
EDUsystem - 50

USERS GUIDE

DEC-08-E50UA-A-D

digital equipment corporation

o

EDUsystem - 50

USERS GUIDE

DEC-08-E50UA-A-D

August 1975

DIGITAL EQUIPMENT CORPORATION MAYNARD, MASSACHUSETTS 01754

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance to the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
Digital.

The HOW TO OBTAIN SOFTWARE INFORMATION pages, located at the back of
this document, explain the various services available to Digital soft­
ware users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

Contract No.

DECsystem-lO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8

LIMITED RIGHTS LEGEND

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-ll

Contractor or Subcontractor: Digital Equipment Corporation

All the material contained herein is considered limited rights data
under such contract.

PREFACE

CHAPTER 1

CHAPTER

, ,
l..l.

1.2

1.3

2

2.1

2.2

2.3

2.4

2.5

2.6 '

2.7

2.8

2.9

2.10

2.11

CHAPTER 3

3.1

3.2

3.3

CONTENTS

I~~RODUCTION

USER PROGRAMS

USER FILES

TSS/8 HARDWARE CONFIGURATION

EDUSYSTEM 50 MONITOR

CALLING THE MONITOR

LOGGING INTO EDSYSTEM 50

LOGGING OUT OF EDUSYSTEM 50

SYSTEM LIBRARY PROGRAM CONTROL

TYPING MONITOR COMMANDS

CONTROLLING OUTPUT

COMMUNICATING WITH OTHER USERS

HUNG OUTPUT DEVICES

SYSTEM STATUS REPORTS

RESOURCE SHARING

ERROR MESSAGES

SYSTEM LIBRARY PROGRAMS

GENERAL FILE CHARACTERISTICS

CONTROLLING THE EXECUTION OF SYSTEM
LIBRARY PROGRAMS

RETURNING TO THE MONITOR

i

1-1

1-2

1-2

1-3

2-1

2-6

2-8

2-10

2-13

2-13

2-13

2~14

2~15

2-15

2-16

2-20

3~2

3-5

3-6

CHAPTER 4

- ii -

CALL ING AND US ING BAS IC

4.1 BASIC

4.2 LANGUAGE FEATURES

4.2.1 Trunc"ation Function, FIX (X)

4.2.2 ON GOTO Statement

4.2.3 SLEEP statement

4.2.4 Comments

4.2.5 Blank Lines

4.2.6 Multiple Statements per Line

4.2.7 Editing BASIC Statements

4.2.8 Saving Comp1i1ed Programs

4.2.9 File Protection

4.2.10 Project-programmer Numbers

4.2.11 Restricted Accounts

4.2.12 Catalog Format

4.2.13 Strings in BASIC

4.2.13.1 Reading string Data

4.2.13.2 Printing Strings

4.2.13.3 Inputting Strings

4.2.13.4 Line Input

4.2.13.5 Working with Strings

4.2.13.6 The CHANGE statement

4.2.13.7 The CHR$ Function

4.2.14 Program Chaining

4.3 DISK DATA FILES

4.3.1 File Records

4.3.2 Opening a Disk File

4-1

4-2

4-2

4-2

4-3

4-4

4-4

4-5

4-5

4-6

4-7

4-7

4-8

4-8

4-8

4-9

4-11

4-11

4-12

4-13

4-14

4-16

4-17

4-19

4-19

4-21

4.3.3 Reading/Writing Disk Files 4-21

4.3.4 Closing/Deleting Disk Files 4-24

4.4 DECTAPE DATA FILES 4-24

4.4.1 DECtape File Records 4-25

4.4.2 Opening a DECtape File 4-26

4.4.3 Reading/Writing DECtape Files 4-27

4.4.4 Closing DECtape Files 4-29

4.4.5 using DECtape Data Files with OS/8 4-29
FORTRAN

4.5 LINE PRINTER OUTPUT 4-29

4.6 INTERNAL DATA CODES 4-30

4.6.1 Numeric Data 4-30

4.6.2 String Data 4-31

4.7 ERROR MESSAGES 4-32

CHAPTER 5 FOCAL

5.1 USING FOCAL COMMANDS 5-1

5-.2 FOCAL OVER VIEW 5-2

5.3 NUMBERS 5-3

5.4 VARIABLE NAMES 5-4

5.5 ARITHMETIC OPERATIONS 5-5

5.5.1 priority of Arithmetic Operations 5-5

5.5.2 Enclosures 5-6

5.6 INPUT/OUTPUT COMMANDS 5-7

5.6.1 TYPE Command 5-7

5.6.2 ASK Command 5-8

5.6.2.1 Text Output with ASK 5-9

5.7 COMMPUTATIONAL COMMAND (SET)

5.8 CONTROL COMMAND

5.8.1 GO or GOTO Command

5.8.2 IF Command

5.8.2.1 IF with Less Than Three Line
Numbers

5.8.2.2. Arithmetic Comparison with IF
Command

5-9

5-10

5-10

5-11

5-11

5-12

5.8.3 DO Command 5~13

5.8.3.1 Nested DO 5-13

5.8.4 RETURN Command 5-14

5.8.5 QUIT Command 5-14

5.8.6 FOR Command 5-14

5.8.6.1 FOR with a DO 5-15

5.8.6.2 Nested FOR and DO 5-15

5.8.6.3 subscript variables 5-16

5.8.7 COMMENT or CONTINUE Command 5-17

5.9 EDIT COMMAND 5-17

5.9.1 WRITE OR WRITE ALL Command 5-17

5.9.2 ERASE and ERASE ALL Command 5-18

5.9.3 MODIFY Command 5-19

5.10 LIBRARY COMMANDS 5-21

5.10.1 LIBRARY SAVE Command 5-21

5.10.2 LIBRARY CALL Command 5-22

5.10.3 Error Messages with Library Commands 5-22

5.11 ESTIMATING PROGRAM LENGTH 5-23

5-12 DEBUGGING 5-24

- iv -

5.12.1 Using the Error Diagnostics

5'.12.2 using the Trace Feature

5.13 FOCAL FUNCTIONS

5.13.1 Sine Function (FSIN)

5.13.2 Cosine Function (FCOS)

5.13.3 Exponential Function (FEXP)

5.13.4 Logarithm Function (FLOG)

5.13.5 Arctangent Function (FATN)

5.13.6 Square Root Function (FSQT)

5.13.7 Absolute Value Function (FABS)

5.13.8 sign Part Function (FSGN)

5.13.9 Integer Part Function (FITR)

5.13.10 Random Number Function (FRAN)

5.14 FOCAL OUTPUT OPERATIONS

5.15 CONTROL CHARACTERS

CHAPTER 6 FORTRAN

6.1 CALLING FORTRAN-D

6.2 USING FORTRAN-D

6.3 LINE FORMAT

6.3.1 Statement Numbers

6.3.2 statement Continuation Character

6.4 FORTRAN STATEMENTS

6.4.1 Comment Statements

6.4.2 Character set

6.4.3 Constants

- v -

5-24

5-25

5-25

5-26

5-26

5-27

5-27

5-28

5-28

5-28

5-29

5-29

5-30

5.:.;.30

5-31

6-1

6-1

6-2

6-4

6-5

6-5

6-6

6-6

6-7

6-7

5.13 FOCAL FUNCTIONS

5.13.1 Sine Function (FSIN)

5.13.2 Cosine Function (FCOS)

5.13.3 Exponential Function (FEXP)

5.13.4 Logarithm Function (FLOG)

5.13.5 Arctangent Function (FATN)

5.13.6 Square Root Function (FSQT)

5.13.7 Absolute Value Function (FABS)

5.13.8 Sign Part Function (FSGN)

5.13.9 Integer Part Function (FITR)

5.13.10 Random Number Function (FRAN)

5.14 FOCAL OUTPUT OPERATIONS

5.15 CONTROL CHARACTERS

CHAPTER 6 FORTRAN

6.1 CALLING FORTRAN-D

6.2 USING FORTRAN-D

6.3 LINE FORMAT

6.3.1 Statement Numbers

6.3.2 Statement Continuation Character

6.4 FORTRAN STATEMENTS

6.4.1 Comment Statements

6.4.2 Character Set

6.4.3 Constants

6.4.3.1 Integer Constants

6.4.3.2 Real Constants

6.4.3.3 Fixed and Floating-Point
Representation

- vi -

6.4.3.1

6.4.3.2

6.4.3.3

- vii -

Integer Constants

Real Constants

Fixed and Floating-Point
Representation

6.4.4 Variables

6.4.4.1 Integer variables

6.4.4.2 Real Variables

6.4.4.3 Scalar Variables

6.4.4.4 Array Variables

6.4.5 DIMENSION Statement

6.5 FORTRAN ARITHMETIC

6.5.1 Arithmetic operators

6.5.1.1 Use of Parentheses

6.5.2 Arithmetic Expressions

6.5.3 Arithmetic Statements

6.5.3.1 Multiple Replacement

6.5.4 Functions

6.6<. PROGRAM CONTROL STATEMENTS

6.6.1 END Statement

6.6.2 STOP Statement

6.6.3 PAUSE Statement

6.6.4 GO TO Statement

6.6.5 Example of Integer Summation

6.6.6 IF Statement

6.6.7 00 LOOps

6.6.7.1 CONTINUE Statement

6.6.8 Computed GO TO

6-7

6-8

6-8

,. , n
O-.L.U

6-11

6-11

6-11

6-12

6-13

6-13

6-15

6-16

6-17

6-18

6-20

6-21

6-21

6-21

6-22

6-22

6-23

6-23

6-25

6-28

6-28

6.7 FORTRAN INPUT/OUTPUT

6.7.1 Data Formats

6.7.1.1 ASCII Coded Data

6.7.1.2 Binary Coded Data

6.7.2 Input/Output Statements

6.7.2.1 ACCEPT and TYPE Statements

6.7.2.2 Read and write Statements

6.7.3 Variable Specification in I/O
Statements

6.7.4 FORMAT Statements

6.7.5 The A Format specification

6.7.6 Input Format

6.7.6.1 Integer Values --the I Format

6.7.6.2 Real Values the E Format

6-29

6-30

6-30

6-30

6-30

6-31 .

6-32

6-33

6-36

6-37

6-37

6-38

6.7.7 output Formats 6-38

6.7.7.1 E and I Formats 6-38

6.7.7.2 FORMATS Control specifications' 6-39

6.7.7.3 Hollerith Output 6-40

6.8 INPLEMENTATION NOTES 6-40

6.8.1 Double Subscripts 6-40

6.8.2 Substatement Feature 6-42

6.8.3 Error Checking 6~43

6.8.4 FORTRAN-D Source program Restrictions 6-44

6.8.5 FORTRAN-D Compiler and operating system 6-44
Core Map

- viii -

- ix -

6.9 FORTRAN-D ERROR DIAGNOSTICS 6-45

6 .. 9 .. 1 compiler Compilation Diagnostics 6-45

compiler Systems Diagnostics 6-49

6.9.3 operating system Diagnostics 6-50

CHAPTER 7 PAL-D ASSEMBLER 7-1

7.1 INTRODUCTION 7-1

7.2 EDUSYSTEM 50 PAL-D 7-2

7.3 SYNTAX 7-2

7.3.1 Legal Characters 7-3

7.3.2 Illegal Characters 7-4

7.3.3 Format Effectors 7-4

7.4 NUMBERS 7-6

7.4.1 Arithmetic and Logical Operators 7-6

7.4.2 Evaluating Expressions 7-7

7.5 STATEMENTS 7-7

7.5.1 Labels 7-8

7.5.2 operators 7-8

7.5.3 Operands 7-8

7.5.4 Comments 7-9

7.6 SYMBOLS 7-9

7.6.1 Symbol Distinction 7-9

7.6.1.1 permanent Symbols 7-9

7.6.1.2 User-Defined Symbols 7-10

7.6.2 Symbolic Address 7-11

7.6.3 Symbolic Operators 7-12

7.6.4 Symbolic operands 7-12

7.6.5 Symbol Table

7.6.6 Direct Assignment Statements

7.7 ADDRESS ASSIGNMENTS

7.7.1 Current Address Indicator

7.7.2 Indirect Address

7.7.3 Auto indexing

7.7.4 Literals

7.8 INSTRUCTIONS

7.8.1 Memory Reference Instructions

7.8.1.1 Paging

7.8.1.2 Off-Page Referencing

7.8.2 Augmented Instructions

7.8.2.1 Operate Microinstructions

7.8.2.2 Input-Output Transfer
Microinstructions

7-9 PSEUDO-OPE-RATORS

7.9.1 Current Location Counter

7.9.2 Extended Memory

7.9.3 RADIX Control

7.9.4 Listing Control

7.9.5 TEXT Facility

7.9.6 End of Program

7.9.7 End of Fi~e

7.9.8 Altering the Symbol Table

7.9.9 Internal Representation

- x -

7-12

7-13

7-14

7-17

7-18

7-20

7-21

7-23

7-23

7-24

7-25

7-25

7-25

7-27

7-31

7-31

7-31

7-32

7-32

7-32

7-33

7-33

7-34

7-34

7.10 PROGRAM PREPARATION AND ASSEMBLER 7-35
OUTPUT

7 .. 10.1 Program File 7-35

7 1 n ? , "".,... Assernbly 7-37

7.10.3 Pass 1 7-37

7.10.4 Pass 2 7-38

7.10.5 Pass 3 7-38

7.11 OPERATING THE PALD ASSEMBLER 7-39

7.12 ERROR DIAGNOSTICS 7-42

CHAPTER 8 UTILITY PROGRAMS 8-1

8.1 SYMBOLIC EDITOR 8-1

8.2 LOADER 8-2

8.3 OCTAL DEBUGGING TECHNIQUE (ODTHI) 8-6

8.4 CATALOG (CAT) 8-7

8.5 SYSTEM STATUS (SYSTAT) 8-9

CHAPTER 9 PROGRAMS FOR HANDLING DATA 9-1

9.1 PERIPHERAL UTILITY TRANSFER ROUTINES 9-1
(PUTR)

9.1.1 PUTR Commands 9-1

9.1.1.1 ZERO Commands 9-10

9.1.1.2 DELETE Commands 9-11

9.1.1.3 DIRECTORY Commands 9-11

9.1.1.4 LIST Command 9-12

9.1.1.5 TYPE command 9-12

9.1.1.6 PUNCH Command 9~13

9.1.1.7 TAPE Command 9-13

- xi -

9.1.1.8 EXIT Command 9-13

9.1.1.9 special Notes 9-13

9.1.1.10 Default Propagation 9-15

9.1.1.11 DECtape and RK~5 Disks 9-16

9.1.2 TSS/8 File Extensions 9-17

9.1.3 PUTR Switches 9-17

9.2 PERIPHERAL INTERCHANGE PROGRAM (PIP) 9-18

9.2.1 PIP Conventions 9-18

9.2.2 Paper Tape to Disk Transfers 9-19

9.2.3 Disk to Paper Tape Transfers 9-19

9.2.4 High-Speed Reader/Punch Assignments 9-20

9.2.5 BIN Format File Transfers 9-21

9.2.6 Moving Disk Files 9-21

9.2.7 Deleting Disk Files 9-21

9.3 COPY PROGRAM 9-22

9.3.1 using and calling COPY 9-22

9.3.2 Loading Files from DECtape 9-23

9.3.3 saving Disk Files on DECtape 9-23

9.3.4 Listing Directories 9-24

9.3.5 Deleting Files 9-25

9.3.5.1 Deleting All Existing Files on a 9-25
Device

9.3.6 Example of COPY usage 9-26

9.3.7 BASIC File Transfers 9-28

9.3.8 Save Format File Transfers 9-28

- xii -

CHAPTER 10 ADVANCED MONITOR COMMANDS 10-1

10.1 INTRODUCTION 10-1

10.2 CONTROL OF USER PROGRAMS 10-3

10.3 DEFINING DISK FILES 10-4

10 .. 3 .. 1 Creating a Disk File 10-5

10.3.2 opening and Closing a File 10-5

10.3-.3 Extending, Reducing, and Renaming 10-6
a Disk File

10.3.4 Protection Codes 10-7

10.3.5 Error Conditions 10-10

10.4 SAVING AND RESTORING USER PROGRAMS 10-10

10.5 UTILITY COMMANDS 10-14

CHAPTER 11 WRITING ASSEMBLY LANGUAGE PROGRAMS 11-1

11.1 INTRODUCTION 11-1

11.2 CONSOLE I/O 11-2

11.3 FILES AND DISK I/O 11-6

11.4 ASSIGNABLE DEVICES 11-14

11.5 PROGRAM CONTROL 11-21

11.6 PROGRAM AND SYSTEM STATUS 11-23

11.7 PDP-8 COMPATIBILITY 11-28

- xiii -

APPENDIX A MONITOR COMMAND SUMMARY

A.l MONITOR COMMANDS

A.l.l Logging In and Out

A.l.2 Device Allocation

A.I.3

A.l.4

A.l.S

APPENDIX B

APPENDIX C

C.l

C.2

APPENDIX D*

File Handling

Control of user

utility Commands

CHARACTER CODES

STORAGE ALLOCATION

STORAGE MAP

FILE DIRECTORIES

ERROR MESSAGES

D.I BASIC ERROR MESSAGES

D.2 CAT ERROR MESSAGES

D.3 COPY ERROR MESSAGES

Programs

D.4 DECODE ERROR MESSAGES

D.S FOCAL ERROR MESSAGES

A-I

A-I

A-I

A-2

A-2

A-3

A-4

B-1

C-l

c-l

C-l

D-l

D.6 FORTRAN-D COMPILER COMPIIJATION DIGNOSTICS

D.7 FORTRAN-D COMPILER SYSTEMS DIAGNOSTICS

D.S FORTRAN-D OPERATING SYSTEM DIAGNOSTICS

D.9 LOADER ERROR MESSAGES

*NOTE: Information on the above can be found from page D-l through D-27.

- xiv -

D.IO

D.II

D.12

D.13

D.14

LOGID ERROR MESSAGES

MONITOR ERROR MESSAGES

NON-FATAL EXECu~ION ERROR MESSAGES

PAL-D ERROR DIAGNOSTICS

PERIPHERAL INTERCHANGE PROGRAM (PIP)
ERROR MESSAGES

D.15 PERIPHERAL UTILITY TRANSFER ROUTINES
(PUTR) ERROR MESSAGES

NOTE: Information on the above can be found from page D-l through D-27.

- xv -

CHAPTER 1

INTRODUCTION

EduSystem SO is a general purpose, time-sharing system for PDP-8

computers· that offers up to 20 users a comprehensive library of System

Programs. These programs provide facilities for editing, assembling,

compiling, debugging, loading, saving, calling, and executing user

programs on-line. An extended BASIC language provides users with the

ability to use strings, files, and program chaining. Two higher-level

languages, FOCAL and FORTRAN, are also provided. All languages and

utilities may be used simultaneously. One group of users may be

working in BASIC while another is using assembly language. EduSystem

SO serves all levels of users simultaneously.

By separating the central processing operations from time­

consuming interactions with human users, the computer can, in effect,

work on a number of programs simultaneously. Cycling between programs

and giving only a fraction of a second at a time to each program or

task, the computer can deal with many users seemingly at once. The

appearance is created that each user has the computer to himself. The

execution of various programs is done without their interfering with

each other and without lengthy delays in the response to individual

users.

The heart of EduSystem SO is a complex of subprograms called the

Monitor. The Monitor coordinates the operations of the various pro­

grams and user consoles, ensuring that the user is always in contact

with his program. The EduSystem 50 Monitor allocates the time and

services of the computer to the various users; it grants a slice of

processing time to each job, and schedules jobs in sequential order

to make most efficient use of the system disk. The Monitor handles

user requests for hardware operations (reader, punch, etc), swaps

(moves) programs between memory and disk, and manages the user's

private files.

1-1

1.1 USER PROGRAMS

When the user is working with EduSystem 50, it appears to him as

though he had his own 4K (4096 word) PDP-8 computer. He then has the

capability of doing anything which can be done in a 4K computer plus

the capabilities of the Monitor. Several users can run different

programs at virtually the same time because the Monitor controls the

scheduling of execution times. The Monitor brings a program into

core from the disk, allows it to execute for a short time, and takes

note of the state at which execution is stopped. The user is allotted

a 4K block of core that contains his particular program; this 4K block

is swapped (moved) from core onto a 4K area of disk when the Monitor

needs to bring another user program into core to be executed.

After the user's program has been executed for a period of time,

it is placed at the end of the queue (line) of user programs waiting

to be run. If only one program is ready to run, it is allowed to do

so without interruption until another program is ready. If a user

wishes to maintain a permanent copy of his program, he can save a

copy within the file area of the disk (an area separate from the

swapping area) or on DECtape or paper tape.

1.2 USER FILES

A user is any person logged into EduSystem 50. Each user has an

account number and password assigned to him by the System Manager.

The account number and password allow the user to gain access to the

computer. The account number is also used to identify whatever files

the user may own within the EduSystem 50 file system.

The system disk is divided into logical areas called files. A

user can store programs or data in files on the system disk. The user

can further specify which users may access his files and for what

purpose (read, write, or both). Parts of the disk are used to store

system files, those programs which are accessible to anyone using

1-2

the system. A major portion of this manual deals with how to use

the system files, generally called System Library Programs.

With the appropriate Monitor commands, the user can create new

files and manipulate old files (extend, reduce, or delete them).

These commands are summarized in Table ~l. Most individual System

Library Programs are able to handle user files as input or output

with commands issued from the user's console. Such commands are

described under the section on the appropriate System Library Program.

1.3 TSS/8 HARDWARE CONFIGURATIONS

A minimum configuration for TSS/8 includes:

a) PDP-8, 8I, or 8E, with at least 12K words of memory and the
time-share option. (All are referred to in the following
text as PDP-8.) For efficient operation, 16K minimum is
highly recommended.

b) RF08 disk with at least one RS08 (can use DF32 with at least
two platters, but this is not recommended because of very
little area and slow speed).

c) Multi-terminal capability - one or more KL8Es or PT08s or
a DC08A.

All, except 81 with DC08A, require a real-time clock.

Optional hardware supported:

a) Up to 32K words of memory.

b) DC08A - may be used only on a PDP-81 and may be used in
addition to PT08s.

c) 689AG modem controller - for use with DC08A only.

d) EAE - all instructions of any standard EAE are supported
with the exception of the traditional PDP-8 step counter:
which is not saved or restored.

e) High-Speed Reader - a paper tape reader is required to
build TSS/8. A low-speed reader may be used, however the
build procedure will be very time consuming.

f) High-Speed Punch.
1-3

g) Line Printer - LP08/LE8 or LSOS/LS8E.

h) DEC tape - TCOl or TC08 and up to eight drives (NOT TDSE).

i) Up to four disks (three additional RSOSs).

j) Card Reader.

k) RK-SE disk (up to four drives).

1) Power failure protection.

m) MISEF or MISEG hardware bootstrap.

Software provided with the Standard EduSystem 50 includes the
following:

• General-purpose time-sharing Monitor System.

• Time-shared BASIC language processor.

• Time-shared assembly language package including text editor,
symbolic assembler, loader, and utility debugging program.

• Time-shared FORTRAN-D and FOCAL language processors.

• System-utility programs, including PUTR, PIP COPY, etc.

• Library of sample programs, textbooks, and curriculum
guides.

1-4

CHAPTER 2

EDUSYSTEM 50 l'-lONITOR

EduSystem 50 Monitor controls the allocation and use of hardware

resources". Many of these functions of the Monitor are invisible, and

of no concern to the user, for example; the way it allows many users

to run programs on a single computer. In other instances, the user

explicitly tells the Monitor what he would like to do by typing one

or more of the Monitor commands described in this chapter.

The Monitor commands described in the first half of this chapter

are those needed to log into the system, to utilize the System

Library Programs, and to log out of the system. All users must be

familiar with these commands. The commands described in the last

half of this chapter are not needed to run System Library Programs

such as BASIC or FOCAL but are frequently useful. The Advanced

Monitor commands described in Chapter 10 are primarily useful for

creating assembly language programs and files. Table 2-1 contains a

summary of the Monitor commands.

Monitor Commands

Logging In and Out

LOGIN Cl Sl

LOGOUT

TABLE 2-1.

Explanation

Request to login:

Cl = user's account number

51 = user's password

Request to logout: processing and
console time are printed.

2-1

Monitor Commands

TIME C1

Device Allocation

ASSIGN L1

ASSIGN Ll C1

RELEASE Ll

RELEASE L1 C1

File Handling

CLOSE S1

CREATE Sl

EXTEND Cl D1

F Cl

Table 2-1. (Cont.)

Explanation

Request printout of processing time:

C1 = job number

If C1 is omitted and the user is
logged i~ the processing time of the
current job is printed. If C1 = ~,
or if the user is not logged in and
C1 is omitted the time of day is
printed.

Reserve device:

L1 = R for paper tape reader
P for paper tape punch
L for line printer
C for card reader
D for any DECtape unit
K for any RK~5 unit

Reserve specific unit

L1 = D for DECtape
K for RK~5

C1 = unit number

Release device:

L1 = R, P, L, or C (see ASSIGN L1)

L1 = D for DECtape
K for RK~5

C1 = unit number

Close files:

81 = list of internal file numbers

Create new file:

S1 = name of new file

Extend length of file:

Cl = internal file number
Dl = number of segments to be

added to end of file

Print information about an open file.

Cl = internal file number
2-2

Monitor Conunands

OPEN C1 S1 C2

PROTECT C1 C2

REDUCE C1 Dl

RENAME Cl Sl

Control of User programs

DEPOSIT Cl C2 ••• Cn

EXAMINE Cl Dl

RESTART

RESTART Cl

START

Table 2-1. (Cont.)

Explanation

Establish association between internal
file number and file:

Cl = internal file number
Sl = file name
C2 = account n~~her.

If C2 is omitted, the user's account
is assumed.

Protect a file:

Cl = internal file number
C2 = new file protection mask

(see 10.3.4)

Reduce length of file:

Cl = internal file number
D1 = number of segments to be

removed from end of file

Rename a file:

C1 = internal file number
S1 = new name of file

Store in core memory:

C1 = location
C2 = contents to be stored

Location C1
C3 = contents to be stored

Location C1+1, etc.

List specified contents:

Cl = first location

in

in

Dl = number of location to be listed
D1<10 decimal

Print the program restart address.

Set program restart address.

Restart user program.

2-3

Monitor Commands

START C1

utility Commands

BREAK

BREAK C1

DUPLEX

LOAD Cl Sl
LOAD C1 Sl C2
LOAD Cl Sl C2
LOAD C1 Sl C2
LOAD Sl
LOAD Sl C2
LOAD Sl C2 C3
LOAD S1 C2 C3

R Sl

R S1 C1

RUN Sl
RTJN Cl Sl
RUN Sl C2
RUN Cl Sl C2

S

C3
C3

C4

C4

Table 2-1. (Cont.)

Explanation

Execute user program:

Cl = starting location

Print current keyboard break mask

Set keyboard break mask:

Cl = new mask

Echo typed characters on printer.

Load core image:
Cl = owner's account number; if

not specified the user's
account is assumed.

Sl = name of file
C2 = file address of first word to

be loaded; if not specified,
¢ is assumed.

C3 = core address of first word to
be loaded; if not specified,
¢ is assumed.

C4 = core address of last word to
be loaded; if not specified,
the highest possible value is
assumed.

Run system file:

Sl = name of file
Cl = starting address; if omitted,

¢ is assumed

RUN USER FILE:

Sl = name of file
Cl = owner's account number; if

omitted the user's account is
assumed.

C2 = starting address; if omitted,
¢ is assumed.

STOP execution

2-4

Monitor Commands

SAVE Cl Sl

SAVE C1 Sl C2

SAVE C1 S1 C2 C3
SAVE Cl S1 C2 C3
SAVE Sl
SAVE Sl C2
SAVE Sl C2 C3
SAVE Sl C2 C3 C4

SWITCH

SWITCH Cl

TALK Cl Sl

UNDUPLEX

USER

USER Cl

WHERE

C4

Table 2-1. (Cont.)

Explanation

SAVE core image:

Cl = owner's account number; if not
specified, the user's account
is assumed.

Sl = name of file

C2 = file address of first word to
be saved; if not specified, ¢
is assumed.

C3 = core address of first word to
be saved; if not specified, %
is assumed.

C4 = core address of last word to
be saved; if not specified, the
highest possible value is
assumed.

Print the value of the user's switch
register.

Set switch register:

Cl = word to be set

Send a message to console Cl:

Cl = destination console
Sl = message

Inhibit echo of characters typed to a
user program.

Print the user's job number, account
number, and console number.

Print the job number, account num­
ber and console number of job CIa

Print the current value of the user's
switch register, PC, Link, AC, and EAE
registers.

2-5

NOTE

All Monitor commands must be terminated
by typing the RETURN key. All words
within a Monitor command line are sepa­
rated by one or more spaces.

2.1 CALLING THE MONITOR

The user enters commands to system programs, such as BASIC and

FOCAL, in exactly the same way that he enters commands to the Monitor

(i.e., by typing them at the keyboard); therefore, the system must

have some way of distinguishing between the two cases. It does so by

defining two modes of console operation: Monitor mode and program

mode. When a user's console is in Monitor mode, all input is inter­

preted as being commands to the Monitor. Otherwise, all input is .

assumed to be to the user program or system program· which is being

run by the user.

2-6

A special character, CTRL/B (obtained by pressing B with the

CTRL key held down, and echoed on the terminal as tB), is used to

unconditionally place the user's console in the Monitor mode.

Typing CTRL/B tells the system that the command to follow is a

Monitor command, regardless of the current console mode. Generally,

the command which follows the CTRL/B will be the S command.

tB
tBt BS

Return to Monitor mode.

Return to Monitor mode from a program which is
printing. (The two CTRL/B's stop the printout,
allowing the S command to be typed.)

It is not necessary to precede each Monitor command with CTRL/B.

Once in the Monitor mode, a console stays in that mode until a com­

mand is entered to start a system program. To signify that the

console is in the Monitor mode, the system prints a dot (.) at the

left margin of the console printer paper. This dot indicates that

the characters entered next are to be treated as a Monitor command.

Thus, the CTRL/B capability is important when a user is running a

program and wishes to issue a Monitor command. He may, for example,

be using one language (or system program) and want to change to

another, as shown below:

• R FOCAL

NOTE

Characters typed by the user are underlined
to eliminate confusion with characters
printed by the system .

SHALL I RETAIN LOG, EXP. ATN ?:NO

SHALL I RETAIN SINE. COSINE ?:NO

PROCEED.

*TYPE 6+10-3-1
• 12.0100*TYPE 25+5*2+5
• 41.1"'.'85

2-7

.R BASIC

NEW OR OLD--NEW
.ZV PROGRAM NAME--

Notice that the Monitor responds to CTRL/B followed by S, by printing

a dot at the left-hand margin.

2.2 LOGGING INTO EDUSYSTEM 50

To prevent unauthorized usage and to allow the Monitor to main­

tain a record of system usage, EduSystem 50 requires that each user

identify himself to the system before using it. Before attempting to

log into the system, the user should ensure that the console LINE/OFF/

LOCAL knob is set to LINE and then press the RETURN key. If the con­

sole is connected to EduSystem 50 and is not already in use, the

Monitor rolls the console paper up two lines and prints a dot at the

left margin of the paper. The dot indicates that the system is in

Monitor mode and that the Monitor is waiting for a command. The

LOGIN command allows the user to gain access to EduSystem 50.

The user types LOGIN followed by an account number and password.

Providing the console is free (not already logged in), the command,

account number, and password are not printed on the console paper as

the keys are typed. If the command name letters are being printed,

stop typing the command; instead, strike the RETURN key, log out

using the LOGOUT command (see Logging out of EduSystem 50). At this

point, a successful LOGIN can be accomplished. The LOGIN command is

formatted as shown below:

.LOGIN 1234 ABCD (only the dot appears)

The dot (.) is printed by the Monitor, LOGIN is the command name,

1234 represents the user account number, and ABCD represents the

password.

2-8

NOTE

A command word and each parameter
(except the last) is always followed
by a _ spac~.· _ Command lines are always
terminated with the RETURN key. The
RETURN key enters the full command
line to the system.

When. a user types something other than a val ;d LOGIN ~omm d ~ . an ,

the Monitor responds in one of the following ways:

•
ILLEGAL REQUEST

.LOGIN 4771 DEMO
ALREADY LOGGED IN

•
LOGIN PL~ASE
•
UNAUTHORIZED ACCOUNT

(user typed LOGIN ABCD ABCD)

(user typed valid LOGIN on an already
logged in console)

(user typed ASSIGN D 3)

(user typed an incorrect account
number or password)

In the third example, ASSIGN D 3 is a valid command but is not

appropriate until the user is logged into the system. In the first

example, the Monitor finds that the LOGIN command is improperly for-

matted (the first parameter must be a 1- to 4- digit number): the

console print out tells the user that he has made an ILLEGAL REQUEST.

When the console is already logged in and the user types the LOGIN

command, the characters typed echo at the console and the Monitor

informs the user that the console is occupied with the message

ALREADY LOGGED IN.

If the user attempts to use an incorrect account number or pass­

word, the Monitor replies UNAUTHORIZED ACCOUNT. Thus the Monitor can

distinguish an invalid command from a valid command: it can also dis­
tinguish whether the valid command is appropriate when issued,

2-9

whether the command is properly formatted, and whether the account

number and password are acceptable. In all the preceding examples,

Monitor ignores the command and prints another dot.

When the Monitor finds the LOGIN command properly formatted and

the account number and password acceptable, it responds by identify­

ing the version of the system being used, the job number assigned to

the user, the number of the console being used, and the time-of-day

in hours, minutes, and seconds. This information is usually followed

by a note from the System Manager concerning the system. For example:

•
T55/8.24 JOB 01 [00,03] K04 15126113

YOU ARE NOW LOGGED INTO THE BHS EDU5VSTEM 50
PROCEED AT YOUR OWN SPEED

The Monitor then prints another dot and waits for the user to

issue the next command. The job number assigned is an internal num­

ber by which the system identifies each on-line user; the user need

not remember this number.

2.3 LOGGING OUT OF EDUSYSTEM 50

The LOGOUT command indicates to the Monitor that the user is

finished and ready to leave his terminal. When Monitor receives a

LOGOUT command, it disconnects the user terminal from the system and

records the amount of computer time used during the session and the

total real time of the session. It also notes any user files deleted

or saved. For example:

.LOGOUT

JOB 1, USER [12,34] LOGGED OFF K00
DELETED 1 FILES (1. DISK BLOCKS>
SAVED 11 FILES (38. DISK BLOCKS)
RUNTIME 00100&24 (7. CPU UNITS)
ELAPSED TIME 02:14&39

AT 19:20:19 ON 27 NOV 74

2-10

computer processing time used in this example was 24 seconds, while

the elapsed time between LOGIN and LOGOUT was 2 hours, 14 minutes,

and 39 seconds.

When ty~ing the LOGOUT command, the user may follow it with a

colon and an option to initiate some action by the system.

To specify

an option, the user types, for example:

.LOGOUT:K

If no option is specified, the S option is assumed: similarly if a

user is simultaneously logged in at two (or more) consoles, no files

will be deleted until he logs off his last job~ For example:

• LOGOUTI?

TYPE tBS TO ABORT LOG-OUT; OR
TYPE ONE OF THE FOLLOWING (AND CAR RET):

K TO KILL JOB AND DELETE ALL UNPROTECTED FILES;
L TO LIST YOUR DISK DIRECTORY;
S TO SAVE ALL (NON-TEMPORARY) FILES; OR
I TO INDIVIDUALLY SAVE AND DELETE FILES AS FOLLOWS:

AFTER EACH FILE NAME IS LISTED. TYPE:
P TO SAVE AND PROTECT.
S TO SAVE WITHOUT PROTECTING. OR
CAR RET ONLY TO DELETE.

CONFIRM: L
FIE .BIN <17> 1 • BLOCKS
BAS000.TMP <17> 1 • BLOCKS
BAS100.TMP <17> 1 • BLOCKS
INTER .BAS <17> 1 • BLOCKS
PROC .FCL <12> 2. BLOCKS

CONFIRM: I
FIE .BIN <17> 1 • BLOCKS : S
BAS000.TMP <17> 1 • BLOCKS : DELETED
BAS100.TMP <17> 1 • BLOCKS I DELETED
INTER • BAS <17> 1 • BLOCKS :
PROC .FCL <12> 2. BLOCKS : S

JOB I. USER [3.13] LOGGED OFF K00 AT 10:46:07 ON 27 NOV 74
DELETED 3 FILES (3. DISK BLOCKS)
SAVED 2 FILES (3. DISK BLOCKS)
RUNTIME 00100125 (2. CPU UNITS)
ELAPSED TIME 00106:12

2-11

JOB 1, USER (3,13) LOGGED OFF K¢¢ AT l¢: 46:¢7 ON 11-27-74
DELETED 3 FILES (3. DISK BLOCKS)
SAVED 2 FILES (3. DISK BLOCKS)
RUNTIME ¢¢:¢¢:25 (2. CPU UNITS)
ELAPSED TIME ¢¢:¢6:12

In the previous example, the user typed a question mark to check

the LOGOUT options. When LOGOUT completed the printed explanation,

it printed CONFIRM: and waited for a user reply. In this case, the

user requested a listing of his files, LOGOUT followed this listing

with a second CONFIRM: to which the user replied I. When using the I

option, the user is advised not to type his reply to individual entries

until printing stops. DELETED is printed automatically by the system

to show that the temporary files are deleted without user intervention.

The user saved binary file FIE and the FOCAL file PROG. The BASIC

file INTER was deleted by typing the RETURN key.

An optional method of logging out of the system is to type K in

response to the Monitor dot or K followed by a colon and an option

designation. For example:

JOB 1. USER [12.34] LOGGED OFF K00 AT 19120:19 ON 27 NOV 74
SAVED 3 FILES (4. DISK BLOCKS>
RUNTIME 08100107 (1. CPU UNITS>
ELAPSED TIME 11113:57

A complete list of the logout option can be found in table 2-2
on pag~ 2-13.6

~.
-

2-12

2.4 SYSTEM LIBRARY PROGRAM CONTROL

Once logged into the system, the user can call any EduSystem 50

system Library program. To call a library program, the user types

the command R (meaning run) followed by one or more spaces and the

program name. For example:

.R BASIC

NEW OR OLD--

2.5 TYPING MONITOR COMMANDS

When typing a command to the Monitor, it is possible to correct a

letter without retyping the entire line. To do this, press the RUBOUT

(or DELETE) key. This will remove characters from the end of the line

one by one, and print the deleted characters. When the incorrect

characters have been removed, continue typing the correct line.

To erase an entire command line and start over, type CTRL/B and

then the desired command.

2.6 CONTROLLING OUTPUT

An optional feature of the Monitor allows the user to suspend

terminal output from the Monitor. If, for example, he is running a

program which causes much output, he may type a CTRL/S (t S). This

signals the Monitor to stop sending to the terminal. When the user

wishes to see more output, he types a CTRL/Q (tQ) , and output continues

from where it left off. Users with a'VT50 can cause the terminal to

sned the ~ Sand fQ automatically.

2-13

2.6.1 System Library Program Control

Once logged into the system, the user can call any EDUsystem

50 System Library Program. To call a library program, the user

types the command R (meaning run) followed by one or more spaces

and the program name. For example:

.R BASIC

NEW OR OLD

Option

: I

:K

:L

:0

TABLE 2-2

LOGOUT OPTIONS

Function

Allow the user to individually decide which files to
save or delete. Temporary files are deleted
automatically.

Delete all unprotected files from piske

List the user's file directory. After listing the
files, the system prints CONFIRM: and the user replies
with one of the options.

LOGOUT without any printed message.

:S Save all nontemporary files. A temporary file is
one of the following:

BASOnn
BASlnn
TEMPnn

where nn is the console number at which the user is
logged into the system. A temporary file is created
by a System Library Program and listed in CATALOG
listings. A temporary file is also considered to
be any file with a .TMP extension. If no option is
specified in the LOGOUT command, :S is the default.

:? Print a listing of the available options and their
functions.

The Monitor fetches the BASIC language processor from the

System Library and starts it. BASIC begins its dialog by asking if

2-13.5

the user wishes to work on a new program or retrieve an old one

from disk storage. Notice that once BASIC begins, the console is

no longer in Monitor mode. Dots are no longer printed at the margin.

All input is now processed'by the BASIC language processor.

If the user types a program name which cannot be found in the

System Library, the Monitor responds with an error message and

returns the console to the Monitor mode, as follows:

2-13.6

.R BASICK
FILE NOT FOUND

The exact contents of a System Library may vary from installa-

tion to installation. The System Manager may choose to make any

number of programs available to all users.

2.7 COMMUNICATION WITH OTHER USERS

Although EduSystem 50 gives each system user the impression that

he is the only user of the system, it is actually supporting many

users at a time. Often it is useful to communicate with another

user, or with the system operator: this is done with the TALK com-

mand. The TALK command requests the Monitor to print a message on

another system terminal. For example, a user at terminal 7 can ask

the system operator to turn on the high-speed punch by typing the

following command (the initial dot is printed by the Monitor) :

.TA 0 PLEASE TURN ON THE HIGH·SPEED PUNCH.

The above command causes the following to be printed at console O •

•• K07 [12~34J ••
PLEASE TURN ON THE HIGH·SPEED PUNCH.

K07 indicates that terminal 7 sent the message. Any terminal

can initiate a message to any other terminal. However, if the

destination terminal is printing at that time, the message will not

be sent. The initiating terminal would, in this case, receive the

message BUSY as a response.

2-14

2.8 HUNG OUTPUT DEVICES

When the paper tape punch or line printer is off line or

hung, the Monitor takes special action so that it is usually

possible to continue with little or no data loss. When these

devices are hung, the output buffer is not cleared. A system

error is generated, and regenerated every few seconds until the

condition is cleared. If the user program has not enabled

errors, the result will be a printed "HUNG DEVICE" message,

and then the terminal bell will ring, trying to persuade the

user to do something. There are only two things the user may

do to remove himself from this condition. If he is not interes­

ted in continuing, he may release the hung device. If he does

wish to continue he should put the device on line, and it should

take off. He may now type ItSTART" to continue program execution.

2.9 SYSTEM STATUS REPORTS

The command SYSTAT initiates a printout of the full status

of EduSystem 50, how many users are on-line, what they are

doing, etc. The command SYSTAT is equivalent to typing R

SYSTAT. The format of the status report is described in the

section on Utility Programs.

The user can obtain information on the amount of computer

time used by him, the amount used by another user, or obtain

the time of day with the TIME command. The TIME command can be

issued in one of the following three forms:

2-15

TIME

TIME 0

TIME n

For example:

.TIME
00:00:00
.TIME "
15:31'18
.TIME 10
"0:00'34

2.10 RESOURCE SHARING

Returns the elapsed processor time of the user
issuing the TIME command since he logged into
the system. If the user is not logged in, the
time of day is returned. - -

Returns the time of day_

Returns the amount or processor time used by
job n since logging into the system.

All system users, when logged into the system, have access

to the System Library, disk storage, a virtual 4K PDP-B, and

the EduSystem 50 Monitor. The Monitor handles disk resource

requests automatically. The Monitor also maintains a pool of

available devices which are assigned to users upon request on

a first-come, first-served basis. Devices such as the high-

speed paper-tape reader cannot, by their very nature, be assigned

to several programs simultaneously. Therefore, the Monitor

grants individual users exclusive access to these devices when

needed. The system disk is not assigned since it can be used

by more than one user simultaneously.

2.-16.

All systems include a high-speed paper-tape reader in the pool

of available devices. Many systems also include a high-speed paper­

tape punch, a high-speed line printer, a card reader, RK8E, and/or

one or more DECtapes. These assignable devices are normally used

with the System Library Program PUTR to store programs or data for

later use.

When a device is assignable (present on the system) and available

(not being used), the ASSIGN command may be used to reserve the

desired unit or units for exclusive use by the console issuing the

command. The valid ASSIGN commands are formatted as shown below:

ASSIGN C Assign the card reader.

ASSIGN D Assign a DEC tape unit.

ASSIGN K Assign a RKf,3'S unit.

ASSIGN L Assign the line printer.

ASSIGN P Assign the high-speed paper-tape punch.

ASSIGN R Assign the high-speed paper-tape reader.

If other devices are assignable, the System Manager will inform

the user of the appropriate device designator. The following is an

example of using an invalid device designator:

.ASSIGN X
ILLEGAL REQUEST

The Monitor ignores the request, responds with the appropriate

message, and prints another dot. When a valid ASSIGN command is

issued, the Monitor checks the availability of the device and

responds accordingly. For example:

-ASSIGN R
R ASSIGNED
-ASSIGN P
JOB 0e [12.34] KnS HAS l? . P

•

2-17

When the system contains multiple units of a device, the user
simply specifies the device; the Monitor assigns an available unit

and responds with the ~~it n~~ber. For example:

.ASSIGN D
D 0 ASSIGNED

If all DECtape units are busy, the Monitor prints the message

shown below:

.ASSIGN D
DEVICE NOT AVAILABLE

A specific unit can be requested by leaving a space between the

device designator and the device number. For example:

.ASSIGN D 4
D 4 ASSIGNED

The ASSIGN command assigns only one device at a time. Therefore,

when multiple devices are to be assigned, each must be assigned

separately. The following will not accomplish the desired assignments,

either with or without the illegal commas .

• ASSIGN R ~ D a~ D 1
R ASSIGNED

The Monitor accepted the first device designator and ignored the

rest of the command. If device R is unavailable, the Monitor prints

the appropriate message. The following commands complete the desired

assignments (assuming available devices):

.ASSIGN D 2
D 2 ASSIGNED
.ASSIGN D 1
D 1 ASSIGNED

2-18

When the user has finished working with an assigned device, he

should use the RELEASE command to terminate the assignment and allow

other users access to the device. (When a user logs out of the

system, any devices still assigned to him are automatically released.)

A particular device is released when the user enters the RELEASE

command, a space, and the device designator (and unit number if

required), as shown below:

.RELEASE R

.RELEASE D 3

In the previous example, the high-speed reader and DEC tape unit

3 are released. The Monitor prints a dot on the next line if the

release is accomplished; otherwise, it prints a message. If, for

example, a request is made to release a device which has not been

assigned to the issuing console, the following happens:

.RELEASE D 2
ILLEGAL REQUEST

The Monitor printed ILLEGAL REQUEST after it checked and found that

the specified device was not assigned to the console issuing the

command.

NOTE

All commands must be formatted properly;
ILLEGAL REQUEST is printed if the user
fails to separate the device designator
and unit number with a space.

When multiple device units were reserved by a user, each must

be individually released. For example:

.RELEASE D 1

.RELEASE D 2

.RELEASE R
•

_2-19

The Monitor does not perform checking when releasing a device

as it does when assigning a device. The user may have two device

units (e.g., two DECtape units) assigned and Monitor would not know

which to release; therefore, device numbers. are necessary with a

RELEASE cOITmand. ~~en only one unit of a specific device (one high-

speed reader or punch, etc.) is on the system, the device designator

alone is sufficient.

2.11 ERROR MESSAGES

An appropriate error message is printed whenever: a Monitor

command cannot be performed at the time it is requested, a typing

error is made, or the command is illegal (or nonexistent). Following

each error message, the Monitor ignores the command and prints

another dot, after which the user can issue another command. Table

2-3 is a list of the Monitor error messages.

Message

ALREADY LOGGED IN

BUSY

DEVICE NOT AVAILABLE

FULL

TABLE 2-3

MONITOR ERROR MESSAGES

Explanation

The user tried to log in on a console
which is already in use.

The user attempted to talk to a console
which is currently printing or on which
another user is typing.

An ASSIGN command has been entered for
either:

1) a device which is not present on
the system, or

2) a device which is temporarily busy
and should be available in a few
seconds.

The system is full. Another user cannot
log in until one of the present users
logs out.

2-20

Message

ILLEGAL REQUEST

LOGIN PLEASE

Sl??

TYPE tBS FIRST

UNAUTHORIZED ACCOUNT

WAIT FOR I/O

Table 2-3. (Cont.)

Explanation

The user requested an illegal com­
mand. This error usually results
when some parameter has been given
an incorrect value or the request
refers to a facility not owned by
the user.

The user attempted to use a console
which is not logged into the system.

The System Interpreter does not
understand the command. Sl=command.

The user attempted to use a system
command which cannot presently be
honored due to the status of the
user's program.

The user 'attempted to log into the
system with an invalid account
number or password.

A request cannot be honored because
a device is busy. Try typing the
command again.

2-21

CHAPTER 3

SYSTEM LIBRARY PROG~~

The System Library contains a comprehensive set of user programs

for a wide range of applications. Language processors; such as BASIC

and FOCAL, allow the user to code and run programs in interactive

languages. FORT' compiles and executes programs written in

FORTRAN language. A complete assembly language system allows programs

to be written in PALO, assembled, and run. Various utility programs

perform special functions. The DEC-supplied System Library consists

of the following programs.

• BASIC - an easily learned interactive language originally
developed at Dartmouth College.

• CAT - used to list all the files which a user has stored in
his library.

• COpy - a utility program used to transfer files between the
system disk and DECtape.

• EDIT - a line-oriented text editor, used to create and
modify source programs (such as FORTRAN) and data files.

• FOCAL - DEC·s own interactive language for on-line problem
solving, designed especially for use on mini-computers.

• FORT - a modified version of FORTRAN II.

• LOADER - a binary loader used to load assembled programs
for execution.

• ODTHI - Octal Debugging Technique for testing and modifying
assembly language programs.

• PALD - a 2-pass symbolic assembler.

• PIP - Peripheral Interchange Program for transferring files
between the system disk, paper tape, and line printer.

• Pu~R - a utility program used to transfer files between all
EduSystem 50 devices.

• SYSTAT - (System Status) a utility program that prints a
brief description of the system status.

3-1

A more detailed description of each of the above System Library

Programs is presented in the following sections.

3.1 GENERAL FILE CHARACTERISTICS

A fundamental feature of the Monitor is its ability to save

programs or other data for each user in his own private library.

These individual user libraries are maintained on the system disk.

Individual entries in the library are called files, whether they

contain programs or data. Within the library itself, there is no

distinction between types of files by their contents. Each file is

identified with a file name by which it is known and called into use.

The user does not directly create and update the files in his

library. He uses the System Library Programs for this purpose. For

example, he can use the SAVE command in BASIC. The SAVE command

takes the BASIC program named and saves it as a file in the user's

library for future use. Similarly, EDIT can be used to modify an

existing file, resulting in the creation of a new file. Therefore,

although the Monitor provides the actual file storage capability,

most file manipulation is done while System Library Programs are

being run.

The System Library Programs which operate on these files must

know which file to use, when to create a new file, and what to call

it. Each Library Program has its own method of determining whether a

user wishes to use an old file or create a new one; this is explained

in the sections on individual library programs.

Example 1:

.R BASIC

NEW OR OLD--OLD
OLD PROGRAM NAME--PRIME

R~~

3-2

Example 2:

.ft FORT

INPUTtTYPE
OUTPUT.BTYPE

For most of his work, the user requires access to only his own

library. However, it is often a useful feature to be able to obtain

a program from another user's library, allowing a single file to be

shared by several users. To access a program from another user's

library, the user must tell the system in which individual library

the file is stored. The user tells the system by entering the account

number of the library's owner. (In the absence of an account number,

the user's own library is the assumed source.) To get a file from the

System Library, type an asterisk immediately after the file name.

Example 1:

.R BASIC

NEW OR OLD--OLD
OLD PROGRAM NAME--HOSSR*

READY

.ft PALD

INPUTINOTPIP 5440
OUTPUT. BINI

NOTE

Most examples in the discussions of indi­
vidual System Library Programs use file
names within the user's own library. The
user is free (file protect permitting) to
use files from other user's libraries.

Access to another user's files is gained only with his permission.

A user may "protect" his files against other users, i.e., prevent them

from gaining access to his files, even though they know his program

3-3

name and account number. Library Programs never permit a user to

write in another user's files. Specifying a file which is protected,

or specifying a nonexistent file, is an error that is detected

immediately. An error message is printed and the file name is

requested again.

The user places his output in a single file; however, it is

often useful to input several files together. (For example, the user

may wish to assemble two parts of a PAL-D program together.) To

specify more than one input file, separate the file names by commas.

No Library Program (except PUTR) allows more than three input files.

FORTRAN is limited to two; BASIC allows only one.

BASIC is a self-contained programming system, with an editor,

compiler, and run-time system. It also has a distinctive file format.

Files created by BASIC are not compatible with files created by other

Library Programs. All other Library Programs depend on each other;

therefore, all other Library Programs use the same format for their

disk files. Consequently, files created by the Editor can be used

as input to PAL-D or FORTRAN programs as data files.

The Monitor includes a disk quota system, which limits the

amount of file space that each account can have. A user can find

out what his own quota is by running the program CAT. Any time an

account exceeds this disk quota, the Monitor will print a message such

as [MYFILE EXCEEDING DISK QUOTA] warning the user that he is about to

run out of disk space. The amount by which he may exceed his disk

quota is called the grace quota, and is defined by the System Manager.

3-4

Up to this point, only files that exist within the time-sharing

system, i.e., on the system disk, have been described; however,

EduSystam 50 provides other means of file storage such as paper tape,

RK~5 cartridge disk/and DECtape. The Library Progr~us PIP, COPY,

and PUTR can be used to transfer data between any devices which are

present on the System.

3.2 CONTROLLING THE EXECUTION OF SYSTEM LIBRARY PROGRAMS

EduSystem 50 provides the user with two options for stopping the

system. CTRL/C (C with the CTRL key held down) allows the user to

stop his BASIC program and return to the beginning of that program

without returning to the Monitor. For example, if the user begins

to run a BASIC program that has an endless loop, he can type CTRL/C

to stop it. BASIC responds to tc with READY. All other Library

Programs respond in a similar manner.

CTRL/B is used to stop the Library Program most recently called.

CTRL/B followed by S and the RETURN key unconditionally returns the

user to the Monitor mode; the user can then call another Library

Program. If the system is printing, two CTRL/B's and the S (tBtBS)

are required to stop the system.

RUBOUT is another useful character that deletes the last typed

character. Some Library Programs respond by printing \ or - while

others print the deleted character. If the RUBOUT key is typed while

entering file names for input or output to a Library Program, RUBOUT

deletes the whole line. The request for input or output is then

repeated.

3-5

3.3 RETURNING TO THE MONITOR

The user can stop the execution of a System Library Program at

any time by typing CTRL/B followed by S and the RETURN key. The

System Library Programs can also initiate a return to the Monitor.

When the System Library Programs initiate a return, tBS is printed

just as though the user had terminated the program. For example,

BASIC returns to the Monitor when the user types the BYE command:

READY

BYE
tSS

•

FORTRAN returns to the Monitor after completing execution of a

program. CAT and SYSTAT return after printing their particular data

output. PAL-D returns after completion of an assembly, LOADER at

the end of a normal load, and EDIT after completion of an EDIT.

FOCAL, ODT, and PIP never return to the Monitor; these programs must

be terminated by the user with CTRL/B followed by S. Some System

Library Programs return to the Monitor when a fatal error condition
is detected.

3-6

CHAPTER 4

CALLING AND USING BAS.IC

4.1 BASIC

EduSystem 50 BASIC is a time-sharing version of the BASIC

language. It allows even the beginning computer user to write and

run meaningful programs. In addition, EduSystem 50 BASIC has ad­

vanced language features such as strings, files, and program chaining.

This section describes the BASIC language capabilities riot discussed in

Chapter 1 of the EduSystem Handbook. Table 4-4 contains a complete

summary of the EduSystem 50 BASIC language.

To call BASIC, the user types:

.R BASIC

After the user logs into EduSystem 50; and calls BASIC in the above

manner, BASIC prints NEW OR OLD--. The user then types the appropri­

ate adjective: NEW (if he wants to enter a new program) or OLD (if

he wants to retrieve a program that was previously filed).

BASIC then asks NEW PROGRAM NAME-- (or OLD PROGRAM NAME--) and

the user types any combination of six letters or less. If the user

is recalling an old program file from the disk, he must use exactly

the same name as when he originally instructed BASIC to save it.

BASIC prints READY to signal the start of the editing phase;

the user then begins to type the new program. If the user types a

line consisting of only a line number followed by the RETURN key,

that line is deleted. Each line must begin with a line number

greater than 0 and less than 2047 and which contains no non-digit

4-1

characters. To enter an entire line to the computer, the user must

press the RETURN key.

If the user makes a typing error while typing a statement and

notices it immediately, he can correct it by typing the RUBOUT (or

DELETE) key (right-hand side of the keyboard), or the back arrow key.

Typing either key deletes the character in the preceding space and

prints a backarrow (~) character for each character erased. The

user can then type the correct characters. Typing the RUBOUT key a

number of times erases one character from the current line (spaces

are characters) to the left for each RUBOUT typed.

While BASIC is in the editing phase, certain additional commands

(which must not have line numbers) are available. The commands are

described in Table 4-4 under Edit/Control Commands.

4.2 LANGUAGE FEATURES

4.2.1 Truncation Function, FIX (X)

The truncation function returns the integer part of X. For

example:

10 PRINT "FIX(10.2)." FIXC10.2)
20 END
RUN

FIX(ll.2)· II

FIX is like INT for positive arguments, and can be defined as:

FIX(X) = SGN(X) * INT(ABS(X»

4.2.2 ON GOTO Statement

The ON ..• GOTO statement may be used to provide a many-way branch.

The general form of the ON •.• GOTO is:

4-2

ON expression GOTO line number, line number ...

If the value of the integer part of the expression is 1, a GOTO is

performed to the first statement. If the value of the integer part

of the expression is 2, a GOTO to the second statement number is

performed, etca If the value is less than one, or greater than the

number of statement numbers, the program terminates and an error

message is printed. Examples of ON GOTO are shown below:

999 ON N GOTO 100~400~200~600~499

872 ON A+SQRCS*C) GOTO 108~200

4.2.3 SLEEP Statement

The SLEEP statement causes a BASIC program to pause for a

specified interval, then continue running. SLEEP is followed by the

number of seconds the program is to pause. For example:

or

222 SLEEP 38

228 LET N-1S
222 SLEEP 2*N

causes a 30 second delay in the program.

The SLEEP statement is a useful way for a program to wait for a

device (DECtape or line printer) which is busy. The ELSE clause in

the OPEN statement can go to a routine which pauses for a while, then

retries the OPEN. When the current user finishes with the device and

releases it, the program may then proceed to OPEN and use it. This

capability is especially useful when many users may be looking up

information on a single DECtape file. It may also be used to allow

two programs to communicate with each other. Each writes information

on a tape file for the other, or others, to read.

4-3

SLEEP should always be used when waiting for a device. While

the program is sleeping it is not using any processor time. A SLEEP

time of 30 to 60 seconds is recommended. It is particularly important

that the program not wait by repetitively retrying the OPEN. To do

so wastes computer time and slows down other users. The integer part

of the argument is used to determine the number of seconds to delay.

This value must be between 0 and 4095.

4.2.4 Comments

An entire statement of comments may be included in the BASIC

program by means of the REM statement. Often comments are easier to

read if they are placed on the same line with an executable statement

rather than in a separate REMARK statement. This can be accomplished

by ending an executable statement with an apostrophe. Everything to

the right of the apostrophe up to the statement terminator (carriage

return or backslash) is ignored (unless the apostrophe occurs within

a print literal or string constant.) For example:

10 LET X=Y 'THIS IS A COMMENT'
28 PRINT "SUT THIS IS NOT A COMMENT"
38 LET XS·flA'S"

Thus, a comment is added to line 10 with an apostrophe, but in lines

20 and 30 the apostrophe is treated as a valid character.

4.2.5 Blank Lines

To make BASIC programs easier to read, blank lines can be in­

serted anywhere in a BASIC program. These can be used to break a

program into logical sections, or (as is often done) to insert

remarks with the apostrophe feature. For example:

1"'PROGRAM WRITTEN BY SAM JONEX-S
18"

4-4

Note that to insert a blank line, you must type one or more spaces

after the line number; typing the line number alone will just delete

that line from the program.

4.2.6 Multiple Statements Per Line

As many statements as will fit may be typed on a single program

line. Each statement must be separated by the backslash character

"~'e The only statement requiring a line nQmber is the initial one.
For example:

10 FOR 1=1 TO 10\PRINT I\NEXT I

Note that the backs lash character acts as a statement terminator and

thus cannot be included in a comment statement.

4.2.7 Editing BASIC Statements

If a program line is incorrect, it can be corrected by retyping

it. Minor errors in statements can be corrected by using the EDIT

command. The user types EDIT followed by the line number of the

statement to be edited. BASIC responds by printing a left bracket

([). The user then types a search character. BASIC prints a close

bracket and prints the statement through the first occurrence of the

specified search character. The user may then:

1. Type new characters which are inserted at that point in the
statement.

2. Type one or more back arrows (-) to delete characters to
the left of the search character.

3. Type the ALT MODE key to delete the entire line up to that
point (but not the line number)e

4. Type CTRL/L to continue to the next occurrence of the
search character.

5. Type CTRL/G to specify a new search character.

4-5

6. Type LINE FEED to finish the edit, keeping the remainder
of the line unchanged.

7. Type RETURN to finish the edit, deleting the remainder of
the line.

4.2.8 Saving Compiled Programs

BASIC compiles the current program each time it is run. If,

however, a program will be used frequently without being changed, it

may be stored in its compiled form. A compiled program can be re­

trieved and executed faster than a BASIC source program. To save a

compiled program, the user types, for example:

COMPILE FAME

The program is saved on the disk under the specified name (FAM& in this cas4

If a file by that name exists, BASIC prints DUPLICATE FILE NAME and

does not compile that program.

Once a program has been compiled, it may be retrieved and run

just like an ordinary BASIC source program. It may not, however, be

listed, saved, or changed. If an attempt is made to do any of these

things, the message EXECUTE ONLY is printed. The compile capability

may therefore be used to protect programs from unauthorized listing

or changing. Since only BASIC source programs can be edited, the

user may wish to store both a source and a compiled version of a

given program.

Compiled files are distinguished from regular BASIC programs by

their file extensions. BASIC source programs have an extension of

.BAS. Compiled files have an extension of .BAC. These extensions

are printed along with the file name when a catalog is requested.

4-6

4.2.9 File Protection

EduSystem 50 permits a user to specify a protection code for

each file. (See Chapter 10 for a full description of protection

codes.) The commands which write disk files (SAVE, REPLACE,

COMPILE) also permit the user to specify what protection is to be

given to a file. This is done by following the file name with the

protection code in angle brackets. For example:

SAVE DEMO <10>

will create and save a file named DEMO.BAS having a protection code

of 10. When no protection is specified, a protection of 12 is auto­

matically assumed.

4.2.10 Project-Programmer Numbers

In specifying the Account Number prior to requesting an OLD file,

the user may optionally type a Project-Programmer number (giving the

Account Number as two 2-digit numbers separated by commas instead of

a single 4-digit number). In this way, the user may RUN files from

another user's disk area. For example, both of the following are

acceptable:

OLD PROGRAM NAME--FILE 13.3

where 13 is the Project Number and 3 is the Programmer Number, or:

OLD PROGRAM NAME--FILE 1303

where 1303 is the account numbere The two file name indications are

equivalent.

4-7

4.2.11 Restricted Accounts

As an added system protection, BASIC checks to see if an

attempt is being made to run BASIC under Accounts 1 or 2. If so,

BASIC prints the error message:

IMPROPER ACCOUNT ,

ABORT
IBS

thus preventing BASIC from interfering with the System Directories

or the System Library.

4.2.12 Catalog Format

The CATALOG command prints the user's directory, file names
and file extensions, file size, and file protection codes. For

example:

CATALOG

NAME
TEMP00
DEMO • BAS
IBOLD .SAC
BAS000.TMP
BAS100.TMP

SIZE
1
1
1
1
1

PROT
12
10
10
17
17

4.2.13 Strings in BASIC

EduSystem 50 BASIC has the ability to manipulate alphabetic

information (or strings). A string is a sequence of characters,

each of which is a printing ASCII character (see Appendix B) .

EduSystem 50 strings consist of one to six characters; strings of

more than six characters are truncated on input to six characters.

4-8

Variables can be introduced for simple strings, string arrays,

and string matrices. A string variable is denoted by following the

variable name with the dollar sign character ($). For example:

Al$

V$(7)

M$(l,l)

A simple string of up to six characters.

The seventh string in the array V$(n).

An element of a string matrix M$(n,m).

When string arrays or matrices are used, a DIM statement is

required. For example:

reserves space for eleven 6-character strings for the array V$, and

space for 36 6-character strings for the matrix M$.

4.2.13.1 Reading String Data -- Strings of characters may be read

into string variables from DATA statements. Each string data element

is a string of one to six characters enclosed in quotation marks.

The quotation marks are not part of the actual string. For example:

10 READ AS .. BS .. CS
200 DATA ·-JONES" .. "SMI TH "HOWE"

The string JONES is read into A$, SMITH into B$, and HOWE into C$.

If the string contains more than six characters, the excess characters

are ignored. The following program:

10 READ AS
20 PRINT AS
30 DATA "TIME-SHARING"
40 END
RUN

causes only

TIME-S

4-9

to be printed.

String and numeric elements may be intermixed in DATA statements.

A READ operation always fetches the next element of the appropriate

type. In the following example:

10 READ A.lAS.lB
20 DATA '"tES".I2.S.I"NO".I1

2.5 is read into A, YES into A$, and 1 into B.

The standard RESTORE statement (as described in Chapter 4) resets

the data pointers f~r both string and numeric elements. Two special

forms of the RESTORE command, RESTORE· and RESTORE$, may be used to

reset just the numeric or string data list pointers, respectively.

For example:

10 READ A.lAS.lB
20 DATA "YES".I2.5.1"NO",,1
30 PRINT A.lAS"B
40 RESTORE*
50 READ A"AS"B
60 PRINT A"AS"B
70 END
RUN

would print:

YES
NO

1
1

If line 40 were changed to RESTORE, this program would print:

YES
YES

1
1

since the numeric as well as string data lists would be reset.

4-10

4.2.13.2 Printing Strings -- The BASIC PRINT statement may be used

to print string information. If the semicolon character is used to

separate string variables in a PRINT command, the strings are printed

with no intervening spaces. For example, the program:

10 READ AS .. aS"Cs
20 PRINT CSJBSJAS
30 DATA "ING""ttSHAR",,"TIME-1t

lI0·END
RUN

causes the following to be printed:

TIME-SHARING

4.2.13.3 Inputting Strings -- String information may be entered into

a BASIC program by means of the INPUT command. Strings typed at the

keyboard may contain any of the standard ASCII characters on the user

terminal except back arrow (-) and quotation mark ("). Back arrow is

used in BASIC to delete the last character typed. Commas are used as

terminators just as with numeric input. If a string contains a comma,

the entire string must be enclosed in quotation marks. The following

program demonstrates string input.

10 INPUT AS"BS"CS
20 PRINT CS"BS"AS
30 END
RUN

? JONES"SMITH"HOWE
HOWE SMITH

READY

JONES

Strings and numeric information may be combined in the same

INPUT statement as in the following example. Note that if an input

string contains more than six characters, only the first six are

retained.

4-11

10 INPUT A"AS"BS
20 PRINT AS"BS"A
30 END
RUN

? 01754"MAYNARD"MASS.
MAYNAR MASS. 1754

The numeric variable A is set to 1754 (leading zeros are deleted),

the string MAYNAR is put in the string variable A$, and the string

MASS. is put into the string variable B$. To print the number 01754,

the number could be input and output as a character string.

4.2.13.4 Line Input -- Strings of more than six characters may be

entered by means of the LINPUT (line input) statement. A LINPUT

statement is followed by one or more string variables. For example:

The first six characters to by typed are stored in the first string

variable, the next six in the second, and so until the line of input

is terminated by a carriage return.

Commas and quotes are treated as ordinary characters and hence

are stored in the string variables. For example, if the following

line were typed in response to the above LINPUT command:

?MAYNARD" MASS. 01754

then the values of the string variables would be as follows:

A$ (1) = IlMAYNAR"
A$ (2) = liD, MAS II
A$ (3) = liS. 017"
A$ (4) = 115411
A$ (5) = 11111

IStrings may consist of zero characters. Such a string is empty (or
null). If printed, it causes nothing to be output. The null string
is usually represented by a pair of quotes with nothing between ("11).
The null string should not be confused with a string of one or more
spaces.

4-12

In the above example, the maximum number of characters which

could be typed would be 30. Any additional characters would be

ignored. In all cases, the maximum number of characters which may

be typed in response to LINPUT is 50. If a longer line is typed, the

message LINE TOO LONG is printed. The input line is ignored and

must be reentered.

It is possible to mix numeric and string variables in a LINPUT

statement, but this practice is not recorr~ended. As an illustration

of how this might be done, consider the example given earlier:

18 LINPUT A~AS~BS

where the user might type:

? 11754~MAYNARD~ MA

This still sets the numeric variable A to 1754 (when used in LINPUT

statements, numeric input remains unchanged). However, the string

variable A$ would now be MAYNAR, and the. string variable B$ would

be D, MA.

When inputting strings with LINPUT, the error messages: MORE?

and TOO MUCH INPUT, EXCESS IGNORED cannot occur.

4.2.13.5 Working With Strings -- Strings may be used in both LET

and IF statements. For example:

10 LET YS-"YES"
20 IF ZS-"NO" THEN lIe

The first statement stores the string YES in the string variable Y$.

The second branches to statement 100 if Z$ contains the string NO.

For two strings to be equal, they must contain the same characters

in the same order and be the same length. In particular, trailing

4-13

blanks are significant since they change the length of the string.

"YES" is not equal to "YES "

The relational operators < and> may also be used with string

variables. When used with strings, these operators mean "earlier

in alphabetic order" or "later in alphabetic order", respectively.

They may. be used to alphabetize a list of strings, for example. The

relation operators >=, < =, and < > may be used in a similar manner.

The arithmetic operations (+, -, *, I,t) are not defined for strings.

Thus statements such as LET A$ = 3*5 and LET C$ = A$+B$ have no

meaning, and should not be used in a BASIC program. They will not

cause a diagnostic to be printed; however, the results of such

operations are undefined.

4.2.13.6 The CHANGE Statement -- The CHANGE statement may be used to

access and alter individual characters within a string. Every string

character has a numeric ASCII code (see Appendix B), a number which

is used to indicate that particular character. The CHANGE statement

converts a string into an array of numbers, or vice versa. The

CHANGE statement has the form:

18e CHANGE A TO AS

or

181 CHANGE AS TO A

where A$ is any string variable (or an element of a subscripted

string variable) and A is an array variable with at least six elements.

Any array variables used in CHANGE statements must have appeared in a

DIM statement with a dimension of at least six.

The following program illustrates the use of the CHANGE state­

ment by changing a string variable into an array of numbers.

4-14

II DIll A(6)
20 READ AS
30 CHANGE AS TO A
40 PRINT A(0)lAC1)lA(2)JA(3)JAC4)JA(5)JA(6)
50 DATA "ABeD"
60 END
RUN

4 65 66 67 68 " 0

The CHANGE statement takes each character of the string and stores

its corresponding numeric (ASCII) code in elements one to six of the

array. Remaining array elements are set to zero. The length of the

string (0-6 characters) is stored in the zero element of the array.

In the example above, the character codes for A, B, C, and Dare

stored in A(l) to A(4). A(S) and A(6) are set to zero. The number

4 is stored in A(O) since the string A$ is four characters long.

CHANGE may also be used to change an array of numeric codes into

a character string as in the following ·program:

10 DIM A(6)
20 FOR I-e TO 5
30 READ ACI>
40 NEXT I
50 CHANGE A TO AS
60 PRINT AS
70 DATA 5~69~68~85~53~48
80 END
RUN

EDU50

The length of the resulting string is determined by the zero ele­

ment of the array. In the previous example, the string is five

characters long. The elements of the array, starting at subscript 1,

are assumed to be numeric character codes; these are converted to

characters and are stored in the string. If any codes encountered

are not valid character codes, or if an invalid string length is

given, the message BAD VALUE IN CHANGE STATEMENT AT LINE n is printed,

and execution is stopped.

4-15

A BASIC string of less than six characters always has the re­

maining character positions filled with zeros. For this reason, when

such a string is changed to an array, the first six array elements

are set to zero. The CHANGE statement always fills six array ele­

ments, even though the strings may not be six characters long. The

user should be careful to dimension the array used in a CHANGE state­

ment to at least six. If a string of characters is transformed into

an array of less than six elements, an undetected error will occur.

The CHANGE statement is usable with strings not created by

BASIC. It may, for example, be used to access files other than

BASIC data files. Each string variable corresponds to three PDP-8

words. The CHANGE statement treats these three words as six 6-bit

bytes, converts each 6-bit byte to its numeric character code

equivalent and stores it in the corresponding array element. The

zero element of the array, the string length, is set equal to the

number of bytes (characters) before the first zero byte. When read­

ing unspecified data, there may be non-zero bytes following this zero

byte. If so, they will be transferred to the array as well.

4.2.13.7 The CHR$ Function -- Occasionally, it is desirable to type

a character other than those in the printing ASCII set, or to compute

the value of a character to be printed. For this purpose, the CHR$

function can be used in a PRINT statement. The argument of the CHR$

function is sent as an ASCII character to the Teletype. For example:

10 FOR 1=0 TO 9
20 PRINT CHRS(I+48)J
30 NEXT I
40 END

prints 0123456789, since 48 to 57 are the ASCII values for the

characters 0 to 9. The following special characters can also be

printed using the CHR$ function:

4-16

Bell

Line feed

Carriage return

Quote (")

Back arrow (-)

Form feed

CHR$(7)

CHR$ (10)

CHR$(13)

CHR$(95)

CHR$(12)

The Teletype will accept characters from 0 to 255 (decimal),

many of which do nothing on most kinds of teletypes. Some of the

special (non-printing) characters should not be used. For example,

CHR$(4) causes a Dataphone to disconnect.

For each ASCII code there is a second acceptable form permitted

in CHANGE and CHR$. The second code is obtained by adding 128 to

the code given in the table in Appendix Ba For example, CHR$ would

type A in response to either 65 or 193 as an argument.

4.2.14 Program Chaining

Most programs are easily accommodated by EduSystem 50 BASIC. If

a program becomes very long, however, it may be necessary to break it

into several segments. Typically, programs of more than two to three

hundred statements must be split into more than one file. A program

that has been broken into more than one piece is commonly called a

chained program.

Each part of a chained program is saved on the disk as a separate

file. The last statement of each part to be executed is a CHAIN

statement specifying the name of the next part of the program. The

next file is then loaded and executed. It may in turn chain to still

another part of the program. The general form of the chain co~uand is:

1&14 CHAIN "NAME"

or

414 CHAIN AS

4-17

where NAME is the name of the next segment to be executed (one to

six characters enclosed in quotation marks). The name of the next

segment may also be contained in a string variable. In either case,

the file of that name is loaded and run. Thus, the statement:

999 CHAIN "SEG2··

is equivalent to:

OLD
OLD PROGRAM NAME-·SEG2

READY

RUN

except that it happens automatically. Each separate part of the

program automatically links to the next part of the program chain.

The individual sections of a chained program may be either

regular source files (.BAS) or compiled files (.BAC). If the sections

are source files, they must be compiled before they are run. A

chained program runs more efficiently if all its sections have been

compiled. Source and compiled files cannot be mixed in program files.

If an error occurs while compiling or running a chained program,

the name of the section containing the error is printed as part of the

error message. In all cases, whether a program terminates by an error

or a STOP or END, BASIC returns to the first program in the chain.

This is the one which is available for editing and rerunning when

BASIC prints READY.

Most chained programs require that information from one section

be passed to the next. The first section may, for example, accept

input values and perform some preliminary calculations. The inter­

mediate results must then be passed to the next section of the pro­

grams. This passing of values is done by means of data files which

are explained in the next section. Whenever a CHAIN operation is

performed, program data which has not been saved in a file is lost.

4-18

Variable and array values are not automatically passed to the next

program.'

4e3 DISK DATA FILES

The standard BASIC language provides two ways of handling pro­

gram data items. They may be stored within the program (in DATA

statements) or they may be typed from the terminal. DATA statements,

however, allow for only a limited amount of data. Also, the data is

accessible only to the program in which it is embedded. Typing data

from the terminal allows it to be entered into any program, but this

is a time-consuming process. In either case, the data or results of

calculations cannot be conveniently stored for future use. All these

limitations may be overcome by the use of disk data files.

A data file is separate from the program or programs which use

it. It is a file on the disk similar to a saved program, but it

contains numbers or strings rather than program statements. This

information may be read or written by a BASIC program. (Information

in a data file is stored in a coded format; therefore, it cannot be

listed by the BASIC Editor or EDIT.) (The maximum size of a data file

is about 350,000 characters.) String and numeric information may be

combined in a single data file. The number of data files a user may

have is limited to about 100, space allowing. When a file is first

created, its contents are undefined.

4.3.1 File Records

A data file is made up of logical units called records. A

record may be as small as a single numeric or string variable. More

typically, it is a group of variables or arrays. The design of the

program usually dictates the most efficient size of the record. If,

for example, the program manipulates a series of 5 by 5 matrices,

each record could contain one such matrix. If the 'program operates

on SO-character alphanumeric records, 14 string variables might

comprise a record.

4-19

The size and composition of a record are defined with a RECORD

statement. Like the DIM statement, RECORD is followed by a series of

variables. They may, however, be unsubscripted as well as subscripted.

For example:

10 RECORD A(5~S)
10 RECORD 81(14)
10 RECORD A~B~CS(8)~D~E(5)

The set of variables mentioned in a RECORD statement, taken

together, constitute a record. Each element within the record is a

field. Numeric and string information may be mixed to comprise a

more convenient record.

Variables mentioned in a RECORD statement should not appear in

a DIM statement. The RECORD statement reserves variable space

exactly as a DIM statement does. The difference is that the variables

are also identified as being used for file input and output. Non­

subscripted variables appearing in RECORD statements must not have

been used previously in a p~ogram; therefore RECORD statements should

always be the first statements in a program.

Records may be any length. A long record is typically more

efficient since more information is transferred in a single operation.

Records should, however, be only as long as necessary since excess

variables lengthen the file. In particular, it is important to

remember that all arrays and matrices have zero elements. The array

A(5,5) has 36 elements, not 25. If A appears as part of a record,

all 36 elements should be used.

It is also useful to try to make record sizes 43 variables long,

or a multiple of 43. Each RECORD statement reserves program variable

space in units of 43 whether or not the record is that big. Unless

the record fills this area, some program variable space is wasted.

It is not worthwhile, however, to make an inherently small record 43

variables long just to conform to this convention; this would make

the file unnecessarily large.

4-20

4.13.2 Opening a Disk File

Disk data files are completely separate from the programs which

use them. Therefore, the program must specify which file or files

it will use. The OPEN command is used for this purpose. OPENing a

disk data file associates it with an internal file number, either 8 or

9. (A program may have two disk data files open at one time.) For

example:

II. OPEN 9 .. "DATAII"
I 8" OPEN 8 .. AS

The name of the file to be opened may be explicitly stated in

the OPEN command. If it is, it must be contained in quotation marks.

The file name may also be contained in a string variable, allowing

the program to decide which file to open, perhaps on the basis of

input from the program's user. In either case, the name of the file

is preceded by the internal file number, either 8 or 9. This argu­

ment may also be an expression whose value is either 8 or 9.

When a file is opened on an internal file nwuber which has a

file already open, the previously opened file is closed and the new

file opened.

If no file of that name exists, the file is created. In either

case, once the file is open, it is available for both reading and

writing. BASIC disk data files are assigned an extension of .DAT

which need not be specified as part of the file name in the OPEN

statement.

4.13.3 Reading/Writing Disk Files

Once open, files may be read and written, one record at a time,

using the GET and PUT statements. GET statements read one record

of information directly into the variable in the RECORD statement.

4-21

PUT statements write the present values of the variables in the

RECORD ·statement. Both GET and PUT statements are followed by the

internal file number (8 or 9 or an expression), the line number of

the RECORD statement containing the variables to be transferred, and

the name of a control variable. For example:

II' RECORD A.B.CS(30).DCS)
110 OPEN S."FILE1"
120 LET 1-0
131 GET 8.111.1

The control variable specifies the file record to be transferred.

In the example above, FILEl is opened as in~ernal file 8. The value

of the control variable, I, is zero. The GET statement in line 130

reads the first record (record 0) of FILEl into A, B, and the arrays

C$ and D. Single numeric values are read into A and B. 31 strings

are read in C$, and 9 numeric values are read into D. After each

transfer, whether it is a GET or a PUT, the value of the control

variable is automatically incremented. Successive GET's or PUT's

automatically proceed to the next record of the file.

The PUT statement has a similar format. For example, if line

130 of the preceding program had been:

131 PUT 8.180.1

the present values of A, B, C$ and D would have been written to the

first record of FILE1.

File records may be accessed randomly by setting the control

variable to the desired record number before doing the GET or PUT.

Single records may be read, changed, and then written without pro­

cessing the entire file. When reading a file, the record referenced

in the GET statement must, of course, be the same as the record

referenced in the PUT statement which wrote the data onto the file.

The total length of the record and the relationship of string and

4-22

numeric fields within the records used for the GET's and PUT's must

be the same. If they are not, improper information will be read and

written.

New files may be created by opening a file which does not already

exist. As successive records are written onto the file, its length

is extended as necessary. When a new file is created, it is useful

to immediately write an end-of-file code in the last record. Writing

the last record first forces the entire file to be allocated; making

sure that enough disk space is available. It also provides an end­

of-file mark. Programs which read this file may then check for this

end-of-file mark to avoid reading past the end of the data file which

results in an error.

Existing files may be enlarged by writing a new record farther

out. If the program does not know how big the file will be, it may

simply write records to the file in sequence. The file will be

automatically extended. When all the records have been written, one

final end-of-file mark can be added.

In general, all records read or written on a specific file should

be the same length, i.e., contain the same number of variables.

However, if the user is careful he may intermix records of different

lengths in a file. Suppose the following statement is executed:

and the value of N is n and the record specified by statement 100 is

of length m. The PUT statement will write m variables in the file

starting at the m*n variable. The simple rule for computing the

first variable in the file to be accessed is the record length times

the record

zero.)

number. (Remember the first record is record number

4-23

4.3.4 Closing/Deleting Disk Files

When all work has been completed on a data file, it should be

closed with a CLOSE statement. Once the file is closed, it may not

be read or written unless it is reopened. The file does, however,

remain on the disk and is available for future use. The CLOSE

statement is followed by the internal file number to be closed (8 or

9). For example:

958 CLOSE 8

If the disk file was just created for temporary scratch use (to

pass parameters during a CHAIN, for example), it should be deleted

at the end of the program instead of closed. The UN SAVE statement is

used to delete files. For example:

1090 UNSAVE 9

The file opened on internal file number 9 is deleted from the disk.

Both CLOSE and UNSAVE may be followed by an expression equating to

8 or 9 instead of a constant.

Open disk data files are automatically closed at the end of the

program, unless the program CHAINs to another program. In this case,

all open files remain open and the new program may access them with­

out executing an OPEN statement.

4.4 DECTAPE DATA FILES

Large permanent data files are best stored on DECtape rather

than on disk. Each DECtape holds up to 380,000 characters of infor­

mation. DECtape data files may be dismounted for safekeeping,

thereby insuring their privacy. Data files on DECtape are similar

to files on disk except that they do NOT have filenames. Each reel

of DEC tape is treated as a discrete data file. When the tape is

4-24

mounted on a DECtape drive, records may be read and written directly

onto the tape.

A DECtape data file may be used by only one user at a time. Once

a DECtape unit is assigned, a single user has exclusive access to it

until he releases it. Each DECtape drive has a WRITE LOCK switch

which physically prevents any write operations to that unit. If the

WRITE LOCK switch is set, programs may not write on the tape even if

the unit is assigned.

DEC tape data files may be used in a variety of ways. Programs

which need large data files should use DECtape to avoid consuming

large disk areas. Administrative files, such as student or employee

records, are best stored on DECtape. Since they are removable and

can be write-locked when mounted, their use can be tightly controlled~

DECtapes are also useful for information retrieval. A data tape may

be kept permanently mounted but write-locked. Individual users may

run programs which assign and query that file, then release it for

others to use.

4.4.1 DECtape File Records

Records for DEC tape data files are specified the same way as

for disk data files: with a RECORD statement. All rules for disk

records apply to DECtape records. In fact, the same RECORD statement

may be used for both a DECtape and disk file. (This is useful when

transferring a tape file to a disk file for processing. Access to

disk data files is considerably faster than to DECtape data files.)

It is possible to specify any record length for a DECtape data

file, but a size of 43 variables is suggested, even more strongly

than for disk data files. DECtapes are physically structured into

blocks, each of which holds exactly 43 variables. If the record

specified by the program is, for example, 44 variables, it requires

two full blocks on the tape.

4-25

Records which are multiples of 43 variables are efficient in

utilizing DECtape space but are not efficient in speed. Such re­

cords are written in consecutive DECtape blocks. The tape unit

cannot read or write consecutive blocks without stopping the tape and

rewinding it slightly (rocking). This tape rocking also occurs when

single block records (43 variables or less) are read or written as

consecutive DECtape records. (In this case, each DECtape file record

corresponds to a physical tape block.)

The most efficient way to utilize DECtape is to make records

43 variables in length and write them onto every tenth record in

the file (records 0,10,20, etc.). When the entire length of the

tape has been traversed (the last block of the tape is number 1473),

write next into records 1, 11, 21, etc. In this way, every record

is eventually filled. Programs which will be used repeatedly should

access the tape in this manner.

4.4.2 Opening a DECtape File

DECtape data files, like disk files, are completely separate from

the programs which use them. Therefore, the program may specify

which tape, or tapes, it will use. The OPEN statement is used for

this purpose. Since DECtape files do not have names,2 the OPEN

statement specifies the DECtape unit number to be used. It is assumed

that the proper tape reel has been mounted. If the file is to be

updated, the unit should be write-enabled. If not, it should be

write-locked. The OPEN statement is followed by the unit number to

be used (0-7).

118 OPEN a
118 OPEN 7

2It is important to note that BASIC data file DECtapes are not the
same as the file-oriented DECtapes used by COPY. There is no
directory on a BASIC DECtape file. Each tape is considered to be
one file of data.

4-26

The unit number could be an expression. Making the unit number

a variable is very useful since it is hard to predict which units

will be available at the time the program is run. When the unit

specification is a variable, the user may mount the file on any free

unit, then INPUT the number into the program.

When the OPEN statement is executed, the indicated DECtape unit

is automatically assigned to the user. It cannot subsequently be

assigned to any other user. Thus, it is possible to try to open,

hence assign, a unit which is already assigned. If, in the above

examples, units 2 and 7 were already assigned to the current user or

any other user, the program would be terminated and an error message

printed.

An alternative form of the OPEN statement allows the program

itself to handle this situation. OPEN statements may include an

ELSE clause which specifies a line number. If the OPEN statement

fails, BASIC automatically performs a GO TO to this line number.

For example:

18e OPEN 2 ELSE 900

If unit 2 is available, it is assigned and BASIC goes on to execute

the next statement. If unit 2 is not available, statement 900 is

executed next. Statement 900 could print a message and perhaps ask

for an alternate unit number.

4.4.3 Reading/Writing DECtape Files

DEC tape data files are read and written using the same GET and

PUT statements as are used for disk data files. The internal file

number is a number between a and 7, or an expression. Unlike disk

data files, DECtape data files are of a constant length equal to the

capacity of the tape. The exact number of records per reel depends

on the record size as follows:

4-27

Record Size

1-43 variables

44-86 variables

87-129 variables

Tape Capacity

1474 records

737 records

491 records

As indicated in the section on DECtape data records, a record

size of 43 variables or less is recommended since it conforms to

the physical blocking of the tapes themselves. It is also desirable

to space the records along the tape so that the tape does not waste

time rocking. The following subroutine could be used to write 1474

records on the tape in this fashion. It assumes that R is set to

zero before it is called the first time and that the unit number is

in U.

500 REM SUBROUTINE TO WRITE RECORDS ALONG TAPE
510 REM WRITES ONE RECORD EACH TIME CALLED
515 PUT U~10~R 'REMEMBER THIS INCREMENTS R
517 LET R=R+9 'SPACE OUT 10 BLOCKS
524 IF R<1414 THEN 550 'OK TO RETURN
530 IF R=1479 THEN 560 'TAPE IS FULL
540 LET R=R-1479
545 IF R>0 THEN 550
547 LET RsR+10
550 RETURN
568 STOP 'TAPE IS FULL

The following function may also be used to convert a logical

record number (0 to 1469) to a physical record block spaced along

the tape. This function does not use blocks 0-3. These blocks are,

therefore, available for a header or label. Both the subroutine

above and the function below assume a record length of 43 variables

or less.

FNC(X) = (X-INT(X/147)*147)*10 + INT (X/147)+4

Once opened, any record on the tape may be read. The tape unit

must, however, be write-enabled if it is to be written. Trying to

PUT to a write-locked tape is an error.

4-28

4.4.4 Closing DECtape Files

Once all work on a DECtape data file has been completed it may

be closed~ Closing a file releases the tape ~~it and makes it avail­

able to other users. Thus, if the tape contains important informa­

tion (and especially if it is write-enabled) the CLOSE should not be

done until the tape reel has been removed. If no CLOSE statement is

encountered in the program, the unit remains assigned after the pro­

gram has finished: The DECtape unit remains assigned until a Monitor

RELEASE command is executed or the user logs out. An example of a

CLOSE statement follows:

1108 CLOSE 6

4.4.5 Using Dectape Data Files with OS/8 FORTRAN

Numeric DECtape data files written by BASIC may be read by OS/8

FORTRAN with the FORTRAN RTAPE and WTAPE subroutines, and vice-versa.

(String and Hollerith variables use different character codes.)

Thus, it is possible to use BASIC to prepare an input or update tape

for a stand-alone FORTRAN program. This provides a convenient way

to do big jobs in off-hours, without having to leave the time-sharing

mode for very long.

4.5 LINE PRINTER OUTPUT

If a line printer is available, it may be used both to list

BASIC programs and to serve as an output device for the programs

themselves. The line printer may only be u.sed by one user at a time.

The statements associated with line printer output are LLIST and

LPRINT.

LLIST is similar to the LIST command except that the program

listing is output to the line printer rather than to the Teletype.

The LLIST co~mand assumes that no other user has the line printer

4-29

assigned and responds by typing WHAT? if the line printer is not

available. After the listing is complete, the line printer is

released and is available to any user.

BASIC programs may use the line printer as an output device

during execution by means of the LPRINT statement. LPRINT is

exactly like PRINT except that the information goes to the line

printer rather than to the Teletype. All formatting conventions of

the PRINT statement are available with LPRINT. In particular,

CHR$(12) may be used to skip to the top of the next form (page).

The LPRINT statement also assumes that no other user has the

line printer assigned. However, using this statement when the line

printer is not available causes the program to terminate. Once

LPRINT successfully assigns the line printer, it remains assigned

until the program terminates.

The OPEN and CLOSE statements may be used to assign and release

the line printer. An OPEN statement with a device number of 11

assigns the line printer, or if it is not available and an ELSE

clause is specified, transfers control to the line number specified

in the ELSE clause. CLOSE 11 releases the line printer.

4.6 INTERNAL DATA CODES

Using the file I/O capabilities and the CHANGE statement, it is

possible to examine data which was written on a DECtape or disk file

by a program other than BASIC. There are two data formats: numeric

and string.

4.6.1 Numeric Data

Each numeric value in BASIC is three PDP-8 words long. The

storage format for numeric data is as follows:

4-30

o 8 9 11

~11 I! I

.. '--____ -------J ~
SIGN ---I ____ ----r+ t
BINARY EXPONENT _
HIGH ORDER MANTlSSA----------~

o 11
~2LI ______________________________ ~

MANTISSA

o 11

~D3LI ______________________________ ~
LOW ORDER MANTISSA

A one in the sign bit means that the number is negative. The expo­

nent is kept in excess 200 form where:

200 8
2018
1778

is

is

is

20

21

2-1

The assumed decimal point is between bit 8 and 9 of word 1. Also,

the number is always normalized, meaning that bit 9 is always 1

unless the number is zero. (Zero is represented by three zero words.)

Note that this format is the same as the format used by OS/8 FORTRAN

IIi it is not the same as FORTRAN-D format.

4.6.2 String Data

Each string variable is three PDP-8 words long. Each word con­

tains two 6-bit bytes or characters. If a string variable is filled

by a GET from a source which was not written by a BASIC program, a

BA~IC program may examine the data in the variable by performing a

CHANGE on that variable. The six bytes will be translated as if they

were internal character codes for BASIC string characters. Table 4-1

shows how this translation interprets the 64 possible types. Note

that after such a CHANGE, the Oth element of the array contains a

count of the number of characters occurring before the first null.

4-31

TABLE 4-1

BASIC INTERNAL DATA CODES

6-Bit 6-Bit
Byte Byte ASCII Byte Byte ASCII
Octal Decimal Char. Octal Decimal Char.

00 0 NULL 40 .32 ?
01 1 SPACE 41 33 @
02 2 42 34 A
03 3 " 43 35 B
04 4 * 44 36 C
05 5 $ 45 37 D
06 6 % 46 38 .E
07 7 & 47 39 F
10 8 50 40 G
11 9 (51 41 H
12 10) 52 42 I
13 11 * 53 43 J
14 12 + 54 44 K
15 13 55 45 L
16 14 56 46 M
17 15 . 57 47 N
20 16 /-' 60 48 0
21 17 0 61 49 P
22 18 1 62 50 Q
23 19 2 63 51 R
24 20 3 64 52 S
25 21 4 65 53 T
26 22 5 66 54 U
27 23 6 67 55 V
30 24 7 70 56 W
31 25 8 71 57 X
32 26 9 72 58 y
33 27 73 59 Z
34 28 74 60 [
35 29 < 75 61 \
36 30 = 76 62]
37 31 > 77 63 t

4.7 ERROR MESSAGES

Most programs, especially if they are at all complex do not

execute correctly the first time they are tried. EduSystem 50 checks

all BASIC statements when they are entered and before executing them.

4-32

If it cannot execute a statement, it informs the user by printing one

of the error messages shown in Table 4-2, followed by the line number,

if present, in which the error occurred.

In addition, the system checks for non-fatal execution errors

and notifies the user that he performed a computational range error.

When errors of this type occur, the messages shown in Table 4-3

appear, followed by the line number in which the error occurred.

Message

ABORT

ARRAY OR RECORD USED
BEFORE DEFINITION

BAD FILE FORMAT

BAD FILE NAME

BAD SLEEP ARGUMENT

BAD VALUE IN CHANGE
STATEMENT

CAN'T CREATE FILE

TABLE 4-2

BASIC ERROR MESSAGES

Explanation

BASIC can not run for some reason.
Perhaps the user's disk quota is
exceeded.

The RECORD statement must occur before
any reference to it is made. A DIM
statement must occur before an array
is used. (RECORD and DIM are placed
at the beginning of a program.)

The program specified in response to
OLD PROGRAM NAME was not acceptable
to BASIC. This is generally caused
to load a non-BASIC (FORTRAN or PAL-D)
program.

The file name used is not valid, e.g.,
it does not begin with a letter.

The argument of the SLEEP statement
must have a number greater than or
equal to 0, and less than or equal to
4094.

While performing CHANGE A TO A$, one
of the elements of the array A was
found to contain an illegal value.

An OPEN statement tried to create a
file, but there is: (a) no disk space
available, (b) no file name specified,
or (c) a null string has been given
as the file name:

4-33

Message

CAN1T DELETE FILE

CAN I T DELETE: name

CAN1T FIND LINE

CAN1T FIND "name" IN
SYSTEM LIBRARY

CHAIN TO BAD FILE

DEF STATEMENT MISSING

DEVICE BUSY

DIMENSION TOO LARGE

DISK FULL

DUPLICATE FILE NAME

EXECUTE ONLY

FOR WITHOUT NEXT

GET BEYOND END OF FILE

Table 4-2 (Cont.)

Explanation

UNSAVE cannot delete a file. This is
usually due to the fact that another
user has the file open, or the file is
protected with a code >20.

An attempt has been made to UNSAVE a
protected file.

An attempt has been made to edit a
non-existent line.

The requested old file cannot be found.

The file specified by the CHAIN has an
invalid format: it is not a BASIC
format file. The "PROGRAM IS ••• "
message will follow this error message.
The program name will be the name of
the bad file.

A function needing a DEF statement
exists in the program.

The user tried to OPEN DECtapes 0-7,
line printer, or paper tape punch, but
the device was unavailable, and there
was no ELSE clause in the OPEN statement.

Too large an array to fit in the avail­
able core.

There is no more storage space on the
system disk.

An attempt has been made to SAVE a
program, but one with that name already
exists.

An attempt has been made to list, save,
or alter a BASIC complied program.
The program can only be run.

There is an unmatched FOR statement in
the program.

Disk data file is too small to have a
record with the number specified in the
GET statement at line n.

4-34

Table 4-2 (Cont.)

Message

GET/PUT ERROR

GOSUB - RETURN ERROR

ILLEGAL CHARACTER

ILLEGAL CONSTANT

ILLEGAL FORMAT

ILLEGAL FOR NESTING

ILLEGAL INSTRUCTION

ILLEGAL LINE NUMBER

ILLEGAL OPERATION

ILLEGAL SYNTAX

ILLEGAL VARIABLE

IMPROPER ACCOUNT # ABORT +BS

IMPROPER DIM OR RECORD
STATEMENT

Explanation

A hardware error occurred in GET or
PUT. (This is usually due to a
DECtape unit being write-locked.)

Subroutines are too deeply nested or
a RETURN statement exists outside a
subroutine.

The user attempted to use an illegal
character in, the statement being
processed.

The format of a constant in the state­
ment being processed is not valid.

The structure of the statement does
not agree with BASIC syntax.

FOR-NEXT loops are too deeply nested
or NEXT appears before FOR.

A statement was used which is not
one of the legal BASIC statements.

The format of the line number being
used in a GOTO or IF statement is
not acceptable. A line number has
been typed which is not between 1
and 2046, inclusive.

The expression being processed does
not agree with the BASIC rules (this is
probably due to unmatched parentheses).

The expression in a statement does
not agree with the BASIC syntax.

An illegal variable was used in an
array.

A user logged in under account numbers
1 (system account) or 2 (system li­
brary) and tried to run BASIC. This
is prohibited.

Syntax error in DIM or RECORD state­
ment, or an array name that was pre­
viously dimensioned is reused.

4-35

Message

INVALID DEVICE NO.

INVALID RECORD NO.

LINE TOO LONG

MISUSE OF CHR$

MISUSED TAB

MORE?

NEXT WITHOUT FOR

NO END STATEMENT

ON INDEX OUT OF RANGE

OUT OF DATA

PROGRAM IS "progname"

PROGRAM NOT FOUND

PROGRAM TOO LARGE

Table 4-2. (Cont.)

Explanation

The device number in the file I/O state­
ment is not between 0 and 11 inclusive,
(or X and 11 inclusive where X is a
number set by the system manager) •

The record number must be a number
which is greater than or equal to 0
and less than or equal to 4095. For
DECtape I/O the maximum record number
is limited further by the DECtape size.

Too much has been typed.

The CHR$ function was used in an in­
valid manner. CHR$, like TAB, can
appear only in PRINT statements.

The TAB function was used in an in­
valid manner. TAB can appear only in
PRINT statements.

Not enough values have been entered in
response to an INPUT command. The rest
of the values may be entered.

The NEXT statement indicated has no
preceding FOR statement.

All programs must have an END statement.

The 'value of the index is less than
one, or greater than the number of
statement numbers.

An attempt was made to READ more data
than was supplied by the user.

This message may immediately follow
an· error message, to identify the
current program in a series of CHAINed
programs. If there is no CHAIN, this
message will not occur.

The file which the user tried to access
with a CHAIN statement does not exist
in his disk area. The PROGRAM IS
message will also occur.

The program is too large to be executed.
Make it smaller.

4-36

Message

STACK OVERFLOW

SUBSCRIPT ERROR

SYSTEf.l I -0 ERROR

TIME LIMIT EXCEEDED

TOO MUCH INPUT, EXCESS
IGNORED

UNDEFINED LINE NUMBER

UNOPEN DISK UNIT

WHAT?

Table (Cant.)

Explanation

The user programmed a situation in
which the expression is too compli­
cated to be executed.

A negative subscript was used for an
array.

BASIC was unable to perform the desired
disk I/O.

The number of statements executed by
a job has exceeded the maximum estab­
lished by the system manager. Gener­
ally, some error was made and the pro­
gram is caught in a loop.

Too many values have been entered in
response to an INPUT command.

The line number appearing in a GOTO or
an IF-THEN statement does not appear
in the program.

The user tried to do a GET, PUT, or
UNSAVE to device 8 or 9, without a
file being previously opened on the
device

The editor cannot understand the
command given.

4-37

Message

IC

LN

OV

PW

SQ

UN

/0

TABLE 4-3

NON-FATAL EXECUTION ERRORS

Explanation

An illegal character or constant has
been typed in response to an INPUT
statement. The input is requested
again.

An attempt was made to compute the
logarithm of zero or a negative number.
Zero is used for the result.

Overflow - the result of a calculation
was too large for the computer to
handle. The largest possible number
is used for the result.

An attempt was made to raise a negative
number to a fractional power. The
absolute value of that number raised to
the fractional power is used.

An attempt was made to compute the
square root of a negative number. The
square root of the absolute value is
used for the result.

Underflow - the result of a calculation
was too small for the computer to
handle. Zero is used for the result.

Zero divide - an attempt was made to
divide by zero. The largest possible
number is used for the result.

4-38

Statement

InEutLOutEut

CLOSE

DA,TA

GET

INPUT

LINPUT
~
I
w LPRINT
\.D

OPEN

OPEN-ELSE

PR.INT

PUT

READ

RESTORE

RESTORE*

RESTORE$

UNSAVE

TABLE 4-4

EDUSYSTEM 50 BASIC LANGUAGE SUMMARY

Format

Statements

CLOSE f

DATA nl,n2 , .•• nn

GET f,l,r

INPUT VI, 2, · · · v n

LINPUT v$1,v$2, ..• v$n

LPRINT el,e2,···en

OPEN f,n$

OPEN f ELSE n

PRINT el,e2, ... e n

PUT f,l,r

READ vl,v2, ... v n
RESTORE

RESTORE*

RESTORE$

UNSAVE f

Explanation

Close file f.

Numbers n 1 through nn = variables in READ
statement.

Read record r from file f into the variables
in line 1.

Get vI through vn input from .the terminal.

Get long character string input from termin~l
(up to 50 characters).

Print values of specified text or expressions
on line printer.

Open a file named n$ as file nwnber f ..

Open a file, go to line n if unavailable.

Print values of specified text, vaJr iables , or
expressions.

Write record r, formatted as in line 1, into
file f.

Read variables vI through ~ from DA~rA list.

Reset DATA pointer to beginning value ..

Reset DATA pointer for numeric data only.

Reset DATA pointer for character string data
only.

Delete file f from disk storage.

~
I
~
0

Table 4-4. (Cont.)

Statement Format

Transfer of Controls

GOTO GOTO 1

IF-GOTO IF el r e2 GOTO 1

IF-THEN IF el r e2 THEN 1

ON-GOTO ON e GO TO 1 1 ,12 , ... 1 3

LooEs and SubscriEts

DIM

FOR-TO-STEP

NEXT

Subroutines

GOSUB

RETURN

STOP

Others

CHAIN

CHANGE

DEF

END

DIM v(dl), v(dl ,d2)

FOR v=el TO e2 STEP e3

NEXT v

GOSUB 1

RETURN

STOP

CHAIN n$

CHANGE vI TO v 2

DEF FNA(x)=f(x)

END

Explanation

Transfer control to line number 1.

If relationship r between el and e2 is true,
transfer control to line number 1.

Same as IF-GOTO.

Computed GOTO.

Dimension subscripted variables.

Set up program loop. Define v values beginning
at el to e2' incremented by e 3 •

Terminate program loop. (Increment value of v
until v>e2.)

Enter subroutine at line 1.

Return from subroutine to statement following
GOSUB statement.

Transfer control to END statement.

Link to next program.

Change character string to array of character
codes or vice versa.

Define a function.

End of program.

Statement

LE'l~

RANDOMIZE

REMARK

SLEEP

Format

LET v=f

RANDOMIZE

REM text

SLEEP n

Edit/Control Corrunands

BYE

CA,]~ALOG

COr-1PILE

CTRL/C

DEIJETE

EDIT

KEY

LIST

LLIST

NE~v

OLD

BYE

CAT

COM name

tC

DEL n

n

DEL n,m

EDI n

(c)

KEY

LIST

LIST n

LIST n,m

LLIST

NEW

OLD

Table 4-4. (Cont.)

Explanation

Assign value of formula f to variable v.

Randomize random number routine.

Insert a remark or corrunen t: •

Cause program to pause for n seconds.

Leave BASIC Monitor.

List names of programs in storage area.

Compile program in core and save it on disk.

Stop program execution; return to edit phase.

Delete line n.

Delete line n.

Delete lines n through m, inclusive.

Search line n for character c.

Return to keyboard mode after TAPE.

List entire program in core.

List line n only.

List lines n through m, inclusive.

List program on line printer.

Clear core, request program name~

Clear core, bring program to core from
storage area.

Statement

REPLACE

RUN

SAVE

SCRATCH

TAPE

UNSAVE

Functions

,J::. ABS
I

,J::. ATN
N

COS

EXP

INT

LOG

RND

SGN

SIN

SQR

TAN

TAB

FIX

CHR$

Table 4-4. (Cont.)

Format 'Explanation

REP
REP name

RUN

SAVE name

SCR

TAP

UNSAVE name

ABS(x)

ATN(x)

COS (x)

EXP(x)

INT(x)

LOG (x)

RND(x)

SGN(x)

SIN (x)

SQR(x)

TAN (x)

TAB (x)

FIX (x)

CHR$(x)

Replace old file on disk with version in core.
If name is not specified, old name is retained.

Compile and run program in core.

Store program named on storage device.

Erase current program from core.

Read paper tape; suppress printing on Teletype.

Delete program named from storage device.

Absolute value of x.

Arctangent of x (result in radians).

Cosine of x (x in radians).

eX (e is approximately 2.7182818).

Greatest 1nteger of x.

Natural logarithm of x.

Random number.

Sign of x (+1 if positive, -1 if negative, 0
if zero).

Sine of x (x in radians) .

Square root of x.

Tangent of x (x in radians).

Controls printing position on terminal or line printer.

Truncates decimal portion of x.

Converts character code to character. Used
only with the PRINT or LPRINT statements.

CHAPTER 5

FOCAL

FOCAL (FOrmula CALculator) is an on-line, interactive, service

program for the PDP-8 family of computers, designed to help scientists,

engineers, and students solve numerical problems. The language con­

sists of short imperative English statements which are easy to learn.

FOCAL is used for simulating mathematical models, for curve plotting,

for handling sets of simultaneous equations, and for many other kinds

of problems.

To call FOCAL, type:

.R FOCAL

FOCAL enters its initial dialogue, and asks if its extended functions

are to be retained. The extended functions are exponential, sine,

cosine, arctangent, and logarithm. If the FOCAL program to be run

uses any of these functions, the user responds YES. If not, the

user responds NO to free more space for the user program. Without

the extended functions, there is room for approximately 1100 charac­

ters of program. If the extended functions are retained, there is

room for approximately 735 characters.

5.1 USING FOCAL COMMANDS

Whenever FOCAL prints an asterisk, it is in command mode, and

the user may type any of the FOCAL commands in response to the

asterisk. FOCAL commands may be direct or indirect. A direct com­

mand is typed directly after the asterisk and is executed immediately.

The format for direct commands is:

5-1

* COMMAND

An indirect command is always identified by a line number.

Indirect commands are not executed until program control passes to

the line number associated with the command. The format for indirect

commands is:

*GG.ss COMMAND

When the user is typing indirect commands, he may use any line

number in the range 1.01 to 31.99, except those ending in.OO.

Numbers such as 1.00 or 31.00 are illegal as line numbers; they are

used to identify an entire group of line numbers. Line numbers are

typed in the format:

GG.ss

where GG is the group number and ss is the step number. It is not

necessary to type two digits after the decimal; e.g., 2.1 is equiva­

lent to 2.10.

All FOCAL commands must be followed immediately with a space.

All FOCAL command lines must be terminated with the RETURN key.

5.2 FOCAL OVERVIEW

FOCAL consists of 12 commands which are all the beginner

needs to write programs. FOCAL commands may be typed in their

entirety or abbreviated. The FOCAL commands are:

5-2

Command

ASK

COMMENT or CONTINUE

DO

ERASE or ERASE ALL

FOR

GO or GOTO

IF

MODIFY

QUIT

RETURN

SET

TYPE

Explanation

Used to assign values to variables from
the keyboard.

Used for comments or non-executable
program steps.

Used to cause a specific line or group
of lines to be executed.

Used to erase part of a program or an
entire programQ

Used to increment a number and execute
a user-specified command for each value
of the number incremented.

Used to direct program control to the
lowest line number, or to some specific
line number.

Used to direct program control condi­
tionally after a comparison.

Used to edit words or characters on a
program line.

Used to halt program execution and
return control to user.

Used to terminate DO routines.

Used to define variables and evaluate
expressions.

Used to print text, results of calcu­
lations, and values of variables.

These commands are explained in detail with actual computer

output in this section. For the convenience of the user, a detailed

FOCAL command summary is included in Table 5-1.

5.3 NUMBERS

A FOCAL number may be any decimal number between _10 615 and

10 615 . Numbers may be written signed (+ or -) -or unsigned, either

with a decimal point and a fractional part or in exponential format

(see Data Formats) with a mantissa and exponent. In FOCAL, all

n~~ers are internally represented in exponential format, retaining

5-3

up to six significant digits. If more than six digits are specified,

the number will be rounded to six digits. The following numbers are

identical in FOCAL:

60

60.00

6El
600E-l

60.00003

5.4 VARIABLE NAMES

FOCAL variable names may consist of either one or two characters.

The first character must always be alphabetic; however, it cannot be

an F because FOCAL reserves that character for function names (see

FOCAL Functions). The second character may be either alphabetic or

numeric. The user may write variable names consisting of more than

two characters, but FOCAL uses only the first two characters to

identify the variable. l Therefore, the first two characters must be

unique •

• SET A-S6789
.SET B=1234S6
*SET Cla15
*SET C2=30
*SET DEPTH=10
.SET DISTANCE-Cl+C2

Variables may also be subscripted. For a discussion of what

subscripted variables are and how they are used, see Subscripted

Variables.

lA variable is represented internally as a binary fraction with an
exponent. See Data Formats.

5-4

5.5 ARITHMETIC OPERATIONS

To print the results of arithmetic calculations, the user types

the FOCAL command TYPE followed by a space and the data to be cal­

culated. Then he presses the RETURN key: and FOCAL prints the

answer. For example:

*TYPE 6+10-3-1
~ 12e0000*

The above example shows two of the arithmetic operations (+ and

-) performed by FOCAL. Arithmetic operations are performed from

left to right except when the operation to the right has priority or

when enclosures are used. (See Enclosures.)

*TYPE 6+5; TYPE 5+2-31 TYPE 10-6
= 11.0000= 4.0000= 4.0000*

NOTE

Several commands may be typed on the same
line if they are separated by semi-colons
(i). This is true for all FOCAL commands
except the LIBRARY commands.

Unless indicated otherwise, FOCAL mathematical computations

retain an accuracy of six significant digits.

5.5.1 Priority of Arithmetic Operations

The FOCAL arithmetic operations priorities are:

First priority - exponentiation (t)2

Second priority = multiplication (*)

2When exponentiation is performed by FOCAL, the power to which a
number is raised must be a positive integer. If a calculated
exponent exceeds the limits of size, no error message is given.
The result will go to zero.

5-5

Third priority - division (I)

Last priority - addition (+), subtraction (-)

When FOCAL evaluates an expression which includes several arithmetic

operations, the above order of priority is followed. Therefore,

FOCAL evaluates

*TYPE 25+5*2+5

to have a value of

because multiplication (*) has a higher priority than addition (+).

5.5.2 Enclosures

The order of executing arithmetic operations is also influenced

by enclosures. Three kinds of enclosures may be used with FOCAL:
3 parentheses (), square brackets [] , and angle brackets<>. FOCAL

treats them all the same. For example, the result of the expression:

*TYPE (A+B)*cC+D>*CE+Fl

is the same as the result of:

If the expression contains enclosures within enclosures (called

nesting), FOCAL executes the contents of the innermost enclosures

first and works outward.

3

TYPE (5<2+3>·(5)t2
= 400.0000*

[and] are typed by SHIFT/K and SHIFT/M, respectively.

5-6

5.6 INPUT/OUTPUT COMMANDS

5.6.1 TYPE Co~~and

The TYPE command is used to print results of calculations,

values of variables, text or character strings, and variable tables.

TYPE may also be used to print combinations of text and variables.

Example I - Result of a Calculation:

*TYPE 1 +1
=- 2.0000*

Example 2 - Value of a Variable or Variables:

*SET N=S+S; SET M=30
*TYPE N"M
= 10.0000= 30.0000*

Example 3 - Text:

*TYPE "TH!S IS A LINE OF TEXT"" 14
THIS IS A LINE OF TEXT

*

Example 4 - Variable Tables:

*TYPE S
NI(00)=
MICe0)=
•

The user may command FOCAL to print all of the user-defined

variables (variable table) by using the TYPE command and a dollar

sign ($).

exclamation mark I I \
\ • I causes a carriage return and line feed.

5-7

If a variable consists of only one letter, an at sign (@) is

inserted as a second character in the variable table printout, as

shown in the example above .

• SET N=25
.TYPE UN IS".N
N 15= 25.0000*

NOTE

Any variable, constant, or expression in
a TYPE or ASK command must be followed by
a comma, semicolon, or carriage return.

S.6.2 ASK Command

The ASK command is normally used in indirect commands to enable

the user to input numerical data during the execution of his program.

The ASK command is similar to the TYPE command in form, but only

single variable names, not expressions, are used; and the user types

the values in response to a colon (:) printed by the ASK command.

When FOCAL encounters line 11.99 in the above example, it prints a

colon and waits for the user to type a value (in any format) and

a terminatorS for the first variable. This process continues until

all the variables in the ASK command have been given values.

The value is assigned to the variable when the user types a

terminator; so any time before the terminator is typed, the value

can be changed. If the user types back arrow (-or SHIFT/a)

immediately after the value and before he types a terminator, he can

then type the correct value and a terminator.

STerminators are SPACE, comma, ALT MODE, and RETURN keys. If the
user types the RUBOUT key, it is ignored.

S-8

*ASK X .. y .. Z
: 5
:6
as"7
*TYPE x .. !.Y.!.Z
• 5.0000
= 6@0000
• 7.0000*

User typed 5 and RETURN key.
User typed 6 and RETURN key.
User typed 7 and RETURN ,- ---Key.

The ALT MODE key is a special non-spacing terminator which

enables the user to have a previously assigned value unchanged.

*ASK X .. y .. Z
:3
::12
*TYPE X .. ! .. y .. ! .. Z
:: 3e0000
= 6.0000
:II 12.0000*

User typed ALT MODE because he did
not want to change the value of Y.

5.6.2.1 Text Output with ASK -- The ASK command, just as the TYPE

command, may be used to print text. Carriage return and line spacing

are controlled the same as with the TYPE command (see Data Formats) .

*ASK "WHAT IS YOUR AGE?" AGE
WHAT IS YOUR AGE?:19

*

The word following the text in the command line (AGE, in this

example) is the variable.

5.7 COMPUTATIONAL COMMAND (SET)

The SET command enables the user to assign a numerical value to

a variable and store both the value and the variable. Then, when he

uses the variable in an expression6 , FOCAL automatically substitutes

the numerical value that the user previously specified:

6An expression is a combination of arithmetic operations or functions
which may be reduced to a single number by FOCAL.

5-9

*SET E=2.71828
*SET PI=3.14159
*TYPE "PI TIMES E PI.E
PI TIMES E- 8.5397*

The value of a variable may be changed at any time by another SET

command .

• SET A1=3+2
*SET Al=Al+l
.TYPE Al
- 6.0000.

5.8 CONTROL COMMANDS

5.8.1 GO or GO TO Command

The GO command causes FOCAL to go the lowest numbered line in

the program and begin executing the indirect commands .

• 1.1 SET A-I
*1.3 SET B=2
*1.5 TYPE A .. S
*GO

1.0000=

In the above example the GO command caused execution to begin at line

1.1.

The GOTO command causes FOCAL to go to a specific line in the

program and begin executing the indirect commands in ascending line

number order .

• ERASE
*1.1 SET A=1
.1.3 SET B=2
*1.5 TYPE A .. B
*GOTO 1.3
- 0.0000= 2.0000*

5-10

In the preceding example, A and B are equal to zero at the start

of the program. The ERASE and ERASE ALL commands are used to ensure

that all variables are equal to zero until they are assigned a speci­

fic value. Since the GOTO command causes program execution to begin

at line 1~3: line 1:1 is never executed and A is not set to 1.

5.8.2 IF Command

The IF command is a conditional command used to transfer program

control after a comparison. The normal IF command format is:

IF space (expression) linel, line2, line3

The expression or variable is evaluated, and program control is

transferred to the first line number if the value of the expression

is less than zero, to the second line number if the value is zero, or

to the third line number if the value is greater than zero.

The program below transfers control to line number 2.1, 2.3, or

2.5, according to the value of the expression in the IF command.

*2.1 TYPE "LESS THAN ZERO";QUIT
*2.3 TYPE "EQUAL TO ZERO";QUIT
*2.5 TYPE "GREATER THAN ZERO"; QUIT
*IF (25-25)2.1,2.3,2.5
EQUAL TO ZERO*

5.8.2.1 IF with Less Than Three Line Numbers -- The IF command format

can be altered to transfer program control to one or two lines. For

example, if a semicolon or a carriage return is immediately after the

first line number, control goes to the first line number if the value

of the expression is less than zero. If the value is not less than

zero, control goes to the next sequential command. For example:

*2.20 IF (X) 1.a;TYPE "Q"

5-11

When line 2.20 is executed, program control goes to line 1.8 if X

is less-than zero. If X is not less than zero, Q is typed.

If a semicolon or a carriage return follows the second line

number, control goes to the first or second line number, depending

upon whether the value of the expression is less than ~ero or equal

to zero. If the value is greater than zero, control goes to the next

sequential command. For example:

*3.19 IF (B)I.8~1.9
*3.20 TYPE B

If B is less than zero, control goes to line 1.8; if B equals

zero, control goes to 1.9; and if it is greater than zero, control

goes to the next sequential command, in this case line 3.20, and the

value of B is printed.

5.8.2.2 Arithmetic Comparison with IF Command -- The IF command can

be used with all the arithmetic operations of FOCAL.

Example 1 - Addition:

Example 2 - Subtraction:

* 5 • 1 6 IF (A -B) 1 .6 J TYP E "X"

Example 3 - Division:

*3.10 IF (M/N>5.5.5.6
*3.15 TYPE "GREATER THAN ZERO"

Example 4 - Multiplication:

*7.20 IF (P*I)8.1
* 7.25 TYPE P*l

5-12

Example 5 - Exponentiation:

5.8.3 DO Command

The DO command is used to make subroutines of single lines or

groups of lines. Control is returned to the line following the DO

corr~and after the subroutine is executed.

*1.1 SET A-l1SET B=2
*1.2 TYPE "STARTING"
*1.3 DO 3.2
*2.1 TYPE "FINISHED"
*3.1 SET A=3JSET 8=4
*3.2 TYPE A+B
*GO
STARTING: 3.0000FINISHED= 7.0000*

If the user types a command such as DO 3, the DO command treats

the group of program lines beginning with 3 as a subroutine. Control

proceeds in ascending order through the group numbers until the end

of the group is reached, or until a RETU&~ command is executed.

5.8.3.1 Nested DO -- DO commands may be nested as shown in the

following example:

* 1 .1 TYPE "BEGIN"~!
* 1.2 DO 2
* 1 .3 TYPE .. END .. ~!;QUIT
*
*2.1 DO 5.1;
*2.2 DO 5.2;
*2.3 DO 7.5;
*
* 5.1 SET A=1
*5.2 SET A=2
*
*7.5 SET A=3
*GO
BEGIN
= 1 .0000
= 2.0000
= 3.0000
END

*

TYPE A~!
TYPE A~l\1
TYPE A~!

5-13

The number of nested DO commands is limited only by the amount

of core memory available after storage is allocated for program and

variables.

5.8.4 RETURN Command

The RETURN command is used to exit from a DO subroutine. When a

RETURN command is encountered during execution of a DO subroutine,

the program exists from its subroutine status and returns to the

command following the DO command that initiated the subroutine status.

5.8.5 QUIT Command

When the QUIT command is executed, FOCAL prints an asterisk and

returns to command mode.

5.8.6 FOR Command

The FOR command is used to set up program loops and iterative

procedures. The general command format is:

*FOR A = B,C,D; commands

*FOR A = B,D; commands

The variable A is initialized to the value B, then the command

or commands following the semicolon are executed. When the commands

have been executed, the value of A is incremented by C and compared"

to the value of D. If A is less than or equal to D, the command

after the semicolon is executed again. This process is repeated until

A is greater than D, at which time FOCAL goes to the next sequential

line. The command or commands will always be executed at least once.

5-14

A must be a single variable. S, C, and D may be expressions,

variables, or numbers. If the value C is omitted, it is assumed that

the increment is one. If C and D are omitted, the FOR command is

handled like a SET command and no iteration is performed. A FOR

command may be used with a DO command and nested:

5.8.6.1 FOR with a DO

*ERASE ALL
*1.1 FOR X=I~1~5; DO 2
*1.2 QUIT

*
*2.1 TYPE r~" X"~X
*2.2 SET A=X+100
*2.3 TYPE !~.. A"~A
*GO

X= 1 .0000
A= 101 .0000
X= 2.0000
A= 102.0000
X= 3.0000
A= 103.0000
X= 4.0000
A= 104.0000
X= 5.0000
A= 105.0000*

5.8.6.2 Nested FOR and DO

* 1 .1 FOR Z=I~3; TYPE .. A

* 1.2 TYPE !
* 1 .5 FOR A=1~3; DO 3
* 1 .7 QUIT

* * 3.1 FOR 8=1.3; DO 4

*

B C ..

*4.1 FOR C=I.3; TYPE %1,A.8.C," ..
*4.2 TYPE
*GO

A B C A B C A 8 C
= 1= 1= 1 = 1= 1= 2 = 1= 1= 3
= 1= 2= 1 = 1= 2= 2 = 1= 2= 3
= 1= 3= 1 = 1= 3= 2 = 1= 3= 3
= 2= 1= 1 = 2= 1= 2 = 2= 1= 3

2= 2= i 2= 2=
,... :: 2= 2= 'l

= = c:; w

= 2= 3= 1 = 2= 3= 2 = 2= 3= 3
= 3= 1= 1 = 3= 1= 2 = 3= 1= 3
= 3= 2= 1 = 3= 2= 2 = 3= 2= 3

= 3= 3= 1 = 3= 3= 2 = 3= 3= 3

* S-!~

Another way of handling the same program is:

*1.1 FOR Z=113;TYPE" ABC ..
*1.2 FOR A=113JFOR B=113JTYPE !;FOR C=I,3;TYPE 11,A,S .. C

..
*GO

5.8.6.3 Subscripted Variables -- Variables may be further identified

by subscripts which are enclosed in parentheses immediately following

the variables. For example:

*SET AB(0)=5
*SET AB(I>=10
*SET AB(2)=15
*SET AB(3)=20
*SET AB(4)=25
*SET AB(5)=30
*FOR X=0" 5; TYPE ABCX),,!
= 0.500000E+01
= 0.100000E+02
= 0.150000E+02
= 0.200000E+02
= 0.250000E+02
= 0.300000E+02

In the above example, subscripts are used to set up an array

called AB. Any element in the array can be represented by a sub­

script in the range 0 to 5. The first element in an array always

has a subscript of O. A subscript may be a number, another variable,

or an expression. If it is a number, it must be in the range ~2047.

In order to be properly represented by the TYPE $ command, subscript

numbers must be positive integers in the range from 0 to 99. The

TYPE $ command will print subscripts greater than 99 as two random

characters, although their contents will be correct as assigned by

the program.

5-16

5.8.7 COMMENT or CONTINUE Command

The COMMENT or CONTINUE command (abbreviated as C) causes the

program line to be ignored by FOCAL. The user may use the C corrmand

to insert comments into the program, or he may use the C command line

as a non-executable program step. In either case, program lines

beginning with C are skipped when the program is executed. However,

comments are printed in response to a WRITE command.

*ERASE ALL
*1.1 C INITIALIZE VARIABLES
*1.2 SET A=5
*1.3 SET B=6
*1.4 SET C=1

* *2.1 C PERFORM CALCULATION
*2.2 TYPE A+8+C

5.9 EDIT COMMANDS

5.9.1 WRITE or WRITE ALL Command

The ~~ITE or WRITE ALL command causes FOCAL to print a program

line, a group of lines, or an entire indirect program on the terminal.

*WRITE 2.1
*WRITE 2
*WRITE

Print a single line.
Print a group of lines.
Print an entire program.

Once the program is completed, the user may want to save it by

putting it on paper tape. The procedure for saving a FOCAL program

on-line is as follows:

1. Make sure FOCAL is in command mode.

2. Type WRITE.

3. Set low-speed punch to ON position.

4. Type RETURN key.

5-17

FOCAL will punch the entire program onto the paper tape and simul-

taneously print it on the terminal.

Paper tapes may be read in from the Terminal Reader by following

these instructions.

1) Make sure FOCAL is in command mode.

2) Place tape in Reader (Reader off).

3) Type CTRL/R.

4) Turn Reader on.

5) Turn Reader off when the tape reaches the Trailer.

6) Type CTRL/T.

Paper tapes may also be punched in the following manner.

1) Turn Terminal offline to Local.

2) Turn punch on.

3) Hold the REPEAT, CTRL, and SHIFT keys down. Now press the P
and hold all four keys down until four or five inches of
Leader are punched. Release the repeat key first.

4) Turn off the punch and return the Terminal to the line
position.

5) Type CTRL/R, and turn the punch on.

6) Type W A, followed by a carriage return (this will not echo
on the terminal)·.

7) When the tape is finished punching, turn the punch off,
and type CTRL/T.

8) Repeat steps 1, 2, 3, and 4 for making Trailer.

5.9.2 ERASE and ERASE ALL Commands

The ERASE command deletes symbolic names, lines, or groups of
lines.

*ERASE
*ERASE 2.2
*ERASE 2

Delete all names defined in symbol table.
Delete line 2.2.
Delete all lines in group 2.

5-18

The user can check to see if the line(s) has been deleted by

typing the WRITE command after the ERASE command. This is a useful

procedure for checking co~uands and also for obtaining a clean print~

out of the current program.

The ERASE ALL command deletes the entire indirect program. It

is good programming practice to type ERASE ALL before starting to

type a new program. The ERASE ALL command is generally used only with

direct commands because it returns control to command mode upon

completion.

5.9.3 MODIFY Command

The MODIFY command is used to change characters within a line

without changing the entire line. The format for MODIFY is:

MODIFY line number RETURN key Search character

The search character is not printed. After the user has typed

the line number, PETURN key, and search character, FOCAL prints

the contents of the specified line until it encounters the search

character. When the search character is read and printing stops,

the user has anyone or more of the following options:

1. Type new characters in addition to those already printed.

2. Type a form feed (CTRL/L). This causes the search to
proceed to the next occurrence, if any, of the search
character.

3. Type CTRL/BELL. The user can then change the search
character he specified in the MODIFY command.

4. Type the RUBOUT key. This causes FOCAL-to delete a
character, starting with the last character printed and
deleting one character to the left each time RUBOUT is
typed.

5. Type the back arrow (-) key. This causes FOCAL to delete
everything between the back arrow and the line number.

5-19

6. Type the RETURN key. This causes FOCAL to terminate the
line at that point, deleting everything to the right.

7. Type the LINE FEED key. This is normally done after the
user has exercised one or more of the above options. After
the user has modified the line, he may type LINE FEED and
cause the remainder of the line from the search character
to the end to be printed and saved.

*7.01 JACK AND BILL W$NT UP THE HILL
*MODIFY 7.01
JACK AND B\JILL W$\E

NT UP THE HILL

In the above example, B was typed as the search character for

line 7.01. (Note that the search character did not print.) FOCAL

stopped printing when it encountered the search character (B), and

the user typed the RUBOUT key (\) to delete the B. Then he typed

the correct letter J. Next he typed CTRL/BELL and the $ key to

change the search character. FOCAL continued to print the line

until the new search character was encountered. The user typed

RUBOUT to delete the $ and then typed the correct character (E).

He then typed the LINE FEED key and the remainder of the line was

printed.

CAUTION

When any text editing is done, the values
in the user's symbol table are reset to
zero.

If the user defines his symbols in direct statements and then

uses a MODIFY command, the values of his symbols are erased and

must be redefined. However, if the user defines his symbols by

means of indirect statements prior to using a MODIFY command, the

values will not be erased because these symbols are not entered in

the symbol table until the statements defining them are executed.

Notice in the example below that the values of A and B were set using

direct statements. However, typing the lines 1.1 through 1.3 reset
these values to zero.

5-20

*ERASE, ALL
*SET A=l
*SET B=2
* 1.1 SET C;;:3
* 1.2 SET D=4
*!e3 T¥PE A+B+C+D;
*GO
= 0.700000E+01
C@(00)= 0.300000E+01
D@(00)= 0.400000E+01
A@(00)= 0.000000E+00
B@(00)= 0.000000E+00

*

5.10 LIBRARY COMMANDS

TYPE $

In addition to the basic FOCAL commands, there are two special

commands to perform the library functions: storing and retrieving

data from the system disk. All commands following the LIBRARY com-

mand on the same line are ignored. Names of files may be from 1 to

6 characters long. Only alphanumeric characters, letters, and num-

bers should be used in file names. The library commands, like other

FOCAL coromands; may be abbreviatede

5.10.1 LIBRARY SAVE Command

This command copies the current program into the user's area on

disk and gives it the name specified. For example, the command;

*L 5 TRUE

will cause the current program to be stored on disk under the name

TRUE. The program will also remain in the user's area.

5-21

5.10.2 LIBRARY CALL Command

This command copies the named program from disk into the user's

area. For example, the commands:

*L C TRUE
*w

will cause the program TRUE to be recalled from the disk into the

user's area and listed on the terminal. Any program currently in

the user's area will be erased. The program TRUE can then be

executed with a GO command.

If the LIBRARY CALL command is given a line number and stored,

it must have at least one numbered command following it. In this

case, the LIBRARY CALL command will cause the named program to be

called into the user's area and executed as if GO had been typed.

For example:

*3.10 L C TR~E
*3.11 C

If the above commands are included in a program, they will

cause TRUE to be brought in and executed at that point. If there

are lines beyond 3.11 remaining to be executed, they will be deleted.

This procedure allows the user to chain FOCAL programs as in BASIC.

5.10.3 Error Messages with Library Commands

When the LIBRARY commands are used, five errors are possible.

These are also listed in the error code summary in Table 5-3.

5-22

Message

?30.71

? 30.< 0

?31.42

?31.43

?31.44

Explanation

The command appeared to be a LIBRARY
command but was not, for example:

LIBRARY OPEN

No action is taken; the command should
be retyped.

Either an unacceptable file name was
specified or no name was specified
where one was required.

The file name specified does not match
any name currently in the user's disk
directory. This error will only occur
with the LIBRARY CALL command.

There is already a program with the
specified name in the directory. This
error will only occur with the LIBRARY
SAVE COMMAND.

This user's disk directory is full.
The current program cannot be saved
until others have been deleted. This
error will only occur with the LIBRARY
SAVE command.

5.11 ESTIMATING PROGRAM LENGTH

FOCAL permits approximately 1100 (decimal) locations to be

used for the user program and variables without the extended math

functions, and approximately 735 locations with the extended func­

tions (sine, cosine, log, exponential, etc.). Since FOCAL requires

five locations for each variable stored in the variable table and

one location for each two characters of stored program, the approx­

imate length of a program may be determined by the formula:

Length of program = 5S + ~ + 2L

where

5-23

S = number of variables

C = number of characters in program

L = number of lines

If the total program area or variable table area becomes too

large, FOCAL prints an error message (06.54 or 10.:5). The following

routine allows the user to find out how many core locations are left

for his use.

*ERASE
*FOR 1=11300; SET ACI)=1
?06.54
*TYPE %4II*5I n LOCATIONS
= 795LOCATIONS LEFT*

5.12 DEBUGGING

(Disregard error code)
LEFT"

5.12.1 Using the Error Diagnostics

Whenever FOCAL detects an illegal command or improbable condi­

tion within a user's program, the execution of the program stops and

an error message is printed in the form ?XX.XX@GG.ss, where ?XX.XX

is the error message and GG.ss is the line at which the error

occurred. (See Table 5-3 for the complete list of error messages.)

Depending upon the type of error detected, the user may ignore

the error message or make program changes before continuing. For

example, if the user types CTRL/C to terminate a loop, the error

message ?01.00 is printed and program control goes to command mode;

so, in this case, the user ignores the message and types his next

command. If a program stops and the message ?03.05 is printed, the

user must examine his program to determine which command line is

wrong. In the following program, line 1.3 contains the instructions

to transfer to a nonexistent line number.

5-24

*ERASE ALL
*1.1 SET A'=2; TYPE .. A A .. !
*1~2 SET 8=4; TYPE nBn .. B .. !
*1.3 GOTD 1.01
*1.4 TYPE .. A+B A+B
*GO
A= 2.0000
B= 4.0000
?03.05 @ 01.30

*

5.12.2 Using the Trace Feature

The trace feature is used to check the logic in part of a FOCAL

program. To implement the trace feature, the user inserts a question

mark (?) into a command string at any point. FOCAL prints each

succeeding character as it is executed until another question mark is

encountered or until the program returns to command mode= For

example, the trace feature is used to print parts of 3 lines in the

following program:

*ERASE ALL
* 1 • .1 SET A= 1
*1.2 SET B=5
*1.3 SET C=3
*1.4 TYPE ?A+B-C? .. !
*1.5 TYPE ?B+A/C? .. !
*1.6 TYPE ?B-C/A?
*GO
A+B-C=
B+A/C=
B-C/A=

3.0000
5.3333
2.0000*

NOTE

The WRITE command disables the trace feature.

5.13 FOCAL FUNCTIONS

The FOCAL functions improve and simplify arithmetic capabilities.

In general, the FOCAL functions may be used anywhere a number or a

variable is legal in a mathematical expression. A standard function

call consists of three or four letters beginning with the letter F

5-25

and followed by an expression in parentheses. The FOCAL functions

are summarized in Table 5-2.

The functions must be. used with a legal FOCAL command. They

cannot be used alone as commands. For example:

*SET Z=A+FSQT(FSINCX»

Within a normal range of arguments, at least five significant

digits of accuracy may be expected for the trigonometric, exponential,

and logarithmic functions. The following functions are available to

FOCAL users.

5.13.1 Sine Function (FSIN)

The Sil!2 function (FSIN) is used to calculate the sine of a user­

specified angle in radians. The format for FSIN is:

FSIN (angle)

*TYPE FSIN(3.14159/4)
= 0.7071*

The format for calculation the sine of an angle in degrees is:

FSIN (degrees* 3.14159/180)

*TYPE FSIN<30*3.14159/180)
= 0.5000*

5.13.2 Cosine Function (FCOS)

The cosine function is used to calculate the cosine of a user­

specified angle in radians. The format for FCOS is:

FCOS (angle)

5-26

*TYPE FCOSC2*3.14159),!
= 1.0000
*TYPE FC~SC.50000),!
= 0.8776
*TYPE FCOSC45*3.14159/1R~} = 0.7071* ---~

5.13.3 Exponential Function (FEXP)

The exponential function (FEXP) is used to compute e (e=2.7l828)

to a power specified by the user. The format for FEXP is:

FEXP (power)

*TYPE FEXP(l),,!
= 2.7183
*TYPE FEXP(0),!
= 1 .0000
*TYPE FEXPC-1-23456)
= 0.0000*

5.13.4 Logarithm Function (FLOG)

The logarithm function (FLOG) is used to compute the natural

logarithm (loge) of a number specified by the user. The format for

FLOG is:

FLOG (number)

*TYPE FLOG<I.0000),!
= 0.0000
*TYPE FLOG(1.98765),!
= 0.6870
*TYPE FLOG(2.06S)
= 0.7251*

The following formulas are useful for finding logarithms to base

10:

5-27

5.13.5 Arctangent Function (FATN)

The arctangent function (FATN) is used to calculate the angle

in radians of a user-specified tangent. The format for FATN is:

FATN (tangent)

*T'lPE FATNC1.) .. !
= 0.7854
*T'lPE FATNC.31305) .. !
= 0.3034
*TYPE FATNC3.14159)
= 1 .2626*

5.13.6 Square Root Function (FSQT)

The square root function (FSQT) is used to compute the square

root of an expression. The format for FSQT is:

FSQT (expression)

*TYPE FSQT(4) .. !
= 2.0000
*T'lPE FSQT(9) .. !
= 3.0000
*SET Z=FSQT(144);TYPE Z
= 12.0000*

5.13.7 Absolute Value Function (FABS)

The absolute value function (FABS) is used to indicate the

absolute (positive) value of an expression. The format for FABS is:

FABS (expression)

5-28

*TYPE FABS<-66)#!
= 66.0000
*TYPE FABS(+23)#!
= 23.0000
*TYPE FABS<-99.05)
= 99.0500*

5.13.8 Sign Part Function (FSGN)

The sign part function (FSGN) is used to output the sign part

(+ or -) of a number with a value of 1. FSGN (0)=1. The format for

FSGN is:

FSGN (expression)

*TYPE FSGNC6-4),!
= 1 .0000
*TYPE FSGN(0)#!
= 1.0000
*TYPE FSGNC-7)
=- 1.0000*

5.13.9 Integer Part Function (FITR)

The integer part function (FITR) is used to output the integer

part of a number. The format for FITR is:

FITR (expression)

For positive numbers, FITR(X) is the greatest integer function.

For negative numbers, FITR(-X) is the integer part of -x. The

greatest integer function for negative numbers is obtained by FITR

(-X)-l. For example:

*TYPE FITRC5.2),!
= 5.0000
*TYPE FITRC55.66),!
= 55.0000
*TYPE FITRC-4.1)
=- 4.0000*

5-29

5.13.10 Random Number Function (FRAN)

The random number function (FRAN) is used to generate non­

statistical pseudo-random numbers in the range 0.5000 to 0.9999.

No argument is used with the FRAN function. The format for FRAN is:

FRAN ()

*TYPE FRAN(),!
= 0.6073
*TYPE FRANC)
= 0.7376*

FRAN can be used to produce a less biased number. For example:

*SET A=FRANC)*S0
*SET B=A-FITRCA)

The value assigned to B is a random number in the range 0.0000

to 0.9999.

5.14 FOCAL OUTPUT OPERATIONS

The following is a description of symbols used in FOCAL output

operations:

Symbol EXElanation

To set output format, TYPE %x.y Where x is the total
number of digits, and y
is the number of digits
to the right of the
decimal point.

TYPE %6.3, 123.456 FOCAL prints: =+123.456

TYPE % Resets output format to
floating point.

To type symbol table, TYPE $ Other statements may not
follow on this line.

5-30

5.15 CONTROL CHARACTERS

FOCAL control characters and their explanations are shown below:

% Output format delimiter

Carriage return and line feed

Carriage return #
$

(

Type symbol table contents

<>

Parentheses

Square brackets

Angle brackets

" " Quotation marks

?? Question marks

"\ I (mathematics)

(text string)

(trace feature)

SPACE key (names)

RETURN key (lines)

ALT MODE key (with ASK I (nonprinting)

statement)

COMMA (expressions)

Semicolon (commands and statements)

5-31

L11
I

W
rv

Command

ASK

COMMENT

CONTINUE

DO

ERASE

FOR

GO

TABLE 5-1

FOCAL COMMAND SUMMARY

Abbreviation Example of Form

A ASK X,Y,Z

C COMMENT

C C

D DO 4.1

D DO 4.0

DA

E

DO ALL

ERASE

ERASE 2.0

ERASE 2.1

Explanation

FOCAL prints a colon· for each
variable; the user types a value
to define each variable.

If a line begins with the letter
C, the remainder of the line will
be ignored.

Dummy lines.

Execute line 4.1; return to com­
mand following DO command.

Execute all group 4 lines; return
to command following DO command,
or when a RETURN is encountered.

Execute all program lines until a
RETURN is encountered.

Erases the symbol table.

Erases all group 2 lines.

Erases line 2.1.

ERASE ALL Erases all user input.

F

G

FOR i=x,y,z; (commands) Where the command following is
executed at each new value.
x=initial value of i.
y=value added to i until i is

greater than z.

GO Starts indirect program at lowest
numbered line number.

Command

GO?

GO TO

IF

U1
I
w
w

LIBRl\RY CALL

LIBRARY SAVE

MODIFY

QUIT

RETURN

SET

Table 5-1. (Cont.)

Abbreviation Example of Form

G? GO?

G GOTO 3.4

I

LS

M

Q

R

S

IF (X)Ln,Ln,Ln
IF (X)Ln,Lni (commands)
IF (X)Lni (commands)

LIBRARY CALL name

LIBRARY SAVE name

MODIFY n

QUIT

RETURN

SET A=5/B*Ci

Explanation

S t,arts at lowes t numbe:red 1 i.ne
number and traces 'entire indirect
program un til another ?' is e~n­
countered, or unt.il completi.on
of program.

St.arts indirect program (t,ransfers
control to line 3.4). Must have
argument.

Where X is a defined identifier,
a value, or an expression, followed
by three line numbers. If X is
less than zero, control is trans­
ferred to the first line n.umber.
If X is equal to zero, con.trol is
to the second line number. If X
is greater than zero, control is
to the third 1 ina numbE~r.

Calls stored program fl~om the disk.

Saves program on the disk.

Enables editing of any character
on line n.

Returns control to the usero

Terminates DO subroutines, l:'etur­
ning to the original sequence.

Defines identifiers in the symbol
table.

111
I

W
~

Conunand

TYPE

WRITE

Table 5-1. (Cont.)

Abbreviation Example of Form

T TYPE A+B-C;

TYPE A-B,C/E;

TYPE "TEXT STRING"

W WRITE

W A WRITE ALL

WRITE 1.0

WRITE 1.1

Explanation

Evaluates expression and prints =
and result in current output
format.

Computes and prints each expres­
sion separated by conunas.

Print9 .text. May be followed by
! to generate carriage return­
line feed, or # to generate
carriage return.

FOCAL prints the entire indirect
program.

FOCAL prints all group 1 lines.

FOCAL prints line 1.1.

Function Format

Square Root FSQT(x)

Absolute Value FABS(x)

Sign Part FSGN(x)

Integer Part FITR(x)

Random Number FRAN (x)
Generator

7Exponential FEXP(x)

7Sine FSIN(x)

7Cosine FCOS(x)

7Arctangent FATN(x)

7Logarithm FLOG (x)

TABLE 5-2

FOCAL FUNCTIONS

Interpretation

Where x is a positive number or
expression greater than zero.

FOCAL ignores the sign of x.

FOCAL evaluates the sign part only,
with 1.0000 as integer.

FOCAL operates on the integer part
of x, ignoring any fractional part.

FOCAL generates a random number.
The value of x is ignored.

FOCAL generates e to the power x.
(2.71828 X)

FOCAL generates the sine of x in
radians.

FOCAL generates the cosine of x in
radians.

FOCAL generates the arctangent of
x in radians.

FOCAL generates loge (x) .

7These are extended functions and may be chosen or deleted when
FOCAL is loaded.

5-35

Message

?OO.OO

?01.00

?01.40

?01.78

?01.96

?Ol. :5

?01.;4

?02.32

?02.52

?02.79

?03.05

?03.28

?04.39

?04.52

?04.60'

?04. :3

?05.48

?06.06

?06.54

?07.22

?07.38

?07.:9

?07.;6

?08.47

?09.11

? 10. : 5

?11.35

?20.34

?23.36

TABLE 5-3

FOCAL ERROR MESSAGES

Explanation

Manual start given from console.

Interrupt from keyboard via CTRL/C.

Illegal step or line number used.

Group number is too large.

Double periods found in a line number.

Line number is too large.

Group zero is an illegal line number.

Nonexistent group referenced by DO.

Nonexistent line referenced by DO.

Storage was filled by push-down list.

Nonexistent line used after GOTO or IF.

Illegal command used.

Left of = in error in FOR or SET.

Excess right terminators encountered.

Illegal terminator in FOR command.

Missing argument in display command.

Bad argument to MODIFY.

Illegal use of function or number.

Storage is filled by variables.

Operator missing in expression or double E.

No operator used before parenthesis.

No argument given after function call.

Illegal function name or double operators.

Parentheses do not match.

Bad argument in ERASE.

Storage was filled by text.

Input buffer has overflowed.

Logarithm of zero requested.

Literal number is too large.

5-36

Table 5-3. (Cont.)

Message Explanation

?26.99

728,,73

?30.05

?3l.<7

?30.7l

? 30.>0

?3l.42

?3l.43

?3l.44

Exponent is too large or negative.

Division by zero

Imaginary square roots required.

Illegal character, unavailable command, or unavailable
function used.

Undefined library command.

Bad argument or missing argument to library command.

No such name in library directory.

Attempt to enter a duplicate name in the directory.

Library directory is full.

5-37

CP~PTER 6

FORTRAN

FORTRAN-D compiles and runs programs written in the PDP-8

version of FORTruL~ II8 Programs (usually created and stored with

the Symbolic Editor) are compiled in a single pass and executed

(automatically) immediately following compilation.

6.1 CALLING FORTRAN-D

To use FORTP~N-D, type:

.R FORT

FORTRAN requests the name of the input file, i.e., the file contain­

ing the FORTRAN program to be compiled and run. The user responds

with the file name and the RETURN key. FORTRAN then requests the

name of an output file in which to store the compiled version of the

program. For normal usage, just the RETURN key need be typed.

FORTRAN places the compiled code in a file of its own, then proceeds

to run the program.

If a file name is entered for output, FORTRAN creates a perma­

nent file in which the compiled binary program is saved. It is then

possible to rerun this program without recompiling it. To run an

already compiled program, call the FORTRAN operating system directly

by typing:

.R FOSL

FOSL requests the name of an input file. Enter the name of the

file containing the compiled binary. For example, if the user types:

6-1

.R FORT

INPUT:MATRIX
OUTPUT:

FORTRAN compiles and executes the program MATRIX but does not save

the compiled binary.

FORTRAN compiles and executes the program MATRIX and then leaves

the compiled binary in the file named BMTRIX when the user types:

.R FORT

INPUT:MATRIX
OUTPUTIBMTRIX

The FORTRAN binary program BMTRIX is executed without first

being compiled when the user types:

.R FOSL

INPUT:BMTRIX

All FORTRAN programs return to the Monitor when they have com-

pleted execution.

6.2 USING FORTRAN-D

Differing versions of PDP-8 FORTRAN offer slightly different

features. FORTRAN-D differs in the way it is called into use

(described above), and in its I/O capability (described below).

FORTRAN-D allows three data formats:

I Integer format

E Exponential format

A Alpha format, ASCII value of a character is stored as an
integer value.

6-2

The standard device for READ and WRITE statements is the termi­

nal, which is assigned device code 1. Because the terminal is so

frequently used, FORTRAN-D includes two special input/output instruc-

tions, ACCEPT and TYPE. These instructions imply use of the termi-

nali therefore, the device code need not be specified. ACCEPT is

especially convenient if data is to be entered at the keyboard

because this instruction automatically supplies a line feed when the

RETURN key is typed. Also, the user can correct an erroneously

typed value by striking the RUBOUT key.

A FORTRAN-D program can also utilize the high-speed r,eader and

punch for I/O. These devices are assigned code 2. Because the high­

speed reader and punch are shared by all users, it is necessary to

assign them if they are to be used. Assign the appropriate devices

and mount tapes in the reader before running FORTRAN-D. An auto­

matic DEASSIGN is performed by FORTRAN before it returns to the

Monitor; therefore, the user must reassign the devices before each

run.

FORTRAN-D also allows programs to read and write data files on

the disk. These data files are completely separate from the program

files. Data files are read and written by standard READ and WRITE

statements within the FORTRAN~D program. The device code for the

disk is 3. Because programs using the disk are treated differently

by FORT (the FORTRAN-D compiler), it is necessary to identify pro­

grams which use the disk. These programs are identified by a DEFINE

DISK statement as the first statement in any such FORTRAN-D program

including a READ or WRITE statement with device code 3.

Just as FORT itself must ask for the name of its input and

output files, so must a FORTRAN program ask for the names of its disk

files. FORTRAN-D programs do this by typing INPUT: and OUTPUT: a

second time. The user responds by typing the name of the files to be

read or written by the program. FORTRAN-D asks for both input and

output for all programs which include a DEFINE DISK statement. If

6-3

only input {or output} is to be used, the user responds to the other

by typing the RETURN key.

6.3 LINE FORMAT

FORTRAN programs consist of a series of lines, each a string

of 72 characters or less (the width of the terminal paper from

margin to margin). Each line contains two fields: the first, which

begins at the left margin, is an identification field: the second

contains the statement field. Termination of a line is indicated to

the computer by a carriage return, accomplished by typing the RETURN

key.

The identification field can be blank, or can contain one of the

following types of identification:

1. A statement number. This number, which can be any positive
integer from 1 to 2047 inclusive, identifies the statement
on that line for reference by other parts of the program.
Statement numbers are used for program control or to assist
the programmer in identifying segments of his program.

2. The letter, C. This identifies the remainder of the line
as a comment.

Although the identification field may be left blank, it cannot

be omitted entirely. The statement field begins immediately after

a blank space and extends through the next carriage return. A sample

FORTRAN program is shown below:

C THIS PROGRAM CALCULATES FACTORIALS
5 TYPE 200
10 ACCEPT 300,N

IFACT=1
30 IF (N-I) 5,32,33
32 TYPE 400,N,IFACT

GO TO 10
33 DO 35 I=l,N

IFACT=IFACT*I

6-4

35 CONTINUE
GO TO 32

200 FORMAT (/ .. "PLEASE TYPE A POSITIVE NUMBER /)
300 FORMAT (i)
400 FORMAT (; .. l/n FACTORIAL 15" .. 1)

END

FORTRAN source programs are generated using the Symbolic Editor

Program. The Editor will facilitate formatting lines by use of a

tab character, permitting automatic movement to an indented second

field.

6.3.1 Statement Numbers

Each statement can have a positive, nonzero integer (0-2047) as

its number. The statement number is used to reference that parti­

cular statement elsewhere in a program. A statement number consists

of one to four digits beginning at the left hand margin and is

followed by a space or tab. Statement numbers can be assigned non­

sequentially; however, no two statements can have the same number.

There must be no more than 40 statement numbers in a given program,

and they must have a value of 2047 (decimal) or less.

6.3.2 Statement Continuation Character

Frequently, a statement is too long to fit on one line. If the

character single quote (I) appears as the last character of a line

before the carriage return, the next line is treated as a continua­

tion of the preceding statement. A statement may be continued on as

many lines as necessary to complete it, but the maximum number of

characters in the statement cannot exceed 128 (about two formatted

lines). For example:

10 A=B**2-C4.*A*C/CB**2+1.S*A*C»*4.3'
+B**2+(CSQTFCC)*SQTFCD»/CB**2+1.S*A*C»

is equivalent to the formula:

6-5

Although the continuation character, (I) allows a single

statement to extend over two or more lines, no more than one state-

ment can be written on one line.

6.4 FORTRAN STATEMENTS

FORTRAN statements are of several types with various functions

distinguished as follows:

1. comment statements allow a programmer to insert notes
within the program.

2. Arithmetic statements resemble algebraic formulas. They
define calculations to be performed.

3. Control statements govern the sequence of statement
execution within a program. These statements reference
program line numbers.

4. Specification statements allocate data storage and specify
input/output formats.

5. Input/output statements control the transfer of information
into and out of the computer.

6.4.1 Comment Statements

The character C, at the left margin of a line, designates that

line as a comment line. A comment has no effect upon the compilation

process but can serve as a guide to program logic for later debugging,

etc. There is no limit to the number of comment lines which can

appear in a given program. A comment cannot be continued by use of

the continuation character, (I), but must be continued in a second

comment statement. For example:

C
C

THIS IS AN EXAMPLE
OF A COMMENT

6-6

6.4.2 Character Set

The following characters are used in the FORTRAN language:

1. The alphabetic characters, A through Z.

2. The numeric characters, 0 through 9.

3. The control characters:

semicolon

. period

, single quote

" double quote

, conuna

4. The operators:

** exponentiation

+ addition

- subtraction

CR carriage return

LF line feed

left parenthesis

right parenthesis

/ division

* multiplication

= replacement

All other characters are ignored by the Compiler except as

Hollerith information found in FORMAT statements (where all terminal

characters are legal). The SPACE character has no granunatical func­

tion (it is not a delimiter) except in FORMAT statements and can be

used freely to make a program easier to read.

6.4.3 Constants

Constants are explicit numeric values appearing in statements.

Two types of constants, integer and real, are permitted in FORTRAN.

6.4.3.1 Integer Constants -- Integer (fixed-point) constants are

represented by a string of one to four decimal digits, written with

an optional sign and without a decimal point. An integer constant

must fall within the range +2047. For example:

6-7

47
+47
-2
0434
-0

(+ sign is optional)

(leading zeros are ignored)
(same as zero)

6.4.3.2 Real Constants -- Real constants are represented by a digit

string, an explicit decimal point, and are written with an optional

sign. l Real constants can also be written in exponential notation

with an integer exponent to denote a power of ten (i.e., 7.2 x 10 3

is written 7.2E+3). A real constant may consist of any number of

digits but only the leftmost six digits appear in the compiled pro­

gram. Real constants must fall within the range 0.14 x 10-38 to
38 1.7 x 10 . For example:

+4.50 (plus sign is optional)
4.50

-23.09 14
-3.0E14(same as -3.0 x 10)

7. (saved as 7.00000, not the same as the integer 7)

6.4.3.3 Fixed and Floating-Point Representation -- The difference

between integers and real numbers in FORTRAN is the way in which

each is represented in core memory. Both types of numbers are con­

verted to binary to be stored in the computer.

A FORTRAN integer is stored in one l2-bit computer word. The

sign of the number is kept in the high-order bit and the magnitude

(the integer value) in the remaining 11 bits. This representation,

shown schematically in Figure 6-1, is called fixed point, because the

decimal point is always considered to be to the right of the right­

most digit. A FORTRAN integer may not exceed the range of ~2047.

All integers greater than +2047 are taken modulo 2048 (i.e., 2049 is

considered to be Ii 4099, to be 3).

lWhere a number is to be identified as being negative, a minus sign
(-) must be used. A plus sign (+) is optional; with no sign, a
number is considered positive.

6-8

The floating-point format consists of two parts: an exponent

(or characieristic) and a mantissa~ The mantissa is a binary frac­

tion with the radix point assumed to be to the left of bit one of

the mantissa. The mantissa is always normalized; meaning it is

stored with leading zeros eliminated so that the leftmost bit is

always significant. The exponent represents the power of two by

which the mantissa is multiplied to obtain the true value of the

number for use in computation. The exponent and mantissa are both

stored in two's complement form.
SIGN

+
MAGNITUDE

o
Q. FORTRAN INTEGER 11

SIGN OF EXPONENT

~
EXPONENT

SIGN OF 0 11

MANTlssA "r----;-______________ --.

2 ~I~~ _____ M_A_NT_IS_SA _______ ~
o 11

3. ~I __________ M_A_NT_IS_SA _________ ~
b. FLOATING POINT

Figure 6-1. Number Representation

Users should not attempt to input floating point constants of

more than six decimal digits, either in the FORTRAN source program

or via the run-time ACCEPT statement.

Integers cannot appear in floating-point expressions except as

exponent or subscripts. Some examples of illegal and legal expres­

sions are as follows:

6-9

Expression

A(I)*B(J)**2

I(M)*K(N)

16. *B

(K+16)*3

A**(1+2)/B

8*A

4.*J

I+D

6.4.4 Variables

Legal Mode

Yes Floating

Yes Fixed

Yes Floating

Yes Fixed

Yes Floating

No

No

No

A variable is a symbol whose value may change during execution

of a program. The name of a variable consists of one or more alpha­

numeric characters, the first of which must be alphabetic. Only the

first four characters are interpreted as defining the variable name;

the rest are ignored. For example, the name EPSILON would be inter­

preted by the Compiler as EPSI. Since only the first four characters

are meaningful, the two names XSUMI and XSUM2 would be considered

identical.

Spaces, as mentioned earlier, are ignored. The name EX IT

represents one variable, not two. Thus, EX IT, EXIT, or even EXI T

are identical names as far as the Compiler is concerned, and they

all refer to the same numerical quantity.

The type (or mode) of a variable (integer or real) is determined

by the first letter of the variable name.

1. Integer variables begin with the letters:

I, J, K, L, M, or N

2. Real variables begin with any letter other than those above.

6-10

Variables of each type may be either scalar or array variables,

as explained below.

6.4.4.1 Integer Variables -- Integer variables undergo arithmetic

calculations with automatic truncation of any fractional part. For

example, if the current value of K is 5 and the current value of J

is 9, then J/K would yield 1 as a result.

6.4.4.2 Real Variables -- A variable is real when its name begins

with any character other than I, J, K, L, M, or N. Real variables

undergo no truncation in arithmetic calculations. Real variables

may be converted to integer variables, and vice-versa, across an

equal sign.

6.4.4.3 Scalar Variables -- A scalar variable, which may be either

integer or real, represents a single number, as opposed to an array

(below) representing a collection of numbers. For example, the

following are scalar variables:

LM
G2
A
TOTAL (considered to be TOTA by the computer)
J

6.4.4.4 Array Variables -- An array variable represents a single

element of a one-dimensional array of quantities. The variable is

denoted by the array name followed by a subscript enclosed in paren­

theses. The subscript may be any combination of integer variables

and integer constants forming a valid expression, as follows:

(V) (V+C) (V-C) (C)

where V is a fixed po~nt (integer) variable, and C is a fixed-point

constant (not equal to 0).

6-11

The value of the expression in parentheses determines the

referenced array element. For example, th~ row matrix, AI' would

be represented by the subscripted variable A{l), and the second

element in the row would be represented by A(2). Examples of array

variables are:

Legal Forms

Y(l)

A(K+2)

6.4.5 DIMENSION Statement

Illegal Forms

A(2+l)

B{C)

Array names must be identified as such to the FORTRAN Compiler.

Two items of information must be provided in any program using arrays:

1. Which are the subscripted variables?

2. What is the maximum value of the subscript? (When an
array is used, a certain amount of storage space must be
set aside by the Compiler for the array elements.)

This information is provided by the DIMENSION statement:

DIMENSION A(20)~B(15)

where A and B are array names, and the integer constants 20 and 15

are the maximum dimensions of each subscript.

The rules governing the use of array variables and the DIMENSION

statement are as follows:

1. All array names must appear in a DIMENSION statement.

2. DIMENSION statements may be used more than once and may
appear anywhere in the FORTRAN program, provided that the
DIMENSION of an array appears before any statement which
references the array.

3. Any number of arrays can be defined in a single DIMENSION
statement.

6-12

4. For notes on how to implement double subscripts (i.e.,
A{'I,J», see Section 6.8, Implementation Notes.

Array variables may be either integer or real, depending upon

the initial letter of the array name.

DIMENSION LIST(30)#MATC100),REGRC20)

In the statement above, the names LIST and MAT designate integer

arrays; that is, all elements of both arrays are integers. The third

name, REGR, designates a floating point, or real array. The first

array is a list containing a maximum of 30 elements; the second array

has a maximum of 100 elements.

The third array is a floating-point array and there are a maxi­

mum of 20 elements in it. Not all elements of an array need be used

in the course of a program; but, if using the DIMENSION statement

the variable LIST {3l} could not be referenced without the occur­

rence of an error message.

6.5 FORTRAN ARITHMETIC

6.5.1 Arithmetic Operators

The arithmetic operators are symbols representing the common

arithmetic operations. The important rule about operators in the

FORTRAN arithmetic expressions is that: every operation must be

explicitly represented by an operator. In particular, the multipli­

cation sign must never be omitted. A symbol for exponentiation is

also provided since superscript notation is not available on a

terminal.

Normally, a FORTRAN expression is evaluated from left to right,

like an algebraic formula. There are exceptions to this rule; cer-

tain operations are always performed before others, regardless of

order. This priority of evaluation is as follows:

6-13

1. Expressions within parentheses

2 •

3.

4.

5.

Unary minus

Exponentiation

Multiplication or Division

Addition or Subtraction

**

* or /

+ or -

The term "binding strength" is frequently used to refer to the

relative position of an operator in a table such as the one above,

which is in order of descending binding strength. Thus, exponentia­

tion has a greater binding strength than addition, and multiplication

and division have equal binding strength.

The unary minus is the arithmetic operator which indicates that

a quantity is less than zero, such as -53, -K, -12.3. It refers

only to the constant or variable which it precedes as opposed to a

binary operator, which refers to operands on either side of itself

as in the expression A-B. A unary minus is recognized by the fact

that it is preceded by another operator, not by an operand. For

example:

A+S**-2/C-D

The first minus sign (indicating a negative exponent) is unary;

the second (indicating subtraction) is binary. At present it is not

possible to raise an integer variable or integer constant to an

integer value with FORTRAN-D. Only real values can be raised to

integer powers.

The left-to-right rule can be stated more precisely: A sequence

of operations of equal binding strength is evaluated from left to

right. To change the order of evaluation, parentheses are required.

Thus, the expression A-B*C is evaluated as A-(B*C), not {A-B)*C.

Examples of the left-to-right rule follow:

6-14

The expression:

A/B*C

A/B/A

A**B**C

Is evaluated as:

(A/B) *C

(A/B) /e
(A**B) **C

6.5.1.1 Use of Parentheses -- Note the use of parentheses in the

example below. They are used to enclose the subscript of the dimen-

sienal variable, Di to specify the order of operations of the ex-

pression involving A, B, and Ci and to enclose the argument of the

function SINF.

DCI)+CA+B) •• C+SINFCX)

In algebra there are several devices, such as square brackets

[], rococo brackets {} , etc., for distinguishing between levels

when expressions are nested. In FORTRAN, only the parentheses are

available, so the programmer must be especially careful to pair

parentheses properly. In any given expression, the number of left

parentheses must be equal to the number of right parentheses.

An easy way to check the proper pairing of parentheses is by

counting out, illustrated in the following example:

(Z+AM* (AM+l.»)/«(X**2+C**2)*P)

1 2 10 12 1 0

The procedure is this: Reading the expression from left to

right, assign the number, 1, to the first left parenthesis (if you

encounter a right parenthesis first, the expression is already

wrong). Increase the count by one each time a left parenthesis is

read, and decrease the count by one when a right parenthesis is

found. When the expression has been completely scanned, the count

should be zero. If it becomes less than zero during the scanning,

there are too many right parentheses. If it is greater than zero at

the end of an expression, there are excess left parentheses.

6-15

6.5.2 Arithmetic Expressions

An algebraic formula such as:

represents a relationship between symbols (a, b, x, xO) and constants

(5, 4, 2) indicated by mathematical functions and arithmetic

operators (+, -, multiplication, exponentiation). This same formula

can be written as a FORTRAN arithmetic expression with very little

change in appearance:

The construction of both expressions is the same; the differences

are notational.

Elements of an arithmetic expression are of four types: con­

stants, variables, operators, and functions. An expression may

consist of a single constant or variable or a string of constants,

variables, and functions connected by operators.

Examples of arithmetic expressions follow; each expression is

shown with its corresponding algebraic form.

Algebraic Expression

2Vx
3

3X7T - 2 (x+y)
4.25

aOsin 9 + 2a cos(9 - 45)

6-16

FORTRAN Expression

2.*SQTF(X}/3.

(3.*X*PI-2.* (X+Y)) /4.25

A*SINF(THTA)+2.*A*COSF
((THTA)-O.78540)

(A**2-B**2) / (A+B)**2

6.5.3 Arithmetic Statements

The arithmetic statement relates a variable, V, to an arithmetic

expression, E, by means of the replacement operator, (+):

V=E

Such a statement looks like a mathematical equation, but is treated

differently. The equal sign is interpreted in a special sensei it

does not represent a relationship between left and right members,

but rather specifies an operation to be performed.

In an arithmetic statement, the value of the expression to the

right of the equal sign replaces the value of the variable on the

left. This means that the value of the left-hand variable will

change after the execution of an arithmetic statement. A few

illustrations of arithmetic statements are given below.

1. VMAX = VO + AXT

2. T = 2.*PI*SQTF{1./G)

3. PI = 3.14159

4. THTA = OMGA + ALPH*T**2/2.

5. MIN = MINO

6. INDX = INDX + 2

With the interpretation of the equal sign stated above, Example

6 becomes meaningful as an arithmetic statement. If, for example,

the value of INDX is 40 before the statement is executed, its value

will be 42 after execution.

6-17

In arithmetic expressions, a binary operator requires an operand

on its left and right. The equal sign of an arithmetic statement is

also considered to be.a binary operator, as demonstrated in the

following revised table of operators:

Operator Use Interpretation

- (Unary) -A negate A

** A**B raise A to the Bth power

* A*B multiply A by B

I AlB divide A by B

+ A+B add B to A

- (Binary) A-B subtract B from A

= A=B replace the value of A with the
value of B

The replacement operator is considered to have the lowest

binding strength of all operators; therefore, the expression on the

right is evaluated before the operation indicated by the equal sign

is performed.

6.5.3.1 Multiple Replacement -- An important result of treating the

equal sign as an operator is that operations can be performed in

sequence. Just as there can be a series of additions, A+B+C, there

can also be a series of replacements:

A=B=C=D

Notice that because the operand to the left of an equal sign

must be a variable, only the rightmost operand, represented by D in

the example, may be an arithmetic expression. The statement is inter­

preted as follows: "Let the value of the expression D replace the

value of the variable C, which then replaces the value of the

variable B" and so on. In other words, the value of the rightmost

expression is given to each of the variables in the string to the

left. A common use for this construction is in setting up initial

values:

6-18

XZRO=SZRO=AZRO=0.
T=Ti=T2*T3-60.
P-FP 5 4.*ATMoAK

Only simple variables will compile correctly in this manner.

For example, 'statements of the type A(1)=A(2)=R(1)=0.123 are not

allowed and will not compile properly (subscripted variables may

not be used in multiple replacement statements).

Multiple replacement done in a single statement must not contain

mixed mode variables. That is;

A=B=C=10.

I=J=7

A=J=7

Mode Conversion

compiles correctly

compiles correctly

does not compile correctly

Another useful result in treating the equal sign as an operator

is that the value of an expression on the right of an equal sign is

converted to the mode of the left-hand variable, if necessary, before

storage. For example:

A=M Stores the value of M as a floating-point number in A

K=B Stores the value of B (truncated) as an integer number
in K

If B = 4.75 and M = 7, the conversion above will result in the

following values being assigned:

A = 7.00000

K = 4

6-19

6.5.4 Functions

Functions are used in FORTRAN just as they are in ordinary

mathematics, acting as variables in arithmetic expressions. The

function name represents a call to a special subprogram which per­

forms the calculations to evaluate the function: the result is used

in the computation of the expression in which the function occurs.

FORTRAN-D provides several mathematical functions: square root,

sine, cosine, arctangent, exponentiation, and natural logarithm.

The argument of a function can be a simple variable, a sub­

scripted variable, or an expression. The argument must be in a

floating-point format. FORTRAN recognizes a symbol as a function

when it is a predefined symbol ending in F and followed by an

argument enclosed in parentheses (if the F is missing from the

term, the symbol is treated as a subscripted variable). The argu­

ment of a function can consist of another function or groups of

functions. For example, the expression:

LOGFCSINFCX/2.)/COSFCX/2.»

is equivalent to log tan (~)

FORTRAN-D contains the following functions:

Function Name

ATNF(X)

COSF(X)

EXPF(X)

LOGF(X)

SINF(X)

SQTF(X)

Meaning

Arctangent X, where X is expressed
in radians

Cosine of X, where X is expressed
in radians

Exponential of X

Logarithm of X

Sine of X, where X is expressed
in radians

Square root of X

6-20

6.6 PROGRAM CONTROL STATEMENTS

In this section, FORTRAN statements are discussed in the con­

text of program sequences. FORTRAN statements are executed in the

order in which they are written unless instructions are given to the

contrary by use of the program control statements. These statements

allow the programmer to alter sequence, repeat sections, suspend

operations, or bring the program to a complete halt.

6.6.1 END Statement

END occurs alone on a line and indicates the physical end of

the program to the FORTRAN Compiler. It can be preceded by a line

number. Every program must contain an END statement.

6.6.2 STOP Statement

A program arranged so that the last written statement is the

final and only stopping place needs no other terminating indication;

the END statement automatically determines the final halt. Many

programs, however, contain loops and branches so that the last

executed statement can be somewhere in the middle of the written

program. Frequently there is more than one stopping point. Such

terminations are indicated by the STOP statement. This causes a

final, complete halt; no further computation is possible, although

the program may be completely restarted from the beginning.

When a STOP is encountered during program execution, the

system signifies that a STOP has occurred by outputting an exclama­

tion point (1) to the terminal or high-speed punch, whichever is

being used as the output device.

6-21

6.6.3 PAUSE Statement

The STOP statement prevents further computation after it has

been executed. There is a way, however, to suspend operation for a

time and then restart the program. This procedure is frequently

necessary when the user must do such tasks as loading and unloading

paper tapes in the middle of a program. This kind of temporary halt

is provided by the PAUSE statement. The PAUSE statement halts the

program and returns control to the EduSystem 50 Monitor. The user

may then perform any necessary manipulations and restart the program

by typing the Monitor command START.

6.6.4 GO TO Statement

There are various ways in which program flow may be directed.

As shown schematically in Figure 6-2, a program may be a straight­

line sequence (1), or it may branch to an entirely different se­

quence (2), return to an earlier point (3), or skip to a later point

(4). The blocks represent sections of FORTRAN code. The lines

indicate the path which control takes as the program executes.

All of these branches can be performed in several ways, the

simplest of which uses the statement:

Figure 6-2. Program Flow

6-22

GO TO n

where n is a statement number in the program. The use of this

statement is described in the following example, which also illus­

trates the construction of a loop, the name given to program branches

of the type shown in the example above.

6.6.5 Example of Integer Summation

In the following example, the sum of successive integers is

accumulated by repeated addition. The main computation i.s provided

by the three-instruction loop beginning with Statement 2. The

statements preceding this loop provide the starting conditions, called

the initialization. The partial sum is set to zero, and the first

integer is given the value of one. The loop then adds the integer

value to the partial sum, increments the integer, and repeats the

operation.

C SUM OF FIRST N INTEGERS BY ITERATION
KSUM=0
iNUM=l

2 KSUM=INUM+KSUM
INUM=INUM+l
GO TO 2
END

6.6.6 IF Statement

The program shown in the preceding example performs the required

computation, but note that the loop is endless. To get out of the

loop the user must know when to stop the iteration and what to do

afterwards.

The IF statement fills both requirements. It has the following

form:

IF(E) K,L,M

6-23

where E is any variable name, arithmetic expression, or arithmetic

statement, 'and K, L, and M are statement numbers. The statement

is interpreted in this way:

If the value of E < O,GO TO statement K

E = O,GO TO statement L

E > O,GO TO statement M

Thus, the IF statement decides when to stop a loop by evaluating

an expression. It also provides program branch choices with the

transfer of control, depending on the results of the evaluation of

E. For example:

c

2

3

SUM OF THE FIRST 50 INTEGERS
KSUM=0
IOOM=l
KSUM=INUM+KSUM
INUM=INUM+l
IF CINUM-50)2,2,3
STOP
END

In the foregoing example, the initialization and main loop are

the same as for the example in Figure 6-2 except that the GO TO

statement of the earlier program has been replaced by an IF state­

ment. The IF statement says, "if the value of the variable INUM is

less than, or equal to, 50 (which is the same as saying that if the

value of the expression INUM-50 is less than or equal to zero),

transfer control to Statement 2 and continue the computation. If

the value is greater than 50, stop." (See Section 6.8, Implementa-

tion Notes, for an alternate solution.)

A loop may also be used to compute a series of values. The

following illustration is an example of a program to generate terms

in the Fibonacci series of integers, in which each succeeding mem­

ber of the series is the sum of the two members preceding it:

6-24

C

5
6

10

FIBONACCI SERIES. 100 TERMS
DIMENSION FIB(100)
FIBCl):l.e
FIB(2):1.e
K=3

~IKB(~)=FIBCK.l)+FIB(K-2)
n= ~l

IF (K-100)515110
STOP
END

In this program, the initialization includes a DIMENSION state­

ment which reserves space in storage, and two statements which pro­

vide the starting values necessary to generate the series~ Each

time a term is computed, the subscript is incremented so that each

succeeding term is stored in the next location of the table. As

soon as the subscript is greater than 100, the calculation stops.

6.6.7 DO Loops

Iterative procedures such as the program loop are so common

that a more concise way of presenting them is warranted. Three

statements are required to initialize the subscript, increment it,

and test for termination. The following type of statement combines

all these functions:

DO n J=Kl,K2,K3

here n is a statement number,J is a simple (non-subscripted)

integer variable, and Kl, K2, and K3 are simple integer variables

or integer constants which provide, in order, the initial value to

which J is set, the maximum value of J for which the loop will. be

executed, and the amount by which J is incremented at each return

to the beginning of the loop. If K3 is omitted from the statement

it is assumed to be one (1). Statement n must be a CONTINUE

statement.

6-25

C FIBONACCI SERIES. 100 TERMS
DIMENSION FIB(100)
FIBCl)=1.0
FIB(2)=1.0
DO 5 K=3. 100
FIBCK)=FIBCK-l)+FIBCK-2)

5 CONTINUE
STOP
END

In words, the DO statement says "Execute all statements through

Statement 5 with K=3; when Statement 5 is encountered, perform the

following test: If K+l is less than or equal to 100, set K=K+l and

continue the program by executing the first statement after the DO

statement. If K+l is greater than 100, the next sequential state­

ment following Statement 5 is executed."

DO loops are commonly used in computations with subscripted

variables. In such cases, it is usually necessary to perform the

loops within loops. Such nesting of DO loops is permitted in

FORTRAN.

C FIRST LOOP
DO 10 1=1,20
X(I)=0.

C NESTED LOOP FOLLOWS
DO 5 K=2,40,2
X(I)=X(I)+CBCK)-ZCK»**2

5 CONTINUE
C END OF NESTED LOOP

ACI)=X(I)**2+CCI)
10 CONTI NUE

Sequential elements in the array X(I) are formed by summing

the square of the difference of every second element in the Band

Z arrays. Then the array A(I) is formed by summing every element

in the array C(I) and the square of every element in the array X(I).

The algebraic expression for the loop is as follows:

6-26

where

2 A.=x.
~ ~

40

C.
~

for i=1,2,3, ... 20

for k=2,4,6, ... 40

The following three rules loops must be observed:

1. DO loops may be nested, but they may not overlap. Nested
loops may end on the same statement, but an inner loop may
not extend beyond the last statement of an outer loop.
Figure 6-3 schematically illustrates permitted and forbid­
den arrangements.

2. If the user transfers into the range of a DO loop, the
value to be incremented (J, for example) is not auto­
matically initialized as specified in the DO statement.
Transferring into the range of a DO loop is allowed as
long as:

a. Control was originally transferred out of the DO loop
by some means other than by completing it.

b. Incrementing and testing start with the current value
of J at the time control returns to the loop.

3. A DO loop must end on a CONTINUE statement.

DO DOCE DO

~
DO

DO
CONTINUE

CONTiNUE
CONTiNUE

CONTiNUE
ILLEGAL NESTING

DO

lli
TECHNIQUES

DO

DO

CONTINUE

CONTINUE

LEGAL NESTING
TECHNIQUES

Figure 6-3. Legal and Illegal Nesting Techniques

6-27

DO

c? DO

cP DO DO

CONTiNUE CONTiNUE

DO

~
DO 0

CONTINUE CONTiNUE
[

CONTiNUE 0 CONTINUE

ACCEPTABLE ILLEGAL
BRANCHING BRANCHING

Figure 6-4. Program Branching in DO Loops

6.6.7.1 CONTINUE Statement -- A special statement (CONTINUE) is

provided which is not an executable statement itself, but provides

a termination for all DO loops. DO loops must be terminated on a

CONTINUE statement. The CONTINUE statement is identified with the

line number given in the DO statement. For example:

DO 37 MM=1,10
IF (X(MM)-100.) 37,42,31

37 CONTINUE
GO TO 102

42 STOP

A single CONTINUE statement can be referenced more than once

in a single DO loop or can serve as the terminating line for two or

more nested DO loops.

6.6.8 Computed GO TO

The GO TO statement previously described is unconditional and

provides no alternatives. The IF statement offers a maximum of

three branch points. One way of providing a greater number of alter­

natives is by using the computed GO TO, which has the following form:

GO TO (Kl,K2,K3, ... ,Kn),J

6-28

where Kn is~statement number, and J is a simple integer variable,

which takes on values of 1,2,3, ... n according to the results of

some previous computation. For example:

IVAR=14*J/2+K
GO TO (S,7,S,7,S,7,10),IVAR

causes a branch to Statement 5 when IVAR=l, 3, or 5; to Statement

7 when IVAR=2, 4, or 6; and to Statement 10 when IVAR=7. When IVAR

is less than 1 or greater than 7, the next sequential statement

after the GO TO is executed.

6.7 FORTRAN INPUT/OUTPUT

So far, we have assumed that all information (programs, data,

and sub-programs) is in memory, without regard to how it is put

there. Programs are read by a special loader, but the programmer

is responsible for the input of data and the output of results by

including directions for I/O operations in his program.

For any input/output procedure, several questions must be

answered:

1. In which direction is the data going? The data coming in
is being read into memory; information going out is being
written on whatever medium is specified.

2. Which device is being used? Information may be trans­
ferred between core and whatever input/output devices
are available; each I/O operation must specify the device
involved.

3. Where in core memory is the data coming from or going to?
The amount of data and its location in the computer storage
must be specified.

4. In what mode is the data represented? In addition to
floating and fixed-point modes for numeric data, there is
the Hollerith mode for transferring alphanumeric or text
information.

5. What is the arrangement of the data? The format of incom­
ing or outgoing data must be specified.

For every data transfer between core memory and an external

device, two statements are required to provide all of the informa­

tion listed above. The first three items are specified by the

input/output statement, and the last two items are determined by

the FORMAT statement.

6.7.1 Data Formats

FORTRAN-D provides for communication of data to and from a

program in the following ways:

6.7.1.1 ASCII Coded Data -- The terminal can be used to transfer

data to the program either via the keyboard (in which case the user

types the data) or from previously punched paper tape (read via the

terminal tape reader). Data can be output from a program to the

terminal producing a printed copy with or without the corresponding

punched paper tape. The high-speed reader and punch can also be

used for data transfer via punched paper tape. No printed copy is

made when output is to the high-speed punch.

6.7.1.2 Binary Coded Data -- System disk can also be used for data

transfer, in which case the data is stored as a core image. Integers

are read and written as single l2-bit words, floating-point numbers

as three words. Alphanumeric information is transmitted as 8-bit

ASCII coded characters right-justified in l2-bit words (one charac­

ter per word).

6.7.2 Input/Output Statements

Input/Output statements control the transfer of information.

As illustrated below, I/O statements consist of three basic items

of information: the device being accessed and the direction of

transfer, the number of the FORMAT statement controlling the arrange­

ment of data, and the list of variable names whose values are to be

output or changed by new input.

6-30

NOTE

There is a restriction on subscripted
variables when used with I/O statements.
Subscripts to be used with I/O state­
ments must be of the form: LL: where
each L is a letter, and not of the form
LD, where D is a digit. For example:

DO 10 Ll=1 .. 4
ACCEPT 7 .. ACL1)

will not store information correctly.
The statement should read:

DO 10 LL=1 .. 4
ACCEPT 1 .. ACLL)

ACCEPT N,V(l) ,V(I+l),V(I+2)

~
Llst of varlable names

Statement number of FORMAT
Statement

Device Selection and direction of
transfer

6.7.2.1 ACCEPT and TYPE Statements -- ACCEPT and TYPE transfer in­

formation between the terminal and EduSystem 50. ACCEPT causes

information to be read into core memory from either the keyboard,

the terminal paper tape reader, or the high-speed reader if it is

assigned before calling FORTRAN-D. ACCEPT is especially convenient

if data is to be entered at the keyboard since it automatically

supplies line feed when the RETURN key is typed. Also, the user

may correct an erroneously typed value by typing the RUBOUT key.

TYPE causes information to be transferred from core memory

to the terminal printer, the terminal paper tape punch, or the

high-speed punch if it is assigned before calling FORTRAN-D.

6-31

If the- user needs the high-speed reader and punch for I/O, he

must assign the devices for his use before calling the FORTRAN

compiler (FORT) or operating system (FOSL). Once logged into

EduSystem 50, he replies to Monitor's dot with the appropriate assign

statements. For example:

.ASSIGN P
P ASSIGNED

.ASSIGN R
R ASSIGNED

The Monitor replies with P ASSIGNED and R ASSIGNED in response

to the user. If the device requested is not available (being used

by someone else), the Monitor responds with a message telling who

has the device assigned. The high-speed reader/punch is device

code 2. If running several programs, the user should reassign the

devices before each run.

6.7.2.2 READ and WRITE Statements -- EduSystem 50 FORTRAN also

allows programs to read and write data files on disk. These data

files are completely separate from program files. Data files are

read and written by standard READ and WRITE statements within the

FORTRAN program. The device code for the disk is 3. Since pro­

grams which use disk are treated differently by FORT from those

which do not use disk, it is necessary to identify programs which

do. This is done by placing a DEFINE DISK statement as the first

statement in any FORTRAN program which includes a READ or WRITE

statement with a device code of 3.

Just as FORT must ask for the names of its input and output

files, so must a FORTRAN program ask for the names of its disk

files. FORTRAN programs do this by typing INPUT: and OUTPUT: a

second time. The user responds by typing the names of the data

files to be read or written by the program. FORTRAN will ask for

6-32

both INPUT and OUTPUT for all programs which include a DEFINE DISK

statement. If only one is to be used, respond to the other by

typing the RETURN key;

6.7.3 Variable Specification in I/O Statements

Following the instruction that selects the device and direction

of transfer is the statement number of the FORMAT statement that

controls the arrangement of the information being transferred. For

example:

ACCEPT 10#A
10 FORMAT <E)

Every I/O statement must have a reference to a FORMAT statement.

The final item specified in the I/O statement is the list of

variables. This is a sequential list of the names of variables and

array elements whose values are to be transferred in the order

indicated. There is no restriction on the number of names which

may appear in the list of an I/O statement, as long as the total

statement length does not exceed 128 characters. The modes of the

variables named need not agree with the corresponding FORMAT

statement; however, the modes specified in the FORMAT statement take

precedence. For example, where A=3.2,J=27,KAL=302, and BOB=7.58:

23
TYPE 23#A#J#KAL#BOB
FORMAT <I#E#I#E)

The decimal portion of A is dropped and the number 3 is printed

as an integer; the value of J is printed as a normalized number;

KAL is printed as an integer; and BOB is printed as a normalized

number. The output would look like the following:

3 0.270000E+2 302 0.758000E+l

6-33

NOTE

In READ and ACCEPT statements, although
the number is read according to the
FORMAT statement, it is stored according
to the mode of the variable. For example:

5 ACCEPT l0,A
10 FORMAT (I)

causes the number 12.3 typed by the user
to be read as 12 and stored as O.120000E+2.

Array names included in I/O lists must be subscripted in one

of the following forms:

A(V) A (V+C) A(V-C) A(C)

where A is the array name, V is a simple integer variable and C is

a positive nonzero integer constant.

TYPE 10,A,I,B,CCI+l),NeJ+l)
10 FOR~~T CE,I,E,/)

If the list contains more names than there are elements in the

FORMAT statement, the FORMAT statement is reinitialized when the

elements are exhausted. The first element in the FORMAT statement

then corresponds to the next name in the list. For instance, in

the preceding example when the value of the variable, B, is printed

in the E format, the control character, slash (/) I causes a carriage

return/line feed to occur. Then the FORMAT statement is reinitiali­

zed, and the array element, C (I+1), is printed in the E format and

the array element N(J+l) in the I format.

6-34

The list does not have to exhaust the elements of a FORMAT

statement. If there are fewer names in the list than there are

elements in the FORMAT statement, the program completes the I/O

operation and proceeds to the next sequential FORTRAN statement.

If this next statement is another I/O statement that references a

previously unexhausted FORMAT statement, that FORMAT statement is

reinitialized. FOruV~T statements are reinitialized when they are

referenced or when all of their elements are exhausted.

6.7.4 FORMAT Statement

The FORMAT statement controls the arrangement and mode of the

information being transferred. The values of names appearing in the

I/O statement list are transferred in the mode specified by the

corresponding element in the FORMAT statement. These controlling

elements consist of the characters E, I, A, slash (/), and quote

("). The set of elements must be enclosed in parentheses and

separated by commas. For example:

The control elements E and I are used for defining the mode of

the data being transferred. When a variable is transferred in the

E format, it is stored or output in floating-point form. If the

variable is transferred in the I format, it is stored or output in

fixed-point or integer form. Mode conversion on input or output can

be accomplished because the elements in the FORMAT statement define

the mode of the data. The mode of the original variable is over­

ridden where necessary. For example:

10
TYPE 10"A
FORMAT (I)

6-35

The variable, A, is printed as an integer, and the fractional

part of A is truncated. If A has a value of 14.96, only the integer

part, 14, is printed. If A has an absolute value of less than one,

zero is printed.

6.7.5 The Format Specification

The control element, A, is used for defining the alphanumeric

mode of data I/O. When a variable is to be assigned an alpha­

numeric value, data is read one character per'variable. FORTRAN

ignores CTRL/C, blank tape, RUBOUT, and 0200 code (leader/trailer

tape). FORTRAN does not see the form-feed character when input is

from the disk. The decimal equivalent of the ASCII value of the

character is assigned to the variable. For example:

A = 301 (OCTAL) = 192 {decimal}

Any variable assigned the alphanumeric value, A, would be set

equal to 192.

It is possible to do arithmetic with integer variables assigned

alphanumeric values. For example:

10
12

DO 10 J=I,S
ACCEPT 12,KCJ)
IF CXCJ)-141) 10 40 10
CONTINUE "
FORMATCA)

where the IF statement tests to see if the last character read is a

carriage return (which is ASCII 215 or 141 decimal); if so, control

transfers to Statement 40; if not, control stays within the DO loop.

It is not possible to do arithmetic with real variables assigned

alphanumeric values. Output in alphanumeric format converts the

value of the variable into an ASCII character and prints that char­

acter. For example:

6-36

12 FORMAT (A)
DO 20 1=115
TYPE 121AeJ)

20 CONTINUE

If the variables A(l) through A(S) were not originally assigned

alphanumeric values, the results of the output can be meaningless.

6.7.6 Input Formats

Input data words can only consist of a sign, a decimal value,

an exponent value if the data is floating-point, and a field ter-

minating character such as space. Any character- that is not a

number, decimal point, sign, or E can be used to terminate a field

except the RUBOUT character. When typing data, any number of

spaces or other nonnumeric characters can be typed before the sign

or decimal value in order to make the hard copy more readable.

Input data can be transferred into core memory from either the

terminal paper-tape reader, the keyboard, or the high-speed reader.

Input can be entered in either fixed- or floating-point modes

(integers or decimal numbers). The mode in which data is stored

in core memory is controlled by the first letter of the variable

name. The characters read into core are determined by the corres-

ponding element in the FORMAT statement.

6.7.6.1 Integer Values--the I Format -- An integer data field con­

sists of sign2 and up to six decimal characters. Some examples of

integer values are as follows:

2plus sign can be represented by a plus or space character. Minus
is represented by a minus character. If a sign character is ab­
sent from the data word, the data is stored as positive.

6-37

Typed Numbers

-2001

-40

-0040

16

+2041

Values Accepted

-2001

-0040

-0040

0016

2041

6.7.6.2 Real Values--the E Format -- A floating-point input word

consists of a sign, the data value up to six decimal characters, an

E if an exponent is to be included, the sign of the exponent, and

the exponent (i.e., the power of ten by which the data word is

multiplied). For example:

ddd.dddEnn

The d's represent numerical characters in the data and the n's

represent the 2-digit power of ten of the exponent (preceded by a

sign). Either the sign, the decimal point, or the entire exponent

part can be omitted. If the sign is omitted, the number is assumed

to be positive; if the decimal point is omitted, it is assumed to

appear after the rightmost decimal character. If the exponent is

omitted, the power of ten is taken as zero.

Some examples of floating-point values are as follows:

Typed Numbers Values Accepted

16 0.16 x 102

.16E02 0.16 x 102

1600.E-02 0.16 x 10 2

6.7.7 OutEut Formats

6.7.7.1 E and I Formats -- Integer values are always printed as the

sign and a maximum number of four characters with spaces replacing

6-38

leading zeros. On output, integers are left justified within the

stated field. Sufficient trailing spaces are printed to fill the

field followed by one additional space.

Floating-point values are printed in a floating-point format

which consists of sign, leading zero, decimal point, six decimal

characters, the character E, the sign of the exponent (minus or

plus)! and an exponent value of two characters. For example:

Integer Values Output Format

-1043 -1043

-0016 16

+0016 + 16

Floating-point values are printed as follows:

SO.ddddddEsnn

where: S represents the sign, minus sign, or space

dddddd represents six decimal digits of the data word

E indicates exponential representatio~

s represents the sign of the exponent value

nn represents the exponent value

Some examples of floating-point output are:

Decimal Value

-8,388,608.0

-.000119209

Output Format

-O.838860E+07

0.119209E-03

6.7.7.2 FORMAT Control Specifications -- In most cases when data is

to be presented; it must be labeled and arranged properly on a data

sheet. In order that this can be accomplished with FORTRAN, a

6-39

provision has been made so that text information and spacing can be

printed along with the data words. These features are provided by

the special FORMAT control elements quote (") and slash (/). The

slash character causes a return to the left margin.

6.7.7.3 Hollerith Output -- When text information is enclosed in

quotes "and is contained as part of a FORMAT statement, it is output

to the specified device as it appears in the statement. This output

occurs when a TYPE or WRITE statement references a FORMAT statement

containing text, and all other elements of the FORMAT statement

previous to the text have been used. All legal terminal characters

(other than the quote character itself) can be contained within

quotes and output as text.

TYPE 10
10 FORMAT CI THIS IS HOLLERITH /)

TYPE 100 .. AMIN .. AMAX
100 FORMAT C/ MINIMUM= E .. / MAXIMUM= E .. /)

TYPE 210
210 FORMAT (/ .. 1.... CUMULATIVE DISTRIBUTION I .. I'

.. I NCREMENTS FREQUENCY" .. I)

DO 220 K=I .. 100
TYPE 250 .. K .. VALUCL) .. VALUCK+1) .. COUNTCK)
CONTINUE

250 FORMAT (I.... E.... E.... tt .. E .. I)

6.8 IMPLEMENTATION NOTES

6.8.1 Double Subscripts

This version of FORTRAN does not have the facility for double­

subscripted variables. To accomplish double subscripting, the

programmer has to include indexing statements in the source program

as illustrated below. In this example, the matrices are stored

columnwise in memory; that is, sequential locations in memory are

used as follows:

6-40

Element
Relative Position
in Memory (INDX)

all

a2l

a31

a4l

a5l

a6l

a12

a22

a56

a66

1

2

4

5

6

7

8

35

36

If referencing Element a56 in the array, M=5, N=6, (1=6 for a

6 by 6 array), and INDX=M+I*(N-l)=5+I*5=35. If referencing Element

a22, INDX=2+6*1=8.

C MATRIX MULTIPLY PROGRAM
DIMENSION A(36)~B(36)~C(36)

C ACCEPT DIMENSION OF ARRAY
ACCEPT I~I

1 FORMAT (I)
DO 10 M=I~I
DO 10 N=1 ~ I
I NDX = M + I * (N -1)

C ACCEPT FIRST MATRIX
ACCEPT 1 ~A(INDX>

2 FORMATCE)
10 CONTINUE

TYPE 15
15 FORMAT C/~/~/)

DO 20 M=l~I
DO 20 N=l~I
I NDX = M+ I * (N -1)

C ACCEPT SECOND MATRIX
ACCEPT 1 ~ BC I NDX)
CC INDX)=0

20 CONTINUE
C MULTIPLY MATRICES

6-41

DO 30 M=1,I
DO 30 N=1,I
DO 30 K=l,I
IC=N+I*CM-1)
IA=N+I*CK-1)
IB=K+I*CM-1)
CCIC)=CCIC)+ACIA)*BCIB)

30 CONTINUE
TYPE 15

C PRINT RESULTS IN MATRIX FORM
DO 40 M=1,I
TYPE 21
DO 40 N=1,I
INDX-M+I*CN-l)
TYPE 1, C (I NDX)

40 CONTINUE
21 FORMAT C/)

TYPE 15
END

6.8.2 Substatement Feature

The most important result of treating the equal sign as a binary

operator (as explained in Section 6.4.3, Arithmetic Statements) is

that it may be used more than once in arithmetic statement. In addi-

tion to simple replacement operations (see Section 6.5.3.2, Multiple

Replacement), consider the following:

CPRM:(CKL-CKG)/(CPG=P*(Q+l.»

The internal arithmetic statement (or substatement), CPG=P*

(Q+l), is set off from the rest of the statement by parentheses.

The complete statement is a concise way of expressing the following

common type of mathematical procedure:

Let:

Where:

c l = Ckl - ~g
Cpg

Cpg = P (q+l)

6-42

The stating of a relation followed by the conditions for eval­

uating any of the variables can be expressed in a single arithmetic
statement in FORTRA~,

A second use of the equal sign is shown below. For background

on this short program. i@Q the discussion of the same problem in

the section on the IF $tateroent.

c

2

3

SUM OF THE FIRST 50 INTEGERS
KSUM=0
lNUM=50
KSUM=INUM+KSUM
IF (INUM=INUM-\)3#3#2
STOP

In this example, the s~~ is formed by counting down, but the

same results are achiev§a as in the section on the IF statement.

The initialization is Oflanged so that INUM starts with the value of

50 instead of 0, and th~ §tatement, INUM=INUM+l, is no longer

required.

6.8.3 Error Checking

Because of the extrem@ly compact nature of the FORTRAN-D Com­

piler, either FORTRAN features or error checking will suffer. In the

case of FORTRAN-O, checkin9 for certain errors is not as important as

preserving the language. ~herefore, the programmer is advised to

follow the rules as stated in this manual and carefully check his

program for mistakes. For example, the statement,

A = B + C -

will compile, although at execution time it will give unpredictable

results.

6-43

It should be noted that data areas must not extend below loca­

tion 5600 in FORTRAN-D. No diagnostic is issued unless program and

data areas actually overlap. A maximum of 896 10 words are available

for data. Care should be taken not to exceed the limits through use

of large arrays, etc. Similar obvious errors are accepted by the

Compiler; their effects are often unpredictable.

6.8.4 FORTRAN-D Source Program Restrictions

The following limits are imposed upon all FORTRAN-D source

programs:

1. Not more than 896 data cells. This includes all dimen­
sional variables, user-defined variables, constants, and
all constants generated by the usage of a DO loop.

2. Not more than 20 undefined forward references to unique
statement numbers per program. An undefined forward
reference is a reference to any statement label that has
not previously occurred in the program. Multiple refer­
ences to the same undefined statement numbers are consi­
dered as one reference.

3. Not more than 64 different variable names per program.

4. Not more than 128 characters per input statement.

5. Not more than 40 numbered statements per program.

6.8.4 FORTRAN-D Compiler and Operating System Core Map

The Compiler occupies the following core locations:

0003-7600

7200-7600

Compiler plus tables

Compiler tables (undefined forward
reference tables, etc.)

The Operating System occupies locations:

0000-5200

0000-6000

Operating System without disk I/O

Operating System for disk I/O

6-44

Locations 5201 through 7576 are available for the user's program

when using paper tape input/output.

6.9 FORTRAN-D ERROR DIAGNOSTICS

Diagnostic procedures are provided in the Compiler to assist the

programmer in program compilation. When the compiler detects errors

in a FORTRAN source program, it prints the error messages on the user

terminal. These messages indicate the source of the errors and direct

the programmer's efforts to correct them. To speed up the Compiler

process, the Compiler prints only an error code. The programmer then

looks up the error message corresponding to the code in Tables 6-2

through 6-4 and takes the appropriate corrective measures.

6.9.1 Compiler Compilation Diagnostics

xxxx xx
'+

Format of Diagnostics

xx
+
~The identifying condition code

The number of statements since the appearance
of a numbered statement (octal value) .

------The statement number of the last numbered statement.

For example:

10 A=I(J+l)
B=A*(H+SINFCTHTA)

During compilation of the previous statements, the following

error code would be printed:

6-45

TABLE 6-1

FORTRAN-D STATEMENT SUMMARY

Statement and Form

Arithmetic Statements

v = e

Control Statements

CONTINUE

DO n i=k l ,k2 ,k3

END

GO TO n

GO TO (n 1 ' n 2 ' · .. , nn) , i

PAUSE

END

Specification Statements

COMMENT

DEFINE DISK

DIMENSION vl(nl), v 2 (n2) , ...
v (n) n n
FORMAT (sl,s2, ... ,sn)

Input/Output Statements

ACCEPT f, list

Explanation

v is a variable (possibly subscripted);
e is an expression.

Proceed.

n is the statement number of a CON­
TINUE; i is an integer variable; klk2k3
are integers or nonsubscripted
integer variables.

Terminate compilation; last statement
in program.

n is a statement number.

nl, ... ,nn are statement numbers; i is a
nonsubscripted integer variable.

e is an expression; nl,n2,n3 are state­
ment numbers.

Temporarily suspend execution.

Terminate compilation; last statement
in program.

Designated by C as first character on
line.

Enables disk r/o.
vl,.:.,vn are variable names; nl, •.. ,nn
are l.ntegers.

s is a data field specification.

f is a FORMAT statement number; list is
a list of variables; input is from the
terminal.

6-46

Statement and Form

READ u,f,list

TYPE f,list

WRITE u,f,list

l~ ~l 11

Table 6-1. (Cont.)

Explanation

u is an integer representing the device
which data is to be read: 1= terminal
2=high-speed reader, 3=disk; f is a
FORMAT statement number; list is a list
of variables.

f is a FORMAT statement number; list is
a list of variables: output is to the
terminal.

u is an integer representing device
onto which data will be written: 1=
terminal, 2=high-speed punch, 3=disk,
f is a FORMAT statement number; list is
a list of variables.

indicating that a statement which occurs one statement octal (one

decimal) after the appearance of Statement 10 is in error. The

message corresponding to Code 11 shows that the number of left and

right parentheses in the statement is not equal.

If a statement number is referenced but does not appear in the

source program, the diagnostic code will be printed as follows:

xxxx 77 20

where the number usually reserved for the last numbered statement

(xxxx) is replaced by the missing statement, e.g.

GO TO 100

The diagnostic would appear as follows where Statement 100 is never

defined.

l~~ 77 2~

6-47

Error
Code

00

01

03

04

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

25

26

TABLE 6-2

FORTRAN-D COMPILER COMPILATION DIAGNOSTICS

Explanation

Mixed mode arithmetic expression.

Missing variable or constant in arithmetic expression.

Comma was found in arithmetic expression.

Too many operators in this expression.

Function argument is in fixed-point mode.

Floating-point variable used as a subscript.

Too many variable names in this program.

Program too large, core storage exceeded.

Unbalanced right and left parentheses.

Illegal character found in this statement.

Compiler could not identify this statement.

More than one statement with same statement number.

Subscripted variable did not appear in a DIMENSION
statement.

Statement too long to process.

Floating-point operand should have been fixed-point.

Undefined statement number.

Too many numbered statements in this program.

Too many parentheses in this statement.

Too many statements have been referenced before they
appear in the program.

DEFINE statement was preceded by some executable
statement.

Statement does not begin with a space, tab, C, or
number.

6-48

Error
Code

0240

3100

3417

6204

6211

6463

6731

6746

TABLE 6-3

FORTRAN-D COMPILER SYSTEMS DIAGNOSTICS

Explanation

System file error. The disk may be full.

Illegal operator on compiler stack.

Preprecedence error.

Error in opening the compiler, FDCOMP. Must be stored
under account 2.

Error in reading the compiler, FDCOMP.

Error in reading the compiler, FDCOMP.

Disk output error.

No END statement in input file.

6.9.2 Compiler Systems Diagnostics

Ce.rtain errors can make it impossible for the Compiler to pro­

ceed in the normal manner. These errors occur before the Compiler

has been loaded into core. They may be caused by improperly loading

the Compiler, by not having an END statement on a source file, by a

machine malfunction, or by other errors. These errors, referred to

as system errors, are explained in Table 6-3.

The compiler may halt (printCTRL/B followed by S) with the PC

set to one of the values listed in Table 6-4 (use the WHERE command
to determine the PC). The file error code will be in the AC.

PC

5004

5011

6142

6147

TABLE 6-4
FORTRAN D ERROR HALTS

Explanation

Error opening FOSSIL. FOSSIL, the FORTRAN operating
system, must be stored under account 2.

Error reading FOSSIL.

Error opening FOSL. FOSL, the FORTRAN operating sys­
tem loader, must be stored under account 2.

Error reading FOSL.

6-49

6.9.3 Operating System Diagnostics

Not all errors are detected by the Compiler. Some errors can

only be detected by the operating system (FOSL). Also there are

some conditions which indicate errors on the part of the Compiler

and/or operating system. When such an error occurs during running

of a program, the computer prints out an error message containing

the word TILT or ERROR and an error number. The program then stops,

prints BS, and returns to the Monitor.

Error
Code

01

02

04

05

06

11

12

13

14

15

16

17

20

21

22

40

TABLE 6-5

FORTRAN-D OPERATING SYSTEM DIAGNOSTICS

Explanation

Checksum error on FORTRAN binary input.

Illegal origin or data address on FORTRAN binary input.

Disk input-output error3 .

High-speed reader error.

Illegal FORTRAN binary input device.

Attempt to divide by zero.

Floating-point input data conversion error.

Illegal op code.

Disk input-putput error3 .

Non-FORMAT statement used as a FORMAT.

Illegal FORMAT specification.

Floating-point number larger than 2047.

Square root of a negative number.

Exponential negative number.

Logarithm of a number less than or equal to zero.

Illegal device code used in READ or WRITE statement.

3May be caused by machine malfunction or operating system error.

6-50

Table 6-5. (Cont.)

Error
Code Explanation

4

41

76

77

System device full, CQuld not complete a WRITE
statement.

Stack underflow error4 .

Stack overflow error4 .

May be caused by source program or loading error; to correct, try
the fOllowing:

a. Recompile the source program.

b. Examine source program (in particular the arithmetic statements
and subscripted variables).

6-51

7.1 INTRODUCTION

CHAPTER 7

PAL-D ASSEMBLER

The EduSystem 50 Assembly System is composed of the PAL-D

Symbolic Assembler, LOADER, and ODTHI. The PAL-D Assembler is used

to translate the user's source program into an object program

(binary or machine code). LOADER is used to transfer the user's

object program from the disk into core for debugging or execution.

ODTHI (Octal Debugging Technique) is used to dynamically debug the

object program which has been loaded into core using LOADER.

PAL-D (an acronym for Program Assembly Language for the Disk)

is a two pass Assembler (with optional third pass) designed for 4K

PDP-8 family of computers. A program, written in the PAL-D source

language, is translated by the Assembler into a binary file in two

passes through the Assembler. The binary file is loaded, boy the

LOADER, into the computer for execution.

During the first pass of the assembly, all user symbols are

defined and placed in the Assembler's symbol table. During the

second pass, the binary equivalents of the input source language are

generated. The Assembler's third pass produces a printed assembly

listing of the program's instructions with the location, generated

binary, and source code side by side on each line 8 To call the

PAL-D Assembler, the user types:

.R PALD

PAL-D responds by requesting INPUT: Type the name of the source

program or programs to be assembled. A maximum of three files can

7-1

be assembled together. PAL-D then requests OUTPUT: Type the name

of the new file in which PAL-D will store the assembled program in

executable binary form. PAL-D then requests OPTION: For a normal

assembly, press the RETURN key. For a listing on the line printer,

respons with L. If an assembly listing is not desired, respond to

OPTION w·ith N.

PAL-D then proceeds to assemble the program: any errors in

the program are indicated 7 the program symbol table is printed7 and

finally, an assembly listing of the source program is printed. When

the listing is completed and the assembly finished, control is

returned to the Monitor. When PAL-D begins printing the symbol table

at the end of pass 2, the binary file has already been generated.

Thus, the user may type CTRL/C to bypass the symbol table print out.

7.2 EduSystem 50 PAL-D

Because of the necessary hardware changes made for time-sharing

on EduSystem 50, PAL-D has been revised in the following ways (as

differing from PAL-D on a non-timeshared PDP-B) :

a. PAL-D, under EduSystem 50, allows a very large number of
user symbols in addition to the permanent symbols listed
in Table 7-1. The permanent symbol table has been revised
to include all instructions peculiar to the time-sharing
system.

b. A CTRL/C (tC) from the terminal terminates the assembly,
and halts PAL-D, sending the user back to the Monitor.

7.3 SYNTAX

Programs processed under PAL-D are written using ASCII charac-

terse

7-2

7.3.1 Legal Characters

The foll~wing characters are acceptable to PAL-D:

a.

"1-
1).

c.

The alphabetic characters

",,'I- _ nwueric characters ,,"\
".J:Ht::: \V

_ .. - - special characters Tne

L..-...I
Space

+ Plus

Minus

Exclamation Mark

J carriage Return

-tI Tabulation

Conuna

= Equal Sign

. Semicolon I

$ Dollar Sign

* Asterisk

Point (Period)

/ Slash

& Ampersand

" Quote

() Parentheses

(J Brackets

(ABCD .•• XYZ)

,
.L

') ~ A c::. c:.. ., Q 9) &.. oJ -r oJ v I "-'

Separates symbols and numbers.

Combines symbols or numbers (add)

Combines symbols or numbers (subtract)

Combines symbols or numbers
(inclusive OR)

Terminates a line

Formats symbols or numbers or
source tape output

Assigns symbolic address

Direct assignment of symbol values

Terminates coding line (will not
terminate conunents)

Indicates end of pass

Sets current location counter:
redefines origin

Has value equal to current location
counter

Indicates start of conunent

Combines symbols or numbers (AND)

Generates ASCII constant

Defines literal on current page

Defines page 0 literal

7-3

d. Ignored characters

Form-Feed

Blank Tape

Code 200

Rubout

Line-Feed

Indicates the end of a logical
page of source program

Used for leader/trailer

Used for leader/trailer

Follows tabulation characters
for timing purposes

Follows carriage return and causes
terminal paper to roll upward one
line

Since certain characters are invisible (i.e., nonprinting), the

following symbols are used throughout this chapter to represent their

presence:

Space

Tabulation

carriage Return

7.3.2 Illegal Characters

All characters other than those listed above are illegal when

not in a comment or TEXT field and, being illegal, their occurrence

causes the error message IC (Illegal Character) to be printed by

PAL-D.

7.3.3 Format Effectors

Tabulations are usually used in the body of a source program to

provide a neat page: they can separate fields from one another, as

between a statement and a comment. For example, a line written

GO, TAD TOTAL/MAIN LOOP

is much easier to read if tabs are inserted to form

TAD TOTAL /MAIN LOOP

7-4

Either the 11:11 (semicolon) or ")" (carriage return-line feed)

character may be used as a statement terminator. The semicolon is

considered identical to carriage return-line feed except that it

will not terminate a comment. Example:

TAD A ITHIS IS A COMMENT; TAD B

The entire expression between the "/" (slash) and ~(carriage

return) is considered a comment.

The semicolon also allows the programmer to place several lines

of coding on a single line. If, for example, he wishes to write a

sequence of instructions to rotate the contents of the accumulator

and link six places to the right, it might look like

RTR .;

RTR~

RTR .;

The programmer may place all three RTRs on a single line by separat­

ing them with the special character "i" and terminating the line

with a carriage return. The above sequence of instructions can then

be written

RTR; RTR; RTR

This format is particularly useful when setting aside a section of

data storage for a list. For example, a 12-word list could be

reserved by specifying the following format.

7-5

0; 01 01 01 01 0
at m; 01 01 01 0

A neat printout (or program listing) makes subsequent editing,

debugging, and interpretation much easier than when the coding is

laid out in a haphazard fashion.

7.4 NUMBERS

Any sequence of numbers delimited by a punctuation character is

interpreted numerically by PAL-D.

The radix control pseudo-operators (pseudo-ops) indicate to the

Assembler the radix to be used in number interpretation (see Section

7.9). The pseudo-op DECIMAL indicates that all numbers are to be

interpreted as decimal until the next occurrence of the pseudo-op

OCTAL. The pseudo-op OCTAL indicates that all numbers are to be

interpreted as octal until the next occurrence of the pseudo-op

DECIMAL.

The radix is initially set to octal and remains octal unless

otherwise specified.

7.4.1 Arithmetic and Logical Operators

The arithmetic and logical operators are:

+ Plus

Minus

Exclamation Mark

2s complement addition (modulo 4096)

2s complement subtraction (modulo
4096)

Boolean inclusive OR (union)

7-6

& Ampersand

Space

7.4.2 Evaluating Expressions

Boolean AND (intersection)

Interpreted as inclusive OR when
used to separate ~~o symbolic
operators. Example:

TAG,

Symbols and numbers (exclusive of pseudo-op symbols) may be

combined by using the arithmetic and logical operators to form expres-

sions. Expressions are evaluated from left to right. Example:

A B A+B A-B AlB A&B

value 0002 0003 0005 7777 0003 0002

Value 0007 0005 0014 0002 0007 0005

Value 0700 0007 0707 0671 0707 0000

7 • 5 STATEMENTS

PAL-D source programs are usually prepared on a terminal with the

aid of the Editor as a sequence of statements. Each statement is

written on a single line and is terminated by a carriage return-line

feed sequence. PAL-D statements are virtually format free; that is,

elements of a statement are not placed in numbered columns with rigidly

controlled spacing between elements, as in punched-card oriented

assemblers.

There are four types of elements in a PAL-D statement which are

identified by the order of appearance in the statement, and by the

separating, or delimiting character which follows or precedes the

element.

7-7

statements are written in the general form

label, operator operand /comment

The Assembler interprets and processes these statements, generating

one or more binary instructions or data words, or performing an

assembly process. A statement must contain at least one of these

elements and may contain all four types.

7.5.1 Labels

A label is the symbolic name created by the source programmer

to identify the position of the statement in the program. If present,

the label is written first in a statement and terminated by a comma.

7.5.2 Operators

An operator may be one of the mnemonic machine instruction codes

(Tables 7-1 &7-2),or a pseudo-operation (pseudo-op) code which directs

assembly processing. The assembly pseudo-op codes are described in

Section 7.9. Operators are terminated with a space if an operand

follows or with a semicolon, slash, or carriage return.

7.5.3 Operands

Operands are usually the symbolic address of the data to be

accessed when an instruction is executed, or the input data or argu­

ments of a pseudo-oPe In each case, interpretation of operands in a

statement depends on the statement operator. Operands are terminated

by a semicolon, a slash if a comment follows, or a carriage return­

line feed.

7-8

7.5.4 comments

The programmer may add notes to a statement following a slash

mark. Such comments do not affect assembly processing or progrfuu

execution, but are useful in the program listing for later analysis

or debugging.

7,,6 SYMBOLS

The programmer may create symbols to use as statement labels,

as operators, and as operands. A symbol is a string of one or more

alphanumeric characters delimited by a punctuation character. A

symbol contains from one to six characters from the set of 26 alpha-

betic characters and ten digits 0 through 9; however, the first

character must be alphabetic.

7.6.1 Symbol Distinction

The PAL-D Assembler makes a distinction between the types of

symbols it is processing. These types are

a. Permanent symbols

JMS A symbol whose value of 4000(octal) is taken from
PAL-Dis permanent operation code symbol table.

b. User-defined symbols

HERE A user-defined symbol; when used as a symbolic
address tag, its value is the address of the
statement it tags (this value is assigned by PAL-D) •

7.6.1.1 Permanent Symbols

PAL-D has in its permanent symbol table definitions of its

operation codes, operate commands, and many input-output transfer (lOT)

microinstructions (see table 7-2.). PAL-D g s permanent symbols may

be used without prior definition by the user.

7-9

7.6.1.2 User-Defined Symbols

User-defined symbols are composed according to the following

rules.

a. The characters must be alphabetic (A-Z) or numeric (0-9) .

b. The first character must be alphabetic.

c. Only the first six characters of any symbol are meaningful

to PAL-Dj the remainder, if any, are ignored.

Note that because of the third rule above, a symbol such as INTEGER

would be interpreted as INTEGE since the seventh character is ignored.

Remember, if symbols of more than six characters are used, the pro-

grammer must avoid defining two apparently different symbols whose

first characters are identical. For example, the two symbols

GEORGEl and GEORGE2 differ only in the seventh character, thus the

Assembler treats them as being the same symbol, GEORGE.

When the symbol following the space is a user-defined symbol,

the space acts as an address field delimiter. Example:

*2117
AI CLA

•
•
•

JMP A

where A is a user-defined symbol with the value 2117. The expression

JMP A is evaluated as follows.

7-10

JMP 101

Address A 000

000 000

all 001

000 (binary representation of
permanent symbol JMP)

III (binary representation of
address A)

The operation codes (op codes) are inclusively ORed to form

JMP A 101 all 001 III

or written more concisely in octal as 5317.

7.6.2 S\~bolic Addresses

A symbol used as a label to specify a symbolic address must appear

first in the statement and must be immediately followed by a comma.

When used in this way, a symbol is said to be definede A defined

symbol can reference an instruction or data word at any point in the

program. A symbol can be defined as a label only once. If a program-

mer attempts to define the same symbol as a label again, the second

or successive attempt is ignored and an error is indicated. The

Assembler recognizes only the first definition. These are legal

symbolic addresses:

ADDR,

TOTAL,

SUM,

The following symbolic addresses are ~llegal:

7ABC, (first character must be alphabetic)

LAB , (comma must immediately follow label)

7-11

7.6.3 Symbolic Operators

Symbols used as operators must be predefined by the Assembler or

by the programmer. If a statement has no label, the operator may

appear first in the statement, and must be terminated by a space, tab,

semicolon, or carriage return. The following are examples of legal

operators:

TAD

PAGE

ZIP

(a mnemonic machine instruction operator)

(an Assembler pseudo-op)

(legal only if defined by the user)

7.6.4 Symbolic Operands

Symbols used as operands must have a value defined by the user.

These may be symbolic references to previously defined labels where

the arguments to be used by this instruction are to be found, or the

values of symbolic operands may be constants or character strings.

TOTAL# TAD AC1+TAG

The values of the two symbols ACl and TAG, already defined by

the user, are combined by a two's complement add. This value is

used as the address of the operand.

7.6.5 Symbol Tables

The Assembler processes symbols in source program statements by

referencing its symbol tables which contain all defined symbols along

with the binary value assigned to each symbol.

7-12

Initially, the Assembler's permanent symbol table contains the

mnemonic op codes of the machine instructions and the Assembler

pseudo-op codes; as listed in tables 7-1 and 7-2= As the source

program is processed, symbols defined in the source program are added

to the user's symbol table~

7.6.6 Direct Assignment statements

The programmer inserts new symbols with their assigned values

directly into the symbol table by using a direct assignment statement

of the form

symbol = value

where the value may be a number or expression. For example,

ALPHA=5
HETA=17

A direct assignment statement may also be used to give a new

symbol the same value as a previously defined symbol.

BETA=17
GAMMA=BETA

The new symbol, GAMMA, is entered into the user's symbol table with

the value 17.

The value assigned to a symbol may be changed.

ALPHA=7

changes the value assigned to the first example from 5 to 7.

7-13

The user may also define symbols by use of the comma. When the

first symbol of a statement is terminated by a comma, it is assigned

a value equal to the current location counter (CLC). For example,

*100
CLA
JMP A
o
DCA B

/SET CLCCORIGIN) TO 100

The symbol TAG is assigned a value of 0100, the symbol B a value of

0102, and the symbol A a value of 0103.

Direct assignment statements do not generate instructions or

data in the object program. These statements are used to assign values

so that symbols can be conveniently used in other statements.

7.7 ADDRESS ASSIGNMENTS

The PAL-D Assembler sets the origin, or starting address, of the

source program to absolute location (address) 0200 unless the origin

is specified by the programmer. As source statements are processed,

PAL-D assigns consecutive memory addresses to the instructions and

data words of the object program. This is done by incrementing the

location counter each time a memory location is assigned. A statement

which generates a single object program storage word increments the

location counter by one. Another statement may generate six storage

words, thus incrementing the location counter by six.

7-14

TABLE 7-1

EDUSYSTEM 50 SYMBOL LIST

Code Mnemonic Operation Event Time

Memory Reference Instructions

0000 AND Logical AND

1000 TAD Twos complement add

2000 ISZ Increment and skip if zero

3000 DCA Deposit and Clear AC

4000 JMS Jump to subroutine

5000 JMP Jump

6000 lOT

7000 OPR Operate

Group 1 Operate Microinstructions

7000 NOP No operation 1

7001 lAC Increment AC 3

7004 RAL Rotate AC and link left one 3

7006 RTL Rotate AC and link left two 3

7010 RAR Rotate AC and link right one 3

7012 RTR Rotate AC and link right two 3

7020 CML Complement link 2

7040 CMA Complement AC 2

7100 CLL Clear link 1

7200 CLA Clear AC 1

7-15

Table 7-1. (Cont.)

Code Mnemonic Operation

GrouE 2 °Eerate Microinstructions

7402 HLT Halts the computer

7404 OSR Inclusive OR switch register with AC

7410 SKP Skip unconditionally

7420 SNL Skip on nonzero link

7430 SZL Skip on zero link

7440 SZA Skip on zero AC

7450 SNA Skip on nonzero AC

7500 SMA Skip on minus AC

7510 SPA Skip on plus AC (zero is positive)

Combined 0Eerate Microinstructions

7041

7120

7204

7240

7604

CIA

STL

GLK

STA

LAS

Complement and increment AC

Set link to 1

Get link (put link in AC, bit 11)

Set AC = -1

Load AC with switch register

PSEUDO-OPERATORS

DECIMAL OCTAL

EXPUNGE PAGE

FIELD PAUSE

FIXTAB TEXT

I XLIST

Z

7-16

Event Time

4

3

1

1

1

1

1

1

1

1

1

1

1

1

Direct assignment statements and some Assembler pseudo-ops do

not generate storage words and therefore do not affect the location

counter.

7.7.1 Current Address Indicator

The special character • (point or period) always has a value

equal to the value of the current location counter. It may be used

as any integer or symbol (except to the left of an equal sign).

Example:

is equivalent to JMP 0202. Also,

*300
.+2400

*200
JMP .+2

will produce in location 0300 the quantity 2700. Consider

*2200
CALL=JMS I •
0027

The second line, CALL=JMS I .does not increment the current location

counter, therefore, 0027 is placed in location 2200 and CALL is placed

in the user's symbol table with an associated value of 4600 (the octal

equivalent of JMS I).

7-17

7.7.2 Indirect Addressing

When the character appears in a statement between a memory

reference instruction and an operand, the operand becomes the address

containing the address of the statement to be executed. Consider

TAD 40

which is a direct address statement, where 40 is interpreted as the

address containing the quantity to be added to the accumulator. Thus,

if address 40 contains 0432, then 0432 is added to the accumulator.

Now consider

TAD I 40

which is an indirect address statement, where 40 is interpreted as

the address of the address containing the quantity to be added to the

accumulator. Thus, if address 40 contains 432, and address 432 con­

tains 456, then 456 is added to the accumulator.

Then a reference is made to an address not on the same page as

the reference, PAL-D sets the indirect bit (bit 3) of the machine

instruction, generating an indirect address linkage to the off-page

reference (see Paging and Off-Page Referencing, sections 7.8.1.1 and

7.8.1.2) •

In the case of several off-page references to the same address,

the indirect address linkage will be generated only once. Example:

7-18

*2117
A, CLA

•
e

•
*2600
TAD A

•
•
•

DCA A

The space preceding the user-defined symbol A acts as an address field

delimiter. PAL-D will recognize that the address tag A is not on the

current page (in this case 2600-2777) and will generate a link to it

in the ~ollowing manner. In location 2600, PAL-D will place the word

1777 (octal equivalent of TAD I 2777)

and in location 2777 (the last location on the current page) the word

2117 (the actual address of A) will be placed. When it sees the second

reference to A it will use the previous link word rather than creating

a new one.

PAL-D will recognize and generate an indirect address linkage

only when the address referenced is to a location on another page,

not the current page. The programmer must use the character I to

indicate an explicit indirect address when indirectly addressing to a

location on the current page.

7-19

PAL-D cannot generate a link for an instruction that is already

specified as being an indirect address. In this case, PAL-D will type

the error message II (Illegal Indirect) i the error message is ignored

and assembly is continued.

7.7.3 Autoindexinq

Interpage references are often necessary for obtaining operands

when processing large amounts of data. The PDP-8 computers have

facilities to ease the addressing of this data. When absolute loca-

tions 10 to 17 (octal) are indirectly addressed, the content of the

location is incremented before it is used as an address and the incre-

mented number is left in the location. This allows the programmer to

address consecutive memory locations using a minimum of statements.

It must be remembered that initially these locations (10 to 17)

must be set to one less than the first desired address. Because of

their characteristics, these locations are called auto index registers.

No incrementation takes place when locations 10 to 17 are addressed

directly. Example:

statement is in location 500

Data is on the page starting at 5000

Autoindexing register 10 is used for addressing

0476 1377 ~D (5000-1) ISET UP AUTO INDEX
0477 3010 DCA 10 IWITH 4777
0500 1410 TAD I 10 IC(t0) IS INCREMENTED TO 5000 BEFORE • • lIT IS USED AS AN ADDRESS

• •
• •

0577 4777 ILITERAL GENERATED BY PAL-D

7-20

When the statement in location 500 is executed, the content of loca-

tion 10 will be incremented to 5000 and the content of location 5000

will be added to the content of the accumulator. If the instruction

TAD I 10 is re-executed, the content of location 5001 is added to the

content of the accumulator: and so on.

7.7.4 Literals

Symbolic and integer literals (constants) may be defined as shown

below:

C~
TAD (2)
DCA INDEX

Operator and operand must always

be separated with a space.

The left parenthesis is a signal to the Assembler that the integer

following is to be assigned a location in the table at the top of the

current page. This is the same table in which the indirect address

linkages are stored. In the above example, the quantity 2 is stored

in the first free location in a list beginning at the top of the cur-

rent page (relative address 177), and the statement in which it appears

is encoded with an address referring to that location.

A literal is assigned to storage the first time it is encountered:

subsequent references will be to the same location.

If the programmer wishes to assign literals to page 0 rather than

the current page, he must use square brackets, (], in place of paren-

7-21

theses. Whether using parentheses or square brackets, the right or

closing member is optional and may always be replaced with a carriage

return.

TAD (777

Nesting - Literals may be nested as shown below.

will generate

0200 1276
• •
• •
•

0376
0377

•
1377
0030

*200
TAD(TAD(30

(literals assigned to locations

0377 and 0376: top of current page)

This type of nesting may be carried to many levels.

Literals are stored on each page starting at relative address

177 (only 12710 or 1778 literals may be placed on page 0). If

literals are being generated for some nonzero page and then the origin

is set to another page, the current page literal buffer is punched

out during pass 2. If the origin is reset to the previously used

page, the same literal will be generated if used again.

If a single character is preceded by a quote ("), the 8-bit value

of the ASCII code for that character is inserted instead of taking the

letter as a symbol.

7-22

Example:
CLA
TAD ("A

will place the constant 0301 in the accumulator.

7.8 INSTRUCTIONS

There are two basic groups of instructions: memory reference

and augmented. Memory reference instructions require an operandi

augmented instructions do not require an operand.

7.8.1 Memory Reference Instructions

In PDP-8 computers, some instructions require a reference to

memory. They are appropriately designated memory reference instruc-

tions, and take the following format.

OPERATION
CODES o-~ .

MEMORY
PAGE

r--'---..

I 0 I · I 2 I 3 I · I 3 I 6 I ' I 8 I · I '0 I " I
~

INDIRECT
ADORE SSING

.
ADDRESS

Memory Reference Instruction Bit Assignments

Bits 0 through 2 contain the operation code of the instruction to be

performed (such as AND,TAD, or JMP). Bit 3 tells the computer if

the instruction is indirect, that is, if the address of the instruction

specifies the location of the operand, or if it specifies the location

of the address of the operand. Bit 4 tells the computer if the instruc-

tion is referencing the current page or page zero. This leaves bits

5 through 11 (7 bits) to specify an address. In these 7 bits, 200

7-23

octal or 128 decimal locations may be specified~ the page bit increases

accessible locations to 400 octal or 256 decimal.

The address field of a memory reference instruction may be any

valid expression. Example:

A=270
*200
TAD A-20

produces, in location 200, the word

1250

which in binary is 001 010

which is also TAD 250 •
•

7.8.1.1 Paging

101 0000

To ease the programmer's addressing problems, a convention has

been defined that devides memory into sectors called pages. Each page

contains 200 octal locations (128 decimal) numbered 0 to 177 (octal)

on that page. There are 40 octal or 32 decimal pages numbered 0 to

37 (octal). Some examples of page numbers and the absolute and

relative locations (addresses) are shown below. It must be borne in

mind, however, that there is no physical separation of pages in memory.

Page

0
1
2

36
37

Absolute
Address

0-177
200 - 377
400 - 577

7400 - 7577
7600 - 7777

7-24

Relative
Address

0- 177
0- 177
0-177
o - 177
o - 177

The following table offers a comparison of specific absolute

and relative addresses on the same page.

Absolute Reiative
Page Address Address

f'\
iO v 10

3 617 17
12 2577 177
31 6255 55
37 7777 177

Since only seven bits are necessary to address 200 octal loca-

tions, bits 5 to 11 are reserved for this function.

7.8.1.2 Off-Page Referencing

The page on which an absolute address is contained can be deter-

mined from bit 4 of the instruction. If bit 4 is a 0, the address

refers to a location on page 0; if bit 4 is a 1, the address refers

to a location on the current (same) page, that is, the same memory

page as the instruction.

7.8.2 Augmented Instructions

Augmented instructions are divided into two groups: operate and

input-output transfer microinstructions.

7.8.2.1 Operate Microinstructions

within the operate group there are two groups of microinstructions.

Group 1 microinstructions are principally for clear, complement, rotate,

and increment operations and are designated by the presence of a 0 in

bit 3 of the machine instruction word. (See table 7-1.)

7-25

ROTATE 1
ROTATE POSITION If A 0,

AC Alii 0 L 2 POSITIOIII'S
OPERATION

CODE 7
CLA CIoIIA RIGHT If A , n n n,N"1 .

CONTAIIII$
A 0 TO

SPECify
GROUP'

Cll Cloll RJTATE
AC AND L

LEfT

lAC

Group 1 Operate Microinstruction Bit Assignments

Group 2 microinstructions are used principally in checking the

content of the accumulator and link and, based on the check, continu-

ing to or skipping the next statement. Group 2 microinstructions are

identified by the presence of a 1 in bit 3 and a 0 in bit 11 of the

machine instruction word. (See table 7-1.)

CO'lTAINS AI
TO SPfClf Y

GROUP 2

SMA SI\IL COI\ITAII\IS A 0
TJ5P£C<'

GROuP 2

Group 2 Operate Microinstruction Bit Assignments

Group 1 and group 2 microinstructions can not be combined because

bit 3 determines only one or the other.

within Group 2, there are two groups of skip instructions. They

may be referred to as the OR group and the AND group.

OR Group

SMA
SZA
SNL

AND Group

SPA
SNA
SZL

The OR group is designated by a 0 in bit 8, the AND group by a 1 in

bit 8. OR and AND group instructions cannot be combined because bit

8 determines only one or the other.

7-26

If the programmer does combine legal skip instructions, it is

important to note the conditions under which a skip may occur.

a. OR Group - If these skips are combined in a statement, the

inclusive OR of the conditions determines the skip.

SZA SNL

The next statement is skipped if

the accumulator contains 0000, or
the link is a 1, or
both conditions exist.

b. AND Group - If the skips are combined in a statement, the

logical AND of the conditions determines the skip.

SNA S,ZL

The next statement is skipped only if the accumulator dif-

fers from 0000 and the link is o.

7.8.2.2 Input-output Transfer Microinstructions

These microinstructions ini~iate operation of peripheral equip-

ment and effect information transfer between the central processor

and the input-output device (s). This is the principal function of

the input-output transfer (lOT) microinstructions. Table 7-2 lists

all valid lOT microinstructions, and each is discussed in detail in

Chapter 11.

7-27

TABLE 7-2

EDUSYSTEM 50 lOT INSTRUCTION SUMMARY

Number Instruction Function

Program Control

6200

6402

6403

6405

6411

6412

6413

6414

6415

6416

6417

6420

6421

6422

6430

6431

6440

6442

7402

7404

File Control

6406

6600

6601

6602

6603

CKS

DUP

UNO

CLS

URT

TOO

RCR

DATE

SYN

STM

SRA

TSS

USE

CON

SSW

SEA

ASD

REL

HLT

OSR

SEGS

REN

OPEN

CLOS

RFILE

Check Status

Duplex Console

Unduplex Console

Clear Status

User Run Time

Time of Day

Return Clock Rate

Date

Quantum Synchronization

Set Timer

Set Restart Address

Skip on TSS/8

User

Console

Set Swtich Register

Set Error Address

Assign Device

Release Device

Halt

OR With Switch Register

Segment Count

Rename File

Open File

Close File

Read File

7-28

Number

6604

6605

6610

6611

6612

6613

6614

6616

6617

Instruction

PROT

WFILE

CRF

EXT

RED

FINF

SIZE

WHO

ACT

Input Buffer Control

6030

6031

6032

6034

6036

6400

6401

KSR

KSF

KCC

KRS

KRB

KSB

SBC

Output Buffer Control

6040

6041

6042

6044

6046

SAS

TSF

TCF

TPC

TLS

Table 7-2. (Cont.)

Protect File

Write File

Create File

Extend File

Reduce File

Function

File Information

Segment Size

Who

Account Number

Read Keyboard String

Skip on Keyboard Flag

Clear Keyboard Flag

Read Keyboard Buffer Static

Read Keyboard Buffer Dynamic

Set Keyboard Break

Set Buffer Control Flags

Send A String

Skip On Teleprinter Flag

Clear Teleprinter Flag

Load Teleprinter and Print

Load Teleprinter Sequence

Hish-SEeed PaEer TaEe Reader and Control

6010 RRS Read Reader String

6011 RSF Skip On Reader Flag

6012 RRB Read Reader Buffer

6014 RFC Reader Fetch Character

7-29

Table 7-2. (Cont.)

Number Instruction Function

High-Speed Paper Tape Punch and Control

6020 PST

6021 PSF

6022 PCF

6024 PPC

6026 PLS

DECtape Control

6764 DTXA

6771 DTSF

6772 DTRB

Line Printer

6660 LST

6662 LCF

6661 LSF

6664 LLC

6666 LPC

Card Reader

6632 RCRA

6634 RCRB

6636 RCRC

Disk Cartridge

6743 DLAG

6772 RDS

Punch String

Skip On Punch Flag

Clear Punch Flag

Load Punch Buffer and Punch Character

Load Punch Buffer Sequence

Load Status Register A

Skip On Flags

Read Status Register B

Print String

Clear Printer Flag

Skip on Printer Flag

Print Character

Print Character

Read Card, Alpha

Read Card, Binary

Read Card, Compressed

Perform Disk Transfer

Read Device Status

7-30

7.9 PSEUDO-OPERATORS

The progra~er may use pseudo-operators (pseudo-ops) to direct

the Assembler to perform certain tasks or to interpret subsequent

coding in a certain manner~ Some pseudo-ops generate storage words

in the object program, other pseudo-ops direct the Assembler on how

to proceed with the assembly. Pseudo-ops are maintained in the

Assembler=s permanent symbol table.

The function of each PAL-D pseudo-op is described below.

7.9.1 Current Location Counter

The programmer may use the PAGE pseudo-op to reset the current

location counter (CLC) to the first location on a specified page.

PAGE

PAGE n

without an argument, the CLC is reset to the first loca­
tion on the next succeeding page. Thus, if a program is
being assembled into page 1 and the programmer wishes to
begin the next segment of his program on page 2, he need
only insert PAGE, as follows.

JMP .-7
PAGE
CLA

(Last location used on page 1)

(First location on page 2)

resets the CLC to the first location of page n, where n
is an integer, a previously defined symbol, or a symbo­
lic expression. Example:

PAGE 2
PAGE 6

(sets the CLC to location 400)
(sets the CLC to location 1400)

7.9.2 Extended Memory

When using more than one memory bank, the pseudo-op FIELD instructs

the Assembler to output a field setting.

FIELD n

7-31

where n is an integer, a previ­
ously defined s}~bol, or a sym­
bolic expression within the
range of 0<n<7.

This pseudo-op causes a field setting (binary word) of the form

11 XXX 000 where 000<xxx<111

to be output on the binary file during pass 2. This word is inter-

preted by the Loader, which then begins loading information from the

file into the new field. (Field settings are ignored by TSS/8

LOADER.)

7.9.3 RADIX Control

Integers used in a source program are usually taken as octal

numbers. If, however, the programmer wishes to have certain numbers

treated as decimal, he may use the pseudo-op DECIMAL.

DECIMAL

OCTAL

all integers in subsequent coding are taken as deci­
mal until the occurrence of the pseudo-op OCTAL.

resets the radix to its original octal base.

7.9.4 Listing Control

During pass 3, a listing of the source program is printed.

The programmer may, however, control the output of his pass 3 listing

by use of the pseudo-op XLIST.

XLIST Those portions of the source program enclosed by XLIST
will not appear in the pass 3 listing.

7.9.5 Text Facility

The pseudo-op TEXT enables the user to represent a character or

string of characters in ASCII code trimmed to six bits and packed two

characters to a word. The numerical values generated by TEXT are left-

justified in the storage words they occupy, with the unused bits of

the last word filled with Os.

7-32

A string of text may be entered by giving the pseudo-op TEXT

followed by a space, a delimiting character, a string of text, and

the s~~e delL~iting character. Exa~ple:

TEXT ATEXT 5THI NGA

The first printing character following TEXT is taken as the delimiting

character, and the text string is the characters which follow until

the delimiting character is again encountered.

If the example above were at location 0200, the pass 3 listing

would be as follows.

0200 2405 TEXT ATE
0201 3024 XT
0202 4023 S (L-I denotes a space)
0203 2422 TR
0204 1116 IN
0205 0700 GA

NOTE

with TEXT, any printing character
may be used as a delimiting character;
the delimiting character cannot be
used in the text string.

7.9.6 End of Program

The special symbol $ (dollar sign) indicates the end of a pro-

gram. When the Assembler encounters the $, it terminates the pass.

7.9.7 End of File

The pseudo-op PAUSE signals some assemblers to stop processing

the current input file. TSS/8 PAL-D ignores any PAUSE statements.

7-33

7.9.8 Altering the Symbol Table

PAL-D has a permanent symbol table which contains all instruc-

tions (symbols and their octal values) required by EduSystem 50. They

are referred to as PAL-D's basic instructions or symbols, and are

listed in tables 7-1 and 7-2.

When the symbolic program to be assembled required instructions

not already in the table (e.g., card reader lOT's), the table must be

altered to include those instructions. PAL-D has two pseudo-ops that

are used to alter the permanent symbol table:

EXPUNGE deletes the entire permanent symbol table, except
pseudo-ops.

FIXTAB appends symbols to the table for duration of the
assembly. All symbols defined before the occurrence
of FIXTAB are temporarily made part of the permanent
symbol table.

These pseudo-ops can be used to eliminate unneeded symbols from the

table, thus providing more storage for user symbols.

To append the following card reader lOT's to the symbol table,

the programmer generates an ASCII file containing:

RCSF=6631
RCSP=6671
RCRD=6674
FIXTAB

This file is then included as one of the input files to PAL-D.

the last input file should contain a dollar sign.)

7.9.9 Internal Representation

(Only

Each permanent and user-defined symbol occupies four words (loca-

tions) in the symbol table storage area, as shown below:

7-34

012

I Wo'rd 1 I I I C
1

x 45
8

+ C2
first 2 characters

Word 2 I I C
3

x 45
8

+ C
4 I second 2 characters

I I I I Word 3 C~ x 45R + C6
third 2 characters

I I

I ... -
I

Word 4 I I octal code or address

where CI , C
2

' .•. C
6

represent the first character, second character, ••. ,

sixth character resprectively. (Symbols may consist of from one to

six characters.) Bits 0 and 1 of word 1 and bit 0 of word 2 are

system flags. with a permanent symbol, word 4 contains the octal code

of the symbol; with a user-defined symboli word 4 contains the address

of the symbol. For example: the permanent symbol TAD is represented

as follows.

Word 1 248 x 458 + 01 1345
8

or TA

Word 2 04
8

x 45
8

+ 00 = 2248 + 4000 = 42248 D
~flag bit

Word 3 = 0000

Word 4 = 1000 (octal code for TAD)

Note that the first degit of the ASCII octal code for each character

is always trimmed by the assembler so that the character is represen-

ted using six bits of a word. For example, ASCII code for T is 324,

it was trimmed to 24: A is 301, it was trimmed to 01: etc.

7.10 PROGRAM PREPARATION AND ASSEMBLER OUTPUT

The source language file is prepared using the Editor.

7.10.1 program File

Since the Assembler ignores certain characters, these may be used

7-35

freely to produce a more readable symbolic source file. These useful

characters are tab and form-feed.

The Assembler will also ignore extraneous spaces, carriage return-

line feed combinations, and rubouts.

The program body consists of statements and pseudo-ops. The

program is terminated by the dollar sign ($). If the program is

large, it may be split into as many as three files. This often

facilitates editing the source program since each section is physical-

ly smaller.

The Assembler initially sets the origin (current location counter)

of the source program to 0200. The programmer may reset the current

location counter by use of the asterisk.

The following two programs are identical except that format

effectors were used in the second printout.

*200
/EXAMPLE OF FORMAT
BEGIN~ 0/START OF PROGRAM
KCC
KSF/WAIT FOR FLAG
JMP .-l/FLAG NOT SET YET
KRB/READ IN CHARACTER
DCA CHAR
TAD CHAR
TAD MSPACE/IS IT A SPACE?
SNA CLA
HLT/YES
JMP BEGIN+2/NO: INPUT AGAIN
CHAR~ 0/TEMPORARY STORAGE
MSPACE~ -240/-ASCII EQUIVALENT
/END OF EXAMPLE
$

7-36

*200
IEXAMPLE OF FORMAT
BEGIN" e ISTART OF PROGRAM

CHAR,
MSPACE,
lEND OF
$

KCC
KSF
JMP
KRB
DCA
TAD
TAD
SNA CLA
HLT
JMP
o
-240
EXAMPLE

• -1

CHAR
CHAR

IWAIT FOR FLAG
/FLAG SET YET
IREAD IN CHARACTER

MSPACE lIS IT A SPACE?

IYES
BEGIN+2 INO: INPUT AGAIN

ITEMPORARY STORAGE
I-ASCII EQUIVALENT

Both of these programs will produce the same binary code. The second,

however, is easier to read.

7.10.2 Assembly

PAL-D is a two-pass assembler with an optional third pass which

produces a side-by-side assembly listing of the symbolic source state-

ments, their octal equivalents, and assigned absolute addresses. These

passes are invisible to the user. However, the user determines whether

or not the third pass will be made by his response to PAL-D's OPTION:

query (see section 7-11).

7.10.3 Pass 1

During pass 1, PAL-D processes the source (file) and places in

its user's symbol table the definitions of all symbols used. The

7-37

userDs symbol table is printed at the end of pass 2. If any symbols

remain undefined at the end of pass 1, the US (Undefined Symbol)

diagnostic is printed during pass 2 when the undefined symbol is en­

countered (see Error Diagnostics). The symbol table is printed in

alphabetical or er on the terminal. If the program listed above were

assembled, PAL-D would output the following symbol table.

BEGIN 0200 CHAR 0213 MSPACE 0214

7.10.4 Pass 2

During pass 2, PAL-D processes the source or file and generates

binary output using the symbol table equivalences defined during pass

1. The binary output may be loaded in core by LOADER.

The binary coded file consists of leader code, an origin setting,

and data words. Every occurrence in the source program of an asterisk

causes a new origin setting in the binary output. At the end of the

binary coded file, a binary checksum is produced and trailer code is

generated.

7.10.5 Pass 3

During pass 3, PAL-D processes the source file and prints out a

side-by-side listing of the generated octal code and the original

source language. If the program shown above were assembled, the pass

3 listing would be:

7- 38

*200
IEXAMPLE OF FORMAT

0200 0000 BEGIN" 0 ISTART OF PROGRAM
0201 6032 KCC
0202 603i KSF IWAIT FOR FLAG
0203 5202 JMP .-1 IFLAG NOT SET YET
0204 6036 KRB IREAD IN CHARACTER
0205 3213 DCA CHAR
0206 1213 TAD CHAR
0207 1214 TAD MSPACE I I 5 IT A SPACE?
0210 7650 SNA CLA
0211 7402 HLT /YES
0212 5202 JMP BEGIN+2 INO: INPUT AGAIN
0213 0000 CHAR .. 0 ITEMPORARY STORAGE
0214 7540 MSPACE .. -240 I-ASCI I EQUIVALENT

lEND OF EXAMPLE
'BS

7.11 OPERATING THE PALD ASSEMBLER

Assembling with PAL-D in TSS/8 requires no operator intervention

between passes. The symbol table is typed out at the end of pass two

and the listing at the end of pass three. The assembly may be termi-

nated at any point by typing CTRL/C. control will revert from PAL-D

to the Monitor program which will type out a dot (e) and wait for the

next instruction from the terminal. In the illustrations which follow,

non-underlined characters are those typed out by the system; underlined

characters represent user-supplied data. T~e sharing assemblies are

requested as follows.

In response to the monitor's dot

the user types the command, a space and the name of the system
program.

.R PALO

PAL-D is brought into core and signals its readiness by requesting
an input file name.

INPUT:TYPE

7-39

The user reply in this case was BIN2, a user symbol for a source
program to be assembled. PAL-D next requests the name of an
output file.

OUTPUT:TYPEB

The user response was TYPE2, the name under which the assembled
program will be stored. Optionally, the user may type the RETURN
key to specify no output file.

OUTPUT:

This is useful in debugging. A program may be corrected and
reassembled any number of times with production of an output
file postponed until a satisfactory version is achieved. PAL-DiS
final query is whether the user wants a program listing.

OPTION:

There are three effective responses only: N signifying No, L
signifying a listing on the Line printer, and J (RETURN key)
signifying a listing on the terminal. When it receives the final
response, PAL-D reads in the user source program from disk (source
programs are stored prior to assembly) and proceeds with the
assembly. After assembly, PAL-D returns control to the Monitor
which types

tBS
•

and waits for the user to supply the next command.

NOTE

Under the TSS/8 Monitor PAL-D does not require a dollar
sign ($) as the last entry in a source program, but if it
does not find one it types a message to warn the user
that his program may not be assembled properly by an
assembly program other than time-sharing PAL-D.

The following listing was reproduced from a time sharing run.

It illustrates the initial dialogue, the symbol table produced at the

end of pass 2 (any error messages would also appear at this point) and

the listing, in octal notation, produced during pass 3.

7-40

f·~ PALO

INITIAL l I NPliT : R J "'2
DIALOGUE QUTPlIT:TyP?

OPTION:

rCOlINT 0415

l~~;~
V14i7

SYMBOL ~1 40 F:-

TABLE (1(IT (1425
RFG 0416
START (Ii 4 ~H1

IPk OGk.l\M TO TYPE aliT .. 1 23 45 6 18 9"
*C1400

0400 7200 START, CLA
0401 4217 JMS CRLF
0402 1377 TAD (-12

0403 3215 DCA COUNT
0404 1376 TAD (26(1 IASC I I FOR ZERO
0405 3216 DCA kEG
0406 1216 LOOP, TAD REG
0407 4225 Jt'-'S OUT
0410 2216 ISZ REG
0411 2215 ISZ COlINT
0412 52(1f, JMP LOOP
0413 4?17 JIVS CKLF

PROGRAM
0414 7402 HLT
0415 V1 vl00 COUNT, 0

LISTING 0416 0000 kEG, 0
vM17 0"'(tH~ CRLF, 0
0420 1375 TAD (21 5 IASC I I FOk CARRIAGE kETUt<N
0421 4225 JMS OUT
v'422 1374 TAD <212 IASC I I FOR LINE FEED
0423 4225 JMS OUT
0424 5617 JMP I CRLF
0425 0000 OUT, 0
042 f, 6(146 TLS
0427 6041 TSF
0430 5227 JMP • - 1
0431 72V10 CLA
0432 5 f,? 5 J:v,p I OUT

r
0574 0212

LITERALS
0575 0215

It'l576 0260
0577 7766
t8S

7-4i

7.12 ERROR DIAGNOSTICS

PAL-D makes many error checks as it processes source language

statements. When an error is detected, the Assembler prints an error

message. The format of the error messages is

ERROR CODE ADDRESS

where ERROR CODE is a two-letter code which specifies the type of

error, and ADDRESS is either the absolute octal address where the error

occurred or the address of the error relative to the last symbolic tag

(if there was one) on the current page.

The programmer should examine each error indication to determine

whether correction is required.

PAL-Dis error messages are listed and explained below.

Error
Code

BE

DE

DF

IC

ID

Explanation

Two PAL-D internal tables have overlapped - This situation
can usually be corrected by decreasing the level of literal
nesting "or number of current page literals used prior to
this point on the page.

Systems device error - An error was detected when trying
to read or write the system device; after three failures,
control is returned to the Monitor.

Systems device full - The capacity of the systems device
has been exceeded; assembly is terminated and control is
returned to the Monitor.

Illegal character - An illegal character was encountered
in other than a comment or TEXT field; the character is
ignored and the assembly continued.

Illegal redefinition of a symbol - An attempt was made
to give a previously defined symbol a new value by other
means than the equal sign; the symbol was not redefined.

7-42

IE Illegal eguals - An equal sign was used in the wrong
context. Examples:

TAD A +=B (the expression to the left of the equal
sign is not a single symbol or, the
expression to the right of the equal

A+B=C sign was not previously definedj

II Illegal indirect - An off-page reference was made: a
link could not be generated because the indirect bit
was already set. Example:

*200
TAD I A .;

PAGE';
A, 7240 ~

ND The program terminator i $; is missing=

PE Current nonzero page exceeded - An attempt was made to
a. override a literal with an instruction, or
b. override an instruction with a literal: this can be
corrected by

(1) decreasing the number of literals on the page or
(2) decreasing the number of instructions on the page.

SE Symbol table exceeded - Assembly is terminated and control
is returned to the Monitor.

US Undefined symbol - A symbol has been processed during
pass 2 that was not defined before the end of pass 1.

ZE Page 0 exceeded - Same as PE except with reference to
page O.

7-43

CHAPTER 8

UTILITY PROGRAMS

8.1 SYMBOLIC EDITOR

The EduSystem 50 Symbolic Editor (EDIT) provides the user with

a powerful tool for creating and modifying source files online. Its

precise capabilities and commands are detailed in Introduction to

Programming, Chapter 5. EDIT allows the user to delete, insert,

change, and append lines of text, and then obtain a clean listing of

the updated file. EDIT also contains commands for searching the file

for a given character.

EDIT considers a file to be divided into logical units, called

pages. A page of text is generally 50-60 lines long, and hence

corresponds to a physical page of program listing. A FORTRAN-D

program is generally 1-3 pages in length: a program prepared for

PAL-D may be several pages in length. EDIT operates on one page of

text at a time, allowing the user to relate his editing to the

physical pages of his listing. EDIT reads a page of text from the

input file into its internal buffer where the page becomes available

for editing. When a page has peen completely updated, it is written

onto the output file and the next page of the input file is made

available. EDIT provides several powerful commands for paging through

the source file quickly and conveniently.

NOTE

The end of a page of text is marked by a
form feed (CTRL/L) character. Form feed
is ignored by all EduSystem 50 language
processors.

8-1

To call the Editor, type:

.R EDIT

EDIT responds by requesting INPUT: Type and enter the name of

the source file to be edited. If a new file is to be created using

EDIT, there is no input file. In this case, strike the RETURN key.

EDIT then requests OUTPUT: Type the name of the new, edited, file

to be created. The name of the output file must be different from

the name of the input file. If EDIT is being called to list the

input file, there is no need to create an output file; strike the

RETURN key. When EDIT sets up its internal files and is ready for a

command, it rings the bell on the terminal.

For example:

.R EDIT
INPUT:WXZOLD

OUTPUTtXYZNEW

8.2 LOADER

(Bell rings at this point.)

LOADER is used to load programs in BIN format from a disk file

into the user's core area for execution. These files in BIN format

can be created by PAL-D in the course of an assembly or they can be

loaded from paper tape using PIP or PUTR (see the PIP section for

special instructions on loading BIN format tapes).

To call LOADER, type:

.R LOADER

LOADER responds by asking for INPUT: Respond by entering the

name of the file or files to be loaded. Although many System Library

Programs allow multiple input files, the LOADER uses this feature to

8-2

TABLE 8-1

SYMBOLIC EDITOR OPERATIONS SUMMARY

Special Characters

carriage Return (RETuRN KEY)

CTRL/C

CTRL/U

Equal Sign (=)

Form Feed (CTRL/L Combination)

Left Angle Bracket «)

Line Feed (~)

Right Angle Bracket {>}

Rubout

Slash (/)

Tabulation (CTRL/TAB Key
Combination)

Text fvlode
buffer.

Fu.."1ction

Enter the line in the

Text Mode - Same as form feed.

Text Mode - Cancel the entire line of
text, continue typing on next line.
Command Mode - Cancel command. Editor
issues a ? and carriage return/line feed.

Command Mode - Used in conjunction with
• and / to obtain their value {for
example, type .=}.

Text Mode - End of inputs, return to
command mode.

Command Mode - List the previous line
(equivalent to .-lL).

Text Mode - Used in SEARCH command to
insert a CR/LF combination into the
line being searched.

Command Mode - List the next line
I eq'" .; "7'alen4- 4-0 ..L 1 T) \ \04 V • Ii..i •

Text Mode - Delete from right to left
one character for each rubout typed.
Does not delete past the beginning of
the line. Is not in effect during a
READ command.
Command Mode - Same as CTRL/U.

Command Mode - Value equal to number of
last line in buffer. Used as argument
(as in /-S,/L) •

Text Mode - Produces a tabulation
which, on output, is interpreted as
spaces.

8-3

Command

APPEND

tc
CHANGE

DELETE

END

GET

INSERT

KILL

LIST

MOVE

NEXT

Format

A

CTRL/C

nC

m,nC

nD

m,nD

E

G

I

nI

K

L

nL

m,nL

m,n$kM

N

TABLE 8-2

EDIT COMMAND SUMMARY

Meaning

Append incoming text from keyboard to any
already in the buffer until a form feed is
encountered.

Stop listing and return to Command Mode.

Delete line n, replace it with any number
of lines from the" keyboard until a form
feed is entered.

Delete lines m through n, replace from key­
board as above until form feed is entered.

Delete line n of the text.

Delete lines m through n inclusive.

Output the contents of the buffer. Read
any pages remaining in the input file,
outputting them to the output file. When
everything in the input file has been moved
to the output file, close it out and return
to the Monitor. E is equivalent to a
sufficient number of N's followed by a T
command.

Get and list the next line beginning with
a tag.

Insert before line I all the text from
the keyboard until a form feed is entered.

Insert before line n until a form feed is
entered.

Kill the buffer (i.e., delete all text lines).

List the entire buffer.

List line n.

List lines through n inclusive.

Move lines m through n inclusive to before
line k.

Output the entire buffer and a form feed,
kill the buffer and read the next page.

8-4

COIDIDand

PROCEED

READ

SEARCH

TERMINATE

Format

nN

P

nP

m,nP

R

S

nS

m,nS

Table 8-2. (Cont.)

Meaning

Repeat the above sequence n timese

Output the contents of the buffer to the
output file, followed by a form feed.

Output line n, followed by a form feed.

Output lines m through n inclusive
followed by a form feed.

Read text from the input file and append
to buffer until a form feed is encountered.

Search the entire buffer for the character
specified (but not echoed) after the
carriage return. Allow modification when
found. Editor outputs a slash (/) before
beginning a SEARCH.

Search line n, as above, allow modification.

Search lines m through n inclusive, allow
modification.

Close out the output file and return to the
Monitor.

special advantage. Because it loads the files in the order they are

typed, LOADER can be used to load patches and overlays. After it has

requested INPUT, LOADER requests OPTION: For normal operation strike

the RETURN key; LOADER is able to load any part of core, except loca­

tions 7767 - 7777.If the program to be loaded is to be debugged,

respond to OPTION: with D. This will cause OOTHI to be loaded along

with the input files and started. OOTHI indicates that it is ready by

printing a second line feed. OOTHI uses locations 4 and 7000 - 7777;

and if loaded along with a program which uses any of these locations#

the result is unpredicatble.

8-5

Example 1: Normal Operation

.R LOADER
INPUTIMAIN~ PATCH1~ PATCH2

OPTION:
'BS

Example 2: Load ODT with Input File

.R LOADER
I NPU T: PROG 1

OPTION: D

As seen in the first example, LOADER returns control to Monitor

when it is finished. The user can then start the program by using

the Monitor command START. For example, LOADER can be used to load

and run the short program given as an example in the section on PAL-D.

• R LOADER

INPUT: EI N2
OPTION:
'BS
.START 400

0123456789
'ES

NOTE

All BIN format files loaded by LOADER
include a checksum. If LOADER detects a
checksum error while loading, it prints
LOAD ERROR and terminates the load.

8.3 OCTAL DEBUGGING TECHNIQUE (ODTHI)

ODTHI is a powerful octal debugging tool for testing and modifying

PDP-8 programs in actual machine language. It allows the user to

control the execution of his program and, where necessary, make

immediate corrections to the program without the need to reassemble.

8-6

The complete command repertoire of ODT is documented in Intro­

duction to programming, Chapter 5. ODTHI (on EduSystem 50) is the

high-core version which resides in locations 7000 through 7777.

The paper-tape output commands of regular ODT are not available in

EduSystem 50 ODT. To call ODTHI, the user types:

.LOAD 2 ODTHI 0 7000

.START 7000

If ODTHI is to be used to de~ug a program being loaded with

LOADER, ODTHI can be loaded and started directly by specifying the

Debug (D) option to LOADER.

ODTHI executes an SRA (Set Restart Address) as part of its initia­

lization process. As a result, typing CTRL/C always returns control to

ODTHI. If the program being debugged sets up its own restart address,

typing CTRL/C transfers control to the new restart address. It is

necessary to type tBS followed by START 7000 to force control back

to ODTHI. Every time ODTHI regains control, it puts the terminal in

duplex mode. Users debugging programs which do not operate in duplex

mode, should be aware of this fact.

ODTHI saves the state of the delimiter mask, when it regains

control via a breakpoint. The state of this mask is restored on a

continue (C) command, but not on a GO (G) command.

8.4 CATALOG (CAT)

The Monitor maintains a library of disk files for each user.

The System Library Program CAT is used to obtain a catalog of the

contents of this library. For each file, CAT prints the size of the

file in units of disk segments. The size of a disk segment is 256

(decimal) words of disk storage. The protection code for the file is

also given. (See the section on Advanced Monitor Commands for a

8-7

Command

A

B

nnnnB

Back Arrow (....)
(SHIFT/O)

C

nnnnC

nnnnG

Illegal Character

LINE FEED

M

LINE FEED

LINE FEED

RETURN

/

TABLE 8-3

ODT COMMAND SUMMARY

Meaning

Open for modification, the register in which the con­
tents of AC were wtored when the breakpoint was
encountered.

Remove the breakpoint.

Establish a breakpoint at location nnnn.

Close register, open indirectly.

Proceed from a breakpoint.

continue from a breakpoint and iterate past the break­
point nnnn times before interrupting the useros
program at the breakpoint location.

Transfer program control to location nnnn.

Current line typed by user is ignored, ODT types ?CR/LF.

Close register and open the next sequential one for
modification.

Open the search mask register, initially set to 7777.
It may be changed by opening the search mask register
and typing the desired value after the value typed by
ODT, then closing the register.

Close search mask register and open next register
immediately fotlowing, containing the location at
which the search begins. It may be changed by typing
the lower limit after the one typed by ODT, then
closing the register.

Close lower search register, open next register contain­
ing the upper search limit initially set to 7000

(location of ODT). It may be changed by typing
the desired upper limit after the one typed by ODT and
closing the register with a carriage return.

Close previously opened register.

Reopen latest opened register.

8-8

Command

nnnn/

ITT"\ n. rr""., (. , '-'J:' "'''',,,,, \, I

(SHIFT/N)

nnnnW

Table 8-3. (Cont.)

Meaning

Open register designated by the octal number nnnn.

Close register, take contents of that register as
a memory reference and open it.

Search the portion of core as defined by the upper
and lower limits for the octal value nnnn.

precise explanation of protection codes.) If the program was created

by any of the System Library Programs, it has a protection code of

12, meaning that other users can read the file, but only the owner

can change it. To call CAT, type:

.R CAT

The CAT program then prints a listing similar to the one shown

below and concludes by printing tBS and exiting to the Monitor •

• R CAT

DISK FILES FOR USER 3,,13 ON 9-JUN-70

NAME SIZE PROT DATE
FIE .BIN 1 17 3-JUN-70
PROG .FCL 2 12 9-JUN-70
INTER .BAS 1 17 9-JUN-70
BAS000.TMP 1 17 9-JUN-70
BASI00.TMP 1 17 9-JUN-70
INT2 .BAC 1 37 9-JUN-70
FCLPRG.FCL 2 12 9-JUN-70

TOTAL DISK SEGMENTS: 9

tBS

8.5 SYSTEM STATUS (SYSTAT)

It is frequently useful to know the status of the system as a

whole; how many users are on-line, where they are, what they are

8-9

doing, etc. The SYSTAT program provides this capability. To call

SYSTAT, type:

.SYSTAT

or, to produce a listing on the line printer,

.SYSTAT:L

SYSTAT responds by printing on the first line: the version of

the Monitor being run, the time, and the date. SYSTAT then reports

the uptime which is the length of time in hours, minutes, and

seconds since the system was last put on-line.

SYSTAT then lists all on-line users. Each user is identified

by his account number. The job number assigned to him and the number

of the console he is using are indicated, as is the particular

program he is running. The state of each user is indicated, whether

he is running (RUN), not running (tBS) or waiting for something. If

a user has byped CTRL/S to stop his printing, tS will be printed;

otherwise tQ will be printed. The amount of computer time used by

each user since he logged in is given.

If more users are on-line than the system has core fields to

hold them, the fact that the system is swapping is reported. The

number of free core blocks used internally by the Monitor for Terminal

buffering and various other purposes is printed. Then SYSTAT reports

any unavailable devices, i.e., devices which are assigned to indivi­

dual users. The job to which they are attached is also indicated.

Finally, the number of available segments of disk storage is reported.

A sample SYSTAT listing is shown below. SYSTAT terminates by

printing tBS and exiting to the Monitor.

8-10

.SYSTAT

STATUS OF TS5/8.24 DEC PDP-8 '1 AT 16:03&32 ON 9 DEC 74

UPTIME 00:03:32

JOB WHO WHERE WHAT STATUS RUNTIME

t 0; 3 K04 SYSTAT RUN fQ 00:00:02 ,
2 43~21 K00 PIP KEY tQ 00100i10

AVAILABLE CORE 0K FREE CORE=319

BUSY DEVICES NONE

284 FREE DISK SEGMENTS

t as

8-11

CHAPTER 9

PROGRAMS FOR HANDLING DATA

9.1 PERIPHERAL UTILITY TRANSFER ROUTINES (PUTR)

PUTR (Peripheral Utility Transfer Routines) is a utility pro­

gram used to transfer files between all TSS/8 devices. PUTR can
perform most of the functions of the programs PIP and COpy which

operated under the previous version of the TSS/8 Monitor. The

following is a list of TSS/8 devices used by PUTR.

Device Names

CDR:

Dn: or DTAn:

KBD:

LPT:

PTP:

PTR:

RKAn: or RKBn:

SYS:

TTP:

TTY:

9.1.1 PUTR Commands

Card Reader

DECtape: Disk Monitor, COPY, OS/8, or PUTR

Terminal Keyboard/Reader

Line Printer

High-Speed Paper Tape Punch

High-Speed Paper Tape Reader

RK~5: OS/8 file structure

TSS/8 user file area

Terminal Punch

Terminal Printer

PUTR Commands are entered at the terminal in response to the

asterisk which is printed at the left margin. A command may be

typed with a command string of the form:

*command device:output files = device:input files

9-1

If a mistake is made while typing a PUTR command, there are

three special characters which help correct the situation. Typing

RL~OL~ (or DELETE) deletes characters from the end of the line,

printing the deleted characters. Typing a LINE FEED causes the com-

mand line to be printed on the user's terminal without executing

it, and typing CTRL/U deletes the entire line.

Commands to PUTR can be abbreviated; however most cannot be

abbreviated with less than three characters. PUTR commands and

their purposes are listed below in alphabetical order.

COpy

DELETE

DIRECTORY

EXIT

LIST

PUNCH

TAPE

TYPE

ZERO

Copy files.

Delete files.

List directories of file structured devices.

Returns to TSS/8 Monitor.

List files on the line printer (LPT).

Punches files on the high-speed punch_

Punches files on the terminal punch.

Types files on terminal (TTY).

Zeroes RK¢5 to OS/8 format. Zeroes DECtape to
PUTR format.

Examples of these commands are given in the following paragraphs.

Examples:

.R purn
*COpy DTA0IFOO.SAV=FOO.SAV

This will copy the file FOO.SAV from the system area onto DTA¢.

9-3

NOTE

The DECtape mounted on DTA¢: must be
either PUTR format or OS/8 format.
PUTR cannot write onto the Disk Monitor
or COpy format DECtapes.

To make a PUTR formatted tape use the ZERO Command which is

described below. PUTR can only read Disk Monitor and COpy format

DECtapes. This means that the user must convert any such tape that

he may wish to write on. To convert a tape the user may use the

following procedure. First, mount an empty tape on unit ¢. Then

mount the tape to be converted on unit I and type the following:

.R PUTR
*ZERO DTA0a
ARE YOU SURE?
YES
*Copy DTA0:=DTA1:

This will move all the files from DTAI:

mat) to DTA¢: (PUTR format).

(COpy or Disk Monitor for-

PUTR is a very powerful p~ogram, as these examples illustrate.

An "*" in a command line says that any name will match.

COpy DTA0a=.BAS

This command line will cause all files with the extension .BAS to be

put onto the DECtape on unit ¢.

• DELETE •• TMP

The command line will delete all files on your system area with

extension .TMP.

9-4

*DEL 111

This command will delete all files whose names are three charac-

ters or less in length. The "?" is called a "wild card". This

character will match on any character in its position.

*DEL ABD1

This may be used to delete all files with names which are 3 or

4 characters in length and with ABD as the first three characters.

*DEL *

This will delete all files on your system area. ZERO cannot

be used for the system disk.

DELDTA0:

This could be used if the DECtape on unit ~ were an OS/8 format

tape and if the user wanted it to remain an OS/8 format tape. A

ZERO command would change it to a PUTR format tape.

*TYPE ABC

This will type the file ABC on the terminal. This file is

assumed to be a TSS/8 format ASCII file.

*LIST DTA0:FILE.LS/OS8

This will list an OS/8 format ASCII file on the line printer.

OS/8 and TSS/8 character formats are different, and, therefore,

character conversion switches have been added to PUTR.

9-5

NOTE

TSS/8 character files can be stored on
OS/8 DECtapes and RK¢5 diskpacks. It
is not necessary to do character con­
versions if the user is not going to
use the file on OS/8. The following is
an example of a command line which may
be used if one wishes to use a file
under OS/8.

COpy RKA01.PA/OSa=YILE/TS8

This will put FILE.PA on RKA¢:, converting it from TSS/8 format

to OS/8 format. switches on the output (left) side indicate how

characters are to be packed. Switches on the input (right) side

indicate how characters are to be unpacked.

*LIST YOO

NOTE

There is a compatability problem between
TSS/8 and OS/8. OS/8 needs a CTRL/Z at
the end of ASCII files. Since no TSS/8
programs insert this CTRL/Z, most OS/8
programs cannot work with ASCII files
generated by TSS/8 and converted by PUTR.

is equivalent to

*COpy LPT,zFOO/TS8

*LIST FOO/BAS

This will list a BASIC program on the LPT.

*COPY FOO.BAS/BAS=PTR:

This will take an ASCII paper tape of a program and create a

BASIC program file called FOO.BAS. When creating a BASIC file using

9-6

PUTR, the input must be valid and in increasing line-number order, or

BASIC will not be able to process it.

NOTE

The Paper Tape Reader handler will print
a Ut

ll and will wait for a carriage return
to be typed to indicate the paper tape is
ready. The default program names on PTR:
and CDR: are "NONAME".

*COpy DTA0tFOOePAL/TS8=CDR:/026

This will create a TSS/8 3-for-2 packed ASCII File from the card

reader; DEC ¢26 card code.

NOTE

¢26 is the default switch for the card
reader.

*COpy PROGeBAS/BAS=CDR:

This will create a BASIC program file from the card reader

(¢26 code) •

Additional notes:

Files on the TSS/8 system disk are unique only in their file

names. Files on DECtape and RK¢5 are unique in file name and exten­

sion. This means that the user can have the files FOO.BAS and

9-7

FOO.BAC ON DECtape or R~5 but not on the TSS/8 system disk. Files
may be copied from other user areas only if the user knows the name
of the file'. The following is an example of this.

*COpy DTA0IMYFILE.BAS=HISFILE[1#12l

9.1.3. - Card Reader: END-OF-FILE, Hung Device

An end of file on the card reader is indicated by a card with a
/* in columns 1 and 2, with the rest of the card blank.

If the card reader should have a hardware error, i.e., pick fail,
or if it runs out of cards, the Monitor prints out the hung device
message. When this happens, type "START". At this point, PUTR will
ask "BAD CARD, TRY AGAIN?II. The user may answer by typing either
IIN" followed by a carriage return to cause an end of file on the card
reader, a carriage return only if it is desired to continue reading
cards (after fixing the status of the card reader), or CTRL/C to
give up. The error message above will also print out if 39,40, or
80 columns were not read. If this happens, place the card which was
just read at the bottom of the deck to be re-read.

9.2 - COPY COMMAND

The general format for the COpy command is:

*COPY (dev :] output name [extension] [iswitche~ [=J [dev:J

input name [ext] f!switche~
Items in large brackets are optional. One of II '- ", "=,., or "(II

must be used to separate the output and input file descriptors. Up
to six input file descriptors may be specified (separated by commas).
The default output and input devices (dev:) are SYS:. The default
output and input extensions are * (to be explained).

9-8

The switches on the output side indicate the type of character

packing (default is IMAGE). Switches on the input side indicate the

type of character unpacking (default is image). n[p,Pn]" is the

account number where the file is located. This is only applicable to

input from SYS: • If a device is -~"'''''~+=';.o~ TaT; +-'I-I"'11r a file name; all i::)tJc~..L.L...L~"'" " ... \..,.'" "''\,J """ "-

the files on that device will be selected. The asterisk (*) can be

used either for the file name or the extension, or both. If used on

input side, all file names or extensions will match.

NOTE

A user may not reference another user's
file directory. Therefore, asterisks (*)
and wild cards (?) cannot be successfully
used when an account number is given.

The asterisk on the output side uses the file name or the

extension of the file opened on the input side.

CAUTION

TSS/8 system files are unique in name only,
whereas DECtape and RK~5 files are unique
in name and extension.

It is possible to have the files FOO.BAS and FOO.BAC on a DECtape

or RK¢5 but not under the same account number on the system disk.

Storing FOO.BAS on the system disk will delete any file named FOO,

for example FOO.BAC.

The question mark (?) is a wild card character which is similar

to the asterisk (*), except that it matches any character in its

position. The question mark cannot be used on TSS/8 extensions since

these extensions are internal numbers rather than character extensions.

9-9

Examples of COpy Commands:

*COpy FOO=D0rFOO.BAS

*COpy *=D0:*.BAS

*COpy *=D0:A .. a .. c

*COpy *.ASC/TS8=D0IFOO.AS/OS8

COpy 00: =

NOTE

Copies FOD.BAS from D~: to SYS:
(same extension). .

Copies all files with .BAS exten­
sions from D~: to SYS:

Copies A,B,C from D~: to SYS:
(same name and extension).

Copies all files from Dg: with
the extension .Ase to files on
SYS: with same name but with the
extension .THP.

Converts an OS/8 character format
to TSS/8 format while copying a
file from D~: to the system disk,
SYS: .

Saves all files from SYS: onto D~:

If DECtape is used for output, it must
be either a PUTR structure or OS/8 type
tape, and not a Disk Monitor or COPY tape.

9.1.1.1 ZERO Commands

Format

*ZERO Dn: or

*ZERO DTAn:

*ZERO RKAn: or

*ZERO RKBn:

Zeroes DECtape directories to
PUTR file structure.

Zeroes RK~5 to OS/8 file structure.

After typing a ZERO command, PUTR will ask "ARE YOU SURE?" Type Y or

N for YES or NO, as the case may be.

9-10

9.1.1.2 DELETE Command

Format

*DELETE dev: name ext. , more files

NOTE

If the user wishes to zero his account
he may type the following command line.

*DELETE *

The following command line may be used
to zero OS/8 DECtapes and to preserve
the OS/8 file structure.

*DELETE Dn: or
*DELETE DTAn:

9.1.1.3 DIRECTORY Commands

,;

Format

*DIRECTORY [dev:] name [.ext] or

*DIRECTORY [dev:]

Example:

*DIRECTORY (carriage return)

This command line will give a directory listing of all files

on your disk area (SYS:).

*DIR D0I/LPT

This command will give a directory listing of the DECtape on

unit ¢. The listing will be printed on the line printer, if it is

available.

9-11

Please note that directory listings of the Monitor, and COpy

format tapes.will include just the names and extensions.

*DIR * .BAS

This will make a directory listing of the files on SYS: that

have the extension .BAS.

9.1.1.4 LIST Command

Examples:

*LIST FOO
*LIST BASPRO/BAS
*LIST D0ILIST.LS/OSB

The LIST command changes the default input switch from /IM to

/TS8 and sets in the default output device, LPT:. "LIST FOO II is

identical to "*COPY LPT:=FOO/TS8 11
•

9.1.1.5 TYPE Command

The TYPE command is identical to the LIST command except that

the output device is TTY:. II LIST" and "TYPE II will insert a carriage

return/line feed in the output when the line length for the LPT: or

TTY: is exceeded and will not output RUBOUTs. "TYPE" will insert 4

line feeds for every form feed it sees. If the text that exceeds the

line limit for the device need not be printed, then the /TRIM switch

should be'appended to the file descriptor. For example,

*TYPE FOO/TRIM

9-12

9.1.1.6 PUNCH Command

The PUNCH command "*PUNCH name" is equivalent to:

*COPY PTP:=name/TS8

9.1.1.7 TAPE Command

The TAPE command "*TAPE name" is equivalent to:

*COpy TTP:=name/TS8

Both PUNCH and TAPE will punch LEADER/TRAILER on the tapes. The

following are examples:

*PUNCH FOO

*PUNCH BASPRG/BAS

*PUNCH SAVPRG/SAV

9.1.1.8 EXIT Command

(TSS/8ASCII Format)

(BASIC Format)-

(SAVE Format)

This is the command which will enable the user to exit from

PUTR.

Example:

*EXIT
fBS

or

*E
tSS

9.1.1.9 Special Notes

BINARY PAPER TAPES

No switch is required to punch a binary tape. However, if the

binary is an OS/8 file /058 will be required. Binaries on TSS/8 and

9-13

05/8 are stored the same way that ASCII files are stored on their

respective systems.

When a binary tape is read use the /TS8 switch or the /OS8 switch

on the output side of the COpy Command, and /BIN on the input side.

/BIN tells the input to compute a checksum on the tape.

Examples:

*COpy TSFILE.BIN/TS8=PTRI/BIN
*COpy D010SFILE.BN/OS8=PTRI/BIN

SAVE FORMAT PAPER TAPES

Punch the tape, with /SAV on the input file descriptor, using

PUNCH or TAPE.

Example:

*PUNCH SAVFIL/SAV

When reading the tape, read it with /SAV on the input side.

Example:

*COPY FOO.SAV=PTRI/SAV

/SAV and /BIN should not be mixed on the same command line.

Example of bad switch use:

*PUNCH FOO/SAV~F002/BIN

NOTE

Typing CTRL/C will cause PUTR to return
to the "*". If PUTR is in the process
of copying files, the file that is cur­
rently being transferred will not be
completely transferred. Therefore, the
user should delete the last name which
PUTR printed.

9-14

9.1.1.10 Default propagation

When more than one file description is included on the input

side of a PL~R co~mand; then any parameters not specified in one

file description are the sa~e as those of the previous description:

Example:

*LIST DTA0IA#B#C

This will list the files A, B, and C from DTA¢.

*LIST A#DTA0:B#DTA1:C

This will list the files A from SYS: (the user's file area), B

from DTA¢:, and C from DTAI. A similar rule also applies to switches.

To list two OS/8 files from DTA¢:, do NOT type

*LIST DTA0:A#B/OS8

for the /OS8 will apply only to file B. Rather, type

*LIST DTA0:A/OS8#B

The /OS8 will now apply to both file A and file B.

Using CTRL/O

While PUTR is transferring files, it prints the name of each

input file as it begins reading it. This print-out can be disabled

by typing CTRL/O. The print-out can be re-enabled by typing a

carriage return.

9-15

9.1.1.11 DECtapes and RK%5 Disk

DECtapes can be Disk Monitor, COPY, OS/8, or PUTR file structure

tapes. PUTR will know which tape is mounted. PUTR will not write

on the Disk Monitor or COpy DEct·apes. However, it will read them so

that the user may update his tapes if necessary. The RK%5 is in

OS/8 file structure format. RK%5 is divided into two logical de-

vices, RKAn: and RKBn: where n is the drive number (~-3). RKAn: is

the first half of the disk, and RKBn: is the second half of the disk.

Each of the writeable devices Dn:, RKAn:, and RKBn: has directory

space for up to 240 entries. A ZERO operation on DECtapes zeroes to

PUTR format. A ZERO operation on RKAn: or RKBn: zeroes to OS/8 format.

NOTE

The data format of the files is indepen­
dent of the file structure. This means
that TSS/8 files can be put on an 08/8
type device without any conversion. Any
ASCII or binary file that will be used by
the OS/8 or TSS/8 systems should have the
appropriate switches (/OS8 or /TS8) while
copying. It is also helpful when storing
both formats (/OS8 and /TS8) on the same
device, that you use TSS/8 type extensions
(.BIN, .ASC, .BAS) for the TSS/8 type
files and OS/8 type extensions (.BN, .AS,
.BA .••) for the OS/8 type files.

9-16

9.1.2 TSS/8 FILE EXTENSIONS

File Extension Internal Number

.ASC

.SAV

.BIN

. BAS

.BAC

.FCL

.TMP

.DAT

.LST

• PAL

9.1.3 PUTR SWITCHES

1

2

3
A

"*
5

6

7

10

11

12

13

14

15

16

17

ASCII

SAVE

BINARY

BASIC SOURCE

BASIC COMPILED

FOCAL SOURCE

TEMPORARY

Blank - required

DATA FILE (BASIC)

LISTING FILE

PAL SOURCE

UNASSIGNED

UNASSIGNED

UNASSIGNED

UNASSIGNED

Switches for all devices:

1M

6BIT -

X240 -

X237 -

OS8

TS8

BAS

IMAGE transfer; no conversion

Six Bit ASCII packed 2 characters/word

Excess 240, 2 characters/word

Excess 237, 2 characters/word

OS/8, 3 characters/2 words

TSS/8, 3 characters/2 words

TSS/8 BASIC format

Paper Tape Switches

BIN Binary check summing

SAV Save format with check summing

9-17

by System.

Card Reader Switches

ALP RCRA, 6 bit internal alpha.

COM RCRC, compressed 8 bit (PDP8-E systems)

~26 ~26 to ASCII

~29 ~29 to ASCII

Line Printer and Terminal

TRIM - Trims off excess line.
(NOTE: a carriage return /line feed will be
inserted in a line that is too long for the
device if TRIM is not specified.)

LPT List on line printer if available (DIRECTORY
command only).

9.2 PERIPHERAL INTERCHANGE PROGRAM (PIP)

Disk is a convenient storage medium for many files; however, it

may be more useful to keep some programs on paper tape. PIP provides

a convenient means of transferring files between disk and paper tape,

for those users who wish to preserve copies of their files off-line.

9.2.1 PIP Conventions

PIP may be considered a link between disk file storage and

paper-tape devices. To punch a desired file, PIP obtains that file

from the disk and punches it on paper tape. Similarly, to load a

paper tape, PIP inputs the tape from the reader, then outputs it to

a disk file.

The way files are named is important to PIP. Files on disk are

always named. Paper tapes, on the other hand, have no names as far

as the system is concerned (although the user can label the physical

tape in any manner he chooses). Paper tapes never have file names;

therefore, PIP uses the absence of a file name to indicate a paper

tape (absence of a file name is indicated by striking the RETURN key).

9-18

The way in which INPUT: and OUTPUT: is indicated provides the

means for determining the direction of file transfer. If PIP is to

get its input from the disk, the input is a file name; if the input

is from a paper tape; no file name is given. Similarly, if PIP is

to output to the disk, the file name is indicated; if output is to

paper tape, no name is given. To call PIP; type:

.R PIP

9.2.2 Paper Tape to Disk Transfers

To move a paper tape to disk, strike the RETURN key when PIP

requests INPUT: Since PIP must output to the disk, respond to

OUTPUT: by typing a file name. When PIP requests OPTION: type T to

indicate that the paper tape is being loaded from the Terminal

reader. For example:

.R PIP

INPUT:
OUTPUT:FILEl
OPTIoNaT

The paper tape in the low-speed reader is read and stored in the

system as FILE1.

9.2.3 Disk to Paper Tape Transfers

To move a disk file onto paper tape, the use of file names is

reversed since PIP must input a disk file and output it to paper tape.

The option remains the same. For example:

.R PIP

INPUT'FILEl
OUTPUTa
OPTIONaT

9-19

The contents of FILEl are then punched at the Terminal.

9.2.4 High-Speed Reader/Punch Assignments

PIP can also be used with high-speed paper-tape devices. The

format of the INPUT: and OUTPUT: responses is the same. However,

for the high-speed reader, the option is R and for the punch it is P.

Since the reader and punch are assignable devices, they are not

always available (other users may have one "or both assigned). There­

fore, whenever PIP is given a command which utilizes one of these

devices, it checks to make sure that the device is available. If it

is, PIP automatically assigns it (thus, it is not necessary to assign

the device before running PIP). If the device is unavailable, PIP

informs the user. For example:

INPUT:
OUTPUTtABCD
OPTIONaR

PIP reads the paper tape in the high-speed reader and stores it in

the system as ABCD.

INPUTsABCD
OUTPUT:
OPTIONCP

PIP punches out file ABCD on the high-speed punch.

INPUT:ABCD
OUTPUT:
OPTIONcP
DEVICE NOT AVAILABLE OR HUNG

The punch is assigned to another user, or there is no punch on the

EduSystem 50, or there is one but it is turned off.

9-20

9.2.5 Bin Format File Transfers

The examples above work for all ASCII file transfers (except

BASIC programs, explained in Section 9.4.8). The examples are also

valid for punching BIN files, with one exception; most installations

do not allow any BIN format tapes to be loaded from the low-speed

reader.

9.2.6 Moving Disk Files

PIP can be used to move the contents of one file into another.

This is often useful in copying a file from another user's library

(providing the file is not protected) into your own library. To

copy from disk file to disk file, specify a file name for both input

and output. Reply to OPTION: by striking the RETURN key. For

example:

INPUT:FOCAL 2
OUTPUT: FOCALX
OPTION:

PIP gets FOCAL from account· number 2's library and moves it into the

file FOCALX.

9.2.7 Deleting Disk Files

One of the principal reasons for punching files on paper tape is

to free disk space. Once punched, the disk file is no longer needed.

PIP offers a convenient means of deleting files, the Delete option:

INPUT:ABCD
OUTPUT:
OPTIONtD

PIP deletes file ABCD, provided that the file is not protected against

being changed.

9-21

9.3.7 BASIC File Transfers

BASIC stores its programs in a unique file format. Therefore,

it is not possible to load or punch BASIC files in the usual way. To

provide a convenient means of handling BASIC programs, the B option

is available in PIP. The B option is used for both reading and

punching BASIC programs. The responses to INPUT: and OUTPUT: indicate

the direction of the transfer; the high-speed reader or punch is

always assumed for the B option. (To read or punch tapes at low­

speed, use BASIC itself.)

PIP assumes that any BASIC tapes it loads are clean and error­

free. Only tapes actually created by BASIC should be loaded with

PIP. Tapes created off-line, and thus liable to contain errors,

should be loaded low-speed by BASIC itself with the TAPE command.

9.3.8 Save Format File Transfers

Another special file format is that of the SAVE files, those

programs directly executed by EduSystem 50. (The Systems Library

Programs are examples of SAVE format files.) PIP provides the S

option, to allow these files to be punched on paper tape. SAVE

format tapes make sense only to PIP and PUTR. They cannot be input

to any other Systems Programs."

The responses to INPUT: and OUTPUT: indicate the direction of

the transfer; the high-speed reader or punch is always assumed for

the S option.

NOTE

SAVE format tapes include a checksum. If
PIP detects an incorrect read, it prints
LOAD ERROR, and terminates the load, re­
peating the request for input.

9-21.1

Option

B

D

F

K

L

P

R

S

T

TABLE 9-1

PIP OPTION SUMMARY

Explanation

Transfer a BASIC program file between the disk and the
high-speed reader or punch. The response to input
and output indicates the direction of the transfer.

Delete the file specified for input.

List a BASIC program on the -line printer.

Load a save format paper-tape from the terminal. This
option will not work on most TSS/8 installations.

Transfer an ASCII file from the disk to the line
printer.

Punch the contents of a disk file on the high-speed
punch.

Read a tape from the high-speed reader and store it
as a disk file.

Transfer a SAVE format file between the disk and the
high-speed reader or punch. The response to INPUT:
and OUTPUT: indicates the direction of the transfer.

Transfer a file between the disk and the terminal
reader or punch. The response to INPUT: and OUTPUT:
indicates the direction of the transfer.

9.3 COPY PROGRAM

Many EduSystem 50 installations include one or more DECtapes.

For these installations, DEC tape provides a convenient and inexpen­

sive means of file storage. The COpy program is used to transfer

files between disk and DECtape.

9.3.1 Using and Calling COpy

COpy is the intermediary between disk and DECtape. To write a

disk file out to DECtape, COpy inputs the file from the disk, then

9-22

outputs it to the DECtape. To bring a DEC tape file onto the disk,

COpy inputs from the DECtape, then outputs to the disk.

Files kept on DECtape have file names just as they do on the

disk. To avoid confusion, the user must tell COpy where the file

is to be found. If it is on DECtape, the DECtape designation and

the number of the DECtape unit must preface the file name. The DEC­

tape number is always separated from the file name by a colon: Thus

DI:FILEI means the file name FILEI on the DECtape which is currently

mounted on DECtape unit number one. The number of available tape

units varies among installations. The maximum is eight (numbered

0-7). If a file name is not prefaced by a DECtape number, the file

is assumed to be on the system disk.

Files stored on DECtape do not have protection codes in the

sense that disk files do. They are, however, protected against

unauthorized access. When a DECtape is not mounted, it is not

available to any user. When it is mounted, it is available only to

the user who has assigned the DECtape unit on which it is mounted.

Even then it can not be altered unless the DECtape unit is set to

WRITE ENABLE. Users should be sure to assign a DECtape unit before

mounting their tape, and dismount the tape before releasing the de­

vice. Normally, the DEC tape unit to be used should be assigned

before calling COpy.

To call COpy, type:

.R COpy

COpy responds by asking which option the user wishes to employ.

The COpy options are discussed below and summarized in Table 9-2.

~- 22.5

9.3.2 Loading Files from DECtape

To load a file onto the disk from DECtape, use the COPY option.

When COpy requests OPTION, respond with COPY, or C, or strike the

RETURN key (the COpy option is assumed). When COpy requests INPUT,

type the number of the DEC tape unit on which the file can be found

(DO, Dl, D2, D3, D4, D5, D6, or 07) followed by a colon and the

name of the file on the DECtape. When COpy requests OUTPUT, type

and enter the name to be given to the output file on the disk. COpy

then moves the DECtape file onto the disk.' (When using COPY, it is

not mandatory to insert a space between the device designator and the

device number.) For example:

OPTION" COpy
INPUT" D4:PQR
OUTPUT- PQR

If for any reason, COpy cannot find the DECtape file specified

for input (the specified DECtape is unavailable or nonexistent, or

the file name does not exist on that DECtape), COpy prints a ? and

repeats the request for input. If the disk file specified for output

already exists, COpy prints a ? and repeats the request for output.

COpy does not overwrite an existing file. For example:

OPTION- C
INPUT- D9:PQR
? INPUT- D4' PQRS
?INPUT- D4:PQR
OUTPUT" PQR

9.3.3 Saving Disk Files on DECtape

Saving a disk file on DECtape is very similar to loading one ..

The option is still COpy. For input, respond with the name of the

file on the disk. For output, type the DECtape unit number, colon,

and the name to be given to this file. For example:

9-23

OPTION- C
I NPUT- ABCD
OUTPUT- D4aABCD

If COpy cannot find the file on the disk, or if it is protected,

COPY prints a ? and repeats the request for input. If COpy cannot

create the desired DEC tape file (the specified DECtape does not

exist or is unavailable, or it is not WRITE ENABLED, or a file by

that name already exists on the tape) COPY prints a ? and repeats

the request for output.

9.3.4 Listing Directories

COpy can be used to list the directory of a device. To list a

directory, respond to OPTION by typing LIST, or just L. COpy then

asks which device directory it is to list. To list a DECtape

directory, respond with the device name (DO, ... ,D7). Do not follow

it by a colon. For example:

• R COpy

OPTION- LIST
I NPUT- D1

1372. FREE BLOCKS

NAME SIZE
BASIC .SAV 66
FACTAL.BAS 10
CONVER.BAC 6
PALD .SAV 32

DATE
9-MAR-70
2-MAR-70
l-MAR-70

31-MAR-70

The unit of DEC tape storage is the block, which is 128 (decimal)

words. Because the unit of disk storage, the segment, is generally

256 words, a file occupies twice as many blocks of DECtape storage

as it did segments on the disk.

9-24

COpy can also be used to list the user1s disk directory. Use

the LIST option, but respond to DEVICE by simply striking the RETURN

key. The directory .listing is similar to the listing obtained by

running the CAT program.

9.3.5 Deleting Files

COpy can also be used to delete files, either on the disk or on

a selected DECtape. To delete a file, respond to OPTION by typing

DELETE, or just D. Respond to INPUT by typing the name of the file

to be deleted. If the file is on a DECtape, preface the file name

with the DECtape unit number and a colon. For example:

OPTION- DELETE
INPUT- D4tABCD

If COpy cannot find the file to be deleted, or having found it,

cannot delete it (it is a protected disk file or a DECtape file on a

unit which is not WRITE ENABLED), COpy prints a ? and repeats the

request for INPUT.

9.3.5.1 Deleting All Existing Files on a Device

COpy can be used to delete all existing files on a device. To do

so, respond to OPTION by typing ZERO, or just Z. When COpy requests

INPUT respond with the name of the device. COpy will not zero the

system disk. The ZERO option should also be used to format a blank

DECtape before attempting to copy any files onto it. For example:

OPTION- ZERO
INPUT- D4

Option

COpy

DELETE

EXIT

LIST

ZERO

Abbreviation

C

D

E

L

Z

TABLE 9-2

COPY OPTION SUMMARY

Explanation

Transfer a file between disk and DECtape.

Delete a file.

Exit to the Monitor.

List a directory.

Delete all files.

COpy cannot delete files from a DEC tape unless it is WRITE ENABLED.

It cannot delete disk files which are write protected.

9.3.6 Example of COpy Usage

.ASSIGN D 5
D 5 ASSIGNED
.R COpy

OPTION- ZERO
DEVICE- D5

OPTION- LIST
DEVICE- D5

1462. FREE BLOCKS

NAME SIZE

OPTION- LIST
DEVICE-

DATE

DISK FILES FOR USER 54~40 ON 9-DEC-74.

NAME SIZE PROT
SOLVE .BAS 1 12

TOTAL DISK SEGMENTS: 1

DATE
9-DEC-74

- I . ---

OPTION- COpy
INPUT - SOLVE
OUTPUT- D5:S0LVE

OPTION- DELETE
I NPUT- SOLVE

OPTION- LIST
DEVICE- DS

1460. FREE BLOCKS

NAME SIZE
SOLVE .BAS 2

OPTION- LIST
DEVICE-

DATE
9-DEC-74

DISK FILES FOR USER 54,40 ON 9-DEC-74.

NAME SIZE PROT

TOTAL DISK SEGMENTS: 0

OPTION- COpy
INPUT - D5: SOLVE
OUTPUT - ABC D

OPTION- LIST
DEVICE-

DATE

DISK FILES FOR USER 54,40 ON 9-DEC-74.

NAME SIZE PROT
ABCD .BAS 1 12

TOTAL DISK SEGMENTS: 1

OPTION- RENAME
I NPUT- ABCD
OUTPUT- FIE.BIN<17>

OPTION- LIST
DEVICE-

DATE
9-DEC-74

DISK FILES FOR USER 54,40 ON 9-DEC-74.

NAME SIZE PROT
FIE .BIN 1 17

TOTAL DISK SEGMENTS:

OPTION- EXIT
fBS
.RELEASE D 5

DATE
9-DEC-74

9-27

CHAPTER 10

ADVANCED MONITOR COMMANDS

10.1 INTRODUCTION

The fundamental Monitor commands described previously are those

needed to utilize existing System Library Programs. The EduSystem 50

Monitor also provides powerful commands for users who wish. to create

their own library programs.

To use the System Library Programs described previously, it was

not necessary to be familiar with the actual machine that runs them,

the PDP-8/E. To create new library programs for EduSystem 50, this

is necessary because they are written in the PDP-8 assembly language.

The user codes his programs for a 4K PDP-8, subject to the time­

sharing conventions discussed in this section. The programs are

created with EDIT, then assembled by PAL-D and loaded by LOADER.

Only at this point are the programs able to be run by EduSystem 50.

In the course of this program development, the same program exists

in many formats.

The source program is a disk file containing ASCII characters

in an Editor format. PAL-D reads the file and translates it into a

second file, the assembled program in BIN format. Neither of these

files is capable of being executed directly by EduSystem 50. The

BIN format tape must be loaded into core by LOADER before it can

actually be executed.

At this point it is possible to save the program in a file format

that is directly executable by EduSystem 50. Such a file, called a

SAVE format file, contains an image of the user's core area after the

program has been loaded by LOADER. These SAVE format files differ

10-1

from all the files which are created by System Library Programs and

cannot be executed directly by EduSystem 50. Thus, it is not possible

to save a BASIC program {e.g., FILEI while running BASIC}, then return

to Monitor type R FILEI, and get meaningful results. The program in

FILEI must be executed under control of the BASIC language processor.

Only SAVE format files can be called into execution directly by the

R command. {All System Library Programs are stored in SAVE format

and can be run with the R command.}

NOTE

In the following examples, Sn, Cn, and
Dn are used to stand for alphanumeric
strings {such as file names}, octal num­
bers, and decimal numbers, respectively.

A number of Monitor command conventions are available to make

the commands easier to use. First, more than one command may be

typed on a line. Individual commands are separated by a semi-colon

(i). Second, only enough characters of a command to uniquely specify

it need by typed. Thus, DEPOSIT can be abbreviated DE or DEP .

• LOAD FILEIJDEP 20 7000JST 200

is exactly equivalent to:

.LOAD FILEl

.DEPOSIT 20 1000

.START 200

These conventions are available for the elementary Monitor com­

mands as well. They are, however, especially convenient for the

advanced commands.

10-2

10. 2 CO"NTROL OF USER PROGRAMS

Once a PAL-D program has been loaded by LOADER, several Monitor

co~mands are available for controlling its execution. These com-

mands are shown in Table 10-1.

It is possible to give these utility commands while a user pro­

gram is running. The CTRL/B character (tB) gets the attention of the

Monitor without stopping program execution. (tB followed by the S

command stops the program.) tB can be used together with the WHERE

command to follow program execution. After executing these commands,

Monitor does not put the Terminal back into Monitor mode.

Command

DEPOSIT Cl C2 ... Cn

EXAMINE Cl

EXAMINE Cl Dl

START

START Cl

TABLE 10-1

MONITOR PROGRAM CONTROL COMMANDS

Explanation

Deposit the octal values C2 to Cn in the lo­
cations starting at Cl. DEPOSIT is used to
make small octal modifications to a user
program. No more than 10 (decimal) locations
can be modified by a single DEPOSIT
instruction.

Print the octal contents of location Cl.

Print the contents of Dl locations starting
at Cl.

Restart execution of a user program where it
was interrupted (either by execution of an
HLT or by tBS typed at the keyboard). When
the START command is given, the program's
state is restored.

Start execution of a user program at location
Cl. When a program is started, keyboard
input is no longer interpreted as commands
to Monitor. Input characters are passed to
the running program. START Cl clears the
user's AC and link.

10-3

Table 10-1. (Cont.)

Command Explanation

WHERE Print the present status of the user program.

10.3 DEFINING DISK FILES

The user's AC, PC, LINK and switch register
are printed. Also, any EAE registers which
are present are printed.

The Monitor allows the user to save core images of his program

on the disk for future use. However, before saving such a core

image, the user must define a disk file in which to save it.

Disk files, like the user's core, are made up of l2-bit words.

Unlike the user's core, which is always 4K in size, a file can be

any size. The unit of disk file storage is the segment; a segment is

256 (decimal) words long. Files are at least one segment long when

created and grow by appending additional segments to the end of the

file. In defining a file, the user first creates it, then extends

it to whatever length he needs. To have a whole 4K image on a system

with a segment size of 256 (decimal) words, a 16 segment file is re­

quired. If only part of the contents of the user's core is to be

saved, a correspondingly smaller file can be used.

A file can be created at any time. However, to modify or re­

define it in any way, the file must be open. Up to four files can be

open for a user simultaneously. Opening a file connnects it to an

internal open file number (0, 1, 2, or 3). Once a file is open, it

is referenced by this internal file number rather than by its file

name.

10-4

10.3.1 Creating a Disk File

- The CREATE command defines an area of disk space and associates

it with the name given in the co~uand line.

The file name can be one to six alphanumeric characters of which

the first must be a letter. Creating a file deletes any existing

file of the same name, unless that file is write protected. When

created, files are always one segment in size. A new file is arbi­

trarily assigned a protection code of 12, meaning that other users

may access it but only the owner may change it. Until it has been

written, the contents of a newly defined file are undefined.

10.3.2 Opening and Closing a File

To use a file, it must first be opened with the OPEN command.

A file can be opened on any of four internal file numbers: 0, 1,

2, or 3. A user can have up to four files open at a time. If a file

is open on an internal file number for which a file is already open,

that file is first closed. For example:

.CREATE AS

.OPEN 1 AB

AB is now an open file and can be referenced as file 1.

An open file can be closed at any time by means of the CLOSE

command. Once closed, a file cannot be accessed in any way until it

is reopened. It is possible to close more than one file with a

single co~~and. For example:

.CLOSE 0 1 2 3

10-5

10.3.3 Extending, Reducing, and Renaming a Disk File

When created, a file is one segment long. If a larger file is

needed, the original file can be extended. For example, the

command:

.EXTEND Cl 01

extends the file presently open on internal file Cl by 01 segments.

Extending a file adds one or more segments to the end of that file.

The contents of the old part of the file are not changed. Until

written, the contents of the newly added segments are unspecified.

An existing file may be reduced in size by means of the REDUCE com­

mand. For example, the command:

.REDUCE Cl 01

reduces the file presently open on internal file Cl by 01 segments.

Reducing a file deletes the number of segments indicated from the

end of the file. The contents of remaining segments of the file are

unchanged. If a file is reduced to zero segments, or if 01 is greater

than the number of segments in the file, it is deleted entirely. An

example of the creation and deletion of a 4K file:

.CREATE FOURK

.OPEN 3 FOURK

.EXTEND 3 15

.REDUCE 3 16

Existing opened files can be renamed. Renaming a file does not change

its contents in any way. For example, the command:

-RENAME Cl 81

renames as 81 the file open on internal file number Cl.

10-6

10.3.4 Protection Codes

The user can protect his files against unauthorized access. He

can also specify the extent of access certain other users can have

to his files. For example, a user's associates can be permitted to

look at the data of certain files but not permitted to alter that

data.

When it is created, a file is assigned a protection code of 12.

This protection code is defined below and can be changed

. ':, but only by the owner of that file. For example, the command:

.PROTECT Cl C2

gives the protection code C2 to the file open on internal file number

Cl.

The protection code is actually a 5-bit mask. Each bit specifies

a unique level of protection.

File protection masks (C2) are assigned as follows:

1 Read protect against users whose project number differs
from owner's.

2 Write protect against users whose project number differs
from owner's.

4 Read protect against users whose project number is same
as owner's.

10 Write protect against users whose project number is
same as owner's.

20 Write protect against owner. To change the program
the owner must change the protect code.

10-7

Protection codes are determined as the unique sum of any of

the above codes. Some of the more common protection codes are as

follows:

Command Explanation

PROTECT 1 0 Allow other users to access the file and
change it.

PROTECT 1 12 Allow other users to access the file but
not change it.

PROTECT 1 17 Allow only the file owner to read· the file.
He can also change it.

PROTECT 1 37 Allow only the file owner to read the file.
He cannot, however, change it. (To change
it, he must first change the protection.)

A user's project number is the first 2 digits of the 4-digit

account number. The protection word contains a filename extension,

and has the following format:

o 4 5 6 7 11

FILENAME EXTENSION UNUSED PROTECTION CODE
I I I 1 I I I I I

The filename extension gives additional information about the

file, which is printed in some directory listings. The filename

extension codes are:

0 blank

1 .ASC

2 .SAV

3 .BIN

4 . BAS

5, .BAC

6 .FCL

ASCII files, such as PAL source.

Save format files.

Binary files; must be loaded with program
LOADER.

BASIC source file.

BASIC compiled program file.

FOCAL file

10-8

7 .TMP Temporary file.

11 . OAT Basic data file.

12 .LST Listing file.

13 = PAL PAL source file ..

The protection word may be set by using PROTECT:

.PROTECT 0 0217

This changes the protection of the file open under internal file

number 0 so that the file has an extension of .ASC, and that it

cannot be read or written by any person other than its owner.

Finally, the user can ask what file is open on a given internal

file number by means of the F (File informatio~ command. For exam­

ple, the command:

.F Cl

prints the following information about the file presently open on an

internal file Cl:

a. Account number of file owner.

b. Name of file.

c. File extension.

d. Protection code.

e. Size of file in segments (decimal).

For example:

• F 1
0002 TYPE 01 12 5

10-9

10.3.5 Error Conditions

There are a number of error conditions which prevent the execu-

tion of the file definition commands (as previously described). One

of the following error messages is printed by Monitor if an error

condition is detected:

Message Explanation

DIRECTORY FULL A CREATE command has been issued, but
the user's directory is full. He can
delete any of his files to make room
for the new file. This message also
indicates a user has exceeded his disk
quota.

[MYFILE EXCEEDING DISK QUOTA] The user has extended a file beyond his
allowed disk quota. The amount of extra
space (grace) the user is allowed is
determined by the system manager.

FAILED BY n SEGMENTS The user has attempted to extend a file,
but cannot because of lack of segments
on the system, or because he is attemp­
ting to go beyond the grace quota. The
number of segments requested, but not
available, is printed.

FILE IN USE An EXTEND, REDUCE, PROTECT, or RENAME
command has been issued for a file which
is in use elsewhere by another user.
Because changing a file which is being
used (i.e., has been opened) could dis­
rupt another user's work, under these
conditions such a change is prohibited.

FILE NOT FOUND The user has attempted to OPEN a non­
existent file.

FILE NOT OPEN An EXTEND, REDUCE, PROTECT, or RENAME
command has been issued for an internal
file number for which no file is open.

PROTECTION VIOLATION An attempt has been made to change a
file which is write protected against
the user.

10.4. SAVING AND RESTORING USER PROGRAMS

Once a file has been defined, the user can save all or any part

of his user core in the file. Files and user core are addresses in

10-10

the same way, by l2-bit words. The user can transfer his file into
any part of core.

The SAVE command requires one to five parameters. The name

of the file to be written into must always be given. If the file

is not in the user's own library, the appropriate account number is

entered before the file name. (Writing into a file owned by another

user is subject to file protection.) In either case, the parameters

are separated by spacess The SAVE command writes the indicated

section of core out into the indicated file.

If no parameters follow the file name, Monitor starts at location

zero of the user's core and saves it in location zero of the disk

file. It continues to write core locations into the disk file until:

(a) it has written the whole 4K or (b) it has filled the file. Either

condition completes the SAVE.

The user can further define his SAVE command by indicating parts

of core to be saved in specific parts of the disk file. He does

this by typing one to three parameters following the file name. The

first parameter following the file name indicates a specific disk file

address at which to begin writing. The second parameter following the

file name indicates a specific core address at which to begin the

transfer. If only the first two parameters are typed, the transfer

terminates when either the end of core or the end of file is reached.

Command

SAVE Sl
SAVE Cl Sl

SAVE Sl C2 C3 C4

Explanation

Assuming that a disk file Sl exists, and
that it is not write protected, the contents
of core are saved in Sl. In the first case,
Sl is assumed to be in the library of the
user giving the command. In the second
case, it is assumed to be in the library of
the user whose account number is Cl.

Locations C3 to C4 (inclusive) are saved in
file Sl starting at disk file location C2.
Sl is assumed to be in the user's own li­
brary. If Sl is preceded by the parameter
CI, it is assumed to be in the library of
the user whose account number is Cl.

10-11

Once a core image has been saved in a disk file, it can be

restored to core by means of the LOAD command. It should be noted

that the Monitor command LOAD is very different from the System

Library Program LOADER. LOADER loads a BIN format file (created by

PAL-D) into the user's core. LOAD loads a SAVE format file (created

by a previous SAVE command) into core.

The LOAD command requires from one to five parameters. The

name of the file to be loaded must always be given. If the file is

in the user's own library, this file name is typed after the SAVE

command itself. If it is in another user's library, his account

number is entered before the file name. (Reading another user's file

is subject to file protection.) In either case, the parameters are

separated by spaces.

Command

LOAD Sl
LOAD Cl Sl

Explanation

Assuming that a disk file Sl exists, and
that it is not read protected, the contents
of the file Sl are loaded into core. In
the first case Sl is assumed to be in the
library of the user giving the command. In
the second case, it is assumed to be in the
library of the user whose account number
is Dl.

The user can further define his LOAD command by using the same

optional parameters discussed in the section on the SAVE command.

Command

LOAD 81 C2 C3 C4

LOAD NE~~ 5 10 17

Explanation

Locations C3 to C4 (inclusive) are loaded
from the file Sl starting at file location
C2.

Words 5 to 14 (inclusive) of the file named
NEWF are loaded into locations 10 to 17 of
the user's core.

10-12

It is not necessary to open a file before using it in a LOAD or

SAVE command. Both commands automatically open the specified file

on internal file nurr~er 3 before performing the transfer. After

completion of the command, the file remains open on file number 3.

A special macro-command, RUN, exists to allow a program to be

loaded and started all in one command.

Command

RUN Sl
RUN Cl Sl

RUN Sl C2
RUN C1 81 C2

Explanation

Load file Sl into core from the disk and
start execution at location O.

In the first example, file Sl is assumed
to be in the user1s own library. In the
second, it is assumed to be in the library
of the user whose account number is Cl.
RUN Sl is exactly equivalent to LOAD Sl:
START O. RUN Cl Sl is exactly equivalent to
LOAD Cl Sl: START O.

Load file into core from the disk and start
execution at location C2.

The R command (see the section EduSystem 50 Monitor) is a special

case of the RUN command. For example, the command:

.R Sl

loads file Sl from the System Library (account number 2) and starts

at location O. R Sl is exactly equivalent to RUN 2 Sl.

Typing an address after the program name in a "R" or

"RUN" command causes execution to begin at that address,

rather than at zero.

10-13

Sometimes, when typing a complex SI command, the rubout (or delete)

key may have been used a number of times to make corrections, and the

user may not be quite sure of what was typed. A LINE FEED may be

typed to instruct SI to print out the command line as SI currently

understands it. If the command line was entered while a program was

running by prefacing the command with fB, SI will print tB to signify

this, or else it will start the line with a dot. Similarly, if an

attempt is made to rubout characters when there are none to rubout,

SI will print either tB or a dot to signify this condition.

At times, the system becomes very busy, and an SI command takes

a long time to execute. If a user attempts to enter another command

at this time, his typing is ignored and his terminal bell rings to

warn him to wait.

10.5 UTILITY COMMANDS

The Monitor provides a number of special purpose commands to aid

in program development and use. The Monitor utility commands are

summarized in Table 10-2.

10-14

Command

BREAK

BREAK Cl

DUPLEX

RESTART

RESTART Cl

SWITCH

SWITCH Cl

UNDUPLEX

USER

USER Cl

VERSION

TABLE 10-2

MONITOR UTILITY CO~ll~NDS

Explanation

Print the current value of the user's
delimiter mask.

Set the user's delimiter mask to Cl. (The
use of the delimiter mask is discussed in
the chapter on assembly language
programming).

Place the user's terminal in duplex mode.
All characters typed at the keyboard are
automatically printed as they are entered.

Print the user's restart address.

Set the user program restart address to Cl.
If CTRL/C is typed at the keyboard, Monitor
forces a jump to location Cl in the user's
program.

Print the current value of the user's switch
register.

Set the user's switch register to Cl. Moni­
tor maintains a switch register for each
user. When his program executes on OSR
(OR the switch register into the AC) this
value is the one which is loaded.

Take the user's terminal out of duplex mode.
Input characters are received by the Monitor
and-by the user program without their being
printed at the console.

Print the user's job number, account number,
and console number.

Print the job number, account number,
and console number associated with job Cl.

Print the version of the Monitor being used.

10-15

CHAPTER 11

WRITING ASSEMBLY LANGUAGE PROGRAMS

11.1 INTRODUCTION

In addition to the higher-level programming languages available

in the EduSystem 50 library, the user can also code and run pro­

grams written in the PDP-8 assembly language, PAL-D (Program

Assembly Language). These programs are prepared with EDIT, assembled

with PAL-D, then loaded with LOADER.

A user can program EduSystem 50 just as he would any other

4K PDP-8. (Assembly language programs must fit in 4K of core.)

All memory reference instructions (AND, TAD, ISZ, DCA, JMS,

and JMP) function as on a stand-alone PDP-8. All operate instructions

(instruction code 7) also function as on a regular PDP-8 (except that

microcoding HLT or OSR with any other operate instruction but CLA

gives unpredictable results).

The major difference between EduSystem 50 programming and

regular PDP-8 programming is in the lOT (input/output transfer)

instructions. Some instructi~ns which are valid on stand-alone

PDP-8s, such as CDF, CIF, ION, IOF are considered illegal in­

structions under timesharing. There are a great many new lOTs within

EduSystem 50 that are not valid on a regular PDP-8. Finally, there

are lOTs which operate on EduSystem 50 in the same manner as on stand­

along PDP-8s. (Table 7-2 is a summary of EduSystem 50 lOT

Instructions.)

The way EduSystem 50 actually executes an lOT instruction is

also different. Non-lOT instructions (except HLT and OSR) are

executed by the hardware, while lOTs (and HLT and OSR) are executed

by the EduSystem 50 Monitor.

11-1

In general, EduSystem 50 provides the programming capabilities

of a 4K PDP-8 and allows programs of considerably greater complexity

to be run within the constraints of each user's 4K of core. System

Library Programs, all of which were written in assembly language and

make use of the EduSystem 50 lOTs dealt with below, are examples of

programs which can be run on EduSystem 50.

NOTE: Some of the following instructions do not operate the same

under account 1. For information on these instructions, see the

Manager's guide.

11.2 CONSOLE I/O

User programs handle console (terminal) I/O in almost the same

way as stand-alone PDP-8 programs. The KRB instruction is used to

input a character, the TLS instruction to output a character. The

KSF and TSF (followed by JMP .-1) can be used but are not needed.
Monitor handles all timing problems whether these skip lOTs are

present or not.

EduSystem 50 differs from the stand-alone PDP-8 in that under

EduSystem 50 the user program interacts with multi-character input

and output buffers (maintained by Monitor) rather than with single

character registers. Depending on the state of the system, these

buffers may have one, many, or no characters in them. During

normal program execution, this fact is of no consequence. User

programs still send and receive characters one at a time. There are

times, however, when it is useful to clear out any and all characters

in the buffers; a special lOT exists for this purpose (SBC).

On a stand-alone system, characters are input as soon as they

are typed, whether they are of immediate interest or not. Usually,

these characters are stored by the program until a terminating (or

delimiting) character is found. At this time, the whole line of

characters is processed. On a swapping, time-sharing system such as

EduSystem 50, this mode of operation is wasteful. It is far more

efficient to allow input characters to accumulate in the Monitor

input buffer until a delimiter is found. There is an lOT to specify

which characters are to be considered delimiters (KSB).

11-2

EduSystem 50 also allows programs to input and output strings of

characters. The read string (KSR) and send string (SAS) instruc­

tions provide a convenient and efficient means of doing lengthy

transfers.

All keyboard input uses full-duplexed hardware; there is no

wired connection between the keyboard and printer (i.e., characters

are not printed on the console as typed). Input characters are

echoed to the console under program control rather than by hard­

ware. Because input characters are allowed to accumulate .in buffers

before being passed to the user program, it is important to have

Monitor perform the echoing rather than user programs. There is

an lOT (DUP) to set up this automatic echoing as well as an lOT

(UND) to inhibit echoing for such operations as reading tapes.

Read Keyboard Buffer (KRB) Octal Code: 6036

Operation: Read the next input character into bits 4-11 of the AC.

Load Teleprinter Sequence (TLS) Octal Code: 6046

Operation: The ASCII character in AC bits 4-11 is printed on the

user's console.

Skip on Keyboard Flag (KSF) Octal Code: 6031

Operation: The next instruction is skipped if there is a delimiter

character in the user's input buffer.

Read Keyboard String (KSR) Octal Code: 6030

Operation: Execution of this instruction initiates a transfer of one

or more characters from the user's keyboard to a designated core

area. Before executing KSR, load the AC with the address of a

two-word block, where:

Word 1: negative of the number of characters to be transferred.

11-3

Word 2: address of the core area into which characters are to

be placed minus one.

The transfer is terminated when either:

a. the indicated number of characters have been input or

b. a delimiter is seen. At the end of the transfer, the word

count and core address are updated and the AC is cleared.

Send A String (SAS) Octal Code: 6040

Operation: Before executing an SAS load the AC with the ·address

of a two-word block, where:

Word 1: contains the negative of the number of characters to

be sent.

Word 2: contains the address - 1 of the first word of the string.

The characters are stored one per word right justified starting at

the address specified by word 2. Upon e'xecution of SAS, the system

takes only as many characters as will fit in the output buffer. It

then makes the appropriate adjustment to word 2 to indicate a new

starting address and to word 1 to indicate the reduced character

count; it returns to the instruction following the SASe If the char­

acter count is reduced to zero, the instruction following SAS is

skipped. The instruction following the SAS usually contains a JMP

.-2 to continue the block transfer of terminal characters. The

AC is cleared by SASe

Set Keyboard Break (KSB) Octal Code: 6400

Operation: Rather than activate a user's program to receive each

character as it is typed, EduSystem 50 accumulates input characters

until a certain character, or characters, is seen. To tell the

Monitor which characters to look for (these characters are referred

to as delimiters), load the AC with a l2-bit mask before executing

a KSB. For each bit in the mask which is set, Monitor considers

the corresponding character or characters to be delimiters.

11-4

Bit Specifies

o 0 = check rest of mask

1

2

3

5

6

7

8

9

10

1 = any character is break

301-332 (all letters)

260-271 (all numbers)

211 (Horizontal tab)

212=215 (line feed, vertical

241-273 (! " # $ % &' () *+ , - • /: ;)

240 (space)

274-300 « +>?@)

333-337 ([,It--)
377 (RUBOUT)

375 (ALT MODE)

4- ... 1-
l..a..LI ,

11 any characters not mentioned above

Duplex (DUP)

form RETURN)

Octal Code: 6402

Operation: DUP informs Monitor that the user wishes each character

typed at the console to be echoed on that console's printer as it is

received by Monitor. The DUP instruction does not affect the user's

registers.

Unduplex (UND) Octal Code: 6403

Operation: UND informs Monitor that the user wishes to suppress

character echoing. This can be done for reasons of privacy or be­

cause a program does its own character echoing. The user's registers

are unaffected by UND.

Set Buffer Control (SBC) Octal Code: 6401

Operation: SBC permits the user program to clear its terminal input

and/or output buffer. Before executing SBC set bits 0 and 1 of the

AC as indicated below:

Bit 0

Bit 1

Clear output buffer.

Clear input buffer.

11-5

11.3 FILES AND DISK I/O

All user programs can gain access to disk storage. The time­

sharing Monitor maintains a pool of available disk space which is

allocated in units referred to as segments. Segments are 256 word

each. These segments are used to make up user files on the disk.

Monitor also maintains, for each user, a directory of all files which

he has defined.

The lOTs which allow the user to access the disk are of two

types: those which define files on the disk and those which transfer

data between a defined file and the user's core.

NOTE

CREATE and OPEN require that a user set up a file

name in core. FINF and WHO return file names to

core. Each must be specified in internal code

(excess 40 code) as shown in Table 11-1. Charac­

ters are packed two to a word.

The first step in defining a file is to create it. Creating a

file reserves a single segment of disk storage and associates it with

a name. This file can then be extended to any length desired. Ex-

tending a file appends more segments to it. Similarly, a file can be

reduced by any number of segments. Reducing a file removes the last

segment or segments from the file. Reducing a file to zero segments

deletes it entirely. Once created, a file can be protected, thereby

restricting access to it. When created, a file can be read by any

user, but only the creator can write in it. This protection can be

reset if desired. Finally, it is possible to rename an existing file.

11-6

TABLE 11-1

EDUSYSTEM 50 INTERNAL CHARACTER SET

6-Bit1 8-Bit 6-Bit1 8-Bit
Character Octal Octal Character Octal Octal

Space 00 240 @ 40 300
! 01 241 A 41 301
" 02 242 B 42 302
03 243 C 43 303
$ 04 244 D 44 304
% 05 245 E 45 305
& 06 246 F 46 306
, 07 247 G 47 307
(10 250 H 50 310
) 11 251 I 51 311
* 12 252 J 52 312
+ 13 253 K 53 313

14 254 L 54 314
15 255 M 55 315
16 256 N 56 317

/ 17 257 a 57 317
0 20 260 p 60 320
1 21 261 Q 61 321
2 22 262 R 62 322
3 23 263 S 63 323
4 24 264 T 64 324
5 25 265 U 65 325
6 26 266 V 66 326
7 27 267 W 67 327
8 30 270 X 70 330
9 31 271 y 71 331

32 272 Z 72 332
33 273 [73 333.

< 34 274 f 74 334
= 35 275 75 335
> 36 276 t 76 336
? 37 277 77 337

IThe 6-bit octal code is used to store passwords and file names only.

11-7

None of these actions affect the contents of the file-they only

reserve space on the disk. Until it has been written in, the actual

content of a file is unspecified. Extending a file does not alter the

content of the file as it previously existed. Once defined, files can

be used to read and write data. Any number of words (1 to 4096) can

be moved from any part of the user's core to any part of a file

(subject to file protection). The user program specifies a location

in core and a word count. This indicates how many words are to

be transferred and from (or to) where in core they are to be moved.

Also specified is a disk file address indicating what part of the file

is involved. This address is the address of a word in the file.

Files are addressed in the same manner as core: in 12-bit words.

Unlike core, however, files can be longer than 4K. To address these

files provision is made for a 24-bit disk file address, containing

the high-order and low-order file addresses.

File addresses are independent of any consideration of segments.

The file address is meaningful only in defining files. Files can be

read and written across segment boundaries without restriction. (The

user cannot read or write beyond the last segment boundary.)

When it executes a file read or write rOT, the system updates the

core address and word count and places an error code in the error

word (see RFILE) if any error is detected. At the end of a successful

transfer, the word count is set to zero and the core address set to

the last word transferred. rf the transfer cannot be completed for

some reason, the word count and core address indicate how much of

the transfer was successful; the error word indicates the cause of

the failure. All file operations except CREATE (and OPEN) require

that the file be open. Up to four files can be open at a time. The

process of opening a file associates it with one of four internal

file numbers (0, 1, 2 or 3). All file rOTs except CREATE and OPEN,

are specified in terms of one of these internal file numbers, rather

than a file name. rOTs operate on the file which is indicated by

11-8

that internal file number at the time. It is therefore possible to

write file handling programs which are independent of the actual

file(s) they operate on.

Each user has a disk quota, defined by the system manager.

When a file is extended beyond this quota, the Monitor prints the

message [EXCEEDING DISK QUOTA]. When this happens, the user may no

longer create files and may only extend. The amount by which a user

may exceed his disk quota is called the "grace" quota, and is defined

by the system manager.

File lOTs, that are successfully completed, return with the AC

cleared~ If an error was found which prohibited execution of the lOT,

one of the following error codes is returned.

Code

4000

4400

5000

5400

6000

6400

7000

7400

There was no file opened on the specified internal file
number.

Attempting to redefine a file which is open to another
user.

Attempting to create a file for a user whose directory
is full, or who has exceeded his disk quota.

Bad directory.

File protection violation.

Invalid file name.

Attempting to open a nonexistent file.

Disk is full.

Create a File (CRF) Octal Code: 6610

Operation: The user can request the system to create a new file of

one segment. The user program provides the new name for the file.

Load the AC with the beginning address of a 3-word block: where:

Words 1 through 3: contain the 6-character name.
If there is some reason why the request cannot be granted, the system

will return a non-zero error code in the AC. The protection code of
a newly created file is 12.

11-9

Extend A File (EXT) Octal Code: 6611

Operation: To extend the length of an existing file, that file must

be currently open. Load the AC with the beginning address of a

2-word block, where:

Word 1: contains the internal file number of the file to be

extended.

Word 2: contains the number of segments the system should

append to the file.

If for some reason the request to extend a file cannot be ,granted,

the AC will contain 4000, 6000, or the number of segments it failed

to append.

Reduce A File (RED) Octal Code: 6612

Operation: To reduce the length of an existing file, that file must

be currently open. Load the AC with the beginning address of a

2-word block, where:

Word 1: contains the internal file number of the file to be

reduced.

Word 2: contains the number of segments to be removed.

This request is granted unless the file to be reduced is currently

opened to another user or if the file is write protected against the

user.

Rename A File (REN) Octal Code: 6600

Operation: REN is used to change the name of a file. Load the

AC with the address of a 4-word block where:

Word 1: contains the internal file number associated with

the file whose name is to be changed.

Words 2-4: contains the new name. This name is in 6-bit

characters packed two in a word.

11-10

Protect A File (PROT) Octal Code: 6604

Operation: The owner of a file can protect his file from unauthor-

ized attempts to access it by using this instruction. Before ex-

ecuting PROT, load the AC with:

Bits ~ to 4 File extension code (for further information

on extensions see the description of the

PROTECT Monitor command).

Bits 5 and 6 Internal file number of the reserved file to be

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

protected.

Write protect against owner.

Write protect against users whose project

number is same as owner's.

Read protect against users whose project number

is same as owner's.

Write protect against users whose project number

differs from owner's.

Read protect against users whose project number

differs from owner's~

A file must be opened before it can be protected. PROT is legal

only when performed by the file owner, i.e., the user who created

the file. All attempts to access the file which violate any of the

protection flags are considered illegal.

on project numbers, see Appendix C) .

(For further information

Open A File (OPEN) Octal Code: 6601

Operation: OPEN is used to associate a file with an internal file

number, which is necessary because all file operations are in terms

of the internal file numbers. Before executing the OPEN lOT, load

the AC with the beginning address of a 5-word block, where:

Word 1:

Word 2:

contains the internal file number.

contains the account number of the owner of the

file. If 0, the account number of the current user

is specified.

11-11

Word 3-5: contain the name of the file to be opened. This

name is in 6-bit characters packed two to a word.

If there was another file associated with the internal file number

before the execution of the OPEN lOT, it is closed automatically

before the new file is associated with the internal file number.

Close A File (CLOS) Octal Code: 6602

Operation: CLOS terminates the association between files and their

internal file numbers. Before executing CLOS, load the AC with a

selection pattern for the internal file numbers whose associated

files are to be closed. The file is closed if bit I is 1, where

I = bit 0, 1, 2, or 3.

READ File (RFlLE) and Write File (WFlLE) Octal Code:

6603 & 6605

Operation: Once the association of a file with an internal file num­

ber has been made, these lOTs allow the actual file reference to be

made. They are illegal on a file that has not been opened (asso­

ciated with an internal file number).

To read or write a file, load the AC with the address of a 6-word

block, then execute the lOT. The format for the 6-word block is:

Word 1:

Word 2:

Word 3:

contains the high-order file word address.

contains the internal file number

contains the negative of the number of words for the

operation. This number is either the number of

words to be read or the number of words to be

written.

Word 4: contains a pointer to the beginning address - 1 of a

buffer located in the user program. On a read oper­

ation this buffer receives the information from the

file: on a write operation this buffer holds the

information that is to be sent to the file.

11-12

Word 5: contains the least significant 12 bits of the initial

file word address to begin the operation.

Word 6 : contains an error code:

0 if no error

1 if parity error

2 if file shorter than word count

3 if file not open

4 if protection violated

The read or write begins at the word speci.fied by words 1 and 5.

For example:

TAD X
WFILE

X, .+1
~
1
-2~~
6477
2~~

means: write 200 (octal) words starting at word 200 of the file

that is associated with internal file number one from a core area

starting at location 6500.

After completion of the transfer, the word count (word 3) and core

address (word 4) are updated. If an error was detected the appro­

priate error code is placed in word 6.

File Information (FINF) Octal Code: 6613

Operation: FINF enables a user program to determine what file,

if any, is associated with an internal file number. Load the AC

with the beginning address of a 7-word block, where:

Word 1: contains the internal file number for which the

user program wishes information.

Words 2 contain the information that the system returns

through 7: after executing FINF.

11-13

Word 2: contains the account number of the owner or zero

if no file is associated with the internal file

number, that is, the file is not open.

Words 3-5: contains the name of the file in 6-bit code.

Word 6: contains the file extension code and protection
code. See Monitor PROTEC~ command for more details.

Word 7: contains the number of segments which compose

the file.

11.4 'ASSIGNABLE DEVICES

Users can access both their own terminal and the disk; with the

remaining system devices (referred to as the assignable devices)

this is not true. One function of the Monitor is to ensure that de­

vice usage never conflicts. Only one user at a time can access the

high-speed paper-tape reader or punch, or anyone of the DEC-

tapes. To ensure that only one user can access a device, EduSystem

50 requires that the device be assigned before it is used. After a

device is assigned, it is not available until it is released by its

owner.

Once assigned, the device is programmed much as on a stand­

alone PDP-8. The RRB instruction is used to read a character from

the high-speed reader; the PLS instruction is used to punch one on

the high-speed punch. The skip lOTs (RFS and PSF) can be used

(followed by JMP.-l) but are not necessary. For block transfers,

there are two string transfer commands: RRS and PST.

The DECtape instructions have been simplified. A single instruc­

tion, DTXA, initiates the transfer of a block of data. The DTRB

instruction is then used to determine if the transfer was successful.

The skip instruction, DTSF, can be used (followed by JMP.-1) but is

not necessary.

11-14

Executing any of the assingable device lOTs without first as-

signing the device gives the following results: (a) If the device is

assigned to another user, the instruction is considered illeaal: nro-
.." • ,L--

gram execution is now terminated and an error message printed~ (b)

If the device is available it is automatically assigned before exe­

cution of the lOT. The device then belongs to this user until he

releases it.

Because these devices are shared by all users, the Monitor must

ensure that they are operable at all times. In particular, the

Monitor must ensure that a user is not waiting for a device which is

not available. This situation can arise when trying to use the punch

when it is turned off, or when the reader has read off the end of a

tape. All these conditions, known as "hung devices"-are considered

to be system errors. If the program doing the transfer has been en­

abled for system errors (by executing an SEA), control transfers to

the error routine indicated which must clear the error flag in the

status word before continuing (See Section 11.6). If the user

program has not been enabled for system errors, a hung device causes

the program to be terminated and an error message is printed.

When the paper tape punch or line printer is off line or hung,

the Monitor takes special action so that it is usually possible to

continue with little or no data loss. When these devices are hung,

the output buffer is not cleared. A system error is generated, and

regenerated every few seconds until the condition is cleared. If

the user program has not enabled errors, the result will be a printed

"HUNG DEVICE" message, and then the terminal bell will ring, trying

11-15

to persuade the user to do something. There are only two things the

user may do to remove himself from this condition. If he is not

interested in continuing, he may release the hung device. If he does

wish to continue he should put the device on line, and it should

take off. He may now type "START" to continue program execut~on.

Assign Device (ASD) octal COde: 6440

Operation: If the device specified by the content of the AC is

available, it is assigned to the users program and the AC is cleared.

Otherwise, the number of the job owning the device is placed in

the AC. If the device does not exist, 7777 is returned in the AC.

Paper-tape reader
Paper-tape punch
Line printer
Card reader

4000
4001
4003
4004
4005+N
4015

DECtape unit N, N=0-7
RK8E drive N, N=0-3

The assignment is in effect until a corresponding REL instruction

or LOGOUT is executed.

Release Device (REL) Octal Code: 6442

Operation: The device specified by the contents of the AC is re-

leaseed (providing it was owned by the U5e= sxecuting the REL).

The AC is cleared. Releas ing a device makes it available to other

users.

Skip on Reader Flag (RSF) Octal Code: 6011

Operation: The contents of the PC are incremented by one so that

the next sequential instruction is skipped.

Read Reader Buffer (RRB) octal Codes; 6012 & 6016

Operation: The contents of the reader bu~fer are transferred into

bits 4 - 11 of the AC. This instruction does not clear the A2.

If the reader buffer is empty, the user program is put into a wait state

until the buffer is full or an end-of-tape condition is detected.

11-16

Reader Clear Buffer (RCB) Octal Code: 6017

Operation: Any characters, which may have been read from the high­

speed reader but not passed to the user, are cleared fro the

buffer.

Read Reader String (RRS) Octal Code: 6010

Operation: This instruction initiates a transfer from the high-speed

reader to a selected area in the users core. Before executing RRS,

load the AC with the address of a 2-word block where:

word 1: minus the number of characters to be transferred.

word 2: the address of the user core area minus one.

The transfer is terminated by either of two conditions: (a) the

word count (word 1) is zero indicating that the required number of

characters have been read or (b) the reader has read off the end of

the tape (a system error condition). In either case, the word count

and core address are updated. RRS clears the AC.

Load Punch Buffer Seguence (PLS) Octal Code: 6026

Operation: The ASCII character in AC bits 4 - 11 is transmitted

to the high-speed punch. PLS does not clear the accumulator.

Skip on Punch Flag (PSF) Octal Code: 6021

Operation: The contents of the PC are incremented by one so that

the next sequential instruction is skipped.

Punch String (PST) OCtal Code: 6020

Operation: PST allows a user program to punch a string of charac­

tses. Before executing PST, load the AC with the beginning address

of a 2-word block where:

11-16.5

Word 1:

word 2:

contains the negative of the number of characters
to be punched.

contains the beginning address - 1 of the string to
punched: the characters should be right justified
one per word.

After execution of PST, the system takes only as many characters as

fit in the punch buffer: it then makes the appropriate adjustment

to word 2 to indicate a new starting address and to word 1 to indi-

cate the reduced character count. It returns to the instruction

following the PST which may be a JMP .-2 to continue the transfer.

If the character count is reduced to zero, the instruction following

PST is skipped. The AC is cleared by PST.

Line Printer Print (LPC) octal Code: 6666

Operation: The ASCII character in bits 4 through 11 of the AC are

placed into the line-printer buffer to be printed. LPC does not

change the AC.

Line Printer Skip on Flag (LSF) Octal Code: 6661

Operation: The contents of the PC are incremented by one so that the

next sequential instruction is skipped.

Line Printer Send-A-String (LST) Octal Code: 6660

Operation: LST allows the user program to print a string of charac-

terse Before executing LST, load the AC with the beginning address

of a 2-word block, where:

Word 1:

Word 2:

Contains the negative of the number of characters to
be printed.

contains the beginning address -1 of the string to
be printed: the characters should be right justified
one per word.

After execution of LST, the system takes only as many characters as

fit in the punch buffer: it then makes the appropriate adjustment to

word Z to indicate a new starting address and to word 2 to indicate

11-17

the reduced character count. It returns to the instruction following

the PST which may be a JMP .-2 to continue the transfer. If the

character count is reduced to zero, the instruction following PST

is skipped. The AC is cleared by LST.

Load Status Register A (DTXA) Octal Code: 6764

Operation: DTXA allows a user program to read and write records

(l29-word blocks) on DECtape. Load the AC with the beginning address

of a 3-word block, where:

Word 1:

Word 2:

Word 3:

contains:

Bit 1 Meaning

0-2 contains the transport unit select number,

3 is set to 1 to read/write in reverse

4-5 should be ¢

6-8=2 for read data function,

=4 "for write data function"

9-11 should be ¢

contains the DEC tape block number.

contains the beginning core address - 1 of a 2¢1 (octal)
word buffer.

After DTXA is given, the DECtape request is placed in the DECtape

request queue. Control does not return to the user until the request

has been honored or an error has occurred. DTXA does not update word

3. The AC is cleared by DTXA.

Skip on Flags (DTSF) Octal Code: 6771

Operation: The contents of the PC are incremented by one so that

the next sequential instruction is skipped.

11-18

Read status Register B (DTRB) octal Code: 6772

Operation~ The content of DECtape status register B is loaded into

the AC. This instruction is also used with the card reader and RK¢5.

See Read Status (RDS) for details=

Read card Alphanumeric RCRA)

Read card Binary (RCRB)

Octal Code: 6632

Octal Code: 6634

Octal Code: 6636 Read card Compressed (RCRC)

Before executing the above instructions, load the AC with the address

minus 2 of an 80 wo~d buffer. A card is read and the data is put

into the buffer in the same form as the corresponding hardware rOT.

The UUO returns in the AC the number of characters successfully

transferred to the user's buffer. (See also 6772 - RDS.)

Disk Load Address and go (DLAG) Octal Code: 6743

Allows the user to read or write on the RK8E. To use, load the

AC with the address of a three word block, where

Word 1:

Word 2:

Word 3:

Bit 0 = 0 for a read,

= 1 for a write

Bits 3-8 contain the number of pages to read/write,

1 to 40.

Bits 9-10 contain the drive number 0 to 3.

Bit 11 contains the high order sector address.

contains the core buffer address minus one,

contains the low order sector address.

11-19

Upon return, the AC contains the number of blocks transferred.

To determine error conditions, see 6772-RDS.

The disk transfer is made in 400 (octal) word blocks. Each RK05

drive contains 14540 (octal) blocks. To specify the initial block

number, the high order bit goes into word 1 of the parameter block,

and the remaining 11 bits into word 3. If the transfer requests an

odd number of pages on a write, the last page of the last block on

the disk will contain zeros. Upon return, the AC contains (P+l)/2,

where P is the number of pages successfully transferred.

Read Status (ROS) Octal Code: 6772

The contents of the device status register are placed into the AC.

The information obtained pertains to the RK8E, DECtape, or

Card Reader, depending on which was most recently used. The

contents of the device status register are:

RK8E: RK8E Status Register

Bit

0:

1:

3:

4:

5:

6 :

7:

8:

9:

10:

11:

Assignment

Control done

Heads in motion

Seek fail

File not ready

Busy error

Time out error

Write lock out error

CRC error

Data request late

Drive status error

Cylinder address error

11-20

DECtape: TCOS/TCOI status register B

Bit 0: Error flag

1: Mark track error

2: End of tape

3: Select error

4: Parity error

5: Timing error

11: DEC tape flag (normal)

The status register for DECtape may also include 4¢¢¢ or 4¢¢1.

These are software generated errors such as block number out of range.

Card reader: The device status register contains the address of the

last word of data transferred to the user's buffer. In addition,

the device status retister may contain 7777. This indicates that

CTRL/B followed by S was typed while a DECtape or RK¢5 transfer was

in progress, and the transfer was not finished.

lIeS PROGRAM CONTROL

There are a number of ways that the status of a running program

can be changed. The program can be terminated in one of three ways:

by execution of a HLT, by the user typing CTRL/B followed by S to

force a program halt, or by a 'program error which forces Monitor to

terminate the program after printing an error message.

It is also possible for the status of a running program to change

without it being terminated. First, the user program can request

that it handle its own program error conditions. In this case, Mon­

itor does not terminate a job on an error; instead, it transfers con­

trol to a user error handler. This error handler then determines

what the error was, by a CKS instruction and takes appropriate action.

Monitor also provides the program with an interrupt key, CTRL/C.

If the user types a CTRL/C, the Monitor unconditionally transfers

control to a restart address. Thus, the user program can handle

its own restarts.

11-21

Halt (HLT) Octal Code: 7402

Operation: This instruction is used to stop the user program and

return control to Monitor. Executing HLT is equivalent to typing

tBS followed by RETURN.

Set Restart Address (SRA) Octal Code: 6417

Operation: This instruction allows the user to specify an address

to which control is transferred when an tc is typed on the user's

console. Load the AC with the restart address and execute SRA.

If tc is detected, the program's input and output buffers are

cleared, the AC and Link are cleared and control goes to the re­

start address.

Set Error Address (SEA) Octal Code: 6431

Operation: This instruction allows the user to specify an address

to which control is transferred in the event of a system error. Load

the AC with an address before executing SEA. If a system error is

detected, Monitor simulates a JMS to the error address. The pro­

gram counter is stored in the error address and control transferred

to the error address +1. AC, Link, and input/output buffers are

not affected. The error code of the system error is in STRO bits

9-11. The error routine must read these bits (by a CKS) to determine

the cause of the error, then clear them by means of a CLS.

The only error code that occurs, for example, in the course of

normal system usage is due to a hung device. This error occurs when

the user attempts to use a punch# line printer, or reader which is

not turned on, or allows the paper-tape reader to run off the end of

a tape. In the case of the line printer or the punch, the error

routine must release the device or the device must be turned on to

clear the error condition. The illegal rOT error probably means that

an assignable device lOT was executed without the device first being

assigned. Swap and file errors occur if a hardware error is detec-

ted while Monitor is swapping user programs or while reading or writing

11-22

file directories. These are system malfunctions from which there is

no recovery.

11.6 PROGRAM k~D SYSTEM STATUS

Because EduSystem 50 programs run under

sharing Monitor, it is important for them to determine their status

within the system and the status of the system as a whole. Several

lOTs, listed below, have been defined for this purpose.

Check Status (CKS) octal Code: 6200

Monitor maintains for each user a complete set of status informa­

tion, his program's running status and the state of his input/output

devices. This status information, stored in three words, can be

accessed by a running program with the CKS instruction. Before

executing a CKS, load the accumulator (AC) with the address of

a three-word block. Executing CKS stores the three status words

(STRO, STRl, and DEVICE STATUS REGISTER) in the three-work block

and clears the AC.

The formats of these registers are:

STRO Bits

o Run Bit

1 Error Enable

2 JCOMBD

3 JSPEEK

4 JSACC

5 JSIOT

6 JSIOTC

7 Not used

8 JSlNER

9-11 Error Code

User program is in the run state

Program handles its own errors

Program was compute bound

User has R privilege

User is privileged account

System use only

System use only

Not used

System use only

System detected error condition
1 Illegal lOT
2 Swap read error
3 Swap w~ite error
5 D~sR f~l~ error
6 Hung dev~ce

11-23

STRl Bits

0 Timer Time is up

1 File 0 Internal file 0 is not busy

2 File 1 Internal file 1 is not busy

3 File 2 Internal file 2 is not busy

4 File 3 Internal file 3 is not busy

5 Delimiter There is a delimi ter in the input buffer

6 Line Printer Output buffer is not full

7 Teleprinter Output buffer is not full

8 Reader Character in reader buffer
9 Punch Punch buffer is not full

10 Error System error has occurred.

11 wait Job is not waiting

Device Status Register: The contents of the Device Status Register

pertain to the card reader, DECtape, or RK¢5 as described under

the Read Status (RDS) lOT.

OR with Switch Register (OSR) Octal Code: 7404

Operation: The content of the user's switch register is inclusively

ORed into the AC.

Set Switch Register (SSW) Octal Code: 6430

Operation: The content of the AC is stored in the user's switch

register. The AC is cleared.

Assembly language programs run under control of the Monitor.

The following lOTs are defined to allow a program to determine the

status of the system as a whole.

Segment Size (SIZE) Octal Code: 6614

Operation: The segment is the basic unit of on-line file storage.

The size of a segment (0400 octal) is returned in the AC.

11-24

Segment Count (SEGS) Octal Code: 6406

Operation: The number of available disk segments is returned in

the ACe

Account (ACT) Octal Code: 6617

Operation: The account number (of the job number in the AC) is re­

turned in the AC. If AC is 0, the account number for the current

job is returned. If the requested job does not exist, zero is

returned.

Who (WHO) Octal Code: 6616

Operation: The account number and password of the current job are

returned to the 3-word block whose address is in the AC and the AC

is cleared.

User (USE) Octal Code: 6421

Operation: Return in the AC the number of the current job.

Console (CON) Octal Code: 6422

Operation: Return in the AC the console unit number assigned to the

job whose number is in the AC, if that console number does not exist,

-1 is returned.

User Run Time (URT) Octal Code: 6411

Operation: Load the AC with the address of a 3-word block,

where word 1 contains the number of the job for which the run

time is sought. The run time is returned in the last two locations

of the block. If job 0 is specified, the run time of the current

job is returned. The AC is cleared.

Time-of-Day (TOO) Octal Code: 6412

Operation: Returns the time of day in the two locations starting

at the location of the address in the AC. The time of day is
returned in clock ticks since midnight. The AC is cleared. The

clock ticks 10 times per second.

11-25

RETURN CLOCK Rate (RCR) Octal Code: 6413

Operation: The number of clock ticks per second is returned in the

AC. The clock ticks every 100 ms, the AC will be set to 12 (octal).

Date (DATE) Octal Code: 6414

Operation: Returns the date in the AC. The format of this·12-bit

number is:

DATE=«YEAR-1974)*12+(MONTH-l»*3l+DAY-l

Skip on EduSystem 50 (TSS) Octal Code: 6420

Operation: This instruction is used by programs which run under

both EduSystem 50 and on a standard PDP-B. Under EduSystem 50,

the instruction following TSS is skipped and the Monitor version

number is returned in the AC. On a standard PDP-B, the rOT has the

effect of a NOP instruction.

Quantum Synchronization (SYN) Octal Code: 6415

Operation: Upon execution of this instruction, the system dis­

misses the user program and sets it in the run state so that it will

be run again in turn. Ordinarily, this instruction is used to en­

sure a full time quantum to perform some critical operation.

Set Time (STM) Octal Code: 6416

Operation: The system provides a clock time for each user pro­

gram. By means of this rOT, the time can be set to "fire" after a

specified number of clock ticks have elapsed. Load the AC with

the time (in seconds) to prime the timer. Upon execution of the

STM instruction, the system sets the time to "fire" in the specified
number of seconds, clears the AC, and dismisses the job. After the

specified time has elapsed, the job is restarted. Due to the time-

sharing environment, this time may vary by a second or two.

11-26

" r , /"
.1..1. • 0 .1./ L. SPECIAL INSTRUCTIONS

The following instructions are usable only on certain TSS/8
systems, and are not included in the PALD symbol table.

Grt Flags (GTF) Octal Code: 6004

Operation: Upon execution of this instruction, the link is
placed into AC bit 0, and the EAE GT flag (if present) is placed
into AC bit 1. The rest of the AC is cleared. This instruction
is valid only on a PDP-8/E.

Restore Flags(RTF) Octal Code: 6005

Operation: Upon execution of this instruction, AC bit 0 is
placed into the link and AC bit 1 is used to set or clear the EAE
GT flag (if present). The AC is not changed by RTF. This instuction
is valid only on a PDP-8/E.

Skip or Greater Than ~,~g5aJ SGT) Octal Code: 6006

Operation: If the system includes an EAE, and if its GT flag
is set, this instruction will cause the PC to be incremented by one
so that the next core location is skipped. This instruction is
valid only on a PDP-8/E.

In addition, all operate type instructions which the computer is
capable of executing may be used. This includes the BSW and MQ
instructions on any PDP-8/E, and all the EAE instructions on systems
which have an EAE.

11-27

11.7 PDP-B COMPATABILITY

Programming EduSystem 50 in assembly language is very similar to

programming a stand-alone PDP-B. All instructions except the lOTs

operate identically in either case. As discussed previously, pro-

gramming such devices as the terminal and high-speed reader/punch for

EduSystem 50 is somewhat simpler. EduSystem 50 runs programs which

include timing loops. Thus, programs written for stand-alone PDP-Bs

with terminal and high-speed reader or punch will run on EduSystem

50, although generally not as efficiently as programs which are

written specifically for EduSystem 50.

The same is not true for disk and DECtape operations because

EduSystem 50 uses a simplified programming structure for these

devices. The actual differences in coding are very small. It is a

simple task to adapt previously written code for EduSystem 50 disk

and DECtape.

There are a few standard changes which users generally make

in adapting PDP-8 code to EduSystem 50. Monitor does the echoing

rather than the user program. The TLS which does the echo can be

deleted and a DUP instruction added somewhere near the start of the

program. Also, for efficiency, the EduSystem 50 delimiter capa­

bility can be used. A KSB in the program determines what the

delimiters are.

Many PDP-B programs execute a reader and punch lOT early in the

program, to initialize the device, whether they are actually to be

used or not. If the devices are free, they are assigned and thus

made unavailable to other users. If they are unavailable, the progra~m

terminates on an illegal lOT. Thus, it is important not to execute

these lOTs randomly. If a disk card reader or DECtape is involved,

11-28

the actual transfer code must be altered to conform to EduSystem 50.

(The fact that core page 37, locations 7600 through 7777, is avail­

able to EduSystem 50 programs is useful in making these changes.

New code can be placed in the area normally reserved for the Binary

Loader.)

The most difficult code to convert is that code which operates

under interrupt. To be run under EduSystem 50, these programs must

be recoded so as not to use the interrupt.

lOTs for nonexistent devices are ignored as are CDFs and CIFs.

It must be remembered that many lOTs have been redefined for use as

special EduSystem 50 instructions. In all other situations, EduSystem

50 remains compatible with stand-alone systems whenever possible.

11-29

APPENDIX A

EDUSYSTEM 50
MONITOR COMMAND SUMMARY

A.I MONITOR CO~P~DS

A Monitor command is a string of characters terminated by a

semicolon (i), a colon (:), or a carriage ~eturn (RETURN key).

Parameters of commands can be octal n~~hers, decimal n~~bers,

character strings, or single letters. In the following summary,

parameters are coded as follows:

Cl,

01,

LI,
Sl,

C2, •••

02, •.•

L2, •••

S2, •••

represent octal numbers

represent decimal numbers

represent single letters

represent character strings

A.l.l LOGGING IN AND OUT

KJOB

LOGIN Cl Sl

LOGOUT

TIME Cl

used as an alternative to LOGOUT

Request to login:

Cl = user's account number

Sl = user's password

Request to logout: processing and device
time are ~rinted.

Cl = job number

A) If Cl is omitted and the user is

logged in, the processing time of

the current job is printed. If

Cl=O, or if the user is not logged
in and Cl is omitted, the time of day

is printed.

A-I

A.l.2 DEVICE ALLOCATION

ASSIGN D Cl

ASSIGN K Cl

ASSIGN Ll

RELEASE D Cl

RELEASE K Cl

RELEASE Ll

A.l.3 FILE HANDLING

CLOSE Sl

CREATE 81

EXTEND Cl Dl

F C,l

Reserve DECtape unit: Cl = DECtape unit number

Assigns a specific RK,05 unit

Reserve device:

Ll = R for paper tape reader

p for paper tape punch

D for any DECtape unit

L for line printer

C for Card Reader

K for any RK,05 unit

Release DECtape unit: Cl = DECtape unit number

Release an RK,05 unit: Cl = RK,05 drive number

Release device:

Ll = R for paper tape reader

p for paper tape punch

L for line printer

C for card reader

Close files:

Sl = list of internal file numbers

Create new file:

Sl = name of new file

Extend length of file:

Cl = internal file number

Dl = number of segments to be added to
end of file

Print information about an open file

Cl = internal file number

A-2

OPEN C1 81 C2

PROTECT C1 C2

REDUCE C1 D1

RENAME C1 Sl

Establish association between internal file

number and file:

Cl = internal file nurnher

Sl = file name

C2 = account number. If omitted, the user's
account is assumed.

Protect a file:

C1 = internal file number

C2 = new file protection mask (See 10.3.4)

Reduce length of file:

C1 = internal file number

D1 = number of segments to be removed from
end of file

Rename a file:

C1 = internal file number

Sl = new name of file

A.1.4 CONTROL OF USER PROGRAMS

DEPOSIT C1 C2 ••. Cn Store in core memory:

EXAMINE C1 D1

RESTART

C1 = location

C2 = contents to be stored in location C1

C3 = contents to be stored in location C1+1, etc.

List specified contents:

C1 = first location

Dl = number of location to be listed, D1<10
(decimal)

Print the program restart address

A-3

RESTART Cl Set program restart address.

START Restart user program.

START Cl Execute user program:
Cl = starting location

A.l.S. UTILITY COMMANDS

BREAK Print keyboard break mask.

BREAK Cl Set keyboard break mask:
Cl = new mask

DUPLEX Echo typed characters on printer.

LOAD Cl Sl

LOAD Cl Sl C2

LOAD Cl Sl C2 C3

LOAD Sl

LOAD Sl C2

LOAD Sl C2 C3

LOAD Sl C2 C3 C4

R Sl

R Sl Cl

RUN Sl

RUN Cl Sl

RUN Sl C2

RUN Cl Sl C2

S

Load Core image:

Cl = owner's account number~ if not specified
the user's account is assumed.

C2 = file address of first word to be loaded: if
not specified, ~ is assumed.

C3 = core address of first word to be loaded: if
not specified~ ~ is assumed.

C4 = core address of last word to be loaded~ if
not specified, highest possible value is
assumed.

Run system file:

Sl = name of file

Cl = beginning address: if omitted, ~ is assumed.

Run user file:

Sl = name of file

Cl = owner's account number: if omitted, the user's
account is assumed.

C2 = starting address: if omitted, ~ is assumed.

stop execution

Save Core image:

A-4

SAVE Cl Sl

SAVE ,.."
...... ..1.. 81

SAVE Cl Sl C2 C3

SWITCH

SWITCH Cl

TALK Cl Sl

UNDUPLEX

USER

USER Cl

WHERE

Cl = owner's account number; if not specified the
user's account number is assumed.

81 ~

C2

name

file address of first word to be saved; if
not specified, ¢ is assumed.

Print the current value of the user's switch
register.

Set switch register:

Cl = word to be set

Send a message to console Cl:

Cl = destination console

Sl = message

Inhibit echo of characters typed to a user program

Print the user's job number, account number, and
console number.

Print the job number, account number, and console
number of job Cl.

Print the current value of the user's PC, AC,
link, swi t·ch register, and EAE registers.

A-5

APPENDIX B

CHARACTER CODES

The ASCII l character codes shown in the following table are

used by EduSystems as the argument in the CHR$ function. For

each ASCII code a second acceptable form is permitted In eHR$.

The second code is obtained by adding 128 to the code given in

the following table. For example, CHR$ would print A in response

to either 65 or 193 as an argument. These codes are also used with

the CHANGE statement in EduSystem 50.

ASCII Code No. ASCII Code No.
Character (Decimal) Character (Decimal)

linefeed 10

formfeed 12

RETURN 13

space 32 CI 64 ~

33 A 64

" 34 B 66

35 C 67

$ 36 D 68

% 37 E 69

& 38 F 70

39 G 71

40 H 72

41 I 73

* 42 J 74

+ 43 K 75

44 L 76

45 M 77

46 N 78

/ 47 a 79

IAn abbreviation for American Standard Code for Information Interchange.

B-1

ASCII Code No. ASCII Code No.
Character (Decimal) Character (Decimal)

a 48 p 80

1 49 Q 81

2 50 R 82

3 51 S 83

4 52 T 84

5 53 U 85

6 54 V 86

7 55 W 87

8 56 X 88

9 57 y 89

58 Z 90

59 [91

< 60 \ 92

= 61] 93

> 62 t 94

? 63 - 95

B-2

APPENDIX C

STO~~GE F~LOCATION

C.l STORAGE MAP

The system:s storage allocation is illustrated below.

CORE MEMORY

DISK STORAGE

1'4------MON ITOR -------II~+I.----SWAPPING AREA -----t~-

Figure C-l. EduSystem 50 Storage Map

C.2 FILE DIRECTORIES

There are two directories on the disk: the Master File Directory

(MFD) referenced mainly by the system, and the User File Directory

(UFD), referenced by the user. One of the functions of the MFD is to

service the UFD. A UFD is a particular user's file directory con­

taining the names of programs he has created on the disk.

The UFD is a file like any other file except that its filename is

the project-programmer number and password. When a user is logged in

under a specific number and references the disk, he is actually refer­

encing his own file area on the disk through the UFD which has his

project-programmer number as its name.

C-l

MASTER FilE DIRECTORY USER FilE DIRECTORY

WORD 1 PROJECT NO. PROG. NO. (1 CHAR) FilE (1 CHAR)

(1 CHAR.) PA SS (1 CHAR.) (1 CHAR.) NA ME (1 CHAR)

(1 CHAR.) WO RD (1 CHAR.) (1 CHAR.) WO RD (1 CHAR.)

LINK TO NEXT ENTRY LINK TO NEXT ENTRY

IDISK QuOTJ'\ EXT I"" PROTECTED BITS

CONSOLE TIME SEGMENT COUNT

CPU TIME DATE OF CREATION

POINTER TO RETRIEVAL POINTER TO RETRIEVAL

0 "- LINK TO NEXT RETRIEVAL BLOCK

SEGMENT #1 SEGMENT #1

SEGMENT #2 SEGMENT #2

SEGMENT #3 SEGMENT #3

SEGMENT #4 SEGMENT #4

SEGMENT #S SEGMENT #S

SEGMENT #6 SEGMENT #6

SEGMENT #7 SEGMENT #7

Figure C -2. File Directories

System account numbers are a combination of a project number

and a programmer number. If expressed as a four-digit octal number,

the first two digits of the account number are the project number,

and the last two digits are the programmer number.

C-2

APPENDIX D

ERROR MESSAGES

Message

ABORT

ARRAY OR RECORD USED BEFORE
DEFINITION

BAD FILE FORMAT

BAD FILE NAME

BAD SLEEP ARGUMENT

program

BASIC

BASIC

BASIC

BASIC

Explanation

BASIC can not run for some
reason. perhaps the user's
disk quota is exceeded.

The RECORD statement must occur

before any reference to it is

made. A DIM statement must occur

before an array is used. (RECORD

and DIM are placed at the begin-

ning of a program.)

The program specified in response

to OLD PROGRAM NAME was not ac-

ceptable to BASIC. This is gen-

erally caused by: (1) trying

to load an obsolete compiled

(.BAC) file, or (2) trying to

load a non-BASIC (FORTRAN or PAL-D)

program.

The file name used is not valid;

e.g., it does not begin with a

letter.

The argument of the SLEEP state-

ment must have a number greater

than or equal to 0, and less

D-l than or equal to 4095.

Message

BAD VALUE IN CHANGE STATEMENT

CAN'T CREATE FILE

CAN'T DELETE FILE

CAN'T FIND LINE

CAN'T FIND "NAME" IN SYSTEM
LIBRARY

Program

BASIC

BASIC

D-2

Explanation

While performing CHANGE A TO A$,

one of the elements of the array

A was found to contain an illegal

value.

An OPEN statement tried to create

a file, but there is: (a) no

disk space available, (b) no file

name specified, or (c) a null

string has been given as the file

name.

UNSAVE cannot delete a file. This

is usually due to the fact that

another user has the file open,

or the file is protected with a

code> 20.

An attempt has been made to edit

a nonexistent line.

The requested OLD file cannot

be found.

Message Program

CHAIN TO BAD FILE BASIC

DEF STATEMENT MISSING BASIC

DEVICE BUSY BASIC

DIMENSION TOO LARGE BASIC

DISK FULL BASIC

DUPLICATE FILE NAME BASIC

D-3

Explanation

The file specified by the CHAIN

has an invalid format; it is not

a BASIC format file. The "PROGRAM

IS~.~" message will follow this

error message. The program name

will be the name of the bad file.

A function needing a DEF statement

exists in the program.

The user tried to OPEN DECtapes

0-7, line printer, or paper tape

punch, but the device was unavail-

able, and there was no ELSE clause

in the OPEN statement.

Too large an array to fit in the

available core.

There is no more storage space

on the system disk l or the user
has exceeded his disk quota.

An attempt has been made to SAVE

a program but one already exists

with that name.

Message Program

EXECUTE ONLY BASIC

FOR WITHOUT NEXT BASIC

GET BEYOND END OF FILE BASIC

GET/PUT ERROR BASIC

GOSUB-RETURN ERROR BASIC

ILLEGAL CHARACTER BASIC

ILLEGAL CONSTANT BASIC

D-4

Explanation

An attempt has been made to list,

edit, or alter a BASIC compiled

program. It may be run only.

There is an unmatched FOR state­

ment in the program.

Disk data file is too small to

have a record with the number

specified in the GET statement

at line n.

A hardware error occurred in GET

or PUT. (This is usually due to

a DECtape unit being write-locked.)

Subroutines are too deeply nested

or a RETURN statement exists out­

side a subroutine.

The user attempted to use an il­

legal character in the statement

being processed.

The format of a constant in the

statement being processed is not

valid.

Messaye Program Explanat~on

ILLEGAL FORMAT BASIC The structure of the statement

does not agree with BASIC syntax.

ILLEGAL FOR NESTING BASIC FOR NEXT loops are too deeply

nested or NEXT appears before FOR~

ILLEGAL INSTRUCTION BASIC A statement was used which is not

one of the legal BASIC statements.

ILLEGAL LINE NUMBER BASIC The format of the line number be-

ing used in a GOTO or IF statement

is not acceptable.

ILLEGAL OPERATION BASIC The expression being processed

does not agree with the BASIC

rules (this is probably due to

unmatched parentheses) .

ILLEGAL SYNTAX BASIC The expression in a statement

does not agree with the BASIC

syntax.

ILLEGAL VARIABLE BASIC An illegal variable was used

in an array.

IMPROPER ACCOUNT # BASIC A user logged in under account
ABORT
tBS numbers 1 (system account) or 2

(system library) and tried to run

BASIC. This is prohibited.

D-5

Message

IMPROPER DIM OR RECORD
STATEMENT

INVALID DEVICE NO.

INVALID RECORD NO.

LINE TOO LONG

MISUSED TAB

MISUSE OF CHR$

Program Explanation

BASIC Syntax error in DIM or RECORD

statement, or an array name

that was previously dimensioned

is reused.

BASIC The device number in the file

I/O statement is not between 0

and 11 inclusive, (or X and 11

inclusive where X is a number

set by the system manager) .

BASIC The record number must be a

number which is greater than

or equal to 0 and less than or

equal to 4095. For DECtape I/O

the maximum record number is

limited further by the DEC tape

size.

BASIC Too much has been typed.

BASIC The TAB function was used in

an invalid manner. TAB can ap-

pear only in PRINT statements.

BASIC The CHR$ function was used in

an invalid manner. CHR$, like

TAB, can appear only in PRINT

D-6 statements.

Message Program

MORE? BASIC

NEXT WITHOUT FOR BASIC

NO END STATEMENT BASIC

ON INDEX OUT OF RANGE BASIC

OUT OF DATA BASIC

PROGRAM IS "progname" BASIC

PROGRAM NOT FOUND BASIC

D-7

Explanation

Not enough values have been en­

tered in response to an INPUT

cornrnand~ The rest of the values

may be entered.

The NEXT statement indicated has

no preceding FOR statement.

All programs must have an END

statement.

The value of the index is less

than one, or greater than the num­

ber of statement numbers.

An attempt was made to READ more

data than was supplied by the user.

This message may immediately fol­

Iowan error message, to identify

the current program in a series

of CHAINed programs. If there is

no CHAIN, this message will not

occur.

The file which the user tried to

access with a CHAIN statement does

not exist in his disk area. The

PROGRAM IS message will also occur.

Message

PROGRAM TOO LARGE

STACK OVERFLOW

SUBSCRIPT ERROR

SYSTEM I-O ERROR

TIME LIMIT EXCEEDED

TOO MUCH INPUT, EXCESS
IGNORED

UNDEFINED LINE NUMBER

Program

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

D-8

Explanation

The program is too large to be

executed. Make it smal1er~

The user programmed a situation

in which the expression is too

complicated to be executed.

A negative subscript was used

for an array.

BASIC was unable to perform the

desired disk I/O.

The number of statements executed

by a job has exceeded the maximum

established by the system manager.

Generally, some error was made and

the program is caught in a loop.

Too many values have been entered

in response to an INPUT command.

The line number appearing in a

GOTO or an IF-THEN statement does

not appear in the program.

Message Program

UNOPEN DISK UNIT BASIC

WHAT? BASIC

ACCOUNT ERROR CAT

ERROR IN MFD OR UFD CAT

SYSTEM ERROR CAT

D-9

Explanation

The user tried to do a GET,

PUT, or UNSAVE to device 8

or 9, without -a file being

previously opened on the device.

The editor cannot understand

the command given.

A directory listing has been

requested for an account number

which CAT cannot find.

A directory is bad. The system

may have to be rebuilt.

The system has returned an error

code when CAT attempted a file

operation.

Message Program

CAN'T ASSIGN DECTAPE COpy

CAN'T DELETE: NAME COpy

DECTAPE FULL COpy

DISK FULL COpy

?ERROR COpy

SELECT ERROR COpy

COMMAND ERROR DECODE

D-IO

Explanation

An attempt has been made to use

a DECtape which cannot be as­

signed, probably because it is

assigned to someone else.

The named file cannot be deleted

because it is protected.

There is not room on the DEC-

tape for the file.

The disk is full.

A command line may have been

typed incorrectly.

A DECtape unit is either not set

to REMOTE or is WRITE PROTECTed

and copy is trying to write.

Type ST to try again.

A command line is formatted

improperly, one of the listed

files cannot be found, RUBOUT

has been pressed, the disk is

full for output, or there has

been some kind of file error.

Message

PROTECT ERROR

?OO.OO

?01.00

?01.40

?01.78

?01.96

?01.;4

?01.:5

?02.32

?02.52

?02.79

?03.05

?03.28

?04.39

?04.52

?04.60

Program

DECODE

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

n-ll

Explanation

An attempt has been made to write

into someone else's file, write

into one~ own file which is pro­

tected or open to another user,

or read someone else's file which

is protected.

Manual start given from console.

Interrupt from keyboard via CTRL/C.

Illegal step or line nurober used~

Group number is too large.

Double periods found in a line

number.

Group zero is an illegal line

number.

Line number is too large

Nonexistent group referenced by DO.

Nonexistent line referenced by DO.

Storage was filled by push-down

list.

Nonexistent line used after GOTO

or IF.

Illegal command usedo

Left of = in error in FOR or SET.

Excess right terminators encoun­

tered.

Illegal terminator in FOR command.

?04. : 3

?05.48

?06.06

?06.54

?07.22

?07.38

?07.;6

?07. : 9

?08.47

?09.11

?10.:5

?11.35

?20.34

?23.36

?26.99

?28.73

?30.05

Message Program

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

FOCAL

D-l2

Explanatl.on

Missing argument in display

command.

Bad argument to MODIFY.

Illegal use of function or number.

Storage is filled by variables.

Operator missing in expression

or double E.

No operator used before parenthesis.

Illegal function name or double

operators.

No argument given after function

call.

Parentheses do not match.

Bad argument in ERASE.

Storage was filled by text.

Input buffer has overflowed.

Logarithm of zero requested.

Literal number is too large.

Exponent is too large or negative.

Division by zero requested.

Imaginary square roots required.

Message-

?30.71

?30. 0

?31. 7

?31 .. 42

?31.43

?31.44

00

01

03

04

05

06

07

10

11

Program

FOCAL

FOCAL

FOCAL

Explanation

Undefined library command.

Bad argument or missing argu­

ment to library command.

Illegal character, unavailable

command, or unavailable function

used ..

FOCAL No such name in library directory~

FOCAL Attempt to enter a duplicate name

in the directory.

FOCAL Library directory is full.

FORTRAN-D Mixed mode arithmetic expression.

FORTRAN-D Missing variable or constant in

arithmetic expression.

FORTRAN-D Comma was found in arithmetic ex­

pression.

FORTRAN-D Too many operators in this expres­

sion.

FORTRAN-D Function argument is in fixed­

point mode.

FORTRAN-D Floating-point variable used as a

subscript.

FORTRAN-D Too many variable names in this

program.

FORTRAN-D Program too large, core storage

exceeded.

FORTRAN-D Unbalanced right and left paren­

theses.

D-13

12

13

14

15

16

17

20

21

22

23

25

26

0240

Message Program

FORTRAN-D

Explanat10n

Illegal character found in this

statement

FORTRAN-D Compiler could not identify this

statement

FORTRAN-D More than one statement with same

statement number

FORTRAN-D

FORTRAN-D

FORTRAN-D

Subscripted variable did not appear

in a DIMENSION statement

Statement too long to process

Floating-point operand should have

been fixed-point

FORTRAN-D Undefined statement number

FORTRAN-D Too many numbered statements in

this program

FORTRAN-D Too many parentheses in this state­

ment

FORTRAN-D Too many statements have been

referenced before they appear in

the program

FORTRAN-D DEFINE statement was preceded by

some executable statement

FORTRAN-D Statement does not begin with a

space, tab, C, or number

FORTRAN-D System file error. One of the

FORTRAN components cannot be found

or the disk is full, preventing

FORTRAN from proceeding. Try re­

calling FORT.

D-14

3100

3417

6145

6223

6226

6257

6724

6746

7114

01

02

04

05

06

11

12

13

14

Message Program Explanation

FORTRAN-D Illegal operator on compiler stack.

FORTRAN-D Pre-precedence error.

FORTFAN-D Could not find FOSL on system

device; if the error occurs, it

may be necessary to reload FORT

and FOSL.

FORTRAN-D Error while loading the Compiler.

FORTRAN-D Same as above.

FORTRAN-D Same as above.

FORTRAN-D No END statement on source device.

FORTRAN-D Same as above.

FORTRAN-D Same as above.

D-15

Checksum error on FORTRAN binary

input

Illegal origin or data address on

FORTRAN binary input

Disk input-output error

High-speed reader error

Illegal FORTRAN binary input device

Attempt to divide by zero

Floating-point input data conver­

sion error.

Illegal op code

Disk input-output error

15

16

17

20

21

22

40

41

76

77

Message

LOAD ERROR

DUPLICATE ACCOUNT #

LOGGED IN -- NOT DELETED

NOT FOUND

Program

LOGID

LOGID

LOGID

LOGID

D-16

Explanation

Non-FORMAT statement used as a

FORMAT

Illegal FORMAT specification

Floating-point number larger than

2047

Square root of a negative number

Exponential negative number

Logarithm of a number larger than

2047

Illegal device code used in READ

or WRITE statement

System device full, could not

complete a WRITE statement

Stack underflow error

Stack overflow error

The file given as input is not a

valid binary file.

An attempt has been made to define

an account, but the account number

already exists with a different

password.

A user is logged in under an ac­

count which the manager is attempt­

ing to delete.

An attempt has been made to delete

an account which cannot be found.

Message Program Explanation
=

OPEN FILE - NOT DELETED LOGID An account cannot be deleted be-

cause one of its files is open to

some other user.

RESTRICTED ACCESS LOGrD Accounts 1, 2, and 3 cannot be de-

leted by LOGID.

RESTRICTED ACCESS tBS LOGID LOGID can be run only under ac-

count 1.

SYSTEM ERROR LOGID An error code has been returned

from a file operation. Possibly

someone has a file open belonging

to an account which is being dele-

ted.

Message Program Explanation

ALREADY LOGGED IN MONITOR The user tried to log in on a

console which is already in use.

BAD DIRECTORY MONITOR A request cannot be honored be-

cause a disk directory is invalid.

BAD FILE NAME MONITOR An invalid file name has been given

BUSY MONITOR The user attempted to talk to a

console which is currently printing

or on which another user is typing.

DEVICE NOT AVAILABLE MONITOR A device which a user tried to as-

sign is not present on the system,

or is temporarily busy and will be

free in a few seconds.

D-17

Message
DIRECTORY FULL

DISK FULL MONITOR

DISK ERROR FOR JOB MONITOR

MYFILE EXCEEDING MONITOR
DISK QUOTA

Program
MONITOR

FAILED BY n SEGMENTS MONITOR

FILE IN USE MONITOR

FILE NOT FOUND MONITOR

FILE NOT OPEN MONITOR

FULL MONITOR

HUNG DEVICE FOR JOB MONITOR

D-18

Explanation

A request cannot be honored

because the user's directory
is full, or his disk quota

is exceeded.

A request cannot be honored
because the disk is full.

There has been an error while
reading or writing in a disk
file.

The user has extended a file
beyond the allowed disk quota.
The amount of extra space

(grace) the user is allowed
is determined by the system
manager. This message is
informational only.

An EXTEND command caQnot be com­
pleted because the d~sk or direc-
tory is full, or the disk quota
would be exceeded.
A file ca~~o~ be altered because
it is open to another user, or

possibly twice to one user.

A file cannot be found.

A file request has been made, but

there is no file open on the inter-

nal file number which has been

given.

The system is full. Another user

cannot log in until one of the

present users logs out.

A device which the user tried to

use is not responding. For the

paper tape punch and line printer,

this message will be repeated un-

til the device is turned on or

released.

Message

ILLEGAL lOT FOR JOB

ILLEGAL REQUEST

LOGIN PLEASE

PROTECTION VIOLATION

SWAP ERROR FOR JOB

.program

MONITOR

MONITOR

MONITOR

l-10NITOR

MONITOR

D-l9

Explanation

The user has tried to execute an

lOT which is illegal. This can

mean that either he has tried to

use a device which is not avail­

able, or he has executed a privi­

leged lOT, but is not in the privi­

leged condition at the time.

The user requested an illegal com­

mand. This error usually results

when some parameter has been given

an incorrect value or the request

refers to a facility not owned

by the user.

The user attempted to use a console

which is not logged into the

system.

A request cannot be honored because

of a file's protection, or because

it is open more than once.

These has been a disk error while

swapping the user's program.

Message

TYPE tBS FIRST

UNAUTHORIZED ACCOUNT

WAIT FOR I/O

LC

LN

OV

Program

MONITOR

MONITOR

MONITOR

Non-Fatal
BASIC

Non-Fatal

Non-Fatal
BASIC

D-20

Explanation

The user typed a command which

cannot be honored, while a pro-

gram is running. The user should

type CTRL/B followed by S, a

carriage return, and then enter

his command. He may then type

START to continue running the pro-

gram.

The user attempted to log into

the system with an invalid account

number or password.

A command cannot be honored be-

cause of I/O in progress. Wait

a few seconds and try again.
An invalid character was typed
in response to an INPUT state­
ment.
An attempt was made to compute

the logarithm of zero or a nega-

tive number. Zero is used for

the result.

Overflow - the result of a ca1-

culation was too large for the

computer to handle. The largest

possible number is used for the

result.

Mess~ge

PW

SQ

UN

/0

BE

Program Explanation

Non-Fatal An attempt was made to raise a
BASIC

negative number to a fractional

power. The absolute value of

that number raised to the frac-

tional power is used.

Non-Fatal An attempt was made to compute the
BASIC

square root of a negative number.

The square root of the absolute

value is used for the result.

Non-Fatal Underflow - the result of a calcu­
BASIC

lation was too small for the com-

puter to handle. Zero is used for

the result.

Non-Fatal Zero divide - an attempt was made
BASIC

to divide by zero. The largest

possible number is used for the

result.

PAL-D Two PAL-D internal tables have

overlapped. This situation can

usually be corrected by decreasing

the level of literal nesting or

number of current page literals

used prior to this point on the

D-2l·
page.

Message Program

DE PAL-D

OF PAL-D

IC PAL-D

ID PAL-D

IE PAL-D

D-22

Explanation

System device error - An error

was detected when trying to read

or write onto the system device;

after three failures, control is

returned to the Monitor.

Systems device full - The capacity

of the system device has been ex-

ceeded; assembly is terminated and

control is returned to the Monitor.

Illegal character - An illegal

character was encountered other

than in a comment or TEXT field;

the character is ignored and the

assembly continued.

Illegal redefinition of a symbol -

An attempt was made to give a pre-

viously defined symbol a new value

by means other than the equal sign;

the symbol was not redefined.

Illegal equals - An equal sign was

used in the wrong context.

Examples:
TAD A+=B
A+B=C

the expression to the
left of the equal sign
is not a single symbol
or, the expression to
the right of the equal
sign was not previously
defined.

Message Program

II PAL-D

ND PAL-D

PE PAL-D

SE PAL-D

us PAL-D

D-23

Explanation

Illegal indirect - An off-page ref­

erence was made; a link could not

be generated because the indirect

bit was already set.

The program terminator, $, is miss­

ing.

Current nonzero page exceeded - An

attempt was made to:

a. override a literal with an

instruction, or

b. override an instruction with

a literal i this can be corrected

by

(1) decreasing the number of

literals on the page or

(2) decreasing the number of

instructions on the page.

Symbol table exceeded - Assembly

is terminated and control is

returned to the Monitor.

Undefined symbol - A symbol has

been processed during pass 2 that

was not defined before the end of

pass 1.

Message

ZE

COMMAND ERROR

DISK I/O ERROR

DIRECTORY FULL

DEVICE NOT AVAILABLE OR
HUNG

FILE NOT FOUND

LOAD ERROR (nnnn)

OUTPUT FILE IN USE

Program

PAL-D

PIP

PIP

PIP

PIP

PIP

PIP

PIP

D-24

Explanation

Page 0 exceeded - Same as PE

except with reference to page O.

An illegal option has been entered.

Self-explanatory.

The file specified for output

cannot be written into because

the user's directory is full.

A device cannot be assigned or is

hung. Hung devices usually result

from having the device turned off.

The file listed as input cannot

be found.

A SAVE format paper tape was not

read properly. nnnn = the final

checksum.

The output file cannot be written

into because some other user has

that file open.

Message

PROTECTED

SYSTEM ERROR
DISK FULL

ARE YOU SUR!:?

BAD CARD TRY AGAIN?

BAD INPUT DEVICE

BAD OUTPUT DEVICE

BAD SWITCH

BAD SYSTEM DIRECTORY
CAN'T ASSIGN DEVICE

Program

PIP

PIP

PTJT~

PUTR

PUTR

PUTR

PUTR

PUTR

PUTR

D-25

Explanation

A file cannot be accessed because

of protection.

The disk is full.

The user is trying to zero a
device. To proceed, type Y.
Type anything else otherwise.

When PUTR tried to read a card,

it did not receive 39, 40, or 80

columns. Typing N and a carriage

return will cause PUTR to close

the output file, or typing anything

else will cause PUTR to try reading

once again.

An attempt has been made to input

from a device which is output only,

such as LPT:.

An attempt has been made to output

to an input-only device, such as

PTR: •

A switch (characters following a

slash) is invalid.

The system Q1rectory is invalid.

The listed device cannot be
assigned. Type any character
and try again, or type CTRL/C
to give up.

Message

CAN'T DELETE

CAN'T OPEN INPUT

CAN'T OPEN OUTPUT

CREATE ERROR

DECTAPE STATUS B ERROR

DIRECTORY FULL

ILLEGAL SYNTAX

ILLEGAL UNIT

INPUT ERROR

LINE TOO LONG

Program

PUTR

PUTR

PUTR

PUTR

PUTR

PUTR

PUTR

PUTR

PUTR

PUTR
D-26

Explanation

The listed file could not be

deleted.

The file listed as input cannot

be opened.

The desired output file cannot

be opened.

A file with the desired name

cannot be created on the system

disk. Perhaps one with that name

already exists and is protected.

An error has occurred while read­

lng or writing a DECtape. The
error code is in the switch
register, which can be found
by typing CTRL/B, then W, then
RETURN

The DECtape or RK¢5 directory
has no more room.
PUTR cannot understand the command

which was typed.

The unit number for DECtape or

RK8E was invalid.

There has been an error while

reading from the input device.

The command line just typed was

too long for PUTR.

Message

NOT UNDER ACCOUNT 1

NO END OF FILE

NO FILES FOUND

OLD DECTAPE

OUTPUT FILE TOO LARGE

PUTR2 APPEND ERROR

RK,05 I/O ERROR

RK,05 NOT READY?

SELECT ERROR?

SYSTEM READ ERROR

SYSTEM WRITE ERROR

USE DEL *

WHAT?

Program

PUTR

PUTR

Pl.JTR

PUTR

PUTR

PUTR2

PUTR

PUTR

PUTR

PUTR

PUTR

PUTR

PUTR

Explanat~on

PUTR must never be run under
account 1.

When reading a BASIC file, the
physical end of the file was
found before the logical end
of file.

The user has requested some
operation, but PUTR has found
no files to operate upon.

An attempt has been made to
output to a DECtape which is
neither OS/8 nor PUTR format.

There is not room for the
output file.

PUTR2 could not successfully
append itself to PUTR. Per­
haps PUTR is being used by
another user, has already had
PUTR2 appended to it, is not
the same version as PUTR2, or
the disk is full.

There has been an error while
reading or writing on the RK,05.
The status can be found in the
switch register i which can be
found by typing CTRL/B followed
by SW and RETURN.

The RK¢5 is not ready or write­
locked. Type CTRL/C to abort
the operation or any other
character to try again.

A DECtape unit is not on remote
or not write enabled. Type a
carriage return to try again or
CTRL/C to abort the operation.

There has been an error while
reading from the system disk.

There has been an error while
writing to the system disk.

Zero is an invalid command for
SYS: .

PUTR cannot understand the
command just typed.

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes software newsletters for the various DIGITAL products.
Newsletters are published monthly, and keep the user informed about cus­
tomer software problems and solutions, new software products, documenta­
tion corrections, as well as programming notes and techniques.

There are two similar levels of service:

The Software Dispatch
The Digital Software News

The Software Dispatch is part of the Software Maintenance Service. This
service applies to the following software products:

PDP-9/l5
RSX-llD
DOS/BATCH
RSTS-E
DECsystem-lO

A Digital Software News for the PDP-II and a Digital Software News for
the PDP-8/l2 are available to any customer who has purchased PDP-ll or
PDP-8/l2 software.

A collection of existing problems and solutions for a given software
system is published periodically. A customer receives this publication
with his initial software kit with the delivery of his system. This
collection would be either a Software Dispatch Review or Software Per­
formance Summary depending on the system ordered.

A mailing list of users who receive software newsletters is also main­
tained by Software Communications. Users must sign-up for the news­
letter they desire. This can be done by either completing the form sup­
plied with the Review or Summary or by writing to:

SOFTWARE PROBLEMS

Software Communications
P.o. Box F
Maynard, Massachusetts 01754

Questions or problems relating to DIGITAL's software should be ~eported
as follows:

North and South American Submitters:

Upon completion of Software Performance Report (SPR) form remove last
copy and send remainder to:

Software Communications
P.O. Box F
Maynard, Massachusetts 01754

The acknowledgement copy will be returned along with a blank SPR form
upon receipt. The acknowledgement will contain a DIGITAL assigned SPR
number. The SPR number or the preprinted number should be referenced in
any future correspondence. Additional SPR forms may be obtained fram
the above address.

All International Submitters:

Upon completion of the SPR form, reserve the last copy and send the re­
mainder to the SPR Center in the nearest DIGITAL office. SPR forms are
also available from our SPR Centers.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In the
United States, send orders to the nearest distribution center.

Digital Equipment Corporation
Software Distribution Center
146 Main Street

Digital Equipment Corporation
Software Distribution Center
1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the united States, orders should be directed to the nearest
Digital Field Sales Of~ice or representative.

USERS SOCIETY

DECUS, Digital Equipment Computers Users Society, maintains a user ex­
change center for user-written programs and technical application infor­
mation. The Library contains approximately 1,900 programs for all
DIGITAL computer lines. Executive routines, editors, debuggers, special
functions, games, maintenance and various other classes of programs are
available.

DECUS Program Library Catalogs are routinely updated and contain lists
and abstracts of all programs according to computer line:

PDP-S, FOCAL-S, BASIC-S, PDP-12
PDP-7/9, 9, 15
PDP-ll, RSTS-ll
PDP-6/l0, 10

Forms and information on acquiring and submitting programs to the DEC US
Library may be obtained from the DECUS office.

In addition to the catalogs, DECUS also publishes the following:

DECUSCOPE

PROCEEDINGS OF
THE DIGITAL
EQUIPMENT USERS
SOCIETY

MINUTES OF THE
DECsystem-10
SESSIONS

COPY-N-Mail

LUG/SIG

-The Society's technical newsletter, published bi-monthly,
aimed at facilitating the interchange of technical in­
formation among users of DIGITAL computers and at dis­
seminating news items concerning the Society. Circula­
tion reached 19,000 in May, 1974.

-Contains technical papers presented at DECUS Symposia
held twice a year in the United States, once a year
in Europe, Australia, and Canada.

-A report of the DECsystem-10 sessions held at the two
United States DECUS Symposia.

-A monthly mailed communique among DECsystem-10 users.

-Mailing of Local User Group (LUG) and Special Interest
Group (SIG) communique, aimed at providing closer
communication among users of a specific product or
application.

Further information on the DECUS Library, publications, and other DECUS
activities is available from the DECUS offices listed below:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

DECUS EUROPE
Digital Equipment Corp. International
(Europe)
P.O. Box 340
1211 Geneva 26
Switzerland

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date ________________________ _

Organization __ __

Street __ --------______ __

City ___________________________ State ______ -==-==_Zip Code ____________ __

or
Country

If you do not require a written reply, please check here. [J

--Fold lIere--

--.. - Do Not Tear - Fold lIere and Staple --

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

	000001
	000002
	000003
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13.0
	02-13.5
	02-13.6
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	09-01
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21.0
	09-21.1
	09-22.0
	09-22.5
	09-23
	09-24
	09-25
	09-26
	09-27
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16.0
	11-16.5
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	replyA
	replyB
	replyC
	replyD
	xBack

