
AA-AE36A-TV

TM

Color/Graphics Option
Programmer's Reference Guide

digital equipment corporation

First Printing, June 1984

© Digital Equipment Corporation 1984. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

CP/M and CP/M-86 are registered trademarks of Digital Research Inc.
CP/M-8O is a trademark of Digital Research Inc.

uPD7220 is a registered trademark of NEC Electronics U.S.A. Inc.

8088 is a registered trademark of Intel Corporation.

The following are trademarks of Digital Equipment Corporation:

~D~DDmD'"
DEC
DECmate
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter
DIBOL

MASSBUS
PDP
P/OS
Professional
Rainbow
RSTS
RSX

UNIBUS
VAX
VMS
VT
Work Processor

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

Printed in U.S.A.

Preface vii
The Intended Audience vii
Organization of the Manual vii
Suggestions for the Reader viii

PART I - Operating Principles

Chapter 1. Overview 1-1
Hardware Components 1-1
Resolution Modes 1-3
Operational Modes 1-3

Chapter 2. Monitor Configurations 2-1
Monochrome Monitor Only 2-2
Color Monitor Only 2-3
Dual Monitors 2-4

Chapter 3. Graphics Option Logic 3-1
General 3-1
Data Logic 3-2
Address Logic 3-2
Display Logic 3-6
GDC Command Logic 3-9

Contents

iii

Contents

Chapter 4. Graphics Option Components 4-1

I/O Ports 4-1
Indirect Register 4-2
Write Buffer 4-2
Write Mask Registers 4-4
Pattern Generator 4-5
Foreground/Background Register 4-6
ALU/PS Register 4-8
Color Map 4-9
Mode Register 4-15
Scroll Map 4-16

PART II - Programming Guidelines

Chapter 5. Initialization and Control 5-1
T est for Option Present 5-1
Test for Motherboard Version 5-2
Initialize the Graphics Option 5-6
Controlling Graphics Output 5-24
Modifying and Loading the Color Map 5-25

Chapter 6. Bitmap Write Setup (General) 6-1

Loading the ALU/PS Register 6-1
Loading the Foreground/Background Register 6-2

Chapter 7. Area Write Operations 7-1

Display Data from Memory 7-1
Set a Rectangular Area to a Color 7-4

Chapter 8. Vector Write Operations 8-1

Setting Up the Pattern Generator 8-1
Display a Pixel 8-4
Display a Vector 8-5
Display a Circle 8-9

Chapter 9. Text Write Operations 9-1
Write a Byte-Aligned Character 9-1
Define and Position the Cursor 9-32
Write a Text String 9-38

iv

Chapter 10. Read Operations 10-1
The Read Process 1 0-1
Read the Entire Bitmap 10-1
Pixel Write After a Read Operation 1 0-5

Chapter 1 1. Scroll Operations 1 1-1
Vertical Scrolling 11-1
Horizontal Scrolling 11-4

Chapter 12. Programming Notes 12-1
Shadow Areas 12-1
Bitmap Refresh 12-1
Software Reset 12-2
Setting Up Clock Interrupts 12-2
Operational Requirements 12-3
Set-Up Mode 12-3
Timing Considerations 1 2-4

PART III - Reference Material

Chapter 13. Option Registers, Buffers, and Maps 13-1

I/O Ports 1 3-1
Indirect Register 1 3-3
Write Buffer 1 3-4
Write Mask Registers 1 3-5
Pattern Register 1 3-6
Pattern Multiplier 13-7
Foreground/Background Register 1 3-8
ALU/PS Register 13-9
Color Map 1 3-10
Mode Register 13-11
Scroll Map 13-12

Chapter 14. GDC Registers and Buffers 14-1
Status Register 14-1
FIFO Buffer 14-2

Chapter 15. GDC Commands 15- 1

Introduction 15-1
Video Control Commands 15-2
Display Control Commands 15-8
Drawing Control Commands 15-1 3
Data Read Commands 15-1 8

Contents

v

Contents

PART IV - Appendixes

Appendix A. Option Specification Summary A-1
Physical Specifications A-1
Environmental Specifications A-1
Power Requirements A-2
Standards and Regulations A-2
Part and Kit Numbers A-3

Appendix B. Rainbow Graphics Option - Block Diagram B-1

Appendix C. Getting Help C-1

Index 1-1

Figures
Figure 1. Monochrome Monitor Only System 2-2
Figure 2. Color Monitor Only System 2-3
Figure 3. Dual Monitor System 2-4
Figure 4. Rows and Columns in Display Memory 3-3
Figure 5. Relationship of Display Memory to Address Logic 3-4
Figure 6. GDC Screen Control Parameters 3-8
Figure 7. Write Buffer as Accessed by the CPU and the GDC 4-3
Figure 8. Write Mask ReGISters 4-4
Figure 9. Pattern Generator 4-5
Figure 10. Foreground/Background ReGISter 4-7
Figure 11. Bitmap/Color Map Interaction (medium resolution) 4-10
Figure 12. Bitmap/Color Map Interaction (high resolution) 4-11
Figure 13. Sample Color Map with Loading Sequence 4-12
Figure 14. Scroll Map Operation 4-16
Figure 15. Rainbow Graphics Option - Block Diagram B-3

Tables

vi

Table 1. Colors and Monochrome Intensities - Displayed/Available 1-1
Table 2. Intensity Values vs Video Drive Voltages 4-14
Table 3. Clock Interrupt Parameters 12-2

Preface

The Intended Audience

The Rainbow Color/Graphics Option Programmer's Reference Guide is written for the experienced
systems programmer who will be programming applications that display graphics on Rainbow video
monitors. It is further assumed that the system programmer has had both graphics and 8088 pro
gramming experience.

The information contained in this document is not unique to any operating system; however, it is
specific to the 8088 hardware and 8088-based software.

Organization of the manual

The Rainbow Color/Graphics Option Programmer's Reference Guide is subdivided into four parts
containing fifteen chapters and three appendixes as follows:

• PART I - OPERATING PRINCIPLES contains the following four chapters:

- Chapter 1 provides an overview of the Graphics Option including information on the hard
ware, logical interface to the CPU, general functionality, color and monochrome ranges, and
model dependencies.

- Chapter 2 describes the monitor configurations supported by the Graphics Option.

vii

Preface

- Chapter 3 discusses the logic of data generation, bitmap addressing, and the GDC's handling
of the screen display.

- Chapter 4 describes the software components of the Graphics Option such as the control
registers, maps, and buffer areas accessible under program control.

• PART II - PROGRAMMING GUIDELINES contains the following eight chapters:

- Chapter 5 discusses programming the Graphics Option for initialization and control
operations.

- Chapter 6 discusses programming the Graphics Option for setting up bitmap write
operations.

- Chapter 7 discusses programming the Graphics Option for area write operations.

- Chapter 8 discusses programming the Graphics Option for vector write operations.

- Chapter 9 discusses programming the Graphics Option for text write operations.

- Chapter 10 discusses programming the Graphics Option for read operations.

- Chapter 11 discusses programming the Graphics Option for scroll operations.

- Chapter 12 contains programming notes and timing considerations.

• PART III - REFERENCE MATERIAL contains the following three chapters:

- Chapter 13 provides descriptions and contents of the Graphics Option's registers, buffers,
masks, and maps.

- Chapter 14 provides descriptions and contents of the GDC's status register and FIFO buffer.

- Chapter 15 provides a description of each supported GDC command arranged in alphabetic
sequence within functional grouping.

• PART IV - APPENDIXES contain the following three appendixes:

- Appendix A contains the Graphics Option's Specification Summary.

- Appendix B is a fold-out sheet containing a block diagram of the Graphics Option.

- Appendix C lists DIGITAL's International Help Line phone numbers.

Suggestions for the Reader

For more information about the Graphics Display Controller refer to the following:

• uPD7220 CDC Design Manual-NEC Electronics U.S.A. Inc.

• uPD7220 CDC Design SPecification-NEC Electronics U.S.A. Inc.

viii

)

Preface

For a comprehensive tutorial/reference manual on computer graphics, consider Fundamentals of
Interactive Computer Graphics by J. D. Foley and A. Van Dam published by Addison-Wesley Publish
ing Company, 1982.

Terminology

ALU/pS

Bitmap

GDC

Motherboard

Nibble

Pixel

Resolution

RGB

RGO

RMW

VSS

Arithmetic Logical Unit and Plane Select (register)

Video display memory

Graphics. Display Controller

A term used to refer to the main circuit board where the processors and main
memory are located - hardware options, such as the Graphics Option, plug
into and communicate with the motherboard

A term commonly used to refer to a half byte (4 bits)

Picture element when referring to video display output

A measure of the sharpness of a graphics image - usually given as the
number of addressable picture elements for some unit of length (pixels per
inch)

Red, green, blue - the acronym for the primary additive colors used in color
monitor displays

Rainbow Graphics Option

Read/Modify/Write, the action taken when accessing the bitmap during a write
or read cycle

Video Subsystem

ix

c

\
/

PART I

Chapter 1. Overview 1-1
Hardware Components 1-1

Video Memory (Bitmap) 1-2
Additional Hardware 1-2

Resolution Modes 1-3
Medium Resolution Mode 1-3
High Resolution Mode 1-3

Operational Modes 1 -3

Chapter 2. Monitor Configurations 2-1
Monochrome Monitor Only 2-2
Color Monitor Only 2-3
Dual Monitors 2-4

Chapter 3. Graphics Option Logic 3-1
General 3-1
Data Logic 3-2
Address Logic 3-2
Display Logic 3-6

Bitmap Logic 3-6
Screen Logic 3-7

GDC Command Logic 3-9

Contents

Contents

Chapter 4. Graphics Option Components 4-1

I/O Ports 4-1
Indirect Register 4-2
Write Buffer 4-2
Write Mask Registers 4-4
Pattern Generator 4-5
Foreground/Background Register 4-6
ALU/PS Register 4-8
Color Map 4-9

Loading the Color Map 4-12
Video Drive Voltages 4-13

Mode Register 4-15
Scroll Map 4-16

Loading the Scroll Map 4-1 7

1
Overview

Hardware Components

The Graphics Option is a user-installable module that adds graphics and color display capabilities to
the Rainbow system. The graphics module is based on a NEC uPD7220 Graphics Display Controller
(GDC) and an 8 X 64K dynamic RAM video memory that is also referred to as the bitmap.

The Graphics Option is supported, with minor differences, on Rainbow systems with either the model
A or model B motherboard. The differences involve the number of colors and monochrome intensi
ties that can be simultaneously displayed and the number of colors and monochrome intensities that
are available to be displayed (see Table 1). Chapter 5 includes a programming example of how you
can determine which model of the motherboard is present in your system.

Table 1. Colors and Monochrome Intensities - Displayed/Available

MED. RESOLUTION HIGH RESOLUTION

CONFIG. MODEL COLOR MONO. COLOR MONO.

MONOCHROME 100-A N/A 4/4 N/A 4/4
MONITOR
ONLY 100-8 N/A 16/16 N/A 4/16

COLOR 100-A 16/1024 N/A 4/1024 N/A
MONITOR
ONLY 100-8 16/4096 N/A 4/4096 N/A

DUAL
100-A 16/4096 4/4 4/4096 4/4

MONITORS
100-8 16/4096 16/16 4/4096 4/16

LJ-0212

1-1

Overview

The GDC, in addition to performing the housekeeping chores for the video display, can also:

• Draw lines at any angle

• Draw arcs of specified radii and length

• Fill rectangular areas

• Transfer character bit-patterns from font tables in main memory to the bitmap

Video Memory (Bitmap)

The CPUs on the motherboard have no direct access to the bitmap memory. All writes are per
formed by the external graphics option hardware to bitmap addresses generated by the GDC.

The bitmap is composed of eight 64K dynamic RAMs. This gives the bitmap a total of 8 X 64K of
display memory. In high resolution mode, this memory is configured as two planes, each 8 X 32K.
In medium resolution mode, this memory is configured as four planes, each 8 X 16K. However, as
far as the GDC is concerned, there is only one plane. All plane interaction is transparent to the GDC.

Although the bitmap is made up of 8 X 64K bits, the GDC sees only 16K of word addresses in high
resolution mode (2 planes X 16 bits X 16K words). Similarly, the GDC sees only 8K of word
addresses in medium resolution mode (4 planes X 16 bits X 8K words). Bitmap address zero is
displayed at the upper left corner of the monitor screen.

Additional Hardware

The option module also contains additional hardware that enhances the performance and versatility of
the GDC. This additional hardware includes:

• A 16 X 8-bit Write Buffer used to store byte-aligned or word-aligned characters for high
performance text writing or for fast block data moves from main memory to the bitmap

• An 8-bit Pattern Register and a 4-bit Pattern Multiplier for improved vector writing
performance

• Address offset hardware (256 X 8-bit Scroll Map) for full and split-screen vertical scrolling

• ALU/pS register to handle bitplane selection and the write functions of Replace, Complement,
and Overlay

• A 16 X 16-bit Color Map to provide easy manipulation of pixel color and monochrome
intensities

• Readback hardware for reading a selected bitmap memory plane into main memory

1-2

Overview

Resolution Modes

The Graphics Option operates in either of two resolution modes:

• Medium Resolution Mode

• High Resolution Mode

Medium Resolution Mode

Medium resolution mode displays 384 pixels horizontally by 240 pixels vertically by four bitmap
memory planes deep. This resolution mode allows up to 16 colors to be simultaneously displayed on a
color monitor. Up to sixteen monochrome shades can be displayed simultaneously on a monochrome
monitor.

High Resolution Mode

High resolution mode displays 800 pixels horizontally by 240 pixels vertically by two bitmap memory
planes deep. This mode allows up to four colors to be simultaneously displayed on a color monitor.
Up to four monochrome shades can be simultaneously displayed on a monochrome monitor.

Operational Modes

The Graphics Option supports the following modes of operations:

• WORD MODE to write 16-bit words to selected planes of the bitmap memory for character and
image generation

• VECTOR MODE to write pixel data to bitmap addresses provided by the GDC

• SCROLL MODE for full- and split-screen vertical scrolling and full-screen horizontal scrolling

• READBACK MODE to read 16-bit words from a selected plane of bitmap memory for special
applications, hardcopy generation or diagnostic purposes

1-3

2
Monitor Configurations

In the Rainbow system with the Graphics Option installed, there are three possible monitor configu
rations: Monochrome only, Color only, and Dual (color and monochrome). In all three configurations,
the selection of the option's monochrome output or the motherboard VTI02 video output is con
trolled by bit two of the system maintenance port (port OAh). A 0 in bit 2 selects the motherboard
VTI02 video output while a 1 in bit 2 selects the option's monochrome output.

2-1

Monitor Configurations

Monochrome Monitor Only

As shown in Figure 1, the monochrome monitor can display either graphics option data or
motherboard data depending on the setting of bit 2 of port OAh. Writing an 87h to port OAh selects
the Graphics Option data. Writing an 83h to port OAh selects the motherboard VT102 data. The red,
green and blue data areas in the Color Map should be loaded with all F's to reduce any unnecessary
radio frequency emissions.

BLUE INTENSITIES

RED INTENSITIES

GREEN INTENSITIES

MONOCHROME INTENSITIES-----4"

~---... MONOCHROME MONITOR

MOTHERBOARD DATA-----......

PORT OAh (BIT 2)-------~

LJ-0215

Figure 1. Monochrome Monitor Only System

2-2

(
\

Monitor Configurations

Color Monitor Only

When the system is configured with only a color monitor, as in Figure 2, the green gun does double
duty. It either displays the green component of the graphics output or it displays the monochrome
output of the motherboard VT102 video subsystem. Because the green gun takes monochrome
intensities, all green intensities must be programmed into the monochrome data area of the Color
Map. The green data area of the Color Map should be loaded with all F's to reduce any unnecessary
radio frequency emissions.

BLUE INTENSITIES ----------------------~~BLUEGUN

RED I NTENSITI ES ------------------------... ~ RED GU N

GREEN INTENSITIES

MONOCHROME INTENSITIES ~

(GREEN DATA)
)----. GREEN GUN

MOTHERBOARD DATA----------1~

PORT OAh (BIT 2)

LJ-0216

Figure 2. Color Monitor Only System

When motherboard VT102 data is being sent to the green gun, the red and blue output must be
turned off at the Graphics Option itself. If not, the red and blue guns will continue to receive data
from the option and this output will overlay the motherboard VT102 data and will also be out of
synchronization. Bit 7 of the Mode Register is the graphics option output enable bit. If this bit is a 1
red and blue outputs are enabled. If this bit is a 0 red and blue outputs are disabled.

As in the monochrome only configuration, bit 2 of port OAh controls the selection of either the
graphics option data or the motherboard VT102 data. Writing an 87h to port OAh enables the option
data. Writing an 83h to port OAh selects the motherboard VT102 data.

2-3

Monitor Configurations

Dual Monitors

In the configuration shown in Figure 3, both a color monitor and a monochrome monitor are available
to the system. Motherboard VTI02 video data can be displayed on the monochrome system while
color graphics are being displayed on the color monitor. If the need should arise to display graphics
on the monochrome monitor, the monochrome intensity output can be directed to the monochrome
monitor by writing an 87h to port OAh. Writing an 83h to port OAh will restore motherboard
VTI02 video output to the monochrome monitor.

BLUE INTENSITIES ------------•• BLUE GUN

RED INTENSITIES -------------.. RED GUN

GREEN INTENSITIES-------------.. GREEN GUN

MONOCHROME INTENSITIES --~.~

>---~ MONOCHROME MONITOR

MOTHERBOARD DATA----~.~

PORT OAh (BIT 2)---------J

LJ-0217

Figure 3. Dual Monitor System

When displaying graphics on the monochrome monitor, the only difference other than the the lack of
color is the range of intensities that can be simultaneously displayed on systems with model A
motherboards.

Systems with model A motherboards can display only four monochrome intensities at anyone time.
Even though sixteen entries can be selected when operating in medium resolution mode, only the
two low-order bits of the monochrome output are active. This limits the display to only four unique
intensities at most. On systems with the model B motherboard, all sixteen monochrome intensities
can be displayed.

2-4

3
Graphics Option logic

General

The Graphics Display Controller (GDC) can operate either on one bit at a time or on an entire 16-bit
word at a time. It is, however, limited to one address space and therefore can only write into one
plane at a time. The Graphics Option is designed in such a manner that while the GDC is doing
single pixel operations on just one video plane, the external hardware can be doing 16-bit word
operations on up to four planes of video memory.

Write operations are multi-dimensioned. They have width, depth, length and time.

• Width refers to the number of pixels involved in the write operation.

• Depth refers to the number of planes involved in the write operation.

• Length refers to the number of read/modify/write cycles the GDC is programmed to perform.

• Time refers to when the write operation occurs in relation to the normal housekeeping opera
tions the GDC has to perform in order to keep the monitor image stable and coherent.

3-1

Graphics Option Logic

Data Logic

The Graphics Option can write in two modes: word mode (16 bits at a time) and vector mode (one
pixel at a time).

In word mode, the data patterns to be written into the bitmap are based on bit patterns loaded into
the Write Buffer, Write Mask, and the Foreground/Background Register, along with the type of
write operation programmed into the ALU/PS Register.

In vector mode, the data patterns to be written to the bitmap are based on bit patterns loaded into
the Pattern Register, the Pattern Multiplier, the Foreground/Background Register, and the type of
write operation programmed into the ALU/PS Register.

In either case, the data will be stored in the bitmap at a location determined by the addressing logic.

Address Logic

The addressing logic of the Graphics Option is responsible for coming up with the plane, the line
within the plane, the word within the line, and even the pixel within the word under some conditions.

The display memory on the Graphics Option is one-dimensional. The GDC scans this linear memory
to generate the two dimensional display on the CRT. The video display is organized similarly to the
fourth quadrant of the Cartesian plane with the origin in the upper left corner. Row addresses (y
coordinates of pixels) start at zero and increase downwards while column addresses (x coordinates of
pixels) start at zero and increase to the right (see Figure 4). Pixel data is stored in display memory
by column within row.

3-2

Graphics Option Logic

COLUMN (X)

ROW(Y! ° 2 • • • N

I

°
(0,0) (1,0) (2,0) (N,O)

(0,1) (1,1) (2,1) (N,1)

2 (0,2) (1,2) (2,2) (N,2)

~
•
•
•

M (O,M) (1,M) (2,M) (N,M)

LJ-0218

Figure 4. Rows and Columns in Display Memory

The GDC accesses the display memory as a number of 16-bit words where each bit represents a
pixel. The number of words defined as well as the number of words displayed on each line is
dependent on the resolution. The relationship between words and display lines is shown in Figure 5.

3-3

Graphics Option Logic

LINE 0

LINE 1

LINE 2

•

•

•

LINE N-l

3-4

""�----------- WORDS/LINE DEFINED ---------~~I

... I .. t------- WORDS/LINE DISPLAYED ------I~~I

0 1 2 Q-l P-l

P P+l P+2 P+Q-l 2P-l

2P 2P+l 2P+Q-l 3P-l

3P 3P+Q-l 4P-l

4P 4P+Q-l 5P-l

l,/ l,.;

(M-l)P MP-l

1N-11P I NP-l J
WHERE:

P = WORDS/LINE DEFINED - 32 IN MEDIUM RESOLUTION.
- 64 IN HIGH RESOLUTION.

Q = WORDS/LINE DISPLAYED - 24 IN MEDIUM RESOLUTION
- 50 IN HIGH RESOLUTION

N = NO. OF LINES DEFINED - 256

M = NO. OF LINES DISPLAYED - 240

LJ-0219

Figure 5. Relationship of Display Memory to Address Logic

Graphics Option Logic

In order to address specific pixels, the GDC requires the word address and the pixel location within
that word. The conversion of pixel coordinates to addresses in display memory is accomplished by
the following formulas:

Given the pixel coordinates (x,y):

Word Address of pixel = (words/line defined * y) + integer(x/16)

Pixel Address within word = remainder(x/16) * 16

Because the Graphics Option is a multi-plane device, a way is provided to selectively enable and
disable the reading and writing of the individual planes. This function is performed by the ALUjPS
and Mode registers. More than one plane at a time can be enabled for a write operation; however,
only one plane can be enabled for a read operation at anyone time.

The entire address generated by the GDC does not go directly to the bitmap. The low-order six bits
address a word within a line in the bitmap and do go directly to the bitmap. The high-order eight bits
address the line within the plane and these bits are used as address inputs to a Scroll Map. The
Scroll Map acts as a translator such that the bitmap location can be selectively shifted in units of 64
words. In high resolution mode, 64 words equate to one scan line; in medium resolution mode, they
equate to two scan lines. This allows the displayed vertical location of an image to be moved in 64-
word increments without actually rewriting it to the bitmap. Programs using this feature can provide
full and split screen vertical scrolling. The Scroll Map is used in all bitmap access operations: writing,
reading, and refreshing.

If an application requires addressing individual pixels within a word, the two 8-bit Write Mask
Registers can be used to provide a 16-bit mask that will write-enable selected pixels. Alternately, a
single pixel vector write operation can be used.

There is a difference between the number of words/line defined and the number of words/line
displayed. In medium resolution, each scan line is 32 words long but only 24 words are displayed (24
words * 16 bits/word = 384 pixels). The eight words not displayed are unusable. Defining the length
of the scan line as 24 words would be a more efficient use of memory but it would take longer to
refresh the memory. Because display memory is organized as a 256 by 256 array, it takes 256 bytes
of scan to refresh the entire 64K byte memory. Defining the scan line length as 32 words long
enables the entire memory to be refreshed in four line scan periods. Defining the scan line length as
24 words long would require five line scans plus 16 bytes.

Similarly, in high resolution, each scan line is 64 words long but only 50 words are displayed. With a
64 word scan line length, it takes two line scan periods to refresh the entire 64K byte memory. If
the scan line length were 50 words, it would take two lines plus 56 bytes to refresh the memory.

Another advantage to defining scan line length as 32 or 64 words is that cursor locating can be
accomplished by a series of shift instructions which are considerably faster than multiplying.

3-5

Graphics Option Logic

Display logic

The display logic of the Graphics Option will be discussed as it applies to both the bitmap and the
screen.

Bitmap Logic

Data in the bitmap does not go directly to the monitor. Instead, the bitmap data is used as an
address into a Color Map. The output of this Color Map, which has been preloaded with color and
monochrome intensity values, is the data that is sent to the monitor.

In medium resolution mode there are four planes to the bitmap; each plane providing an address bit
to the Color Map. Four bits can address sixteen unique locations at most. This gives a maximum of
16 addressable Color Map entries. Each Color Map entry is 16 bits wide. Four of the bits are used
to drive the color monitor's red gun, four go to the green gun, four go to the blue gun, and four
drive the output to the monochrome monitor. In systems with the Model 100-A motherboard, only
the two low-order bits of the monochrome output are used. Therefore, although there are 16 possi
ble monochrome selections in the Color Map, the number of unique intensities that can be sent to
the monochrome monitor is four.

In high resolution mode there are two planes to the bitmap; each plane providing an address bit to
the Color Map. Two bits can address four entries in the Color Map at most. Again, each Color Map
entry is sixteen bits wide with 12 bits of information used for color and four used for monochrome
shades. In systems with the Model 100-A motherboard, only the two low-order bits of the mono
chrome output are used. This limits the number of unique monochrome intensities to four.

Although the Color Map is 16 bits wide, the color intensity values are loaded one byte at a time.
First, the 16 pairs of values representing the red and green intensities are loaded into bits 0 through
7 of the map. Then, the 16 pairs of values representing the blue and monochrome intensities are
loaded into bits 8 through 15 of the map.

3-6

Graphics Option Logic

Screen Logic

The image displayed on the screen is generated by an electron beam performing a series of horizon
tal line scans from left to right. At the end of each horizontal scan line, a horizontal retrace takes
place at which time the electron beam reverses its horizontal direction. During this horizontal
retrace, the electron beam is also being moved down to the beginning of the next scan line. When
the last line has completed its horizontal retrace, a vertical retrace takes place at which time the
electron beam's vertical movement is reversed and the beam is positioned at the beginning of the
first scan line.

The CDC writes to the bitmap only during the screen's horizontal and vertical retrace periods.
During active screen time, the CDC is taking information out of the bitmap and presenting it to the
video screen hardware. For example, if the CDC is drawing a vector to the bitmap, it will stop
writing during active screen time and resume writing the vector at the next horizontal or vertical
retrace.

In addition to the active screen time and the horizontal and vertical retrace times, there are several
other screen control parameters that precede and follow the active horizontal scans and active lines.
These are the Vertical Front and Back Porches and the Horizontal Front and Back Porches. The
relationship between the screen control parameters is shown in Figure 6. Taking all the parameters
into account, the proportion of active screen time to bitmap writing time is approximately four to
one.

3-7

Graphics Option Logic

3-8

GDC VIDEO CONTROL PARAMETERS

VERTICAL {
FRONT
PORCH

(3 LINES)

-------------~----
~O~--- ~

~~O----------------~--- o DOD

ACTIVE
DISPLAY

(240 LINES)

VERTICAL
BACK
PORCH

(16 LINES)

~OO---------- ------ - - -<l- - - - --

(J"'OO----------

~~-a------~~----------------~----------------------- 0 0 0 0 -------

------------~------
o 0 0 0 -------

-----------~-----
~o-o-----------------------_+--------------------

O"Lj-o __ - - --- - - - - ----- -<)-- ---

o 0 0 .p ----------____ -4--

0"z:>-6- --- - --- ___ -4--

______ ----<r"-----
~ClO-----~~--------------+_-------------------___ ----E2-0-~

-- ---- --- ------~ - ---

O"O-a -- ----- ----------:-----

(j~-O---- --- - --- - ____ <1----

O"cns------ - - - - -<l- -- o 0 0 0 -----

---- - -----~----------
0" ~ -0 ---:,.....::'----------------+-------------------________ ~!l.Q.>J

________ ---<l-----

o 0 0 HORIZONTAL FRONT PORCH (WORDS)

o 0 0 HORIZONTAL BACK PORCH (WORDS)

-<l- -- HORIZONTAL RETRACE (WORDS)

_ HORIZONTAL ACTIVE (WORDS)

HIGH
RESOLUTION

3

4

5

50

- HORIZONTAL INACTIVE (VERTICAL FRONT & BACK PORCHES)

VERTICAL RETRACE (LINES) 3

Figure 6. GDC Screen Control Parameters

MEDIUM
RESOLUTION

3

2

24

LJ·0220

Graphics Option Logic

GDC Command logic

Commands are passed to the GDC command processor from the Rainbow system by writing com
mand bytes to port 57h and parameter bytes to port 56h. Data written to these two ports is stored
in the GDC's FIFO buffer, a 16 x 9-bit area that is used to both read from and write to the GDC.
The FIFO buffer operates in half-duplex mode - passing data in both directions, one direction at a
time. The direction of data flow at anyone time is controlled by GDC commands.

When commands are stored in the FIFO buffer, a flag bit is associated with each data byte depending
on whether the data byte was written to the command address (57h) or the parameter address (56h).
A flag bit of 1 denotes a command byte; a flag bit of 0 denotes a parameter byte. The command
processor tests this flag bit as it interprets the contents of the FIFO buffer.

The receipt of a command byte by the command processor signifies the end of the previous com
mand and any associated parameters. If the command is one that requires a response from the GDC
such as RDAT, the FIFO buffer is automatically placed into read mode and the buffer direction is
reversed. The specified data from the bitmap is loaded into the FIFO buffer and can be accessed by
the system using read operations to port 57h. Any commands or parameters in the FIFO buffer that
follow the read command are lost when the FIFO buffer's direction is reversed.

When the FIFO buffer is in read mode, any command byte written to port 57h will immediately
terminate the read operation and reverse the buffer direction to write mode. Any data that has not
been read by the Rainbow system from the FIFO buffer will be lost.

3-9

(

""

"\

)

4
Graphics Option Components

I/O Ports

The CPUs on the Rainbow system's motherboard use a number of 8-bit I/O ports to exchange
information with the various subsystems and options. The I/O ports assigned to the Graphics Option
are ports 50h through 57h. They are used to generate and display graphic images, inquire status,
and read the contents of video memory (bitmap). The function of each of the Graphics Option's I/O
ports is as follows:

Port Function

50h Graphics option software reset. Any write to this port also resynchronizes the
read/modify/write memory cycles of the Graphics Option to those of the GDC.

5Ih Data written to this port is loaded into the area selected by the previous write to port 53h.

52h Data written to this port is loaded into the Write Buffer.

53h Data written to this port provides address selection for indirect addressing (see Indirect
Register).

54h Data written to this port is loaded into the low-order byte of the Write Mask.

55h Data written to this port is loaded into the high-order byte of the Write Mask.

56h Data written to this port is loaded into the GDC's FIFO Buffer and flagged as a parameter.

Data read from this port reflects the GDC status.

57h Data written to this port is loaded into the GDC's FIFO Buffer and flagged as a command.

Data read from this port reflects information extracted from the bitmap.

4-1

Graphics Option Components

Indirect Register

The Graphics Option uses indirect addressing to enable it to address more registers and storage
areas on the option module than there are address lines (ports) to accommodate them. Indirect
addressing involves writing to two ports. A write to port 53h loads the Indirect Register with a bit
array in which each bit selects one of eight areas.

The Indirect Register bits and the corresponding areas are as follows:

Bit Area Selected

0 Write Buffer (*)

1 Pattern Multiplier

2 Pattern Register

3 Foreground/Background Register

4 ALU/PS Register

5 Color Map (*)

6 Mode Register

7 Scroll Map (*)

(*) Also clears the associated index counter

Mter selecting an area by writing to port 53h, you access and load data into most selected areas by
writing to port 51h. For the Write Buffer however, you need both a write of anything to port 51h to
access the buffer and clear the counter and then a write to port 52h to load the data.

Write Buffer

A 16 X 8-bit Write Buffer provides the data for the bitmap when the Graphics Option is in Word
Mode. You can use the buffer to transfer blocks of data from the system's memory to the bitmap.
The data can be full screen images of the bitmap or bit-pattern representations of font characters
that have been stored in motherboard memory. The buffer has an associated index counter that is
cleared when the Write Buffer is selected.

Although the CPU accesses the Write Buffer as sixteen 8-bit bytes, the GDC accesses the buffer as
eight 16-bit words. (See Figure 7.) A 16-bit Write Mask gives the GDC control over individual bits
of a word.

4-2
(

/

AS THE CPU ACCESSES IT

BYTE HIGH BYTE

0,1

2,3

4,5

6,7

8,9

7 0

10,11
I------~

12,13
I------~

14,15

LOW BYTE

7 0
WORD

o

2

3

4

5

6

7

15

Graphics Option Components

AS THE GDC ACCESSES IT

WORD

o

LJ-0221

Figure 7. Write Buffer as Accessed by the CPU and the GDC

The output of the Write Buffer is the inverse of its input. If a word is written into the buffer as
FFB6h, it will be read out of the buffer as 0049h. To have the same data written out to the bitmap
as was received from the CPU requires an added inversion step. You can exclusive or (XOR) the
CPU data with FFh to pre-invert the data before going through the Write Buffer. Alternately, you
can write zeros into the Foreground Register and ones into the Background Register to re-invert the
data after it leaves the Write Buffer and before it is written to the bitmap. Use one method or the
other, not both.

In order to load data into the Write Buffer, you first write an FEh to port 53h and any value to port
51h. This not only selects the Write Buffer but also sets the Write Buffer Index Counter to zero.
The data is then loaded into the buffer by writing it to port 52h in high-byte low-byte order. If more
than 16 bytes are written to the buffer the first 16 bytes will be overwritten.

If you load the buffer with less than 16 bytes (or other than a multiple of 16 bytes for some reason
or other) the GDC will find an index value other than zero in the counter. Starting at a location other
than zero alters the data intended for the bitmap. Therefore, before the GDC is given the command
to write to the bitmap, you must again clear the Write Buffer Index Counter so that the GDC will
start accessing the data at word zero.

4-3

Graphics Option Components

Write Mask Registers

When the Graphics Option is in Word Mode, bitmap operations are carried out in units of 16-bit
words. A 16-bit Write Mask controls the writing of individual bits within a word. A zero in a bit
position of the mask allows writing to the corresponding position of the word. A one in a bit position
of the mask disables writing to the corresponding position of the word.

While the GDC accesses the mask as a 16-bit word, the CPU accesses the mask as two of the
Graphic Option's I/O ports. The high-order Write Mask Register is loaded with a write to port 55h
and corresponds to bits 15 through 8 of the Write Mask. The low-order Write Mask Register is
loaded with a write to port 54h and corresponds to bits 7 through 0 of the Write Mask. (See Figure
8.)

4-4

PORT 55h

~

AS ACCESSED BY

THE CPU

PORT 54h

~
7-------------------0 7------------------0

WRITE MASK (HIGH) WRITE MASK (LOW)

15---------------------------------------0
WORD AS ACCESSED BY GDC

LJ-0222

Figure 8. Write Mask Registers

\

Graphics Option Components

Pattern Generator

When the Graphics Option is in Vector Mode, the Pattern Generator provides the data to be written
to the bitmap. The Pattern Generator is composed of a Pattern Register and a Pattern Multiplier.

The Pattern Register is an 8-bit recirculating shift register that is first selected by writing FBh to
port 53h and then loaded by writing an 8-bit data pattern to port 5Ih.

The Pattern Multiplier is a 4-bit register that is first selected by writing FDh to port 53h and then
loaded by writing a value of O-Fh to port 5Ih.

NOTE
You must load the Pattern Multiplier before loading the Pattern Register.

Figure 9 shows the logic of the Pattern Generator. Data destined for the bitmap originates from the
low-order bit of the Pattern Register. That same bit continues to be the output until the Pattern
Register is shifted. When the most significant bit of the Pattern Register has completed its output
cycle, the next bit to shift out will be the least significant bit again.

PATTERN MULTIPLlER----., ...
(LOADED FROM CPU)

PATTERN REGISTER ---I."
(LOADED FROM CPU)

3

OPTION
CLOCK

~ o

MULTIPLIER

7

SHIFT
CLOCK

1-- DATA PATTERN
I

o

I I L ___________________ I

SHIFTED BITS RECIRCULATED

DATA BIT OUTPUT
TO WRITE CIRCUITRY

LJ-0223

Figure 9. Pattern Generator

4-5

Graphics Option Components

The shift frequency is the write frequency from the option clock divided by 16 minus the value in
the Pattern Multiplier. For example, if the value in the Pattern Multiplier is 12, the shift frequency
divisor would be 16 minus 12 or four. The shift frequency would be one fourth of the write fre
quency and therefore each bit in the Pattern Register would be replicated in the output stream four
times. A multiplier of 15 would take 16 - 15 or one write cycle for each Pattern Register bit shifted
out. A multiplier of five would take 16 - 5 or 11 write cycles for each bit in the Pattern Register.

NOTE
Do not change the contents of the Pattern Multiplier or the Pattern Regis
ter before the GDC has completed all pending vector mode write opera
tions. If you do, the vector pattern that is in the process of being displayed
will take on the new characteristics of the Pattern Generator.

Foreground/Background Register

The Foreground/Background Register is an eight-bit write-only register. The high-order nibble is the
Foreground Register; the low-order nibble is the Background Register. Each of the four bitmap
planes has a Foreground/Background bit-pair associated with it (see Figure 10). The bit settings in
the Foreground/Background Register, along with the mode specified in the ALU/PS Register, deter
mine the data that is eventually received by the bitmap. For example; if the mode is REPLACE, an
incoming data bit of 0 is replaced by the corresponding bit in the Background Register. If the
incoming data bit is a 1, the bit would be replaced by the corresponding bit in the Foreground
Register.

Each bitmap plane has its own individual Foreground/Background bit pair. Therefore, it is possible
for two enabled planes to use the same incoming data pattern and end up with different bitmap
patterns.

4-6

Graphics Option Components

NOTE

3

FOREGROUND

REGISTER

2 1 0

PLANE 0

PLANE 1

PLANE 2

PLANE 3

3

1

BACKGROUND
REGISTER

2 1

01
0

LJ-0224

Figure 10. Foreground/Background Register

Do not change the contents of the Foreground/Background Register before
the GDC has completed all pending write operations. If you do, the informa
tion that is in the process of being displayed will take on the new values of
the Foreground/Background Register.

4-7

Graphics Option Components

ALU IPS Register

The ALUjPS Register has two functions.

Bits ° through 3 of the ALUjPS Register are used to inhibit writes to one or more of the bitmap
planes. If you could not inhibit writes to the bitmap planes, each write operation would affect all
available planes. When a plane select bit is set to 1, writes to that plane will be inhibited. When a
plane select bit is set to 0, writes to that plane will be allowed.

NOTE
During a readback mode operation, all plane select bits should be set to
ones to prevent accidental changes to the bitmap data.

Bits 4 and 5 of the ALU/PS Register define an arithmetic logic unit function. The three logic
functions supported by the option are REPLACE, COMPLEMENT, and OVERLAY. These functions
operate on the incoming data from the Write Buffer or the Pattern Generator as modified by the
Foreground/Background Register as well as the current data in the bitmap and generate the new
data to be placed into the bitmap.

When the logic unit is operating in REPLACE mode, the current data in the bitmap is replaced by
the Foreground/Background data selected as follows:

• An incoming data bit ° selects the Background data.

• An incoming data bit 1 selects the Foreground data.

When the logic unit is operating in COMPLEMENT mode, the current data in the bitmap is modified
as follows:

• An incoming data bit ° results in no change.

• An incoming data bit 1 results in the current data being exclusively or'ed (XOR) with the
appropriate Foreground bit. If the Foreground bit is 0, the current data is unchanged. If the
Foreground bit is 1, the current data is complemented by binary inversion. In effect, the
Foreground Register acts as a plane select register for the complement operation.

4-8
\,

Graphics Option Components

When the logic unit is operating in OVERLAY mode, the current data in the bitmap is modified as
follows:

• An incoming data bit 0 results in no change.

• An incoming data bit 1 results in the current data being replaced by the appropriate Foreground
bit.

NOTE
Do not change the contents of the ALU IPS Register before the GDC has
completed all pending write operations. If you do, the information that is in
the process of being displayed will take on the new characteristics of the
ALU/PS Register.

Color Map

The Color Map is a 16 X 16-bit RAM area where each of the 16 entries is composed of four 4-bit
values representing color intensities. These values represent, from high order to low order, the
monochrome, blue, red, and green outputs to the video monitor. Intensity values are specified in
inverse logic. At one extreme, a value of zero represents maximum intensity (100% output) for a
particular color or monochrome shade. At the other extreme, a value of OFh represents minimum
intensity (zero output).

Bitmap data is not directly displayed on the monitor, each bitmap plane contributes one bit to an
index into the Color Map. The output of the Color Map is the data that is passed to the monitor.
Four bitmap planes (medium resolution) provide four bits to form an index allowing up to 16 intensi
ties of color or monochrome to be simultaneously displayed on the monitor. Two bitmap planes (high
resolution) provide two bits to form an index allowing only four intensities of color or monochrome to
be simultaneously displayed on the monitor.

4-9

Graphics Option Components

In Figure 11, a medium resolution configuration, the bitmap data for the display point x,y is 0110b.
This value, when applied as an index into the Color Map, selects the seventh entry out of a possible
sixteen. Each Color Map entry is sixteen bits wide. Four of the bits are used to drive the color
monitor's red gun, four go to the green gun, four go to the blue gun, and four drive the output to
the monochrome monitor. The twelve bits going to the color monitor support a color palette of 4096
colors; the four bits to the monochrome monitor support 16 shades. (In systems with the Model 100-
A motherboard, only the two low-order bits of the monochrome output are active. This limits the
monochrome output to four unique intensities.)

4-10

BITMAP /
/

PLANE 0 0 BITMAP DATA
/

/

I
PLANE 1 1 0110b

/

PLANE 2 1/
I

/

/
PLANE 3 0

I
X,Y

4(*) BITS OF MONOCHROME LEVEL TO MONO. MONITOR

4 BITS OF BLUE LEVEL TO COLOR MONITOR

4 BITS OF RED LEVEL TO COLOR MONITOR

4 BITS OF GREEN LEVEL TO COLOR MONITOR

(*) 2 LOW-ORDER BITS ON MODEL 100-A SYSTEMS

COLOR MAP
0
•
•
•

• 6

•
•
•
•
•

15

-

LJ-0225

Figure 11. Bitmap/Color Map Interaction (medium resolution)

Graphics Option Components

In Figure 12, a high resolution configuration, the bitmap data for point (x,y) is lOb. This value, when
applied as an index into the Color Map, selects the third entry out of a possible four. Again, each
Color Map entry is sixteen bits wide; 12 bits of information are used for color and four are used for
monochrome. (In systems with the Model 100-A motherboard, only the two low-order bits of the
monochrome output are active. This limits the monochrome output to four unique intensities.)

BITMAP

PLANE a

PLANE 1

I

,1
I

I

(X,Y)

I
I

/
a

I

/
BITMAP DATA

4(*) BITS OF MONOCHROME LEVEL TO MONO. MONITOR

4 BITS OF BLUE LEVEL TO COLOR MONITOR

4 BITS OF RED LEVEL TO COLOR MONITOR

4 BITS OF GREEN LEVEL TO COLOR MONITOR

(*) 2 LOW-ORDER BITS ON MODEL 100-A SYSTEMS

a
1

~ 2

3

•
•
•

15

Figure 12. Bitmap/Color Map Interaction (high resolution)

COLOR MAP

LJ-0226

4-11

Graphics Option Components

Loading the Color Map

The Graphics Option accesses the Color Map as sixteen 16-bit words. However, the CPU accesses
the Color Map as 32 eight-bit bytes. The 32 bytes of intensity values are loaded into the Color Map
one entire column of 16 bytes at a time. The red and green values are always loaded first, then the
monochrome and blue values. (See Figure 13.)

4-12

ADDRESS
VALUE

o

2

3

4

5

6

•
•
•
•

15

7

i.-'

1

2ND 16 BYTES 1ST 16 BYTES
LOADED BY LOADED BY

THE CPU THE CPU

4 3 o 7 4 3 0

MONO. BLUE RED GREEN COLOR MONOCHROME

DATA DATA DATA DATA DISPLAYED DISPLAYED

15 15 15 15 BLACK BLACK

•
14 15 0 15 RED •

•
13 15 15 0 GREEN G

R
12 0 15 15 BLUE A

11 0 0 15 MAGENTA
Y

S

10 0 15 0 CYAN H
A

9 15 0 0 YELLOW D
E

V

o o o o 1
• S

• •
• •
• •

WHITE WHITE

LJ-0227

Figure 13. Sample Color Map With Loading Sequence

\

Graphics Option Components

Writing the value DFh to port S3h selects the Color Map and also clears the Color Map Index
Counter to zero. To load data into the Color Map requires writing to port Slh. Each write to port
Slh will cause whatever is on the motherboard data bus to be loaded into the current Color Map
location. After each write, the Color Map Index Counter is incremented by one. If 33 writes are
made to the Color Map, the first Color Map location will be overwritten.

NOTE
Do not change the contents of the Color Map before the GDC has com
pleted all pending write operations. If you do, the information that is in the
process of being displayed will take on the new Color Map characteristics.

Video Drive Voltages

The output of the Color Map, as shown in Figures 11 and 12, consists of four 4-bit values that
represent the red, green, blue, and monochrome intensities to be displayed on some applicable
monitor. These four intensity values are the input to four digital-to-analog converters. (Refer to the
block diagram in Appendix B.) The output of these converters are the video drive voltages that are
applied to pins 9 through 12 of the J3 Video Output Jack.

The output of the digital-to-analog converters for the red, green, and blue intensities is not depen
dent on the model of the system motherboard. The digital-to-analog converter for the monochrome
intensities, however, produces different output depending on whether the motherboard is a model A
or a model B. On systems with a model A motherboard, only the two low-order bits of the intensity
value are active. This provides a limited range of only four output voltages for the m()nochrome
signal. On a color monitor only configuration, where the green output is derived from the mono
chrome portion of the Color Map, the same limited range applies. On systems with a model B
motherboard, all four bits of the intensity value are active. This provides the full range of 16 output
voltages for the red, green, blue, and monochrome signals. The conversion of Color Map intensity
values to video drive voltages for each of these ranges are shown in Table 2.

The perceived intensity of a display is not linearly related to the video drive voltages. A given
difference in drive voltage at the high end of the range is not as noticeable as the same difference
occurring at the low end of the range.

4-13

Graphics Option Components

Table 2. Intensity Values vs Video Drive Voltages

INTENSITY VALUES VIDEO DRIVE VOLTAGES (NORMALIZED)

HEX BINARY LIMITED RANGE FULL RANGE

a 0000 1.09 1.00
1 0001 0.79 0.85
2 0010 0.71 0.79
3 0011 0.09 0.73
4 0100 1.09 0.67
5 0101 0.79 0.61
6 0110 0.71 0.55
7 0111 0.09 0.49
8 1000 1.09 0.43
9 1001 0.79 0.38
A 1010 0.71 0.31
B 1011 0.09 0.26
C 1100 1.09 0.21
D 1101 0.79 0.12
E 1110 0.71 0.07
F 1111 0.09 0.00

LIMITED RANGE: MODEL A - ALL MONOCHROME OUTPUT
- GREEN OUTPUT ON COLOR

MONITOR ONLY SYSTEM

FULL RANGE: MODEL A - RED/BLUE OUTPUT ON COLOR
MONITOR ONLY SYSTEM

- RED/GREEN/BLUE OUTPUT ON
DUAL MONITOR SYSTEM

MODEL B - RED/BLUE/GREEN/MONOCHROME
OUTPUT ON ALL SYSTEMS

LJ-0259

4-14

Graphics Option Components

Mode Register

The Mode Register is an 8-bit multi-purpose register that is loaded by first selecting it with a write
of BFh to port 53h and then writing a data byte to port 51h. The bits in the Mode Register have the
following functions:

• Bit 0 determines the resolution mode:

o = medium resolution mode (384 pixels across)
1 = high resolution mode (800 pixels across)

• Bit 1 determines the write mode:

0= word mode, 16 bits/RMW cycle, data from Write Buffer
1 = vector mode, 1 bit/RMW cycle, data from Pattern Generator

• Bits 3 and 2 select a bitmap plane for readback mode operation:

00 = plane 0
01 = plane 1
10 = plane 2
11 = plane 3

• Bit 4 determines the option's mode of operation:

o = read mode, bits 3 and 2 determine readback plane
1 = write mode, writes to the bitmap allowed but not mandatory

• Bit 5 controls writing to the Scroll Map:

o = writing is enabled (after selection by the Indirect Register)
1 = writing is disabled

• Bit 6 controls the interrupts to the CPU generated by the Graphics Option every time the GDC
issues a vertical sync pulse:

o = interrupts are disabled, any pending interrupts are cleared
1 = interrupts are enabled

• Bit 7 controls the video data output from the option:

o = output is disabled, other option operations still take place
1 = output is enabled

NOTE
Do not change the contents of the Mode Register before the GDC has
completed all pending write operations. If you do, the functions controlled
by the Mode Register will take on the new characteristics and the results
may be indeterminate.

4-15

Graphics Option Components

Scroll Map

The Scroll Map is a 256 X 8-bit recirculating ring buffer that is used to offset scan line addresses in
the bitmap in order to provide full and split-screen vertical scrolling. The entire address as generated
by the GDC does not go directly to the bitmap. Only the low-order six bits of the GDC address go
directly to the bitmap. They represent one of the 64 word addresses that are the equivalent of one
scan line in high resolution mode or two scan lines in medium resolution mode. The eight high-order
bits of the GDC address represent a line address and are used as an index into the 256-byte Scroll
Map. The eight bits at the selected location then become the new eight high-order bits of the
address that the bitmap sees. (See Figure 14.) By manipulating the contents of the Scroll Map, you
can perform quick dynamic relocations of the bitmap data in 64-word blocks.

4-16

GDC ADDRESS
BITS 0-5

(WORD)

GDC ADDRESS
BITS 6-13
(LINE)

a

255

WORD ADDRESS

7 a
•
•
•
•
•

XXXXXXXX •
• •
• •
• •
• ~ • • • • WORD • • • • • • • •
• OFFSET •

I
SCAN
LINE

SCROLL MAP BITMAP

LJ-0228

Figure 14. Scroll Map Operation

'~

Graphics Option Components

Loading the Scroll Map

Start loading the offset addresses into the Scroll Map at the beginning of a vertical retrace. First set
bit 5 of the Mode Register to zero to enable the Scroll Map for writing. Write a 7Fh to port 53h to
select the Scroll Map and clear the Scroll Map Index Counter to zero. Then do a series of writes to
port 5Ih with the offset values to be stored in the Scroll Map. Loading always begins at location zero
of the Scroll Map. With each write, the Scroll Map Index Counter is automatically incremented until
the write operations terminate. If there are more than 256 writes, the index counter loops back to
Scroll Map location zero. This also means that if line 255 requires a change, lines 0-254 will have to
be rewritten first.

All 256 scroll map entries should be defined even if all 256 addresses are not displayed. This is to
avoid mapping undesirable data onto the screen. After the last write operation, bit 5 of the Mode
Register should be set to one to disable further writing to the Scroll Map.

The time spent to load the Scroll Map should be kept as short as possible. During loading, the GDC's
address lines no longer have a path to the bitmap and therefore memory refresh is not taking place.
Delaying memory refresh can result in lost data.

While it is possible to read out of the Scroll Map, time constraints preclude doing both a read and a
rewrite during the same vertical retrace period. If necessary, a shadow image of the Scroll Map can
be kept in some area in memory. The shadow image can be updated at any time and then trans
ferred into the Scroll Map during a vertical retrace.

4-17

)

PART 1/

Chapter 5. Initialization and Control 5-1
T est for Option Present 5-1

Example of Option Test 5-1
Test for Motherboard Version 5-2

Example of Version Test for CP/M System 5-2
Example of Version Test for MS-DOS System 5-3
Example of Version Test for Concurrent CP/M System 5-5

Initialize the Graphics Option 5-6
Reset the GDC 5-6
Initialize the GDC 5-7
Initialize the Graphics Option 5-8
Example of Initializing the Graphics Option 5-9

Controlling Graphics Output 5-24
Example of Enabling a Single Monitor 5-24
Example of Disabling a Single Monitor 5-25

Modifying and Loading the Color Map 5-25
Example of Modifying and Loading Color Data in a Shadow Map 5-26

Chapter 6. Bitmap Write Setup (General) 6-1
Loading the ALU/PS Register 6-1

Example of Loading the ALU/PS Register 6-1
Loading the Foreground/Background Register 6-2

Example of Loading the Foreground/Background Register 6-2

Contents

Contents

Chapter 7. Area Write Operations 7-1

Display Data from Memory 7-1
Example of Displaying Data from Memory 7-1

Set a Rectangular Area to a Color 7-4
Example of Setting a Rectangular Area to a Color 7-4

Chapter 8. Vector Write Operations 8-1

Setting Up the Pattern Generator 8-1
Example of Loading the Pattern Register 8-1
Example of Loading the Pattern Multiplier 8-3

Display a Pixel 8-4
Example of Displaying a Single Pixel 8-4

Display a Vector 8-5
Example of Displaying a Vector 8-6

Display a Circle 8-9
Example of Drawing a Circle 8-9

Chapter 9. Text Write Operations 9-1

Write a Byte-Aligned Character 9-1
Example of Writing a Byte-Aligned Character 9-1

Define and Position the Cursor 9-32
Example of Defining and Positioning the Cursor 9-32

Write a Text String 9-38
Example of Writing a Text String 9-38

Chapter 10. Read Operations 10- 1

The Read Process 1 0-1
Read the Entire Bitmap 10-1

Example of Reading the Entire Bitmap 1 0-2
Pixel Write After a Read Operation 10-5

Chapter 11. Scroll Operations 1 1-1
Vertical Scrolling 11-1

Example of Vertical Scrolling One Scan Line 11-2
Horizontal Scrolling 11-4

Example of Horizontal Scrolling One Word 11-4

Chapter 12. Programming Notes 12-1
Shadow Areas 1 2-1
Bitmap Refresh 1 2-1
Software Reset 12-2
Setting Up Clock Interrupts 12-2
Operational Requirements 12-3
Set-Up Mode 12-3
Timing Considerations 1 2-4

5
Initialization and Control

The examples in this chapter cover the initialization of the Graphics Display Controller (GDC) and
the Graphics Option, the control of the graphics output, and the management of the option's color
palette.

Test for Option Present

Before starting any application, you should ensure that the Graphics Option has been installed on the
Rainbow system. Attempting to use the Graphics Option when it is not installed can result in a
system reset that can in turn result in the loss of application data. The following code will test for
the option's presence.

Example of Option Test

.** ,
*

p r 0 C e d U r e 0 p t i 0 n - p r e 5 e n t - t e 5 t *
*

purpo5e: te5t if Graphic5 Option i5 pre5ent. *
entry: none. *
exit: dl = 1 option pre5ent. *

dl = 0 option not pre5ent. *
regi5ter u5age: ax,dx *

.** ,

5-1

Initialization and Control

cseg segment byte public 'codesg'
public option_present_test
assume cs:cseg,ds:nothing,es:nothing,ss:nothing

option_present_test proc near
mov dl,1 ;set dl for option present
in al,8 ;input from port 8
test al,04h ;test bit 2 to see if option present
j z opt1 ;if option is present, exit
xor dl,dl ;else, set dl for option not present

opt1: ret
option_present_test endp
cseg ends

end

Test for Motherboard Version

When you initially load or subsequently modify the Color Map, it is necessary to know what version
of the motherboard is installed in the Rainbow system. The code to determine this is operating
system dependent. The examples in the following sections are written for CP/M, MS-DOS, and
Concurrent CP/M.

Example of Version Test for CP 1M System

.** ,

pro c e d u r e t est _ boa r d _ v e r s ion

purpose:
restriction:
entry:

Test motherboard version
This routine will work under cp/m only.
none.

exit: o = 'A' motherboard
1 = 'B' motherboard

register usage: ax,bx,cx,dx,di,si,es

flag :=

*
*
*
*
*
*
*
*
*

.** ,

5-2

\

Initialization and Control

flag

d5eg
db

buffer r5

OOOh

14

c5eg
te5t_board_ver5ion:

pU5h bp
mov ax,d5
mov e5,ax

mov di,O
mov cx,14

xor al,al
opt1: mov buffer[dil,al

inc di

loop opt1
mov ax,d5
mov bp,ax
mov dx,off5et buffer

mov di,1ah
int 40
mov 5i,0

mov cx,S

opt2: cmp buffer[5il,0

;re5erve 14 byte5

;clear buffer, JU5t to be 5ure
;point e5:di at it

;14 byte5 to clear

;clear clearing byte
ido the clear

iloop till done
ipoint bp:dx at buffer for
; int 40 call

;5et opcode for call to get hw #

;5et count for P055ible return ASCII

Jne opt3 ;got 50mething back, have rainbow 'B'

opt3:
opt4:

inc

loop
mov

jmp
mov

pop
ret

5i

opt2 ; loop till done

flag,O ;no ASCII, 5et rainbow 'A' type

opt4

flag,1 ;got ASCII, 5et rainbow 'B' type

bp

Example of Version Test for MS-DOS System

.** •• * ••• * •••••••••••• **** ••••••• **** •• ** •• *** •••••••• ******** •••• *.* ,

pro c e d u r e t e 5 t _ boa r d _ v e r 5 ion

purpo5e:
re5triction:

entry:

exit:

te5t motherboard ver5ion

thi5 routine will work under MS-DOS only
-none
flag •• o • 'A' motherboard

• 'B' motherboard

regi5ter u5age: ax,bx,cx,dx,di,5i

•
•
•
•
•
•
•
•
•

.*.* ••• ********* ••• *.*** ••• *** ••• **********.************************* ,

5-3

Initialization and Control

cseg segment byte publIc 'codesg'
publIc test_board_version
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

test_board_version proc near
push bp
mov dI,O
mov cx,14
xor al,al

tb1: mov byte ptr
inc di
loop tb1
mov ax,ds
mov bp,ax

;save bp
;clear buffer to be sure
;14 bytes to clear
;clear clearIng byte

buffer[dll,al ;do the clear

; loop till done
;point bp:dx at buffer for
; I nt 18h call

mov dx,offset buffer

tb2:

tb3:
tb4:

mov
int
mov
mov
cmp
jne
Inc
loop
mov
jmp
mov
pop
ret

di,1ah
18h
si,O
cx,8
byte ptr
tb3
si
tb2
flag,O
tb4
flag,1
bp

test_board_version
c5eg end5
dseg segment byte

public flag
fhg db 0
buffer db 14
d5eg ends

end

5-4

;set opcode for call to get hw #

lint 40 remapped to 18h under MS-DOS

;set count for possible return ASCII
buffer£sil,O

endp

public

dup (?)

;got something back, have rainbow 'B'

;no ASCII, set rainbow 'A' type

;got ASCII, set rainbow B type
;recover bp

'data5g'

\ ,

(
\.

/

Initialization and Control

Example of Version Test for Concurrent CP 1M System

••• ,
*

pro c e d u r e t est _ boa r d _ v e r s 1 0 n *
*

purpose: test motherboard vers10n *
restr1ction: th1s rout1ne for Concurrent CP/M only *
entry: none *
ex1t: flag . - 0 - 'A' motherboard *

1 - 'B' motherboard *
reg1ster usage: ax,bx,cx,dx,s1 * .. -- _ .. ,

mov

mov
mov
mov

mov

mov

int
mov

mov

mov
mov

cmp

Jne
inc

mov

cmp

je
mov

cmp

je
mov

cmp

je

control_b+2,ds

d1,offset b10sd

bx,3
[d1+bxl,ds

dx,offset b10sd

cl,32h

OeOh
flag,O

bx,6
si,offset array_14

al,'O'
[si+bxl,al
found_b

bx
al,'1'

[si+bxl,al
test_board_exit

al,'2'
[si+bxl,al
test_board_exit

al,'3'
[si+bxl,al
test_board_exit

;setup for function SO call

; function 50
;set flag for rainbow 'A'
;offset to array_14

;'0', could be a rainbow 'A'
;no, must be rainbow 'B'
;next number •.•

;can be e1ther 1 .••

; or 2 •••

lor 3 1f its a rainbow 'A'

5-5

Initialization and Control

found_b:
mov flag,1 jits a rainbow 'B'

test_board_exit:
ret
dseg

biosd db 80h

dw offset control_b
dw 0

control_b dw 4
dw 0

dw offset array_14
array_14 rs 14
flag db 0

end

Initialize the Graphics Option

Initializing the Graphics Option can be separated into the following three major steps:

• Reset the GDC to the desired display environment.

• Initialize the rest of the GDC's operating parameters.

• Initialize the Graphic Option's registers, buffers, and maps.

Reset the GDC

To reset the GDC, give the RESET command with the appropriate parameters followed by com
mands and parameters to set the initial environment. The RESET command is given by writing a
zero byte to port 57h. The reset command parameters are written to port 56h.

The GDC Reset Command parameters are the following:

Parameter Value

1 12h

2 16h
30h

5-6

Meaning

The GDC is in graphics mode
Video display is noninterlaced
No refresh cycles by the GDC
Drawing permitted only during retrace

For medium resolution
For high resolution

The number of active words per line, less two. There are 24 (18h) active
words per line in medium resolution mode and 50 (32h) words per line in
high resolution mode.

Parameter Value

3 61h

4

5

6

7

8

64h

04h
08h

02h
03h

03h

FOh

40h

Initialize the GDC

Meaning

For medium resolution
For high resolution

Initialization and Control

The low-order five bits are the horizontal sync width in words less one
(medium res. HS=2, high res. HS=5). The high-order three bits are the
low-order three bits of the vertical sync width in lines (VS=3).

For medium resolution
For high resolution

The low-order two bits are the high-order two bits of the vertical sync
width in lines. The high-order six bits are the horizontal front porch
width in words less one (medium res. HFP=2, high res. HFP=3).

For medium resolution
For high resolution

Horizontal back porch width in words less one (medium res. HBP=3, high
res. HBP=4).

Vertical front porch width in lines (VFP=3).

Number of active lines per video field (single field, 240 line display).

The low-order two bits are the high-order two bits of the number of
active lines per video field. The high-order six bits are the vertical back
porch width in lines (VBP=16).

Now that the CDC has been reset and the video display has been defined, you can issue the rest of
the initialization commands and associated parameters by writing to ports 57h and 56h respectively.

Start the CDC by issuing the START command (6Bh).

ZOOM must be defined; however, since there is no hardware support for the Zoom feature, program
a zoom magnification factor of one by issuing the ZOOM command (46h) with a parameter byte of
00.

Issue the WDAT command (22h) to define the type of Read/Modify/Write operations as word trans
fers - low byte, then high byte. No parameters are needed at this time because the CDC is not being
asked to do a write operation; it is only being told how to relate to the memory.

5-7

Initialization and Control

Issue the PITCH command (47h) with a parameter byte of 20h for medium resolution or 40h for
high resolution to tell the GDC that each scan line begins 32 words after the previous one for
medium resolution and 64 words after the previous one for high resolution. Note, however, that only
24 or 50 words are displayed on each screen line. The undisplayed words left unscanned are
unusable.

The GDC can simultaneously display up to four windows. The PRAM command defines the window
display starting address in words and its length in lines. The Graphics Option uses only one display
window with a starting address of 0000 and a length of 256 lines. To set this up, issue the PRAM
command (70h) with four parameter bytes of OO,OO,FO,OF.

Another function of the GDC's parameter RAM is to hold soft character fonts and line patterns to be
drawn into the bitmap. The Graphics Option, rather than using the PRAM for this purpose, uses the
external Character RAM and Pattern Generator. For the external hardware to work properly, the
PRAM command bytes 9 and 10 must be loaded with all ones. Issue the PRAM command (78h) with
two parameter bytes of FF ,FF.

Issue the CCHAR command (4Bh) with three parameter bytes of 00,00,00, to define the cursor
characteristics as being a non-displayed point, one line high.

Issue the VSYNC command (6Fh) to make the GDC operate in master sync mode.

Issue the SYNC command (OFh) to start the video refresh action.

The GDC is now initialized.

Initialize the Graphics Option

First you must synchronize the Graphics Option with the GDC's write cycles. Reset the Mode
Register by writing anything to port SOh and then load the Mode Register.

Next, load the Scroll Map. Wait for the start of a vertical retrace, enable Scroll Map addressing,
select the Scroll Map, and load it with data.

Initialize the Color Map with default data kept in a shadow area. The Color Map is a write-only area
and using a shadow area makes the changing of the color palette more convenient.

Set the Pattern Generator to all ones in the Pattern Register and all ones in the Pattern Multiplier.

Set the Foreground/Background Register to all ones in the foreground and all zeros in the
background.

Set the ALU IPS Register to enable all four planes and put the option in REPLACE mode.

Finally, clear the screen by setting the entire bitmap to zeros.

5-8

\ ,
)

Initialization and Control

Example of Initializing the Graphics Option

The following example is a routine that will initialize the Graphics Option including the GDC. This
initialization procedure leaves the bitmap cleared to zeros and enabled for writing but with graphics
output turned off. Use the procedure in the next section to turn the graphics output on. Updating of
the bitmap is independent of whether the graphics output is on or off.

.** ,
*

p r 0 c e d u r e n i t 0 P t i 0 n * -
*

purpo5e: initialize the graphic5 option *
*

entry: dx = 1 medium re50lution *
dx = 2 high re50lution *

exit: all 5hadow byte5 initialized *
regi5ter u5age: none, all regi5ter5 are 5aved *

.** ,
c5eg
extrn

5egment byte public 'code5g'
alup5:near,pattern_regi5ter:near,pattern_mult:near,fgbg:near
public init_option
a55ume c5:c5eg,d5:d5eg,e5:d5eg,55:nothing

init_option proc near
ax pU5h ;5ave the regi5ter5

pU5h
pU5h
pU5h
pU5h
pU5h
c1d

bx
cx
dx
di
5i

;make 5ure that 5t05 inC5.

jFir5t we have to find out what the interrupt vector i5 for the
;graphic5 option. If th15 15 a Model 100-A, interrupt vector
;22h i5 the graphic5 interrupt. If thi5 15 a Model 100-B, the
;interrupt vector i5 relocated up to A2. If EEOO:OF44h and
;04(>0, we have the relocated vector5 of a Model 100-B and need
ito OR the m5b of our vector.

mov
mov
pU5h
mov
mov
mov
te5t
j z
mov

ax,d5
word ptr c5:5egment_5ave,ax
e5 ;5ave valid e5
bx,OeeOOh ;te5t if vector5 are relocated
e5,bx
ax,88h
e5:byte ptr Of44h,4
gO
I!Ix,288h

;100-A into vector ba5e addr
;relocated vector5?
;jump if ye5
;100-B into vector ba5e addr

5-9

Initialization and Control

gO: mov
pop
cmp
jz
jmp

mid_res:
mov
out
mov
call
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
mov
mov
mov
mov
jmp

5-10

word ptr g_int_vec,ax
es
dx,1
mid_res
hi_res

al,OO
57h,al
gbmod,030h
mode
al,12h
056h,al
al,16h
056h,al
al ,61 h
056h,al
al,04
056h,al
al,02
056h,al
al,03
056h,al
al,OfOh
056h,al
al,40h
056h,al
al,047h
057h,al

;medium resolution?
;jump if yes
;else is high resolution

;medium resolution reset command

;mode = med res, text, no readback
;turn off graphics output
;p1. refresh, draw enabled during
;retrace
;p2. 24 words/line minus 2
;384/16 pixels/word=24 words/line
;p3. 3 bits vs/5 bits hs width - 1
;vs=3, hs=2
;p4. 6 bits hfp-1, 2 bits vs high
;byte, 2 words hfp, no vs high byte
;p5. hbp-1, 3 words hbp

;p6. vertical front porch, 3 lines

;p7. active lines displayed

;p8. 6 bits vbp/2 bits lines/field
;high byte, vbp=16 lines
;pitch command, med res, straight up

al,32 ;med res memory width for vert. pitch
056h,al
word ptr nmritl,3fffh
word ptr xmax,383 ;384 pixels across in med res
byte ptr num_planes,4 ;4 planes in med res
byte ptr shifts_per_Iine,5 ;rotates for 32 wds/line
byte ptr words_per_line,32 ;words in a line
common_init

(

hi_res: mov
out
mov
call
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
mov
mov
mov
mov

common_init:
mov
mov
mov
mov
out
mov

al,OO
57h,al
gbmod,031h
mode
al,12h
056h,al
al,30h
056h,al
al,64h
056h,al
al,08
056h,al
al,03
056h,al
al,03
056h,al
al,OfOh
056h,al
al,40h
056h,al
al,047h
057h,al
al,64
056h,al

Initialization and Control

;high resolution reset command

;mode = high res, text, no readback
;disable graphics output
;p1. refresh, draw enabled during
;retrace
;p2. 50 words/line - 2

;p3. hsync w-1=4(low 5 bits), vsync
;w=3(upper three bits)
;p4. hor fp w-1=2(upper 2 bits),
;vsync high byte = 0
; p5. hbp-1. 3 words hbp

;p6. vertical front porch, 3 lines

;p7. active lines displayed

;p8. 6 bits vbp/2 bits lines per field
;high byte. vbp=16 lines
;pitch command, high res, straight up

;high res pitch is 64 words/line

word ptr nmritl,7fffh
word ptr
byte ptr
byte ptr
byte ptr

al,OO
startl,al
starth,al
al,06bh
057h,al
al,046h

xmax,799 ;800 pixels across
num_planes,2 ;2 planes in high res
shifts_per_line,6 ;shifts for 64 wds/line
words_per_line,64 ;number of words/line

;setup start window display for memory
;location 00

;start command
;start the video signals going
;zoom command

out 057h,al
mov
out
mov
out

al,O
056h,al
al,22h
57h,al

;magnification assumed to be 0

;setup R/M/W memory cycles for
;figure drawing

5-11

Initialization and Control

jlnitialize PRAM command. Start window at the address in startl,
jstarth. Set the window length for 256 lines. Fill PRAM parameters
j8 and 9 with all ones so GOC can do graphics draw commands without
jaltering the data we want drawn.

5-12

mov
out
mov
out
mov
out
mov
out
mov
out
mov

al,070h
057h,al
al,startl
056h,al
al,starth
056h,al
al,Offh
056h,al
al,Ofh
056h,al
al,078h

out 057h,al
mov
out

al,Offh
056h,al

out 056h,al
mov al,04bh
out 057h,al
xor
mov
out

al,al
cchp1,al
056h,al

mov cchp2,al
out 056h,al
mov cchp3,al
out 056h,al
mov
out
out

al,06fh
057h,al
050h,al

mov al,Obfh
out 53h,al

jissue the pram command, setup
jGOC display
jp1. display window starting address
j low byte
jp2. display window starting address
jhigh byte
jp3. make window 256 lines

jp4. high nibble display line on
iright, the rest = 0
jissue pram command pointing to p8

ifill pram with ones pattern

jissue the cchar command

iinitialize cchar parameter bytes
jgraphics cursor is one line, not
jdisplayed, non-blinking

jvsync command

jreset the graphics board

mov
or
out

al,byte ptr gbmod
al,40h

jenable, then disable interrupts
jto flush the interrupt hardware
j latches 51h,al

mov cx,4920 jwait for a vert sync to happen

I

\

g1 : loop
mov
out
mov
out
call
call
mov
ca 11
mov
call
mov
call
mov
call
mov
mov
mov
rep
mov
mov
mov
mov
mov
mov
mov
mov
out
mov
out
call
mov
mov
out
pop
pop
pop
pop
pop
pop
ret

iniLoption

g1
al,Obfh
53h,al
al,byte ptr gbmod
51h,al
assert_colormap
inscrl
b 1,1
pattern_mult
bl,Offh
pattern_register
bl,OfOh
fgbg
bl,O
alups
di,offset p1
al,Offh
cx,16
stosb
al,O
gbmskl ,al
gbmskh,al
al,Offh
gdcml,al
gdcmh,al
word ptr curlO,O
ax,word ptr gbmskl
54h,al
al,ah
55h,al
setram
word ptr ymax,239
al,Odh
57h,al
si
di
dx
cx
bx
ax

endp

Initialization and Control

;disable the interrupts

;load colormap
;initialize scroll map
;set pattern multiplier to 16-bl
;see example "pattern_mult"
;set pattern data of all bits set
;see example "pattern_register"
;enable all foreground registers
;see example "fgbg"
;enable planes 0-3, REPLACE logic
;see example "alups"
;fill the p table with ff's.

;enable all gb mask writes.

;set GDC mask bits

;set cursor to top screen left
;fetch ahd issue the graphics
;option text mask

;then set ram to p1 thru p16 data

;enable the display
;recover the registers

5-13

Initialization and Control

••••••••••••••••••••• F ••• ,
;.
•• ,
•• ,

g rap h i c s
•

sub r 0 uti n e s •
•

••• ,

gsubs
publ1c
publ1c

proc near
setram,assert_colormap,gdc_not_busy,imode,color_int,scrol_int
cxy2cp,mode

••• ,

sub r 0 uti n e ass e r t _ color map

colormap is located at clmpda which is defined in
procedure "change_colormap"

entry:
exit:

clmpda • colormap to be loaded
none

register usage: ax,bx

•
•
•
•
•
•
•
•
•

••• ,

assert_colormap:
cld
call ;make sure nothing's happening

;The graphics interrupt vector "giv" is going to be either 22h or
;A2h depending on whether this is a Model 100-A or a Model 100-8
;with relocated vectors. Read the old vector, save it, then
;overwrite it with the new vector.

5-14

push
xor
mov
mov
cli
mov
mov
mov
mov
mov

es
aX,ax
es,ax
bx,word ptr g_int_vec

ax,es:[bxl
word ptr old_int_off,ax
ax,es:[bx+21
word ptr old_int_seg,ax
word ptr es:[bxl,offset

mov ax,cs
mov
st!

es:[bx+21,ax

pop es
mov
or
call

byte ptr int_done,O
byte ptr gbmod,40h
mode

;fetch address of "giv"
;temp. disable interrupts
;read the old offset

;read the old segment

color_int ;load new offset

;load new int segment
;re-enable interrupts

;clear interrupt flag
;enable graphics interrupt

!!IC 1 : te!!t
jz
pu!!h
xor
mov
mov
cli
mov
mov
mov
mov
st!
pop
cld
ret

color_int:
push
push
push
push
push
mov
mov
mov
cld
and
call
mov
mov
out
mov

c i 1 : lodsb
out
loop
mov
pop
pop
pop
pop
pop
iret

Initialization and Control

byte ptr int_done,Offh ;h!!l!! interrupt routine run?
!!Ic1

!!IX ,!!IX
e!!,!!Ix
bx,word ptr g_int_vec

;re!!tore interrupt vector!!

;fetch gr!!lphic!! vector off!!et

!!Ix,word ptr old_int_off ;re!!tore old interrupt vector
e!!dbxl,ax
ax,word ptr old_int_!!eg
e!!: [bx+2l ,ax

cx
ax

;m!!lke lods inc !!i

ax,word ptr cs:segment_!!ave ;can't depend on e!! or d!!
ds,ax
eS,ax

byte ptr gbmod,Obfh
mode
si,offset clmpda
al,Odfh
053h,al

;reload segment registers

;dlsable graphics interrupts'

;fetch color source
;get the color map's attention

cx,32 ;32 color map entries
;fetch current color map data

051h,al ;load color map
ci1 ;loop until all color map data loaded
byte ptr int_done,Offh ;set "interrupt done" flag
ax
cx
sl
ds
es

5-15

Initialization and Control

.** ,
*

sub r 0 u t n e c x Y 2 c P *
*

CXY2CP takes the xinit and yinit numbers, converts them to *
an absolute memory location and puts that location into *
curlO,1,2. yinit is multiplied by the number of words per *
line. The lower 4 bits of xinit are shifted to the left *
four places and put into curl2. xinit is shifted right four *
places to get rid of pixel information and then added to *
yinit times words per line.
curl1.

This result becomes curIO,

entry: xinit
yinit

x pixel location
y pixel location

exit: curIO,1,2
register usage: ax,bx,cx,dx

*
*
*
*
*
*
*

-** ,

cxy2cp: mov
mov
shl
mov
mov
mov
shl
mov
mov
shr
add
mov
ret

ax,yinit
ax,cl
bx,xinit
dx,bx
cl,4
bl,cl
curl2,bl
cl,4
dx,cl
ax,dx

;compute yinit times words/line
;ax has yinit times words/line
;calculate the pixel address
;save a copy of xinit
;shift xinit 4 places to the left
;bl has pixel within word address
;pixel within word address
;shift xinit 4 places to right
;to get xinit words

word ptr curlO,ax ;word address

-** ,

sub r 0 u t n e g d c _ not _ bus Y

gdc_not_busy will put a harmless command into the GDC and
wait for the command to be read out of the command FIFO.
This means that the GDC is not busy doing a write or read
operation.

entry: none
exit: none
register usage: ax

*
*
*
*
*
*
*
*
*
*
*

-** ,

5-16

Initialization and Control

gdc_not_busy:
push
in
test
j z
mov

gnbO:

gnb2:

gnb3:

gnb4:

in
test
j z
loop
mov
out
in
test
j z
mov
in
test
jnz
loop
mov
out

cx
al,05Sh
al,2
gnb2
cx,BOOOh
al,05Sh
al,2
gnb2
gnbO
al,Odh
057h,al
al,05Sh
al,2
gnb4
cx,BOOOh
al,05Sh
al,2
gnb4
gnb3
ax,40dh
057h,al

mov cx,BOOOh
gnb5:

gnbS:

in
test
jnz
loop
pop
ret

al,05Sh
ah,al
gnbS
gnb5
cx

juse cx as a time-out loop counter
jflrst check if the FIFO is full

jjump if not
jwait for FIFO not full or reasonable
jtime, whichever happens first
jhas a slot opened up yet?
j jump if yes
jtf loop count exceeded, go on anyway
jissue a screen-on command to GDC

jdid that last command fill it?

j jump if not

jread status register
jtest FIFO full bit
j jump if FIFO not full
jloop until FIFO not full
jissue another screen-on,
jwait for FIFO empty

jread the GDC status
jFIFO empty bit set?
jjump if not.

or give up

.** ,
*

sub r 0 uti n e i mod e *
*

issue Mode command with the parameters from register gbmod *
*

entry: gbmod *
exit: none *
register usage: ax *

.** ,

imode: call
mov
out
mov
out
ret

gdc_not_busy
al,Obfh
53h,al
al,gbmod
51h,al

jaddress the mode register through
jthe indirect register

jload the mode register

5-17

Initialization and Control

mode: mov IIl,Obfh ;address the mode register through
out 53h,al ;the indirect register
mov al,gbmod
out 51h,al ; load the mode register
ret

••• ,

sub r 0 uti n e ins c r 1

initialize the scroll map

entry:
exit:

none
none

register usage: ax,bx,cx,dx,di,si

•
•
•
•
•
•
•
•

••• ,

inscrl: cld
mov
xor
mov

inscO: stosb
inc
loop

cx,256 ;initialize all 256 locations of the
al,al ;shadow area to desired values
di,offset scrltb

III
inscO

;The graphiCS interrupt vector is going to be either 22h or A2h
;depending on whether this is a Model 100-A or a Model 100-8 with
;relocated vectors. Read the old vector, save it, and overwrite it
;with the new vector. Before we call the interrupt, we need to
;make sure that

ascrol: call
push
xor
mov
mov
cli
mov
mov
mov
mov
mov
mov
mov
sti
pop
mov
or
call

5-18

the GDC is not writing something out to the bitmap.

aX,ax
es,ax
bx,word ptr g_int_vec

;check if GDC id busy

;temporarily disable interrupts
ax,es:[bxl ;read the old offset
word ptr old_int_off,ax
ax,es:[bx+21 ;read the old segment
word ptr old_int_seg,ax
word ptr es:[bxl,offset scrol_int ;load new offset
ax,cs
es:[bx+21,ax

es
byte ptr int_done,O
byte ptr gbmod,40h
mode

;load new interrupt segment
ire-enable interrupts

;clear interrupt flag
;enable graphiCS interrupt

Initialization and Control

in1 : te!!t
jz
pu!!h
xor
mov
mov
cli
mov
mov
mov
mov
st!
pop
ret

byte ptr int_done,Offh ;ha!! interrupt routine run?
a!!1

aX,ax
e!!,ax

;re!!tore the interrupt vector!!

bx,word ptr g_int_vec ;fetch graphiC!! vector off!!et

ax,word ptr old_int_off ;re!!tore old interrupt vector
e!!:[bxl,ax
ax,word ptr old_int_!!eg
e!!:[bx+21,ax

;Scrollmap loading during interrupt routine.
;Fetch the current mode byte and enable scroll map addre!!!!ing.

!!crol_int:
push
pu!!h
pu!!h
push
push
pu!!h
cld
mov
mov
mov
and
mov
mov
and
call
mov
out
mov

es
d!!
!!i
dx
cx
ax

ax,word ptr cs:segment_!!ave ;can't depend on ds
d!!,ax
e!!,ax

;reload it

byte ptr gbmod,Obfh ;disable graphic!! interrupts
al,gbmod ;prepare to acce!!!! !!croll map
gtemp1,al ;first !!ave current gbmod
gbmod,Odfh ;enable writing to scroll map
mode ;do it
al,07fh
53h,al
dl,51h

;!!elect !!croll map and re!!et !!croll
;map address counter
;output port de!!tination

xor dh,dh
mov
mov
te!!t
jnz
!!hr

si,offset scrltb
cx,16
byte ptr gbmod,1
ins1
cx,1

;first line's high byte address-O
;256 line!! to write to
;high re!!olution?
;jump if yes

;only 128 lines if medium resolution

5-19

Initialization and Control

in51: lod5w ;fetch two 5crollmap location5
out dx,al ;a55ert the even byte
mov al,ah
out dx,al ;a55ert the odd byte
lod5w ;fetch two 5crollmap location5
out dx,al ;a55ert the even byte
mov al,ah
out dx,al ja55ert the odd byte
lod5w ;fetch two 5crollmap location5
out dx,al ;a55ert the even byte
mov al,ah
out dx,al ;a55ert the odd byte
lod5w ;fetch two 5crollmap location5
out dx,al ;a55ert the even byte
mov al,ah
out dx,al ;a55ert the odd byte
lod5w ;fetch two 5crollmap location5
out dx,al ;a55ert the even byte
mov al,ah
out dx,al ;a55ert the odd byte
lod5w ;fetch two 5crollmap location5
out dx,al ;a55ert the even byte
mov al,ah
out dx,al ;a55ert the odd byte
lod5w ;fetch two 5crollmap location5
out dx,al ;a55ert the even byte
mov al,ah
out dx,al ;a55ert the odd byte
lod5w ;fetch two 5crollmap location5
out dx,al ;a55ert the even byte
mov aI, ah
out dx,al ;a55ert the odd byte
loop in51
mov al,gtemp1 ;re5tore previou5 mode regi5ter
mov gbmod,al
call mode
mov byte ptr int_done,Offh ;5et interrupt-done flag
pop ax
pop cx
pop dx
pop 5i

pop d5
pop e5
iret ;return from interrupt

5-20

Initialization and Control

.** ,
*

sub r 0 uti n e set ram *
*

set video ram to a value stored in the p table *
*

entry: 16 byte p1 table *
exit: none *
register usage: ax,bx,cx,dx,di,si *

.** ,

setram: mov
call
mov
out
out
mov
mov

setr1: lodsb
out
loop
mov
out
out
mov
out
mov
out
mov
out
mov
out
mov
out
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
out
ret

byte ptr twdir,2
gdc_not_bu5y
al,Ofeh

;set write direction to the right
;make sure that the GOC isn't busy
;select the write buffer

053h,al
051h,al
si,offset p1
cx,10h

52h,al
setr1
al,Ofeh
053h,al
051h,al
al,049h
57h,al
al,byte
56h,al
al,byte
56h,al
al,4ah
57h,al
al,Offh
56h,al
56h,al
al,04ch
57h,al

ptr

ptr

;reset the write buffer counter
;initialize si to start of data
;load 16 chars into write buffer
;fetch byte to go to write buffer

;select the write buffer

;reset the write buffer counter
;issue GOC cursor location command

curIO ;fetch word location low byte
;load parameter

cur11 ;fetch word location high byte
;load parameter
;set the GOC mask to all F's

;i5sue figs command

al,byte ptr twdir ;direction to write.
56h,al
al,nmritl
56h,al
al,nmrith
56h,al
al,22h
57h,al
al,Offh
56h,al
56h,al

;number of GOC writes, low byte

;number of GOC writes, high byte

;wdat command

;p1 and p2 are dummy parameters
;the GOC requires them for internal
;purposes - no effect on the outside

5-21

Initialization and Control

segment_save
gsubs endp

dw o ;ds save area for interrupts

dseg
extrn
public
public
publiC
public
public
public

cseg ends
segment byte
clmpda:byte

public 'datasg'

xmax,ymax,alu,d,d1,d2,dc
curIO,curI1,curI2,dir,fg,gbmskl,gbmskh,gbmod,gdcml,gdcmh
nmredl,nmredh,nmritl,nmrith,p1,prdata,prmult,scrltb,startl
gtemp3,gtemp4,starth,gtemp,gtemp1,gtemp2,twdir,xinit,xfinal
yinit,yfinal,ascrol,num_planes,shifts_per_line
words_per_line,g_int_vec

;variables to be remembered about the graphics board states

alu db 0 ;current ALU state
cchp1 db 0 ;cursor/character
cchp2 db 0 size definition
cchp3 db 0 parameter bytes
curIO db 0 ;cursor - low byte
curl1 db 0 location - middle byte
curl2 db 0 storage - high bits & dot address
dc dw 0 ;figs command dc parameter
d dw 0 ;figs command d parameter
d2 dw 0 ;figs command d2 parameter
d1 dw 0 ;figs command d1 parameter
dir db 0 ;figs direction.
fg db 0 ;current foreground register
gbmskl db 0 ;graphics board mask register - low byte
gbmskh db 0 - high byte
gbmod db 0 ;graphics board mode register
gdcml db 0 ;GDC mask register bits - low byte
gdcmh db 0 - high byte

5-22

g_int_vec
gtemp dw
gtemp1 db
gtemp2 db
gtemp3 db
gtemp4 db
int_done
nmredl db
nmredh db
nmritl db
nmrith db
num_plane5
old_int_5eg
old_inLoff
p1 db
prdata db
prmult db
5crltb db
5i_temp dw
5tartl db
5tarth db
twdir db
5hift5_per_Iine
word5_per_line
xinit dw
yinit dw
xfinal dw
yfinal dw
xmax dw
ymax dw
d5eg

end

dw
0
0
0
0
0
db
0
0
0
0
db
dw
dw
16 dup
0
0

Initialization and Control

0 ;graphic5 option'5 interrupt vector
;temporary 5torage
;temporary 5torage
;temporary 5torage
;temporary 5torage
;temporary 5torage

o ;interrupt-done 5tate
;number of read operation5 - low byte

- high byte
;number of GDC write5 - low byte

- high byte
o ;number of plane5 in current re50lution
o ;old interrupt 5egment
o ;old interrupt off5et

(?) ;5hadow write buffer & GDC parameter5
;pattern regi5ter data

100h dup
;pattern regi5ter multiplier factor

(?) ;5croll map 5hadow area
0
0
0
0
db 0
db 0
0
0
0
0
0
0
end5

;regi5ter for 5tart addre55 of di5play

;direction for text mode write operation
;5hift factor for one line of word5
;word5/5can line for current re50lution
;x initial p05ition
;y initial p05itlon
;x final p05ition
;y flnal p05ition

5-23

Initialization and Control

Controlling Graphics Output

There will be occasions when you will want to control the graphics output to the monitors. The
procedure varies according to the monitor configuration. The following two examples illustrate how
graphics output can be turned on and off in a single monitor system. The same procedures can be
used to turn graphics output on and off in a dual monitor system. However, in a dual monitor
configuration, you may want to display graphics output only on the color monitor and continue to
display VTI02 VSS text output on the monochrome monitor. This can be accomplished by loading an
83h into OAh instead of an 87h.

Example of Enabling a Single Monitor

.** ,

pro c e d u r e 9 rap h i c s _ 0 n

purpose:

entry:
exit:

enable graphics output on single
color monitor

gbmod contalns mode register shadow byte
none

register usage: ax

*
*
*
*
*
*
*
*
*

.** ,

dseg
extrn

segment byte
gbmod:byte

public 'datasg'
;defined in procedure 'init_option'

dseg ends
cseg
extrn

segment byte public 'codesg'
imode:near ;defined in procedure 'init_option'
public graphics_on
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

graphics_on
mov

proc near
al,87h

out Oah,al ;enable graphics on monochrome line
or byte ptr gbmod,OBOh ;enable graphics output in gbmod
call
ret

imode

graphics_on endp
cseg ends

end

5-24

;assert new mode register

Initialization and Control

Example of Disabling a Single Monitor

.** ,

pro c e d u r e 9 rap h i c s _ 0 f f

purpose:

entry:
exit:

disable graphics output to single
(color> monitor

gbmod contains mode register shadow byte
none

register usage: ax

*
*
*
*
*
*
*
*
*

.** ,

dseg
extrn
dseg
cseg
extrn

segment byte
gbmod:byte
ends

public 'datasg'
;defined in procedure 'init_option'

segment byte public 'codesg'
imode:near ;defined in procedure 'init_option'
public graphics_off
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

graphics_off
and
call

proc near
byte ptr gbmod,07fh ;disable graphics output in gbmod
imode ;assert new mode register

mov al,83h
out Oah,al ;turn off graphics on monochrome line
ret

graphics_off endp
cseg ends

end

Modifying and Loading the Color Map

For an application to modify the Color Map, it must first select the Color Map by way of the Indirect
Register (write DFh to port 53h). This will also clear the Color Map Index Counter to zero so
loading always starts at the beginning of the map.

Loading the Color Map is done during vertical retrace so there will be no interference with the
normal refreshing of the bitmap. To ensure that there is sufficient time to load the Color Map, you
must catch the beginning of a vertical retrace. First, check for vertical retrace going inactive (bit 5
of the GDC Status Register = 0). Then, look for the vertical retrace to start again (bit 5 of the GDC
Status Register = 1).

5-25

Initialization and Control

To modify only an entry or two, the use of a shadow color map is suggested. Changes can first be
made anywhere in the shadow map and then the entire shadow map can be loaded into the Color
Map. The next section is an example of modifying a shadow color map and then loading the data
from the shadow map into the Color Map.

Example of Modifying and Loading Color Data in a
Shadow Map

.**************************.******.********************************** ,

purpose:
entry:

exit:

pro c e d u r e c han g e __ c 0 lor map

change a color in the colormap
ax • new color (0 • highest intensity>

(F • lowest intensity>
al • high nibble • red data

low nibble · green data
ah . high nibble · gray data

low nibble · blue data
bx . palette entry number

register usage:
none
ax,bx,si

*
*
*
*
*
*
*
*
*
*
*
*
*
*

.** ,

cSII!g segment byte publiC 'codesg'
extrn assert_colormap:near ;defined in 'init_option'
publiC change_colormap
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

change_colormap proc near
mov si,offset clmpda
mov [si+bxl,al
add bx,16
mov [si+bxl,ah
call assert_colormap

chenge_colormap endp

5-26

ends
segment byte
clmpda

public

;colormap shadow
;store the red and green data
;increment to gray and blue data
;store the gray and blue data
;defined in 'init_option'

'datasg'

Initialization and Control

;Colormap5:
;---------
;Information in the Color Map i5 5tored a5 16 byte5 of red and
;green data followed by 16 byte5 of monochrome and blue data.
;For each color entry, a 0 5pecifie5 full inten5ity and Ofh
;5pecifie5 zero inten5ity.
;A 5ample 5et of color map entrie5 for a Model 100-8 5y5tem with
;a monochrome monitor in medium re50lution (16 5hade5> would look
;a5 follow5 in the 5hadow area labelled CLMPDA:

no red or green data

; clmpda db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh

monochrome data, no

db Offh
db OOfh
db 01fh
db 02fh
db 03fh
db 04fh
db OSfh
db 06fh
db 07fh
db 08fh
db 09fh
db Oafh
db Obfh
db Ocfh
db Odfh
db Oefh

blue data

;black
;white

;light monochrome

;medium monochrome

;dark monochrome

5-27

Initialization and Control

jOn a Model 100-A 5Y5tem, only the lower two bit5 of the monochrome
jnibble are 5ignificant. Thi5 allow5 only four monochrome 5hade5
ja5 opp05ed to 16 5hade5 on the Model 100-8 5y5tem in medium
jre50lution mode. The following 5ample 5et of data applie5 to both
jthe Model 100-A monochrome-only 5y5tem in either medium or high
jre50lution mode, a5 well a5 the Model 100-8 monochrome-only 5y5tem
jin high re50lution mode.

jno red or green data

j clmpda db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh

jmonochrome data, no blue data

db Offh jblack
db OOfh jwhite
db OSfh jlight monochrome
db Oafh jdark monochrome
db Offh jblack
db Offh jblack
db Offh jblack
db Offh jblack
db Offh jblack
db Offh jblack
db Offh jblack
db Offh jblack
db Offh jblack
db Offh jblack
db Offh jblack
db Offh jblack

5-28

Initialization and Control

;In a dual monitor configuration, with a Model 100-8 system in
;medium resolution mode, all four components of each color entry
;are present: red, green, blue and monochrome. A sample set of
;color data would be as follows:

;red and green data

;clmpda db Offh ;black
db OOOh ;white
db OfOh ;cyan
db OOfh ;magenta
db OOOh ;yellow
db OOfh ;red
db Offh ;blue
db OfOh ;green
db Oaah ;dk gray
db Of8h ;dk cyan
db 08fh ;dk magenta
db 088h ;dk yellow
db 08fh ;dk red
db Offh ;dk blue
db Of8h ;dk green
db 077h ;gray

;monochrome and blue data

db Offh ;black black
db OOOh ;white white
db 010h cyan
db 020h magenta
db 03fh ; light mono. yellow
db 04fh red
db 050h blue
db 06fh green
db 07ah ;med. mono. dk gray
db Of8h dk cyan
db 098h dk magenta
db Oafh dk yellow
db Obfh ;dark mono. dk red
db Oc8h dk blue
db Odfh dk green
db Oe7h gray

5-29

Initialization and Control

iOn a Model 100-A dual monitor configuration, in medium re501ution
;mode, all 16 color entrie5 are di5playable. However, only two
;bit5 of monochrome data are available allowing for only 4
;monochrome 5hade5.

iOn a Model 100-A dual monitor configuration, in high re501ution
;mode, there are four di5playable color5 and again, four monochrome
;5hade5.

iOn a Model 100-B dual monitor configuration, in high re501ution
;mode, there al50 are four di5playable color5 and four monochrome
;5hade5.

;In a color monitor only 5Y5tem, the green data mU5t be mapped
ito the monochrome output. For a Model 100-B 5ingle color monitor
;5Y5tem, in medium re501ution mode, a 5ample color map would be a5
;5hown below:

clmpda

5-30

HOTE

The following 5ample color map will be
a55embled with thi5 example. If thi5
i5 not appropriate, 5ub5titute one of
the other 5ample5 or generate one that
i5 cU5tom tailored to the application.

ired data, green data mapped to mono.

db ·Offh ;black
db OOfh ;white
db Offh ;cyan
db OOfh ;magenta
db OOfh ;yellow
db OOfh ired
db Offh ;blue
db Offh ;green
db Oafh ;dk gray
db Offh ;dk cyan
db OBfh ;dk magenta
db OBfh ;dk yellow
db OBfh ;dk red
db Offh ;dk blue
db Offh ; dk green
db 07fh ;gray

Initialization and Control

;green dati!l, blue data

db Offh ;black
db OOOh ;white
db OOOh ;cyan
db OfOh ;magenta
db OOfh ;yellow
db Offh ;red
db OfOh ;blue
db OOfh ;green
db Oaah ;dk gray
db OBBh ;dk cyan
db OfBh ;dk magenta
db OBfh ;dk yellow
db Offh ;dk red
db OfBh ;dk blue
db OBfh ;dk green
db 077h ;gray

;For a Model 100-A 5ingle color monitor 5Y5tem, in either high or
;medium re50lution mode, only the lower two bit5 of the monochrome
;output are 5ignificant. Therefore, you can only di5play four
;inten5itie5 of green 5ince the green data mU5t be output through
;the monochrome line. The 5ame applie5 to a Model 100-B 5ingle
;color monitor 5y5tem in high re50lution mode.

d5eg end5
end

5-31

6
Bitmap Write Setup (General)

Loading the ALU IPS Register

The ALU/PS Register data determines which bitmap planes will be written to during a
Read/Modify/Write (RMW) cycle and also sets the operation of the logic unit to one of three write
modes.

Bits 0 through 3 enable or disable the appropriate planes and bits 4 and 5 set the writing mode to
REPLACE, COMPLEMENT, or OVERLAY. Bits 6 and 7 are not used. Bit definitions for the
ALU/pS Register are in Part III of this manual.

Write an EFh to port 53h to select the ALU/pS Register and write the data to port 5Ih.

Example of Loading the ALUjPS Register

.** ,

pro c e d u r e a I ups

purpose:

entry:
exit:
register usage:

set the ALU/PS register

bl = value to set ALU/PS register to
update ALU/PS shadow byte
ax,

*
*
*
*
*
*
*
*

.** ,

6-1

Bitmap Write Setup

dseg
extrn

segment byte
alu:byte

dseg ends

public 'datasg'

cseg segment byte publiC 'codesg'
extrn gdc_not_busy:near
public alups
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

alups proc
call
mov
out
mov
mov
out
ret

alups endp
cseg ends

end

near
gdc_noLbusy
al,Oefh
53h,al

;defined in procedure 'init_option'
;select ALU/PS register

byte ptr
al,bl
51h,al

alu,bl ;update shadow byte (alu)
;move new ALU/PS value to al
;load new value into ALU/PS register

loading the Foreground/Background Register

The data byte in the Foreground/Background Register determines whether bits are set or cleared in
each of the bitmap planes during a bitmap write (RMW) operation. Bit definitions for the Fore
ground/Background Register are in Part III of this manual.

Write an F7h to port 53h to select the Foreground/Background Register and write the data byte to
port 51h.

Example of Loading the Foreground/Background Register

.** ,

pro c e d u r e f 9 b 9

purpose:

entry:
exit:

set the foreground I background register

bl = value to set fgbg register to
update fgbg shadow byte

register usage: ax

•
•
•
•
•
•
•
•

.** •

6-2

dseg
extrn
dseg
cseg

fgbg

fgbg
cseg

segment byte
fg:byte

public 'datasg'

ends
segment byte public 'codesg'
extrn gdc_not_busy:near
public fgbg
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

proc
call
mov
out
mov

near
gdc_not_busy
al,Of7h
53h,al
byte ptr fg,bl

mov al,bl
out
ret
endp
ends
end

51h,al

;defined in 'init_option'
;select the foreground/background

register
;update shadow byte with new value

;load new value into fgbg register

Bitmap Write Setup

6-3

7
Area Write Operations

This chapter contains examples that illustrate displaying 64K bytes of memory, and clearing a rec
tangular area of the screen to a given color.

Display Data from Memory

In the following example, video data in a 64K byte area of memory is loaded into the bitmap in order
to display it on the monitor. The last byte of the memory area specifies the resolution to be used. A
value of zero means use medium resolution mode. A value other than zero means use high resolution
mode. In medium resolution mode, the 64K bytes are written to four planes in the bitmap; in high
resolution mode, the 64K bytes are written to two planes.

Example of Displaying Data from Memory

.** ,

pro c e d u r e r i t v i d

purpose: restore a graphics screen save in a 64k

segment of main memory by the procedure
ritvid.

*
*
*
*
*
*
*

.** ,

7-1

Area Write Operations

dseg segment byte publiC 'datasg'
extrn gbmod:byte,gtemp:word,num_planes:byte,curlO:byte,gtemp1:byte
dseg ends
vldseg segment byte public 'vseg'
extrn vlddata:byte
vidseg ends

cseg segment byte public 'codesg'
extrn init_option:near,fgbg:near,gdc_not_busy:near,alups:near
extrn imode:near

public ri tvid
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

ritvid proc near

;The video data is in vidseg. The last byte in vidseg is the
;resolution flag. If flag is-O the option is in medium resolution
;mode; otherwise it is in high resolution mode. Initialize the
;option to that resolution.

mov aX,es
mov word ptr cs:segment_save,ax ;save es
call gdc_noLbusy ;wait till GDC is free
mov ax,vidseg ;set es to point to video buffer
mov eS,ax
mov si,Offffh ;fetch the resolution flag from
mov al,es:[sil the last byte of vidbuf
test al,Offh ; is it high resolution?
lnz rt1 ; jump if yes.
mov dx,1
Jmp rt2

r t 1 : mov dx,2
rt2: mov ax,word ptr cs:segment_save

mov eS,ax ;restore old es
call init_option ;assert the new resolution.

;init-option leaves us in text mode with fg-fO and alups-O.

and byte ptr gbmod,Ofdh
or byte ptr gbmod,010h
call imode ;make sure we're in text mode
mov bl,Ofh ;put 1's into bg and O's into fg
call fgbg ;because write buffer inverts data
test byte ptr gbmod,1 ;high resolution?
jnz rt3 ; jump if yes.
mov word ptr gtemp,1024 ;8 wrd-writes/plane (med res)
jmp rt4

rt3: mov word ptr gtemp,2048 ;8 wrd-writes/plane (high res)

7-2

Area Write Operations

rt4: mov dl,O jstart at beginning of vidbuf.
mov ax,vidseg jset es to point to video buffer
mov es,ax
mov cl,byte ptr num_planes jfetch number of planes
xor ch,ch to be written

jEnable a plane to be written.

rt5: mov word ptr gtemp1,cx jsave plane writing counter
mov bl,byte ptr num_planes jselect plane to write enable
sub bl,cl jthis is plane to write enable
mov cl,bl
mov bl,Ofeh jput a 0 in that plane's select position
rol bl,cl
and bl,Ofh j keep in REPLACE mode
call alups jassert the new ALU/PS

jFill that plane with data, 8 words at a time, from vidseg.

mov
mov

rt6: push
call
mov
out
out
mov

rt7: mov
inc
out
loop
mov
out
mov
out
mov
out
mov
out
mov
out
out
xor
out
out
mov
out
mov

word ptr curl0,O
cx,word ptr gtemp
cx
gdc_not_busy
al,Ofeh
53h,al
51h,al
ex,16
al,es:[di1
di
52h,al
rt7
al,49h
57h,al
ax,word ptr curIO
56h,al
aI, ah
56h,al
al,04ah
57h,al
al,Offh
56h,al
56h,al
al,al
54h,al
55h,al
al,4ch
57h,al
al,2

jstart write at top left
jnumber of 8 word writes

to fill plane
jwait until GDC has finished

previous write

jfetch 16 bytes
jfill ptable with data

to be written

jassert the position to
start the write

jinit the mask to Offffh

jnow start the write
jdirection is down

7-3

Area Write Operations

out 56h,al
mov al,7
out 56h,al
xor al,al
out 56h,al
mov al,22h
out 57h,al
mov al,Offh
out 56h,al
out 56h,al
add word ptr
pop cx
loop rt6
mov cx,word
loop rt5
mov ax,word
mov es,ax
ret

ritvld endp
segment_save dw
cseg ends

end

curlO,OB

ptr gtemp1

;do B writes

;start the write

;next location to be written

;loop to complete this plane
;keep looping until all

planes are wrltten
ptr cs:segment_save

o

Set a Rectangular Area to a Color

The example that follows illustrates how to set a rectangular area of the screen to some specified
color. Input data consists of the coordinates of the upper left and lower right corners of the area (in
pixels) plus the color specification (a 4-bit index value). The special case of setting the entire screen
to a specified color is included in the example as a subroutine that calls the general routine.

Example of Setting a Rectangular Area to a Color

.** ,

pro c e d u r e

purpose:

entry:
exit:
register usage:

set _ a I I _ s c r e e n

set entire screen to a user defined color

di is the color to clear the screen to
fgbg and alups shadow bytes updated
ax,bx,cx,dx,si,di

*
*
*
*
*
*
*
*

.** ,

cseg
extrn

7-4

segment byte publiC 'codesg'
fgbg:near,gdc_not_busy:near,imode:near,alups:near
public set_all_screen,5et_rectangle
assume cs:cseg,ds:dseg,es:nothing,ss:nothing

\

Area Write Operations

mov
mov
mov
mov
mov
mov

near
word ptr xstart,O
word ptr ystart,O
ax,word ptr xmax
word ptr xstop,ax
ax,word ptr ymax
word ptr ystop,ax

jmp set_rectangle
set_alI_screen endp

istart at the top left corner

ifetch the bottom right corner

icoordinat.es.

.** ,

pro c e d u r e set _ r e c tan g I e

purpose: set a user defined screen rectangle to a
user defined color

entry: xstart has the start x in pixels
ystart has the start y in scan lines
xstop has the stop x in pixels
ystop has the stop y in scan lines
di is the color to clear the screen to

exit:
register usage: ax,bx,cx,dx,di,si,xstart is altered

*
*
*
*
*
*
*
*
*
*
*
*
*

.** ,

set_rectangle proc near

iNo validity checks are being made on start and stop coordinates.

xstart must be (= xstop
ystart must be (= ystop

iAssert the new screen
ibackground register.

color to both nibbles of the the foregroundl
Put the option into REPLACE mode with all

iplanes enabled and in write-enabled word mode.

mov bx,di
mov bh,bl
mov cl,4
shl bh,cl
or bl,bh
call fgbg
xor bl,bl
call alups
and byte
or byte
call imode

ptr
ptr

idi has the colori only low nibble valid
icombine color number into both fg and bg
ishift the color up to the high nibble

icombine high nibble with old low nibble
iassert new vaiue to fgbg register
iset up REPLACE mode, all planes
iassert new value to ALU/PS register

gbmod,Ofdh jset up text mode
gbmod,10h jset up write enable mode

jassert new value to mode register

7-5

Area Write Operations

;Do the rectangle write.

;Do the write one column at a time. Since the GDC i5 a word device,
;we have to take into account that we might have our write window
;5tart on a pixel that i5n't on a word boundary. The graphic5
;option5 write ma5k mU5t be 5et accordingly. Do a write buffer
;write to all of the rectangle a5 defined by 5tart,5top. Calculate
;the fir5t curiO. Calculate the number of 5can5 per column to be
;written.

mov
mov

ax,word ptr x5tart
cl,4

5hr ax,cl

;turn pixel addre55 into
word addre55

mov dx,word ptr y5tart ;turn 5can start to word5/1ine*y
mov cl,byte ptr shifts_per_line ;number of shifts
5hl dx,cl
add
mov
mov
5ub
mov

dx,ax
word ptr curlO,dx
ax,word ptr y5tOp
ax,word ptr ystart
word ptr nmrltl,ax

;combine x and y word addre55es
;fir5t curiO.
;5ubtract start from 5tOp.

;Program the text mask.

;There are four P05sible write condition5-

a - partially write disabled to left
b - completely write enabled
c - partially di5abled to the right
d - partially di5abled to both left and right

;The portion to be write disabled to the left will be the current
;xstart pixel information. A5 we write a column, we update the
;current x5tart location. Only the flr5t x5tart will have a left
;hand portion write di5abled. Only the last will have a right
;hand portion disabled. If the first is also the last, a portion
;of both side5 will be di5abled.

c151: mov
mov
and
5hr

7-6

bx,Offffh
cx,word ptr
cx,Ofh
bx,cl

;calculate the current write ma~k
x5tart

;eliminate all but pixel information
;shift in a ° for each left pixel

to be disabled

Area Write Operations

;Write buffer write is done by columns. Take the current xstart
;and use it as the column to be written to. When the word address
;of xstart is greater than the word address of xstop, we are
;finished. There is a case where the current word address of
;xstop is equal to the current word address xstart. In that
;case we have to be concerned about write disabling the bits to
;the right. When xstop becomes less than xstart then we are done.

mov
and

ax,word ptr xstart
ax,OfffOh

mov cx,word ptr xstop
and cx,OfffOh
cmp
jb
je
jmp

ax,cx
cls3
cls2
exit

;test if word xstop is equal
to word xstart

;below?
;jump if yes
;jump if equal do last write
;all done - exit

;We need to set up the right hand write disable. This is also the
;last write. bx has the left hand write enable mask in it.
;Preserve and combine with the right hand mask which will be
;(f-stop pixel address> bits on the right.

cls2: mov cx,word ptr xstop ;strip pixel info out of xstop
and cx,Ofh
inc cx ;make endpoint inclusive of write
mov ax,Offffh ;shift the disable mask
shr ax,cl ;wherever there is a one, we
xor ax,Offffh ;want to enable writes
and bx,ax ;combine right and left masks

;bx currently has the mask bytes in it. Where we have a one, we
;want to make a zero so that particular bit will be write enabled.

cls3: xor bx,Offffh ;invert to get zeros for ones

;Assert the new write mask, Make sure that the GDC is not busy
;before we change the mask.

cls4: call gdc_not_busy ;check that the GDC isn't busy
mov al,bh ;assert the upper write mask
out 55h,al
mov al,bl ;assert the lower write mask
out 54h,al

;Position the GDC at the top of the column to be written. This
;address was calculated earlier and the word need only be fetched
;and applied.
;calculated.

The number of scans to be written has already been

7-7

Area Write Operations

mov al,49h ja55ert the GDC cur50r addre55
out 57h,al
mov ax,word ptr curIO ja55ert word addre55 low byte
out 56h,al
mov al,dh ja55ert word addre55 hiSh byte
out 56h,al

jStart the write operation. Textma5k, alup5, sbmod and fSbS are
jalready 5et up. GDC i5 p05itioned.

mov
out
xor
out
mov
out
mov
out
mov
out
mov
out
out

al,4ch
57h,al
al,al
56h,al
ax,word
56h,al
al,ah
56h,al
al,22h
57h,al
al,Offh
56h,al
56h,al

ptr

ja55ert fiS5 to GDC

jdirection 15 down

nmritl
ja55ert number of write

operation5 to perform

ja55ert wdat

jUpdate the 5tartins x coordinate for the 5tart of the next
jcolumn write. Strip off the pixel information and then add 16
jpixe15 to it to set the next word addre55.

and
add

word ptr x5tart,OfffOh j5tr1p off pixel info

inc
jmp

exit: ret
5et_rectansle
c5eS

word
word
c151

endp
end5

5esment byte

ptr
ptr

x5tart,16 jaddre55
curIO

jcheck for another

public 'data5S' d5eS
extrn
extrn
publiC
x5tart
x5tOP
y5tart
y5tOp
nmritl
d5eS

curlO:word,sbmod:byte,xmax:word,ymax:word
5hift5_per_line:byte
x5tart,x5top,Y5tart,Y5top

dw °
dw ° dw ° dw ° dw ° end5

end

7-8

the next word

column to clear

8
Vector Write Operations

The examples in this chapter illustrate some basic vector write operations. They cover setting up the
Pattern Generator and drawing a single pixel, a line, and a circle.

Setting Up the Pattern Generator

When operating in Vector Mode, all incoming data originates from the Pattern Generator. The
Pattern Generator is composed of a Pattern Register and a Pattern Multiplier. The Pattern Register
supplies the bit pattern to be written. The Pattern Multiplier determines how many times each bit is
sent to the bitmap write circuitry before being recirculated.

NOTE
The Pattern Multiplier must be loaded before loading the Pattern Register.

Example of Loading the Pattern Register

The Pattern Register is an 8-bit register that is loaded with a bit pattern. This bit pattern, modified
by a repeat factor stored in the Pattern Multiplier, is the data sent to the bitmap write circuitry
when the option is in Vector Mode.

8-1

Vector Write Operations

.** ,

pro c e d u r e pat t ern _ reg i 5 t e r

purpo5e: 5et the pattern regi5ter

entry: bl = pattern data
exit: update pattern regi5ter 5hadow byte
regi5ter u5age: ax
caution: you mU5t 5et the pattern multiplier before

5etting the pattern regi5ter

*
*
*
*
*
*
*
*
*
*

.** ,

;The pattern regi5ter contain5 a 16-bit pixel pattern that i5 written
;to the bitmap when the Graphic5 Option i5 in Vector Mode.

;Sample regi5ter value5 and corre5ponding pattern5 are:

regi5ter value

Offh
Oaah
OfOh
Ocdh

pattern output

11111111
10101010
11110000
11001101

;The above a55ume5 that the Pattern Multiplier ha5 been 5et to
;multiply the pattern by 1. If the Pattern Multiplier had been 5et
;to multiply the pattern by 3, the above example5, when output to
;the bitmap would look a5 follow5:

d5eg
extrn
d5eg
c5eg

8-2

regi5ter value

Offh
Oaah
OfOh
Ocdh

5egment byte
prdata:byte
end5

pattern output

111111111111111111111111
111000111000111000111000
111111111111000000000000
111111000000111111000111

public

5egment byte publiC Icode5g '
extrn gdc_not_bu5y:near
publiC pattern_regi5ter
a55ume c5:c5eg,d5:d5eg,e5:d5eg,55:nothing

Vector Write Operations

pattern_register proc
call gdc_not_busy
mov al,Ofbh
out 53h,al

near
;defined in 'init_option'
;select the pattern register

mov byte ptr prdata,bl ;update shadow byte
mov
out
ret

pattern_register
cseg ends

end

al,bl
51h,al

endp

;load the pattern register

Example of loading the Pattern Multiplier

The Graphics Option expects to find a value in the Pattern Multiplier such that sixteen minus that
value is the number of times each bit in the Pattern Register is repeated. In the following example,
you supply the actual repeat factor and the coding converts it to the correct value for the Graphics
Option .

. ** ,

pro c e d u r e pat t ern _ m u I t

purpose:

entry:
exit:

set the pattern multiplier

bl = value to multiply pattern by (1 - 16)
updated pattern multiplier shadow byte

register usage: ax,bx
caution: you must set the pattern multiplier before

setting the pattern register

*
*
*
*
*
*
*
*
*
*
*

.** ,

dseg
extrn
dseg
cseg

segment byte
prmult:byte
ends

public 'datasg'

segment byte public 'codesg'
extrn gdc_not_busy:near ;defined in 'init_option'
public pattern_mult
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

8-3

Vector Write Operations

pattern_mult
call
mov
dec
not

mov
out
mov
out
ret

pattern_mult
cseg ends

end

proc near
gdc_not_busy ;defined in 'init_option'
byte ptr prmult,bl ;update multiplier shadow byte
bl ;make bl zero relative
bl

al,Ofdh
53h,al
al,bl
51h,al

endp

;invert it - remember that pattern
;register is multiplied by 16 minus
;the multiplier value
;select the pattern multiplier

;load the pattern multiplier

Display a Pixel

The following example displays a single pixel at a location specified by a given set of x and y
coordinates. Coordinate position 0,0 is in the upper left corner of the screen. The x and y values are
in pixels and are positive and zero-based. Valid values are:

x = 0 - 799 for high resolution
o - 383 for medium resolution

y = 0 - 239 for high or medium resolution

Also, in the following example, it is assumed that the Mode, ALU IPS, and Foreground/Background
registers have already been set up for a vector write operation.

Example of Displaying a Single Pixel

.** ,

pro c e d u r e p x e

purpose:

entry:

draw a pixel

xinit x location
yinit y location
valid x values 0-799 high resolution

0-383 medium resolution
valid y values 0-239 med. or high res.

*
*
*
*
*
*
*
*
*
*
*

.** ,

8-4

Vector Write Operations

jDo a vector draw of one pixel at coordinates in xinit,yinit. Assume
jthat the Graphics Option is already set up in terms of Mode Register,
jForeground/Background Register, and ALU/PS Register.

dseg
extrn
extrn
dseg
cseg

pixel

pixel
cseg

segment byte public 'datasg'
gbmod:byte,curlO:byte,curll:byte,cur12:byte,xinit:word
yinit:word
ends
segment byte publiC 'codesg'
extrn cxy2cp:near,gdc_not_busy:near
public pixel
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

proc
call
call
mov

near
gdc_not_busy

cxy2cp
al,49h

out 57h,al

jconvert x,y to a cursor position
jsend out the cursor command byte

mov ax,word ptr curIO jassert cursor location low byte
out 56h,al
mov
out

al,ah
56h,al

jassert cursor location high byte

mov al,byte ptr curl2 jassert cursor pixel location
out 56h,al
mov
out
mov

al,4ch
57h,al
al,02h

out 56h,al
mov
out
ret
endp
ends
end

al,6ch
57h,al

jassert the figs command

jline direction - to the right

;tell GDC to draw pixel when ready

Display a Vector

The example in this section will draw a line between two points specified by x and y coordinates
given in pixels. The valid ranges for these coordinates are the same as specified for the previous
example. Again it is assumed that the Mode, ALUjPS, and Foreground/Background registers have
already been set up for a vector write operation. In addition, the Pattern Generator has been set up
for the type of line to be drawn between the two points.

8-5

Vector Write Operations

Example of Displaying a Vector

.** ,

pro c e d u r e v e c tor

purpose: draw a vector

entry: xinit = starting
yinit = starting
xfinal= ending x
yfinal- ending y
valid x values ..

valid y values
exit:
register usage: ax

x location
y location
location
location
o - 799 high resolution
o - 383 medium resolution
o - 239 high or med. res.

*
*
*
*
*
*
*
*
*
*
*
*
*
*

.** ,

dseg
extrn
extrn
extrn
dseg
cseg
extrn

segment byte public 'datasg'
curlO:byte,cur11:byte,cur12:byte,dc:word,d:word,d2:word
d1:word,dir:byte,xinit:word,yinit:word,xf1nal:word
yfinal:word,gbmod:byte,p1:byte
ends
segment byte publiC 'codesg'
gdc_not_busy:near,cxy2cp:near
public vector
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

vector proc near

;Draw a vector.
;Assume the start and stop coordinates to be 1n xinit, yinit,
;xfinal, and yf1nal. The Foreground/Background, ALU/PS, Mode,
;and Pattern Registers as well as the GDC PRAM bytes and all other
;1ncidental requirements such as "gdc_not_busy" have been taken
;care of already. This routine positions the cursor, computes the
;draw direction, dc, d, d2, d1 and then 1mplements the actual figs
;and figd commands.

8-6

call
call
mov
out
mov
out
mov
out

gdc_not_busy
cxy2cp ;convert starting x,y to a cursor position
al,49h ;set cursor location from curlO,1,2
57h,al ;issue the GDC cursor location command
al,curlO
56h,al
al,cur11
56h,al

;fetch word - low address

;fetch word - middle address

Vector Write Operations

mov
out

al,cur12
S6h,al

;dot address (top 4 bit~)/hi9h address

mov ax,word ptr xinit ;start and stop points the same?
cmp ax,word ptr xfinal ;jump if not
jnz v1
mov ax,word ptr yinit ;mi9ht be - check the y's
cmp ax,word ptr yfinal
jnz v1 ;jump if not
mov al,04ch ;write sin91e pixel - current vector write
out OS7h,al ;can't handle a one pixel write
mov al,2
out OS6h,al
mov ai, 06ch
out OS7h,al
ret

v1: mov
sub
jns

quad12: ne9
mov
sub
js

quad 1: cmp
jbe

oct2: mov
jmp

oct3: mov
jmp

quad2: ne9
cmp
jae

oct4: mov
jmp

octS: mov
jmp

quad34: mov
sub
jns

quad3: ne9
cmp
jbe

oct6:

oct7:

mov
jmp
mov
jmp

bx,yfinal
bx,yinit
quad34
bx
ax,xfinal
aX,xinit
quad2

jcompute delta y
jdelta y ne9ative now?
jjump if not (must be quad 3 or 4)
jdelta y is ne9ative, make absolute
jcompute delta x
jdelta x ne9ative?
jjump if yes

ax,bx joctant 2?
oct3 jjump if not
p1,02 jdirection of write
vxind jabs(deltax»abs(deltay), independent axis-x-axis
p1,03 jdirection of write
vyind jabs(deltax)-<abs(deltay), independent axis-y-axis
ax jdelta x is ne9ative, make absolute
ax,bx joctant 4?
octS jjump if not
p1,04 jdirection of write
vyind jabs(deltax)=<abs(deltay), independent axis-y-axis
p1,OS jdirection of write
vxind jabs(deltax»abs(deltay), independent axis-x-axis
ax,xfinal jcompute delta x
ax,xinit
quad4 jjump if delta x is positive
ax jmake delta x absolute instead of ne9ative
ax,bx joctant 6?
oct7 jjump if not
p1,06 jdirection of write
vxind jabs(deltax»abs(deltay), independent axis=x-axis
p1,07 jdirection of write
vyind jabs(deltax)<-abs(deltay), independent axis-y-axis

8-7

Vector Write Operations

guad4: cmp
jae

octO: mov

jmp
oct1: mov

vyind:
vxind:

jmp
xchg
and
mov
push
shl

ax,bx ;octant O?
oct1 ;jump if not
p1,0 ;direction of write
vyind ;abs(deltax)<abs(deltay), independent axis=y-axis
p1,01 ;direction of write
vxind ;abs(deltax)=>(deltay), independent axis=x-axis
ax,bx
ax,03fffh
dc,ax
bx
bx,1

;put independent axis in ax, dependent in bx
;limit to 14 bits
;dc=abs(delta x)
;save abs(delta y)

sub bx,ax

vdo:

vdo 1 :

and
mov
pop
push

bx,03fffh
d,bx
bx
bx

sub bx,ax
shl
and
mov

pop
shl
dec
and
mov
mov

bx, 1
bx,03fffh
d2,bx
bx
bx,1
bx
bx,03fffh
d1,bx
al,04ch

out 57h,al
mov al,08
or al,p1
out 56h,al
mov si,offset dc
mov
lodsb
out
loop
mov
out
ret

cx,08

56h,al
vdo1
al,06ch
57h,al

vector endp
cseg ends

end

8-8

;limit to 14 bits
;d=2*abs(delta y)-abs(delta x)
;restore (abs(delta y)
;save abs(delta y)

;limit to 14 bits
;d2=2*(abs(delta y)-abs(delta x»

;limit to 14 bits
;d1=2*abs(delta y)-1
;issue the figs command

;construct p1 of figs command

;issue a parameter byte

;issue the 8 bytes of dc,d,d2,d1
;fetch byte
;issue to the GDC
;loop until all 8 done
;start the drawing process in motion
;by issuing figd

Vector Write Operations

Display a Circle

The example in this section will display a circle, given the radius and the coordinates of the center in
pixels. The code is valid only if the option is in medium resolution mode. If this code is executed in
high resolution mode, the aspect ratio would cause the output to be generated as an ellipse. As in
the previous examples, the option is assumed to have been set up for a vector write operation with
the appropriate type of line programmed into the Pattern Generator.

Example of Drawing a Circle

.** ,

pro c e d u r e c i r c 1 e

purpose:

entry:

caution:

draw a circle in medium resolution mode

xinit = circle center x coordinate (0-799)
yinit = circle center y coordinate (0-239)
radius = radius of the circle in pixels

This routine will only work in medium
resolution mode. Due to the aspect ratio
of high resolution mode, circles appear
as ellipses.

*
*
*
*
*
*
*
*
*
*
*
*
*
*

.** ,

;Draw an circle.
;This routine positions the cursor, computes the draw direction, dc,
;d, d2, d1 and implements the actual figs and figd commands.
;The Mode Register has been set up for graphics operations, the write
;mode and planes select is set up in the ALU/PS Register, the
;Foreground/Background Register is loaded with the desired foreground
;and background colors and the Pattern Multiplier/Pattern Register is
;loaded. In graphics mode, all incoming data comes from the Pattern
;Register. We have to make sure that the GDC's PRAM 8 and 9 are all
;ones 50 that it will try to write all ones to the bitmap. The
;external hardware intervene and put the pattern register's data
;into the bitmap.

8-9

Vector Write Operations

extrn
extrn
dseg

dc
d
d2
d1
dm
xad
yad
radius
dseg
cseg

circle

8-10

gbmod:byte,curIO:byte,curI1:byte,curI2:byte,xinit:word
yinit:word,dir:byte,shifts_per_line:byte
segment byte public 'datasg'
public radius,xad,yad
dw
dw
dw
dw
dw
dw
dw
dw
ends
segment
extrn
public
assume

proc
call
mov
out
mov
out
out

mov
mov
mov
mov
inc
mul
mov
dec
mov
shl
mov

mov
mov
mov
sub
mov
call
mov
call
call
mov
call

o
o
o
o
o
o
o
o

byte public 'codesg'
gdc_not_busy:near
circle
cs:cseg,ds:dseg,es:dseg,ss:nothing

near
gdc_not_busy
al,78h
57h,al
al,Offh
56h,al
56h,al

word ptr d1,-1
word ptr dm,O
bx,word ptr radius
ax,Ob505h
bx
bx
word ptr dc,dx
bx
word ptr d,bx
bx,1
word ptr d2,bx

aX,word ptr xinit
word ptr xad,ax
ax,word ptr yinit
ax,word ptr radius
word ptr yad,ax
acvt
byte ptr dir,01h
avdo
acvt
byte ptr dir,06h
avdo

;set pram bytes 8 and 9

;set figs d1 parameter
;set figs d2 parameter
;get radius
;get 1/1.41

;set figs dc parameter

;~et figs d parameter

;set figs d2 parameter

;get center x
;save it
;get center y
;subtract radius
;save it
;position cursor
;arc 1
;draw it
;position cursor
;arc 6
;draw it

Vector Write Operations

mov ax,word ptr xinit ;get center x
mov word ptr xad,ax ;save it
mov ax,word ptr yinit ;get center y
add ax,word ptr radius ;add in radiu5
mov word ptr yad,ax ;save it
call acvt ;position cursor
mov byte ptr dir,02h ;arc 2
call avdo ;draw it
call acvt ;po5ition cursor
mov byte ptr dir,OSh ;arc 5
call avdo ;draw it

mov ax,word ptr xinit ;get center x
sub ax,word ptr radius ;subtract radius
mov word ptr xad,ax ;5ave it
mov ax,word ptr yinit ;get center y
mov word ptr yad,ax ;5ave it
call acvt ;position cursor
mov byte ptr dir,03h ;arc 3
call avdo ;draw it
call acvt ;po5ition cursor
mov byte ptr dir,OOh ;arc ° call avdo ;draw it

mov ax,word ptr xinit ;get center x
add ax,word ptr radius ;add in the radiu5
mov word ptr xad,ax jsave it

mov ax,word ptr yinit jget center y
mov word ptr yad, ax jsave it
call acvt jposition cursor
mov byte ptr dir,07h jarc 7
call avdo jdraw it
call acvt jposition cursor
mov byte ptr dir,04h jarc 4
call avdo jdraw it

ret

jConvert the starting x,y coordinate pair into a cursor p05ition
jword value.

8-11

Vector Write Operations

acvt:

avdo:

avdo 1 :

mov cl,byte ptr shifts_per_Iine ;set up for 32/16-bit
xor dx,dx ;math - clear upper 16 bit
mov ax,word ptr yad
shl ax,cl
mov bx,ax ;save lines * word/line
mov ax,word ptr xad ;compute number of words on last line
mov cx,16 ;16 bits/word
div
add
mov
mov
mov

cx
ax,bx
curlO,al
curl1,ah
cl,04

;ax has number of extra words to add in
;dx has the <16 dot address left over
;this is the new cursor memory address

;dot address is high nibble of byte
shl dl,cl
mov
mov
out
mov
out
mov
out
mov
out
ret
call
mov
out
mov

curl2,dl
a I, 49h
57h,al
al,curlO
56h,al
al,curl1
56h,al
al,curl2
56h,al

;set cursor location to curI0,1,2
;issue the GDC cursor location command
;fetch word - low address

;fetch word - middle address

;dot address (top 4 bits)/high address

gdc_not_busy
al,4ch
57h,al
al,020h

;issue the figs command

;construct p1 of figs command
or al,byte ptr dir
out 56h,al
mov si,offset dc
mov
mov
out
inc
loop
mov
out
ret

cx, 10
al,[sil
56h,al
si
avd01
al,6ch
57h,al

;issue a parameter byte

;issue the 10 bytes of dc,d,d2,d1
;fetch byte
;issue to the GDC
;point to next in list
;loop until all 10 done
;start drawing process in motion
;by issuing figd

circle endp
cseg ends

end

8-12

9
Text Write Operations

In this chapter the examples illustrate coding for writing byte-aligned 8 X 10 characters, determin
ing type and position of the cursor, and writing bit-aligned vector (stroked) characters.

Write a Byte-Aligned Character

This example uses a character matrix that is eight pixels wide and ten scan lines high. The charac
ters are written in high resolution mode and are aligned on byte boundaries. The inputs are the
column and row numbers that locate the character, the code for the character, and the color
attribute.

Example of Writing a Byte-Aligned Character

.** ,

pro c e d u r e 9 t ext

purpose: write 8 pixels wide x 10 scan lines
graphics text in high resolution

*
*
*
*
*
*

entry: ax is the column location of the character *
bx is the row location of the character
dl is the character
dh is the fgbg

*
*
*

.** ,

dseg segment byte publiC 'datasg'

9-1

T ext Write Operations

extrn curlO:byte,cur12:byte,gbmod:byte,fg:byte

;This table has the addresses of the individual text font characters.

;Particular textab addresses are found by taking the offset of the

;textab, adding in the ASCII offset of the character to be printed

;and loading the resulting word. This word is the address of the

;start of the character's text font.

gbmskl db 0
gbmskh db 0

textab dw 0

dw 10

dw 20

dw 30

dw 40

dw 50

dw 60

dw 70

dw 80
dw 90

dw 100

dw 110

dw 120

dw 130
dw 140

dw 150

dw 160

dw 170

dw 180

dw 190

dw 200

dw 210

dw 220

dw 230
dw 240

dw 250

dw 260

dw 270

dw 280

dw 290
dw 300

dw 310

dw 320

dw 330

dw
til 340

dw 350

dw 360

dw 370

9-2

T ext Write Operations

dw 380
dw 390
dw 400
dw 410
dw 420
dw 430
dw 440
dw 450
dw 460
dw 470
dw 480
dw 490
dw 500
dw 510
dw 520
dw 530
dw 540
dw 550
dw 560
dw 570
dw 580
dw 590
dw 600
dw 610
dw 620
dw 630
dw 640
dw 650
dw 660
dw 670
dw 680
dw 690
dw 700
dw 710
dw 720
dw 730
dw 740
dw 750
dw 760
dw 770
dw 780
dw 790
dw 800
dw 810
dw 820
dw 830
dw 840
dw 850

9-3

T ext Write Operations

,

dIN 860
dIN 870
dIN BBO
dIN B90
dIN 900
dIN 910
dIN 920
dIN 930
dIN 940

jtext font

5pace db 11111111b
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db Offh
db 11111111b

exclam db 11111111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11111111b
db 11100111b
db 11111111b
db 11111111b

guote db 11111111b
db Od7h
db Od7h
db Od7h
db Offh
db Offh
db Offh
db Offh
db Offh
db 11111111b

9-4

T ext Write Operations

num db llllllllb

db 11010111b

db 11010111b

db 0000000lb

db 11010111b

db 0000000lb

db 11010111b

db 11010111b

db llllll11b

db lll11111b

dollar db ll111111b

db 11101111b

db 10000001b

db 01101111b

db 10000011b

db 11101101b

db 000000llb

db 11101111b

db llllllllb

db llllllllb

percent db llllllllb

db 00111101b

db 00111011b

db 11110111b

db 11101111b

db 11011111b

db 10111001b

db 01111001b

db lllll111b

db l1111111b

amp db l1111111b

db 10000111b

db 01111011b

db 10110111b

db 11001111b

db 10110101b

db 01111011b

db 10000100b

db lllll111b

db lllll111b

9-5

T ext Write Operations

apos db 11111111b

db 11100111b

db 11101111b

db 11011111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

lefpar db 11111111b

db 11110011b

db 11100111b

db 11001111b

db 11001111b

db 11001111b

db 11100111b

db 11110011b

db 11111111b

db 11111111b

ritpar db 11111111b

db 11001111b

db 11100111b

db 11110011b

db 11110011b

db 11110011b

db 11100111b

db 11001111b

db 11111111b

db 11111111b

aster db 11111111b

db 11111111b

db 10111011b

db 11010111b

db 0OOOOOO1b

db 11010111b

db 10111011b

db 11111111b

db 11111111b

db 11111111b

9-6

T ext Write Operations

plus db 11111111b

db 11111111b

db 11101111b

db 11101111b

db 0OOOOOO1b

db 11101111b

db 11101111b

db 11111111b

db 11111111b

db 11111111b

comma db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11100111b

db 11100111b

db 11001111b

db 11111111b

minus db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 0OOOOOO1b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

period db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11100111b

db 11100111b

db 11111111b

db 11111111b

9-7

Text Write Operations

slash db 11111111b

db 11111101b

db 11111001b

db 11110011b

db 11100111b

db 11001111b

db 10011111b

db 00111111b

db 11111111b

db 11111111b

zero db 11111111b

db 11000101b

db 10010001b

db 10010001b

db 10001001b

db 10001':101b

db 10011001b

db 10100011b

db 11111111b

db 11111111b

one db 11111111b

db 11100111b

db 11000111b

db 11100111b

db 11100111b

db 11100111b

db 11100111b

db 10000001b

db 11111111b

db 11111111b

two db 11111111b

db 11000011b

db 10011001b

db 11111001b

db 11100011b

db 11001111b

db 10011111b

db 10000001b

db 11111111b

db 11111111b

9-8

Text Write Operations

three db 11111111b
db 10000001b
db 11110011b
db 11100111b
db 11000011b
db 11111001b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

four db 11111111b
db 11110001b
db 11100001b
db 11001001b
db 10011001b
db 10000001b
db 11111001b
db 11111001b
db 11111111b
db 11111111b

five db 11111111b
db 10000001b
db 10011111b
db 10000011b
db 11111001b
db 11111001b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

six db 11111111b
db 11000011b
db 10011001b
db 10011111b
db 10000011b
db 10001001b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

9-9

T ext Write Operations

5even db 11111111b
db 10000001b
db 11111001b
db 11110011b
db 11100111b
db 11001111b
db 10011111b
db 10011111b
db 11111111b
db 11111111b

eight db 11111111b
db 11000011b
db 10011001b
db 10011001b
db 11000011b
db 10011001b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

nine db 11111111b
db 11000011b
db 10011001b
db 10010001b
db 11000001b
db 11111 001 b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

colon db 11111111b
db 11111111b
db 11111111b
db 11100111b
db 11100111b
db 11111111b
db 11100111b
db 11100111b
db 11111111b
db 11111111b

9-10

T ext Write Operations

5colon db 11111111b

db 11111111b

db 11111111b

db 11100111b

db 11100111b

db 11111111b

db 11100111b

db 11100111b

db 11001111b

db 11111111b

le55t db 11111111b

db 11111001b

db 11110011b

db 11001111b

db 10011111b

db 11001111b

db 11110011b

db 11111001b

db 11111111b

db 11111111b

egual db 11111111b

db 11111111b

db 11111111b

db 10000001b

db 11111111b

db 10000001b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

greatr db 11111111b

db 10011111b

db 11001111b

db 11110011b

db 11111001b

db 11110011b

db 11001111b

db 10011111b

db 11111111b

db 11111111b

9-11

T ext Write Operations

9ues db 11111111b
db 11000011b
db 10011001b
db 11111001b
db 11110011b
db 11100111b
db 11111111b
db 11100111b
db 11111111b
db 11111111b

at db 11111111b
db 11000011b
db 10011001b
db 10011001b
db 10010001b
db 10010011b
db 10011111b
db 11000001b
db 11111111b
db 11111111b

capa db 11111111b
db 11100111b
db 11000011b
db 10011001b
db 10011001b
db 10000001b
db 10011001b
db 10011001b
db 11111111b
db 11111111b

capb db 11111111b
db 10000011b
db 10011001b
db 10011001b
db 10000011b
db 10011001b
db 10011001b
db 10000011b
db 11111111b
db 11111111b

9-12

T ext Write Operations

cape db 11111111b
db 11000011b
db 10011001b
db 10011111b
db 10011111b
db 10011111b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

capd db 11111111b
db 10000011b
db 10011001b
db 10011001b
db 10011001b
db 10011001b
db 10011001b
db 10000011b
db 11111111b
db 11111111b

cape db 11111111b
db 10000001b
db 10011111b
db 10011111b
db 10000011b
db 10011111b
db 10011111b
db 10000001b
db 11111111b
db 11111111b

capf db 11111111b
db 10000001b
db 10011101b
db 10011111b
db 10000111b
db 10011111b
db 10011111b
db 10011111b
db 11111111b
db 11111111b

9-13

Text Write Operations

cap9 db 11111111b
db 11000011b
db 10011001b
db 10011001b
db 10011111b
db 10010001b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

caph db 11111111b
db 10011001b
db 10011001b
db 10011001b
db 10000001b
db 10011001b
db 10011001b
db 10011001b
db 11111111b
db 11111111b

capi db 11111111b
db 11000011b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11000011b
db 11111111b
db 11111111b

capj db 11111111b
db 11100001b
db 11110011b
db 11110011b
db 11110011b
db 11110011b
db 10010011b
db 11000111b
db 11111111b
db 11111111b

9-14

T ext Write Operations

capk db 11111111b
db 10011001b
db 10010011b
db 10000111b
db 10001111b
db 10000111b
db 10010011b
db 10011001b
db 11111111b
db 11111111b

capl db 11111111b
db 10000111b
db 11001111b
db 11001111b
db 11001111b
db 11001111b
db 11001101b
db 10000001b
db 11111111b
db 11111111b

capm db 11111111b
db 00111001b
db 0OO10001b
db 00101001b
db 00101001b
db 00111001b
db 00111001b
db 00111001b
db 11111111b
db 11111111b

capn db 11111111b
db 10011001b
db 10001001b
db 10001001b
db 10000001b
db 10010001b
db 10010001b
db 10011001b
db 11111111b
db 11111111b

9-15

T ext Write Operations

capo db 11111111b
db 11000011b
db 10011001b
db 10011001b
db 10011001b
db 10011001b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

capp db 11111111b
db 10000011b
db 10011001b
db 10011001b
db 10000011b
db 10011111b
db 10011111b
db 10011111b
db 11111111b
db 11111111b

capq db 11111111b
db 11000011b
db 10011001b
db 10011001b
db 10011001b
db 10010001b
db 10011001b
db 11000001b
db 11111100b
db 11111111b

capr db 11111111b
db 10000011b
db 10011001b
db 10011001b
db 10000011b
db 10000111b
db 10010011b
db 10011001b
db 11111111b
db 11111111b

9-16

Text Write Operations

caps db 11111111b
db 11000011b
db 10011001b
db 10011111b
db 11000111b
db 11110001b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

capt db 11111111b
db 10000001b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11111111b
db 11111111b

capu db 11111111b
db 10011001b
db 10011001b
db 10011001b
db 10011001b
db 10011001b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

capv db 11111111b
db 10011001b
db 10011001b
db 10011001b
db 10011001b
db 10011001b
db 11000011b
db 11100111b
db 11111111b
db 11111111b

9-17

T ext Write Operations

cap'" db 11111111b
db 00111001b
db 00111001b
db 00111001b
db 00111001b
db 00101001b
db 0OOOOOO1b
db 00111001b
db 11111111b
db 11111111b

capx db 11111111b
db 10011001b
db 10011001b
db 11000011b
db 11100111b
db 11000011b
db 10011001b
db 10011001b
db 11111111b
db 11111111b

eapy db 11111111b
db 10011001b
db 10011001b
db 11000011b
db 11100111b
db 11100111b
db 11100111b
db 11000011b
db 11111111b
db 11111111b

capz db 11111111b
db 10000001b
db 11111001b
db 11110011b
db 11100111b
db 11001111b
db 10011101b
db 10000001b
db 11111111b
db 11111111b

9-18

T ext Write Operations

Ibrak db 11111111b
db 10000011b
db 10011111b
db 10011111b
db 10011111b
db 10011111b
db 10011111b
db 10000011b
db 11111111b
db 11111111b

bslash db 11111111b
db 10111111b
db 10011111b
db 11001111b
db 11100111b
db 11110011b
db 11111001b
db 11111101b
db 11111111b
db 11111111b

rbrak db 11111111b
db 10000011b
db 11110011b
db 11110011b
db 11110011b
db 11110011b
db 11110011b
db 10000011b
db 11111111b
db 11111111b

caret db 11111111b
db 11101111b
db 11010111b
db 10111011b
db 11111111b
db 11111111b
db 11111111b
db 11111111b
db 11111111b
db 11111111b

9-19

T ext Write Operations

underl db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db OOOOOOOOb

lsguot db 11111111b

db 11100111b

db 11100111b

db 11110111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

db 11111111b

lita db 11111111b

db 11111111b

db 11111111b

db 10000011b

db 11111001b

db 11000001b

db 10011001b

db 11000001b

db 11111111b

db 11111111b

litb db 11111111b

db 10011111b

db 10011111b

db 10000011b

db 10011001b

db 10011001b

db 10011001b

db 10000011b

db 11111111b

db 11111111b

9-20

Text Write Operations

lite db 11111111b
db 11111111b
db 11111111b
db 11000011b
db 10011001b
db 10011111b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

litd db 11111111b
db 11111001b
db 11111001b
db 11000001b
db 10010001b
db 10011001b
db 10010001b
db 11000001b
db 11111111b
db 11111111b

lite db 11111111b
db 11111111b
db 11111111b
db 11000011b
db 10011001b
db 10000011b
db 10011111b
db 11000011b
db 11111111b
db 11111111b

litf db 11111111b
db 11100011b
db 11001001b
db 11001111b
db 10000011b
db 11001111b
db 11001111b
db 11001111b
db 11111111b
db 11111111b

9-21

Text Write Operations

1 itg db 11111111b

db 11111111b

db 11111001b

db 11000001b

db 10010011b

db 10010011b

db 11000011b

db 11110011b

db 10010011b

db 11000111b

lith db 11111111b

db 10011111b

db 10011111b

db 10000011b

db 10001001b

db 10011001b

db 10011001b

db 10011001b

db 11111111b

db 11111111b

lit i db 11111111b

db 11111111b

db 11100111b

db 11111111b

db 11000111b

db 11100111b

db 11100111b

db 10000001b

db 11111111b

db 11111111b

litj db 11111111b

db 11111111b

db 11110011b

db 11111111b

db 11110011b

db 11110011b

db 11110011b

db 11110011b

db 10010011b

db 11000111b

9-22

Text Write Operations

1 it k db 11111111b

db 10011111b

db 10011111b

db 10010011b

db 10000111b

db 10000111b

db 10010011b

db 10011001b

db 11111111b

db 11111111b

1 i tl db 11111111b

db 11000111b

db 11100111b

db 11100111b

db 11100111b

db 11100111b

db 11100111b

db 11000011b

db 11111111b

db 11111111b

litm db 11111111b

db 11111111b

db 11111111b

db 10010011b

db 00101001b

db 00101001b

db 00101001b

db 00111001b

db 11111111b

db 11111111b

litn db 11111111b

db 11111111b

db 11111111b

db 10100011b

db 10001001b

db 10011001b

db 10011001b

db 10011001b

db 11111111b

db 11111111b

9-23

T ext Write Operations

lito db 11111111b
db 11111111b
db 11111111b
db 11000011b
db 10011001b
db 10011001b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

litp db 11111111b
db 11111111b
db 11111111b
db 10100011b
db 10001001b
db 10011001b
db 10001001b
db 10000011b
db 10011111b
db 10011111b

litq db 11111111b
db 11111111b
db 11111111b
db 11000101b
db 10010001b
db 10011001b
db 10010001b
db 11000001b
db 11111001b
db 11111001b

litr db 11111111b
db 11111111b
db 11111111b
db 10100011b
db 10011001b
db 10011111b
db 10011111b
db 10011111b
db 11111111b
db 11111111b

9-24

T ext Write Operations

lit5 db 11111111b
db 11111111b
db 11111111b
db 11000001b
db 10011111b
db 11000011b
db 11111001b
db 10000011b
db 11111111b
db 11111111b

1 it t db 11111111b
db 11111111b
db 11001111b
db 10000011b
db 11001111b
db 11001111b
db 11001001b
db 11100011b
db 11111111b
db 11111111b

Ii tu db 11111111b
db 11111111b
db 11111111b
db 10011001b
db 10011001b
db 10011001b
db 10011001b
db 11000011b
db 11111111b
db 11111111b

litv db 11111111b
db 11111111b
db 11111111b
db 10011001b
db 10011001b
db 10011001b
db 11011011b
db 11100111b
db 11111111b
db 11111111b

9-25

Text Write Operations

litw db 11111111b
db 11111111b
db 11111111b
db 00111001b
db 00111001b
db 00101001b
db 10101011b
db 10010011b
db 11111111b
db 11111111b

1 itx db 11111111b
db 11111111b
db 11111111b
db 10011001b
db 11000011b
db 11100111b
db 11000011b
db 10011001b
db 11111111b
db 11111111b

lity db 11111111b
db 11111111b
db 11111111b
db 10011001b
db 10011001b
db 10011001b
db 11100001b
db 11111001b
db 10011001b
db 11000011b

litz db 11111111b
db 11111111b
db 11111111b
db 10000001b
db 11110011b
db 11100111b
db 11001111b
db 10000001b
db 11111111b
db 11111111b

9-26

lsbrak db lllll111b
11110001b
11100111b

vert!

db
db

db 11001111b
db 10011111b
db 11001111b
db 11001111b
db 11100011b
db l1111111b
db l1111111b

db lll11111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db 11100111b
db llllll11b

rsbrak db l1111111b

tilde

dseg

cseg

extrn

gtext

db 10001111b
db 11100111b
db 11110011b
db 11111001b
db 11110011b
db 11100111b
db 10001111b
db ll111111b
db ll111111b

db

db
db

db
db

db
db

db
db

db

l1111111b
10011111b
01100101b
11110011b
l1111111b
llll1111b
l1111111b
ll111111b
l1111111b
ll111111b
ends

segment byte public 'codesg'

public gtext

mode:near.gdc_not_busy:near

assume cs:cseg.ds:dseg.es:dseg.ss:nothing

proc near

T ext Write Operations

9-27

T ext Write Operations

;We are going to assume that the character is byte-aligned. Anything
;else will be ignored with the char being written out to the integer
;of the byte address.

;Special conditions: if dl=Offh - don't print anything.

;1)Make sure that the Graphics Option doesn't have any pending
;operations to be completed.
;2)Turn the x,y coordinates passed in ax,bx into a cursor word
;address to be saved and then asserted to the GDC.
;3)If the current foreground/background colors are not those
;desired, assert the desired colors to the Foreground/Background
;Register.
;4)Determine in which half of the word the character is to be
;written to and then enable that portion of the write.
;S)Check to see if the character we are being requested to print is
;legal. Anything under 20h is considered to be unprintable and so we
;just exit. We also consider Offh to be unprintable since the Rainbow
;uses this code as a delete marker.
;6)Turn the character's code into a word offset. Use this offset to
;find an address in a table. This table is a table of near addresses
;that define the starting address of the ten bytes that is the
;particular character's font. Fetch the first two bytes and assert to
;the screen. We have to assert write buffer counter reset because we
;are only using two of the words in the write buffer, not all 8.
;Each byte is loaded into both the left and right byte of a write
;buffer word. The GDC is programmed to perform the two-scan-line
;write and we wait for the write to finish. The next 8 scan lines
;of the character font are loaded into both the left and right bytes
;of the write buffer and these eight lines are then written to the
;screen.

push
call
pop

ax

;Ax the column number of the character. Bx is the row number.
;In high resolution, each bx is = 640 words
;Cursor position = (ax/2)+10*(bx*scan line width in words)

mov
shr
mov
shl
mov
mov
shl
add

9-28

di,ax
ax,1
cx,6
bx,cl
si,bx
cl,3
bx,cl
bx,si

;save the x so that we can check it later
;turn column position into a word address
;high resolution is 64 words per line
;bx*scan line length
;save a copy of scan times count
;to get bx*10 first multiply bx by 8
;then
;add in the 2*bx*scan line length

\

T ext Write Operations

add
add
mov

bx,!ii ;thi!i give!i 10*bx*!ican line length
bx,ax ;combine x and y into a word addre!i!i
word ptr curlO,bx ;po!iition to write the word at

;A55ert the color5 attribute!i of the character to fgbg. Dh ha!i the
;foreground and background attribute!i in it.

cmp dh, byte ptr fg ; i!i the fgbg color the one we want?

JZ cont ; jump if ye!i
mov al,Of7h
out 53h,al
mov byte ptr fg,dh
mov al,dh
out 51h,al

;A5!iert the graphiC!i board'!i text ma!ik. The GDC doe!i 16-bit write!i
;in text mode but our character!i are only 8 bit!i wide. We mU!it enable
;half of the write and di5able the other half. If the x wa!i odd then
;enable the right half. If the x wa!i even then enable the left half.

cont: te!it di,1 ; i!i thi!i a fir!it byte?
jnz odd ; jump if not
mov word ptr gbm5k I, OOffh
jmp com

odd: mov word ptr gbm!ik I, OffOOh
com: call !itgbm ;a!i!iert the graphic!i board ma5k

;Only the character!i below 127h are defined - the other!i are legal
;but not in the font table. After checking for a legal character
;fetch the addre55 entry (character number - 20h) in the table.
;Thi!i i5 the addre!i!i of the fir!it byte of the character'!i font.

cmp dl,1fh ;unprintable character?
ja contO ; jump if not
Jmp exit ;don't print illegal character

contO: cmp dl,Offh ; i!i thi!i a delete marker?
jnz cont1 ; jump if not
jmp exit ;exit if ye!i

cont1: !iub dl,20h ;table !itart5 with a !ipace
xor dh,dh ; at 0
mov bx,dx ;acce!i!i table .. index off bx
!ihl bx,1 ;byte to word addre!i!i off5et
mov !ii,textab[bx]

;Textab ha5 the relative off5et!i of each character in it. All we have
;to do i!i add the !itart of the font table to the relative off5et of
;the particular character.

9-29

T ext Write Operations

add 5i,off5et 5pace ;combine table off5et with
;character off5et

;Tran5fer the font from the font table into the write buffer.
;Write the fir5t two 5can5, then do the la5t 8.

c1d
mov
out
out
lod5w
out
out
mov
out
out
mov
out

al,Ofeh
53h,al
51h,al

52h,al
52h,al
al,ah
52h,al
52h,al
al,Ofeh
53h,al

out 51h,al

;make 5ure lod5b inC5 5i.
;re5et the write buffer counter

;fetch both byte5.
;put the byte into both 1 and 2
;write buffer byte5

;put the byte into both 1 and 2
;write buffer byte5
;re5et the write buffer counter

;Check to 5ee if already in text mode.

te5t byte ptr gbmod,2
j z textm ; jump if in text mode el5e
and byte ptr gbmod,Ofdh ;a55ert text mode
call mode

textm: mov al,49h ;a55ert the cur50r command
out 57h,al
mov ax,word ptr curIO
out 56h,al
mov al,ah
out 56h,al
mov al,4ah ;a55ert the ma5k command
out 57h,al
mov al,Offh
out 56h,al
out 56h,al
mov al,4ch ;a55ert the fig5 command
out 57h,al
xor al,al ;a55ert the down direction to write
out 56h,al
mov al,1 ;do it 2 write cycle5
out 56h,al
xor al,al
out 56h,al

9-30

T ext Write Operations

mov al,22h ;assert the wdat command
out 57h,al
mov al,Offh
out 56h,al
out 56h,al

;Wait for the first two scans to be written.

mov ax,422h ;make sure the GDC isn't drawing
out 57h,al ;write a wdat to the GDC

here 1 : in al,56h ;read the status register
test ah,al ;did the wdat get executed?
jz here1 ; jump if not

;si is still pointing to the next scan line to be fetched. Get the
;next two scan lines and then tell the GDC to write them. No new
;cursor, GDC mask, graphics mask or mode commands need be issued.

mov
ldcr: lodsb

out
out
loop
mov
out
xor
out
mov
out
mov
out
mov
out
mov
out
out

exit: ret
stgbm: mov

out
mov
out
ret

gtext endp
cseg ends

end

cx,8

52h,al
52h,al
ldcr
al,4ch
57h,al
aI, al
56h,al
ax,7
56h,al
al,ah
56h,al
a I, 22h
57h,al
al,Offh
56h,al
56h,al

;eight scan lines
;fetch the byte
;put the byte into both 1 and 2
;write buffer bytes

;assert the figs command

;assert the down direction to write

;do 8 write cycles

;assert the wdat command

ax,word ptr gbmskl
54h,al
aI, ah
55h,al

9-31

Text Write Operations

Define and Position the Cursor

There are two routines in the following example. One sets the cursor type to no cursor, block,
underscore, or block and underscore. It then sets up the current cursor location and calls the second
routine. The second routine accepts new coordinates for the cursor and moves the cursor to the new
location.

Example of Defining and Positioning the Cursor

.** ,

pro c e d u r e 9 set t y P

purpose:
entry:

assert new cursor type
dl bits determine cursor style
(if no bits set, no cursor is displayed>

bit °
bit 1

bit 2
bit 3

block
undefined
undefined
underscore

*
*
*
*
*
*
*
*
*
*

;**

dseg
extrn
block

segment byte public 'datasg'
curlO:byte,cur12:byte,gbmod:byte
db 0,0,0,0,0,0,0,0,0,0

cdis db °
lastcl dw °

dw 0
ocurs
newcl

db
dw °

°
dw °

ncurs db
unders db
userd db

dseg

° Offh,Offh,Offh,Offh,Offh,Offh,Offh,Offh,O,Offh
0,0,0,0,0,0,0,0,0,0

ends

;Implements the new cursor type to be displayed. The current
;cursor type and location must become the old type and location.
;The new type becomes whatever is in dl. This routine will fetch
;the previous cursor type out of NCURS and put it into OCURS and
;then put the new cursor type into NCURS. The previous cursor
;coordinates are fetched and put into ax and bx. A branch to
;GSETPOS then erases the old cursor and displays the new cursor.
;Cursor type bits are not exclusive of each other. A cursor can
;be both an underscore and a block.

9-32

Text Write Operations

dl= 0
1

8

turns the cursor display off
displays the insert cursor (full block)
displays the overwrite cursor (underscore)

9 displays a simultaneous underscore and block cursor

cseg
extrn

gsettyp

gsettyp

segment byte
mode:near

public 'codesg'

assume cs:cseg,ds:dseg,es:dseg,ss:nothing
publiC gsettyp

proc near
mov al,byte ptr ncurs ;current cursor becomes
mov byte ptr ocurs,al old cursor type
mov byte ptr ncurs,dl ; pic k up new cursor type
mov ax,word ptr newcl ; pick up current x and y
mov bx,word ptr newcl+2 cursor coordinates

jmp pos ;branch to assert new cursor

endp type in old location

-** ,

pro c e d u r e 9 set p 0 s

purpose:
entry:

assert new cursor position
ax
bx

x location
y location

*
*
*
*
*
*
*

.** ,

gsetpos proc
publiC
near

gsetpos

;Display the cursor. Cursor type was defined by GSETTYP. The
;cursor type is stored in NCURS. Fetch the type and address of the
;previous cursor and put it into OCURS and also into lastcl and
;lastcl+2. If a cursor is currently being displayed, erase it. If
;there is a new cursor to display, write it (or them) to the screen.
;A cursor may be a block or an underscore or both.

;The x and y coordinates of the cursor are converted into an address
;that the GDC can use. Either the left or the right half of the text
;mask is enabled, depending on whether the x is even or odd. The
;write operation itself takes places in complement mode so that no
;information on the screen is lost or obscured but only inverted in
;value. In order to ensure that all planes are inverted, a OfOh is
;loaded into the Foreground/Background Register and all planes are
;write enabled. The cursor is written to the screen in two separate
;writes because the write buffer is eight, not ten, words long.

9-33

T ext Write Operations

;Move current cursor type and location to previous type and location.

mov cl,byte
mov byte ptr

pos: cld
mov cx,word
mov word ptr
mov cx,word
mov word ptr
mov word ptr
mov word ptr

ptr ncurs
ocurs,cl

ptr newcl
lastcl,cx

ptr newcl+2
lastcl+2,cx
newcl,ax
newcl+2,bx

;move current cursor type
into old cursor type

;move current cursor
location into old cursor
location

;save new cursor coordinates
;in new cursor location

;Before doing anything to the graphics option we need to make sure
;that the option isn't already in use. Assert a harmless command
;into the FIFO and wait for the GDC to execute it.

call

;Set up the graphics option. Put the Graphics Option in complement
;and text modes with all planes enabled. Assert fgbg and text mask.
;Calculate the write address and store in curIO,1.

mov
out
mov
out

;Assert text

mov
and
or
cmp
j z
mov
call

gsposO: mov
out
mov
out

ax,10efh
53h,al
al,ah
51h,al

mode with read disabled.

al,byte ptr gbmod
al,Ofdh
al,10h
al,byte ptr gbmod
gsposO
byte ptr gbmod,al
mode
al,Of7h
53h,al
al,OfOh
51h,al

;address the ALU/PS
register

;set complement mode with
all planes enabled

;get mode shadow byte
;set text mode
;set write enabled mode
;is mode already asserted

this way? If yes, jump
;update the mode register

;set Foreground/Background
register to invert data

;Is a cursor currently being displayed? If cdis<>O, then yes. Any
;current cursor will have to be erased before we display a new one.

g!!lp01 :

9-34

test

j z

byte ptr cdis,1
gspos2

;if no old cursor to erase,
just display old one

;This part will erase the old cursor.

mov byte ptr cdis,O
mov dh,byte ptr lastcl
mov dl,byte ptr lastcl+2
call asmask
call dx2curl
test byte ptr ocurs,8
j z gspos1
mov si,offset unders
call discurs

gspos 1 : test byte ptr ocurs,1

j z gspos2
call not_busy ;wait
mov si,offset block
call discurs

;Write the new cursor out to the screen.

gspos2: cmp byte ptr ncurs,O

j z gspos5
mov dh,byte ptr newcl
mov dl,byte ptr newcl+2
call not_busy
call asmask
call dx2curl
test byte ptr ncurs,8
j z gspos3
mov si,offset unders
call discurs

gspos3: test byte ptr ncurs,1
j z gspos4
call not_busy
mov si,offset block
call discurs

gspos4: or byte ptr cdis,1
gspos5: call not_busy

ret

;Enable one byte of the text mask.

asmask: mov ax,OOffh
test dh,1

j z ritc4
mov aX,OffOOh

ritc4: out 55h,al
mov aI, ah
out 54h,al
ret

Text Write Operations

;set no cursor on screen
;fetch x and y, put into dx,

and call dx2curl
;assert the mask registers
;turn dx into GDC address
;underline?
; jump if not
;erase the underline
;do the write
;block?

; jump if not
till done erasing underline
;erase the block
;do the write

;write a new cursor?
;jump if not
;fetch coordinates of

new cursor
;wait for erase to finish
;assert the mask registers

;underscore cursor?
;jump if not
;set up for underline cursor
;do the write
;block cursor?
;jump if not
;wait for any write to finish
;set up for block cursor
;do the write.
;set cursor displayed flag

;set up the text mask
;write to the right byte?

; jump if yes

;issue low byte of mask

;issue high byte of mask

9-35

T ext Write Operations

jOisplay the cursor.

jAssume that the option is already set up in text mode, complement
jwrite and that the appropriate text mask is already set. The
jaddress of the cursor pattern is loaded into the si.

discurs:
mov al,Ofeh jselect the write buffer and clear
out 53h,al the write buffer counter
out 51h,al
lodsb
out 52h,al jfeed the same byte to both halves
out 52h,al of the word to be written
lodsb
out 52h,al jfeed the same byte to both halves
out 52h,al of the word to be written
mov al,Ofeh jselect the write buffer and clear
out 53h,al the write buffer counter
out 51h,al
mov al,49h jassert the position to write
out 57h,al
mov ax,word ptr curIO
out 56h,al
mov al,ah
out 56h,al
mov al,4ah jissue the GOC mask command to
out 57h,al set all GOC mask bits
mov al,Offh
out 56h,al
out 56h,al
mov al,4ch jprogram a write of ten scans
out 57h,al first do two scans, then eight
xor al,al
out 56h,al
mov al,1
out 56h,al
xor al,al
out 56h,al
mov al,22h jstart the write
out 57h,al
mov al,Offh
out 56h,al
out 56h,al
call not_busy jwait for first two lines to finish
mov cx,8 jthen write the next 8 scans

9-36

Text Write Operations

ritc6: lodsb
out
out
loop
mov
out
xor
out
mov
out
xor
out
mov
out
mov
out
out
ret

52h,al
52h,al
ritc6
al,4ch
57h,al
al,al
56h,al
al,7
56h,al
al,al
56h,al
al,22h
57h,al
al,Offh
56h,al
56h,al

;fetch the cursor shape
;feed the same byte to both halves

of the word

;program a write of eight scans

;start the write

;Turn dh and dl into a word address (dl is the line and dh
;is the column). Store the result in word ptr curIO. Start with
;turning dl (line) into a word address.

Word address = dl * number of words/line * 10

;Turn dh (column) into a word address.

Word address = dh/2

;Combine the two.
;the GDC.

This gives the curIO address to be asserted to

dx2curl:
mov
mov
test
j z
inc

ritc5: xor
shl
mov
mov
shl
shl
add
shr

aI, dh
c 1,5
byte
ritc5
cl
dh,dh
dx,cl
bx,dx
c 1,3
bx, 1
dx,cl
dx,bx
al,1

ptr

;store the column count
;medium resolution = 32 words/line

gbmod,1 ;is it high resolution?
;jump if not
;high resolution = 64 words/line

;multiply dx by ten

;this is the row address
;this is the column number

9-37

Text Write Operations

xor ah,ah
add dx,ax
mov
ret

word ptr curlO,dx
;thi5 i5 the combined row and
;column addre55

;Thi5 i5 a qUicker ver5ion of GDC_NOT_BUSY. We don't wa5te time on
;50me of the normal check5 and thing5 that GDC_NOT_BUSY doe5 due to
;the need to move a5 quickly a5 p055ible on the cur50r era5e/write
;routine5. Thi5 routine doe5 the 5ame 50rt of thing5. A harmle55
;command i5 i55ued to the GDC. If the GDC i5 in the proce55 of
;performing 50me other command, the WDAT we jU5t i55ued
;will 5tay in the GDC'5 command FIFO until 5uch time a5 the GDC can
;get to it. If the FIFO empty bit i5 5et, the GDC executed the
;WDAT command and mU5t be fini5hed with any previou5 operation5
;programmed into it.

not_bu5y:
mov
out

bU5y: in
te5t
j z
ret

g5etp05 endp
c5eg end5

end

aX,422h
57h,al
a I, 56h
ah,al
bU5y

Write a Text String

;a55ert a WDAT

;wait for FIFO empty bit

The example in this section writes a string of ASCII text starting at a specified location and using a
specified scale factor. It uses the vector write routine from Chapter 8 to form each character.

Example of Writing a Text String

;**

*
pro c e d u r e v e c tor _ t ext

entry: cx = 5tring length
text = pointer to externally defined array of

ASCII character5
5cale
xinit
yinit

character scale
5tarting x location
5tarting y location

*
*
*
*
*
*
*
*
*

.** ,

9-38

Text Write Operations

c5eg 5egment byte public 'code5g'
extrn imode:near,pattern_mult:near,pattern_regi5ter:near
extrn vector:near
publiC vector_text
a55ume c5:c5eg,d5:d5eg,e5:d5eg,55:nothing

vector_text proc near
or byte ptr gbmod,082h
call imode
mov al,4ah
out 57h,al
mov al,Offh
out 56h,al
out
xor
out
out

56h,al
al,al
55h,al
54h,al

mov bl, 1
call
mov
call
mov
mov
mov
mov
mov

dO_5tring:
lod5b
pU5h
pU5h
call
mov
mov

pattern_mult
bl,Offh
pattern_regi5ter
ax,word ptr xinit
word ptr xad,ax
ax,word ptr yinit
word ptr yad,ax
5i,off5et text

5i

cx
di5play_character
ax,8
cl,byte ptr 5cale

mul cx
add word ptr xad,ax
pop cx
pop 5 i
loop
ret

di5play_character:
cmp aI, 07fh
jbe char_cont_1
ret

char_cont_1 :

cmp
ja
ret

al,20h
char_cont

;en5ure we're in graphic5 mode

;enable GDC ma5k data write
;enable all option ma5k write5

;5et pattern multiplier

;5et pattern regi5ter
;get initial x
;5ave it

;get initial y
;5ave it

;get character

;di5play it

;move over by cell value

;loop until done

;make 5ure we're in font table
;continue if we are

;check if we can print character
;continue if we can

9-39

T ext Write Operations

char_cont:
xor ah,ah ;clear high byte
shl ax,1 ;make it a word pointer
mov si,ax
mov si,font_table[sil ;point si to font info

get_next_stroke:
mov
mov
mov
mov
lodsb
cmp
jnz
ret

cont_1: mov
and
test
jz
or

ct: mov
xor
push
imul
sub
and
shr
shr
shr
shr
test

ax,word ptr xad
word ptr xinit,ax
aX,word ptr yad
word ptr yinit,ax

al,endc
cont_1

bx,ax
ax,Ofh
al,OSh
ct
ax,OfffOh
cl,byte ptr scale
ch,ch
cx
cx
word ptr yinit,ax
bx,OfOh
bx,1
bx,1
bx,1
bx,1
bl,08h

j z ct 1

ct1:

9-40

or
mov
pop
imul
add

bx,OfffOh
ax,bx
cx
cx
word ptr xinit,ax

;get stroke info
lend of character?
;continue if not

;mask to y value
; negative?

;sign extend

;multiply by scale value
;subtract to y offset
;mask to x value
;shift to four least

significant bits

; negative ?

;sign extend

;recover scale
;multiply by scale value
;add to x offset

ct2:

ct3:

mov ax,word ptr xad
mov word ptr xfinal,ax
mov ax,word ptr yad
mov word ptr yfinal,ax
lod5b
cmp al,endc
jz di5play_char_exit
cmp al, endv
jz get_next_5troke
mov
and
te5t

bX,ax
ax,Ofh
a 1, 08h

j z ct2
or
mov
xor
pU5h
imul
5ub
and
5hr
5hr
5hr
5hr
te5t

ax,OfffOh
cl,byte ptr 5cale
ch,ch
cx
cx
word ptr yfinal,ax
bx,OfOh
bx,1
bx,1
bx,1
bX,1
bl,08h

j z ct3
or
mov
pop
imul
add
pU5h
call
pop
mov

bx,OfffOh
ax,bx
cx
cx
word ptr xfinal,ax
5i

vector
5i

j5et up xy off5et5

jget 5troke byte
jend of character
jye5 then leave
jdark vector ?

jye5, begin again

jma5k to y value
jnegative

j5ign extend

?

jget 5cale information

jmultiply by 5cale
j5ubtract to y off5et
jma5k to x value
j5hift to four lea5t

5ignificant bit5

jnegative ?

j5ign extend

jrecover 5cale
jmultiply by 5cale
jadd to x off5et
j5aVe index to font info
jdraw 5troke
jrecover font index
jend of 5troke become5

T ext Write Operations

mov
mov

ax,word ptr xfinal
word ptr xinit,ax
aX,word ptr yfinal

beginning of next 5troke

mov word ptr yinit,ax
jmp next_5troke

di5play_char_exit:
ret

vector_text endp

c5eg
d5eg
extrn
extrn
public

end5
5egment byte public 'data5g'
gbmod:byte,xinit:word,yinit:word,xfinal:word,yfinal:word
xad:word,yad:word,text:byte
5cale

9-41

T ext Write Operations

.** ,
· * ,
· * ,
· * ,

5troke font character 5et
*
*
*

.** ,

;The following table5 contain vertex data for a 5troked character
;5et. The x and y coordinate information i5 repre5ented by 4-bit,
;25-complement number5 in the range of + or - 7. The x and y bit
;po5ition5 are a5 follow5:

bit 7 6 S 4 3 2 1 0

\ I \ I

x y

;End of character i5 repre5ented by the value x = -8, Y = -8.
;The dark vector i5 repre5ented by x = -8, Y = o.

;ASCII character5 are mapped into the p05itive quadrant, with the
;origin at the lower left corner of an upper ca5e character.

endc equ 10001000b ;end of character
endv equ 10000000b ;la5t vector of polyline

font_table dw off5et fonLOO
dw off5et font_01
dw off5et font_02
dw off5et font_03
dw off5et fonL04
dw off5et fonLOS
dw off5et fonL06
dw off5et font_07
dw off5et fonL08
dw off5et fonL09
dw off5et font_Oa
dw off5et font_~b

dw off5et font_Dc
dw off5et font_Od
dw off5et font_De
dw off5et font_Of
dw off5et font_10
dw off5et font_11
dw off5et font_12
dw off5et fonL13
dw off5et fonL14
dw off5et font_1S

9-42

/

Text Write Operations

dill off5et font_16
dill off5et font_17
dill off5et font_18
dill off5et font_19
dill off5et font_1a
dill off5et fonL 1b
dill off5et font_1c
dill off5et font_1d
dill off5et font_1e
dill off5et font_1f
dill off5et font_20 ;5pace
dill off5et font_21 • I , .
dill off5et font_22
dill off5et font_23
dill off5et font_24
dill off5et fonL25
dill off5et fonL26
dill off5et font_27
dill off5et font_28
dill off5et font_29
dill off5et font_2a
dill off5et fonL2b
dill off5et font_2c
dill off5et font_2d
dill off5et font_2e
dill off5et font_2f
dill off5et font_30
dill off5et fonL31
dill off5et fonL32
dill off5et fonL33
dill off5et font_34
dill off5et font_35
dill off5et font_36
dill off~et font_37
dill off5et font_38
dill off5et font_39
dill off5et font_3a
dill off5et fonL3b
dill off5et font_3c
dill off5et font_3d
dill off5et font_3e
dill off5et font_3f
dill off5et fonL40
dill off5et font_41
dill off5et fonL42
dill off5et fonL43

9-43

Text Write Operations

dw offset font_44

dw offset font_45

dw offset font_4S

dw offset font_47

dw offset fonL48

dw offset font_49

dw offset font_4a

dw offset fonL4b

dw offset font_4c

dw offset fonL4d

dw offset font_4e

dw offset fonL4f

dw offset font_50

dw offset font_51

dw offset font_52

dw offset font_53

dw offset font_54

dw offset fonL55

dw offset font_5S

dw offset font_57

dw offset fonL58

dw offset fonL59

dw offset font_Sa

dw offset font_5b

dw offset font_5c

dw offset font_5d

dw offset font_5e

dw offset font_Sf

dw offset font_SO

dw offset fonLS1

dw offset font_S2

dw offset font_S3

dw offset font_S4

dw offset font_S5

dw offset font_SS

dw offset font_S7

dw offset font_S8

dw offset font_S9

dw offset font_Sa

dw offset font_Sb

dw offset font_Sc

dw offset font_Sd

dw offset font_Se

dw offset font_Sf

dw offset fonL 70

dw offset fonL71

dw offset font_72

dw offset font_73

9-44

Text Write Operations

dill offset font_74

dill offset fonL7S
dill offset font_76

dill offset fonL77
dill offset fonL78
dill offset fonL79
dill offset font_7a

dill offset fonL7b
dill offset font_7c

dill offset fonL 7d
dill offset font_7e

dill offset font_7f

fonLDD db endc
font_D1 db endc
font_D2 db endc
font_D3 db endc
font_04 db endc
fonLDS db endc
font_D6 db endc
fonLD7 db endc
fonLD8 db endc
fonLD9 db endc
font_Da db endc
fonLDb db endc
font_Dc db endc
font_Dd db endc
font_De db endc
fonLOf db endc
font_1D db endc
font_11 db endc
fonL 12 db endc
fonL13 db endc
font_14 db endc
fonL1S db endc
fonL16 db endc
fonL17 db endc
fonL 18 db endc
font_19 db endc
font_1a db endc
fonL 1b db endc
font_1c db endc
fonL 1d db endc
font_1e db endc
font_1f db endc
font_2D db endc ;space

9-45

Text Write Operations

font_21 db 20h,21h,endv,23h,26h,endc
font_22 db 24h,26h,endv,54h,56h,endc
font_23 db 20h,26h,endv,40h,46h,endv,04h,64h,endv,02h,62h

db endc
font_24 db 2fh,27h,endv,01h,10h,30h,41h,42h,33h,13h,04h,05h

db 16h,36h,045h,endc
font_25 db 11h,55h,endv,14h,15h,25h,24h,14h,endv,41h,51h,52h

db 42h,41h,endc
font_26 db 50h,14h,15h,26h,36h,45h,44h,11h,10h,30h,52h,endc

font_27 db 34h,36h,endc
font_28 db 4eh, 11h, 14h,47h,endc

fonL29 db Oeh,31h,34h,07h,endc
font_2a db 30h,36h,endv,11h,55h,endv,15h,51h,endv,03h,63h

db endc
font_2b db 30h,36h,endv,03h,63h,endc
font_2c db 11h,20h,2fh,Odh,endc

font_2d db 03h,63h,endc
font_2e db OOh,01h,11h,10h,OOh,endc
font_2f db OOh,01h,45h,46h,endc
font_30 db 01h,05h,16h,36h,45h,41h,30h,10h,01h,endc
font_31 db 04h,26h,20h,endv,OOh,040h,endc
font_32 db 05h,16h,36h,45h,44h,OOh,40h,041h,endc
font_33 db 05h,16h,36h,45h,44h,33h,42h,41h,30h,10h,01h,endv

db 13h,033h,endc
font_34 db 06h,03h,043h,endv,20h,026h,endc
font_35 db 01h,10h,30h,41h,42h,33h,03h,06h,046h,endc
font_36 db 02h, 13h,33h,42h,41h,30h, 10h,01h,05h, 16h,36h,045h

db endc
font_37 db 06h,46h,44h,OOh,endc
font_38 db 01h,02h,13h,04h,05h,16h,36h,45h,44h,33h,42h,41h

db 30h,10h,01h,endv,13h,023h,endc

fonL39 db 01h,10h,30h,41h,45h,36h,16h,05h,04h,13h,33h,044h

db endc
font_3a db 15h,25h,24h,14h,15h,endv,12h,22h,21h,11h,12h

db endc
font_3b db 15h,25h,24h,14h,15h,endv,21h,11h,12h,22h,20h,1fh

db endc
font_3c db 30h,03h,036h,endc
font_3d db 02h,042h,endv,04h,044h,endc
font_3e db 10h,43h,16h,endc
font_3f db 06h,17h,37h,46h,45h,34h,24h,022h,endv,21h,020h

db endc
font_40 db 50h,10h,01h,06h,17h,57h,66h,63h,52h,32h,23h,24h

db 35h,55h,064h,endc
font_41 db OOh,04h,26h,44h,040h,endv,03h,043h,endc
font_42 db OOh,06h,36h,45h,44h,33h,42h,41h,30h,OOh,endv

db 03h,033h,endc

9-46

T ext Write Operations

font_43 db 45h,36h,16h,05h,01h,10h,30h,041h,endc
font_44 db OOh,06h,36h,45h,41h,30h,OOh,endc
font_45 db 40h,OOh,06h,046h,endv,03h,023h,endc
fonL46 db OOh,06h,046h,endv,03h,023h,endc
fonL47 db 45h,36h,16h,05h,01h,10h,30h,41h,43h,023h,endc
fonL48 db OOh,06h,endv,03h,043h,endv,40h,046h,endc
font_49 db 10h,030h,endv,20h,026h,endv,16h,036h,endc
font_4a db 01h,10h,30h,41h,046h,endc
font_4b db OOh,06h,endv,02h,046h,endv,13h,040h,endc
font_4c db 40h,OOh,06h,endc
font_4d db OOh,06h,24h,46h,040h,endc
font_4e db OOh,06h,endv,05h,041h,endv,40h,046h,endc
font_4f db 01h,05h,16h,36h,45h,41h,30h,10h,01h,endc
font_50 db OOh,06h,36h,45h,44h,33h,03h,endc
font_51 db 12h,30h,10h,01h,05h,16h,36h,45h,41h,30h,endc
font_52 db OOh,06h,36h,45h,44h,33h,03h,endv,13h,040h,endc
fonL53 db 01h,10h,30h,41h,42h,33h,13h,04h,05h,16h,36h

db 045h,endc
fonL54 db 06h,046h,endv,20h,026h,endc
font_55 db 06h,01h,10h,30h,41h,046h,endc
font_56 db 06h,02h,20h,42h,046h,endc
font_57 db 06h,OOh,22h,40h,046h,endc
fonL58 db OOh,01h,45h,046h,endv,40h,41h,05h,06h,endc
fonL59 db 06h,24h,020h,endv,24h,46h,endc
font_Sa db 06h,46h,45h,01h,OOh,40h,endc
fonL5b db 37h,17h,1fh,3fh,endc
font_5c db 06h,05h,41h,40h,endc
font_5d db 17h,37h,3fh,2fh,endc
font_5e db 04h,26h,044h,endc
fonL5f db Ofh,07fh,endc
font_60 db 54h,36h,endc
fonL61 db 40h,43h,34h,14h,03h,01h,10h,30h,041h,endc
fonL62 db 06h,01h,10h,30h,41h,43h,34h,14h,03h,endc
font_63 db 41h,30h,10h,01h,03h,14h,34h,043h,endc
font_64 db 46h,41h,30h,10h,01h,03h,14h,34h,43h,endc
fonL65 db 41h,30h,10h,01h,03h,14h,34h,43h,42h,02h,endc
fonL66 db 20h,25h,36h,46h,55h,endv,03h,43h,endc
fonL67 db 41h,30h,10h,01h,03h,14h,34h,43h,4fh,3eh,1eh

db Ofh,endc

9-47

Text Write Operations

font_68 db OOh,06h,endv,03h,14h,34h,43h,40h,endc

fonL69 db 20h,23h,endv,25h,26h,endc

font_6a db 46h,45h,endv,43h,4fh,3eh,1eh,Ofh,endc

fonL6b db OOh,06h,endv,01h,34h,endv,12h,30h,endc
font_6c db 20h,26h,endc
font_6d db OOh,04h,endv,03h,14h,23h,34h,43h,40h,endc
font_6e db OOh,04h,endv,03h,14h,34h,43h,40h,endc

fonL6f db 01h,03h,14h,34h,43h,41h,30h,10h,01h,endc

fonL 70 db 04h,Oeh,endv,01h,10h,30h,41h,43h,34h,14h

db 03h,endc

fonL71 db 41h,30h,10h,01h,03h,14h,34h,43h,endv,44h

db 4eh,endc

fonL 72 db 00h,04h,endv,03h,14h,34h,endc

fonL 73 db 01h, 10h,30h,41h,32h, 12h,03h, 14h,34h

db 43h,endc
font_74 db 04h,44h,endv,26h,21h,30h,40h,51h,endc
font_75 db 04h,01h,10h,30h,41h,endv,44h,40h,endc
font_76 db 04h,02h,20h,42h,44h,endc

fonL 77 db 04h,OOh,22h,40h,44h,endc
font_78 db 00h,44h,endv,04h,40h,endc

fonL79 db 04h,01h,10h,30h,41h,endv,44h,4fh,3eh,1eh

db Ofh,endc
font_7a db 04h,44h,OOh,40h,endc

fonL 7b db 40h,11h,32h,03h,34h,15h,46h,endc
font_7c db 20h,23h,endv,25h,27h,endc

fonL 7d db OOh,31h,12h,43h,14h,35h,06h,endc
font_7e db 06h,27h,46h,67h,endc
font_7f db 07,77,endc

scale db 0

dseg ends

end

9-48

10
Read Operations

The Read Process

Programming a read operation is simpler than programming a write operation. From the Graphics
Option's point of view, only the Mode and ALUjPS registers need to be programmed. There is no
need to involve the Foreground/Background Register, Text Mask, Write Buffer, or the Pattern
Generator. GDC reads are programmed much like text writes except for the action command which
in this case is RDAT. When reading data from the bitmap, only one plane can be active at anyone
time. Therefore, it can take four times as long to read back data as it did to write it in the first
place.

Read the Entire Bitmap

In the following example, the entire bitmap, one plane at a time, is read and written into a 64K byte
buffer in memory. This example compliments the example of displaying data from memory found in
Chapter 7.

10-1

Read Operations

Example of Reading the Entire Bitmap

.** ,

pro c e d u r e red v i d

purpose:

entry:
exit:

this routine will read out all of display
memory, one plane at a time, then store
that data in a 64k buffer in motherboard
memory.

register usage: ax,cx,di

*
*
*
*
*
*
*
*
*
*

.** ,

dseg segment byte public 'datasg'
extrn num_planes:byte,gbmod:byte,nmredl:word,gtemp:word,curlO:word
dseg ends
vidseg segment byte public 'vseg'

public viddata
viddata db Offffh dup (?)

vidseg ends
cseg segment byte public 'codesg'
extrn gdc_not_busy:near,alups:near,fgbg:near,init_option:near
extrn mode:near

assume cs:cseg,ds:dseg,es:dseg,ss:nothing
public redvid

redvid proc near

;Set up to enable reads. The Graphics Option has to disable writes
;in the ALU/PS, enable a plane to be read in the Mode Register, and
;program the GDC to perform one plane's worth of reads.
;GDC programming consists of issuing a CURSOR command of 0, a mask
;of FFFFh, a FIGS command with a direction to the right and a read
;of an entire plane, and finally the RDAT command to start the read
;in motion. Note that the GDC can't read in all 8000h words of a
;high resolution plane but it doesn't matter because not all 8000h
;words of a high resolution plane have useful information in them.

10-2

c1d
call
mov
out
mov
out
mov
test
jnz
mov

rd1: mov

jclear the direction flag
jmake sure the GDC is not busy

jdisable all writes

gdc_not_busy
al,Oefh
53h,al
al,Ofh
51h,al
ax,3fffh
byte ptr

jassume high resolution read
gbmod,01 jactually high resolution?

j jump if yes rd1
ax,2000h jmedium resolution no. of reads
word ptr nmredl,ax

jBlank the screen. This will let the GDC have 100% use of the time
jto read the screen in.

mov
out

al,Och
57h,al

jblank command

jSet up to transfer data as it is being read from the screen into
jthe VIDSEG data segment.

mov
mov
mov
mov
xor

rd2: mov
mov
out
mov
sub
shl
shl
mov
and
or
out
mov
out
xor
out
out
mov
out
mov
out
out

ax,vidseg
eS,ax
di,O
c1,byte ptr
ch,ch

jset up the es register to point
to the video buffer

jstart at beginning of the buffer
num_planes jinit routine sets this byte

jnum_planes = 2 or 4
word ptr
al,Obfh

gtemp,cx jsave plane count
jaddress the mode register

53h,al
al,byte ptr num_planes jfigure which plane to enable
al,cl
al,1
al,1
ah,byte ptr gbmod
ah,Oe1h
al,ah
51h,al
al,49h
57h,al
al,al
56h,al
56h,al
al,4ah
57h,al
al,Offh
56h,al
56h,al

jshift to enable bits over 2

jmode byte = no graphics,
plane to read, write enable

jcombine with plane to read
jassert new mode
jposition the GDC cursor to

top left

jset all bits in GDC mask

Read Operations

10-3

Read Operations

mov al,4ch jassert the FIGS command
out 57h,al
mov al,2 jdirection is to the right
out 56h,al
mov ax,word ptr nmredl jnumber of word reads to do
out 56h,al
mov al,ah
out 56h,al
mov al,OaOh jstart the read operation now
out 57h,al
mov cx,word ptr nmredl jread in as they are ready.
shl cx,1 jbytes = 2 * words read

rd4: in al,56h ibyte ready to be read?
test al,1
j z rd4 i jump if not
in al,57h iread the byte
stosb istore in vid5eg
loop rd4

iWe've finished reading all of the information out of that plane.
ilf high resolution, increment di by a word because we were one
iword short of the entire 32k high resolution plane. Recover the
iplane to read count and loop if not done.

test byte ptr gbmod,1 ihigh resolution?
j z rd5 i jump if not
stosw idummy stos to keep no. reads=words/plane

rd5: mov cx,word ptr gtemp
loop rd2 iloop if more planes to be read

iWe're done with the read.
iRestore video refresh and set the high/medium re50lution flag byte
iat the end of vid5eg 50 that when it i5 written back into the video
iwe do it in the proper resolution.

rd6:
rd7:

mov
out
te5t
jnz
xor
jmp
mov
mov
mov

al,Odh
57h,al
byte ptr gbmod,1
rd6
al,al
rd7

iunblank the 5creen

ihigh re5?
ijump if ye5

ila5t byte 0 for medium re50lution

al,Offh ila5t byte = ff for high re50lution
di,Offffh i5et the re50lution flag
byte ptr e5:[dil,al

mov ax,d5eg
mov
ret

redvid endp
c5eg end5

end

10-4

e5,ax ire5tore e5

Read Operations

Pixel Write After a Read Operation

After a read operation has completed, the graphics option is temporarily unable to do a pixel write.
(Word writes are not affected by preceding read operations.) However, the execution of a word write
operation restores the option's ability to do pixel writes. Therefore, whenever you intend to do a
pixel write after a read operation, you must first execute a word write. This will ensure that
subsequent vectors, arcs, and pixels will be enabled.

The following code sequence will execute a word write operation that will not write anything into the
bitmap. The code assumes that the CDC is not busy since it has just completed a read operation. It
also assumes that this code is entered after all the required bytes have been read out of the FIFO
buffer.

.** ,

pro c e d u r e

purpose: Execute a no-op word write after read operation is
completed.

*
*
*
*
*
*

.** ,

cseg
extrn

segment byte public 'codesg'
imode:near,alups:near
public write_after_read
assume cs:cseg,ds:dseg,es:nothing,ss:nothing

proc near
mov al,Odh ;sometimes the GDC will not accept the
out 57h,al first command after a read - this command

can safely be missed and serves to ensure
that the FIFO buffer is cleared and

xor
call
mov
out

b 1, b 1

alups
al,Offh
55h,al

out 54h,al

pointing in the right direction
;restore write enable replace mode to all

planes in the ALU/PS Register
;disable writes to all bits at the

option's Mask Registers

or byte ptr gbmod,10h ;enable writes to Mode Register
call imode ;it is already in word mode
mov al,4ch ;unnecessary to assert cursor or mask since
out 57h,al it doesn't matter where you write - the
xor al,al write is completely disabled anyway -
out 56h,al just going through the word write
out 56h,al operation will enable subseguent pixel
out 56h,al writes

10-5

Read Operations

c5eg
d5eg
extrn
d5eg

10-6

mov al,22h
out 57h,al jexecute the write operation
ret

end5
5egment byte
gbmod:byte

end5
end

endp

public 'data5g'

1 1
Scroll Operations

Vertical Scrolling

The Scroll map controls the lo~ation of 64-word blocks of display memory on the video monitor. In
medium resolution mode, this is two scan lines. In high resolution mode, this is one scan line. By
redefining scan line locations in the Scroll Map, you effectively move 64 words of data into new
screen locations.

All Scroll Map operations by the CPU start at location zero and increment by one with each suc
ceeding CPU access. The CPU has no direct control over which Scroll Map location it is reading or
writing. All input addresses are generated by an eight-bit index counter which is cleared to zero
when the CPU first accesses the Scroll Map through the Indirect Register. There is no random
access of a Scroll Map address.

Programming the Scroll Map involves a number of steps. First ensure that the GDC is not currently
accessing the Scroll Map and that it won't be for some time (the beginning of a vertical retrace for
example). Clearing bit 5 of the Mode Register to zero enables the Scroll Map for writing. Clearing
bit 7 of the Indirect Register to zero selects the Scroll Map and clears the Scroll Map Counter to
zero. Data can then be entered into the Scroll Map by writing to port 5Ih. When the programming
operation is complete or just before the end of the vertical retrace period (whichever comes first)
control of the Scroll Map addressing is returned to the GDC by setting bit 5 of the Mode Register to
one.

11-1

Scroll Operations

If, for some reason, programming the Scroll Map requires more than one vertical retrace period,
there is a way to break the operation up into two segments. A read of the Scroll Map increments the
Scroll Map Index Counter just as though it were a write. You can therefore program the first half,
wait for the next vertical retrace, read the first half and then finish the write of the last half.

Example of Vertical Scrolling One Scan Line

.** ,
*

pro c e d u r e V S c r 0 I I *

purpose:

entry:
exit:

*
move the current entire screen up one scan line *

*
*
*

register usage: ax,cx,di,si *
.** ,

dseg
extrn
dseg
cseg
extrn

segment byte public 'datasg'
scrltb:byte,gtemp1:byte,startl:byte,gbmod:byte isee Example 3
ends
segment byte public 'codesg'
ascrol:near idefined in Example 3.

assume cs:cseg,ds:dseg,es:dseg,ss:nothing
public vscroll

vscroll proc near
iThe scrollmap controls which 64 word display memory segment will be
idisplayed on a particular screen line. The scroll map will display
ion the top high resolution scan line the 64-word segment denoted by
ithe data loaded into location 0. If the data is a 0, the first
i64-word segment is accessed. If the data is a 10, the 11th 64-word
isegment is displayed. By simply rewriting the order of 64-word
isegments in the scroll map, the order in which they are displayed is
icorrespondingly altered. If the entire screen is to be scrolled up
ione line, the entire scroll map's contents are moved up one location.
iOata at address 1 is moved into address 0, data at address 2 is moved
iinto address 1 and so on. A split screen scroll can be accomplished
iby keeping the stationary part of the screen unchanged in the scroll
imap while loading the appropriate information into the moving window.
iIf more than one scroll map location is loaded with the same data,
ithe corresponding scan will be displayed multiple times on the screen.

11-2

Scroll Operations

jNote that the information in the bitmap hasn't been changed, only the
jlocation where the information is displayed on the video monitor has
jbeen changed. When the lines that used to be off the bottom of the
jscreen scroll up and become visible, they will have in them whatever
jhad been written there before. If a guaranteed clear scan line is
jdesirable, the off-screen lines should be cleared with a write before
jthe scroll takes place.

jIn medium resolution, only the first 128 scroll map entries have
jmeaning because while each medium resolution scan is 32 words long,
jeach scroll map entry controls the location of 64 words of data. In
jmedium resolution, this is the same as two entire scans. The scroll
jmap acts as if the most significant bit of the scroll map entries was
jalways O. Loading an 80h into a location is the same as loading a O.
jLoading an 81h is the equivalent to writing a 1. The example shown
jbelow assumes a high resolution, 256 location, scrollmap. Had it
jbeen medium resolution, only the first 128 scans would have been
jmoved. The other 128 scroll map locations still exist but are of no
jpractical use to the programmer. What this means to the applications
jprogrammer is that in medium resolution, after the scroll map has
jbeen initialized, the first 128 entries are treated as if they were
jthe only scroll map locations in the table.

j5ave the contents of the first section of the scroll table to be
joverwritten, fetch the data from however many scans away we want to
jscroll by, then move the contents of the table in a circular fashion.
jThe last entry to be written is the scan we first saved. After the
jshadow scroll table has been updated, it can then be asserted by a
jcall to the "ascrol" routine in the "init_option" procedure.

mov si,offset scrltb jset the source of the data
mov di,si jset the destination of the data
lodsb jfetch the first scan
mov byte ptr gtemp1,al and save it

mov cx,255 jmove the other 255 scroll
rep movsw table bytes
mov al,byte ptr gtemp1 jrecover the first scan and put
stosb it into scan 256 location
call ascrol jassert updated scroll table
ret to scroll map

vscroll endp
cseg ends

end

11-3

Scroll Operations

Horizontal Scrolling

Not only can the video display be scrolled up and down but it can also be scrolled from side to side
as well. The GDC can be programmed to start video action at an address other than location 0000.
Using the PRAM command to specify the starting address of the display partition as 0002 will
effectively shift the screen two words to the left. Since the screen display width is not the same as
the number of words displayed on the line there is a section of memory that is unrefreshed. The
data that scrolls off the screen leaves the refresh area and it will also be unrefreshed. To have the
data rotate or wrap around the screen and be saved requires that data be read from the side about
to go off the screen and be written to the side coming on to the screen. If the application is not
rotating but simply moving old data out to make room for new information, the old image can be
allowed to disappear into the unrefreshed area.

Although the specifications for the dynamic RAMs only guarantee a data persistence of two millisec
onds, most of the chips will hold data much longer. Therefore, it is possible to completely rotate
video memory off one side and back onto the other. However, applications considering using this
characteristic should be aware of the time dependency and plan accordingly.

Example of Horizontal Scrolling One Word

.** ,

pro c e d u r e h 5 C r 0 1 1

purpo5e:

entry:

exit:

move the current entire 5creen to right
or left a word addre55.

if al O(move 5creen to the left.
if al (> 0, move 5creen to the right.

regi5ter u5age: ax

*
*
*
*
*
*
*
*
*
*

.** ,

jThe GOC i5 programmable (on a word boundary> a5 to where it 5tart5
jdi5playing the 5creen. By incrementing or decrementing that 5tarting
jaddre55 word we can redefine the 5tarting addre55 of each 5can line
jand thereby give the appearance of horizontal 5crolling. A55ume that
jthi5 5tart window di5play addre55 i5 5tored in the variable5: 5tartl
jand 5tarth. Let'5 further a55ume that we want to limit 5crolling to
jone 5can line'5 worth. Therefore, in high re50lution we can never
ji55Ue a 5tarting addre55 higher than 63j in medium re50lution, none
jhigher than 31.

11-4

dseg segment byte publiC 'datasg'
extrn scrltb:byte,gtemp1:byte,startl:byte,gbmod:byte
dseg ends
cseg segment byte public 'codesg'
extrn gdc_not_busy:near
assume cs:cseg,ds:dseg,es:dseg,ss:nothing

public hscroll

hscroll proc near
or al,al ;move screen to left?

j z hs1 ; jump if not
dec byte ptr start! ;move screen to right
jmp hs2
inc byte ptr start! ;move screen to left
test byte ptr gbmod,1 ;high res?

jnz hs3 ; jump if yes
and byte ptr startl,31 ;limit to 1s t medium

jmp hs4 resolution scan
hs3: and byte ptr startl,63 ;limit to 1 s t high

resolution scan

;Assert the new startl, starth to the GDC. Assume that starth is
;always going to be 0 although this is not a necessity. Issue the
;PRAM command and rewrite the starting address of the GDC display
;window O.

call
mov

gdc_not_busy
al,70h

out 57h,al
mov
out
xor
out
ret

hscroll endp
cseg ends

end

al,byte ptr startl
56h,al
al,al
56h,al

;make sure the GDC is not busy
;issue the PRAM command

;fetch low byte of the starting
address

;assume high byte is always 0

Scroll Operations

11-5

12
Programming Notes

Shadow Areas

Most of the registers in the Graphics Option control more than one function. In addition, the regis
ters are write-only areas. In order to change selected bits in a register while retaining the settings of
the rest, shadow images of these registers should be kept in motherboard memory. The current
contents of the registers can be determined from the shadow area, selected bits can be set or reset
by ORing or ANDing into the shadow area, and the result can be written over the existing register.

Modifying the Color Map and the Scroll Map is also made easier using a shadow area in motherboard
memory. These are relatively large areas and must be loaded during the time that the screen is
inactive. It is more efficient to modify a shadow area in motherboard memory and then use a fast
move routine to load the shadow area into the Map during some period of screen inactivity such as a
vertical retrace.

Bitmap Refresh

The Graphics Option uses the same memory accesses that fill the screen with data to also refresh
the memory. This means that if the screen display stops, the dynamic video memory will lose all the
data that was being displayed within two milliseconds. In high resolution, it takes two scan lines to
refresh the memory (approximately 125 microseconds). In medium resolution, it takes four scan lines
to refresh the memory (approximately 250 microseconds). During vertical retrace (1.6 milliseconds)
and horizontal retrace (10 microseconds) there is no refreshing of the memory. Under a worst case
condition, you can stop the display for no more than two milliseconds minus four medium resolution
scans minus vertical retrace or just about 150 microseconds. This is particularly important when
programming the Scroll Map.

12-1

Programming Notes

All write and read operations should take place during retrace time. Failure to limit reads and writes
to retrace time will result in interference with the systematic refreshing of the dynamic RAMs as
well as not displaying bitmap data during the read and write time. However, the GDC is usually
programmed to limit its bitmap accesses to retrace time as part of the initialization process.

Software Reset

Whenever you reset the GDC by issuing the RESET command (a write of zero to port 57h), the
Graphics Option must also be reset (a write of any data to port 50h). This is to synchronize the
memory operations of the Graphics Option with the read/modify/write operations generated by the
GDC. A reset of the Graphics Option by itself does not reset the GDC; they are separate reset
operations.

Setting Up Clock Interrupts

With the Graphics Option installed on a Rainbow system, there are two 60 hz clocks available to the
programmer-one from the motherboard and one from the Graphics Option. The motherboard clock
is primarily used for a number of system purposes. However, you can intercept it providing that any
routine that is inserted be kept short and compatible with the interrupt handler. Refer to the
"init_ option" procedure in Chapter 5 for a coding example of how to insert a new interrupt
vector under MS-DOS.

Clock interrupt types and vector addresses differ depending on the model of the motherboard as well
as whether the interrupt is for the Graphics Option or for the motherboard. (Refer to Table 3.)

It is important to keep all interrupt handlers short! Failure to do so can cause a system reset when
the motherboard's MHFU line goes active. New interrupt handlers should restore any registers that
are altered by the routine.

Table 3. Clock Interrupt Parameters

MOTHERBOARD INTERRUPT VECTOR

MODEL TYPE ADDRESS

GRAPHICS A 22h 88h

OPTION B A2h 288h

A 20h 80h
MOTHERBOARD

B AOh 280h

LJ-0229

12-2

Programming Notes

Operational Requirements

All data modifications to the bitmap are performed by hardware that is external to the GDC. In this
environment, it is a requirement that the GDC be kept in graphics mode and be programmed to
write in Replace mode. Also, the internal write data patterns of the GDC must be kept as all ones
for the external hardware to function correctly. The external hardware isolates the GDC from the
data in the bitmap such that the GDC is not aware of multiple planes or incoming data patterns.

Although it is possible to use the GDC's internal parameter RAM for soft character fonts and
graphics characters, it is faster to use the option's Write Buffer. However, to operate in the GDC's
native mode, the Write Buffer and Pattern Generator should be loaded with all ones, the Mode
Register should be set to graphics mode, and the Foreground/Background Register should be loaded
with FOh.

When the Graphics Option is in Word Mode, the GDC's mask register should be filled with all ones.
This causes the GDC to go on to the next word after each pixel operation is done. The external
hardware in the meantime, has taken care of all sixteen bits on all four planes while the GDC was
taking care of only one pixel.

When the option is in Vector Mode, the GDC is also in graphics mode. The GDC's mask register is
now set by the third byte of the cursor positioning command (CURS). The GDC will be able to tell
the option which pixel to perform the write on but the option sets the mode, data and planes.

Set-Up Mode

When you press the SET-UP key on the keyboard, the system is placed in set-up mode. This, in
turn, suspends any non-interrupt driven software and brings up a set-up screen if the monitor is
displaying VTI02 video output. If, however, the system is displaying graphics output, the fact that
the system is in set -up mode will not be apparent to a user except for the lack of any further
interaction with the graphics application that has been suspended. The set-up screen will not be
displayed.

Users of applications that involve graphics output should be warned of this condition and cautioned
not to press the SET-UP key when in graphics output mode. Note also that pressing the SET-UP
key a second time will resume the execution of the suspended graphics software.

In either case, whether the set-up screen is displayed or not, set-up mode accepts any and all
keyboard data until the SET-UP key is again pressed.

12-3

Programming Notes

Timing Considerations

It is possible for an application to modify the associated hardware that is external to the CDC
(registers, buffers, maps) before the CDC has completed all pending operations. If this should occur,
the pending operations would then be influenced by the new values with unwanted results.

Before changing the values in the registers, buffers, and color map, you must ensure that the CDC
has completed all pending operations. The "gdc_not_busy" subroutine in the "init_option"
procedure in Chapter 5 is one method of checking that the CDC has completed all pending
operations.

12-4

PART III

Chapter 13. Option Registers, Buffers, and Maps 13-1

I/O Ports 1 3-1
Indirect Register 13-3
Write Buffer 1 3-4
Write Mask Registers 13-5
Pattern Register 13-6
Pattern Multiplier 13-7
Foreground/Background Register 1 3-8
ALU/PS Register 13-9
Color Map 1 3-10
Mode Register 13-11
Scroll Map 1 3-1 2

Chapter 14. GDC Registers and Buffers 14-1

Status Register 14-1
FIFO Buffer 14-2

Chapter 15. GDC Commands 15-1
Introduction 15-1
Video Control Commands 15-2

CCHAR - Specify Cursor and Character Characteristics 15-2
RESET - Reset tt)e GDC 15-3
SYNC - Sync Format Specify 15-6
VSYNC - Vertical Sync Mode 15-8

Contents

Contents

Display Control Commands 15-8
BCTRL - Control Display Blanking 15-8
CURS - Specify Cursor Position 15-9
PITCH - Specify Horizontal Pitch 15-10
PRAM - Load the Parameter RAM 15-10
START - Start Display and End Idle Mode 15-12
ZOOM - Specify the Zoom Factor 15-1 2

Drawing Control Commands 1 5-1 3
FIGD - Start Figure Drawing 15-1 3
FIGS - Specify Figure Drawing Parameters 15-14
GCHRD - Start Graphics Character Draw and Area Fill 15-16
MASK - Load the Mask Register 15-16
WDA T - Write Data into Display Memory 15-1 7

DATA READ COMMANDS 15-1 8
RDA T - Read Data from Display Memory 1 5-1 8

\

13
Option Registers, Buffers, and

Maps

The Graphics Option uses a number of registers, buffers, and maps to generate graphic images and
control the display of these images on a monochrome or color monitor. Detailed discussions of these
areas may be found in Chapter 3 of this manual.

I/O Ports

The CPUs on the Rainbow system's motherboard use the following I/O ports to communicate with
the Graphics Option:

Port

50h

51h

52h

Function

Graphics option software reset and resynchronization.

Data input to area selected through port 53h.

Data input to the Write Buffer.

13-1

Option Registers, Buffers, and Maps

53h

54h

55h

56h

57h

13-2

Area select input to Indirect Register.

Input to low-order byte of Write Mask.

Input to high-order byte of Write Mask.

Parameter input to GDC - Status output from GDC.

Command input to GDC - Data output from GDC.

Option Registers, Buffers, and Maps

Indirect Register

The Indirect Register is used to select one of eight areas to be written into.

Load Data: Write data byte to port 53h.

INDIRECT REGISTER

7 6 5 4 3 2 o
LJ-0230

where:

Data Active Function
Byte Bit

FEh

FDh

FBh

F7h

EFh

DFh

"BFh

7Fh

0

1

2

3

4

5

6

7

NOTE

selects the Write Buffer

selects the Pattern Multiplier. (Pattern Multiplier must always be load
ed before the Pattern Register)

selects the Pattern Register.

selects the Foreground/Background Register.

selects the ALUjPS Register.

selects the Color Map and resets the Color Map Address Counter to
zero.

selects the Graphics Option Mode Register.

selects the Scroll Map and resets the Scroll Map Address Counter to
zero.

If more than one bit is set to zero, more than one area will be selected and
the results of subsequent write operations will be unpredictable.

13-3

Option Registers, Buffers, and Maps

Write Buffer

The Write Buffer is the incoming data source when the Graphics Option is in Word Mode.

Select Area:

Clear Counter:

Load Data:

BYTE

7

write FEh to port 53h

write any value to port 51h

write up to 16 bytes to port 52h

AS THE CPU ACCESSES IT

(16 X 8-BIT RING BUFFER) WORD

o 7 0
~--------~ r---------~

0,1

2,3

4,5

6.7

8,9

10,11

12,13

14,15

13-4

o

2

3

4

5

6

7

15

AS THE GDC ACCESSES IT

(8 X 1 6-BIT WORDS)

o

LJ-0231

Option Registers, Buffers, and Maps

Write Mask Registers

The Write Mask Registers control the writing of individual bits in a bitmap word.

Select Area:

Load Data:

where:

bit = 0

bit = 1

no selection required

write low-order data byte to port 54h
write high-order data byte to port 55h

PaRr 55h

AS ACCESSED BY
THE CPU

PaRr 54h

7---------07---------0

WRITE MASK (HIGH) WRITE MASK (LOW)

15,--------------------0
AS ACCESSED BY THE GDC

LJ-0232

enables a write in the corresponding bit position of the word being
displayed.

disables a write in the corresponding bit position of the word being
displayed.

13-5

Option Registers, Buffers, and Maps

Pattern Register

The Pattern Register provides the incoming data when the Graphics Option is in Vector Mode.

Select Area: write FBh to port 53h

Load Data: write data byte to port 51h

7 0

:--~ PAT T ERN

I
I I
I I L __________________________ .J

LJ-0233

where:

BITMAP
I--~ •• WRITE

CIRCUITRY

Pattern is the pixel data to be displayed by the option when in Vector Mode.

13-6

Option Registers, Buffers, and Maps

Pattern Multiplier

The Pattern Multiplier controls the recirculating frequency of the bits in the Pattern Register.

Select Area:

Load Data:

where:

write FDh to port 53h

write data byte to port 51h

7 4

UNUSED

3 o

VALUE

LJ-0234

value is a number in the range of 0 through 15 such that 16 minus this value is the
factor that determines when the Pattern Register is shifted.

13-7

Option Registers, Buffers, and Maps
.. '" .

Foreground/Background Register

The Foreground/Background Register controls the bit/plane input to the bitmap.

Select Area: write F7h to port 53h

write data byte to port 51h Load Data:

where:

7 DATA BYTE 0

7 6 5

I
4 3 2 0

FOREGROUND BACKGROUND
REGISTER REGISTER

LJ0235

Bits

0-3 are the bits written to bitmap planes 0-3 respectively when the option is in RE
PLACE mode and the incoming data bit is a zero.

If the option is in OVERLAY or COMPLEMENT mode and the incoming data bit is
a zero, there is no change to the bitmap value.

4-7 are the bits written to bitmap planes 4-7 respectively when the option is in RE
PLACE or OVERLAY mode and the incoming data bit is a one.

If the option is in COMPLEMENT mode and the incoming data bit is a one, the
Foreground bit determines the action. If it is a one, the bitmap value is inverted; if
it is a zero, the bitmap value is unchanged.

Option Registers, Buffers, and Maps

ALU IPS Register

The ALUjPS Register controls the logic used in writing to the bitmap and the inhibiting of writing to
specified planes.

Select Area:

Load Data:

where:

Bit

0

1

2

3

5,4

7,6

write EFh to port 53h

write data byte to port 51h

7 DATA BYTE

7 6 5 I 4 3

UNUSED ALU

2

PLANE SELECT

Value Function

0 enable writes to plane 0
1 inhibit writes to plane 0

0 enable writes to plane
1 inhibit writes to plane 1

0 enable writes to plane 2
1 inhibit writes to plane 2

0 enable writes to plane 3
1 inhibit writes to plane 3

00 place option in REPLACE mode

01 place option in COMPLEMENT mode

10 place option in OVERLAY mode

11 Unused

Unused

0

0

LJ-0236

13-9

Option Registers, Buffers, and Maps

Color Map

The Color Map translates bitmap data into the monochrome and color intensities that are applied to
the video monitors.

Select Area:

Coordinate:

Load Data:

13-10

write DFh to port 53h (also clears the index counter)

wait for vertical sync interrupt

write 32 bytes to port 51h

,/

1

2ND 16 BYTES

LOADED BY
THE CPU

MONO. BLUE
DATA DATA

BYTE 17

BYTE 18

BYTE 19

BYTE 20

BYTE 21

BYTE 22

BYTE 23

BYTE 32

1 ST 16 BYTES

LOADED BY
THE CPU

RED GREEN
DATA DATA

BYTE 1

BYTE 2

BYTE 3

BYTE 4

BYTE 5

BYTE 6

BYTE 7

BYTE 16

V

J
LJ-0237

Option Registers, Buffers, and Maps

Mode Register

The Mode Register controls a number of the Graphics Option's operating characteristics.

Select Area:

Load Data:

where:

Bit

o

1

3,2

4

5

6

7

write BFh to port 53h

write data byte to port 51h

7 6 3 2

Value Function

o
1

o
1

00
01
10
11

o
1

o
1

o
1

o
1

NOTE

place option in medium resolution mode
place option in high resolution mode

place option into word mode
place option into vector mode

select plane 0 for readback operation
select plane 1 for readback operation
select plane 2 for read back operation
select plane 3 for readback operation

enable readback operation
enable write operation

enable writing to the Scroll Map
disable writing to the Scroll Map

disable vertical sync interrupts to CPU
enable vertical sync interrupts to CPU

disable video output from Graphics Option
enable video output from Graphics Option

o

LJ-0238

The Mode Register must be reloaded following any write to port 50h
(software reset).

13-11

Option Registers, Buffers, and Maps

Scroll Map

The Scroll Map controls the location of each line displayed on the monitor screen.

Preliminary:

Select Area:

Coordinate:

Load Data:

Final:

where:

13-12

GDC Line
Address

Bitmap Line
Address

enable Scroll Map writing (Mode Register bit 5 = 0)

write 7Fh to port 53h (also clears the index counter)

wait for vertical sync interrupt

write 256 bytes to port 51h

disable Scroll Map writing (Mode Register bit 5 = 1)

GDC
o

GDC LINE
ADDRESS
(BITS 6-13

255

256 X 8
RECIRCULATING
RING BUFFER
7 0

XXXXXXXX
•
• •
•
•
•
• BITMAP LINE

ADDRESS
(BITS 6-13) I L--__________ ~. BIT MAP

LJ0239

is the line address as generated by the GDC and used as an index into
the Scroll Map.

is the offset line address found by indexing into the Scroll Map. It be
comes the new line address of data going into the bitmap.

14
GDC Registers and Buffers

The GDC has an 8-bit Status Register and a 16 x 9-bit first-in, first-out (FIFO) Buffer that provide
the interface to the Graphics Option. The Status Register supplies information on the current activity
of the GDC and the status of the FIFO Buffer. The FIFO Buffer contains GDC commands and
parameters when the GDC is in write mode. It contains bitmap data when the GDC is in read mode.

Status Register

The GDC's internal status can be interrogated by doing a read from port 56h. The Status Register
contents are as follows:

7
I

6

where:

Bit Status

0 DATA READY

1 FIFO FULL

2 FIFO EMPTY

3 DRAWING IN
PROGRESS

4 DMA EXECUTE

5 VERTICAL SYNC
ACTIVE

6 HORIZONTAL
SYNC ACTIVE

7 LIGHT PEN DE-
TECTED

5 I 4 I 3 I 2 oj
LJ0240

Explanation

When set, data is ready to be read from the FIFO.

When set, the command/parameter FIFO is full.

When set, the command/parameter FIFO is completely empty.

When set, the GDC is performing a drawing function. Note,
however, that this bit can be cleared before the DRAW com
mand is fully completed. The GDC does not draw continuously
and this bit is reset during interrupts to the write operation.

Not used.

When set, the GDC is doing a vertical sync.

When set, the GDC is doing a horizontal sync.

Not used.

GDC Registers and Buffers

FrfO Buffer

You can both read from and write to the FIFO Buffer. The direction that the data takes through the
buffer is controlled by the Rainbow system using CDC commands. CDC commands and their associ
ated parameters are written to ports 57h and 56h respectively. The CDC stores both in the FIFO
Buffer where they are picked up by the CDC command processor. The CDC uses the ninth bit in the
FIFO Buffer as a flag bit to allow the command processor to distinguish between commands and
parameters. Contents of the bitmap are read from the FIFO using reads from port 57h.

COMMANDS AND
PARAMETERS

o

FROM THE CPU _ 1

BITMAP DATA_
TO THE CPU

2

3

FLG

8 7

DATA BYTE

...... v

14

15

where:

flg

data byte

is a flag bit to be interpreted as:

o - data byte is a parameter
1 - data byte is a command

is a CDC command or parameter

o

v

_ COMMANDS AND

PARAMETERS TO
THE COMMAND
PROCESSOR

DATA FROM
.tI---THE BITMAP

When you reverse the direction of flow in the FIFO Buffer, any pending data in the FIFO is lost. If a
read operation is in progress and a command is written to port 56h, the unread data still in the FIFO
is lost. If a write operation is in progress and a read command is processed, any unprocessed
commands and parameters in the FIFO Buffer are lost.

14-2

15
GDC COMMANDS

Introduction

This chapter contains detailed reference information on the GDC commands and parameters sup
ported by the Graphics Option. The commands are listed in alphabetical order within functional
category as follows:

• Video Control Commands

CCHAR
RESET
SYNC
VSYNC

Specifies the cursor and character row heights
Resets the GDC to its idle state
Specifies the video display format
Selects Master/Slave video synchronization mode

• Display Control Commands

BCTRL
CURS
PITCH
PRAM
START
ZOOM

Controls the blanking/unblanking of the display
Sets the position of the cursor in display memory
Specifies the width of display memory
Defines the display area parameters
Ends idle mode and unblanks the display
Specifies zoom factor for the graphics display

15-1

GDC Commands

• Drawing Control Commands

FIGD
FIGS
GCHRD
MASK
WDAT

• Data Read Commands

RDAT

15-2

Draws the figure as specified by FIGS command
Specifies the drawing controller parameters
Draws the graphics character into display memory
Sets the mask register contents
Writes data words or bytes into display memory

Reads data words or bytes from display memory

GDC Commands

Video Control Commands

CCHAR - Specify Cursor and Character Characteristics

Use the CCHAR command to specify the cursor and character row heights and characteristics.

where:

COMMAND BYTE

7 6 5 4 3 2

o o o o

PARAMETER BYTES

7 6 5 4 3 2

P1 DC 0 0 LR

P2 BR(LO) SC CTOP

P3 CBOT

DC controls the display of the cursor

o - do not display cursor
1 - display the cursor

LR is the number of lines per character row, minus 1

BR is the blink rate (5 bits)

SC controls the action of the cursor

CTOP

CBOT

o - blinking cursor
1 - steady cursor

is the cursor's top line number in the row

is the cursor's bottom line number in the row
(CBOT must be less than LR)

o

o

BR(HI)

LJ-0242

15-3

GDC Commands

RESET - Reset the GDC

Use the RESET command to reset the GDC. This command blanks the display, places the GDC in
idle mode, and initializes the FIFO buffer, command processor, and the internal counters. If parame
ter bytes are present, they are loaded into the sync generator.

COMMAND BYTE

7 6 5 4 3 2 o

o o o o o o

PARAMETER BYTES

7 6 5 4 3 2 o

P1 0 0 C F I D G S

P2 AW

P3 VS(LO) HS

P4 HFP VS(HI)

P5 0 0 HBP

P6 0 0 VFP

P7 AL(LO)

P8 VBP AL(HI)

LJ-0243

15-4

where:

CG sets the display mode for the GDC

00 - mixed graphics and character mode
01 - graphics mode only
10 - character mode only
11 - invalid

IS controls the video framing for the GDC

00 - noninterlaced
01 - invalid
10 - interlaced repeat field for character displays
11 - interlaced

D controls the RAM refresh cycles

o - no refresh - static RAM
1 - refresh - dynamic RAM

F controls the drawing time window

o - drawing during active display time and retrace blanking
1 - drawing only during retrace blanking

AW active display words per line minus 2; must be an even number

HS horizontal sync width minus 1

VS vertical sync width

HFP horizontal front porch width minus 1

HBP horizontal back porch width minus 1

VFP vertical front porch width

AL active display lines per video field

VBP vertical back porch width

GDC Commands

15-5

GDC Commands

SYNC - Sync Format Specify

Use the SYNC command to load parameters into the sync generator. The GDC is neither reset nor
placed in idle mode.

where:

15-6

COMMAND BYTE

7 6 5 4

DE controls the display

o - disables (blanks) the display
1 - enables the display

PARAMETER BYTES

7 6 5 4

P1 0 0 C F

P2

P3 VS(LO)

P4 HFP

P5 0 0

P6 0 0

P7

P8 VBP

3 2 o

LJ-0244

3 2 o

I D G S

AW

HS

VS(HII

HBP

VFP

AL(LO)

AL(HI)

LJ-0244

where:

CC sets the display mode for the CDC

00 - mixed graphics and character mode
01 - graphics mode only
10 - character mode only
11 - invalid

IS controls the video framing for the CDC

00 - noninterlaced
01 - invalid
10 - interlaced repeat field for character displays
11 - interlaced

D controls the RAM refresh cycles

o - no refresh - static RAM
1 - refresh - dynamic RAM

F controls the drawing time window

o - drawing during active display time and retrace blanking
1 - drawing only during retrace blanking

AW active display words per line minus 2; must be an even number

HS horizontal sync width minus 1

VS vertical sync width

HFP horizontal front porch width minus 1

HBP horizontal back porch width minus 1

VFP vertical front porch width

AL active display lines per video field

VBP vertical back porch width

GDC Commands

15-7

GDC Commands

VSYNC - Vertical Sync Mode

Use, the VSYNC command to control the slave/master relationship whenever mUltiple GDC's are
used to contribute to a single image.

COMMAND BYTE

7 6 5 4 3 2 o

o o M

LJ-0245

where:

M sets the synchronization status of the GDC

o - slave mode (accept external vertical sync pulses)
1 - master mode (generate and output vertical sync pulses)

15-8

Display Control Commands

BCTRL - Control Display Blanking

Use the BCTRL command to specify whether the display is blanked or enabled.

where:

COMMAND BYTE

7 6 5 4

DE controls the display

o - disables (blanks) the display
1 - enables the display

3 2 o

DE

LJ-0246

GDC Commands ..

15-9

GDC Commands

CURS - Specify Cursor Position

Use the CURS command to set the position of the cursor in display memory. In character mode the
cursor is displayed for the length of the word. In graphics mode the word address specifies the word
that contains the starting pixel of the drawing; the dot address specifies the pixel within that word.

COMMAND BYTE

7 6 5 4 3 2 0

° I ° I ° 0 0

PARAMETER BYTES

7 6 5 4 3 2 0

P1 EAD(LO}

P2 EAD(MID}

P3
'--____ dA_D ____ _O_.l--_O_.l--_E_A_D_(H_I_} ---,r-GRAPHICS MODE ONLY

LJ-0213

where:

EAD is the execute word address (18 bits)

dAD is the dot address within the word

15-10

GDC Commands

PITCH - Specify Horizontal Pitch

Use the PITCH command to set the width of the display memory. The drawing processor uses this
value to locate the word directly above or below the current word. It is also used during display to
find the start of the next line.

COMMAND BYTE

7 6 5 4 3 2 a

I a I a a a

PARAMETER BYTES

7 6 5 4 3 2 a

P1 P

LJ-0214

where:

P is the number of word addresses in display memory in the horizontal direction

15-11

GDC Commands

PRAM - Load the Parameter RAM

Use the PRAM command to load up to 16 bytes of information into the parameter RAM at specified
adjacent locations. There is no count of the number of parameter bytes to be loaded; the sensing of
the next command byte stops the load operation. Because the Graphics Option requires that the GDC
be kept in graphics mode, only parameter bytes one through four, nine, and ten are used.

COMMAND BYTE

7 6 5 4 3 2 o

SA

LJ-0247

where:

SA is the start address for the load operation (Pn - 1)

15-12

where:

Pl

P2

P3

P4

P5

•
•
•

P8

P9

Pl0

Pll

•

PARAMETER BYTES

7 6 5

LEN(LO)

WD 1M

1 1 1

1 1 1

4 3 2 o

SAD(LO)

SAD(MID)

0 0 SAD(HI)

LEN(HI)

UNUSED

UNUSED

1 1 1 1 1

1 1 1 1 1

UNUSED

P·l 61 L.. _________ U_N_U_SE_D ________ --.I

LJ-0247

SAD is the start address of the display area (18 bits)

LEN is the number of lines in the display area (10 bits)

GDC Commands

15-13

GDC Commands

15-14

WD sets the display width

o - one word per memory cycle (16 bits)
1 - two words per memory cycle (8 bits)

1M sets the current type of display when the CDC is in mixed graphics and character
mode

o - character area
1 - image or graphics area

NOTE
When the CDC is in graphics mode, the 1M bit must be a zero.

GDC Commands

START - Start Display and End Idle Mode

Use the START command to end idle mode and enable the video display,

COMMAND BYTE

7 6 5 4 3 2 a

LJ-0248

15-15

GDC Commands

ZOOM - Specify the Zoom Factor

Use the ZOOM command to set up a magnification factor of 1 through 16 (using codes 0 through
15) for the display and for graphics character writing.

COMMAND BYTE

7 6 5 4 3 2 o

0 I 1 0 0 0 o

PARAMETER BYTES

7 6 5 4 3 2 o

P1 DISP GCHR

LJ-0249

where:

DISP is the zoom factor (minus one) for the display

GCHR is the zoom factor (minus one) for graphics character writing and area fills

15-16

GDC Commands

Drawing Control Commands

FIGD - Start Figure Drawing

Use the FIGD command to start drawing the figure specified with the FIGS command. This com
mand causes the GDC to:

• load the parameters from the parameter RAM into the drawing controller, and

• start the drawing process at the pixel pointed to by the cursor: Execute Word Address (EAD)
and Dot Address within the word (dAD)

COMMAND BYTE

7 6 5 4 3 2 0

0 0 0 I 0

LJ-0250

15-17

GDC Commands

FIGS - Specify Figure Drawing Parameters

Use the FIGS command to supply the drawing controller with the necessary figure type, direction,
and drawing parameters needed to draw figures into display memory.

COMMAND BYTE

7 6 5 4 3 2 o

o o o o o

PARAMETER BYTES

7 6 5 4 3 2 o

P1 SL R A GC L DIR

P2 DC(LO)

P3 0 GD DC(HI)

P4 D(LO)

P5 0 0 D(HI)

P6 D2(LO)

P7 0 0 D2(HI)

P8 D1 (LO)

P9 0 0 D1 (HI)

P10 DM(LO)

I P11 0 0 DM(HI)

LJ·0251

15-18

where:

SL

R

A

GC

L

DIR

DC

GD

D

D2

D1

DM

GDC Commands

Slanted Graphics Character

Rectangle

Arc/Circle

Figure Type Select Bits

Graphics Character

Line (Vector)

(see valid
combinations
below)

is the drawing direction base (see definitions below)

is the DC drawing parameter (14 bits)

is the graphic drawing flag used in mixed graphics and character mode

is the D drawing parameter (14 bits)

is the D2 drawing parameter (14 bits)

is the D1 drawing parameter (14 bits)

is the DM drawing parameter (14 bits)

FIGURE TYPE SELECT BITS (VALID COMBINATIONS)

SL R A GC L OPERATION

o 0 0 0 0
CHARACTER DISPLAY MODE DRAWING, INDIVIDUAL DOT
DRAWING, WDAT, AND RDAT

00001 STRAIGHT LINE DRAWING

00010
GRAPHICS CHARACTER DRAWING AND AREA FILL WITH
GRAPHICS CHARACTER PATTERN

o 0 1 0 0 ARC AND CIRCLE DRAWING

o 1 000 RECTANGLE DRAWING

10010
SLANTED GRAPHICS CHARACTER DRAWING dfJD SLANTED
AREA FILL

15-19

GDC Commands

DRAWING DIRECTION BASE (DIR)

[101) [100) [011)

"'t/ [110)..-- [START) ~ [010)

/!~
[111) [000) [001)

LJ-0252

15-20

GDC Commands

GCHRD - Start Graphics Character Draw and Area Fill

Use the GCHRD command to initiate the drawing of the graphics character or area fill pattern that
is stored in the Parameter RAM. The drawing is further controlled by the parameters loaded by the
FIGS command. Drawing begins at the address in display memory pointed to by the Execute Address
(EAD) and Dot Address (dAD) values.

COMMAND BYTE

7 6 5 4 3 2 o

o o o o o

LJ-0253

15-21

GDC Commands

MASK - Load the Mask Register

Use the MASK command to set the value of the 16-bit Mask Register that controls which bits of a
word can be modified during a Read/Modify/Write (RMW) cycle.

where:

15-22

COMMAND BYTE

7 6 5 4 3 2 o

I 0 I 0 0 0

PARAMETER BYTES

7 6 5 4 3 2 o

P1 M(LO)

P2 M(HI)

LJ-0254

M is the bit configuration to be loaded into the Mask Register (16 bits). Each bit in
the Mask Registercontrols the writing of the corresponding bit in the word being
processed as follows:

o - disable writing
1 - enable writing

GDC Commands

WDAT - Write Data Into Display Memory

Use the WDAT command to perform RMW cycles into display memory starting at the location
pointed to by the cursor Execute Word Address (EAD). Precede this command with a FIGS com
mand to supply the writing direction (DIR) and the number of transfers (DC).

where:

where:

TYPE

COMMAND BYTE

7 6 5 4 3 2

o o TYPE o

is the type of transfer

00 - word transfer (first low then high byte)
01 - invalid
10 - byte transfer (low byte of the word only)
11 - byte transfer (high byte of the word only)

MOD is the RMW memory logical operation

00 - REPLACE with Pattern
01 - COMPLEMENT
10 - RESET to Zero
11 - SET to One

PARAMETER BYTES

7 6 5 4 3 2

o

MOD

LJ-0255

o

p11~ _____________ W_O_R_D_(_LO_)_O_R __ BYT __ E ____________ ~

~2~1 _______________ W __ O_R_D_(H_I) ______________ ~
•

WORD is a 16-bit data value

BYTE is an 8-bit data value

LJ-0255

15-23

GDC Commands

Data Read Commands

RDAT - Read Data From Display Memory

Use the RDAT command to read data from display memory and pass it through the FIFO buffer and
microprocessor interface to the host system. Use the CURS command to set the starting address
and the FIGS command to supply the direction (DIR) and the number of transfers(DC). The type of
transfer is coded in the command itself.

where:

15-24

COMMAND BYTE

7 6 5 4 3 2

I 1 I 0 TYPE 0

TYPE is the type of transfer

00 - word transfer (first low then high byte)
01 - invalid
10 - byte transfer (low byte of the word only)
11 - byte transfer (high byte of the word only)

MOD is the RMW memory logical operation

00 - REPLACE with Pattern
01 - COMPLEMENT
10 - RESET to Zero
11 - SET to One

NOTE

0

MOD

LJ-0256

The MOD field should be set to 00 if no modification to the video buffer is
desired.

PART IV

Appendix A. Option Specification Summary A-1

Physical Specifications A-1
Environmental Specifications A-1

Temperature A-1
Humidity A-l
Altitude A-2

Power Requirements A-2
Standards and Regulations A-2
Part and Kit Numbers A-3

Contents

Appendix B. Rainbow Graphics Option _. Block Diagram B-1

Appendix C. Getting Help C-1

A
Option Specification Summary

Physical Specifications

The Graphics Option Video Subsystem is a 5.7" X 10.0", high density, four-layer PCB with one 40-
pin female connector located on side 1. This connector plugs into a shrouded male connector located
on the system module. The option module is also supported by two standoffs.

Environmental Specifications

Temperature

• Operating ambient temperature range is 10 to 40 degrees C.

• Storage temperature is -40 to 70 degrees C.

Humidity

• 10% to 90% non-condensing

• Maximum wet bulb, 28 degrees C.

• Minimum dew point, 2 degrees C.

A-l

Option Specification Summary

Altitude

• Derate maximum operating temperature 1 degree per 1,000 feet elevation

• Operating limit: 22.2 in. Hg. (8,000 ft.)

• Storage limit: 8.9 in Hg. (30,000 ft.)

Power Requirements

+5V DC (+/-5%)

+12V DC (+/-10%)

Standards and Regulations

Calculated Typical

3.05 amps

180 rnA

Calculated Maximum

3.36 amps

220 rnA

The Graphics Option module complies with the following standards and recommendations:

• DEC Standard 119 - Digital Product Safety (covers UL 478, UL 114, CSA 22.2 No. 154, VDE
0806, and IEC 380)

• IEC 485 - Safety of Data Processing Equipment

• EIA RS170 - Electrical Performance Standards - Monochrome Television Studio Facilities

• CCITT Recommendation V.24 - List of Definitions for Interchange Circuit Between Data Ter
minal Equipment and Data Circuit Terminating Equipment

• CCITT Recommendation V.28 - Electrical Characteristics for Unbalanced Double-Current
Interchange Circuits

A-2

Option Specification Summary

Part and Kit Numbers

Graphics Option

Hardware:

Printed Circuit Board

Color RGB Cable

Software and Documentation:

Rainbow Color/Graphics Option Installation Guide

Rainbow Color/Graphics Option Programmer's Reference Guide

Rainbow GSX-86 Programmer's Reference Manual

Rainbow GSX-86 Getting Started

Rainbow Diagnostic/GSX-86 Diskette

Rainbow 100 CP/M-86/80 V1.0 Technical Documentation

Rainbow 100 MS-DOS V2.01 Technical Documentation

PC1XX-BA

54-15688

BCC17-06

EK-PCCOL-IN-001

AA-AE36A-TV

AA-V526A-TV

AA-W964A-TV

BL-W965A-RV

QV043-GZ

QV025-GZ

A-3

B
Rainbow Graphics Option -

Block Diagram

8-1

® PARAMETER

STATUS FIFO GDC DATA /
(16 X 9) /16

(0 COMMAND
GDC ADDRESS BITS 0-5

READBACK DATA

@ GDC WRITE 51
PIXEL

+ MASK GDC ADDRESS ~ READ BACK READ 53/16
BITS 6-13 LATCH ENABLE 51/M4

SCROLL (2 X 8)

wb.:, MAP
SCROLL MAP (256 X 8)

S~ INDEX
COUNTER 1 t P~N' 53/16

(0-255)
53/16

I ~ SELECT 51/M2,M3
51/M1

V K 53'"
/ 14

51/M5
PIXEL

PIXEL IN WORD PLANE V WRITE ENAB~ r BIT MAP DATA / VIDEO OUTPUT

I (2/4 PLANES) OUT / 4 CIRCUITRY
WRITE MASK

}-- - WRITE
(SHIFT REGISTER)

(2 X 8)

i i ENABLE

oJ" PLANE
PLANE COLOR/MONO MAP

@ ® SELECT WRITE INDEX COUNTER
(1 X4) ENABLE (0-31)

GV RE!ET
LOGIC UNIT 51

ALU
I FUNCTION

{ OVERLAY (1 X 2) REPLACE 8 COMPLEMENT

@ ® j j i 51 51

1 ~
SHIFT

AND)-

PATTERN CLOCK PATTERN
MULTIPLIER REGISTER

~ CLOCK (0-15) (1 X 8) r-

\ ~

r-L-{ / WRITE 8UFFER WRITE
INDEX COUNTER 8UFFER

f (0-15) (16 X 8)

~ / 53/16
REtET 1 51/M1

FOREGROUND}BACKGROUND I

~ 51
(0 REGISTER (2 X 4)

~
\.V

BIT

0

1

2

3

4

5

6

7

o G (0
I

LOAD
I

RESET
I

LOAD

INDIRECT REGISTER MODE REGISTER

SELECTED AREA BIT CONTROLLED FUNCTION

WRITE BUFFER (INDEX COUNTER CLEAR)

II
0 MEDIUM/HIGH RESOLUTION MODE

PATTERN MULTIPLIER 1 WORD/VECTOR MODE
PATTERN REGISTER 2 READBACK MODE PLANE SELECT (LSB)
FOREGROUND/BACKGROUND REGISTER 3 READBACK MODE PLANE SELECT (MSB)
ALU FUNCTION/PLANE SELECT REGISTER 4 WRITE/READ MODE
COLOR/MONO MAP (INDEX COUNTER CLEAR) 5 SCROLL MAP UPDATE
MODE REGISTER 6 INTERRUPT REQUEST
SCROLL MAP (INDEX COUNTER CLEAR) !~ 7 VIDEO OUTPUT DATA BLANKING

® r ---------
53/16 51
51/M7 "% ~ I BLUE

1 SHIELD

I BLUE
BLUE L

~
9

(16 X 4) /4 I GREEN
SHIELD

2
GREEN I / ~RESS (16 X4) L D/A

GREEN
10

/4 /4 I RED
COLOR SHIELD

3

~
MAP I / D/A

RED
11

RED /4 MONO
(16 X 4) I SHIELD

MAP I GRAPHICS

4

SELECT
L

I MONO
MONO

/4 ICOMPOSITE JD/ A 12 (16 X 4)
VIDEO

8 5

I ~'~~ ~ SELECT N/C-

I
OA/D2 6

KBD/RCV 14 ~~ I 7

I KBD/TXD
15

I ~

I
I
I
I
I
I
I
I
I
I
I
I
I

IMOT~B~ __ RAINBOW 100 GRAPHICS OPTION +12

_V.J

Figure 15. Rainbow Graphics Option - Block Diagram

8-3

Help Line Phone Numbers

country

U.S.A.

Canada

United Kingdom

Belgium

West Germany

Italy

Japan

Denmark

Spain

Finland

Holland

Switzerland

Sweden

Norway

France

Austria

Australia

Sydney
All other areas

Phone Number

(800) DEC-8000

(800) 267-5251

(0256) 59 200

(02)-24 26 790

(089) 95 91 66 44

(02)-617 53 81 or 617 53 82

(0424) 64-3302

(04)-30 10 05

(1)-73 34 307

(90)-42 33 32

(1820)-31 100

(01)-810 51 21

(08)-98 88 35

(02)-25 64 22

(1)-687 31 52

(222)-67 76 41 extension 444

(02) 412-5555
(008) 226377

c
Getting Help

C-l

(

A

Address conversion
from pixel coordinates 3-5

Address logic 3-2
Altitude specifications 1-2
ALU functions

COMPLEMENT 4-8, 4-18
OVERLAY 4-9,4-19
REPLACE 4-8, 4-18

ALU/PS Register 4-8, 6-1
bit definitions 13-9
load data 13-9
select 13-9

Arithmetic Logic Unit 4-8

B

Background Register 4-6
BCTRL command 15-9
Bit definitions

ALU/PS Register 13-9
BCTRL command 15-9
CCHAR command 15-3
CURS command 15-10
FIFO Buffer 14-2
FIGS command 15-18

Foreground/Background Register
13-8

GDC Status Register 14-1
Indirect addressing 4-2
Indirect Register 13-3
MASK command 15-22
Mode Register 13-11
PITCH command 15-11
PRAM command 15-12
RDAT command 15-24
RESET command 15-4
Status Register 14-1
SYNC command 15-6
VSYNC command 15-8
WDAT command 15-23
Write Mask Registers 13-5
ZOOM command 15-16

Bitmap 1-2
data 3-6
line address 13-12
modifications 12-3
organization 3-5
reading from 10-1
refreshing 12-1

Bitmap planes
high resolution 3-6
medium resolution 3-6

Index

1-1

Index

c
CCHAR command 15-3

initial value 5-8
Character

characteristics 15-3
Characteristics of

character 15-3
cursor 15-3

Circle
display a 8-9

Clear index counter
Color Map 13-10
Scroll Map 13-12
Write Buffer 13-4

Clock interrupt
parameters 12-2
types 12-2
vector addresses 12-2

Clock interrupts 12-2
Clocks

Graphics Option 12-2
motherboard 12-2

Color intensities 4-9
available 1-1
conversion to drive voltages 4-13
displayed 1-1

Color Map 3-6, 4-9
high resolution 4-11
load data 13-10
loading 4-12
medium resolution 4-10
select 13-10

Color monitor 2-3
Components

hardware 1-1
Configuration

Color Map 4-9
Configurations

color monitor 2-3
dual monitors 2-4
monochrome monitor 2-2

Control display blanking 15-9
Control graphics output 5-24
Control multiple GDCs 15-8
Conversion

1-2

color intensities to drive voltages
4-13

Conversion table
color intensities to drive voltages
4-13

CURS command 15-10
Cursor

D

characteristics 15-3
positioning 15-10

Data flow in FIFO Buffer 14-2
Data logic 3-2
Data path

color monitor 2-3
dual monitors 2-4
monochrome monitor 2-2

Data patterns 3-2
Data read commands 15-2
Digital-to-analog converters 4-13
Disable

individual bits 4-4
plane writes 4-8

Display
a circle 8-9
a pixel 8-4
a vector 8-5

Display blanking 15-9
Display control commands 15-1
Display logic 3-6
Display memory 1-2, 3-2

GDC access to 3-3
organization 3-5

Display planes 1-2
Displaying data from memory 7-1
Drawing control commands 15-2
Dual monitors 2-4

E
Enable

individual bits 4-4
plane writes 4-8

End idle mode 15-15
Environmental specifications 1-1
Examples

CCP/M version test 5-5
CP/M version test 5-2
disable monitor output 5-25

display a circle 8-9
display a pixel 8-4
display a vector 8-6
display data from memory 7-1
enable monitor output 5-24
horizontal scrolling 11-4
initialize Graphics Option 5-9
load Color Map 5-26
loading AL U IPS Register 6-1
loading Foreground/Background Reg-
ister 6-2

loading Pattern Multiplier 8-3
loading Pattern Register 8-1
modify color data 5-26
MS-DOS version test 5-3
no-op word write 10-5
option present test 5-1
read entire bitmap 10-2
set area to a color 7-4
vertical scrolling 11-2
write a text string 9-38
writing byte-aligned character 9-1

F

FIFO Buffer 3-9, 14-2
bit definitions 14-2
data flow 14-2
flag bit 3-9
read mode 3-9
write mode 3-9

FIGD command 15-17
FIGS command 15-18
Figure drawing parameters 15-18
Foreground Register 4-6
Foreground/Background Register 4-6,
6-2

bit definitions 13-8
load data 13-8
select 13-8

Full-screen scrolling 4-16

G

GCHRD command 15-21
GDC 1-1

command processor 14-2
in native mode 12-3
initialize 5-7

GDC access to bitmap 3-7
GDC addresses 3-5
GDC buffers

reference data 14-1
GDC command bytes 3-9
GDC command logic 3-9
GDC commands 15-1

BCTRL 15-9
CCHAR 15-3
CURS 15-10
FIGD 15-17
FIGS 15-18
GCHRD 15-21
in FIFO Buffer 14-2
MASK 15-22
PITCH 15-11
PRAM 15-12
RDAT 15-24
RESET 12-2, 15-4
START 15-15
SYNC 15-6
VSYNC 15-8
WDAT 15-23
ZOOM 15-16

GDC functions 1-2
GDC line address 13-12
GDC Mask Register 15-22
GDC parameter bytes 3-9
GDC parameters

in FIFO Buffer 14-2
GDC registers

reference data 14-1
GDC reset 5-6, 12-2

parameters 5-6
GDC Status Register

bit definitions 14-1
Graphics Display Controller 1-1

Index

1-3

Index

Graphics Option 1-1
I/O ports 13-1
in vector mode 12-3
in word mode 12-3
initialize 5-8
regulations 1-2
reset 12-2
standards 1-2

Graphics option
reference data 13-1

Graphics output
control of 5-24

H

Hardware components 1-1
High resolution 1-3

refresh 12-1
Horizontal Back Porch 3-7
Horizontal Front Porch 3-7
Horizontal pitch 15-11
Horizontal retrace 3-7
Horizontal scrolling 11-4
Humidity specifications 1-1

I/O ports 4-1, 13-1
Index counter

Write Buffer 4-2
Indirect addressing 4-2

bit definitions 4-2
Indirect Register 4-2

bit definitions 13-3
load data 13-3

Initial values
CCHAR command 5-8
PITCH command 5-8
PRAM command 5-8
ZOOM command 5-7

Initialize
GDC 5-7
Graphics Option 5-8

Intensity values
conversion to drive voltages 4-13

Interrupt control 4-15, 4-19

1-4

L

Line address
bitmap 13-12
GDC 13-12

Load
ALU/PS Register 6-1
Foreground/Background Register 6-2
Pattern Multiplier 8-3
Pattern Register 8-1

Load data
ALU/PS Register 13-9
Color Map 13-10
Foreground/Background Register
13-8

Indirect Register 13-3
Mode Register 13-11
Pattern Multiplier 13-7
Pattern Register 13-6
Scroll Map 13-12
Write Buffer 13-4
Write Mask Registers 13-5

Load GDC Mask Register 15-22
Load parameter RAM 15-12
Loading

M

Color Map 4-12, 5-25
Scroll Map 4-17
Write Buffer 4-3
Write Mask Registers 4-4

Magnification factor 15-16
MASK command 15-22
Medium resolution 1-3

refresh 12-1
Mode

readback 1-3
scroll 1-3
vector 1-3, 3-2
word 1-3, 3-2

Mode Register 4-15, 4-19
bit definitions 13-11
load data 13-11
select 13-11

Model A motherboard 1-1
Model B motherboard 1-1
Modify color data 5-26
Monitor configurations 2-1
Monochrome monitor 2-2

Motherboard
Model A 1-1
Model B 1-1

Multiple GDCs 15-8

o
Operating mode 4-15, 4-19
Operational requirements 12-3
Option

components 4-1
kit numbers 1-3
part numbers 1-3

Option specifications
altitude 1-2
environmental 1-1
humidity 1-1
physical 1-1
power requirements 1-2
temperature 1-1

Organization
bitmap 3-5

Overview 1-1

p

Parameter RAM 15-12
Parameters

clock interrupt 12-2
Pattern Generator 4-5, 8-1

schematic 4-5
shift frequency 4-6

Pattern Multiplier 4-5
load data 13-7
loading 8-3
select 13-7

Pattern Register 4-5, 8-1
load data 13-6
loading 8-1
select 13-6

Persistence
of screen data 11-4

Physical specifications 1-1
PITCH command 15-11

initial value 5-8

Pixel
address 3-5
display a 8-4

Plane select function 4-8
Power requirement specifications 1-2
PRAM command 15-12

initial value 5-8
Programming the Scroll Map 11-1

R
RDAT command 15-24
Read from display memory 15-24
Read operation 10-1
Readback mode 1-3,4-15,4-19
Reading

entire bitmap 10-1
precaution 10-5

Reference data
GDC buffers 14-1
GDC registers 14-1
graphics option buffers 13-1
graphics option maps 13-1
graphics option registers 13-1

Refreshing
bitmap 12-1
in high resolution 12-1
in medium resolution 12-1

Registers
ALU/PS 4-8
Foreground/Background 4-6
Indirect 4-2
Mode 4-15,4-19
Pattern 4-5
Write Mask 4-4

Requirements
operational 12-3

Reset
GDC 12-2
Graphics Option 12-2

RESET command 12-2, 15-4
Reset GDC 5-6
Reset the GDC 15-4
Resolution

high 1-3
medium 1-3

Resolution mode 4-15, 4-19

Index

1-5

Index

s
Scan line

definition 3-5
Screen control parameters 3-7
Screen data persistence 11-4
Screen logic 3-7
Scroll Map 3-5, 4-16

load data 13-12
loading 4-17
operations 11-1
programming 11-1
select 13-12
shadow image 4-17

Scroll Map control 4-15, 4-19
Scroll mode 1-3
Scrolling

horizontal 11-4
vertical 11-1

Select
ALU/PS Register 13-9
Color Map 13-10
Foreground/Background Register
13-8

Mode Register 13-11
Pattern Multiplier 13-7
Pattern Register 13-6
Scroll Map 13-12
Write Buffer 13-4
Write Mask Registers 13-5

Set area to a color 7-4
SET-UP key 12-3
Set-up mode 12-3
Shadow areas 12-1
Shadow color map 5-26
Shadow image

Scroll Map 4-17
Shadowing

Color Map 12-1
Scroll Map 12-1

Software logic 3-1
Split -screen scrolling 4-16
START command 15-15
Start display 15-15
Start figure drawing 15-17
Start graphics area fill 15-21
Start graphics character draw 15-21
Status Register

bit definitions 14-1

1-6

SYNC command 5-8, 15-6
Sync format 15-6
System in set-up mode 12-3
System maintenance port 2-1

T
Temperature specifications 1-1
Test for motherboard version 5-2
Test for option present 5-1
Timing considerations 12-5

v
Vector

display a 8-5
Vector mode 1-3, 3-2
Vertical

retrace 3-7
scrolling 4-16, 11-1

Vertical Back Porch 3-7
Vertical Front Porch 3-7
Video control commands 15-1
Video display

organization 3-2
Video drive voltages 4-13
Video output control 4-15, 4-20
VSYNC command 5-8, 15-8

w
WDAT command 5-7, 15-23
Word address 3-5
Word mode 1-3, 3-2
Write Buffer 4-2

clear index counter 13-4
index counter 4-2
load data 13-4
loading 4-3
output 4-3
select 13-4

Write byte-aligned character 9-1
Write Mask Registers 3-5, 4-4

bit definitions 13-5
load data 13-5
loading 4-4
select 13-5

Write mode 4-15, 4-19
Write operations 3-1
Write text string 9-38
Write to display memory 15-23
Writing depth 3-1
Writing length 3-1
Writing time 3-1
Writing width 3-1

z
ZOOM command 15-16

initial value 5-7
Zoom factor 15-16

Index

1-7

HOW TO ORDER
ADDITIONAL DOCUMENTATION

If you want to order additional documentation by phone:

And you live in: Call: Between the hours of:

New Hampshire, Alaska or 603-884-6660 8:30 AM and 6:00 PM
Hawaii Eastern Time

Continental USA or Puerto Rico 1-800-258-1710 8:30 AM and 6:00PM
Eastern Time

Canada (Ottawa-Hull) 613-234-7726 8:00 AM and 5:00 PM
Eastern Time

Canada (British Columbia) 1-800-267-6146 8:00 AM and 5:00 PM
Eastern Time

Canada (all other) 112-800-267 -6146 8:00 AM and 5:00 PM
Eastern Time

If you want to order additional documentation by direct mail:

And you live in:

USA or Puerto Rico

Canada

Other than USA,
Puerto Rico or Canada

Write to:

DIGITAL EQUIPMENT CORPORATION
ATTN: Peripherals and Supplies Group
P.O. Box CS2008
Nashua, NH 03061

NOTE: Prepaid orders from Puerto Rico must be
placed with the local DIGITAL subsidiary
(Phone 809-754-7575)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: P&SG Business Manager
DIGIT AL EQUIPMENT CORPORATION
Peripherals and Supplies Group
P&SG Business Manager
clo Digital's local subsidiary or approved distributor

TO ORDER MANUALS WITH EK PART NUMBERS
WRITE OR CALL

P&CS PUBLICATIONS
Circulation Services
10 Forbes Road
NR03/W3
Northboro, Massachusetts 01532
(617)351-4325

READER'S COMMENTS

RainbowTM
Color/Graphics Option

Programmer's Reference Guide
AA-AE36A-TV

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

o First-time computer user
o Experienced computer user
o Application package user
o Programmer
o Other (please specify) ________________________ _

Name ________________________________ __

Date ___ ___

Organization ___ _

Street~ __ _

City _______________________________ _

State ___ _

Zip Code
orCount~---

I
I
I
I
I
I
I

----~.--D~ ~.ot DTea'~~.d "gere and Ta~---------------------T fnl r ------ ~~;;;~~ ---'
~ ~ II~ if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2/L 12

MARLBOROUGH, MA 01752

- - - - - - Do Not Tear - Fold "ere and Tape -

1 ...
~

111
s::
C

:;(... = c.l

