server, it is necessary to synchronize the activity between them. This is done by forcing
the dialogue between the driver and the server into a known state. In doing so, we guarantee
that there are no outstanding MSCP commands from the server’s point of view.

The MSCP server has the responsibility for insuring that this guarantee is met. To this end,
before allowing synchronization to complete, the server

¢ Terminates any outstanding MSCP commands it has received.

* Does not send end messages corresponding to the terminated MSCP commands to the host

Thus, once the SCS connection is established, the disk class driver can reissue outstanding
MSCP commands, as well as issue new ones, without worrying about side effects such as
duplicate command reference numbers.

A disk class driver must synchronize with an MSCP disk server whenever the host boots or
recovers from a power failure, whenever the SCS connection between the two is broken, or as
part of the recovery mechanism when certain types of errors occur.

4.4.1 Errors Causing Resynchronization with an MSCP Server

There are six general situations which cause DUDRIVER to resynchronize with a DSA con-
troller’s MSCP server:

¢ The controller has made no progress for "too long" a time on the oldest active command
issued to it by the local host.

* An immediate class command, either GET UNIT STATUS or GET COMMAND STATUS,
issued to the controller by the local host has timed out.

¢ The local host has received an invalid attention message from the controller.

This determination is made based on the MSCP$B_OPCODE field of the attention mes-
sage. Valid attention message op codes are:

Digital Equipment Corporation / Internal Use Only 4-17

Disk Class Driver Error Handling and BUGCHECKsS

Code Meaning

AVATN Unit Available Attention
DUPUN Duplicate Unit Attention
ACPTH Access Path Attention

If the op code field of an attention message indicates anything else, the attention message
is considered invalid.

The local host has received an end message containing an invalid MSCP status code.

DUDRIVER fails to allocate an SCS message buffer in which to build the SET
CONTROLLER CHARACTERISTICS command after establishing an SCS connection
with the server. (e.g. Insufficient nonpaged pool could cause this.)

The SCS connection between DUDRIVER and the server is unexpectedly broken.
Some of the typical causes of this are

— The controller hangs.

— The controller experiences a power failure.

— An SCS protocol error.

— If the controller is ClI-based, both CI paths A and B go "from good to bad".

— If the controller is CI-based, a CI port error (local or remote) causing port reinitializa-
tion.

As usual, unless otherwise noted, the term "controller” refers to a local "MSCP speaking"
controller, a remote "MSCP speaking” controller, or a remote VAX emulating an "MSCP
speaking" controller by running the VMS based MSCP server.

4.4.2 Overview of Resynchronization Due to Errors

There are two major routines involved in handling the resynchronization that occurs between
the disk class driver and an MSCP server.

DUSCONNECT_ERR is invoked by the SCS layer when the SCS connection between the
driver and the server is unexpectedly lost.

DU$RE_SYNCH (or DUSRE_SYNCH_PKT, an alternate entry point) is invoked by:

DUDRIVER’s timeout mechanism, DU$TMR, to handle the "no progress on oldest com-
mand” and "timed out immediate command" situations.

DUDRIVER’s attention message handler, ATTN_MSG, when it receives an invalid atten-
tion message.

DUDRIVER’s invalid MSCP status handler, INVALID_STS (also called DUSINVALID_
STS), which handles end messages received with "unexpected” MSCP status codes.
DUDRIVER’s routine, MAKE_CONNECTION, establishing an SCS connection with an

MSCP server, when it fails to allocate an SCS message buffer in which to build a SET
CONTROLLER CHARACTERISTICS command.

4-18 Digital Equipment Corporation / Internal Use Only

Disk Class Driver Error Handling and BUGCHECKSs

Most of what each of these routines does is common to both. Therefore, DUSRE_SYNCH and
DU$CONNECT_ERR are, in fact, alternate entry points to the same set of instructions. Here
is a brief summary of the principal steps performed by both routines, accompanied with a
flowchart; detailed analysis follows in the next section.

DUS$RE_SYNCH begins by first determining if the controller is actually a VAX running the
VMS based MSCP server by examining MSPC$K_CM_EMULA bit in the CNTRLMDL field of
the CDDB for the controller. If the controller is not a VAX, then it sets the RESYNCH flag in
the CDDB’s STATUS field; this will cause the local host to later reset the controller by issuing
a Host Clear operation to it. If the controller is really a remote VAX, the local host should
not attempt to cause the remote VAX to reload, but merely break the SCS connection with its
MSCP server; so the RESYNCH flag is left clear.

At this point, the flow of DUSRE_SYNCH merges in with the beginning of routine
DU$CONNECT_ERR.

Since the SCS connection with the controller’s MSCP disk server is either already broken, or
about to be, both DUSRE_SYNCH and DUSCONNECT_ERR must stall all new I/O requests
being handed to DUDRIVER’s start I/O routine. This is done by incrementing the RWAITCNT
field of every UCB linked to the controller’s CDDB. Until the RWAITCNT field of a UCB is
restored to 0, any new IRPs for the unit associated with that UCB will merely be inserted by
the start I/O routine into the UCB’s pending IRP queue (UCB$L_IOQFL).

Also, I/O requests that have already progressed past the start 1/0 routine’s RWAITCNT
checkpoint must be gathered up for resubmission to DUDRIVER in the event that error
recovery being triggered by DUSRE_SYNCH or DUSCONNECT_ERR is successful. CDRPs
representing these "active" requests are collected and inserted into the restart queue on the
CDDB in the exact order in which they were originally handled by DUDRIVER.

At this point, consider only routine DUSRE_SYNCH, and not DUSCONNECT_ERR. Now is
when the RESYNCH flag is used. If this flag is set, then a "host clear" is done to the controller
to force it to reset itself. This is accomplished by issuing to the controller an MSCP RESET
followed immediately by an MSCP START.

Then DUSRE_SYNCH merely returns to its caller. As a result of the controller being re-

set, the SCS connection with the controller’s server is broken; and this in turn will cause
DUSCONNECT_ERR to be invoked. Of course, DUSCONNECT_ERR need not increment the
RWAITCNT field since that was already done by DUSRE_SYNCH. However, it will go through
the formality of trying to gather up "active” CDRPs; but this formality will happen quickly
since that was also already done by DUSRE_SYNCH.

If the RESYNCH flag is clear, then one of the following two situations is true:

* This is currently DUSRE_SYNCH executing and the controller is a VAX emulating an
"MSCP speaking" controller. Given this to be true, the next step is to break the SCS
connection with the VAX’s MSCP server by means of the SCS service DISCONNECT.

— If the CDDB$V_PATHMOVE bit in the CDDB$W_STATUS field indicates that this
is a pathmove, the SCS$C_USE_ALTERNATE_PORT reason code is passed to the
disconnect service.

— If the CDDB$V_PATHMOVE bit is clear, then a normal disconnect reason is passed.

- Digital Equipment Corporation / Internal Use Only 4-19

Disk Class Driver Error Handling and BUGCHECKS

e This is currently DUSCONNECT_ERR executing, either because the SCS connection with
a controller’s server was unexpectedly lost, or it was just intentionally broken by DUSRE_
SYNCH. If this situation applies, then the formality of doing an SCS DISCONNECT is
still done, but only to "clean up"” the local host’s data structures associated with the broken
connection.

Next all mapping resources owned by CDRPs on the restart queue are deallocated. This is
performed by calling routine DUTU$DEALLOC_ALL for each CDRP on the restart queue.

Next, Mount Verification is started for all disks on the controller by branching to routine
DUTU$REVALIDATE. This may cause one or more disk units to failover to an alternate
controller. Details of mount verification and disk failover are presented later in this chapter.

Once mount verification is started, the disk class driver attempts to form an SCS connection
with the MSCP disk server in the controller. This is performed by calling routine Make
Connection. If an SCS CONNECT attempt fails, the code will pause for CONNECT_DELTA
seconds (10 seconds for VMS V5.5), and then retry. This will give the controller time to reload,
if necessary.

Once the connection is established, a standard SET CONTROLLER CHARACTERISTICS is
performed.

Finally, if mount verification is complete for all units remaining on the controller, then CDRPs
in the CDDB’s restart queue are retried; and then the IRPs in each UCB’s pending IRP
queue are unstalled. If mount verification is not finished for all units on the controller, then
restarting CDRPs and unstalling pending IRPs is handled by mount verification. This basic
flow is illustrated in Figure 4-5.

4-20 Digital Equipment Corporation / Internal Use Only

Disk Class Driver Error Handling and BUGCHECKS

Figure 4-5: DUDRIVER resynchronization flow

DUSRE_SYNCH

Yy

SET RESYNCH FLAG IN CDDB STATUS FIELD IF
CONTROLLER ISN’T A VAX RUNNING MSCP SERVER

- DU$CONNECT_ERR

STALL NEW IRPS FOR ALL UNITS ON CONTROLLER: INCREMENT
RWAITCNT FIELD FOR ALL UCBS IF NOT ALREADY INCREMENTED

l

GATHER "ACTIVE" CDRPS INTO CDDB’S CDRP RESTART QUEUE

l

IS RESYNCH FLAG SET IN CDDB STATUS FIELD ?

YES NO
"HOST CLEAR" CONTROLLER SCS DISCONNECT FROM THE
BY ISSUING TO IT MSCP CONTROLLER'’ S MSCP SERVER

RESET AND MSCP START

\

Y

START MOUNT VERIFICATION
DUSRE_SYNCH RETURNS FOR DISKS ON CONTROLLER:
TO ITS CALLER CALL DU_REVALIDATE_DISKS

\

RE-ESTABLISH SCS CONNECTION WITH CONTROLLER'’S DISK SERVER

l

IF MOUNT VERIFICATION COMPLETE FOR ALL UNITS, THEN
RESTART CDRPS (FOLLOWED BY PENDING IRPS) FOR UNITS
NOT FAILED OVER TO SOME OTHER CONTROLLER

CXN-0004-09

Digital Equipment Corporation / Internal Use Only 4-21

Disk Cilass Driver Error Handling and BUGCHECKs

4.4.3 DUSRE_SYNCH and DUSCONNECT_ERR Detail

Except for the first step, this code is common to both resynchronizing with a controller and
handling the loss of an SCS connection with the MSCP disk server in that controller.

Steps that are unique to DUSRE_SYNCH.

If the "controller” in question is actually a VAX running the VMS based MSCP server, then
the local disk class driver should merely break its SCS connection with the server and not
attempt a controller reset. Therefore, the content of the CNTRLMDL field of the CDDB is
examined:

— If it does not contain the value of the symbol MSCP$K_CM_EMULA, then the con-
troller is a "real controller”, and not a VAX emulating a controller. Set the RESYNCH

flag in the CDDB$W_STATUS field, insuring that the controller will be reset later in
this routine.

— If the controller is actually a VAX, then the RESYNCH flag is not set.

NOTE

This step is executed only if DUDRIVER calls routine DUSRE_SYNCH. It is not
executed by DUSCONNECT_ERR in response to an abruptly failed SCS connec-
tion. Consequently, in the case of a failed connection, the CDDB$W_STATUS
will not have its RESYNCH flag set, regardless of what type of controller is
involved. This fact will shortly become critical to the logical flow of events
governed by this procedure.

This step is executed only if DUDRIVER calls routine DUSCONNECT_ERR. The discon-
nect reason code is checked against the value SCS§C_USE_ALTERNATE_PORT. If it is
equal, a Path move is indicated by setting the CDDB$V_PATHMOVE bit in the CDDB$W _
STATUS word.

Next is the first step that is common to both DUSCONNECT _ERR and DU$RE_SYNCH.

The RECONNECT and NOCONN flags in the CDDB$W_STATUS field are set to indicate
that there is currently no SCS connection with the MSCP disk server in this controller,
and that a reconnect attempt is in progress.

The IMPEND, INITING, and RSTRTWAIT flags in the CDDB are cleared, indicating
that:

— There are no immediate class commands active for this controller.

— Controller initialization is not in progress.

— There are no CDRPs currently waiting for restart.

Even if any of these conditions is true, they won’t be much longer because of what this
routine is about to do.

Since the SCS connection with the MSCP server in the controller is about to be broken
(if it isn’t already), there is no need for DUDRIVER'’s timeout mechanism to be active for
this controller. Thus, the DUETIME field of the CRB for this controller is set to minus one
indicating an infinite timeout period.

Either the connection with the controller’s disk server has already been broken, or it is
about to be. Therefore it is necessary to stall further I/O requests coming from the $QIO
system service for any disk units on the controller.

4-22 Digital Equipment Corporation / internal Use Only

Disk Class Driver Error Handling and BUGCHECKS

The list of UCBs linked to the CDDB via the CDDB$L_UCBCHAIN field is scanned.
The MSCP_WAITBMP bit in each UCB is checked to see if the UCB’s RWAITCNT field
has been "bumped" (i.e. is nonzero) for some other reason. If this flag is found to be set,
then I/O is already stalled. If this flag is found not to be set, then the flag is set and the
RWAITCNT word in the UCB is incremented, thereby stalling new I/O requests.

When DUDRIVER's start I/O routine is handed a new request, it will insert the IRP
representing the request into the UCB’s pending IRP queue (UCB$L_IOQFL). No further
processing will be done by DUDRIVER for such IRPs until I/0 is "unstalled” for the unit.
Any RSPIDs and SCS message buffers held by the CDDB’s permanent or DAP CDRPs are
released. They won't be needed since what’s happening effectively terminates the need for
any outstanding GET COMMAND STATUS or DAP processing operations. Also, because
of this, these CDRPs are removed from any resource wait queues they may be on.

Next, all "active” CDRPs for disks on this controller are gathered up and placed on the
CDDB’s I/O restart queue, CDDB$L_RSTRTQFL.

These CDRPs are searched for in different places:

— First, the Host Initiated Replacement Table (HIRT) wait queue is checked. A CDRP for
the controller in question would be found there only if the controller is local (UDA50,
KDB50, etc.), and only if the CDRP is for a bad block replacement operation for some
disk on the controller.

— Then the RDT resource wait queue is checked by routine SCAN_RSPID_WAIT for
CDRPs waiting to be allocated a RSPID and associated RDT entry.

— The third place checked is the CDDB’s queue of CDRPs for which MSCP commands
have been sent to the controller, but for which end messages have not yet been re-
ceived. This is performed by routine DUTU$DRAIN_CDDB_CDRPQ.

— And fourth, CDRPs waiting for any SCS resources (flow control, message buffers,
mapping resources, ...) must be found. To do this, the entire RDT is scanned for any
CDRPs whose operation affects this controller.

As the CDRPs are inserted into the CDDB’s 1/O restart queue, any RSPIDs and SCS
message buffers they possess are released.

It is important to note that the only CDRPs "gathered up” in <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>